
Computational Explorations of Life

Thesis by

Johan Chu

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1999

(Submitted December 21 , 1998)

11

@ 1999

Johan Chu

All Rights Reserved

lll

Acknowledgments

First , I would like to thank my advisors, Chris Adami and Mike Cross. \i\Tithout their

patience and support , I ·would have been able to do nothing. They bore with me

when I tarried, and were there to help me when I needed help most. I will always

appreciate the guidance and teaching they have given me.

Indeed, I have been privileged to enjoy the attention and guidance of many teach­

ers throughout my education. My first teachers in England , my teachers in Canada

and the United States, and especially my teachers in Korea (who communicated with

me and cared for me even though I had obvious and severe problems communicating

in Korean) all helped me on my current path. I remember walking into my under­

graduate advisor Dr. Hae-woong Lee 's office in Korea and asking, "Should I go to

the States to study?" The immediate reply was, " Of course, and to a good school."

The standing joke is that he wanted to get rid of me quickly, but I know better.

I grew immensely from being at Caltech, and I thank Professor Lee and Professor

Byung-yoon Kim for their help getting me here.

These last six years would have been unbearable without my friends. The first

few years at Caltech were remarkable for the many members of the Caltech Korean

community who opened their hearts and lives to me. Among them, Dr. Namkyoo

Park made sure I never lacked for a ride or for someone to have dinner with while

he ·was here. I appreciate all the friendship I've received. Other friends from the Los

Angeles area and visiting from Korea have kept me sane at Caltech and I thank them

for it. Although, I rather suspect I might have graduated sooner ifl had refused some

fun! I am also thankful for the friendship of my friends in Korea, who I've too often

distracted from qualifying and final exams, girlfriends, business and even the army

to satisfy my selfish need for their company.

I've already thanked my teachers and friends , but the greatest of both to me have

been my mother and father. I learnt English reading the Bible at my mother 's knee,
I

lV

and my parents' love stays with me everywhere I go. I have received so much love

from them and from all my extended family: my sister, aunts , uncles, grandparents

and cousins. I carry around a huge burden of debt for their love. I know that with

their love and faith, I am given great power and an even greater obligation. I thank

them all with my whole being.

Finally, I thank God who created this world we strive to explore, and who created

me. I am overwhelmed by His love. I know I will have lived well if I can reflect on

others but a tiny portion of the love He has given me.

V

Dedication

This work is dedicated to my grandparents.

Vl

Abstract

Artificial Life, the creation and study of man-made systems that exhibit the char­

acteristics of life , is a young and still emerging field . The goals of Artificial Life

are two-fold; to gain knowledge about and from biology. The Artificial Life system

sanda , which extends upon previous systems tierra and avida , was designed to help in

investigations into the statistical nature of evolution. As such, it is a model of the

simplest living, evolving organisms. Experiments involving tierra , avida , and sanda

were the inspiration for investigations into the causes of apparently scale-free dynam­

ics found in these systems. These investigations lead to identification of a branching

process that explains the scale-free dynamics of not only these Artificial Life systems,

but also those manifested in the taxon rank-frequency distributions of biology and in

the size distributions of avalanches in "self-organized critical" sandpile models. This

branching process can quantitatively predict- with no free parameters- the pattern

of the observed distributions, including their divergence from a true power law. Fur­

ther, the branching process gives insight into the universal mechanisms involved in

the creation of, and divergence from, scale-free dynamics in these systems, including

a definition of order and control parameters reminiscent of those from second-order

phase transit ions in statistical physics.

Vll

Contents

Acknowledgments Ill

Dedication V

Abstract Vl

1 Introduction 1

1.1 \iVhy Artificial Life? . 1

1.2 Scale-free Dynamics . 2

1.3 Outline of Thesis .. 4

2 The Artificial Life System Sanda 5

2.1 Artificial Life . .. 5

2.2 Overview of Sanda 9

2.3 The Grid 13

2.4 CPU Structure 13

2.5 Genotypes and the Instruction Set 15

2.6 l\!Iutation Methods .. 22

2.7 Replication and Death 23

2.8 Parallel Emulation Algorithm 25

2.9 Sanda on Parallel Computers . 30

2.10 User Files 33

2.11 Extensions . 33

3 Propagation of Information 35

3.1 Introduction . 35

3.2 The System 37

Vlll

3.3 Diffusion and Waves

3.4 Discussion

4 Binning

4.1 Data Threshold Method

4.2 Template Threshold Method

5 An Extension to the Bak-Tang-Wiesenfeld Sandpile Model

5.1 Introduction .

5.2 Overlapping Avalanches

5.3 Discussion

6 Scale-Free Behaviour

6.1 Introduction .

6.2 The Branching Process

6.3 Sanda-based Models .

6.3.1 Neutral Model .

6.3.2 Non-neutral Model

6.4 Evolution

6.5 Sandpile Models .

6.6 Discussion

Bibliography

38

48

51

54

54

59

59

60

63

66

66

67

73

73

75

79

86

90

93

List of Figures

2.1 Various Artificial Life systems ..

2.2 Sanda grid.

2.3 Example sanda genome.

2.4 Replacement selection schemes.

lX

2.5 A non-local time-slicing algorithm.

2.6 Inter-cell interactions.

2. 7 Local time-slicing algorithm ,:vith 25 neighbours.

2.8 Local t ime-slicing algorithm with 9 neighbours.

2.9 Grid allocation and interprocessor communication relaying.

2 .10 Processors in send and receive modes.

3.1 Random walk of a carrier genotype with fitness le = fb-

3.2 Spread of a carrier genotype ·with better fitness than the background

genotype.

3.3 Distribution of number of offspring per string.

3.4 Mean squared displacement of genome as a function of time .

3.5 Wavefront speed of a wild-type genotype

3.6 Measured wavefront speeds versus fitness ratio for selected mutation

6

11

22

24

26

27

28

29

31

32

39

40

43

45

46

rates with theoretical predictions. 47

3. 7 Wavefront speed of a genotype (biased selection) with relative fitness

fb/ le = 0.6 as a function of mutation rate. 48

4.1 Binned avalanche size distribution for the BTW sandpile (h-+ 0) with

unbinned data (inset). 52

4.2 Avalanche size distribution in the 2-d BTvV sandpile model with driv-

ing rate h -+ 0 for ~ 16 million avalanches.

4.3 Example of data threshold binning

53

55

X

4.4 Example of template threshold binning ..

5 .1 A val an ch es in the 2-d BT\i\T sand pile model.

5.2 Sandpile model regimes.

57

61

62

5.3 Niultiple tumbles per update in an extension to the BT\i\T sandpile model. 64

5.4 Avalanche size distribution in the 2-d BTW sandpile model for various

(E, h) in Regions A and B. 65

6.1 Branching process trees. 69

6.2 Predicted abundance patterns P(n) of the branching model. 71

6.3 Predicted P(n) of the branching model for two sets of random values

of m. 72

6.4 Neutral model replications and mutations. 74

6.5 Abundance distributions and predicted curves for two neutral model

runs. 75

6.6 Abundance data from two sanda runs with predicted abundance curves. 78

6. 7 The rank-frequency distribution of fossil marine animal orders.

6.8 Kolmogov-Smirnov significance levels p.

6.9 The abundance distribution of fossil marine animal orders in logarith-

81

82

mic abundance classes. 84

6.10 Avalanche size distribution in the 2-d BTW sandpile model with finite

driving rates. 89

6.11 The order parameter a as a function of the control parameter µ. 91

List of Tables

2.1 CPU structure.

2.2 Sanda instructions (part 1/5).

2.3 Sanda instructions (part 2/5).

2.4 Sanda instructions (part 3/5).

2.5 Sanda instructions (part 4/5).

2.6 Sanda instructions (part 5/5).

2.7 Mutation methods

Xl

4.1 An example of data threshold binning.

4.2 Bin values in an example of template threshold binning . .

4.3 An example of template threshold binning

14

17

18

19

20

21

23

56

58

58

1

Chapter 1 Introduction

1.1 Why Artificial Life?

Ever since Darwin [16] proposed his grand theory of evolution , biologists and others

have been asking, "What if?" What if the temperature on Earth had been a hundred

degrees hotter or cooler throughout its history? What if the atmosphere had more

nitrogen and less oxygen? What if no global changes had occurred to (perhaps) wipe

out the dinosaurs? Was the creation of life on Earth an impossibly lucky accident?

How about the creation of life as we know it? Could other forms of life- perhaps not

based on carbon or on DNA- have arisen given different rolls of the "evolutionary

dice" ?

An even more fundamental question, asked since man first recognized the dif­

ference between living creatures and inanimate objects, is "What is Life?" What

makes a thing alive and distinguishes it from things without life? A multitude of

definitions have been proposed; physiological (centered on functions performed by

organisms) , metabolic (centered on the exchange of materials between the organism

and its surroundings) , biochemical (living organisms are characterized by storage of

genetic information in nucleic acid molecules) , genetic (characterized by evolution,

not necessarily based on nucleic acids) , thermodynamic (characterized by an abil­

ity to maintain low levels of entropy), etc. However, none of these definitions are

completely satisfactory.

One of the major roadblocks to defining, and studying, the essence of life , is that

we can not deconstruct it , separate it into its parts as we do entities in Physics or

Chemistry. Once a living system is separated into its parts , the individual parts no

longer have life. A study of the individual parts can only tell us so much about the

·whole. While we can learn much about the mechanisms of life from the structure of

DNA, it is hard to believe that DNA, by itself, is alive. Life is a property of a living

2

system, not of its parts.

Artificial Life, the creation and study of man-made systems which exhibit char­

acteristics of life, offers an avenue of investigation into essential properties of life.

Because these systems are man-made, we understand the workings of all the parts,

and this offers us more hope of understanding what happens when we put all the

parts together. By creating systems which mimic life, we hope to learn more about

what life is.

Such systems also give us the fantastic ability to experiment with life, with evolu­

tion. We can set and reset the parameters of the system, and run it again and again,

until we gain a true, fundamental , and quantitative understanding of the processes

involved. To these ends, we need a system simple enough for us to understand and

calibrate its workings, and fast enough to allow repeated evolutionary trials so as to

gain a statistical picture of life and evolution, but still sophisticated enough to model

the processes at work in natural evolution. The Artificial Life systems tierra [32, 33],

avida [4], and my own system sanda are attempts at such a system. Personally, sanda

has acted as a source of ideas, suggesting avenues of research by its tantalizing par­

allels to nature , while serving as a lab bench, giving me a system where I could run

countless numbers of trials to gain statistical data to verify an idea.

1.2 Scale-free Dynamics

One striking statistical feature observed in tierra, avida , and sanda runs is the appear­

ance of seemingly scale-free dynamics- manifested in near power law distributions- in

genotype abundance distributions (analogous to species distributions in nature) [3, 6].

Various mechanisms were proposed to explain the appearance of scale-free dynam­

ics, and also the variance from such dynamics in some trials. The power laws were

compared to those observed in self-organized criticality (SOC) , natural evolution, and

random walks, while the deviance from power law was mostly attributed to finite-size

effects.

Near power la'w distributions are found in the statistics of a wide variety of systems

3

from diverse disciplines , including demography, taxonomy, geophysics, and nuclear

physics. Per Bak [9] proposed that many of these power laws result from a single

underlying process, which he termed self-organized criticality (SOC). The paradigm

for SOC is the avalanche behaviour of sandpile models, which under certain conditions

exhibit scale-free dynamics. Similarly, for taxonomic levels higher than species, the

rank-abundance distributions of number of subtaxa per taxon approximate power

laws. Yule [4 7] proposed a branching process model to explain these distributions at

the generic level. He recognized that naturally observed distributions diverged from

the power law predicted for equilibrium distributions by his theory and hypothesized

that this deviation was caused by a finite-time effect.

In Chapter 6, I present a branching process model that explains the observed

genotype abundance distributions in sanda and the near power law distributions in the

other systems mentioned above. The model 's formulation was inspired by observation

of many sanda runs. The model was tested on various versions of sand a, some of which

had simpler dynamics than others. The experiments on sanda versions with simpler

dynamics allowed for better observation of the factors that determined the large-scale

dynamics of the system, unobstructed by secondary perturbations. The branching

process model predicts not only the power law distribution of genotypic abundances

observed in some runs , but also predicts the divergences from power law observed in

other runs. It gives a quantitative prediction of the shape of the distributions with

no free parameters. Furthermore, the model also explains the seemingly scale-free

dynamics observed in SOC's sandpile models, and in the rank-frequency distributions

of taxons in nature. For these systems also, the branching process model allows

quantitative prediction of distribution patterns with no free parameters. For the

SOC sandpile models , I find that the "self-tuning" results from arbitrarily enforcing

conditions on the order parameter, and show how relaxing these conditions change

the observed dynamics. While for natural evolution, I find the deviance from power

law is not due to a disequilibration effect (as Yule proposed), but rather results from

fundamental properties of the observed taxa.

This research was inspired by observations of interesting statistical behaviour in

4

artificial living systems. Its initial progress was two-pronged; finding an analytical

model which could explain the dynamics leading to such distributions and simplifying

the system until such dynamics could clearly be seen. The new understanding that

these investigations yielded found broad application to such systems as seemingly

disparate as the distribution of avalanche sizes in sandpiles and the distribution of

taxon sizes in biology. Artificial life has served well as both muse and medium.

1.3 Outline of Thesis

In Chapter 2, I introduce the emerging field of Artificial Life and describe the Ar­

tificial Life system sanda. I present a test of sanda 's validity in an application to

propagation of information in self-replicating genetic systems in Chapter 3. Chap­

ter 4 is a short chapter dealing with appropriate methods for binning histograms of

events with exponential or power law probability distributions. Chapter 5 details an

extension to the Bak-Tang-Wiesenfeld sandpile model that allows us to study charac­

teristics of the model in previously ignored regimes. Finally, Chapter 6 discusses the

scale-free dynamics of a branching process and its applications to statistics found in

sanda , natural evolution, and sandpile models. Chapter 3 is from a paper presented

at Artificial Life V held May 1996 in Nara, Japan [14]. Chapters 4-6 contain parts of

papers to be submitted to Nature, Physical Review Letters, and Physical Review E.

Chapter 2

Sanda

The Artificial Life System

2.1 Artificial Life

Artificial Life is the creation and study of man-made systems which have characteris­

tics of life. Characteristics modelled in current Artificial Life systems include genetic

evolution and coevolution, flo cking behaviour, locomotion, language acquisition, the

spread of disease, and many others. Despite this diverse subject matter, almost all

Artificial Life systems share an evolutionary approach to learning.

Artificial Life systems can be largely divided into two types; those that seek to

gain a better understanding of natural life , and those that attempt to apply insights

from biology to other fields of endeavour- engineering, recreation, etc. Artificial

Life systems can also be classified by whether they emphasize the development and

coevolution of populations, or the evolution of individuals. Yet another classification

scheme involves the media used to implement the system- wetware (real biological

components from natural systems such as RNA, DNA, proteins), hardware (robots,

etc.), or software (simulations, computer code). Fig. 2.1 shows a sample of currently

existing Artificial Life systems and their classifications. Refs. [4 , 26] are recommended

as more detailed introductions to Artificial Life systems.

Webb [45] and co-,vorkers built a robotic cricket from L egoTM parts to gain insight

into the mechanisms used by real crickets to locate prospective mates by listening to

their song. The robot was equipped with artificial ears and neurons, and actuators

connecting its "brain" 's output to its left and right wheels. Differences in signal

strength to each wheel caused the robot to move in a curved path. The artificial

ears were built to mimic actual cricket ears and their sensitivity to phase differences

between the sound waves arriving at each ear. Webb tested algorithms for phonolo-

6

Individuals Populations

Robot Crickets

Biology 1 lerra, A vida, Sanda

Wasp Nests

Genetic Al ,orithms

Engineering
Sims's Block Anirn ~ls

Creatures (computer game)

Figure 2.1: Various Artificial Life systems. Only a few of the many currently existing
Artificial Life systems are shown. The characterizations are based purely on my own
judgment. The systems shown are: robot crickets [45] tierra [32], avida [4], sanda [14],
wasp nests [41], CreaturesTM [21], genetic algorithms [24], and Karl Sims's evolving
animals [35].

7

cation. She found that a simple algorithm succeeded m recreating the movement

patterns of crickets. Robots using the algorithm were able to distinguish between

different songs when many were played simultaneously. Furthermore, this algorithm

depended on breaks between chirps for phonolocation, suggesting an explanation for

the distinctive chirping of crickets in nature.

Theraulaz and Bonabeau [41] developed a simple model of randomly moving arti­

ficial agents to test the possibility that complex structures such as wasp nests could

be built without inter-agent interaction. Each agent in their model could sense only

the local structure near it, and could only deposit elementary building blocks. With

simple rules based purely on local conditions for depositing building, a swarm of these

agents built structures with shapes strikingly similar to those of real wasp nests.

Creatures™ [21] is a computer game where players raise, teach, and breed com­

puter "animals." The animals' behaviours are determined by neural nets , and can be

modified by user-supplied stimuli.

Genetic algorithms [24] have been used extensively in optimization problems. The

problem to be solved is encoded into "chromosomes" - bit strings representing can­

didate solutions to the problem. A population of these chromosomes is simulated.

With successive selection (choosing the chromosomes which currently best approach

a solution to the problem) and mutation (random bit flips in chromosomes, mixing

of segments of two chromosomes to create a new chromosome), the system tends to

evolve chromosomes ·which approach solutions of the problem. In addition to pure

engineering uses , genetic algorithms have also been used as models of biological and

social systems.

Karl Sims created systems where both the shape and behaviour of block creatures

were allowed to evolve, and creatures were selected for being able to perform phys­

ical feats, such as swimming, crawling, or object manipulation. In these systems,

creatures had "genotypes" (much like a genetic algorithm's chromosomes) containing

information on both their morphology and behaviour. His work differs from classical

genetic algorithms in that he introduced direct competition between different mem­

bers of the population as a means of selecting the fittest. For example, in one of

8

Sims's systems, creatures attempt to gain control of a cube placed in the middle of

their simulated world. The creatures are paired off and duel for the cube, and the

results determine their fitness. The fitness of a creature is determined not only by its

own morphology and behaviour, but that of the other creatures existing with it.

Although the proliferation of Artificial Life systems, and the corresponding recog­

nition of Artificial Life as a distinct field of study, is a recent (since ~1988) develop­

ment , theoretical explorations of Artificial Life character have a longer history dating

back to Von Neumann [43] and his thinking on self-replicating cellular automata.

NASA even studied self-replicating robots as a means of mining the moon [25]. How­

ever, it has only been recently that we have gained sufficient computing power and a

good enough understanding of the base-level mechanisms of evolution to make non­

trivial Artificial Life a possibility. The need for solutions to complex problems (some

of which have already been solved by nature) has also stimulated recent Artificial Life

research.

Artificial intelligence, to which Artificial Life is often compared , was widely touted

m its early days as a quick and easy road to making "intelligent" computers, as

conscious as- and smarter than!- ourselves. This was, of course, too much to ask.

I believe Artificial Life will have many applications in optimizing characteristics and

behaviours of complex systems. However, my greater hope is that Artificial Life

systems will become a bona fide tool in a biologist 's toolbox, one that allows the

correct degree of abstraction for any particular problem; enough to make the problem

tractable, but not enough to change its character.

Modern biology, much like modern physics or chemistry, has become centered on

deconstruction of the whole into its components. l\!Iolecular biology has pushed the

likes of anthropology, botany, and zoology from the front of the stage. Advances in

deconstructive biology have led us much closer to an understanding of the biochemical

mechanisms that life uses in the lifeforms present on Earth. However, with the recog­

nition that such mechanisms can not explain all of life 's characteristics, more holistic

disciplines (e.g. , ecology, large-scale theories of evolution and extinction, systematic

neurobiology, complexity) which seek to understand how the individual parts and

9

mechanisms vvork together to create the dynamics of the system as a whole- what

we call life- are gaining an increasing share of attention. Artificial Life is a discipline

at the crossroads of biology, physics, computer science, and all the engineering fields

concerned with the artificial media man has created. It ultimately seeks to explore

the essence of life.

2.2 Overview of Sanda

Sanda , from the Korean for 'to live ', is a software system designed to emulate and

study the evolution of populations of self-replicating code. In the classification of

Artificial Life systems proposed in the previous chapter, sanda , like avida and tierra ,

is more a biological tool than a biology-based application. Although, with improve­

ments in the software and even faster computers, the system may eventually become

powerful enough at creating new strategies and algorithms through evolution that

it will become an algorithm-creating application of biological principles. Sanda can

also be used to study the evolution of characteristics in individual creatures, but

its greatest strength lies in investigating large-scale population effects of evolution;

broad statistical laws which hold true in all replicating, competing, mutating, evolving

systems.

Sanda is the third generation in the tierra family line. Tierra , in which strings of

self-replicating assembly-like code proved robust under mutation was the first of its

kind. Avida added a spatial structure to tierra , creating a physically more realistic

system in which the dynamics of diffusion and information propagation could be ob­

served. Sanda expands avida 's boundaries by allowing simulations with unprecedented

size, or the possibility of easily running multiple, related simulations. A larger sys­

tem size yields better statistics and easier observation of spatial effects, and- perhaps

most importantly- allows the possibility of observing a system evolving always away

from equilibrium.

Sanda was written first in C, and then completely rewritten in C++ to allow easy

extension to the base system. It runs on a wide range of machines, but was designed

10

and optimized primarily for use on the Intel Paragon, a massively-parallel MIMD

architecture supercomputer.

Like avida , sanda works with a population of strings of code residing on an NI x N

lattice with periodic boundary conditions. Each lattice point can hold at most one

string. Each string consists of a sequence of instructions from a user-defined set.

These instructions, which resemble modern assembly code and can be executed on

a virtual CPU, are designed to allow self-replication. The set of instructions used is

capable of universal computation.

Each string has its own CPU which executes its instructions in order. A string

self-replicates by executing instructions which cause it to allocate memory for its

child, copy its own instructions one by one into this new space, and then divide the

child from itself and place it in an adjacent grid spot. The child then is provided with

its own virtual CPU to execute its instructions. When a string replicates, it places

its child in one of the sites in its 9-site neighbourhood (Fig. 2.2) , replacing any string

which may have been there. How the site to be replaced is chosen can be defined by

the user. See the section on replication and selection below for more information.

It should be noted that this birth process, and indeed all interactions between

strings, are local processes in which only strings adjacent to each other on the grid

may affect each other directly. This is important as it both supplies the structure

needed for studies of spatial characteristics of populations of self-replicating strings of

code, and allows longer relaxation times - making possible studies of the equilibration

processes of such systems and their nonequilibrium behavior.

This process of self-replication is subject to mutations or errors which may lead

to offspring different from the original string and in most cases non-viable (i.e. , not

capable of self-replication). Of the many possible ways to implement mutations, we

have mainly used copy errors. That is, every time a string copies an instruction there

is a finite chance that instead of faithfully copying the instruction, it will write a

randomly chosen one. This chance of mutation is implemented as a per-instruction

mutation rate 1- the probability of copy-error per instruction copied. A mutation

rate I for a string of length I!. will therefore lead to a fidelity (probability of the copied

11

Figure 2.2: Sanda grid. The organisms live on an Euclidean grid, one organism to a
site. When an organism replicates , its daughter replaces one of the organisms in its
9-site neighbourhood. (If the organism marked by a black dot replicates, its daughter
replaces one of the organisms at a gray site.) Which criteria are used in choosing the
neighbour to be replaced affects the dynamics of the system.

12

string being identical to the original) F = (1- , y. Mutations allow us to evolve a very

heterogeneous population from an initially homogeneous one. The resulting evolution,

coevolution, speciation, etc. have been and continue to be studied [33, 2, 3, 1, 5, 6] .

The factors which decide whether one particular sequence of instructions (or geno­

type) will increase or decrease in number are the rate at which it replicates and the

rate that it is replaced at. In this model , the latter is genotype independent. Ac­

cordingly, we define the former (i.e. , its average replication rate) as the genotype's

fitness. In other words , fitness is equal to the inverse of the time required to reproduce

(gestation or replication time).

To consistently define a replication rate, it is necessary to define a unit of time.

Previously, in tierra and avida , time has been defined in terms of instructions executed

for the whole population (scaled by the size of the population in the case of avida).

In sanda , we define a physical time by stipulating that it takes a certain finite time

for a cell to execute an instruction. This base execution time may vary for different

instructions-certain instructions can be arbitrarily made more time-consuming and

"expensive" for creatures to execute. The actual time a cell takes to execute a certain

instruction is then increased or decreased by changing its demerit. Initially, each cell

is assigned an demerit near unity, e = (1 ± TJ) , where 'r/ represents a small stochastic

component. In summary, the time it takes a cell to execute a series of instructions

depends on the number of instructions, the particular instructions executed, and the

cell 's demerit.

Self-replication consists of the execution of a certain series of instructions by the

cell. Thus, the fitness of the cell (and its respective genotype) is just the rate at

which this is accomplished and depends explicit ly on the cell 's demerit. \Ne can assign

better (or worse) demerit values to cells which contain certain instructions or which

manage to carry out certain operations on their CPU register values. This allows us

to influence the system's evolution so as to evolve strings which carry out allocated

tasks. A cell that manages a user-defined task can be assigned a better demerit for

accomplishing it. Such cells, by virtue of their higher replication rate , would then

have an evolutionary advantage over other cells and force them into extinction . At

13

the same time, the discovery that led to the better demerit is propagated throughout

the population and effectively frozen into the genome.

In addition to the introduction of a real time, sanda differs from its predecessors

in its parallel emulation algorithm. Instead of using a block time-slicing algorithm to

simulate multiple virtual CP Us, sanda uses a localized queuing system which allows

perfect simulation of parallelism.

Finally, sanda was written to run on both parallel processors and single processor

machines. Therefore, it is possible, using parallel computers, to have very large

populations of strings coevolving. This permits studies of extended spatial properties

of these systems of self-replicating strings and holds promise of allowing us to study

them away from equilibrium.

The following sections contain more technical information about sanda. The reader

is advised to read Ref. [4] for a more extensive treatment of the closely-related avida

system.

2.3 The Grid

The grid is a N x JV[Euclidean lattice ·with periodic boundary conditions. Each

latt ice site (cell) may have at most one CPU attached to it. Each cell has its own

time value. This time corresponds to the system's physical time (see section below

on parallel emulation) .

2.4 CPU Structure

A CPU (or creature) is attached to a cell (its grid location) , and has components

as shown in Table 2.1. When a CPU replicates, its daughter CPU (which contains

initialized values of all structure members) replaces one of its neighbours. \iVhich

neighbour is replaced is explained in detail below.

I Type I Component
Status age

last divide time
genotype

demerit

facing

Physical Structure stacks
stack pointers
stack number
registers
input buffer

output buffer

input pointer
output pointer

code

14

I Explanation
current age of CPU (how long since CPU
was created)
when did CPU last replicate
what is this CPU's genotype name
(changed if the CPU code undergoes
mutation)
How fast (relatively) does this CPU exe­
cute instructions? Initially set to 1 ± TJ ,
where TJ is a small, positive random num­
ber. Executing desired tasks (see below)
will give a creature lower demerit, and thus
a faster replication rate.
Used in certain instructions which allow in­
teraction with neighbouring CPUs.
One or more stacks.
Pointers for the stacks.
Number of stack we are currently using.
Three or more registers.
Buffer for receiving input from the user or
other CPUs.
Buffer for output to the user or other
CPUs.
Pointer to current location in input buffer.
Pointer to current location m output
buffer.
The CPU's string of instructions.

Table 2.1: CPU structure.

15

2.5 Genotypes and the Instruction Set

A CPU's code (or genome) largely determines the replication rate of the CPU. The

code is a string of instructions from a user-defined instruction set. If two CPUs have

the same genome, they belong to the same genotype. The instruction set consists

of assembly language-like instructions designed to be computationally both powerful

and simple, and robust under mutations. Both the function of each instruction and

the composition of the instruction set can be easily modified by the user.

A sample instruction set is shown in Tables 2.2-2.6. A major difference between

the instruction sets commonly used in sanda and computer assembly language is the

use of nops as arguments to other instructions. For example,

~
~

would cause an increment of the AX register value, while

would cause an increment of the BX register value. This kind of addressing ob­

viously only works for as many registers as we have labelled nops. In the list of

instructions below, whenever a register name is surrounded by question marks (e.g. ,

?bx?), the indicated register is the default register, used when there are no arguments

to the instruction. If a label nop (nop-A, nop-B, etc.) follows the instruction in the

creature's code, the indicated register is used instead of the default register. nops can

also be used as labels for a search or jump. For example, the following code snippet,

16

search-£

nop-B

nop-A

would search forward in the genome for the complementary label

(assuming we had at least three nops in the current instruction set). If desired,

this behaviour can be modified so that the search is done for a copy of the label

instead of its complement. The complements for individual nops are as follows (as­

suming exactly three labelled nops):

I Nop I Complement

nop-A nop-B

nop-B nop-C

nop-C nop-A

The extension to different numbers of labelled nops is straightforward.

A sample self-replicating creature using instructions from Tables 2.2-2.6 is shown

in Fig. 2.3. The string shown replicates by: searching forward (instruction 1) for

the complement of the template nop-A nop-A (2-3) , which is nop-B nop-B (21-22) ,

manipulating this value in an internal register to find the genome length (4-5) , al­

locating enough memory to store code of the genome length (6) , setting registers to

prepare for copying (7-11), copying the instructions one at a time (12-19) until all

instructions have been copied (15-16), and replicating (20)- placing the daughter in

its own grid site. Execution restarts at the beginning of the genome when the end

of the genome is reached, and continues until the organism is replaced by the newly

replicated daughter of another organism (or its own daughter). The copy command

17

I Type I Name I Explanation
Null nop-A Labelled nops. Do nothing when executed.
operations nop-B These also act as letters in labels,

nop-C and arguments to certain instructions.
nop-X A pure no-operation instruction. Does not act as

an argument to any commands.
Flow control if-not-0 If the value of the ?bx? register is non-zero, exe-
operations cute the next instruction, otherwise skip it.

if-n-equ If the value of the ?bx? register does not equal the
value of its complementary register, execute the
next instruction, otherwise skip it. For example,
a nop-A following this command causes the values
of ax and bx to be compared.

if-bit-1 Execute the next instruction if the last bit of ?bx?
is 1.

jump-b If a label follows , search for its complement in the
part of t he genome before the current instruction,
and if a match is found, change the instruction
pointer to point at the last instruction of the corn-
plementary label. If there is a label, but its corn-
plement is not found , do nothing. If there is no
label following , decrement the instruction pointer
bx instructions. If the instruction pointer becomes
negative, reset it to a positive value such that the
new value is less than the size of the genome and
the old and new values share the same remainder
modulo the genome size.

jump-f If a label follows, search for its complement in the
part of the genome after the current instruction,
and if a match is found , change the instruction
pointer to point at the last instruction of the corn-
plementary label. If there is a label, but its corn-
plement is not found, do nothing. If there is no
label following , increment the instruction pointer
bx instructions. If the instruction pointer becomes
larger t han the size of the genome, reset it to a
positive value such that the new value is less than
the size of the genome and the old and new val-
ues share the same remainder modulo the genome
size.

Table 2.2: Sanda instructions (part 1/5).

18

I Type I Name I Explanation

Flow jump-p Jump into the genome of the CPU that the exe-
control opera- cuting CPU is facing. If a label follows, search for
tions (cont'd) its complement from the beginning of the target

genome, and if a match is found , change the in-
struction pointer to point at the last instruction
of the complementary label. If there is a label,
but its complement is not found , do nothing. If
there is no label, jump to instruction bx in the
target genome. If the instruction pointer becomes
larger than the size of the target genome, reset
it to a positive value such that the new value is
less than the size of t he genome and t he old and
new values share t he same remainder modulo the
genome size. A CPU's instruction pointer may
only point at an instruction in its own genome or
in the genome of the CPU it is facing.

call Push the location of the next instruction on the
stack, and jump forward to the complement of the
label which follows. If there is no label, jump bx
instructions. See jump-f for further details.

call-p Push the location of the next instruction on the
stack, and jump to the complement of the label
which follows in the genome of the CPU current ly
being faced. If there is no label, jump to instruc-
tion bx of the target genome. See jump-p for fur-
ther details.

return Pop the top value from the stack, and move the
instruction pointer to that location in the crea-
ture 's genome. If the instruction pointer no longer
points at a valid genome site, reset the instruction
pointer as in jump-f or jump-b.

Single shift-r Rotate the bits of the ?bx? register right .
argument shift-1 Rotate the bits of the ?bx? register left.
math bit-1 Set the last bit of ?bx? to 1.
operations inc Increment ?bx? .

dee Decrement ?bx? .
zero Set ?bx? to zero.
push Push ?bx? onto the stack.
pop Pop the first value in the stack into ?bx?.

Table 2.3: Sanda instructions (part 2/5) .

19

I Type I Name I Explanation
Single ar- set-mun Set bx to the ternary equivalent of the label which
gument math follows , defining nop-A as 0, nop-B as 1 and nop-C
operations as 2. For example, nop-C nop-A nop-B is 2 0 1
(cont 'd) in ternary, or 2 x 32 + 0 x 3 + 1 x 1 = 19 in decimal.

If there is no label , set bx to zero.
Double argu- add Set ?bx? equal to the sum of the values of the bx
ment math and ex registers (?bx? = bx+ ex) .
operations sub ?bx? = bx - ex.

nand ?bx?= bx NAND ex (bitwise NAND).
nor ?bx? = bx NOR ex (bitwise NOR).
order Swap the values of bx and ex, if needed, so that

ex > bx.
"Biological" allocate Allocate memory for bx instructions at the end of
operations the current genome for this CPU and return the

start location of this memory in ax. This instruc-
tion does nothing if there has not been a successful
divide since the last allocate . The total size of
the genome after allocation is forced to be less
than a user defined maximum value (default 128).

divide Split the genome at ?ax? , placing the instructions
beyond t he dividing point into a neighbouring cell.
This instruction has no effect if either the mother
or the daughter genome would be less than a min-
imum number (default 10) of instructions long.

c-alloc Allocate memory equal to the size of the cur-
rent genome at the end of the genome and re-
turn the location of the start of this memory in
ax. This instruction does nothing if there has not
been a successful c-di vide since the last c-alloc.
This instruction and the next are used instead of
allocate and divide when we want to experi-
ment with creatures with constant genome sizes.

c-divide Split the genome of the creature in half, placing
the instructions beyond the division point into a
neighbouring cell.

Table 2.4: Sanda instructions (part 3/5).

20

I Type I Name I Explanation
"Biological" copy Copy the instruction from the genome location
operations pointed to by the bx register to the memory lo-
(cont'd) cation pointed to by ax + bx, i.e., copy the in-

struction at location bx into a location offset by
ax. If either of the locations is not a valid genome
location, this command uses a modified value like
the one used for t he instruction pointer in j ump-f

or jump-b.
read Copy the instruction at location bx in the genome

into the ex register. Again , if bx is out of range,
an appropriate "modulo" value is used.

write Copy the value of the ex register as an instruction
into the memory location at ax + bx.

if-n- cpy Only execute the next line if the contents of mem-
ory locations bx and ax + bx are identical; oth-
erwise skip it. This command has an error rate
equal to the copy mutation rate. (It can be used
for copy error checking).

I/0 get Read the value pointed to by the input pointer
and "sensory" from the input buffer and place it in the ?ex?

operations register.
put Write the value of the ?bx? register into the out-

put buffer, and then set the register to zero.
search-f If a label fo llows, search forward for the comple-

mentary label and place the distance (in instruc-
tions) to it in the bx register and the size of the
label in ex. If a complementary label is not found,
a distance of O is returned in bx. If no label fol-
lows, bx is unchanged and ex is set to 0.

search-b If a label follows , search backward for the com-
plementary label and place the distance (in in-
structions) to it in the bx register and the size of
the label in ex. If a complementary label is not
found, a distance of O is returned in bx. If no label
fo llows, bx is unchanged and ex is set to 0.

Additional swi tch_stack Switch the active stack.
Instructions rotate-1 Rotate the current facing of the CPU

counterclockwise.
rotate-r Rotate the current facing of the CPU clockwise.

Table 2.5: Sanda instructions (part 4/5).

I Type I Name
Additional In- inj eet
structions
(cont 'd)

set-emut

mod-emut

21

I Explanation

This instruction acts somewhat like divide , but
instead of killing another creature and replacing
it with the executing CPU's daughter, the daugh­
ter code is instead injected into the middle of a
running CPU's memory. The CPU currently be­
ing faced is inj ected, and the injection position
is chosen by matching complementary labels. If
a complementary label can not be found in the
genome of the CPU faced, or there is no label fol­
lowing this instruction, the instruction fails.
This instruction allows a CPU to set its own copy
mutation rate. The value in ?bx? becomes the
CPU's new copy mutation rate (x 10- 4).
This instruction modifies the copy mutation rate
of a CPU. When executed, the copy mutation rate
of the CPU has ?bx? x 10- 4 added to it.

Table 2.6: Sanda instructions (part 5/5) .

(14 in this particular genotype) fails and writes a random instruction with probability

1 (the copy mutation rate).

A snippet of code which takes two numbers from the input buffer, adds them, and

outputs the result to the output buffer is shown below.

get

nop-B

get

add

put

A value from the input buffer is placed in bx, then the next value from the input

buffer in ex. The values of bx and ex are added and the result placed in bx. Finally,

the value in bx is output to the output buffer. The fragment above is obviously

written by a human- rarely do sanda creatures evolve any code so simple.

We can select for code which accomplishes certain tasks by rewarding CPUs which

22

5

search-f nop-A nop-A add inc allocate

10

push nop-B pop nop-C pop nop-B

15

nop-C copy inc if-n-equ jump-b nop-A

20

nop-B divide nop-B nop-B

Figure 2.3: Example sanda genome. Sanda organisms have genomes which are strings
of sanda instructions.

accomplish this result- or parts of this result , such as getting numbers from the input

buffer , executing the add instruction, or outputting to the output buffer-with lower

demerit values. Lower demerit values lead to a higher replication rate for selected

CPUs, and a growth in the number of CPUs of this genotype.

2.6 Mutation Methods

Mutations are random changes in the code of a CPU or its daughter. Without mu­

tations, the system would settle into a non-interesting steady state where all the

creatures would have the same genotype. There are several ways of introducing mu­

tations into the system (Table 2. 7). Any combination of these methods can also be

used.

In addition to these explicit mutation mechanisms, incomplete or faulty copy

algorithms in creature's genomes cause implicit mutations, as do certain exotic in­

structions (insert for example) . These implicit mutations will tend to increase the

effective mutation rate.

23

Mutation Type I Explanation

Per-instruction Copy Each time the copy instruction is executed , there is a
finite chance that an instruction chosen at random from
the instruction set will be written instead of the intended
instruction.

On-replication Copy Each time a creature replicates, there is a chance of a
single, randomly chosen instruction in the daughter being
mutated into another. This may be used instead of per-
instruction copy mutations to allow genomes of greater
length and information content to be viable.

Point A finite probability per time of a randomly chosen in-
struction in a creature 's genome (including memory allo-
cated for its daughter) being mutated.

Table 2.7: Mutation methods.

2. 7 Replication and Death

Genotypes which allow faster replication, by a more efficient copy algorithm, a de­

crease in genome size (less instructions to be copied), or by accomplishing user-defined

tasks , will ceteris paribus have a growing number of CPUs. The speed of this growth

is greatly affected by the selection scheme used when choosing CPUs to be replaced by

newly replicated daughters. Fig. 2.4 shows some selection schemes that can be used

in sanda. In a selection scheme which includes matricide, the daughter can replace

the parent; without matricide, the daughter can only replace one of the parent's eight

neighbours. In an age-biased selection scheme, the oldest creature in the neighbour­

hood is replaced, whereas in a non-biased scheme, a creature is chosen at random.

Additional schemes (e.g., replacing the creature with the highest error rate) can be

implemented easily by modifying a single procedure in the program.

In addition to the replacement of a CPU by a newly created creature, death in

sanda can be implemented explicitly- CPUs past a certain age or CPUs which make

too many errors may be killed. This can add another factor to selection schemes;

dead cells are replicated into before living cells are replaced.

Matricide

No
Matricide

24

Non-biased

High rates of copy

mutation lead to

a soup with no

viable genotypes.

Low diffusion rate.

A small number of

viable genotypes

even with very high

mutation rates.

Low diffusion rate.

Age-biased

High rates of copy

mutation lead to a

soup with no viable

genotypes.

High diffusion rate.

A small number of

viable genotypes

even with very high

mutation rates.

High diffusion rate.

Figure 2.4: Replacement selection schemes. Various combinations are possible and
lead to different dynamics.

25

2.8 Parallel Emulation Algorithm

To properly emulate the independent metabolism of each creature, we need an emula­

tion algorithm to execute the instructions in each creature 's genome in turn. In avida

and tierra several of a creature's instructions were executed sequentially, and then

several of the next creature 's instructions, and so on (block time-slicing). Creatures

,vhich performed user-defined tasks were rewarded with larger blocks of execution

time.

In sanda , such approximations are avoided by defining a physical time for the

system. Each cell in the system has its own time. In a simple algorithm, one in­

struction is executed for the CPU of the cell with the lowest time in the system and

the time needed for the CPU to execute the instruction is added to the cell's time

(and CPU's age) (Fig. 2.5). This is repeated ad nauseum. Each instruction takes a

certain base amount of time to execute (the length of this base execution time can

be set to different values for each instruction by the user). This base execution time

is modified by the demerit of the CPU executing the instruction; a CPU which has

performed user-defined tasks and has thus lowered its demerit value will take less

time to perform the same instruction than a CPU with a higher demerit value.

The method outlined above works well for small grid sizes on a single computer.

However, for larger population sizes, or sanda runs across many processors, the com­

putational load of maintaining a sorted list of cells and their times is prohibitive. We

can solve this problem by recognizing that all interactions in the system are local.

Cells further than two grid sites apart can not interact with one another via execution

of a single instruction (Fig. 2.6). This allows us to relax the condition for update of

a cell from the single cell having the lowest time value in the whole system, to those

having the lowest time value in their 25-site neighbourhoods (Fig. 2. 7). If we choose

to ignore the second-order effects leading to interactions between cells two sites apart,

we can get even higher emulation speeds by updating cells with the lowest time-values

in 9-site neighbourhoods (Fig. 2.8)

\tVith these localized time-slicing methods, the computational time needed per

26

4356 4390 4388 4387 4390 4339 4316 4392

4346 4382 4393 4361 4302 4392 4340 4357 4391

4358 4387 4304 4359 4355 4315 4348 4379 4376

4350 4353 4339 4345 4384 4325 4314 4336 4382

4337 4319 4314 4370 4365 4362 4380 4383 4312

4368 4387 4308 4369 4349 4380 4379 4326 4388

Figure 2.5: A non-local time-slicing algorithm. Cells are shown with their time values.
Only the cell with the smallest time value (shown shaded) executes an instruction.
The new time value for the executed cell is then sorted into the global list of time
values. The computation time needed for this sorting increases with the size of the
grid. Also, for a grid spread across many processors, time values must be communi­
cated between processors for each executed instruction, and only one processor can
execute an instruction at a time.

27

5431 4205 2638 9342 400

5032 A 324 D 3042
5293

7823 5342 B C 2097
8372

1432 7362 2937 3232 4342

Figure 2.6: Inter-cell interactions. Each square in the diagram is a cell , and t he
numbers are CPU ages. Assuming an age-biased selection scheme, if A divides, it
will replace B- a one-site distance interaction. If C divides next , then A will have
indirectly affected C and D as well , since C will now replicate into D instead of
B- two-site distance interactions. Longer range (greater than 2 sites) interactions
cannot result from the execut ion of a single instruction.

28

4356 4390

4346 4382

4358 4387

4350 4353

4337 4319

4368 4387

Figure 2. 7: Local time-slicing algorithm wit h 25 neighbours. The cells which will
execute instructions next are in dark grey. The 25-site neighbourhood of the cell with
time 4300 is shown in light grey. Each inst ruction execution is followed by 24 integer
comparisons.

29

4356 4390 4388

4376

4350 4384 4382

4337 4319 4314 4370 4365

4368

Figure 2.8: Local time-slicing algorithm with 9 neighbours. The cells which will
execute instructions next are in dark grey. The 9-site neighbourhood of the cell with
time 4300 is shown in light grey. Each instruction execution is followed by only
8 integer comparisons, allowing for very speedy emulation of independent, parallel
creature execution.

30

instruction execution no longer depends on the size of the soup. Further, the size

and frequency of interprocessor communications in multiprocessor runs are greatly

reduced, as only information about cells lying on the border between two processors

need be communicated and it is no longer necessary to communicate the time values

of all the cells in a processor 's grid to other processors.

2.9 Sanda on Parallel Computers

Sanda was explicitly written for use on multiprocessor machines, specifically the Intel

Paragons. The main bottlenecks for emulation speed on the Paragons are in the

latency of inter-processor communications, and in data input and output. Several of

the design decisions for sanda reflect these conditions.

The grid is divided between processors as shown in Fig. 2.9. Each processor has an

n x m portion of the grid and must communicate with the eight processors surrounding

it. In practice, a processor communicates directly only with the four processors

sharing borders with it. iVIessage-passing to processors at the corners is accomplished

indirectly by relaying through processors with which the message-sending processor

directly communicates (Fig. 2.9). Each processor has four input message buffers and

four output message buffers, one each for each processor it borders. For any two

neighbouring processors, one will be in send mode and the other in receive mode with

regard to each other (Fig. 2.10). A processor can only send data to a neighbouring

processor if it is in send mode in regard to that processor. Once a processor sends

data to a neighbour it switches to receive mode with regard to that neighbour. These

mechanisms are in place to avoid corruption of the receive buffer by newly transmitted

data before the previously received data has been properly processed.

The data to be sent between processors includes records of new CPUs, new geno­

types , and time updates for cells on the borders between the processors. Depending

on the instruction set (whether or not a CPU can examine or change its neighbour 's

genome) and the time-slicing algorithm chosen (9-neighbour or 25-neighbour time­

slicing) , data for cells one site removed from the border may or may not need to be

31

C B
(

?/
1

I / -
A D

Figure 2.9: Grid allocation and interprocessor communication relaying. Each pro­
cessor has part of the grid in classic "patchwork" fashion. Information about cells
on the borders is communicated to directly neighbouring processors and is relayed to
those processors sharing only a corner with the originating processor. In the diagram,
information from processor A needed by processor B is relayed t hrough processor C
or D.

32

Figure 2.10: Processors in send and receive modes. For each pair of neighbours one
is in send mode and another in receive mode. In the diagram, the arrow heads point
to the processor in receive mode.

33

sent.

2.10 User Files

Sanda is designed to be run in batch mode with little interaction with the user. To

alleviate the bottlenecks caused during disk I/0, sanda fully utilizes the pfs filesystem

of the Intel Paragons, which has multiple hard drives and hard drive controllers.

Sanda 's output is widely configurable, and due to the vast amount of data generated

from large population sizes, it is recommended that the user consider the output data

needed for his or her purposes and modify the output classes to output only needed

data, or that the user choose a low sampling rate of several generations (a generation

is defined as the time it takes the system to have a number of births equal to the

population or grid size) between outputs. The default output format is two binary

files, one containing genotype data (genotype name, total number, fitness, etc.) and

one containing update data (time, existing genotype populations, etc.). A 10 hour

sanda run on one processor generates about 5 megabytes of data with output once

per generation using the default outputs. Obviously, with up to 512 processors, this

is not a recommended setting.

Most adjustable system parameters can be changed by editing the defaulLparams.san

file and recompiling. The main impetus for reprogramming sanda in C++ was the

ease of modification and extension that it provides. Most classes should be easily

modifiable to allow specialized versions of sanda.

2.11 Extensions

Sanda can be easily extended to higher-dimensional grids , to different selection schemes,

and to include different interactions between CPUs. The easiest changes to sanda in­

volve changing the instruction set (see below for an example). For instance, if you

were interested in evolving genomes which could sort their inputs , you might want

to implement pointer operations on buffers, such as a swap instruction or a better

34

compare instruction.

A very simple alternative instruction set is the neutral model instruction set. It

has only two instructions:

I Instruction Name I Explanation

nop-A Do nothing.

NM-divide Divide. The daughter is of the same genotype as the par-

ent with probability F, of a new genotype but still viable

with probability F x N, and non-viable with probability

1-F-F x N.

Genomes in this variation of sanda are all one instruction long. Genotypes are

redefined; merely having the same genome does not mean two creatures in the neutral

model share the same genotype. This model is explored further in Chapter 6.

35

Chapter 3 Propagation of Information

Sanda models populations of self-replicating strings residing in an environment with

spatial structure. In this section, I test the sanda system by comparing the propaga­

tion of information in sand a to theoretical predictions and to propagation in biological

systems. I observe the propagation of information in sanda as a function of the fitness

and mutation rate of carrier strings. Comparison with theoretical predictions based

on the reaction-diffusion equation shows that the response of the artificial system to

fluctuations (e.g., velocity of the information wave as a function of relative fitness)

closely follows that of natural systems. I find that the relaxation time of the system

depends on the speed of propagation of information and the size of the system. This

analysis offers the possibility of determining the minimal system size for observation

of non-equilibrium effects at fixed mutation rate.

3.1 Introduction

Thermodynamic equilibrium systems respond to perturbations with waves that re­

establish equilibrium. This is a general feature of statistical systems, but it can also

be observed in natural populations, where the disturbance of interest is a new species

with either negligible or positive fitness advantage. The new species spreads through

the population at a rate dependent on its relative fitness and some basic properties

of the medium which can be summarized by the diffusion coefficient. This problem

has been addressed theoretically [18] and experimentally (see, for example, Ref. [17]

and references therein) since early this century. The application of the appropriate

machinery (diffusion equations) to the spatial propagation of information rather than

species, is much more recent , and has been successful in the description of experiments

with in vitro evolving RNA [11 , 28].

Systems of self-replicating information (cf. the replicating RNA system mentioned

36

above) are often thought to represent the simplest living system. They offer the chance

to isolate the mechanisms involved in information transfer (from environment into the

genome) and propagation (throughout the population) , and study them in detail.

It has long been suspected that living systems operate, in a thermodynamical

sense, far away from the equilibrium state. On the molecular scale, many of the

chemical reactions occurring in a cell 's metabolism require non-equilibrium conditions.

On a larger scale, it appears that only a system far away from equilibrium can produce

the required diversity (in genome) for evolution to proceed effectively (I will comment

on this below).

In the systems that we are interested in- systems of self-replicating information

in a noisy and information-rich environment- the processes that work for and against

equilibration of information are clearly mutation and replication. In the absence of

mutation, replication leads to a uniform non-evolving state where every member of

the population is identical. Mutation in the absence of replication, on the other hand,

leads to maximal diversity of the population but no evolution either, as selection is

absent. Thus, effective adaptation and evolution depend on a balance of these driving

forces (see, e.g., [2, 1]). The relaxation time of such a system, however , just as in

thermodynamical systems, is mainly dictated by the mutation rate which plays the

role of "temperature" in these systems [1]. As such, it represents a crucial parameter

which determines how close the system is to "thermodynamical" equilibrium. Clearly,

a relaxation time larger than the average time between (advantageous) mutations

will result in a non-equilibrium system, while a smaller relaxation time leads to fast

equilibration. The relaxation time may be defined as the time it takes information

to spread throughout the entire system (i.e. , travel an average distance of half the

"diameter" of the population). A non-equilibrium population therefore can always be

obtained (at fixed mutation rate) by increasing the size of the system. At the same

time, such a large system segments into areas that effectively can not communicate

with each other, but are close to equilibrium themselves. This may be the key to

genomic diversity, and possibly to speciation in the absence of niches and explicit

barriers.

37

The advent of artificial living systems such as tierra [32 , 2] and avida [5 , 6] have

opened up the possibility of checking these ideas explicitly, as the evolutionary pace

in systems both close and far away from equilibrium can be investigated directly. As

a foundation for such experiments, here I investigate the dynamics of information

propagation in the artificial life system sanda. This is a necessary capability for

investigating arbitrarily large populations of strings of code. The purpose of my

experiments is two-fold. On the one hand, I would like to "validate" the Artificial Life

system by comparing experimental results to theoretical predictions known to describe

natural systems, such as waves of RNA strings replicating in Q,B-replicase [11 , 28].

On the other hand , this benchmark allows determination of the diffusion coefficient

and the velocity of information propagation from relative fitness and mutation rate.

Finally, I arrive at an estimate of the minimum system size which guarantees that

the population will not , on average, equilibrate.

In the next section I briefly describe the sanda configuration used for these ex­

periments. The third section introduces the reaction-diffusion equation for a discrete

system and analytical results for the wavefront velocity as a function of relative fitness

and mutation rate. I describe results in the subsequent section and close with some

comments and conclusions.

3.2 The System

For these experiments, when a string replicates, it places its child in one of the eight

(not including itself) adjacent grid spots, replacing any string which may have been

there. Grid sites are allowed to be empty- have no string. If there is an adjacent

site which contains no string, the daughter is placed there rather than replacing a

string. In these experiments, when there are no adjacent empty sites, the string to

be replaced is chosen in either of two ways; random selection where an adjacent site

is selected purely at random, or age-biased selection where the oldest string among

the neighbours is replaced. As we shall see, the selection mechanism has a significant

effect on the spread of information.

38

It should be noted that this birth process, and indeed all interactions between

strings, are local processes in which only strings adjacent to each other on the grid may

affect each other directly. This is important as it both supplies the structure needed

for studies of the spatial characteristics of populations of self-replicating strings of

code, and results in longer relaxation times- making possible studies of the equili­

bration processes of such systems and their nonequilibrium behaviour.

I have studied the relaxation of the system both with and without mutations

allowed and for varying relative fitness differences between originally existing wild­

type or background genotypes and new, fitter mutated genotypes.

3.3 Diffusion and Waves

Information in sanda is transported mainly by self-replication. When a string divides

into an adjacent grid site, it is also transferring the information contained in its

code (genome) to this site. I have looked at the mode and speed of this transfer

in relation to the fitness of the genotype carrying the information, the fitness of the

other genotypes near this carrier, and the mutation rate.

Consider what happens when one string of a new genotype appears in an area

previously populated by other genotypes. I will make the assumption that the fitness

of the other viable (self-replicating) genotypes near the carrier are approximately the

same. This holds for cases where the carrier is moving into areas which are in local

equilibrium. I will use le for the fitness of the newly introduced (carrier) genotype

and lb for the fitness of the background genotypes. If le < lb , obviously the ne,v

genotype will not survive nor spread. I have studied three different cases: diffusion,

wave propagation without mutations, and wave propagation with mutations.

The diffusion case represents the limit where the fitness of both genotypes are

the same. It turns out that this can be modelled as a classical random walk. On

average, if the carrier string replicates it will be replaced before it can replicate

again. This is effectively the same as the carrier string moving one lattice spacing

in a random direction chosen from the eight available to it (Fig. 3.1). The random

39

■ fc

~ V"-.
(~

\

I) Ir LJ

IE: L_
h

V'-..)
L/ I/ '- - 7 Ir

< I/ I\. \
V r LJ I'\..... 7)

< V

Figure 3.1: Random walk of a carrier genotype wit h fi tness le= l b- On average, the
carrier genotype is replaced as often as it replaces another cell ; the carrier genotype
looks like it is stepping from site to site- a random walk.

walk is characterized by t he disappearance of the mean displacement and t he linear

dependence on t ime of t he mean squared displacement:

0,

4Dt ,

where D is defined as the diffusion coefficient .

(3. 1)

(3.2)

For this part icular choice of grid and replication rules , this find for t he diffusion

■ fc

Figure 3.2: Spread of a carrier genotype with better fi tness than the background
genotype. The boundary between the two genotypes moves with a speed v outwards.

coefficient of a genotype with fi t ness l,

(3.3)

where a is the lattice spacing. This holds for the age-biased selection scheme where

the oldest cell in the neighbourhood is replaced.

If le > lb then we find that instead of diffusion we obtain a roughly circular

population wave of the new genotype spreading outward (Fig. 3.2). We are interested

in the speed of this wavefront.

Let us first treat the case without mutation. If the radius of this wavefront is

41

not too small, we can treat the distance from the center of the circle r as a linear

coordinate. I define p(r, t) as the mean normalized population density of strings of the

new genotype at a distance r from the center at a time t measured from initial seeding

with the new genotype. Vv'e assume that the ages of cells near each other have roughly

the same distribution and that this distribution is genotype independent, ensuring

that the selection of cells to be replaced does not depend on genotype either.

Then, we can ·write a flux equation (the reaction-diffusion equation) which deter­

mines the change in the population density p(r, t) as a function of time

op(r, t)

at [
3 1 3 l
8p(r - a, t) + 4p(r, t) + 8p(r + a, t) fc (1 - p(r, t))

[
3 1 3 l
8(1 - p(r - a, t)) + 4(1 - p(r, t)) + 8(1 - p(r + a, t)) f&p(r , t). (3.4)

Since we are interested in the speed of the very front of the wave, we can assume

p to be small. Also, from physical considerations we assume p is reasonably smooth.

Then, we can use a Taylor expansion

op(r, t) 2 82 p(r, t)
p(r ± a, t) = p(r, t) ± a or + a or2

and keep the lowest order terms to obtain

op(r, t) - ~ 2 f 8
2
p(r, t) (f - f) ()

0t - 8 a c 0r2 + c b p r, t •

This can be solved for the linear wavefront speed v(b) yielding [15]

a~ JfcUc - f&)

2J vib)Uc - !&)

(3.5)

(3.6)

(3.7)

(3.8)

where Dib) is the diffusion coefficient of the carrier genotype when using a biased (by

age) selection scheme.

To study the case of wave-propagation with mutation, we make the assumption

42

that all mutations are fatal- the daughter is dead. We write equilibrium equations

for this selection scheme:

pF - p(l - ClD)
8 = 0, (3.9)

where aD is the number of sites with dead strings. We can then calculate the steady

state density of dead cells,

(3.10)

where the fidelity F is the probability that a child will have the same genotype as

its parent (i.e. , not be mutated). As mentioned earlier, the fidelity is related to the

mutation rate 'Y by

(3.11)

where /J, is the length of the particular string. Modifying the previous flux equation

to take into account these new factors and repeating the previous analysis gives us

(3.12)

Let us now consider the effects of different selection schemes for choosing cells to

be replaced. The relations above hold true for the case in which we replace the oldest

cell in the 8-cell neighbourhood when replicating ("age-based" selection). Another

method of choosing a cell for replacement is to choose a random neighbouring cell

regardless of age. This scheme, which we term random selection as opposed to the

age-biased selection treated above, effectively halves the replication rate of all cells.

It follows that the diffusion coefficient is also halved,

(3.13)

(3.14)

43

7000

6000 (a) (b)

(/)

~5000
L

-+-'

(/) 4000
'+-
0

~ 3000
..0

~ 2000
z

1000

0
0 2 4 6 8 0 2 4 6 8
Number of offspring Number of offspring

Figure 3.3: Distribution of number of strings generating different numbers of offspring,
for the biased selection case [panel (a)] and the random selection scenario [panel (b)].

and for the velocity of the wavefront (with no mutation) we find

(3.15)

In Fig. 3.3, we show a histogram of the number of offspring that a cell obtains before

being replaced by a neighbour's offspring, for the biased selection case (left panel) and

the random case (right panel). As expected from general arguments , half of the cells

in the random selection scenario are replaced before having had a chance to produce

their first offspring (resulting in a reduced diffusion coefficient), while biased selection

ensures that most cells have exactly one child.

Experiments are carried out by first populating the grid with a single (background)

genotype with fi tness lb- Then, a single string of the carrier genotype with fitness le

is placed onto a point of the grid at time t = 0. We then observe the position and

speed of the wavefronts formed , the mean squared displacement of the population of

44

carrier genotypes, and various other parameters as a function of time.

\!\Tith lb kept constant1
, I varied lb/ le from 0.1 to 1.0 in increments of 0.1. Also,

the mutation rate I was varied from 0 to 14 x 10-3 mutations per instruction , in

increments of 1 x 10-3 .

A comparison of the theoretical vs. measured mean square displacement as a

function of time for a genotype ·with no fitness advantage compared to its neighbours

(Jb/ l e = 1) is shown in Fig. 3.4. The data were obtained from approximately 1500

runs. The solid lines represent the (smoothed) averages of the measurements (for

biased and random selection schemes), while the dashed lines are the theoretical

predictions obtained from the diffusion coefficients (3 .3) and (3.13) respectively. The

slopes of the measured and predicted lines agree very well, confirming the validity

of the random walk model and the diffusion coefficient predicted by it (without any

free parameters). The slight discrepancy between the experimental curves and the

predicted ones at small times is due to a finite-size effect that can be traced back to

the coarseness of the grid.

Fig. 3.5 shows the measured values of the wavefront speed for cases where l e > lb

and without mutation, with the corresponding predictions. Again, the higher curve is

for age-biased selection and the lower for random selection. Note that the wavefront

speed gain from an increase in fitness ratio is much better than linear. Note also that

all predictions are again free of any adjustable parameters.

The dependence of this curve on the mutation rate is shown in Fig. 3.6. Increasing

the mutation rate tends to push the speed of the wave down. It should be noted,

however , that because we have only used copy mutations there is no absolute cutoff

point or error threshold Fe where all genotypes cease to be viable, with Fe > 0.

Rather, genotypes can spread until F is very close to the limit Fe = 0.

Finally, the dependence of the wavefront speed on the mutation rate for a fixed

value of the fitness ratio (Jb/ l e = 0.6) is shown in Fig. 3. 7. Data were obtained from

an average of four runs per point in the biased selection scheme. Again , the prediction

1The gestation time was approximately 330,000, where the base execution time for each instruc­
tion was (arbitrarily) set to 1000: !b = 33~000

45

100

~

80 ~
/4/

/4/

60 #
,,--....

/ l-....__
/\ 40

N
L
V

20

0

-20
0 5 10 15 20

T [Time] (x10+
6)

Figure 3.4: Mean squared displacement of genome as a function of time due to dif­
fusion. Solid lines represent experimental results obtained from 1500 independent
runs. Dashed lines are theoretical predictions. The upper curves are obtained with
the biased selection scheme while the lower curves result from the random selection
scenario.

46

-+-'
C
0

15 L
4--
Q)

>
0 10 :s:

L.__J

--.....
5 0

4--

"' ..c
4--
'--" 0 >

0.0 0 .2 0.4 0.6 0.8 1.0
f b/f c [Fitness ratio]

Figure 3.5: Wavefront speed of a genotype with fitness Jc propagating through a
background of genotypes with fitness]b, averaged over four runs for each data point.
Upper curve: biased selection, lower curve: random selection . Solid lines are predic­
tions of Eqs. (3.8) and (3 .15).

co,....--..,.35
I
0 ..---
~30

-+-'
C

2 15
4-
Q)

>
0 10 ~

1...-J

0
0.0 0.2

47

□ R=0

x R=4x10-3

1111 R=8X 10-3

+ R= 12x 10-3

0.4 0.6 0.8 1.0
f b/f c [Fitness ratio]

Figure 3.6: Measured wavefront speeds versus fitness ratio for selected mutation rates

1 (symbols) are plotted with the theoretical predictions from Eq. (3.12) (for the biased
selection scheme only).

,,,........._
r--

40

35

1
0 30
'"""" X__..,

o?25__..,
>

20

15
0

48

2 4 10 12 14

Figure 3. 7: Wavefront speed of a genotype (biased selection) with relative fitness
lb/ le as a function of mutation rate (symbols). Solid line is prediction of Eq. (3.12).

based on the reaction-diffusion equation with mutation agrees well (within error bars)

with measurements.

3 .4 Discussion

Information propagation via replication into physically adjacent sites can be suc­

cinctly described by a reaction-diffusion equation. Such a description has been used

in the description of in vitro evolution of RNA replicating in Q,8-replicase [11 , 28],

as well as the replication of viruses in a host environment [46]. The same equation is

used to describe the wave behaviour of different strains of E. Coli bacteria propagat­

ing in a petri dish [7], even though the means of propagation in this case is motility

rather than replication.

49

Sanda allows the investigation of large populations of self-replicating strings of

code, and the observation of non-equilibrium effects. The propagation of information

was observed for a broad spectrum of relative fitness, ranging from the diffusion

regime where the fitnesses are the same through regimes where the difference in fitness

led to sharply defined wavefronts propagating at constant speed. The dynamics of

information propagation led to the determination of a crucial time scale of the system

which represents the average time for the system to return to an equilibrium state after

a perturbation. This relaxation time depends primarily on the size of the system, and

the speed of information propagation within it. Equilibration can only be achieved

if the mean time between (non-lethal) mutations is larger than the mean relaxation

time. Thus, a sufficiently large system will never be in equilibrium. Rather, it is

inexorably driven far from equilibrium by persistent mutation pressure.

For artificial living systems such as the one investigated here, it is possible to

formulate an approximate condition which ensures that it will (on average) never

equilibrate, but rather consist of regions of local equilibrium that never come into

informational contact. From the timescales mentioned above, we determine that the

number of cells N in such a system must exceed a critical value:

(
2 v(f)) 2/3

N> --
Ra '

(3.16)

where R is the rate of non-lethal mutations, v(f) the velocity of information waves

(Fisher velocity) , and a the lattice spacing (assuming a mean time between non-lethal

mutations t*;::::; (N R)- 1).

Beyond the obvious advantages of a non-equilibrium regime for genomic diver­

sity and the origin of species, such circumstances offer the fascinating opportunity

to investigate the possibility of nonequilibrium pattern formation in (artificial) living

systems. However, the most interesting avenue of investigation opened up by such

artificial systems is that of the study of the fundamental characteristics of life itself.

Since it is widely believed that many of the processes that define life , including evo­

lution, occur in a state which is far from equilibrium, to study such processes it is

50

necessary to have systems which exhibit the properties of life we are interested in and

that can be quantitatively studied in a rigorous manner in this regime. The avail­

ability of artificial living systems as experimental testbeds that can be scaled up to

arbitrary population sizes on massively parallel computers is a step in this direction.

51

Chapter 4 Binning

When dealing with event distributions best plotted on single log or double log scales

(such as exponential and power law distributions) , care must be taken in the proper

binning of the experimental data. Say vve are interested in the probability distribution

P(n) of an event distribution over positive integer values of n. We conduct N trials,

resulting in a data set Q(n) of number of events observed for every n value. For

ranges of n where the expected or observed number of events for each n is much

higher than 1, normally no binning is required. However, for ranges of n where

Q(n) or P(n) is small , binning is necessary to produce both statistically significant

data points, and intuitively correct graphical representations. A constant bin size

has several drawbacks: One must guess and choose an intermediate bin size to serve

across a broad range of parameter space, and the shape and slopes of the curve (even

in a double log plot) are distorted [4].

These disadvantages can be overcome by using a variable bin size. However, choos­

ing bin sizes for variable binning can be time-consuming and arbitrary- different

choices will lead to different conclusions. I propose two related methods of systemat­

ically determining appropriate variable bin sizes. Both methods lead to binned data

which help in correctly visualizing the underlying distribution (slopes and shapes are

conserved). First, I introduce the Data Threshold Method, which requires no a priori

knowledge about the distribution, and is a good predictor of the underlying distri­

bution. However, when there are few data points, the Template Threshold Method,

explained in Section 2 is often more reliable. For both methods, a range of the thresh­

old value should be tried and the best threshold value (neither over- or under-binning)

chosen.

52

10°
10°

10-1
10-2 ..

10-2 10-4

,.--.._

10-3 C__,,

-6

10 10 10 10 10 10 10
5

o_

10-4

10-5

10-6

10° 10
1

Figure 4.1: Binned avalanche size distribution for the BTW sandpile (h ---r 0). The
inset shows avalanche size distribution data after 100,000 avalanches. The main
panel shows the same data binned using the data threshold method with T = 1000.
Overlaying this figure over Fig. 4.2 (which is the same data for 16 million avalanches)
shows no discernible differences between the predictions made by binning and the
conclusions given by more data. The shape of the distribution through n ~ 104,
especially the kink at n ~ 5000, is clearly shown by the binned distribution.

53

10°

10-1

10-2

--...
10-3 C ..____,,

Q_

10-4

10-5

10-6

10° 10
1

10
2

10
3

10
4

n

Figure 4.2: Avalanche size distribut ion in the 2-d BTW sandpile model with driving
rate h -+ 0. T he lattice size for t hese simulations was 100 x 100 (note the cutoff in
the distribution at n ~ 5000 due to system size effects) . The data is unbinned and
involves ~ 16 million avalanches.

54

4.1 Data Threshold Method

For the data threshold method, start by selecting a threshold value T. Starting from

n = 1 and proceeding to higher values , no binning is done until a value of n is found

for vvhich Q(n) < T. When such a value ns is found , subsequent Q(n) values are

added to this amount until the sum of these values is greater than the threshold

value,

n1

L Q(n) > T. (4.1)

We then have a bin size (n1 - n8 + 1), with value I::~~ns Q(n). When plotting, it is

convenient to plot this as a single point at the midpoint of [ns, nt], with an averaged

value,

(4.2)

This yields a graphical representation with little distortion and good predictive power

(Figs. 4.1,4.2). This binning procedure is continued until no more data remains to be

binned.

Example 1. Table 4.1 shows results from sampling a probability distribution obeying

a power law with exponent /3 = -1. 20 trials were made. The binned data is obviously

a better visual representation than the unbinned data (Fig. 4.3).

4.2 Template Threshold Method

Unlike the data threshold method , the template threshold method uses a predicted

probability distribution P(n), or a reasonable surrogate. Again, we define a threshold

value for fitting T. However, in this case, the bin sizes are determined by comparing

values of the expected distribution

E(n) = P(n) x N (4.3)

55

II

10-1

~

C ,,___.,
z

10-2

Figure 4.3: An example of data threshold binning. The circles are unbinned data,
the crosses are data binned using data threshold binning with T = 2, and the solid
line is the probability distribution the data was drawn from.

56

n I Number I Bin Sum I Bin Size I Bin Average I Bin Midpoint I
1 2 2 1 2 1
2 2 2 1 2 2
3 3 3 1 3 3
16 1

2 21 0.095 14
24 1
39 1

2 25 0.08 37
49 1
54 1

2 18 0.11 58.5
67 1
110 1

2 308 0.0065 221.5
375 1
1758 1

2 1821 0.001 1286
2196 1
2503 1

2 652 0.003 2522.5
2848 1
3518 1

Table 4.1: An example of data threshold binning. Note that the last data point is
not used in the binned data.

to T. Starting from n = 1 and proceeding to higher values, no binning is done until

a value of n is found for which E(n) < T. When such a value ns is found , subsequent

E(n) values are added to this amount until the sum of these values is greater than

the threshold value,

(4.4)

We then have a bin of [ns, nt] with corresponding size (n1 - ns + 1). The average value

associated with this bin is

I:~~ns Q(n)
n1 - ns + l

(4.5)

This procedure is repeated until the data is exhausted . For this method, the data may

be graphically represented either as a single point per bin (as in the data threshold

method above) , or as a point (showing the associated average value) for each measured

57

10
1

0

10° 0 0 0 000 0

~

10-1

,,--....
C

'---"' z
10-2

Figure 4.4: An example of template threshold binning. The circles are unbinned data,
the crosses are data binned using data threshold binning with T = 1.0 and plotted
·with one point per unbinned data point , the diamonds are binned data plotted at bin
midpoints, and the solid line is the probability distribution the data was drawn from.

(non-zero) data point Q (n) .

Example 2. The same data as in Example 1 are shown binned using the template

threshold method in Table 4.2, Table 4.3, and Fig. 4.4. The template function used

was the actual underlying distribution. However, a decent guess at the underlying

distribution would have served just as well.

58

I Bin Start I Bin End I Bin Size I Bin Midpoint I Bin Sum I Bin Average I
1 1 1 1 2 2
2 2 1 2 2 2
3 4 2 3.5 3 1.5
5 7 3 6 0 0
8 12 5 10 0 0
13 20 8 16.5 1 0.125
21 32 12 26.5 1 0.0833
33 51 19 42 2 0.105
52 81 30 66.5 2 0.0667
82 128 47 105 1 0. 213
129 202 74 165.5 0 0
203 319 117 261 0 0
320 503 184 411.5 1 0.00543
504 793 290 648.5 0 0
794 1250 457 1022 0 0

1251 1970 720 1610.5 1 0.00139
1971 3105 1135 2538 3 0.00264
3106 4893 1788 3999.5 1 0.00056

Table 4.2: Bin values in an example of template threshold binning. The bins were
chosen with the aid of a template function with T = 1.0.

I n I Number I Averaged Value I Bin Midpoint I
1 2 2 1
2 2 2 2
3 3 1.5 3.5
16 1 0.125 16.5
24 1 0.0833 26.5
39 1

0.105 42
49 1
54 1

0.0667 66.5
67 1
110 1 0.213 105
375 1 0.00543 411.5
1758 1 0.00139 1610.5
2196 1
2503 1 0.00264 2538
2848 1
3518 1 0.00056 3999.5

Table 4.3 : An example of template threshold binning. Note that all data points are
ut ilized.

59

Chapter 5 An Extension to the

Bak-Tang-Wiesenfeld Sand pile Model

Sandpile models with finite driving rates are limited by the restriction of one tumble

per site per update. In this chapter, I describe a natural extension to the Bak, Tang,

and Wiesenfeld sandpile model which removes this restriction and allows investigation

of the dynamics of the model at high driving rates.

5 .1 Introduction

The Bak, Tang, and Wiesenfeld (BTW) sandpile model [10] is defined on ad-dimensional

lattice. Each site on the lattice has an energy Zi associated with it. A "grain" of en­

ergy of size 1 is dropped on a random site i and if the resultant energy of that site

is greater than a critical energy (zi > Zc = 2d - 1), the site transfers energy to its

neighbours;

(5.1)

(5.2)

If the energy of a neighbour becomes supercritical through this process, the neighbour

in turn tumbles. A series of tumbles (an avalanche) can result from the dropping of a

single grain, ending only when all sites are again just critical or subcritical (Fig. 5.1).

These tumbles are carried out in lockstep, each tumble takes exactly the same amount

of time (an update), and the transport time of energy between sites is ignored. The

only distiipation comes at the edges of the lattice where grains may "fall off." If this

process is carried on long enough and on a large enough lattice, the system reaches a

stationary state where the distribution of sizes of avalanches (total number of tumbles

60

resulting from the dropping of one grain) and several other statistical properties of

the system obey power law distributions. It was originally suggested that this self­

organization was an inherent property of the system, while it now seems established

that the system is actually tuned by waiting until avalanches are over before dropping

new grains- this is equivalent to allowing non-local interactions [37, 20].

So far, we have ignored dissipation and assumed a vanishing driving rate- grains

are added only after all sites have finished tumbling and the current avalanche is over.

This is obviously not a physically realistic system. The effects of finite dissipation and

a non-vanishing driving rate force the sandpile from its critical state- the avalanche

size distribution is no longer a power law (this behaviour is explored in detail in

Chapter 6). \,Vhen the dissipation rate E (number of grains falling off per grain

travelling between sites) is larger than the driving rate h (probability of a site having

a grain dropped on it per tumble update), the sandpile is in a stationary state where

the avalanche size distribution starts to diverge from power law and the number of

tumbles per site per update is less than one. Previously, the regime where h 2, E

(Region B in Fig. 5.2) was considered trivial and uninteresting [42]. However, by

refinement and extension of the BT\,V sandpile model to allow for multiple overlapping

avalanches, we show that this is not the case and that the dynamics in Region A are

continued into Region B.

5.2 Overlapping Avalanches

Let 's first clarify the propagation of avalanches when two avalanches add grains to

the same site during the same update. If more than one grain arrives at a site i at

the same update, we order them randomly and the grain which by its addition causes

Zi = Zc + 1 = 2d (5.3)

(the addition of this grain causes the site to become just su percri ti cal) is defined as

the grain which triggered the tumble (Fig. 5.3). The 2d grains at this site which

61

□
z=O)
z=l (subcritical)

■ z=2

II z = 3 (critical)

u z > 3 (active)

Figure 5.1: Avalanches in the 2-d BTW sandpile model. The total number of tumbles
is (from left to right) n = 2, 8, 2, 2, 14. The second avalanche has 2 tumbles in its
second update, 1 in its third update , and so on. Compare with the branching process
trees of Fig. 6.1.

62

h

B

C A

E<O Critical point E>O

Figure 5.2: Sandpile model regimes. The critical point is for h ➔ 0 and E ➔ 0.
Region A has h ;SE, while Region B has h ,2: E. Previously, Region A was considered
the only region with interesting dynamics. However, extensions to the BT\i\1 model
show that the dynamics of sand piles is nontrivial and continuous throughout Regions
A and B.

63

tumble as a result of this added grain we term effect grains of this grain, and the

added grain the cause grain of the newly transported grains. This allows us to follow

a chain of cause and effect for any transported grain back to a single grain dropped

on the lattice. The size of an avalanche is defined as the number of tumbles caused by

a single dropped grain (the ancestor grain), its effect grains, the effect grains' effect

grains, and so on.

We now refine the model to allow more than one tumble per site per update. This

is done by changing the condition for a tumble to

Zi = Zc x n = 2d x n (n = 0, 1, 2, ...). (5.4)

Every 2d-th grain (cause grain) causes a tumble in which 2d grains (effect grains) are

transferred to neighbouring sites at the next update (Fig. 5.3). In this way, during

one update a site can have multiple tumbles, of the same avalanche or of different

avalanches.

5.3 Discussion

These two refinements permit meaningful discussion of avalanche dynamics in sand­

piles driven with finite driving rate h 2:, E. As can be seen in Fig. 5.4, the dynamics

of the system are continuous from the critical point to Region A to Region B: The

extended model is a natural extension to the BTW model and to the BTW model

with finite driving rates.

The extended model introduced here may be thought of as corresponding to a

more physical situation than the original BTW sandpile model. The extended model

incorporates finite driving rates, and finite and stochastic transport times of grains

between sites. The model is still not completely realistic as it imposes an arbitrary

periodicity on update (tumble) times. Whether the same dynamics would be observed

in an even more physically realistic continuous-time model where this periodicity is

not enforced is an interesting question.

64

T, _,,(p)
JC.. -

T 3 T

T

Figure 5.3: Multiple tumbles per update in an extension to the BTW sandpile model.
When a grain of sand is dropped (D) onto a critical site (3) and all its neighbouring
sites are tumbling (T) during the same update , the critical site will tumble twice in
the next update. With a high enough driving rate, multiple tumbles per site per
update become the norm. All grains being added to the site are ordered randomly.

65

10°

10-1

10-2

,.....--..._

10-3 C ...___,,
Q_

10-4

10-5

10-6

10°

Figure 5.4: Avalanche size distribution in the 2-d BTW sandpile model with finite
driving rates: h = 0, 10-3 , 10-2 , 10-1 . h -+ 0 is nearly on the critical point of Fig. 5.2,
h = 10-3 is in Region A, and h = 10-2 , 10-1 are in Region B. The transition from
Region A to Region B is smooth and involves no sudden changes in the dynamics of
the sandpile. The lattice size for these simulations was 100 x 100.

66

Chapter 6 Scale-Free Behaviour

Scale-free dynamics in physical and biological systems can arise from a variety of

causes. Here, I explore a branching process which leads to such dynamics. I find

conditions for the appearance of power laws and study quantitatively what happens

to these power laws when such conditions are violated. From this branching process

model , I predict the behaviour of three systems which seem to exhibit near scale-free

behaviour- rank-frequency distributions of number of subtaxa in biology, abundance

distributions of genotypes in an artificial life system, and avalanche sizes in the Bak­

Tang-Wiesenfeld sandpile model. I find that the rate of introduction of competition

determines the shape of the distributions in all three cases.

6.1 Introduction

Scale-free distributions, or power laws, have been observed in a variety of biological,

chemical and physical systems. Such distributions can arise from different underlying

mechanisms, but always involve a separation of scales, which forces the distribution

to take a standard form. Scale-free distributions are most often observed in the dis­

tribution of sizes of events (such as the Gutenberg-Richter law [22]) , the distribution

of times between events (e.g., the inter-event interval distribution in neuronal spike

trains [39]) , and frequencies. An example of the latter is the well-known and ubiqui­

tous 1/ f noise. Some systems are even more interesting because they seem to exhibit

self-organization or self-tuning, concomitant with scale-free behaviour as an inherent

and robust property of the system, not due to the tuning of a control parameter by

the experimenter.

Two systems to which such spontaneous scale-free behaviour has been attributed

are sandpile models and taxon creation in biological systems. The former has served

as the paradigm of "self-organized criticality" (SOC) [10], while the latter , manifested

67

in the form of near power law shapes of rank-abundance curves, has been advanced

as evidence of a fractal geometry of evolution [12, 13].

A much simpler system where power laws are observed is the random walk [38].

For example, the waiting times t for first return to zero of the simple random walk

in one dimension (starting at x = 0, at each time step, x(t + 1) = x(t) + 1 with

probability 1/2 and x(t + 1) = x(t) - 1 with probability 1/2) have a probability

distribution ~ r 312 . Closely related to random walks, branching processes [23] can

also create pmver law distributions. They have been used to model the dynamics of

many systems in a wide variety of disciplines, including demography, genetics, ecology,

physiology, chemistry, nuclear physics, and astrophysics. Here, we use a branching

process to model the creation and growth of evolutionary taxa, and the propagation

of avalanches in SOC sandpile models.

In Section 6.2 , I examine the properties of the Calton- Watson process. I find that

this process can generate power laws by appropriate tuning of a control parameter ,

and examine the dynamics of the system both at the critical point and away from

it. In Section 6.3, I apply this branching process model to various systems, including

the taxonomical rank-frequency abundance patterns of evolution and the avalanche

size distribution of sandpile models , and discuss the universality of their underlying

dynamics. Finally, in Section 6.4, I discuss the implications of this work, including

a discussion of the order and control parameters for the branching process and its

applications, and suggest further questions.

6.2 The Branching Process

The Galton-Watson branching process was first introduced in 187 4 to explain the

disappearance of family names among the British peerage [44]. It is the first branch­

ing process in the literature, and also one of the simplest. Consider an organism

which replicates. The number of replicants (daughters) it spawns is determined prob­

abilistically, with Pi (i = 0, 1, 2 ...) being the probability of having i daughters. Each

daughter replicates (with the same Pi as the original organism) and the daughter 's

68

daughters replicate and so on. We are interested in the rank-frequency probability

distribution P(n) of the total number of organisms descended from this organism

plus 1 (for the original organism) , i.e., the historical size of the "colony" the ancestral

replicant has given rise to (Fig. 6.1). Note that this is equivalent to asking for the

probability distribution of the length of a random walk starting from 1 and returning

to O with step sizes given by P(i0,.n) = Pi-l (i = 0, 1, 2 ...) [6].

The abundance distribution P(n) can be found by defining a generating function

00

F(s) = L P(i)si. (6.1)
i=l

This function satisfies the relationship

00

F(s) = s LPdF(s)]i, (6.2)
i=O

from which each P(n) can be determined by equating coefficients of the same order

in s [23]. This result can also be written as

1
P(n) = -Q(n, n - 1)

n
(k 2 1), (6.3)

where Q(i, j) is defined as the probability that j organisms will give birth to a total

of i true daughters [38]. However, these approaches are not numerically efficient, as

the calculation of P(n) for each new value of n requires recalculation of each term in

the result.

For the present purposes, let us approach the problem in a different manner. Let

Pk lj be the probability that given j original organisms, we end up with a total of k

organisms after all organisms have finished replicating. Obviously,

(k > j), (6.4)

69

• •

Figure 6.1: Branching process trees from a branching process with Po = 0.5, P1 = 0.2,
p2 = 0.2, and p3 = 0.1. The total number of organisms is (from left to right) n = l ,
39, 5, 5, 1. The second tree has 3 organisms in its second generation, 5 in its third,
and so on.

70

since it is impossible to have less total organisms than one starts out with, and

P111 =po , (6.5)

i.e., the probability for one organism to have no daughters. A little less obviously,

k-1

pkll LPJP(k-l)jj (k 2:: 2), (6.6)
j=l

k-1

pklj L pillpil(j-1) (j 2:: k > 1). (6.7)
i=l

These equations allow us to use dynamic programming techniques to calculate P(n)

(= Pn1i), significantly reducing the computational time required. Also, from Eq.

(6.6), we can write

Since, for n ----+ oo, PnlJ is uniformly decreasing, we see

P(n)
P(n - 1)

Pnll
----'--- ----+ C as n ----+ oo, (C ~ 1)
P(n-1)11

(6.8)

(6.9)

where C is a constant. C is an indicator of the asymptotic behaviour of P(n) as

n ----+ oo. If C < 1, the probability distribution is asymptotically exponential, while

for C = 1, the probability distribution is a power law with exponent -3/2.

Let us now examine the behaviour of P(n) when n ;S 104, the more relevant case in

the examples to follow. Using Eqs. (6.4)-(6.7), we can numerically calculate P(n) for

different sets of Pi- We define m as the expected number of daughters per organism,

given a set of probabilities Pi;

m =L i · Pi- (6.10)

We see that m (the control parameter) is a good indicator of the shape of the proba-

,,,-.-..
C

'--"
CL

71

m=0.999

m=0.5

n

Figure 6.2: Predicted abundance patterns P(n) of the branching model with different
values of m. The curves have been individually rescaled to better show their shapes.
The inset shows the same curves without rescaling.

bility curve (Fig. 6.2). When mis close to 1, the distribution is nearly a power law,

and the further m diverges from 1, the further the curve diverges from a power law

towards an exponential. When m = 1/2, the curve is completely exponential. For

a population of organisms, m is a measure of the tendency for new generations to

grow, or shrink, in number. A value of m > 1 indicates a grm-ving generation size,

which implies that there will , on average, be no generation with no daughters, and

that the expected number of total organisms is infinite. Conversely, m < 1 indicates

a shrinking population size: There will be a final generation with no daughters , and

the expected number of organisms is finite. When m = 1, the system is in between

the two regimes, and only then is a power law distribution found.

What if not all organisms share the same m? Interestingly, it turns out that even

72

(m)=0.5

10
4

I I 7
181 .

181 0 ~m=0.01
,_ -

X ~m=1.0 ...
~

.

Iii

~

------ 10
2 ij

C ,_ -
-...__/ 181

z ... SI .
X

0 ~ X
0

1810
X ,_ OX -

X ... 0 .
0

0 0 X

ox X ox

10° -1 I XX 1810 00 X ,to

10° 10
1

n

Figure 6.3: Abundance patterns obtained from two sets of numerical simulations of
the branching model , each with (m) = 0.5. m was chosen from a uniform probability
distribution of width 1 for the runs represented by crosses, and from a distribution of
width 0.01 for those represented by circles. Simulations where m and Pi are allowed
to vary significantly and those where they are severely constricted are impossible to
distinguish if they share the same (m).

if the Pi and m differ widely between different organisms, the rank-frequency curve

is identical to that obtained by assuming a fixed m equal to the average of m across

the organisms (Fig. 6.3) , i.e., the variance of the Pi across organisms appears to be

completely immaterial to the shape of the distribution- only the average (m) counts.

In the following section, I explore systems where the "organisms" are individual

members of species, taxons in a taxonomical tree , or tumbling sites in a sandpile

model, and m is the average number of exact copies an individual makes of itself, the

average number of new taxons of the same supertaxon a taxon spawns, or the average

73

number of new tumbles directly caused by a tumbling site.

6.3 Sanda-based Models

6.3.1 Neutral Model

Let us first examine a simple simulation-sanda with the neutral model instruction

set-to test our analysis and lay the groundwork for the exploration of more com­

plicated systems. Consider a population of organisms on a finite two-dimensional

Euclidean grid, one organism to an intersection. Each organism can be viable or ster­

ile. All viable organisms replicate approximately every T time steps (there is a small

random component to each individual's replication time to avoid synchronization ef­

fects) , while sterile organisms do not replicate. For these experiments and the ones in

the next section, when a sanda organism replicates, its daughter replaces the oldest

organism in the parent 's 9-site neighbourhood regardless of the replaced organism's

viability or sterility. We define the fidelity F as the probability that the organism

will create a daughter of the same type as itself, as well as the corresponding genomic

mutation rate R (= 1-F) at which it creates copies different from itself. The genomic

mutation rate is actually the sum of two rates, a probability Rn for the daughter to be

viable but to be of a new genotype, different from that of the parent (neutrality rate),

and a probability Rs of the daughter being sterile. Of course, Rn+ Rs = R. Note that

all viable mutant daughters still share the same replication time T-all mutations are

neutral (See Fig. 6.4). Such a system gives rise to abundance distributions of power

law and near-power law type that can be predicted as follows.

The total number of organisms is determined by the size of the grid. We write

equilibrium conditions for the total number of organisms PA , and for the total number

of viable organisms Pv,

!::..pA ~ apv - PA = 0,

!::..pv ~ vpv - Pv = 0,

(6.11)

(6.12)

74

neutral

viable

sterile

Figure 6.4: Neutral model replications and mutations. An organism's daughter is of
the same genotype as the organism with probability F, it is of a new, viable genotype
with probability Rn , and it is sterile with probability Rs such that F +Rn+ Rs = l.

where a is the average number of daughters (viable and sterile) a viable organism

has, and v is the average number of viable daughters a viable organism has. Intro­

ducing m- the average number of true daughters (daughters which share the parent's

genotype) for a viable organism- we see that

F+Rn
v = F m = (F + Rn)a. (6.13)

From Eqs. (6.11)-(6.13) , we obtain steady state solutions for a and m ,

p-1
(6.14) a 1 + R,, '

F

1
(6.15) m 1 +Rn .

F

Knowing the values of a and m (or conversely, F and Rn) is sufficient to determine the

shape of the abundance distribution. Fig. 6.5 shovvs abundance data for two neutral

model runs with differing values of Rn (and consequently m) , along with predicted

distributions (which use only Rn and Fas parameters) based on the branching model.

75

10°

10-1

10-2

10-3

------ 10-4 C
'--.../

Q_

10-5

10-6

10-7

10-8

10° 10
1

Figure 6.5: Abundance distributions and predicted curves for two neutral model runs.
The run shown by circles (~ 1.5 million data points) had a grid size of 3000 x 3000,
F = 0.5, and Rn = 0.5 , while the one represented by crosses (~ 0.6 million data
points) had a grid size of 100 x 100, F = 0.2 , and Rn = 0.1. The branching process
model predictions were made from values of F and Rn (there were no free parameters),
and are accurate across a broad range of parameters.

Although the distribution patterns are very different, both are fit extremely well by

the branching process model's predicted curves. In Eq. (6.15) , note that Rn is the

rate of influx of new genotypes (and therefore new competitors for space) , while F is

the rate of growth of existing genotypes. The value of m is determined by the ratio

of these two rates. Unless the total number of creatures is increasing, m ::; 1 (m = 1

if and only if Rn -+ 0 and new competing genotypes are introduced at a vanishing

rate).

6.3.2 Non-neutral Model

The next system is sanda with the default instruction set. Compared to the neutral

model above, the organisms are no longer simple, and instead each has a complex

76

genome consisting of a string of assembly language-like instructions (Fig. 2.3). Each

organism independently executes the instructions of its genome, and this genome

determines the organism's replication time T. Unlike the neutral model, the model

allows non-neutral mutations which lead to new viable genotypes with both lower

and higher replication times than the parent.

The system and the instructions are designed so that the organisms can self­

replicate by executing certain sequences of instructions. The replication time of an

organism is not a predetermined constant, rather it is determined by the genotype of

the organism: Organisms can replicate faster or slower than other competing organ­

isms with different genotypes. For an organism to successfully replicate, its genotype

must contain information which allows the organism to allocate temporary space

(memory) for its daughter, replicate its genotype (one instruction at a time) into this

temporary space, and then to divide, placing its daughter in a grid site of its own

(Fig. 2.3). As in the neutral model , on division, the daughter replaces the oldest

organism in its parent's 9-site neighbourhood.

Organisms, depending on their genotype, may not be able to replicate (may be

sterile) or may only be able to replicate imperfectly (resulting in no true daughters).

Also, the copy instruction, which the organisms must use to copy instructions from

their own code into that of their nascent daughters , has a probability of failure (copy

mutation rate), which can be set by the experimenter. \,Vhen the copy instruction fails,

an instruction is randomly chosen from all the instructions available to the organisms

(the instruction set) and written in the string location copied to. Copy mutations

also lead to non-true daughters. The instruction set is robust; copy errors (mutations)

induced during the replication of viable organisms have a non-vanishing probability of

creating viable ne,v organisms and genotypes. Indeed, by selecting for certain traits

(such as the ability to perform binary logical operations) by increasing the rate at

which instructions are executed in organisms which carry these traits , the system can

be forced to evolve and find novel genotypes which contain more information (and

less entropy) than their ancestors. Even without this external selection, the system

evolves organisms (and genotypes) which replicate more efficiently in less executed

77

instructions.

As a result of this evolution, the fidelity and neutral mutation rate are not fixed,

but can vary with the length of an organism's genome and the instructions contained

therein. Also, new genotypes formed by beneficial mutations that allow faster replica­

tion than previously existing genotypes will have (on average) an increasing number

of organisms- m > 1- until the new, faster replicating genotypes fill up a sizable

portion of the grid. All these factors combine to make predicting the abundance

distributions for sanda much harder than for the neutral model.

Indeed, rather than being constant during the course of a sanda experiment, Rn

and F will vary unpredictably as the population of organisms occupies different areas

in genotypic phase space. Certain genotypes may be brittle, allowing very few muta­

tions that result in new viable genotypes. The length of the organisms may change,

changing both the genomic mutation rate and the neutrality rate. Genotypes exist

which make systematic errors when copying, which decreases the fidelity. In short,

the dynamics of these digital organisms are complex and messy, much like those of

their biochemical brethren. These variations are observed at the same time across

different organisms in the population, and are also observed with the progression of

time. Still, we attempt to predict the abundance distributions by approximating the

ratio of neutral mutations to true copies by the observed ratio of viable genotypes to

total number of viable organisms ever created:

(6.16)

where N9 is the total number of viable genotypes observed during a sanda run and

Nv is the total number of viable organisms. This relation should hold approximately

under equilibrium conditions. Then, Eq. (6.15) becomes

N
m ~ (1 + 2)- 1

- N '
V

(6.17)

78

10-1
0

X

10-2

,,----._
C ..____,,

o_
10-3

n

Run 132
Run 192

c9
Oo -0

0 -•

Figure 6.6: Abundance data from two sanda runs with predicted abundance curves.
Both runs were started with the same initial genotype for all organisms, the same
per-instruction copy mutation rate(,), and the same grid size (100 x 100). Run 192's
genotypes evolved into a regime of genotypic phase space with longer average length,
and therefore lower fidelity F and higher neutrality Rn , than Run 132, resulting in
the differences in the abundance distributions. The predicted curves were generated
by approximating a representative value of Rn/ F from the ratio of the number of
viable genotypes to the number of viable·organisms observed over the run. The data
was binned using the template threshold method with T = l (see Chapter 4).

and from Eq. (6.14)

(6.18)

The fidelity F is inferred from the average length l of genotypes during a run and the

(externally enforced) per-instruction copy mutation rate 1 , F = (l - ,)I. Because we

estimate m and a from macroscopic observables averaged over the length of a run,

I expect some error in these results due to the shifting dynamics of the evolution of

genotypes as the system moves in genotypic phase space.

79

The abundance data from two different sanda runs are shown in Fig. 6.6 with

the predicted abundance curves. The two runs shared the same grid size and per­

instruction copy mutation rate, and were started with the same initial genotypes, but

the runs evolved into different regions of genotypic phase space and consequently had

significantly different statistics. Considering the many gross approximations made,

the agreement between the predictions and the experimental data is surprisingly good

(especially as no fitting is involved). Sanda is most closely related to an asexually repli­

cating biological population, such as colonies of certain types of bacteria occupying a

single niche. The genotype abundance distributions measured in sanda are analogous

to the species or subspecies abundance distributions of its biological counterparts.

In general , species abundance distributions are complicated by the effects of sexual

reproduction, and of the localized and variable influences of other species and the

environment on species abundances. However, I believe the branching model- used

judiciously- can be helpful in the study of such distributions.

6.4 Evolution

For taxonomic levels higher than species, the rank-abundance distributions of num­

ber of subtaxa per taxon approximate power laws [47, 12, 13]. Yule [47] proposed a

continuous time branching process model to explain these distributions at the generic

level. He recognized that naturally observed distributions diverged from the power

law predicted by his theory for equilibrium distributions, and hypothesized that this

deviation was caused by a finite-time effect. I find that the branching process model

generates the observed distributions and find that the distribution 's deviation from

power-law form is not caused by disequilibration (as Yule proposed) , but rather that

it is time-independent and determined by the evolutionary properties of the taxa of

interest. The model predicts- with no free parameters- the rank-frequency distri­

bution of number of families in fossil marine animal orders obtained from the fossil

record. I find that near power-law distributions are statistically almost inevitable for

taxa higher than species.

80

Rank-abundance distributions at taxonomic levels higher than species (e.g., the

distribution of the number of families per order) are simpler to model than species

abundance distributions, as the effects of the complications noted above are weak or

nonexistent. I find that the available data is well fit by assuming no direct interac­

tion or fitness difference between taxa. The shapes of rank-frequency distributions

of taxonomic and evolutionary assemblages found in nature are surprisingly uniform.

Indeed, Burlando has speculated that all higher-order taxonomic rank-frequency dis­

tributions follow power laws stemming from underlying fractal dynamics [12 , 13]. I

believe this conclusion is hasty: The divergence of the distributions from power law

can be observed by applying appropriate binning methods to the data. (See Chapter

4.) Yule [47] attempted a branching process model explanation of these distributions,

and claimed that the divergence from power law of rank-abundance patterns was tran­

sient and indicated a finite time since the creation of the evolutionary assemblage.

The model indicates that this is not generally the case. I find that the divergence

from power law is not a result of disequilibration, but is an inherent property of the

evolutionary assemblage under consideration and that this divergence provides insight

into microscopic properties of the assemblage (e.g. , the rate of innovation).

Say, for example, that we are interested in the rank-frequency distribution of the

number of families in each order for fossil marine animal orders. We assume that

all new families and orders in this assemblage originate from mutations in extant

families. Then, we can define rates of successful mutation R1 for mutations which

create new families in the same order as the original family, and R0 for mutations

·which create an entirely new order. In this case, unlike the cases treated above,

we assume a -+ oo; many, many individual births and mutations occur, but the

proportion that are family- or order-forming is miniscule. Finally, assuming a quasi­

steady state (the total numbers of orders and families vary slmvly [31]), we rewrite

Eq. (6.15) ,

m (6.19)

81

n

Figure 6. 7: The rank-frequency distribution of fossil marine animal orders
(squares) [34] and the predicted abundance curve (line). The predicted curve was
generated- with no free parameters- by approximating Rn/ F by N 0 / N1 = 0.115.
The empirical distribution agrees with the predicted curve with significance 0.12 us­
ing the Kolmogorov-Smirnov test. A Monte Carlo analysis shows that for a sample
size of 626 (as we have here) , the best fit R0 / R1 = 0.135 (Fig. 6.8) is within the 66%
confidence interval of the predicted R0 / R1 = 0.115. The fossil data is shown binned
using the template threshold binning method explained in Chapter 4 with T = l.

(6.20)

in terms of N0 and N1, the total numbers of orders and families respectively. As in the

previous systems studied , R0 is the rate of creation of new- and competing- orders ,

while R1 is the rate of growth of existing orders, and mis determined by their ratio.

Data for the abundance distribution of number of families in fossil marine animal

orders [34] are shown in Fig. 6.7. I obtained values for N 0 and Ni directly from the

fossil data to generate the predicted curve with no free parameters. The agreement is

very good, much better than that for the sanda runs where evolutionary parameters

0..

0.6

0.4

0.2

0.0
0.070

82

0.135
R/Rt

0.200

Figure 6.8: Kolmogorov-Smirnov (K-S) significance levels p obtained from comparison
of the fossil data to several predicted distributions with different values of Ra/ Rt,
·which shows that the data is best fit by Ra/ Rt = 0.135. The arrow points to my
prediction Ra/ Rt= 0.115 where p = 0.12. The K-S tests were done after removal of
the first point, which suffers from sampling uncertainties.

83

such as the fidelity F and the neutrality Rn were constantly changing. Comparing m

and the resultant abundance curves with those obtained above for the rank-abundance

distribution of sanda genotypes leads to the expected conclusion that the probability

of creation of a new genotype in sanda per birth is much higher than the probability

of a new family creating an order in natural evolution. Indeed , Burlando [12, 13]

finds that a wide variety of taxonomic distributions are fit quite well by power laws

(m = 1) , although some of his figures seem to show an exponential tail such as

that predicted by our model if m < 1. This seems to imply that actual taxonomic

abundance patterns from the fossil record are characterized by a relatively narrow

range of m near 1. This is likely within the model description advanced here. It is

obvious that m can not remain above 1 for significant time scales as this would lead to

an infinite number of subtaxa for each taxon. Even if, by a beneficial mutation, a new

taxon has an evolutionary advantage over existing taxa, it soon fills up the available

evolutionary phase space and must slow the increase in the number of its subtaxa.

What about low m? I propose that low values of m are not observed for large (and

therefore statistically important) taxon assemblages for the following reasons. If mis

very small, this implies either a small number of total individuals of this assemblage,

or a very low rate of beneficial taxon-forming (or niche-filling) mutations. The former

might lead to this assemblage not being recognized at all in field observations. Either

case will lead to an assemblage with too few taxons to be statistically tractable. Also,

since such an assemblage either contains a small number of individuals or is less suited

for further adaptation or both, it would seem to be susceptible to early extinction.

The branching model can-with appropriate care- also be applied to species­

abundance distributions, even though these are more complicated than those for

higher taxonomic orders for several reasons. Among these are the effects of sexual

reproduction and the localized and variable effects of the environment and other

species on specific populations. Historically, species abundance distributions have

been characterized using frequency histograms of the number of species in logarithmic

abundance classes. For many taxonomic assemblages, this was found to produce a

humped distribution truncated on the left- a shape usually dubbed lognormal [29, 30,

84

1000
150

800
if)

(/)
I....

Q)

Q)

E ""O
100 I.... 600 0 0 4---

4- 4-
0 0

I.... I....
Q) 400 Q)

...0 _Q

E 50 E
:::J :::::;
z z

200

0 0

Rank

Figure 6.9: The abundance distribution of fossil marine animal orders in logarithmic
abundance classes (the same data as Fig. 6. 7). The histogram shows the number of
orders in each abundance class (left scale), while the solid line depicts the number of
families in each abundance class (right scale). Species rank-abundance distributions
where the highest abundance class present also has the highest number of individuals
(as in these data) are termed canonical lognormal [30].

40]. In fact , this distribution is not incompatible with the power-law type distributions

described above. Indeed, plotting the fossil data of Fig. 6. 7 in logarithmic abundance

classes produces a lognormal (Fig. 6.9). Thus, species-abundance distributions may

turn out not to be qualitatively as different from taxonomically higher-level rank­

frequency distributions as expected. For species, m is the mean number of children

each individual of the species has. (Of course, for sexual species, m would be half the

mean number of children per individual.)

For species, m less than 1 implies that extant species ' populations decrease on

average, while m equal to 1 implies that average populations do not change. An

extant species ' population can decline due to the introduction of competitors and/or

85

the decrease of the size of the species ' ecological niche.

Let us examine the former more closely. If a competitor is introduced into a

saturated niche, all species currently occupying that niche would temporarily see

a decrease in their m until a new equilibrium was obtained. If the new species is

significantly fitter than the previously existing species, it may eliminate the others.

If the new species is significantly less fit, then it may be the one eliminated. If the

competitors are about as efficient as the species already present, then the outcome is

less certain. Indeed, it is analogous to a non-biased random walk with a possibility

of ruin. The effects of introducing a single competitor are transient. However, if new

competitors are introduced more or less periodically, then this would act to push m

lower for all species in this niche and we would expect an abundance pattern closer to

the exponential curve as opposed to the power-law than otherwise expected. This is

analogous to the introduction of new competitors through viable mutations in sanda,

where we also find a higher rate of viable mutations leads to distributions closer to

exponential (see previous section).

If no new competitors are introduced but the size of the niche is gradually reduced,

I expect the same effect on m and on the abundance distributions. Whether it is

possible to separate the effects of these two mechanisms in ecological abundance

patterns obtained from field data is an open question. An analysis of such data to

examine these trends would certainly be very interesting.

So far , I have sidestepped the difference between historical and ecological dis­

tributions. For the fossil record, the historical distribution we have modeled here

should work well. For field observations where only currently living groups are con­

sidered, the nature of the death and extinction processes for each group will affect the

abundance pattern. In simulations and artificial-life experiments, I have universally

observed a strong correlation between the shapes of historical and ecological distri­

butions. I believe this correspondence will hold in natural distributions as well when

death rates are affected mainly by competition for resources. The model 's validity for

different scenarios is an interesting question, which could be answered by comparison

with more taxonomical data.

86

The branching process model allows us to reexamine the question of whether any

type of special dynamics- such as self-organized criticality (SOC) [10]- is at work in

evolution [36, 3]. VVhile showing that the statistics of taxon rank-frequency patterns in

evolution are closely related to the avalanche sizes in SOC sandpile models (examined

in the next section), the present model clearly shows that instead of a subsidiary

relationship where evolutionary processes may be self-organized critical, the power­

law behaviour of both evolutionary and sandpile distributions can be understood in

terms of the mechanics of a Galton-Watson branching process [42]. The mechanics

of this branching process are such that the branching trees are probabilistic fractal

constructs. However, the underlying stochastic process responsible for the observed

behaviour can be explained simply in terms of a random walk [38]. For evolution, the

propensity for near power-law behaviour is found to stem from a dynamical process in

which m ~ 1 is selected for and highly more likely to be observed than other values,

while the "self-tuning" of the SOC models is seen to result from arbitrarily enforcing

conditions which would correspond to the limit R 0 / R 1 ~ 0 and therefore m ~ 1 (see

next section).

6.5 Sandpile Models

The Bak, Tang, and Wiesenfeld (BTW) sandpile model [10] was introduced in Chap­

ter 5. For the BTW sandpile, define Pc as the probability that any site is critical (one

more grain added to that site will cause it to tumble). Then, it is easy to construct

a mean field branching process, where the probability distribution of the number of

nearest-neighbour sites a tumbling site will cause to tumble in the next update is

given by

(
2d) • Pi = i p~(l - Pct-1

• (6.21)

87

This leads to

a~ 2d, (6.22)

(6.23)

and a predicted power law distribution for the size of avalanches s(n), again obtained

from Eqs. (6.4)-(6.7). In higher dimensions (d ~ 6), the branching process model is

expected to hold exactly and s(n) ~ n-312 . This is supported by numerical simula­

tions. However, for lower dimensions, sandpiles will "interfere" with themselves, and

a smaller exponent is found. Attempts to calculate the effects of this "final-st ate"

interaction through renormalization have as yet not been completely successful.

So far, I have ignored dissipation and assumed an infinitesimal driving rate (i.e.,

allowed one avalanche to finish before another grain is dropped). If we define Pa and

Pc as the proportions of sites which are active (tumbling) and stable (subcritical),

g ~ 2d as the number of nearest neighbours , h as the probability per update that any

particular site will have a grain dropped on it (driving rate), and E as the probability

that a grain of tumbled sand will not reach a valid site, e.g., by falling off the edge

of the lattice (dissipation rate), we see that i = 1, 2, ... new active sites are generated

by the tumbling of one active site with probabilities

g

Qi L P((g - k) grains dissipated)P(i new active sitesjk)
k=i

(6.24)

while no active sites are generated with probability

(6.25)

88

This gives us the control parameter for the branching process,

m (i)

Lkqk
k

g(l - E)Pc (6.26)

which has a critical value m = 1. Assuming a steady state and a finite driving rate

h, we write

Pa(t + 1) Pa(t)m + hpc(t)

Pa(t)

and, substituting for Pc from Eq. 6.26 , we find

h)-1
m = (1 + () . Pa9 l - E

(6.27)

(6.28)

Again, note that h is proportional to the rate of introduction of new avalanches, while

Pa9(l - E) is proportional to the rate of growth of existing ones. As in the simpler

case where dissipation and driving were ignored , I expect that the branching process

model will be quantitatively correct in higher dimensions. Indeed, such a mean field

branching process model can be used to predict quantitative values of some sand­

pile exponents that hold in all dimensions [42]. Unfortunately, it is computationally

very expensive to simulate high-dimensional sandpiles. Fig. 6.10 shows the results

of simulating a two-dimensional BTW sandpile with finite driving rates from h ---t 0

to h = 10-1. As expected, higher driving rates h lead to lower m and distributions

farther from power law. Other branching process treatments of sandpile models can

be found in Ref. [42] and references therein.

89

10°

10-1

10-2

----- 10-3 C ...__,,
Q_

10-4

h= 10-1

10-5

10- 6

10° 10
1

10
2

10
3

10
4

n

Figure 6.10: Avalanche size distribut ion in t he 2-d BTW sandpile model wit h fini te
driving rates: h = 0, 10- 3 , 10-2 , 10- 1. Higher driving rates lead to distributions far­
ther from power la,v and closer to exponent ial, as predicted by the branching process
model. The lattice size for t hese simulations was 100 x 100 (note the cutoff in t he
h -+ 0 distribution at n ~ 5000 due to system size effects). Unfortunately, quantita­
t ive predictions can not be made for low-dimensional sandpiles (where "final-state"
interactions exist) , while simulating high-dimensional sandpiles is computationally
prohibitive.

90

6.6 Discussion

The Galton-\i\Tatson branching process generates power law distributions when its

control parameter m = 1. In all four of the systems I have examined above,

(6.29)

is determined by the ratio of the rate of introduction of competitors Re to the intrinsic

rate of growth of existing assemblages Rp. As this ratio goes to 0, m -+ 1 and the

system becomes critical.

This relation can be translated into the standard relation between an order pa­

rameter

(6.30)

and a new form for the control parameter

(6.31)

Writing a in terms ofµ ,

where µc = 1 and /3 = 1 (Fig. 6.11). The order parameter represents the rate

at which competition is introduced to the system (the strength of selection). A

value of the control parameter µ < µc implies a system with no competition and no

selection- an exponentially growing population. Values ofµ higher than µc indicate

that new competition is always being introduced and that all existing species or

avalanches must eventually die out. When µ = µc , competition is introduced at a

vanishingly small rate, and we find the critical situation where separation of scales

occurs. Interestingly, in all the systems studied, the order parameter has been the

91

a

µ
Figure 6.11: The order parameter a as a function of the control parameterµ. For µ
below µc , the order parameter is 0- organisms (or events) in the system spawn greater
and greater number of daughter organisms (events) , and there is exponential growth.
For µ > µc, competition from ne,vly created organisms (events) stops abundances
from growing without bound. µ = µc marks the critical point where abundances can
grow to infinity, but do not show exponential growth, and power law distributions
arise.

easier to "control." Indeed, this feature of SOC sandpile models (tuning occurring at

a-+ 0) may be their most important one.

For sandpile models, this a is arbitrarily set close to O by using large lattice

sizes (reducing dissipation) and waiting for avalanches to finish before introducing

new perturbations (resulting in an infinitesimal driving rate and a diverging diffusion

coefficient). In simulations away from these arbitrary conditions, a loss of criticality

is predicted by the model and observed in numerical simulations. Self-organized

criticality and its sandpile models have stimulated research in many different fields

and systems where near power law avalanche dynamics was observed. It seems that

many of these systems should be mappable to branching processes, and that the

fractal behaviour of these systems and the changes in their dynamics which follow

from finite driving rates could be understood in terms of such. For the biological

and biologically-inspired systems we have considered, the control parameter is not

set arbitrarily at a critical value. However, the dynamics of the evolutionary process,

in which it is much harder to effect large jumps in fitness and function than it is to

92

effect small ones, lead to naturally observed values of a being small, especially for

higher taxonomic orders. The dynamics of evolution act, robustly, to keep µ near µ c.

This in turn leads to a near power law pattern for rank-frequency distributions.

It would be beneficial to compare the predictions of the branching process (BP)

model to high-dimensional sandpile simulations, where it should be quantitatively

correct. Comparison of the BP model with more biological data is also desirable. For

biological systems, there is a vast amount of empirical data, most of it , unfortunately,

not in a form suitable for direct comparison to the BP model. Since the model

allows a characterization of the abundance distributions with no free parameters,

I believe it should be possible to deduct, from abundance distributions (and their

divergence from power law) , microscopic parameters of the system which created the

distribution- e.g. , driving rates in sandpiles, genomic and higher-order neutralities

in nature. Species abundances are affected by many factors, but I believe that a

careful application of the BP model (e.g., by comparison of collections of species with

different ecological pressures) could yield insight.

I have shown that the apparent power laws of avalanches in SOC sandpile models,

species-abundance distributions in artificial life systems , and rank-abundance distri­

butions in taxonomy can be explained by modelling the dynamics of the underlying

system with a simple branching process. This branching process model successfully

predicts, with no free parameters, the observed abundance distributions-including

their divergence from power law. This may allow the deduction of the microscopic

parameters of the system directly from the macroscopic abundance distribution. I

find that we can identify a control parameter- the average number of new events an

event directly spawns, and an order parameter- the rate of introduction of compet­

ing events into the system, and that these are related in a form familiar from second

order phase transitions in statistical physics.

93

Bibliography

[1] C. Adami, Artificial Life 1 129 (1994).

[2] C. Adami, Physica D 80 154, (1995).

[3] C. Adami, Phys. Lett. A 203 29, (1995).

[4] C. Adami, Introduction to Artificial Life (Springer, New York, 1998).

[5] C. Adami and C. T. Brown, In R. A. Brook and P. Maes (Eds.), Artificial Life

IV: Proceedings of the Fourth International Workshop on the Synthesis and

Simulation of Living Systems, edited by R. A. Brook and P. Maes, p.377. (MIT

Press, Cambridge MA, 1994).

[6] C. Adami, C. T. Brown, and M. R. Haggerty, Lecture Notes in Artificial Intelli­

gence 929, 503 (1995).

[7] K. Agladze et al. , Proc. Roy. Soc. Lond. B 253 131, (1993).

[8] P. Alstr0m, Phys. Rev. A 38, 4905 (1988).

[9] P. Bak, How Nature Works: The Science of Self-Organized Criticality (Springer­

Verlag, New York, 1996).

[10] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett . 59, 381 (1987).

[11] G. J. Bauer, J. S. McCaskill, and H. Otten, Proc. Natl. Acad. Sci. USA 86, 7937

(1989).

[12] B. Burlando, J. theor. Biol. 146, 99 (1990).

[13] B. Burlando, J. theor. Biol. 163, 161 (1993).

94

[14] J. Chu and C. Adami, in Artificial Life V: Proceedings of the Fifth International

Workshop on the Synthesis and Simulation of Living Systems, edited by C. G.

Langton and K. Shimohara, p.462 (MIT Press, Cambridge MA, 1997).

[15] M. C. Cross and P. C. Hohenberg, Rev. l\!Iod. Phys. 65 , 851 (1993).

[16] C. Darwin, On the Origin of Species (D. Appleton & Company, New York, 1892).

[17] T. Dobzhansky and S. Wright, Genetics 28 304 (1943).

[18] R. A. Fisher, Ann. Eugen. 7, 355 (1937).

[19] R. Garcia-Pelayo, Phys. Rev. E 49, 4903 (1994).

[20] L. Gil and D. Sornette, Phys. Rev. Lett. 76 , 3991 (1996).

[21] S. Grand, D. Cliff, A. Malhotra, in the proceedings of the Autonomous Agents

97 conference (1997).

[22] G. Gutenberg and C. F. Richter, Ann. Geophys. (C.N.R.S.) 9, 1 (1956).

[23] T. E. Harris, The Theory of Branching Processes (Springer, Berlin; Prentice-Hall ,

Englewood Cliffs NJ , 1963).

[24] J. H. Holland, Adaptation in Natural and Artificial Systems (2nd ed.) (MIT

Press, Cambridge MA, 1992).

[25] R. Laing, in Advanced Automation for Space Missions: Nasa Conference Publi­

cation 2255 , edited by R. Freitas and W. P. Gilbreath, p.189 (1982).

[26] C. G. Langton, ed. , Artificial Life: An Overview (MIT Press, Cambridge MA,

1995).

[27] K. B. Lauritsen, S. Zapperi, and H. E. Stanley, Phys. Rev. E 54, 2483 (1996).

[28] J. S. McCaskill and G. J. Bauer, Proc. Natl. Acad. Sci. USA 90 4191 (1993).

[29] F. W. Preston, Ecology 29, 255 (1948).

95

[30] F. W. Preston, Ecology 43 , 185, 410 (1962).

[31] D. M. Raup, Paleobiology 11, 42 (1985).

[32] T. S. Ray, in Artificial Life 11: Proceedings of an Interdisciplinary \iVorkshop on

the Synthesis and Simulation of Living Systems, Santa Fe Institute Studies in

the Sciences of Complexity, Proc. Vol. 10, edited by C. G. Langton et al. , p.371

(Addison-Wesley, Reading, MA, 1992).

[33] T. S. Ray, Physica D 75, 239 (1994); Artificial Life 1, 195 (1994); Artificial

Life IV: Proceedings of the Fourth International Workshop on the Synthesis and

Simulation of Living Systems, edited by R. A. Brook and P. Maes, p.377. (MIT

Press, Cambridge MA, 1994).

[34] J. J. Sepkoski, A Compendium of Fossil Marine Animal Families (2nd ed.) (Mil­

waukee Public Museum, Milwaukee, \iVI, 1992) with emendations by J. J. Sep­

koski based largely on M. J. Benton, ed., The Fossil Record 2 (Chapman & Hall,

New York, 1993).

[35] K. Sims, Artificial Life 1, 353 (1994).

[36] K. Sneppen, P. Bak, H. Flyvbjerg, and M. H. Jensen, Proc. Nat . Acad. Sci. U.S.

92, 5209 (1995).

[37] D. Sornette, A. Johansen, and I. Dornic, J. Phys. I 5, 325 (1995).

[38] F. Spitzer, Principles of Random Walk (Springer-Verlag, New York, 1964).

[39] iVI. Stemmler, M. Usher , and Z. Olami, Phys. Rev. Lett. 74, 326 (1995) .

[40] G. Sugihara, Am. Nat. 116, 770 (1980).

[41] G. Theraulaz and E. W. Bonabeau, Science 269, 687 (1995).

[42] A. Vespignani and S. Zapperi , Phys. Rev. E 57, 6345 (1998).

96

[43] J. von Neumann, in Cerebral Mechanisms in Behavior- The Hixon Symposium

(John Wiley, New York, 1936).

[44] H. W. Watson and F. Galton, J. Anthropol. Inst. Great Britain and Ireland 4,

138 (1874).

[45] B. Webb, Sci. Am. 275, 94 (1996).

[46] J. Yin and J. S. McCaskill , Biophys. J. 61 1540 (1992).

[47] G. U. Yule, Proc. Roy. Soc. London Ser. B 213, 21 (1924).

[48] S. Zapperi , K. B. Lauritsen, and H. E. Stanley, Phys. Rev. Lett. 75, 4071 (1995).

