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ABSTRACT 

The purpose of this thesis is to explain how strongly 

developed Taylor vortex flow is kept in motion. On the basis of this 

explanation approximate torque calculations for high Taylor numbers 

have been made. Agreement with experiment is satisfactory. Axial 

symmetry is assumed throughout. 
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1. Introduction 

The flow between rotating concentric cylinders has attracted 

the attention of fluid me chanicists for a long time. One of the first 

papers on the subject was published in 1890 (Couette, 1890). This type 

of flow has several important aspects; 

i) For low enough Taylor number (hereafter called T) 

it can be described by an exact solution of the full Navier-Stokes 

equations. This interested the early researchers, who wanted to check 

the Newtonian stress approximation in the Navier-Stokes equations 

against experiment. 

ii) As the speed of the inner cylinder is increased the 

flow undergoes a sudden transition to a radically different, but again 

laminar flow pattern as the so-called critical Taylor number ( T ) is 
C 

reached. This transition point has first been accurately predicted in a 

well-known paper by G. I. Taylor (1923). This was the first time a 

mathematical stability analysis of a flow pattern was completely in 

agreement with experiment. The field of hydrodynamic stability has 

since then been extensively developed. Both the theoretical and the 

experimental part of Taylor's paper were groundbreaking. In his 

experiment the flow pattern for T > T was made visible; it is now 
C 

often referred to as Taylor vortex flow. 

iii) Above the critical Taylor number a laminar flow 

regime exists where the flow exhibits an interesting non-uniqueness 

which is of theoretical significance. For given external conditions 

more than one laminar flow pattern may occur (for cylinders of finite 

length!). Which one occurs depends on the way in whk:h the external 
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conditions (speeds of cylinders} are reached. This non-uniqueness 

was already observed by Taylor and has recently been studied in detail 

by Donald Coles (Coles 1965). As T increases, an increasing 

number of steady (at still higher T unstable against time dependent 

disturbances) solutions of the Navier-Stokes equations seem to exist. 

A perhaps similar non-uniqueness impedes a mathematical theory of 

steady high Reynolds number separated flow around a finite body 

(Goldstein 1960 pp. 133 et seq.). The flow between rotating cylinders 

provides a good opportunity to study this non-uniqueness. 

iv) The problem of computing the flow field at T 

slightly higher than T {non-linear stability analysis) has been under­
c 

taken by Stuart {1958) and further developed by Davey {1962). Their 

work compares well with experiment and is a significant contribution to 

no nlinear mathematics. Similar developments have taken place in the 

study of free thermal convection between horizontal plates (Malkus and 

Veronis, 1958). The interesting analogy between the flow between 

rotating cylinders and thermal convection between horizontal walls 

{noted by Rayleigh, 1916) will receive attention later in this thesis. 

In view of all this work it is surprising that an explanation of 

the mechanism which drives the Taylor vortices is still lacking. Only 

in Coles 1 {19 65) paper the present author found a first attempt to 

describe this mechanism. Coles' paper is devoted to other things, 

however, and the question receives little attention. In a recent paper 

Coles (1967) develops a way to make the equations dimensionless, based 

upon his description of the driving mechanism. As a result experirnmtal 

data concerning the stability boundary collapse on certain curves. Coles' 
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ideas enable him to estimate the stability boundary without solving the 

linearized stability equations. This may be useful for flow problems 

for which the stability problem is difficult to solve. 

Coles' description of the driving mechanism involves a 

complicated interaction between the equations of motion; also the 

mechanism which drives the flow is not immediately obvious from the 

equations. Coles' discussion is valid for T close to T . 
C 

In the 

present thesis the case T > > T (strongly developed Taylor vortices) 
C 

is considered. It turns out that in this case the driving mechanism is 

simpler than in the case T close to T . Also, it exhibits itself 
C 

more clearly in the equations. 

Axial symmetry will be assumed throughout. Of course it is 

assumed that the flow is laminar, even though T ,....... co. 

2. Derivation of the limiting forms of the Navier-Stokes equations 

as T ...- co. 

For an incompressible fluid the Navier-Stokes equations may 

be written as 

* u 
* :{:: * * ,::: + 71' ) -v V xw = o,, div u = 0 ( 2.1) 

where /:< stands for p*/p,:, and asterisks indicate dimensional 

quantities. 

The velocity components in an axial plane will be of the same 

order of magnitude as the forces acting in that plane. Obviously, these 

forces will have something to do with the difference between the centri­

fugal force experienced by fluid elements close to the inner and close to 
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the outer cylinder. Thus a typical magnitude of the acceleration per-

pendicular to the axis is hence the order of 

magnitude of the meridional velocity components may be expected to be 

S1 stands for angular velocity, R for radius, 

subscripts i and u indicate the inner and outer cylinder respect­

ively, 

It is convenient to put the equations in dimensionless form, 

As a reference velocity 

reference length * d . 

is chosen and as a 

With these units ( 2.1) transforms into the 

following dimensionless equation: 

( 2. 2) 

div u = O ( 2. 3) 

Here 

This quantity will be called the Taylor number f . 

T is much larger than T will be considered; 
C 

Here the case where 

T 
C 

is the value of 

the Taylor number for which Taylor vortices just begin to appear. For 

large values of T the vortices are strongly developed. It is assumed 

that the flow is still laminar, Fig. 1 illustrates the geometry of the 

motion. 

Since the Taylor number can be regarded as the square of a 

Reynolds number it seems reasonable to assume that strongly developed 

Taylor vortex flow will have the characteristics of a high Reynolds 

-/- In the literature various definitions of the Taylor number have 
been used. The above definition seems to be the most natural one 
in the present context. T as defined above is the square of the 
ratio of centrifugal acceleration and the acceleration due to viscous 
forces, 
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num.ber flow. It is ass urned that viscous effects are only important 

near the boundary of each cell and not in the core of the vortices. This 

assumption will be correct if it leads to a self-consistent solution. It is 

not immediately clear that the thickness o of this region will be of 

order T-¼ as in boundary layer theory. Again one has to make an 

assumption, which has to be justified by the self-consistency of the 

picture obtained. Perhaps the best way to arrive at the correct 

assumptions is by reasoning as follows. First, the inviscid region will 

be considered. 

2.1 The inviscid region. 

With the reference velocity defined above the velocity in the 

frictionless core will be 0(1). In the core the correct asymptotic 

expansion as T .- oo will be of the form 

( 2.4) 

The E form an 
n 

asymptotic sequence as T ,_ oo. The superscript E serves to 

distinguish the flow in the inviscid core (asymptotically represented by 

the Euler limit f) fr om the £low in the surrounding thin viscous region 

(asymptotically represented by the Prandtl limit). Substituting ( 2.4) in 

(2. 2) and letting T -- oo we obtain (of course) Euler's equations for 

E (o) 
u 

( 2. 5) 

div Eu(o} = 0 

-J See Lagerstrom and Cole (1955) 
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In a system of polar coordinates (r, 8, z), 

be written as (assuming axial symmetry) 

E (o) 
u = (u, v, w), (2.5) may 

or 

where 

oru + orw = 
or 8z 

a 
ru­or 

0 - ru 

1 op 
- p or 

= aLJ; 
6z' rw 

( wr) + rw ~ (~) = 2v av oz r r oz 

rv = rv( y;) 

( 2. 6) 

The boundary condition to be used with (2. 6) is 

tangency of the flow to the cell boundary. The well-known non-unique­

ness of the Euler equations under these boundary conditions is immed­

iately obvious from (2.6). Any function rv(y;) will give a solution. 

For unseparated flow past a finite body in an unbounded fluid uniqueness 

is usually obtained by prescribing the vorticity distribution at upstream 

infinity. In the present case there are no streamlines which extend into 

a region where the vorticity is known. On the contrary, the streamlines 

are closed and this is precisely what enables us to formulate another 

condition. This condition will make the Euler solution unique apart from 

two constants, which have to follow from the Prandtl solution. Feynman 

and Lagerstrom (1956) and Batchelor (1956) studied flows with closed 

streamlines as the Reynolds number tends to infinity. They rediscovered 

results derived in Prandtl's classical boundary layer paper in 1904 (see 
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Prandtl 1961, p. 577). It seems appropriate to call these results 

Prandtl's theorem, which may be formulated as follows: 

In two-dimensional flows with closed streamlines the vorticity 

is constant throughout the flow field as the Reynolds numb er tends to 

m, apart from thin boundary layers attached to the boundary of the 

flow field. /-

Prandtl also gave the extension of this theorem to three­

dimensional axisymmetric flows: in our notation, 

where 

from 

( 2. 7) 

w/r::: C 

and C are constants./- /-

Using (2. 7), the zeroth order Euler solution can be found 

a 
r Br 

32 Lj; 
+--== c)zZ 

wr ::: Cr 2 

rv::: r::: r 
e 

( 2. 8) 

The solution of (2.8) is given in the form of a Fourier-Bessel series 

in Appendix 3. Since re and C are unknown, the Euler solution 

has not yet been uniquely determined. Feynman and Lagerstrom and 

Batchelor realized that re and C follow from the requirement that 

/- As Feynman and Lagerstrom pointed out, the flow field may consist 
of several regions where the vorticity may have different magnitudes. 
These regions are separated fr om each other bythin_viscous shear layers. 

/- /- The equation w/r ::: C represents stretching of vortex lines. The 
only non-zero component of vorticity is w. The vortex-lines are 
circles in planes perpendicular to the axis centered around the axis. 
As a fluid particle moves outward the length of the vortex-line through 
the particle increases proportionally to r . 
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there must exist a single-valued solution for the thin viscous region 

which surrounds the inviscid region of a cell. In order to elucidate 

this idea (which cannot be found in Prandtl' s paper), consider the two-

dimensional flow inside a circle with a velocity-distribution u = u (s) w 

prescribed along the circumference, where s measures distance 

along the circumference. According to Prandtl's theorem the vorticity 

is constant (= w 0 , say) inside the circle. If u ( s) 
w 

is not constant 

a boundary layer must be present along the circumference. Of course, 

the solution for the viscous region must be single-valued. It is shown 

by Feynman and Lagerstrom, that this is only possible if w0 has the 

2 ✓ 2 special value w0 = R uw , where R is the radius of the circle 

and the bar indicates that the average is to be taken. A special case of 

this result is derived by Batchelor. It is very difficult to find w0 for 

contours other than a circle. In the present case the situation is even 

more difficult·, instead of one ther e are two interrelated constants r 
e 

and C to be determined; moreover, the viscous region contains shear 

layers in addition to boundary layers. 

In connection with the discussion of the viscous region which 

will follow it is important to realize that the Euler solution has stagr.ation 

points in the corners. The Fourier-Bessel series solution of (2.8) 

(Appendix 3) shows stagnation points in the corners (s·ee the plot of the 

radial velocity along the boundary of a cell in Fig. 7) but the Fourier­

Bessel series is not accurate near the corners . In the corners of the 

cells tjJ approximately obeys the following equation (taking a corner 

adjacent to the inner cylinder and letting z = 0 in the corner) 

CR~ 
1 
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with the solution, if ljJ = 0 at r = R. and z = 0, 
1 

i.jJ=CRi[½(r-Ri) 2 +;(r-Ri)z.en {(r-1\_) 2 + z 2 } - ;{(r-~) 2-zZ} tan_
1

r~Rij (2.9) 

Because the boundary conditions for ( 2.8) have not been prescribed on 

a closed boundary the solution (2.9) is not unique; harmonic term.s like 

rz may be added. But in the corner these will be small compared to 

the logarithmic term. Fr om ( 2. 9) follows that and are zero 

in the corners. Hence the Euler solution has stagnation points in the 

corners. This deduction has far reaching consequences for the viscous 

region, which will now be considered. 

2. 2 The viscous region 

Consider the boundary layer AB (Fig. 1) attached to the 

inner cylinder, excluding the corner regions. 

The assumption that the viscous region is thin implies that 

the 11 thickness II of the corner region, though possibly of a different 

order of magnitude than the thickness of the rest of the viscous region, 

is negligible compared to the overall dimensions of the cell. It also 

follows that the pressure in the viscous region is equal to the pressure 

at the edge of the viscous region, which can be found fr om the Euler 

solution. Therefore the pressure in A and B equals the pressure 

of the Euler solution in the corners. Since these are stagnation points 

for the Euler solution, Between A and B, .1r<1rA. In order 

to match with the Euler solution the velocity in AB must be 0(1). 

There may be a velocity overshoot in AB (this will turn out to be the 

case) but since there are no forces acting on the flow greater than 0(1) 

the overshoot can never be greater than 0(1). In AB the frictional 

term in the Navier-Stokes equations is approximately 
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T-¼ o2u where u = 0(1). 
8r 2 

Requiring this term to be 0(1) as T......,.m 

(Goldstein, 1960) gives for the thickness of AB: 6= O(T-¼). Hence 

the £low in AB is described by Prandtl's boundary layer equations. 

The same reasoning applies to the other parts of the viscous region, the 

corner regions excluded. The equations for the viscous region can be 

found by making the boundary layer simplifications in the Navier-Stokes 

equations. I£ there is no velocity overshoot in AB orthodox boundary 

layer theory applies, The boundary layer AB begins with a stagnatim 

point in A, goes through a region of pressure decrease, reaches the 

pressure minimum midway between A and B, and separates shortly 

after this pressure minim.um has been passed, at a considerable distance 

before B. The separation bubble which would result would be large 

enough to be observed by experimenters. It would have manifested it­

self in the detailed measurements of the £low recently taken by Snyder 

and Lambert ( 19 66). Since this is not the case the picture just drawn 

is almost certainly wrong. The only way to maintain the assumption 

that the cell has an inviscid core surrounded by a thin viscous r egion is 

by assuming that the boundary layer begins at A with a velocity over­

shoot large enough to prevent separation between A and B; this 

velocity overshoot must the refore be at least 0(1). Since no £or ces 

greater than 0(1) are present, the velocity overshoot at A cannot 

be greater than 0(1). Thus the typical velocity in the corner regions 

is appreciably greater than zero, although the outer velocity is ze ro in 

the corners. 

The viscous term in the Navier-Stokes equation is approx­

imately in the corners; 
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(r-direction) 

( z -dire ct ion) 

According to the reasoning given above u, w are 0(1) in the corners. 

Requiring again that the dissipation be 0(1) as T-- m gives for the 

thickness of the corner regions ( see Fig. 3 ). 

These results can be summarized as follows; away from the 

corners, Prandtl's boundary layer approximations are valid. The thick­

ness of the corner regions is of the sam.e order as the boundary layer 

thickness, which is in terms of the Taylor number o =O(T-¼). 

It is convenient to describe the viscous region with the 

coordinate system ( s, n) depicted in Fig. 2. Lines n = constant are 

parallel to the cell boundary, perpendicular to these are lines s=cons1ant. 

Outside the corner regions every point in the viscous region is uniquely 

defined by one value of s and n. s runs from s 0 to s 4 • 

Application of the boundary layer simplifications in the Navier-Stoke s 

equations results in the following equations for the viscous region, the 

corners excluded; 

U 
oU+ oU dUe 

W-=U er::-+ 
OS on e us 

orU + orW = 0 
as an 

( M.S. ) 

r 2 - r: or 
r 3 os (2.10a) 

(2.10b) 

(2.10c) 
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where U, W are velocity components in the s and n directions 

respectively, r = rv and U is the velocity at the boundary of the 
e 

inviscid core as given by the Euler solution. Equations (2. 7), (2.8) 

and ( 2.10) are the limiting forms of the Na vier-Stokes equations as 

T ..-. co. 

The constants r and C should follow from the require­
e 

ment that the solution of ( 2.10) be periodic in s. 

3. The physical mechanism by which the Taylor vortices are driven 

From equations (2.10) the driving mechanism of strongly 

developed Taylor-vortex flow is immediately apparent. For strongly 

developed vortices the inner cylinder has to rotate much faster than the 

outer one, or more precisely 

r. > > r 
1 U 

where subscripts i and u indicate respectively the inner and outer 

cylinder. r will have an intermediate value. In the subregion AB 
e 

( see Fig. 1) the inner cylinder imparts angular momentum to the fluid in 

the vise ous region. Close to B we will have r. > r > r . According 
1 e 

to (2.10b) the angular momentum is then convected downstream while it 

diffuses into the inviscid core. In BC r > r everywhere. 
e The term 

labeled (M.S.) in (2.10a) is therefore positive everywhere in BC; it 

is the mathematical representation of a momentum source which accel­

erates the fluid outward. Apart fr om non-linear interactions the 

pressure term does not give a net acceleration since 1TB = ?TC. 
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Therefore, under the action of the mom.entum source described by ( M. S.) 

the fluid in the thin viscous shear layer BC is accelerated outward 

and impinges jet-like on the outer cylinder. This jet then spreads out 

on the outer cylinder as a boundary-layer with a velocity overshoot (a 

wall-jet). That a velocity overshoot must exist in order to prevent 

boundary layer separation between C and D was shown in section 

2 of this thesis. 

In a discussion with the author, Professor Saffman suggested 

that it seems likely that the possibility of boundary layer separation 

between A and B or C and D accounts for the phenomenon of 

state transition, i.e. changes in the cell pattern. Presumably, if the 

speed of the cylinders is varied in such a way that the boundary layer 

separates between A and B or C and D a state transition 

occurs. 

In the subregion CD angular momentum is lost to the slowly 

rotating outer cylinder; near D, r > r > r. e u 
Again, rn DA the 

term (M.S.) is positive, it represents a momentum. source which 

accelerates the fluid in the thin shear layer DA inward. (Note that 

here s is counted positive inward, so that 8r /as = -1). At A , 

the fluid impinges jet-like on the inner cylinder so that the boundary 

layer AB has at A a velocity overshoot large enough to prevent 

separation between A and B. It is now clear why frictional forces 

do not inhibit Taylor vortex motion; they are balanced by the momen1um 

source. 

The momentum source (M.S.) gives 

ponents in an axial plane with magnitude of order 
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The reference velocity has been chosen such that this quantity is 1. It 

is interesting to note that the secondary motion (the motion in an axial 

plane) is of the same order of magnitude as the "primary" motion 

(the motion in the circumferential direction). 

A physical description of the momentum source can be given 

as follows. The forces working on a rotating fluid are pressure forces, 

centrifugal forces and vise ous forces. (If the angular momentum r = rv 

of a fluid particle is taken as dependent variable instead of the angular 

velocity v Coriolis terms do not appear). The pressure gradient in 

the viscous shear layer BC is the same as in the adjacent part of the 

inviscid core. The angular momentum in BC (where the fluid has 

passed closely to the fast rotating inner cylinder) is considerably larger 

than the angular m .::,mentum in the inviscid core. Therefore the outward 

acceleration in the shear layer is larger than in the inviscid core. 

Therefore U > U 1n BC; as the shear layer moves outward this jet-
e 

like velocity overshoot grows. The acceleration of the shear layer flow 

( U) relative to the core flow (U ) 
e 

finds its mathematical expression 

intheterm (MS.) in(2.10a). 

The jet-like behavior of the outward moving shear layer has 

been observed experimentally by Snyder and Lambert. However they 

observed a slow inflow. Approximate calculations to be given later in 

this thesis do indeed indicate that the speed in the inward moving shear 

layer is appreciably less than the speed in the outward moving shear 

layer. If Snyder's and Lambert's experiments were repeated at a 

higher Taylor number (assuming this is possible with turbulence being 

absent) the jet-like behavior of the inward moving shear layers would 
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presumably bee ome apparent. 

From (2.10b) (as well as from the full Navier-Stokes equat­

ions) it is clear that r is convected and diffused just like heat. 

Equations (2.10a) and (2. 10b) are reminiscent of the Boussinesq 

equations for a viscous fluid with temperature differences and buoyancy 

forces. A difference is that the term (M.S.) is quadratic in r , 

whereas the buoyancy force is linear in the temperature. The close 

analogy between rotating fluid motions and fluid motion with buoyancy 

forces due to temperature differences was used with great advantage by 

Lord Rayleigh; he derived his well-known stability criterion for inviscid 

rotating flows in analogy with the stability of a liquid of variable density 

in a gravitational field (Rayleigh, 1916). 

Approximate calculations of the Nusselt number at high 

Rayleigh numbers for a horizontal layer of fluid heated from below can 

be made in the same fashion as the following approximate torque calcul­

ations. 

4. Approximate torque calculation. 

A solution of the equation for the inviscid region (2.8) is 

easily calculated, for example in the form of a Fourier-Bessel series. 

(Appendix 3). Equations (2.10) however are difficult to solve. They 

resemble the usual boundary layer equations closely but are even more 

difficult. The velocity overshoot gives an added complication. More­

over, at no value of s a velocity profile is known in advance, as is 

usually the case in boundary layer problems. Also, the boundary 
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conditions at n = co a re not known completely but involve constants 

r a nd C. e 
These constants have to be determined from. the condition 

that the solution for u and r must be periodic in s. 

the corners is governed by the full Navier-Stokes equations. 

The flow in 

Due to these complications even the approximate methods 

which have be e n developed over the years for solving the boundary layer 

equations require e x tensive numerical work in addition to crude approx­

imations. 

Because of these difficulties it is perhaps useful to make a 

rough calculation of the m .ost important quantity, the torque, without 

aiming for numerical accuracy. Such a calculation is presented below. 

The resulting torque predictions are almost 30 % higher than exper­

imental results. 

4. 1 The radial shear layers. 

An approximate solution of the radial shear layers BC and 

DA is sought by assuming certain velocity profiles which do not satisfy 

the e x act equations but integrated forms of the equations. This is the 

underlying idea of the well-known Karm.an-Pohlhausen technique. 

The symmetry of the cell-structure requires that the velocity 

profiles in the shear layers be even in n. 

chosen: 

The following profiles are 

U(s,n) = U (s) + S(s)e -
112 

e 

2 
r(s,n) = r + 0(s)e - 11 ( 4.1. 1) e 

n 
11 = o{sJ 
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where o(s) is still to be determined. These profiles satisfy the 

boundary conditions at n = m. 

Three equations are needed in order to determine the three 

unknown functions S( s ), 0( s ), and o( s ). It is convenient to select: 

i) The m .eridional momentum-integral equation. 

ii) The angular momentum-integral equation. 

iii) The equation for the angular momentum taken at n = O. 

In the free shear layers these equations are respectively 

ds { 

00 
} dU 

00 00 

d s rU(U-Ue)dn +crsSr(U-Ue)dn=;2~:S(r 2-r:)dn ( 4.1. 2) 

0 0 0 

ds 

CX) 

d { ~ rU(r-re)dn} = O ( 4.1. 3) 

U( s, o) or 
Ts -T -I _ -¼ o2 r I 

n=O onz ( 4.1. 4) 
n=O 

The derivation of (4.1. 2) and (4.1.3) is given in Appendix 2. 

Substitution of (4.1.1) gives 

d~ { r6 S(S + Ue /2) J + d~: rS 6/2 = ;, ~~ 6 0(0 +re /2) 

d~ { r o 0 (S + Ue ✓2) } = 0 

( U + S) de = - 2 T -¼ ~ 
e ds oz 

From (4.1.6) follows 

r o 0 (S + U ✓2) = constant = .n.-. -M. 
e 7T J 

(4.1.5) 

(4.1.6) 

( 4.1. 7) 

( 4.1. 8) 

where j = 1 in the outward moving shear layer BC and j = 3 in the 

inward moving shear layer DA. Equation (4. 1.8) says that the flux 



18 

of angular mom.entum 

00 

M = 27T r s U(r-re) dn 
0 

is constant in the shear layers, in accordance with the close analogy 

between angular momentum flux and heat flux which was noted before. 

With (4.1.8) o is eliminated from (4.1. 5) and (4.1.6): 

( 4.1. 9) 

d0 2 7T r 2 03 
( r- ) 2 

(TJ + S) -d = - --r7 -8 M2. S + Ue y 2 
e s T 12 J 

( 4. 1.10) 

Solving these two simultaneous non-linear ordinary differential 

equations is still difficult. The problem is further simplified by 

assuming that 0 retains the value it has at the beginning of the free 

shear layer throughout the whole shear layer. That is 

e = e. = 
1, U 

for the outward moving shear layer 

for the inward moving shear layer 
(4.1.11) 

For the outward moving shear layer this is an overestimation of 0 , 

which ace or ding to ( 4.1. 9) results in an overestimation of S. Then 

according to (4.1.8) 8 is underestimated. Therefore, in quantities 

like the flux of meridional kinetic energy 

mass flux ( Soo U dn) which involve the 
0 

(5 ~3 dn) 
0 

products 

and meridional 

y3 0 and Vo 

the error in V and 8 have opposite influence, which is fortunate . 

With 0 = 0. (4.1.9) can be written as 
1, U 

( S + U -/2) ddS + S ddU e -/2 = ~ ddr 0. (e. + re-/8 ) e s s r s 1, u 1, u 
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or 

~(.!.s 2 + u s-f2) = 
1 

e dr 2 e 7 i,u (e. + r -lo) 
1, u e 

Hence 

( S 2 + U s-rs) I = (s 2 + U s-rs) I + 0. fe. +r-fs) f1/R~ - 1/R 2 ) 
e r=R e r=R. 1,u\1,u e \ 1 u 

U l 

Since U = 0 in the corners 
e 

(4.1.12) 

S 2 - 52 4 - 3 - e (e +r /s) (1/R~ - 1/R 2 ) 
U U e l U 

Here subscripts 1, 2, 3, 4 indicate the various corners of the cell 

ace or ding to Fig. 2. 

Because of the acce lerating action of the centrifugal forces 

in the free shear layers the meridional speed, momentum and kinetic 

energy are much larger at the points of impingement (4 and 2) than 

at the points of separation (1 and 3). Therefore in (4.1.12) S 1 and S3 

are neglected. This simplifies the problem considerably because the 

algebra required for the matching of the solutions for the shear layers 

and the wall-jets becomes much less involved. 

Thus (4.1.2) becomes 

( 4.1. 8) gives 

R 0.S 2 U l 

( 4.1.13) 

(4.l.14a) 
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(X) 

The meridional kinetic energy flux E = 271'r S U3 dn 
0 

points of impingement is: 

E 2 = 7T '3 M 1 (e i +re-is) (1/Rf -1/R~) 

E4 = -71' A M3 (eu + re-.fs) (1/Rf -1/R~) 

(X) 

(4.l.14b) 

at the 

(4.1.15) 

The meridional mass flux Q = 2 71'r SU dn at the points of 

0 
impingement is: 

Qz = 7T -(8 M1 
e. 

1 
(4.1.16) 

Q4 = 7T -(8 M3 e:-
This completes the approximate calculation of the shear 

layers. 

4. 2 The corner regions. 

The flow in the corner regions is governed by the full Navier-

Stokes equations, also in the limit T---oo. The exact stagnation point 

similarity solution of the Navier-Stokes equations is of no use here, 

because it cannot simulate the very important jet-like behavior of the 

impinging shear layer and the velocity overshoot in the boundary layer 

at the cylinder wall. Also, the exact solution has zero vorticity at 

infinity. The solution to be used for the corner r _egions must necessarily 

be approximate. Such a solution based on qualitative considerations may 

be obtained as follows. 

In section 2 it was shown that the thickness of the corner 
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regions is The energy dissipation in the corners is 

0(1) as T .-f- oo, as in the rest of the viscous region. The ratio of 

the dissipation in the corner regions and the dissipation taking place 1n 

the wall-jets and shear layers equal therefore the ratio of the volumes 

27rr6 2 - 6 
of these two regions: Z7rrod - d. It follows that the energy dissipated 

in the corner regions is much less than the energy dissipated in the rest 

of the viscous region. Therefore it seems a good approximation to 

neglect the energy dissipation in the corner regions. The meridional 

kinetic energy flux E is assumed to be constant in the corner regions. 

Assuming a continuous flow field it follows also from the 

small dimensions of the corner regions that the mass flux in the viscous 

region changes little in the corners. The meridional mass flux Q is 

also assumed constant in the corner regions. 

These two assumptions will suffice to obtain an approximate 

solution for the viscous region. 

4.3 The wall-jets. 

The wall-jets constitute the most complicated part of the 

viscous region. 

Themost straightforward way to obtain an approximate solution 

for the wall-jets would be to proceed along the lines of the Karman 

Pohlhausen technique, as was done for the shear layers. The velocity 

profile chosen should be of the type given in Fig. 3 and would therefore 

be complicated. In addition to the boundary layer thickness o(s) 

functions describing magnitude and distance from the wall of the max­

imum velocity overshoot should be introduced. Because the pressure-
dU 

e 
gradient - Ue ds is not zero or constant the resulting simultaneous 
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ordinary differential equations would have to be solved numerically, or 

additional approximations would have to be made. 

For simplicity 1 s sake we put U = 0 in equations {2.10) 
e 

and let u ~ 0 as n ...-.. oo. Then ( 2.10) has an exact similarity 

solution which satisfies the requirement of having a velocity over shoot 

and can be easily matched with the impinging shear layer. The similar-

ity solution for ( 2, 10a) with U = 0 
e 

( b h or _ O remem er t at as - in the 

wall-jets) and {2.10c) has been studied and graphically represented by 

Glauert (1956) who called the type of flow associated with it a wall-jet. 

This similarity solution will here be extended to include {2.10b). In 

fact, in so doing an exact solution of the boundary layer equations with 

heat transfer will be obtained, for Glauert 1 s wall-jet similarity case. 

The approximate equations which will be solved exactly to 

obtain an approximate solution for the wall-jets are 

u or+ war 
OS on 

orU orW 
3s+7rn=O 

The boundary conditions to be used are 

where 

r. = 
1, U 

U(s,O) = U(s, oo) = 0 

r(s,O) = r. , r(s,oo) = r 
1, u e 

r. at the inner cylinder 
1 

r at the outer cylinder 
u 

(4.3.1) 

(4.3.2) 

(4.3.3) 

(4.3.4) 

( 4. 3. 5) 
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(4.3.4) is not exact, (4.3.5) is. 

For a unique solution an initial condition at s = 0 is nee -

es sary in addition to ( 4. 3.4), ( 4. 3.5 ). This condition is that the wall-jet must 

be a continuation of the flow in the upstream corner. This condition will 

be approximately satisfied by requiring the mass and kinetic energy 

fluxes Q and E at the beginning of the wall-jet to be equal to Q 

and E in the adjacent corner. 

Using Glauert's work the following solution of (4.3. 1) and 

(4.3.3) can be written down: 

41 = __ 1, ........ u.,.___1_, u_ j 
40F. ( s-er. .) 

T¼ 

SF. T¼ I ¼ u = 1, U 
f'(17) 

2 ( s -er. ) 
1, U 

3/2 ¼ 
SF. T 

Y) = 1, U 
n 

3 2(s -eri, Jj 

Here f( '17) is the solution of 

fill + ff" + 2f' 2 = 0 

f(O)=f{oo)=O 

f and f' are given by Glauert in graphical forr_n. 

er. = 
1, U 

er. at the inner cylinder 
1 

er at the outer cylinder 
u 

(4.3.6) 

{4.3.7) 
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s = a-. is what will be called the singular point of the similarity 
1, U 

solution. It will be determined by matching the wall-jets with the im-

pinging shear layers. It is not assumed that the singular points coincide 

with the points cf. impingement, as in Glaue rt' s work. 

The constant F. is the scale of the similarity profile. It 
1,u 

has a rather obscure physical interpretation: from (4.3.1), (4.3.3) and 

(4.3.4) can be deduced in a straightforward way (see Glauert, (1956) ) 

that 

(X) CX) 

Su s U 2 dn dn = constant = F. 
1, U 

(4.3.8 ) 

0 n 

F. might be called the "exterior flux of mom.entum flux". As Glauert 
1, U 

observes, this is hardly a familiar concept. (4.3.8) holds for similar 

as well as for non-similar solutions. 

With ( 4. 3. 6) the meridional mass flux Q and kinetic energy 

flux E is found to be 

- (5)¼ ¼ Q - 471" -2. R. F. 
1, U 1, U 

LI F.5/ 4 T 3/8 
_ (5)}4 1, U E - l01r -2 e 1 R. ( )3/4 1,u S-CJ". 

CX) 1~ 

where e 1 = S f' 3 (17)d17= i!o (using 4.3.7). 
0 

From (4.3.9) and (4.3.10) follows 

F. 
1 ✓EQ3 

= R? 1,u 
401r2 ./e. 

1 1, U 

✓ e 1 T¼ ff s -(J". = 16 71" 2 R? 1, U 
1, U 

( 4. 3, 9) 

(4.3.10) 

(4.3 .11) 

(4.3.12) 
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From ( 4, 3, 11) follows that for the Glaue rt similarity profile 

E Q3 is constant in the wall-jets. Close to the upstream corner region 

the velocity profile may differ from the similarity profile. But a profile 

U = V(s) l5(s} exp l- 0~;s) } 

(this profile has a velocity overshoot) also has E Q3 = constant if 

(4.3.8) is satisfied, for otherwise arbitrary V(s) and o(s). Hence 

the assumption that EQ3 

able approximation. Thus 

does not vary in the wall-jet seem.s areas on-

EQ3 = constant = E Q3 
p_ .R. 

(4.3.13) 

where Ep_ and Qi. are the impinging meridional kinetic energy and 

mass fluxes, At the inner cylinder P. = 4, at the outer P. = 2. Since 

it has been assumed that E and Q do not vary in the corner regions 

Ep_ and Qi. are known from the approximate shear layer solution. 

Therefore the scale of the similarity solution is known: 

../fil.i3 
R? 

1, U 

The wall-jet is further matched with the impinging 

Q5 
by requiring that E at the beginning of the wall-jet equals 

(4.3.14) 

shear layer 

os 
E in 

the impinging shear layer. With ( 4. 3.12) this determines the location 

of the singular point of the wall-jet: 

s -Cf. = 
i_ 1~ U 

Of course the singular point does not occur in the real flow; 

the 11 virtual 11 starting point of the wall-jet. 

(4.3.15) 

s =er. is 
:i,u 



26 

With F . and o-. determined in this way the meridional 
1, U 1, U 

mass and kinetic energy fluxes Q and E are continuous through the 

regions where the shear layers impinge on the cylinder walls. 

The appropriate solution of (4.3.1) and (4.3.3) with boundary 

conditions (4.3.4) is now fully known; equation (4.3.2) with boundary 

conditions (4.3.5) remains to be solved. Fortunately several similarity 

solutions exist which make an exact solution possible. By separation of 

variables the following solutions of (4.3.2) are easily derived: 

with f givenby(4.3.7)and 

r = Bu 

with u given by (4.3.6). The following solution satisfies the bourmry 

conditions (4.3.5): 

r -r = B. + (r -r .)[1 e 1, u 1 1 u e 

with e 2 = f exp {-f ~('12)d'l2} d'] 1 = 3 • The constant 

such that the meridional flux of angular momentum 

00 

M = 21TR. s U(r - r ) d11 1, u . e 
0 

( 4. 3.16) 

B. is chosen 
1, U 

at the beginning of the wall-jet equals the angular momentum flux in the 

impinging shear layer. With (r - r ) 
e given by · (4.3.16) it follows that 
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M= 
250E3 T¼ ¼ 1/ 

[ 
2 

{ 
• } (s O - cr. ) / 4 2 1T R. B. - 1, u L 1, u + 

1, u 1, u 9 s - cr. s - cr. 
J.. 1, U 1, U 

( ){
40F. (s 0 -cr •• )}¼(s-cr. )¼ . 1 r r 1, u x 1, 1 1, u + 3 . -

1, u e T ½ s
1 

- cr. 
1, U 

By requiring at s = s ' i. 
M = M

1 
= meridional angular momentum flux 

in shear layers at points if impingement (i. = 2 at the outer cylinder, 

i. = 4 at the inner cylinder) the constant 

One obtains for M: 

B. 
1, U 

may be determined. 

40F (s -cr ) ¼ s-cr ¼ s -cr ¼ 
+ 21TR. (r. -r ){ • i,u J.. i,u} {( i,u) -( J_ i,u) } 

3 1,u 1,u e T ½ s
0
-cr. s-cr. 

L J, U 1, U 

(4.3.17) 

From (4.3.11), (4.3.12), (4.1.15) and (4.1.16) follows, remembering 

M3 = ~ : 

{ 

40F. ( s 0 -cr. ) }¼ 
l, U L 1, U = 

T½ 
-[2 

R. 0
0 1, U L 

(4.3.18) 

It is also assumed that M is continuous through those corner regions 

where the flow separates from the walls. Substitution of (4.3.18) in 

( 4. 3.17) then gives the following equations: 

(4.3.19) 

s -cr ¼ r -r 
( 2 u ) (i t 1T {8 e u) _ 71' -fs 
~ 2-cr+h e 2 r.-r . 3 u 1 e 

(4.3.20) 
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where h is the height of one cell ( see Fig . 1). 

The approximate solution of M as derived in this way is 

continuous and single-valued. A consequence is that the torques on the 

cylinders are equal and opposite, as they should be. {The outer cylirrer 

takes as much angular m .omentum out of the flow as the inner cylinder 

puts in). 

(4.3.21) 

(4.3.22) 

The four equations (4.3.19 ) - (4.3.22 ) contain five unknowns: 

M1 , M2 , r , o-. and o- • An additional equation is needed. 
e 1 u 

Single-valuedness of M is a necessary but not sufficient 

condition for single-valuedness of r. Another necessary condition 

for single-valuedness of r can be derived as follows. The equation 

for r (2.10b) can be written as 

Transformation from independent variables (s ,n) to independent vari­

ables (t,x) where t = s and x is the streamfunction (the von 

Mises transformation) gives 

For single-valuedness of r it is necessary and sufficient that 



At the streamline 

Hence 
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5 ~~ dt = 0 along each streamline , or 

C ~ (u 3r) dt = 0 along each streamline. J 3x 3x 

X = 0: 3 
ax = 1 3 

u 3n ' dt = ds . 

(4.3.23) 

Equation ( 4 . 3. 23) is a necessary condition for a single-valued solution 

for r . Substitution of the approximate shear-layer solution in (4. 3. 23) 

gives 

0~ 03 
1 ,------ U 

M z ✓ 0 . ( 0 . + r /8) + MZ ✓ -0 ( 0 + r {8 = 
1 1 1 e -·""3 u u e 

or 

e. r. -r 
1 _ 1 e 

where K = - e - I' -I' • Note that e = r -r u u e u e u 

(4. 3. 24) 

is negative. We 

now have obtained five simultaneous non-linear algebraic equations 

(4. 3.19)-(4. 3. 22) and (4 . 3. 24) for the five unknowns 

a-- • These equations can be solved as follows. 
u 

and 

Substitution of (4.3. 24) in (4. 3. 21) and (4.3 . 22) gives 

= a ( s O -a-.) 
1 

with (4.3. 25) 
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Substitution of (4.3.24) in (4.3.19) and (4.3.20) gives 

(4.3.26) 

(4.3.27) 

Let X= 0 < X < 1 

(4.3.26) and (4.3.27) become 

where 

Since 

y = 

0. 
l 

K = --0 
u 

0 < Y < 1 

- K = X ( 1 t 7T [
8 K) - 7T [

8 K X -
1 

- 1 - y(1 + 1r{81) - 1r{8 1 y-1 
K • 3 K 3 K 

we have, with 
r 

u r. = µ' 
l 

K = K7;4{(K+-f8) + K(-f8-l)µ }¼ 
({8-1) + (K-f8+1)µ 

{4,3,28) and (4.3.29) give 

X = - K + ./ K 2 + -j 7T {8 K (1 + ½ 7T {8 0 
2 (1 + ½ 1r{8 K) 

y = -1/K + -fl/K2 + j1r {8 i{_ (1+ ½ 7T {8 K) 

2 ( 1 + ½ 7T {8 ~) 

(4.3.28) 

(4.3.29) 

(4.3.30) 

(4.3.31) 
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Fr om ( 4. 3. 25) follows 

(4.3.32) 

Equations (4.3.30) - (4.3.32) contain only the unknown r e 
(via K). 

For every value of r (r. > r > r ) 
e 1 e u 

for given equations ( 4. 3. 30)-

R1· ( 4. 3. 32) give a value for r-. 
u 

4. 4 Comparison with experiment 

A comparison will be made with the very precise measure­

ments taken by Donnelly (1958). In Donnelly's experiments the outer 

cylinder is at rest, i.e. µ = O. Measurements were taken with 

R./R = 1.9/2.0 = 0.95 
1 U 

and R./R = 1/2. 
1 U 

With µ = 0 equations 

(4.3.30) - (4.3.32) give R./R = 0.50 for 
1 U 

K = 1. 83, R./R = 0.95 
1 U 

for K = 1.155. Considerfirstthecase R./R =0.50, K=l.83. 
1 U 

One 

obtains X4 = 0. 2625, Y4 =0.3335 (using (4.3.30) and (4.3.31). ~nee 

X4 
0. 356 h So -0". 

- l-X4 = 
1 

- y4 - 0.5 00 h Sz -0" -- h -
u l-Y4 

Substitution in (4.3.21) and (4.3.22) gives 

The dimensionless torque G due to one vortex cell equals M 1 -M3 , 

hence 
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1/ 3/ hl /.2 
G = 2. 268 T- 14 r.72 1' 

1 

With the outer cylinder at rest the reference velocity in the present case 

,:~ * 
r. /R. ' l l 

the reference length is 

Hence the dimensional torque is 

1/ ,:, ¼ 3 / 
;2 ¼ ~h ) *4 * ; 2 _v,.,,1_~ = 2.268 npv --x-- R. s-2. 

>!< 2 * .,, l l 
s-2. R. R. 

l l l 

( 4. 4.1) 

where n is the total number of cells. This number is unknown. The 

sim.plest assumption would be that the number of cells does not change 

as the Taylor number is increased, and is therefore equal to the number 

of cells near T . This number can be found from the wave-number of 
C 

the cells (i.e. a = 1r R /h) u 
at T = T which is given by hydro­

c 

dynamic stability theory, (e.g. Chandrasekhar, 1961, pp. 323, 304). 

The cell-structure has been explored experimentally in great 

detail for a wide range of supercritical Taylor numbers by Donald Coles 

(1965). This investigation shows (see Coles' Fig. 13) that if the gap 

between the Cylinders is sm.all the wave-number tends to decrease as 

T increases, i.e. the height h of the cells increases. It should be 

noted that if the gap between the cylinders is small the flow varies 

periodically in the azimuthal direction also for T > 1. 2 T (outer 
C 

cylinder at rest). The cells take on a ''wavy" shape. But for wider 

gaps (R /R. = 2 for instance) the flow remains rotationally symrn:tric 
U 1 

even for values of T much larger than T. Therefore it remains to 
C 

be seen whether also in the case of a wide gap the cell height tends to 

increase as T increases. 

For the time being it is assumed here that the dimensions of 
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the cells do not change as T increases. Chandrasekhar gives for the 

wave-number at T = T (R /R . = 2) a= 6. 2 
C U 1 

therefore h = 0.49 R . u 

For Donnelly 1 s wide gap experiment this would give 
,J< 

h = 0.9 8 cm. It 

seems there can only be an even number of cells. Since the total length 

of Donnelly1 s cylinders was 10 cm. one obtains 10 as the most 

-·-likely number of cells, with h,,, = 1 cm. Because the suspended part of 

the cylinder on which Donnelly measured torque was 5 cm. long 5 

cells contribute to the torque. Hence one obtains for the torque 

3 1'. ¼ >!<4 ,:, / 2 
= 11.34 pv R. n. 

1 1 

or 

(4.4.2) 

This relation has been plotted in Fig. 4. The rest of Fig. 4 has been 

taken fr om Donnelly 1 s paper. At 

measurements give 

whereas (4.4.1) gives 

27T • 103 

pn=::,2 
1 

G* = 2200 

( T = 100 T ) the 
C 

which is 29% higher. If the cell height is taken larger this difference 

decreases. 

In the same way one obtains for the case 

* G 
=0.747npv¼ 

R./R = 0.95 
1 U 
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Chandrasekhar gives hence For Donelly's 

narrow gap experiment this gives h ,:, = 0.1 cm., 50 cells contribute 

to the torque. The result is 

,:, - ¼ 

2rr 0 103 G,:, 4 (n i ) = 28.1 • 10 2rrv pn_,:, z 
1 

(4.4.3 ) 

For the narrow gap case Coles gives an "expected state" accord-

ing to which at high Taylor numbers the cell height is 1. 25 times that 

at the critical Taylor number. This gives 

= 25 . 2 • 

* -¼ 
104 (~) 2rrv 

(4.4.4) 

Relations ( 4.4. 3) and ( 4.4.4) have been represented graphically in Fig. 

5 ( curves A and B respectively). At r;//2rrv = 103 the measurements give 

2rr • 103 G,:, = 0. 7 0 . 104 
rn,:= z 

1 

whereas (4.4.2) gives 

and ( 4.4. 3) gives 

2 rr • 103 -·-
pn,;, z G-,- = 0.89 • 104 {27% higher) 

1 

2rr • 103 

pn::,z 
1 

_,_ 

G,,, = 0. 79 • 104 (14% higher) 

It should be kept in mind that in this case the actual flow has azimuthal 

oscillations. These have not been taken into account in the present 

approximate calculations. 

It is clear from Fig. 4 that the slopes ofthe experimental and treor-
_,_ 

etical curves are unequal as ri":-oo. The cause of this discrepancy does mt 
1 

lie in the approximations made in the preceding calculations. TI:e prop:ir-ticn­

,:, -¼ 
ality G* (n i) 

pn>)< 2 ex: 2rrv 
1 

can be derived by straightforward dimensional analysis, as shown by 
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Batchelor in an appendix to a paper by Donnelly and Simon (Batchelor, 

19 60). The fact that the slope of the experimental curve differs a little 

from this theoretical prediction is somewhat disturbing. 

Batchelor' s complete result based on dimensional analysis is, 

with minor changes in notation, 

(4.4.5) 

,,, 

where H,,, is the total length of the cylinders. In the preceding theory 
,,, 

the dependence of G~ on is implicit in the complicated algebraic 

relations which connect K with R./R ; this dependence cannot be 
1 U 

expressed in simple form. Donnelly and Simon (19 60) made an excellent 

survey of torque measurements. They fitted a curve given by 

(4.4.6) 

with experimental results and find P. ...;_ 0.62, + m = 0.32-0.05. These 

results are consistent with (4.4.5), but the spread in m seems to 

indicate that in reality the dependence of 

cated than (4.4.5). 

* G on is more compli-

Batchelor assumed that the height i-t of the cells equals 

::J;: :❖: 

at T=T . This makes h a function of d {keeping the outer cylinder 
C 

at rest). Therefore (4.4.5) does not give a dependence of d:< 

The agreement between the foregoing approximate torque 

calculations and experiment is close enough to lend strong support to 

the preceding theoretical description of the flow. 

A final remark concerns Snyder's and Lambert's observation 

that the outward flow resembles a thin jet (as has been deduced in this 
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thesis) but the inward flow is slow (contrary to the present theoretical 

description). Taking the case R /R. = 2 we have 
U 1 

K = 1. 83. With the 

outer cylinder at reat it follows from the definition of K that 

(from the choice of reference quantities follows r.=l) 

r. 
r = -e =+-

1 
= o.353 

e u K+l 

Substitution in (4.1.13) gives for the magnitude of the dimensionless 

velocity at the points of impingement: 

S 2 = 0.863 

S4 = 0.414 

1 

Hence the inward moving shear layer is remarkably slower than the out­

ward moving layer, which may account for the observation of a slow 

inflow by Snyder and Lambert. 

5. Conclusion 

It has been shown that a boundary layer type flow model where­

by the Taylor-vortex cell consists of an inviscid core surrounded by a 

thin viscous region results in a self-consistent description of the flow. 

The model leads directly to a simple explanation of the mechanism by 

which strongly developed Taylor vortices are driven. Approximate 

calculations of the torque agree well enough with experiment to lend 

strong support to this flow model. For more accurate calculations of 

the torque at high Taylor numbers equations (.2.8) and (2.10) must be 

solved numerically. 
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Appendix 1. 

A discussion of the state problem. 

In the foregoing calculations the height of the cells is arbitrary 

and must be given before the flow field can be calculated. In the follow­

ing a short review is given of publications concerning the determination 

of the height of the cells. 

By "the state problem" we mean the determination of the 

state of the flow, that is, the determination of the height of the cells. 

If there are azimuthal variations ( "wavy" vortices) the determination 

of the state of the flow includes a specification of the wavelength of the 

azimuthal waves. Azimuthal waves occur at Taylor numbers only 

slightly above the critical Taylor number if the gap between the cylincers 

is small (d/R . = 1/10 say) (Coles, 1965). 
1 

For d/R. = 1 experiment 
1 

indicates that azimuthal waves do not occur at all (Snyder and Lambert 

(1966) ). 

The state problem has not yet been solved theoretically. The 

present work would have contributed to the solution of the state problem 

if the boundary layer equations ( 2.10) had been solved more accurately 

(analytically or numerically). Presumably, for cell heights either too 

great or too small a physically admissible solution of ( 2.10) might not 

exist. For cell heights too large it seems fairly certain that the bouncbry 

layers on the cylinder walls will separate before reaching the corners 

of the cell. For cell heights too small ( 2.10) may not have a single -

valued solution. Or perhaps, single-valued solutions exist only for 

discrete values of the cell height. In any event, the state problem cannot 

be solved completely by studying the asymptotic behavior of the solutions 
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as T .-.. m more accurately, if the solutions are not unique. At most, 

one can determine which states are possible. 

In the case of a small gap experiment strongly indicates non­

uniqueness ( Coles, 19 65 ), i.e. for a given Taylor number more than 

one state can be realized experimentally. For R /R. = 2 experirr:ent 
U l 

indicates that the cell height tends to increase with T (Donnelly and 

Schwarz, 19 65; Snyder and Lambert, 19 66). On the uniqueness quest ion 

these experiments do not throw much light. Numerical calculations 

(Meyer, 1966) indicate non-uniqueness. 

Much theoretical work has been done on the state problem. A 

state problem also occurs in the flow in a horizontal layer of fluid heated 

from below (Benard flow). I£ the Rayleigh number Ra exceeds a 

critical value buoyance forces set up a flow pattern which may consist 

of two-dimensional rolls or hectagonal cells (Benard cells). I£ the 

layer of fluid is bounded above and below not by rigid walls but by fluid 

the flow which occurs for Ra = Ra ·t takes a form which is analy-cr1 

tically very simple: it is described by trigonometric and hyperbolic 

functions. For this reason investigations of the non-linear regime 

(Ra > Ra .t) are simpler for this flow than for Taylor-vortex flow. cr1 

Hence greater progress has been made. Of course there is no direct 

relationship between the state p:i:;- oblem for Benard flow and for Taylor­

vortex flow, but theoretical ideas and methods designed to penetrate into 

the non-linear regime of Benard flow may be expected to apply to Taylor -

vortex flow as well, and vice-versa. For this reason a short survey of 

work on the state problem £or Benard flow will be given. 

Malkus and Veronis (1958) showed that the equations have 
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many solutions for Ra > Ra . , 
cr1t 

but that only those solutions are 

stable against disturbances which have the form of the other solutions 

which maximize the heat transport. The question of how many solutions 

maximize the heat transport is left unanswered. 

Another investigation connected with the state problem for 

Benard flow is the work by Segel (19 62) . This paper considers the 

interaction of two "roll" disturbances with different wavelengths for 

Ra> Ra ·t, cr1 
assuming that the fluid is initially at rest. Because of 

this assumption Segel's work has no direct connection with physical 

reality {the fluid cannot be at rest for Ra> Ra ·t ) cr1 
but it provides 

valuable insight in the mathematical properties of the non-linear equuiore 

which describe the problem. Such an interaction of two disturbances 

was first studied by Palm (19 60) whose work was later modified and 

refined by Segel and Stuart {1962). According to Segel's analysis, two 

infinitesimal disturbances, both of which would be amplified according 

to linearized theory, interact in such a way that only one of them rernrins. 

Which one depends on the relative magnitude of their initial amplitudes, 

which are prescribed. This result is reminiscent of Coles I experiment, 

in which the state which is reali zed depends on the way the experimenter 

has varied the speed of the cylinders before a steady state is obtained. 

Turning now to the Taylor -vortex flow problem, an important 

mathematical result has been derived by W. Velte {19 65 ). It is shown 

that at T = T there is a branching of stationary solutions of the 
C 

Navier-Stokes equations. The question whether the new branch exists 

for T < T or for T > T , 
C C 

and how many branches come together 

at T=T 
C ' 

is left unanswered. This is the only published theoretical 
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paper on the state problem for Taylor -vortex flow. 

Note. The state problem is also studied in an unpublishe d paper by 

Reynolds and Potter (19 67), which was brought to the author's attention 

by Prof. Coles. Assuming axial symmetry, finite amplitude solutions 

are developed as powers of ( T¼ - T ¼ ). This has also been done by 
C 

Davey (19 62). It turns out that there is an infinite number of solutions. 

Reynolds and Potter study the stability of these solutions, and it is 

found that only one solution is stable. This solution has the property 

that its wave-length (cell height) decreases with T. 

Contrary to the claims of the authors, however, they have not 

solved the state problem in this way, because their results depend on an 

important assumption, which is not stated and which remains to be 

justified. Reynolds and Potter perturb their finite amplitude solutions 

with a perturbation which depends on time like gt e . They argue that 

for a stable finite amplitude solution (with wavelength }..=}..) g=0, 
s 

thereby assuming that solutions with A slightly less and slightly 

higher than A 
s 

will be unstable (g > 0), so that the case g < 0 

does not occur. In other words, Reynolds and Potter assume a priori 

that the spectrum of possible states is discrete . Stable solutions are 

assumed to exist only for discrete values of A • 
s' solutions with 

inbetween these values are unstable. Only one possible value of 

is found. 

A 
s 

It is clear that the assumption of a discontinuous spectrum 

needs to be justified. If it turns out that in reality the spectrum is 
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continuous then Reynolds and Potter have not determined the only 

possible finite amplitude solution, but the marginal stability boundary (I) 

of the spectrum of finite amplitude solutions (see Fig. 6). In that case 

there should be a second marginal stability boundary (II), which how­

ever was not found by Reynolds and Potter. Before this is taken as 

proof that the spectrum is indeed discrete a detailed investigation of 

the possibility of branching of the marginal stability boundary seems 

called for. The branching of the marginal stability boundary may have 

been masked by the asymptotic method used by Reynolds and Potter. 

The most striking result of Reynolds' and Potter I s theory is 

the absence of non-uniqueness. If this result is correct the non-unique­

ne s s observed experimentally in the case of a small gap (Coles, 19 65) 

must be due to the azimuthal waves. In the case R /R . = 2, 
U 1 

where 

azimuthal waves are absent e xperiment should show no non-uniqueness 

at all. It has already been mentioned that at present there are no experi­

mental results available which settle this question conclusively. Meyer's 

(19 66) numerical calculations show non-uniqueness. 

Reynolds' and Potter's prediction of decreasing wave-length 

with increasing T is somewhat at variance with experiment. Donnelly 

and Schwarz (1965) and Snyder and Lambert (1966) find a (not very 

pronounced) trend of increasing wavelength with increasing T , with 

R /R. = 2. 
U 1 
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Appendix 2. 

Derivation of the meridional and angular momentum-integral equations . 

Equations ( 4 . 1. 2) and ( 4.1. 3) can easily be derived as 

follows : ( 2. 10a) can be written as 

o o dUe r2-~
2
dr -¼ o 2 U 

rU-(U-U )+ rW-(U-U )+r(U-U )- = -- -+ T r -o s e on e e ds r z ds on2 

Multiplying (2. 10c) with (U-U) and adding to (A.l) gives ~ 
e 

(A . l) 

du r 2-r 2 
1 2 

~s.{rU(U-Ue)}+ !n{rW(U-Ue)}+ r(U-U~ = __ edr+T- ¼, ro U (A.2) 
Ob u e ds r 2 ds . on2 

Integration of this e quation with respect to n between n = 0 and 

n = oo, taking into account that at au n = O, U - U = - = 0 
e on 

at n=oo gives equation (4.1. 2) . 

Equation ( 2. 106) can be written as 

a a 
rU - (r-r ) + rW -(r-r ) as e on e 

(A . 3) 

Multiplying (2. 10c) with (r-r ) 
e 

and adding to (A . 3) gives 

(A . 4) 

Integration of this equation with respect to n = 0 and n = oo, taking 

into account that 
ar 

W =- = 0 on 

gives equation (4.1.3). 

at n = 0, 
ar r-r =-=O 

e on 
at n= oo 
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Appendix 3. 

'.The solution for the inviscid core. 

The flow in the inviscid core is governed by equation ( 2. 8): 

rv = r e 

(A. 5) 

The boundary conditions are, taking z = 0 in the middle of a cell; 

Let 

then 

Lj; = 0 for + h r = R., r = R , z = --2 1 U 

y; = y; + ~ ( r 2 
- Rt) ( r 2 

- R ~) , 

The following boundary conditions are satisfied by Lj; ; 

~ = 0 for r = R., r = R 
1 U 

Separation of variables gives 

Ljj = R(r) Z(z) 

R'' - ~R' -cR = 0 
r 

Z 11 + cZ = 0 

In order to satisfy boundary condition (A.9a) we must have 

{A. 6) 

(A. 7) 

(A. 8) 

(A. 9a) 

(A.9b) 

(A. 10) 

R(R. ) = R(R ) = O. It turns out that this is only possible if the constant 
1 U 

c is negative. Writing C = _,,z 
ln ' 
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(A. 12) 

R(R.) =R(R) = 0 
1 U 

Equation (A.12) is of the Sturm-Liouville type and there are infinitely 

many eigenvalues 'Yn and infinitely many eigenfunctions R = R . 
n 

Moreover, these eigenfunctions form a complete set so that the function 

F(r) in boundary condition (A.9b) can be represented as a linear 

combination of the R 1 s. 
n 

The solution for R is found to be 
n 

R = r { J 1 ( -y r ) Y1 ( -y R . ) - J i( 'Y R . ) Y 1 ( 'Y r ) } n n n 1 n 1 n 
with -y defined by 

n 
Ji(-y R) Yi(-y R.) - J 1 (-y R. )Yi(-y R) = 0 

nu n 1 n 1 nu 

The relevant solution of (A.11) is 

Z = Z = COS h {-y Z) n n 

The solution for ljJ is built up by superposition of the functions 

(A.13) 

(A.14) 

R Z: 
n n 

The constant 'Yn has been chosen such that the boundary condition 

(A.9a) is satisfied. The boundary condition (A.9b) is satisfied if 

(A.16) 

where 
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According to the discussion following equation (A.12) it is indeed 

possible to represent F(r) in this wayo The constants are given by 

where N = n 
2 

7r2 y2 R 2 
n u 

C 1 , 1 ( y r) dr 
n 

(A.17) 

A proof of this result has been given by Titchmarsh (19 23 ). By partial 

integration one finds 

TT CR3 

A = ____ u--,-__,.-, 

n y~R~cos h(yn 1) J 2 ( y R ) - J 2 ( y R.) 
1 n u 1 n 1 

(A .18) 

The values of y1, y2 and y3 have been tabulated by Chandrasekhar 

and Elbert (1954). For the case 

obtained: 

Al 
CR3 

R /R. = 2 the following result is 
U 1 

- L 134 

A2 
u 

Oo 143 (A.19) = 
8 cosh(yn~) 

A3 - o. 134 

Using equations (Ao 7), (A.15) and (A.19) one finds that the 

extremum of LjJ and hence the center of the vortex flow pattern is 

closer to the outer cylinder than to the inner cylin~er. This fact has 

been taken into account in the qualitative flow picture in Fig. 1. 

In order to obtain some more information about the flow 

pattern the radial velocity u at the edge of a cell has been computed 
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with R. = 1, R = 2, h = 1 (cell cross-section square). At the edge of 
1 U 

a cell 

u( r, ½ ) 

1 z = z in the present case, and one obtains 

(A. 20) 

It is clear that the corners (r = 1, r = 2) are stagnation points. The 

sum of the first three terms of this series has been plotted in Fig. 7. 
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OUTER 
CYLINDER 

h 

Figure 1. Sketch of the flow in an axial plane. The shaded area 

represents the region in which viscous forces are important. 
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Figure 2. Definition of the coordinate system (s,n) for 

the viscous region. 
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Figure 3. Sketch of velocity profiles near a point of impingement. 
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Figure 4. Comparison with experiment. The circles and 

triangles represent measurements taken by Donnelly (1958, fig. 8) 

with R. = 1. 0 cm., R = 2. 0 cm. The theoretical curve is given 
1 • U 

by equation ( 4. 4. 2). Curve A represents Davey1 s (19 62) theory. 
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Figure 5. Comparison with experiment. The circles represent 

measurements taken by Donnelly (1958, fig. 5) with R.= 1. 9 cm., 
1 

R = 2. 0 cm. The theoretical curves A and B are given by 
u 

equations (4. 4. 3) and (4. 4. 4) respectively. The dashed curve 

represents Davey's (1962) theory. 
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Figure 6. The marginal stability boundaries. 
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Plot of the velocity along the upper boundary of a cell as given 

by the Euler solution. Square cell, Ru/R. = 2. 
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