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ABSTRACT

In the more than 60 years since the invention of the laser, complementary devel-
opments in nonlinear and ultrafast optics have revolutionized fundamental science
and technology, enabling the measurement of atomic and electronic motion at their
native timescales, optical timekeeping with unprecedented precision, information
processing offering speeds beyond those attainable in electronics, and novel spec-
troscopy and sensing techniques capable of parallel detection of several analytes
with fast acquisition times and high sensitivity. On the one hand, pulsed sources
are particularly well-suited for driving nonlinear phenomena, as the strength of
nonlinear interaction depends on the peak power of the optical input. Conversely,
spectral broadening, pulse shaping, and temporal sampling mechanisms enabled by
nonlinearity have been critical in developing ultrafast sources and systems.

In this thesis, we further explore this synergistic relationship between nonlinear
and ultrafast optics. We specifically study nonlinear dynamical phenomena such as
soliton formation and supercontinuum generation in parametric amplifiers and oscil-
lators exhibiting a quadratic

(
𝜒(2)

)
nonlinearity, and we show how these processes

can be leveraged for the efficient generation of ultrashort pulses and coherent broad-
band spectra, with direct application in sensing and information processing. We
begin by exploring the formation of mid-infrared temporal simultons in a free-space
optical parametric oscillator, and we exploit their formation dynamics for enhanced
molecular sensing. Next, we turn to the thin-film lithium niobate platform and
demonstrate pJ pulse energy, two-color soliton pulse compression to the two-cycle
regime in a dispersion-engineered waveguide. We additionally show that the strong
nonlinearity in such waveguides enables the on-chip characterization of ultrashort,
ultra-weak pulses. Next, we demonstrate a coherent, multi-octave frequency comb
from a far-above-threshold nanophotonic parametric oscillator and investigate the
dynamics underpinning its formation. Finally, we show simultaneous oscillation of
70 independent time-multiplexed parametric oscillators in a dispersion-engineered
nanophotonic cavity. Our results pave the way to a new generation of scalable and
efficient ultrafast sources, sensors, and information processing systems powered by
quadratic nonlinearity.
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1

C h a p t e r 1

INTRODUCTION

1.1 The Need for Nonlinearity
Nonlinear optics concerns itself with a wide range of phenomena in which the
interaction of an intense optical field with a material modifies the optical response
of that material [1]. As will be discussed in more explicit mathematical detail in
Chapter 2, the term “nonlinear” refers to the material’s polarization density which
is expanded in polynomial orders of the interacting electric field. The most studied
nonlinear optical interactions are those involving the square or the cube of the electric
field, which are referred to as quadratic and cubic nonlinear optics, respectively, as
these are responsible for the strongest effects. In particular, quadratic nonlinear
interactions are typically dominant in materials for which they occur, though they
are limited to non-centrosymmetric materials, while cubic nonlinear effects may
occur in any material for a sufficiently intense field.

One widely exploited consequence of nonlinear optics is that of frequency mixing,
in which photons at one frequency may be converted via the nonlinear process to
a different frequency. In the context considered here, these processes are para-
metric meaning that the quantum state of the material is left unaltered through
the interaction. Thus, they are energy conserving in terms of the annihilated and
created photons. Quadratic nonlinearity, which will be the focus of this thesis,
governs three-wave mixing processes, in which photons may be exchanged between
three disparate frequency bands. These include effects such as optical paramet-
ric generation (OPG), optical parametric amplification (OPA), difference-frequency
generation (DFG), sum-frequency generation (SFG), and second-harmonic genera-
tion (SHG), to name a few. Meanwhile, cubic nonlinearity govern four-wave mixing
processes.

As many of the most high-performing and inexpensive laser systems are in the
visible and near-infrared spectral regions, this ability to convert input light be-
tween frequency bands has benefited many important applications. For example,
down-conversion processes such as DFG [2–4] and optical parametric oscillation
(OPO) [5–15], consisting of OPA in a resonator, may be used to efficiently generate
mid- and far-infrared light. Such mid-infrared sources may be used for molecular
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sensing and spectroscopy [16–22], with applications in areas such as greenhouse gas
monitoring, industrial process control, and non-invasive medical diagnostics, as well
as in free-space optical communications systems [23]. Meanwhile, up-conversion
processes including SFG and SHG can be used for the generation of visible and
ultraviolet light [24–26], benefiting applications such as atomic clocks [27, 28],
astronomical spectrograph calibration [29], high-resolution imaging [30, 31], and
biochemical sensing and spectroscopy [32, 33].

In addition to enabling frequency mixing, nonlinear interactions have several fea-
tures of practical consequence. To begin, we note the important role that nonlinearity
plays in computing and information processing systems. Modern electronic com-
puting systems are enabled by the switching operation of the transistor, which relies
on its having an extremely nonlinear response to input electronic signals [34]. Like-
wise, we may observe at a higher level that nonlinear activation functions represent
a key building block in machine learning and artificial intelligence systems [35].
In a similar way, nonlinearity is an essential component in any optical informa-
tion processing system [36–39]. Given the THz bandwidths of ultrafast optical
systems, all-optical information processing promises opportunities to achieve high
computation speeds which are beyond the reach of electronic systems [40–50].

Another important feature of parametric nonlinear processes is their phase-sensitive
nature. This aspect allows for the direction of energy transfer between different
frequency bands to be controlled by tuning the relative phase of the interacting
waves. It is furthermore of great importance in the context of quantum optical
systems [51, 52]. Here, the phase sensitivity of the nonlinear process can be
used to generate squeezing or entanglement through spontaneous parametric down
conversion (SPDC). As such, phase-sensitive nonlinear processes are foundational
to many efforts in optical quantum sensing and information processing systems [53–
64].

Finally, nonlinearity gives rise to rich physics and complex dynamics, for example
soliton and pattern formation [65–68], supercontinuum generation [9, 69–71], and
chaos [72]. On the one hand, these physics serve to engage the curious graduate
student. On the other hand, when understood and properly harnessed, many of these
dynamics can enable new applications. In particular, solitons, optical pulses which
maintain their shape during propagation via a dynamical balance between linear
dispersive or diffractive effects and nonlinearity, have long been of interest both
from a fundamental perspective and due to their broad application in areas such as
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communications [73], frequency synthesis [74, 75], sensing and spectroscopy [16,
18, 76–78], and ranging [79–81].

Combined, these properties motivate the need for nonlinearity. We hope that the
claims of this section will be further supported by the results of this thesis, which
have aimed to leverage the rich physics enabled by quadratic nonlinear interactions
to enable new applications in areas such as ultrafast sensing, spectroscopy, and
information processing.

1.2 Key Developments in Nonlinear and Ultrafast Optics
The history of nonlinear and ultrafast optics is long and storied. In this section,
we briefly summarize a few key developments to give a flavor of the trajectory of
the field and demonstrate the ways in which these two disciplines have remained
fundamentally intertwined through the years.

Research into nonlinear optics has closely paralleled the development of laser tech-
nology, beginning with Theodore Maiman’s invention of the laser in 1960 [82]. The
interconnectedness of these two research areas is embodied through the proximity
of its invention to the first observation of the nonlinear effect of SHG by Franken et
al. in 1961, just one year later [83].

Both fields grew quickly in the years that followed. Within two years, Bloember-
gen, Armstrong, Pershan, and Ducuing had laid out the theoretical basis of the
field [84, 85]. By 1965, the first demonstrations of OPO had been reported [86].
Parallel investigations into Q-switched and mode-locked lasers (MLLs) provided
the groundwork for the areas of pulsed and ultrafast optics [87–91].

Following its invention in 1966 [92, 93] and subsequent mode-locking in 1968 [94],
the dye laser provided the shortest pulse operation of available mode-locked laser
technologies for several decades, including the first demonstration of sub-ps pulses
in 1974 [95]. The additional development of colliding pulse mode-locking in 1981
enabled further reduction in the pulse widths by more than an order of magni-
tude [96].

Meanwhile, significant progress had been made into the study of optical solitons
in Kerr nonlinear media, with seminal theoretical work by Hasegawa and Tappert
in 1973 predicting that ps solitons could be realized and propagate undistorted in
optical fibers [97, 98]. In the early 1980s, Mollenauer et al. verified these theoretical
predictions through the experimental observation of ps pulse narrowing due to
soliton pulse compression [99, 100]. Combining the soliton pulse compression
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technique with then state-of-the art dye MLLs led to the first demonstrations of
pulse durations on the order of single fs [101].

Mollenauer and Stolen went on to demonstrate a soliton fiber laser in 1984 [102].
The mechanism behind the mode-locking in this system was later understood as ad-
ditive pulse mode-locking [103, 104]. Several mode-locking techniques, including
nonlinear polarization rotation [105] and nonlinear amplifying loop mirrors [106,
107], were also developed around this time. Paired with the development of sev-
eral rare-earth ion-doped fiber gain media, for example Erbium and Ytterbium,
mode-locked fiber lasers continued to develop as low-noise, light weight, and com-
pact generators of fs pulses [108]. Their commercial availability has made them
ubiquitous in many ultrafast labs today.

The invention of the Ti:Sapphire laser in 1986 [109] and subsequent development of
Kerr-lens mode-locking in 1991 [110, 111] marked another important turning point
in the history of MLLs. The near-instantaneous action of the nonlinearity paired with
the extremely large gain bandwidth and slow gain recovery time of the Ti:Sapphire
provided nearly ideal conditions for achieving ultrashort pulse generation, and direct
generation of sub-10 fs pulses from a dispersion-managed Ti:Sapphire MLL was
achieved by the late 1990s [112, 113]. In 2001, the group of Ferenc Krausz reported
the first observation of attosecond pulses in high-harmonic generation driven by
high-energy, fs pulses from a Ti:Sapphire MLL [114]. In the years that have
followed, availability of such extremely short pulses has seen the growth of the field
of attosecond science [115, 116], which has provided many new insights into the
underlying structures in atoms, molecules, and solids.

Another important development around this time, which enabled the generation of
high-power laser pulses, was that of chirped pulse amplification (CPA) in 1985 by
Strickland and Mourou [117]. They demonstrated that, through pre-chirping a pulse
prior to amplification and subsequent re-compression, unwanted nonlinear effects
and optical damage to the amplifier could be mitigated, leading to the generation of
extremely high-energy laser pulses at the millijoule level. Dubietis et al. built upon
this work to CPA in an OPA in 1992 [118], benefiting from the large bandwidths and
wavelength tunability afforded through the nonlinear amplification process. Since its
development, CPA has been widely used in high-energy laser physics experiments,
include in the study of extreme nonlinear optical phenomena, and have benefited
applications such as laser eye surgery [119, 120].
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In parallel with the development of these various laser technologies, researchers
sought to tackle another issue–that of absolute frequency measurement [121]. Early
work in this area focused on laser referencing to molecular and atomic transi-
tions [122, 123]. With the recognition that periodic signals in the time domain,
from, for example, MLLs would correspond to frequency-periodic combs, it was
soon demonstrated that by stabilizing both the optical frequency of one of the comb
lines and the microwave frequency corresponding to the comb line spacing, one
could translate coherence across broadband optical spectra, and focus shifted to-
wards the generation of broadband frequency combs [124–128]. Perhaps the largest
breakthrough came through the work of the groups of Theodore Hänsch and John
Hall at the turn of the millennium, with the first demonstration of an octave-spanning
frequency comb, benefiting from supercontinuum generation in the recently invented
photonic crystal fiber [129, 130]. The generation of an octave-spanning comb en-
abled the direct measurement of the carrier-envelope-offset (CEO)f̃requency via
f-2f interferometry through an SHG crystal [131, 132]. With the measurement,
then, of just two microwave frequencies, the repetition rate and CEO frequency,
one had complete knowledge and control over the entire comb spectrum. Since
these developments, optical frequency comb technologies have served to bridge the
radio-frequency and optical domains, and have revolutionized the area of optical
metrology [133].

With the availability of femtosecond pulses came the first demonstration of a fem-
tosecond OPO in 1989 [134], pumped by a mode-locked dye laser. Such femtosecond
OPOs promised to extend the spectral coverage of MLLs into the important infrared
spectral region. Since then, significant progress has been made in femtosecond
OPO research [11]. OPOs have been demonstrated in many key wavelength bands
of interest and been utilized for spectroscopy [18, 20, 135]. Below threshold, they
have been leveraged as generators of squeezing for quantum information processing
experiments [57, 58]. Moreover, the quantum randomness of the OPO output has
been leveraged as a computational resource in the development of Ising solvers [45,
46]. More recently, improved theoretical understanding and experimental investi-
gation into soliton formation in OPOs has revealed new operation regimes offering
practical benefits such as improved efficiencies and pulse shortening [136, 137].
These works serve as a precursor to many of the results presented in this thesis.

Meanwhile, the last two decades have seen a boom in photonic integration of ultrafast
optical sources [138]. Such sources critically promise reduced cost and improved
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scalability over their bulk counterparts. One critical development in this direction
has been that of high-Q microcavities [139–141]. Among other benefits, the energy
storage capabilities of these cavities allows for substantial optical power to build
up, requiring modest only pump levels. In 2007, it was demonstrated that this
pump power could be enough to drive the formation of optical frequency combs via
four-wave mixing processes in a high-Q microtoroid resonator [142]. The years that
followed brought several additional demonstrations of Kerr combs in waveguide
structures [143, 144]. Realization of driven cavity solitons [145] further enabled
unprecedented comb stability, as well as the formation of localized pulses, in Kerr
microcavities [146]. Since then, Kerr microcombs have become one of the dominant
sources of integrated frequency combs, benefiting many application areas including
laser ranging [79–81], astronomical calibration [147], spectroscopy [77, 78, 148],
and microwave synthesis [75].

Among integrated photonic platforms, we single out the development of commer-
cially available thin-film lithium niobate as a key precursor to the work presented in
this thesis [149]. On the one hand, lithium niobate offers a large electro-optic coeffi-
cient, which has been leveraged for the integration of high-speed, low-energy modu-
lators which can be used to generate broadband electro-optic frequency combs [150–
152]. On the other hand, and key to the developments in this thesis, lithium niobate
exhibits a strong quadratic nonlinearity. In this thesis, we build upon pioneering
works leveraging quadratic nonlinearity in this platform, including demonstrations
of pJ pulse energy supercontinuum generation[70, 153] and extremely broad band-
width, high-gain parametric amplification [154, 155].

1.3 Dissertation Overview
In the preceding, we have attempted to motivate the far-reaching impacts of nonlin-
ear and ultrafast optics in the development of optical technologies, with applications
across a variety of academic fields and industries. Here, we comment more specifi-
cally on the work presented in this dissertation as well as its organization, in order
to guide the reader.

Through the works of this thesis, we present several demonstrations of quadratic
nonlinear phenomena which can benefit the development of scalable and efficient
ultrafast sources, sensors, and information processing systems. A major focus
of the thesis is on the formation of quadratic solitons and their application in
spectroscopy and ultrashort pulse synthesis. However, other dynamical phenomena,
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including supercontinuum generation, and properties, such as the phase-sensitive
nature of parametric amplification, are explored. Many of the works harness the
new opportunities provided by the development of thin-film lithium niobate as a
nanophotonic platform capable of supporting quadratic nonlinear interactions.

The specific chapters are organized as follows. In Chapter 2, the pertinent theory of
quadratic nonlinear optics is reviewed, and the main equations used for the modeling
of the systems studied in this thesis are described. Following the derivation of the
relevant equations, several additional concepts are discussed at the end of the chapter,
including brief discussions on quasi-phase matching and resonant processes.

Chapters 3 and 4 present our work on extending the concept of temporal simultons in
fs-pumped optical parametric oscillators to the mid-infrared (MIR) spectral region
for sensing and spectroscopy. The studied OPO consists of a free-space cavity
with a GaP crystal as the nonlinear medium. Chapter 3 focuses specifically on our
characterization of the simulton OPO performance. Meanwhile, Chapter 4 presents
our study of intracavity sensing in the simulton OPO, wherein we discover that the
formation dynamics of the simulton can be exploited to obtain significant sensitivity
enhancement.

In the remaining chapters, we turn to the nanophotonic platform of thin-film lithium
niobate. Chapter 5 presents the generation of two-optical cycle pulses from two-
color soliton pulse compression of pJ-energy pules in a dispersion-engineered nano-
photonic waveguide. Through this work, we show that such dispersion engineering
can benefit the design of systems supporting soliton formation compared what could
be achieved in bulk systems.

Having demonstrated the formation of ultrashort pulses in a nanophotonic wave-
guide, we show in Chapter 6 that nanophotonic OPAs may also be leveraged for
on-chip pulse characterization. In particular, the high gain afforded by the tight
mode confinement promises to enable measurement of ultra-weak pulses, beyond
even our demonstrated measurement of a fJ-energy pulse. Likewise, the large gain
bandwidths achievable through operation in the near-0 dispersion regime allow for
measurement of ultrashort pulses.

Next, we turn to the study of nanophotonic parametric oscillators. In Chapter 7, we
demonstrate multi-octave frequency comb formation requiring sub-pJ pump pulse
energies from a high-gain, low-finesse nanophotonic OPO pumped far above thresh-
old. Interestingly, the system exhibits decoherence and subsequent recoherence
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as the pump power is increased, with the multi-octave comb formation occurring
in this recoherent regime. We utilize an admixture of numerical simulation and
experiments to study the dynamical features of this process in detail in Chapter 8.

Finally, in Chapter 9 we study the feasibility of supporting large-scale, time-
multiplexed systems in nanophotonic OPOs through an experimental demonstra-
tion of simultaneous oscillation of 70 time-multiplexed OPOs in a single nano-
photonic cavity at a 17.5-GHz repetition rate. Our results show that through
dispersion engineering, independence of the pulses may be maintained, with ap-
plication in quantum-random number generation and the development of scalable,
time-multiplexed all-optical computers.
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C h a p t e r 2

THEORETICAL BACKGROUND

2.1 Chapter Overview
In this chapter, we introduce the theoretical foundations required for the discussions
found in later sections of this thesis. Our analysis is based on the presentations in [1–
6]. We begin in 2.2 by introducing Maxwell’s equations, which form the basis of the
theoretical derivations in this section. We continue in 2.3 by introducing the idea
of the nonlinear polarization. We next present in 2.4 the concept of spatial modes,
which represent linear eigenmodes of Maxwell’s equations. Using these ideas, we
derive a propagation equation for multi-mode quadratic nonlinear interactions in a
waveguide in 2.5. With appropriate simplifications, we reduce this model in 2.6 to
the more commonly used multi-envelope equations. These propagation equations
form the bedrock of the theoretical analyses presented in later sections of the thesis.
The preceding derivations lead naturally into a discussion of quasi-phase matching
in 2.7. Next, in 2.8, we present a basic theoretical analysis of OPOs. Finally, in 2.9,
we introduce concepts related to pulse trains and optical frequency combs.

2.2 Maxwell’s Equations
We begin our theoretical analysis by introducing Maxwell’s equations. As we will
show, nonlinear optical phenomena may be readily derived from Maxwell’s equa-
tions with the inclusion of an appropriate nonlinear polarization term. Furthermore,
we will see that in many physical systems of interest, appropriate spatial eigenmodes
of Maxwell’s equations may be found which can be used to greatly simplify the the-
oretical description of the system behaviors. We write Maxwell’s equations in a
medium as

∇ · D = 𝜌, (2.1a)

∇ · B = 0, (2.1b)

∇ × E = −𝜕B
𝜕𝑡
, (2.1c)

∇ × H = J + 𝜕D
𝜕𝑡
. (2.1d)
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Here, E(r, 𝑡) and D(r, 𝑡) are the electric field and electric flux density, respectively,
which are in general functions of space, r and time, 𝑡. Likewise, H(r, 𝑡) and B(r, 𝑡)
represent the magnetic field and magnetic flux density, respectively. Finally, 𝜌
represents the charge density and J the current density.

Before proceeding further, we briefly make a note about convention. In the following
derivation, we consider the following Fourier transform relation. Quantities in the
frequency domain, denoted with a tilde (i.e., 𝑓 (𝜔)) are related to their time-domain
counterparts, 𝑓 (𝑡), as

𝑓 (𝜔) ≡ F { 𝑓 (𝑡)} ≡
∫ ∞

−∞
𝑓 (𝑡)𝑒𝑖𝜔𝑡𝑑𝑡. (2.2)

Tilde’s will not be used, however, for certain quantities expressed only in the fre-
quency domain, particularly the linear and nonlinear susceptibility tensors. With this
definition of the Fourier transform, Maxwell’s equations in the frequency domain
become

∇ · D̃ = 𝜌̃, (2.3a)

∇ · B̃ = 0, (2.3b)

∇ × Ẽ = 𝑖𝜔B̃, (2.3c)

∇ × H̃ = J̃ − 𝑖𝜔D̃. (2.3d)

In this thesis, we consider dielectric materials which are nonlinear, inhomogeneous,
anisotropic, and non-magnetic. In this case, we have the following relations for the
Ẽ and D̃ fields as well as the B̃ and H̃ fields,

D̃ = 𝜖Ẽ + P̃NL, (2.4a)

B̃ = 𝜇0H̃, (2.4b)

where 𝜖 = 𝜖0(1 + 𝜒(1)) = 𝜖0𝜖𝑟 is the linear permittivity which is in general a
rank two tensor which may vary in both space and frequency, 𝜒(1) is the linear
susceptibility, 𝜖0 is the permittivity of free space, 𝜖𝑟 is the relative permittivity, 𝜇0 is
the permeability of free space, and P̃NL represents the nonlinear contributions to the
polarization density. In the next section, we will discuss this nonlinear polarization
in more detail.



25

2.3 Nonlinear Polarization
As discussed in section 1.1, nonlinear optics is called as such as it refers to processes
for which the optical response of a material varies nonlinearly with respect to an
incident electric field. This is typically expressed through the following Taylor
expansion of the polarization density, P̃(r, 𝜔), as

P̃ = 𝜖0(𝜒(1)Ẽ + 𝜒(2) : ẼẼ + 𝜒(3) : ẼẼẼ + ...) = P̃L + P̃NL. (2.5)

Here, 𝜒(𝑖) is in general a tensor of rank 𝑖 + 1 describing the nonlinear interaction of
the 𝑖th order, the elements of which depend on the specific properties of the material
under consideration. As was hinted at in the preceding section, we will commonly
divide the polarization into a linear component, P̃L = 𝜖0𝜒

(1)Ẽ, and a nonlinear
component, P̃NL, which contains all remaining elements of the polarization.

In this thesis, we will focus on non-centrosymmetric materials exhibiting a quadratic
(𝜒(2)) nonlinearity and further make the assumption that, in the systems considered,
the quadratic response is a appreciably larger than the cubic and higher-order re-
sponses such that these higher order terms may be ignored. We may thus write the
𝑖th cartesian component of the nonlinear polarization in the frequency domain as

𝑃̃NL,𝑖 (𝜔) = 𝜖0
∑︁
𝑗 ,𝑘

∫
𝜒
(2)
𝑖 𝑗 𝑘

(𝜔, 𝜔′)𝐸̃ 𝑗 (𝜔′)𝐸̃𝑘 (𝜔 − 𝜔′)𝑑𝜔′. (2.6)

We note here that throughout this thesis, we will sometimes interchange 𝜒(2)
𝑖 𝑗 𝑘

with
𝑑𝑖 𝑗 𝑘 =

1
2 𝜒

(2)
𝑖 𝑗 𝑘

. If we assume that the 𝜒(2)
𝑖 𝑗 𝑘

is non-dispersive and thus does not depend
on frequency, we may remove it from the integral to obtain

𝑃̃NL,𝑖 (𝜔) = 𝜖0
∑︁
𝑗 ,𝑘

𝜒
(2)
𝑖 𝑗 𝑘

∫
𝐸̃ 𝑗 (𝜔′)𝐸̃𝑘 (𝜔 − 𝜔′)𝑑𝜔′ = 𝜖0

∑︁
𝑗 ,𝑘

𝜒
(2)
𝑖 𝑗 𝑘
𝐸̃ 𝑗 (𝜔) ∗ 𝐸̃𝑘 (𝜔).

(2.7)

Finally, if we assume the light is linearly polarized along a single coordinate axis
(as will typically be the case in the considered experiments using type 0 phase-
matching), the sum reduces to a single term, which we write, dropping the coordinate
labels, as

𝑃̃NL(𝜔) = 𝜖0𝜒
(2) 𝐸̃ (𝜔) ∗ 𝐸̃ (𝜔), (2.8)
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or, in the time domain,

𝑃NL(𝑡) = 𝜖0𝜒
(2)𝐸 (𝑡)𝐸 (𝑡). (2.9)

2.4 Spatial Modes
In analyzing nonlinear optical systems, it is helpful to first decompose the electric
(and magnetic) field into spatial modes, here defined as eigenmodes of Maxwell’s
equations in the system under consideration, ignoring nonlinear contributions. To
start, let us look at equations 2.3c and 2.3d, ignoring the current source term. Taking
the curl of both sides, we have

∇ × ∇ × Ẽ = 𝑖𝜔𝜇0∇ × H̃, (2.10a)

∇ × ∇ × H̃ = −𝑖𝜔∇ × 𝜖Ẽ, (2.10b)

where we have made use of equations 2.4a and 2.4b, ignoring the nonlinear term.
Using the vector curl identity along with equations 2.3a and 2.3b, this becomes

𝑖𝜔𝜇0∇ × H̃ + ∇2Ẽ = 0, (2.11a)

𝑖𝜔∇ × 𝜖Ẽ − ∇2H̃ = 0. (2.11b)

Ignoring any spatial dependence of 𝜖 , insertion of 2.3c and 2.3d yield the Helmholtz
equation

𝜔2𝜇0𝜖Ẽ + ∇2Ẽ = 0, (2.12a)

𝜔2𝜇0𝜖H̃ + ∇2H̃ = 0. (2.12b)

We may readily find solutions to the system of the form

Ẽ(r, 𝜔) = ẽ(𝜔)𝑒±𝑖k·r, (2.13a)

H̃(r, 𝜔) = h̃(𝜔)𝑒±𝑖k·r. (2.13b)

Here, ẽ(𝜔) and h̃(𝜔) represent electric field and magnetic field mode functions
at frequency 𝜔 and k is the wavenumber, which satisfies |k| =

√︁
𝜔2𝜇0𝜖 = 𝑛𝜔

𝑐
,

𝑖 ∈ {𝑥, 𝑦, 𝑧}. The ± solutions refer to forward and backwards-propagating waves,
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respectively. We have here defined the refractive index, 𝑛 =
√
𝜖𝑟 (defined as such

because the relative permeability was taken as 1 for the considered nonmagnetic
medium), and speed of light in a vacuum, 𝑐 = 1√

𝜇0𝜖0
. Taking the inverse Fourier

transform, we have

E(r, 𝑡) =
∫ ∞

−∞
ẽ(𝜔)𝑒−𝑖(𝜔𝑡∓k·r)𝑑𝜔, (2.14a)

H(r, 𝑡) =
∫ ∞

−∞
h̃(𝜔)𝑒−𝑖(𝜔𝑡∓k·r)𝑑𝜔. (2.14b)

This shows that in this simplest case, where we have ignored any spatial dependence
of 𝜖 , the time-domain wave solutions may be represented as an infinite sum of
monochromatic plane waves of the form ẽ(𝜔𝑛)𝑒−𝑖(𝜔𝑛𝑡∓kn·r) , and likewise for the
magnetic field, where 𝜔𝑛 is the frequency of the wave and kn is the corresponding
wavenumber. Since the permittivity was taken to have no spatial dependence, we
observe that the mode functions in this case also exhibit no spatial dependence.

In the context of the nonlinear systems we wish to study, typically driven by laser
light, we desire to find the evolution of the wave as it propagates. To simplify our
expressions without a loss of generality, we consider waves which propagate along
𝑧. We also wish to extend the spatially invariant plane wave modes we have derived
in equations 2.13a and 2.13b to account for propagation in waveguides or other
spatially varying systems (including capturing the finite beam width of a laser in a
free-space system). As such, we consider a more general modal expansion of the
following form

Ẽ(r, 𝜔) =
∑︁
𝑛

𝐶̃𝑛 (𝑧, 𝜔)ẽ𝑛 (𝜔, 𝑥, 𝑦)𝑒𝑖𝛽𝑛 (𝜔)𝑧, (2.15a)

H̃(r, 𝜔) =
∑︁
𝑛

𝐶̃𝑛 (𝑧, 𝜔)h̃𝑛 (𝜔, 𝑥, 𝑦)𝑒𝑖𝛽𝑛 (𝜔)𝑧 . (2.15b)

Here, as above, ẽ𝑛 (𝜔, 𝑥, 𝑦)𝑒𝑖𝛽𝑛 (𝜔)𝑧 and h̃𝑛 (𝜔, 𝑥, 𝑦)𝑒𝑖𝛽𝑛 (𝜔)𝑧 represent eigenmodes of
Maxwell’s equation, ignoring any nonlinear contribution to the polarization, but we
now allow for spatial dependence transverse to the direction of propagation. We
additionally have replaced 𝑘 (𝜔) with the closely related phase constants 𝛽𝑛 (𝜔).
Finally, we have introduced the quantity 𝐶̃𝑛 (𝑧, 𝜔) which represents a unitless modal
amplitude that describes the evolution of the fields as they propagate. The modes
are orthogonal and are normalized to the following convention
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𝐴

(Re{ẽ𝑛 (𝜔, 𝑥, 𝑦) × h̃∗
𝑚 (𝜔, 𝑥, 𝑦) · ẑ})𝑑𝑥𝑑𝑦 = 2𝛿𝑚𝑛Φ̃(𝜔), (2.16)

where 𝛿𝑚𝑛 is a Kronecker delta function and Φ is a normalization constant with
units of power, which we typically set as Φ̃(𝜔) = 1 W for convenience. The power
in a single mode at a frequency 𝜔 and position 𝑧 is given by

∫
𝐴

𝐼𝑛 (𝜔, 𝑥, 𝑦)𝑑𝑥𝑑𝑦 =
∫
𝐴

Re{𝑆𝑛,𝑧 (𝜔, 𝑥, 𝑦)}𝑑𝑥𝑑𝑦

= |𝐶̃𝑛 (𝑧, 𝜔) |2
1
2

∫
𝐴

Re{ẽ𝑛 (𝜔, 𝑥, 𝑦) × h̃𝑛 (𝜔, 𝑥, 𝑦) · ẑ}𝑑𝑥𝑑𝑦

= Φ̃(𝜔) |𝐶̃𝑛 (𝑧, 𝜔) |2. (2.17)

In the first line, we have made reference to the intensity 𝐼𝑛 (𝜔, 𝑥, 𝑦) and Poynting
vector, S̃𝑛 (𝜔, 𝑥, 𝑦). This further shows why taking Φ̃(𝜔) = 1 W is a convenient
normalization, as then the complex modal amplitude, 𝐶̃𝑛 (𝑧, 𝜔), directly carries the
information about the power in mode 𝑛 at frequency 𝜔. Another important quantity
of interest is the mode area, 𝐴mode,𝑛 (𝜔), which can be calculated as

𝐴mode,𝑛 (𝜔) =
(
∫
𝐴
𝐼𝑛 (𝜔, 𝑥, 𝑦)𝑑𝑥𝑑𝑦)2∫

𝐴
𝐼2
𝑛 (𝜔, 𝑥, 𝑦)𝑑𝑥𝑑𝑦

. (2.18)

It is then helpful in some situations to define normalized mode profiles, ẽ′𝑛 (𝜔, 𝑥, 𝑦)
and h̃′

𝑛 (𝜔, 𝑥, 𝑦) as

ẽ𝑛 (𝜔, 𝑥, 𝑦) =

√︄
2𝑍0Φ̃(𝜔)

𝑛eff,𝑛 (𝜔)𝐴mode,𝑛 (𝜔)
ẽ′𝑛 (𝜔, 𝑥, 𝑦), (2.19a)

h̃𝑛 (𝜔, 𝑥, 𝑦) =

√︄
2𝑛eff,𝑛 (𝜔)Φ̃(𝜔)
𝑍0𝐴mode,𝑛 (𝜔)

h̃′
𝑛 (𝜔, 𝑥, 𝑦), (2.19b)

where 𝑍0 is the impedance of free space and 𝑛eff,𝑛 is the effective index of mode 𝑛.
In this normalization, 𝐴mode,𝑛 =

∫
𝐴

Re{ẽ′𝑛× h̃′∗
𝑛 · ẑ}𝑑𝑥𝑑𝑦. This normalization helps to

move seamlessly between integrated and bulk systems. Specifically, in bulk crystals,
assuming the interaction occurs between focused fundamental Gaussian beams, one
convenient choice is to approximate the beam as having a flat-top profile over a
circle of radius 𝑤0(𝜔), where 𝑤0(𝜔) is the Gaussian beam waist. For example,
assuming an 𝑥-polarized beam we may take
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ẽ
′ (𝜔, 𝑥, 𝑦) =


x̂, 𝑥2 + 𝑦2 ≤ 𝑤0(𝜔)2,

0, otherwise,
(2.20a)

h̃
′ (𝜔, 𝑥, 𝑦) =


ŷ, 𝑥2 + 𝑦2 ≤ 𝑤0(𝜔)2,

0, otherwise.
(2.20b)

This allows for the finite width of the beam to be accounted for while maintaining
the modes as solutions of the Helmholtz equation, apart from the discontinuity in
the derivative at 𝑥2 + 𝑦2 = 𝑤0(𝜔)2 , being spatially truncated plane waves. The
validity of this approximation generally demands that the waist of the Gaussian
beam be significantly narrower than the smallest transverse dimension of the crystal
and the length of the crystal be shorter than the confocal parameter (such that the
phase front is flat and thus well-approximated by a plane wave over the course of
the interaction). Another choice is

ẽ
′ (𝜔, 𝑥, 𝑦) = 𝑒−

𝑥2+𝑦2

𝑤0 (𝜔)2 x̂, (2.21a)

h̃
′ (𝜔, 𝑥, 𝑦) = 𝑒−

𝑥2+𝑦2

𝑤0 (𝜔)2
ŷ
. (2.21b)

This choice better approximates the exact Gaussian beam profile but does not exactly
solve the Helmholtz equation, as the Gaussian beam solution relies on making the
paraxial approximation. For either choice, we find 𝐴mode = 𝜋𝑤2

0, as expected.
Mode profiles of waveguides and other more complex systems may be found using
commercial solvers.

2.5 Nonlinear Propagation and the Single-Envelope Equation
Having introduced the nonlinear polarization and defined the waveguide modes, we
may now derive the propagation equation for the electric field in a nonlinear medium.
To start, we consider two distinct fields, which we refer to using superscripts, for
example Ẽ(1) and Ẽ(2) . We begin by taking the dot product of the complex conjugate
of the electric and magnetic fields of the first wave, Ẽ(1)∗ and H̃(1)∗, with the
appropriate Maxwell equations, respectively 2.3c and 2.3d, expressed in terms of
the second wave, giving

H̃(1)∗ · (∇ × Ẽ(2)) = 𝑖𝜔𝜇0H̃(1)∗ · H̃(2) , (2.22a)
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Ẽ(1)∗ · (∇ × H̃(2)) = −𝑖𝜔Ẽ(1)∗ · 𝜖Ẽ(2) − 𝑖𝜔Ẽ(1)∗ · P̃(2)
NL, (2.22b)

where we have again assumed the current density is 0 and made use of the relations
2.4a and 2.4b. Subtracting 2.22a from 2.22b gives

Ẽ(1)∗ · (∇ × H̃(2)) − H̃(1)∗ · (∇ × Ẽ(2)) =
− 𝑖𝜔(Ẽ(1)∗ · 𝜖Ẽ(2) + Ẽ(1)∗ · P̃(2)

NL + 𝜇0H̃(1)∗ · H̃(2)). (2.23)

Without repeating the above steps, we write the equivalent expression, interchanging
the first and second fields, and take the complex conjugate to give

Ẽ(2) · (∇ × H̃(1)∗) − H̃(2) · (∇ × Ẽ(1)∗) =
𝑖𝜔(Ẽ(2) · 𝜖Ẽ(1)∗ + Ẽ(2) · P̃(1)∗

NL + 𝜇0H̃(2) · H̃(1)∗). (2.24)

Here, we have assumed real 𝜖 . Summing equations 2.23 and 2.24 and using the
vector identity A · (∇ × B) = B · ∇ × A − A · ∇ × B gives

∇ · (H̃(2) × Ẽ(1)∗ + H̃(1)∗ × Ẽ(2)) = 𝑖𝜔(Ẽ(2) · P̃(1)∗
NL − Ẽ(1)∗ · P̃(2)

NL). (2.25)

We next integrate over the plane transverse to the direction of propagation. To do so,
we use a corollary the divergence theorem which we will define below. The usual
statement of the divergence theorem for a given function F is

∭
𝑉

(∇ · F)𝑑𝑉 =

"
𝑆

(F · n̂)𝑑𝑆, (2.26)

where n̂ is the surface normal. Next, we note that the desired area integral may be
written in terms of a volume integral where the considered volume is infinite in 𝑥
and 𝑦 and infinitesimal in 𝑧. In particular, we have

∬
𝐴

(∇ · F)𝑑𝐴 = lim
Δ𝑧→0

1
Δ𝑧

∭
𝑉

(∇ · F)𝑑𝑉. (2.27)

Through application of the divergence theorem, we arrive at the desired corollary
which we write as
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𝐴

(∇ · F)𝑑𝐴 =

∮
𝑙 (𝐴)

(F · r̂)𝑑𝑙 + 𝜕

𝜕𝑧

∬
𝐴

(F · ẑ)𝑑𝐴. (2.28)

Here, 𝑙 (𝐴) refers to the line integral around the area defined by 𝐴 and r̂ represents
the unit vector pointing radially outward in the 𝑥𝑦-plane. By application of 2.28 to
the area integral of 2.25, we find

∮
𝑙 (𝐴)

((H̃(2) × Ẽ(1)∗ + H̃(1)∗ × Ẽ(2)) · r̂)𝑑𝑙

+ 𝜕

𝜕𝑧

∬
𝐴

((H̃(2) × Ẽ(1)∗ + H̃(1)∗ × Ẽ(2)) · ẑ)𝑑𝐴

= 𝑖𝜔

∬
𝐴

(Ẽ(2) · P̃(1)∗
NL − Ẽ(1)∗ · P̃(2)

NL)𝑑𝐴. (2.29)

To derive the desired dynamics, we take the second field, Ẽ(2) , to participate in the
nonlinear interaction and consider the first field, Ẽ(1) , to be a linear mode of the
system. As such, we expand Ẽ(2) and H̃(2) according to equations 2.15a and 2.15b
and take P̃(2)

NL = P̃NL. Meanwhile, we set Ẽ(1) = ẽ𝑚𝑒𝑖𝛽𝑚𝑧 and P̃(1)
NL = 0. With these

definitions, we find that equation 2.29 becomes

𝜕

𝜕𝑧

∑︁
𝑛

𝑒𝑖(𝛽𝑛−𝛽𝑚)𝑧𝐶𝑛

∫
𝐴

((h̃𝑛 × ẽ∗𝑚 + h̃𝑛 × ẽ∗𝑚) · ẑ)𝑑𝐴

= −𝑖𝜔𝑒−𝑖𝛽𝑚𝑧
∫
𝐴

ẽ∗𝑚 · P̃𝑁𝐿𝑑𝐴. (2.30)

Further simplification of the left-hand side using the mode orthogonality relation
defined in equation 2.16 yields

𝜕

𝜕𝑧
𝐶̃𝑚 (𝑧, 𝜔) =

𝑖𝜔

4Φ̃(𝜔)
𝑒−𝑖𝛽𝑚 (𝜔)𝑧

∫
𝐴

ẽ∗𝑚 (𝑥, 𝑦, 𝜔) · P̃NL(r, 𝜔)𝑑𝐴. (2.31)

To proceed, we introduce the fast-evolving envelope 𝑅̃𝑚 (𝑧, 𝜔) = 𝐶̃𝑚 (𝑧, 𝜔)𝑒𝑖𝛽𝑚𝑧.
Then, 2.31 becomes

𝜕

𝜕𝑧
𝑅̃𝑚 (𝑧, 𝜔) = 𝑖𝛽𝑚 (𝜔) 𝑅̃𝑚 (𝑧, 𝜔) +

𝑖𝜔

4Φ̃(𝜔)

∫
𝐴

ẽ∗𝑚 (𝑥, 𝑦, 𝜔) · P̃NL(r, 𝜔)𝑑𝐴. (2.32)



32

Next, we recall our previous definition of P̃NL from equation 2.6. Here, we expand
this previous definition to further include interactions between different modes and
then make some simplifying assumptions to reduce the complexity of the expression.
The full expression may be written as

𝑃̃NL,𝑖 (r, 𝜔) = 𝜖0
∑︁
𝑛,𝑙

∑︁
𝑗 ,𝑘

∫
𝜒
(2)
𝑖 𝑗 𝑘

(r, 𝜔, 𝜔′)𝐸̃𝑛; 𝑗 (r, 𝜔′)𝐸̃𝑙;𝑘 (r, 𝜔 − 𝜔′)𝑑𝜔′

= 𝜖0
∑︁
𝑛,𝑙

∑︁
𝑗 ,𝑘

∫ (
𝜒
(2)
𝑖 𝑗 𝑘

(r, 𝜔, 𝜔′)𝑒𝑛; 𝑗 (r, 𝜔′)𝑒𝑙;𝑘 (r, 𝜔 − 𝜔′)

𝑅̃𝑛 (𝜔) 𝑅̃𝑙 (𝜔 − 𝜔′)
)
𝑑𝜔′. (2.33)

In this expression, 𝑛 and 𝑙 refer to modes while 𝑖, 𝑗 , and 𝑘 are coordinate labels. The
spatial dependence of both the modes and the nonlinearity have also been included.
In this thesis, as previously mentioned, we will consider interactions between linearly
polarized modes which act along the same tensor element of the nonlinearity, which
we refer to as 𝜒(2) , dropping any subscripts. With this approximation, the integral
on the right-hand side of equation 2.32 becomes

∫
𝐴

ẽ∗𝑚 · P̃𝑁𝐿𝑑𝐴

= 𝜖0
∑︁
𝑛,𝑙

∫
𝐴

∫ (
𝜒(2) (r, 𝜔, 𝜔′)𝑒∗𝑚 (𝑥, 𝑦, 𝜔)𝑒𝑛 (𝑥, 𝑦, 𝜔′)𝑒𝑙 (𝑥, 𝑦, 𝜔 − 𝜔′)𝑑𝜔′

𝑅̃𝑛 (𝜔) 𝑅̃𝑙 (𝜔 − 𝜔′)
)
𝑑𝜔′𝑑𝐴. (2.34)

Exchanging the order of integration, we have

𝜖0
∑︁
𝑛,𝑙

∫ (
𝑅̃𝑛 (𝜔) 𝑅̃𝑙 (𝜔 − 𝜔′)∫
𝐴

𝜒(2) (r, 𝜔, 𝜔′)𝑒∗𝑚 (𝑥, 𝑦, 𝜔)𝑒𝑛 (𝑥, 𝑦, 𝜔′)𝑒𝑙 (𝑥, 𝑦, 𝜔 − 𝜔′)𝑑𝜔′
)
𝑑𝐴

= 𝜖0
∑︁
𝑛,𝑙

∫
𝑅̃𝑛 (𝜔) 𝑅̃𝑙 (𝜔 − 𝜔′)𝑋 (2)

𝑚𝑛𝑙
(𝑧, 𝜔, 𝜔′)𝑑𝜔′, (2.35)
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where in the final line, we have introduced 𝑋𝑚𝑛𝑙 (𝑧, 𝜔, 𝜔′), which represents the
effective nonlinearity for the interaction between modes 𝑚, 𝑛, and 𝑙 at frequencies
𝜔, 𝜔′, and 𝜔 − 𝜔′, and is a consequence of their mode overlap integral. Further
simplification may be made through taking the nonlinearity to be non-dispersive,
allowing us to further simplify 𝑋𝑚𝑛𝑙 (𝑧, 𝜔, 𝜔′) ≈ 𝑋𝑚𝑛𝑙 (𝑧) = 𝑋𝑚𝑛𝑙,0𝑑 (𝑧). Here, 𝑑 (𝑧)
contains the variation of the nonlinearity along 𝑧. This will allow us to model quasi-
phase matching, a concept which we will discuss shortly. Through the ensuing
discussion, we will allow 𝑑 (𝑧) to be complex and assume that 𝑋𝑚𝑛𝑙,0 is otherwise
real.

With this simplification, we find∫
𝐴

ẽ∗𝑚 · P̃𝑁𝐿𝑑𝐴 = 𝜖0
∑︁
𝑛,𝑙

𝑋𝑚𝑛𝑙,0𝑑 (𝑧)F {𝑅𝑛 (𝑧, 𝑡)𝑅𝑙 (𝑧, 𝑡)}. (2.36)

Then, the propagation equation 2.31 may be rewritten as

𝜕

𝜕𝑧
𝑅̃𝑚 (𝑧, 𝜔) = 𝑖𝛽𝑚 𝑅̃𝑚 (𝑧, 𝜔)+

𝑖𝜔

4Φ̃(𝜔)
𝜖0

∑︁
𝑛,𝑙

𝑋𝑚𝑛𝑙,0𝑑 (𝑧)F {𝑅𝑛 (𝑧, 𝑡)𝑅𝑙 (𝑧, 𝑡)}. (2.37)

Finally, if we assume that all interactions are between the same spatial mode, we
may drop all subscripts 𝑚, 𝑙, 𝑛 to arrive at

𝜕

𝜕𝑧
𝑅̃(𝑧, 𝜔) = 𝑖𝛽(𝜔) 𝑅̃(𝑧, 𝜔) + 𝑖𝜔

4Φ̃(𝜔)
𝜖0𝑋0𝑑 (𝑧)F {𝑅(𝑧, 𝑡)2}. (2.38)

Until now, we have not made any constraints regarding the frequency extent of
𝑅̃(𝑧, 𝜔). However, we would like for our propagation equation to work for analytic
signals containing only positive frequency components [7]. This requires a small
modification of the equation as follows.

First, we establish the time-domain signal, 𝑅(𝑧, 𝑡) as real. We may then write it
as a sum of complex envelope functions, 𝑉 (𝑧, 𝑡). In particular, we have 𝑅(𝑧, 𝑡) =
1
2 [𝑉 (𝑧, 𝑡)𝑒

−𝑖(𝜔0𝑡−𝛽0𝑧−
𝜔0
𝑣0
𝑧) + 𝑉∗(𝑧, 𝑡)𝑒𝑖(𝜔0𝑡−𝛽0𝑧−

𝜔0
𝑣0
𝑧)]. Here, 𝛽0 = 𝛽(𝜔0), 𝜔0, and 𝑣0

represent the reference phase constant, reference frequency, and reference velocity,
respectively. We may then define the analytic signal, 𝑈 (𝑧, 𝑡). 𝑈 (𝑧, 𝑡) is related to
𝑅(𝑧, 𝑡) as

𝑈 (𝑧, 𝑡) = 𝑅(𝑧, 𝑡) + 𝑖H[𝑅] (𝑧, 𝑡), (2.39)
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where H[𝑅] (𝑧, 𝑡) = 1
𝜋
p.v.

∫ ∞
−∞

𝑅(𝑧,𝑡′)
𝑡−𝑡′ 𝑑𝑡

′ represents the Hilbert transform and p.v.
indicates the Cauchy principal value of the integral. In the frequency domain, we
have that

𝑈̃ (𝑧, 𝜔) =


2𝑅̃(𝑧, 𝜔), 𝜔 > 0,

𝑅̃(𝑧, 𝜔), 𝜔 = 0,

0, 𝜔 < 0.

(2.40)

Since we have defined 𝑅(𝑧, 𝑡) to be real, we may reconstruct 𝑅̃(𝑧, 𝜔) from 𝑈̃ (𝑧, 𝜔)
as 𝑅̃(𝑧, 𝜔) = 1

2 [𝑈̃ (𝑧, 𝜔) + 𝑈̃∗(𝑧,−𝜔)]. Finally, we may relate 𝑉 (𝑧, 𝑡) to 𝑈 (𝑧, 𝑡) as

𝑉 (𝑧, 𝑡) = 𝑈 (𝑧, 𝑡)𝑒𝑖(𝜔0𝑡−𝛽0𝑧−
𝜔0
𝑣0
𝑧) . As 𝑈 (𝑧, 𝑡) is an analytic signal, the demodulated

signal 𝑉 (𝑧, 𝑡) contains frequency content in [−𝜔0,∞). We had previously arrived
at a frequency-domain propagation equation for 𝑅̃(𝑧, 𝜔) in equation 2.38. We may
re-express it in the time domain as

𝜕

𝜕𝑧
𝑅(𝑧, 𝑡) = 𝑖F −1{𝛽(𝜔) 𝑅̃(𝑧, 𝜔)} − F −1

{
1

4Φ̃(𝜔)

}
∗ 𝜕

𝜕𝑡
𝑃NL(𝑧, 𝑡). (2.41)

Here, 𝑃NL(𝑧, 𝑡) takes the simplistic form of equation 2.9, now expressed as𝑃NL(𝑧, 𝑡) =
𝑋0𝑑 (𝑧)𝑅(𝑧, 𝑡)2. To find an evolution equation for the analytic signal 𝑈 (𝑧, 𝑡), we
have to find an analytic form for 𝑃NL(𝑧, 𝑡), which we call𝑈𝑃 (𝑧, 𝑡). Here, we have

𝑈𝑃 (𝑧, 𝑡) = 𝑃NL(𝑧, 𝑡) + 𝑖H[𝑃NL(𝑧, 𝑡)]

≈ 𝜖0𝑋0
1
2
[𝑑 (𝑧)𝑈 (𝑧, 𝑡)2 + 𝑑∗(𝑧)2|𝑈 (𝑧, 𝑡) |2], (2.42)

where we have made the approximation |𝑈 (𝑧, 𝑡) |2 + 𝑖H[|𝑈 (𝑧, 𝑡) |2] ≈ 2|𝑈 (𝑧, 𝑡) |2.
This permits the generation of some small amount of negative frequency content,
but it can be filtered out by other means in the propagation equation. We may now
write the analytic propagation equation in the frequency domain as

𝜕

𝜕𝑧
𝑈̃ (𝑧, 𝜔) = 𝑖𝛽(𝜔)𝑈̃ (𝑧, 𝜔) + 𝑖𝜔

8Φ̃(𝜔)
𝜖0𝑋0F {𝑑 (𝑧)𝑈2(𝑧, 𝑡) + 2𝑑∗(𝑧) |𝑈 (𝑧, 𝑡) |2}.

(2.43)

Finally, in terms of the complex envelope function, 𝑉̃ (𝑧, 𝜔), we have
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𝜕

𝜕𝑧
𝑉̃ (𝑧,Ω) = 𝑖

(
𝛽(𝜔) − 𝛽0 −

Ω

𝑣0
+ 𝑖 𝛼(𝜔)

2

)
𝑉̃ (𝑧,Ω)

+ 𝑖𝜔

8Φ̃(𝜔)
𝜖0𝑋0𝐻 (𝜔)FΩ

{
𝑑 (𝑧)𝑉 (𝑧, 𝜏)2𝑒−𝑖𝜙(𝑧,𝜏) + 2𝑑∗(𝑧) |𝑉 (𝑧, 𝜏) |2𝑒𝑖𝜙(𝑧,𝜏)

}
. (2.44)

Here, we have introduced a new time coordinate, 𝜏 = 𝑡 − 1
𝑣0
𝑧, which is shifted

by the reference velocity as well as the envelope angular frequency, Ω = 𝜔 −
𝜔0. The subscript Ω in the Fourier transform denotes that it is a transform with
respect to this shifted frequency coordinate. We have furthermore defined the phase
𝜙(𝑧, 𝜏) = 𝜔0𝜏 − 𝛽0𝑧 − 𝜔0

𝑣0
𝑧. In addition, we have multiplied the nonlinearity by

𝐻 (𝜔), which here represents a Heaviside step function, to stifle interactions with
negative frequencies. Lastly, we have added a frequency-dependent loss term in
𝛼(𝜔).

Equation 2.44 represents the main result of this section. It allows us to model
the evolution of broadband, complex envelopes while accounting for all involved
quadratic nonlinear processes. As a final comment, we note that it may be readily
extended to include, e.g., multiple spatial modes, multiple polarizations, or addi-
tional nonlinear processes by reverting some of the simplifications we have made
along the way.

2.6 Multi-Envelope and Coupled Wave Equations
While equation 2.44 is extremely powerful, its implementation is often somewhat
computationally cumbersome. Additionally, it is challenging to treat analytically.
As such, we would like to find simplified models which still capture the dominant
physics in a given quadratic nonlinear system of interest. Commonly, in the systems
under study, the majority of the energy is localized to a few frequency harmonics,
while the contributions of other frequency bands are negligible. In the extreme case
where each harmonic is relatively narrow in bandwidth, the broadband complex
envelope we have considered thus far is sparsely populated in frequency, making
it not only a computationally cumbersome approach but also inefficient. This
motivates the expansion of equation 2.44 into a set of multiple envelope equations
describing the evolution of different harmonic orders 𝑁 .

Let us begin by defining 𝑈̃𝑁 (𝑧, 𝜔) which is an analytic function describing the
evolution of the 𝑁 th harmonic. It is related to the previously defined 𝑈̃ (𝑧, 𝜔) in that
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𝑈̃ (𝑧, 𝜔) =
∑︁
𝑁

𝑈̃𝑁 (𝑧, 𝜔). (2.45)

The 0th harmonic order corresponds to the DC component of the field, while the
remaining harmonics are each localized around integer multiples the 1st harmonic,
which may be selected arbitrarily. We write the propagation equation for the 𝑁 th

harmonic, in analogy to 2.43, as

𝜕

𝜕𝑧
𝑈̃𝑁 (𝑧, 𝜔) = 𝑖𝛽(𝜔)𝑈̃𝑁 (𝑧, 𝜔) +

𝑖𝜔

4Φ̃(𝜔)
𝑃̃NL,𝑁 (𝑧, 𝜔). (2.46)

Here, 𝑃̃NL,𝑁 (𝑧, 𝜔) describes all of the nonlinear interactions which can generate
content at harmonic order 𝑁 . In particular, it must include all DFG terms involving
harmonic orders 𝑁 + 𝑃 and 𝑃 as well as all SFG terms involving orders 𝑁 − 𝑃 and
𝑃.

Like before, we define complex harmonic envelopes, 𝑉𝑁 (𝑧, 𝑡), which are related

to 𝑈𝑁 (𝑧, 𝑡) as 𝑉𝑁 (𝑧, 𝑡) = 𝑈𝑁 (𝑧, 𝑡)𝑒𝑖(𝜔0𝑁𝑡−𝛽0,𝑁 𝑧−
𝑁𝜔0
𝑣0

𝑧) . Here, 𝜔0 is the reference
frequency of the first harmonic, 𝛽0,𝑁 = 𝛽(𝑁𝜔0) is the reference phase constant of
the 𝑁 th harmonic, and 𝑣0 is the reference velocity. With these definitions, we may
rewrite 2.46 in terms of 𝑉𝑁 (𝑧, 𝑡) as

𝜕

𝜕𝑧
𝑉̃𝑁 (𝑧, 𝜔) = 𝑖

(
𝛽(𝜔)−𝛽0,𝑁−

Ω𝑁

𝑣0
+𝑖 𝛼(𝜔)

2

)
𝑉̃𝑁 (𝑧, 𝜔)+

𝑖𝜔

4Φ̃(𝜔)
𝑃̃NL,𝑁 (𝑧, 𝜔), (2.47)

where we now define 𝑃̃NL,𝑁 (𝑧, 𝜔) explicitly as

𝑃̃NL,𝑁 (𝑧, 𝜔)

= 𝜖0
1
2

∑︁
𝑃

[
𝑋
𝑁,𝑃,𝑁−𝑃
0 𝑑 (𝑧)FΩ𝑁

{𝑉𝑃 (𝑧, 𝜏)𝑉𝑁−𝑃 (𝑧, 𝜏)}]𝑒𝑖(𝛽0,𝑃+𝛽0,𝑁−𝑃−𝛽0,𝑁 )𝑧

+ 2𝑋𝑁+𝑃,𝑁,𝑃0 𝑑∗(𝑧)FΩ𝑁
{𝑉∗

𝑃 (𝑧, 𝜏)𝑉𝑁+𝑃 (𝑧, 𝜏)}]𝑒−𝑖(𝛽0,𝑃+𝛽0,𝑁−𝑃−𝛽0,𝑁 )𝑧
]
. (2.48)

Here, Ω𝑁 = 𝜔 − 𝜔0,𝑁 , and the 𝑉𝑃𝑉𝑁−𝑃 and 𝑉∗
𝑃
𝑉𝑁+𝑃 terms account for SFG and

DFG interactions, respectively. We have also added the loss term, 𝛼(𝜔). Finally,
we have introduced the effective nonlinear coefficient, 𝑋𝑁,𝑃,𝑁−𝑃0 , analogous to the
previously defined 𝑋0, which is defined through the mode overlap integral
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𝑋
𝑁,𝑃,𝑁−𝑃
0 𝑑 (𝑧)

=

∫
𝐴

𝜒(2) (r, 𝑁𝜔0, 𝑃𝜔0)𝑒∗(𝑥, 𝑦, 𝑁𝜔0)𝑒(𝑥, 𝑦, 𝑃𝜔0)𝑒(𝑥, 𝑦, (𝑁 − 𝑃)𝜔0)𝑑𝐴. (2.49)

We again evaluate the 𝑒’s and 𝜒(2) values at only a single frequency component to
yield a constant 𝑋𝑁,𝑃,𝑁−𝑃0 . However, we note that the harmonic envelope approach
has one advantage over the single-envelope equation in this regard, as we may weakly
account for the frequency dependence of both the nonlinearity and the mode shapes
through calculation of the 𝑋𝑁,𝑃,𝑁−𝑃0 ’s involved in different harmonic interactions.

To conclude this section, we work through two examples of three-wave mixing
which will be studied through the remainder of this thesis. The first is the interaction
between harmonics 1, 2, and 3 which, in general, can be used to study SFG, OPA,
and DFG. In the second, we consider the interaction between harmonics 1 and 2.
The resulting equations can be used to model degenerate OPA and SHG.

For the case of SFG, considering harmonic orders 1, 2, and 3, we have

𝜕

𝜕𝑧
𝑉̃3 = 𝑖(𝛽− 𝛽0,3 −

Ω3

𝑣0
+ 𝑖 𝛼

2
)𝑉̃3 +

𝑖𝜔

8Φ
𝜖0𝑑 (𝑋3,2,1

0 + 𝑋3,1,2
0 )FΩ3{𝑉1𝑉2}𝑒𝑖Δ𝛽𝑧, (2.50a)

𝜕

𝜕𝑧
𝑉̃2 = 𝑖(𝛽 − 𝛽0,2 −

Ω2

𝑣0
+ 𝛼

2
)𝑉̃2 +

𝑖𝜔

4Φ
𝜖0𝑑

∗𝑋3,2,1
0 FΩ2{𝑉∗

1𝑉3}𝑒−𝑖Δ𝛽𝑧, (2.50b)

𝜕

𝜕𝑧
𝑉̃1 = 𝑖(𝛽 − 𝛽0,1 −

Ω1

𝑣0
+ 𝛼

2
)𝑉̃1 +

𝑖𝜔

4Φ
𝜖0𝑑

∗𝑋3,1,2
0 FΩ1{𝑉∗

2𝑉3}𝑒−𝑖Δ𝛽𝑧 . (2.50c)

In writing these equations, we have introduced the phase mismatch parameter,
Δ𝛽 (also commonly referred to as Δ𝑘), which is defined as Δ𝛽 = 𝛽0,1 + 𝛽0,2 −
𝛽0,3. Achieving phase-matched interactions with Δ𝛽 = 0, or intentionally phase-
mismatched interactions, is a hugely important aspect of the design of nonlinear
optical systems. One common method for achieving a desired phase matching
condition, quasi-phase matching, will be discussed in the following section.

Turning back to equations 2.50c-2.50a, we note that they closely resemble the
coupled-wave equations for SFG which are commonly used in nonlinear optical
theory and simulation. Through minimal manipulation of the presented equations,
we may show that they are equivalent. Let us first note that 𝑋3,2,1

0 = 𝑋
3,1,2
0 , meaning

the right-hand sides in each of the equations share the same prefactor, 𝑖𝜔
4Φ𝜖0𝑋

3,2,1
0 .
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Secondly, we make the substitution 𝐴̃𝑁 (𝑧, 𝜔) =
√︁
Φ̃(𝜔)𝑉̃𝑁 (𝑧, 𝜔) such that 𝐴̃𝑁 (𝑧, 𝜔)

represents a complex envelope function with units of
√

W. Finally, we wish to remove
the frequency dependence of quantities such as 𝛼(𝜔) as well as the prefactor term so
that we may readily express the equations in the time domain. To do so, we evaluate
the relevant terms in the 𝑁 th equation at 𝑁𝜔0. In the time domain, then, we have

𝜕

𝜕𝑧
𝐴3 = 𝐷̂3𝐴3 − Δ𝛽′30

𝜕

𝜕𝜏
𝐴3 −

𝛼3

2
𝐴3 + 𝑖𝜅3𝑑𝐴1𝐴2𝑒

𝑖Δ𝛽𝑧, (2.51a)

𝜕

𝜕𝑧
𝐴2 = 𝐷̂2𝐴2 − Δ𝛽′20

𝜕

𝜕𝜏
𝐴2 −

𝛼2

2
𝐴2 + 𝑖𝜅2𝑑

∗𝐴∗1𝐴3𝑒
−𝑖Δ𝛽𝑧, (2.51b)

𝜕

𝜕𝑧
𝐴1 = 𝐷̂1𝐴1 − Δ𝛽′10

𝜕

𝜕𝜏
𝐴1 −

𝛼1

2
𝐴1 + 𝑖𝜅1𝑑

∗𝐴∗2𝐴3𝑒
−𝑖Δ𝛽𝑧 . (2.51c)

Here, 𝛼𝑁 = 𝛼(𝑁𝜔0), and we have defined the walk-off parameter, Δ𝛽′

𝑁0 = 1
𝑣𝑔,𝑁

− 1
𝑣0

,
where 𝑣𝑔,𝑁 represents the group velocity of the 𝑁 th wave, as well as the dispersion

operator, 𝐷̂𝑁 =
∑∞
𝑚=2

[
(𝑖)𝑚+1𝛽

(𝑚)
𝑁

𝑚!

]
𝜕𝑚𝑡 , where 𝛽(𝑚)

𝑁
represents the𝑚th-order dispersion

of the 𝑁 th harmonic. A common choice is to take the reference velocity, 𝑣0, to
be equal to the group velocity of one of the participating waves, such that one
of the walk-off terms may be set to 0. In this case, the walk-off between the
remaining waves and reference wave is referred to as the group velocity mismatch
(GVM). Furthermore, the dispersion operator may be truncated at any order; often,
the second-order dispersion, or group velocity dispersion (GVD), is sufficient to
capture the majority of the dynamics unless the signal is extremely broadband or
the GVD is small.

Finally, we have defined the nonlinear coupling coefficient of the 𝑁 th, 𝜅𝑁 =
𝑁𝜔0

4Φ̃(𝑁𝜔0)3/2 𝜖0𝑋
3,2,1
0 . Recalling the definition of 𝑋3,2,1

0 from equation 2.49, we see
that

𝑋
3,2,1
0 𝑑 (𝑧) =

∫
𝐴

𝜒(2) (3𝜔0, 2𝜔0)𝑒∗(3𝜔0)𝑒(2𝜔0)𝑒(𝜔0)𝑑𝐴

≈ 2𝑑 (𝑧)

√︄
8𝑍3

0Φ̃(3𝜔0)Φ̃(2𝜔0)Φ̃(𝜔0)
𝐴eff(3𝜔0, 2𝜔0, 𝜔0)𝑛eff(3𝜔0)𝑛eff(2𝜔0)𝑛eff(𝜔0)

, (2.52)

where we have suppressed the spatial dimensions in the integral for compactness.
We have additionally introduced the quantity, 𝐴eff, which represents the effective
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mode area of the nonlinear interaction. In its general form, it is defined in terms of
the normalized modes introduced in equations 2.19a and 2.19b as

𝐴eff,𝑚𝑛𝑙 (𝜔, 𝜔′, 𝜔 − 𝜔′) = 𝐴mode,𝑚 (𝜔)𝐴mode,𝑛 (𝜔′)𝐴mode,𝑙 (𝜔 − 𝜔′)
|
∫
𝐴

∑
𝑖 𝑗 𝑘 𝜒̄

(2)
𝑖 𝑗 𝑘

(𝜔, 𝜔′)𝑒′∗
𝑚;𝑖 (𝜔)𝑒′𝑛; 𝑗 (𝜔′)𝑒′

𝑙;𝑘 (𝜔 − 𝜔′)𝑑𝐴|2
.

(2.53)

Here, 𝐴eff,𝑚𝑛𝑙 (𝜔, 𝜔′, 𝜔 − 𝜔′) is the effective mode area for the interaction between
modes 𝑚, 𝑛, and 𝑙 at frequencies 𝜔, 𝜔′, and 𝜔 −𝜔′, respectively. Indices 𝑖, 𝑗 , and 𝑘
refer to spatial coordinates. 𝜒̄(2)

𝑖 𝑗 𝑘
(𝜔, 𝜔′) represents a normalized nonlinear strength,

which is normalized to the absolute value of the strongest tensor component. Since
the relative strength of the participating tensor component is, therefore, already
accounted form in 𝐴eff, 𝑑 (𝑧) = 1

2 𝜒
(2) (𝑧) in equation 2.52 is defined to be the strongest

tensor component of 𝜒(2) . We may furthermore separate the spatial dependence of
𝑑 (𝑧) out to write 𝑑 (𝑧) = 𝑑 (𝑧)𝑑. Finally, taking Φ̃(3𝜔0) = Φ̃(2𝜔0) = Φ̃(𝜔0), we
finally arrive at the usual expression for 𝜅𝑁 ,

𝜅𝑁 =

√
2𝑍0𝑁𝜔0𝑑

𝑐
√
𝑛3𝑛2𝑛1𝐴eff

. (2.54)

Here, we have made the notational simplification that 𝑛𝑁 = 𝑛eff(𝑁𝜔0).

Having found these coupled wave equations describing SFG, we next turn our
attention to the equations for SHG. In this case, considering harmonic orders 1 and
2, we find

𝜕

𝜕𝑧
𝑉̃2 = 𝑖(𝛽 − 𝛽0,2 −

Ω2

𝑣0
+ 𝛼

2
)𝑉̃2 +

𝑖𝜔

8Φ
𝜖0𝑑𝑋

2,1,1
0 FΩ2{𝑉1𝑉1}𝑒𝑖Δ𝛽𝑧, (2.55a)

𝜕

𝜕𝑧
𝑉̃1 = 𝑖(𝛽 − 𝛽0,1 −

Ω1

𝑣0
+ 𝛼

2
)𝑉̃1 +

𝑖𝜔

4Φ
𝜖0𝑑

∗𝑋2,1,1
0 FΩ1{𝑉∗

1𝑉2}𝑒−𝑖Δ𝛽𝑧 . (2.55b)

Making analogous simplifications to those made in the case of SFG, we have the
following expression in the time domain

𝜕

𝜕𝑧
𝐴2 = 𝐷̂2𝐴2 − Δ𝛽′20

𝜕

𝜕𝜏
𝐴2 −

𝛼2

2
𝐴2 + 𝑖𝜅2𝑑𝐴1𝐴1𝑒

𝑖Δ𝛽𝑧, (2.56a)

𝜕

𝜕𝑧
𝐴1 = 𝐷̂1𝐴1 − Δ𝛽′10

𝜕

𝜕𝜏
𝐴1 −

𝛼1

2
𝐴1 + 𝑖𝜅1𝑑

∗𝐴∗1𝐴2𝑒
−𝑖Δ𝛽𝑧 . (2.56b)

In this case, the nonlinear coupling coefficients are given by
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𝜅1 = 𝜅2 =

√
2𝑍0𝜔0𝑑

𝑐𝑛1
√
𝑛2𝐴eff

. (2.57)

These two sets of coupled wave equations will form the basis of much of the
theoretical analysis presented in this thesis. To conclude this section, we make a
note about our usage of the time and frequency domain formalisms of the coupled
wave equations equations. Typically, we utilize the time-domain formalisms to
conduct analytic analysis, as analytic solutions are generally more tractable in the
time domain, where the nonlinear term involves a product rather than a convolution.

In our simulations, however, we utilize the Fourier split-step technique, in which
the evolution in 𝑧 is calculated in small steps, with each step consisting of both a
linear and a nonlinear operation. The nonlinear step is computed in the time domain
using a numerical technique, typically fourth-order Runge Kutta, while the linear
dispersive operations are performed in the frequency domain. As each step already
demands fast Fourier transforms to move between the time and frequency domains
between the linear and nonlinear steps, inclusion of the frequency dependence of,
e.g., 𝜅𝑁 or 𝛼 requires negligible additional computational overhead. As such, we
typically include these frequency dependencies in our numerical models.

2.7 Quasi-Phase Matching
As was mentioned in the previous section, the phase mismatch parameter, Δ𝛽 =

𝛽0,1 + 𝛽0,2 − 𝛽0,3, is critical in shaping the behavior of nonlinear systems since it
dictates the flow of energy between the participating harmonics. As such, being able
to engineer a desired phase matching condition is a key component in the design of
nonlinear systems. We will utilize a few techniques in this thesis, the most prevalent
of which is the technique of quasi-phase matching (QPM). In this case, the sign
of the nonlinearity is periodically inverted to induce what is referred to as a QPM
grating, which compensates the phase mismatch due to the phase constants of the
interacting waves. In particular, given a phase mismatch of Δ𝛽 = 𝛽0,1 + 𝛽0,2 − 𝛽0,3,
the period, Λ, of the QPM grating required to achieve perfect phase matching may
be calculated as

Λ =
2𝜋

|𝛽0,1 + 𝛽0,2 − 𝛽0,3 |
. (2.58)

In our theoretical analysis above, the presence of such a QPM grating with a period
of Λ would be expressed through the function 𝑑 (𝑧) as
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𝑑 (𝑧) = sgn
(
cos

(2𝜋𝑧
Λ

) )
. (2.59)

Several approaches to QPM exist for different materials. The most widely discussed
in this thesis is periodic poling (PP), which is a process compatible with ferroelec-
tric materials, such as lithium niobate (LN). In this process, the directions of the
ferroelectric domains of the material are periodically inverted to achieve the desired
periodic inversion of the sign of the nonlinearity. Another QPM technique is orien-
tation patterning, which is often used for semiconductor materials such as gallium
phosphide (GaP). Here, the material growth direction is periodically inverted to
induce the sign change in the nonlinear susceptibility. One may more generally
allow the period of the QPM grating to also vary as a function of 𝑧, although no
such structures are considered in this thesis.

A common approximation is to expand the poling function as a Fourier series. For
the considered periodic poling function, we write

𝑑 (𝑧) =
∞∑︁

𝑚=−∞
𝑑𝑚𝑒

𝑖𝑚 2𝜋
Λ
𝑧, (2.60)

where the Fourier coefficients may be found as

2 sin ( 𝜋𝑚2 )
𝑚𝜋

(2.61)

for 𝑚 ≠ 0, and 𝑑0 = 0. Often, just the first Fourier component is sufficient to
describe the interaction, in which case we approximate 𝑑 (𝑧) as 2

𝜋
𝑒−𝑖

2𝜋
Λ
𝑧. When

such an approximation is made, it is typical to rewrite 𝑑 (𝑧) = 𝑑 (𝑧)𝑑, as defined
previously, as 𝑑 (𝑧) ≈ 𝑑eff𝑒

𝑖 2𝜋
Λ
𝑧, where 𝑑eff = 2

𝜋
𝑑 and we now redefine 𝑑 (𝑧) as

𝑑 (𝑧) = 𝑒𝑖 2𝜋
Λ
𝑧. In equations 2.51c-2.51a, we see that 𝑑 (𝑧) defined this way may be

combined with the phase mismatch term such that 𝑑 (𝑧)𝑒𝑖Δ𝛽𝑧 = 𝑒𝑖Δ𝛽QPM𝑧 with

Δ𝛽QPM = 𝛽0,1 + 𝛽0,2 − 𝛽0,3 +
2𝜋
Λ
. (2.62)

2.8 Optical Parametric Oscillators
Having discussed the basics of optical resonators, we now introduce the basics of
OPOs, consisting of an optical resonator with a quadratic nonlinear crystal inside.
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Figure 2.1: Example OPO device. A pump wave at frequency 𝜔3 generates signal
and idler waves at frequencies 𝜔2 and 𝜔1, respectively. The input and output
couplers are taken to have transmission (reflection) coefficients of 𝑇𝑎, 𝑗 (𝑅𝑎, 𝑗 ) and
𝑇𝑏, 𝑗 (𝑅𝑎, 𝑗 ), respectively, where 𝑗 ∈ {1, 2, 3}. The nonlinear interaction takes place
in a periodically poled region of length 𝐿NL with poling period, Λ. The signal is
coupled back through a resonator of length 𝐿RT.

Many of the works presented in this thesis will involve the study of nonlinear
phenomena occurring in OPOs.

In quadratic OPOs, a pump wave at frequency 𝜔3 generates signal and idler waves
at frequencies 𝜔2 and 𝜔1, respectively. Here, 𝜔3 > 𝜔2 ≥ 𝜔1 and conservation of
energy requires 𝜔3 = 𝜔2 +𝜔1. For the analysis that follows, we consider a racetrack
resonator (Fig. 2.1), as is commonly used in nanophotonics, as well as a continuous-
wave (CW) pump. The input coupler is taken to have transmission and reflection
coefficients in power of 𝑇𝑎, 𝑗 and 𝑅𝑎, 𝑗 , respectively, for the 𝑗 th wave, 𝑗 ∈ {1, 2, 3}.
Likewise, the output coupler has transmission and reflection coefficients of 𝑇𝑏, 𝑗
and 𝑅𝑏, 𝑗 . For our analysis, we further consider first propagation through a lossless
nonlinear medium of length 𝐿NL followed by propagation through a lossy waveguide
of roundtrip length 𝐿RT with an absorption coefficient of 𝛼 𝑗 for the 𝑗 th wave. With
this in mind, we may rewrite the reflection coefficients as 𝑅𝑎, 𝑗 = 𝑒−𝛼𝑅𝑎, 𝑗𝐿RT and
𝑅𝑏, 𝑗 = 𝑒−𝛼𝑅𝑏, 𝑗𝐿RT such that the total loss for wave 𝑗 may be characterized by the
absorption coefficient 𝛼′

𝑗
= 𝛼 𝑗+𝛼𝑅𝑎 , 𝑗+𝛼𝑅𝑏 , 𝑗 . As derived in Section 2.6 the nonlinear

interaction along the propagation direction, 𝑧, is modeled using the coupled wave
equations

𝑑

𝑑𝑧
𝐴1 = 𝑖𝜅1𝐴2𝐴

∗
3𝑒

−𝑖Δ𝑘𝑧, (2.63a)

𝑑

𝑑𝑧
𝐴2 = 𝑖𝜅2𝐴1𝐴

∗
3𝑒

−𝑖Δ𝑘𝑧, (2.63b)
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𝑑

𝑑𝑧
𝐴3 = 𝑖𝜅3𝐴1𝐴2𝑒

𝑖Δ𝑘𝑧 . (2.63c)

Here, as defined before, 𝐴 𝑗 (𝑧) represents the complex electric field amplitude for
wave 𝑗 ∈ {1, 2, 3}, normalized such that |𝐴 𝑗 |2 is the power. The nonlinear coupling
coefficients are given by 𝜅 𝑗 =

√
2𝑍0𝜔 𝑗𝑑eff

𝑐
√
𝑛1𝑛2𝑛3𝐴eff

, where 𝑍0 is the impedance of free space,
𝑑eff is the effective nonlinearity, 𝑐 is the speed of light, 𝑛 𝑗 is the refractive index of
the 𝑗 th wave, and 𝐴eff is the effective mode area. Finally, Δ𝑘 = 𝑘2 + 𝑘1 − 𝑘3 + 2𝜋

Λ
is

the phase mismatch parameter, where Λ is the poling period, when applicable.

In this thesis, we will primarily consider doubly resonant oscillators (DROs), for
which the pump is non-resonant but the signal and idler waves are both made to
resonate. Our analysis closely follows that of [2, 8]. To start, we wish to find
the threshold condition. For this, we make the undepleted pump approximation
by assuming that the pump amplitude remains constant, 𝐴3 = 𝐴3(0), through the
nonlinear section. With this approximation, we may directly integrate equations
2.63a and 2.63b to find the following relationships for the signal and idler waves at
the input and output of the nonlinear section

[
𝐴1(𝐿NL)
𝐴∗2(𝐿NL)

]
=

[
𝑔11 𝑔12

𝑔∗21 𝑔∗22

] [
𝐴1(0)
𝐴∗2(0)

]
, (2.64)

where

𝑔11 = 𝑔22 = 𝑒−𝑖
1
2Δ𝑘𝐿NL

(
cosh (Γ𝐿NL) + 𝑖

Δ𝑘

2Γ
sinh (Γ𝐿NL)

)
, (2.65a)

𝑔12 = 𝑖
𝜅1𝐸3(0)

Γ
sinh (Γ𝐿NL)𝑒−𝑖

1
2Δ𝑘𝐿NL , (2.65b)

𝑔21 = 𝑖
𝜅2𝐸3(0)

Γ
sinh (Γ𝐿NL)𝑒−𝑖

1
2Δ𝑘𝐿NL , (2.65c)

and we have defined Γ =

√︃
𝜅1𝜅2 |𝐸3(0) |2 − (Δ𝑘2 )2. To reach threshold, the nonlinear

gain accumulated by the signal and idler waves must balance the roundtrip loss,
leading to the following roundtrip equation

[
𝐴1(0)
𝐴∗2(0)

]
=


𝑒−

𝛼
′
1

2 𝐿RT 0

0 𝑒−
𝛼
′
2

2 𝐿RT


[
𝑔11 𝑔12

𝑔∗21 𝑔∗22

] [
𝐴1(0)
𝐴∗2(0)

]
. (2.66)
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Solving this system leads to the characteristic equation (𝑔11𝑒
−

𝛼
′
1

2 𝐿RT−1) (𝑔∗22𝑒
−

𝛼
′
2

2 𝐿RT−

1) − 𝑔12𝑔
∗
21𝑒

(𝛼
′
1+𝛼

′
2 )

2 𝐿RT , which may be solved to find the threshold condition. Here,
we write the solution for perfect phase matching with Δ𝑘 = 0. Defining ΓPM =√︁
𝜅1𝜅2 |𝐴3(0) |2, we have the threshold condition

cosh (ΓPM𝐿NL) =
cosh

(
1
4 (𝛼

′

1 + 𝛼
′

2)𝐿RT

)
cosh

(
1
4 (𝛼

′
1 − 𝛼

′
2)𝐿RT

) . (2.67)

By expanding the left-hand and right-hand sides to first order, assuming the roundtrip
loss is small, we find an approximate expression for the threshold power

𝑃th ≈ 1
4

𝑎1𝑎2

𝜅1𝜅2𝐿
2
NL
, (2.68)

where 𝑎𝑖 = 𝛼
′
𝑖
𝐿RT.

Having found the threshold condition, we next wish to analyze the steady-state
dynamics of the above-threshold OPO. In particular, we would like to find the
conversion efficiency of the OPO, given as 𝜂 =

𝑃out
1+2

𝑃3 (0) , where 𝑃out
1+2 is the combined

output power of the signal and idler waves. To do so, we first seek the internal
efficiency, 𝜂int =

Δ𝑃3
𝑃3 (0) , as well as the escape efficiency, 𝜂escape =

𝑃out
1+2

Δ𝑃3
, where Δ𝑃3 =

𝑃3(0) − 𝑃3(𝐿NL). The conversion efficiency may then be found as 𝜂 = 𝜂int𝜂escape.
To find the internal efficiency, we first turn to equation 2.63c. Here, we make the
approximation that 𝐴1(0) and 𝐴2(0) remain approximately constant in a single-
pass through the nonlinear section. This is a reasonable approximation when the
roundtrip loss is small such that Δ𝑃3 =<< 𝑃2(0) + 𝑃3(0). We additionally re-write
the fields as 𝐴 𝑗 = |𝐴 𝑗 |𝑒𝑖𝜙 𝑗 where 𝜙 𝑗 is the phase of the 𝑗 th wave. This yields the
following equation

|𝐴3(𝐿NL) | = |𝐴3(0) | + 𝜅3 |𝐴1(0) | |𝐴2(0) |𝐿NLsinc(Δ𝑘𝐿NL

2
)𝑒𝑖(Δ𝜙+𝜋/2+ 1

2Δ𝑘𝐿NL) .

(2.69)

Here, we have defined Δ𝜙 = 𝜙1 + 𝜙2 − 𝜙3. We note also that, as expected, maximum
transfer of energy from the pump to the signal and idler occurs whenΔ𝜙+ 1

2Δ𝑘𝐿NL =

−𝜋/2. This phase-sensitive nature of the amplification process is responsible for
several interesting properties of OPOs. At degeneracy, 𝜙2 = 𝜙1, leading to a
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constrained phase relationship for the signal, Δ𝜙 = 2𝜙2 − 𝜙3. Thus, the amplified
signal may take on only one of two relative phases in reference to the pump,
a property which has been exploited for binary random number generation and
creation of coherent Ising solvers [9–11], which will be discussed in more detail
in Chapter 9. It furthermore results in a phase-locking between the signal and
pump, which can enable a transfer of coherence between the pump and signal [12].
Meanwhile, for non-degenerate operation, the relative phases of the signal and idler
are constrained through the pump.

In what follows, we will assume that the cavity feedback is well-optimized to
ensure the phase relationship for signal amplification, and we furthermore consider
the phase-matched case in which Δ𝑘 = 0. We will additionally make use of the
conservation of energy condition that Δ𝑃3 = Δ𝑃1 + Δ𝑃2 and the Manley-Rowe
relations which require Δ𝑃3

𝜔3
=

Δ𝑃2
𝜔2

=
Δ𝑃1
𝜔1

. Finally, we will make use of the feedback
condition that Δ𝑃 𝑗 ≈ |𝐸2

𝑗
(0) |𝑎 𝑗 where 𝑗 ∈ {1, 2}. Using these relationships, we

may write equation 2.69 in terms of only the pump and idler waves to find

Δ𝑃1

𝑃3(0)
= 4

𝜔1

𝜔3

1
𝑁
(
√
𝑁 − 1), (2.70)

where 𝑁 =
𝑃3 (0)
𝑃th

is the number of times above threshold, and 𝑃th is given by equation
2.68. An equivalent expression may be found for the signal. Combining the two
expressions yields the internal efficiency:

𝜂int =
4
𝑁
(
√
𝑁 − 1). (2.71)

Meanwhile, the output idler power may be related to the power in the resonator as

𝑃out
1 = 𝑃1(𝐿NL)𝑇𝑏,1 = Δ𝑃1

𝑒𝛼
′
1𝐿RT

𝑒𝛼
′
1𝐿RT − 1

𝑇𝑏,1, (2.72)

and a similar expression may be derived for the signal. This leads to the following
expression for the escape efficiency

𝜂escape =
𝜔1

𝜔3
𝑇𝑏,1

𝑒𝛼
′
1𝐿RT

𝑒𝛼
′
1𝐿RT − 1

+ 𝜔2

𝜔3
𝑇𝑏,2

𝑒𝛼
′
2𝐿RT

𝑒𝛼
′
2𝐿RT − 1

. (2.73)

Finally, we may write the total efficiency as
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𝜂 =
4
𝑁
(
√
𝑁 − 1)

(
𝜔1

𝜔3
𝑇𝑏,1

𝑒𝛼
′
1𝐿RT

𝑒𝛼
′
1𝐿RT − 1

+ 𝜔2

𝜔3
𝑇𝑏,2

𝑒𝛼
′
2𝐿RT

𝑒𝛼
′
2𝐿RT − 1

)
. (2.74)

While many of the results in this thesis pertain to physical regimes where the assump-
tions made in deriving these CW solutions are violated, they can provide guidance
for the design and interpretation of results from the studied OPOs. Firstly, equations
2.67 or 2.68 may be utilized to ensure that a DRO system can go above threshold.
Even in the pulsed pumping regime, the CW threshold can generally be used as a
first-order estimate the required peak power of the pump pulse. Additionally, from
equation 2.74, we see that the optimum operating point for maximizing the con-
version efficiency is typically four times above the DRO threshold in conventional
OPOs. Furthermore, we see the importance of the coupler design for the OPO sys-
tem in dictating both the threshold and the efficiency. In particular, a significantly
improved escape efficiency may be achieved when the majority of the roundtrip loss
is a consequence of the output coupler.

The formalism developed here also provides basic intuition into how our numerical
simulations are conducted. We typically follow the Ikeda map approach [13], in
which the propagation through the nonlinear equation is performed using a Fourier
split-step method, as described in Section 2.6, and the roundtrip propagation is
simulated using a linear transfer function which captures the dispersion and loss of
the roundtrip. Further descriptions on the particular models used will be provided
in each individual chapter.

2.9 Pulse Trains and Frequency Combs
To conclude this theoretical introduction, we briefly introduce the key relations
between a train of pulses in the time domain and a frequency comb in the frequency
domain. As mentioned in Chapter 1, this Fourier transform relationship is at the
heart of many of the key developments and applications in ultrafast optics. The
figure and discussion in this section closely follow those presented in [14, 15].
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Figure 2.2: Pulse trains and frequency combs. a, A train of pulses in the time
domain corresponds to b, a comb of equidistant lines in the frequency domain.
𝑇rep, repetition period; 𝜙CEP, carrier-envelope offset phase; 𝑇c, carrier period, 𝑓CEO,
carrier-envelope offset frequency, 𝑓c, carrier frequency, 𝑓rep, repetition rate.

As depicted in Fig. 2.2a, we consider a train of ultrashort pulses in the time domain.
Ignoring any spatial dependence, we may describe the complex electric field, 𝐸 (𝑡)
associated with this pulse train in the time domain as

𝐸 (𝑡) = 𝑒−𝑖(𝜔c𝑡+𝜙c)
∞∑︁

𝑛=−∞
𝐴(𝑡 − 𝑛𝑇rep)𝑒−𝑖𝑛Δ𝜙CEP

= 𝑒−𝑖(𝜔c𝑡+𝜙c)
(
𝐴(𝑡) ∗

∞∑︁
𝑛=−∞

𝛿(𝑡 − 𝑛𝑇rep)𝑒−𝑖𝜔CEO𝑡

)
. (2.75)

Here, 𝐴(𝑡) represents a complex field envelope function, 𝜔c = 2𝜋 𝑓c is the car-
rier frequency, 𝜙c is the carrier phase, 𝑇rep is the pulse repetition period, 𝜙CEP is
the carrier-envelope offset phase, and Δ𝜙CEP is the pulse-to-pulse variation in the
carrier-envelope phase. We have also defined 𝜔CEO/2𝜋 = 𝑓CEO =

mod{𝜙CEP,2𝜋}
2𝜋 𝑓rep,

where 𝑓CEO is the carrier-envelope-offset frequency. In the frequency domain, this
corresponds to

𝐸̃ (𝜔) = 𝑒−𝑖𝜙c 𝐴̃(𝜔)
∞∑︁

𝑛=−∞
𝛿
(
Ω − (𝜔CEO + 𝑛𝜔rep)

)
. (2.76)

There are several important relations between the quantities of 2.76 and those of
equation 2.75. Firstly, 𝐴̃(Ω) = F {𝐴(𝑡)}, where Ω = 𝜔 − 𝜔c. Next, 𝜔rep/2𝜋 =
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𝑓rep = 1/𝑇rep, where 𝑓rep is the repetition rate. Together, the 𝑓CEO and 𝑓rep (typically
radio frequencies) precisely define the exact position of all of the optical comb lines
which constitute the frequency comb.
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C h a p t e r 3

HIGH-POWER MID-IR FEW-CYCLE FREQUENCY COMB
FROM QUADRATIC SOLITONS IN AN OPTICAL

PARAMETRIC OSCILLATOR

Mingchen Liu*, Robert M. Gray*, Arkadev Roy, Kirk A. Ingold, Evgeni Sorokin,
Irina Sorokina, Peter G. Schunemann, and Alireza Marandi. “High-power mid-IR
few-cycle frequency comb from quadratic solitons in an optical parametric oscilla-
tor.” In: Laser & Photonics Reviews 16.11 (2022), p. 2200453. doi: 10.1002/
lpor.202200453.

3.1 Introduction
Optical frequency comb generation in the MIR spectral region (3–25 µm) has
been a subject of intensive research over the past decades, driven by its numerous
applications ranging from precise sensing to fundamental science [1], of which
notable examples are molecular spectroscopy [2, 3], astronomical spectrograph
calibration [4, 5], and high-harmonic generation [6, 7]. Referred to as the “molecular
fingerprint region,” the MIR portion of the electromagnetic spectrum contains strong
rovibrational absorption features of many molecules, the detection of which is useful
for a plethora of applications such as medicine, environmental science, agriculture,
energy, and defense. In particular, the 3–5 µm band is of high interest as it contains
strong absorptions of many important molecules, including greenhouse gases (e.g.,
carbon dioxide at ∼4.2 µm, nitrous oxide at ∼4.5 µm, and methane at ∼3.3 µm),
species used in breath analysis (e.g., ethane at ∼3.3 µm and carbon monoxide at
∼4.7 µm), and major air pollutants (e.g., nitrogen dioxide at ∼3.5 µm and sulfur
dioxide at ∼4 µm) [8, 9]. Given its significance, it is highly desirable to produce
frequency combs in this band with great power, efficiency, bandwidth, and stability.

The most widely used techniques to produce MIR frequency combs include DFG,
OPOs, quantum cascade lasers (QCLs), microresonators, supercontinuum genera-
tion (SCG), and direct MIR lasing. DFG-based sources feature single-pass configu-
ration and passive cancellation of the carrier-envelope offset frequency ( 𝑓CEO) [10–
12] but are limited by their relatively low powers and efficiencies. QCLs have
been demonstrated to be a promising alternative to optical nonlinear methods for
frequency comb generation [13–15] but currently exhibit narrow instantaneous band-

https://doi.org/10.1002/lpor.202200453
https://doi.org/10.1002/lpor.202200453
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width and limited spectral coverage. Other MIR frequency comb sources, including
microresonators [16], SCG [17, 18], and direct MIR lasing [19] are still facing
challenges to reach beyond 3.5 µm.

Compared to other techniques, OPOs have high powers and efficiencies with broad
spectral coverages and wide tuning ranges [20–25]. Among the various OPO
configurations, synchronously pumped degenerate OPOs have been demonstrated
to be particularly promising, featuring high conversion efficiencies [26, 27], two-
octave-wide spectra [28], few-cycle pulses [29], scalability to a multi-GHZ repetition
rate [30], and more importantly, intrinsic phase and frequency locking of the output
to the pump [31]. However, the demonstrated OPOs with a wavelength coverage
beyond 3 µm have either an MIR conversion efficiency smaller than 20% [20, 22–24,
26] or a limited MIR output power under 250 mW [27, 28].

Recently, there has been increasing interest in realization of purely dissipative cavity
solitons [32, 33] with the promise of frequency comb sources outside the well-
developed near-IR region. The temporal simulton, a special form of quadratic
solitons characterized by the generation of simultaneous bright-dark solitons of the
signal at 𝜔 and the pump at 2𝜔 [34, 35], has emerged as a novel state of operation
in OPOs [36, 37]. The simulton-based OPO can be considered as a combination
of a degenerate OPA and a positively detuned cavity, in which a double balance
of energy and timing is achieved [37], as illustrated in Figure 3.1a–d. While
the energy balance results from the interplay of dissipation and amplification, the
timing balance is rooted in the compensation of cavity detuning by the nonlinear
acceleration. Running in an uncommon high-gain low-finesse regime, simulton-
based OPOs feature even higher power and efficiency as well as favorable power-
dependent bandwidth scaling without losing any advantages of conventional OPOs.
Although operation in the simulton regime has offered a promising new avenue for
frequency comb generation in the MIR spectral region, it has remained challenging to
extend it to longer wavelengths due to an incomplete understanding of its formation
requirements and challenges in experiment.

In this chapter, we demonstrate an OPO working in the simulton regime which
generates a frequency comb centered at 4.18 µm with a high average power of 565
mW, a record conversion efficiency of 44%, an instantaneous full-width at half-
maximum (FWHM) bandwidth from 3.6 to 4.5 µm, and pulses of 45 fs duration,
making it an outstanding mid-IR frequency comb source. A direct experimental
comparison between the simulton and conventional regimes under the exact same
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Figure 3.1: The simulton-based OPO. a, Simplified diagram of the oscillator. 𝑇p,
pump and signal repetition period; Δ𝑇RT, roundtrip group delay; OC, output coupler.
The oscillator can be considered a combination of, b, a degenerate OPA and, c, a
positively detuned cavity, striking, d, a double balance of timing and energy. b,
Illustration of simulton formation: signal (orange) at 𝜔 and pump (blue) at 2𝜔.
For comparison, uncolored solid lines denote a perfectly synchronous (Δ𝑇RT = 0)
half-harmonic pulse undergoing linear propagation. 1O: on each roundtrip, a small
group delay, Δ𝑇RT, is acquired by the resonating signal pulse with respect to the
newly in-coupled pump pulse due to the detuning of the cavity roundtrip time. 2O, 3O:
Passing through the crystal, the signal is amplied by extracting gain from the pump
until the pump is depleted, meanwhile accumulating a simulton group advance. 4O:
Once depleted, the pump forms a dark soliton and co-propagates with the signal at
the simulton velocity. e, Schematic of the 4.18 µm OPO cavity. The cavity length
is controlled by mounting M1 on a piezo stage (PZT). The whole cavity resides in a
box purged with dry nitrogen to reduce the effects of atmospheric absorption on the
OPO operation. LPF, long-pass filter.

pump condition attributes many of these outstanding characteristics to the simulton
formation. Moreover, we perform numerical simulations to capture the behavior
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exhibited by different regimes of the OPO, which agree well with our experimental
results. The simulation also indicates a pathway to further improve the performance
of the simulton-based OPO. Lastly, we highlight key features of the simulton build-up
dynamics and offer a discussion on the impact of the pump carrier-envelope offset
frequency on simulton formation, with many practical implications. This work
presents a powerful scheme for MIR frequency comb generation and demonstrates
its potential to be extended to longer wavelengths and integrated platforms [38].

3.2 Theory of Temporal Simultons
Before presenting our experimental results, we briefly review the theory of temporal
simulton formation in optical parametric oscillators. The simulton solution can be
readily found for a traveling wave optical parametric amplifier (OPA) operating at
degeneracy by considering the coupled wave equations, keeping only the walk-off
and nonlinear coupling terms [34, 35, 37]. In this section, we derive the simulton
solution following the notation of ref. [39] and utilize the analytic expressions for
its dynamical evolution to provide intuition for the presented sensing mechanism.
We begin with the coupled wave equations for the fields at degeneracy:

𝜕

𝜕𝑧
𝐴𝜔 (𝑧, 𝑡) = 𝜅𝐴2𝜔𝐴

∗
𝜔, (3.1a)

𝜕

𝜕𝑧
𝐴2𝜔 (𝑧, 𝑡) = −Δ𝛽′ 𝜕

𝜕𝑡
𝐴2𝜔 − 𝜅𝐴2

𝜔. (3.1b)

Here, 𝜅 is the nonlinear coupling coefficient, Δ𝛽′ is the group velocity mismatch,
and 𝐴𝜔 and 𝐴2𝜔 refer to the signal and pump fields, respectively, normalized so
that |𝐴𝑖 |2 gives the power in wave 𝑖 ∈ {𝜔, 2𝜔}. The nonlinear coupling coefficient
is 𝜅. The time coordinate is defined to be co-moving with the group velocity of
the signal wave. Assuming wave solutions of the form 𝐴𝜔 (𝑧, 𝑡) = 𝐴𝜔 (𝑡 + 𝜈𝑧) and
𝐴2𝜔 = 𝐴2𝜔 (𝑡 + 𝜈𝑧) with inverse group velocity 𝜈 gives:

𝜈
𝜕

𝜕𝑡
𝐴𝜔 (𝑧, 𝑡) = 𝜅𝐴2𝜔𝐴

∗
𝜔, (3.2a)

(𝜈 + Δ𝛽
′) 𝜕
𝜕𝑧
𝐴2𝜔 (𝑧, 𝑡) = −𝜅𝐴2

𝜔. (3.2b)

This system of equations can be solved analytically to yield the simulton solution:

𝐴𝜔 (𝑧, 𝑡) =
𝑎

√
2𝜏

sech
(
𝑡 − 𝑇
𝜏

)
, (3.3a)
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𝐴2𝜔 (𝑧, 𝑡) = −𝐴2𝜔,0 tanh
(
𝑡 − 𝑇
𝜏

)
. (3.3b)

In these equations, we have re-parameterized the system in terms of 𝜏, the signal
pulse duration, 𝑇 , the simulton centroid position, 𝐴2𝜔,0, the pump amplitude, and
𝑎, the simulton signal amplitude. Defining the small-signal gain coefficient, 𝛾0 =

𝜅𝐴2𝜔,0, we find that 𝑎2 =
2𝛾0
𝜅2 (Δ𝛽′ + 𝛾0𝜏) and 𝑇 = −𝛾0𝜏𝑧.

Thus, we see that the simulton consists of a tanh-shaped dark soliton in the pump
and sech-shaped bright soliton in the signal which are co-moving with a group
velocity greater than the signal group velocity by a factor 𝜈 = 𝛾0𝜏. Now, we wish to
extend this solution to the dynamical regime where we can understand the impact
of gain and loss on the system, following the manifold projection method presented
in ref. [36]. We begin again with the coupled wave equations and use the method
of characteristics to derive a solution for the pump field. We have:

𝜕𝐴2𝜔 (𝑧, 𝑡)
𝜕𝑧

+ Δ𝛽′
𝜕𝐴2𝜔 (𝑧, 𝑡)

𝜕𝑡
= −𝜅𝐴2

𝜔 (𝑧, 𝑡). (3.4)

Solving for 𝐴2𝜔 gives:

𝐴2𝜔 (𝑧, 𝑡) = 𝐴2𝜔 (0, 𝑡 − Δ𝛽′𝑧) − 𝜅
∫ 𝑧

0
𝐴2
𝜔 (𝑧′, 𝑡 + Δ𝛽′(𝑧′ − 𝑧))𝑑𝑧′. (3.5)

To simplify the integral, we make the change of variables 𝑡′ = 𝑡 +Δ𝛽′(𝑧′− 𝑧), giving:

𝐴2𝜔 (𝑧, 𝑡) = 𝐴2𝜔 (0, 𝑡 − Δ𝛽′𝑧) − 𝜅

Δ𝛽′

∫ 𝑡

𝑡−Δ𝛽′𝑧
𝐴2
𝜔 (𝑧, 𝑡′)𝑑𝑡′. (3.6)

Now, we invoke the gain without distortion assumption, which says generally that
𝐴𝜔 (𝑧, 𝑡) ≈ 𝑒𝛾av𝑧 𝐴̄𝜔 (𝑧, 𝑡) such that 𝐴̄𝜔 (𝑧, 𝑡) is slowly varying in 𝑧 and 𝛾av satisfies
𝑟𝑒𝛾av𝑙 = 1 for an OPO cavity with mirror reflectivity 𝑟 and crystal length 𝑙. Under
the present change of variables, this gives 𝐴𝜔 (𝑧, 𝑡′) ≈ 𝑒

𝛾av
Δ𝛽′ (𝑡

′−𝑡)
𝐴̄𝜔 (𝑧, 𝑡′). Noticing

that the primary variation in the signal comes from this exponential term and thus
vanishes exceedingly fast for increasingly negative 𝑡′, we can assume the lower limit
of the integral extends to −∞ to good approximation:

𝐴2𝜔 (𝑧, 𝑡) = 𝐴2𝜔 (0, 𝑡 − Δ𝛽′𝑧) − 𝜅

Δ𝛽′

∫ 𝑡

−∞
𝐴2
𝜔 (𝑧, 𝑡′)𝑑𝑡′. (3.7)
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Next, we can plug this expression for the pump into equation 3.1a, the differential
equation describing the evolution of the signal. This yields:

𝜕𝐴𝜔 (𝑧, 𝑡)
𝜕𝑧

= 𝜅𝐴𝜔 (𝑧, 𝑡)𝐴2𝜔 (0, 𝑡 − Δ𝛽′𝑧) − 𝜅2

Δ𝛽′
𝐴𝜔 (𝑧, 𝑡)

∫ 𝑡

−∞
𝐴2
𝜔 (𝑧, 𝑡′)𝑑𝑡′. (3.8)

From here, we assume the field envelope takes on the sech-like form given above
for the simulton, but we allow the parameters 𝑇 , 𝜏, and 𝑎 to vary in 𝑧:

𝐴sim(𝑧, 𝑡) =
𝑎(𝑧)√︁
2𝜏(𝑧)

sech
(
𝑡 − 𝑇 (𝑧)
𝜏(𝑧)

)
. (3.9)

Plugging this into equation 3.8 for 𝐴𝜔 (𝑧, 𝑡) and assuming a constant pump, 𝐴2𝜔,0,
gives:

𝜕𝐴𝜔 (𝑧, 𝑡)
𝜕𝑧

= 𝜅𝐴2𝜔,0
𝑎(𝑧)√︁
2𝜏(𝑧)

sech
(
𝑡 − 𝑇 (𝑧)
𝜏(𝑧)

)
−

𝜅2𝑎2(𝑧)
2Δ𝛽′

√︁
2𝜏(𝑧)

sech
(
𝑡 − 𝑇 (𝑧)
𝜏(𝑧)

) [
tanh

(
𝑡 − 𝑇 (𝑧)
𝜏(𝑧)

)
+ 1

]
. (3.10)

Defining the right-hand side of equation 3.10 as 𝑔(𝑧, 𝑡), we now perform the manifold
projection to obtain equations for the evolution of the signal pulse parameters. To
perform the projection, we must first define an inner product, which we take to be
⟨ 𝑓 |𝑔⟩ =

∫
𝑓 (𝑡)𝑔(𝑡)𝑑𝑡. The full derivative of 𝐴sim with respect to 𝑧 is given by:

𝑑𝐴sim

𝑑𝑧
=
𝜕𝐴sim

𝜕𝑇

𝑑𝑇

𝑑𝑧
+ 𝜕𝐴sim

𝜕𝜏

𝑑𝜏

𝑑𝑧
+ 𝜕𝐴sim

𝜕𝑎

𝑑𝑎

𝑑𝑧
. (3.11)

Letting 𝑑𝐴sim
𝑑𝑧

= 𝑔(𝑧, 𝑡), and using the orthogonality of the partial derivatives under

the defined inner product, e.g.,
〈
𝜕𝐴sim
𝜕𝜉

��� 𝜕𝐴sim
𝜕𝜂

〉
= 0 where 𝜉, 𝜂 ∈ {𝑇, 𝜏, 𝑎} and 𝜉 ≠ 𝜂,

we find the following expression for the evolution of parameter 𝜉:

𝜕𝜉

𝜕𝑧
=

∫
𝑔(𝑧, 𝑡) 𝜕𝐴sim

𝜕𝜉
𝑑𝑡∫

𝜕𝐴sim
𝜕𝜉

2
𝑑𝑡

. (3.12)

Applying this to our three parameters of interest gives the following system of
equations for their evolution:
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𝜕𝑇

𝜕𝑧
= −𝛾0𝜏

𝑎2

𝑎2
sim
, (3.13a)

𝜕𝜏

𝜕𝑧
= 0, (3.13b)

𝜕𝑎

𝜕𝑧
= 𝛾0𝑎(1 − 𝑎2

𝑎2
sim

). (3.13c)

Here, 𝑎sim is the steady-state simulton amplitude, given by 𝑎2
sim =

2𝛾0Δ𝛽
′

𝜅2 . In the
limit of the approximations made here, the simulton is a stable attractor of the OPA
system, such that a sech-shaped pulse which is injected into an OPA will experience
either gain or back conversion until its amplitude reaches 𝑎sim [37]. This system of
equations can be solved analytically to find 𝑇 (𝑧), 𝜏(𝑧), and 𝑎(𝑧), giving:

𝑇 (𝑧) = 𝜏0 ln
(
𝑎(𝑧)

𝑎(0)𝑒𝛾0𝑧

)
+ 𝑇 (0), (3.14a)

𝜏(𝑧) = 𝜏0, (3.14b)

𝑎(𝑧) = 𝑎(0)𝑒𝛾0𝑧√︂
1 + 𝑎(0)2

𝑎2
sim

(𝑒2𝛾0𝑧 − 1)
. (3.14c)

We may now extend this solution to the case of the simulton OPO by considering
the effects of the roundtrip feedback, including loss and detuning, on the system.
In particular, we assume a roundtrip group delay of Δ𝑇RT and a roundtrip loss of
𝑒−𝛼𝜔

𝐿RT
2 , where 𝛼𝜔, represents the loss per unit length in power over the resonator

of total length 𝐿RT. Assuming the nonlinear crystal is length 𝐿NL, we get for the
roundtrip evolution that:

𝑇 (𝑛 + 1) = −𝜏0

2
ln

(
1 + 𝑎(𝑛)

2

𝑎2
sim

(𝑒2𝛾0𝐿NL − 1)
)
+ 𝑇 (𝑛) + Δ𝑇RT, (3.15a)

𝜏(𝑛 + 1) = 𝜏0, (3.15b)

𝑎(𝑛 + 1) = 𝑎(𝑛)𝑒𝛾0𝐿NL−𝛼𝜔
𝐿RT

2√︂
1 + 𝑎(𝑛)2

𝑎2
sim

(𝑒2𝛾0𝐿NL − 1)
. (3.15c)

Steady-state is reached when 𝑎(𝑛 + 1) = 𝑎(𝑛) and 𝑇 (𝑛 + 1) = 𝑇 (𝑛). From this first
relation, an expression for the steady-state signal amplitude, 𝑎̃, may be derived:
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𝑎̃2 = 𝑎2
sim
𝑒2𝛾0𝐿NL−𝛼𝜔𝐿RT − 1
𝑒2𝛾0𝐿NL − 1

. (3.16)

This gives the first requirement for simulton threshold, which is that the gain must
compensate the roundtrip loss, meaning that 𝑒2𝛾0𝑙−𝛼𝜔𝐿 ≥ 1. The second steady-state
condition, that 𝑇 (𝑛 + 1) = 𝑇 (𝑛), gives the timing requirement for stable simulton
formation, which is that Δ𝑇 = − 𝜏0

2 ln
(
1 + 𝑎(𝑛)2

𝑎2
sim

(𝑒2𝛾0𝑙 − 1)
)
= −Δ𝑇RT. by plugging

in the steady-state signal amplitude, 𝑎̃, for 𝑎(𝑛), we find the following expression
for the signal pulse width:

𝜏0 =
2Δ𝑇RT

2𝜅𝐸2𝜔,0𝐿NL − 𝛼𝜔𝐿RT
. (3.17)

Equation 3.17 describes the characteristic narrowing of the pulse width with in-
creasing pump powers in the simulton regime.

In addition to these steady-state solutions, we can also see the interdependence of
the energy and timing conditions, as the steady-state centroid position 𝑇 depends on
how quickly the simulton amplitude 𝑎 saturates to its steady-state value. Since the
growth of the amplitude depends on the interplay of gain and loss, the steady-state
centroid position is therefore ultimately dictated by the gain and loss of the system.
While here we have approximated the pump as continuous, this interplay becomes
very important for a pulsed pump, as used in our experiments, where the pump
defines a temporal gain window for the signal. Then, a more thorough description
must also account for the effects of dispersion and gain clipping [36], though the
inclusion of these additional terms does not always permit exact steady-state analytic
solutions. In this case, the bright soliton in the signal cannot go above threshold if
its amplitude does not grow quickly enough to satisfy the timing condition before
the detuning pulls it out of the gain window, leading to an increased threshold for
further-detuned simultons. We explore these concepts in more detail through the
numerical simulations presented in Section 3.4.

3.3 Results
Having reviewed the simulton theory, we now present our experimental results.
Because the parametric gain is phase sensitive, the signal of the OPO only oscillates
around the cavity lengths where it acquires a 0 or π phase shift relative to the pump
on each roundtrip. This results in signal resonances at a discrete set of cavity
lengths, which are separated by about half the signal center wavelength. In the
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context of this paper, the cavity length is denoted by the deviation of the cold-
cavity roundtrip time from the repetition period of the pump pulses, i.e., Δ𝑇RT.
Depending on the Δ𝑇RT, the different resonances can be classified into three regimes
of operation: simulton (Δ𝑇RT > 0), conventional (Δ𝑇RT = 0), also referred to as
“synchronous”), and nondegenerate (Δ𝑇RT < 0) [36, 37]. Note that the positiveΔ𝑇RT

corresponds to a longer cavity length. Observation of the simulton in this regime
follows naturally from the analysis in Section 3.2, where we found that synchrony
of the simulton requires the simulton group advance, Δ𝑇 , to be compensated by the
roundtrip detuning. Figure 3.2a shows the measured output spectrum as a function
of relative cavity timing detuning (Δ𝑇RT) at the highest pump power of 1290 mW.
When the cold cavity is most nearly synchronized to the pump repetition period
(Δ𝑇RT), the OPO is identified to run in the conventional (synchronous) regime
(labeled “0”), which has a degenerate spectrum and the lowest threshold. One
additional degenerate resonance, the simulton regime (labeled “+1”), is found when
the cavity is positively detuned. Conversely, when the cavity is negatively detuned,
the OPO operates in the nondegenerate regime, with the output spectra split into
distinguishable signal and idler bands (labeled “-1, -2, -3, and -4”). With parameters
comparable to the experiment, a simulation of the output spectrum as a function
of Δ𝑇RT is conducted (see Section 3.6 for additional details), which is depicted in
Figure 3.2b. The simulation exhibits a good agreement with the experimental result
for all three regimes.

Figure 3.2c presents output-input power dependencies for each resonance measured
with locked cavity lengths. With the lowest threshold, the conventional regime has
a slope efficiency of 45% and a conversion efficiency of 42%. For the nondegen-
erate resonances, as Δ𝑇RT becomes increasingly negative, the thresholds increase
uniformly, with conversion efficiencies decreasing and limited to less than 35%.
In contrast, the simulton resonance has an irregularly located high threshold and
the highest conversion efficiency of 44%. Furthermore, it measures a 350% slope
efficiency near the threshold and a 70% slope efficiency well above the threshold,
much higher than those of the conventional and nondegenerate regimes.

To demonstrate the difference between the power-dependent bandwidth scaling of
the conventional and simulton regimes, we measure spectra of the signal at each
output power corresponding to the experimental points in Figure 3.2c, the results of
which are shown in Figure 3.3a–c. In the simulton regime, as the power increases,
the bandwidth of the signal spectrum increases if the pump power is not too high
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Figure 3.2: Simulton OPO characterization. a, Measured signal spectrum as
a function of cavity detuning at the highest pump power of 1290 mW, labeled
with resonance numbers. The y-axis denotes the relative cavity detuning, the
zero of which is set at the center of the conventional resonance. b, Simulated
signal spectrum as a function of cavity detuning corresponding to a, with the three
identified regimes indicated on the left. c, Output–input power dependencies for
each resonance measured with locked cavity lengths. Filled circle, unfilled circles,
and triangles denote experimental measured points of simulton (+1), conventional
(0), and nondegenerate (-1 to -4) resonances, respectively. Solid lines represent
their linear fitting for estimation of their slope efficiencies. Note that the thresholds
of resonance 0, -1, -2, and -3 cannot be directly measured since the pump is not
stable at such low powers; therefore, they are instead estimated by extrapolations
of their linearly fitted lines, denoted by asterisks. Two slope efficiencies, one just
above the threshold (dark red solid line) and the other well above the threshold (pink
solid line), are estimated for the simulton resonance, given its distinct behavior from
other resonances. Conversion efficiencies for all resonances are calculated at the
highest pump power of 1290 mW. The simulation corresponding to resonance +1 is
denoted by the pink dashed curve.

(Figure 3.3a), while in the conventional regime, it monotonically decreases (Figure
3.3b). These tendencies are in accordance with the simulton theory (Section 3.2) [37]
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and conventional box-pulse scaling [36]. It should be noted that at the three highest
pump powers, the signal bandwidth of the simulton regime stops broadening further,
which also agrees with our theoretical prediction that the simulton theory would fail
if the signal is too far above threshold [36]. This transition from simulton scaling
to box-pulse scaling far above threshold also accounts for the observed nonlinear
reduction in the simulton slope efficiency in Figure 3.2c. Nonetheless, at high pump
power around 1200 mW, the simulton regime wins about 40% in bandwidth. This
power-dependent signal spectral characterization shows that the simulton regime
outperforms the conventional regime not only in power and efficiency but also in
spectral bandwidth. At the highest available pump power of 1290 mW, the FWHM
bandwidth of the signal spectra for simulton and conventional regimes are 14 and
10 THz, which can support pulses as short as 22 and 32 fs, respectively. Figure
3.3d depicts the interferometric autocorrelation of the simulton pulse measured by a
two-photon extended-InGaAs detector, together with its fitted pulse intensity. This
measurement corresponds to an FWHM pulse width of about 45 fs, assuming no
chirp. However, chirp exists due to the dispersion from the substrates of the output
coupler (1 mm ZnSe) and two long pass filters (1 mm Ge and 1 mm Si) in the path
to the autocorrelator.

In this experiment, the efficiency advantage of the simulton regime is limited by
the available pump power. To further demonstrate the efficiency potential of the
simulton regime, we use numerical simulations with higher pump power under
different output coupling ratios, and the results are shown in Figure 3.4a. As
suggested by the simulation, higher output coupling should be employed with higher
pump power to realize higher conversion efficiency, and the conversion efficiency
can be improved to as high as 63% if 4.2-W pump power and 0.65 (65%) output
coupling ratio are used. This simulation result can also be used as a design rule for
choosing the output coupling of the simulton OPO under different available pump
powers. Figure 3.4b presents the highest possible conversion efficiency that the
simulton regime can reach under different pump powers (red circles), with the labels
of the corresponding output coupling (red decimals). As a comparison, under each
pump power, the highest conversion efficiencies that the conventional regime can
achieve are also plotted in Figure 3.4b (blue circles), labeled with the corresponding
output coupling ratios (blue decimals). The comparison shows that the return of
the simulton regime can increase sharply with increasing pump power. It is worth
noting that the pump intensity used in the simulation is similar to those of the
previously demonstrated experiments [28, 40], which is expected to be below the
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Figure 3.3: Temporal and spectral power scaling. Spectra recorded as a function
of output power for the OPO working in the a, simulton regime and b, conventional
(synchronous) regime. The signal power and corresponding FWHM bandwidth for
each curve are presented in the insets. The FWHM bandwidths are also denoted
by the triangular arrows on the curves. The unfilled circles denote the raw data
points obtained by the Fourier-transform infrared spectroscopy (FTIR), and curves
present the interpolation of them for a better visualization of results and estimation of
FWHM bandwidths. Note that a portion of the raw data near the strong atmospheric
absorption around 4.2 µm is discarded during the interpolation, which is denoted
by smaller filled gray circles. c, FWHM bandwidths of the signal spectra as a
function of pump power for both regimes, corresponding to a and b. Solid circles
denote experimentally measured points, and dotted curves are to guide the eye. d,
Two-photon interferometric autocorrelation (blue) and fitted intensity (red) of the
signal pulse at the highest pump power of 1290 mW, for the OPO working in the
simulton regime.
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damage threshold of OP-GaP.

Figure 3.4: Numerical simulation of the simulton OPO with different output
coupling ratios. a, Conversion efficiency (in percentage) as a function of pump
power. Curves in different colors denote different output coupling ratio (in decimal),
as indicated in the legend box. The orange circle denotes the result that is realized
in our experiment and the blue pentagram denotes the suggested highest conversion
efficiency that can be achieved by this simulton OPO. b, Highest conversion effi-
ciency (in percentage) that the OPO can achieve under different pump power. The
red circles denote the results (in percentage) in the simulton regime, labeled with
the output coupling ratio (red decimal) that should be used. The blue circles, as
a comparison to the red ones, denote the results in the conventional regime, also
labeled with the corresponding output coupling ratio (blue decimal). The unfilled
red and blue circles denote our experimental results of simulton and conventional
regime, respectively.

3.4 Discussion
As is evident from our experimental and theoretical results, developing a better
understanding of simulton formation is crucial for further improvement of the OPO
performance. Here, we use our simulation results to build upon the understanding
of simulton formation dynamics presented in ref. [37] and offer practical tools for
optimizing simulton performance. We begin with a discussion of the relationship
between the simulton formation dynamics and the high slope efficiencies and con-
version efficiencies offered by this regime. Figure 3.5a shows schematically the
interaction between pump (blue) and signal (orange) in the single-pass OPA process
which occurs each roundtrip in the OPO. From the crystal input (left) to its output
(right), the signal walks through the pump, depleting it and extracting gain in the
process. Two terms contribute to the walk-off, the product of the group velocity
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mismatch (GVM), Δ𝛽′ , with the crystal length, 𝐿NL = 𝐿, and the nonlinear tim-
ing advance due to simulton acceleration, Δ𝑇 , leading to a combined walk-off of
Δ𝛽

′
𝐿 + Δ𝑇 relative to the signal starting position. This walk-off along the fast time

axis and simultaneous depletion of the pump by the signal determines the available
gain for the signal. For the signal to resonate above threshold, the gain extracted in
consecutive roundtrips must consistently overcome the loss.

Figure 3.5b–e shows the signal centroid position at the input facet of the crystal as a
function of roundtrip, with the color indicating the normalized logarithm of the pulse
energy, to illustrate the signal build up dynamics in the conventional and simulton
regimes. In the conventional case (Figure 3.5b,c), there is no timing condition, so
the signal goes above threshold as soon as the gain experienced through the linear
walk-off, Δ𝛽′

𝐿, equals the loss. This results in there being no clear trends in the
dynamics of the signal below threshold, as shown in Figure 3.5b, with amplified
noise being unable to build up. Above threshold, the noise quickly grows into a
strong signal pulse, located near the center of the gain window set by the pump
(Figure 3.5c). In the simulton case (Figure 3.5d,e), however, the cavity detuning,
Δ𝑇RT, creates a linear delay which causes the amplified signal noise to move away
from the gain window set by the pump. Since the simulton acceleration relies on
pump depletion by the leading edge of the signal and subsequent back-conversion of
the trailing edge, going above threshold requires that the simulton build up enough
to accelerate and satisfy the timing condition before falling out of the gain window
due to the linear delay. This intertwines the simulton energy and timing conditions,
as large simulton acceleration requires the presence of high enough signal gain.
Figure 3.5d shows the case of the below threshold simulton, in which the delayed
and amplified noise attempts to build up but ultimately does not experience enough
gain to sufficiently accelerate and falls off. By contrast, Figure 3.5e shows the
simulton build-up above threshold, in which the simulton acceleration leads to a
timing advance, Δ𝑇 , which compensates the delay, Δ𝑇RT. Unlike the conventional
case, the simulton just above threshold builds up near the edge of the gain window.
These observations correspond to important features of the simulton. First, the high
threshold for the simulton is a consequence of the requirement for there to be high
gain for the timing condition to be satisfied. The burst slope efficiency of the simulton
near threshold then results as the acceleration pulls the simulton to the center of
the gain window. Once well-confined to the gain window, the longer walk-off for
the simulton due to the additional nonlinear acceleration term, Δ𝑇 , suggests that
simulton operation can often enable more efficient extraction of the pump gain. This
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Figure 3.5: Depiction of simulton formation dynamics as compared to the
conventional regime. a, Schematic illustration of the pump-signal interaction in
the crystal. Between the input (left) and output (right) facets of the crystal, the
signal (orange) walks through the pump (blue) from its starting point according to
product of the GVM, Δ𝛽′ , with the crystal length, 𝐿, plus any timing advance, Δ𝑇 ,
due to simulton acceleration. This walk-off and concurrent pump depletion define a
gain window for the signal along the fast time axis. b–e, Simulated comparison of
simulton (b,c) and conventional (d,e) signal centroid positions along the fast time
axis as a function of roundtrip number in the below (b,d) and above (c,e) threshold
cases. The normalized logarithm of the pulse energy is indicated by the color of
each point. b, The conventional case below threshold has few discernible features
as noise and loss dominate; noise amplified by the pump is unable to build up. c,
Above threshold, the noise quickly builds into a strong signal pulse. A small timing
shift is observed when the gain saturates. d, For the simulton, noise amplified by the
pump experiences a linear delay due to the cavity detuning, Δ𝑇RT. Below threshold,
since the gain cannot enable sufficient acceleration for the timing condition to be
satisfied, the delay results in the signal falling out of the gain window before signal
build up can be achieved. e, The simulton goes above threshold when the gain is
sufficient for the simulton acceleration to compensate the linear delay and enable
signal build up. As in the conventional case, a small timing shift is observed when
the gain saturates.
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gives rise to observed trends of slope efficiencies and overall conversion efficiencies
for simulton operation that exceed what is observed for conventional OPO operation.
Practically, one should match Δ𝛽

′
𝐿 + Δ𝑇 to the length of the gain window defined

by the pump for optimum signal generation.

An additional parameter which is critical to simulton formation is the carrier-
envelope offset (CEO) frequency ( 𝑓CEO) of the pump, the impact of which is illus-
trated in Figure 3.6. The pump 𝑓CEO imposes a phase Δ𝜙CEO between consecutive
pump pulses. Due to the aforementioned phase-sensitive gain which demands a
relative phase of 0 or 𝜋 between pump and signal for signal build-up, this pulse-to-
pulse phase shift in the pump must be mirrored in the signal, as shown in Figure
3.6a. For signal resonance to occur, the phase accumulated in the roundtrip must
be Δ𝜙CEO/2 + 𝑛𝜋, where 𝑛 is an integer, with 𝜋 signal phase corresponding to a
detuning of 7 fs between resonances for the 4.18 µm OPO. The case for 𝑛 even
is shown by the upper signal branch while the case where 𝑛 is odd, in which the
signal accumulates an additional phase shift of 𝜋 between pulses, is depicted in the
lower signal branch. The signal roundtrip phase accumulation, 𝜙(Ω), relative to a
perfectly synchronous signal pulse is given by 𝜙(Ω) = Δ𝑇RT( 𝜔𝑐𝜆2𝜔

+ Ω), where Ω is
the normalized frequency, Δ𝑇RT is the detuning as defined previously, 𝑐 is the speed
of light, 𝜆2𝜔 is the pump wavelength, and 𝜙(Ω) represents the higher-order effects
of dispersion from mirrors and additional cavity elements [37]. From this equation,
we see the required pulse-to-pulse phase shift for the signal can be achieved through
varying Δ𝑇RT such that the constant phase term Δ𝜙RT = Δ𝑇RT

𝜋𝑐
𝜆2𝜔

= Δ𝜙CEO + 𝜋𝑛,
the desired phase shift. In other words, Δ𝜙CEO determines the detuning values
where the OPO can resonate. However, varying Δ𝑇RT also causes a change in the
signal timing, modeled through the linear phase term Δ𝑇RTΩ, and consequently the
simulton threshold and slope efficiency. This implies that, through tuning of the
pump 𝑓CEO, one can adjust the timing of the signal resonances to optimize simulton
performance.

Figure 3.6b–e shows the simulated signal resonances for a few values of Δ𝜙CEO.
As the focus of this study is on simulton behavior, only the first few resonances
are shown. Resonance labels denote the roundtrip phase, Δ𝜙RT, acquired by the
signal, and an additional label denotes the timing shift from 0 fs of the most positively
detuned resonance withΔ𝜙RT = Δ𝜙CEO/2. As seen in Figure 3.6b, whenΔ𝜙CEO = 0,
the signal at Δ𝜙RT = Δ𝜙CEO/2 is a typical conventional resonance with Δ𝑇RT = 0.
Note that no simulton exists at the expected location, Δ𝜙RT = Δ𝜙CEO/2 + 𝜋 (shown



67

Figure 3.6: Simulated impact of the pump carrier-envelope offset frequency,
𝑓CEO, on simulton performance. a, Illustration of the pump-signal phase rela-
tionships for the OPO resonances. For a pulse-to-pulse phase slip of Δ𝜙CEO in
the pump, the OPO can resonate when the roundtrip phase accumulation, Δ𝜙RT, is
Δ𝜙CEO/2+𝑛𝜋, where 𝑛 is an integer, with 𝜋 signal phase corresponding to a detuning
of 7 fs between resonances. The upper signal branch depicts the case of 𝑛 even,
where a pulse-to-pulse phase of Δ𝜙CEO/2 is accrued, while the lower shows 𝑛 odd,
which adds an additional 𝜋 phase shift between consecutive pulses. b, First three
cavity resonances for Δ𝜙CEO = 0, showing that no simulton behavior is observed,
with the topmost resonance occurring at Δ𝑇RT = 0 and exhibiting both strongly de-
generate and nondegenerate features. c, AsΔ𝜙CEO is increased to 𝜋/2, simulton-like
behavior is observed as the topmost resonance becomes more positively detuned. d,
Example of a strongly degenerate simulton at Δ𝜙CEO = 3𝜋/2, showing that tuning
of Δ𝜙CEO to this region can enable optimum simulton performance for the given
gain. e, As Δ𝜙CEO is further increased beyond 7𝜋/2, the simulton disappears as the
timing condition can no longer be satisfied by the gain, which is why no simulton
resonance is observed in panel b at the Δ𝜙CEO/2 + 𝜋 resonance, indicated by the
white, dashed line.

by the white, dashed line), due to a lack of gain. For values between 0 and 𝜋, the
Δ𝜙RT = Δ𝜙CEO/2 resonance becomes simulton-like but still behaves more like a
conventional OPO, with both nondegenerate and degenerate regions as shown in
Figure 3.6c. Beyond Δ𝜙CEO = 𝜋, a strong simulton is observed, like that shown in
Figure 3.6d for Δ𝜙CEO = 3𝜋/2. In tandem with the Δ𝜙RT = Δ𝜙CEO/2 resonance
transitioning from more conventional behavior to the simulton regime, we also
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observe strengthening of the degenerate side of the Δ𝜙RT = Δ𝜙CEO/2− 𝜋 resonance
such that it behaves more like a conventional OPO as it approachesΔ𝑇RT = 0. Finally,
as exemplified by Figure 3.6e, when Δ𝜙CEO is greater than 1.5𝜋, the power in the
resonance quickly drops off as the gain struggles to satisfy the timing condition,
with the OPO repeating the resonance structure shown in Figure 3.6b as Δ𝜙CEO

approaches 2𝜋. Our experiment corroborates these findings, as we observe such a
shift in simulton behavior as the Δ𝜙CEO is varied, with presented data representing
the strongest observed simulton. This suggests that, for given experimental values
of gain and loss, Δ𝜙CEO can be a crucial experimental parameter for optimizing
simulton performance.

3.5 Conclusion
In summary, we present the generation of a high-power and efficient MIR frequency
comb centered at 4.18 µm based on an OPO operating in the simulton regime,
achieving 565 mW average power together with a 14 THz instantaneous FWHM
bandwidth, sub-three-cycle pulses, a 350% slope efficiency near the threshold,
a 70% slope efficiency above the threshold, and a record high 44% conversion
efficiency. By a direct comparison with the conventional regime in terms of cavity
detuning, output power, threshold, slope and conversion efficiency, instantaneous
bandwidth, and bandwidth scaling, we are able to ascribe the favorable performances
of this novel regime to the simulton formation, based on the agreement between the
experiment, simulation, and theory. The performance of this simulton OPO is
expected to be further improved by tuning the pump and optimizing dispersion
and loss within the cavity. Especially, the numerical simulation suggests that a
conversion efficiency >60% can be achieved if 4 W pump power and 65% output
coupling are employed. Finally, we further explore simulton build-up dynamics
and analyze the impact of the pump 𝑓CEO on simulton formation, and we tie these
results to practical design considerations for a simulton OPO. In addition, we want
to emphasize that the half-harmonic signal of femtosecond degenerate OPOs are
frequency combs that are intrinsically phase- and frequency-locked to their pump
combs, which is well-established in previous works [26, 31, 41]. Very recently, we
have used the OPO presented in this work as the comb source for a dual-comb-based
spectroscopy experiment in the mid-IR [42], enabled by its comb character and
intrinsic locking. Moreover, it is experimentally shown that the CEO frequency
noise can be reduced by 6 dB through the half-harmonic generation [43].
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In short, this work paves the way to realization of a compelling new source of
ultrashort-pulse frequency combs in the mid-infrared region which can benefit nu-
merous applications, for example, spectroscopy methods that require high-power,
broadband, and short-pulse MIR frequency combs [41, 42]. This work sheds new
lights on soliton generation based on the quadratic nonlinearity and its potential in
the MIR region. Recent advances in integrated quadratic platforms [33, 38, 44]
promise on-chip realization of such sources in the future.

3.6 Supporting Information
Experimental Details
The experimental setup of the MIR OPO is illustrated in Figure 3.1e. For the
pump, another OPO based on periodically poled lithium niobate with a 250 MHz
repetition rate generating pulses centered at 2.09 µm was used. Its average power
reached up to 1290 mW with an FWHM bandwidth around 155 nm. The MIR OPO
cavity consisted of a bow-tie resonator with a tunable cold-cavity time of 4 ns that
could be scanned or locked around the pump repetition period using a piezoelectric
actuator. The input coupler (M1) was a flat dielectric-coated mirror that was highly
transmissive for the pump range (around 2.09 µm) and highly reflective for the signal
range (around 4.18 µm). The focusing and collimating of the beams were provided
by two concave gold mirrors (M2 and M3) with a 24-mm radius of curvature, which
had a high reflection for both signal and pump. The nonlinear gain was provided
by a plane-parallel orientation-patterned gallium phosphide (OP-GaP) crystal with
a length of 0.5 mm and a poling period of 92.7 µm for type-0 phase matching at
room temperature. The crystal had a broadband antireflection coating for both the
signal and pump range. The output coupler (M4) was a dielectric mirror coated
for broadband transmission (T = 25%) from 3.5 to 5.5 µm, the value of which was
chosen based on a rough experimental optimization of the output coupling using
a coated pellicle beamsplitter [27]. The length of the OPO was locked using the
“dither-and-lock” procedure described in ref. [31].

As mentioned in the figure caption, the OPO is placed in a box purged with dry
nitrogen to reduce the impact of atmospheric absorption. Although the OPO can still
run without purging, degenerate operation is not possible due to the strong absorption
of carbon dioxide centered at 4.2 µm, prohibiting the OPO from operating in the
simulton regime. We also contain the measurement instruments for characterization
of the OPO output in the purging box to limit the artifacts caused by the atmospheric
absorption.
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Numerical Simulation
Here, we describe the methodology behind the simulations used for numerical
modeling of our experiment. Using the notation of [37], the coupled wave equations
describing the phase-matched nonlinear interaction of pump and signal in the crystal
are given by

𝜕

𝜕𝑧
𝐴𝜔 (𝑧, 𝑡) = 𝜅𝐴2𝜔𝐴

∗
𝜔 − 𝛼𝜔

2
+ 𝐷̂𝜔𝐴𝜔, (3.18a)

𝜕

𝜕𝑧
𝐴2𝜔 (𝑧, 𝑡) = −Δ𝛽′ 𝜕

𝜕𝑡
𝐴2𝜔 − 𝜅𝐴2

𝜔 − 𝛼2𝜔

2
+ 𝐷̂2𝜔𝐴2𝜔, (3.18b)

where compared to equations 3.1a and 3.1b, we have included explicitly the loss
in the crystal for the 𝑗 th wave, 𝛼 𝑗 , as well as the dispersion operator, 𝐷̂ 𝑗 =∑∞
𝑚=2

[
(𝑖)𝑚+1𝛽

(𝑚)
𝑗

𝑚!

]
𝜕𝑚𝑡 .

Simulations of the field envelope evolutions in the crystal are performed using the
split-step Fourier method, in which the OPA process in the crystal is divided into
fifty segments. In each segment, we solve the linear and nonlinear portions of the
coupled wave equations as lumped elements. The nonlinear step is computed by
solving the nonlinear terms in the coupled wave equations using the fourth-order
Runge-Kutta method. This is followed by a linear filter containing the dispersion
and loss for the crystal, which is applied in the frequency domain to the pump and
signal. We calculate four orders of dispersion for both pump and signal from the
Sellmeier equation given in [45].

The roundtrip propagation is modeled by a linear feedback loop which contains
the frequency-dependent losses as well as the dispersion for all cavity elements.
Specifically, for the 𝑛th roundtrip, the signal at the input of the crystal, 𝐴𝑛+1

𝜔 (0, 𝑡) is
related to the output of the OPA process, 𝐴𝑛𝜔 (𝐿, 𝑡) by the equation

𝐴𝑛+1
𝜔 (0, 𝑡) = F −∞{𝑒−

𝛼RT (𝜔)
2 𝑒−𝑖𝜙ΩF {𝐴𝑛𝜔 (𝐿, 𝑡)}}. (3.19)

Here, Ω is the normalized Fourier frequency and F and F −1 are the Fourier trans-
form and inverse Fourier transform, respectively. 𝛼RT(Ω) gives the roundtrip loss
of the signal, including the frequency-dependent losses from the output coupling,
the AR coatings on the crystal interfaces, the cavity mirrors, and the residual at-
mospheric gases in the cavity after purging, modeled using data provided by the
HITRAN database [46]. Similarly, 𝜙(Ω) = Δ𝑇RT( 𝜋𝑐𝜆2𝜔

+ Ω) + Δ𝜙(Ω) gives the
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roundtrip phase accumulated by the signal, measured relative to a perfectly syn-
chronous signal pulse, as mentioned in Section 3.4. Δ𝑇RT is the detuning and
contributes to both a constant phase term, Δ𝑇RT𝜋𝑐

𝜆2𝜔
, and a linear phase term, Δ𝑇RTΩ,

which accounts for the timing delay. Here, 𝑐 is the speed of light and 𝜆2𝜔 is the
wavelength of the pump. Δ𝜙(Ω) accounts for higher-order contributions to the
phase due to the dispersion of the cavity mirrors, the AR coatings on the crystal,
and the residual gas in the cavity.



72

BIBLIOGRAPHY

[1] Albert Schliesser, Nathalie Picqué, and Theodor W. Hänsch. “Mid-infrared
frequency combs.” In: Nature Photonics 6.7 (2012), pp. 440–449.

[2] Nathalie Picqué and Theodor W. Hänsch. “Frequency comb spectroscopy.”
In: Nature Photonics 13.3 (2019), pp. 146–157.

[3] Fritz Keilmann, Christoph Gohle, and Ronald Holzwarth. “Time-domain
mid-infrared frequency-comb spectrometer.” In: Optics Letters 29.13
(2004), pp. 1542–1544.

[4] Tilo Steinmetz, Tobias Wilken, Constanza Araujo-Hauck, Ronald
Holzwarth, Theodor W. Hänsch, Luca Pasquini, Antonio Manescau,
Sandro D’Odorico, Michael T. Murphy, Thomas Kentischer, et al. “Laser
frequency combs for astronomical observations.” In: Science 321.5894
(2008), pp. 1335–1337.

[5] Joss Bland-Hawthorn and Pierre Kern. “Astrophotonics: A new era for
astronomical instruments.” In: Optics Express 17.3 (2009), pp. 1880–1884.

[6] Tenio Popmintchev, Ming-Chang Chen, Dimitar Popmintchev, Paul
Arpin, Susannah Brown, Skirmantas Ališauskas, Giedrius Andriukaitis,
Tadas Balčiunas, Oliver D. Mücke, Audrius Pugzlys, et al. “Bright
coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared
femtosecond lasers.” In: Science 336.6086 (2012), pp. 1287–1291.

[7] Shambhu Ghimire and David A. Reis. “High-harmonic generation from
solids.” In: Nature Physics 15.1 (Jan. 2019), pp. 10–16. issn: 1745-2481.
doi: 10.1038/s41567-018-0315-5. url: https://doi.org/
10.1038/s41567-018-0315-5.

[8] Markku Vainio and Lauri Halonen. “Mid-infrared optical parametric os-
cillators and frequency combs for molecular spectroscopy.” In: Physical
Chemistry Chemical Physics 18.6 (2016), pp. 4266–4294.

[9] Ben Henderson, Amir Khodabakhsh, Markus Metsälä, Irène Ventrillard,
Florian M Schmidt, Daniele Romanini, Grant A. D. Ritchie, Sacco te Lin-
tel Hekkert, Raphaël Briot, Terence Risby, et al. “Laser spectroscopy for
breath analysis: Towards clinical implementation.” In: Applied Physics B
124 (2018), pp. 1–21.

[10] Ioachim Pupeza, Daniel Sánchez, Jinwei Zhang, Nicolai Lilienfein, Marcus
Seidel, Nicholas Karpowicz, Tim Paasch-Colberg, Irina Znakovskaya, M.
Pescher, Wolfgang Schweinberger, et al. “High-power sub-two-cycle mid-
infrared pulses at 100 MHz repetition rate.” In: Nature Photonics 9.11
(2015), pp. 721–724.

https://doi.org/10.1038/s41567-018-0315-5
https://doi.org/10.1038/s41567-018-0315-5
https://doi.org/10.1038/s41567-018-0315-5


73

[11] Grzegorz Soboń, Tadeusz Martynkien, Paweł Mergo, Lucile Rutkowski,
and Aleksandra Foltynowicz. “High-power frequency comb source tunable
from 2.7 to 4.2 𝜇m based on difference frequency generation pumped by an
Yb-doped fiber laser.” In: Optics Letters 42.9 (2017), pp. 1748–1751.

[12] Alexander J. Lind, Abijith Kowligy, Henry Timmers, Flavio C. Cruz, Nima
Nader, Myles C. Silfies, Thomas K. Allison, and Scott A. Diddams. “Mid-
infrared frequency comb generation and spectroscopy with few-cycle pulses
and 𝜒 (2) nonlinear optics.” In: Physical Review Letters 124.13 (2020),
p. 133904.

[13] Andreas Hugi, Gustavo Villares, Stéphane Blaser, Hui Chun Liu, and Jérôme
Faist. “Mid-infrared frequency comb based on a quantum cascade laser.” In:
Nature 492.7428 (2012), pp. 229–233.

[14] Jérôme Faist, Gustavo Villares, Giacomo Scalari, Markus Rösch, Christo-
pher Bonzon, Andreas Hugi, and Mattias Beck. “Quantum cascade laser
frequency combs.” In: Nanophotonics 5.2 (2016), pp. 272–291.

[15] Manijeh Razeghi and Alexei N. Baranov. “Terahertz emitters, receivers, and
applications IX.” In: Proc. of SPIE Vol. Vol. 10756. 2018, pp. 1075601–1.

[16] Mengjie Yu, Yoshitomo Okawachi, Austin G. Griffith, Nathalie Picqué,
Michal Lipson, and Alexander L. Gaeta. “Silicon-chip-based mid-infrared
dual-comb spectroscopy.” In: Nature Communications 9.1 (2018), p. 1869.

[17] Davide Grassani, Eirini Tagkoudi, Hairun Guo, Clemens Herkommer, Fan
Yang, Tobias J. Kippenberg, and Camille-Sophie Brès. “Mid infrared gas
spectroscopy using efficient fiber laser driven photonic chip-based super-
continuum.” In: Nature Communications 10.1 (2019), p. 1553.

[18] Hairun Guo, Wenle Weng, Junqiu Liu, Fan Yang, Wolfgang Hänsel, Camille-
Sophie Brès, Luc Thévenaz, Ronald Holzwarth, and Tobias J. Kippen-
berg. “Nanophotonic supercontinuum-based mid-infrared dual-comb spec-
troscopy.” In: Optica 7.9 (2020), pp. 1181–1188.

[19] Sergey Vasilyev, Viktor Smolski, Jeremy Peppers, Igor Moskalev, Mike
Mirov, Yury Barnakov, Sergey Mirov, and Valentin Gapontsev. “Middle-IR
frequency comb based on Cr: ZnS laser.” In: Optics Express 27.24 (2019),
pp. 35079–35087.

[20] Florian Adler, Kevin C. Cossel, Michael J. Thorpe, Ingmar Hartl, Martin E.
Fermann, and Jun Ye. “Phase-stabilized, 1.5 W frequency comb at 2.8–4.8
𝜇 m.” In: Optics letters 34.9 (2009), pp. 1330–1332.

[21] Yohei Kobayashi, Kenji Torizuka, Alireza Marandi, Robert L. Byer, Richard
A. McCracken, Zhaowei Zhang, and Derryck T Reid. “Femtosecond optical
parametric oscillator frequency combs.” In: Journal of Optics 17.9 (2015),
p. 094010.



74

[22] Luke Maidment, Peter G. Schunemann, and Derryck T. Reid. “Molecu-
lar fingerprint-region spectroscopy from 5 to 12 𝜇m using an orientation-
patterned gallium phosphide optical parametric oscillator.” In: Optics Letters
41.18 (2016), pp. 4261–4264.

[23] Kana Iwakuni, Gil Porat, Thinh Q Bui, Bryce J. Bjork, Stephen B. Schoun,
Oliver H. Heckl, Martin E. Fermann, and Jun Ye. “Phase-stabilized 100 mW
frequency comb near 10 𝜇m.” In: Applied Physics B 124 (2018), pp. 1–7.

[24] Callum F. O’Donnell, Suddapalli Chaitanya Kumar, Peter G. Schunemann,
and Majid Ebrahim-Zadeh. “Femtosecond optical parametric oscillator con-
tinuously tunable across 3.6–8 𝜇m based on orientation-patterned gallium
phosphide.” In: Optics Letters 44.18 (2019), pp. 4570–4573.

[25] Chengxiao Ning, Pei Liu, Yingxiong Qin, and Zhaowei Zhang. “Continuous
wavelength tuning of nondegenerate femtosecond doubly resonant optical
parametric oscillators.” In: Optics Letters 45.9 (2020), pp. 2551–2554.

[26] Alireza Marandi, Kirk A. Ingold, Marc Jankowski, and Robert L. Byer.
“Cascaded half-harmonic generation of femtosecond frequency combs in
the mid-infrared.” In: Optica 3.3 (2016), pp. 324–327.

[27] Evgeni Sorokin, Alireza Marandi, Peter G. Schunemann, Martin M. Fejer,
Robert L. Byer, and Irina T. Sorokina. “Efficient half-harmonic generation
of three-optical-cycle mid-IR frequency comb around 4 𝜇m using OP-GaP.”
In: Optics Express 26.8 (2018), pp. 9963–9971.

[28] Qitian Ru, Taiki Kawamori, Peter G. Schunemann, Sergey Vasilyev, Sergey
B. Mirov, and Konstantin L. Vodopyanov. “Two-octave-wide (3–12 𝜇m) sub-
harmonic produced in a minimally dispersive optical parametric oscillator
cavity.” In: Optics Letters 46.4 (2021), pp. 709–712.

[29] Richard A. McCracken and Derryck T. Reid. “Few-cycle near-infrared pulses
from a degenerate 1 GHz optical parametric oscillator.” In: Optics Letters
40.17 (2015), pp. 4102–4105.

[30] Richard A. McCracken, Yuk Shan Cheng, and Derryck T. Reid. “10-GHz
femtosecond degenerate optical parametric oscillator.” In: CLEO:
QELS_Fundamental Science. Optica Publishing Group. 2018, FTh1M–1.

[31] Alireza Marandi, Nick C. Leindecker, Vladimir Pervak, Robert L. Byer,
and Konstantin L. Vodopyanov. “Coherence properties of a broadband fem-
tosecond mid-IR optical parametric oscillator operating at degeneracy.”
en. In: Optics Express 20.7 (Mar. 2012), p. 7255. issn: 1094-4087. doi:
10.1364/OE.20.007255. url: https://opg.optica.org/
oe/abstract.cfm?uri=oe-20-7-7255 (visited on 03/17/2025).

[32] Arkadev Roy, Rajveer Nehra, Saman Jahani, Luis Ledezma, Carsten Lan-
grock, Martin Fejer, and Alireza Marandi. “Temporal walk-off induced dis-
sipative quadratic solitons.” In: Nature Photonics 16.2 (2022), pp. 162–168.
doi: 10.1038/s41566-021-00942-4.

https://doi.org/10.1364/OE.20.007255
https://opg.optica.org/oe/abstract.cfm?uri=oe-20-7-7255
https://opg.optica.org/oe/abstract.cfm?uri=oe-20-7-7255
https://doi.org/10.1038/s41566-021-00942-4


75

[33] Alexander W. Bruch, Xianwen Liu, Zheng Gong, Joshua B. Surya, Ming
Li, Chang-Ling Zou, and Hong X. Tang. “Pockels soliton microcomb.” In:
Nature Photonics 15.1 (2021), pp. 21–27.

[34] Sergei Akhmanov, Anatolii Chirkin, Konstantin Drabovich, Al Kovrigin,
Rem Khokhlov, and Anatoly Sukhorukov. “Nonstationary nonlinear optical
effects and ultrashort light pulse formation.” In: IEEE Journal of Quantum
Electronics 4.10 (1968), pp. 598–605.

[35] Stefano Trillo. “Bright and dark simultons in second-harmonic generation.”
In: Optics Letters 21.15 (1996), pp. 1111–1113.

[36] Ryan Hamerly, Alireza Marandi, Marc Jankowski, Martin M. Fejer, Yoshi-
hisa Yamamoto, and Hideo Mabuchi. “Reduced models and design princi-
ples for half-harmonic generation in synchronously pumped optical para-
metric oscillators.” In: Physical Review A 94.6 (2016), p. 063809.

[37] Marc Jankowski, Alireza Marandi, Christopher R. Phillips, Ryan Hamerly,
Kirk A. Ingold, Robert L. Byer, and Martin M. Fejer. “Temporal simultons
in optical parametric oscillators.” In: Physical Review Letters 120.5 (2018),
p. 053904.

[38] Luis Ledezma, Ryoto Sekine, Qiushi Guo, Rajveer Nehra, Saman Jahani,
and Alireza Marandi. “Intense optical parametric amplification in
dispersion-engineered nanophotonic lithium niobate waveguides.” In:
Optica 9.3 (2022), pp. 303–308. doi: 10.1364/OPTICA.442332.

[39] Marc Jankowski. Pulse formation and frequency conversion in dispersion-
engineered nonlinear waveguides and resonators. Stanford University, 2020.

[40] Luke Maidment, Oguzhan Kara, Peter G. Schunemann, Jonathon Piper,
Kenneth McEwan, and Derryck T. Reid. “Long-wave infrared generation
from femtosecond and picosecond optical parametric oscillators based on
orientation-patterned gallium phosphide.” In: Applied Physics B 124 (2018),
pp. 1–8.

[41] Andrey V. Muraviev, Viktor O. Smolski, Zachary E. Loparo, and Konstantin
L. Vodopyanov. “Massively parallel sensing of trace molecules and their iso-
topologues with broadband subharmonic mid-infrared frequency combs.”
In: Nature Photonics 12.4 (2018), pp. 209–214. doi: 10.1038/s41566-
018-0135-2.

[42] Mingchen Liu, Robert M. Gray, Luis Costa, Charles R. Markus, Arkadev
Roy, and Alireza Marandi. “Mid-infrared cross-comb spectroscopy.” In:
Nature Communications 14.1 (2023), p. 1044. doi: 10.1038/s41467-
023-36811-7.

[43] Chenchen Wan, Peng Li, Axel Ruehl, and Ingmar Hartl. “Coherent frequency
division with a degenerate synchronously pumped optical parametric oscil-
lator.” In: Optics Letters 43.5 (2018), pp. 1059–1062.

https://doi.org/10.1364/OPTICA.442332
https://doi.org/10.1038/s41566-018-0135-2
https://doi.org/10.1038/s41566-018-0135-2
https://doi.org/10.1038/s41467-023-36811-7
https://doi.org/10.1038/s41467-023-36811-7


76

[44] Marc Jankowski, Nayara Jornod, Carsten Langrock, Boris Desiatov, Alireza
Marandi, Marko Lončar, and Martin M. Fejer. “Quasi-static optical para-
metric amplification.” In: Optica 9.3 (2022), pp. 273–279.

[45] Jean Wei, Joel M. Murray, Jacob O. Barnes, Douglas M. Krein, Peter G.
Schunemann, and Shekhar Guha. “Temperature dependent Sellmeier equa-
tion for the refractive index of GaP.” In: Optical Materials Express 8.2
(2018), pp. 485–490.

[46] Iouli E. Gordon, Laurence S. Rothman, Robert J. Hargreaves, R. Hashemi,
Ekaterina V. Karlovets, Frances M. Skinner, Eamon K. Conway, Christian
Hill, Roman V. Kochanov, Yan Tan, et al. “The HITRAN2020 molecu-
lar spectroscopic database.” In: Journal of Quantitative Spectroscopy and
Radiative Transfer 277 (2022), p. 107949.



77

C h a p t e r 4

QUADRATIC-SOLITON-ENHANCED MID-IR MOLECULAR
SENSING

Robert M. Gray, Mingchen Liu, Selina Zhou, Arkadev Roy, Luis Ledezma, and
Alireza Marandi. “Quadratic-soliton-enhanced mid-IR molecular sensing.” In: Na-
ture Communications 15.1 (2024), p. 9086. doi: 10.1038/s41467-024-
53447-3.

4.1 Introduction
Since their discovery, optical solitons [1, 2] have been the subject of intense study due
to the rich physics underlying their dynamics [3–6], relying on a delicate interplay
of linear and nonlinear effects, as well as their broad application in areas including
low-noise frequency synthesis [7], astronomy [8], and spectroscopy [9, 10], among
others. Quadratic solitons [11–14] can benefit from the inherent strength of the
quadratic nonlinearity, which relaxes the requirement on resonator finesse or pump
power for achieving soliton formation, as well as the ability to achieve efficient
conversion between disparate spectral bands.

Temporal simultons are one such quadratic soliton, which consist of a co-propagating
bright-dark soliton pair at the fundamental and second harmonic frequencies, re-
spectively [15, 16]. More recently, cavity simultons have been demonstrated in
synchronously-pumped degenerate OPOs operating in the high-gain, low-finesse
regime [17]. Such temporal cavity simultons are shown to have several favor-
able properties including broader bandwidths, which increase with increasing pump
power, and higher efficiencies. When extended to the MIR regime [18], where many
important molecules have their strongest absorption features [19], these properties
make the simulton OPO a powerful frequency comb source for molecular sensing
and spectroscopy.

In this work, we utilize the formation dynamics of quadratic cavity simultons for
molecular sensing, in particular, the uniquely high sensitivity of simulton formation
to the intracavity loss (Figs. 4.1a-b). In a proof-of-principle experiment sensing
CO2 in a 1.2-m-long OPO operating in the simulton regime at around 4.18 µm [18],
we measure an equivalent path length enhancement of up to 6000 and additionally
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Figure 4.1: Enhanced sensing using quadratic cavity simultons. a, Schematic
depiction of sensing in the simulton regime of a synchronously-pumped optical
parametric oscillator at degeneracy. The bright soliton in the signal interacts with the
sample every round trip, and the resulting competing nonlinear dynamics generate
the measured signal response. b, Specifically, stable simulton operation requires the
simulton group advance, Δ𝑇 , to balance the round-trip group delay, Δ𝑇RT, and the
parametric gain to balance the sample loss, 𝛼samp, and output coupling. c, Schematic
representation of linear absorption sensing governed by the Beer-Lambert Law for
light interacting with a sample over a path length 𝐿. d, Linear methods (light blue
region) face limitations in the achievable sensitivity at high sample concentrations.
In contrast, active cavity sensing with quadratic cavity (orange) can achieve high
sensitivities at high sample concentrations. 𝑇rep, pump repetition period; 𝑇circ, pulse
circulation time in the cavity; Δ𝑇 , simulton group advance; 𝑇RT, cold cavity round-
trip time Δ𝑇RT, round-trip group delay; 𝜒(2) , second-order susceptibility; 𝜔, angular
frequency; 𝛼samp, sample absorption coefficient; OC, output coupling; 𝑃in, input
power; 𝑃𝑜𝑢𝑡 , output power; 𝐿, path length; ℏ, reduced Planck’s constant.
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show a maximum sensitivity at concentrations of CO2 as high as atmospheric levels
that is orders of magnitude larger than what can theoretically be achieved through
linear methods using a source of equivalent power and bandwidth to the output of
our broadband OPO. We additionally extend our experimental results to estimate
a detector-limited normalized noise equivalent absorption (NEA) of 1.05*10-10

cm-1/
√

Hz for realistic system parameters. Finally, we use numerical simulation to
investigate the unique dynamics responsible for this sensing behavior and show the
potential of the method to achieve high linearity across a dynamic range of 107.

Sensing based on simulton formation dynamics enables a fundamentally different
scaling behavior compared to typical linear absorption sensing (LAS) following the
Beer-Lambert Law [20], as illustrated in Figs. 4.1c-d. In particular, although pas-
sive cavity enhancement [21–23] can offer extremely high sensitivities at low analyte
concentrations, the dynamic range is limited. For example, recent works [24] have
demonstrated normalized noise-equivalent absorption (NEA) values on the order of
10-13 cm-1/

√
Hz, while their dynamic range is constrained to about 4 orders of magni-

tude [25] if not extended through a frequency [26, 27] or path-length multiplexed [28]
approach. By contrast, cavity soliton dynamics can achieve high sensitivity and sig-
nificant signal enhancement even at large sample concentrations, thereby promising
precision and extended dynamic range for mid-infrared gas sensing while avoiding
the typical requirements of high-finesse and high-power operation. Furthermore,
in contrast to intracavity laser absorption sensing (ICLAS) techniques [29–34],
cavity-simulton enhancement mitigates the limitations in sensitivity imposed by
spontaneous emission and difficulty in measuring the low signal powers required
for near-threshold operation [29]. Moreover, simultons can be achieved at arbi-
trary wavelengths, paving the way towards a universal molecular sensing scheme,
especially in wavelength ranges where lasers are not readily available.

4.2 Results
Theory of Cavity Simulton Formation
Since we previously derived the simulton solutions and discussed their formation
in OPOs, we only briefly recount here the details necessary for understanding the
sensing mechanism. As discussed in Section 3.2, the simulton consists of a co-
propagating bright-dark soliton pair of the pump at frequency 2𝜔 and signal at 𝜔,
given by
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𝐴𝜔 (𝑧, 𝑡) =
𝑎

√
2𝜏

sech
(
𝑡 − 𝑇
𝜏

)
, (4.1a)

𝐴2𝜔 (𝑧, 𝑡) = −𝐴2𝜔,0 tanh
(
𝑡 − 𝑇
𝜏

)
. (4.1b)

Here, 𝐴 𝑗 , 𝑗𝜖{𝜔,2𝜔}, is the field amplitude of the 𝑗 th wave, 𝐴2𝜔,0 is the pump
amplitude, 𝑎 is the simulton signal amplitude, 𝑇 is the simulton centroid position,
and 𝜏 is the simulton pulse width. As before, we may use the nonlinear manifold
projection method to find the evolution of 𝑇 , 𝜏, and 𝑎 [35]. In this case, we
assume in particular an OPO with a nonlinear crystal of length 𝑙, a total cavity
length of 𝐿, a roundtrip group delay of Δ𝑇RT, and a roundtrip loss of coefficient of
𝛼𝜔 = 𝛼𝑅 + 𝛼samp + 𝛼oth, where 𝛼𝑅 is the loss due to the output coupler reflectivity
𝑅 = 𝑒−𝛼𝑅𝐿 , 𝛼samp is loss due to the sample, and 𝛼oth encapsulates all other roundtrip
losses. Then, the evolution of the system from the 𝑛th roundtrip to the 𝑛 + 1th

roundtrip is given by

𝑇 (𝑛 + 1) = Δ𝑇 (𝑛) + 𝑇 (𝑛) + Δ𝑇RT, (4.2a)

𝜏(𝑛 + 1) = 𝜏0, (4.2b)

𝑎(𝑛 + 1) = 𝑎(𝑛)𝑒𝜅𝐸2𝜔,0𝑙−𝛼𝜔
𝐿
2√︂

1 + 𝑎(𝑛)2

𝑎2
sim

(𝑒2𝜅𝐸2𝜔,0𝑙 − 1)
, (4.2c)

where 𝑎sim is the steady-state simulton amplitude, 𝜏0 is the simulton pulse width, 𝜅 is
the nonlinear coupling coefficient, and Δ𝑇 (𝑛) = − 𝜏0

2 ln
(
1 + 𝑎(𝑛)2

𝑎2
sim

(𝑒2𝜅𝐸2𝜔,0𝑙 − 1)
)

is
the simulton centroid shift due to nonlinear acceleration caused by pump depletion
and subsequent back conversion.

From these equations, we see the requirements for stable cavity simulton formation,
as depicted in Fig. 4.1b. Firstly, we see that achieving a non-zero steady-state am-
plitude requires that the gain balance the loss; here, this demands 𝑒𝜅𝐸2𝜔,0𝑙−𝛼𝜔

𝐿
2 ≥ 1.

Secondarily, the simulton centroid shift, Δ𝑇 , must balance the roundtrip group delay
due to the cavity length detuning, Δ𝑇RT. This allows the simulton to re-synchronize
with the pump, such that signal pulse circulation time 𝑇circ = 𝑇RT+Δ𝑇RT+Δ𝑇 equals
the pump repetition period, 𝑇rep. Further, we see the interdependence of these two
conditions, as achieving a sufficient timing advance to compensate the roundtrip
delay requires a sufficient amount of gain and pump depletion, which results in the
dynamics responsible for the simulton sensing mechanism.
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Figure 4.2: Quadratic cavity simulton enhancement mechanism. a, Theoreti-
cal behavior of near-threshold sensing, wherein the addition of sample causes an
increase in threshold, resulting in a decrease in signal power at the sensing point.
b, The corresponding signal enhancement grows asymptotically as threshold is ap-
proached. c, Experimentally measured input-output power relationships for the
simulton (orange) and conventional (pink) regimes show the extremely high slope
efficiency and high threshold of the simulton, suggesting its potential for near-
threshold sensing with high SNR. Solid lines capture the trends through linear fits
of the experimental data while the orange, dashed line shows the corresponding
simulton simulation.

The simulton-based sensing mechanism exploits the interplay between energy and
timing in the simulton regime to attain high sensitivity to the sample of interest.
The theoretical principle of threshold sensing as leveraged by the simulton sensing
mechanism is depicted in Fig. 4.2a. For a given pump power, the addition of a
small amount of loss due to the sample causes a threshold increase, resulting in a
corresponding decrease in the output power, Δ𝑃. The absolute change in power
is proportional to the local slope efficiency at the sensing point, meaning a higher
slope efficiency results in a higher sensitivity.

In such a scenario, the corresponding equivalent path length enhancement is given
by:

𝐿eff

𝐿
=

−1
𝐿Δ𝛼samp

ln
(
𝑃signal(𝛼samp + Δ𝛼samp)

𝑃signal(𝛼samp)

)
≈

Δ𝑃signal

𝐿Δ𝛼samp𝑃signal
, (4.3)

where 𝐿eff is the effective path length, 𝐿 is the cavity roundtrip length and, equiva-
lently, the sample interaction length, 𝑃signal is the signal power, 𝛼samp is the sample
absorption coefficient, and Δ𝛼samp represents a small change in the absorption due
to the addition of sample. Simplified models using single-mode laser theory [29] or
OPO theory [35, 36] show the enhancement to asymptotically approach infinity as
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the number of times above threshold, 𝑁 = 𝑃pump/𝑃th, approaches unity, as shown
schematically in Fig. 4.2b. Specifically, using degenerate OPO theory and assuming
a roundtrip loss in power for the signal of 𝛼𝜔, we compute the equivalent path-length
enhancement as:

Δ𝑃signal

𝐿Δ𝛼samp𝑃signal
=

1
𝐿𝛼𝜔

1
√
𝑁 − 1

. (4.4)

In typical intracavity laser systems, such threshold enhancement has been achieved
through operation of the system close to the lasing threshold and subsequent addition
of sample. In our degenerate OPO system, we show that such asymptotic enhance-
ment may also be attained by pumping above the sample-free oscillation threshold,
at a point 𝑃sense (Fig. 4.2a), and adding sufficient sample to raise the threshold to the
level of the pump power. We benefit here from a feature of degenerate OPO systems
that the addition of roundtrip loss does not change the theoretical sensitivity, which
contrasts single-mode laser theory (see Section 4.4). This enables tuning of the
enhancement region through variation of the pump rate, thereby extending the dy-
namic range. In describing our results, therefore, we use 𝑁 to describe specifically
the number of times above the sample-free simulton threshold.

This large enhancement near threshold is theoretically followed by a decrease in
the signal-to-noise ratio (SNR). However, the combination of the low spontaneous
emission rate of the OPO[37] as well as the large slope efficiency and high threshold
in the simulton regime makes this SNR reduction extremely slow in comparison
to other intracavity laser sensors. As an example, in our experiments (see Section
4.4), the measured simulton threshold is approximately a factor of 2.5 larger than
that of the conventional regime, and the slope efficiency is a factor of 3.5 larger, as
illustrated in Fig. 4.2c. The net result is an ability to operate nearly 9 times closer
to threshold in the simulton regime at the same output power for detector-limited
measurements. This ability to achieve measurable signals very near to the simulton
threshold can lead to an extremely large enhancement, making the simulton an ideal
candidate for intracavity sensing.

From the fundamental perspective, such cavity-simulton-enhanced sensing cannot
be achieved in a general multi-mode laser or conventional OPO as other modes which
do not experience the absorption can compensate for the loss in the absorbing modes,
leading to a limited change in the laser threshold or output power with the addition
of the sample [29]. This is observed in the far above threshold conventional regime
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Figure 4.3: Simulton dynamics responsible for sensing. a, Experimental power
spectral densities demonstrate reduced power across the entire simulton spectrum
with the addition of sample despite the relatively narrow CO2 absorption feature.
b, In the far above threshold conventional regime, like other general multi-mode
lasers, power in non-absorbing modes increases with the addition of sample, largely
compensating the loss in the absorbing modes. c, Schematic depiction of the tem-
poral dynamics of cavity simulton formation which enable the sensing enhancement
mechanism. Additional loss in the round trip limits the ability of the simulton to
deplete the pump and accelerate, leading to a reduced gain for all modes at steady-
state. d Simulated steady-state pulse position as a function of gas concentration
(left). Comparison with the theoretical gain window (right) shows the simulton
moving further towards the gain window edge as the sample concentration is in-
creased, in accordance with c.

of our synchronously-pumped OPO but not for the simulton regime, as shown in
Figs. 4.3a-b. Here, the experimental spectrum data in both the simulton (Fig. 4.3a)
and conventional regimes (Fig. 4.3b) is given for three different intracavity CO2

concentrations. In the conventional regime, spectral modes which do not experience
the absorption are observed to increase in power, largely compensating the loss due
to the sample. In sharp contrast, the power in all the spectral modes of the simulton
regime decreases nearly uniformly with the addition of even a narrow-band sample,
mimicking that of a single-mode sensor for which threshold sensing is possible. In
contrast to single-mode lasers, however, the simulton enhancement provides SNR
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advantages, can be achieved in wavelength ranges that are typically not easy to reach
with lasers, particularly in the infrared, and provides broadband operation, which
relaxes the requirement for fine tuning of the laser line to a single absorption line,
though at the cost of selectivity without increasing system complexity.

This collective response of the spectral modes of the simulton to the addition of
sample results from the interplay between the energy and timing requirements of
simulton formation. This interplay is shown in Fig. 4.3c, where the formation
of the simulton pulses over multiple roundtrips in the resonator is schematically
depicted for two different values of the absorption. Due to the roundtrip delay,
Δ𝑇RT, required for stable simulton formation, the newly formed pulse slowly falls
out of the gain window, determined by the pump pulse and walk-off length, until
it has grown enough to experience a sufficiently strong nonlinear acceleration to
compensate the delay. The addition of a small amount of loss in the roundtrip to the
signal will reduce the amount of acceleration and, correspondingly, the amount of
gain experienced by all spectral modes of the simulton at steady-state as it interacts
with the pump in the nonlinear crystal, leading to a spectrally uniform reduction of
power despite the relatively narrow absorption spectrum, as shown in the measured
spectrum of Fig. 4.3a.

This dynamical behavior is confirmed through our simulation. Figure 4.3d depicts
the steady-state signal pulse position as a function of CO2 concentration (left) in
comparison to the available gain (right) for three different number of times above
threshold, 𝑁 = 1.2 (green triangles), 𝑁 = 1.35 (orange circles), and 𝑁 = 1.5 (red
squares). The gain here is calculated as the convolution between the pump pulse
shape and the walk-off, with the center of the gain window positioned at 0 fs. The
approximate gain window edge can be calculated by halving the sum of the pump
pulse length and the walk-off length. Further details can be found in Section 4.4.
As sample is added to the cavity, the steady-state position of the signal pulse moves
towards the gain window edge due to the reduced acceleration of the simulton
until it no longer experiences sufficient gain to resonate. This sharp reduction in
gain as sample is added to the cavity enables a high sensitivity for the simulton near
threshold. Additional theoretical analysis and comparisons regarding the sensitivity,
sensitivity enhancement, and SNR of single-mode intracavity lasers, single-mode
degenerate OPOs, and simulton OPOs may be found in Section 4.4.
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Figure 4.4: Sensing behaviors of quadratic cavity solitons. a, Measured output
power as a function of CO2 concentration for different number of times above thresh-
old, 𝑁 . A high sensitivity of 4.1 mW/ppm is measured near threshold, emphasized
using the solid trend lines. b, Simulations of the simulton response to the addition of
CO2 at various number of times above threshold exhibit good qualitative agreement
with the experimental data. c, Equivalent path-length enhancement calculated for
neighboring points in the experiment, showing a measured enhancement as large
as 6000. Solid lines show the expected asymptotic enhancement corresponding to
the linear fits in b, with dashed lines extending these fits to enable extrapolation of
detector-limited enhancements for detection bandwidths of 1 MHz (x’s) and 1 Hz
(stars). d Simulated change in output power as a function of CO2 concentration with
a linear fit (dashed line) showing good linearity over a dynamic range of 107. e,
Measured sensitivity as a function of CO2 concentration in direct comparison with
linear sensing (light blue), demonstrating orders of magnitude sensitivity improve-
ment over linear methods at high sample concentrations.

Sensing Behavior
Figure 4.4a depicts the measured simulton output power as the CO2 concentration in
the cavity is varied. Green triangles, orange circles, and red squares correspond to
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pumping at different number of times above threshold (here, 𝑁 = 1.25, 1.64, and 1.84,
respectively). Similar to the input-output power dependence shown previously, the
output power dependence on CO2 changes most sharply close to threshold. Solid
lines show linear fits of the near-threshold data. Their slope is used to find the
sensitivity, with the highest fitted sensitivity calculated to be 4.1 mW/ppm. This
unit of sensitivity is convenient as it both represents the slope of our calibration
curve, defined at any concentration, and carries physical meaning as a detector-
independent metric for characterizing the strength of the system response to the
addition of sample. Additionally, it allows for easy analytical comparison with
linear absorption spectroscopy through the Beer-Lambert Law. Finally, we observe
that by tuning the pump power, one can change the region of high sensitivity, thereby
extending the dynamic range of the system.

These observations are consistent with our simulated sensing results, shown in Fig.
4.4b. Here, we again see the large sensitivity near threshold and tuning of the sensi-
tive region through variation in the number of times above threshold. The calculated
sensitivity is also shown to be consistent across the different pump conditions. Our
simulated sensitivity is slightly lower than what is observed experimentally, which
we attribute primarily to imperfections in our modeling of the gas response.

We also find the equivalent path length enhancement for the experimental data,
as shown in Fig. 4.4c. To do so, we define Δ𝛼eff as the effective absorption
coefficient experienced by a pump of the same bandwidth as the simulton which has
experienced 1.2 m of CO2 absorption at the reference concentration. Using this,
we calculate −1

𝐿Δ𝛼eff
ln

(
𝑃signal (𝛼eff+Δ𝛼eff)
𝑃signal (𝛼eff)

)
for neighboring points in our experimental

measurement. Further details on this calculation may be found in Section 4.4. The
largest enhancement of 6000 is observed near threshold for the case where 𝑁 =
1.84, though similar enhancements are observed near threshold for the other cases.
Solid lines show the enhancement corresponding to the linear fits from Fig. 4.4a in
accordance with theory. The close fits near threshold illustrate the nearly asymptotic
trend for the enhancement, with deviations at lower sample concentrations coming
from the observed saturation of the simulton response far above threshold.

To additionally demonstrate the potential of this asymptotic enhancement, we extend
the theoretical fits (dashed lines) and plot the detector-limited enhancement for two
different measurement bandwidths, 1 MHz (x’s) and 1 Hz (stars). We select these
bandwidth values as the current measurement is performed at a 1 MHz bandwidth,
while 1 Hz is the standard for normalized comparison with other reported results.
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The detector-limited value is found by dividing our noise-equivalent power (NEP),
given by the 1𝜎 variance of our detector noise, by our measured sensitivity (see
Section 4.4 for more information). For output powers of 74 µW and 74 nW, the
calculated NEPs at a 1 MHz and 1 Hz bandwidth, respectively, we see enhancements
on the order of 100s of thousands and 10s of millions.

In addition to the estimated enhancement, we compute the detector-limited normal-
ized NEA, which we find to be 1.05*10-10 cm-1/

√
Hz, corresponding to a concentra-

tion of 18 ppt. Taken in tandem with our experimentally measured concentrations
of up to nearly 400 ppm, this is suggestive of a dynamic range on the order of 107

for the method, which can be further extended through use of a higher-power pump
laser. To further validate this estimated dynamic range, we use our simulation to
characterize the linearity of the sensor response across many orders of magnitude of
CO2 concentrations. The results are plotted in Fig. 4.4d, where the y-axis, Δ𝑃, indi-
cates the difference between the output power at a given concentration and the power
at 0 ppm. A dashed line indicates a linear fit of the data, with solid lines showing
the detector limits for measurement bandwidths of 1 Hz and 1 MHz. Here, we again
see that sample concentrations can be measured down to the level of 10s of ppt,
and good linearity is observed over nearly 7 orders of magnitude of dynamic range.
While such detector-limited measurements would require careful stabilization of the
measurement system and finer control over the measured gas concentration than was
achieved in the present experiment, which is currently limited by the precision of
our reference sensor (see Section 4.4), these theoretical values show high potential
for the simulton sensing mechanism.

Finally, we can make direct comparisons with the sensitivity achievable using linear
methods for varying concentrations. Figure 4.4e shows the sensitivity in mW/ppm,
calculated for neighboring points in our experimental measurement. Note that
through variation of the number of times above threshold, a sensitivity near the
measured value of 4.1 mW/ppm may be achieved across all concentrations.

By comparison, we have plotted the theoretically achievable sensitivities using lin-
ear methods (light blue region). Here, we model a linear cavity pumped by a pulsed
source with the same bandwidth as our measured simulton and an average power
of 500 mW, equivalent to the sample-free output power of the simulton OPO for
the highest pump power. We have additionally assumed a path-length-multiplexed
approach in which the path length enhancement is varied to achieve the maximum
sensitivity at each point, up to a length corresponding to an enhancement of 106 and
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corresponding finesse of over 1.5 million for a cavity length of 1.2 m, equivalent
to the length of our OPO, compared to our sample-free cavity finesse of ∼20. We
believe this to be a large enough enhancement limit for linear methods to repre-
sent practically achievable values of the finesse. Further discussion and additional
points of comparison, including with single-mode systems, may be found in Sec-
tion 4.4. Though high sensitivities can be maintained at low concentrations for this
path-length-multiplexed approach, an inverse scaling is observed in accordance with
theory, emphasizing the limitations of linear techniques for achieving high sensitiv-
ities at high sample concentrations. In contrast, the nearly constant and orders of
magnitude higher sensitivity demonstrated by the simulton sensing mechanism at
high sample concentrations illustrates the potential for this method to achieve pre-
cision at large concentrations, which can benefit many applications while avoiding
the typical requirements of high-finesse cavities.

4.3 Discussion
It is worth noting that other methods exist which address some of the aformentioned
limitations of LAS, including dispersion sensing as well as photoacoustic and pho-
tothermal sensing. Dispersion spectroscopy techniques achieve high linearity and
consequently large dynamic range through direct measurement of the refractive in-
dex rather than the absorption of the sample of interest [38]. A recent demonstration
of cavity-mode dispersion spectroscopy [39], which marries the benefits of disper-
sion spectroscopy with cavity-enhanced techniques, has achieved a dynamic range
of 2*105 and a NEA of 5*10-11 cm-1. Photothermal and photoacoustic methods
work by measuring the heat-induced refractive index change and pressure change
due to the absorption of light by the sample, respectively. A recent demonstration of
mode-phase-difference photothermal spectroscopy [40] has shown a dynamic range
of 2*107 and a NEA of 1.6*10-11 cm-1. Meanwhile, measurements using intracavity
quartz-enhanced photoacoustic spectroscopy [41] have exhibited a dynamic range
of >105 and a normalized NEA of 1.5*10-8 cm-1/

√
Hz. As these results show, these

methods demonstrate effective ways of overcoming limitations of absorption-based
sensing but at the cost of introducing additional system complexity and potential
susceptibility to environmental noise.

The sensing performance of the simulton could be further improved in several ways.
Here, we have only explored the first simulton due to limitations in our pump power,
but OPOs will often exhibit multiple simulton peaks as the cavity length is further
increased. These further-detuned simultons can exhibit even higher slope efficien-
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cies, leading to potentially larger sensitivities and sensitivity enhancements [17].
Additionally, simultons benefit from operation in the high-gain, low-finesse regime.
Recent advances in thin-film lithium niobate nanophotonics, where gains as large as
100 dB/cm have been demonstrated [42, 43], could push OPOs even further into this
regime, adding to a growing push for the creation of high-sensitivity, highly scal-
able molecular sensors [44–46]. Low-finesse operation also makes simulton-based
sensing compatible with waveguide structures such as slot [47] and suspended rib
waveguides [48] aimed at improving evanescent wave interaction with the molecular
sample of interest but generally at the cost of additional propagation loss. Finally,
other nonlinear behaviors in OPOs such as spectral phase transitions offer additional
means to achieve high sensitivity for intracavity sensing in OPOs [49]. Exploration
of different operation regimes of OPOs for molecular sensing will be the subject of
future work.

There are a few additional considerations for use of the simulton enhancement
mechanism for practical sensing applications. The first is with regards to selectivity,
as previously noted. Since the simulton response is broadband, the ability to
distinguish between molecules using the simulton response alone can be limited,
so care must be taken in the system design to ensure that only the molecule of
interest is captured in the simulton bandwidth. With that said, one may also perform
a spectrally-resolved measurement of the output signal to gain information about
the molecules present. Additionally, since other regimes of OPO operation contain
different frequency content, exploration of other OPO regimes could enable multi-
species sensing using only a detector for signal read-out (see Section 4.4) [50].
Secondly, to achieve the theoretically suggested detector-limited performance, one
must ensure that other noise contributions are minimized; in particular, the relative
intensity noise (RIN) is of concern. Here, we consider the signal RIN as being
dominated by the RIN of the pump, coupled into the signal through the slope
efficiency. To remain detector-noise limited, we require that the signal RIN in a
1 Hz bandwidth is less than the NEP of 74 nW. Considering our measured slope
efficiency of 128% and 665-mW threshold, this would necessitate a pump RIN of
less than -70.5 dBc/Hz. Such a value is practically achievable in many mode-locked
fiber laser systems [51], among other pulsed sources.

In summary, we have proposed and demonstrated a mid-infrared molecular sens-
ing mechanism which benefits from the formation dynamics of quadratic cavity
simultons in optical parametric oscillators to achieve strong performance. Our
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proof-of-principle experimental demonstration measuring CO2 in an OPO at 4.18
µm and complementary simulations show an equivalent path length enhancement of
6000 and orders of magnitudes sensitivity enhancement at large gas concentrations
when compared to linear cavity-enhanced methods. This distinct scaling behavior
of the simulton suggests the potential for achieving high sensitivity, large dynamic
range, and good precision using this method, in accordance with our theoretical
estimates of the detector-limited performance in the current experimental config-
uration, and illustrates how nonlinear dynamics in low-finesse resonators may be
exploited for enhanced sensing.

4.4 Supporting Information
Experimental Details
In this section, we explain in detail our experimental setup, which is similar to
ref. [18], as described in Chapter 3, as well as our experimental procedure. Our
system consists of a synchronously-pumped free-space optical parametric oscillator
(OPO) at 4.18 µm, shown in Fig. 4.5a. The OPO is pumped by another PPLN-
based OPO which provides pulses at 2.09 µm with a full-width, half-maximum
bandwidth of 155 nm and a 250-MHz repetition rate. The pump can provide up
to 1400 mW of average power, though the full power is not necessary for the
performed sensing experiment. Dielectric-coated mirror M1 is highly reflective for
the signal at 4.18 µm and highly transmissive for the pump at 2.09 µm, enabling
coupling of the pump into the resonator. An anti-reflection coated, plane-parallel
orientation-patterned gallium phosphide (OP-GaP) crystal of length 0.5 mm with a
poling period of 92.7 µm for type-0 phase matching of the pump and signal at room
temperature enables the nonlinear interaction. Concave gold mirrors M3 and M4
with a radius of curvature of 24 mm on either side of the OP-GaP crystal provide
focusing and collimating of the beam on the input and output sides of the crystal,
respectively. Mirror M2 is a dielectric mirror designed for 25% transmission of
the signal around 4.18 µm, enabling outcoupling and measurement of the generated
signal. A piezoelectric actuator (PZT) on cavity mirror M1 allows for tuning of the
cavity length for entry into the simulton regime. The cavity can be locked using the
dither-and-lock protocol.

Measurement of the signal can be performed using either a photodetector (PD)
or a commercial Fourier-transform infrared spectrometer (FTIR) placed after the
cavity. Mirror MM, a magnetic-mounted gold mirror, allows for easy transition
between the two. For performing sensing measurements, only the photodetector
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Figure 4.5: Experimental details. a, The experimental setup consists of the 4
µm OPO cavity placed inside a purging box alongside all necessary measurement
equipment. b, Calibration curve for mapping the voltage on the pump photodetector
to optical power. c, Corresponding calibration curve for the signal. d, Example of
the raw trace measured by the 4 µm photodetector as the round trip delay in the
cavity is scanned at 406 ppm, 384 ppm, and 297 ppm. Overlaid traces with different
shading correspond to the five traces that are averaged to generate the final value.
The inset shows a zoom-in of the simulton peak. f, Experimental data showing how
fine tuning of 𝑁 can allow for high sensitivity at desired values of the concentration.
The example traces in d were taken from the data set corresponding to 𝑁 = 2.092.
M1, input coupler; M2, output coupler; M3 and M4, concave gold mirrors; OP-
GaP, orientation-patterned gallium phosphide crystal; PZT, piezoelectric actuator;
MM, magnetic mirror; FTIR, Fourier-transform infrared spectrometer; 92:8, pellicle
beamsplitter with 92:8 splitting ratio; PD, photodetector.

(or, equivalently, a power meter) must be used, but the FTIR allows for studying
of the spectral behavior of the OPO in the presence of the sample. The entire
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cavity and all measurement tools are placed inside a purging box. Purging of the
cavity is achieved with nitrogen (N2) supplied to the cavity. Through adjusting
the flow of nitrogen to the cavity, the amount of atmospheric gas, and thereby the
concentration of CO2, inside the cavity is varied. The potential contribution of
other atmospheric gases to the observed sensing behavior is discussed below. Due
to the large size of the purging box and numerous gas outlets, we expect the internal
pressure to remain approximately constant. The CO2 concentration is monitored
using a commercial CO2 sensor (CO2meter.com K-30) which records real-time
measurements on a computer, enabling calibration of the sensing measurements.
Currently, our measurement is limited by the specifications of the reference sensor
and measurement setup; in particular, the reference sensor has a 20 s response
time diffusion and +/-30 ppm accuracy, limiting our ability to reliably fine-tune the
concentration.

Our experimental procedure is as follows. First, a small fraction of the 2 µm power
is siphoned off to a detector using a pellicle beamsplitter with a 92:8 splitting ratio,
placed at the input side of the cavity (Fig. 4.5a). We then create a calibration curve
(Fig. 4.5b) mapping the 2 µm power to the detector value using an optical power
meter. A similar procedure is used to create a calibration curve for the 4 µm signal
in both the conventional and simulton regimes mapping the measured voltage on the
photodetector to optical power with the 4 µm OPO cavity locked and purged. An
example calibration curve for the simulton can be seen in Fig. 4.5c. The R2 values
for the calibration curves are shown in each plot and indicate the goodness of the
fits.

After finishing the detector calibration, we perform the sensing measurement. For
this, the PZT is continuously scanned with a ramp function supplied by a function
generator. This enables near-simultaneous monitoring of all OPO peaks and also
allows measurement of the output nearer to threshold, where the locking is generally
less stable. The output is measured on the 4 µm photodetector and then mapped
to optical power using the calibration curve. Five measurements are taken at each
CO2 concentration using a data acquisition unit, triggered on the ramp function
used to scan the cavity length. An example of the raw data that is measured from
the system can be seen in Fig. 4.5d. Here, we show examples from 3 different
CO2 concentrations, 406 ppm, 384 ppm, and 297 ppm. The five different traces
are overlaid in different shades; they are for the most part almost identical, but
there is some fluctuation due to instability in the locking of our pump OPO and the
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dynamic nature of our measurement. The inset shows a zoomed-in picture of the
simulton peak. Through visual comparison with other peaks, it is clear to see that
the simulton exhibits a significantly more dramatic response to the addition of gas.
However, as discussed later in detail, we believe that the behaviors of the other peaks
contain additionally useful information about the gas being monitored, and a sensor
designed to utilize data from all of the OPO peaks will be the subject of future works.
The final presented value for the output power at any single concentration value, as
in Fig. 4.4a as well as Fig. 4.5e, is the result of averaging the five measured simulton
peaks and finding the maximum voltage of this averaged measurement which is then
mapped back to optical power through the calibration curve. In Fig. 4.5e, we show
this output power as a function of concentration for three different number of times
above threshold, 𝑁 = 2.092 (green triangles), 𝑁 = 1.959 (orange circles), and 𝑁 =
1.837 (red squares). These three values are significantly closer together than the
values shown in Section 4.2, highlighting the ability to do fine tuning of the pump
power to achieve high sensitivity at any concentration of interest.

Numerical Methods
In this section, we describe the methods used for computing the numerical results
presented in this work. We also show some additional results which help to both
substantiate claims made in the paper and illuminate areas where further theoretical
and numerical work could help to improve our understanding. Our simulations
are primarily based on the methodology presented in ref. [17], so our notation will
largely follow that of the analysis in that work. The key parameters of our simulation
may be found in Table 4.4.

The roundtrip propagation of the signal in the cavity is modeled in two parts: the
nonlinear interaction of the pump, taken to be a 35-fs sech-shaped pulse, and signal
in the crystal and the free space propagation of the light around the cavity, described
by a linear transfer function. The nonlinear interaction is essentially a single-pass
OPA, governed by the coupled wave equations,

𝜕𝑧𝐴𝜔 (𝑧, 𝑡) = 𝜅𝐴2𝜔𝐴
∗
𝜔 − 𝛼𝜔

2
+ 𝐷̂𝜔𝐴𝜔, (4.5a)

𝜕𝑧𝐴2𝜔 (𝑧, 𝑡) = −𝜅𝐴2
𝜔 − 𝛼2𝜔

2
− Δ𝛽′𝜕𝑡𝐴2𝜔 + 𝐷̂2𝜔𝐴2𝜔, (4.5b)

where t, the time coordinate, is set to be co-moving with the group velocity of the
signal wave, and the pump envelope phase is shifted by 𝜋/2 to ensure real solutions if
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higher order dispersion is not considered. The subscripts𝜔 and 2𝜔 refer to the signal
and pump, respectively. The field envelopes are given by 𝐴 𝑗 , where 𝑗 ∈ {𝜔, 2𝜔},
and are normalized such that the instantaneous power is given by |𝐴 𝑗 |2. The strength
of the nonlinear interaction is governed by the nonlinear coupling coefficient, 𝜅 =√︁

2𝜂0𝜔𝑑eff/(𝑤0𝑛𝜔
√
𝜋𝑛2𝜔𝑐), where 𝜂0 is the impedance of free space, 𝑑eff is the

effective nonlinearity, 𝑤0 is the Gaussian beam waist inside the crystal (assuming
the crystal length is small compared to the confocal parameter), 𝑛 𝑗 is the refractive
index, and 𝑐 is the speed of light. The absorption coefficients, 𝛼 𝑗 , account for the
material loss in the crystal. Δ𝛽

′ gives the group velocity mismatch between pump

and signal. Finally, the dispersion operator 𝐷̂ 𝑗 =
∑∞
𝑚=2

[
(𝑖)𝑚+1𝛽

(𝑚)
𝑗

𝑚!

]
𝜕𝑚𝑡 describes the

material dispersion experienced by the pump and signal in the crystal, with 𝛽(𝑚)
𝑗

describing the 𝑚th-order dispersion of wave 𝑗 .

Simulation of the nonlinear step in each roundtrip is done using the split-step Fourier
method. For this, the spatial coordinate z, corresponding to propagation distance
into the 0.5 mm crystal, is divided into 50 discrete steps. In a given step, the output
of the nonlinear interaction is solved numerically using a fourth-order Runge-Kutta
method. Then, a linear filter accounting for the dispersion and loss in the step is
applied in the frequency domain. Dispersion is computed to fourth order using the
Sellmeier equation for GaP found in ref. [52].

After the nonlinear step is completed, we apply an additional linear filter in the
frequency domain to account for the roundtrip propagation of the beam. Specifically,
the input to the coupled wave equations for roundtrip n+1, 𝐴𝑛+1

𝜔 (0, 𝑡), is related to
the output from the previous OPA, 𝐴𝑛𝜔 (𝐿, 𝑡), where L is the length of the crystal, by
the equation

𝐴𝑛+1
𝜔 (0, 𝑡) = F −1{𝑒−

𝛼(Ω)
2 𝑒−𝑖Φ(Ω)F {𝐴𝑛𝜔 (𝐿, 𝑡)}}. (4.6)

Here, F and F −1 represent the Fourier and inverse Fourier transforms, respectively,
and Ω is the normalized Fourier frequency coordinate. The absorption coefficient
𝛼(Ω) accounts for the frequency-dependent losses in the cavity coming from the
mirrors, the output coupling, AR coatings on the crystal surface, and the gas in
the cavity. Similarly, the accumulated roundtrip phase, measured relative to a
perfectly synchronous signal pulse, is considered in Φ(Ω) = Δ𝑇RT(𝜋𝑐/𝜆2𝜔 + Ω) +
ΔΦ(Ω), where Δ𝑇RT is the cavity detuning, c is the speed of light, and 𝜆2𝜔 is the
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Parameter Description Value Units

𝜏𝑃 pump pulse width 35 fs

𝑇 outcoupler transmission 0.25

𝑤0 beam waist, signal 25 µm

𝑛2𝜔 refractive index, pump 3.0348

𝑛𝜔 refractive index, signal 3.0123

𝑑eff effective nonlinearity 32.3 pm/V

𝛼𝜔 crystal loss, signal 0.01 1/mm

𝛼2𝜔 crystal loss, pump 0.01 1/mm

Δ𝛽
′ crystal GVM 143.6 fs/mm

𝛽
(2)
𝜔 crystal GVD, signal 103.4 fs2/mm

𝛽
(3)
𝜔 crystal TOD, signal 1580 fs3/mm

𝛽
(4)
𝜔 crystal 4OD, signal -10235 fs4/mm

𝛽
(2)
2𝜔 crystal GVD, pump 489.2 fs2/mm

𝛽
(3)
2𝜔 crystal TOD, pump 681.0 fs3/mm

𝛽
(4)
2𝜔 crystal 4OD, pump -24.31 fs4/mm

𝜙
(2)
𝜔 roundtrip GDD, signal 70 fs2

𝜙
(3)
𝜔 roundtrip TOD, pump 1300 fs3

𝜙
(4)
𝜔 roundtrip 4OD, pump 0 fs4

𝜙
(5)
𝜔 roundtrip 5OD, pump 15e6 fs5

Table 4.1: Simulation parameters for the simulton OPO.
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pump wavelength. ΔΦ(Ω) contains the dispersion terms from the various cavity
components as well as from the gas.

Critical to accurate simulation of the sensing behavior is our model for the gas.
In our simulation, we use the Lorentz oscillator model to compute the complex
refractive index experienced by the signal in the roundtrip [53]. Specifically, the
index, 𝑛(𝜔), is given as

𝑛2(𝜔) = 1 +
∑︁
𝑖 𝑗

𝑓𝑖 𝑗𝑁 𝑗𝑞
2

2𝜀0𝑚𝑒 (𝜔2
𝑖 𝑗
− 𝜔2 + 𝑖𝛾𝑖 𝑗𝜔)

, (4.7)

where the indices i,j refer, respectively, to the upper and lower state of the transition
of interest, 𝑓𝑖 𝑗 is the oscillator strength, 𝑁 𝑗 is the density of molecules in state j, q is
the electron charge, 𝜀0 is the vacuum permittivity, 𝑚𝑒 is the mass of an electron, 𝜔𝑖 𝑗
is the center frequency of the transition, and 𝛾𝑖 𝑗 is the linewidth of the transition.
Modeling of the CO2 response is done using parameters taken from the HITRAN
database [54]. All simulations assume room temperature and atmospheric pressure.
While the dominant contribution in our experiment is from CO2, this model allows
for easy inclusion of additional atmospheric gases, as discussed further in below.

After computing the complex refractive index using Equation 4.7, the absorption
and dispersion can be separately considered from the relationship

𝑛(𝜔) = 𝑛′ (𝜔) − 𝑖𝜅(𝜔), (4.8)

where the real part of the refractive index, 𝑛′ (𝜔), contains the dispersion information
and the imaginary part 𝜅(𝜔) defines the contribution to the loss. Examples of the
imaginary and real parts of the complex refractive index for the CO2 bands of interest
at atmospheric concentrations can be found in Fig. 4.6a and Fig. 4.6b, respectively.
Interestingly, while much of our theoretical analysis centers around the impact of
loss, we have found that accurate simulation of the sensing behavior additionally
requires a correct model for the dispersion, likely due to the effective loss imposed
by dispersion resulting from the phase-sensitive nature of the gain. This suggests
that a complete theoretical description of the sensing behavior should also include
dispersion; such a model will be the subject of future works.

Besides helping to confirm the behaviors observed in experiment, our numerical
analysis can extend those results to different regimes where the sensing performance
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Figure 4.6: Numerical methods and results. a, Calculated 𝜅, the imaginary
part of the complex refractive index, for the CO2 bands of interest at atmospheric
levels of CO2. b, Corresponding result for 𝑛′ − 1, the real part of the complex
refractive index. c, Simulated simulton slope efficiency for various values of the
output coupling; the experiment most closely corresponds to 0.25 (orange). d,
Simulated sensing behaviors for the three different values of the output coupling
shown in c, demonstrating higher sensitivities as the slope efficiency and threshold
are increased. e, Steady-state signal pulse position as a function of pump power,
shown to trend towards the center of the gain window as the pump power is increased.
f, Relative steady-state signal pulse position along the fast time axis with increasing
CO2 concentration for three different number of times above threshold. Note that
the observed trend is opposite that of e, illustrating the way in which the gain and
loss work as counteracting forces for near-threshold simulton operation.
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may be further improved. In Figs. 4.6c and 4.6d, we highlight the importance of
low-finesse operation for the observed sensing behavior. As mentioned in Section
4.2, the sensitivity benefits from a higher slope efficiency and a higher threshold.
In the simulton regime, both the slope efficiency and threshold can be increased
through use of a low finesse cavity. Fig. 4.6c shows the output power as a function
of input power for output coupling values of 0.1, 0.25, and 0.4, with an output
coupling value of 0.25 being approximately correspondent to our experiment. Here,
we observe a threshold increase from around 350 mW for an output coupling
of 0.1 to around 1200 mW for an output coupling of 0.4. Additionally, we see
that the slope efficiency more than doubles, from an efficiency of 81.3% to 204%.
Correspondingly, we note a more than 4-fold increase in the sensitivity, as illustrated
in Fig. 4.6d. This ability to achieve both a higher slope efficiency and threshold in
the simulton regime through low-finesse operation is critical to the uniquely large
sensitivity enhancement provided by the simulton.

Additionally, our numerical results can help us to better understand the nonlinear
dynamics involved in simulton formation which contribute to the sensing. As shown
in Figs. 4.3c and 4.3d, it is the interplay of the energy and timing conditions which
result in the enhanced sensing behavior for the simulton. Specifically, in Fig. 4.3d,
which has been repeated in Fig. 4.6f, we illustrate that the dynamical feature
responsible for the high sensitivity is the movement of the steady-state signal pulse
position away from the center of the gain window as loss is added to the cavity.
The gain window is determined by the pump pulse and walk-off length and can be
approximately found by convolving the pump pulse (here, a sech-shaped pulse with
duration of 35 fs) with a square pulse of duration equivalent to the walk-off length,
Δ𝛽′𝐿 (here, 72 fs). The steady-state signal pulse position is computed by finding
the “center of mass” of the signal,

∑
𝑖 𝑃𝑖𝑡𝑖∑
𝑖 𝑃𝑖

, where 𝑃𝑖 and 𝑡𝑖 represent the pulse power
and time in the 𝑖th Fourier bin. The “center of mass” metric is useful in providing
consistency across measurements, since the addition of sample tends to distort the
temporal features of the pulse.

To further emphasize the opposing roles of the gain and loss, we contrast the steady-
state pulse position as a function of pump power (Fig. 4.6e) with the pulse position
as a function of concentration (Fig. 4.6f). In both cases, 0 fs along the y-axis
represents the center of the gain window. Here, we see that the addition of gain
through increasing the pump power pushes the steady-state pulse position towards
the center of the gain window while the addition of loss pulls it away. Thus, we see
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how the same interplay of energy and timing which result in a high slope efficiency
for the simulton regime can also enable high sensitivity. The observed jump in Fig.
4.6e near 775 mW is an artifact resulting from the discrete nature of the simulation.
To mimic the experiment, in which we generally lock to the detuning value Δ𝑇𝑅𝑇

which gives the maximum power, we simulate multiple detuning values and record
the one which results in the highest output power. As the pump power is increased,
this optimum detuning can change, resulting in a discrete jump such as the one
observed; however, we believe the behavior should be smooth for the experiment for
which the detuning can be continuously varied.

Comparison with Linear Absorption Sensing
In analyzing the performance of our method, it is helpful to perform a direct com-
parison with LAS. The analysis here is informed by the presentation in ref. [55].
Note that, although we perform most of the analysis here in terms of the absorption
coefficient, 𝛼, it may be easily applied to the parts-per notation, as the two are gen-
erally linearly related. We begin with the Beer-Lambert Law for light of intensity
𝐼in passing through a sample of length 𝐿 with absorption coefficient 𝛼 which says
that the output intensity, 𝐼out, is given by

𝐼out = 𝐼in𝑒
−𝛼𝐿 . (4.9)

The most common way of quantifying sensitivity enhancement is to consider the path
length enhancement. This metric is particularly appropriate for cavity-enhanced
sensing, where the physical mechanism at play can be directly understood as an
increase of the interaction length between the light and the sample. In a symmetric
Fabry-Pèrot cavity of length 𝐿 with mirror transmission 𝑇 and reflection 𝑅 (in
intensity) filled with the absorbing sample, the input-output power relationship is
given as

𝐼out/𝐼in =
𝑇2𝑒−𝛼𝐿

(1 − 𝑅𝑒−𝛼𝐿)2 ≈ 𝑇2

(1 − 𝑅)2

(
1 − 𝛼𝐿 (1 + 𝑅)

1 − 𝑅

)
. (4.10)

The approximation made here is to expand the entire expression to first order in 𝛼.
By noting that 𝛼𝐿 (1+𝑅)1−𝑅 ≈ 2

√
𝑅𝐿𝛼

1−𝑅 = 2𝐹𝐿𝛼
𝜋

, where 𝐹 is the cavity finesse, and making
use of the fact that 𝑇 ≈ 1 − 𝑅, we find that

𝐼out/𝐼in ≈ 1 − 𝛼2𝐹𝐿
𝜋

≈ 𝑒−𝛼𝐿eff , (4.11)
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where we have defined 𝐿eff = 2𝐹𝐿
𝜋

, the effective path length. This is just the typical
Beer-Lambert Law but with the path length 𝐿 replaced by 𝐿eff. Thus, we see that
the linear cavity enhances the path length by a factor of 𝜉 = 𝐿eff

𝐿
= 2𝐹

𝜋
whenever this

linearization of the exponential is valid. Comparing 4.11 with equation 4.9, we can
then find a direct expression for the path length enhancement, 𝜉,

𝜉 =
𝐿eff

𝐿
= − 1

𝛼𝐿
ln
𝐼out

𝐼in
. (4.12)

This expression is very practically useful as it enables the computation of 𝜉 or,
equivalently, 𝐿eff from measured values of the intensity. It can also be generalized
to include measurements where some baseline concentration of the sample exists
already in the system. In particular, if the output intensity is measured before and
after the addition of some small amount of sample, Δ𝛼, the expression becomes

𝜉 = − 1
Δ𝛼𝐿

ln
𝐼out(𝛼 + Δ𝛼)
𝐼out(𝛼)

. (4.13)

This is equivalent to equation 4.3, though we have, in equation 4.3, replaced inten-
sities with powers under the assumption that the spatial profile of the beam remains
constant between measurements such that the mode area can be taken out of both
the numerator and denominator. It is clear then that with knowledge of Δ𝛼, the path
length 𝐿, and a measurement of the change in power as sample is added, one can
easily calculate the path length enhancement. With that said, computation of this
quantity using solely the measured change in intensity for a broadband signal re-
quires slightly more care since 𝛼 = 𝛼(𝜔) is a function of frequency. To address this,
we consider the case of performing LAS with a multimode source containing sev-
eral frequency modes 𝑖 such that 𝐼in =

∑
𝑖 𝐼in,i. Then, the Beer-Lambert Law would

suggest the following expression for the output intensity given that each frequency
mode experiences an absorption coefficient 𝛼𝑖

𝐼out =
∑︁
𝑖

𝐼out,i =
∑︁
𝑖

𝐼in,i𝑒
−𝛼𝑖𝐿 = 𝐼in𝑒

−𝛼eff𝐿 . (4.14)

Assuming 𝛼𝑖𝐿 small, we find

𝐼out ≈
∑︁
𝑖

𝐼in,i −
∑︁
𝑖

𝐼in,i𝛼𝑖𝐿 ≈ 𝐼in − 𝐼in𝛼eff𝐿. (4.15)
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Dividing by 𝐼in𝐿 and rearranging terms, we arrive at the following expression for
𝛼eff

𝛼eff =

∑
𝑖 𝐼in,i𝛼𝑖

𝐼in
. (4.16)

This expression is what one might expect; 𝛼eff is given by a weighted sum of the
𝛼′
𝑖
𝑠 with the various mode intensities, normalized to the total intensity, as weights.

Using this expression, one can extend equation 4.13 to the case of a broadband
source as long as the spectral shape of the source is known.

These results allow us to make a comparison between the experimentally measured
simulton behavior and linear methods. To do so, we calculate the equivalent path
length enhancement, which is the enhancement that would be necessary for a source
with the same spectrum as the simulton at the reference absorption, 𝛼, to experience
the same change in intensity with the further addition of sample, Δ𝛼, in a linear
cavity. For this computation, we first take our experimental simulton spectrum for
the purged cavity with a measured CO2 concentration of 11 ppm (Fig. 4.7a, orange
line) and use interpolation to reconstruct the CO2-free spectrum (blue, dashed line).
We then use the CO2 absorption spectrum provided by HITRAN to estimate 𝑃𝑖 (𝛼𝑖),
the mode strengths of a source with a spectrum equivalent to the simulton, after
propagation through 1.2 m (the length of our OPO cavity) of a sample with modal
absorption coefficients 𝛼𝑖 assuming no enhancement [54]. Figure 4.7b shows
the resulting spectra for three different example concentrations. Using the mode
strengths from these calculated spectra as weights along with the provided absorption
coefficients, we find Δ𝛼eff according to equation 4.16 and plug the resulting value
along with the measured values of the intensities 𝐼 (𝛼) and 𝐼 (𝛼 + Δ𝛼) into equation
4.13 to compute the equivalent path length enhancement.

As shown in Fig. 4.4c, the calculated enhancement is significant, reaching a value as
large as 6000. Using the 𝐿eff defined for equation 4.11, we see that this is equivalent
to the enhancement provided by a cavity with a finesse of 9400. This is important
as it demonstrates the ability of quadratic cavity solitons in a low-finesse cavity near
threshold to achieve similar sensitivity enhancements to those achieved through
linear methods in high-finesse cavities.

With that said, the measurement of path length enhancement, as defined in 4.13,
serves primarily to quantify relative power rather than sensitivity. Additionally, it
is difficult to make fair comparisons since the enhancement in the simulton case is
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Figure 4.7: Enhancement calculations for direct comparison with linear ab-
sorption sensing. a, Interpolated simulton PSD (blue, dashed line) plotted on top
of measured PSD (orange). b, PSD of calculated spectrum corresponding to passage
of a signal with the interpolated spectrum from a through 1.2 m of CO2, for 3 differ-
ent concentrations. The resulting mode strengths are used as weights for calculating
𝛼eff. c, Measured experimental sensitivities for 3 different numbers of times above
threshold, compared to the baseline linear sensitivity, 𝑆base, and optimum linear sen-
sitivity achieved through path-length multiplexing, 𝑆opt. d, Sensitivity enhancement
computed through direct comparison of measured sensitivity and 𝑆base, as plotted in
c. e, Histogram of the experimentally measured detector noise with a Gaussian fit.

not coming from an extension of the path length but from the nonlinear dynamics
which result in a broadband loss. This difficulty is especially pronounced in the
case where there is already some significant baseline level of sample in the cavity,
where linear methods will generally have already experienced significant depletion
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in the absorbing modes that would not be seen in the simulton spectrum used for
calculation of 𝛼eff. In the extreme case of very large absorption, the notion of 𝐿eff

as defined in equation 4.11 even breaks down, since its derivation was reliant on
being able to approximate 𝛼𝐿 as small. Thus, it is also worthwhile to make a direct
sensitivity comparison with LAS for a pump with the same optical properties as the
output of our simulton OPO. Let us begin by analytically calculating the sensitivity
of LAS. The sensitivity is the rate of change of the signal, 𝐼out, with respect to the
absorption coefficient, given as the derivative of 4.9,

𝑆 =

����𝑑𝐼out

𝑑𝛼

���� = 𝐼in𝐿𝑒−𝛼𝐿 . (4.17)

From this, we see that the maximum sensitivity occurs when 𝛼 = 0 and is given by
𝐼in𝐿. This sensitivity can be quite large, given the large effective path lengths that
can be achieved in high-finesse cavities. Comparison of the enhanced sensitivity,
𝑆enh, of a system with effective path length 𝐿eff and the sensitivity, 𝑆base, of a
baseline LAS system with path length 𝐿 gives the following expression for sensitivity
enhancement, 𝜁 ,

𝜁 =
𝑆enh

𝑆base
=
𝐿eff

𝐿
𝑒−𝛼(𝐿eff−𝐿) . (4.18)

Here, we have assumed both systems are pumped with the same power. At 𝛼 = 0, we
see that the sensitivity enhancement does correspond exactly to the above computed
path length enhancement, 𝜉. However, it is clear that this sensitivity enhancement
quickly decays with increasing 𝛼 for 𝐿eff > 𝐿. This gives rise to an inherent trade-
off between sensitivity at low concentrations and sensitivity at high concentrations
in the linear case, as illustrated in Fig. 4.1, since achieving a higher sensitivity
near 𝛼 = 0 through increasing of 𝐿 (or, equivalently, 𝐿eff) results in significantly
lower sensitivities at larger values of 𝛼. This can limit dynamic range and/or
precision in practical implementations, further highlighting the importance of direct
consideration of the sensitivity for analyzing sensor performance. To perform this
comparison, we seek the maximum attainable sensitivity using linear methods for
arbitrary 𝛼. By optimizing equation 4.17 with respect to 𝐿, we find the sensitivity
is maximized when 𝐿 = 1

𝛼
, giving the optimized sensitivity

𝑆opt =
𝐼in

𝑒𝛼
. (4.19)
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This optimized sensitivity, which is inversely related to 𝛼, defines the sensitivity
limit for LAS shown in Fig. 4.1b and Fig. 4.4d. For the comparison plot in
Fig. 4.4d, we assume a source with the same bandwidth as the simulton and an
average power of 500 mW, which is approximately the maximum output power of
our system when fully purged. In practice, the asymptotic behavior near 𝛼 = 0
for LAS is limited by spatial constraints and the finesses achievable with available
cavity mirrors. For our comparison, we assume a cavity length of 1.2 m, the same
as the length of our OPO cavity, and a maximum path length enhancement of 106,
corresponding to a finesse of over 1.5 million. We believe this to be a fair choice
as such a high finesse is extremely difficult to achieve in practice, particularly over
such a large bandwidth.

The sensitivity given by equation 4.17 and sensitivity enhancement of equation 4.18
are plotted for our measured data in Figs. 4.7c and 4.7d. Figure 4.7c is very similar
to Fig. 4.4d, but here we have distilled the linear region into four lines. The first two
lines include the sensitivity limit, 𝑆opt, and the baseline sensitivity, 𝑆base, computed
for a source of the same bandwidth and power as the simulton, as discussed in the
preceding. While these multimode trendlines provide the most direct comparison
with our experiment (hence our use of 𝑆opt as the linear reference in Fig. 4.4d),
we also show the sensitivity limit, 𝑆opt, SM, and baseline sensitivity, 𝑆base, SM for a
single-mode source of the same power as our OPO. The best linear performance is
observed for the path-length-multiplexed single-mode source (𝑆opt, SM), since non-
absorbing modes in the multimode case limit the achievable sensitivity. However,
better linearity is observed for the baseline sensitivity in the multimode case due
to the intrinsic multiplexing that comes with having multiple frequency modes.
In all cases, the sensitivity is seen to decrease with increasing concentration, in
contrast to the simulton sensing behavior. Figure 4.7d shows the corresponding
sensitivity enhancement for the simulton measurement, found by taking the ratio
of our measured sensitivity and 𝑆base, with the maximum sensitivity enhancement
reaching a value of 90. This large sensitivity enhancement can greatly improve the
achievable sensor precision when compared to the linear baseline.

In addition to calculating the sensitivity and sensitivity enhancement for our mea-
sured data, we further extend the plot of Fig. 4.4c to include the detector-limited
measurements for a bandwidth of 1 MHz, the bandwidth of our presented exper-
imental data, and a bandwidth of 1 Hz. Here, we make the assumption that the
cavity is locked to the simulton resonance such that continuous measurement of the
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simulton output is taken over the full measurement time. To find the detector-limited
output, we must consider the noise-equivalent power (NEP) of our detection system.
We do so by first making a histogram of the measured voltage at times when no
signal was incident on the detector; the resulting histogram is shown in Fig. 4.7e.
We then fit it with a Gaussian distribution and find the standard deviation, σ = 76.9
µV, which is valid if we assume the detector noise distribution to be close to white
noise. Next, we use the 4 µm calibration curve, shown previously in Fig. 4.5c, to
estimate the equivalent optical power. As the curve is not perfectly linear, we use
the average slope across the measured data.

The resulting NEP is 74.2 µW. Since our measurement was taken in a 1 MHz
bandwidth, given by the bandwidth of our detector (Thorlabs PDAVJ5), we can
divide by the square root of our bandwidth to find the normalized NEP of our
measurement of 74.2 nW/

√
Hz. One might note that this is far from Thorlabs’

reported value for the detector of 14 pW/
√

Hz. The discrepancy, however, comes
primarily from our calibration curve which has a slope close to 1 V/W compared to
the specified conversion gain of 1500 V/W on the Thorlabs website. This difference
is due to our focusing only a fraction of our output power onto the detector area to
limit detector saturation at high powers as well as the broadband nature of our signal,
since the specified NEP is at the wavelength with the peak responsivity. Accounting
for this difference in conversion from optical power to voltage, our measured value
is in pretty good agreement with the specified value. Using our measured value
for the NEP, we find that the detector-limited enhancement can be extremely large,
benefiting from the asymptotic behavior close to threshold. In particular, around an
output power of 74.2 µW (the NEP for a 1 MHz bandwidth), we find enhancements
on the order of 100s of thousands while, around a measured power of 74.2 nW (the
NEP for a 1 Hz bandwidth), enhancement on the order of 10s of millions could be
possible.

Finally, we may find the detector-limited NEA. Here, we divide the normalized NEP
of 74.2 nW/

√
Hz by our maximum measured sensitivity of 4.1 mW/ppm to find a

minimum detectable concentration of 18 ppt in a 1 Hz measurement time. We may
find the effective absorption coefficient for a concentration of 18 ppt, calculated
as specified above in equation 4.16 to be 5.84 cm-1, to give a NEA of 1.05*10-10

cm-1/
√

Hz. While there are limitations in practice to achieving a detector-limited
measurement for the simulton sensing mechanism, including the need for a well-
stabilized cavity, careful control over the sample concentration, and suppression of
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the relative intensity noise (RIN) of the pump laser, we believe that these theoretical
estimates showcase the potential for achieving high sensitivity and precision as well
as a large dynamic range using this mechanism.

Selectivity and Impact of Other Atmospheric Molecules
Another important consideration of our experiment is that, while the dominant
response of the simulton is attributable to CO2, our experiment is performed using
atmosphere which contains an abundance of other molecular species in addition
to CO2. Thus, while the simulations in Section 4.2 are done using only CO2, as
described above, it is worth characterizing the impact of other molecules on the
sensing behavior. The second notable molecule in the spectral region of our OPO
output is H2O, but we additionally consider contributions from CH4, N2O, and O3

which also exist in small concentrations in the atmosphere and have strong absorption
features near our degenerate signal at 4180 nm. In our model, we assume molecular
fractions of 78.084% for N2, 20.946% for O2, 0.0415% for CO2, 0.000179% for
CH4, 0.00005% for N2O, and 0.000001% for O3 in dry atmosphere [56, 57]. These
molecular fractions are scaled proportionally with the addition of H2O, which is
assumed to have a molecular fraction of 1.25%, typical of the temperature and
humidity of our lab.

Figures 4.8a and 4.8b show the imaginary and real parts of the complex refractive
index, 𝜅(𝜔) and 𝑛′(𝜔), for the full atmospheric model. As expected, the strongest
contributions by far are from atmospheric CO2 and H2O. Figure 4.8c shows the
simulated simulton response using the full atmospheric model. Here, we mimic our
experimental procedure by varying the modeled concentration of N2 and changing
the concentrations of all other gases proportionally. Compared to the simulation
using only CO2 shown in Fig. 4.4b, the observed change in output power with
CO2 concentration is slightly larger, indicating a small contribution from other
atmospheric gases. Figure 4.8d depicts the simulated simulton response to H2O
alone for reasonable atmospheric concentrations. While the effect is less pronounced
than in the case of CO2, validating our experimental assumption that the dominant
response is coming from CO2, this also highlights the sensitivity of the simulton
to any molecule within the simulton bandwidth. This can be advantageous for
certain applications as it enables the same sensor to be used for sensing of multiple
molecules, as long as one has a priori knowledge of the molecular species being
varied. However, it poses an additional challenge with respect to selectivity, since
one cannot distinguish the separate contributions from different species in a mixture.
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Figure 4.8: Modeling of full atmospheric absorption. a, Calculated 𝜅, the imag-
inary part of the complex refractive index, for full atmospheric model. b, Corre-
sponding result for 𝑛′ − 1, the real part of the complex refractive index. c, Output
power as a function of CO2 concentration in the atmospheric mixture, where all
atmospheric gases are changed proportionally to the N2 concentration, consistent
with the experimental purging setup. d, Output power as a function of H2O concen-
tration, the second strongest atmospheric absorber in the vicinity of the broadband
simulton resonance.

One solution to this challenge which we elucidate here is to consider the response
of multiple OPO peaks rather than just the simulton regime [50]. These multiple
OPO peaks may be addressed through varying the detuning, 𝑇RT, corresponding to
a roundtrip delay in the cavity. As each peak contains different spectral content,
their collective response to the addition of gas can contain information regarding the
molecular makeup of a given gas mixture of interest. Figure 4.9a shows the simulated
power spectrum for a pump power of 1.2 W as the detuning is swept, highlighting
the different OPO regimes. A more positive detuning, 𝑇RT, indicates a longer cavity,
with the most postively detuned peak (𝑇RT = 3.5 fs) corresponding to operation in the
simulton regime, the second most positively detuned peak (𝑇RT = -3.5 fs) indicating
the conventional regime, and the rest corresponding to non-degenerate operation.

Figure 4.9b shows the collective response of all OPO peaks as the atmospheric mix-
ture is varied in proportion to the addition of N2, replicating our experimental setup.
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Figure 4.9: Selectivity in multi-species sensing using OPOs. a, Simulated power
spectrum of OPO output as the detuning, Δ𝑇RT, is swept, with labels indicating
different OPO regimes. b, Simulated response of all OPO peaks for the addition
of CO2 in an atmospheric mixture to the cavity. c, Simulated response of OPO
peaks with changing H2O concentration. d, Simulated response of OPO peaks with
addition of CO2. e, Experimental response of all OPO peaks as the cavity is purged
with N2.

Here, the peak structure corresponds to a detected power or voltage, equivalent to
taking the integral over wavelength for the data of Fig. 4.9a. The pump power is
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held constant at 1.2 W. As the CO2 concentration in the atmospheric mixture is
increased, we observe a strong decrease in power for the simulton (𝑇RT = 3.5 fs),
as expected. By contrast, the conventional (𝑇RT = -3.5 fs) and first non-degenerate
(𝑇RT = -10.5 fs) peaks are seen to increase slightly at low concentrations and then
decrease at higher concentrations. Furthermore, the most non-degenerate peak (𝑇RT

= -31.5 fs) exhibits the opposite behavior, decreasing at low concentrations and then
increase at higher concentrations.

This response can be broken down into the contributions from CO2 and H2O by
analyzing the behaviors of the peaks while varying only one gas at a time. Figure
4.9c shows the simulated OPO behavior as the concentration of H2O is varied,
while the CO2 response is shown in Fig. 4.9d. In the case of CO2, the simulton
(𝑇RT = 3.5 fs) is seen to sharply decrease, while more non-degenerate peaks, such
as the peak at 𝑇RT = -17.5 fs, are seen to monotonically increase. The most non-
degenerate peak exhibits very little change, except for a small increase in power.
In contrast, besides also causing a decrease in power for the simulton, the addition
of H2O is seen to produce additional features on the conventional peak (𝑇RT = -
3.5 fs) and cause the most non-degenerate peak (𝑇RT = -31.5 fs) to decrease for
low concentrations and increase again at high concentrations. Taken together, one
can see that the response of the non-degenerate peaks for the case where the full
atmospheric mixture is considered is dominated by the addition of H2O, whereas
the more degenerate peaks largely follow the CO2 behavior. This unique response
to the different gases indicates that, by considering all the OPO peaks together,
information about multiple species may be gleaned from the OPO output.

An equivalent plot for our experimental system is shown in Fig. 4.9d. Qualitatively,
we see good agreement with Fig. 4.9b as the CO2 concentration is increased. The
simulton (𝑇RT = 3.5 fs) is observed to rapidly decrease while the conventional peak
(𝑇RT = -3.5 fs) grows at low concentrations and then begins to decrease. More
non-degenerate resonances are seen to increase in power. With that said, the farthest
non-degenerate peaks (𝑇RT = -31.5 fs and 𝑇RT = -24.5 fs) neither increase as much
as those for the simulation of CO2 alone nor exhibit the decrease and subsequent
increase expected for the full atmospheric case which includes H2O. This suggests
that there is some small impact from atmospheric water in our experiment but that
we have likely overestimated its contribution in the parameters considered for the
presented simulation.
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Single-Mode Intracavity Absorption Sensing
In this section, we briefly review the theory of single-mode intracavity absorption
sensing (SM ICAS), following the formalism presented in ref. [29]. We begin with
the rate equations for a laser system. Defining the mean photon number M, the
mean population inversion ρ, the broadband cavity loss γ, the pump rate R, the rate
of spontaneous decay of the upper laser level A, and the rate of induced emission
per photon per excited atom or molecule B, we have

𝑑𝑀

𝑑𝑡
= −𝛾𝑀 + 𝐵𝜌(𝑀 + 1), (4.20a)

𝑑𝜌

𝑑𝑡
= 𝑅 − 𝐴𝜌 − 𝜌𝐵𝑀. (4.20b)

The last term in equation 4.20a, 𝐵𝜌, is the mean spontaneous emission rate. This
term is often omitted in analysis of single-cavity intracavity absorption sensing.
Here, we will give the solutions both with and without this term which will enable
discussion of its practical importance. Setting both equations to 0 and solving for
the steady-state mean photon number gives

𝑀 =
1
2
(𝑅
𝛾
− 𝐴

𝐵
) +

√︄
1
4
(𝑅
𝛾
− 𝐴

𝐵
)2 + 𝑅

𝛾
. (4.21)

In the case where spontaneous emission is not considered, or when ( 𝑅
𝛾
− 𝐴
𝐵
)2 >> 𝑅

𝛾
,

the last term under the root may be neglected, giving

𝑀 =
𝑅

𝛾
− 𝐴

𝐵
. (4.22)

The intracavity power, 𝑃𝑖𝑛𝑡 may be found from the mean photon number, 𝑀 , as
𝑃𝑖𝑛𝑡 = ℏ𝜔 𝑐

𝐿
𝑀 , where ℏ is the reduced Planck’s constant, 𝑐 is the speed of light, 𝜔

is the laser frequency, and we have assumed a free-space cavity of roundtrip length
𝐿. Taking the transmission of the output coupler as 𝑇 , the output power, 𝑃out can be
found by computing 𝑃out = 𝑇𝑃𝑖𝑛𝑡 . In terms of equation 4.22, then, we have

𝑃out = 𝑇𝑃𝑖𝑛𝑡 = 𝑇ℏ𝜔
𝑐

𝐿
𝑀 = 𝑇ℏ𝜔

𝑐

𝐿
(𝑅
𝛾
− 𝐴

𝐵
) = ℏ𝜔

𝑇

L (𝑅 − 𝑅th), (4.23)

where L is the total loss, and the relations 𝑅th =
𝐴𝛾

𝐵
and 𝛾 = 𝑐L

𝐿
have been used. As

a final manipulation before proceeding, we may also rewrite𝑇 = 1−𝑅 = 1−𝑒−𝛼𝑅𝐿 ≈
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𝛼𝑅𝐿, where 𝑅 is the reflection of the output coupler. The total loss, similarly, can
be defined as L = 1 − 𝑒−𝛼tot𝐿 ≈ 𝛼tot𝐿 where 𝛼tot = 𝛼𝑅 + 𝛼samp + 𝛼𝑜𝑡ℎ is a lumped
absorption coefficient which includes the output coupling loss, 𝛼𝑅, the loss due to
the sample, 𝛼samp, and the loss due to other intracavity elements, 𝛼𝑜𝑡ℎ. Rewriting
equation 4.23 in terms of these absorption coefficients gives

𝑃out = ℏ𝜔𝛼𝑅 (
𝑅

𝛼tot
− 𝑐𝐴

𝐵
) = ℏ𝜔

𝛼𝑅

𝛼tot
(𝑅 − 𝑅th). (4.24)

To find the enhancement factor according to equation 4.13, we seek the quantity
ln

(
𝑃out (𝛼samp)

𝑃out (𝛼samp+Δ𝛼samp)

)
, where Δ𝛼samp is some small change in the loss due to the pres-

ence of an intracavity absorber. DefiningΔ𝑃out = 𝑃out(𝛼samp)−𝑃out(𝛼samp+Δ𝛼samp)
and assuming Δ𝑃out

𝑃out
<< 1, then ln

(
𝑃out (𝛼samp)

𝑃out (𝛼samp+Δ𝛼samp)

)
≈ 𝑃out (𝛼samp)−𝑃out (𝛼samp+Δ𝛼samp)

𝑃out (𝛼samp) =

Δ𝑃out
𝑃out

. Using 4.24, we can find this quantity as

Δ𝑃out

𝑃out
=

Δ𝛼samp𝑅

𝛼tot(𝛼tot + Δ𝛼samp) ( 𝑅
𝛼tot

− 𝑐𝐴
𝐵
)
=

Δ𝛼samp𝑁

(𝛼tot + Δ𝛼samp) (𝑁 − 1) , (4.25)

where we have re-parameterized the system in terms of the number of times above
threshold, 𝑁 = 𝑅

𝑅th
. Finally, we compute the enhancement 𝜉 =

𝐿𝑒 𝑓 𝑓
𝐿

, making the
approximation that Δ𝛼samp << 𝛼samp

𝜉 ≈ 1
𝛼tot𝐿

𝑁

𝑁 − 1
. (4.26)

Thus, we see that if spontaneous emission can be neglected, an enhancement
asymptotically approaching infinity can be expected as threshold is approached.
Figure4.10a shows the enhancement calculated using the full model from equa-
tion 4.21 in comparison with the analytic solution ignoring spontaneous emission
given by equation 4.26 for the realistic laser parameters given in ref. [29], namely
𝐴 = 1.7 ∗ 108 s-1, 𝐵 = 10−2 s-1, 𝐿 = 1 m, and 𝛼𝑅 = 0.01 m-1. We take the frequency
to be𝜔 = 4.5∗1014 rad/s, equivalent to the center frequency of our OPO output. For
these parameters, the agreement is excellent, with the primary variation occurring
extremely near to 𝑁 = 1, where the simplified model asymptotes to infinity while
the full model approaches a peak. Generally, agreement is better the lower the
spontaneous emission rate.

To maximize the enhancement, then, we would like our system to operate as close
to 𝑁 = 1 as possible. However, we face a signal-to-noise ratio (SNR) trade-off in
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Figure 4.10: Enhanced sensing in a single-mode laser. a, Comparison between the
enhancement calculated for the full model including spontaneous emission (orange)
and simplified model ignoring spontaneous emission (blue), showing the extreme
benefit of near-threshold operation. The y-axis is on a logarithmic scale. b, For
a given minimum detectable output power, 𝑃out,det, there are two ways to achieve
sensing closer to threshold compared to some reference (line 1). The first is increase
the slope efficiency (line 2), and the second is to increase the threshold (line 3).
c, Increasing the spontaneous decay rate A (or, equivalently, decreasing B, the
rate of stimulated emission) can increase the threshold of the laser system without
changing the slope efficiency. d, Increasing the output coupling loss, 𝑎𝑙 𝑝ℎ𝑎R,
increases the threshold and can also benefit the slope efficiency. e, Increasing other
losses increases the threshold but decreases the slope in the same proportion and
thus does not enable detector-limited sensing closer to threshold.

doing so because the signal goes to zero as 𝑁 approaches 1. Intuitively, there are
two ways to improve the situation, depicted in Fig. 4.10b. Here, the output power,
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𝑃out, as a function of the pump rate, 𝑅, is shown for a reference line (line 1, medium
orange) and compared to two modified lines, line 2 in light orange and line 3 in dark
orange. The minimum detectable power, 𝑃out,det, is shown with the dashed gray line;
the shaded gray region below represents photon numbers which cannot be detected.
𝑅det,i where 𝑖 𝜖 {1, 2, 3} represents the minimum pump rate for which the number
of signal photons exceeds 𝑃out,det. The first path towards improvement would be
to alter the slope efficiency, or the rate of the change of the output power with a
changing pump rate above threshold. As shown by line 2, a higher slope efficiency
enables operation closer to threshold while maintaining a large enough output power
to have a sufficiently large SNR. Alternatively, one can increase the threshold, as
exemplified by line 3. For the same slope efficiency and output power, a larger
threshold will mean a smaller 𝑁; in other words, 𝑅det,3/𝑅th,3 < 𝑅det,1/𝑅th,1. With
this intuition, we can then look at the equation 4.24 and see how each parameter can
help to tune the enhancement. First, we rewrite equation 4.24 in terms of 𝑃out,det

𝑃out,det = 𝛼𝑅ℏ𝜔(
𝑅

𝛼tot
− 𝑐𝐴

𝐵
). (4.27)

We may then rearrange to solve for 𝑅det

𝑅det = 𝛼tot(
𝑐𝐴

𝐵
+ 𝑃out,det

𝛼𝑅ℏ𝜔
). (4.28)

Knowing that 𝑅th =
𝛼tot𝑐𝐴
𝐵

, we find that the detector-limited number of times above
threshold, 𝑁det is given by

𝑁det =
𝑅det

𝑅th
= 1 + 𝐵𝑃out,det

𝛼𝑅ℏ𝜔𝑐𝐴
. (4.29)

This expression tells us which parameters can be tuned to operate closer to threshold
while keeping the signal level the same, thus improving the SNR for a detector-
limited measurement. Here, we see clearly that increasing increasing the ratio
𝐴
𝐵

can help to bring 𝑁det closer to 1 while holding the signal constant. This is
consistent with Fig. 4.10c, which shows the output power as a function of the
pump rate for varying 𝐴. As 𝐴 is increased, the threshold increases, which should
enable operation closer to threshold. With that said, the rates 𝐴 and 𝐵 come from
fundamental properties of the lasing system and may be difficult to tune in practice.
More notable is that the only loss present in equation 4.29 is the loss due to the
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output coupling, 𝛼𝑅. As may be expected, a larger output coupling results in a
larger extraction efficiency, which increases the threshold and may also benefit the
slope efficiency. This is illustrated in Fig. 4.10d. By contrast, other intracavity loss
mechanisms result simultaneously in an increase in the threshold and a decrease
in the slope efficiency, as shown in Fig. 4.10e. The net result is that the two
effects cancel one another out, leading to no net gain in terms of operation closer to
threshold.

As a final point of comparison, we can find an expression for the sensitivity

𝑆 = | 𝜕𝑃out

𝜕𝛼samp
| = 𝛼𝑅ℏ𝜔

𝑅

𝛼2
tot
. (4.30)

Assuming we are operating at the pump rate given by 𝑅det, we find

𝑆det = 𝛼𝑅ℏ𝜔
𝑅det

𝛼2
tot

=
𝛼𝑅ℏ𝜔

𝛼tot

(
𝑐𝐴

𝐵
+ 𝑃out,det

𝛼𝑅ℏ𝜔

)
, (4.31)

where 𝑆det is the sensitivity at the point dictated by 𝑃out,det. As with the SNR for
near-threshold operation, we see that the ratio 𝐴

𝐵
can benefit the absolute sensitivity,

further highlighting the benefit of using a laser with a low spontaneous emission
rate. Furthermore, we see that the sensitivity is related to 𝛼−1

tot . This suggests the
same limitation in dynamic range for ICAS with traditional lasers as we observed for
linear methods; for given system parameters, the maximum achievable sensitivity
scales with an inverse relationship to the sample loss. Between this relationship and
our finding in equation 4.26 that the enhancement factor is also inversely related to
the loss, it is clear that traditional intracavity absorption sensing with a single-mode
laser benefits from a high-finesse cavity and is best suited towards trace gas detection.
These conclusions will be critically important as we analyze the contrasting case of
intracavity absorption sensing in a CW OPO in the next section.

ICAS in a Continuous-Wave OPO
While the focus of this work is on the simulton regime, which is a pulsed mode of
operation, it is desirable also to have a basic analytical framework for understanding
ICAS in an OPO. The CW theory can give us such a framework, allowing for direct
comparison with the general laser case presented above and for the simulton theory
presented in the following subsection. Specifically, here, we seek to derive the
enhancement factor for ICAS in a CW OPO. We additionally derive an expression
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for the sensitivity, and we see how these quantities scale with critical parameters of
the OPO.

To begin, we directly quote equation 2.74 derived in Section 2.8 for the OPO
efficiency, 𝜂, as

𝜂 =
4
𝑁
(
√
𝑁 − 1)

(
𝜔1

𝜔3
𝑇1

𝑒𝛼1𝐿RT

𝑒𝛼1𝐿RT − 1
+ 𝜔2

𝜔3
𝑇2

𝑒𝛼2𝐿RT

𝑒𝛼2𝐿RT − 1

)
, (4.32)

where we have considered the interaction between a pump, signal, and idler at 𝜔3,
𝜔2, and 𝜔1, respectively. Additionally, 𝑁 = 𝑃30/𝑃th is the number of times above
threshold, 𝑇𝑗 is the outcoupling in power of wave 𝑗 , and we have defined 𝛼 𝑗 is
the total loss for wave 𝑗 . Assuming the loss is small and considering operation at
degeneracy with 𝜔1 = 𝜔2, we find

𝑃out
𝜔 =

𝑇

𝛼𝜔𝐿RT

4𝑃2𝜔 (0)
𝑁

(
√
𝑁 − 1) = 4𝑇𝑃th

𝛼𝜔𝐿RT

(√︄
𝑃2𝜔 (0)
𝑃th

− 1
)

=
2𝑇
𝜅𝐿NL

(
√︁
𝑃2𝜔 (0) −

𝛼𝜔𝐿RT

2𝜅𝐿NL
). (4.33)

This equation allows us to characterize the OPO behavior in the case of single-mode
ICAS. First, we look at the enhancement factor. For a small change in the loss, Δ𝜔,
we have the following change in signal

Δ𝑃out
𝜔 =

𝑇Δ𝛼𝜔𝐿RT

𝜅2𝐿2
NL

. (4.34)

Then, the enhancement 𝜉 = Δ𝑃out
𝜔

𝐿RTΔ𝛼𝜔𝑃
out
𝜔

is given by

𝜉 =
1

𝐿RT𝛼𝜔

1
√
𝑁 − 1

. (4.35)

This is a very similar behavior as the one predicted by the SM laser theory. However,
one advantage of the OPO according to this result is the

√
𝑁 − 1 behavior in the

denominator which grows to large values further away from threshold than the 𝑁 −1
behavior exhibited in the SM laser case, as illustrated in Fig. 4.11a. Here, we
see that the CW OPO (orange) grows more quickly as 𝑁 = 1 is approached when
compared to SM ICAS (pink).
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In addition to the enhancement, we may also look at the other scaling behaviors
of the CW OPO system, as we did in the case of SM ICAS. Firstly, let us make
some simplifications. To begin, we return to our earlier observation that the output
coupling has been included implicitly in the loss; in fact, the loss 𝛼𝜔 consists of
three components such that 𝛼𝜔 = 𝛼samp + 𝛼𝑅 + 𝛼oth. Here, 𝛼samp is the loss from the
sample of interest, 𝛼𝑅 is the loss from the output coupling such that the reflection
𝑅 = 𝑒−𝛼𝑅𝐿RT , and 𝛼oth accounts for all other roundtrip losses in the OPO cavity.
Then, 𝑇 = 1 − 𝑅 = 1 − 𝑒−𝛼𝑅𝐿RT ≈ 𝛼𝑅𝐿RT. Furthermore, we define the parameter
𝛾 = 1

𝜅
, giving

𝑃out
𝜔 = 𝛼𝑅𝛾

2𝐿RT

𝐿NL
(
√︁
𝑃2𝜔 (0) − 𝛼𝜔𝛾

𝐿RT

2𝐿NL
). (4.36)

Let us now define the detector-limited ouptut power, 𝑃det
𝜔 . The corresponding input

intensity, 𝑃det
2𝜔 is

𝑃det
2𝜔 =

( 𝑃out
𝜔

𝛼𝑅𝛾

𝐿NL

2𝐿RT
+𝛼𝜔𝛾

𝐿RT

2𝐿NL

)2
=

( 𝑃out
𝜔

𝛼𝑅𝛾

𝐿NL

2𝐿RT

)2+
𝑃out
𝜔 𝛼𝜔

4𝛼𝑅
+𝛼2

𝜔𝛾
2 ( 𝐿RT

2𝐿NL

)2
. (4.37)

Using this, we find that the number of times above threshold needed to achieve an
output intensity of 𝑃det

𝜔 , 𝑁det, is

𝑁det = 1 +
𝑃out
𝜔

𝛼𝑅𝛼𝜔

( 𝐿NL

𝐿RT𝛾

)2 +
( 𝑃out

𝜔

𝛼𝑅𝛼𝜔

)2 ( 𝐿NL

𝛾𝐿RT

)4
. (4.38)

Here we see that, unlike the SM laser case, the number of times above threshold for
the OPO can be brought closer to 1 through tuning of the loss. This is a result of the
loss contributing to the threshold directly through the offset term in the OPO case
rather than through the slope, as it did in the case of the SM laser. Additionally, we
see that tuning of the output coupling can provide the largest benefit, since it serves
to simultaneously increase the slope efficiency and threshold. Finally, increasing
𝛾 can also be used to improve the detector-limited sensitivity enhancement, with
a benefit similar to that of the output coupling. These observations are consistent
with the scaling behaviors of equation 4.36, plotted in Figs. 4.11b, 4.11c, and 4.11d
for variation in the output coupling, loss, and 𝛾 parameter, respectively. The output
coupling and 𝛾 parameter can both be tuned to simultaneously increase the threshold
and slope efficiency, while increasing the roundtrip loss can increase the threshold
without impacting the slope efficiency.
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Figure 4.11: Enhanced sensing in a continuous-wave OPO. a, Comparison be-
tween the theoretical enhancement from a CW OPO and that of SM ICAS in a laser
system, showing the faster growth of the CW OPO as 𝑁 = 1 is approached. b,
Output intensity versus input intensity for different values of the output coupling,
showing how the output coupling can be increased to simultaneously increase both
the threshold and slope efficiency, enabling a better SNR for detector-limited near-
threshold sensing in the low-finesse regime. c, Varying the round-trip loss coming
from components other than the output coupling can increase the threshold without
degrading the slope efficiency. d, Changing the 𝛾 parameter can benefit the system
in a similar way to the output coupling by simultaneously increasing the threshold
and slope efficiency.

In addition to looking at the detector-limited enhancement, we can compute the
sensitivity, which is given here as:

𝑆 =

���� 𝜕𝑃out
𝜔

𝜕𝛼samp

���� = 𝛼𝑅𝛾2 ( 𝐿RT

𝐿NL

)2
. (4.39)

Again, there is a notable difference as compared to the SM laser case. Specifically,
the loss term due to the sample does not appear anywhere in the equation. However,
both the output coupling and 𝛾 parameter can be increased to improve the sensitivity,
consistent with what we saw in equation 4.38 for the detector-limited enhancement.
These results suggest that, unlike the SM laser case, the CW OPO can benefit from
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operation in the low-finesse regime, provided there is sufficient gain to go above
threshold. Additionally, this lack of dependence on the sample loss allows for a
high dynamic range to be achieved for sensing measurements performed in the OPO
system. These differences arise due to the different gain mechanisms of the two
systems as represented in their respective rate equations, where the laser gain arises
from an energy exchange in which an atomic transition results in emission of a
photon while the parametric gain comes from an interaction between the pump and
signal electric fields through the quadratic nonlinearity.

ICAS in a Simulton OPO
Having studied ICAS in a CW OPO, we finish our discussion by turning to the case
of the simulton OPO. Here, we begin by directly quoting the result from equation
3.16 in section 3.2, where the steady-state simulton amplitude, 𝑎̃, was given as

𝑎̃2 = 𝑎2
sim
𝑒2𝛾0𝑙−𝛼𝜔𝐿 − 1
𝑒2𝛾0𝑙 − 1

. (4.40)

As mentioned previously, this gives the first requirement for simulton thresh-
old, which is that the gain must compensate the round-trip loss, meaning that
𝑒2𝛾0𝐿NL−𝛼𝜔𝐿RT ≥ 1. Using the definition of 𝛾0 = 𝜅𝐴2𝜔,0 to re-express things in
terms of the pump power, we see that the threshold pump power, 𝑃th, is given by
𝑃th = 𝐴2

2𝜔,th =
(𝛼𝜔𝐿RT)2

(2𝜅𝐿NL)2 . We see also that for sufficiently large gains, the steady-state
signal amplitude saturates to the simulton amplitude, 𝑎sim. From equation 4.40, as-
suming an output coupling, 𝑇 = 1 − 𝑅 ≈ 𝛼𝑅𝐿RT, and by expanding the exponential
terms to first order, we arrive at the following expression for the steady-state output
power, 𝑃̃out:

𝑃̃out =
𝛼𝑅𝐿RT

𝜅𝐿NL

Δ𝛽
′
𝐿NL

𝜏0
(𝐴2𝜔,0−

𝛼𝜔𝐿RT

2𝜅𝐿NL
) = 𝛼𝑅𝐿RT

𝜅𝐿NL

Δ𝛽
′
𝐿NL

𝜏0
𝐴2𝜔,th(

√
𝑁 −1). (4.41)

This is, perhaps unsurprisingly, a similar expression to what was observed in the CW
OPO case. In particular, the equivalent path-length enhancement 𝜉 =

Δ𝑃̃out
𝐿RTΔ𝛼𝜔 𝑃̃out

follows the same asymptotic scaling:

𝜉 =
1

𝛼𝜔𝐿RT

1
√
𝑁 − 1

. (4.42)

The sensitivity 𝑆 =

��� 𝜕 ˜𝑃𝑜𝑢𝑡
𝜕𝛼𝜔

��� also has a similar expression, given as:
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𝑆 =

�����Δ𝛽′
𝐿NL

𝜏0

𝛼𝑅𝐿
2
RT

𝜅2𝐿2
NL

�����. (4.43)

One key difference, however, is the factor Δ𝛽
′
𝐿NL
𝜏0

, which is given by the ratio between
the walk-off length and the pulse width. This additional factor accounts for the extra
gain that the simulton may extract from the pump due to the relative motion of
the pump and signal which is not accounted for in the static dynamics of the CW
regime. In our experimental system, Δ𝛽′ = 144 fs/mm, 𝑙 = 0.5 mm, and 𝜏0 = 22
fs in the simulton regime assuming a transform-limited sech-shaped pulse [18], so
this factor gives a sensitivity enhancement of approximately 3.27. If we assume the
conventional regime can be approximately described by the CW theory, which would
be largely consistent with the box-pulse scaling behavior described in ref. [35], we
may observe that this factor of 3.27 is strikingly close to the measured difference in
slope efficiency between the simulton and conventional regimes, as shown in Fig.
4.2c and repeated here in Fig. 4.12a, as well as the difference in sensitivity, as in Fig.
4.12b. This also suggests that further increasing this ratio may enable even larger
sensitivity enhancement. Paired with the discussion regarding the gain clipping in
the case of pulsed pumping in section 4.2, the studied dynamics suggest a complex
toolbox which one may use to optimize the performance of a simulton-based sensor
through modification of the walk-off parameter, cavity length detuning, pump pulse
shape, and output coupling.
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Figure 4.12: Sensitivity comparison between the simulton and conventional
regimes. a, Output power as a function of input power in the simulton (orange)
and conventional (pink) regimes. Solid lines show the linear fits, while the orange,
dashed line shows the simulton simulation. b, Output power as a function of CO2
concentration in both the simulton and conventional regimes at a factor of 𝑁 = 1.25
times above threshold, which is sufficiently low for the conventional regime to also
be depleted.
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C h a p t e r 5

TWO-OPTICAL-CYCLE PULSES FROM NANOPHOTONIC
TWO-COLOR SOLITON COMPRESSION

Robert M. Gray, Ryoto Sekine, Maximilian Shen, Thomas Zacharias, James
Williams, Selina Zhou, Rahul Chawlani, Luis Ledezma, Nicolas Englebert, and
Alireza Marandi. “Two-optical-cycle pulses from nanophotonic two-color soliton
compression.” In: arXiv preprint arXiv:2501.15381 (2025). doi: 10.48550/
arXiv.2501.15381.

5.1 Introduction
Ultrashort pulses with temporal widths on the order of a few or even a single cycle [1–
3] of their carrier frequency have enabled many key breakthroughs in recent decades.
Pulses with timescales on the order of femtoseconds and, more recently, attoseconds
allow the direct measurement and control of molecular, atomic, and electronic
motion [4–8] as well as field-resolved measurements of ultrafast phenomena [9, 10].
Additionally, the large peak powers associated with ultrashort pulses can enable
extreme nonlinear optical phenomena [11, 12] such as high-harmonic generation [13,
14], where specifically two-color, few-cycle pulses have been demonstrated to offer
numerous benefits in shaping the generated high-harmonic spectrum and probing
the underlying dynamics [15–18]. Furthermore, ultrashort pulses serve as ultrafast
carriers of information in time-multiplexed optical systems [19], benefiting a variety
of applications in communications [20] and information processing [21, 22].

The generation and control of ultrashort pulses typically consists of two stages. The
first stage is used to generate an ultra-broadband coherent spectrum or supercon-
tinuum, after which the second stage is used to manipulate the phase of different
spectral components in order to produce the desired pulse [23]. The systems re-
quired for achieving this spectral broadening and subsequent phase compensation
are typically bulky and complex, limiting their scalability.

One way to reduce the system complexity has been to leverage soliton pulse com-
pression, where the nonlinear phase accumulated through the spectral broadening
process is compensated by linear dispersive effects [24, 25]. This allows for direct
generation of clean short pulses, with limited need for additional spectral phase

https://doi.org/10.48550/arXiv.2501.15381
https://doi.org/10.48550/arXiv.2501.15381
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compensation following the soliton compressor. Typically, soliton pulse compres-
sion has been achieved using cubic (Kerr) nonlinearity, including several integrated
demonstrations in the many 10s of fs to ps regime [26–29], requiring a suitable
nonlinear medium with anomalous dispersion at the wavelength of interest.

Soliton pulse compression has also been investigated leveraging phase-mismatched
second-harmonic generation in quadratic nonlinear optical systems, including ex-
perimental demonstrations to the few-cycle regime [30–32]. Such systems have
typically operated in the cascading limit, with a large phase mismatch, where the
dynamics at the fundamental frequency are similar to those of cubic soliton com-
pression [33, 34]. However, they have the additional advantages of utilizing the
inherently stronger quadratic nonlinearity and operating in either dispersion regime
(normal or anomalous) through correct selection of the sign of the phase mismatch.
Furthermore, the quadratic compression mechanism lends itself naturally to the gen-
eration of two-color ultrashort waveforms [35] through the accompanying generated
second harmonic. That said, the presence of walk-off due to the GVM between
the fundamental and second-harmonic waves in typical bulk media has limited the
performance and broad application of quadratic soliton compression [36].

Here, we show that these challenges may be overcome through dispersion engineer-
ing in nanophotonic quadratic nonlinear optical systems [37, 38]. By designing
for a low walk-off, we illustrate that compression may be achieved beyond the cas-
cading limit, allowing the realization of a host of two-color pulses through suitable
adjustment of the dispersion of the fundamental and second-harmonic waves. We
perform experiments in nanophotonic lithium niobate in which we demonstrate
compression to the two-cycle regime. We experimentally measure a pulse FWHM
of 13 fs at the fundamental frequency and 16 fs at the second harmonic, respectively
143.5 THz (2090 nm) and 287 THz (1045 nm). Our results show good agreement
with theoretical predictions, validating the use of our theoretical framework as a
holistic toolbox for the design of such soliton compression systems. Finally, we
illustrate how the two-color compressed pulses can be directly leveraged for the
synthesis of single-cycle waveforms. These results pave the way towards scalable
next-generation ultrashort pulse synthesizers.

5.2 Theory of Quadratic Two-Color Soliton Compression
The concept of two-color soliton pulse compression is illustrated in Fig. 5.1a. A
pulse at the fundamental frequency is coupled into the nanophotonic waveguide
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Figure 5.1: Two-color soliton pulse compression in nanophotonics. a, A pulse
at the fundamental frequency (𝜔) is used to pump the dispersion-engineered nano-
photonic waveguide designed for phase-mismatched second-harmonic (2𝜔) gener-
ation. Co-propagating compressed pulses at the fundamental and second harmonic
are achieved through the two-color soliton compression. b, Microscope image of
the measured waveguide, showing back-and-forth conversion between harmonics.
c, Simulated evolution of the fundamental (top) and second harmonic (bottom) as a
function of normalized propagation distance, 𝑧, in the waveguide. d, Temporal pro-
files of the fundamental and second harmonic at labeled locations in the waveguide.

designed for slightly phase-mismatched second-harmonic generation. By precisely
engineering the dispersion and nonlinearity, pulse shortening at both the funda-
mental frequency and generated second harmonic is achieved over the course of
propagation in the waveguide. This stands in contrast to other quadratic spectral
broadening mechanisms [39–41], for which broad supercontinuum may be observed
but without the formation of a clean short pulse.

The dynamics of this regime of operation are illuminated through the microscope
image of the experimentally measured device shown in Fig. 5.1b and simulations of
Figs. 5.1c and 5.1d. The soliton pulse compression relies on the linear dispersion
in the waveguide balancing the nonlinear phase accumulated through the back-and-
forth energy transfer between the fundamental (𝜔) and second-harmonic (2𝜔) waves
due to the slightly phase-mismatched interaction. Figure 5.1b shows this back-and-
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forth conversion during the first few millimeters of propagation in our waveguide
device. The microscope camera is not receptive to the fundamental light at 2090 nm,
so periodic bright and dark spots correspond to the generation and back-conversion
of second-harmonic light at 1045 nm. In areas where the generated second harmonic
is strongest, we also observe third and fourth harmonic generation to 700 nm (red)
and 512 nm (green), respectively.

This behavior is consistent with our simulations based on the coupled wave equations
in Fig. 5.1c, which show the temporal evolution of both the fundamental (top)
and second-harmonic (bottom) pulses as a function of propagation distance 𝑧 in
the waveguide. Figure 5.1d presents snapshots of the temporal profile of both
harmonics at labeled locations along the waveguide. Compression over a few cycles
of back-and-forth conversion ultimately results in their forming a co-propagating
two-color bright-bright pulse pair in the waveguide, characteristic of the two-color
soliton compression. In addition to pulse shortening, we also observe significant
peak power enhancement.

To confirm the solitonic nature of the compression mechanism, we first turn to
the soliton solutions of the coupled wave equations describing phase-mismatched
second-harmonic generation (see Section 5.7). When the GVD sign is the same
for both the fundamental and second harmonic waves, there exists a well-known
family of bright-bright soliton solutions [42]. Assuming 0 GVM, the shapes of the
normalized fundamental and second-harmonic soliton envelopes, 𝑎𝜔 (𝜉) and 𝑎2𝜔 (𝜉),
respectively, as a function of the dimensionless time coordinate 𝜉 are approximately
given by [43]:

𝑎𝜔 (𝜉) = 𝑎𝜔,0 sech𝑝 ( 𝜉
𝑝
), (5.1a)

𝑎2𝜔 (𝜉) = 𝑎2𝜔,0 sech2( 𝜉
𝑝
), (5.1b)

where the parameters 𝑝, 𝑎𝜔,0, and 𝑎2𝜔,0 may be found using the equations:

𝑝 =
1

𝑎2𝜔,0 − 1
, (5.2a)

𝑎2
𝜔,0 =

𝛼𝑎2
2𝜔,0

𝑎2𝜔,0 − 1
, (5.2b)
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𝛼 =
4(𝑎2𝜔,0 − 1)3

2 − 𝑎2𝜔,0
. (5.2c)

Here, 𝑎𝜔,0 and 𝑎2𝜔,0 represent the normalized amplitudes of the fundamental and
second-harmonic solitons. From this, we see that the soliton shape is completely

determined by 𝛼 =

���� 𝛽 (2)𝜔

𝛽
(2)
2𝜔

����(2 + Δ𝑘
𝛽
), where 𝛽(2)𝜔 and 𝛽(2)2𝜔 are respectively the GVD of

the fundamental and second harmonic, Δ𝑘 is the phase mismatch, and 𝛽 represents
shifts in the phase velocity due to the nonlinear interaction. This solution exhibits
good agreement with the exact soliton solution, capturing both the behavior of the
soliton amplitudes and tails. Furthermore, the solution shape asymptotes to that
of the soliton in the cascading limit [44] where 𝛼 ≫ 1 and precisely captures the
known exact soliton solution [45] with 𝛼 = 1.

a b c

d e f

Figure 5.2: Scaling behaviors of two-color soliton pulse compression. a, Soliton
solutions of the fundamental wave for varying 𝛼. b, Corresponding soliton solutions
for the second harmonic. c, Optimum 𝜁 for achieving compression. A fit is given
by the dashed black line. d-f, Scaling behaviors for varying 𝛼 of the d, fundamental
FWHM, e, compression quality, and f, fundamental peak power ratio at 𝜁opt. FWHM,
full-width at half-maximum.

In addition to this approximate analytic solution, we compute the soliton solution
branch using numerical continuation (see Section 5.7). Several examples of bright
solitons for various 𝛼 values are shown in Figs. 5.2a-b. As expected from equation
5.2b, the amplitude of the normalized fundamental wave (Fig. 5.2a) is significantly
larger than that of the second harmonic (Fig. 5.2b) for large 𝛼 and vice versa for
small 𝛼.
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Having to this point neglected walk-off, we next consider the effects of GVM, Δ𝛽′ ,
on the soliton solution. Here, we find that a soliton solution exists only in the
stationary regime [32] with

���𝛽(2)2𝜔 𝛽
���(2 + Δ𝑘

𝛽
) ≥ (Δ𝛽′ )2

2 . This has presented a large
challenge for achieving two-color soliton compression bulk systems with limited
control over the dispersion, as overcoming the intrinsic GVM in the material has
required operation in the cascading limit with large phase mismatch, limiting the
power in the generated second-harmonic wave.

With the soliton solution in hand, we next use it to better understand the compression
behavior. By investigating its stability, we find that the soliton is a saddle point with
respect to the pulse amplitude, phase, and pulse width (see Section 5.7). Thus, during
the compression process, the fundamental and second-harmonic pulses approach the
soliton solution, near which the evolution of the two waves is slow, and then are
observed to again broaden. One must therefore optimize the length of the waveguide
to achieve an optimally compressed pulse.

To determine this optimum length, we simulate the pulse evolution as a function of
the normalized propagation coordinate, 𝜁 = |𝛽 |𝑧 for a variety of input parameters.
We then define the optimum distance, 𝜁opt, at which point the minimum pulse width
is achieved for the fundamental wave. Figure 5.2c shows 𝜁opt as a function of the ratio
of the input pulse FWHM to that of the fundamental soliton, FWHMin/FWHMsol.
As can be seen, the scaling behavior is similar for all values of 𝛼 and nearly identical
for 𝛼 ≥ 1. By fitting the 𝛼 ≥ 1 data (dashed, black line), we arrive at the following
design heuristic:

𝜁opt = 1.49 + 0.86
( FWHMin

FWHMsol

)1.23
. (5.3)

From these simulations, we may also study several key properties of the compressed
pulse at the point 𝜁opt. To begin, we analyze the FWHM of the fundamental wave,
FWHMopt,ω, and we compare it to FWHMsol. The results are shown in Fig. 5.2d.
For all simulated input pulse widths, the width of the compressed pulse is within
20% of the soliton width, with the pulses under-shooting the soliton pulse width for
smaller values of FWHMin/FWHMsol.

A second parameter of interest is the compression quality [32], which is a measure
of how well the energy remains localized in the pulse following compression. Here,
it is defined as the ratio between the combined energy of the output fundamental
and second-harmonic pulses and the input pulse energy. For the output, the energy
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is calculated from the pulse FWHM and amplitudes, assuming a sech-shaped pulse
profile. As expected, the compression quality, shown in Fig. 5.2e, is higher for inputs
with a FWHM closer to the soliton FWHM. However, a compression quality greater
than 0.5 is observed even for the highest simulated ratio of FWHMin/FWHMsol =
10.

Finally, we are interested in the peak power enhancement provided by the compres-
sion mechanism, as an important benefit of the compressed pulses is their ability to
drive nonlinear optical phenomena requiring large peak powers. The ratio between
the peak power in the fundamental output and the input is plotted in Fig. 5.2f. Again,
the trend is similar for all values of 𝛼, with significant peak power enhancement
observed for all simulated values of the input pulse FWHM.
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Figure 5.3: Simulation of designed single-cycle pulse compressor. a, Input, b,
output fundamental, and c, output second-harmonic pulses. d, Corresponding input,
e, output fundamental, and f, output second-harmonic spectra. Dashed, tan lines
show the pulse profiles predicted from soliton theory.

These observations have several important consequences for the design of two-color
soliton pulse compression systems. Firstly, since the compressed pulse exhibits a
pulse width similar to that of the soliton solution and furthermore retains most of
the input energy, the soliton solution given by equations 5.1 and 5.2 can be used
to estimate the compressed pulse profile. Secondly, control over the dispersion
parameters offers new opportunities for two-color pulse compression compared to
previous demonstrations in the cascading limit with large Δ𝑘 , including operation
in the small 𝛼 regime and compression with small Δ𝑘 . This can allow two-color
compression with a variety of resultant pulse shapes and peak power ratios between
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the fundamental and second harmonics. Further discussion around the design of
two-color soliton compression systems based on the presented theoretical framework
may be found in Section 5.7.

5.3 Device Design
Based on these principles, we design a device for experimentally demonstrating
two-color pulse compression to the near-single cycle regime. In our design, we
aim to operate away from the cascading limit, in the small 𝛼 regime. Furthermore,
we seek to operate with low pump pulse energies on the order of a few pJ, as may
be achieved by integrated ultrafast sources [46, 47]. The designed waveguide (see
Section 5.7) has a fundamental and second-harmonic GVD of 𝛽(2)𝜔 = 9.2 fs2/mm
and 𝛽(2)2𝜔 = 141 fs2/mm, respectively, as well as a GVM of Δ𝛽′ = 27 fs/mm between
the two waves.

With these parameters, and considering our transform-limited input pulse width of
35 fs as well as a phase mismatch of Δ𝑘 = -4 rad/mm, we find that the soliton
solution has a FWHM of 8 fs for an input energy of 3 pJ. This is nearly single-cycle
for the fundamental wave at 143.5 THz. The corresponding normalized parameters
in our system are 𝛽 = −1.02 rad/mm and 𝛼 = 0.39. The optimum waveguide
length, 𝐿, is then found using equation 5.3 to be 6.5 mm, the designed length for
our nanophotonic device.

Simulation results for our designed device parameters are plotted in Fig. 5.3. The
input is taken to be a 2.9-pJ, 35-fs sech-shaped pulse at 2090 nm, with temporal
and spectral profiles shown in Figs. 5.3a and 5.3d. The fundamental output in
time domain is shown in Fig 5.3b. The pulse profile is shown in dark gray, with
the corresponding phase shown in red. Overlaid is the soliton solution given by
equations 5.1 and 5.2 (tan, dashed line), exhibiting very good agreement. We
normalize the peak power of the analytic solution to the peak power of the simulation,
but we emphasize here that the soliton shape is otherwise unaltered. The pulse
FWHM is 7 fs, close to the theoretical value (8 fs). This also equates exactly
to a single cycle at the carrier frequency. Despite the inclusion of loss in the
simulated waveguide, we additionally observe an approximately two-fold peak power
enhancement at the fundamental. The corresponding carrier-free spectrum is shown
in Fig. 5.3e and is characterized by a relatively flat phase across the entirety of the
broadband spectrum.

The second-harmonic output is shown in Figs. 5.3c and 5.3f. As with the funda-
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mental, the soliton solution is overlaid in the time domain plot (Fig. 5.3c). In this
case, we perform no additional normalization, preserving the predicted peak power
ratio of about 7.6:1 from the analytic solution. Yet, the agreement is again excellent.
As with the fundamental, the FWHM is 7 fs. Although we operate in the soliton
regime, the presence of some walk-off leads to the small secondary lobe at around
175 fs = Δ𝛽

′
𝐿. Correspondingly, we see that the carrier-free spectrum has more

structure than for the fundamental wave, though the low-frequency side is observed
to be smooth and to exhibit a fairly flat phase.

5.4 Results
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Figure 5.4: Experimental quadratic soliton compression. a, Measured and re-
trieved SHG FROG traces of fundamental input pulse. b, Input pulse temporal
profile and c, spectrum. d, Measured and retrieved X-FROG traces of compressor
output. e, Output temporal profile and f, spectrum for the fundamental. g, Recon-
structed FROG spectrum overlaid with measured OSA spectrum. h, Output temporal
profile and i, spectrum for the second harmonic. FROG, frequency-resolved optical
gating; OSA, optical spectrum analyzer. FROG errors of 0.0032 and 0.0046 were
measured for the SHG FROG and X-FROG, respectively.

To experimentally demonstrate the pulse compression, we fabricate the designed
device and then temporally characterize the input and output pulses with a frequency-
resolved optical gating (FROG) system (see Section 5.7). Figure 5.4a shows the
measured and retrieved SHG FROG spectrograms for the input pulse. Qualitatively,
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we see good agreement, corresponding to a reasonable FROG error of 0.0032. The
reconstructed pulse and spectrum are shown in Figs. 5.4b-c. We observe a small
amount of anomalous chirp due to propagation through various optical elements on
the way to the chip setup, with the dominant contribution coming from a variable
ND filter used for adjusting the input power.

The measured and retrieved cross-FROG (X-FROG) traces for the device output at
a pump power of 3 pJ are shown in Fig. 5.4d. Again, good qualitative agreement is
observed along with a reasonable FROG error of 0.0046. As further confirmation of
the FROG performance, we compare the retrieved FROG spectrum with a secondary
measurement on an optical spectrum analyzer (OSA). The result is shown in Fig.
5.4g, exhibiting good agreement across the entire spectrum. The largest discrepancy
around 2090 nm is due to the presence of higher-order spatial modes, which are
captured by the OSA but temporally gated by the X-FROG measurement due to their
propagating at a different group velocity compared to the fundamental mode (see
Section 5.7). The slight under-estimation of power on the short-wavelength side of
the spectrum and cut-off around 950 nm is predominantly due to a combination of
the phase-matching bandwidth of the nonlinear crystal used in the FROG and the
frequency response of a short-pass filter used at the FROG output to block residual
light from the strong gate beam which can otherwise saturate the spectrum (see
Section 5.7). Finally, the discontinuity in the center of the FROG spectrum is due
to the limited SNR of the FROG measurement.

The recovered fundamental pulse and spectrum are plotted in Figs. 5.4e and 5.4f,
respectively. The pulse and spectrum exhibit qualitatively very similar behavior
to the simulation, verifying the two-color soliton compression mechanism. The
spectrum is broad and largely unstructured, besides a central dip, and the spectral
phase exhibits only slow variation. The FWHM of the pulse is measured to be
13 fs, corresponding to less than two optical cycles for the fundamental carrier.
Likewise, the recovered second-harmonic pulse and spectrum are plotted in Figs.
5.4h and 5.4i, respectively. Again, there is good agreement with the simulation.
The pulse FWHM is also measured to be 16 fs. Furthermore, a small bump is
observed in the vicinity of 175 fs as expected. Like the simulation, the spectrum
is more structured than the fundamental but exhibits a flat phase and amplitude on
the low-frequency side. While the measured pulses agree qualitatively well with
the simulations, we finally note that discrepancies in the experimentally measured
FWHM and simulation arise due to the impact of the chirp on the input pulse, higher
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order dispersion in the waveguide, and limitations in our current measurement setup
(see Section 5.7).

5.5 Towards Single-Cycle Synthesis
One unique feature of the two-color soliton compression is the opportunity it presents
for facilitating on-chip single-cycle pulse synthesis. By manipulating the relative
phase 𝜙𝜔−𝜙2𝜔 of the two distinct harmonics, their combination can provide a variety
of ultrashort waveforms. Interestingly, as the soliton solution occurs for a fixed phase
relationship, 2𝜙𝜔 − 𝜙2𝜔 = 0 (see Section 5.7), the relative phase between the two
co-propagating harmonics may be manipulated through control of the envelope
phase of the input. Thus, with a carrier-envelope phase (CEP)-stabilized input and
relatively few additional components on-chip, an integrated single-cycle synthesizer
may be envisaged (Fig. 5.5a). In our proposal, a voltage supplied to an integrated
electro-optic modulator is used to directly tune the CEP of the input pulse [48].
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Figure 5.5: Towards integrated single-cycle pulse synthesizers. a, Proposed
nanophotonic circuit architecture for single-cycle pulse synthesis. b, Simulated
waveforms that may be achieved through manipulation of the input envelope phase,
Δ𝜙𝜔. c, Simulated synthesized single-cycle waveform and d, corresponding electric
field. e, Expected waveform from synthesis of experimentally measured pulses.

Figure 5.5b shows several examples of simulated synthesized pulse profiles as a
function of the input pulse phase shift, Δ𝜙𝜔, for the parameters of Fig. 5.3. Figure
5.5c shows an example of a single-cycle pulse which may be realized through such
a scheme, with a pulse FWHM of 4 fs and a combined carrier of 159 THz. The
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single-cycle nature of the pulse is highlighted through the plot of the corresponding
electric field (solid line) and electric field envelope (purple, dashed line) shown in
Fig. 5.5d. Additionally, we consider the synthesized pulse that may be realized
using the experimentally measured 13 fs and 16 fs pulses, as plotted in Fig. 5.5e.
Through overlapping and manipulating the relative phases of the measured traces,
we observe that an ultrashort pulse with a FWHM of 5 fs may already be realized.

Finally, we note that typical intensities required for entering the regime of extreme
nonlinear optics [12] are on the order of 1012 W/cm2. With mode areas of ∼ 2 µm2

in the waveguide for the synthesized pulse, this requires peak powers on the order
of 10 kW, whereas our current proposal using pJ pump pulses exhibits peak powers
on the order of 100 W. However, with the continued development of nanophotonic
sources, achieving the required 100-pJ pulse energies on chip may soon be feasible.

5.6 Discussion
To summarize, we have demonstrated two-color soliton pulse compression in lithium
niobate nanophotonics requiring only a few pJ of pump pulse energy. The experi-
mentally measured fundamental pulse duration of 13 fs corresponds to less than two
optical cycles of the carrier. Our results exhibit good agreement with theoretical
models based on the analytic soliton solutions of the waveguide and numerical sim-
ulations of the coupled wave equations. We have further shown how the intrinsic
phase relationship between the co-propagating fundamental and second-harmonic
waves may be directly leveraged for single-cycle pulse synthesis. The compression
mechanism may also be extended to longer pump pulses, making it compatible with
integrated sources (see Section 5.7). Taken together, our results offer a holistic
design framework for achieving two-color soliton compression in quadratic media
and illuminate the great potentials of this technique for realizing a new generation
of scalable single-cycle pulse generators, enabling many applications in ultrafast
integrated photonics. For example, the resultant ultrashort pulses can be leveraged
to realize extremely high bandwidth information processing systems [22]. Further-
more, as higher-energy integrated pulsed sources become available, the compressed
pulses may be used to drive high-harmonic generation as a compact source for
high-resolution imaging and lithography [14].
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5.7 Supporting Information
Experimental Details
Experimental Setup

The experimental setup is shown in Fig. 5.6a. The input pulses at 2090 nm
(red lines) which drive the compression are taken from the output of a free-space
degenerate optical parametric oscillator based on periodically poled lithium niobate.
It is pumped by a commercial mode-locked laser at 1045 nm (Menlo Orange, blue
lines) which delivers 103-fs pulses at a repetition rate of 250 MHz. The OPO output
consists of nearly transform-limited 35-fs, sech-shaped pulses centered at 2090 nm.
It is then passed through a long-pass filter, beam expander, and variable ND wheel
before being sent to the chip. This results in a small amount of anomalous pre-chirp
on the pulses. To avoid additionally dispersing the pulses, they are coupled in and
out of the thin-film lithium niobate (TFLN) chip using reflective objectives. A
pair of magnetic mirrors placed before the chip may also be used to re-direct the
2 µm beam to our home-built frequency-resolved optical gating (FROG) system,
described in the following.

The output of the TFLN device (purple lines) may be directed along one of two
measurement paths. Along one path (dashed line), the output is coupled to a
multimode fiber using a reflective collimator for direct spectrum measurements
using an OSA. Along the second path, the output is guided using plano-metallic
mirrors to our FROG. A magnetic mounted beamsplitter at the FROG input can be
used to switch between SHG auto-FROG and SFG X-FROG geometries. The solid
lines in the figure illustrate the X-FROG geometry. An off-axis parabolic mirror
is used for collimation into the nonlinear crystal, which is a 50-µm-long 𝛽-barium
borate (BBO) crystal cut for type I non-collinear phase matching of SFG between
1045 nm and 1300 nm. The crystal is mounted with rotational and translational
degrees of freedom to optimize the SHG or SFG signal at the FROG output.

The FROG output is sent through a pinhole to filter the residual input beams and then
passed through a collimating lens. Finally, a reflective collimator is used to couple
the beam to a multi-mode fiber before detection on a spectrometer. The 1045-nm
mode-locked laser and 2090-nm OPO output are measured using the auto-FROG
geometry. The low-power chip output, however, is measured using an X-FROG,
gated by a portion the 1045-nm MLL output. In this X-FROG configuration, we
additionally use a short-pass filter (Thorlabs FESH0800), which has a pass band of
500-789 nm, to filter any scattered light at 1045 nm from the high-power gate beam.
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Figure 5.6: Experimental setup for measuring two-color soliton pulse com-
pression. a, Setup for generation and measurement of compressed pulses. b,
Refractive index of BBO crystal used in FROG setup. c, Phase-matching curve
for sum-frequency generation between the 1045-nm gate pulse and the compressed
signal pulse. MLL, mode-locked laser; BS, beam-splitter; OPO, optical parametric
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This limits the bandwidth of our X-FROG measurement to wavelengths between
950 nm and 3220 nm coming from the chip, although this well-captures the most
crucial spectral window for the two-color soliton pulse compression.

To verify the feasibility of using our FROG to measure the broadband pulses coming
out of the chip, we simulate the phase-matching bandwidth of the BBO crystal. The
refractive index of BBO, shown in Fig. 5.6a for both the ordinary and extraordinary
rays, is found using the Sellmeier equation of ref. [49]. We then compute the
phase-matching curve, assuming a fixed gate pulse at 1045 nm and a variable signal
frequency. We consider a crystal angle of 23.74 degrees, optimized for phase-
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Figure 5.7: Gate pulse characterization. a, Measured (left) and retrieved (right)
SHG FROG spectrograms for the gate pulse used in the measurement. b, Corre-
sponding retrieved temporal profile and c, spectrum. FROG error = 0.0018.

matched SFG of 1045 nm and 1550 nm. In practice, this requires rotation of the
crystal by -1.26 degrees with respect to normal based on the calculated cut angle of
the crystal of 25 degrees. We further consider an input beam angle of 8.5 degrees
for both beams, based on a 1.2" separation between the beams prior to the parabolic
mirror and the 4" focal length of the mirror.

The resulting plot of sinc(Δ𝑘𝐿/2), where 𝐿 = 50 µm is the length of the crystal
and Δ𝑘 is the calculated phase mismatch, is shown in Fig. 5.6c. Here, we observe
that the 3-dB bandwidth extends from about 75 THz to 305 THz, well-capturing
both the fundamental and second harmonic frequencies at 143.5 THz and 287 THz,
respectively. However, in combination with the short-pass filter response, we believe
the observed decrease in phase matching at high frequencies to be responsible for the
slight under-estimation of the second-harmonic power in our FROG reconstruction
as compared to the measured spectrum on the OSA.

An SHG FROG characterization of 1045-nm gate pulses may be seen in Figure
5.7. Figure 5.7a shows the measured and retrieved FROG spectrograms. Good
qualitative agreement is observed as well as a reasonable FROG error of 0.0018.
The retrieved temporal profile and spectrum are shown in Figs. 5.7b and 5.7c,
respectively.

FROG Processing

The output of an SFG X-FROG is an intensity spectrogram [50], which approxi-
mately takes the form:

𝐼FROG(𝜔, 𝜏) =
����∫ ∞

−∞
𝐸𝑆 (𝑡)𝐸𝐺 (𝑡 − 𝜏)𝑒−𝑖𝜔𝑡𝑑𝑡

����2. (5.4)
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Here, 𝐸𝑆 (𝑡) and 𝐸𝐺 (𝑡) are the electric field amplitudes of the signal and gate pulses,
respectively. In our FROG system (Fig. 5.6a), 𝜏 is imposed through a mechanical
delay stage on the gate arm. Moving from an SFG X-FROG to an SHG auto-FROG
merely requires setting 𝐸𝐺 (𝑡) equal to 𝐸𝑆 (𝑡).

For accurate measurement of broadband few- or single-cycle pulses, several addi-
tional considerations come into play. These can include the phase-matching band-
width, the frequency response of the spectrometer, the frequency dependence of the
nonlinear susceptibility, and the frequency dependence of the nonlinear coupling
coefficient [50]. As discussed above, the phase-matching bandwidth is sufficiently
broad to include the dominant fundamental and second harmonic components well
within the 3 dB bandwidth, so we do not factor it into our post processing. We
additionally do not consider the effects of the frequency dependence of the non-
linear susceptibility nor the spectrometer response, beyond the built-in amplitude
correction of the Thorlabs CCS200 instrument used in the X-FROG measurement.

With these considerations in mind, our post-processing consists of the following. We
first perform background subtraction by measuring an empty trace (where no signal
is present on the spectrometer) and subtracting it from all other measured traces.
After subtraction, we set all values less than 0 to be 0, as a measured value of less
than 0 in the spectrogram would be unphysical. Next, we perform thresholding of
any content that is more than 20 dB below the maximum measured intensity. After
thresholding, we correct for the frequency dependence of the nonlinear coupling
coefficient by rescaling the spectrogram by a factor of 𝜔2. Lastly, we normalize the
spectrogram to contain only values between 0 and 1 and perform interpolation using
the MATLAB interp1 function onto a Fourier grid for processing. For the X-FROG
traces, a Fourier grid size of 1024 is used with a total time window length of 2500
fs. For the 2 µm input measurement, a grid size of 1024 is also used, while a grid
size of 512 is used for reconstructing the 1 µm gate pulses.

Our FROG algorithm uses a slightly modified version of the open-source code pro-
vided by Wyatt and Byrnes [51, 52]. It employs the principal component generalized
projections algorithm developed by Kane [53, 54]. The definition of the Fourier grid
and overall performance of the algorithm has been tested against the suggestions
made by DeLong, et al [55]. We run the algorithm for 1000 iterations, although
convergence is typically observed within the first 100 iterations. Typical errors for
our FROG retrievals are on the order of 10−3, consistent with reported guidelines.
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FROG Measurement Limitations

Our current experimental apparatus has several limitations which prohibit our suc-
cessfully measuring shorter pulses than what is shown in Fig. 5.4, although current
measurements and simulations suggest that shorter pulse widths should be observed
at slightly higher pulse energies. The current limitations are experimentally demon-
strated through the measurements presented in Fig. 5.8.
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Figure 5.8: Experimental FROG ambiguities. a, Measured (left) SFG FROG
spectrogram for an input energy of 5 pJ along with two example retrievals (right).
b, Overlaid OSA and FROG spectra, showing good agreement. c, Fundamental
pulse corresponding to retrieval 1. d, Fundamental pulse corresponding to retrieval
2. e, Second harmonic pulse corresponding to retrieval 1. f, Fundamental spectrum
corresponding to retrieval 1 and g, retrieval 2. h, Overlay of directly retrieved
fundamental and second harmonic temporal profiles. Both FROG retrievals show
an error of 0.0045.

The measured and retrieved spectrograms for an input pulse energy of 5 pJ are shown
in Fig. 5.8a. Both retrievals show good agreement with the measured spectrogram
as well as a low error of 0.0045. Furthermore, good agreement is seen between
the retrieved spectrum and measured spectrum on the OSA (Fig. 5.8b), besides the
expected discrepancies due to the FROG bandwidth and presence of higher-order
spatial modes. For retrieval 1, ultrashort pulses of duration 10 fs and 12 fs are
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observed at both the fundamental and second harmonic, respectively, as shown in
Figs. 5.8c and 5.8e. The spectral shape and short durations are both consistent
with expectations based on simulation. However, despite exhibiting similar error,
retrieval 2 recovers a different profile for the fundamental wave, depicted in Fig. 5.8d.
Instead of a single, 10-fs pulse, we observe a double-humped pulse of total duration
22-fs. The second harmonic for retrieval 2 is not shown, as it is nearly identical to
that of retrieval 1. As can be seen through the corresponding spectra in Figs. 5.8f
and 5.8g, the predominant discrepancy between the two retrievals is attributable to
the relative phase between the high-frequency and low-frequency components of
the fundamental wave. When in phase, a single sharp feature is observed, whereas
the double-humped pulse of retrieval 2 is a consequence of the two spectral bands
being out of phase. A secondary issue is depicted in Fig. 5.8h. Although the
fundamental and second harmonic waves are expected to co-propagate, retrievals
consistently indicate an approximately 20-fs separation between the two harmonics.
We believe this to be a consequence of dispersion in the measurement path, which
can be resolved by limiting the number of mirror bounces and propagation distance
between the chip output and FROG.

We believe the observed phase ambiguity in the fundamental traces at high powers
to be predominantly a consequence of the 𝑓CEO of the driving laser being unlocked
and non-zero. Because of this, the relative phase of the fundamental and and sec-
ond harmonic waveforms drifts from pulse to pulse, resulting in a non-repeating
pulse train at the FROG. Such non-repeating pulse trains are known to cause am-
biguities in FROG and have been the subject many experimental and numerical
investigations [56, 57]. To illustrate the consequence of the unlocked 𝑓CEO on our
FROG retrieval, we numerically construct a spectrogram which approximates the
simulated spectrogram. This is by averaging the spectrograms generated from five
distinct simulated waveforms made by summing the simulated fundamental and
second harmonic components with different relative phases. In our simulation,
we assume an input energy of 3.7 pJ. As in the synthesis proposal of Fig. 5.5,
the relative phase is varied by changing the input envelope phase, 𝜙𝜔. The simu-
lated fundamental and second harmonic pulses are shown in Figs. 5.9a and 5.9b,
respectively.

The combined spectral amplitudes and phases for the five simulated values of the
input phase are shown in Figs. 5.9c and 5.9d. As may be expected, the spectral
amplitudes and phases are similar everywhere except for in the overlap region around
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Figure 5.9: Simulation of FROG ambiguity. a, Simulated fundamental and
b, second harmonic waveforms for 3.7 pJ of pump pulse energy. c, Combined
spectral amplitudes for different fundamental envelope phases. d, Corresponding
spectral phases. e, Numerically constructed ambiguous FROG trace along with three
example retrievals. f, Retrieved spectral amplitudes and g, phases. h, Retrieved
fundamental and i, second harmonic pulses. j, Combined pulses for retrieval 2 and
k, retrieval 3. FROG retrievals 1, 2, and 3 show errors of 0.00037, 0.00046, and
0.00067, respectively.

230 THz. Here, interference results in significant spectral amplitude variation,
and the spectral phases are observed to change at different rates. The average
spectrogram constructed from these different waveforms is shown in Fig. 5.9e
along with three different example retrieved spectrograms. The retrieval algorithm
is run for 1000 iterations, resulting in similar errors for the retrieved spectrograms
of 0.00037, 0.00046, and 0.00067 for retrievals 1, 2, and 3, respectively. As shown
in Figs. 5.9f and 5.9g, all three retrievals result in similar spectral amplitudes;
however, significant spectral phase variation in the vicinity of 230 THz is observed
across retrievals.

The consequences of this are illustrated in Figs. 5.9h-k. In all cases, the fundamental
and second harmonic temporal profiles are pretty faithfully reconstructed; examples
corresponding to retrieval 1 are shown in Figs. 5.9h and 5.9i. However, vastly
different combined temporal profiles may be observed, corresponding to the different
relative phases between the fundamental and second harmonic components, as
demonstrated by the examples of Figs. 5.9j and 5.9k. This ambiguity mirrors that
of the experimentally measured fundamental pulses; however, it is not entirely clear
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why the ambiguity occurs experimentally in the middle of the fundamental pulse
rather than between the two harmonics. We believe, however, that it is due to there
being low SNR in this region due to the significant dip in spectral amplitude. This
results in the optimal retrieval misattributing the phase ambiguity to this spectral
region, as such a phase ambiguity typically exists between spectrally separated
components in a FROG measurement [58].

Device Design and Characterization

We design our device according to the design principles laid in the theory section of
the manuscript and also in the theoretical analysis to follow, and we refer the reader
to those sections for definitions of the parameters. We wish to operate in the 𝛼 ≈ 1
regime with small Δ𝑘 , such that similar soliton pulse widths and amplitudes may be
observed at both the fundamental and second harmonics. This requires a low group
velocity mismatch between the two harmonics to ensure small 𝛿. In addition, we
wish for the GVD at 2 µm to be sufficiently small so that the characteristic timescale
of the system is on the order femtoseconds at moderate input pulse energies in the pJ
range. This demonstrates the feasibility of performing soliton compression towards
the single-cycle regime using available integrated pulsed laser sources [46].

The key parameters contributing to the dispersion of our device are shown in Fig.
5.10a. They include the thin-film thickness, ℎ, etch depth, 𝑑, and waveguide top
width, 𝑤. Our fabrication process additionally results in a sidewall angle, 𝜃, of 60◦,
which must also be accounted for. Using Lumerical, we may sweep these three
main parameters to find a geometry that satisfies our design requirements. The
fabricated device geometry has ℎ = 709 nm, 𝑑 = 330 nm, and 𝑤 = 2938 nm. With
these parameters, the waveguide supports 3 transverse electric (TE) modes at the
fundamental wavelength of 2090 nm, the electric field intensities of which are shown
in Figs. 5.10a, 5.10b, and 5.10c. The fundamental mode at the second-harmonic
wavelength of 1045 nm is shown in Fig. 5.10d.

We also use Lumerical to calculate the effective index, 𝑛eff, group index, 𝑛𝑔, and
GVD, 𝛽2, of the fundamental mode as a function of wavelength. The results are
shown in Fig. 5.10e. From this, we find the GVD at 2090 nm to be 9 fs2/mm, and
at 1045 nm to be 141 fs2/mm. The GVM between the two is calculated to be 27
fs/mm. Spikes in the dispersion around 1350 nm, 930 nm, and 690 nm are the result
of mode crossings near these wavelengths. However, all occur sufficiently far away
from the fundamental and second harmonic carriers as to not significantly impede
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Figure 5.10: Waveguide design. a, TE0 mode at 2090 nm, with key design
parameters indicated. b, TE1 mode at 2090 nm. c, TE2 mode at 2090 nm. d, TE0
mode at 1045 nm e, Dispersion parameters for TE0 mode.

the broadening. Additionally, the poling period required for phase-matched SHG is
calculated to be 5.69 µm from the effective indices of the fundamental and second
harmonic, 1.88034 and 2.06409, respectively. The measured phase-mismatched
device is designed to have a poling length of 6.5 mm with a period of 5.73 µm.

As mentioned in the 5.4, some of our input power is coupled into the higher order
modes at 2090 nm, resulting in there being content at 2090 nm in the OSA measure-
ment that is not observed in the FROG retrieval. This is because the higher-order
modes are temporally gated out in the X-FROG geometry. To illustrate this, we
calculate the expected temporal separation between the TE0 and TE1 modes at the
chip output. From the group indices of the two modes, we calculate a group velocity
mismatch of 258 fs/mm. This results in there being a temporal separation of about 2
ps over the 8-mm-long device. This is well-separated from the X-FROG trace, which
spans about 1 ps of time delay, centered about the TE0 mode. As the higher-order
modes are not phase-matched for efficient nonlinear conversion, their spectra do not
change significantly from that of the input, accounting for the additional spectral
content around 2090 nm in the OSA trace.
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We fabricate the device following the procedure described in ref. [38]. It is
fabricated on X-cut MgO-doped thin-film lithium niobate on a SiO2/Si substrate
(NANOLN). To achieve the periodic poling, we pattern Cr poling electrodes using
lift-off. By applying a voltage across the electrodes, we periodically flip the ferro-
electric domains. Following poling, we etch the waveguides using Ar-milling with
hydrogen silsesquioxane (HSQ) as the etch mask. Finally, we mechanically polish
the waveguide facets to enable end-fire coupling into the devices.

After fabrication, we characterize the throughput of our device and from them
estimate the coupling losses. From free-space to free-space, we observe a 22 dB
loss at 2090 nm through the chip. Based on the index contrast at the output, we expect
a 10% reflection at the output facet of the chip. Furthermore, based on the numerical
aperture (NA) of our output objective (Thorlabs LMM40X-P01), which is 0.5, we
use Lumerical to estimate the power coupling between the fundamental TE mode
and a Gaussian beam which fills the objective and is focused to the waveguide output
facet. A more accurate calculation may be achieved by using a slightly elliptical
free-space mode, but we believe the symmetric Gaussian mode to be a fair choice
given that the 1/e2 width of the fundamental TE mode is close to the diffraction-
limited beam waist, which we calculate as 1.33 µm. With these assumptions, the
power coupling is 0.43. Finally, we must include the obscuration factor, which is
reported to be 24% for the objective. Approximating the chip output as an ideal
spherical wavefront, this obscuration factor can be directly taken as the loss. Based
on these values, our output coupling is calculated to be 5.3 dB, which is similar
to the output coupling that has previously been measured from our devices using
other techniques. In our analysis, we round this value up to 6 dB, accounting for
other non-idealities in our system such as scattering loss due to imperfect polishing,
and use 16 dB as the input coupling calibration factor between off-chip and on-chip
powers.

Theoretical Analysis
Soliton Solutions to Coupled Wave Equations

We begin our analysis with the coupled wave equations [37, 59], written as:

𝜕𝐴𝜔

𝜕𝑧
= 𝑖𝜅𝐴2𝜔𝐴

∗
𝜔𝑒

−𝑖Δ𝑘𝑧 − 𝑖𝛽
(2)
𝜔

2
𝜕2𝐴𝜔

𝜕𝑡2
, (5.5a)

𝜕𝐴2𝜔

𝜕𝑧
= 𝑖𝜅𝐴2

𝜔𝑒
𝑖Δ𝑘𝑧 − Δ𝛽

′ 𝜕𝐴2𝜔

𝜕𝑡
−
𝑖𝛽

(2)
2𝜔
2

𝜕2𝐴2𝜔

𝜕𝑡2
, (5.5b)
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where 𝐴𝜔 (𝑧, 𝑡) and 𝐴2𝜔 (𝑧, 𝑡) represent the amplitudes of the fundamental and second
harmonic waves at frequencies 𝜔 and 2𝜔, respectively, normalized such that the
instantaneous power in each wave is given by

��𝐴 𝑗 ��2, 𝑗𝜖{𝜔, 2𝜔}. The time coordinate
is defined such that the reference frame is co-moving at the group velocity of the
fundamental wave. The phase mismatch parameter is Δ𝑘 = 2𝜋

Λ
+2𝑘𝜔− 𝑘2𝜔, where Λ

is the poling period. 𝜅 =
√

2𝜂0𝜔𝑑eff

𝑛𝜔
√
𝐴eff𝑛2𝜔𝑐

is the nonlinear coupling coefficient, where 𝑑eff

is the effective nonlinearity, 𝑛 𝑗 is the refractive index of wave 𝑗 , 𝐴eff is the effective
mode area, 𝑐 is the speed of light, and 𝜂0 is the impedance of free space. The group
velocity mismatch is given by Δ𝛽

′
= 1

𝑣𝑔,2𝜔
− 1

𝑣𝑔,𝜔
, where 𝑣𝑔, 𝑗 is the group velocity

of wave 𝑗 . Finally, 𝛽(2)
𝑗

is the group velocity dispersion of the 𝑗 th wave. For the
purposes of this analysis, we neglect higher dispersion orders.

We next introduce the normalized waves 𝑎𝜔 = −
√

2𝜅
𝛽

√︄���� 𝛽 (2)𝜔

𝛽
(2)
2𝜔

����𝐴𝜔𝑒−𝑖𝛽𝑧 and 𝑎2𝜔 =

𝜅
𝛽
𝐴2𝜔𝑒

−𝑖(2𝛽+Δ𝑘)𝑧, where 𝛽 accounts for shifts in the phase velocity induced by the
nonlinear interaction [60]. Additionally, we define a new spatial coordinate 𝜁 = |𝛽 |𝑧

and a new temporal coordinate 𝜉 =

√︂��� 2𝛽
𝛽
(2)
𝜔

���𝑡. Note that we have implicitly required

that 𝛽 be real. Although our analysis focuses on these bright soliton solutions,
we note that a wide variety soliton solutions exists in other parameter regimes, so
compression in those regimes may be also possible. Making these substitutions
yields the following system of equations:

−𝑖𝑠1
𝜕𝑎𝜔

𝜕𝜁
= 𝑠2

𝜕2𝑎𝜔

𝜕𝜉2 − 𝑎𝜔 + 𝑎2𝜔𝑎
∗
𝜔, (5.6a)

−𝑖𝑠1
𝜕𝑎2𝜔

𝜕𝜁
= 𝑠3

����� 𝛽(2)2𝜔

𝛽
(2)
𝜔

�����𝜕2𝑎2𝜔

𝜕𝜉2 + 𝑖𝑠3Δ𝛽
′

√︄
− 2

𝛽
(2)
𝜔 𝛽

𝜕𝑎2𝜔

𝜕𝜉
− (2 + Δ𝑘

𝛽
)𝑎2𝜔 +

����� 𝛽(2)2𝜔

𝛽
(2)
𝜔

�����𝑎2
𝜔

2
.

(5.6b)

Here, 𝑠1 = sgn(𝛽), 𝑠2 = −sgn( 𝛽
(2)
𝜔

𝛽
), and 𝑠3 = −sgn( 𝛽

(2)
2𝜔
𝛽
). In what follows, we take

𝑠2 = 𝑠3 = 1, requiring that 𝛽(2)𝜔 and 𝛽(2)2𝜔 share the same sign, opposite that of 𝛽,

as this is known to yield bright soliton solutions [61]. Finally, defining 𝜎 =

���� 𝛽 (2)𝜔

𝛽
(2)
2𝜔

����,
𝛿 = 𝑠1Δ𝛽

′

√︄���� 2𝛽 (2)𝜔

𝛽
(2)
2𝜔 𝛽

����, and 𝛼 = 𝜎(2 + Δ𝑘
𝛽
), we arrive at the normalized coupled wave

equations:

−𝑖𝑠1
𝜕𝑎𝜔

𝜕𝜁
=
𝜕2𝑎𝜔

𝜕𝜉2 − 𝑎𝜔 + 𝑎2𝜔𝑎
∗
𝜔, (5.7a)
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−𝑖𝑠1𝜎
𝜕𝑎2𝜔

𝜕𝜁
=
𝜕2𝑎2𝜔

𝜕𝜉2 + 𝑖𝛿 𝜕𝑎2𝜔

𝜕𝜉
− 𝛼𝑎2𝜔 +

𝑎2
𝜔

2
. (5.7b)

Let us first study the soliton solutions with 𝛿 = 0, assuming no walk-off between
the fundamental and second-harmonic waves. Setting the spatial derivatives on the
left-hand side of equations 5.7a and 5.7b to 0, we have:

0 =
𝜕2𝑎𝜔

𝜕𝜉2 − 𝑎𝜔 + 𝑎2𝜔𝑎
∗
𝜔, (5.8a)

0 =
𝜕2𝑎2𝜔

𝜕𝜉2 − 𝛼𝑎2𝜔 +
𝑎2
𝜔

2
. (5.8b)

To begin, we find the continuous-wave solutions, 𝑎 𝑗 ,𝐶𝑊 , 𝑗𝜖{𝜔, 2𝜔}, by setting the
time derivatives to 0. Assuming real solutions, which requires 𝛼 > 0, we find the
following non-zero solutions:

𝑎2𝜔,𝐶𝑊 = 1, (5.9a)

𝑎𝜔,𝐶𝑊 = ±
√

2𝛼. (5.9b)

The existence of two CW solutions with opposite phases at the fundamental wave
is a well-known feature of degenerate quadratic nonlinear systems. For the analysis
that follows, we will take the positive solution; however, the analysis would follow
equivalently from the negative solution. Secondarily, we see that the two waves
have an amplitude ratio which is given by

√
2𝛼, the normalized phase mismatch

parameter. Next, we seek particular solutions of the form:

𝑎𝜔 (𝜉) = 𝑎𝜔,𝐶𝑊 𝑎̃𝜔 (𝜉) =
√

2𝛼𝑎̃𝜔 (𝜉), (5.10a)

𝑎2𝜔 (𝜉) = 𝑎2𝜔,𝐶𝑊 𝑎̃2𝜔 (𝜉) = 𝑎̃2𝜔 (𝜉). (5.10b)

To proceed, we assume a large phase mismatch, 𝛼 >> 1, and perform an asymptotic
expansion of 𝑎̃2𝜔 (𝜉) and 𝑎̃𝜔 (𝜉) in orders of the small parameter 1

𝛼
:

𝑎̃ 𝑗 (𝜉) = 𝑎̃ 𝑗 ,0(𝜉) +
1
𝛼
𝑎̃ 𝑗 ,2(𝜉) +

1
𝛼2 𝑎̃ 𝑗 ,3(𝜉) + ... (5.11)

Using this expansion in conjunction with equations 5.10a and 5.10b and plugging
into equations 5.8a and 5.8b gives the following system of equations for terms of
order ( 1

𝛼
)0:
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0 =
𝜕2𝑎̃𝜔,0

𝜕𝜉2 − 𝑎̃𝜔,0 + 𝑎̃2𝜔,0𝑎̃
∗
𝜔,0, (5.12a)

0 = −𝑎̃2𝜔,0 + 𝑎̃2
𝜔,0. (5.12b)

Plugging equation 5.12b into 5.12a gives a second-order differential equation for
𝑎̃𝜔,0:

0 =
𝜕2𝑎̃𝜔,0

𝜕𝜉2 − 𝑎̃𝜔,0 + 𝑎̃𝜔,0
��𝑎̃𝜔,0��2, (5.13)

which closely resembles the nonlinear Schrödinger equation governing cubic non-
linear optical systems [44]. Solving for 𝑎̃𝜔,0 assuming 𝑎̃𝜔,0 real gives the bright
soliton solution:

𝑎̃𝜔,0(𝜉) =
√

2 sech(𝜉), (5.14a)

𝑎̃2𝜔,0(𝜉) = 2 sech2(𝜉). (5.14b)

From this, we see that the temporal duration of the soliton solution is given by
the characteristic timescale of the system,

��� 2𝛽
𝛽
(2)
𝜔

���. This first-order solution of the
asymptotic expansion is what has been predominantly studied in works on quadratic
soliton pulse compression, due to its similarity to the fundamental Kerr soliton.
Next, we may repeat the procedure to find solutions for higher orders of 1

𝛼
. For

brevity, we directly write here the solutions for ( 1
𝛼
)1 and ( 1

𝛼
)2. For ( 1

𝛼
)1, we have:

𝑎̃𝜔,1(𝜉) = 2
√

2 sech(𝜉) tanh2(𝜉), (5.15a)

𝑎̃2𝜔,1(𝜉) = 4 sech2(𝜉) [4 − 5 sech2(𝜉)], (5.15b)

while for ( 1
𝛼
)2, we see:

𝑎̃𝜔,2(𝜉) =
2
√

2
3

sech(𝜉) [28 sech4(𝜉) + 32 sech2(𝜉) − 97], (5.16a)

𝑎̃2𝜔,2(𝜉) =
8
√

2
3

sech2(𝜉) [181 sech4(𝜉) − 106 sech2(𝜉) − 76] . (5.16b)

Together, then, the asymptotic expansion in 1
𝛼

for the soliton solutions of the coupled
wave equations is given by:
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𝑎𝜔 (𝜉) = 2
√
𝛼 sech(𝜉)

(
1 + 2

𝛼
tanh2(𝜉)

+ 2
3𝛼2 [28 sech4(𝜉) + 32 sech2(𝜉) − 97] +𝑂 ( 1

𝛼3 )
)
, (5.17a)

𝑎2𝜔 (𝜉) = 2 sech2(𝜉)
(
1 + 2

𝛼
[4 − 5 sech2(𝜉)]

+ 4
√

2
3𝛼2 [181 sech4(𝜉) − 106 sech2(𝜉) − 76] +𝑂 ( 1

𝛼3 )
)
. (5.17b)

While this asymptotic solution works well to first order for cases when 𝛼 >> 1
and can be made more exact for cases with 𝛼 ≈ 1 by including higher-order terms,
it would be preferable to have a more succinct expression for the soliton solution
for arbitrary 𝛼. Such a solution may be obtained by making the observation that
the soliton solutions in both the pump and signal take the form of powers of sech
functions, and that they share the same approximate pulse width. Thus, we make
make the following ansatz [43]:

𝑎𝜔 (𝜉) = 𝑎𝜔,0 sech𝑝 ( 𝜉
𝜏
), (5.18a)

𝑎2𝜔 (𝜉) = 𝑎2𝜔,0 sech𝑞 ( 𝜉
𝜏
), (5.18b)

where 𝑎𝜔,0 and 𝑎2𝜔,0 are the pulse amplitudes, assumed to be real, and 𝜏 will define
the pulse width scaling. Plugging into the system of equations 5.8a and 5.8b gives:

𝑎𝜔,0

𝜏2 [𝑝2 sech𝑝 ( 𝜉
𝜏
) − (𝑝2 + 𝑝) sech(𝑝+2) ( 𝜉

𝜏
)]

− 𝑎𝜔,0 sech𝑝 ( 𝜉
𝜏
) + 𝑎𝜔,0𝑎2𝜔,0 sech𝑝+𝑞 ( 𝜉

𝜏
) = 0 (5.19a)

𝑎2𝜔,0

𝜏2 [𝑞2 sech𝑞 ( 𝜉
𝜏
) − (𝑞2 + 𝑞) sech(𝑞+2) ( 𝜉

𝜏
)]

− 𝛼𝑎2𝜔,0 sech𝑞 ( 𝜉
𝜏
) +

𝑎2
𝜔,0

2
sech2𝑝 ( 𝜉

𝜏
) = 0. (5.19b)
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From here, we may note that the first equation can be solved exactly when q = 2,
requiring that 𝜏 = 𝑝 and the second-harmonic pulse amplitude be given by:

𝑎2𝜔,0 = 1 + 1
𝑝
. (5.20)

With these constraints, one may find an exact solution [45] using equation 5.19b
when p = 2, corresponding to 𝛼 = 1. In this case, the solution is given by:

𝑎𝜔 (𝜉) =
3
√

2
sech2( 𝜉

2
), (5.21a)

𝑎2𝜔 (𝜉) =
3
2

sech2( 𝜉
2
). (5.21b)

However, an approximate analytical solution which gives exactly the behavior around
the pulse peak and tails may be derived by making a few observations. The first is
that, at the pulse peak (𝜉 = 0), all of the sech terms go to 1. Thus, satisfaction of
equation 5.19b at 𝜉 = 0 requires that:

𝑎2
𝜔,0 = 2𝑎2𝜔,0(

2
𝑝2 + 𝛼). (5.22)

Here, we note also that equation 5.19b is already satisfied at the tails of the pulses,
as all of the sech terms approach 0 as 𝜉 → ±∞. The second observation that can be
made is that the normalized equations 5.8a and 5.8b exactly describe a particle in a
potential𝑈, where𝑈 is given by:

𝑈 =
𝑎2
𝜔𝑎2𝜔

2
− 1

2
𝑎2
𝜔 − 1

2
𝛼𝑎2

2𝜔. (5.23)

The Hamiltonian for the system is:

𝐻 =
1
2

(
𝜕𝑎𝜔

𝜕𝜉

)2
+ 1

2

(
𝜕𝑎2𝜔

𝜕𝜉

)2
+𝑈. (5.24)

For such a conservative system, we expect the Hamiltonian to remain constant for
all values of 𝜉. By noting that at the wings, where 𝜉 → ±∞, 𝐻 → 0, we see that this
requires 𝐻 = 0 for all values of 𝜉. As such, correct behavior at the pulse peak, where
𝜕𝑎𝜔
𝜕𝜉

=
𝜕𝑎2𝜔
𝜕𝜉

= 0, requires 𝐻 |𝜉=0 = 𝑈 |𝜉=0 = 0. This leads to a second equation:
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𝑎2
𝜔,0𝑎2𝜔,0 − 𝑎2

𝜔,0 − 𝛼𝑎
2
2𝜔,0 = 0. (5.25)

We may combine the above arguments along with equations 5.20, 5.22, and 5.25
to arrive at the following set of soliton solutions, originally proposed by Sukho-
rukov [43]:

𝑎𝜔 (𝜉) = 𝑎𝜔,0 sech𝑝 ( 𝜉
𝑝
), (5.26a)

𝑎2𝜔 (𝜉) = 𝑎2𝜔,0 sech2( 𝜉
𝑝
), (5.26b)

where the scaling behaviors for the parameters 𝑎2𝜔,0, 𝑎𝜔,0, and 𝑝 are given as:

𝑝 =
1

𝑎2𝜔,0 − 1
, (5.27a)

𝑎2
𝜔,0 =

𝛼𝑎2
2𝜔,0

𝑎2𝜔,0 − 1
, (5.27b)

𝛼 =
4(𝑎2𝜔,0 − 1)3

2 − 𝑎2𝜔,0
. (5.27c)

Numerical Soliton Solutions

We may numerically find the soliton solutions using Newton’s Method with the
solutions given by equations 5.26 and 5.27 as a seed. To do so, we encode the two
equations for which we wish to find the zeros, 5.8a and 5.8b, where we numerically
compute derivatives in 𝜉 in the Fourier domain using the Fast Fourier Transform.
For a Fourier grid of size N, the state vector 𝑎curr is size 2N, consisting of the
value of 𝑎𝜔 at each of the N points in 𝜉 along with the value of 𝑎2𝜔 at all N
points. Newton’s Method requires iteratively computing the 2N-by-2N Jacobian
𝐽, composed by taking partial derivatives of the equations 5.8a and 5.8b with
respect to the 2N points in the current state vector, and inverting it to compute
𝑎next = 𝑎curr − 𝐽−1 𝑓 (𝑎curr). Here, 𝑓 (𝑎curr) is a vector of size 2N consisting of the
solutions of equations 5.8a and 5.8b for the 2N values of the state vector 𝑎curr.

The numerically computed soliton solutions for different values of 𝛼 along with
scaling behaviors of the soliton pulse amplitude and full width at half maximum
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Figure 5.11: Soliton solutions with 𝛿 = 0. a, Fundamental soliton solutions. b,
Amplitude of fundamental soliton. c, FWHM of fundamental soliton. d-f, Corre-
sponding plots for second harmonic soliton. FWHM, full width at half maximum.

(FWHM) are shown in Figure 5.11. The pulse profiles are shown in Figs. 5.11a and
5.11d for the fundamental and second harmonic, respectively. As noted in Section
5.2, we see that at large values of 𝛼, the fundamental amplitude greatly exceeds that
of the second harmonic and vice versa for small values of 𝛼. This behavior is shown
more clearly in Figs. 5.11b and 5.11e, where the pulse amplitudes are plotted as a
function of 𝛼. The numerically computed solutions are shown by dark dashed lines,
and exhibit near-perfect agreement with the light, solid lines showing the analytic
solutions of 5.26 and 5.27. Similarly, we plot the analytic and numerically computed
soliton FWHM for both waves in Figs. 5.11c and 5.11f. Again, good agreement
between the numeric and analytic solutions is observed, particularly for large 𝛼.
Here, we see that the FWHM is relatively stable for 𝛼 > 1 as the asymptotic solution
of equations 5.17a and 5.17b is approached but quickly grows for 𝛼 < 1.

After solving for the system of equations 5.8a and 5.8b, we may additionally use
numerical continuation to find solutions to the modified system where 𝛿 ≠ 0, given
by setting the right-hand side of equations 5.7a and 5.7b equal to 0:

0 =
𝜕2𝑎𝜔

𝜕𝜉2 − 𝑎𝜔 + 𝑎2𝜔𝑎
∗
𝜔, (5.28a)

0 =
𝜕2𝑎2𝜔

𝜕𝜉2 + 𝑖𝛿 𝜕𝑎2𝜔

𝜕𝜉
− 𝛼𝑎2𝜔 +

𝑎2
𝜔

2
. (5.28b)
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Here, we begin with the solutions found using Newton’s Method at 𝛿 = 0 and find
the solution for increasing values of 𝛿, using the solution for the previous value
of 𝛿 as a seed. An example of how the soliton solution changes for varying 𝛿

with fixed 𝛼 = 1.64 is given in Fig. 5.12. The real parts of the soliton solutions
at the fundamental and second harmonic are shown in Figs. 5.12a and 5.12c,
with corresponding imaginary parts shown in Figs. 5.12b and 5.12d. As may be
observed, increasing 𝛿 results in a growing imaginary component of the soliton. In
addition, the real component is observed to skew; here, we’ve shown positive values
of 𝛿 for which the skew shifts the center of mass in the direction of the positive time
coordinate. However, we observe also that for sufficiently small values of 𝛿, the
soliton is still extremely well-approximated by the 𝛿 = 0 solution.

a

c d

b

Figure 5.12: Soliton solutions with 𝛿 ≠ 0. a, Real and b, imaginary parts of
fundamental soliton solutions. c, Corresponding real and d, imaginary parts of
second harmonic solitons.

At large values of 𝛿, we note that our continuation algorithm no longer converges
to a soliton solution but either blows up to infinity or converges to the trivial
solution, 𝑎𝜔 = 𝑎2𝜔 = 0. To better understand where this transition occurs between
the existence and non-existence of a stable soliton solution, we again consider the
equations 5.28a and 5.28b. A solution for 𝑎2𝜔 in terms of 𝑎𝜔 may be found through
direct integration of equation 5.28b. Doing so yields the solution:

𝑎2𝜔 (𝜉) =
∫ ∞

−∞

𝑎2
𝜔 (𝜉 − 𝜉′)

4
√︁
𝛼 − 𝛿2/4

𝑒−𝑖
𝛿
2 𝑅±(𝜉′)𝑑𝜉′, (5.29)
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where 𝑅+(𝜉′) = 𝑒−
√
𝛼−𝛿2/4|𝜉′ | is used if𝛼−𝛿2/4 ≥ 0 and 𝑅−(𝜉′) = sin

(√︁
𝛼 − 𝛿2/4|𝜉′|

)
is used if 𝛼 − 𝛿2/4 < 0. Thus, we see that a non-oscillatory soliton solution is ex-
pected only if 𝛼 ≥ 𝛿2/4, which has previously been referred to as the stationary
regime of pulse compression [34]. To confirm that this analysis is consistent with
what we observe numerically, we plot (Fig. 5.13a) the soliton existence (dark blue)
and non-existence regimes (light blue), as determined by the convergence of our
Newton’s Method to a non-zero stationary solution, as a function of 𝛼 and 𝛿. The
analytically computed boundary, 𝛼 = 𝛿2/4 is shown by the solid, black line, in good
agreement with our numerical solver.

a b

Soliton
Exists

Soliton
Does

Not Exist

Figure 5.13: Soliton existence and stability. a, Soliton existence and non-existence
regimes determined by convergence of Newton’s method to a non-zero solution. The
expected boundary𝛼 = 𝛿2/4 is given by the solid, black line. b, Phase space diagram
with 𝛼 = 1 of the second harmonic soliton amplitude, 𝑢2𝜔, relative phase, Δ𝜃 found
using the Lagrangian analysis. The color map shows the value of the pulse width
parameter, 𝜌, corresponding to the given values of 𝑢2𝜔 and Δ𝜃. The soliton solution
is indicated by the open tan circle.

Lagrangian Analysis

To better understand the stability of the soliton solution and the compression dy-
namics near the soliton solution, we may perform a Lagrangian analysis [62] on the
system 5.7a and 5.7b, setting 𝛿 = 0. In this case, the Lagrangian density may be
written as:

𝐿 = 𝜎 Im
{
𝑎∗2𝜔

𝜕𝑎2𝜔

𝜕𝜁

}
+ Im

{
𝑎∗𝜔
𝜕𝑎𝜔

𝜕𝜁

}
+

����𝜕𝑎𝜔𝜕𝜁 ����2 + ����𝜕𝑎2𝜔

𝜕𝜁

����2
+ |𝑎𝜔 |2 + 𝛼 |𝑎2𝜔 |2 − Re

{
𝑎2
𝜔𝑎

∗
2𝜔

}
. (5.30)
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To proceed, we assume the following simplified forms for the fundamental and
second harmonic waves based on the known exact soliton solution for 𝛼 = 1:

𝑎𝜔 (𝜁, 𝜉) = 𝑢𝜔 (𝜁)
√︁
𝜌(𝜁) sech2 (𝜌(𝜁)𝜉)𝑒𝑖 𝜃𝜔 (𝜁 )

2 , (5.31a)

𝑎2𝜔 (𝜁, 𝜉) = 𝑢2𝜔 (𝜁)
√︁
𝜌(𝜁) sech2 (𝜌(𝜁)𝜉)𝑒𝑖𝜃2𝜔 (𝜁) , (5.31b)

where 𝑢𝜔, 𝑢2𝜔, 𝜃𝜔, and 𝜃2𝜔 are the fundamental and second harmonic pulse am-
plitudes and phases, respectively, and 𝜌 is the pulse width parameter, assumed to
be the same for both the fundamental and second harmonic. The time-averaged
Lagrangian density, L, is then obtained inserting this ansatz into equation 5.30 and
integrating over 𝜉:

L =

∫ ∞

−∞
𝐿 (𝜉, 𝜁)𝑑𝜉. (5.32)

Finally, the equations of motion for the system parameters can be found using the
Euler-Lagrange equation, 𝜕

𝜕𝜁

(
𝜕L
( 𝜕 𝑓

𝜕𝜁
)

)
= 𝜕L

𝜕 𝑓
, where 𝑓 𝜖 {𝜌, 𝜃𝜔, 𝜃2𝜔, 𝑢𝜔, 𝑢2𝜔}. Steady-

state solutions may be found by setting the resulting 𝜁 derivatives to 0, yielding the
following set of algebraic equations:

4𝜌3/2(𝑢2
2𝜔 + 𝑢2

𝜔) = 𝑢2
𝜔𝑢2𝜔, (5.33a)

2 + 8
5
𝜌2 =

8
5
√
𝜌𝑢2𝜔, (5.33b)

2𝛼 + 8
5
𝜌2 =

4
5
√
𝜌
𝑢2
𝜔

𝑢2𝜔
. (5.33c)

In the case of 𝛼 = 1, the known soliton solution given by equations 5.21a and 5.21
is recovered exactly, as expected. Away from 𝛼 = 1, the system approximates the
soliton solution but deviates slightly due to the assumption that the fundamental
and second harmonic share the same pulse profile and width. The dynamics of the
system can be reduced to two algebraic equations and two differential equations as
follows:

𝜌3/2 =
1
4
𝑢2𝜔𝑢

2
𝜔

𝑢2
2𝜔 + 𝑢2

𝜔

cos(Δ𝜃), (5.34a)
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𝑢2
𝜔

2
+ 𝜎𝑢2

2𝜔 = 𝜂tot, (5.34b)

𝑑𝑢2𝜔

𝑑𝜁
= − 2

5𝜎
√
𝜌𝑢2

𝜔 sin(Δ𝜃), (5.34c)

𝑑Δ𝜃

𝑑𝜁
= −2

5
(
𝑢2
𝜔

𝜎𝑢𝜔
− 4𝑢2𝜔)

√
𝜌 cos(Δ𝜃) + 4

5
( 1
𝜎

− 2)𝜌2 + ( 𝛼
𝜎

− 2), (5.34d)

where we have re-parameterized the phase in terms of Δ𝜃 = 𝜃𝜔 − 𝜃2𝜔. Equation
5.34b is an energy conservation relation for the normalized system, with 𝜂tot being
a constant representing the total energy of the system.

The phase space diagram corresponding to equations 5.34c and 5.34d for 𝛼 = 1
can be found in Fig. 5.13b. The color gradient in the background further shows
the value of 𝜌, computed using the algebraic equations 5.34a and 5.34b, where 𝜂tot

is computed from the soliton solution given by the system of equations 5.33. We
observe that, in the space of the considered parameters, the soliton solution (open,
tan circle) is a saddle point. We note also that the soliton solution corresponds
very nearly to the largest value of 𝜌 (corresponding to the minimum value of the
pulse width). Although this simplified model does not capture the full compression
behavior (for example, the observed back-and-forth conversion), the behavior is
consistent with the overall compression dynamics of Fig. 5.1b. Specifically, we
observe that the pulse nearly compresses to the soliton solution, around which pulse
evolution is observed to be slow, but eventually begins to broaden again. This slow
evolution, but ultimate instability, of the pulse near the soliton solution is consistent
with the finding from the Lagrangian analysis that the soliton is a saddle point.

This analysis additionally highlights another important property of the soliton solu-
tion of the system, which is that Δ𝜃 = 0 for the soliton state. We note here that in
terms of the fundamental second harmonic envelope phases, respectively 𝜙𝜔 =

𝜃𝜔
2

and 𝜙2𝜔 = 𝜃2𝜔, this result implies that 2𝜙𝜔 = 𝜙2𝜔 in the soliton state. Therefore, a
change Δ𝜙𝜔 in the fundamental phase results in a change Δ𝜙2𝜔 that is twice as large.
This is the basis of the synthesis method proposed in Section 5.5, as a simple modu-
lation of the envelope phase of the fundamental input to the two-color compression
can be used to directly shape the relative phase of the two output harmonics for the
realization of a variety of waveforms.

Pulse Compression Simulations

To further explore the compression dynamics and provide finally some basic design
guidelines, we perform Fourier split-step simulations of the coupled wave equations,
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5.7a and 5.7b. To seed the simulations, we first take the numerically computed soli-
ton solutions, as described above, and find the pulse width of the fundamental soliton
as well as the total normalized energy in the combined fundamental and second har-
monic soliton solutions. We then input a sech-shaped pulse at the fundamental with
a pulse energy equal to the total soliton energy. To study the compression dynam-
ics, we vary the ratio of the FWHM of the input, FWHMin, to that of the soliton,
FWHMsol for different values of 𝛼, 𝛿, and 𝜎. For simplicity, we have assumed
sgn(𝛽) = 1 in our simulations, but identical scaling behaviors would be observed
for sgn(𝛽) = −1, with the primary difference being in the accumulated propagation
phase.

a b

c d

e f

ςopt ςopt

ςopt ςopt

Fundamental Second Harmonic

Figure 5.14: Normalized compression results with constant 𝛼 = 1.64. a, Phase-
mismatched compression with𝜎 = 𝛼/5 for the fundamental and b, second harmonic.
c, Nearly phase-matched compression with 𝜎 = 𝛼/2.1 for the fundamental and d,
second harmonic. The optimum compression length, 𝜁opt is indicated in all four
cases. e, 𝜁opt as a function of FWHMin/FWHMsol for various values of 𝜎, showing
similar scaling behavior. f, Likewise, 𝜁opt exhibits similar scaling behaviors for
different values of 𝛿.
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The results of this analysis are used to generate the scaling behavior plots of Figs.
5.2c-f. Several supporting results are shown in Fig. 5.14. Figures 5.14a and 5.14b
show the evolution of the fundamental and second harmonic as a function of the
normalized propagation distance with 𝛼 = 1.64, 𝜎 = 𝛼/5, and 𝛿 = 0. This case
represents compression in the phase-mismatched regime, where several back-and-
forth conversions are observed before the waves approaches the soliton solution
near the optimum compression point, 𝜁opt, indicated by the dashed, white line.
As mentioned in Section 5.2, we define 𝜁opt as the point at which the minimum
pulse width is observed at the fundamental. Another interesting feature of note,
as predicted by the Lagrangian analysis, is that the waves do not remain in the
compressed soliton state but are then observed to broaden. A second regime of
compression is observed near 𝜁 = 3𝜁opt, indicative of breathing dynamics for the
compression system. By contrast, we show compression in the near phase-matched
regime with 𝜎 = 𝛼/2.1 in Figs. 5.14c and 5.14d. Here, only about two cycles of
back-and-forth conversion are observed before 𝜁opt is reached. However, the shape
of the compressed pulse and optimum distance, 𝜁opt, are observed to be similar in
both the phase-mismatched and near phase-matched cases.

Having shown a few examples of the compression dynamics, we turn now to the
claim that 𝛼 is the dominant parameter in determining the compression behavior.
In Fig. 5.14e, we show 𝜁opt for many values of 𝜎 with constant 𝛼 = 1.64 and 𝛿 = 0.
Besides some small deviation for the largest value of 𝜎, where the system is very
nearly phase-matched, we observe extremely similar scaling behavior, all of which
follows well the fit of equation 5.3. Likewise, we show the scaling behavior for
different values of 𝛿 in Fig. 5.14f. Again, we see nearly identical scaling behavior
besides the extreme case of large 𝛿, where we are near the edge of the soliton
existence regime.

Theoretically-Informed Design Rules

Having now studied the soliton solutions of the normalized coupled wave equations
5.7a and 5.7b and characterized the corresponding pulse compression behaviors,
we may offer several design guidelines for achieving two-color soliton compression.
There are several considerations for the design of the soliton compression system.
The first is the desired pulse shape, which is fully determined by 𝛼, as discussed
above. Secondly, one must consider the ratio of fundamental to second harmonic

peak power, which we recall is given in physical units by |𝐴𝜔,0 |2
|𝐴2𝜔,0 |2

=

���� 𝛽 (2)2𝜔

2𝛽 (2)𝜔

���� |𝑎𝜔,0 |2
|𝑎2𝜔,0 |2

.
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Here, 𝐴 𝑗 ,0 refers to the soliton amplitude in the 𝑗 th wave, in direct analogy to the
normalized soliton amplitudes, 𝑎 𝑗 ,0. The third is the resultant pulse FWHM, which

we have observed is on the order of the characteristic time of the system,
√︂��� 𝛽 (2)𝜔

2𝛽

���,
for most reasonable values of 𝛼. Finally, we must satisfy the constraint 𝛼 ≥ 𝛿2/4,

which translates in physical parameters to
2
���𝛽 (2)2𝜔 𝛽

���
(Δ𝛽′ )2 (2 + Δ𝑘

𝛽
) ≥ 1.

Before continuing, we must also find an expression for 𝛽. One approach is to use
conservation of energy. Specifically, we have that:

𝐸tot =

���� 𝛽𝜅 ����2 ©­«
���� 1
2𝜎

���� ∫ ∞

−∞
𝑎2
𝜔

(√√√����� 2𝛽

𝛽
(2)
𝜔

�����𝑡)𝑑𝑡 + ∫ ∞

−∞
𝑎2

2𝜔

(√√√����� 2𝛽

𝛽
(2)
𝜔

�����𝑡)𝑑𝑡ª®¬ , (5.35)

where 𝑎𝜔 (𝜉) and 𝑎2𝜔 (𝜉), 𝜉 =

√︂��� 2𝛽
𝛽
(2)
𝜔

���𝑡, may be taken as the soliton solutions of

equation 5.26, and 𝐸tot is, therefore, the total energy in the soliton solution. As we
have observed, the majority of the pulse energy is retained in the soliton solution for
moderate compression factors (less than a factor of ≈ 10). Thus, we may consider
𝐸tot also to be the required input energy. This allows us therefore to relate 𝛽 precisely
to 5.35 for a given soliton solution.

With these key parameters in mind and a solution for 𝛽, we offer a suggested work
flow for designing a compression system. The most stringent requirement is that
the signs of 𝛽(2)𝜔 and 𝛽(2)2𝜔 must be the same to satisfy our initial assumptions for 𝑠2
and 𝑠3. After meeting this requirement, one should then try to minimize

��Δ𝛽′ ��, as a
smaller walk-off will give more flexibility on the other parameters of the system.

Once such a regime has been found, one may optimize for the desired soliton
shape, FWHM, and peak power ratio. As discussed above, the shape of the soliton
solutions is determined by 𝛼. In the cascading limit of large 𝛼, we observe a sech-
shaped field envelope for the fundamental and a sech2-shaped field envelope for the
second harmonic. This results in narrower pulses for the second harmonic than the
fundamental. Conversely, shorter pulses are observed at the fundamental in the case
of small 𝛼. Both envelopes take the same sech2 shape at 𝛼 = 1. In our experiment,
we aim to operate near 𝛼 = 1 to achieve similar pulse widths at both harmonics.

After determining the desired value of 𝛼, one may consider the peak power ratio. By
definition, we require 𝜎 ≤ 𝛼/2. If one selects 𝛽(2)𝜔 and 𝛽(2)2𝜔 such that 𝜎 ≈ 𝛼/2, very
little phase-mismatch is required for achieving the desired compression, resulting
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in nearly equal distributions of power between the two pulses. This may be readily

observed in the cascading limit, where |𝑎𝜔,0 |2
|𝑎2𝜔,0 |2

= |𝛼 | ≈ |2𝜎 | =
����2𝛽 (2)𝜔

𝛽
(2)
2𝜔

����. Then, in terms

of physical parameters, we have that |𝐴𝜔,0 |2
|𝐴2𝜔,0 |2

=

���� 𝛽 (2)2𝜔

2𝛽 (2)𝜔

���� |𝑎𝜔,0 |2
|𝑎2𝜔,0 |2

= 1. If one wishes,

however, to compress the fundamental only with limited conversion to the second
harmonic, then one should design for 𝜎 << 𝛼, and a large Δ𝑘 should be used. In
our system, we have 𝜎 = 0.065, so we require a moderate Δ𝑘 to operate near 𝛼 = 1.

While the desired peak power ratio informs the ratio of 𝛽(2)𝜔 to 𝛽(2)2𝜔 , design of their
absolute values is determined by the soliton existence condition, desired FWHM,
and available pulse energy. Specifically, we see that a larger magnitude of 𝛽(2)2𝜔 can

compensate the walk-off Δ𝛽
′ in satisfying the existence condition,

2
���𝛽 (2)2𝜔 𝛽

���
(Δ𝛽′ )2 (2+ Δ𝑘

𝛽
) ≥

1. However, with a fixed ratio of
���� 𝛽 (2)𝜔

𝛽
(2)
2𝜔

����, this means also increasing
���𝛽(2)𝜔 ���, which

will result in a longer soliton pulse width for the same |𝛽 |. Offsetting this through
increasing |𝛽 | requires a larger input pulse energy. A well-optimized system will
therefore maximize the magnitude of 𝛽(2)2𝜔 , while still maintaining that the desired
pulse width is achievable in the range of available pump energies. This may be
done iteratively through the use of equation 5.35. In our system, we have prioritized
operation with a small

���𝛽(2)𝜔 ��� to show that few-cycle pulse compression is attainable
with pJ pump pulse energies, as may be achieved with available integrated pulsed
sources.

a b

Figure 5.15: Device design and soliton solution. a, Predicted soliton FWHM and
optimum device length as a function of input energy. The tan, dashed line shows the
experimentally desired operation point. b, Predicted soliton solution corresponding
to the experimental parameters.

Finally, having determined the other system parameters, one may calculate the
required waveguide length. To do so, should take desired compression factor as
the ratio of the input pulse FWHM to that of the desired soliton solution and use
equation 5.3 to calculate the corresponding 𝜁opt. The device length may then be
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Parameter Description Value Units

𝐴eff effective mode area 2.18 µm2

𝑛𝜔 refractive index, fundamental 1.88034

𝑛2𝜔 refractive index, second harmonic 2.06409

Δ𝑘 phase mismatch -4 rad/mm

𝑑eff effective nonlinearity 11 pm/V

𝛼𝜔 loss, fundamental 0.023 1/mm

𝛼2𝜔 loss, second harmonic 0.023 1/mm

Δ𝛽
′ GVM 27 fs/mm

𝛽
(2)
𝜔 GVD, fundamental 9.22 fs2/mm

𝛽
(2)
2𝜔 GVD, second harmonic 141 fs2/mm

Table 5.1: Simulation parameters for the soliton compression.

directly calculated as 𝐿opt =
𝜁opt
|𝛽 | . To illustrate this process for our own device

parameters, we plot FWHMsoliton and 𝐿opt as a function of the input energy in Fig.
5.15a. Our desired operation point is shown by the tan, dashed line, corresponding
to a FWHMsoliton of 8 fs and 𝐿opt of 6.5 mm. The resulting soliton solution is shown
in Fig. 5.15b.

Full Simulation and Mapping to Experiment

For comparison with experiment, we directly simulate equations 5.5a and 5.5b but
with the additional inclusion of loss terms for the fundamental and second harmonic,
𝛼𝜔 and 𝛼2𝜔. As in the normalized simulations described previously, we employ
a Fourier split-step simulation using a fourth-order Runge-Kutta method for the
nonlinear step. A full list of simulation parameters may be found in Table 5.7. We
note here that the simulated magnitude of Δ𝑘 is slightly lower than what may be
expected based on the poling period and geometry of the device. Similarly, the
𝑑eff used is slightly smaller than what has been previously reported for PPLN. Both
numbers were adjusted to optimize the match between simulation and experiment as
non-idealities such as thin-film thickness variation, fabrication error, and imperfect
poling can create uncertainty in these quantities.

The results of these numerical simulations are used to generate the results of Figs.
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5.1b and 5.1c as well as the entirety of Figure 5.2. Although very good agreement is
observed between these simulations and our experiments, some discrepancies may
be observed which we investigate here. The first is that our theory and simulation
have assumed a transform-limited 35-fs pulse as our input to the compression device.
In reality, as mentioned previously, some pre-chirp is accumulated on the pulse due
to propagation through several optical elements, with the main contribution being
anomalous chirp from the ND wheel used to tune the input pulse energy to the
compression system. We estimate the total accumulated group delay dispersion,
accounting for chirp from the ND wheel, beam expander, and waveguide section
prior to compression to be -260 fs2.
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Figure 5.16: Simulation results with pre-chirped input pulse. a, Chirped input
pulse used in simulation. b, Output at the fundamental for a 2.9-pJ input pulse. c,
Output at the fundamental for a 3.7-pJ input pulse. d, Input spectrum. e, Output
fundamental spectrum for a 2.9-pJ and f, 3.7-pJ input

Simulation results including this pre-chirp are shown in Fig. 5.16. The chirped
input pulse is given in Fig. 5.16a and is shown to be 46 fs, similar to the measured
48-fs input pulses. The primary consequence of this pre-chirp is to slow the rate of
compression down compared to the transform-limited case of Fig. 5.2. In particular,
we see that the pulse is compressed to 9 fs at 2.9 pJ, compared to 7 fs in the unchirped
case (Fig. 5.16b). Instead, compression to 7 fs is observed at 3.7 pJ of input energy
(Fig. 5.16c). A small secondary consequence of the pre-chirp is that more energy
flows into the small secondary lobe on the leading edge of the pulse. Corresponding
spectra for the input and two output pulses are shown in Figs. 5.16d-f.
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That said, this result does not fully explain why the compressed pulses have a
slightly longer duration than predicted, as it suggests that we should achieve the
ideal 7-fs pulses by merely increasing the input pulse energy. To investigate this
further, we turn to a more full model which includes the effects of higher-order dis-
persion. Modeling the higher-order dispersion requires the following modification
of equations 5.5a and 5.5b:

𝜕𝐴𝜔

𝜕𝑧
= 𝑖𝜅𝐴2𝜔𝐴

∗
𝜔𝑒

−𝑖Δ𝑘𝑧 + 𝐷̂𝜔𝐴𝜔 − 𝛼𝜔

2
, (5.36a)

𝜕𝐴2𝜔

𝜕𝑧
= 𝑖𝜅𝐴2

𝜔𝑒
𝑖Δ𝑘𝑧 − Δ𝛽

′ 𝜕𝐴2𝜔

𝜕𝑡
+ 𝐷̂2𝜔𝐴2𝜔 − 𝛼2𝜔

2
, (5.36b)

where we have considered the dispersion operator 𝐷̂ 𝑗 =
∑∞
𝑚=2

[
(𝑖)𝑚+1𝛽

(𝑚)
𝑗

𝑚!

]
𝜕𝑚𝑡 . Here,

𝛽
(𝑚)
𝑗

refers to the𝑚th dispersion order in the 𝑗 th wave. In our simulations, we include
all orders of higher-order dispersion by calculating the propagation constant from
the frequency-dependent index of Fig. 5.7e and subtracting the first two terms of
the Taylor expansions about the fundamental and second harmonic frequencies for
the respective equations.

The results of this full simulation are shown in Fig. 5.17 for an input pulse energy
of 2.9 pJ, mirroring the on-chip input energy used in the experiment. As in Fig.
5.16, we use a chirped input pulse to better capture the behaviors of the experiment.
The output pulse profiles at the fundamental and second harmonic are shown in
Figs. 5.17a and 5.17c, respectively. The fundamental pulse measures 16 fs, and
the second harmonic measures 14 fs, in better agreement with the experimentally
measured pulse durations compared to the simulations including only quadratic
dispersion. Corresponding spectra in Figs. 5.17e and 5.17g also exhibit very
similar behavior to the experimentally reconstructed spectra.

The shortest pulses observed in simulation occur for energies closer to 5 pJ. Here, we
show a simulated example at 4.6 pJ of pump pulse energy. In this case, pulse widths
of 11 fs (Fig. 5.17b) and 10 fs (Fig. 5.17d) at the fundamental and second harmonic
are observed. Corresponding spectra are shown in Figs. 5.17f and 5.17h. Most
interestingly, a more prominent dip with two features is observed in the fundamental
spectrum. The pulse widths and spectral shape agree well with experimental traces
taken at 5 pJ of pump pulse energy; however, as discussed previously, a phase
ambiguity in the FROG measurement at these power levels prohibit a deterministic
retrieval.
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Figure 5.17: Simulated output including higher-order dispersion. a, Output
fundamental pulse at 2.9 pJ and b, 4.6 pJ of pump pulse energy. c, Output second
harmonic pulse at 2.9 pJ and d 4.6 pJ of pump pulse energy. The corresponding
spectra are also plotted for the e, output fundamental at 2.9 pJ, f, output fundamental
4.6 pJ, g, output second harmonic at 2.9 pJ, and h, output second harmonic at 4.6
pJ.

To further study the agreement between our model and experiment, we examine
the spectrum and output pulse profile as a function of the input energy. The
results are shown in Fig. 5.18. Figure 5.18a shows the spectrum evolution as the
pump energy is increased for our simplified model which includes only quadratic
dispersion. We note that the pump energy (y-axis) is plotted on a logarithmic scale.
By comparison, the spectrum for the full simulation is shown in Fig. 5.18d. Finally,
the experimental spectrum evolution as measured by the OSA is shown in Fig.
5.18g. Extremely good agreement with experiment is observed with both of the
simulations, but especially for the full model. In particular, the fundamental and
second harmonic spectral components begin to strongly overlap at a similar point,
near 4 pJ. Additionally, significant spectral splitting is observed near the center of
the fundamental wavelength at 2090 nm for powers greater than 5 pJ in all cases.
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Figure 5.18: Simulated vs. experimental energy-dependent outputs. a, Sim-
ulated spectrum, b, fundamental pulse profile, and c, second harmonic profile
for various input energies, including only quadratic dispersion. For comparison, we
show the d, spectrum, e, fundamental pulse, and f, second harmonic pulse for the full
simulation including higher-order dispersion. Finally, we show the experimentally-
measured g, spectrum, h, fundamental pulse, and i, second harmonic pulse for
various input energies. The experimental pulse measurements are shifted according
to the maximum of the cross-correlation with the full simulation at the same pump
pulse energy.

We additionally compare the temporal profiles between the simulations and mea-
surement. The fundamental pulse as a function of input energy for the three cases is
shown in Figs. 5.18b, 5.18e, and 5.18h, while the second harmonic is shown in Figs.
5.18c, 5.18f, and 5.18i. As our FROG retrieval does not provide absolute temporal
positioning for the measured pulses, we instead use the simulation including the full
dispersion as a reference and position the measured pulses according to the maxi-
mum of their cross-correlation with the simulation for the same input energy. Each
row, corresponding to different input energies, has been independently normalized
to the pulse maximum. The measured pulses have further been interpolated onto
the same time grid as the simulation to improve clarity.

For lower input energies, we see improved compression as the energy is increased,
as expected. After the input energy exceeds about 5 pJ, however, the length of
the device begins to exceed the optimum device length for compression, and the
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compression quality begins to degrade. In the case where only quadratic dispersion
is included, the degradation is slower, with a single central feature being maintained
until an input energy of around 12 pJ is reached. At this point, the device length is
nearly double the calculated optimum for compression, and the pulse is seen to split
into two distinct lobes. With the inclusion of higher-order dispersion, splitting is
observed much sooner. This agrees well with our experiment, where the optimum
compression is observed to occur with 3-5 pJ of pump pulse energy, and the quality
quickly degrades for higher powers. In the experiment, however, the separate lobes
predicted by the simulation are not well resolved at high powers. We attribute this
primarily to the limitations of our measurement setup.

a b

c d

Experiment Simulation

Fundamental, Sim. Second Harmonic, Sim.

Figure 5.19: Phase-matched supercontinuum generation. a, Experimentally
measured spectral broadening in the phase-matched regime. b, Simulation of phase-
matched broadening using the full dispersion. c, Corresponding simulations of
fundamental and d, second harmonic output pulses, demonstrating that temporal
shortening is not observed in this regime.

As a final point of comparison between experiment and simulation, and to illustrate
the importance of operation in the soliton regime for such compression to occur, we
characterize the behavior of a neighboring device which is nearly phase matched.
The results are shown in Fig. 5.19. The measured spectrum as a function of input
energy is shown in Fig. 5.19a, and the corresponding simulation including the full
dispersion profile is shown in Fig. 5.19b. Although significant spectral broadening
is seen to occur, we see many additional spectral features when compared to the
soliton regime of Fig. 5.18. The simulated pulse profiles at the fundamental
and second harmonic are shown in Figs. 5.19c and 5.19d, respectively. Here,
significant pulse shortening is not observed, and the pulses are seen to split into many
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distinct lobes. This highlights the power of soliton pulse compression for achieving
both broadband spectra and ultrashort pulses compared to other supercontinuum
generation processes in quadratic media.

Extension to Longer Pump Pulses

While in our work we have begun with 35-fs input pulses, which are already quite
short, the presented compression scheme may be readily extended to longer pump
pulses. Here, we simulate the compression of an 80-fs pulse using the realistic
parameters of our fabricated waveguide. Based on equation 5.3, we calculate that
for such a longer pulse, a 15.4-mm waveguide is required. Otherwise, the simulation
parameters remain unchanged from those in 5.7. We additionally consider an
unchirped pump pulse.
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Figure 5.20: Compression of 80-fs pulses. a, Input 4.1-pJ, 80-fs pulse. b, Sim-
ulated temporal at the fundamental and c, corresponding second harmonic. d,
Combined fundamental and second harmonic pulses.

Our simulation results are shown in Fig. 5.20. Due to the additional 9 mm of
length in the waveguide, the pulse incurs an additional 1.8 dB of loss which must be
compensated by pumping at a slightly higher power than the previously simulated
2.9-pJ inputs. The input 80-fs, 4.1-pJ pulse is shown in Fig. 5.20a. At the output
of the waveguide, compressed 7-fs (5.20b) and 8-fs (5.20c) pulses are observed at
the fundamental and second harmonic, similar to the outputs observed for the case
of 35-fs pump pulses. The primary difference is the presence of a larger pedestal in
the case of the longer pump pulse. Likewise, Fig. 5.20d shows the combined 4-fs
pulse, indicating the possibility of using the compressed outputs for single-cycle
pulse synthesis.

These results further demonstrate how the presented design framework may be
flexibly used for the compression of a wide variety of input pulses. This flexibility
ensures compatibility with emerging nanophotonic sources towards the development
of integrated ultrafast systems.
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C h a p t e r 6

ENERGY-EFFICIENT ULTRASHORT-PULSE
CHARACTERIZATION USING NANOPHOTONIC

PARAMETRIC AMPLIFICATION

Thomas Zacharias*, Robert Gray*, Ryoto Sekine, James Williams, Selina
Zhou, and Alireza Marandi. “Energy-efficient ultrashort-pulse characterization
using nanophotonic parametric amplification.” In: ACS Photonics 12.3 (2025),
pp. 1316–1320. doi: 10.1021/acsphotonics.4c02620.

6.1 Introduction
Ultrafast integrated photonics aims to bring the advantages of ultrashort pulses
largely limited to expensive, bulky optical systems to scalable, compact nano-
photonic platforms [1]. Developments in this field have so far been focused on
either generating ultrafast pulses on-chip [2–5] or on leveraging ultrashort pulses
for applications in time-keeping [6], quantum information processing [7], and com-
puting [8]. Demonstrations of ultrashort pulse characterization techniques on nano-
photonic platforms [9, 10] have been limited due to the requirements of strong
optical nonlinearity and the non-collinear nature of many typical pulse characteri-
zation techniques. Ultrashort pulse characterization is a critical tool for leveraging
the unique properties of ultrashort pulses - short pulse width, high peak power, and
high repetition rate - for probing ultrafast phenomena [11], enhancing nonlinear in-
teractions [12], and increasing information density for ultrafast information process-
ing [13]. Developing ultrashort pulse characterization techniques in nanophotonics
is an important step toward developing integrated ultrafast photonic systems. Ad-
ditionally, the challenges associated with off-chip temporal characterization, weak
pulse energies, and temporal distortions resulting from pulse extraction necessitate
the need for energy-efficient ultrashort on-chip pulse characterization techniques.

Here, we experimentally demonstrate a novel pulse characterization technique com-
patible with integrated photonics for energy-efficient on-chip pulse characterization.
Our technique uses dispersion-engineered OPAs in lithium niobate nanophotonic
waveguides combined with a FROG-based retrieval algorithm [14] for on-chip pulse
characterization. XFROG based on non-collinear OPAs has been previously demon-

https://doi.org/10.1021/acsphotonics.4c02620
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strated in bulk optics as one of the most sensitive ultrashort pulse characterization
techniques [15]. However, its non-collinear nature makes it incompatible with
nanophotonics motivating the need for a modified measurement technique [16–19].
Additionally, fJ pulse characterization using the bulk OPA-XFROG has required tens
of 𝜇J of gate pulse energies [15, 20]. Here, we overcome these limitations by oper-
ating in the degenerate and collinear regime, making our technique compatible with
nanophotonic realization. Moreover, on-chip degenerate OPAs provide unparalleled
gain, especially in nanophotonic lithium niobate with low-energy pump pulses [21].
A combination of the spatial mode confinement due to the waveguides and tempo-
ral mode confinement due to dispersion engineering enables gain-bandwidth levels
unavailable to bulk crystals. This results in operating the degenerate OPA (DOPA)-
XFROG using a fraction of the pump energy compared to the bulk counterpart.
Our scheme paves the way toward the measurement of ultrashort-ultraweak optical
pulses that were not possible with bulk crystals.

6.2 Methods
Principle of Operation for DOPA-XFROG
The FROG [14] uses an iterative 2D phase-retrieval algorithm to recover the intensity
and phase of an unknown optical field from an intensity spectrogram. The phase re-
trieval uses a generalized projections optimization algorithm that iteratively searches
for the electric field that can create the intensity spectrogram while satisfying an
optical nonlinearity constraint. In our DOPA-XFROG, the optical nonlinearity is
defined by the degenerate optical parametric amplification process which can be
mathematically modeled as

𝐸𝐷𝑂𝑃𝐴 (𝑡, 𝜏) = 𝐸 (𝑡) cosh(𝜅 |𝐺 (𝑡 − 𝜏) |) + 𝑖𝐸∗(𝑡) sinh(𝜅 |𝐺 (𝑡 − 𝜏) |) exp(𝑖∠𝐺 (𝑡 − 𝜏)),
(6.1)

where 𝐸𝐷𝑂𝑃𝐴 (𝑡, 𝜏) is the pulse field resulting from the nonlinear process, 𝐸 (𝑡)
is the unknown signal pulse field to be measured, 𝐺 (𝑡) is the known gate pulse
field that pumps the OPA, and 𝜏 is the time delay between the signal and the pump.

𝜅2 =
2𝜔2

𝑠𝑑
2
𝑒 𝑓 𝑓

𝑧2

𝑛2
𝑠𝑛𝑝𝜖0𝑐3𝐴𝑒 𝑓 𝑓

is the gain parameter for the OPA where 𝑑𝑒 𝑓 𝑓 = 2
𝜋
𝑑33 is the effective

nonlinear coefficient [21], z is the length of the nonlinear interaction process, and
𝑛𝑠, 𝑛𝑝 are the effective indices of the signal and pump, respectively. The carrier
frequency of the gate pulse is twice that of the unknown pulse. The degenerate
OPA process is sensitive to the relative phase of the signal and gate pulses which
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determines whether the signal to be measured is amplified through parametric gain
or deamplified through second harmonic generation. The dependence of the OPA
process on the relative signal and gate phases within the order of an optical cycle
makes the output field sensitive to experimental fluctuations. These include non-
idealities such as stage nonrepeatability and nonlinearity, timing jitter, temperature
fluctuations, alignment fluctuations, etc. These fluctuations are calibrated using
a modified spectrogram measurement technique that allows for the simultaneous
collection of a calibration signal. The spectrogram is created by continuously
scanning the stage while detecting the output signal one frequency component at a
time on an optical spectrum analyzer. The output signal is simultaneously collected
in a slow detector that acts as the calibration signal. The slow detector is expected
to see the same signal for each consecutive scan of the delay stage and can therefore
be used for calibration. The calibrated spectrogram can then be passed through the
custom DOPA-XFROG algorithm for pulse retrieval.

The custom recovery algorithm uses generalized projections algorithm [14] to en-
force the mathematical constraint defined in Eq. 6.1 through iterative gradient
descent. The corresponding gradients were analytically derived from Eq. 6.1 and
can be found in Section 6.5. Equation 6.1 accurately models the amplification pro-
cess when operating in the quasistatic regime - where dispersion and walk-off are
negligible. Dispersion-engineering, unavailable in bulk crystals, achieved through
precise control over waveguide geometry enables operating nanophotonic OPAs in
the quasistatic regime [21, 22] thus ensuring the validity of Eq. 6.1.

Device Design and Fabrication
The design and fabrication of the dispersion-engineered nanophotonic OPA used
here follow the techniques described in [21]. The waveguides were designed to have
minimal dispersion and walk-off between the signal at 2090 nm and the pump at
1045 nm. The waveguides were fabricated on a 704-nm thin film of lithium niobate
on a silica substrate and were measured using atomic force microscopy to have a top
width of 1790 nm and an etch depth of 330 nm.

The etched waveguide geometry was simulated using Lumerical to estimate a group
velocity mismatch between 1045 nm and 2090 nm of 1.7 fs/mm, group velocity
dispersion around 2090 nm of -3 fs2/mm, group velocity dispersion around 1045
nm of 54 fs2 /mm (see Fig. 6.1). The total length of the waveguide was 10 mm
with a 4-mm-long periodically poled region and a 5.2 µm poling period. The OPA
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Figure 6.1: Device design. a, Simulated GVM between 1045 nm and 2090 nm, GVD
at 1045 nm, and GVD at 2090 nm while scanning for different top widths and etch
depths. The blue cross corresponds to the dimensions of the etched waveguide. b,
Electric field profiles of the fundamental TE modes at pump and signal wavelengths.

was measured to have a gain of 188 dB/cm and bandwidth of 40.5 THz for a ∼4-pJ,
100-fs pump pulse using the techniques described in [21].

Experimental Scheme

BSLPF DET

Oscilloscope

Nanophotonic OPA

1045 nm
2090 nm

DM

Spectrometer

Pump

Voltage
preamplifier

D
ET

SP
ECStage

Unknown pulse

Figure 6.2: Experimental setup. DM, Dichroic Mirror; OPA, Optical Parametric
Amplifier; LPF, Low Pass Filter; BS, Beam Splitter; DE, Detector. Inset: Scanning
electron microscope image of chip facet

Figure 6.2 shows the experimental setup used for DOPA-XFROG. A 100-fs mode-
locked fiber laser centered at 1045 nm pumps a home-built optical parametric
oscillator (OPO) and the DOPA-XFROG. The output of the OPO is at 2090 nm
which is used as the "unknown pulse" to be characterized. Both the pump and OPO
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output are characterized with a traditional table-top XFROG to create the reference
pulses seen in Fig. 6.4 (right). The unknown pulse is gated by the pump in the
nanophotonic OPA for different delays controlled by a linearized motor stage. The
resulting signal from the OPA is low-pass filtered and collected in a spectrometer and
slow detector. The stage is set to scan continuously and the spectrometer measures
the spectrum as a function of delay one wavelength component at a time from 1790
nm to 2390 nm with a 2 nm resolution. The analog output of the spectrometer
is amplified using a voltage preamplifier and sent to an oscilloscope. The signal
collected by the slow detector used for calibration during postprocessing is also sent
to the same oscilloscope. The oscilloscope is set to trigger data collection when
the slow detector signal passes a threshold voltage level indicating temporal overlap
of the two pulses for each scan of the delay stage. The spectrometer updates the
collected wavelength center between subsequent scans by increments of 2 nm. The
detector and spectrometer traces are saved on the oscilloscope for each stage scan
to create the calibration matrix and raw spectrogram.
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Figure 6.3: Postprocessing. Each sub-panel displays the calibration matrix created
from the detector signal and the spectrogram created from the spectrometer signal
at each step of the postprocessing. a, Raw data collected from the experimental
measurement. b, Matrices after lowpass filtering along the delay axes for both the
matrices and thresholding the spectrogram. c, Result of realignment and lineariza-
tion. d, Result of lowpass filtering the wavelength axis and renormalization.

Figure 6.3 illustrates the postprocessing algorithm used for calibrating the spectro-
gram. The calibration process includes noise handling and realignment. The noise
handling accounts for electronic noise and optical power fluctuations and is achieved
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through low-pass filtering, thresholding, and renormalization. The realignment pro-
cedure accounts for optical phase variations caused by timing jitter between pulses,
stage non-repeatability/nonlinearity, etc. Additional details about the postprocess-
ing can be found in Section 6.5. The calibrated spectrogram (Fig. 6.3d, right) can
now be used with the DOPA-XFROG recovery algorithm to recover the intensity
and phase of the unknown pulse.

6.3 Results
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Figure 6.4: DCOPA-XFROG results. a, Simulation results. (Left) Simulated
spectrogram for a reference pulse. (Center) Recovered spectrogram using DOPA-
XFROG algorithm. (Right) Comparison of recovered pulse profile with reference
pulse. b, Experimental results. (Left) Experimentally measured spectrogram. (Cen-
ter) Recovered spectrogram using DOPA-XFROG algorithm. (Right) Comparison
of recovered pulse profile with expected profile (measured with a tabletop FROG).

The custom algorithm was tested by simulating the DOPA-XFROG. Figure 6.4a
(left) shows a spectrogram simulated using the experimental pulse profiles (mea-
sured using a standard tabletop XFROG) and the nonlinear equation defined by Eq.
6.1. This spectrogram was passed through the custom recovery algorithm which
converged to the recovered spectrogram in Fig. 6.4a (center) with an RMS error of
0.00048 after 250 iterations. The intensity and phase of the recovered field along
with the expected profile for comparison are displayed in Fig. 6.4a (right). The
phase-sensitive nature of the process can be seen in the intensity spectrogram in the
form of periodic fringes. The frequency dependence of the fringe locations marked
by the curvature along the frequency axes in the intensity spectrogram is a sign of
using chirped pulses.
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Figure 6.4b (left) shows the experimentally measured spectrogram after postprocess-
ing using a ∼ 1-fJ pulse at 2090 nm gated with ∼ 60-fJ pulse at 1045 nm. The pulse
energies were estimated on-chip using the previously demonstrated input coupling
characterization technique [21]. The spectrogram was passed to the DOPA-XFROG
algorithm which recovered the spectrogram displayed in Fig. 6.4b (center) after
500 iterations with an error of 0.003. Figure 6.4b (right) shows a comparison of
the recovered pulse intensity and phase with the expected pulse profile. Figure
6.4 demonstrates that the DOPA-XFROG can successfully characterize ultrashort
pulses. The performance of DOPA-XFROG — retrieval accuracy, measurement
time, postprocessing complexity, and energy efficiency — could be improved by
eliminating the calibration process by using a fast spectrometer and improving fab-
rication capabilities to achieve higher nonlinear conversion efficiencies.

6.4 Discussion
We developed a novel pulse characterization technique, named DOPA-XFROG, and
demonstrated how it can be used for ultrafast pulse measurements in a nanophotonic
lithium niobate chip. The spatio-temporal confinement of dispersion-engineered
nanophotonics enables leveraging the high gain-bandwidth OPAs for energy-efficient
pulse characterization using weak gate pulses. Measurements of fJ pulses in bulk
OPA-XFROG setups typically required tens of 𝜇J of gate pulse energies [15, 20].
In comparison, we demonstrate pulse characterization of ∼ 1-fJ pulses using gate
pulses with energy as low as ∼ 60-fJ.

Attempts at experimentally measuring weaker pulses are currently limited by par-
asitic nonlinear effects resulting from pump depletion. Measurement of weaker
pulses requires a stronger unsaturated gain to measure an intensity spectrogram
with a similar signal-to-noise ratio as the one obtained for the ∼ 1 fJ pulse mea-
surement demonstrated here. However, pumping with stronger optical pulses in our
nanophotonic waveguides results in optical pump depletion resulting in a deviation
from the mathematical model defined in Eq. 1. Since the nonlinear constraint is no
longer valid in the algorithm, the recovery algorithm can-not be used for this case.
Using shorter OPAs with larger pump pulse energies may enable the measurement of
sub-atto-Joule pulses on-chip. This technique could be especially useful for system
integration where a small amount of pulse energy could be tapped from a highly
integrated photonic circuit for further on-chip pulse characterization.
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6.5 Supporting Information
Detailed Workflow
Figure 6.5 describes the workflow for the DOPA-XFROG experiment. Figure 6.5a
displays the experimental setup described in Section 6.2. Traditionally, FROGs
generate the spectrogram by sequentially measuring the entire spectrum for differ-
ent gate delays. However, the phase-sensitive nature of the amplification process
necessitates a modified spectrogram measurement technique. The modified mea-
surement technique requires iteratively recording single frequency components as
a function of the gate delay instead of the typical measurement of the entire spec-
trum for single gate delay values. This technique requires an additional calibration
signal collected using a slow detector that is used to stitch the distinct frequency
components together to create a spectrogram. The detector and spectrometer traces
are saved on the oscilloscope for each stage scan to create the calibration matrix and
raw spectrogram in Fig. 6.5b (left). The calibration matrix and raw spectrogram are
then passed through the postprocessing algorithm described in Section 6.5 which
produces a calibrated spectrogram (Fig. 6.5b, right). The calibrated spectrogram
can now be used with the DOPA-XFROG recovery algorithm to recover the intensity
and phase of the unknown pulse (See Fig. 6.5c).

Postprocessing
The degenerate parametric amplification process is sensitive to the phase difference
between the carrier frequencies of the unknown signal and the known gate pulse.
This results in the nonlinear process being extremely sensitive to experimental
variations such as timing jitter between pulses, path length differences caused by
thermal fluctuations, alignment variations, stage non-repeatability/non-linearity, etc.
This phase sensitivity makes it challenging to record a reliable spectrogram using
the standard FROG technique due to the slow nature of the measurement.

To account for these experimental variations, we use a variation of the traditional
FROG measurement technique that allows us to generate a calibration signal. In a
standard FROG, the intensity spectrogram is generated by recording all frequency
components simultaneously for each distinct delay value in an iterative manner.
This would be equivalent to iteratively filling each column in the spectrogram.
Here, we record all the delay values for each distinct frequency component in an
iterative manner (in other words, iteratively filling each row in the spectrogram).
This is done experimentally by scanning the stage and recording the output signal
one frequency component at a time. Experimentally this was done by sequentially
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Figure 6.5: Detailed workflow. a, Detailed experimental setup. BS, Beam Splitter;
OPO, Optical Parametric Oscillator; DM, Dichroic Mirror; OPA, Optical Parametric
Amplifier; LPF, Low Pass Filter; DET, Detector. b, The calibration matrix, consist-
ing of the measured detector signal, calibrates the spectrogram in postprocessing.
c, The processed spectrogram is passed through the recovery algorithm for pulse
retrieval.

measuring contributions to wavelengths from 1890 nm to 2390 nm with a bandwidth
of 2 nm. This allows us to use an additional slow detector that can be used as a
calibration tool.

In an ideal case, the slow detector would be expected to record the same signal
from one iteration to the next. Any variations in the recorded signal can hence
be attributed to experimental fluctuations that can now be calibrated for. The
calibration process includes noise handling and realignment. The noise handling
accounts for electronic noise, optical power fluctuations, and is achieved through
low-pass filtering, thresholding, and renormalization. The realignment procedure
accounts for optical phase variations that can be caused due to timing jitter between
pulses, stage nonrepeatability/nonlinearity, etc. The phase variations appear as
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nonrepeating rows in the calibration matrix. These variations are calibrated for by
compensating for them from one iteration to the next in the calibration matrix and
applying the identical changes to the corresponding spectrogram. This is done in
two steps - we first realign the carrier and the envelope of each row of the calibration
matrix to the first row. We then linearize the calibration matrix by interpolating
the peaks and troughs of each row to be the expected distance of 𝜋/2 apart (where
2𝜋 corresponds to one optical cycle at the signal wavelength). This 𝜋/2 difference
is analytically true only for transformed limited pulses. However, for dispersed
pulses, the distance between an adjacent peak and trough was heuristically found to
be close to 𝜋/2 through simulations. Additionally, the overdetermined [14] nature
of the FROG retrieval algorithm, enables the successful retrieval of chirped pulses
even with this transformation. Figure 6.1 describes the postprocessing workflow.
Each panel contains the calibration matrix (detector signal) and the corresponding
spectrogram. Fig. 6.1a shows a zoomed-in version of the raw data that is collected
from the measurement. Notice the variations between the different rows of the
calibration matrix. Fig. 6.1b shows the calibration matrix and spectrogram after
low pass filtering the delay axis of both matrices and thresholding the spectrogram.
The threshold for the spectrogram was set to the maximum value at 1800 nm (which
determines the spectrometer noise level since no signal is expected). The calibration
matrix and corresponding spectrogram values are then realigned and linearized and
are displayed in Fig. 6.1c. Finally, the matrices are passed through a low pass filter
along the frequency axis resulting in Fig. 6.1d.

6.6 Gradient Descent
As mentioned in Section 6.2, the OPA process can be mathematically modeled as
follows

𝐸𝐷𝑂𝑃𝐴 (𝑡, 𝜏) = 𝐸 (𝑡) cosh(𝜅 |𝐺 (𝑡 − 𝜏) |)
+ 𝑖𝐸∗(𝑡) sinh(𝜅 |𝐺 (𝑡 − 𝜏) |) exp(𝑖∠𝐺 (𝑡 − 𝜏)) (6.2)

where 𝐸𝐷𝑂𝑃𝐴 (𝑡, 𝜏) is the pulse emerging from the degenerate amplification process,
𝐸 (𝑡) is the unknown signal pulse to be measured, 𝐺 (𝑡) is the gate pulse that pumps
the OPA, and 𝜏 is the time delay between the signal and the pump. 𝜅 =

2𝑧𝑑𝑒 𝑓 𝑓𝜔2

𝑘𝑐2

is the gain parameter for the OPA where 𝑑𝑒 𝑓 𝑓 is the nonlinear coefficient, z is the
length of the OPA, and𝜔, 𝑘 are the angular frequency and wavenumber of the signal,
respectively.
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The recovery algorithm follows the standard generalized projects algorithm [14]
with a modified loss function to account for the new nonlinearity constraint. The
loss function, 𝑍 , can be written as

𝑍𝐷𝑂𝑃𝐴 =

𝑁∑︁
𝑖, 𝑗=1

|𝐸 (𝑘)
𝐷𝑂𝑃𝐴

(𝑡𝑖, 𝜏𝑗 ) − 𝐸 (𝑘+1)
𝐷𝑂𝑃𝐴

(𝑡𝑖, 𝜏𝑗 ) |2 (6.3)

where 𝐸 (𝑘)
𝐷𝑂𝑃𝐴

(𝑡𝑖, 𝜏𝑗 ) is the complex interferogram from the 𝑘𝑡ℎ iteration. The goal
is to find the electric field 𝐸 (𝑘+1) (𝑡) that satisfies the nonlinearity condition defined
in Eq. 6.2 and minimizes the functional distance 𝑍𝐷𝑂𝑃𝐴.

The minimization is performed through gradient descent for which the gradient
−𝜕𝑍/𝜕𝐸 (𝑘+1) (𝑡𝑖) were calculated analytically for the real and imaginary parts to be

𝜕𝑍𝐷𝑂𝑃𝐴

𝜕𝑅𝑒{𝐸 (𝑡 (𝑘+1)
𝑙

)}
=

𝑁∑︁
𝑗=1

(−𝐸∗(𝑘)
𝐷𝑂𝑃𝐴

(𝑡𝑙 , 𝜏𝑗 ) 𝑓 (𝑡𝑙 − 𝜏𝑗 ) − 𝐸∗(𝑘)
𝐷𝑂𝑃𝐴

(𝑡𝑙 , 𝜏𝑗 )𝑔(𝑡𝑙 − 𝜏𝑗 ))

+ 𝐸∗(𝑘+1) (𝑡𝑙) | 𝑓 (𝑡𝑙 − 𝜏𝑗 ) |2 + 𝐸∗(𝑘+1) (𝑡𝑙) 𝑓 ∗(𝑡𝑙 − 𝜏𝑗 )𝑔(𝑡𝑙 − 𝜏𝑗 )
+ 𝐸 (𝑘+1) (𝑡𝑙)𝑔∗(𝑡𝑙 − 𝜏𝑗 ) 𝑓 (𝑡𝑙 − 𝜏𝑗 ) + 𝐸 (𝑘+1) (𝑡𝑙) |𝑔(𝑡𝑙 − 𝜏𝑗 ) |2)
+ 𝑐.𝑐.,

𝜕𝑍𝐷𝑂𝑃𝐴

𝜕𝐼𝑚{𝐸 (𝑡 (𝑘+1)
𝑙

)}
=

𝑁∑︁
𝑗=1

(−𝑖𝐸∗(𝑘)
𝐷𝑂𝑃𝐴

(𝑡𝑙 , 𝜏𝑗 ) 𝑓 (𝑡𝑙 − 𝜏𝑗 ) + 𝑖𝐸∗(𝑘)
𝐷𝑂𝑃𝐴

(𝑡𝑙 , 𝜏𝑗 )𝑔(𝑡𝑙 − 𝜏𝑗 ))

+ 𝑖𝐸∗(𝑘+1) (𝑡𝑙) | 𝑓 (𝑡𝑙 − 𝜏𝑗 ) |2 − 𝑖𝐸∗(𝑘+1) (𝑡𝑙) 𝑓 ∗(𝑡𝑙 − 𝜏𝑗 )𝑔(𝑡𝑙 − 𝜏𝑗 )
+ 𝑖𝐸 (𝑘+1) (𝑡𝑙)𝑔∗(𝑡𝑙 − 𝜏𝑗 ) 𝑓 (𝑡𝑙 − 𝜏𝑗 ) − 𝑖𝐸 (𝑘+1) (𝑡𝑙) |𝑔(𝑡𝑙 − 𝜏𝑗 ) |2)
+ 𝑐.𝑐.,

(6.4)

respectively, where 𝑓 (𝑡) = cosh(𝜅 |𝐺 (𝑡) |) and 𝑔(𝑡) = 𝑖 sinh(𝜅 |𝐺 (𝑡) |) exp(𝑖∠𝐺 (𝑡))
have been used as variables for simplification.



188

BIBLIOGRAPHY

[1] Lin Chang, Songtao Liu, and John E. Bowers. “Integrated optical frequency
comb technologies.” In: Nature Photonics 16.2 (2022), pp. 95–108.

[2] Qiushi Guo, Benjamin K. Gutierrez, Ryoto Sekine, Robert M. Gray,
James A. Williams, Luis Ledezma, Luis Costa, Arkadev Roy, Selina Zhou,
Mingchen Liu, et al. “Ultrafast mode-locked laser in nanophotonic
lithium niobate.” In: Science 382.6671 (2023), pp. 708–713. doi:
10.1126/science.adj5438.

[3] Mengjie Yu, David Barton III, Rebecca Cheng, Christian Reimer, Prashanta
Kharel, Lingyan He, Linbo Shao, Di Zhu, Yaowen Hu, Hannah R Grant,
et al. “Integrated femtosecond pulse generator on thin-film lithium niobate.”
In: Nature 612.7939 (2022), pp. 252–258.

[4] Michael L. Davenport, Songtao Liu, and John E. Bowers. “Integrated het-
erogeneous silicon/III–V mode-locked lasers.” In: Photonics Research 6.5
(2018), pp. 468–478.

[5] Zhiquan Yuan, Maodong Gao, Yan Yu, Heming Wang, Warren Jin, Qing-Xin
Ji, Avi Feshali, Mario Paniccia, John Bowers, and Kerry Vahala. “Soliton
pulse pairs at multiple colours in normal dispersion microresonators.” In:
Nature Photonics 17.11 (2023), pp. 977–983.

[6] Zachary L. Newman, Vincent Maurice, Tara Drake, Jordan R. Stone, Travis
C Briles, Daryl T. Spencer, Connor Fredrick, Qing Li, Daron Westly, Bojan
R. Ilic, et al. “Architecture for the photonic integration of an optical atomic
clock.” In: Optica 6.5 (2019), pp. 680–685.

[7] Rajveer Nehra, Ryoto Sekine, Luis Ledezma, Qiushi Guo, Robert M. Gray,
Arkadev Roy, and Alireza Marandi. “Few-cycle vacuum squeezing in
nanophotonics.” In: Science 377.6612 (2022), pp. 1333–1337. doi:
10.1126/science.abo6213.

[8] Qiushi Guo, Ryoto Sekine, Luis Ledezma, Rajveer Nehra, Devin J. Dean,
Arkadev Roy, Robert M. Gray, Saman Jahani, and Alireza Marandi. “Femto-
joule femtosecond all-optical switching in lithium niobate nanophotonics.”
In: Nature Photonics 16.9 (2022), pp. 625–631. doi: 10.1038/s41566-
022-01071-2.

[9] Huakang Yu, Yipeng Lun, Jintian Lin, Yantong Li, Xingzhao Huang,
Bodong Liu, Wanling Wu, Chunhua Wang, Ya Cheng, Zhi-yuan Li, et al.
“Frequency-resolved optical gating in transverse geometry for on-chip
optical pulse diagnostics.” In: Laser & Photonics Reviews 17.12 (2023),
p. 2201017.

https://doi.org/10.1126/science.adj5438
https://doi.org/10.1126/science.abo6213
https://doi.org/10.1038/s41566-022-01071-2
https://doi.org/10.1038/s41566-022-01071-2


189

[10] Alessia Pasquazi, Marco Peccianti, Yongwoo Park, Brent E. Little, Sai T.
Chu, Roberto Morandotti, José Azaña, and David J. Moss. “Sub-picosecond
phase-sensitive optical pulse characterization on a chip.” In: Nature Pho-
tonics 5.10 (2011), pp. 618–623.

[11] Claudius Riek, Philipp Sulzer, Maximilian Seeger, Andrey S. Moskalenko,
Guido Burkard, Denis V. Seletskiy, and Alfred Leitenstorfer. “Subcycle
quantum electrodynamics.” In: Nature 541.7637 (2017), pp. 376–379.

[12] Martin Wegener. Extreme nonlinear optics: An introduction. Advanced Texts
in Physics. Springer Berlin Heidelberg, 2006. isbn: 9783540266884. url:
https://books.google.com/books?id=pZI0erZXgdcC.

[13] Gordon H. Y. Li, Christian R Leefmans, James Williams, Robert M. Gray,
Midya Parto, and Alireza Marandi. “Deep learning with photonic neural
cellular automata.” In: Light: Science & Applications 13.1 (2024), p. 283.
doi: 10.1038/s41377-024-01651-7.

[14] Rick Trebino. Frequency-resolved optical gating: The measurement of ul-
trashort laser pulses. Springer Science & Business Media, 2012.

[15] Jing-yuan Zhang, Aparna Prasad Shreenath, Mark Kimmel, Erik Zeek, Rick
Trebino, and Stephan Link. “Measurement of the intensity and phase of
attojoule femtosecond light pulses using optical-parametric-amplification
cross-correlation frequency-resolved optical gating.” In: Optics Express 11.6
(2003), pp. 601–609.

[16] Gero Stibenz and Günter Steinmeyer. “Interferometric frequency-resolved
optical gating.” In: Optics Express 13.7 (2005), pp. 2617–2626.

[17] Houxun Miao, Shang-Da Yang, Carsten Langrock, Rostislav V. Roussev,
Martin M. Fejer, and Andrew M. Weiner. “Ultralow-power second-
harmonic generation frequency-resolved optical gating using aperiodically
poled lithium niobate waveguides.” In: Journal of the Optical Society of
America B 25.6 (2008), A41–A53.

[18] Houxun Miao, Andrew M. Weiner, Carsten Langrock, Rostislav V. Rous-
sev, and Martin M. Fejer. “Polarization-insensitive ultralow-power second-
harmonic generation frequency-resolved optical gating.” In: Optics Letters
32.7 (2007), pp. 874–876.

[19] Shang-Da Yang, Andrew M. Weiner, Krishnan R. Parameswaran, and Martin
M. Fejer. “Ultrasensitive second-harmonic generation frequency-resolved
optical gating by aperiodically poled LiNbO 3 waveguides at 1.5 𝜇m.” In:
Optics Letters 30.16 (2005), pp. 2164–2166.

[20] Jing-Yuan Zhang, Chao-Kuei Lee, Jung Y Huang, and Ci-Ling Pan. “Sub
femto-joule sensitive single-shot OPA-XFROG and its application in study
of white-light supercontinuum generation.” In: Optics Express 12.4 (2004),
pp. 574–581.

https://books.google.com/books?id=pZI0erZXgdcC
https://doi.org/10.1038/s41377-024-01651-7


190

[21] Luis Ledezma, Ryoto Sekine, Qiushi Guo, Rajveer Nehra, Saman Jahani,
and Alireza Marandi. “Intense optical parametric amplification in
dispersion-engineered nanophotonic lithium niobate waveguides.” In:
Optica 9.3 (2022), pp. 303–308. doi: 10.1364/OPTICA.442332.

[22] Marc Jankowski, Nayara Jornod, Carsten Langrock, Boris Desiatov, Alireza
Marandi, Marko Lončar, and Martin M. Fejer. “Quasi-static optical para-
metric amplification.” In: Optica 9.3 (2022), pp. 273–279.

https://doi.org/10.1364/OPTICA.442332


191

C h a p t e r 7

MULTI-OCTAVE FREQUENCY COMB FROM AN
ULTRA-LOW-THRESHOLD NANOPHOTONIC PARAMETRIC

OSCILLATOR

Ryoto Sekine*, Robert M. Gray*, Luis Ledezma, Selina Zhou, Qiushi Guo, and
Alireza Marandi. “Multi-octave frequency comb from an ultra-low-threshold nano-
photonic parametric oscillator.” In: arXiv preprint arXiv:2309.04545 (2023). doi:
10.48550/arXiv.2309.04545.

7.1 Introduction
Broadband optical frequency combs are among the great achievements of modern
optics [1, 2]. Recently, increasing efforts are focused on the realization of broadband
frequency combs in nanophotonic platforms [3–5] with applications including dual-
comb spectroscopy [6], optical communications [7], optical frequency synthesis [8,
9], and laser ranging [10]. However, the spectral coverage of integrated frequency
comb sources remains far behind their table-top counterparts using high-pulse-
energy lasers and discrete components, which have recently surpassed six-octave
spectra [11, 12]. Such multi-octave frequency combs are valuable for applications
such as ultrashort pulse synthesis [13], attosecond science [14], and bio-chemical
sensing and imaging [15–17].

Integrated sources of short-pulse frequency combs typically generate picojoules or
femtojoules of pulse energies [2, 4, 18–20] and their spectral coverage barely reaches
an octave [21, 22]. This has necessitated further spectral broadening stages for many
applications, which so far have been realized strictly using table-top systems with
discrete amplifiers and components [1, 8, 23]. A femtojoule-level multi-octave
coherent spectral broadening mechanism has so far been beyond the reach of current
photonic technologies, and hence, a path towards a fully integrated multi-octave
frequency comb has remained elusive.

Substantial spectral broadening is typically achieved by passing femtosecond or pi-
cosecond pulses with 0.1-10 nJ of energy through waveguides, crystals or fibers with
quadratic (𝜒(2)) or Kerr (𝜒(3)) nonlinearity with various designs [1, 24–28]. Among
these schemes, waveguides with quadratic nonlinearity are becoming increasingly

https://doi.org/10.48550/arXiv.2309.04545
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more efficient, especially because of the recent progress on quasi-phase matching
and dispersion engineering [24, 26, 29] and show superior performances over their
cubic counterparts. However, to reach an octave of coherent spectrum and beyond
they still need 10’s of picojoules of energy [29], which is far beyond the current
capability of integrated frequency comb sources.

Resonant enhancement of spectral broadening is expected to improve the energy
requirements. However, such experiments have so far remained below an octave [23,
30, 31]. This is mainly because of the overly constrained dispersion requirements
of cubic coherent spectral broadening schemes especially when combined with
high-Q requirements. In fact, even linear components in nanophotonics with multi-
octave spectral response are still challenging to design and realize [32]. In contrast,
quadratic nonlinearity not only leads to lower energy requirements in single-pass
configurations, but it also offers a wider range of nonlinear processes for ultrawide
coherent spectral broadening resulting from nonlinear interactions of distant portions
of the spectrum [11, 12]. However, a proper resonator design is necessary to enable
an operation regime where a sequence of quadratic nonlinear processes can yield
coherent spectral broadening towards multi-octave operation.

A promising path towards such a multi-octave nonlinear resonator is based on syn-
chronously (sync-) pumped degenerate OPOs, which so far have been successfully
used in bulk optics for efficient phase-locked down-conversion via half-harmonic
generation of broadband frequency combs [15, 33–36]. Recent studies indicate the
potential of sync-pumped OPOs for extreme pulse shortening and spectral broad-
ening while preserving the coherence properties of the pump [37]. However, lack
of dispersion engineering in bulk nonlinear crystals, low parametric gain band-
widths, and multi-picojoule thresholds have put limitations on their applicability for
compact and ultrabroadband frequency comb applications. Recent developments
of dispersion-engineered OPAs [38] and narrowband sync-pumped OPOs [39] in
lithium niobate nanophotonics promise a path towards overcoming these limitations
and accessing a new regime of ultrabroadband ultra-low-energy nonlinear optics
that has not been accessible before.

In this work, in sharp contrast to previous realizations of nonlinear photonic res-
onators, we judiciously design and realize an on-chip sync-pumped OPO featuring a
low-finesse resonator which couples only frequencies near the half-harmonic of the
pump while leaving the pump and its high-harmonics non-resonant. It is near-zero
dispersion engineered for the pump and its half-harmonic. The nanophotonic sync-
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pumped OPO operates with a record-low threshold of ∼18 fJ. Due to its low-energy,
intense, phase-sensitive amplification, we discovered an operation regime of the
OPO where the nonlinear phase compensates the cavity detuning, yielding a multi-
octave coherent spectrum. We measured a 2.6 octave frequency comb at ∼121 fJ of
pump energy and experimentally confirmed its coherence. We numerically replicate
the broadband nonlinear dynamics associated with such a multi-octave broadening
and provide design guidelines for even broader outputs.

7.2 Results
Operating Principle and Design
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Figure 7.1: Principle and design of the multi-octave nanophotonic OPO. a,
Illustration of the sync-pumped OPO on thin-film lithium niobate with key features
highlighted. b, Microscope image of several devices when the one in the center
is pumped at 1 𝜇m. The chip glows green due to second harmonic generation
(SHG). The top inset is a scanning electron microscope image of the spiral region
and the bottom is a picture of the entire chip containing 16 OPOs. c, Illustration
showcasing how short pump pulses can take advantage of near-zero-dispersion-
engineered OPAs. The simulated gain profiles are shown in the top for a waveguide
with 60 fs2/mm half-harmonic GVD and 26 fs/mm GVM and in the bottom for the
fabricated near-zero-dispersion waveguide. The solid orange line marks the center
wavelength of the pump and the orange shaded regions mark the 3-dB bandwidth
(BW) of the 100-fs source. d, Depiction of the different regimes of operation of
the OPO as a function of pump pulse energy, along with the roundtrip-to-roundtrip
temporal output of the OPO in each regime.
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Figure 7.1a illustrates the design of the on-chip sync-pumped OPO, with the fabri-
cated device shown in Fig. 7.1b. The input/output couplers are designed to allow
resonance only around the half-harmonic of the pump (see Section 7.4), and the
cavity is designed to be minimally dispersive for these wavelengths. To phase and
frequency lock the OPO, the OPO is nearly sync-pumped at degeneracy, requiring
a cavity round-trip time of 4 ns for a pump comb with a 250 MHz repetition rate.
With the effective index of our nanophotonic lithium niobate waveguides (wgs), this
amounts to a 53-cm-long-cavity.

To achieve the ultra-high, ultra-broad, phase-sensitive gain at fJ pump pulse energies
that enables coherent broadband comb generation, the OPO includes a 10.8 mm OPA
with proper dispersion engineering and QPM. Specifically, we target minimizing the
GVD of the pump and signal, as well as the GVM between the pump and signal [38].
Figure 7.1d illustrates the large gain bandwidth that can be accessed when coupling
a 100-fs pump to a near-zero dispersion engineered waveguide, as opposed to one
with large dispersion that is favored for broadly tunable OPOs [39, 40]. The designs
for the poling period, cavity length, and couplers for sync-pumped operation can be
found in the Section 7.4.

Figure 7.1d illustrates the different regimes of operation of this nanophotonic OPO.
At low pump pulse energies, the OPO goes above threshold when the gain overcomes
the loss inside the cavity. This is conventionally the regime where OPOs are operated
to yield coherent outputs phase-locked to the pump [34]. At higher pump pulse
energies a degenerate OPO is known to transition to an unstable operation regime
where the phase-locked operation diminishes [41–43]. Here however, we find that
far above threshold, the OPO can undergo a transition to the phase-locked regime as
a result of the nonlinear phase being compensated by the cavity. This recoherence is
emphasized in the accompanying time domain plots, where after a finite number of
roundtrips the output pulse intensity is seen to stabilize with ultrashort features in the
multi-octave case. It is worth noting that the dynamics of such far-above-threshold
OPOs, including this reemergence of coherence, are not well described by existing
reduced models [41].

Measurement of Multi-Octave Frequency Comb
In Fig. 7.2a-c, we show the near-threshold performance of the nanophotonic OPO.
Scanning the repetition rate of the pump by 600 Hz, we observe the oscillation
peaks of the OPO as depicted in Fig. 7.2a. These peaks are characteristic of doubly-
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resonant operation [34]. We can actively lock the pump repetition rate to the center
of each of these peaks, and the near-threshold signal spectra of three such peaks at
distinct detunings between the pump repetition period and cavity round-trip time,
Δ𝑇RT, are shown in Fig. 7.2b. In Fig. 7.2c we show the measured input-output pulse
energy growth of these same peaks. We can extrapolate the threshold and slope
efficiencies, 𝜂𝑆𝐿 , and define the peak with the lowest threshold as the zero cavity
detuned state. For this peak we estimate an OPO threshold of ∼18 fJ.
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Figure 7.2: OPO characterization. a, Oscillation peaks of the OPO near-threshold
as the pump repetition rate is modulated by a piezoelectric transducer (PZT) in
the pump laser cavity at 600 Hz. b, Signal spectrum at 35 fJ of pump energy for
three different roundtrip detunings and c, the corresponding OPO signal growth as a
function of pump energy for different oscillation peaks and their slope efficiencies,
𝜂SL. d, Output spectra, OPO oscillation peaks, and beatnote measurements from the
OPO cavity at 54 fJ, 109 fJ, and 121 fJ of pump. The OPO oscillation peaks (ii), (v),
(viii) were taken under the same detector amplification settings. The RF beatnotes
(iii), (vi), (ix) were taken between a free space and on-chip OPO that share the same
pump, the rep rate of which is tuned over time.
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In Fig. 7.2d, we show three characteristic output spectra of the OPO. At 54 fJ
of pump we observe conventional OPO behavior. The pump, half-harmonic and
second-harmonic are all spectrally broadened, and there is noticeable SFG between
the pump and half harmonic. At 109 fJ of pump, we observe continuous spectra
from 600 nm to 2710 nm, and at 121 fJ we observe continuous spectra from 443
nm to 2676 nm. The dip at 2.8 µm is associated with the OH absorption peak in the
LN and/or the buffer layer [40, 44], and kinks near 680 nm and 1135 nm are due to
mode crossings (see Section 7.4). It is also worth noting that the spectra at 121 fJ
has some distinctive signatures on the long wavelength side of the spectrum that are
absent in the 109 fJ pumped cases.

To characterize the coherence of the OPO at these pump pulse energies, we interfere
the chip output with that of a free-space OPO pumped by the same laser using a filter
centered around 2.1 µm. When operated in a coherent regime, the half-harmonic
output comb from a degenerate OPO above threshold can have two possible CEO
frequencies which differ by half of the pump repetition rate, 𝑓rep/2, depending on
the oscillation peak [34]. When the on-chip OPO output comb has a different CEO
frequency from the free-space OPO output comb, upon spatially and temporally
overlapping their outputs, beatnotes at 𝑓rep/2 should be observed. For the coherence
measurements in Fig. 7.2d, we scan the pump-cavity detuning over time via a
piezoelectric (PZT) actuator which controls the pump repetition rate. At 54 fJ
of pump, Fig. 7.2d(ii) shows that the on-chip OPO exhibits features at certain
detunings, the coherence of which are reflected by the 𝑓rep/2 beatnotes between the
OPOs in Fig. 7.2d(iii). The lack of these signatures both in the OPO power and
beatnotes at 109 fJ of pump, indicate that the on-chip OPO has transitioned from a
coherent to incoherent regime. At 121 fJ however, the OPO peak structures and RF
beatnote reappear, signifying the reemergence of a coherent operating regime.

The coherence of the second-harmonic portions of these spectra were confirmed
using a spectrally broadened output of the pump by a photonic crystal fiber. We
interfere this broadened pump with the second-harmonic portion of the on-chip
OPO and observe beatnotes of the resultant carrier-envelope offset frequency, 𝑓CEO,
along with the pump repetition rate at 250 MHz for all of the pump pulse energies
in Fig. 7.2d, irrespective of the detuning (see Section 7.4). In particular, at
121 fJ of pump, because both the half-harmonic and second harmonic combs are
coherent with respect to the pump and all frequency portions of our spectrum are
generated through parametric processes of these three combs [29], we conclude that
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the continuous 2.6 octave spectrum in Fig. 7.2d is coherent. We have experimentally
observed that the regime exists stably within a few percent change of the input power,
which is consistent with our numerical simulations. As such, we could even lock
the rep rate of the pump to keep the OPO oscillating in this state, and in Section 7.4
we show the beatnote signal being maintained over several minutes.
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Figure 7.3: Simulation results showing different operation regimes of the nano-
photonic OPO. a, Transition from (i) near-threshold coherent operation to (ii)
incoherent operation and (iii) back to coherent operation when the pump energy is
increased. The roundtrip temporal evolution (i-iii) and output spectra (iv-vi) are
shown for three different pump intensities using experimental parameters and at a
cavity detuning of -10.5 fs. b, A three-octave coherent OPO. The same experimental
parameters are used except that the last one mm of the PPLN was replaced with a
chirped poling period. The pump pulse energy was at 250 fJ.

To explain the dynamics of this OPO far above threshold and how coherence can
be established over such a broad spectrum, we turn to numerical simulations. To
capture the multi-octave nonlinear interactions occurring in the OPO, we modeled
the electric field in the nanophotonic cavity as a single envelope in frequency domain
which is evolved using the split-step Fourier method for propagation in the PPLN
region and a linear filter for the cavity feedback (see Section 7.4). In Fig. 7.3a,
we show how this captures distinct regimes of operation when using parameters
matching that of the experiment. At 16 fJ (i), the OPO goes above threshold and
stabilizes after ∼20 roundtrips. As the pump pulse energy is increased, fewer
roundtrips are required for the OPO to form, and at 137 fJ (ii) of pump (∼9× above
threshold), we see that the OPO output is incoherent. Finally, at roughly 204 fJ (iii)
of pump (∼13× above threshold), the half-harmonic is seen to regain coherence,
establishing a two-octave continuous comb with temporal features as short as 4 fs.
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In our simulations, this recoherence is observed to occur in a regime where a
nonlinear phase of 𝜋 is accumulated during by the half-harmonic due to its interaction
with the pump in the single-pass, which can be balanced by the cavity detuning.
This is the case in the presented simulations, performed for a detuning of -10.5 fs,
where the resonant half-harmonic signal accumulates a linear phase of 𝜋 over the
roundtrip propagation. The 𝜋 phase shift may be observed as a 2-roundtrip periodic
temporal shift in the fringes caused by the pump-signal interference in the 16-fJ
temporal evolution plot of Fig. 7.3a(i). In the recoherent regime of Fig. 7.3a(ii),
however, no such fluctuation in the fringes are observed as this 𝜋 roundtrip phase
exactly compensates the accumulated nonlinear phase.

In the multi-octave coherent regime, we further observe that the average output
spectrum (Fig. 7.3a(vi)) displays distinct spectral fringes absent in the incoherent
regime (Fig. 7.3a(v)). This is because the averaging washes out the features in the
incoherent regime which fluctuates from roundtrip to roundtrip. This contrast is
also evident in the measured spectra of Fig. 7.2d(iv) and (vii), corresponding to the
incoherent and multi-octave coherent regimes, respectively.

In simulation, we further investigate how to extend the coherent operation of the OPO
to even broader spectra. By replacing the last one mm of the PPLN region with a
chirped poling period for efficient second harmonic and sum-frequency generation,
we achieve a coherent three-octave continuous frequency comb with ∼250 fJ of
pump energy as shown in Fig. 7.3b.

7.3 Discussion
In Fig. 7.4 we compare our results with other integrated spectral broadening schemes
and sync-pumped OPOs. The figure highlights how our nanophotonic OPO design
and its operation regime enable orders-of-magnitude improvement in the energy
efficiency of coherent spectral broadening. Our work represents the lowest thresh-
old sync-pumped OPO which is enabled by its near-zero-dispersion design. This
ultralow-threshold operation enabled accessing a previously unexplored operation
regime of the OPO far above threshold, where ultrabroad coherent spectral broad-
ening is established as a consequence of the balance between cavity detuning and
nonlinear phase shift.

In summary, we have experimentally demonstrated a nearly sync-pumped nano-
photonic OPO operating in the near zero-GVM, zero-GVD, fs-pumped, high-gain
low-finesse regime resulting in an ultra-broadband coherent output with only ∼121
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Figure 7.4: Performance comparison of integrated spectral broadening and
frequency comb sync-pumped OPOs. a, Wavelength coverage and pump pulse
energies of integrated frequency comb spectral broadening schemes. The arrows
indicate the pump wavelength. b, Comb repetition rates and pump threshold energies
of sync-pumped OPOs. The marker shapes denote the different cavity and nonlinear
(NL) element compositions for each OPO, the categories being free space, fiber,
integrated and bulk, fiber, nanophotonic, respectively. In both figures, the top
legend denotes the material of the nonlinear element. Abbreviations, TFLN: thin-
film lithium niobate, OP: orientation patterned, MF: microstructured fiber, HNLF:
highly nonlinear fiber.

fJ of energy. The 2.6 octave frequency comb enables unprecedented opportunities
for on-chip applications including wavelength division multiplexing [7], dual-comb
spectroscopy [16], and frequency synthesis [5]. We show the OPO transitions from
an incoherent to coherent operation regime and demonstrate a path towards much
broader frequency comb sources in the femtojoule regime.

7.4 Supporting Information
Chip Design
OPO Design

The spatiotemporal profile of pulses propagating through our nanophotonic waveg-
uides can be sculpted by a few key fabrication parameters. Labeled in Fig. 7.5a,
these are the LN thickness, etch depth, top width, and sidewall angle. All of these
parameters directly affect the effective index of the waveguide which, in turn, de-
termines the near-zero dispersion geometry, quasi-phase-matching poling period,
and required cavity length for synchronous pumping of our OPO, as shown in Figs.
7.5b-d. We fabricated our device with a constant poling period of 5.075 µm and a
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Figure 7.5: Key OPO design parameters as a function of waveguide geometry.
a, Parameters for tuning spatiotemporal confinement of pulses propagating through
our nanophotonic waveguides. An example fundamental TE mode at 1 µm is shown
in the core of the waveguide. b, Dispersion profile c, Phase-matched poling period,
and d, Optimal sync-pumping cavity length as a function of waveguide top width
and etch depth variations. The actual measured dimensions of our fabricated device
are indicated by the cross.

cavity length of 52.92 cm, and we measured a waveguide etch depth and top width
of 352 nm and 1753 nm, respectively. These dimensions are marked by crosses
in Fig. 7.5b-d and show that we successfully engineered our device to be close to
optimal parameters for phase-matched operation with near-zero GVM and GVD.
The resulting simulated effective index, neff, and fabricated poling period are shown
in Fig. 7.6, along with the simulated bending loss as a function of bend radius and
wavelength. The dotted blue line in Fig. 7.6c at 77 µm indicates the minimum bend
radius used in fabricating the spiral, showing small bending loss for wavelengths
shorter than 3.3 µm at all points in the spiral.

b

ca

Electrode

Electrode 20 μmY

Z

Wavelength

Figure 7.6: Additional OPO parameters given the waveguide geometry shown
in Fig. 7.5. a, Effective index, GVD, and GVM with respect to the pump for the
fundamental TE mode of the waveguide b, Second harmonic microscope image of
the periodic poling pre-waveguide patterning, and c, Simulated propagation loss as
a function of bend radius for different signal wavelengths. The dotted blue line is at
77 µm, the minimum bend radius employed when designing the OPO cavity.
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Input/Output Coupler Design

The input and output couplers of the OPO, as defined in Fig. 7.7a, are symmetrically
identical and take the adiabatic shape depicted in Fig. 7.7b, where the parameters
for 𝑤1, 𝑤2, 𝑔𝑎𝑝, and 𝐿 are 1753 nm, 1900 nm, 980 nm, and 750 µm, respectively.
Adiabatic couplers were chosen for their broadband response and comparative fab-
rication insensitivity compared to other coupler geometries. The fundamental TE
mode profiles at 1 µm and 2 µm for the waveguide design with top width 𝑤2 are
shown in Fig. 7.7c. Pulses propagating through this adiabatic coupler follow the
coupled mode equations,


𝑑𝑎1

𝑑𝑧
= − 𝑗 𝜅𝑒 𝑗Δ𝛽𝑧𝑎2(𝑧)

𝑑𝑎2

𝑑𝑧
= − 𝑗 𝜅𝑒− 𝑗Δ𝛽𝑧𝑎1(𝑧)

(7.1)

where 𝑎1 and 𝑎2 are the amplitudes of the modes in each waveguide, 𝜅 is the
coupling coefficient between the waveguides, and Δ𝛽 = |𝛽1 − 𝛽2 | is the phase
mismatch between the two waveguides. Solving eq. (7.1) for our geometry, we
obtain the power coupling curve in Fig. 7.7d. We see that only signal wavelengths
above 2 µm experience significant coupling. In Fig. 7.7e we compare the spectral
output of our OPO (device with coupler and cavity) against that from an adjacent
straight waveguide without any couplers but sharing the same poling and waveguide
parameters. We find that the simulated dips and peaks in the adiabatic coupler
are reflected in the measured spectra from the nanophotonic OPO but are absent
from the periodically poled straight waveguide, matching our theoretically predicted
coupler response.

Chip Characterization
Experimental Setup

Our experimental setup is shown in Fig. 7.8. The detector in the PID loop allows the
repetition rate of the pump comb to be locked to disparate oscillation peaks of the
OPO while the spectra is being collected on an OSA. The synergistic features of the
pump and OPO that enable multi-octave frequency comb generation are emphasized
in the figure.
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Figure 7.7: OPO coupler design. a, Definition of the input/output coupler and b,
an illustration of the output coupler adiabatic design. Here, the widths and gaps refer
to those at the top of the waveguide. c, The waveguide fundamental TE modes at 1
µm and 2 µm. d, The simulated coupler response using the fabricated waveguide
geometry. e, Comparing the theoretical coupler behavior to measured spectra at 380
fJ of pump for otherwise identical devices with and without couplers.

Extended Experimental Data to Three Octave Spectra

Using the experimental setup shown in Fig. 7.8, we investigated the output spectra
of the OPO at different pump pulse energies, a subset of which was shown in Fig.
7.2d. In Fig. 7.9a, we show the extension to even higher pump pulse energies. At
380 fJ of pump, we observe three-octave-spanning spectra from 362 nm to 3261 nm.
The beatnote analysis with a free space OPO shown in Fig. 7.9b however, following
the procedure in Fig. 7.12, indicates that the OPO here is incoherent.

Molecular Absorption Features

For the measured spectra above 2.5 µm in Fig. 7.9a, we observe features that appear
to be from spectral absorption lines coming from ambient molecules. In Fig. 7.10,
we compare the experimental OPO spectra to the spectral lines of H2O, CO2, and
CH4. The overlap between water and the OPO’s spectral features is especially close,
likely because H2O is the strongest absorber in this spectral region at atmospheric
concentrations. We calculate that 9 % of the 3 µm mode inside the spiral region is
evanescent, suggesting that with the 53 cm spiral, on-chip sensing may be possible.
Here, however, we expect that the absorption primarily occurs between the output
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Figure 7.8: Experimental setup. Abbreviations, PS: phase sensitive, MLL: mode
locked laser, LP: long pass, BS: beam splitter.

of the chip and the detector as none of the systems in this experiment were purged.
Furthermore, these absorption features result from ambient molecules existing in
the lab as no gas cells were prepared.

The notch at 2.83 µm is due to an OH absorption peak in the LN and/or SiO2

substrate buffer layer. Studies of the absorption of SiO2 employed as a buffer
layer for Si waveguides [69–71] indicate that the SiO2 bottom-cladding will become
prohibitively narrow around 2.8 µm and above 3.5 µm. For current thin-film lithium
(TFLN) niobate devices with a SiO2 buffer and Si substrate, the upper absorption
appears to set in around 3.25 µm [39]. Wavelengths between, 2.8-3.8 µm, however
have been measured on TFLN waveguides on a sapphire substrate [72], suggesting
a path towards making a multi-octave frequency comb with even longer wavelength
components.

Mode Crossings

In Fig. 7.9, there are spectral kinks at 680 nm and 1135 nm evident over all pump
pulse energies. These correspond to the two mode crossings shown in Fig. 7.11a.
M1 is the mode crossing between the fundamental TE mode and second order TM
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Figure 7.9: Extended measurements to ∼ 20× above threshold. a Output spectra
from the OPO cavity up to 380 fJ of pump pulse energy. b For the same energies,
the top panels show the OPO oscillation peaks as the pump rep rate is scanned by
a PZT. The bottom panels show the RF beatnote between a free space and on-chip
OPO that share the same pump, the rep rate of which is tuned over time at 63.58
mHz.

Figure 7.10: Absorption features of atmospheric molecules compared to the
OPO spectra measured at 380 fJ of pump. The spectral lines were taken from the
HITRAN database[68].

mode (Fig. 7.11b) whereas M2 is the mode crossing between the fundamental TE
and TM modes (Fig. 7.11c). Indeed, these mode crossings, as well as the OH
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Figure 7.11: Simulated mode crossings compared to measured straight wave-
guide spectra. a, Simulated modes at the periodically poled region of the chip. The
mode crossings experienced by the fundamental TE mode are marked as M1 and
M2. Close-ups of these are shown in b and c, respectively. d, The measured power
spectral density of a periodically poled nanophotonic waveguide with no OPO cavity
as a function of pump pulse energy. The locations of M1 (680 nm) and M2 (1135
nm) are indicated by arrows.

absorption discussed in Section IIB, are even evident in the spectra measured from
a straight waveguide with the same waveguide geometry and poling period as the
OPO and plotted in Fig. 7.11d. As this straight waveguide does not have a cavity,
its half-harmonic spectra is due to OPG.

Beatnote Measurement

Down-Conversion Beatnote

The coherence of the down-converted portion of the comb around the half-harmonic
was investigated using the experimental setup in Fig. 7.12a. The output of an on-
chip and free space OPO pumped by the same laser were interfered. Depending on
the detuning peak 𝑙 of each OPO, we expect to see different signatures in their radio
frequency (RF) spectrum and interference patterns. Here, we use the dimensionless
detuning parameter 𝑙 = 2 𝑓𝑠Δ𝑇RT, where Δ𝑇RT is the mismatch between the cavity
roundtrip time and pump repetition period and 𝑓𝑠 is the signal frequency. While
OPOs with even 𝑙 have output comb lines aligned with that of the pump, near-
threshold OPOs with odd 𝑙 have output comb lines shifted by 𝑓rep/2 [34, 73]. This
is illustrated in Fig. 7.12b.
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Figure 7.12: OPO beatnote measurement. a, Experimental setup. b, Illustration
of the two near-threshold 𝑓CEO states possible for the OPO comb depending on the
detuning peak, 𝑙, being even or odd. c, (i) RF beatnote and (ii) spectral overlap,
showing interference fringes (blue) as the relative output delay between the OPOs
is scanned in the case where they share an 𝑓CEO in the recoherent regime.

As discussed above, a key feature of the recoherent regime is the presence of a strong
nonlinear phase accumulation. In this scenario, the a shared 𝑓CEO between pump
and signal may occur for different values of 𝑙 compared to the near-threshold case.
However, as we show, both scenarios of the signal comb either sharing an 𝑓CEO with
the pump comb or being shifted by 𝑓rep/2 may still occur.

When the on-chip and free-space OPO output combs have 𝑓CEO’s which are shifted
by 𝑓rep/2, the temporally and spatially overlapped OPO outputs show a beatnote at
𝑓rep/2, as shown in the RF spectrum measurement in Fig. 7.12c(i). Furthermore,
in this case where the two combs have different 𝑓CEO frequencies, we do not expect
to see interference fringes as the delay between the two coherent OPO outputs is
scanned. As shown by the orange trace in Fig. 7.12c(ii), no fringe is observed.

In the case that the OPOs are coherent and share the same 𝑓CEO, however, we do
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not expect and did not observe a beatnote at 𝑓rep/2. Furthermore, since the combs
share an 𝑓CEO, we expect to see an interference fringe as their relative delay is
scanned. This is indeed what we measured, as shown by the blue curve in Fig.
7.12c(ii). At 109 fJ and 380 fJ of pump, where the down-converted portion of the
nanophotonic OPO output is incoherent, we observed neither a 𝑓rep/2 beatnote nor
the blue interference fringe of Fig. 7.12c(ii).

Finally, the pump rep rate can be locked to features in the OPO output signal. In
Fig. 7.13, we show that we can indeed lock to and stabilize the on-chip OPO output
to the 2.6 octave comb state in the recoherent regime.

Up-Conversion Beatnote

The coherence of the up-converted portion of the pump was investigated using
similar methodologies to [29, 35]. Specifically, a spectrally broadened portion of
the pump was interfered with the second harmonic portion of the on-chip OPO, as
illustrated in Fig. 7.14a. The spectral overlap for three of the pump pulse energies
mentioned in Fig. 7.2d are shown in Fig. 7.14b, with the corresponding beatnotes
presented in Figs. 7.14c-e. In each case we confirmed the beatnotes correspond to
the 𝑓CEO by recording its shift as the pump 𝑓CEO is tuned. We conclude that the
up-converted porion of the pump reamins coherent irrespective of the pump pulse
energy or cavity detuning, which is as expected [29, 35].

OPO Simulations
Method

We model the ultrabroad spectral dynamics of the nanophotonic OPO by represent-
ing the total electric field in the nanophotonic waveguide using a single envelope in
the frequency domain [38, 74–77],

E(𝑥, 𝑦, 𝜔) = 𝐴(𝑧,Ω)e(𝑥, 𝑦, 𝜔)𝑒−𝑖(𝛽0−𝜔0/𝑣ref)𝑧, (7.2)

where 𝜔 and Ω = 𝜔 − 𝜔0 are the optical and envelope angular frequencies, 𝜔0 is
the simulation center frequency, 𝛽0 is the waveguide propagation constant at 𝜔0,
𝑣ref is the simulation reference frame velocity, 𝑥 and 𝑦 are the transversal waveguide
coordinates, e(𝑥, 𝑦, 𝜔) is the mode transversal field distribution, and 𝐴(𝑧, 𝜔) is
the complex amplitude of the field that evolves during propagation. In our OPO
simulation, 𝜔0 is chosen to be the center of the half-harmonic signal at 2090 nm,
and 𝑣ref is the group velocity of the half-harmonic. 𝐴(𝑧, 𝜔) = 𝐴(𝑧,Ω)𝑒−𝑖𝜔0𝑡 is a
rapidly-varying envelope which contains the phase factor 𝑒−𝑖𝛽(𝜔)𝑧 acquired during
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Figure 7.13: OPO beatnote locked in the recoherent regime. The pump here is
at 121 fJ, and the pump rep rate is locked to the OPO peak structures seen in the
OPO oscillation peaks in Fig. 7.2d(viii). The top panel shows the 𝑓rep/2 beatnote
at a representative time, and the bottom panel shows the beatnote persist over time.
The dither signals of the free-space and on-chip OPO cavity locks cause the two
sets of side fringes to the main 𝑓rep/2 beatnote.
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Figure 7.14: SHG beatnote measurement. a, Experimental setup. b, Spectral
overlap between the chip SHG outputs and the PCF. Sample beatnotes measured at
c, 380 fJ, d, 109 fJ, and e, 54 fJ with the different colors corresponding to different
pump 𝑓CEO’s. Abbreviations, SP: short pass, PCF: photonic crystal fiber (Menlo
Systems), HWP: half wave plate.

linear propagation. Additionally, 𝐴(𝑧, 𝜔) is an analytic signal, meaning it only
contains positive frequencies (𝐴(𝑧, 𝜔 < 0) = 0). The code used for finding both
the effective index and solving the nonlinear propagation is based on the SNOW
library[78].

Our simulation models each round-trip in the OPO in two parts. The first accounts
for the nonlinear propagation in the poled region of the waveguide, while the sec-
ond consists of a linear filter which models the round-trip evolution in the spiral
resonator [79]. The output of this round-trip evolution is fed back as a seed for the
subsequent nonlinear propagation. The first round-trip is seeded by white noise for
all frequencies besides the pump, which is taken to be an 80-fs pulse with a sech
pulse profile, centered at 1045 nm.

We find a uni-directional equation of motion describing the nonlinear propagation
of 𝐴(𝑧,Ω) by ignoring counter-propagating terms (which are usually phase mis-
matched) and assuming a constant nonlinear coefficient and mode overlap integral,
both of which are weak functions of frequency away from any material resonances.
No limitations are placed upon the maximum spectral bandwidth of the simulation.
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The resulting propagation equation is,

𝜕𝐴

𝜕𝑧
= −𝑖

[
𝛽(𝜔) − 𝛽0 −

Ω

𝑣ref
− 𝑖 𝛼

2

]
𝐴

− 𝑖𝜔𝜖0𝑋0

8
𝑑 (𝑧)FΩ

{
𝑎2(𝑧, 𝑡)𝑒 𝑗𝜙(𝑧,𝑡) + 2𝑎(𝑧, 𝑡)𝑎∗(𝑧, 𝑡)𝑒− 𝑗𝜙(𝑧,𝑡)

}
, (7.3)

where 𝑑 (𝑧) = ±1 is the sign of the quadratic nonlinear coefficient that is modulated
in quasi-phase matching, 𝛼 is the propagation loss coefficient, 𝑎(𝑧, 𝑡) is the time
domain representation of 𝐴(𝑧,Ω), 𝜙(𝑧, 𝑡) = 𝜔0𝑡 − (𝛽0 −𝜔0/𝑣ref)𝑧, FΩ is the Fourier
transform in the Ω variable. The effective nonlinear coefficient 𝑋0 is defined as:

𝑋0 =
∑︁
𝑖 𝑗 𝑘

𝜒
(2)
𝑖 𝑗 𝑘

∫
𝑒∗𝑖 (𝜔1)𝑒 𝑗 (𝜔2)𝑒𝑘 (𝜔1 − 𝜔2) d𝑆 , (7.4)

where 𝜒(2)
𝑖 𝑗 𝑘

is the quadratic nonlinear susceptibility tensor, and 𝑗 , 𝑘, 𝑙 denote Carte-
sian components.

The nonlinear propagation in each round-trip involves solving the evolution equation
(7.3) using the split-step Fourier technique over the length of the poled waveguide,
L = 10.8 mm. The nonlinear step employs the fourth-order Runge-Kutta method in
the interaction picture (RK4IP) [80].

Propagation in the spiral resonator is modeled through application of a linear feed-
back function to the output of the poled region. In particular, the signal fed back to
the input of the poled region for the (𝑛+1)𝑡ℎ round-trip, 𝐴𝑛+1

𝑖𝑛
(0, 𝜔), is related to the

field out of the poled region on the 𝑛𝑡ℎ round-trip, 𝐴𝑛𝑜𝑢𝑡 (𝐿, 𝜔), by the expression:

𝐴𝑛+1
𝑖𝑛 (0, 𝜔) = 𝐴𝑛𝑜𝑢𝑡 (𝐿, 𝜔)𝑅(𝜔)𝑒− 𝑗 (𝐷RT (𝜔)𝐿RT+Δ𝑇RT𝜔+𝜙0) . (7.5)

Here, 𝑅(𝜔) is the frequency-dependent coupling factor of the designed adiabatic
couplers, 𝐷RT = 𝛽(𝜔)−𝛽0− Ω

𝑣ref
−𝑖 𝛼RT

2 is the complex dispersion operator describing
propagation in the round-trip waveguide with parameters defined as above for the
poled waveguide, 𝐿RT = 518.4 mm is the length of the round-trip cavity, Δ𝑇RT is
the cavity detuning parameter which accounts for any timing mismatch between
the pump repetition period and cavity roundtrip time, and 𝜙0 is a constant phase
offset. We further note that the quantity Δ𝑇RT𝜔 = Δ𝑇RT(Ω + 𝜔0) in terms of
the envelope angular frequency, Ω, and therefore consists of two terms, a linear
phase accumulation (corresponding to a temporal shift) and an absolute phase
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accumulation, 𝜙RT = Δ𝑇RT𝜔0. We also frequently utilize the normalized detuning
parameter, 𝑙, defined as 𝑙 = Δ𝑇RT𝜔0

𝜋
. In addition to this fed back signal, a new pump

pulse is also injected, centered at t = 0 on the fast time axis.

Simulations are conducted on a Fourier grid of size 4096 with a bandwidth of
2.4 PHz. The corresponding time window is 1.7 ps. To avoid wrapping in the
time window during the nonlinear propagation, a Tukey filter padded with zeros
on the edges is applied in the time domain after each nonlinear step. Additionally,
before application of the linear filter, all frequency components which will walk
out of the time window over the course of the 518-mm propagation in the spiral
resonator are filtered out. This has the undesirable effect of effectively reducing the
simulated power in frequency modes which are far from the reference frequency
(and thus experience significant walk-off with respect to the reference velocity of
the simulation), but it ensures the validity of the simulated nonlinear interaction.

In this context we consider nonlinear phase to be the phase accumulated in the
PPLN section of the resonator due to the nonlinear process (excluding the linear
phase accumulation). We explicitly focus on a narrow spectral range around the
pump and its half-harmonic for the spectral analysis and around the peak intensities
for the pump and half-harmonic in the temporal analysis.

OPO Dynamics under Different Conditions

As discussed in Section 7.2, the ultrabroadband OPO enters different regimes of
operation high above threshold. An extended version of the regimes shown in Fig.
7.1 is shown in Fig. 7.15a. Whether our near-zero dispersion OPO can reach the
coherent multi-octave state denoted as (iii) in the figure, largely depends on the
pump energy and cavity phase, adjusted either through the detuning (shown in Fig.
7.15b) or absolute phase parameter, 𝜙0. We find that the dynamics of our OPO
largely depend on whether it has an even or odd detuning peak, 𝑙, and whether 𝜙0 is
0 or 𝜋. We will dive into each of these cases in more depth below.

𝑙 ∈ even, 𝜙0 = 0

When 𝑙 ∈ even and 𝜙0 = 0, we find that while the OPO nearly reaches a coherent,
multi-octave comb, it never quite manages to. As an example, we show the case
of of 𝑙 = −2 in Fig. 7.16, where this approximate coherence is emphasized by
the label (Nearly iii). In this case, we see that in regime (i), near threshold, the
roundtrip-to-roundtrip phase of the coherent OPO remains fixed once the OPO goes
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Figure 7.15: Simulated OPO regimes.a, Extended illustration of the operating
regimes of the nanophotonic OPO. In the simulations presented below, regimes
(i)–(v) correspond to typical pump pulse energies of 16, 127, 205, and 400 femto-
joules, respectively. b, OPO resonances labeled in terms of detuning peak (𝑙), and
cavity roundtrip detuning (Δ𝑇RT).

above threshold. After transitioning though an incoherent state in regime (ii), the
OPO phase is seen to flip roundtrip-to-roundtrip by 𝜋 in pump regime (iii). This
roundtrip signal phase accumulation relative to the pump manifests as a periodic
beating between the pump and half-harmonic components, as well as upconverted
components resulting from their interaction, which may be observed in the time
and frequency evolution plots. At even higher pump energies, the OPO enters the
completely saturated, incoherent regime of (iv).

𝑙 ∈ odd, 𝜙0 = 0

The roundtrip-to-roundtrip 𝜋 phase flips in the ∼200 fJ-pumped cases when 𝑙 ∈
even and 𝜙0 = 0 suggest that if the cavity phase can be detuned by 𝜋, a multi-
octave coherent comb can be sustained. One way of obtaining such a detuning is
to select OPO peaks where 𝑙 ∈ odd while maintaining 𝜙0 = 0, and in Fig. 7.17,
we show the dynamics of the case where 𝑙 = −3. As expected, near threshold, i.e,
in regime (i), the OPO shows roundtrip-to-roundtrip 𝜋 phase flips. In regime (iii),
however, we find that the OPO recoheres and is able to stabilize, showing a fixed
roundtrip-to-roundtrip phase.

The coherence of the two octave spectra in regime (iii) can be further verified by
means of calculating the 𝑔(1) coherence over pairs of output pulses as well as by
directly inspecting the overlap of the half-harmonic, pump, second harmonic, and
sum-frequency generated combs. As can be seen in the top panel of Fig. 7.18a,
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Figure 7.16: OPO characterization: 𝑙 = −2, 𝜙0 = 0. The top row shows the phase
of the OPO output as a function of round trip for each operating regime indicated
in Fig. 7.15. The second and third rows present the spectral intensity: the third row
from the bottom shows the spectral buildup over round trips, while the second row
from the bottom shows the spectral intensity after 100 round trips. Similarly, the
bottom row illustrates the evolution of the temporal intensity over round trips, and
the row above it shows the final temporal intensity after 100 round trips.

we see through measurement of the 𝑔(1) coherence between pairs of pulses taken
from the last 15 roundtrips of our simulation, the device displays over two octaves of
coherent spectra. This can be further verified by looking at the the actual comb lines
of the two-octave comb. The full comb spectrum, as well as a close-up of the comb
lines corresponding to different harmonic combs, shifted by the nearest multiple of
𝑓rep which centers them at zero, are shown in Fig. 7.18b. The good overlap between
the comb lines is a further indication that the combs share an fCEO and are thus
coherent. Note that the second harmonic comb at 500 nm is not expected to share
an fCEO with the other harmonics except in the case where the pump comb at 1 µm
has an fCEO of 0, which is generally assumed in our simulation.

𝑙 ∈ even, 𝜙0 = 𝜋

Along with picking an odd detuning peak, a roundtrip phase of 𝜋 can be directly
added in the case where 𝑙 ∈ even, corresponding to 𝜙0 = 𝜋. This helps to decouple
the effects from any additional temporal dynamics which can occur due to the
detuning parameter, Δ𝑇RT. An example of this is shown in Fig. 7.19 for 𝑙 = −2.
Similar to the case of 𝑙 ∈ odd with 𝜙0 = 0, the OPO shows roundtrip-to-roundtrip
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Figure 7.17: OPO characterization: 𝑙 = −3, 𝜙0 = 0. The top row shows the OPO
output phase as a function of round trip for each regime in Fig. 7.15. The second
and third rows display the spectral intensity: the third row shows spectral buildup
with round trips, and the second row shows the intensity after 100 round trips. The
bottom row depicts the temporal intensity evolution, with the row above it showing
the final temporal intensity after 100 round trips.

Figure 7.18: Further characterization of the coherence of regime (iii) for 𝑙 = −3,
𝜙0 = 0. a, 𝑔(1) coherence as a function of wavelength, PSD, and roundtrip spectra,
where points with simulated coherence greater than 0.6 are denoted by a light green
dot, with the rest colored in pink. For the roundtrip phase plot, points where
the difference in phase compared to the prior roundtrip is smaller than 𝜋/6 are
plotted in green with the other points marked in pink. b, Simulated comb lines at
the output. The 2-𝜇m, 1-𝜇m, 69-nm, and 500-nm combs correspond to the half-
harmonic, pump, sum-frequency generation of the pump and half-harmonic, and
second harmonic of the pump, respectively.



215

phase flips at low powers of regime (i) and enters the oscillatory state of regime (ii)
until ultimately landing in a steady-state at 200 fJ of pump.

Figure 7.19: OPO characterization: Peak -2, 𝜙0 = 𝜋. The top row shows the OPO
output phase as a function of round trip for each regime in Fig. 7.15. The second
and third rows display the spectral intensity: the third row shows spectral buildup
with round trips, and the second row shows the intensity after 100 round trips. The
bottom row depicts the temporal intensity evolution, with the row above it showing
the final temporal intensity after 100 round trips.

Recoherent Regime

Mechanism

In Fig. 7.2d, we experimentally demonstrated that as the input pump pulse energy
is increased, our OPO transitions from a conventional operational regime, where it
is coherent, to an incoherent one, but then it recovers its coherence at higher pump
pulse energies with an appropriate cavity detuning. In Fig. 7.21, we show the
intensity and phase propagation of the pump and half-harmonic in the periodically
poled region of the cavity at ∼200 fJ of pump (i.e., in the recoherent regime). The
evolution of the half-harmonic phase in a(ii) clearly shows a phase flip from −𝜋 → 0
in locations where the half-harmonic has substantial intensity.

Above, we showed that this 𝜋 phase flip in the half-harmonic in each single-pass
through the PPLN can be compensated by detuning the cavity by an odd number of
OPO peaks, or by adding a constant cavity phase of 𝜋, 𝜙0. Fig. 7.17 is an example
of the former. Near threshold (16 fJ), the OPO output experiences a 𝜋 phase flip in
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every roundtrip, but it is able to stabilize to a constant phase output in the case of
204 fJ of pump. An example of the latter approach of choosing an even detuning
peak but 𝜙0 of 𝜋, is Fig. 7.19. Again, we observe that in the recoherent regime of
200 fJ of pump, the output phase can stabilize after ∼40 cavity roundtrips. These
examples show that compensating the single pass phase accumulation in the PPLN
by appropriately detuning the cavity, or 𝜙0, is the key to operating in the recoherent
regime. Thus, the pump pulse energy of where recoherence occurs is dependent
on the OPO dispersion and nonlinear gain that induces 𝜋 phase flips between the
half-harmonic and the pump.

Figure 7.20: Intensity and phase evolution inside the crystal for the half-
harmonic (top) and pump (bottom) of regime (iii) for 𝑙 = −3, 𝜙0 = 0. For
a(ii) and b(ii), the phase of regions with intensity greater than ∼ 0.2 W are encircled,
and phases of locations with lower intensities are made more transparent.

Short Pulse Formation As mentioned in Section 7.2, the coherent multi-octave OPO
can support ultrafast features at the output of the OPO. In Fig. 7.21, we explicitly
show the simulated temporal output of this regime for the cases of 𝑙 = {−3,−1, 1, 3}
with 𝜙0 = 0. Features as narrow as 4.2 fs can be observed, suggesting that the
coherent multi-octave comb regime can in the future be leveraged for extreme pulse
compression and single/few-cycle pulse synthesis.

Extension to a Three Octave Comb

By employing a chirped poling period targeting energy transfer to the second har-
monic and sum frequency generation terms, we can even induce three octaves of
coherent spectra. In particular, the poling period in the last 1 mm of the 10.8-
mm poled region is assumed to vary smoothly between the period required for
quasi-phase-matched OPA between the pump at 1 µm and signal at 2 µm to phase
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Figure 7.21: Temporal output of the two-octave combs at different detunings.
In each case, the pink line showing the 3 dB bandwidth of the central feature is ∼
4.2 fs. Here, 𝜙0 = 0.

matching the interaction between the pump at 1 µm and its second harmonic at 500
nm. Extended characterization of the results, discussed in Fig. 7.3b, are shown in
Fig. 7.22. Of note is that this high-harmonic generation process acts as an effective
loss for the 2 µm signal, resulting in a slightly higher threshold for the OPO and
larger pump power requirement to reach the recoherent regime. At 248 fJ of pump,
however, a multi-octave comb is observed, with the additional high-harmonic pro-
cesses enabling formation of a coherent three-octave spectrum (Fig. 7.22a-b) by
filling the spectral gap between the second harmonic at 500 nm and sum-frequency
component at 697 nm (d).
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Figure 7.22: Three octave comb characterization at 𝑙 = 3, 𝜙0 = 0. The OPO
was simulated with additional duty cycle variations in the poling period, producing
a three-octave coherent frequency comb using 248 fJ of pump pulse energy. Panels
a and b show the first-order coherence 𝑔(1) and the power spectral density (PSD)
after 100 round trips, respectively. Panel c illustrates the spectral evolution as a
function of round trip, while d shows the phase evolution of the OPO output. Panels
e and f present the temporal intensity, with e showing the final output after 100
round trips and f showing the evolution over all round trips. Panel g displays the
simulated comb lines spanning the full output spectrum. In panel h, comb lines
corresponding to different harmonics are shifted by the nearest multiple of 𝑓rep to
center them at zero. The 2-𝜇m, 1-𝜇m, 69-nm, and 500-nm combs correspond to the
half-harmonic, pump, sum-frequency generation of the pump and half-harmonic,
and second harmonic of the pump, respectively.
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C h a p t e r 8

MULTI-OCTAVE COMB FORMATION DYNAMICS IN
OPTICAL PARAMETRIC OSCILLATORS

8.1 Introduction
As motivated in Chapter 7, broadband optical frequency combs play a prominent
role in modern optical technologies [1–3], with wide application in areas including
spectroscopy [4–6], metrology and timekeeping [7, 8], communications [9, 10], and
information processing [11]. Combs spanning greater than one octave are of par-
ticular importance due to their use in single-cycle pulse synthesis [12, 13] and their
compatibility with self-referencing schemes used for carrier-envelope phase con-
trol and stabilization. Multi-octave frequency combs are typically realized through
supercontinuum generation via coherent spectral broadening mechanisms based on
𝜒(2) or 𝜒(3) nonlinearities [14, 15]. Such supercontinuum generation has usually
relied on driving a nonlinear medium such as an optical fiber or bulk crystal with
high-energy (∼nJ) pulses from an ultrafast source [16, 17].

Photonic integration has brought many new opportunities for reducing the size
and energy requirements for supercontinuum generation [18]. In particular, the
strong spatial confinement offers increased nonlinear interaction strength while si-
multaneously enabling dispersion engineering, both key parameters in the design of
supercontinuum generation systems. These properties have been leveraged in 𝜒(2)

waveguides on the TFLN platform to achieve multi-octave supercontinuum genera-
tion [19, 20]. However, these demonstrations have required 10s of pJ pump pulse en-
ergies to achieve significant coverage beyond an octave, beyond the reach of current
integrated laser sources [1, 2, 21–23]. Furthermore, the usual broadening mech-
anism relies on second-harmonic generation, thus necessitating an infrared pump
source to achieve spectral coverage in the long-wavelength spectral region [24].

On the other hand, recent efforts to reduce the complexity of supercontinuum sources
have turned to resonant configurations, in which the nonlinear medium responsible
for the supercontinuum generation is placed inside an optical resonator or laser cav-
ity [25]. One challenge of this configuration, however, is that the nonlinear phase
accumulated during the nonlinear broadening process can destabilize the system,
leading to an incoherent output at high pump powers. Recent demonstrations have
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leveraged Mamyshev configurations [26–28], or other forms of intracavity filter-
ing [29], and additionally exploited nonlinear attractor dynamics such as similariton
formation [30, 31] to extend the coherent regime.

Among nonlinear resonators, OPOs are of particular interest due to their ability to
translate pump combs to disparate spectral windows where direct lasing remains
challenging [32, 33]. At degeneracy, OPOs further benefit from an intrinsic phase
and frequency locking between pump and signal whereby the pump and signal may
share the same set of comb lines requiring no additional stabilization [34]. This
ability to translate the coherence properties of the pump comb between disparate
frequency bands makes OPOs a particularly attractive candidate for the generation
of multi-octave frequency combs; however, previous demonstrations of far-above
threshold OPOs have typically suffered from similar decoherence mechanisms due
to the strong nonlinear phase accumulation [35, 36].

More recently, integrated OPOs have been demonstrated in TFLN, offering both a
reduced size and threshold compared to their bulk counterparts [37–40]. In partic-
ular, we demonstrated in Chapter 7 multi-octave frequency comb generation from a
dispersion-engineered nanophotonic parametric oscillator which was synchronously
pumped with 100-fs pulses at 1045 nm [41]. The system was marked by an ultralow
threshold energy of ∼ 18 fJ as well as a distinct transition as the pump power was
increased from coherence to incoherence followed by recoherence at a pump pulse
energy of ∼ 121 fJ, leading to the observed coherent multi-octave spectrum. In
contrast to previous demonstrations of far above threshold OPOs, we observed that
the nonlinear phase was again balanced by the cavity detuning in this regime to
achieve coherence.

Here, we analyze the dynamics responsible for such coherent multi-octave contin-
uum formation in OPOs. By analyzing the simulated propagation dynamics through
the lens of the temporal mode basis of the linearized OPA, we find that the combined
effects of the dispersion and nonlinearity result in an effective spectral filtering effect
in the cavity roundtrip, leading to the OPA input being dominated by the funda-
mental temporal mode of the amplifier in cases where coherence is observed. Our
numerical results are supported by spectral and temporal characterization of sev-
eral different regimes of our nanophotonic OPO device. Through our analysis, we
draw analogy between our system and previous demonstrations of intracavity su-
percontinuum generation based on self-similar propagation and intracavity filtering.
Our results offer important insight into the design of OPOs capable of supporting
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such multi-octave coherent continuum as well as the dynamics of highly nonlinear
resonators more broadly.
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Figure 8.1: Dynamics of coherent supercontinuum generation. a, Schematic of
the OPO device, with labels indicating four key dynamical regions. b, Far above
threshold, back-and-forth conversion between the pump and half-harmonic signal in
the periodic poled region 1O leads to spectral broadening. Part of the half-harmonic
signal is then filtered out and sent to the spiral resonator at the outcoupler in region
2O. In the cavity, region 3O, dispersion causes the various frequency components to
spread out in time. Finally, at the input coupler, region 4O, a new pump pulse is
injected which temporally gates a portion of the circulating signal. This corresponds
to filtering a limited band of frequencies, depending on the roundtrip group delay,
Δ𝑇RT, which seed the subsequent roundtrip. 𝜒(2) , second-order susceptibility; F ,
Fourier transform; Δ𝑇RT, roundtrip group delay; 𝐷̂, dispersion operator; 𝑅, power
coupling.

8.2 Results
The measured OPO device is shown in Fig. 8.1a, as described in Chapter 7 [41].
A 10.8-mm-long periodically poled region 1O facilitates phase-matched interaction
between the 100-fs pump pulses at 1045 nm and the half-harmonic signal at 2090
nm. Dispersion engineering ensures near-0 GVM and GVD between the pump and
half-harmonic, ensuring large and broadband gain for the signal. Adiabatic couplers
in regions 2O and 4O enable coupling of the half-harmonic while transmitting the
pump. The 53-cm spiral cavity, region 3O, ensures the pump repetition rate of 250
MHz is matched to the cavity FSR.

Figure 8.1b describes the signal propagation dynamics at different points in the
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roundtrip for the coherent supercontinuum generation. In the periodically poled
region 1O, cascaded 𝜒(2) processes due to gain saturation and subsequent back-
and-forth conversion between the pump and signal result in spectral broadening,
forming the multi-octave continuum. Next, the outcoupler in region 2O filters out
the high-frequency components while feeding back the low-frequency components,
though the signal still remains confined in the time domain. However, during the
cavity roundtrip, corresponding to region 3O, higher-order dispersion results in the
pulse becoming spread out in time, with different temporal locations corresponding
to distinct frequency components. This dispersed pulse is then recombined with
the next injected pump pulse at the input coupler, region 4O. Prior to saturation,
for a Gaussian input pulse, the amplifier acts most strongly along the fundamental
temporal mode of the OPA, which is well-approximated by the fundamental Hermite-
Gaussian in both the time and frequency domain, centered around degeneracy [42].
This leads to an effective temporal gating and corresponding frequency filtering
effect in the first few millimeters of propagation in the amplifier, which can be
optimized by adjusting the roundtrip group delay,Δ𝑇RT, to maximize the contribution
from the fundamental mode at the OPA input. This filtering effect helps to ensure
the same signal seeds the spectral broadening process in subsequent roundtrips, such
that coherence is maintained.

To verify this dynamical behavior, we turn to both numerical simulation and experi-
mental measurements. Our simulation is similar to that described in Section 7.4, but
we additionally utilize the refractive index profile calculated using Lumerical to im-
rpove the accuracy of the simulation. Likewise, our measurement setup is similar to
the setup described in Section 7.4, though we additionally utilize the FROG system
described in Section 5.7. To begin, we simulate the OPO behavior for pump energy
levels between 0 pJ and 0.4 pJ across several values fo Δ𝑇RT and characterize the
output in terms of whether it is coherent, incoherent, or periodic, as shown in Figs.
8.2a and 8.2b for Δ𝑇RT ≈ 0 fs and Δ𝑇RT ≈ 14 fs, respectively. Periodic here refers to
output state which is seen to repeat over the course of several roundtrips, with some
regimes exhibiting periodicity at an exact integer number of roundtrips while others
exhibit periodicity over a non-integer multiple of the roundtrip number, as is typical
of non-degenerate OPO operation. Further study of these periodic regimes is not
the focus of this work, although similar observation of such periodic and limit-cycle
behaviors has been reported in studies of other highly nonlinear resonators [35, 43,
44]. In terms of coherent regimes, we observe the disappearance and reemergence
of coherence in the Δ𝑇RT ≈ 14 fs case but not in the case where Δ𝑇RT ≈ 0 fs,
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Figure 8.2: Temporal characterization. a, Map of coherent, incoherent and
periodic regimes around Δ𝑇RT = 0 fs and b, Δ𝑇RT = 14 fs, demonstrating the
reliance of the recoherent regime on the detuning, Δ𝑇RT. c-e, Simulated temporal
profile in the c, near threshold, d, far above threshold, and e, recoherent regimes,
labeled (i), (ii), and (iii) in b. f-h, Corresponding experimentally measured temporal
profiles. i-k, Associated measured (left) and retrieved (right) FROG traces for the
plots of f-h. We observe FROG errors of 0.00188, 0.00177, and 0.00481 for the
traces of i, j, and k, respectively.

indicating the sensitivity of such the recoherent regime to the detuning parameter.

Four pump energy regimes are indicated on Fig. 8.2b, which will be the primary
focus of the remainder of our analysis, the near threshold regime (i), the far above
threshold regime (ii), the recoherent regime (iii), and the incoherent regime (iv).
The temporal profiles of the simulated and measured half-harmonic outputs in each
of these regimes are shown in Figs. 8.2c-e and Figs. 8.2f-h, respectively, with
Figs. 8.2i-k presenting the FROG traces corresponding to the measured data. Near
threshold, the simulated (Fig. 8.2c) and measured (Fig. 8.2f) pulses are nearly
transform-limited with a FWHM duration of ∼ 80 fs. As the pump energy is
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increased, back-and-forth conversion between the pump and signal leads to the
formation of sharp features in the time domain, as observed for the far above
threshold regime of Fig. 8.2d and Fig. 8.2g. Furthermore, significant phase
variations may be observed across the pulse due to the strong nonlinear phase
accumulation. We see even sharper temporal features on the order of ∼ 15 − 20 fs
in the recoherent regime, shown in Figs. 8.2e and 8.2h. Good qualitative agreement
is observed between the simulated and measured pulse shapes in all regimes.
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Figure 8.3: Spectral characterization. a, Simulated roundtrip evolution of the
spectrum in the near threshold regime (i). b, Simulated (left) and measured (right)
average PSD in the near threshold regime; the retrieved FROG spectrum is overlaid
on the experimental plot for comparison. c, Spectral evolution in the recoherent
regime (iii). d, Simulated (top) and measured (bottom) average PSD in the reco-
herent regime, exhibiting good agreement. Again, the measured FROG spectrum is
overlaid for comparison. e, Simulated roundtrip evolution in the incoherent regime,
labeled (iv) in Fig. 8.2b, showing that the system fails to reach steady-state. f, Sim-
ulated (top) and measured (bottom) average PSDs again exhibit good agreement.

Figure 8.3 shows our corresponding spectral characterization of the OPO, focusing
on the near threshold, recoherent, and incoherent regimes. Figures 8.3a, 8.3c, and
8.3e show the roundtrip evolution for the three different regimes, whereas Figs. 8.3b,
8.3d, and 8.3f show the average simulated and measured power spectral density at
the output. Near threshold, the signal smoothly builds up until reaching steady-
state after around 20 roundtrips (Fig. 8.3a), leading to well-separated pump and
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signal bands. The signal output (Fig. 8.3b) consists of only a single spectral lobe
around the degenerate half-harmonic wavelength, 2090 nm, with good agreement
between the simulation and measurement as well as the measured trace on the OSA
and retrieved FROG spectrum. The recoherent regime exhibits different build-up
dynamics (Fig. 8.3c) as the pump power is sufficient for the signal to nearly saturate
the gain in just a single pass. The high-power signal is then seen to oscillate for
around 60 roundtrips before finally reaching the coherent steady-state solution. In
the average output PSD (Fig. 8.3d), we observe multi-octave supercontinuum. For
the bandwidth of the FROG measurement, good agreement is again also observed
between the reconstructed FROG spectrum and the measurement. Finally, we
analyze the incoherent regime. As shown in Fig. 8.3e, the system never reaches a
steady-state in this regime. Likewise, for the average spectra of Fig. 8.3f, despite
being multi-octave, the structure observed in the recoherent regime is washed out
due to the roundtrip-to-roundtrip fluctuations.
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Having verified the ability of our numerical simulation to qualitatively capture the
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different dynamical regimes of our experimentally measured OPO device, we next
seek to understand the key features responsible for the recoherence. As shown picto-
rially in Fig. 8.1, we are especially interested in the interplay between the roundtrip
dispersion and temporal gating through the nonlinearity, which has a filtering effect
on the signal. This behavior is explored through our results presented in Fig. 8.4.
Figure 8.4a presents the walk-off relative to the half-harmonic wavelength (2090
nm) in fs/mm based on the calculated effective index of our designed device. The
highlighted region shows the spectral components which walk off less than 100 fs
in the course of the roundtrip propagation, the total bandwidth of which is approxi-
mately 130 nm. For comparison, we plot the spectral (Fig. 8.4b) and temporal (Fig.
8.4c) profiles of the first two temporal modes of the linearized OPA [42]. We further
consider two filter bandwidths, 150 nm and 300 nm, shown by the dark and light
gray highlighted regions of Fig. 8.4b, respectively. From this, we see that the 150
nm filter (similar to the effective filtering provided by the combined dispersion and
nonlinearity) preserves much of mode 0 while filtering out most of mode 1, whereas
the 300 nm filter contains a significant portion of mode 1 in addition to mode 0.

In Figs. 8.4d and 8.4e, we plot the simulated coherence map for a modified version
of our cavity, where the roundtrip dispersion has been set to 0 and instead replaced by
an intracavity filter with a bandwidth of 300 nm (Fig. 8.4d) and 150 nm (Fig 8.4e).
With the 300 nm filter, once the coherence breaks, for increasing pump energies,
no recoherent regime is attained. However, with the 150 nm filter, we observe
dynamics more similar to those of our experimental system, where recoherence is
achieved at higher pump powers. We furthermore plot the spectra corresponding to
the highest power coherent regime for both filter bandwidths in the plots of Figs.
8.4f and 8.4g. Here, we see that the 300 nm filter does not permit the formation
of coherent multi-octave supercontinuum, as the pump and half-harmonic bands
remain disconnected (Fig. 8.4f), whereas the 150 nm filter is able to support such
coherent supercontinuum generation.

To further explore this effective mode filtering behavior, we turn in Fig. 8.5 to the
simulated propagation dynamics of the OPA. We again consider the near threshold,
recoherent, and incoherent regimes of Fig. 8.2. The near threshold regime is
depicted in Figs. 8.5a-c. Figure 8.5a presents the simulated temporal profile
(bottom) of the half-harmonic at the input to the OPA as well as its decomposition
onto the first 50 input modes of the linearized OPA (dashed, red line), along with
the corresponding modal distribution (top). In this regime, the fundamental mode is
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Figure 8.5: Propagation dynamics. a, Mode distribution (top) and temporal profile
(bottom) of the half-harmonic OPA input for the steady-state near threshold OPO.
The mode decomposition fit is shown with a dashed, red line. b, Spectral (top)
and half-harmonic temporal (bottom) evolution in the OPA. Input (output) profiles
are shown in the left (right) insets. c, Mode distribution (top) and spectral profile
(bottom) of the half-harmonic OPA output. Equivalent plots are shown for d-f, the
recoherent regime at steady-state as well as g-i and j-l, subsequent roundtrips in the
incoherent regime.

seen to dominate, and the symmetry of the pulse correspondingly presents as even
modes exhibiting the highest modal amplitudes. Figure 8.5b shows the spectral
(top) and half-harmonic temporal (bottom) evolution through the crystal. Left
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(right) insets show the input (output) spectrum and temporal profiles. Here, we
observe the monotonic transfer of power from the pump to the signal, with limited
back-conversion to the pump. This results in limited spectral broadening. Figure
8.5c depicts the simulated output half-harmonic spectral profile (bottom) and its
corresponding mode decomposition (dashed, red line) as well as the corresponding
distribution in mode number (top). In this regime, since the lower mode numbers
exhibit the highest gain, the distribution is further weighted towards the fundamental
mode. The modal distribution is again dominated by the even modes.

Figures 8.5d-f present the equivalent plots for the recoherent regime. Here, we again
see that the OPA input (Fig. 8.5d) is dominated by the fundamental mode, although
the mode decomposition does not exhibit the same monotonic drop-off as was
observed in the near threshold regime. Due to this strong presence of the fundamental
mode, we observe that the amplifier initially acts monotonically in the first few
millimeters of propagation (Fig. 8.5e, as in the case of the near threshold regime.
Subsequent back-and-forth conversion, however, lead to supercontinuum generation
accompanied by significant distortion in the temporal and spectral profiles. In
terms of the modal decomposition (Fig. 8.5f), the output is extremely messy and
contains strong contributions from many of the higher-order modes. However, the
fundamental mode remains strong enough that, following the cavity feedback, it is
able to return to the input state of Fig. 8.5d containing a dominant contribution from
the fundamental mode.

Finally, Figs. 8.5g-i and 8.5j-l contain equivalent plots for subsequent roundtrips
in the incoherent regime. We select in Figs. 8.5g-i a roundtrip which exhibits
a qualitatively similar input to that of the recoherent regime. As can be seen in
Fig. 8.5g, the input contains a dominant contribution from the fundamental mode.
However, the stronger pump in this regime leads to a slightly faster back-and-forth
conversion (Fig. 8.5h) compared to the recoherent regime. The result is that the
output contains very little contribution from the fundamental mode (Fig. 8.5i) such
that the cavity feedback is insufficient to seed the same state in the amplifier as
the preceding roundtrip. The resulting temporal profile and mode decomposition
following the feedback is shown in Fig. 8.5j. The presence of many higher-order
modes at the amplifier input leads to a faster breakup of the pulse during propagation
(Fig. 8.5k) and an output which is again dominated by the presence of higher-order
modes (Fig. 8.5l).
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8.3 Discussion
From our results, we see that the generated coherent supercontinuum relies on two
dominant effects: spectral broadening due to gain saturation and subsequent back-
and-forth conversion in the parametric amplifier along with an effective filtering
effect due to the interplay between dispersion and temporal gating due to action of
the pump on the signal in the parametric amplifier. These dynamics bear strong
resemblance to those observed in oscillators based on self-similar pulse propagation
as well as the Mamyshev principle. In our system, the fundamental OPA mode can
be viewed analogously to the self-similar solution of a laser amplifier [30], in that
it represents a pulse of a given phase and amplitude profile which experiences gain
but otherwise remains undistorted in the unsaturated amplifier. Furthermore, it is an
approximate attractor of the nonlinear element, since the fundamental mode exhibits
the highest gain; hence, the relative contribution from higher-order modes is reduced
during propagation in the unsaturated OPA, as observed in the near threshold case
of Fig. 8.5a-c. In the recoherent regime, this attractive behavior occurs only prior
to saturation, in the first few millimeters of propagation (Fig. 8.5e). After this, as
discussed in the above, gain saturation and subsequent back-and-forth conversion
result in a significantly distorted pulse profile at the output of the nonlinear region.
Robustness against the accumulated nonlinear phase due to these distortions is
achieved in our system due to the effective filtering effect created by the interplay
of the roundtrip dispersion paired with temporal gating in the nonlinearity through
the finite duration of our pump pulse. This is similar to the robustness observed in
oscillators based on the Mamyshev principle to nonlinear phase accumulation [26],
due to the pulse shaping achieved via spectral filtering in each of the Mamyshev
regenerator elements.

In conclusion, we have studied the formation of multi-octave supercontinuum in
OPOs driven far above threshold. Through a mixture of experimental results and
numerical simulations, we have found the key ingredients responsible for the multi-
octave coherent supercontinuum formation, with the dominant contribution coming
from an effective filtering effect arising due to the interplay of dispersion and non-
linearity in our system. This allows the spectral broadening process in the saturated
OPA to be dominantly seeded by the fundamental mode of the unsaturated OPA
in each roundtrip for the regimes in which coherence is achieved. Our results can
inform the design of future supercontinuum generation based on OPOs, which can
benefit from several design modifications compared to our current device. Primarily,
in our current device, we have utilized a broadband coupler with approximately 98%
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coupling at the half-harmonic wavelength of 2090 nm; however, as illustrated by our
theoretical analysis, only a small portion of the recirculating spectrum contributes
to the supercontinuum generation in the subsequent roundtrip. Furthermore, much
of the recirculating signal is lost due to the large propagation losses in the roundtrip.
Thus, a system with reduced roundtrip losses as well as a more narrow-band coupler
and larger output coupling across the signal band can offer improved extraction ef-
ficiencies for the generated continuum, without significantly altering the threshold.
Furthermore, the system could benefit from operation in the vicinity of an alter-
nate attractor of the single pass propagation, or from the incorporation of a more
single-mode parametric amplifier.
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C h a p t e r 9

LARGE-SCALE TIME-MULTIPLEXED NANOPHOTONIC
PARAMETRIC OSCILLATORS

Robert M. Gray*, Ryoto Sekine*, Luis Ledezma, Gordon H. Y. Li, Selina Zhou,
Arkadev Roy, Midya Parto, and Alireza Marandi. “Large-scale time-multiplexed
nanophotonic parametric oscillators.” In: Newton (2025). doi: 10.1016/j.
newton.2025.100108.

9.1 Introduction
Nonlinear resonators are emerging as one of the most versatile building blocks for
a wide range of photonic systems benefiting applications in quantum information
processing [1, 2], stochastic computing [3, 4], metrology [5, 6], and spectroscopy
and sensing [7, 8], among others. Coupled nonlinear resonators further promise
broad potentials, which have been showcased through a variety of table-top exper-
iments, for instance using OPOs [9–12] and lasers [13, 14]. However, in nanopho-
tonics, demonstrations of coupled nonlinear resonators remain in the small-scale
regime [15–18] or suffer from limited programmability [19, 20].

OPOs using quadratic nonlinearity are one of the most promising nonlinear photonic
resonators, with a long history as table-top tunable sources in hard-to-access wave-
length ranges [21]. More recently, OPOs have been used for a wide range of appli-
cations spanning from frequency comb spectroscopy [22] to sensing [23], quantum
information processing [24], and computing [25–27]. Advances in thin-film lithium
niobate have enabled realization of nanophotonic OPOs [28–30] with substantial
miniaturization and threshold enhancement due to the sub-micron modal confine-
ment. Synchronous pumping of dispersion-engineered nanophotonic OPOs with
ultrashort pulses is particularly important because it leads to ultralow-threshold op-
eration [31] enabling opportunities for energy-efficient ultrabroad comb sources [32]
and quantum information processing [33].

Ultrafast nanophotonic OPOs not only benefit from ultra-low-energy operation,
they also enable large-scale time-domain multiplexing (TDM) for realization of
programmable OPO networks. Time-multiplexed resonator networks have been
demonstrated on table-top experiments for a wide range of studies in optical com-

https://doi.org/10.1016/j.newton.2025.100108
https://doi.org/10.1016/j.newton.2025.100108
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puting [11, 26, 34], topological photonics [35, 36], and non-equilibrium phase
transitions [12], among others. Compared with other multiplexing schemes for re-
alizing nonlinear resonators, such as spatial and spectral multiplexing [37], TDM
benefits from scalability, and the strength of nonlinearity [14].

Here, we demonstrate the first nanophotonic realization of large-scale time-multiplexed
OPOs in LN. By leveraging a large parametric gain and dispersion engineering, we
achieve simultaneous oscillation of as many as 70 independent time-multiplexed
OPOs at a 17.5 GHz repetition rate, limited primarily by the speeds of our pump
repetition rate and detection electronics. We verify the independence of the os-
cillators through an interferometric measurement at the output of the chip which
confirms the vacuum-seeded randomness of each oscillator.
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Figure 9.1: Time-multiplexed nanophotonic OPOs. a, Schematic of the device
based on thin-film lithium niobate. Microscope images of the 53-cm-long spiral
resonator are shown in the inset. 𝑁 pulses in the long cavity are equivalent to b,
𝑁 independent time-multiplexed oscillators. c, In the non-degenerate regime, the
pump photons split into signal and idler photons at different frequencies. In this
case, the phase of each is unconstrained, as shown in the signal phase space diagram.
d, In the degenerate regime, the pump photons split into indistinguishable signal
photons at the half-harmonic of the pump, resulting in a binary phase for the signal.

9.2 Results
Interferometric Measurement Principle
The on-chip time-multiplexed OPO system is schematically depicted in Fig. 9.1a.
The inset shows a recolored optical microscope image (left) and scanning electron
microscope image (right) of a portion of the 53-cm-long spiral resonator. The
temporally separated oscillators, equivalent to the 𝑁 independent oscillators shown
in Fig. 9.1b, share the same optical path length and long periodically poled section.
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High gain provided by the periodically poled region ensures a low on-chip threshold
pulse energy of a few pJ for the ps pulses used in the experiment. Adiabatic
tapers couple more than 96% of the signal light into the resonator while ensuring
very little coupling (≤ 2%) for the pump. Finally, dispersion engineering of the
waveguide geometry ensures near-zero group velocity mismatch between the pump
and signal during the nonlinear interaction to achieve a high gain and gain bandwidth
as well as near-zero group velocity dispersion for the signal in the roundtrip, which
preserves the short-pulse operation necessary for maintaining the independence of
the oscillators.

We operate in both the non-degenerate (Fig. 9.1c) and degenerate (Fig. 9.1d)
regimes by adjusting the pump frequency detuning with respect to the cavity. In
the non-degenerate regime, pump photons are split into signal and idler photons at
different frequencies, and their phase relationship is given by

𝜙𝑝 − 𝜙𝑠 − 𝜙𝑖 =
𝜋

2
, (9.1)

where 𝜙𝑝, 𝜙𝑠, and 𝜙𝑖 are the pump, signal, and idler phase, respectively. Taking
the pump phase as determined, this relationship leaves the signal and idler phases
free, constraining only their sum. Thus, as illustrated in the phase space diagram
of Fig. 9.1c, wherein the radial coordinate represents the pulse amplitude and the
angle represents the phase, the phases are random and may take on any value[10].

By contrast, in the degenerate regime, the signal and idler both resonate at the half-
harmonic of the pump and thus are indistinguishable from one another. In this case,
equation 9.1 consolidates to

𝜙𝑝 − 2𝜙𝑠 =
𝜋

2
, (9.2)

such that signal phase is restricted to one of two phase states (Fig. 9.1d), which we
refer to as |0⟩ and |𝜋⟩ [26].

Figure 9.2 shows the measurement protocol for ensuring independence of the 𝑁
oscillators in the time-multiplexed OPO cavity. The measurement setup is shown
in Fig. 9.2a and is described in further detail in Section 9.4. The cavity is pumped
by ps pulses at 1045 nm generated by an electro-optic (EO) comb with a variable
repetition rate. TDM is achieved through selecting a pump repetition period, 𝑇rep,
that is a harmonic of the cavity roundtrip time, 𝑇RT, meaning 𝑇rep = 𝑇RT/𝑁 , such
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Figure 9.2: Measurement of independent oscillators. a, Schematic of the mea-
surement setup. The nanophotonic chip is pumped by the output of an EO comb
which provides ps pulses at GHz repetition rates. The output is passed through a
fiber interferometer with an 𝑀-pulse delay for characterizing the relative phases of
the output pulses. b, Illustration of the pump pulse train, with 4-µs on-time. c,
Example signal pulse train at degeneracy, showing the binary phase of the output.
Each OPO iteration contains a repeating 4-ns random pattern of |0⟩ and |𝜋⟩. d,
Principle of the interferometric measurement of the signal, illustrated with a 1-pulse
delay. e, Theoretically expected outputs for pulse-to-pulse (fast) and average (slow)
measurements. EO, electro-optic; PD, photodetector; 𝑇rep, repetition period; 𝑇RT,
roundtrip time.

that 𝑁 OPOs are made to oscillate simultaneously in the long spiral cavity. In
our system, the 53-cm spiral results in a roundtrip time of 4 ns and corresponding
250-MHz FSR.

The signal is coupled into an unbalanced Mach-Zehnder interferometer (MZI), here
meaning the two interferometer arms have different path lengths, the output of which
is collected on a photodetector. This allows for measurement of the relative phases
of the output pulse train. A 92:8 splitter placed before the MZI additionally sends a
fraction of the signal to a reference photodetector for normalizing the measurement.

Figures 9.2b and 9.2c illustrate an example of the pump and signal pulse trains,
respectively. The pump (Fig. 9.1b) consists of a train of ps pulses to pump 𝑁

time-multiplexed OPOs which are kept on for 1000 roundtrips (4 µs). The resulting
signal (Fig. 9.2c) is composed of a train of 𝑁 pulses with phases sampled randomly
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from the allowed phase states of the system. In the depicted case of degeneracy,
they are sampled from the binary states |0⟩ and |𝜋⟩.

Figure 9.2d depicts the passage of the signal through the MZI for each measurement.
Here, a 1-pulse delay is assumed for simplicity. The top row shows the signal arm
while the middle row shows the delayed arm. Their recombination results in the
interference signal shown in the bottom row, which is finally sent to the measurement
detector. In our experiment, this measurement is repeated every 100 µs by turning
the system off and sending another 4-µs set of pump pulses for collecting statistics.
As shown in Fig. 9.2e, we have employed both a fast detector for shot-to-shot
measurement of the resulting intensity in each pulse site and a slow detector for
averaging over the MZI output for each 4-µs set of pump pulses.

Each time the time-multiplexed OPOs are turned on, referred to in the following
as an OPO iteration, each independent OPO signal takes a random phase. We test
for the independence by comparing the output statistics of our measurements to the
theoretically expected distributions, derived in Section 9.4 and repeated below. In
the case of fast detector measurements (Fig. 9.2e, top) and degenerate operation,
the normalized pulse peak intensity distribution taken across many OPO iterations
should resemble a Bernoulli distribution with a 50% probability for obtaining either
0 or 1, such that the probability mass function (PMF) is given by

𝑓 (𝑥) =


0.5 𝑥 = 0,

0.5 𝑥 = 1,

0 otherwise.

(9.3)

By contrast, in the non-degenerate case, the expected theoretical distribution may be
derived by considering the result of the interference between pulses with a uniformly
distributed random phase. It is given by the probability density function (PDF)

𝑓 (𝑥) =


1
𝜋
√
𝑥(1−𝑥)

0 ≤ 𝑥 < 1,

0 otherwise.
(9.4)

In the case of slow detector measurements (Fig. 9.2e, bottom), the average value of
the MZI signal over the 4-ns pulse train should be considered. Such a measurement
is helpful for obtaining statistics over a larger number of OPO iterations as well as for
improving measurement SNR in the case where the pump repetition rate approaches
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the detection bandwidth of the fast measurement system. In the degenerate case, the
measured value is dependent on how many phase flips occur between neighboring
pulses over the 4-ns pulse train. Assuming 0 roundtrip phase in the OPO such that
phase flips always occur in pairs, the resulting PMF is found to be

𝑓 (𝑥) =


1
2𝑁−1

(𝑁
𝑥

)
𝑥 even,

0 otherwise,
(9.5)

where 𝑥 ∈ 0, 1, ..., 𝑁 is the number of phase flips between consecutive pulses in the
train of 𝑁 pulses. Meanwhile, for large 𝑁 , the central limit theorem suggests the
non-degenerate system should tend towards a normal distribution,

𝑓 (𝑥) = 1
√

0.25𝜋
𝑒−

(𝑥−0.5)2
0.25 . (9.6)

Operation with 𝑁 = 40
We first measure the case where 𝑁 = 40, meaning the repetition rate of the pump is set
to be 10 GHz, the results of which are presented in Fig. 9.3. Figures 9.3a-d contain
the results of the interferometric measurement on an 18-GHz fast detector, with Figs.
9.3a-b showing the output when the laser is detuned to degeneracy while Figs. 9.3c-
d show the output in the non-degenerate case. For ease of comparison between the
experiment and theory, the measured detector voltages have been shifted and scaled
such that the mean and variance of the resulting distributions match those of the
theoretically predicted distributions from equations 9.3 and 9.4, where 1 corresponds
to constructive interference and 0 corresponds to destructive interference. Figures
9.3a and 9.3c show examples of the directly measured interference pulse trains. As
expected theoretically, the MZI output is binary in the case of degeneracy (Fig. 9.3a).
This is further confirmed by the histogram of the peak pulse intensities over 30 OPO
iterations shown in Fig. 9.3b, where we observe two well-separated lobes around 1
and 0 with nearly equal probability. As discussed in Section 9.4, one key difference
between our measurement and theory is the addition of detector noise which results
in the measured distribution looking like the convolution of the expected theoretical
distribution with a Gaussian. Meanwhile, the MZI output in the non-degenerate
regime can take on any value between 0 and 1 (Fig. 9.3c). By taking the histogram
of the pulse peaks over 25 OPO iterations, we obtain the distribution shown in Fig.
9.3d. As expected, the measured distribution is bimodal, and it agrees well with the
theoretical fit.
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Figure 9.3: Interference measurements for 𝑁 = 40. a-d, Fast detector measure-
ments in the degenerate (a and b) and non-degenerate (c and d) regimes. Examples
of the measured interference pulse trains are shown in a and c. Histograms of
the measured peak pulse intensities over 30 degenerate (b) and 25 non-degenerate
(d) interference measurements show good agreement with theoretical expectations.
e-g, Slow detector measurements in the degenerate (e and f) and non-degenerate (g)
regimes. Histograms of the measured value over 19,999 OPO iterations are shown
in (e) and (g). As expected theoretically, discrete peaks are observed in the degen-
erate case (e), whereas a continuous distribution is seen in the the non-degenerate
case (g). The discrete peaks in the degenerate case are binned for comparison with
theory (f), showing good agreement.

The independence of the pulses is further confirmed through the slow detector
measurements shown in Fig. 9.3e-g. The histogram of Fig. 9.3e contains the peak
values from 2 s of slow detector data, corresponding to 19,999 OPO iterations.
Here, the observance of a discretization in the measured values confirms operation
in the degenerate regime. Further comparison between the measurement and the
expected theoretical distribution in Fig. 9.3f shows strikingly good agreement,
verifying the independence of the OPOs in the time-multiplexed system. The
corresponding histogram for the non-degenerate measurement is shown in Figs.
9.3g, again corresponding to 2 s of data. In contrast to the degenerate case, the
measurement is not discretized. A Gaussian fit over the histogram shows good
agreement between the measured data and the theoretically expected distribution.

Operation with 𝑁 = 70
One advantage of the TDM scheme is the ability to change the number of sites
without significant additional overhead, making computation of problems of dif-
ferent sizes readily achievable. We demonstrate this by pushing our system to 𝑁
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= 70 at a pump repetition rate of 17.5 GHz. Our current measurement is limited
by the modulators used in the EO comb and bandwidth of our fast photodetector.
However, as faster nanophotonic pump sources become available, we believe the
current time-multiplexed system will be capable of supporting much larger 𝑁s and
over an order of magnitude faster pump repetition rates, benefiting from the large
and broadband gain paired with low dispersion in the roundtrip (see Section 9.4).
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Figure 9.4: Extension to 𝑁 = 70. a, Example interference pulse train on the fast
detector in the degenerate case. b, Histogram of peak pulse intensities over 30
degenerate OPO iterations, exhibiting the expected Bernoulli distribution. c, Cor-
responding histogram of fast detector measurements in the non-degenerate regime
and theoretical fit. f, Histogram of slow detector measurements in the degenerate
regime. e, Theoretical comparison after binning the distribution from (d) showing
close agreement. f, Histogram of non-degenerate interference data and correspond-
ing Gaussian fit.

Figure 9.4 presents the results for pumping with 𝑁 = 70. As can be seen in the
raw data of Fig. 9.4a measured with the fast detector, pumping near the limits of
our electronics results in a reduced signal-to-noise compared to the case of 𝑁 =
40. However, the histogram of fast detector measurements at degeneracy over 30
OPO iterations depicted in Fig. 9.4b again shows a clear Bernoulli distribution, in
accordance with the theory. This stands in contrast with the non-degenerate case
of Fig. 9.4c, which also agrees well with the theoretical fit. Here, the bimodality
is less prevalent because of the relatively larger detector noise. The slow detector
measurements in Figs. 9.4d-f further confirm that independence is maintained. At
degeneracy, discrete values are again observed in the histogram (Fig. 9.4d), and the
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distribution is shown in Fig. 9.4e to match the theoretically expected distribution.
Likewise, the non-degenerate measurement shown in Fig. 9.4f agrees well with the
Gaussian fit.

9.3 Discussion
In this work, we have demonstrated a large-scale system of time-multiplexed OPOs
in lithium niobate nanophotonics and shown the independence of the oscillators
in both the degenerate and non-degenerate regimes through interferometric mea-
surements of the device output. Already the device can find application in random
number generation [3, 38, 39], benefiting areas such as cryptography and stochas-
tic simulation [40]. Below threshold, it may serve as a source of 𝑁 independent
identical squeezers for creating high-dimensional entangled states [1, 2, 41–43].
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Figure 9.5: Time-multiplexed architecture for programmable all-to-all coupled
nonlinear resonators. a, The main resonator (bottom) with 𝑁 time-multiplexed
OPOs is coupled to a secondary memory cavity (top), designed to have 𝑁 + 1
sites. Losses in the memory cavity are compensated by a secondary pump and
poled region. EOMs in the coupling regions are used to program an MZI-based
intensity modulator, which can be used to tune the strength of the coupled pulse.
b, Connectivity diagrams showing how arbitrary couplings are achieved over 𝑁
roundtrips. EOM, electro-optic modulator; MZI, Mach-Zehnder interferometer.

The addition of programmable couplings between the oscillators will further allow
for exploration of a multitude of fundamental phenomena and enable large-scale,
all-optical information processing. Towards this end, we propose the architecture
illustrated in Fig. 9.5a, which we call the all-time-multiplexed architecture. Here, the
main cavity consisting of 𝑁 time-multiplexed OPOs is accompanied by a secondary
memory cavity with 𝑁 + 1 sites. The cavities are coupled such that pulses in the main
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and memory cavities can interact, and the strength of the coupling is set through
MZI-based intensity modulators using fast electro-optic modulators (EOMs) [44].
A second pump and periodically poled region in the memory cavity is used to
compensate the roundtrip loss.

In general, information processing requires a mixture of both linear and nonlinear
operations. In this architecture, linear operations, such as multiply-accumulate
operations or dot products, are achieved through arbitrary all-to-all couplings which
may be implemented over 𝑁 + 1 roundtrips of the memory cavity. In the first
roundtrip, pulses from the main cavity are coupled to the memory cavity through
the right MZI channel. In the subsequent 𝑁 roundtrips, couplings occur as illustrated
in the connectivity diagrams of Fig. 9.5b from the memory cavity back to the main
cavity through the left MZI channel. The memory cavity may then be emptied of
pulses to allow the next coupling cycle to begin. Meanwhile, all-optical nonlinear
functions [45] may be applied by modulating the pump in the main cavity.

Compared to previous time-multiplexed computing architectures based on physical
delay lines [26], the all-time-multiplexed architecture offers a significantly more
compact footprint for facilitating all-to-all connections. Meanwhile, when com-
pared with the measurement-feedback approach [9], the scheme reduces the system
reliance on electronic feedback which limits the system clock rate and adds an unde-
sirable digital element to the otherwise analog optical computing scheme. However,
the all-time-multiplexed architecture incurs an additional factor of 𝑁 overhead in the
computation time due to the couplings requiring 𝑁 roundtrips to be implemented.
Further comparison with other TDM architectures may be found in Section 9.4.

As motivated in the introduction, the all-time-multiplexed approach also offers a
more compact footprint and promises improved scalability and programmability
over other integrated approaches based on spatial multiplexing, which require, for
example, large interferometer meshes to achieve all-to-all couplings [18, 43]. In
total, the all-time-multiplexed architecture offers a flexible platform for studying
systems of coupled nonlinear resonators and will therefore be the subject of future
studies in integrated time-multiplexed systems. Beyond serving as an Ising [27]
and XY solver [10], one can envisage uses for the all-time-multiplexed system in
general-purpose computing [46], machine learning [47], topological photonics [35],
and quantum computing [48, 49]. For many such applications, the demonstrated
system size of𝑁 = 70 is already sufficiently large for tackling problems of interest [42,
50]. This versatility of application highlights the importance of our demonstrated
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time-multiplexed OPOs as a first step towards achieving integrated ultrafast, energy-
efficient, and scalable all-optical information processing systems.

9.4 Supporting Information
Setup and Measurement Principle
The full experimental setup is shown in Fig. 9.6a. As mentioned in the Section 9.2,
our pump source is an EO comb consisting of an intensity modulator (IM) followed
by three phase modulators (PM) applied to the output of a tunable CW laser, similar
to that used in ref. [31]. The comb repetition rate is variable through tuning of the
radio frequency (RF) signal generator which drives the modulators. Subsequent
booster optical amplifier (BOA), waveshaper, and ytterbium-doped fiber amplifiers
(YDFA) are used for amplification and pulse compression. Typical spectra of the
direct EO comb output in both the 40- and 70-pulse cases can be observed in Figs.
9.6b and 9.6e, respectively. The repetition rates in the two cases are 10.0 GHz (40-
pulse) and 17.5 GHz (70-pulse). 17.5 GHz is just fast enough to where the optical
spectrum analyzer can begin to resolve the comb lines, which can be observed in
Fig. 9.6e. The corresponding spectra after amplification and spectral shaping may
be observed in Figs. 9.6c and 9.6f. Amplified spontaneous emission (ASE) from
the amplifiers can be observed on the wings of the spectrum.

In addition to using it for amplification, we may modulate the gain of the BOA
to switch between a continuous pulsed drive of the system and a periodic pulse
driving. With continuous driving, we use an autocorrelator to characterize the
pulses following the dispersion compensation in the waveshaper. The resulting
autocorrelation traces in the case of 𝑁 = 40 and 𝑁 = 70 are shown in Figs. 9.6d
and 9.6g, respectively. The measured autocorrelation widths are 1.6 ps and 1.05
ps, corresponding to pulse widths of 1.13 ps and 735 fs assuming a Gaussian pulse
shape. As expected, we see an inverse scaling with the change in comb repetition
rate.

Meanwhile, our experiments are primarily conducted with periodic on-off modula-
tion of the BOA to automatically iterate through many OPO instances. For this, we
use a 10 kHz modulation with a duty cycle of 4%, corresponding to an on-time of
4 µs and a period of 100 µs between subsequent OPO iterations. The on-time is
selected to give sufficiently many roundtrips (1000) to ensure steady-state is reached,
while the low duty cycle is helpful in reducing the risk of thermal damage to the
facet. Based on an estimated propagation loss of 0.2 dB/cm, the total loss in the
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Figure 9.6: Experimental setup and pump characterization. a, Schematic of the
experimental setup. b, Direct measurement of the spectrum out of the EO comb
with 𝑁 = 40. c, Corresponding spectrum after amplification and pulse shaping. d,
Autocorrelation of output pulses with 𝑁 = 40, showing an autocorrelation width
of 1.6 ps. e-g, Equivalent plots for 𝑁 = 70. Here, the comb structure is just
barely resolved by the spectrum analyzer. A shorter autocorrelation width of 1.05
ps is observed. EO, electro-optic; RF, radio frequency; CW, continuous-wave; IM,
intensity modulator; PM, phase modulator; BOA, booster optical amplifier; YDFA,
ytterbium-doped fiber amplifier; PD, photodetector; Obj, objective; LPF, long-
pass filter; PZT, piezoelectric stack; PID; proportional-integral-derivative control;
WDM, wavelength-division multiplexing fiber.

roundtrip is around 10 dB. Therefore, faster iterating through OPO instances with
a dead time on the order of 10 roundtrips is theoretically possible without risk of
biasing new instances.

The pump is coupled into the nanophotonic chip using a lensed, tapered fiber. The
resulting signal is outcoupled from the waveguide using a reflective objective, passed
through a LPF to eliminate any residual pump light, and sent to the measurement
setup. A 92:8 pellicle beamsplitter is used to siphon off a small portion of the
output signal for measurement on a slow (1 MHz) photodetector (PD1, Ref. PD in
Fig. 9.2). This output is used to perform side-of-fringe locking of the pump center
frequency to an OPO resonance. This signal is additionally measured directly to be
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used as a reference for any intensity noise fluctuations which occur over the course
of the measurement.

The remainder of the signal is sent to a fiber collimator. The output fiber is first sent
to an optical spectrum analyzer to confirm degenerate or non-degenerate operation.
Example spectra in both regimes for both the 𝑁 = 40 and 𝑁 = 70 cases are shown
in Fig. 9.7. After the system is locked in the desired state, the fiber is routed
to an unbalanced MZI. the unbalanced MZI has an approximately 500-ps delay
between the two interferometer arms, resulting in 5-pulse and 9-pulse delays for the
cases of 𝑁 = 40 and 𝑁 = 70, respectively, which allows for measurement of the
relative phases of the output pulse train. The interferometer is locked using back-
propagating light at 1 µm, taken from the original pump source, which is measured
on a second detector (PD2). A dither-and-lock scheme is employed for top-of-fringe
locking using piezoelectric actuators placed on the fiber-free space delay line. A
CaF2 window placed on a rotating stage in the free-space arm of the interferometer
allows for tuning of the relative delays of the back-propagating 1-µm light and
forward-propagating signal at 2 µm to ensure that the lock point (corresponding to
the maximum of the 1 µm interference) also corresponds to the maximum contrast
for the 2 µm interference. The interferometer output is finally sent to photodetector
PD3 (Meas. PD in Fig. 9.2), which may be swapped between a fast 18-GHz 2 µm
detector and a slow 1-MHz detector. This signal is measured simultaneously with
the output of PD1 on an oscilloscope, which has a maximum sampling rate of 80
Gs/s. The oscilloscope shares a 10-MHz reference with the signal generator used to
drive the EO comb.

Data Processing
Following pump preparation, system stabilization, and measurement, some post-
processing is applied to extract the signal of interest. The post-processing for the
slow detector measurement is as follows. First, a moving average filter (MATLAB
smooth) is applied to the output signal collected after the MZI on PD3 and the
reference measured directly out of the OPO on PD1 and the minimum value of
each measurement is subtracted. Then, the peak values of each OPO iteration are
detected for both the signal and reference. Next, these detected peak values are
independently normalized to have a mean of 0.5. The normalized measured signals
corresponding to the non-degenerate and degenerate histograms of Fig. 9.3e-g are
shown in Figs. 9.8a and 9.8b, respectively. Finally, the signal peaks are divided
by their corresponding reference peaks; by normalizing our measured signal to this
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Figure 9.7: Dispersion and output spectra. a, Effective index and group index
curves as well as walk-off relative to the degenerate frequency of 2090 nm for the
measured device. b-e, Spectra, taken in the non-degenerate (b and c) and degenerate
(d and e) regimes for 𝑁 = 40 (b and d) and 𝑁 = 70 (c and e).

reference, we reduce the impact of intensity noise fluctuations on the measurement.
The resulting normalized peak values are used to generate the histograms of Fig.
9.3. By comparison, we replicate the plots of Figs. 9.8b and 9.3e-f with no post-
processing in Fig. 9.8c-e. Figure 9.8c shows snippets of the raw data measured by
the slow detectors, both signal and reference. A corresponding histogram of the
raw data is shown in Fig. 9.8d. While the expected discretization is still evident,
the bins are clearly less well-defined than those of Fig. 9.3e. Similarly, comparison
with theory, as in Fig. 9.8e, shows worse agreement compared to the plot of Fig.
9.3f, though the discrepancies are still more than tolerable.

Similarly, some post-processing is applied for the fast detector measurement. An
example of a raw non-degenerate trace measured by the fast detector is shown in
Fig. 9.8f. To improve the signal-to-noise ratio (SNR), the output pulse train is first
averaged over 150 roundtrips; in particular, as we expect the output signal to repeat
with a period given by the roundtrip time of the resonator, points with a spacing of
𝑁𝑇 rep, where 𝑇 rep is the repetition period of the pump, are averaged together. The
resulting trace after this averaging is shown in Fig. 9.8g. A zoomed-in version of
the indicated region of Fig. 9.8g, showing the pulses of this averaged data with no
additional processing, is presented in Fig. 9.8h. This pulse train corresponds to the
post-processed pulse train of Fig. 9.3c, with a small time shift.
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Figure 9.8: Data processing of slow and fast detector measurements. a-b,
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regimes corresponding to the histograms of Fig. 9.3 (𝑁 = 40). c, Snippet of raw
data corresponding to b. d, Histogram of measured peaks with no post-processing.
e, Theoretical comparison with measured distribution of d. f, Raw trace measured
on the fast detector in the non-degenerate case with 𝑁 = 40. g, Trace of f after
150x averaging, showing significant signal-to-noise improvement. h, Zoom-in of
indicated region of g showing the fast pulse train. i Histogram of the noise after
averaging, taken from the indicated region of g.

The next step of our processing involves application of a high-pass filter to remove
any DC offset and low-frequency noise. After this, a 1-D Fast Fourier Transform
interpolation (MATLAB interpft) is used to help smooth the output, given the limited
number of samples per pulse in our measurement. Statistics are generated by taking
the maximum value in each time bin, as specified by the repetition period of the
pump. As shown in the following subsections, 𝑁 - 1 time bins are independent while
the full set of 𝑁 are not, so only 𝑁 - 1 time bins are sampled for a given measurement.
The resulting distribution is scaled according to the theoretically expected mean
and variance for a normalized measurement, in accordance with the theory in the
following subsections. In the case of non-degeneracy, in particular, this requires
using the distribution of the noise, shown in Fig. 9.8i, to help calculate the expected
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variance. After the distribution has been scaled, it is then fit with the theoretical
distribution using the MATLAB fit function, seeded by the theoretical mean and
variance. These same scaling factors are applied to the signal for generating the
representative pulse trains shown in, for example, Fig. 9.3.

Device Fabrication and Characterization
The design of the measured device is described fully in ref. [32] and follows the
fabrication procedure described in ref. [30]. The device is fabricated on 700-nm-
thick X-cut MgO-doped thin-film lithium niobate on a SiO2/Si substrate (NANOLN).
The chip contains 16 devices with fixed poling periods ranging from 4.955-5.18 µm.
To achieve the periodic poling, we pattern Cr/Au poling electrodes using lift-off and
subsequently apply a voltage to periodically flip the ferroelectric domains. Following
poling, we remove the electrodes and etch the waveguides using Ar-milling with
HSQ as the etch mask. Finally, mechanical polishing of the waveguide facets is
performed to enable end-fire coupling into the devices. The total OPO device
footprint is 0.5 mm × 13 mm.

The measured OPO device has a constant poling period of 5.075 µm over the 10.8-
mm-long poled region for phase-matched interaction between the pump at 1045 nm
and signal at 2090 nm. The spiral cavity has a length of 52.92 cm, resulting in a
roundtrip time of 4 ns. We measure the fabricated waveguides to have an etch depth
of 352 nm and top width of 1753 nm. The resulting effective index, 𝑛 (blue), group
index, 𝑛𝑔 (gray), and walk-off (red) relative to the degenerate wavelength of 2090
nm are shown in Fig. 9.7a. Specifically, we find a GVM of approximately 1 fs/mm
and a GVD of -7 fs2/mm for the signal and 11 fs2/mm for the pump. Such near-
zero GVM/GVD enables the high gain responsible for the low-threshold operation
and is critical for maintaining the independence of the oscillators during roundtrip
propagation.

In particular, by comparing the calculated walk-off to the measured spectra, we see
that within the wavelength region between 1900 nm and 2300 nm, where all of the
measured spectral content is observed in both the degenerate and non-degenerate
regimes, the largest value of the walk-off compared to the center wavelength of
2090 nm is less than 0.05 ps/cm. This suggests that the spectral components
within the pulse walk off by at most 2.6 ps in a single roundtrip, far less than
the 57-ps pulse separation in the 70-pulse case. Considering the high roundtrip
loss in the cavity (approximately 10 dB given 0.2 dB/cm propagation loss), this
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signifies that even the most non-degenerate components will be attenuated by a
factor of >200 dB before overlapping with a neighboring pulse. Given a total pulse
energy on the order of pJs for the pulses used in the experiment, these far spectral
components contain at most fJs of energy after amplification. They should, therefore,
be attenuated to approximately 10−35 J before interacting with a neighboring pulse,
about 16 orders of magnitude below single-photon energy levels. This shows how
the dispersion engineering of the device can enable the independent operation of
the time-multiplexed OPOs.

If we focus on the degenerate case and consider a bandwidth of 100 nm about
the center frequency, we observe that the maximum walk-off of any two spectral
components is 0.004 ps/cm, resulting in a walk-off per roundtrip of 212 fs. From
the previous argument, we can see that the widest spectral components which walk
the farthest should be well-attenuated below single-photon energy levels within
approximately 5 roundtrips. Thus, a pulse separation of 2 ps should be more than
sufficient to avoid cross-talk in the present system. This suggests that, barring
limitations imposed by electronic components, computational clock rates exceeding
500 GHz may be realized in our system.

Threshold Estimate
The OPO threshold may be calculated through measurement of the off-chip pump
power at the lowest point for which the OPO is observed to oscillate, which we
measure to be 8 mW in the 40-pulse case. By accounting for the 4% duty cycle
of the BOA, the pulse repetition rate of 10 GHz, and our estimated fiber-to-chip
coupling loss of 10 dB, we calculate an on-chip threshold pulse energy of about 2
pJ.

Probability Theory
In this section, we derive the theoretical probability distributions presented in Section
9.2. Additionally, the theory given in Section 9.2 all assumes that the OPO signal
acquires no phase in the roundtrip propagation; in this case, a given pulse maintains
the same phase state across consecutive roundtrips at steady state. However, the
OPO may also stably oscillate in a resonance where pulses acquire a roundtrip phase
of π. The theoretical distributions and experimental results for such a condition are
also presented. The results of this section may be derived using the contents of most
introductory probability theory texts as a guide; here, we have been guided by [51].
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Degeneracy

Probability Mass Function (Fast Detector)

Let us begin by first considering the degenerate case. Here, our OPO output consists
of 𝑁 pulses. Let us denote the phase of pulse 𝑖 as 𝜙𝑖, where 𝑖 𝜖 {1, 2, ..., 𝑁}. In
the case of degeneracy, 𝜙𝑖 is a Bernoulli random variable, taking on one of the two
phase states |0⟩ or |𝜋⟩ with equal probability of 1/2. We will interchangeably refer
to |0⟩ or |𝜋⟩ as 0 and 1, respectively, for the sake of the following discussion. Let
us now define a new random variable, 𝐼𝑖, which represents the detected output on
the fast detector of the interference measurement performed on neighboring pulses.
This was depicted in Fig. 9.2 for the case of a 1-bit delay; here, we may assume the
same without loss of generality.

To understand the relationship between 𝐼𝑖 and 𝜙𝑖, we first consider the case where
the delay line is locked such that pulses in the same phase state will constructively
interfere. In this case, given the above definitions, 𝐼𝑖 = 𝜙𝑖⊙𝜙𝑖+1 for 𝑖 ∈ {1, 2, ..., 𝑁−
1}, where ⊙ is the XNOR operator. 𝐼𝑁 must be separately defined as 𝐼𝑁 = 𝜙𝑁 ⊙ 𝜙1,
as our OPO output repeats every 𝑁 pulses. We begin by considering the probabilities
of 𝐼𝑖 taking on a value of 0 and 1

𝑃(𝐼𝑖 = 1) = 𝑃(𝜙𝑖 ⊙ 𝜙𝑖+1 = 1) = 𝑃((𝜙𝑖 = 0) ∧ (𝜙𝑖+1 = 0))
+ 𝑃((𝜙𝑖 = 1) ∧ (𝜙𝑖+1 = 1)) = 0.5, (9.7a)

𝑃(𝐼𝑖 = 0) = 𝑃(𝜙𝑖 ⊙ 𝜙𝑖+1 = 1) = 𝑃((𝜙𝑖 = 0) ∧ (𝜙𝑖+1 = 1))
+ 𝑃((𝜙𝑖 = 1) ∧ (𝜙𝑖+1 = 0)) = 0.5, (9.7b)

where ∧ represents logical AND. From this, it is clear that 𝐼𝑖 is also a Bernoulli
random variable with probability 1/2 of taking a value of either 1 or 0, corresponding
to constructive and destructive interference between the two interferometer arms.
Thus, the PMF of 𝐼𝑖, as described in equation 9.3, is given by

𝑓 (𝑥) =


0.5 𝑥 = 0,

0.5 𝑥 = 1,

0 otherwise.

(9.8)
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One may note that the delay line could also be locked such that pulses with the
opposite phase state will constructively interfere. In this case, we must replace the
XNOR operator, ⊙, with the XOR operator, ⊕, in the above discussion, but the
general conclusion remains the same.

Independence

Let us now turn to the question of independence of the defined random variables 𝐼𝑖.
Here, we assume that the 𝜙𝑖’s are independent, as expected in our experiment. For
this, we first turn to the simplest case of 𝑁 = 2 and then look at larger system sizes.
For 𝑁 = 2, independence would suggest

𝑃((𝐼1 = 𝑥1) ∧ (𝐼2 = 𝑥2)) = 𝑃(𝐼1 = 𝑥1)𝑃(𝐼2 = 𝑥2). (9.9)

It can be clearly shown through a counterexample, however, that this is not the case.
Let’s consider the probability 𝑃((𝐼1 = 1) ∧ (𝐼2 = 0)). From our previous definition
of 𝐼𝑖, we see that 𝐼1 = 1 ≡ 𝜙1 ⊙ 𝜙2 = 1. However, based on the definition of 𝐼2 when
𝑁 = 2, we have that (𝐼2 = 0) ≡ (𝜙2 ⊙ 𝜙1 = 0). From the commutativity of the XOR
operator, we see that the statements 𝜙2 ⊙ 𝜙1 = 0 and 𝜙1 ⊙ 𝜙2 = 1 are contradictions,
so the probability of their joint occurrence must be 0. Finally, we conclude that
𝑃((𝐼1 = 1) ∧ (𝐼2 = 0)) = 0, which is not equal to 𝑃(𝐼1 = 1)𝑃(𝐼2 = 0) = 0.25,
suggesting that 𝐼1 and 𝐼2 are not independent, as the definition of equation 9.9 is not
satisfied.

Let us now look to the case of 𝑁 = 3. Here, mutual independence implies

𝑃((𝐼1 = 𝑥1) ∧ (𝐼2 = 𝑥2) ∧ (𝐼3 = 𝑥3)) = 𝑃(𝐼1 = 𝑥1)𝑃(𝐼2 = 𝑥2)𝑃(𝐼3 = 𝑥3). (9.10)

Again, we may use a counterexample to show that mutual independence is not
maintained. Consider the probability 𝑃((𝐼1 = 1) ∧ (𝐼2 = 1) ∧ (𝐼3 = 0)). For
the given statement to occur, we must have that 𝜙1 ⊙ 𝜙2 = 1, 𝜙2 ⊙ 𝜙3 = 1, and
𝜙3 ⊙ 𝜙1 = 0. Noting that (𝜙2 ⊙ 𝜙3 = 1) ≡ (𝜙2 = 𝜙3), we see again that we
reach a contradiction as we require 𝜙2 ⊙ 𝜙1 = 0 and 𝜙1 ⊙ 𝜙2 = 1. Finally, we
conclude that 𝑃((𝐼1 = 1) ∧ (𝐼2 = 1) ∧ (𝐼3 = 0)) = 0, which is not equal to
𝑃(𝐼1 = 1)𝑃(𝐼2 = 1)𝑃(𝐼3 = 0) = 0.125, suggesting that the 𝐼𝑖’s are not mutually
independent as the definition given in equation 9.10 is not satisfied.
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Now, we turn to the pairwise independence of the 𝐼𝑖’s in the case of 𝑁 = 3.
Let us consider specifically the pair 𝐼1 and 𝐼2, where their pairwise independence
would require satisfying the equation 9.9. From the definition of the 𝐼𝑖’s, we know
𝑃((𝐼1 = 𝑥1) ∧ (𝐼2 = 𝑥2)) = 𝑃((𝜙1 ⊙ 𝜙2 = 𝑥1) ∧ (𝜙2 ⊙ 𝜙3 = 𝑥2)). Let us first assume
that 𝜙2 = 1. In this case, we have 𝑃((𝜙1 ⊙ 1 = 𝑥1) ∧ (1 ⊙ 𝜙3 = 𝑥2)) = 𝑃((𝜙1 =

𝑥1) ∧ (𝜙3 = 𝑥2)) = 𝑃(𝜙1 = 𝑥1)𝑃(𝜙2 = 𝑥2) since the 𝜙𝑖’s are independent. As
both the 𝜙𝑖’s and 𝐼𝑖’s are Bernoulli random variables with a probability, 𝑝, of 1/2 of
taking the value 1 or 0, 𝑃(𝜙1 = 𝑥1)𝑃(𝜙2 = 𝑥2) = 𝑃(𝐼1 = 𝑥1)𝑃(𝐼2 = 𝑥2). Thus, we
have shown that for 𝜙2 = 1, 𝑃((𝐼1 = 𝑥1) ∧ (𝐼2 = 𝑥2)) = 𝑃(𝐼1 = 𝑥1)𝑃(𝐼2 = 𝑥2).

We next consider the case where 𝜙2 = 0. Similar to that of 𝜙2 = 1, this implies
𝑃((𝜙1 ⊙ 0 = 𝑥1) ∧ (0 ⊙ 𝜙3 = 𝑥2)) or, equivalently, 𝑃((¬𝜙1 = 𝑥1) ∧ (¬𝜙3 = 𝑥2)),
where ¬ symbolizes negation. From the independence of the 𝜙𝑖’s, this is equal
to 𝑃(¬𝜙1 = 𝑥1)𝑃(¬𝜙2 = 𝑥2). Since the 𝜙𝑖’s are Bernoulli random variables with
𝑝 = 1/2, ¬𝜙𝑖 is also a Bernoulli random variable with 𝑝 = 1/2. Finally, we find
that for 𝜙2 = 0, 𝑃((𝐼1 = 𝑥1) ∧ (𝐼2 = 𝑥2)) = 𝑃(¬𝜙1 = 𝑥1)𝑃(¬𝜙2 = 𝑥2) = 𝑃(𝐼1 =

𝑥1)𝑃(𝐼2 = 𝑥2). As (𝑃(𝐼1 = 𝑥1) ∧ (𝐼2 = 𝑥2)) = 𝑃(𝐼1 = 𝑥1)𝑃(𝐼2 = 𝑥2) for both 𝜙2 = 1
and 𝜙2 = 0, exhausting all possible cases for the value of 𝜙2, we conclude that 𝐼1
and 𝐼2 are pairwise independent in the case where 𝑁 = 3. A similar exercise may
be conducted to show the pairwise independence of all combinations of 𝐼𝑖’s in this
case.

We now scale these arguments to the case of arbitrary 𝑁 . Here, mutual independence
requires that

𝑃((𝐼1 = 𝑥1) ∧ (𝐼2 = 𝑥2) ∧ ... ∧ (𝐼𝑁 = 𝑥𝑁 )) = 𝑃(𝐼1 = 𝑥1)𝑃(𝐼2 = 𝑥2)...𝑃(𝐼𝑁 = 𝑥𝑁 ).
(9.11)

That the 𝐼𝑖’s are not mutually independent is easily seen by considering an extension
of the previous counterexample. Here, we look at the probability 𝑃((𝐼1 = 1) ∧
(𝐼2 = 1) ∧ ... ∧ (𝐼𝑁−1 = 1) ∧ (𝐼𝑁 = 0)). Through cascading the argument that
(𝜙𝑖 ⊙ 𝜙 𝑗 = 1) ≡ (𝜙𝑖 = 𝜙 𝑗 ), we again arrive at a contradiction as the considered
statement would imply that 𝜙1 ⊙ 𝜙𝑁 = 1 and 𝜙𝑁 ⊙ 𝜙1 = 0. This suggests that
𝑃((𝐼1 = 1) ∧ (𝐼2 = 1) ∧ ... ∧ (𝐼𝑁−1 = 1) ∧ (𝐼𝑁 = 0)) = 0, which is not equal to
𝑃(𝐼1 = 1)𝑃(𝐼2 = 1)...𝑃(𝐼𝑁−1 = 1)𝑃(𝐼𝑁 = 0) = 1

2𝑁 , verifying the lack of mutual
independence between 𝐼𝑖’s.

Let us finally consider the mutual independence of a subset of the 𝐼𝑖’s of size j,
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where 𝑗 < 𝑁 . For 𝑗 = 2, there are two cases that must be considered: the case
when the 𝐼𝑖’s are sequential and the case when they are separate. The sequential
case follows immediately from the argument made above for pairwise independence
when 𝑁 = 3. Thus, we must only consider the non-sequential case, which demands
the pairwise independence of 𝐼𝑖 and 𝐼𝑘 , where |𝑘 − 𝑖 | > 1, requiring 𝑃((𝐼𝑖 =

𝑥) ∧ (𝐼𝑘 = 𝑦)) = 𝑃(𝐼𝑖 = 𝑥)𝑃(𝐼𝑘 = 𝑦). Rewriting the left-hand side, we have
𝑃((𝜙𝑖 ⊙ 𝜙𝑖+1 = 𝑥) ∧ (𝜙𝑘 ⊙ 𝜙𝑘+1 = 𝑦)). Due to the independence of 𝜙𝑖, 𝜙𝑖+1, 𝜙𝑘 ,
and 𝜙𝑘+1, it follows that 𝑓 (𝜙𝑖, 𝜙𝑖+1) and 𝑔(𝜙𝑘 , 𝜙𝑘+1) are independent. We may then
directly write that 𝑃((𝐼𝑖 = 𝑥) ∧ (𝐼𝑘 = 𝑦)) = 𝑃((𝜙𝑖 ⊙ 𝜙𝑖+1 = 𝑥) ∧ (𝜙𝑘 ⊙ 𝜙𝑘+1 = 𝑦)) =
𝑃(𝜙𝑖 ⊙ 𝜙𝑖+1 = 𝑥)𝑃(𝜙𝑘 ⊙ 𝜙𝑘+1 = 𝑦) = 𝑃(𝐼𝑖 = 𝑥)𝑃(𝐼𝑘 = 𝑦), proving the pairwise
independence of non-sequential 𝐼𝑖’s.

We now move on to the case of arbitrary 𝑗 . For non-sequential 𝐼𝑖’s, the extension
of the previous argument is obvious. Since 𝐼𝑖 is a function of the 𝜙𝑖’s, which
are independent, non-sequential 𝐼𝑖’s are clearly independent as they share no 𝜙𝑖’s
and are thus functions of independent variables. This same logic will additionally
apply to clusters of separated sequential 𝐼𝑖’s, given the clusters themselves are
mutually independent. As such, we turn our focus to proving the independence of
sequential 𝐼𝑖’s for arbitrary 𝑗 . In this case, we require that 𝑃((𝐼1 = 𝑥1) ∧ (𝐼2 =

𝑥2) ∧ ... ∧ (𝐼 𝑗 = 𝑥 𝑗 )) = 𝑃(𝐼1 = 𝑥1)𝑃(𝐼2 = 𝑥2) ... 𝑃(𝐼 𝑗 = 𝑥 𝑗 ). As before, we re-write
𝑃((𝐼1 = 𝑥1) ∧ (𝐼2 = 𝑥2) ∧ ... ∧ (𝐼 𝑗 = 𝑥 𝑗 )) as 𝑃((𝜙1 ⊙ 𝜙2 = 𝑥1) ∧ (𝜙2 ⊙ 𝜙3 =

𝑥2) ∧ ...∧ (𝜙 𝑗 ⊙ 𝜙 𝑗+1 = 𝑥 𝑗 )). Let’s begin by assuming 𝜙1 is known. Then, to satisfy
the first equation, 𝜙1 ⊙ 𝜙2 = 𝑥1, we observe that 𝜙2 must be given by 𝜙2 = 𝜙1 ⊙ 𝑥1.
That this is correct is easily verified by plugging this expression for 𝜙2 into the first
equation, yielding 𝜙1 ⊙ 𝜙1 ⊙ 𝑥1 = 1 ⊙ 𝑥1 = 𝑥1.

Turning now to the second equation, 𝜙2 ⊙ 𝜙3 = 𝑥2, we find a similar expression
for 𝜙3, 𝜙3 = 𝜙2 ⊙ 𝑥2. We may now plug our first expression for 𝜙2 in to find
that 𝜙3 = 𝜙1 ⊙ 𝑥1 ⊙ 𝑥2. Following this pattern, for the 𝑗 th equation, we find the
relationship

𝜙 𝑗+1 = 𝜙1 ⊙ 𝑥1 ⊙ 𝑥2 ⊙ ... ⊙ 𝑥 𝑗 . (9.12)

Finally, we may equivalently re-express the original joint probability as 𝑃((𝜙2 =

𝜙1 ⊙ 𝑥1) ∧ ...∧ (𝜙 𝑗+1 = 𝜙1 ⊙ 𝑥1 ⊙ 𝑥2 ⊙ ...⊙ 𝑥 𝑗 )). Given the independence of the 𝜙𝑖’s,
𝑃((𝜙2 = 𝜙1 ⊙ 𝑥1) ∧ ...∧ (𝜙 𝑗+1 = 𝜙1 ⊙ 𝑥1 ⊙ 𝑥2 ⊙ ... ⊙ 𝑥 𝑗 )) = 𝑃(𝜙2 = 𝜙1 ⊙ 𝑥1)𝑃(𝜙3 =

𝜙1 ⊙ 𝑥1 ⊙ 𝑥2) ... 𝑃(𝜙 𝑗+1 = 𝜙1 ⊙ 𝑥1 ⊙ 𝑥2 ⊙ ... ⊙ 𝑥 𝑗 ). As before, since the 𝜙𝑖’s and 𝐼𝑖’s
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are both Bernoulli random variables with p = 1/2, the expression on the right-hand
side is equivalent to 𝑃(𝐼1 = 𝑥1)𝑃(𝐼2 = 𝑥2) ... 𝑃(𝐼 𝑗 = 𝑥 𝑗 ), proving the independence
of the set of j sequential 𝐼𝑖’s, where 𝑗 < 𝑁 . The lack of independence in the case
of 𝑗 = 𝑁 also is clear from the above logic, as the relationship given by equation
9.12 for the 𝐼𝑁 term would’ve been 𝜙1 = 𝜙1 ⊙ 𝑥1 ⊙ 𝑥2 ⊙ ... ⊙ 𝑥𝑁 , which presents a
contradiction for many values of 𝑥𝑖, as was the case in the counterexample above.

Summary

To summarize our above findings, we see that for a given system of 𝑁 degenerate
OPOs, the binary random phases of the output may be described by the a set of
independent Bernoulli random variables with 𝑝 = 1/2, 𝜙𝑖, where 𝑖 𝜖 {1, 2, ..., 𝑁}.
Then, the resultant output amplitudes from the interference of consecutive pulses
may be described by a set of Bernoulli random variables with 𝑝 = 1/2, 𝐼𝑖, where
𝐼𝑖 = 𝜙𝑖 ⊙ 𝜙𝑖+1 for 𝑖 𝜖 {1, 2, ..., 𝑁} and 𝐼𝑁 = 𝜙𝑁 ⊙ 𝜙1. Through investigating the
independence of the 𝐼𝑖’s, we find that any subset of 𝑁−1 or fewer 𝐼𝑖’s is independent,
but the full set of 𝑁 𝐼𝑖’s is not independent. Another way to see this is by noting
that the values of the 𝐼𝑖’s remain the same under negation of all of the 𝜙𝑖’s. This
equates to there being exactly two sets of 𝜙𝑖’s which result in any given set of 𝐼𝑖’s.
As the 𝜙𝑖’s are binary variables, this suggests the dimension of the set of 𝐼𝑖’s should
be one less than the dimension, 𝑁 , of the set of 𝜙𝑖’s, meaning the dimension of the
set of 𝐼𝑖’s should be 𝑁 − 1.

Probability Mass Function (Slow Detector)

Let us now look at the expected output on the slow detector. Here, the slow detector
measures the average value of the 𝑁 interfered pulses, essentially asking the question
of how many of the 𝐼𝑖’s are equal to 1 (or, conversely, how many of the 𝐼𝑖’s are equal
to 0). We denote this with the random variable 𝑋 . Were the 𝐼𝑖’s independent,
we’d expect 𝑋 to follow the binomial distribution 1

2𝑁

(𝑁
𝑥

)
, where 𝑥 𝜖 0, 1, ..., 𝑁 , but

we know from the above that this is not the case. We may then observe that, in
accordance with their lack of independence, the construction of the 𝐼𝑖’s requires 0s
to appear in pairs. This condition can be found by again considering the expression
𝜙1 = 𝜙1 ⊙ 𝑥1 ⊙ 𝑥2 ⊙ ... ⊙ 𝑥𝑁 given by equation 9.12 in the case where 𝑗 = 𝑁 . To
satisfy this expression, there must be an even number of 𝑥𝑖’s which are equal to 0
such that 𝑥1 ⊙ 𝑥2... ⊙ 𝑥𝑁 = 1. Another way of stating this is that phase flips between
consecutive pulses must come in pairs. Thus, if 𝑥 is the number of phase flips, we
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Figure 9.9: Impact of crosstalk. a, Autocorrelation of thresholded fast detector
measurements. b-e, Expected distributions in the presence of coupling between
neighboring pulses, with coupling probability 𝑝couple.

expect 𝑃(𝑋 = 𝑥) = 0 for 𝑥 odd. Finally, we seek the expression for 𝑃(𝑋 = 𝑥)
with 𝑥 even. Because the 𝜙𝑖’s are Bernoulli random variables with p = 1/2, we
start with the total number of combinations, 2𝑁 , which will form the denominator
of the desired expression. Next, we observe that there are

(𝑁
𝑥

)
combinations of 𝐼𝑖’s

which correspond to there being 𝑥 total phase flips (or, equivalently, 𝑘 0s amongst
the 𝐼𝑖’s). However, because there are two sets of 𝜙𝑖’s which result in a given set of
𝐼𝑖’s (due to the symmetry of the 𝐼𝑖’s with respect to negation of all 𝜙𝑖’s discussed
above), the number of combinations of 𝜙𝑖’s is 2

(𝑁
𝑥

)
. Finally, then, we find that

𝑃(𝑋 = 𝑥) = 1
2𝑁−1

(𝑁
𝑥

)
for 𝑥 even. This results in the full PMF, 𝑓𝐼𝑖 (𝑥) for 𝐼𝑖, as given

in equation 9.5,

𝑓𝐼𝑖 (𝑥) =


1
2𝑁−1

(𝑁
𝑥

)
𝑥 even,

0 otherwise.
(9.13)

Impact of Crosstalk

Having derived the expressions considered in Section 9.2 for the probabilities in
a conventional degenerate time-multiplexed OPO with a roundtrip phase of 0, we
now turn to the question of how crosstalk between the OPOs would impact our
measurements. To begin, we consider an autocorrelation of our measured data from
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the fast detector, as demonstrated in ref. [39]. Here, we take our fast detector data
from the 40-pulse case over 30 OPO instances, as shown in Fig. 9.3b, and apply
a threshold such that each interference measurement is encoded as 𝑠𝑛 ∈ {+1,−1}
corresponding to constructive or destructive interference as measured on the fast
detector. With this output encoding, we compute the autocorrelation function

𝐾 (𝑛) = 1
𝑁

𝑁∑︁
𝑚=0

𝑠𝑚 · 𝑠𝑚+𝑛. (9.14)

The result is shown in Fig. 9.9a. As expected, the autocorrelation for a delay
of 𝑛 = 0 is 1. The standard deviations of the experimentally measured data and
ideal Bernoulli distributions are also plotted, with near-perfect agreement. In the
presence of significant crosstalk, it is expected that the experimental data would
exhibit strong correlations for some 𝑛 ≠ 0, which is not observed. This test further
verifies the independence of the pulses.

Next, we analyze the impact of crosstalk on the slow detector distribution. To
do so, we consider the case where neighboring pulses become coupled with a
probability given by 𝑝couple. If we consider the initial system size to be 𝑁 , the
impact of 𝑘 coupling events is to reduce the effective system size to 𝑀 = 𝑁 − 𝑘 .
Assuming that a coupling event is binary (either the pulses couple or do not couple),
they may be modeled by a Bernoulli distribution with 𝑝 = 𝑝couple. Thus, the
probability that 𝑘 pulses couple is given by a Binomial distribution such that 𝑃(𝑘) =(𝑁
𝑘

)
𝑝𝑘couple(1 − 𝑝couple)𝑁−𝑘 . The probability of there being 𝑥 phase flips, assuming

that 𝑘 pulses have coupled, is then given by equation 9.5 with 𝑁 replaced by
𝑁 = 𝑁 − 𝑘 . The total PMF for this case may therefore be written as the following
modified version of equation 9.5,

𝑓𝐼𝑖 (𝑥) =

∑𝑁
𝑘=0

(𝑁
𝑘

)
𝑝𝑘couple(1 − 𝑝couple)𝑁−𝑘 1

2(𝑁−𝑘 )−1

((𝑁−𝑘)
𝑥

)
𝑥 even,

0 otherwise.
(9.15)

Several example distributions for different values of 𝑝couple are given in Figs. 9.9b-
e. As can be observed, even for small coupling probabilities, the impact of the
coupling is to shift the total number of phase flips towards smaller values, creating
an asymmetric skew in the probability distribution. Such a bias was not observed
in our measurement.
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Figure 9.10: Slow detector distribution at degeneracy for 𝜋 roundtrip phase
and 𝑁 = 40. a, Histogram of peak values measured from slow detector output. b,
Comparison with theoretical distribution corresponding to the measurement in a.

Probability Mass Function (Slow Detector, 𝜋 Roundtrip Phase)

As a final consideration, we analyze the case where the OPO is detuned to have a
roundtrip phase of 𝜋. In this case, the train degenerate pulses will switch phase
states each roundtrip. As such, the output pulse train has phase states given by

𝜙1, 𝜙2, ...𝜙𝑁 ,¬𝜙1,¬𝜙2, ...¬𝜙𝑁 , 𝜙1, ...𝜙𝑁 ,¬𝜙1, ...¬𝜙𝑁 , ... (9.16)

Since (𝜙𝑖 ⊙ 𝜙 𝑗 ) = (¬𝜙𝑖 ⊙ ¬𝜙 𝑗 ), the impact of this on the 𝐼𝑖’s for 𝑖 < 𝑁 is minimal.
However, it does change the value of 𝐼𝑁 which is now given by 𝐼𝑁 = 𝜙𝑁 ⊙ ¬𝜙1. As
such, equation 9.12 with 𝑗 = 𝑁 becomes ¬𝜙1 = 𝜙1 ⊙ 𝑥1 ⊙ 𝑥2 ⊙ ... ⊙ 𝑥𝑁 , requiring
that 𝑥1 ⊙ 𝑥2 ⊙ ... ⊙ 𝑥𝑁 = 0 . In other words, compared to the previous case with
no roundtrip phase, this additional negation requires that there be an odd number of
0s rather than an even number of 0s amongst the 𝐼𝑖’s. Without repeating the entire
analysis from before, the consequence of this is that the distribution for the random
variable 𝑋 describing the total number of 0s which occur amongst the 𝐼𝑖’s becomes
𝑃(𝑋 = 𝑥) = 1

2𝑁−1

(𝑁
𝑥

)
for 𝑥 odd and 𝑃(𝑋 = 𝑥) = 0 for 𝑥 even, where 𝑘 is the number

of phase flips between consecutive pulses. An example of the measured output in
such an OPO configuration is shown in Fig. 9.10.

Non-Degeneracy

Probability Density Function (Fast Detector)

Having found the expected output distributions in the case of degeneracy, we now
turn to the case of non-degeneracy. In the non-degenerate case, the signal phase of
the 𝑖th pulse may take on any value and thus can be represented as a uniform random
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variable, 𝜙𝑖, with a value between 0 and 2𝜋. Specifically, the probability density
function (PDF) of 𝜙𝑖 is given by

𝑓Φ𝑖
(𝜙) = 1

2𝜋
rect(𝜙 − 𝜋

2𝜋
), (9.17)

meaning that 𝜙 takes on the value 1
2𝜋 for 𝜙 in [0, 2𝜋) and 0 elsewhere. As before,

𝑖 ∈ {1, 2, ..., 𝑁} where 𝑁 is the number of pulses in the time-multiplexed OPO.

Next, as we did in the case of degeneracy, we turn the the detected signal at the
output of the interferometer, beginning with the signal on the fast detector. The
case of non-degeneracy requires slightly more care, however, as the full interference
function must be taken into consideration, whereas we could simply treat the output
as a binary in the case of degeneracy. Let us assume that electric field of the 𝑖th

output pulse takes the form

𝐸𝑖 (𝑡) = E(𝑡)𝑒𝑖(𝜔𝑡+𝜙𝑖) (9.18)

Here, E(𝑡) is the slowly-varying field envelope function, 𝜔 is the carrier frequency,
and 𝜙𝑖 is the phase as defined above. The output of the interference signal measured
on the detector is then defined to be

𝐼𝑖 (𝑡) =
����𝐸𝑖 (𝑡) + 𝐸𝑖+1(𝑡)

2

����2 = |E(𝑡) |2 [1 + cos (𝜙𝑖 − 𝜙𝑖+1)] . (9.19)

By ignoring the slowly-varying envelope, which we assume to be the same across
all output pulses, and re-scaling by a factor of 2 to keep the output values between
0 and 1, we obtain an expression for the random variable describing the normalized
detector signal, which we call

𝐼𝑖 =
1
2
(1 + cos (𝜙𝑖 − 𝜙𝑖+1)) (9.20)

for 𝑖 𝜖 {1, 2, ..., 𝑁 − 1}. For the final pulse, we have 𝐼𝑁 = 1
2 (1 + 𝑐𝑜𝑠(𝜙𝑁 − 𝜙1)).

We wish to ultimately find the PDF for this output pulse, but let us first consider
the argument of the cosine, which we will call 𝜁𝑖 = 𝜙𝑖 − 𝜙𝑖+1. Since 𝜙𝑖+1 is uniform
between 0 and 2𝜋, −𝜙𝑖+1 is uniform between −2𝜋 and 0. Additionally, noting that
𝜙𝑖 and −𝜙𝑖+1 are independent random variables, we know that the PDF of 𝜁𝑖 is given
by the convolution of their PDFs, yielding
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𝑓𝑍𝑖 (𝜁) =
1

2𝜋
tri( 𝜁

2𝜋
) (9.21)

where tri(𝑥) is given by 1 − |𝑥 | for |𝑥 | < 1 and 0 otherwise.

Now, we turn to finding the PDF of 𝐼𝑖. To do so, we first seek the cumulative
distribution function (CDF), which is given by 𝑃(𝐼𝑖 ≤ 𝑥) = 𝑃( 1

2 (1+cos (𝜁𝑖)) ≤ 𝑥)).
The next step is to invert the function on the left; however, care is required as cosine
is not a monotonic function, such that its inverse, arccos(𝑥), only outputs values
in [0, 𝜋) for 𝑥 in [−1, 1], whereas 𝜁𝑖 as defined contains values from (−2𝜋, 2𝜋).
To begin, due to the cosine function being 2𝜋-periodic, we may replace 𝜁𝑖 with a
different random variable, 𝜁𝑖, which is given by 𝜁𝑖 = mod(𝜁𝑖, 2𝜋). In this expression,
mod(𝑎, 𝑏) gives the output of 𝑎 modulo 𝑏, or the remainder after division of 𝑎 by
𝑏. We can see from the symmetry of the PDF of 𝜁𝑖 with respect to the y-axis that
the new variable 𝜁𝑖 is uniform on [0, 2𝜋). Making that substitution, let us consider
𝑃( 1

2 (1+cos (𝜁𝑖) ≤ 𝑥)). For a given value of 𝑥 in [0, 1], we note that this is equivalent
to 𝑃(𝜁𝑖 ≤ 𝜋 − arccos (2𝑥 − 1)) + 𝑃(𝜋 < 𝜁𝑖 ≤ arccos (−2𝑥 + 1) + 𝜋). In this step, we
have essentially inverted the function on the left-hand side while applying the proper
manipulations to both account for the mentioned 𝜋 ambiguity in the arccos function
and ensure the resulting function is monotonically increasing with 𝑥. By recognizing
that 𝜋 − arccos (2𝑥 − 1) = arccos (−2𝑥 + 1) and that 𝑃(𝜁𝑖 ≤ arccos (−2𝑥 + 1)) =

𝑃(𝜋 < 𝜁𝑖 ≤ arccos (−2𝑥 + 1) + 𝜋), we finally obtain an expression for the CDF,
𝐹𝐼𝑖 (𝑥),

𝐹𝐼𝑖 (𝑥) = 2𝑃(𝜁𝑖 ≤ arccos (−2𝑥 + 1)) = 2𝐹𝑍̃𝑖 (arccos (−2𝑥 + 1)) = 1
𝜋

arccos (−2𝑥 + 1).
(9.22)

In this expression, we have used that the CDF of 𝜁𝑖 is given by 𝐹𝑍̃𝑖 (𝜁) =
𝜁

2𝜋 for 𝜁 in
[0, 2𝜋) and 0 elsewhere. Having now obtained the CDF of 𝐼𝑖, we can easily find the
PDF, 𝑓𝐼𝑖 (𝑥), by taking its derivative

𝑓𝐼𝑖 (𝑥) =
𝑑

𝑑𝑥
𝐹𝐼𝑖 (𝑥) =

1
𝜋

1√︁
𝑥(1 − 𝑥)

. (9.23)

This PDF is also given in equation 9.4.
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Independence

To conclude the discussion around the fast detector measurement, as we did for
the case of degeneracy, we consider the independence of the 𝐼𝑖’s. For simplicity,
however, we will use the 𝜁𝑖’s as a proxy for the 𝐼𝑖’s, as the 𝐼𝑖’s are merely a
function of the 𝜁𝑖’s. As in the degenerate case, the independence of non-consecutive
𝜁𝑖’s is easily shown. Towards this end, we consider 𝜁𝑖 = mod(𝜙𝑖 − 𝜙𝑖+1, 2𝜋) and
𝜁 𝑗 = mod(𝜙 𝑗 − 𝜙 𝑗+1, 2𝜋), where 𝑖, 𝑗 𝜖 {1, 2, ...𝑁} and |𝑖 − 𝑗 | > 1. To show their
independence, we consider the probability 𝑃((𝜁𝑖 𝜖 𝐴𝑖) ∧ (𝜁 𝑗 𝜖 𝐴 𝑗 )). Using the
definition of the 𝜁𝑖’s, we find that this is equivalent to 𝑃((mod(𝜙𝑖 −𝜙𝑖+1, 2𝜋) 𝜖 𝐴𝑖) ∧
(mod(𝜙 𝑗 − 𝜙 𝑗+1, 2𝜋) 𝜖 𝐴 𝑗 )). By the independence of the 𝜙𝑖’s, and by noting that no
𝜙𝑖’s are shared amongst the two expressions since we specified that 𝜁𝑖 and 𝜁 𝑗 are non-
consecutive, we have that 𝑃((mod(𝜙𝑖 − 𝜙𝑖+1, 2𝜋) 𝜖 𝐴𝑖) ∧ (mod(𝜙 𝑗 − 𝜙 𝑗+1) 𝜖 𝐴 𝑗 )) =
𝑃(mod(𝜙𝑖 − 𝜙𝑖+1, 2𝜋) 𝜖 𝐴𝑖)𝑃(mod(𝜙 𝑗 − 𝜙 𝑗+1, 2𝜋) 𝜖 𝐴 𝑗 ) = (𝜁𝑖 𝜖 𝐴𝑖)𝑃(𝜁 𝑗 𝜖 𝐴 𝑗 ),
demonstrating the independence of two non-overlapping 𝜁𝑖’s. Like the degenerate
case, this argument may easily be scaled to larger numbers of non-consecutive 𝜁𝑖’s,
as well as to distinct clusters of sequential 𝜁𝑖’s, as long as the clusters themselves
are shown to be independent.

What remains, then, is to evaluate the independence of 𝑗 consecutive 𝜁𝑖’s. For this,
we consider the expression 𝑃((𝜁1 𝜖 𝐴1) ∧ (𝜁2 𝜖 𝐴2) ∧ ... ∧ (𝜁 𝑗 𝜖 𝐴 𝑗 )). Let us begin
by considering 𝑗 = 2 and 𝑁 = 2. In this case, we consider the joint probability
𝑃((𝜁1 𝜖 𝐴1) ∧ (𝜁2 𝜖 𝐴2)) = 𝑃((mod(𝜙1−𝜙2, 2𝜋) 𝜖 𝐴1) ∧ (mod(𝜙2−𝜙1, 2𝜋) 𝜖 𝐴2)).
Noting that mod(𝜙2−𝜙1, 2𝜋) = 2𝜋−mod(𝜙1−𝜙2, 2𝜋), we see that this is equivalent
to 𝑃((mod(𝜙1 − 𝜙2, 2𝜋) 𝜖 𝐴1) ∧ (mod(𝜙1 − 𝜙2, 2𝜋) 𝜖 2𝜋 − 𝐴2)). Clearly, then,
𝜁1 and 𝜁2 are not independent in this case, as this probability must be 0 if 𝐴1 and
2𝜋 − 𝐴2 are non-overlapping intervals, whereas independence would require this
probability to be equal to 𝑃(𝜁1 𝜖 𝐴1)𝑃(𝜁2 𝜖 𝐴2) ≠ 0.

Next, we turn to the case where 𝑗 = 2 and 𝑁 = 3 and again consider the joint
probability 𝑃((𝜁1 𝜖 𝐴1) ∧ (𝜁2 𝜖 𝐴2)), which under these conditions is equal to
𝑃((mod(𝜙1 − 𝜙2, 2𝜋) 𝜖 𝐴1) ∧ (mod(𝜙2 − 𝜙3, 2𝜋) 𝜖 𝐴2)). By inverting the functions
on the left-hand side to bring 𝜙2 to the right-hand side in each expression, we see
that this is equal to 𝑃((𝜙1 𝜖 mod(𝐴1 + 𝜙2, 2𝜋)) ∧ (𝜙3 𝜖 mod(𝜙2 − 𝐴2, 2𝜋))). Here,
we make two important observations. The first is that, as the 𝜙𝑖’s are uniform
random variables, 𝑃(𝜙𝑖 𝜖 𝐴) = 𝑃(𝜙𝑖 𝜖 𝐵) where 𝐴 is the interval [𝑎1, 𝑎2) and 𝐵
is the interval [𝑏1, 𝑏2) as long as 𝑏2 − 𝑏1 = 𝑎2 − 𝑎1. Secondly, we note that 𝜙2 is
a free variable and essentially represents a static offset to 𝐴1 and 𝐴2. From these
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observations, we may conclude that 𝑃((𝜙1 𝜖 mod(𝐴1 + 𝜙2, 2𝜋)) ∧ (𝜙3 𝜖 mod(𝜙2 −
𝐴2, 2𝜋))) = 𝑃((𝜙1 𝜖 𝐴1) ∧ (𝜙3 𝜖 𝐴2)). Due to the independence of the 𝜙𝑖’s and
the fact that they share the same distribution as the 𝜁𝑖’s, we may directly rewrite
this as 𝑃(𝜙1 𝜖 𝐴1)𝑃(𝜙3 𝜖 𝐴2) = 𝑃(𝜁1 𝜖 𝐴1)𝑃(𝜁2 𝜖 𝐴2), demonstrating the pairwise
independence of 𝜁1 and 𝜁2 in the case of 𝑗 = 2 and 𝑁 = 3. A similar argument may
be constructed to demonstrate the pairwise independence of all 𝜁𝑖’s in this case.

Next, we consider the case of 𝑗 = 3 with 𝑁 = 3, which would signify the mutual
independence of the 𝜁𝑖’s with 𝑁 = 3. Here, the quantity of interest is 𝑃((𝜁1 𝜖 𝐴1) ∧
(𝜁2 𝜖 𝐴2) ∧ (𝜁3 𝜖 𝐴3)). Re-writing this in terms of the 𝜙𝑖’s gives 𝑃((mod(𝜙1 −
𝜙2, 2𝜋) 𝜖 𝐴1) ∧ (mod(𝜙2 − 𝜙3, 2𝜋) 𝜖 𝐴2) ∧ (mod(𝜙3 − 𝜙1, 2𝜋) 𝜖 𝐴3)). Rearranging
the second expression, we find the condition 𝜙2 𝜖 mod(𝐴2 + 𝜙3, 2𝜋). From the
first expression, we similarly have that 𝜙1 𝜖 mod(𝐴1 + 𝜙2, 2𝜋). Combining these
two, we see that we must have 𝜙1 𝜖 mod(𝐴1 + 𝐴2 + 𝜙3, 2𝜋), where for 𝐴1 =

[𝑥1, 𝑥2) and 𝐴2 = [𝑦1, 𝑦2), 𝐴1 + 𝐴2 = [𝑥1 + 𝑦1, 𝑥2 + 𝑦2). As this is a more
relaxed constraint on 𝜙1, since it serves to expand the considered interval for 𝜙1,
we have that 𝑃((mod(𝜙1 − 𝜙2, 2𝜋) 𝜖 𝐴1) ∧ (mod(𝜙2 − 𝜙3, 2𝜋) 𝜖 𝐴2) ∧ (mod(𝜙3 −
𝜙1, 2𝜋) 𝜖 𝐴3)) ≤ 𝑃((𝜙1 𝜖 mod(𝐴1 + 𝐴2 + 𝜙3, 2𝜋)) ∧ (𝜙2 𝜖 mod(𝐴2 + 𝜙3, 2𝜋)) ∧
(mod(𝜙3−𝜙1, 2𝜋) 𝜖 𝐴3)). Finally, we re-write the rightmost term as 𝜙1 𝜖 mod(𝜙3−
𝐴3, 2𝜋), giving 𝑃((𝜙1 𝜖 mod(𝐴1 + 𝐴2 + 𝜙3, 2𝜋)) ∧ (𝜙2 𝜖 mod(𝐴2 + 𝜙3, 2𝜋)) ∧
𝜙1 𝜖 mod(𝜙3 − 𝐴3, 2𝜋)). After re-expressing the probability in this way, we see that
if mod(𝜙3 − 𝐴3, 2𝜋) and mod(𝐴1 + 𝐴2 + 𝜙3, 2𝜋) are non-overlapping intervals, the
probability is equal to 0. In such a case, we would therefore have that 𝑃((𝜁1 𝜖 𝐴1) ∧
(𝜁2 𝜖 𝐴2) ∧ (𝜁3 𝜖 𝐴3)) = 0 ≠ 𝑃(𝜁1 𝜖 𝐴1)𝑃(𝜁2 𝜖 𝐴2)𝑃(𝜁3 𝜖 𝐴3), demonstrating that
the 𝜁𝑖’s are not independent.

Finally, we turn to the case of arbitrary 𝑁 . For 𝑗 = 𝑁 , the arguments made in the case
of 𝑁 = 3 can be readily scaled to show the lack of mutual independence amongst
the 𝜁𝑖’s. In particular, we begin with the expression 𝑃((𝜁1 𝜖 𝐴1) ∧ (𝜁2 𝜖 𝐴2) ∧
... ∧ (𝜁𝑁 𝜖 𝐴𝑁 )) = 𝑃((mod(𝜙1 − 𝜙2, 2𝜋) 𝜖 𝐴1) ∧ (mod(𝜙2 − 𝜙3, 2𝜋) 𝜖 𝐴2) ∧
... ∧ (mod(𝜙𝑁 − 𝜙1, 2𝜋) 𝜖 𝐴𝑁 )). By cascading the argument made before, we
may show that 𝑃((mod(𝜙1 − 𝜙2, 2𝜋) 𝜖 𝐴1) ∧ (mod(𝜙2 − 𝜙3, 2𝜋) 𝜖 𝐴2) ∧ ... ∧
(mod(𝜙𝑁 − 𝜙1, 2𝜋) 𝜖 𝐴𝑁 )) ≤ 𝑃((𝜙1𝜖 mod(𝐴1 + 𝐴2 + ... + 𝐴𝑁−1 + 𝜙𝑁 , 2𝜋)) ∧
... ∧ (𝜙1 𝜖 mod(𝜙𝑁 − 𝐴𝑁 , 2𝜋))). From this, we see that if mod(𝐴1 + 𝐴2 + ... +
𝐴𝑁−1+𝜙𝑁 , 2𝜋) and mod(𝜙𝑁 − 𝐴𝑁 , 2𝜋) are non-overlapping, the probability must be
0 ≠ 𝑃(𝜁1 𝜖 𝐴1)𝑃(𝜁2 𝜖 𝐴2)...𝑃(𝜁𝑁 𝜖 𝐴𝑁 ), indicating that the 𝜁𝑖’s are not independent.

Similarly, the arguments made for the case where 𝑗 = 2 and 𝑁 = 3 can be help-



275

ful in evaluating the independence for arbitrary 𝑁 with 𝑗 < 𝑁 . However, while
we have been considering the joint probability in constructing our previous argu-
ments, here we consider the conditional probability 𝑃(𝜁1 𝜖 𝐴1 | (𝜁2 = 𝑥1) ∧ (𝜁3 =

𝑥2) ∧ ... ∧ (𝜁 𝑗 = 𝑥 𝑗 )). As before, we now re-write this expression in terms of the
𝜙𝑖’s as 𝑃(mod(𝜙1 − 𝜙2, 2𝜋) 𝜖 𝐴1 | (mod(𝜙2 − 𝜙3, 2𝜋) = 𝑥1) ∧ (mod(𝜙3 − 𝜙4, 2𝜋) =
𝑥2)∧ ...∧(mod(𝜙 𝑗 −𝜙 𝑗+1, 2𝜋) = 𝑥 𝑗 )). The rightmost term may be re-written as 𝜙 𝑗 =
mod(𝑥 𝑗 +𝜙 𝑗+1, 2𝜋). Plugging this into the corresponding expression for 𝑗 −1 yields
that 𝜙 𝑗−1 = mod(𝑥 𝑗−1+𝑥 𝑗+𝜙 𝑗+1, 2𝜋). By cascading this argument, we arrive at an ex-
pression for 𝜙2, giving 𝜙2 = mod(𝑥2+𝑥3+ ...+𝑥 𝑗 +𝜙 𝑗+1, 2𝜋). Finally, the conditional
probability may be re-expressed as 𝑃(𝜙1 𝜖 mod(𝐴1+𝑥2+𝑥3+...+𝑥 𝑗+𝜙 𝑗+1, 2𝜋) | (𝜙2 =

mod(𝑥2 + 𝑥3 + ...+ 𝑥 𝑗 + 𝜙 𝑗+1, 2𝜋)) ∧ (𝜙3 = mod(𝑥3 + ...+ 𝑥 𝑗 + 𝜙 𝑗+1, 2𝜋)) ∧ ...∧ (𝜙 𝑗 =
mod(𝑥 𝑗 + 𝜙 𝑗+1, 2𝜋)). By noting that the shared 𝜙 𝑗+1 term is unconstrained and thus
may take on any value and recalling that 𝑃(𝜙𝑖 𝜖 𝐴) = 𝑃(𝜙𝑖 𝜖 𝐵) if 𝐴 and 𝐵 represent
intervals of the same width since 𝜙𝑖 is uniformly distributed, we have through the
independence of the 𝜙𝑖’s that 𝑃(𝜙1 𝜖 mod(𝐴1 + 𝑥2 + 𝑥3 + ... + 𝑥 𝑗 + 𝜙 𝑗+1, 2𝜋) | (𝜙2 =

mod(𝑥2 + 𝑥3 + ...+ 𝑥 𝑗 + 𝜙 𝑗+1, 2𝜋)) ∧ (𝜙3 = mod(𝑥3 + ...+ 𝑥 𝑗 + 𝜙 𝑗+1, 2𝜋)) ∧ ...∧ (𝜙 𝑗 =
mod(𝑥 𝑗 + 𝜙 𝑗+1, 2𝜋)) = 𝑃(𝜙1 𝜖 mod(𝐴1 + 𝑥2 + 𝑥3 + ...+ 𝑥 𝑗 + 𝜙 𝑗+1, 2𝜋)) = 𝑃(𝜙1 𝜖 𝐴1).
Finally, since 𝜙1 and 𝜁1 are both uniform on [0, 2𝜋), 𝑃(𝜙1 𝜖 𝐴1) = 𝑃(𝜁1 𝜖 𝐴1),
proving the independence of this subset of 𝜁𝑖’s. Such an argument can be extended
to show the independence of arbitrary subsets of 𝜁𝑖’s of size 𝑗 , with 𝑗 < 𝑁 .

Probability Density Function (Slow Detector)

Having derived the expected distribution for the 𝐼𝑖’s on the fast detector and con-
sidered the independence of the 𝐼𝑖’s using the 𝜁𝑖’s as a proxy, we now turn to the
response on the slow detector. Here, similar to the degenerate case, the slow detector
response is given by the sum over the 𝐼𝑖’s. To this end, we consider the random
variable 𝑋 , defined as

𝑋 =
1
√
𝑁

𝑁∑︁
𝑖=1

𝐼𝑖, (9.24)

which we may use to represent the slow detector response, as multiplication with
1√
𝑁

just has the impact of scaling the mean and variance. We wish to find the PDF
of 𝑋 . To do so, we first consider the mean, 𝜇, and variance, 𝜎2, of 𝐼𝑖. The mean is
given by
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𝜇 =

∫ ∞

−∞
𝑥 𝑓𝐼𝑖 (𝑥)𝑑𝑥 =

∫ 1

0

𝑥

𝜋
√︁
𝑥(1 − 𝑥)

𝑑𝑥 = 0.5. (9.25)

Similarly, the variance is given as

𝜎2 =

∫ ∞

−∞
(𝑥 − 𝜇)2 𝑓𝐼𝑖 (𝑥)𝑑𝑥 =

∫ 1

0

(𝑥 − 𝜇)2

𝜋
√︁
𝑥(1 − 𝑥)

𝑑𝑥 = 0.125 (9.26)

Now, we break the definition of 𝑋 from equation 9.24 into 2 components

𝑋 =
1
√
𝑁

𝑁−1∑︁
𝑖=1

𝐼𝑖 +
1
√
𝑁
𝐼𝑁 = 𝑋̃ + 1

√
𝑁
𝐼𝑁 . (9.27)
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Figure 9.11: Simulated slow detector distribution in the non-degenerate regime.
Several values of 𝑁 are considered including a, 𝑁 = 2, b, 𝑁 = 4, c, 𝑁 = 7, d, 𝑁 = 20,
e, 𝑁 = 40, and f, 𝑁 = 70.

As shown above, a number 𝑗 < 𝑁 of 𝐼𝑖’s are independent and identically distributed,
so we may apply the Central Limit Theorem to find that 𝑋̃ approaches a normal
distribution with a mean of 𝜇 = 0.5 and variance of 𝜎2 = 0.125 as 𝑁 → ∞.
Meanwhile, 1√

𝑁
𝐼𝑁 tends towards having a mean and variance of 0 as 𝑁 → ∞. In

other words, as 𝑁 → ∞, 𝑋 → 𝑋̃ such that we expect the measured distribution
on the slow detector to be approximately Gaussian. This convergence to a normal
distribution for large 𝑁 is shown in Fig. 9.11. Here, the theoretical distribution
for 𝑋 , as defined in equation 9.24, is simulated using pseudorandom numbers in
MATLAB. In each case, we model the output of 20,000 OPO iterations measured
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on the slow detector. One may observe reasonably good convergence to a Gaussian
by 𝑁 = 20.

Probability Density Function (Slow Detector, 𝜋 Roundtrip Phase)

As a final note, we briefly consider the case where the OPO has a roundtrip phase
of 𝜋. Like the degenerate case, we note that the output pulse train has phases given
by

𝜙1, 𝜙2, ...𝜙𝑁 , (𝜙1+𝜋), (𝜙2+𝜋), ...(𝜙𝑁+𝜋), 𝜙1, ...𝜙𝑁 , (𝜙1+𝜋), ...(𝜙𝑁+𝜋), ... (9.28)

Like the degenerate case, this is largely without consequence for 𝐼𝑖’s, since mod((𝜙𝑖+
𝜋) − (𝜙𝑖+1 + 𝜋), 2𝜋) = mod(𝜙𝑖 − 𝜙𝑖+1, 2𝜋). The exception, as before, is 𝐼𝑁 since
𝜁𝑁 = mod(𝜙𝑁 − (𝜙1 + 𝜋), 2𝜋) now has a phase shift of 𝜋. The impact on 𝑋 is
minimal, however, as it will still tend towards a Gaussian for large 𝑁 .

Addition of Detector Noise

Having derived the theoretical distributions expected from an ideal, we now consider
briefly the impact of noise in our detection. As our signal is relatively weak, we
expect the measurement to be detector noise limited. In such a case, we may
assume the noise is independent of our signal. We may also, to good approximation,
assume our detector noise to be normally distributed. Under these considerations,
we expect that our measured distributions will look like the convolution of the
theoretically calculated PMF/PDF with a Gaussian. For the case of degeneracy,
where the expected PMF is discrete, we may still bin the output for comparison with
the theory as long as the SNR is sufficient. This is how the theoretical comparisons
of Figs. 9.3f and 9.4e are produced. In the non-degenerate case, since the expected
distribution from the slow detector is Gaussian, the addition of Gaussian detector
noise does not alter its shape (though it may serve to scale the variance). In fitting
the distribution from the fast detector, however, we must convolve the predicted
distribution of equation 9.4 with a Gaussian to produce an accurate result. This is
what accounts for the bimodal distributions of Figs. 9.3d and 9.4c.

Comparison of Time-Multiplexed OPO Architectures
In this section, we discuss in more detail the primary architectures that exist for in-
formation processing using time-multiplexed OPOs. We use this to further motivate
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the proposed all-time multiplexed architecture. The three main architectures are
schematically depicted in Fig. 9.12 and consist of using physical delay lines (Fig.
9.12a), measurement-feedback (Fig. 9.12b), and all-time-multiplexing (Fig. 9.12c).
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Figure 9.12: Architectures for time-multiplexed information processing using
OPOs. a, Physical delay line approach, where 𝑁 delay lines couple the 𝑁 time-
multiplexed OPOs. b, Measurement-feedback approach, where pulse amplitudes
and phases are read out by an FPGA each roundtrip and used to implement couplings
via an injected local oscillator. c, All-time architecture, where a secondary memory
cavity with 𝑁 + 1 sites is used to store and reinject pulses into the time-multiplexed
OPO, implementing all-to-all couplings over the course of 𝑁 roundtrips. 𝑇rep,
repetition period; PPLN, periodically poled lithium niobate; PM, phase modulator;
IM, intensity modulator; PD, photodetector; FPGA, field-programmable gate array

Many of the first computing demonstrations using OPOs were done using physical
delay lines (Fig. 9.12a) [26]. In this approach, all-to-all coupling between the 𝑁
pulses in the time-multiplexed OPO cavity may be achieved with 𝑁 − 1 delay lines.
Inclusion of an 𝑁 th delay line allows for a self-interaction term. Arbitrary coupling
phase and coupling strength may be achieved by including phase and amplitude
modulators along each delay line. The output of the computation can be read out
via a phase-sensitive measurement. Here, we depict an unbalanced interferometry
setup with a 1-bit delay, similar to that used in our experiment.

This approach is theoretically quite powerful, as couplings are implemented simul-
taneously through the spatially separated delay lines, enabling operations to be done
in parallel. Furthermore, information is stored and processed all-optically, requiring
opto-electronic conversion only for read-out following the computation. However,
it suffers from the drawback of being extremely challenging to scale due to the
required number of delay lines scaling with the system size.
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The measurement-feedback approach (Fig. 9.12b) has provided an alternative to
using physical delay lines, which has largely solved the scaling issue [9]. In this
approach, only one time-multiplexed OPO cavity is required. To provide couplings,
signal pulse amplitudes and phases are measured each roundtrip via a homodyne
measurement with a local oscillator (LO) and fed into a field-programmable gate
array (FPGA). The FPGA then uses the measurement to drive a phase and intensity
modulator which shape a newly injected LO pulse to implement the correct coupling
amplitude and phase.

This approach has become ubiquitous for performing computations using time-
multiplexed OPO systems and has enabled system sizes of 𝑁 = 100, 000, as in
ref. [11]. However, the approach is ultimately bottle-necked by its requiring opto-
electronic and electro-optic conversions in every roundtrip to implement the cou-
plings. Such conversions fundamentally limit the achievable computation speeds to
those of the electronic hardware used in the feedback. Additionally, the digitization
and subsequent pulse injection can limit the scope of application of this method, for
example when the OPO is used in the non-degenerate regime which can take on an
arbitrary phase or in the context of quantum information processing where the state
is non-classical.

In this work, we propose an all-time-multiplexed (Fig. 9.12c) architecture which
seeks to address the primary challenges of both the physical delay line architecture
and the measurement-feedback approach. As described in Section 9.3, the approach
consists of utilizing two coupled cavities, the main cavity which supports 𝑁 time-
multiplexed OPOs and the memory cavity which supports𝑁+1. Here, the𝑁 physical
delay lines of Fig. 9.12a are instead implemented in a time-multiplexed way. This
is done by storing the states of the 𝑁 pulses from the main cavity in the memory
cavity and implementing all-to-all couplings over the course of 𝑁 roundtrips by
re-injecting the stored pulses with the correct coupling amplitude and phase into the
main cavity (Fig. 9.5).

As with the physical delay line approach, the all-time-multiplexed approach requires
opto-electronic conversion only at the end of the computation and thus can take full
advantage of the speed of optics for performing the computation. However, the
architecture requires only the addition of the second (memory) cavity, which allows
it to be scaled to large system sizes, similar to the measurement-feedback approach.
The cost, however, is an additional factor of 𝑁 overhead in the computation time due
to the approach requiring 𝑁 roundtrips for all-to-all couplings to be achieved. By
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combining these two advantages of the different platforms, the all-time-multiplexed
approach offers a flexible system for tackling a variety of computing tasks.
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C h a p t e r 10

OUTLOOK

Through our presented work, we have demonstrated several areas in which quadratic
nonlinear phenomena can be leveraged for application in ultrafast source develop-
ment and application. Here, we briefly comment on some additional research areas
which will benefit from further study in the near future.

10.1 Quadratic Solitons
In this thesis, we have explored several quadratic solitons, including temporal si-
multons and two-color bright solitons. However, many other soliton solutions are
predicted in both quadratic waveguides and resonators, including two-color bright-
bright solitons, dark-dark solitons, and bright-dark solitons, single-color bright
solitons and dark solitons, and topological solitons, among others [1–7]. With a
significant body of theoretical literature on existence regimes for quadratic soli-
ton solutions to draw from, the novel opportunities for engineering the dispersion
and phase mismatch afforded by nanophotonics provide ideal conditions for the
realization of various solitonic states. Already, we have observed early signatures
of domain wall formation and bright soliton generation in a degenerate optical
parametric oscillator [8, 9]. We believe the variety of soliton solutions native to
quadratic nonlinear systems can serve as versatile generators as ultrashort pulses
and frequency combs with wide application.

10.2 Highly Nonlinear Resonators
Our demonstration of multi-octave frequency comb formation in a far-above thresh-
old nanophotonic optical parametric oscillator represents a first demonstration of
what may be achieved by exploiting the strong quadratic nonlinearity afforded by
nanophotonics in a resonant configuration. Theoretical investigation into this phe-
nomenon suggests that significant intracavity manipulation of the signal pulse is
viable, as long as the pulse phase within the gain bandwidth set by the pump pulse
length is sufficiently clean prior to their interaction in the nonlinear crystal in each
roundtrip. This process bears similarity to other recent demonstrations of intracavity
supercontinuum generation [10] and Mamyshev oscillation [11, 12].
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In the present system, however, much of the power is being lost due to the broad
bandwidth of the coupler response and subsequent high loss in the roundtrip prop-
agation. Thus, we envisage significant improvement to the spectral flatness of the
generated supercontinuum may be made by utilizing a more narrow-band coupler
with higher outcoupling.

Additionally, we believe that improved coherence and stability properties may be
realized through operation of the system near a dynamical attractor of the nonlinear
waveguide. This may be readily achieved by engineering the feedback to shape the
recirculating pulse towards such a solution.

Further characterization of the different regimes of operation in such highly nonlinear
cavities is also of interest, and would benefit from improved theoretical models.
One particularly interesting state which has been observed both in simulation and
experiment, but not well understood, involves the generation of periodic states, for
which the output oscillates at exact integer sub-harmonics of the cavity repetition
rate.

10.3 Integrated Extreme Nonlinear Optics
As motivated in our discussion of demonstrated two-color soliton pulse compression,
extension of this work to integrated single-cycle pulse synthesis is readily achiev-
able through CEP stabilization of the pump laser, and addition of an electro-optic
modulator. Additionally, the tight mode confinement afforded by the nanophotonic
platform reduces the pulse energies required to attain sufficiently large peak powers
for entry into the extreme nonlinear optics regime [13]. As such, development of
integrated extreme nonlinear optical systems should be achievable in the relatively
near future. Several components may be developed in this direction.

The first is the development of CEP-stabilized integrated sources. Such a source
will require either the pairing of integrated MLLs [14, 15] or other integrated
pulse generators [16] with integrated supercontinuum generation [17–19] for self-
referencing and stabilization of the CEP phase, or the use of intrapulse DFG [20,
21] to directly obtain CEP stabilized pulses. Both techniques are readily amenable
to the quadratic nonlinearity.

A second key development in this direction would be the integration of OPCPA sys-
tems [22–24]. OPCPA may also be directly implemented in the quadratic nonlinear
waveguide, and will greatly help to increase the pulse energies to the levels required
for driving extreme nonlinear optical phenomena.
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10.4 Detector-Free Intractivity Sensing and Spectroscopy
As was motivated in the simulton sensing work, both CW theory and soliton theory
suggest that OPOs exhibit preferable scaling behaviors for intracavity sensing and
spectroscopy based on threshold sensing when compared to laser systems [25].
However, exploration in this direction has been limited [26, 27].

One proposed approach which we have begun to explore in this thesis is towards
detector-free intracavity sensing and spectroscopy [28]. In this scheme, the analyte
is placed inside the OPO, and the pump-cavity detuning is scanned, either through
an intracavity modulator or through direct tuning of the pump frequency. As each
of the output oscillation peaks contains different frequency content, the molecular
signature is uniquely imprinted into the resulting relative change in power of the os-
cillation peaks. Through performing the correct inverse transformation, the analyte
concentration may be identified without requiring a spectrally-resolved measure-
ment [29].

10.5 Extension of FROG to Quantum State Tomography
Pulsed systems hold significant promise for high-speed quantum optical informa-
tion processing. However, a significant challenge in pulsed quantum optics is the
multi-mode nature of typically generated pulsed quantum states. As such, work-
ing with pulsed quantum optical systems demands new tools capable of temporally
characterizing quantum pulses [30–33].

Our demonstration of FROG in a nanophotonic, high-gain OPA suggests that the
technique should be compatible with ultra-weak quantum pulses. Furthermore, we
have recently demonstrated use of the phase sensitivity of the OPA process for state
tomography [34, 35]. Following these developments, we have begun exploring the
potentials of using FROG to fully characterize quantum states of interest, and early
indications show significant promise for this direction.
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