Designing Intelligent Agents for Real-Time Experimental Control
and Multi-Task Generalization

Thesis by
Enrique Amaya Perez

In Partial Fulfillment of the Requirements for the
Degree of
Doctor of Philosophy

Caltech

CALIFORNIA INSTITUTE OF TECHNOLOGY

Pasadena, California

2025
Defended June 13th, 2025

© 2025

Enrique Amaya Perez
ORCID: 0000-0003-3166-8583

Some rights reserved. This thesis is distributed under a CC BY-NC-SA 4.0 License

11

11

ACKNOWLEDGEMENTS

First, I would like to express my gratitude to Matt Thomson for his insightful guidance and
continuous encouragement throughout the course of this research. His expertise and mentorship

have been instrumental in shaping my academic development.

I am grateful to my thesis committee members, Paul Sternberg, David Van Valen, and Ueli
Rutishauser, for their valuable feedback and support. I would also like to thank Professor Richard
Murray for his early support and for giving me the opportunity to participate in exciting research

in his lab during the SURF program in 2015, my very first research experience at Caltech.

From the Guttman Lab, I want to thank Mitch Guttman for the incredible opportunity to work in his
lab for a full year before beginning my PhD. I’'m especially grateful to Mario Blanco, who mentored
me during that time. His generosity, thoughtful guidance, and genuine care for mentorship had a
lasting impact on me. He also became a close friend who continued to support me throughout my
PhD journey. I would also like to thank Jimmy Guo, who has remained a good friend since our

time in the Guttman Lab and whose friendship and support have meant a lot over the years.

I would also like to thank a remarkable group of close friends and colleagues from the Mexican
community at Caltech: Manuel Razo, Porfirio Quintero, Jorge Castillo, Andrés Ortiz, Alejandro
Granados, Emanuel Flores, David Larios, and Jests del Rio. Each of them is an exceptionally
talented scientist from whom I have learned a great deal. Beyond academic support, they have
been a source of friendship, encouragement, and shared experience that I will always value. Their

camaraderie and support have been a cornerstone of my journey.

Special thanks go to my colleagues and lab mates in the Thomson Lab. I am especially thankful
to Shichen Liu, Shahriar Shadkhoo, Fan Yang, Dominik Schildknecht, and Guru Raghavan for
their insightful conversations, collaborative spirit, and day-to-day support. Their perspectives,
enthusiasm, and help with experiments made both the science and the lab experience far more

enriching and enjoyable.

v
On a personal note, I owe my heartfelt appreciation to Carolina, my partner, for her unconditional
love and unwavering support. I met her on the very first day of undergraduate studies in 2013, and
she has stood by me ever since. It is no exaggeration to say that earning both of my degrees would
not have been possible without her. Through good days and bad, she has always encouraged me to
believe in myself and to keep going. Her love carried me through the most difficult moments, and

her presence made many of my happiest PhD memories possible.

I would also like to thank my older brother, Tomds, who has always been an inspiration and
protector. Despite the physical distance between us, I feel his support constantly, and I know he

will always be there for me.

To my parents, I am endlessly grateful. Their sacrifices made it possible for my brother and me
to pursue our dreams, and the love and affection they have always given us remain the greatest

treasure in my life.

Finally, I would like to honor the memory of my grandparents, Mina and Ramiro. They passed
away recently, but they were like a second set of loving parents. Their pride in our achievements

and the love they gave us are things I will always carry with me.

ABSTRACT

Scientific discovery has traditionally relied on human-led iterative loops of observation, modeling,
and intervention. This thesis explores the possibility of automating components of this loop using
artificial intelligence (Al), particularly in systems characterized by non-equilibrium dynamics, high
dimensionality, and emergent behaviors. Two foundational challenges are addressed: automating
physical modeling and enabling adaptive interaction with dynamic experimental systems, and

generalizing agent behavior across tasks and contexts without retraining.

To address the first challenge, we introduce a hierarchical Al framework for controlling active
biomolecular matter, exemplified by microtubule—kinesin networks driven by light-activated mo-
tors. At the foundation are predictive models that learn the system’s response to static light patterns,
enabling inverse design by selecting inputs that yield desired structural outcomes. Building on this,
dynamic models construct low-dimensional representations of the system’s evolving state under
time-varying stimuli, supporting forward simulation and real-time tracking. At the highest level,
reinforcement learning agents—trained in simulation—discover and execute closed-loop control
policies that achieve fine-grained manipulation objectives. These agents are deployed across ~100
parallel experimental setups, demonstrating autonomous operation with robustness, scalability, and

reliable transfer.

To address the second challenge, we investigate how generalist reinforcement learning agents can
be constructed by leveraging the geometry of policy parameter space. We show that agents trained
on distinct tasks self-organize into functionally segregated regions of weight space that encode both
task identity and strategic variability. This insight enables the design of a hypernetwork—a network
that generates the weights of other networks—that can interpolate smoothly between tasks and
strategies via a single scalar input. Combined with a meta-controller, this architecture enables real-

time modulation of agent behavior—ranging from conservative to risk-seeking—without retraining.

Together, these contributions demonstrate that intelligent systems can both design and control

vi
physical experiments in real time, and adapt cognitive strategies across tasks through principled
representations in policy space. This work establishes a foundation for closed-loop scientific
autonomy, programmable biomaterials, and generalist Al agents, converging at the intersection of

machine learning, biophysics, and automation.

Vil

TABLE OF CONTENTS
Acknowledgements L L e iii
ADSIract e e e e e v
Table of Contents L vii
Listof Illustrations e ix
Chapter I: Introduction e e e e 1
1.1 Can We Automate the Scientific Process? 1
1.2 Two Foundational Challenges in Scientific Autonomy 3
A. Real-Time Interaction with Dynamical Systems 3
B. Generalization Across Tasks and Experimental Contexts 4
1.3 Organizationof thethesis 4
Chapter II: Massively Parallel AI-Driven Closed-Loop Optical Control of Microtubule Net-
WOTKS . . o e 6
Abstract 7
2.1 Introduction 8
2.2 Results oL e 9
Linear TraPhIC Predicts and Optimizes Microtubule Network Geometry in Static
Light via Linear Latent Paths. 9
Flexible TraPhIC Predicts Microtubule Network Dynamics in Static and Dynamic
Light via Latent Trajectories of Stimulus History 13
Deep Q-Learning Enables Active Control of Microtubule Networks for Target
Object Capture. o e e 18
Massively Parallel Deployment of AI Control Agents Demonstrates Scalable Ma-
nipulation of Active Matter Systems. 19
23 DISCuSSIOn e e 21
24 Conclusion L 22
2.5 Methods L 23
Experimental Platform for High-Throughput Optical Control of Microtubule Networks 23
Microtubule-Kinesin Preparation and Chip Setup 23
Microscope Setup e 24
Closed-loop Light Stimulation Software Pipeline 24
Deep Learning Models for Microtubule Network Prediction 27
Filament Simulation L L oL 27
L-PSTE on SimulationData 29
G-PSTE on Experimental Data 34
Optimization of Experimental Conditions for Microtubule Bending 40
Formulation of the Bending Loss Function 40
Implementation of the Neural Network-Based Optimization Framework . . 41
Reinforcement Learning for Real-Time Object Capture 44

Simulation Environment for RL Agent Training 44

viil

Reward Function Design 45
Training Algorithm for RL Agent. 45
Chapter III: Building Generalist Agents by

Mapping the Geometry of Weight Space 48
ADbStract e e e 49
3.1 Introduction 50
3.2 Results o 51
Population Training Reveals Task-Specific Differentiation of Neural Networks. . . . 51
Task Pressures Sculpt Distinct Functional Territories in Neural Weight Space . . . 54

Strategic Tradeoffs Map Onto the Internal Geometry of Functional Territories in
Weight Space. L 56

Learned Paths in Neural Policy Space Enable Generalist Agents with Tunable Task
and Strategy. L e 58
3.3 DIsCuSSiono e e e e 61
34 Conclusion L e e 62
3.5 Methods 62
Agent Architecture, Training and Weight Extraction 62
Weight Projection, Visualization, and Fitness Modeling 64
Inter/Intra Task Clustering and Behavioral Phenotyping 65
Hypernetwork Modeling and Generalist Policy Construction 65

Bibliography L 70

LIST OF ILLUSTRATIONS

Number

1.1 Conceptual analogy between reinforcement learning and the scientific method.

2.1 Simulation-trained Linear TraPhIC accurately predicts microtubule network con-
traction and optimizes light inputs for experimentally validated network bending.

2.2 Flexible TraPhIC accurately predicts microtubule network trajectories under dy-
namic light and maintains performance on contraction under static patterns in real
EXPEIIMENTS. . .« . v v v vt e e e e e e e e e e e e e e e e e

2.3 Deep Q-Network agents transfer bead-capturing strategies from simulation to real
microtubule network control. L

2.4 Deployment of Deep Q-Network control across hundreds of microtubule network
experiments demonstrates scalable RL for active microtubule systems.

3.1 Policy Evolution in Weight Space and Training Dynamics Across Atari Tasks

3.2 Structure of policy weight space across Atari games after training.

3.3 Reward-Risk Tradeoffs Organize Agent Variation in Policy Weight Space and Game-
Play. . . .o e

3.4 Geometric Traversal of Policy Space Enables Generalist Agent Design.

X

Page

Chapter 1
INTRODUCTION
' 3\ { 3
Reinforcement Learning Scientific Method
Action a, Experiment
Agent Scientist
. Natural
State s, ; Environment Experimental Evidence World
Reward r;.; Information Gain
v \, J

Figure 1.1: Conceptual analogy between reinforcement learning and the scientific method.
The left panel illustrates the standard reinforcement learning (RL) loop, where an agent interacts
with an environment by taking an action a;. In response, the environment returns a new state §;41
and a reward r,y, which the agent uses to update its policy and improve future behavior. The
right panel depicts the analogous structure in the scientific method. Here, a scientist performs
an experiment on the natural world, which yields experimental evidence and information gain.
This feedback is used to refine hypotheses and inform future experiments. The figure highlights
the shared core dynamic: an iterative cycle of intervention, observation, and adaptation aimed at
improving predictive or explanatory models.

1.1 Can We Automate the Scientific Process?

Scientific discovery has long been understood as an iterative loop of observation, modeling, and
intervention. Researchers observe phenomena in the natural world, extract patterns from data,
formulate models to explain these patterns, and then design interventions—such as experiments
or perturbations—to test hypotheses and uncover deeper causal structure. This cycle has been

foundational across disciplines, from physics and chemistry to biology and neuroscience, and

remains the central engine of scientific progress.

Traditionally, this loop has been entirely human-driven, requiring a combination of domain ex-
pertise, experimental skill, and conceptual abstraction. The process is often slow, expensive,
and subject to cognitive limitations, especially in systems that are nonlinear, high-dimensional,
or stochastic. As scientific questions become increasingly complex—often involving emergent
behaviors, intricate feedback mechanisms, or parameter spaces that are too large to explore exhaus-

tively—there is growing interest in whether aspects of this cycle can be delegated to machines.

Recent advances in artificial intelligence (Al) have introduced the possibility of automating compo-
nents of the scientific process. Machine learning models have been applied to analyze experimental
data (Reddy and Shojaee, 2025), infer physical laws (Cranmer et al., 2020), and accelerate simula-
tion (Sanchez-Gonzalez et al., 2020; Thuerey et al., 2021). In materials science, robotic platforms
now autonomously explore synthesis spaces using active learning (Burger et al., 2020; MacLeod
et al., 2020). In synthetic biology, real-time feedback systems have been developed to modu-
late gene circuits using optogenetic inputs (Grosenick, Marshel, and Deisseroth, 2015; Lugagne,
Sosa Carrillo, et al., 2017). These efforts suggest that the core loop of science—observe, model,

intervene—can be at least partially operationalized by Al systems.

Yet most existing systems focus on static optimization or fixed pipelines, automating isolated tasks
such as hyperparameter tuning in robotic chemists (Burger et al., 2020), candidate ranking in drug
discovery (Zhavoronkov et al., 2019), or classification of microscopy images (Christiansen et al.,
2018). These systems typically operate in an open-loop fashion, where model training and decision-
making are decoupled from experimental feedback. For instance, active learning frameworks often
rely on batch retraining between experimental rounds rather than updating models online (MacLeod
etal., 2020; Hése, Roch, and Aspuru-Guzik, 2019); similarly, many optogenetic control systems use
precomputed stimulation protocols or simple rule-based feedback rather than adaptively modulating
input based on real-time cellular response (Grosenick, Marshel, and Deisseroth, 2015; Lugagne,

Sosa Carrillo, et al., 2017). As a result, these approaches lack the closed-loop adaptivity required

3

for genuine scientific reasoning. A true scientific agent would need to build internal models of
the system it interacts with, refine them through continuous observation, and use them to guide
interventions in real time under uncertainty—selecting actions not only for outcome optimization

but also to test hypotheses, reduce ambiguity, and explore the structure of the system itself.

1.2 Two Foundational Challenges in Scientific Autonomy

For intelligent agents to truly contribute to science—not just as tools, but as autonomous partici-
pants helping steer the research—they need to go far beyond simply making inferences. Two such
demands are especially critical. First, agents must be able to interact in real time with physical
systems that are dynamic, noisy, and often only partially observed. Second, they must be capable
of generalizing across tasks, adapting internal models and strategies to new goals, contexts, or
experimental regimes without manual reprogramming. These challenges are not incidental—they
reflect the essential character of scientific systems. Scientific environments rarely conform to fixed
protocols or stationary distributions. Instead, they shift as questions evolve, measurements accumu-
late, and interventions perturb the system. The agent’s role is not just to interpret data or optimize
outcomes, but to operate under uncertainty, update its understanding on the fly, and choose actions

that are informative, effective, and adaptable.

A. Real-Time Interaction with Dynamical Systems

Many experimental systems evolve on timescales where sensing, inference, and control must occur
continuously and with minimal delay. For instance, adaptive optics in microscopy require real-time
feedback to maintain focus in biological tissues (Hése, Roch, and Aspuru-Guzik, 2019), while brain-
computer interfaces use streaming neural signals to drive motor output with sub-second latency
(Booth, 2014). These domains demand not just prediction, but online control policies capable
of adapting to system dynamics as they unfold. Real-time experimental agents must be able to
filter noisy, partial observations, infer latent states, and intervene before the system drifts beyond
recoverable regimes. Recent examples include adaptive electrophysiological stimulation systems

that maintain neural responses under fluctuating noise (Pandarinath et al., 2017), and closed-loop

4

platforms for stabilizing synthetic gene circuits (Milias-Argeitis et al., 2016). These applications
illustrate the critical need for fast, adaptive control mechanisms that go beyond offline retraining or

open-loop optimization.

B. Generalization Across Tasks and Experimental Contexts

Agents operating in scientific domains often face not a single task, but a continuum of related
tasks that differ in system parameters, control goals, or environmental context. For example, in
multi-robot manipulation, control policies that succeed on one object geometry may fail entirely on
another without explicit retraining (James et al., 2022). Similarly, in automated experimentation,
changes in chemical composition or temperature regimes often invalidate previously learned models

(Coley et al., 2019).

Approaches based on meta-learning and unsupervised task inference have shown promise in
addressing these issues (Zintgraf et al., 2019), but significant challenges remain in transferring
structure across systems. Large-scale generalist models like Gato (Reed et al., 2022) and PaLLM-
E (Driess et al., 2023) highlight architectural pathways for integrating perceptual, language, and
control modalities across domains, yet these models remain far from achieving robust generalization

in settings where feedback, latency, and experimental stakes are high.

These limitations become even more pronounced when agents are expected to not only adapt,
but do so in ways that are interpretable, efficient, and minimally disruptive to ongoing work.
Meeting these demands requires abilities like composing behaviors from modular building blocks,
identifying tasks on the fly, and adjusting exploration strategies based on uncertainty. Yet, these
capabilities remain largely out of reach for current reinforcement learning systems, highlighting the

gap between promising architectures and real-world generalization.

1.3 Organization of the thesis
This thesis is organized into two main parts, each addressing a foundational challenge in the devel-

opment of intelligent systems for scientific discovery. The first part focuses on enabling real-time,

5
adaptive control of dynamic experimental systems, specifically reconstituted microtubule—kinesin
networks in which kinesin motors are activated by light-induced dimerization, allowing precise
spatiotemporal regulation of activity. This control is implemented through a structured hierarchy
of machine learning models designed to address increasingly complex tasks. The hierarchy begins
with models that predict the system’s response to static, time-invariant optical inputs and support
inverse design, enabling the selection of input patterns that produce desired structural outcomes.
It then advances to dynamic models that simulate system trajectories in response to arbitrary,
time-varying light inputs by encoding behavior in a learned latent space. Finally, goal-directed,
closed-loop control is achieved through reinforcement learning agents trained in simulation and
deployed across 96 parallel experiments, autonomously discovering optical control policies to ac-
complish high-level transport objectives. This progression—from static prediction and inverse
design, to dynamic modeling, to autonomous control—demonstrates how Al systems can be sys-
tematically developed to manipulate complex physical systems in an automated, scalable, and

increasingly generalizable manner.

The second part focuses on the challenge of generalization in reinforcement learning. By analyz-
ing the geometry of policy weight space, it is shown that agents trained on distinct tasks naturally
form structured, segregated regions that encode both task identity and strategic variability. Build-
ing on this insight, a hypernetwork is introduced that enables smooth interpolation across these
regions, generating agents capable of tunable behavior across multiple tasks without retraining.
When combined with a meta-controller, this architecture allows for real-time modulation of strat-
egy—ranging from conservative to risk-seeking—demonstrating flexibility and adaptability across
13 Atari games. Together, these two parts illustrate how Al can both autonomously control physical
experiments and generalize cognitive strategies, laying groundwork for future systems that integrate

automation, learning, and decision-making across physical and computational domains.

Chapter 2

MASSIVELY PARALLEL AI-DRIVEN CLOSED-LOOP OPTICAL
CONTROL OF MICROTUBULE NETWORKS

ABSTRACT

Intracellular transport relies on microtubules and kinesin motors, which operate effectively at the
micron scale with a precision that exceeds current technological capabilities. These cytoskele-
tal systems exhibit complex, non-equilibrium dynamics that are difficult to model, predict, and
externally control—limiting their potential for use in programmable materials and microscale ma-
nipulation. A central challenge has been developing scalable methods for real-time prediction and
control of self-organizing microtubule networks in reconstituted systems. Here, we present a high-
throughput optical platform and a family of neural network models that enable accurate prediction,
optimization, and closed-loop control of microtubule network self-organization driven by light-
activated kinesin motors. On the modeling side, our TraPhIC (Trajectory in Phase Space Inference
via Compression) framework enables precise prediction and inverse design of light patterns by
modeling experimental dynamics as trajectories in a learned latent space. For real-time control, we
deploy ~100 trained Deep Q-learning agents in parallel, each using real-time feedback to control
local microtubule network dynamics toward user-defined goals. Direct transfer of simulation-
trained agents to physical experiments resulted in successful control of over 90% of microtubule
networks, demonstrating the robustness and scalability of our approach. This integrated platform
and modeling framework establishes a powerful paradigm for predictive and autonomous control
of active matter systems, marking a significant step toward intelligent, self-organizing materials

with programmable functionalities.

2.1 Introduction

Cells exert remarkable spatiotemporal control over their internal architecture through dynamic
cytoskeletal networks composed of filaments and motor proteins. These adaptive structures en-
able complex functions like intracellular transport, division, and morphogenesis (Shelley, 2016).
Inspired by this complexity, reconstituted microtubule-kinesin systems have emerged as platforms
for engineering active materials, where molecular components consume energy to produce motion
and organization (Stein et al., 2021; Suzuki et al., 2017). However, unlike cells, these systems lack

endogenous regulation, making real-time external control challenging.

Recent experimental advances have enabled the regulation of activity across a range of engineered
systems—including bacteria, colloids, and reconstituted cytoskeletal networks. While the specifics
vary, these platforms commonly use optical methods to modulate activity with spatial and temporal
precision (Ross et al., 2019; R. Zhang et al., 2021; Volpe et al., 2011; Buttinoni et al., 2012; Palacci
et al., 2013). Light-responsive motors offer spatiotemporal control over microtubule dynamics
through patterned illumination, suggesting a route to programmable self-organization (Ross et al.,
2019). Yet, microtubule network responses remain unpredictable due to nonlinear interactions,
emergent collective behaviors, and sensitivity to initial conditions, complicating the design of
control strategies in reconstituted systems (Wu et al., 2017). This challenge is worsened by the
current use of preprogrammed, open-loop illumination protocols that lack the adaptive feedback
mechanisms found in living cells. Overcoming these limitations requires the development of

predictive models, real-time feedback control, and scalable automation.

Recent advances in artificial intelligence (Al), particularly deep and reinforcement learning (RL),
offer tools for real-time control of biological systems (Floreano and Mattiussi, 2008). In synthetic
biology, deep learning has enabled optogenetic control of gene expression in thousands of cells
(Lugagne, Blassick, and Dunlop, 2024), while RL frameworks have begun to manipulate neural
dynamics in culture and in vivo (Pohlmeyer et al., 2014; Wiilfing et al., 2019). Despite this
progress, closed-loop control of self-organizing physical matter—where complex spatiotemporal

patterns emerge from local interactions—remains largely unexplored (Falk et al., 2021).

9

We address this challenge by developing a general framework combining deep learning, RL, and
high-throughput experimentation for closed-loop control of cytoskeletal active matter. We intro-
duce two predictive deep learning models—Linear and Flexible variants of Trajectory in Phase
Space Inference via Compression (TraPhIC)—that encode microtubule morphology as trajectories
in a learned phase space, enabling prediction and inverse design under static and dynamic illumi-
nation. To achieve closed-loop control, we deploy deep Q-learning agents trained in simulation to
dynamically guide microtubule network evolution via microscopy feedback. Unlike fixed-pattern
approaches, our agents adapt actions based on continuous system observation. Finally, we scale

this to ~100 parallel experiments, all autonomously guided by a shared pretrained agent.

This work establishes a new paradigm for adaptive control of active matter, combining optical
precision with Al flexibility. By enabling real-time intervention in self-organizing systems, our
approach opens pathways to programmable living materials, intelligent biomaterials, and control

of non-equilibrium systems.

2.2 Results
Linear TraPhIC Predicts and Optimizes Microtubule Network Geometry in Static Light via
Linear Latent Paths.

To model the temporal evolution of microtubule networks under constant light, we first developed
the Linear Trajectory in Phase Space Inference via Compression (Linear TraPhIC) model. Trained
on simulation data, Linear TraPhIC encodes the initial configuration of a microtubule network
into a compact latent representation zg = E(Xy), where E(+) is the state encoder. Future network
states are predicted by translating this point along a straight-line trajectory in latent space using the
linear phase-space propagator ®j;,, which is a neural network that maps a scalar time shift Az to a

displacement vector:

Xar = D(z0 + @iin(A1)) (2.1)

where D(-) is the state decoder. This formulation enables temporally coherent and spatially

10
accurate predictions at arbitrary future timepoints from a single input frame. By modeling time as
a geometric shift in phase space, Linear TraPhIC compresses microtubule network contraction into

a low-dimensional, interpretable latent path (Fig. 2.1A).

11

Aster Aster
123 LA At 0 100 Area 100 Area

il _Euu\<m;
_ cEEE| a
-
N gL«

GT Pred Input

E D

put

—>‘ Encoder ‘—b‘ Decoder ‘—P
A

Pred
C D NN input NN output Bending loss
Uniform scaling SeXo)
Optimal BT T e P e P PO PP PP PER e > -
P Experimental ' :
%: / condition space — Xy v b
o
§- P v Upsampling E—» Encoder —Ap Decoder : I——‘II:::I r
o Y AN ; :
Experimental condition + d
Xﬁnal
E F
’I’] 0.25 0.50 1.00 2.00 4.00 32.00
20000 + ..
& ﬂ [gﬂ
2]
E@@Iii S 15000 o ﬁ@
(=2}
c
£
& 10000
: I B [¥ >
E E m I I] I o]: [E
0 .

Figure 2.1: Simulation-trained Linear TraPhIC accurately predicts microtubule network
contraction and optimizes light inputs for experimentally validated network bending. A.
Top: Time-lapse microscopy images of microtubule contraction and matching simulation frames.
Bottom: Linear TraPhIC schematic encoding initial state X, shifting by Az in latent space, and
decoding to Xo.a;. B. Left: 3x3 grids comparing ground truth (GT) and predicted (Pred) images at
At = 0,50, 100 across experiments. Right: Plots of microtubule network area over time (GT: gray,
Pred: blue). C. Schematic of optimization mapping experimental conditions to physical properties.
D. Framework with a 4x4 light grid upsampled, input to a model predicting Xg,1, and compared to
a scaled target shape via bending loss. E. Gradient ascent runs optimizing bending loss at varying
learning rates (17). Rows show independent experiments; columns show progression. F. Left: Bar
plot of bending loss across conditions (error bars: std. dev.). Right: Microscopy images (top) and
segmented masks with target shapes (bottom) for different experiments.

12

We evaluated the predictive performance of Linear TraPhIC on test simulations not seen during
training, using both qualitative and quantitative benchmarks. As a first check, we visualized
predictions at time shifts Az = 0, 50, 100 from a single initial frame X,. These comparisons showed
that the model accurately captured the spatial contraction dynamics of microtubule networks across
diverse, nontrivial geometries (Fig. 2.1B, left). To quantify perceptual fidelity, we computed
the Feature Similarity Index (FSIM) across input-target pairs (X;, A7) from the test set. The
model achieved a mean FSIM of 0.92 + 0.03, indicating high structural correspondence with the
ground truth images. Finally, to assess predictive accuracy using physically relevant metrics,
we predicted full contraction dynamics by varying Ar € [0, 169] from each initial frame X,
and compared the resulting microtubule network area dynamics to ground truth. Predicted area
evolution closely followed the experimental measurements, with a mean absolute percentage error

(MAPE) of 6.8 + 1.2% across the test set (Fig. 2.1B, right).

We leveraged the differentiable structure of the Linear TraPhIC model to formulate an inverse
design strategy for generating microtubule networks with targeted deformation profiles. We define
a constrained experimental space consisting of a 4 X 4 light activation grid, which is transformed
through upsampling to produce a spatial input compatible with the model (Fig. 2.1C-D). Using

this representation, we defined a bending loss that quantifies deviation from uniform contraction:

Lbena = min MSE(S(Xo), Xar), (2.2)

where Sg(-) applies isotropic scaling and translation, and Xy, is the predicted final state from
Linear TraPhIC. This loss reflects how much the final microtubule network deviates from a uni-
formly contracted version of its initial shape, thereby serving as a proxy for bending or asymmetry.
Gradient-based optimization was performed over the 4x4 activation pattern space, propagating gra-
dients through the full model to identify input conditions that maximized non-uniform microtubule

network deformation.

Optimization consistently converged to distinct geometric motifs that induced pronounced bending

(Fig. 2.1E). Experimental validation confirmed these predictions: optimized patterns produced

13
significantly higher bending loss values (22500 + 3500) than control patterns (4400 + 520, p <
0.001), corresponding to a 5.1-fold increase in targeted deformation (Fig. 2.1F). These results
demonstrate that Linear TraPhIC can serve not only as a predictive model but also as a differentiable

engine for the inverse design of programmable cytoskeletal architectures.

Flexible TraPhIC Predicts Microtubule Network Dynamics in Static and Dynamic Light via
Latent Trajectories of Stimulus History

Building on the latent phase space trajectory framework introduced in Linear TraPhIC, we devel-
oped the Flexible Trajectory in Phase Space Inference via Compression (Flexible TraPhIC) model to
capture microtubule network dynamics under spatially and temporally varying light. While Linear
TraPhIC relies on a fixed latent trajectory parameterized only by time, this assumption constrains
it to static illumination settings. Flexible TraPhIC generalizes the approach by replacing the linear
shift with a stimulus-dependent latent path, enabling accurate predictions of microtubule network

evolution in response to dynamic illumination sequences.

The model constructs a latent trajectory from the history of external light inputs. At each time step

t, we compute a temporally weighted light pattern, A;, by combining prior stimuli {Aq, As, ..., A;}

Input o

GT Pred Input GT Pred

Input

GT Pred

Input o

GT Pred

Input

GT Pred

Input

GT Pred

Video image sequence
1 2 3

o
O, 2

in latent space
Unique

O-
trajectories

1 t2 3

Aster
trajectory

Programmed light
2 13
Light encoder

Trajectories

image

Recover
video images

80s 200s 380s

80s 200s 380s

—
CEN
w2
C e
TER

£

T
AL DN
AN

—— GT O Start ©

Pred O End pm

Aster
0Os 24s 48s Area Os 24s 48s
b o] - ~0n
o] e -
B - EDn

NS AN
Time s

14

B —— Data encoding ——— Light encoding
7.00
~ 2.33 4 B B B
<
3]
B R R 72 R IR/
—7.00 T T T T T T T T T T T T
7.00
~ 2.33 A g \\JL. .]
<
3]
& _2.33 ~ . . ﬁ .
—7.00 T T T T T T T T T T T T
;\b ;o S \Q}\Q ;I) Q o v\Q/\Q /‘0 S v '\Q/NQ ;IJ S © '\Q
PCA 1 PCA 1 PCA 1 PCA 1
Aster Aster Aster
trajectory 80s 200s 380s trajectory 80s 200s 380s trajectory
199
_
- r\ - - 133
€
=5
L - - 66
T T T T T T T LI 0
QA b >N NEONK Y ~
N ¥ wS
- 133 bm pm
§_ Aster trajectory vs current light position
- 66 104
et 320
— 0 Pred - 78
199 Light
B 1S
- 133 160 52 5
g. 320
- 66 160 - 26
240 240
T T 0 T T T 0
SA b >N S © S))
MR E A N AS
um um
Aster Aster Aster
Area Os 24s 48s Area
B - 0.012
€
- - 0.006 E
—— 0
0.018
B - 0.012
€
B - 0.006 E
—r—T — T 0
- 0.012
o
T 1 1 1 1 1 1 T 0
RN RN
Time s Time s

Figure 2.2

15

Figure 2.2: Flexible TraPhIC accurately predicts microtubule network trajectories under
dynamic light and maintains performance on contraction under static patterns in real exper-
iments. A. Schematic of Flexible TraPhIC embedding microscopy video and light sequences into
latent space, with a decoder reconstructing the video. B. PCA projection of latent trajectories from
experimental data (dark curves) and light inputs (red curves). C. Left: 3x3 grids for dynamic light
experiments. Top row: light sequence. Below: GT and Pred images at 80s, 200s, 380s. Right: GT
and Pred trajectories with inset showing moving microtubule network centroid and light positions
over time. D. Left: 3x3 grids for static light experiments. Top row: light pattern. Below: GT and

Pred images at Os, 24s, 48s. Right: Plots of microtubule network area over time (GT and Pred).

using an exponential decay that emphasizes recent inputs. This representation is passed through the
light-conditioned phase-space propagator @y (+), a neural network trained to map light sequences
to latent states that approximate those produced by the state encoder E (X;). The model is optimized
to satisfy:

(I)light(/_\t) — E(X), (2.3)

and the predicted configuration is generated by the decoder D(-) as:
X; = D (Pign(Ay)) - (2.4)

To assess consistency in the learned latent dynamics, we compared trajectories produced by the
light input sequence to those derived from experimental image data. For each experiment—defined
by a distinct dynamic light pattern—we extracted latent paths from both the encoder E(X;) and
the propagator CIDtht(/_\t) across all timepoints. Projecting both into 2D space using Principal
Component Analysis (PCA) revealed strong alignment across experiments (Pearson correlation:
0.92 for PCI1, 0.89 for PC2; Fig. 2.2B), indicating that Flexible TraPhIC learns an internal

representation that evolves coherently in response to external light stimuli.

16
To test whether this latent coherence translates into physically accurate predictions, we next
evaluated performance of Flexible TraPhIC on experimental data of microtubule dynamics
produced by dynamic light patterns. To begin, we examined representative predictions at
80s, 200s, and 380s across multiple experiments. The model faithfully reproduced both the
displacement of microtubule networks and the evolving density of recruited material across a
wide range of light stimulus sequences, resulting in close qualitative agreement with experimental
observations (Fig. 2.2C, left). We quantified this visual correspondence using the Feature
Similarity Index (FSIM), obtaining an average score of 0.853 across test frames, indicating
strong perceptual alignment with ground truth. To check the model’s physical accuracy, we
tracked the microtubule network centroid over time. Predicted motion paths remained tightly
aligned with those observed experimentally, capturing both directionality and trajectory shape
(Fig. 2.2C, right). The median frame-to-frame displacement error between predicted and ground
truth centroids was 8.9 jim, representing 5.2% of the average total path length (171 pm). Notably,
the inset in Fig. 2.2C (bottom right) highlights not only this alignment but also reveals that
both predicted and actual microtubule network motion exhibit a delayed, nonlinear response to

the light stimulus trajectory — a complex behavior that Flexible TraPhIC captures with high fidelity.

To demonstrate that Flexible TraPhIC generalizes the capabilities of Linear TraPhIC, we evaluated
its performance on a second dataset consisting of microtubule networks subjected to static light
patterns (Fig. 2.2D). This static-input dataset serves as a benchmark for comparing Flexible and
Linear TraPhIC on real experimental data. Flexible TraPhIC successfully captured the contraction
dynamics of microtubule networks, preserving spatial features with high perceptual fidelity (FSIM
= 0.90 + 0.04, Fig. 2.2D, left). The predicted area dynamics closely matched ground truth
experimental data, with a mean absolute percentage error (MAPE) of 7.1 + 1.5% (Fig. 2.2D, right).
These results confirm that Flexible TraPhIC maintains the predictive precision of the linear model

while enabling accurate modeling under both static and dynamic illumination.

17

Together, these results demonstrate that Flexible TraPhIC generalizes the latent trajectory modeling
framework to support prediction under both dynamic and static light conditions. By mapping
light stimulation sequences to phase space representations, the model captures both motion and
morphological changes in light-inducible microtubule networks, enabling accurate prediction of

experimental dynamics in complex, time-varying environments.

A B

Image
Light-activated Solution ~200 Single analysis

‘ experiments

& / Y \ Light
xy stage A § @ beam
[. - control control
Microtubules 4,’) Indiv!dual !_ED light Deci_sion
Tiles experiment input - 'making
D

906

661

415

Reward

169

76 1

c

Figure 2.3: Deep Q-Network agents transfer bead-capturing strategies from simulation to real
microtubule network control. A. Diagram of light-induced microtubule organization via kinesin
dimerization (blue: light stimulus). B. High-throughput platform with a chip under a microscope,
showing parallel experiments divided into tiles. C. Simulated environment with a light stimulus
navigating to capture objects (red). D. Plot of reward progression over training episodes in the
simulation. E. Sequential frames of a real microtubule network experiment. Blue: light stimulus;
red: target objects.

T T T T T
0 66 132 198 265

Episodes

18
Deep Q-Learning Enables Active Control of Microtubule Networks for Target Object Capture.
Although Flexible TraPhIC represents a significant advance in our ability to predict microtubule
responses across diverse light conditions, its passive modeling approach does not enable direct
manipulation of these networks. To bridge this gap and shift from prediction to real-time optical
control, we trained Deep Q-Learning agents to actively guide microtubule networks toward specific

goals, such as capturing target objects.

We first trained agents in a custom Gym-based simulation environment that mimics the local
dynamics of light-responsive microtubule systems (Fig. 2.3C). Within this environment, the agent
learned to move a circular light stimulus to capture target objects while avoiding obstacles such
as material depletion zones. Deep Q-Network (DQN) training enabled convergence to effective
strategies, with simulated agents capturing all targets in over 92% of training episodes. Reward
values improved from -76 at initialization to +906 after 265 episodes (Fig. 2.3D), reflecting the

emergence of efficient and adaptive behavior.

To evaluate whether this simulated policy could generalize to real-world systems, we deployed
a trained agent into the experimental control pipeline (Fig. 2.3A-B) and tested it on a single
microtubule network. The agent received real-time microscopy input and output discrete movement
actions to guide a 30 pm light stimulus every 8 seconds. In this trial, the microtubule network
formed within 40 seconds of initial light activation and exhibited smooth, directed motion. The four
predefined targets, located at varying distances up to 150 pm from the initial network centroid, were
sequentially approached within 400 seconds, during which the agent made 50 discrete decisions.
The network centroid traveled a total of 138 nm along in its path to the objects. This result demon-

strates that a RL policy trained entirely in simulation can transfer to the physical domain (Fig. 2.3E).

19
Massively Parallel Deployment of AI Control Agents Demonstrates Scalable Manipulation of
Active Matter Systems.
Having validated real-time control with a single agent, we next scaled our approach to demonstrate
distributed autonomous manipulation of active matter across hundreds of simultaneous experi-
ments. Leveraging our high-throughput imaging platform and closed-loop light control system, we
deployed 96 trained Deep Q-Network (DQN) agents in parallel—one per tile—each independently

controlling a localized light stimulus to guide the organization of a microtubule network (Fig. 2.4).

Using the same 30 pm circular light stimulus and 8-second decision interval as in the single-agent
trial, each agent operated autonomously in response to real-time visual input. All agents shared a
common pretrained policy and required no additional fine-tuning or inter-agent coordination. Over
a 10-minute trial, individual agents completed 50-80 discrete actions, collectively constituting

hundreds of simultaneous closed-loop control episodes.

To assess large-scale efficacy, we defined a successful trial as one in which the microtubule
network maintains a single connected structure throughout its trajectory toward the targets, since
object collection requires the material to remain localized. Across 96 experiments, 89 (92.7%)
met this criterion. In the remaining trials, failures typically occurred when the agent moved the
light stimulus too quickly, triggering the formation of a new microtubule network and leaving the
original structure behind. Visual inspection of representative tiles (Fig. 2.4) revealed heterogeneity
in agent behavior, with varied light trajectories that effectively directed cohesive microtubule

networks toward their targets over extended distances.

These results demonstrate that RL policies trained in simulation can generalize across hundreds
of independent physical systems, enabling massively parallel and autonomous control of dynamic
biological materials. This approach establishes a scalable framework for intelligent manipulation

of active matter, combining distributed decision-making with real-time feedback to drive self-

organization at scale.

1st row

= ol T o Y P i ol o 0 R
- AR EENET OSBRSS RTE S
~ I I I O I €0 S0 0 % N I N I I 55 5 O o
~ AR ERENEOEANONSNERRAEEZRE
2 L] L) [[l (o]) B [[l (S 8 (5] T L1 [(] Lt P (] [sl []
| O I O T 7 O R e
~ [0 [I I O G I S O O I 0 I I I S e
~HEEBENCGNEE0RNEREEC G NE B =W
2 ([[(U E] (A R [T 73 [d L] B LT B] 2 1B [[T (] D]
- 1 O Y T D D
- 1 I 5 S S 5 O i 5 o) I O
~AEENEENMAGRUAESSAGELARE D
=1 o A o e 1 e e 9
- e R = O I T % 5 P O
~- ARSI SR E AN T

~ AN AN AN MY CEENE

Figure 2.4: Deployment of Deep Q-Network control across hundreds of microtubule network
experiments demonstrates scalable RL for active microtubule systems. Experimental data from
the multi-agent pipeline. Bright regions show higher density of fluorescently labeled microtubules,
while blue shows the light stimulus. Each subpanel shows one row of 24 contiguous experiments
(eight rows per reaction). Within each subpanel, the top row shows the Al-controlled light path
(starting at the circle marker), followed by three time points (Os, 80s, 280s) showing the evolution
of microtubule networks.

21
2.3 Discussion
The ability to program active matter systems—both through principled design and real-time
manipulation—remains a fundamental challenge in synthetic biology and materials science
(Nguyen et al., 2018; Tang et al., 2021; A. P. Liu et al., 2022; Leech et al., 2025). Here, we
demonstrate a comprehensive framework that addresses this challenge through two complementary
approaches. First, we employed a data-driven predictive modeling to design experimental
conditions that achieve targeted microtubule network morphologies. Second, we leverage RL
approach for adaptive closed-loop control of network dynamics. These approaches enable both

optimal design and autonomous guidance of light-responsive cytoskeletal assemblies in vitro.

Our predictive modeling framework establishes a low-dimensional, data-driven phase space that
captures the essential dynamics of microtubule network evolution under light stimulation. By
encoding dynamic morphology as trajectories in latent space, our TraPhIC models enable accurate
prediction of future states under both static and dynamic illumination. This abstraction provides a
flexible framework for modeling complex, high-dimensional biological systems without requiring
explicit physical models (Qu et al., 2021; Ross et al., 2019). Crucially, the differentiable nature of
these models enables inverse design—an approach we demonstrated through the optimization of
light patterns that produce specific targeted deformations in microtubule networks. This contributes
to the broader advancement of inverse design methodologies in materials and biological systems,
representing a data-driven alternative to traditional trial-and-error strategies (Sherman et al., 2020;

H. Liu et al., 2023).

For real-time control, our RL approach enables autonomous manipulation of microtubule networks
toward specific goals. Simulation-trained Deep Q-Learning agents demonstrated remarkable
transfer capabilities, successfully controlling real microtubule networks without requiring
fine-tuning. The parallel deployment of nearly 100 agents highlights the scalability of this

approach, transforming cytoskeletal networks into programmable elements capable of responsive,

22

goal-directed behavior.

This dual approach, which uses prediction for design and RL for adaptive control, represents
a significant improvement from traditional optical patterning techniques. Unlike conventional
methods that rely on predefined or heuristic, open-loop illumination sequences (Ross et al., 2019;
Chennakesavalu et al., 2024; Cai et al., 2025), our framework offers both optimal design and
real-time adaptation. The predictive models enable principled pattern optimization before experi-
ments begin, while RL provides responsive, feedback-driven control during execution. Together,
they create an integrated platform for manipulating active matter systems with unprecedented

automation and scalability.

Our approach opens several promising avenues for research. These include: (1) exploring al-
ternative actuation mechanisms such as DNA-based switches, (2) adding different cytoskeletal
components like actin or diverse motor proteins, (3) incorporating physical priors into our predic-
tive models, (4) investigating model-based RL with TraPhIC as a world model, and (5) enabling

inter-agent coordination for collective behavior across multiple networks.

2.4 Conclusion

We present a comprehensive platform for the prediction, optimization, and closed-loop control
of microtubule networks using neural networks and RL. This work demonstrates that cytoskeletal
assemblies can be both optimally designed and actively manipulated in real-time, transforming
them from passive biomaterials into programmable, responsive systems. Through advances in both
optimal experimental design and real-time control, powered by artificial intelligence and high-
throughput experimentation, we establish a generalizable approach to programmable active matter.
This convergence of machine learning, biophysics, and automation offers a powerful foundation for
the development of intelligent microscale systems capable of self-organization, decision-making,

and purposeful behavior.

23
2.5 Methods
Experimental Platform for High-Throughput Optical Control of Microtubule Networks

Microtubule-Kinesin Preparation and Chip Setup

Preparation of Microtubule-Kinesin Solutions We constructed two light-responsive
Drosophila melanogaster K401 kinesin chimeras, K401-iLID and K401-micro (Addgene #122484,
#122485). K401-iLID was engineered by fusing an iLID domain with a C-terminal His tag to K401,
while K401-micro contained K401 inserted between an N-terminal His-MBP and micro domain;
MBP ensured microdomain functionality during expression and was later cleaved using TEV pro-
tease. Constructs were expressed in E. coli BL21(DE3)pLysS cells and induced with 1 mM IPTG
at 18°C for 16 hours. Cells were lysed and the supernatant was purified using Ni-NTA agarose
affinity chromatography. Eluted proteins were dialyzed and stored in imidazole-based buffer with
MgCl,, DTT, MgATP, and sucrose, flash frozen in liquid nitrogen, and stored at —80°C. For
microtubule polymerization, unlabeled and fluorescently labeled tubulin (20 mg/mL each) were
thawed, mixed, and polymerized in a GMP-cpp-based buffer system at 37°C. After ultracentrifu-
gation to remove aggregates, the supernatant containing microtubules was aliquoted and frozen.
For reactions, K401-iLID, K401-micro, and polymerized microtubules were combined in a final
buffer containing K-PIPES (pH 6.8), MgATP, DTT, glycerol, pluronic F-127, oxygen scavengers
(pyranose oxidase, glucose, catalase, Trolox), and ATP-recycling enzymes. Final concentrations
were 0.1 uM for each motor construct and 1.5-2.5 uM for tubulin. Reactions were prepared under
red-filtered light (Kodak Wratten No. 25) to prevent unintended photoactivation, with experiments

performed within 2 hours due to pH sensitivity.

Microfluidic Chip Design and Reaction Setup Glass slides and coverslips were cleaned via
sequential sonication in 2% Hellmanex, ethanol, and 0.1 M KOH, with DI water rinses between
steps, followed by HCI etching. Silanization was performed using a solution of ethanol, acetic
acid, and silane agent, after which slides were baked. A 2% acrylamide layer was polymerized

onto the surface using TEMED and ammonium persulfate, then slides were rinsed and dried.

24
Microtubules were immobilized onto flow-cell coverslips via surface adsorption using 0.01% poly-
L-lysine treatment. Fluorescence imaging was conducted to assess microtubule length distribution.
Images underwent normalization, thresholding, and morphological filtering to isolate individual
filaments. Overlapping filaments were resolved via angular filtering. Microfluidic reactions were
loaded into flow chambers immediately after mixing to preserve activity and pH, with all steps

performed under dark-room conditions to minimize photoactivation of iLID domains.

Microscope Setup

Hardware Configuration Our custom imaging system is based on a widefield epifluorescence
microscope (Nikon Ti-2) with two additional imaging modalities: pattern projection illumination
and LED-gated transmitted light. For the pattern projection system, we employed a programmable
Digital Light Processing (DLP) chip (EKB Technologies DLP LightCrafter™ E4500 MKII™
Fiber Couple) to project light patterns onto samples, using a fiber-coupled 470 nm LED (ThorLabs
M470L3) as the light source. We modified an epi-illumination attachment (Nikon T-FL) with two
entry ports to merge the projected pattern light beam with the standard fluorescence microscopy
light beam using a dichroic mirror (Semrock BLP01-488R-25). The system’s magnification was
calibrated to ensure full illumination of the camera sensor (FliR BFLY-U3-23S6M-C) by the
DLP chip. We developed a unified Python software framework that communicates with Micro-
Manager to automate pattern projection and stage movement, integrating Al agents for real-time
adaptive control. For the transmitted light, we replaced the standard white light brightfield source
(Nikon T-DH) with an electronically time-gated 660 nm LED (ThorLabs M660L4-C5), allowing
precise control over illumination. This modification aimed to minimize unwanted light-induced

dimerization during brightfield imaging, improving experimental control and reproducibility.

Closed-loop Light Stimulation Software Pipeline

System Initialization A unified Python software framework was developed to automate the

configuration and operation of the microscope, pattern projection system, and Al-driven light

25
control. The system initializes by configuring key microscope parameters, including multi-channel
imaging settings, exposure times, and multi-position acquisition with defined field-of-view (FOV)
spacing. During this stage, configuration files are dynamically generated and loaded into Micro-
Manager, ensuring seamless synchronization between the microscope, DLP projector, and Al-

driven adaptive light control.

Image Acquisition and Tiling Imaging is performed at eight positions spaced 1500 pm apart
along the X-axis. The system captures Cy5-labeled microtubules in the Cy5 channel (excitation:
650 nm, emission: 670 nm, exposure: 100 ms), while using 470 nm projection (exposure: 250 ms)
as the active stimulus. At the core of the framework, each field of view (FOV) is divided into a 3x4
grid of independent tiles to enable localized control of light stimuli. After each image acquisition,

the FOV is automatically divided into these tiles for individual processing.

AI Agent Control Each tile is modeled as an individual OpenAl Gym environment, where Al
agents control the projected light stimulus with a discrete action space of four possible movements:
up, down, left, and right. The agents move a circular light stimulus (30 pm diameter) in 10 pm
steps per action. The system extracts observations from the acquired images, encoding the relative

position of the light stimulus to the microtubule network to guide the agents’ decisions.

Projection Assembly Once all agents determine their actions, the resulting light patterns from all
tiles are merged into complete projections for each position, stacked into a 3D array, and loaded into
memory for the projector to use. This cycle of imaging, observation extraction, action selection,
and light projection ensures a continuous, real-time adaptive control mechanism for precise light
modulation across all experimental positions.

The following pseudocode outlines the general algorithm for initializing the system and executing

the main control loop:

26

Algorithm 1 General Pseudo-Code for Al-Driven Light Projection & Microscope Automation

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:

procedure INITIALIZESYSTEM

Set microscope_settings (channels, exposure_times, frame_count, interval)
Set multiposition_acquisition (FOV _list, spacing_between FOVs)
Set grid size (rows, columns)
Set movement rules (step_distance, light_radius)
Load AI model (pretrained neural network)
Initialize 3D _stack_multipos as empty array
for each position in FOV list do

Divide FOV into grid_of_tiles (based on grid_size)

for each tile in grid_of tiles do

Initialize independent_environment
Set light_stimulus_position (random initial coordinates)

end for

3D _stack_multipos[position] < CombineTiles(grid_of_tiles)
end for
SendToProjector(3D_stack _multipos) (Load initial projection set)

17: end procedure

18:

19: procedure MAINLOOP

20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:

while experiment_running do
for each position in FOV list do
Move stage_to_position
Project (3D _stack_multipos[position])
WaitFor new_image from microscope
if new_image_detected then
for each tile in grid_of_tiles do
Extract tile_observation (relative_position_to_microtubule net)
action < Al model.predict(tile_observation)
Update light_stimulus_position based on action
end for
3D _stack _multipos[position] +— CombineTiles(grid_of_tiles)
end if
end for
SendToProjector(3D_stack multipos)
end while

36: end procedure

27

Deep Learning Models for Microtubule Network Prediction

Filament Simulation

Pattern Generation and Domain Confinement The domain geometry is defined by a 16-
character binary string, representing a 4 X 4 grid where each digit (0 or 1) denotes an inactive or
active cell, respectively. This grid is upscaled into a binary mask of size 45 X 4s pixels, where s is a
positive integer specifying the pixel side length of each cell. The mask is constructed by mapping
each active cell (value 1) to an s X s pixel block assigned a value of 1, with inactive cells remaining 0.
Contour extraction is then applied to the active regions of the binary mask to generate a polygonal
geometry. This polygon delineates the spatial domain within which filaments are confined, and any

filaments initially positioned outside this region are excluded from the simulation.

Initialization of Filament Network The filament network is initialized with N filaments, uni-
formly distributed across a rectangular domain spanning [-W,/2, W, /2] x [-W, /2, W, /2], where
W, and W, are specified by the user. The initial filament count is N = round(pW,W,/2), where
p is the filament density. Filament lengths /; are sampled from a normal distribution with mean
(I) = &/+/p, where & is a scaling parameter, and standard deviation (/)/10. Orientations ¢, are
drawn uniformly from [0, 27). Each filament is represented by its center coordinates ¢; = (cy;, Cy,i),
length /;, and orientation ¢;, with endpoints computed as p;" = ¢; + %(cos ¢;, sin ¢;). After domain
confinement, the filament count and positions are adjusted by removing those with centers outside

the polygonal boundary.

Interaction Network and Laplacian Construction Filament interactions are determined by

computing pairwise Euclidean distances d;; between filament centers ¢; and ¢;. Connectivity is

determined by the adjusted distance d;; — l’;l" . if negative (indicating overlap within the length-
adjusted range), the filaments are connected (value 1); otherwise, they are not (value 0). This forms
a sparse symmetric adjacency matrix A, with self-interactions excluded. The matrix A is scaled by

an interaction probability p.e; € [0, 1], modulating elastic coupling strength. The graph Laplacian

28
L is constructed as L = D — A, where D is a diagonal matrix with D;; = j Aij, the number
of connections for filament i. The Laplacian governs elastic coupling of filament endpoints, with

forces proportional to relative displacements.

Stochastic Time Evolution The system evolves over a total time Ty with a time step At,
yielding round(7iime/At) steps. Filament positions ¢; and orientations ¢; are updated via an
overdamped Langevin equation, incorporating elastic forces, torques, and thermal noise. Elastic
coupling uses the minus-end positions p;’, assuming interactions are localized to one end. These

are collected as P~ = [p[, | I p]‘\,]T.

The net displacement of filament i’s end relative to its neighbors’ ends is:

= (LP)i= > (] —P)) (2.5)

JEN(D)

where N (i) = {j | A;; = 1} is the neighbor set of filament i.

Elastic forces are given by Hooke’s law with rest length /;eq:
Fi = —ki(t) (Ir; = lrestDii) T, (2.6)

where t; = r;/|r;|, k;(t) = a;(t)KLink, and a;(¢) ~ Bernoulli(k;(¢)) is a stochastic activation factor.

The activation probability is:
k(1) = (1= /) [14 (pae = DH(ex)] 2.7)

with Tjipx = Tiime/ 10 as the linking timescale and H(-) the Heaviside step function.
Torques driving orientational alignment are:
7 =-sin((Lg)), where (Lg)i=) (¢i-). (2.8)
JEN (i)
Filament motion is subject to anisotropic drag due to their elongated shape. To model this, we

define a diagonal drag tensor I' = diag(y.,y)) in the filament body frame, where diag(a, b)

29

denotes a diagonal matrix with entries a and b on the main diagonal. The drag coefficient along the
filament’s axis is | = y and perpendicular to itis y, = 'yﬂl—;'v, with vy a baseline drag coeflicient and
w the filament diameter. Transforming this tensor into the lab frame via a similarity transformation
using the rotation matrix R(¢;)TR(¢;) T, the effective drag coefficients in the x and y directions for

filament 7 are:

L L
Yai =7 |cos? ¢; + — sin’ ¢,-) . Vyi=Y (sin2 ¢i + — cos® ¢; (2.9)
Tw w

Translational velocities follow overdamped Langevin dynamics:
vi=v; Fi+n, (2.10)

where y; = diag(y,,, vy,i), and n; ~ Norm(0, Tiempl) is thermal noise, with I as the 2x2 identity
matrix and Tiemp as temperature. Angular velocity is:

T

w; =
I;

+ g, (2.11)

with I; = yl;/u (where u is a constant) and 174; ~ Norm(0, Tiemp) scaled by 27/180 to radians.

Updates use Euler integration:

C; < ¢ + VAL,
2.12)

¢i «— ¢i + (,l)lAt
L-PSTE on Simulation Data

Dataset Generation and Processing The Linear Phase Space Trajectory Encoder (L-PSTE)
model was trained using data generated from our filament simulation framework described in
Section 2.5, with simulation parameters summarized in Table 2.1. We started with all 2'® possible

16-character binary strings, each representing a 4x4 grid configuration where "1" indicates an

30
active pixel and "0" an inactive one. From these, we kept only the 11,506 patterns that form a single
connected region under 4-connectivity—that is, every active pixel must be adjacent to at least one
other active pixel via a shared horizontal or vertical edge. After eliminating symmetric equivalents
under the dihedral group D4, we obtained 1,524 distinct patterns. Each of these patterns served as
an initial geometry for the filament simulation, which generated one video per pattern, consisting of
170 grayscale frames of size 397x397 pixels. These frames captured the contraction dynamics of
microtubule networks under static light condition over time. These frames were resized to 112x112
pixels to match the model’s input dimensions, preserving the network structure while reducing
computational requirements. The dataset was split at the video level into training (90%) and test
(10%) sets, ensuring that all frames from a given simulation pattern remained together in either the

training or test set.

Description Variable Code Variable Value Notes

Pattern Generation and Domain Confinement

s (pixel side length) px_cell_side 7 Size of each cell in the binary mask

Initialization of Filament Network

W, (domain width) Lx 40 x-extent of the rectangular domain
Wy, (domain height) Ly 40 y-extent of the rectangular domain
p (filament density) densl 50 Base density of filaments

¢ (length scaling) X1 5 Scales mean filament length

Interaction Network and Laplacian Construction

Pact (interaction probability) linkact 1 Fully active elastic coupling

Stochastic Time Evolution

Ttime (total time) T_tot 170 Total simulation duration
At (time step) dt 0.1 Euler integration step size
lrest (rest length) 1_rest 0.05 Equilibrium distance in Hooke’s law
K1 ink (spring constant) K_Link 10 Base elastic coupling strength
v (drag coefficient) gamma 200 Baseline drag for filament motion
w (filament diameter) diam 1 Diameter affecting drag anisotropy
Tiemp (temperature) Temp 0.1 Scales thermal noise

Table 2.1: Simulation parameters used for the filament-based microtubule network model.

31
Model Development and Training The L-PSTE model is designed to predict future states of
microtubule network dynamics by encoding microtubule network states into a latent space and
modeling their temporal evolution as linear paths in that space. The architecture is made of three
submodules: a state encoder, a linear phase-space propagator, and a state decoder. Given an

e R112><112><1

input frame Xt(i) at time ¢ for the i-th simulation and a time difference A¢, the model

predicts the frame at time ¢ + Az, denoted X t(i)A e
The encoder E maps the input frame to a latent representation: zgi) =E (Xt(i)) € R, It consists of
three convolutional layers with 32, 64, and 128 filters, respectively (3x3 kernels, ReLU activation),
each followed by 2x2 max-pooling to reduce spatial dimensions, and a final dense layer with
ReLU activation to produce the 64-dimensional latent vector. The linear phase-space propagator
®y;, defines a linear path in the latent space by transforming the scalar time difference Af into a
direction vector: Atep = Dy (Ar) € R, using three dense layers (32, 256, and 64 units, all with
linear activation). The latent representation is then updated by moving along this path: zt(i) + Ato,
where Atg determines the distance proportional to Ar along the linear trajectory in the latent space.
The decoder D reconstructs the predicted frame: X l(i)A = D(z,(i) + Atg) € RUPI2XT Tt starts with
a dense layer expanding the 64-dimensional input to a 14x14x128 feature map, followed by four
transposed convolutional layers (128, 64, 32, and 1 filters, 3%X3 kernels, ReLU activation except for

the final sigmoid layer). Between these layers, 2x2 upsampling layers progressively map back to

the original spatial dimensions.

The training data was prepared by pairing input frames Xt(i) with target frames X t(i)A -

This pairing
process is based on a stochastic mini-batch strategy, shown in Algorithm ??, to efficiently capture
temporal dynamics for different initial patterns without exhaustively pairing every possible ¢ and At

across all simulations m. The model was trained to minimize the binary cross-entropy loss between

32

predicted and ground truth frames:
Locr(X, X) o= > [X(j, k) log (R(j,k)) + (1= X(j, k) log (1 = X(j, k))] (2.13)
Jok
Here, X (j, k) and X(j, k) € [0, 1] represent the ground truth and predicted pixel values at position
(7, k). Adam optimizer was used with learning rate set to 1074, B1=0.9,6,=0.999, € = 1077, and
amsgrad = False, and training proceeded for 50 epochs, with each epoch sampling 50 random

mini-batches of size 256.

Algorithm 2 Stochastic Mini-Batch Loss Calculation for L-PSTE

1: Arguments: B (batch size), Tiime (total time steps), Atmax (max time difference), m (number
of simulations)

2: function STOCHASTICBATCHLOSS(B, Ttime; Atmax, M) > Loss over random mini-batch
3 Lpateh < 0 > Total batch loss
4 for b=1to B do > Iterate over batch
5: i~ U{l,m} > Uniformly random simulation index
6 t ~U{1, Tiime} > Uniformly random initial time
7 trarget ~ U{t, min(t + Atmax, Ttime) } > Uniformly random target time
8 At tiarget — t > Time difference
9 X « Retrievelmage(i, t) > Input frame
10: Xt(Q Az < Retrievelmage(s, trarget) > Target frame
11: zt(i) — E(Xt(i)) > Latent encoding
12: Aty + Py (Al) > Latent time propagation
13: Xt(i)m — D(zt(i) + Atg) > Predicted frame
14: Lbatch < Lbatch + LBCE (Xt(jr) Ag» X't(i) At) > Accumulate BCE loss
15: end for
16: Return E[,batch > Average batch loss

17: end function

33
Evaluation and Predictions We evaluated the L-PSTE model by its ability to predict the temporal

evolution of microtubule networks, using both perceptual and quantitative comparisons. For each

held-out simulation 7, the initial frame X(gi) e RI12x112x1

(@)

at time ¢ = 0 was passed through the state

encoder to obtain a latent representation z,” = E (X(gi)). Predicted frames were then generated for

0
all future time steps At € {0, 1,...,169} as:
X0 =D + da(Ar), 1=0 (2.14)
t+At 0 lin ’ ’ :

covering the full simulation trajectory of 170 steps. A subset of predicted frames at At € {0, 50, 100}

1

was visually compared to the corresponding ground truth frames th , providing qualitative as-

sessment of spatial contraction patterns over time.

To evaluate dynamics quantitatively, we computed the microtubule network area across all 170 time
steps for both predicted and ground truth frames. Frames were binarized using Otsu’s thresholding
method, small objects (fewer than 50 pixels) were removed, and morphological operations (dilation
followed by erosion using a disk of radius 2) were applied to refine the segmentation. The

microtubule network area at each time step was then calculated as:

AD(Ar) = Y UXL) (. k) > Oorsa), (2.15)
Jk

where I is the indicator function. This procedure yielded sequences of predicted areas {‘ﬂlg?e J(AD}

and ground truth areas {?{(i) (Ar)}, which were plotted over time to assess temporal agreement

true

between model predictions and true dynamics.

Perceptual accuracy was further quantified using the Feature Similarity Index (FSIM), which
measures similarity based on phase congruency and gradient magnitude. FSIM scores were
computed for held-out examples by randomly sampling pairs (¢, At) where ¢t € {0, ..., 169} and

At € {0,...,170 —t}, consistent with the training procedure. FSIM values range from 0 to 1, with

34

higher values indicating stronger perceptual similarity.

Finally, we assessed the accuracy of area dynamics using the Mean Absolute Percentage Error
(MAPE). For each test simulation i, the predicted and ground truth areas were computed as above,
and the MAPE was calculated as:

=t | Al (An) - AL (A1)

; 1 true
MAPE? = — " -
A=0 A (A1)

true

x 100, (2.16)

where T = 170. The mean MAPE across all test simulations provided a quantitative measure of

the model’s ability to track the temporal evolution of microtubule network areas.

G-PSTE on Experimental Data

Dataset Generation and Processing The General Phase Space Trajectory Encoder (G-PSTE)
was trained on experimental data collected from 96 parallel microtubule network experiments
using our high-throughput microscopy platform. Each imaging cycle captured 8 positions, with
12 microtubule networks imaged per position using a 3x4 tiling scheme. Fluorescence images of
Cy5-labeled microtubules were acquired at 16-bit depth and 2048x2048 resolution. Since light
stimulation only affected a 1470x2048 subregion, each microscopy image was cropped accordingly

and then divided into 12 tiles of size 490x512 pixels, each representing a distinct experiment.

Light stimulation data were extracted from the final projector input frame (800x1280 pixels). The
effective stimulation region occupied a centered 800x1116 area, with 82 pixels of black padding
on each side to meet projector input requirements. This stimulation region was divided into a 3x4
grid of 12 tiles, each measuring 267x279 pixels. These tiles defined the light patterns used to guide
microtubule network organization and were extracted to align precisely with the corresponding

microscopy recordings.

35
To accommodate experiments of varying duration, we identified the number of valid frames n; for
each experiment i by detecting periods with active light stimulation. Both microscopy and light
stimulation tiles were resized to 112x112 pixels. Microscopy tiles were normalized independently
using min-max scaling to the range [0, 1] to ensure compatibility with neural network training.
Light stimulation tiles were further processed to incorporate temporal context: given a light pattern
At(i) e R12X112 applied to tile i at time ¢, a temporally aggregated stimulation frame was computed

using an exponential discount factor ¢ = 0.95:

t
AP = A6 fort =01, m— 1 (2.17)
s=0
This transformation embedded memory of past stimuli while emphasizing more recent inputs.

Each resulting frame /_\t(i) was then normalized by its maximum pixel value to ensure consistent

dynamic range across time and experiments.

The 96 experiments were randomly split into training (84%) and test (16%) sets at the experiment

level, with all frames from a given experiment assigned to the same partition to prevent data leakage.

Model Development and Training The G-PSTE model is designed to predict microtubule
network configurations in response to temporally evolving sequences of spatial light inputs. For
each experiment i, the evolution of the network is observed as a trajectory of microscopy images
{Xl(i),Xéi), e ,X}i)}, where Xt(i) e RIZI2X1 - This trajectory is driven by a corresponding
sequence of binary light input patterns {AY), A;i), . ,A(Ti)}, with A" € RU2<112 - At each time

c RIIZXIIZ

point, a temporally aggregated input /_\t(i) is computed using an exponential discounting

scheme, embedding recent stimulation history into a single frame.

The model architecture consists of three submodules: a state encoder E, a light-driven latent

space propagator ®jgn, and a state decoder D. The encoder maps each microscopy frame to

a 64-dimensional latent vector, yielding a trajectory in latent space {zgi),zg), e ,z(Ti)}, where

36
zt(i) = E (Xt(i)) € R%. These latent vectors capture the internal state of the network across
time in a compact representation. In parallel, the propagator maps each aggregated light
input to a corresponding point in the same latent space, producing a light-induced trajectory
{wii), wéi) sy w;i)}, where lﬂt(i) = (I)light(/_\t(i)) € R%. This trajectory approximates the system’s

latent dynamics induced purely by the light input history.

The decoder transforms the light-driven latent trajectory back into predicted microscopy frames
{)?l(i),ffz(i), . ,X;i)}, where X',(i) = D(n,[/t(i)) e R This decoding process enables the
model to predict the observable evolution of the microtubule network directly from light input

sequences, without requiring explicit access to prior network states.

The encoder consists of three convolutional blocks with 32, 64, and 128 filters (all using 3 x 3
kernels and ReL.U activations), each followed by 2 X 2 max-pooling. The final feature map is
flattened and passed through a dense layer with 64 units. The propagator consists of seven Conv2D
layers: the first four with 64 filters, followed by two with 128 and one with 256 filters (each
with 3 X 3 kernels and ReLU activations), with 2 X 2 max-pooling after each layer. The output
is flattened and passed through a dense layer to produce a 64-dimensional vector. The decoder
begins with a dense layer expanding the latent vector to a 14 X 14 x 128 feature map, followed by
four transposed convolutional layers with 128, 64, 32, and 1 filters (all using 3 X 3 kernels). ReLU
activations are used throughout except in the final layer, which uses a sigmoid activation. 2 X 2
upsampling layers are applied between each transposed convolution to progressively restore the

spatial resolution.

Training was performed in two phases using mini-batches of experiments. For a batch B of size

|B|, the encoder and decoder were first trained together to reconstruct full microscopy trajectories.

37
The reconstruction loss L.con Was defined as the average binary cross-entropy:

T
1 N G .
-Erecon = E Z Z LBCE(Xz(l)’ Xt(l))’ with Xz(l) = D(E(Xt(l))) (218)
ieB t=1

After pretraining, the encoder and decoder were frozen, and the propagator was trained to align
the light-driven latent trajectory {wt(i)} with the encoder-derived trajectory {z,(i) }, using the batch-

averaged mean squared error:

040

2
‘ (2.19)

1 T
Lpath = E Z Z

i€B t=1

Both training phases used the Adam optimizer with a learning rate of 0.001, 8; = 0.9, 8> = 0.999,
e = 1077, and amsgrad = False. The autoencoder was trained for 50 epochs and the light

propagator for 15 epochs, each with a batch size of 256.

Evaluation and Predictions We assessed the G-PSTE model’s ability to predict microtubule
network dynamics under dynamic light stimulation using qualitative visualizations and quantitative
metrics. For each test experiment 7 in the held-out set (16% of 96 experiments), predictions were
generated by processing the light stimulation sequence {Al(i)}fial through the trained model to

produce a trajectory of predicted microscopy frames

where /_\,(i) is the temporally aggregated input computed as previously described, and n; is the

experiment-specific duration.

For qualitative assessment, we selected three representative time points (¢ = 80's, 200's, 380 s) from
each test experiment and visually compared the predicted frames Xl(i) to the corresponding ground
truth frames Xt(i), inspecting the spatial organization and morphology of moving microtubule

networks.

To quantitatively evaluate the model’s ability to capture the dynamics of moving microtubule

networks, we tracked their centroid positions in both predicted and ground truth frames. Network

38
centroids were localized using a two-step process. First, the center of mass was computed using
image moments:

i X6 (0 = Zixk- X (j. k)
S XK S X"

providing an initial estimate of the network centroid in pixel coordinates. This was refined by fitting

() =

(2.21)

a 2D Gaussian function to the intensity distribution around the estimated center, approximating the

spatial extent of the moving network. The Gaussian model is defined as:
g(x,y;0) = offset + aexp [~(a(x = x0)* +2b(x = x0) (y = yo) +c(y = y0))| . (222)

where ® = (offset, a, x9, yo, a, b, ¢) is the parameter vector:

offset: Background intensity,

a: Amplitude,

— (x0, y0): Centroid coordinates of the network,

a, b, c: Shape coeflicients, related to Gaussian widths o, o, and rotation angle 6 by:

cos?@ sin’@ sin28 sin?26 sin?@ cos?@
a= + — =— +——— c¢= + . (2.23)
202 2(73 402 4o 202 20'y2

The optimization problem for fitting this Gaussian to image data X (x,y) (e.g., X,(i) or)A(t(i)) is

formulated as:

©" =argmin »_ [X(j, k) - g(j,k: ©)]7, (2.24)
0 <
J.k
This nonlinear least-squares problem is solved using the Levenberg-Marquardt algorithm,
initialized with the center of mass (¥ (¢), 7 (¢)) and approximate values for ¢ (maximum
intensity minus minimum intensity) and offset (minimum intensity), with initial a, b, ¢ estimated

assuming isotropy (6 = 0,0y = oy). The resulting (x;, y;) provides the refined centroid of the

moving microtubule network.

39
Pixel coordinates were converted to physical units (um) using calibration factors: 1.70625
pm/pixel (x-axis) and 1.78286 pum/pixel (y-axis), derived from the original 2048x2048 resolu-
tion (0.39 um/pixel) and resizing to 112x112 (scaling factors 490/112=4.375and 512/112 =4.571).

The Euclidean displacement error (DE) was computed to assess positional accuracy of the network

centroids across time:

DED (1) =\ (x{ g 1) = 350, () + (5 (1) = Yo (D)2, (225)
and the median DE across all time steps and test experiments was calculated as:
MEDIAN-DE = median {DE(¢) | i=1,...,M, t=0,...,n;— 1}, (2.26)

where M is the number of test experiments. This metric quantifies the model’s precision in

predicting the movement of microtubule networks in response to light stimuli.

We also calculated the mean path length of the microtubule network trajectories to evaluate the
extent of motion. For each experiment i, the path length L was computed as the sum of Euclidean

distances between consecutive centroid positions:

ni—1
PathLen(/) =) VED @) =5 =12+ 600 -y - 1)), (2.27)
=1

and the mean path length across all test experiments was reported as % Zf.‘;[l PathLen(7).

This metric provides insight into the total displacement of the microtubule networks over time.

Perceptual similarity between predicted and ground truth frames was further quantified using the
Feature Similarity Index (FSIM). For each test experiment i, FSIM scores were computed across
all time steps:

FSIM® (1) = FSIM(X?, X)), (2.28)

40
ranging from O to 1, with higher values indicating greater similarity in phase congruency and

gradient magnitude. The mean FSIM across all experiments and time steps was reported as:

M ni-1
1 1~ -
- - § _ E (@)
MEAN-FSIM = 21 L4 FSIMY (1), (2.29)

providing a robust measure of perceptual fidelity.

Finally, to assess the alignment of latent space trajectories, we compared the encoder-derived latent
vectors zt(i) =F (Xt(i)) with the light-driven latent vectors wt(i) = <I>1ight(/_\t(i)). Both sequences
were projected into a 2D space using Principal Component Analysis (PCA), retaining the top two
principal components. The trajectory divergence was quantified using the mean Euclidean distance

in the reduced space:

0 = L Zl HPCA(Z§">) _ PCA(z//,(i))‘ , (2.30)
n; pry 2
and averaged across test experiments:
MEAN-TD = — i TD®. (2.31)
M

This metric evaluates how well the light-driven propagator captures the latent dynamics of the
microtubule network, with smaller values indicating tighter alignment (Fig. 2B). Together, these
quantitative measures—MEDIAN-DE, MEAN-L, MEAN-FSIM, and MEAN-TD—provide a com-

prehensive assessment of G-PSTE’s predictive accuracy and latent space consistency.
Optimization of Experimental Conditions for Microtubule Bending
Formulation of the Bending Loss Function

Loss Definition We define the bending loss function (Lpeng) as the minimum mean squared error

(MSE) between the final observed state and a transformed version of the initial state:
Lbena = min MSE(S (Xo, 6), Xfinar) (2.32)

Here, X represents the initial configuration of the microtubule network, Xgn, is the observed

final state, and S(Xo,) denotes a geometric transformation parameterized by 6 = (4, Ty, Ty). The

41

parameter 6 consists of uniform scaling and translations, where A controls the isotropic scaling of

the network, and 7 and 7, define translations along the x- and y-axes, respectively.

Transformation Implementation To compute the bending loss in practice, we preprocess the
microtubule network configurations by converting grayscale images of the initial and final states into
binary masks using a predefined threshold. The initial state (Xo) is then transformed using a spatial
transformer network (STN) parameterized by 8. STNs provide a differentiable module that applies
spatial transformations in a single forward pass, facilitating smooth optimization. We optimize 6
using the Adam optimizer, which enhances convergence by combining adaptive learning rates with
momentum-based updates. Gradient computation is handled via TensorFlow’s automatic differ-
entiation, enabling efficient backpropagation through the spatial transformer module. Constraints
are imposed during optimization to restrict the transformation to isotropic scaling and translations,
preventing rotation and non-uniform scaling. The optimization process terminates when the loss
change falls below a convergence criterion of, indicating stagnation within a defined tolerance. At
this point, the final values of 6 represent the best-fit transformation parameters, quantifying the

deviation from uniform contraction in the microtubule network.

Implementation of the Neural Network-Based Optimization Framework

Implementation Overview We implemented our optimization framework in TensorFlow, lever-
aging custom neural network architectures for both the affine transformation and the microtubule
deformation prediction. The framework integrates three key components: an Affine Transforma-
tion Neural Network (ATNN), a Temporal Convolutional Autoencoder (L-PSTE), and the Spatial

Transformer Network (STN).

Affine Transformation Neural Network (ATNN) The ATNN is a sequential model composed
of two dense layers with 64 neurons and ReLLU activation, followed by an output layer that produces

the six parameters of the affine transformation matrix:

42

0 = [ai1,a12,a13,a21, az, as] (2.33)

where a;; represents the elements of the 2x3 affine transformation matrix. This network takes a
16-dimensional binary input vector and outputs the transformation parameters that map the initial

state to the simulated final state.

ATNN Training Procedure The ATNN was trained on a dataset of pattern-transformation pairs
where each transformation parameter § was computed using the bending loss optimization method
described in the previous section. Specifically, for each pattern in our dataset, we had already
determined the optimal 6 = [a;, a2, a3, azi, a, azs] that minimizes Lypeng between initial and
final configurations. These optimal transformation parameters, along with their corresponding
binary patterns, were compiled into a CSV file to create a supervised learning dataset. We split this
dataset into training (90%) and testing (10%) sets, and trained the model using the Adam optimizer
with a learning rate of 10~ for 50 epochs with a batch size of 128. The model was trained to
minimize the mean squared error between predicted and ground truth transformation parameters,
with mean absolute error as an additional metric. This approach effectively transfers the knowledge
from our optimization-based bending loss formulation into a neural network that can rapidly predict

appropriate transformation parameters for new patterns.

Learned Physical Simulation with L-PSTE The L-PSTE serves as our physical simulator,
predicting microtubule network configurations at arbitrary timepoints. This model processes both
spatial information (microtubule configurations) and temporal information (simulation time steps)

to generate physically plausible deformation trajectories.

Optimization Procedure For optimization, we employed a gradient-based approach using Ten-

sorFlow’s automatic differentiation capabilities. The optimization procedure follows this algorithm:

43

Algorithm 3 Microtubule Network Bending Optimization

1: Initialize n = 200 random input vectors v € R!® with values in [-1, 1]
2: Set time step dt = 150 and learning rate n = 102

3: Initialize Adam optimizer with learning rate n

4: for step = 1 to max_steps do

5: Viin < (V) > Apply sigmoid to get binary-like values
6: 6 <+ ATNN(vy) > Get affine parameters
T I < Reshape(vy;,) tod x4 x 1 > Create image
8: I < Upsample(I) to 112 x 112 x 1

9: Iof fine < STN(I, 0) > Apply predicted transformation
10: 1. psre < L-PSTE(L dt) > Generate simulated final state

11: L+ MSE(Lsffine, I—psTE)
12: VyL «+ Gradient(L,v)

13: v+ Adam(v,V,L)

14: end for

15: return optimized input vectors v

> Compute loss
> Compute gradients
> Update input vectors

44
This process iterates for a predetermined number of steps (max_steps = 5), with the loss monoton-
ically decreasing as the optimization progresses. The resulting optimized input vectors and their
corresponding affine transformations represent the best match between geometrically transformed
initial states and physically simulated final states, thus quantifying the deviation from uniform

contraction.

Reinforcement Learning for Real-Time Object Capture

Simulation Environment for RL. Agent Training

We developed a Gym-based simulation environment called AM_GAME to train our reinforcement
learning (RL) agent for active microtubule network manipulation and object capture. The environ-
ment was implemented using the OpenAl Gym framework and turtle graphics for visualization,

providing a configurable platform for the agent to learn control strategies.

The simulation models a 2D arena of 20 X 20 units where an activation region (representing the
active microtubule network) must capture multiple bead-like objects. The state space consists of
a simplified representation encoding relative position of the activation region with respect to the
closest uncaptured bead (4 binary values indicating whether the bead is above, right, below, or
left of the activation region), proximity detection of depletion regions (4 binary values detecting
nearby depleted areas in cardinal directions), wall detection (4 binary values indicating proximity

to arena boundaries), and movement direction (4 binary values for up, right, down, left).

The action space is discrete with four possible actions corresponding to movements in cardinal
directions (up, right, down, left). When the agent selects an action, the activation region moves
in the corresponding direction, leaving behind a depletion region that represents areas where the
microtubule network has already contracted and cannot be reactivated. Episodes terminate when
the agent either collides with a wall, collides with a depletion region, captures all beads, or exceeds

the maximum time steps (120 by default).

45

Reward Function Design

The reward function incentivizes efficient capture behavior while penalizing collisions. The agent
receives +15 reward for each newly captured bead (beads within 40 units of the activation region),
+3 reward when moving closer to the nearest uncaptured bead, and -2 penalty when moving away
from the nearest uncaptured bead. Significant penalties of -100 are applied for colliding with walls
or previously created depletion regions, and -50 for timeout (when the time counter reaches zero).
Additionally, a bonus reward of (remaining time X 100) is granted for successfully capturing all

beads.

This reward structure creates a challenging learning problem where the agent must develop
strategies to efficiently navigate the arena while managing the creation of depletion regions that
can block future movements. The temporal constraints and spatial limitations require the agent to
balance exploration with exploitation, planning paths that optimize bead capture while avoiding

self-imposed navigational constraints from depletion regions.

Training Algorithm for RL Agent

We implemented a Deep Q-Network (DQN) approach to train our agent within the AM_GAME
environment. The DQN architecture employs experience replay and a target network to stabilize
learning, enabling the agent to develop effective strategies for navigating the complex state space

while maximizing cumulative rewards.

46

Algorithm 4 DQN for Active Microtubule Network Control

o
Mo

13:

14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

Initialize replay memory D to capacity N
Initialize action-value function () with random weights 6
Initialize target action-value function Q with weights 6~ =
Initialize exploration parameter ¢ = 1.0
for episode =1 to M do
Reset environment to obtain initial state sq
for t =1 to T},42 do
With probability € select random action ay
Otherwise select a; = arg max, Q(st, a; 0)
Execute action a;, observe reward r; and next state siy1
Store transition (s, at,7t, S¢41,ds) in D
Sample random minibatch of transitions (s;, a;,r;, 5541, d;) from D
Set s — 479 if episode terminates at step j + 1
Y= Tj + 7y maxey Q(SjH, a’;607) otherwise
Perform gradient descent step on (y; — Q(s;, aj;60))? with respect to 6
Update exploration parameter € = max(€ - €4ecay, Emin)
if ¢ mod C' == 0 then
Update target network parameters 6~ = 6
end if
if terminal state reached then
Break
end if
end for
end for

47
Our DQN implementation for AM_GAME used a neural network architecture consisting of three
hidden layers, each with 128 neurons and ReLLU activation functions. The output layer maps to the
four possible actions (corresponding to movement in cardinal directions) with a softmax activation
function. The network was trained using the Adam optimizer with a learning rate of 2.5 x 1074,
The experience replay buffer stored up to 2500 transitions, from which minibatches of size 500

were randomly sampled during training.

The hyperparameters were tuned specifically for the AM_GAME environment: discount factor
v = 0.95, initial exploration rate € = 1.0, minimum exploration rate €,,;, = 0.01, and exploration
decay rate €gecqy = 0.995. This configuration allowed the agent to initially explore the state space

thoroughly before gradually transitioning to exploitation of learned strategies.

The training process consisted of 1000 episodes, with each episode terminated either when the
agent reached a terminal state (collision with walls or depletion regions, capturing all beads) or
after reaching the maximum number of steps (10000). The sum of rewards for each episode was
recorded to track the agent’s learning progress. The weights of the trained model were saved for

later deployment and evaluation.

Chapter 3

BUILDING GENERALIST AGENTS BY
MAPPING THE GEOMETRY OF WEIGHT SPACE

48

49
ABSTRACT

A central challenge in artificial intelligence (Al) is developing generalized agents capable of high
performance across diverse tasks while dynamically adapting strategies based on task requirements.
While reinforcement learning (RL) agents have achieved superhuman performance on specific tasks,
the principles governing generalized agents remain elusive. Key questions include how tasks are
encoded in model weights and how parameter geometry enables strategy diversification. Here,
we train RL agents on 13 Atari games, revealing that task-specific agents occupy distinct, non-
overlapping regions in weight space, with intra-task clusters encoding strategy diversification.
By analyzing parameter distributions, we construct a generalized agent that dynamically adjusts
parameters based on its visual input, achieving high performance across all tasks. This work
provides fundamental insights into the relationship between model parameters, task encoding, and

strategy diversification, offering a scalable strategy for building generalized Al agents.

50
3.1 Introduction
The pursuit of artificial intelligence (Al) systems capable of seamless adaptation across a wide
array of tasks remains a cornerstone of modern research. While reinforcement learning (RL)
has driven remarkable achievements in specialized domains, such as mastering complex games
(Volodymyr Mnih, Kavukcuoglu, Silver, Graves, et al., 2013; Oh, Chockalingam, H. Lee, et al.,
2016; Schaul et al., 2015; Volodymyr Mnih, Kavukcuoglu, Silver, Rusu, et al., 2015), these
successes are often confined to narrow contexts, with agents struggling to generalize beyond their
training environments (Cobbe et al., 2019). Early strategies to overcome this limitation, including
policy distillation (Rusu et al., 2015) and imitation learning (Ho and Ermon, 2016), sought to
integrate multiple task-specific policies into a unified model. For example, policy distillation
consolidates the behavior of several expert policies into a single student network by training it to
replicate their outputs, as demonstrated in deep Q-network applications for Atari games. Similarly,
imitation learning uses expert demonstrations to guide policy development, mitigating the need
for exhaustive exploration. However, these efforts frequently encountered challenges, including
catastrophic forgetting and degraded performance due to task interference.
Recent advances in multi-task learning have sought to overcome these barriers by training a single
model across diverse environments simultaneously. Methods like IMPALA (Espeholt et al., 2018)
and PopArt (Hessel et al., 2019) scale RL to multiple tasks by normalizing rewards and leveraging
shared representations, achieving robust performance on benchmarks like Atari (Marc G Bellemare
etal., 2013). While such methods expand task coverage, they often compromise on performance, as
competing objectives within a shared parameter space can erode task-specific expertise (Parisotto,
Ba, and Salakhutdinov, 2015). Meanwhile, sequence modeling architectures that integrate modali-
ties like vision, control, and language have pushed the boundaries of generalization by leveraging
vast datasets and computational scale. For instance, models like Gato (Reed et al., 2022) and
Decision Transformer (Chen et al., 2021) leverage large datasets to perform diverse control tasks,
such as Atari and robotics, using prompt conditioning or trajectory context for task disambigua-

tion. However, these models struggle to adapt strategies within tasks without external input or

51
fine-tuning.
In this study, we introduce a novel approach that harnesses the inherent geometry of neural parameter
space to enable flexible generalization. By training independent RL agents on 13 Atari games within
a consistent architecture, we observe that task-specific agents form distinct, non-overlapping clusters
in weight space, with intra-cluster variations reflecting diverse strategic approaches. Leveraging
this organization, we develop a generalized agent that dynamically modulates its parameters based
on visual inputs, achieving robust performance across tasks without the need for joint optimization.
Our method defines a continuous trajectory through normalized weight space, enabling smooth
transitions between tasks and strategies. This framework not only advances the design of adaptable
Al systems but also deepens our understanding of how neural parameters encode task identity and

behavioral diversity.

3.2 Results

Population Training Reveals Task-Specific Differentiation of Neural Networks.

To examine how functional variation arises during training, we constructed large populations of
RL agents, each trained independently on one of 13 Atari 2,600 games (M. G. Bellemare et al.,
2013) using a shared convolutional policy architecture based on the DeepMind Atari DQN agent
(Volodymyr Mnih, Kavukcuoglu, Silver, Rusu, et al., 2015)(Fig. 3.1A). Agents received only raw
pixel input and scalar reward; no architectural adaptation or multitask supervision was used. Each
agent was trained for 1 million steps using proximal policy optimization (PPO), a widely used
policy gradient method for reinforcement learning. All agents were initialized from the same
distribution using orthogonal weight initialization and shared identical hyperparameters, including
learning rate, batch size, and optimization schedule. In total, we trained approximately 15,000
agents (1,152 per game) under this protocol, and represented each by a high-dimensional vector
formed by concatenating all trainable weights in the policy network.

Despite this standardized training protocol, we observed striking divergence in how agents evolved

across games. For nine representative tasks, we sampled 100 checkpoints uniformly spaced in

52
training time along the learning trajectories of 16 agents per game. At each checkpoint, we
extracted the full policy network weights and projected them into a two-dimensional Uniform
Manifold Approximation (UMAP) space (Fig. 3.1B). Each agent’s trajectory began from a shared
origin but soon branched into a distinct path, with different games producing consistently separate
regions of weight space. Agents trained on the same game followed nearly identical routes, whereas
those trained on different games diverged rapidly and did not overlap, forming task-specific branches
in the learned landscape.

This differentiation was accompanied by reliable improvements in performance, with reward curves
increasing steadily within each game (Fig. 3.1C). Each task induced distinct training dynamics
across its agent population: some games, such as Galaxian and Pooyan, showed tightly clustered
reward trajectories with consistent early gains and similar final performance, while others, like
Qbert, began uniformly but diverged widely in final reward. Together, these results show that
task structure not only guides the evolution of network weights, but also shapes how behavioral

performance emerges and stabilizes over time.

A Input

Kernel

Convolution Layers

Extract Layer Weights ¢

Fully Connected Layers

53

Training Trajectory
in Weight Space

Twy W, W, w,]" Policy Network Vector
— | ey, | —— LTI
L b1 b, b3 6l
B Carnival
T —— . .
- AirRaid
UMAP 2
—> UMAP 1
Galaxian Pong KingKong DemonAttack Pooyan NameThisGame
3o
|
2059.0 628.8 4618.8
2 2 2
£ 1556.6 < S 443.6 £ 3247.3
3 3 H
['4 ['4 o
§ 1054.14 § 258.5 . - 5 1875.7 v
3 3 3
= Galaxian = DemonAttack = Carnival
551.7 73.3 504.2 |
8,192 258,048 507,904 757,760 1,007,616 8,192 258,048 507,904 757,760 1,007,616 8,192 258,048 507,904 757,760 1,007,616
Step Step Step
18.9 1721.7 1693.5
e T T
S 561 2 12296 2 1223.9
o 17 1]
['4 ['4 ['4
c c c
g 77 5 7375 5 754.2 -
= Pong = = AirRaid
-21.0 245.4 | 284.6
8,192 258,048 507,904 757,760 1,007,616 8,192 258,048 507,904 757,760 1,007,616 8,192 258,048 507,904 757,760 1,007,616
Step Step Step
758.2 6231.2 3617.1
2 2 2
S 509.44 S 4182.4 2 2478.1
3 3 H
['4] ['4 ['4
c c c
S 260.6 1 5 2133.5 5 1339.0
3 . 3 3
= KingKong = = NameThisGame
1.8 { 4.6 200.0 + |
8,192 258,048 507,904 757,760 1,007,616 8,192 258,048 507,904 757,760 1,007,616 8,192 258,048 507,904 757,760 1,007,616
Step Step Step

Figure 3.1: Policy Evolution in Weight Space and Training Dynamics Across Atari Tasks.
A. Convolutional neural network (CNN) policy architecture used for all agents. Weights from all
layers are concatenated into a high-dimensional Policy Network Vector. B. UMAP projection of
Policy Network Vectors from 15 agents per game, shown for 9 of 13 total games. Each trajectory
includes 100 checkpoints sampled uniformly over 1 million training steps. Colors indicate game
identity and match the screenshots. C. Reward over training steps for 1152 agents per game. Each
line represents a single agent; colors match panel (B).

54
Task Pressures Sculpt Distinct Functional Territories in Neural Weight Space
After training, the final policy network weights revealed persistent task-specific organization in
high-dimensional weight space. To examine this structure, we compiled the final weight vectors
from all 14,976 agents and visualized a fixed subset of 10,000 weights per agent, selected for
high average contribution to top principal components. We plotted standardized magnitudes in
a heatmap (Fig. 3.2A), with columns (weights) ordered by hierarchical clustering. This revealed
structured, task-dependent patterns: agents grouped by game showed reproducible weight profiles
despite independent initialization and training. Specific weight subsets were consistently modulated
across tasks, shifting toward positive or negative values in a task-dependent manner. For example,
weights in the ranges 0-2,000 and 8,000-10,000 formed repeated block-like structures that appeared
across all games, but with polarity and magnitude systematically modulated by task. These results
suggest the emergence of functional substructures, where shared representational components are
repurposed across environments.
To visualize the geometric structure of trained policy networks, we projected all 14,976 full policy
weight vectors into lower dimensions using principal component analysis (PCA) and UMAP.
Both methods revealed clear task-level structure: agents trained on the same game formed dense,
coherent clusters, while those from different games occupied well-separated regions of weight space
(Fig. 3.2B-C). A corresponding fitness landscape projected into UMAP space (Fig. 3.2C) further
revealed that reward was locally concentrated within these task-specific regions. To quantitatively
validate this organization, we applied unsupervised Louvain community detection to a nearest-
neighbor graph constructed in the high-dimensional PCA space. Without access to task labels,
the resulting clusters aligned almost perfectly with the agents’ training environments, achieving
99.95% clustering accuracy, an adjusted Rand index of 0.9988, and normalized mutual information
of 0.9985. These results confirm that task identity is deeply encoded in the learned weights and is

recoverable through purely geometric structure.

55

A 02 -0 0.0 0.1 0.2
— — Standardized Weight Magnitude Games
0 . .
| BasicMath
1152
I Galaxian
2304 .
I KingKong
3456 1—
I AirRaid
4608
| Bowling
5760
» Carnival
£ 6912
[AT ‘I DemonAttack
O 8064 -
< - NameThisGame
9216
- Pong
10368 -
: Pooyan
11520 + =
- Qbert
12672
I Spacelnvaders
13824
: UpNDown
14976 T - .
0 2000 000 . 6000 8000
Selected Weights
B (o3
10 20
5 10
N
) &
T, s
S0
-5
-10
-10
-20
-10 -5 0 5 10 15 20 -10 -5 0 5 10 15 20 25
PC1 UMAP 1
@® BasicMath KingKong Bowling DemonAttack Pong Qbert UpNDown
Galaxian AirRaid Carnival NameThisGame Pooyan Spacelnvaders
D
Fitness
UMAP 2

Figure 3.2: Structure of policy weight space across Atari games after training. A. Heatmap
of standardized magnitudes for a subset of weights from 14,976 agents trained on 13 Atari games,
each shown at 1 million training steps. Agents are grouped by game (rows), and weights (columns)
are ordered via hierarchical clustering. B. Principal component analysis (PCA) of policy weight
vectors, colored by game. C. UMAP projection of the same weight vectors, revealing clear task-
specific clustering. D. Fitness landscape over UMAP space, where peak height corresponds to
average agent performance in each region.

56
Strategic Tradeoffs Map Onto the Internal Geometry of Functional Territories in Weight
Space.
While agents trained on the same task converged to compact regions of weight space, we observed
meaningful behavioral diversity within each task-specific cluster. In particular, agent populations
spontaneously explored different tradeofts between reward maximization and risk, measured as the
standard deviation of episodic returns. Plotting agents in behavior space (mean reward vs. risk)
revealed continuous spectra spanning conservative to risk-seeking strategies (Fig. 3.3A, left). To
identify representative behavioral phenotypes, we used unsupervised k-means clustering (k = 2),
allowing phenotypes to emerge from the population without supervision. These tradeoffs emerged
across games, indicating that reinforcement learning does not produce a single optimal behavior
but a distribution of viable policies shaped by the task’s structure.
To test whether this behavioral variation corresponded to structure in the learned parameters,
we projected the same agents’ policy weight vectors using PCA within each game. In all six
examples shown, the two phenotypes gave rise to distinct distributions in the PCA-projected weight
space within their game’s territory (Fig. 3.3A, right), suggesting that internal geometry of each
task cluster organizes strategic diversity. This risk-reward trade-off was also evident in actual
gameplay. In Galaxian, for instance, conservative agents tended to remain on the left side of
the screen and restricted their movement, which limited enemy engagement but also reduced
exposure to incoming projectiles. In contrast, risk-seeking agents explored a broader portion of
the playable area, positioning themselves more aggressively to clear enemies faster, at the cost of
greater vulnerability (Fig. 3.3B-D). These differences in gameplay style emerged naturally from
training, without supervision or explicit reward shaping. Together, these results show that learned
weight space is not only segmented by task but also structured within tasks to reflect interpretable
behavioral axes. Each functional territory supports a spectrum of strategies, with internal geometry

encoding tradeoffs between competing behavioral modes.

57

A I Conservative [l Risk-Seeking
Galaxian KingKong
10.0]
17004 Behavior Space 0.0 Policy Space 750 Behavior Space 10.0 Policy Space
° e 7.54 700 o
o 8o = o . 7.54 o
1600 - s 4 £ sof 650 wle £ e
e o o oAEE., = = oot T a s o 507 L < Ste
2 1500 o8 THoa " 2 25 £ 600 T TN 2 2s] "3.‘ 33 °
9] . o & o -) . %0 Bo - 0B ed oa
Eé ES.';." o .\.- . % 0.0 2550 :...s-...’.i. ;.':' % 004 o oo .:.
Q14007 o ol h e € 25 3 500 T00ot%RY o e e, € .l .'.'%. A
s X .ﬂ' ., = . = *&é:., D 25 o atese s
o -5.0 450 o g e
1300 o 7 g L, £ 5.0 g
e =751 400+ - o ,s o
12007\ T T T =10.0 T T T T T T 350 T T T T T T T ' T
400 500 600 700 -4 -2 0 2 4 6 125 150 175 200 225 250 275 -5 0 5 10
Risk PC 1 (Policy Weights) Risk PC 1 (Policy Weights)
AirRaid Pooyan
154 2000 10.0
1600 Policy Space Behavior Space Policy Space
. 7.5
- 104 1800+ -
1400 £ ‘s oy .: N £ soq oo ;‘L
© 3 T 1600 0o, o & PAL
(9] 4 ° @ £,
5 2 s g CNREDY R 2 251 o Ol
§ 12001 < FRVIE RS S . S o k’.‘ o~
= % o] p ..0 g § TVess . % 0.04 F. ' o %
& 1000 < & 1200 L N G £ p %
s 2 oS8 °° o o -2.51 o3 S
o -5 1000 AL o s
g - o Fogo Q 504 o g
800 “e e & - Q
o
—10 800+ ~7.5
400 600 800 1000 50 -25 00 25 50 75 0 200 400 600 800 - 0 5
Risk PC 1 (Policy Weights) Risk PC 1 (Policy Weights)
Step
Spacelnvaders UpNDown
81 Policy Space 180001 Behavior Space 5 Policy Space
700
= 61 L 16000 o ° G 4 S N .
2 . 2
600 £, L p 140007 e — 5 5 oAl .
I ° . .« R0%"% T 120004 o St %’ o A NP
3 2 5] "-"s:p“.' N 3 ‘-4‘..7.'q g = 0 cogs V.
@ 500 z l*-"-.'. AN & 10000 ."V"i."' L I %o ")l . *s
< 5 ol 2 & 29’y o y - S_ . &8 ooy
3 g © o %9 “‘".,. S 8000 S Y e, g2 o .
= 400 S, R = ool eaEgat o % °C g LL
_ .]
g . Yo ° o Q oy oo e
300 44 o @ 4000 g - -6
T T T T T T T T T T 20001 T T T T T -8 T T T
0 50 100 150 200 250 300 -5 0 5 10 0 2500 5000 7500 10000 - -5 0 5 10
Risk PC 1 (Policy Weights) isk PC 1 (Policy Weights)
Enemies e
;] % %
£ o % % x % %
c
£ £ XX K K X%
o
N X KX XX XX
3 2 ERXEXXXR
N | KK KK XX
0 20 Step 40 60
1.0
c
20.89
o
Q0.6 Projectiles
o
&
o4l H/\
©
E
©0.24
z
0.0+ | . . Player's Player's
0 20 40 60 Area — ship
Step

Figure 3.3: Reward-Risk Tradeoffs Organize Agent Variation in Policy Weight Space and
Gameplay. A. Behavioral and policy space visualizations for six Atari games. Left: Mean reward
versus risk, defined as the standard deviation of episode returns. Right: PCA of policy network
weights. Agents are colored by phenotype: conservative (blue) or risk-seeking (red). B. Time
series of in-game behavior for representative conservative and risk-seeking agents in Galaxian.
Top: cumulative number of defeated enemies. Bottom: normalized horizontal position of the
agent’s ship, where 0 and 1 correspond to the leftmost and rightmost screen positions, respectively.
C. Schematic of gameplay dynamics in Galaxian, illustrating interactions between player, enemies,
and projectiles. D. Representative gameplay sequences for each phenotype in Galaxian. Top:
conservative agent (blue border); bottom: risk-seeking agent (red border). Frames progress from
left to right, illustrating temporal evolution and divergent strategies.

58
Learned Paths in Neural Policy Space Enable Generalist Agents with Tunable Task and
Strategy.
To exploit the geometric structure of task-specific policy regions, we trained a hypernetwork to
generate policies across the full spectrum of tasks and strategies. We ordered trained agents by
combining inter-task similarity with intra-task risk preference variation, assigning each a scalar
value 0 € [0, 1] linearly spaced by position. These (6, weights) pairs trained a hypernetwork that
learned to map scalar inputs to complete policy network parameters (Fig. 3.4A). To evaluate the
geometry of the learned path, we projected unit weight vectors into three-dimensional principal
component space, L2-normalized them to lie on the unit sphere consistent with the cosine-based
loss used during hypernetwork training, and applied the Robinson projection for two-dimensional
visualization. The resulting trajectory formed a continuous path through distinct game-specific
regions while remaining closely aligned with original trained agents (Fig. 3.4C).
Comparing hypernetwork traversal to linear weight interpolation revealed the importance of struc-
tured manifold learning. We generated 100 interpolated models using each method in Pong,
reparameterized to a common variable a € [0, 1] where @ = 0 and @ = 1 reproduced the anchor
policies. While linear interpolation caused severe performance collapse with rewards approaching
—21, hypernetwork-generated agents maintained near-optimal performance across the entire range
(Fig. 3.4D). Evaluation on 1,300 unseen 6 values spanning all 13 Atari games (100 per game) con-
firmed robust generalization. Rewards were normalized relative to expert performance, with most
tasks reaching or exceeding expert-level performance and smooth variation within task segments.
Brief performance dips at task boundaries indicated transient switching costs but rapid recovery
(Fig. 3.4E).
To enable real-time behavioral modulation, we introduced a meta-agent that received both visual
observations and scalar risk signals, outputting 6 values for the hypernetwork to generate policy
weights in a closed-loop design (Fig. 3.4B). Testing across three Atari games showed that the
meta-agent successfully translated external preferences into behavioral variability. We measured

empirical risk as the standard deviation of episodic returns, finding monotonic increases corre-

59
sponding to increasing input risk signals. The shape of risk-response curves differed by game,
reflecting environment-specific strategic tradeoffs and confirming dynamic policy adaptation based

on both environmental context and external preferences (Fig. 3.4F).

60

A . B
Solve TSP between gggere
game centroids in _
Game weight space Risk | Meta-Agent Hypernet
level signal
i Polic actiol
1> |acti
Continuous Atari 6 e y
- weight path frame yy
Oizislf T | Weights
rdering
Hypernetwork
. Vb , . Env
9 =1 T 1 T | f

o 1
Game1 Game 2 Game 3 Game N

C
o
<4
©
2
)
14
e |inear
= Hypernet
—20| ® Anchor Policy M _=Reward Range: £21
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
E o
= 250
‘q‘, BasicMath KingKong Bowling DemonAttack Pong Qbert UpNDown
% Galaxian AirRaid Carnival NameThisGame Pooyan Spacelnvaders
L 200
=
Y
heol -
I 150
=
—
O 100 H==—==gf==== =t === e e e e e A e s = immms e mm e s s = e 2]
=
T 50
©
2
o)
o 0 T T T T T T T T T T T T
Q A > N \J o) 42 >] v) o > 9
DQ S NS 9 o P o <> o 53 ° s v ®
N Q N N N o Ny o N Q- N N NS
Hypernetwork Input 8
F
700
¥ 650 “ K]
[~ [~4 4
© © ©
£ 600 b= =
o 3 £
£ £ £
400
500 300
i KingKon i i
| Gaxian] 00 . KINGRONA[gl AURAIG
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Risk Signal Meta-Agent Risk Signal Meta-Agent Risk Signal Meta-Agent

Figure 3.4: Geometric Traversal of Policy Space Enables Generalist Agent Design. A. Policy
vectors are assigned 6 € [0, 1] via game-level and risk-based ordering, normalized to the unit
hypersphere. These (6, weights) pairs are used to train the hypernetwork. B. A meta-agent uses
visual input and a risk signal to drive a hypernetwork, which generates weights for a fixed policy.
Actions update the environment in a closed loop. C. Robinson projection of 3D PCA-reduced,
normalized weight vectors. Colored points: trained agents; black curve: hypernetwork path. Color
legend in panel E. D. Reward along interpolation paths between two anchor policies in Pong. Linear
(blue) vs. hypernetwork (red); anchor values in black. Range: [-21,21]. E. Normalized reward
along hypernetwork path. Each 6 segment corresponds to a different game. Colors and legend
in-panel. F. Empirical risk (std of returns) vs. risk input for three games. Insets show meta-agent
visual inputs.

61
3.3 Discussion
In this work, we propose a novel approach to multi-task reinforcement learning by training a single
neural network with fixed weights to perform effectively across 13 Atari tasks. Unlike traditional
RL methods that rely on task-specific policies or architectures to mitigate interference (Volodymyr
Mnih, Kavukcuoglu, Silver, Rusu, et al., 2015; Tassa et al., 2018; Schrittwieser et al., 2020;
Espeholt et al., 2018; Hessel et al., 2019), our framework generalizes across tasks without the need
for explicit disambiguation, external prompts, or context embeddings. This distinguishes it from
both offline RL baselines (Gulcehre et al., 2020; Fu et al., 2020) and autoregressive models like
Decision Transformer and Trajectory Transformer (Chen et al., 2021; Reid, Yamada, and S. S. Gu,
2022; Zheng, A. Zhang, and Grover, 2022; Janner, Q. Li, and Levine, 2021), which often encode
task identity into weights or inputs. Here, we instead investigate whether a single, static policy can
implicitly organize behavior across environments.
Our findings show that even under identical architectures and training protocols, RL agents develop
distinct, task-specific representations in policy weight space. Each task induces a consistent
geometric footprint, reflecting the structural demands of its environment. Within these task clusters,
we observed further differentiation along interpretable behavioral axes—most notably, a continuous
spectrum of strategies trading off reward and risk. This shows that neural policies not only adapt to
tasks, but also self-organize to support a diverse set of viable behaviors within each environment.
These findings offer a blueprint for rational agent design. By training a hypernetwork to traverse the
structured manifold of policy space, we built generalist agents that can fluidly modulate both task
performance and strategy through a scalar input. This enables real-time control over agent behavior,
such as shifting between cautious and aggressive modes, without retraining. Such a mechanism is
particularly relevant for safety-critical or multi-objective domains, where agents must adaptively
balance exploration, efficiency, and risk sensitivity based on context or external preferences.
Finally, the emergence of risk-reward tradeoffs in our agent populations offers compelling parallels
with biological systems. Without explicit supervision, our agents naturally exhibited behavioral

phenotypes reminiscent of those found in animal populations—suggesting that such diversity may

62
arise as a fundamental outcome of optimization in uncertain environments. These structured,
strategy-diverse populations provide a powerful in silico model for studying behavioral ecology,
opening new avenues for using artificial agents to investigate the evolutionary and environmental

dynamics of decision-making.

3.4 Conclusion

Our findings demonstrate that RL agents, even when identically structured and trained, self-
organize into distinct, task-specific regions of neural weight space, each supporting a continuum
of strategic behaviors. This geometry—emerging without supervision—encodes both task identity
and interpretable tradeoffs, such as risk versus reward, offering a principled substrate for behavioral
control. By learning to traverse these structured manifolds, we construct generalist agents capable
of fluidly adapting task and strategy in real time via a single scalar input. These results establish that
the internal geometry of learned policy spaces is not only descriptive but generative—supporting
a new class of adaptive, controllable agents and offering a powerful framework for modeling the

diversity and structure of intelligent behavior.

3.5 Methods

Agent Architecture, Training and Weight Extraction

We trained large populations of reinforcement learning agents to solve 13 Atari 2,600 games (M. G.
Bellemare et al., 2013) using a standardized convolutional neural network policy. Each agent
was trained using the Proximal Policy Optimization (PPO) algorithm, as implemented in Stable
Baselines, with distributed execution over a Ray-based high-performance cluster. In total, we
trained 14,976 agents—1,152 per game—each for one million environment steps.

The policy architecture followed the canonical DeepMind Atari DQN model (Volodymyr Mnih,
Kavukcuoglu, Silver, Rusu, et al., 2015), consisting of a convolutional feature extractor followed by
fully connected layers for both the actor and critic heads. We adopted a four-frame input stacking
protocol and vectorized each environment with a batch size of four. All training was performed on

grayscale pixel inputs resized to 84 x 84.

63
All agents were trained independently from orthogonal weight initialization using identical hyper-
parameters: a learning rate of 3 x 10~#, batch size of 64, rollout horizon of 2048 environment steps,
and 10 optimization epochs per update. We used a reward discount factor of y = 0.99, Generalized
Advantage Estimation (GAE) with 4 = 0.95, value function loss coeflicient ¢; = 0.5, and gradient
clipping with a maximum norm of 0.5. The surrogate objective was clipped using € = 0.2, and
entropy regularization was disabled throughout.
Training was distributed across 192 CPU workers and 8 GPUs. Each actor process instantiated an
isolated vectorized environment and trained a single agent. To reach the full population of 1,152
agents per game, we launched six independent rounds of training per environment.

Policy updates were performed using the clipped surrogate PPO loss:

L () = E, [min (r,(¢)A,, clip (r(¢), 1 — &, 1 +) A,)] , 3.1)

where
7T¢(a, | s¢)

_ 3.2
7T¢01d(at | Sl) ()

ri(¢) =

is the probability ratio between new and old policies, and A, is the estimated advantage. The
clipping operation stabilizes learning by preventing large, potentially destabilizing policy shifts. It

is defined as:

a ifx<a
Clip(x’a’b) =3\x 1fa <x < b (33)
b ifx>b

In addition to the clipped policy loss, PPO includes a squared-error value function loss:

LY (9) = (V(s) - V,“"“g)2 : (34)

where V(s;) is the predicted value of state s, and V;arg is the Monte Carlo return target. The final

loss function used for optimization was the sum of the policy and value losses:

L(¢) =B, [LMP(¢) — 1 LVF ()] . (3.5)

64
Each trained policy network was represented as a high-dimensional vector by flattening and con-
catenating the trainable parameters from the convolutional feature extractor and action head. The
value head parameters were excluded since they are not part of the policy function. All vectors
were stored alongside metadata identifying the agent, game environment, and training step.
This procedure yielded two primary datasets of policy weight vectors. The first is a final policy
matrix Winal ¢ RNXD where N = 14,976 is the number of agents and D = 1,687,206 is the
dimensionality of the flattened weights. Each row in this matrix corresponds to an agent’s policy
parameters at the end of training. The second is a trajectory matrix W e RM*P where M =
20,800 corresponds to a set of 16 agents per game across 13 games, each checkpointed at 100 distinct
timepoints. These checkpoints were linearly spaced over the full course of 1 million training steps,

providing uniform temporal resolution for capturing learning dynamics.

Weight Projection, Visualization, and Fitness Modeling

We applied dimensionality reduction to the policy weight vectors using Principal Component
Analysis (PCA) and Uniform Manifold Approximation and Projection (UMAP). A single PCA
model trained on Wi was reused across analyses. UMAP was applied to PCA-projected data
using fixed parameters: 50 neighbors, minimum distance of 0.99, spread of 1.5, Euclidean metric,
and a fixed random seed.

Learning Trajectories: Rows from W' were reduced to 50 PCA components, followed by 2D
UMAP to visualize agent evolution over training time.

Weight Structure Visualization: To identify parameters with the highest variance across agents,
we computed average absolute PCA loadings across the top five components and selected the top
k = 10,000 features from W' This subset was z-scored across agents and hierarchically clustered
by parameter using Ward’s method. The resulting matrix was visualized as a heatmap, with agents
grouped by game.

Task Geometry and Fitness: Vectors from W were reduced to 15 PCA dimensions, then embed-

ded with UMAP. Each projected point was assigned a fitness value based on the average reward

65
across evaluation episodes. Raw reward values were rescaled within each game using min-max
normalization to map fitness scores into a common [0, 1] range. A continuous fitness landscape
was generated using radial basis function interpolation over the UMAP space, followed by Gaussian
smoothing.

Hypernetwork Path: W1 and hypernetwork-generated vectors were L2-normalized, projected
to 3D via PCA, renormalized to unit length, and visualized using the Robinson projection to
reflect spherical structure (since the hypernetwork is trained with cosine loss on normalized policy

vectors).

Inter/Intra Task Clustering and Behavioral Phenotyping

A k-nearest neighbors graph was constructed in the 15-dimensional PCA space of Wl using
Euclidean distance with k = 25. Louvain community detection was then applied to partition agents
into clusters in an unsupervised manner. To assess clustering quality, ground-truth game labels
were aligned to the discovered communities using the Hungarian algorithm to compute an optimal
one-to-one assignment. Evaluation metrics included clustering accuracy (ACC), defined as the
proportion of correctly aligned labels; adjusted Rand index (ARI), which measures pairwise label
agreement corrected for chance; and normalized mutual information (NMI), which quantifies the
shared information between predicted and true labels.

For behavioral characterization, each agent was represented by a two-dimensional feature vector
comprising the mean and standard deviation of episodic rewards. Pairwise distance matrices were
computed independently in the behavioral space and in the PCA-reduced policy space. These
were averaged and embedded into two dimensions via multidimensional scaling (MDS). k-means
clustering with £ = 2 was performed on the embedded space. Cluster identities were assigned such

that the group with higher reward variance was designated as the risk-seeking population.

Hypernetwork Modeling and Generalist Policy Construction
We trained a hypernetwork H : [0,1] — R” to generate L2-normalized policy weight vectors

conditioned on a scalar input 8. The output dimensionality D = 1,687,206 matched the flattened

66
convolutional and action-head parameters of the PPO policy.
Input Encoding: The input scalar 6 € [0, 1] was first embedded using a Fourier feature map

y : [0,1] = R*¥ with F = 64 frequencies:
v(0) = [sin(27 f10), ..., sin(2x frB), cos(2n f160), ...,cos(2n frO)], (3.6)

where f; =ifori = 1,..., F. This encoding was passed into a feedforward neural network H (y(6))
composed of four layers, each with hidden size 512 and ReLLU activations, terminating in a linear
output layer with D units.

Loss Function: The hypernetwork was trained to minimize the cosine distance between predicted
and target policy vectors. Given a dataset of normalized policy weights {(6;, w,-)}f\; |» the training

objective was:
1 N
Lo = Zl [1 = cos (H(y(6:)), W)l (3.7)

where cos(u, v) = All target vectors w; were pre-normalized to unit norm.

u-v
lTulllivil®
Trajectory Dataset Construction: We assign selected agents a scalar coordinate 6; € [0, 1] through
a two-stage ordering process. We begin with a set of games G, where each game g € G is character-
ized by a game-averaged policy vector summarizing agent behaviors. These games are sequenced
by solving a symmetric Traveling Salesman Problem (TSP), using cosine dissimilarity between
policy vectors as the distance metric, which assigns each game g an index i, € {0, 1,..., 12} based
on its position in the sequence. Within each game, we select 25 agents by binning them according

to the standard deviation of their rewards, a measure of risk, and filtering to include only those

with mean rewards above the 10th percentile to ensure high performance. These agents, denoted

{wi,j) }fi |» are then ordered from lowest to highest risk, based on increasing standard deviation of
rewards. Each agent is assigned a scalar Qi,j) ¢ [0, 1] using the formula Héj) = (i' + 2’—5 . %', where

|G| = 13 is the number of games, i, is the game’s TSP index, and j € {1,2,...,25} is the agent’s
position in the ordered list. This formula partitions the [0, 1] interval into 13 equal segments, one
per game, with each game’s 25 agents evenly spaced within their segment according to their risk

order, ensuring a trajectory that reflects both inter-game similarity and intra-game risk progression.

67
Warped Input Space: To improve interpolation across game transitions, a differentiable piecewise
transformation ¢ : [0, 1] — [0, 1] was applied to all inputs. Let {bg =0 < by < --- < b|g| = 1}

denote game-specific breakpoints. Within each interval [by, by41], the local transformation was:

(@)= -0(k(0-m)))-ab+0c(k(8—m))-(a(@—m)+(1-w)), (3.8)
where a = 2w, m = b”—é’k*', o is the sigmoid function, w is the width parameter, and k controls the

steepness of the transition.

Evaluation: The model’s predictions were evaluated by reconstructing PPO agents from the gener-
ated vectors w = H (y(¥(0))). The predicted vectors were split into convolutional feature extractor
and action-head weights, used to reconstruct policy networks, and evaluated via five-episode rollout
in their respective target environments.

Two evaluation paradigms were employed. First, to assess interpolation fidelity, two PPO agents
trained on Pong were selected as anchor policies w; = H(y(¥(61))) and wy = H(y(¥(62))).
These policies were chosen from adjacent entries in the hypernetwork training set, ensuring they
were contiguous under the learned task-space ordering. One hundred intermediate policies were

generated by both linear interpolation:
We=(1—-a) - wi+a-wy, ac]0,1] (3.9

and hypernetwork traversal using values of 6 linearly spaced between 6; and 6,. To enable
direct comparison across methods, the hypernetwork parameter was reparameterized via @ =
(0 —61)/|602 — 01]. In both methods, @ = 0 and @ = 1 correspond to the two original anchors. The
resulting models were evaluated in Pong to compare reward continuity and robustness across the
trajectory.
Second, to probe the learned manifold across the full game spectrum, we partitioned the scalar
latent domain [0, 1] into |G| equal-length intervals, where |G| = 13 is the number of games used
ko k+l
]

during hypernetwork training. The interval corresponding to game k was defined as [@’ el

for k = 0,1,...,|G| — 1. Within each interval, we sampled 100 evenly spaced values of 6§ in

k+1

o &|, with & = 1073 used to avoid boundary artifacts. Each sampled

the subinterval % + &,

68
6 was processed as W = H (y(¥(0))), decoded into policy networks, and evaluated in the target
environment, producing reward trajectories as a function of 6, characterizing the task-conditioned
policy manifold.
To enable closed-loop behavioral control, we trained a meta-agent to dynamically generate the
scalar input 6 € [0, 1] for the hypernetwork, based on both visual observations and an externally
specified risk preference, denoted pext € [0, 1]. This is a user-defined control signal that encodes
the desired level of risk sensitivity during policy generation. It is not learned from interaction data,
nor inferred from rewards—rather, it expresses a target behavioral profile. The meta-agent receives
as input a stack of four consecutive grayscale Atari frames, processed through a convolutional
encoder identical to that used in the PPO policy network. The encoded visual features are passed
into a multilayer perceptron (MLP) that outputs a softmax over the set of games, identifying the
most likely current game.
Given the predicted game index i, € {0,..., 12}, the meta-agent computes the base position in
6-space as %', with |G| = 13 denoting the number of games. The external risk preference pe; is
scaled to match the segment width for that game, resulting in:

_ s + ! (3.10)
- |G| peXt |G|' .

0
Because the trajectory dataset was constructed such that policies are ordered by increasing stan-
dard deviation of reward within each game segment—effectively encoding increasing behavioral
risk—this formulation allows the meta-agent to modulate behavior in a risk-aware manner while
remaining game-specific. The computed 6 is passed into the hypernetwork, which produces the
policy parameters. These are then loaded into a fixed architecture, enabling the agent to act in
the environment using the same observation that generated 6, thus closing the loop from input
perception to behavior.
We evaluated the system by sweeping pex; across [0, 1], generating 20 distinct policies per game,
across games. Each policy was then rolled out in its respective game environment for 100 episodes.

Empirical risk was quantified as the mean standard deviation of episodic returns across those

episodes. This enabled a direct comparison between the intended risk profile pex; and the realized

behavioral variability for each game, highlighting the efficacy of the meta-agent’s control.

69

70
BIBLIOGRAPHY

Bellemare, M. G. et al. (June 2013). “The Arcade Learning Environment: An Evaluation Platform
for General Agents”. In: Journal of Artificial Intelligence Research 47, pp. 253-279.

Bellemare, Marc G et al. (2013). “The arcade learning environment: An evaluation platform for
general agents”. In: Journal of artificial intelligence research 47, pp. 253-279.

Booth, Martin J (2014). “Adaptive optical microscopy: the ongoing quest for a perfect image”. In:
Light: Science & Applications 3.4, e165-e165.

Burger, Benjamin et al. (2020). “A mobile robotic chemist”. In: Nature 583.7815, pp. 237-241.

Buttinoni, Ivo et al. (2012). “Active Brownian motion tunable by light”. In: Journal of Physics:
Condensed Matter 24.28, p. 284129.

9

Cai, Wenjie et al. (2025). “Reinforcement Learning for Active Matter”. In: arXiv preprint
arXiv:2503.23308.

Chen, Lili et al. (2021). “Decision transformer: Reinforcement learning via sequence modeling”.
In: Advances in neural information processing systems 34, pp. 15084—-15097.

Chennakesavalu, Shriram et al. (2024). “Adaptive nonequilibrium design of actin-based metama-
terials: Fundamental and practical limits of control”. In: Proceedings of the National Academy of
Sciences 121.8, €2310238121.

Christiansen, Eric M et al. (2018). “In silico labeling: predicting fluorescent labels in unlabeled
images”. In: Cell 173.3, pp. 792—-803.

Cobbe, Karl et al. (2019). “Quantifying generalization in reinforcement learning”. In: International
conference on machine learning. PMLR, pp. 1282-1289.

Coley, Connor W et al. (2019). “A robotic platform for flow synthesis of organic compounds
informed by Al planning”. In: Science 365.6453, eaax1566.

Cranmer, Miles et al. (2020). “Discovering symbolic models from deep learning with inductive
biases”. In: Advances in neural information processing systems 33, pp. 17429-17442.

Driess, Danny et al. (2023). “Palm-e: An embodied multimodal language model”. In.

Espeholt, Lasse et al. (2018). “Impala: Scalable distributed deep-rl with importance weighted
actor-learner architectures”. In: International conference on machine learning. PMLR, pp. 1407—
1416.

Falk, Martin J et al. (2021). “Learning to control active matter”. In: Physical Review Research 3.3,
p. 033291.

Floreano, Dario and Claudio Mattiussi (2008). Bio-inspired artificial intelligence: theories, meth-
ods, and technologies. MIT press.

Fu, Justin et al. (2020). “D4r1l: Datasets for deep data-driven reinforcement learning”. In: arXiv
preprint arXiv:2004.07219.

71

Grosenick, Logan, James H Marshel, and Karl Deisseroth (2015). “Closed-loop and activity-guided
optogenetic control”. In: Neuron 86.1, pp. 106—139.

Gulcehre, Caglar et al. (2020). “R1 unplugged: A suite of benchmarks for offline reinforcement
learning”. In: Advances in Neural Information Processing Systems 33, pp. 7248-7259.

Hise, Florian, Loic M Roch, and Aldn Aspuru-Guzik (2019). “Next-generation experimentation
with self-driving laboratories”. In: Trends in Chemistry 1.3, pp. 282-291.

Hessel, Matteo et al. (2019). “Multi-task deep reinforcement learning with popart”. In: Proceedings
of the AAAI Conference on Artificial Intelligence. Vol. 33. 01, pp. 3796-3803.

Ho, Jonathan and Stefano Ermon (2016). “Generative adversarial imitation learning”. In: Advances
in neural information processing systems 29.

James, Stephen et al. (2022). “Coarse-to-fine g-attention: Efficient learning for visual robotic
manipulation via discretisation”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 13739-13748.

Janner, Michael, Qiyang Li, and Sergey Levine (2021). “Offline reinforcement learning as one big

sequence modeling problem”. In: Advances in neural information processing systems 34, pp. 1273—
1286.

Leech, Gregor et al. (2025). “Programming scheduled self-assembly of circadian materials”. In:
Nature Communications 16.1, p. 176.

Liu, Allen P et al. (2022). “The living interface between synthetic biology and biomaterial design”.
In: Nature materials 21.4, pp. 390-397.

Liu, Han et al. (2023). “End-to-end differentiability and tensor processing unit computing to
accelerate materials’ inverse design”. In: npj Computational Materials 9.1, p. 121.

Lugagne, Jean-Baptiste, Caroline M Blassick, and Mary J Dunlop (2024). “Deep model predictive
control of gene expression in thousands of single cells”. In: Nature Communications 15.1, p. 2148.

Lugagne, Jean-Baptiste, Sebastidn Sosa Carrillo, et al. (2017). “Balancing a genetic toggle switch
by real-time feedback control and periodic forcing”. In: Nature communications 8.1, p. 1671.

MacLeod, Benjamin P et al. (2020). “Self-driving laboratory for accelerated discovery of thin-film
materials”. In: Science Advances 6.20, eaaz8867.

Milias-Argeitis, Andreas et al. (2016). “Automated optogenetic feedback control for precise and
robust regulation of gene expression and cell growth”. In: Nature communications 7.1, p. 12546.

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Alex Graves, et al. (2013). “Playing atari
with deep reinforcement learning”. In: arXiv preprint arXiv:1312.5602.

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A Rusu, et al. (2015). “Human-level
control through deep reinforcement learning”. In: nature 518.7540, pp. 529-533.

Nguyen, Peter Q et al. (2018). “Engineered living materials: prospects and challenges for using
biological systems to direct the assembly of smart materials”. In: Advanced Materials 30.19,
p. 1704847.

72

Oh, Junhyuk, Valliappa Chockalingam, Honglak Lee, et al. (2016). “Control of memory, active
perception, and action in minecraft”. In: International conference on machine learning. PMLR,
pp- 2790-2799.

Palacci, Jeremie et al. (2013). “Living crystals of light-activated colloidal surfers”. In: Science
339.6122, pp. 936-940.

Pandarinath, Chethan et al. (2017). “High performance communication by people with paralysis
using an intracortical brain-computer interface”. In: elife 6, €18554.

Parisotto, Emilio, Jimmy Lei Ba, and Ruslan Salakhutdinov (2015). “Actor-mimic: Deep multitask
and transfer reinforcement learning”. In: arXiv preprint arXiv:1511.06342.

Pohlmeyer, Eric A et al. (2014). “Using reinforcement learning to provide stable brain-machine
interface control despite neural input reorganization”. In: PloS one 9.1, e87253.

Qu, Zijie et al. (2021). “Persistent fluid flows defined by active matter boundaries”. In: Communi-
cations Physics 4.1, p. 198.

Reddy, Chandan K and Parshin Shojaee (2025). “Towards scientific discovery with generative ai:
Progress, opportunities, and challenges”. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 39. 27, pp. 28601-28609.

Reed, Scott et al. (2022). “A generalist agent”. In: arXiv preprint arXiv:2205.06175.

Reid, Machel, Yutaro Yamada, and Shixiang Shane Gu (2022). “Can wikipedia help offline rein-
forcement learning?” In: arXiv preprint arXiv:2201.12122.

Ross, Tyler D et al. (2019). “Controlling organization and forces in active matter through optically
defined boundaries”. In: Nature 572.7768, pp. 224-229.

Rusu, Andrei A et al. (2015). “Policy distillation”. In: arXiv preprint arXiv:1511.06295.

Sanchez-Gonzalez, Alvaro et al. (2020). “Learning to simulate complex physics with graph net-
works”. In: International conference on machine learning. PMLR, pp. 8459—8468.

Schaul, Tom et al. (2015). “Universal value function approximators”. In: International conference
on machine learning. PMLR, pp. 1312-1320.

Schrittwieser, Julian et al. (2020). “Mastering atari, go, chess and shogi by planning with a learned
model”. In: Nature 588.7839, pp. 604—-609.

Shelley, Michael J (2016). “The dynamics of microtubule/motor-protein assemblies in biology and
physics”. In: Annual review of fluid mechanics 48.1, pp. 487-506.

Sherman, Zachary M et al. (2020). “Inverse methods for design of soft materials”. In: The Journal
of chemical physics 152.14.

Stein, David B et al. (2021). “Swirling instability of the microtubule cytoskeleton”. In: Physical
review letters 126.2, p. 028103.

Suzuki, Kazuya et al. (2017). “Spatial confinement of active microtubule networks induces large-
scale rotational cytoplasmic flow”. In: Proceedings of the National Academy of Sciences 114.11,
pp- 2922-2927.

73

Tang, Tzu-Chieh et al. (2021). “Materials design by synthetic biology”. In: Nature Reviews Mate-
rials 6.4, pp. 332-350.

Tassa, Yuval et al. (2018). “Deepmind control suite”. In: arXiv preprint arXiv:1801.00690.
Thuerey, Nils et al. (2021). “Physics-based deep learning”. In: arXiv preprint arXiv:2109.05237.

Volpe, Giovanni et al. (2011). “Microswimmers in patterned environments”. In: Soft Matter 7.19,
pp. 8810-8815.

Wu, Kun-Taet al. (2017). “Transition from turbulent to coherent flows in confined three-dimensional
active fluids”. In: Science 355.6331, eaal1979.

Wiilfing, Jan M et al. (2019). “Adaptive long-term control of biological neural networks with deep
reinforcement learning”. In: Neurocomputing 342, pp. 66-74.

Zhang, Rui et al. (2021). “Spatiotemporal control of liquid crystal structure and dynamics through
activity patterning”. In: Nature materials 20.6, pp. 875-882.

Zhavoronkov, Alex et al. (2019). “Deep learning enables rapid identification of potent DDR1 kinase
inhibitors”. In: Nature biotechnology 37.9, pp. 1038—1040.

Zheng, Qinqging, Amy Zhang, and Aditya Grover (2022). “Online decision transformer”. In: inter-
national conference on machine learning. PMLR, pp. 27042-27059.

Zintgraf, Luisa et al. (2019). “Varibad: A very good method for bayes-adaptive deep rl via meta-
learning”. In: arXiv preprint arXiv:1910.08348.

	Acknowledgements
	Abstract
	Table of Contents
	List of Illustrations
	Introduction
	Can We Automate the Scientific Process?
	Two Foundational Challenges in Scientific Autonomy
	A. Real-Time Interaction with Dynamical Systems
	B. Generalization Across Tasks and Experimental Contexts

	Organization of the thesis

	Massively Parallel AI-Driven Closed-Loop Optical Control of Microtubule Networks
	Abstract
	Introduction
	Results
	Linear TraPhIC Predicts and Optimizes Microtubule Network Geometry in Static Light via Linear Latent Paths.
	Flexible TraPhIC Predicts Microtubule Network Dynamics in Static and Dynamic Light via Latent Trajectories of Stimulus History
	Deep Q-Learning Enables Active Control of Microtubule Networks for Target Object Capture.
	Massively Parallel Deployment of AI Control Agents Demonstrates Scalable Manipulation of Active Matter Systems.

	Discussion
	Conclusion
	Methods
	Experimental Platform for High-Throughput Optical Control of Microtubule Networks
	Microtubule-Kinesin Preparation and Chip Setup
	Microscope Setup
	Closed-loop Light Stimulation Software Pipeline

	Deep Learning Models for Microtubule Network Prediction
	Filament Simulation
	L-PSTE on Simulation Data
	G-PSTE on Experimental Data

	Optimization of Experimental Conditions for Microtubule Bending
	Formulation of the Bending Loss Function
	Implementation of the Neural Network-Based Optimization Framework

	Reinforcement Learning for Real-Time Object Capture
	Simulation Environment for RL Agent Training
	Reward Function Design
	Training Algorithm for RL Agent

	Building Generalist Agents by Mapping the Geometry of Weight Space
	Abstract
	Introduction
	Results
	Population Training Reveals Task-Specific Differentiation of Neural Networks.
	Task Pressures Sculpt Distinct Functional Territories in Neural Weight Space
	Strategic Tradeoffs Map Onto the Internal Geometry of Functional Territories in Weight Space.
	Learned Paths in Neural Policy Space Enable Generalist Agents with Tunable Task and Strategy.

	Discussion
	Conclusion
	Methods
	Agent Architecture, Training and Weight Extraction
	Weight Projection, Visualization, and Fitness Modeling
	Inter/Intra Task Clustering and Behavioral Phenotyping
	Hypernetwork Modeling and Generalist Policy Construction

	Bibliography

