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ABSTRACT

This thesis consists of two parts. In Part [[ we present a new class of norm
discretization inequalities suited for low-degree polynomials in many dimensions,
with applications to discrete harmonic analysis and to quantum and classical
learning theory.

Discretization inequalities (of Bernstein type) control the supremum norm
of polynomials f by their supremum norms over certain finite subsets 7' of the
domain. Unlike earlier multivariate Bernstein-type discretization inequalities
we establish dimension-free comparisons for simple and generic 7', such as
product sets T' = S; x --- x S, for S;’s consisting of well-spread points in R
or C, in exchange for a constant that grows with deg(f).

Our results also introduce the notion of individual degree—the maximum
degree of f in any one variable—as a fundamental parameter for discretization
inequalities: we show for the first time that dimension-free discretizations of
the uniform norm are possible for 7' with cardinality independent of deg(f),
provided f has bounded individual degree.

Our work offers a new, high-dimensional perspective on discretization in-
equalities and yields several new results in analysis on the hypergrid (i.e., prod-
ucts of cyclic groups), including Bohnenblust-Hille-type inequalities, dimension-
free supremum norm bounds on level-k Fourier projections, and junta theorems.
These estimates in turn provide the key analytic tools for extending recent
breakthroughs in learning low-degree functions to the hypergrid and to its

quantum analogue, local observables on K-level qudit systems.

In Part [IT] we apply ideas from analysis of Boolean functions to study other
aspects of (quantum) computation: circuit complexity and property testing.

First, we introduce and study a deceptively simple model of constant-depth
quantum circuits and begin the project of proving bounds on its capabilities, ul-
timately drawing on connections to nonlocal games and notions of approximate
degree.

Second, we introduce a new access model for property testing, quantum data,
which allows for ultrafast testing algorithms where classical data provably yields

no fast testers—such as for monotonicity, symmetry, and triangle-freeness.
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CONVENTIONS

Computer Science
e [n]:={1,2,...,n}

e x ~ X for X a finite set means denotes a sample from the uniform

probability measure over X.

+ The “soft-O” notation g(n) < O(f(n)) means there exists a k € N for
which

g(n) < O(f(n)-log"n).
O attaches first in Landau notation: O(x)? := ((’)(m))d

Analysis
o Integral norms. For functions f : X — C, X finite, the notation | f||,
will denote LP norm of f w.r.t. the uniform measure. The notation
| fll, denotes the £# norm of the Fourier transform of f (with respect to

counting measure).

o Vinogradov notation. For two quantities X and Y, the notation X <Y
means there exists a universal constant C' > 0 such that X < C-Y. The
notation X <, Y allows the implicit constant C' = C'(£) to depend on ¢
only. We do not allow an additive constant (e.g., the D in X < CY + D)
in Vinogradov notation, which distinguishes it from the Landau notation
X <0OY).

e Quantities X and Y are comparable, X ~ Y, if that X SY and Y < X.
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Chapter 1

MATHEMATICAL OVERVIEW

A summary of the mathematical contributions in Part[l. For moti-

vations from computer science, one may skip to Chapter[3.

THE ANALYSIS OF BOOLEAN FUNCTIONS is by now a well-established theory
and an essential fiber in the fabric of theoretical computer science and discrete
mathematics more generally. Any function f : {—1,1}" — R is uniquely

expressed as a multilinear (or multi-affine) polynomial

f(x) = Xscm F(S)xs  with  xs:=Iles ),

-~

and various measures and aspects of the Fourier coefficients { f(S)}scn provide
significant insight into the structure of f. This perspective has led to many
discoveries in computational complexity theory, learning theory, voting theory,
coding theory, and combinatorics, among other areas [ODo14].

But not every function encountered in theoretical computer science is on
the hypercube. A key generalization of {£1}" is the so-called hypergrid, [K]",

conveniently represented as the product of multiplicative cyclic groups
% = {exp(2mik/K) : k=0,1,..., K — 1}".

Harmonic and functional analysis on Q% is important in combinatorics [ALM91;
Mes95], number theory [BS80], and graph theory [ADFS04], and naturally
models many-candidate social choice functions and even certain aspects of
K-level qudit systems in quantum computing.

Coming from the hypercube {£1}" = QF, some aspects of functional and
harmonic analysis on 2% for general K are familiar. For example, the basics
of influence and hypercontractivity are well-understood in this setting [Wei80;
JPPP17|. But the analysis of functions on 2% is not just a retelling of the
Boolean story; new and formidable barriers appear already at K = 3.

One example is the well-known Plurality is stablest conjecture from hardness
of approximation [KKMOO7], which remains open even though the Boolean
case (Majority is stablest) was resolved 20 years ago [MOO10] (announced in

2005). In Part I we present a sequence of works surmounting another barrier in
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the analysis over (2% appearing only for K > 3, motivated by a desire to extend
a recent breakthrough in learning theory by Eskenazis and Ivanisvili [EI22]
to more-general product spaces and their quantum analogues. Ultimately we
reach beyond this goal, obtaining results with consequences for approximation

theory and discrete analysis more broadly.

A challenge
Analysis over Q% is hard in part because Fourier expansions of functions on
%, K > 3 are no longer multilinear. As we elaborate in the next chapter, for
our target applications an essential technical step is to compare the supremum
norm of f : % — C to the supremum norm of its extension to the product of
convex hulls of Q, conv(Qx)". Specifically, for f of degree at most d, we seek

a comparison independent of dimension n of the form

?
[fllconviereyn < C(K d)| fllag, - (1.0.1)

Here and throughout, || - ||x will denote the supremum norm over a domain X.
To make sense of (1.0.1), recall that any f : Q% — C admits the unique

Fourier expansion

f(z) = > fla)z®  with  2%:= ﬁ zZ;7 .
a€{0,1,...,.K—1}" j=1

In this way, f can be uniquely extended to an analytic polynomial over C".
Throughout Part | we will conflate f : Q% — C with its associated polynomial
and use terms like the degree of f to mean its total degree as an analytic
polynomial. Note also that all polynomials arising thusly have individual degree
(i.e., the largest degree of any coordinate) at most K — 1. Our results will
hold for domains beyond 2% so we will find it most natural to state our results
directly for analytic polynomials of bounded individual degree.

Now that we can parse Equation (1.0.1), what does it mean? One might
compare it to the maximum modulus principal, which in this context would

say that
[f lleonviaim < I llpp

where P is the boundary of conv(Qk), i.e., the boundary of the regular K-gon.
Equation (|1.0.1) asks whether a discrete grid of points can be used in place
of the entire product of boundaries, possibly at the expense of introducing a

dimension-free multiplicative constant.



D=

Figure 1.1: Failure of the “discrete maximum modulus principle” Here we
plot the modulus of p(z) = 22/3 — z/3 + 1 evaluated on conv({2;). Notice
that while |p(z)| is greatest on the boundary of conv({23) (the maximum
modulus principle), it is not maximized by a vertex from Qg itself. We conclude
| fllconv(ez)» < C|lfllan cannot hold with constant 1 in general.

Let us sketch the difficulty in resolving for different K. When K = 2,
the comparison is a trivial equality with constant C' = 1: because functions on
the hypercube have multilinear extensions, we obtain || f||—1,1» = || f|l{x1}» by
convexity. But at K = 3 this doesn’t work; in fact one can prove (see Figure
and |[SVZ24a, Appendix B]) that even for n = 1 we must have C(d, K) > 1
in (1.0.I). As a result, naive approaches to proving for K > 3 yield
constants with exponential dependence on n.

On the other end of the K spectrum, if we take “K = 0o” and consider

analytic functions on the polytorus
T :={z€C:|z| =1}",
the question is trivial, and again we get equality with constant 1:

£ lleonv(zy» = lfllDn = [ f{l~

(this of course is just the maximum modulus principle). But there is no such
easy fact for finite K because 2k is not the entire boundary of conv(Qx).

There seems to be a particular difficulty for finite K > 3.



Norm discretization inequalities

In approximation theory, comparisons of the kind are known as
Bernstein-type discretization inequalities—or discretizations of the uniform
norm—and there is a vast body of work on the subject; see for example the
surveys [DPTT19; KKLT22]E] Bernstein-type discretization inequalities have
the general shape of

Ifllx < C(d,n) || fllx (1.0.2)

for some domain X (usually convex) and finite sampling set T C X.

The typical goal for multivariate Bernstein-type inequalities is to establish
a comparison of the kind for C independent of degree d, but possibly
depending on dimension n, while keeping 71" as small as possible. While this
is the most natural multivariate generalization of the univariate Bernstein
discretization inequality [Ber31; Ber32| (where independence of C from d was
of course paramount), dependence of C' on dimension n makes much of the
norm discretization literature inapplicable for our hoped-for bound .

On the other hand, in some cases results with universal constants C are
known, for example in the recent work of Dai and Prymak [DP24] resolving
an important conjecture of Kro6 [Kroll|. But these results also do not seem
to apply either. The most salient reason is that the literature does not seem
to distinguish between individual degree K — 1 and (total) degree d, and as a
result the cardinality of T" always depends directly on deg(f). For our purposes,
where d can easily grow much larger than K, we still require 7' = Q7. And even
if we restrict ourselves to the very special case of d < K, there is the issue of
the structure of T'. Q% has a very simple but rigid product structure, whereas
Bernstein-type discretization inequalities in the literature with C independent
of n are either proofs of existence of T' of low cardinality, or they construct 71’s
that have intricate e-net-type structures, as is the case for the sampling sets in
Dai and Prymak [DP24], which are far from being product sets.

In fact, as we explain in the sequel, it turns out that for T' = Q}% to be
a workable sampling set at all for us (i.e., yielding C independent of n), the
constant C must depend on degree d. So our hoped-for norm discretization
inequality is of a distinct flavor from the traditional results of multivariate
norm discretization. Indeed, if were true, it would represent a new
perspective in high-dimensional norm discretization—one that demands C' be

"Warning: in the norm discretization literature, d is typically used for dimension and n
for degree, precisely the opposite of what is typical in analysis of Boolean functions.



7

independent of dimension while allowing degree dependence—and would show
that new and interesting features appear in this regime, such as the role of

individual degree.

1.1 Results
The first headline result of Part [l is a resolution of ((1.0.1). (It turns out
|1 llconv(ex )~ and || ||z~ are easily comparable independent of dimension? so we

will state results using the latter as it is cleaner.) In fact, a broad generalization
of ([1.0.1)) is proved, but we stick to the below for the purposes of this discussion.

Theorem 1 (Dimension-free discretization of the uniform norm). Let f be an

n-variate analytic polynomial of degree d and individual degree K — 1. Then
I £llen < O(log K)¢| flley -

We will give two proofs of Theorem (1| which generalize it in different ways.

Proof I: Fourier multipliers [SVZ25|. This is the historically-first proof and
obtains only an implicit constant (still dimension-free) in place of O(log K ).
Along the way to Theorem [I|the proof develops a rich class of Fourier multipliers
that are L*>°-bounded independent of dimension and may be of independent
interest. For prime K this class of multipliers is characterized exactly thanks to
connections to transcendental number theory and Baker’s celebrated theorem
on the logarithms of algebraic numbers [Bak22].

Theorem 2 (Bounded Fourier projections, prime K > 3). Suppose K is an
odd prime and let S be a mazimal subset of {0,1,..., K —1}" such that for all
a,BeS:

o (Total) degrees are equal: 37_; a; = 35 B;.

e Individual degree symmetry: there is a bijection 7 : [n] — [n] such that
for all j € [n], aj = Bry) or aj = K — Br). (In particular, o and (B are
nonzero on the same number of indices.)

Then for any n-variate analytic polynomial f of degree at most d and individual
degree at most K — 1, the S-part of f, fs(x) := Soes f(a)2%, satisfies

I fsllan Sg g 1l -

2One direction is immediate. For the other, let cx > 0 be such that cxT C conv(Qk).
Because f has bounded degree, || f||T» = || f|l(cxT)", Which is at most || f||(convers)n-
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Proof II: polynomial interpolation [KSVZ24; Bec+25|. This proof is
probabilistic and obtains Theorem [I] with the quoted constant. The key

technique is a novel interpolation formula, which is our second headline result.

Theorem 3 (Dimension-free multivariate interpolation). For any z € D"
there exist explicit coefficients {agcz)}zeﬂ«;{ such that for any n-variate analytic

polynomial f of degree d and individual degree K — 1,

fl2)= 3 a¥f(z),

z€QY
and ¥, |a¥)| < O(log K)?.

While interpolation of degree-d polynomials f can be accomplished by
much smaller sets than %, Theorem (3| appears to be the first multivariate
interpolation formula for which the coefficients {a&”) }» have ¢! norm independent
of dimension n. Moreover, a point set with cardinality exponential in n, like
Q% is necessary to get ||a’? | independent of dimension. This dimension-
independence is crucial for obtaining Theorem [I] from Theorem [3| and to
downstream applications. We hope Theorem [3|finds other uses in approximation

theory and analysis.

Remark. Theorems 1| and 3| may actually be generalized from Q7% to a very
generic class of sampling sets S C D™ (though the K-dependence of the
constant becomes more complicated). This is done in the work [Bec+25|; see
Chapter [3| for the general statement.

1.2 Applications in analysis
Theorems (1| and [3| have several consequences in analysis and approximation

theory.

New Bohnenblust—Hille inequalities
Theorem 4 (Cyclic-group Bohnenblust—Hille inequality). Let f : Q% — C
have degree at most d. Then

Il 2e Sg g 1 Flle, -

d+1

Here and throughout, || f|, denotes the £ norm of the Fourier coefficients for f.
This theorem extends to Q7% the classical inequality of Bohnenblust and Hille

(BH), which originally appeared in the study of Dirichlet series and has a long
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history in harmonic analysis. The hypercube formulation was studied more
recently [Ble01; [DMP18| and has found surprising applications in computer
science. The BH inequality for Q% , K > 3 was not known until we gave a proof
in [SVZ24a]. That publication actually predates our discretization inequality
(Theorem I, but we elected to omit [SVZ24a] from this thesis because (i) with
the discretization inequality in hand, Theorem |4] becomes a one-line reduction
to the original BH inequality [BH31|; and (%) the techniques employed in
[SVZ24a] are directly subsumed by those in the Fourier multiplier proof of
Theorem |1}, [SVZ25].

Theorem (1] is also a key ingredient in the proof of a noncommutative (or
quantum) Bohnenblust-Hille inequality.

Theorem 5 (Qudit Bohnenblust-Hille inequality). Let A be a d-local quantum

observable on n-many K -level qudits. Then

1Al 22 <, [1Allop -

The “Fourier transform” A here refers to the vector of coefficients obtained
by decomposing A in the Heisenberg—Weyl basis, which is a unitary generaliza-
tion of the familiar Pauli basis. This is discussed in detail in Section [6.3

Theorem [5| generalizes the qubit BH inequality that was first proved in
[HCP22| and then improved in [VZ23]. The proof of Theorem [5| combines
Theorem [I] with a careful analysis of the commutation structure of Heisenberg—

Weyl matrices.

Level-£ Fourier projections are bounded
Theorem 6 (Boundedness of the level-¢ Fourier projection). Let f : Q% —
C have degree at most d and let £ be a positive integer. Then with f, =

-~

Yjaj=e f(@)2* denoting the £-homogeneous part of f,

[felloy, Sk 4 1 Fllag -

This theorem shows that the level-¢ Fourier projection, when applied to low-
degree polynomials, is bounded independent of dimension. This is a common
Fourier multiplier-type estimate, and dimension free-ness for polynomials on
0%, K > 3 was not known until the discovery of Theorem |1l The K = 2 case
has a short proof usually attributed to Figiel [MS86, §14.6]. When K is prime
Theorem [6] can be seen as a specialization of the very fine-grained projection
theorem Theorem [2, though more generally it follows easily from Theorem
and can be stated with the explicit constant O(log K)<.
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L? discretization
Theorem 7 (Dimension-free discretization of L” norms). Let d,n > 1, K > 2.
Let 1 < p < o0o. Then for any polynomial f : T™ — C of degree at most d and

individual degree at most K — 1, we have

1fllze(zny < d- O(log K)*|| fllLocay,) -

This L? discretization inequality could be called a Marcinkiewicz—Zygmund-type
(MZ-type) discretization inequality, though it differs from the typical MZ-type
inequalities in the literature in that the constant in Theorem [7|is independent
of p but depends strongly on d. The proof combines the interpolation formula
of Theorem 3| with invariance of the uniform (Haar) measure on 2%. One can
also get a dimension-free comparison d la Theorem [7] via hypercontractivity
[Wei80; JPPP17|, but again the constant will depend on p.

1.3 Applications in learning theory
A basic task in learning theory is to learn an L? approximation to a degree-d
function f, given access to random samples. The naive algorithm requires O(n?)

samples but we obtain an algorithm with exponentially-better n dependence.

Theorem 8 (Cyclic-group low degree learning). Let f : Q% — D have degree

d. Then with N
o -1n()- (1)

independent random samples of the form (x, f(x)), € ~ Q%, we may with
confidence 1 — & learn a function f : Q% — C with ||f — f||2 <e.

This learning theorem extends a breakthrough result of Eskenazis and Ivanisvili
|[EI22] from functions on the hypercube to those on %, and is obtained by
combining the cyclic-group Bohnenblust—Hille inequality, Theorem [, with
ideas in [EI22].

An analogous result holds in the context of quantum computing, where
role of the function f : Q% — C is taken by a quantum observable on K-level

qudits.

Theorem 9 (Low-degree Qudit Learning). Let A be a degree-d (or d-local)
observable on n K-level qudits with |A|lop < 1. Then there is a collection S of

product states such that with a number

O( (£ Als)” e 1og(3)
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of samples of the form (p,tr[Ap]), p ~ S, we may with confidence 1 — § learn
an observable A with ||A — A||2 < e.

See Section [6.4] for the full definition and explanation.

I am very grateful to my coauthors Lars Becker, Ohad Klein, Alexander Volberg,
and Haonan Zhang for their collaboration in the various papers constituting
Part [Il
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Chapter 2

FROM LEARNING THEORY TO DISCRETIZATION INEQUALITIES

We chart a path from motivations in quantum and classical learning

theory to our discretization inequality, Theorem [1].

BOOLEAN FUNCTIONS WHOSE MULTILINEAR EXPANSIONS are low degree (think
of deg(f) as much less than dimension n, or even constant) are ubiquitous in
computer science |[ODol4] and it is a fundamental task to learn them from

random samples.

Task (Low-degree learning). Using R-many uniformly-random samples

{=, 1)},

of an unknown Boolean function f : {£1}" — [—1,1] of degree d, produce with
probability 2/3 a function g : {£1}™ — R such that ||f — g2 < e.

Here the norm || - ||2 is with respect to the uniform probability measure on
{£1}", and the figure of merit for the task is sample complexity, i.e., the
dependence of R on d, e, and especially n.

In 1993 Linial, Mansour, and Nisan [LMN93a| gave a very natural O, (n%)-
sample algorithm for low degree learning: from samples one may form the

empirical Fourier coefficients
9(S) = X/ f () xs (=)
for all S C [n] with |S| < d, and from there define the estimator
g = Yis1<ad(8)xs -
The analysis is textbook: to obtain, say, ||f — gl||2 < 0.01 = ¢, it suffices to get
17(S) — g(S)| <0.001/n? for each S C [n],|S| < d, (2.0.1)

for then

Plancherel) ~
If=gll: < If=glh = > 1f(S)—g(S) < 0.01.

|S|<d

If = gll2
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And standard concentration arguments say can be accomplished with
O(n?) samples with high probability.

For almost 30 years this sample complexity stood without improvement,
and for good reason: a natural heuristic calculation suggests no improvement is
available. Degree-d polynomials have roughly n¢ Fourier coefficients, and each
is bounded by || 7l loo <1, so we might expect an e-net of such f has cardinality
at least (1/e)™"—which would require Q(n?log(1/¢)) samples to learn.

Yet, 28 years after [LMN93a, [Iye+21] found a O, (n®!)-sample algorithm
based on improved bounds on the Fourier growth of low degree polynomials, i.e.,
bounds on Y gy | F(S)] for degree-d f as a function of d, k, and n. Although in
some sense a modest improvement on the performance of the basic low degree
learning algorithm, the work of [Ilye+21] already contradicts the heuristic
lower bound just described. So what is wrong with our back-of-the-envelope
calculation? It turns out we failed to take into account the interaction of the
degree constraint and the L* bound constraint on f. Soon after the work of
[Lye+21], Eskenazis and Ivanisvili [EI22] showed that these two constraints

interact so strongly that actually an O, 4(logn)-sample algorithm was possible.

The breakthrough of Eskenazis—Ivanisvili

Eskenazis and Ivanisvili leveraged a theorem about bounded low-degree
functions coming from classical harmonic analysis, Bohnenblust-Hille (BH)
inequality, that is at this point quite classical [BH31|. The original BH inequality

applies to degree-d analytic polynomials on D".

Theorem 10 (Bohnenblust—Hille inequality [BH31]). Let f : T® — C be an

analytic polynomial of degree at most d. Then

171l 2. < Call

Here and throughout the norm ||g||, denotes the ## norm of the Fourier coeffi-
cients of g. The two key aspects of the BH inequality are (7) the independence
of the constant C; from dimension n, and (#¢) that the Z norm on the left-hand
side is for a p strictly less than 2. For p = 2 the comparison of course holds
with constant 1 for all functions (Plancherel); actually p = 2d/(d + 1) is the
smallest p admitting a dimension-free comparison of the kind above [BH31].
Together the properties (7) and (i¢) place powerful constraints on the Fourier
spectrum of bounded, low-degree polynomials, as we will detail in the sequel.

We also remark that in many applications the dependence of Cj; on d is quite
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important; the best bound we know currently is C; < C Vilogd que to [BPS14].
See [DGMS19, Ch. 6] for more on the classical Bohnenblust—Hille inequalities.

The analogous inequality for Boolean functions has a shorter history. The
hypercube BH inequality was originally proved with an implicit constant Cy by
Blei [Ble01] and then was only very recently improved to the subexponential
0y = CV/dlogd [DMP18]. Again, p =2d/(d + 1) is the best possible.

Theorem 11 (Hypercube BH inequality). Let f : {1} — R be a Boolean
function of degree d. Then

17l s < Cllfllo. (202

Moreover, Cy < CV 82 for g universal constant C.

How can we make use of such a bound? The insight of Eskenazis—Ivanisvili
is as follows. Beginning with some unknown vector v € R™ (such as the vector

of Fourier coefficients of f), if one has an £ estimate of v, i.e., a w such that
v —wlleo <,

as well as the guarantee that ||v||,» is bounded for some p < 2, then w can be

improved to an ¢? estimate w of v, still controlled by e:

o — @], S et

Specifically, w is obtained from w by replacing small entries by 0—a task that

crucially does not need any knowledge of v’s entries/T]

Lemma 12. Letp € [0,2) and e, B > 0. Suppose v,w € C" with ||[v—w||e < €
and ||v||, < B. Then for @ defined as

w; if |wi| > e(1+ /5%
Wy =3 ’ RS ) (2.0.3)
0  otherwise,

we have the bound
|@ — v, < 5Be'~%.

1With the one exception of choosing the threshold for “small,” which is set in terms of
the norm bounds just mentioned.
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With these pieces in place, the algorithm of Eskenazis—Ivanisvili is straight-
forward: begin by forming the empirical vector of Fourier coefficients g as
before, using enough samples so that with high probability, ||f — §llc < €.
From Theorem [11| we know ||f] 20 < O(1) always, so we are exactly in the
situation of Lemma replacing the small entries of g with 0, we may obtain a
new estimator h of f with the guarantee that || f — k|2 = || f — k|| is controlled
by a power of €, without any n-dependence in the inequality. As a result, we
only need to gather enough data so that || f—g |loo < poly(g), which is much
easier to achieve than the O(e/n?) requirement of the naive algorithm. In fact,
the only source of n dependence ends up being the O;(logn) copies required
for concentration of measure to overcome the loss when union-bounding over

the events
{17(8) - g(s)l < 01)}

We will not delve into it here, but the estimator h for f could be called a

hard-thresholding estimator in statistics. The proof of Lemma 4 appears later

SC[n],|8|<d

on in Section but for now we just point out that p being strictly less than
2 is absolutely critical: eventually one needs the #2 norm of the small entries of

v (the ones zeroed-out in @) to be bounded by a function of € > ||v — w||.

With ¢ = (e, p) the threshold in (2.0.3)),

o = X PPl <@ +e)* P Y ol < (t4+e)* PBYE.
Jilwj|<t Jilwj|<t J:lws|<t

And recalling t is linear is €, we recognize the right-hand side of this display as
Cppe* P. On the other hand, if we only had the trivial bound ||v||z < 1, there
is no reason the £ norm of the small entries of v should go to 0 as € — 0.

We also remark that while the algorithm of Eskenazis—Ivanisvili achieves a
log(n) sample complexity, the time complexity of the algorithm is still O(n?)
because each g(S) for |S| < d is compared with the threshold in sequence. It
is an interesting open problem to determine if the runtime can be improved to

o(n?), as the related problem of k-junta learning has seen a few improvements
of this kind, e.g., [Vall5].

Quantum generalizations
Soon after the Eskenazis—Ivanisvili breakthrough, Rouzé, Wirth, and Zhang
conjectured a quantum generalization [RWZ24a|. The idea is to learn local

quantum observables. An (n-qubit) quantum observable is a Hermitian matrix
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A € Mynyon(C). Such an observable models the following process: an n-qubit
quantum state p is subjected to an unknown transformation (quantum channel)
N, and then a numerical measurement (with outcomes in, say, [—1,1]) is
performed on the output. The matrix A captures the statistics of this process,
in the sense that tr[Ap] is the expected measurement outcome for N'(p). Indeed,
if {\V;}; are the Kraus operators for N (so that N (p) = 3, ijN]T) and M is

the measurement operator of the measurement device, then
A=Y,N/MN;.

It is a natural task to learn a description of the matrix A so that the
expectation value map p +— tr[Ap] can be predicted for new p. Learning
descriptions of arbitrary 2™ x 2" matrices is very difficult, so one simplifying
assumption comes by way of a quantum (or noncommutative) generalization
of polynomial degree bounds. Any n-qubit observable A admits a unique

Fourier-like decomposition

where the o;’s are the Pauli matrices

10 01 0 —i 1 0
09 := , O01:= , O9:= , 03:= .
*“ o 1 "1 o0 7 \i o > lo -1

The observable A is d-local if A(c) = 0 when |a| > d, where || is the number
of entries j for which «; # 0.

This is all looking very familiar. As we explain in the Section [6.4, by
obtaining samples of the form (p, tr[Ap]) for a certain distribution of states p, it
is easy to construct an estimator for the “Pauli coefficients” of A, and one might
hope for an O, 4(logn)-sample learning algorithm for d-local A. The missing

piece was a quantum (qubit) version of the Bohnenblust—Hille inequality.
Theorem 13 (Qubit BH Inequality). Let A be a d-local observable. Then
1Al 22 < Cull Allo-

This theorem was conjectured in [RWZ24b| and a proof appeared very
soon after in [HCP22| with constant C; = O(d?). A very different proof that
improves the constant to C;; = C? was then given by Volberg and Zhang [VZ23].
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This second proof is very efficient and directly reduces to the hypercube BH
inequality. In brief, for any d-local observable A the authors identify a degree-d
Boolean function f4 : {+1}*" — R such that

1Al 20 < 37 7al and || fallys < [Allp-  (20.4)

| 2a
d+1

The hypercube BH inequality joins these two bounds to complete the theorem.

To larger product spaces

It is natural to ask whether this story continues to larger product spaces
(quantum and classical), and this was the starting point for the work presented
in Part [I] of this thesis. Classically, such an extension looks like learning low-
degree functions on products of cyclic groups Z%, which we shall represent by
the multiplicative group of K*® roots of unity, Q7%. As mentioned in the previous
chapter, the space Q0% is sometimes called the “hypergrid” in property testing
[CS14; BCS23|, is a key setting for studying the hardness of approximation
(e.g., the Plurality is Stablest Conjecture of [KKMOOQ7], see also [MOO10]),
and appears frequently in coding theory and cryptography.

The argument of Eskenazis—Ivanisvili generalizes directly to such functions,

provided the appropriate BH inequality can be proved:

Conjecture 1 (Cyclic-group Bohnenblust-Hille inequality). Let f : Q% — C
have degree d. Then

£l 22 < Caxllfllay -

As will be explained soon, it is not possible to mimic the proof of the hypercube
(or the original polytorus) BH inequality for functions on %. This conjecture
is the main sticking point for extending classical low-degree learning to larger
product spaces.

The quantum case of generalized low-degree learning is just as impor-
tant, both for the study of fundamental physics via quantum simulation (e.g.,
[Kur+21; Gon+22]) and in the operation and validation of quantum comput-
ers. In both contexts, gains in efficiency are possible when the underlying
hardware system is composed of higher-dimensional subsystems, sometimes
carrying an algorithm from theoretical fact to practical reality in the NISQ era
|Gon+22]—and this benefit may very well remain as quantum computing ad-
vances. Such devices are called multilevel system, or qudit, quantum computers

[WHSK20]. While the qubit case gives a conceptual sense of the possibilities
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for learning on qudit systems, it is of practical value to derive guarantees and
algorithms that work directly in the native dimension of the quantum system.

To formulate a Bohnenblust—Hille inequality for qudit systems, we must
decide on a qudit generalization of Pauli matrices. A natural choice are the
Heisenberg—Weyl (HW) matrices, which are their unitary generalizations. We
defer a formal definition till Section [6.3l

Conjecture 2 (Qudit BH inequality). Let A be a degree-d (or d-local) observ-

able on n-many K -level qudits. Then
1ALz < CasclAllop-

Following the approach of Zhang and Volberg, there are two steps to proving
the qudit BH inequality. The first is, given an n-qudit operator A, to identify
a commutative polynomial f4 with bounds analogous to Equation (2.0.4).
This is technically much more challenging than in the qubit case because the
Heisenberg-Weyl matrices have a very intricate commutation structure. Partial
results on this part appeared in [KSVZ24| and the full reduction finished in
[SVZ24b], the proof of which is included in Section The other part is to
prove the appropriate commutative BH inequality, which turns out again to be
the cyclic-group Bohnenblust—Hille inequality because the eigenvalues of HW
matrices are roots of unity.

Therefore our goals of generalizing low-degree learning to larger product
spaces, both classically and quantumly, dovetail into the task of proving a

cyclic-group Bohnenblust—Hille inequality.

BH for cyclic groups: the barrier and a first resolution

Although a cyclic-group BH inequality is the natural interpolating statement
between the now well-understood hypercube BH (polynomials on %) and the
classical BH inequality, for polynomials on T™ (or “Q7 ”), there was no proof
in the literature. And this is for good reason, as the regime of 2 < K < oo
faces unique difficulties.

At a very coarse level, the hypercube and polytorus BH inequalities are
both proved in the following steps [DS14] (using X™ to represent either product

space):

1. Symmetrization: express f as the restriction of a certain symmetric
d-linear form Ly to the diagonal A := {(z,...,2) : z € X™}; that is,
f(z) = L¢(z,...,2).
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2. BH inequality for multilinear forms: bound the /£54/(44+1) norm of the
coefficients of Ly (which are directly related to the coefficients of f)
by the supremum norm of L; over (X™)?®. This step is rather involved
and includes several estimates, manipulations, and an application of

hypercontractivity and Khintchine’s inequality.

3. Polarization: estimate the supremum norm of L; on its entire domain

(X™)¢ by the supremum over A; that is,

ILsllxme < NEslla = £ llx
where || - ||z denotes the supremum norm over some space E.

When adapting this proof structure to cyclic groups of order 2 < K < oo,
the main point of failure is in step three, polarization, as is fully worked out
in [SVZ24a, Appx. A]. In both the polytorus and hypercube cases, one uses

Markov—Bernstein-type inequalities to obtain the intermediate comparison

IZsllxmye S 1S leonvixyes

where conv(X) denotes the convex hull of X. The passage from conv(X) to X is
then immediate for the polytorus by the maximum modulus principle (|| f||lp» =
|| fllz~) and for the hypercube by multilinearity (||f||j=1,1» = ||f|l{=1,13~). It is
at this most trivial step that the BH proof breaks down for K > 3: there is no
such easy fact in the setting of the multiplicative cyclic group Qg := {e?™*/X .
k=0,...,K —1} with 2 < K < oo because Q2 is not the entire boundary of
conv(Q2g). Even for n =1 and K = 3 one can construct example f’s for which
| fllconvi@z)n > Ifllan - It’s easy to show that || f|lconv(r) and || fllon = || f{lzn
are comparable independent of dimension, so essentially one is left wondering
whether

[l Sy i N5 Nl - (2.0.5)
And in fact, if one could prove such a comparison, then there would be no

need to retrace the rest of the BH proof recipe in the first place! One would
immediately get the cyclic-group BH inequality via
= (Classical BH)
1] 2 <4 Ifller Sex N lla -

The inequality (2.0.5]), a certain “discretization of the uniform norm,” and its

generalizations are the main contribution of Part [ For now, let us remark that
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the cyclic-group BH inequality was first proved in [SVZ24a] by a method that

actually avoided proving the comparison (2.0.5)) and instead made an intricate
reduction to the hypercube BH inequality. That argument has two main parts.
The first is to prove a cyclic-group BH-type inequality for support-homogeneous
polynomials, i.e., those whose monomials all contain the same number of
distinct variables. The second is to show the comparison || fi[lor. < 0K £l
where f, is the /-support-homogeneous part of a degree-d polynomial f. The
constant in the comparison, while free of dependence on n, was quite large
and never estimated explicitly. We have elected to not include the proof of

[SVZ24a] in this thesis as the techniques involved were later sharpened and
used again in [SVZ25|, the first proof of (2.0.5).

The discretization inequality: a lingering desire

Although the cyclic-group BH inequality was established in [SVZ24a], the
question of whether a comparison of the type is possible still lingered.
And from the point of view of the larger project of harmonic analysis on 7%,
there are other motivations for proving (2.0.5). New difficulties arise when
trying to get other standard estimates in this space too. For example, consider
the boundedness of k-level Fourier projections. Concretely, given a polynomial
f: Q% — C of total degree at most d and individual degree at most K — 1, we

seek to control its degree-¢ homogeneous part f, as follows:

(| felln. Sd,K | fller. - (2.0.6)

This is a typical kind of dimension-free estimate in harmonic analysis, and
something that is very easy to accomplish both on €27 and on T".

When the domain is the polytorus T", this comparison is a standard Cauchy
estimate and bears constant 1: given an analytic function f : T" — C and
z* a maximizer of |f,|, define the univariate function Q(t) = f(¢z5,...,tz})
for t € T. Taking the £** derivative and appealing to the Cauchy’s integral
formula, we find

QW) 1
2! S or

Q(t)

el = [ <1t <. @07

For the hypercube (K = 2), this estimate is similar and usually attributed
to Figiel [MS86, §14.6]. Given f : Qf — R, deg(f) < d, and with z* € QF

a maximizer of |f,|, one considers the polynomial Q(t) := f(tz7,...,tx}) for
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t € [-1,1] (f is extended to [—1,1]" as a multilinear function). A Markov—
Bernstein-type estimate gives
[Q¥(0)]

Ifelloy = =5 < C(d, Ol Qll-1,0 = C(d Ol fll-r,0,

with optimal constant C(d,£) < (1++/2)? [DMP18, Lemma 1.3 (4)]. The final
step is to recognize that || f||(—1,1» = || f|l{=1,13» because the extension of f to
[—1,1]™ is affine in each coordinate.

However, as soon as K = 3 it is quite unclear how to proceed. For example,
one could analogize the argument from above, constructing a polynomial Q(t)
with ¢ now in the disk D, to obtain via the Cauchy estimate

1QY(0)]

Il = 952 < 1Qlo = @l

Unfortunately, there is no simple way to relate ||Q|T to ||f|lop. Certainly
|Qllr < ||f|lT~, but then it seems we would again need the dimension-free

comparison
Ifllen Sy g 1Nl

a reappearance of the discretization inequality.

And so we see that many roads lead to a dimension-free discretization of
the uniform norm on T", which would form a “bridge” from analysis on Q%
to established theory on T™. The settling of Theorem [I] brings the state of
analysis over (% closer to matching what we understand on the hypercube,

and we discuss it in detail next.
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Chapter 8

THE DISCRETIZATION INEQUALITY AND ITS ACCOUTREMENTS

Aspects of optimality of Theorem/[1] extensions, consequences, proof

techniques, and related literature.

The discretization inequality (2.0.5) was first proved in [SVZ25] with a large
(but dimension-free) constant, which was then improved by a different argument
in [KSVZ24].

Theorem (Theorem [ restated [SVZ25; KSVZ24]). Let f be an n-variate
analytic polynomial of individual degree at most K — 1 and degree at most d.
Then

£l < O(log K)[| Il -

One might wonder how important the specific grid of points 2% is for getting
a dimension-free estimate. In [Bec+25| we extended the proof in [KSVZ24] to

show the answer is actually “not so much.”

Theorem 14 ([Bec+25|). Let f : D™ — C be an analytic polynomial of degree
d and individual degree K — 1. Let X = [[;_; X; C D" such that for all
j,1X;| = K. Put

7= min iy |z—yl.

Then
1fllp < (Core)?l fllx (3.0.1)

for a universal constant C, i independent of n. As above, when X = Qf% we
may take Cp k < O(log K).

With Theorem (1| in hand, both the Bohnenblust—Hille inequality and the

boundedness of level-¢ Fourier projections on 2% become one-line arguments.

Corollary 15. Let f be a polynomial of degree d and individual degree K — 1.
Then
171l 2e. < O(log K)* - BHE: - || flla

d+1

where BH%‘,{ < CV4oed s the best constant in the polytorus BH inequality.
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Figure 3.1: A visual depiction of Theorem As long as there are K well-
spaced red points in each of the coordinate discs, one may control the supremum
norm of any individual-degree-(K — 1) polynomial f over the polydisk D™ by
its absolute supremum over the finite grid of red points, in a dimension-free
way.

Proof. Any such polynomial f has the same Fourier expansion with respect to
the groups Q% and T". Therefore,
~ (Classical BH)
[fll2e <

d+1

Corollary 16. With f as before let f, be its £-homogeneous part. Then

I fellay, < O(log K)| fllay -

BHZ: | Il < (O(log K))BHTA|flley - O

Proof. Again because f has the same Fourier expansion over T" and Q7%,

©0.7)
Vellay < Nl T2 [ fllen < OClog K) flla 0

Remarks and refinements
We now describe in what senses Theorem (1] and its generalization The-
orem are optimal, what aspects we do not yet understand, and certain

extensions. This discussion is from [Bec+25].

Sharp degree-dependence of the constant
The best constant in the comparison Theorem [14] has exponential depen-
dence on d. For simplicity we will argue this with Y,, = Q%. Consider the

univariate inequality
[fllr < C(K)I|fllox (3.0.2)
for polynomials f with degree at most K — 1, and where C(K) is the best

constant. A Lagrange interpolation argument shows C(K) > 1 for any K > 3
[SVZ24al, Appendix B|. Let g be any extremizer of this inequality and put
f(z) = H?L(IK b 9(2;), assuming K — 1 divides d for simplicity. Then

Ifllz = (C(K))

d/(K-1)
I£lly. == DE)*N v,
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which is exponential in d.

On the other hand, for this specific construction one may calculate that
D(K) > 1 does not grow in K. It remains an interesting question to determine
the optimal K-dependence of the constant C(n, K) in (3.0.1).

Question 1. What is the optimal dependence on K in the constant in (3.0.1))
of Theorem [14)?

On the cardinality of the sampling set
Minimal cardinality of product sampling sets

The cardinality of Y;, in Theorem [14]is optimal in the following sense. If the
sampling sets are of the product form Y, = [];<;<, Z; and one expects
to hold at least for polynomials of individual degree at most K — 1, then each
Z; must have cardinality at least K and so Y, contains at least K™ points. If
|Y,,| were any smaller, there would exist a j such that Z; has at most K — 1
points, and no such inequality can hold: the polynomial f;(2) := [I¢cz, (25 — )
is of degree at most K — 1 but || f;||y, = 0.

Contrapositively, if the sampling set has a product set structure Y,, =
[1}-, Z; with |Z;| = K, then the individual degree constraint on f is of course

necessary.

Improvements for non-product sets
On the other hand, if we remove the product constraint on our sampling
set, we can do better. Indeed, in [Bec+25, §4] we show that one may take a

“small” part of H?:l Z; and retain a dimension-free constant.

Theorem 17. Let K > 2. Consider {Z; C D};>1 a sequence of sets such that
for all j > 1 we have |Z;| = K and

n:= min min |z—2'| >0.
1<j<n 2#2'€Z;

Then for any € > 0 one can find a subset Y,, of size at most C1(d,e)(1 + &)™
contained in [[;_; Z; such that for any analytic polynomial f : D" — C of
degree d and individual degree K — 1,

Ifllp» < Ca(d, K, m, &)l fllv.., (3.0.3)

Ci(d,e) < (51)1000[.

3

where
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Furthermore, if 0 < e < 1/2, then

C2(d, K, n,€) < exp (Cs(d, K,n)(s™ log(é“l))d) ,

for some constant C3(d, K,n) depending on d, K, and n.

We do not print the argument in this thesis as it is similar in spirit to
the proof of Theorem [14] (and the [KSVZ24] proof of Theorem [1): instead
of beginning with a univariate interpolation formula (as is done in the proof
of Theorem [14)), we begin with a multivariate interpolation on a small num-
ber of coordinates, and then apply the probabilistic tensorization ideas from
Theorem [14] to get to n coordinates.

Sharp dependence of sampling set cardinality on dimension n
On the third hand, the cardinality of Y,, cannot be sub-exponential in n. It
suffices to prove this for d = 1; the general d > 1 case follows immediately by

definitions and the case d = 1.

Theorem 18. Suppose that the uniform norm discretization (3.0.1)) holds for
sampling set V,, C D™ with d = 1, K = 2; that is,

| fllor < Collflva

holds for all multi-affine polynomials f of degree 1 with Cy > 1 being the best
constant, then |V, | > C1CY, where C; > 0 is universal and Cy > 1 depends on
Co.

See Section [1§ for the proof of Theorem

Uniform separation

In Theorem the constant C'(K,n)?¢ grows with n=!, where 7 is the mini-
mum pairwise distance between points in the Z;’s. In fact, this is unavoidable;
uniform separation (i.e., independence of 1 from n) is required to retain the
dimension-freeness of the inequality of Theorem This is easy to see in one
dimension, nor can it be avoided in higher dimensions, as illustrated by the
following example.

Suppose Y7, Ys, . .. is a sequence of sets with ¥;, C D™ and ¢(n) is a sequence
of coordinates; that is, 1 < ¢(n) < n for all n. Let P, = {2, : 2 € Yo} CD
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be the projection of Y, onto the ¢(n)-th coordinate. Suppose |P,| = K for all

n and

lim min |2—2|=0.
Nn—00 272/ € Py,

For each P, we may then choose a subset A, C P, with |A,| = K — 1 and an
excluded point (¥ such that P, = A, U} and

min |¢; — (] < e,

where lim,, ., €, = 0. Now consider the sequence of polynomials

fn(2) == Tlcea, (2em) — €) -

Certainly || f,||p~ is at least as large as any of its coefficients, so we have
|| follp» > 1. On the other hand, ||f,||y, is very small: f,(z) =0forall z €Y,

except those z with 2.,y = (};, and for these z we have

[l G ) = | Tea, (G = O)] < - 2572,

which tends to 0 as n — o0o. Therefore no dimension-free uniform norm

discretization like Theorem (3| is available for such (Y7,)5>1.

3.1 Theorem [1, sketch of Proof I: via Fourier multipliers

The historically-first proof of Theorem (1| appears in [SVZ25|, and is based
on Fourier multiplier techniques which split f into certain special polynomials
that are more amenable to direct argument. We sketch it now.

Let us begin with the following idea, which is a somewhat familiar starting
place for these sorts of comparisons: suppose we could find a scaled-down copy
of the circle, nT C D for n = n(K) > 0, such that for any z € nT, there is a
probability distribution u, on Qg with

zngE £ forall m=0,1,..., K —1. (3.1.1)
~ly
Then we would essentially be done: for example, for f a d-homogeneous
polynomial the argument would be as simple as

— —d _ . —d
fllen = 07 fllyzn =07 max

E f(£)' < Fllag

&~opz; 5€ln]

because the p,,’s are supported on k. (The non-homogeneous case is not

much worse.)
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Unfortunately, this argument does not work for us because such a u, does
not always exist in our setting. Examining the constraints on p, in ,
it turns out that to satisfy them all we need about twice as many degrees of
freedom in p, as is afforded by making supp(u) = Qx. We are able to recover
the property only by letting u, be supported on (2yx instead. So this
approach gets us to

£l Sk 1 llog, » (3.1.2)

and it remains to compare || f|lop  With || f|lqn . Given the apparent saturation
of degrees of freedom in the 03, comparison (3.1.2)), this second step required
a fully novel argument and came as a surprise to the authors.

The second comparison is achieved as follows. Fix a z* that maximizes |f|
over (. For some coordinates j, we already have 2 € Qx (the goal domain),
so let us forget about those. By a change of variables of the form z; — £z;
for £ € Qk, we can assume the remaining coordinates in z* are all equal to
Vw = exp(mi/K).

Thus it actually would suffice to prove the two-point comparison

190V, - V)| Sy lo(Ly- o, )] (3.0.3)

for all g of degree at most d and individual degree at most K — 1 (noting that
the right-hand side is of course at most ||g||qr ). When g is homogeneous
is an equality: just multiply by the appropriate root of unity. However, it is
entirely unclear how to reduce the general case of to the homogeneous
case. With g; the k-homogeneous part of g, a typical approach might be

=kz_:|gk(1,--~,1)|

d
<> lgkllay,
k=0

?
Zu Nl

which would work provided the level-k£ Fourier projections are bounded inde-
pendent of dimension: ||gx|lor. <, 5 l9llan -

But before this work that question was also open and seemed just as difficult

as the discretization inequality. The central technical contribution of [SVZ25]
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is to introduce a special class of Fourier projections (denoted by © in the proof)

that allow us to write g = 3, h; for a small number of polynomials h; which...

i. Are bounded by g independent of dimension: ||h;llar. < kD lgllan., and

~J

1. Are not homogeneous but, by a very serendipitous identity for “half-roots”

of unity (4.2.13)), nevertheless satisfy
hi(Vaw, ..., Vw)| = |h;(1,..., 1)

The proof is completed by replacing the g;’s in the previous display with our
hj’S.

A byproduct of this technique is a rich class of Fourier multipliers (actually,
projections onto certain fine-grained classes of monomials) that are bounded
independent of dimension. The class has only an implicit description for general
K, but when K is prime we may leverage some results from transcendental
number theory to get the following characterization.

For an S C {0,1,..., K — 1}" we denote by fg the S-part of f:

fs = Z f(a)za.
a€eS

Theorem (Theorem [2| restated: Bounded Fourier projections, prime K > 3).
Suppose K is an odd prime and let S be a mazimal subset of {0,1,..., K —1}"
such that for all o, € S:

e Degrees are equal: 3774 a; = 3374 B;.

o Individual degree symmetry: there is a bijection 7 : [n] — [n] such that

for all j € [n], o = Brij) or aj = K — Br(j)-

Then for any n-variate analytic polynomial f of degree at most d and individual
degree at most K — 1, the S-part of f, fs(z) == D acs f(a)z"‘, satisfies

I fsllan Sg g 1l -

Theorem [2 and related techniques do not seem to follow from the later
argument in [KSVZ24; Bec+25| and can be considered as one of the main
contributions of the work [SVZ25].
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3.2 Theorem [1}, sketch of Proof II: via interpolation
The second proof, presented in [KSVZ24] for the domain Q% and in [Bec+25]

for more general domains, takes a probabilistic view of interpolation.

In one coordinate, polynomial interpolation (Lagrange interpolation) admits

a probabilistic interpretation of the form
f(z) =D-E[R- f(W)], (3.2.1)

where D = D(K) > 1 is a constant and R and W are correlated random vari-
ables taking values in Q4 and Qg respectively. Repeating (3.2.1]) coordinatewise
gives the identity

f(2) = D"E[(Il=, B;) f(Wh,..., W,)], (3.2.2)
which immediately implies a discretization inequality of the desired form, except
with exponential dependence on n. The idea is to notice that is an
expectation over n-many independent pairs of variables (R;, W;), while f is of
bounded total degree d and thus is not very “aware” that ((Rl, Wi, ..y (Ry, Wn))
is a product distribution.

It turns out that by introducing certain correlations among the W,’s, we

can reduce the power on D at the expense of picking up an error term:

f(z) = DdE[(H?:1 Sj)f(Wl, ce Wn)} + errory , . (3.2.3)
Here the S;’s are i.i.d. over {24 and the W'j’s are still over Q2 , but now the joint
distribution (Wl, ey Wn) has an intricate dependence structure. If we only
had the first term we would be done of course, and with the right d-dependence
in the constant. To remove the error term, we will use special features of the
error’s relationship to the introduced correlations. Specifically, the correlation
construction actually defines a family of identities similar to (3.2.3)) of the form

f(z) = DmE[(IT2, 8) £ (W™, ..., WE™)] + errory. (1),

for any integer m > 1, and where errors, is a fixed polynomial in 1/m of

degree at most d — 1 and with no constant term. These properties imply there

is an affine combination of these identities for m = 1,...,d that eliminates the
error term:
bl 3 ™ £ (T T
f(2) = Y amf(z) = X anD™E[(IT, S™) (W™, WM,
m=d m=d
(3.2.4)

and where the absolute sum of the a,,’s is suitably small. Placing | - |’s in the

right spots finishes the theorem.



30

A new interpolation formula
All the expectations in (3.2.4) are over finite probability spaces, so we

actually have proved a new interpolation formula:

Theorem 19. Let f, X,n be as in Theorem[1]. Then for any z € D™, there
exist explicit coefficients {ach)}wEQTIL{ such that Y, |a§f)| < (C,k)?* and

f(z) =3 aP f(z). (3.2.5)
zeX

Comparing to classical multivariate polynomial interpolation formu-
las, we obtain coefficients with dimension-free absolute sum at the expense of
sampling more points than strictly necessary. As a result the linear combination
is not unique, and it is interesting to understand whether this flexibility

can lead to sharpenings of Theorem
In the full proof, the identity appears in detail as Equation ((5.1.9).
We hope this interpolation formula can have future applications and offer as a
first example usage a short proof of a dimension-free discretization inequality

for L? norms, 1 < p < 0o, as we describe next.

LP discretization

Let LP('T™) and LP(2%) denote the LP-space with respect to the uniform
probability measures on T" and 2%, respectively. When Y,, = (2%, one way
to prove a dimension-free LP discretization inequality for p < co would be
to use hypercontractivity over T" [Jan97] and over Q} [Wei80; JPPP17].
Hypercontractivity is a workhorse of high dimensional analysis [BGL14; Hul7]
and implies dimension-free L2-LP comparisons for bounded-degree polynomials
when 1 < p < oo (see [ODol4, Chapter 9.5] and [Def+11; DGMS19, Chapter
8.4] for discussion). For example, with 2 < p < oo, and f a degree-d function

on (2%, the argument is

Ifllzoerny Sqp 1 l2ermy = If ll2@p) < M fllzeey)

where hypercontractivity on the polytorus is applied in the first inequality.
(N.b. that this hypercontractivity argument does not work for p = 00.)

In Section [6.1] we show a proof that avoids hypercontractivity altogether by
making use of the interpolation formula (3.2.5) (or more concretely, Equation
(5.1.9)). The main result of Section is the following.
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Theorem 20. Letd,n>1,K > 2. Let 1 < p < oo. Then for each polynomial
f:T" — C of degree at most d and individual degree at most K — 1, the
following holds:

[fllzorny < C(d, K) || fllzecor,)

with C(d, K) < d(Cy log(K) + C2)* with universal Cy,Cs > 0.

We remark that the constant in the inequality of Theorem [20]is independent
from p but dependent on d, so has a different character from Marcinkiewicz—
Zygmund inequalities, where the constant depends on p but is typically required
to be independent from the total degree d for 1 < p < oo.

The proof combines the interpolation formula with group-invariance of the

uniform measure on 2%.

3.3 Relationships to other literatures
Theorem in the context of approximation theory

The context and history for discretization inequalities in approximation
theory begins in dimension n = 1. For 1 < p < 0o, the so-called Marcinkiewicz—
Zygmund inequality |Zyg02, Chapter X, Theorem (7.5)] states that for all
analytic polynomials f of degree at most K — 1, one has

G EX P < [1fPdz < G- X IF@F. (33D)

2€EQK 2€QK

Here C, is a constant depending only on p (independent of K), and T = {z €
C : |z| = 1} denotes the unit circle.

The inequality is an example of a discretization of the LP-norm, and
integral norm inequalities of this type are usually called Marcinkiewicz-type
theorems. At the endpoint p = oo this type of inequality is often called a
Bernstein-type theorem or a discretization of the uniform norm (see [Ber3l;
Ber32] and [Zyg02, Chapter X, Theorem (7.28)]). In our notation, the p = 0o

endpoint of (3.3.1]) reads
I fllex < Iflle < CE)IIfllax - (3.3.2)

In this p = oo case (and unlike 1 < p < 00) we emphasize the right-hand side
inequality cannot have constant independent of K. See for example [OS07,
Theorem 5.

We refer to surveys [DPTT19; KKLT22| and references therein for more
historical background about norm discretizations. Bernstein-type discretization
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theorems also have some overlap with discrete Remez-type inequalities as we
discuss below.

Now let us return to the high-dimensional case, where Theorem (I can be
understood as a Bernstein-type discretization inequality for bounded-degree
multivariate polynomials in many dimensions n. In this setting there are
intricate tradeoffs between the cardinality (and structure) of the sampling set,
the constant in the discretization inequality, and the function space to which
the estimate applies. Recently there has been very important progress on
understanding the minimum cardinality of sampling sets when one demands a
universal constant (independent from any notion of degree or dimension) in
the inequality.

In [KKT23|, Kashin, Konyagin, and Temlyakov give a discretization of
the uniform norm that applies to any N-dimensional subspace of continuous
functions on a compact subset of R", achieving a universal constant 2 with a
sampling set of cardinality 9. Moreover, as the authors show, this is essentially
the best possible sampling set cardinality for a Bernstein-type discretization
inequality at this level of generality.

On the other hand, much smaller sampling sets—again for L* norm dis-
cretizations with universal constants—can be had when one fixes the function
space to be polynomials of degree at most d. A significant recent work along
these lines is [DP24]. Here Dai and Prymak resolved an important problem of
Kro6 [Kroll] in real approximation theory by showing there are discretizations
of the uniform norm for n-variate polynomials of (total) degree at most d over
any convex domain in R", with universal constant 2 and a sampling set of
cardinality C,d"™ in our notation.E] When degree d is large in comparison to
dimension n, this cardinality C,d"” matches the dimension of the set of such
polynomials, and is therefore the best possible. (N.b. our primary interest is
in the opposite of their regime, d < n.)

Our motivating application to functions on Q% —that is, to obtain a com-

parison
Ifllen Sy g 1 Nl

for analytic polynomials f of individual degree at most K —1 and total degree at
most d—is in some ways more demanding, and in other ways more relaxed, than

the parameter regime traditionally considered in approximation theory. On the

IN.b., in the notation of [DP24] it will be Cyn¢ where they used d for the dimension and
n for the degree.
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one hand, we are restricted by the sampling set 2%, which is a fixed product
set of small cardinality. Existing Bernstein-type estimates do not seem to apply
in the parameter regime K < d, which is the setting dictated by applications
to harmonic analysis in the high-dimensional realm of combinatorics, computer
science, and learning theory. On the other hand, we do not require an absolute
constant; indeed, as we discuss in below, dependence of the constant on degree

d is unavoidable under these constraints.

Remez-type inequalities in many dimensions

Consider J a finite interval in R and a subset £ C J with positive Lebesgue
measure u(E) > 0. Let f: R — R be a real polynomial of degree at most d.
The classical Remez inequality [Rem36| states that

mal @) < (45 a1l 333

Despite a large literature extending (3.3.3)), we are not aware of any direct
multi-dimensional generalizations that are dimension-free. Multi-dimensional
versions of the Remez inequality are considered in the papers of Brudnyi and
Ganzburg [BG73], Ganzburg |[Ganl7], Kroé and Schmidt [KS97] but they are
not at all dimension-free: it is instructive to take a look at inequality (23) in
[KS97] and see how the estimates blow up with dimension (called m in [KS97]).
If one abandons the L* norm on the left-hand side of then something
can be said; there are distribution function inequalities for volumes of level sets
of polynomials that are dimension-free, see [Fra09; NSV02; NSV03]. But those
are distribution function estimates, not L* estimates. Some other related
results include Nazarov’s extension [Naz93| of Turdn’s inequality [Tur53], as
well as more generalizations [Fon06; FY13].

The lack of a dimension-free multi-dimensional Remez inequality of the
form (3.3.3)) is not surprising: there is no hope for such an inequality phrased
in terms of u(F) for any positive-measure E C J. This can already be seen
when J is a unit ball in R and f,(z) = 1 — X}_, 7. For large n, most of the
volume of the ball is concentrated in a neighborhood of the unit sphere where
fn is very small.

However, this observation does not preclude the existence of certain sets
giving multi-dimensional analogues of that are dimension-free. Indeed,
Lundin [Lun85|, and later Aron-Beauzamy—Enflo [ABE93] and Klimek [K1i95],

show this is possible in certain cases of (J, E) with convex E, such as for
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bounded-degree polynomials over the polydisk J = D" and the real cube

E =[-1,1]". As an explicit example, with the prevailing notation, Klimek
[K1i95] showed that for n-variate analytic polynomials of degree d, we have the
comparison llon < (1+ V2 £l 1.

On the other hand, it was not at all clear when dimension-free Remez
inequalities should exist in non-convex settings like J = T™ and E C T™. The
arguments in [Lun85; ABE93; K1i95] make essential use of the convexity of the
testing set £ and do not seem to suitably generalize. In comparison, for our
application to functions on products of cyclic groups f : Q% — C, we have no
choice but to use the non-convex grid Q% as our E.

That our E is discrete and indeed finite is another interesting feature.
Remez-type estimates with discrete E were known before; notably, Yomdin
[Yom11] (see also [BY16]) identifies a geometric invariant which directly replaces
the Lebesgue measure in (3.3.3) and is positive for certain finite sets E—though

the comparison is not dimension-free.
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Chapter 4

PROOF I: DISCRETIZATION BY FOURIER MULTIPLIERS

Recall our goal is to prove the following.

Theorem 21 (Theorem (1}, implicit constant). Let f : T" — C be an analytic

polynomial of degree at most d and individual degree at most K — 1. Then

[fllen Sy 111l -

Our approach has two steps:

Step 1. [Ifller S, ¢ 1fllog,, and
Step 2. [|fllag, <4k I1fllag -

4.1 Step 1
Proposition 1 (Torus bounded by Qox). Letd,n > 1, K > 3. Let f : T" — C

be an analytic polynomial of degree at most d and individual degree at most
K — 1. Then

Il < Ckllfllag, »
2K

where Cx > 1 is a universal constant depending on K only.
To prove this proposition, we need the following lemma.

Lemma 22. Fix K > 3. There exists € = ¢(K) € (0,1) such that, for all

z € C with |z| < €, one can find a probability measure p, on Qox such that

= FE &, V¥V 0<m<K-1. (4.1.1)

Ervpz
Proof. Put 0 = 27/2K = /K and w = wyx = €. Fix a z € C. Finding a
probability measure u, on Qo satisfying (4.1.1) is equivalent to solving

Yo Pr=1

PP kmf) = Rz - 4.1.2
i prcos(kmf) =Rz" 1<m<K-—1 (4.1.2)

S2K A ppsin(kmd) = Sz™ 1<m< K -1

with non-negative py = p,({w*}) for k =0,1,...,2K — 1. Note that the p;’s

are non-negative and thus real.
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For this, it is sufficient to find a solution p'= p, to Dgp = v, with each

entry of = (po, .. -
matrix given by

,p2K_1)T being non-negative. Here D is a 2K x 2K real

1 1 1 1
1 cos(0) cos(26) cos((2K —1)0)
Di = |1 cos(K6) cos(2K6) cos((2K — 1)K9)
1 sin(6) sin(26) sin((2K —1)0)
1 sin((K —1)0) sin(2(K —1)0) sin((2K —1)(K —1)0)]
and ¥, = (1,Rz,..., R2E1 RK Sz,...,32K71)T € R2X. Note that

does not require the (K + 1)-th row

(1, cos(K6),cos(2K0),...,cos((2K — 1)K¥)) (4.1.3)
of DK.
The matrix Dy is non-singular. To see this, take any
T = (1170, L1y ,ng_l)T S RzK
such that DgZ = 0. Then
2K—1
> W)z, =0, 0<m<K. (4.1.4)
k=0

This is immediate for 0 < m < K — 1 by definition, and m = K case follows
from the “additional” row (4.1.3) together with the fact that sin(kK6) = 0,0 <

k < 2K — 1. Conjugating (4.1.4), we get

2K—1
> (W*)™z, =0, K<m<2K
k=0
Altogether, we have
2K—1
> (WF)mzy, =0, 0<m<2K —1,
k=0

that is, V& = 0, where V = Vi = [wi*]o<jk<2rc—1 is @ 2K x 2K Vandermonde

2K—1)

matrix given by (1,w,...,w . Since V has determinant

det(V)= ]

0<j<k<2K—1

(wj_wk)#(],
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we get & = 0. So Dy is non-singular.
Therefore, for any z € C, the solution to (4.1.2), thus to (4.1.1)), is given by

P, = (po(z),pl(z), ‘e ,P2K—1(Z)) Do, € R?%.

Notice one more thing about the rows of Dg. As

2K-1
> (W)™ =0, m=12,...,2K -1,
k=0
we have automatically that vector 7, := (%, . %) € R?X gives
Dgp, = (1,0,0,...,0)" = 7, .
For any k-by-k matrix A denote
47

”A“oo—)oo = Y
0£TER* [19]] 0o

So with p}, := D', we have

172 = Pilloo < 1D loo—soo 1 — Tilloo

1
= ||Dx |l co—soo ma,x{ max IR |,1<rkn<af){< )

< | D lloo—soo max{|z], [ 2] }.

That is,
< | D&t loosoo max{| 2], |2]X}.

1
o<,<2K 1p3( z) = 2K

Since Dy'¥, = P, we have || Dg'|lcoso0 > 2K. Put

1 1
€y i= — €0, —|.
2K || Diloo-so0 < (2K)2]
Thus whenever |z| < &, < 1, we have

1 _ _
pi(2) = 5| < 1D ooro0 < €l DR oomon < 5

O<J<2K 1

so in particular p;(z) > 0 for all 0 < j < 2K — 1.

Now we are ready to prove Proposition
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Proof of Proposition[1. Let e, be as in Lemma With a view towards
applying the lemma we begin by relating sup |f| over the polytorus to sup | f|
over a scaled copy. Recalling that the homogeneous parts fi of f are trivially
bounded by f over the torus: || fx|t~ < ||f||T~ (a standard Cauchy estimate).

Thus we have

d
[flle- < Z [ fillen
= 28 sup | fe(ex2)]

< Za sup | f(e+2)]

zEe

< (d+ 1), sup | f(ex2)|

zeTn

= (d+ VeI fll ey - (4.1.5)

Let z = (z1,...,2,) € (e.T)™ Then for each coordinate j = 1,2,...,n
there exists by Lemma [22| a probability distribution p; = p;(2) on Qo for
which E¢ ., [6F] = 2F forall 0 < k < K—1. With pu = p(2) := p1 X+ - - X i, this
implies for a monomial {* with multi-index o € {0, 1,..., K—=1}", Eeu»)[€%] =
2*, or more generally by linearity E¢.,.)[f(§)] = f(z) for z € (e.T)™ and f

under consideration. So

sup |f(2) = sup | E f(f)j < swp B (£ <oy, (416)
z€(exT)™ zE€(exT)™ Erop(z) 2€(e«T)™ &~
Combining observations ) and (4.1.6) we conclude
£l < (d+ D fllemyr < (d+D)el?l fllog, < Cklifllog,. O

2K —
The last inequality follows from the fact that e, depends only on K.

4.2 Step 2

Now we turn to Step 2’s estimate,

1 Fllag, Sase 1l - (42.1)

We will find it useful to rephrase this question as one about the boundedness

at the single point

fWaw,...,Vw) =t f(Vw).
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Here and in what follows, w := wx = €*"/X and y/w will be used as shorthand
to denote the root ™/ It turns out the following proposition is enough to
give (4.2.1)).

Proposition 2. Letd,n > 1, K > 3. Let f : T" — C be an analytic polynomial

of degree at most d and individual degree at most K — 1. Then

If (V) Sy 1Nl -

To explain why Proposition [2| suffices for Step 2, let us finish the proof of
Theorem [21] given Proposition [I] and assuming Proposition

Proof of Theorem 21 Fix a z* € arg mMaX,cqn |f(2)|.- Then there exist w =
(wi, ..., w,) € Q% and y* € {1, /w}™ such that
wjy;:z;a je [n]a

where [n] := {1,2,...,n}. Define f : T* — C by

f(z) = f(wlzla WaZ2, . .. awnzn) .
We therefore have
1f()| =fllay, and (4.2.2)
[ fller. = I fllaz - (4.2.3)

Equation (4.2.2) holds by the definition of y*, and (4.2.3) holds by the group
property of Qg (recall w € QF%).

Now let S = {j : y; = v/w} and m = |S|. Let 7 : S — [m] be any bijection.
Define the “selector” function s,« : T™ — T" coordinate-wise by

(syr (z))j = {

Finally, define g : T™ — C by

s if;&8
Zr(j) ifjes.
9(2) = F(s(2)) -

Then we observe that g is analytic with degree at most d and individual degree
at most K — 1, and

9(v/@, v, ., V)| = 1F ) 2 |1 fllas, (4.2.4)
lgllop < 1 Flloz %22 (£l , (4.2.5)
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with the inequality holding because we are optimizing over a subset of points.
From (4.2.4) and (4.2.5) we see Theorem [21| would follow if we could prove

l9(Vw, Vw, ..., V)l Sy ¢ lgllag
independent of m > 1. This is precisely Proposition n

The proof of Proposition [2| is the subject of the rest of this subsection. Our
approach is to split f into parts f = 3°; g; such that each part g; has the
properties A and B:

Property A Property B

Iflley  Rax lgilley Zgx lo;(Vw)l. (4.2.6)

Such splitting gives
F(V)l < X019 (V) Sie 2o Ngillog, S p 211 Flley -
J J J

So as long as the number of g;’s is independent of n such a splitting with
Properties A and B entails the result.

We will split f via an operator that was first employed to prove the
Bohnenblust—Hille inequality for cyclic groups [SVZ24a]. We will only need
the basic version of the operator here; a generalized version is considered in
[SVZ24a]. Recall that any polynomial f : Q% — C has the Fourier expansion

f(z) = > a2’
a€{0,1,...,K—1}7
Recall the support of a monomial z® is supp(a) := {j : @; # 0}, and the
support size |[supp(a)| refers to the cardinality of supp(c).

Definition 1 (Maximum support pseudoprojection). For any multi-index
a€{0,1,...,K —1}" define the factor

o= ] 1—w).
jio; 70
For any polynomial on 2% with the largest support size £ > 0

f(z) = Z aaza>

|[supp(e)|<¢

we define D f : Q. — C via

Df(z) = > Taaa2".

[supp(a)|=£
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The operator © can be considered a Fourier multiplier, and this somewhat
technical definition is motivated by the following key property, the L — L*®

boundedness when restricted to certain polynomials.

Lemma 23 (Boundedness of maximum support pseudoprojection). Let f :

Q% — C be a polynomial and £ be the mazximum support size of monomials in
f. Then

1D fllep. < (2+ 2v2)"| o (4.2.7)

The proof of Lemma [23|is given in [SVZ24a]. We repeat it here in a slightly

simplified form for convenience.

Proof. Let w = e . Consider the operator G:

14w 1-w 14w 1-w n
n), x € Q5

G(f)(x)zf( P

that maps any function f : {1,w}” C Q% — C to a function G(f) : Q) — C.
Then by definition

I llag = 1 £l ey = 1G()llag- (4.2.8)
Fix m < £. For any a we denote
mi(a) == |{j : o = k}|, 0<k<K-1
Then for o with |supp(a)| = m, we have
my(a) + - - + mg_1(c) = |[supp(a)| = m.

For z € {1,w}™ with z; = 1% + 15¥2;, z; = £1, note that

o (1+w 1—w j)"‘f: 14w +1—w°‘7xj.

G-\ T 2 2
So for any A C [n] with |A| = m, and for each a with supp(a) = A, we have
for z € {1,w}™

Jio #0
- (1+waa' 1—w%x)
- J
J:o;#0 2 2
1 —w
= I (F5) ="+
J:o; #0
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where 24 := []ca z; is of degree |A| = m while - - - is of degree < m. Then for

G(f)(x)zzzimz( 3 Taaa)xA—l----, z e Q.

m<{ |A|=m \supp(a)=A

Again, for each m < £, --- is some polynomial of degree < m. So G(f) is of
degree < ¢ and the /-homogeneous part is nothing but

1 A

o Z Z Talo | T,

|A|=¢ \supp(e)=A

Consider the projection operator () that maps any polynomial on {27 onto its
highest level homogeneous part; i.e., for any polynomial g : Q2 — C with

deg(g) = m we denote Q(g) its m-homogeneous part. Then we just showed
that

Q(G(f))(z) = %%E( %_Afaaa) z?. (4.2.9)

It is known that [DMP18, Lemma 1 (iv)] for any polynomial g : Q5 — C
of degree at most d > 0 and g,, its m-homogeneous part, m < d, we have the

estimate
lgmllay < (1+v2)%lgllag-

Applying this estimate to G(f) and combining the result with (4.2.8), we have
IRG())lley < (V2+DIG(Hllag < (1+V2)lI flloy
and thus by (4.2.9)

3 ( 3 ) ”

|A|=¢ \supp(a)=A

< (2+2v2)| oy,
Q3

The function on the left-hand side is almost © f. Observe that Q} is a
group, so we have

Z aazaé-a

a

Z aq2%|.

07

sup
z,ﬁEQ%

= sup
2€QY

Thus we have actually shown

Z ( Z Taaazo‘) z4
|A|=¢ \supp(a)=A
Setting z = I gives (4.2.7). O

sup
zEQ’;{,zEQg

< (2+2v2)°( fllaz.
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Note that © f is exactly the part of f composed of monomials of maximum
support size, except where the coeflicients a, have picked up the factor 7.
The relationships among the 7,’s can be intricate: while in general they are
different for distinct a’s, this is not always true. Consider the case of K = 3

and the two monomials

Zﬂ = zfz2z3z4z5z6z7z8, Zﬁl = zfz%z%ziz?,zéz?zs .
Then
= 1-w)(1-w?) = (1-w(l-w?)" = 75,

which follows from the identity (1 — w)® = (1 — w?)® for w = €2™/3,
Understanding precisely when 7, = 75 seems to be a formidable task in
transcendental number theory. When K is prime there is a relatively simple
characterization (see Section but for composite K the situation is much
less clear. Nevertheless, it turns out that for the purposes of Theorem [21| we
do not need a full understanding. Indeed, our g;’s shall be defined according

to the 7’s.

Definition. Two monomials 2%, 2° with associated multi-indezes
a,fe{0,1..., K —1}"

are called inseparable if |supp(a)| = |supp(B)| and 7o = 75. When m and m’
are inseparable, we write m ~ m’.

Inseparability is an equivalence relation among monomials. We may split
any polynomial f into parts f = 3, g; according to this relation. That is, any
two monomials in f are inseparable if and only if they belong to the same g;.

Call these g;’s the inseparable parts of f.

It is these inseparable parts that are our g;’s in (4.2.6). We shall formally
check it later, but it is easy to see the number of inseparable parts is independent

of n. We formulate and prove Properties A & B next.

Property A: Boundedness of inseparable parts
Repeated applications of the operator © enable splitting into inseparable

parts.

Proposition 3 (Property A). Fiz K > 3 andd > 1. Suppose that f : Q% — C

1s a polynomial of degree at most d with maximum support size L. For0 < £ < L
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let f, denote the part of f composed of monomials of support size £, and let

9e1), - - -1 9,1,) be the inseparable parts of f,. Then there exists a universal
constant Cy i independent of n and f such that for all 0 < ¢ < L and
1<j<Jy,

lgepllay, < Caxllflla -

Proof. We first show the proposition for g ;, 1 < j < Jr. Suppose that

f(z) = Z aq, 2%
a:|supp(e)|<L
Inductively, one obtains from Lemma [23]| that for 1 < k < Jp,
OFf= Y tha.z®
|supp(a)|=L (4.2.10)
with  [DFf[ . < (2+2v2) ™ ||fllayp.
K

By definition there are Jy, distinct values of 7, among the monomials of fr;

label them c¢;,...,cy,. Then
fiz)= > az*= > gwj(z), and
|supp(c)|=L 1<<JL
DFf(z) = Y Tiaaz®= Y gwp(2), k21
|supp(a)|=L 1<5<JL

Let us confirm Jy, is independent of n. Consider a with |supp(a)| = L. We
may count the support size of a by binning coordinates according to their
degree: |supp(a)| = L,
> Hse€n]:as=t}=L<d,
1<t<K-1

SO

Jr < |{(m1a--.,mK—1) E{O,...,L}K_l tmy+ s+ mig :L}|

- (K —14+L-1 (4.2.11)

L—-1
According to (4.2.10), we have

>§(K+d)d.

Df ¢t ¢ oy 9w

D d G - & 9(L.2)

J Jo o JL Jr
DLf R © R & 9(L,J1)
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The J;, x J;, modified Vandermonde matrix Vz has determinant

det(V) = (H cj> ( I (e- ct))

Since the c;’s are distinct and nonzero we have det(Vy) # 0. So V7, is invertible
and in particular g(r, ;) is the j* entry of V; ' (DYf,...,D/tf)T. Letting nl:9) =
(n](gL’j))lngJL be the j** row of V; !, this means

L
9.5 = Z 77( 9

1<k<Jr,

As nt9) depends on d and K only, so forall 1 < j < Jy,

< In ™l (2+2v2) I fllag, (4.2.12)

Oy =

lgwalloy < X |n?|- | ¥
1<k<Jr

where we used (4.2.10)) in the last inequality. The constant
In®?11(2 +2v2)”** < O(d, K) < o0

for appropriate C(d, K) that is dimension-free and depends only on d and K
only. This finishes the proof for the inseparable parts in fr.

We now repeat the argument on f — f1, to obtain for the inseparable
parts of support size L—1. In particular, there are vectors n(t=19) 1 < j < Jp_4

of dimension-free 1-norm with

lgz-1plley, < Cd, )Nn“ Nl f = Frllog Syx I = frllog, -

This can be further repeated to obtain for 0 < ¢ < L and 1 < j < J,, the

vectors n“Y) with dimension-free 1-norm such that

f= X

ol Sox
£+1<k<L

Ok

It remains to relate || f — X, 11<k<r frllap to || fllan . Note that with Vz as
originally defined, by considering (11 ... 1)V, *(D'f,..., D7t f)T we obtain a
constant Dy, = Dy (d, K) independent of n for which

| fzlley, < Drl|fllag, -

This means

If = fellan < (14 Dp)l fllan. -
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Notice the top-support part of f — fr is exactly fr_1, so repeating the argument
above on f — fr yields a constant D1 = Dy_1(d, K) such that

| fr-1llay. < Dr-allf=fillep, < Dra(14+Di)| flley, = (Dr-1+Dr-1Dr)l fllen. -
Continuing, for 1 < ¢ < L we find

Ifo—eller < Drellf — > fallan

L—0+1<k<L
<D+ Dre))lf— > Fellog
L—£+2<k<L
< D;_, H (1 + DL—k)”f”Q}l(
0<k<t—1

We have found for each /-support-homogeneous part of f,

[ fellag, Sqx 11f 1l
so we have || f — Yo1<k<r frllon §d’K | fllan. as well. O

Property B: Boundedness at y/w for inseparable parts

Here we argue g(y/w) is bounded for inseparable g. Recall that w = e®
and \/w = ek.

Proposition 4 (Property B). If g is inseparable then |g(v/w)| < ||gllar. -

Proof. We will need an identity for half-roots of unity. For k =1,..., K —1

we have
L

=i

(V)

following from the orthogonality of (1/w)* and 1 — w* in the complex plane.

(4.2.13)

We claim that for two monomials m and m/

me~m = m(Vw) =m/(Vw).

By definition m ~ m’ means m and m' have the same support size (call it £)

and
Hj:aj;éO(l - waj) = Hj:BﬂéO(l - wﬂj) :
Dividing both sides by the modulus and multiplying by i’ allows us to apply

(42.13) to find
Hj:aﬁéO(\/a)aj = Hj:Bj;éO(\/a)Bj )
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as desired.
Now let { = m(y/w) € T for some monomial m in g. Then because ( is

independent of m, with g = > ,cg aa2%, we have g(1/w) = (X 4ecs aa and

19(V@)| = | Zaes aal = 19(D)] < llgllaz. - a
We may now prove Proposition

Proof of Proposition[d. Write f = Y o<,<1, Y1<j<J, 9(¢,5) in terms of inseparable
parts, where g¢ ;),1 < j < J;,0 < £ < L are as in Proposition [3l Then by
Propositions [3| (Property A) and [ (Property B)

fWV)l < >0 >0 lgep(Vw)l

0<U<L1<5<Jy

< 2 2 lgesle (Property B)
0<U<L1<5<J,
Sax 1 llag > Jb. (Property A)
0<I<L
In view of (4.2.11) and L < d, we obtain |f(v/w)| S, . I fllan- O

4.3 Aside: characterizing inseparable parts for prime K

Although it is not required for the proof of Theorem it is interesting to
understand what are the parts g of f for which

lgllay, s 1l (43.1)

via our Property A (Proposition[3)? Recall that holds when g is a part of
f containing all monomials in f from an equivalence class of the inseparability
equivalence relation ~.

Thus we are led to ask for a characterization of inseparability. It turns out
that for prime K this can be done completely via connections to transcendental
number theory including Baker’s theorem [Bak22].

Proposition 5. Suppose K > 3 is prime and o, 3 € {0,1,..., K —1}". Then

two monomials 2%, 2° are inseparable if and only if
o Support sizes are equal: |supp(a)| = |supp(B)|,
e Degrees are equal mod 2K : |a| = |5| mod 2K,

e Individual degree symmetry: there is a bijection m : supp(a) — supp(f)
such that for all j € supp(a), o = Br(j) or &j = K — Br(j).
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Proof. Recall that by definition, two monomials z® and 2z° are inseparable if

and only if they have the same support size and 7, = 75; that is,

I (-w)= I (-u),
j:0;#0 §:B;#0
where w = €>™/K_ For these quantities to be equal, their respective moduli and
arguments must coincide.
To compare arguments, observe that for any multi-index o € {0,1,..., K —
1}", by the identity we may normalize 7, like so:

|75

To_ _ j-Isupp(o)| ln‘[(\/c_d)oj _ i—|Supp(U)|(\/L_u)|0'|,
j=1

where as before \/w = ™K. It is given that |supp(a)| = |supp(B)|, so
the arguments of 7, and 73 are equal exactly when (yw)l* = (1/w)l or
equivalently, |a| = || mod 2K.

As for the moduli, using the identity |1 — w*| = 2sin(kw/K) we find for

any multi-index o that

I, = [[ 2sin(o;7/K) = ][] 2sin(min{o;, K —0;}-7/K),
i #0 jio;#0
where the last step follows from the symmetry of sine about /2.

So when are |7,| and |73| equal? By the last display, certainly they are the
same if there is a bijection 7 : supp(a) — supp(8) such that for all j € supp(a),
a; = Brj) or aj = K — Br(;). Is this the only time |7,| = |75|?

Returning to o, define for 1 < k < (K — 1)/2 the quantity

Gk)=Hj:0j=Fkoro;=K—k}.

Then
(K-1)/2

log(|7,]) = kX_: (k) - log(2sin(kr/K)).

Therefore if the numbers
{br :=log(2sin(kn/K)),k=1,...,(K —1)/2}

were linearly independent over Z, the only way |7,| = |73| is the existence of a
bijection 7 as above.
Conveniently, the question of the linear independence of the b;’s has already

appeared in a different context, concerning an approach of Livingston to resolve
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a folklore conjecture of Erdés on the vanishing of certain Dirichlet L-series. It
was answered in [Pat17| in the positive for K > 3 prime and in the negative for
all composite K > 4 using several tools including Baker’s celebrated theorem

on linear forms in logarithms of algebraic numbers [Bak22]. O

~d,K
|| fllay. for all k-homogeneous parts fi of f, 0 < k < d, we may conclude by

Proposition

Finally, recalling (e.g., Corollary [16) that Theorem [21] implies || fx[lan <

Corollary 24. Suppose K is an odd prime and let S be a maximal subset of
{0,1,..., K — 1}" such that for all o, B € S:

o Support sizes are equal: |supp(c)| = |supp(B)|.
e Degrees are equal: |a| = |B|.

o Individual degree symmetry: there is a bijection m : supp(a) — supp(5)
such that for all j € supp(a), o = Br(j) or &j = K — Br(j)-

Then for any n-variate analytic polynomial f of degree at most d and individual

~

degree at most K — 1, the S-part of f, i.e., fs =X qcs f(a)2%, satisfies:
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Chapter &5

PROOF 1II: DISCRETIZATION BY INTERPOLATION

Here we give a proof of Theorem [1| (or Theorem (14| for X = Q%) via interpo-
lation, follow [KSVZ24]. The more general case of Theorem as proved in

[Bec+25|, is more complicated in notation only.

5.1 The proof
A natural approach to proving Theorem [I}is to consider a specific maximizer
z € T of |f| and write f(z) as a linear combination of evaluations of f at

points in {2%. We might begin with this lemma for a single coordinate:

Lemma 25. Suppose z € T. Then there exists ¢ := (co, . ..,Ccx_1) such that
forallk=0,1,..., K — 1,

K—1 '
2 =3 ciw)k.
=0

Moreover, ||c||1 < Blog(K) for a universal constant B.

Proof. Let w = exp(2mi/K). The discrete Fourier transform (DFT) of the

array A = (1,z2,...,2571) yields K complex numbers ¢&,...,cx_; so that
b LS
2" =Ap=— cw’
K %

2" = cjw’*. (5.1.1)
Recall the DFT coefficients are given by
K-1 .
Ej = Z Akw_k].
k=0
Since A = 2* we have

&= 5 P (z/w)®
=2 = (/)
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By the triangle inequality,

2
|6;| < min| K, ———— |.
jw? — 2]

Using that the harmonic number Hx = YK, 1/k satisfies Hx < log(K) + 1,
it is elementary to see that we have

K-1
> 16| < BKlog K

for B a sufficiently large constant. That is,

1K1

lelly = Z lesl = 3 2_ 16 < Blog(K). B

J =0

In a single coordinate, Lemma [25] provides the desired inequality as follows.

With z € T a maximizer of |f(z)| we have

d K-1
[fllx = 1f(2)] = IZakzkI =12 > ane; (W) = | Z ¢;f (W)
k=0 j=0
< llellullfllex < Clog(K)||fllox - (Holder)

However, in higher dimensions, repeating this argument coordinatewise in-
troduces an exponential dependence on n. We circumvent this by taking a
probabilistic view of the foregoing display: the sum over j can be interpreted
as an expectation over a (complex-valued) measure on Q. When it is repeated
in several dimensions, this is like taking an expectation over n independent
random variables. The key insight is that this independence is more than we
need: by correlating the random variables, we “save on randomness” (which

reduces the multiplicative constant) while retaining control of the error.

Lemma 26. Let f be a degree-d n-variate polynomial and z € T™. Then there
is a univariate polynomial p = ps . such that for any positive integer m there
are (dependent) random variables R, W taking values in Q4 and Q% respectively
such that

f(z)=D" E [Rf(W)]+p(1/m). (5.1.2)

Moreover, p has deg(p) < d and zero constant term, and D = D(K) is a

universal constant depending on K only.
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Lemma [26] is the crux of our argument and we are not aware of a similar
statement in the literature. Theorem [1] follows quickly, though it is interesting
to note that instead of clearing the error term by taking m — oo (which would
indeed make p(1/m) — 0 but also send D™ — o0), we will end up using
algebraic features of p (namely, low-degree-ness) to remove it. But first, the

lemmas:

Proof of Lemma [26. We will argue Lemma, [26| for f(z) = 2%, a monomial of
degree at most d. The claim extends to general degree-d f by linearity.

We begin by examining a single coordinate with the aim of rewriting
Lemma, [25] in a probabilistic form. To that end, we first decouple the angle
and magnitude information of the ¢;’s. Fix z € T and let c¢; be as in Lemma
25l We may write a decomposition

3

0 . 1 2 . 3 -S S
Cj:1‘C§~)+Z'C§)+(_1)'C§')+(_Z)‘C§~)ZZO'& ~c§-),

with all c§-s) R=% and c(o) ( ) = c( )c(?’) = 0. This can be done for all j so
that, with C' := Blog K from Lemma

I, < C (5.1.3)
is satisfied for each s € {0, 1,2, 3}, where c®) = (cgs), ) ,cgf)). So we have for
allk=0,..., K —1,

K-1 3
= Z Z 3O
j: s=0
We now rewrite the sum in Lemma [25] in probabilistic form.

Put D =4C + 1 and define r : [0, D] — C by

1 0<t<C+1,

i C+1<t<20+1,
—1 20+1<t<3C+1,
—i 3C+1<t<4C+1=D.

Also define a piecewise-constant function w : [0, D] — Qx as follows. Consider
any collection of disjoint intervals I J(S), 0<j<K-1,0<s<3such that

(&) :
¥ clo,D], se{0,1,23}je{0,1,....,K—1}



53
and for each s and j, IJ(-S) C[sC+1,(s+1)C+1] and |I;S)| = cg.s). Disjointness

is possible because for each s,
[sC+1,(s +1)C +1]| = C > YK Y

by (5.1.3)). Now assign w(I ;s)) = w’ and in the remaining region of [0, D] (that
is, [0, D]\ Us,; I ;S)) let w take on each element of Qx with in equal amount

(w.r.t. the uniform measure).

Claim 1. Let T be sampled uniformly from [0, D]. Then for allk =0,1,..., K—
1

)

2F = DIJ@[r(T)w(T)’“] : (5.1.4)
Proof of Claim[1 Let us begin with k£ = 0, which simplifies to
DIJ@[’I‘(T)] =1. (5.1.5)
This can be seen by direct computation:
Efr(T)] = %(1+1-C+i-0+(—1)-C’+(—z')-C) 1

For k > 1, consider the joint distribution of (r(T),w(T)*), whose product
appears in (5.1.4). Fix s € {0,1,2,3}, and condition on r(T) = i*. The
conditional distribution of w(T') has two parts. One part, corresponding to
;I ;S), has w(T') = w’ over I J(-S) with the probability Pr[r(T) = i* Aw(T) = w]
equal to c§-s) /D, while the other has w(T") uniformly distributed in Qx. The
latter part contributes 0 to the expectation E[r(T)w(T')¥], since 35" (w’)* = 0
for k=1,2,..., K — 1. The former part contributes

K(
he
ED

Summing this display over s € {0, 1,2, 3} and rearranging, we get that

N~ S vk Lok
E[lr(T)w(T)"] = (W) =—
P = X B = 5
completing proof of (5.1.4). O
We return to the multivariate setting. Fix z := (21,...,2,) € T" and define

the functions wy, ..., w, corresponding to the above construction applied to



o4

each coordinate 21, ..., z,. If each coordinate were to receive a fresh copy of T
this would lead to an identity with exponential constant:
2=D" B [IT r(T)we(To)*).

5T,

1<t<n

Instead, we consider only m independent copies of T: Ti,...,T,, 8 u [0, D].
The decision of which coordinates are integrated with respect to which T} is
also made randomly, via a uniformly random function P : [n] — [m]. We finally
arrive at the definitions of R and W

R := HR[ with Rg = T(Tg),l < / <m
=1

W = (wl (TP(1)>,TU2 (TP(2)>, <oy Wn (TP(n)>) = (Wh ) Wn) .
When P is injective on supp(a), we easily achieve the smaller constant.

Claim 2. Consider m > |supp(«)|. Then
RI%V[R - W | P is injective on supp(a)] = D™™z%.

Proof of Claim[9. It suffices to prove this for an arbitrary projection P that
is injective on supp(e). Consider the partition of [n] given by P~'([m]) and
write S, = P~1(¢) for £ € [m]. By independence, the expectation splits over
these S,’s:

E [R-W* | P=P] =II% E[Re Tlhes, Wi |- (5.1.6)

Because P is injective on supp(«), every S, contains one or zero elements of

supp(c). By Claim [1}, in the latter case we have

o 1
E[Re Ikes, Wi k} =E[R] = D’
and in the former case we have
o aj 1 aj
E[Re [Ixes, Wi k] = E[RZWJ' | = Ezj )

for the specific j for which {j} = S,;Nsupp(c). Substituting these observations
into (5.1.6) completes the argument. O

When P is not injective, we still have some control. Let S = {S;} be a

partition of supp(c). We say P induces S if

{P7'(j) Nsupp(a) : j € [m]} = S..
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Claim 3. For each partition S of supp(«) there is a number E(S) such that
for allm > |S]|,

E [R-W*| P induces S| = D"™E(S).
RW

Proof of Claim[3 Condition again on a specific P that induces S. There
are two types of £ € [m]: those that W* depends on (that is, P(supp(c))),
and those that only R depends on. Call these sets L = P(supp(a)) and L¢
respectively. Then by independence of the T}’s,

AER-W|P=P|= E (s Re)[leer Be) - W* | P = P]

= DS ([T R)- W | P=F].

[\ J
-

*

We observe that the expectation (%) does not depend on the specific P inducing
S, nor on m. Thus we may define E(S) by setting DIS|E(S) equal to (x). ¢

To summarize claims [2 and |3, we have that for all partitions S of supp(«)
there is a number E(S) such that for all m > |S|,

E[R - W*¢|P induces S| = D"™E(S).

And using §* to denote the singleton partition {{ j }}
have E(S*) = z*.

, , we additionally
jé€supp(e)

Now we consider the unconditional expectation E[R - W*°| with P ~
U([m] [n]). Elementary combinatorics give that for all partitions S and all
m > 1, with s = |§]|,

mm—1)---(m—s+1)
mmylsupp(c)|

1+ qs(%) if s = |supp(a)|

Pr[P induces S| =

¢:(2%) if s < [supp(e)|,

for polynomials ¢s with zero constant term and deg(qs) < d.

Of course P can only induce S for |S| < m, so by the law of total probability,

RI’%V[R- W] = > E[R-W®* | P induces S]Pr[P induces S] .

§,|8|<min(m,|supp(a))
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Consider first the case m > |supp(a)|. We obtain

RI’%V[R- W] = %:]E[R W< | P induces S| Pr[P induces S|

_ D—mE(S*) (1 + Q|supp()| (%))
+ Y DTES)-qs(3)

S,|S|<|supp(a)]

=D [z"‘ + ; E(S) - qs (%)] . (5.1.7)

Now when m < |supp(c)|, we combine the fact that Pr[P induces S] = 0 for
|S| > m with the definition of ¢, to see

E[R-W* =04+ >  E[R-W®"| P induces S]|Pr[P induces S]
W S,|S|<m

= > D ™E(S)Pr[Pinduces S]+ »_ D ™E(S)Pr[P induces S|
S,|S[>m S,|8|<m

= D "E(S) (1 + Glsupp(a)| (#))
" ) D™™E(S) - qs (%)

|supp () |>|S|>m

+ > DE(S) - g5 ()

m>|S|
=D™ [z" + Y E(S) - qs (%)] : (5.1.8)
S
Noting that (5.1.8)) and (5.1.7) are identical, we rearrange to find
2*=D"E[R-W?*| - > E(S) -Q|3|( ),
S

1
m

and the second part is in total a polynomial in % with no constant term and
degree < d. O

Finally, the error term p(%) is removed by considering several values of m.

Proof of Theorem[1. Suppose there were some coefficients a,,, € C with ¢ _, a,,, =
1, so that for any polynomial p of degree < d and p(0) = 0 we would have

gn:l amp(%) = 0.
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We could then sum (5.1.2)) for m = 1,...,d, weighted by a,,, and get

= Z amf(z)
:ZamDmE R..f(W, +Zamp< )

= Z_ am D™ B[R f (W), (5.1.9)

where R,,, W,, are those R, W from marked with explicit dependence
on m.

WEell, these coefficients a,, can be arranged, since the monomial vectors
(1/m*)m=1,.q4 for t = 0,...,d — 1 are linearly independent (Vandermonde).
Since always |R,,| < 1, we deduce

ma’ngL:l |am|

- D fllax -

d
A< Y [amD™ - [fllay, <
m=1

An explicit formula for the a,,’s is given by

md

an = ()

and it is evident that max? _, |a,,| < exp(O(d)), and specifically max?,_, |a,,| <
exp(1.28d).

Without loss of generality, we may assume D > 11 andso1/(1—-1/D) < 1.1.
We conclude

[f(2)| < (4D)?||fllag, = (4Blog(K) + 4)7||f |- i

5.2 Nonexistence of subexponential-cardinality meshes
Proof of Theorem[18. For any € = (e1,...,&,) € {—1,1}", consider the poly-
nomials fe(x) = >7_, €;x; on {—1,1}" of degree at most 1. Then by definition,

n = || felligyn < Clifellva.-
In other words, we have for all € € {—1,1}" that

Z Uj€;j

So we have the inclusion {—1,1}" C U,ey;, Av, Where

n
Z Uj€j

=1

max

>26n  with d=_——=€(0,00).
v—(vh a'Un)EVn

A, = {e e{=L1}":|fu(e)l =

> 2(5n}, v eV,



For each v € V,, and i.i.d. Bernoulli random variables €1, . .

Hoeftding’s inequality that

|Ay| =27 Pr

< 2"Pr

n

Z Uj€;j

=1

> 20m

R(vj)ej| = on| + 2" Pr!

n
=1

n
Jj=1
2

6%n?

< 2"l exp (_ 2) + 2" exp <_5_7122>,
2||aliz 2|13

where a = Rv and b = Qw are real vectors. Recalling that v € V,, C D", we

have ||a||3 < n and ||b|3 < n. Therefore,

|A,| < 212 exp<—62n/2> = 4(26_62/2>n.

All combined, we just proved

S(vj)e;

58

., En, We have by

> on

2" = [{-1,1}"| < 3 |Ao| < 4[Va] (2e70°72)".

This gives the bound

as desired.

’UEVn

1 52
|Vn| Z ‘—‘Le(ST

)
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Chapter 6

APPLICATIONS

6.1 LP discretization inequalities
Theorem 27. Let 1 <p < oo and f: Qf — C of degree at most d. Then

£ l|ze(ny < dO(log K)| fl| o) -
Proof. Beginning with the interpolation formula (5.1.9)), it is evident that for
any & € QF,
d
fE©2) =3 anD"E[Rnf(§© Wn),

m=1

where ® denotes coordinatewise multiplication. Thus by Jensen we have

d
FE0P <@ 23 anD PEf(E O W]
m=1

< dPO(log K) - 1 3" E[|f(§ © W) ["].

m=1

Now consider £ sampled uniformly from Q%. For any fixed value of W,,,

the distribution & ® W,, is also uniform on Q%;, so we have

B, (€0 =) < POMos ) B, f(€)P].

Let A = el0V2m/N he the arc on T from the first to the second N** root of

unity. Observe that the random variable
£z with 2z~ A€~ Qpy
is distributed uniformly on T, and accordingly the random variable
£0z with z~ A" €~ QY
is distributed uniformly on T™. Therefore,

ENfP = E (€6 2)F]

P Zr AR EnQT,

<dO(log K)” B, [I£(6)P),

which finishes the argument. O
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6.2 Junta theorem for functions on the hypergrid

We say a function f : Q% — D is a k-junta if it depends on only k
coordinates. The concept of juntas is a central tool in the analysis of Boolean
functions [ODo14].

So-called “junta theorems” show that functions which are simple in some
way are close to juntas. For functions from the hypercube to the range {—1,1}
these include Friedgut’s theorem (which constrains the functions’ total influence)
and the FKN Theorem and Bourgain’s junta theorem, both of which constrain
the weight of the Fourier tail }J g F(S)%. When the image of f is allowed to
lie in [—1, 1], we have the following result [DFKOO07].

Theorem 28 ([DFKOO07]). Let f : Q% — [—1,1], € and k be such that

> ()’ < exp (- O(k*logk)/e) .

|S|>k
Then f is e-close to a (2°%) /e?)-junta.

In the case of functions on 2%, there is a statement along the lines of
Friedgut’s theorem for functions whose image is {0,1} [Ben+16]. Here we
obtain a junta theorem for general f : Q% — D (in loose analogy to [DFKO07])
using the cyclic-group Bohnenblust—Hille inequality.

Theorem 29. If f : Q% — D has degree at most d, then there ezists another
function h : Q% — D such that ||f — h|l2 < € and h is a k-junta for

BH2d 2d d\ 2d
k< d(ﬂ) < d(M) )
€ €

This argument is similar to the junta theorem for qubits in [VZ23|, which
is credited to Eskenazis. It is also a good warmup for the learning results in

the sequel.

Proof. Denote the heavy Fourier coefficients of f by

-~

S={a:|f(a)] 2t}

and define the function

-~

fi(2) = > Loes - fa)z*.

ae{0,1,.... K—1}n
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Using the definition of S and the cyclic group BH inequality we have

2d
|S| = Z(IdeH =1 d+1 Z |a|% < t—% (BHgi) d+1,

a€eS all
so f; is a k-junta with
2d_
k<d(}-BH5!)™.
Let cl(z) = £/ max{1, |z|} be a clamp function. Then cl(f;) has image in D
and is a k-junta for the same k. Because |cl(f;)(z) — f(x)| < |fi(z) — f(z)]

pointwise, we also have

1f = A < IIf — il = S IF(@P < 781 Y Jaf@ < ¢ (BHSL) ™

agsS all

Now with the choice t = g4+! (BH%?()_d, we have || f — cl(fi) |2 < € with cl(f;)
a k-junta for
BHSY 2d
k= d( EQK) . O

6.3 Qudit Bohnenblust—Hille in the Heisenberg—Weyl basis
Definition 2 (Heisenberg—Weyl Basis). Fiz K > 2 and let w = wg =
exp(2mi/K). Define the K-dimensional clock and shift matrices respectively
via

Zijy=uw'lj), Xlj)=|j+1) forall j€Zg.
Here Zk = {0,1,. — 1} denotes the additive cyclic group of order K.
Note that XX = ZK = I See more in [AEHK16]. Then the Heisenberg—Weyl
basis for Mk(C) is

HW(K) := {X*Z™}ymezy -

Any observable A € My (C)®" has a unique Fourier expansion with respect to
HW(K) as well:

-~

A= Alm)X“EZ™ @ - @ XinZ™, (6.3.1)
Imern

where A(¢,m) € C is the Fourier coefficient at (£,7). We say that A is of
degree at most d if A(Z,1) = 0 whenever

(2, )] X:K—l-mJ
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Here, 0 < {;,m; < K — 1.

Noting that the eigenvalues of Heisenberg—Weyl matrices are the roots of
unity, it is natural to pursue a reduction to a scalar BH inequality over Q7%,
the multiplicative cyclic group of order K—precisely the inequality needed for
classical learning on functions on %. This reduction works well when K is

prime.

Theorem 30 (Qudit Bohnenblust—Hille, Heisenberg-Weyl Basis: prime case).
Fiz a prime number K > 2 and suppose d > 1. Consider an observable
A € Mg (C)®™ of degree at most d. Then we have

14| 22 < C(d, K) | Allops (6.3.2)
with C(d, K) < (K + 1)‘BHg?.

When K is non-prime, the reduction still works under modifications, namely

the degree may jump from d up to (K — 1)d.

Theorem 31 (Qudit Bohnenblust-Hille, Heisenberg—Weyl Basis: non-prime
case). Fiz a non-prime number K > 4 and suppose d > 1. Consider an
observable A € My (C)®" of degree at most d. Then we have

A0 a2 < Oy K) [ Alls (633

with C(d,K) < KZdBHgiK_l)d. In fact, the constant K?? can be replaced
by |Zk|? with |Lk| being the cardinality of Xk = {({,m) € Zx x Zk :

¢ and m are coprime}.

The proofs of Theorems [30] and [31] are contained in Section The full
strength of Theorems [30] and [31] relies on the BH inequality for the cyclic
groups (%, i.e., the finiteness of the Bohnenblust-Hille constant BHéi for
cyclic groups which we quote here for reference.

Fix K > 3 and denote w := e?™/X_ Let Qx := {1,w,w?,...,wX '}. Then

any function f : Q% — C admits the unique Fourier expansion
f(z) =3 fla)=2, (6.3.4)

where a = (a1, . .., ;) are vectors of non-negative integers and each a; < K —1.
We say f is of degree at most d if (o) = 0 whenever |a| > d. The following
result was proved in [SVZ24a; |SVZ25; KSVZ24; Bec+25].
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Theorem 32 (Cyclic Bohnenblust-Hille). Fiz K > 3 and d > 1. There exists
C(d, K) > 0 such that for alln > 1 and for all f : Q) — C of degree at most

d, we have
IF]l 22 < C(d, K) sup |f(2)]. (6.3.5)

2€Q

Denote by BHéi the best constant C(d, K) in (6.3.5). An upper bound
BH5? < O(log K)? was obtained in [KSVZ24; Bec+25|.

* * *

In this section we prove Theorems [30] and [31] via reduction to the BH
inequality for cyclic groups, Theorem We collect first a few facts about the
Heisenberg—Weyl basis {X*Z™}.

Fix K > 3. Recall that gcd(a,b) denotes the greatest common divisor
of a and b. For (¢{,m) € Zk X Zg, gcd(¢,m) is understood as when ¢,m €
{1,2,...,K}, i.e. we do not mod K freely here. For example if K = 6,
then ged(0,2) is understood as ged(6,2) = 2. For a group G, we use the
convention that (g) is the abelian subgroup generated by g € G. So for any
(¢,m) € Zk x Zk, we have

(6, m)) = {(kt, km) : k € Zx}. (6.3.6)

In the sequel, we denote w = wx = e2™/X and use the notation w'/? :=

wor = €™/ K,

Lemma 33. We have the following:

1. {X*Z™ . &,m € Zk} form a basis of My (C).

2. For all k,¢,m € Zk:

(XeZm)k _ w%k(k—l)émxkezkm
and for all 01,4y, m1, Mo € Zf:
Xbagm ., xtegm: — Jlemi—timg xls pma | xbh pmi
3. If ged(41,m1) =1 and (£,m) ¢ ((€1,m1)), then
Xhzm . Xtzm = fm-hmxtzm . xh zm (6.3.7)

with wfm—am £ 1,
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4. If ged(€,m) = 1, then the set of eigenvalues of X*Z™ is either Qx or
Qox \ Q.

Proof. 1. Suppose that Y, armX*Z™ = 0. For any j,k € Zg, we have
Ea&m(XZZmeja ejrk) = D apmw’™ = 0.
m m

K—l)

Since the Vandermonde matrix associated to (1,w, . ..,w is invertible,

we have ay, =0 for all k,m € Zg.

2. Tt follows immediately from the identity ZX = wXZ which can be
verified directly: for all j € Zg

e I B o N e R ;
ZXej =Zej1 =w e =W Xe; = wX Ze;.

3. It is a direct consequence of (2) and the following fact: for (¢;,m;) €
Zy x Zg such that ged(£1,my1) = 1 and (b2, ms) € Zg X Zk, we have
lymy — lomy = 0 mod K if and only if (b2, my) = (kf1,km;) mod K

for some k € Zg.

The “if” direction is obvious. To show the “only if” part, recall that by
Bézout’s lemma, there exist integers a and S such that af; + fm; =
ged(1,my) = 1. Take k = aly + Bmy mod K. Then

by = ly(aly + Bmy) = alyly + Blimg = k€, mod K, (6.3.8)
where we used £;ms = fom; mod K. Similarly,
me = mo(aly + fmy) = alomy + fmymge = km; mod K,  (6.3.9)
as desired. This finishes the proof of the fact.
4. By (2), we have

(Xlzm)QK — wK(?K—l)ZmX2€Kz2mK =1

So the eigenvalues of X*Z™ must be roots of unit of order 2K. Then the
proof is finished as soon as we prove the following claim: for ged(¢, m) = 1,
if \ is an eigenvalue of X*Z™, then so is w\. To prove the claim,
recall that by Bézout’s lemma, there exist integers o and 8 such that
al + fm = ged(4,m) = 1. By (2), we get

XtZmxPz = wotthmxBz-extzm — yXPz-XxtZ™  (6.3.10)
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Suppose 0 # ¢ is an eigenvector of X‘Z™ with eigenvalue X. Then
XzmxPz=et = ytPmxBzaxtzme = wAXPZ7¢,  (6.3.11)

implying that X?Z~2¢ (non-zero since X”Z~ is invertible) is an eigen-
vector of X*Z™ with eigenvalue w). This finishes the proof of the

claim. m
Let us record the following observation as a lemma.

Lemma 34. Suppose that k > 1, A, B are two unitary matrices such that
B¥ =1, AB=ABA with A € C and A # 1. If € # 0 is an eigenvector of B
with eigenvalue p (1 # 0 since u* = 1), then

(€, Ag) = 0.

Proof. By assumption

u(€, AL) = (€, ABE) = A(¢, BAE).

Since Bf = B!, B¢ = B*1¢ = pF~1¢ = €. Thus

(€, AE) = ME, BAE) = N(BTE, A€) = Mg, A¢).
Hence, p(A — 1)(§, A¢) = 0. This gives (£, A¢) =0 as (A —1) #0. O
The prime K case

In this subsection we prove Theorem [30] When K is prime, the basis
{X*Z™} has nicer properties.

Lemma 35. Fix K > 3 a prime number. Consider the set of generators
Z]K = {(L 0)7 (17 1)7 SRR (17 K - 1)7 (07 1)} (6312)
Then the group Zx X Zk 1is the union of subgroups

Zi xZx = | ((&,m)), (6.3.13)
(f,m)EEK

where each two subgroups intersects with the unit (0,0) only. Moreover, for

any (£,m) € Lk, the set of eigenvalues of each X*Z™ is exactly Q.
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Proof. To prove the first statement, take any (¢,m) € Zg x Zg. If £ =0, then
(¢,m) = (0,m) € ((0,1)). If £ # 0, then ged(¢, K) = 1. So by Bézout’s lemma,
there exists ¢ such that £/ =1 mod K. Thus (¢,m) = (£,£¢'m) € {(1,£'m)).
The statement about the intersection is clear since otherwise, the cardinality of
the union of these subgroups is strictly smaller than 1 + (K +1)(K — 1) = K?
which leads to a contradiction.

The second statement follows from the proof of Lemma In fact, when
K is odd, (K —1)/2 is an integer and we have by Lemma 33 (2) that

(XeZm)K — i K(E-Dtm K pmK _ 1

So the eigenvalues of X*Z™ must be roots of unity of order K. This, together
with the claim in the proof of Lemma 33| (4) and the fact that ged(¢,m) =
1, (¢,m) € Xk, completes the proof of the lemma. H

Now we are ready to prove Theorem

Proof of Theorem[30. Fix a prime number K > 2. Recall that w = e
Consider Xk defined in (6.3.12). For any (¢,m) € Xk, by Lemma [35] any
z € Q is an eigenvalue of X*Z™ and we denote by e%™ the corresponding unit

eigenvector. For any vector & € Q%{H)n of the form (noting that |Xx| = K +1)

=@ emesg, @ = (WL, wh™) € O, (6.3.14)

we consider the matrix

where
1

— £m £m
pe(@) == D le i Xe ml.
K+1 ¢,m)eXK “k “k
Then each pi (@) is a density matrix and so is p(&).

Fix (¢,m) € ¥k and 1 < k < K — 1. We have by Lemma

tr[Xkeka|e£,m><e£,m ” _ w—%k(k—l)ﬂm<eﬁ,m, (Xlzm)keﬁ,m>

_lp(k—
Sh(k—1)tm ko

=w ZEQK.

On the other hand, for any (¢,m) # (¢, m’) € Lk, we have (k¢, km) ¢ ((¢',m'))
by Lemma [35] From our choice ged(¢',m’) = 1. So Lemma [33] gives

kl r7km v 0 om! | kO'm—klm' vl om! vkl 7km
XWZ"MmXYZ™ =w X" ZmX™Z
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with w*¢m—km" - 1. This, together with Lemma implies

l

tr[ X R ZEm el m el || = (e, X R ZFmel ™y = 0, z € Qk.

for any 1 < k < K — 1. All combined, forall 1 <k < K —1,(¢,m) € Xk and
1 <7< nweget

1
tr[ XM 25 pi(@)] = —— > < v m Xk Zkm ZZ" ,>
K+1 (@ mesk Wy w!"
1
K+ 1<e ‘m’XMkaewjm>
1 —Lk(k=Dlm/, Lm\k

Note that by Lemma |35/ any polynomial in Mg (C)®" of degree at most d

is a linear combination of monomials
A(E,Zﬁi;’b = ..o @ X ghm g @ XEebs Zheme g L ,

where

-

e K=(ki,..., k) €{1,...,K — 1}* with 0 < ¥ k; < d

Z= (81,...,&0,7’)_’1: (ml,...,mn) with each (éj,mj) € EK,
o i =(i1,...,0) With1<iy <--- <i, <m;

o Xkiti Z*imi appears in the i;-th place, 1 < j < k, and all the other n — k

elements in the tensor product are the identity matrices I.

So for any @ € Q%(H)" of the form ((6.3.14)) we have from the above discussion
that

tr[A(k, £, ;1) p(@)] = Htr[xk it Zki™5 p, ()]
7j=1
w2 2 ki (ki —1)e5m;

(K + 1)~

(w{fl,m1)k1 ..

en, I K
11 " )k *

- (wjs
Thus & — tr[A(K, Z,7;7)p()] is a monomial on (Qx)E+D" of degree at most
5k <d.

Now for general polynomial A € My (C)®" of degree at most d:
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where the sum runs over the above (E, Z; m; 17) This is the Fourier expansion of
A and each C(E, 7, i) € C is the Fourier coefficient. So

—3 2451 kj(kj—l)fjmjc(k, 7 D

— Z w 21,m1)k1 .
ki (K +1)°

@mmn)kn_

(23

(W

Note that this is the Fourier expansion of f4 since the monomials ((,ufl1 kL (W

differ for distinct (E, Z m; f}’s. Therefore, for p > 0

ek, L)) "
(K +1)~

1falls = ( 2

k0

= m”g”;ﬂ

According to Theorem [32], one has
7 <d
1720 5, < BHSE Il

for some BHéi < 0o. Since each p(@) is a density matrix, we have by duality
that

I Fallggernn = sup  [tr[Ap(@)]] < [|A]lop-

QE(QK)(K+1)"

All combined, we obtain

141l 22 < (K+D)?fall 20, < (K+1)BHS | fallgueron < (K+1)*BHS? [|Allop -
O

The non-prime K case

This subsection is devoted to the proof of Theorem [3I} Throughout this
part, K > 4 is a non-prime integer.

We start with a substitute of X in for non-prime K.

LM

(3

-



69

Lemma 36. Fiz non-prime K > 4. Consider
Y :={(,m) € Zx x Lk : ged(4,m) = 1}. (6.3.15)
Then Zy X Zg is the union of subgroups generated by elements in X

(f,m)EEK
Proof. The proof is direct: any (¢,m) € Zg x Zg belongs to ((¢1,m,)) for
(61, my1) = (¢/ ged(¢,m), m/ ged(4,m)) € Xk. O

Recall that when K is prime, for two different subgroups ((¢1,m;)) #
((€2, m5)) one has the singleton set {(0,0)} as their intersection. However, this
is no longer the case when K is not prime. For example, for K = 6, we have
((1,0)) # ((2,3)) while ((1,0))N((2,3)) = {(0,0),(2,0), (4,0)}. This difference
will make the proof of Theorem [31] more involved.

Proof of Theorem[31. Fix non-prime K > 4. Consider Xk defined in (6.3.15).
Then we know by Lemma [36| that the set of eigenvalues of X*Z™ is either Qx
or Qi \ Q. In either case, suppose that z is an eigenvalue of X¢Z™. We
denote by %™ the unit eigenvector of X*Z™ corresponding to z.

Write ¥x = 35 U X5 with

Y} :={(¢,m) € Tk : the set of eigenvalues of X*Z™ is Qx} (6.3.17)
and
Y ={(,m) € ¥k : the set of eigenvalues of XZ™ is Qox \ Qx}. (6.3.18)
As before, for any @ € Q%! of the form
= (@) empezg, = (W, wh™) € QF, (6.3.19)

we shall consider
p(W) = p1(&) ® -+ & pu(& (6.3.20)

where each p;(&) is the average of some eigen-projections of X*Z™, (¢,m) € L.

If (¢,m) € Tf, then X*Z™ has wf’m € Qk as an eigenvalue with eizlm being
i

the unit eigenvector. If (£,m) € X%, then wf’m € Qk is not an eigenvalue of

X*tZ™. In this case, X*Z™ has w'/ 2w§’m € Qi \ O as an eigenvalue with
l,m

e
wl/wa’m

being the unit eigenvector.
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For each 1 < j < n, consider

- 1 0 0 1 ¢ ¢
p](CL)) = |Z | Z |ewZLm> <ewzlm| + |E | Z |ew$2w€,m> <€ " Z,m| ¢
J J

1/2
Kl emyest 7 (e,m)esy, Wi
? K ) K

(6.3.21)

By definition, each p;(&) is a density matrix and so is p(&J).

For any (0,0) # (¢,m') € Zx x Zk and any (¢,m) € X, either (¢',m’) ¢
((,m)) or (¢',m') = (kl, km) for some k € Zg. If (¢',m') ¢ ((¢,m)), then by
Lemma, 33

Xtzm . Xtzm = Wt tmxtzm . XY 7m (6.3.22)

with w®=¥™ =£ 1. So Lemma [34] gives
tr[ X% Z™ |e5™) (4] = 0, (6.3.23)

for any eigenvalue z of X*Z™.
If (¢, m') = (k¢, km) for some k € Zg, then by Lemma

XZ’zm’ — Xk:ézkm — w—%k(k—l)ém(szm)k. (6324)
So for any eigenvalue z of X*Z™.
tr[ XY Z™ |eb™) (4] = w 2Rk Dim gk (6.3.25)

All combined, we have for any & € (Qx)™xI" that

i / ]_
tr [X«‘f zZm pj(g;)] - Z w—%ke,m(ke,m—l)em(wf,m)keym

%] (&;m)ES (¢ ;m!)=(ke, m bk, mm)
_1 _ ¢
+m Z w 2ké,m(k€,m 1)£m(w1/2wj7m)ke,m
Kl (myes (0 m") = (ke mb ke, mm)

1 Z w—%ke,m(kg,m—l)em (wli’m)kﬁ,m

T Zkl J
|Zk| (&m)ES Lol m!)=(ke,mb ke, mm)

—

n |21K| Z w3 kem (ke,m—=1)tmt S m ( wf,m)k:g,m.

(evm)EEI_{:(elaml):(ké,me7k€,mm)

Here in the summation, when (¢/, m’) € ((¢, m)) we write (¢', m’) = (kgm¥, kemm)
with 1 < kg, < K —1. So & — tr [X"Zm'pj (d)’)} is a polynomial on Qlfg’d" of
degree at most K — 1, and all the (non-zero) coefficients are of modulus |Zx|~*.
To compare, in the prime K case, we have only one non-zero term in the above

summation. In the non-prime K case, there might be more than one term.
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That is, we may have different (¢1,m;) and (€2, m2) in Xk such that (¢, m’) =
(k1€1, kimy) = (ka2la, koma) with 1 < ky, ks < K — 1. For example for K = 6,
we have (0,3) = (3-0,3-1) = (3-2,3-3) = (3-4,3-5) = (3-2,3-1) = (3-4,3-3).
Though tr[X* Z™ p;(&)] is no longer a monomial of degree deg(X* Z™), it is
still a non-zero polynomial of degree at most K — 1.

Now for any monomial in Mg (C)®" of degree at most d admitting the form
A7) = @XM ZM Q- - @ XHZ™ Q-+, (6.3.26)
where k¥ < d and
« 0= (by,...,4,), 7= (my,...,m,) with each (0,0) # (£;,m;) € Zx X Z;
o i=(i1,...,0) With1<iy <--- <i, <m;

« and each X%Z™i appears in the i;-th place, and all the other n — x

elements in the tensor product are the identity matrices 1.

According to our previous discussion,

A )p(@)] = [] tlX52™p, () (6.3.27)

1<j<k

is a linear combination of monomials
al,bl Cc1 ambn C
(Wil ) T (Wi,{ ) ;

of degree at most (K — 1)k < (K —1)d, with (aj,b;) € Ex and 1 <¢; < K —1
such that (c;aj,c;b;) = (¢;,m;) mod K. This implies that these monomials
remember the profile (E: m; 1) well; i.e., for distinct (E m; i) # (lﬁ , m' ; i ), the
corresponding polynomials tr[A(Z, 7;1)p(3)] and tr[A(i; m'; 7 )p(@)] do not
admit common monomials. Moreover, the coefficients of the those monomials
are all of the modulus |Zg|™* > |Sx |2

For general A € Mg (C)®" of degree at most d admitting
A=Y ol DA, 17 7) (6.3.28)
X
as the Fourier expansion, consider the polynomial

f4(@) = tr[Ap(@)] = Y e(€m;7) tr[A(Z, 73; ) p()] (6.3.29)

— -

M1
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by . . = . .
on Q2% From the above discussion, the #P-norm 4||,, of Fourier coefficients
K ) P

of f4 satisfies

1/p
| fallp > IEKI"d(Z |c(£, ﬁ%;ﬂlp) = 2k All,, p>0.

X
Moreover, f,4 is of degree at most (K — 1)d. So Theorem [32| implies
17l zucosa < BHEE™ ) fallo.

Recall that each p(&) is a density matrix, so by duality

Ifalloe = sup  [x[Ap(@)]| <[ Allop-

ce(Qg)E

All combined, we prove that

1Al 20eona < (3| ||fA|| scs < =k [“BHS V| £alloo < |Zx[“BHSS V) Allop-
]

6.4 Learning

Here we give learning algorithms for low-degree functions on 2% and local
qudit observables. This work is published in [KSVZ24]. We begin by extracting
the estimation lemma implicit in [EI22] that will allow us to use our new
Bohnenblust—Hille-type inequalities.

Theorem 37 (Generic Eskenazis—Ivanisvili). Let d € N and n, B > 0. Suppose
v,w € C" with ||[v — w|lw < 7 and ||’U||d2_+d1 < B. Then for w defined as

W, = wj1[|wj|2n(1+\/mn we have the bound
@ - vl}3 < (*rPdB*) 7.

Proof. Let t > 0 be a threshold parameter to be chosen later. Define S; = {7 :
|wj| >t} and note from the triangle inequality in C that

lv;| > |w;| — |v; —w;| =t —nfor j €S, (6.4.1)
lv;| < |w;| + |v; —w;| =t +nfor j & S (6.4.2)

We may also estimate |S;| as

2d
5t = - 1L 62 ey 5 oy 5 < (e F ol < () B

58 lil jeln] s
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With w(t) = (’LUJ]. w‘Zt])?:lﬁ we find

16.4.2)
||’LT)(t) —’U||2 Z |,w] —’UJ|2 + Z |’UJ|2 |St|'l7 + (t—l—n d+1 Z |’U |d+1

jES: §&St J€[n]

(6.4.3)
B (1t — )3 + (e m) ).

4

Choosing t = (1 + v/d + 1) then yields w with error, after some careful scalar
estimates,

|@ —ll} < (n*dB*) 7.
See |[EI22, Eqgs. 18 & 19] for details on the scalar estimates. O

In the context of low-degree learning, v is the true vector of Fourier coeffi-
cients, and w is the vector of empirical coefficients obtained through Fourier

sampling.

Cyclic group learning
Theorem 38. Let f : Z% — D be a degree-d function. Then with

(log K)°@) log(n/8)e 4"

independent random samples (z, f(z)), z ~ U(Z}), we may with confidence
1 —6 learn a function f : Z% — C with ||f — f||2 <e.

Proof. Let f =3, fi (a)z* be the Fourier expansion. For a number of samples
s to be specified later, sample z, ... z( u|o,1,. — 1}") and for

each a € Z% with |a| < d, form the empirical Fourier coeﬂicnent
18 LN )
wa = g Zf(x(]))wKZZZI a”’e ,
=1

where wx = e’% and z0) = (:cgj), . ,zg)). Then w, is a sum of bounded i.i.d.

random variables with expected value f (a), so Chernoff gives

Pr[|f(e) — wal > 1] = Pr [R(f(e) — wa) +3(Fla) —wa) >n’]

< Pr[|R(f(e) —wa)l > n/V2] +Pr[|S(fle) - wa)| > 7/ V2

< 4exp(—s172/4) .

So the probability we simultaneously estimate all nonzero Fourier coefficients

of f to within 7 is

7 : i (n —sn?
Pr[|f(oz)—wa|<nf0rallaw1th|a|§d]21—42 g )Pl |

k=0
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which in turn we will require to be > 1 — 4.
Now applying Theorem 37/to obtain @ and recalling || f]| 20 < BH%?{ | f|loo =

A5 Tj

BH%?{ we have that with probability 1—d, the function f(x) := 3, Wa [Tj—; wg

has L, error
7 o (Parseval) 7 12 < (5n2d(BHS? )24 el 4.4
IF = £13 =" D1 F(@) — @al” < (ePnPd(BHZZ)™) ™ . (6.4.4)

So in order to achieve || f—f||2 < € it is enough to pick n? = edtle~5d~1(BHz" )%,

which entails by standard estimates that taking a number of samples s with

s>

4e°d*(BH5%)%  /4en
> y K log( )
e +1

]
suffices. u

Qudit learning
We will find it more convenient to use a different orthonormal basis for

qudit learning, the so-called Gell-Mann matrices.

Definition 3 (Gell-Mann Basis). Let K > 2. Put E;, = |jXk|,1 < j,k < K.
The generalized Gell-Mann Matrices are a basis of Mk(C) and are comprised

of the identity matrix 1 along with the following generalizations of the Pauli

matrices:
symmetric:  Ajp = \/g(Ejk + Ekj) for1<ji<k<K
. . . _ K . . .
antisymmetric:  Bj = \/;( — 1B+ ZEk;j) for1<ji<k<K

diagonal: C,, =T'0(Ciy Bk — mEpii1my1) forl<m < K —1,

where I, := ,/mfim. We denote

GM(K) := {I, Ajx, Bjx, Cro }1<jch<k,1<m<k—1-

An observable A € Mk (C)®" has expansion in the GM basis as

A=Y Al)M, =Y Al0)®"_,M,,
aeAn. aeA,
for some index set Ak (so {Ma}aenr, = GM(K)). Letting |a| = |[{j : Mo, # I},
we say A is of degree at most d if A(a) = 0 for all o with |a| > d.
In [SVZ24b| we find the Gell-Mann BH inequality enjoys a reduction to the
Boolean cube BH inequality on {—1,1}*5 1) and obtain the following.
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Theorem 39 (Qudit Bohnenblust—Hille, Gell-Mann Basis). Fiz any K > 2
and d > 1. There ezists C(d, K) > 0 such that for alln > 1 and GM observable
A € Mg(C)®™ of degree at most d, we have

Ml 22 < C(d, K) | Allop- (6.4.5)
Moreover, we have C(d, K) < (%(K2 _ K)) BH{<:L11}

In particular, for K = 2 we recover the main result of [VZ23] exactly.

Theorem (Low-degree Qudit Learning, restatement of Theorem [9). Let A be
a degree-d observable on n qudits with ||A|lop < 1. Then there is a collection S

of product states such that with a number

O((K”AHOP)C’.d?dQE—d—l log(%))

of samples of the form (p,tr[Ap]), p ~ U(S), we may with confidence 1 — §
learn an observable A with || A — A2 <e

Here ||A||2 denotes the normalized Ly norm induced by the inner product
(A, B) := K" tr[A'B]. Also, we choose to include explicit mention of ||.Al|op
here as it will be useful later. For applications it is natural to assume ||.A||op is

bounded independent of n.

Proof. We will first pursue an L, estimate of the Fourier coefficients in the
Gell-Mann basis. To that end, sample @, ..., &, S {—1,1}"&*~D_ As in the
proof of Theorem for any such & we partition indices as & = (x1,...,T,) €
({—1,1}¥*~1)" with each xy, 1 < £ < n, corresponding to a qudit. Each ; is
further partitioned as

20 = 39,40, 20 € {1,135 x {=1,1}(5) x {=1,1}%1,

with each sub-coordinate associated with a specific Gell-Mann basis element
for that qudit.

Again for each &, for each qudit £ € [n] form the mixed state

(5) (l)

(x(e) y(Z) z(é) 3( ) ( Z Ajkjk + Z Bjkj )+ Z Z(e 1KCm+ Kz_l I)
2

1<j<k<K 1<j<k<K

Then we may define for & the n qudit mixed state

) = @ r(a®,y®, 2)

=1
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and consider the function
fa(@) = tr[A - r(2)].

Let S(a) denote the index map from the GM basis to subsets of [n(K? — 1)].
With these states in hand and in view of the identity

K/2
3(3)

we may now define the empirical Fourier coefficients

W(a) =clol. ZfA ) I = = c_l"‘| Ztr[A r@)] [ =

jes(a) j€S(a)

E(S(a)) =d¥A(a) with c:= <1,

The coefficient W(a) is a sum of bounded i.i.d. random variables each with

expectation A(a), so by Chernoff we have
Pr [[W(a) — A(@)| = 7] < 2exp(—snc).

Taking the union bound, we find as before the chance of achieving ¢, error 7 is

d
Pr [|W(a) — A(a)| < n for all o with |a| < d] >1-2)" (:) exp(—sn’c?),

k=0

which again we shall require to be > 1 — 4.
Applying Theorem [37| to obtain W and recalling ||.A|| 2« 21 < BHZ! () A lop
we find the estimated operator

A= Z W(a) M,
has L,-squared error

~ arseval — - 2 ﬁ
1A = Al =" S W(a) — A)| < (EnPd(BHEE o I Allop)?)

Thus to obtain error < ¢ it suffices to pick n? = e?*le=5d~ (BHGM( ) [MAllop) 2%,
which entails by standard estimates that the algorithm will meet the require-

ments with a sample count of

s> 66K3/2d2(BHé‘1f,[(K 1| Allop) > log(Z%")a_d_l. O
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Chapter 7

INTRODUCTION

This part concerns two other applications of discrete harmonic analysis in
(quantum) complexity theory.

The first, “Parity vs. AC° with simple quantum preprocessing” concerns
concrete complexity theory of quantum circuits. Compared to the community’s
understanding of shallow classical circuits, small quantum circuits are still
very mysterious. This paper introduces a circuit model, termed AC° o QNC°,
which is arguably the simplest possible model of constant-depth quantum
computation that is still capable of solving nontrivial decision problems and
makes initial progress in proving bounds on its capabilities. From a technical
perspective, the work identifies certain basic mysteries related to nonlocal
games that appear in quantum circuits under restriction. From a conceptual
standpoint, the work suggests that while constant-depth quantum circuits
have dramatic advantage over their classical counterparts for total search
(or multi-output) problems, they may not have much advantage for decision
problems—matching a dichotomy that was recently identified in the context
of query complexity [YZ22]. This project also provided inspiration for later
influential works [NPVY23; ADOY25| on a related model of constant-depth
quantum computation known as QAC® (Warning: it is not known whether
classical AC® C QACP and is widely expected to be false).

The second application, “Testing classical properties with quantum data”
introduces a novel mode of property testing and opens the door to a new
category of quantum advantage. In classical complexity theory, property
testing is traditionally the home of super-fast algorithms which use queries
to determine whether a black-box Boolean function f has a certain property
(for example, whether f is monotone, which has an O(y/n)-query algorithm).
Unfortunately, for applications to data analysis and machine-learning, when
a testing algorithm only has access to random samples (x, f (w)), it becomes
much harder to test properties of f, often requiring just as much data as
learning the whole function. (For the example of monotonicity, we have the
lower bound of 2%(V") samples [Bla24]).

This work shows that for a wide range of properties, if a tester is provided
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with data in certain quantum encodings, ultrafast testers are again available.
And this quantum data shares “physical” properties with classical data, in
that it can be collected far in advance and is independent of the property to
be tested. There is much that remains to be understood about the power of
quantum data for testing, and the work lays out several directions for further

research.

We now discuss the specific contributions of these works in more detail.

Application I: Parity vs. AC? with simple quantum preprocessing

A recent line of work [BGK18; WKST19; |GS20; BGKT20; (WP23|] has
shown the unconditional advantage of constant-depth quantum computation,
or QNC?, over NC°, AC°, and related models of classical computation. Problems
exhibiting this advantage include search and sampling tasks related to the
parity function, and it is natural to ask whether QNC°® can be used to help
compute parity itself. Namely, we study AC°0 QNC°—a hybrid circuit model
where AC® operates on measurement outcomes of a QNC° circuit—and we ask
whether PAR € AC%0 QNC°.

We believe the answer is negative. In fact, we conjecture AC°o QNC° cannot
even achieve (1) correlation with parity. As evidence for this conjecture, we

prove:

o When the QNC? circuit is ancilla-free, this model can achieve only negligi-
ble correlation with parity, even when ACC is replaced with any function
having LMN-like decay in its Fourier spectrum.

o For the general (non-ancilla-free) case, we show via a connection to
nonlocal games that the conjecture holds for any class of postprocessing
functions that has approximate degree o(n) and is closed under restric-
tions. Moreover, this is true even when the QNCP circuit is given arbitrary
quantum advice. By known results [BKT19|, this confirms the conjecture

for linear-size ACP circuits.

e Another approach to proving the conjecture is to show a switching lemma
for AC°0 QNC°. Towards this goal, we study the effect of quantum pre-
processing on the decision tree complexity of Boolean functions. We find
that from the point of view of decision tree complexity, nonlocal channels
are no better than randomness: a Boolean function f precomposed with
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an n-party nonlocal channel is together equal to a randomized decision

tree with worst-case depth at most DT geptn[f]-

Taken together, our results suggest that while QNC° is surprisingly powerful
for search and sampling tasks, that power is “locked away” in the global
correlations of its output, inaccessible to simple classical computation for

solving decision problems.

Application II: Testing classical properties from quantum data
Many classes of Boolean functions can be tested much faster than they
can be learned. However, this speedup tends to rely on query access to the
function f. When access is limited to random samples (x, f(z))—the passive
testing model and a natural setting for data science—testing can become much
harder. Here we introduce quantum passive testing as a quantum version of
this “data science scenario”: quantum algorithms that test properties of a
function f solely from quantum data in the form of copies of the function state
|f) o< X4 |z, f(x)). Just like classical samples, function states are independent

of the property of interest and can be collected well in advance.

Quantum advantage in testing from data: an emerging theme.

For three well-established properties—monotonicity, symmetry, and triangle-
freeness—we show passive quantum testers are unboundedly- or super-polynomially
better than their classical passive testing counterparts, and in fact are compet-
itive with classic query-based testers in each case. Existing quantum testers
for k-juntas and linearity can be interpreted as passive quantum testers too

and exhibit the same phenomena.

Inadequacy of Fourier sampling.

Our new testers use techniques beyond quantum Fourier sampling, and it
turns out this is necessary: we show a certain class of bent functions can be
tested from O(1) function states but has a sample complexity lower bound of

28Uv™) for any tester relying exclusively on Fourier and classical samples.

Classical queries vs. quantum data.
Our passive quantum testers are competitive with classical query-based
testers, but this isn’t universal: we exhibit a testing problem that can be solved

from O(1) classical queries but requires Q(2%2) function state copies. The



82

FORRELATION problem provides a separation of the same magnitude in the
opposite direction, so we conclude that quantum data and classical queries are

“maximally incomparable” resources for testing,.

Towards lower bounds.

We also begin the study of lower bounds for testing from quantum data.
For quantum monotonicity testing, we prove that the ensembles of |[Gol+00;
Bla24], which give exponential lower bounds for classical sample-based testing,
do not yield any nontrivial lower bounds for testing from quantum data. New
insights specific to quantum data will be required for proving copy complexity

lower bounds for testing in this model.
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Chapter 8

PARITY vS. AC? WITH SIMPLE QUANTUM PREPROCESSING

IN 2017, BRAVYI, GOSSET, AND KONIG [BGK18| proved a breakthrough
unconditional separation between constant-depth quantum circuits, or QNC°,
and constant-depth bounded fan-in classical circuits, or NC°. The authors
showed that for a certain search problem solvable by QNC° circuits, any
randomized NC° circuit solving the same problem with high probability must
have logarithmic depth. The realization that unconditional proofs of quantum
advantage were possible—albeit over weak models of classical computation—
inspired an exciting series of results strengthening and generalizing the work of
Bravyi, Gosset, and Konig. There are now separations against stronger classical
circuit models such as constant depth circuits with unbounded fan-in, or AC°
[WKST19], average-case separations [Gal20], separations between more intricate
interactive models [GS20|, separations that remain even for quantum circuits
subject to noise (e.g., [BGKT20]), and separations for sampling problems with
no input [WP23], among others.

Although these separations are for comparatively weak models of com-
putation, they are concrete non-oracle, non-query separations, and are free
from complexity-theoretic assumptions, making them important companions
to the query complexity and conditional separations studied since the founding
of quantum computer science. One notable feature of these QNC® separa-
tions, however, is that they are all for search or sampling problems; decision
separations appear to be absent from this list.

On the surface, there is a somewhat trivial reason for this: QNC® cannot
solve interesting decision problems alone. Indeed, any single output qubit
in a constant-depth quantum circuit can only depend on constantly-many
input qubits, so any QNC° circuit with one output bit may be simulated by
randomized NC°. However, this “lightcone barrier” may be removed by instead
measuring all qubits in the quantum circuit and then applying a classical
Boolean function f to the result. As long as f depends on all of its inputs, it
might be possible for f to leverage QNC®’s search and sampling prowess for
decision-making ends. Given Bene Watts et al’s search separation between
QNC? and AC® [WKST19], a natural class of Boolean functions to choose for
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this postprocessing is AC® itself. This gives rise to the following definition,

which does not appear to have been studied before.

Definition. Let AC°0 QNC® denote the model of computation composed of
a QNCO circuit C, followed by a computational basis measurement, and then
an AC® function f applied to the result. This process defines the randomized
Boolean function foC :{0,1} - M({—1,1}) from the hypercube to the set
M({—1,1}) of probability measures on {—1,1}.

In this chapter we take a QNC° circuit to be a polynomial-size constant-
depth quantum circuit composed of arbitrary 2-qubit unitary gates. Ancilla
qubits are allowed and are initialized in the state |0™) for m € poly(n). No
geometric locality or clean computation constraints are assumed. A formal
definition appears later as Definition [8.2

Certainly QNC® C AC%0 QNC°, so the search separation between QNC°
and AC° in Bene Watts et al. is also a search separation between AC°0 QNC°
and AC°. Moreover, this modification obviates the lightcone barrier mentioned
above and allows us to ask meaningful questions about decision separations
between concrete models of quantum and classical computation.

Specifically, Bene Watts et al. [WKST19| show exponential advantage of
QNCP over ACO for (a variant of) the “parity halving problem”:

Parity halving. Given z € {0,1}" with the promise || =0 mod 2,
output any even string if || =0 mod 4 and any odd string other-

wise.

Given the form of this problem, it is natural to ask whether parity is itself
computable by a hybrid model such as AC°0 QNC°.

Before summarizing our progress on this question, we pause to note another
reason to study AC°0 QNC® coming from the rich subject of quantum-classical
interactive proofs. A central project in this area is the classical verification of
quantum computations [GKK18|. In a landmark 2018 work, Mahadev gave a
cryptographic protocol for this task [Mah18]; however, whether or not this task
may be accomplished without cryptographic hardness assumptions remains
open despite many efforts [GKK18]|. It therefore makes sense to consider the
question in simpler contexts, such as where the prover and verifier are replaced

with QNC?® and AC° respectively and interact for constantly-many rounds to
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establish the correctness of a QNC® computation. With this perspective we see

that AC°0 QNC® models the first round of interaction in such a proof system.

Parity vs. AC® o QNC°: Overview and organization

We conjecture that AC°0 QNC° cannot approximate parity (PAR,) on
average, over both choice of uniformly random input z ~ U({0,1}") and the
randomness in f o C. It is convenient to take PAR and f o C to be (+1)-valued

and phrase this in terms of the correlation
E[(f oC)(z) - PAR(2)],

proportional to the advantage of f o C over random guessing for computing

parity.

Conjecture 3. AC°0 QNC° cannot achieve correlation Q(1) with the parity
function. That is, fiz a polynomial size bound p(n) and constant depth d. Then
for all sequences {(fn,Cn)}n of circuits such that size(f,),size(C,) < p(n) and
depth(f,), depth(C,) < d, we have

Ig[;j[(fn 0Cp)(z) - PAR,(z)] >0 as n— .

Although proving correlation bounds against AC? is a well-understood topic
with many techniques (among them Héstad’s switching lemma [Has86] and
Razborov-Smolensky [Raz87; Smo87a)]), when QNC® precomputation is added
these approaches cannot be used directly. The pursuit of new techniques leads
us to connections with many-player nonlocal games, approximate degree bounds,
and new directions for generalizing Hastad’s switching lemma. Evidence for

Conjecture [3 is laid out as follows.

The ancilla-free case

In Section [8.1| we prove Conjecture [3| when QNCP is restricted to be ancilla-
free. A key feature of such QNC? circuits is that they correspond to unitary
transformations, and we find in this case the correlation of f o C with PAR is
controlled by the Fourier tail of f. Recall the k** Fourier tail of a Boolean

function f is given by

Wzk[f] = Z|S|2k f(5)2-

Appealing to the Linial-Mansour-Nisan-type (LMN-type) estimates of the
Fourier tail of AC® [LMN93b], we obtain the following strong correlation bound.
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Theorem 40 (Ancilla-free QNCO, general AC° case). If C is an ancilla-free
QNCP circuit and f is an AC® function then

E[(f 0 C)(x) - PARy ()] < 27"/Pobiosm),

This is proved as Corollary [44] in Section The full statement holds for any
Boolean function f with sufficient decay in the tail of the Fourier spectrum,
including those outside of AC°.

However, as we explain in the end of Section the proof technique of
Theorem cannot extend to the case of general QNC® and we must find a
different approach.

Reducing to nonlocal games

To move beyond ancilla-free QNC?, in Section [8.2| we reduce Conjecture
to a question about the value of a certain class of nonlocal games, which we call
n-player parity games and which are parameterized by a postprocessing Boolean
function f. Through a connection to the notion of k-wise indistinguishability
introduced in [BIVW16], we show the quantum value of a parity game is
controlled by the approximate degree of the associated f.

Recall for ¢ > 0 the e-approzimate degree of a (0,1)-valued| Boolean
function f is given by

deg.[f] = min{deg(g) | ¢ : {0,1}" — R a polynomial with ||f — g||ec < €}.

Of course, a;gs [f] < n for any n-variate f and € > 0. By convention a:a/g[ f]:=
&(\es/gl /3 [f]- A function class F = (Fn)n>1 is a sequence of sets F,, of n-variate
Boolean functions, and we extend approximate degree to function classes
via deg[F](n) := max;cz, deg[f]. With this notation, we have the following

theorem.

Theorem 41 (Corollary Section [8.2). Suppose function class F is closed
under inverse-polynomial-sized restrictions. Then if deg|F] € o(n), F o QNCO
cannot achieve (1) correlation with PAR,, even if QNC° is given arbitrary

quantum advice.

It follows from Theorem (41| that Conjecture 1 would be confirmed in full
generality if deg[AC°] € o(n), a notorious open problem [BT22]. Such a bound

1For (£1)-valued f, we use the same definition after making the standard identification
+1—0,-1~ 1.
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is already known for large subclasses of AC°, however: for example, for AC°
circuits of size O(n) (termed LC®), we may appeal to the recent bounds of
[BKT19] to conclude:

Theorem 42 (General QNC?, linear-size AC® case). Suppose f € AC® has size
O(n). Then foQNC® achieves correlation at most 1/ poly(n) with PAR,,. This

holds even if QNC° is given arbitrary quantum advice. That s,
E[(LC° o QNC°/qpoly) - PAR,] € negl(n).

(This is proved as Corollary [52] in Section [8.2).

Is the difficulty of proving approximate degree bounds for AC® a barrier for
resolving Conjecture [3]? It seems unlikely: the reduction to approximate degree
bounds is via a series of substantial relaxations and it would be surprising
if all the required converses held. In fact, we conclude Section with a
self-contained approximation theory question (Question [2) concerning a notion
of blockwise approximate degree which may be easier to solve than aevg[ACO]
but would still imply Conjecture

Towards an AC® o QNCO switching lemma

In Section [8.3| we chart a different route to resolving Conjecture 3, aiming
to prove a switching lemma for our hybrid AC°0 QNC° circuits. Recall that
Hastad’s original switching lemma is used to argue that (very roughly) randomly
fixing a large fraction of inputs to an AC° circuit with high probability yields a
function that can be computed by a shallow decision tree. At the same time,
PAR retains maximum decision tree complexity under the same restrictions, so
this leads to AC° correlation bounds.

In comparison to Hastad’s switching lemma and its descendants, a challenge
with AC°0 QNC° circuits is that QNC® can correlate, spread out, and bias
random restrictions before they reach the bottom layer of DNFs or CNFs in
the ACC circuit. If QNC® were replaced with randomized NC° this problem
could be readily addressed by considering each deterministic circuit in the
distribution, applying standard arguments there, and computing the expected
correlation with parity across circuits in the distribution. But unlike randomized
computation, and as discussed e.g., in |[AIK22|, a recurring theme in quantum
complexity theory is the impossibility of “pulling out the quantumness” from a

quantum circuit.
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Contrary to this theme, however, we show that when QNCP is replaced by
an n-party nonlocal channel N, it is possible to pull out the quantumness in a

particular sense:

Theorem (Theorem [53| restated). Let f : {0,1}™ — {0,1} be any Boolean
function and consider an n-party nonlocal channel N, where the i party
receives one bit and responds with m; > 0 bits, such that >, m; = m. Then

the random function f o N is equal to a randomized decision tree I such that
depth(T") < DT geptn[f] for all T € Supp(T).

(This theorem is proved in Section as Theorem ) By an n-party nonlocal
channel we mean the channel corresponding to a quantum strategy in an
n-player nonlocal game: parties receive one bit of input each and may measure
disjoint systems of a shared quantum state as part of their responses, but they
are not allowed to communicate. A formal definition appears as Definition [8.2]
In fact, Theorem [53|is true not only for nonlocal channels, but for any channel
where parties obey the no-signaling property; that is, the output of any subset
S C [n] of the parties is a function only of the inputs to those parties in S. A
formal definition of no-signaling channels appears as Definition [8.3

The regime where Theorem 53| is truly interesting is when DTgepen[f] >
log(n). Then f may depend on all the input coordinates and (potentially) make
great use of the processing power afforded by no-signaling channels. Theorem
says that to the contrary, precomposition of f by any no-signaling channel
has no effect on the (randomized) decision tree complexity of f.

How does Theorem [53| connect to Conjecture [37 As we detail in Section
the replacement of QNC° by the channel N is essentially without loss of
generality from the point of view of Conjecture [3| Unfortunately, however,
ACP circuits can easily have maximum decision tree complexity, so Theorem
cannot be immediately applied. Instead, we believe Theorem [53| stands
as a striking example of the inability of classical postprocessing to make use
of the search and sampling power of quantum and super-quantum models
of computation. Additionally, we hope that this theorem’s proof technique,
which involves tracking the interplay between a decision tree for f and the
no-signaling channel N, represents the style of argument that could eventually
lead to a switching lemma, for AC°0 QNCP°.
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Outlook

Taken together, these results suggest QNC® cannot render its power in a
way ACP or other simple models of classical computation can access for the

purpose of making decisions. Several questions for further research are posed
in Section R4l

Related work

Unlike the quantum-classical separations surveyed in the introduction, which
show quantum upper bounds and classical lower bounds, this chapter aims to
prove a lower bound against a concrete model of quantum computation. The
pursuit of lower bounds against quantum circuits for computational problems
is a nascent area and very little is known.

One quantum circuit model where lower bounds have received some con-
certed study is QAC® [M0099; HO3; PFGT20; Ros21; NPVY23|. A superset of
QNCP circuits, QAC® additionally allows for arbitrarily-large Toffoli gates,

|.’171, coey Tk, xk-l—l) = ’:L‘h co oy Ty Th41 @ (Ai€=1xl)> )

which are quantum analogues of classical AND gates with unbounded fan-in.
In this setting correlation with parity is also a central open question, and there
is growing evidence that QAC® cannot achieve Q(1) correlation with parity
either. Recent work has shown negligible correlation bounds between QAC®
and parity when a) the QACP circuit is restricted to depth 2 [Ros21], and b)
when the QAC? circuit is of any depth d and is restricted to O(n'/¢)-many
ancillas [NPVY23|. In fact, the second result is a corollary to a Pauli-basis
analogue of the LMN theorem for the same subclass of QAC® [NPVY23].

The relationship between QAC? and AC°0 QNCP is rather unclear, and they
are likely incomparable as decision classes. In fact, as far as we know, it is even
open whether AC® C QAC?, let alone whether AC°0 QNC® C QACP (noting the
trivial containment AC® C AC%0 QNC°).

The difficulty in comparing these models stems from a subtlety concern-
ing the difference between unbounded fan-in and unbounded fan-out when
implemented coherently. AC° circuits have no restriction on the fan-out of
their gates, while the definition of QAC® appears to strongly limit outward
propagation of information. If one augments QAC® with the so-called fan-out

gate—which is a CNOT gate with any number of target qubits,

|1, ... zE) = |21, 21 D Xoy ..., X1 D xR
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one obtains the circuit model QACY, and it is known QAC(} can compute parity
exactly in depth 3 [M0099]. In view of existing lower bounds against QACC,
it is expected that QAC® is strictly contained in QAC?C, and assuming this
holds we immediately have that the function version of AC°0 QNC° is not in
the function version of QAC®. This follows, for example, from the fact that
multi-output AC° circuits easily implement the classical reversible fan-out gate,
(1,...,xk) — (T1,21 ® T2,...,21 ® xx). It is safe to say the interaction of
nonlocal gates with QNC°—whether that interaction is coherent as in QAC®
and QACY, or preceded by measurement as in AC°o0 QNC®—is only beginning
to be understood.

A separate area where concrete quantum circuit lower bounds have been
very successfully developed is for state preparation problems. We do not attempt
a survey here, but just mention they were crucial to the resolution of the NLT'S
conjecture [ABN23] and make use of ideas from error correction, which partially
originate in sampling lower bounds from classical complexity [LV11]. However,
it is not clear how to transfer these methods to quantum circuit lower bounds
for computational problems in the AC°0 QNC® model.

8.1 Lower bounds when QNC° is ancilla-free

Here we show any Boolean function f with small Fourier tail retains a
small top-degree coefficient when composed with ancilla-free QNC°. By the
celebrated work of Hastad [Has86| and Linial, Mansour, and Nisan [LMN93b],
any f € AC® is an example—but this theorem addresses a broader set of
functions. On the other hand, as we discuss at the end of the section, once
ancillas are allowed, the theorem no longer holds for such a general class of
functions.

Recall a function f : {—1,1}" — R admits a unique Fourier decomposition

f = Z f(S)X,5'7
5Cn]
where Xg(z) := [lics ®; is the S Fourier character (see e.g., [ODo14] for
more). We will later make use of the familiar Plancherel theorem, which states
for any f,g:{—1,1}" — R that

E[f(z)g(z)] = Z

SCln
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Let us briefly connect this perspective to quantum observables. Given a

Boolean function f : {£1}" — R we define its Von Neumann observable as
My =3 f(z)|z)(z] .
An identity we will use is
My, = Z%,

where the operator Z here is the Pauli operator ({ % ), and generally for any

1-qubit operator A we use the notation
A ifieS
AS = ®
i |1 otherwise.

Any Von Neumann observable M (that is, any Hermitian operator) has

expectation value on state p given by
<M>P = tI’[Mp] )
and when M = My and z € {0,1}" we note the identity

(Mg)e = (My)aye) = f(T)-

With this notation, we prove the following.

Theorem 43 (Correlation bound for ancilla-free QNC°). Let f: {£1}" - R
and U an ancilla-free QNC° circuit of depth t. Then the correlation of f o U
and PAR is bounded as
e o\ 1/2
E[(U'M{U), - PAR,(z)] < (W22"[f]) .
For example, when f is an AC® circuit, we may use an LMN-type Fourier

concentration bound, such as from [Tall7], to a obtain:

Corollary 44. If U is an ancilla-free QNC® n-qubit circuit of depth t, and
[ {£1}" — {£1} is implemented by an AC® circuit of depth d and size s, we
have

@[(UTMJ‘U% - PAR, ()] < V2- eXp<2t+1@(_1:g S)d—l)'

The proof of Theorem [43|relies on two brief lemmas. The first says that when
measuring correlations, we could just as well have compared the correlation of

f alone to the random function PAR,, o U, defined by applying PAR,, to the
output of UT |z).



92
Lemma 45 (Symmetry of correlation). Let f,g: {£1}" — {£1} and U any

n-qubit unitary. Then
E[U'MU). - g(@)] = E[f(z) - (UM,U"),]
= 27" tr[M;UM,UT].
Proof. Expanding the trace we have
alMUMU' = 3 (21 (2, S @)Xyl )U (2. 9@)le)al)U |2)
=3 fW)9(@) 2ly) WU |2) (] U |2)

xiy7z

= ny:f(y)g(x) (Y| U |z) (=| U |y), (8.1.1)
while expanding the expectations we see
E[(U'M;U), - = on Zf 9(x) (| U y) (I U |z) = E[f(y) - (UM,U"),].
Identifying the center expression with (a multiple of) and changing

variables completes the lemma. n

The second lemma roughly says when Fourier characters Zg and Z7 corre-
spond to sets S, T of very different cardinality, they remain orthogonal (with
respect to the inner product (A, B) = tr[A'B]) after an application of U.

Lemma 46 (Lightcone lemma). Suppose U is a depth-t ancilla-free quantum
circuit and |S|2" < n. Then

tr[ZUZsU'] = 0.

Proof. The number of qubits on which Zg acts nontrivially at most doubles
upon conjugation by each layer in U. Therefore the number of non-identity
coordinates in UZgU' is at most |S|2¢. Now if |S|2¢ < n, then there is at least
one coordinate j such that UZsU' = V,\; ® 1; for some (n — 1)-qubit unitary
Vinl\s» 80

t2( 2 U ZsUT] = t2[ 21 (Vimpys ® 13)] = t2[Zjapi Vi) - (2] = 0
because Z is traceless. O

With these lemmas in hand, we can give the proof of Theorem 1 in a single

display:
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Proof of Theorem [43.

E[(U'MsU)s - Xpuy ()] = E[f(2) - (UZU").] (Lemma [45)
Z f(S)- (U Z[n]UT)(S) (Plancherel)
Z E[ UZpU')s - Xs(@)]

_ = 27" t1[Zy Ut ZsU] (Lemma
=0 if|S|2°<n (Lemma [46))
= ¥ F®)- Uzmu)s)
|S‘|S2C2[ﬁ]tn
1/2 1/2
< ( > J?(S)Z) ( > (UTZ[n]U>(S)2)
S|>2-tn |S|>2~tn
(Cauchy-Schwarz)
< (w=n) 2, =

One may ask whether this proof approach extends to QNCP circuits with
ancillas. Although it might be possible to prove slight generalizations, we
present an example demonstrating that any proof approach using an LMN-type
theorem as a black box will fail for general QNCP circuits. This is essentially

because functions with Fourier decay are not closed under composition.

Example 47. Consider the following “Trojan horse” function on an even

number of bits n = 2m:
ho: {£1}*™ — {£1}
ml(@) i Tparom =11---1
. H{X[]()f[-i-l,?]

1 otherwise.

By direct computation one finds the Fourier coefficients of h are given by

(1-2m 5=9,
~ -2 m S C ,S#0
h(S) = C[m],S #
2—m [m+1,2m|C S
\O otherwise.
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This means for any t > 1, the t™ Fourier tail of h is W=t[h] € O(27/?).
Thus by Theorem[{3, for any ancilla-free QNC° circuit C, h o C has negligible
correlation with parity.

On the other hand, consider the (deterministic) function C : {£1}™ —
{£1}*™ given by x — z11---1. Certainly C can be implemented in QNC°, and
we have h o C = Xj,) = PARy,.

This example shows that exponential Fourier decay of f is not sufficient to
entail Conjecture [3| for general AC°0 QNC° circuits. We must take a different
approach that exploits finer structural properties of AC® and QNCP°.

8.2 Lower bounds against AC? o QNC° via nonlocal games

Here we pass from QNC° to nonlocal games to make an argument that
works for general QNC. First let us fix ideas about QNCC.

Definition (QNC®). An n-input, depth-d QNC° circuit C is a quantum circuit
composed of d layers of arbitrary 2-qubit gates, acting on an input register of
n qubits and an ancilla register of m € poly(n) qubits initialized to |0™). Via
measurement of the entire output of C in the computational basis, the circuit
C effects a randomized mapping from n bits of input to n +m € poly(n) bits
of output. A QNC° circuit with v qubits of quantum advice, has v out of m
ancilla qubits initialized to a v-qubit state, not necessarily a product state. For
general v € poly(n), this is denoted by the class QNC®/qpoly.

We will show a reduction from QNCP circuits to nonlocal channels.

Definition. (Nonlocal channel) Letn,k > 1 and m > 0. An (n, k, m) nonlocal
channel is the randomized mapping defined by a quantum strategy in a nonlocal
game where n parties receive one bit of input each and respond with k bits each,
along with a referee response of m bits.

Concretely, each party i € [n] is assigned a local Hilbert space H; and for
each b € {0,1}", a POVM

Mgy = {M(yi’b) 1y € {0, 1}'“}
on H;. There is also a referee Hilbert space H.et with a fited POVM
Mot = { MY : y €{0,1}™}.

The definition of the nonlocal channel is completed by a choice of shared state

[v) € ( ] Hi> ® Hret and works as follows. Upon receipt of an input string
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z € {0,1}", the n players and one referee perform the joint measurement
(M(Lxl), .. ,M(n,wn),Mref) on |¢), resulting in the outcomes yi,...,Yn, and
Yret- The output of the channel is the (nk + m)-bit string y = v1|| - - - ||Yn]|Yret-

Definition (No-signaling channel). An (n, k, m) no-signaling channel is defined
analogously, except the correlations among parties may be general no-signaling

correlations. (A very detailed definition of such channels is given in Definition
8.3.)

Definition (Parity games). Let n,k,m be fized and consider f : {0, 1}F+™ —

{0,1}. The (n, k, f) parity game is played by n entangled and non-communicating
players, with the i player receiving input bit x; from x drawn uniformly from

{0,1}*. A (quantum) parity game strategy is an (n,k,m) nonlocal channel

with output string y. Players win when f(y) = PAR(z). We say a parity game

strategy has advantage ¢ if its winning probability is at least 1/2 + €.

As a final piece of notation, for Boolean f let —f denote its negation. We

are prepared to give our reduction to parity games.

Lemma 48. Fizn > 1,m € poly(n), let C be a n-qubit, depth-d QNCO circuit
with m ancilla and arbitrary quantum advice, and let f : {0,1}"*™ — {0,1}
be any Boolean function. Suppose f o C has correlation € with PAR,. Then
for some n’ > n/(2% + 1) there is a quantum strategy for the (n',2%, f) or
(n',2¢,~f) parity game with advantage /2.

Proof. Suppose foC has correlation € with PAR. For each input qubit j denote
by L; the set of output qubits in the forward lightcone of j. Consider the
graph with vertices the input qubits [n] and edges drawn between qubits j and
k when L; and Ly, have nonempty intersection. Then G has degree at most 2%,
so there exists an independent set S C [n] of size at least n/(2¢ + 1).

For each y € {0,1}°, define the circuit C, to be C but where for j € S,
the j* input is hardcoded to y;. Then C, is a circuit on at least n/(2¢ + 1)
variables such that the forward lightcones of input qubits are pairwise disjoint.
Such a circuit defines an (n’,2%,m’) nonlocal channel for some n’ > 27 4 1
and m' = n +m — n'2%. (Note this m’ is without loss of generality because we
may freely assign a player some output bits of the referee if their lightcone is

smaller than 27.)
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As a result, this restriction represents a strategy for the (n/,24, f) parity
game. Moreover, we have
E C - PAR = E K - PAR
(/0 C)(a) - Par@)] = B E_[fo,()- Par(y]2)

= FE PaAr(y) E}S[focy(z)'PAR(z)].

y~{0,1}5¢ z2~{0,1

Therefore since f o C has € correlation with parity on n bits, for at least one y,
foC, or =f oC, must have at least ¢ correlation (in magnitude) with parity on
n/d bits. This is exactly half the advantage of the strategy defined by C,. O

Lemma (48| shows that bounds on the value of parity games translate into
correlation bounds for AC°0 QNC® with PAR. How might we analyze parity
games? They are in some sense “flipped” versions of XOR games, where parity
is computed on the inputs to the players, rather than the outputs. However,
it is not clear whether the rich collection of techniques developed to analyze
XOR games is applicable here. Instead, we bound the no-signaling value of the
game by taking the perspective of distinguishability.

For any (n, k,0) no-signaling channel N, begin by rewriting the correlation

as

E[(f o N)(z) - PAR(z)] = E[(f o N)(z) | = even] 2— E[(f o N)(z) | z odd] .

Let Ueyen and Uoqq denote the uniform distribution on even and odd bitstrings of
length n respectively, and consider the pushforwards of Ueyen, and Uyqq through
N:

uw=N (Ueven) and vi=N <L{odd) .

So p and v are distributions on strings of length N := nk, and

E[(f o N)(z) - Par(@)] = " LU ET) _ pugpy — 1~ pff() = 1),

Therefore the correlation of f o N' with parity can be phrased in terms of f’s
ability to distinguish the distributions p and v.
What can be said about p and v? We claim that on every set S C [N] of

size at most N/k —1 =n — 1, we must have

Hs = Vg. (821)

Here the notation pg denotes the marginal distribution of 1 on the coordinates
in S. To see (8.2.1)), let T' C [n] be the set of players whose outputs overlap S.
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Then by the no-signaling property of A/, the marginal g (resp. vg) is entirely
determined by the marginal input distribution on T'; that is, (Ueyen)r (r€SP.
(Uoaa)7). And for any T a strict subset of [1], (Ueyen)7 = Uoaa)r = U ({0, 1},
so we must have ug = vg.

So all small marginals of ;1 and v are information-theoretically indistin-
guishable. This is exactly k-wise indistinguishability, a generalization of k-wise
independence introduced by Bogdanov et al. [BIVW16] and first used in the

context of secret sharing.

Definition (k-wise indistinguishability [BIVW16|). Two distributions p and v
on {1} are k-wise indistinguishable if for all S C [N] with |S| < k, pus = vs.
Additionally, for f : {0,1}" — {0,1}, we say f is e-fooled by k-wise

indistinguishability if for any pair p,v of k-wise indistinguishable distributions,

| Pr(f(u) =1] = Pr[f(v) =1]| <e.

It turns out k-wise indistinguishability over the hypercube is intimately
connected to approximate degree. By a linear programming duality argument,

Bogdanov et al. proved the following.

Theorem 49 ([BIVW16, Theorem 1.2]). Let f : {0,1}* — {0,1} and ¢ > 0.
Then f is e-fooled by k-wise indistinguishability if and only if deg, plfl<k.

With this fact, Lemma and the above discussion, we are ready prove
the main theorem in this section.

We say a class of Boolean functions F = (F,)n>1 is closed under inverse-
polynomial restrictions if for all f € F,, and all S C [n] with n € poly(|S)),
fixing the bits in S yields a function still in F:

flsees € Fis) Yz € {0,1}51.
Note that AC° is closed under inverse-polynomial restrictions.

Theorem 50. Suppose F is a class of Boolean functions closed under negations
and inverse-polynomial restrictions. Let m be fized and suppose there is an
f € F on N = poly(m) variables and an m-input QNC° circuit C of depth d,
with N —m ancilla qubits, and receiving arbitrary quantum advice, such that
f o C achieves correlation € with PAR,,. Then there is a g € F onn > m/2
variables with cflé/gs/2 [g] >n/2% —1.
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Proof. By Lemma 48] there is an m’ > m/(2¢ + 1) and an (m/,2%, N — 2¢m/)

nonlocal channel N such that f o N or —f o N achieves correlation ¢ with
PAR,,.

Suppose the referee measures their system and obtains outcome string
r. This event leads to an updated state shared among the parties in N and
thereby defines an (m’, 2%, 0) nonlocal channel NE<". By a similar averaging
argument to the one used in Lemma there is at least one outcome r of
the referee register such that N7 still yields correlation ¢ with PAR. Define
g = flrer OF g := —f R, as appropriate and put £ := N7, Then g € F

is a function on n := 2%m/’ bits and
El(g 0 £)(z) - PAR()] > €.

Therefore, by the discussion above, we see g can e-distinguish (n/2¢ — 1)-wise
indistinguishable distributions. Applying Theorem [49 we conclude that

— n

deg.slg] = o5 — 1. O

Corollary 51. Suppose function class F is closed under inverse-polynomial-
sized restrictions. Then if deg[F] € o(n), F o QNC° cannot achieve Q(1)

correlation with PAR.

The burning question, then, is whether deg[AC?] € o(n). In fact, the
approximate degree of AC? is a longstanding open problem and its resolution
would lead to several consequences in complexity theory [BT22|. To get a sense
of the difficulty of this question, consider that on one hand, a sublinear upper
bound is known for a large subclass of ACC.

Theorem ([BKT19, Theorem 5]). Let p(n) € poly(n). Then the class of AC°

circuits of linear size, denoted by LC°, has
agél/p(n) [LCO] € O(n)

Yet on the other hand, a series of works, most recently [She22|, show the

following:
Theorem. For any & > 0, there is a function f € AC® with deg[f] € Q(n~?).

The lower bound of Q(n'~%)-for-any-§ is tantalizingly close to the trivial

upper bound of n for the approximate degree of any Boolean function, but
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as it stands it is not unreasonable to guess that deg[AC°] € ©(n/logn) either.
Several questions—including now Conjecture [3—could be settled if the gap
between Q(n'~?)-for-any-d and n for deg[AC?] were closed.

We may combine the sublinear lower bound on LC° from [BKT19| with
Theorem [0l to obtain:

Corollary 52. Let C be an n-input, m-ancilla QNC® circuit with arbitrary
advice. Suppose f : {0,1}"*™ — {—1,1} is defined by an AC° circuit of size
O(n). Then f oC achieves negligible correlation with PAR,,.

Blockwise approximate degree

We conclude this section by laying out a self-contained question concerning
the approximate degree of AC® with respect to a modified, “blockwise” notion
of approximate degree. This question is sufficient to imply Conjecture [3]in full
generality and may be easier to resolve than a:a/g[ACo].

Fix k£ > 1 (assuming k divides n for simplicity) and let P be the partition
of [n] into “blocks” of size k:

P:={{1,....k},{k+1,...,2k},....,{n =k + 1,n}}.

For a monomial Xg = [I;csx; define the (k-)block degree bdeg,[Xs| to be
the number of distinct blocks B € P having nonempty intersection with S.
This definition extends naturally to the k-block degree bdeg[f] of a Boolean
function f : {0,1}™ — {—1,1} and to the approzimate k-block degree B&%k [f]
of f:

l;ae%k[f] = min{bdeg;[g] | g : {0,1}" — R a polynomial with || f—g||. < 1/3}.
Of course l;ae/gk [f] < n/k for any function.
Question 2. For all constants k, does the following hold?

baeg, [ACY] < n/k—1.

As we explain below, this would be enough to prove Conjecture [3, Note

the following, which are immediate and hold for all f:
deglf] < 7 —=> bdegylf] <7 — deglf] <n—k.

Moreover, these implications are sharp in that each one cannot generically imply

anything stronger, as witnessed by a parity function on an appropriate subset
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of [n]. Regarding f € ACP, the left-hand side holding for arbitrary constant k
is equivalent to deg[AC?] € o(n), while the far right-hand side follows directly
from LMN-type Fourier tail bounds for AC°.

Proposition 6. If the resolution to Question |9 is “yes”, then Conjecture |3 is

true.

Proof sketch. Consider the referee-free nonlocal channel £ from the proof of
Theorem with n/k players responding with k bits each. Defining yu and v
as the pushforwards of uniform distributions over even and odd bitstrings as
before, it is true that p and v are (n/k — 1)-wise indistinguishable when viewed
as distributions on {0,1}". However, they may also be viewed as distributions
on the hypergrid [2*]™ for m = n/k.

With this perspective, 4 and v are m — 1 indistinguishable. Repeating the
proof of [BIVW16, Theorem 1.2] over this larger alphabet, we recover exactly

the notion of blockwise degree. The rest of the argument is as before. m

— ?
It is unclear to us whether Question [2| is easier than deg[AC°] € o(n).
Because AC? is closed under permutations of input coordinates [n], we can

compare the two questions head-to-head as follows. Let Py be all the relabelings
of P:

Py = {{{m), w10}, {r(k+1), . . (2K}, . . {m(n—k41), ... ,W(n)}}}

TES

For any P € Py, let bdegp[f] be the maximum number of blocks in P overlapped
by some monomial in f. Then we have the following characterization, where g
ranges over real-valued multilinear polynomials on the hypercube as usual:

deg[ACY] < n/k <= Vf € AC®,3g,VP € Py, bdegplg] < n/k and ||f — glloo < 1/3
bdeg,[AC] < n/k <= Vf € AC%, VP € Py, 3g,bdegp[g] < n/k and ||f — glle < 1/3.

8.3 Towards a switching lemma for AC° o QNC°

Recall that our approach in Section [8.1]fails because circuits with LMN-style
Fourier decay are not suitably closed under precomposition by QNC°. In fact
this is true even under precomposition by NC°, and the proof of the LMN
theorem elegantly avoids an induction assumption phrased in terms of Fourier
decay. Instead, the proof relies on a structural theorem about the effect of

random restrictions on DNFs and CNFs—Hastad’s celebrated switching lemma:
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Theorem (Hastad [Has86|). Suppose f is a width-w DNF. Then for any
0<d<1,
pNPlI,lé [DTaepin(f15) > 8] < (Cow)",

where C is a universal constant.

Here Ry is the distribution of random restrictions with star probability §
(see e.g., [ODol4, §4.3] for more). This theorem has received several proofs
over time, but each rely on the well-controlled structure of random restrictions.
To naively repeat the switching lemma argument directly on AC°0 QNC° would
mean to track the passage of random restrictions through QNC%—a tall order
given that QNC° can destroy the independence and unbiasedness of random
restrictions that switching arguments tend to rely on.

The situation may be slightly improved by instead considering a switching
lemma for the model studied in Section[8.2] Recalling that foN is a randomized

function, we may hope for a switching lemma of the following form:

An imagined switching lemma for nonlocal channels. Let m > 0
and k,w,n > 1 and suppose f : {0,1}*"*™ — {0,1} is a DNF of
width w and N is an (n, k, m) nonlocal channel. Then for each

restriction p there exists a distribution I}, over decision trees such
that (f o N)[, = {T}r~r, and

t
,,Eﬁ(; lelgp[depth(T) > t] < (Céw)".

By Lemma 48| such a switching lemma would be sufficient to show correlations
bounds between f o QNC° and parity for any DNF (or CNF) f, which in turn
are direct prerequisites to proving Conjecture [3| While this imagined switching
lemma is currently out of reach, we contend it presents a useful challenge to
existing switching lemma proof techniques. As a first step in this direction, we

devote this section to a proof of a simpler but related structural result.

Theorem. (Informal) Any no-signaling channel N composed with a decision
tree T is equal to a probability distribution T' of decision trees with depth(7’) <
depth(7) for all 7" € Supp(T).

Let us fix some notation. For a finite set X let M(X) denote the set of
probability measures on X. The set M(X) is convex, so for v a probability

measure on M(X) we may define the expected distribution

E [u] == {m w.p. Pr Pr[z= x]}mEX. (8.3.1)

p~v B~V 2o
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Here we study Boolean channels, or functions of the form
N {13 = M{E1P).

For a probability measure p on the set of channels from n to N bits, we use
En~p N to denote the channel defined pointwise as
(NIE“N') (@) = E W) (8.3.2)
To be clear, N'(z) is a probability measure on {1}, so in the right-hand
side of (8.3.2)) we are computing the expected distribution according to (8.3.1)).
Also, for T' C [N] define the reduced channel
N7 (z) := {y wp. Y PrN(z) = z]}

ze{+1}V ye{£1}H7!
Zr=y

Definition (No-signaling channel). Consider a map N : {£1}" = M({£1}?)
and a ‘backwards lightcone’ function B : [N] — [n] U{L}. The pair (N, B)
is a no-signaling channel (NSC) if for all S C [n], for all z,2' € {£1}" with

zg = 7', we have NB™ (59D (z) = BT (SUL)(g1),

That is, a channel is an NSC if for any collection of output indices T', N7 (z)
is a function of zp(7)\ (1} only. Note also N B~'(1) is oblivious to the value of z
entirely—the outputs B~!(_L) could be called the referee outputs.

Recall that for a Boolean function f : {1} — {£1}, f o N denotes the
channel

foN@) ={b wp. JPr 1) = b]}be{ﬂ}.

The restriction structure on NSCs interacts nicely with decision trees:

Theorem 53. Given f : {£1} — {£1} and N : {£1}" - M{£1}V) an

NSC, there exists a distribution I' over decision trees such that

i. For all z the composition f o N(z) = {7(z)}r~r, so E[f o N(z)] =
Err[7(2)]; and

7. For all T € Supp(I‘), DTdepth(T) S DTdepth(f)'

Recall that f o N is an M({£1})-valued function on the hypercube, so
z — E[f oN(z)] is a [—1, 1]-valued function on the hypercube, and accordingly
has a multilinear Fourier expansion

E[foN]= Y asXs with ag:=E[E[(foN)(2)] Xs(z)].

SCln]



103
We pause to note the related fact that in terms of the expected output E[f o N],

the degree of any function f does not increase under composition with an NSC:
deg(f) > deg(E[f o N]). This claim has a very simple direct proof’] and we
emphasize that it is not equivalent to Theorem For example, there are
Boolean functions g with deg(g) = n%? but DTgepn(g) = n (see Example 3 in
[BW02]). One could imagine a Boolean function h with deg(h) ~ DT gepth(h) €
o(n) but where E[hoN] is “g-like”: any decision tree decomposition of E[hoN]
contains a tree of depth n despite having deg(E[h o N]) € o(n). Theorem
says such an h, N pair does not exist; precomposition by an NSC cannot
increase the decision tree complexity of a function.

The proof of Theorem [53| requiries some bookkeeping. The idea is to begin
with 7’s root vertex variable y; and locally decompose the univariate channel
N1 (z) n~ y; into a distribution of deterministic functions {y; ., (%:) }w~y. This
decomposition of the root vertex induces a probabilistic decomposition {7/, o
N}~y of the entire hybrid computation where the root variable y; in 7/
has been replaced with an zp(;) and the left and right subtrees of 7 become
compositions not with A/, but with conditional versions of " where zp(;) and
y; have been fixed to certain values. This conditioning preserves the NSC-ness
of the new N’s, and the decomposition recurses down the tree.

We now introduce a notion of conditioning. For any n-to-N bit Boolean
channel N, z € {£1}", J C [N] and Y € Supp(N’(z)) define the conditional
channel as

NE|y;=Y):= {y w.p. Pr[N(x)=y|yJ:Y]}

ye{+1}V’
and for T' C [N] the reduced conditional channel
/\fr(xlyJ=Y):={y wp. Y Pr[N(x):z|zJ=Y]} .
ze{£1}N ye{£1}TI

2r=Y

Note that T-reduced conditional no-signaling channels can depend on inputs
outside B(T"). Consider for example the n-to-n-bit NSC

U{even strings} z even

U{odd strings} z odd.

2Consider the Fourier expansion f = > osciv] F(S)Xs. Then E[(f o N)(z)] =
E[Socmn F(S)Xs o N(@)] = Lg F(S) E[Xs 0 N ()] = g F(S) E[Xs 0 N¥(2)], & linear

combination of functions of at most |S| variables each for |S| < deg(f).
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Now Gi}(z) is identically a Rademacher random variable (oblivious to

entirely), but
G (z | Ynpi = 00---0) = {Hm] w.p. 1},
J
the parity of all n bits of z. All the same, some structure remains after
conditioning:

Proposition 7. For T,J C [N], let z,2’ € {£1}" be such that xpur) =
Tpyury- Then for all Y € Supp(N (),

N(@ |y, =Y) = NT(@@ |y, =Y).

Proof. Let x, x’ be as in the proposition statement. We have from the definition
of NSCs that NV (z) = N/YT(2'). Certainly then N/ (z | y; = Y) =
NIV (x| y; = Y) (we have taken the marginal of two equal distributions). The
conclusion then follows from noticing that for any U C V, NV = (NV)V. O

This proposition says N7 (z | y; = Y) is a function of zp(sur) only. Thus

if we fix variables zp(s) we recover a smaller NSC:

Corollary 54. Consider ann-to-N NSC (N, B), ani € [N], and X,Y € {£1}.
If B(i) =L let N' be the n-to-(N — 1) NSC

N = N’[N]\{i}(w |y =)
and otherwise let N be the (n — 1)-to-(N — 1) NSC
N’ = /\/'[N]\{i}(x{B(i)}c | fL'B(i) = X, Y; = Y)

Define a new lightcone function B’ from B as follows. Put B(j) =L for all
j € B™Y(B(i)) and then remove i from the domain of B. Then (N’, B') is an
NSC.

Finally we introduce an object used internally in the proof of Theorem

Definition (Hybrid Decision Tree). A hybrid decision tree T on n variables

with ¢ leaves consists of the data (7,G,...,Gs), where

i. The first argument T is a rooted binary tree with £ leaves labeled as follows.
Each internal node is assigned x; for some i € [n|, the edge to its left
child is labeled 1, and the edge to its right child is labeled —1.
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it. Each leaf v of T is associated with an n-to-1 channel G, : {£1}" —

M{£1}.

A hybrid tree defines a channel T (G, ...,Ge) : {£1}" = M{£1} as follows.
Computation on input x € {£1}" proceeds just as with standard decision trees

until a leaf v is reached, at which point the distribution G,(z) is returned.

Theorem (3 follows from these three claims. Proofs of the first two are

immediate from the definitions.

Claim 4. For any hybrid decision tree T,

T(G1,- .61, E [6), Guvy o, Ge) = E [T(G1,,Gim1,G, Gusny -, Go)|

~p

Claim 5. For any hybrid decision trees T,(G1,...,Ge) and T/(Ga,...,Guw),

7;"(gla oo 7gL—177:'/(gL1) oo 7ng’)aGL+1a oo 7gZ)
= 7:'0L7'/(g17 s 7gb—1)gbl7 .- 'agLZ’agL—l—la . 'age)a

where T o, 7' is T with the ™" leaf replaced with 7'.
Claim 6. Suppose T is a decision tree and (N, B) is an NSC. Then either:

i. ToN =E, [, o N,] where depth(r,) < depth(T) — 1, |Supp(p)| < 2,
and each N, is an NSC, or

W ToN = Euuy [7;* (TwL o Ny, Tun ONwR)], where |Supp(p)| < 3, ™™
has one internal node, depth(7,, ), depth(7,,) < depth(7) — 1, and each
N, s Noy, is an NSC; or

iii. (Base case) To N(z) ={b w.p. 1} for all x, for some fized b € {+1}.

Proof. If 7 is the trivial decision tree with no internal nodes, clearly we satisfy
case 1. Otherwise, let y; be the variable at the root of 7. There are two cases
depending on the value of B(%).

Case i), B(i) = L. Observe that N{}(z) is the same distribution p over
{#£1}, independent of z. For w € {£1} let 7, be the subtree of 7 attached
to the w-valued edge of y;. Put N, = NT\#(z | y; = w). Then we have for
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z € {£1},

Pr[r o N(z) = 2] = Xyeqany Pr[r o N(z) = 2z | D(z) = w] Pr[N*(z) = w]
= Ywe(z1y Pr{ o N(z | yi = w) = 2| PrN'(z) = w]
= Yuei+1y Pr{r, o Ny (z) = 2] PrN¥(z) = ]
=Pr [WIEM[T‘,J o N,|(z) = z]
as desired. Clearly 7, is strictly shorter than 7, and N, is an NSC by Corollary
04l
Case i), B(i) # L. Let 7* be the one-vertex tree consisting of the root

vertex of 7 relabeled with zp(;) and let 71, 7_; be the left and right subtrees

of 7 respectively. Observe that N3 (z) = N} (zp(;)) is a univariate channel.

01
1 ol

where only three of a(z gy are nonzero. Let u = {(L, R) w.p. a(z,r)}. Then we

Hence it can be decomposed as a convex combination

11
00

0
1

10

+aq,-1) 01

N{i}(xB(i)) = a(,) [ + a1

0
+a-1,-1) ]

claim

ToN= E [ﬁ*(TLoN,-El),TRoNI(%_l))], (8.3.3)

(L, R)~p
where for b, c € {£1}?,
NO(z) = N (z|zpe = b,y = c).

We check Eq. (8.3.3) pointwise. First consider an x with zp; = 1. We

condition on the value of y;, rearrange, and then “complete the tree”:

PriroN(z)=2]= > PrlroN(z)=z|N(z)= L] Pr[N;(z) = L]

Le{£1}

= Y, PrfroN(z |y =L)=2(awy +aw.-1)
Le{£1}

= Z PrirpoN(z | zpey =1,y =L) = z](ZRE{ﬂ} a(L,R))
Le{#1}

= Y agmPrlnoN; (@) =4
L,Re{£1}

= Y awnPrTe(mo N, mro N V)(@) = 2]
L,Re{+1}

=Pr [ E [Ti(rp o NV 750 NS)(z) = 2|,

(L, R)~p
as desired. A similar argument goes through for x;) = —1 by expanding over

R instead of L. 0
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Proof of Theorem [53. Let T be a depth-optimal decision tree for f. Construct

the trivial hybrid tree 7 with no internal nodes and a single leaf with label
7oN. Put I' = {T w.p. 1}. We will recursively break apart leaves of T into
distributions of hybrid trees, which are then combined with the parent tree to
become distributions over hybrid trees of greater depth.

This is done by repeated application of the following sequence of steps.
Suppose T,(Gu, - - -, Ge) is some hybrid tree and G, = 7/ o N for some nontrivial
DT 7’ and (potentially conditioned) NSC N. Then depending on the case in

Claim 3 we either have

Tr(oos7o N, ) =T B ryon Tre (Twy, © Nooy s T © N )], - - )
index ¢

(Claim [} 7)
= BTl T (T 0 Noogs Tun 0 Nog)s )]
(wp,wRr)~p
(Claim
= ]E |:7:'OLT*(-"7T(4)LONwL7TwRONwR7"')]7
(wp,wRr)~p
(Claim

where 7* has depth 1 and depth(7,, ), depth(7,,) < depth(7’) — 1, or we have

To(ooy7oN, .. ) =T( ., Epuplrw o N, - - 2) (Claim [6] %)
index ¢
=WJEM [7;(...,7;,0/\/;,,...)}, (Claim [4))

where depth(7,) < depth(7’) — 1.

If we repeatedly make these transformations on the elements of I', we will
eventually be left with a distribution over hybrid decision trees (7,3, ...) where
each channel G = 7/ o NV is in the base case of Claim @ Such a hybrid tree is
equal to a deterministic channel. Hence we are left with a distribution over
deterministic channels that is trivially equivalent to a distribution of standard,
deterministic decision trees.

Further, it’s easy to see that once done, the longest path in any tree of

Supp(T") is bounded by the longest path in the original tree 7. O

8.4 Discussion
We have seen several pieces of evidence for Conjecture 3], as well as high-
lighted new connections between quantum complexity theory, nonlocal games,

and approximate degree.
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If Conjecture 1 is ultimately proved true, we may wish to reach for a
stronger no-advantage theorem closer to that of Beals et al. [Bea+01] from
query complexity. A natural expression of AC°0 QNC° non-advantage might

use the language of Fourier decay.

Question 3. Does AC°0 QNC° ezhibit LMN-like Fourier decay? To make this
precise for the randomized function f o C, consider the expectation over the

randomness in C to get a function F' : {0,1}" — [-1,1]. Then we ask, is
W=F] € O(exp(—t))?

As mentioned in the introduction, a similar result is known depth-d QAC°
circuits with at most O(n'/?) ancillas [NPVY23].

Finally, one may consider any number of variations on the theme of pre-
composing a Boolean function with QNCP. It is natural to ask:

Question 4. View a QNC° circuit C as a map from (randomized) Boolean

functions to randomized Boolean functions:
c
fr— folC.

By how much can this map increase influence, sensitivity, or other complexity

measures of f?

Theorem 53| gives the answer “not at all” to a variant Question |4 where QNC°
is replaced by nonlocal channels, and the complexity measure is randomized

decision tree complexity.
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Chapter 9

TESTING CLASSICAL PROPERTIES FROM QUANTUM DATA

IN PROPERTY TESTING WE CONSIDER A SUBSET P of the set of all Boolean
functions f : {0,1}" — {0,1} and aim to find fast algorithms for deciding
(with high probability) whether an unknown function f has property P or is
e-far from having property P; that is, we wish to decide between

Case (i) feP or Case () néi})l If—glli>e€,
9

promised one of these is the case. Here ||f — g||1 = Pryoqo3n[f(2) # 9(2)] is
the L! distance. Property testing began in the context of program checking
IBLRI0; RS96|, where it was shown that only O(1) queries to f are needed
to determine (with high probability) whether f is linear or is ©(1)-far from
linear—which compares very favorably to the 2(n) query lower bound for
learning linear functions. The extreme query efficiency of property testing
algorithms soon after played a critical role in interactive proofs and PCP
theorems [AS98; |Aro+98; Din07]. Since then property testing has developed
into a rich landscape of access models, complexity regimes, and separations
[Fis04; Rub07; Ron09; Sud10; |Goll7].

One of the promises of this broad view of property testing, identified very
early on [GGR98|, is its potential in data analysis and machine learning: one
could run inexpensive property testing algorithms to guide the choice of which
long-running learning algorithm to use. But there is an unfortunate catch: the
dramatic complexity advantage of testing over learning typically disappears in
the natural access model for data analysis and machine learning, where fresh
queries to f cannot be made and only a limited dataset {(z;, f(z;)}; of random
samples from f is available. This setting is known as passive or sample-based
testing [GGRIS].

Indeed, many results in passive testing are lower bounds that grow with
n, unlike the algorithms available in query-based testing: compare among the
“Classical” columns in Table In fact, Blais and Yoshida [BY19] showed
that if a Boolean property can be tested from O(1) random samples, then the
property is of a rather restricted kind/[f]

In particular, such a property is only a function of the conditional expected values
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Quantum Classical
Property Queries Examples Samples Queries Learmng
(from queries)
. OWk) O(k) Q(2%2 + klogn) o (k) Q2% + klogn)
-Juntas [ABRW15) [AS07] [AEW16] [B1a09; [CGO4 [AHW16
L 0(1) e(1) n+ (1) e(1) n+©(1)
Linearity [BV7| [AHWT16) [BLR90] [AHW16
0(29) O(nd1) O(n?) 0(24) O(n?)
F, degree-d [ABDY?23| [AEW16| [Alo+03; [Bhat10] [AHW16
. O(nl/4) O(n?) 20(vn) O(/n) 20(vn)
Monotonicity (BB15) [Theorem [Bla24] [KMS18)| [BBL9S]
0(1) O(1) e(n'/*) O(1) e(n'/?)
Symmetry [Theorem (AHWT6| [BWY1S) [AHW16
. O(1) O(1) Q(n) O(1) —
Triangle-freeness [Theorem via | Ame! [BWY15)

Table 9.1: Upper and lower bounds for testing and learning in various
access models. All bounds are given for (a sufficiently small) constant £ > 0.
Bounds that are given without a reference follow trivially from other bounds
in the table.

Remark 1. This is not to say that the classical passive testing model is uninter-
esting; there are many exciting positive results for the model, falling under the
umbrella of sublinear algorithms. For example, the line of work [FLV15; GR16;
DGL23| showed that the existence of certain constant-query testers implies
sample-based algorithms with sublinear dependence on n. But passive testers
still cannot compete with query-based testing for many important problems,
as the lower bounds in Table attest.

How could we recover large testing speedups in the context of passive
testing from data? In the present chapter we advocate for quantum computing
(and “quantum datasets”) as an answer. Viewed from the right perspective,
early results in quantum complexity theory actually demonstrate that quantum
data—in the form quantum examples, or copies of the function state |f) :=
2725 |z, f(x))—can sometimes suffice for highly efficient property testing.

For example, the Bernstein-Vazirani algorithm, usually understood as an O(1)

Ez[f(z)|z € Sj] of f for sets S; forming a constant-cardinality partition of the hypercube,
Siu---u SO(l) = {0, 1}".
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quantum query algorithm, really only needs O(1) function states to test for
linearity [BV97] (vs. ©(n) classical samples), and the quantum k-junta tester
of Atici and Servedio |[AS07] also requires only O(k) quantum examples (c.f.
the lower bound of Q(2*/2 + klogn) classical samples). The present chapter
seeks to establish passive quantum testing as a fundamental model of property

testing by making progress on the question:

What is the extent of quantum advantage in testing classical

properties from data?

Before the contributions of this chapter it was not fully clear whether
quantum data in the form of quantum examples can lead to testing speedups
beyond linearity and k-junta-like properties (such as low Fourier degree): both
the Bernstein—Vazirani algorithm and the Atici-Servedio junta tester rely only
on quantum Fourier sampling [BV97|, a quantum subroutine which, given
copies of |f), returns the label S C [n] of a Fourier character with probability
f (8)2. Despite the success of quantum Fourier sampling, its utility is restricted
to properties that are “plainly legible” from the Fourier spectrum

In this chapter we expand the list of properties with efficient passive
quantum testers, including one which provably requires a non-Fourier sampling
approach. We also compare the power of quantum data to that of classical
queries, finding that they are (essentially) maximally incomparable as resources
for testing. Finally, we begin a study of lower bounds for testing monotonicity
from quantum data by showing that the ensembles leading to exponential lower
bounds for classical sample-based testing yield no nontrivial lower bounds for
quantum data-based testing. In the remainder of the introduction we explore
each of these points in greater detail.

Remark 2 (Where might quantum data appear?). While from the perspective
of complexity theory quantum data leads to a natural counterpart to classical
passive testing, and demonstrates a “data-based” quantum advantage, the
reader may still feel it is not entirely natural from a practical or “physical”

standpoint. To the contrary, we contend that quantum data may be a useful

2As an example of a property not detectable from the Fourier spectrum, consider the task
of testing if f is a quadratic Fy polynomial. It is well-known (see, e.g., [HHL+19, Claim 2.4])
that degree-2 Fs polynomials can have Fourier coefficients with uniformly exponentially-small
magnitudes, so Fourier sampling is not directly useful for this task. Our Theorem [55] below
serves as another example.
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component of emerging quantum technologies. We briefly list some scenarios

where quantum data may be a natural object.

e Suppose a researcher has time-limited query access to a data-generating
process, but does not yet know what questions about the process she will
eventually ask. She may prefer to store data in quantum memory rather
than classical, to broaden the range of questions that can be answered

post hoc.

o In high-latency and bandwidth-limited scenarios, back-and-forth (adap-
tive, query-based) interaction is not feasible, for example in space ex-
ploration. If a space probe departing Earth shared some entanglement
with a ground station, it could later in its journey encode observations
into quantum data and teleport the resulting states back to Earth. In
such a scenario, the advantages of quantum data could lead to significant

speedups in research and analysis.

o Rather than sharing the source code for a program f, a company may pre-
fer to share a quantum data encoding of it as a form of copy protection—

provided the function state is sufficient for the intended application.

Quantum advantage in testing from data: an emerging theme

Our first contribution is to expand the list of properties exhibiting quantum
advantage in testing from data. Our algorithms work by finding new quantum
ways to exploit insights from prior work in classical testing. See Section [9.1] for

proofs.

Symmetry testing. A Boolean function is symmetric if f(z) = f(y) when
x is a permutation of y. We confirm that projecting |f) onto the symmetric
subspace suffices for an O(1)-copy quantum test. For comparison, classical
passive symmetry testing requires Q(n'/4) samples [AHW16].

Monotonicity testing. A Boolean function f is monotone if f(z) < f(y)
when x < y in the standard partial order < on the hypercube. Monotonicity has
been of central importance in the classical property testing literature [Gol+00;
BB15; KMS18]. We give a quantum algorithm that tests monotonicity with
O(n?) copies of the function state for f, in comparison to the lower bound of

2%vn) samples for classical passive testing [Bla24].
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The algorithm appeals to a characterization of monotonicity in terms of
the Fourier spectrum of f. In particular, let € be the L! distance between a
Boolean function f and the set of all monotone functions. Then we may relate

¢ to the Fourier spectrum of f via

~

2¢ < I[f] =%, f{i}) < 4en.

Here I[f] is the total influence of f and is equal to the expected size of a
subset S C [n] sampled according to the Fourier distribution of f. I[f] can
thus be easily estimated with Fourier sampling, and the Fourier coefficients
F({i}) estimated with classical samples. The bounds above follow from a
reinterpretation of the “pair tester” characterization of monotonicity |[Gol+00],

which was not originally Fourier-based.

Triangle-freeness. A Boolean function f is triangle-free if there are no x,y
such that (z,y,z + y) form a triangle: f(z) = f(y) = f(z +y) = 1. We give a
passive quantum triangle-freeness tester that uses only O(1) copies of |f), in
contrast with the Q(n) samples required classicallyf

It is known that to test triangle-freeness, it suffices to estimate the probabil-
ity that (z,y,z +y) forms a triangle for uniformly random z,y [Fox11; HST16]|.
Our test estimates this probability by repeating the following subroutine. First,
measuring copies of |f) in the computational basis allows us to find a uniformly
random y € f~!(1). Then by measuring the output register of copies of |f),
we obtain copies of the entire 1-preimage state

) > ).
z€{0,1}7, f(z)=1

Applying the unitary transformation U, |z) = |z + y) then allows us to trans-

form copies of |f~1(1)) into copies of

f71(1) +y) > |z) -

z€{0,1}", f(z+y)=1

The overlap | (f~*(1)|f~*(1) + y) | = Pra~go1}n[f(z) = f(z + y) = 1] can now
be estimated with a SWAP test [BCWDO1].

3This classical lower bound can be seen by an argument via linear independence similar
to that used in the lower bound proof of [AHW16, Theorem 10].
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Fourier sampling does not suffice

Given that Fourier sampling is sufficient to test linearity [BV97], k-juntas
[AS07; ABRW15|, and (as shown above) monotonicity, one might wonder
whether Fourier sampling is “all that quantum data is good for” in the context
of property testing Boolean functions. To the contrary, we exhibit a property
for which a Fourier sampling-based approach requires super-polynomially more

data than the optimal passive quantum tester.
Theorem 55. There is a property P of Boolean functions on 2n bits such that:

(i) There is no algorithm for testing P that uses 200V classical samples and

any number of Fourier samples.

(ii) There is an efficient quantum algorithm for testing P from O(1) copies
of |f)-

Theorem [55| is proved in Section [9.2] as Theorems [68 and The property
P is the Magorana-McFarland (MM) class of bent functions, which take the
form f(z,y) = (z,y) + h(z) for h any n-bit Boolean function (see e.g., [CM16]
for more).

To prove (7), we show a special subset Fyes of MM functions with far-from-
constant h are indistinguishable from the set F, of their “duals,” defined by
replacing h(z) with h(y). Every function in both these sets is bent—i.e., all
Fourier coefficients have equal magnitude—so Fourier samples cannot help. It
thus suffices to lower bound the number of classical samples needed to solve
the distinguishing problem. The set Fy is chosen so that for a uniformly-
random (z,y) +h(z) from Fj., the distribution of truth tables of A is 2¢V*-wise
independent. This means that for any number of samples less than 2¢V™,
except in the very unlikely event that there is a collision among the sampled
points {(z®, y®)};, the distribution of values f(z,y®) will look uniformly
random, regardless of whether f is sampled uniformly from Fjs or Fy,—and
so distinguishing is impossible. The truth tables for h are constructed from
certain affine shifts of Reed—Muller codewords.

As for item (%), the passive quantum tester for this property first applies the
unitary U defined by |z,y,b) — |z,y,b ® (x,y)) to |f). If f is a MM function
the result should be h, a function depending only on the first n variables, while if

|f) is far from MM functions, it will have noticeable dependence on coordinates
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n+1,...,2n. This dependence can be measured by Fourier-sampling the

transformed state.

Comparing access models

Quantum data is always at least as good as classical samples, and from
Table we see that for a growing list of properties, testing from quantum
data is competitive with testing from classical queries. In fact, quantum data
can be vastly more powerful than classical queries for testing. An extremal
example of this is the FORRELATION problem, which can be tested from O(1)
function state copies but requires 2(2"/2) classical queries [AA15].

Conversely, one may wonder to what extent classical queries may outperform
quantum data for property testing. An answer is not so obvious. Although
classical queries enable direct access to f(z) at any point x of the algorithm’s
choosing—a powerful advantage over quantum data—it is not so clear whether
this can lead to a separation for property testing. Recall that for a property
testing problem, yes and no instances must be Q(1)-far in L! distance. So to
create a hard property for quantum data-based testers, one must find two sets
of functions which pairwise differ on a constant fraction of the locations in
their truth tables, yet still remain hard to distinguish by a quantum algorithm
operating on copies of their function states.

We succeed in “hiding” these large differences and identify a testing problem

for which classical queries have a dramatic advantage over quantum data.

Theorem 56. There exists a testing task (3-fold intersection detection) that
can be accomplished with O(1) classical queries but requires Q(2%/?) copies for

quantum testing from data.

Combined with the FORRELATION separation of [AA15|, Theorem [56] entails
that quantum data and classical queries are (essentially) maximally incompa-
rable. See Chapter [9] for a full picture of resource inequalities for testing.

Theorem [56] is proved in Section [9.3] as Theorem [70] Given a function
f:{0,1,2} x {0,1}™ — {0, 1} that indicates three subsets of the hypercube
A,B,C C {0,1}", the 3-fold intersection detection task is to determine if the
fractional 3-fold intersection |AN BN C|/2™ is 0 or Q(1)-far from 0.

This property is readily tested from queries by computing the probability
x € ANz € BAx € C for uniformly-random z. To prove the quantum

passive testing lower bound, we show the indistinguishability of two ensembles
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Figure 9.1: Property testing resource inequalities. The figure illustrates
the connections between four different data access models in property testing,
namely classical/quantum example/query access. Here, “resource A > resource
B” means that access to resource B can be simulated from access to resource
A without any overhead. (For example, a single classical query can be used
to simulate a single classical sample.) As a consequence of Theorem (56| and
[BVIT7; Sim97; |AA15], the only two among these access models that are not
trivially comparable are in fact very incomparable.

of function states encoding set triples

{(4,B,0)}, vs.  {(A,B,AAB)}, .

A,B,C ~ P{0,1}" AB N P{0o,1}n’

Here A denotes symmetric difference, P denotes the power set, and the samples
are uniform. Note the first ensemble has mutual intersection of (1) density
with high probability, while the ensemble always has zero intersection. To
obtain the lower bound, the main observation is that the t-copy versions of
the two associated function state ensembles are equal when projected onto the
so-called distinct subspace (i.e., the subspace spanned by basis states for which
the t input registers are distinct). This projection moves the state ensembles
at most O(t/2™?) in trace distance, so we conclude that for any t = 0(2"/2),

the two ensembles cannot be distinguished using ¢ function state copies.

A challenge: lower bounds for quantum monotonicity testing

We also begin the project of finding lower bounds for the passive quan-
tum testing model. Our main contribution is to establish lower bounds for
monotonicity as an important first open problem. In particular, we show the
ensembles that entail strong lower bounds for classical passive testing are wholly

inadequate for quantum passive testing.
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Theorem 57. The ensembles in Goldreich et al. [Gol+00] and Black [Bla24)]

can be distinguished by a quantum algorithm with O(1/€) copies of the corre-

sponding function states.

This theorem says that the best lower bound such ensembles could imply for
quantum passive testing is (1/¢). But that is no better than the lower bound
that exists generically for every (non-trivial) propertyf| To see that Q(1/e)
holds generically, it suffices to consider only two functions, fy.s and f,,, that
are exactly e-far apart. This is equivalent to (fyes|fno) = 1 — €, so the trace
distance between | fyes)®t and | fn0)®t is /1 — (1 —¢€)2 < +/2te. Therefore,
distinguishing between fyes and fy, with success probability > 2/3 requires
t > Q(1/¢) copies of the respective function state.

We prove Theorem [57] via a combinatorial analysis of the spectrum of the

matrix

A= E ¢® — E ¢®
1/’~E0¢ ¢~El¢ ’

where Fy and E) are the “yes” and “no” ensembles from [Gol+00] (or, later,
from [Bla24]). As neither of our ensembles is close to Haar-random, we cannot
directly draw on the rich recent literature on quantum pseudorandomness
[JLS18; BS19; GB23; JMW24; MPSY24; |Che+24a; SHH24; MH24]. Instead,
we notice that our function state is unitarily equivalent to a phase state for a
closely-related Boolean function. An intricate index rearrangement reveals A to
be block-diagonal, with each block interpretable as the adjacency matrix for a
complete bipartite graph. We then determine the spectrum of each block, with
eigenvalues and their multiplicities given as functions of certain combinatorial
quantities. Exponential generating function techniques lead to explicit formulas
for these quantities, and finally the asymptotics can be understood by taking a
probabilistic perspective on the counting formulas. Concentration arguments
finish the proof and allow us to conclude that ||A|; > ©(1) (and thus the
two ensembles are distinguishable) as soon as t = Q(¢™!). This argument is
presented in detail in Section

A final remark for this section: for certain regimes of €, the Q(1/¢) lower
bound on the number of function state copies already separates passive quantum
testing from quantum query-based testing. For example, (adaptive) quantum

query complexity upper bounds of O(n'/%/e'/?) for monotonicity testing [BB15]

4A classical query complexity lower bound of £2(1/¢) also holds for testing any non-trivial
property [Fis24].
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and of O((k/e)'/?) for k-junta testing [ABRW15] are known. However, to the

best of our knowledge, the “correct” e-scaling for quantum property test-
ing of classical functions is far from understood; prior works such as [ASO7;
BFNRO08; CFMW10; AA15; ABRW15; MW16] seem to establish quantum

query complexity lower bounds only for constant €.

Outlook and future directions

Our results, (most of them) summarized in Table [9.2] highlight passive
quantum property testing as a rich testing model deserving of concerted study.
We grow the list of properties with efficient passive quantum testers, introduce
new techniques for testing, show that the abilities of passive quantum testing
extend beyond the reach of Fourier sampling, and highlight subtleties in
comparing classical and quantum resources for property testing.

Quantum function states Classical Class%cal
samples queries
Monotonicity O(n?/e?) exp (Q (min{\/ﬁ/e, n})) @(min{n/s, Vn/ 62})
testing Theorem [Gol+00; Bla24] |Gol+00; [KMS18]
Symmetry O(1/€?) O(nl/4) O(1/¢)
testing Theorem [AHW16] [BWY15]
Triangle-freeness | O ((Tower (C’ . [log <§)1 ))6) Q(n) (@) (Tower (C’ . {log (%)1 ) )
testing Theorem via [AHW16] via [Fox11; HST16]
3-fold intersection Q <2"/ 2) Q (2”/ 2) o)
estimation Theorem [56] via Theorem [(6] Theorem
O(1) Q(27/?) 6(22)
FORRELATION
[AA15] [AA15) [AA15]
Table 9.2: Our bounds in context. The table contrasts our results on

property testing from quantum function states with results from the literature
(in gray). Where the e-dependence is not shown explicitly, we have set € to
some suitably small positive constant value. For monotonicity, symmetry,
and triangle-freeness, passive quantum testing from function states is (at
least) exponentially easier than passive classical testing from samples and at
most polynomially harder than classical testing from queries. The testing
problem derived from 3-fold intersection estimation is complementary to the
FORRELATION problem in that quantum function/phase states and classical
queries swap roles in the exponential separation.
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In fact, it seems passive quantum testing can make good on the promise of
testing from data where classical passive testing cannot. With passive quantum
testing, it is possible to generate a dataset about a Boolean function without
foreknowledge of the property one would eventually like to test, and still be
assured (for a growing list of properties) that testing will be very efficient. In
particular, these results suggest that quantum data, rather than classical data,
could enable the application to machine learning imagined in [GGR98]: as an
inexpensive preprocessing procedure that informs the choice of suitable, more
data-intensive learning algorithms.

Here we lay out some directions for future work.

More and improved bounds for passive quantum property testing.
We have established upper bounds for passive quantum testing of monotonicity,
symmetry, and triangle-freeness from function states. These three properties
together with linearity testing [BV97] and junta testing [ASO7; ABRW15|
already demonstrate the power of quantum data for testing a variety of quite
different properties, and it seems important to explore quantum datasets in
the context of other testing problems. As highlighted in Table quantum
low-degree testing of Boolean functions is a natural next challenge, with the
more general class of locally characterized affine-invariant properties [Bha+13]
as a longer-term goal.

One may aim to tighten our bounds to precisely pin down the power
of quantum data for these testing tasks. Here, having established that the
constructions from classical passive monotonicity testing lower bounds are
inadequate for the quantum case, we consider it especially interesting to obtain
a n-dependent lower bound for passive quantum monotonicity testing in the
constant € regime. Settling the n-dependence of the quantum sample complexity
for passive quantum monotonicity testing is a tantalizing question for future

work.

Characterizing properties with constant-complexity passive quantum
testers In the classical case, [BY19] gave a complete characterization of those
properties that can be tested with a constant number of samples. Achieving an
analogous characterization for properties that can be tested from constantly-
many function state copies would help demarcate the boundary of quantum

advantage for this model.
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Intriguingly, the quantum case raises a further question about the constant
complexity regime: For properties that admit a constant-copy passive quantum
testers, can this always be achieved by algorithms that do not use entangled
multi-copy measurements? The role of single- versus multi-copy quantum
processing has recently been explored in the literature on learning and testing
for quantum objects (see, e.g., [CCHL22; Hua+22; Car24; HH24]) and in
quantum computational learning theory [ABDY23|, but the picture is far from
clear for properties of function states (and of pure states more generally).
Concretely, while our testers for monotonicity and symmetry are single-copy
algorithms, our triangle-freeness tester uses two-copy SWAP tests and there
does not seem to be an immediate way of replacing this by single-copy quantum
processing.

One may also ask about the necessity of auxiliary quantum systems in
quantum sample-based testers with constant sample complexity. (For example,
our symmetry tester relied on auxiliary systems to implement the symmetric
subspace projector.) The number of available auxiliary systems is already known
to play an important role in, for instance, Pauli channel learning [CZSJ22;
Che+24b; |(CG24], and exploring its relevance for constant-complexity passive
quantum testing may shed new light on how these quantum testers achieve

their better-than-classical performance.

Other quantum datasets for classical properties We have considered
only one kind of quantum representation of classical functions: coherent super-
positions of evaluations of f (as function states). Already these are enough
to gain major advantages over testing from classical data, but one could ask
for more. Are there other, better quantum datasets that lead to even faster
testers or extend quantum advantage to more properties? To keep this question
interesting, one would require that the dataset be not too tailored to any
property.

In fact, this question may be best phrased as a sort of “compression game”:
we are first given a very long list of questions that we might be asked regarding
some black-box function f. We then have T'(n) time to interact with an oracle
for f, during which period we generate whatever data we would like. What is
the best quantum dataset to generate, so that we are best prepared to answer

a random (or perhaps worst-case) question from the list?
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Passive quantum testing for quantum properties. Recently there has
been a growing interest in property testing for quantum objects, such as
states [HM13; (OW15; HLM17; CHST17; BO20; GNW21; SW22; CCHL22;
GIKL23; AD24; (CGYZ24; |/ABD24; BDH24|, unitaries [DGRT22; |CNY23;
SY23|, channels [CCHL22; ACQ22; BY23|, and Hamiltonians [LW22; BCO24;
ADG24]. It is an interesting challenge to design datasets to enable passive
versions of these tasks. Just as in the above, we would want quantum datasets
that are mostly agnostic to the property to be tested.

In fact, some existing work can be viewed as advocating for quantum
datasets. When restricting ourselves to collecting classical data, classical
shadows [HKP20; HCP23] serve as a useful representation, but place restrictions
on the properties that can be tested after-the-fact. Shadow tomography
procedures [Aarl8; BO21; |Car24] can remove such restrictions but use multi-
copy measurements that depend on the properties of interest, and thus in general
seem to require quantum data storage to enable passivity| The relevance of
data storage in a quantum memory for certain quantum process learning tasks
has also been explored in [Bis+10; BDPS11; |SBZ19; LKPP22; |LK24]. In this
context, the contents of this chapter can be viewed as investigating the power
of quantum data, stored in quantum memory, for testing properties of diagonal
unitary processes arising from classical Boolean functions. We hope that this
will inspire future attempts at using quantum data as a resource for passively

quantumly testing properties of more general quantum processes.

Related work

Passive classical property testingﬁ Passive (or sample-based) property
testing goes back to [GGR9S§| (see also [KR98]), who introduced it as a test-
ing counterpart to Valiant’s model of probably approximately correct (PAC)
learning [Val84]. In particular, [GGR98, Proposition 3.1.1] observes that PAC

5(Non-adaptive) Pauli shadow tomography [HKP21; |Car24; KGKB24; CGY24] in some
sense interpolates between the (dis-)advantages of classical shadows and shadow tomography
for the current discussion: When promised in advance that the properties in question are
characterized by expectation values of arbitrary Pauli observables, some of the relevant data
can be collected and stored classically in advance, without knowing which specific Pauli
observables matter. However, part of the quantum processing still requires knowing the
specific Paulis of interest, so to achieve passivity, it seems that some data still has to be
stored quantumly.

5Due to the vastness of the area of property testing, even when restricting the focus to
passive testing, this paragraph is intended to provide context for this chapter rather than an
exhaustive bibliography for the field.




122

learners give rise to passive testers (see also [Ron08, Proposition 2.1]). Later,
[BBBY12] proposed active testing as a model interpolating between sample-
and query-based testing. Both for passive and active testing, and for a variety
of problems, several works have established lower bounds separating them from
the more standard query-based testing model. Some notable examples of tasks
with such separations include (k-)linearity [BBBY12; AHW16|, k-juntaness
[AHW16], (partial) symmetry [BWY15; ] AHW16|, low-degreeness [AHW16],
and monotonicity [Gol4+00; Bla24]. We present these results and how they
compare to quantum testing in Table [9.1]

[BY19] gave a full characterization of properties of Boolean-valued functions
that admit passive testing with a constant (i.e., independent of domain size)
number of uniformly random samples, demonstrating that this is indeed a
relatively restricted type of properties. While the works mentioned so far
have focused on the case of uniformly random data points (or, in the case
of active learning, uniformly random sets of admissible query points), more
recently there has been renewed interest in passive distribution-free testing,
see for instance [HKO07; BFH21|. Finally, the framework of passive testing
has also been explored for objects other than Boolean functions, especially for
testing geometric properties [MORS10; BBBY12; KNOW14; Neel4; CFSS17;
BMR19b; BMR19a.

Quantum property testing. The focus here is on quantumly testing prop-
erties of classical functions. This topic, considered for example in [ASO7;
CFMW10; HA11; AA15; ABRW15|, is one of the main directions in quan-
tum property testing, an area that goes back to [BFNRO§| and is surveyed
in [MW16]. However, quantum property testing also considers quantum al-
gorithms that test properties of other classical objects from quantum data
access. Notable examples of other objects to quantumly test include proba-
bility distributions [BHH11; CFMW10; GL20|, graphs [ACL11; CEFMW10],
and groups [FSMSO09; IL11]. Finally, recently there have also been signifi-
cant insights in quantum property testing for quantum objects, notably states
[HM13; OW15; HLM17; (CHST17; BO20; GNW21; [SW22; CCHL22; |GIKL23;
HH24; |AD24; CGYZ24; ABD24; BDH24; MT24], unitaries [DGRT22; (CNY23;
SY23|, channels [CCHL22; ACQ22; BY23|, and Hamiltonians [LW22; BCO24;
ADG24].
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9.1 Passive quantum testing upper bounds
Defining passive quantum property testing

As outlined in the introduction, passive property testing considers testing
from (non-adaptively chosen) data that does not depend on the property to be
tested. We propose a quantum version of this model by considering quantum
testing algorithms that have access to copies of a quantum data state. Here, we

consider the following form of quantum data encoding for a Boolean function
f:{0,1}" — {0,1}: We work with function states

1
= ﬁxe%un |z, f(z)) . (9.1.1)

When the function f is clear from context, we will also use the notation

1f) = 1Ty)

|¥) = |¥s). Natural variations of this notation, e.g., |¥’) = |¥ ), will also be
used.
With this, we can now formally define the notion of passive quantum

property testing for Boolean functions.

Definition 4 (Passive quantum property testing). Let P, C {0, 111" e
some property of Boolean functions on n bits, let ,¢ € (0,1). A quantum
algorithm is a passive quantum tester with accuracy/distance parameter € and
confidence parameter § for P, from m = m(e,d) function state copies if the
following holds: When given m copies of |¥y), the quantum algorithm correctly
decides, with success probability > 1 — §, whether

(i) f € Pn, or
(i1) Pryofoyn[f(z) # g(z)] > € holds for all g € P,
promised that f satisfies either (i) or (it).

This chapter explores Definition [4 for different properties.

Passive quantum symmetry testing

A function f : {0,1}* — {0, 1} is called symmetric if f o m = f holds for
all permutations 7 € S,,. Here, m € S,, acts on n-bit strings by permuting
coordinates. That is, m(z1...2n) = Tr-1(1) ... Tr-1(»). This gives rise to the

following classical testing problem.
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Problem 58 (Classical symmetry testing). Given query access to an unknown
function f:{0,1}" — {0,1} and an accuracy parameter € € (0,1), decide with
success probability > 2/3 whether

(i) f is symmetric, or

(i) f ise-far from all symmetric functions, that is, we have Pry(o 13~ [f(z) #
g9(x)] > € for all symmetric functions g : {0,1}"* — {0, 1},

promised that f satisfies either (i) or (ii).

Symmetry allows for a (trivial) reformulation in terms of (in general non-

local) pairwise comparisons:

Proposition 1. A function f : {0,1}" — {0,1} is symmetric if and only if
for all x € {0,1}™ and for all m € S,,, the equality

f(z) = f(r(z)) (9.1.2)
holds.

This characterization becomes important for testing because of the following

result.

Theorem 59 (Soundness of symmetry testing (compare [BWY15, Lemma
3.3])). If f : {0,1}* — {0,1} is exactly e-far from all symmetric functions,
then

e < Pr Sn[f(x) # f(m(z))] < 2. (9.1.3)

o 'TN{O:]-}n:'ﬂ-N

Theorem [59) implies that we can classically test symmetry from query access
simply by sampling a random permutation 7 and a random input x and then
comparing the function values f(z) and f(n(z)). Here, ~ 1/e many queries
suffice to achieve success probability > 2/3 in symmetry testing.

We now describe how to make use of Theorem [59|to build a passive quantum

symmetry tester.

Theorem 60 (Passive quantum symmetry testing). There is an efficient
quantum algorithm that uses 0(@2#) many copies of the function state
|¥) = \/szn Y zefoayn |, f()) to decide, with success probability > 1—0, whether

f is symmetric or e-far from all symmetric functions.
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Proof. For a permutation 7 € S,,, write P(7) for the representation of that per-
mutation on (C?)®" given as P(7) = ¥ ,¢(013 [7(2)) (z|. Then, the orthogonal
projector onto the symmetric subspace of (C?)®" can be written as
n 1
Psymzm Z P(ﬂ')
7T€S’n,
Notice that, if |¥) is the function state for f : {0,1}" — {0,1}, then
(¥ (P ® 1) 19) = Pr[f(a) # f((@)].

So, by a Chernoff-Hoeffding bound, we can, with success probability > 1 — 9,
obtain a (¢/3)-accurate estimate of the probability in Equation (9.1.3) by
independently performing the two-outcome projective measurement { Py, ®
1, 180D P2, ® 15} on m = O(log(1/6)/*) many single copies of [¥) and

then taking the empirical average of the observed outcomes (with outcome 1

associated to Py ®15). As the two-outcome measurement { P} ®15, 1;‘“"*” -

P, ® 15} can be implemented efficiently using O(n?) auxiliary qubits and

O(n?) controlled-SWAP gates [Bar+97; LW22|, our quantum symmetry tester

is also computationally efficient. m

In contrast to the classical sample complexity of ©(n!/*) for classical passive
symmetry testing [AHW16|, our passive quantum symmetry tester in The-
orem (60| achieves an n-independent quantum sample complexity. Thus, we
have an unbounded separation between classical and quantum for this passive
testing task.

Finally, let us comment on two extensions. Firstly, relying on the second

inequality in Theorem [59, we can modify the proof of Theorem [60] to obtain
log(1/9) )

(e2—¢1)?
copies of the unknown function state to decide whether f is £;-close to or eo-far

an efficient tolerant quantum passive symmetry tester that uses (’)(

from symmetric, assuming that €, > 2C¢; holds with C' > 1 some constant.
Secondly, as Theorem can be extended to so-called partial symmetric
functions (compare again [BWY15, Lemma 3.3]), also our passive quantum

symmetry tester can be modified to test for partial symmetry.

Passive quantum monotonicity testing

We define the natural partial order < on the Boolean hypercube {0,1}" via
z <y & (z; <y holds for all 1 < i <mn). A function f: {0,1}* — {0,1}
is called monotone if f(z) < f(y) holds for all z,y € {0,1}" with z < y. The
associated classical testing problem can be formulated as follows.
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Problem 61 (Classical monotonicity testing). Given query access to an un-
known function f : {0,1}" — {0,1} and an accuracy parameter € € (0,1),
decide with success probability > 2/3 whether

(i) f is monotone, or

(i) f is e-far from all monotone functions, that is, we have Pry(o 13~ [f(x) #
g9(x)] > € for all monotone functions g : {0,1}™ — {0,1},

promised that f satisfies either (i) or (ii).

Here, as well as in our other property testing tasks below, will think of (i)
as the accept case and of (ii) as the reject case. This then allows us to speak
of completeness (for getting case (i) right) and soundness (for getting case (ii)
right). Here, the chosen success probability of 2/3 is an arbitrary constant
> 1/2, it can be boosted arbitrarily close to 1 through repetition and majority
voting.

As introduced above, monotonicity is a global property of a function.

However, there is a straightforward equivalent local formulation:

Proposition 2 (Local characterization of monotonicity). A function f :
{0,1}™ — {0,1} is monotone if and only if for all x € {0,1}" and for all
i € [n], the following holds:

“((i=0Af(x)=1Afz+e)=0)V(z;=1Af(x) =0A f(x+¢€)=1)),
(9.1.4)

where e; denotes the it standard basis vector.

It turns out that functions far from the set of all monotone functions neces-
sarily violate Equation (9.1.4) on a non-negligible fraction of all possible x and
i. This makes it possible to test for monotonicity by checking Equation ((9.1.4))

on a small number of randomly chosen z and .

Theorem 62 (Soundness of monotonicity testing (compare [Gol+00])). If
f 40,1} — {0,1} is exactly e-far from all monotone functions, then

< [(zi=0Af(z)=1Af(z+e)=0)V(z;=1Af(z)=0Af(z+e)=1)] < 2.

(9.1.5)

£ Pr
n = 2~{0,1}7in[n]

Therefore, we can solve Problem [61] from only O(n/e) many queries to the

unknown function, which was exactly the celebrated conclusion of [Gol+00].
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While this query complexity does depend on n, the dependence is only loga-

rithmic in the size of the function domain, and it in particular is exponentially
better than the n-dependence in the query complexity of learning monotone
functions [BBL9S].

Our passive quantum monotonicity tester also crucially relies on Theorem
Here, we first reinterpret the probability appearing in Equation in terms
of Fourier-analytic quantities, which we then estimate based on quantum
Fourier sampling. Our procedure is summarized in Algorithm [I} and our next

theorem establishes that it is both complete and sound.

Algorithm 1 Monotonicity testing from quantum examples
Input: accuracy parameter ¢ € (0,1); confidence parameter 6 € (0,1);

~ 2 . .
(’)(%2(1/5)) many copies of a function state |f) = % Yeefoy |7, f()).
Output: “accept” or “reject”.
Initialization: 2 = £, &5 = £, & = 0 = g, 05 = %, m; =
max(3ma, [181n(2/6)1}, ma = [*55%21 |, m, = ms = [ 42/50]

1: Use m; many copies of |f) to produce my; many Fourier samples
Siy..ySmy C [n] from g = (—1)7.
2: Take I = m% >0z 1Sl
Use my many copies of |f) to generate ms; many classical samples
(1’1, f(wl))a SRR (xm5, f(xms) from f
for 1 <i<ndo
Take g = mLs Z?il(_l)xk-eri-f(xk)_
end for
Set ﬁ = %I — % ;L:l gz
If p < ¢/3n, conclude that f is monotone and accept. If p > 2¢/3n,
conclude that f is e-far from all monotone functions and reject.

@

Theorem 63 (Passive quantum monotonicity testing). Algorithm |1| is an effi-

n2lo [ .
n180/9) copies of |f) = = Faeqonye 2, £())
to decide, with success probability > 1 — 0§, whether f is monotone or e-far from

cient quantum algorithm that uses (7)(

monotone.

In particular, Theorem (63| shows that passive quantum testers can expo-

nentially outperform the classical passive monotonicity testing lower bound of

exp (Q (min{\/ﬁ/s, n})) |Gol+00; Bla24].

Proof. We begin with a useful rewriting of the probability from Equation (9.1.5)).
To this end, as is commonly done in the analysis of Boolean functions, consider
the induced function g : {—1,1}" — {—1, 1} obtained from f via the relabeling
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0+ 1and 1 < —1. Next, we recall the definition of the ith derivative in
Boolean analysis (compare, e.g., [ODo21), Definition 2.16]): for i € [n],
g(x(in—)l)) _ g(x(in—)—l))

2 )

where we used the notation (" to denote the n-bit string obtained from z

Dig(z) =

by replacing the ith bit with b. Consequently, we can compute

(Dig(2))* — Dig(x) _ )1 if g(@™*V) = —1Ag(a™) =1

2 0 otherwise

—_

if f(z0)=1A f(z(V) =0
0 otherwise .
Therefore, we can now rewrite our probability of interest as
oo b E o (F = OAf(@) = 1A f(@t+e) =0) V(2 = 1A f(2) =0A f(a +e) = 1))
(Dig(x))* — Dig(m)]

= Eanfo,13minn] l 5

1 1
= B Bano)[(Di9(2))°] = S EinprEanqoy [Dig ()

S ;;@({i})

= 5Tl - 5, 3 a(4i),

where the second-to-last step used the definition of the ith influence (compare
[ODo21, Definition 2.17]) as well as [ODo21, Proposition 2.19], and where the
last step used the definition of the total influence (compare [ODo21, Definition
2.27)).

With this rewriting established, let us first analyze the probabilities that
the different steps of Algorithm [I| succeed and discuss what this implies for
the estimator p. Then, we will see how this gives rise to completeness and

soundness. We have the following:

 Using the procedure of [BV97], one copy of |f) suffices to produce one
Fourier sample from g = (—1)f—that is, an n-bit string sampled from
the probability distribution {|§(S)|*}sci—with success probability 1/2.
Additionally, one knows whether the sampling attempt was successful[|

"To see this, note that the procedure works as follows: Apply H®("+t1): measure the last
qubit; abort if that produces a 0, continue if produces a 1; measure the first n qubits to
produce an n-bit string.
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So, by simply repeating the above m; many times, we see that Step

1 succeeds in producing ms Fourier samples with success probability
>1—4;.

« By a standard Chernoff-Hoeffding bound, we have |I — Egs.s,[|S]]| < e:
with success probability > 1—d,. Here, S, denotes the Fourier distribution
of g, defined via S,(S) = |g(S)|>.

e For any 1 < i < n, by a standard Chernoff-Hoeftding bound, Step 5
produces a ez-accurate estimate g; of G({i}) with probability > 1 — Js.

Therefore, by a union bound, we have that, with overall success probability
>1— (61 + 62 +nds) =1 — 6, the estimates i and J; simultaneously satisfy
11— Ess,[|S]]] < & and |g; — §({i})| < &5 for all 1 <4 < n. We condition on
this high probability success event for the rest of the proof. In this event, our
rewriting of the probability of interest from the beginning of the proof implies:

Pr
CIEN{O,]_}",'L'N[TL]

< gt = 1]+ 5, a0 i

[(z;i=0Af(z)=1Aflz+€)=0)V(z;=1Af(x)=0Af(z+e)=1)]—p

1 T .
= o Esmsu 18 = 1| + 50 3 la (1) - 5

€9 €5
< 2L 4 2
_2n+2
<=
— 3n

where we used the identity I[g] = Eg.s,[|S|] (compare [ODo21, Theorem 2.38]).
So, we see that p is a (¢/3n)-accurate estimate for our probability of interest.

To prove completeness of Algorithm [I], assume f to be monotone. Then,
Proposition [2] and Theorem [62] together with the above inequality imply that
p < e/3n < €/2n, and thus the final step in Algorithm (1] correctly concludes
that f is monotone and accepts.

To prove soundness, assume f to be e-far from monotone. Then, the
lower bound in Theorem (62| together with the above inequality implies that
P > 2¢/3n, and thus the final step in Algorithm (1| correctly concludes that f is

e-far from monotone and rejects.
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The overall number of copies of |f) used by the algorithm is m; + my.

Plugging in the choices of the different m;, we see that
41n(2/6
my + my < max{3mo, [181n(2/6,)]} + [H(Tm-‘
5

< max{3[n2 ln(2/52)-" “8111(2/51)1} N [36712 ln(6n/5)-‘

< macf | 20/ z;f/ 2 nism(o/an } + |2 1152(6“/ )
<o <n2 1052(1/5)> |

where the O hides a logarithmic dependence on n.

The quantum computational efficiency of Algorithm [I| follows immediately
from the efficiency of quantum Fourier sampling. The classical computational
efficiency is immediately apparent from our sample complexity bounds and
the fact that the classical computation is dominated by the complexity of

computing the empirical averages in Steps 2 and 4. O

We further note that because of the second inequality in Theorem [62] the
above procedure and proofs can be modified to quantumly efficiently solve the
tolerant version (as defined in [PRRO6]) of the monotonicity testing problem—

i.e., distinguishing between f being e;-close or e;-far from monotone—using
A [ n2log(1/6)
O( (e2—€1)?
holds with C' > 1 some constantf| Because of this restrictive assumption on

) copies of a quantum function state, assuming that €5 > Cne;

how £; and e, relate, this still falls short of a general tolerant passive quantum
monotonicity tester.

Let us also note room for a qualitative improvement in our passive quantum
monotonicity tester. Classical query-based testers typically enjoy perfect
completeness, i.e., they accept monotone functions with unit probability. In
contrast, our tester can be made to accept monotone functions with probability
arbitrarily close but not equal to 1. We leave as an open question whether
our passive quantum monotonicity tester can be modified to achieve perfect
completeness, while enjoying similar guarantees on the quantum sample and

time complexity of the procedure.

8In more generality, one can see: If an inequality like Equation holds with lower
bound ¢, (¢) and upper bound u,(¢), satisfying £,(0) = 0 = u,(0), then estimating the
relevant probability to accuracy ~ £,(g2 — €1) suffices for tolerant property testing in the
parameter range where there is a constant ¢ € (0,1/2) such that £,,(e2) — c- £p(e2 —€1) >
un(e1) + ¢ p(ex —€1).
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Passive quantum triangle-freeness testing

For z,y € {0,1}" and for a Boolean function f : {0,1}" — {0, 1}, we say
that (z,y,z + y) is a triangle in f if f(x) = f(y) = f(z + y) = 1. Accordingly,
we call the function f triangle-free if no triple (z,y,z + y) is a triangle in f.
Testing for triangle-freeness thus becomes the following problem.

Problem 64 (Classical triangle-freeness testing). Given query access to an
unknown function f : {0,1}" — {0,1} and an accuracy parameter ¢ € (0,1),
decide with success probability > 2/3 whether

(i) f is triangle-free, or

(i) f ise-far from all triangle-free functions, that is, we have Pry(o13~[f(x) #
g9(x)] > € for all triangle-free functions g : {0,1}* — {0, 1},

promised that f satisfies either (i) or (ii).

The natural approach towards testing for triangle-freeness from query access
is to choose z,y € {0,1}" at random and check whether (z,y, z+y) is a triangle
in f, and to repeat this sufficiently often. Bounding the number of repetitions
needed to succeed with this approach is non-trivial, connecting to Szemerédi’s
regularity lemma [Sze76] and the triangle removal lemma [RS78|. In our next

result, we recall the to our knowledge best known corresponding bounds.
Theorem 65 (Soundness of triangle-freeness testing [Fox11; HST16]). If
f:{0,1}* — {0,1} is e-far from all triangle-free functions, then

1
Pr [fz)=fy)=Ffz+y)=1]2> S (9.16)
Tower(C- [log(gﬂ)

x,yN{O,l}"
where C' > 0 s a universal integer constant.

Here, Tower(7) denotes a tower of 2’s of height ¢. That is, we define the
tower function Tower : N — N inductively via Tower(0) = 1 and Tower(: +
1) = 2™ In a way familiar by now from the two previous subsections,
Theorem (65| can be used to show that ~ Tower (C’ . [log(%ﬂ) many queries
suffice for the the simple query-based triangle-freeness tester mentioned above
to achieve success probability 2/3.

We now use Theorem [65] to develop a passive quantum triangle-freeness

tester.
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Theorem 66 (Passive quantum triangle-freeness testing). There is an effi-
cient quantum algorithm that uses @(ln(l /6) (Tower(C . [log(%ﬂ))ﬁ) many
copies of the function state |¥) = \/%7 Ysefoyn [T, f()) to decide, with success
probability > 1 — §, whether f is triangle-free or e-far from all triangle-free

functions.

Proof. Our passive quantum triangle-freeness tester first sets confidence and ac-

curacy parameters 0 = 6/(5m) and & = (Tower (C’ . [log(%ﬂ))_l, respectively.

Then, it repeats the following for 1 <i <m = [w-lz

1. Take M many copies of |¥) and, for each of them, measure the last
qubit in the computational basis. If none of these measurements produces
outcome 1, abort this iteration, set fi; = 0, and go to the next iteration.
Otherwise, take any one of the post-measurement states for which 1 was

observed, measure the first n qubits, let the outcome be y;.

€

2. Run the procedure from Lemma|83/on 2 [162 In(6/6) (6/5)41 . [
many copies of |¥) to obtain 2|162 ln(6/5)(6/§)ﬂ many copies of the

post-measurement state

01) = ({z € {0,1}": f2) =1} > |a),

z€{0,1}":f(z)=1

In(2[1621n(6/3)(6/2)" ] /S)W

where we threw away the last qubit. If the procedure from Lemma

outputs FAIL, abort this iteration, set fi; = 0, and go to the next iteration.
3. Consider the n-qubit unitary U,, acting as U,, |x) = |z + y;). Run the
procedure from Lemma on 2 [162 In(6/6)(6/&)* [ [102 ln(ﬁ/a)(e/&:) 1/6)-‘
many copies of (Uy, ® 15) |¥) to obtain 2[162 In(6/6)(6/€)* l many copies

of the post-measurement state

Ty1) = ({z € {0,1}" : fz +ys) = 1}) 72 > |z) ,

ze€{0,1}":f(z+y;)=1

where we threw away the last qubit. If the procedure from Lemma [83

outputs FAIL, abort this iteration, set fi; = 0, and go to the next iteration.

4. Run the procedure from Corollary |85/ on [162 In(6/4) (6/5)41 copies of
each of |¥), (U, ® 15) |¥) and on 2[162 ln(6/5)(6/€)41 copies of each of
|¥y), |, 1) to produce an (£/6)-accurate estimate fi; of the probability
Proounlf(z) =1 = f(z +u)].
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Finally, the tester makes a decision as follows: if % T < E/3, output
“triangle-free”. Otherwise, output “e-far from triangle-free”.

Let us analyze the completeness and soundness of this tester. First, we
consider completeness. So, assume that f is triangle-free. Note the first
step above failing in any iteration only ever decreases the empirical average
evaluated by the tester in the end, and thus cannot increase the probability
of falsely rejecting a triangle-free function. Thus, we can condition on the
first step succeeding in all m iterations. In particular, we can assume that
Pry.(01}»[f(y) = 1] > 0. By a similar argument, we can also condition on the
second and third step succeeding in all iterations. And given these successes,
the fourth step will, by Corollary produce, with probability > 1 — 4, a
satisfying |2 — Pry~qo132[f(z) = 1 = f(z + y;)]| < £/6. By a union bound,
this means that, with probability > 1 — §/5, the empirical average % Yo is
a (£/6)-accurate estimate of = 7 Pry o1}~ [f(z) =1 = f(z + y;)]. We can
consider the Pr,(01}»[f(z) = 1= f(z 4+ y;)] for 1 <4 < m as iid. random
variables taking values in [0, 1]. Hence, by a Chernoff-Hoeffding concentration

bound and our choice of m, with probability > 1 — §/5, we have

m 2y Pracionn[f(2) = 1= f(z + 4i)] — Eyogonynf)=1 [PrxN{O,l}" [f(z)=1=f(z+ y)]” <€/6.
Noticing that
Pry y~io,yn [F(@)=F(y)=Ff(=z+y)=1] _
Ey~fo,137:f(y)=1 [PrwN{O,l}" [f(z)=1= f(z+ y)]] = {Oﬁny{o,l}n[f?y)zl] : =0,
(9.1.7)

since f was assumed to be triangle-free, we conclude (after one more union
bound) that - Y7, f; < /3 holds with probability > 1 —2§/5 > 1 — 4, and
in this case the tester outputs “triangle-free”, thus proving completeness.
Next, we consider soundness. So, assume that f is e-far from triangle-
free. This in particular implies that Pr,.;o13»[f(z) = 1] > ¢, since the
zero-function is triangle-free. Hence, when measuring the last qubit of |¥) in
the computational basis, outcome 1 is observed with probability > €. Therefore,
in any iteration ¢, the first step in our sketched procedure above will succeed
and produce some y; with f(y;) = 1 with probability > 1 — 8. We condition on
this high-probability event F; for the rest of the soundness analysis. By an
analogous reasoning, the assumption of Lemma [83]is satisfied in the scenario of
steps 2 and 3—with S = {0,1}", n = £ and the function either given directly
by f or by f(- 4+ y;)—so in any iteration i, the second and third step each will
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succeed with probability > 1 — §. We now further condition on these success
events s and F5. At this point, by the same reasoning as in the completeness
case, we know that the fourth step, with success probability > 1 — 2§/5 overall,

produces estimates [i; such that

'—ZM - [f(w)=f(y)=f(w+y)=1]‘35/3.

,y~{0 1}
By Theorem since we assumed f to be e-far from triangle-free, we have
Pryy~0130[f(2) = f(y) = f(x +y) = 1] > . Thus, by the first equality from
Equation (9.1.7)), we have

]Ey~{0,1}":f(y)=1l [f(z)=1=f(z+ y)]] >E.

~{0, 1}"

So, the above implies the inequality -- L sm > 2&/3. Hence, the tester will in
this case correctly output “e-far from triangle-free”. A final union bound shows
that this occurs with probability > 1 — §, which proves soundness.
The quantum sample complexity of a single iteration is given by 2 -
2[162ln(6/5)(6/§)4-‘-{111(2[162111(66/5)(6/5)41/6)-‘+2[162ln(6/5)(6/€)41 < @(M)
ln2(1/5))

Thus, the overall quantum sample complexity is < m - (’)(ln Y 6)) < (’)(
Plugging in the chosen values for 6 and & yields an upper bound of @ (ln (1/6) (Tower(C’ . [log(%ﬂ ))6

on the number of quantum copies used by the tester. To achieve the claimed /
linear dependence on In(1/6), one can simply run the protocol described above
for a constant confidence parameter (say, § = 1/3), and then amplify the
success probability through majority votes.
Finally, we have to argue that the tester is quantumly computationally effi-
cient. This, however, follows immediately from the efficiency of the procedures
from Lemma [83] and Corollary and from the fact that every U, can be

implemented by at most n Pauli-X gates. O

Classically, passive triangle-freeness testing requires at least Q(n) samplesﬂ
Therefore, just like in symmetry testing, there is an unbounded separation
between a classical n-dependent and a quantum n-independent passive testing

sample complexity.

9This can be seen by an argument via linear independence similar to that used in the
lower bound proof of [AHW16|, Theorem 10].
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9.2 Fourier sampling does not suffice

The passive quantum testers for symmetry and triangle-freeness given in
Section [9.1] notably do not use quantum Fourier sampling. One might ask if
this is really necessary, given that Fourier sampling (sometimes augmented by
classical samples) suffices for so many other learning and testing tasks. This
section presents a class of functions, Maiorana—McFarland (bent) functions,
which can be tested with O(1) function state copies, but any algorithm relying
solely on Fourier samples and classical samples requires super-polynomial
classical samples to succeed.

The Maiorana—McFarland functions [CM16, Section 6.1] on 2n bits, denoted
MM,,, are given by

fh : Fg X Fg — Iy
(z,9) = (2,9) + h(z),

where h ranges over all functions 5 — Fo. Maiorana-McFarland functions are
a subset of the class of bent Boolean functions g : {0,1}"™ — {0, 1}, which are
those with g(S)? = 1/2™ for all S C [m] (so they are maximally-far from any
F2-linear function).

We begin by proving hardness of testing MM,, using only classical samples
<x, f (x)) and Fourier samples. The proof follows swiftly once we establish the
existence of k-wise independent distributions supported only on moderately-

biased strings.

Lemma 67. For sufficiently large n, there is a probability distribution on
{0,1}*" that is (i) 2°'"-wise independent and (ii) supported on strings T with
fractional hamming weight |z|/2" bounded as

=] 1

“| <9 n/3,
on 2|—

Proof. Let ¢ > 0 be a small universal constant to be chosen later. For simplicity
we assume cn is an integer, otherwise one may round to a nearest integer without
issue. For a function f : F? — Fy let eval(f) denote the truth table (viz. a
2™-bit string) of f. Let P.,_; denote the set of n-variate Fy polynomials of
degree at most cn — 1. We claim there exists a Boolean function f such that

the ensemble
{eva,l(p & f )}

satisfies properties (7) and (%) above.

p~Pen—1
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Consider the Reed-Muller code C = RM(n — cn,n). (See [ASSY23| for the

definition and properties of Reed-Muller codes.) It is well-known (e.g., Section
24.2.2 in [GRS23]) that uniformly random codewords from the dual code C+
form a k-wise independent distribution on {0, 1}?" for k := dist(C)—1 = 2" —1,
and the codewords of Ct = RM(cn — 1,n) are exactly {eval(p) : p € Pen_1}-.
Invariance of the uniform distribution under addition in F% implies that for
any Boolean function f the uniform distribution over strings eval(p & f) =
eval(p) + eval(f) is also k-wise independent. Property (7) follows by decreasing
c slightly.

To see (i), we will argue that a random f suffices with high probability[|
For any Fs polynomial p and f a uniformly random Boolean function, we have
from Chernoff that

Pr[
f

E[(_l)f(z)(_l)p(w)]

T

> /3 ] < exp(—const - 2™/3) , (9.2.1)

J

*

Union bounding over the < exp(23°")-many p € P.,_; we find

]-:J)cr|: Elp € Pcn—la

E [(_1)f($), (_1)?(90)]

> on/3 ] < exp(—const Lon3 4 230”),

which goes to 0 for ¢ = 0.11, for example. So for large-enough n there exists
an f with absolute correlation at most 2="/% with all p € Py 11n_1.

But the correlation (*) in Equation is nothing but the bias of the
function p & f. Thus for all p € Py1n € Po11n—1, the fractional Hamming

n/3

weight of eval(p @ f) is at most 27/ away from 1/2. O

Theorem 68. Suppose a tester for MM, using exclusively classical samples and
Fourier samples succeeds with probability at least 1/2 + 27%™ for the accuracy

parameter € = 1/2—2706". Then the tester uses at least 2°1™ classical samples.

Proof. Let H be the distribution on n-bit functions with truth tables distributed

as in Lemma 67} Consider the two ensembles of Boolean functions [y x F§ — Fy

Fi={(z,y) = (@y+h@)}, . and  Fo={(z,9) = (@9)+h@)},

Note that for any f = (z,y)+h(z) € MM, and any g = (z,y)+m(y) € suppFz,

E (_l)h(w)(_l)m(y)

Y

= |bias(h)bias(m)| < 2723

_1\f@y)(_1\9(=y)
E(—1)/e0)(-1)

10Tf one desires explicit hard instances one can use the correlation bounds of Smolensky
[Smo87b; Smo93| for degree-d Fo polynomials against the Majority function, but they are
quadratically worse (correlation bounded by < O(d/+/n)).
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by property (i) in Lemma @ Thus all g € suppF; are at least (1/2—22"/3)-far
from MM,, O suppF;.

Suppose a testing algorithm using R < 2°!" classical samples succeeds with
probability §. That implies that, given access to a function from F; or from
JF> with equal probability the algorithm can guess which of the two ensembles
the function was drawn from with success probability 4.

Let b ~ {1,2} and f ~ JF,. With probability at least 1—R?/2", all 2(")’s and
all y)’s in the R-many samples are distinct (collision bound and union bound).
Call this event D. Conditioned on D, for all f € suppF; and all f € suppFa,
the distribution of observed values ( JCARTIONN (€ 0N y(R))) is uniformly
random because h ~ H is 2°1"-wise independent (property (¢) in Lemma @
and we assumed R < 2%, Thus conditioned on D, the data observed is
independent of b. Moreover, all functions in suppF; and suppJ, are bent,
so Fourier sampling provides no information whatsoever. The distinguishing
probability is thus bounded by

6§Pr[D]-%+Pr[DC]-1§%+§j§%+2"0'8". O

Having established that the Maiorana—McFarland class is hard to test from
classical samples and Fourier samples alone, we now give a very efficient passive
quantum tester for MM,,. While this tester still uses quantum Fourier sampling
at the end of the algorithm, it crucially preprocesses the function state in

superposition before applying performing Fourier sampling.

Theorem 69. There is an efficient quantum algorithm that uses O(1) copies
of the function state |f) = 5= Sz yeionye 14, , f(z,y)) to decide, with success
probability > 2/3, whether f is in MM,, or (1/3)-far from MM,,.

Proof. Let U denote the (2n+1)-qubit unitary acting as |z,y, b) — |z,y,b & (z,y)).
Note that U can be implemented by a quantum circuit with O(n) many

2-qubit gates and depth O(logn). Moreover, notice that U |f) = |f) for

f@,y) = fz,y) @ (z,y).

The quantum algorithm works as follows. Recall that one function state
copy suffices to obtain one Fourier sample with success probability 1/2, using
only 2n many single-qubit gates. Applying this Fourier sampling subroutine
to O(1) many copies of U |f) thus suffices to obtain, with success probability
> 5/6, m > C many Fourier samples Si, ..., S, C [2n] of the function f , where
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C > 0 is a universal constant to be chosen later. Let J ={n+1,n+2,...,n}
and compute
1
p=—NR1<k<m:JNS .

If p <1/9, output “f € MM,,”. Otherwise, output “f is (1/3)-far from MM,,”
First, let us show completeness of the protocol. So, suppose f € MM,,.
Then there is a function h : F§ — F, such that

ULf) = 5 3l hia)) = [B)

where we abused notation by using h to denote the function h : F§ x Fy — Fy
defined as h(z,y) = h(x). As h(z,y) depends only on the first n variables, we

have

p= Y [W(SP=0.

SC[2n], JNS#£D
The constant C can be chosen such that, conditioned on the high probability
event that we obtained at least C' many Fourier samples, we have [p—p| < 1/9
with probability > 5/6 (by Chernoff-Hoeffding). So p < 1/9, and our tester
correctly outputs “f € MM,,” with probability > 2/3.

Next, we analyze soundness. So, suppose f is (1/3)-far from MM,,. Equiva-
lently, f(z,y) = f(z,y) ® (z,y) is (1/3)-far from any Boolean function h that
depends only on the first n variables, h(z,y) = h(z), where we again abused
notation. Consider the function g defined as

gz = Y F(S)xs(y).

SC[2n]:JNS=0

Notice that g(z,y) depends only on z, but g is in general not Boolean. Define
G(z,y) = 1guy)>1/2. Notice that § is a Boolean function and that §(z,y)
depends only on z. Then (compare [AS07, Fact I1.2]) we have

2

% < Pml,wz [f(xl, .’112) 7é .62(1:2)] < Eml,mz[(f(mhw?) - g(xl’ x2))2] = ESC[2n]:JﬂS7$(Z)‘J%(S) =Pp.

Again, conditioned on having produced at least C' many Fourier samples, with
probability > 5/6, we have |p — p| < 1/9 and thus p > 2/9. So, our tester
correctly outputs “f is (1/3)-far from MM,,” with probability > 2/3. O

9.3 Separating passive quantum from query-based classical property
testing
In this section we give a property for which classical queries have exponential

advantage over quantum testing from function states. This property is closely
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related to the inability of quantum computers to measure the intersection of
three subset states, where for a subset S C 7, the corresponding subset state
is defined as |S) = ﬁ > zes |z). We explain this connection at the end of the
section.

The main result of this section is the following theorem.

Theorem 70. There exist two sets of Boolean functions Fy, Fy such that

1

. BPTEY
e o= fills 2 o

and such that:

o Any passive quantum tester requires (27/%) copies of a function state to

distinguish Fy and Fy with constant probability 2/3.

e Fy and Fy may be distinguished with probability 2/3 from O(1) classical

queries.

The families Fy and Fj arise from certain encodings of triples of sub-
sets A,B,C C {0,1}". Consider the class of Boolean functions fi 5c) :
{0,1}"*2 — {0,1} on n + 2 bits parameterized by subsets A, B,C C {0,1}"
and defined as follows:

(

1$€A a = 00
l,c5 a=01
f(A)B)C) (x7 a) = 9 © *
]-CEGC a = 10
10 a=11

With A, B, C' drawn uniformly from subsets of {0, 1}", we define two function
state ensembles {|fa,5,c))}4,8,c and {|f(a,B,4a8))} 4,8, With their mixed state

average over t-copy states given by

& .

Df (A,B,C) > <f (4,B,0) ‘®t] , & = AH?B Uf (A,B,AAB)><f (A,B,AAB) )®t

= E
A,B,C

We now show that these two mixed state averages over t-copy states are
close in trace distance unless ¢ scales exponentially in n. This means that
exponentially-in-n many copies are needed to distinguish between the two

function state ensembles.

Theorem 71. || — & |l; < O(t/2™/?).
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Proof. Tt will help to reinterpret ‘ fa, B,C)> as a subset state via the rewriting

|$, a> |f(A,B,C) (z, a)) = Z leSa,b |:I?, (a, b)> ) (9'3'1)

be{0,1}
where S, ;, denotes A, B, C, or () according to a when b = 1, or the respective
complements if b = 0. Using r to represent the concatenation of a and b we

may then write

|fa,B,0)) = \/— S>> lges, |z,

re{0,1}3 ze{0,1}"

where N := 2" and, like before, S, denotes one of A, B,C, or () or the comple-
ments thereof.
With this notation let us consider the basis for the space of ¢ copies of

function states given by
{|x1,r1,...,xt,rt) :x; €{0,1}",7; € {0,1}%,j = 1,...,t}.

Let IT denote the projector onto the subspace spanned by those |z1,71,. .., Z¢, 7¢)
for which all z; are distinct.

First, we claim

t
10 — IET|y, |16, — D& < o<— (9.3.2)

%)

These bounds follow from applying the triangle inequality to the following
estimate: for any fixed A, B, C, we have

s ) fnol” - Tfuno)fnno| 1], = J (1+30m) (1- o)

(9.3.3)
2t

<_a
~ VN

where (z)! = z(z —1)...(z — t + 1) denotes falling factorial, and where in the

(9.3.4)

second step we applied the bound

4t Nt t\? t?
> (1 _ _) >1-5,
(4N)t N N

To see Equation (9.3.3)), note that

M= ’f<A,B,c>><f wso| —Wfuso)fuso|
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has the following block form after reordering columns:

0 1 0 4t Nt
1
M = (AN 1 1 0 41 (N*—NY)
0 0 0 (8N)*—(4N)?

4tNt  4*(Nt*—Nt) (8N)'—(4N)t

This is because ‘ fa, B,C)>< fa,Bc) ‘®t is an all-zeros matrix except for the prin-
cipal submatrix associated to indices ((acl, 1)y« -y (Tt rt)> where z; € S, for
all j, and here it is equal to (4N)~*. There are (4N)* such entries. Moreover,
H‘ fa, B,C)>< fa, B,C)‘@H is an all-zeros matrix except for the principal subma-
trix associated to indices ((xl,rl), ey (xt,rt)> where z; € S, for all j and
z; # xy, for j # k and here it is also equal to (4N)*—and there are 4° Nt of
these entries. M thus has rank 2 and its spectrum is easily determined, leading
to the estimate in Equation ((9.3.3)).

Now we claim that in fact
[1EIT = TI&IT. (9.3.5)
Let us consider a specific entry in 1€l with row and column indices

r=_(...,(z57), ), s=(..,(Y;,85),--.)-

It will be useful to write S, = S,(r,s) for the set types that appear with a
particular string z € {0,1} in r and s. That is, for any z € {0,1}" define

8. =8.(r,;5) = {g € {0,1}*: (z,q) € 01 (5,0) €5},
Then
(| &l s) = (4N) ™ | E (IiLsses;, ) (TTiLyes:,)
= (4N)_t H A,IE,C HqESz ]-zeSq .
ze{z;};U{y;}s
It follows from the definition of IT that |S,| < 2 for any z € {z;}; U{y;};: there

is at most one contribution to S, from each of r and s. As a result we have for

any z that

ii£E HqESZ ]-zGSq = iidE qusz ]-zeSq .
A,B,CRP{0,1}n A,BRP{0,1}"
C=AAB
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This follows from mild case analysis, the most important part of which is to
note that for any S # T € {A, B,C, AAB},

(Lzes, Laer) ~ (b1, b2),

where b; and b, arei.i.d. Bernoulli 1/2 random variables. So we see (r|II&E I |s) =
(r| 1€ 1T |s) and Equation is satisfied.

Combining the triangle inequality with Equation (9.3.2]) and Equation (9.3.5)
gives the result. O

Proof of Theorem[70. Consider
Foy={func) : 4, B,C C{0,1}",27"|An BN C| > 1/16}
and Fj = {f(A,B,AAB) : A, B C {0, 1}”},

First we prove the minimum distance between Fy and Fi. For any f; € Fy,
there are 2"/16 strings x € {0,1}" such that fo(200) = fo(z01) = fo(z10) = 1.
On the other hand, for all f; € F}, by definition there are no strings x with

this property. Thus the minimum L, distance between Fy and F} is at least

27/16 1

4.27 64

Now define the state ensembles
&= E “ and &= E ®,
o= E P and &= E |f)/]

&1 here is exactly &€, from Theorem To compare & and & from Theorem
note that for A, B,C P{0,1}", any string z is in AN BN C with probability
1/8 and so from Chernoff we have

1 2" 2"
Pr{|[ANnBNC| < Eg] Sexp(——).

This dramatic concentration, together with Theorem (71| implies
1€ — Enlls < |IE) — Eolli + |E1 — &Eolls < O(t/27?).

To test this property with classical queries, given an unknown f = f4 5)
one may simply choose a random z € {0,1}" and check if f(200) = f(z01) =
f(x10) = 1. This test accepts with probability 1/8 when f € Fj, and accepts
with probability 0 when f € F}. O



143

k-fold intersection is “unfeelable” for k > 3

In this subsection, we reinterpret Theorem [70]in the context of subset states.
Given access to copies of k different subset states |S1),...,|Sk), it is natural
to ask how many copies of each are required to estimate the fractional size of

the mutual intersection,
|S1 N - N Skl

2n '
When k£ = 2, this can be readily accomplished using ideas similar to our
algorithms presented above. In the case of intersection estimation with k£ = 2,

we have the identity

BEL_ (50150) (51192) (SalSw).

where Sy := {0, 1}" denotes the full hypercube. The quantities on the right-
hand side are easily estimated via swap tests, so it takes O(1) copies of |:S}) , |:Sa)
to estimate the quantity of interest to any constant additive error.

In contrast, it is a consequence of Theorem [70] that the same question for
k = 3 has a very different answer: it requires 9(2”/ 2) copies to achieve constant
additive error. To see this, note that from any |f(4 5,c)) one may obtain each
of |A), |B), and |C) with constant probability by measuring the a and f(z,a)
registers, provided that the minimum among |A|, |B|, and |C| is at least a
constant fraction of 2"—and this condition is satisfied by the overwhelming
majority of functions in the families Fy and F; of Theorem From Fj and
F we obtain:

Corollary 72. There are two families Sy and Sy of triples of subsets of {0,1}"
such that

V(Ao,Bo,Co) (S 80, |A0ﬂBoﬂCO|/2n > 1/16

and V(Al,Bl,Cl) 681, |A1ﬂBlﬂC1|/2n=0,

and yet any quantum algorithm distinguishing the two families via their subset
states requires Q(2™/?) copies of |A),|B), or |C).

9.4 A challenge: lower bounds for monotonicity testing
Here we show that the ensembles used in [Gol+00] to establish strong lower
bounds on monotonicity testing from samples do not improve upon the basic

2(1/¢e) sample complexity lower bound in the quantum case. To prove this, we
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consider the pair of distributions over functions from |Gol+00], constructed
such that one is supported entirely on monotone functions, and the other with
high probability on functions that are e-far from monotone; we show that the
associated t-copy quantum function state ensembles become distinguishable
with constant success probability as soon as t = €(1/¢). At the end of the
section, we discuss how to extend our reasoning to the ensembles used in
[Bla24].

Distinguishability of twin ensembles

For the proof, it will be useful to also consider phase states, which are given
by

|\Ilph \/_ Z (m)|x )

ze{0,1}m
The proof reduces to the distinguishability of phase state ensembles encoding

the following classical sets of functions taken from [Gol4-00].

Definition 5 (Twin ensembles). Let M = {(u;,v;)}™, be a set of pairs of
elements in {0,1}" such that all uy,vy,..., Uy, vy are distinct. Let UM :=
Uguwem{u, v} be the complete set of elements in the matching. Fiz a function
g:{0,1}"\(UM) — {0,1}. We now define the twin ensembles associated to
M and g, which are two sets Fy, Fy of functions on {0,1}".

For any bipartition of M, M = AU B, define the following two functions.

1. fﬁ% is defined as follows:

o For (u,v) € A, we set f(O) (u) = 151033(1)) =1.

gl

e For (u,v) € B, we set f ) (w) = fO(v) =0.

)

e If x & UM, then define f(o) (z) = g(z).

2. ff(lljg is defined as follows:

o For (u,v) € A, we set fﬁ&(u) =1 and f(l) (v)
e For (ua 'U) € B, we set fél,)B(u) =0 and f(l) (’U)
e If x ¢ UM, then define fgg(z) = g(z).

0.
1

Then the twin ensembles associated to M and g are Fy = { f,g%} ALB=M and

= {fUsYausonr.
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Let us recall the reasoning from [Gol+00] that connects these ensembles
to monotonicity testing. Take k = [n/2] and consider the k¥*® and (k — 1)
layer of the Boolean hypercube with respect to the standard partial ordering
on strings <. These layers we denote by L; and L;_; respectively; i.e.,
L; = {z € {0,1}"! : |z| = i}, where |z| denotes the Hamming weight
of z. Stirling’s formula gives that |Lg|,|Lx-1| = Q2(2"/y/n). As argued in
[Gol4-00], we can find a matching M = {(u; < v;)}™; C Lx_1 X Ly, such that
(%) there is no ¢ # j such that u; and v; are comparable, (i) |M| is even, and
(i) m = |M| = & - 2", for any € = £(n) with 0 < ¢ < O(n~%/2). Now define

g9:{0,1}"\UM — {0,1}
T — 1|x|2n /2 -
The choices of g and M define twin ensembles Fy and Fj.
Clearly, every fg? is a monotone function. Let Ff** C F} be the set of fap %
functions for which |B| > m/4. Then all functions in F* are at least Q(e )—far

from monotone [Gol4+00]. We thus wish to bound the distinguishability of Fj

from Ff which in the quantum case is determined by the 1-norm

IR = B (FABKAA)

f1(40,) f(l)

1

From a standard concentration argument, it suffices to instead bound the
distinguishability between Fy and F}, which in the quantum case is determined
by

(17888 )

f(U) f(l)

(l (0) LN (0) )®t

We will show that, in contrast to the classical case analyzed in [Gol+00], the
twin ensembles actually become distinguishable already for ¢t ~ 1/e. Namely,

much of Section [9.4] will be dedicated to proving the following theorem:

Theorem 73. Define € > 0 so that €2" = m = |M|. Then

®t Rt
o, Yo o, Yo
f(O) f(O) f(l) f1(41)B

fort =Q(1/e).

Let us note that Theorem [73| implies the same 1-norm lower bound and

Ep > Q1)  (9.4.1)

1

thus the same distinguishability of the two ensembles also from function state
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copies. To see this, we notice that the function state for any Boolean function f
defined on 7 bits is unitarily equivalent to the phase state for a related Boolean

function on n + 1 bits:

1 1 h
(I*"®H)|f) = > lz)]0)+ > (1)@ ) (1) = w2,
V2rtl oy Vortl oy f
where f(xl, oy Xy Tng1) = (Lagp=1) f(@1, .-, Zn).

So, in fact the function states for functions in Fy and F; are unitarily
equivalent to phase states for another set of twin ensembles F° and F! with
corresponding M obtained by appending 1 to every string in M and with g
given by §(z) = (1s,,,=1) - 9(%1, ..., 2n). Theorem 73| implies these phase state
ensembles are distinguishable with constant success probability for ¢ > Q(1),

thus the same holds for the function state ensembles for Fy and Fj.

Difference matrix: the entries
Here, to prove Theorem [73 we pursue a bound on the trace norm distance
in Equation ((9.4.1)).

Define the density matrices

AQ =Fg

®t
(|\II§Z}<10) X‘I’ph ) ] and AW =Ep

(0)
A,B fA,B

Rt
h h
(1028, w1} ] ,

Call A := A® — AW the difference matriz. We now characterize the entries of
the difference matrix A by evaluating A® and A®.

Rows (resp. columns) of A® and A® are indexed by t-tuples x =
(@1,...,2¢) (resp. y = (y1,...,y:)) of strings z; € {0,1}" (resp. y; € {0,1}"),
1 < j < t. It turns out that the entries of A® and A®™ depend only on
the multiset {zi,...,2t,y1,...,y:}, and for this we use the notation x Uy.

In the following it will sometimes be convenient to use 1 for exponentiation:
atb:=ab.

Entries of the A, the f(© matrix. The (x,y) entry of AQ© takes the

form

1 @) 1 (0)
Ay = AuBEA lﬁ ] (=1)= ] = 3 aubn l(_l) T2 fap()|-

zexUy
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Evaluating this expectation gives

AQ), = (( Nt ¥ g<z>) MIECT X )

zexUy,zgUM peEM "7 zE€xUy:z2€p

- (( Nt oY g(z>)

zexUy,zgUM

I E(- HzexUy:z€p} mod2 ifpeA

pem 4B 0 otherwise '
So, if |{z € xUy : z € p}| = 0 mod 2, the expectation is always (—1)°. On
the other hand, if [{z € x Uy : z € p}| = 1 mod 2, the expression inside the
expectation is (—1)! w.p. 1/2 and (—1)° w.p. 1/2. Define

sxUy)=(-11 > g(2). (94.2)

zexUy,z¢UM

Then

) ont s(xUy) ifVpe M,|{z€xUy:z€p} =0 mod 2
AQ) =

X,y
0 otherwise .

Entries of A, the f® matrix. Similarly to above we have

1
Ay = gusxuy) I1 E > fan).

pGM zEny:mEp

To evaluate the expectation, note there are four cases for each p = (u,v) € M,
depending on how many times u occurs in x Uy, and how many times v occurs
in xUy. Denote these quantities mod 2 as L, = L,(xUy) and U, = U,(xUYy)

respectively.

e If L, =0 and U, = 0, the sum in the exponent is always 0, yielding
(-1)°=1w.p. 1.

o If L, =0 and U, = 1, the sum is either 0 or 1, each w.p. 1/2, yielding in
expectation (—1)!/2 + (-1)°/2 =0.

o If L, =1 and U, =0, we similarly get 0 for the expectation.

o If L, =1,U, =1, then the sum is always 1, yielding (—1)! = —1 with
probability 1.
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In summary,

1 LU
ﬁ(_l)l{pEM'Lp_Up_l}ls(XUY) if Vpe M,|[{z€xUy:2¢€p} =0 mod 2
AN —

x’y ’
0 otherwise

which is equivalent to

%(_1)|{p€MZLp=Up=1}|S(X Uy) ifVvpe M,L, =0,
AL —

)
x’y

0 otherwise

Putting these together, we find

2 .
ﬁs(ny) ifvpe M,L, =T,

0 — and {peM :L,=U,=1}=1 mod 2,

Axy = Ay !

—~
—~

%
&=
ke
L=

—A

0 otherwise
(9.4.3)

Difference matrix: the spectrum

Here we conduct a fine-grained analysis of the spectrum of the difference
matrix A in order to obtain a combinatorial bound on ||Al|;. In Section [9.4] we
then understand the asymptotics on this bound in terms of ¢, ¢, and n.

Let D be a diagonal matrix with entries s(x) for all ¢-tuples x. Then
A := 2""1D-1AD is similar to 2*~'4 and moreover

Ax,y =

. s(x)s(xUy)s(y) ifVpeM,L,=U,and {peM:L,=U,=1}|=1 mod 2
0 otherwise

1 ifVvpeM,L,=U,and [{peM:L,=U,=1}|=1 mod 2
0 otherwise .

(9.4.4)

Here we used that s(x Uy) = s(x)s(y); the other notation (for L, and U,) is
as above.

Because of the matrix similarity, we know that A and A have the same
spectrum up to a scaling factor of 1/2™~1. It will turn out that after a certain

permutation of indices, A is block-diagonal, with each block corresponding
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to the adjacency matrix of a complete bipartite graph. Towards defining
this block structure, we write xCy (read “x is compatible with y”) if for all
peM,L,=U,and {peM:L,=U,=1}| =1 mod 2.

Given an index tuple x, we define some technical quantities of x that are
important for combinatorics to follow. These do not depend on the order of
elements in x so we will treat x as a multiset for this discussion. The multiset

x may be partitioned as:
x = { pairs } Ll { singletons } U { elements outside of UM } (9.4.5)

To form the “pairs” multiset, we greedily take as many copies of each pair
p € M as we can from x. The “singletons” multiset are the remaining elements
in x from UM that cannot be paired up, and the final part corresponds to
those elements in x outside of UM. This partitioning is unique.

For example, suppose M = {(1,2), (3,4), (5,6)}, where we identify natural
numbers with their n-bit binary expansions. Then, the following multiset has

the partition
{0,1,1,1,1,2,2,3,3,3,3,4} — {(1,2),(1,2),(3,4)}U{1,1,3,3,3} L {0}.

Now define E(x) to be the number of pairs (with multiplicity) in x mod 2,
i.e., the cardinality mod 2 of the first part of the partition in Equation ((9.4.5)).

Also, define the singleton set of x as
sing(x) := {e € “singletons” : e occurs an odd number of times in “singletons” }.

So, continuing our example, E(x) = 1 and sing(x) = {3}. We also define the

type of x, type(x), to be the pairs with nonzero overlap with its singleton set:
type(x) = {p € M : pNsing(x) # 0}.

Continuing our example, we have that type((3, 5,5, 5)) ={(3,4),(5,6)}. We
will also need a quantity on pairs of tuples x, y counting the number of elements
in their singleton sets that are paired up, mod 2:

P(x,y) = |{p € M : p C sing(x) Using(y)}| mod 2.
So for example, keeping M as before, P((l, 3), (1, 4)) =1.
Lemma 74. xCy if and only if

type(x) = type(y) and  E(x)+E(y)+P(x,y)=1 mod 2.
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Proof. (=) Suppose by way of contradiction that xC'y but type(x) # type(y).
Then there exists a pair p = (a, b) such that (WLOG) a occurs in the “singletons”
partition of x an even number of times, and a or b occurs in the “singletons”
partition of y an odd number of times. This implies L, + U, =1 mod 2.

So now suppose type(x) = type(y). Because xCy, we have |{p € M :
L,=U,=1}|=1 mod 2. But |{p € M : L, = U, = 1}| mod 2 is precisely
E(x)+ E(y)+ P(x,y) mod 2, because both quantities count the total number
of pairs (with multiplicity) occurring in x Uy.

( <= ) If type(x) = type(y), we must have that L, + U, = 0 mod 2 for
all p. The elements in the “pairs” partition do not affect this condition. For
all pairs p = (a,b), either both a,b occur an even number of times in the
“singletons” partition of x and y. Or, if (WLOG) a occurs an odd number of
times in x, then a or b occurs an odd number of times in y, preserving the
condition.

Furthermore, as before, |[{p € M : L, = U, = 1}| mod 2 counts the same
quantity as F(x)+ E(y)+ P(x,y) mod 2. Therefore, if type(x) = type(y) and
E(x)+E(y)+P(x,y) =1 mod 2, we satisfy the criteria for compatibility. [

To understand the spectrum of the difference matrix we will make repeated

use of the following structural fact about compatibility.

Lemma 75. Let x,x',x" be such that xCx" and x'Cx". Then for all y, xCy
if and only if x'Cly.

Proof. By symmetry we need only argue the forward direction. Clearly
type(x) = type(x’) = type(y). Note that for any z,2z’, 2", we have P(z,2') +
P(z',2") = P(z,2") (mod 2), and because xCx" and x'Cx”, Lemma [74] implies

E(x) + P(x,x") = E(x') + P(x',x") (mod 2).
Then we have the following equivalences modulo 2:

E(x)+ P(x,y) + E(y) (Lemma
E(x)+ P(x,x') + P(x",y) + E(y)

= FEx')+ P(x,x") + P(x",y) + E(y)

E(X)+ P(X,y)+ E(y).

Appealing to Lemma we conclude x'Cly. O
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This implies, for example, that the x™ and x"* rows in A are equal.
We can view A as describing a graph G ; with vertices ({0,1}") and edge
set

{(x,x") e V xV | xCx'}.
With Lemmas [74 and [75] in hand, we are prepared to describe the structure of

G ;. It will be useful to define certain combinatorial quantities first.

Definition 6 (Combinatorial quantities). Let ¥ = X,q4 U Zepen U Lyest be an
alphabet of cardinality |X| = 2™ partitioned such that ¥,qq consists of p pairs,
50 |Xoad| = 2p, and Eepen consists of m — p pairs, so |Leven| = 2(m — p). Define
T(t,p) as the number of strings of length t over ¥ such that symbols from 3,44
each occur an odd number of times, symbols from X e, each occur an even

number of times, and symbols from X, . occur any number of times. Then
define

min{m,t} m min{m,t} m
z1(t) = Z ( >T(t,p) and zo(t) = Z < )T(t,p). (9.4.6)
p:((l)d p p=0 p
D o p even

Further, define N(t,p) as the number of strings of length t over ¥ such that
for each pair in ¥,44, one of the two symbols occurs an odd number of times
while the other occurs an even number of times, and for each pair in Xyen,
either both symbols occur an odd number of times or both symbols occur an

even number of times.

Lemma 76 (Structure of G z). The graph G ; has ezactly Zgli%(t’m) (’;;) con-

nected components, each associated with a specific type(-) of vertex.

The connected component of Gz corresponding to the unique type of car-
dinality 0 (the empty type) is a complete bipartite graph (U,V, E) with parts
U,V such that

|U| =z1(t) and |V]|=z(t).

For k > 1, there are (’,’;) connected components, each corresponding to
a type of cardinality k. All such components are complete bipartite graphs
(U,V, E) with parts U,V such that

U, [V = N(¢k)/2.

Proof. First, by Lemma [74] only vertices of the same type can be compatible,
and there are a total of Ekm;%(t’m) (Z‘) types. For the remainder of the proof,

we only need to consider vertices of the same type.
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We will analyze the case with k£ > 1 first. Here k refers to the size of the type

of the vertex. Consider a tuple x such that sing(x) = {a1, as, ..., ax_1,ax} and
E(x) = 0. Consider a second tuple x’ such that sing(x’) = {a1, as, . .., ax-1, bk},
E(x') = 0, and (ag,b;) are a pair in M. Two such tuples must exist since
k > 0. Note that x is compatible with x’. Furthermore, all elements of the
same type as x and x’ must be compatible with exactly one of x or x’. To see
that we form a complete bipartite graph, consider two elements y,y’ such that
xCy and x'Cy’. By Lemma, we can conclude that yC'y'. Since y,y’ were
arbitrary, we have a complete bipartite graph.

To get the size of each of the two sets in the bipartition, fix a type of size
k > 1 and take (ay,b1), ..., (ak, bx) to be the pairs representing the type. By
our definition of type, we know: For each i, the elements a; and b; appear
with differing parities; for each of the remaining pairs in M, the two elements
of the pair occur with the same parity; and each remaining element, which
does not belong to any pair in M, can occur with an arbitrary parity. Thus,
the number of vertices with type k is exactly N(¢,k). It remains to observe
that the two components in the bipartition for type k are of equal size. To see
this, take any tuple x of type k and w.l.o.g. suppose that a; occurs with odd
parity in sing(x). (Otherwise, b; occurs with odd parity in sing(x) and the
remaining argument is easily modified.) If we construct a tuple x’ from x by
replacing as many occurrences of a; as are in sing(x) with b; (while keeping
the remaining elements the same), then xCx’ by Lemma This provides
us with a one-to-one mapping between the two components in the bipartition,
thus they are of equal size.

For k = 0, we instead consider two distinct vertices x and x’ with E(x) =0
and F(x) = 1 and |sing(x)| = |sing(x’)| = 0. Note that x and x’ are compatible.
By an analogous argument to the case of £ > 0, we must have all vertices
connected to either x and x’, and we get a complete bipartite graph.

For the sizes of the sets in the bipartition, note that the number of vertices
connected to x with E(x) = 0 will be precisely z;(t) and the number of vertices

connected to x’ with E(x’) = 1 will be precisely z»(t), completing our proof. [

As a consequence of this lemma, when suitably ordering the indexing tuples,
the matrix A has a block-diagonal structure with blocks corresponding to the
connected components of G ;. Thus, to determine the spectrum of A, it suffices

to determine the spectrum of each block.
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The adjacency matrix of a complete bipartite graph between a- and b-many
vertices has two nonzero eigenvalues, each of magnitude v/ab [Bol98, Chapter
VIIL.2]. Instantiating this fact in the context of Lemma [76{ and renormalizing
by 1/2"1 (recall A = (DAD™')/2™1), we obtain the following bound on
Al

Corollary 77. The 1-norm of the matrix A satisfies:

2 o minltmb 0N N(t, &k
41 = g a0 )+ g 3 () g

k=1

Difference matrix: the trace norm

Here we analyze the growth of || A||; in terms of ¢,¢, and n. We begin by
using exponential generating functions (or EGFs—see [Wil94] for background)

to derive explicit expressions for T'(¢,p), N(t,p), and z;(t) + z2(t).

Lemma 78. Let T(t,p) be as in Definition [ Then
1\2m 22 2P om —2p\ (20\ ..., ..
T(t,p) — <§> ) Z(—1)k< _ )(k>(2 — 25 — 2k)".
=0 k=0 J
Proof. For readability let us use a for the number of symbols occurring an even

number of times, b for the number of symbols occurring an odd number of
times and c for the rest. Then T'(¢,p) has EGF

o= (57 (55 e

Rearranging, we find

flz) = (;)a%iZ( )( )( 1)kela-2i+b-2k+o)

j=0k=0

And we assume ¢ > a + b, so we use that the EGF " corresponds to the

sequence {n‘}2,, read off the relevant coefficient to derive the formula for
T(t,p):

T(t,p)z(%)aeri:Z()() Ve(a—2j+b— 2k + o).

J=0k=0

Substituting for a, b, ¢ yields the result. m

Lemma 79. With x1 and zo defined as in Equation (9 ,

21(£) + 2a(t) = (%)m S (’;:) (2" — k)"

k=0
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Proof. The combinatorial interpretation of z; (¢) +z2(t) is the number of strings
of length t over ¥ where symbols from ALl B,|A U B| = 2m are paired up and
within each pair, they must appear with the same parity.

The EGF for strings with 2 elements appearing with same parity is

e+ e @ 2+ er —e % 2_ 62m+e—2m
2 2 2

To construct the desired strings, we combine m copies of this with 2" — m
copies of the unrestricted EGF, leading to the overall EGF

9—m (€2x + e—2w)m€(2”—2m)x )

The result follows from simplifying this EGF and recognizing the related

counting formula. O

Lemma 80. Let N(t,p) be as in Definition[6 Then

N(t,p) = (%)még(—nj (é’) (m N p) (2" — 4j — 4k)".

Proof. The proof uses EGFs analogously to how we derived the expression for
T(t,p). The EGF for N(t,p) is

f(z) = (eh —26_27”) (62”” —|-26_2x) - (ez)Q"—2m.

We can now rearrange this product of sums into a sum of products and, using

again that the EGF e corresponds to the sequence {n'}2,, read off the
expression for N(t,p). O

Lemma 81. With x; and x5 defined as in Equation (9.4.6),

LU (m\ NER) 10 () + o)
2nt 2 k 2 - 2 2'rLt .

Proof. First, observe that Zg’:i%{t’m} (’,’;)N (t,k) = 2™, since every one of the
overall 2™ tuples belongs to some type and we are summing over all sizes of

types. Consequently,

1 mi%m} m\ N(t,k)
ont k 2

k=1

Il
Nl NI~ N

|
K
+b—‘
LN
[~]=
> 3
N—————
/-~
[

|
Nz|»l>
S|
N———



155

where the second-to-last step used Lemma [80] and the last step used Lemma [79]
O

We now further study the trace norm of A. We will need the following

technical fact.

Proposition 3. Suppose m = |[M| =¢2" ande =¢(n) < 1. Let D e R be a

fized constant. Then, for any t =t(n) < O(2"™) with 0 < b < ;, we have

L—DK>t:<L—D%>ﬁ+dD.

K~B(m,1/2) ( 2n 2"
In Proposition [3| and what follows, B(¢,1/2) denotes the Binomial distribution
with £ trials and success probability 1/2.

Proof. Notice that, for any ¢ € N, the function f : [0,B) — R given by
f(z) = (1 — z)! is Lipschitz with Lipschitz constant t maxo<,<p|l — z|'~ .
Using that |1 — Dk/2"| < 1 holds for all 0 < k < m for sufficiently large n,

this implies
¢ D™\? D™
(-2 (25| e (2P|
2n 2" 2" 2"

= K~B(m,1/2)
n

2
> 77] < 2exp (—const -2". ?).

K~B(m,1/2)

From Chernoff we have that

| DK D2
Pr‘ 2

2n 2n

Call the low-probability event above E. Then

DK DT pm
E — 2 || < tPrlEC PriE1 22
K~B(m,1/2) t( on on )' <t I‘[ ]77+t I'[ ]—2n
2
< tn + 2tDe exp (—const A —) )
3

We can set 7 = min{1/n, 1/t?}, then, because of our assumption on t = t(n),
both summands go to 0 as n — oo, finishing the proof. O

Theorem 82. ||A]; = Q(1) fort = Q(z—:(n)_l), assuming € = (n) > Q(27)
with 0 < b < 5.

Proof. Let us label the expression for ||A||; from Corollary (77| as

2 2 ™ () N(t k)
14l = G Vo1 () - 22(0) + 5 kgl (k) 2

- vl

)

. (9.4.7)
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We will lower-bound ||A||; by lower-bounding the second summand here, ().
Lemma [79] implies

() + T2(t) = (%)m i (7:) (2" —4k)f= E (2" —4K)', (9.4.8)

= K~B(m,1/2)

where B(m,1/2) refers to the Binomial distribution. Returning to (%) and
using Lemma [81] we have

@):%(1-%) :2<1—]E(1—42—I:)t>.

Using Proposition (3, we obtain that, as long as t < O(2") with 0 < b < 1,

(%) = 2(1 - (1 - Zi:)t + 0(1)) =2(1-(1-2)" +0(1)).

Notice that our assumption on € = ¢(n) ensures that E—ln) < O(2"") with
0 < b < 1. Therefore, we can consider ¢ > Q(1/e), we get 1 — (1 — 2¢)" > Q(1),
and therefore ||A]; > (%) > Q(1).

]

Remark 3. We can extend the above quantum distinguishability analysis to
the ensembles from [Bla24]. The construction in [Bla24], based on Talagrands
random DNF's [Tal96], establishes a lower bound of exp(2(y/n/¢)) for pas-
sive classical monotonicity testing via a birthday paradox argument. The
construction randomly selects DNF terms of fixed width to define a partial
partition of the Boolean cube into disjoint sets U; such that any two points
in different U; are incomparable. The difference between the monotone Dy,
and non-monotone D,, case lies in the function value assignments: in Dy,
values within each disjoint set U; are structured monotonically while in D,
values with each U, are randomly assigned. Classically, distinguishing these
distributions requires exp(2(v/2"/¢)) samples, as a tester must sample at least
two points from the same U; to gain information. This leads to an exponential
lower bound when parameters are chosen appropriately.

Following an argument structured similarly to the one above, one may see
that the difference matrix between the induced function state ensembles in the
quantum setting decomposes into blocks corresponding to complete multipartite
graphs. To see this, in analogy to the analysis from Section we can define
a notion of compatibility between any two index tuples. Given a collection

of sets U; and an index tuple x, we first remove duplicates from the tuple
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and analyze its intersection pattern with each U;. For instance, if U; = {1,2},
U, = {3,4}, and U3z = {5,6}, and our index tuple is (1,1,1,2,3,3,3,3,5),
then after removing duplicate, the corresponding subsets under the U; sets are
[1,2],[],[5]- Two tuples are said to be compatible if, for every j, the number
of elements from each U; that appear in the tuple is even but not identical
across the tuples after removing duplicates and decomposing. For example,
the tuple (1,1,1,2,3,3,3,3,5) is compatible with (1,1,1,2,3,3,3,3,6) but not
with (1,2,3,3,3,3,3,3,5), as the latter shares the same decomposition as the
original.

Importantly, this compatibility is transitive: if x is compatible with x’ and
if x’ is compatible with x”, then x is also compatible with x”. This transitivity
induces complete multipartite graph blocks with each block corresponding to a
compatibility class. Therefore, the trace distance between the two ensembles
equals the sum of the trace norms of multipartite graphs of various sizes.
Bounds on the eigenvalues of such a graph in terms of the sizes of its parts
can be found in, for example, [EH80; Meh23|. Also in analogy to our analysis
of the [Gol+00] construction, we find the ensembles remain distinguishable
when ¢ = (1/¢), and thus they achieve no improvement over the generic lower
bound.
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9.5 Appendix: Useful facts

In this appendix we collect some simple lemmas that are used as subroutines
in the main body. First, we make a simple observation about the possibility of

post-selecting on a desired function value in a subset function state.

Lemma 83. Let m € N, S C {0,1}*, f : {0,1}* — {0,1}, b € {0,1},
n € (0,1], and § € (0,1). Assume that Pr,.s[f(x) = b] > n. There is an
efficient quantum algorithm that given mf@] many copies of the state
|V f) = ﬁ >zes |z, f(x)), outputs, with success probability > 1 — 0, at least
m many copies of the state |Vs rp) X X pes.¢(z)=p |T). Moreover, if the algorithm
fails, then the algorithm explicitly outputs FAIL.

We note that via standard Chernoft-Hoeffding bounds, one can achieve
the same guarantee as in Lemma [83| using max{[2m/n], [21n(1/d)/n?]|} many
copies of the state |¥g ). This improves the m-dependence, but in general

comes at the cost of a worse n-dependence.

Proof. By a union bound, it suffices to show that m = [@] many copies of
|Ws, s) suffice to quantumly efficiently obtain one copy of |¥g f5) with success
probability > 1 — 4. So, let’s assume m = 1. Also here the procedure is clear:
For each copy of |Ug f), measure the last qubit in the computational basis. If
the outcome is b € {0, 1}, then the post-measurement state after discarding
the last qubit is |Ug sp). If, after measuring on all the copies, outcome b has
never been observed, output FAIL. Otherwise, output one copy one of the
post-measurement states from rounds in which outcome b was observed.

Again, the analysis of the failure probability is simple:

Pr[FAIL| = Pr[outcome b never occurs]

<(L-p)™
< exp(—nm)
<6

Here, we used the assumption Pr,.s[f(z) = b] > n and our choice of m. [

We also require the following standard routine for estimating the overlap of

two pure quantum states.

Lemma 84. Let €,0 € (0,1). There is an efficient quantum algorithm that,

21n(2/5)
64

given | | many copies of each of two pure quantum states |p) and |p),
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outputs, with success probability > 1 — 68, an e-accurate estimate (in [0,1]) of
the (non-squared) overlap | (p|v) |.

Proof. The procedure is as follows: Let m = [%] be the number of copies
that are available for each of |¢) and |¢). For 1 < i < m, perform a SWAP

test between one copy of |¢) and one copy of |p), let the outcome be 6;. Define

0 = L3, 6; and output the estimate i = 1/2(0 — 3). Let us analyze the

success probability of this procedure.
First, notice that each SWAP test accepts (i.e., outputs 1) with probability
w [BCWDO01|. Thus, the 6; are i.i.d. Bernoulli(w) random vari-
1+|(gly)[?

ables. So, by a standard Chernoff-Hoeffding bound, we have ‘6 — =5 <

g2/2 with probability > 1 — 2exp(—me*/2) > 1 — 6, by our choice of m.
As |z — \/y| < /|t —y| holds for all z,y > 0, this implies that also
|2 — | (pl) || = ',/2(5 — 1) — 2(HURE _ 1y < ¢ with probability > 1,

as desired. O]

Finally, using the overlap estimation routine, one can start from a function
state and two function subset states to estimate the probability of an input

lying in both

Corollary 85. Let 5,5 C {0,1}, f, f' : {0,1}* — {0,1}, and b,b’' € {0,1}.
, , . . In(6/6
Lete,6 € (0,1). There is an efficient quantum algorithm that, given [%]
many copies of each of the states |¥), |¥'), and 2[%4(6/5)] copies of each of
the states Vs rp) and |Ve ), outputs, with success probability > 1 — 46, an

e-accurate estimate of Pryupoyn[v € SNS', f(x) = b, f'(x) =V'].

Proof. The procedure combines the ingredients developed above. To do so,
notice the following equalities:

SN f~1(b
(W10 7)) = (@ p) = o EOLZO]
S'N f/—l v
K\Ifl|\113/’f/,b/>| = (‘Ifll\IfS/J/,b/> = %a

SN f1B) NS N L)
[(@s, 28l Us,pr )| = (Vs | Vst r0r) = \/ SN FI0)- 1SN @)

SN NS ) [ISnFG) NS NP SN ) S L)
2 Vs s e 2 2

. -1 ! 1—1(p
So, we can estimate Pr,.(o13[z € SN, f(x) = b, f'(x) = V] = 150f (b)r;‘z N/ )
as follows:
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1. Via the procedure in Lemma 84} use [2522/97 many copies of each of |¥)

4

and |Wg ) to output, with success probability > 1— ¢, an (¢/3)-accurate
estimate & of | (U|Wg sp) |-

2. Via the procedure in Lemma use [%4(6/5)] many copies of each
of |¥’) and |¥g ) to output, with success probability > 1 — ¢, an
(e/3)-accurate estimate & of | (¥'|Ug ¢ ) |.

3. Via the procedure in Lemma use [%}6/5)] many copies of each of
|Ws,rp) and [¥g ) to output, with success probability > 1 — %, an
(e/3)-accurate estimate 5 of | (Vs 15| ¥s ) |-

4. Output the estimate 4 = Bad .
By a union bound, the probability that Steps 1-3 all succeed is > 1 —§. In

this case, we have

"7 - xN{P()fl}n[m €SN, f(z) =0, f(x) ="V

Bad! — \/ISﬂf‘l(b) NS NP 1SNfE) 180~ E)
1SN ) - |5 N ) 2n 2n

,_ 5nronsar—oe| |, fsnrol |, 5
<|B- |Sﬂf_1(b)|'|5'ﬂf'—1(b/)| + a—\/Q:n +la — SR
g
<3.:
=Ee€.

Here, the second step used the triangle inequality together with B,&, a,
SN NS NF=L®)2 - [ISNfEE) /1SN )]
\/ISﬂf‘l(b)I-IS’ﬂf"l(b’)l’ VRGOl (R € [0, 1), =
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