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ABSTRACT

The purpose of this thesis is to explain how strongly
developed Taylor vortex flow is kept in motion. On the basis of this
explanation approximate torque calculations for high Taylor numbers
have been made. Agreement with experiment is satisfactory. Axial

symmetry is assumed throughout.
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1. Introduction

The flow between rotating concentric cylinders has attracted
the attention of fluid mechanicists for a long time. One of the first
papers on the subject was published in 1890 (Couette, 1890). This type
of flow has several important aspects:

i) For low enough Taylor number (hereafter called T)
it can be described by an exact solution of the full Navier-Stokes
equations. This interested the early researchers, who wanted to check
the Newtonian stress approximation in the Navier-Stokes equations
against experiment.

ii) As the speed of the inner cylinder is increased the
flow undergoes a sudden transition to a radically different, but again
laminar flow pattern as the so-called critical Taylor number (TC) is
reached. This transition point has first been accurately predicted in a
well-known paper by G. I. Taylor (1923). This was the first time a
mathematical stability analysis of a flow pattern was completely in
agreement with experiment. The field of hydrodynamic stability has
since then been extensively developed. Both the theoretical and the
experimental part of Taylor's paper were groundbreaking. In his
experiment the flow pattern for T > TC was made visible; it is now
often referred to as Taylor vortex flow.

iii) Above the critical Taylor number a laminar flow
regime exists where the flow exhibits an interesting non-uniqueness
which is of theoretical significance. For given external conditions
more than one laminar flow pattern may occur (for cylinders of finite

length!)., Which one occurs depends on the way in which the external
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conditions (speeds of cylinders) are reached. This non-uniqueness
was already observed by Taylor and has recently been studied in detail
by Donald Coles (Coles 1965). As T increases, an increasing
number of steady (at still higher T unstable against time dependent
disturbances) solutions of the Navier-Stokes equations seem to exist.
A perhaps similar non-uniqueness impedes a mathematical theory of
steady high Reynolds number separated flow around a finite body
(Goldstein 1960 pp. 133 et seq. ). The flow between rotating cylinders
provides a good opportunity to study this non-uniqueness.

iv) The problem of computing the flow field at T
slightly higher than TC (non-linear stability analysis) has been under-
taken by Stuart (1958) and further developed by Davey (1962). Their
work compares well with experiment and is a significant contribution to
nonlinear mathematics. Similar developments have taken place in the
study of free thermal convection between horizontal plates (Malkus and
Veronis, 1958). The interesting analogy between the flow between
rotating cylinders and thermal convection between horizontal walls
(noted by Rayleigh, 1916) will receive attention later in this thesis.

In view of all this work it is surprising that an explanation of
the mechanism which drives the Taylor vortices is still lacking. Only
in Coles' (1965) paper the present author found a first attempt to
describe this mechanism. Coles' paper is devoted to other things,
however, and the question receives little attention. In a recent paper
Coles (1967) develops a way to make the equations dimensionless, based
upon his description of the driving mechanism. As a result experimental

data concerning the stability boundary collapse on certain curves, Coles'



3
ideas enable him to estimate the stability boundary without solving the
linearized stability equations. This may be useful for flow problems
for which the stability problem is difficult to solve,

Coles' description of the driving mechanism involves a
complicated interaction between the equations of motion; also the
mechanism which drives the flow is not immediately obvious from the
equations., Coles' discussion is valid for T close to TC. In the
present thesis the case T > > TC (strongly developed Taylor vortices)
is considered. It turns out that in this case the driving mechanism is
simpler than in the case T close to TC . Also, it exhibits itself
more clearly in the equations.

Axial symmetry will be assumed throughout, Of course it is

assumed that the flow is laminar, even though T — oo.

2, Derivation of the limiting forms of the Navier-Stokes equations

as T — oo,

For an incompressible fluid the Navier-Stokes equations may

be written as

K %k o,
u xXw -V(%_\_J_'P_ t7)-vW xw =0y divu =0 (2.1)

where Tl‘k stands for p*/p* and asterisks indicate dimensional
quantities.,

The velocity components in an axial plane will be of the same
order of magnitude as the forces acting in that plane. Obviously, these
forces will have something to do with the difference between the centri-

fugal force experienced by fluid elements close to the inner and close to
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the outer cylinder. Thus a typical magnitude of the acceleration per-

pendicular to the axis is le R1 —Qé Ru) » hence the order of

magnitude of the meridional velocity components may be expected to be

\/ (Q*Z R: -QS R;)d 2 stands for angular velocity, R for radius,
subscripts 1 and wu indicate the inner and outer cylinder respect-
ively, d = i -R. .

It is convenient to put the equations in dimensionless form.

sk st B3 E 3 £
As a reference velocity «/(Qiz Ri -Qé Ru>d is chosen and as a
reference length d". With these units (2.1) transforms into the

following dimensionless equation:

Exg—V(%E'u-&'ﬂ)—T_%VXc_u:O (2.2)

sk sk sk sk 5k divu=0 (2.3)
2 O 2 3 et
Qi Ri Qu Ru)d

2
v

Here T =

o’

This quantity will be called the Taylor number’ . Here the case where
T is much larger than Tc will be considered; TC is the value of
the Taylor number for which Taylor vortices just begin to appear. For
large values of T the vortices are strongly developed. It isassumed
that the flow is still laminar. Fig. 1 illustrates the geometry of the
motion,

Since the Taylor number can be regarded as the square of a
Reynolds number it seems reasonable to assume that strongly developed

Taylor vortex flow will have the characteristics of a high Reynolds

£ 1In the literature various definitions of the Taylor number have
been used. The above definition seems to be the most natural one
in the present context. T as defined above is the square of the
ratio of centrifugal acceleration and the acceleration due to viscous
forces.
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number flow, It is assumed that viscous effects are only important
near the boundary of each cell and not in the core of the vortices. This
assumption will be correct if it leads to a self-consistent solution. It is
not immediately clear that the thickness & of this region will be of
order T_% as in boundary layer theory. Again one has to make an
assumption, which has to be justified by the self-consistency of the
picture obtained. Perhaps the best way to arrive at the correct
assumptions is by reasoning as follows. First, the inviscid region will
be considered.

2.1 The inviscid region.

With the reference velocity defined above the velocity in the
frictionless core will be 0(1l). In the core the correct asymptotic

expansion as T — oo will be of the form

By = Byl +z e (T) ™ (2.4)

n

where en(T) <<1 and Eu(o) = 0(1), Eu(n): 0(l) . The €, form an

asymptotic sequence as T — oo. The superscript E serves to
distinguish the flow in the inviscid core (asymptotically represented by
the Eulexr 1imit7é) from the flow in the surrounding thin viscous region
(asymptotically represented by the Prandtl limit), Substituting (2.4) in

(2.2) and letting T — oo we obtain (of course) Euler's equations for
EP_(O)
B0 X B0 g (1B B BO) o
(2.5)

aiv F = 0

Z See Lagerstrom and Cole (1955)



In a system of polar coordinates (r, 6, z), EE(O) =(u,v,w), (2.5) may

be written as (assuming axial symmetry)

2
LTSt I o
or zZ T p or
orv orv
or 9z %
ow ow _ 10p
Usr *Vez T 50z
oru = 9rw _ , _ oy _ oy
or | Bz =R = g TW R -
0 w 9 /w)\ _ 2v ov
oF r“‘&?(?)”“’?ﬁ(?)‘?*‘i
(2.6)
rv = rv(y)
_ou ow o . .
where W =g - The boundary condition to be used with (2.6) is

tangency of the flow to the cell boundary. The well-known non-unique-
ness of the Euler equations under these boundary conditions is immed-
iately obvious from (2.6). Any function rv(y) will give a solution.
For unseparated flow past a finite body in an unbounded fluid uniqueness
is usually obtained by prescribing the vorticity distribution at upstream
infinity. In the present case there are no streamlines which extend into
a region where the vorticity is known., On the contrary, the streamlines
are closed and this is precisely what enables us to formulate another
condition, This condition will make the Euler solution unique apart from
two constants, which have to follow from the Prandtl solution. Feynman
and Lagerstrom (1956) and Batchelor (1956) studied flows with closed
streamlines as the Reynolds number tends to infinity, They rediscowered

results derived in Prandtl's classical boundary layer paper in 1904 (see
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Prandtl 1961, p.577). It seems appropriate to call these results
Prandtl's theorem, which may be formulated as follows:

In two-dimensional flows with closed streamlines the vorticity
is constant throughout the flow field as the Reynolds number tends to
oo, apart from thin boundary layers attached to the boundary of the
flow field.%

Prandtl also gave the extension of this theorem to three-

dimensional axisymmetric flows: in our notation,

rv=]_"e
(2.7)
w/r = C

£

where I‘e and C are constants.
Using (2.7), the zeroth order Euler solution can be found

from

9 (1 oy 92y _ _ 2
¥ w5y ?—8?>+8zz—wr—Cr
(2.8)

rv=1"=I‘e

The solution of (2.8) is given in the form of a Fourier-Bessel series
in Appendix 3. Since I‘e and C are unknown, the Euler solution
has not yet been uniquely determined. Feynman and Lagerstrom and

Batchelor realized that T and C follow from the requirement that

4 As Feynman and Lagerstrom pointed out, the flow field may consist
of several regions where the vorticity may have different magnitudes.
These regions are separated fromeach other bythinviscous shear layers,

£ £ The equation w/r = C represents stretching of vortex lines. The
only non-zero component of vorticity is w. The vortex-lines are
circles in planes perpendicular to the axis centered around the axis,

As a fluid particle moves outward the length of the vortex-line through
the particle increases proportionally to r .,
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there must exist a single-valued solution for the thin viscous region
which surrounds the inviscid region of a cell. In order to elucidate
this idea (which cannot be found in Prandtl's paper), consider the two-
dimensional flow inside a circle with a velocity-distribution u = uw(s)
prescribed along the circumference, where s measures distance
along the circumference. According to Prandtl's theorem the vorticity
is constant (= wy , say) inside the circle. If uw(s) is not constant
a boundary layer must be present along the circumference. Of course,
the solution for the viscous region must be single-valued. It is shown
by Feynman and Lagerstrom, that this is only possible if w; has the
special value w, =%@ s WwWhere R 1is the radius of the circle
and the bar indicates that the average is to be taken., A special case of
this result is derived by Batchelor. It is very difficult to find w, for
contours other than a circle., In the present case the situation is even
more difficult; instead of one there are two interrelated constants I‘e
and C to be determined; moreover, the viscous region contains shear
layers in addition to boundary layers.

In connection with the discussion of the viscous region which
will follow it is important to realize that the Euler solution has stagration
points in the corners. The Fourier-Bessel series solution of (2.8)
(Appendix 3) shows stagnation points in the corners (see the plot of the
radial velocity along the boundary of a cell in Fig. 7) but the Fourier-
Bessel series is not accurate near the corners. In the corners of the
cells | approximately obeys the following equation (taking a corner

adjacent to the inner cylinder and letting =z =0 1in the corner)

0%y 9%y _ 2
8r2+522 —CRi
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with the solution, if ¢ =0 at r = Ri and z =0,

Lp:CRzi[—é-(r—R.l)Zi-l?(r—Ri)zln {(r—Ri)2+ zz} - -lﬁ{(r-Ri)z—zz} tan r-ZRi} (2.9)
Because the boundary conditions for (2.8) have not been prescribed on
a closed boundary the solution (2.9) is not unique; harmonic terms like
rz may be added. But in the corner these will be small compared to
the logarithmic term. From (2.9) follows that —g—i" and % are zero
in the corners. Hence the Euler solution has stagnation points in the
corners, This deduction has far reaching consequences for the viscous

region, which will now be considered.

2.2 The viscous region

Consider the boundary layer AB (Fig.l) attached to the
inner cylinder, excluding the corner regions.

The assumption that the viscous region is thin implies that
the "thickness" of the corner region, though possibly of a different
order of magnitude than the thickness of the rest of the viscous region,
is negligible compared to the overall dimensions of the cell, It also
follows that the pressure in the viscous region is equal to the pressure
at the edge of the viscous region, which can be found from the Euler
solution. Therefore the pressure in A and B equals the pressure
of the Euler solution in the corners. Since these are stagnation points
for the Euler solution, NS 7TB. Between A and B, 7r<7rA. In order
to match with the Euler solution the velocity in AB must be 0(1).
There may be a velocity overshoot in AB (this will turn out to be the
case) but since there are no forces acting on the flow greater than 0(1)

the overshoot can never be greater than 0(l). In AB the frictional

term in the Navier-Stokes equations is approximately
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T 72 -g—lz% where u = 0(1). Requiring this term to be 0(1) as T—oo
(Goldstein, 1960) gives for the thickness of AB: 6= o(T“%). Hence
the flow in AB is described by Prandtl's boundary layer equations.
The same reasoning applies to the other parts of the viscous region, the
corner regions excluded. The equations for the viscous region can be
found by making the boundary layer simplifications in the Navier-Stokes
equations. If there is no velocity overshoot in AB orthodox boundary
layer theory applies. The boundary layer AB begins with a stagnatim
point in A, goes through a region of pressure decrease, reaches the
pressure minimum midway between A and B, and separates shortly
after this pressure minimum has been passed, at a considerable distance
before B. The separation bubble which would result would be large
enough to be observed by experimenters. It would have manifested it-
self in the detailed measurements of the flow recently taken by Snyder
and Lambert (1966). Since this is not the case the picture just drawn
is almost certainly wrong. The only way to maintain the assumption
that the cell has an inviscid core surrounded by a thin viscous region is
by assuming that the boundary layer begins at A with a velocity over-
shoot large enough to prevent separation between A anci B; this
velocity overshoot must therefore be at least 0(l). Since no forces
greater than 0(l) are present, the velocity overshoot at A cannot
be greater than 0(1). Thus the typical velocity in the corner regions
is appreciably greater than zero, although the outer velocity is zero in
the corners.

The viscous term in the Navier-Stokes equation is approx-

imately in the corners:
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—% ‘92u , 8%u . :
T —8—1‘7 + W (l‘-dlrectlon)

1/ /92 2
T /* -g?“-,{-%v (z-direction)

According to the reasoning given above wu,w are O0(l) inthecorners.
Requiring again that the dissipation be 0(l1) as T-—+oo gives for the

thickness of the corner regions (see Fig. 3).
ol
5 =0(T A)

These results can be summarized as follows: away from the
corners, Prandtl's boundary layer approximations are valid, The thick-
ness of the corner regions is of the same order as the boundary layer
thickness, which is in terms of the Taylor number § :O(T"%).

It is convenient to describe the viscous region with the
coordinate system (s,n) depicted in Fig. 2. Lines n=constant are
parallel to the cell boundary, perpendicular to these are lines s=constant.
Outside the corner regions every point in the viscous region is uniquely
defined by one value of s and n. s runs from s; to s4.
Application of the boundary layer simplifications in the Navier-Stokes
equations results in the following equations for the viscous region, the

corners excluded:

(M.S. )
v&iwil=u d§+ rzljfgog—ls" § T %:‘Tg (2. 10a)
U%Jr W_g_g:T-l/a 2;{ (2.10Db)
U . BTW (2.10c)

os on
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where U, W are velocity components inthe s and n directions
respectively, I =rv and Ue is the velocity at the boundary of the
inviscid core as given by the Euler solution. Equations (2.7), (2.8)
and (2.10) are the limiting forms of the Navier-Stokes equations as
T — oo,
The constants Te and C should follow from the require-

ment that the solution of (2.10) be periodic in s.

3. The physical mechanism by which the Taylor vortices are driven

From equations (2.10) the driving mechanism of strongly
developed Taylor-vortex flow is immediately apparent. For strongly
developed vortices the inner cylinder has to rotate much faster than the

outer one, or more precisely
L.>»> I
i u

where subscripts i and wu indicate respectively the inner and outer
cylinder. Pe will have an intermediate value. In the subregion AB
(see Fig.1l) the inner cylinder imparts angular momentum to the fluid in
the viscous region. Close to B we will have I‘i = I > Fe . According
to (2.10b) the angular momentum is then convected downstream while it
diffuses into the inviscid core. In BC I > I‘e everywhere. The term
labeled (M.S.) in (2.10a) is therefore positive everywhere in BC; it
is the mathematical representation of a momentum source which accel-
erates the fluid outward. Apart from non-linear interactions the

pressure term does not give a net acceleration since Ty =T
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Therefore, under the action of the momentum source described by (M.S.)
the fluid in the thin viscous shear layer BC 1is accelerated outward
and impinges jet-like on the outer cylinder. This jet then spreads out
on the outer cylinder as a boundary-layer with a velocity overshoot (a
wall-jet). That a velocity overshoot must exist in order to prevent
boundary layer separation between C and D was shown in section
2 of this thesis.

In a discussion with the author, Professor Saffman suggested
that it seems likely that the possibility of boundary layer separation
between A and B or C and D accounts for the phenomenon of
state transition, i.e. changes in the cell pattern. Presumably, if the
speed of the cylinders is varied in such a way that the boundary layer
separates between A and B or C and D a state transition
occurs.

In the subregion CD angular momentum is lost to the slowly
rotating outer cylinder; near D, .>T> Tu. Again, in DA the
term (M.S.) 1is positive, it represents a momentum source which
accelerates the fluid in the thin shear layer DA inward. (Note that
here s 1is counted positive inward, so that 8r/8s = -1), At A,
the fluid impinges jet-like on the inner cylinder so that the boundary
layer AB has at A a velocity overshoot large enough to prevent
separation between A and B. It is now clear why frictional forces
do not inhibit Taylor vortex motion; they are balanced by the momentum
source.

The momentum source (M.S.) gives rise to velocity com-

I T\l %
ponents in an axial plane with magnitude of order d (§—3 - fﬁ) .
1 u
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The reference velocity has been chosen such that this quantity is 1. It
is interesting to note that the secondary motion (the motion in an axial
plane) is of the same order of magnitude as the "primary" motion
(the motion in the circumferential direction).

A physical description of the momentum source can be given
as follows. The forces working on a rotating fluid are pressure forces,
centrifugal forces and viscous forces. (If the angular momentum I =rv
of a fluid particle is taken as dependent variable instead of the angular
velocity v Coriolis terms do not appear). The pressure gradient in
the viscous shear layer BC 1is the same as in the adjacent part of the
inviscid core. The angular momentum in BC (where the fluid has
passed closely to the fast rotating inner cylinder) is considerablylarger
than the angular momentum in the inviscid core., Therefore the outward
acceleration in the shear layer is larger than in the inviscid core.
Therefore U> Ue in BC; as the shear layer moves outward this jet-
like velocity overshoot grows. The acceleration of the shear layer flow
(U) relative to the core flow (Ue) finds its mathematical expression
in the term (MS.) in (2.10a).

The jet-like behavior of the outward moving shear layer has
been observed experimentally by Snyder and Lambert. However they
observed a slow inflow. Approximate calculations to be given later in
this thesis do indeed indicate that the speed in the inward moving shear
layer is appreciably less than the speed in the outward moving shear
layer. If Snyder's and Lambert's experiments were repeated at a
higher Taylor number (assuming this is possible with turbulence being

absent) the jet-like behavior of the inward moving shear layers would
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presumably become apparent.

From (2.10b) (as well as from the full Navier-Stokes equat-
ions) it is clear that I' is convected and diffused just like heat.
Equations (2.10a) and (2.10b) are reminiscent of the Boussinesq
equations for a viscous fluid with temperature differences and buoyancy
forces. A difference is that the term (M.S.) is quadratic in T,
whereas the buoyancy force is linear in the temperature. The close
analogy between rotating fluid motions and fluid motion with buoyancy
forces due to temperature differences was used with great advantage by
Lord Rayleigh; he derived his well-known stability criterion for inviscid
rotating flows in analogy with the stability of a liquid of variable density
in a gravitational field (Rayleigh, 1916).

Approximate calculations of the Nusselt number at high
Rayleigh numbers for a horizontal layer of fluid heated from below can
be made in the same fashion as the following approximate torque calcul-

ations.

4, Approximate torque calculation,

A solution of the equation for the inviscid region (2.8) is
easily calculated, for example in the form of a Fourier-Bessel series.
(Appendix 3), Equations (2.10) however are difficult to solve. They
resemble the usual boundary layer equations closely but are even more
difficult. The velocity overshoot gives an added complication. More-
over, at no value of s a velocity profile is known in advance, as is

usually the case in boundary layer problems. Also, the boundary



16
conditions at n = oo are not known completely but involve constants
I‘e and C. These constants have to be determined from the condition
that the solution for u and I must be periodic in s. The flow in
the corners is governed by the full Navier-Stokes equations.

Due to these complications even the approximate methods
which have been developed over the years for solving the boundary hyer
equations require extensive numerical work in addition to crude approx-
imations.

Because of these difficulties it is perhaps useful to make a
rough calculation of the most important quantity, the torque, without
aiming for numerical accuracy. Such a calculation is presented below.
The resulting torque predictions are almost 30% higher than exper-
imental results.

4.1 The radial shear layers.

An approximate solution of the radial shear layers BC and
DA is sought by assuming certain velocity profiles which do not satisfy
the exact equations but integrated forms of the equations. This is the
underlying idea of the well-known Karman-Pohlhausen technique.

The symmetry of the cell-structure requires that the velocity
profiles in the shear layers be even in n. The following profiles are
chosen:

U(s,n) = Ue(s) + S(s)e_'nZ

D(s,m) = T, + 8(s)e™™ (4.1.1)
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where 6(s) 1is still to be determined. These profiles satisfy the

boundary conditions at n = oco.

Three equations are needed in order to determine the three
unknown functions S(s), 6(s), and ©6(s). It is convenient to select:
i) The meridional momentum-integral equation
ii) The angular momentum-integral equation.

iii) The equation for the angular momentum taken at

n = 0,
In the free shear layers these equations are respectively
p 00 dUe 0o

0
o

d_ds {S TU(T'Te)dn} =0 (4.1.3)
0

or _ m~Y% 82T
U(s, 0) T35 |lu= = T 503 . (4.1.4)

The derivation of (4.l.2) and (4.1.3)

is given in Appendix 2.
Substitution of (4.l.1) gives

d N l dUe 1
o5 (T 8S(5+ U, 2)’ +—= 1S 6«[2:?73—69(9+r V2) (4.1.5)
d—ds{r69(8+Ue~f2)} = (4.1.6)
(U +5) %0 - _op-% 0 (4.1.7)
e ds 52 e

From (4.1.6) follows

r 60 (S+ U V2) = constant =+ % Mj (4.1.8)
where j=1 in the outward moving shear layer BC and j=3 inthe
inward moving shear layer DA. Equation (4.1.8) says that the flux
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of angular momentum
o0
M= 27r 5 U(I‘—Pe) dn
0

is constant in the shear layers, in accordance with the close analogy
between angular momentum flux and heat flux which was noted before.

With (4.1.8) & is eliminated from (4.1.5) and (4.1.6):

a /sy U sz 1 ar 0T
(_9_ = = 5 — (4.1.9)
<S+U \[2) S+ U2
8 2 wr2e( 2
O+ 8) g = -7 B ¥ (s + Uer) (4.1.10)

Solving these two simultaneous non-linear ordinary differental
equations is still difficult. The problem is further simplified by
assuming that @ retains the value it has at the beginning of the free
shear layer throughout the whole shear layer. That is

0. for the outward moving shear layer

=6 = ! (4.1.11)

Gu for the inward moving shear layer
For the outward moving shear layer this is an overestimation of @,
which according to (4.1.9) results in an overestimation of S. Then
according to (4.1.8) 6 is underestimated. Therefore, in quantities
like the flux of meridional kinetic energy GmU3 dn) and meridional
mass flux (gooUdn which involve the prooducts V386 and V5§

the error in V and 6 have opposite influence, which is fortunate.

With 0 = Qi u (4.1.9) can be written as
3

(s+u2)ESrsevz=5 o (6, 1B)
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or

o re\f6>

1,

d (1e; 3 ‘
= <zs + U st) =0 | (9.
Hence

(52 + UeS\/B> = <S7~+ Uesx/’8>

; . 2 2
, L 0; (6.t 1vB) (VR2-1/R2)
u i

Since Ue = 0 1in the corners

s3 =57 + 6, (0; +1,V8) (/R - YRZ)
(4.1.12)

st =7 - 6,(0, +1; ¥8)(1/R? - I/R?)

Here subscripts 1, 2,3,4 indicate the various corners of the cell
according to Fig. 2.

~ Because of the accelerating action of the centrifugal forces
in the free shear layers the meridional speed, momentum and kinetic
energy are much larger at the points of impingement (4 and 2) than
at the points of separation (1 and 3). Therefore in (4.1.12) S, and S;
are neglected. This simplifies the problem considerably because the
algebra required for the matching of the solutions for the shear layers
and the wall-jets becomes much less involved.

Thus (4.1.2) becomes

53 =6, (91 4 re\/8> (1/Ri2 -1/Rfl)
| | (4.1.13)
sz = _9u<9u % re\f8> (l/RiZ —l/Rfl)

(4.1.8) gives

(4.1.14a)
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B M
By = /; RS (4.1.14b)

00
The meridional kinetic energy flux E = 27r S U3dn  at the
0

points of impingement is:
: 2 2
w/-—g— M, (91 +re«/8>(1/Ri —l/Ru)
-7 /8 M (9 +r«/8>(1/R2 -1/R2)
33 \u e i u

(00)

The meridional mass flux Q = 27r S Udn at the points of
0

E;

(4.1.15)
E4:

impingement is:

Q, = 7 /8 @ML
! (4.1.16)
M
Q, = 78
4 7;1—11

This completes the approximate calculation of the shear
layers.

4.2 The corner regions.

The flow in the corner regions is governed by the full Navier-
Stokes equations, also in the limit T-—oo. The exact stagnation point
similarity solution of the Navier-Stokes equations is of no use here,
because it cannot simulate the very important jet-like behavior of the
impinging shear layer and the velocity overshoot in the boundary layer
at the cylinder wall. Also, the exact solution has zero vorticity at
infinity, The solution to be used for the corner regions must necessarily
be approximate. Such a solution based on qualitative considerations may
be obtained as follows.

In section 2 it was shown that the thickness of the corner
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regions is 6 = O(T /%), The energy dissipation in the corners is
0(1) as T - oo, as in the rest of the viscous region., The ratio of
the dissipation in the corner regions and the dissipation taking place in
the wall-jets and shear layers equal therefore the ratio of the volumes
of these two regions: Zund =38 » It follows that the energy dissipated
2rréd  d

in the corner regions is much less than the energy dissipated in the rest
of the viscous region., Therefore it seems a good approximation to
neglect the energy dissipation in the corner regions. The meridional
kinetic energy flux E 1is assumed to be constant in the corner regions,

Assuming a continuous flow field it follows also from the
small dimensions of the corner regions that the mass flux in the viscous
region changes little in the corners, The meridional mass flux Q is
also assumed constant in the corner regions.

These two assumptions will suffice to obtain an approximate

solution for the viscous region.

4,3 The wall-jets,

The wall-jets constitute the most complicated part of the
viscous region.

Themost straightforward way to obtain an approximate solution
for the wall-jets would be to proceed along the lines of the Karman
Pohlhausen technique, as was done for the shear layers. The velocity
profile chosen should be of the type given in Fig., 3 and would therefore
be complicated. In addition to the boundary layer thickness §(s)
functions describing magnitude and distance from the wall of the max-

imum velocity overshoot should be introduced. Because the pressure-
dU
gradient -Ue -d—:' is not zero or constant the resulting simultaneous
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ordinary differential equations would have to be solved numerically, or
additional approximations would have to be made.

For simplicity's sake we put Ue = 0 in equations (2.10)
and let u—0 as n— oo. Then (2.10) has an exact similarity
solution which satisfies the requirement of having a velocity overshoot
and can be easily matched with the impinging shear layer. The similar-
ity solution for (2.10a) with Ue =0 (remember that g-:; = 0 1in the
wall-jets) and (2.10c) has been studied and graphically represented by
Glauert (1956) who called the type of flow associated with it a wall-jet.
This similarity solution will here be extended to include (2.10b). In
fact, in so doing an exact solution of the boundary layer equations with
heat transfer will be obtained, for Glauert's wall-jet similarity case.

The approximate equations which will be solved exactly to

obtain an approximate solution for the wall-jets are

U-g—ng W%:T_%% (4.3.1)

U%+W%:T—% . (4.3.2)

%I'S—U ¥ ?-gﬁvz =0 (4.3.3)
The boundary conditions to be used are

U(s,0) = U(s, 0) =0 (4.3.4)

I'(s,0) = Iy I'(s,00) = 15y (4. 3.5)

where
I"i at the inner cylinder

Pu at the outer cylinder
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(4.3.4) is not exact, (4.3.5) is.

For a unique solution an initial condition at s =0 1is nec-
essaryinadditionto (4.3.4), (4.3.5). This conditionis that the walljet must
be a continuation of the flow in the upstream corner. This condition will
be approximately satisfied by requiring the mass and kinetic energy
fluxes Q and E at the beginning of the wall-jet to be equal to Q
and E in the adjacent corner.

Using Glauert's work the following solution of (4.3.1) and

(4.3.3) can be written down:

% N
i 4°Fi,u(s'°‘i,u>
o= Tl/z f(’r])

5F, Tl/2 1/2
U= _(ls_tl“_j £1(n) > (4.3.6)
i,u

32\ Y
5F. T
- 1’u
n-= 3 n
32ls-a. }
13

Here f(m) 1is the solution of

£ 4 £ 4 2£12 = 0
(4.3.7)
£(0) = f(c0) = 0

f and f' are given by Glauert in graphical form.

o at the inner cylinder

o at the outer cylinder
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B0 is what will be called the singular point of the similarity
solution, It will be determined by matching the wall-jets with the im-
pinging shear layers. It is not assumed that the singular points coincide
with the points f impingement, as in Glauert's work,
The constant Fi,u is the scale of the similarity profile. It

has a rather obscure physical interpretation: from (4.3.1), (4.3.3) and

(4.3.4) can be deduced in a straightforward way (see Glauert, (1956) )

that
oo 0o
SU SUZ dn} dn = constant = F, (4.3.8)
9
° n
Fi u might be called the "exterior flux of momentum flux". As Glauert
3

observes, this is hardly a familiar concept. (4.3.8) holds for similar
as well as for non-similar solutions.
With (4.3.6) the meridional mass flux Q and kinetic energy

flux E 1is found to be

1
A L (s-o. )A
Q = 47 (%) R, F/A bl (4.3.9)
i;u " izu T8
F_5/4 T3/8
_ 5\Va 1,4
E =107 (3)*e,R | 2L (4.3.10)
- iu
where e; = g f'3(n) dn = 12—0- (using 4.3.7).
0

From (4.3.9) and (4.3.10) follows

3
B = et ol (4.3.11)

il 4.07T2\/—ei Ri,u

(4.3.12)
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From (4.3.11) follows that for the Glauert similarity profile
E Q% is constant in the wall-jets. Close to the upstream corner region

the velocity profile may differ from the similarity profile., Buta profile

_ n 11
U = V(S) _5-(_é_) exp 3 - m }
(this profile has a velocity overshoot) also has EQ?®= constant if
(4.3.8) is satisfied, for otherwise arbitrary V(s) and 6&(s). Hence
the assumption that EQ3 does not vary in the wall-jet seems areason-

able approximation. Thus
EQ3 = constant = EIQ} (4.3.13)

where E1 and Q£ are the impinging meridional kinetic energy and
mass fluxes. At the inner cylinder (=4, atthe outer (=2. Since
it has been assumed that E and Q do not vary in the corner regions

Eﬂ and Qﬁ are known from the approximate shear layer solution.

Therefore the scale of the similarity solution is known:

1 JVEQ3
Fiou © 20126, TR {4:30l0)
1,0
The wall-jet is further matched with the impinging shear layer
5

5
by requiring that %— at the beginning of the wall-jet equals % in

the impinging shear layer. With (4.3.12) this determines the location

of the singular point % L of the wall-jet:
9

5
w/—e1 Tl/2 %

5 "%u - Tem Rz VE » Laeeli)
i,u £
Of course the singular point does not occur in the real flow; s =cr].’u is

the "virtual" starting point of the wall-jet.
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With Fi,u and % determined in this way the meridional
mass and kinetic energy fluxes Q and E are continuous throughthe
regions where the shear layers impinge on the cylinder walls.
The appropriate solution of (4.3.1) and (4.3.3) with boundary
conditions (4.3.4) is now fully known; equation (4.3.2) with boundary
conditions (4.3.5) remains to be solved. Fortunately several similarty

solutions exist which make an exact solution possible. By separation of

variables the following solutions of (4.3.2) are easily derived:

N1

r-c gﬂ exp H (n,) d'ﬂz§dn,
0

0

with f given by (4.3.7) and
I = Bu

with u given by (4.3.6). The following solution satisfies the boundary

conditions (4.3.5) :

n m;
. 1
L nls = By ot (Ii,u_re)[l Te, S‘eXP{‘g f(ng)dnz}dﬂl:l (4.3.16)

0

oo ull
with e, :S‘ exp {-S‘ f(nz)dm, y dn; = 3. The constant Bi u is chosen
?
0 0
such that the meridional flux of angular momentum

00
M = ZﬂRi,uS. u(r - Pe) dm
0

at the beginning of the wall-jet equals the angular momentum flux in the

impinging shear layer. With (T - Fe) given by (4.3.16) it follows that
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1/ 1

5 2501«;3uT/2 /s .sl—criu%

M = 2'ﬂ-RiuliBi u_C)-{s —cr’ } S - @ . )
? ? Ji i,u i,u

t 3 (r. -T ){40Fi’ul<sl_gi’i>}%

s-cr. %
i,u e T /2 <s -0, >

¥ i,u

By requiring at s = s M = Mﬂ = meridional angular momentum flux

ﬁ 9
in shear layers at points if impingement (£=2 at the outer cylinder,
£=4 at the inner cylinder) the constant B, o may be determined.

One obtains for M:

40F -0, u)% 1 %

T P A W T R

From (4.3.11), (4.3.12), (4.1.15) and (4.l.16) follows, remembering

that M, =M, , M; =M, :

_ Z
(St

It is also assumed that M is continuous through those corner regions
where the flow separates from the walls. Substitution of (4.3.18) in

(4.3.17) then gives the following equations:

/ T.-T I.-I" s —<r+h%
NE 2 <$ 4 7r\/-8 i e)_ww/é i ~e o 1 (4.3.19)
. 3)\s,- cr+h 3 T-T.) 3 T -1 Sg- e
e u € u
T -T s -0 +h Yy
" ) (28 ) s R G i
5= cr+h e, l" r ]." I‘ S -0y
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where h is the height of one cell (see Fig. 1).

The approximate solution of M as derived in this way is
continuous and single-valued. A consequence is that the torques on the
cylinders are equal and opposite, as they should be. (The outer cylinkr
takes as much angular momentum out of the flow as the inner cylinder
puts in).

With (4.3.12), (4.1.15) and (4.1.16) :

YRR 4 3%
Sg-0_= /4 _\/—el %; M; 9;2{_9u<9u+ l“e‘/—8>} (]_/R_i-—l/Rfl> (403.21)
1

u

" Tt o )] Trmvmg) e

5,-0 = >
£ 2
The four equations (4.3.19) - (4.3.22) contain five unknowns:
M,, M,;, Fe ) 0 and o - An additional equation is needed.
Single-valuedness of M is a necessary but not sufficient
condition for single-valuedness of I'. Another necessary condition
for single-valuedness of I' can be derived as follows. The equation

for I (2.10b) can be written as

8L, W 8T _ -2 1 92T
9s ' U 9n T 9nz

Transformation from independent variables (s,n) to independent vari-

ables (t,x) where t=s and x is the streamfunction (the von

Mises transformation) gives

or _ ..-% 0 (. 8I
g - T &@&)

For single-valuedness of I' it is necessary and sufficient that
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‘g [ dt = 0 along each streamline, or

§ 2 (U% dt = 0 along each streamline.

ox
At the st 13 = 03 8 _ L9 dt = d
€ streamline X = VU —&—-Uﬁ, = as o
Hence
1 92T _
§ {ﬁm}ln:o de. =1 (4.3.23)

Equation (4.3.23) is a necessary condition for a single-valued solution

for I. Substitution of the approximate shear-layer solution in (4.3.23)

gives
o2 03
i u J
Mz . Mz = = -
M1 Jei(ei+re\[8)+ Mz 0.(6 + rer
or
0.+ V8
1 1 i3 " i e (4.3.24)
7 = 2 e e 30 24
M M1 9u+ l;‘/—S
ei l“i-l“e
where K = - —gu-= re_l_,ua Note that eu:ru-re is negative. We

now have obtained five simultaneous non-linear algebraic equations
(4.3.19)-(4.3.22) and (4.3.24) for the five unknowns MI’MZ’I;’ o and
o These equations can be solved as follows.
Substitution of (4.3.24) in (4.3.21) and (4.3.22) gives
R2

1

R K3 (4.3.25)

= = -0, 1 =
Sp -0, (s¢ 0’1) with a

own
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Substitution of (4.3.24) in (4.3.19) and (4.3.20) gives

0, LV8\Y4 /5o w8 1 mf81 Vs
_K3/2 K Wl__\__, = = 0‘+h Q_-{- S 0_ (403.26)
b e‘[8 0~ 2"
3/2 Ot o ‘/—8> [( 5279 A(l 77‘\[81) ™8 1 sz—(ru+h)%J (4.3.27)
_K K == i o o
eu‘{'Ié\/_S 2-0' +h> 3 K 3 K SZ_GU
Ya
5 ; 0 (4.3.26) and (4.3.27) become
7~ 4
Y = <—-—u——y 0<Y<1
s,-0_+h
u
EKEe=X (1 " 7”[8 ) -7’;[8 KX (4.3.28)
= Y<l + 7”[8 1) - 7”3[8 I—é—Y—l (4.3.29)
1
0.+ V8 Z
where K = g32 (K )
9u+l"e;?8
0. T
Since K = . we have, with T‘E = Mo,

K = K7/4{(K+\fB)+ K(/8-1)p }%
(V8-1) + (kV8+1)u

(4.3.28) and (4.3.29) give

K+ K2+ S7v® K(l+%§7r\/_8K>

(4.3.30)
2 (1 + % 78 K)

-1/k +V 1/K? +%7r\/—8 Il{ <1+ + 78 K>
2<l+ %7“/—81—1{)

(4,3.31)
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From (4.3.25) follows
(4.3.32)

Equations (4.3.30) - (4.3.32) contain only the unknown I (via K).
For every value of l'(; (Pi> re > I“u ) for given p equations (4.3.30)-

(4.3.32) give a value for 'El? .

u

4.4 Comparison with experiment

A comparison will be made with the very precise measure-
ments taken by Donnelly (1958). In Donnelly's experiments the outer
cylinder is at rest, i.e. p=0. Measurements were taken with
Ri/Ru =1.9/2.0 = 0.95 and Ri/Ru =1/2. With u =0 -equations
(4.:&30) - (4.3.32) give R,/R_=0.50 for k =183, Ri/Ru = 0.95
for k =1.155. Consider first the case Ri/Ru=0.50, k=1.83. One

obtains X* = 0,2625, Y* =0.3335 (using (4.3.30) and (4.3.31). Hence

4

So '-O“i :%(—4 = 0.356h
4

S, —O-u :1—:-?4 h = O.500h

Substitution in (4.3.21) and (4.3.22) gives

1 1
M, 1.9721“33 /2 7%

3 -
M, -o.;a%l“i/2 /2 T/

The dimensionless torque G due to one vortex cell equals M,;-M; ,

hence
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1
G = 2.268 T—l/" Jr?2 h/2

With the outer cylinder at rest the reference velocity in the presentcase

%k b3

(l"='< = 0, d = Ri:) is l";F/R:< , the reference length is d*: Ri .

Hence the dimensional torque is

v/
B Y F %
%k _ *%2_% /h 2 Vla _ % <h kg sk /2
G =2.268 npL 'R, (._) A = 2.268 npv --) R, @ (4.4.1)
d Q. R, R,

where n is the total number of cells. This number is unknown. The
simplest assumption would be that the number of cells does not change
as the Taylor number is increased, and is therefore equal to the number
of cells near Tc' This number can be found from the wave-number of
the cells (i.e. a = Ru/h) at T =T  which is given by hydro-
dynamic stability theory, (e.g. Chandrasekhar, 1961, pp. 323, 304).
The cell-structure has been explored experimentally in great
detail for a wide range of supercritical Taylor numbers by Donald Coles
(1965). This investigation shows (see Coles' Fig. 13) that if the gap
between the Cylinders is small the wave-number tends to decrease as
T increases, i.e. the height h of the cells increases. It should be
noted that if the gap between the cylinders is small the flow varies
periodically in the azimuthal direction also for T > 1.2 TC (outer
cylinder at rest). The cells take on a "wavy" shape. But for wider
gaps (Ru/Ri = 2 for instance) the flow remains rotationally symmetric
even for values of T much larger than TC. Therefore it remains to
be seen whether also in the case of a wide gap the cell height tends to
increase as T 1increases.

For the time being it is assumed here that the dimensions of
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the cells do not change as T increases. Chandrasekhar gives for the
wave-number at T =T_ (Ru/Ri =2) a=6.,2 , therefore h=0.49 R -
For Donnelly's wide gap experiment this would give h*= 0.98 cm. It
seems there can only be an even number of cells. Since the total length
of Donnelly's cylinders was 10 cm. one obtains 10 as the most
likely number of cells, with h* =1 cm. Becausethe suspended part of
the cylinder on which Donnelly measured torque was 5 cm. long 5

cells contribute to the torque. Hence one obtains for the torque

3
%k 1 sk >}</2
G =1L34 pv/2 R.14Qi
or
H3 _1/
4 Q. e
2w =103k i
S G = 28,400 (m) (4.4.2)

i
This relation has been plotted in Fig. 4. The rest of Fig. 4 has been
taken from Donnelly's paper. At Q:/Z?TV =100 (T =100 TC) the

measurements give

21+ 103 %
—=w— G = 2200
pE&*

whereas (4.4.1) gives
2o+ 10 oF - 2840
p&F? '

which is 29% higher. If the cell height is taken larger this difference

decreases.

In the same way one obtains for the case Ri/Ru = 0,95

|
1 s /2 % %3
% = 0,747 npv /2 (h—> R, Q'
R

i ¥

G
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Chandrasekhar gives ﬂ—g=3.12, hence h ERu—Rl For Donelly's

e
>R

narrow gap experiment this gives h = 0.1 cm., 50 cells contribute

to the torque. The result is

-Y2

Z;y) (4.4.3)

; Q
27 °10%
L = 28,1 ° 104(
TR G =2

For the narrow gap case Coles gives an "expected state" accord-
ing to which at high Taylor numbers the cell height is 1.25 times that

at the critical Taylor number. This gives

Q:}: _1/2
2100 o5 5 e 10t (4.4.4)
ez G 2 Z <44

Relations (4.4.3) and (4.4.4) have been represented graphicallyinFig.
5 (curves A and B respectively). At Q,:';/Zmz =10% the measurements give

27 o 103
Pﬂﬂiz

whereas (4.4.2) gives

G* = 0,70 - 10%

° 3 X
EZ_Q__%_O_ G*=0.89 + 10* (27% higher)
d

and (4.4.3) gives

° 3 %k
%&9— G =0.79 - 10* (14% higher)

1

It should be kept in mind that in this case the actual flow has azimuthal
oscillations. These have not been taken into account in the present
approximate calculations.

It is clear from Fig. 4 thatthe slopes ofthe experimental and theor -
etical curves are unequalas Ql——»oo The cause of this discrepancy does not

lie inthe approximations made inthe preceding calculations. Tke propartion-

-

ality o Ql
pQ¥? « <27W)

can be derived by straightforward dimensional analysis, as shown by
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Batchelor in an appendix to a paper by Donnelly and Simon (Batchelor,
1960). The fact that the slope of the experimental curve differs a little
from this theoretical prediction is somewhat disturbing.
Batchelor's complete result based on dimensional analysis is,

with minor changes in notation,

Q Rbd‘< / % /4

> (Ri-> (4.4.5)

where H  is the total length of the cylinders. In the precedingtheory

GocpHR Q <

&
<

the dependence of G on d>:< is implicit in the complicated algebraic
relations which connect Kk with Ri/Ru ; this dependence cannot be
expressed in simple form. Donnelly and Simon (1960) made anexcellent
survey of torque measurements. They fitted a curve given by

Q R d

pH Q'ZRV OC( > '%‘) (4.4.6)

with experimental results and find £== 0.62, m = 0.3220.05. These
results are consistent with (4.4.5), but the spreadin m seems to
indicate that in reality the dependence of G>:< on d* is more compli-
cated than (4.4.5).

Batchelor assumed that the height h* of the cells equals h*
at T=TC. This makes }f< a function of <il>:< (keeping the outer cylinder
at rest). Therefore (4.4.5) does not give a dependence of C::< on h*.

The agreement between the foregoing approximate torque
calculations and experiment is close enough to lend strong support to
the preceding theoretical description of the flow.

A final remark concerns Snyder's and Lambert's observation

that the outward flow resembles a thin jet (as has been deduced in this
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thesis) but the inward flow is slow (contrary to the present theoretical
description). Taking the case Ru/Ri =2 we have K =1.83. With the
outer cylinder at reat it follows from the definition of k that
_ K _ ' i -
0 = == ri~ 0.646 (from the choice of reference quantities follows I‘i 1)

L

—_— 1 o
re = -Ou—+——K+l 0.353

Substitution in (4.1.13) gives for the magnitude of the dimensionless

velocity at the points of impingement:

S, = 0.863

S, = 0.414

Hence the inward moving shear layer is remarkably slower than the out-
ward moving layer, which may account for the observation of a slow

inflow by Snyder and Lambert.

5. Conclusion

It has been shown that a boundary layer type flow model where-
by the Taylor-vortex cell consists of an inviscid core surrounded by a
thin viscous region results in a self-consistent description of the flow,
The model leads directly to a simple explanation of the mechanism by
which strongly developed Taylor vortices are driven. Approximate
calculations of the torgue agree well enough with experiment to lend
strong support to this flow model. For more accurate calculations of
the torque at high Taylor numbers equations (2.8) and (2.10) must be

solved numerically.
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Appendix 1,

A discussion of the state problem.

In the foregoing calculations the height of the cells is arbitrary
and must be given before the flow field can be calculated. In the follow-
ing a short review is given of publications concerning the determination
of the height of the cells.

By "the state problem" we mean the determination of the
state of the flow, that is, the determination of the height of the cells.,

If there are azimuthal variations ("wavy" vortices) the determination
of the state of the flow includes a specification of the wavelength of the
azimuthal waves. Azimuthal waves occur at Taylor numbers only
slightly above the critical Taylor number if the gap between the cylinders
is small (d/Ri =1/10 say) (Coles, 1965). For d/Ri = 1 experiment
indicates that azimuthal waves do not occur at all (Snyder and Lambert
(1966) ).

The state problem has not yet been solved theoretically. The
present work would have contributed to the solution of the state problem
if the boundary layer equations (2.10) had been solved more accurately
(analytically or numerically). Presumably, for cell heights either too
great or too small a physically admissible solution of (2.10) might not
exist. For cell heights too large it seems fairly certain that the boundary
layers on the cylinder walls will separate before reaching the corners
of the cell. For cell heights too small (2.10) may not have a single-
valued solution. Or perhaps, single-valued solutions exist only for
discrete values of the cell height. In any event, the state problem cannot

be solved completely by studying the asymptotic behavior of the solutions
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as T — oo more accurately, if the solutions are not unique. At most,
one can determine which states are possible.

In the case of a small gap experiment strongly indicates non-
uniqueness (Coles, 1965), i.e. for a given Taylor number more than
one state can be realized experimentally. For Ru/Ri = 2 experiment
indicates that the cell height tends to increase with T (Donnelly and
Schwarz, 1965; Snyder and Lambert, 1966). On the uniqueness question
these experiments do not throw much light. Numerical calculations
(Meyer, 1966) indicate non-uniqueness.

Much theoretical work has been done on the state problem. A
state problem also occurs in the flow in a horizontal layer of fluid heated
from below (Bénard flow). If the Rayleigh number Ra exceeds a
critical value buoyance forces set up a flow pattern which may consist
of two-dimensional rolls or hectagonal cells (Bénard cells), If the
layer of fluid is bounded above and below not by rigid walls but by fluid

the flow which occurs for Ra = Ra takes a form which is analy-

crit
tically very simple: it is described by trigonometric and hyperbolic
functions. For this reason investigations of the non-linear régime

(Ra > Rac are simpler for this flow than for Taylor-vortex flow.

rit)
Hence greater progress has been made. Of course there is no direct
relationship between the state problem for Bénard flow and for Taylor-
vortex flow, but theoretical ideas and methods designed to penetrate into
the non-linear régime of Bénard flow may be expected to apply to Taylor -
vortex flow as well, and vice-versa. For this reason a short survey of

work on the state problem for Bénard flow will be given.

Malkus and Veronis (1958) showed that the equations have
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many solutions for Ra > RaLC but that only those solutions are

rit ?
stable against disturbances which have the form of the other solutions
which maximize the heat transport. The question of how many solutions
maximize the heat transport is left unanswered.

Another investigation connected with the state problem for
Bénard flow is the work by Segel (1962). This paper considers the
interaction of two "roll" disturbances with different wavelengths for

Ra > Ra assuming that the fluid is initially at rest. Because of

crit ?
this assumption Segel's work has no direct connection with physical
reality (the fluid cannot be at rest for Ra > Racrit ) but it provides
valuable insight in the mathematical properties of the non-linear equations
which describe the problem. Such an interaction of two disturbances
was first studied by Palm (1960) whose work was later modified and
refined by Segel and Stuart (1962). According to Segel's analysis, two
infinitesimal disturbances, both of which would be amplified according
to linearized theory, interact in such a way that only one of them remmuins.
Which one depends on the relative magnitude of their initial amplitudes,
which are prescribed. This result is reminiscent of Coles' experiment,
in which the state which is realized depends on the way the experimenter
has varied the speed of the cylinders before a steady state is obtained.
Turning now to the Taylor-vortex flow problem, an important
mathematical result has been derived by W. Velte (1965). It is shown
that at T = TC there is a branching of stationary solutions of the
Navier-Stokes equations. The question whether the new branch exists

for T < Tc or for T > TC » and how many branches come together

at T = Tc ’ is left unanswered. This is the only published theoretical
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paper on the state problem for Taylor-vortex flow,

Note. The state problem is also studied in an unpublished paper by

Reynolds and Potter (1967), which was brought to the author's attention
by Prof. Coles. Assuming axial symmetry, finite amplitude solutions
are developed as powers of (Tl/2 - TC%), This has also been done by
Davey (1962). It turns out that there is an infinite number of solutions.
Reynolds and Potter study the stability of these solutions, and it is
found that only one solution is stable. This solution has the property
that its wave-length (cell height) decreases with T.

Contrary to the claims of the authors, however, they have not
solved the state problem in this way, because their results depend on an
important assumption, which is not stated and which remains to be
justified. Reynolds and Potter perturb their finite amplitude solutions
with a perturbation which depends on time like egt. They argue that
for a stable finite amplitude solution (with wavelength \ = )\S) g=20,
thereby assuming that solutions with A slightly less and slightly
higher than )\s will be unstable (g > 0), so that the case g< 0
does not occur. In other words, Reynolds and Potter assume a priori
that the spectrum of possible statesis discrete. Stable solutions are
assumed to exist only for discrete values of )\S; solutions with A
inbetween these values are unstable. Only one possible value of )\s
is found.

It is clear that the assumption of a discontinuous spectrum

needs to be justified. If it turns out that in reality the spectrum is
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continuous then Reynolds and Potter have not determined the only
possible finite amplitude solution, but the marginal stability boundary (I)
of the spectrum of finite amplitude solutions (see Fig. 6). In that case
there should be a second marginal stability boundary (II), which how-
ever was not found by Reynolds and Potter. Before this is taken as
proof that the spectrum is indeed discrete a detailed investigation of
the possibility of branching of the marginal stability boundary seems
called for. The branching of the marginal stability boundary may have
been masked by the asymptotic method used by Reynolds and Potter.

The most striking result of Reynolds' and Potter's theory is
the absence of non-uniqueness. If this result is correct the non-unique-
ness observed experimentally in the case of a small gap (Coles, 1965)
must be due to the azimuthal waves. In the case Ru/Ri = 2, where
azimuthal waves are absent experiment should show no non-uniqueness
at all. It has already been mentioned that at present there are no experi-
mental results available which settle this question conclusively., Meyer's
(1966) numerical calculations show non-uniqueness.

Reynolds' and Potter's prediction of decreasing wave-length
with increasing T is somewhat at variance with experiment. Donnely
and Schwarz (1965) and Snyder and Lambert (1966) find a (not very
pronounced) trend of increasing wavelength with increasing T, with

Ru/R.l = g,
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Appendix 2.

Derivation of the meridional and angular momentum-integral equations.

Equations (4.1.2) and (4.1.3) can easily be derived as
follows: (2.10a) can be written as

dU e

9 A redr |~y 02U
rU———(UU M W g=(U-U )4 r(U-U) = ——r—f-angT r o (A.1)
Multiplying (2.10c) with (U—Ue) and adding to (A.,l) gives:
dU  T2-1? -
88 {rU(U U)}+_8_{rW(U U)}+ r(U-U, dse = _rz-—e%-z-+T /"raang (A.2)

Integration of this equation with respect to n between n=0 and

n=o00, taking into account that W—-g—g—o at n=0, UU—%[EJ—O

at n=oo gives equation (4.1.2).

Equation (2.10b) can be written as

9 T-l/;r 92T

9 -
I‘U"g‘g’(r-re)‘l‘ rW gﬁ(r're) = —8—1'—1—2- (A.3)
Multiplying (2.10c) with (I‘—l"e) and adding to (A.3) gives
9 o f _ =Y 92T
_a_s.{rU(r-re)} b {rW(r-re)} =T 25 (A.4)

Integration of this equation with respectto n=0 and n=oo, taking

into account that W——g%‘—o at n=0, I-I :B_I‘:O at n=o

gives equation (4.1.3).
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Appendix 3,

The solution for the inviscid core.

The flow in the inviscid core is governed by equation (2.8):

1 841 Lp
T or Dz 2
rv

Cr?
(A.5)

-
e

The boundary conditions are, taking 2z =0 inthe middle of a cell:
_ % h
=0 for r—Ri, r—Ru, B i (A.6)
Let b=y+ = (rZ—R?*)(rz—RZ) (A.7)
8 i w2 )
9%y |1 3¢, 3%y _
then arz = -a—£+ 822 =0 (A.S)
The following boundary conditions are satisfied by
=0 for r=Ri,r=Ru (A.9a)
T -C(.z2_p2\ (n2 z>_ _th
=g (s Ri> (Ru-r =F(r) for z=12 (A.9b)
Separation of variables gives
¥ = R(r) Z(z)
KAt -%—R' =GR & (A.10)

Z'\ -k eZ = 0

In order to satisfy boundary condition (A.9a) we must have

R(R)= R(R ) = O.

c 1is negative, Writing c¢ = —er1

It turns out that this is only possible if the constant
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R'' -lrRr ¢ 2R =0
r n
(A, 12)
R(R,) = R(R ) = 0

Equation (A.l2) is of the Sturm-Liouville type and there are infinitely
many eigenvalues Y, and infinitely many eigenfunctions R = Rn .
Moreover, these eigenfunctions form a complete set so that the function
F(r) in boundary condition (A.9b) can be represented as a linear

combination of the Rn 8. The solution for Rn is found to be

R = r{Jl(ynr) Yl(ynRi) - Jl(YnRi) Yl(an)}
with Y defined by (A.13)
Jl(YnRu) Yl(YnRi) = Jl(YnRi )Yl(YnRu) =0
The relevant solution of (A.ll) is
Z = Zn = cosh (ynz) (A.14)
The solution for | 1is built up by superposition of the functions R Z:

e o0 4
p=> Ancosh(ynz)r {Jl (ynr) Y, (ynRi)-Jl( YnRi)Yl (ynr)} (A.15)
1

The constant %= has been chosen such that the boundary condition

(A.9a) is satisfied. The boundary condition (A.9b) is satisfied if

F(r) :zl: A_cos h(yn7>r Ciry (y,r) (A.16)

where

Cis1 (an) & Jl(an) Yl(YnRi) ‘Jl(YnRi)Yl(an)
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According to the discussion following equation (A.,12) it is indeed

possible to represent F(r) 1in this way. The constants are given by

R
u
1
A = F(r) Cys; {y. 1) dr (A.17)
n 2 h n
RN _cos h(y —Z> R
2
2 Jl (Yn 1)

where N =

A proof of this result has been given by Titchmarsh (1923). By partial

integration one finds

R.
i
™ CR3 Jl(YnRu){R Jl(YnRu)_Jl(YnRi)}
A_= b - i (A.18)
2R 2 £ 2 - J2
ynRucos h(yn2> Jl (ynRu) Jl (ynRi)

The values of vy;, y» and vy; have been tabulated by Chandrasekhar

and Elbert (1954). For the case Ru/Ri = 2 the following result is

obtained:
A, -1.134
& Rfl
A, = i 0.143 (A.19)
8 cosh (y —2—>
A, n -0.134

Using equations (A.7), (A.15) and (A.19) one finds that the
extremum of ¢ and hence the center of the vortex flow pattern is
closer to the outer cylinder than to the inner cylinder. This fact has
been taken into account in the qualitative flow picture in Fig. l.

In order to obtain some more information about the flow

pattern the radial velocity wu at the edge of a cell has been computed
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with R.
i

0
&
23]
1

e

=
!

=1 (cell cross-section square). At the edge of
acell =z =

in the present case, and one obtains

% v
u(r, 1) = %%)Z:%: ;AnynsinhTn{Jl(ynr)Yl(yn)—Jl(yn)Yl(ynr)} (A.20)

It is clear that the corners (r=1, r=2) are stagnation points. The

sum of the first three terms of this series has been plotted in Fig. 7.
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Figure 1. Sketch of the flow in an axial plane. The shaded area

represents the region in which viscous forces are important.
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Figure 4. Comparison with experiment. The circles and

triangles represent measurements taken b.y Donnelly (1958, fig. 8) .

with R, = ..Oem., R, = 2.0 cm. The theoretical curve is given

by equation (4.4.2). Curve A represents Davey's (19 62) theory.
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Figure 5. Comparison with experiment. The circles represent
measurements taken by Donnelly (1958, fig. 5) with R, = .9 cm.,
R,= 2.0 cm. The theoretical curves A and B are given by
equations (4. 4. 3) and (4. 4. 4) respectively. The dashed curve

represents Davey's (1962) theory.
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Figure 6. The marginal stability boundaries.
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Figure 7

Plot of the velocity along the upper boundary of a cell as given

by the Euler solution. Square cell, Ru/Ri= 2.



