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Abstract

Artificial Life, the creation and study of man-made systems that exhibit the char-
acteristics of life, is a young and still emerging field. The goals of Artificial Life
are two-fold; to gain knowledge about and from biology. The Artificial Life system
sanda, which extends upon previous systems tierra and avida, was designed to help in
investigations into the statistical nature of evolution. As such, it is a model of the
simplest living, evolving organisms. Experiments involving tierra, avida, and sanda
were the inspiration for investigations into the causes of apparently scale-free dynam-
ics found in these systems. These investigations lead to identification of a branching
process that explains the scale-free dynamics of not only these Artificial Life systems,
but also those manifested in the taxon rank-frequency distributions of biology and in
the size distributions of avalanches in “self-organized critical” sandpile models. This
branching process can quantitatively predict—with no free parameters—the pattern
of the observed distributions, including their divergence from a true power law. Fur-
ther, the branching process gives insight into the universal mechanisms involved in
the creation of, and divergence from, scale-free dynamics in these systems, including
a definition of order and control parameters reminiscent of those from second-order

phase transitions in statistical physics.
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Chapter 1 Introduction

1.1 Why Artificial Life?

Ever since Darwin [16] proposed his grand theory of evolution, biologists and others
have been asking, “What if?” What if the temperature on Earth had been a hundred
degrees hotter or cooler throughout its history? What if the atmosphere had more
nitrogen and less oxygen? What if no global changes had occurred to (perhaps) wipe
out the dinosaurs? Was the creation of life on Earth an impossibly lucky accident?
How about the creation of life as we know it? Could other forms of life—perhaps not
based on carbon or on DNA—have arisen given different rolls of the “evolutionary
dice”?

An even more fundamental question, asked since man first recognized the dif-
ference between living creatures and inanimate objects, is “What is Life?” What
makes a thing alive and distinguishes it from things without life? A multitude of
definitions have been proposed; physiological (centered on functions performed by
organisms), metabolic (centered on the exchange of materials between the organism
and its surroundings), biochemical (living organisms are characterized by storage of
genetic information in nucleic acid molecules), genetic (characterized by evolution,
not necessarily based on nucleic acids), thermodynamic (characterized by an abil-
ity to maintain low levels of entropy), etc. However, none of these definitions are
completely satisfactory.

One of the major roadblocks to defining, and studying, the essence of life, is that
we can not deconstruct it, separate it into its parts as we do entities in Physics or
Chemistry. Once a living system is separated into its parts, the individual parts no
longer have life. A study of the individual parts can only tell us so much about the
whole. While we can learn much about the mechanisms of life from the structure of

DNA, it is hard to believe that DNA, by itself, is alive. Life is a property of a living



system, not of its parts.

Artificial Life, the creation and study of man-made systems which exhibit char-
acteristics of life, offers an avenue of investigation into essential properties of life.
Because these systems are man-made, we understand the workings of all the parts,
and this offers us more hope of understanding what happens when we put all the
parts together. By creating systems which mimic life, we hope to learn more about
what life is.

Such systems also give us the fantastic ability to ezperiment with life, with evolu-
tion. We can set and reset the parameters of the system, and run it again and again,
until we gain a true, fundamental, and quantitative understanding of the processes
involved. To these ends, we need a system simple enough for us to understand and
calibrate its workings, and fast enough to allow repeated evolutionary trials so as to
gain a statistical picture of life and evolution, but still sophisticated enough to model
the processes at work in natural evolution. The Artificial Life systems tierra [32, 33],
avida [4], and my own system sanda are attempts at such a system. Personally, sanda
has acted as a source of ideas, suggesting avenues of research by its tantalizing par-
allels to nature, while serving as a lab bench, giving me a system where I could run

countless numbers of trials to gain statistical data to verify an idea.

1.2 Scale-free Dynamics

One striking statistical feature observed in tierra, avida, and sanda runs is the appear-
ance of seemingly scale-free dynamics—manifested in near power law distributions—in
genotype abundance distributions (analogous to species distributions in nature) [3, 6].
Various mechanisms were proposed to explain the appearance of scale-free dynam-
ics, and also the variance from such dynamics in some trials. The power laws were
compared to those observed in self-organized criticality (SOC), natural evolution, and
random walks, while the deviance from power law was mostly attributed to finite-size
effects.

Near power law distributions are found in the statistics of a wide variety of systems
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from diverse disciplines, including demography, taxonomy, geophysics, and nuclear
physics. Per Bak [9] proposed that many of these power laws result from a single
underlying process, which he termed self-organized criticality (SOC). The paradigm
for SOC is the avalanche behaviour of sandpile models, which under certain conditions
exhibit scale-free dynamics. Similarly, for taxonomic levels higher than species, the
rank-abundance distributions of number of subtaxa per taxon approximate power
laws. Yule [47] proposed a branching process model to explain these distributions at
the generic level. He recognized that naturally observed distributions diverged from
the power law predicted for equilibrium distributions by his theory and hypothesized
that this deviation was caused by a finite-time effect.

In Chapter 6, I present a branching process model that explains the observed
genotype abundance distributions in sanda and the near power law distributions in the
other systems mentioned above. The model’s formulation was inspired by observation
of many sanda runs. The model was tested on various versions of sanda, some of which
had simpler dynamics than others. The experiments on sanda versions with simpler
dynamics allowed for better observation of the factors that determined the large-scale
dynamics of the system, unobstructed by secondary perturbations. The branching
process model predicts not only the power law distribution of genotypic abundances
observed in some runs, but also predicts the divergences from power law observed in
other runs. It gives a quantitative prediction of the shape of the distributions with
no free parameters. Furthermore, the model also explains the seemingly scale-free
dyvnamics observed in SOC’s sandpile models, and in the rank-frequency distributions
of taxons in nature. For these systems also, the branching process model allows
quantitative prediction of distribution patterns with no free parameters. For the
SOC sandpile models, I find that the “self-tuning” results from arbitrarily enforcing
conditions on the order parameter, and show how relaxing these conditions change
the observed dynamics. While for natural evolution, I find the deviance from power
law is not due to a disequilibration effect (as Yule proposed), but rather results from
fundamental properties of the observed taxa.

This research was inspired by observations of interesting statistical behaviour in
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artificial living systems. Its initial progress was two-pronged; finding an analytical
model which could explain the dynamics leading to such distributions and simplifying
the system until such dynamics could clearly be seen. The new understanding that
these investigations yielded found broad application to such systems as seemingly
disparate as the distribution of avalanche sizes in sandpiles and the distribution of

taxon sizes in biology. Artificial life has served well as both muse and medium.

1.3 Outline of Thesis

In Chapter 2, I introduce the emerging field of Artificial Life and describe the Ar-
tificial Life system sanda. I present a test of sanda’s validity in an application to
propagation of information in self-replicating genetic systems in Chapter 3. Chap-
ter 4 is a short chapter dealing with appropriate methods for binning histograms of
events with exponential or power law probability distributions. Chapter 5 details an
extension to the Bak-Tang-Wiesenfeld sandpile model that allows us to study charac-
teristics of the model in previously ignored regimes. Finally, Chapter 6 discusses the
scale-free dynamics of a branching process and its applications to statistics found in
sanda, natural evolution, and sandpile models. Chapter 3 is from a paper presented
at Artificial Life V held May 1996 in Nara, Japan [14]. Chapters 4-6 contain parts of

papers to be submitted to Nature, Physical Review Letters, and Physical Review E.



Chapter 2 The Artificial Life System
Sanda

2.1 Artificial Life

Artificial Life is the creation and study of man-made systems which have characteris-
tics of life. Characteristics modelled in current Artificial Life systems include genetic
evolution and coevolution, flocking behaviour, locomotion, language acquisition, the
spread of disease, and many others. Despite this diverse subject matter, almost all
Artificial Life systems share an evolutionary approach to learning.

Artificial Life systems can be largely divided into two types; those that seek to
gain a better understanding of natural life, and those that attempt to apply insights
from biology to other fields of endeavour—engineering, recreation, etc. Artificial
Life systems can also be classified by whether they emphasize the development and
coevolution of populations, or the evolution of individuals. Yet another classification
scheme involves the media used to implement the system—wetware (real biological
components from natural systems such as RNA, DNA| proteins), hardware (robots,
etc.), or software (simulations, computer code). Fig. 2.1 shows a sample of currently
existing Artificial Life systems and their classifications. Refs. [4, 26] are recommended
as more detailed introductions to Artificial Life systems.

Webb [45] and co-workers built a robotic cricket from Lego?™ parts to gain insight
into the mechanisms used by real crickets to locate prospective mates by listening to
their song. The robot was equipped with artificial ears and neurons, and actuators
connecting its “brain”’s output to its left and right wheels. Differences in signal
strength to each wheel caused the robot to move in a curved path. The artificial
ears were built to mimic actual cricket ears and their sensitivity to phase differences

between the sound waves arriving at each ear. Webb tested algorithms for phonolo-



Individuals Populations

Robot Crickets
¢ Tlerra, Avida, Sanda
Biology
Wasp Nests
Genetic Algorithms
Engineering
Sims’s Block Animjls
Creatures (computer game)

Figure 2.1: Various Artificial Life systems. Only a few of the many currently existing
Artificial Life systems are shown. The characterizations are based purely on my own
judgment. The systems shown are: robot crickets [45] tierra [32], avida [4], sanda [14],
wasp nests [41], Creatures™™ [21], genetic algorithms [24], and Karl Sims’s evolving
animals [35].
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cation. She found that a simple algorithm succeeded in recreating the movement
patterns of crickets. Robots using the algorithm were able to distinguish between
different songs when many were played simultaneously. Furthermore, this algorithm
depended on breaks between chirps for phonolocation, suggesting an explanation for
the distinctive chirping of crickets in nature.

Theraulaz and Bonabeau [41] developed a simple model of randomly moving arti-
ficial agents to test the possibility that complex structures such as wasp nests could
be built without inter-agent interaction. Each agent in their model could sense only
the local structure near it, and could only deposit elementary building blocks. With
simple rules based purely on local conditions for depositing building, a swarm of these
agents built structures with shapes strikingly similar to those of real wasp nests.

Creatures”™ [21] is a computer game where players raise, teach, and breed com-
puter “animals.” The animals’ behaviours are determined by neural nets, and can be
modified by user-supplied stimuli.

Genetic algorithms [24] have been used extensively in optimization problems. The
problem to be solved is encoded into “chromosomes”—bit strings representing can-
didate solutions to the problem. A population of these chromosomes is simulated.
With successive selection (choosing the chromosomes which currently best approach
a solution to the problem) and mutation (random bit flips in chromosomes, mixing
of segments of two chromosomes to create a new chromosome), the system tends to
evolve chromosomes which approach solutions of the problem. In addition to pure
engineering uses, genetic algorithms have also been used as models of biological and
social systems.

Karl Sims created systems where both the shape and behaviour of block creatures
were allowed to evolve, and creatures were selected for being able to perform phys-
ical feats, such as swimming, crawling, or object manipulation. In these systems,
creatures had “genotypes” (much like a genetic algorithm’s chromosomes) containing
information on both their morphology and behaviour. His work differs from classical
genetic algorithms in that he introduced direct competition between different mem-

bers of the population as a means of selecting the fittest. For example, in one of
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Sims’s systems, creatures attempt to gain control of a cube placed in the middle of
their simulated world. The creatures are paired off and duel for the cube, and the
results determine their fitness. The fitness of a creature is determined not only by its
own morphology and behaviour, but that of the other creatures existing with it.

Although the proliferation of Artificial Life systems, and the corresponding recog-
nition of Artificial Life as a distinct field of study, is a recent (since ~1988) develop-
ment, theoretical explorations of Artificial Life character have a longer history dating
back to Von Neumann [43] and his thinking on self-replicating cellular automata.
NASA even studied self-replicating robots as a means of mining the moon [25]. How-
ever, it has only been recently that we have gained sufficient computing power and a
good enough understanding of the base-level mechanisms of evolution to make non-
trivial Artificial Life a possibility. The need for solutions to complex problems (some
of which have already been solved by nature) has also stimulated recent Artificial Life
research.

Artificial intelligence, to which Artificial Life is often compared, was widely touted
in its early days as a quick and easy road to making “intelligent” computers, as
conscious as—and smarter than!— ourselves. This was, of course, too much to ask.
I believe Artificial Life will have many applications in optimizing characteristics and
behaviours of complex systems. However, my greater hope is that Artificial Life
systems will become a bona fide tool in a biologist’s toolbox, one that allows the
correct degree of abstraction for any particular problem; enough to make the problem
tractable, but not enough to change its character.

Modern biology, much like modern physics or chemistry, has become centered on
deconstruction of the whole into its components. Molecular biologv has pushed the
likes of anthropology, botany, and zoology from the front of the stage. Advances in
deconstructive biology have led us much closer to an understanding of the biochemical
mechanisms that life uses in the lifeforms present on Earth. However, with the recog-
nition that such mechanisms can not explain all of life’s characteristics, more holistic
disciplines (e.g., ecology, large-scale theories of evolution and extinction, systematic

neurobiology, complexity) which seek to understand how the individual parts and
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mechanisms work together to create the dynamics of the system as a whole—what
we call life—are gaining an increasing share of attention. Artificial Life is a discipline
at the crossroads of biology, physics, computer science, and all the engineering fields
concerned with the artificial media man has created. It ultimately seeks to explore

the essence of life.

2.2 Overview of Sanda

Sanda, from the Korean for ‘to live’, is a software system designed to emulate and
study the evolution of populations of self-replicating code. In the classification of
Artificial Life systems proposed in the previous chapter, sanda, like avida and tierra,
is more a biological tool than a biology-based application. Although, with improve-
ments in the software and even faster computers, the system may eventually become
powerful enough at creating new strategies and algorithms through evolution that
it will become an algorithm-creating application of biological principles. Sanda can
also be used to study the evolution of characteristics in individual creatures, but
its greatest strength lies in investigating large-scale population effects of evolution;
broad statistical laws which hold true in all replicating, competing, mutating, evolving
systems.

Sanda is the third generation in the tierra family line. Tierra, in which strings of
self-replicating assembly-like code proved robust under mutation was the first of its
kind. Avida added a spatial structure to tierra, creating a physically more realistic
system in which the dynamics of diffusion and information propagation could be ob-
served. Sanda expands avida’s boundaries by allowing simulations with unprecedented
size, or the possibility of easily running multiple, related simulations. A larger sys-
tem size yields better statistics and easier observation of spatial effects, and—perhaps
most importantly—allows the possibility of observing a system evolving always away
from equilibrium.

Sanda was written first in C, and then completely rewritten in C++ to allow easy

extension to the base system. It runs on a wide range of machines, but was designed
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and optimized primarily for use on the Intel Paragon, a massively-parallel MIMD
architecture supercomputer.

Like avida, sanda works with a population of strings of code residing on an M x N
lattice with periodic boundary conditions. Each lattice point can hold at most one
string. Each string consists of a sequence of instructions from a user-defined set.
These instructions, which resemble modern assembly code and can be executed on
a virtual CPU, are designed to allow self-replication. The set of instructions used is
capable of universal computation.

Each string has its own CPU which executes its instructions in order. A string
self-replicates by executing instructions which cause it to allocate memory for its
child, copy its own instructions one by one into this new space, and then divide the
child from itself and place it in an adjacent grid spot. The child then is provided with
its own virtual CPU to execute its instructions. When a string replicates, it places
its child in one of the sites in its 9-site neighbourhood (Fig. 2.2), replacing any string
which may have been there. How the site to be replaced is chosen can be defined by
the user. See the section on replication and selection below for more information.

It should be noted that this birth process, and indeed all interactions between
strings, are local processes in which only strings adjacent to each other on the grid
may affect each other directly. This is important as it both supplies the structure
needed for studies of spatial characteristics of populations of self-replicating strings of
code, and allows longer relaxation times — making possible studies of the equilibration
processes of such systems and their nonequilibrium behavior.

This process of self-replication is subject to mutations or errors which may lead
to offspring different from the original string and in most cases non-viable (i.e., not
capable of self-replication). Of the many possible ways to implement mutations, we
have mainly used copy errors. That is, every time a string copies an instruction there
is a finite chance that instead of faithfully copying the instruction, it will write a
randomly chosen one. This chance of mutation is implemented as a per-instruction
mutation rate y—the probability of copy-error per instruction copied. A mutation

rate -y for a string of length ¢ will therefore lead to a fidelity (probability of the copied
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Figure 2.2: Sanda grid. The organisms live on an Euclidean grid, one organism to a
site. When an organism replicates, its daughter replaces one of the organisms in its
9-site neighbourhood. (If the organism marked by a black dot replicates, its daughter
replaces one of the organisms at a gray site.) Which criteria are used in choosing the
neighbour to be replaced affects the dynamics of the system.
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string being identical to the original) F' = (1—+)¢. Mutations allow us to evolve a very
heterogeneous population from an initially homogeneous one. The resulting evolution,
coevolution, speciation, etc. have been and continue to be studied (33, 2, 3, 1, 5, 6].

The factors which decide whether one particular sequence of instructions (or geno-
type) will increase or decrease in number are the rate at which it replicates and the
rate that it is replaced at. In this model, the latter is genotype independent. Ac-
cordingly, we define the former (i.e., its average replication rate) as the genotype’s
fitness. In other words, fitness is equal to the inverse of the time required to reproduce
(gestation or replication time).

To consistently define a replication rate, it is necessary to define a unit of time.
Previously, in tierra and avida, time has been defined in terms of instructions executed
for the whole population (scaled by the size of the population in the case of avida).
In sanda, we define a physical time by stipulating that it takes a certain finite time
for a cell to execute an instruction. This base execution time may vary for different
instructions—certain instructions can be arbitrarily made more time-consuming and
“expensive” for creatures to execute. The actual time a cell takes to execute a certain
instruction is then increased or decreased by changing its demerit. Initially, each cell
is assigned an demerit near unity, e = (1 & 7), where 7 represents a small stochastic
component. In summary, the time it takes a cell to execute a series of instructions
depends on the number of instructions, the particular instructions executed, and the
cell’s demerit.

Self-replication consists of the execution of a certain series of instructions by the
cell. Thus, the fitness of the cell (and its respective genotype) is just the rate at
which this is accomplished and depends explicitly on the cell’'s demerit. We can assign
better (or worse) demerit values to cells which contain certain instructions or which
manage to carry out certain operations on their CPU register values. This allows us
to influence the system’s evolution so as to evolve strings which carry out allocated
tasks. A cell that manages a user-defined task can be assigned a better demerit for
accomplishing it. Such cells, by virtue of their higher replication rate, would then

have an evolutionary advantage over other cells and force them into extinction. At
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the same time, the discovery that led to the better demerit is propagated throughout
the population and effectively frozen into the genome.

In addition to the introduction of a real time, sanda differs from its predecessors
in its parallel emulation algorithm. Instead of using a block time-slicing algorithm to
simulate multiple virtual CPUs, sanda uses a localized queuing system which allows
perfect simulation of parallelism.

Finally, sanda was written to run on both parallel processors and single processor
machines. Therefore, it is possible, using parallel computers, to have very large
populations of strings coevolving. This permits studies of extended spatial properties
of these systems of self-replicating strings and holds promise of allowing us to study
them away from equilibrium.

The following sections contain more technical information about sanda. The reader
is advised to read Ref. [4] for a more extensive treatment of the closely-related avida

syvstem.

2.3 The Grid

The grid is a N x M Euclidean lattice with periodic boundary conditions. Each
lattice site (cell) may have at most one CPU attached to it. Each cell has its own
time value. This time corresponds to the system’s physical time (see section below

on parallel emulation).

2.4 CPU Structure

A CPU (or creature) is attached to a cell (its grid location), and has components
as shown in Table 2.1. When a CPU replicates, its daughter CPU (which contains
initialized values of all structure members) replaces one of its neighbours. Which

neighbour is replaced is explained in detail below.
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| Type

| Component

| Explanation

|

Status

age
last divide time

genotype

demerit

facing

current age of CPU (how long since CPU
was created)

when did CPU last replicate

what is this CPU’s genotype name
(changed if the CPU code undergoes
mutation)

How fast (relatively) does this CPU exe-
cute instructions? Initially set to 1 £ 7,
where 7 is a small, positive random num-
ber. Executing desired tasks (see below)
will give a creature lower demerit, and thus
a faster replication rate.

Used in certain instructions which allow in-
teraction with neighbouring CPUs.

Physical Structure

stacks

stack pointers
stack number
registers
input buffer

output buffer

input pointer
output pointer

code

One or more stacks.

Pointers for the stacks.

Number of stack we are currently using.
Three or more registers.

Buffer for receiving input from the user or
other CPUs.

Buffer for output to the user or other
CPUs.

Pointer to current location in input buffer.
Pointer to current location in output
buffer.

The CPU’s string of instructions.

Table 2.1:

CPU structure.
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2.5 Genotypes and the Instruction Set

A CPU’s code (or genome) largely determines the replication rate of the CPU. The
code is a string of instructions from a user-defined instruction set. If two CPUs have
the same genome, they belong to the same genotype. The instruction set consists
of assembly language-like instructions designed to be computationally both powerful
and simple, and robust under mutations. Both the function of each instruction and
the composition of the instruction set can be easily modified by the user.

A sample instruction set is shown in Tables 2.2-2.6. A major difference between
the instruction sets commonly used in sanda and computer assembly language is the

use of nops as arguments to other instructions. For example,

inc

nop-A

would cause an increment of the AX register value, while

inc

nop-B

would cause an increment of the BX register value. This kind of addressing ob-
viously only works for as many registers as we have labelled nops. In the list of
instructions below, whenever a register name is surrounded by question marks (e.g.,
?bx?), the indicated register is the default register, used when there are no arguments
to the instruction. If a label nop (nop-A, nop-B, etc.) follows the instruction in the
creature’s code, the indicated register is used instead of the default register. nops can

also be used as labels for a search or jump. For example, the following code snippet,
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search-f

nop-B

nop-A

would search forward in the genome for the complementary label

nop-C

nop-B

(assuming we had at least three nops in the current instruction set). If desired,
this behaviour can be modified so that the search is done for a copy of the label
instead of its complement. The complements for individual nops are as follows (as-

suming exactly three labelled nops):

Nop | Complement

nop-A nop-B

nop-B nop-C

nop-C nop-A

The extension to different numbers of labelled nops is straightforward.

A sample self-replicating creature using instructions from Tables 2.2-2.6 is shown
in Fig. 2.3. The string shown replicates by: searching forward (instruction 1) for
the complement of the template nop-A nop-A (2-3), which is nop-B nop-B (21-22),
manipulating this value in an internal register to find the genome length (4-5), al-
locating enough memory to store code of the genome length (6), setting registers to
prepare for copying (7-11), copying the instructions one at a time (12-19) until all
instructions have been copied (15-16), and replicating (20)—placing the daughter in
its own grid site. Execution restarts at the beginning of the genome when the end
of the genome is reached, and continues until the organism is replaced by the newly

replicated daughter of another organism (or its own daughter). The copy command
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rType

| Name

| Explanation

Null
operations

nop-A

nop-B

nop-C

Labelled nops. Do nothing when executed.
These also act as letters in labels,
and arguments to certain instructions.

nop-X

A pure no-operation instruction. Does not act as
an argument to any commands.

Flow control
operations

if-not-0

If the value of the 7bx? register is non-zero, exe-
cute the next instruction, otherwise skip it.

if-n-equ

If the value of the 7bx? register does not equal the
value of its complementary register, execute the
next instruction, otherwise skip it. For example,
a nop-A following this command causes the values
of ax and bx to be compared.

if-bit-1

Execute the next instruction if the last bit of ?bx?
is 1.

jump-b

If a label follows, search for its complement in the
part of the genome before the current instruction,
and if a match is found, change the instruction
pointer to point at the last instruction of the com-
plementary label. If there is a label, but its com-
plement is not found, do nothing. If there is no
label following, decrement the instruction pointer
bx instructions. If the instruction pointer becomes
negative, reset it to a positive value such that the
new value is less than the size of the genome and
the old and new values share the same remainder
modulo the genome size.

jump-£

If a label follows, search for its complement in the
part of the genome after the current instruction,
and if a match is found, change the instruction
pointer to point at the last instruction of the com-
plementary label. If there is a label, but its com-
plement is not found, do nothing. If there is no
label following, increment the instruction pointer
bx instructions. If the instruction pointer becomes
larger than the size of the genome, reset it to a
positive value such that the new value is less than
the size of the genome and the old and new val-
ues share the same remainder modulo the genome
size.

Table 2.2: Sanda instructions (part 1/5).




18

| Name

l Explanation

Flow
control opera-
tions (cont’d)

jump-p

Jump into the genome of the CPU that the exe-
cuting CPU is facing. If a label follows, search for
its complement from the beginning of the target
genome, and if a match is found, change the in-
struction pointer to point at the last instruction
of the complementary label. If there is a label,
but its complement is not found, do nothing. If
there is no label, jump to instruction bx in the
target genome. If the instruction pointer becomes
larger than the size of the target genome, reset
it to a positive value such that the new value is
less than the size of the genome and the old and
new values share the same remainder modulo the
genome size. A CPU’s instruction pointer may
only point at an instruction in its own genome or
in the genome of the CPU it is facing.

call

Push the location of the next instruction on the
stack, and jump forward to the complement of the
label which follows. If there is no label, jump bx
instructions. See jump-f for further details.

call-p

Push the location of the next instruction on the
stack, and jump to the complement of the label
which follows in the genome of the CPU currently
being faced. If there is no label, jump to instruc-
tion bx of the target genome. See jump-p for fur-
ther details.

return

Pop the top value from the stack, and move the
instruction pointer to that location in the crea-
ture’s genome. If the instruction pointer no longer
points at a valid genome site, reset the instruction
pointer as in jump-f or jump-b.

Single
argument
math
operations

shift-r

Rotate the bits of the 7bx? register right.

shift-1

Rotate the bits of the 7bx? register left.

bit—1

Set the last bit of ?bx? to 1.

inc

Increment ?bx?.

dec

Decrement ?bx?.

Zero

Set ?bx? to zero.

push

Push ?bx? onto the stack.

pop

Pop the first value in the stack into 7bx?.

Table 2.3: Sanda instructions (part 2/5).
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’ Type

| Name

| Explanation

|

Single ar-
gument math
operations
(cont’d)

set—num

Set bx to the ternary equivalent of the label which
follows, defining nop-A as 0, nop-B as 1 and nop-C
as 2. For example, nop-C nop-A nop-Bis2 0 1
in ternary, or 2x3?+0x3+1x1 = 19 in decimal.
If there is no label, set bx to zero.

Double argu-
ment math
operations

add

Set ?bx? equal to the sum of the values of the bx
and cx registers (?bx? = bx+ cx).

sub

?bx? = bx - cx.

nand

?bx?= bx NAND cx (bitwise NAND).

nor

?bx? = bx NOR cx (bitwise NOR).

order

Swap the values of bx and cx, if needed, so that
cx > bx.

“Biological”
operations

allocate

Allocate memory for bx instructions at the end of
the current genome for this CPU and return the
start location of this memory in ax. This instruc-
tion does nothing if there has not been a successful
divide since the last allocate. The total size of
the genome after allocation is forced to be less
than a user defined maximum value (default 128).

divide

Split the genome at 7ax?, placing the instructions
beyond the dividing point into a neighbouring cell.
This instruction has no effect if either the mother
or the daughter genome would be less than a min-
imum number (default 10) of instructions long.

c-alloc

Allocate memory equal to the size of the cur-
rent genome at the end of the genome and re-
turn the location of the start of this memory in
ax. This instruction does nothing if there has not
been a successful c-divide since the last c-alloc.
This instruction and the next are used instead of
allocate and divide when we want to experi-
ment with creatures with constant genome sizes.

c-divide

Split the genome of the creature in half, placing
the instructions beyond the division point into a
neighbouring cell.

Table 2.4: Sanda instructions (part 3/5).
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| Type

| Name

| Explanation

“Biological”
operations
(cont’d)

copy

Copy the instruction from the genome location
pointed to by the bx register to the memory lo-
cation pointed to by ax + bx, i.e., copy the in-
struction at location bx into a location offset by
ax. If either of the locations is not a valid genome
location, this command uses a modified value like
the one used for the instruction pointer in jump-f
or jump-b.

read

Copy the instruction at location bx in the genome
into the cx register. Again, if bx is out of range,
an appropriate “modulo” value is used.

write

Copy the value of the cx register as an instruction
into the memory location at ax + bx.

if-n-cpy

Only execute the next line if the contents of mem-
ory locations bx and ax + bx are identical; oth-
erwise skip it. This command has an error rate
equal to the copy mutation rate. (It can be used
for copy error checking).

I/0
and “sensory”
operations

get

Read the value pointed to by the input pointer
from the input buffer and place it in the 7cx?
register.

put

Write the value of the ?7bx? register into the out-
put buffer, and then set the register to zero.

search-f

If a label follows, search forward for the comple-
mentary label and place the distance (in instruc-
tions) to it in the bx register and the size of the
label in cx. If a complementary label is not found,
a distance of 0 is returned in bx. If no label fol-
lows, bx is unchanged and cx is set to O.

search-b

If a label follows, search backward for the com-
plementary label and place the distance (in in-
structions) to it in the bx register and the size of
the label in cx. If a complementary label is not
found, a distance of 0 is returned in bx. If no label
follows, bx is unchanged and cx is set to 0.

Additional
Instructions

switch_stack

Switch the active stack.

rotate-1

Rotate the current the CPU

counterclockwise.

facing of

rotate-r

Rotate the current facing of the CPU clockwise.

Table 2.5: Sanda instructions (part 4/5).
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[ Type | Name | Explanation ]

[ Additional In- | inject This instruction acts somewhat like divide, but
structions instead of killing another creature and replacing
(cont’d) it with the executing CPU’s daughter, the daugh-

ter code is instead injected into the middle of a
running CPU’s memory. The CPU currently be-
ing faced is injected, and the injection position
is chosen by matching complementary labels. If
a complementary label can not be found in the
genome of the CPU faced, or there is no label fol-
lowing this instruction, the instruction fails.
set-cmut | This instruction allows a CPU to set its own copy
mutation rate. The value in ?bx? becomes the
CPU’s new copy mutation rate (x107%).
mod-cmut | This instruction modifies the copy mutation rate
of a CPU. When executed, the copy mutation rate
of the CPU has ?bx? x107* added to it.

Table 2.6: Sanda instructions (part 5/5).

(14 in this particular genotype) fails and writes a random instruction with probability
v (the copy mutation rate).
A snippet of code which takes two numbers from the input buffer, adds them, and

outputs the result to the output buffer is shown below.

get

nop-B

get

add

put

A value from the input buffer is placed in bx, then the next value from the input
buffer in cx. The values of bx and cx are added and the result placed in bx. Finally,
the value in bx is output to the output buffer. The fragment above is obviously
written by a human—rarely do sanda creatures evolve any code so simple.

We can select for code which accomplishes certain tasks by rewarding CPUs which
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5
search-f nop-A nop-A add inc allocate
Q 10
push nop-B pop nop-C pop nop-B
< 15
nop-C copy inc if-n-equ jump-b nop-A

20
< nop-B divide nop-B nop-B

Figure 2.3: Example sanda genome. Sanda organisms have genomes which are strings
of sanda instructions.

accomplish this result—or parts of this result, such as getting numbers from the input
buffer, executing the add instruction, or outputting to the output buffer—with lower
demerit values. Lower demerit values lead to a higher replication rate for selected

CPUs, and a growth in the number of CPUs of this genotype.

2.6 Mutation Methods

Mutations are random changes in the code of a CPU or its daughter. Without mu-
tations, the system would settle into a non-interesting steady state where all the
creatures would have the same genotype. There are several ways of introducing mu-
tations into the system (Table 2.7). Any combination of these methods can also be
used.

In addition to these explicit mutation mechanisms, incomplete or faulty copy
algorithms in creature’s genomes cause implicit mutations, as do certain exotic in-
structions (insert for example). These implicit mutations will tend to increase the

effective mutation rate.
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[ Mutation Type | Explanation |
Per-instruction Copy | Each time the copy instruction is executed, there is a
finite chance that an instruction chosen at random from
the instruction set will be written instead of the intended
instruction.

On-replication Copy | Each time a creature replicates, there is a chance of a
single, randomly chosen instruction in the daughter being
mutated into another. This may be used instead of per-
instruction copy mutations to allow genomes of greater
length and information content to be viable.

Point A finite probability per time of a randomly chosen in-
struction in a creature’s genome (including memory allo-
cated for its daughter) being mutated.

Table 2.7: Mutation methods.

2.7 Replication and Death

Genotypes which allow faster replication, by a more efficient copy algorithm, a de-
crease in genome size (less instructions to be copied), or by accomplishing user-defined
tasks, will ceteris paribus have a growing number of CPUs. The speed of this growth
is greatly affected by the selection scheme used when choosing CPUs to be replaced by
newly replicated daughters. Fig. 2.4 shows some selection schemes that can be used
in sanda. In a selection scheme which includes matricide, the daughter can replace
the parent; without matricide, the daughter can only replace one of the parent’s eight
neighbours. In an age-biased selection scheme, the oldest creature in the neighbour-
hood is replaced, whereas in a non-biased scheme, a creature is chosen at random.
Additional schemes (e.g., replacing the creature with the highest error rate) can be
implemented easily by modifying a single procedure in the program.

In addition to the replacement of a CPU by a newly created creature, death in
sanda can be implemented explicitly—CPUs past a certain age or CPUs which make
too many errors may be killed. This can add another factor to selection schemes;

dead cells are replicated into before living cells are replaced.
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Non-biased Age-biased

High rates of copy
mutation lead to

a soup with no
viable genotypes.
Low diffusion rate.

High rates of copy
mutation lead to a
soup with no viable
genotypes.

High diffusion rate.

A small number of
viable genotypes
even with very high
mutation rates.
Low diffusion rate.

A small number of
viable genotypes
even with very high
mutation rates.

High diffusion rate.

Figure 2.4: Replacement selection schemes. Various combinations are possible and
lead to different dynamics.
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2.8 Parallel Emulation Algorithm

To properly emulate the independent metabolism of each creature, we need an emula-
tion algorithm to execute the instructions in each creature’s genome in turn. In avida
and tierra several of a creature’s instructions were executed sequentially, and then
several of the next creature’s instructions, and so on (block time-slicing). Creatures
which performed user-defined tasks were rewarded with larger blocks of execution
time.

In sanda, such approximations are avoided by defining a physical time for the
system. Each cell in the system has its own time. In a simple algorithm, one in-
struction is executed for the CPU of the cell with the lowest time in the system and
the time needed for the CPU to execute the instruction is added to the cell’s time
(and CPU’s age) (Fig. 2.5). This is repeated ad nauseum. Each instruction takes a
certain base amount of time to execute (the length of this base execution time can
be set to different values for each instruction by the user). This base execution time
is modified by the demerit of the CPU executing the instruction; a CPU which has
performed user-defined tasks and has thus lowered its demerit value will take less
time to perform the same instruction than a CPU with a higher demerit value.

The method outlined above works well for small grid sizes on a single computer.
However, for larger population sizes, or sanda runs across many processors, the com-
putational load of maintaining a sorted list of cells and their times is prohibitive. We
can solve this problem by recognizing that all interactions in the system are local.
Cells further than two grid sites apart can not interact with one another via execution
of a single instruction (Fig. 2.6). This allows us to relax the condition for update of
a cell from the single cell having the lowest time value in the whole system, to those
having the lowest time value in their 25-site neighbourhoods (Fig. 2.7). If we choose
to ignore the second-order effects leading to interactions between cells two sites apart,
we can get even higher emulation speeds by updating cells with the lowest time-values
in 9-site neighbourhoods (Fig. 2.8)

With these localized time-slicing methods, the computational time needed per
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4356 | 4390 | 4388 | 4387 | 4390 4339 | 4316 | 4392
4346 | 4382 | 4393 | 4361 | 4302 | 4392 | 4340 | 4357 | 4391
4358 | 4387 | 4304 | 4359 | 4355 | 4315 | 4348 | 4379 | 4376
4350 | 4353 | 4339 | 4345 | 4384 | 4325 | 4314 | 4336 | 4382
4337 | 4319 | 4314 | 4370 | 4365 | 4362 | 4380 | 4383 | 4312
4368 | 4387 | 4308 | 4369 | 4349 | 4380 | 4379 | 4326 | 4388

Figure 2.5: A non-local time-slicing algorithm. Cells are shown with their time values.
Only the cell with the smallest time value (shown shaded) executes an instruction.
The new time value for the executed cell is then sorted into the global list of time
values. The computation time needed for this sorting increases with the size of the
grid. Also, for a grid spread across many processors, time values must be communi-
cated between processors for each executed instruction, and only one processor can

execute an instruction at a time.
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5431 (4205|2638 9342 | 400

D
5032| A (324 | o |3042
7823153421 B | c [2097

8372
1432173622937 | 3232 (4342

Figure 2.6: Inter-cell interactions. Each square in the diagram is a cell, and the
numbers are CPU ages. Assuming an age-biased selection scheme, if A divides, it
will replace B—a one-site distance interaction. If C divides next, then A will have
indirectly affected C and D as well, since C will now replicate into D instead of
B—two-site distance interactions. Longer range (greater than 2 sites) interactions
cannot result from the execution of a single instruction.
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Figure 2.7: Local time-slicing algorithm with 25 neighbours. The cells which will
execute instructions next are in dark grey. The 25-site neighbourhood of the cell with
time 4300 is shown in light grey. Each instruction execution is followed by 24 integer

comparisons.
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4319 | 4314
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Figure 2.8: Local time-slicing algorithm with 9 neighbours. The cells which will
execute instructions next are in dark grey. The 9-site neighbourhood of the cell with
Each instruction execution is followed by only
8 integer comparisons, allowing for very speedy emulation of independent, parallel

time 4300 is shown in light grey.

creature execution.

4370

4365

4369

4349
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instruction execution no longer depends on the size of the soup. Further, the size
and frequency of interprocessor communications in multiprocessor runs are greatly
reduced, as only information about cells lying on the border between two processors
need be communicated and it is no longer necessary to communicate the time values

of all the cells in a processor’s grid to other processors.

2.9 Sanda on Parallel Computers

Sanda was explicitly written for use on multiprocessor machines, specifically the Intel
Paragons. The main bottlenecks for emulation speed on the Paragons are in the
latency of inter-processor communications, and in data input and output. Several of
the design decisions for sanda reflect these conditions.

The grid is divided between processors as shown in Fig. 2.9. Each processor has an
nxm portion of the grid and must communicate with the eight processors surrounding
it. In practice, a processor communicates directly only with the four processors
sharing borders with it. Message-passing to processors at the corners is accomplished
indirectly by relaying through processors with which the message-sending processor
directly communicates (Fig. 2.9). Each processor has four input message buffers and
four output message buffers, one each for each processor it borders. For any two
neighbouring processors, one will be in send mode and the other in receive mode with
regard to each other (Fig. 2.10). A processor can only send data to a neighbouring
processor if it is in send mode in regard to that processor. Once a processor sends
data to a neighbour it switches to receive mode with regard to that neighbour. These
mechanisms are in place to avoid corruption of the receive buffer by newly transmitted
data before the previously received data has been properly processed.

The data to be sent between processors includes records of new CPUs, new geno-
types, and time updates for cells on the borders between the processors. Depending
on the instruction set (whether or not a CPU can examine or change its neighbour’s
genome) and the time-slicing algorithm chosen (9-neighbour or 25-neighbour time-

slicing), data for cells one site removed from the border may or may not need to be
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Figure 2.9: Grid allocation and interprocessor communication relaying. Each pro-
cessor has part of the grid in classic “patchwork” fashion. Information about cells
on the borders is communicated to directly neighbouring processors and is relayed to
those processors sharing only a corner with the originating processor. In the diagram,

information from processor A needed by processor B is relayed through processor C
or D.
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Figure 2.10: Processors in send and receive modes. For each pair of neighbours one
is in send mode and another in receive mode. In the diagram, the arrow heads point
to the processor in receive mode.
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sent.

2.10 User Files

Sanda is designed to be run in batch mode with little interaction with the user. To
alleviate the bottlenecks caused during disk I1/0, sanda fully utilizes the pfs filesystem
of the Intel Paragons, which has multiple hard drives and hard drive controllers.
Sanda’s output is widely configurable, and due to the vast amount of data generated
from large population sizes, it is recommended that the user consider the output data
needed for his or her purposes and modify the output classes to output only needed
data, or that the user choose a low sampling rate of several generations (a generation
is defined as the time it takes the system to have a number of births equal to the
population or grid size) between outputs. The default output format is two binary
files, one containing genotype data (genotype name, total number, fitness, etc.) and
one containing update data (time, existing genotype populations, etc.). A 10 hour
sanda run on one processor generates about 5 megabytes of data with output once
per generation using the default outputs. Obviously, with up to 512 processors, this
is not a recommended setting.
Most adjustable system parameters can be changed by editing the default_params.san

file and recompiling. The main impetus for reprogramming sanda in C++ was the
ease of modification and extension that it provides. Most classes should be easily

modifiable to allow specialized versions of sanda.

2.11 Extensions

Sanda can be easily extended to higher-dimensional grids, to different selection schemes,
and to include different interactions between CPUs. The easiest changes to sanda in-
volve changing the instruction set (see below for an example). For instance, if you
were interested in evolving genomes which could sort their inputs, you might want

to implement pointer operations on buffers, such as a swap instruction or a better
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compare instruction.
A very simple alternative instruction set is the neutral model instruction set. It

has only two instructions:

Instruction Name | Explanation

nop-A Do nothing.

NM-divide Divide. The daughter is of the same genotype as the par-
ent with probability F', of a new genotype but still viable
with probability F' x N, and non-viable with probability
1-F—-—FxN.

Genomes in this variation of sanda are all one instruction long. Genotypes are
redefined; merely having the same genome does not mean two creatures in the neutral

model share the same genotype. This model is explored further in Chapter 6.
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Chapter 3 Propagation of Information

Sanda models populations of self-replicating strings residing in an environment with
spatial structure. In this section, I test the sanda system by comparing the propaga-
tion of information in sanda to theoretical predictions and to propagation in biological
systems. I observe the propagation of information in sanda as a function of the fitness
and mutation rate of carrier strings. Comparison with theoretical predictions based
on the reaction-diffusion equation shows that the response of the artificial system to
fluctuations (e.g., velocity of the information wave as a function of relative fitness)
closely follows that of natural systems. I find that the relaxation time of the system
depends on the speed of propagation of information and the size of the system. This
analysis offers the possibility of determining the minimal system size for observation

of non-equilibrium effects at fixed mutation rate.

3.1 Introduction

Thermodynamic equilibrium systems respond to perturbations with waves that re-
establish equilibrium. This is a general feature of statistical systems, but it can also
be observed in natural populations, where the disturbance of interest is a new species
with either negligible or positive fitness advantage. The new species spreads through
the population at a rate dependent on its relative fitness and some basic properties
of the medium which can be summarized by the diffusion coefficient. This problem
has been addressed theoretically [18] and experimentally (see, for example, Ref. [17]
and references therein) since early this century. The application of the appropriate
machinery (diffusion equations) to the spatial propagation of information rather than
species, is much more recent, and has been successful in the description of experiments
with in vitro evolving RNA [11, 28].

Systems of self-replicating information (cf. the replicating RNA system mentioned
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above) are often thought to represent the simplest living system. They offer the chance
to isolate the mechanisms involved in information transfer (from environment into the
genome) and propagation (throughout the population), and study them in detail.

It has long been suspected that living systems operate, in a thermodynamical
sense, far away from the equilibrium state. On the molecular scale, many of the
chemical reactions occurring in a cell’s metabolism require non-equilibrium conditions.
On a larger scale, it appears that only a system far away from equilibrium can produce
the required diversity (in genome) for evolution to proceed effectively (I will comment
on this below).

In the systems that we are interested in—systems of self-replicating information
in a noisy and information-rich environment—the processes that work for and against
equilibration of information are clearly mutation and replication. In the absence of
mutation, replication leads to a uniform non-evolving state where every member of
the population is identical. Mutation in the absence of replication, on the other hand,
leads to maximal diversity of the population but no evolution either, as selection is
absent. Thus, effective adaptation and evolution depend on a balance of these driving
forces (see, e.g., [2, 1]). The relaxation time of such a system, however, just as in
thermodynamical systems, is mainly dictated by the mutation rate which plays the
role of “temperature” in these systems [1]. As such, it represents a crucial parameter
which determines how close the system is to “thermodynamical” equilibrium. Clearly,
a relaxation time larger than the average time between (advantageous) mutations
will result in a non-equilibrium system, while a smaller relaxation time leads to fast
equilibration. The relaxation time may be defined as the time it takes information
to spread throughout the entire system (i.e., travel an average distance of half the
“diameter” of the population). A non-equilibrium population therefore can always be
obtained (at fixed mutation rate) by increasing the size of the system. At the same
time, such a large system segments into areas that effectively can not communicate
with each other, but are close to equilibrium themselves. This may be the key to
genomic diversity, and possibly to speciation in the absence of niches and explicit

barriers.
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The advent of artificial living systems such as tierra [32, 2] and avida [5, 6] have
opened up the possibility of checking these ideas explicitly, as the evolutionary pace
in systems both close and far away from equilibrium can be investigated directly. As
a foundation for such experiments, here I investigate the dynamics of information
propagation in the artificial life system sanda. This is a necessary capability for
investigating arbitrarily large populations of strings of code. The purpose of my
experiments is two-fold. On the one hand, I would like to “validate” the Artificial Life
system by comparing experimental results to theoretical predictions known to describe
natural systems, such as waves of RNA strings replicating in Qg-replicase [11, 28].
On the other hand, this benchmark allows determination of the diffusion coefficient
and the velocity of information propagation from relative fitness and mutation rate.
Finally, I arrive at an estimate of the minimum system size which guarantees that
the population will not, on average, equilibrate.

In the next section I briefly describe the sanda configuration used for these ex-
periments. The third section introduces the reaction-diffusion equation for a discrete
system and analytical results for the wavefront velocity as a function of relative fitness
and mutation rate. I describe results in the subsequent section and close with some

comments and conclusions.

3.2 The System

For these experiments, when a string replicates, it places its child in one of the eight
(not including itself) adjacent grid spots, replacing any string which may have been
there. Grid sites are allowed to be empty—have no string. If there is an adjacent
site which contains no string, the daughter is placed there rather than replacing a
string. In these experiments, when there are no adjacent empty sites, the string to
be replaced is chosen in either of two ways; random selection where an adjacent site
is selected purely at random, or age-biased selection where the oldest string among
the neighbours is replaced. As we shall see, the selection mechanism has a significant

effect on the spread of information.
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It should be noted that this birth process, and indeed all interactions between
strings, are local processes in which only strings adjacent to each other on the grid may
affect each other directly. This is important as it both supplies the structure needed
for studies of the spatial characteristics of populations of self-replicating strings of
code, and results in longer relaxation times—making possible studies of the equili-
bration processes of such systems and their nonequilibrium behaviour.

I have studied the relaxation of the system both with and without mutations
allowed and for varying relative fitness differences between originally existing wild-

type or background genotypes and new, fitter mutated genotypes.

3.3 Diffusion and Waves

Information in sanda is transported mainly by self-replication. When a string divides
into an adjacent grid site, it is also transferring the information contained in its
code (genome) to this site. I have looked at the mode and speed of this transfer
in relation to the fitness of the genotype carrying the information, the fitness of the
other genotypes near this carrier, and the mutation rate.

Consider what happens when one string of a new genotype appears in an area
previously populated by other genotypes. I will make the assumption that the fitness
of the other viable (self-replicating) genotypes near the carrier are approximately the
same. This holds for cases where the carrier is moving into areas which are in local
equilibrium. I will use f. for the fitness of the newly introduced (carrier) genotype
and f; for the fitness of the background genotypes. If f. < f;, obviously the new
genotype will not survive nor spread. I have studied three different cases: diffusion,
wave propagation without mutations, and wave propagation with mutations.

The diffusion case represents the limit where the fitness of both genotypes are
the same. It turns out that this can be modelled as a classical random walk. On
average, if the carrier string replicates it will be replaced before it can replicate
again. This is effectively the same as the carrier string moving one lattice spacing

in a random direction chosen from the eight available to it (Fig. 3.1). The random
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Figure 3.1: Random walk of a carrier genotype with fitness f. = f,. On average, the
carrier genotype is replaced as often as it replaces another cell; the carrier genotype
looks like it is stepping from site to site—a random walk.

walk is characterized by the disappearance of the mean displacement and the linear

dependence on time of the mean squared displacement:

(@) =0 (3.1)
(r)(t) = 4Dt, (3.2)

where D is defined as the diffusion coefficient.

For this particular choice of grid and replication rules, this find for the diffusion
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Figure 3.2: Spread of a carrier genotype with better fitness than the background
genotype. The boundary between the two genotypes moves with a speed v outwards.

coefficient of a genotype with fitness f,

3
DY = gaQ i {3.3)

where a is the lattice spacing. This holds for the age-biased selection scheme where
the oldest cell in the neighbourhood is replaced.

If f. > f, then we find that instead of diffusion we obtain a roughly circular
population wave of the new genotype spreading outward (Fig. 3.2). We are interested
in the speed of this wavefront.

Let us first treat the case without mutation. If the radius of this wavefront is
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not too small, we can treat the distance from the center of the circle r as a linear
coordinate. I define p(r,t) as the mean normalized population density of strings of the
new genotype at a distance r from the center at a time ¢ measured from initial seeding
with the new genotype. We assume that the ages of cells near each other have roughly
the same distribution and that this distribution is genotype independent, ensuring
that the selection of cells to be replaced does not depend on genotype either.

Then, we can write a flux equation (the reaction-diffusion equation) which deter-

mines the change in the population density p(r,t) as a function of time

8pg;’ 8 _ [gp(r —a,t) + %p(r, t) + gp(r + a,t)} fe (L= p(r,1))

= [Ba-str—a )+ 10— s 00+ 20 p 4 a0)] fotrn) - 3

Since we are interested in the speed of the very front of the wave, we can assume
p to be small. Also, from physical considerations we assume p is reasonably smooth.

Then, we can use a Taylor expansion

Op(rt) , ,0plr.)

p(rta,t)=p(r,t)ta 5 507 (3.5)
and keep the lowest order terms to obtain
ap(r,t) 3 , . 0p(r,1)
5 — 3% ¥ o7 + (fe = fo)p(r,?) . (3.6)

This can be solved for the linear wavefront speed v(®) yielding [15]

O = oS VTR 7)

= 2/ DP(f. - f) (3.8)

where DI is the diffusion coefficient of the carrier genotype when using a biased (by
age) selection scheme.

To study the case of wave-propagation with mutation, we make the assumption
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that all mutations are fatal—the daughter is dead. We write equilibrium equations

for this selection scheme:
pF — p(1 —0p)® =0, (3.9)

where op is the number of sites with dead strings. We can then calculate the steady

state density of dead cells,
op=1—F® (3.10)

where the fidelity F' is the probability that a child will have the same genotype as
its parent (i.e., not be mutated). As mentioned earlier, the fidelity is related to the

mutation rate v by

where / is the length of the particular string. Modifying the previous flux equation

to take into account these new factors and repeating the previous analysis gives us

v® =2 F\/Dé’”(fc — Fl8f,) . (3.12)

Let us now consider the effects of different selection schemes for choosing cells to
be replaced. The relations above hold true for the case in which we replace the oldest
cell in the 8-cell neighbourhood when replicating (“age-based” selection). Another
method of choosing a cell for replacement is to choose a random neighbouring cell
regardless of age. This scheme, which we term random selection as opposed to the
age-biased selection treated above, effectively halves the replication rate of all cells.

It follows that the diffusion coefficient is also halved,

3
N = 242
D oo/ (3.13)
_ 1pw (3.14)
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Figure 3.3: Distribution of number of strings generating different numbers of offspring,
for the biased selection case [panel (a)] and the random selection scenario [panel (b)].

and for the velocity of the wavefront (with no mutation) we find

y™ =9 Dﬁ”@ . (3.15)

In Fig. 3.3, we show a histogram of the number of offspring that a cell obtains before
being replaced by a neighbour’s offspring, for the biased selection case (left panel) and
the random case (right panel). As expected from general arguments, half of the cells
in the random selection scenario are replaced before having had a chance to produce
their first offspring (resulting in a reduced diffusion coefficient), while biased selection
ensures that most cells have exactly one child.

Experiments are carried out by first populating the grid with a single (background)
genotype with fitness f,. Then, a single string of the carrier genotype with fitness f,
is placed onto a point of the grid at time ¢ = 0. We then observe the position and

speed of the wavefronts formed, the mean squared displacement of the population of
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carrier genotypes, and various other parameters as a function of time.

With f, kept constant!, I varied fy/f, from 0.1 to 1.0 in increments of 0.1. Also,
the mutation rate  was varied from 0 to 14 x 10™® mutations per instruction, in
increments of 1 x 1073.

A comparison of the theoretical vs. measured mean square displacement as a
function of time for a genotype with no fitness advantage compared to its neighbours
(fs/f. = 1) is shown in Fig. 3.4. The data were obtained from approximately 1500
runs. The solid lines represent the (smoothed) averages of the measurements (for
biased and random selection schemes), while the dashed lines are the theoretical
predictions obtained from the diffusion coefficients (3.3) and (3.13) respectively. The
slopes of the measured and predicted lines agree very well, confirming the validity
of the random walk model and the diffusion coefficient predicted by it (without any
free parameters). The slight discrepancy between the experimental curves and the
predicted ones at small times is due to a finite-size effect that can be traced back to
the coarseness of the grid.

Fig. 3.5 shows the measured values of the wavefront speed for cases where f. > f,
and without mutation, with the corresponding predictions. Again, the higher curve is
for age-biased selection and the lower for random selection. Note that the wavefront
speed gain from an increase in fitness ratio is much better than linear. Note also that
all predictions are again free of any adjustable parameters.

The dependence of this curve on the mutation rate is shown in Fig. 3.6. Increasing
the mutation rate tends to push the speed of the wave down. It should be noted,
however, that because we have only used copy mutations there is no absolute cutoff
point or error threshold F, where all genotypes cease to be viable, with F. > 0.
Rather, genotypes can spread until F' is very close to the limit F,. = 0.

Finally, the dependence of the wavefront speed on the mutation rate for a fixed
value of the fitness ratio (f,/f. = 0.6) is shown in Fig. 3.7. Data were obtained from

an average of four runs per point in the biased selection scheme. Again, the prediction

IThe gestation time was approximately 330,000, where the base execution time for each instruc-

tion was (arbitrarily) set to 1000: f, = ———3301000
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Figure 3.4: Mean squared displacement of genome as a function of time due to dif-
fusion. Solid lines represent experimental results obtained from 1500 independent
runs. Dashed lines are theoretical predictions. The upper curves are obtained with
the biased selection scheme while the lower curves result from the random selection
scenario.
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Figure 3.5: Wavefront speed of a genotype with fitness f. propagating through a
background of genotypes with fitness f;, averaged over four runs for each data point.
Upper curve: biased selection, lower curve: random selection. Solid lines are predic-
tions of Eqs. (3.8) and (3.15).
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Figure 3.6: Measured wavefront speeds versus fitness ratio for selected mutation rates
7 (symbols) are plotted with the theoretical predictions from Eq. (3.12) (for the biased
selection scheme only).
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Figure 3.7: Wavefront speed of a genotype (biased selection) with relative fitness
fv/ fe as a function of mutation rate (symbols). Solid line is prediction of Eq. (3.12).

based on the reaction-diffusion equation with mutation agrees well (within error bars)

with measurements.

3.4 Discussion

Information propagation via replication into physically adjacent sites can be suc-
cinctly described by a reaction-diffusion equation. Such a description has been used
in the description of in witro evolution of RNA replicating in Qf-replicase [11, 28],
as well as the replication of viruses in a host environment [46]. The same equation is
used to describe the wave behaviour of different strains of E. Coli bacteria propagat-
ing in a petri dish [7], even though the means of propagation in this case is motility

rather than replication.
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Sanda allows the investigation of large populations of self-replicating strings of
code, and the observation of non-equilibrium effects. The propagation of information
was observed for a broad spectrum of relative fitness, ranging from the diffusion
regime where the fitnesses are the same through regimes where the difference in fitness
led to sharply defined wavefronts propagating at constant speed. The dynamics of
information propagation led to the determination of a crucial time scale of the system
which represents the average time for the system to return to an equilibrium state after
a perturbation. This relaxation time depends primarily on the size of the system, and
the speed of information propagation within it. Equilibration can only be achieved
if the mean time between (non-lethal) mutations is larger than the mean relaxation
time. Thus, a sufficiently large system will never be in equilibrium. Rather, it is
inexorably driven far from equilibrium by persistent mutation pressure.

For artificial living systems such as the one investigated here, it is possible to
formulate an approximate condition which ensures that it will (on average) never
equilibrate, but rather consist of regions of local equilibrium that never come into
informational contact. From the timescales mentioned above, we determine that the

number of cells NV in such a system must exceed a critical value:

vs (20)” 519

where R, is the rate of non-lethal mutations, v(f) the velocity of information waves
(Fisher velocity), and a the lattice spacing (assuming a mean time between non-lethal
mutations ¢, ~ (N R,)™!).

Beyvond the obvious advantages of a non-equilibrium regime for genomic diver-
sity and the origin of species, such circumstances offer the fascinating opportunity
to investigate the possibility of nonequilibrium pattern formation in (artificial) living
systems. However, the most interesting avenue of investigation opened up by such
artificial systems is that of the study of the fundamental characteristics of life itself.
Since it is widely believed that many of the processes that define life, including evo-

lution, occur in a state which is far from equilibrium, to study such processes it is
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necessary to have systems which exhibit the properties of life we are interested in and
that can be quantitatively studied in a rigorous manner in this regime. The avail-
ability of artificial living systems as experimental testbeds that can be scaled up to

arbitrary population sizes on massively parallel computers is a step in this direction.
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Chapter 4 Binning

When dealing with event distributions best plotted on single log or double log scales
(such as exponential and power law distributions), care must be taken in the proper
binning of the experimental data. Say we are interested in the probability distribution
P(n) of an event distribution over positive integer values of n. We conduct N trials,
resulting in a data set Q(n) of number of events observed for every n value. For
ranges of n where the expected or observed number of events for each n is much
higher than 1, normally no binning is required. However, for ranges of n where
Q(n) or P(n) is small, binning is necessary to produce both statistically significant
data points, and intuitively correct graphical representations. A constant bin size
has several drawbacks: One must guess and choose an intermediate bin size to serve
across a broad range of parameter space, and the shape and slopes of the curve (even
in a double log plot) are distorted [4].

These disadvantages can be overcome by using a variable bin size. However, choos-
ing bin sizes for variable binning can be time-consuming and arbitrary—different
choices will lead to different conclusions. I propose two related methods of systemat-
ically determining appropriate variable bin sizes. Both methods lead to binned data
which help in correctly visualizing the underlying distribution (slopes and shapes are
conserved). First, I introduce the Data Threshold Method, which requires no a priori
knowledge about the distribution, and is a good predictor of the underlying distri-
bution. However, when there are few data points, the Template Threshold Method,
explained in Section 2 is often more reliable. For both methods, a range of the thresh-
old value should be tried and the best threshold value (neither over- or under-binning)

chosen.
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Figure 4.1: Binned avalanche size distribution for the BTW sandpile (h — 0). The
inset shows avalanche size distribution data after 100,000 avalanches. The main
panel shows the same data binned using the data threshold method with 7" = 1000.
Overlaying this figure over Fig. 4.2 (which is the same data for 16 million avalanches)
shows no discernible differences between the predictions made by binning and the
conclusions given by more data. The shape of the distribution through n ~ 10%,
especially the kink at n ~ 5000, is clearly shown by the binned distribution.
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P(n)

Figure 4.2: Avalanche size distribution in the 2-d BTW sandpile model with driving
rate h — 0. The lattice size for these simulations was 100 x 100 (note the cutoff in
the distribution at n ~ 5000 due to system size effects). The data is unbinned and

involves ~16 million avalanches.
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4.1 Data Threshold Method

For the data threshold method, start by selecting a threshold value T. Starting from
n = 1 and proceeding to higher values, no binning is done until a value of n is found
for which @(n) < T. When such a value n, is found, subsequent Q(n) values are
added to this amount until the sum of these values is greater than the threshold

value,

> Qn)>T. (4.1)

n=ns

We then have a bin size (n; — n, + 1), with value 3 Q(n). When plotting, it is
convenient to plot this as a single point at the midpoint of [ns, n], with an averaged

value,

<ns + Y Y, Q(”)> ‘ (4.2)

2 777,1—7’L3+1

This yields a graphical representation with little distortion and good predictive power
(Figs. 4.1,4.2). This binning procedure is continued until no more data remains to be
binned.

Example 1. Table 4.1 shows results from sampling a probability distribution obeying
a power law with exponent # = —1. 20 trials were made. The binned data is obviously

a better visual representation than the unbinned data (Fig. 4.3).

4.2 Template Threshold Method

Unlike the data threshold method, the template threshold method uses a predicted
probability distribution P(n), or a reasonable surrogate. Again, we define a threshold
value for fitting T'. However, in this case, the bin sizes are determined by comparing

values of the expected distribution

E(n) = P(n) x N (4.3)
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Figure 4.3: An example of data threshold binning. The circles are unbinned data,
the crosses are data binned using data threshold binning with 7" = 2, and the solid
line is the probability distribution the data was drawn from.
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n | Number | Bin Sum | Bin Size | Bin Average | Bin Midpoint |
1 2 2 1 2 1
2 2 2 1 2 2
3 3 3 1 3 3
- - 2 21 0.095 14
24 1
& 1 2 25 0.08 37
49 1
I
S 2 18 0:11 28.5
67 1
11
0 ! 2 308 0.0065 221.5
375 1
5 ! 2 1821 0.001 1286
2196 1
2
o3 k 2 652 0.003 2522.5
2848 1
3518 1

Table 4.1: An example of data threshold binning. Note that the last data point is
not used in the binned data.

to T'. Starting from n = 1 and proceeding to higher values, no binning is done until
a value of n is found for which E(n) < T. When such a value n, is found, subsequent
E(n) values are added to this amount until the sum of these values is greater than

the threshold value,

n
> E(n)>T. (4.4)
n=ns
We then have a bin of [ng, n;] with corresponding size (n; —ns+1). The average value

associated with this bin is

> nen, Q1)

. 4.5
n —ng+1 45)

This procedure is repeated until the data is exhausted. For this method, the data may
be graphically represented either as a single point per bin (as in the data threshold

method above), or as a point (showing the associated average value) for each measured
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Figure 4.4: An example of template threshold binning. The circles are unbinned data,
the crosses are data binned using data threshold binning with 7" = 1.0 and plotted
with one point per unbinned data point, the diamonds are binned data plotted at bin
midpoints, and the solid line is the probability distribution the data was drawn from.

(non-zero) data point Q(n).

Example 2. The same data as in Example 1 are shown binned using the template
threshold method in Table 4.2, Table 4.3, and Fig. 4.4. The template function used
was the actual underlying distribution. However, a decent guess at the underlying

distribution would have served just as well.



o8

[ Bin Start | Bin End ‘ Bin Size | Bin Midpoint ‘ Bin Sum | Bin Average]

1 1 1 1 2 2

2 & 1 2 2 2

3 4 2 3.5 3 1.5

) 7 3 6 0 0

8 12 ) 10 0 0

13 20 8 16.5 1 0.125
21 32 12 26.5 1 0.0833
33 ol 19 42 2 0.105
52 81 30 66.5 2 0.0667
82 128 47 105 1 0.213
129 202 74 165.5 0 0
203 319 11.F 261 0 0
320 503 184 411.5 1 0.00543
504 793 290 648.5 0 0
794 1250 457 1022 0 0
1251 1970 720 1610.5 1 0.00139
1971 3105 1135 2538 3 0.00264
3106 4893 1788 3999.5 1 0.00056

Table 4.2: Bin values in an example of template threshold binning. The bins were
chosen with the aid of a template function with 7" = 1.0.

| n [ Number | Averaged Value | Bin Midpoint |

Table 4.3: An example of template threshold binning. Note that all data points are

utilized.

1 2 2 1
2 2 2 2
3 3 15 35
16 1 0.125 16.5
24 1 0.0833 2%.5
3 1 0.105 42
19 1
s . 0.0667 66.5
67 1
110 1 0.213 105
375 1 0.00543 115
1758 1 0.00139 1610.5
9196 1
2503 1 0.00264 9538
9848 1
3518 1 0.00056 39995
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Chapter 5 An Extension to the
Bak-Tang-Wiesenfeld Sandpile Model

Sandpile models with finite driving rates are limited by the restriction of one tumble
per site per update. In this chapter, I describe a natural extension to the Bak, Tang,
and Wiesenfeld sandpile model which removes this restriction and allows investigation

of the dynamics of the model at high driving rates.

5.1 Introduction

The Bak, Tang, and Wiesenfeld (BTW) sandpile model [10] is defined on a d-dimensional
lattice. Each site on the lattice has an energy z; associated with it. A “grain” of en-
ergy of size 1 is dropped on a random site ¢ and if the resultant energy of that site
is greater than a critical energy (z; > 2. = 2d — 1), the site transfers energy to its

neighbours;

2y —F &y — Pey (51)
2

o oyl 5.2

2 Z +2d (5.2)

If the energy of a neighbour becomes supercritical through this process, the neighbour
in turn tumbles. A series of tumbles (an avalanche) can result from the dropping of a
single grain, ending only when all sites are again just critical or subcritical (Fig. 5.1).
These tumbles are carried out in lockstep, each tumble takes exactly the same amount
of time (an update), and the transport time of energy between sites is ignored. The
only dissipation comes at the edges of the lattice where grains may “fall off.” If this
process is carried on long enough and on a large enough lattice, the system reaches a

stationary state where the distribution of sizes of avalanches (total number of tumbles
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resulting from the dropping of one grain) and several other statistical properties of
the system obey power law distributions. It was originally suggested that this self-
organization was an inherent property of the system, while it now seems established
that the system is actually tuned by waiting until avalanches are over before dropping
new grains—this is equivalent to allowing non-local interactions [37, 20].

So far, we have ignored dissipation and assumed a vanishing driving rate—grains
are added only after all sites have finished tumbling and the current avalanche is over.
This is obviously not a physically realistic system. The effects of finite dissipation and
a non-vanishing driving rate force the sandpile from its critical state—the avalanche
size distribution is no longer a power law (this behaviour is explored in detail in
Chapter 6). When the dissipation rate e (number of grains falling off per grain
travelling between sites) is larger than the driving rate h (probability of a site having
a grain dropped on it per tumble update), the sandpile is in a stationary state where
the avalanche size distribution starts to diverge from power law and the number of
tumbles per site per update is less than one. Previously, the regime where h 2> ¢
(Region B in Fig. 5.2) was considered trivial and uninteresting [42]. However, by
refinement and extension of the BTW sandpile model to allow for multiple overlapping
avalanches, we show that this is not the case and that the dynamics in Region A are

continued into Region B.

5.2 Overlapping Avalanches

Let’s first clarify the propagation of avalanches when two avalanches add grains to
the same site during the same update. If more than one grain arrives at a site ¢ at

the same update, we order them randomly and the grain which by its addition causes
n=2z+1=2d (5.3)

(the addition of this grain causes the site to become just supercritical) is defined as

the grain which triggered the tumble (Fig. 5.3). The 2d grains at this site which
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Zz=10
z=1 (subcritical)
Z=2

z = 3 (critical)

z > 3 (active)

Figure 5.1: Avalanches in the 2-d BTW sandpile model. The total number of tumbles
is (from left to right) n = 2, 8, 2, 2, 14. The second avalanche has 2 tumbles in its
second update, 1 in its third update, and so on. Compare with the branching process
trees of Fig. 6.1.
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a
A4

e<0 Critical point >0

Figure 5.2: Sandpile model regimes. The critical point is for A — 0 and ¢ — O.
Region A has h < e, while Region B has h 2 €. Previously, Region A was considered
the only region with interesting dynamics. However, extensions to the BTW model

show that the dynamics of sandpiles is nontrivial and continuous throughout Regions
A and B.
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tumble as a result of this added grain we term effect grains of this grain, and the
added grain the cause grain of the newly transported grains. This allows us to follow
a chain of cause and effect for any transported grain back to a single grain dropped
on the lattice. The size of an avalanche is defined as the number of tumbles caused by
a single dropped grain (the ancestor grain), its effect grains, the effect grains’ effect
grains, and so on.

We now refine the model to allow more than one tumble per site per update. This

is done by changing the condition for a tumble to

=g, Xu=2d%n (r=0,1,2,...) (5.4)

Every 2d-th grain (cause grain) causes a tumble in which 2d grains (effect grains) are
transferred to neighbouring sites at the next update (Fig. 5.3). In this way, during
one update a site can have multiple tumbles, of the same avalanche or of different

avalanches.

5.3 Discussion

These two refinements permit meaningful discussion of avalanche dynamics in sand-
piles driven with finite driving rate h 2 €. As can be seen in Fig. 5.4, the dynamics
of the system are continuous from the critical point to Region A to Region B: The
extended model is a natural extension to the BTW model and to the BTW model
with finite driving rates.

The extended model introduced here may be thought of as corresponding to a
more physical situation than the original BTW sandpile model. The extended model
incorporates finite driving rates, and finite and stochastic transport times of grains
between sites. The model is still not completely realistic as it imposes an arbitrary
periodicity on update (tumble) times. Whether the same dynamics would be observed
in an even more physically realistic continuous-time model where this periodicity is

not enforced is an interesting question.
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Figure 5.3: Multiple tumbles per update in an extension to the BTW sandpile model.
When a grain of sand is dropped (D) onto a critical site (3) and all its neighbouring
sites are tumbling (T) during the same update, the critical site will tumble twice in
the next update. With a high enough driving rate, multiple tumbles per site per
update become the norm. All grains being added to the site are ordered randomly.
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Figure 5.4: Avalanche size distribution in the 2-d BTW sandpile model with finite
driving rates: h =0, 1073, 1072, 10~*. h — 0 is nearly on the critical point of Fig. 5.2,
h = 1072 is in Region A, and h = 1072, 10~! are in Region B. The transition from
Region A to Region B is smooth and involves no sudden changes in the dynamics of
the sandpile. The lattice size for these simulations was 100 x 100.
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Chapter 6 Scale-Free Behaviour

Scale-free dynamics in physical and biological systems can arise from a variety of
causes. Here, I explore a branching process which leads to such dynamics. I find
conditions for the appearance of power laws and study quantitatively what happens
to these power laws when such conditions are violated. From this branching process
model, I predict the behaviour of three systems which seem to exhibit near scale-free
behaviour—rank-frequency distributions of number of subtaxa in biology, abundance
distributions of genotypes in an artificial life system, and avalanche sizes in the Bak-
Tang-Wiesenfeld sandpile model. I find that the rate of introduction of competition

determines the shape of the distributions in all three cases.

6.1 Introduction

Scale-free distributions, or power laws, have been observed in a variety of biological,
chemical and physical systems. Such distributions can arise from different underlying
mechanisms, but always involve a separation of scales, which forces the distribution
to take a standard form. Scale-free distributions are most often observed in the dis-
tribution of sizes of events (such as the Gutenberg-Richter law [22]), the distribution
of times between events (e.g., the inter-event interval distribution in neuronal spike
trains [39]), and frequencies. An example of the latter is the well-known and ubiqui-
tous 1/f noise. Some systems are even more interesting because they seem to exhibit
self-organization or self-tuning, concomitant with scale-free behaviour as an inherent
and robust property of the system, not due to the tuning of a control parameter by
the experimenter.

Two systems to which such spontaneous scale-free behaviour has been attributed
are sandpile models and taxon creation in biological systems. The former has served

as the paradigm of “self-organized criticality” (SOC) [10], while the latter, manifested



67
in the form of near power law shapes of rank-abundance curves, has been advanced
as evidence of a fractal geometry of evolution [12, 13].

A much simpler system where power laws are observed is the random walk [38].
For example, the waiting times ¢ for first return to zero of the simple random walk
in one dimension (starting at x = 0, at each time step, z(t + 1) = z(t) + 1 with
probability 1/2 and z(t + 1) = z(¢) — 1 with probability 1/2) have a probability

distribution ~ ¢t3/2

. Closely related to random walks, branching processes [23] can
also create power law distributions. They have been used to model the dynamics of
many systems in a wide variety of disciplines, including demography, genetics, ecology,
physiology, chemistry, nuclear physics, and astrophysics. Here, we use a branching
process to model the creation and growth of evolutionary taxa, and the propagation
of avalanches in SOC sandpile models.

In Section 6.2, I examine the properties of the Galton- Watson process. I find that
this process can generate power laws by appropriate tuning of a control parameter,
and examine the dynamics of the system both at the critical point and away from
it. In Section 6.3, I apply this branching process model to various systems, including
the taxonomical rank-frequency abundance patterns of evolution and the avalanche
size distribution of sandpile models, and discuss the universality of their underlying
dynamics. Finally, in Section 6.4, I discuss the implications of this work, including
a discussion of the order and control parameters for the branching process and its

applications, and suggest further questions.

6.2 The Branching Process

The Galton-Watson branching process was first introduced in 1874 to explain the
disappearance of family names among the British peerage [44]. It is the first branch-
ing process in the literature, and also one of the simplest. Consider an organism
which replicates. The number of replicants (daughters) it spawns is determined prob-
abilistically, with p; (i = 0,1,2...) being the probability of having ¢ daughters. Each

daughter replicates (with the same p; as the original organism) and the daughter’s
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daughters replicate and so on. We are interested in the rank-frequency probability
distribution P(n) of the total number of organisms descended from this organism
plus 1 (for the original organism), i.e., the historical size of the “colony” the ancestral
replicant has given rise to (Fig. 6.1). Note that this is equivalent to asking for the
probability distribution of the length of a random walk starting from 1 and returning
to 0 with step sizes given by P(An) =p;_; (1=0,1,2...) [6].

The abundance distribution P(n) can be found by defining a generating function

F(s) =) P(i)s" (6.1)

This function satisfies the relationship
© -
F(s) = s Y plFG)L, (6.2)
=0

from which each P(n) can be determined by equating coefficients of the same order

in s [23]. This result can also be written as
1
P(n)= Qmn-1)  (k>1), (63)

where Q(i,7) is defined as the probability that j organisms will give birth to a total
of 7 true daughters [38]. However, these approaches are not numerically efficient, as
the calculation of P(n) for each new value of n requires recalculation of each term in
the result.

For the present purposes, let us approach the problem in a different manner. Let
Py; be the probability that given j original organisms, we end up with a total of k

organisms after all organisms have finished replicating. Obviously,

Py; =0 (k> j), (6.4)
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Figure 6.1: Branching process trees from a branching process with py = 0.5, p; = 0.2,
p2 = 0.2, and p3 = 0.1. The total number of organisms is (from left to right) n = 1,
39, 5, 5, 1. The second tree has 3 organisms in its second generation, 5 in its third,
and so on.
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since it is impossible to have less total organisms than one starts out with, and

P1|1 = Po, (6~5)

i.e., the probability for one organism to have no daughters. A little less obviously,

k—1

Py = Y piPu-y;  (k>2), (6.6)
7=1
k—1

Py = > PpPyg-y ([G=k>1) (6.7)
7=1

These equations allow us to use dynamic programming techniques to calculate P(n)
(= Pup), significantly reducing the computational time required. Also, from Eq.

(6.6), we can write

P P12

Pln-1)3
=p1+p2 S

e MR g 6.8
Po_ni P 68)

Pln-nn
Since, for n — 00, P,; is uniformly decreasing, we see

P(n) Payy
= —C asn—o00, (C<1 6.9
P = P ©<1 (6.9)

where C' is a constant. C is an indicator of the asymptotic behaviour of P(n) as
n — oo. If C' < 1, the probability distribution is asymptotically exponential, while
for C = 1, the probability distribution is a power law with exponent —3/2.

Let us now examine the behaviour of P(n) when n < 10*, the more relevant case in
the examples to follow. Using Eqgs. (6.4)-(6.7), we can numerically calculate P(n) for
different sets of p;. We define m as the expected number of daughters per organism,

given a set of probabilities p;;
m=Sip (6.10)

We see that m (the control parameter) is a good indicator of the shape of the proba-
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Figure 6.2: Predicted abundance patterns P(n) of the branching model with different
values of m. The curves have been individually rescaled to better show their shapes.
The inset shows the same curves without rescaling.

bility curve (Fig. 6.2). When m is close to 1, the distribution is nearly a power law,
and the further m diverges from 1, the further the curve diverges from a power law
towards an exponential. When m = 1/2, the curve is completely exponential. For
a population of organisms, m is a measure of the tendency for new generations to
grow, or shrink, in number. A value of m > 1 indicates a growing generation size,
which implies that there will, on average, be no generation with no daughters, and
that the expected number of total organisms is infinite. Conversely, m < 1 indicates
a shrinking population size: There will be a final generation with no daughters, and
the expected number of organisms is finite. When m = 1, the system is in between
the two regimes, and only then is a power law distribution found.

What if not all organisms share the same m? Interestingly, it turns out that even
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Figure 6.3: Abundance patterns obtained from two sets of numerical simulations of
the branching model, each with (m) = 0.5. m was chosen from a uniform probability
distribution of width 1 for the runs represented by crosses, and from a distribution of
width 0.01 for those represented by circles. Simulations where m and p; are allowed
to vary significantly and those where they are severely constricted are impossible to
distinguish if they share the same (m).

if the p; and m differ widely between different organisms, the rank-frequency curve
is identical to that obtained by assuming a fixed m equal to the average of m across
the organisms (Fig. 6.3), i.e., the variance of the p; across organisms appears to be

completely immaterial to the shape of the distribution—only the average (m) counts.

In the following section, I explore systems where the “organisms” are individual
members of species, taxons in a taxonomical tree, or tumbling sites in a sandpile
model, and m is the average number of exact copies an individual makes of itself, the

average number of new taxons of the same supertaxon a taxon spawns, or the average
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number of new tumbles directly caused by a tumbling site.

6.3 Sanda-based Models

6.3.1 Neutral Model

Let us first examine a simple simulation—sanda with the neutral model instruction
set—to test our analysis and lay the groundwork for the exploration of more com-
plicated systems. Consider a population of organisms on a finite two-dimensional
Euclidean grid, one organism to an intersection. Each organism can be viable or ster-
ile. All viable organisms replicate approximately every 7 time steps (there is a small
random component to each individual’s replication time to avoid synchronization ef-
fects), while sterile organisms do not replicate. For these experiments and the ones in
the next section, when a sanda organism replicates, its daughter replaces the oldest
organism in the parent’s 9-site neighbourhood regardless of the replaced organism’s
viability or sterility. We define the fidelity F' as the probability that the organism
will create a daughter of the same type as itself, as well as the corresponding genomzc
mutation rate R (= 1—F') at which it creates copies different from itself. The genomic
mutation rate is actually the sum of two rates, a probability R, for the daughter to be
viable but to be of a new genotype, different from that of the parent (neutrality rate),
and a probability R, of the daughter being sterile.. Of course, R, + R; = R. Note that
all viable mutant daughters still share the same replication time 7—all mutations are
neutral (See Fig. 6.4). Such a system gives rise to abundance distributions of power
law and near-power law type that can be predicted as follows.

The total number of organisms is determined by the size of the grid. We write
equilibrium conditions for the total number of organisms p4, and for the total number

of viable organisms py-,

Apsg ~ apy —pa =0, (6.11)

Apy ~ wvpy — py =0, (6.12)
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neutral
viable

sterile

Figure 6.4: Neutral model replications and mutations. An organism’s daughter is of
the same genotype as the organism with probability F', it is of a new, viable genotype
with probability R,, and it is sterile with probability R, such that F'+ R, + Rs = 1.

where a is the average number of daughters (viable and sterile) a viable organism
has, and v is the average number of viable daughters a viable organism has. Intro-
ducing m—the average number of true daughters (daughters which share the parent’s

genotype) for a viable organism—we see that

_F+R,
- F

v

m = (F + Ry)a. (6.13)

From Eqs. (6.11)-(6.13), we obtain steady state solutions for a and m,

F——l
o = o (6.14)
1 (6.15)
= ; 15
1+ &

Knowing the values of a and m (or conversely, F' and R,,) is sufficient to determine the
shape of the abundance distribution. Fig. 6.5 shows abundance data for two neutral
model runs with differing values of R, (and consequently m), along with predicted

distributions (which use only R, and F as parameters) based on the branching model.
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P(n)

Figure 6.5: Abundance distributions and predicted curves for two neutral model runs.
The run shown by circles (~ 1.5 million data points) had a grid size of 3000 x 3000,
F = 0.5, and R, = 0.5, while the one represented by crosses (~ 0.6 million data
points) had a grid size of 100 x 100, F' = 0.2, and R, = 0.1. The branching process
model predictions were made from values of F' and R,, (there were no free parameters),
and are accurate across a broad range of parameters.

Although the distribution patterns are very different, both are fit extremely well by
the branching process model’s predicted curves. In Eq. (6.15), note that R, is the
rate of influx of new genotypes (and therefore new competitors for space), while F is
the rate of growth of existing genotypes. The value of m is determined by the ratio
of these two rates. Unless the total number of creatures is increasing, m <1 (m =1
if and only if R, — 0 and new competing genotypes are introduced at a vanishing

rate).

6.3.2 Non-neutral Model

The next system is sanda with the default instruction set. Compared to the neutral

model above, the organisms are no longer simple, and instead each has a complex
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genome consisting of a string of assembly language-like instructions (Fig. 2.3). Each
organism independently executes the instructions of its genome, and this genome
determines the organism’s replication time 7. Unlike the neutral model, the model
allows non-neutral mutations which lead to new viable genotypes with both lower
and higher replication times than the parent.

The system and the instructions are designed so that the organisms can self-
replicate by executing certain sequences of instructions. The replication time of an
organism is not a predetermined constant, rather it is determined by the genotype of
the organism: Organisms can replicate faster or slower than other competing organ-
isms with different genotypes. For an organism to successfully replicate, its genotype
must contain information which allows the organism to allocate temporary space
(memory) for its daughter, replicate its genotype (one instruction at a time) into this
temporary space, and then to divide, placing its daughter in a grid site of its own
(Fig. 2.3). As in the neutral model, on division, the daughter replaces the oldest
organism in its parent’s 9-site neighbourhood.

Organisms, depending on their genotype, may not be able to replicate (may be
sterile) or may only be able to replicate imperfectly (resulting in no true daughters).
Also, the copy instruction, which the organisms must use to copy instructions from
their own code into that of their nascent daughters, has a probability of failure (copy
mutation rate), which can be set by the experimenter. When the copy instruction fails,
an instruction is randomly chosen from all the instructions available to the organisms
(the instruction set) and written in the string location copied to. Copy mutations
also lead to non-true daughters. The instruction set is robust; copy errors (mutations)
induced during the replication of viable organisms have a non-vanishing probability of
creating viable new organisms and genotypes. Indeed, by selecting for certain traits
(such as the ability to perform binary logical operations) by increasing the rate at
which instructions are executed in organisms which carry these traits, the system can
be forced to evolve and find novel genotypes which contain more information (and
less entropy) than their ancestors. Even without this external selection, the system

evolves organisms (and genotypes) which replicate more efficiently in less executed
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instructions.

As a result of this evolution, the fidelity and neutral mutation rate are not fixed,
but can vary with the length of an organism’s genome and the instructions contained
therein. Also, new genotypes formed by beneficial mutations that allow faster replica-
tion than previously existing genotypes will have (on average) an increasing number
of organisms—m > 1—until the new, faster replicating genotypes fill up a sizable
portion of the grid. All these factors combine to make predicting the abundance
distributions for sanda much harder than for the neutral model.

Indeed, rather than being constant during the course of a sanda experiment, R,
and F' will vary unpredictably as the population of organisms occupies different areas
in genotypic phase space. Certain genotypes may be brittle, allowing very few muta-
tions that result in new viable genotypes. The length of the organisms may change,
changing both the genomic mutation rate and the neutrality rate. Genotypes exist
which make systematic errors when copying, which decreases the fidelity. In short,
the dynamics of these digital organisms are complex and messy, much like those of
their biochemical brethren. These variations are observed at the same time across
different organisms in the population, and are also observed with the progression of
time. Still, we attempt to predict the abundance distributions by approximating the
ratio of neutral mutations to true copies by the observed ratio of viable genotypes to
total number of viable organisms ever created:

R"L
— ~ 6.16
L] (6.16)

s

where N, is the total number of viable genotypes observed during a sanda run and
N, is the total number of viable organisms. This relation should hold approximately

under equilibrium conditions. Then, Eq. (6.15) becomes

N,
m~ (1+ Ni)—l, (6.17)
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Figure 6.6: Abundance data from two sanda runs with predicted abundance curves.
Both runs were started with the same initial genotype for all organisms, the same
per-instruction copy mutation rate (v), and the same grid size (100 x 100). Run 192’s
genotypes evolved into a regime of genotypic phase space with longer average length,
and therefore lower fidelity F' and higher neutrality R,, than Run 132, resulting in
the differences in the abundance distributions. The predicted curves were generated
by approximating a representative value of R,/F from the ratio of the number of
viable genotypes to the number of viable organisms observed over the run. The data
was binned using the template threshold method with 7' =1 (see Chapter 4).

and from Eq. (6.14)

(6.18)

SIE

The fidelity F'is inferred from the average length [ of genotypes during a run and the
(externally enforced) per-instruction copy mutation rate v, F' = (1 — ). Because we
estimate m and @ from macroscopic observables averaged over the length of a run,
I expect some error in these results due to the shifting dynamics of the evolution of

genotypes as the system moves in genotypic phase space.
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The abundance data from two different sanda runs are shown in Fig. 6.6 with
the predicted abundance curves. The two runs shared the same grid size and per-
instruction copy mutation rate, and were started with the same initial genotypes, but
the runs evolved into different regions of genotypic phase space and consequently had
significantly different statistics. Considering the many gross approximations made,
the agreement between the predictions and the experimental data is surprisingly good
(especially as no fitting is involved). Sanda is most closely related to an asexually repli-
cating biological population, such as colonies of certain types of bacteria occupying a
single niche. The genotype abundance distributions measured in sanda are analogous
to the species or subspecies abundance distributions of its biological counterparts.
In general, species abundance distributions are complicated by the effects of sexual
reproduction, and of the localized and variable influences of other species and the
environment on species abundances. However, I believe the branching model—used

judiciously—can be helpful in the study of such distributions.

6.4 Evolution

For taxonomic levels higher than species, the rank-abundance distributions of num-
ber of subtaxa per taxon approximate power laws [47, 12, 13]. Yule [47] proposed a
continuous time branching process model to explain these distributions at the generic
level. He recognized that naturally observed distributions diverged from the power
law predicted by his theory for equilibrium distributions, and hypothesized that this
deviation was caused by a finite-time effect. I find that the branching process model
generates the observed distributions and find that the distribution’s deviation from
power-law form is not caused by disequilibration (as Yule proposed), but rather that
it is time-independent and determined by the evolutionary properties of the taxa of
interest. The model predicts—with no free parameters—the rank-frequency distri-
bution of number of families in fossil marine animal orders obtained from the fossil
record. I find that near power-law distributions are statistically almost inevitable for

taxa higher than species.
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Rank-abundance distributions at taxonomic levels higher than species (e.g., the
distribution of the number of families per order) are simpler to model than species
abundance distributions, as the effects of the complications noted above are weak or
nonexistent. I find that the available data is well fit by assuming no direct interac-
tion or fitness difference between taxa. The shapes of rank-frequency distributions
of taxonomic and evolutionary assemblages found in nature are surprisingly uniform.
Indeed, Burlando has speculated that all higher-order taxonomic rank-frequency dis-
tributions follow power laws stemming from underlying fractal dynamics [12, 13]. I
believe this conclusion is hasty: The divergence of the distributions from power law
can be observed by applying appropriate binning methods to the data. (See Chapter
4.) Yule [47] attempted a branching process model explanation of these distributions,
and claimed that the divergence from power law of rank-abundance patterns was tran-
sient and indicated a finite time since the creation of the evolutionary assemblage.
The model indicates that this is not generally the case. I find that the divergence
from power law is not a result of disequilibration, but is an inherent property of the
evolutionary assemblage under consideration and that this divergence provides insight
into microscopic properties of the assemblage (e.g., the rate of innovation).

Say, for example, that we are interested in the rank-frequency distribution of the
number of families in each order for fossil marine animal orders. We assume that
all new families and orders in this assemblage originate from mutations in extant
families. Then, we can define rates of successful mutation R, for mutations which
create new families in the same order as the original family, and R, for mutations
which create an entirely new order. In this case, unlike the cases treated above,
we assume a — oo; many, many individual births and mutations occur, but the
proportion that are family- or order-forming is miniscule. Finally, assuming a quasi-
steady state (the total numbers of orders and families vary slowly [31]), we rewrite

Eq. (6.15),

m ~ (1+32)71 (6.19)
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Figure 6.7: The rank-frequency distribution of fossil marine animal orders
(squares) [34] and the predicted abundance curve (line). The predicted curve was
generated—with no free parameters—by approximating R,/F by N,/N; = 0.115.
The empirical distribution agrees with the predicted curve with significance 0.12 us-
ing the Kolmogorov-Smirnov test. A Monte Carlo analysis shows that for a sample
size of 626 (as we have here), the best fit R,/R; = 0.135 (Fig. 6.8) is within the 66%
confidence interval of the predicted R,/Ry = 0.115. The fossil data is shown binned
using the template threshold binning method explained in Chapter 4 with 7" = 1.

Ny, _

~ (1+ Ff) Y (6.20)

in terms of N, and Ny, the total numbers of orders and families respectively. Asin the
previous systems studied, R, is the rate of creation of new—and competing—orders,
while Ry is the rate of growth of existing orders, and m is determined by their ratio.
Data for the abundance distribution of number of families in fossil marine animal
orders [34] are shown in Fig. 6.7. I obtained values for N, and Ny directly from the
fossil data to generate the predicted curve with no free parameters. The agreement is

very good, much better than that for the sanda runs where evolutionary parameters
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Figure 6.8: Kolmogorov-Smirnov (K-S) significance levels p obtained from comparison
of the fossil data to several predicted distributions with different values of R,/Ry,
which shows that the data is best fit by R,/R; = 0.135. The arrow points to my
prediction R,/R; = 0.115 where p = 0.12. The K-S tests were done after removal of
the first point, which suffers from sampling uncertainties.
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such as the fidelity F' and the neutrality R, were constantly changing. Comparing m
and the resultant abundance curves with those obtained above for the rank-abundance
distribution of sanda genotypes leads to the expected conclusion that the probability
of creation of a new genotype in sanda per birth is much higher than the probability
of a new family creating an order in natural evolution. Indeed, Burlando [12, 13]
finds that a wide variety of taxonomic distributions are fit quite well by power laws
(m = 1), although some of his figures seem to show an exponential tail such as
that predicted by our model if m < 1. This seems to imply that actual taxonomic
abundance patterns from the fossil record are characterized by a relatively narrow
range of m near 1. This is likely within the model description advanced here. It is
obvious that m can not remain above 1 for significant time scales as this would lead to
an infinite number of subtaxa for each taxon. Even if, by a beneficial mutation, a new
taxon has an evolutionary advantage over existing taxa, it soon fills up the available
evolutionary phase space and must slow the increase in the number of its subtaxa.
What about low m? I propose that low values of m are not observed for large (and
therefore statistically important) taxon assemblages for the following reasons. If m is
very small, this implies either a small number of total individuals of this assemblage,
or a very low rate of beneficial taxon-forming (or niche-filling) mutations. The former
might lead to this assemblage not being recognized at all in field observations. Either
case will lead to an assemblage with too few taxons to be statistically tractable. Also,
since such an assemblage either contains a small number of individuals or is less suited
for further adaptation or both, it would seem to be susceptible to early extinction.

The branching model can—with appropriate care—also be applied to species-
abundance distributions, even though these are more complicated than those for
higher taxonomic orders for several reasons. Among these are the effects of sexual
reproduction and the localized and variable effects of the environment and other
species on specific populations. Historically, species abundance distributions have
been characterized using frequency histograms of the number of species in logarithmic
abundance classes. For many taxonomic assemblages, this was found to produce a

humped distribution truncated on the left—a shape usually dubbed lognormal [29, 30,
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Figure 6.9: The abundance distribution of fossil marine animal orders in logarithmic
abundance classes (the same data as Fig. 6.7). The histogram shows the number of
orders in each abundance class (left scale), while the solid line depicts the number of
families in each abundance class (right scale). Species rank-abundance distributions
where the highest abundance class present also has the highest number of individuals
(as in these data) are termed canonical lognormal [30].

40]. In fact, this distribution is not incompatible with the power-law type distributions
described above. Indeed, plotting the fossil data of Fig. 6.7 in logarithmic abundance
classes produces a lognormal (Fig. 6.9). Thus, species-abundance distributions may
turn out not to be qualitatively as different from taxonomically higher-level rank-
frequency distributions as expected. For species, m is the mean number of children
each individual of the species has. (Of course, for sexual species, m would be half the
mean number of children per individual.)

For species, m less than 1 implies that extant species’ populations decrease on
average, while m equal to 1 implies that average populations do not change. An

extant species’ population can decline due to the introduction of competitors and/or
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the decrease of the size of the species’ ecological niche.

Let us examine the former more closely. If a competitor is introduced into a
saturated niche, all species currently occupying that niche would temporarily see
a decrease in their m until a new equilibrium was obtained. If the new species is
significantly fitter than the previously existing species, it may eliminate the others.
If the new species is significantly less fit, then it may be the one eliminated. If the
competitors are about as efficient as the species already present, then the outcome is
less certain. Indeed, it is analogous to a non-biased random walk with a possibility
of ruin. The effects of introducing a single competitor are transient. However, if new
competitors are introduced more or less periodically, then this would act to push m
lower for all species in this niche and we would expect an abundance pattern closer to
the exponential curve as opposed to the power-law than otherwise expected. This is
analogous to the introduction of new competitors through viable mutations in sanda,
where we also find a higher rate of viable mutations leads to distributions closer to
exponential (see previous section).

If no new competitors are introduced but the size of the niche is gradually reduced,
I expect the same effect on m and on the abundance distributions. Whether it is
possible to separate the effects of these two mechanisms in ecological abundance
patterns obtained from field data is an open question. An analysis of such data to
examine these trends would certainly be very interesting.

So far, I have sidestepped the difference between historical and ecological dis-
tributions. For the fossil record, the historical distribution we have modeled here
should work well. For field observations where only currently living groups are con-
sidered, the nature of the death and extinction processes for each group will affect the
abundance pattern. In simulations and artificial-life experiments, I have universally
observed a strong correlation between the shapes of historical and ecological distri-
butions. I believe this correspondence will hold in natural distributions as well when
death rates are affected mainly by competition for resources. The model’s validity for
different scenarios is an interesting question, which could be answered by comparison

with more taxonomical data.
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The branching process model allows us to reexamine the question of whether any
type of special dynamics—such as self-organized criticality (SOC) [10]—is at work in
evolution [36, 3]. While showing that the statistics of taxon rank-frequency patterns in
evolution are closely related to the avalanche sizes in SOC sandpile models (examined
in the next section), the present model clearly shows that instead of a subsidiary
relationship where evolutionary processes may be self-organized critical, the power-
law behaviour of both evolutionary and sandpile distributions can be understood in
terms of the mechanics of a Galton-Watson branching process [42]. The mechanics
of this branching process are such that the branching trees are probabilistic fractal
constructs. However, the underlying stochastic process responsible for the observed
behaviour can be explained simply in terms of a random walk [38]. For evolution, the
propensity for near power-law behaviour is found to stem from a dynamical process in
which m & 1 is selected for and highly more likely to be observed than other values,
while the “self-tuning” of the SOC models is seen to result from arbitrarily enforcing
conditions which would correspond to the limit R,/R; — 0 and therefore m — 1 (see

next section).

6.5 Sandpile Models

The Bak, Tang, and Wiesenfeld (BTW) sandpile model [10] was introduced in Chap-
ter 5. For the BTW sandpile, define p. as the probability that any site is critical (one
more grain added to that site will cause it to tumble). Then, it is easy to construct
a mean field branching process, where the probability distribution of the number of
nearest-neighbour sites a tumbling site will cause to tumble in the next update is
given by

pi = <2d> pa(l — pe)" . (6.21)

0
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This leads to

a ~ 2d, (6.22)
2d
m=Y ip; =1, (6.23)

and a predicted power law distribution for the size of avalanches s(n), again obtained
from Eqgs. (6.4)-(6.7). In higher dimensions (d 2 6), the branching process model is
expected to hold exactly and s(n) ~ n=3/2. This is supported by numerical simula-
tions. However, for lower dimensions, sandpiles will “interfere” with themselves, and
a smaller exponent is found. Attempts to calculate the effects of this “final-state”
interaction through renormalization have as yet not been completely successful.

So far, I have ignored dissipation and assumed an infinitesimal driving rate (i.e.,
allowed one avalanche to finish before another grain is dropped). If we define p, and
p. as the proportions of sites which are active (tumbling) and stable (subcritical),
g =~ 2d as the number of nearest neighbours, h as the probability per update that any
particular site will have a grain dropped on it (driving rate), and € as the probability
that a grain of tumbled sand will not reach a valid site, e.g., by falling off the edge
of the lattice (dissipation rate), we see that ¢ = 1,2, ... new active sites are generated

by the tumbling of one active site with probabilities

=
[
(-

P((g — k) grains dissipated) P(i new active sites|k)
k

1

<i) e H1 — )" <l;> pe(l = pe)* ™, (6.24)

>
Il

I
-

1

while no active sites are generated with probability

o = [e+ (1= €)(1 = po)]’- (6.25)
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This gives us the control parameter for the branching process,

m = {1

= Zka
A

= g(1—€)p. (6.26)

which has a critical value m = 1. Assuming a steady state and a finite driving rate

h, we write

pa(t+1) = pa(t)m + hp.(t)

= pa(t) (6'27)

and, substituting for p. from Eq. 6.26, we find

h

m:(1+—pag(1—€)

)1, (6.28)

Again, note that h is proportional to the rate of introduction of new avalanches, while
pag(1 — €) is proportional to the rate of growth of existing ones. As in the simpler
case where dissipation and driving were ignored, I expect that the branching process
model will be quantitatively correct in higher dimensions. Indeed, such a mean field
branching process model can be used to predict quantitative values of some sand-
pile exponents that hold in all dimensions [42]. Unfortunately, it is computationally
very expensive to simulate high-dimensional sandpiles. Fig. 6.10 shows the results
of simulating a two-dimensional BTW sandpile with finite driving rates from h — 0
to h = 107!, As expected, higher driving rates h lead to lower m and distributions
farther from power law. Other branching process treatments of sandpile models can

be found in Ref. [42] and references therein.
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Figure 6.10: Avalanche size distribution in the 2-d BTW sandpile model with finite
driving rates: h =0, 1073, 1072, 10~!. Higher driving rates lead to distributions far-
ther from power law and closer to exponential, as predicted by the branching process
model. The lattice size for these simulations was 100 x 100 (note the cutoff in the
h — 0 distribution at n ~ 5000 due to system size effects). Unfortunately, quantita-
tive predictions can not be made for low-dimensional sandpiles (where “final-state”
interactions exist), while simulating high-dimensional sandpiles is computationally

prohibitive.
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6.6 Discussion

The Galton-Watson branching process generates power law distributions when its

control parameter m = 1. In all four of the systems I have examined above,
m=(1+=)" (6.29)

is determined by the ratio of the rate of introduction of competitors R, to the intrinsic
rate of growth of existing assemblages R,. As this ratio goes to 0, m — 1 and the
system becomes critical.

This relation can be translated into the standard relation between an order pa-

rameter

R,
= 6.
a=% (6.30)

p=m" (6.31)

Writing « in terms of pu,

where . = 1 and # = 1 (Fig. 6.11). The order parameter represents the rate
at which competition is introduced to the system (the strength of selection). A
value of the control parameter 1 < u. implies a system with no competition and no
selection—an exponentially growing population. Values of y higher than p. indicate
that new competition is always being introduced and that all existing species or
avalanches must eventually die out. When pu = pu., competition is introduced at a
vanishingly small rate, and we find the critical situation where separation of scales

occurs. Interestingly, in all the systems studied, the order parameter has been the
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Figure 6.11: The order parameter « as a function of the control parameter . For u
below ., the order parameter is 0—organisms (or events) in the system spawn greater
and greater number of daughter organisms (events), and there is exponential growth.
For u > p., competition from newly created organisms (events) stops abundances
from growing without bound. p = p. marks the critical point where abundances can
grow to infinity, but do not show exponential growth, and power law distributions
arise.

easier to “control.” Indeed, this feature of SOC sandpile models (tuning occurring at
a — 0) may be their most important one.

For sandpile models, this « is arbitrarily set close to 0 by using large lattice
sizes (reducing dissipation) and waiting for avalanches to finish before introducing
new perturbations (resulting in an infinitesimal driving rate and a diverging diffusion
coefficient). In simulations away from these arbitrary conditions, a loss of criticality
is predicted by the model and observed in numerical simulations. Self-organized
criticality and its sandpile models have stimulated research in many different fields
and systems where near power law avalanche dynamics was observed. It seems that
many of these systems should be mappable to branching processes, and that the
fractal behaviour of these systems and the changes in their dynamics which follow
from finite driving rates could be understood in terms of such. For the biological
and biologically-inspired systems we have considered, the control parameter is not
set arbitrarily at a critical value. However, the dynamics of the evolutionary process,

in which it is much harder to effect large jumps in fitness and function than it is to
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effect small ones, lead to naturally observed values of a being small, especially for
higher taxonomic orders. The dynamics of evolution act, robustly, to keep p near p..
This in turn leads to a near power law pattern for rank-frequency distributions.

It would be beneficial to compare the predictions of the branching process (BP)
model to high-dimensional sandpile simulations, where it should be quantitatively
correct. Comparison of the BP model with more biological data is also desirable. For
biological systems, there is a vast amount of empirical data, most of it, unfortunately,
not in a form suitable for direct comparison to the BP model. Since the model
allows a characterization of the abundance distributions with no free parameters,
I believe it should be possible to deduct, from abundance distributions (and their
divergence from power law), microscopic parameters of the system which created the
distribution—e.g., driving rates in sandpiles, genomic and higher-order neutralities
in nature. Species abundances are affected by many factors, but I believe that a
careful application of the BP model (e.g., by comparison of collections of species with
different ecological pressures) could yield insight.

I have shown that the apparent power laws of avalanches in SOC sandpile models,
species-abundance distributions in artificial life systems, and rank-abundance distri-
butions in taxonomy can be explained by modelling the dynamics of the underlying
system with a simple branching process. This branching process model successfully
predicts, with no free parameters, the observed abundance distributions—including
their divergence from power law. This may allow the deduction of the microscopic
parameters of the system directly from the macroscopic abundance distribution. I
find that we can identify a control parameter—the average number of new events an
event directly spawns, and an order parameter— the rate of introduction of compet-
ing events into the system, and that these are related in a form familiar from second

order phase transitions in statistical physics.
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