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Abstract

This thesis consists of two parts. In Part I we present a new class of norm
discretization inequalities suited for low-degree polynomials in many dimensions,
with applications to discrete harmonic analysis and to quantum and classical
learning theory.

Discretization inequalities (of Bernstein type) control the supremum norm
of polynomials f by their supremum norms over certain finite subsets T of the
domain. Unlike earlier multivariate Bernstein-type discretization inequalities
we establish dimension-free comparisons for simple and generic T , such as
product sets T = S1 × · · · × Sn for Sj’s consisting of well-spread points in R
or C, in exchange for a constant that grows with deg(f).

Our results also introduce the notion of individual degree—the maximum
degree of f in any one variable—as a fundamental parameter for discretization
inequalities: we show for the first time that dimension-free discretizations of
the uniform norm are possible for T with cardinality independent of deg(f),
provided f has bounded individual degree.

Our work offers a new, high-dimensional perspective on discretization in-
equalities and yields several new results in analysis on the hypergrid (i.e., prod-
ucts of cyclic groups), including Bohnenblust–Hille-type inequalities, dimension-
free supremum norm bounds on level-k Fourier projections, and junta theorems.
These estimates in turn provide the key analytic tools for extending recent
breakthroughs in learning low-degree functions to the hypergrid and to its
quantum analogue, local observables on K-level qudit systems.

In Part II we apply ideas from analysis of Boolean functions to study other
aspects of (quantum) computation: circuit complexity and property testing.

First, we introduce and study a deceptively simple model of constant-depth
quantum circuits and begin the project of proving bounds on its capabilities, ul-
timately drawing on connections to nonlocal games and notions of approximate
degree.

Second, we introduce a new access model for property testing, quantum data,
which allows for ultrafast testing algorithms where classical data provably yields
no fast testers—such as for monotonicity, symmetry, and triangle-freeness.
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Conventions

Computer Science
• [n] := {1, 2, . . . , n}

• x ∼ X for X a finite set means denotes a sample from the uniform
probability measure over X.

• The “soft-O” notation g(n) ≤ Õ(f(n)) means there exists a k ∈ N for
which

g(n) ≤ O
(
f(n) · logk n

)
.

• O attaches first in Landau notation: O(x)d :=
(
O(x)

)d
Analysis

• Integral norms. For functions f : X → C, X finite, the notation ‖f‖p
will denote Lp norm of f w.r.t. the uniform measure. The notation
‖f̂‖p denotes the `p norm of the Fourier transform of f (with respect to
counting measure).

• Vinogradov notation. For two quantities X and Y , the notation X . Y

means there exists a universal constant C > 0 such that X ≤ C · Y . The
notation X .

`
Y allows the implicit constant C = C(`) to depend on `

only. We do not allow an additive constant (e.g., the D in X ≤ CẎ +D)
in Vinogradov notation, which distinguishes it from the Landau notation
X ≤ O(Y ).

• Quantities X and Y are comparable, X ' Y , if that X . Y and Y . X.
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C h a p t e r 1

Mathematical overview

A summary of the mathematical contributions in Part I. For moti-
vations from computer science, one may skip to Chapter 2.

The analysis of Boolean functions is by now a well-established theory
and an essential fiber in the fabric of theoretical computer science and discrete
mathematics more generally. Any function f : {−1, 1}n → R is uniquely
expressed as a multilinear (or multi-affine) polynomial

f(x) = ∑
S⊆[n] f̂(S)χS with χS := ∏

j∈S xj,

and various measures and aspects of the Fourier coefficients {f̂(S)}S⊆[n] provide
significant insight into the structure of f . This perspective has led to many
discoveries in computational complexity theory, learning theory, voting theory,
coding theory, and combinatorics, among other areas [ODo14].

But not every function encountered in theoretical computer science is on
the hypercube. A key generalization of {±1}n is the so-called hypergrid, [K]n,
conveniently represented as the product of multiplicative cyclic groups

Ωn
K := {exp(2πik/K) : k = 0, 1, . . . , K − 1}n.

Harmonic and functional analysis on ΩnK is important in combinatorics [ALM91;
Mes95], number theory [BS80], and graph theory [ADFS04], and naturally
models many-candidate social choice functions and even certain aspects of
K-level qudit systems in quantum computing.

Coming from the hypercube {±1}n = Ωn
2 , some aspects of functional and

harmonic analysis on Ωn
K for general K are familiar. For example, the basics

of influence and hypercontractivity are well-understood in this setting [Wei80;
JPPP17]. But the analysis of functions on Ωn

K is not just a retelling of the
Boolean story; new and formidable barriers appear already at K = 3.

One example is the well-known Plurality is stablest conjecture from hardness
of approximation [KKMO07], which remains open even though the Boolean
case (Majority is stablest) was resolved 20 years ago [MOO10] (announced in
2005). In Part I we present a sequence of works surmounting another barrier in
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the analysis over ΩnK appearing only for K ≥ 3, motivated by a desire to extend
a recent breakthrough in learning theory by Eskenazis and Ivanisvili [EI22]
to more-general product spaces and their quantum analogues. Ultimately we
reach beyond this goal, obtaining results with consequences for approximation
theory and discrete analysis more broadly.

A challenge
Analysis over ΩnK is hard in part because Fourier expansions of functions on

ΩnK , K ≥ 3 are no longer multilinear. As we elaborate in the next chapter, for
our target applications an essential technical step is to compare the supremum
norm of f : ΩnK → C to the supremum norm of its extension to the product of
convex hulls of ΩK , conv(ΩK)n. Specifically, for f of degree at most d, we seek
a comparison independent of dimension n of the form

‖f‖conv(ΩK)n
?
≤ C(K, d)‖f‖Ωn

K
. (1.0.1)

Here and throughout, ‖ · ‖X will denote the supremum norm over a domain X.
To make sense of (1.0.1), recall that any f : Ωn

K → C admits the unique
Fourier expansion

f(z) =
∑

α∈{0,1,...,K−1}n
f̂(α)zα with zα :=

n∏
j=1

z
αj

j .

In this way, f can be uniquely extended to an analytic polynomial over Cn.
Throughout Part I we will conflate f : ΩnK → C with its associated polynomial
and use terms like the degree of f to mean its total degree as an analytic
polynomial. Note also that all polynomials arising thusly have individual degree
(i.e., the largest degree of any coordinate) at most K − 1. Our results will
hold for domains beyond ΩnK so we will find it most natural to state our results
directly for analytic polynomials of bounded individual degree.

Now that we can parse Equation (1.0.1), what does it mean? One might
compare it to the maximum modulus principal, which in this context would
say that

‖f‖conv(ΩK)n ≤ ‖f‖Pn
K
,

where PK is the boundary of conv(ΩK), i.e., the boundary of the regular K-gon.
Equation (1.0.1) asks whether a discrete grid of points can be used in place
of the entire product of boundaries, possibly at the expense of introducing a
dimension-free multiplicative constant.
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Figure 1.1: Failure of the “discrete maximum modulus principle.” Here we
plot the modulus of p(z) = z2/3 − z/3 + 1 evaluated on conv(Ω3). Notice
that while |p(z)| is greatest on the boundary of conv(Ω3) (the maximum
modulus principle), it is not maximized by a vertex from Ω3 itself. We conclude
‖f‖conv(ΩK)n ≤ C‖f‖Ωn

K
cannot hold with constant 1 in general.

Let us sketch the difficulty in resolving (1.0.1) for different K. When K = 2,
the comparison is a trivial equality with constant C = 1: because functions on
the hypercube have multilinear extensions, we obtain ‖f‖[−1,1]n = ‖f‖{±1}n by
convexity. But at K = 3 this doesn’t work; in fact one can prove (see Figure 1.1
and [SVZ24a, Appendix B]) that even for n = 1 we must have C(d,K) > 1
in (1.0.1). As a result, naive approaches to proving (1.0.1) for K ≥ 3 yield
constants with exponential dependence on n.

On the other end of the K spectrum, if we take “K = ∞” and consider
analytic functions on the polytorus

Tn := {z ∈ C : |z| = 1}n,

the question is trivial, and again we get equality with constant 1:

‖f‖conv(T)n = ‖f‖Dn = ‖f‖Tn

(this of course is just the maximum modulus principle). But there is no such
easy fact for finite K because ΩK is not the entire boundary of conv(ΩK).
There seems to be a particular difficulty for finite K ≥ 3.
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Norm discretization inequalities
In approximation theory, comparisons of the kind (1.0.1) are known as

Bernstein-type discretization inequalities—or discretizations of the uniform
norm—and there is a vast body of work on the subject; see for example the
surveys [DPTT19; KKLT22].1 Bernstein-type discretization inequalities have
the general shape of

‖f‖X ≤ C(d, n)‖f‖T (1.0.2)

for some domain X (usually convex) and finite sampling set T ⊂ X.
The typical goal for multivariate Bernstein-type inequalities is to establish

a comparison of the kind (1.0.2) for C independent of degree d, but possibly
depending on dimension n, while keeping T as small as possible. While this
is the most natural multivariate generalization of the univariate Bernstein
discretization inequality [Ber31; Ber32] (where independence of C from d was
of course paramount), dependence of C on dimension n makes much of the
norm discretization literature inapplicable for our hoped-for bound (1.0.1).

On the other hand, in some cases results with universal constants C are
known, for example in the recent work of Dai and Prymak [DP24] resolving
an important conjecture of Kroó [Kro11]. But these results also do not seem
to apply either. The most salient reason is that the literature does not seem
to distinguish between individual degree K − 1 and (total) degree d, and as a
result the cardinality of T always depends directly on deg(f). For our purposes,
where d can easily grow much larger than K, we still require T = ΩnK . And even
if we restrict ourselves to the very special case of d ≤ K, there is the issue of
the structure of T . ΩnK has a very simple but rigid product structure, whereas
Bernstein-type discretization inequalities in the literature with C independent
of n are either proofs of existence of T of low cardinality, or they construct T ’s
that have intricate ε-net-type structures, as is the case for the sampling sets in
Dai and Prymak [DP24], which are far from being product sets.

In fact, as we explain in the sequel, it turns out that for T = Ωn
K to be

a workable sampling set at all for us (i.e., yielding C independent of n), the
constant C must depend on degree d. So our hoped-for norm discretization
inequality is of a distinct flavor from the traditional results of multivariate
norm discretization. Indeed, if (1.0.1) were true, it would represent a new
perspective in high-dimensional norm discretization—one that demands C be

1Warning: in the norm discretization literature, d is typically used for dimension and n
for degree, precisely the opposite of what is typical in analysis of Boolean functions.
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independent of dimension while allowing degree dependence—and would show
that new and interesting features appear in this regime, such as the role of
individual degree.

1.1 Results
The first headline result of Part I is a resolution of (1.0.1). (It turns out

‖f‖conv(ΩK)n and ‖f‖Tn are easily comparable independent of dimension2 so we
will state results using the latter as it is cleaner.) In fact, a broad generalization
of (1.0.1) is proved, but we stick to the below for the purposes of this discussion.

Theorem 1 (Dimension-free discretization of the uniform norm). Let f be an
n-variate analytic polynomial of degree d and individual degree K − 1. Then

‖f‖Tn ≤ O(logK)d‖f‖Ωn
K
.

We will give two proofs of Theorem 1 which generalize it in different ways.

Proof I: Fourier multipliers [SVZ25]. This is the historically-first proof and
obtains only an implicit constant (still dimension-free) in place of O(logK)d.
Along the way to Theorem 1 the proof develops a rich class of Fourier multipliers
that are L∞-bounded independent of dimension and may be of independent
interest. For prime K this class of multipliers is characterized exactly thanks to
connections to transcendental number theory and Baker’s celebrated theorem
on the logarithms of algebraic numbers [Bak22].

Theorem 2 (Bounded Fourier projections, prime K ≥ 3). Suppose K is an
odd prime and let S be a maximal subset of {0, 1, . . . , K − 1}n such that for all
α, β ∈ S:

• (Total) degrees are equal: ∑n
j=1 αj =

∑n
j=1 βj.

• Individual degree symmetry: there is a bijection π : [n] → [n] such that
for all j ∈ [n], αj = βπ(j) or αj = K − βπ(j). (In particular, α and β are
nonzero on the same number of indices.)

Then for any n-variate analytic polynomial f of degree at most d and individual
degree at most K − 1, the S-part of f , fS(x) :=

∑
α∈S f̂(α)zα, satisfies

‖fS‖Ωn
K
.
d,K

‖f‖Ωn
K
.

2One direction is immediate. For the other, let cK > 0 be such that cKT ⊂ conv(ΩK).
Because f has bounded degree, ‖f‖Tn ' ‖f‖(cKT)n , which is at most ‖f‖(convΩK)n .
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Proof II: polynomial interpolation [KSVZ24; Bec+25]. This proof is
probabilistic and obtains Theorem 1 with the quoted constant. The key
technique is a novel interpolation formula, which is our second headline result.

Theorem 3 (Dimension-free multivariate interpolation). For any z ∈ Dn

there exist explicit coefficients {a(z)x }x∈Ωn
K
such that for any n-variate analytic

polynomial f of degree d and individual degree K − 1,

f(z) =
∑
x∈Ωn

K

a(z)x f(x) ,

and ∑x |a
(z)
x | ≤ O(logK)d.

While interpolation of degree-d polynomials f can be accomplished by
much smaller sets than Ωn

K , Theorem 3 appears to be the first multivariate
interpolation formula for which the coefficients {a(z)x }x have `1 norm independent
of dimension n. Moreover, a point set with cardinality exponential in n, like
Ωn
K , is necessary to get ‖a(z)‖`1 independent of dimension. This dimension-

independence is crucial for obtaining Theorem 1 from Theorem 3 and to
downstream applications. We hope Theorem 3 finds other uses in approximation
theory and analysis.

Remark. Theorems 1 and 3 may actually be generalized from Ωn
K to a very

generic class of sampling sets S ⊂ Dn (though the K-dependence of the
constant becomes more complicated). This is done in the work [Bec+25]; see
Chapter 3 for the general statement.

1.2 Applications in analysis
Theorems 1 and 3 have several consequences in analysis and approximation
theory.

New Bohnenblust–Hille inequalities
Theorem 4 (Cyclic-group Bohnenblust–Hille inequality). Let f : Ωn

K → C
have degree at most d. Then

‖f̂‖ 2d
d+1
.
K,d

‖f‖Ωn
K
.

Here and throughout, ‖f̂‖p denotes the `p norm of the Fourier coefficients for f .
This theorem extends to Ωn

K the classical inequality of Bohnenblust and Hille
(BH), which originally appeared in the study of Dirichlet series and has a long



9

history in harmonic analysis. The hypercube formulation was studied more
recently [Ble01; DMP18] and has found surprising applications in computer
science. The BH inequality for ΩnK , K ≥ 3 was not known until we gave a proof
in [SVZ24a]. That publication actually predates our discretization inequality
(Theorem 1), but we elected to omit [SVZ24a] from this thesis because (i) with
the discretization inequality in hand, Theorem 4 becomes a one-line reduction
to the original BH inequality [BH31]; and (ii) the techniques employed in
[SVZ24a] are directly subsumed by those in the Fourier multiplier proof of
Theorem 1, [SVZ25].

Theorem 1 is also a key ingredient in the proof of a noncommutative (or
quantum) Bohnenblust–Hille inequality.

Theorem 5 (Qudit Bohnenblust–Hille inequality). Let A be a d-local quantum
observable on n-many K-level qudits. Then

‖Â‖ 2d
d+1
.
d,K

‖A‖op .

The “Fourier transform” Â here refers to the vector of coefficients obtained
by decomposing A in the Heisenberg–Weyl basis, which is a unitary generaliza-
tion of the familiar Pauli basis. This is discussed in detail in Section 6.3.

Theorem 5 generalizes the qubit BH inequality that was first proved in
[HCP22] and then improved in [VZ23]. The proof of Theorem 5 combines
Theorem 1 with a careful analysis of the commutation structure of Heisenberg–
Weyl matrices.

Level-` Fourier projections are bounded
Theorem 6 (Boundedness of the level-` Fourier projection). Let f : Ωn

K →
C have degree at most d and let ` be a positive integer. Then with f` =∑
|α|=` f̂(α)zα denoting the `-homogeneous part of f ,

‖f`‖Ωn
K
.
K,d

‖f‖Ωn
K
.

This theorem shows that the level-` Fourier projection, when applied to low-
degree polynomials, is bounded independent of dimension. This is a common
Fourier multiplier-type estimate, and dimension free-ness for polynomials on
ΩnK , K ≥ 3 was not known until the discovery of Theorem 1. The K = 2 case
has a short proof usually attributed to Figiel [MS86, §14.6]. When K is prime
Theorem 6 can be seen as a specialization of the very fine-grained projection
theorem Theorem 2, though more generally it follows easily from Theorem 1
and can be stated with the explicit constant O(logK)d.
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Lp discretization
Theorem 7 (Dimension-free discretization of Lp norms). Let d, n ≥ 1, K ≥ 2.
Let 1 ≤ p ≤ ∞. Then for any polynomial f : Tn → C of degree at most d and
individual degree at most K − 1, we have

‖f‖Lp(Tn) ≤ d · O(logK)d‖f‖Lp(Ωn
K
) .

This Lp discretization inequality could be called a Marcinkiewicz–Zygmund-type
(MZ-type) discretization inequality, though it differs from the typical MZ-type
inequalities in the literature in that the constant in Theorem 7 is independent
of p but depends strongly on d. The proof combines the interpolation formula
of Theorem 3 with invariance of the uniform (Haar) measure on ΩnK . One can
also get a dimension-free comparison à la Theorem 7 via hypercontractivity
[Wei80; JPPP17], but again the constant will depend on p.

1.3 Applications in learning theory
A basic task in learning theory is to learn an L2 approximation to a degree-d
function f , given access to random samples. The naive algorithm requires O(nd)
samples but we obtain an algorithm with exponentially-better n dependence.

Theorem 8 (Cyclic-group low degree learning). Let f : Ωn
K → D have degree

d. Then with
(logK)O(d2) · log

(
n

δ

)
·
(1
ε

)d+1

independent random samples of the form (x, f(x)), x ∼ Ωn
K, we may with

confidence 1− δ learn a function f̃ : Ωn
K → C with ‖f − f̃‖22 ≤ ε.

This learning theorem extends a breakthrough result of Eskenazis and Ivanisvili
[EI22] from functions on the hypercube to those on Ωn

K , and is obtained by
combining the cyclic-group Bohnenblust–Hille inequality, Theorem 4, with
ideas in [EI22].

An analogous result holds in the context of quantum computing, where
role of the function f : Ωn

K → C is taken by a quantum observable on K-level
qudits.

Theorem 9 (Low-degree Qudit Learning). Let A be a degree-d (or d-local)
observable on n K-level qudits with ‖A‖op ≤ 1. Then there is a collection S of
product states such that with a number

O
((
K‖A‖op

)C·d2
d2ε−d−1 log

(
n
δ

))
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of samples of the form (ρ, tr[Aρ]), ρ ∼ S, we may with confidence 1− δ learn
an observable Ã with ‖A− Ã‖22 ≤ ε.

See Section 6.4 for the full definition and explanation.

I am very grateful to my coauthors Lars Becker, Ohad Klein, Alexander Volberg,
and Haonan Zhang for their collaboration in the various papers constituting
Part I.
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C h a p t e r 2

From learning theory to discretization inequalities

We chart a path from motivations in quantum and classical learning
theory to our discretization inequality, Theorem 1.

Boolean functions whose multilinear expansions are low degree (think
of deg(f) as much less than dimension n, or even constant) are ubiquitous in
computer science [ODo14] and it is a fundamental task to learn them from
random samples.

Task (Low-degree learning). Using R-many uniformly-random samples{(
x(r), f(x(r))

)}R
r=1

of an unknown Boolean function f : {±1}n → [−1, 1] of degree d, produce with
probability 2/3 a function g : {±1}n → R such that ‖f − g‖2 ≤ ε.

Here the norm ‖ · ‖2 is with respect to the uniform probability measure on
{±1}n, and the figure of merit for the task is sample complexity, i.e., the
dependence of R on d, ε, and especially n.

In 1993 Linial, Mansour, and Nisan [LMN93a] gave a very natural Õε(nd)-
sample algorithm for low degree learning: from samples one may form the
empirical Fourier coefficients

ĝ(S) := 1
R

∑R
r=1f

(
x(r)

)
χS
(
x(r)

)
for all S ⊆ [n] with |S| ≤ d, and from there define the estimator

g := ∑
|S|≤d ĝ(S)χS .

The analysis is textbook: to obtain, say, ‖f − g‖2 ≤ 0.01 = ε, it suffices to get

|f̂(S)− ĝ(S)| ≤ 0.001/nd for each S ⊆ [n], |S| ≤ d, (2.0.1)

for then

‖f − g‖2
(Plancherel)= ‖f̂ − ĝ‖2 ≤ ‖f̂ − ĝ‖1 =

∑
|S|≤d

|f̂(S)− ĝ(S)| ≤ 0.01.
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And standard concentration arguments say (2.0.1) can be accomplished with
Õ(nd) samples with high probability.

For almost 30 years this sample complexity stood without improvement,
and for good reason: a natural heuristic calculation suggests no improvement is
available. Degree-d polynomials have roughly nd Fourier coefficients, and each
is bounded by ‖f̂‖∞ ≤ 1, so we might expect an ε-net of such f has cardinality
at least (1/ε)nd—which would require Ω(nd log(1/ε)) samples to learn.

Yet, 28 years after [LMN93a], [Iye+21] found a Õε(nd−1)-sample algorithm
based on improved bounds on the Fourier growth of low degree polynomials, i.e.,
bounds on ∑|S|=k |f̂(S)| for degree-d f as a function of d, k, and n. Although in
some sense a modest improvement on the performance of the basic low degree
learning algorithm, the work of [Iye+21] already contradicts the heuristic
lower bound just described. So what is wrong with our back-of-the-envelope
calculation? It turns out we failed to take into account the interaction of the
degree constraint and the L∞ bound constraint on f . Soon after the work of
[Iye+21], Eskenazis and Ivanisvili [EI22] showed that these two constraints
interact so strongly that actually an Õε,d(log n)-sample algorithm was possible.

The breakthrough of Eskenazis–Ivanisvili
Eskenazis and Ivanisvili leveraged a theorem about bounded low-degree

functions coming from classical harmonic analysis, Bohnenblust–Hille (BH)
inequality, that is at this point quite classical [BH31]. The original BH inequality
applies to degree-d analytic polynomials on Dn.

Theorem 10 (Bohnenblust–Hille inequality [BH31]). Let f : Tn → C be an
analytic polynomial of degree at most d. Then

‖f̂‖ 2d
d+1

≤ Cd‖f‖Tn .

Here and throughout the norm ‖ĝ‖p denotes the `p norm of the Fourier coeffi-
cients of g. The two key aspects of the BH inequality are (i) the independence
of the constant Cd from dimension n, and (ii) that the `p norm on the left-hand
side is for a p strictly less than 2. For p = 2 the comparison of course holds
with constant 1 for all functions (Plancherel); actually p = 2d/(d+ 1) is the
smallest p admitting a dimension-free comparison of the kind above [BH31].
Together the properties (i) and (ii) place powerful constraints on the Fourier
spectrum of bounded, low-degree polynomials, as we will detail in the sequel.
We also remark that in many applications the dependence of Cd on d is quite
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important; the best bound we know currently is Cd ≤ C
√
d log d due to [BPS14].

See [DGMS19, Ch. 6] for more on the classical Bohnenblust–Hille inequalities.
The analogous inequality for Boolean functions has a shorter history. The

hypercube BH inequality was originally proved with an implicit constant Cd by
Blei [Ble01] and then was only very recently improved to the subexponential
Cd = C

√
d log d [DMP18]. Again, p = 2d/(d+ 1) is the best possible.

Theorem 11 (Hypercube BH inequality). Let f : {±1}n → R be a Boolean
function of degree d. Then

‖f̂‖ 2d
d+1

≤ Cd‖f‖∞ . (2.0.2)

Moreover, Cd ≤ C
√
d log d for a universal constant C.

How can we make use of such a bound? The insight of Eskenazis–Ivanisvili
is as follows. Beginning with some unknown vector v ∈ Rn (such as the vector
of Fourier coefficients of f), if one has an `∞ estimate of v, i.e., a w such that

‖v − w‖∞ ≤ ε,

as well as the guarantee that ‖v‖`p is bounded for some p < 2, then w can be
improved to an `2 estimate w̃ of v, still controlled by ε:

‖v − w̃‖2 . ε1−
p
2 .

Specifically, w̃ is obtained from w by replacing small entries by 0—a task that
crucially does not need any knowledge of v’s entries.1

Lemma 12. Let p ∈ [0, 2) and ε,B > 0. Suppose v, w ∈ Cn with ‖v−w‖∞ ≤ ε

and ‖v‖p ≤ B. Then for w̃ defined as

w̃j =

wj if |wj| ≥ ε
(
1 +

√
2

2−p

)
0 otherwise,

(2.0.3)

we have the bound
‖w̃ − v‖2 ≤ 5Bε1−

p
2 .

1With the one exception of choosing the threshold for “small,” which is set in terms of
the norm bounds just mentioned.
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With these pieces in place, the algorithm of Eskenazis–Ivanisvili is straight-
forward: begin by forming the empirical vector of Fourier coefficients ĝ as
before, using enough samples so that with high probability, ‖f̂ − ĝ‖∞ ≤ ε.
From Theorem 11 we know ‖f̂‖ 2d

d+1
≤ O(1) always, so we are exactly in the

situation of Lemma 12: replacing the small entries of ĝ with 0, we may obtain a
new estimator ĥ of f̂ with the guarantee that ‖f̂− ĥ‖2 = ‖f−h‖2 is controlled
by a power of ε, without any n-dependence in the inequality. As a result, we
only need to gather enough data so that ‖f̂ − ĝ‖∞ ≤ poly(ε), which is much
easier to achieve than the O(ε/nd) requirement of the naive algorithm. In fact,
the only source of n dependence ends up being the Od(log n) copies required
for concentration of measure to overcome the loss when union-bounding over
the events {

|f̂(S)− ĝ(S)| ≤ O(1)
}
S⊂[n],|S|≤d

.

We will not delve into it here, but the estimator ĥ for f̂ could be called a
hard-thresholding estimator in statistics. The proof of Lemma 4 appears later
on in Section 6.4, but for now we just point out that p being strictly less than
2 is absolutely critical: eventually one needs the `2 norm of the small entries of
v (the ones zeroed-out in w̃) to be bounded by a function of ε ≥ ‖v − w‖∞.
With t = t(ε, p) the threshold in (2.0.3),

∑
j:|wj |<t

|vj|2 =
∑

j:|wj |<t
|vj|2−p|vj|p ≤ (t+ ε)2−p

∑
j:|wj |<t

|vj|p ≤ (t+ ε)2−pB1/p .

And recalling t is linear is ε, we recognize the right-hand side of this display as
CB,pε

2−p. On the other hand, if we only had the trivial bound ‖v‖`2 ≤ 1, there
is no reason the `2 norm of the small entries of v should go to 0 as ε→ 0.

We also remark that while the algorithm of Eskenazis–Ivanisvili achieves a
log(n) sample complexity, the time complexity of the algorithm is still O(nd)
because each ĝ(S) for |S| ≤ d is compared with the threshold in sequence. It
is an interesting open problem to determine if the runtime can be improved to
o(nd), as the related problem of k-junta learning has seen a few improvements
of this kind, e.g., [Val15].

Quantum generalizations
Soon after the Eskenazis–Ivanisvili breakthrough, Rouzé, Wirth, and Zhang

conjectured a quantum generalization [RWZ24a]. The idea is to learn local
quantum observables. An (n-qubit) quantum observable is a Hermitian matrix
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A ∈ M2n×2n(C). Such an observable models the following process: an n-qubit
quantum state ρ is subjected to an unknown transformation (quantum channel)
N , and then a numerical measurement (with outcomes in, say, [−1, 1]) is
performed on the output. The matrix A captures the statistics of this process,
in the sense that tr[Aρ] is the expected measurement outcome for N (ρ). Indeed,
if {Nj}j are the Kraus operators for N (so that N (ρ) = ∑

j NjρN
†
j ) and M is

the measurement operator of the measurement device, then

A = ∑
jN
†
jMNj .

It is a natural task to learn a description of the matrix A so that the
expectation value map ρ 7→ tr[Aρ] can be predicted for new ρ. Learning
descriptions of arbitrary 2n × 2n matrices is very difficult, so one simplifying
assumption comes by way of a quantum (or noncommutative) generalization
of polynomial degree bounds. Any n-qubit observable A admits a unique
Fourier-like decomposition

A =
∑

α∈{0,1,2,3}n
Â(α)σα, σα :=

n⊗
j=1

σαj ,

where the σj’s are the Pauli matrices

σ0 :=
1 0
0 1

, σ1 :=
0 1
1 0

, σ2 :=
0 −i
i 0

, σ3 :=
1 0
0 −1

 .
The observable A is d-local if Â(α) = 0 when |α| > d, where |α| is the number
of entries j for which αj 6= 0.

This is all looking very familiar. As we explain in the Section 6.4, by
obtaining samples of the form (ρ, tr[Aρ]) for a certain distribution of states ρ, it
is easy to construct an estimator for the “Pauli coefficients” of A, and one might
hope for an Oε,d(log n)-sample learning algorithm for d-local A. The missing
piece was a quantum (qubit) version of the Bohnenblust–Hille inequality.

Theorem 13 (Qubit BH Inequality). Let A be a d-local observable. Then

‖Â‖ 2d
d+1

≤ Cd‖A‖op .

This theorem was conjectured in [RWZ24b] and a proof appeared very
soon after in [HCP22] with constant Cd = O(dd). A very different proof that
improves the constant to Cd = Cd was then given by Volberg and Zhang [VZ23].
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This second proof is very efficient and directly reduces to the hypercube BH
inequality. In brief, for any d-local observable A the authors identify a degree-d
Boolean function fA : {±1}3n → R such that

‖Â‖ 2d
d+1

≤ 3d‖f̂A‖ 2d
d+1

and ‖f̂A‖{±1}3n ≤ ‖A‖op . (2.0.4)

The hypercube BH inequality joins these two bounds to complete the theorem.

To larger product spaces
It is natural to ask whether this story continues to larger product spaces

(quantum and classical), and this was the starting point for the work presented
in Part I of this thesis. Classically, such an extension looks like learning low-
degree functions on products of cyclic groups ZnK , which we shall represent by
the multiplicative group ofKth roots of unity, ΩnK . As mentioned in the previous
chapter, the space ΩnK is sometimes called the “hypergrid” in property testing
[CS14; BCS23], is a key setting for studying the hardness of approximation
(e.g., the Plurality is Stablest Conjecture of [KKMO07], see also [MOO10]),
and appears frequently in coding theory and cryptography.

The argument of Eskenazis–Ivanisvili generalizes directly to such functions,
provided the appropriate BH inequality can be proved:

Conjecture 1 (Cyclic-group Bohnenblust–Hille inequality). Let f : Ωn
K → C

have degree d. Then
‖f̂‖ 2d

d+1
≤ Cd,K‖f‖Ωn

K
.

As will be explained soon, it is not possible to mimic the proof of the hypercube
(or the original polytorus) BH inequality for functions on ΩnK . This conjecture
is the main sticking point for extending classical low-degree learning to larger
product spaces.

The quantum case of generalized low-degree learning is just as impor-
tant, both for the study of fundamental physics via quantum simulation (e.g.,
[Kur+21; Gon+22]) and in the operation and validation of quantum comput-
ers. In both contexts, gains in efficiency are possible when the underlying
hardware system is composed of higher-dimensional subsystems, sometimes
carrying an algorithm from theoretical fact to practical reality in the NISQ era
[Gon+22]—and this benefit may very well remain as quantum computing ad-
vances. Such devices are called multilevel system, or qudit, quantum computers
[WHSK20]. While the qubit case gives a conceptual sense of the possibilities
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for learning on qudit systems, it is of practical value to derive guarantees and
algorithms that work directly in the native dimension of the quantum system.

To formulate a Bohnenblust–Hille inequality for qudit systems, we must
decide on a qudit generalization of Pauli matrices. A natural choice are the
Heisenberg–Weyl (HW) matrices, which are their unitary generalizations. We
defer a formal definition till Section 6.3.

Conjecture 2 (Qudit BH inequality). Let A be a degree-d (or d-local) observ-
able on n-many K-level qudits. Then

‖Â‖ 2d
d+1

≤ Cd,K‖A‖op .

Following the approach of Zhang and Volberg, there are two steps to proving
the qudit BH inequality. The first is, given an n-qudit operator A, to identify
a commutative polynomial fA with bounds analogous to Equation (2.0.4).
This is technically much more challenging than in the qubit case because the
Heisenberg–Weyl matrices have a very intricate commutation structure. Partial
results on this part appeared in [KSVZ24] and the full reduction finished in
[SVZ24b], the proof of which is included in Section 6.3. The other part is to
prove the appropriate commutative BH inequality, which turns out again to be
the cyclic-group Bohnenblust–Hille inequality because the eigenvalues of HW
matrices are roots of unity.

Therefore our goals of generalizing low-degree learning to larger product
spaces, both classically and quantumly, dovetail into the task of proving a
cyclic-group Bohnenblust–Hille inequality.

BH for cyclic groups: the barrier and a first resolution
Although a cyclic-group BH inequality is the natural interpolating statement

between the now well-understood hypercube BH (polynomials on Ωn2 ) and the
classical BH inequality, for polynomials on Tn (or “Ωn

∞”), there was no proof
in the literature. And this is for good reason, as the regime of 2 < K < ∞
faces unique difficulties.

At a very coarse level, the hypercube and polytorus BH inequalities are
both proved in the following steps [DS14] (using Xn to represent either product
space):

1. Symmetrization: express f as the restriction of a certain symmetric
d-linear form Lf to the diagonal ∆ := {(z, . . . , z) : z ∈ Xn}; that is,
f(z) = Lf (z, . . . , z).
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2. BH inequality for multilinear forms: bound the `2d/(d+1) norm of the
coefficients of Lf (which are directly related to the coefficients of f)
by the supremum norm of Lf over (Xn)d. This step is rather involved
and includes several estimates, manipulations, and an application of
hypercontractivity and Khintchine’s inequality.

3. Polarization: estimate the supremum norm of Lf on its entire domain
(Xn)d by the supremum over ∆; that is,

‖Lf‖(Xn)d . ‖Lf‖∆ = ‖f‖Xn ,

where ‖ · ‖E denotes the supremum norm over some space E.

When adapting this proof structure to cyclic groups of order 2 < K < ∞,
the main point of failure is in step three, polarization, as is fully worked out
in [SVZ24a, Appx. A]. In both the polytorus and hypercube cases, one uses
Markov–Bernstein-type inequalities to obtain the intermediate comparison

‖Lf‖(Xn)d . ‖f‖conv(X)n ,

where conv(X) denotes the convex hull ofX. The passage from conv(X) toX is
then immediate for the polytorus by the maximum modulus principle (‖f‖Dn =
‖f‖Tn) and for the hypercube by multilinearity (‖f‖[−1,1]n = ‖f‖{−1,1}n). It is
at this most trivial step that the BH proof breaks down for K > 3: there is no
such easy fact in the setting of the multiplicative cyclic group ΩK := {e2πik/K :
k = 0, . . . , K − 1} with 2 < K <∞ because ΩK is not the entire boundary of
conv(ΩK). Even for n = 1 and K = 3 one can construct example f ’s for which
‖f‖conv(ΩK)n > ‖f‖Ωn

K
. It’s easy to show that ‖f‖conv(ΩK)n and ‖f‖Dn = ‖f‖Tn

are comparable independent of dimension, so essentially one is left wondering
whether

‖f‖Tn .
d,K

‖f‖Ωn
K
. (2.0.5)

And in fact, if one could prove such a comparison, then there would be no
need to retrace the rest of the BH proof recipe in the first place! One would
immediately get the cyclic-group BH inequality via

‖f̂‖ 2d
d+1

(Classical BH)
.
d

‖f‖Tn

(2.0.5)
.
d,K

‖f‖Ωn
K
.

The inequality (2.0.5), a certain “discretization of the uniform norm,” and its
generalizations are the main contribution of Part I. For now, let us remark that
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the cyclic-group BH inequality was first proved in [SVZ24a] by a method that
actually avoided proving the comparison (2.0.5) and instead made an intricate
reduction to the hypercube BH inequality. That argument has two main parts.
The first is to prove a cyclic-group BH-type inequality for support-homogeneous
polynomials, i.e., those whose monomials all contain the same number of
distinct variables. The second is to show the comparison ‖f(`)‖Ωn

K
.
d,K

‖f‖Ωn
K

where f(`) is the `-support-homogeneous part of a degree-d polynomial f . The
constant in the comparison, while free of dependence on n, was quite large
and never estimated explicitly. We have elected to not include the proof of
[SVZ24a] in this thesis as the techniques involved were later sharpened and
used again in [SVZ25], the first proof of (2.0.5).

The discretization inequality: a lingering desire
Although the cyclic-group BH inequality was established in [SVZ24a], the

question of whether a comparison of the type (2.0.5) is possible still lingered.
And from the point of view of the larger project of harmonic analysis on Ωn

K ,
there are other motivations for proving (2.0.5). New difficulties arise when
trying to get other standard estimates in this space too. For example, consider
the boundedness of k-level Fourier projections. Concretely, given a polynomial
f : ΩnK → C of total degree at most d and individual degree at most K − 1, we
seek to control its degree-` homogeneous part f` as follows:

‖f`‖Ωn
K
.
d,K

‖f‖Ωn
K
. (2.0.6)

This is a typical kind of dimension-free estimate in harmonic analysis, and
something that is very easy to accomplish both on Ωn

2 and on Tn.
When the domain is the polytorus Tn, this comparison is a standard Cauchy

estimate and bears constant 1: given an analytic function f : Tn → C and
z∗ a maximizer of |f`|, define the univariate function Q(t) = f(tz∗1 , . . . , tz∗n)
for t ∈ T. Taking the `th derivative and appealing to the Cauchy’s integral
formula, we find

‖f`‖Tn = |Q(`)(0)|
`! = 1

2π

∣∣∣∣∣
∫
T

Q(t)
t`+1 dt

∣∣∣∣∣ ≤ ‖Q‖T ≤ ‖f‖Tn . (2.0.7)

For the hypercube (K = 2), this estimate is similar and usually attributed
to Figiel [MS86, §14.6]. Given f : Ωn

2 → R, deg(f) ≤ d, and with x∗ ∈ Ωn
2

a maximizer of |f`|, one considers the polynomial Q(t) := f(tx∗1, . . . , tx∗n) for
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t ∈ [−1, 1] (f is extended to [−1, 1]n as a multilinear function). A Markov–
Bernstein-type estimate gives

‖f`‖Ωn
2
= |Q(`)(0)|

`! ≤ C(d, `)‖Q‖[−1,1] ≤ C(d, `)‖f‖[−1,1]n ,

with optimal constant C(d, `) ≤ (1 +
√
2)d [DMP18, Lemma 1.3 (4)]. The final

step is to recognize that ‖f‖[−1,1]n = ‖f‖{−1,1}n because the extension of f to
[−1, 1]n is affine in each coordinate.

However, as soon as K = 3 it is quite unclear how to proceed. For example,
one could analogize the argument from above, constructing a polynomial Q(t)
with t now in the disk D, to obtain via the Cauchy estimate

‖f`‖Ωn
K
= |Q(`)(0)|

`! ≤ ‖Q‖D = ‖Q‖T .

Unfortunately, there is no simple way to relate ‖Q‖T to ‖f‖Ωn
3
. Certainly

‖Q‖T ≤ ‖f‖Tn , but then it seems we would again need the dimension-free
comparison

‖f‖Tn .
d,K

‖f‖Ωn
K
,

a reappearance of the discretization inequality.

And so we see that many roads lead to a dimension-free discretization of
the uniform norm on Tn, which would form a “bridge” from analysis on Ωn

K

to established theory on Tn. The settling of Theorem 1 brings the state of
analysis over Ωn

K closer to matching what we understand on the hypercube,
and we discuss it in detail next.
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C h a p t e r 3

The discretization inequality and its accoutrements

Aspects of optimality of Theorem 1, extensions, consequences, proof
techniques, and related literature.

The discretization inequality (2.0.5) was first proved in [SVZ25] with a large
(but dimension-free) constant, which was then improved by a different argument
in [KSVZ24].

Theorem (Theorem 1 restated [SVZ25; KSVZ24]). Let f be an n-variate
analytic polynomial of individual degree at most K − 1 and degree at most d.
Then

‖f‖Tn ≤ O(logK)d‖f‖Ωn
K
.

One might wonder how important the specific grid of points ΩnK is for getting
a dimension-free estimate. In [Bec+25] we extended the proof in [KSVZ24] to
show the answer is actually “not so much.”

Theorem 14 ([Bec+25]). Let f : Dn → C be an analytic polynomial of degree
d and individual degree K − 1. Let X = ∏n

j=1Xj ⊂ Dn such that for all
j, |Xj| = K. Put

η = min
j

min
x,y∈Xj

|x− y| .

Then
‖f‖Dn ≤ (Cη,K)d‖f‖X , (3.0.1)

for a universal constant Cη,K independent of n. As above, when X = Ωn
K we

may take Cη,K ≤ O(logK).

With Theorem 1 in hand, both the Bohnenblust–Hille inequality and the
boundedness of level-` Fourier projections on Ωn

K become one-line arguments.

Corollary 15. Let f be a polynomial of degree d and individual degree K − 1.
Then

‖f̂‖ 2d
d+1

≤ O(logK)d · BH≤dTn · ‖f‖Ωn
K
,

where BH≤dTn ≤ C
√
d log d is the best constant in the polytorus BH inequality.
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f ( , , ⋯ , )
Figure 3.1: A visual depiction of Theorem 14. As long as there are K well-
spaced red points in each of the coordinate discs, one may control the supremum
norm of any individual-degree-(K − 1) polynomial f over the polydisk Dn by
its absolute supremum over the finite grid of red points, in a dimension-free
way.

Proof. Any such polynomial f has the same Fourier expansion with respect to
the groups Ωn

K and Tn. Therefore,

‖f̂‖ 2d
d+1

(Classical BH)
≤ BH≤dTn‖f‖Tn ≤ (O(logK))dBH≤dTn‖f‖Ωn

K
.

Corollary 16. With f as before let f` be its `-homogeneous part. Then

‖f`‖Ωn
K
≤ O(logK)d‖f‖Ωn

K
.

Proof. Again because f has the same Fourier expansion over Tn and Ωn
K ,

‖f`‖Ωn
K

≤ ‖f`‖Tn

(2.0.7)
≤ ‖f‖Tn ≤ O(logK)d‖f‖Ωn

K
.

Remarks and refinements
We now describe in what senses Theorem 1 and its generalization The-

orem 14 are optimal, what aspects we do not yet understand, and certain
extensions. This discussion is from [Bec+25].

Sharp degree-dependence of the constant
The best constant in the comparison Theorem 14 has exponential depen-

dence on d. For simplicity we will argue this with Yn = Ωn
K . Consider the

univariate inequality
‖f‖T ≤ C(K)‖f‖ΩK

(3.0.2)

for polynomials f with degree at most K − 1, and where C(K) is the best
constant. A Lagrange interpolation argument shows C(K) > 1 for any K ≥ 3
[SVZ24a, Appendix B]. Let g be any extremizer of this inequality and put
f(z) = ∏d/(K−1)

j=1 g(zj), assuming K − 1 divides d for simplicity. Then

‖f‖Tn =
(
C(K)

)d/(K−1)
‖f‖Yn =: D(K)d‖f‖Yn
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which is exponential in d.
On the other hand, for this specific construction one may calculate that

D(K) > 1 does not grow in K. It remains an interesting question to determine
the optimal K-dependence of the constant C(η,K) in (3.0.1).

Question 1. What is the optimal dependence on K in the constant in (3.0.1)
of Theorem 14?

On the cardinality of the sampling set
Minimal cardinality of product sampling sets

The cardinality of Yn in Theorem 14 is optimal in the following sense. If the
sampling sets are of the product form Yn = ∏

1≤j≤n Zj and one expects (3.0.1)
to hold at least for polynomials of individual degree at most K − 1, then each
Zj must have cardinality at least K and so Yn contains at least Kn points. If
|Yn| were any smaller, there would exist a j such that Zj has at most K − 1
points, and no such inequality can hold: the polynomial fj(z) :=

∏
ξ∈Zj

(zj − ξ)
is of degree at most K − 1 but ‖fj‖Yn = 0.

Contrapositively, if the sampling set has a product set structure Yn =∏n
j=1 Zj with |Zj| = K, then the individual degree constraint on f is of course

necessary.

Improvements for non-product sets
On the other hand, if we remove the product constraint on our sampling

set, we can do better. Indeed, in [Bec+25, §4] we show that one may take a
“small” part of ∏n

j=1 Zj and retain a dimension-free constant.

Theorem 17. Let K ≥ 2. Consider {Zj ⊂ D}j≥1 a sequence of sets such that
for all j ≥ 1 we have |Zj| = K and

η := min
1≤j≤n

min
z 6=z′∈Zj

|z − z′| > 0.

Then for any ε > 0 one can find a subset Yn of size at most C1(d, ε)(1 + ε)n

contained in ∏n
j=1 Zj such that for any analytic polynomial f : Dn → C of

degree d and individual degree K − 1,

‖f‖Dn ≤ C2(d,K, η, ε)‖f‖Yn , (3.0.3)

where
C1(d, ε) ≤

(
d

ε

)100d

.
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Furthermore, if 0 < ε ≤ 1/2, then

C2(d,K, η, ε) ≤ exp
(
C3(d,K, η)

(
ε−1 log(ε−1)

)d)
,

for some constant C3(d,K, η) depending on d,K, and η.

We do not print the argument in this thesis as it is similar in spirit to
the proof of Theorem 14 (and the [KSVZ24] proof of Theorem 1): instead
of beginning with a univariate interpolation formula (as is done in the proof
of Theorem 14), we begin with a multivariate interpolation on a small num-
ber of coordinates, and then apply the probabilistic tensorization ideas from
Theorem 14 to get to n coordinates.

Sharp dependence of sampling set cardinality on dimension n
On the third hand, the cardinality of Yn cannot be sub-exponential in n. It

suffices to prove this for d = 1; the general d ≥ 1 case follows immediately by
definitions and the case d = 1.

Theorem 18. Suppose that the uniform norm discretization (3.0.1) holds for
sampling set Vn ⊂ Dn with d = 1, K = 2; that is,

‖f‖Dn ≤ C0‖f‖Vn

holds for all multi-affine polynomials f of degree 1 with C0 > 1 being the best
constant, then |Vn| ≥ C1C

n
2 , where C1 > 0 is universal and C2 > 1 depends on

C0.

See Section 18 for the proof of Theorem 18.

Uniform separation
In Theorem 14, the constant C(K, η)d grows with η−1, where η is the mini-

mum pairwise distance between points in the Zj’s. In fact, this is unavoidable;
uniform separation (i.e., independence of η from n) is required to retain the
dimension-freeness of the inequality of Theorem 14. This is easy to see in one
dimension, nor can it be avoided in higher dimensions, as illustrated by the
following example.

Suppose Y1, Y2, . . . is a sequence of sets with Yn ⊂ Dn and c(n) is a sequence
of coordinates; that is, 1 ≤ c(n) ≤ n for all n. Let Pn = {zc(n) : z ∈ Yn} ⊂ D
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be the projection of Yn onto the c(n)-th coordinate. Suppose |Pn| = K for all
n and

lim
n→∞

min
z 6=z′∈Pn

|z − z′| = 0 .

For each Pn we may then choose a subset An ⊂ Pn with |An| = K − 1 and an
excluded point ζ∗n such that Pn = An t ζ∗n and

min
ζ∈An

|ζ∗n − ζ| ≤ εn,

where limn→∞ εn = 0. Now consider the sequence of polynomials

fn(z) :=
∏
ζ∈An

(zc(n) − ζ) .

Certainly ‖fn‖Dn is at least as large as any of its coefficients, so we have
‖fn‖Dn ≥ 1. On the other hand, ‖fn‖Yn is very small: fn(z) = 0 for all z ∈ Yn

except those z with zc(n) = ζ∗n, and for these z we have

|fn(. . . , ζ∗n, . . .)| =
∣∣∣ ∏ζ∈An

(ζ∗n − ζ)
∣∣∣ ≤ εn · 2K−2,

which tends to 0 as n → ∞. Therefore no dimension-free uniform norm
discretization like Theorem 3 is available for such (Yn)n≥1.

3.1 Theorem 1, sketch of Proof I: via Fourier multipliers
The historically-first proof of Theorem 1 appears in [SVZ25], and is based

on Fourier multiplier techniques which split f into certain special polynomials
that are more amenable to direct argument. We sketch it now.

Let us begin with the following idea, which is a somewhat familiar starting
place for these sorts of comparisons: suppose we could find a scaled-down copy
of the circle, ηT ⊂ D for η = η(K) > 0, such that for any z ∈ ηT, there is a
probability distribution µz on ΩK with

zm = E
ξ∼µz

ξm for all m = 0, 1, . . . , K − 1 . (3.1.1)

Then we would essentially be done: for example, for f a d-homogeneous
polynomial the argument would be as simple as

‖f‖Tn = η−d‖f‖ηTn = η−d max
z∈ηTn

∣∣∣∣∣ E
ξj∼µzj :j∈[n]

f(ξ)
∣∣∣∣∣ ≤ η−d‖f‖Ωn

K
,

because the µzj ’s are supported on ΩK . (The non-homogeneous case is not
much worse.)
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Unfortunately, this argument does not work for us because such a µz does
not always exist in our setting. Examining the constraints on µz in (3.1.1),
it turns out that to satisfy them all we need about twice as many degrees of
freedom in µz as is afforded by making supp(µ) = ΩK . We are able to recover
the property (3.1.1) only by letting µz be supported on Ω2K instead. So this
approach gets us to

‖f‖Tn .
d,K

‖f‖Ωn
2K
, (3.1.2)

and it remains to compare ‖f‖Ωn
2K

with ‖f‖Ωn
K
. Given the apparent saturation

of degrees of freedom in the Ωn2K comparison (3.1.2), this second step required
a fully novel argument and came as a surprise to the authors.

The second comparison is achieved as follows. Fix a z∗ that maximizes |f |
over Ω2K . For some coordinates j, we already have z∗j ∈ ΩK (the goal domain),
so let us forget about those. By a change of variables of the form zj 7→ ξzj

for ξ ∈ ΩK , we can assume the remaining coordinates in z∗ are all equal to
√
ω := exp(πi/K).
Thus it actually would suffice to prove the two-point comparison

|g(
√
ω, . . . ,

√
ω)|

?
.
d,K

|g(1, . . . , 1)| (3.1.3)

for all g of degree at most d and individual degree at most K − 1 (noting that
the right-hand side is of course at most ‖g‖Ωn

K
). When g is homogeneous (3.1.3)

is an equality: just multiply by the appropriate root of unity. However, it is
entirely unclear how to reduce the general case of (3.1.3) to the homogeneous
case. With gk the k-homogeneous part of g, a typical approach might be

|g(
√
ω, . . . ,

√
ω)| ≤

d∑
k=0

|gk(
√
ω, . . . ,

√
ω)|

=
d∑

k=0
|gk(1, . . . , 1)|

≤
d∑

k=0
‖gk‖Ωn

K

?
.
d,K

‖g‖Ωn
K
,

which would work provided the level-k Fourier projections are bounded inde-
pendent of dimension: ‖gk‖Ωn

K
.
d,K

‖g‖Ωn
K
.

But before this work that question was also open and seemed just as difficult
as the discretization inequality. The central technical contribution of [SVZ25]
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is to introduce a special class of Fourier projections (denoted by D in the proof)
that allow us to write g = ∑

j hj for a small number of polynomials hj which...

i. Are bounded by g independent of dimension: ‖hj‖Ωn
K
.
k,D

‖g‖Ωn
K
, and

ii. Are not homogeneous but, by a very serendipitous identity for “half-roots”
of unity (4.2.13), nevertheless satisfy

|hj(
√
ω, . . . ,

√
ω)| = |hj(1, . . . , 1)|.

The proof is completed by replacing the gk’s in the previous display with our
hj’s.

A byproduct of this technique is a rich class of Fourier multipliers (actually,
projections onto certain fine-grained classes of monomials) that are bounded
independent of dimension. The class has only an implicit description for general
K, but when K is prime we may leverage some results from transcendental
number theory to get the following characterization.

For an S ⊂ {0, 1, . . . , K − 1}n we denote by fS the S-part of f :

fS :=
∑
α∈S

f̂(α)zα .

Theorem (Theorem 2 restated: Bounded Fourier projections, prime K ≥ 3).
Suppose K is an odd prime and let S be a maximal subset of {0, 1, . . . , K − 1}n

such that for all α, β ∈ S:

• Degrees are equal: ∑n
j=1 αj =

∑n
j=1 βj.

• Individual degree symmetry: there is a bijection π : [n] → [n] such that
for all j ∈ [n], αj = βπ(j) or αj = K − βπ(j).

Then for any n-variate analytic polynomial f of degree at most d and individual
degree at most K − 1, the S-part of f , fS(x) :=

∑
α∈S f̂(α)zα, satisfies

‖fS‖Ωn
K
.
d,K

‖f‖Ωn
K
.

Theorem 2 and related techniques do not seem to follow from the later
argument in [KSVZ24; Bec+25] and can be considered as one of the main
contributions of the work [SVZ25].
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3.2 Theorem 1, sketch of Proof II: via interpolation
The second proof, presented in [KSVZ24] for the domain ΩnK and in [Bec+25]

for more general domains, takes a probabilistic view of interpolation.

In one coordinate, polynomial interpolation (Lagrange interpolation) admits
a probabilistic interpretation of the form

f(z) = D · E[R · f(W )], (3.2.1)

where D = D(K) > 1 is a constant and R and W are correlated random vari-
ables taking values in Ω4 and ΩK respectively. Repeating (3.2.1) coordinatewise
gives the identity

f(z) = Dn E
[(∏n

j=1Rj

)
f
(
W1, . . . ,Wn

)]
, (3.2.2)

which immediately implies a discretization inequality of the desired form, except
with exponential dependence on n. The idea is to notice that (3.2.2) is an
expectation over n-many independent pairs of variables (Rj,Wj), while f is of
bounded total degree d and thus is not very “aware” that

(
(R1,W1), . . . , (Rn,Wn)

)
is a product distribution.

It turns out that by introducing certain correlations among the Wj’s, we
can reduce the power on D at the expense of picking up an error term:

f(z) = Dd E
[(∏d

j=1 Sj
)
f
(
W̃1, . . . , W̃n

)]
+ errorf,z . (3.2.3)

Here the Sj ’s are i.i.d. over Ω4 and the W̃j ’s are still over ΩK , but now the joint
distribution (W̃1, . . . , W̃n) has an intricate dependence structure. If we only
had the first term we would be done of course, and with the right d-dependence
in the constant. To remove the error term, we will use special features of the
error’s relationship to the introduced correlations. Specifically, the correlation
construction actually defines a family of identities similar to (3.2.3) of the form

f(z) = Dm E
[(∏m

j=1 S
(m)
j

)
f
(
W̃

(m)
1 , . . . , W̃ (m)

n

)]
+ errorf,z

(
1
m

)
,

for any integer m > 1, and where errorf,z is a fixed polynomial in 1/m of
degree at most d− 1 and with no constant term. These properties imply there
is an affine combination of these identities for m = 1, . . . , d that eliminates the
error term:

f(z) =
2d−1∑
m=d

amf(z) =
2d−1∑
m=d

amD
m E

[(∏m
j=1 S

(m)
j

)
f
(
W̃

(m)
1 , . . . , W̃ (m)

n

)]
,

(3.2.4)
and where the absolute sum of the am’s is suitably small. Placing | · |’s in the
right spots finishes the theorem.
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A new interpolation formula
All the expectations in (3.2.4) are over finite probability spaces, so we

actually have proved a new interpolation formula:

Theorem 19. Let f,X, η be as in Theorem 14. Then for any z ∈ Dn, there
exist explicit coefficients {a(z)x }x∈Ωn

K
such that ∑x |a

(z)
x | ≤ (Cη,K)d and

f(z) =
∑
x∈X

a(z)x f(x) . (3.2.5)

Comparing (3.2.5) to classical multivariate polynomial interpolation formu-
las, we obtain coefficients with dimension-free absolute sum at the expense of
sampling more points than strictly necessary. As a result the linear combination
(3.2.5) is not unique, and it is interesting to understand whether this flexibility
can lead to sharpenings of Theorem 1.

In the full proof, the identity (3.2.5) appears in detail as Equation (5.1.9).
We hope this interpolation formula can have future applications and offer as a
first example usage a short proof of a dimension-free discretization inequality
for Lp norms, 1 ≤ p <∞, as we describe next.

Lp discretization
Let Lp(Tn) and Lp(Ωn

K) denote the Lp-space with respect to the uniform
probability measures on Tn and Ωn

K , respectively. When Yn = Ωn
K , one way

to prove a dimension-free Lp discretization inequality for p < ∞ would be
to use hypercontractivity over Tn [Jan97] and over Ωn

K [Wei80; JPPP17].
Hypercontractivity is a workhorse of high dimensional analysis [BGL14; Hu17]
and implies dimension-free L2-Lp comparisons for bounded-degree polynomials
when 1 ≤ p <∞ (see [ODo14, Chapter 9.5] and [Def+11; DGMS19, Chapter
8.4] for discussion). For example, with 2 ≤ p <∞, and f a degree-d function
on Ωn

K , the argument is

‖f‖Lp(Tn) .d,p ‖f‖L2(Tn) = ‖f‖L2(Ωn
K
) ≤ ‖f‖Lp(Ωn

K
) ,

where hypercontractivity on the polytorus is applied in the first inequality.
(N.b. that this hypercontractivity argument does not work for p = ∞.)

In Section 6.1 we show a proof that avoids hypercontractivity altogether by
making use of the interpolation formula (3.2.5) (or more concretely, Equation
(5.1.9)). The main result of Section 6.1 is the following.
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Theorem 20. Let d, n ≥ 1, K ≥ 2. Let 1 ≤ p ≤ ∞. Then for each polynomial
f : Tn → C of degree at most d and individual degree at most K − 1, the
following holds:

‖f‖Lp(Tn) ≤ C(d,K)‖f‖Lp(Ωn
K
)

with C(d,K) ≤ d(C1 log(K) + C2)d with universal C1, C2 > 0.

We remark that the constant in the inequality of Theorem 20 is independent
from p but dependent on d, so has a different character from Marcinkiewicz–
Zygmund inequalities, where the constant depends on p but is typically required
to be independent from the total degree d for 1 < p <∞.

The proof combines the interpolation formula with group-invariance of the
uniform measure on Ωn

K .

3.3 Relationships to other literatures
Theorem 14 in the context of approximation theory

The context and history for discretization inequalities in approximation
theory begins in dimension n = 1. For 1 < p <∞, the so-called Marcinkiewicz–
Zygmund inequality [Zyg02, Chapter X, Theorem (7.5)] states that for all
analytic polynomials f of degree at most K − 1, one has

C−1p · 1
K

∑
z∈ΩK

|f(z)|p ≤
∫
T
|f(z)|pdz ≤ Cp · 1

K

∑
z∈ΩK

|f(z)|p. (3.3.1)

Here Cp is a constant depending only on p (independent of K), and T = {z ∈
C : |z| = 1} denotes the unit circle.

The inequality (3.3.1) is an example of a discretization of the Lp-norm, and
integral norm inequalities of this type are usually called Marcinkiewicz-type
theorems. At the endpoint p = ∞ this type of inequality is often called a
Bernstein-type theorem or a discretization of the uniform norm (see [Ber31;
Ber32] and [Zyg02, Chapter X, Theorem (7.28)]). In our notation, the p = ∞
endpoint of (3.3.1) reads

‖f‖ΩK
≤ ‖f‖T ≤ C(K)‖f‖ΩK

. (3.3.2)

In this p = ∞ case (and unlike 1 < p <∞) we emphasize the right-hand side
inequality cannot have constant independent of K. See for example [OS07,
Theorem 5].

We refer to surveys [DPTT19; KKLT22] and references therein for more
historical background about norm discretizations. Bernstein-type discretization
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theorems also have some overlap with discrete Remez-type inequalities as we
discuss below.

Now let us return to the high-dimensional case, where Theorem 1 can be
understood as a Bernstein-type discretization inequality for bounded-degree
multivariate polynomials in many dimensions n. In this setting there are
intricate tradeoffs between the cardinality (and structure) of the sampling set,
the constant in the discretization inequality, and the function space to which
the estimate applies. Recently there has been very important progress on
understanding the minimum cardinality of sampling sets when one demands a
universal constant (independent from any notion of degree or dimension) in
the inequality.

In [KKT23], Kashin, Konyagin, and Temlyakov give a discretization of
the uniform norm that applies to any N -dimensional subspace of continuous
functions on a compact subset of Rn, achieving a universal constant 2 with a
sampling set of cardinality 9N . Moreover, as the authors show, this is essentially
the best possible sampling set cardinality for a Bernstein-type discretization
inequality at this level of generality.

On the other hand, much smaller sampling sets—again for L∞ norm dis-
cretizations with universal constants—can be had when one fixes the function
space to be polynomials of degree at most d. A significant recent work along
these lines is [DP24]. Here Dai and Prymak resolved an important problem of
Kroó [Kro11] in real approximation theory by showing there are discretizations
of the uniform norm for n-variate polynomials of (total) degree at most d over
any convex domain in Rn, with universal constant 2 and a sampling set of
cardinality Cndn in our notation.1 When degree d is large in comparison to
dimension n, this cardinality Cndn matches the dimension of the set of such
polynomials, and is therefore the best possible. (N.b. our primary interest is
in the opposite of their regime, d� n.)

Our motivating application to functions on Ωn
K—that is, to obtain a com-

parison
‖f‖Tn .

d,K
‖f‖Ωn

K

for analytic polynomials f of individual degree at mostK−1 and total degree at
most d—is in some ways more demanding, and in other ways more relaxed, than
the parameter regime traditionally considered in approximation theory. On the

1N.b., in the notation of [DP24] it will be Cdn
d where they used d for the dimension and

n for the degree.
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one hand, we are restricted by the sampling set Ωn
K , which is a fixed product

set of small cardinality. Existing Bernstein-type estimates do not seem to apply
in the parameter regime K < d, which is the setting dictated by applications
to harmonic analysis in the high-dimensional realm of combinatorics, computer
science, and learning theory. On the other hand, we do not require an absolute
constant; indeed, as we discuss in below, dependence of the constant on degree
d is unavoidable under these constraints.

Remez-type inequalities in many dimensions
Consider J a finite interval in R and a subset E ⊂ J with positive Lebesgue

measure µ(E) > 0. Let f : R → R be a real polynomial of degree at most d.
The classical Remez inequality [Rem36] states that

max
x∈J

|f(x)| ≤
(
4µ(J)
µ(E)

)d
max
x∈E

|f(x)|. (3.3.3)

Despite a large literature extending (3.3.3), we are not aware of any direct
multi-dimensional generalizations that are dimension-free. Multi-dimensional
versions of the Remez inequality are considered in the papers of Brudnyi and
Ganzburg [BG73], Ganzburg [Gan17], Kroó and Schmidt [KS97] but they are
not at all dimension-free: it is instructive to take a look at inequality (23) in
[KS97] and see how the estimates blow up with dimension (called m in [KS97]).
If one abandons the L∞ norm on the left-hand side of (3.3.3) then something
can be said; there are distribution function inequalities for volumes of level sets
of polynomials that are dimension-free, see [Fra09; NSV02; NSV03]. But those
are distribution function estimates, not L∞ estimates. Some other related
results include Nazarov’s extension [Naz93] of Turán’s inequality [Tur53], as
well as more generalizations [Fon06; FY13].

The lack of a dimension-free multi-dimensional Remez inequality of the
form (3.3.3) is not surprising: there is no hope for such an inequality phrased
in terms of µ(E) for any positive-measure E ⊆ J . This can already be seen
when J is a unit ball in Rn and fn(x) = 1−∑n

j=1 x
2
j . For large n, most of the

volume of the ball is concentrated in a neighborhood of the unit sphere where
fn is very small.

However, this observation does not preclude the existence of certain sets E
giving multi-dimensional analogues of (3.3.3) that are dimension-free. Indeed,
Lundin [Lun85], and later Aron–Beauzamy–Enflo [ABE93] and Klimek [Kli95],
show this is possible in certain cases of (J,E) with convex E, such as for
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bounded-degree polynomials over the polydisk J = Dn and the real cube
E = [−1, 1]n. As an explicit example, with the prevailing notation, Klimek
[Kli95] showed that for n-variate analytic polynomials of degree d, we have the
comparison ‖f‖Dn ≤ (1 +

√
2)d‖f‖[−1,1]n .

On the other hand, it was not at all clear when dimension-free Remez
inequalities should exist in non-convex settings like J = Tn and E ⊂ Tn. The
arguments in [Lun85; ABE93; Kli95] make essential use of the convexity of the
testing set E and do not seem to suitably generalize. In comparison, for our
application to functions on products of cyclic groups f : ΩnK → C, we have no
choice but to use the non-convex grid Ωn

K as our E.
That our E is discrete and indeed finite is another interesting feature.

Remez-type estimates with discrete E were known before; notably, Yomdin
[Yom11] (see also [BY16]) identifies a geometric invariant which directly replaces
the Lebesgue measure in (3.3.3) and is positive for certain finite sets E—though
the comparison is not dimension-free.
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C h a p t e r 4

Proof I: Discretization by Fourier Multipliers

Recall our goal is to prove the following.

Theorem 21 (Theorem 1, implicit constant). Let f : Tn → C be an analytic
polynomial of degree at most d and individual degree at most K − 1. Then

‖f‖Tn .
d,K

‖f‖Ωn
K
.

Our approach has two steps:

Step 1. ‖f‖Tn .
d,K

‖f‖Ωn
2K
, and

Step 2. ‖f‖Ωn
2K
.
d,K

‖f‖Ωn
K
.

4.1 Step 1
Proposition 1 (Torus bounded by Ω2K). Let d, n ≥ 1, K ≥ 3. Let f : Tn → C
be an analytic polynomial of degree at most d and individual degree at most
K − 1. Then

‖f‖Tn ≤ Cd
K‖f‖Ωn

2K
,

where CK ≥ 1 is a universal constant depending on K only.

To prove this proposition, we need the following lemma.

Lemma 22. Fix K ≥ 3. There exists ε = ε(K) ∈ (0, 1) such that, for all
z ∈ C with |z| ≤ ε, one can find a probability measure µz on Ω2K such that

zm = E
ξ∼µz

ξm, ∀ 0 ≤ m ≤ K − 1 . (4.1.1)

Proof. Put θ = 2π/2K = π/K and ω = ω2K = eiθ. Fix a z ∈ C. Finding a
probability measure µz on Ω2K satisfying (4.1.1) is equivalent to solving

∑2K−1
k=0 pk = 1∑2K−1
k=0 pk cos(kmθ) = <zm 1 ≤ m ≤ K − 1∑2K−1
k=0 pk sin(kmθ) = =zm 1 ≤ m ≤ K − 1

(4.1.2)

with non-negative pk = µz({ωk}) for k = 0, 1, . . . , 2K − 1. Note that the pk’s
are non-negative and thus real.
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For this, it is sufficient to find a solution ~p = ~pz to DK~p = ~vz with each
entry of ~p = (p0, . . . , p2K−1)> being non-negative. Here DK is a 2K × 2K real
matrix given by

DK =



1 1 1 · · · 1
1 cos(θ) cos(2θ) · · · cos((2K − 1)θ)
... ... ... ...
1 cos(Kθ) cos(2Kθ) · · · cos((2K − 1)Kθ)

1 sin(θ) sin(2θ) · · · sin((2K − 1)θ)
... ... ... ... ...
1 sin((K − 1)θ) sin(2(K − 1)θ) · · · sin((2K − 1)(K − 1)θ)


,

and ~vz = (1,<z, . . . ,<zK−1,<zK ,=z, . . . ,=zK−1)> ∈ R2K . Note that (4.1.2)
does not require the (K + 1)-th row

(1, cos(Kθ), cos(2Kθ), . . . , cos((2K − 1)Kθ)) (4.1.3)

of DK .
The matrix DK is non-singular. To see this, take any

~x = (x0, x1, . . . , x2K−1)> ∈ R2K

such that DK~x = ~0. Then
2K−1∑
k=0

(ωk)mxk = 0, 0 ≤ m ≤ K. (4.1.4)

This is immediate for 0 ≤ m ≤ K − 1 by definition, and m = K case follows
from the “additional” row (4.1.3) together with the fact that sin(kKθ) = 0, 0 ≤
k ≤ 2K − 1. Conjugating (4.1.4), we get

2K−1∑
k=0

(ωk)mxk = 0, K ≤ m ≤ 2K.

Altogether, we have
2K−1∑
k=0

(ωk)mxk = 0, 0 ≤ m ≤ 2K − 1,

that is, V ~x = ~0, where V = VK = [ωjk]0≤j,k≤2K−1 is a 2K × 2K Vandermonde
matrix given by (1, ω, . . . , ω2K−1). Since V has determinant

det(V ) =
∏

0≤j<k≤2K−1
(ωj − ωk) 6= 0 ,
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we get ~x = ~0. So DK is non-singular.
Therefore, for any z ∈ C, the solution to (4.1.2), thus to (4.1.1), is given by

~pz =
(
p0(z), p1(z), . . . , p2K−1(z)

)
= D−1K ~vz ∈ R2K .

Notice one more thing about the rows of DK . As

2K−1∑
k=0

(ωk)m = 0, m = 1, 2, . . . , 2K − 1 ,

we have automatically that vector ~p∗ :=
(

1
2K , . . . ,

1
2K

)
∈ R2K gives

DK~p∗ = (1, 0, 0, . . . , 0)T =: ~v∗ .

For any k-by-k matrix A denote

‖A‖∞→∞ := sup
~06=~v∈Rk

‖A~v‖∞
‖~v‖∞

.

So with ~p∗ := D−1K ~v∗ we have

‖~pz − ~p∗‖∞ ≤ ‖D−1K ‖∞→∞‖~vz − ~v∗‖∞

= ‖D−1K ‖∞→∞max
{
max
1≤k≤K

|<zk|, max
1≤k≤K−1

|=zk|
}

≤ ‖D−1K ‖∞→∞max{|z|, |z|K}.

That is,
max

0≤j≤2K−1

∣∣∣∣pj(z)− 1
2K

∣∣∣∣ ≤ ‖D−1K ‖∞→∞max{|z|, |z|K}.

Since D−1K ~v∗ = ~p∗, we have ‖D−1K ‖∞→∞ ≥ 2K. Put

ε∗ :=
1

2K‖D−1K ‖∞→∞
∈
(
0, 1

(2K)2

]
.

Thus whenever |z| < ε∗ < 1, we have

max
0≤j≤2K−1

∣∣∣∣pj(z)− 1
2K

∣∣∣∣ ≤ |z|‖D−1K ‖∞→∞ ≤ ε∗‖D−1K ‖∞→∞ ≤ 1
2K ,

so in particular pj(z) ≥ 0 for all 0 ≤ j ≤ 2K − 1.

Now we are ready to prove Proposition 1.
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Proof of Proposition 1. Let ε∗ be as in Lemma 22. With a view towards
applying the lemma we begin by relating sup |f | over the polytorus to sup |f |
over a scaled copy. Recalling that the homogeneous parts fk of f are trivially
bounded by f over the torus: ‖fk‖Tn ≤ ‖f‖Tn (a standard Cauchy estimate).
Thus we have

‖f‖Tn ≤
d∑

k=0
‖fk‖Tn

=
d∑

k=0
ε−k∗ sup

z∈Tn
|fk(ε∗z)|

≤
d∑

k=0
ε−k∗ sup

z∈Tn
|f(ε∗z)|

≤ (d+ 1)ε−d∗ sup
z∈Tn

|f(ε∗z)|

= (d+ 1)ε−d∗ ‖f‖(ε∗T)n . (4.1.5)

Let z = (z1, . . . , zn) ∈ (ε∗T)n. Then for each coordinate j = 1, 2, . . . , n
there exists by Lemma 22 a probability distribution µj = µj(z) on Ω2K for
which Eξj∼µj [ξkj ] = zkj for all 0 ≤ k ≤ K−1. With µ = µ(z) := µ1×· · ·×µn, this
implies for a monomial ξα with multi-index α ∈ {0, 1, . . . , K−1}n, Eξ∼µ(z)[ξα] =
zα, or more generally by linearity Eξ∼µ(z)[f(ξ)] = f(z) for z ∈ (ε∗T)n and f
under consideration. So

sup
z∈(ε∗T)n

|f(z)| = sup
z∈(ε∗T)n

∣∣∣∣ E
ξ∼µ(z)

f(ξ)
∣∣∣∣ ≤ sup

z∈(ε∗T)n
E

ξ∼µ(z)
|f(ξ)| ≤ ‖f‖Ωn

2K
. (4.1.6)

Combining observations (4.1.5) and (4.1.6) we conclude

‖f‖Tn ≤ (d+ 1)ε−d∗ ‖f‖(ε∗T)n ≤ (d+ 1)ε−d∗ ‖f‖Ωn
2K

≤ Cd
K‖f‖Ωn

2K
.

The last inequality follows from the fact that ε∗ depends only on K.

4.2 Step 2
Now we turn to Step 2’s estimate,

‖f‖Ωn
2K
.
d,K

‖f‖Ωn
K
. (4.2.1)

We will find it useful to rephrase this question as one about the boundedness
at the single point

f(
√
ω, . . . ,

√
ω) =: f(

√
ω) .
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Here and in what follows, ω := ωK = e2πi/K , and
√
ω will be used as shorthand

to denote the root eπi/K . It turns out the following proposition is enough to
give (4.2.1).

Proposition 2. Let d, n ≥ 1, K ≥ 3. Let f : Tn → C be an analytic polynomial
of degree at most d and individual degree at most K − 1. Then

|f(
√
ω)| .

d,K
‖f‖Ωn

K
.

To explain why Proposition 2 suffices for Step 2, let us finish the proof of
Theorem 21 given Proposition 1 and assuming Proposition 2.

Proof of Theorem 21. Fix a z∗ ∈ argmaxz∈Ωn
2K

|f(z)|. Then there exist w =
(w1, . . . , wn) ∈ Ωn

K and y∗ ∈ {1,
√
ω}n such that

wjy
∗
j = z∗j , j ∈ [n] ,

where [n] := {1, 2, . . . , n}. Define f̃ : Tn → C by

f̃(z) = f(w1z1, w2z2, . . . , wnzn) .

We therefore have

|f̃(y∗)| = ‖f‖Ωn
2K

and (4.2.2)

‖f̃‖Ωn
K
= ‖f‖Ωn

K
. (4.2.3)

Equation (4.2.2) holds by the definition of y∗, and (4.2.3) holds by the group
property of ΩK (recall w ∈ Ωn

K).
Now let S = {j : y∗j =

√
ω} and m = |S|. Let π : S → [m] be any bijection.

Define the “selector” function sy∗ : Tm → Tn coordinate-wise by

(
sy∗(z)

)
j
=

y
∗
j if j 6∈ S

zπ(j) if j ∈ S .

Finally, define g : Tm → C by

g(z) = f̃(sy∗(z)) .

Then we observe that g is analytic with degree at most d and individual degree
at most K − 1, and

|g(
√
ω,

√
ω, . . . ,

√
ω)| = |f̃(y∗)| (4.2.2)= ‖f‖Ωn

2K
(4.2.4)

‖g‖Ωm
K
≤ ‖f̃‖Ωn

K

(4.2.3)= ‖f‖Ωn
K
, (4.2.5)
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with the inequality holding because we are optimizing over a subset of points.
From (4.2.4) and (4.2.5) we see Theorem 21 would follow if we could prove

|g(
√
ω,

√
ω, . . . ,

√
ω)| .

d,K
‖g‖Ωm

K
,

independent of m ≥ 1. This is precisely Proposition 2.

The proof of Proposition 2 is the subject of the rest of this subsection. Our
approach is to split f into parts f = ∑

j gj such that each part gj has the
properties A and B:

‖f‖Ωn
K

Property A
&
d,K

‖gj‖Ωn
K

Property B
&
d,K

|gj(
√
ω)| . (4.2.6)

Such splitting gives

|f(
√
ω)| ≤

∑
j

|gj(
√
ω)| .

d,K

∑
j

‖gj‖Ωn
K
.
d,K

∑
j

‖f‖Ωn
K
.

So as long as the number of gj’s is independent of n such a splitting with
Properties A and B entails the result.

We will split f via an operator that was first employed to prove the
Bohnenblust–Hille inequality for cyclic groups [SVZ24a]. We will only need
the basic version of the operator here; a generalized version is considered in
[SVZ24a]. Recall that any polynomial f : Ωn

K → C has the Fourier expansion

f(z) =
∑

α∈{0,1,...,K−1}n
aαz

α.

Recall the support of a monomial zα is supp(α) := {j : αj 6= 0}, and the
support size |supp(α)| refers to the cardinality of supp(α).

Definition 1 (Maximum support pseudoprojection). For any multi-index
α ∈ {0, 1, . . . , K − 1}n define the factor

τα =
∏

j:αj 6=0
(1− ωαj) .

For any polynomial on Ωn
K with the largest support size ` ≥ 0

f(z) =
∑

|supp(α)|≤`
aαz

α,

we define Df : Ωn
K → C via

Df(z) =
∑

|supp(α)|=`
τα aαz

α .
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The operator D can be considered a Fourier multiplier, and this somewhat
technical definition is motivated by the following key property, the L∞ → L∞

boundedness when restricted to certain polynomials.

Lemma 23 (Boundedness of maximum support pseudoprojection). Let f :
ΩnK → C be a polynomial and ` be the maximum support size of monomials in
f . Then

‖Df‖Ωn
K
≤ (2 + 2

√
2)`‖f‖Ωn

K
. (4.2.7)

The proof of Lemma 23 is given in [SVZ24a]. We repeat it here in a slightly
simplified form for convenience.

Proof. Let ω = e
2πi
K . Consider the operator G:

G(f)(x) = f
(1 + ω

2 + 1− ω

2 x1, . . . ,
1 + ω

2 + 1− ω

2 xn

)
, x ∈ Ωn

2

that maps any function f : {1, ω}n ⊂ Ωn
K → C to a function G(f) : Ωn

2 → C.
Then by definition

‖f‖Ωn
K
≥ ‖f‖{1,ω}n = ‖G(f)‖Ωn

2
. (4.2.8)

Fix m ≤ `. For any α we denote

mk(α) := |{j : αj = k}|, 0 ≤ k ≤ K − 1.

Then for α with |supp(α)| = m, we have

m1(α) + · · ·+mK−1(α) = |supp(α)| = m.

For z ∈ {1, ω}n with zj = 1+ω
2 + 1−ω

2 xj, xj = ±1, note that

z
αj

j =
(1 + ω

2 + 1− ω

2 xj

)αj

= 1 + ωαj

2 + 1− ωαj

2 xj .

So for any A ⊂ [n] with |A| = m, and for each α with supp(α) = A, we have
for z ∈ {1, ω}n:

zα =
∏

j:αj 6=0
z
αj

j

=
∏

j:αj 6=0

(1 + ωαj

2 + 1− ωαj

2 xj

)

=
∏

j:αj 6=0

(1− ωαj

2

)
· xA + · · ·

=2−mταxA + · · ·
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where xA := ∏
j∈A xj is of degree |A| = m while · · · is of degree < m. Then for

f(z) = ∑
|supp(α)|≤` aαz

α we have

G(f)(x) =
∑
m≤`

1
2m

∑
|A|=m

 ∑
supp(α)=A

ταaα

xA + · · · , x ∈ Ωn
2 .

Again, for each m ≤ `, · · · is some polynomial of degree < m. So G(f) is of
degree ≤ ` and the `-homogeneous part is nothing but

1
2`

∑
|A|=`

 ∑
supp(α)=A

ταaα

xA.
Consider the projection operator Q that maps any polynomial on Ωn

2 onto its
highest level homogeneous part; i.e., for any polynomial g : Ωn

2 → C with
deg(g) = m we denote Q(g) its m-homogeneous part. Then we just showed
that

Q(G(f))(x) = 1
2`

∑
|A|=`

 ∑
supp(α)=A

ταaα

xA. (4.2.9)

It is known that [DMP18, Lemma 1 (iv)] for any polynomial g : Ωn
2 → C

of degree at most d > 0 and gm its m-homogeneous part, m ≤ d, we have the
estimate

‖gm‖Ωn
2
≤ (1 +

√
2)d‖g‖Ωn

2
.

Applying this estimate to G(f) and combining the result with (4.2.8), we have

‖Q(G(f))‖Ωn
2
≤ (

√
2 + 1)`‖G(f)‖Ωn

2
≤ (1 +

√
2)`‖f‖Ωn

K

and thus by (4.2.9)∥∥∥∥∥∥
∑
|A|=`

 ∑
supp(α)=A

ταaα

xA
∥∥∥∥∥∥
Ωn

2

≤ (2 + 2
√
2)`‖f‖Ωn

K
.

The function on the left-hand side is almost Df . Observe that Ωn
K is a

group, so we have

sup
z,ξ∈Ωn

K

∣∣∣∣∣∑
α

aαz
αξα

∣∣∣∣∣ = sup
z∈Ωn

K

∣∣∣∣∣∑
α

aαz
α

∣∣∣∣∣.
Thus we have actually shown

sup
z∈Ωn

K
,x∈Ωn

2

∣∣∣∣∣∣
∑
|A|=`

 ∑
supp(α)=A

ταaαz
α

xA
∣∣∣∣∣∣ ≤ (2 + 2

√
2)`‖f‖Ωn

K
.

Setting x = ~1 gives (4.2.7).
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Note that Df is exactly the part of f composed of monomials of maximum
support size, except where the coefficients aα have picked up the factor τα.
The relationships among the τα’s can be intricate: while in general they are
different for distinct α’s, this is not always true. Consider the case of K = 3
and the two monomials

zβ := z21z2z3z4z5z6z7z8, zβ
′ := z21z

2
2z

2
3z

2
4z

2
5z

2
6z

2
7z8 .

Then
τβ = (1− ω)7(1− ω2) = (1− ω)(1− ω2)7 = τβ′ ,

which follows from the identity (1− ω)6 = (1− ω2)6 for ω = e2πi/3.
Understanding precisely when τα = τβ seems to be a formidable task in

transcendental number theory. When K is prime there is a relatively simple
characterization (see Section 4.3) but for composite K the situation is much
less clear. Nevertheless, it turns out that for the purposes of Theorem 21 we
do not need a full understanding. Indeed, our gj’s shall be defined according
to the τ ’s.

Definition. Two monomials zα, zβ with associated multi-indexes

α, β ∈ {0, 1 . . . , K − 1}n

are called inseparable if |supp(α)| = |supp(β)| and τα = τβ. When m and m′

are inseparable, we write m ∼ m′.
Inseparability is an equivalence relation among monomials. We may split

any polynomial f into parts f = ∑
j gj according to this relation. That is, any

two monomials in f are inseparable if and only if they belong to the same gj.
Call these gj’s the inseparable parts of f .

It is these inseparable parts that are our gj’s in (4.2.6). We shall formally
check it later, but it is easy to see the number of inseparable parts is independent
of n. We formulate and prove Properties A & B next.

Property A: Boundedness of inseparable parts
Repeated applications of the operator D enable splitting into inseparable

parts.

Proposition 3 (Property A). Fix K ≥ 3 and d ≥ 1. Suppose that f : ΩnK → C
is a polynomial of degree at most d with maximum support size L. For 0 ≤ ` ≤ L
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let f` denote the part of f composed of monomials of support size `, and let
g(`,1), . . . , g(`,J`) be the inseparable parts of f`. Then there exists a universal
constant Cd,K independent of n and f such that for all 0 ≤ ` ≤ L and
1 ≤ j ≤ J`,

‖g(`,j)‖Ωn
K
≤ Cd,K‖f‖Ωn

K
.

Proof. We first show the proposition for g(L,j), 1 ≤ j ≤ JL. Suppose that

f(z) =
∑

α:|supp(α)|≤L
aαz

α.

Inductively, one obtains from Lemma 23 that for 1 ≤ k ≤ JL,

Dkf =
∑

|supp(α)|=L
τ kαaαz

α

with
∥∥∥Dkf

∥∥∥
Ωn

K

≤ (2 + 2
√
2)kL‖f‖Ωn

K
.

(4.2.10)

By definition there are JL distinct values of τα among the monomials of fL;
label them c1, . . . , cJL . Then

fL(z) =
∑

|supp(α)|=L
aαz

α =
∑

1≤j≤JL
g(L,j)(z), and

Dkf(z) =
∑

|supp(α)|=L
τ kαaαz

α =
∑

1≤j≤JL
ckj g(L,j)(z), k ≥ 1.

Let us confirm JL is independent of n. Consider α with |supp(α)| = L. We
may count the support size of α by binning coordinates according to their
degree: |supp(α)| = L,∑

1≤t≤K−1
|{s ∈ [n] : αs = t}| = L ≤ d,

so

JL ≤ |{(m1, . . . ,mK−1) ∈ {0, . . . , L}K−1 : m1 + · · ·+mK−1 = L}|

≤
(
K − 1 + L− 1

L− 1

)
≤ (K + d)d .

(4.2.11)

According to (4.2.10), we have


Df

D2f
...

DJLf

 =


c1 c2 · · · cJL
c21 c22 · · · c2JL... ... . . . ...
cJL1 cJL2 · · · cJLJL︸ ︷︷ ︸

=: VL




g(L,1)

g(L,2)
...

g(L,JL)

.
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The JL × JL modified Vandermonde matrix VL has determinant

det(VL) =
 JL∏
j=1

cj

 ∏
1≤s<t≤JL

(cs − ct)
.

Since the cj ’s are distinct and nonzero we have det(VL) 6= 0. So VL is invertible
and in particular g(L,j) is the jth entry of V −1L (D1f, . . . ,DJLf)>. Letting η(L,j) =
(η(L,j)k )1≤k≤JL be the jth row of V −1L , this means

g(L,j) =
∑

1≤k≤JL
η
(L,j)
k Dkf.

As η(L,j) depends on d and K only, so for all 1 ≤ j ≤ JL,

‖g(L,j)‖Ωn
K
≤

∑
1≤k≤JL

∣∣∣η(L,j)k

∣∣∣·∥∥∥Dkf
∥∥∥
Ωn

K

≤ ‖η(L,j)‖1
(
2 + 2

√
2
)JLd‖f‖Ωn

K
, (4.2.12)

where we used (4.2.10) in the last inequality. The constant

‖η(L,j)‖1(2 + 2
√
2)JLd ≤ C(d,K) <∞

for appropriate C(d,K) that is dimension-free and depends only on d and K
only. This finishes the proof for the inseparable parts in fL.

We now repeat the argument on f−fL to obtain (4.2.12) for the inseparable
parts of support size L−1. In particular, there are vectors η(L−1,j), 1 ≤ j ≤ JL−1

of dimension-free 1-norm with

‖g(L−1,j)‖Ωn
K
≤ C(d,K)‖η(L−1,j)‖1‖f − fL‖Ωn

K
.
d,K

‖f − fL‖Ωn
K
.

This can be further repeated to obtain for 0 ≤ ` ≤ L and 1 ≤ j ≤ J`, the
vectors η(`,j) with dimension-free 1-norm such that

‖g(`,j)‖Ωn
K
.
d,K

∥∥∥∥∥∥f −
∑

`+1≤k≤L
fk

∥∥∥∥∥∥
Ωn

K

.

It remains to relate ‖f −∑
`+1≤k≤L fk‖Ωn

K
to ‖f‖Ωn

K
. Note that with VL as

originally defined, by considering (1 1 . . . 1)V −1L (D1f, . . . ,DJLf)> we obtain a
constant DL = DL(d,K) independent of n for which

‖fL‖Ωn
K
≤ DL‖f‖Ωn

K
.

This means
‖f − fL‖Ωn

K
≤ (1 +DL)‖f‖Ωn

K
.
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Notice the top-support part of f−fL is exactly fL−1, so repeating the argument
above on f − fL yields a constant DL−1 = DL−1(d,K) such that

‖fL−1‖Ωn
K
≤ DL−1‖f−fL‖Ωn

K
≤ DL−1(1+DL)‖f‖Ωn

K
= (DL−1+DL−1DL)‖f‖Ωn

K
.

Continuing, for 1 ≤ ` ≤ L we find

‖fL−`‖Ωn
K
≤ DL−`‖f −

∑
L−`+1≤k≤L

fk‖Ωn
K

≤ DL−`(1 +DL−`+1)‖f −
∑

L−`+2≤k≤L
fk‖Ωn

K

≤ DL−`
∏

0≤k≤`−1
(1 +DL−k)‖f‖Ωn

K
.

We have found for each `-support-homogeneous part of f ,

‖f`‖Ωn
K
.
d,K

‖f‖Ωn
K
,

so we have ‖f −∑
`+1≤k≤L fk‖Ωn

K
.
d,K

‖f‖Ωn
K
as well.

Property B: Boundedness at
√
ω for inseparable parts

Here we argue g(
√
ω) is bounded for inseparable g. Recall that ω = e

2πi
K

and
√
ω = e

πi
K .

Proposition 4 (Property B). If g is inseparable then |g(
√
ω)| ≤ ‖g‖Ωn

K
.

Proof. We will need an identity for half-roots of unity. For k = 1, . . . , K − 1
we have

(
√
ω)k = i 1− ωk

|1− ωk|
, (4.2.13)

following from the orthogonality of (
√
ω)k and 1− ωk in the complex plane.

We claim that for two monomials m and m′

m ∼ m′ =⇒ m(
√
ω) = m′(

√
ω) .

By definition m ∼ m′ means m and m′ have the same support size (call it `)
and ∏

j:αj 6=0(1− ωαj) = ∏
j:βj 6=0(1− ωβj) .

Dividing both sides by the modulus and multiplying by i` allows us to apply
(4.2.13) to find ∏

j:αj 6=0(
√
ω)αj = ∏

j:βj 6=0(
√
ω)βj ,
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as desired.
Now let ζ = m(

√
ω) ∈ T for some monomial m in g. Then because ζ is

independent of m, with g = ∑
α∈S aαz

α, we have g(
√
ω) = ζ

∑
α∈S aα and

|g(
√
ω)| = |∑α∈S aα| = |g(~1)| ≤ ‖g‖Ωn

K
.

We may now prove Proposition 2.

Proof of Proposition 2. Write f = ∑
0≤`≤L

∑
1≤j≤J` g(`,j) in terms of inseparable

parts, where g(`,j), 1 ≤ j ≤ J`, 0 ≤ ` ≤ L are as in Proposition 3. Then by
Propositions 3 (Property A) and 4 (Property B)

|f(
√
ω)| ≤

∑
0≤`≤L

∑
1≤j≤J`

|g(`,j)(
√
ω)|

≤
∑

0≤`≤L

∑
1≤j≤J`

‖g(`,j)‖Ωn
K

(Property B)

.
d,K

‖f‖Ωn
K

∑
0≤`≤L

J` . (Property A)

In view of (4.2.11) and L ≤ d, we obtain |f(
√
ω)| .

d,K
‖f‖Ωn

K
.

4.3 Aside: characterizing inseparable parts for prime K

Although it is not required for the proof of Theorem 21, it is interesting to
understand what are the parts g of f for which

‖g‖Ωn
K
.
d,K

‖f‖Ωn
K

(4.3.1)

via our Property A (Proposition 3)? Recall that (4.3.1) holds when g is a part of
f containing all monomials in f from an equivalence class of the inseparability
equivalence relation ∼.

Thus we are led to ask for a characterization of inseparability. It turns out
that for prime K this can be done completely via connections to transcendental
number theory including Baker’s theorem [Bak22].

Proposition 5. Suppose K ≥ 3 is prime and α, β ∈ {0, 1, . . . , K − 1}n. Then
two monomials zα, zβ are inseparable if and only if

• Support sizes are equal: |supp(α)| = |supp(β)|,

• Degrees are equal mod 2K: |α| = |β| mod 2K,

• Individual degree symmetry: there is a bijection π : supp(α) → supp(β)
such that for all j ∈ supp(α), αj = βπ(j) or αj = K − βπ(j).
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Proof. Recall that by definition, two monomials zα and zβ are inseparable if
and only if they have the same support size and τα = τβ; that is,∏

j:αj 6=0
(1− ωαj) =

∏
j:βj 6=0

(1− ωβj) ,

where ω = e2πi/K . For these quantities to be equal, their respective moduli and
arguments must coincide.

To compare arguments, observe that for any multi-index σ ∈ {0, 1, . . . , K −
1}n, by the identity (4.2.13) we may normalize τσ like so:

τσ
|τσ|

= i−|supp(σ)|
n∏
j=1

(
√
ω)σj = i−|supp(σ)|(

√
ω)|σ|,

where as before
√
ω = eπi/K . It is given that |supp(α)| = |supp(β)|, so

the arguments of τα and τβ are equal exactly when (
√
ω)|α| = (

√
ω)|β|, or

equivalently, |α| = |β| mod 2K.
As for the moduli, using the identity |1 − ωk| = 2 sin(kπ/K) we find for

any multi-index σ that

|τσ| =
∏

j:σj 6=0
2 sin(σjπ/K) =

∏
j:σj 6=0

2 sin(min{σj, K − σj} · π/K) ,

where the last step follows from the symmetry of sine about π/2.
So when are |τα| and |τβ| equal? By the last display, certainly they are the

same if there is a bijection π : supp(α) → supp(β) such that for all j ∈ supp(α),
αj = βπ(j) or αj = K − βπ(j). Is this the only time |τα| = |τβ|?

Returning to σ, define for 1 ≤ k ≤ (K − 1)/2 the quantity

σ̂(k) = |{j : σj = k or σj = K − k}| .

Then

log(|τσ|) =
(K−1)/2∑
k=1

σ̂(k) · log(2 sin(kπ/K)).

Therefore if the numbers

{bk := log(2 sin(kπ/K)), k = 1, . . . , (K − 1)/2}

were linearly independent over Z, the only way |τα| = |τβ| is the existence of a
bijection π as above.

Conveniently, the question of the linear independence of the bk’s has already
appeared in a different context, concerning an approach of Livingston to resolve
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a folklore conjecture of Erdös on the vanishing of certain Dirichlet L-series. It
was answered in [Pat17] in the positive for K ≥ 3 prime and in the negative for
all composite K ≥ 4 using several tools including Baker’s celebrated theorem
on linear forms in logarithms of algebraic numbers [Bak22].

Finally, recalling (e.g., Corollary 16) that Theorem 21 implies ‖fk‖Ωn
K
.
d,K

‖f‖Ωn
K
for all k-homogeneous parts fk of f , 0 ≤ k ≤ d, we may conclude by

Proposition 3:

Corollary 24. Suppose K is an odd prime and let S be a maximal subset of
{0, 1, . . . , K − 1}n such that for all α, β ∈ S:

• Support sizes are equal: |supp(α)| = |supp(β)|.

• Degrees are equal: |α| = |β|.

• Individual degree symmetry: there is a bijection π : supp(α) → supp(β)
such that for all j ∈ supp(α), αj = βπ(j) or αj = K − βπ(j).

Then for any n-variate analytic polynomial f of degree at most d and individual
degree at most K − 1, the S-part of f , i.e., fS = ∑

α∈S f̂(α)zα, satisfies:

‖fS‖Ωn
K
.
d,K

‖f‖Ωn
K
.
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C h a p t e r 5

Proof II: Discretization by interpolation

Here we give a proof of Theorem 1 (or Theorem 14 for X = Ωn
K) via interpo-

lation, follow [KSVZ24]. The more general case of Theorem 14, as proved in
[Bec+25], is more complicated in notation only.

5.1 The proof
A natural approach to proving Theorem 1 is to consider a specific maximizer

z ∈ Tn of |f | and write f(z) as a linear combination of evaluations of f at
points in Ωn

K . We might begin with this lemma for a single coordinate:

Lemma 25. Suppose z ∈ T. Then there exists c := (c0, . . . , cK−1) such that
for all k = 0, 1, . . . , K − 1,

zk =
K−1∑
j=0

cj(ωj)k.

Moreover, ‖c‖1 ≤ B log(K) for a universal constant B.

Proof. Let ω = exp(2πi/K). The discrete Fourier transform (DFT) of the
array A = (1, z, . . . , zK−1) yields K complex numbers c̃0, . . . , c̃K−1 so that

zk = Ak =
1
K

K−1∑
j=0

c̃jω
jk

for all k = 0, . . . , K − 1. Using cj := 1
K
c̃j we get

zk =
K−1∑
j=0

cjω
jk. (5.1.1)

Recall the DFT coefficients are given by

c̃j =
K−1∑
k=0

Akω
−kj.

Since Ak = zk we have

c̃j =
K−1∑
k=0

zkω−kj = 1− (z/ωj)K
1− (z/ωj) .
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By the triangle inequality,

|c̃j| ≤ min
(
K,

2
|ωj − z|

)
.

Using that the harmonic number HK = ∑K
k=1 1/k satisfies HK ≤ log(K) + 1,

it is elementary to see that we have

K−1∑
j=0

|c̃j| ≤ BK logK

for B a sufficiently large constant. That is,

‖c‖1 =
K−1∑
j=0

|cj| =
1
K

K−1∑
j=0

|c̃j| ≤ B log(K) .

In a single coordinate, Lemma 25 provides the desired inequality as follows.
With z ∈ T a maximizer of |f(z)| we have

‖f‖T = |f(z)| = |
d∑

k=0
akz

k| = |
d∑

k=0

K−1∑
j=0

akcj(ωj)k| = |
K−1∑
j=0

cjf(ωj)|

≤ ‖c‖1‖f‖ΩK
≤ C log(K)‖f‖ΩK

. (Hölder)

However, in higher dimensions, repeating this argument coordinatewise in-
troduces an exponential dependence on n. We circumvent this by taking a
probabilistic view of the foregoing display: the sum over j can be interpreted
as an expectation over a (complex-valued) measure on ΩK . When it is repeated
in several dimensions, this is like taking an expectation over n independent
random variables. The key insight is that this independence is more than we
need: by correlating the random variables, we “save on randomness” (which
reduces the multiplicative constant) while retaining control of the error.

Lemma 26. Let f be a degree-d n-variate polynomial and z ∈ Tn. Then there
is a univariate polynomial p = pf,z such that for any positive integer m there
are (dependent) random variables R,W taking values in Ω4 and ΩnK respectively
such that

f(z) = Dm E
R,W

[Rf(W )] + p(1/m) . (5.1.2)

Moreover, p has deg(p) < d and zero constant term, and D = D(K) is a
universal constant depending on K only.
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Lemma 26 is the crux of our argument and we are not aware of a similar
statement in the literature. Theorem 1 follows quickly, though it is interesting
to note that instead of clearing the error term by taking m→ ∞ (which would
indeed make p(1/m) → 0 but also send Dm → ∞), we will end up using
algebraic features of p (namely, low-degree-ness) to remove it. But first, the
lemma:

Proof of Lemma 26. We will argue Lemma 26 for f(z) = zα, a monomial of
degree at most d. The claim extends to general degree-d f by linearity.

We begin by examining a single coordinate with the aim of rewriting
Lemma 25 in a probabilistic form. To that end, we first decouple the angle
and magnitude information of the cj’s. Fix z ∈ T and let cj be as in Lemma
25. We may write a decomposition

cj = 1 · c(0)j + i · c(1)j + (91) · c(2)j + (9i) · c(3)j =
3∑
s=0

is · c(s)j ,

with all c(s)j ∈ R≥0 and c
(0)
j c

(2)
j = c

(1)
j c

(3)
j = 0. This can be done for all j so

that, with C := B logK from Lemma 25,

‖c(s)‖1 ≤ C (5.1.3)

is satisfied for each s ∈ {0, 1, 2, 3}, where c(s) = (c(s)1 , . . . , c
(s)
n ). So we have for

all k = 0, . . . , K − 1,

zk =
K−1∑
j=0

3∑
s=0

is · c(s)j · (ωj)k .

We now rewrite the sum in Lemma 25 in probabilistic form.
Put D = 4C + 1 and define r : [0, D] → C by

r(t) =



1 0 ≤ t ≤ C + 1,

i C + 1 < t ≤ 2C + 1,

−1 2C + 1 < t ≤ 3C + 1,

−i 3C + 1 < t ≤ 4C + 1 = D .

Also define a piecewise-constant function w : [0, D] → ΩK as follows. Consider
any collection of disjoint intervals I(s)j , 0 ≤ j ≤ K − 1, 0 ≤ s ≤ 3 such that

I
(s)
j ⊂ [0, D], s ∈ {0, 1, 2, 3}, j ∈ {0, 1, . . . , K − 1}



53

and for each s and j, I(s)j ⊆ [sC +1, (s+1)C +1] and |I(s)j | = c
(s)
j . Disjointness

is possible because for each s,

|[sC + 1, (s+ 1)C + 1]| = C ≥ ∑K−1
j=0 c

(s)
j

by (5.1.3). Now assign w(I(s)j ) = ωj and in the remaining region of [0, D] (that
is, [0, D]\ ts,j I(s)j ) let w take on each element of ΩK with in equal amount
(w.r.t. the uniform measure).

Claim 1. Let T be sampled uniformly from [0, D]. Then for all k = 0, 1, . . . , K−
1,

zk = DE
T
[r(T )w(T )k] . (5.1.4)

Proof of Claim 1. Let us begin with k = 0, which simplifies to

DE
T
[r(T )] = 1 . (5.1.5)

This can be seen by direct computation:

E
T
[r(T )] = 1

D
(1 + 1 · C + i · C + (91) · C + (9i) · C) = 1

D
.

For k ≥ 1, consider the joint distribution of (r(T ), w(T )k), whose product
appears in (5.1.4). Fix s ∈ {0, 1, 2, 3}, and condition on r(T ) = is. The
conditional distribution of w(T ) has two parts. One part, corresponding to
tjI(s)j , has w(T ) = ωj over I(s)j with the probability Pr[r(T ) = is ∧w(T ) = ωj ]
equal to c(s)j /D, while the other has w(T ) uniformly distributed in ΩK . The
latter part contributes 0 to the expectation E[r(T )w(T )k], since ∑K−1

j=0 (ωj)k = 0
for k = 1, 2, . . . , K − 1. The former part contributes

is ·
K−1∑
j=0

c
(s)
j

D
ωjk.

Summing this display over s ∈ {0, 1, 2, 3} and rearranging, we get that

E[r(T )w(T )k] =
K−1∑
j=0

cj
D
(ωj)k = 1

D
zk,

completing proof of (5.1.4). ♦

We return to the multivariate setting. Fix z := (z1, . . . , zn) ∈ Tn and define
the functions w1, . . . , wn corresponding to the above construction applied to
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each coordinate z1, . . . , zn. If each coordinate were to receive a fresh copy of T
this would lead to an identity with exponential constant:

zα = Dn E
T`

iid∼T,
1≤`≤n

[∏n
`=1 r(T`)w`(T`)α`

]
.

Instead, we consider only m independent copies of T : T1, . . . , Tm iid∼ U [0, D].
The decision of which coordinates are integrated with respect to which T` is
also made randomly, via a uniformly random function P : [n] → [m]. We finally
arrive at the definitions of R and W :

R :=
m∏
`=1

R` with R` := r(T`), 1 ≤ ` ≤ m

W :=
(
w1
(
TP (1)

)
, w2

(
TP (2)

)
, . . . , wn

(
TP (n)

))
=: (W1, . . . ,Wn) .

When P is injective on supp(α), we easily achieve the smaller constant.

Claim 2. Consider m ≥ |supp(α)|. Then

E
R,W

[R ·W α | P is injective on supp(α)] = D−mzα .

Proof of Claim 2. It suffices to prove this for an arbitrary projection P̃ that
is injective on supp(α). Consider the partition of [n] given by P̃−1([m]) and
write S` = P̃−1(`) for ` ∈ [m]. By independence, the expectation splits over
these S`’s:

E
R,W

[R ·W α | P = P̃ ] = ∏m
`=1 E

[
R`
∏
k∈S`

Wαk
k

]
. (5.1.6)

Because P̃ is injective on supp(α), every S` contains one or zero elements of
supp(α). By Claim 1, in the latter case we have

E
[
R`
∏
k∈S`

Wαk
k

]
= E[R`] =

1
D
,

and in the former case we have

E
[
R`
∏
k∈S`

Wαk
k

]
= E[R`W

αj

j ] = 1
D
z
αj

j ,

for the specific j for which {j} = S` ∩ supp(α). Substituting these observations
into (5.1.6) completes the argument. ♦

When P is not injective, we still have some control. Let S = {Sj} be a
partition of supp(α). We say P induces S if

{P−1(j) ∩ supp(α) : j ∈ [m]} = S .
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Claim 3. For each partition S of supp(α) there is a number E(S) such that
for all m ≥ |S|,

E
R,W

[R ·W α | P induces S] = D−mE(S).

Proof of Claim 3. Condition again on a specific P̃ that induces S. There
are two types of ` ∈ [m]: those that W α depends on (that is, P̃ (supp(α))),
and those that only R depends on. Call these sets L = P̃ (supp(α)) and Lc

respectively. Then by independence of the T`’s,

E
R,W

[R ·W α | P = P̃ ] = E
R,W

[(∏`∈Lc R`)(
∏
`∈LR`) ·W α | P = P̃ ]

= D−m+|S| E
R,W

[(∏`∈LR`) ·W α | P = P̃ ]︸ ︷︷ ︸
∗

.

We observe that the expectation (∗) does not depend on the specific P̃ inducing
S, nor on m. Thus we may define E(S) by setting D−|S|E(S) equal to (∗). ♦

To summarize claims 2 and 3, we have that for all partitions S of supp(α)
there is a number E(S) such that for all m ≥ |S|,

E[R ·W α|P induces S] = D−mE(S).

And using S∗ to denote the singleton partition
{
{j}

}
j∈supp(α)

, we additionally
have E(S∗) = zα.

Now we consider the unconditional expectation E[R · W α] with P ∼
U([m][n]). Elementary combinatorics give that for all partitions S and all
m ≥ 1, with s = |S|,

Pr[P induces S] = m(m− 1) · · · (m− s+ 1)
m|supp(α)|

=:


1 + qs

(
1
m

)
if s = |supp(α)|

qs
(

1
m

)
if s < |supp(α)| ,

for polynomials qs with zero constant term and deg(qs) < d.
Of course P can only induce S for |S| ≤ m, so by the law of total probability,

E
R,W

[R ·W α] =
∑

S,|S|≤min(m,|supp(α)|)
E[R ·W α | P induces S ] Pr[P induces S] .
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Consider first the case m ≥ |supp(α)|. We obtain

E
R,W

[R ·W α] =
∑
S

E[R ·W α | P induces S ] Pr[P induces S]

= D−mE(S∗)
(
1 + q|supp(α)|

(
1
m

))
+

∑
S,|S|<|supp(α)|

D−mE(S) · q|S|
(

1
m

)
= D−m

[
zα +

∑
S
E(S) · q|S|

(
1
m

)]
. (5.1.7)

Now when m < |supp(α)|, we combine the fact that Pr[P induces S] = 0 for
|S| > m with the definition of qs to see

E
R,W

[R ·W α] = 0 +
∑

S,|S|≤m
E[R ·W α | P induces S ] Pr[P induces S]

=
∑

S,|S|>m
D−mE(S) Pr[P induces S] +

∑
S,|S|≤m

D−mE(S) Pr[P induces S]

= D−mE(S∗)
(
1 + q|supp(α)|

(
1
m

))
+

∑
|supp(α)|>|S|>m

D−mE(S) · q|S|
(

1
m

)
+

∑
m≥|S|

D−mE(S) · q|S|
(

1
m

)
= D−m

[
zα +

∑
S
E(S) · q|S|

(
1
m

)]
. (5.1.8)

Noting that (5.1.8) and (5.1.7) are identical, we rearrange to find

zα = Dm E[R ·W α]−
∑
S
E(S) · q|S|

(
1
m

)
,

and the second part is in total a polynomial in 1
m

with no constant term and
degree < d.

Finally, the error term p
(

1
m

)
is removed by considering several values of m.

Proof of Theorem 1. Suppose there were some coefficients am ∈ C with∑d
m=1 am =

1, so that for any polynomial p of degree < d and p(0) = 0 we would have

∑d
m=1 amp( 1

m
) = 0.
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We could then sum (5.1.2) for m = 1, . . . , d, weighted by am, and get

f(z) =
d∑

m=1
amf(z)

=
d∑

m=1
amD

m E[Rmf(Wm)] +
d∑

m=1
amp

(
1
m

)

=
d∑

m=1
amD

m E[Rmf(Wm)], (5.1.9)

where Rm,Wm are those R,W from (5.1.2) marked with explicit dependence
on m.

Well, these coefficients am can be arranged, since the monomial vectors
(1/mt)m=1,...,d for t = 0, . . . , d − 1 are linearly independent (Vandermonde).
Since always |Rm| ≤ 1, we deduce

|f(z)| ≤
d∑

m=1
|amDm| · ‖f‖Ωn

K
≤ maxdm=1 |am|

1− 1/D ·Dd‖f‖Ωn
K
.

An explicit formula for the am’s is given by

am = (−1)d−m md

m!(d−m)! ,

and it is evident that maxdm=1 |am| ≤ exp(O(d)), and specifically maxdm=1 |am| ≤
exp(1.28d).

Without loss of generality, we may assume D ≥ 11 and so 1/(1−1/D) ≤ 1.1.
We conclude

|f(z)| ≤ (4D)d‖f‖Ωn
K
= (4B log(K) + 4)d‖f‖Ωn

K
.

5.2 Nonexistence of subexponential-cardinality meshes
Proof of Theorem 18. For any ε = (ε1, . . . , εn) ∈ {−1, 1}n, consider the poly-
nomials fε(x) =

∑n
j=1 εjxj on {−1, 1}n of degree at most 1. Then by definition,

n = ‖fε‖{±1}n ≤ C‖fε‖Vn .

In other words, we have for all ε ∈ {−1, 1}n that

max
v=(v1,...,vn)∈Vn

∣∣∣∣∣∣
n∑
j=1

vjεj

∣∣∣∣∣∣ ≥ 2δn with δ = 1
2C ∈ (0,∞).

So we have the inclusion {−1, 1}n ⊂ ⋃
v∈Vn Λv, where

Λv :=

ε ∈ {−1, 1}n : |fv(ε)| =

∣∣∣∣∣∣
n∑
j=1

vjεj

∣∣∣∣∣∣ ≥ 2δn

, v ∈ Vn.
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For each v ∈ Vn and i.i.d. Bernoulli random variables ε1, . . . , εn, we have by
Hoeffding’s inequality that

|Λv| = 2n Pr
∣∣∣∣∣∣

n∑
j=1

vjεj

∣∣∣∣∣∣ ≥ 2δn


≤ 2n Pr
∣∣∣∣∣∣

n∑
j=1

<(vj)εj

∣∣∣∣∣∣ ≥ δn

+ 2n Pr
∣∣∣∣∣∣

n∑
j=1

=(vj)εj

∣∣∣∣∣∣ ≥ δn


≤ 2n+1 exp

(
− δ2n2

2‖a‖22

)
+ 2n+1 exp

(
− δ2n2

2‖b‖22

)
,

where a = <v and b = =v are real vectors. Recalling that v ∈ Vn ⊂ Dn, we
have ‖a‖22 ≤ n and ‖b‖22 ≤ n. Therefore,

|Λv| ≤ 2n+2 exp
(
−δ2n/2

)
= 4

(
2e−δ2/2

)n
.

All combined, we just proved

2n = |{−1, 1}n| ≤
∑
v∈Vn

|Λv| ≤ 4|Vn|
(
2e−δ2/2

)n
.

This gives the bound
|Vn| ≥

1
4e

δ2n
2 ,

as desired.
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C h a p t e r 6

Applications

6.1 Lp discretization inequalities
Theorem 27. Let 1 ≤ p ≤ ∞ and f : Ωn

K → C of degree at most d. Then

‖f‖Lp(Tn) ≤ dO(logK)d‖f‖Lp(Ωn
K
) .

Proof. Beginning with the interpolation formula (5.1.9), it is evident that for
any ξ ∈ Ωn

N ,

f(ξ � z) =
d∑

m=1
amD

m E[Rmf(ξ �Wm)],

where � denotes coordinatewise multiplication. Thus by Jensen we have

|f(ξ � z)|p ≤ dp · 1
d

d∑
m=1

|amDm|p E[|f(ξ �Wm)|p]

≤ dpO(logK)dp · 1
d

d∑
m=1

E[|f(ξ �Wm)|p] .

Now consider ξ sampled uniformly from Ωn
N . For any fixed value of Wm,

the distribution ξ �Wm is also uniform on Ωn
N , so we have

E
ξ∼Ωn

N

[|f(ξ � z)|p] ≤ dpO(logK)dp E
ξ∼Ωn

N

[|f(ξ)|p] .

Let A = e[0,1)·2πi/N be the arc on T from the first to the second N th root of
unity. Observe that the random variable

ξz with z ∼ A, ξ ∼ ΩN

is distributed uniformly on T, and accordingly the random variable

ξ � z with z ∼ An, ξ ∼ Ωn
N

is distributed uniformly on Tn. Therefore,

E
z∼Tn

[|f(z)|p] = E
z∼An,ξ∼Ωn

N

[|f(ξ � z)|p]

≤ dpO(logK)dp E
ξ∼Ωn

N

[|f(ξ)|p],

which finishes the argument.
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6.2 Junta theorem for functions on the hypergrid
We say a function f : Ωn

K → D is a k-junta if it depends on only k

coordinates. The concept of juntas is a central tool in the analysis of Boolean
functions [ODo14].

So-called “junta theorems” show that functions which are simple in some
way are close to juntas. For functions from the hypercube to the range {−1, 1}
these include Friedgut’s theorem (which constrains the functions’ total influence)
and the FKN Theorem and Bourgain’s junta theorem, both of which constrain
the weight of the Fourier tail ∑|S|≥k f̂(S)2. When the image of f is allowed to
lie in [−1, 1], we have the following result [DFKO07].

Theorem 28 ([DFKO07]). Let f : Ωn
2 → [−1, 1], ε and k be such that

∑
|S|>k

f̂(S)2 ≤ exp
(
−O(k2 log k)/ε

)
.

Then f is ε-close to a (2O(k)/ε2)-junta.

In the case of functions on Ωn
K , there is a statement along the lines of

Friedgut’s theorem for functions whose image is {0, 1} [Ben+16]. Here we
obtain a junta theorem for general f : ΩnK → D (in loose analogy to [DFKO07])
using the cyclic-group Bohnenblust–Hille inequality.

Theorem 29. If f : Ωn
K → D has degree at most d, then there exists another

function h : Ωn
K → D such that ‖f − h‖2 ≤ ε and h is a k-junta for

k ≤ d

BH2d
ΩK

ε

2d

≤ d

(
O(logK)d

ε

)2d

.

This argument is similar to the junta theorem for qubits in [VZ23], which
is credited to Eskenazis. It is also a good warmup for the learning results in
the sequel.

Proof. Denote the heavy Fourier coefficients of f by

S = {α : |f̂(α)| ≥ t}

and define the function

ft(z) =
∑

α∈{0,1,...,K−1}n
1α∈S · f̂(α)zα .
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Using the definition of S and the cyclic group BH inequality we have

|S| =
∑
α∈S

(
|α|
|α|

)
2d
d+1 = t−

2d
d+1

∑
all α

|α|
2d
d+1 ≤ t−

2d
d+1
(
BH≤dΩK

) 2d
d+1 ,

so ft is a k-junta with
k ≤ d

(
1
t
· BH≤dΩK

) 2d
d+1 .

Let cl(x) = x/max{1, |x|} be a clamp function. Then cl(ft) has image in D
and is a k-junta for the same k. Because |cl(ft)(x) − f(x)| ≤ |ft(x) − f(x)|
pointwise, we also have

‖f − cl(ft)‖22 ≤ ‖f − ft‖22 =
∑
α 6∈S

|f̂(α)|2 ≤ t
2

d+1
∑
all α

|α|
2d
d+1 ≤ t

2
d+1
(
BH≤dΩK

) 2d
d+1 .

Now with the choice t = εd+1
(
BH≤dΩK

)−d
, we have ‖f − cl(ft)‖2 ≤ ε with cl(ft)

a k-junta for

k = d

BH≤dΩK

ε

2d

.

6.3 Qudit Bohnenblust–Hille in the Heisenberg–Weyl basis
Definition 2 (Heisenberg–Weyl Basis). Fix K ≥ 2 and let ω = ωK =
exp(2πi/K). Define the K-dimensional clock and shift matrices respectively
via

Z |j〉 = ωj |j〉 , X |j〉 = |j + 1〉 for all j ∈ ZK .

Here ZK := {0, 1, . . . , K − 1} denotes the additive cyclic group of order K.
Note that XK = ZK = I. See more in [AEHK16]. Then the Heisenberg–Weyl
basis for MK(C) is

HW(K) := {X`Zm}`,m∈ZK
.

Any observable A ∈MK(C)⊗n has a unique Fourier expansion with respect to
HW(K) as well:

A =
∑

~̀, ~m∈Zn
K

Â(~̀, ~m)X`1Zm1 ⊗ · · · ⊗X`nZmn , (6.3.1)

where Â(~̀, ~m) ∈ C is the Fourier coefficient at (~̀, ~m). We say that A is of
degree at most d if Â(~̀, ~m) = 0 whenever

|(~̀, ~m)| :=
n∑
j=1

(`j +mj) > d.
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Here, 0 ≤ `j,mj ≤ K − 1.
Noting that the eigenvalues of Heisenberg–Weyl matrices are the roots of

unity, it is natural to pursue a reduction to a scalar BH inequality over Ωn
K ,

the multiplicative cyclic group of order K—precisely the inequality needed for
classical learning on functions on Ωn

K . This reduction works well when K is
prime.

Theorem 30 (Qudit Bohnenblust–Hille, Heisenberg–Weyl Basis: prime case).
Fix a prime number K ≥ 2 and suppose d ≥ 1. Consider an observable
A ∈MK(C)⊗n of degree at most d. Then we have

‖Â‖ 2d
d+1

≤ C(d,K)‖A‖op, (6.3.2)

with C(d,K) ≤ (K + 1)dBH≤dΩK
.

When K is non-prime, the reduction still works under modifications, namely
the degree may jump from d up to (K − 1)d.

Theorem 31 (Qudit Bohnenblust–Hille, Heisenberg–Weyl Basis: non-prime
case). Fix a non-prime number K ≥ 4 and suppose d ≥ 1. Consider an
observable A ∈MK(C)⊗n of degree at most d. Then we have

‖Â‖ 2(K−1)d
(K−1)d+1

≤ C(d,K)‖A‖op, (6.3.3)

with C(d,K) ≤ K2dBH≤(K−1)dΩK
. In fact, the constant K2d can be replaced

by |ΣK |d with |ΣK | being the cardinality of ΣK = {(`,m) ∈ ZK × ZK :
` and m are coprime}.

The proofs of Theorems 30 and 31 are contained in Section 6.3. The full
strength of Theorems 30 and 31 relies on the BH inequality for the cyclic
groups Ωn

K , i.e., the finiteness of the Bohnenblust–Hille constant BH≤dΩK
for

cyclic groups which we quote here for reference.

Fix K ≥ 3 and denote ω := e2πi/K . Let ΩK := {1, ω, ω2, . . . , ωK−1}. Then
any function f : Ωn

K → C admits the unique Fourier expansion

f(z) =
∑
α

f̂(α)zα, (6.3.4)

where α = (α1, . . . , αn) are vectors of non-negative integers and each αj ≤ K−1.
We say f is of degree at most d if f̂(α) = 0 whenever |α| > d. The following
result was proved in [SVZ24a; SVZ25; KSVZ24; Bec+25].
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Theorem 32 (Cyclic Bohnenblust–Hille). Fix K ≥ 3 and d ≥ 1. There exists
C(d,K) > 0 such that for all n ≥ 1 and for all f : Ωn

K → C of degree at most
d, we have

‖f̂‖ 2d
d+1

≤ C(d,K) sup
z∈Ωn

K

|f(z)|. (6.3.5)

Denote by BH≤dΩK
the best constant C(d,K) in (6.3.5). An upper bound

BH≤dΩK
≤ O(logK)d was obtained in [KSVZ24; Bec+25].

∗ ∗ ∗

In this section we prove Theorems 30 and 31 via reduction to the BH
inequality for cyclic groups, Theorem 32. We collect first a few facts about the
Heisenberg–Weyl basis {X`Zm}.

Fix K ≥ 3. Recall that gcd(a, b) denotes the greatest common divisor
of a and b. For (`,m) ∈ ZK × ZK , gcd(`,m) is understood as when `,m ∈
{1, 2, . . . , K}, i.e. we do not mod K freely here. For example if K = 6,
then gcd(0, 2) is understood as gcd(6, 2) = 2. For a group G, we use the
convention that 〈g〉 is the abelian subgroup generated by g ∈ G. So for any
(`,m) ∈ ZK × ZK , we have

〈(`,m)〉 = {(k`, km) : k ∈ ZK}. (6.3.6)

In the sequel, we denote ω = ωK = e2πi/K and use the notation ω1/2 :=
ω2K = eπi/K .

Lemma 33. We have the following:

1. {X`Zm : `,m ∈ ZK} form a basis of MK(C).

2. For all k, `,m ∈ ZK:

(X`Zm)k = ω
1
2k(k−1)`mXk`Zkm

and for all `1, `2,m1,m2 ∈ ZK:

X`1Zm1 ·X`2Zm2 = ω`2m1−`1m2X`2Zm2 ·X`1Zm1 .

3. If gcd(`1,m1) = 1 and (`,m) /∈ 〈(`1,m1)〉, then

X`1Zm1 ·X`Zm = ω`m1−`1mX`Zm ·X`1Zm1 (6.3.7)

with ω`m1−`1m 6= 1.
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4. If gcd(`,m) = 1, then the set of eigenvalues of X`Zm is either ΩK or
Ω2K \ ΩK.

Proof. 1. Suppose that ∑`,m a`,mX
`Zm = 0. For any j, k ∈ ZK , we have∑

`,m

a`,m〈X`Zmej, ej+k〉 =
∑
m

ak,mω
jm = 0.

Since the Vandermonde matrix associated to (1, ω, . . . , ωK−1) is invertible,
we have ak,m = 0 for all k,m ∈ ZK .

2. It follows immediately from the identity ZX = ωXZ which can be
verified directly: for all j ∈ ZK

ZXej = Zej+1 = ωj+1ej+1 = ωj+1Xej = ωXZej.

3. It is a direct consequence of (2) and the following fact: for (`1,m1) ∈
ZK × ZK such that gcd(`1,m1) = 1 and (`2,m2) ∈ ZK × ZK , we have
`1m2 − `2m1 ≡ 0 mod K if and only if (`2,m2) ≡ (k`1, km1) mod K
for some k ∈ ZK .

The “if” direction is obvious. To show the “only if” part, recall that by
Bézout’s lemma, there exist integers α and β such that α`1 + βm1 =
gcd(`1,m1) = 1. Take k ≡ α`2 + βm2 mod K. Then

`2 = `2(α`1 + βm1) ≡ α`1`2 + β`1m2 ≡ k`1 mod K, (6.3.8)

where we used `1m2 ≡ `2m1 mod K. Similarly,

m2 = m2(α`1 + βm1) ≡ α`2m1 + βm1m2 ≡ km1 mod K, (6.3.9)

as desired. This finishes the proof of the fact.

4. By (2), we have

(X`Zm)2K = ωK(2K−1)`mX2`KZ2mK = I.

So the eigenvalues of X`Zm must be roots of unit of order 2K. Then the
proof is finished as soon as we prove the following claim: for gcd(`,m) = 1,
if λ is an eigenvalue of X`Zm, then so is ωλ. To prove the claim,
recall that by Bézout’s lemma, there exist integers α and β such that
α`+ βm = gcd(`,m) = 1. By (2), we get

X`ZmXβZ−α = ωα`+βmXβZ−αX`Zm = ωXβZ−αX`Zm. (6.3.10)
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Suppose ~0 6= ξ is an eigenvector of X`Zm with eigenvalue λ. Then

X`ZmXβZ−αξ = ωα`+βmXβZ−αX`Zmξ = ωλXβZ−αξ, (6.3.11)

implying that XβZ−αξ (non-zero since XβZ−α is invertible) is an eigen-
vector of X`Zm with eigenvalue ωλ. This finishes the proof of the
claim.

Let us record the following observation as a lemma.

Lemma 34. Suppose that k ≥ 1, A,B are two unitary matrices such that
Bk = I, AB = λBA with λ ∈ C and λ 6= 1. If ξ 6= ~0 is an eigenvector of B
with eigenvalue µ (µ 6= 0 since µk = 1), then

〈ξ, Aξ〉 = 0.

Proof. By assumption

µ〈ξ, Aξ〉 = 〈ξ, ABξ〉 = λ〈ξ, BAξ〉.

Since B† = Bk−1, B†ξ = Bk−1ξ = µk−1ξ = µξ. Thus

µ〈ξ, Aξ〉 = λ〈ξ, BAξ〉 = λ〈B†ξ, Aξ〉 = λµ〈ξ, Aξ〉.

Hence, µ(λ− 1)〈ξ, Aξ〉 = 0. This gives 〈ξ, Aξ〉 = 0 as µ(λ− 1) 6= 0.

The prime K case
In this subsection we prove Theorem 30. When K is prime, the basis

{X`Zm} has nicer properties.

Lemma 35. Fix K ≥ 3 a prime number. Consider the set of generators

ΣK := {(1, 0), (1, 1), . . . , (1, K − 1), (0, 1)}. (6.3.12)

Then the group ZK × ZK is the union of subgroups

ZK × ZK =
⋃

(`,m)∈ΣK

〈(`,m)〉, (6.3.13)

where each two subgroups intersects with the unit (0, 0) only. Moreover, for
any (`,m) ∈ ΣK, the set of eigenvalues of each X`Zm is exactly ΩK .
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Proof. To prove the first statement, take any (`,m) ∈ ZK ×ZK . If ` = 0, then
(`,m) = (0,m) ∈ 〈(0, 1)〉. If ` 6= 0, then gcd(`,K) = 1. So by Bézout’s lemma,
there exists `′ such that ``′ ≡ 1 mod K. Thus (`,m) = (`, ``′m) ∈ 〈(1, `′m)〉.
The statement about the intersection is clear since otherwise, the cardinality of
the union of these subgroups is strictly smaller than 1 + (K + 1)(K − 1) = K2

which leads to a contradiction.
The second statement follows from the proof of Lemma 33. In fact, when

K is odd, (K − 1)/2 is an integer and we have by Lemma 33 (2) that

(X`Zm)K = ω
1
2K(K−1)`mX`KZmK = I.

So the eigenvalues of X`Zm must be roots of unity of order K. This, together
with the claim in the proof of Lemma 33 (4) and the fact that gcd(`,m) =
1, (`,m) ∈ ΣK , completes the proof of the lemma.

Now we are ready to prove Theorem 30:

Proof of Theorem 30. Fix a prime number K ≥ 2. Recall that ω = e
2πi
K .

Consider ΣK defined in (6.3.12). For any (`,m) ∈ ΣK , by Lemma 35 any
z ∈ ΩK is an eigenvalue of X`Zm and we denote by e`,mz the corresponding unit
eigenvector. For any vector ~ω ∈ Ω(K+1)n

K of the form (noting that |ΣK | = K+1)

~ω = (~ω`,m)(`,m)∈ΣK
, ~ω`,m = (ω`,m1 , . . . , ω`,mn ) ∈ Ωn

K , (6.3.14)

we consider the matrix

ρ(~ω) := ρ1(~ω)⊗ · · · ⊗ ρn(~ω),

where
ρk(~ω) :=

1
K + 1

∑
(`,m)∈ΣK

|e`,m
ω`,m
k

〉〈e`,m
ω`,m
k

|.

Then each ρk(~ω) is a density matrix and so is ρ(~ω).
Fix (`,m) ∈ ΣK and 1 ≤ k ≤ K − 1. We have by Lemma 33

tr[Xk`Zkm|e`,mz 〉〈e`,mz |] = ω−
1
2k(k−1)`m〈e`,mz , (X`Zm)ke`,mz 〉

= ω−
1
2k(k−1)`mzk, z ∈ ΩK .

On the other hand, for any (`,m) 6= (`′,m′) ∈ ΣK , we have (k`, km) /∈ 〈(`′,m′)〉
by Lemma 35. From our choice gcd(`′,m′) = 1. So Lemma 33 gives

Xk`ZkmX`′Zm′ = ωk`
′m−k`m′

X`′Zm′
Xk`Zkm
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with ωk`′m−k`m′ 6= 1. This, together with Lemma 34, implies

tr[Xk`Zkm|e`′,m′

z 〉〈e`′,m′

z |] = 〈e`′,m′

z , Xk`Zkme`
′,m′

z 〉 = 0, z ∈ ΩK .

for any 1 ≤ k ≤ K − 1. All combined, for all 1 ≤ k ≤ K − 1, (`,m) ∈ ΣK and
1 ≤ j ≤ n we get

tr[Xk`Zkmρj(~ω)] =
1

K + 1
∑

(`′,m′)∈ΣK

〈
e`

′,m′

ω`′,m′
j

, Xk`Zkme`
′,m′

ω`′,m′
j

〉

= 1
K + 1

〈
e`,m
ω`,m
j

, Xk`Zkme`,m
ω`,m
j

〉
= 1
K + 1ω

− 1
2k(k−1)`m(ω`,mj )k.

Note that by Lemma 35 any polynomial in MK(C)⊗n of degree at most d
is a linear combination of monomials

A(~k, ~̀, ~m;~i) := · · · ⊗Xk1`1Zk1m1 ⊗ · · · ⊗Xkκ`κZkκmκ ⊗ · · · ,

where

• ~k = (k1, . . . , kκ) ∈ {1, . . . , K − 1}κ with 0 ≤ ∑κ
j=1 kj ≤ d;

• ~̀= (`1, . . . , `κ), ~m = (m1, . . . ,mκ) with each (`j,mj) ∈ ΣK ;

• ~i = (i1, . . . , iκ) with 1 ≤ i1 < · · · < iκ ≤ n;

• Xkj`jZkjmj appears in the ij-th place, 1 ≤ j ≤ κ, and all the other n− κ

elements in the tensor product are the identity matrices I.

So for any ~ω ∈ Ω(K+1)n
K of the form (6.3.14) we have from the above discussion

that

tr[A(~k, ~̀, ~m;~i)ρ(~ω)] =
κ∏
j=1

tr[Xkj`jZkjmjρij(~ω)]

= ω−
1
2
∑κ

j=1 kj(kj−1)`jmj

(K + 1)κ (ω`1,m1
i1

)k1 · · · (ω`κ,mκ

iκ
)kκ .

Thus ~ω 7→ tr[A(~k, ~̀, ~m;~i)ρ(~ω)] is a monomial on (ΩK)(K+1)n of degree at most∑κ
j=1 kj ≤ d.
Now for general polynomial A ∈MK(C)⊗n of degree at most d:

A =
∑

~k,~̀,~m,~i

c(~k, ~̀, ~m;~i)A(~k, ~̀, ~m;~i),
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where the sum runs over the above (~k, ~̀, ~m;~i). This is the Fourier expansion of
A and each c(~k, ~̀, ~m;~i) ∈ C is the Fourier coefficient. So

‖Â‖p =
 ∑
~k,~̀,~m,~i

|c(~k, ~̀, ~m;~i)|p
1/p

.

To each A we assign the function fA on Ω(K+1)n
K given by

fA(~ω) = tr[Aρ(~ω)]

=
∑

~k,~̀,~m,~i

ω−
1
2
∑κ

j=1 kj(kj−1)`jmjc(~k, ~̀, ~m;~i)
(K + 1)κ (ω`1,m1

i1
)k1 · · · (ω`κ,mκ

iκ
)kκ .

Note that this is the Fourier expansion of fA since the monomials (ω`1,m1
i1

)k1 · · · (ω`κ,mκ

iκ
)kκ

differ for distinct (~k, ~̀, ~m;~i)’s. Therefore, for p > 0

‖f̂A‖p =
 ∑
~k,~̀,~m,~i

∣∣∣∣∣∣c(
~k, ~̀, ~m;~i)
(K + 1)κ

∣∣∣∣∣∣
p1/p

≥ 1
(K + 1)d

 ∑
~k,~̀,~m,~i

|c(~k, ~̀, ~m;~i)|p
1/p

= 1
(K + 1)d‖Â‖p.

According to Theorem 32, one has

‖f̂A‖ 2d
d+1

≤ BH≤dΩK
‖fA‖Ω(K+1)n

K

for some BH≤dΩK
<∞. Since each ρ(~ω) is a density matrix, we have by duality

that
‖fA‖Ω(K+1)n

K

= sup
~ω∈(ΩK)(K+1)n

| tr[Aρ(~ω)]| ≤ ‖A‖op.

All combined, we obtain

‖Â‖ 2d
d+1

≤ (K+1)d‖f̂A‖ 2d
d+1

≤ (K+1)dBH≤dΩK
‖fA‖Ω(K+1)n

K

≤ (K+1)dBH≤dΩK
‖A‖op .

The non-prime K case
This subsection is devoted to the proof of Theorem 31. Throughout this

part, K ≥ 4 is a non-prime integer.
We start with a substitute of ΣK in (6.3.12) for non-prime K.
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Lemma 36. Fix non-prime K ≥ 4. Consider

ΣK := {(`,m) ∈ ZK × ZK : gcd(`,m) = 1}. (6.3.15)

Then ZK × ZK is the union of subgroups generated by elements in ΣK:

ZK × ZK =
⋃

(`,m)∈ΣK

〈(`,m)〉. (6.3.16)

Proof. The proof is direct: any (`,m) ∈ ZK × ZK belongs to 〈(`1,m1)〉 for
(`1,m1) = (`/ gcd(`,m),m/ gcd(`,m)) ∈ ΣK .

Recall that when K is prime, for two different subgroups 〈(`1,m1)〉 6=
〈(`2,m2)〉 one has the singleton set {(0, 0)} as their intersection. However, this
is no longer the case when K is not prime. For example, for K = 6, we have
〈(1, 0)〉 6= 〈(2, 3)〉 while 〈(1, 0)〉∩ 〈(2, 3)〉 = {(0, 0), (2, 0), (4, 0)}. This difference
will make the proof of Theorem 31 more involved.

Proof of Theorem 31. Fix non-prime K ≥ 4. Consider ΣK defined in (6.3.15).
Then we know by Lemma 36 that the set of eigenvalues of X`Zm is either ΩK
or Ω2K \ ΩK . In either case, suppose that z is an eigenvalue of X`Zm. We
denote by e`,mz the unit eigenvector of X`Zm corresponding to z.

Write ΣK = Σ+
K ∪ Σ−K with

Σ+
K := {(`,m) ∈ ΣK : the set of eigenvalues of X`Zm is ΩK} (6.3.17)

and

Σ−K := {(`,m) ∈ ΣK : the set of eigenvalues of X`Zm is Ω2K \ ΩK}. (6.3.18)

As before, for any ~ω ∈ Ω|ΣK |n
K of the form

~ω = (~ω`,m)(`,m)∈ΣK
, ~ω`,m = (ω`,m1 , . . . , ω`,mn ) ∈ Ωn

K , (6.3.19)

we shall consider
ρ(~ω) := ρ1(~ω)⊗ · · · ⊗ ρn(~ω) (6.3.20)

where each ρj(~ω) is the average of some eigen-projections of X`Zm, (`,m) ∈ ΣK .
If (`,m) ∈ Σ+

K , then X`Zm has ω`,mj ∈ ΩK as an eigenvalue with e`,m
ω`,m
j

being

the unit eigenvector. If (`,m) ∈ Σ−K , then ω
`,m
j ∈ ΩK is not an eigenvalue of

X`Zm. In this case, X`Zm has ω1/2ω`,mj ∈ Ω2K \ ΩK as an eigenvalue with
e`,m
ω1/2ω`,m

j

being the unit eigenvector.
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For each 1 ≤ j ≤ n, consider

ρj(~ω) :=
1

|ΣK |
∑

(`,m)∈Σ+
K

|e`,m
ω`,m
j

〉 〈e`,m
ω`,m
j

|+ 1
|ΣK |

∑
(`,m)∈Σ−

K

|e`,m
ω1/2ω`,m

j

〉 〈e`,m
ω1/2ω`,m

j

| .

(6.3.21)

By definition, each ρj(~ω) is a density matrix and so is ρ(~ω).
For any (0, 0) 6= (`′,m′) ∈ ZK × ZK and any (`,m) ∈ ΣK , either (`′,m′) /∈

〈(`,m)〉 or (`′,m′) = (k`, km) for some k ∈ ZK . If (`′,m′) /∈ 〈(`,m)〉, then by
Lemma 33

X`′Zm′ ·X`Zm = ω`m
′−`′mX`Zm ·X`′Zm′ (6.3.22)

with ω`m′−`′m 6= 1. So Lemma 34 gives

tr[X`′Zm′ |e`,mz 〉 〈e`,mz |] = 0, (6.3.23)

for any eigenvalue z of X`Zm.
If (`′,m′) = (k`, km) for some k ∈ ZK , then by Lemma 33

X`′Zm′ = Xk`Zkm = ω−
1
2k(k−1)`m(X`Zm)k. (6.3.24)

So for any eigenvalue z of X`Zm.

tr[X`′Zm′ |e`,mz 〉 〈e`,mz |] = ω−
1
2k(k−1)`mzk. (6.3.25)

All combined, we have for any ~ω ∈ (ΩK)|ΣK |n that

tr
[
X`′Zm′

ρj(~ω)
]
= 1

|ΣK |
∑

(`,m)∈Σ+
K
:(`′,m′)=(k`,m`,k`,mm)

ω−
1
2k`,m(k`,m−1)`m(ω`,mj )k`,m

+ 1
|ΣK |

∑
(`,m)∈Σ−

K
:(`′,m′)=(k`,m`,k`,mm)

ω−
1
2k`,m(k`,m−1)`m(ω1/2ω`,mj )k`,m

= 1
|ΣK |

∑
(`,m)∈Σ+

K
:(`′,m′)=(k`,m`,k`,mm)

ω−
1
2k`,m(k`,m−1)`m(ω`,mj )k`,m

+ 1
|ΣK |

∑
(`,m)∈Σ−

K
:(`′,m′)=(k`,m`,k`,mm)

ω−
1
2k`,m(k`,m−1)`m+ 1

2k`,m(ω`,mj )k`,m .

Here in the summation, when (`′,m′) ∈ 〈(`,m)〉 we write (`′,m′) = (k`,m`, k`,mm)
with 1 ≤ k`,m ≤ K − 1. So ~ω 7→ tr

[
X`′Zm′

ρj(~ω)
]
is a polynomial on Ω|ΣK |n

K of
degree at most K− 1, and all the (non-zero) coefficients are of modulus |ΣK |−1.
To compare, in the prime K case, we have only one non-zero term in the above
summation. In the non-prime K case, there might be more than one term.
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That is, we may have different (`1,m1) and (`2,m2) in ΣK such that (`′,m′) =
(k1`1, k1m1) = (k2`2, k2m2) with 1 ≤ k1, k2 ≤ K − 1. For example for K = 6,
we have (0, 3) = (3 ·0, 3 ·1) = (3 ·2, 3 ·3) = (3 ·4, 3 ·5) = (3 ·2, 3 ·1) = (3 ·4, 3 ·3).
Though tr[X`′Zm′

ρj(~ω)] is no longer a monomial of degree deg(X`′Zm′), it is
still a non-zero polynomial of degree at most K − 1.

Now for any monomial in MK(C)⊗n of degree at most d admitting the form

A(~̀, ~m;~i) := · · · ⊗X`1Zm1 ⊗ · · · ⊗X`κZmκ ⊗ · · · , (6.3.26)

where κ ≤ d and

• ~̀= (`1, . . . , `κ), ~m = (m1, . . . ,mκ) with each (0, 0) 6= (`j,mj) ∈ ZK×ZK ;

• ~i = (i1, . . . , iκ) with 1 ≤ i1 < · · · < iκ ≤ n;

• and each X`jZmj appears in the ij-th place, and all the other n − κ

elements in the tensor product are the identity matrices I.

According to our previous discussion,

tr[A(~̀, ~m;~i)ρ(~ω)] =
∏

1≤j≤κ
tr[X`jZmjρij(~ω)] (6.3.27)

is a linear combination of monomials

(ωa1,b1i1
)c1 · · · (ωaκ,bκiκ

)cκ

of degree at most (K − 1)κ ≤ (K − 1)d, with (aj, bj) ∈ ΣK and 1 ≤ cj ≤ K − 1
such that (cjaj, cjbj) ≡ (`j,mj) mod K. This implies that these monomials
remember the profile (~̀, ~m;~i) well; i.e., for distinct (~̀, ~m;~i) 6= (~̀′, ~m′;~i′), the
corresponding polynomials tr[A(~̀, ~m;~i)ρ(~ω)] and tr[A(~̀′, ~m′;~i′)ρ(~ω)] do not
admit common monomials. Moreover, the coefficients of the those monomials
are all of the modulus |ΣK |−κ ≥ |ΣK |−d.

For general A ∈MK(C)⊗n of degree at most d admitting

A =
∑
~̀, ~m,~i

c(~̀, ~m;~i)A(~̀, ~m;~i) (6.3.28)

as the Fourier expansion, consider the polynomial

fA(~ω) = tr[Aρ(~ω)] =
∑
~̀, ~m,~i

c(~̀, ~m;~i) tr[A(~̀, ~m;~i)ρ(~ω)] (6.3.29)
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on Ω|ΣK |n
K . From the above discussion, the `p-norm ‖f̂A‖p of Fourier coefficients

of fA satisfies

‖f̂A‖p ≥ |ΣK |−d
∑
~̀, ~m,~i

|c(~̀, ~m;~i)|p
1/p

= |ΣK |−d‖Â‖p, p > 0.

Moreover, fA is of degree at most (K − 1)d. So Theorem 32 implies

‖f̂A‖ 2(K−1)d
(K−1)d+1

≤ BH≤(K+1)d
ΩK

‖fA‖∞.

Recall that each ρ(~ω) is a density matrix, so by duality

‖fA‖∞ = sup
~ω∈(ΩK)(K+1)n

| tr[Aρ(~ω)]| ≤ ‖A‖op.

All combined, we prove that

‖Â‖ 2(K−1)d
(K−1)d+1

≤ |ΣK |d‖f̂A‖ 2(K−1)d
(K−1)d+1

≤ |ΣK |dBH≤(K+1)d
ΩK

‖fA‖∞ ≤ |ΣK |dBH≤(K+1)d
ΩK

‖A‖op.

6.4 Learning
Here we give learning algorithms for low-degree functions on ΩnK and local

qudit observables. This work is published in [KSVZ24]. We begin by extracting
the estimation lemma implicit in [EI22] that will allow us to use our new
Bohnenblust–Hille-type inequalities.

Theorem 37 (Generic Eskenazis–Ivanisvili). Let d ∈ N and η,B > 0. Suppose
v, w ∈ Cn with ‖v − w‖∞ ≤ η and ‖v‖ 2d

d+1
≤ B. Then for w̃ defined as

w̃j = wj1[|wj |≥η(1+
√
d+1)] we have the bound

‖w̃ − v‖22 ≤ (e5η2dB2d)
1

d+1 .

Proof. Let t > 0 be a threshold parameter to be chosen later. Define St = {j :
|wj| ≥ t} and note from the triangle inequality in C that

|vj| ≥ |wj| − |vj − wj| = t− η for j ∈ St (6.4.1)

|vj| ≤ |wj|+ |vj − wj| = t+ η for j 6∈ St. (6.4.2)

We may also estimate |St| as

|St| =
∑
j∈S

|vj|
|vj|

(6.4.1)
≤ (t−η)−

2d
d+1

∑
j∈[n]

|vj|
2d
d+1 ≤ (t−η)−

2d
d+1‖v‖

2d
d+1
2d
d+1

≤ (t−η)−
2d
d+1B

2d
d+1 .

(6.4.3)
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With w̃(t) := (wj1[wj≥t])nj=1, we find

‖w̃(t) − v‖22 =
∑
j∈St

|wj − vj|2 +
∑
j 6∈St

|vj|2
(6.4.2)
≤ |St|η2 + (t+ η)

2
d+1

∑
j∈[n]

|vj|
2d
d+1

(6.4.3)
≤ B

2d
d+1
(
η2(t− η)−

2d
d+1 + (t+ η)

2
d+1
)
.

Choosing t = η(1 +
√
d+ 1) then yields w̃ with error, after some careful scalar

estimates,
‖w̃ − v‖22 ≤ (e5η2dB2d)

1
d+1 .

See [EI22, Eqs. 18 & 19] for details on the scalar estimates.

In the context of low-degree learning, v is the true vector of Fourier coeffi-
cients, and w is the vector of empirical coefficients obtained through Fourier
sampling.

Cyclic group learning
Theorem 38. Let f : ZnK → D be a degree-d function. Then with

(logK)O(d2) log(n/δ)ε−d−1

independent random samples (x, f(x)), x ∼ U(ZnK), we may with confidence
1− δ learn a function f̃ : ZnK → C with ‖f − f̃‖22 ≤ ε.

Proof. Let f = ∑
α f̂(α)zα be the Fourier expansion. For a number of samples

s to be specified later, sample x(1), . . . , x(s) iid∼ U({0, 1, . . . , K − 1}n) and for
each α ∈ ZnK with |α| ≤ d, form the empirical Fourier coefficient

wα := 1
s

s∑
j=1

f(x(j))ω−
∑n

`=1 α`x
(j)
`

K ,

where ωK = e
2πi
K and x(j) = (x(j)1 , . . . , x

(j)
n ). Then wα is a sum of bounded i.i.d.

random variables with expected value f̂(α), so Chernoff gives

Pr[|f̂(α)− wα| ≥ η] = Pr
[
<
(
f̂(α)− wα

)2
+ =

(
f̂(α)− wα

)2
≥ η2

]
≤ Pr

[
|<
(
f̂(α)− wα

)
| ≥ η/

√
2
]
+ Pr

[
|=
(
f̂(α)− wα

)
| ≥ η/

√
2
]

≤ 4 exp
(
−sη2/4

)
.

So the probability we simultaneously estimate all nonzero Fourier coefficients
of f to within η is

Pr
[
|f̂(α)− wα| < η for all α with |α| ≤ d

]
≥ 1− 4

d∑
k=0

(
n

k

)
exp

(
−sη2

4

)
,



74

which in turn we will require to be ≥ 1− δ.
Now applying Theorem 37 to obtain w̃ and recalling ‖f̂‖ 2d

d+1
≤ BH≤dZK

‖f‖∞ =
BH≤dZK

we have that with probability 1−δ, the function f̃(x) := ∑
α w̃α

∏n
j=1 ω

αjxj
K

has L2 error

‖f̃ − f‖22
(Parseval)=

∑
α

|f̂(α)− ω̃α|2 ≤
(
e5η2d(BH≤dZK

)2d
) 1

d+1 . (6.4.4)

So in order to achieve ‖f̃−f‖22 ≤ ε it is enough to pick η2 = εd+1e−5d−1(BH≤dZK
)−2d,

which entails by standard estimates that taking a number of samples s with

s ≥
4e5d2(BH≤dZK

)2d

εd+1 log
(4en
δ

)
suffices.

Qudit learning
We will find it more convenient to use a different orthonormal basis for

qudit learning, the so-called Gell–Mann matrices.

Definition 3 (Gell-Mann Basis). Let K ≥ 2. Put Ejk = |j〉〈k| , 1 ≤ j, k ≤ K.
The generalized Gell-Mann Matrices are a basis of MK(C) and are comprised
of the identity matrix I along with the following generalizations of the Pauli
matrices:

symmetric: Ajk =
√
K
2

(
Ejk + Ekj

)
for 1 ≤ j < k ≤ K

antisymmetric: Bjk =
√
K
2

(
− iEjk + iEkj

)
for 1 ≤ j < k ≤ K

diagonal: Cm = Γm(
∑m
k=1Ekk −mEm+1,m+1) for 1 ≤ m ≤ K − 1,

where Γm :=
√

K
m2+m . We denote

GM(K) := {I,Ajk,Bjk,Cm}1≤j<k≤K,1≤m≤K−1 .

An observable A ∈MK(C)⊗n has expansion in the GM basis as

A =
∑
α∈Λn

K

Â(α)Mα =
∑
α∈Λn

K

Â(α)⊗n
j=1Mαj

for some index set ΛK (so {Mα}α∈ΛK
= GM(K)). Letting |α| = |{j :Mαj 6= I}|,

we say A is of degree at most d if Â(α) = 0 for all α with |α| > d.
In [SVZ24b] we find the Gell-Mann BH inequality enjoys a reduction to the

Boolean cube BH inequality on {−1, 1}n(K2−1) and obtain the following.
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Theorem 39 (Qudit Bohnenblust–Hille, Gell-Mann Basis). Fix any K ≥ 2
and d ≥ 1. There exists C(d,K) > 0 such that for all n ≥ 1 and GM observable
A ∈MK(C)⊗n of degree at most d, we have

‖Â‖ 2d
d+1

≤ C(d,K)‖A‖op. (6.4.5)

Moreover, we have C(d,K) ≤
(
3
2(K

2 −K)
)d
BH≤d{±1}.

In particular, for K = 2 we recover the main result of [VZ23] exactly.

Theorem (Low-degree Qudit Learning, restatement of Theorem 9). Let A be
a degree-d observable on n qudits with ‖A‖op ≤ 1. Then there is a collection S
of product states such that with a number

O
((
K‖A‖op

)C·d2
d2ε−d−1 log

(
n
δ

))
of samples of the form (ρ, tr[Aρ]), ρ ∼ U(S), we may with confidence 1 − δ

learn an observable Ã with ‖A − Ã‖22 ≤ ε.

Here ‖A‖2 denotes the normalized L2 norm induced by the inner product
〈A,B〉 := K−n tr[A†B]. Also, we choose to include explicit mention of ‖A‖op
here as it will be useful later. For applications it is natural to assume ‖A‖op is
bounded independent of n.

Proof. We will first pursue an L∞ estimate of the Fourier coefficients in the
Gell-Mann basis. To that end, sample ~x1, . . . , ~xs

iid∼ {−1, 1}n(K2−1). As in the
proof of Theorem 39, for any such ~x we partition indices as ~x = (x1, . . . ,xn) ∈
({−1, 1}K2−1)n with each x`, 1 ≤ ` ≤ n, corresponding to a qudit. Each x` is
further partitioned as

x` = (x(`), y(`), z(`)) ∈ {−1, 1}(
K
2 ) × {−1, 1}(

K
2 ) × {−1, 1}K−1 ,

with each sub-coordinate associated with a specific Gell-Mann basis element
for that qudit.

Again for each ~x, for each qudit ` ∈ [n] form the mixed state

r(x(`), y(`), z(`)) = 1
3
(
K
2

)
 ∑

1≤j<k≤K
A

(x(`)
jk

)
jk +

∑
1≤j<k≤K

B
(y(`)

jk
)

jk +
K−1∑
m=1

z(`)m
1√
2KCm + K−1

2 · I

.
Then we may define for ~x the n qudit mixed state

r(~x) =
n⊗
`=1

r(x(`), y(`), z(`))
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and consider the function

fA(~x) := tr[A · r(~x)].

Let S(α) denote the index map from the GM basis to subsets of [n(K2 − 1)].
With these states in hand and in view of the identity

f̂A
(
S(α)

)
= c|α|Â(α) with c :=

√
K/2

3
(
K
2

) < 1,

we may now define the empirical Fourier coefficients

W(α) = c−|α| · 1
s

s∑
t=1

fA(~xt)
∏

j∈S(α)
xj = c−|α|

1
s

s∑
t=1

tr[A · r(~x)]
∏

j∈S(α)
xj.

The coefficient W(α) is a sum of bounded i.i.d. random variables each with
expectation Â(α), so by Chernoff we have

Pr
[
|W(α)− Â(α)| ≥ η

]
≤ 2 exp(−sη2c|α|) .

Taking the union bound, we find as before the chance of achieving `∞ error η is

Pr
[
|W(α)− Â(α)| < η for all α with |α| ≤ d

]
≥ 1− 2

d∑
k=0

(
n

k

)
exp(−sη2cd) ,

which again we shall require to be ≥ 1− δ.
Applying Theorem 37 to obtain W̃ and recalling ‖Â‖ 2d

d+1
≤ BH≤dGM(K)‖A‖op

we find the estimated operator

Ã :=
∑
α

W̃(α)Mα

has L2-squared error

‖Ã − A‖22
(Parseval)=

∑
α

∣∣∣W̃(α)− Â(α)
∣∣∣2 ≤ (

e5η2d(BH≤dGM(K)‖A‖op)2d
) 1

d+1 .

Thus to obtain error ≤ ε it suffices to pick η2 = εd+1e−5d−1(BH≤dGM(K)‖A‖op)−2d,
which entails by standard estimates that the algorithm will meet the require-
ments with a sample count of

s ≥ e6K3/2d2(BH≤dGM(K)‖A‖op)2d log
(
2en
δ

)
ε−d−1 .
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C h a p t e r 7

Introduction

This part concerns two other applications of discrete harmonic analysis in
(quantum) complexity theory.

The first, “Parity vs. AC0 with simple quantum preprocessing” concerns
concrete complexity theory of quantum circuits. Compared to the community’s
understanding of shallow classical circuits, small quantum circuits are still
very mysterious. This paper introduces a circuit model, termed AC0 ◦ QNC0,
which is arguably the simplest possible model of constant-depth quantum
computation that is still capable of solving nontrivial decision problems and
makes initial progress in proving bounds on its capabilities. From a technical
perspective, the work identifies certain basic mysteries related to nonlocal
games that appear in quantum circuits under restriction. From a conceptual
standpoint, the work suggests that while constant-depth quantum circuits
have dramatic advantage over their classical counterparts for total search
(or multi-output) problems, they may not have much advantage for decision
problems—matching a dichotomy that was recently identified in the context
of query complexity [YZ22]. This project also provided inspiration for later
influential works [NPVY23; ADOY25] on a related model of constant-depth
quantum computation known as QAC0 (Warning: it is not known whether
classical AC0 ⊂ QAC0 and is widely expected to be false).

The second application, “Testing classical properties with quantum data”
introduces a novel mode of property testing and opens the door to a new
category of quantum advantage. In classical complexity theory, property
testing is traditionally the home of super-fast algorithms which use queries
to determine whether a black-box Boolean function f has a certain property
(for example, whether f is monotone, which has an O(

√
n)-query algorithm).

Unfortunately, for applications to data analysis and machine-learning, when
a testing algorithm only has access to random samples

(
x, f(x)

)
, it becomes

much harder to test properties of f , often requiring just as much data as
learning the whole function. (For the example of monotonicity, we have the
lower bound of 2Ω(

√
n) samples [Bla24]).

This work shows that for a wide range of properties, if a tester is provided
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with data in certain quantum encodings, ultrafast testers are again available.
And this quantum data shares “physical” properties with classical data, in
that it can be collected far in advance and is independent of the property to
be tested. There is much that remains to be understood about the power of
quantum data for testing, and the work lays out several directions for further
research.

We now discuss the specific contributions of these works in more detail.

Application I: Parity vs. AC0 with simple quantum preprocessing
A recent line of work [BGK18; WKST19; GS20; BGKT20; WP23] has

shown the unconditional advantage of constant-depth quantum computation,
or QNC0, over NC0, AC0, and related models of classical computation. Problems
exhibiting this advantage include search and sampling tasks related to the
parity function, and it is natural to ask whether QNC0 can be used to help
compute parity itself. Namely, we study AC0◦ QNC0—a hybrid circuit model
where AC0 operates on measurement outcomes of a QNC0 circuit—and we ask
whether Par ∈ AC0◦ QNC0.

We believe the answer is negative. In fact, we conjecture AC0◦ QNC0 cannot
even achieve Ω(1) correlation with parity. As evidence for this conjecture, we
prove:

• When the QNC0 circuit is ancilla-free, this model can achieve only negligi-
ble correlation with parity, even when AC0 is replaced with any function
having LMN-like decay in its Fourier spectrum.

• For the general (non-ancilla-free) case, we show via a connection to
nonlocal games that the conjecture holds for any class of postprocessing
functions that has approximate degree o(n) and is closed under restric-
tions. Moreover, this is true even when the QNC0 circuit is given arbitrary
quantum advice. By known results [BKT19], this confirms the conjecture
for linear-size AC0 circuits.

• Another approach to proving the conjecture is to show a switching lemma
for AC0◦ QNC0. Towards this goal, we study the effect of quantum pre-
processing on the decision tree complexity of Boolean functions. We find
that from the point of view of decision tree complexity, nonlocal channels
are no better than randomness: a Boolean function f precomposed with
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an n-party nonlocal channel is together equal to a randomized decision
tree with worst-case depth at most DTdepth[f ].

Taken together, our results suggest that while QNC0 is surprisingly powerful
for search and sampling tasks, that power is “locked away” in the global
correlations of its output, inaccessible to simple classical computation for
solving decision problems.

Application II: Testing classical properties from quantum data
Many classes of Boolean functions can be tested much faster than they

can be learned. However, this speedup tends to rely on query access to the
function f . When access is limited to random samples (x, f(x))—the passive
testing model and a natural setting for data science—testing can become much
harder. Here we introduce quantum passive testing as a quantum version of
this “data science scenario”: quantum algorithms that test properties of a
function f solely from quantum data in the form of copies of the function state
|f〉 ∝ ∑

x |x, f(x)〉. Just like classical samples, function states are independent
of the property of interest and can be collected well in advance.

Quantum advantage in testing from data: an emerging theme.
For three well-established properties—monotonicity, symmetry, and triangle-

freeness—we show passive quantum testers are unboundedly- or super-polynomially
better than their classical passive testing counterparts, and in fact are compet-
itive with classic query-based testers in each case. Existing quantum testers
for k-juntas and linearity can be interpreted as passive quantum testers too
and exhibit the same phenomena.

Inadequacy of Fourier sampling.
Our new testers use techniques beyond quantum Fourier sampling, and it

turns out this is necessary: we show a certain class of bent functions can be
tested from O(1) function states but has a sample complexity lower bound of
2Ω(
√
n) for any tester relying exclusively on Fourier and classical samples.

Classical queries vs. quantum data.
Our passive quantum testers are competitive with classical query-based

testers, but this isn’t universal: we exhibit a testing problem that can be solved
from O(1) classical queries but requires Ω(2n/2) function state copies. The
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Forrelation problem provides a separation of the same magnitude in the
opposite direction, so we conclude that quantum data and classical queries are
“maximally incomparable” resources for testing.

Towards lower bounds.
We also begin the study of lower bounds for testing from quantum data.

For quantum monotonicity testing, we prove that the ensembles of [Gol+00;
Bla24], which give exponential lower bounds for classical sample-based testing,
do not yield any nontrivial lower bounds for testing from quantum data. New
insights specific to quantum data will be required for proving copy complexity
lower bounds for testing in this model.
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C h a p t e r 8

Parity vs. AC0 with simple quantum preprocessing

In 2017, Bravyi, Gosset, and König [BGK18] proved a breakthrough
unconditional separation between constant-depth quantum circuits, or QNC0,
and constant-depth bounded fan-in classical circuits, or NC0. The authors
showed that for a certain search problem solvable by QNC0 circuits, any
randomized NC0 circuit solving the same problem with high probability must
have logarithmic depth. The realization that unconditional proofs of quantum
advantage were possible—albeit over weak models of classical computation—
inspired an exciting series of results strengthening and generalizing the work of
Bravyi, Gosset, and König. There are now separations against stronger classical
circuit models such as constant depth circuits with unbounded fan-in, or AC0

[WKST19], average-case separations [Gal20], separations between more intricate
interactive models [GS20], separations that remain even for quantum circuits
subject to noise (e.g., [BGKT20]), and separations for sampling problems with
no input [WP23], among others.

Although these separations are for comparatively weak models of com-
putation, they are concrete non-oracle, non-query separations, and are free
from complexity-theoretic assumptions, making them important companions
to the query complexity and conditional separations studied since the founding
of quantum computer science. One notable feature of these QNC0 separa-
tions, however, is that they are all for search or sampling problems; decision
separations appear to be absent from this list.

On the surface, there is a somewhat trivial reason for this: QNC0 cannot
solve interesting decision problems alone. Indeed, any single output qubit
in a constant-depth quantum circuit can only depend on constantly-many
input qubits, so any QNC0 circuit with one output bit may be simulated by
randomized NC0. However, this “lightcone barrier” may be removed by instead
measuring all qubits in the quantum circuit and then applying a classical
Boolean function f to the result. As long as f depends on all of its inputs, it
might be possible for f to leverage QNC0’s search and sampling prowess for
decision-making ends. Given Bene Watts et al.’s search separation between
QNC0 and AC0 [WKST19], a natural class of Boolean functions to choose for
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this postprocessing is AC0 itself. This gives rise to the following definition,
which does not appear to have been studied before.

Definition. Let AC0◦ QNC0 denote the model of computation composed of
a QNC0 circuit C, followed by a computational basis measurement, and then
an AC0 function f applied to the result. This process defines the randomized
Boolean function f ◦ C : {0, 1}n → M({−1, 1}) from the hypercube to the set
M({−1, 1}) of probability measures on {−1, 1}.

In this chapter we take a QNC0 circuit to be a polynomial-size constant-
depth quantum circuit composed of arbitrary 2-qubit unitary gates. Ancilla
qubits are allowed and are initialized in the state |0m〉 for m ∈ poly(n). No
geometric locality or clean computation constraints are assumed. A formal
definition appears later as Definition 8.2.

Certainly QNC0 ⊆ AC0◦ QNC0, so the search separation between QNC0

and AC0 in Bene Watts et al. is also a search separation between AC0◦ QNC0

and AC0. Moreover, this modification obviates the lightcone barrier mentioned
above and allows us to ask meaningful questions about decision separations
between concrete models of quantum and classical computation.

Specifically, Bene Watts et al. [WKST19] show exponential advantage of
QNC0 over AC0 for (a variant of) the “parity halving problem”:

Parity halving. Given x ∈ {0, 1}n with the promise |x| ≡ 0 mod 2,
output any even string if |x| ≡ 0 mod 4 and any odd string other-
wise.

Given the form of this problem, it is natural to ask whether parity is itself
computable by a hybrid model such as AC0◦ QNC0.

Before summarizing our progress on this question, we pause to note another
reason to study AC0◦ QNC0 coming from the rich subject of quantum-classical
interactive proofs. A central project in this area is the classical verification of
quantum computations [GKK18]. In a landmark 2018 work, Mahadev gave a
cryptographic protocol for this task [Mah18]; however, whether or not this task
may be accomplished without cryptographic hardness assumptions remains
open despite many efforts [GKK18]. It therefore makes sense to consider the
question in simpler contexts, such as where the prover and verifier are replaced
with QNC0 and AC0 respectively and interact for constantly-many rounds to
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establish the correctness of a QNC0 computation. With this perspective we see
that AC0◦ QNC0 models the first round of interaction in such a proof system.

Parity vs. AC0 ◦ QNC0: Overview and organization
We conjecture that AC0◦ QNC0 cannot approximate parity (Parn) on

average, over both choice of uniformly random input x ∼ U({0, 1}n) and the
randomness in f ◦ C. It is convenient to take Par and f ◦ C to be (±1)-valued
and phrase this in terms of the correlation

E
x
[(f ◦ C)(x) ·Par(x)],

proportional to the advantage of f ◦ C over random guessing for computing
parity.

Conjecture 3. AC0◦ QNC0 cannot achieve correlation Ω(1) with the parity
function. That is, fix a polynomial size bound p(n) and constant depth d. Then
for all sequences {(fn, Cn)}n of circuits such that size(fn), size(Cn) ≤ p(n) and
depth(fn), depth(Cn) ≤ d, we have

E
x
[(fn ◦ Cn)(x) ·Parn(x)] → 0 as n→ ∞ .

Although proving correlation bounds against AC0 is a well-understood topic
with many techniques (among them Håstad’s switching lemma [Hås86] and
Razborov-Smolensky [Raz87; Smo87a]), when QNC0 precomputation is added
these approaches cannot be used directly. The pursuit of new techniques leads
us to connections with many-player nonlocal games, approximate degree bounds,
and new directions for generalizing Håstad’s switching lemma. Evidence for
Conjecture 3 is laid out as follows.

The ancilla-free case
In Section 8.1 we prove Conjecture 3 when QNC0 is restricted to be ancilla-

free. A key feature of such QNC0 circuits is that they correspond to unitary
transformations, and we find in this case the correlation of f ◦ C with Par is
controlled by the Fourier tail of f . Recall the kth Fourier tail of a Boolean
function f is given by

W≥k[f ] := ∑
|S|≥k f̂(S)2 .

Appealing to the Linial-Mansour-Nisan-type (LMN-type) estimates of the
Fourier tail of AC0 [LMN93b], we obtain the following strong correlation bound.
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Theorem 40 (Ancilla-free QNC0, general AC0 case). If C is an ancilla-free
QNC0 circuit and f is an AC0 function then

E
x
[(f ◦ C)(x) ·Parn(x)] ≤ 2−n/polylog(n) .

This is proved as Corollary 44 in Section 8.1. The full statement holds for any
Boolean function f with sufficient decay in the tail of the Fourier spectrum,
including those outside of AC0.

However, as we explain in the end of Section 8.1, the proof technique of
Theorem 40 cannot extend to the case of general QNC0 and we must find a
different approach.

Reducing to nonlocal games
To move beyond ancilla-free QNC0, in Section 8.2 we reduce Conjecture 3

to a question about the value of a certain class of nonlocal games, which we call
n-player parity games and which are parameterized by a postprocessing Boolean
function f . Through a connection to the notion of k-wise indistinguishability
introduced in [BIVW16], we show the quantum value of a parity game is
controlled by the approximate degree of the associated f .

Recall for ε > 0 the ε-approximate degree of a (0, 1)-valued1 Boolean
function f is given by

d̃egε[f ] = min{deg(g) | g : {0, 1}n → R a polynomial with ‖f − g‖∞ ≤ ε} .

Of course, d̃egε[f ] ≤ n for any n-variate f and ε > 0. By convention d̃eg[f ] :=
d̃eg1/3[f ]. A function class F = (Fn)n≥1 is a sequence of sets Fn of n-variate
Boolean functions, and we extend approximate degree to function classes
via d̃eg[F ](n) := maxf∈Fn d̃eg[f ]. With this notation, we have the following
theorem.

Theorem 41 (Corollary 51, Section 8.2). Suppose function class F is closed
under inverse-polynomial-sized restrictions. Then if d̃eg[F ] ∈ o(n), F ◦ QNC0

cannot achieve Ω(1) correlation with Parn, even if QNC0 is given arbitrary
quantum advice.

It follows from Theorem 41 that Conjecture 1 would be confirmed in full
generality if d̃eg[AC0] ∈ o(n), a notorious open problem [BT22]. Such a bound

1For (±1)-valued f , we use the same definition after making the standard identification
+1 7→ 0,−1 7→ 1.
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is already known for large subclasses of AC0, however: for example, for AC0

circuits of size O(n) (termed LC0), we may appeal to the recent bounds of
[BKT19] to conclude:

Theorem 42 (General QNC0, linear-size AC0 case). Suppose f ∈ AC0 has size
O(n). Then f ◦QNC0 achieves correlation at most 1/ poly(n) with Parn. This
holds even if QNC0 is given arbitrary quantum advice. That is,

E[(LC0 ◦ QNC0/qpoly) ·Parn] ∈ negl(n) .

(This is proved as Corollary 52 in Section 8.2).
Is the difficulty of proving approximate degree bounds for AC0 a barrier for

resolving Conjecture 3? It seems unlikely: the reduction to approximate degree
bounds is via a series of substantial relaxations and it would be surprising
if all the required converses held. In fact, we conclude Section 8.2 with a
self-contained approximation theory question (Question 2) concerning a notion
of blockwise approximate degree which may be easier to solve than d̃eg[AC0]
but would still imply Conjecture 3.

Towards an AC0 ◦ QNC0 switching lemma
In Section 8.3 we chart a different route to resolving Conjecture 3, aiming

to prove a switching lemma for our hybrid AC0◦ QNC0 circuits. Recall that
Håstad’s original switching lemma is used to argue that (very roughly) randomly
fixing a large fraction of inputs to an AC0 circuit with high probability yields a
function that can be computed by a shallow decision tree. At the same time,
Par retains maximum decision tree complexity under the same restrictions, so
this leads to AC0 correlation bounds.

In comparison to Håstad’s switching lemma and its descendants, a challenge
with AC0◦ QNC0 circuits is that QNC0 can correlate, spread out, and bias
random restrictions before they reach the bottom layer of DNFs or CNFs in
the AC0 circuit. If QNC0 were replaced with randomized NC0 this problem
could be readily addressed by considering each deterministic circuit in the
distribution, applying standard arguments there, and computing the expected
correlation with parity across circuits in the distribution. But unlike randomized
computation, and as discussed e.g., in [AIK22], a recurring theme in quantum
complexity theory is the impossibility of “pulling out the quantumness” from a
quantum circuit.
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Contrary to this theme, however, we show that when QNC0 is replaced by
an n-party nonlocal channel N , it is possible to pull out the quantumness in a
particular sense:

Theorem (Theorem 53, restated). Let f : {0, 1}m → {0, 1} be any Boolean
function and consider an n-party nonlocal channel N , where the ith party
receives one bit and responds with mi ≥ 0 bits, such that ∑imi = m. Then
the random function f ◦ N is equal to a randomized decision tree Γ such that
depth(T ) ≤ DTdepth[f ] for all T ∈ Supp(Γ).

(This theorem is proved in Section 8.3 as Theorem 53.) By an n-party nonlocal
channel we mean the channel corresponding to a quantum strategy in an
n-player nonlocal game: parties receive one bit of input each and may measure
disjoint systems of a shared quantum state as part of their responses, but they
are not allowed to communicate. A formal definition appears as Definition 8.2.
In fact, Theorem 53 is true not only for nonlocal channels, but for any channel
where parties obey the no-signaling property; that is, the output of any subset
S ⊂ [n] of the parties is a function only of the inputs to those parties in S. A
formal definition of no-signaling channels appears as Definition 8.3.

The regime where Theorem 53 is truly interesting is when DTdepth[f ] ≥
log(n). Then f may depend on all the input coordinates and (potentially) make
great use of the processing power afforded by no-signaling channels. Theorem
53 says that to the contrary, precomposition of f by any no-signaling channel
has no effect on the (randomized) decision tree complexity of f .

How does Theorem 53 connect to Conjecture 3? As we detail in Section
8.2, the replacement of QNC0 by the channel N is essentially without loss of
generality from the point of view of Conjecture 3. Unfortunately, however,
AC0 circuits can easily have maximum decision tree complexity, so Theorem
53 cannot be immediately applied. Instead, we believe Theorem 53 stands
as a striking example of the inability of classical postprocessing to make use
of the search and sampling power of quantum and super-quantum models
of computation. Additionally, we hope that this theorem’s proof technique,
which involves tracking the interplay between a decision tree for f and the
no-signaling channel N , represents the style of argument that could eventually
lead to a switching lemma for AC0◦ QNC0.
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Outlook
Taken together, these results suggest QNC0 cannot render its power in a

way AC0 or other simple models of classical computation can access for the
purpose of making decisions. Several questions for further research are posed
in Section 8.4.

Related work
Unlike the quantum-classical separations surveyed in the introduction, which

show quantum upper bounds and classical lower bounds, this chapter aims to
prove a lower bound against a concrete model of quantum computation. The
pursuit of lower bounds against quantum circuits for computational problems
is a nascent area and very little is known.

One quantum circuit model where lower bounds have received some con-
certed study is QAC0 [Moo99; H03; PFGT20; Ros21; NPVY23]. A superset of
QNC0 circuits, QAC0 additionally allows for arbitrarily-large Toffoli gates,

|x1, . . . , xk, xk+1〉 7→
∣∣∣x1, . . . , xk, xk+1 ⊕ (∧ki=1xi)

〉
,

which are quantum analogues of classical AND gates with unbounded fan-in.
In this setting correlation with parity is also a central open question, and there
is growing evidence that QAC0 cannot achieve Ω(1) correlation with parity
either. Recent work has shown negligible correlation bounds between QAC0

and parity when a) the QAC0 circuit is restricted to depth 2 [Ros21], and b)
when the QAC0 circuit is of any depth d and is restricted to O(n1/d)-many
ancillas [NPVY23]. In fact, the second result is a corollary to a Pauli-basis
analogue of the LMN theorem for the same subclass of QAC0 [NPVY23].

The relationship between QAC0 and AC0◦ QNC0 is rather unclear, and they
are likely incomparable as decision classes. In fact, as far as we know, it is even
open whether AC0 ⊆ QAC0, let alone whether AC0◦ QNC0 ⊆ QAC0 (noting the
trivial containment AC0 ⊆ AC0◦ QNC0).

The difficulty in comparing these models stems from a subtlety concern-
ing the difference between unbounded fan-in and unbounded fan-out when
implemented coherently. AC0 circuits have no restriction on the fan-out of
their gates, while the definition of QAC0 appears to strongly limit outward
propagation of information. If one augments QAC0 with the so-called fan-out
gate—which is a CNOT gate with any number of target qubits,

|x1, . . . , xk〉 7→ |x1, x1 ⊕ x2, . . . , x1 ⊕ xk〉 ,
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one obtains the circuit model QAC0
f , and it is known QAC0

f can compute parity
exactly in depth 3 [Moo99]. In view of existing lower bounds against QAC0,
it is expected that QAC0 is strictly contained in QAC0

f , and assuming this
holds we immediately have that the function version of AC0◦ QNC0 is not in
the function version of QAC0. This follows, for example, from the fact that
multi-output AC0 circuits easily implement the classical reversible fan-out gate,
(x1, . . . , xk) 7→ (x1, x1 ⊕ x2, . . . , x1 ⊕ xk). It is safe to say the interaction of
nonlocal gates with QNC0—whether that interaction is coherent as in QAC0

and QAC0
f , or preceded by measurement as in AC0◦ QNC0—is only beginning

to be understood.

A separate area where concrete quantum circuit lower bounds have been
very successfully developed is for state preparation problems. We do not attempt
a survey here, but just mention they were crucial to the resolution of the NLTS
conjecture [ABN23] and make use of ideas from error correction, which partially
originate in sampling lower bounds from classical complexity [LV11]. However,
it is not clear how to transfer these methods to quantum circuit lower bounds
for computational problems in the AC0◦ QNC0 model.

8.1 Lower bounds when QNC0 is ancilla-free
Here we show any Boolean function f with small Fourier tail retains a

small top-degree coefficient when composed with ancilla-free QNC0. By the
celebrated work of Håstad [Hås86] and Linial, Mansour, and Nisan [LMN93b],
any f ∈ AC0 is an example—but this theorem addresses a broader set of
functions. On the other hand, as we discuss at the end of the section, once
ancillas are allowed, the theorem no longer holds for such a general class of
functions.

Recall a function f : {−1, 1}n → R admits a unique Fourier decomposition

f =
∑
S⊆[n]

f̂(S)χS,

where χS(x) := ∏
i∈S xi is the Sth Fourier character (see e.g., [ODo14] for

more). We will later make use of the familiar Plancherel theorem, which states
for any f, g : {−1, 1}n → R that

E
x
[f(x)g(x)] =

∑
S⊆[n]

f̂(S)ĝ(S) .
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Let us briefly connect this perspective to quantum observables. Given a
Boolean function f : {±1}n → R we define its Von Neumann observable as

Mf :=
∑
x

f(x) |x〉〈x| .

An identity we will use is
MχS

= ZS ,

where the operator Z here is the Pauli operator ( 1 0
0 −1 ), and generally for any

1-qubit operator A we use the notation

AS :=
⊗
i

A if i ∈ S

1 otherwise.

Any Von Neumann observable M (that is, any Hermitian operator) has
expectation value on state ρ given by

〈M〉ρ := tr[Mρ] ,

and when M =Mf and x ∈ {0, 1}n we note the identity

〈Mf〉x := 〈Mf〉|x〉〈x| = f(x) .

With this notation, we prove the following.

Theorem 43 (Correlation bound for ancilla-free QNC0). Let f : {±1}n → R
and U an ancilla-free QNC0 circuit of depth t. Then the correlation of f ◦ U
and Par is bounded as

E
x
[〈U †MfU〉x ·Parn(x)] ≤

(
W≥2−tn[f ]

)1/2
.

For example, when f is an AC0 circuit, we may use an LMN-type Fourier
concentration bound, such as from [Tal17], to a obtain:

Corollary 44. If U is an ancilla-free QNC0 n-qubit circuit of depth t, and
f : {±1}n → {±1} is implemented by an AC0 circuit of depth d and size s, we
have

E
x
[〈U †MfU〉x ·Parn(x)] ≤

√
2 · exp

(
−n

2t+1O(log s)d−1

)
.

The proof of Theorem 43 relies on two brief lemmas. The first says that when
measuring correlations, we could just as well have compared the correlation of
f alone to the random function Parn ◦ U †, defined by applying Parn to the
output of U † |x〉.
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Lemma 45 (Symmetry of correlation). Let f, g : {±1}n → {±1} and U any
n-qubit unitary. Then

E
x
[〈U †MfU〉x · g(x)] = E

x
[f(x) · 〈UMgU

†〉x]

= 2−n tr[MfUMgU
†] .

Proof. Expanding the trace we have

tr[MfUMgU
†] =

∑
z

〈z|
(∑

y f(y)|y〉〈y|
)
U
(∑

x g(x)|x〉〈x|
)
U † |z〉

=
∑
x,y,z

f(y)g(x) 〈z|y〉 〈y|U † |x〉 〈x|U |z〉

=
∑
x,y

f(y)g(x) 〈y|U |x〉 〈x|U † |y〉 , (8.1.1)

while expanding the expectations we see

E
x
[〈U †MfU〉x · g(x)] =

1
2n
∑
x,y

f(y)g(x) 〈x|U † |y〉 〈y|U |x〉 = E
y
[f(y) · 〈UMgU

†〉y] .

Identifying the center expression with (a multiple of) (8.1.1) and changing
variables completes the lemma.

The second lemma roughly says when Fourier characters ZS and ZT corre-
spond to sets S, T of very different cardinality, they remain orthogonal (with
respect to the inner product 〈A,B〉 = tr[A†B]) after an application of U .

Lemma 46 (Lightcone lemma). Suppose U is a depth-t ancilla-free quantum
circuit and |S|2t < n. Then

tr[Z[n]UZSU
†] = 0.

Proof. The number of qubits on which ZS acts nontrivially at most doubles
upon conjugation by each layer in U . Therefore the number of non-identity
coordinates in UZSU † is at most |S|2t. Now if |S|2t < n, then there is at least
one coordinate j such that UZSU † = V[n]\j ⊗ 1j for some (n− 1)-qubit unitary
V[n]\j, so

tr[Z[n]UZSU
†] = tr[Z[n](V[n]\j ⊗ 1j)] = tr[Z[n]\jV[n]\j] · tr[Z] = 0

because Z is traceless.

With these lemmas in hand, we can give the proof of Theorem 1 in a single
display:
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Proof of Theorem 43.

E
x
[〈U †MfU〉x · χ[n](x)] = E

x
[f(x) · 〈UZ[n]U

†〉x] (Lemma 45)

=
∑
S⊆[n]

f̂(S) · ̂〈UZ[n]U †〉(S) (Plancherel)

=
∑
S⊆[n]

f̂(S)E
x
[〈UZ[n]U

†〉x · χS(x)]︸ ︷︷ ︸
= 2−n tr[Z[n]U

†ZSU ] (Lemma 45)

= 0 if |S|2t < n (Lemma 46)

=
∑
S⊆[n]
|S|≥2−tn

f̂(S) · ̂〈U †Z[n]U〉(S)

≤

 ∑
|S|≥2−tn

f̂(S)2
1/2 ∑

|S|≥2−tn

̂〈U †Z[n]U〉(S)2
1/2

(Cauchy-Schwarz)

≤
(
W≥2−tn[f ]

)1/2
.

One may ask whether this proof approach extends to QNC0 circuits with
ancillas. Although it might be possible to prove slight generalizations, we
present an example demonstrating that any proof approach using an LMN-type
theorem as a black box will fail for general QNC0 circuits. This is essentially
because functions with Fourier decay are not closed under composition.

Example 47. Consider the following “Trojan horse” function on an even
number of bits n = 2m:

h : {±1}2m → {±1}

x 7→


χ[m](x) if x[m+1,2m] = 11 · · · 1

1 otherwise .

By direct computation one finds the Fourier coefficients of h are given by

ĥ(S) =



1− 2−m S = ∅,

−2−m S ⊆ [m], S 6= ∅

2−m [m+ 1, 2m] ⊆ S

0 otherwise .
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This means for any t ≥ 1, the tth Fourier tail of h is W≥t[h] ∈ O(2−n/2).
Thus by Theorem 43, for any ancilla-free QNC0 circuit C, h ◦ C has negligible
correlation with parity.

On the other hand, consider the (deterministic) function C : {±1}m →
{±1}2m given by x 7→ x11 · · · 1. Certainly C can be implemented in QNC0, and
we have h ◦ C = χ[m] = Parm.

This example shows that exponential Fourier decay of f is not sufficient to
entail Conjecture 3 for general AC0◦ QNC0 circuits. We must take a different
approach that exploits finer structural properties of AC0 and QNC0.

8.2 Lower bounds against AC0 ◦ QNC0 via nonlocal games
Here we pass from QNC0 to nonlocal games to make an argument that

works for general QNC0. First let us fix ideas about QNC0.

Definition (QNC0). An n-input, depth-d QNC0 circuit C is a quantum circuit
composed of d layers of arbitrary 2-qubit gates, acting on an input register of
n qubits and an ancilla register of m ∈ poly(n) qubits initialized to |0m〉. Via
measurement of the entire output of C in the computational basis, the circuit
C effects a randomized mapping from n bits of input to n+m ∈ poly(n) bits
of output. A QNC0 circuit with v qubits of quantum advice, has v out of m
ancilla qubits initialized to a v-qubit state, not necessarily a product state. For
general v ∈ poly(n), this is denoted by the class QNC0/qpoly.

We will show a reduction from QNC0 circuits to nonlocal channels.

Definition. (Nonlocal channel) Let n, k ≥ 1 and m ≥ 0. An (n, k,m) nonlocal
channel is the randomized mapping defined by a quantum strategy in a nonlocal
game where n parties receive one bit of input each and respond with k bits each,
along with a referee response of m bits.

Concretely, each party i ∈ [n] is assigned a local Hilbert space Hi and for
each b ∈ {0, 1}n, a POVM

M(i,b) =
{
My

(i,b) : y ∈ {0, 1}k
}

on Hi. There is also a referee Hilbert space Href with a fixed POVM

Mref =
{
My

ref : y ∈ {0, 1}m
}
.

The definition of the nonlocal channel is completed by a choice of shared state
|ψ〉 ∈

(⊗n
i=1Hi

)
⊗Href and works as follows. Upon receipt of an input string
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x ∈ {0, 1}n, the n players and one referee perform the joint measurement(
M(1,x1), . . . ,M(n,xn),Mref

)
on |ψ〉, resulting in the outcomes y1, . . . , yn, and

yref . The output of the channel is the (nk +m)-bit string y = y1|| · · · ||yn||yref .

Definition (No-signaling channel). An (n, k,m) no-signaling channel is defined
analogously, except the correlations among parties may be general no-signaling
correlations. (A very detailed definition of such channels is given in Definition
8.3.)

Definition (Parity games). Let n, k,m be fixed and consider f : {0, 1}kn+m →
{0, 1}. The (n, k, f) parity game is played by n entangled and non-communicating
players, with the ith player receiving input bit xi from x drawn uniformly from
{0, 1}n. A (quantum) parity game strategy is an (n, k,m) nonlocal channel
with output string y. Players win when f(y) = Par(x). We say a parity game
strategy has advantage ε if its winning probability is at least 1/2 + ε.

As a final piece of notation, for Boolean f let ¬f denote its negation. We
are prepared to give our reduction to parity games.

Lemma 48. Fix n ≥ 1,m ∈ poly(n), let C be a n-qubit, depth-d QNC0 circuit
with m ancilla and arbitrary quantum advice, and let f : {0, 1}n+m → {0, 1}
be any Boolean function. Suppose f ◦ C has correlation ε with Parn. Then
for some n′ ≥ n/(2d + 1) there is a quantum strategy for the (n′, 2d, f) or
(n′, 2d,¬f) parity game with advantage ε/2.

Proof. Suppose f ◦C has correlation ε with Par. For each input qubit j denote
by Lj the set of output qubits in the forward lightcone of j. Consider the
graph with vertices the input qubits [n] and edges drawn between qubits j and
k when Lj and Lk have nonempty intersection. Then G has degree at most 2d,
so there exists an independent set S ⊆ [n] of size at least n/(2d + 1).

For each y ∈ {0, 1}Sc , define the circuit Cy to be C but where for j ∈ Sc,
the jth input is hardcoded to yj. Then Cy is a circuit on at least n/(2d + 1)
variables such that the forward lightcones of input qubits are pairwise disjoint.
Such a circuit defines an (n′, 2d,m′) nonlocal channel for some n′ ≥ 2−d + 1
and m′ = n+m− n′2d. (Note this m′ is without loss of generality because we
may freely assign a player some output bits of the referee if their lightcone is
smaller than 2d.)
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As a result, this restriction represents a strategy for the (n′, 2d, f) parity
game. Moreover, we have

E
x
[(f ◦ C)(x) ·Par(x)] = E

y∼{0,1}Sc
E

z∼{0,1}S
[f ◦ Cy(z) ·Par(y||z)]

= E
y∼{0,1}Sc

Par(y) E
z∼{0,1}S

[f ◦ Cy(z) ·Par(z)] .

Therefore since f ◦ C has ε correlation with parity on n bits, for at least one y,
f ◦ Cy or ¬f ◦ Cy must have at least ε correlation (in magnitude) with parity on
n/d bits. This is exactly half the advantage of the strategy defined by Cy.

Lemma 48 shows that bounds on the value of parity games translate into
correlation bounds for AC0◦ QNC0 with Par. How might we analyze parity
games? They are in some sense “flipped” versions of XOR games, where parity
is computed on the inputs to the players, rather than the outputs. However,
it is not clear whether the rich collection of techniques developed to analyze
XOR games is applicable here. Instead, we bound the no-signaling value of the
game by taking the perspective of distinguishability.

For any (n, k, 0) no-signaling channel N , begin by rewriting the correlation
as

E[(f ◦ N )(x) ·Par(x)] = E[(f ◦ N )(x) | x even]− E[(f ◦ N )(x) | x odd]
2 .

Let Ueven and Uodd denote the uniform distribution on even and odd bitstrings of
length n respectively, and consider the pushforwards of Ueven and Uodd through
N :

µ := N
(
Ueven

)
and ν := N

(
Uodd

)
.

So µ and ν are distributions on strings of length N := nk, and

E[(f ◦ N )(x) ·Par(x)] = E[f(µ)]− E[f(ν)]
2 = Pr[f(µ) = 1]− Pr[f(ν) = 1] .

Therefore the correlation of f ◦ N with parity can be phrased in terms of f ’s
ability to distinguish the distributions µ and ν.

What can be said about µ and ν? We claim that on every set S ⊂ [N ] of
size at most N/k − 1 = n− 1, we must have

µS = νS. (8.2.1)

Here the notation µS denotes the marginal distribution of µ on the coordinates
in S. To see (8.2.1), let T ⊂ [n] be the set of players whose outputs overlap S.
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Then by the no-signaling property of N , the marginal µS (resp. νS) is entirely
determined by the marginal input distribution on T ; that is, (Ueven)T (resp.
(Uodd)T ). And for any T a strict subset of [n], (Ueven)T = (Uodd)T = U({0, 1}|T |),
so we must have µS = νS.

So all small marginals of µ and ν are information-theoretically indistin-
guishable. This is exactly k-wise indistinguishability, a generalization of k-wise
independence introduced by Bogdanov et al. [BIVW16] and first used in the
context of secret sharing.

Definition (k-wise indistinguishability [BIVW16]). Two distributions µ and ν
on {±1}N are k-wise indistinguishable if for all S ⊂ [N ] with |S| ≤ k, µS = νS.

Additionally, for f : {0, 1}n → {0, 1}, we say f is ε-fooled by k-wise
indistinguishability if for any pair µ, ν of k-wise indistinguishable distributions,

|Pr[f(µ) = 1]− Pr[f(ν) = 1]| ≤ ε .

It turns out k-wise indistinguishability over the hypercube is intimately
connected to approximate degree. By a linear programming duality argument,
Bogdanov et al. proved the following.

Theorem 49 ([BIVW16, Theorem 1.2]). Let f : {0, 1}n → {0, 1} and ε > 0.
Then f is ε-fooled by k-wise indistinguishability if and only if d̃egε/2[f ] ≤ k .

With this fact, Lemma 48, and the above discussion, we are ready prove
the main theorem in this section.

We say a class of Boolean functions F = (Fn)n≥1 is closed under inverse-
polynomial restrictions if for all f ∈ Fn and all S ⊆ [n] with n ∈ poly(|S|),
fixing the bits in Sc yields a function still in F :

f�Sc←x ∈ F|S| ∀x ∈ {0, 1}|Sc| .

Note that AC0 is closed under inverse-polynomial restrictions.

Theorem 50. Suppose F is a class of Boolean functions closed under negations
and inverse-polynomial restrictions. Let m be fixed and suppose there is an
f ∈ F on N = poly(m) variables and an m-input QNC0 circuit C of depth d,
with N −m ancilla qubits, and receiving arbitrary quantum advice, such that
f ◦ C achieves correlation ε with Parm. Then there is a g ∈ F on n ≥ m/2
variables with d̃egε/2[g] ≥ n/2d − 1.
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Proof. By Lemma 48, there is an m′ ≥ m/(2d + 1) and an (m′, 2d, N − 2dm′)
nonlocal channel N such that f ◦ N or ¬f ◦ N achieves correlation ε with
Parm′ .

Suppose the referee measures their system and obtains outcome string
r. This event leads to an updated state shared among the parties in N and
thereby defines an (m′, 2d, 0) nonlocal channel NR←r. By a similar averaging
argument to the one used in Lemma 48, there is at least one outcome r of
the referee register such that NR←r still yields correlation ε with Par. Define
g := f�R←r or g := ¬f�R←r as appropriate and put E := NR←r. Then g ∈ F
is a function on n := 2dm′ bits and

E
x
[(g ◦ E)(x) ·Par(x)] ≥ ε .

Therefore, by the discussion above, we see g can ε-distinguish (n/2d − 1)-wise
indistinguishable distributions. Applying Theorem 49 we conclude that

d̃egε/2[g] ≥
n

2d − 1 .

Corollary 51. Suppose function class F is closed under inverse-polynomial-
sized restrictions. Then if d̃eg[F ] ∈ o(n), F ◦ QNC0 cannot achieve Ω(1)
correlation with Par.

The burning question, then, is whether d̃eg[AC0] ∈ o(n). In fact, the
approximate degree of AC0 is a longstanding open problem and its resolution
would lead to several consequences in complexity theory [BT22]. To get a sense
of the difficulty of this question, consider that on one hand, a sublinear upper
bound is known for a large subclass of AC0.

Theorem ([BKT19, Theorem 5]). Let p(n) ∈ poly(n). Then the class of AC0

circuits of linear size, denoted by LC0, has

d̃eg1/p(n)[LC0] ∈ o(n).

Yet on the other hand, a series of works, most recently [She22], show the
following:

Theorem. For any δ > 0, there is a function f ∈ AC0 with d̃eg[f ] ∈ Ω(n1−δ).

The lower bound of Ω(n1−δ)-for-any-δ is tantalizingly close to the trivial
upper bound of n for the approximate degree of any Boolean function, but
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as it stands it is not unreasonable to guess that d̃eg[AC0] ∈ Θ(n/ log n) either.
Several questions—including now Conjecture 3—could be settled if the gap
between Ω(n1−δ)-for-any-δ and n for d̃eg[AC0] were closed.

We may combine the sublinear lower bound on LC0 from [BKT19] with
Theorem 50 to obtain:

Corollary 52. Let C be an n-input, m-ancilla QNC0 circuit with arbitrary
advice. Suppose f : {0, 1}n+m → {−1, 1} is defined by an AC0 circuit of size
O(n). Then f ◦ C achieves negligible correlation with Parn.

Blockwise approximate degree
We conclude this section by laying out a self-contained question concerning

the approximate degree of AC0 with respect to a modified, “blockwise” notion
of approximate degree. This question is sufficient to imply Conjecture 3 in full
generality and may be easier to resolve than d̃eg[AC0].

Fix k ≥ 1 (assuming k divides n for simplicity) and let P be the partition
of [n] into “blocks” of size k:

P :=
{
{1, . . . , k}, {k + 1, . . . , 2k}, . . . , {n− k + 1, n}

}
.

For a monomial χS = ∏
i∈S xi define the (k-)block degree bdegk[χS] to be

the number of distinct blocks B ∈ P having nonempty intersection with S.
This definition extends naturally to the k-block degree bdegk[f ] of a Boolean
function f : {0, 1}n → {−1, 1} and to the approximate k-block degree b̃degk[f ]
of f :

b̃degk[f ] = min{bdegk[g] | g : {0, 1}n → R a polynomial with ‖f−g‖∞ ≤ 1/3} .

Of course b̃degk[f ] ≤ n/k for any function.

Question 2. For all constants k, does the following hold?

b̃degk[AC0]
?
≤ n/k − 1 .

As we explain below, this would be enough to prove Conjecture 3. Note
the following, which are immediate and hold for all f :

d̃eg[f ] < n

k
=⇒ b̃degk[f ] <

n

k
=⇒ d̃eg[f ] < n− k .

Moreover, these implications are sharp in that each one cannot generically imply
anything stronger, as witnessed by a parity function on an appropriate subset
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of [n]. Regarding f ∈ AC0, the left-hand side holding for arbitrary constant k
is equivalent to d̃eg[AC0] ∈ o(n), while the far right-hand side follows directly
from LMN-type Fourier tail bounds for AC0.

Proposition 6. If the resolution to Question 2 is “yes”, then Conjecture 3 is
true.

Proof sketch. Consider the referee-free nonlocal channel E from the proof of
Theorem 50, with n/k players responding with k bits each. Defining µ and ν
as the pushforwards of uniform distributions over even and odd bitstrings as
before, it is true that µ and ν are (n/k− 1)-wise indistinguishable when viewed
as distributions on {0, 1}n. However, they may also be viewed as distributions
on the hypergrid [2k]m for m = n/k.

With this perspective, µ and ν are m− 1 indistinguishable. Repeating the
proof of [BIVW16, Theorem 1.2] over this larger alphabet, we recover exactly
the notion of blockwise degree. The rest of the argument is as before.

It is unclear to us whether Question 2 is easier than d̃eg[AC0]
?
∈ o(n).

Because AC0 is closed under permutations of input coordinates [n], we can
compare the two questions head-to-head as follows. Let Pk be all the relabelings
of P :

Pk :=
{{

{π(1), . . . , π(k)}, {π(k+1), . . . , π(2k)}, . . . , {π(n−k+1), . . . , π(n)}
}}

π∈Sn

.

For any P ∈ Pk, let bdegP [f ] be the maximum number of blocks in P overlapped
by some monomial in f . Then we have the following characterization, where g
ranges over real-valued multilinear polynomials on the hypercube as usual:

d̃eg[AC0] < n/k ⇐⇒ ∀f ∈ AC0,∃g, ∀P ∈ Pk, bdegP [g] ≤ n/k and ‖f − g‖∞ ≤ 1/3

b̃degk[AC0] < n/k ⇐⇒ ∀f ∈ AC0,∀P ∈ Pk,∃g, bdegP [g] ≤ n/k and ‖f − g‖∞ ≤ 1/3 .

8.3 Towards a switching lemma for AC0 ◦ QNC0

Recall that our approach in Section 8.1 fails because circuits with LMN-style
Fourier decay are not suitably closed under precomposition by QNC0. In fact
this is true even under precomposition by NC0, and the proof of the LMN
theorem elegantly avoids an induction assumption phrased in terms of Fourier
decay. Instead, the proof relies on a structural theorem about the effect of
random restrictions on DNFs and CNFs—Håstad’s celebrated switching lemma:
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Theorem (Håstad [Hås86]). Suppose f is a width-w DNF. Then for any
0 ≤ δ ≤ 1,

Pr
ρ∼Rδ

[DTdepth(f�ρ) > t] ≤ (Cδw)t ,

where C is a universal constant.

Here Rδ is the distribution of random restrictions with star probability δ
(see e.g., [ODo14, §4.3] for more). This theorem has received several proofs
over time, but each rely on the well-controlled structure of random restrictions.
To naively repeat the switching lemma argument directly on AC0◦ QNC0 would
mean to track the passage of random restrictions through QNC0—a tall order
given that QNC0 can destroy the independence and unbiasedness of random
restrictions that switching arguments tend to rely on.

The situation may be slightly improved by instead considering a switching
lemma for the model studied in Section 8.2. Recalling that f◦N is a randomized
function, we may hope for a switching lemma of the following form:

An imagined switching lemma for nonlocal channels. Let m ≥ 0
and k, w, n ≥ 1 and suppose f : {0, 1}kn+m → {0, 1} is a DNF of
width w and N is an (n, k,m) nonlocal channel. Then for each
restriction ρ there exists a distribution Γρ over decision trees such
that (f ◦ N )�ρ = {T}T∼Γρ and

Pr
ρ∼Rδ

Pr
T∼Γρ

[depth(T ) > t] ≤ (Cδw)t .

By Lemma 48 such a switching lemma would be sufficient to show correlations
bounds between f ◦ QNC0 and parity for any DNF (or CNF) f , which in turn
are direct prerequisites to proving Conjecture 3. While this imagined switching
lemma is currently out of reach, we contend it presents a useful challenge to
existing switching lemma proof techniques. As a first step in this direction, we
devote this section to a proof of a simpler but related structural result.

Theorem. (Informal) Any no-signaling channel N composed with a decision
tree τ is equal to a probability distribution Γ of decision trees with depth(τ ′) ≤
depth(τ) for all τ ′ ∈ Supp(Γ).

Let us fix some notation. For a finite set X let M(X) denote the set of
probability measures on X. The set M(X) is convex, so for ν a probability
measure on M(X) we may define the expected distribution

E
µ∼ν

[µ] :=
{
x w.p. Pr

µ∼ν
Pr
z∼µ

[z = x]
}
x∈X

. (8.3.1)
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Here we study Boolean channels, or functions of the form

N : {±1}n → M({±1}N).

For a probability measure µ on the set of channels from n to N bits, we use
EN∼µN to denote the channel defined pointwise as(

E
N∼µ

N
)
(x) := E

N∼µ
[N (x)]. (8.3.2)

To be clear, N (x) is a probability measure on {±1}N , so in the right-hand
side of (8.3.2) we are computing the expected distribution according to (8.3.1).
Also, for T ⊆ [N ] define the reduced channel

N T (x) :=
{
y w.p.

∑
z∈{±1}N
zT=y

Pr[N (x) = z]
}
y∈{±1}|T |

.

Definition (No-signaling channel). Consider a map N : {±1}n → M({±1}N )
and a ‘backwards lightcone’ function B : [N ] → [n] ∪ {⊥}. The pair (N , B)
is a no-signaling channel (NSC) if for all S ⊆ [n], for all x, x′ ∈ {±1}n with
xS = x′S, we have NB−1(S∪⊥)(x) = NB−1(S∪⊥)(x′).

That is, a channel is an NSC if for any collection of output indices T , N T (x)
is a function of xB(T )\{⊥} only. Note also NB−1(⊥) is oblivious to the value of x
entirely—the outputs B−1(⊥) could be called the referee outputs.

Recall that for a Boolean function f : {±1}N → {±1}, f ◦ N denotes the
channel

f ◦ N (x) =
{
b w.p. Pr

y∼N (x)
[f(y) = b]

}
b∈{±1}

.

The restriction structure on NSCs interacts nicely with decision trees:

Theorem 53. Given f : {±1}N → {±1} and N : {±1}n → M({±1}N) an
NSC, there exists a distribution Γ over decision trees such that

i. For all x the composition f ◦ N (x) = {τ(x)}τ∼Γ, so E[f ◦ N (x)] =
Eτ∼Γ[τ(x)]; and

ii. For all τ ∈ Supp(Γ), DTdepth(τ) ≤ DTdepth(f).

Recall that f ◦ N is an M({±1})-valued function on the hypercube, so
x 7→ E[f ◦N (x)] is a [−1, 1]-valued function on the hypercube, and accordingly
has a multilinear Fourier expansion

E[f ◦ N ] =
∑
S⊂[n]

aSχS with aS := E
x

[
E[(f ◦ N )(x)] · χS(x)] .
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We pause to note the related fact that in terms of the expected output E[f ◦N ],
the degree of any function f does not increase under composition with an NSC:
deg(f) ≥ deg(E[f ◦ N ]). This claim has a very simple direct proof2 and we
emphasize that it is not equivalent to Theorem 53. For example, there are
Boolean functions g with deg(g) = n2/3 but DTdepth(g) = n (see Example 3 in
[BW02]). One could imagine a Boolean function h with deg(h) ≈ DTdepth(h) ∈
o(n) but where E[h◦N ] is “g-like”: any decision tree decomposition of E[h◦N ]
contains a tree of depth n despite having deg(E[h ◦ N ]) ∈ o(n). Theorem
53 says such an h,N pair does not exist; precomposition by an NSC cannot
increase the decision tree complexity of a function.

The proof of Theorem 53 requiries some bookkeeping. The idea is to begin
with τ ’s root vertex variable yi and locally decompose the univariate channel
N {i}(x) 7 yi into a distribution of deterministic functions {yi,ω(xi)}ω∼µ. This
decomposition of the root vertex induces a probabilistic decomposition {τ ′ω ◦
N ′ω}ω∼µ of the entire hybrid computation where the root variable yi in τ ′

has been replaced with an xB(i) and the left and right subtrees of τ become
compositions not with N , but with conditional versions of N where xB(i) and
yi have been fixed to certain values. This conditioning preserves the NSC-ness
of the new N ′s, and the decomposition recurses down the tree.

We now introduce a notion of conditioning. For any n-to-N bit Boolean
channel N , x ∈ {±1}n, J ⊆ [N ] and Y ∈ Supp(N J(x)) define the conditional
channel as

N (x | yJ = Y ) :=
{
y w.p. Pr[N (x) = y | yJ = Y ]

}
y∈{±1}N

,

and for T ⊆ [N ] the reduced conditional channel

N T (x | yJ = Y ) :=
{
y w.p.

∑
z∈{±1}N
zT=y

Pr[N (x) = z | zJ = Y ]
}
y∈{±1}|T |

.

Note that T -reduced conditional no-signaling channels can depend on inputs
outside B(T ). Consider for example the n-to-n-bit NSC

G(x) =

U{even strings} x even

U{odd strings} x odd.
2Consider the Fourier expansion f =

∑
S⊆[N ] f̂(S)χS . Then E[(f ◦ N )(x)] =

E
[∑

S⊆[N ] f̂(S)χS ◦ N (x)
]
=
∑

S f̂(S)E[χS ◦ N (x)] =
∑

S f̂(S)E[χS ◦ N S(x)], a linear
combination of functions of at most |S| variables each for |S| ≤ deg(f).
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Now G{i}(x) is identically a Rademacher random variable (oblivious to x

entirely), but

G{i}(x | y[n]\i = 00 · · · 0) =
{∏

j

xj w.p. 1
}
,

the parity of all n bits of x. All the same, some structure remains after
conditioning:

Proposition 7. For T, J ⊆ [N ], let x, x′ ∈ {±1}n be such that xB(J∪T ) =
x′B(J∪T ). Then for all Y ∈ Supp(N J(x)),

N T (x | yJ = Y ) = N T (x′ | yJ = Y ).

Proof. Let x, x′ be as in the proposition statement. We have from the definition
of NSCs that N J∪T (x) = N J∪T (x′). Certainly then N J∪T (x | yJ = Y ) =
N J∪T (x′ | yJ = Y ) (we have taken the marginal of two equal distributions). The
conclusion then follows from noticing that for any U ⊆ V , N U = (N V )U .

This proposition says N T (x | yJ = Y ) is a function of xB(J∪T ) only. Thus
if we fix variables xB(J) we recover a smaller NSC:

Corollary 54. Consider an n-to-N NSC (N , B), an i ∈ [N ], and X,Y ∈ {±1}.
If B(i) =⊥ let N ′ be the n-to-(N − 1) NSC

N ′ = N [N ]\{i}(x | yi = Y )

and otherwise let N ′ be the (n− 1)-to-(N − 1) NSC

N ′ = N [N ]\{i}(x{B(i)}c | xB(i) = X, yi = Y ).

Define a new lightcone function B′ from B as follows. Put B(j) =⊥ for all
j ∈ B−1(B(i)) and then remove i from the domain of B. Then (N ′, B′) is an
NSC.

Finally we introduce an object used internally in the proof of Theorem 53.

Definition (Hybrid Decision Tree). A hybrid decision tree T on n variables
with ` leaves consists of the data (τ,G1, . . . ,G`), where

i. The first argument τ is a rooted binary tree with ` leaves labeled as follows.
Each internal node is assigned xi for some i ∈ [n], the edge to its left
child is labeled 1, and the edge to its right child is labeled −1.
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ii. Each leaf ι of τ is associated with an n-to-1 channel Gι : {±1}n →
M{±1}.

A hybrid tree defines a channel Tτ (G1, . . . ,G`) : {±1}n → M{±1} as follows.
Computation on input x ∈ {±1}n proceeds just as with standard decision trees
until a leaf ι is reached, at which point the distribution Gι(x) is returned.

Theorem 53 follows from these three claims. Proofs of the first two are
immediate from the definitions.

Claim 4. For any hybrid decision tree T ,

T
(
G1, . . . ,Gι−1, E

ω∼µ
[Gω], Gι+1, . . . ,G`

)
= E

ω∼µ

[
T (G1, . . . ,Gι−1,Gω,Gι+1, . . . ,G`)

]
Claim 5. For any hybrid decision trees Tτ (G1, . . . ,G`) and Tτ ′(Gι1, . . . ,Gι`′),

Tτ
(
G1, . . . ,Gι−1, Tτ ′(Gι1, . . . ,Gι`′), Gι+1, . . . ,G`

)
= Tτ◦ιτ ′(G1, . . . ,Gι−1,Gι1, . . . ,Gι`′ ,Gι+1, . . . ,G`),

where τ ◦ι τ ′ is τ with the ιth leaf replaced with τ ′.

Claim 6. Suppose τ is a decision tree and (N , B) is an NSC. Then either:

i. τ ◦ N = Eω∼µ[τω ◦ Nω] where depth(τω) ≤ depth(τ)− 1, |Supp(µ)| ≤ 2,
and each Nω is an NSC, or

ii. τ ◦ N = Eω∼µ
[
Tτ∗

(
τωL

◦ NωL
, τωR

◦ NωR

)]
, where |Supp(µ)| ≤ 3, τ ∗

has one internal node, depth(τωL
), depth(τωR

) ≤ depth(τ)− 1, and each
NωL

,NωR
is an NSC; or

iii. (Base case) τ ◦ N (x) = {b w.p. 1} for all x, for some fixed b ∈ {±1}.

Proof. If τ is the trivial decision tree with no internal nodes, clearly we satisfy
case iii. Otherwise, let yi be the variable at the root of τ . There are two cases
depending on the value of B(i).

Case i), B(i) =⊥. Observe that N {i}(x) is the same distribution µ over
{±1}, independent of x. For ω ∈ {±1} let τω be the subtree of τ attached
to the ω-valued edge of yi. Put Nω = N T\{i}(x | yi = ω). Then we have for
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z ∈ {±1},

Pr[τ ◦ N (x) = z] = ∑
ω∈{±1} Pr[τ ◦ N (x) = z | Di(x) = ω] Pr[N i(x) = ω]

= ∑
ω∈{±1} Pr[τω ◦ N (x | yi = ω) = z] Pr[N i(x) = ω]

= ∑
ω∈{±1} Pr[τω ◦ Nω(x) = z] Pr[N i(x) = ω]

= Pr
[
E
ω∼µ

[τω ◦ Nω](x) = z
]

as desired. Clearly τω is strictly shorter than τ , and Nω is an NSC by Corollary
54.

Case ii), B(i) 6=⊥. Let τ ∗ be the one-vertex tree consisting of the root
vertex of τ relabeled with xB(i) and let τ1, τ−1 be the left and right subtrees
of τ respectively. Observe that N {i}(x) = N {i}(xB(i)) is a univariate channel.
Hence it can be decomposed as a convex combination

N {i}(xB(i)) = a(1,1)

1 1
0 0

+ a(−1,−1)

0 0
1 1

+ a(1,−1)

1 0
0 1

+ a(−1,1)

0 1
1 0

,
where only three of a(L,R) are nonzero. Let µ = {(L,R) w.p. a(L,R)}. Then we
claim

τ ◦ N = E
(L,R)∼µ

[
Tτ∗

(
τL ◦ N (1)

L , τR ◦ N (−1)
R

)]
, (8.3.3)

where for b, c ∈ {±1}2,

N (b)
c (x) = N (x|xB(i) = b, yi = c).

We check Eq. (8.3.3) pointwise. First consider an x with xB(i) = 1. We
condition on the value of yi, rearrange, and then “complete the tree”:

Pr[τ ◦ N (x) = z] =
∑

L∈{±1}
Pr[τ ◦ N (x) = z | Ni(x) = L] Pr[Ni(x) = L]

=
∑

L∈{±1}
Pr[τ ◦ N (x | yi = L) = z](a(L,1) + a(L,−1))

=
∑

L∈{±1}
Pr[τL ◦ N (x | xB(i) = 1, yi = L) = z]

(∑
R∈{±1} a(L,R)

)
=

∑
L,R∈{±1}

a(L,R) Pr[τL ◦ N (1)
L (x) = z]

=
∑

L,R∈{±1}
a(L,R) Pr[Tτ∗(τL ◦ N (1)

L , τR ◦ N (−1)
R )(x) = z]

= Pr
[

E
(L,R)∼µ

[Tτ∗(τL ◦ N (1)
L , τR ◦ N (−1)

R )](x) = z
]
,

as desired. A similar argument goes through for xB(i) = −1 by expanding over
R instead of L.
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Proof of Theorem 53. Let τ be a depth-optimal decision tree for f . Construct
the trivial hybrid tree T with no internal nodes and a single leaf with label
τ ◦ N . Put Γ = {T w.p. 1}. We will recursively break apart leaves of T into
distributions of hybrid trees, which are then combined with the parent tree to
become distributions over hybrid trees of greater depth.

This is done by repeated application of the following sequence of steps.
Suppose Tτ (G1, . . . ,G`) is some hybrid tree and Gι = τ ′ ◦N for some nontrivial
DT τ ′ and (potentially conditioned) NSC N . Then depending on the case in
Claim 3 we either have

Tτ (. . . , τ ◦ N︸ ︷︷ ︸
index ι

, . . .) = Tτ (. . . ,E(L,R)∼µ[Tτ∗(τωL
◦ NωL

, τωR
◦ NωR

)], . . .)

(Claim 6.i)

= E
(ωL,ωR)∼µ

[
Tτ (. . . , Tτ∗(τωL

◦ NωL
, τωR

◦ NωR
), . . .)

]
(Claim 4)

= E
(ωL,ωR)∼µ

[
Tτ◦ιτ∗(. . . , τωL

◦ NωL
, τωR

◦ NωR
, . . .)

]
,

(Claim 5)

where τ ∗ has depth 1 and depth(τωL
), depth(τωR

) ≤ depth(τ ′)− 1, or we have

Tτ (. . . , τ ◦ N︸ ︷︷ ︸
index ι

, . . .) = Tτ (. . . ,Eω∼µ[τω ◦ Nω], . . .) (Claim 6.ii)

= E
ω∼µ

[
Tτ (. . . , τω ◦ Nω, . . .)

]
, (Claim 4)

where depth(τω) ≤ depth(τ ′)− 1.
If we repeatedly make these transformations on the elements of Γ, we will

eventually be left with a distribution over hybrid decision trees (τ,G, . . .) where
each channel G = τ ′ ◦ N is in the base case of Claim 6. Such a hybrid tree is
equal to a deterministic channel. Hence we are left with a distribution over
deterministic channels that is trivially equivalent to a distribution of standard,
deterministic decision trees.

Further, it’s easy to see that once done, the longest path in any tree of
Supp(Γ) is bounded by the longest path in the original tree τ .

8.4 Discussion
We have seen several pieces of evidence for Conjecture 3, as well as high-

lighted new connections between quantum complexity theory, nonlocal games,
and approximate degree.
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If Conjecture 1 is ultimately proved true, we may wish to reach for a
stronger no-advantage theorem closer to that of Beals et al. [Bea+01] from
query complexity. A natural expression of AC0◦ QNC0 non-advantage might
use the language of Fourier decay.

Question 3. Does AC0◦ QNC0 exhibit LMN-like Fourier decay? To make this
precise for the randomized function f ◦ C, consider the expectation over the
randomness in C to get a function F : {0, 1}n → [−1, 1]. Then we ask, is
W≥t[F ] ∈ O(exp(−t))?

As mentioned in the introduction, a similar result is known depth-d QAC0

circuits with at most O(n1/d) ancillas [NPVY23].
Finally, one may consider any number of variations on the theme of pre-

composing a Boolean function with QNC0. It is natural to ask:

Question 4. View a QNC0 circuit C as a map from (randomized) Boolean
functions to randomized Boolean functions:

f
C7−→ f ◦ C .

By how much can this map increase influence, sensitivity, or other complexity
measures of f?

Theorem 53 gives the answer “not at all” to a variant Question 4 where QNC0

is replaced by nonlocal channels, and the complexity measure is randomized
decision tree complexity.
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C h a p t e r 9

Testing classical properties from quantum data

In property testing we consider a subset P of the set of all Boolean
functions f : {0, 1}n → {0, 1} and aim to find fast algorithms for deciding
(with high probability) whether an unknown function f has property P or is
ε-far from having property P ; that is, we wish to decide between

Case (i) f ∈ P or Case (ii) min
g∈P

‖f − g‖1 ≥ ε ,

promised one of these is the case. Here ‖f − g‖1 = Prx∼{0,1}n [f(x) 6= g(x)] is
the L1 distance. Property testing began in the context of program checking
[BLR90; RS96], where it was shown that only O(1) queries to f are needed
to determine (with high probability) whether f is linear or is Θ(1)-far from
linear—which compares very favorably to the Ω(n) query lower bound for
learning linear functions. The extreme query efficiency of property testing
algorithms soon after played a critical role in interactive proofs and PCP
theorems [AS98; Aro+98; Din07]. Since then property testing has developed
into a rich landscape of access models, complexity regimes, and separations
[Fis04; Rub07; Ron09; Sud10; Gol17].

One of the promises of this broad view of property testing, identified very
early on [GGR98], is its potential in data analysis and machine learning: one
could run inexpensive property testing algorithms to guide the choice of which
long-running learning algorithm to use. But there is an unfortunate catch: the
dramatic complexity advantage of testing over learning typically disappears in
the natural access model for data analysis and machine learning, where fresh
queries to f cannot be made and only a limited dataset {(xj, f(xj)}j of random
samples from f is available. This setting is known as passive or sample-based
testing [GGR98].

Indeed, many results in passive testing are lower bounds that grow with
n, unlike the algorithms available in query-based testing: compare among the
“Classical” columns in Table 9.1. In fact, Blais and Yoshida [BY19] showed
that if a Boolean property can be tested from O(1) random samples, then the
property is of a rather restricted kind.1

1In particular, such a property is only a function of the conditional expected values
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Quantum Classical

Property Queries Examples Samples Queries Learning
(from queries)

k-Juntas Õ(
√
k)

[ABRW15]
O(k)

[AS07]
Ω(2k/2 + k log n)

[AHW16]
Θ̃(k)
[Bla09; CG04]

Ω(2k + k log n)
[AHW16]

Linearity O(1) Θ(1)
[BV97]

n+Θ(1)
[AHW16]

Θ(1)
[BLR90]

n+Θ(1)
[AHW16]

F2 degree-d O(2d) O(nd−1)
[ABDY23]

Θ(nd)
[AHW16]

Θ(2d)
[Alo+03; Bha+10]

Θ(nd)
[AHW16]

Monotonicity Õ(n1/4)
[BB15]

Õ(n2)
[Theorem 63]

2Ω(
√
n)

[Bla24]
Õ(

√
n)
[KMS18]

2Ω(
√
n)

[BBL98]

Symmetry O(1) O(1)
[Theorem 60]

Θ(n1/4)
[AHW16]

O(1)
[BWY15]

Θ(n1/2)
[AHW16]

Triangle-freeness O(1) O(1)
[Theorem 66]

Ω(n)
via [AHW16]

O(1)
[BWY15]

–

Table 9.1: Upper and lower bounds for testing and learning in various
access models. All bounds are given for (a sufficiently small) constant ε > 0.
Bounds that are given without a reference follow trivially from other bounds
in the table.

Remark 1. This is not to say that the classical passive testing model is uninter-
esting; there are many exciting positive results for the model, falling under the
umbrella of sublinear algorithms. For example, the line of work [FLV15; GR16;
DGL23] showed that the existence of certain constant-query testers implies
sample-based algorithms with sublinear dependence on n. But passive testers
still cannot compete with query-based testing for many important problems,
as the lower bounds in Table 9.1 attest.

How could we recover large testing speedups in the context of passive
testing from data? In the present chapter we advocate for quantum computing
(and “quantum datasets”) as an answer. Viewed from the right perspective,
early results in quantum complexity theory actually demonstrate that quantum
data—in the form quantum examples, or copies of the function state |f〉 :=
2−n/2∑x |x, f(x)〉—can sometimes suffice for highly efficient property testing.
For example, the Bernstein-Vazirani algorithm, usually understood as an O(1)
Ex[f(x)|x ∈ Sj ] of f for sets Sj forming a constant-cardinality partition of the hypercube,
S1 t · · · t SO(1) = {0, 1}n.
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quantum query algorithm, really only needs O(1) function states to test for
linearity [BV97] (vs. Ω(n) classical samples), and the quantum k-junta tester
of Atıcı and Servedio [AS07] also requires only O(k) quantum examples (c.f.
the lower bound of Ω(2k/2 + k log n) classical samples). The present chapter
seeks to establish passive quantum testing as a fundamental model of property
testing by making progress on the question:

What is the extent of quantum advantage in testing classical
properties from data?

Before the contributions of this chapter it was not fully clear whether
quantum data in the form of quantum examples can lead to testing speedups
beyond linearity and k-junta-like properties (such as low Fourier degree): both
the Bernstein–Vazirani algorithm and the Atıcı–Servedio junta tester rely only
on quantum Fourier sampling [BV97], a quantum subroutine which, given
copies of |f〉, returns the label S ⊆ [n] of a Fourier character with probability
f̂(S)2. Despite the success of quantum Fourier sampling, its utility is restricted
to properties that are “plainly legible” from the Fourier spectrum.2

In this chapter we expand the list of properties with efficient passive
quantum testers, including one which provably requires a non-Fourier sampling
approach. We also compare the power of quantum data to that of classical
queries, finding that they are (essentially) maximally incomparable as resources
for testing. Finally, we begin a study of lower bounds for testing monotonicity
from quantum data by showing that the ensembles leading to exponential lower
bounds for classical sample-based testing yield no nontrivial lower bounds for
quantum data-based testing. In the remainder of the introduction we explore
each of these points in greater detail.

Remark 2 (Where might quantum data appear?). While from the perspective
of complexity theory quantum data leads to a natural counterpart to classical
passive testing, and demonstrates a “data-based” quantum advantage, the
reader may still feel it is not entirely natural from a practical or “physical”
standpoint. To the contrary, we contend that quantum data may be a useful

2As an example of a property not detectable from the Fourier spectrum, consider the task
of testing if f is a quadratic F2 polynomial. It is well-known (see, e.g., [HHL+19, Claim 2.4])
that degree-2 F2 polynomials can have Fourier coefficients with uniformly exponentially-small
magnitudes, so Fourier sampling is not directly useful for this task. Our Theorem 55 below
serves as another example.



112

component of emerging quantum technologies. We briefly list some scenarios
where quantum data may be a natural object.

• Suppose a researcher has time-limited query access to a data-generating
process, but does not yet know what questions about the process she will
eventually ask. She may prefer to store data in quantum memory rather
than classical, to broaden the range of questions that can be answered
post hoc.

• In high-latency and bandwidth-limited scenarios, back-and-forth (adap-
tive, query-based) interaction is not feasible, for example in space ex-
ploration. If a space probe departing Earth shared some entanglement
with a ground station, it could later in its journey encode observations
into quantum data and teleport the resulting states back to Earth. In
such a scenario, the advantages of quantum data could lead to significant
speedups in research and analysis.

• Rather than sharing the source code for a program f , a company may pre-
fer to share a quantum data encoding of it as a form of copy protection—
provided the function state is sufficient for the intended application.

Quantum advantage in testing from data: an emerging theme
Our first contribution is to expand the list of properties exhibiting quantum

advantage in testing from data. Our algorithms work by finding new quantum
ways to exploit insights from prior work in classical testing. See Section 9.1 for
proofs.

Symmetry testing. A Boolean function is symmetric if f(x) = f(y) when
x is a permutation of y. We confirm that projecting |f〉 onto the symmetric
subspace suffices for an O(1)-copy quantum test. For comparison, classical
passive symmetry testing requires Ω(n1/4) samples [AHW16].

Monotonicity testing. A Boolean function f is monotone if f(x) ≤ f(y)
when x ≺ y in the standard partial order ≺ on the hypercube. Monotonicity has
been of central importance in the classical property testing literature [Gol+00;
BB15; KMS18]. We give a quantum algorithm that tests monotonicity with
Õ(n2) copies of the function state for f , in comparison to the lower bound of
2Ω(
√
n) samples for classical passive testing [Bla24].
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The algorithm appeals to a characterization of monotonicity in terms of
the Fourier spectrum of f . In particular, let ε be the L1 distance between a
Boolean function f and the set of all monotone functions. Then we may relate
ε to the Fourier spectrum of f via

2ε ≤ I[f ]−∑
i f̂({i}) ≤ 4εn .

Here I[f ] is the total influence of f and is equal to the expected size of a
subset S ⊆ [n] sampled according to the Fourier distribution of f . I[f ] can
thus be easily estimated with Fourier sampling, and the Fourier coefficients
f̂({i}) estimated with classical samples. The bounds above follow from a
reinterpretation of the “pair tester” characterization of monotonicity [Gol+00],
which was not originally Fourier-based.

Triangle-freeness. A Boolean function f is triangle-free if there are no x, y
such that (x, y, x+ y) form a triangle: f(x) = f(y) = f(x+ y) = 1. We give a
passive quantum triangle-freeness tester that uses only O(1) copies of |f〉, in
contrast with the Ω(n) samples required classically.3

It is known that to test triangle-freeness, it suffices to estimate the probabil-
ity that (x, y, x+ y) forms a triangle for uniformly random x, y [Fox11; HST16].
Our test estimates this probability by repeating the following subroutine. First,
measuring copies of |f〉 in the computational basis allows us to find a uniformly
random y ∈ f−1(1). Then by measuring the output register of copies of |f〉,
we obtain copies of the entire 1-preimage state∣∣∣f−1(1)〉 ∝ ∑

x∈{0,1}n, f(x)=1
|x〉 .

Applying the unitary transformation Uy |x〉 = |x+ y〉 then allows us to trans-
form copies of |f−1(1)〉 into copies of

|f−1(1) + y〉 ∝
∑

x∈{0,1}n, f(x+y)=1
|x〉 .

The overlap | 〈f−1(1)|f−1(1) + y〉 | = Prx∼{0,1}n [f(x) = f(x+ y) = 1] can now
be estimated with a SWAP test [BCWD01].

3This classical lower bound can be seen by an argument via linear independence similar
to that used in the lower bound proof of [AHW16, Theorem 10].
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Fourier sampling does not suffice
Given that Fourier sampling is sufficient to test linearity [BV97], k-juntas

[AS07; ABRW15], and (as shown above) monotonicity, one might wonder
whether Fourier sampling is “all that quantum data is good for” in the context
of property testing Boolean functions. To the contrary, we exhibit a property
for which a Fourier sampling-based approach requires super-polynomially more
data than the optimal passive quantum tester.

Theorem 55. There is a property P of Boolean functions on 2n bits such that:

(i) There is no algorithm for testing P that uses 2o(
√
n) classical samples and

any number of Fourier samples.

(ii) There is an efficient quantum algorithm for testing P from O(1) copies
of |f〉.

Theorem 55 is proved in Section 9.2 as Theorems 68 and 69. The property
P is the Maiorana-McFarland (MM) class of bent functions, which take the
form f(x, y) = 〈x, y〉+ h(x) for h any n-bit Boolean function (see e.g., [CM16]
for more).

To prove (i), we show a special subset Fyes of MM functions with far-from-
constant h are indistinguishable from the set Fno of their “duals,” defined by
replacing h(x) with h(y). Every function in both these sets is bent—i.e., all
Fourier coefficients have equal magnitude—so Fourier samples cannot help. It
thus suffices to lower bound the number of classical samples needed to solve
the distinguishing problem. The set Fyes is chosen so that for a uniformly-
random 〈x, y〉+h(x) from Fyes, the distribution of truth tables of h is 2c

√
n-wise

independent. This means that for any number of samples less than 2c
√
n,

except in the very unlikely event that there is a collision among the sampled
points {(x(i), y(i))}i, the distribution of values f(x(i), y(i)) will look uniformly
random, regardless of whether f is sampled uniformly from Fyes or Fno—and
so distinguishing is impossible. The truth tables for h are constructed from
certain affine shifts of Reed–Muller codewords.

As for item (ii), the passive quantum tester for this property first applies the
unitary U defined by |x, y, b〉 7→ |x, y, b⊕ 〈x, y〉〉 to |f〉. If f is a MM function
the result should be h, a function depending only on the first n variables, while if
|f〉 is far from MM functions, it will have noticeable dependence on coordinates



115

n + 1, . . . , 2n. This dependence can be measured by Fourier-sampling the
transformed state.

Comparing access models
Quantum data is always at least as good as classical samples, and from

Table 9.1 we see that for a growing list of properties, testing from quantum
data is competitive with testing from classical queries. In fact, quantum data
can be vastly more powerful than classical queries for testing. An extremal
example of this is the Forrelation problem, which can be tested from O(1)
function state copies but requires Ω(2n/2) classical queries [AA15].

Conversely, one may wonder to what extent classical queries may outperform
quantum data for property testing. An answer is not so obvious. Although
classical queries enable direct access to f(x) at any point x of the algorithm’s
choosing—a powerful advantage over quantum data—it is not so clear whether
this can lead to a separation for property testing. Recall that for a property
testing problem, yes and no instances must be Ω(1)-far in L1 distance. So to
create a hard property for quantum data-based testers, one must find two sets
of functions which pairwise differ on a constant fraction of the locations in
their truth tables, yet still remain hard to distinguish by a quantum algorithm
operating on copies of their function states.

We succeed in “hiding” these large differences and identify a testing problem
for which classical queries have a dramatic advantage over quantum data.

Theorem 56. There exists a testing task (3-fold intersection detection) that
can be accomplished with O(1) classical queries but requires Ω(2n/2) copies for
quantum testing from data.

Combined with the Forrelation separation of [AA15], Theorem 56 entails
that quantum data and classical queries are (essentially) maximally incompa-
rable. See Chapter 9 for a full picture of resource inequalities for testing.

Theorem 56 is proved in Section 9.3 as Theorem 70. Given a function
f : {0, 1, 2} × {0, 1}n → {0, 1} that indicates three subsets of the hypercube
A,B,C ⊆ {0, 1}n, the 3-fold intersection detection task is to determine if the
fractional 3-fold intersection |A ∩B ∩ C|/2n is 0 or Ω(1)-far from 0.

This property is readily tested from queries by computing the probability
x ∈ A ∧ x ∈ B ∧ x ∈ C for uniformly-random x. To prove the quantum
passive testing lower bound, we show the indistinguishability of two ensembles



116

Quantum
Queries

Classical
Queries

Quantum
Function
States

Classical
Samples

≥

≤≥

≤

≶

Figure 9.1: Property testing resource inequalities. The figure illustrates
the connections between four different data access models in property testing,
namely classical/quantum example/query access. Here, “resource A ≥ resource
B” means that access to resource B can be simulated from access to resource
A without any overhead. (For example, a single classical query can be used
to simulate a single classical sample.) As a consequence of Theorem 56 and
[BV97; Sim97; AA15], the only two among these access models that are not
trivially comparable are in fact very incomparable.

of function states encoding set triples{
(A,B,C)

}
A,B,C

iid∼ P{0,1}n
vs.

{
(A,B,A∆B)}

A,B
iid∼ P{0,1}n

.

Here ∆ denotes symmetric difference, P denotes the power set, and the samples
are uniform. Note the first ensemble has mutual intersection of Ω(1) density
with high probability, while the ensemble always has zero intersection. To
obtain the lower bound, the main observation is that the t-copy versions of
the two associated function state ensembles are equal when projected onto the
so-called distinct subspace (i.e., the subspace spanned by basis states for which
the t input registers are distinct). This projection moves the state ensembles
at most O(t/2n/2) in trace distance, so we conclude that for any t = o(2n/2),
the two ensembles cannot be distinguished using t function state copies.

A challenge: lower bounds for quantum monotonicity testing
We also begin the project of finding lower bounds for the passive quan-

tum testing model. Our main contribution is to establish lower bounds for
monotonicity as an important first open problem. In particular, we show the
ensembles that entail strong lower bounds for classical passive testing are wholly
inadequate for quantum passive testing.
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Theorem 57. The ensembles in Goldreich et al. [Gol+00] and Black [Bla24]
can be distinguished by a quantum algorithm with O(1/ε) copies of the corre-
sponding function states.

This theorem says that the best lower bound such ensembles could imply for
quantum passive testing is Ω(1/ε). But that is no better than the lower bound
that exists generically for every (non-trivial) property.4 To see that Ω(1/ε)
holds generically, it suffices to consider only two functions, fyes and fno, that
are exactly ε-far apart. This is equivalent to 〈fyes|fno〉 = 1 − ε, so the trace
distance between |fyes〉⊗t and |fno〉⊗t is

√
1− (1− ε)2t ≤

√
2tε. Therefore,

distinguishing between fyes and fno with success probability ≥ 2/3 requires
t ≥ Ω(1/ε) copies of the respective function state.

We prove Theorem 57 via a combinatorial analysis of the spectrum of the
matrix

A := E
ψ∼E0

ψ⊗t − E
φ∼E1

φ⊗t ,

where E0 and E1 are the “yes” and “no” ensembles from [Gol+00] (or, later,
from [Bla24]). As neither of our ensembles is close to Haar-random, we cannot
directly draw on the rich recent literature on quantum pseudorandomness
[JLS18; BS19; GB23; JMW24; MPSY24; Che+24a; SHH24; MH24]. Instead,
we notice that our function state is unitarily equivalent to a phase state for a
closely-related Boolean function. An intricate index rearrangement reveals A to
be block-diagonal, with each block interpretable as the adjacency matrix for a
complete bipartite graph. We then determine the spectrum of each block, with
eigenvalues and their multiplicities given as functions of certain combinatorial
quantities. Exponential generating function techniques lead to explicit formulas
for these quantities, and finally the asymptotics can be understood by taking a
probabilistic perspective on the counting formulas. Concentration arguments
finish the proof and allow us to conclude that ‖A‖1 ≥ Ω(1) (and thus the
two ensembles are distinguishable) as soon as t = Ω(ε−1). This argument is
presented in detail in Section 9.4.

A final remark for this section: for certain regimes of ε, the Ω(1/ε) lower
bound on the number of function state copies already separates passive quantum
testing from quantum query-based testing. For example, (adaptive) quantum
query complexity upper bounds of Õ(n1/4/ε1/2) for monotonicity testing [BB15]

4A classical query complexity lower bound of Ω(1/ε) also holds for testing any non-trivial
property [Fis24].
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and of Õ((k/ε)1/2) for k-junta testing [ABRW15] are known. However, to the
best of our knowledge, the “correct” ε-scaling for quantum property test-
ing of classical functions is far from understood; prior works such as [AS07;
BFNR08; CFMW10; AA15; ABRW15; MW16] seem to establish quantum
query complexity lower bounds only for constant ε.

Outlook and future directions
Our results, (most of them) summarized in Table 9.2, highlight passive

quantum property testing as a rich testing model deserving of concerted study.
We grow the list of properties with efficient passive quantum testers, introduce
new techniques for testing, show that the abilities of passive quantum testing
extend beyond the reach of Fourier sampling, and highlight subtleties in
comparing classical and quantum resources for property testing.

Quantum function states Classical
samples

Classical
queries

Monotonicity
testing

Õ(n2/ε2)
Theorem 63

exp
(
Ω
(
min{

√
n/ε, n}

))
[Gol+00; Bla24]

Õ
(
min

{
n/ε,

√
n/ε2

})
[Gol+00; KMS18]

Symmetry
testing

Õ(1/ε2)
Theorem 60

Θ(n1/4)
[AHW16]

O(1/ε)
[BWY15]

Triangle-freeness
testing

Õ
((

Tower
(
C ·

⌈
log
(
1
ε

)⌉))6)
Theorem 66

Ω(n)
via [AHW16]

O
(
Tower

(
C ·

⌈
log
(
1
ε

)⌉))
via [Fox11; HST16]

3-fold intersection
estimation

Ω
(
2n/2

)
Theorem 56

Ω
(
2n/2

)
via Theorem 56

O(1)
Theorem 56

Forrelation O(1)
[AA15]

Ω̃
(
2n/2

)
[AA15]

Θ̃
(
2n/2

)
[AA15]

Table 9.2: Our bounds in context. The table contrasts our results on
property testing from quantum function states with results from the literature
(in gray). Where the ε-dependence is not shown explicitly, we have set ε to
some suitably small positive constant value. For monotonicity, symmetry,
and triangle-freeness, passive quantum testing from function states is (at
least) exponentially easier than passive classical testing from samples and at
most polynomially harder than classical testing from queries. The testing
problem derived from 3-fold intersection estimation is complementary to the
Forrelation problem in that quantum function/phase states and classical
queries swap roles in the exponential separation.
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In fact, it seems passive quantum testing can make good on the promise of
testing from data where classical passive testing cannot. With passive quantum
testing, it is possible to generate a dataset about a Boolean function without
foreknowledge of the property one would eventually like to test, and still be
assured (for a growing list of properties) that testing will be very efficient. In
particular, these results suggest that quantum data, rather than classical data,
could enable the application to machine learning imagined in [GGR98]: as an
inexpensive preprocessing procedure that informs the choice of suitable, more
data-intensive learning algorithms.

Here we lay out some directions for future work.

More and improved bounds for passive quantum property testing.
We have established upper bounds for passive quantum testing of monotonicity,
symmetry, and triangle-freeness from function states. These three properties
together with linearity testing [BV97] and junta testing [AS07; ABRW15]
already demonstrate the power of quantum data for testing a variety of quite
different properties, and it seems important to explore quantum datasets in
the context of other testing problems. As highlighted in Table 9.1, quantum
low-degree testing of Boolean functions is a natural next challenge, with the
more general class of locally characterized affine-invariant properties [Bha+13]
as a longer-term goal.

One may aim to tighten our bounds to precisely pin down the power
of quantum data for these testing tasks. Here, having established that the
constructions from classical passive monotonicity testing lower bounds are
inadequate for the quantum case, we consider it especially interesting to obtain
a n-dependent lower bound for passive quantum monotonicity testing in the
constant ε regime. Settling the n-dependence of the quantum sample complexity
for passive quantum monotonicity testing is a tantalizing question for future
work.

Characterizing properties with constant-complexity passive quantum
testers In the classical case, [BY19] gave a complete characterization of those
properties that can be tested with a constant number of samples. Achieving an
analogous characterization for properties that can be tested from constantly-
many function state copies would help demarcate the boundary of quantum
advantage for this model.
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Intriguingly, the quantum case raises a further question about the constant
complexity regime: For properties that admit a constant-copy passive quantum
testers, can this always be achieved by algorithms that do not use entangled
multi-copy measurements? The role of single- versus multi-copy quantum
processing has recently been explored in the literature on learning and testing
for quantum objects (see, e.g., [CCHL22; Hua+22; Car24; HH24]) and in
quantum computational learning theory [ABDY23], but the picture is far from
clear for properties of function states (and of pure states more generally).
Concretely, while our testers for monotonicity and symmetry are single-copy
algorithms, our triangle-freeness tester uses two-copy SWAP tests and there
does not seem to be an immediate way of replacing this by single-copy quantum
processing.

One may also ask about the necessity of auxiliary quantum systems in
quantum sample-based testers with constant sample complexity. (For example,
our symmetry tester relied on auxiliary systems to implement the symmetric
subspace projector.) The number of available auxiliary systems is already known
to play an important role in, for instance, Pauli channel learning [CZSJ22;
Che+24b; CG24], and exploring its relevance for constant-complexity passive
quantum testing may shed new light on how these quantum testers achieve
their better-than-classical performance.

Other quantum datasets for classical properties We have considered
only one kind of quantum representation of classical functions: coherent super-
positions of evaluations of f (as function states). Already these are enough
to gain major advantages over testing from classical data, but one could ask
for more. Are there other, better quantum datasets that lead to even faster
testers or extend quantum advantage to more properties? To keep this question
interesting, one would require that the dataset be not too tailored to any
property.

In fact, this question may be best phrased as a sort of “compression game”:
we are first given a very long list of questions that we might be asked regarding
some black-box function f . We then have T (n) time to interact with an oracle
for f , during which period we generate whatever data we would like. What is
the best quantum dataset to generate, so that we are best prepared to answer
a random (or perhaps worst-case) question from the list?
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Passive quantum testing for quantum properties. Recently there has
been a growing interest in property testing for quantum objects, such as
states [HM13; OW15; HLM17; CHST17; BO20; GNW21; SW22; CCHL22;
GIKL23; AD24; CGYZ24; ABD24; BDH24], unitaries [DGRT22; CNY23;
SY23], channels [CCHL22; ACQ22; BY23], and Hamiltonians [LW22; BCO24;
ADG24]. It is an interesting challenge to design datasets to enable passive
versions of these tasks. Just as in the above, we would want quantum datasets
that are mostly agnostic to the property to be tested.

In fact, some existing work can be viewed as advocating for quantum
datasets. When restricting ourselves to collecting classical data, classical
shadows [HKP20; HCP23] serve as a useful representation, but place restrictions
on the properties that can be tested after-the-fact. Shadow tomography
procedures [Aar18; BO21; Car24] can remove such restrictions but use multi-
copy measurements that depend on the properties of interest, and thus in general
seem to require quantum data storage to enable passivity.5 The relevance of
data storage in a quantum memory for certain quantum process learning tasks
has also been explored in [Bis+10; BDPS11; SBZ19; LKPP22; LK24]. In this
context, the contents of this chapter can be viewed as investigating the power
of quantum data, stored in quantum memory, for testing properties of diagonal
unitary processes arising from classical Boolean functions. We hope that this
will inspire future attempts at using quantum data as a resource for passively
quantumly testing properties of more general quantum processes.

Related work
Passive classical property testing.6 Passive (or sample-based) property
testing goes back to [GGR98] (see also [KR98]), who introduced it as a test-
ing counterpart to Valiant’s model of probably approximately correct (PAC)
learning [Val84]. In particular, [GGR98, Proposition 3.1.1] observes that PAC

5(Non-adaptive) Pauli shadow tomography [HKP21; Car24; KGKB24; CGY24] in some
sense interpolates between the (dis-)advantages of classical shadows and shadow tomography
for the current discussion: When promised in advance that the properties in question are
characterized by expectation values of arbitrary Pauli observables, some of the relevant data
can be collected and stored classically in advance, without knowing which specific Pauli
observables matter. However, part of the quantum processing still requires knowing the
specific Paulis of interest, so to achieve passivity, it seems that some data still has to be
stored quantumly.

6Due to the vastness of the area of property testing, even when restricting the focus to
passive testing, this paragraph is intended to provide context for this chapter rather than an
exhaustive bibliography for the field.
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learners give rise to passive testers (see also [Ron08, Proposition 2.1]). Later,
[BBBY12] proposed active testing as a model interpolating between sample-
and query-based testing. Both for passive and active testing, and for a variety
of problems, several works have established lower bounds separating them from
the more standard query-based testing model. Some notable examples of tasks
with such separations include (k-)linearity [BBBY12; AHW16], k-juntaness
[AHW16], (partial) symmetry [BWY15; AHW16], low-degreeness [AHW16],
and monotonicity [Gol+00; Bla24]. We present these results and how they
compare to quantum testing in Table 9.1.

[BY19] gave a full characterization of properties of Boolean-valued functions
that admit passive testing with a constant (i.e., independent of domain size)
number of uniformly random samples, demonstrating that this is indeed a
relatively restricted type of properties. While the works mentioned so far
have focused on the case of uniformly random data points (or, in the case
of active learning, uniformly random sets of admissible query points), more
recently there has been renewed interest in passive distribution-free testing,
see for instance [HK07; BFH21]. Finally, the framework of passive testing
has also been explored for objects other than Boolean functions, especially for
testing geometric properties [MORS10; BBBY12; KNOW14; Nee14; CFSS17;
BMR19b; BMR19a].

Quantum property testing. The focus here is on quantumly testing prop-
erties of classical functions. This topic, considered for example in [AS07;
CFMW10; HA11; AA15; ABRW15], is one of the main directions in quan-
tum property testing, an area that goes back to [BFNR08] and is surveyed
in [MW16]. However, quantum property testing also considers quantum al-
gorithms that test properties of other classical objects from quantum data
access. Notable examples of other objects to quantumly test include proba-
bility distributions [BHH11; CFMW10; GL20], graphs [ACL11; CFMW10],
and groups [FSMS09; IL11]. Finally, recently there have also been signifi-
cant insights in quantum property testing for quantum objects, notably states
[HM13; OW15; HLM17; CHST17; BO20; GNW21; SW22; CCHL22; GIKL23;
HH24; AD24; CGYZ24; ABD24; BDH24; MT24], unitaries [DGRT22; CNY23;
SY23], channels [CCHL22; ACQ22; BY23], and Hamiltonians [LW22; BCO24;
ADG24].
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9.1 Passive quantum testing upper bounds
Defining passive quantum property testing

As outlined in the introduction, passive property testing considers testing
from (non-adaptively chosen) data that does not depend on the property to be
tested. We propose a quantum version of this model by considering quantum
testing algorithms that have access to copies of a quantum data state. Here, we
consider the following form of quantum data encoding for a Boolean function
f : {0, 1}n → {0, 1}: We work with function states

|f〉 = |Ψf〉 =
1√
2n

∑
x∈{0,1}n

|x, f(x)〉 . (9.1.1)

When the function f is clear from context, we will also use the notation
|Ψ〉 = |Ψf〉. Natural variations of this notation, e.g., |Ψ′〉 = |Ψf ′〉, will also be
used.

With this, we can now formally define the notion of passive quantum
property testing for Boolean functions.

Definition 4 (Passive quantum property testing). Let Pn ⊆ {0, 1}{0,1}n be
some property of Boolean functions on n bits, let δ, ε ∈ (0, 1). A quantum
algorithm is a passive quantum tester with accuracy/distance parameter ε and
confidence parameter δ for Pn from m = m(ε, δ) function state copies if the
following holds: When given m copies of |Ψf〉, the quantum algorithm correctly
decides, with success probability ≥ 1− δ, whether

(i) f ∈ Pn, or

(ii) Prx∼{0,1}n [f(x) 6= g(x)] ≥ ε holds for all g ∈ Pn,

promised that f satisfies either (i) or (ii).

This chapter explores Definition 4 for different properties.

Passive quantum symmetry testing
A function f : {0, 1}n → {0, 1} is called symmetric if f ◦ π = f holds for

all permutations π ∈ Sn. Here, π ∈ Sn acts on n-bit strings by permuting
coordinates. That is, π(x1 . . . xn) = xπ−1(1) . . . xπ−1(n). This gives rise to the
following classical testing problem.
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Problem 58 (Classical symmetry testing). Given query access to an unknown
function f : {0, 1}n → {0, 1} and an accuracy parameter ε ∈ (0, 1), decide with
success probability ≥ 2/3 whether

(i) f is symmetric, or

(ii) f is ε-far from all symmetric functions, that is, we have Prx∼{0,1}n [f(x) 6=
g(x)] ≥ ε for all symmetric functions g : {0, 1}n → {0, 1},

promised that f satisfies either (i) or (ii).

Symmetry allows for a (trivial) reformulation in terms of (in general non-
local) pairwise comparisons:

Proposition 1. A function f : {0, 1}n → {0, 1} is symmetric if and only if
for all x ∈ {0, 1}n and for all π ∈ Sn, the equality

f(x) = f(π(x)) (9.1.2)

holds.

This characterization becomes important for testing because of the following
result.

Theorem 59 (Soundness of symmetry testing (compare [BWY15, Lemma
3.3])). If f : {0, 1}n → {0, 1} is exactly ε-far from all symmetric functions,
then

ε ≤ Pr
x∼{0,1}n,π∼Sn

[f(x) 6= f(π(x))] ≤ 2ε . (9.1.3)

Theorem 59 implies that we can classically test symmetry from query access
simply by sampling a random permutation π and a random input x and then
comparing the function values f(x) and f(π(x)). Here, ∼ 1/ε many queries
suffice to achieve success probability ≥ 2/3 in symmetry testing.

We now describe how to make use of Theorem 59 to build a passive quantum
symmetry tester.

Theorem 60 (Passive quantum symmetry testing). There is an efficient
quantum algorithm that uses O

(
log(1/δ)
ε2

)
many copies of the function state

|Ψ〉 = 1√
2n
∑
x∈{0,1}n |x, f(x)〉 to decide, with success probability ≥ 1−δ, whether

f is symmetric or ε-far from all symmetric functions.
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Proof. For a permutation π ∈ Sn, write P (π) for the representation of that per-
mutation on (C2)⊗n given as P (π) = ∑

x∈{0,1}n |π(x)〉 〈x|. Then, the orthogonal
projector onto the symmetric subspace of (C2)⊗n can be written as

P n
sym = 1

n!
∑
π∈Sn

P (π) .

Notice that, if |Ψ〉 is the function state for f : {0, 1}n → {0, 1}, then

〈Ψ| (P n
sym ⊗ 12) |Ψ〉 = Pr

x∼{0,1}n,π∼Sn

[f(x) 6= f(π(x))] .

So, by a Chernoff-Hoeffding bound, we can, with success probability ≥ 1− δ,
obtain a (ε/3)-accurate estimate of the probability in Equation (9.1.3) by
independently performing the two-outcome projective measurement {P n

sym ⊗
12,1

⊗(n+1)
2 −P n

sym ⊗ 12} on m = O(log(1/δ)/ε2) many single copies of |Ψ〉 and
then taking the empirical average of the observed outcomes (with outcome 1
associated to P n

sym⊗12). As the two-outcome measurement {P n
sym⊗12,1

⊗(n+1)
2 −

P n
sym ⊗ 12} can be implemented efficiently using O(n2) auxiliary qubits and

O(n2) controlled-SWAP gates [Bar+97; LW22], our quantum symmetry tester
is also computationally efficient.

In contrast to the classical sample complexity of Θ(n1/4) for classical passive
symmetry testing [AHW16], our passive quantum symmetry tester in The-
orem 60 achieves an n-independent quantum sample complexity. Thus, we
have an unbounded separation between classical and quantum for this passive
testing task.

Finally, let us comment on two extensions. Firstly, relying on the second
inequality in Theorem 59, we can modify the proof of Theorem 60 to obtain
an efficient tolerant quantum passive symmetry tester that uses O

(
log(1/δ)
(ε2−ε1)2

)
copies of the unknown function state to decide whether f is ε1-close to or ε2-far
from symmetric, assuming that ε2 > 2Cε1 holds with C > 1 some constant.
Secondly, as Theorem 59 can be extended to so-called partial symmetric
functions (compare again [BWY15, Lemma 3.3]), also our passive quantum
symmetry tester can be modified to test for partial symmetry.

Passive quantum monotonicity testing
We define the natural partial order � on the Boolean hypercube {0, 1}n via

x � y :⇔ (xi ≤ yi holds for all 1 ≤ i ≤ n). A function f : {0, 1}n → {0, 1}
is called monotone if f(x) ≤ f(y) holds for all x, y ∈ {0, 1}n with x � y. The
associated classical testing problem can be formulated as follows.
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Problem 61 (Classical monotonicity testing). Given query access to an un-
known function f : {0, 1}n → {0, 1} and an accuracy parameter ε ∈ (0, 1),
decide with success probability ≥ 2/3 whether

(i) f is monotone, or

(ii) f is ε-far from all monotone functions, that is, we have Prx∼{0,1}n [f(x) 6=
g(x)] ≥ ε for all monotone functions g : {0, 1}n → {0, 1},

promised that f satisfies either (i) or (ii).

Here, as well as in our other property testing tasks below, will think of (i)
as the accept case and of (ii) as the reject case. This then allows us to speak
of completeness (for getting case (i) right) and soundness (for getting case (ii)
right). Here, the chosen success probability of 2/3 is an arbitrary constant
> 1/2, it can be boosted arbitrarily close to 1 through repetition and majority
voting.

As introduced above, monotonicity is a global property of a function.
However, there is a straightforward equivalent local formulation:

Proposition 2 (Local characterization of monotonicity). A function f :
{0, 1}n → {0, 1} is monotone if and only if for all x ∈ {0, 1}n and for all
i ∈ [n], the following holds:

¬((xi = 0 ∧ f(x) = 1 ∧ f(x+ ei) = 0) ∨ (xi = 1 ∧ f(x) = 0 ∧ f(x+ ei) = 1)) ,
(9.1.4)

where ei denotes the ith standard basis vector.

It turns out that functions far from the set of all monotone functions neces-
sarily violate Equation (9.1.4) on a non-negligible fraction of all possible x and
i. This makes it possible to test for monotonicity by checking Equation (9.1.4)
on a small number of randomly chosen x and i.

Theorem 62 (Soundness of monotonicity testing (compare [Gol+00])). If
f : {0, 1}n → {0, 1} is exactly ε-far from all monotone functions, then

ε

n
≤ Pr

x∼{0,1}n,i∼[n]
[(xi = 0 ∧ f(x) = 1 ∧ f(x+ ei) = 0) ∨ (xi = 1 ∧ f(x) = 0 ∧ f(x+ ei) = 1)] ≤ 2ε .

(9.1.5)

Therefore, we can solve Problem 61 from only O(n/ε) many queries to the
unknown function, which was exactly the celebrated conclusion of [Gol+00].
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While this query complexity does depend on n, the dependence is only loga-
rithmic in the size of the function domain, and it in particular is exponentially
better than the n-dependence in the query complexity of learning monotone
functions [BBL98].

Our passive quantum monotonicity tester also crucially relies on Theorem 62.
Here, we first reinterpret the probability appearing in Equation (9.1.5) in terms
of Fourier-analytic quantities, which we then estimate based on quantum
Fourier sampling. Our procedure is summarized in Algorithm 1, and our next
theorem establishes that it is both complete and sound.

Algorithm 1 Monotonicity testing from quantum examples
Input: accuracy parameter ε ∈ (0, 1); confidence parameter δ ∈ (0, 1);

Õ
(
n2 log(1/δ)

ε2

)
many copies of a function state |f〉 = 1√

2n
∑
x∈{0,1}n |x, f(x)〉.

Output: “accept” or “reject”.
Initialization: ε2 = ε

3 , ε5 = ε
3n , δ1 = δ2 = δ

3 , δ5 = δ
3n , m1 =

max{3m2, d18 ln(2/δ1)e}, m2 =
⌈
n2 ln(2/δ2)

2ε22

⌉
, m4 = m5 =

⌈
4 ln(2/δ5)

ε25

⌉
1: Use m1 many copies of |f〉 to produce m2 many Fourier samples
S1, . . . , Sm2 ⊆ [n] from g = (−1)f .

2: Take Î = 1
m2

∑m2
`=1 |S`|.

3: Use m4 many copies of |f〉 to generate m5 many classical samples
(x1, f(x1)), . . . , (xm5 , f(xm5) from f .

4: for 1 ≤ i ≤ n do
5: Take g̃i = 1

m5

∑m5
k=1(−1)xk·ei+f(xk).

6: end for
7: Set p̂ = 1

2n Î−
1
2n
∑n
i=1 g̃i.

8: If p̂ ≤ ε/3n, conclude that f is monotone and accept. If p̂ ≥ 2ε/3n,
conclude that f is ε-far from all monotone functions and reject.

Theorem 63 (Passive quantum monotonicity testing). Algorithm 1 is an effi-
cient quantum algorithm that uses Õ

(
n2 log(1/δ)

ε2

)
copies of |f〉 = 1√

2n
∑
x∈{0,1}n |x, f(x)〉

to decide, with success probability ≥ 1− δ, whether f is monotone or ε-far from
monotone.

In particular, Theorem 63 shows that passive quantum testers can expo-
nentially outperform the classical passive monotonicity testing lower bound of
exp

(
Ω
(
min{

√
n/ε, n}

))
[Gol+00; Bla24].

Proof. We begin with a useful rewriting of the probability from Equation (9.1.5).
To this end, as is commonly done in the analysis of Boolean functions, consider
the induced function g : {−1, 1}n → {−1, 1} obtained from f via the relabeling
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0 ↔ 1 and 1 ↔ −1. Next, we recall the definition of the ith derivative in
Boolean analysis (compare, e.g., [ODo21, Definition 2.16]): for i ∈ [n],

Dig(x) :=
g(x(i 7→1))− g(x(i 7→−1))

2 ,

where we used the notation x(i 7→b) to denote the n-bit string obtained from x

by replacing the ith bit with b. Consequently, we can compute

(Dig(x))2 −Dig(x)
2 =

1 if g(x(i 7→1)) = −1 ∧ g(x(i 7→−1)) = 1

0 otherwise

=

1 if f(x(i 7→0)) = 1 ∧ f(x(i 7→1)) = 0

0 otherwise
.

Therefore, we can now rewrite our probability of interest as

Pr
x∼{0,1}n,i∼[n]

[(xi = 0 ∧ f(x) = 1 ∧ f(x+ ei) = 0) ∨ (xi = 1 ∧ f(x) = 0 ∧ f(x+ ei) = 1)]

= Ex∼{0,1}n,i∼[n]
[
(Dig(x))2 −Dig(x)

2

]

= 1
2Ei∼[n]Ex∼{0,1}

n

[
(Dig(x))2

]
− 1

2Ei∼[n]Ex∼{0,1}
n [Dig(x)]

= 1
2Ei∼[n][Inf i[g]]−

1
2n

n∑
i=1

ĝ({i})

= 1
2nI[g]−

1
2n

n∑
i=1

ĝ({i}) ,

where the second-to-last step used the definition of the ith influence (compare
[ODo21, Definition 2.17]) as well as [ODo21, Proposition 2.19], and where the
last step used the definition of the total influence (compare [ODo21, Definition
2.27]).

With this rewriting established, let us first analyze the probabilities that
the different steps of Algorithm 1 succeed and discuss what this implies for
the estimator p̂. Then, we will see how this gives rise to completeness and
soundness. We have the following:

• Using the procedure of [BV97], one copy of |f〉 suffices to produce one
Fourier sample from g = (−1)f—that is, an n-bit string sampled from
the probability distribution {|ĝ(S)|2}S⊆[n]—with success probability 1/2.
Additionally, one knows whether the sampling attempt was successful.7

7To see this, note that the procedure works as follows: Apply H⊗(n+1); measure the last
qubit; abort if that produces a 0, continue if produces a 1; measure the first n qubits to
produce an n-bit string.
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So, by simply repeating the above m1 many times, we see that Step
1 succeeds in producing m2 Fourier samples with success probability
≥ 1− δ1.

• By a standard Chernoff-Hoeffding bound, we have |Î− ES∼Sg [|S|]| ≤ ε2

with success probability≥ 1−δ2. Here, Sg denotes the Fourier distribution
of g, defined via Sg(S) = |ĝ(S)|2.

• For any 1 ≤ i ≤ n, by a standard Chernoff-Hoeffding bound, Step 5
produces a ε5-accurate estimate g̃i of ĝ({i}) with probability ≥ 1− δ5.

Therefore, by a union bound, we have that, with overall success probability
≥ 1 − (δ1 + δ2 + nδ5) = 1 − δ, the estimates Î and g̃i simultaneously satisfy
|Î− ES∼Sg [|S|]| ≤ ε2 and |g̃i − ĝ({i})| ≤ ε5 for all 1 ≤ i ≤ n. We condition on
this high probability success event for the rest of the proof. In this event, our
rewriting of the probability of interest from the beginning of the proof implies:∣∣∣∣∣ Pr
x∼{0,1}n,i∼[n]

[(xi = 0 ∧ f(x) = 1 ∧ f(x+ ei) = 0) ∨ (xi = 1 ∧ f(x) = 0 ∧ f(x+ ei) = 1)]− p̂

∣∣∣∣∣
≤ 1

2n

∣∣∣I[g]− Î
∣∣∣+ 1

2n

n∑
i=1

|ĝ({i})− g̃i|

= 1
2n

∣∣∣ES∼Sg [|S|]− Î
∣∣∣+ 1

2n

n∑
i=1

|ĝ({i})− g̃i|

≤ ε2
2n + ε5

2
≤ ε

3n ,

where we used the identity I[g] = ES∼Sg [|S|] (compare [ODo21, Theorem 2.38]).
So, we see that p̂ is a (ε/3n)-accurate estimate for our probability of interest.

To prove completeness of Algorithm 1, assume f to be monotone. Then,
Proposition 2 and Theorem 62 together with the above inequality imply that
p̂ ≤ ε/3n ≤ ε/2n, and thus the final step in Algorithm 1 correctly concludes
that f is monotone and accepts.

To prove soundness, assume f to be ε-far from monotone. Then, the
lower bound in Theorem 62 together with the above inequality implies that
p̂ ≥ 2ε/3n, and thus the final step in Algorithm 1 correctly concludes that f is
ε-far from monotone and rejects.
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The overall number of copies of |f〉 used by the algorithm is m1 + m4.
Plugging in the choices of the different mi, we see that

m1 +m4 ≤ max{3m2, d18 ln(2/δ1)e}+
⌈
4 ln(2/δ5)

ε25

⌉

≤ max
{
3
⌈
n2 ln(2/δ2)

2ε22

⌉
, d18 ln(2/δ1)e

}
+
⌈
36n2 ln(6n/δ)

ε2

⌉

≤ max
{
3
⌈
9n2 ln(6/δ)

2ε2

⌉
, d18 ln(6/δ)e

}
+
⌈
36n2 ln(6n/δ)

ε2

⌉

≤ Õ
(
n2 log(1/δ)

ε2

)
,

where the Õ hides a logarithmic dependence on n.
The quantum computational efficiency of Algorithm 1 follows immediately

from the efficiency of quantum Fourier sampling. The classical computational
efficiency is immediately apparent from our sample complexity bounds and
the fact that the classical computation is dominated by the complexity of
computing the empirical averages in Steps 2 and 4.

We further note that because of the second inequality in Theorem 62, the
above procedure and proofs can be modified to quantumly efficiently solve the
tolerant version (as defined in [PRR06]) of the monotonicity testing problem—
i.e., distinguishing between f being ε1-close or ε2-far from monotone—using
Õ
(
n2 log(1/δ)
(ε2−ε1)2

)
copies of a quantum function state, assuming that ε2 > Cnε1

holds with C > 1 some constant.8 Because of this restrictive assumption on
how ε1 and ε2 relate, this still falls short of a general tolerant passive quantum
monotonicity tester.

Let us also note room for a qualitative improvement in our passive quantum
monotonicity tester. Classical query-based testers typically enjoy perfect
completeness, i.e., they accept monotone functions with unit probability. In
contrast, our tester can be made to accept monotone functions with probability
arbitrarily close but not equal to 1. We leave as an open question whether
our passive quantum monotonicity tester can be modified to achieve perfect
completeness, while enjoying similar guarantees on the quantum sample and
time complexity of the procedure.

8In more generality, one can see: If an inequality like Equation (9.1.5) holds with lower
bound `n(ε) and upper bound un(ε), satisfying `n(0) = 0 = un(0), then estimating the
relevant probability to accuracy ∼ `n(ε2 − ε1) suffices for tolerant property testing in the
parameter range where there is a constant c ∈ (0, 1/2) such that `n(ε2)− c · `n(ε2 − ε1) >
un(ε1) + c · `n(ε2 − ε1).
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Passive quantum triangle-freeness testing
For x, y ∈ {0, 1}n and for a Boolean function f : {0, 1}n → {0, 1}, we say

that (x, y, x+ y) is a triangle in f if f(x) = f(y) = f(x+ y) = 1. Accordingly,
we call the function f triangle-free if no triple (x, y, x+ y) is a triangle in f .
Testing for triangle-freeness thus becomes the following problem.

Problem 64 (Classical triangle-freeness testing). Given query access to an
unknown function f : {0, 1}n → {0, 1} and an accuracy parameter ε ∈ (0, 1),
decide with success probability ≥ 2/3 whether

(i) f is triangle-free, or

(ii) f is ε-far from all triangle-free functions, that is, we have Prx∼{0,1}n [f(x) 6=
g(x)] ≥ ε for all triangle-free functions g : {0, 1}n → {0, 1},

promised that f satisfies either (i) or (ii).

The natural approach towards testing for triangle-freeness from query access
is to choose x, y ∈ {0, 1}n at random and check whether (x, y, x+y) is a triangle
in f , and to repeat this sufficiently often. Bounding the number of repetitions
needed to succeed with this approach is non-trivial, connecting to Szemerédi’s
regularity lemma [Sze76] and the triangle removal lemma [RS78]. In our next
result, we recall the to our knowledge best known corresponding bounds.

Theorem 65 (Soundness of triangle-freeness testing [Fox11; HST16]). If
f : {0, 1}n → {0, 1} is ε-far from all triangle-free functions, then

Pr
x,y∼{0,1}n

[f(x) = f(y) = f(x+ y) = 1] ≥ 1
Tower

(
C ·

⌈
log
(
1
ε

)⌉) , (9.1.6)

where C > 0 is a universal integer constant.

Here, Tower(i) denotes a tower of 2’s of height i. That is, we define the
tower function Tower : N → N inductively via Tower(0) = 1 and Tower(i +
1) = 2Tower(i). In a way familiar by now from the two previous subsections,
Theorem 65 can be used to show that ∼ Tower

(
C ·

⌈
log
(
1
ε

)⌉)
many queries

suffice for the the simple query-based triangle-freeness tester mentioned above
to achieve success probability 2/3.

We now use Theorem 65 to develop a passive quantum triangle-freeness
tester.
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Theorem 66 (Passive quantum triangle-freeness testing). There is an effi-
cient quantum algorithm that uses Õ

(
ln(1/δ)

(
Tower

(
C ·

⌈
log
(
1
ε

)⌉))6)
many

copies of the function state |Ψ〉 = 1√
2n
∑
x∈{0,1}n |x, f(x)〉 to decide, with success

probability ≥ 1 − δ, whether f is triangle-free or ε-far from all triangle-free
functions.

Proof. Our passive quantum triangle-freeness tester first sets confidence and ac-
curacy parameters δ̃ = δ/(5m) and ε̃ =

(
Tower

(
C ·

⌈
log
(
1
ε

)⌉))−1
, respectively.

Then, it repeats the following for 1 ≤ i ≤ m =
⌈
18 ln(10/δ)

ε̃2

⌉
:

1. Take ln(m/δ̃)
ε

many copies of |Ψ〉 and, for each of them, measure the last
qubit in the computational basis. If none of these measurements produces
outcome 1, abort this iteration, set µ̂i = 0, and go to the next iteration.
Otherwise, take any one of the post-measurement states for which 1 was
observed, measure the first n qubits, let the outcome be yi.

2. Run the procedure from Lemma 83 on 2
⌈
162 ln(6/δ̃)(6/ε̃)4

⌉
·
⌈
ln(2
⌈
162 ln(6/δ̃)(6/ε̃)4

⌉
/δ̃)

ε

⌉
many copies of |Ψ〉 to obtain 2

⌈
162 ln(6/δ̃)(6/ε̃)4

⌉
many copies of the

post-measurement state

|Ψ1〉 = (|{x ∈ {0, 1}n : f(x) = 1}|)−1/2
∑

x∈{0,1}n:f(x)=1
|x〉 ,

where we threw away the last qubit. If the procedure from Lemma 83
outputs FAIL, abort this iteration, set µ̂i = 0, and go to the next iteration.

3. Consider the n-qubit unitary Uyi acting as Uyi |x〉 = |x+ yi〉. Run the
procedure from Lemma 83 on 2

⌈
162 ln(6/δ̃)(6/ε̃)4

⌉
·
⌈
ln(2
⌈
162 ln(6/δ̃)(6/ε̃)4

⌉
/δ̃)

ε

⌉
many copies of (Uyi ⊗12) |Ψ〉 to obtain 2

⌈
162 ln(6/δ̃)(6/ε̃)4

⌉
many copies

of the post-measurement state

|Ψyi,1〉 = (|{x ∈ {0, 1}n : f(x+ yi) = 1}|)−1/2
∑

x∈{0,1}n:f(x+yi)=1
|x〉 ,

where we threw away the last qubit. If the procedure from Lemma 83
outputs FAIL, abort this iteration, set µ̂i = 0, and go to the next iteration.

4. Run the procedure from Corollary 85 on
⌈
162 ln(6/δ̃)(6/ε̃)4

⌉
copies of

each of |Ψ〉, (Uyi ⊗ 12) |Ψ〉 and on 2
⌈
162 ln(6/δ̃)(6/ε̃)4

⌉
copies of each of

|Ψ1〉, |Ψyi,1〉 to produce an (ε̃/6)-accurate estimate µ̂i of the probability
Prx∼{0,1}n [f(x) = 1 = f(x+ yi)].
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Finally, the tester makes a decision as follows: if 1
m

∑m
i=1 µ̂i ≤ ε̃/3, output

“triangle-free”. Otherwise, output “ε-far from triangle-free”.
Let us analyze the completeness and soundness of this tester. First, we

consider completeness. So, assume that f is triangle-free. Note the first
step above failing in any iteration only ever decreases the empirical average
evaluated by the tester in the end, and thus cannot increase the probability
of falsely rejecting a triangle-free function. Thus, we can condition on the
first step succeeding in all m iterations. In particular, we can assume that
Pry∼{0,1}n [f(y) = 1] > 0. By a similar argument, we can also condition on the
second and third step succeeding in all iterations. And given these successes,
the fourth step will, by Corollary 85, produce, with probability ≥ 1− δ̃, a µ̂i
satisfying |µ̂i − Prx∼{0,1}n [f(x) = 1 = f(x + yi)]| ≤ ε̃/6. By a union bound,
this means that, with probability ≥ 1− δ/5, the empirical average 1

m

∑m
i=1 µ̂i is

a (ε̃/6)-accurate estimate of 1
m

∑m
i=1 Prx∼{0,1}n [f(x) = 1 = f(x+ yi)]. We can

consider the Prx∼{0,1}n [f(x) = 1 = f(x + yi)] for 1 ≤ i ≤ m as i.i.d. random
variables taking values in [0, 1]. Hence, by a Chernoff-Hoeffding concentration
bound and our choice of m, with probability ≥ 1− δ/5, we have∣∣∣ 1

m

∑m
i=1 Prx∼{0,1}n [f(x) = 1 = f(x+ yi)]− Ey∼{0,1}n:f(y)=1

[
Prx∼{0,1}n [f(x) = 1 = f(x+ y)]

]∣∣∣ ≤ ε̃/6 .

Noticing that

Ey∼{0,1}n:f(y)=1
[
Prx∼{0,1}n [f(x) = 1 = f(x+ y)]

]
= Prx,y∼{0,1}n [f(x)=f(y)=f(x+y)=1]

Pry∼{0,1}n [f(y)=1] = 0 ,

(9.1.7)

since f was assumed to be triangle-free, we conclude (after one more union
bound) that 1

m

∑m
i=1 µ̂i ≤ ε̃/3 holds with probability ≥ 1− 2δ/5 ≥ 1− δ, and

in this case the tester outputs “triangle-free”, thus proving completeness.
Next, we consider soundness. So, assume that f is ε-far from triangle-

free. This in particular implies that Prx∼{0,1}n [f(x) = 1] ≥ ε, since the
zero-function is triangle-free. Hence, when measuring the last qubit of |Ψ〉 in
the computational basis, outcome 1 is observed with probability ≥ ε. Therefore,
in any iteration i, the first step in our sketched procedure above will succeed
and produce some yi with f(yi) = 1 with probability ≥ 1− δ̃. We condition on
this high-probability event E1 for the rest of the soundness analysis. By an
analogous reasoning, the assumption of Lemma 83 is satisfied in the scenario of
steps 2 and 3—with S = {0, 1}n, η = ε and the function either given directly
by f or by f(·+ yi)—so in any iteration i, the second and third step each will
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succeed with probability ≥ 1− δ̃. We now further condition on these success
events E2 and E3. At this point, by the same reasoning as in the completeness
case, we know that the fourth step, with success probability ≥ 1− 2δ/5 overall,
produces estimates µ̂i such that∣∣∣∣∣ 1m

m∑
i=1

µ̂i − Pr
x,y∼{0,1}n

[f(x) = f(y) = f(x+ y) = 1]
∣∣∣∣∣ ≤ ε̃/3 .

By Theorem 65, since we assumed f to be ε-far from triangle-free, we have
Prx,y∼{0,1}n [f(x) = f(y) = f(x+ y) = 1] ≥ ε̃. Thus, by the first equality from
Equation (9.1.7), we have

Ey∼{0,1}n:f(y)=1

[
Pr

x∼{0,1}n
[f(x) = 1 = f(x+ y)]

]
≥ ε̃ .

So, the above implies the inequality 1
m

∑m
i=1 ≥ 2ε̃/3. Hence, the tester will in

this case correctly output “ε-far from triangle-free”. A final union bound shows
that this occurs with probability ≥ 1− δ, which proves soundness.

The quantum sample complexity of a single iteration is given by 2 ·
2
⌈
162 ln(6/δ̃)(6/ε̃)4

⌉
·
⌈
ln(2
⌈
162 ln(6/δ̃)(6/ε̃)4

⌉
/δ̃)

ε

⌉
+2
⌈
162 ln(6/δ̃)(6/ε̃)4

⌉
≤ Õ

(
ln(1/δ̃)
ε̃4

)
.

Thus, the overall quantum sample complexity is ≤ m · Õ
(
ln(1/δ̃)
ε̃4

)
≤ Õ

(
ln2(1/δ̃)

ε̃6

)
.

Plugging in the chosen values for δ̃ and ε̃ yields an upper bound of Õ
(
ln2(1/δ)

(
Tower

(
C ·

⌈
log
(
1
ε

)⌉))6)
on the number of quantum copies used by the tester. To achieve the claimed
linear dependence on ln(1/δ), one can simply run the protocol described above
for a constant confidence parameter (say, δ = 1/3), and then amplify the
success probability through majority votes.

Finally, we have to argue that the tester is quantumly computationally effi-
cient. This, however, follows immediately from the efficiency of the procedures
from Lemma 83 and Corollary 85, and from the fact that every Uyi can be
implemented by at most n Pauli-X gates.

Classically, passive triangle-freeness testing requires at least Ω(n) samples.9

Therefore, just like in symmetry testing, there is an unbounded separation
between a classical n-dependent and a quantum n-independent passive testing
sample complexity.

9This can be seen by an argument via linear independence similar to that used in the
lower bound proof of [AHW16, Theorem 10].
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9.2 Fourier sampling does not suffice
The passive quantum testers for symmetry and triangle-freeness given in

Section 9.1 notably do not use quantum Fourier sampling. One might ask if
this is really necessary, given that Fourier sampling (sometimes augmented by
classical samples) suffices for so many other learning and testing tasks. This
section presents a class of functions, Maiorana–McFarland (bent) functions,
which can be tested with O(1) function state copies, but any algorithm relying
solely on Fourier samples and classical samples requires super-polynomial
classical samples to succeed.

The Maiorana–McFarland functions [CM16, Section 6.1] on 2n bits, denoted
MMn, are given by

fh : Fn2 × Fn2 → F2

(x, y) 7→ 〈x, y〉+ h(x),

where h ranges over all functions Fn2 → F2. Maiorana–McFarland functions are
a subset of the class of bent Boolean functions g : {0, 1}m → {0, 1}, which are
those with ĝ(S)2 = 1/2m for all S ⊂ [m] (so they are maximally-far from any
Fn2 -linear function).

We begin by proving hardness of testing MMn using only classical samples(
x, f(x)

)
and Fourier samples. The proof follows swiftly once we establish the

existence of k-wise independent distributions supported only on moderately-
biased strings.

Lemma 67. For sufficiently large n, there is a probability distribution on
{0, 1}2n that is (i) 20.1n-wise independent and (ii) supported on strings x with
fractional hamming weight |x|/2n bounded as∣∣∣∣∣ |x|2n − 1

2

∣∣∣∣∣ ≤ 2−n/3 .

Proof. Let c > 0 be a small universal constant to be chosen later. For simplicity
we assume cn is an integer, otherwise one may round to a nearest integer without
issue. For a function f : Fn2 → F2 let eval(f) denote the truth table (viz. a
2n-bit string) of f . Let Pcn−1 denote the set of n-variate F2 polynomials of
degree at most cn− 1. We claim there exists a Boolean function f such that
the ensemble {

eval(p⊕ f)
}
p∼Pcn−1

satisfies properties (i) and (ii) above.
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Consider the Reed–Muller code C = RM(n− cn, n). (See [ASSY23] for the
definition and properties of Reed–Muller codes.) It is well-known (e.g., Section
24.2.2 in [GRS23]) that uniformly random codewords from the dual code C⊥

form a k-wise independent distribution on {0, 1}2n for k := dist(C)−1 = 2cn−1,
and the codewords of C⊥ = RM(cn − 1, n) are exactly {eval(p) : p ∈ Pcn−1}.
Invariance of the uniform distribution under addition in Fk2 implies that for
any Boolean function f the uniform distribution over strings eval(p ⊕ f) =
eval(p) + eval(f) is also k-wise independent. Property (i) follows by decreasing
c slightly.

To see (ii), we will argue that a random f suffices with high probability.10

For any F2 polynomial p and f a uniformly random Boolean function, we have
from Chernoff that

Pr
f

[ ∣∣∣∣Ex [(−1)f(x)(−1)p(x)
]

︸ ︷︷ ︸
∗

∣∣∣∣ ≥ 2−n/3
]
≤ exp(−const · 2n/3) . (9.2.1)

Union bounding over the ≤ exp(23cn)-many p ∈ Pcn−1 we find

Pr
f

[
∃p ∈ Pcn−1,

∣∣∣∣Ex [(−1)f(x), (−1)p(x)
]∣∣∣∣ ≥ 2−n/3

]
≤ exp

(
−const · 2n/3 + 23cn

)
,

which goes to 0 for c = 0.11, for example. So for large-enough n there exists
an f with absolute correlation at most 2−n/3 with all p ∈ P0.11n−1.

But the correlation (∗) in Equation (9.2.1) is nothing but the bias of the
function p ⊕ f . Thus for all p ∈ P0.1n ⊆ P0.11n−1, the fractional Hamming
weight of eval(p⊕ f) is at most 2−n/3 away from 1/2.

Theorem 68. Suppose a tester for MMn using exclusively classical samples and
Fourier samples succeeds with probability at least 1/2 + 2−0.7n for the accuracy
parameter ε = 1/2−2−0.6n. Then the tester uses at least 20.1n classical samples.

Proof. LetH be the distribution on n-bit functions with truth tables distributed
as in Lemma 67. Consider the two ensembles of Boolean functions Fn2×Fn2 → F2

F1 =
{
(x, y) 7→ 〈x, y〉+h(x)

}
h∼H

and F2 =
{
(x, y) 7→ 〈x, y〉+h(y)

}
h∼H

,

Note that for any f = 〈x, y〉+h(x) ∈ MMn and any g = 〈x, y〉+m(y) ∈ suppF2,∣∣∣∣ Ex,y(−1)f(x,y)(−1)g(x,y)
∣∣∣∣ = ∣∣∣∣ Ex,y(−1)h(x)(−1)m(y)

∣∣∣∣ = |bias(h)bias(m)| ≤ 2−2n/3

10If one desires explicit hard instances one can use the correlation bounds of Smolensky
[Smo87b; Smo93] for degree-d F2 polynomials against the Majority function, but they are
quadratically worse (correlation bounded by ≤ O(d/

√
n)).
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by property (ii) in Lemma 67. Thus all g ∈ suppF2 are at least (1/2−22n/3)-far
from MMn ⊇ suppF1.

Suppose a testing algorithm using R ≤ 20.1n classical samples succeeds with
probability δ. That implies that, given access to a function from F1 or from
F2 with equal probability the algorithm can guess which of the two ensembles
the function was drawn from with success probability δ.

Let b ∼ {1, 2} and f ∼ Fb. With probability at least 1−R2/2n, all x(r)’s and
all y(r)’s in the R-many samples are distinct (collision bound and union bound).
Call this event D. Conditioned on D, for all f ∈ suppF1 and all f ∈ suppF2,
the distribution of observed values

(
f(x(1), y(1), . . . , f(x(R), y(R))

)
is uniformly

random because h ∼ H is 20.1n-wise independent (property (i) in Lemma 67)
and we assumed R ≤ 20.1n. Thus conditioned on D, the data observed is
independent of b. Moreover, all functions in suppF1 and suppF2 are bent,
so Fourier sampling provides no information whatsoever. The distinguishing
probability is thus bounded by

δ ≤ Pr[D] · 12 + Pr[Dc] · 1 ≤ 1
2 + R2

2n ≤ 1
2 + 2−0.8n .

Having established that the Maiorana–McFarland class is hard to test from
classical samples and Fourier samples alone, we now give a very efficient passive
quantum tester for MMn. While this tester still uses quantum Fourier sampling
at the end of the algorithm, it crucially preprocesses the function state in
superposition before applying performing Fourier sampling.

Theorem 69. There is an efficient quantum algorithm that uses O(1) copies
of the function state |f〉 = 1

2n
∑
x,y∈{0,1}n |x, y, f(x, y)〉 to decide, with success

probability ≥ 2/3, whether f is in MMn or (1/3)-far from MMn.

Proof. Let U denote the (2n+1)-qubit unitary acting as |x, y, b〉 7→ |x, y, b⊕ 〈x, y〉〉.
Note that U can be implemented by a quantum circuit with O(n) many
2-qubit gates and depth O(log n). Moreover, notice that U |f〉 = |f̃〉 for
f̃(x, y) := f(x, y)⊕ 〈x, y〉.

The quantum algorithm works as follows. Recall that one function state
copy suffices to obtain one Fourier sample with success probability 1/2, using
only 2n many single-qubit gates. Applying this Fourier sampling subroutine
to O(1) many copies of U |f〉 thus suffices to obtain, with success probability
≥ 5/6, m ≥ C many Fourier samples S1, . . . , Sm ⊆ [2n] of the function f̃ , where
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C > 0 is a universal constant to be chosen later. Let J = {n+ 1, n+ 2, . . . , n}
and compute

p̂ = 1
m

∣∣∣{1 ≤ k ≤ m : J ∩ Sk 6= ∅
}∣∣∣ .

If p̂ ≤ 1/9, output “f ∈ MMn”. Otherwise, output “f is (1/3)-far from MMn.”
First, let us show completeness of the protocol. So, suppose f ∈ MMn.

Then there is a function h : Fn2 → F2 such that

U |f〉 = 1
2n
∑
x,y

|x, y, h(x)〉 = |h〉 ,

where we abused notation by using h to denote the function h : Fn2 × Fn2 → F2

defined as h(x, y) = h(x). As h(x, y) depends only on the first n variables, we
have

p :=
∑

S⊆[2n], J∩S 6=∅
|ĥ(S)|2 = 0 .

The constant C can be chosen such that, conditioned on the high probability
event that we obtained at least C many Fourier samples, we have |p− p̂| ≤ 1/9
with probability ≥ 5/6 (by Chernoff-Hoeffding). So p̂ ≤ 1/9, and our tester
correctly outputs “f ∈ MMn” with probability ≥ 2/3.

Next, we analyze soundness. So, suppose f is (1/3)-far from MMn. Equiva-
lently, f̃(x, y) = f(x, y)⊕ 〈x, y〉 is (1/3)-far from any Boolean function h that
depends only on the first n variables, h(x, y) = h(x), where we again abused
notation. Consider the function g defined as

g(x, y) =
∑

S⊆[2n]:J∩S=∅

ˆ̃f(S)χS(x, y) .

Notice that g(x, y) depends only on x, but g is in general not Boolean. Define
g̃(x, y) = 1g(x,y)≥1/2. Notice that g̃ is a Boolean function and that g̃(x, y)
depends only on x. Then (compare [AS07, Fact II.2]) we have

1
3 ≤ Px1,x2 [f̃(x1, x2) 6= g̃2(x2)] ≤ Ex1,x2 [(f̃(x1, x2)− g(x1, x2))2] =

∑
S⊂[2n]:J∩S 6=∅

∣∣∣∣ ˆ̃f(S)∣∣∣∣2 = p .

Again, conditioned on having produced at least C many Fourier samples, with
probability ≥ 5/6, we have |p − p̂| ≤ 1/9 and thus p̂ ≥ 2/9. So, our tester
correctly outputs “f is (1/3)-far from MMn” with probability ≥ 2/3.

9.3 Separating passive quantum from query-based classical property
testing

In this section we give a property for which classical queries have exponential
advantage over quantum testing from function states. This property is closely
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related to the inability of quantum computers to measure the intersection of
three subset states, where for a subset S ⊆ Fn2 , the corresponding subset state
is defined as |S〉 = 1√

|S|

∑
x∈S |x〉. We explain this connection at the end of the

section.
The main result of this section is the following theorem.

Theorem 70. There exist two sets of Boolean functions F0, F1 such that

min
f0∈F0,f1∈F1

‖f0 − f1‖1 ≥
1
64

and such that:

• Any passive quantum tester requires Ω(2n/2) copies of a function state to
distinguish F0 and F1 with constant probability 2/3.

• F0 and F1 may be distinguished with probability 2/3 from O(1) classical
queries.

The families F0 and F1 arise from certain encodings of triples of sub-
sets A,B,C ⊆ {0, 1}n. Consider the class of Boolean functions f(A,B,C) :
{0, 1}n+2 → {0, 1} on n + 2 bits parameterized by subsets A,B,C ⊆ {0, 1}n

and defined as follows:

f(A,B,C)(x, a) =



1x∈A a = 00

1x∈B a = 01

1x∈C a = 10

0 a = 11

.

With A,B,C drawn uniformly from subsets of {0, 1}n, we define two function
state ensembles {|f(A,B,C)〉}A,B,C and {|f(A,B,A∆B)〉}A,B, with their mixed state
average over t-copy states given by

E0 = E
A,B,C

[∣∣∣f(A,B,C)
〉〈
f(A,B,C)

∣∣∣⊗t], E1 = E
A,B

[∣∣∣f(A,B,A∆B)
〉〈
f(A,B,A∆B)

∣∣∣⊗t] .
We now show that these two mixed state averages over t-copy states are

close in trace distance unless t scales exponentially in n. This means that
exponentially-in-n many copies are needed to distinguish between the two
function state ensembles.

Theorem 71. ‖E0 − E1‖1 ≤ O(t/2n/2).



140

Proof. It will help to reinterpret
∣∣∣f(A,B,C)

〉
as a subset state via the rewriting

|x, a〉 |f(A,B,C)(x, a)〉 =
∑

b∈{0,1}
1x∈Sa,b

|x, (a, b)〉 , (9.3.1)

where Sa,b denotes A,B,C, or ∅ according to a when b = 1, or the respective
complements if b = 0. Using r to represent the concatenation of a and b we
may then write

|f(A,B,C)〉 =
1√
4N

∑
r∈{0,1}3

∑
x∈{0,1}n

1x∈Sr |x, r〉 ,

where N := 2n and, like before, Sr denotes one of A,B,C, or ∅ or the comple-
ments thereof.

With this notation let us consider the basis for the space of t copies of
function states given by{

|x1, r1, . . . , xt, rt〉 : xj ∈ {0, 1}n, rj ∈ {0, 1}3, j = 1, . . . , t
}
.

Let Π denote the projector onto the subspace spanned by those |x1, r1, . . . , xt, rt〉
for which all xj are distinct.

First, we claim

‖E0 − ΠE0Π‖1, ‖E1 − ΠE1Π‖1 ≤ O
(

t√
N

)
. (9.3.2)

These bounds follow from applying the triangle inequality to the following
estimate: for any fixed A,B,C, we have

∥∥∥∣∣∣f(A,B,C)
〉〈
f(A,B,C)

∣∣∣⊗t − Π
∣∣∣f(A,B,C)

〉〈
f(A,B,C)

∣∣∣⊗tΠ∥∥∥
1
=

√√√√(1 + 3 4tN t

(4N)t

)(
1− 4tN t

(4N)t

)
(9.3.3)

≤ 2t√
N
, (9.3.4)

where (x)t = x(x− 1) . . . (x− t+ 1) denotes falling factorial, and where in the
second step we applied the bound

4tN t

(4N)t ≥
(
1− t

N

)t
≥ 1− t2

N
.

To see Equation (9.3.3), note that

M :=
∣∣∣f(A,B,C)

〉〈
f(A,B,C)

∣∣∣⊗t − Π
∣∣∣f(A,B,C)

〉〈
f(A,B,C)

∣∣∣⊗tΠ
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has the following block form after reordering columns:

M = 1
(4N)t



0 1 0

1 1 0

0 0 0


︸ ︷︷ ︸

4tNt

︸ ︷︷ ︸
4t(Nt−Nt)

︸ ︷︷ ︸
(8N)t−(4N)t

4tNt

4t(Nt−Nt)

(8N)t−(4N)t

.

This is because
∣∣∣f(A,B,C)

〉〈
f(A,B,C)

∣∣∣⊗t is an all-zeros matrix except for the prin-
cipal submatrix associated to indices

(
(x1, r1), . . . , (xt, rt)

)
where xj ∈ Srj for

all j, and here it is equal to (4N)−t. There are (4N)t such entries. Moreover,
Π
∣∣∣f(A,B,C)

〉〈
f(A,B,C)

∣∣∣⊗tΠ is an all-zeros matrix except for the principal subma-
trix associated to indices

(
(x1, r1), . . . , (xt, rt)

)
where xj ∈ Srj for all j and

xj 6= xk for j 6= k and here it is also equal to (4N)−t—and there are 4tN t of
these entries. M thus has rank 2 and its spectrum is easily determined, leading
to the estimate in Equation (9.3.3).

Now we claim that in fact

ΠE0Π = ΠE1Π . (9.3.5)

Let us consider a specific entry in ΠE0Π with row and column indices

r = (. . . , (xj, rj), . . .), s = (. . . , (yj, sj), . . .) .

It will be useful to write Sz = Sz(r, s) for the set types that appear with a
particular string z ∈ {0, 1} in r and s. That is, for any z ∈ {0, 1}n define

Sz = Sz(r, s) =
{
q ∈ {0, 1}3 : (z, q) ∈ r or (z, q) ∈ s

}
.

Then

〈r|ΠE0Π |s〉 = (4N)−t E
A,B,C

(∏
j1xj∈Srj

)(∏
j1yj∈Ssj

)
= (4N)−t

∏
z∈{xj}j∪{yj}j

E
A,B,C

∏
q∈Sz1z∈Sq .

It follows from the definition of Π that |Sz| ≤ 2 for any z ∈ {xj}j ∪{yj}j : there
is at most one contribution to Sz from each of r and s. As a result we have for
any z that

E
A,B,C

iid∼P{0,1}n

∏
q∈Sz1z∈Sq = E

A,B
iid∼P{0,1}n

C=A∆B

∏
q∈Sz1z∈Sq .
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This follows from mild case analysis, the most important part of which is to
note that for any S 6= T ∈ {A,B,C,A∆B},

(1x∈S,1x∈T ) ∼ (b1, b2),

where b1 and b2 are i.i.d. Bernoulli 1/2 random variables. So we see 〈r|ΠE0Π |s〉 =
〈r|ΠE1Π |s〉 and Equation (9.3.5) is satisfied.

Combining the triangle inequality with Equation (9.3.2) and Equation (9.3.5)
gives the result.

Proof of Theorem 70. Consider

F0 =
{
f(A,B,C) : A,B,C ⊆ {0, 1}n, 2−n|A ∩B ∩ C| ≥ 1/16

}
and F1 =

{
f(A,B,A∆B) : A,B ⊆ {0, 1}n

}
,

First we prove the minimum distance between F0 and F1. For any f0 ∈ F0,
there are 2n/16 strings x ∈ {0, 1}n such that f0(x00) = f0(x01) = f0(x10) = 1.
On the other hand, for all f1 ∈ F1, by definition there are no strings x with
this property. Thus the minimum L1 distance between F0 and F1 is at least

2n/16
4 · 2n = 1

64 .

Now define the state ensembles

E ′0 = E
f∼F0

|f〉〈f |⊗t and E1 = E
f∼F1

|f〉〈f |⊗t.

E1 here is exactly E1 from Theorem 71. To compare E ′0 and E0 from Theorem 71,
note that for A,B,C iid∼ P{0, 1}n, any string x is in A∩B ∩C with probability
1/8 and so from Chernoff we have

Pr
[
|A ∩B ∩ C| < 1

2 · 2
n

8

]
≤ exp

(
−2n
64

)
.

This dramatic concentration, together with Theorem 71 implies

‖E ′0 − E1‖1 ≤ ‖E ′0 − E0‖1 + ‖E1 − E0‖1 ≤ O(t/2n/2) .

To test this property with classical queries, given an unknown f = f(A,B,C)

one may simply choose a random x ∈ {0, 1}n and check if f(x00) = f(x01) =
f(x10) = 1. This test accepts with probability 1/8 when f ∈ F0 and accepts
with probability 0 when f ∈ F1.
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k-fold intersection is “unfeelable” for k ≥ 3
In this subsection, we reinterpret Theorem 70 in the context of subset states.

Given access to copies of k different subset states |S1〉 , . . . , |Sk〉, it is natural
to ask how many copies of each are required to estimate the fractional size of
the mutual intersection,

|S1 ∩ · · · ∩ Sk|
2n .

When k = 2, this can be readily accomplished using ideas similar to our
algorithms presented above. In the case of intersection estimation with k = 2,
we have the identity

|S1 ∩ S2|
2n = 〈Sall|S1〉 〈S1|S2〉 〈S2|Sall〉 ,

where Sall := {0, 1}n denotes the full hypercube. The quantities on the right-
hand side are easily estimated via swap tests, so it takes O(1) copies of |S1〉 , |S2〉
to estimate the quantity of interest to any constant additive error.

In contrast, it is a consequence of Theorem 70 that the same question for
k = 3 has a very different answer: it requires Ω(2n/2) copies to achieve constant
additive error. To see this, note that from any |f(A,B,C)〉 one may obtain each
of |A〉, |B〉, and |C〉 with constant probability by measuring the a and f(x, a)
registers, provided that the minimum among |A|, |B|, and |C| is at least a
constant fraction of 2n—and this condition is satisfied by the overwhelming
majority of functions in the families F0 and F1 of Theorem 70. From F0 and
F1 we obtain:

Corollary 72. There are two families S0 and S1 of triples of subsets of {0, 1}n

such that

∀(A0, B0, C0) ∈ S0, |A0 ∩B0 ∩ C0|/2n ≥ 1/16

and ∀(A1, B1, C1) ∈ S1, |A1 ∩B1 ∩ C1|/2n = 0 ,

and yet any quantum algorithm distinguishing the two families via their subset
states requires Ω(2n/2) copies of |A〉 , |B〉 , or |C〉.

9.4 A challenge: lower bounds for monotonicity testing
Here we show that the ensembles used in [Gol+00] to establish strong lower

bounds on monotonicity testing from samples do not improve upon the basic
Ω(1/ε) sample complexity lower bound in the quantum case. To prove this, we
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consider the pair of distributions over functions from [Gol+00], constructed
such that one is supported entirely on monotone functions, and the other with
high probability on functions that are ε-far from monotone; we show that the
associated t-copy quantum function state ensembles become distinguishable
with constant success probability as soon as t = Ω(1/ε). At the end of the
section, we discuss how to extend our reasoning to the ensembles used in
[Bla24].

Distinguishability of twin ensembles
For the proof, it will be useful to also consider phase states, which are given

by
|Ψph

f 〉 = 1√
2n

∑
x∈{0,1}n

(−1)f(x) |x〉 .

The proof reduces to the distinguishability of phase state ensembles encoding
the following classical sets of functions taken from [Gol+00].

Definition 5 (Twin ensembles). Let M = {(ui, vi)}mi=1 be a set of pairs of
elements in {0, 1}n such that all u1, v1, . . . , um, vm are distinct. Let ∪M :=
∪(u,v)∈M{u, v} be the complete set of elements in the matching. Fix a function
g : {0, 1}n\(∪M) → {0, 1}. We now define the twin ensembles associated to
M and g, which are two sets F0, F1 of functions on {0, 1}n.

For any bipartition of M , M = A tB, define the following two functions.

1. f (0)
A,B is defined as follows:

• For (u, v) ∈ A, we set f (0)
A,B(u) = f

(0)
A,B(v) = 1.

• For (u, v) ∈ B, we set f (0)
A,B(u) = f

(0)
A,B(v) = 0.

• If x 6∈ ∪M , then define f (0)
A,B(x) = g(x).

2. f (1)
A,B is defined as follows:

• For (u, v) ∈ A, we set f (1)
A,B(u) = 1 and f (1)

A,B(v) = 0.

• For (u, v) ∈ B, we set f (1)
A,B(u) = 0 and f (1)

A,B(v) = 1.

• If x 6∈ ∪M , then define f (1)
A,B(x) = g(x).

Then the twin ensembles associated to M and g are F0 = {f (0)
A,B}AtB=M and

F1 = {f (1)
A,B}AtB=M .
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Let us recall the reasoning from [Gol+00] that connects these ensembles
to monotonicity testing. Take k = dn/2e and consider the kth and (k − 1)th

layer of the Boolean hypercube with respect to the standard partial ordering
on strings �. These layers we denote by Lk and Lk−1 respectively; i.e.,
Li = {x ∈ {0, 1}n−1 : |x| = i}, where |x| denotes the Hamming weight
of x. Stirling’s formula gives that |Lk|, |Lk−1| = Ω(2n/

√
n). As argued in

[Gol+00], we can find a matching M = {(ui ≺ vi)}mi=1 ⊂ Lk−1 × Lk such that
(i) there is no i 6= j such that ui and vj are comparable, (ii) |M | is even, and
(iii) m := |M | = ε · 2n, for any ε = ε(n) with 0 < ε ≤ O(n−3/2). Now define

g : {0, 1}n\∪M → {0, 1}

x 7→ 1|x|≥n/2 .

The choices of g and M define twin ensembles F0 and F1.
Clearly, every f (0)

A,B is a monotone function. Let F far
1 ⊂ F1 be the set of f (1)

A,B

functions for which |B| ≥ m/4. Then all functions in F far
1 are at least Ω(ε)-far

from monotone [Gol+00]. We thus wish to bound the distinguishability of F0

from F far
1 , which in the quantum case is determined by the 1-norm∥∥∥∥∥∥ E

f
(0)
A,B
∼F0

(
|f (0)
A,B〉〈f

(0)
A,B|

)⊗t
− E

f
(1)
A,B
∼F far

1

(
|f (1)
A,B〉〈f

(1)
A,B|

)⊗t∥∥∥∥∥∥
1

.

From a standard concentration argument, it suffices to instead bound the
distinguishability between F0 and F1, which in the quantum case is determined
by ∥∥∥∥∥∥ E

f
(0)
A,B
∼F0

(
|f (0)
A,B〉〈f

(0)
A,B|

)⊗t
− E

f
(1)
A,B
∼F1

(
|f (1)
A,B〉〈f

(1)
A,B|

)⊗t∥∥∥∥∥∥
1

.

We will show that, in contrast to the classical case analyzed in [Gol+00], the
twin ensembles actually become distinguishable already for t ∼ 1/ε. Namely,
much of Section 9.4 will be dedicated to proving the following theorem:

Theorem 73. Define ε > 0 so that ε2n = m = |M |. Then∥∥∥∥∥∥EB
(|Ψph

f
(0)
A,B

〉〈Ψph
f
(0)
A,B

|
)⊗t− EB

(|Ψph
f
(1)
A,B

〉〈Ψph
f
(1)
A,B

|
)⊗t∥∥∥∥∥∥

1

≥ Ω(1) (9.4.1)

for t = Ω(1/ε).

Let us note that Theorem 73 implies the same 1-norm lower bound and
thus the same distinguishability of the two ensembles also from function state
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copies. To see this, we notice that the function state for any Boolean function f
defined on n bits is unitarily equivalent to the phase state for a related Boolean
function on n+ 1 bits:

(I⊗n⊗H) |f〉 = 1√
2n+1

∑
x∈{0,1}n

|x〉 |0〉+ 1√
2n+1

∑
x∈{0,1}n

(−1)f(x) |x〉 |1〉 =: |Ψph
f̃
〉 ,

where f̃(x1, . . . , xn, xn+1) = (1xn+1=1)f(x1, . . . , xn).
So, in fact the function states for functions in F0 and F1 are unitarily

equivalent to phase states for another set of twin ensembles F̃ 0 and F̃ 1 with
corresponding M̃ obtained by appending 1 to every string in M and with g̃
given by g̃(x) = (1xn+1=1) · g(x1, . . . , xn). Theorem 73 implies these phase state
ensembles are distinguishable with constant success probability for t ≥ Ω(1),
thus the same holds for the function state ensembles for F0 and F1.

Difference matrix: the entries
Here, to prove Theorem 73, we pursue a bound on the trace norm distance

in Equation (9.4.1).
Define the density matrices

A(0) = EB

(|Ψph
f
(0)
A,B

〉〈Ψph
f
(0)
A,B

|
)⊗t and A(1) = EB

(|Ψph
f
(1)
A,B

〉〈Ψph
f
(1)
A,B

|
)⊗t ,

Call A := A(0) −A(1) the difference matrix. We now characterize the entries of
the difference matrix A by evaluating A(0) and A(1).

Rows (resp. columns) of A(0) and A(1) are indexed by t-tuples x =
(x1, . . . , xt) (resp. y = (y1, . . . , yt)) of strings xj ∈ {0, 1}n (resp. yj ∈ {0, 1}n),
1 ≤ j ≤ t. It turns out that the entries of A(0) and A(1) depend only on
the multiset {x1, . . . , xt, y1, . . . , yt}, and for this we use the notation x ∪ y.
In the following it will sometimes be convenient to use ↑ for exponentiation:
a ↑ b := ab.

Entries of the A(0), the f (0) matrix. The (x,y) entry of A(0) takes the
form

A(0)
x,y = E

AtB=M

 1
2nt

∏
z∈x∪y

(−1)f
(0)
A,B

(z)

 = 1
2nt E

AtB=M

(−1) ↑
∑

z∈x∪y
f
(0)
A,B(z)

 .
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Evaluating this expectation gives

A(0)
x,y = 1

2nt

(−1) ↑
∑

z∈x∪y,z 6∈∪M
g(z)

 ∏
p∈M

E
A,B

(−1) ↑
∑

z∈x∪y:z∈p
f
(0)
A,B(z)

= 1
2nt

(−1) ↑
∑

z∈x∪y,z 6∈∪M
g(z)


·
∏
p∈M

E
A,B

(−1) ↑

|{z ∈ x ∪ y : z ∈ p}| mod 2 if p ∈ A

0 otherwise
.

So, if |{z ∈ x ∪ y : z ∈ p}| = 0 mod 2, the expectation is always (−1)0. On
the other hand, if |{z ∈ x ∪ y : z ∈ p}| = 1 mod 2, the expression inside the
expectation is (−1)1 w.p. 1/2 and (−1)0 w.p. 1/2. Define

s(x ∪ y) = (−1) ↑
∑

z∈x∪y,z 6∈∪M
g(z) . (9.4.2)

Then

A(0)
x,y =


1
2nt s(x ∪ y) if ∀p ∈M, |{z ∈ x ∪ y : z ∈ p}| = 0 mod 2

0 otherwise .

Entries of A(1), the f (1) matrix. Similarly to above we have

A(1)
x,y = 1

2nt s(x ∪ y)
∏
p∈M

E
A,B

(−1) ↑
∑

z∈x∪y:x∈p
f
(1)
A,B(z) .

To evaluate the expectation, note there are four cases for each p = (u, v) ∈M ,
depending on how many times u occurs in x∪y, and how many times v occurs
in x∪ y. Denote these quantities mod 2 as Lp = Lp(x∪ y) and Up = Up(x∪ y)
respectively.

• If Lp = 0 and Up = 0, the sum in the exponent is always 0, yielding
(−1)0 = 1 w.p. 1.

• If Lp = 0 and Up = 1, the sum is either 0 or 1, each w.p. 1/2, yielding in
expectation (−1)1/2 + (−1)0/2 = 0.

• If Lp = 1 and Up = 0, we similarly get 0 for the expectation.

• If Lp = 1, Up = 1, then the sum is always 1, yielding (−1)1 = −1 with
probability 1.
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In summary,

A(1)
x,y =


1
2nt (−1)|{p∈M :Lp=Up=1}|s(x ∪ y) if ∀p ∈M, |{z ∈ x ∪ y : z ∈ p}| = 0 mod 2

0 otherwise
,

which is equivalent to

A(1)
x,y =


1
2nt (−1)|{p∈M :Lp=Up=1}|s(x ∪ y) if ∀p ∈M,Lp = Up

0 otherwise
.

Putting these together, we find

Ax,y = A(0)
x,y−A(1)

x,y =



2
2nt s(x ∪ y) if ∀p ∈M,Lp = Up

and |{p ∈M : Lp = Up = 1}| = 1 mod 2

0 otherwise

.

(9.4.3)

Difference matrix: the spectrum
Here we conduct a fine-grained analysis of the spectrum of the difference

matrix A in order to obtain a combinatorial bound on ‖A‖1. In Section 9.4 we
then understand the asymptotics on this bound in terms of ε, t, and n.

Let D be a diagonal matrix with entries s(x) for all t-tuples x. Then
Ã := 2nt−1D−1AD is similar to 2nt−1A and moreover

Ãx,y =

s(x)s(x ∪ y)s(y) if ∀p ∈M,Lp = Up and |{p ∈M : Lp = Up = 1}| = 1 mod 2

0 otherwise

=

1 if ∀p ∈M,Lp = Up and |{p ∈M : Lp = Up = 1}| = 1 mod 2

0 otherwise
.

(9.4.4)

Here we used that s(x ∪ y) = s(x)s(y); the other notation (for Lp and Up) is
as above.

Because of the matrix similarity, we know that A and Ã have the same
spectrum up to a scaling factor of 1/2nt−1. It will turn out that after a certain
permutation of indices, Ã is block-diagonal, with each block corresponding
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to the adjacency matrix of a complete bipartite graph. Towards defining
this block structure, we write xCy (read “x is compatible with y”) if for all
p ∈M,Lp = Up and |{p ∈M : Lp = Up = 1}| = 1 mod 2.

Given an index tuple x, we define some technical quantities of x that are
important for combinatorics to follow. These do not depend on the order of
elements in x so we will treat x as a multiset for this discussion. The multiset
x may be partitioned as:

x = { pairs } t { singletons } t { elements outside of ∪M } (9.4.5)

To form the “pairs” multiset, we greedily take as many copies of each pair
p ∈M as we can from x. The “singletons” multiset are the remaining elements
in x from ∪M that cannot be paired up, and the final part corresponds to
those elements in x outside of ∪M . This partitioning is unique.

For example, suppose M = {(1, 2), (3, 4), (5, 6)}, where we identify natural
numbers with their n-bit binary expansions. Then, the following multiset has
the partition

{0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4} 7−→ {(1, 2), (1, 2), (3, 4)} t {1, 1, 3, 3, 3} t {0} .

Now define E(x) to be the number of pairs (with multiplicity) in x mod 2,
i.e., the cardinality mod 2 of the first part of the partition in Equation (9.4.5).
Also, define the singleton set of x as

sing(x) := {e ∈ “singletons” : e occurs an odd number of times in “singletons” } .

So, continuing our example, E(x) = 1 and sing(x) = {3}. We also define the
type of x, type(x), to be the pairs with nonzero overlap with its singleton set:

type(x) = {p ∈M : p ∩ sing(x) 6= ∅}.

Continuing our example, we have that type
(
(3, 5, 5, 5)

)
= {(3, 4), (5, 6)}. We

will also need a quantity on pairs of tuples x,y counting the number of elements
in their singleton sets that are paired up, mod 2:

P (x,y) = |{p ∈M : p ⊆ sing(x) ∪ sing(y)}| mod 2 .

So for example, keeping M as before, P
(
(1, 3), (1, 4)

)
= 1.

Lemma 74. xCy if and only if

type(x) = type(y) and E(x) + E(y) + P (x,y) = 1 mod 2 .
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Proof. ( =⇒ ) Suppose by way of contradiction that xCy but type(x) 6= type(y).
Then there exists a pair p = (a, b) such that (WLOG) a occurs in the “singletons”
partition of x an even number of times, and a or b occurs in the “singletons”
partition of y an odd number of times. This implies Lp + Up = 1 mod 2.

So now suppose type(x) = type(y). Because xCy, we have |{p ∈ M :
Lp = Up = 1}| = 1 mod 2. But |{p ∈ M : Lp = Up = 1}| mod 2 is precisely
E(x)+E(y)+P (x,y) mod 2, because both quantities count the total number
of pairs (with multiplicity) occurring in x ∪ y.

( ⇐= ) If type(x) = type(y), we must have that Lp + Up = 0 mod 2 for
all p. The elements in the “pairs” partition do not affect this condition. For
all pairs p = (a, b), either both a, b occur an even number of times in the
“singletons” partition of x and y. Or, if (WLOG) a occurs an odd number of
times in x, then a or b occurs an odd number of times in y, preserving the
condition.

Furthermore, as before, |{p ∈M : Lp = Up = 1}| mod 2 counts the same
quantity as E(x)+E(y)+P (x,y) mod 2. Therefore, if type(x) = type(y) and
E(x)+E(y)+P (x,y) = 1 mod 2, we satisfy the criteria for compatibility.

To understand the spectrum of the difference matrix we will make repeated
use of the following structural fact about compatibility.

Lemma 75. Let x,x′,x′′ be such that xCx′′ and x′Cx′′. Then for all y, xCy
if and only if x′Cy.

Proof. By symmetry we need only argue the forward direction. Clearly
type(x) = type(x′) = type(y). Note that for any z, z′, z′′, we have P (z, z′) +
P (z′, z′′) = P (z, z′′) (mod 2), and because xCx′′ and x′Cx′′, Lemma 74 implies

E(x) + P (x,x′′) = E(x′) + P (x′,x′′) (mod 2).

Then we have the following equivalences modulo 2:

1 ≡ E(x) + P (x,y) + E(y) (Lemma 74)

≡ E(x) + P (x,x′) + P (x′′,y) + E(y)

≡ E(x′) + P (x′,x′′) + P (x′′,y) + E(y)

≡ E(x′) + P (x′,y) + E(y) .

Appealing to Lemma 74, we conclude x′Cy.
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This implies, for example, that the xth and x′th rows in Ã are equal.
We can view Ã as describing a graph GÃ with vertices ({0, 1}n)t and edge

set
{(x,x′) ∈ V × V | xCx′} .

With Lemmas 74 and 75 in hand, we are prepared to describe the structure of
GÃ. It will be useful to define certain combinatorial quantities first.

Definition 6 (Combinatorial quantities). Let Σ = Σodd t Σeven t Σrest be an
alphabet of cardinality |Σ| = 2n partitioned such that Σodd consists of p pairs,
so |Σodd| = 2p, and Σeven consists of m− p pairs, so |Σeven| = 2(m− p). Define
T (t, p) as the number of strings of length t over Σ such that symbols from Σodd

each occur an odd number of times, symbols from Σeven each occur an even
number of times, and symbols from Σrest occur any number of times. Then
define

x1(t) =
min{m,t}∑
p=0
p odd

(
m

p

)
T (t, p) and x2(t) =

min{m,t}∑
p=0
p even

(
m

p

)
T (t, p) . (9.4.6)

Further, define N(t, p) as the number of strings of length t over Σ such that
for each pair in Σodd, one of the two symbols occurs an odd number of times
while the other occurs an even number of times, and for each pair in Σeven,
either both symbols occur an odd number of times or both symbols occur an
even number of times.

Lemma 76 (Structure of GÃ). The graph GÃ has exactly ∑min(t,m)
k=0

(
m
k

)
con-

nected components, each associated with a specific type(·) of vertex.
The connected component of GÃ corresponding to the unique type of car-

dinality 0 (the empty type) is a complete bipartite graph (U, V,E) with parts
U, V such that

|U | = x1(t) and |V | = x2(t) .

For k ≥ 1, there are
(
m
k

)
connected components, each corresponding to

a type of cardinality k. All such components are complete bipartite graphs
(U, V,E) with parts U, V such that

|U |, |V | = N(t, k)/2 .

Proof. First, by Lemma 74, only vertices of the same type can be compatible,
and there are a total of ∑min(t,m)

k=0

(
m
k

)
types. For the remainder of the proof,

we only need to consider vertices of the same type.
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We will analyze the case with k ≥ 1 first. Here k refers to the size of the type
of the vertex. Consider a tuple x such that sing(x) = {a1, a2, . . . , ak−1, ak} and
E(x) = 0. Consider a second tuple x′ such that sing(x′) = {a1, a2, . . . , ak−1, bk},
E(x′) = 0, and (ak, bk) are a pair in M . Two such tuples must exist since
k > 0. Note that x is compatible with x′. Furthermore, all elements of the
same type as x and x′ must be compatible with exactly one of x or x′. To see
that we form a complete bipartite graph, consider two elements y,y′ such that
xCy and x′Cy′. By Lemma 75, we can conclude that yCy′. Since y,y′ were
arbitrary, we have a complete bipartite graph.

To get the size of each of the two sets in the bipartition, fix a type of size
k ≥ 1 and take (a1, b1), . . . , (ak, bk) to be the pairs representing the type. By
our definition of type, we know: For each i, the elements ai and bi appear
with differing parities; for each of the remaining pairs in M , the two elements
of the pair occur with the same parity; and each remaining element, which
does not belong to any pair in M , can occur with an arbitrary parity. Thus,
the number of vertices with type k is exactly N(t, k). It remains to observe
that the two components in the bipartition for type k are of equal size. To see
this, take any tuple x of type k and w.l.o.g. suppose that a1 occurs with odd
parity in sing(x). (Otherwise, b1 occurs with odd parity in sing(x) and the
remaining argument is easily modified.) If we construct a tuple x′ from x by
replacing as many occurrences of a1 as are in sing(x) with b1 (while keeping
the remaining elements the same), then xCx′ by Lemma 74. This provides
us with a one-to-one mapping between the two components in the bipartition,
thus they are of equal size.

For k = 0, we instead consider two distinct vertices x and x′ with E(x) = 0
and E(x′) = 1 and |sing(x)| = |sing(x′)| = 0. Note that x and x′ are compatible.
By an analogous argument to the case of k > 0, we must have all vertices
connected to either x and x′, and we get a complete bipartite graph.

For the sizes of the sets in the bipartition, note that the number of vertices
connected to x with E(x) = 0 will be precisely x1(t) and the number of vertices
connected to x′ with E(x′) = 1 will be precisely x2(t), completing our proof.

As a consequence of this lemma, when suitably ordering the indexing tuples,
the matrix Ã has a block-diagonal structure with blocks corresponding to the
connected components of GÃ. Thus, to determine the spectrum of Ã, it suffices
to determine the spectrum of each block.
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The adjacency matrix of a complete bipartite graph between a- and b-many
vertices has two nonzero eigenvalues, each of magnitude

√
ab [Bol98, Chapter

VIII.2]. Instantiating this fact in the context of Lemma 76 and renormalizing
by 1/2nt−1 (recall A = (DÃD−1)/2nt−1), we obtain the following bound on
‖A‖1.

Corollary 77. The 1-norm of the matrix A satisfies:

‖A‖1 =
2

2nt−1
√
x1(t) · x2(t) +

2
2nt−1

min{t,m}∑
k=1

(
m

k

)
N(t, k)

2 .

Difference matrix: the trace norm
Here we analyze the growth of ‖A‖1 in terms of ε, t, and n. We begin by

using exponential generating functions (or EGFs—see [Wil94] for background)
to derive explicit expressions for T (t, p), N(t, p), and x1(t) + x2(t).

Lemma 78. Let T (t, p) be as in Definition 6. Then

T (t, p) =
(1
2

)2m 2m−2p∑
j=0

2p∑
k=0

(−1)k
(
2m− 2p

j

)(
2p
k

)
(2n − 2j − 2k)t.

Proof. For readability let us use a for the number of symbols occurring an even
number of times, b for the number of symbols occurring an odd number of
times and c for the rest. Then T (t, p) has EGF

f(x) =
(
ex + e−x

2

)a(
ex − e−x

2

)b(
ex
)c
.

Rearranging, we find

f(x) =
(1
2

)a+b a∑
j=0

b∑
k=0

(
a

j

)(
b

k

)
(−1)ke(a−2j+b−2k+c)x .

And we assume c > a + b, so we use that the EGF eηx corresponds to the
sequence {ηt}∞t=0, read off the relevant coefficient to derive the formula for
T (t, p):

T (t, p) =
(1
2

)a+b a∑
j=0

b∑
k=0

(
a

j

)(
b

k

)
(−1)k(a− 2j + b− 2k + c)t .

Substituting for a, b, c yields the result.

Lemma 79. With x1 and x2 defined as in Equation (9.4.6),

x1(t) + x2(t) =
(1
2

)m m∑
k=0

(
m

k

)
(2n − 4k)t.
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Proof. The combinatorial interpretation of x1(t)+x2(t) is the number of strings
of length t over Σ where symbols from A tB, |A tB| = 2m are paired up and
within each pair, they must appear with the same parity.

The EGF for strings with 2 elements appearing with same parity is(
ex + e−x

2

)2

+
(
ex − e−x

2

)2

= e2x + e−2x

2 .

To construct the desired strings, we combine m copies of this with 2n − m

copies of the unrestricted EGF, leading to the overall EGF

2−m
(
e2x + e−2x

)m
e(2

n−2m)x .

The result follows from simplifying this EGF and recognizing the related
counting formula.

Lemma 80. Let N(t, p) be as in Definition 6. Then

N(t, p) =
(1
2

)m p∑
j=0

m−p∑
k=0

(−1)j
(
p

j

)(
m− p

k

)
(2n − 4j − 4k)t.

Proof. The proof uses EGFs analogously to how we derived the expression for
T (t, p). The EGF for N(t, p) is

f(x) =
(
e2x − e−2x

2

)p(
e2x + e−2x

2

)m−p(
ex
)2n−2m

.

We can now rearrange this product of sums into a sum of products and, using
again that the EGF eηx corresponds to the sequence {ηt}∞t=0, read off the
expression for N(t, p).

Lemma 81. With x1 and x2 defined as in Equation (9.4.6),

1
2nt

min{t,m}∑
k=1

(
m

k

)
N(t, k)

2 = 1
2

(
1− x1(t) + x2(t)

2nt

)
.

Proof. First, observe that ∑min{t,m}
k=0

(
m
k

)
N(t, k) = 2nt, since every one of the

overall 2nt tuples belongs to some type and we are summing over all sizes of
types. Consequently,

1
2nt

min{t,m}∑
k=1

(
m

k

)
N(t, k)

2 = 1
2 − 1

2

(
m

0

)
N(t, 0)
2nt

= 1
2 − 1

2m+1

m∑
k=0

(
m

k

)(
1− 4k

2n

)t

= 1
2 − 1

2
x1(t) + x2(t)

2nt ,
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where the second-to-last step used Lemma 80 and the last step used Lemma 79.

We now further study the trace norm of A. We will need the following
technical fact.

Proposition 3. Suppose m = |M | = ε2n and ε = ε(n) < 1. Let D ∈ R be a
fixed constant. Then, for any t = t(n) ≤ O(2bn) with 0 ≤ b < 1

4 , we have

E
K∼B(m,1/2)

(
1− DK

2n
)t

=
(
1−

Dm
2

2n

)t
+ o(1) .

In Proposition 3 and what follows, B(`, 1/2) denotes the Binomial distribution
with ` trials and success probability 1/2.

Proof. Notice that, for any t ∈ N, the function f : [0, B) → R given by
f(x) = (1 − x)t is Lipschitz with Lipschitz constant tmax0≤x≤B |1 − x|t−1.
Using that |1 − Dk/2n| ≤ 1 holds for all 0 ≤ k ≤ m for sufficiently large n,
this implies

E
K∼B(m,1/2)

∣∣∣∣∣∣
(
1− DK

2n
)t

−
(
1−

Dm
2

2n

)t∣∣∣∣∣∣ ≤ E
K∼B(m,1/2)

∣∣∣∣∣t
(
DK

2n −
Dm

2
2n

)∣∣∣∣∣ .
From Chernoff we have that

Pr
[∣∣∣∣∣DK2n −

Dm
2

2n

∣∣∣∣∣ ≥ η

]
≤ 2 exp

(
−const · 2n · η

2

ε

)
.

Call the low-probability event above E. Then

E
K∼B(m,1/2)

∣∣∣∣∣t
(
DK

2n −
Dm

2
2n

)∣∣∣∣∣ ≤ tPr[Ec]η + tPr[E]
Dm

2
2n

≤ tη + 2tDε exp
(
−const · 2n · η

2

ε

)
.

We can set η = min{1/n, 1/t2}, then, because of our assumption on t = t(n),
both summands go to 0 as n→ ∞, finishing the proof.

Theorem 82. ‖A‖1 = Ω(1) for t = Ω
(
ε(n)−1

)
, assuming ε = ε(n) ≥ Ω(2−bn)

with 0 ≤ b < 1
4 .

Proof. Let us label the expression for ‖A‖1 from Corollary 77 as

‖A‖1 =
2

2nt−1
√
x1(t) · x2(t) +

2
2nt−1

min{t,m}∑
k=1

(
m

k

)
N(t, k)

2︸ ︷︷ ︸
(∗)

. (9.4.7)
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We will lower-bound ‖A‖1 by lower-bounding the second summand here, (∗).
Lemma 79 implies

x1(t) + x2(t) =
(1
2

)m m∑
k=0

(
m

k

)
(2n − 4k)t = E

K∼B(m,1/2)
(2n − 4K)t, (9.4.8)

where B(m, 1/2) refers to the Binomial distribution. Returning to (∗) and
using Lemma 81, we have

(∗) = 4
2

(
1− x1(t) + x2(t)

2nt

)
= 2

(
1− E

(
1− 4K

2n
)t)

.

Using Proposition 3, we obtain that, as long as t ≤ O(2bn) with 0 ≤ b < 1
4 ,

(∗) = 2
(
1−

(
1− 2m

2n
)t

+ o(1)
)
= 2

(
1− (1− 2ε)t + o(1)

)
.

Notice that our assumption on ε = ε(n) ensures that 1
ε(n) ≤ O(2bn) with

0 ≤ b < 1
4 . Therefore, we can consider t ≥ Ω(1/ε), we get 1− (1− 2ε)t ≥ Ω(1),

and therefore ‖A‖1 ≥ (∗) ≥ Ω(1).

Remark 3. We can extend the above quantum distinguishability analysis to
the ensembles from [Bla24]. The construction in [Bla24], based on Talagrands
random DNFs [Tal96], establishes a lower bound of exp(Ω(

√
n/ε)) for pas-

sive classical monotonicity testing via a birthday paradox argument. The
construction randomly selects DNF terms of fixed width to define a partial
partition of the Boolean cube into disjoint sets Uj such that any two points
in different Uj are incomparable. The difference between the monotone Dyes

and non-monotone Dno case lies in the function value assignments: in Dyes,
values within each disjoint set Uj are structured monotonically while in Dno,
values with each Uj are randomly assigned. Classically, distinguishing these
distributions requires exp(Ω(

√
2n/ε)) samples, as a tester must sample at least

two points from the same Uj to gain information. This leads to an exponential
lower bound when parameters are chosen appropriately.

Following an argument structured similarly to the one above, one may see
that the difference matrix between the induced function state ensembles in the
quantum setting decomposes into blocks corresponding to complete multipartite
graphs. To see this, in analogy to the analysis from Section 9.4, we can define
a notion of compatibility between any two index tuples. Given a collection
of sets Uj and an index tuple x, we first remove duplicates from the tuple
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and analyze its intersection pattern with each Uj. For instance, if U1 = {1, 2},
U2 = {3, 4}, and U3 = {5, 6}, and our index tuple is (1, 1, 1, 2, 3, 3, 3, 3, 5),
then after removing duplicate, the corresponding subsets under the Uj sets are
[1, 2], [ ], [5]. Two tuples are said to be compatible if, for every j, the number
of elements from each Uj that appear in the tuple is even but not identical
across the tuples after removing duplicates and decomposing. For example,
the tuple (1, 1, 1, 2, 3, 3, 3, 3, 5) is compatible with (1, 1, 1, 2, 3, 3, 3, 3, 6) but not
with (1, 2, 3, 3, 3, 3, 3, 3, 5), as the latter shares the same decomposition as the
original.

Importantly, this compatibility is transitive: if x is compatible with x′ and
if x′ is compatible with x′′, then x is also compatible with x′′. This transitivity
induces complete multipartite graph blocks with each block corresponding to a
compatibility class. Therefore, the trace distance between the two ensembles
equals the sum of the trace norms of multipartite graphs of various sizes.
Bounds on the eigenvalues of such a graph in terms of the sizes of its parts
can be found in, for example, [EH80; Meh23]. Also in analogy to our analysis
of the [Gol+00] construction, we find the ensembles remain distinguishable
when t = Ω(1/ε), and thus they achieve no improvement over the generic lower
bound.

Acknowledgments
The authors thank Srinivasan Arunachalam, Fernando Jeronimo, Kyle Gul-

shen, Jiaqing Jiang, John Bostanci, Yeongwoo Hwang, Shivam Nadimpali, John
Preskill, Akshar Ramkumar, Abdulrahman Sahmoud, Mehdi Soleimanifar, and
Thomas Vidick for enlightening discussions. Moreover, we thank Nathan Harms
for suggesting we look at monotonicity and general discussions on classical
bounds for related problems. We thank Fermi Ma for helpful discussions that
provided inspiration for Theorem 70. We are grateful to Francisco Escudero
Gutiérrez for pointing us to the Fourier-analytic characterization of mono-
tonicity which allowed us to improve a previous passive quantum monotonicity
tester. Finally, we thank the anonymous STOC 2025 reviewers for helpful
feedback. MCC was partially supported by a DAAD PRIME fellowship and
by the BMBF (QPIC-1). JS is funded by Chris Umans’ Simons Foundation
Investigator Grant. Parts of contributions of this chapter were completed while
JS was visiting the Simons Institute for the Theory of Computing, supported
by DOE QSA grant #FP00010905.



158

9.5 Appendix: Useful facts
In this appendix we collect some simple lemmas that are used as subroutines

in the main body. First, we make a simple observation about the possibility of
post-selecting on a desired function value in a subset function state.

Lemma 83. Let m ∈ N, S ⊆ {0, 1}n, f : {0, 1}n → {0, 1}, b ∈ {0, 1},
η ∈ (0, 1], and δ ∈ (0, 1). Assume that Prx∼S[f(x) = b] ≥ η. There is an
efficient quantum algorithm that given md ln(m/δ)

η
e many copies of the state

|ΨS,f〉 = 1√
|S|

∑
x∈S |x, f(x)〉, outputs, with success probability ≥ 1− δ, at least

m many copies of the state |ΨS,f,b〉 ∝
∑
x∈S:f(x)=b |x〉. Moreover, if the algorithm

fails, then the algorithm explicitly outputs FAIL.

We note that via standard Chernoff-Hoeffding bounds, one can achieve
the same guarantee as in Lemma 83 using max{d2m/ηe, d2 ln(1/δ)/η2e} many
copies of the state |ΨS,f〉. This improves the m-dependence, but in general
comes at the cost of a worse η-dependence.

Proof. By a union bound, it suffices to show that m̃ = d ln(1/δ̃)
η

e many copies of
|ΨS,f〉 suffice to quantumly efficiently obtain one copy of |ΨS,f,b〉 with success
probability ≥ 1− δ̃. So, let’s assume m = 1. Also here the procedure is clear:
For each copy of |ΨS,f〉, measure the last qubit in the computational basis. If
the outcome is b ∈ {0, 1}, then the post-measurement state after discarding
the last qubit is |ΨS,f,b〉. If, after measuring on all the copies, outcome b has
never been observed, output FAIL. Otherwise, output one copy one of the
post-measurement states from rounds in which outcome b was observed.

Again, the analysis of the failure probability is simple:

Pr[FAIL] = Pr[outcome b never occurs]

≤ (1− η)m̃

≤ exp(−ηm̃)

≤ δ̃ .

Here, we used the assumption Prx∼S[f(x) = b] ≥ η and our choice of m̃.

We also require the following standard routine for estimating the overlap of
two pure quantum states.

Lemma 84. Let ε, δ ∈ (0, 1). There is an efficient quantum algorithm that,
given d2 ln(2/δ)

ε4
e many copies of each of two pure quantum states |ψ〉 and |φ〉,
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outputs, with success probability ≥ 1− δ, an ε-accurate estimate (in [0, 1]) of
the (non-squared) overlap | 〈φ|ψ〉 |.

Proof. The procedure is as follows: Let m = d2 ln(2/δ)
ε4

e be the number of copies
that are available for each of |ψ〉 and |φ〉. For 1 ≤ i ≤ m, perform a SWAP
test between one copy of |ψ〉 and one copy of |φ〉, let the outcome be ôi. Define
ô = 1

m

∑m
i=1 ôi and output the estimate µ̂ =

√
2(ô− 1

2). Let us analyze the
success probability of this procedure.

First, notice that each SWAP test accepts (i.e., outputs 1) with probability
1+|〈φ|ψ〉|2

2 [BCWD01]. Thus, the ôi are i.i.d. Bernoulli(1+|〈φ|ψ〉|
2

2 ) random vari-
ables. So, by a standard Chernoff-Hoeffding bound, we have

∣∣∣ô− 1+|〈φ|ψ〉|2
2

∣∣∣ ≤
ε2/2 with probability ≥ 1 − 2 exp(−mε4/2) ≥ 1 − δ, by our choice of m.
As |

√
x − √

y| ≤
√
|x− y| holds for all x, y ≥ 0, this implies that also

|µ̂− | 〈φ|ψ〉 || =
∣∣∣∣√2(ô− 1

2)−
√
2(1+|〈φ|ψ〉|22 − 1

2)
∣∣∣∣ ≤ ε, with probability ≥ 1− δ,

as desired.

Finally, using the overlap estimation routine, one can start from a function
state and two function subset states to estimate the probability of an input
lying in both

Corollary 85. Let S, S ′ ⊆ {0, 1}n, f, f ′ : {0, 1}n → {0, 1}, and b, b′ ∈ {0, 1}.
Let ε, δ ∈ (0, 1). There is an efficient quantum algorithm that, given d162 ln(6/δ)

ε4
e

many copies of each of the states |Ψ〉, |Ψ′〉, and 2d162 ln(6/δ)
ε4

e copies of each of
the states |ΨS,f,b〉 and |ΨS′,f ′,b′〉, outputs, with success probability ≥ 1− δ, an
ε-accurate estimate of Prx∼{0,1}n [x ∈ S ∩ S ′, f(x) = b, f ′(x) = b′].

Proof. The procedure combines the ingredients developed above. To do so,
notice the following equalities:

|〈Ψ|ΨS,f,b〉| = 〈Ψ|ΨS,f,b〉 =

√
|S ∩ f−1(b)|

2n ,

∣∣〈Ψ′|ΨS′,f ′,b′〉
∣∣ = 〈Ψ′|ΨS′,f ′,b′〉 =

√
|S′ ∩ f ′−1(b′)|

2n ,

∣∣〈ΨS,f,b|ΨS′,f ′,b′〉
∣∣ = 〈ΨS,f,b|ΨS′,f ′,b′〉 =

√
|S ∩ f−1(b) ∩ S′ ∩ f ′−1(b′)|2
|S ∩ f−1(b)| · |S′ ∩ f ′−1(b′)| ,

|S ∩ f−1(b) ∩ S′ ∩ f ′−1(b′)|
2n =

√
|S ∩ f−1(b) ∩ S′ ∩ f ′−1(b′)|2
|S ∩ f−1(b)| · |S′ ∩ f ′−1(b′)| ·

|S ∩ f−1(b)|
2n · |S

′ ∩ f ′−1(b′)|
2n .

So, we can estimate Prx∼{0,1}n [x ∈ S∩S ′, f(x) = b, f ′(x) = b′] = |S∩f−1(b)∩S′∩f ′−1(b′)|
2n

as follows:
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1. Via the procedure in Lemma 84, use d162 ln(6/δ)
ε4

e many copies of each of |Ψ〉
and |ΨS,f,b〉 to output, with success probability ≥ 1− δ

3 , an (ε/3)-accurate
estimate α̂ of | 〈Ψ|ΨS,f,b〉 |.

2. Via the procedure in Lemma 84, use d162 ln(6/δ)
ε4

e many copies of each
of |Ψ′〉 and |ΨS′,f ′,b′〉 to output, with success probability ≥ 1 − δ

3 , an
(ε/3)-accurate estimate α̂′ of | 〈Ψ′|ΨS′,f ′,b′〉 |.

3. Via the procedure in Lemma 84, use d162 ln(6/δ)
ε4

e many copies of each of
|ΨS,f,b〉 and |ΨS′,f ′,b′〉 to output, with success probability ≥ 1 − δ

3 , an
(ε/3)-accurate estimate β̂ of | 〈ΨS,f,b|ΨS′,f ′,b′〉 |.

4. Output the estimate γ̂ = β̂α̂α̂′.

By a union bound, the probability that Steps 1-3 all succeed is ≥ 1 − δ. In
this case, we have∣∣∣∣∣γ̂ − Pr

x∼{0,1}n
[x ∈ S ∩ S′, f(x) = b, f ′(x) = b′]

∣∣∣∣∣
=
∣∣∣∣∣β̂α̂α̂′ −

√
|S ∩ f−1(b) ∩ S′ ∩ f ′−1(b′)|2
|S ∩ f−1(b)| · |S′ ∩ f ′−1(b′)| ·

|S ∩ f−1(b)|
2n · |S

′ ∩ f ′−1(b′)|
2n

∣∣∣∣∣
≤
∣∣∣∣∣β̂ −

√
|S ∩ f−1(b) ∩ S′ ∩ f ′−1(b′)|2
|S ∩ f−1(b)| · |S′ ∩ f ′−1(b′)|

∣∣∣∣∣+
∣∣∣∣∣∣α̂−

√
|S ∩ f−1(b)|

2n

∣∣∣∣∣∣+
∣∣∣∣∣∣α̂′ −

√
|S′ ∩ f ′−1(b′)|

2n

∣∣∣∣∣∣
≤ 3 · ε3
= ε .

Here, the second step used the triangle inequality together with β̂, α̂, α̂′,√
|S∩f−1(b)∩S′∩f ′−1(b′)|2
|S∩f−1(b)|·|S′∩f ′−1(b′)| ,

√
|S∩f−1(b)|

2n ,
√
|S′∩f ′−1(b′)|

2n ∈ [0, 1].
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