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Abstract 

Artificial Life, the creation and study of man-made systems that exhibit the char­

acteristics of life , is a young and still emerging field . The goals of Artificial Life 

are two-fold; to gain knowledge about and from biology. The Artificial Life system 

sanda , which extends upon previous systems tierra and avida , was designed to help in 

investigations into the statistical nature of evolution. As such, it is a model of the 

simplest living, evolving organisms. Experiments involving tierra , avida , and sanda 

were the inspiration for investigations into the causes of apparently scale-free dynam­

ics found in these systems. These investigations lead to identification of a branching 

process that explains the scale-free dynamics of not only these Artificial Life systems, 

but also those manifested in the taxon rank-frequency distributions of biology and in 

the size distributions of avalanches in "self-organized critical" sandpile models. This 

branching process can quantitatively predict- with no free parameters- the pattern 

of the observed distributions, including their divergence from a true power law. Fur­

ther, the branching process gives insight into the universal mechanisms involved in 

the creation of, and divergence from, scale-free dynamics in these systems, including 

a definition of order and control parameters reminiscent of those from second-order 

phase transit ions in statistical physics. 
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Chapter 1 Introduction 

1.1 Why Artificial Life? 

Ever since Darwin [16] proposed his grand theory of evolution , biologists and others 

have been asking, "What if?" What if the temperature on Earth had been a hundred 

degrees hotter or cooler throughout its history? What if the atmosphere had more 

nitrogen and less oxygen? What if no global changes had occurred to (perhaps) wipe 

out the dinosaurs? Was the creation of life on Earth an impossibly lucky accident? 

How about the creation of life as we know it? Could other forms of life- perhaps not 

based on carbon or on DNA- have arisen given different rolls of the "evolutionary 

dice" ? 

An even more fundamental question, asked since man first recognized the dif­

ference between living creatures and inanimate objects, is "What is Life?" What 

makes a thing alive and distinguishes it from things without life? A multitude of 

definitions have been proposed; physiological ( centered on functions performed by 

organisms) , metabolic ( centered on the exchange of materials between the organism 

and its surroundings) , biochemical (living organisms are characterized by storage of 

genetic information in nucleic acid molecules) , genetic ( characterized by evolution, 

not necessarily based on nucleic acids) , thermodynamic ( characterized by an abil­

ity to maintain low levels of entropy), etc. However, none of these definitions are 

completely satisfactory. 

One of the major roadblocks to defining, and studying, the essence of life , is that 

we can not deconstruct it , separate it into its parts as we do entities in Physics or 

Chemistry. Once a living system is separated into its parts , the individual parts no 

longer have life. A study of the individual parts can only tell us so much about the 

·whole. While we can learn much about the mechanisms of life from the structure of 

DNA, it is hard to believe that DNA, by itself, is alive. Life is a property of a living 
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system, not of its parts. 

Artificial Life, the creation and study of man-made systems which exhibit char­

acteristics of life, offers an avenue of investigation into essential properties of life. 

Because these systems are man-made, we understand the workings of all the parts, 

and this offers us more hope of understanding what happens when we put all the 

parts together. By creating systems which mimic life, we hope to learn more about 

what life is. 

Such systems also give us the fantastic ability to experiment with life, with evolu­

tion. We can set and reset the parameters of the system, and run it again and again, 

until we gain a true, fundamental , and quantitative understanding of the processes 

involved. To these ends, we need a system simple enough for us to understand and 

calibrate its workings, and fast enough to allow repeated evolutionary trials so as to 

gain a statistical picture of life and evolution, but still sophisticated enough to model 

the processes at work in natural evolution. The Artificial Life systems tierra [32, 33], 

avida [4], and my own system sanda are attempts at such a system. Personally, sanda 

has acted as a source of ideas, suggesting avenues of research by its tantalizing par­

allels to nature , while serving as a lab bench, giving me a system where I could run 

countless numbers of trials to gain statistical data to verify an idea. 

1.2 Scale-free Dynamics 

One striking statistical feature observed in tierra, avida , and sanda runs is the appear­

ance of seemingly scale-free dynamics- manifested in near power law distributions- in 

genotype abundance distributions (analogous to species distributions in nature) [3, 6]. 

Various mechanisms were proposed to explain the appearance of scale-free dynam­

ics, and also the variance from such dynamics in some trials. The power laws were 

compared to those observed in self-organized criticality (SOC) , natural evolution, and 

random walks, while the deviance from power law was mostly attributed to finite-size 

effects. 

Near power la'w distributions are found in the statistics of a wide variety of systems 
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from diverse disciplines , including demography, taxonomy, geophysics, and nuclear 

physics. Per Bak [9] proposed that many of these power laws result from a single 

underlying process, which he termed self-organized criticality (SOC). The paradigm 

for SOC is the avalanche behaviour of sandpile models, which under certain conditions 

exhibit scale-free dynamics. Similarly, for taxonomic levels higher than species, the 

rank-abundance distributions of number of subtaxa per taxon approximate power 

laws. Yule [4 7] proposed a branching process model to explain these distributions at 

the generic level. He recognized that naturally observed distributions diverged from 

the power law predicted for equilibrium distributions by his theory and hypothesized 

that this deviation was caused by a finite-time effect. 

In Chapter 6, I present a branching process model that explains the observed 

genotype abundance distributions in sanda and the near power law distributions in the 

other systems mentioned above. The model 's formulation was inspired by observation 

of many sanda runs. The model was tested on various versions of sand a, some of which 

had simpler dynamics than others. The experiments on sanda versions with simpler 

dynamics allowed for better observation of the factors that determined the large-scale 

dynamics of the system, unobstructed by secondary perturbations. The branching 

process model predicts not only the power law distribution of genotypic abundances 

observed in some runs , but also predicts the divergences from power law observed in 

other runs. It gives a quantitative prediction of the shape of the distributions with 

no free parameters. Furthermore, the model also explains the seemingly scale-free 

dynamics observed in SOC's sandpile models, and in the rank-frequency distributions 

of taxons in nature. For these systems also, the branching process model allows 

quantitative prediction of distribution patterns with no free parameters. For the 

SOC sandpile models , I find that the "self-tuning" results from arbitrarily enforcing 

conditions on the order parameter, and show how relaxing these conditions change 

the observed dynamics. While for natural evolution, I find the deviance from power 

law is not due to a disequilibration effect (as Yule proposed), but rather results from 

fundamental properties of the observed taxa. 

This research was inspired by observations of interesting statistical behaviour in 
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artificial living systems. Its initial progress was two-pronged; finding an analytical 

model which could explain the dynamics leading to such distributions and simplifying 

the system until such dynamics could clearly be seen. The new understanding that 

these investigations yielded found broad application to such systems as seemingly 

disparate as the distribution of avalanche sizes in sandpiles and the distribution of 

taxon sizes in biology. Artificial life has served well as both muse and medium. 

1.3 Outline of Thesis 

In Chapter 2, I introduce the emerging field of Artificial Life and describe the Ar­

tificial Life system sanda. I present a test of sanda 's validity in an application to 

propagation of information in self-replicating genetic systems in Chapter 3. Chap­

ter 4 is a short chapter dealing with appropriate methods for binning histograms of 

events with exponential or power law probability distributions. Chapter 5 details an 

extension to the Bak-Tang-Wiesenfeld sandpile model that allows us to study charac­

teristics of the model in previously ignored regimes. Finally, Chapter 6 discusses the 

scale-free dynamics of a branching process and its applications to statistics found in 

sanda , natural evolution, and sandpile models. Chapter 3 is from a paper presented 

at Artificial Life V held May 1996 in Nara, Japan [14]. Chapters 4-6 contain parts of 

papers to be submitted to Nature, Physical Review Letters, and Physical Review E. 



Chapter 2 

Sanda 

The Artificial Life System 

2.1 Artificial Life 

Artificial Life is the creation and study of man-made systems which have characteris­

tics of life. Characteristics modelled in current Artificial Life systems include genetic 

evolution and coevolution, flo cking behaviour, locomotion, language acquisition, the 

spread of disease, and many others. Despite this diverse subject matter, almost all 

Artificial Life systems share an evolutionary approach to learning. 

Artificial Life systems can be largely divided into two types; those that seek to 

gain a better understanding of natural life , and those that attempt to apply insights 

from biology to other fields of endeavour- engineering, recreation, etc. Artificial 

Life systems can also be classified by whether they emphasize the development and 

coevolution of populations, or the evolution of individuals. Yet another classification 

scheme involves the media used to implement the system- wetware (real biological 

components from natural systems such as RNA, DNA, proteins), hardware (robots, 

etc.), or software (simulations, computer code). Fig. 2.1 shows a sample of currently 

existing Artificial Life systems and their classifications. Refs. [4 , 26] are recommended 

as more detailed introductions to Artificial Life systems. 

Webb [45] and co-,vorkers built a robotic cricket from L egoTM parts to gain insight 

into the mechanisms used by real crickets to locate prospective mates by listening to 

their song. The robot was equipped with artificial ears and neurons, and actuators 

connecting its "brain" 's output to its left and right wheels. Differences in signal 

strength to each wheel caused the robot to move in a curved path. The artificial 

ears were built to mimic actual cricket ears and their sensitivity to phase differences 

between the sound waves arriving at each ear. Webb tested algorithms for phonolo-
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Individuals Populations 

Robot Crickets 

Biology 1 lerra, A vida, Sanda 

Wasp Nests 

Genetic Al ,orithms 

Engineering 
Sims's Block Anirn ~ls 

Creatures ( computer game) 

Figure 2.1: Various Artificial Life systems. Only a few of the many currently existing 
Artificial Life systems are shown. The characterizations are based purely on my own 
judgment. The systems shown are: robot crickets [45] tierra [32], avida [4], sanda [14], 
wasp nests [41], CreaturesTM [21], genetic algorithms [24], and Karl Sims's evolving 
animals [35]. 
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cation. She found that a simple algorithm succeeded m recreating the movement 

patterns of crickets. Robots using the algorithm were able to distinguish between 

different songs when many were played simultaneously. Furthermore, this algorithm 

depended on breaks between chirps for phonolocation, suggesting an explanation for 

the distinctive chirping of crickets in nature. 

Theraulaz and Bonabeau [41] developed a simple model of randomly moving arti­

ficial agents to test the possibility that complex structures such as wasp nests could 

be built without inter-agent interaction. Each agent in their model could sense only 

the local structure near it, and could only deposit elementary building blocks. With 

simple rules based purely on local conditions for depositing building, a swarm of these 

agents built structures with shapes strikingly similar to those of real wasp nests. 

Creatures™ [21] is a computer game where players raise, teach, and breed com­

puter "animals." The animals' behaviours are determined by neural nets , and can be 

modified by user-supplied stimuli. 

Genetic algorithms [24] have been used extensively in optimization problems. The 

problem to be solved is encoded into "chromosomes" - bit strings representing can­

didate solutions to the problem. A population of these chromosomes is simulated. 

With successive selection ( choosing the chromosomes which currently best approach 

a solution to the problem) and mutation (random bit flips in chromosomes, mixing 

of segments of two chromosomes to create a new chromosome), the system tends to 

evolve chromosomes ·which approach solutions of the problem. In addition to pure 

engineering uses , genetic algorithms have also been used as models of biological and 

social systems. 

Karl Sims created systems where both the shape and behaviour of block creatures 

were allowed to evolve, and creatures were selected for being able to perform phys­

ical feats, such as swimming, crawling, or object manipulation. In these systems, 

creatures had "genotypes" (much like a genetic algorithm's chromosomes) containing 

information on both their morphology and behaviour. His work differs from classical 

genetic algorithms in that he introduced direct competition between different mem­

bers of the population as a means of selecting the fittest. For example, in one of 
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Sims's systems, creatures attempt to gain control of a cube placed in the middle of 

their simulated world. The creatures are paired off and duel for the cube, and the 

results determine their fitness. The fitness of a creature is determined not only by its 

own morphology and behaviour, but that of the other creatures existing with it. 

Although the proliferation of Artificial Life systems, and the corresponding recog­

nition of Artificial Life as a distinct field of study, is a recent (since ~1988) develop­

ment , theoretical explorations of Artificial Life character have a longer history dating 

back to Von Neumann [43] and his thinking on self-replicating cellular automata. 

NASA even studied self-replicating robots as a means of mining the moon [25]. How­

ever, it has only been recently that we have gained sufficient computing power and a 

good enough understanding of the base-level mechanisms of evolution to make non­

trivial Artificial Life a possibility. The need for solutions to complex problems (some 

of which have already been solved by nature) has also stimulated recent Artificial Life 

research. 

Artificial intelligence, to which Artificial Life is often compared , was widely touted 

m its early days as a quick and easy road to making "intelligent" computers, as 

conscious as- and smarter than!- ourselves. This was, of course, too much to ask. 

I believe Artificial Life will have many applications in optimizing characteristics and 

behaviours of complex systems. However, my greater hope is that Artificial Life 

systems will become a bona fide tool in a biologist 's toolbox, one that allows the 

correct degree of abstraction for any particular problem; enough to make the problem 

tractable, but not enough to change its character. 

Modern biology, much like modern physics or chemistry, has become centered on 

deconstruction of the whole into its components. l\!Iolecular biology has pushed the 

likes of anthropology, botany, and zoology from the front of the stage. Advances in 

deconstructive biology have led us much closer to an understanding of the biochemical 

mechanisms that life uses in the lifeforms present on Earth. However, with the recog­

nition that such mechanisms can not explain all of life 's characteristics, more holistic 

disciplines (e.g. , ecology, large-scale theories of evolution and extinction, systematic 

neurobiology, complexity) which seek to understand how the individual parts and 
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mechanisms vvork together to create the dynamics of the system as a whole- what 

we call life- are gaining an increasing share of attention. Artificial Life is a discipline 

at the crossroads of biology, physics, computer science, and all the engineering fields 

concerned with the artificial media man has created. It ultimately seeks to explore 

the essence of life. 

2.2 Overview of Sanda 

Sanda , from the Korean for 'to live ', is a software system designed to emulate and 

study the evolution of populations of self-replicating code. In the classification of 

Artificial Life systems proposed in the previous chapter, sanda , like avida and tierra , 

is more a biological tool than a biology-based application. Although, with improve­

ments in the software and even faster computers, the system may eventually become 

powerful enough at creating new strategies and algorithms through evolution that 

it will become an algorithm-creating application of biological principles. Sanda can 

also be used to study the evolution of characteristics in individual creatures, but 

its greatest strength lies in investigating large-scale population effects of evolution; 

broad statistical laws which hold true in all replicating, competing, mutating, evolving 

systems. 

Sanda is the third generation in the tierra family line. Tierra , in which strings of 

self-replicating assembly-like code proved robust under mutation was the first of its 

kind. Avida added a spatial structure to tierra , creating a physically more realistic 

system in which the dynamics of diffusion and information propagation could be ob­

served. Sanda expands avida 's boundaries by allowing simulations with unprecedented 

size, or the possibility of easily running multiple, related simulations. A larger sys­

tem size yields better statistics and easier observation of spatial effects, and- perhaps 

most importantly- allows the possibility of observing a system evolving always away 

from equilibrium. 

Sanda was written first in C, and then completely rewritten in C++ to allow easy 

extension to the base system. It runs on a wide range of machines, but was designed 
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and optimized primarily for use on the Intel Paragon, a massively-parallel MIMD 

architecture supercomputer. 

Like avida , sanda works with a population of strings of code residing on an NI x N 

lattice with periodic boundary conditions. Each lattice point can hold at most one 

string. Each string consists of a sequence of instructions from a user-defined set. 

These instructions, which resemble modern assembly code and can be executed on 

a virtual CPU, are designed to allow self-replication. The set of instructions used is 

capable of universal computation. 

Each string has its own CPU which executes its instructions in order. A string 

self-replicates by executing instructions which cause it to allocate memory for its 

child, copy its own instructions one by one into this new space, and then divide the 

child from itself and place it in an adjacent grid spot. The child then is provided with 

its own virtual CPU to execute its instructions. When a string replicates, it places 

its child in one of the sites in its 9-site neighbourhood (Fig. 2.2) , replacing any string 

which may have been there. How the site to be replaced is chosen can be defined by 

the user. See the section on replication and selection below for more information. 

It should be noted that this birth process, and indeed all interactions between 

strings, are local processes in which only strings adjacent to each other on the grid 

may affect each other directly. This is important as it both supplies the structure 

needed for studies of spatial characteristics of populations of self-replicating strings of 

code, and allows longer relaxation times - making possible studies of the equilibration 

processes of such systems and their nonequilibrium behavior. 

This process of self-replication is subject to mutations or errors which may lead 

to offspring different from the original string and in most cases non-viable (i.e. , not 

capable of self-replication). Of the many possible ways to implement mutations, we 

have mainly used copy errors. That is, every time a string copies an instruction there 

is a finite chance that instead of faithfully copying the instruction, it will write a 

randomly chosen one. This chance of mutation is implemented as a per-instruction 

mutation rate 1- the probability of copy-error per instruction copied. A mutation 

rate I for a string of length I!. will therefore lead to a fidelity (probability of the copied 
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Figure 2.2: Sanda grid. The organisms live on an Euclidean grid, one organism to a 
site. When an organism replicates , its daughter replaces one of the organisms in its 
9-site neighbourhood. (If the organism marked by a black dot replicates, its daughter 
replaces one of the organisms at a gray site.) Which criteria are used in choosing the 
neighbour to be replaced affects the dynamics of the system. 
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string being identical to the original) F = (1- , y. Mutations allow us to evolve a very 

heterogeneous population from an initially homogeneous one. The resulting evolution, 

coevolution, speciation, etc. have been and continue to be studied [33, 2, 3, 1, 5, 6] . 

The factors which decide whether one particular sequence of instructions ( or geno­

type) will increase or decrease in number are the rate at which it replicates and the 

rate that it is replaced at. In this model , the latter is genotype independent. Ac­

cordingly, we define the former (i.e. , its average replication rate) as the genotype's 

fitness. In other words , fitness is equal to the inverse of the time required to reproduce 

(gestation or replication time). 

To consistently define a replication rate, it is necessary to define a unit of time. 

Previously, in tierra and avida , time has been defined in terms of instructions executed 

for the whole population (scaled by the size of the population in the case of avida). 

In sanda , we define a physical time by stipulating that it takes a certain finite time 

for a cell to execute an instruction. This base execution time may vary for different 

instructions-certain instructions can be arbitrarily made more time-consuming and 

"expensive" for creatures to execute. The actual time a cell takes to execute a certain 

instruction is then increased or decreased by changing its demerit. Initially, each cell 

is assigned an demerit near unity, e = (1 ± TJ) , where 'r/ represents a small stochastic 

component. In summary, the time it takes a cell to execute a series of instructions 

depends on the number of instructions, the particular instructions executed, and the 

cell 's demerit. 

Self-replication consists of the execution of a certain series of instructions by the 

cell. Thus, the fitness of the cell (and its respective genotype) is just the rate at 

which this is accomplished and depends explicit ly on the cell 's demerit. \Ne can assign 

better (or worse) demerit values to cells which contain certain instructions or which 

manage to carry out certain operations on their CPU register values. This allows us 

to influence the system's evolution so as to evolve strings which carry out allocated 

tasks. A cell that manages a user-defined task can be assigned a better demerit for 

accomplishing it. Such cells, by virtue of their higher replication rate , would then 

have an evolutionary advantage over other cells and force them into extinction . At 
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the same time, the discovery that led to the better demerit is propagated throughout 

the population and effectively frozen into the genome. 

In addition to the introduction of a real time, sanda differs from its predecessors 

in its parallel emulation algorithm. Instead of using a block time-slicing algorithm to 

simulate multiple virtual CP Us, sanda uses a localized queuing system which allows 

perfect simulation of parallelism. 

Finally, sanda was written to run on both parallel processors and single processor 

machines. Therefore, it is possible, using parallel computers, to have very large 

populations of strings coevolving. This permits studies of extended spatial properties 

of these systems of self-replicating strings and holds promise of allowing us to study 

them away from equilibrium. 

The following sections contain more technical information about sanda. The reader 

is advised to read Ref. [4] for a more extensive treatment of the closely-related avida 

system. 

2.3 The Grid 

The grid is a N x JV[ Euclidean lattice ·with periodic boundary conditions. Each 

latt ice site ( cell) may have at most one CPU attached to it. Each cell has its own 

time value. This time corresponds to the system's physical time (see section below 

on parallel emulation) . 

2.4 CPU Structure 

A CPU (or creature) is attached to a cell (its grid location) , and has components 

as shown in Table 2.1. When a CPU replicates, its daughter CPU (which contains 

initialized values of all structure members) replaces one of its neighbours. \iVhich 

neighbour is replaced is explained in detail below. 



I Type I Component 
Status age 

last divide time 
genotype 

demerit 

facing 

Physical Structure stacks 
stack pointers 
stack number 
registers 
input buffer 

output buffer 

input pointer 
output pointer 

code 

14 

I Explanation 
current age of CPU (how long since CPU 
was created) 
when did CPU last replicate 
what is this CPU's genotype name 
( changed if the CPU code undergoes 
mutation) 
How fast (relatively) does this CPU exe­
cute instructions? Initially set to 1 ± TJ , 
where TJ is a small, positive random num­
ber. Executing desired tasks (see below) 
will give a creature lower demerit, and thus 
a faster replication rate. 
Used in certain instructions which allow in­
teraction with neighbouring CPUs. 
One or more stacks. 
Pointers for the stacks. 
Number of stack we are currently using. 
Three or more registers. 
Buffer for receiving input from the user or 
other CPUs. 
Buffer for output to the user or other 
CPUs. 
Pointer to current location in input buffer. 
Pointer to current location m output 
buffer. 
The CPU's string of instructions. 

Table 2.1: CPU structure. 
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2.5 Genotypes and the Instruction Set 

A CPU's code (or genome) largely determines the replication rate of the CPU. The 

code is a string of instructions from a user-defined instruction set. If two CPUs have 

the same genome, they belong to the same genotype. The instruction set consists 

of assembly language-like instructions designed to be computationally both powerful 

and simple, and robust under mutations. Both the function of each instruction and 

the composition of the instruction set can be easily modified by the user. 

A sample instruction set is shown in Tables 2.2-2.6. A major difference between 

the instruction sets commonly used in sanda and computer assembly language is the 

use of nops as arguments to other instructions. For example, 

~ 
~ 

would cause an increment of the AX register value, while 

would cause an increment of the BX register value. This kind of addressing ob­

viously only works for as many registers as we have labelled nops. In the list of 

instructions below, whenever a register name is surrounded by question marks (e.g. , 

?bx?), the indicated register is the default register, used when there are no arguments 

to the instruction. If a label nop (nop-A, nop-B, etc.) follows the instruction in the 

creature's code, the indicated register is used instead of the default register. nops can 

also be used as labels for a search or jump. For example, the following code snippet, 
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search-£ 

nop-B 

nop-A 

would search forward in the genome for the complementary label 

( assuming we had at least three nops in the current instruction set). If desired, 

this behaviour can be modified so that the search is done for a copy of the label 

instead of its complement. The complements for individual nops are as follows (as­

suming exactly three labelled nops): 

I Nop I Complement 

nop-A nop-B 

nop-B nop-C 

nop-C nop-A 

The extension to different numbers of labelled nops is straightforward. 

A sample self-replicating creature using instructions from Tables 2.2-2.6 is shown 

in Fig. 2.3. The string shown replicates by: searching forward ( instruction 1) for 

the complement of the template nop-A nop-A (2-3) , which is nop-B nop-B (21-22) , 

manipulating this value in an internal register to find the genome length ( 4-5) , al­

locating enough memory to store code of the genome length ( 6) , setting registers to 

prepare for copying (7-11), copying the instructions one at a time (12-19) until all 

instructions have been copied (15-16), and replicating (20)- placing the daughter in 

its own grid site. Execution restarts at the beginning of the genome when the end 

of the genome is reached, and continues until the organism is replaced by the newly 

replicated daughter of another organism (or its own daughter). The copy command 
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I Type I Name I Explanation 
Null nop-A Labelled nops. Do nothing when executed. 
operations nop-B These also act as letters in labels, 

nop-C and arguments to certain instructions. 
nop-X A pure no-operation instruction. Does not act as 

an argument to any commands. 
Flow control if-not-0 If the value of the ?bx? register is non-zero, exe-
operations cute the next instruction, otherwise skip it. 

if-n-equ If the value of the ?bx? register does not equal the 
value of its complementary register, execute the 
next instruction, otherwise skip it. For example, 
a nop-A following this command causes the values 
of ax and bx to be compared. 

if-bit-1 Execute the next instruction if the last bit of ?bx? 
is 1. 

jump-b If a label follows , search for its complement in the 
part of t he genome before the current instruction, 
and if a match is found, change the instruction 
pointer to point at the last instruction of the corn-
plementary label. If there is a label, but its corn-
plement is not found , do nothing. If there is no 
label following , decrement the instruction pointer 
bx instructions. If the instruction pointer becomes 
negative, reset it to a positive value such that the 
new value is less than the size of the genome and 
the old and new values share the same remainder 
modulo the genome size. 

jump-f If a label follows, search for its complement in the 
part of the genome after the current instruction, 
and if a match is found , change the instruction 
pointer to point at the last instruction of the corn-
plementary label. If there is a label, but its corn-
plement is not found, do nothing. If there is no 
label following , increment the instruction pointer 
bx instructions. If the instruction pointer becomes 
larger t han the size of the genome, reset it to a 
positive value such that the new value is less than 
the size of the genome and the old and new val-
ues share the same remainder modulo the genome 
size. 

Table 2.2: Sanda instructions (part 1/5). 
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I Type I Name I Explanation 

Flow jump-p Jump into the genome of the CPU that the exe-
control opera- cuting CPU is facing. If a label follows, search for 
tions ( cont'd) its complement from the beginning of the target 

genome, and if a match is found , change the in-
struction pointer to point at the last instruction 
of the complementary label. If there is a label, 
but its complement is not found , do nothing. If 
there is no label, jump to instruction bx in the 
target genome. If the instruction pointer becomes 
larger than the size of the target genome, reset 
it to a positive value such that the new value is 
less than the size of t he genome and t he old and 
new values share t he same remainder modulo the 
genome size. A CPU's instruction pointer may 
only point at an instruction in its own genome or 
in the genome of the CPU it is facing. 

call Push the location of the next instruction on the 
stack, and jump forward to the complement of the 
label which follows. If there is no label, jump bx 
instructions. See jump-f for further details. 

call-p Push the location of the next instruction on the 
stack, and jump to the complement of the label 
which follows in the genome of the CPU current ly 
being faced. If there is no label, jump to instruc-
tion bx of the target genome. See jump-p for fur-
ther details. 

return Pop the top value from the stack, and move the 
instruction pointer to that location in the crea-
ture 's genome. If the instruction pointer no longer 
points at a valid genome site, reset the instruction 
pointer as in jump-f or jump-b. 

Single shift-r Rotate the bits of the ?bx? register right . 
argument shift-1 Rotate the bits of the ?bx? register left. 
math bit-1 Set the last bit of ?bx? to 1. 
operations inc Increment ?bx? . 

dee Decrement ?bx? . 
zero Set ?bx? to zero. 
push Push ?bx? onto the stack. 
pop Pop the first value in the stack into ?bx?. 

Table 2.3: Sanda instructions (part 2/5) . 
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I Type I Name I Explanation 
Single ar- set-mun Set bx to the ternary equivalent of the label which 
gument math follows , defining nop-A as 0, nop-B as 1 and nop-C 
operations as 2. For example, nop-C nop-A nop-B is 2 0 1 
(cont 'd) in ternary, or 2 x 32 + 0 x 3 + 1 x 1 = 19 in decimal. 

If there is no label , set bx to zero. 
Double argu- add Set ?bx? equal to the sum of the values of the bx 
ment math and ex registers (?bx? = bx+ ex) . 
operations sub ?bx? = bx - ex. 

nand ?bx?= bx NAND ex (bitwise NAND). 
nor ?bx? = bx NOR ex (bitwise NOR). 
order Swap the values of bx and ex, if needed, so that 

ex > bx. 
"Biological" allocate Allocate memory for bx instructions at the end of 
operations the current genome for this CPU and return the 

start location of this memory in ax. This instruc-
tion does nothing if there has not been a successful 
divide since the last allocate . The total size of 
the genome after allocation is forced to be less 
than a user defined maximum value (default 128). 

divide Split the genome at ?ax? , placing the instructions 
beyond t he dividing point into a neighbouring cell. 
This instruction has no effect if either the mother 
or the daughter genome would be less than a min-
imum number ( default 10) of instructions long. 

c-alloc Allocate memory equal to the size of the cur-
rent genome at the end of the genome and re-
turn the location of the start of this memory in 
ax. This instruction does nothing if there has not 
been a successful c-di vide since the last c-alloc. 
This instruction and the next are used instead of 
allocate and divide when we want to experi-
ment with creatures with constant genome sizes. 

c-divide Split the genome of the creature in half, placing 
the instructions beyond the division point into a 
neighbouring cell. 

Table 2.4: Sanda instructions (part 3/5). 
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I Type I Name I Explanation 
"Biological" copy Copy the instruction from the genome location 
operations pointed to by the bx register to the memory lo-
(cont'd) cation pointed to by ax + bx, i.e., copy the in-

struction at location bx into a location offset by 
ax. If either of the locations is not a valid genome 
location, this command uses a modified value like 
the one used for t he instruction pointer in j ump-f 

or jump-b. 
read Copy the instruction at location bx in the genome 

into the ex register. Again , if bx is out of range, 
an appropriate "modulo" value is used. 

write Copy the value of the ex register as an instruction 
into the memory location at ax + bx. 

if-n- cpy Only execute the next line if the contents of mem-
ory locations bx and ax + bx are identical; oth-
erwise skip it. This command has an error rate 
equal to the copy mutation rate. (It can be used 
for copy error checking). 

I/0 get Read the value pointed to by the input pointer 
and "sensory" from the input buffer and place it in the ?ex? 

operations register. 
put Write the value of the ?bx? register into the out-

put buffer, and then set the register to zero. 
search-f If a label fo llows, search forward for the comple-

mentary label and place the distance (in instruc-
tions) to it in the bx register and the size of the 
label in ex. If a complementary label is not found, 
a distance of O is returned in bx. If no label fol-
lows, bx is unchanged and ex is set to 0. 

search-b If a label follows , search backward for the com-
plementary label and place the distance (in in-
structions) to it in the bx register and the size of 
the label in ex. If a complementary label is not 
found, a distance of O is returned in bx. If no label 
fo llows, bx is unchanged and ex is set to 0. 

Additional swi tch_stack Switch the active stack. 
Instructions rotate-1 Rotate the current facing of the CPU 

counterclockwise. 
rotate-r Rotate the current facing of the CPU clockwise. 

Table 2.5: Sanda instructions (part 4/5). 



I Type I Name 
Additional In- inj eet 
structions 
(cont 'd) 

set-emut 

mod-emut 
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I Explanation 

This instruction acts somewhat like divide , but 
instead of killing another creature and replacing 
it with the executing CPU's daughter, the daugh­
ter code is instead injected into the middle of a 
running CPU's memory. The CPU currently be­
ing faced is inj ected, and the injection position 
is chosen by matching complementary labels. If 
a complementary label can not be found in the 
genome of the CPU faced, or there is no label fol­
lowing this instruction, the instruction fails. 
This instruction allows a CPU to set its own copy 
mutation rate. The value in ?bx? becomes the 
CPU's new copy mutation rate ( x 10- 4). 
This instruction modifies the copy mutation rate 
of a CPU. When executed, the copy mutation rate 
of the CPU has ?bx? x 10- 4 added to it. 

Table 2.6: Sanda instructions (part 5/5) . 

(14 in this particular genotype) fails and writes a random instruction with probability 

1 (the copy mutation rate). 

A snippet of code which takes two numbers from the input buffer, adds them, and 

outputs the result to the output buffer is shown below. 

get 

nop-B 

get 

add 

put 

A value from the input buffer is placed in bx, then the next value from the input 

buffer in ex. The values of bx and ex are added and the result placed in bx. Finally, 

the value in bx is output to the output buffer. The fragment above is obviously 

written by a human- rarely do sanda creatures evolve any code so simple. 

We can select for code which accomplishes certain tasks by rewarding CPUs which 
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5 

search-f nop-A nop-A add inc allocate 

10 

push nop-B pop nop-C pop nop-B 

15 

nop-C copy inc if-n-equ jump-b nop-A 

20 

nop-B divide nop-B nop-B 

Figure 2.3: Example sanda genome. Sanda organisms have genomes which are strings 
of sanda instructions. 

accomplish this result- or parts of this result , such as getting numbers from the input 

buffer , executing the add instruction, or outputting to the output buffer-with lower 

demerit values. Lower demerit values lead to a higher replication rate for selected 

CPUs, and a growth in the number of CPUs of this genotype. 

2.6 Mutation Methods 

Mutations are random changes in the code of a CPU or its daughter. Without mu­

tations, the system would settle into a non-interesting steady state where all the 

creatures would have the same genotype. There are several ways of introducing mu­

tations into the system (Table 2. 7). Any combination of these methods can also be 

used. 

In addition to these explicit mutation mechanisms, incomplete or faulty copy 

algorithms in creature's genomes cause implicit mutations, as do certain exotic in­

structions (insert for example) . These implicit mutations will tend to increase the 

effective mutation rate. 
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Mutation Type I Explanation 

Per-instruction Copy Each time the copy instruction is executed , there is a 
finite chance that an instruction chosen at random from 
the instruction set will be written instead of the intended 
instruction. 

On-replication Copy Each time a creature replicates, there is a chance of a 
single, randomly chosen instruction in the daughter being 
mutated into another. This may be used instead of per-
instruction copy mutations to allow genomes of greater 
length and information content to be viable. 

Point A finite probability per time of a randomly chosen in-
struction in a creature 's genome (including memory allo-
cated for its daughter) being mutated. 

Table 2.7: Mutation methods. 

2. 7 Replication and Death 

Genotypes which allow faster replication, by a more efficient copy algorithm, a de­

crease in genome size (less instructions to be copied), or by accomplishing user-defined 

tasks , will ceteris paribus have a growing number of CPUs. The speed of this growth 

is greatly affected by the selection scheme used when choosing CPUs to be replaced by 

newly replicated daughters. Fig. 2.4 shows some selection schemes that can be used 

in sanda. In a selection scheme which includes matricide, the daughter can replace 

the parent; without matricide, the daughter can only replace one of the parent's eight 

neighbours. In an age-biased selection scheme, the oldest creature in the neighbour­

hood is replaced, whereas in a non-biased scheme, a creature is chosen at random. 

Additional schemes (e.g., replacing the creature with the highest error rate) can be 

implemented easily by modifying a single procedure in the program. 

In addition to the replacement of a CPU by a newly created creature, death in 

sanda can be implemented explicitly- CPUs past a certain age or CPUs which make 

too many errors may be killed. This can add another factor to selection schemes; 

dead cells are replicated into before living cells are replaced. 



Matricide 

No 
Matricide 
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Non-biased 

High rates of copy 

mutation lead to 

a soup with no 

viable genotypes. 

Low diffusion rate. 

A small number of 

viable genotypes 

even with very high 

mutation rates. 

Low diffusion rate. 

Age-biased 

High rates of copy 

mutation lead to a 

soup with no viable 

genotypes. 

High diffusion rate. 

A small number of 

viable genotypes 

even with very high 

mutation rates. 

High diffusion rate. 

Figure 2.4: Replacement selection schemes. Various combinations are possible and 
lead to different dynamics. 
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2.8 Parallel Emulation Algorithm 

To properly emulate the independent metabolism of each creature, we need an emula­

tion algorithm to execute the instructions in each creature 's genome in turn. In avida 

and tierra several of a creature's instructions were executed sequentially, and then 

several of the next creature 's instructions, and so on ( block time-slicing). Creatures 

,vhich performed user-defined tasks were rewarded with larger blocks of execution 

time. 

In sanda , such approximations are avoided by defining a physical time for the 

system. Each cell in the system has its own time. In a simple algorithm, one in­

struction is executed for the CPU of the cell with the lowest time in the system and 

the time needed for the CPU to execute the instruction is added to the cell's time 

(and CPU's age) (Fig. 2.5). This is repeated ad nauseum. Each instruction takes a 

certain base amount of time to execute (the length of this base execution time can 

be set to different values for each instruction by the user). This base execution time 

is modified by the demerit of the CPU executing the instruction; a CPU which has 

performed user-defined tasks and has thus lowered its demerit value will take less 

time to perform the same instruction than a CPU with a higher demerit value. 

The method outlined above works well for small grid sizes on a single computer. 

However, for larger population sizes, or sanda runs across many processors, the com­

putational load of maintaining a sorted list of cells and their times is prohibitive. We 

can solve this problem by recognizing that all interactions in the system are local. 

Cells further than two grid sites apart can not interact with one another via execution 

of a single instruction (Fig. 2.6). This allows us to relax the condition for update of 

a cell from the single cell having the lowest time value in the whole system, to those 

having the lowest time value in their 25-site neighbourhoods (Fig. 2. 7). If we choose 

to ignore the second-order effects leading to interactions between cells two sites apart, 

we can get even higher emulation speeds by updating cells with the lowest time-values 

in 9-site neighbourhoods (Fig. 2.8) 

\tVith these localized time-slicing methods, the computational time needed per 
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4356 4390 4388 4387 4390 4339 4316 4392 

4346 4382 4393 4361 4302 4392 4340 4357 4391 

4358 4387 4304 4359 4355 4315 4348 4379 4376 

4350 4353 4339 4345 4384 4325 4314 4336 4382 

4337 4319 4314 4370 4365 4362 4380 4383 4312 

4368 4387 4308 4369 4349 4380 4379 4326 4388 

Figure 2.5: A non-local time-slicing algorithm. Cells are shown with their time values. 
Only the cell with the smallest time value (shown shaded) executes an instruction. 
The new time value for the executed cell is then sorted into the global list of time 
values. The computation time needed for this sorting increases with the size of the 
grid. Also, for a grid spread across many processors, time values must be communi­
cated between processors for each executed instruction, and only one processor can 
execute an instruction at a time. 
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5431 4205 2638 9342 400 

5032 A 324 D 3042 
5293 

7823 5342 B C 2097 
8372 

1432 7362 2937 3232 4342 

Figure 2.6: Inter-cell interactions. Each square in the diagram is a cell , and t he 
numbers are CPU ages. Assuming an age-biased selection scheme, if A divides, it 
will replace B- a one-site distance interaction. If C divides next , then A will have 
indirectly affected C and D as well , since C will now replicate into D instead of 
B- two-site distance interactions. Longer range (greater than 2 sites) interactions 
cannot result from the execut ion of a single instruction. 
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4356 4390 

4346 4382 

4358 4387 

4350 4353 

4337 4319 

4368 4387 

Figure 2. 7: Local time-slicing algorithm wit h 25 neighbours. The cells which will 
execute instructions next are in dark grey. The 25-site neighbourhood of the cell with 
time 4300 is shown in light grey. Each inst ruction execution is followed by 24 integer 
comparisons. 
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4356 4390 4388 

4376 

4350 4384 4382 

4337 4319 4314 4370 4365 

4368 

Figure 2.8: Local time-slicing algorithm with 9 neighbours. The cells which will 
execute instructions next are in dark grey. The 9-site neighbourhood of the cell with 
time 4300 is shown in light grey. Each instruction execution is followed by only 
8 integer comparisons, allowing for very speedy emulation of independent, parallel 
creature execution. 
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instruction execution no longer depends on the size of the soup. Further, the size 

and frequency of interprocessor communications in multiprocessor runs are greatly 

reduced, as only information about cells lying on the border between two processors 

need be communicated and it is no longer necessary to communicate the time values 

of all the cells in a processor 's grid to other processors. 

2.9 Sanda on Parallel Computers 

Sanda was explicitly written for use on multiprocessor machines, specifically the Intel 

Paragons. The main bottlenecks for emulation speed on the Paragons are in the 

latency of inter-processor communications, and in data input and output. Several of 

the design decisions for sanda reflect these conditions. 

The grid is divided between processors as shown in Fig. 2.9. Each processor has an 

n x m portion of the grid and must communicate with the eight processors surrounding 

it. In practice, a processor communicates directly only with the four processors 

sharing borders with it. iVIessage-passing to processors at the corners is accomplished 

indirectly by relaying through processors with which the message-sending processor 

directly communicates (Fig. 2.9). Each processor has four input message buffers and 

four output message buffers, one each for each processor it borders. For any two 

neighbouring processors, one will be in send mode and the other in receive mode with 

regard to each other (Fig. 2.10). A processor can only send data to a neighbouring 

processor if it is in send mode in regard to that processor. Once a processor sends 

data to a neighbour it switches to receive mode with regard to that neighbour. These 

mechanisms are in place to avoid corruption of the receive buffer by newly transmitted 

data before the previously received data has been properly processed. 

The data to be sent between processors includes records of new CPUs, new geno­

types , and time updates for cells on the borders between the processors. Depending 

on the instruction set (whether or not a CPU can examine or change its neighbour 's 

genome) and the time-slicing algorithm chosen (9-neighbour or 25-neighbour time­

slicing) , data for cells one site removed from the border may or may not need to be 
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I / -
A D 

Figure 2.9: Grid allocation and interprocessor communication relaying. Each pro­
cessor has part of the grid in classic "patchwork" fashion. Information about cells 
on the borders is communicated to directly neighbouring processors and is relayed to 
those processors sharing only a corner with the originating processor. In the diagram, 
information from processor A needed by processor B is relayed t hrough processor C 
or D. 
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Figure 2.10: Processors in send and receive modes. For each pair of neighbours one 
is in send mode and another in receive mode. In the diagram, the arrow heads point 
to the processor in receive mode. 
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sent. 

2.10 User Files 

Sanda is designed to be run in batch mode with little interaction with the user. To 

alleviate the bottlenecks caused during disk I/0, sanda fully utilizes the pfs filesystem 

of the Intel Paragons, which has multiple hard drives and hard drive controllers. 

Sanda 's output is widely configurable, and due to the vast amount of data generated 

from large population sizes, it is recommended that the user consider the output data 

needed for his or her purposes and modify the output classes to output only needed 

data, or that the user choose a low sampling rate of several generations (a generation 

is defined as the time it takes the system to have a number of births equal to the 

population or grid size) between outputs. The default output format is two binary 

files, one containing genotype data (genotype name, total number, fitness, etc.) and 

one containing update data ( time, existing genotype populations, etc.). A 10 hour 

sanda run on one processor generates about 5 megabytes of data with output once 

per generation using the default outputs. Obviously, with up to 512 processors, this 

is not a recommended setting. 

Most adjustable system parameters can be changed by editing the defaulLparams.san 

file and recompiling. The main impetus for reprogramming sanda in C++ was the 

ease of modification and extension that it provides. Most classes should be easily 

modifiable to allow specialized versions of sanda. 

2.11 Extensions 

Sanda can be easily extended to higher-dimensional grids , to different selection schemes, 

and to include different interactions between CPUs. The easiest changes to sanda in­

volve changing the instruction set (see below for an example). For instance, if you 

were interested in evolving genomes which could sort their inputs , you might want 

to implement pointer operations on buffers, such as a swap instruction or a better 
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compare instruction. 

A very simple alternative instruction set is the neutral model instruction set. It 

has only two instructions: 

I Instruction Name I Explanation 

nop-A Do nothing. 

NM-divide Divide. The daughter is of the same genotype as the par-

ent with probability F, of a new genotype but still viable 

with probability F x N, and non-viable with probability 

1-F-F x N. 

Genomes in this variation of sanda are all one instruction long. Genotypes are 

redefined; merely having the same genome does not mean two creatures in the neutral 

model share the same genotype. This model is explored further in Chapter 6. 
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Chapter 3 Propagation of Information 

Sanda models populations of self-replicating strings residing in an environment with 

spatial structure. In this section, I test the sanda system by comparing the propaga­

tion of information in sand a to theoretical predictions and to propagation in biological 

systems. I observe the propagation of information in sanda as a function of the fitness 

and mutation rate of carrier strings. Comparison with theoretical predictions based 

on the reaction-diffusion equation shows that the response of the artificial system to 

fluctuations (e.g., velocity of the information wave as a function of relative fitness) 

closely follows that of natural systems. I find that the relaxation time of the system 

depends on the speed of propagation of information and the size of the system. This 

analysis offers the possibility of determining the minimal system size for observation 

of non-equilibrium effects at fixed mutation rate. 

3.1 Introduction 

Thermodynamic equilibrium systems respond to perturbations with waves that re­

establish equilibrium. This is a general feature of statistical systems, but it can also 

be observed in natural populations, where the disturbance of interest is a new species 

with either negligible or positive fitness advantage. The new species spreads through 

the population at a rate dependent on its relative fitness and some basic properties 

of the medium which can be summarized by the diffusion coefficient. This problem 

has been addressed theoretically [18] and experimentally (see, for example, Ref. [17] 

and references therein) since early this century. The application of the appropriate 

machinery ( diffusion equations) to the spatial propagation of information rather than 

species, is much more recent , and has been successful in the description of experiments 

with in vitro evolving RNA [11 , 28]. 

Systems of self-replicating information ( cf. the replicating RNA system mentioned 
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above) are often thought to represent the simplest living system. They offer the chance 

to isolate the mechanisms involved in information transfer (from environment into the 

genome) and propagation (throughout the population) , and study them in detail. 

It has long been suspected that living systems operate, in a thermodynamical 

sense, far away from the equilibrium state. On the molecular scale, many of the 

chemical reactions occurring in a cell 's metabolism require non-equilibrium conditions. 

On a larger scale, it appears that only a system far away from equilibrium can produce 

the required diversity (in genome) for evolution to proceed effectively (I will comment 

on this below). 

In the systems that we are interested in- systems of self-replicating information 

in a noisy and information-rich environment- the processes that work for and against 

equilibration of information are clearly mutation and replication. In the absence of 

mutation, replication leads to a uniform non-evolving state where every member of 

the population is identical. Mutation in the absence of replication, on the other hand, 

leads to maximal diversity of the population but no evolution either, as selection is 

absent. Thus, effective adaptation and evolution depend on a balance of these driving 

forces (see, e.g., [2, 1]). The relaxation time of such a system, however , just as in 

thermodynamical systems, is mainly dictated by the mutation rate which plays the 

role of "temperature" in these systems [1]. As such, it represents a crucial parameter 

which determines how close the system is to "thermodynamical" equilibrium. Clearly, 

a relaxation time larger than the average time between (advantageous) mutations 

will result in a non-equilibrium system, while a smaller relaxation time leads to fast 

equilibration. The relaxation time may be defined as the time it takes information 

to spread throughout the entire system (i.e. , travel an average distance of half the 

"diameter" of the population). A non-equilibrium population therefore can always be 

obtained (at fixed mutation rate) by increasing the size of the system. At the same 

time, such a large system segments into areas that effectively can not communicate 

with each other, but are close to equilibrium themselves. This may be the key to 

genomic diversity, and possibly to speciation in the absence of niches and explicit 

barriers. 
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The advent of artificial living systems such as tierra [32 , 2] and avida [5 , 6] have 

opened up the possibility of checking these ideas explicitly, as the evolutionary pace 

in systems both close and far away from equilibrium can be investigated directly. As 

a foundation for such experiments, here I investigate the dynamics of information 

propagation in the artificial life system sanda. This is a necessary capability for 

investigating arbitrarily large populations of strings of code. The purpose of my 

experiments is two-fold. On the one hand, I would like to "validate" the Artificial Life 

system by comparing experimental results to theoretical predictions known to describe 

natural systems, such as waves of RNA strings replicating in Q,B-replicase [11 , 28]. 

On the other hand , this benchmark allows determination of the diffusion coefficient 

and the velocity of information propagation from relative fitness and mutation rate. 

Finally, I arrive at an estimate of the minimum system size which guarantees that 

the population will not , on average, equilibrate. 

In the next section I briefly describe the sanda configuration used for these ex­

periments. The third section introduces the reaction-diffusion equation for a discrete 

system and analytical results for the wavefront velocity as a function of relative fitness 

and mutation rate. I describe results in the subsequent section and close with some 

comments and conclusions. 

3.2 The System 

For these experiments, when a string replicates, it places its child in one of the eight 

(not including itself) adjacent grid spots, replacing any string which may have been 

there. Grid sites are allowed to be empty- have no string. If there is an adjacent 

site which contains no string, the daughter is placed there rather than replacing a 

string. In these experiments, when there are no adjacent empty sites, the string to 

be replaced is chosen in either of two ways; random selection where an adjacent site 

is selected purely at random, or age-biased selection where the oldest string among 

the neighbours is replaced. As we shall see, the selection mechanism has a significant 

effect on the spread of information. 
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It should be noted that this birth process, and indeed all interactions between 

strings, are local processes in which only strings adjacent to each other on the grid may 

affect each other directly. This is important as it both supplies the structure needed 

for studies of the spatial characteristics of populations of self-replicating strings of 

code, and results in longer relaxation times- making possible studies of the equili­

bration processes of such systems and their nonequilibrium behaviour. 

I have studied the relaxation of the system both with and without mutations 

allowed and for varying relative fitness differences between originally existing wild­

type or background genotypes and new, fitter mutated genotypes. 

3.3 Diffusion and Waves 

Information in sanda is transported mainly by self-replication. When a string divides 

into an adjacent grid site, it is also transferring the information contained in its 

code (genome) to this site. I have looked at the mode and speed of this transfer 

in relation to the fitness of the genotype carrying the information, the fitness of the 

other genotypes near this carrier, and the mutation rate. 

Consider what happens when one string of a new genotype appears in an area 

previously populated by other genotypes. I will make the assumption that the fitness 

of the other viable (self-replicating) genotypes near the carrier are approximately the 

same. This holds for cases where the carrier is moving into areas which are in local 

equilibrium. I will use le for the fitness of the newly introduced (carrier) genotype 

and lb for the fitness of the background genotypes. If le < lb , obviously the ne,v 

genotype will not survive nor spread. I have studied three different cases: diffusion, 

wave propagation without mutations, and wave propagation with mutations. 

The diffusion case represents the limit where the fitness of both genotypes are 

the same. It turns out that this can be modelled as a classical random walk. On 

average, if the carrier string replicates it will be replaced before it can replicate 

again. This is effectively the same as the carrier string moving one lattice spacing 

in a random direction chosen from the eight available to it (Fig. 3.1). The random 
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Figure 3.1: Random walk of a carrier genotype wit h fi tness le= l b- On average, the 
carrier genotype is replaced as often as it replaces another cell ; the carrier genotype 
looks like it is stepping from site to site- a random walk. 

walk is characterized by t he disappearance of the mean displacement and t he linear 

dependence on t ime of t he mean squared displacement: 

0, 

4Dt , 

where D is defined as the diffusion coefficient . 

(3. 1) 

(3.2) 

For this part icular choice of grid and replication rules , this find for t he diffusion 
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Figure 3.2: Spread of a carrier genotype with better fi tness than the background 
genotype. The boundary between the two genotypes moves with a speed v outwards. 

coefficient of a genotype with fi t ness l, 

(3.3) 

where a is the lattice spacing. This holds for the age-biased selection scheme where 

the oldest cell in the neighbourhood is replaced. 

If le > lb then we find that instead of diffusion we obtain a roughly circular 

population wave of the new genotype spreading outward (Fig. 3.2). We are interested 

in the speed of this wavefront. 

Let us first treat the case without mutation. If the radius of this wavefront is 
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not too small, we can treat the distance from the center of the circle r as a linear 

coordinate. I define p(r, t) as the mean normalized population density of strings of the 

new genotype at a distance r from the center at a time t measured from initial seeding 

with the new genotype. Vv'e assume that the ages of cells near each other have roughly 

the same distribution and that this distribution is genotype independent, ensuring 

that the selection of cells to be replaced does not depend on genotype either. 

Then, we can ·write a flux equation (the reaction-diffusion equation) which deter­

mines the change in the population density p(r, t) as a function of time 

op(r, t) 

at [
3 1 3 l 
8p(r - a, t) + 4p(r, t) + 8p(r + a, t) fc (1 - p(r, t)) 

[
3 1 3 l 
8(1 - p(r - a, t)) + 4(1 - p(r, t)) + 8(1 - p(r + a, t)) f&p(r , t). (3.4) 

Since we are interested in the speed of the very front of the wave, we can assume 

p to be small. Also, from physical considerations we assume p is reasonably smooth. 

Then, we can use a Taylor expansion 

op(r, t) 2 82 p(r, t) 
p(r ± a, t) = p(r, t) ± a or + a or2 

and keep the lowest order terms to obtain 

op(r, t) - ~ 2 f 8
2 
p(r, t) (f - f ) ( ) 

0t - 8 a c 0r2 + c b p r, t • 

This can be solved for the linear wavefront speed v(b) yielding [15] 

a~ JfcUc - f&) 

2J vib)Uc - !&) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

where Dib) is the diffusion coefficient of the carrier genotype when using a biased (by 

age) selection scheme. 

To study the case of wave-propagation with mutation, we make the assumption 
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that all mutations are fatal- the daughter is dead. We write equilibrium equations 

for this selection scheme: 

pF - p(l - ClD)
8 = 0, (3.9) 

where aD is the number of sites with dead strings. We can then calculate the steady 

state density of dead cells, 

(3.10) 

where the fidelity F is the probability that a child will have the same genotype as 

its parent (i.e. , not be mutated). As mentioned earlier, the fidelity is related to the 

mutation rate 'Y by 

(3.11) 

where /J, is the length of the particular string. Modifying the previous flux equation 

to take into account these new factors and repeating the previous analysis gives us 

(3.12) 

Let us now consider the effects of different selection schemes for choosing cells to 

be replaced. The relations above hold true for the case in which we replace the oldest 

cell in the 8-cell neighbourhood when replicating ( "age-based" selection). Another 

method of choosing a cell for replacement is to choose a random neighbouring cell 

regardless of age. This scheme, which we term random selection as opposed to the 

age-biased selection treated above, effectively halves the replication rate of all cells. 

It follows that the diffusion coefficient is also halved, 

(3.13) 

(3.14) 
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Figure 3.3: Distribution of number of strings generating different numbers of offspring, 
for the biased selection case [panel (a)] and the random selection scenario [panel (b)]. 

and for the velocity of the wavefront (with no mutation) we find 

(3.15) 

In Fig. 3.3, we show a histogram of the number of offspring that a cell obtains before 

being replaced by a neighbour's offspring, for the biased selection case (left panel) and 

the random case (right panel). As expected from general arguments , half of the cells 

in the random selection scenario are replaced before having had a chance to produce 

their first offspring (resulting in a reduced diffusion coefficient), while biased selection 

ensures that most cells have exactly one child. 

Experiments are carried out by first populating the grid with a single (background) 

genotype with fi tness lb- Then, a single string of the carrier genotype with fitness le 

is placed onto a point of the grid at time t = 0. We then observe the position and 

speed of the wavefronts formed , the mean squared displacement of the population of 
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carrier genotypes, and various other parameters as a function of time. 

\!\Tith lb kept constant1
, I varied lb/ le from 0.1 to 1.0 in increments of 0.1. Also, 

the mutation rate I was varied from 0 to 14 x 10-3 mutations per instruction , in 

increments of 1 x 10-3 . 

A comparison of the theoretical vs. measured mean square displacement as a 

function of time for a genotype ·with no fitness advantage compared to its neighbours 

(Jb/ l e = 1) is shown in Fig. 3.4. The data were obtained from approximately 1500 

runs. The solid lines represent the (smoothed) averages of the measurements (for 

biased and random selection schemes), while the dashed lines are the theoretical 

predictions obtained from the diffusion coefficients (3 .3) and (3.13) respectively. The 

slopes of the measured and predicted lines agree very well, confirming the validity 

of the random walk model and the diffusion coefficient predicted by it (without any 

free parameters). The slight discrepancy between the experimental curves and the 

predicted ones at small times is due to a finite-size effect that can be traced back to 

the coarseness of the grid. 

Fig. 3.5 shows the measured values of the wavefront speed for cases where l e > lb 

and without mutation, with the corresponding predictions. Again, the higher curve is 

for age-biased selection and the lower for random selection. Note that the wavefront 

speed gain from an increase in fitness ratio is much better than linear. Note also that 

all predictions are again free of any adjustable parameters. 

The dependence of this curve on the mutation rate is shown in Fig. 3.6. Increasing 

the mutation rate tends to push the speed of the wave down. It should be noted, 

however , that because we have only used copy mutations there is no absolute cutoff 

point or error threshold Fe where all genotypes cease to be viable, with Fe > 0. 

Rather, genotypes can spread until F is very close to the limit Fe = 0. 

Finally, the dependence of the wavefront speed on the mutation rate for a fixed 

value of the fitness ratio (Jb/ l e = 0.6) is shown in Fig. 3. 7. Data were obtained from 

an average of four runs per point in the biased selection scheme. Again , the prediction 

1The gestation time was approximately 330,000, where the base execution time for each instruc­
tion was (arbitrarily) set to 1000: !b = 33~000 
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Figure 3.4: Mean squared displacement of genome as a function of time due to dif­
fusion. Solid lines represent experimental results obtained from 1500 independent 
runs. Dashed lines are theoretical predictions. The upper curves are obtained with 
the biased selection scheme while the lower curves result from the random selection 
scenario. 
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Figure 3.5: Wavefront speed of a genotype with fitness Jc propagating through a 
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Figure 3.6: Measured wavefront speeds versus fitness ratio for selected mutation rates 

1 (symbols) are plotted with the theoretical predictions from Eq. (3.12) (for the biased 
selection scheme only). 
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Figure 3. 7: Wavefront speed of a genotype (biased selection) with relative fitness 
lb/ le as a function of mutation rate (symbols). Solid line is prediction of Eq. (3.12). 

based on the reaction-diffusion equation with mutation agrees well (within error bars) 

with measurements. 

3 .4 Discussion 

Information propagation via replication into physically adjacent sites can be suc­

cinctly described by a reaction-diffusion equation. Such a description has been used 

in the description of in vitro evolution of RNA replicating in Q,8-replicase [11 , 28], 

as well as the replication of viruses in a host environment [46]. The same equation is 

used to describe the wave behaviour of different strains of E. Coli bacteria propagat­

ing in a petri dish [7], even though the means of propagation in this case is motility 

rather than replication. 
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Sanda allows the investigation of large populations of self-replicating strings of 

code, and the observation of non-equilibrium effects. The propagation of information 

was observed for a broad spectrum of relative fitness, ranging from the diffusion 

regime where the fitnesses are the same through regimes where the difference in fitness 

led to sharply defined wavefronts propagating at constant speed. The dynamics of 

information propagation led to the determination of a crucial time scale of the system 

which represents the average time for the system to return to an equilibrium state after 

a perturbation. This relaxation time depends primarily on the size of the system, and 

the speed of information propagation within it. Equilibration can only be achieved 

if the mean time between (non-lethal) mutations is larger than the mean relaxation 

time. Thus, a sufficiently large system will never be in equilibrium. Rather, it is 

inexorably driven far from equilibrium by persistent mutation pressure. 

For artificial living systems such as the one investigated here, it is possible to 

formulate an approximate condition which ensures that it will ( on average) never 

equilibrate, but rather consist of regions of local equilibrium that never come into 

informational contact. From the timescales mentioned above, we determine that the 

number of cells N in such a system must exceed a critical value: 

(
2 v(f)) 2/3 

N> --
Ra ' 

(3.16) 

where R is the rate of non-lethal mutations, v(f) the velocity of information waves 

(Fisher velocity) , and a the lattice spacing ( assuming a mean time between non-lethal 

mutations t*;::::; (N R)- 1 ). 

Beyond the obvious advantages of a non-equilibrium regime for genomic diver­

sity and the origin of species, such circumstances offer the fascinating opportunity 

to investigate the possibility of nonequilibrium pattern formation in (artificial) living 

systems. However, the most interesting avenue of investigation opened up by such 

artificial systems is that of the study of the fundamental characteristics of life itself. 

Since it is widely believed that many of the processes that define life , including evo­

lution, occur in a state which is far from equilibrium, to study such processes it is 
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necessary to have systems which exhibit the properties of life we are interested in and 

that can be quantitatively studied in a rigorous manner in this regime. The avail­

ability of artificial living systems as experimental testbeds that can be scaled up to 

arbitrary population sizes on massively parallel computers is a step in this direction. 



51 

Chapter 4 Binning 

When dealing with event distributions best plotted on single log or double log scales 

(such as exponential and power law distributions) , care must be taken in the proper 

binning of the experimental data. Say vve are interested in the probability distribution 

P(n) of an event distribution over positive integer values of n. We conduct N trials, 

resulting in a data set Q(n) of number of events observed for every n value. For 

ranges of n where the expected or observed number of events for each n is much 

higher than 1, normally no binning is required. However, for ranges of n where 

Q(n) or P(n) is small , binning is necessary to produce both statistically significant 

data points, and intuitively correct graphical representations. A constant bin size 

has several drawbacks: One must guess and choose an intermediate bin size to serve 

across a broad range of parameter space, and the shape and slopes of the curve ( even 

in a double log plot) are distorted [4]. 

These disadvantages can be overcome by using a variable bin size. However, choos­

ing bin sizes for variable binning can be time-consuming and arbitrary- different 

choices will lead to different conclusions. I propose two related methods of systemat­

ically determining appropriate variable bin sizes. Both methods lead to binned data 

which help in correctly visualizing the underlying distribution (slopes and shapes are 

conserved). First, I introduce the Data Threshold Method, which requires no a priori 

knowledge about the distribution, and is a good predictor of the underlying distri­

bution. However, when there are few data points, the Template Threshold Method, 

explained in Section 2 is often more reliable. For both methods, a range of the thresh­

old value should be tried and the best threshold value (neither over- or under-binning) 

chosen. 
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Figure 4.1: Binned avalanche size distribution for the BTW sandpile (h ---r 0). The 
inset shows avalanche size distribution data after 100,000 avalanches. The main 
panel shows the same data binned using the data threshold method with T = 1000. 
Overlaying this figure over Fig. 4.2 (which is the same data for 16 million avalanches) 
shows no discernible differences between the predictions made by binning and the 
conclusions given by more data. The shape of the distribution through n ~ 104, 
especially the kink at n ~ 5000, is clearly shown by the binned distribution. 
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Figure 4.2: Avalanche size distribut ion in the 2-d BTW sandpile model with driving 
rate h -+ 0. T he lattice size for t hese simulations was 100 x 100 (note the cutoff in 
the distribution at n ~ 5000 due to system size effects) . The data is unbinned and 
involves ~ 16 million avalanches. 
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4.1 Data Threshold Method 

For the data threshold method, start by selecting a threshold value T. Starting from 

n = 1 and proceeding to higher values , no binning is done until a value of n is found 

for vvhich Q(n) < T. When such a value ns is found , subsequent Q(n) values are 

added to this amount until the sum of these values is greater than the threshold 

value, 

n1 

L Q(n) > T. (4.1) 

We then have a bin size (n1 - n8 + 1), with value I::~~ns Q(n). When plotting, it is 

convenient to plot this as a single point at the midpoint of [ns, nt], with an averaged 

value, 

(4.2) 

This yields a graphical representation with little distortion and good predictive power 

(Figs. 4.1,4.2). This binning procedure is continued until no more data remains to be 

binned. 

Example 1. Table 4.1 shows results from sampling a probability distribution obeying 

a power law with exponent /3 = -1. 20 trials were made. The binned data is obviously 

a better visual representation than the unbinned data (Fig. 4.3). 

4.2 Template Threshold Method 

Unlike the data threshold method , the template threshold method uses a predicted 

probability distribution P(n), or a reasonable surrogate. Again, we define a threshold 

value for fitting T. However, in this case, the bin sizes are determined by comparing 

values of the expected distribution 

E(n) = P(n) x N (4.3) 
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Figure 4.3: An example of data threshold binning. The circles are unbinned data, 
the crosses are data binned using data threshold binning with T = 2, and the solid 
line is the probability distribution the data was drawn from. 
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n I Number I Bin Sum I Bin Size I Bin Average I Bin Midpoint I 
1 2 2 1 2 1 
2 2 2 1 2 2 
3 3 3 1 3 3 
16 1 

2 21 0.095 14 
24 1 
39 1 

2 25 0.08 37 
49 1 
54 1 

2 18 0.11 58.5 
67 1 
110 1 

2 308 0.0065 221.5 
375 1 
1758 1 

2 1821 0.001 1286 
2196 1 
2503 1 

2 652 0.003 2522.5 
2848 1 
3518 1 

Table 4.1: An example of data threshold binning. Note that the last data point is 
not used in the binned data. 

to T. Starting from n = 1 and proceeding to higher values, no binning is done until 

a value of n is found for which E(n) < T. When such a value ns is found , subsequent 

E(n) values are added to this amount until the sum of these values is greater than 

the threshold value, 

( 4.4) 

We then have a bin of [ns, nt] with corresponding size (n1 - ns + 1). The average value 

associated with this bin is 

I:~~ns Q(n) 
n1 - ns + l 

(4.5) 

This procedure is repeated until the data is exhausted . For this method, the data may 

be graphically represented either as a single point per bin (as in the data threshold 

method above) , or as a point (showing the associated average value) for each measured 
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Figure 4.4: An example of template threshold binning. The circles are unbinned data, 
the crosses are data binned using data threshold binning with T = 1.0 and plotted 
·with one point per unbinned data point , the diamonds are binned data plotted at bin 
midpoints, and the solid line is the probability distribution the data was drawn from. 

(non-zero) data point Q ( n) . 

Example 2. The same data as in Example 1 are shown binned using the template 

threshold method in Table 4.2, Table 4.3, and Fig. 4.4. The template function used 

was the actual underlying distribution. However, a decent guess at the underlying 

distribution would have served just as well. 
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I Bin Start I Bin End I Bin Size I Bin Midpoint I Bin Sum I Bin Average I 
1 1 1 1 2 2 
2 2 1 2 2 2 
3 4 2 3.5 3 1.5 
5 7 3 6 0 0 
8 12 5 10 0 0 
13 20 8 16.5 1 0.125 
21 32 12 26.5 1 0.0833 
33 51 19 42 2 0.105 
52 81 30 66.5 2 0.0667 
82 128 47 105 1 0. 213 
129 202 74 165.5 0 0 
203 319 117 261 0 0 
320 503 184 411.5 1 0.00543 
504 793 290 648.5 0 0 
794 1250 457 1022 0 0 

1251 1970 720 1610.5 1 0.00139 
1971 3105 1135 2538 3 0.00264 
3106 4893 1788 3999.5 1 0.00056 

Table 4.2: Bin values in an example of template threshold binning. The bins were 
chosen with the aid of a template function with T = 1.0. 

I n I Number I Averaged Value I Bin Midpoint I 
1 2 2 1 
2 2 2 2 
3 3 1.5 3.5 
16 1 0.125 16.5 
24 1 0.0833 26.5 
39 1 

0.105 42 
49 1 
54 1 

0.0667 66.5 
67 1 
110 1 0.213 105 
375 1 0.00543 411.5 
1758 1 0.00139 1610.5 
2196 1 
2503 1 0.00264 2538 
2848 1 
3518 1 0.00056 3999.5 

Table 4.3 : An example of template threshold binning. Note that all data points are 
ut ilized. 
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Chapter 5 An Extension to the 

Bak-Tang-Wiesenfeld Sand pile Model 

Sandpile models with finite driving rates are limited by the restriction of one tumble 

per site per update. In this chapter, I describe a natural extension to the Bak, Tang, 

and Wiesenfeld sandpile model which removes this restriction and allows investigation 

of the dynamics of the model at high driving rates. 

5 .1 Introduction 

The Bak, Tang, and Wiesenfeld (BTW) sandpile model [10] is defined on ad-dimensional 

lattice. Each site on the lattice has an energy Zi associated with it. A "grain" of en­

ergy of size 1 is dropped on a random site i and if the resultant energy of that site 

is greater than a critical energy (zi > Zc = 2d - 1), the site transfers energy to its 

neighbours; 

(5.1) 

(5.2) 

If the energy of a neighbour becomes supercritical through this process, the neighbour 

in turn tumbles. A series of tumbles (an avalanche) can result from the dropping of a 

single grain, ending only when all sites are again just critical or subcritical (Fig. 5.1). 

These tumbles are carried out in lockstep, each tumble takes exactly the same amount 

of time (an update), and the transport time of energy between sites is ignored. The 

only distiipation comes at the edges of the lattice where grains may "fall off." If this 

process is carried on long enough and on a large enough lattice, the system reaches a 

stationary state where the distribution of sizes of avalanches ( total number of tumbles 
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resulting from the dropping of one grain) and several other statistical properties of 

the system obey power law distributions. It was originally suggested that this self­

organization was an inherent property of the system, while it now seems established 

that the system is actually tuned by waiting until avalanches are over before dropping 

new grains- this is equivalent to allowing non-local interactions [37, 20]. 

So far, we have ignored dissipation and assumed a vanishing driving rate- grains 

are added only after all sites have finished tumbling and the current avalanche is over. 

This is obviously not a physically realistic system. The effects of finite dissipation and 

a non-vanishing driving rate force the sandpile from its critical state- the avalanche 

size distribution is no longer a power law (this behaviour is explored in detail in 

Chapter 6). \,Vhen the dissipation rate E (number of grains falling off per grain 

travelling between sites) is larger than the driving rate h (probability of a site having 

a grain dropped on it per tumble update), the sandpile is in a stationary state where 

the avalanche size distribution starts to diverge from power law and the number of 

tumbles per site per update is less than one. Previously, the regime where h 2, E 

(Region B in Fig. 5.2) was considered trivial and uninteresting [42]. However, by 

refinement and extension of the BT\,V sandpile model to allow for multiple overlapping 

avalanches, we show that this is not the case and that the dynamics in Region A are 

continued into Region B. 

5.2 Overlapping Avalanches 

Let 's first clarify the propagation of avalanches when two avalanches add grains to 

the same site during the same update. If more than one grain arrives at a site i at 

the same update, we order them randomly and the grain which by its addition causes 

Zi = Zc + 1 = 2d (5.3) 

( the addition of this grain causes the site to become just su percri ti cal) is defined as 

the grain which triggered the tumble (Fig. 5.3). The 2d grains at this site which 
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z=l (subcritical) 

■ z=2 

II z = 3 (critical) 

u z > 3 (active) 

Figure 5.1: Avalanches in the 2-d BTW sandpile model. The total number of tumbles 
is (from left to right) n = 2, 8, 2, 2, 14. The second avalanche has 2 tumbles in its 
second update, 1 in its third update , and so on. Compare with the branching process 
trees of Fig. 6.1. 
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Figure 5.2: Sandpile model regimes. The critical point is for h ➔ 0 and E ➔ 0. 
Region A has h ;SE, while Region B has h ,2: E. Previously, Region A was considered 
the only region with interesting dynamics. However, extensions to the BT\i\1 model 
show that the dynamics of sand piles is nontrivial and continuous throughout Regions 
A and B. 
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tumble as a result of this added grain we term effect grains of this grain, and the 

added grain the cause grain of the newly transported grains. This allows us to follow 

a chain of cause and effect for any transported grain back to a single grain dropped 

on the lattice. The size of an avalanche is defined as the number of tumbles caused by 

a single dropped grain (the ancestor grain), its effect grains, the effect grains' effect 

grains, and so on. 

We now refine the model to allow more than one tumble per site per update. This 

is done by changing the condition for a tumble to 

Zi = Zc x n = 2d x n (n = 0, 1, 2, ... ). (5.4) 

Every 2d-th grain (cause grain) causes a tumble in which 2d grains (effect grains) are 

transferred to neighbouring sites at the next update (Fig. 5.3). In this way, during 

one update a site can have multiple tumbles, of the same avalanche or of different 

avalanches. 

5.3 Discussion 

These two refinements permit meaningful discussion of avalanche dynamics in sand­

piles driven with finite driving rate h 2:, E. As can be seen in Fig. 5.4, the dynamics 

of the system are continuous from the critical point to Region A to Region B: The 

extended model is a natural extension to the BTW model and to the BTW model 

with finite driving rates. 

The extended model introduced here may be thought of as corresponding to a 

more physical situation than the original BTW sandpile model. The extended model 

incorporates finite driving rates, and finite and stochastic transport times of grains 

between sites. The model is still not completely realistic as it imposes an arbitrary 

periodicity on update (tumble) times. Whether the same dynamics would be observed 

in an even more physically realistic continuous-time model where this periodicity is 

not enforced is an interesting question. 
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Figure 5.3: Multiple tumbles per update in an extension to the BTW sandpile model. 
When a grain of sand is dropped (D) onto a critical site (3) and all its neighbouring 
sites are tumbling (T) during the same update , the critical site will tumble twice in 
the next update. With a high enough driving rate, multiple tumbles per site per 
update become the norm. All grains being added to the site are ordered randomly. 
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Figure 5.4: Avalanche size distribution in the 2-d BTW sandpile model with finite 
driving rates: h = 0, 10-3 , 10-2 , 10-1 . h -+ 0 is nearly on the critical point of Fig. 5.2, 
h = 10-3 is in Region A, and h = 10-2 , 10-1 are in Region B. The transition from 
Region A to Region B is smooth and involves no sudden changes in the dynamics of 
the sandpile. The lattice size for these simulations was 100 x 100. 
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Chapter 6 Scale-Free Behaviour 

Scale-free dynamics in physical and biological systems can arise from a variety of 

causes. Here, I explore a branching process which leads to such dynamics. I find 

conditions for the appearance of power laws and study quantitatively what happens 

to these power laws when such conditions are violated. From this branching process 

model , I predict the behaviour of three systems which seem to exhibit near scale-free 

behaviour- rank-frequency distributions of number of subtaxa in biology, abundance 

distributions of genotypes in an artificial life system, and avalanche sizes in the Bak­

Tang-Wiesenfeld sandpile model. I find that the rate of introduction of competition 

determines the shape of the distributions in all three cases. 

6.1 Introduction 

Scale-free distributions, or power laws, have been observed in a variety of biological, 

chemical and physical systems. Such distributions can arise from different underlying 

mechanisms, but always involve a separation of scales, which forces the distribution 

to take a standard form. Scale-free distributions are most often observed in the dis­

tribution of sizes of events (such as the Gutenberg-Richter law [22]) , the distribution 

of times between events (e.g., the inter-event interval distribution in neuronal spike 

trains [39]) , and frequencies. An example of the latter is the well-known and ubiqui­

tous 1/ f noise. Some systems are even more interesting because they seem to exhibit 

self-organization or self-tuning, concomitant with scale-free behaviour as an inherent 

and robust property of the system, not due to the tuning of a control parameter by 

the experimenter. 

Two systems to which such spontaneous scale-free behaviour has been attributed 

are sandpile models and taxon creation in biological systems. The former has served 

as the paradigm of "self-organized criticality" (SOC) [10], while the latter , manifested 
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in the form of near power law shapes of rank-abundance curves, has been advanced 

as evidence of a fractal geometry of evolution [12, 13]. 

A much simpler system where power laws are observed is the random walk [38]. 

For example, the waiting times t for first return to zero of the simple random walk 

in one dimension (starting at x = 0, at each time step, x(t + 1) = x(t) + 1 with 

probability 1/2 and x(t + 1) = x(t) - 1 with probability 1/2) have a probability 

distribution ~ r 312 . Closely related to random walks, branching processes [23] can 

also create pmver law distributions. They have been used to model the dynamics of 

many systems in a wide variety of disciplines, including demography, genetics, ecology, 

physiology, chemistry, nuclear physics, and astrophysics. Here, we use a branching 

process to model the creation and growth of evolutionary taxa, and the propagation 

of avalanches in SOC sandpile models. 

In Section 6.2 , I examine the properties of the Calton- Watson process. I find that 

this process can generate power laws by appropriate tuning of a control parameter , 

and examine the dynamics of the system both at the critical point and away from 

it. In Section 6.3, I apply this branching process model to various systems, including 

the taxonomical rank-frequency abundance patterns of evolution and the avalanche 

size distribution of sandpile models , and discuss the universality of their underlying 

dynamics. Finally, in Section 6.4, I discuss the implications of this work, including 

a discussion of the order and control parameters for the branching process and its 

applications, and suggest further questions. 

6.2 The Branching Process 

The Galton-Watson branching process was first introduced in 187 4 to explain the 

disappearance of family names among the British peerage [44]. It is the first branch­

ing process in the literature, and also one of the simplest. Consider an organism 

which replicates. The number of replicants ( daughters) it spawns is determined prob­

abilistically, with Pi (i = 0, 1, 2 ... ) being the probability of having i daughters. Each 

daughter replicates (with the same Pi as the original organism) and the daughter 's 
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daughters replicate and so on. We are interested in the rank-frequency probability 

distribution P(n) of the total number of organisms descended from this organism 

plus 1 (for the original organism) , i.e., the historical size of the "colony" the ancestral 

replicant has given rise to (Fig. 6.1). Note that this is equivalent to asking for the 

probability distribution of the length of a random walk starting from 1 and returning 

to O with step sizes given by P(i0,.n) = Pi-l (i = 0, 1, 2 ... ) [6]. 

The abundance distribution P(n) can be found by defining a generating function 

00 

F(s) = L P(i)si. (6.1) 
i=l 

This function satisfies the relationship 

00 

F(s) = s LPdF(s)]i, (6.2) 
i=O 

from which each P(n) can be determined by equating coefficients of the same order 

in s [23]. This result can also be written as 

1 
P(n) = -Q(n, n - 1) 

n 
(k 2 1), (6.3) 

where Q( i, j) is defined as the probability that j organisms will give birth to a total 

of i true daughters [38]. However, these approaches are not numerically efficient, as 

the calculation of P(n) for each new value of n requires recalculation of each term in 

the result. 

For the present purposes, let us approach the problem in a different manner. Let 

Pk lj be the probability that given j original organisms, we end up with a total of k 

organisms after all organisms have finished replicating. Obviously, 

(k > j), (6.4) 
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• • 

Figure 6.1: Branching process trees from a branching process with Po = 0.5, P1 = 0.2, 
p2 = 0.2, and p3 = 0.1. The total number of organisms is (from left to right) n = l , 
39, 5, 5, 1. The second tree has 3 organisms in its second generation, 5 in its third, 
and so on. 
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since it is impossible to have less total organisms than one starts out with, and 

P111 =po , (6.5) 

i.e., the probability for one organism to have no daughters. A little less obviously, 

k-1 

pkll LPJP(k-l)jj (k 2:: 2), (6.6) 
j=l 

k-1 

pklj L pillpil(j-1) (j 2:: k > 1). (6.7) 
i=l 

These equations allow us to use dynamic programming techniques to calculate P(n) 

( = Pn1i), significantly reducing the computational time required. Also, from Eq. 

(6.6), we can write 

Since, for n ----+ oo, PnlJ is uniformly decreasing, we see 

P(n) 
P(n - 1) 

Pnll 
----'--- ----+ C as n ----+ oo, ( C ~ 1) 
P(n-1)11 

(6.8) 

(6.9) 

where C is a constant. C is an indicator of the asymptotic behaviour of P(n) as 

n ----+ oo. If C < 1, the probability distribution is asymptotically exponential, while 

for C = 1, the probability distribution is a power law with exponent -3/2. 

Let us now examine the behaviour of P(n) when n ;S 104, the more relevant case in 

the examples to follow. Using Eqs. (6.4)-(6.7), we can numerically calculate P(n) for 

different sets of Pi- We define m as the expected number of daughters per organism, 

given a set of probabilities Pi; 

m =L i · Pi- (6.10) 

We see that m (the control parameter) is a good indicator of the shape of the proba-



,,,-.-.. 
C 

'--" 
CL 

71 

m=0.999 

m=0.5 

n 

Figure 6.2: Predicted abundance patterns P(n) of the branching model with different 
values of m. The curves have been individually rescaled to better show their shapes. 
The inset shows the same curves without rescaling. 

bility curve (Fig. 6.2). When mis close to 1, the distribution is nearly a power law, 

and the further m diverges from 1, the further the curve diverges from a power law 

towards an exponential. When m = 1/2, the curve is completely exponential. For 

a population of organisms, m is a measure of the tendency for new generations to 

grow, or shrink, in number. A value of m > 1 indicates a grm-ving generation size, 

which implies that there will , on average, be no generation with no daughters, and 

that the expected number of total organisms is infinite. Conversely, m < 1 indicates 

a shrinking population size: There will be a final generation with no daughters , and 

the expected number of organisms is finite. When m = 1, the system is in between 

the two regimes, and only then is a power law distribution found. 

What if not all organisms share the same m? Interestingly, it turns out that even 
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Figure 6.3: Abundance patterns obtained from two sets of numerical simulations of 
the branching model , each with (m) = 0.5. m was chosen from a uniform probability 
distribution of width 1 for the runs represented by crosses, and from a distribution of 
width 0.01 for those represented by circles. Simulations where m and Pi are allowed 
to vary significantly and those where they are severely constricted are impossible to 
distinguish if they share the same ( m). 

if the Pi and m differ widely between different organisms, the rank-frequency curve 

is identical to that obtained by assuming a fixed m equal to the average of m across 

the organisms (Fig. 6.3) , i.e., the variance of the Pi across organisms appears to be 

completely immaterial to the shape of the distribution- only the average (m) counts. 

In the following section, I explore systems where the "organisms" are individual 

members of species, taxons in a taxonomical tree , or tumbling sites in a sandpile 

model, and m is the average number of exact copies an individual makes of itself, the 

average number of new taxons of the same supertaxon a taxon spawns, or the average 
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number of new tumbles directly caused by a tumbling site. 

6.3 Sanda-based Models 

6.3.1 Neutral Model 

Let us first examine a simple simulation-sanda with the neutral model instruction 

set-to test our analysis and lay the groundwork for the exploration of more com­

plicated systems. Consider a population of organisms on a finite two-dimensional 

Euclidean grid, one organism to an intersection. Each organism can be viable or ster­

ile. All viable organisms replicate approximately every T time steps ( there is a small 

random component to each individual's replication time to avoid synchronization ef­

fects) , while sterile organisms do not replicate. For these experiments and the ones in 

the next section, when a sanda organism replicates, its daughter replaces the oldest 

organism in the parent 's 9-site neighbourhood regardless of the replaced organism's 

viability or sterility. We define the fidelity F as the probability that the organism 

will create a daughter of the same type as itself, as well as the corresponding genomic 

mutation rate R ( = 1-F) at which it creates copies different from itself. The genomic 

mutation rate is actually the sum of two rates, a probability Rn for the daughter to be 

viable but to be of a new genotype, different from that of the parent ( neutrality rate), 

and a probability Rs of the daughter being sterile. Of course, Rn+ Rs = R. Note that 

all viable mutant daughters still share the same replication time T-all mutations are 

neutral (See Fig. 6.4). Such a system gives rise to abundance distributions of power 

law and near-power law type that can be predicted as follows. 

The total number of organisms is determined by the size of the grid. We write 

equilibrium conditions for the total number of organisms PA , and for the total number 

of viable organisms Pv, 

!::..pA ~ apv - PA = 0, 

!::..pv ~ vpv - Pv = 0, 

(6.11) 

(6.12) 
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neutral 

viable 

sterile 

Figure 6.4: Neutral model replications and mutations. An organism's daughter is of 
the same genotype as the organism with probability F, it is of a new, viable genotype 
with probability Rn , and it is sterile with probability Rs such that F +Rn+ Rs = l. 

where a is the average number of daughters ( viable and sterile) a viable organism 

has, and v is the average number of viable daughters a viable organism has. Intro­

ducing m- the average number of true daughters (daughters which share the parent's 

genotype) for a viable organism- we see that 

F+Rn 
v = F m = (F + Rn)a. (6.13) 

From Eqs. (6.11)-(6.13) , we obtain steady state solutions for a and m , 

p-1 
(6.14) a 1 + R,, ' 

F 

1 
(6.15) m 1 +Rn . 

F 

Knowing the values of a and m ( or conversely, F and Rn) is sufficient to determine the 

shape of the abundance distribution. Fig. 6.5 shovvs abundance data for two neutral 

model runs with differing values of Rn (and consequently m) , along with predicted 

distributions (which use only Rn and Fas parameters) based on the branching model. 
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Figure 6.5: Abundance distributions and predicted curves for two neutral model runs. 
The run shown by circles ( ~ 1.5 million data points) had a grid size of 3000 x 3000, 
F = 0.5, and Rn = 0.5 , while the one represented by crosses ( ~ 0.6 million data 
points) had a grid size of 100 x 100, F = 0.2 , and Rn = 0.1. The branching process 
model predictions were made from values of F and Rn (there were no free parameters), 
and are accurate across a broad range of parameters. 

Although the distribution patterns are very different, both are fit extremely well by 

the branching process model's predicted curves. In Eq. (6.15) , note that Rn is the 

rate of influx of new genotypes (and therefore new competitors for space) , while F is 

the rate of growth of existing genotypes. The value of m is determined by the ratio 

of these two rates. Unless the total number of creatures is increasing, m ::; 1 (m = 1 

if and only if Rn -+ 0 and new competing genotypes are introduced at a vanishing 

rate). 

6.3.2 Non-neutral Model 

The next system is sanda with the default instruction set. Compared to the neutral 

model above, the organisms are no longer simple, and instead each has a complex 
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genome consisting of a string of assembly language-like instructions (Fig. 2.3). Each 

organism independently executes the instructions of its genome, and this genome 

determines the organism's replication time T. Unlike the neutral model, the model 

allows non-neutral mutations which lead to new viable genotypes with both lower 

and higher replication times than the parent. 

The system and the instructions are designed so that the organisms can self­

replicate by executing certain sequences of instructions. The replication time of an 

organism is not a predetermined constant, rather it is determined by the genotype of 

the organism: Organisms can replicate faster or slower than other competing organ­

isms with different genotypes. For an organism to successfully replicate, its genotype 

must contain information which allows the organism to allocate temporary space 

(memory) for its daughter, replicate its genotype (one instruction at a time) into this 

temporary space, and then to divide, placing its daughter in a grid site of its own 

(Fig. 2.3). As in the neutral model , on division, the daughter replaces the oldest 

organism in its parent's 9-site neighbourhood. 

Organisms, depending on their genotype, may not be able to replicate (may be 

sterile) or may only be able to replicate imperfectly (resulting in no true daughters). 

Also, the copy instruction, which the organisms must use to copy instructions from 

their own code into that of their nascent daughters , has a probability of failure ( copy 

mutation rate), which can be set by the experimenter. \,Vhen the copy instruction fails, 

an instruction is randomly chosen from all the instructions available to the organisms 

(the instruction set) and written in the string location copied to. Copy mutations 

also lead to non-true daughters. The instruction set is robust; copy errors (mutations) 

induced during the replication of viable organisms have a non-vanishing probability of 

creating viable ne,v organisms and genotypes. Indeed, by selecting for certain traits 

(such as the ability to perform binary logical operations) by increasing the rate at 

which instructions are executed in organisms which carry these traits , the system can 

be forced to evolve and find novel genotypes which contain more information (and 

less entropy) than their ancestors. Even without this external selection, the system 

evolves organisms (and genotypes) which replicate more efficiently in less executed 



77 

instructions. 

As a result of this evolution, the fidelity and neutral mutation rate are not fixed, 

but can vary with the length of an organism's genome and the instructions contained 

therein. Also, new genotypes formed by beneficial mutations that allow faster replica­

tion than previously existing genotypes will have ( on average) an increasing number 

of organisms- m > 1- until the new, faster replicating genotypes fill up a sizable 

portion of the grid. All these factors combine to make predicting the abundance 

distributions for sanda much harder than for the neutral model. 

Indeed, rather than being constant during the course of a sanda experiment, Rn 

and F will vary unpredictably as the population of organisms occupies different areas 

in genotypic phase space. Certain genotypes may be brittle, allowing very few muta­

tions that result in new viable genotypes. The length of the organisms may change, 

changing both the genomic mutation rate and the neutrality rate. Genotypes exist 

which make systematic errors when copying, which decreases the fidelity. In short, 

the dynamics of these digital organisms are complex and messy, much like those of 

their biochemical brethren. These variations are observed at the same time across 

different organisms in the population, and are also observed with the progression of 

time. Still, we attempt to predict the abundance distributions by approximating the 

ratio of neutral mutations to true copies by the observed ratio of viable genotypes to 

total number of viable organisms ever created: 

(6.16) 

where N9 is the total number of viable genotypes observed during a sanda run and 

Nv is the total number of viable organisms. This relation should hold approximately 

under equilibrium conditions. Then, Eq. (6.15) becomes 

N 
m ~ (1 + 2 )- 1 

- N ' 
V 

(6.17) 
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Figure 6.6: Abundance data from two sanda runs with predicted abundance curves. 
Both runs were started with the same initial genotype for all organisms, the same 
per-instruction copy mutation rate(,), and the same grid size (100 x 100). Run 192's 
genotypes evolved into a regime of genotypic phase space with longer average length, 
and therefore lower fidelity F and higher neutrality Rn , than Run 132, resulting in 
the differences in the abundance distributions. The predicted curves were generated 
by approximating a representative value of Rn/ F from the ratio of the number of 
viable genotypes to the number of viable·organisms observed over the run. The data 
was binned using the template threshold method with T = l (see Chapter 4). 

and from Eq. (6.14) 

(6.18) 

The fidelity F is inferred from the average length l of genotypes during a run and the 

(externally enforced) per-instruction copy mutation rate 1 , F = (l - , )I. Because we 

estimate m and a from macroscopic observables averaged over the length of a run, 

I expect some error in these results due to the shifting dynamics of the evolution of 

genotypes as the system moves in genotypic phase space. 
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The abundance data from two different sanda runs are shown in Fig. 6.6 with 

the predicted abundance curves. The two runs shared the same grid size and per­

instruction copy mutation rate, and were started with the same initial genotypes, but 

the runs evolved into different regions of genotypic phase space and consequently had 

significantly different statistics. Considering the many gross approximations made, 

the agreement between the predictions and the experimental data is surprisingly good 

(especially as no fitting is involved). Sanda is most closely related to an asexually repli­

cating biological population, such as colonies of certain types of bacteria occupying a 

single niche. The genotype abundance distributions measured in sanda are analogous 

to the species or subspecies abundance distributions of its biological counterparts. 

In general , species abundance distributions are complicated by the effects of sexual 

reproduction, and of the localized and variable influences of other species and the 

environment on species abundances. However, I believe the branching model- used 

judiciously- can be helpful in the study of such distributions. 

6.4 Evolution 

For taxonomic levels higher than species, the rank-abundance distributions of num­

ber of subtaxa per taxon approximate power laws [47, 12, 13]. Yule [47] proposed a 

continuous time branching process model to explain these distributions at the generic 

level. He recognized that naturally observed distributions diverged from the power 

law predicted by his theory for equilibrium distributions, and hypothesized that this 

deviation was caused by a finite-time effect. I find that the branching process model 

generates the observed distributions and find that the distribution 's deviation from 

power-law form is not caused by disequilibration (as Yule proposed) , but rather that 

it is time-independent and determined by the evolutionary properties of the taxa of 

interest. The model predicts- with no free parameters- the rank-frequency distri­

bution of number of families in fossil marine animal orders obtained from the fossil 

record. I find that near power-law distributions are statistically almost inevitable for 

taxa higher than species. 
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Rank-abundance distributions at taxonomic levels higher than species (e.g., the 

distribution of the number of families per order) are simpler to model than species 

abundance distributions, as the effects of the complications noted above are weak or 

nonexistent. I find that the available data is well fit by assuming no direct interac­

tion or fitness difference between taxa. The shapes of rank-frequency distributions 

of taxonomic and evolutionary assemblages found in nature are surprisingly uniform. 

Indeed, Burlando has speculated that all higher-order taxonomic rank-frequency dis­

tributions follow power laws stemming from underlying fractal dynamics [12 , 13]. I 

believe this conclusion is hasty: The divergence of the distributions from power law 

can be observed by applying appropriate binning methods to the data. (See Chapter 

4.) Yule [47] attempted a branching process model explanation of these distributions, 

and claimed that the divergence from power law of rank-abundance patterns was tran­

sient and indicated a finite time since the creation of the evolutionary assemblage. 

The model indicates that this is not generally the case. I find that the divergence 

from power law is not a result of disequilibration, but is an inherent property of the 

evolutionary assemblage under consideration and that this divergence provides insight 

into microscopic properties of the assemblage (e.g. , the rate of innovation). 

Say, for example, that we are interested in the rank-frequency distribution of the 

number of families in each order for fossil marine animal orders. We assume that 

all new families and orders in this assemblage originate from mutations in extant 

families. Then, we can define rates of successful mutation R1 for mutations which 

create new families in the same order as the original family, and R0 for mutations 

·which create an entirely new order. In this case, unlike the cases treated above, 

we assume a -+ oo; many, many individual births and mutations occur, but the 

proportion that are family- or order-forming is miniscule. Finally, assuming a quasi­

steady state ( the total numbers of orders and families vary slmvly [31]), we rewrite 

Eq. (6.15) , 

m (6.19) 
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Figure 6. 7: The rank-frequency distribution of fossil marine animal orders 
(squares) [34] and the predicted abundance curve (line). The predicted curve was 
generated- with no free parameters- by approximating Rn/ F by N 0 / N1 = 0.115. 
The empirical distribution agrees with the predicted curve with significance 0.12 us­
ing the Kolmogorov-Smirnov test. A Monte Carlo analysis shows that for a sample 
size of 626 (as we have here) , the best fit R0 / R1 = 0.135 (Fig. 6.8) is within the 66% 
confidence interval of the predicted R0 / R1 = 0.115. The fossil data is shown binned 
using the template threshold binning method explained in Chapter 4 with T = l. 

(6.20) 

in terms of N0 and N1, the total numbers of orders and families respectively. As in the 

previous systems studied , R0 is the rate of creation of new- and competing- orders , 

while R1 is the rate of growth of existing orders, and mis determined by their ratio. 

Data for the abundance distribution of number of families in fossil marine animal 

orders [34] are shown in Fig. 6.7. I obtained values for N 0 and Ni directly from the 

fossil data to generate the predicted curve with no free parameters. The agreement is 

very good, much better than that for the sanda runs where evolutionary parameters 
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Figure 6.8: Kolmogorov-Smirnov (K-S) significance levels p obtained from comparison 
of the fossil data to several predicted distributions with different values of Ra/ Rt, 
·which shows that the data is best fit by Ra/ Rt = 0.135. The arrow points to my 
prediction Ra/ Rt= 0.115 where p = 0.12. The K-S tests were done after removal of 
the first point, which suffers from sampling uncertainties. 
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such as the fidelity F and the neutrality Rn were constantly changing. Comparing m 

and the resultant abundance curves with those obtained above for the rank-abundance 

distribution of sanda genotypes leads to the expected conclusion that the probability 

of creation of a new genotype in sanda per birth is much higher than the probability 

of a new family creating an order in natural evolution. Indeed , Burlando [12, 13] 

finds that a wide variety of taxonomic distributions are fit quite well by power laws 

(m = 1) , although some of his figures seem to show an exponential tail such as 

that predicted by our model if m < 1. This seems to imply that actual taxonomic 

abundance patterns from the fossil record are characterized by a relatively narrow 

range of m near 1. This is likely within the model description advanced here. It is 

obvious that m can not remain above 1 for significant time scales as this would lead to 

an infinite number of subtaxa for each taxon. Even if, by a beneficial mutation, a new 

taxon has an evolutionary advantage over existing taxa, it soon fills up the available 

evolutionary phase space and must slow the increase in the number of its subtaxa. 

What about low m? I propose that low values of m are not observed for large (and 

therefore statistically important) taxon assemblages for the following reasons. If mis 

very small, this implies either a small number of total individuals of this assemblage, 

or a very low rate of beneficial taxon-forming ( or niche-filling) mutations. The former 

might lead to this assemblage not being recognized at all in field observations. Either 

case will lead to an assemblage with too few taxons to be statistically tractable. Also, 

since such an assemblage either contains a small number of individuals or is less suited 

for further adaptation or both, it would seem to be susceptible to early extinction. 

The branching model can-with appropriate care- also be applied to species­

abundance distributions, even though these are more complicated than those for 

higher taxonomic orders for several reasons. Among these are the effects of sexual 

reproduction and the localized and variable effects of the environment and other 

species on specific populations. Historically, species abundance distributions have 

been characterized using frequency histograms of the number of species in logarithmic 

abundance classes. For many taxonomic assemblages, this was found to produce a 

humped distribution truncated on the left- a shape usually dubbed lognormal [29, 30, 
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Figure 6.9: The abundance distribution of fossil marine animal orders in logarithmic 
abundance classes ( the same data as Fig. 6. 7). The histogram shows the number of 
orders in each abundance class (left scale), while the solid line depicts the number of 
families in each abundance class (right scale). Species rank-abundance distributions 
where the highest abundance class present also has the highest number of individuals 
(as in these data) are termed canonical lognormal [30]. 

40]. In fact , this distribution is not incompatible with the power-law type distributions 

described above. Indeed, plotting the fossil data of Fig. 6. 7 in logarithmic abundance 

classes produces a lognormal (Fig. 6.9). Thus, species-abundance distributions may 

turn out not to be qualitatively as different from taxonomically higher-level rank­

frequency distributions as expected. For species, m is the mean number of children 

each individual of the species has. (Of course, for sexual species, m would be half the 

mean number of children per individual.) 

For species, m less than 1 implies that extant species ' populations decrease on 

average, while m equal to 1 implies that average populations do not change. An 

extant species ' population can decline due to the introduction of competitors and/or 
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the decrease of the size of the species ' ecological niche. 

Let us examine the former more closely. If a competitor is introduced into a 

saturated niche, all species currently occupying that niche would temporarily see 

a decrease in their m until a new equilibrium was obtained. If the new species is 

significantly fitter than the previously existing species, it may eliminate the others. 

If the new species is significantly less fit, then it may be the one eliminated. If the 

competitors are about as efficient as the species already present, then the outcome is 

less certain. Indeed, it is analogous to a non-biased random walk with a possibility 

of ruin. The effects of introducing a single competitor are transient. However, if new 

competitors are introduced more or less periodically, then this would act to push m 

lower for all species in this niche and we would expect an abundance pattern closer to 

the exponential curve as opposed to the power-law than otherwise expected. This is 

analogous to the introduction of new competitors through viable mutations in sanda, 

where we also find a higher rate of viable mutations leads to distributions closer to 

exponential ( see previous section). 

If no new competitors are introduced but the size of the niche is gradually reduced, 

I expect the same effect on m and on the abundance distributions. Whether it is 

possible to separate the effects of these two mechanisms in ecological abundance 

patterns obtained from field data is an open question. An analysis of such data to 

examine these trends would certainly be very interesting. 

So far , I have sidestepped the difference between historical and ecological dis­

tributions. For the fossil record, the historical distribution we have modeled here 

should work well. For field observations where only currently living groups are con­

sidered, the nature of the death and extinction processes for each group will affect the 

abundance pattern. In simulations and artificial-life experiments, I have universally 

observed a strong correlation between the shapes of historical and ecological distri­

butions. I believe this correspondence will hold in natural distributions as well when 

death rates are affected mainly by competition for resources. The model 's validity for 

different scenarios is an interesting question, which could be answered by comparison 

with more taxonomical data. 
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The branching process model allows us to reexamine the question of whether any 

type of special dynamics- such as self-organized criticality (SOC) [10]- is at work in 

evolution [36, 3]. VVhile showing that the statistics of taxon rank-frequency patterns in 

evolution are closely related to the avalanche sizes in SOC sandpile models ( examined 

in the next section), the present model clearly shows that instead of a subsidiary 

relationship where evolutionary processes may be self-organized critical, the power­

law behaviour of both evolutionary and sandpile distributions can be understood in 

terms of the mechanics of a Galton-Watson branching process [42]. The mechanics 

of this branching process are such that the branching trees are probabilistic fractal 

constructs. However, the underlying stochastic process responsible for the observed 

behaviour can be explained simply in terms of a random walk [38]. For evolution, the 

propensity for near power-law behaviour is found to stem from a dynamical process in 

which m ~ 1 is selected for and highly more likely to be observed than other values, 

while the "self-tuning" of the SOC models is seen to result from arbitrarily enforcing 

conditions which would correspond to the limit R 0 / R 1 ~ 0 and therefore m ~ 1 (see 

next section). 

6.5 Sandpile Models 

The Bak, Tang, and Wiesenfeld (BTW) sandpile model [10] was introduced in Chap­

ter 5. For the BTW sandpile, define Pc as the probability that any site is critical ( one 

more grain added to that site will cause it to tumble). Then, it is easy to construct 

a mean field branching process, where the probability distribution of the number of 

nearest-neighbour sites a tumbling site will cause to tumble in the next update is 

given by 

(
2d) • Pi = i p~(l - Pct-1

• (6.21) 
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This leads to 

a~ 2d, (6.22) 

(6.23) 

and a predicted power law distribution for the size of avalanches s(n), again obtained 

from Eqs. (6.4)-(6.7). In higher dimensions (d ~ 6), the branching process model is 

expected to hold exactly and s(n) ~ n-312 . This is supported by numerical simula­

tions. However, for lower dimensions, sandpiles will "interfere" with themselves, and 

a smaller exponent is found. Attempts to calculate the effects of this "final-st ate" 

interaction through renormalization have as yet not been completely successful. 

So far, I have ignored dissipation and assumed an infinitesimal driving rate (i.e., 

allowed one avalanche to finish before another grain is dropped). If we define Pa and 

Pc as the proportions of sites which are active (tumbling) and stable (subcritical), 

g ~ 2d as the number of nearest neighbours , h as the probability per update that any 

particular site will have a grain dropped on it (driving rate), and E as the probability 

that a grain of tumbled sand will not reach a valid site, e.g., by falling off the edge 

of the lattice ( dissipation rate), we see that i = 1, 2, ... new active sites are generated 

by the tumbling of one active site with probabilities 

g 

Qi L P((g - k) grains dissipated)P(i new active sitesjk) 
k=i 

(6.24) 

while no active sites are generated with probability 

(6.25) 
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This gives us the control parameter for the branching process, 

m (i) 

Lkqk 
k 

g(l - E)Pc (6.26) 

which has a critical value m = 1. Assuming a steady state and a finite driving rate 

h, we write 

Pa(t + 1) Pa(t)m + hpc(t) 

Pa(t) 

and, substituting for Pc from Eq. 6.26 , we find 

h )-1 
m = (1 + ( ) . Pa9 l - E 

(6.27) 

(6.28) 

Again, note that h is proportional to the rate of introduction of new avalanches, while 

Pa9(l - E) is proportional to the rate of growth of existing ones. As in the simpler 

case where dissipation and driving were ignored , I expect that the branching process 

model will be quantitatively correct in higher dimensions. Indeed, such a mean field 

branching process model can be used to predict quantitative values of some sand­

pile exponents that hold in all dimensions [42]. Unfortunately, it is computationally 

very expensive to simulate high-dimensional sandpiles. Fig. 6.10 shows the results 

of simulating a two-dimensional BTW sandpile with finite driving rates from h ---t 0 

to h = 10-1. As expected, higher driving rates h lead to lower m and distributions 

farther from power law. Other branching process treatments of sandpile models can 

be found in Ref. [42] and references therein. 
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Figure 6.10: Avalanche size distribut ion in t he 2-d BTW sandpile model wit h fini te 
driving rates: h = 0, 10- 3 , 10-2 , 10- 1. Higher driving rates lead to distributions far­
ther from power la,v and closer to exponent ial, as predicted by the branching process 
model. The lattice size for t hese simulations was 100 x 100 (note the cutoff in t he 
h -+ 0 distribution at n ~ 5000 due to system size effects). Unfortunately, quantita­
t ive predictions can not be made for low-dimensional sandpiles (where "final-state" 
interactions exist) , while simulating high-dimensional sandpiles is computationally 
prohibitive. 
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6.6 Discussion 

The Galton-\i\Tatson branching process generates power law distributions when its 

control parameter m = 1. In all four of the systems I have examined above, 

(6.29) 

is determined by the ratio of the rate of introduction of competitors Re to the intrinsic 

rate of growth of existing assemblages Rp. As this ratio goes to 0, m -+ 1 and the 

system becomes critical. 

This relation can be translated into the standard relation between an order pa­

rameter 

(6.30) 

and a new form for the control parameter 

(6.31) 

Writing a in terms ofµ , 

where µc = 1 and /3 = 1 (Fig. 6.11). The order parameter represents the rate 

at which competition is introduced to the system (the strength of selection). A 

value of the control parameter µ < µc implies a system with no competition and no 

selection- an exponentially growing population. Values ofµ higher than µc indicate 

that new competition is always being introduced and that all existing species or 

avalanches must eventually die out. When µ = µc , competition is introduced at a 

vanishingly small rate, and we find the critical situation where separation of scales 

occurs. Interestingly, in all the systems studied, the order parameter has been the 



91 

a 

µ 
Figure 6.11: The order parameter a as a function of the control parameterµ. For µ 
below µc , the order parameter is 0- organisms (or events) in the system spawn greater 
and greater number of daughter organisms (events) , and there is exponential growth. 
For µ > µc, competition from ne,vly created organisms (events) stops abundances 
from growing without bound. µ = µc marks the critical point where abundances can 
grow to infinity, but do not show exponential growth, and power law distributions 
arise. 

easier to "control." Indeed, this feature of SOC sandpile models (tuning occurring at 

a-+ 0) may be their most important one. 

For sandpile models, this a is arbitrarily set close to O by using large lattice 

sizes (reducing dissipation) and waiting for avalanches to finish before introducing 

new perturbations (resulting in an infinitesimal driving rate and a diverging diffusion 

coefficient). In simulations away from these arbitrary conditions, a loss of criticality 

is predicted by the model and observed in numerical simulations. Self-organized 

criticality and its sandpile models have stimulated research in many different fields 

and systems where near power law avalanche dynamics was observed. It seems that 

many of these systems should be mappable to branching processes, and that the 

fractal behaviour of these systems and the changes in their dynamics which follow 

from finite driving rates could be understood in terms of such. For the biological 

and biologically-inspired systems we have considered, the control parameter is not 

set arbitrarily at a critical value. However, the dynamics of the evolutionary process, 

in which it is much harder to effect large jumps in fitness and function than it is to 
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effect small ones, lead to naturally observed values of a being small, especially for 

higher taxonomic orders. The dynamics of evolution act, robustly, to keep µ near µ c. 

This in turn leads to a near power law pattern for rank-frequency distributions. 

It would be beneficial to compare the predictions of the branching process (BP) 

model to high-dimensional sandpile simulations, where it should be quantitatively 

correct. Comparison of the BP model with more biological data is also desirable. For 

biological systems, there is a vast amount of empirical data, most of it , unfortunately, 

not in a form suitable for direct comparison to the BP model. Since the model 

allows a characterization of the abundance distributions with no free parameters, 

I believe it should be possible to deduct, from abundance distributions (and their 

divergence from power law) , microscopic parameters of the system which created the 

distribution- e.g. , driving rates in sandpiles, genomic and higher-order neutralities 

in nature. Species abundances are affected by many factors, but I believe that a 

careful application of the BP model (e.g., by comparison of collections of species with 

different ecological pressures) could yield insight. 

I have shown that the apparent power laws of avalanches in SOC sandpile models, 

species-abundance distributions in artificial life systems , and rank-abundance distri­

butions in taxonomy can be explained by modelling the dynamics of the underlying 

system with a simple branching process. This branching process model successfully 

predicts, with no free parameters, the observed abundance distributions-including 

their divergence from power law. This may allow the deduction of the microscopic 

parameters of the system directly from the macroscopic abundance distribution. I 

find that we can identify a control parameter- the average number of new events an 

event directly spawns, and an order parameter- the rate of introduction of compet­

ing events into the system, and that these are related in a form familiar from second 

order phase transitions in statistical physics. 



93 

Bibliography 

[1] C. Adami, Artificial Life 1 129 (1994). 

[2] C. Adami, Physica D 80 154, (1995). 

[3] C. Adami, Phys. Lett. A 203 29, (1995). 

[4] C. Adami, Introduction to Artificial Life (Springer, New York, 1998). 

[5] C. Adami and C. T. Brown, In R. A. Brook and P. Maes (Eds.), Artificial Life 

IV: Proceedings of the Fourth International Workshop on the Synthesis and 

Simulation of Living Systems, edited by R. A. Brook and P. Maes, p.377. (MIT 

Press, Cambridge MA, 1994). 

[6] C. Adami, C. T. Brown, and M. R. Haggerty, Lecture Notes in Artificial Intelli­

gence 929, 503 ( 1995). 

[7] K. Agladze et al. , Proc. Roy. Soc. Lond. B 253 131, (1993). 

[8] P. Alstr0m, Phys. Rev. A 38, 4905 (1988). 

[9] P. Bak, How Nature Works: The Science of Self-Organized Criticality (Springer­

Verlag, New York, 1996). 

[10] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett . 59, 381 (1987). 

[11] G. J. Bauer, J. S. McCaskill, and H. Otten, Proc. Natl. Acad. Sci. USA 86, 7937 

(1989). 

[12] B. Burlando, J. theor. Biol. 146, 99 (1990). 

[13] B. Burlando, J. theor. Biol. 163, 161 (1993). 



94 

[14] J. Chu and C. Adami, in Artificial Life V: Proceedings of the Fifth International 

Workshop on the Synthesis and Simulation of Living Systems, edited by C. G. 

Langton and K. Shimohara, p.462 (MIT Press, Cambridge MA, 1997). 

[15] M. C. Cross and P. C. Hohenberg, Rev. l\!Iod. Phys. 65 , 851 (1993). 

[16] C. Darwin, On the Origin of Species (D. Appleton & Company, New York, 1892). 

[17] T. Dobzhansky and S. Wright, Genetics 28 304 (1943). 

[18] R. A. Fisher, Ann. Eugen. 7, 355 (1937). 

[19] R. Garcia-Pelayo, Phys. Rev. E 49, 4903 (1994). 

[20] L. Gil and D. Sornette, Phys. Rev. Lett. 76 , 3991 (1996). 

[21] S. Grand, D. Cliff, A. Malhotra, in the proceedings of the Autonomous Agents 

97 conference (1997). 

[22] G. Gutenberg and C. F. Richter, Ann. Geophys. (C.N.R.S.) 9, 1 (1956). 

[23] T. E. Harris, The Theory of Branching Processes (Springer, Berlin; Prentice-Hall , 

Englewood Cliffs NJ , 1963). 

[24] J. H. Holland, Adaptation in Natural and Artificial Systems (2nd ed.) (MIT 

Press, Cambridge MA, 1992). 

[25] R. Laing, in Advanced Automation for Space Missions: Nasa Conference Publi­

cation 2255 , edited by R. Freitas and W. P. Gilbreath, p.189 (1982). 

[26] C. G. Langton, ed. , Artificial Life: An Overview (MIT Press, Cambridge MA, 

1995). 

[27] K. B. Lauritsen, S. Zapperi, and H. E. Stanley, Phys. Rev. E 54, 2483 (1996). 

[28] J. S. McCaskill and G. J. Bauer, Proc. Natl. Acad. Sci. USA 90 4191 (1993). 

[29] F. W. Preston, Ecology 29, 255 (1948). 



95 

[30] F. W. Preston, Ecology 43 , 185, 410 (1962). 

[31] D. M. Raup, Paleobiology 11, 42 (1985). 

[32] T. S. Ray, in Artificial Life 11: Proceedings of an Interdisciplinary \iVorkshop on 

the Synthesis and Simulation of Living Systems, Santa Fe Institute Studies in 

the Sciences of Complexity, Proc. Vol. 10, edited by C. G. Langton et al. , p.371 

(Addison-Wesley, Reading, MA, 1992). 

[33] T. S. Ray, Physica D 75, 239 (1994); Artificial Life 1, 195 (1994); Artificial 

Life IV: Proceedings of the Fourth International Workshop on the Synthesis and 

Simulation of Living Systems, edited by R. A. Brook and P. Maes, p.377. (MIT 

Press, Cambridge MA, 1994). 

[34] J. J. Sepkoski, A Compendium of Fossil Marine Animal Families (2nd ed.) (Mil­

waukee Public Museum, Milwaukee, \iVI, 1992) with emendations by J. J. Sep­

koski based largely on M. J. Benton, ed., The Fossil Record 2 (Chapman & Hall, 

New York, 1993). 

[ 35] K. Sims, Artificial Life 1, 353 ( 1994). 

[36] K. Sneppen, P. Bak, H. Flyvbjerg, and M. H. Jensen, Proc. Nat . Acad. Sci. U.S. 

92, 5209 (1995). 

[37] D. Sornette, A. Johansen, and I. Dornic, J. Phys. I 5, 325 (1995). 

[38] F. Spitzer, Principles of Random Walk (Springer-Verlag, New York, 1964). 

[39] iVI. Stemmler, M. Usher , and Z. Olami, Phys. Rev. Lett. 74, 326 (1995) . 

[40] G. Sugihara, Am. Nat. 116, 770 (1980). 

[41] G. Theraulaz and E. W. Bonabeau, Science 269, 687 (1995). 

[42] A. Vespignani and S. Zapperi , Phys. Rev. E 57, 6345 (1998). 



96 

[43] J. von Neumann, in Cerebral Mechanisms in Behavior- The Hixon Symposium 

(John Wiley, New York, 1936). 

[44] H. W. Watson and F. Galton, J. Anthropol. Inst. Great Britain and Ireland 4, 

138 (1874). 

[45] B. Webb, Sci. Am. 275, 94 (1996). 

[46] J. Yin and J. S. McCaskill , Biophys. J. 61 1540 (1992). 

[47] G. U. Yule, Proc. Roy. Soc. London Ser. B 213, 21 (1924). 

[48] S. Zapperi , K. B. Lauritsen, and H. E. Stanley, Phys. Rev. Lett. 75, 4071 (1995). 




