
Visual systems and the forces that shape them

Thesis by
Mason McGill

In partial fulfillment of the requirements for the degree of
Doctor of Philosophy in computation and neural systems

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2025
Defended March 25, 2025

ii

© 2025

Mason McGill
ORCID: 0000-0002-2782-3977

All rights reserved except where otherwise noted

iii

ABSTRACT

Vision neuroscience provides a unique opportunity to draw a correspondance between
the physical world and its neural representation. But despite the amazing advances
in neural recording technology that have occurred over the past two decades, we
can’t yet simultaneously record from more than a tiny fraction of the neurons in most
of the visual systems currently being studied, which limits our ability to develop
a holistic cause-and-effect understanding of how they operate. So it may make
sense, as a complement to directly studying a visual system found in nature, to also
study synthetic visual systems that in some way resemble it but are easier to inspect.
This document describes four lines of work aimed at improving our ability to learn
about biological visual systems using models optimized in ways that are analogous
to the selective pressures that biological visual systems face, like the pressures to
relay accurate information about the world, minimize energy consumption, and
withstand perturbation. The first two of these lines of work—discussed in chapters 2
and 3—focus on expanding the space of selective forces that can be factored into
optimization-guided models, and the other two—discussed in chapters 4 and 5—focus
on modeling particular visual systems (in the macaque and the fruit fly, respectively).
Taken together, optimization-guided modeling is shown to be a promising approach
to advancing our understanding of visual processing across the animal kingdom,
allowing us to leverage hypotheses about the high-level properties of visual systems
to amplify the value of sparse neural data.

iv

PUBLISHED CONTENT AND CONTRIBUTIONS

[1] Pinglei Bao et al. “A map of object space in primate inferotemporal cortex”. In:
Nature 583.7814 (2020), pp. 103–108. url: https://doi.org/10.1038/
s41586-020-2350-5.

[2] Janne K Lappalainen et al. “Connectome-constrained networks predict neural
activity across the fly visual system”. In: Nature 634.8036 (2024), pp. 1132–
1140. url: https://doi.org/10.1038/s41586-024-07939-3.

[3] Mason McGill and Pietro Perona. “Deciding how to decide: Dynamic routing in
artificial neural networks”. In: International Conference on Machine Learning.
PMLR. 2017, pp. 2363–2372.

Chapter 2 is adapted from [3]. My contributions to this line of work included
conceptualization, designing and running computational experiments, visualizing
the results, and writing.

The work described in chapter 3 has not yet been published, but my contributions to
this line of work were similar.

Chapter 4 is adapted from [1]. My contributions to this line of work included (a)
reconstructing images presented to macaque monkeys from neural firing patterns, (b)
generating latent space embeddings for the stimulus images using both pre-trained
and custom convolutional neural networks, (c) mapping deep network latent spaces
to IT representation spaces, and (d) generating representation space visualizations
that contributed to the characterization of “no man’s land” patches in IT—which
contain neurons that preferentially respond to spiky or spindly objects—and the
discovery of additional patches containing neurons that prefer stubby objects.

Chapter 5 is adapted from [2]. My contributions to this line of work included (a)
writing software to simulate phototransduction in fruit flies, (b) writing software
to efficiently train recurrent hexagonal lattice convolutional neural networks, (c)
training a variety of connectome-constrained networks, (d) simulating probe stimuli,
(e) analyzing the networks’ responses to the probes, (f) generating visualizations, (g)
general methodology development, and (h) contributions to the manuscript.

https://doi.org/10.1038/s41586-020-2350-5
https://doi.org/10.1038/s41586-020-2350-5
https://doi.org/10.1038/s41586-024-07939-3

v

TABLE OF CONTENTS

Abstract . iii
Published content and contributions . iv
Table of Contents . iv
List of Illustrations . vii
Chapter I: Introduction . 1

1.1 Visual systems optimized to perform a particular function 3
1.2 Visual systems optimized for space efficiency 5
1.3 Visual systems optimized for energy efficiency 5
1.4 Visual systems optimized for robustness 6
1.5 Overview of the following chapters 7

Chapter II: Deciding how to decide: Dynamic routing in artificial neural
networks . 11
2.1 Introduction . 11
2.2 Related work . 12
2.3 Setup . 13
2.4 Training . 15
2.5 Experiments . 19
2.6 Discussion . 24

Chapter III: Evolving neural networks for predator avoidance 30
3.1 Introduction . 30
3.2 Related work . 32
3.3 Predator avoidance in fruit flies . 33
3.4 The life of a virtual forager . 34
3.5 Tracking state class probabilities over time 35
3.6 Learning a stay-or-flee policy for ideal observer foragers 38
3.7 Controlling foraging behavior with a network of neurons 40
3.8 Encoding neural network parameters genetically 41
3.9 Evolving foragers . 42
3.10 Assessing the effect of subpopulation isolation 43
3.11 Assessing the effect of environmental changes 46
3.12 Comparing evolved foragers to fruit flies 47
3.13 Discussion . 48
3.A Derivation for Equation 3.2 . 50
3.B Derivation for Equation 3.6 . 53

Chapter IV: A map of object space in primate
inferotemporal cortex . 57
4.1 Identifying a new IT network . 58
4.2 NML cells encode axes of object space 60
4.3 The body network follows the same scheme 61

vi

4.4 A general rule governing IT organization 62
4.5 A map of object space . 64
4.6 Explaining previous accounts of IT 66
4.7 Reconstructing general objects . 66
4.8 Discussion . 68
4.A Methods . 71
4.B Additional figures . 83

Chapter V: Predicting neural activity across the fly visual system with
connectome-constrained networks . 104
5.1 Introduction . 105
5.2 Our deep mechanistic network model 107
5.3 Our DMN ensemble predicts known activity 111
5.4 The connectome and the task are both necessary 112
5.5 Predictions cluster across the DMN ensemble 114
5.6 Predicted mechanism of T4 & T5 tuning 115
5.7 Sparsity enables accurate predictions 118
5.8 Discussion . 120
5.A Methods . 122
5.B Additional figures . 137

vii

LIST OF ILLUSTRATIONS

Number Page
2.1 Motivation for dynamic routing. For a given data representation,

some regions of the input space may be classified confidently, while
other regions may be ambiguous. 12

2.2 A 2-way junction, J . 𝑑 (J) is an integer function of the source
features. When 𝑑 (J) = 0, the signal is propagated through the top
sink, and the bottom sink is inactive. When 𝑑 (J) = 1, the signal is
propagated through the bottom sink, and the top sink is inactive. . . 14

2.3 Our multiscale convolutional architecture. Once a column is evalu-
ated, the network decides whether to classify the image or evaluate
subsequent columns. Deeper columns operate at coarser scales, but
compute higher-dimensional representations at each location. All
convolutions use 3×3 kernels, downsampling is achieved via 2×2 max
pooling, and all routing subnetwork layers have 16 channels. 15

2.4 Sample images from the hybrid MNIST/CIFAR-10 dataset. We
recolored images from MNIST via the following procedure: we
selected two random colors at least 0.3 units away from each other in
RGB space; we then mapped black pixels to the first color, mapped
white pixels to the second color, and linearly interpolated in between. 20

2.5 Dataflow through actor networks trained to classify images from the
hybrid MNIST/CIFAR-10 dataset. Every row is a node-link diagram
corresponding to a network, trained with a different 𝛼cpt. Each circle
indicates, by area, the fraction of examples that are classified at
the corresponding module. The circles are colored to indicate the
accuracy of each module (left) and the kinds of images classified at
each module (right). 21

2.6 Dataflow through a branching actor network trained to classify
images in the hybrid dataset, illustrated as in Fig. 2.5. 22

2.7 Dataflow over the course of training. The heatmaps illustrate the
fraction of validation images classified at every terminal node in the
bottom four networks in Fig. 2.5, over the course of training. 22

viii

2.8 Hybrid dataset performance. Every point along the “statically-
routed nets” curve corresponds to a network composed of the first
𝑛 columns of the architecture illustrated in Fig. 2.3, for 1 ≤ 𝑛 ≤ 8.
The points along the “actor net, dynamic 𝛼cpt” curve correspond to a
single network evaluated with various values of 𝛼cpt, as described in
section 2.4.6. The points along all other curves correspond to distinct
networks, trained with different values of 𝛼cpt. 𝛼cpt ∈ {0, 1×10−9, 2×
10−9, 4 × 10−9, ... 6.4 × 10−8}. 23

2.9 Performance effects of the task difficulty distribution, as described
in section 2.5.6. The “statically-routed nets” and “actor nets” curves
are drawn analogously to their counterparts in Fig. 2.8. 24

2.10 Performance effects of network capacity, training and testing on
CIFAR-10. (Left) Networks with (subsets of) the architecture illus-
trated in Fig. 2.3. (Center) Networks otherwise identical to those
presented in the left panel, with the number of output channels of
every convolution operation multiplied by 2, and 𝛼cpt divided by
4. (Right) Networks otherwise identical to those presented in the
left panel, with the number of output channels of every convolution
operation multiplied by 3, and 𝛼cpt divided by 9. 25

3.1 Avoiding predation in the face of ambiguity. (a) Prey animals
integrate sensory cues to form an internal representation of their
environment, which they use to decide whether to stay or flee. (b) Both
staying and fleeing have potential costs. (c) For a given environment,
some strategies will be more suitable than others. Luck can have a
big influence on an individual animal’s reproductive success, but a
prey animal employing a higher-fitness predator-avoidance strategy
will, on average, spend more time foraging over the course of its life
and produce more offspring. 31

ix

3.2 A high-level overview of our modeling strategy. Animals evolve
sensorimotor mechanisms for avoiding predation. To better under-
stand how these mechanisms come about, we defined a sequential
decision-making task inspired by behavior observed in fruit flies
(section 3.3 and section 3.4), and simulated the evolution of vir-
tual foragers performing this task using genetically encoded neural
networks (section 3.7–section 3.9). These networks recapitulated
predator-avoidance behavior observed in fruit flies (section 3.12), and
approximately matched the fitness of “ideal observer” foragers with
direct access to the statistics of the environment (section 3.5 and
section 3.6). After successfully evolving high-fitness neural network
foragers, we investigated how changes to the simulation affect the
evolution process (section 3.10 and section 3.11). 32

3.3 Our forager-environment interaction model. (a) Foragers wander
through their environment until they come across a foraging area.
Foraging reduces a forager’s hunger level and increases the odds that
they will come across a potential mate, but also exposes them to the
risk of encountering a predator. Predator cues occur at a higher rate
when a predator is present, and foragers can choose to flee from a
foraging area if they suspect they are in danger. (b) Foragers can die
of natural causes at any time, and their instantaneous natural-cause
death rate is proportional to the square of their age. (c) A forager’s
hunger level increases when it is wandering and decreases when it is
foraging. If it reaches the starvation threshold, the forager will die. . 35

3.4 Inferred state class probabilities over the course of an example
life trajectory. For each vertical slice of the “belief” trace, the height
of each segment represents the probability that the forager is in the
corresponding state class at the corresponding time, conditioned on
the forager’s observations. 37

3.5 Learning a lookup-table action policy. This figure visualizes the
policy-learning process using a 2-dimensional grid—omitting the
age dimension—to make it easier to see how the FIS grid and action
policy change over time. Top: Flight-inclination scores over course
of the learning process. Bottom: Prescribed actions for each cell over
the course of the learning process. 38

x

3.6 The action policy learned after 250k refinement iterations. (a)
Stay/flee prescriptions for 8 of the 64 age slices. Shaded cells prescribe
the “flee” action, and transparent cells prescribe the “stay” action.
The shading color is varied between age slices to improve legibility.
(b) Fitness histograms for foragers who never flee and foragers using
the action policy visualized in (a). 39

3.7 The neural-network-controlled forager lifecycle. Each forager’s
parents are sampled from the previous generation, and one (potentially
mutated) gene at each locus is inherited from each parent. A forager’s
genome encodes its neural network controller, which influences how
successfully it will forage while avoiding predators. And foragers that
spend more time foraging will on average produce more offspring.
Each generation, population density moves from grid cells with low
mean foraging times to neighboring cells with higher mean foraging
times. And, within a cell, foragers that spent more time foraging are
more likely to be selected as parents. 43

3.8 Visualizations illustrating competition between subpopulations.
In each panel, each pixel represents a spatial location containing a
semi-isolated subpopulation. Top row: Genetic clustering results over
time, for an evolution simulation using a population drift coefficient
of 0.01. We periodically stored occurrence counts for the 100 most
common non-null genes in each grid cell. These counts were then
used to create sparse description vectors for each cell across the
five generations shown. For a given cell, the 𝑖-th component of its
descriptor is equal to the occurrence count for gene 𝑖, if a count was
stored for gene 𝑖, or 0, if it was not. The clusters shown were discovered
by applying 𝑘-means clustering to these cell descriptors, using the
clusters discovered at generation 800 to initialize the algorithm at
generation 900, and initializing subsequent runs analgously. Middle
row: Mean L1 distances between cells’ descriptors and their direct
neighbors’ descriptors. (The descriptors of cells that share an edge.)
Bottom row: Mean fitness scores for each cell, in foraging seconds,
based on 100 lifetime simulations per genotype. Populations with
higher fitness tend to expand. 44

xi

3.9 Genotypes, phenotypes, and fitness levels over time for a single
cell in three simulations. Row 1: Genes from one strand of a
random forager’s genotype every 100 generations. Null genes are
shown in beige and genes encoding traits are assigned random colors.
Row 2: Gene saturation distributions for every 100 generations. The
brightness of each frequency bin indicates the number of genes present
per forager with that level of rarity/ubiquity. For example, if the bottom
frequency bin (0–10% saturation) encodes the value 5.2, then foragers
in the cell carry on average 5.2 genes with a cell-wide prevalence
below 10%. Rows 3–7: Network parameters from a random forager,
sampled once every 100 generations. Row 8: Fitness levels over time,
in foraging seconds, based on 100 lifetime simulations per genotype.
Within each chart, the shaded region indicates the range of fitness
levels across the grid, and the curve indicates the fitness level for the
cell. 45

3.10 Fitness trajectories for environments with different degrees of
subpopulation isolation. (a) Fitness trajectories for foragers evolving
in a single-cell grid and foragers evolving in a 32×32 grid with a
drift coefficient of 10−4. We ran five 25,000-generation simulations
in each condition, each with 219 foragers spawned per generation.
Cell fitness scores were computed every 100 generations—based on
100 lifetime simulations per genotype—and then used to compute
population fitness scores via population-density-weighted averaging.
The shaded regions indicate the range of these population fitness
scores across simulations, and the curves indicate their averages. (b)
Fitness levels at generation 25,000 for evolution simulations with a
32×32 grid and differing diffusion coefficients. As in (a), the shaded
regions indicate population fitness ranges across five simulations, and
the curves indicate averages. 46

xii

3.11 Fitness trajectories for populations exposed to different levels of
environmental change. We exposed populations of foragers to a
series of environment configurations over 800 “training” generations,
and then assessed how they adapted to a new configuration over an
additional 800 “test” generations. Five populations were simulated
per test configuration, one for each training set size ∈ {1, 2, 4, 8, 16}.
We periodically computed population fitness scores during each run,
and then computed the ratio between each of these scores and the best
final fitness score obtained on the test condition across the competing
populations. We ran 25 simulations per (variation level, training set
size) pair, and each curve vertex is located at the geometric mean of
25 of these fitness-score ratios. (See section 3.11 for details.) 47

3.12 Analyzing the behavior of evolved foragers. (a) Forager and en-
vironment state traces from the first 6 minutes of a neural-network-
controlled forager’s life. Row 1: The hidden true state class. Row 2:
The forager’s hunger level, on a scale from 0 (completely gray) to 1
(completely black). Row 3: Lines indicating when predator cues were
observed. Row 4: The conditional state class probabilities an ideal
observer forager would compute, given the same observation history.
Row 5: The forager’s hidden node and output node excitement levels;
brighter regions correspond to higher excitement levels. Row 6:
Lines indicating when the forager fled. (b) Distributions of correlation
coefficients relating a neural-network-controlled foragers’ age and
hunger level to its proclivity to flee. Top: Correlations between
forager age and dangerous-foraging probability (the red-filled curve
in row four of (a)) immediately preceeding flight events, computed
across all flight events occurring in 1000 simulated lifetimes per
genotype, for 100 genotypes sampled from a population. Bottom:
The analogous correlation histogram, substituting hunger level for age.
(See section 3.12 for details.) . 49

xiii

4.1 a: Stimulus contrasts used to identify known networks in IT (see
Methods). b: Inflated brain (right hemisphere) for monkey M1
showing known IT networks mapped in this animal. Regions activated
by microstimulation of NML2 are shown in yellow. All activation
maps shown at a threshold of 𝑝 < 10−3, not corrected for multiple
comparisons. Yellow and magenta outlines indicate the boundaries of
TE and TEO, respectively [34]. 59

4.2 a–d, top: Responses of cells to 51 objects from six different categories.
Responses to each object were averaged across 24 views. Cells were
recorded in three patches (NML1, NML2 and NML3) from the NML
network (a), in three patches of the body network (b), in patch ML
of the face network (c), and in two patches of the stubby network (d).
a–d, middle: Blue charts show average responses to each object in
each network. Numbers indicate the five most-preferred objects. a–d,
bottom: The five most-preferred (top row) and least-preferred (bottom
row) objects for each network, based on averaged responses. Images 1
to 5 are shown from left to right. e: Coronal slices containing NML1,
NML2, and NML3 from monkeys M1, M2, M3, and M4 showing
difference in activation in response to the five most-preferred versus
five least-preferred objects determined from electrophysiology in the
NML network of monkey M1. In M1, the microsimulation result is
also shown as a cyan overlay with threshold 𝑝 < 10−3, uncorrected.
Inset numbers indicate AP coordinate relative to interaural 0 [34].
(Continued on the next page) . 63

4.2 Fig. 4.2, continued: f: Responses of cells from patches NML2 and
NML3 of the NML network to a line segment that varied in aspect
ratio, curvature, and orientation. Responses are averaged across
orientation, and curvature runs from low to high from left to right for
each aspect ratio. Aspect ratio accounts for 22.8% of the response
variance on average across cells, curvature for 5.6% of the variance,
and orientation for 3.5% of the variance. 64

xiv

4.3 a: Population similarity matrices in the three patches of the NML
network (top), three patches of the body network (middle) and two
patches of the stubby network (bottom) pooled across monkeys M1
and M2. An 88×88 matrix of correlation coefficients was computed
from responses of cells in each patch to 88 stimuli (8 views × top-11
preferred objects). b: Responses from three example cells recorded
in NML3 (top), the body network (middle) and the stubby network
(bottom) to 51 objects at 24 views. Four views of the most preferred
object are shown below each response matrix. c: Responses of
neurons recorded from patches in the NML network (top), the body
network (middle) and the stubby network (bottom) as a function of
distance along the preferred axis. The abscissa is rescaled so that the
range [−1, 1] covers 95% of the stimuli. Half of the stimulus trials
were used to compute the preferred axis for each cell, and held-out
data was used to plot the responses shown. 65

4.4 a: A schematic plot showing the map of objects generated by the first
two PCs of our object space. The stimuli in the rectangular boxes were
used for mapping the four networks shown in (c) and (d) using fMRI.
b: All the stimuli used in the electrophysiology experiments (Fig. 4.7a,
b), projected onto the first two dimensions of the object space (grey
circles). For each network, the top 100 preferred images are marked
(body network: green, face network: blue, stubby network: magenta,
NML network: orange). Numbers in parentheses indicate the number
of neurons recorded from each network. c: Coronal slices from
posterior, middle, and anterior IT of monkeys M3 and M4 showing
the spatial arrangement of the four networks (maps thresholded at
𝑝 < 10−3, uncorrected). Here, the networks were computed using
responses to the stimuli in (a). d: As in (c), showing the four networks
in monkeys M3 and M4 overlaid on a flat map of the left hemisphere.
e, left: Spatial profiles of the four patches along the cortical surface
within posterior IT for data from two hemispheres of four animals. The
𝑦-axis shows the normalized significance level for each comparison
of each voxel, and the 𝑥-axis shows the position of the voxel on the
cortex (see Methods). e, right: Anatomical locations of the peak
responses plotted against the sequence of quadrants in object space. f,
g: As in (e), for voxels from middle IT (f) and anterior IT (g). 67

xv

4.5 a: Reconstructions using 482 cells from the NML, body, stubby,
and face networks. Example reconstructed images from the three
groups defined in (b) are shown. Each row of four images shows
from left to right: (1) the original image, (2) the reconstruction
using the fc6 response to the original image, (3) the reconstruction
using the fc6 response projected onto the 50D object space, and
(4) the reconstruction based on neuronal data. b: The distribution
of normalized distances between reconstructed feature vectors and
best-possible reconstructed feature vectors (see Methods). 68

4.6 Time courses from NML1–3 during microstimulation of NML2.
a: Sagittal (top) and coronal (bottom) slices showing activation in
response to microstimulation of NML2. The dark track shows the
electrode targeting NML2. b: Time course of microstimulation
(black) and the fMRI response (red) from each of the three patches in
the NML network. 83

4.7 Stimuli used in electrophysiological recordings. a: 51 objects from
6 categories were shown to monkeys. b: 24 views for one example
object, resulting from rotations in the 𝑥-𝑧 plane (abscissa) combined
with rotations in the 𝑦-𝑧 plane (ordinate). c: A line segment that
was parametrically varied along 3 dimensions was used to test the
hypothesis that cells in the NML network are selective for aspect ratio
(4 aspect ratio levels × 13 curvature levels × 12 orientation levels). d:
36 example object images from our 1,593-image stimulus set. 84

4.8 Additional neuronal response properties across the patches. a1:
Average responses to 51 objects across all cells from patch NML2
plotted against those from patch NML1. The response to each object
was defined as the average response across 24 views and across all
cells recorded from a given patch. b1: As in (a1), for NML3 against
NML2. c1: As in (a1,) for NML3 against NML1. a2, b2, c2: As in
(a1), (b1), and (c1), for three patches in the body network. a3: As in
(a1), for Stubby3 against Stubby2. d: A similarity matrix showing the
Pearson correlation values (𝑟) between the average responses to 51
objects from 9 patches across 4 networks. (Continued on the next page) 85

xvi

4.8 Fig. 4.8, continued: e, left: Cumulative distributions of view-invariant
identity correlations for cells in the three patches of the NML network.
e, right: As on the left, for cells in the three patches of the body
network. For each cell, the view-invariant identity correlation was
computed as the average correlation between response vectors across
all view pairs. The distribution of view-invariant identity correlations
was significantly different between NML1 and NML2 (two-tailed
𝑡-test, 𝑝 < 0.005, 𝑡 (118) = 2.96), NML2 and NML3 (two-tailed
𝑡-test, 𝑝 < 0.005, 𝑡 (169) = 2.9), Body1 and Body2 (two-tailed 𝑡-
test, 𝑝 < 0.0001, 𝑡 (131) = 6.4), and Body2 and Body3 (two-tailed
𝑡-test, 𝑝 < 0.05, 𝑡 (126) = 2.04). *𝑝 < 0.05; **𝑝 < 0.01. f1: The
time course of view-invariant object identity selectivity for the three
patches in the NML network, computed using responses to 11 objects
at 24 views and a 50-ms sliding response window (solid lines). As a
control, time courses of correlations between responses to different
objects across different views were also computed (dashed lines) (see
Methods). f2: As in (f1), for the body network. f3: As in (f1), for
the stubby network. g, top: Average responses to each image across
all cells recorded from each patch plotted against the logarithm of
the aspect ratio of the object in each image (see Methods). Pearson
correlation values are indicated in each plot (all 𝑝 < 10−10). The
rightmost column shows results with cells from all three patches
grouped together. g, bottom: As on top, with responses to each object
averaged across 24 views, and the corresponding aspect ratios also
averaged. The rightmost column shows results with cells from all
three patches grouped together. 86

4.9 Building an object space using a deep network. a: A diagram
illustrating the structure of AlexNet6. Five convolution layers are
followed by three fully connected layers. The number of units in each
layer is indicated below it. b: Images with extreme values (highest:
red, lowest: blue) of PC1 and PC2. c: The cumulative explained
variance of responses of units in fc6 by 100 PCs; 50 dimensions
explain 85% of variance. (Continued on the next page) 87

xvii

4.9 Fig. 4.9, continued: d: Images in the 1,593-image set with extreme
values (highest: red, lowest: blue) of PC1 and PC2 (see Methods).
Preferred features are generally consistent with those computed using
the original image set shown in (b). However, PC2 no longer clearly
corresponds to an animate-inanimate axis; instead, it corresponds
to curved versus rectilinear shapes. e: Distributions showing the
canonical correlation value between the first two PCs obtained by
the 1,224-image set and the first two PCs constructed using other
image sets (1,224 randomly selected non-background object images;
left: PC1, right: PC2; see Methods for details). The red triangles
indicate the arithmetic mean of the distributions. f: We passed 19,300
object images through AlexNet and constructed the PC1-PC2 space
using PCA. Then we projected 1,224 images onto this space. The top
100 images for each network are indicated by colored dots (compare
Fig. 4.4b). g: Decoding accuracy for 40 images using object spaces
constructed using responses of different layers of AlexNet (computed
as in Fig. 4.16d). There are multiple points for each layer because
we performed PCA at multiple points in the pooling, activation, and
normalization progression within individual layers. Layer fc6 yielded
the highest decoding accuracy, motivating our use of the object space
generated by this layer throughout the paper. h: To compare IT
clustering using AlexNet with clustering using other deep network
architectures, we first identified the layer of each network that yielded
the best decoding accuracy, as in (g). The bar plot shows the decoding
accuracy for 40 images in 9 deep networks using the best-performing
layer for each network. i: Canonical correlation values between the
first two PCs obtained by Alexnet and first two PCs built using 8 other
deep networks (labelled 2-9). The layer of each network that yielded
the highest decoding accuracy for a sample of 40 images was used for
this analysis. The name of each network and layer can be found in
(j). j: As in Fig. 4.4b, using principal components computed using 8
other networks. 88

xviii

4.10 Axis coding in neurons across IT. a1: The distribution of preferred-
axis consistency for cells in the NML network (see Methods). a2:
As in (a1), for the body network. a3: As in (a1), for the stubby
network. b: The set of responses recorded for each image was split
in half, and the average response in one half of the trials was used
to predict the average response in the other. Percentage of variance
explained, after Spearman-Brown correction (mean 87.8%), is plotted
against the percentage of variance explained by the axis model (mean
49.1%). The mean explainable variance across the 29 cells was 55.9%.
(Continued on the next page) . 89

4.10 Fig. 4.10, continued: c: Percentage of variance explained by a
Gaussian model, plotted against the percentage of variance explained
by the axis model. d: Percentage variances explained by a quadratic
model, plotted against the percentage of variance explained by the
axis model. Inspecting the quadratic model coefficients revealed a
negligible quadratic term. (The mean ratio of second-order coefficients
to first-order coefficient was 0.028.) e1, top: The red line shows the
average modulation along the preferred axis across the population
of NML1 cells. The grey lines show, for each cell in NML1, the
modulation along the single axis orthogonal to the preferred axis
in the 50D object space that accounts for the most variability. The
blue line and error bars represent the mean and standard deviation,
respectively. e1, middle: An analogous plots for NML2. e1, bottom:
An analogous plots for NML3. e2: As in (e1), for the three body
patches. e3: As in (e1), for the two stubby patches. 90

4.11 Similar functional organization observed using a different stimulus
set. a: Projection of preferred axes onto PC1 and PC2 for all
neurons recorded using two stimulus sets (left: 1,593 images from
freepngs.com; right: the original 1,224 images of 51 objects ×
24 views). The PC1-PC2 space for both plots was computed using
the 1,224-image set. Different colors encode neurons from different
networks. b: The top-21 preferred stimuli based on average responses
from the neurons recorded in the three networks. (Continued on the
next page) . 91

xix

4.11 Fig. 4.11, continued: c1: Silhouette images that project strongly
onto the four quadrants of the object space. c2: Coronal slices from
posterior, middle, and anterior IT of monkeys M2 and M3 showing the
spatial arrangement of the four networks revealed using the silhouette
images in (c1), in an experiment analogous to that illustrated in
Fig. 4.4a. d1: “Fake object” images that project strongly onto the four
quadrants of the object space. Note that fake objects that project onto
the face quadrant do not resemble real faces. d2: As in (c2), with fake
object images from (d1). e1: Stimuli generated using deep dream
techniques that project strongly onto the four quadrants of object space.
e2: As in (c2), with deep dream images from (e1). The results shown
in (c)–(e) support the idea that IT is organized according to the first
two axes of an object space, rather than low-level features or semantics. 92

4.12 Response time courses from the four IT networks spanning object
space. Time courses were averaged across two monkeys. To avoid
selection bias, odd runs were used to identity regions of interest, and
even runs were used to compute average time courses from these
regions. 93

4.13 Searching for substructure within patches. a: Axial view of the
Stubby2 patch, together with projections of three recording sites. b:
Mean responses to 51 objects from neurons recorded at the sites
shown in (a), grouped by recording site (same format as Fig. 4.2a,
top). c: Axial view of the Stubby3 patch, together with projections of
two recording sites. d: Mean responses to 51 objects from neurons
recorded at the sites shown in (c), grouped by recording site. The grey
dots represent the other neurons recorded across the four networks.
(Continued on the next page) . 94

xx

4.13 Fig. 4.13, continued: e: Projections of the preferred axes of Stubby2
patch neurons onto PC1-PC2 space. There is no clear separation
between neurons from the three sites in PC1-PC2 space. f: As
in (e), for cells recorded from two sites in the Stubby3 patch. g1:
PPC1-PC2 projections of the preferred axes of all recorded neurons.
Different colors encode neurons from different networks. g2: As
in (g1), but the color represents the cluster to which the neurons
belong. Clusters were constructed using 𝑘-means clustering, with the
cluster count set to four, and the distance between neurons defined as
the correlation between preferred axes in the 50D object space (see
Methods). Comparing (g1) and (g2) reveals a high degree of similarity
between the anatomical and functional clustering of IT networks. g3:
Calinski-Harabasz criterion values were plotted against the number
of clusters for 𝑘-means clustering performed with different cluster
counts (see Methods). The optimal cluster count is four. h1: As in
(g1), for projections of preferred axes onto PC3 and PC4. h2: As in
(h1), but the color represents the cluster to which the neurons belong.
Clusters were constructed using 𝑘-means clustering, with the cluster
count set to four, and the distance between neurons defined by the
correlation between preferred axes in the 48D object space obtained
by removing the first two dimensions. The difference between (h1)
and (h2) suggests that there is no anatomical clustering for dimensions
beyond the first two PCs. h3: As in (g3), with 𝑘-means clustering in
the 48D object space. By the Calinski-Harabasz criterion, there is no
functional clustering for dimensions beyond the first two. 95

4.14 Relating the object space model to previous accounts of IT or-
ganization. a1: The object images used in [18] are projected onto
PC1-PC2 space (computed as in Fig. 4.4b, by first passing each image
through AlexNet). A clear gradient from large (red) to small (blue)
objects is seen. a2: As in (a1), for the inanimate objects (large and
small) used in [17]. a3: As in (a1), for the original object images
used in [24]. a4: As in (a1), for the texform images used in [24].
b2–b4: Projection of animate and inanimate images from original
object images (b2, b3) and texforms (b4). (Continued on the next page) 96

xxi

4.14 Fig. 4.14, continued: c, left: Colored dots depict the projection of stim-
uli from the four conditions used in [38]. c, right: Example stimuli
(blue: small object-like; cyan: large object-like; red: landscape-like;
magenta: cave-like). d, left: Grey dots depict 1,224 stimuli projected
onto object PC1-PC2 space; colored dots depict the projection of stim-
uli from the four blocks of the curvature localizer used in [41]. d, right:
Example stimuli from the four blocks of the curvature localizer (blue:
real-world round shapes; cyan: computer-generated 3D sphere arrays;
red: real-world rectilinear shapes; magenta: computer-generated 3D
pyramid arrays). e: Images of English and Chinese words projected
onto object PC1-PC2 space (black diamonds), superimposed on the
plot from Fig. 4.4b. The projections are grouped within a small
region, consistent with the hypothesis that the visual word form area
is specialized to represent stimuli in a particular region in the object
space. 97

4.15 Comparing object space dimensions to category labels as descrip-
tor of response selectivity in the body patch. a: Four classes of
stimuli: (1) body stimuli that project strongly onto the body quadrant
of object space (bright red), (2) body stimuli that project weakly onto
the body quadrant of object space (dark red), (3, non-body stimuli that
project as strongly as the weak body stimuli onto the body quadrant
of object space (dark blue), and (4) non-body stimuli that project
negatively onto the body quadrant of object space (bright blue). b:
The predicted response of the body patch to each image in the four
stimulus conditions in (a), computed by projecting the object space
representation of each image onto the preferred axis of the body patch
(determined from the average response of body patch neurons to
images in the 1,224-image stimulus set). c, left: fMRI response time
courses from the body patches in the four stimulus conditions in (a).
c, middle: Mean normalized single-unit responses from neurons in
the Body1 patch to the four stimulus conditions. c, right: Mean local
field potential from the Body1 patch to the four stimulus conditions.
Shading represents the standard error. 98

xxii

4.16 Object and image decoding using a large object database. a: A
schematic illustrating the decoding model. To construct and test the
model, we used 𝑚 recorded cells’ responses to 𝑛 images. Population
responses to images from all but one object were used to determine the
transformation from responses to feature values via linear regression,
and then the feature values of the remaining object were predicted (for
each of 24 views). b: Model predictions plotted against true feature
values for the first PC of the object space. (Continued on the next page) 99

4.16 Fig. 4.16, continued: c: Percentage of explained variance for all 50
dimensions using linear regression, based on the responses of four
neural populations (yellow: 215 NML cells; green: 190 body cells;
magenta: 67 stubby cells; black: 482 combined cells). d: Decoding
accuracy as a function of the number of object images randomly drawn
from the stimulus set for the four neural populations used in (c). The
dashed line indicates chance performance. e: Decoding accuracy for
40 images, plotted against cell count, with cells drawn randomly from
same four populations used in (c). f: Decoding accuracy for 40 images,
plotted as a function of the numbers of PCs used to parametrize object
images. g: Example reconstructed images from the three groups
defined in (h). In each pair, the original image is shown on the left,
and the image reconstructed using neural data is shown on the right.
h: The distribution of the normalized distance between predicted and
reconstructed feature vectors. The normalized distance takes into
account the fact that the object images used for reconstruction did not
include any of the object images shown to the monkey, setting a limit
on the reconstruction quality (see Methods). A normalized distance
of 1 means that the best possible solution has been found. Images
were sorted into three groups based on these normalized distances. i:
The distribution of specialization indices SI𝑖 𝑗 across objects for the
NML (left), body (middle) and stubby (right) networks (see Methods).
Example objects for each network with SI𝑖 𝑗 ≈ 1 are shown. Red bars
indicate objects with specialization indices significantly greater than
0 (two-tailed 𝑡-test, 𝑝 < 0.01). 100

xxiii

5.1 Connectome-constrained and task-optimized models of the fly
visual system. a: Deep mechanistic network models (DMNs) aim
to satisfy three constraints: The architecture is based on connectome
measurements (b–e), cellular and synaptic dynamics are given by
simple mechanistic models (f), and free parameters are optimized
by training the model to perform optic flow estimation (g). b: A
schematic of the optic lobe of D. melanogaster with several processing
stages (neuropils) and cell types (adapted from [21]). c: Identified
connectivity between 64 cell types, represented in terms of the total
number of synapses from all neurons for each (presynaptic cell type,
postsynaptic cell type) pair. Blue indicates putative hyperpolarizing
inputs, red indicates putative depolarizing inputs, and the size of
the squares corresponds to the number of input synapses. d: The
retinotopic hexagonal lattice columnar organization of our visual
system model. Each lattice represents a cell type, and each hexagon
represents an individual cell. Photoreceptor columns are aligned
with downstream columns. The model contains synapses from all
neuropils. e: An example convolutional filter, representing Mi9 inputs
onto T4d cells. The numbers in the cells are average synapse counts.
f: Single-neuron and synaptic dynamics are described by simple
mechanistic models. Free parameters (magenta) are optimized by
training the recurrent network model to perform optic flow estimation.
(Continued on the next page) . 106

5.1 Fig. 5.1, continued: g: An illustration of a DMN performing optic
flow estimation. Each hexagonal lattice shows a snapshot of simulated
voltage levels of all cells of each type in response to stimuli presented
to the photoreceptors (R1–R8). Edges illustrate connectivity between
cell types. A decoder receives the simulated neural activity of all
output neurons to estimate optic flow. The parameters of the DMN
and the decoder are tuned using gradient-based optimization. 107

xxiv

5.2 Ensembles of DMNs predict tuning properties. a: We optimized
50 connectome-constrained DMNs, yielding a variety of solutions,
and compared the tuning properties of their cells to experimental
measurements. Inset: The task error distribution. Blue: The 10 best
models, also shown in (b–d). b: ON- and OFF-contrast selectivity
indices for each cell type for the 10 models with best task performance.
(See Fig. 5.13 for the 10 worst models.) Yellow: Cell types known
to be ON-selective. Violet: Cell types known to be OFF-selective.
Black: Selectivity not yet established experimentally. Bold: Inputs
to the optic flow decoder. c: Direction selectivity indices (DSI)
computed from neural responses to moving edges, using the same
10 models as above. d: Correlations between measurements and
neural activity predictions for seven types of DMNs with different
connectome constraints. Dashes indicate the median correlation
across models. The first DMN type on the left corresponds to the
main DMNs analyzed in panels (b) and (c), and and all subsequent
figures. The remaining six DMNs incorporate fewer constraints. . . 109

xxv

5.3 Cluster analysis of DMN ensembles enables hypothesis generation
and suggests experimental tests. We clustered 50 DMNs after
embedding them in a two-dimensional space based on their responses
to naturalistic scenes, and aimed to identify whether the clusters
corresponded to qualitatively different tuning mechanisms. a: T4c
cell responses exhibited three clusters: two with ON-motion direction
selectivity (the circular and triangular markers), and one without
(the square marker). b: T4c tuning in the three clusters. Circular
marker: Upward tuning (the cluster with lowest average task error:
5.297; the known tuning of T4c is shown in black). Triangular marker:
Downward tuning (5.316 error). Square marker: No motion tuning
(5.357 error). c: A schematic of the corresponding ON-motion-
detection pathway. d: Connectivity of major inputs to T4c. Blue
and red: Putative hyper- and depolarizing inputs. Saturation: The
average number of input synapses for each spatial offset. e: Tuning
properties within each cluster reveal dependencies between T4 tuning
and the tuning of Mi4 and Mi9 cells in the ensemble. Switching
Mi4 (known ON-contrast selective) and Mi9 (known OFF-contrast
selective) contrast preferences results in directionally opposite motion
tuning in T4. DMNs in first cluster (the circular marker) exhibit ON
selectivity for Mi1, Tm3, Mi4, and CT1(M10), and OFF selectivity
for Mi9. In response to ON motion stimuli, in these DMNs T4c
receives central depolarizing input from Mi1 and Tm3 and dorsal
hyperpolarizing input from Mi4 and CT1(M10). 115

xxvi

5.4 Task-optimal DMNs largely recapitulate known mechanisms of
motion computation. a: Responses to moving edges for T4 and
T5 subtypes from task-optimal model clusters, and comparison with
experimental measurements [39, 22] b: The voltage of a T4c neuron
(top) and contributions from major input cells (bottom) while an ON
edge moves across the visual field in preferred (solid) and null (dashed)
directions. c: Major cell types and connectivity in the ON- (T4)
and OFF- (T5) motion detection pathways (simplified). d: Spatial
receptive fields of major motion detector input neurons revealed
by single-ommatidium flashes and comparison with experimental
measurements [4, 46]. e: Single-ommatidium flash responses agree
with experimental measurements [8, 4], with the exception of Tm4
(red cross). f: The stimulus sequences predicted to elicit the strongest
responses in T4c and T5c cells. A central OFF disc followed by an
ON edge moving upwards elicits the strongest response in a T4c cell,
and an ON disc followed by an OFF edge elicits the strongest response
in a T5c cell. 118

5.5 Connectome measurements constrain neural networks in circuits
with sparse connectivity. a: We constructed synthetic “ground truth
connectome” networks with varying degrees of sparse connectivity
for classifying hand-written digits. For each ground truth connectome
network, we simulated connectome measurements and constructed
a connectome-constrained and task-optimized “simulated network”
(Methods). We measured the correlation of the neural response vector,
across all stimuli, between ground truth (dark green) and simulated
networks (light green). b: Median neural response correlation
coefficients from 100 randomly-sampled neuron pairs from each
layer and across 25 network pairs. Two conditions were considered,
including a condition in which connectome measurements revealed
only binary connectivity (blue), and a condition in which connectome
measurements also contained information about connection strengths
(orange). The fly visual system model presented here likely falls in
the region between the two curves, since measured synapse counts
inform relative connection strengths between pairs of neurons for the
same pair of cell types, but not absolute connection strengths. 120

xxvii

5.6 Cell connectivity. The matrix shows how cells of the 64 cell types
within the inner 91 columns (of 721) of the recurrent convolutional
DMN connect, either by excitatory connections (red) or inhibitory
connections (blue). 137

5.7 Statistics of inhibitory and excitatory synapse inputs. a: Number
of input cell types per cell type. b: Center of mass offsets of synaptic
input. c: Average excitatory and d: inhibitory center of mass offset
of synaptic inputs against median predicted direction selectivity index
for all cell types. Datapoints for cell types that were predicted as
significantly motion selection are labeled. 138

5.8 T4 and T5 motion detection mechanisms hypothesized by the
model. a: The four T4 cell types detect ON-edge motion towards
the four cardinal directions (here T4c). An ON-edge moving towards
the preferred direction (PD) of the cell elicits a high depolarization
in the central T4 cell (black, solid). In contrast, an edge moving
towards the null direction (ND) of the cell elicits a wiggle from weak
hyperpolarization to weak depolarization (black, dashed). (Continued
on the next page) . 139

xxviii

5.8 Fig. 5.8, continued: We characterize the motion detection mechanism
by displaying the PD- and ND-responses of the T4 cell type, and the
temporal and spatial contributions of its input cell types according to
our connectome-measurement constrained model. Across all T4 cell
types, our model predicts that the depolarization in response to PD
motion is mainly driven by excitatory Mi1 current inputs (darkest red,
solid) from roughly a two-column radius of Mi1 cells. The PD-motion
response is increased through excitatory inputs from the neighboring
T4 cells of the same type (third darkest red, solid) with the center of
mass located towards the leading side of the receptive field (i.e. the
motion stimulus towards the PD reaches those T4 cells first, enabling
this mechanism). However, for ND-motion the neighboring T4 cells
do not provide any excitatory currents (third darkest red, dashed). Tm3
cells provide additional excitatory currents that are, as for Mi1 cells,
roughly agnostic to PD vs ND motion. For ND-motion, Mi4 cells
decrease excitatory currents from Mi1 by providing roughly matching
inhibitory currents from the trailing side of the receptive field (darkest
blue, dashed). In contrast, for PD-motion, the inhibition from Mi4
cells is delayed (through the spatial layout and potentially neural time
constants not characterized here; darkest blue, solid), which allows
a strong depolarization of the T4 cell. CT1 shadows Mi4 in that it
provides a similar but weaker inhibition from the same location of the
receptive field (second darkest, blue). Noteworthy, our model suggests
roles and an additional mechanism for Mi9 cells in b: and TmY15
cells in c:: both can contribute to the motion detection mechanism
by different inhibitory mechanisms for PD-motion with respect to
ND-motion. b: This figure should be compared to Gruntman et al.
2018, Fig. 4f. Predicted T4c responses to bars moving in the PD (left
column) and in the ND (right column) at speeds of 56◦/𝑠, 75◦/𝑠, and
110◦/𝑠 (’Measured’, saturated red and blue, speeds varied from top to
bottom row). Responses to moving bars are overlaid with the linear
sum of responses to the individually flashed frames that constitute
the moving bar video sequence (’Linear sum’, faint red and blue).
Faint grey traces in the background of the first panel show individual
flash responses before linear summation. The duration that the flash
stimulus was presented in each location precisely matched the duration
that the flash remained at the location in the moving bar sequence.
Bars were approximately 9◦ wide and 20.25◦ high and moved across
45◦ with respect to the receptive field in the center. c: The four T5 cell
types detect OFF-edge motion towards the four cardinal directions
(here T5c). An OFF-edge moving towards the preferred direction
(PD) of the cell elicits a high depolarization in the central T5 cell
(black, solid). In contrast, an edge moving towards the null direction
(ND) of the cell elicits a wiggle from weak hyperpolarization to
weak depolarization (black, dashed). We characterize the motion
detection mechanism by displaying the PD- and ND-responses of the
T5 cell type, and the temporal and spatial contributions of its input
cell types according to our connectome-measurement constrained
model. (Continued on the next page) 140

xxix

5.8 Fig. 5.8, continued: d: Same as (b) for T5c. Across all T5 cell types,
our model predicts that Tm1 and Tm9 cell types contribute to the
T5 cell depolarization with excitatory input currents in response to
moving edges. Tm1 inputs come from roughly a centered, two-column
radius of Tm1 cells and Tm9 inputs from one column offset towards
the leading side of the receptive field. We observe delayed excitation
from Tm9 cells in all cases for ND-motion vs PD-motion. As for T4
cells, the PD-motion response is increased through excitatory inputs
from the neighboring T5 cells of the same type. For ND-motion,
the neighboring T5 cells do not provide any excitatory currents. For
ND-motion, CT1(Lo1) cells decrease excitatory currents by providing
strong inhibitory currents from the trailing side of the receptive
field. In contrast, for PD-motion, the decrease from CT1(Lo1) cells
is delayed, which allows a strong depolarization of the T5 cell to
discriminate motion. 141

xxx

5.9 DMNs suggest that TmY3 neurons compute motion indepen-
dently of T4 and T5 neurons. a: We clustered 50 DMNs after
performing nonlinear dimensionality reduction of their responses to
naturalistic scenes for each cell type, and aimed to identify whether
clusters correspond to qualitatively different tuning mechanisms. b:
Dimensionality reduction on TmY3 responses to naturalistic stimuli
reveals 4 clusters of DMNs with average task errors 5.298 (circle),
5.317 (triangle), 5.328 (square) and 5.331 (star). Across clusters,
TmY3 shows different strengths of direction selectivity (evaluated
with moving edge stimuli). ON-edge direction selectivity is strong
in the first and the third cluster. c: Normalized peak responses of
TmY3 to moving edge stimuli in the DMNs of each cluster. d: Major
cell types and synaptic connections in the pathway that projects onto
TmY3 (simplified). e: The input elements of TmY3 with the highest
amount of synapses are L4, L5, Tm2, Tm3, Mi1, Mi9, and Mi4. The
asymmetries of their projective fields could allow TmY3 to become
motion selective. f: Dependencies between TmY3 tuning and the
contrast preference of its input cells. For clusters in which TmY3
is motion selective, cluster 1 (TmY3 tuning to downwards/front-to-
back motion, circular marker) indicates ON-selectivity for Tm3, Mi1,
and Mi4 cells, and OFF-selectivity for L4, Tm2, and Mi9 cells, in
agreement with known selectivities. In contrast, cluster 3 (TmY3
tuning to upwards/back-to-front motion, square marker) indicates
ON-selectivity for Mi9 in contradiction to the known selectivities and
hence ruling out the third TmY3 tuning solution. 142

5.10 TmY3 motion detection mechanisms hypothesized by the model.
a: Responses to PD and ND ON-edge motion and contributions from
input elements as in Fig. 5.8. b: PD enhancement and ND suppression
in the model. Same as Fig. 5.8b for T5c. 143

5.11 Statistics of learned parameters of best 20% models vs. worst 20%
models. a: Task-optimized resting potentials. b: Task-optimized
time constants. c: Task-optimized filter scaling factors. 144

xxxi

5.12 DMN benchmark of connectomic constraints. a-d: How would in-
complete knowledge of connectome affect the tuning predictions?
We artificially varied DMNs with random parameters, connectome-
constrained or task-optimized parameters. Five experiments: Four
’Synapse-optimized models’, one ’Fully optimized’. Details in Meth-
ods. How would incomplete knowledge of cell types affect the
tuning predictions? We artificially assumed some cell types to
be indistinguishable, with shared physiological parameters (resting
potentials, time constants, and unitary synapse strengths). Two ex-
periments: (1) ’Full DMN Merge T4, T5’ assumes that ‘T4’ and
‘T5’ subtypes were indistinguishable, reducing the number of cell
types to 58. (2) ’Full DMN Merge E/I’ assumes that we had three
cell types, ‘excitatory’ (37 cell types), ‘inhibitory’ (22 cell types)
or ‘both’ (4 cell types), based on our knowledge of synapse signs.
Tuning predictions are shown in comparison to the Full DMN and
the DMN with random parameters. a: Task error. b: Predicted
correlations to flash response indices, T4-, and T5 motion-tuning
curves (10 best models). c: Predicted correlations to known direction
selectivity indices. d: Distances between known preferred directions
and predicted preferred directions for T4 and T5 neurons. (Continued
on the next page) . 145

5.12 Fig. 5.12, continued: e: Better task performing models predict
motion tuning neurons better. We correlate predicted tuning metrics
from each model to the known tuning properties to understand when
better performing models give us better tuning predictions. (orange)
When correlating the direction selectivity index of each model to the
binary known properties for T4 and T5 and their input cell types,
we find that this correlation is higher for better performing models
(Pearson correlation, 𝑟 = −0.60, p = 2.6 × 10−6, 𝑡 = 𝑟

√︃
df

1−𝑟2 , 95% CI
= [-1, -0.42], df = 48). (magenta) While the models predicted the
known contrast preferences generally well, the correlation of flash
response index to the binary known contrast preferences of 31 cell
types did not significantly increase with better performing models. . 146

xxxii

5.13 Predicted tuning with respect to task-performance. a: Flash
response index computed as the max-abs-scaled peak response to an
off flash subtracted from the max-abs-scaled peak response to an on
flash – both of approximately 35◦ radius and presented for 1s after
2 seconds of grey input. Values above 0 indicate on-polarity, values
below zero indicate off-polarity. Known on-polar and off-polar cell
types are colored in yellow and magenta. b: Single cell type direction
selectivity of best 20% task-performing models versus worst 20%
task-performing models of an ensemble of 50 models as a result of
peak voltage responses in central columns to on-edges and off-edges
moving towards all possible directions on grey background (Equation
9). The bolded cell types are those which optic flow is decoded from. 147

5.14 Spatio-temporal receptive fields mapped with ON- and OFF-
impulses and maximally excitatory stimuli. a: Spatiotemporal
receptive fields for motion detector neurons agree with experimental
measurements (Gruntman et al. 2018). b: Spatio-temporal receptive
field mapping with single ommatidium OFF-impulses. c: Maximally
excitatory stimuli and baseline-subtracted responses. Including full-
field naturalistic, regularized naturalistic, artificial, and moving edge
stimuli and responses. Moving edge angle and speed maximize the
central cell peak response. Artificial stimuli are optimized from
initial noise to maximize the central cell activity using gradient ascent
plus full-field regularization towards grey. The last row shows the
baseline-subtracted central cell responses. Peak central cell responses
at time point zero. 148

1

C h a p t e r 1

INTRODUCTION

Imagine that you’re sitting outside on a nice day and you see a squirrel pop her head
out from behind a tree branch. This isn’t an especially surprising occurrence, as
you’ve already seen a few other squirrels climbing trees since you sat down. And
the experience of seeing this squirrel doesn’t have a strong positive or negative
emotional valence, and won’t cause you to form any long-term memories or perform
any immediate action.

But still, the squirrel’s decision to poke her head up over the branch has changed
something within you. Electrical signals exist in your brain that would not exist if the
squirrel wasn’t there. And this isn’t only true for the squirrel. If any object in your
field of view was to suddenly disappear, the pattern of electrical signals being sent
through your brain would change. In this sense, there are patterns of neural activity
that can be thought of as reflections, shadows, or echoes of objects and surfaces in
the world.

And analogous reflections exist in the brains of many other animals. Anatomical and
genetic evidence suggests that visual systems may have evolved independently over
40 times in the history of life on planet Earth [5, 11]. Imagine there is a row of lawn
chairs extending to your left and right, and on each chair there is a representative
animal from one of these lineages. You take a moment to survey your company. In
the chair directly to your left is a saltwater tank holding a cuttlefish. In the chair
directly to your right is a monarch butterfly sipping from a tiny thimble of lemonade.
Many of the remaining chairs hold jellyfish, mollusks, or worms. And a few hold
animals that are too small to see.

By sheer good luck, the occupant of every chair seems to be looking directly at the
squirrel that just popped her head out from behind the branch. What does the neural
reflection of the squirrel’s head look like in each of their visual systems? And what
about the reflections of the tree, the ground, or the sky? Are there meaningful ways
in which these independently evolved representations have something in common?
And how can we best conceptualize the dimensions along which they differ?

At a fine-grained mechanistic level, we know quite a lot about the ingredients that
contribute to neural representations. We have fairly detailed mathematical models of

2

how light reflects, diffracts, and scatters when interacting with matter [14, 4], how
photoreceptors in our eyes translate photon streams into electrochemical signals [16],
and how individual neurons respond to the signals they receive [9, 6].

But at a holistic level, we are much better at modeling what happens before light
hits the eye than what happens afterward. An experienced digital artist can create a
reasonable approximation of a scene within a few hours or a few days, depending on
its complexity. And although the approximation will omit many details—like the
contents of closed objects, or the molecular makeup of surfaces—we can use it to
predict the image that would be captured for any viewpoint and lighting condition.
An analogous approximation for a visual system—which could predict the neural
signals that would be sent by any of its components when observing any scene, from
any viewpoint, with any lighting condition—has not yet been constructed.

One of the reasons for this, of course, is that observing the behavior of neurons in a
living brain is much more difficult than observing how an object responds to light,
and the relative sparsity of neural measurements makes it more difficult to identify
patterns and distinguish signal from noise. Even despite the amazing advances in
neural recording technology that have occurred over the past two decades [10, 19, 3,
8], we can’t yet simultaneously record from every neuron in most of the visual systems
currently being studied, which limits our ability to develop a holistic cause-and-effect
understanding of their operation. So it may make sense, as a complement to directly
studying a visual system found in nature, to also study a range of fully inspectable
synthetic visual systems that in some way resemble it.

But how can we tell if one visual system resembles another, especially if we don’t
fully understand how they both work? One approach is to think in terms of the
characteristics relevant to natural selection, as it’s the process responsible for any
similarities between visual systems that evolved independently across the animal
kingdom. Once evolution has stumbled upon a particular visual system (or more
precisely, a genetic recipe that stochastically unfolds into a visual system through
neural development and life experience), it will either exist briefly in a few individuals
and then be lost, exist briefly as a stepping stone to further adaptation, or proliferate
and remain stable over many generations. A variety of factors influence the likelihood
of each of these outcomes, but I’ll limit our discussion here to four: (1) the function the
visual system performs, (2) the physical space it occupies, (3) the energy it consumes,
and (4) its robustness in the face of modification. If we can better understand how
optimization targeting these design space dimensions shapes synthetic visual systems,

3

we may be able to apply this understanding to visual systems found in nature.

1.1 Visual systems optimized to perform a particular function
Animals tend to evolve visual systems that are preferentially suited for tasks that are
important to them. For example, we can interpret someone’s facial expression much
more quickly than we can count the bricks in a wall, even though counting bricks is
arguably a simpler task from a computational perspective. Here are a few examples
of ethologically relevant time-varying signals that a visual system might attempt to
infer:

• Object type: This signal indicates whether an object extends through a given
point in 3D space x, and, if so, the kind of object that is located there.

• Object identity: This signal indicates, for each object in a dynamically
updating collection of tracked objects, whether the object extends through a
given point in 3D space x.

• Behavior type: This signal indicates whether a given point in 3D space x is
contained within an animal exhibiting a recognized behavior, and, if so, the
kind of behavior it is exhibiting.

• Surface trajectory: This signal indicates whether a given point in 3D space
x lies on a surface, and, if so, the rotational and translational velocity of the
surface at x.

• Self trajectory: This signal indicates the rotational and translational velocity
of the observer.

• Collision imminence: This signal indicates whether the observer will collide
with something within a given timespan Δ𝑡 if it doesn’t alter its trajectory
beforehand.

• Passageway size: This signal indicates whether the observer would fit if it was
moved so that its center of mass was located at a given point in 3D space x.

• Illumination level: This signal indicates how much light is passing through a
given point in 3D space x. (Knowing this could be useful for an animal that
wants to remain hidden.)

4

If we were to determine that a biological visual system and a synthetic model
of it were both tracking one of these signals—that is, continually estimating its
value over time—how similar should we expect them to be? Imagine that you’re
constructing a processing pipeline to track a signal given some vocabulary of primitive
computational elements (e.g., neurons or logic gates). And imagine that you first
consider the space of pipelines with input-output latencies below some small duration
𝜀. This will limit both the number of links away an output element can be from
an input element—since each element adds some latency—and the total number of
elements in the pipeline—since pipelines with more elements are physically larger,
and physically larger pipelines require internal signals to be transmitted along longer
paths. Imagine that next you consider the space of pipelines with input-output
latencies between 𝜀 and 2𝜀, and after that the space of pipelines with latencies
between 2𝜀 and 3𝜀, and so on. As you increase the lower bound on the latency Δ𝑡min,
the task of estimating the signal of interest will become more difficult, since the
estimate at any time 𝑡 won’t be able to take observations made after time 𝑡 − Δ𝑡min

into account. But in exchange you’ll be able to use a more complex algorithm to
perform this task.

In terms of the timescales at which the world can change in ways that would benefit
or threaten an animal, the amount of time it can take for information to propagate
through a single neuron can be significant [13]. So it might be the case that some
vision tasks are so latency-sensitive that only a very restricted set of fairly simple
biological visual systems will be suited for them. If a biological visual system and a
model of it perform a task like this, then there is a reasonable chance that they’ll be
algorithmically similar so long as they are of similar complexity in terms of element
count, pipeline depth, and the kind of processing individual elements perform.

Other vision tasks may be latency-tolerant enough that processing pipelines with
many elements and deep topologies will be viable, in which case a wide variety
of qualitatively distinct solutions may exist. If two visual systems were sampled
randomly from the set of systems that could perform a task like this, they would
probably be very different. However, neither biological evolution nor the processes
that are most often used to discover synthetic visual systems—like stochastic gradient
descent and synthetic evolution—select randomly from the full set of viable solutions.
And they are similarly biased in at least one important way: because they generate
solutions based on a finite amount of information—whether in the form of error
measurements, reinforcement signals, or offspring counts—they tend to prefer simpler

5

solutions. (i.e., solutions with shorter description lengths, for some solution-encoding
scheme.) This means that, even if a biological visual system performs a task for which
a wide variety of alternative solutions exist, synthetic visual systems optimized to
perform the same task may cluster in a subspace of likely-to-be-discovered solutions
that is much smaller than the full space of viable solutions, and solutions in this
subspace may be mechanistically similar to the biological visual system even if the
vast majority of solutions outside it are not.

1.2 Visual systems optimized for space efficiency
Animals with larger bodies require more energy to move and stay alive, and have
more difficulty hiding from potential predators and prey. So any biological structure
that increases an animal’s size without granting it some kind of advantage—like
the strength and speed conferred by muscle or the protection conferred by a thick
shell—will tend to be selected away.

For a visual system, the effect of optimizing for space efficiency is similar to the effect
of optimizing to minimize processing latency, albeit with a few important differences.
When minimizing the processing latency of a visual system, modifications will be
favored if they decrease the wiring length or the number of processing elements along
the highest-latency input-to-output path. Such modifications will still be favored
when optimizing for space efficiency, but modifications that remove elements or
decrease the amount of wiring elsewhere in the system will be favored as well. At
the algorithmic level, this means that optimizing for either processing latency or
spatial footprint will tend to result in simpler solutions, but processes that weigh
responsiveness more heavily than compactness will tend to decompose computations
into parts that can be carried out in parallel, whereas processes that weigh compactness
over responsiveness may decompose computations into many stages applied serially.

1.3 Visual systems optimized for energy efficiency
Attempting to minimize the amount of energy expended by a visual system will tend
to make it simpler as well, since every additional processing element or micrometer
of wiring can require energy to maintain, and expend additional energy during
operation. However, unlike the spatial footprint of a visual system, the amount of
energy that a visual system uses can change over time. And investing energy into
any particular form of visual information processing may be worthwhile in some
circumstances but not in others. This means that a visual system optimized for
energy efficiency may perform conditional computation, activating only a subset

6

of its components at any given time, based on the sensory input and/or top-down
control signals it has received.

It is worth noting though that a visual system that makes extensive use of conditional
computation may be far from optimal from the perspective of space efficiency. If
only a small, specialized portion of a visual system is active at a given time, and each
of these subsystems must be sophisticated enough to perform useful information
processing, then the system in its totality might need to be very large. Because of this
tension, the extent to which a visual system in nature allocates energy dynamically
may reflect the balance of the selective forces that shaped it.

1.4 Visual systems optimized for robustness
Even if evolution has discovered a locally optimal visual system for a particular
animal, the central nervous system housing it may still be in flux. And, since a single
gene can affect a wide swath of an animal’s nervous system [22, 1], evolution may
select for genes that contribute to adaptive non-vision-related capabilities, even if they
have a somewhat disruptive effect on the visual system. After such a gene propagates
through a population, it may take a long time for additional genes that “fix” the
visual system to eventually arise. So, if neural innovation beyond the visual system
is fairly frequent, the visual system may be operating under the burden of multiple
genetic handicaps at a given time, above and beyond any handicaps accumulated via
genetic drift. This means that, all else being equal, visual systems that degrade more
gracefully in response to perturbation will tend to outcompete brittle visual systems.

Characterizing the extent to which a visual system is robust to modification is a
complicated endeavor, since it requires analyzing the behavior of the original visual
system, the ways in which it is likely to be perturbed, and the behavior of the systems
resulting from the various potential perturbations. Empirically though, we can
observe that when humans engineer systems to be robust, these systems tend to have
three properties: (1) some degree of modularity, which limits the scope of a potential
perturbation, (2) some degree of redundancy, and (3) some mechanism for identifying
when a module is failing, and adapting to circumvent it [12, 7]. Modularity may arise
naturally in a space-constrained visual system as a result of minimizing total wiring
length. And the capacity for self-reconfiguration is compatible with the conditional
computation that might arise in an energy-constrained system. But redundancy can
only increase the amount of space and energy a system requires, so the extent to
which a visual system in nature contains redundant components will be a function of

7

the extent to which the selective pressure for robustness is significant in relation to
the selective pressure for efficiency.

1.5 Overview of the following chapters
The following chapters describe four lines of work aimed at improving our collective
ability to learn about visual systems in nature using optimization-guided models.
Broadly, the first two of these focus on expanding the space of selective forces that can
be factored into optimization-guided models, and the second two focus on modeling
particular visual systems.

chapter 2 presents strategies for optimizing artificial neural networks that can
dynamically activate and inactivate subcomponents and attempt to balance task
performance with energy efficiency. In evaluating these optimization strategies, we
found that, in dynamically-routed networks trained to classify images, subnetworks
became specialized to process distinct categories of images. And increasing the cost
of energy reduced the average fraction of the network that was active at a given time,
in line with the discussion of energy constraints in section 1.3. Additionally, given a
fixed computational budget, dynamically-routed networks tended to perform better
than comparable statically-routed networks.

chapter 3 presents an approach for simulating the evolution of neural networks
encoding an innate behavior—threat detection—with very large populations, and
biologically plausible (albeit simplified) genetic mechanisms. We were able to
evolve populations of neural networks that integrated sensory information over time,
were near-optimally adapted for their environment (>99% of the maximum possible
fitness), and recapitulated predator-avoidance behavior observed in fruit flies. We
found that these high-fitness networks were discovered more quickly in environments
where subpopulations could remain isolated from each other for many generations,
and we found that in these environments subpopulations competed for territory, with
bands of low-fitness hybrids forming at territorial boundaries. This observation—that
neural innovation occurred through parallel exploration followed by competition
rather than gradual, cooperative refinement—suggests that, over long timescales,
visual systems that can tolerate some amount of perturbation and continue to function
will likely outcompete visual systems that can not, which is consistent with the
discussion of the adaptive benefits of robustness in section 1.4.

chapter 4 discusses using an artificial neural network optimized to classify images
to better understand how objects are represented in the macaque visual system.

8

The artificial network was not explicitly optimized for space efficiency or energy
efficiency, but it did roughly match the complexity of the pathways being modeled in
terms of the number of processing elements between inputs and outputs. (Signals may
have traversed slightly more processing elements on average in the artificial network,
but the artificial network also had simpler processing elements.) We constructed
a low-dimensional embedding space for general object images using the object
representations learned by the artificial network, and used this space to interpret the
recordings from cells in macaque inferotemporal (IT) cortex. Anatomically, cells
were clustered into four networks according to the first two principal components
of their preferred axes in this object space. This four-quadrant map spanned three
hierarchical stages of increasing view-invariance, and the cells within it collectively
harbored sufficient coding capacity to approximately reconstruct object images.
Notably, the observation that many images only elicited significant activity in one
of four IT subnetworks is consistent with the observations about optimization for
energy efficiency inducing specialization presented in chapter 2.

chapter 5 discusses combining task-performance optimization with strict anatomical
constraints to obtain a fine-grained predictive model of the fruit fly visual system. We
constructed a model neural network with the experimentally determined connectivity
for 64 cell types in the motion pathways of the fruit fly optic lobe [15, 20, 21, 17,
18], but with unknown parameters for other neuron and synapse properties. We then
optimized the values of those unknown parameters to allow the model network to
represent visual motion [2]. Our mechanistic model made detailed, experimentally
testable predictions for each neuron in the connectome, and we found that these
predictions agreed with experimental measurements of neural activity across 26
studies. We were unable to achieve the same predictive power using either structural
information alone or the task hypothesis alone, illustrating how optimization-guided
modeling can combine synergistically with direct measurement.

9

References

[1] Robert RH Anholt. “Evolution of epistatic networks and the genetic basis of
innate behaviors”. In: Trends in Genetics 36.1 (2020), pp. 24–29.

[2] Daniel J Butler et al. “A Naturalistic Open Source Movie for Optical Flow
Evaluation (Sintel)”. In: Eccv (2012), pp. 611–625. doi: 10.1007/978-3-
642-33783-3_44.

[3] Tsai-Wen Chen et al. “Ultrasensitive fluorescent proteins for imaging neuronal
activity”. In: Nature 499.7458 (2013), pp. 295–300.

[4] Bernardt Duvenhage, Kadi Bouatouch, and Derrick G Kourie. “Numerical
verification of bidirectional reflectance distribution functions for physical
plausibility”. In: Proceedings of the South African Institute for Computer
Scientists and Information Technologists Conference. 2013, pp. 200–208.

[5] Russell D Fernald. “Casting a genetic light on the evolution of eyes”. In:
Science 313.5795 (2006), pp. 1914–1918.

[6] Carl Gold, Darrell A Henze, and Christof Koch. “Using extracellular action
potential recordings to constrain compartmental models”. In: Journal of
computational neuroscience 23 (2007), pp. 39–58.

[7] Ellis F Hitt and Dennis Mulcare. “Fault-tolerant avionics”. In: Avionics:
development and implementation 2 (2001).

[8] Daniel R Hochbaum et al. “All-optical electrophysiology in mammalian
neurons using engineered microbial rhodopsins”. In: Nature methods 11.8
(2014), pp. 825–833.

[9] Alan L Hodgkin and Andrew F Huxley. “A quantitative description of
membrane current and its application to conduction and excitation in nerve”.
In: The Journal of physiology 117.4 (1952), p. 500.

[10] James J Jun et al. “Fully integrated silicon probes for high-density recording
of neural activity”. In: Nature 551.7679 (2017), pp. 232–236.

[11] Kristen M Koenig and Jeffrey M Gross. “Evolution and development of
complex eyes: a celebration of diversity”. In: Development 147.19 (2020),
dev182923.

[12] Israel Koren and C Mani Krishna. Fault-tolerant systems. Morgan Kaufmann,
2020.

[13] Matthew E Larkum, MARC G Rioult, and HANS-R Luscher. “Propagation
of action potentials in the dendrites of neurons from rat spinal cord slice
cultures”. In: Journal of neurophysiology 75.1 (1996), pp. 154–170.

[14] Fred E Nicodemus. “Directional reflectance and emissivity of an opaque
surface”. In: Applied optics 4.7 (1965), pp. 767–775.

https://doi.org/10.1007/978-3-642-33783-3_44
https://doi.org/10.1007/978-3-642-33783-3_44

10

[15] Marta Rivera-Alba et al. “Wiring Economy and Volume Exclusion Determine
Neuronal Placement in the Drosophila Brain”. In: Current Biology 21.23 (Dec.
2011), pp. 2000–2005.

[16] Julie L Schnapf and Denis A Baylor. “How photoreceptor cells respond to
light”. In: Scientific American 256.4 (1987), pp. 40–47.

[17] Kazunori Shinomiya et al. “Comparisons between the ON- and OFF-edge
motion pathways in the Drosophila brain.” In: Elife 8 (Jan. 2019), p. 2431.

[18] Kazunori Shinomiya et al. “Neuronal circuits integrating visual motion
information in Drosophila melanogaster”. In: Current Biology 32.16 (2022),
pp. 3529–3544.

[19] Nicholas A Steinmetz et al. “Neuropixels 2.0: A miniaturized high-density
probe for stable, long-term brain recordings”. In: Science 372.6539 (2021),
eabf4588.

[20] Shin-ya Takemura et al. “Synaptic circuits and their variations within different
columns in the visual system of Drosophila ”. In: Proceedings of the National
Academy of Sciences 112.44 (2015), pp. 13711–13716. issn: 0027-8424. doi:
10.1073/pnas.1509820112.

[21] Shin-ya Takemura et al. “The comprehensive connectome of a neural substrate
for ‘ON’ motion detection in Drosophila”. In: eLife 6 (2017), pp. 1–16. doi:
10.7554/elife.24394.

[22] Akihiko Yamamoto et al. “Neurogenetic networks for startle-induced locomo-
tion in Drosophila melanogaster”. In: Proceedings of the national academy of
sciences 105.34 (2008), pp. 12393–12398.

https://doi.org/10.1073/pnas.1509820112
https://doi.org/10.7554/elife.24394

11

C h a p t e r 2

DECIDING HOW TO DECIDE: DYNAMIC ROUTING IN
ARTIFICIAL NEURAL NETWORKS

Forward

This chapter discusses three strategies for training dynamically-routed
artificial neural networks: graphs of learned transformations through
which different input signals may take different paths. Though some
approaches have advantages over others, the resulting networks are often
qualitatively similar. We found that, in dynamically-routed networks
trained to classify images, subnetworks become specialized to process
distinct categories of images. Additionally, given a fixed computa-
tional budget, dynamically-routed networks tend to perform better than
comparable statically-routed networks.

This chapter is adapted from a 2017 International Conference on Machine
Learning (ICML) paper with the same name, coauthored with Pietro
Perona [22]. Due to advances in computing hardware over the past
eight years, the experiments described in this chapter may seem small in
scale to someone reading in 2025. However, the central premise these
experiments explore—that energy constraints can push a vision system
to decompose what we might think of as a single task into subtasks,
construct subsystems optimized for particular subtasks, and learn to
activate each subsystem as it is needed—remains relevant today.

2.1 Introduction
Some decisions are easier to make than others—for example, large, unoccluded
objects are often easier to recognize. Additionally, different difficult decisions may
require different expertise—an avid birder may know very little about identifying
cars. We hypothesize that complex decision-making tasks like visual classification
can be meaningfully divided into specialized subtasks, and that a system designed to
perform a complex task should first attempt to identify the subtask being presented to
it, and then use that information to select the most suitable algorithm for its solution.

This approach—dynamically routing signals through an inference system, based

12

on their content—has already been incorporated into machine vision pipelines via
methods such as boosting [32], coarse-to-fine cascades [33], and random decision
forests [11]. Dynamic routing is also performed in the primate visual system: spatial
information is processed somewhat separately from object identity information [9],
and faces and other behaviorally-relevant stimuli ellicit responses in anatomically
distinct, specialized regions [23, 17]. However, state-of-the-art artificial neural
networks (ANNs) for visual inference are routed statically [27, 10, 6, 24]; every input
triggers an identical sequence of operations.

With this in mind, we propose a mechanism for introducing cascaded evaluation to
arbitrary feedforward ANNs, focusing on the task of object recognition as a proof of
concept. Instead of classifying images only at the final stage of processing, multiple
subnetworks may attempt to classify images in low-ambiguity regions of their input
space, passing ambiguous images forward to subsequent subnetworks for further
consideration (see Fig. 2.1 for an illustration). We propose three approaches to training
these networks, test them on small image datasets synthesized from MNIST [19] and
CIFAR-10 [18], and quantify the accuracy/efficiency trade-off that occurs when the
network parameters are tuned to yield more aggressive early classification policies.
Additionally, we propose and evaluate methods for appropriating regularization and
optimization techniques developed for statically-routed networks.

Clearly sticks
(Classify) Clearly insects

(Classify)

Ambiguous
(Inspect further)

Figure 2.1: Motivation for dynamic routing. For a given data representation, some
regions of the input space may be classified confidently, while other regions may be
ambiguous.

2.2 Related work
Since the late 1980s, researchers have combined artificial neural networks with
decision trees in various ways [31] [28]. More recently, approaches have been
propsed to jointly optimize ANN and decision tree parameters [16], and randomized

13

multi-layer networks have been used to compute decision tree split functions [2]. To
our knowledge, the family of inference systems we discuss was first described in
[5]. Additionally, [1] explores dynamically skipping layers in neural networks, and
[13] explores dynamic routing in networks with equal-length paths. Some recently-
developed visual detection systems perform cascaded evaluation of convolutional
neural network layers [20, 3, 7, 25]; though highly specialized for the task of visual
detection, these modifications can radically improve efficiency.

While these approaches lend evidence that dynamic routing can be effective, they
either ignore the cost of computation, or do not represent it explicitly, and instead
use opaque heuristics to trade accuracy for efficiency. We build on this foundation
by deriving training procedures from arbitrary application-provided costs of error
and computation, comparing one actor-style and two critic-style strategies, and
considering regularization and optimization in the context of dynamically-routed
networks.

2.3 Setup
The computation performed by a statically-routed feedforward artificial neural
network can be decomposed into a sequence of subcomputations, each of which
generates a single output vector from a single input vector, which is either the output of
the previous subcomputation or, in the case of the first subcomputation, an input from
an external source. For a given such decomposition—because multiple will likely
exist for a single network—we’ll call a subnetwork that performs a subcomputation a
module, and we’ll call a subnetwork that directly uses a given module’s output that
module’s sink.

We consider networks in which modules may have more than one sink. In such a
network, for every 𝑛-way junction J a signal reaches, the network must make a
decision, 𝑑 (J) ∈ {0..𝑛}, such that the signal will propagate through the 𝑖th sink if
and only if 𝑑 (J) = 𝑖 (this is illustrated in Fig. 2.2). We compute 𝑑 (J) as the argmax
of the score vector s(J), a learned function of the last feature vector computed
before reaching J . We’ll refer to this rule for generating routing decisions from
score vectors as the inference routing policy.

2.3.1 Multipath architectures for convolutional networks
Convolutional network modules compute collections of local descriptions of the
input signal. It is unreasonable to expect that this kind of feature vector can explicitly
encode the global information relevant to deciding how to route the entire signal

14

(e.g., in the case of object recognition, whether the image was taken indoors, whether
the image contains an animal, or the prevalence of occlusion in the scene).

To address this, instead of computing a 2-dimensional array of local features at each
module, we compute a pyramid of features (resembling the pyramids described by
[15]), with local descriptors at the bottom and global descriptors at the top. At every
junction J , the score vector s(J) is computed by a small routing network operating
on the last-computed global descriptor. Our multipath architecture is illustrated in
Fig. 2.3.

𝑑(J  ) = 0 𝑑(J  ) = 1

Source Sink 1

Sink 0

Source Sink 1

Sink 0

Figure 2.2: A 2-way junction, J . 𝑑 (J) is an integer function of the source features.
When 𝑑 (J) = 0, the signal is propagated through the top sink, and the bottom sink
is inactive. When 𝑑 (J) = 1, the signal is propagated through the bottom sink, and
the top sink is inactive.

2.3.2 Balancing accuracy and efficiency
For a given input, network N , and sequence of routing decisions D, we define the
cost of performing inference:

𝑐inf(N ,D) := 𝑐err(N ,D) + 𝑐cpt(N ,D), (2.1)

where 𝑐err(N ,D) is the cost of the inference errors made by the network, and
𝑐cpt(N ,D) is the cost of computation. In our experiments, unless stated otherwise,
𝑐err is the cross-entropy loss and

𝑐cpt(N ,D) = 𝛼cpt 𝑛ops(N ,D), (2.2)

where 𝑛ops(N ,D) is the number of multiply-accumulate operations performed and
𝛼cpt is a scalar hyperparameter. This definition assumes a time- or energy-constrained
system—every operation consumes roughly the same amount of time and energy,
so every operation is equally expensive. 𝑐cpt may be defined differently under other
constraints (e.g. memory bandwidth).

15

4×4

8×8

16×16

32×32

16 chan. 16 chan. 32 chan. 32 chan. 64 chan. 64 chan. 128 chan. 128 chan.

Routing
subnetworks

Convolution, Batch Normalization, Rectification
Linear Transformation, Batch Normalization, Rectification
Linear Transformation, Softmax
Linear Transformation, Argmax
“Stop” Signal
“Go” Signal

“Horse”

Figure 2.3: Our multiscale convolutional architecture. Once a column is eval-
uated, the network decides whether to classify the image or evaluate subsequent
columns. Deeper columns operate at coarser scales, but compute higher-dimensional
representations at each location. All convolutions use 3×3 kernels, downsampling is
achieved via 2×2 max pooling, and all routing subnetwork layers have 16 channels.

2.4 Training
We propose three approaches to training dynamically-routed networks, along with
complementary approaches to regularization and optimization, and a method for
adapting to changes in the cost of computation.

2.4.1 Training strategy i: Actor learning
Since any given sequence of routing decisions D is discrete, 𝑐inf(N ,D) cannot be
minimized via gradient-based methods. However, if D is replaced by a stochastic
approximation, D̂, during training, we can engineer the gradient of the expectation
E(𝑐inf(N , D̂)) to be nonzero. We can then learn the routing parameters and
classification parameters simultaneously by minimizing the loss

ℓac := E
(
𝑐inf(N , D̂)

)
. (2.3)

In our experiments, the training routing policy samples D̂ such that, for a given
junction J , the corresponding decision 𝑑 (J) is sampled

𝑑 (J) ∼ Categorical
(
softmax(s(J)/𝜏)

)
, (2.4)

where 𝜏 is the network “temperature”: a scalar hyperparameter that decays over
the course of training, converging the training routing policy towards the inference
routing policy.

16

2.4.2 Training strategy ii: Pragmatic critic learning
Alternatively, we can attempt to learn to predict the expected utility of making every
routing decision. In this case, we minimize the loss

ℓcr := E ©­«𝑐inf(N , D̂) +
∑︁

J ∈P (D̂)

𝑐ure(J)ª®¬ , (2.5)

where the activation path P (D̂) is the set of junctions encountered when making the
sequence of routing decisions D̂, and 𝑐ure is the utility regression error cost. For an
𝑛-way junction J , this cost is defined:

𝑐ure(J) := 𝛼ure ∥s(J) − u(J)∥2, (2.6)

where 𝛼ure is a scalar hyperparameter and the utility vector u(J) is a vector in R𝑛

whose 𝑖th component is

𝑢𝑖 (J) = E
(
−𝑐inf(N , D̂)

���J ∈ P (D̂) and 𝑑 (J) = 𝑖

)
. (2.7)

Since we want to learn the policy indirectly (via cost prediction), D̂ is treated as
constant with respect to optimization.

2.4.3 Training Strategy iii: Optimistic critic learning
To improve the stability of the loss and potentially accelerate training, we can adjust
the routing utility function u such that, for every junction J , u(J) is independent of
the routing parameters downstream of J . Instead of predicting the cost of making
routing decisions given the current downstream routing policy, we can predict the
cost of making routing decisions given the optimal downstream routing policy. In
this optimistic variant of the critic method,

𝑢𝑖 (J) = max
{
−𝑐inf(N , D̂)

���J ∈ P (D̂) and 𝑑 (J) = 𝑖

}
. (2.8)

2.4.4 Regularization
Many regularization techniques involve adding a model-complexity term, 𝑐mod, to
the loss function to influence learning, effectively imposing soft constraints upon the
network parameters [12, 26, 30]. However, if such a term affects network modules in
a way that is independent of the amount of signal routed through them, it will either
underconstrain frequently-used modules or overconstrain infrequently-used modules.
To support both frequently- and infrequently-used modules, we regularize modules
as they are activated by D̂, instead of regularizing the entire network directly.

17

For example, to apply L2 regularization to critic networks, we define 𝑐mod:

𝑐mod := E ©­«𝛼L2
∑︁

𝑤∈W (D̂)

𝑤2ª®¬ , (2.9)

where W (D̂) is the set of weights associated with the modules activated by D̂, and
𝛼L2 is a scalar hyperparameter.

For actor networks, we apply an extra term to control the magnitude of 𝑠, and
therefore the extent to which the net explores subpotimal paths:

𝑐mod := E ©­«𝛼L2
∑︁

𝑤∈W (D̂)

𝑤2 + 𝛼dec
∑︁

J ∈P (D̂)

∥s(J)∥2ª®¬ , (2.10)

where 𝛼dec is a scalar hyperparameter indicating the relative cost of decisiveness.

𝑐mod is added to the loss function in all of our experiments. Within 𝑐mod, unless
stated otherwise, D̂ is treated as constant with respect to optimization.

2.4.5 Adjusting learning rates to compensate for throughput variations
Both training techniques attempt to minimize the expected cost of performing
inference with the network, over the training routing policy. With this setup, if we use
a constant learning rate for every module in the network, then modules through which
the policy routes examples more frequently will receive larger parameter updates,
since they contribute more to the expected cost. To allow every module to learn as
quickly as possible, we scale the learning rate of each module M dynamically, by
a gain factor 𝛾(M), such that the elementwise variance of the loss gradient with
respect to M’s parameters is independent of the amount of probability density routed
through it.

To derive 𝛾(M), we consider an alternative routing policy that routes all signals
though M, and then routes through subsequent modules following the training-time
routing policy of the optimization method being used. Let δ∗(M) be the change
in M’s parameter vector that would be induced by performing a single iteration of
mini-batch stochastic gradient descent. This update vector can be computed

δ∗(M) = −𝜆
∑︁

𝑖∈{1..𝑛ex}
g(M, 𝑖), (2.11)

where 𝜆 is the global learning rate, 𝑛ex is the number of examples in the mini-batch,
and g(M, 𝑖) is the gradient of the loss with respect to the parameters in M, for

18

training example 𝑖, under the M-biased routing policy. Analogously, the scaled
parameter adjustment using the unbiased policy can be written

δ(M) = −𝜆 𝛾(M)
∑︁

𝑖∈{1..𝑛ex}
𝑝(M, 𝑖) g(M, 𝑖), (2.12)

where 𝑝(M, 𝑖) is the probability with which the unbiased policy routes example 𝑖 to
M.

We want to select 𝛾(M) such that

Var(δ(M)) = Var(δ∗(M)). (2.13)

Substituting the definitions of δ(M) and δ∗(M),

Var ©­«𝛾(M)
∑︁

𝑖∈{1..𝑛ex}
𝑝(M, 𝑖) g(M, 𝑖)ª®¬ = Var ©­«

∑︁
𝑖∈{1..𝑛ex}

g(M, 𝑖)ª®¬ . (2.14)

Since every g(M, 𝑖) is sampled independently via the same mechanism, we can
rewrite this equation:

𝑛ex 𝑣(M) 𝛾(M)2 ∥𝑝(M)∥2 = 𝑛ex 𝑣(M), (2.15)

where p(M) the vector in [0, 1]𝑛ex whose 𝑖th component is 𝑝(M, 𝑖), and 𝑣(M) is
the elementwise variance of g(M, 𝑖), for any 𝑖 ∈ {1..𝑛ex}. We can now show that

𝛾(M) = ∥p(M)∥−1. (2.16)

So, for every module M, we can scale the learning rate by ∥p(M)∥−1, and the
variance of the weight updates will be similar thoughout the network. We use this
technique, unless otherwise specified, in all of our experiments.

2.4.6 Responding to changes in the cost of computation
We may want a single network to perform well in situations with various degrees
of computational resource scarcity (e.g. computation may be more expensive when
a device battery is low). To make the network’s routing behavior responsive to a
dynamic 𝑐cpt, we can concatenate the operation cost 𝛼cpt to the input of every routing
subnetwork, to allow it to modulate the routing policy. To match the scale of the
image features and facilitate optimization, we express 𝛼cpt in units of cost per ten
million operations.

19

2.4.7 Hyperparameters
In all of our experiments, we used a mini-batch size, 𝑛ex, of 128, and trained for
80,000 iterations. We performed stochastic gradient descent using an initial learning
rate of 0.1/𝑛ex and a momentum coefficient of 0.9. The learning rate decayed
continuously with a half-life of 10,000 iterations. The weights of the final layers of
routing networks were zero-initialized, and we initialized all other weights using the
Xavier initialization method [8]. All biases were zero-initialized. We performed
batch normalization [14] before every rectification operation, with an 𝜖 of 1 × 10−6,
and an exponential moving average decay constant of 0.9.

𝜏 was initialized to 1.0 for actor networks and 0.1 for critic networks, and decayed
with a half-life of 10,000 iterations. We set 𝛼dec to 0.01, 𝛼ure to 0.001, and 𝛼L2

to 1 × 10−4. We selected these values (for 𝜏, 𝛼dec, 𝛼ure, and 𝛼L2) by exploring the
hyperparameter space logarithmically, by powers of 10, training and evaluating on
the hybrid MNIST/CIFAR-10 dataset we describe in section 2.5.1. At a coarse level,
these values are locally optimal—multiplying or dividing any of them by 10 will not
improve performance.

2.4.8 Data augmentation
We augmented our training data using an approach that is popular for use with
CIFAR-10 [21, 29, 4]. We augmented each image by applying vertical and horizontal
shifts sampled uniformly from the range [−4px, 4px], and, if the image was from
CIFAR-10, flipping it horizontally with probability 0.5. We filled blank pixels
introduced by shifts with the mean color of the image (after gamma-decoding).

2.5 Experiments
We explored the design space described in the previous section by training 153
networks to classify small images, varying the policy-learning strategy, regularization
strategy, optimization strategy, architecture, cost of computation, and details of the
task. The results of these experiments are reported in Fig. 2.8–Fig. 2.10, and our
source code is available on GitHub.

2.5.1 Comparing policy-learning strategies
To compare routing strategies in the context of a simple dataset with a high degree
of difficulty variation, we trained networks to classify images from a small-image
dataset synthesized from MNIST [19] and CIFAR-10 [18] (see Fig. 2.4). This
dataset included the classes “0”, “1”, “2”, “3”, and “4” from MNIST and “airplane”,

https://github.com/MasonMcGill/multipath-nn

20

“automobile”, “deer”, “horse”, and “frog” from CIFAR-10 (see Fig. 2.4). The images
from MNIST were resized to match the scale of images from CIFAR-10 (32×32),
via linear interpolation, and were color-modulated to make them more difficult to
trivially distinguish from CIFAR-10 images. (MNIST is a grayscale dataset.)

For a given computational budget, dynamically-routed networks achieved higher
accuracy rates than architecture-matched statically-routed baselines (networks com-
posed of the first 𝑛 columns of the architecture illustrated in Fig. 2.3, for 𝑛 ∈ {1..8}).
Additionally, dynamically-routed networks tended to avoid routing data along deep
paths at the beginning of training (see Fig. 2.7). This is possibly because the error
surfaces of deeper networks are more complicated, or because deeper paths are less
stable—changing the parameters in any constituent module to better classify images
routed along other, overlapping paths may decrease performance. Whatever the
mechanism, this tendency to initially find simpler solutions seemed to prevent some
of the overfitting that occured with 7- and 8-module statically-routed networks.

Compared to other dynamically-routed networks, optimistic critic networks performed
poorly, possibly because optimal routers were a poor approximation for our small,
low-capacity router networks. Actor networks performed better than critic networks,
possibly because the critic networks were forced to learn a potentially-intractable
auxilliary task. (i.e., it’s easier to decide who to call to fix your printer than it is to
predict exactly how quickly and effectively everyone you know would fix it.) Actor
networks also consistently achieved higher peak accuracy rates than comparable
statically-routed networks, across experiments.

Although actor networks may be more performant, critic networks are more flexible.
Since critic networks don’t require E(𝑐inf(N , D̂)) to be a differentiable function of

Figure 2.4: Sample images from the hybrid MNIST/CIFAR-10 dataset. We
recolored images from MNIST via the following procedure: we selected two random
colors at least 0.3 units away from each other in RGB space; we then mapped
black pixels to the first color, mapped white pixels to the second color, and linearly
interpolated in between.

21

D̂, they can be trained by sampling D̂, saving memory, and they support a wider
selection of training routing policies (e.g. 𝜖-greedy) and 𝑐inf definitions. In addition
to training the standard critic networks, we trained networks using a variant of the
pragmatic critic training policy, in which we replaced the cross-entropy error in
the definition of 𝑐ure with the classification error. Although these networks did not
perform as well as the original pragmatic critic networks, they still outperformed
comparable statically-routed networks.

Co
st

of
 c

om
pu

ta
tio

n

Layer index Layer index
Correct labels
Incorrect labels

0
1

2
3

4
Airplane

Automobile
Deer

Frog
Horse

Figure 2.5: Dataflow through actor networks trained to classify images from the
hybrid MNIST/CIFAR-10 dataset. Every row is a node-link diagram corresponding
to a network, trained with a different 𝛼cpt. Each circle indicates, by area, the fraction
of examples that are classified at the corresponding module. The circles are colored
to indicate the accuracy of each module (left) and the kinds of images classified at
each module (right).

2.5.2 Comparing regularization strategies
In on our experiments, regularizing the training-time routing policy, as described in
section 2.4.4, discouraged networks from routing data along deep paths, reducing
peak accuracy. Additionally, some mechanism for encouraging exploration (in our
case, a nonzero 𝛼dec) appeared to be necessary to train effective actor networks.

2.5.3 Comparing optimization strategies
Throughput-adjusting the learning rates (TALR), as described in section 2.4.5,
improved the hybrid dataset performance of both actor and critic networks in
computational-resource-abundant, high-accuracy contexts.

22

Dataflow

0
1
2
3
4
Airplane
Automobile
Deer
Frog
Horse

Figure 2.6: Dataflow through a branching actor network trained to classify images
in the hybrid dataset, illustrated as in Fig. 2.5.

4 8

40k

80k

Ep
oc

h
in

de
x

𝛼cpt = 0

4 8

𝛼cpt = 1×10−9

4 8

𝛼cpt = 2×10−9

4 8

𝛼cpt = 4×10−9

0.0

0.2

0.4

0.6

0.8

1.0

Layer index

Figure 2.7: Dataflow over the course of training. The heatmaps illustrate the
fraction of validation images classified at every terminal node in the bottom four
networks in Fig. 2.5, over the course of training.

2.5.4 Comparing architectures
For a given computational budget, architectures with both 2- and 3-way junctions
have a higher expressive capacity than subtrees with only 2-way junctions. On the
hybrid dataset, under tight computational constraints, we found that trees with higher
degrees of branching achieved higher accuracy rates. Unconstrained, however, they
were prone to overfitting.

23

In dynamically-routed networks, early modules tended to have high accuracy rates,
pushing difficult decisions downstream. Even without energy contraints, terminal
modules specialized in detecting instances of certain classes of images. These classes
were usually related (they either all came from MNIST or all came from CIFAR-10.)
In networks with both 2- and 3-way junctions, branches specialized to an even greater
extent. (See Fig. 2.5 and Fig. 2.6.)

2.5.5 Comparing specialized and adaptive networks
We trained a single actor network to classify images from the hybrid datset un-
der various levels of computational constraints, using the approach described in
section 2.4.6, sampling 𝛼cpt randomly from the set mentioned in Fig. 2.8 for each
training example. This network performed comparably to a collection of 8 actor
nets trained with various static values of 𝛼cpt, over a significant, central region of
the accuracy/efficiency curve, with an approximately 8-fold reduction in memory
consumption and training time.

2.5.6 Exploring the effects of the decision difficulty distribution
To probe the effect of the inference task’s difficulty distribution on the performance of
dynamically-routed networks, we trained networks to classify images from CIFAR-10,
adjusting the classification task to vary the frequency of difficult decisions (see
Fig. 2.9). We call these variants CIFAR-2—labelling images as “horse” or “other”—

0 1×107 2×107

0.02

0.04

0.06

0.02

0.04

0.06

0 1×107 2×107

0.02

0.04

0.06

0 1×107 2×107 0 1×107 2×107 0 1×107 2×107

Mean op count

Er
ro

r r
at

e

Pragmatic critic nets, no TALR

Actor nets

Actor net, branching

Optimistic critic nets

Statically-routed nets
Pragmatic critic nets Optimistic critic nets, classification error

Actor nets, no TALR
Actor nets, 𝛼dec = 0
Actor nets, regularized

Actor net, dynamic 𝛼cpt

Figure 2.8: Hybrid dataset performance. Every point along the “statically-
routed nets” curve corresponds to a network composed of the first 𝑛 columns
of the architecture illustrated in Fig. 2.3, for 1 ≤ 𝑛 ≤ 8. The points along
the “actor net, dynamic 𝛼cpt” curve correspond to a single network evaluated
with various values of 𝛼cpt, as described in section 2.4.6. The points along all
other curves correspond to distinct networks, trained with different values of 𝛼cpt.
𝛼cpt ∈ {0, 1 × 10−9, 2 × 10−9, 4 × 10−9, ... 6.4 × 10−8}.

24

and CIFAR-5—labelling images as “cat”, “dog”, “deer”, “horse”, or “other”. In this
experiment, we compared actor networks (the best-performing networks from the
first set of experiments) to architecture-matched statically-routed networks.

We found that dynamic routing was more beneficial when the task involved many
low-difficulty decisions, allowing the network to route more data along shorter
paths. While dynamic routing offered only a slight advantage on CIFAR-10,
dynamically-routed networks achieved a higher peak accuracy rate on CIFAR-2 than
statically-routed networks, at a third of the computational cost.

0 1×107 2×107

Mean op count

0.0

0.1

0.2

0.3

Er
ro

r
ra

te

CIFAR-10: Statically-routed nets
CIFAR-10: Actor nets
CIFAR-5: Statically-routed nets
CIFAR-5: Actor nets
CIFAR-2: Statically-routed nets
CIFAR-2: Actor nets

Figure 2.9: Performance effects of the task difficulty distribution, as described
in section 2.5.6. The “statically-routed nets” and “actor nets” curves are drawn
analogously to their counterparts in Fig. 2.8.

2.5.7 Exploring the effects of expressive capacity
To test whether dynamic routing is advantageous in higher-capacity settings, we
trained actor networks and architecture-matched statically-routed networks to classify
images from CIFAR-10, varying the width of the networks (see Fig. 2.10). Increasing
the networks’ expressive capacity either increased or did not affect the relative
advantage of dynamically-routed networks, suggesting that our approach may be
applicable to more complicated tasks.

2.6 Discussion
Our results suggest that dynamically-routed networks trained under mild computa-
tional constraints can operate at least 2–3 times more efficiently than comparable
statically-routed networks, without sacrificing performance. Additionally, despite
their higher capacity, dynamically-routed networks may be less prone to overfitting.

25

0 2×107 0 8×107 0 1.8×108

0.15

0.20

0.25

Er
ro

r
ra

te

16 ≤ 𝑛chan ≤ 128 32 ≤ 𝑛chan ≤ 256 48 ≤ 𝑛chan ≤ 384

Mean op count

0.10

0.15

0.20

0.10

0.15

Statically-routed nets
Actor nets

Figure 2.10: Performance effects of network capacity, training and testing on
CIFAR-10. (Left) Networks with (subsets of) the architecture illustrated in Fig. 2.3.
(Center) Networks otherwise identical to those presented in the left panel, with the
number of output channels of every convolution operation multiplied by 2, and 𝛼cpt
divided by 4. (Right) Networks otherwise identical to those presented in the left
panel, with the number of output channels of every convolution operation multiplied
by 3, and 𝛼cpt divided by 9.

When designing a multipath architecture, we suggest supporting early decision-
making wherever possible, since cheap, simple routing networks seem to work well.
In convolutional architectures, pyramidal modules appear to be reasonable sites for
branching.

The actor strategy described in section 2.4.1 is generally an effective way to learn a
routing policy. However, the pragmatic critic strategy described in section 2.4.2 may
be better suited for very large networks (trained via decision sampling to conserve
memory) or networks designed for applications with nonsmooth cost-of-inference
functions—e.g. one in which 𝛼cpt has units errors/operation. Adjusting learning
rates to compensate for throughput variations, as described in section 2.4.5, may be
useful when training particularly deep networks. And if the cost of computation is
dynamic, a single network, trained with the procedure described in section 2.5.5,
may still be sufficient.

While we tested our approach on tasks with some degree of difficulty variation, it is
possible that dynamic routing is even more advantageous when performing more
complex tasks. For example, video annotation may require specialized systems to
recognize locations, objects, faces, human actions, and other entities of interest, but
having every recognition system constantly operating may be extremely inefficient.
A dynamic routing policy could fuse these systems, allowing them to share common
components, and activate specialized components as necessary.

26

Another interesting topic for future research is growing and shrinking dynamically-
routed networks during training. With such a network, it would not be necessary to
specify an architecture. The network would instead take shape over the course of
training, as computational contraints, memory contraints, and the data dictate.

27

References

[1] Emmanuel Bengio et al. “Conditional computation in neural networks for
faster models”. In: arXiv preprint arXiv:1511.06297 (2015).

[2] Samuel Bulo and Peter Kontschieder. “Neural decision forests for semantic
image labelling”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2014, pp. 81–88.

[3] Zhaowei Cai, Mohammad Saberian, and Nuno Vasconcelos. “Learning
complexity-aware cascades for deep pedestrian detection”. In: Proceedings of
the IEEE International Conference on Computer Vision. 2015, pp. 3361–3369.

[4] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. “Fast and
accurate deep network learning by exponential linear units (elus)”. In: arXiv
preprint arXiv:1511.07289 (2015).

[5] Ludovic Denoyer and Patrick Gallinari. “Deep sequential neural network”. In:
arXiv preprint arXiv:1410.0510 (2014).

[6] Alexey Dosovitskiy et al. “Flownet: Learning optical flow with convolutional
networks”. In: Proceedings of the IEEE International Conference on Computer
Vision. 2015, pp. 2758–2766.

[7] Ross Girshick. “Fast r-cnn”. In: Proceedings of the IEEE International
Conference on Computer Vision. 2015, pp. 1440–1448.

[8] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training
deep feedforward neural networks.” In: Aistats. Vol. 9. 2010, pp. 249–256.

[9] Melvyn A Goodale and A David Milner. “Separate visual pathways for
perception and action”. In: Trends in neurosciences 15.1 (1992), pp. 20–25.

[10] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition.
2016, pp. 770–778.

[11] Tin Kam Ho. “Random decision forests”. In: Document Analysis and Recog-
nition, 1995., Proceedings of the Third International Conference on. Vol. 1.
IEEE. 1995, pp. 278–282.

[12] Arthur E Hoerl and Robert W Kennard. “Ridge regression: Biased estimation
for nonorthogonal problems”. In: Technometrics 12.1 (1970), pp. 55–67.

[13] Yani Ioannou et al. “Decision forests, convolutional networks and the models
in-between”. In: arXiv preprint arXiv:1603.01250 (2016).

[14] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep
network training by reducing internal covariate shift”. In: arXiv preprint
arXiv:1502.03167 (2015).

[15] Tsung-Wei Ke, Michael Maire, and Stella X Yu. “Neural Multigrid”. In: arXiv
preprint arXiv:1611.07661 (2016).

28

[16] Peter Kontschieder et al. “Deep Neural Decision Forests”. In: Proceedings of
the IEEE International Conference on Computer Vision. 2015, pp. 1467–1475.

[17] Simon Kornblith et al. “A network for scene processing in the macaque
temporal lobe”. In: Neuron 79.4 (2013), pp. 766–781.

[18] Alex Krizhevsky and Geoffrey Hinton. “Learning multiple layers of features
from tiny images”. In: (2009).

[19] Yann LeCun, Corinna Cortes, and Christopher JC Burges. The MNIST database
of handwritten digits. 1998.

[20] Haoxiang Li et al. “A convolutional neural network cascade for face detection”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2015, pp. 5325–5334.

[21] Min Lin, Qiang Chen, and Shuicheng Yan. “Network in network”. In: arXiv
preprint arXiv:1312.4400 (2013).

[22] Mason McGill and Pietro Perona. “Deciding how to decide: Dynamic routing in
artificial neural networks”. In: International Conference on Machine Learning.
PMLR. 2017, pp. 2363–2372.

[23] Sebastian Moeller, Winrich A Freiwald, and Doris Y Tsao. “Patches with
links: a unified system for processing faces in the macaque temporal lobe”. In:
Science 320.5881 (2008), pp. 1355–1359.

[24] Alejandro Newell, Kaiyu Yang, and Jia Deng. “Stacked hourglass networks
for human pose estimation”. In: European Conference on Computer Vision.
Springer. 2016, pp. 483–499.

[25] Shaoqing Ren et al. “Faster R-CNN: Towards real-time object detection with
region proposal networks”. In: Advances in Neural Information Processing
Systems. 2015, pp. 91–99.

[26] Leonid I Rudin, Stanley Osher, and Emad Fatemi. “Nonlinear total variation
based noise removal algorithms”. In: Physica D: Nonlinear Phenomena 60.1-4
(1992), pp. 259–268.

[27] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks
for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

[28] JA Sirat and JP Nadal. “Neural trees: a new tool for classification”. In: Network:
Computation in Neural Systems 1.4 (1990), pp. 423–438.

[29] Rupesh K Srivastava, Klaus Greff, and Jürgen Schmidhuber. “Training very
deep networks”. In: Advances in neural information processing systems. 2015,
pp. 2377–2385.

[30] Robert Tibshirani. “Regression shrinkage and selection via the lasso”. In:
Journal of the Royal Statistical Society. Series B (Methodological) (1996),
pp. 267–288.

29

[31] Paul E Utgoff. “Perceptron trees: A case study in hybrid concept representa-
tions”. In: Connection Science 1.4 (1989), pp. 377–391.

[32] Paul Viola, Michael J Jones, and Daniel Snow. “Detecting pedestrians using
patterns of motion and appearance”. In: International Journal of Computer
Vision 63.2 (2005), pp. 153–161.

[33] Erjin Zhou et al. “Extensive facial landmark localization with coarse-to-fine
convolutional network cascade”. In: Proceedings of the IEEE International
Conference on Computer Vision Workshops. 2013, pp. 386–391.

30

C h a p t e r 3

EVOLVING NEURAL NETWORKS FOR PREDATOR
AVOIDANCE

Forward

This chapter discusses computational experiments in which we simu-
lated the evolution of predator-avoidance strategies in large populations
of agents performing a sequential decision task inspired by behavior
observed in fruit flies. While performing this task, an agent must contin-
ually decide whether to flee or forage based on ambiguous evidence as
to whether there are hidden predators in the foraging area. Our virtual
agent populations successfully evolved genetically-encoded neural net-
works that could balance food collection with self-preservation, coming
within 1% of the fitness score obtained using a strategy generated by
a reinforcement-learning algorithm with direct access to the environ-
ment’s statistics. The evolved agents also exhibited behavior observed
in fruit flies, including (1) often ignoring individual predator cues, (2)
fleeing in response to a sequence of many predator cues observed in
quick succession, and (3) tolerating greater levels of risk if they were
old or hungry. Additionally, we found that high-fitness networks were
discovered more quickly in environments where subpopulations could
remain isolated from each other for many generations, and populations
that evolved in highly dynamic environments adapted more quickly to
change. The work presented in this chapter was done in collaboration
with Pietro Perona and has not yet been published.

3.1 Introduction
Predators generally don’t want their presence to be known until it’s too late for their
prey to escape, so prey animals often find themselves in ambiguous situations, where
they must assess their environment’s safety based on limited information. In these
situations, a prey animal can either continue whatever it was doing, and risk being
eaten, or it can react—by freezing, hiding, or running away—and potentially forego
foraging opportunities or waste valuable energy. And the better it is at navigating
this ambiguity, the better it will be at striking a balance between safety and metabolic

31

efficiency.

However, while animals can tune many aspects of their behavior based on feedback
from their environment, an individual animal can’t learn from being eaten. Instead,
strategies for responding to predator-associated sounds, odors, vibrations, and visual
cues must be learned at the population level, through natural selection.

What does this evolution process look like as it’s taking place? And what factors
influence how long it takes to converge to something resembling an optimal strategy?
To start to answer these questions, we constructed simulation environments inspired
by the ecological niche occupied by the fruit fly—an animal whose predator-avoidance
strategy has been studied quantitatively. In these environments, virtual foragers must
make stay-or-flee decisions based on imperfect information, and a forager’s fitness is
defined as the total amount of time it spends foraging over the course of its lifetime.
To establish a performance baseline, we constructed “ideal observer” foragers, which
compute the probability that a predator is present using direct knowledge of the
environment’s dynamics, and decide whether to flee based on an action-lookup table
generated using reinforcement learning and data from 500 billion forager lifetimes.
We then simulated the evolution of foragers that make stay-or-flee decisions using

Outcome

Behavior
(Stay/flee)Sensory events

Time

Environment state

Experience integrator

(a)

(b) (c)

Decision rule

Internal state

Predator
absent No cost

High cost
(Being eaten)

Low cost
(Time/energy)

Predator
present

No fear response Fear response

Success: Low cost

Failure: High cost

Low-fitness strategy
High-fitness strategy

Number of offspring

Pr
ob

ab
ili

ty
 d

en
si

ty

Figure 3.1: Avoiding predation in the face of ambiguity. (a) Prey animals integrate
sensory cues to form an internal representation of their environment, which they
use to decide whether to stay or flee. (b) Both staying and fleeing have potential
costs. (c) For a given environment, some strategies will be more suitable than others.
Luck can have a big influence on an individual animal’s reproductive success, but a
prey animal employing a higher-fitness predator-avoidance strategy will, on average,
spend more time foraging over the course of its life and produce more offspring.

32

small neural networks, compared these to both the ideal observer foragers and real
fruit flies, and investigated how changes to the simulation affect the evolution process.

We found that the evolved foragers could attain over 99% of the fitness of the ideal
observer foragers, and that both recapitulated predator-avoidance behavior observed
in fruit flies. Additionally, we found that high-fitness networks were discovered more
quickly in environments where subpopulations move around slowly and can remain
isolated from each other for many generations. In these environments, subpopulations
with incompatible genotypes compete for territory, with bands of low-fitness hybrids
forming at territorial boundaries. We also found that populations that evolved in
highly dynamic environments adapted to change faster than populations that evolved
in static or infrequently changing environments.

Natural world Fruit flies

Ideal observer
foragersSimulation

Evolved neural
network foragers

Evolution

Reinforcement learning
Similar foraging efficiency

Similar behavior

Evolution

Figure 3.2: A high-level overview of our modeling strategy. Animals evolve
sensorimotor mechanisms for avoiding predation. To better understand how these
mechanisms come about, we defined a sequential decision-making task inspired
by behavior observed in fruit flies (section 3.3 and section 3.4), and simulated the
evolution of virtual foragers performing this task using genetically encoded neural
networks (section 3.7–section 3.9). These networks recapitulated predator-avoidance
behavior observed in fruit flies (section 3.12), and approximately matched the fitness
of “ideal observer” foragers with direct access to the statistics of the environment
(section 3.5 and section 3.6). After successfully evolving high-fitness neural network
foragers, we investigated how changes to the simulation affect the evolution process
(section 3.10 and section 3.11).

3.2 Related work
Predator-escape behavior has been studied in many nonhuman animals, including fruit
flies [4, 11, 24, 1, 22], mice [30, 28], zebrafish [8], fiddler crabs [14, 13], and finches
[23]. In terms of deriving optimal prey-animal behavior, [29] explored the cost/benefit
calculus around when to flee in response to a detected-but-distant predator, and
work in signal-detection theory [16, 21, 3] has addressed how to optimally integrate
sparse perceptual information over time. Our sequential decision-making task can

33

be thought of as a variant of the task described in [29], with ambiguous predator-cue
sequences substituted in place of distance, and our ideal-observer foragers combine
optimal signal detection with a learned action policy.

We don’t know of any other work specifically involving the evolution of neural
networks for predator avoidance, but evolutionary algorithms have been used to
optimize neural networks in many other contexts, dating back to at least 1989 [15,
25, 6, 17]. Of particular note is the AntFarm project [5], in which researchers
simulated the evolution of cooperative foraging behavior using an early massively
parallel computer. More recently, algorithms with varying degrees of resemblance to
biological evolution—for example, algorithms incorporating selection and mutation,
but not recombination—have been used to optimize relatively large neural networks
for machine learning applications [9, 20]. (Table II in [10] provides a useful
overview.) In addition to prior work on neural network optimization, our evolution
simulations also took inspiration from the mathematical geneticist Seawall Wright,
who argued that structured populations with many partially isolated subpopulations
play an important role in animal evolution [26, 27, 7].

3.3 Predator avoidance in fruit flies
Fruit flies will freeze or flee in response to a series of expanding shadows cast from
above [11]. But they often ignore expanding shadows they see in isolation. And
a fly’s proclivity to react with a fear response can change over time. For a given
stimulus sequence, a satiated fly will be more likely to freeze or flee than a hungry
fly [11], and a younger fly will be more likely to freeze or flee than an older fly [22].

While not all behaviors are necessarily adaptive, the way flies react to expanding
shadows is consistent with a rational predator-avoidance strategy. An individual
shadow may be caused by a falling leaf or a non-predating animal walking by, but
a series of shadows is stronger evidence that a predator is actively hunting in the
area, and may consequently be more worthy of a response. Considering the effect
of hunger, abandoning the search for food in order to flee is a higher price to pay
for a hungry fly than it is for a satiated fly, so it may make sense for hungry flies to
tolerate a higher risk of predation. And considering the effect of age, the expected
cost of predation—in terms of time spent alive and potentially reproducing—is lower
for older flies than it is for younger flies, so it may make sense for them to accept a
higher predation risk as well.

34

3.4 The life of a virtual forager
In our simulations, each forager’s adult life unfolds as a continuous-time partially
observable Markov decision process (POMDP) [2]. Each forager’s state consists of
its age ∈ [0,∞), a hunger level ∈ [0, 1], and a discrete state class, which can either
be “wandering”, “safe foraging”, “dangerous foraging”, or “deceased”. Foragers
start out in the wandering state class, at age zero, with a hunger level of zero.

While in the wandering state class, a forager may find a foraging area free of predators,
and enter the safe foraging state class. It may also find a foraging area with predators
nearby, and enter the dangerous foraging state class. And it may encounter a predator,
and enter the deceased state class. In our simulations, these state transitions occur at a
rate of 0.008, 0.002, and 0.0001 transitions per second respectively. Also, a forager’s
hunger level will increase at a rate of 0.001 units per second spent wandering, and if
it reaches 1, the forager will die of starvation.

In the safe foraging state class, predator cues occur at a rate of 0.03 per second,
and transitions to the dangerous foraging state class—indicating that a predator
has entered the area—occur at a rate of 0.002 per second. Forced transitions to
the wandering state class—due to the forager getting tired, running out of food, or
seeking shelter from the rain, for example—occur at a rate of 0.01 per second. And
the forager’s hunger level decreases at a rate of 0.006 units per second spent foraging,
to a minimum of 0.

In the dangerous foraging state class, predator cues occur at a rate of 0.3 per second,
transitions to the safe foraging state class occur at a rate of 0.008 per second, and
forced transitions to the wandering state class occur at a rate of 0.01 per second.
Additionally, transitions to the deceased state class, as a result of predation, occur
at a rate of 0.01 per second. A forager’s hunger level decreases in the dangerous
foraging state class just as it would in the safe foraging state class.

Foragers can sense their age, their hunger level, and when they start foraging, but
they can’t directly determine whether a predator is present. If they suspect they are
in danger while foraging, they can decide to flee back to the wandering state at any
time. In addition to being eaten and starving, foragers can die of old age in any
non-deceased state. Upon initialization, each forager’s maximum lifespan is sampled
from a Weibull distribution [12] with a median of 3 hours and shape parameter of
3 (meaning that the instantaneous natural death rate scales with the square of the
forager’s age).

35

Wandering

(a) (b)

(c)
Age ↑

Hunger level ↑

Safe foraging
Age ↑

Hunger level ↓
Some predator cues

Deceased

Age ↑
Hunger level ↓

Many predator cues

N
at

ur
al

de

at
h

ra
te

H
un

ge
r l

ev
el

Time

Dangerous foraging

Time
Wandering Foraging

Starvation threshold

Figure 3.3: Our forager-environment interaction model. (a) Foragers wander
through their environment until they come across a foraging area. Foraging reduces
a forager’s hunger level and increases the odds that they will come across a potential
mate, but also exposes them to the risk of encountering a predator. Predator cues
occur at a higher rate when a predator is present, and foragers can choose to flee from
a foraging area if they suspect they are in danger. (b) Foragers can die of natural
causes at any time, and their instantaneous natural-cause death rate is proportional to
the square of their age. (c) A forager’s hunger level increases when it is wandering
and decreases when it is foraging. If it reaches the starvation threshold, the forager
will die.

3.5 Tracking state class probabilities over time
Now that we’ve described the predator-avoidance task that we want to evolve neural
networks to perform, we’ll consider how an ideal observer could track the conditional
probability distribution over the set of foraging state classes over time, based on the
predator cues it observes. This computation—visualized in Fig. 3.4—turns out to be
simple in the sense that the observer only needs to keep track of its instantaneous
belief, as opposed to the full sequence of predator cues and inter-cue intervals that
led to that belief. We’ll start with a few definitions:

• Let S be the set of foraging state classes: {SafeForaging,DangerousForaging}.

• Let O be a set containing the observable events types: WanderingTransition,
PredatorCue, and PredatorAttack. (A WanderingTransition event is an invol-
untary transition back to the wandering state class.)

• Let 𝜏(𝑠; Wandering) ∈ [0,∞), for any state class 𝑠 ∈ S, be the rate at which
foragers transition from the wandering state class to 𝑠.

• Let 𝜏(𝑠′; 𝑠) ∈ [0,∞), for any state class pair (𝑠, 𝑠′) ∈ S × S, be the rate at
which foragers transition from 𝑠 to 𝑠′, if 𝑠 and 𝑠′ are distinct, or zero, if they

36

are identical.

• And let 𝜀(𝑜; 𝑠) ∈ [0,∞), for any observable event type 𝑜 ∈ O and state class
𝑠 ∈ S, be the rate at which observable events of type 𝑜 occur in state class 𝑠.

We’ll also define a set of mathematical objects called “observation histories”. An
observation history is a sequence of event types and nonnegative real numbers
representing inter-event durations, ordered chronologically. For example, the
observation history (𝑡1, 𝑜, 𝑡2) indicates that no events were observed for 𝑡1 seconds,
after which an event of type 𝑜 was observed, and then no events were observed for
the next 𝑡2 seconds.

3.5.1 Computing initial state class probabilities
Let 𝑝𝑠 |H(𝑠;H) ∈ [0, 1], for any state class 𝑠 ∈ S and observation history H, be the
probability that a forager is in state class 𝑠 after observing H. For an empty history
(i.e., at the beginning of a foraging session),

𝑝𝑠 |H(𝑠; ()) = 𝜏(𝑠; Wandering)∑︁
𝑠′∈S

𝜏(𝑠′; Wandering)
, (3.1)

for all state classes 𝑠 ∈ S , since foraging sessions are always initiated via a transition
from the wandering state class.

3.5.2 Updating state class probabilities between observable events
Between event observations, the conditional probability of being in any given state
class may change over time for two reasons. First, observing an absence of events is
informative, and will shift probability mass toward state classes that cause observable
events to occur less frequently. And second, knowing that time has passed will shift
probability mass toward state classes that are more likely to be transitioned into than
away from, given the state class distribution at the beginning of the interval. Taking
both of these factors into account, the between-observation time derivative of the
probability that the forager is in a state class 𝑠 after observing a history H is

𝑑

𝑑𝑡
𝑝𝑠 |H(𝑠;H) =

(
𝜀total(H) − 𝜀total(𝑠) − 𝜏from(𝑠)

)
𝑝𝑠 |H(𝑠;H) (3.2)

+
∑︁
𝑠′∈S

𝑝𝑠 |H(𝑠′;H) 𝜏(𝑠; 𝑠′),

37

where 𝜀total(H) is the expected total observable event rate, given the observation
history H,

𝜀total(H) :=
∑︁
𝑠∈S

∑︁
𝑜∈O

𝑝𝑠 |H(𝑠;H) 𝜀(𝑜; 𝑠), (3.3)

𝜀total(𝑠) is the total observable event rate in state class 𝑠,

𝜀total(𝑠) :=
∑︁
𝑜∈O

𝜀(𝑜; 𝑠), (3.4)

and 𝜏from(𝑠) is the rate at which foragers make unobserved transitions away from
state class 𝑠,

𝜏from(𝑠) :=
∑︁
𝑠′∈S

𝜏(𝑠′; 𝑠). (3.5)

(See section 3.A for a step-by-step derivation.)

3.5.3 Updating state class probabilities when events are observed
When an observable event occurs, probability mass shifts toward state classes in
which events of that type occur more frequently. When an observation of type 𝑜

occurs, following an observation history H, the updated probability that the forager
is in a state class 𝑠 is

𝑝𝑠 |H(𝑠;H⌢𝑜) =
𝑝𝑠 |H(𝑠;H) 𝜀(𝑜; 𝑠)∑︁

𝑠′∈S
𝑝𝑠 |H(𝑠′;H) 𝜀(𝑜; 𝑠′)

. (3.6)

(The symbol “⌢” is used to denote sequence-element concatenation. See section 3.B
for a step-by-step derivation.)

State class

Predator cue?

Belief

0 1 2 3 4 5
Time in adulthood (min)

Wandering Safe foraging Dangerous foraging

Figure 3.4: Inferred state class probabilities over the course of an example life
trajectory. For each vertical slice of the “belief” trace, the height of each segment
represents the probability that the forager is in the corresponding state class at the
corresponding time, conditioned on the forager’s observations.

38

3.6 Learning a stay-or-flee policy for ideal observer foragers
Our ideal observer foragers use the inference process described in the previous
section to compute the probability that they are safe. But they also need an action
policy to translate this probability into a stay-or-flee decision. In this section, we’ll
describe the stochastic iterative refinement process we used to constructed this policy.
This process is visualized in Fig. 3.5, and the policy it ultimately yields is visualized
in Fig. 3.6.

We started by defining a 64×64×64-bin grid in the space of (age, hunger level,
safety probability) triples. The grid had opposing corners at (0min, 0, 0) and
(240min, 1, 1), each age bin spanned a 4-minute timespan, and each hunger level
and safety probability bin spanned 1/64 units. We assigned each cell in the grid an
initial flight inclination score (FIS) of 0, and constructed a stay-or-flee policy that
applies the prescription

action(𝑎, ℎ, 𝑝) =


Flee if FIS(cell(𝑎, ℎ, 𝑝)) > 0

Stay otherwise,
(3.7)

for all age, hunger level, and safety probability triples (𝑎, ℎ, 𝑝). Here cell(𝑎, ℎ, 𝑝) is
the grid cell containing the point (𝑎, ℎ, 𝑝), or the closest available cell, if (𝑎, ℎ, 𝑝) is
outside the bounds of the grid.

0

1

Fl
ig

ht
in

cl
in

at
io

n

H
un

ge
rl

ev
el

Iter. 0 Iter. 500 Iter. 5,000 Iter. 50,000

−4

+4

0 1
Pr(Safety)

0

1

Po
lic

y

H
un

ge
rl

ev
el

0 1
Pr(Safety)

0 1
Pr(Safety)

0 1
Pr(Safety)

Stay

Flee

Figure 3.5: Learning a lookup-table action policy. This figure visualizes the
policy-learning process using a 2-dimensional grid—omitting the age dimension—to
make it easier to see how the FIS grid and action policy change over time. Top:
Flight-inclination scores over course of the learning process. Bottom: Prescribed
actions for each cell over the course of the learning process.

39

After constructing the initial FIS grid and initial policy, we refined them using a
variant of simultaneous perturbation stochastic approximation (SPSA) optimization
[18, 19]. We began every iteration of this optimization procedure by sampling an edit
center from the set of cells in the grid, an edit radius from the set {1, 2, 4, 8, 16, 32},
and a perturbation from the range [1/2, 3/2). Next, we generated two variants of
the current FIS grid by modifying the flight-inclination scores assigned to the cells
whose distance from the edit center was less than the edit radius. One variant was
generated by adding the perturbation to their scores, and the other was generated by
subtracting the perturbation from their scores. We then derived policies from the
modified FIS grids using Equation 3.7, and computed the mean fitness score for each
policy based on a sample of 1 million foragers.

These fitness scores were used to compute an estimate of the gradient of the fitness
function with respect to the flight-inclination scores:

ĝ :=
𝑓+ − 𝑓−

2𝛼
m, (3.8)

where 𝑓+ and 𝑓− are the mean fitness scores obtained using the FIS grid variants
with raised and lowered flight-inclination scores, respectively, 𝛼 is the perturbation,
and the selection mask m is a vector whose 𝑖-th component is 1 if the 𝑖-th grid cell
was modified and 0 otherwise. We generated flight-inclination scores for the next

0.0
0.2

0.4
0.6

0.8
1.0

Pr(Safety) 0

50

100
150

200

Age
(m

inu
tes

)

0.0

0.2

0.4

0.6

0.8

1.0

H
un

ge
r l

ev
el

0 50 100 150 200

Foraging time (min)

Fr
eq

ue
nc

y

Passive foragers
Optimized foragers

(a) (b)

Stay Flee

Figure 3.6: The action policy learned after 250k refinement iterations. (a)
Stay/flee prescriptions for 8 of the 64 age slices. Shaded cells prescribe the “flee”
action, and transparent cells prescribe the “stay” action. The shading color is varied
between age slices to improve legibility. (b) Fitness histograms for foragers who
never flee and foragers using the action policy visualized in (a).

40

iteration using the update rule
s′ = s + 𝜆 ĝ, (3.9)

where s is a vector whose components are equal to the current scores, and 𝜆 is the
current learning rate. The refinement process consisted of 250k iterations, and we
used an initial learning rate of 10−5 and gradually decreased the learning rate to zero
using cosine interpolation.

Foragers using the policy resulting from this optimization process have an expected
lifetime foraging time of 1488 seconds—a 133% increase over the expected amount
of time that foragers will forage if they ignore all predator cues and never flee (638
seconds). Foragers using this policy also behave in a way that qualitatively resembles
the fruit fly predator-avoidance strategy discussed in section 3.3. For a given age and
hunger level, they will flee if and only if their safety probability falls below a certain
threshold. This means that they will sometimes ignore isolated predator cues, but
rarely ignore a sequence of predator cues seen in rapid succession. And looking at
the relationship between age, hunger level, and this escape threshold, both youth and
satiation increase a forager’s proclivity to flee.

3.7 Controlling foraging behavior with a network of neurons
In place of the Bayesian inference/lookup table controller described in the previous
two sections, our evolved foragers make stay-or-flee decisions using a small neural
network without any knowledge of the environment’s statistics built in. The network
consists of nodes—which can be interpreted as either representing individual neurons
or homogenous populations of neurons—and directed connections between them.
Nodes communicate to their targets via nonnegative continuous-valued firing rates
that change over time.

Each forager’s neural network has four input nodes: an age sensor, a hunger level
sensor, a predator cue sensor, and a node that maintains a constant firing rate of 1,
to use as a bias. The age sensor’s firing rate is equal to the forager’s age in hours.
The hunger level sensor’s firing rate is equal to the forager’s hunger level. And the
predator cue sensor has a firing rate of 1 if a predator cue was observed in the past
0.25 seconds, and 0 otherwise.

These inputs send signals to seven hidden nodes and a single output node. The hidden
nodes are present to help the forager integrate information over time, and the output
node controls the forager’s behavior; when its firing rate is nonzero, the forager flees.
Each of these downstream nodes has an excitement level 𝑥(𝑡), which changes over

41

time, and 25 genetically-encoded parameters: an initial excitement level 𝑥init, a decay
rate 𝑟, a firing threshold 𝜃, 11 excitatory connection weights, 𝑤ex(1)..𝑤ex(11), and
11 inhibitory connection weights, 𝑤in(1)..𝑤in(11).

A hidden or output node’s excitement level begins each foraging session at 𝑥init and
changes over time in response to its inputs. After initialization, the excitement level
follows the dynamics

𝑑

𝑑𝑡
𝑥(𝑡) = −𝑟 𝑥(𝑡) +


max(wnet · f (𝑡), 0) if 𝑥(𝑡) = 0

wnet · f (𝑡) otherwise,
(3.10)

where

wnet :=


𝑤ex(1)

...

𝑤ex(11)

 −

𝑤in(1)

...

𝑤in(11)

 , (3.11)

and f (𝑡) is a vector ∈ R11 whose components are equal to the firing rates of the
node’s inputs (the 4 input nodes and the 7 hidden nodes). The node’s firing rate 𝑓 (𝑡)
is computed by applying a rectified sigmoid function to its excitement level:

𝑓 (𝑡) = 2
1 + exp(−max(𝑥(𝑡) − 𝜃, 0)) − 1. (3.12)

3.8 Encoding neural network parameters genetically
Each forager’s genome consists of 256 gene pairs, and each gene can either encode a
trait, which alters the forager’s neural network parameters, or encode the null effect,
which leaves its parameters unchanged. If either gene at a locus encodes a trait, it
will be expressed, but if both genes encode the same trait, it will only be expressed
once. This means that, given a genome G, the value of the forager’s 𝑖-th parameter
will be

𝜃 (𝑖) =
∑︁

(𝑔1,𝑔2)∈G


effect(𝑔1, 𝑖) + effect(𝑔2, 𝑖) if 𝑔1 ≠ 𝑔2

effect(𝑔1, 𝑖) otherwise,
(3.13)

where effect(𝑔, 𝑖) is the effect that gene 𝑔 would have on 𝜃 (𝑖) if no other genes were
present.

When a mutation event creates a gene encoding a trait, the trait’s effect is determined
via a three-step process: sampling a target parameter group, sampling a target mask
indicating which parameters in the group the trait will impact, and sampling an
effect size. The target parameter group is selected randomly from the five network
parameter groups—initial excitement levels, decay rates, firing thresholds, excitatory

42

weights, and inhibitory weights. Each entry in the target mask is sampled from a
Bernoulli distribution with mean 1/4, if the trait targets a small parameter group
(initial excitement levels, decay rates, or firing thresholds), or 1/32, if the trait targets
a large parameter group (excitatory weights or inhibitory weights). And the effect
size is drawn from an exponential distribution with mean 1/4. When a trait is
expressed, it increases the value of each targeted parameter by its effect size.

3.9 Evolving foragers
In our evolution simulations, foragers live, die, and reproduce in a 2-dimensional
world divided into discrete grid cells. For a given generation, every cell in the
grid has two properties: a population density and a set of foragers representing the
genotype distribution within the cell. Cells are initialized with a population density
of 1 and a set of foragers with null genes (meaning their neural network parameters
will all be 0).

At each generation, every forager’s life is simulated to obtain a fitness score, equal to
the total amount of time the forager spent foraging, in seconds. These scores are then
used to determine the population density map for the next generation, and sample
parents for new representative foragers. The first step in this process is computing
the relative rate at which each forager sires offspring in each cell in the grid. For a
grid cell 𝑐 and a forager 𝑓 , this siring rate is defined

𝑠(𝑐, 𝑓) :=


(
1 − 𝛾 |N (𝑐) |

)
𝑑 (cell(𝑓)) 𝜙(𝑓) if cell(𝑓) = 𝑐

𝛾 𝑑 (cell(𝑓)) 𝜙(𝑓) if cell(𝑓) ∈ N (𝑐)

0 otherwise,

(3.14)

where cell(𝑓) is the grid cell that the forager 𝑓 belongs to, 𝑑 (cell(𝑓)) is the population
density at that cell, 𝜙(𝑓) is the forager’s fitness score, the neighbor set N (𝑐) is the
set of cells sharing a border with cell 𝑐, and the drift coefficient 𝛾 is a parameter
∈ [0, 0.2] specific to the simulation. Next, we compute the total siring rate for each
cell,

𝑠total(𝑐) :=
∑︁
𝑓 ∈F

𝑠(𝑐, 𝑓), (3.15)

where F is the set of foragers in the current generation. The population densities for
the next generation are computed

𝑑next(𝑐) =
𝑠total(𝑐)

mean
{
𝑠total(𝑐′) : 𝑐′ ∈ C

} , (3.16)

43

where C is the set of cells in the grid. And the parent foragers for each cell 𝑐 are
sampled independently, from the distribution

Parent(𝑐) = Categorical
{
𝑓 ↦→ 𝑠(𝑐, 𝑓)

𝑠total(𝑐)
: 𝑓 ∈ F

}
. (3.17)

After sampling two parents from the spawning cell or a neighboring cell, a new
forager’s genotype is constructed by inheriting one randomly selected gene per locus
from each parent, and then possibly mutating some of the inherited genes. Each
inherited gene has a 0.001% chance of mutating into a functional gene encoding a
new trait, and a 0.001% chance of breaking and being replaced by a gene encoding
the null effect. Except where otherwise specified, our simulations used a 32×32
grid with 512 representative foragers per cell per generation. The evolution process
described in this section is illustrated in Fig. 3.7.

Parent
identitiesGen 𝑔

Gen 𝑔 + 1

Inherited
genes Genotypes Phenotypes Foraging

times
Population
densities

Parent
identities

Inherited
genes Genotypes

Expression BehaviorMutation

Phenotypes Foraging
times

Population
densities

Figure 3.7: The neural-network-controlled forager lifecycle. Each forager’s
parents are sampled from the previous generation, and one (potentially mutated) gene
at each locus is inherited from each parent. A forager’s genome encodes its neural
network controller, which influences how successfully it will forage while avoiding
predators. And foragers that spend more time foraging will on average produce more
offspring. Each generation, population density moves from grid cells with low mean
foraging times to neighboring cells with higher mean foraging times. And, within a
cell, foragers that spent more time foraging are more likely to be selected as parents.

3.10 Assessing the effect of subpopulation isolation
To assess the effect of allowing subpopulation to evolve independently and compete,
we compared forager populations evolving on 1×1 grids to populations evolving
on 32×32 grids with various drift coefficients. We ran five 1×1 simulations, and
five 32×32 simulations for each drift coefficient ∈ {10−1, 10−2, ..., 10−6}. All of
these simulations ran for 25,000 generations and spawned a total of 219 foragers per
generation. (The simulations with 32×32 grids spawned 512 foragers per cell.)

We periodically computed cell fitness scores by simulating 100 foragers per genotype
and averaging the individual foraging times we obtained within each cell. These

44

cell fitness scores were then used to compute population-level fitness scores via
population-density-weighted averaging. Comparing the population fitness trajectories
across conditions, it seems like allowing a variety of predator-avoidance strategies to
evolve in parallel can be beneficial. After 1000 generations, foragers evolving on a
32×32 grid with a drift coefficient of 10−4 were on average 5.4 percentage points
away from the ideal observer foragers’ fitness level, while foragers evolving on a 1×1
grid were on average 57.1 points away. And this difference persisted throughout the
simulations; after 25,000 generations, the average performance gaps were 0.9 and
2.5 percentage points, respectively. Fig. 3.8 visualizes subpopulations competing on

G
en

ot
yp

e
cl

us
te

r

Gen. 800

C1

C10
Gen. 900 Gen. 1000 Gen. 1100 Gen. 1200

M
ea

n
ne

ig
hb

or
di

st
.

0

5000

M
ea

n
fit

ne
ss

500

1500

Figure 3.8: Visualizations illustrating competition between subpopulations.
In each panel, each pixel represents a spatial location containing a semi-isolated
subpopulation. Top row: Genetic clustering results over time, for an evolution
simulation using a population drift coefficient of 0.01. We periodically stored
occurrence counts for the 100 most common non-null genes in each grid cell. These
counts were then used to create sparse description vectors for each cell across the
five generations shown. For a given cell, the 𝑖-th component of its descriptor is equal
to the occurrence count for gene 𝑖, if a count was stored for gene 𝑖, or 0, if it was not.
The clusters shown were discovered by applying 𝑘-means clustering to these cell
descriptors, using the clusters discovered at generation 800 to initialize the algorithm
at generation 900, and initializing subsequent runs analgously. Middle row: Mean
L1 distances between cells’ descriptors and their direct neighbors’ descriptors. (The
descriptors of cells that share an edge.) Bottom row: Mean fitness scores for
each cell, in foraging seconds, based on 100 lifetime simulations per genotype.
Populations with higher fitness tend to expand.

45

a 32×32-cell grid, Fig. 3.9 visualizes the evolution trajectory of individual grid cells
in simulations with different drift coefficients, and Fig. 3.10 shows how the grid size
and drift coefficient affect the quality of the strategies that evolve.

<10%

≥90%

G
en

e
sa

tu
ra

tio
n

0

10+

0

3+

0

1+

1k 10k
Generation

600

1600

C
el

lfi
tn

es
s

1k 10k
Generation

1k 10k
Generation

Drift coef. = 0.1 Drift coef. = 0.01 Drift coef. = 0.001

Genes

Init. ex.

Decay rates

Thresholds

E. weights

I. weights

Figure 3.9: Genotypes, phenotypes, and fitness levels over time for a single cell in
three simulations. Row 1: Genes from one strand of a random forager’s genotype
every 100 generations. Null genes are shown in beige and genes encoding traits
are assigned random colors. Row 2: Gene saturation distributions for every 100
generations. The brightness of each frequency bin indicates the number of genes
present per forager with that level of rarity/ubiquity. For example, if the bottom
frequency bin (0–10% saturation) encodes the value 5.2, then foragers in the cell carry
on average 5.2 genes with a cell-wide prevalence below 10%. Rows 3–7: Network
parameters from a random forager, sampled once every 100 generations. Row 8:
Fitness levels over time, in foraging seconds, based on 100 lifetime simulations per
genotype. Within each chart, the shaded region indicates the range of fitness levels
across the grid, and the curve indicates the fitness level for the cell.

46

3.11 Assessing the effect of environmental changes
After building an understanding of how populations of virtual foragers evolve in a
static environment, we ran additional simulations with dynamic environments to see
how the foragers would respond. We ran 125 simulations in which foragers were
exposed to a set of “training” conditions presented in sequence over 800 generations,
and then evaluated as they adapted to a new condition presented over the next 800
generations. We ran 25 simulations for each training set size ∈ {1, 2, 4, 8, 16}, and
split the 800 training generations equally between the conditions in the training set.
The conditions varied in their POMDP transition and emission rates, hunger increase
and decrease rates, and median natural death time. Each of these parameters was
sampled by multiplying its canonical value from section 3.4 by a scaling factor drawn
(per-parameter) from a lognormal distribution with a log standard deviation of 0.4.

We found that populations exposed to more training conditions adapted to the
evaluation environment more quickly, even though the number of training generations
was held constant across populations. Repeating the experiment using a log standard
deviation of 0.6, the qualitative result was the same, and the performance difference
between populations exposed to large and small training sets was slightly more

100 1k 10k
Generation

1%

10%

100%

Pe
na

lty
vs

.i
de

al
ob

s.
fo

ra
ge

rs

1×1 grid
32×32 grid

10−5 10−3 10−1

Drift coefficient

0.1%

1.0%

10.0%

Pe
na

lty
vs

.i
de

al
ob

s.
fo

ra
ge

rs

(a) (b)

Figure 3.10: Fitness trajectories for environments with different degrees of
subpopulation isolation. (a) Fitness trajectories for foragers evolving in a single-cell
grid and foragers evolving in a 32×32 grid with a drift coefficient of 10−4. We ran
five 25,000-generation simulations in each condition, each with 219 foragers spawned
per generation. Cell fitness scores were computed every 100 generations—based on
100 lifetime simulations per genotype—and then used to compute population fitness
scores via population-density-weighted averaging. The shaded regions indicate the
range of these population fitness scores across simulations, and the curves indicate
their averages. (b) Fitness levels at generation 25,000 for evolution simulations with a
32×32 grid and differing diffusion coefficients. As in (a), the shaded regions indicate
population fitness ranges across five simulations, and the curves indicate averages.

47

pronounced. Fig. 3.11 summarizes our observations from all 250 of these simulations.

3.12 Comparing evolved foragers to fruit flies
To get a first-order understanding of the predator-avoidance strategies our evolved
foragers were using, we examined the situations in which they decided to flee. We
collected flight events across 1000 lifetimes for 100 forager genotypes. Each of these
genotypes was sampled from the 25.000th generation of a simulation that used a
32×32 grid, used a drift coefficient of 10−4, and spawned 512 representative foragers
per cell per generation. Based on a qualitative assessment, it was clear that, like fruit
flies, our evolved foragers did not flee in response to every predator cue, but usually
fled in response to a series of predator cues in short succession.

Understanding the more subtle effects of age and hunger level, however, required
quantitative analysis. With this in mind, we computed the correlation coefficients
between age, hunger level, and predation risk (the probability the ideal observer
described in 3.5 would assign to the dangerous foraging state class) immediately
preceeding flight events. Overall, the results were consistent with the aspects of
fruit fly behavior exhibited by the ideal observers foragers. The age/predation
risk coefficients were all positive, indicating that older evolved foragers were more

1 2 4 8 16
Training condition count

0.88

0.90

0.92

0.94

0.96

0.98

1.00

M
ea

n
no

rm
al

iz
ed

fit
ne

ss

Variation level = 0.4

1 2 4 8 16
Training condition count

Variation level = 0.6

Generation 100
Generation 200
Generation 300
Generation 400

Figure 3.11: Fitness trajectories for populations exposed to different levels
of environmental change. We exposed populations of foragers to a series of
environment configurations over 800 “training” generations, and then assessed how
they adapted to a new configuration over an additional 800 “test” generations. Five
populations were simulated per test configuration, one for each training set size
∈ {1, 2, 4, 8, 16}. We periodically computed population fitness scores during each
run, and then computed the ratio between each of these scores and the best final
fitness score obtained on the test condition across the competing populations. We
ran 25 simulations per (variation level, training set size) pair, and each curve vertex
is located at the geometric mean of 25 of these fitness-score ratios. (See section 3.11
for details.)

48

risk-tolerant. And the hunger level/predation risk coefficients were all positive as
well, indicating that the same was true for hungry evolved foragers. Fig. 3.12 contains
these coefficient distributions rendered as histograms, along with input, output, and
internal state traces from an individual evolved forager.

3.13 Discussion
We defined an ethologically inspired sequential decision-making task which requires
virtual prey animals to balance foraging and predator avoidance in ambiguous
situations. And we showed that two very different approaches to learning to perform
this task—evolving neural networks, and using reinforcement learning to generate
an action policy to pair with probabilistic inference—yielded solutions that aligned
with the behavior of the species that inspired the task: fruit flies. We then used this
task to better understand what the evolution of an adaptive behavior looks like as
it unfolds over time, and the factors that influence how quickly it converges. We
found that, in many cases, evolution was more successful in environments where
subpopulations experience some degree of isolation and competing strategies can
develop in parallel. And we found that frequently changing environments prepared
populations better for subsequent changes than static environments.

Simulating populations of hundreds of thousands of neural networks evolving over
tens of thousands of generations has only recently become feasible using commodity
hardware, and there are still significant open questions about what to expect at
this scale. For example, we probably have many things to learn about the relative
advantages and disadvantages of different ways of mapping genotypes to network
parameters. Our foragers’ genes influenced parameters independently, but they could
instead have been organized hierarchically, with some genes enabling or disabling
the effects of others. Another subject for investigation is whether and/or when the
recombination step in the evolution process introduces a bias toward networks with
modular structure, allowing subpopulations to adopt genes disrupting part of the
network while other parts continue to function. And there are also open questions
around what kind of knowledge and behavior can be encoded genetically, and what
must be learned. We hope our work can inform future investigations into these topics
and many others.

49

State class

Hunger level

Predator cue?

Cond. prob.

Excitement
levels

Fled?

0 1 2 3 4 5 6
Time in adulthood (min)

-0.5 0 0.5
Age/risk tolerance correlation

D
en

si
ty

-0.5 0 0.5
Hunger level/risk tolerance correlation

D
en

si
ty

(a) (b)

Wandering Safe foraging Dangerous foraging

Figure 3.12: Analyzing the behavior of evolved foragers. (a) Forager and
environment state traces from the first 6 minutes of a neural-network-controlled
forager’s life. Row 1: The hidden true state class. Row 2: The forager’s hunger level,
on a scale from 0 (completely gray) to 1 (completely black). Row 3: Lines indicating
when predator cues were observed. Row 4: The conditional state class probabilities
an ideal observer forager would compute, given the same observation history. Row
5: The forager’s hidden node and output node excitement levels; brighter regions
correspond to higher excitement levels. Row 6: Lines indicating when the forager
fled. (b) Distributions of correlation coefficients relating a neural-network-controlled
foragers’ age and hunger level to its proclivity to flee. Top: Correlations between
forager age and dangerous-foraging probability (the red-filled curve in row four of (a))
immediately preceeding flight events, computed across all flight events occurring in
1000 simulated lifetimes per genotype, for 100 genotypes sampled from a population.
Bottom: The analogous correlation histogram, substituting hunger level for age.
(See section 3.12 for details.)

50

3.A Derivation for Equation 3.2
Between event observations, the conditional probability of being in any given state
class may change over time for two reasons. First, observing an absence of events is
informative, and may shift probability mass toward state classes that cause observable
events to occur less frequently. And second, knowing that time has passed may shift
probability mass toward state classes that are more likely to be transitioned into than
away from, given the state class distribution at the beginning of the interval.

Translating this into mathematical language, for any state class 𝑠 ∈ S , and observation
history H whose final element is the inter-event duration 𝑡,

𝑑

𝑑𝑡
𝑝𝑠 |H(𝑠;H) = 𝑐ob(𝑠;H) + 𝑐ex(𝑠;H), (3.18)

where the observation component 𝑐ob(𝑠;H) is what the derivative of 𝑝𝑠 |H(𝑠;H)
with respect to time would be if the environment’s hidden behavior was disabled,

𝑐ob(𝑠;H) := lim
Δ𝑡→0

𝑝𝑠 |H(𝑠;H⌢DisableHB⌢Δ𝑡) − 𝑝𝑠 |H(𝑠;H)
Δ𝑡

, (3.19)

and the extrapolation component 𝑐ex(𝑠;H) is what the derivative of 𝑝𝑠 |H(𝑠;H) with
respect to time would be if the environment’s observable behavior was disabled,

𝑐ex(𝑠;H) := lim
Δ𝑡→0

𝑝𝑠 |H(𝑠;H⌢DisableOB⌢Δ𝑡) − 𝑝𝑠 |H(𝑠;H)
Δ𝑡

. (3.20)

Looking at the definition of 𝑐ob(𝑠;H), we can expand 𝑝𝑠 |H(𝑠;H⌢DisableHB⌢Δ𝑡)
using Bayes rule:

𝑐ob(𝑠;H) = lim
Δ𝑡→0

©­­­«
𝑝𝑠 |H(𝑠;H) pois(0;Δ𝑡 𝜀total(𝑠))

Δ𝑡
∑︁
𝑠′∈S

𝑝𝑠 |H(𝑠′;H) pois(0;Δ𝑡 𝜀total(𝑠′))
−

𝑝𝑠 |H(𝑠;H)
Δ𝑡

ª®®®¬ , (3.21)

where 𝜀total(𝑠) is the total event occurrence rate when the system is in state 𝑠.
Expanding the Poisson probability mass function,

𝑐ob(𝑠;H) = lim
Δ𝑡→0

©­­­«
𝑝𝑠 |H(𝑠;H) exp(−Δ𝑡 𝜀total(𝑠))

Δ𝑡
∑︁
𝑠′∈S

𝑝𝑠 |H(𝑠′;H) exp(−Δ𝑡 𝜀total(𝑠′))
−

𝑝𝑠 |H(𝑠;H)
Δ𝑡

ª®®®¬ . (3.22)

Taking the limit by substituting an infinitessimal value 𝑑𝑡 in place of Δ𝑡,

𝑐ob(𝑠;H) =
𝑝𝑠 |H(𝑠;H) exp(−𝑑𝑡 𝜀total(𝑠))

𝑑𝑡
∑︁
𝑠′∈S

𝑝𝑠 |H(𝑠′;H) exp(−𝑑𝑡 𝜀total(𝑠′))
−

𝑝𝑠 |H(𝑠;H)
𝑑𝑡

. (3.23)

51

Expanding the exponentials using the Taylor series definition and then dropping the
terms with second-order-or-higher infinitessimals,

𝑐ob(𝑠;H) =
𝑝𝑠 |H(𝑠;H) (1 − 𝑑𝑡 𝜀total(𝑠))

𝑑𝑡
∑︁
𝑠′∈S

𝑝𝑠 |H(𝑠′;H) (1 − 𝑑𝑡 𝜀total(𝑠′))
−

𝑝𝑠 |H(𝑠;H)
𝑑𝑡

. (3.24)

Multiplying,

𝑐ob(𝑠;H) =
𝑝𝑠 |H(𝑠;H) − 𝑑𝑡 𝑝𝑠 |H(𝑠;H) 𝜀total(𝑠)

𝑑𝑡
∑︁
𝑠′∈S

(
𝑝𝑠 |H(𝑠′;H)

)
− 𝑑𝑡2

∑︁
𝑠′∈S

(
𝑝𝑠 |H(𝑠′;H) 𝜀total(𝑠′)

) −
𝑝𝑠 |H(𝑠;H)

𝑑𝑡
.

(3.25)
Because the sum of the conditional state probabilities, taken over all possible state,
is 1,

𝑐ob(𝑠;H) =
𝑝𝑠 |H(𝑠;H) − 𝑑𝑡 𝑝𝑠 |H(𝑠;H) 𝜀total(𝑠)
𝑑𝑡 − 𝑑𝑡2

∑︁
𝑠′∈S

𝑝𝑠 |H(𝑠′;H) 𝜀total(𝑠′)
−

𝑝𝑠 |H(𝑠;H)
𝑑𝑡

. (3.26)

Defining 𝜀total(H) as the expected event observation rate, given the observation
history H,

𝜀total(H) :=
∑︁
𝑠∈S

𝑝𝑠 |H(𝑠;H) 𝜀total(𝑠), (3.27)

and substituting,

𝑐ob(𝑠;H) =
𝑝𝑠 |H(𝑠;H) − 𝑑𝑡 𝑝𝑠 |H(𝑠;H) 𝜀total(𝑠)

𝑑𝑡 − 𝑑𝑡2𝜀total(H)
−

𝑝𝑠 |H(𝑠;H)
𝑑𝑡

. (3.28)

Converting to a common denominator,

𝑐ob(𝑠;H) =
𝑝𝑠 |H(𝑠;H) − 𝑑𝑡 𝑝𝑠 |H(𝑠;H) 𝜀total(𝑠)

𝑑𝑡 − 𝑑𝑡2𝜀total(H)
(3.29)

−
𝑝𝑠 |H(𝑠;H) − 𝑑𝑡 𝑝𝑠 |H(𝑠;H) 𝜀total(H)

𝑑𝑡 − 𝑑𝑡2𝜀total(H)
.

Subtracting,

𝑐ob(𝑠;H) =
𝑑𝑡 𝑝𝑠 |H(𝑠;H) 𝜀total(H) − 𝑑𝑡 𝑝𝑠 |H(𝑠;H) 𝜀total(𝑠)

𝑑𝑡 − 𝑑𝑡2𝜀total(H)
. (3.30)

Dividing the numerator and denominator by 𝑑𝑡,

𝑐ob(𝑠;H) =
𝑝𝑠 |H(𝑠;H) 𝜀total(H) − 𝑝𝑠 |H(𝑠;H) 𝜀total(𝑠)

1 − 𝑑𝑡𝜀total(H) . (3.31)

And then replacing the only infinitessimal term left with zero,

𝑐ob(𝑠;H) = 𝑝𝑠 |H(𝑠;H) (𝜀total(H) − 𝜀total(𝑠;H)). (3.32)

52

𝑐ex(𝑠;H) can be computed by subtracting the rate at which the system transitions
away from state 𝑠 from the rate at which the system transitions into state 𝑠:

𝑐ex(𝑠;H) =
∑︁
𝑠′∈S

(
𝑝𝑠 |H(𝑠′;H) 𝜏(𝑠; 𝑠′)

)
− 𝑝𝑠 |H(𝑠;H) 𝜏from(𝑠), (3.33)

where 𝜏from(𝑠) is the rate at which the system transitions away from state 𝑠,

𝜏from(𝑠) := 𝑝𝑠 |H(𝑠;H)
∑︁
𝑠′∈S

𝜏(𝑠′; 𝑠). (3.34)

Expanding both 𝑐ob and 𝑐ex in Equation 3.18, we can now arrive at Equation 3.2:

𝑑

𝑑𝑡
𝑝𝑠 |H(𝑠;H) = 𝑝𝑠 |H(𝑠;H)

(
𝜀total(H) − 𝜀total(𝑠) − 𝜏from(𝑠)

)
+

∑︁
𝑠′∈S

𝑝𝑠 |H(𝑠′;H) 𝜏(𝑠; 𝑠′).
(3.2)

53

3.B Derivation for Equation 3.6
When an observation of type 𝑜 occurs, by Bayes rule,

𝑝𝑠 |H(𝑠;H⌢𝑜) = lim
Δ𝑡→0

𝑝𝑠 |H(𝑠;H) 𝑝𝑜 |𝑠 (𝑜; 𝑠,Δ𝑡)∑︁
𝑠′∈S

𝑝𝑠 |H(𝑠′;H) 𝑝𝑜 |𝑠 (𝑜; 𝑠′,Δ𝑡)
, (3.35)

where “⌢” denotes sequence-element concatenation and 𝑝𝑜 |𝑠 (𝑜; 𝑠,Δ𝑡) is the proba-
bility that exactly one event, of type 𝑜, will occur in a Δ𝑡-second period in which the
forager is in state class 𝑠. The number of events of any type 𝑜 that will occur in such
a timespan follows a Poisson distribution with a mean Δ𝑡 𝜀(𝑜; 𝑠), so

𝑝𝑜 |𝑠 (𝑜; 𝑠,Δ𝑡) = pois(1;Δ𝑡 𝜀(𝑜; 𝑠)) pois(0;Δ𝑡 𝜀(¬𝑜; 𝑠)), (3.36)

where pois(𝑛; 𝜇) is the probability mass of the Poisson distribution with mean 𝜇 at
𝑛, and 𝜀(¬𝑜; 𝑠) is the rate at which events other than those of type 𝑜 occur when the
forager is in state class 𝑠.

Expanding the Poisson probability mass function,

𝑝𝑜 |𝑠 (𝑜; 𝑠,Δ𝑡) = Δ𝑡 𝜀(𝑜; 𝑠) exp(−Δ𝑡 𝜀(𝑜; 𝑠)) exp(−Δ𝑡 𝜀(¬𝑜; 𝑠)). (3.37)

Substituting this definition into Equation 3.35,

𝑝𝑠 |H(𝑠;H⌢𝑜) = lim
Δ𝑡→0

𝑝𝑠 |H(𝑠;H) Δ𝑡 𝜀(𝑜; 𝑠) exp(−Δ𝑡 𝜀(𝑜; 𝑠)) exp(−Δ𝑡 𝜀(¬𝑜; 𝑠))∑︁
𝑠′∈S

𝑝𝑠 |H(𝑠′;H) Δ𝑡 𝜀(𝑜; 𝑠′) exp(−Δ𝑡 𝜀(𝑜; 𝑠′)) exp(−Δ𝑡 𝜀(¬𝑜; 𝑠′))
.

(3.38)
Letting the factors of Δ𝑡 cancel each other out,

𝑝𝑠 |H(𝑠;H⌢𝑜) = lim
Δ𝑡→0

𝑝𝑠 |H(𝑠;H) 𝜀(𝑜; 𝑠) exp(−Δ𝑡 𝜀(𝑜; 𝑠)) exp(−Δ𝑡 𝜀(¬𝑜; 𝑠))∑︁
𝑠′∈S

𝑝𝑠 |H(𝑠′;H) 𝜀(𝑜; 𝑠′) exp(−Δ𝑡 𝜀(𝑜; 𝑠′)) exp(−Δ𝑡 𝜀(¬𝑜; 𝑠′))
.

(3.39)
And taking the limit,

𝑝𝑠 |H(𝑠;H⌢𝑜) =
𝑝𝑠 |H(𝑠;H) 𝜀(𝑜; 𝑠)∑︁

𝑠′∈S
𝑝𝑠 |H(𝑠′;H) 𝜀(𝑜; 𝑠′)

. (3.6)

54

References

[1] Jan M. Ache et al. “Neural Basis for Looming Size and Velocity Encoding in
the Drosophila Giant Fiber Escape Pathway”. en. In: Current Biology 29.6
(Mar. 2019), 1073–1081.e4. issn: 09609822. doi: 10.1016/j.cub.2019.
01.079. url: https://linkinghub.elsevier.com/retrieve/pii/
S0960982219301381 (visited on 10/09/2024).

[2] Karl Johan Åström. “Optimal control of Markov processes with incomplete
state information I”. In: Journal of mathematical analysis and applications 10
(1965), pp. 174–205.

[3] Sebastian Bitzer et al. “Perceptual decision making: drift-diffusion model is
equivalent to a Bayesian model”. en. In: Frontiers in Human Neuroscience
8 (2014). issn: 1662-5161. doi: 10 . 3389 / fnhum . 2014 . 00102. url:
http://journal.frontiersin.org/article/10.3389/fnhum.2014.
00102/abstract (visited on 10/09/2024).

[4] Gwyneth Card and Michael H. Dickinson. “Visually Mediated Motor Planning
in the Escape Response of Drosophila”. en. In: Current Biology 18.17 (Sept.
2008), pp. 1300–1307. issn: 09609822. doi: 10 . 1016 /j . cub . 2008 .
07.094. url: https://linkinghub.elsevier.com/retrieve/pii/
S0960982208010488 (visited on 10/09/2024).

[5] Robert J Collins and David Jefferson. Antfarm: Towards simulated evolution.
Computer Science Department, University of California Los Angeles, CA,
1990.

[6] Robert J. Collins and David R. Jefferson. “An artificial neural network
representation for artificial organisms”. en. In: Parallel Problem Solving from
Nature. Ed. by Hans-Paul Schwefel and Reinhard Männer. Vol. 496. Series
Title: Lecture Notes in Computer Science. Berlin/Heidelberg: Springer-Verlag,
1991, pp. 259–263. isbn: 978-3-540-54148-6. doi: 10.1007/BFb0029761.
url: http://link.springer.com/10.1007/BFb0029761 (visited on
10/09/2024).

[7] James F Crow. “Wright and Fisher on inbreeding and random drift”. In:
Genetics 184.3 (2010), pp. 609–611.

[8] Lawrence M. Dill. “The escape response of the zebra danio (Brachydanio
rerio) I. The stimulus for escape”. en. In: Animal Behaviour 22.3 (Aug.
1974), pp. 711–722. issn: 00033472. doi: 10.1016/S0003- 3472(74)
80022-9. url: https://linkinghub.elsevier.com/retrieve/pii/
S0003347274800229 (visited on 10/09/2024).

[9] Emmanuel Dufourq and Bruce A Bassett. “Eden: Evolutionary deep networks
for efficient machine learning”. In: 2017 Pattern Recognition Association of
South Africa and Robotics and Mechatronics (PRASA-RobMech). IEEE. 2017,
pp. 110–115.

https://doi.org/10.1016/j.cub.2019.01.079
https://doi.org/10.1016/j.cub.2019.01.079
https://linkinghub.elsevier.com/retrieve/pii/S0960982219301381
https://linkinghub.elsevier.com/retrieve/pii/S0960982219301381
https://doi.org/10.3389/fnhum.2014.00102
http://journal.frontiersin.org/article/10.3389/fnhum.2014.00102/abstract
http://journal.frontiersin.org/article/10.3389/fnhum.2014.00102/abstract
https://doi.org/10.1016/j.cub.2008.07.094
https://doi.org/10.1016/j.cub.2008.07.094
https://linkinghub.elsevier.com/retrieve/pii/S0960982208010488
https://linkinghub.elsevier.com/retrieve/pii/S0960982208010488
https://doi.org/10.1007/BFb0029761
http://link.springer.com/10.1007/BFb0029761
https://doi.org/10.1016/S0003-3472(74)80022-9
https://doi.org/10.1016/S0003-3472(74)80022-9
https://linkinghub.elsevier.com/retrieve/pii/S0003347274800229
https://linkinghub.elsevier.com/retrieve/pii/S0003347274800229

55

[10] Edgar Galvan and Peter Mooney. “Neuroevolution in Deep Neural Networks:
Current Trends and Future Challenges”. en. In: IEEE Transactions on Artificial
Intelligence 2.6 (Dec. 2021), pp. 476–493. issn: 2691-4581. doi: 10.1109/
TAI.2021.3067574. url: https://ieeexplore.ieee.org/document/
9383028/ (visited on 10/09/2024).

[11] William T Gibson et al. “Behavioral responses to a repetitive visual threat
stimulus express a persistent state of defensive arousal in Drosophila”. In:
Current Biology 25.11 (2015), pp. 1401–1415.

[12] Arthur J Hallinan Jr. “A review of the Weibull distribution”. In: Journal of
quality technology 25.2 (1993), pp. 85–93.

[13] Jan M Hemmi and Daniel Tomsic. “The neuroethology of escape in crabs:
from sensory ecology to neurons and back”. en. In: Current Opinion in
Neurobiology 22.2 (Apr. 2012), pp. 194–200. issn: 09594388. doi: 10.1016/
j.conb.2011.11.012. url: https://linkinghub.elsevier.com/
retrieve/pii/S0959438811002157 (visited on 10/09/2024).

[14] Jan M. Hemmi. “Predator avoidance in fiddler crabs: 1. Escape decisions
in relation to the risk of predation”. en. In: Animal Behaviour 69.3 (Mar.
2005), pp. 603–614. issn: 00033472. doi: 10.1016/j.anbehav.2004.
06.018. url: https://linkinghub.elsevier.com/retrieve/pii/
S0003347204004191 (visited on 10/09/2024).

[15] David J Montana, Lawrence Davis, et al. “Training feedforward neural networks
using genetic algorithms.” In: ĲCAI. Vol. 89. 1989. 1989, pp. 762–767.

[16] WWTG Peterson, T Birdsall, and We Fox. “The theory of signal detectability”.
In: Transactions of the IRE professional group on information theory 4.4
(1954), pp. 171–212.

[17] João Carlos Figueira Pujol and Riccardo Poli. “Efficient evolution of asym-
metric recurrent neural networks using a PDGP-inspired two-dimensional
representation”. en. In: Genetic Programming. Ed. by Gerhard Goos et
al. Vol. 1391. Series Title: Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1998, pp. 130–141. isbn: 978-3-
540-64360-9 978-3-540-69758-9. doi: 10.1007/BFb0055933. url: http:
//link.springer.com/10.1007/BFb0055933 (visited on 10/09/2024).

[18] James C Spall. “A stochastic approximation technique for generating maximum
likelihood parameter estimates”. In: 1987 American control conference. IEEE.
1987, pp. 1161–1167.

[19] James C Spall. “Multivariate stochastic approximation using a simultaneous
perturbation gradient approximation”. In: IEEE transactions on automatic
control 37.3 (1992), pp. 332–341.

https://doi.org/10.1109/TAI.2021.3067574
https://doi.org/10.1109/TAI.2021.3067574
https://ieeexplore.ieee.org/document/9383028/
https://ieeexplore.ieee.org/document/9383028/
https://doi.org/10.1016/j.conb.2011.11.012
https://doi.org/10.1016/j.conb.2011.11.012
https://linkinghub.elsevier.com/retrieve/pii/S0959438811002157
https://linkinghub.elsevier.com/retrieve/pii/S0959438811002157
https://doi.org/10.1016/j.anbehav.2004.06.018
https://doi.org/10.1016/j.anbehav.2004.06.018
https://linkinghub.elsevier.com/retrieve/pii/S0003347204004191
https://linkinghub.elsevier.com/retrieve/pii/S0003347204004191
https://doi.org/10.1007/BFb0055933
http://link.springer.com/10.1007/BFb0055933
http://link.springer.com/10.1007/BFb0055933

56

[20] Felipe Petroski Such et al. Deep Neuroevolution: Genetic Algorithms Are a
Competitive Alternative for Training Deep Neural Networks for Reinforcement
Learning. en. arXiv:1712.06567 [cs]. Apr. 2018. url: http://arxiv.org/
abs/1712.06567 (visited on 10/09/2024).

[21] Wilson P Tanner Jr and John A Swets. “A decision-making theory of visual
detection.” In: Psychological review 61.6 (1954), p. 401.

[22] Jessica Thiem et al. “Biological aging of two innate behaviors of Drosophila
melanogaster: Escape climbing versus courtship learning and memory”. In:
Plos one 19.4 (2024), e0293252.

[23] Ineke T. Van Der Veen and Karin M. Lindström. “Escape flights of yellowham-
mers and greenfinches: more than just physics”. en. In: Animal Behaviour
59.3 (Mar. 2000), pp. 593–601. issn: 00033472. doi: 10.1006/anbe.1999.
1331. url: https://linkinghub.elsevier.com/retrieve/pii/
S0003347299913313 (visited on 10/09/2024).

[24] Catherine R. Von Reyn et al. “Feature Integration Drives Probabilistic Be-
havior in the Drosophila Escape Response”. en. In: Neuron 94.6 (June
2017), 1190–1204.e6. issn: 08966273. doi: 10.1016/j.neuron.2017.
05.036. url: https://linkinghub.elsevier.com/retrieve/pii/
S0896627317304749 (visited on 10/09/2024).

[25] D Whitley, T Starkweather, and C Bogart. “Genetic algorithms and neural
networks: optimizing connections and connectivity”. en. In: Parallel Com-
puting 14.3 (Aug. 1990), pp. 347–361. issn: 01678191. doi: 10.1016/
0167-8191(90)90086-O. url: https://linkinghub.elsevier.com/
retrieve/pii/016781919090086O (visited on 10/09/2024).

[26] Sewall Wright. “Evolution in Mendelian populations”. In: Genetics 16.2
(1931), p. 97.

[27] Sewall Wright. “The roles of mutation, inbreeding, crossbreeding, and selection
in evolution”. In: Proceedings of the Sixth International Congress of Genetics.
Vol. 1. 1932, pp. 356–366.

[28] Xing Yang et al. “A simple threat-detection strategy in mice”. en. In: BMC Bi-
ology 18.1 (Dec. 2020), p. 93. issn: 1741-7007. doi: 10.1186/s12915-020-
00825-0. url: https://bmcbiol.biomedcentral.com/articles/10.
1186/s12915-020-00825-0 (visited on 10/09/2024).

[29] Ron C Ydenberg and Lawrence M Dill. “The economics of fleeing from
predators”. In: Advances in the Study of Behavior. Vol. 16. Elsevier, 1986,
pp. 229–249.

[30] Melis Yilmaz and Markus Meister. “Rapid Innate Defensive Responses
of Mice to Looming Visual Stimuli”. en. In: Current Biology 23.20 (Oct.
2013), pp. 2011–2015. issn: 09609822. doi: 10 . 1016 /j . cub . 2013 .
08.015. url: https://linkinghub.elsevier.com/retrieve/pii/
S0960982213009913 (visited on 10/09/2024).

http://arxiv.org/abs/1712.06567
http://arxiv.org/abs/1712.06567
https://doi.org/10.1006/anbe.1999.1331
https://doi.org/10.1006/anbe.1999.1331
https://linkinghub.elsevier.com/retrieve/pii/S0003347299913313
https://linkinghub.elsevier.com/retrieve/pii/S0003347299913313
https://doi.org/10.1016/j.neuron.2017.05.036
https://doi.org/10.1016/j.neuron.2017.05.036
https://linkinghub.elsevier.com/retrieve/pii/S0896627317304749
https://linkinghub.elsevier.com/retrieve/pii/S0896627317304749
https://doi.org/10.1016/0167-8191(90)90086-O
https://doi.org/10.1016/0167-8191(90)90086-O
https://linkinghub.elsevier.com/retrieve/pii/016781919090086O
https://linkinghub.elsevier.com/retrieve/pii/016781919090086O
https://doi.org/10.1186/s12915-020-00825-0
https://doi.org/10.1186/s12915-020-00825-0
https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-020-00825-0
https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-020-00825-0
https://doi.org/10.1016/j.cub.2013.08.015
https://doi.org/10.1016/j.cub.2013.08.015
https://linkinghub.elsevier.com/retrieve/pii/S0960982213009913
https://linkinghub.elsevier.com/retrieve/pii/S0960982213009913

57

C h a p t e r 4

A MAP OF OBJECT SPACE IN PRIMATE
INFEROTEMPORAL CORTEX

Forward

This chapter discusses an investigation into the organization of primate
inferotemporal (IT) cortex. IT cortex is responsible for object recognition,
but it is unclear how the representation of visual objects is organized
in this part of the brain. Areas that are selective for categories such as
faces, bodies, and scenes have been found [16, 37, 10, 30, 19], but large
parts of IT cortex lack any known specialization, raising the question of
what general principle governs IT organization.

We used functional MRI, microstimulation, electrophysiology, and
deep networks to investigate the organization of macaque IT cortex.
We built a low-dimensional object space to describe general objects
using a feedforward deep neural network trained on object classification
[20]. Responses of IT cells to a large set of objects revealed that
single IT cells project incoming objects onto specific axes of this
space. Anatomically, cells were clustered into four networks according
to the first two components of their preferred axes, forming a map
of object space. This map was repeated across three hierarchical
stages of increasing view-invariance, and cells that comprised these
maps collectively harbored sufficient coding capacity to approximately
reconstruct objects. These results provide a unified picture of IT
organization in which category-selective regions are part of a coarse
map of object space whose dimensions can be extracted from a deep
network.

This chapter is adapted from a 2020 Nature paper with the same name,
coauthored with Pinglei Bao, Liang She, and Doris Tsao [5]. My
contributions to this study included (a) reconstructing images presented
to macaque monkeys from neural firing patterns, (b) generating latent
space embeddings for the stimulus images using both pre-trained and
custom convolutional neural networks, (c) mapping deep network latent

58

spaces to IT representation spaces, and (d) generating representation
space visualizations that contributed to the characterization of “no man’s
land” patches in IT—which contain neurons that preferentially respond
to spiky or spindly objects—and the discovery of additional patches
containing neurons that prefer stubby objects.

Object recognition—the process by which distinct visual forms are assigned distinct
identity labels—lies at the heart of our ability to make sense of the visual world.
It underlies many neural processes that operate on objects, including attention,
visual memory, decision making, and language. Befitting the central importance
and computational complexity of object recognition, a large volume of the brain—
inferotemporal (IT) cortex—is dedicated to solving this challenge [13].

One of the most striking features of IT is the existence of several distinct anatomical
networks that are specialized for processing specific object categories [37, 30, 19]
or stimulus dimensions [22, 39, 15, 41]. However, these networks comprise only
part of IT, and much of IT is not differentially activated by any known stimulus
comparison. Here we investigate whether this “unexplained” IT shows any functional
specialization. Furthermore, beyond simply parcelling IT, we investigate whether
there is an overarching general principle governing the anatomical layout of IT cortex.

Many previous studies have tried to address this latter question, but the answers
obtained remain piecemeal. Early studies using electrophysiology in monkeys
suggested a columnar architecture for visual shape [12], but the small field-of-
view of electrophysiology precluded understanding the larger-scale organization of
these columns. Later studies, using functional MRI (fMRI) in humans, proposed
various schemes to explain large-scale IT organization, including retinotopy [23]
and real-world size [18], but these proposals did not provide a complete account of
IT organization and lacked ground-truth validation at the level of single units. To
investigate the organization of macaque IT at multiple scales, we combined fMRI,
electrical microstimulation, and electrophysiology in the same animals. And we
found that a large portion of macaque IT cortex is topographically organized into a
map of object space that is repeated three times.

4.1 Identifying a new IT network
To discover the functional specialization of still-unexplained parts of IT cortex,
one strategy would be to guess. However, lacking any good guesses, we decided
to approach the problem from an anatomical perspective. We ran a large set of

59

stimulus comparisons to localize face, body, scene, color, and disparity patches in a
specific monkey (M1) and thereby defined the “no man’s land” of IT cortex in this
monkey: regions that were not identified by any known localizer (Fig. 4.1a, b). We
then electrically microstimulated a random site within this no man’s land in central
IT cortex [26]. This experiment revealed that the stimulated region (NML2) was
connected to two other, discrete regions in IT (NML1, NML3) (Fig. 4.1b, Fig. 4.6),
forming a previously unknown anatomical network within the no man’s land.

To understand the function of this new network, we first recorded the neural responses
of cells in the three patches to 1,224 images, each containing one of 51 objects—
spanning 6 object categories—presented at one of 24 viewing angles (Fig. 4.7a, b).
Responses were remarkably consistent (Fig. 4.2a, and Fig. 4.8a–d). Cells in all three
patches responded minimally to faces. And their preferred stimuli, while consistent
across patches, were not confined to any one semantic category (Fig. 4.2a).

To investigate whether this network exists in every animal, we identified the five
most- and least-preferred objects of the network based on mean responses of cells
recorded from monkey M1 (Fig. 4.2a). We presented these stimuli to monkey M1 in
an fMRI experiment and confirmed that the resulting map overlapped with the map
revealed by microstimulation (Fig. 4.2e). We then presented these stimuli to three
other monkeys (M2–M4) and found similar networks in all three animals (Fig. 4.2e).
Single-unit recordings targeted to this network in monkey M2 revealed a response

Figure 4.1: a: Stimulus contrasts used to identify known networks in IT (see
Methods). b: Inflated brain (right hemisphere) for monkey M1 showing known IT
networks mapped in this animal. Regions activated by microstimulation of NML2 are
shown in yellow. All activation maps shown at a threshold of 𝑝 < 10−3, not corrected
for multiple comparisons. Yellow and magenta outlines indicate the boundaries of
TE and TEO, respectively [34].

60

pattern that was highly consistent with that in monkey M1 (Fig. 4.2a). (Pearson
correlation of the mean responses to each object between monkeys M1 and M2,
𝑟 = 0. 89, 𝑝 < 10−16.) This justifies referring to an “NML network” across animals.

In the face patch network, neurons in posterior patches are view-specific, whereas
those in the most anterior patch are more view-invariant [11]. We found a sim-
ilar difference between the three NML patches in terms of their view-invariance.
Significantly more cells in NML3 were view-invariant than in NML1 (two-tailed
𝑡-test; 𝑡 (137) = 5.10, 𝑝 < 10−5; Fig. 4.8e). Population similarity matrices relating
responses to objects across views also showed an increase in view-invariance going
anteriorly, with emergence of parallel diagonal stripes in the NML3 similarity matrix
(Fig. 4.3a, top, and Fig. 4.8f). Notably, many cells showed view-invariance to objects
that the monkey had not experienced, such as an airplane (Fig. 4.3b, top).

Next, we investigated what is being encoded by cells in this network. Scrutinizing
the most- and least-preferred objects (Fig. 4.2a, bottom), we noticed that all of the
preferred objects contained thin protrusions, whereas the non-preferred objects were
round. This suggested that one feature NML neurons might be selective for is high
aspect ratio. We confirmed this using both responses to the original object image
set (Fig. 4.8g, see Methods) as well as a simplified stimulus set consisting of a line
segment independently varied in aspect ratio, curvature, and orientation (Fig. 4.2f,
Fig. 4.7c).

4.2 NML cells encode axes of object space
We next attempted to identify the relevant shape dimensions for the NML network in
a systematic way that did not depend on subjective visual inspection. Until recently
this was difficult, due to the lack of a computational scheme for parametrizing the
shape of arbitrary objects. But modern deep networks trained to classify objects
provide a powerful solution to this problem [40]. They can be used to describe
arbitrary objects as a sequence of a few thousand numbers: the unit activations in a
deep layer. And to make the parametrization even more compact, one can perform
principal components analysis (PCA) on these unit activations.

We built an object space by passing the stimulus set we presented to the monkey
(Fig. 4.7a, b) through AlexNet—a deep network trained on object classification
[20]—and then performing PCA on the responses of units in layer fc6 of this
network (Fig. 4.9a). The first principal component (PC) roughly divides things
with protrusions (spiky) from those without (stubby) (Fig. 4.9b). And the second

61

PC roughly divides animate object from inanimate objects. (Note that we use
“animate” and “inanimate” as shape descriptors, without any semantic connotation.)
We determined that 50 object dimensions could explain 85% of the variance in
the AlexNet fc6 response (Fig. 4.9c) and so used 50 dimensions in the remaining
analyses. We then analysed the responses of cells in the NML network by computing
a “preferred axis” for each cell through linear regression. That is, we computed
coefficients c in the equation 𝑅 = c · f + 𝑐0, where 𝑅 is the response of the cell, f is
the 50D object feature vector, and 𝑐0 is a constant offset (see Methods).

Cells showed significant tuning to many of the 50 object dimensions (Pearson
correlation 𝑝 < 10−3 between feature values and neural responses). On average, each
cell was significantly tuned to seven dimensions. Notably, the preferred axis of each
cell was stable to the precise image set (Fig. 4.10a). The 50D linear object space
model could explain 44.7% of the variance, or 53.3% of the explainable variance, of
NML neurons on average (Fig. 4.10b). This is significantly higher than a Gaussian
model, and similar in efficacy to a quadratic model (Fig. 4.10c, d).

Consistent with the high explained variance by the linear model, cell tuning along the
preferred axis in the 50D object space was ramp-shaped (Fig. 4.3c, top). Similar ramp-
shaped tuning has previously been reported for face-selective cells [7]. NML neurons
also showed approximately flat tuning along orthogonal axes (Fig. 4.10e)—another
property that has been previously observed in face-selective cells [7]. Together,
ramp-shaped tuning along the preferred axis and flat tuning along orthogonal axes
implies that cells in the NML network are linearly projecting incoming objects,
formatted as vectors in object space, onto specific preferred axes.

Overall, the organization and code of the NML network are strikingly similar to
those of the face patch network. The NML network consists of connected patches,
cells within the network show a consistent pattern of selectivity, there is increasing
view-invariance along the network, and single cells in the network represent object
identity through an axis code. So there seems to be a clear structural parallel between
the face network and the NML network. We therefore investigated whether additional
networks in IT cortex follow the same scheme.

4.3 The body network follows the same scheme
We next recorded from the macaque body network—a set of regions adjacent to
face patches that respond more to animate compared to inanimate objects [30]
(Fig. 4.2b)—as well as the face network (Fig. 4.2c). Population similarity matrices

62

showed increased view-invariance in the most anterior body patch (Fig. 4.3a, b,
middle, and Fig. 4.8e, f), consistent with a previous study [21]. Cells in the body
network also showed ramp-shaped tuning along their preferred axes (Fig. 4.3c,
middle, and Fig. 4.10a) and flat tuning along orthogonal axes (Fig. 4.10e). So the
body network follows the same general anatomical organization and encoding scheme
as the NML and face networks.

4.4 A general rule governing IT organization
The discovery of three networks (NML, body, and face) that all follow the same
organization and encoding scheme suggests that there might be a general principle
that governs the organization of IT cortex. Recall that the first two axes of our object
space were roughly stubby versus spiky, and animate versus inanimate (Fig. 4.9b).
We noticed a remarkable relationship between these two axes and the selectivity
of the NML, body, and face networks. Face patches prefer stubby animate objects;
body patches prefer spiky, animate objects; and NML patches prefer spiky objects
regardless of animacy (Fig. 4.2a). These observations made us wonder whether all
of IT might be topographically organized according to the first two dimensions of
our object space (Fig. 4.4a), in the same way that retinotopic cortex is organized
according to polar angle and eccentricity.

As a first step to test this hypothesis, we projected all the stimuli that we showed to
the monkey onto the first two dimensions of our object space, and marked the top
100 images for the NML, body, and face networks (Fig. 4.4b; orange, green, and
blue dots). They approximately spanned three quadrants of the space. If IT cortex is
indeed laid out according to the first two dimensions of this object space, we predicted
there should be a fourth network representing objects that project strongly onto the
remaining unrepresented quadrant: stubby, inanimate objects without protrusions,
like a ball or a USB stick.

To test this prediction, we first ran an fMRI experiment with four blocks, corresponding
to the four quadrants of the object space (Fig. 4.4a). And comparing measurements
during stubby blocks to measurements during the other blocks revealed a network that
contained multiple patches selective for stubby objects (Fig. 4.4c). Electrophysiology
targeted to two of these patches revealed cells that were strongly selective for stubby
objects (Fig. 4.2d), whose preferred axes occupied the previously unrepresented
quadrant (Fig. 4.4b, magenta dots). The general properties of the stubby network
were very similar to those of the NML, face, and body networks. Population

63

Figure 4.2: a–d, top: Responses of cells to 51 objects from six different categories.
Responses to each object were averaged across 24 views. Cells were recorded in three
patches (NML1, NML2 and NML3) from the NML network (a), in three patches of
the body network (b), in patch ML of the face network (c), and in two patches of the
stubby network (d). a–d, middle: Blue charts show average responses to each object
in each network. Numbers indicate the five most-preferred objects. a–d, bottom:
The five most-preferred (top row) and least-preferred (bottom row) objects for each
network, based on averaged responses. Images 1 to 5 are shown from left to right.
e: Coronal slices containing NML1, NML2, and NML3 from monkeys M1, M2,
M3, and M4 showing difference in activation in response to the five most-preferred
versus five least-preferred objects determined from electrophysiology in the NML
network of monkey M1. In M1, the microsimulation result is also shown as a cyan
overlay with threshold 𝑝 < 10−3, uncorrected. Inset numbers indicate AP coordinate
relative to interaural 0 [34]. (Continued on the next page)

64

Fig. 4.2, continued: f: Responses of cells from patches NML2 and NML3 of the
NML network to a line segment that varied in aspect ratio, curvature, and orientation.
Responses are averaged across orientation, and curvature runs from low to high from
left to right for each aspect ratio. Aspect ratio accounts for 22.8% of the response
variance on average across cells, curvature for 5.6% of the variance, and orientation
for 3.5% of the variance.

similarity matrices showed increased view-invariance in the most anterior stubby
patch (Fig. 4.3a, b, bottom), Fig. 4.8f). Cells in the stubby network also showed
ramp-shaped tuning along their preferred axes (Fig. 4.3c, bottom, and, Fig. 4.10a)
and flat tuning along orthogonal axes (Fig. 4.10e). Thus, the hypothesis that IT is
organized according to the first two dimensions of our object space revealed a second
new shape network.

One potential concern is that the collection of 51 objects at 24 views that we used to
assess the selectivity of cells in each network was too sparse to allow us to identify
the true selectivity of cells. With this in mind, we presented 1,593 completely
different objects to a subset of cells in the NML, body, and stubby networks, and
found responses consistent with the responses to our original stimulus set (Fig. 4.11a,
b). In particular, preferred axes measured using the new stimuli segregated into three
distinct regions of object PC1-PC2 space (Fig. 4.11a), and the preferred stimuli of
each network were qualitatively similar to those identified using the original stimuli
(Fig. 4.11b).

It might seem suspiciously serendipitous for IT to be organized according to the
first two dimensions of an object space computed using a specific image set with a
specific deep convolutional network. But it turns out that these first two axes do not
depend strongly on the particular image set (Fig. 4.9d–f) or network (Fig. 4.9g–j)
used to compute them.

4.5 A map of object space
What is the anatomical layout of the face, body, NML, and stubby networks? An
overlay of the four networks onto coronal slices and a cortical flat map revealed a
remarkably ordered progression (Fig. 4.4c, d; see Fig. 4.12 for response time courses
from each patch). There is a clear sequence from body to face to stubby to NML
in both hemispheres that is repeated in the same order in posterior, middle, and
anterior IT. This pattern was consistent across animals (Fig. 4.4c, d) and confirmed by
quantitative analysis of the linear fit between patch-ordered label and cortical location

65

of patch peak (𝑝 < 10−18 for posterior, middle, and anterior IT’; Fig. 4.4e–g). This
strikingly regular progression suggests the existence of a coarse map of object space
that is repeated at least three times, with increasing view-invariance at each stage.

These four networks, together with the disparity, scene, and color networks, occupy
about 53% of IT cortex, so additional networks may exist. Not all of the networks
consisted of exactly three patches; for example, the stubby and NML networks each
contained four patches (Fig. 4.4d), and previous work has suggested that there are
six face patches in each hemisphere, with some individual variability [35]. Thus,
IT cortex may contain additional repetitions of the object space map. Furthermore,
we emphasize that our study addresses IT organization at a coarse spatial scale and
does not exclude the possibility of additional organization at finer spatial scales

Figure 4.3: a: Population similarity matrices in the three patches of the NML
network (top), three patches of the body network (middle) and two patches of the
stubby network (bottom) pooled across monkeys M1 and M2. An 88×88 matrix
of correlation coefficients was computed from responses of cells in each patch to
88 stimuli (8 views × top-11 preferred objects). b: Responses from three example
cells recorded in NML3 (top), the body network (middle) and the stubby network
(bottom) to 51 objects at 24 views. Four views of the most preferred object are shown
below each response matrix. c: Responses of neurons recorded from patches in the
NML network (top), the body network (middle) and the stubby network (bottom)
as a function of distance along the preferred axis. The abscissa is rescaled so that
the range [−1, 1] covers 95% of the stimuli. Half of the stimulus trials were used
to compute the preferred axis for each cell, and held-out data was used to plot the
responses shown.

66

(Fig. 4.13). Recordings from multiple grid holes suggest that each patch spans 3–4
mm (Fig. 4.13a–d). Although we failed to find clustering at finer scales within a
patch (Fig. 4.13e, f) or clustering for any dimensions beyond the first two (Fig. 4.13g,
h), it is possible that mapping techniques with higher spatial resolution may reveal
additional substructure within patches.

If the first two dimensions of object space derived from a deep network are indeed
meaningful in terms of brain representation, then we should be able to design novel
stimuli to identify the four networks. With this in mind, we generated three new
image sets—silhouettes, fake objects, and deep dream images—with very different
properties from those of the original image set shown in Fig. 4.4a. In each case,
fMRI revealed four networks similar to those in Fig. 4.4 (Fig. 4.11c–e).

4.6 Explaining previous accounts of IT
The principle that IT cortex is organized according to the first two axes of object
space provides a unified explanation for many previous observations concerning
the functional organization of IT, including not only the existence of face [16] and
body areas [10], but also gradients for representing animate versus inanimate and
small versus large objects [18] (Fig. 4.14a, b), a gradient for representing open versus
closed topologies [38], (Fig. 4.14c), the curvature network [41] (Fig. 4.14d), and
the visual word form area [25] (Fig. 4.14e). Furthermore, within category-selective
regions, the object space model explains activity better than the semantic category
hypothesis [3] (Fig. 4.15). Overall, these results demonstrate the large explanatory
power of the object space model.

4.7 Reconstructing general objects
We next investigated the richness of the feature space represented by cells in the four
networks that comprise the map of object space. To quantify the object information
available in the map of object space formed by the four networks, we attempted to
decode object identity using the responses of cells from these networks. We used
leave-one-object-out cross-validation to learn a linear transform that maps responses
to features (Fig. 4.16a, b). The explained variance for each dimension showed that
many dimensions are represented in each network beyond the first two (Fig. 4.16c),
allowing a target object to be identified among distractors (Fig. 4.16d–f).

To directly visualize the information about object features that is carried by neurons
in these four networks, we attempted to reconstruct general objects using neural
activity. We inferred object images from decoded feature vectors using a generative

67

Figure 4.4: a: A schematic plot showing the map of objects generated by the first two
PCs of our object space. The stimuli in the rectangular boxes were used for mapping
the four networks shown in (c) and (d) using fMRI. b: All the stimuli used in the
electrophysiology experiments (Fig. 4.7a, b), projected onto the first two dimensions
of the object space (grey circles). For each network, the top 100 preferred images are
marked (body network: green, face network: blue, stubby network: magenta, NML
network: orange). Numbers in parentheses indicate the number of neurons recorded
from each network. c: Coronal slices from posterior, middle, and anterior IT of
monkeys M3 and M4 showing the spatial arrangement of the four networks (maps
thresholded at 𝑝 < 10−3, uncorrected). Here, the networks were computed using
responses to the stimuli in (a). d: As in (c), showing the four networks in monkeys
M3 and M4 overlaid on a flat map of the left hemisphere. e, left: Spatial profiles
of the four patches along the cortical surface within posterior IT for data from two
hemispheres of four animals. The 𝑦-axis shows the normalized significance level for
each comparison of each voxel, and the 𝑥-axis shows the position of the voxel on the
cortex (see Methods). e, right: Anatomical locations of the peak responses plotted
against the sequence of quadrants in object space. f, g: As in (e), for voxels from
middle IT (f) and anterior IT (g).

68

adversarial network that was trained to invert the computation performed when
passing an image into AlexNet [9] and reading out the representation at layer fc6.
Reconstructions captured details of the original images with an impressive level of
accuracy (Fig. 4.5a). Figure 5b shows the distribution of normalized reconstruction
distances between the actual and best possible reconstructions (see Methods). As a
second method to recover objects from neural activity, we searched a large auxiliary
object database for the object with a feature vector closest to that decoded from
neural activity. This method also yielded recovered images that picked up many fine
structural details (Fig. 4.16g). Overall, these results suggest that the four networks of
the IT object space map are sufficient to encode a reasonably complete representation
of general objects, which implies that the number of networks used to solve general
object recognition does not need to be astronomically high.

4.8 Discussion
We have shown that IT contains a coarse map of object space that is repeated three
times, with increasing invariance at each stage. This map consists of at least four
regions that tile object space. The map parsimoniously accounts for the previously
reported face and body networks, as well as two new networks: the NML network
and the stubby network. Single cells in each of the four networks use an encoding
principle similar to that previously identified for the face network—projection of
incoming objects, formatted as points in an object space, onto a preferred axis. The

Figure 4.5: a: Reconstructions using 482 cells from the NML, body, stubby, and
face networks. Example reconstructed images from the three groups defined in
(b) are shown. Each row of four images shows from left to right: (1) the original
image, (2) the reconstruction using the fc6 response to the original image, (3) the
reconstruction using the fc6 response projected onto the 50D object space, and (4) the
reconstruction based on neuronal data. b: The distribution of normalized distances
between reconstructed feature vectors and best-possible reconstructed feature vectors
(see Methods).

69

four networks that comprise the IT object-topic map, together with the scene, color,
and disparity networks, cover about 53% of IT. Pooling responses across the four
networks enabled reasonable reconstruction of general objects, suggesting that these
four networks provide a basis that spans a general object space. By showing that
the modular organization previously thought to be unique to a few categories may
actually extend across a much larger swath of IT, we provide a powerful new map for
experiments that require spatially specific interrogation of object representations.

It remains unknown whether borders between the patches are continuous or discrete
[1], as fMRI-guided single-unit recording is not ideal for mapping sub-millimetre-
scale structure. If the borders turn out to be continuous, this would imply that the
entire notion of IT modularity may be an artifact of limited field of view. On the
other hand, if the borders turn out to be discrete, this would suggest that additional
factors (for example, extensive experience with specific categories [2]) may support
the formation of uniquely specialized modules in cortex. The coarse map of object
space identified here provides a foundation for future fine-scale mapping studies to
tackle this question.

The finding that neurons in IT are clustered according to axis similarity resonates
with recent approaches to unsupervised learning of object representations that seek
optimal clustering of data in low-dimensional embeddings [42]. It will be important
to understand why IT physically clusters neurons with similar axes—something
not currently implemented in deep networks. One possible reason is that physical
clustering may help to refine object representations through lateral inhibition and aid
object identification in clutter [4].

Our results cast the face patch system in a new light. Previously, it was thought
that the face system, with its striking clustering of face-selective cells, was a unique
evolutionary consequence of the importance of face recognition to primate social
behavior. Here we show that the face system arises naturally from the statistical
structure of object space. One prediction is that face-deprived animals should still
show a network specialized for round objects (for example, clocks, apples), even if it
is not specialized for faces per se. Selectivity for additional features may develop
with face experience [2].

Our hypothesis that IT cortex is organized according to the first two dimensions
of an object space makes multiple new predictions. We have already confirmed
several of these, including the existence of the stubby network (see Appendix ii).
Other predictions to consider include (1) that lesions in any part of IT should lead

70

to agnosias in specific sectors of object space [31], and (2) that other brain regions
containing face patches [14] may also harbor object space maps. Additionally, it will
be important to discover whether remaining unaccounted-for regions of IT can be
explained by relating the behavior of the neurons within them to a map of object
space.

71

4.A Methods
Five male rhesus macaques (Macaca mulatta) between 5 and 8 years old were used
in this study. All procedures conformed to local and US National Institutes of Health
guidelines, including the US National Institutes of Health Guide for Care and Use
of Laboratory Animals. All experiments were performed with the approval of the
Caltech Institutional Animal Care and Use Committee.

No statistical methods were used to predetermine sample size. The experiments were
not randomized and investigators were not blinded to allocation during experiments
and outcome assessment.

4.A.1 Visual stimuli
Stimuli for electrophysiology experiments Three stimulus sets were used. (1)
A set of 51 objects from 6 object categories, each presented from 24 viewpoints
(Fig. 4.7a, b). Non-face 3D models were downloaded fromhttps://www.3d66.com.
And face models were generated with Facegen (Singular Inversions) using random
parameters. Images were rendered using 3dMax (Autodesk). Object images were
presented for 250 ms windows interleaved with 150 ms windows in which solid
gray was displayed. Each object image was presented 4–8 times. (2) A set of
line segments that varied along three dimensions: curvature, aspect ratio, and
orientation (Fig. 4.7c). Segment images were presented for 150 ms windows
interleaved with 150 ms windows in which solid gray was displayed. Each image
was presented 6–8 times. (3) A set of 1,593 object images consisting of 1,392 images
downloaded from www.freepngs.com and 201 face images from the FEI database
(https://fei.edu.br/~cet/facedatabase.html) (Fig. 4.7d). Object images
were presented for 150 ms windows interleaved with 150 ms windows in which solid
gray was displayed. Each image was presented 4–8 times.

Localizer for the NML network Preferred and non-preferred objects were identi-
fied from electrophysiological responses recorded in the NML network of monkey
M1 (Fig. 4.2a, top) by computing average, baseline-subtracted responses in the
window [60, 220] ms after stimulus onset, averaging across all 24 views. (The
baseline was computed from the window [−25, 25] ms.) The localizer contained
blocks of three types. Type 1 blocks contained images of the five most-preferred
objects, each at eight views (0°rotation in the 𝑦-𝑧 space; first row in Fig. 4.7b).
Type 2 blocks contained images of the five least-preferred objects, each at eight
views. Type 3 blocks contained images of five objects that belonged to the animal

https://www.3d66.com
www.freepngs.com
https://fei.edu.br/~cet/facedatabase.html

72

category, each at eight views. A block containing phase-scrambled noise patterns
preceded each stimulus block (using the images shown in blocks 1–3). To construct
phase-scrambled images, we performed discrete Fourier transforms (DFT) on the
object images, added a random phase to each frequency component, and then
performed an inverse DFT. During the fMRI experiment, stimuli were presented in
24-s blocks, with an interstimulus interval of 500 ms. In each scan, the order of
the stimulus blocks was fixed as follows: preferred objects, non-preferred objects,
animals, non-preferred objects, animals, preferred objects, animals, preferred objects,
non-preferred objects. In addition, a block containing phase-scrambled noise was
added at the end of each scan. Each scan lasted 456 s. Four monkeys were tested
with this localizer, and 6–9 scans were performed for each monkey.

Localizer for the body network This localizer contained blocks of eight types,
each consisting of 16 images taken from the following 8 categories: monkey bodies,
animals, faces, fruits, hands, man-made objects, houses, and scenes. Stimuli were
presented in 24-s blocks, with an interstimulus interval of 500 ms. In each run,
the eight blocks were each presented once, interleaved with phase-scrambled noise
patterns (computed using images from the eight object blocks). A block containing
phase-scrambled noise was added at the end of each scan. Each scan lasted 408 s.
Four monkeys were tested with this localizer, and 6–9 scans were performed for each
monkey.

Localizer for the stubby network This localizer contained blocks of four types,
each consisting of 20 images taken from the four quadrants of object PC1-PC2 space
(Fig. 4.4a). The images were selected from a collection of 19,300 background-free
object images (http://www.freepngs.com). The images were passed through
AlexNet, and projected to the object PC1-PC2 space constructed using the original
1,224 images. (See “Building an object space using a deep network”.) Then 20
images were selected from each of the four quadrants of object PC1-PC2 space,
each with a polar angle roughly centered on the respective quadrant. The images
were presented in 24-s blocks with an interstimulus interval of 500 ms. In each run,
the four blocks were each presented twice, interleaved with phase-scrambled noise
patterns (computed using images from the four object blocks). A block containing
phase-scrambled noise was added at the end of each scan. Each scan lasted 408 s.
Four monkeys were tested with this localizer, and 6–18 scans were performed for
each monkey.

http://www.freepngs.com

73

Localizer for the face network This localizer contained blocks of five types,
containing images of faces, hands, technological objects, vegetables/fruits, and
bodies. Face blocks were presented in alternation with non-face blocks. Stimuli
were presented in 24-s blocks with an interstimulus interval of 500 ms. In each run,
the face block was repeated four times and each of the non-face blocks was shown
once. Blocks of grid-scrambled noise patterns preceded each stimulus block. A
block containing grid-scrambled noise was added at the end of each scan. Each scan
lasted 408 s. Additional properties of this localizer were as described in [36]. Four
monkeys were tested with this localizer, and 5–12 scans were performed for each
monkey.

Localizer for the scene network This localizer contained blocks of ten types: five
scene block types and five non-scene block types. Stimuli were presented in 24-s
blocks with an interstimulus interval of 500 ms. In each run, the ten blocks were
each presented once, interleaved with blocks of grid-scrambled noise. Additional
properties of this localizer were as described in [19]. Two monkeys were tested with
this localizer, and 8–12 scans were performed for each monkey.

Localizer for the color network This localizer contained blocks of two types: color
and grayscale. During color blocks, an equiluminant red/green color grating was
presented (2.9 cycles/degree, drifting at 0.75 cycles/s). And during grayscale blocks,
an otherwise-identical grayscale grating was presented. Stimuli were presented in
24-s blocks, 16 blocks to a run. Each scan lasted 432 s. Additional properties of this
localizer were as described in [22, 6]. Four monkeys were tested with this localizer,
and 8–14 scans were performed for each monkey.

Localizer for the 3D network This localizer contained blocks of two types. Blocks
of the first type contained 3D shapes presented as random dot stereograms, including
curved shapes, like ripples and saddles, and simple, flat shapes, like stars and squares.
And blocks of the second type contained random dots, presented at zero disparity.
Blocks of these two types were interleaved, and each block lasted 24 s. The images
were presented with an interstimulus interval of 500 ms. Each scan lasted 600 s.
Monkeys viewed the stimuli through red-green glasses. Four monkeys were tested
with this localizer, and 5–12 scans were performed for each monkey.

74

Silhouette experiment This localizer contained blocks of four types, each con-
sisting of 20 images taken from the four quadrants of the AlexNet fc6 PC1-PC2
space (Fig. 4.11c). The images were selected from an image set containing 19,300
background-free object images (images from http://www.freepngs.com). The
images were first binarized by making any pixel that belonged to the object to black
and any pixel that did not belong to the object white. Images were then passed
through AlexNet and projected onto the PC1-PC2 space built using the original
1,224 images (see “Building an object space using a deep network”). Then, 20
images were selected from each of the four quadrants of PC1-PC2 space. The images
were presented in 24-s blocks with an interstimulus interval of 500 ms. In each run,
blocks of each type were presented twice, interleaved with blocks only showing a
background and a fixation point. A block containing a background and a fixation
point was added at the end of each scan. Each scan lasted 408 s. Three monkeys
were tested with this localizer, and 12–24 scans were performed for each monkey.

Fake object experiment This experiment was largely identical to the silhouette
experiment, but with different stimuli. We used a deep generative adversarial network
(GAN) [9] to generate “fake object” images (Fig. 4.11d). The GAN was trained to
generate images using AlexNet layer fc6 responses. To generate fake objects, we first
passed an image set consisting of 19,300 real object images through AlexNet; for
each object image, a 4,096-unit response pattern from layer fc6 was generated. We
randomly selected pairs of patterns, and recombined these pairs into new patterns
[29]. Each new pattern was passed into the GAN to generate a fake object image.
Twenty thousand new “fake objects” were generated, and four groups of stimuli
(twenty images per group) were selected from this set on the basis of the projections
onto PC1-PC2 space. Three monkeys were tested with this localizer, and 10–32
scans were performed for each monkey.

Deep dream experiment This experiment was largely identical to the silhouette
experiment, but with different stimuli. We used deep dream techniques (Matlab
2017b, Deep Learning Toolbox, deepdreamImage function) to generate images
projecting strongly onto the four quadrants of object space. Instead of performing
gradient ascent on activity of a single fc6 unit, four groups of images were generated
by ascending the gradient of four fictive units corresponding to linear weighted sums
of fc6 units (PC1 + PC2, PC1 − PC2, −PC1 + PC2, −PC1 − PC1) (Fig. 4.11e). For
each fictive unit, 20 images were generated after 100 iterations of gradient ascent,

http://www.freepngs.com

75

starting from Gaussian noise. We further confirmed that the images projected to
extreme coordinates in PC1-PC2 space by passing the images through AlexNet and
projecting the resulting fc6 response pattern onto PC1-PC2 space. Three monkeys
were tested with this localizer, and 12–22 scans were performed for each monkey.

4.A.2 fMRI scanning and analysis
Five male rhesus macaques were trained to maintain fixation on a small spot for a juice
reward. Eye position was monitored using an infrared camera (ISCAN) sampled
at 120 Hz. Monkeys were scanned in a 3T TIM (Siemens, Munich, Germany)
magnet equipped with an AC88 gradient insert while passively viewing images on a
screen. Feraheme contrast agent was injected to improve the signal/noise ratio for
functional scans. A single-loop coil was used for structural scans at isotropic 0.5 mm
resolution. A custom eight-channel coil was used for functional scans at isotropic 1
mm resolution. Additional details of the scanning protocol are described in [28].

Surface reconstruction based on anatomical volumes was performed using FreeSurfer
[8] after skull stripping using FSL’s Brain Extraction Tool (University of Oxford).
After applying these tools, segmentations were further refined manually.

Analysis of functional volumes was performed using the FreeSurfer Functional
Analysis Stream [32]. Volumes were corrected for motion and undistorted based
on acquired field map. The resulting data was analysed using a standard general
linear model. For the scene contrast, the average of all scene blocks was compared
to the average of all non-scene blocks. For the face contrast, the average of all face
blocks was compared to the average of all non-face blocks. For the color contrast, the
color block was compared to the non-color blocks. For the body contrast, monkey
body and animal blocks were compared to all other blocks. For the stubby contrast,
the stubby, inanimate object block was compared to the three other blocks. For the
3D contrast, the 3D shape blocks were compared to the zero disparity blocks. For
the microstimulation contrast, blocks with concomitant electrical stimulation were
compared to blocks without stimulation. All of the contrasts were performed using a
non-paired two-sided 𝑡-test. 𝑝 values were not adjusted for multiple comparisons.

To determine the area of TE and TEO in each subject, we first co-registered the MRI
volume for each subject to a monkey atlas [33]. Then, each subject’s TE and TEO
were defined using the atlas.

To quantify the reproducibility of patch progression on the cortical surface, we plotted
significance values for the four stimulus comparisons defining the four networks in

76

Fig. 4.4c along three paths in posterior, middle, and anterior IT tracing the centre
of the gray matter, spanning the following ranges: (1) the lower bank of STS and
inferotemporal gyrus at AP position 3; (2) the lower bank of STS and inferotemporal
gyrus at AP position 13; (3) antero-dorsal (TEad) and antero-ventral (TEav) parts of
area TE at AP position 18. Non-significant responses (𝑝 > 10−3) were set to 0.

4.A.3 Microstimulation
The stimulation protocol followed a block design. We interleaved nine blocks of
fixation with eight blocks of fixation paired with electrical microstimulation. We
started and ended with a block without microstimulation, and each block lasted
32 s. During microstimulation blocks, we applied one pulse train per second,
lasting 200 ms, with a pulse frequency of 300 Hz. Bipolar current pulses were
charge-balanced, with a phase duration of 300 𝜇s and an inter-phase distance of
150 𝜇s. We used a current amplitude of 300 𝜇A. Stimulation pulses were delivered
using a computer-triggered pulse generator (S88X; Grass Technologies) connected
to a stimulus isolator (A365, World Precision Instruments). All stimulus-generation
equipment was stored in the scanner control room, and the coaxial cable was passed
through a wave guide into the scanner room. We obtained 30 scans for monkey M1.

4.A.4 Single-unit recording
Tungsten electrodes (1–20 MΩ at 1 kHz, FHC) were back-loaded into plastic guide
tubes. The guide tube length was set to reach approximately 3–5 mm below the dura
surface. The electrode was advanced slowly using a manual advancer (Narishige
Scientific Instrument, Tokyo, Japan). Neural signals were amplified and extracellular
action potentials were isolated using the box method in an online spike sorting system
(Plexon, Dallas, TX, USA). Spikes were sampled at 40 kHz. All spike data was
re-sorted using offline spike sorting algorithms (Plexon). We recorded data from
every neuron encountered. Only well-isolated units were considered for further
analysis. Electrodes were lowered through custom angled grids that allowed us to
reach the desired targets; custom software was used to design the grids and plan the
electrode trajectories [27].

4.A.5 Behavioral task
Monkeys were head fixed and passively viewed the screen in a dark Wisconsin box.
Stimuli for electrophysiology were presented on a CRT monitor (DELL P1130). The
screen size covered 27.7×36.9 visual degrees and the stimuli spanned 5.7°. The

77

fixation spot size was 0.2°in diameter. Images presentation order was randomized
using custom software. Eye position was monitored using an infrared eye tracking
system (ISCAN). Juice reward was delivered every 2–4 s if fixation was properly
maintained.

4.A.6 Data analysis
Computing view-identity similarity matrices For each network, we first identified
the 11 most preferred objects by computing average, baseline-subtracted responses
in the window [60, 220] ms after stimulus onset, averaging across all 24 views. (The
baseline was computed from the window [−25, 25] ms.) We then used responses to
these 11 most preferred objects for the analysis (using all 24 views for each object,
coming to a total of 264 images). For each patch, we computed a 264×264 similarity
matrix containing Pearson’s correlation coefficients for each population response
vector pair. To compute view-invariant identity selectivity as a function of time
(Fig. 4.8f), at each time point 𝑡 between 0 and 400 ms following stimulus onset, in
increments of 50 ms, we computed a similarity matrix for mean responses between
𝑡 − 25 and 𝑡 + 25 ms. We then calculated a “same object correlation value” as
the average correlation between responses to two distinct images of a single object
(solid traces in Fig. 4.8f), and a “different object correlation value” as the average
correlation between responses to images of two different objects (dashed traces in
Fig. 4.8f).

Building an object space using a deep network The stimulus set consisting of
51 objects at 24 views (1,224 images) was fed into the pre-trained network AlexNet
[20]. The responses of 4,096 nodes in layer fc6 were then extracted to form a
1,224×4,096 matrix. We performed PCA on this matrix and retained the first 50
PCs, which captured 85% of the response variance across AlexNet fc6 units. The
first two dimensions accounted for 27% of the response variance across AlexNet fc6
units. To test the robustness of object PC1-PC2 space to the particular set of 1,224
images used to build it (Fig. 4.9d, e), we randomly selected 1,224 images from a new
database (http://www.freepng.com) containing 19,300 background-free object
images. These images were fed into Alexnet, and we followed the same procedure to
build a new object space, which we call PC1′-PC2′ space. The original 1,224 images
were passed through Alexnet, and the vector of fc6 unit activations was projected
onto both PC1-PC2 space and PC1′-PC2′ space. We then determined the affine
transform of PC1′-PC2′ space that minimized the distance between the coordinates

http://www.freepng.com

78

of the images in the two spaces, using linear regression.

©­­­«
𝑥1,1 𝑥1,1

...

𝑥1224,1 𝑥1224,1

ª®®®¬ =

©­­­«
𝑥′1,1 𝑥′1,1

...

𝑥′1224,1 𝑥′1224,1

ª®®®¬
(
𝑢 𝑤

𝑢′ 𝑤′

)
, (4.1)

where (𝑥𝑖,1, 𝑥𝑖,2) is the location of image 𝑖 in PC1-PC2 space, and (𝑥′
𝑖,1, 𝑥

′
𝑖,2) is the

location of image 𝑖 in PC1′-PC2′ space. After aligning the two spaces, we calculated
the Pearson’s correlation 𝑟 between PC1 and PC1′, and PC2 and PC2′. We used a
similar procedure to test the robustness of PC1-PC2 space to the particular network
used to compute it (Fig. 4.9i).

Quantifying the aspect ratio of objects The aspect ratio of an object (Fig. 4.8g)
was defined as a function of its perimeter 𝑃 and area 𝐴:

Aspect ratio :=
𝑃2

4𝜋𝐴
. (4.2)

The perimeter was defined as the number of pixels lying on the object image’s
boundary, which was computed using Matlab’s bwboundaries function. The area
was defined as the number of pixels that fell within the object’s boundary, including
those at the boundary, which was computed using Matlab’s regionsprops function.

Computing the preferred axis of an IT cell We counted the number of spikes
that occurred in the time window 60–220 ms after stimulus onset for each stimulus.
To estimate a cell’s the preferred axis, we used linear regression to compute the
coefficients c in the equation R = c · F + 𝑐0, where R is the response vector of the
cell to the set of images, F is the matrix of 50D object feature vectors for the set
of images, and 𝑐0 is a constant offset. Using this definition of preferred axis, an
increased value of the projection onto the preferred axis corresponds to an increased
firing rate. To generate Fig. 4.3c, we randomly picked half of the stimulus trials to
compute the preferred axis for each cell, and then used the held-out data to plot the
responses shown.

Computing tuning along dimensions orthogonal to the preferred axis To
compute tuning along orthogonal dimensions (Fig. 4.10e, black traces) for each
neuron, we first computed the preferred axis. There are 49 dimensions spanning the
subspace orthogonal to this preferred axis. To find the longest orthogonal axis in this
49D subspace, we first represented each of the 1,224 images in our stimulus set as a

79

50D vector in the object space, and subtracted the preferred axis projection from
each of these image feature vectors, to obtain a set of feature vectors lying in the 49D
orthogonal subspace. We performed PCA on this set of 1,224 vectors, and picked
the top PC. This PC represents the axis orthogonal to the preferred axis of the cell
along which the images vary the most. For each cell, we computed the tuning curve
along this axis.

Quantifying consistency of a cell’s preferred axis The consistency of the preferred
axis of each cell (Fig. 4.10a) was measured as follows: in each iteration, we randomly
split the image set (1,224 images) into two subsets of 612 images, and calculated a
preferred axis using the responses to each subset. Then, we computed the Pearson
correlation (𝑟) between the two. We repeated this 100 times, and the consistency
of the preferred axis for the cell was defined as the average 𝑟 value across the 100
iterations.

Quantifying explained variance along an object dimension In Fig. 4.16b, c, the
explained variance 𝑅2 was computed

𝑅2 =

∑
𝑖∈{1..1224} (𝑦𝑖 − 𝑦′

𝑖
)2∑

𝑖∈{1..1224} (𝑦𝑖 − 𝑦̄)2 , (4.3)

where 𝑦𝑖 is the true feature value for image 𝑖, 𝑦′
𝑖
is the reconstructed feature value for

image 𝑖, and 𝑦̄ is the mean true feature value across the 1224 images.

Quantifying explained variance in single-neuron firing rates and model compar-
ison In Fig. 4.10b–d, to compute explained variance, we first fit the axis model
to responses to 1,593 objects (Fig. 4.7d), and then tested it model on responses
to 100 other objects. To obtain high signal quality, the test objects were repeated
15–30 times. In Fig. 4.10c, d, we compared three models: (1) the axis model,
which assumed the 50D features were combined linearly; (2) a Gaussian model,
𝑅 = 𝑎 exp(−(x−x0)2/𝜎2), and (3) a quadratic model, 𝑅 = 𝑎(x−x0)2 + 𝑏(x−x0) + 𝑐.
The fraction of explainable variance in responses to the test objects explained by
each model was used to quantify the quality of the fit. In Fig. 4.10b, for each cell,
the explained variance 𝑅2 was computed

𝑅2 =

∑
𝑖∈{1..100} (𝑟𝑖 − 𝑟′

𝑖
)2∑

𝑖∈{1..100} (𝑟𝑖 − 𝑟)2 , (4.4)

where 𝑟𝑖 is the true response to image 𝑖, 𝑟′
𝑖

is the predicted response to image 𝑖, and 𝑟

is the mean true response across the 100 test images. When calculating the upper

80

bound of the explained variance (𝑦-axis values in Fig. 4.10b), the responses from half
of the presentations of each image (selected randomly) were used to fit the model,
and the remaining data was used to test it. We calculated the Pearson correlation (𝑟)
across splits and corrected it using the Spearman-Brown correction,

𝑟′ =
2𝑟

𝑟 + 1
. (4.5)

The square of 𝑟′ was considered the upper bound for the explained variance.

𝑘-means cluster analysis To determine whether neurons were grouped based
on their preferred axes, we applied 𝑘-means clustering on the entire population of
neurons recorded from the four networks (Fig. 4.13g, h). The distance between each
pair of neurons was calculated as the Pearson’s correlation between preferred axes of
the neurons in the 50D object space. To determine the optimal number of clusters to
use, we calculated the Calinski-Harabasz value CH for multiple cluster counts. For a
given cluster count 𝑘 , CH is defined

CH(𝑘) :=
𝐵(𝑘) (𝑛 − 𝑘)
𝑤(𝑘) (𝑘 − 1) , (4.6)

where 𝐵(𝑘) is the between-cluster variation, 𝑤(𝑘) is the within-cluster variation,
and 𝑛 is the number of neurons being clustered. We used the cluster count 𝑘 that
maximized CH. To check whether clusters existed beyond the first two PCs, we
computed each neuron’s preferred axis in the space spanned by PCs 3–50, and then
performed 𝑘-means clustering using the correlations between these new preferred
axes.

Decoding analysis We found that cells in each IT network could be well modelled
using the equation r̂ = C f + c0, where r̂ is the vector of estimated neural responses,
C is a matrix of weight coefficients, f is the feature vector in the object space, and
c0 is an offset vector (Fig. 4.3c, Fig. 4.10a, e). This suggests that by inverting this
equation, we should be able to decode a feature vector in the object space from an IT
response vector, f̂ = C′ r + c′0. We used responses to all but one object (1,224 - 24 =
1,200 images) to fit C′ and c′0. Then we applied the linear model to responses to the
remaining object for each of the 24 views to compute the predicted feature vector
(Fig. 4.5, Fig. 4.16). To quantify the decoding accuracy (Fig. 4.16d–f), we randomly
selected images from the set of 1,224 object images and compared their true feature
vectors to the reconstructed feature vector for a target image. If the nearest neighbor
of the target’s reconstruction (using the Euclidean distance) corresponded to the

81

same object as the target, then the decoding was considered correct. We repeated
this procedure 100 times for each of the 1,224 object images to estimate the overall
decoding accuracy.

Object reconstruction We used a pre-trained GAN [9] to reconstruct objects
from neural activity vectors (Fig. 4.5). For each image, we estimated a 50D object
feature vector from neural activity elicited by the image, and then transformed the
50D object feature vector into a layer fc6 response pattern using the Moore-Penrose
pseudoinverse. We passed this fc6 response pattern into the generative network
to generate image-space reconstructions. Since the generative network cannot
perfectly reconstruct images from AlexNet fc6 layer responses, for comparison we
also generated reconstructions for each image using (1) its original fc6 response
pattern and (2) its original fc6 response pattern projected onto the 50D object space;
with the latter serving as an upper bound on the reconstruction quality that can be
attained using our approach. We computed a “normalized distance” to quantify the
reconstruction accuracy for each object:

Normalized distance :=
|fc6recon − fc6original |

|fc6bestPossibleRecon − fc6original |
, (4.7)

where fc6recon is the fc6 response to the reconstruction obtained from the neural
data, fc6original is the fc6 response to the image originally shown to the monkey,
and fc6bestPossibleRecon is the fc6 response to the best possible reconstruction. As
an alternative to reconstructing images using a GAN, we recovered images using
an auxiliary database (Fig. 4.16g, h). We passed an image set containing 18,700
background-free object images (http://www.freepngs.com) and 600 face images
(FEI database), none of which had been shown to the monkey, through AlexNet,
and projected the fc6 responses onto the object space computed using our original
stimulus set of 1,224 images. For each image, the object feature vector reconstructed
from neural activity was compared with the object feature vectors for images from the
new image set. The image in the new image set with the smallest Euclidean distance
to the reconstructed object feature vector was considered to be the reconstruction of
this object feature vector. To take into account the fact that the object images used
for reconstruction did not include any of the object images shown to the monkey,
limiting how good the reconstruction can be, we computed a normalized distance to
quantify the reconstruction accuracy for each object:

Normalized distance :=
|vrecon − voriginal |

|vbestPossibleRecon − voriginal |
(4.8)

http://www.freepngs.com

82

where vrecon is the feature vector reconstructed from neuronal responses, voriginal is
the feature vector corresponding to the image originally presented to the monkey, and
vbestPossibleRecon is the feature vector corresponding to the best possible reconstruction.
A normalized distance of 1 means that the best possible reconstruction has been
found.

Object specialization index computation To quantify whether particular objects
were better-represented by particular networks (Fig. 4.16i), we computed a special-
ization index for each of the 1,224 objects and each of the three networks (body,
NML, stubby). For object 𝑖 and network 𝑗 , the specialization index SI𝑖 𝑗 is defined

SI𝑖 𝑗 :=
DA(𝑖, 𝑗 , 𝑛) − DA(𝑖,∼ 𝑗 , 𝑛)
DA(𝑖, 𝑗 , 𝑛) + DA(𝑖,∼ 𝑗 , 𝑛) , (4.9)

where 𝑛 is a sample size, DA(𝑖, 𝑗 , 𝑛) is the decoding accuracy for object 𝑖 computed
using 𝑛 neurons randomly selected from network 𝑗 , and DA(𝑖,∼ 𝑗 , 𝑛) is the decoding
accuracy for object 𝑖 computed using 𝑛 neurons randomly selected from networks
other than network 𝑗 . SI𝑖 𝑗 quantifies the extent to which network 𝑗 is specialized for
representing object 𝑖.

83

4.B Additional figures

Figure 4.6: Time courses from NML1–3 during microstimulation of NML2.
a: Sagittal (top) and coronal (bottom) slices showing activation in response to
microstimulation of NML2. The dark track shows the electrode targeting NML2. b:
Time course of microstimulation (black) and the fMRI response (red) from each of
the three patches in the NML network.

84

Figure 4.7: Stimuli used in electrophysiological recordings. a: 51 objects from 6
categories were shown to monkeys. b: 24 views for one example object, resulting
from rotations in the 𝑥-𝑧 plane (abscissa) combined with rotations in the 𝑦-𝑧 plane
(ordinate). c: A line segment that was parametrically varied along 3 dimensions was
used to test the hypothesis that cells in the NML network are selective for aspect ratio
(4 aspect ratio levels × 13 curvature levels × 12 orientation levels). d: 36 example
object images from our 1,593-image stimulus set.

85

Figure 4.8: Additional neuronal response properties across the patches. a1:
Average responses to 51 objects across all cells from patch NML2 plotted against
those from patch NML1. The response to each object was defined as the average
response across 24 views and across all cells recorded from a given patch. b1: As
in (a1), for NML3 against NML2. c1: As in (a1,) for NML3 against NML1. a2,
b2, c2: As in (a1), (b1), and (c1), for three patches in the body network. a3: As
in (a1), for Stubby3 against Stubby2. d: A similarity matrix showing the Pearson
correlation values (𝑟) between the average responses to 51 objects from 9 patches
across 4 networks. (Continued on the next page)

86

Fig. 4.8, continued: e, left: Cumulative distributions of view-invariant identity
correlations for cells in the three patches of the NML network. e, right: As on the left,
for cells in the three patches of the body network. For each cell, the view-invariant
identity correlation was computed as the average correlation between response
vectors across all view pairs. The distribution of view-invariant identity correlations
was significantly different between NML1 and NML2 (two-tailed 𝑡-test, 𝑝 < 0.005,
𝑡 (118) = 2.96), NML2 and NML3 (two-tailed 𝑡-test, 𝑝 < 0.005, 𝑡 (169) = 2.9),
Body1 and Body2 (two-tailed 𝑡-test, 𝑝 < 0.0001, 𝑡 (131) = 6.4), and Body2 and
Body3 (two-tailed 𝑡-test, 𝑝 < 0.05, 𝑡 (126) = 2.04). *𝑝 < 0.05; **𝑝 < 0.01. f1:
The time course of view-invariant object identity selectivity for the three patches in
the NML network, computed using responses to 11 objects at 24 views and a 50-ms
sliding response window (solid lines). As a control, time courses of correlations
between responses to different objects across different views were also computed
(dashed lines) (see Methods). f2: As in (f1), for the body network. f3: As in (f1),
for the stubby network. g, top: Average responses to each image across all cells
recorded from each patch plotted against the logarithm of the aspect ratio of the
object in each image (see Methods). Pearson correlation values are indicated in
each plot (all 𝑝 < 10−10). The rightmost column shows results with cells from all
three patches grouped together. g, bottom: As on top, with responses to each object
averaged across 24 views, and the corresponding aspect ratios also averaged. The
rightmost column shows results with cells from all three patches grouped together.

87

Figure 4.9: Building an object space using a deep network. a: A diagram
illustrating the structure of AlexNet6. Five convolution layers are followed by three
fully connected layers. The number of units in each layer is indicated below it. b:
Images with extreme values (highest: red, lowest: blue) of PC1 and PC2. c: The
cumulative explained variance of responses of units in fc6 by 100 PCs; 50 dimensions
explain 85% of variance. (Continued on the next page)

88

Fig. 4.9, continued: d: Images in the 1,593-image set with extreme values (high-
est: red, lowest: blue) of PC1 and PC2 (see Methods). Preferred features are
generally consistent with those computed using the original image set shown in (b).
However, PC2 no longer clearly corresponds to an animate-inanimate axis; instead,
it corresponds to curved versus rectilinear shapes. e: Distributions showing the
canonical correlation value between the first two PCs obtained by the 1,224-image
set and the first two PCs constructed using other image sets (1,224 randomly selected
non-background object images; left: PC1, right: PC2; see Methods for details).
The red triangles indicate the arithmetic mean of the distributions. f: We passed
19,300 object images through AlexNet and constructed the PC1-PC2 space using
PCA. Then we projected 1,224 images onto this space. The top 100 images for
each network are indicated by colored dots (compare Fig. 4.4b). g: Decoding
accuracy for 40 images using object spaces constructed using responses of different
layers of AlexNet (computed as in Fig. 4.16d). There are multiple points for each
layer because we performed PCA at multiple points in the pooling, activation, and
normalization progression within individual layers. Layer fc6 yielded the highest
decoding accuracy, motivating our use of the object space generated by this layer
throughout the paper. h: To compare IT clustering using AlexNet with clustering
using other deep network architectures, we first identified the layer of each network
that yielded the best decoding accuracy, as in (g). The bar plot shows the decoding
accuracy for 40 images in 9 deep networks using the best-performing layer for each
network. i: Canonical correlation values between the first two PCs obtained by
Alexnet and first two PCs built using 8 other deep networks (labelled 2-9). The layer
of each network that yielded the highest decoding accuracy for a sample of 40 images
was used for this analysis. The name of each network and layer can be found in (j). j:
As in Fig. 4.4b, using principal components computed using 8 other networks.

89

Figure 4.10: Axis coding in neurons across IT. a1: The distribution of preferred-
axis consistency for cells in the NML network (see Methods). a2: As in (a1), for
the body network. a3: As in (a1), for the stubby network. b: The set of responses
recorded for each image was split in half, and the average response in one half of the
trials was used to predict the average response in the other. Percentage of variance
explained, after Spearman-Brown correction (mean 87.8%), is plotted against the
percentage of variance explained by the axis model (mean 49.1%). The mean
explainable variance across the 29 cells was 55.9%. (Continued on the next page)

90

Fig. 4.10, continued: c: Percentage of variance explained by a Gaussian model,
plotted against the percentage of variance explained by the axis model. d: Percentage
variances explained by a quadratic model, plotted against the percentage of variance
explained by the axis model. Inspecting the quadratic model coefficients revealed a
negligible quadratic term. (The mean ratio of second-order coefficients to first-order
coefficient was 0.028.) e1, top: The red line shows the average modulation along
the preferred axis across the population of NML1 cells. The grey lines show, for
each cell in NML1, the modulation along the single axis orthogonal to the preferred
axis in the 50D object space that accounts for the most variability. The blue line and
error bars represent the mean and standard deviation, respectively. e1, middle: An
analogous plots for NML2. e1, bottom: An analogous plots for NML3. e2: As in
(e1), for the three body patches. e3: As in (e1), for the two stubby patches.

91

Figure 4.11: Similar functional organization observed using a different stimulus
set. a: Projection of preferred axes onto PC1 and PC2 for all neurons recorded
using two stimulus sets (left: 1,593 images from freepngs.com; right: the original
1,224 images of 51 objects × 24 views). The PC1-PC2 space for both plots was
computed using the 1,224-image set. Different colors encode neurons from different
networks. b: The top-21 preferred stimuli based on average responses from the
neurons recorded in the three networks. (Continued on the next page)

92

Fig. 4.11, continued: c1: Silhouette images that project strongly onto the four
quadrants of the object space. c2: Coronal slices from posterior, middle, and anterior
IT of monkeys M2 and M3 showing the spatial arrangement of the four networks
revealed using the silhouette images in (c1), in an experiment analogous to that
illustrated in Fig. 4.4a. d1: “Fake object” images that project strongly onto the
four quadrants of the object space. Note that fake objects that project onto the face
quadrant do not resemble real faces. d2: As in (c2), with fake object images from
(d1). e1: Stimuli generated using deep dream techniques that project strongly onto
the four quadrants of object space. e2: As in (c2), with deep dream images from
(e1). The results shown in (c)–(e) support the idea that IT is organized according to
the first two axes of an object space, rather than low-level features or semantics.

93

Figure 4.12: Response time courses from the four IT networks spanning object
space. Time courses were averaged across two monkeys. To avoid selection bias, odd
runs were used to identity regions of interest, and even runs were used to compute
average time courses from these regions.

94

Figure 4.13: Searching for substructure within patches. a: Axial view of the
Stubby2 patch, together with projections of three recording sites. b: Mean responses
to 51 objects from neurons recorded at the sites shown in (a), grouped by recording
site (same format as Fig. 4.2a, top). c: Axial view of the Stubby3 patch, together with
projections of two recording sites. d: Mean responses to 51 objects from neurons
recorded at the sites shown in (c), grouped by recording site. The grey dots represent
the other neurons recorded across the four networks. (Continued on the next page)

95

Fig. 4.13, continued: e: Projections of the preferred axes of Stubby2 patch neurons
onto PC1-PC2 space. There is no clear separation between neurons from the three
sites in PC1-PC2 space. f: As in (e), for cells recorded from two sites in the Stubby3
patch. g1: PPC1-PC2 projections of the preferred axes of all recorded neurons.
Different colors encode neurons from different networks. g2: As in (g1), but the
color represents the cluster to which the neurons belong. Clusters were constructed
using 𝑘-means clustering, with the cluster count set to four, and the distance between
neurons defined as the correlation between preferred axes in the 50D object space
(see Methods). Comparing (g1) and (g2) reveals a high degree of similarity between
the anatomical and functional clustering of IT networks. g3: Calinski-Harabasz
criterion values were plotted against the number of clusters for 𝑘-means clustering
performed with different cluster counts (see Methods). The optimal cluster count is
four. h1: As in (g1), for projections of preferred axes onto PC3 and PC4. h2: As
in (h1), but the color represents the cluster to which the neurons belong. Clusters
were constructed using 𝑘-means clustering, with the cluster count set to four, and
the distance between neurons defined by the correlation between preferred axes in
the 48D object space obtained by removing the first two dimensions. The difference
between (h1) and (h2) suggests that there is no anatomical clustering for dimensions
beyond the first two PCs. h3: As in (g3), with 𝑘-means clustering in the 48D object
space. By the Calinski-Harabasz criterion, there is no functional clustering for
dimensions beyond the first two.

96

Figure 4.14: Relating the object space model to previous accounts of IT orga-
nization. a1: The object images used in [18] are projected onto PC1-PC2 space
(computed as in Fig. 4.4b, by first passing each image through AlexNet). A clear
gradient from large (red) to small (blue) objects is seen. a2: As in (a1), for the
inanimate objects (large and small) used in [17]. a3: As in (a1), for the original
object images used in [24]. a4: As in (a1), for the texform images used in [24].
b2–b4: Projection of animate and inanimate images from original object images (b2,
b3) and texforms (b4). (Continued on the next page)

97

Fig. 4.14, continued: c, left: Colored dots depict the projection of stimuli from the
four conditions used in [38]. c, right: Example stimuli (blue: small object-like;
cyan: large object-like; red: landscape-like; magenta: cave-like). d, left: Grey dots
depict 1,224 stimuli projected onto object PC1-PC2 space; colored dots depict the
projection of stimuli from the four blocks of the curvature localizer used in [41].
d, right: Example stimuli from the four blocks of the curvature localizer (blue:
real-world round shapes; cyan: computer-generated 3D sphere arrays; red: real-world
rectilinear shapes; magenta: computer-generated 3D pyramid arrays). e: Images of
English and Chinese words projected onto object PC1-PC2 space (black diamonds),
superimposed on the plot from Fig. 4.4b. The projections are grouped within a small
region, consistent with the hypothesis that the visual word form area is specialized to
represent stimuli in a particular region in the object space.

98

Figure 4.15: Comparing object space dimensions to category labels as descriptor
of response selectivity in the body patch. a: Four classes of stimuli: (1) body
stimuli that project strongly onto the body quadrant of object space (bright red), (2)
body stimuli that project weakly onto the body quadrant of object space (dark red),
(3, non-body stimuli that project as strongly as the weak body stimuli onto the body
quadrant of object space (dark blue), and (4) non-body stimuli that project negatively
onto the body quadrant of object space (bright blue). b: The predicted response
of the body patch to each image in the four stimulus conditions in (a), computed
by projecting the object space representation of each image onto the preferred axis
of the body patch (determined from the average response of body patch neurons to
images in the 1,224-image stimulus set). c, left: fMRI response time courses from
the body patches in the four stimulus conditions in (a). c, middle: Mean normalized
single-unit responses from neurons in the Body1 patch to the four stimulus conditions.
c, right: Mean local field potential from the Body1 patch to the four stimulus
conditions. Shading represents the standard error.

99

Figure 4.16: Object and image decoding using a large object database. a: A
schematic illustrating the decoding model. To construct and test the model, we used
𝑚 recorded cells’ responses to 𝑛 images. Population responses to images from all
but one object were used to determine the transformation from responses to feature
values via linear regression, and then the feature values of the remaining object were
predicted (for each of 24 views). b: Model predictions plotted against true feature
values for the first PC of the object space. (Continued on the next page)

100

Fig. 4.16, continued: c: Percentage of explained variance for all 50 dimensions using
linear regression, based on the responses of four neural populations (yellow: 215
NML cells; green: 190 body cells; magenta: 67 stubby cells; black: 482 combined
cells). d: Decoding accuracy as a function of the number of object images randomly
drawn from the stimulus set for the four neural populations used in (c). The dashed
line indicates chance performance. e: Decoding accuracy for 40 images, plotted
against cell count, with cells drawn randomly from same four populations used in
(c). f: Decoding accuracy for 40 images, plotted as a function of the numbers of
PCs used to parametrize object images. g: Example reconstructed images from
the three groups defined in (h). In each pair, the original image is shown on the
left, and the image reconstructed using neural data is shown on the right. h: The
distribution of the normalized distance between predicted and reconstructed feature
vectors. The normalized distance takes into account the fact that the object images
used for reconstruction did not include any of the object images shown to the monkey,
setting a limit on the reconstruction quality (see Methods). A normalized distance of
1 means that the best possible solution has been found. Images were sorted into three
groups based on these normalized distances. i: The distribution of specialization
indices SI𝑖 𝑗 across objects for the NML (left), body (middle) and stubby (right)
networks (see Methods). Example objects for each network with SI𝑖 𝑗 ≈ 1 are shown.
Red bars indicate objects with specialization indices significantly greater than 0
(two-tailed 𝑡-test, 𝑝 < 0.01).

101

References

[1] Paul L Aparicio, Elias B Issa, and James J DiCarlo. “Neurophysiological
organization of the middle face patch in macaque inferior temporal cortex”.
In: Journal of Neuroscience 36.50 (2016), pp. 12729–12745.

[2] Michael J Arcaro et al. “Seeing faces is necessary for face-domain formation”.
In: Nature neuroscience 20.10 (2017), pp. 1404–1412.

[3] Carlo Baldassi et al. “Shape similarity, better than semantic membership,
accounts for the structure of visual object representations in a population of
monkey inferotemporal neurons”. In: PLoS computational biology 9.8 (2013),
e1003167.

[4] Pinglei Bao and Doris Y Tsao. “Representation of multiple objects in macaque
category-selective areas”. In: Nature communications 9.1 (2018), p. 1774.

[5] Pinglei Bao et al. “A map of object space in primate inferotemporal cortex”. In:
Nature 583.7814 (2020), pp. 103–108. url: https://doi.org/10.1038/
s41586-020-2350-5.

[6] Le Chang, Pinglei Bao, and Doris Y Tsao. “The representation of colored
objects in macaque color patches”. In: Nature communications 8.1 (2017),
p. 2064.

[7] Le Chang and Doris Y Tsao. “The code for facial identity in the primate brain”.
In: Cell 169.6 (2017), pp. 1013–1028.

[8] Anders M Dale, Bruce Fischl, and Martin I Sereno. “Cortical surface-based
analysis: I. Segmentation and surface reconstruction”. In: Neuroimage 9.2
(1999), pp. 179–194.

[9] Alexey Dosovitskiy and Thomas Brox. “Generating images with perceptual
similarity metrics based on deep networks”. In: Advances in neural information
processing systems 29 (2016).

[10] Paul E Downing et al. “A cortical area selective for visual processing of the
human body”. In: Science 293.5539 (2001), pp. 2470–2473.

[11] Winrich A Freiwald and Doris Y Tsao. “Functional compartmentalization
and viewpoint generalization within the macaque face-processing system”. In:
Science 330.6005 (2010), pp. 845–851.

[12] Ichiro Fujita et al. “Columns for visual features of objects in monkey infer-
otemporal cortex”. In: Nature 360.6402 (1992), pp. 343–346.

[13] Charles G Gross, CE de Rocha-Miranda, and DB Bender. “Visual proper-
ties of neurons in inferotemporal cortex of the Macaque.” In: Journal of
neurophysiology 35.1 (1972), pp. 96–111.

[14] Theodros M Haile et al. “Visual stimulus-driven functional organization of
macaque prefrontal cortex”. In: Neuroimage 188 (2019), pp. 427–444.

https://doi.org/10.1038/s41586-020-2350-5
https://doi.org/10.1038/s41586-020-2350-5

102

[15] Peter Janssen, Rufin Vogels, and Guy A Orban. “Selectivity for 3D shape that
reveals distinct areas within macaque inferior temporal cortex”. In: Science
288.5473 (2000), pp. 2054–2056.

[16] Nancy Kanwisher, Josh McDermott, and Marvin M Chun. “The fusiform face
area: a module in human extrastriate cortex specialized for face perception”.
In: (2002).

[17] Talia Konkle and Alfonso Caramazza. “Tripartite organization of the ventral
stream by animacy and object size”. In: Journal of Neuroscience 33.25 (2013),
pp. 10235–10242.

[18] Talia Konkle and Aude Oliva. “A real-world size organization of object
responses in occipitotemporal cortex”. In: Neuron 74.6 (2012), pp. 1114–
1124.

[19] Simon Kornblith et al. “A network for scene processing in the macaque
temporal lobe”. In: Neuron 79.4 (2013), pp. 766–781.

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classi-
fication with deep convolutional neural networks”. In: Advances in neural
information processing systems 25 (2012).

[21] Satwant Kumar, Ivo D Popivanov, and Rufin Vogels. “Transformation of visual
representations across ventral stream body-selective patches”. In: Cerebral
Cortex 29.1 (2019), pp. 215–229.

[22] Rosa Lafer-Sousa and Bevil R Conway. “Parallel, multi-stage processing of
colors, faces and shapes in macaque inferior temporal cortex”. In: Nature
neuroscience 16.12 (2013), pp. 1870–1878.

[23] Ifat Levy et al. “Center–periphery organization of human object areas”. In:
Nature neuroscience 4.5 (2001), pp. 533–539.

[24] Bria Long, Chen-Ping Yu, and Talia Konkle. “Mid-level visual features underlie
the high-level categorical organization of the ventral stream”. In: Proceedings
of the National Academy of Sciences 115.38 (2018), E9015–E9024.

[25] Bruce D McCandliss, Laurent Cohen, and Stanislas Dehaene. “The visual
word form area: expertise for reading in the fusiform gyrus”. In: Trends in
cognitive sciences 7.7 (2003), pp. 293–299.

[26] Sebastian Moeller, Winrich A Freiwald, and Doris Y Tsao. “Patches with
links: a unified system for processing faces in the macaque temporal lobe”. In:
Science 320.5881 (2008), pp. 1355–1359.

[27] Shay Ohayon and Doris Y Tsao. “MR-guided stereotactic navigation”. In:
Journal of neuroscience methods 204.2 (2012), pp. 389–397.

[28] Shay Ohayon et al. “Saccade modulation by optical and electrical stimulation
in the macaque frontal eye field”. In: Journal of Neuroscience 33.42 (2013),
pp. 16684–16697.

103

[29] Carlos R Ponce et al. “Evolving images for visual neurons using a deep
generative network reveals coding principles and neuronal preferences”. In:
Cell 177.4 (2019), pp. 999–1009.

[30] Ivo D Popivanov et al. “Heterogeneous single-unit selectivity in an fMRI-
defined body-selective patch”. In: Journal of Neuroscience 34.1 (2014), pp. 95–
111.

[31] Rishi Rajalingham and James J DiCarlo. “Reversible inactivation of different
millimeter-scale regions of primate IT results in different patterns of core
object recognition deficits”. In: Neuron 102.2 (2019), pp. 493–505.

[32] Martin Reuter and Bruce Fischl. “Avoiding asymmetry-induced bias in longi-
tudinal image processing”. In: Neuroimage 57.1 (2011), pp. 19–21.

[33] Colin Reveley et al. “Three-dimensional digital template atlas of the macaque
brain”. In: Cerebral cortex 27.9 (2017), pp. 4463–4477.

[34] Kadharbatcha S Saleem and Nikos K Logothetis. A combined MRI and
histology atlas of the rhesus monkey brain in stereotaxic coordinates. Academic
Press, 2012.

[35] Doris Y Tsao, Sebastian Moeller, and Winrich A Freiwald. “Comparing face
patch systems in macaques and humans”. In: Proceedings of the National
Academy of Sciences 105.49 (2008), pp. 19514–19519.

[36] Doris Y Tsao et al. “A cortical region consisting entirely of face-selective
cells”. In: Science 311.5761 (2006), pp. 670–674.

[37] Doris Y Tsao et al. “Faces and objects in macaque cerebral cortex”. In: Nature
neuroscience 6.9 (2003), pp. 989–995.

[38] Siavash Vaziri et al. “A channel for 3D environmental shape in anterior
inferotemporal cortex”. In: Neuron 84.1 (2014), pp. 55–62.

[39] Bram-Ernst Verhoef, Kaitlin S Bohon, and Bevil R Conway. “Functional archi-
tecture for disparity in macaque inferior temporal cortex and its relationship
to the architecture for faces, color, scenes, and visual field”. In: Journal of
Neuroscience 35.17 (2015), pp. 6952–6968.

[40] Daniel LK Yamins et al. “Performance-optimized hierarchical models predict
neural responses in higher visual cortex”. In: Proceedings of the national
academy of sciences 111.23 (2014), pp. 8619–8624.

[41] Xiaomin Yue et al. “Curvature-processing network in macaque visual cortex”.
In: Proceedings of the National Academy of Sciences 111.33 (2014), E3467–
E3475.

[42] Chengxu Zhuang, Alex Lin Zhai, and Daniel Yamins. “Local aggregation
for unsupervised learning of visual embeddings”. In: Proceedings of the
IEEE/CVF international conference on computer vision. 2019, pp. 6002–
6012.

104

C h a p t e r 5

PREDICTING NEURAL ACTIVITY ACROSS THE FLY VISUAL
SYSTEM WITH CONNECTOME-CONSTRAINED NETWORKS

Forward

We can now measure the connectivity of every neuron in a neural
circuit [58, 69, 70, 63, 64, 44, 19, 61, 50], but we are still blind to
other biological details, including the dynamical characteristics of each
neuron. And the degree to which measurements of connectivity alone
can inform understanding of neural computation is an open question [5].
This chapter describes how, by measuring only the connectivity of a
neural circuit, it is possible to predict the neural activity underlying a
computation.

We constructed a model neural network with the experimentally deter-
mined connectivity for 64 cell types in the motion pathways of the fruit
fly optic lobe [58, 69, 70, 63, 64] but with unknown parameters for other
neuron and synapse properties. We then optimized the values of those
unknown parameters using techniques from deep learning [26], to allow
the model network to represent visual motion [14].

Our mechanistic model makes detailed, experimentally testable pre-
dictions for each neuron in the connectome. We found that model
predictions agreed with experimental measurements of neural activity
across 26 studies. Our work demonstrates a strategy for generating de-
tailed hypotheses about the mechanisms of neural circuit function from
connectivity measurements. Additionally, this strategy is more likely
to be successful when neurons are sparsely connected—a universally
observed feature of biological neural networks across species and brain
regions.

This chapter is adapted from a 2024 Nature paper coauthored with
Janne Lappalainen, Fabian Tschopp, Sridhama Prakhya, Aljoscha Nern,
Kazunori Shinomiya, Shin-ya Takemura, Eyal Gruntman, Jakob Macke,
and Srinivas Turaga [35]. My contributions to this study included (a)
writing software to simulate phototransduction in fruit flies, (b) writing

105

software to efficiently train recurrent hexagonal lattice convolutional neu-
ral networks, (c) training a variety of connectome-constrained networks,
(d) simulating probe stimuli, (e) analyzing the networks’ responses
to the probes, (f) generating visualizations, (g) general methodology
development, and (h) contributions to the manuscript.

5.1 Introduction
Volume electron microscopy can now be used to comprehensively measure the
connectivity of each neuron in a neural circuit, and even entire nervous systems
[58, 69, 70, 63, 64, 44, 50, 19, 61]. However, we do not yet have the means
to also comprehensively measure all other biological details in the same circuits,
including the electrochemical properties of neurons and synapses, and the effects
of neuromodulation and glia [60]. Since the propagation of neural activity is
shaped by both synaptic connectivity, which we can measure exhaustively, and other
factors, which we cannot, there has been considerable debate about the utility of
connectome measurements for understanding brain function [32]. Is it possible to use
measurements of connectivity to generate accurate predictions about how a neural
circuit functions, without directly measuring neural activity from a living brain?

There is considerable evidence from computer science and neuroscience that there is
not necessarily a strong link between the connectivity of a neural network and its
computational function. Universal function approximation theorems for artificial
neural networks [31] imply that a single computational task can be performed by
many networks with very different connectivity patterns. And empirically, networks
with a wide variety of general-purpose architectures have been trained to be roughly
functionally equivalent [26, 53]. In other words, the mapping from architectures to
tasks they are suited for is many-to-many. Similarly, in neuroscience, competing
implementation hypotheses often exist simultaneously for a single computation; for
example, [55] and [6] in the case of visual motion processing. And even circuits
with the same connectivity pattern can function differently [42]. So neither the
connectivity of a circuit alone nor its computational task alone can uniquely determine
the mechanism of circuit function [9].

However, we found that by combining information about a neural circuit’s connec-
tivity with a hypothesis about the computational task it performs we could make
accurate predictions about the roles played by individual neurons. We constructed
a differentiable [51] neural network model whose connectivity was given by the

106

retina lamina, medulla intrinsic cells, CT1 T-shaped, transmedullary cells

R1

R2

R3

R4

R5

R6

R7

R8

L1

L2

L3

L4

L5

Lawf1

Lawf2

Am

C2

C3

CT1(Lo1)

CT1(M10)

Mi1

Mi2

Mi3

Mi4

Mi9

Mi10

Mi11

Mi12

Mi13

Mi14

Mi15

T1

T2

T2a

T3

T4a

T4b

T4c

T4d

T5a

T5b

T5c

T5d

Tm1

Tm2

Tm3

Tm4

Tm5Y

Tm5a

Tm5b

Tm5c

Tm9

Tm16

Tm20

Tm28

Tm30

TmY3

TmY4

TmY5a

TmY9

TmY10

TmY13

TmY14

TmY15

TmY18

b Optic lobe of the Drosophilaa Connectome to predict neural activity

medullalaminaretina

lobula
plate

light

lobula

central brain

R1-R8

Lawf

Tm

Mi

T4
T5

T2 T3
10μm

L1-L5

visual
input

connectome
measurements

neural activity measurements

neural activity predictions

match?

task optimizationDMN

Connectivity between identified cell typesc

postsynaptic

pr
es

yn
ap

tic

R1-R8

L1-L5

Lawf

Mi

T

Tm

C2-C3
CT1

Am

R
1-

R
8

L1
-L

5

La
w

f

M
i

Tm

C
2-

C
3

C
T1A
m T

synapses

20 70 120-110 -70 -20

retina medullalamina

lobula
plate

light

lobulacentral
brain

d Retinotopic hexagonal lattice
columnar organization

optic flowvideo

g Connectome, task, and single-neuron dynamics constrained DMN of the fruit fly visual system

motion
decoder

decoded
(putative

output
neurons)

fly eye
rendering

... ...

...

0∘
60∘120∘

sintel
video
clip

passive point neuron
voltage dynamics

instantaneous graded
release synapses

f Neural dynamicse Convolutional filters
(anatomical connectivity)

T4d

-8.2
-7.9

-2.1

-1.1

-2.9

Mi9
anterior

dorsal

Figure 5.1: Connectome-constrained and task-optimized models of the fly
visual system. a: Deep mechanistic network models (DMNs) aim to satisfy
three constraints: The architecture is based on connectome measurements (b–e),
cellular and synaptic dynamics are given by simple mechanistic models (f), and free
parameters are optimized by training the model to perform optic flow estimation
(g). b: A schematic of the optic lobe of D. melanogaster with several processing
stages (neuropils) and cell types (adapted from [21]). c: Identified connectivity
between 64 cell types, represented in terms of the total number of synapses from all
neurons for each (presynaptic cell type, postsynaptic cell type) pair. Blue indicates
putative hyperpolarizing inputs, red indicates putative depolarizing inputs, and the
size of the squares corresponds to the number of input synapses. d: The retinotopic
hexagonal lattice columnar organization of our visual system model. Each lattice
represents a cell type, and each hexagon represents an individual cell. Photoreceptor
columns are aligned with downstream columns. The model contains synapses from
all neuropils. e: An example convolutional filter, representing Mi9 inputs onto T4d
cells. The numbers in the cells are average synapse counts. f: Single-neuron and
synaptic dynamics are described by simple mechanistic models. Free parameters
(magenta) are optimized by training the recurrent network model to perform optic
flow estimation. (Continued on the next page)

107

Fig. 5.1, continued: g: An illustration of a DMN performing optic flow estimation.
Each hexagonal lattice shows a snapshot of simulated voltage levels of all cells of
each type in response to stimuli presented to the photoreceptors (R1–R8). Edges
illustrate connectivity between cell types. A decoder receives the simulated neural
activity of all output neurons to estimate optic flow. The parameters of the DMN and
the decoder are tuned using gradient-based optimization.

connectome measurements of a real neural circuit. We then optimized the unknown
neuron and synapse parameters of the model using techniques from deep learning
[26], to enable the model to accomplish a computational task [79]. The optimized
model was used to make predictions about how individual neurons would behave in
response to a variety of sensory stimuli. We call such models connectome-constrained
and task-optimized deep mechanistic networks (DMNs; Fig. 5.1a).

We applied this approach to model the motion pathways in the optic lobe of the
Drosophila visual system. We constructed a DMN with experimentally measured
connectivity [58, 69, 70, 63, 64], and unknown single-neuron parameters and synapse
strengths. We optimized the model to perform the computer vision task of optic flow
regression—that is, estimating the image-plane projection of surface trajectories—
using an annotated video dataset [14]. Visual motion computation in the fly and its
mechanistic underpinnings have been extensively studied [10], so we were able to
compare the detailed predictions of our model with experimental measurements of
neural activity in response to visual stimuli, on a neuron-by-neuron basis. We found
that our connectome-constrained and task-optimized DMN accurately predicted
the separation of the visual system into light-increment (ON) and light-decrement
(OFF) channels, as well as direction selectivity in the well-known T4 and T5 motion
detector neurons [17]. We’ve released our model as a resource for the community.1

5.2 Our deep mechanistic network model
The optic lobe of the fruit fly is analogous to the mammalian retina. It is composed of
several layered neuropils whose columnar arrangement has a one-to-one correspon-
dence with the ommatidia—the fly’s photoreceptor clusters—with both possessing
a remarkably crystalline organization in a hexagonal lattice. Visual input from the
photoreceptors is received by the lamina and medulla, which send projections to the
lobula and lobula plate (Fig. 5.1b[21]). Many components of the optic lobe are highly
regular, with columnar cell types appearing once per column, and multi-columnar

1https://github.com/TuragaLab/flyvis

https://github.com/TuragaLab/flyvis

108

neurons appearing with only small deviations from a well-defined periodicity in
columnar space [21, 49]. Several studies have reported on the local connectivity
within the optic lobe and its motion pathways [58, 69, 70, 63, 64]. We assembled
these separate local reconstructions into a coherent local connectome spanning the
retina, lamina, medulla, lobula, and lobula plate (Fig. 5.1c).

We approximated the circuitry across the entire visual field as perfectly periodic
[69, 49], and tiled this local connectivity architecture in a hexagonal lattice across
retinotopic space to construct a consensus connectome for 64 cell types across the
central visual field of the right eye (Fig. 5.1d; Methods). Because of this periodic
tiling, the synapse count between each pair of neurons was the same across all pairs
of neurons with the same pre- and postsynaptic cell type and relative location in
retinotopic space. We’ll refer to this partial connectome of the motion pathways as
“the connectome” for simplicity.

We constructed a recurrent neural network modeling these first stages of visual
processing in the optic lobe based on the connectome for the right eye. Each neuron
in this DMN corresponds to a real neuron in the fly visual system, belonging to an
identified cell type, and is connected to other neurons only if they are connected by
synapses in the connectome (Fig. 5.1e). While our model has detailed connectivity,
we used simple relatively simple neuron and synapse dynamics (Fig. 5.1f). We used
passive leaky linear non-spiking voltage dynamics to model the time-varying activity
of single neurons, since many neurons in the early visual system are non-spiking.
And we modeled most neurons with a single electrical compartment, as this has been
previously shown to be a good approximation, given the small size of many neurons
in the optic lobe [30]. The CT1 neuron—which is amongst the largest in the brain,
spanning the entire optic lobe—was the exception to this, and we modeled it with one
compartment per column in the medulla and lobula, since it is highly electrotonically
compartmentalized [46]. We modeled the graded release chemical synapses between
non-spiking neurons with a threshold-linear function to approximate the nonlinear
voltage-gated release of neurotransmitter. The resulting network model follows well-
known threshold-linear dynamics and is piece-wise differentiable. Such dynamics
are often used to approximate the firing rates of a network of spiking neurons with the
nonlinearity arising from spike generation, whereas in our network, the nonlinearity
represents the voltage-gated neurotransmitter release.

We used the cell type structure of the connectome to reduce the number of free
parameters in the model (Fig. 5.1f). We assumed that neurons of the same cell

109

−1.0

−0.5

0.0

0.5

1.0

Full DMN
 cell-type connectivity

 single-neuron parameters (τti, Vrest
ti

)
 single-neuron connectivity

 unitary synapse strengths (αtitj)
 synapse counts (NtitjΔuΔv)

 synapse signs (σtitj)
 734 free parameters

Random DMN
 cell-type connectivity

 single-neuron parameters
 single-neuron connectivity
 unitary synapse strengths

 synapse counts
 synapse signs

 734

 cell-type connectivity
 single-neuron parameters
 single-neuron connectivity
 unitary synapse strengths

 synapse counts
 synapse signs

 2,485

 cell-type connectivity
 single-neuron parameters
 single-neuron connectivity
 unitary synapse strengths

 synapse counts
 synapse signs

 11,593

DMNs with different connectome constraints
 cell-type connectivity

 single-neuron parameters
 single-neuron connectivity
 unitary synapse strengths

 synapse counts
 synapse signs

 797

 cell-type connectivity
 single-neuron parameters
 single-neuron connectivity
 unitary synapse strengths

 synapse counts
 synapse signs

 2,485

 cell-type connectivity
 single-neuron parameters
 single-neuron connectivity
 unitary synapse strengths

 synapse counts
 synapse signs

 11,593

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8 L5 C
3

C
T1

(M
10

)
M

i1
M

i4
T4

a
T4

b
T4

c
T4

d
Tm

3 L1 L2 L3 L4
C

T1
(L

o1
)

M
i9

T5
a

T5
b

T5
c

T5
d

Tm
1

Tm
2

Tm
4

Tm
9

La
w

f1
La

w
f2 A
m C
2

M
i2

M
i3

M
i1

0
M

i1
1

M
i1

2
M

i1
3

M
i1

4
M

i1
5 T1 T2 T2
a T3

Tm
5Y

Tm
5a

Tm
5b

Tm
5c

Tm
16

Tm
20

Tm
28

Tm
30

Tm
Y3

Tm
Y4

Tm
Y5

a
Tm

Y9
Tm

Y1
0

Tm
Y1

3
Tm

Y1
4

Tm
Y1

5
Tm

Y1
8

−1.0

−0.5

0.0

0.5

1.0

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8 L5 C
3

C
T1

(M
10

)
M

i1
M

i4
T4

a
T4

b
T4

c
T4

d
Tm

3 L1 L2 L3 L4
C

T1
(L

o1
)

M
i9

T5
a

T5
b

T5
c

T5
d

Tm
1

Tm
2

Tm
4

Tm
9

La
w

f1
La

w
f2 A
m C
2

M
i2

M
i3

M
i1

0
M

i1
1

M
i1

2
M

i1
3

M
i1

4
M

i1
5 T1 T2 T2
a T3

Tm
5Y

Tm
5a

Tm
5b

Tm
5c

Tm
16

Tm
20

Tm
28

Tm
30

Tm
Y3

Tm
Y4

Tm
Y5

a
Tm

Y9
Tm

Y1
0

Tm
Y1

3
Tm

Y1
4

Tm
Y1

5
Tm

Y1
8

0.0

0.5

1.0

0.0

0.5

1.0

c

di
re

ct
io

n
se

le
ct

iv
ity

 in
de

x

Predicted ON-motion and OFF-motion selectivity across best task performing models

known ON-motion
 selective

ON-edge

OFF-edge

b Predicted ON- and OFF-selectivity across best task performing models

fla
sh

 re
sp

on
se

 in
de

x known ON-selective

ON

OFF

known OFF-motion
selective

known OFF-motion
selective

known OFF-selective

ON-flash

OFF-flash

a Connectome, task, and single-neuron dynamics constrain DMNs to predict neural tuning

quantify
statistics

task
training 50 trained

models
initialization

of biophysical
parameters

connectome
constraints simple

stimuli

5.25 5.50 5.75
task error

0

10

nu
m

be
r m

od
el

s

responses

best task performing model
median

best task performing model
median

d Match of neural activity measurements with predictions from DMNs with different parameter and connectome constraints
flash response index T4 motion-tuning curves T5 motion-tuning curves

co
rr

el
at

io
n

connectome-constrainedtask-optimized randomtype of constraint:

Figure 5.2: Ensembles of DMNs predict tuning properties. a: We optimized
50 connectome-constrained DMNs, yielding a variety of solutions, and compared
the tuning properties of their cells to experimental measurements. Inset: The task
error distribution. Blue: The 10 best models, also shown in (b–d). b: ON- and
OFF-contrast selectivity indices for each cell type for the 10 models with best task
performance. (See Fig. 5.13 for the 10 worst models.) Yellow: Cell types known to be
ON-selective. Violet: Cell types known to be OFF-selective. Black: Selectivity not
yet established experimentally. Bold: Inputs to the optic flow decoder. c: Direction
selectivity indices (DSI) computed from neural responses to moving edges, using
the same 10 models as above. d: Correlations between measurements and neural
activity predictions for seven types of DMNs with different connectome constraints.
Dashes indicate the median correlation across models. The first DMN type on the left
corresponds to the main DMNs analyzed in panels (b) and (c), and and all subsequent
figures. The remaining six DMNs incorporate fewer constraints.

110

type shared the same neuron time constant and resting membrane potential. We
modeled synaptic weights as proportional to the discrete number of synapses as
reported in the connectome between a connected neuron pair [38], with a scale factor
representing the strength of a unitary synapse. The unitary synapse scale factor and
the sign of each synapse was the same for all pairs of neurons with the same pre- and
postsynaptic cell type. For example, an Mi1-neuron-to-T4-neuron connection with
five synapses is assumed to be exactly half as strong as an Mi1-neuron-to-T4-neuron
connection with ten synapses, but could be stronger or weaker than a five-synapse
connection where the presynaptic cell type, the postsynaptic cell type, or both were
different. The sign of each connection type was determined via neurotransmitter and
receptor expression profiling [18] (Methods).

In total, the connectome-constrained model comprises 45,669 neurons and 1,513,231
connections, across 64 cell types arranged in a hexagonal lattice consisting of 721
columns, modeling the central visual field of the roughly 700–900 ommatidia typically
found in the fruit fly retina [27]. Connectome constraints and our assumption of
spatial homogeneity (i.e., the hexagonally convolutional structure of the network)
result in a dramatic reduction to just 734 free parameters for this large network model.
The only free parameters in our model are the single neuron time constants and
resting membrane potentials (two parameters per cell type), and the unitary synapse
strengths (one parameter per type-to-type connection). In the absence of connectome
measurements, we would have needed to estimate well over a million parameters
corresponding to the weights of all possible connections (Methods).

We used task optimization [79] to further constrain the parameters of the model; i.e.,
we trained the model to perform a computational task that we hypothesized was an
approximation of the computation carried out by the circuit in living flies. The task
we selected was to perform dense optic flow regression during the passive viewing of
naturalistic stimuli [14], meaning that, at regular time intervals, for every point on a
2D grid across the visual field, the model had to estimate the image-plane velocity of
the surface currently visible at that point. Motion processing requires a neural circuit
to compare visual stimuli across space and time, and we hypothesized that training
our model to perform the optic flow regression could help attract the parameters
toward regions of the parameter space in which meaningful temporal integration
occurred.

To decode optic flow from the DMN, we used a decoding network to map the
representation of motion used in the fly nervous system to the representation of

111

optic flow specified by the computer vision task. This two-layer convolutional
decoding network was given only the instantaneous neural activity of the medulla
and downstream areas as input. Importantly, the decoding network cannot by itself
detect motion, which requires the comparison of current and past visual stimuli,
but must instead rely on the temporal dynamics of the DMN to compute motion-
selective visual features. The resulting combination of our recurrent connectome-
constrained DMN model and the feedforward decoding network was trained end-
to-end: We rendered video sequences from the Sintel database [14] as input
to the photoreceptors of the connectome-constrained model, and used gradient-
based optimization (backpropagation through time [26]) to minimize the optic flow
regression error (Fig. 5.1g, Methods).

5.3 Our DMN ensemble predicts known activity
Since we only used structural and task information to construct our DMN, we can
validate it by comparing neural activity predictions for each of the 64 identified
cell types to experimental measurements. As the connectome and the task together
did not uniquely constrain the model parameters to a single point in the parameter
space [43], we generated an ensemble of 50 models, all constrained with the same
connectome, and optimized to perform the same task. Each model in the ensemble
corresponds to a local optimum of task performance. The models achieved similar
(but not identical) task performance, so the ensemble reflects the diversity of possible
models consistent with these constraints. The model ensemble found a variety of
parameter configurations (Fig. 5.11), and the models that were discovered performed
better than both the decoder network alone and models with random parameters
(Fig. 5.12a). We focused our analysis on the 10 models that achieved the best task
performance (Fig. 5.2a). We simulated neural responses to multiple experimentally
characterized visual stimuli, and comprehensively compared model responses for
each cell type to experimentally reported responses from 26 previously reported
studies.

As has been observed in other species [11, 25], neural responses in the fly visual
system are known to segregate into ON- and OFF-channels [33], defined by whether
a neuron depolarizes more strongly to an increase or a decrease in stimulus intensity,
respectively. We probed the contrast preference of each cell type using flash stimuli
[68] and found that the ensemble predicts the segregation into ON- and OFF-pathways
with a high level of accuracy. The median flash response index (FRI) across the
ensemble predicts the correct ON- and OFF-preferred contrast selectivity for all 32

112

of the 32 cell types for which contrast selectivity has been experimentally established.
This is also the case for the model with the best task performance (the “task-optimal”
model), which correctly predicts the preferred contrast of 30 of 32 cells (Fig. 5.2b).
Additionally, the ensemble provides predictions for the remaining 33 cell types, and
consistency across the ensemble provides a measure of confidence in the predictions
(Fig. 5.2b).

Another major result in fly visual neuroscience is the identification of the T4 (ON)
and T5 (OFF) neurons as direction-selective neurons with four subtypes (T4a, T4b,
T4c, T4d, and T5a, T5b, T5c, T5d), each responding to motion in one of the four
cardinal directions [39]. We characterized the motion selectivity of all 64 cell types
by their responses to ON- and OFF-edges moving in 12 directions. We found that the
ensemble of models correctly predicted that T4 neurons are ON-motion selective,
and T5 neurons are OFF-motion selective (Fig. 5.2c). The ensemble also correctly
predicted the lack of motion tuning in the inputs of the T4 and T5 neurons (Mi1,
Tm3, Mi4, Mi9, Tm1, Tm2, Tm4, Tm9, CT1; see Methods).

Our models also suggest that the transmedullary cell types—TmY3, TmY4, TmY5a,
TmY13, and TmY18—might be tuned to ON-motion. Of these cell types, TmY3
neurons do not receive inputs from other known motion-selective neurons, which
suggests that these neurons might be involved in a motion-processing pathway
operating in parallel to the pathway that contains the T4 and T5 neurons (Fig. 5.9 and
Fig. 5.10). We investigated whether our model predicted motion selectivity for all
cell types with asymmetric, multicolumnar inputs, as this is a necessary connectivity
motif for direction selectivity. Based on their local spatial connectivity profiles, we
estimated that 19 cell types receive asymmetric, multi-columnar inputs (Fig. 5.7b,
Methods), but found that the ensemble only predicted 12 to be motion-selective
(Methods). The spatial offset of excitatory and/or inhibitory inputs did not correlate
strongly with direction selectivity (Fig. 5.7c, d). This suggests that the manner
in which our simulated neurons responded to motion was influenced by the task
and/or the connectivity pattern across much of the network, as opposed to only local
connectivity.

5.4 The connectome and the task are both necessary
We investigated the importance of connectome constraints and task optimization in
enabling accurate neural activity predictions. We found that both task optimization
and connectome constraints at the single-neuron resolution were necessary in order

113

to predict the preferred contrast of the 32 characterized cell types and the preferred
direction of motion for the T4 and T5 subtypes (Fig. 5.2d, Fig. 5.12).

We conducted ablation studies comparing the DMN ensemble studied in this paper
(Full DMN) with a range of alternative models. First, we verified the importance
of task optimization by constructing an ensemble (Random DMN) with random
single-cell and synapse parameters, and full connectome constraints. This ensemble
yielded accurate predictions of preferred contrast, but poor predictions of direction
selectivity and preferred direction.

We then studied which aspects of the connectome must be measured accurately
to lead to accurate predictions. We found that task-optimized models that only
had access to cell-type-level connectivity predicted neural activity poorly. We
then considered several scenarios in which the models had access to additional
measurements, including (1) access to synapse signs and per-neuron connectivity,
but not synapse counts, (2) access to synapse signs, but not per-neuron connectivity
or synapse counts, (3) access to per-neuron connectivity and synapse counts, but
not synapse signs, and (4) access to per-neuron connectivity, but not synapse counts
or synapse signs. Across these modeling assumptions, we found that accurately
predicting contrast preference (FRI) was possible as long the connection signs
were known. We also found that accurately predicting direction selectivity—but
not preferred directions—if the cell-to-cell connectivity pattern was known, even
if the synapse counts were unknown (Fig. 5.12c). This demonstrates that both
the detailed connectome measurements and the task optimization contributed to
achieving accurate predictions of neural activity.

Across the ensemble constrained by all connectome measurements and task training,
we found that models with lower task error scores (Methods) also had more realistic
tuning. Models with higher task performance predict the direction selectivity index
(DSI) of T4 and T5 cells and their inputs more accurately (𝑟 = 0.60, 𝑝 = 2.6 × 10−6;
Fig. 5.12h and Fig. 5.13b). This suggests that it may be possible to use task error
scores to rank models in terms of their likelihood to accurately predict neural activity.

Our model relies on an accurate classification of neurons into cell types in order
to share single-neuron and synapse parameters across all neurons of the same cell
type. We investigated the degree to which we could coarse-grain the cell type
categorization, leading to fewer cell types and fewer parameters (Fig. 5.12e–g). We
found that grouping the four T4 subtypes into a single T4 cell type, and grouping the
four T5 subtypes into a single T5 cell type had no negative impact on the quality

114

of the ensemble predictions. However, grouping all 37 excitatory cell types into a
single “E” type, 22 inhibitory cell types into a single “I” type, and 4 mixed cell types
into a single “mixed” type lead to poor performance on par with the random DMN.

5.5 Predictions cluster across the DMN ensemble
How similar are the predictions of different DMNs in an ensemble in which each
network was constructed using the same connectome and trained to perform the same
task? To address this question, we simulated neural activity in response to naturalistic
video sequences from the Sintel dataset. We then used UMAP [7] to perform
nonlinear dimensionality reduction on activity vectors across the model ensemble,
and clustered the models in the resulting 2D projection (Fig. 5.3a, Methods). For many
cell types, we found that models predict strongly clustered neural responses. For T4c
neurons, for example, we found three clusters corresponding to qualitatively distinct
responses to naturalistic stimuli. Two clusters contain models with direction-selective
T4c cells (Fig. 5.3a, b) with up- and down-selective cardinal tuning, respectively,
and neurons in the third cluster are not direction tuned. The direction selective
cluster with the (correct) upward preference has the lowest average task error (circular
marker, average task error 5.297), followed by the cluster with the opposite preference
(triangular marker, average task error 5.316). The non-selective cluster has the worst
performance (square marker, average task error 5.357), suggesting that models with
accurate tuning correlate with lower task error (see also Fig. 5.12h).

What differences in circuit mechanisms underly the different predictions for direction
selectivity in the three clusters (Fig. 5.3c)? We found that direction selectivity in the
two tuned clusters is associated with opposing preferred-contrast tuning of Mi4 and
Mi9 neurons, which provide direct flanking inhibitory input to T4 neurons (Fig. 5.3d).
Models with the correct direction selectivity for T4 neurons also predict the correct
contrast selectivity for Mi4 and M9 neurons, and vice versa (Fig. 5.3e).

So, the ensemble can be used to provide hypotheses about the circuit mechanisms that
might underlie the response properties of individual cells. Additionally, it shows that
the experimentally measured tuning of one neuron can be used to apply constraints
on other neurons in the circuit. Here, filtering models in the ensemble with the
experimentally measured direction selectivity for the T4c neurons (by only selecting
models from the correct cluster) is sufficient to correctly recover the tuning of both
Mi4 and Mi9 neurons.

115

5.6 Predicted mechanism of T4 & T5 tuning
Our DMN modelling approach enables a variety of analyses that can illuminate
the mechanistic basis of computation in a circuit, and suggest novel stimuli for
experimental characterization. We illustrate these analyses using averages from the
model cluster with the best task performance (the task-optimal cluster), focusing on
the well-studied T4 and T5 neurons (Fig. 5.4). In the task-optimal cluster, the four T4
subtypes respond strongly to bright (ON) edges, and the four T5 subtypes respond

0°

45°
90°

O
N

-e
dg

e
re

sp
on

se
s

d T4c major input elements

c ON-motion detection pathway

excitatory synapses
inhibitory synapses

Experimentally measured tuning of one
neuron constrains other neurons in the circuit

e

a bModels predict strongly clustered
neural responses to naturalistic stimuli

5.2975.316

5.357

5.2

5.4

5.6

ta
sk

 e
rr

or

Example cell type: T4c

UMAP 1

UM
AP

 2

0.0

0.5

1.0

0.0

0.5

1.0

di
re

ct
io

n
se

le
ct

iv
ity

 in
de

x

ON-edge

OFF-edge

Maisak et al. 2013

up

front

Clustering of models discovers hypotheses for cell tuning

-5

0

15

in
pu

t s
yn

ap
se

s

Mi1 Tm3 Mi4 Mi9 CT1(M10)

M
i1

Tm
3

M
i4

M
i9

C
T1

(M
10

)

−1.0

−0.5

0.0

0.5

1.0

M
i1

Tm
3

M
i4

M
i9

C
T1

(M
10

)

−1.0

−0.5

0.0

0.5

1.0

M
i1

Tm
3

M
i4

M
i9

C
T1

(M
10

)

−1.0

−0.5

0.0

0.5

1.0

fla
sh

 re
sp

on
se

 in
de

x

known ON-selective known OFF-selective

ON

OFF

5.2

5.4

5.6

ta
sk

 e
rr

or

L1

L5

L3

Mi1

Tm3

Mi4

Mi9

T4a-T4d

CT1(M10)

R1-R6

Figure 5.3: Cluster analysis of DMN ensembles enables hypothesis generation
and suggests experimental tests. We clustered 50 DMNs after embedding them
in a two-dimensional space based on their responses to naturalistic scenes, and
aimed to identify whether the clusters corresponded to qualitatively different tuning
mechanisms. a: T4c cell responses exhibited three clusters: two with ON-motion
direction selectivity (the circular and triangular markers), and one without (the
square marker). b: T4c tuning in the three clusters. Circular marker: Upward
tuning (the cluster with lowest average task error: 5.297; the known tuning of T4c
is shown in black). Triangular marker: Downward tuning (5.316 error). Square
marker: No motion tuning (5.357 error). c: A schematic of the corresponding
ON-motion-detection pathway. d: Connectivity of major inputs to T4c. Blue and
red: Putative hyper- and depolarizing inputs. Saturation: The average number of
input synapses for each spatial offset. e: Tuning properties within each cluster
reveal dependencies between T4 tuning and the tuning of Mi4 and Mi9 cells in
the ensemble. Switching Mi4 (known ON-contrast selective) and Mi9 (known
OFF-contrast selective) contrast preferences results in directionally opposite motion
tuning in T4. DMNs in first cluster (the circular marker) exhibit ON selectivity for
Mi1, Tm3, Mi4, and CT1(M10), and OFF selectivity for Mi9. In response to ON
motion stimuli, in these DMNs T4c receives central depolarizing input from Mi1
and Tm3 and dorsal hyperpolarizing input from Mi4 and CT1(M10).

116

strongly to dark (OFF) edges, moving in the four cardinal directions, in agreement
with experimental findings[39, 22, 30, 29] (Fig. 5.4a). We probed the mechanism of
this direction selectivity in T4 and T5 neurons (Fig. 5.4b, Fig. 5.8). Examining the
input currents to a single T4 neuron (Fig. 5.8a), we found that fast excitation and offset,
delayed inhibition enables T4 neurons in the model to detect motion, in agreement
with experimental findings [30]. The differential response of T4 neurons to motion
in the preferred vs. the null direction is primarily produced by the differential timing
of inhibition from Mi4. Additionally, excitatory T4-to-T4 currents between neurons
with the same preferred direction lead to an increased response to coherent motion
across the visual field. While research into T4 motion selectivity has largely focused
on the role of feedforward inputs, our modeling predicts an important role for the
lateral connectivity between T4 neurons. The mechanisms for T5 motion selectivity
in our model are similar (Fig. 5.8c), with differential timing of inhibition from CT1
as well as excitation from Tm9 contributing to motion-selective responses.

To relate the mechanism of direction selectivity to the well-studied mechanisms of
preferred-direction enhancement and null-direction suppression, we compared the
responses of T4 and T5 neurons to moving bars and static bars as in [30]. Consistent
with voltage measurements [30, 29], voltage response predictions based on our model
show null-direction suppression but no preferred-direction enhancement (Fig. 5.8b,
d).

We computed and compared the spatial and temporal receptive fields of the major
columnar inputs to T4 and T5 neurons. These input neurons have been the focus of
multiple experimental studies of the motion detection pathways [8, 80, 4, 67, 46, 54]
(Fig. 5.4d). In agreement with experimental findings [4, 46], the DMNs predicted
that Tm3 and Tm4 have broad spatial receptive fields (two column radius, 11.6°),
while Mi1, Mi4, Mi9, Tm1, Tm2, Tm9, and CT1 compartments in both the medulla
and lobula have narrow spatial receptive fields (single column radius, 5.8°).

We characterized the temporal response properties of cells in the motion pathways,
including the lamina monopolar cells (L1-L5) and direct inputs to the T4 and T5
neurons. We simulated neural responses to single-ommatidium flashes of varying
contrast and duration and compared them to the temporal responses observed in real
flies (Fig. 5.4e). The model accurately predicts the preferred contrast of each cell
type—i.e., whether they depolarize more strongly to ON or OFF single-ommatidium
flashes (5ms–300ms duration, Methods) [33]. These cells either depolarize (in
which case we call them ON-selective) or hyperpolarize (in which case we call

117

them OFF-selective) in response to light increment flashes. The temporal response
properties were correctly predicted for all major T4 inputs except Tm4 cells in
this model; Mi1, Tm3, and Mi4 cells respond with transient depolarization to ON
flashes. In contrast, CT1(M10) responds with a longer sustained depolarization.
Mi9 hyperpolarizes. For major T5 inputs, Tm1, Tm2, Tm9, and CT1(Lo1) respond
with transient hyperpolarization, and Tm4 is incorrectly predicted to depolarize.
For lamina cell types, the DMNs predict biphasic hyperpolarization in L1, L2 and
monophasic hyperpolarization in L3, and L4, as well as depolarization in L5.

For motion-selective neurons like T4 and T5, the spatiotemporal receptive fields are
not separable in space and time. We characterized the full spatiotemporal receptive
field for T4c and T5c neurons (Fig. 5.4f) using single-ommatidium ON and OFF
flashes (20ms, Methods). ON flashes on the leading side of the receptive field of
the ON-contrast, upwards-direction-selective T4c cell lead to fast depolarization,
whereas ON flashes on the trailing side lead to delayed hyperpolarization, again
matching experimental findings [30]. Because T5c is OFF-selective, its OFF-impulse
responses are inverted, resembling the T4c spatiotemporal receptive field (Fig. 5.14a).
This reflects the fact that in our models T5c uses a similar mechanism to respond
to OFF edges as T4c uses to respond to ON edges, in agreement with experimental
findings [29].

Finally, we show that the model can be used to design optimized stimuli. We used
the task-optimal model to find the video sequences in the Sintel dataset that elicited
the largest responses in the motion-selective neurons (Fig. 5.4g; Methods). One
might expect that pure ON or OFF stimuli would elicit the largest responses in T4
and T5, respectively. However, we found both ON and OFF elements in optimized
stimuli, suggesting an interplay between the ON and OFF pathways. The stimulus
that elicited the strongest response in the T4c cell was a central OFF disc followed by
an ON edge moving upwards, matching the preferred direction of the cell. Similarly,
for the T5c cell, the stimulus that elicits the strongest response was a central ON
disc followed by an OFF edge moving upwards in the preferred direction of the
cell. (SeeFig. 5.14b for corresponding full-field naturalistic stimuli, numerically
optimized stimuli, and preferred moving edge stimuli.) Taken together, our DMN
ensemble predicts many functional properties of T4 cells, T5 cells, and their inputs.

118

5.7 Sparsity enables accurate predictions
What conditions affect whether a connectome-constrained and task-optimized DMN
can accurately predict neural responses at a single-neuron resolution? Sparse
connectivity is a hallmark of biological neural circuits, so we investigated whether
sparse connectivity could enable DMNs to make accurate neural activity predictions.
For sparsely connected circuits—assuming the connectome is known—there are

b Mechanism of T4c
motion computation

Predicted spatial receptive fields of motion detector input neuronsd

f Predicted maximally excitatory stimuli for motion detector neurons

-180 -160 -140 -120 -100 -80 -60 -40 -20 0
time (ms)

-180 -160 -140 -120 -100 -80 -60 -40 -20 0
time (ms)

st
im

ul
us

T4c T5c

a

Predicted flash responses of motion detector input and lamina neuronse

Predicted T4 and T5 motion tuning c Motion detection pathways

0°

45°
90°

T5a

0°

45°
90°

T5b

0°

45°
90°

T5c

0°

45°
90°

T5d

0°

45°
90°

T4a

0°

45°
90°

T4b

0°

45°
90°

T4c

0°

45°
90°

T4d

vo
lta

ge
 (a

.u
.)

cu
rr

en
ts

 (a
.u

.)

100ms Mi1

Tm3
T4c
Mi9
TmY15
CT1(M10)
Mi4

null direction
preferred direction

 p
ea

k
vo

lta
ge

 (a
.u

.)

up

front

Maisak et al. 2013 predicted ON-edge responses

predicted OFF-edge responses

ON-edges

OFF-edges
OFF-motion

detection pathway

ON-motion detection
pathway

L1

L5

L3

L4

L2

Mi1

Tm3

Mi4

Mi9

Tm9

Tm4

Tm2

Tm1

T4a-T4d

T5a-T5d

CT1(M10)

CT1(Lo1)
R1-R6

excitatory synapses
inhibitory synapses

Mi1 Tm1 L1

Tm3 Tm2 L2

Mi4 Tm4 L3

Mi9 Tm9 L4

CT1(M10) CT1(Lo1) L5

Tm1 Tm2 Tm4 Tm9 CT1(Lo1)

Mi1 Tm3 Mi4 Mi9 CT1(M10)

known ON-selective known OFF-selective

100ms

ac
tiv

ity
 (a

.u
.)

T4 inputs T5 inputs lamina cells

known narrow known broad

depolarizationsteady-statehyperpolarization

1 column ~ 5.8°

T4 inputs

T5 inputs

single ommatidium
flash location

response to flash
at marked location

t*

single ommatidium flashes

Figure 5.4: Task-optimal DMNs largely recapitulate known mechanisms of
motion computation. a: Responses to moving edges for T4 and T5 subtypes from
task-optimal model clusters, and comparison with experimental measurements [39,
22] b: The voltage of a T4c neuron (top) and contributions from major input cells
(bottom) while an ON edge moves across the visual field in preferred (solid) and
null (dashed) directions. c: Major cell types and connectivity in the ON- (T4) and
OFF- (T5) motion detection pathways (simplified). d: Spatial receptive fields of
major motion detector input neurons revealed by single-ommatidium flashes and
comparison with experimental measurements [4, 46]. e: Single-ommatidium flash
responses agree with experimental measurements [8, 4], with the exception of Tm4
(red cross). f: The stimulus sequences predicted to elicit the strongest responses in
T4c and T5c cells. A central OFF disc followed by an ON edge moving upwards
elicits the strongest response in a T4c cell, and an ON disc followed by an OFF edge
elicits the strongest response in a T5c cell.

119

fewer synapse parameters left to estimate using task optimization. We hypothesized
that such networks might support fewer possible mechanisms by which to perform a
given task, increasing the likelihood that a task-optimized DMN would find the true
mechanism and accurately predict single-neuron activity.

We tested this hypothesis in simulation (Fig. 5.5) by constructing feedforward artificial
neural networks to solve the MNIST handwritten digit classification task. These
networks had varying degreees of connection sparsity, and neurons were randomly
assigned as excitatory and inhibitory respecting Dale’s law (25 ground truth networks
for each sparsity level, Methods). We then simulated the process of acquiring
connectome measurements from these ground truth networks, and constructed
task-optimized DMNs constrained by these synthetic connectomes (Fig. 5.5a).

Since the degree to which connection strength can be inferred from noisy connectome
measurements is still unknown, we simulated two settings. In the first setting, we
assumed that connectome measurements reveal connectivity but not connection
strength. In this setting, DMNs were optimized to infer both the resting membrane
potential of each neuron and the strength of the connection between each pair of
connected neurons. In the second setting, we assumed that connectome measurements
additionally reveal noisy estimates of connection strengths, and so the synapse counts
were used as soft constraints during optimization.

Consistent with our hypothesis, we found that sparsity in the connectome greatly im-
proves the accuracy of neural activity predictions with measurements of connectivity
alone (Fig. 5.5b, median Pearson correlation of 0.85 for 10% connectivity vs 0.38
for 80% connectivity, 100 randomly selected neurons from 25 randomly generated
groundtruth networks). However, with the additional availability of connection
strength estimates, we found that DMN simulations accurately predicted neural
activity even in the absence of sparse connectivity (median Pearson correlation >0.9
across all connectivities).

Our model of the fly visual system lies in an intermediate regime with regards to
our knowledge of connection strength. We assumed that connectome measurements
could be used to infer relative connection strengths but not absolute connection
strengths, since we assumed that the unitary synaptic strength was unknown but the
same for connections with the same cell type pair. Consequently we attribute the
success of our visual system model—in terms of predicting neural activity—to both
the sparsity of the circuit and the connection strength information we derived from
synapse counts.

120

5.8 Discussion
We constructed a neural network with connectivity measured at the microscopic scale.
We also required that at the macroscopic scale, the collective neural activity dynamics
across the entire network resulted in an ethologically relevant computation. This
combination of microscopic and macroscopic constraints enabled us to construct an
ensemble of large-scale computational models spanning many tens of cell types and
tens of thousands of neurons. We showed that such large-scale mechanistic models
could accurately make detailed predictions of the neural responses of individual
neurons to dynamic visual stimuli, revealing the mechanisms by which computations
are performed. Knowledge of the connectome played a critical role in this success,
in part by leading to a massive reduction in the number of free model parameters.

We have opted for a somewhat minimalistic modeling approach, using simple models
of individual neurons and synapses, to focus on the role played by the connectivity
of a neural network. We found that for the motion pathways of the fruit fly visual
system, our model correctly predicts many aspects of visual selectivity. However,

a bgroundtruth connectome

simulated network
stimuli

input
stimuli

compare
model predictions
for each neuron

noisy connectome
measurements

or

neural activity measurements

neural activity predictions

neuron voltage

connectome-constrained synaptic input

connectivity percentage

ac
cu

ra
cy

 o
f n

eu
ra

l a
ct

iv
ity

 p
re

di
ct

io
n

(P
ea

rs
on

 c
or

re
la

tio
n)

known signs, connectivity
and noisy synapse strengths

10 20 50 80

0.0

0.2

0.4

0.6

0.8

1.0

known signs
and connectivity

fly visual system model

Figure 5.5: Connectome measurements constrain neural networks in circuits
with sparse connectivity. a: We constructed synthetic “ground truth connectome”
networks with varying degrees of sparse connectivity for classifying hand-written
digits. For each ground truth connectome network, we simulated connectome mea-
surements and constructed a connectome-constrained and task-optimized “simulated
network” (Methods). We measured the correlation of the neural response vector,
across all stimuli, between ground truth (dark green) and simulated networks (light
green). b: Median neural response correlation coefficients from 100 randomly-
sampled neuron pairs from each layer and across 25 network pairs. Two conditions
were considered, including a condition in which connectome measurements revealed
only binary connectivity (blue), and a condition in which connectome measurements
also contained information about connection strengths (orange). The fly visual
system model presented here likely falls in the region between the two curves, since
measured synapse counts inform relative connection strengths between pairs of
neurons for the same pair of cell types, but not absolute connection strengths.

121

our model cannot, for example, account for the roles played by electrical synapses
[3], nonlinear chemical synapses [28], and neuromodulation [66]. Richer models
of neurons, synapses, plasticity, and extra-synaptic modulation can enable accurate
modeling of these and other effects in the fly visual system and beyond. Additionally,
we only considered the role this circuit plays in processing motion, which is just
one of many computations performed by the visual system [17], and it would be
interesting to see our approach applied using a broader range of ethologically relevant
tasks.

Task-optimized artificial neural network models, for instance of mammalian visual
pathways [79], have previously demonstrated only a coarse correspondence in terms
of population neural activity between model regions and brain regions. In contrast,
every neuron and synapse in our connectome-constrained model [71, 40, 47, 65,
41] has a direct correspondence to a neuron or synapse in the fruit fly brain. This
correspondence enables highly detailed, experimentally testable predictions at the
single-neuron resolution.

Our modeling approach can be used as a discovery tool, leveraging connectome
measurements to generate detailed, experimentally testable hypotheses about the
computational roles of individual neurons. Measurements of neural activity are
necessarily sparse and involve difficult trade-offs. Activity can frequently only be
measured in a limited number of contexts, and for either a limited number of neurons
or for a larger number of neurons with poorer temporal resolution. Connectome-
constrained DMN models generate meaningful predictions even in the complete
absence of neural activity measurements, and can be further constrained by sparse
measurements of neural activity (Fig. 5.3). They can also be directly fit to measured
neural activity [47] or behavior [16].

Whole-brain connectome projects have just been completed for the larval and adult
fruit fly [78, 81, 61, 19], including two new connectomes of the entire fruit fly
optic lobe [44, 50], and whole mouse brain connectome projects are now being
discussed [1]. Large-scale whole nervous system models [47, 76, 65] will be of
critical importance for integrating connectomic, transcriptomic, neural activity, and
animal behavior measurements across labs, scales, and the nervous system [60]. And
with the recent development of detailed biomechanical body models for the fruit fly
[74, 57], we can now contemplate constructing whole animal models spanning brain
and body.

122

5.A Methods
5.A.1 Construction of spatially invariant connectome from local reconstruc-

tions
We built a computational model of the fly visual system which is consistent with
available connectome data [63, 70, 69, 73, 72, 58], which has biophysically plausible
neural dynamics, and which can be computationally trained to solve an ethiologically
relevant behavioural task, namely estimation of optic flow. To achieve this, we devel-
oped algorithms to blend annotations from two separate data-sets by transforming,
sanitizing, combining and pruning the raw data sets into a coherent connectome
spanning all neuropils of the optic lobe.

The original data stems from focused ion beam scanning EM datasets (FIBSEM)
from the FlyEM project at Janelia Research Campus. The FIB-25 dataset volume
comprises seven medulla columns and the FIB-19 dataset volume comprises the entire
optic lobe and, in particular, detailed connectivity information for inputs to both the
T4 and T5 pathways [69, 70, 63]. The data available to us consisted of 1801 neurons,
702 neurons from FIB-25 and 1099 neurons from FIB-19. For about 830 neurons the
visual column was known from hand annotation. These served as reference positions.
Of the 830 reference positions, 722 belong to neuron types selected for simulation.
None of the T5 cells, whose directional selectivity we aimed to elucidate, were
annotated. We therefore built an automated, probabilistic expectation maximization
algorithm that takes synaptic connection statistics, projected synapse center-of-mass
clusters and existing column annotations into account. Only the neurons consistently
annotated with both 100% and 90% of reference positions used were counted to
estimate the number of synapses between cell types and columns, in order to prune
neuron offsets with low confidences.

Synaptic signs for most cell types were predicted based on known expression of
neurotransmitter markers (primarily the cell type specific transcriptomics data from
Davis et al 2020). For a minority of cell types included in the model, no experimental
data on transmitter phenotypes were available. For these neurons, we used guesses of
plausible transmitter phenotypes. To derive predicted synaptic signs from transmitter
phenotypes, we assigned the output of histaminergic, GABAergic and glutamatergic
neurons as hyperpolarizing and the output of cholinergic neurons as depolarizing. In
a few cases, we further modified these predictions based on distinct known patterns of
neurotransmitter receptor expression (see [18] for details). For example, output from
R8 photoreceptor neurons, predicted to release both acetylcholine and histamine,

123

was treated as hyperpolarizing or depolarizing respectively, depending on whether a
target cell type is known to express the histamine receptor ort (a histamine-gated
chloride channel).

5.A.2 Representing the model as a hexagonal convolutional neural network
Our end-to-end differentiable [2] DMN model of the fly visual system can be
interpreted as a continuous-time neural ordinary differential equation (neural ODE)
[15] with a deep convolutional recurrent neural network (convRNN) [62] architecture
that is trained to perform a computer vision task using backpropagation through time
(BPTT) [59, 77]. Our goal was to optimize a simulation of the fly visual system to
perform a complex visual information processing task using optimization methods
from deep learning. One hallmark of visual systems that has been widely exploited
in such tasks are their convolutional nature [24, 37, 56, 34], i.e. the fact that the
same computations are applied to each pixel of the visual input. To model the
hexagonal arrangement of photoreceptors in the fly retina, we developed a hexagonal
convolutational neural network in the widely used deep learning framework Pytorch
[51] (ignoring neuronal superposition [12]), which we used for simulation and
optimization of the model. We model columnar cell types including retinal cells,
lamina monopolar and wide-field cells, medulla intrinsic cells, transmedullary cells,
and T-shaped cells, as well as amacrine cells. The model comprises synapses from
all neuropils and downstream and upstream projecting connections from the retina,
lamina, and medulla.

5.A.3 Neuronal Dynamics
In detail, we simulated point neurons with voltages 𝑉𝑖 of a postsynaptic neuron 𝑖,
belonging to cell type 𝑡𝑖 using threshold-linear dynamics, mathematically equivalent
to commonly used formulations of firing-rate models [48]

𝜏𝑡𝑖
¤𝑉𝑖 = −𝑉𝑖 +

∑︁
𝑗

𝑠𝑖 𝑗 +𝑉 rest
𝑡𝑖

+ 𝑒𝑖 (5.1)

Neurons of the same cell type share time constants, 𝜏𝑡𝑖 , and resting potentials,
𝑉 rest
𝑡𝑖

. Dynamic visual stimuli were delivered as external input currents 𝑒𝑖 to the
photoreceptor (R1-R8), for all other cell types, 𝑒𝑖 = 0. In our model, instantaneous
graded synaptic release from presynaptic neuron 𝑗 to postsynaptic neuron 𝑖 is
described by

𝑠𝑖 𝑗 = 𝑤𝑖 𝑗 𝑓 (𝑉 𝑗) = 𝛼𝑡𝑖𝑡 𝑗𝜎𝑡𝑖𝑡 𝑗𝑁𝑡𝑖𝑡 𝑗Δ𝑢Δ𝑣 𝑓 (𝑉 𝑗), (5.2)

124

comprising the anatomical filters in terms of the synapse count from EM-reconstruction,
𝑁𝑡𝑖𝑡 𝑗Δ𝑢Δ𝑣, at the offset location Δ𝑢 = 𝑢𝑖 − 𝑢 𝑗 and Δ𝑣 = 𝑣𝑖 − 𝑣 𝑗 in the hexagonal
lattice between two types of cells, 𝑡𝑖 and 𝑡 𝑗 , and further characterised by a sign,
𝜎𝑡𝑖𝑡 𝑗 ∈ {−1, +1}, and a non-negative scaling factor, 𝛼𝑡𝑖𝑡 𝑗 .

The synapse model in Equation 5.2 entails a trainable non-negative scaling factor per
filter that is initialized as

𝛼𝑡𝑖 ,𝑡 𝑗 =
0.01

⟨𝑁𝑡𝑖 ,𝑡 𝑗 ⟩Δ𝑢,Δ𝑣
,

with the denominator describing the average synapse count of the filter. Synapse
counts, 𝑁𝑡𝑖𝑡 𝑗Δ𝑢Δ𝑣, and signs, 𝜎𝑡𝑖𝑡 𝑗 , from reconstruction and neurotransmitter and
receptor profiling were kept fixed. The scaling factor was clamped during training to
remain non-negative.

Moreover, at initialization, the resting potentials were sampled from a Gaussian
distribution

𝑉 rest
𝑡𝑖

∼ N (𝜇𝑉 rest , 𝜎2
𝑉 rest)

with mean 𝜇𝑉 rest = 0.5 (a.u.) and variance 𝜎2
𝑉 rest = 0.05 (a.u.). The time constants

were initialized at 𝜏𝑡𝑖 = 50ms. The 50 task-optimized DMNs were initialized with
the same parameter values. During training, in Euler integration of the dynamics,
we clamped the time constants as 𝜏𝑖 = max(𝜏𝑖,Δ𝑡), so that they remain above the
integration time step Δ𝑡 at all times.

In total, the model comprises 45669 neurons and 1513231 synapses, across two-
dimensional hexagonal arrays 31 columns across. Independently of the extent
of the two-dimensional hexagonal arrays are the numbers of free parameters: 65
resting potentials, 65 membrane time constants, 604 scaling factors; and connectome
determined parameters: 604 signs, and 2355 synapse counts. Thus, the number of
free parameters in the visual system model is 734.

In the absence of connectome measurements, the number of parameters to be estimated
is much larger. With 𝑇 = 65 cell types (counting CT1 twice for the compartments
in the medulla and lobula) and 𝐶 = 721 cells per type for simplicity, the number
of cells in our model would be 𝑇𝐶 = 46, 865. Assuming an RNN with completely
unconstrained connectivity and simple dynamics 𝜏𝑖𝑉𝑖 = −𝑉𝑖 +

∑
𝑗 𝑤𝑖 𝑗 𝑓 (𝑉 𝑗) + 𝑉 rest

𝑖

we would have to find (𝑇𝐶)2 + 2(𝑇𝐶) = 2, 196, 421, 955 free parameters. Assuming
a convolutional RNN with shared filters between cells of the same postsynaptic

125

type, shared time constants, and resting potential, the amount of parameters reduces
drastically to𝑇2𝐶+2𝑇 = 3, 046, 355. Further assuming the same convolutional RNN
but additionally convolutional filters are constrained to 𝐹 = 5 visual columns, i.e.
the number of presynaptic input columns in hexagonal lattice is 𝑃 = 3𝐹 (𝐹 + 1) + 1,
the amount of parameters reduces to 𝑇2𝑃 + 2𝑇 = 384, 605. Assuming as in our
connectome only 𝑄 = 604 connections between cell types exist, this reduces the
number of parameters further to 𝑄𝑃 + 2𝑇 = 55, 185. Instead of parametrizing each
individual synapse strength, we assume that synapse strength is proportional to
synapse count from the connectome times a scalar for each filter, reducing the number
of parameters to 𝑄 + 2𝑇 = 734 while providing enough capacity for the DMNs to
yield realistic tuning to solve the task.

Convolutions using scatter and gather operations For training the network, we
compiled the convolutional architecture specified by the connectome and the sign
constraints to a graph representation containing (1) a collection of parameter buffers
shared across neurons and/or connections, (2) a collection of corresponding index
buffers indicating where the parameters relevant to a given neuron or connection can
be found in the parameter buffers, and (3) a list of pairs (presynaptic neuron index,
postsynaptic neuron index) denoting connectivity. This allowed us to efficiently
simulate the network dynamics via Euler integration using a small number of
element-wise, scatter, and gather operations at each time step. We found that this is
more efficient than using a single convolution operation, or performing a separate
convolution for each cell type, since each cell type has its own receptive field - some
much larger than others - and the number of cells per type is relatively small.

5.A.4 Optic flow task
Model training An optic flow field for a video sequence consists of a 2D vector
field for each frame. The 2D vector at each pixel represents the magnitude and
direction of the apparent local movement of the brightness pattern in an image.

We frame the training objective as a regression task

Ŷ[𝑛] = Decoder(DMN(X[0], ...,X[𝑛])),

with Ŷ the optic flow prediction, and X the visual stimulus sequence from the Sintel
dataset, both sampled to a regular hexagonal lattice of 721 columns. With the

126

objective to minimize the square error loss between predicted optic flow and target
optic flow fields, we jointly optimized the parameters of both the decoder and the
visual system network model described above.

In detail, for training the network, we added randomly augmented grey-scaled video
sequences from the Sintel dataset sampled to a regular hexagonal lattice of 721
columns to the voltage of the eight photoreceptor cell types (Fig. 5.1f, Equation 5.1).
We denote a sample from a minibatch of video sequences as X ∈ R𝑁,𝐶 with 𝑁 the
number of time steps, and 𝐶 the number of photoreceptor columns. The dynamic
range of the input lies between 0 and 1. Input sequences during training entailed 19
consecutive frames drawn randomly from the dataset and resampled to match the
integration rate. The original framerate of 24 Hz and 19 frames lead to a simulation
of 792ms. We did not find that an integration time step smaller than 20 ms, i.e. a
framerate of 50 Hz after resampling, yielded qualitatively superior task performance
nor more realistic tuning predictions. We interpolated the target optic flow in time
to 50 Hz temporal resolution, instead of resampling it. To increase the amount of
training data for better generalization, we augmented input and target sequences as
described further below. At the start of each epoch, we computed an initial state of the
network’s voltages after 500ms of grey stimuli presentation to initialize the network
at a steady state for each minibatch during that epoch. The network integration
given input X results in simulated sequences of voltages V ∈ R𝑁,𝑇𝐶 with 𝑇𝐶 the total
number of cells. The subset of voltages, Vout ∈ R𝑁,𝐷,𝐶 , of the 𝐷 cell types in the
black box in Fig. 5.1g was passed to a decoding network. For decoding, the voltage
was rectified to avoid that the network finds biologically implausible solutions by
encoding in negative dynamic ranges. Further, it was mapped to cartesian coordinates
to apply Pytorch’s standard spatial convolution layers for decoding and on each
timestep independently. In the decoding network, one layer implementing spatial
convolution, batch normalization, softplus activation, and dropout, followed by one
layer of spatial convolution, transformed the 𝐷 feature maps into the two-dimensional
representation of the estimated optic flow, Ŷ ∈ R𝑁,2,𝐶 .

Using stochastic gradient descent with adaptive moment estimation (𝛽1 = 0.9,
𝛽2 = 0.999, learning rate decreased from 5×10−5 to 5×10−6 in ten steps over iterations,
batch size of four) and the automatic gradient calculation of the fully differentiable
pipeline, we optimized the biophysical parameters through backpropagation through
time such that they minimize the L2-norm between the predicted optic flow, Ŷ, and
the groundtruth optic flow, Y:

127

𝐿 (Y, Ŷ) = | |Y − Ŷ| |

We additionally regularized the shared resting potentials for 150,000 iterations, using
stochastic gradient descent without momentum, based on time-averaged responses to
naturalistic stimuli of the central column cell of each cell type, 𝑡central, to encourage
configurations of resting potentials that lead to nonzero and nonexploding activity
in all neurons in the network. We weighted these terms independently with 𝛾 = 1,
encouraging activity greater than 𝑎, and 𝛿 = 0.01, encouraging activity less than 𝑎.
We chose 𝜆𝑉 = 0.1 and 𝑎 = 5 in arbitrary units. With 𝐵 being the batch size and 𝑇

the number of all cell types, the regularizer is

𝑅(𝑉) = 𝜆𝑉

𝐵𝑇

∑︁
𝑏

∑︁
𝑡central


𝛾(𝑉̄ − 𝑎)2, if 𝑉̄ = 1

𝑁

∑
𝑛𝑉𝑏𝑡central [𝑛] ≤ 𝑎

𝛿(𝑉̄ − 𝑎)2, if 𝑉̄ > 𝑎.

We regularly checkpointed the above error measure 𝐿 (Y, Ŷ) averaged across a held
out validation set of Sintel video clips. Models generalized on optic flow computation
after round about 250,000 iterations, yielding functional candidates for our fruit fly
visual system models that we analyzed with respect to their tuning properties.

Task-optimization dataset We optimized the network on 23 sequences from the
publicly available computer-animated movie Sintel [13]. The sequences have 20-50
frames, at a frame rate of 24 frames per second and a pixel resolution of 1024x436.
The dataset provides optical flow in pixel space for each frame after the first of
each sequence. Since the integration time steps we use are faster than the actual
sampling rate of the sequences, we resample input frames accordingly over time and
interpolate the optic flow.

Fly-eye rendering We first transformed the RGB pixel values of the visual stimulus
to normalized greyscale between 0 and 1. We translated cartesian frames into receptor
activations by placing simulated photoreceptors in a two-dimensional hexagonal
array in pixel space, 31 columns across resulting in 721 columns in total, spaced 13
pixels apart. The transduced luminance at each photoreceptor is the greyscale mean
value in the 13×13-pixel region surrounding it.

128

Augmentation We used (1) random flips of input and target across one of the three
principal axes of the hexagonal lattice, (2) random rotation of input and target around
its six-fold rotation axis, (3) adding element-wise Gaussian noise with mean zero
and variance 𝜎𝑛 = 0.08 to the input 𝑋 (then clamped at 0) (4) random adjustments
of contrasts, log 𝑐 ∼ N (0, 𝜎2

𝑐 = 0.04), and brightness, 𝑏 ∼ N (0, 𝜎2
𝑏
= 0.01), of the

input with 𝑋′ = 𝑐(𝑋 − 0.5) + 0.5 + 𝑐𝑏.

In addition, we strided fly-eye rendering across the rectangular raw frames in width,
subsampling multiple scenes from one. We ensured that such subsamples from the
same scene do not distribute across training and validation sets. Input sequences
in chunks of 19 consecutive frames were drawn randomly in time from the full
sequences.

Black-box decoding network The decoding network is feedforward, convolutional
and has no temporal structure. Aspects of the architecture are explained in the
paragraph Model training. The spatial convolutions have a filter size of 5 × 5. The
first layer transforms the 𝐷 = 34 feature maps to an eight-channel intermediate
representation, that is further translated by an additional convolutional layer to a
three-channel intermediate representation of optic flow. The third channel is used
as shared normalization of each coordinate of the remaining two-dimensional flow
prediction. The decoder uses Pytorch-native implementations for two-dimensional
convolutions, batch normalization, softplus activation, and dropout. We initialized
its filter weights homogeneously at 0.001.

5.A.5 Model characterization
Task error To rank models based on their task performance, we computed the
standard optic flow metric of average end-to-end point error (EPE) [20] which
calculates the average over all timesteps and pixels (i.e. here columns) of the error

EPE(Y, Ŷ) = 1
𝑁𝐶

∑︁
𝑛

∑︁
𝑐

√︁
(𝑦1𝑐 [𝑛] − 𝑦̂1𝑐 [𝑛])2 + (𝑦2𝑐 [𝑛] − 𝑦̂2𝑐 [𝑛])2.

between predicted optic flow and groundtruth optic flow, and averaged across the
held out validation set of Sintel sequences.

Importance of task optimization and connectome constraints We generated
DMNs with different constraints in order to assess their relative importance for
predicting tuning properties. First, we studied the importance of task-optimization
of DMN parameters. We created 50 DMNs with random Gaussian distributed

129

parameters, and task-optimized only their decoding network, in order to obtain
baseline values for both the task error and the accuracy of predicting tuning curves
without task-optimization of the DMN.

In the Full DMN, we constrained single synapses by connectome cell-type con-
nectivity, cell connectivity, synapse counts, and synapse signs (Equation 5.2) and
task-optimized the non-negative type-to-type unitary synapse scaling factor 𝜶𝑡𝑖 ,𝑡 𝑗 .
Next, we trained five additional task-optimized DMNs with different connectome
constraints (Fig. 5.2d and Fig. 5.12a–d).

In these five additional types of DMN, we additionally task-optimized the terms
in bold, rather than using connectome measurements, related to synaptic currents
from a presynaptic cell 𝑗 to a postsynaptic cell 𝑖: (1) known single cell connectivity,
unknown synapse count: 𝑤𝑖 𝑗 = 𝜎𝑡𝑖 ,𝑡 𝑗𝒎𝑡𝑖 ,𝑡 𝑗 ,Δ𝑢,Δ𝑣, (where 𝒎𝑡𝑖 ,𝑡 𝑗 ,Δ𝑢,Δ𝑣 is non-negative)
(2) known cell-type connectivity, unknown single cell connectivity and synapse
counts: 𝑤𝑖, 𝑗 = 𝜎𝑡𝑖 ,𝑡 𝑗𝒎𝑡𝑖 ,𝑡 𝑗 ,−3<Δ𝑢,Δ𝑣,Δ𝑢+Δ𝑣<3 (i.e., for all connected cell-types, a
connection weight was learned for all cells up to a distance of 3 columns in hexagonal
coordinates, with known signs), (3) known single cell connectivity and synapse counts,
but unknown synapse signs 𝑤𝑖, 𝑗 = 𝜶𝑡𝑖 ,𝑡 𝑗𝝈𝑡 𝑗𝑁𝑡𝑖 ,𝑡 𝑗 ,Δ𝑢,Δ𝑣 (i.e., connection weights were
fixed by measurements, but signs optimized), (4) known single cell connectivity,
but unknown synapse signs and synapse counts 𝑤𝑖, 𝑗 = 𝒘𝑡𝑖 ,𝑡 𝑗 ,Δ𝑢,Δ𝑣 , (i.e., all non-zero
connection weights were optimized, including their signs) or (5) known cell type
connectivity, unknown single cell connectivity, synapse counts, and synapse signs
𝑤𝑖, 𝑗 = 𝒘𝑡𝑖 ,𝑡 𝑗 ,−3<Δ𝑢,Δ𝑣,Δ𝑢+Δ𝑣<3 (i.e., for all connected cell-types, a connection weight
and sign was learned for all cells up to distance of 3 columns). We trained 50 models
per DMN-type. The task-optimized parameters in each case are highlighted using
bold symbols. We randomly initialized the models with: 𝒎𝑡𝑖 ,𝑡 𝑗 , 𝒘𝑡𝑖 ,𝑡 𝑗 ∼ N (0, 2

𝑛in
)

where 𝑛in is the number of cell connections and 𝒎 non-negative, and 𝝈𝑡 𝑗 ∈ {−1, 1}
with equal probability.

Unconstrained CNN We trained unconstrained, fully convolutional neural net-
works on the same dataset and task to provide an estimate of a lower bound for the
task error of the DMN. Optic flow was predicted by the CNN from two consecutive
frames

𝑌 [𝑛] = CNN(𝑋 [𝑛], 𝑋 [𝑛 − 1]).

130

with the original frame rate of the Sintel movie. We chose 5 layers for the CNN
with 32, 92, 136, 8, 2 channels respectively and kernel size 5 for all but the first
layer which kernel size is 1. Each layer performs a convolution, batch normalization,
and ELU activation except the last layer which only performs a convolution. We
optimized an ensemble of 5 unconstrained CNNs with 414,666 free parameters each
using the same loss function, 𝐿 (𝑌,𝑌), as for the DMN. We used the same dataset,
i.e. hexagonal sequences and augmentations from Sintel, for training and validating
the CNN as for training and validating the DMN, allowed by two custom modules
mapping from hexagonal lattice to cartesian map and back.

Circular flash stimuli To evaluate the contrast selectivity of cell types in task-
constraint model candidates, we simulated responses of each DMN to circular flashes.
The networks were initialized at an approximate steady state after 1s of grey-screen
stimulation. Afterwards the flashes were presented for 1s. The flashes with a radius
of 6 columns were ON (intensity 𝐼 = 1) or OFF (𝐼 = 0) on grey (𝐼 = 0.5) background.
We integrated the network dynamics with an integration time step of 5 ms. We
recorded the responses of the modeled cells in the central columns to compute the
flash response index.

Flash response index To derive the contrast selectivity of a cell type, 𝑡𝑖, we
computed the flash response index as

FRIti =
𝑟

peak
tcentral

(𝐼 = 1) − 𝑟
peak
tcentral

(𝐼 = 0)

𝑟
peak
tcentral

(𝐼 = 1) + 𝑟
peak
tcentral

(𝐼 = 0)
(5.3)

from the non-negative activity

𝑟
peak
tcentral

(𝐼) = max
𝑛

𝑉𝑡central [𝑛] (𝐼) + | min
𝑛,𝐼

𝑉𝑡central [𝑛] (𝐼) |,

from voltage responses 𝑉𝑡central [𝑛] (𝐼) to circular flash stimuli of intensities 𝐼 ∈ {0, 1}
lasting for 1s after 1s of grey stimulus. We note that our index quantifies whether
the cell depolarizes to ON- or to OFF-stimuli. However, cells like R1-R8, L1, and
L2 can be unrectified, i.e., sensitive to both light increments and light decrements,
which is not captured by our index.

131

For the p-values reported in the results, we performed a binomial test with probability
of correct prediction 0.5 (H0) or greater (H1) to both test whether the median
FRI from the DMN-ensemble and the task-optimal model can predict the contrast
preferences. Additionally, we found for each individual cell type across 50 DMS that
predictions for 29 out of 31 cell types are significant (P < 0.05, binomial).

Moving edge stimuli To predict the motion sensitivity of each cell type
in task-constrained DMNs, we simulated the response of each network,
initialized at an approximate steady state after 1s of grey-screen stimula-
tion, to custom generated edges moving to 12 different directions, 𝜃 ∈
[0◦, 30◦, 60◦, 90◦, 120◦, 150◦, 180◦, 210◦, 240◦, 270◦, 300◦, 330◦]. We integrated
the network dynamics with an integration time step of 5ms. ON-edges
(𝐼 = 1) or OFF-edges (𝐼 = 0) moved on grey (𝐼 = 0.5) back-
ground. Their movement ranged from -13.5◦ to 13.5◦ visual angle and
we moved them at six different speeds, ranging from 13.92◦/𝑠 to 145◦/𝑠
(𝑆 ∈ [13.92◦/𝑠, 27.84◦/𝑠, 56.26◦/𝑠, 75.4◦/𝑠, 110.2◦/𝑠, 145.0◦/𝑠]). In Fig. 5.2d, we
report the correlation between predicted motion tuning curves to the single exper-
imentally measured tuning curve. We take the maximum correlation across six
investigated speeds in order to make the correlation measure robust to potential
variations in preferred speeds.

Direction selectivity index We computed a direction selectivity index[45] of a
particular type 𝑡𝑖 as

DSIti (𝐼) =
1
|S|

∑︁
𝑆∈S

|∑𝜃∈Θ 𝑟
peak
tcentral

(I, S, 𝜃) exp(𝑖𝜃) |

max𝐼∈I |
∑

𝜃 𝑟
peak
tcentral

(I, S, 𝜃) |
(5.4)

from rectified peak voltages

𝑟
peak
tcentral

(I, S, 𝜃) = max
𝑛

𝑉+
𝑡central [𝑛] (I, S, 𝜃), (5.5)

elicited from moving edge stimuli. We rectify to quantify the tuning on the effective
output of the cell, and to avo that the denominator becomes zero. We parameterized
movement angle 𝜃 ∈ Θ, intensities 𝐼 ∈ I, and speeds 𝑆 ∈ S of the moving edges.
To take the response magnitudes into account for comparing DSI for ON- and for

132

OFF-edges, we normalized by the maximum over both intensities in the denominator.
To take different speeds into account, we averaged over S.

Normalization of model neural activity for averaging across models in a cluster
Threshold linear networks have arbitrary units for the voltages and currents. Therefore,
we normalized the neural activity before averaging the neural activity predictions
from different models. For a single cell or cell type 𝑡, we first divided responses
(voltages or rectified voltages) by the root mean square across the cell’s responses to
the naturalistic stimuli:

𝑟
| |·| |=1
𝑡 [𝑛] = 𝑟𝑡 [𝑛]

| | 1
𝑆𝑁

Rnat.
𝑡 | |2

, (5.6)

where Rnat.
𝑡 ∈ R𝑆,𝑁 is the cell’s response vector to 𝑆 sequences from the Sintel dataset

with 𝑁 timesteps and 𝑟𝑡 [𝑛] is the cell’s response to any stimuli. This normalization
makes averages (Fig. 5.4a-b, d-f; Fig. 5.8–Fig. 5.9) independent to variation in
the scale of neural activity from model to model. We normalized input currents
equivalently (Fig. 5.4b and Fig. 5.8–Fig. 5.9) by the same normalization factor. We
exclude solutions for which the denominator becomes zero.

Determining whether a cell type with asymmetric inputs counts as direction
selective We counted a cell type as direction selective if the DSIs from its synthetic
measurements were larger than 99% of DSIs from non-motion selective cell types
(i.e. those with symmetric filters). We note, however, that estimates of the spatial
asymmetry of connectivity from existing connectome reconstructions can be noisy.

For deriving the 99%-threshold, we first defined a distribution 𝑝(𝑑∗ |tsym) over the
DSI for non-direction selective cells, from peak responses to moving edges of cell
types with symmetric inputs, tsym. We computed that distribution numerically by
sampling

𝑑∗ =
|∑𝜃∗ 𝑟

peak
tcentral

(I, S, 𝜃∗) exp 𝑖𝜃 |

|∑𝜃 𝑟
peak
tcentral

(I, S, 𝜃) |

for 100 independent permutations of the angle 𝜃∗. We independently computed 𝑑∗

for all stimulus conditions, models, and cell types with symmetric inputs. From
𝑝(𝑑∗ |tsym), we derived the threshold 𝑑thresh = 0.357 as the 99% quantile of the
random variable 𝑑∗, meaning that the probability that a realization of 𝑑∗ > 𝑑thresh

is less than 1% for cell types with symmetric inputs. To determine whether an

133

asymmetric cell type counts as direction selective, we tested whether synthetically
measuring direction selectivity larger than 𝑑thresh in that cell type is binomial with
probability 0.1 (H0) or greater (H1). We identified 12 cell types with asymmetric
inputs (T4a, T4b, T4c, T4d, T5a, T5b, T5c, T5d, TmY3, TmY4, TmY5a, TmY18) as
direction selective (P < 0.05) from our models, and seven cell types with asymmetric
inputs to not count as direction selective (T2, T2a, T3, Tm3, Tm4, TmY14, TmY15;
see Fig. 5.7 as reference for cell types with symmetric and asymmetric inputs).

UMAP and clustering We first simulated central column responses to naturalistic
scenes (24Hz Sintel video clips from the full augmented dataset) with an integration
time step of 10 ms. We clustered models in feature space of concatenated central
column responses and sample dimension. Next, we computed a nonlinear dimen-
sionality reduction to 2d (UMAP), and finally fitted Gaussian mixtures of 2 to 5
components to the embedding to label the clusters based on the Guassian mixture
model with the number of components that minimize the Bayesian information
criterion, using the python libraries umap-learn and scikit-learn [7, 52].

Single-ommatidium flashes To derive spatio-temporal receptive fields of cells,
we simulated the response of each network to single ommatidium flashes. Flashes
were ON (𝐼 = 1) or OFF (𝐼 = 0) on grey (𝐼 = 0.5) background and presented for [5,
20, 50, 100, 200, 300] ms after 2 s of grey-screen stimulation and followed by 5 s of
grey-screen stimulation.

Spatio-temporal, spatial and temporal receptive fields We derived the spatio-
temporal receptive field (STRF) of a cell type 𝑡𝑖 as the baseline subtracted responses
of the central column cell to single ommatidium flashes 𝐽 (𝑢, 𝑣) at ommatidium
locations (𝑢, 𝑣):

STRF𝑡central [𝑛] (𝑢, 𝑣) = 𝑉𝑡central [𝑛] (𝐽 (𝑢, 𝑣)) −𝑉𝑡central [𝑛 = 0] (𝐽 (𝑢, 𝑣)).

We derived spatial receptive fields, SRFs, from the responses to flashes (20 ms in
Fig. 5.4d) 𝐽 (𝑢, 𝑣) at the point in time at which the response to the central ommatidium
impulse is at its extremum:

SRF(𝑢, 𝑣) = STRF(𝑛 = arg max𝑛 |STRF[𝑛] (0, 0) |, 𝑢, 𝑣).

134

We derive temporal receptive fields, TRFs, from the response to a flash 𝐽 (0, 0) at
the central ommatidium: TRF[𝑛] = STRF[𝑛] (0, 0). For averaging receptive fields
across multiple models, we first normalize the voltages as described above.

Maximally excitatory naturalistic and artificial stimuli First, we found the
naturalistic maximally excitatory stimulus, X∗, by identifying the Sintel video clip, X,
from the full dataset with geometric augmentations that elicited the highest possible
response in the central column cell of a particular cell type in our models.

X∗ = arg max
X∈Sintel

𝑉𝑡central (X).

Next, we regularized the naturalistic maximally excitatory stimulus, to yield X′,
capturing only the stimulus information within the receptive field of the cell, with
the objective to minimize

𝐿 (X′) =
∑︁
𝑛

∥𝑉𝑡central (X∗) [𝑛] −𝑉𝑡central (X′) [𝑛] ∥2 + 1
𝐶

∑︁
𝑐

∥X′[𝑛, 𝑐] − 0.5∥2.

The first summand maintains the exact central response to X∗, while the second sets
the redundant stimulus information outside of the receptive field to grey (𝐼 = 0.5).

In addition, we computed artificial maximally excitatory stimuli[75].

Model selection To describe the most data-consistent motion tuning mechanisms
predicted by the ensemble at the level of single-cell currents, for Fig. 5.8, Fig. 5.8,
and Fig. 5.9, we automatically selected those models from the ensemble with tuning
matching to empirical data. Specifically, we selected models with correct contrast
tuning in the respective target cells and their inputs (Fig. 5.4c and Fig. 5.9d), with
the direction selectivity index larger than the threshold 𝑑∗ derived above, and with
a correctly predicted preferred direction (45◦ acceptance angle, assuming 225◦ for
TmY3).

5.A.6 Training synthetic connectomes
Training feedforward synthetic groundtruth-connectome networks Sparsified
feedforward neural networks with 6 hidden layers (linear transformations sandwiched
between rectifications) with equal number of neurons in each hidden layer functioned

135

as groundtruth-connectome networks. The main results describe networks with 128
neurons per hidden layer. We interpret the individual units as neurons with voltage

𝑉𝑖 =
∑︁
𝑗

𝑠𝑖 𝑗 +𝑉 rest
𝑖 =

∑︁
𝑗

𝜎𝑗𝑐𝑖 𝑗𝑚𝑖 𝑗 𝑓 (𝑉 𝑗) +𝑉 rest
𝑖 ,

with presynaptic inputs 𝑠𝑖 𝑗 and resting potentials 𝑉 rest
𝑖

. The connectome-constrained
synapse strength, 𝑤𝑖 𝑗 , is characterized by the adjacency matrix 𝑐𝑖 𝑗 , the signs, 𝜎𝑗 ,
and the non-negative weight magnitudes 𝑚𝑖 𝑗 . 𝑐𝑖 𝑗 = 1 if the connection exists, else
𝑐𝑖 𝑗 = 0. To respect Dale’s law, the signs were tied to the presynaptic identity, 𝑗 .

We identified the parameters 𝜎𝑗 , 𝑚𝑖 𝑗 , and 𝑉 rest
𝑖

by task-optimization on handwritten
digit classification (MNIST)[36]. We determined adjacency matrices, 𝑐𝑖 𝑗 , for a given
connectivity percentage using an iterative local pruning technique, the Lottery Ticket
Hypothesis algorithm[23]. The algorithm decreases the connectivity percentage of
the groundtruth-connectome networks while maintaining high task accuracy.

We optimized the groundtruth-connectome networks and all simulated networks
described below in Pytorch with stochastic gradient descent with adaptive moment
estimation (ADAM with AMSGrad), learning rate 0.001, batch size 500, and an
exponentially decaying learning rate decay factor of 0.5 per epoch. To constrain the
weight magnitudes to stay non-negative, we clamped the values at zero after each
optimization step (projected gradient descent). The parameters after convergence
minimize the cross-entropy loss between the predicted and the groundtruth classes
of the handwritten digits.

Simulated networks with known connectivity and unknown strength Simulated
networks inherited connectivity, 𝑐𝑖 𝑗 , and synapse signs, 𝜎𝑗 , from their respective
groundtruth-connectome networks. In simulated networks, signs and connectivity
were held fixed. Weight magnitudes, 𝑚𝑖 𝑗 , and resting potentials,𝑉 rest

𝑖
, were initialized

randomly and task-optimized. Just like groundtruth-connectome networks, simulated
networks were trained on the MNIST handwritten digit classification task until
convergence.

Simulated networks with known connectivity and known strength Alternatively,
we imitate measurements of synaptic counts from the groundtruth weight magnitudes:

𝑚̃𝑖 𝑗 = 𝑚𝑖 𝑗𝜖𝑖 𝑗 with 𝜖𝑖 𝑗 ∼ U (1 − 𝜎, 1 + 𝜎),

with multiplicative noise to imitate spurious measurements. We used 𝜎 = 0.5
for the main results. Weight magnitudes were initialized at the measurement,

136

𝑚̃𝑖 𝑗 , and task-optimized on MNIST with the additional objective to minimize the
squared distance between optimized and measured weight magnitudes, 𝑚̃𝑖 𝑗 (L2
constraint, Gaussian weight magnitude prior centered around the simulated network’s
initialization). We weighted the L2 constraint ten times higher than the cross-entropy
objective to keep weight magnitudes of the simulated networks close to the noisy
connectome measurements. Resting potentials, 𝑉 rest

𝑖
, were again initialized randomly

and task-optimized.

Measuring groundtruth-simulated network similarity Groundtruth-simulated
network similarity was measured by calculating the median Pearson’s correlation of
tuning responses (rectified voltages) of corresponding neurons in the groundtruth-
simulated network pair. In each of the 6 hidden layers, 𝑁 = 100 randomly-sampled
neurons were used for comparison. Response tuning was measured over input stimuli
from the MNIST test-set (𝑁 = 10, 000 images). Results are medians over all hidden
layers and over 25 groundtruth-simulation network pairs.

137

5.B Additional figures

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8 L1 L2 L3 L4 L5

La
w

f
A

m C
2

C
3

C
T1

(L
o1

)
C

T1
(M

10
)

M
i1

M
i2

M
i3

M
i4

M
i9

M
i1

0
M

i1
1

M
i1

2
M

i1
3

M
i1

4
M

i1
5 T1 T2 T2
a T3 T4
a

T4
b

T4
c

T4
d

T5
a

T5
b

T5
c

T5
d

Tm
1

Tm
2

Tm
3

Tm
4

Tm
5Y

Tm
5a

Tm
5b

Tm
5c

Tm
9

Tm
16

Tm
20

Tm
28

Tm
30

Tm
Y

3
Tm

Y
4

Tm
Y

5a
Tm

Y
9

Tm
Y

10
Tm

Y
13

Tm
Y

14
Tm

Y
15

Tm
Y

18

R1
R2
R3
R4
R5
R6
R7
R8
L1
L2
L3
L4
L5

Lawf
Am
C2
C3

CT1(Lo1)
CT1(M10)

Mi1
Mi2
Mi3
Mi4
Mi9

Mi10
Mi11
Mi12
Mi13
Mi14
Mi15

T1
T2

T2a
T3

T4a
T4b
T4c
T4d
T5a
T5b
T5c
T5d
Tm1
Tm2
Tm3
Tm4

Tm5Y
Tm5a
Tm5b
Tm5c
Tm9

Tm16
Tm20
Tm28
Tm30
TmY3
TmY4

TmY5a
TmY9

TmY10
TmY13
TmY14
TmY15
TmY18

pr
es

yn
ap

tic

postsynaptic

Figure 5.6: Cell connectivity. The matrix shows how cells of the 64 cell types
within the inner 91 columns (of 721) of the recurrent convolutional DMN connect,
either by excitatory connections (red) or inhibitory connections (blue).

138

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
average excitatory center of mass offset (columns)

0.00

0.05

0.10

0.15

m
ed

ia
n

D
S

I

T4a
T4b

T4c

T4d

T5a
T5b

T5c T5d

TmY3
TmY4

TmY5a

TmY18

a

b

c d

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

C
3

C
T1

(M
10

)
M

i1
M

i4
T4

a
T4

b
T4

c
T4

d
Tm

3 L1 L2 L3 L4
C

T1
(L

o1
)

M
i9

T5
a

T5
b

T5
c

T5
d

Tm
1

Tm
2

Tm
4

Tm
9 L5

La
w

f1
La

w
f2 A
m C
2

M
i2

M
i3

M
i1

0
M

i1
1

M
i1

2
M

i1
3

M
i1

4
M

i1
5 T1 T2 T2
a T3

Tm
5Y

Tm
5a

Tm
5b

Tm
5c

Tm
16

Tm
20

Tm
28

Tm
30

Tm
Y

3
Tm

Y
4

Tm
Y

5a
Tm

Y
9

Tm
Y

10
Tm

Y
13

Tm
Y

14
Tm

Y
15

Tm
Y

18

0

10

20

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

C
3

C
T1

(M
10

)
M

i1
M

i4
T4

a
T4

b
T4

c
T4

d
Tm

3 L1 L2 L3 L4
C

T1
(L

o1
)

M
i9

T5
a

T5
b

T5
c

T5
d

Tm
1

Tm
2

Tm
4

Tm
9 L5

La
w

f1
La

w
f2 A
m C
2

M
i2

M
i3

M
i1

0
M

i1
1

M
i1

2
M

i1
3

M
i1

4
M

i1
5 T1 T2 T2
a T3

Tm
5Y

Tm
5a

Tm
5b

Tm
5c

Tm
16

Tm
20

Tm
28

Tm
30

Tm
Y

3
Tm

Y
4

Tm
Y

5a
Tm

Y
9

Tm
Y

10
Tm

Y
13

Tm
Y

14
Tm

Y
15

Tm
Y

18

0

1

2

3

ce
nt

er
 o

f m
as

s
of

fs
et

s
(c

ol
um

ns
)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
average inhibitory center of mass offset (columns)

0.00

0.05

0.10

0.15

m
ed

ia
n

D
S

I

T4a
T4b

T4c

T4d

T5a
T5b

T5c T5d

TmY3
TmY4

TmY5a

TmY18

nu
m

be
r o

f i
np

ut
 c

el
l t

yp
es

example
center of mass offset

all excitatory inhibitory

excitatory inhibitory

Figure 5.7: Statistics of inhibitory and excitatory synapse inputs. a: Number of
input cell types per cell type. b: Center of mass offsets of synaptic input. c: Average
excitatory and d: inhibitory center of mass offset of synaptic inputs against median
predicted direction selectivity index for all cell types. Datapoints for cell types that
were predicted as significantly motion selection are labeled.

139

0.0 0.5

Measured Linear sum
PD

0.0 0.5

Measured Linear sum
ND

0.0 0.5 0.0 0.5

0.0 0.5

time (s)

0.0 0.5

vo
lta

ge
 (a

.u
.)

0.0 0.5

Measured Linear sum
PD

0.0 0.5

Measured Linear sum
ND

0.0 0.5 0.0 0.5

0.0 0.5

time (s)

0.0 0.5

vo
lta

ge
 (a

.u
.)

0.0 0.2 0.4 0.6 0.8 1.0

time (s)

0.0 0.2 0.4 0.6 0.8 1.0

Mi1
Tm3
T4c
T4b

T4a
T5c
C3

Mi10
Mi9
TmY15

CT1(M10)
Mi4
null direction

convolutional filters
(anatomical receptive fields)

input currents

vo
lta

ge
 (a

.u
.)

cu
rr

en
ts

 (a
.u

.)
0°

45°
90°

Mi1 Tm3

T4c T4b

T4a T5c

C3 Mi10

Mi9 TmY15

CT1(M10) Mi4

a
T4c T4c

T5c

0.0 0.2 0.4 0.6 0.8 1.0

time (s)

0.0 0.2 0.4 0.6 0.8 1.0

Tm1
Tm9
T5c

Tm2
Tm4

T4c
TmY15

CT1(Lo1)
null direction

convolutional filters
(anatomical receptive fields)

input currents

vo
lta

ge
 (a

.u
.)

cu
rr

en
ts

 (a
.u

.)

0°

45°
90°

Tm1 Tm9

T5c Tm2

Tm4 T4c

TmY15 CT1(Lo1)

c
T5c

b

d

Figure 5.8: T4 and T5 motion detection mechanisms hypothesized by the model.
a: The four T4 cell types detect ON-edge motion towards the four cardinal directions
(here T4c). An ON-edge moving towards the preferred direction (PD) of the cell
elicits a high depolarization in the central T4 cell (black, solid). In contrast, an
edge moving towards the null direction (ND) of the cell elicits a wiggle from weak
hyperpolarization to weak depolarization (black, dashed). (Continued on the next
page)

140

Fig. 5.8, continued: We characterize the motion detection mechanism by displaying
the PD- and ND-responses of the T4 cell type, and the temporal and spatial
contributions of its input cell types according to our connectome-measurement
constrained model. Across all T4 cell types, our model predicts that the depolarization
in response to PD motion is mainly driven by excitatory Mi1 current inputs (darkest
red, solid) from roughly a two-column radius of Mi1 cells. The PD-motion response
is increased through excitatory inputs from the neighboring T4 cells of the same type
(third darkest red, solid) with the center of mass located towards the leading side of
the receptive field (i.e. the motion stimulus towards the PD reaches those T4 cells
first, enabling this mechanism). However, for ND-motion the neighboring T4 cells
do not provide any excitatory currents (third darkest red, dashed). Tm3 cells provide
additional excitatory currents that are, as for Mi1 cells, roughly agnostic to PD vs
ND motion. For ND-motion, Mi4 cells decrease excitatory currents from Mi1 by
providing roughly matching inhibitory currents from the trailing side of the receptive
field (darkest blue, dashed). In contrast, for PD-motion, the inhibition from Mi4
cells is delayed (through the spatial layout and potentially neural time constants not
characterized here; darkest blue, solid), which allows a strong depolarization of the
T4 cell. CT1 shadows Mi4 in that it provides a similar but weaker inhibition from the
same location of the receptive field (second darkest, blue). Noteworthy, our model
suggests roles and an additional mechanism for Mi9 cells in b: and TmY15 cells in
c:: both can contribute to the motion detection mechanism by different inhibitory
mechanisms for PD-motion with respect to ND-motion. b: This figure should be
compared to Gruntman et al. 2018, Fig. 4f. Predicted T4c responses to bars moving
in the PD (left column) and in the ND (right column) at speeds of 56◦/𝑠, 75◦/𝑠,
and 110◦/𝑠 (’Measured’, saturated red and blue, speeds varied from top to bottom
row). Responses to moving bars are overlaid with the linear sum of responses to the
individually flashed frames that constitute the moving bar video sequence (’Linear
sum’, faint red and blue). Faint grey traces in the background of the first panel
show individual flash responses before linear summation. The duration that the flash
stimulus was presented in each location precisely matched the duration that the flash
remained at the location in the moving bar sequence. Bars were approximately 9◦
wide and 20.25◦ high and moved across 45◦ with respect to the receptive field in the
center. c: The four T5 cell types detect OFF-edge motion towards the four cardinal
directions (here T5c). An OFF-edge moving towards the preferred direction (PD) of
the cell elicits a high depolarization in the central T5 cell (black, solid). In contrast,
an edge moving towards the null direction (ND) of the cell elicits a wiggle from
weak hyperpolarization to weak depolarization (black, dashed). We characterize the
motion detection mechanism by displaying the PD- and ND-responses of the T5 cell
type, and the temporal and spatial contributions of its input cell types according to
our connectome-measurement constrained model. (Continued on the next page)

141

Fig. 5.8, continued: d: Same as (b) for T5c. Across all T5 cell types, our model
predicts that Tm1 and Tm9 cell types contribute to the T5 cell depolarization with
excitatory input currents in response to moving edges. Tm1 inputs come from roughly
a centered, two-column radius of Tm1 cells and Tm9 inputs from one column offset
towards the leading side of the receptive field. We observe delayed excitation from
Tm9 cells in all cases for ND-motion vs PD-motion. As for T4 cells, the PD-motion
response is increased through excitatory inputs from the neighboring T5 cells of the
same type. For ND-motion, the neighboring T5 cells do not provide any excitatory
currents. For ND-motion, CT1(Lo1) cells decrease excitatory currents by providing
strong inhibitory currents from the trailing side of the receptive field. In contrast,
for PD-motion, the decrease from CT1(Lo1) cells is delayed, which allows a strong
depolarization of the T5 cell to discriminate motion.

142

a Correlation and clustering discover tuning motifs from responses to naturalistic stimuli

5.25 5.50 5.75
task error

0

10

nu
m

be
r m

od
el

s

UMAP and
 cluster models

naturalistic
stimuli

responses

task
training 50 trained

models
initialization

of biophysical
parameters

connectome
constraints

L4 L5
Tm

2
Tm

3
M

i1
M

i9
M

i4

−1.0

−0.5

0.0

0.5

1.0

L4 L5
Tm

2
Tm

3
M

i1
M

i9
M

i4

−1.0

−0.5

0.0

0.5

1.0

L4 L5
Tm

2
Tm

3
M

i1
M

i9
M

i4

−1.0

−0.5

0.0

0.5

1.0

L4 L5
Tm

2
Tm

3
M

i1
M

i9
M

i4

−1.0

−0.5

0.0

0.5

1.0

fla
sh

 re
sp

on
se

 in
de

x

ON

OFF

b c

d

TmY3 tuning motifs from responses to naturalistic stimuli Moving edge motion tuning motifs of TmY3

TmY3 major input elements

UMAP 1

up

front

UM
AP

 2

0°

45°
90°

O
N

-e
dg

e
re

sp
on

se
s

O
FF

-e
dg

e
re

sp
on

se
s

eTmY3 pathway

TmY3

excitatory synapses
inhibitory synapses

L1

L3

L4

L2

Mi1

Mi4

Mi9

Tm2

R1-R6

L5 Tm3

5.2

5.4

5.6
ta

sk
 e

rr
or

5.298

5.317
5.328

5.331

di
re

ct
io

n
se

le
ct

iv
ity

 in
de

x
0.0

0.5

1.0

0.0

0.5

1.0

ON-edge

OFF-edge
5.2

5.4

5.6

ta
sk

 e
rr

or

known ON-selective known OFF-selective

Known input selectivities rule out TmY3 solutionsf

-10 0 10
input synapses

Mi4

Mi9Mi1Tm3

L4 L5 Tm2

Figure 5.9: DMNs suggest that TmY3 neurons compute motion independently
of T4 and T5 neurons. a: We clustered 50 DMNs after performing nonlinear
dimensionality reduction of their responses to naturalistic scenes for each cell type,
and aimed to identify whether clusters correspond to qualitatively different tuning
mechanisms. b: Dimensionality reduction on TmY3 responses to naturalistic stimuli
reveals 4 clusters of DMNs with average task errors 5.298 (circle), 5.317 (triangle),
5.328 (square) and 5.331 (star). Across clusters, TmY3 shows different strengths
of direction selectivity (evaluated with moving edge stimuli). ON-edge direction
selectivity is strong in the first and the third cluster. c: Normalized peak responses of
TmY3 to moving edge stimuli in the DMNs of each cluster. d: Major cell types and
synaptic connections in the pathway that projects onto TmY3 (simplified). e: The
input elements of TmY3 with the highest amount of synapses are L4, L5, Tm2, Tm3,
Mi1, Mi9, and Mi4. The asymmetries of their projective fields could allow TmY3 to
become motion selective. f: Dependencies between TmY3 tuning and the contrast
preference of its input cells. For clusters in which TmY3 is motion selective, cluster
1 (TmY3 tuning to downwards/front-to-back motion, circular marker) indicates
ON-selectivity for Tm3, Mi1, and Mi4 cells, and OFF-selectivity for L4, Tm2, and
Mi9 cells, in agreement with known selectivities. In contrast, cluster 3 (TmY3 tuning
to upwards/back-to-front motion, square marker) indicates ON-selectivity for Mi9 in
contradiction to the known selectivities and hence ruling out the third TmY3 tuning
solution.

143

b

0.0 0.5

Measured Linear sum
PD

0.0 0.5

Measured Linear sum

40-ms flash
56deg/s

ND

0.0 0.5 0.0 0.5

30-ms flash
75deg/s

0.0 0.5

time (s)

0.0 0.5

20-ms flash
110deg/s

vo
lta

ge
 (a

.u
.)

a TmY3

0°

45°
90°

0.0 0.2 0.4 0.6 0.8 1.0

time (s)

0.0 0.2 0.4 0.6 0.8 1.0

Mi1
L5
Tm3
Tm4

TmY3
Tm2
L2
L4

Tm16
TmY5a
Mi10
Mi9

TmY15
Mi14
Mi4
null direction

convolutional filters
(anatomical receptive fields)

input currents

vo
lta

ge
 (a

.u
.)

cu
rr

en
ts

 (a
.u

.)

0°

45°
90°

Mi1 L5

Tm3 Tm4

TmY3 Tm2

L2 L4

Tm16 TmY5a

Mi10 Mi9

TmY15 Mi14

Mi4

TmY3

Figure 5.10: TmY3 motion detection mechanisms hypothesized by the model. a:
Responses to PD and ND ON-edge motion and contributions from input elements as
in Fig. 5.8. b: PD enhancement and ND suppression in the model. Same as Fig. 5.8b
for T5c.

144

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8 L1 L2 L3 L4 L5

La
w

f1

La
w

f2

A
m C
2

C
3

C
T1

(L
o1

)

C
T1

(M
10

)

M
i1

M
i2

M
i3

M
i4

M
i9

M
i1

0

M
i1

1

M
i1

2

M
i1

3

M
i1

4

M
i1

5 T1 T2 T2
a T3 T4
a

T4
b

T4
c

T4
d

T5
a

T5
b

T5
c

T5
d

Tm
1

Tm
2

Tm
3

Tm
4

Tm
5Y

Tm
5a

Tm
5b

Tm
5c

Tm
9

Tm
16

Tm
20

Tm
28

Tm
30

Tm
Y

3

Tm
Y

4

Tm
Y

5a

Tm
Y

9

Tm
Y

10

Tm
Y

13

Tm
Y

14

Tm
Y

15

Tm
Y

18

−1

0

1

2

resting potentials
task-optimized parameter of the best 20% models
task-optimized parameter of the worst 20% models

V
re
st

t i
 (a

.u
.)

R
1-

>L
1

R
1-

>L
2

R
1-

>L
3

R
1-

>A
m

R
1-

>T
1

R
2-

>L
1

R
2-

>L
2

R
2-

>L
3

R
2-

>A
m

R
2-

>T
1

R
3-

>L
1

R
3-

>L
2

R
3-

>L
3

R
3-

>A
m

R
3-

>T
1

R
4-

>L
1

R
4-

>L
2

R
4-

>L
3

R
4-

>A
m

R
4-

>T
1

R
5-

>L
1

R
5-

>L
2

R
5-

>L
3

R
5-

>A
m

R
5-

>T
1

R
6-

>L
1

R
6-

>L
2

R
6-

>L
3

R
6-

>A
m

R
6-

>T
1

R
7-

>R
8

R
7-

>M
i9

R
7-

>M
i1

5
R

7-
>T

m
5a

R
7-

>T
m

5b
R

8-
>R

7
R

8-
>L

1
R

8-
>L

3
R

8-
>M

i1
R

8-
>M

i4
R

8-
>M

i9
R

8-
>M

i1
5

R
8-

>T
m

5c
R

8-
>T

m
20

L1
->

L5
L1

->
La

w
f2

L1
->

C
2

L1
->

C
3

L1
->

M
i1

L1
->

Tm
3

L2
->

R
1

L2
->

R
2

L2
->

L1
L2

->
L4

L2
->

L5
L2

->
La

w
f2

L2
->

C
3

L2
->

M
i1

L2
->

M
i4

L2
->

M
i9

L2
->

T1
L2

->
Tm

1
L2

->
Tm

2
L2

->
Tm

4
L2

->
Tm

20
L2

->
Tm

Y
3

L3
->

La
w

f1
L3

->
C

3
L3

->
M

i1
L3

->
M

i2
L3

->
M

i9
L3

->
M

i1
3

L3
->

M
i1

5
L3

->
Tm

3
L3

->
Tm

5Y
L3

->
Tm

5a
L3

->
Tm

5c
L3

->
Tm

9
L3

->
Tm

20
L3

->
Tm

28
L3

->
Tm

Y
9

L3
->

Tm
Y

10
L4

->
R

1
L4

->
R

2
L4

->
R

3
L4

->
R

4
L4

->
R

5
L4

->
R

6
L4

->
L2

L4
->

L3
L4

->
L4

L4
->

L5
L4

->
A

m
L4

->
M

i9
L4

->
T2

L4
->

Tm
2

L4
->

Tm
4

L4
->

Tm
9

L4
->

Tm
Y

3
L4

->
Tm

Y
13

L5
->

L1
L5

->
L2

L5
->

L5
L5

->
C

2
L5

->
C

3
L5

->
M

i1
L5

->
M

i2
L5

->
M

i4
L5

->
M

i1
5

L5
->

T1
L5

->
T2

L5
->

Tm
3

L5
->

Tm
20

L5
->

Tm
Y

3
L5

->
Tm

Y
13

L5
->

Tm
Y

14
L5

->
Tm

Y
18

La
w

f1
->

Tm
3

La
w

f2
->

L3
La

w
f2

->
La

w
f2

La
w

f2
->

A
m

0.0

0.5

filter scaling factors

A
m

->
R

1
A

m
->

R
2

A
m

->
R

4
A

m
->

R
5

A
m

->
L1

A
m

->
L2

A
m

->
L3

A
m

->
L4

A
m

->
C

2
A

m
->

C
3

A
m

->
T1

C
2-

>L
1

C
2-

>L
2

C
2-

>L
3

C
2-

>L
4

C
2-

>L
5

C
2-

>L
aw

f2
C

2-
>A

m
C

2-
>M

i1
C

2-
>T

1
C

2-
>T

2
C

2-
>T

4a
C

2-
>T

m
1

C
2-

>T
m

9
C

2-
>T

m
Y

14
C

3-
>R

3
C

3-
>L

1
C

3-
>L

2
C

3-
>L

3
C

3-
>L

5
C

3-
>L

aw
f2

C
3-

>A
m

C
3-

>C
T1

(M
10

)
C

3-
>M

i1
C

3-
>M

i4
C

3-
>M

i9
C

3-
>T

1
C

3-
>T

2
C

3-
>T

4a
C

3-
>T

4b
C

3-
>T

4c
C

3-
>T

4d
C

3-
>T

m
1

C
3-

>T
m

2
C

3-
>T

m
4

C
3-

>T
m

9
C

3-
>T

m
20

C
T1

(L
o1

)-
>T

5a
C

T1
(L

o1
)-

>T
5b

C
T1

(L
o1

)-
>T

5c
C

T1
(L

o1
)-

>T
5d

C
T1

(L
o1

)-
>T

m
1

C
T1

(L
o1

)-
>T

m
9

C
T1

(M
10

)-
>C

3
C

T1
(M

10
)-

>M
i1

C
T1

(M
10

)-
>T

4a
C

T1
(M

10
)-

>T
4b

C
T1

(M
10

)-
>T

4c
C

T1
(M

10
)-

>T
4d

M
i1

->
L1

M
i1

->
L5

M
i1

->
C

2
M

i1
->

C
3

M
i1

->
C

T1
(M

10
)

M
i1

->
M

i2
M

i1
->

M
i4

M
i1

->
M

i9
M

i1
->

M
i1

0
M

i1
->

M
i1

2
M

i1
->

M
i1

3
M

i1
->

M
i1

4
M

i1
->

M
i1

5
M

i1
->

T2
M

i1
->

T2
a

M
i1

->
T3

M
i1

->
T4

a
M

i1
->

T4
b

M
i1

->
T4

c
M

i1
->

T4
d

M
i1

->
Tm

1
M

i1
->

Tm
3

M
i1

->
Tm

20
M

i1
->

Tm
Y

3
M

i1
->

Tm
Y

9
M

i1
->

Tm
Y

13
M

i1
->

Tm
Y

14
M

i1
->

Tm
Y

15
M

i1
->

Tm
Y

18
M

i2
->

M
i1

M
i2

->
T2

M
i2

->
T2

a
M

i2
->

T3
M

i2
->

Tm
1

M
i2

->
Tm

Y
18

M
i3

->
T2

M
i3

->
Tm

5b
M

i4
->

L2
M

i4
->

C
3

M
i4

->
M

i1
M

i4
->

M
i4

M
i4

->
M

i9
M

i4
->

T1
M

i4
->

T4
a

M
i4

->
T4

b
M

i4
->

T4
c

M
i4

->
T4

d
M

i4
->

Tm
1

M
i4

->
Tm

2
M

i4
->

Tm
5Y

M
i4

->
Tm

5a
M

i4
->

Tm
5b

M
i4

->
Tm

5c
M

i4
->

Tm
9

M
i4

->
Tm

16
M

i4
->

Tm
20

M
i4

->
Tm

28
M

i4
->

Tm
Y

3
M

i4
->

Tm
Y

4
M

i4
->

Tm
Y

5a
M

i4
->

Tm
Y

10
M

i4
->

Tm
Y

13

0.00

0.25

0.50

M
i4

->
Tm

Y
15

M
i4

->
Tm

Y
18

M
i9

->
L3

M
i9

->
La

w
f1

M
i9

->
C

3
M

i9
->

C
T1

(M
10

)
M

i9
->

M
i1

M
i9

->
M

i4
M

i9
->

M
i1

0
M

i9
->

M
i1

5
M

i9
->

T2
M

i9
->

T2
a

M
i9

->
T4

a
M

i9
->

T4
b

M
i9

->
T4

c
M

i9
->

T4
d

M
i9

->
Tm

1
M

i9
->

Tm
2

M
i9

->
Tm

4
M

i9
->

Tm
5a

M
i9

->
Tm

5b
M

i9
->

Tm
16

M
i9

->
Tm

Y
3

M
i9

->
Tm

Y
4

M
i9

->
Tm

Y
5a

M
i9

->
Tm

Y
13

M
i9

->
Tm

Y
18

M
i1

0-
>L

aw
f1

M
i1

0-
>M

i9
M

i1
0-

>M
i1

4
M

i1
0-

>T
4a

M
i1

0-
>T

4b
M

i1
0-

>T
4c

M
i1

0-
>T

4d
M

i1
0-

>T
m

5b
M

i1
0-

>T
m

Y
3

M
i1

0-
>T

m
Y

5a
M

i1
0-

>T
m

Y
14

M
i1

2-
>M

i1
M

i1
2-

>M
i9

M
i1

2-
>T

m
1

M
i1

2-
>T

m
2

M
i1

2-
>T

m
3

M
i1

2-
>T

m
4

M
i1

3-
>L

5
M

i1
3-

>M
i1

M
i1

3-
>T

2
M

i1
3-

>T
m

1
M

i1
3-

>T
m

2
M

i1
3-

>T
m

3
M

i1
3-

>T
m

4
M

i1
3-

>T
m

9
M

i1
4-

>T
m

1
M

i1
4-

>T
m

4
M

i1
4-

>T
m

Y
3

M
i1

5-
>C

3
M

i1
5-

>M
i4

M
i1

5-
>M

i1
0

M
i1

5-
>M

i1
5

M
i1

5-
>T

m
5c

T1
->

L2
T1

->
L5

T1
->

Tm
20

T2
->

La
w

f2
T2

->
M

i1
T2

->
T2

T2
->

Tm
5c

T2
->

Tm
Y

5a
T2

->
Tm

Y
15

T2
a-

>M
i1

T2
a-

>T
3

T2
a-

>T
m

3
T2

a-
>T

m
5Y

T2
a-

>T
m

5b
T2

a-
>T

m
28

T2
a-

>T
m

Y
4

T2
a-

>T
m

Y
5a

T2
a-

>T
m

Y
9

T3
->

T2
T3

->
T2

a
T3

->
Tm

3
T4

a-
>C

3
T4

a-
>C

T1
(M

10
)

T4
a-

>M
i9

T4
a-

>M
i1

2
T4

a-
>T

4a
T4

a-
>T

4c
T4

a-
>T

5a
T4

a-
>T

m
Y

14
T4

a-
>T

m
Y

18
T4

b-
>C

T1
(M

10
)

T4
b-

>M
i9

T4
b-

>T
4b

T4
b-

>T
4c

T4
b-

>T
5b

T4
b-

>T
m

Y
15

T4
c-

>C
T1

(M
10

)
T4

c-
>M

i9
T4

c-
>T

4c
T4

c-
>T

5c
T4

c-
>T

m
Y

4
T4

c-
>T

m
Y

14
T4

c-
>T

m
Y

15
T4

d-
>C

T1
(M

10
)

T4
d-

>T
4a

T4
d-

>T
4d

T4
d-

>T
5d

T4
d-

>T
m

Y
4

T4
d-

>T
m

Y
15

T5
a-

>C
T1

(L
o1

)
T5

a-
>T

4a
T5

a-
>T

5a
T5

a-
>T

5b
T5

a-
>T

m
Y

9
T5

a-
>T

m
Y

14
T5

a-
>T

m
Y

15
T5

b-
>C

T1
(L

o1
)

T5
b-

>T
2

T5
b-

>T
4b

T5
b-

>T
5b

T5
b-

>T
5d

0.0

0.2

0.4

T5
b-

>T
m

2
T5

b-
>T

m
Y

14
T5

b-
>T

m
Y

15
T5

c-
>C

T1
(L

o1
)

T5
c-

>T
4c

T5
c-

>T
5c

T5
c-

>T
m

2
T5

c-
>T

m
Y

4
T5

c-
>T

m
Y

14
T5

c-
>T

m
Y

15
T5

d-
>C

T1
(L

o1
)

T5
d-

>T
2

T5
d-

>T
4d

T5
d-

>T
5d

T5
d-

>T
m

Y
4

T5
d-

>T
m

Y
15

Tm
1-

>L
2

Tm
1-

>L
5

Tm
1-

>L
aw

f2
Tm

1-
>C

3
Tm

1-
>C

T1
(L

o1
)

Tm
1-

>M
i1

Tm
1-

>M
i2

Tm
1-

>M
i4

Tm
1-

>M
i9

Tm
1-

>M
i1

2
Tm

1-
>M

i1
3

Tm
1-

>T
1

Tm
1-

>T
2

Tm
1-

>T
2a

Tm
1-

>T
3

Tm
1-

>T
5a

Tm
1-

>T
5b

Tm
1-

>T
5c

Tm
1-

>T
5d

Tm
1-

>T
m

2
Tm

1-
>T

m
4

Tm
1-

>T
m

5Y
Tm

1-
>T

m
9

Tm
1-

>T
m

20
Tm

1-
>T

m
28

Tm
1-

>T
m

Y
4

Tm
1-

>T
m

Y
9

Tm
1-

>T
m

Y
15

Tm
2-

>L
2

Tm
2-

>L
5

Tm
2-

>L
aw

f1
Tm

2-
>C

3
Tm

2-
>C

T1
(L

o1
)

Tm
2-

>M
i4

Tm
2-

>M
i9

Tm
2-

>T
2

Tm
2-

>T
2a

Tm
2-

>T
5a

Tm
2-

>T
5b

Tm
2-

>T
5c

Tm
2-

>T
5d

Tm
2-

>T
m

1
Tm

2-
>T

m
4

Tm
2-

>T
m

9
Tm

2-
>T

m
28

Tm
2-

>T
m

Y
3

Tm
2-

>T
m

Y
4

Tm
2-

>T
m

Y
13

Tm
2-

>T
m

Y
15

Tm
2-

>T
m

Y
18

Tm
3-

>L
1

Tm
3-

>L
aw

f1
Tm

3-
>L

aw
f2

Tm
3-

>M
i1

Tm
3-

>M
i1

1
Tm

3-
>M

i1
4

Tm
3-

>T
2

Tm
3-

>T
2a

Tm
3-

>T
3

Tm
3-

>T
4a

Tm
3-

>T
4b

Tm
3-

>T
4c

Tm
3-

>T
4d

Tm
3-

>T
m

3
Tm

3-
>T

m
4

Tm
3-

>T
m

30
Tm

3-
>T

m
Y

3
Tm

3-
>T

m
Y

5a
Tm

3-
>T

m
Y

13
Tm

3-
>T

m
Y

14
Tm

3-
>T

m
Y

15
Tm

3-
>T

m
Y

18
Tm

4-
>L

aw
f2

Tm
4-

>C
3

Tm
4-

>M
i4

Tm
4-

>M
i1

0
Tm

4-
>M

i1
2

Tm
4-

>M
i1

3
Tm

4-
>M

i1
4

Tm
4-

>T
2

Tm
4-

>T
2a

Tm
4-

>T
3

Tm
4-

>T
5a

Tm
4-

>T
5b

Tm
4-

>T
5c

Tm
4-

>T
5d

Tm
4-

>T
m

3
Tm

4-
>T

m
4

Tm
4-

>T
m

Y
3

Tm
4-

>T
m

Y
4

Tm
4-

>T
m

Y
5a

Tm
4-

>T
m

Y
13

Tm
4-

>T
m

Y
14

Tm
4-

>T
m

Y
15

Tm
5Y

->
Tm

5a
Tm

5Y
->

Tm
5b

Tm
5Y

->
Tm

20
Tm

5Y
->

Tm
Y

5a
Tm

5Y
->

Tm
Y

10
Tm

5a
->

Tm
5a

Tm
5a

->
Tm

5b
Tm

5b
->

M
i3

Tm
5b

->
M

i1
0

Tm
5b

->
Tm

5a
Tm

5b
->

Tm
5b

0.0

0.2

0.4

Tm
5b

->
Tm

5c
Tm

5c
->

M
i4

Tm
5c

->
M

i1
5

Tm
5c

->
Tm

5Y
Tm

5c
->

Tm
5b

Tm
5c

->
Tm

16
Tm

9-
>C

T1
(L

o1
)

Tm
9-

>M
i9

Tm
9-

>T
5a

Tm
9-

>T
5b

Tm
9-

>T
5c

Tm
9-

>T
5d

Tm
9-

>T
m

1
Tm

9-
>T

m
2

Tm
9-

>T
m

5Y
Tm

9-
>T

m
28

Tm
9-

>T
m

Y
4

Tm
9-

>T
m

Y
9

Tm
9-

>T
m

Y
15

Tm
16

->
La

w
f1

Tm
16

->
La

w
f2

Tm
16

->
M

i9
Tm

16
->

T2
Tm

16
->

Tm
1

Tm
16

->
Tm

2
Tm

16
->

Tm
4

Tm
16

->
Tm

5Y
Tm

16
->

Tm
5c

Tm
16

->
Tm

9
Tm

16
->

Tm
Y

3
Tm

16
->

Tm
Y

5a
Tm

16
->

Tm
Y

10
Tm

16
->

Tm
Y

13
Tm

16
->

Tm
Y

14
Tm

20
->

M
i2

Tm
20

->
M

i9
Tm

20
->

Tm
5Y

Tm
20

->
Tm

9
Tm

20
->

Tm
20

Tm
28

->
Tm

5Y
Tm

28
->

Tm
Y

4
Tm

28
->

Tm
Y

9
Tm

Y
3-

>T
2

Tm
Y

3-
>T

m
4

Tm
Y

3-
>T

m
Y

3
Tm

Y
3-

>T
m

Y
4

Tm
Y

3-
>T

m
Y

5a
Tm

Y
3-

>T
m

Y
13

Tm
Y

3-
>T

m
Y

14
Tm

Y
3-

>T
m

Y
15

Tm
Y

4-
>M

i3
Tm

Y
4-

>M
i4

Tm
Y

4-
>M

i1
3

Tm
Y

4-
>T

2
Tm

Y
4-

>T
5d

Tm
Y

4-
>T

m
Y

4
Tm

Y
4-

>T
m

Y
5a

Tm
Y

4-
>T

m
Y

9
Tm

Y
4-

>T
m

Y
14

Tm
Y

5a
->

M
i2

Tm
Y

5a
->

M
i3

Tm
Y

5a
->

T2
Tm

Y
5a

->
T2

a
Tm

Y
5a

->
Tm

16
Tm

Y
5a

->
Tm

Y
3

Tm
Y

5a
->

Tm
Y

4
Tm

Y
5a

->
Tm

Y
14

Tm
Y

5a
->

Tm
Y

15
Tm

Y
5a

->
Tm

Y
18

Tm
Y

9-
>M

i1
3

Tm
Y

9-
>T

m
Y

4
Tm

Y
9-

>T
m

Y
9

Tm
Y

10
->

M
i4

Tm
Y

10
->

T2
a

Tm
Y

10
->

Tm
5b

Tm
Y

10
->

Tm
5c

Tm
Y

10
->

Tm
9

Tm
Y

10
->

Tm
16

Tm
Y

10
->

Tm
20

Tm
Y

10
->

Tm
28

Tm
Y

10
->

Tm
Y

4
Tm

Y
10

->
Tm

Y
9

Tm
Y

13
->

M
i4

Tm
Y

13
->

T2
Tm

Y
13

->
Tm

5b
Tm

Y
13

->
Tm

16
Tm

Y
13

->
Tm

Y
5a

Tm
Y

14
->

C
3

Tm
Y

14
->

M
i1

2
Tm

Y
14

->
M

i1
3

Tm
Y

14
->

Tm
9

Tm
Y

14
->

Tm
16

Tm
Y

14
->

Tm
Y

4
Tm

Y
15

->
M

i4
Tm

Y
15

->
M

i9
Tm

Y
15

->
T2

Tm
Y

15
->

T2
a

Tm
Y

15
->

T4
a

Tm
Y

15
->

T4
b

Tm
Y

15
->

T4
c

Tm
Y

15
->

T4
d

Tm
Y

15
->

T5
a

Tm
Y

15
->

T5
b

Tm
Y

15
->

T5
c

Tm
Y

15
->

T5
d

Tm
Y

15
->

Tm
1

Tm
Y

15
->

Tm
2

Tm
Y

15
->

Tm
3

Tm
Y

15
->

Tm
4

Tm
Y

15
->

Tm
9

Tm
Y

15
->

Tm
Y

3
Tm

Y
15

->
Tm

Y
14

Tm
Y

15
->

Tm
Y

18
Tm

Y
18

->
M

i4
Tm

Y
18

->
M

i1
0

Tm
Y

18
->

T2
Tm

Y
18

->
Tm

Y
5a

Tm
Y

18
->

Tm
Y

9
Tm

Y
18

->
Tm

Y
15

Tm
Y

18
->

Tm
Y

18

0.0

0.2

0.4

α t
it j
 (a

.u
.)

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8 L1 L2 L3 L4 L5

La
w

f1

La
w

f2

A
m C
2

C
3

C
T1

(L
o1

)

C
T1

(M
10

)

M
i1

M
i2

M
i3

M
i4

M
i9

M
i1

0

M
i1

1

M
i1

2

M
i1

3

M
i1

4

M
i1

5 T1 T2 T2
a T3 T4
a

T4
b

T4
c

T4
d

T5
a

T5
b

T5
c

T5
d

Tm
1

Tm
2

Tm
3

Tm
4

Tm
5Y

Tm
5a

Tm
5b

Tm
5c

Tm
9

Tm
16

Tm
20

Tm
28

Tm
30

Tm
Y

3

Tm
Y

4

Tm
Y

5a

Tm
Y

9

Tm
Y

10

Tm
Y

13

Tm
Y

14

Tm
Y

15

Tm
Y

18

0.0

0.1

0.2

0.3

0.4

0.5

time constants

τ t i
 (s

)

c

a

b

best task-performing model

Figure 5.11: Statistics of learned parameters of best 20% models vs. worst 20%
models. a: Task-optimized resting potentials. b: Task-optimized time constants. c:
Task-optimized filter scaling factors.

145

0

π/4

π/2

3π/4

πpr
ef

er
re

d
di

re
ct

io
n

CNN
no DMN

vanilla CNN [414,602]

Full DMN
DMN [734]

 cell-type connectivity
 s.-n. params (τ ti, V res t

ti)
 s.-n. connectivity

 u. syn. strengths (αtitj)
 syn. counts (NtitjΔuΔv)

 syn. signs (σtitj)
decoder [7,427]

Random DMN
DMN [734]

 cell-type connectivity
 s.-n. params

 s.-n. connectivity
 u. syn. strengths

 syn. counts
 syn. signs

decoder [7,427]

DMN [2,485]
 cell-type connectivity

 s.-n. params
 s.-n. connectivity
 u. syn. strengths

 syn. counts
 syn. signs

decoder [7,427]

DMN [11,593]
 cell-type connectivity

 s.-n. params
 s.-n. connectivity
 u. syn. strengths

 syn. counts
 syn. signs

decoder [7,427]

DMNs with different connectome constraints
DMN [797]

 cell-type connectivity
 s.-n. params

 s.-n. connectivity
 u. syn. strengths

 syn. counts
 syn. signs

decoder [7,427]

DMN [2,485]
 cell-type connectivity

 s.-n. params
 s.-n. connectivity
 u. syn. strengths

 syn. counts
 syn. signs

decoder [7,427]

DMN [11,593]
 cell-type connectivity

 s.-n. params
 s.-n. connectivity
 u. syn. strengths

 syn. counts
 syn. signs

decoder [7,427]

Full DMN Merge T4, T5
DMN [643]

 cell-type connectivity
 s.-n. params

 s.-n. connectivity
 u. syn. strengths

 syn. counts
 syn. signs

decoder [7,427]

Full DMN Merge EI
DMN [21]

 cell-type connectivity
 s.-n. params

 s.-n. connectivity
 u. syn. strengths

 syn. counts
 syn. signs

decoder [7,427]

CNN
no DMN

decoder [7,427]

−1.0

−0.5

0.0

0.5

1.0

D
S

I c
or

re
la

tio
n

task-optimized
random
connectome-constrained

a

4.5

5.0

5.5

ta
sk

 e
rr

or worse

better

−1.0

−0.5

0.0

0.5

1.0

co
rr

el
at

io
n

flash response index T4 motion-tuning curves T5 motion-tuning curves

better

worse

better

worse

perfect

orthogonal

opposite

5.1 5.2 5.3 5.4 5.5 5.6 5.7
task error

−0.25

0.00

0.25

0.50

0.75

1.00

co
rr

el
at

io
n

r = -0.6
p = 2.6E-06

r = -0.071
p = 0.31

correlation to flash response index
correlation to direction selectivity index

e

b

c

d

Figure 5.12: DMN benchmark of connectomic constraints. a-d: How would
incomplete knowledge of connectome affect the tuning predictions? We artificially
varied DMNs with random parameters, connectome-constrained or task-optimized
parameters. Five experiments: Four ’Synapse-optimized models’, one ’Fully
optimized’. Details in Methods. How would incomplete knowledge of cell types
affect the tuning predictions? We artificially assumed some cell types to be
indistinguishable, with shared physiological parameters (resting potentials, time
constants, and unitary synapse strengths). Two experiments: (1) ’Full DMN Merge
T4, T5’ assumes that ‘T4’ and ‘T5’ subtypes were indistinguishable, reducing the
number of cell types to 58. (2) ’Full DMN Merge E/I’ assumes that we had three
cell types, ‘excitatory’ (37 cell types), ‘inhibitory’ (22 cell types) or ‘both’ (4 cell
types), based on our knowledge of synapse signs. Tuning predictions are shown
in comparison to the Full DMN and the DMN with random parameters. a: Task
error. b: Predicted correlations to flash response indices, T4-, and T5 motion-tuning
curves (10 best models). c: Predicted correlations to known direction selectivity
indices. d: Distances between known preferred directions and predicted preferred
directions for T4 and T5 neurons. (Continued on the next page)

146

Fig. 5.12, continued: e: Better task performing models predict motion tuning
neurons better. We correlate predicted tuning metrics from each model to the
known tuning properties to understand when better performing models give us
better tuning predictions. (orange) When correlating the direction selectivity index
of each model to the binary known properties for T4 and T5 and their input cell
types, we find that this correlation is higher for better performing models (Pearson
correlation, 𝑟 = −0.60, p = 2.6 × 10−6, 𝑡 = 𝑟

√︃
df

1−𝑟2 , 95% CI = [-1, -0.42], df = 48).
(magenta) While the models predicted the known contrast preferences generally
well, the correlation of flash response index to the binary known contrast preferences
of 31 cell types did not significantly increase with better performing models.

147

predicted strengths of on-motion and off-motion selectivity with respect to task-performance

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8 L5 C
3

C
T1

(M
10

)
M

i1
M

i4
T4

a
T4

b
T4

c
T4

d
Tm

3 L1 L2 L3 L4
C

T1
(L

o1
)

M
i9

T5
a

T5
b

T5
c

T5
d

Tm
1

Tm
2

Tm
4

Tm
9

La
w

f1
La

w
f2 A
m C
2

M
i2

M
i3

M
i1

0
M

i1
1

M
i1

2
M

i1
3

M
i1

4
M

i1
5 T1 T2 T2
a T3

Tm
5Y

Tm
5a

Tm
5b

Tm
5c

Tm
16

Tm
20

Tm
28

Tm
30

Tm
Y3

Tm
Y4

Tm
Y5

a
Tm

Y9
Tm

Y1
0

Tm
Y1

3
Tm

Y1
4

Tm
Y1

5
Tm

Y1
8

0.0

0.5

1.0

best 20% models
worst 20% models

di
re

ct
io

n
se

le
ct

iv
ity

 in
de

x

0.0

0.5

1.0
best 20% models
worst 20% models

b

a

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8 L5 C
3

C
T1

(M
10

)
M

i1
M

i4
T4

a
T4

b
T4

c
T4

d
Tm

3 L1 L2 L3 L4
C

T1
(L

o1
)

M
i9

T5
a

T5
b

T5
c

T5
d

Tm
1

Tm
2

Tm
4

Tm
9

La
w

f1
La

w
f2 A
m C
2

M
i2

M
i3

M
i1

0
M

i1
1

M
i1

2
M

i1
3

M
i1

4
M

i1
5 T1 T2 T2
a T3

Tm
5Y

Tm
5a

Tm
5b

Tm
5c

Tm
16

Tm
20

Tm
28

Tm
30

Tm
Y3

Tm
Y4

Tm
Y5

a
Tm

Y9
Tm

Y1
0

Tm
Y1

3
Tm

Y1
4

Tm
Y1

5
Tm

Y1
8

−1.0

−0.5

0.0

0.5

1.0
best 20% models
worst 20% models

known on-selective

known off-selective

predicted strengths of on and off selectivity with respect to task-performance

fla
sh

 re
sp

on
se

 in
de

x

on

off

known on-motion
 selective

known off-motion
selective

known off-motion
selective

on-edge

off-edge

Figure 5.13: Predicted tuning with respect to task-performance. a: Flash response
index computed as the max-abs-scaled peak response to an off flash subtracted from
the max-abs-scaled peak response to an on flash – both of approximately 35◦ radius
and presented for 1s after 2 seconds of grey input. Values above 0 indicate on-polarity,
values below zero indicate off-polarity. Known on-polar and off-polar cell types are
colored in yellow and magenta. b: Single cell type direction selectivity of best 20%
task-performing models versus worst 20% task-performing models of an ensemble
of 50 models as a result of peak voltage responses in central columns to on-edges
and off-edges moving towards all possible directions on grey background (Equation
9). The bolded cell types are those which optic flow is decoded from.

148

0 20 40 60 80 100 120 140 160 180
time (ms)

b Predicted OFF spatio-temporal receptive field for motion detector neurons

c Predicted maximally excitatory stimuli for motion detector neurons

re
sp

on
se

st
im

ul
us

T4c T5c
peak response

regularized naturalistic movie

full field naturalistic movie

artificial

0 20 40 60 80 100 120 140 160 180
time (ms)

re
sp

on
se

-180.0 -160.0 -140.0 -120.0 -100.0 -80.0 -60.0 -40.0 -20.0 0.0
time (ms)

0.0

2.5

-180.0 -160.0 -140.0 -120.0 -100.0 -80.0 -60.0 -40.0 -20.0 0.0
time (ms)

0

1

moving edge (peak angle and speed)

peak response

naturalistic movie artificial moving edge

ce
nt

ra
l

re
sp

on
se

a Predicted ON spatio-temporal receptive fields for motion detector neurons

0 20 40 60 80 100 120 140 160 180
time (ms)

0 20 40 60 80 100 120 140 160 180
time (ms)

re
sp

on
se

T5cT4c

single ommatidium
flash location

response to flash
at marked location

single ommatidium ON-flash

depolarizationsteady-statehyperpolarization
leading side
trailing sidereceptive

field PD
up

front

single ommatidium OFF-flash

T5cT4c

Figure 5.14: Spatio-temporal receptive fields mapped with ON- and OFF-
impulses and maximally excitatory stimuli. a: Spatiotemporal receptive fields
for motion detector neurons agree with experimental measurements (Gruntman et
al. 2018). b: Spatio-temporal receptive field mapping with single ommatidium
OFF-impulses. c: Maximally excitatory stimuli and baseline-subtracted responses.
Including full-field naturalistic, regularized naturalistic, artificial, and moving edge
stimuli and responses. Moving edge angle and speed maximize the central cell peak
response. Artificial stimuli are optimized from initial noise to maximize the central
cell activity using gradient ascent plus full-field regularization towards grey. The last
row shows the baseline-subtracted central cell responses. Peak central cell responses
at time point zero.

149

References

[1] Larry F Abbott et al. “The mind of a mouse”. In: Cell 182.6 (2020), pp. 1372–
1376.

[2] Mohammed AlQuraishi and Peter K Sorger. “Differentiable biology: using
deep learning for biophysics-based and data-driven modeling of molecular
mechanisms”. In: Nature methods 18.10 (2021), pp. 1169–1180.

[3] Georg Ammer et al. “Functional specialization of neural input elements
to the Drosophila ON motion detector”. In: Current Biology 25.17 (2015),
pp. 2247–2253.

[4] Alexander Arenz et al. “The Temporal Tuning of the Drosophila Motion
Detectors Is Determined by the Dynamics of Their Input Elements”. In:
Current Biology 27.7 (2017), pp. 929–944. issn: 09609822. doi: 10.1016/j.
cub.2017.01.051.

[5] Cornelia I Bargmann and Eve Marder. “From the connectome to brain
function”. In: Nature methods 10.6 (2013), pp. 483–490.

[6] H B Barlow and W R Levick. “The mechanism of directionally selective
units in rabbit’s retina.” In: The Journal of Physiology 178.3 (June 1965),
pp. 477–504.

[7] Etienne Becht et al. “Dimensionality reduction for visualizing single-cell data
using UMAP”. In: Nature biotechnology 37.1 (2019), pp. 38–44.

[8] Rudy Behnia et al. “Processing properties of ON and OFF pathways for
Drosophila motion detection”. In: Nature 512.7515 (July 2014), pp. 427–430.

[9] Tirthabir Biswas and James E Fitzgerald. “Geometric framework to predict
structure from function in neural networks”. In: Physical Review Research 4.2
(2022), p. 023255.

[10] Alexander Borst, Jürgen Haag, and Alex S Mauss. “How fly neurons compute
the direction of visual motion”. In: Journal of Comparative Physiology A
206.2 (2020), pp. 109–124.

[11] Alexander Borst and Moritz Helmstaedter. “Common circuit design in fly
and mammalian motion vision”. In: Nature Neuroscience 18.8 (June 2015),
pp. 1067–1076. doi: 10.1038/nn.4050.

[12] V. Braitenberg. “Patterns of projection in the visual system of the fly. I.
Retina-lamina projections”. In: Experimental Brain Research 3.3 (1967),
pp. 271–298.

[13] Daniel J Butler et al. “A naturalistic open source movie for optical flow
evaluation”. In: European conference on computer vision. Springer. 2012,
pp. 611–625.

https://doi.org/10.1016/j.cub.2017.01.051
https://doi.org/10.1016/j.cub.2017.01.051
https://doi.org/10.1038/nn.4050

150

[14] Daniel J Butler et al. “A Naturalistic Open Source Movie for Optical Flow
Evaluation (Sintel)”. In: Eccv (2012), pp. 611–625. doi: 10.1007/978-3-
642-33783-3_44.

[15] Ricky T. Q. Chen et al. “Neural Ordinary Differential Equations”. In: Advances
in Neural Information Processing Systems. Ed. by S. Bengio et al. Vol. 31.
Curran Associates, Inc., 2018.

[16] Benjamin R Cowley et al. “One-to-one mapping between deep network units
and real neurons uncovers a visual population code for social behavior”. In:
bioRxiv (2022).

[17] Timothy A Currier, Michelle M Pang, and Thomas R Clandinin. “Visual
processing in the fly, from photoreceptors to behavior”. en. In: Genetics 224.2
(May 2023).

[18] Fred P Davis et al. “A genetic, genomic, and computational resource for
exploring neural circuit function”. In: bioRxiv (Aug. 2018), p. 385476.

[19] Sven Dorkenwald et al. “Neuronal wiring diagram of an adult brain”. en. In:
bioRxiv (July 2023).

[20] Alexey Dosovitskiy et al. “Flownet: Learning optical flow with convolutional
networks”. In: Proceedings of the IEEE International Conference on Computer
Vision. 2015, pp. 2758–2766.

[21] K. F. Fischbach and A. P.M. Dittrich. “The optic lobe of Drosophila melanogaster.
I. A Golgi analysis of wild-type structure”. In: Cell and Tissue Research 258.3
(1989), pp. 441–475. issn: 14320878. doi: 10.1007/BF00218858.

[22] Yvette E. Fisher, Marion Silies, and Thomas R. Clandinin. “Orientation
Selectivity Sharpens Motion Detection in Drosophila”. In: Neuron 88.2 (2015),
pp. 390–402. issn: 10974199. doi: 10.1016/j.neuron.2015.09.033.

[23] Jonathan Frankle and Michael Carbin. “The lottery ticket hypothesis: Finding
sparse, trainable neural networks”. In: arXiv preprint arXiv:1803.03635
(2018).

[24] Kunihiko Fukushima and Sei Miyake. “Neocognitron: A self-organizing neural
network model for a mechanism of visual pattern recognition”. In: Competition
and cooperation in neural nets. Springer, 1982, pp. 267–285.

[25] Julĳana Gjorgjieva, Haim Sompolinsky, and Markus Meister. “Benefits of
pathway splitting in sensory coding”. In: Journal of Neuroscience 34.36
(2014), pp. 12127–12144.

[26] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016.

[27] Karl Geokg Götz. “Optomotorische untersuchung des visuellen systems einiger
augenmutanten der fruchtfliege Drosophila”. In: Kybernetik 2.2 (1964), pp. 77–
92.

https://doi.org/10.1007/978-3-642-33783-3_44
https://doi.org/10.1007/978-3-642-33783-3_44
https://doi.org/10.1007/BF00218858
https://doi.org/10.1016/j.neuron.2015.09.033

151

[28] Lukas N Groschner et al. “A biophysical account of multiplication by a single
neuron”. In: Nature 603.7899 (2022), pp. 119–123.

[29] Eyal Gruntman, Sandro Romani, and Michael B Reiser. “The computation
of directional selectivity in the Drosophila OFF motion pathway”. In: Elife 8
(2019), e50706.

[30] Eyal Gruntman, Sandro Romani, and Michael B. Reiser. “Simple integration
of fast excitation and offset, delayed inhibition computes directional selectivity
in Drosophila”. In: Nature Neuroscience 21.2 (2018), pp. 250–257. issn:
15461726. doi: 10.1038/s41593-017-0046-4.

[31] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedfor-
ward networks are universal approximators”. In: Neural Netw. 2.5 (Jan. 1989),
pp. 359–366.

[32] Ferris Jabr. “The Connectome Debate: Is Mapping the Mind of a Worm Worth
It?” In: Scientific American (Oct. 2012).

[33] Maximilian Joesch et al. “ON and OFF pathways in Drosophila motion vision”.
In: Nature 468.7321 (Nov. 2010), pp. 300–304. doi: 10.1038/nature09545.

[34] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classi-
fication with deep convolutional neural networks”. In: Advances in neural
information processing systems. 2012, pp. 1097–1105.

[35] Janne K Lappalainen et al. “Connectome-constrained networks predict neural
activity across the fly visual system”. In: Nature 634.8036 (2024), pp. 1132–
1140. url: https://doi.org/10.1038/s41586-024-07939-3.

[36] Yann LeCun, Corinna Cortes, and CJ Burges. “MNIST handwritten digit
database”. In: ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist
2 (2010).

[37] Yann LeCun et al. “Backpropagation applied to handwritten zip code recogni-
tion”. In: Neural computation 1.4 (1989), pp. 541–551.

[38] Tony X. Liu et al. “Connectomic features underlying diverse synaptic connec-
tion strengths and subcellular computation”. In: Current Biology 32.3 (2022),
559–569.e5. issn: 0960-9822. doi: https://doi.org/10.1016/j.cub.
2021.11.056.

[39] Matthew S. Maisak et al. “A directional tuning map of Drosophila elementary
motion detectors”. In: Nature 500.7461 (2013), pp. 212–216. issn: 00280836.
doi: 10.1038/nature12320.

[40] Omer Mano et al. “Predicting individual neuron responses with anatomically
constrained task optimization”. In: Current Biology 31.18 (2021), pp. 4062–
4075.

https://doi.org/10.1038/s41593-017-0046-4
https://doi.org/10.1038/nature09545
https://doi.org/10.1038/s41586-024-07939-3
https://doi.org/https://doi.org/10.1016/j.cub.2021.11.056
https://doi.org/https://doi.org/10.1016/j.cub.2021.11.056
https://doi.org/10.1038/nature12320

152

[41] Manuel Beiran and Ashok Litwin-Kumar. “Prediction of neural activity
in connectome-constrained recurrent networks”. In: bioRxiv (Jan. 2024),
p. 2024.02.22.581667.

[42] Eve Marder. “Neuromodulation of neuronal circuits: back to the future”. In:
Neuron 76.1 (2012), pp. 1–11.

[43] Eve Marder and Adam L Taylor. “Multiple models to capture the variability
in biological neurons and networks”. In: Nature Neuroscience 14.2 (2011),
pp. 133–138.

[44] Arie Matsliah et al. “Neuronal “parts list” and wiring diagram for a visual
system”. en. In: bioRxiv (Dec. 2023).

[45] Mark Mazurek, Marisa Kager, and Stephen D. Van Hooser. “Robust quan-
tification of orientation selectivity and direction selectivity”. In: Frontiers in
Neural Circuits 8 (Aug. 2014).

[46] Matthias Meier and Alexander Borst. “Extreme Compartmentalization in a
Drosophila Amacrine Cell”. In: Current Biology 29.9 (2019), 1545–1550.e2.
issn: 09609822. doi: 10.1016/j.cub.2019.03.070.

[47] Lu Mi et al. “Connectome-constrained Latent Variable Model of Whole-Brain
Neural Activity”. In: International Conference on Learning Representations.
2022.

[48] Kenneth D Miller and Francesco Fumarola. “Mathematical equivalence of
two common forms of firing rate models of neural networks”. In: Neural
computation 24.1 (2012), pp. 25–31.

[49] Aljoscha Nern, Barret D Pfeiffer, and Gerald M Rubin. “Optimized tools for
multicolor stochastic labeling reveal diverse stereotyped cell arrangements in
the fly visual system.” In: Proceedings of the National Academy of Sciences of
the United States of America 112.22 (May 2015), E2967–76. issn: 0027-8424.
doi: 10.1073/pnas.1506763112.

[50] Aljoscha Nern et al. “Connectome-driven neural inventory of a complete
visual system”. en. In: bioRxiv (Apr. 2024), p. 2024.04.16.589741.

[51] Adam Paszke et al. “Pytorch: An imperative style, high-performance deep
learning library”. In: Advances in Neural Information Processing Systems 32
(2019).

[52] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12 (2011), pp. 2825–2830.

[53] Maithra Raghu et al. “Do vision transformers see like convolutional neural
networks?” In: Advances in Neural Information Processing Systems 34 (2021),
pp. 12116–12128.

https://doi.org/10.1016/j.cub.2019.03.070
https://doi.org/10.1073/pnas.1506763112

153

[54] Giordano Ramos-Traslosheros and Marion Silies. “The physiological basis
for contrast opponency in motion computation in Drosophila”. In: Nature
communications 12.1 (2021), pp. 1–16.

[55] W Reichardt. “Autocorrelation, a principle for evaluation of sensory informa-
tion by the central nervous system”. In: Principles of sensory communications
(1961).

[56] Maximilian Riesenhuber and Tomaso Poggio. “Hierarchical models of object
recognition in cortex”. In: Nature neuroscience 2.11 (1999), pp. 1019–1025.

[57] Victor Lobato Ríos et al. “NeuroMechFly, a neuromechanical model of adult
Drosophila melanogaster”. In: bioRxiv (2021).

[58] Marta Rivera-Alba et al. “Wiring Economy and Volume Exclusion Determine
Neuronal Placement in the Drosophila Brain”. In: Current Biology 21.23 (Dec.
2011), pp. 2000–2005.

[59] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning
representations by back-propagating errors”. In: Nature 323.6088 (1986),
pp. 533–536.

[60] Louis K Scheffer and Ian A Meinertzhagen. “A connectome is not enough–
what is still needed to understand the brain of Drosophila?” In: Journal of
Experimental Biology 224.21 (2021), jeb242740.

[61] Philipp Schlegel et al. “A consensus cell type atlas from multiple connectomes
reveals principles of circuit stereotypy and variation”. en. In: bioRxiv (June
2023), p. 2023.06.27.546055.

[62] Xingjian Shi et al. “Convolutional LSTM Network: A Machine Learning
Approach for Precipitation Nowcasting”. In: Advances in Neural Information
Processing Systems. Ed. by C. Cortes et al. Vol. 28. Curran Associates, Inc.,
2015.

[63] Kazunori Shinomiya et al. “Comparisons between the ON- and OFF-edge
motion pathways in the Drosophila brain.” In: Elife 8 (Jan. 2019), p. 2431.

[64] Kazunori Shinomiya et al. “Neuronal circuits integrating visual motion
information in Drosophila melanogaster”. In: Current Biology 32.16 (2022),
pp. 3529–3544.

[65] Philip K Shiu et al. “A leaky integrate-and-fire computational model based
on the connectome of the entire adult Drosophila brain reveals insights into
sensorimotor processing”. en. In: bioRxiv (May 2023).

[66] James A Strother et al. “Behavioral state modulates the ON visual motion
pathway of Drosophila”. In: Proceedings of the National Academy of Sciences
115.1 (2018), E102–E111.

[67] James A Strother et al. “The emergence of directional selectivity in the visual
motion pathway of Drosophila”. In: Neuron 94.1 (2017), pp. 168–182.

154

[68] James A. Strother, Aljoscha Nern, and Michael B. Reiser. “Direct observation
of on and off pathways in the drosophila visual system”. In: Current Biology
24.9 (2014), pp. 976–983. issn: 09609822. doi: 10.1016/j.cub.2014.03.
017.

[69] Shin-ya Takemura et al. “Synaptic circuits and their variations within different
columns in the visual system of Drosophila ”. In: Proceedings of the National
Academy of Sciences 112.44 (2015), pp. 13711–13716. issn: 0027-8424. doi:
10.1073/pnas.1509820112.

[70] Shin-ya Takemura et al. “The comprehensive connectome of a neural substrate
for ‘ON’ motion detection in Drosophila”. In: eLife 6 (2017), pp. 1–16. doi:
10.7554/elife.24394.

[71] Fabian David Tschopp, Michael B. Reiser, and Srinivas C. Turaga. “A Con-
nectome Based Hexagonal Lattice Convolutional Network Model of the
Drosophila Visual System”. In: arXiv preprint arXiv:1806.04793 (2018).
arXiv: 1806.04793.

[72] John C Tuthill et al. “Contributions of the 12 neuron classes in the fly lamina
to motion vision”. In: Neuron 79.1 (2013), pp. 128–140.

[73] John C Tuthill et al. “Wide-field feedback neurons dynamically tune early
visual processing”. In: Neuron 82.4 (2014), pp. 887–895.

[74] Roman Vaxenburg et al. “Whole-body simulation of realistic fruit fly locomo-
tion with deep reinforcement learning”. In: bioRxiv (Mar. 2024).

[75] Edgar Y Walker et al. “Inception loops discover what excites neurons most using
deep predictive models”. In: Nature Neuroscience 22.12 (2019), pp. 2060–
2065.

[76] Andrew Warrington, Arthur Spencer, and Frank Wood. “The Virtual Patch
Clamp: Imputing C. elegans Membrane Potentials from Calcium Imaging”.
In: arXiv [q-bio.NC] (July 2019). arXiv: 1907.11075 [q-bio.NC].

[77] Paul J Werbos. “Backpropagation through time: what it does and how to do
it”. In: Proceedings of the IEEE 78.10 (1990), pp. 1550–1560.

[78] Michael Winding et al. “The connectome of an insect brain”. In: Science
379.6636 (2023), eadd9330. doi: 10.1126/science.add9330.

[79] D. L. K. Yamins et al. “Performance-optimized hierarchical models predict
neural responses in higher visual cortex”. In: Proceedings of the National
Academy of Sciences 111.23 (May 2014), pp. 8619–8624.

[80] Helen H Yang et al. “Subcellular imaging of voltage and calcium signals
reveals neural processing in vivo”. In: Cell 166.1 (2016), pp. 245–257.

[81] Zhihao Zheng et al. “A complete electron microscopy volume of the brain of
adult Drosophila melanogaster”. In: Cell 174.3 (2018), pp. 730–743.

https://doi.org/10.1016/j.cub.2014.03.017
https://doi.org/10.1016/j.cub.2014.03.017
https://doi.org/10.1073/pnas.1509820112
https://doi.org/10.7554/elife.24394
https://arxiv.org/abs/1806.04793
https://arxiv.org/abs/1907.11075
https://doi.org/10.1126/science.add9330

	Abstract
	Published content and contributions
	Table of Contents
	List of Illustrations
	Introduction
	Visual systems optimized to perform a particular function
	Visual systems optimized for space efficiency
	Visual systems optimized for energy efficiency
	Visual systems optimized for robustness
	Overview of the following chapters

	Deciding how to decide: Dynamic routing in artificial neural networks
	Introduction
	Related work
	Setup
	Training
	Experiments
	Discussion

	Evolving neural networks for predator avoidance
	Introduction
	Related work
	Predator avoidance in fruit flies
	The life of a virtual forager
	Tracking state class probabilities over time
	Learning a stay-or-flee policy for ideal observer foragers
	Controlling foraging behavior with a network of neurons
	Encoding neural network parameters genetically
	Evolving foragers
	Assessing the effect of subpopulation isolation
	Assessing the effect of environmental changes
	Comparing evolved foragers to fruit flies
	Discussion
	Derivation for Equation 3.2
	Derivation for Equation 3.6

	A map of object space in primateinferotemporal cortex
	Identifying a new IT network
	NML cells encode axes of object space
	The body network follows the same scheme
	A general rule governing IT organization
	A map of object space
	Explaining previous accounts of IT
	Reconstructing general objects
	Discussion
	Methods
	Additional figures

	Predicting neural activity across the fly visual system with connectome-constrained networks
	Introduction
	Our deep mechanistic network model
	Our DMN ensemble predicts known activity
	The connectome and the task are both necessary
	Predictions cluster across the DMN ensemble
	Predicted mechanism of T4 & T5 tuning
	Sparsity enables accurate predictions
	Discussion
	Methods
	Additional figures

