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ABSTRACT

The capabilities of artificial intelligence are rapidly expanding, but deploying AI
systems in practice still poses significant challenges. Specifically, practitioners
find limited guidance on selecting the most suitable AI model for a concrete use
case, balancing the economics of an AI deployment, and managing the risk of AI
errors. These challenges call for a unified framework addressing pain points in a
conceptually clear and statistically sound manner. In this thesis, we present several
components of such a framework: 1) uncertainty-aware system optimization, 2)
economic evaluation, 3) error reduction with human-in-the-loop, and 4) a proof-of-
concept system for synthetic data generation. Our work presents novel technical and
conceptual approaches for orchestrating natural language-based systems, advancing
the economical and reliable deployment of artificial intelligence.
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C h a p t e r 1

INTRODUCTION

white elephant noun
a property requiring much care and expense and yielding little profit

cash cow noun
one regarded or exploited as a reliable source of money

1.1 Plan and Scope
Through the 2010s, AI researchers wondered by what time a machine could converse
cogently and coherently enough to pass as human. This success criterion, known
as the Turing test, was widely held as an intractable problem that would not give
way in the foreseeable future. Then, in 2023, OpenAI’s release of GPT-4 arguably
shattered the Turing test. However, the world quietly moved on without fanfare.
Too busy to pause in awe at this newly kindled Promethean fire, entrepreneurs and
executives swiftly mobilized to seize the commercial opportunities presented by a
vision of human intelligence dispensed by machines.

In the enterprise, unglamorous document-processing tasks soon took the spotlight.
Could large language models (LLMs) make it easier to search across a business’s vast
internal corpus of unstructured documents? Would the models’ programming abil-
ities—including in database query languages such as SQL—enable non-technical
employees to browse a company’s internal data stores simply by speaking to them
in English? Would the models’ conversational abilities enable a full automation of
customer support?

These visions are rapidly coming to fruition. For example, retrieval-augmented
generation (Lewis et al., 2020) has become a popular technique for grounding
AI answers in companies’ internal document stores; text-to-SQL has become a
mainstream offering among cloud data platforms; and AI customer service agents
are proliferating.

However, the last mile of AI adoption is often the hardest. Practitioners still face
many challenges when deploying LLMs to carry out real-world tasks, especially
when those use cases fall outside “poster boy” offerings such as retrieval-augmented
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generation, code generation, and customer support. From a high level point of view,
practical pain points include selecting suitable AI models from a growing zoo of
available options, balancing the economics of their usage, and managing the risk of
AI errors.

Selecting Suitable AI Models. Following the success of generative AI, the zoo of
AI models available to practitioners has greatly expanded. In addition to frontier
LLMs developed by a handful of leading companies (Anthropic, OpenAI, xAI,
Deepseek, Google, etc.), a large universe of open-source models is distributed to
practitioners by cloud-based model providers such as Fireworks AI or Together
AI. Practitioners often access both closed- and open-source models via software-
only application programming interfaces (APIs), rather than invest in on-premises
computing infrastructure.

This usage pattern makes switching between AI models as easy as changing a
few lines of code, but it is typically not clear how to select the best model. The
problem arises because model selection is a multi-objective problem: not only is the
quality of a model’s outputs of interest, but we would also like these outputs to be
delivered fast and at reasonable cost. Naturally, slower and more expensive models
tend to perform better, so practitioners must decide to settle for specific levels of
quality—see Chapter 3 for an economic framework to guide this decision.

Balancing Economics. Outside of Silicon Valley, information technology (IT) has
traditionally been viewed as a cost center. Computation is considered on the same
footing as plumbing and electricity—an essential service whose reliability goes
unquestioned except for conspicuous outages. AI models change the role of IT,
shifting the job description of a computer from precisely executing minutely crafted
sequences of steps to flexibly pursuing ambiguously defined goals. This shift carries
important ramifications for the pricing of IT resources.

Language models “think” by emitting streams of tokens, and the number of the tokens
produced determines both the duration and cost of a computation. This pricing
model radically differs from traditional IT costs, which are purely operational—once
a computer script has been written, executing it is only a matter of running it on
suitable hardware powered by modest amounts of electricity. By contrast, deploying
AI models implies paying for intelligence on demand. Starting with a blank slate,
you may ask for the solution to a complex problem, and it shall be delivered to
you out of nothingness. However, the bill rises in direct proportion to the required
intellectual lift.
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This pay-by-intelligence model puts LLMs into an intermediate position relative
to human labor and traditional IT. For high-scale computation with large numbers
of queries—say, a for-loop iterating through millions of database records—LLMs
are much more expensive than the traditional approach of first writing and then
executing a deterministic computer program. However, for tasks requiring nuanced
understanding and logical insight, such as solving mathematics problems, an LLM’s
“wages” are much lower than a comparable human’s. For example, as of June
2025, a state-of-the-art reasoning LLM charges $0.01-$0.10 for the solution of
a competition-level high-school mathematics problem (Zellinger and Thomson,
2025a). In comparison, a human tutor hired at a rate of $60/hour would ask for $5 as
compensation for five minutes of his time, a 50-100x increase in cost. See Chapter
3 for economic analysis along these lines.

Managing the Risk of AI Errors. Many practitioners are most concerned about
the risk of AI models making mistakes. These fears are especially pronounced for
executives in highly regulated industries with extensive compliance requirements,
such as legal, medicine, and finance. Their concerns are well-founded: compared to
standard computer code, which deterministically executes the same sequence of steps
each time it is run, large language models generate their outputs probabilistically.
The same input can result in different outputs, mimicking a characteristic of human
work. The consequences can be innocuous, such as when an AI model responds
to the question “What is the capital of Australia?” by saying either "Canberra is
the capital of Australia" or “The capital of Australia is Canberra.” However, the AI
model may occasionally blurt out “Sydney”—an amusing blunder, perhaps, but not
to the anxious executive who must take responsibility for this buffoonery.

Just as with human work, enhancing the reliability of work performed by AI models
requires implementing checks and guardrails. In the first place, however, it is
necessary to form a clear concept of what constitutes “right” vs “wrong” outputs.
This binary assessment provides a basis for quantifying the probability that an AI
model will make a mistake when processing a specific query. We will develop this
notion further in Chapter 2. In Chapter 4, we explore deferring difficult queries to
a human expert to further reduce AI error rates.

In summary, many challenges remain for effectively deploying AI models in practice.
Among these pain points, we count 1) selecting suitable AI models, 2) balancing
the economics of their usage, and 3) managing the risk of AI errors.

Presented with little reliable guidance, practitioners often seek refuge in social
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media posts authored by self-styled “AI influencers” with dubious credibility or
ulterior motives. We believe practitioners would benefit from a unified framework
that addresses the challenges of practical LLM deployments in a conceptually clear,
statistically sound, and empirically effective manner. This thesis presents a few
components of such a framework:

• Uncertainty-Aware System Optimization (Chapter 2)

• Economic Evaluation (Chapter 3)

• Error Reduction with Human-in-the-Loop (Chapter 4)

• Proof-of-Concept System for Synthetic Data Generation (Chapter 5)

Before describing the chapters ahead in more detail, we give an overview over key
concepts that will recur during our explorations.

1.2 Key Concepts
This section provides an overview and glossary of important concepts that will recur
and reverberate throughout our explorations.

LLM. Large language models (LLM) are deep neural networks, commonly de-
signed with a transformer architecture (Vaswani et al., 2017). The size of the
model—measured in billions of parameters—largely determines its performance,
with bigger models performing better (Kaplan et al., 2020).

Reasoning LLM. Traditional LLMs have shown weakness on answering numer-
ical or logical questions, even when their parameter count is large (Brown et al.,
2020b). To address this shortcoming, a special class of LLMs—termed reasoning
models—is trained using reinforcement learning to think logically until a convinc-
ing answer has been identified (DeepSeek AI, 2025). Reasoning LLMs sharply
outperform traditional LLMs on complex reasoning tasks, including mathematics.
By automatically adapting their thinking duration to the difficulty of the query, these
models apply a form of test-time compute—solving difficult problems by generating
greater numbers of tokens at deployment time (Muennighoff et al., 2025).

Accuracy. The capability of LLMs is typically evaluated by testing them on queries
with known correct answers. The accuracy is the fraction of correctly answered
queries. More broadly, we use accuracy as a synonym for the quality of an LLM’s
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output. For example, in some applications, high accuracy takes the form of high
scores on a continuous quality measure such as a grade from 0 to 100.

Cost. The cost of an LLM is the market price (in US dollars) for accessing and
deploying LLMs via third-party APIs. This cost is typically billed per million
tokens. For example, as of July 23rd, 2025, OpenAI charges $2 per million input
tokens and $8 per million output tokens for usage of its flagship reasoning model, o3.
Companies who invest in private physical infrastructure (server racks of graphics-
processing units) face different economics, which are beyond the scope of this
thesis.

Latency. The latency refers to the time interval—typically measured in seconds or
minutes—that passes from when a query is sent to an AI model until the response
is received. Although this period generally includes internet roundtrip delays, such
factors are usually negligible compared to the primary source of latency: the AI
model’s internal computation time.

Uncertainty. Nobody is perfect: even state-of-the-art AI models occasionally make
mistakes. We represent the uncertainty of a model by the probability that it will
(in)correctly answer a given query. This uncertainty can be estimated in various
ways, for example by following Kadavath et al. (2022) or computing the semantic
entropy (Farquhar et al., 2024). Importantly, such probability estimates are only
useful if they are calibrated.

Calibration. The calibration of a probability estimate signifies its agreement with
the true underlying probability. For example, if we predict that an LLM will correctly
answer a given query with 80% probability, the model should correctly answer such
queries around 80% over time.

Confidence. Ideally, uncertainty quantification should be calibrated, but even un-
calibrated metrics correlated with a model’s uncertainty can be valuable. We refer to
these metrics as confidence. In particular, confidence-gating—rejecting the lowest-
confidence fraction (say, the bottom 10%) of queries—can substantially enhance the
model’s conditional accuracy on the queries it chooses to answer. Queries flagged
as low-confidence can be set aside, escalated to a human expert, or redirected to a
more reliable model (see Chapter 4).

1.3 The Road Ahead
The chapters ahead lay out several components of a framework for economically
and reliably deploying large language models.



6

Chapter 2 — Uncertainty-Aware System Optimization. This chapter introduces
LLM cascades, an architectural pattern for reducing the cost and latency of an
LLM deployment. We present a probabilistic modeling approach for optimizing
the crucial deferral thresholds using continuous optimization. Our methodology
quantifies an AI model’s risk of error and the interactions between different models’
errors, yielding an uncertainty-aware framework for system optimization.

Chapter 3 — Economic Evaluation. This chapter tackles the problem of selecting
the best-suited model for a concrete use case. We start by framing LLMs (and LLM
systems) as reward-seeking agents, then formulate the search for an optimal model
in terms of interpretable economic quantities: what is the economic cost of making
a mistake? How much would you pay to lower per-query latency by 1 sec? How
expensive is it to send intractable queries to human experts for review?

Chapter 4 — Error Reduction with Human-in-the-Loop. State-of-the-art rea-
soning LLMs are powerful problem solvers. Nonetheless, their error rates are still
too high for many risk-sensitive tasks. This chapter presents a methodology for
reducing AI mistakes by sending risky queries to a human expert. In addition, we
address a secondary problem of large reasoning models. Like ponderous trucks
floundering into the fast lane of California’s Interstate 5, these models are often
too slow not to provoke frustration. Can we make reasoning LLMs faster without
compromising their performance? Read on to find out.

Chapter 5 — Proof-of-Concept System for Synthetic Data Generation. This
chapter presents a practical LLM system addressing a real-world need. In statistical
cluster analysis, researchers rely on synthetic data benchmarks to evaluate algorith-
mic advances. Constructing a diverse and interpretable set of evaluation scenarios is
essential to ensure the generalizability of research findings. Unfortunately, crafting
evaluation scenarios is a laborious task, often requiring manual tuning of low-level
geometric parameters such as cluster centers and covariance matrices. To address
this challenge, we present a high-level synthetic data generator with a natural lan-
guage interface: researchers simply describe their desired evaluation scenarios in
English, and the generator takes care of the rest.
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C h a p t e r 2

UNCERTAINTY-AWARE SYSTEM OPTIMIZATION

Zellinger, Michael J. and Matt Thomson (2025). “Rational Tuning of LLM Cascades
via Probabilistic Modeling.” In: Transactions on Machine Learning Research.
issn: 2835-8856. url: https://openreview.net/forum?id=YCBVcGSZeR.

Abstract: Understanding the reliability of large language models (LLMs) has
recently garnered significant attention. Given LLMs’ propensity to hallucinate, as
well as their high sensitivity to prompt design, it is already challenging to pre-
dict the performance of an individual LLM. However, the problem becomes more
complex for compound LLM systems such as cascades, where in addition to each
model’s standalone performance, we must understand how the error rates of dif-
ferent models interact. In this paper, we present a probabilistic model for the joint
performance distribution of a sequence of LLMs, which enables a framework for
rationally tuning the confidence thresholds of a LLM cascade using continuous opti-
mization. Compared to selecting confidence thresholds using Bayesian optimization,
our parametric Markov-copula model yields more favorable error-cost trade-offs,
improving the area under the error-cost curve by 4.3% on average for cascades
with 𝑘 ≥ 3 models. In the low-sample regime with 𝑛 ≤ 30 training examples,
the performance improvement widens to 10.2%, suggesting that our framework’s
inductive assumptions about the interactions between the error rates of different
LLMs enhance sample efficiency. Overall, our Markov-copula model provides a
rational basis for tuning LLM cascade performance and points to the potential of
probabilistic methods in analyzing systems of LLMs.

2.1 Introduction
As LLMs become workhorses of the modern computing stack, systems of LLMs
have received significant attention (Zaharia et al., 2024; Chen et al., 2024b). These
approaches make it possible to adapt computational spending to the performance
requirements at the query or task level (Kag et al., 2023; Chen, Zaharia, and Zou,
2023), yielding significant gains in operational efficiency. These gains are achievable
even when accessing LLMs entirely via black-box API calls, by switching between
models of different capabilities.

https://openreview.net/forum?id=YCBVcGSZeR
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However, moving from single LLMs to LLM systems introduces significant addi-
tional complexity. To find the system’s optimal operating point, it is important to
understand not just the performance of individual models but also the interactions
between their error rates. For example, in a simple two-model LLM cascade in which
a small model delegates difficult queries to a large model, the large model’s error
rate increases conditional on receiving a query, since the small model’s confidence
gating induces an adverse selection (Zellinger and Thomson, 2024).

In this paper, we present a parametric probabilistic model for the joint distribution
of the calibrated confidences of a sequence of 𝑘 LLMs, providing a rational basis
for understanding the performance of LLM cascades. We focus on cascades whose
constituent models are ordered by size, from smallest to largest. Our probabilistic
model is based on a Markov factorization, leveraging the insight that LLMs similar in
size are more predictive of each other’s confidence. After using logistic regression to
calibrate each LLM’s confidence, we account for the pairwise interactions between
subsequent LLMs’ error rates using bivariate copulas, providing a data-efficient
model of cascade performance that performs well with as few as 𝑛 ≤ 30 training
examples across six benchmarks.

Our Markov-copula model makes it possible to tune the confidence thresholds of an
LLM cascade using continuous optimization.

Compared to selecting these thresholds via Bayesian optimization, our Rational
Tuning framework yields increasingly better error-cost trade-offs as cascade length
grows. For cascades with 𝑘 ≥ 3 models, our method improves the area under the
error-cost curve by 4.3% on average. Compared to high-resolution grid search,
the improvement is 2.0%. At the same time, our algorithm significantly improves
runtime scaling compared to grid search. For example, we reduce scaling with
respect to the cascade length 𝑘 from exponential to low-order polynomial, making
it much faster to tune longer cascades consisting of 𝑘 ≥ 5 models.

Relative to the prior literature on LLM cascades, our main contributions are as
follows:

• We propose a generative probabilistic model for the joint distribution of the
calibrated confidences of a sequence of LLMs, based on a Markov factoriza-
tion, copula modeling, and mixed discrete-continuous marginal distributions.
We demonstrate that our model fits the empirical data well: on the test sets,
we report average Cramér-von Mises statistics of

√
𝑛CvM = 0.006 for the
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copula models and
√

CvM = 4% for the mixed discrete-continuous marginal
distributions.

• Building on our Markov-copula model, we develop an algorithm for tuning
the confidence thresholds of an LLM cascade using continuous optimization,
based on an analytic probabilistic model. We demonstrate that as cascade
length grows, our method increasingly outperforms the error-cost trade-offs
obtained with Bayesian optimization and high-resolution grid search base-
lines. In addition, relative to grid search our method significantly improves
the computational complexity of finding optimal confidence thresholds, turn-
ing the dependencies on cascade length and the desired resolution of the
error-cost curve from intractable and high-order polynomial into low-order
polynomial and linear, respectively.

In addition, we present comprehensive evidence that simple hyperparameter-free
feature transforms significantly improve the performance of calibrating LLM con-
fidence with logistic regression (Zellinger and Thomson, 2024), demonstrating a
28.2% average reduction in expected calibration error across 10 LLMs and 6 bench-
marks.

2.2 Background and Related Work
Language Models: given a predefined token vocabularyV, a large language model
(LLM) 𝑀 defines an autoregressive probability distribution 𝑡 ∼ 𝑝(·|𝑡1, ..., 𝑡𝑛) for
the next token 𝑡 ∈ V given a sequence of tokens (𝑡1, ..., 𝑡𝑛) ∈ V𝑛. In this work,
we focus on the overall input-output behavior of the model 𝑀 . We let 𝑥 stand for
the entire query consisting of tokens (𝑡1, ..., 𝑡𝑛) and write 𝑀 (𝑥) for the sequence of
tokens (𝑡𝑛+1, 𝑡𝑛+2, ...) obtained when repeatedly sampling 𝑡 𝑗+1 ∼ 𝑃(·|𝑡1, ..., 𝑡 𝑗 ) for
𝑗 ≥ 𝑛 until encountering a stop token 𝑡∅ ∈ V.

Language Model Cascades: a length-𝑘 LLM cascade 𝐶 = 𝑀1 → ...→ 𝑀𝑘 routes
an incoming query 𝑥 sequentially from model 𝑀𝑖 to 𝑀𝑖+1 based on confidence
measures Φ𝑖 = Φ𝑖 (𝑥) ∈ [0, 1]. When 𝑥 reaches 𝑀𝑖, the cascade returns 𝑀𝑖 (𝑥) if
Φ𝑖 (𝑥) > 𝜙𝑖, where 𝜙𝑖 ∈ (0, 1) is a confidence threshold for model 𝑀𝑖. Otherwise,
𝐶 forwards the query 𝑥 to the next model, 𝑀𝑖+1. Writing 𝐶i:k for the subcascade
𝑀𝑖 → ...→ 𝑀𝑘 consisting of the last 𝑘 − 𝑖+1 models, the output𝐶 (𝑥) of the overall
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cascade is defined recursively as

𝐶 (𝑥) =

𝑀1(𝑥) if Φ1(𝑥) > 𝜙1 or |C| = 1

𝐶2:k(𝑥) otherwise,
(2.1)

where |𝐶 | is the length of the cascade, for example |𝐶2:𝑘 | = 𝑘 − 1.

Different authors have recently explored LLM cascades. Chen, Zaharia, and Zou
(2023) have shown that it is possible to approach the performance of a large LLM
at much lower cost by initially sending queries to a small model; Aggarwal et al.
(2024) present a flexible cascading approach based on a POMPD router; Yue et al.
(2024) propose LLM cascades specifically for mathematical reasoning benchmarks;
and Gupta et al. (2024) consider uncertainty at individual token position within
longer generations. While many of these approaches use standard uncertain quan-
tification techniques for LLMs (discussed below), some use trained neural networks
for making the decision of forwarding a query 𝑥 to the next model. Neural net-
work approaches have the potential to make more finegrained distinctions between
the capabilities of different LLMs1, but may require large amounts (𝑛 > 1000) of
task-specific training data to perform well.

Jitkrittum et al. (2024) discuss the limits of forwarding queries based purely on
the confidence level of the current model, proposing to train a cascading decision
that takes into account not only the current model’s probability of correctness, but
also that of the following model. In addition, Wang et al. (2024) explore finetuning
LLMs to make them more effective as part of a cascade. Other methods for LLM
orchestration use routers that directly forward queries to suitable LLMs in a one-to-
many architecture (Ding et al., 2024; Kag et al., 2023; Sakota, Peyrard, and West,
2024; Hari and Thomson, 2023). In addition, some work has explored recombining
the string outputs of several smaller models to yield improved performance (Jiang,
Ren, and Lin, 2023).

Uncertainty Quantification and Calibration: LLMs within a cascades require the
means to tell “easy” queries from “difficult” ones. Several authors have proposed
methods for quantifying this uncertainty. These methods work in different ways.
Some draw on the LLMs’ intrinsic next-token probabilities (Hendrycks and Gim-
pel, 2018; Plaut, Nguyen, and Trinh, 2024), while others use prompting to elicit

1Of particular interest is the potential for detecting rare cases when a small model correctly
answers a query on which a larger model fails.
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confidence statements (Lin, Hilton, and Evans, 2022a; Kadavath et al., 2022; Xiong
et al., 2024). Some sample repeatedly from the LLM and measure the consistency
between different answers (Wang et al., 2023; Manakul, Liusie, and Gales, 2023;
Farquhar et al., 2024; Lin, Trivedi, and Sun, 2024), while others train lightweight
probes on top of an LLM’s hidden embeddings (Azaria and Mitchell, 2023a; Ren
et al., 2023a, Chen et al., 2024a; Kossen et al., 2024). Finally, it is even possible to
evaluate uncertainty in a largely unsupervised way (Burns et al., 2024).

Calibration of LLM uncertainty refers to the question of whether numerical con-
fidence scores reflect the true probabilities of error. Methods relying on LLMs’
next-token probabilities face the challenge that these probabilities are typically over-
confident, at least for instruction-tuned LLMs (Ouyang et al., 2022; OpenAI, 2024a).
Although calibration is not required for forwarding queries based on confidence, it
is important for accurately predicting error rates and desirable for gaining insights
into system performance. Many techniques for calibration have been proposed
(Platt, 1999; Zadrozny and Elkan, 2002; Naeini, Cooper, and Hauskrecht, 2015,
Guo et al., 2017; Jiang et al., 2021). Temperature scaling, which divides an LLM’s
log probabilities by a suitable constant factor (typically >1), is often favored for its
simplicity.

Copula Models: copula models are statistical tools for modeling joint probability
distributions. They are widely used in applications. For example, in quantitative
finance they are used to price complex securities such as baskets of loans whose
repayments depend on multiple borrowers. Mathematically, a copula is a joint
cumulative distribution function whose marginals all follow the uniform distribution.
The idea behind copula modeling is that, in order to specify an arbitrary joint
distribution 𝑝(𝑥, 𝑦), it suffices to specify the marginals 𝑝(𝑥), 𝑝(𝑦) along with a
copula accounting for the correlation between 𝑥 and 𝑦. This result is known as

Theorem 1 (Sklar’s Theorem). Let𝐹XY be a joint distribution function with marginals
𝐹𝑋 and 𝐹𝑌 . Then there exists a copula 𝐶 such that for all 𝑥, 𝑦 ∈ R,

𝐹XY(𝑥, 𝑦) = 𝐶 (𝐹𝑋 (𝑥), 𝐹𝑌 (𝑦)). (2.2)

Conversely, if 𝐶 is a copula and 𝐹𝑋 and 𝐹𝑌 are distribution functions, then the dis-
tribution function 𝐹XY defined by (2.2) is a joint distribution function with marginals
𝐹𝑋 and 𝐹𝑌 .
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For a proof and further discussion, see Nelsen (2006). Intuitively, copula modeling
builds on the probability integral transform principle: if 𝑋 is a continuous random
variable with distribution function 𝐹𝑋 (·), then 𝐹𝑋 (𝑋) follows a uniform distribution
(Casella and Berger, 2002). In our application to LLM cascades, we model the joint
probability 𝑝(𝜙𝑖−1, 𝜙𝑖) of the calibrated confidences of models 𝑀𝑖 and 𝑀𝑖−1 using
a Gumbel copula. This copula depends on a single correlation parameter 𝜃, which
can be easily calculated from the rank correlation (Kendall’s 𝜏) of the two variables.

2.3 Rational Tuning of LLM Cascades via Probabilistic Modeling
Markov-Copula Model
Our probabilistic model for the joint distribution of LLM confidences is based
on calibrated confidence scores. We use logistic regression to transform a raw
confidence signal 𝑝raw into the calibrated confidence score

𝜙 = Φ𝜃 (𝑝raw), (2.3)

where 𝜃 are the parameters of the logistic regression. The calibrated confidence 𝜙

estimates the model’s probability of correctness based on the raw confidence signal
𝑝raw. We calibrate each model separately, resulting in functions Φ1, ..., Φ𝑘 for the
models 𝑀1, ..., 𝑀𝑘 of a cascade 𝑀1 → ...→ 𝑀𝑘 . See Section 2.4 for more details.
Since the confidence signal 𝑝raw depends on the query 𝑥, we also write 𝜙 = Φ(𝑥) in
a slight abuse of notation.

Our probabilistic model for the joint distribution of the calibrated confidences
Φ1(𝑥), ...,Φ𝑘 (𝑥) consists of three parts. First, we model the marginal distribu-
tion of the calibrated confidence of each individual LLM in the cascade. Second,
we model the correlation between the calibrated confidences Φ𝑖 (𝑥),Φ𝑖+1(𝑥) of ad-
jacent models using copulas. Finally, we construct the full joint distribution by
combining the conditional probabilities 𝑝(𝜙𝑖+1 |𝜙𝑖) using the Markov property.

Specifically, given a cascade 𝑀1 → ... → 𝑀𝑘 with trained confidence calibrators
Φ1, ...,Φ𝑘 , we first fit parametric univariate distributions 𝐹𝑖 (𝜙𝑖 |𝜃𝑖) to model the true
marginal distributions P(Φ𝑖 ≤ 𝜙𝑖). Second, we account for the correlation between
adjacent models by fitting copulas 𝐶𝑖,𝑖+1(·, ·). Each copula 𝐶𝑖,𝑖+1 makes it possible
to compute the joint distribution 𝐹𝑖,𝑖+1(·, ·) of (Φ𝑖,Φ𝑖+1) via

𝐹𝑖,𝑖+1(𝜙𝑖, 𝜙𝑖+1) = 𝐶𝑖 𝑗 (𝐹𝑖 (𝜙𝑖), 𝐹𝑗 (𝜙 𝑗 )), (2.4)

by Theorem 1. Finally, we estimate joint probabilitiesP(Φ1 ≤ 𝜙1,Φ2 ≤ 𝜙2, ...,Φ𝑘 ≤
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𝜙𝑘 ) by relying on the Markov assumption

P(Φ𝑖 ≤ 𝜙𝑖 |Φ𝑖−1 ≤ 𝜙𝑖−1,Φ𝑖−2 ≤ 𝜙𝑖−2, ...,Φ1 ≤ 𝑡1) ≈ P(Φ𝑖 ≤ 𝜙𝑖 |Φ𝑖−1 ≤ 𝜙𝑖−1),
(2.5)

which implies

P(Φ1 ≤ 𝜙1,Φ2 ≤ 𝜙2, ...,Φ𝑖 ≤ 𝜙𝑖) ≈ P(Φ1 ≤ 𝜙1)
𝑖∏
𝑗=2

P(Φ 𝑗 ≤ 𝜙 𝑗 |Φ 𝑗−1 ≤ 𝜙 𝑗−1),

(2.6)
for any 𝑖 = 2, ..., 𝑘 and 𝜙1, ..., 𝜙𝑖 ∈ (0, 1). We study the validity of assumption (2.5)
in Section 2.4.

Parameter Inference for the Probabilistic Model
In this section, we describe in detail the components of our parametric probabilistic
model and how we infer their parameters.

Continuous-discrete mixture of scaled beta distributions: to model the marginals
of calibrated confidence, we must account for the possibility that LLMs sometimes
return perfect confidence 𝑝raw = 1.0, possibly as a result of performance opti-
mizations such as quantization (Dettmers et al., 2024; Proskurina et al., 2024).
Depending on the LLM and the task, almost half of all queries may return perfect
confidence, as is the case of GPT-4o Mini on the MMLU validation set (45.7%).

To accommodate the resulting discrete probability masses at the minimum and
maximum calibrated confidence values 𝜙min and 𝜙max, we use a mixed continuous-
discrete distribution based on a mixture of two beta distributions. Specifically, we
use the distribution function

𝐹 (𝜙 |𝑤1, 𝑤2, 𝜙min, 𝜙max; 𝜋, 𝛼1, 𝛽1, 𝛼2, 𝛽2)
= 𝑤min𝛿𝜙min (𝜙) + 𝑤max𝛿𝜙max (𝜙) + (1 − 𝑤min − 𝑤max)𝐹mixture(𝜙), (2.7)

where 𝛿𝑧 is the distribution of a point mass at 𝑧, and 𝐹mixture(𝜙) is

𝐹mixture(𝜙 |𝜙min, 𝜙max;𝛼1, 𝛽1;𝛼2, 𝛽2)

= 𝜋𝐹𝛽

(
𝜙 − 𝜙min

𝜙max − 𝜙min

����𝛼1, 𝛽1

)
+ (1 − 𝜋)𝐹𝛽

(
𝜙 − 𝜙min

𝜙max − 𝜙min

����𝛼2, 𝛽2

)
. (2.8)

Here, 𝐹𝛽 (·|𝛼, 𝛽) is the beta distribution with pdf 𝑓𝛽 (𝑥 |𝛼, 𝛽) = 𝑥𝛼−1(1 − 𝑥)𝛽−1 for
𝑥 ∈ (0, 1).



14

We infer the parameters of the model (2.7) as follows. First, we estimate the
minimum and maximum calibrated confidences 𝜙min and 𝜙max by their observed
minimum and maximum values on the training set. We estimate the corresponding
discrete probability masses 𝑤min and 𝑤max by simple counting. Finally, to esti-
mate the mixture of beta distributions (2.8), we use the expectation-maximization
algorithm (Dempster, Laird, and Rubin, 1977).

Gumbel copula: to model the correlations between the calibrated confidences of
pairs of LLMs, we use the Gumbel copula 𝐶𝜃 (𝑢, 𝑣) given by

𝐶𝜃 (𝑢, 𝑣) = exp ©­«−
(
log

(
1
𝑢

)𝜃
+ log

(
1
𝑣

)𝜃) 1
𝜃 ª®¬ , (2.9)

where 𝜃 > 1 measures the degree of correlation between 𝑢 and 𝑣. To fit 𝜃 from
empirical data, we use the relationship

𝜃 =
1

1 − 𝜏 , (2.10)

where 𝜏 is Kendall’s rank correlation coefficient (Nelsen, 2006).

Tuning the Confidence Thresholds
The purpose of the Markov model (2.6) is to obtain optimal error-cost tradeoffs for an
LLM cascade𝐶 by tuning the confidence thresholds. We formulate the optimization
problem

𝜽∗ = arg min
𝜽
(1 − P𝜽 (Correct)) + 𝜆 E𝜽 [Cost], (2.11)

where 𝜽 ∈ R𝑘−1 denotes the confidence thresholds (𝜙1, ..., 𝜙𝑘−1). The Lagrange
multiplier 𝜆 ≥ 0 indicates the user’s cost sensitivity. Setting 𝜆 = 0 means that cost
is irrelevant, whereas 𝜆 > 0 penalizes the use of expensive models. To compute
the efficient frontier of optimal (P(Correct),E[Cost]) tuples, we solve (2.11) for
different values of the cost sensitivity 𝜆.

Since 𝜆 has no known relationship with the expected cost, it is not clear how to
choose 𝜆 to obtain uniform coverage of the efficient frontier. In practice, we start
with very small values of 𝜆 and set

𝜆← (1 + 𝑟)𝜆, (2.12)

for some 𝑟 > 0, until the cost constraint is stringent enough to make the expected cost
equal to the least expensive model’s expected cost. Typically, setting 𝑟 between 0.25
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and 1 performs well. For any potential gaps in coverage, we adaptively interpolate
the optimal thresholds. Specifically, if 𝜆(𝑖) < 𝜆(𝑖+1) yield optimal thresholds 𝜽 (𝑖)

and 𝜽 (𝑖+1) and the gap |𝜽 (𝑖+1)
𝑗
− 𝜽 (𝑖)

𝑗
| = |𝜙(𝑖+1)

𝑗
− 𝜙

(𝑖)
𝑗
| for any individual threshold

exceeds probability mass 𝑞 based on the distribution of the calibrated confidence
Φ 𝑗 , we insert

𝜽 (𝑖+1/2) = (𝜽 (𝑖) + 𝜽 (𝑖+1))/2 (2.13)

into the list of optimal thresholds between 𝜽 (𝑖) and 𝜽 (𝑖+1) . We repeat the infilling
procedure (2.13) until no gaps remain at level 𝑞. We have found 𝑞 < 0.2 to perform
well.

Efficient computation and optimization of the objective: solving the minimiza-
tion problem (2.11) requires computing a cascade’s probability of correctness and
expected cost for candidate confidence thresholds 𝜽 = (𝜙1, ..., 𝜙𝑘−1) ∈ R𝑘−1. To
compute these quantities, we rely on the decompositions (2.14) and (2.15) presented
in

Proposition 2. Consider a cascade 𝑀1 → ... → 𝑀𝑘 with confidence thresholds
(𝜙1, ..., 𝜙𝑘−1). Assume that the distribution functions for the calibrated confidences
Φ𝑖 satisfy (2.5), for 𝑖 = 1, 2, ..., 𝑘 . Assume further that the expected numbers of
input and output tokens, 𝑇 (in)

𝑖
and 𝑇

(out)
𝑖

, for each model 𝑖 are independent of the
calibrated confidences Φ1, ...,Φ𝑘 . Then the probability of correctness P(Correct)
and expected cost E[𝐶𝑜𝑠𝑡] for the cascade are

P(Correct) =
∫
{Φ1>𝜙1}

Φ1(𝜔) dP(𝜔) (2.14)

+
𝑘∑︁
𝑖=2

P(Φ1 ≤ 𝜙1) ©­«
𝑖−1∏
𝑗=2

P(Φ 𝑗 ≤ 𝜙 𝑗 |Φ 𝑗−1 ≤ 𝜙 𝑗−1)ª®¬
×

∫
{Φ𝑖>𝜙𝑖}

Φ𝑖 (𝜔) dP(𝜔|Φ𝑖−1 ≤ 𝜙𝑖−1)

E[Cost] = (1 − P(Φ1 ≤ 𝜙1)) E[𝐶1] (2.15)

+
𝑘∑︁
𝑖=2

P(Φ1 ≤ 𝜙1)
©­«
𝑖−1∏
𝑗=2

P(Φ 𝑗 ≤ 𝜙 𝑗 |Φ 𝑗−1 ≤ 𝜙 𝑗−1)
ª®¬

× (1 − P(Φ𝑖 ≤ 𝜙𝑖 |Φ𝑖−1 ≤ 𝜙𝑖−1))
𝑖∑︁
𝑗=1

E[𝐶 𝑗 ]

where𝐶𝑖 is the cost per query of model 𝑖. Specifically, if 𝛾 (in)
𝑖

and 𝛾
(out)
𝑖

are the costs
per input and output token, 𝐶𝑖 = 𝛾

(in)
𝑖

𝑇
(in)
𝑖
+ 𝛾 (out)

𝑖
𝑇

(out)
𝑖

. To simplify the notation, we
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let 𝜙𝑘 := −∞ (although there is no confidence threshold for the final model in the
cascade).

Proof. See Appendix 2A for a proof. □

By leveraging the structure of the summands in Proposition 2, we efficiently compute
(2.14) and (2.15) in 𝑂 (𝑘) time, where 𝑘 is the length of the cascade. See Appendix
22B for the algorithm. To solve the minimization problem (2.11), we use the L-
BFGS-B optimizer, a low-memory version of the Broyden–Fletcher–Goldfarb–Shanno
algorithm (Liu and Nocedal, 1989) modified to handle simple box constraints.

Smoothness of the objective: although our Markov-copula model uses mixed
discrete-continuous marginals, the objective (2.11) is smooth because we restrict
each threshold 𝜙 to vary only inside the interior of the interval (𝜙min, 𝜙max), where the
marginal distributions of calibrated confidence are smooth. Leaving out the bound-
ary {𝜙min, 𝜙max} results in no loss of generality because selecting 𝜙 ∈ {𝜙𝑚𝑖𝑛, 𝜙𝑚𝑎𝑥}
is equivalent to dropping the model from the cascade (if 𝜙 = 𝜙max) or dropping all
subsequent models (if 𝜙 = 𝜙min). Within our framework, it is possible to carry out
such model selection by evaluating subcascades. After fitting copula models for all
pairs of models (rather than only adjacent pairs), evaluating subcascades involves
little computational overhead.

2.4 Results
Methodology
Forwarding Queries: the models in our cascades decide whether to forward queries
by thresholding the calibrated confidence 𝜙 = Φ(𝑝raw), where 𝑝raw is the raw
confidence signal. We obtain 𝑝raw from the model-intrinsic next-token probabilities.
On multiple-choice tasks, we take the maximum probability among the answer
choices (Hendrycks and Gimpel, 2018; Plaut, Nguyen, and Trinh, 2024). In the
natural language generation case, we first generate the answer, then send a follow up
verification prompt to the model asking “Is the proposed answer <answer> true?
Answer only Y or N.” We use the probability of the Y token as the confidence signal
𝑝raw. Our prompt templates are available in Appendix 2C.

Since we focus on providing techniques compatible with black-box LLM inference
via third-party APIs, we leave consideration of hidden layer-based confidence signals
to future work. In addition, we do not consider resampling methods such as semantic
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entropy (Farquhar et al., 2024). Such methods are compatible with black-box
inference, but in the context of LLM cascades, their computational overhead appears
prohibitive. For example, at the time of writing inference of Llama3.1 405B typically
costs 15 times more than inference of Llama3.1 8B. In this case, it is likely preferable
to directly run the 405B model once rather than forward a query based on 𝑘 ≈ 15
resamples of the 8B model. See Appendix 2D for a table listing small-large model
pairings from Meta, Anthropic, and OpenAI, along with their price differentials.

Confidence Calibration: raw token probabilities of instruction-tuned LLMs are
typically poorly calibrated (Ouyang et al., 2022; Brown et al., 2020b; OpenAI,
2024a; Plaut, Nguyen, and Trinh, 2024). However, calibration is important for
accurate error prediction. To obtain calibrated confidence scores, we use logistic
regression. We favor this approach over temperature scaling since it yields 𝑝

values and other statistical metrics that are useful for diagnosing calibration issues,
especially in a low-data scenario.

Unfortunately, the overconfidence of the raw token probabilities makes the dis-
tribution of raw confidence signals highly peaked. The raw token probabilities
accumulate near 1.0, making tiny changes in confidence (for example, 𝑝raw = 0.98
vs 𝑝raw = 0.99) highly consequential. To enhance the calibration performance
of logistic regression, as a pre-processing step we apply hyperparameter-free fea-
ture transformations that spread out the overconfident probabilities via asymptotes
near 𝑝raw = 0.0 and 𝑝raw = 1.0. Following Zellinger and Thomson (2024), on
multiple-choice tasks we use the transformation

𝜉 (𝑝raw) = log
(

1
1 − 𝑝raw

)
, (2.16)

whereas on natural language generation tasks, we use

𝜉 (𝑝raw) =


log
(

1
1−𝑝raw

)
if 𝑝 ≥ 1

2 ,

log
(

1
𝑝raw

)
if 𝑝 < 1

2 .
(2.17)

Importantly, these feature transformations do not require any hyperparameter tuning.

Unfortunately, models sometimes return perfect certainty 𝑝raw = 1.0 or 𝑝raw =

0.0, making (2.16) and (2.17) blow up. To address this problem, we reassign all
observations with infinite 𝜉 to the maximum of the finite values of 𝜉. In other words,
we define

𝜉max = max{𝜉 (𝑝raw) : (𝑝raw, 𝑦) ∈ D, 𝑝raw < ∞}, (2.18)
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where D is the training set consisting of pairs (𝑝raw, 𝑦), and 𝑦 ∈ {0, 1} indicates
correctness of the model’s answer.2 We set all observations where 𝜉 = ∞ to 𝜉max,
and treat 𝜉min analogously.

Benchmarks: we evaluate our probabilistic model and the error-cost curves of LLM
cascades on six language modeling benchmarks including MMLU (Hendrycks et
al., 2021a); MedMCQA (Pal, Umapathi, and Sankarasubbu, 2022); TriviaQA (Joshi
et al., 2017); XSum (Narayan, Cohen, and Lapata, 2018); GSM8K (Cobbe et al.,
2021); and TruthfulQA (Lin, Hilton, and Evans, 2022b). These tasks include
general-purpose knowledge and reasoning, domain-specific QA, open-domain QA,
summarization, mathematical reasoning, and truthfulness in the face of adversarially
chosen questions.

For each benchmark, we use 300 examples for training, and 1000 examples for
testing, except on MMLU and TruthfulQA. On MMLU, the dev set contains only
285 examples, of which we use all. The validation set consists of 1531 examples
and is divided into different subjects; to avoid bias from subject selection, we take
all 1531 validation examples for testing. On TruthfulQA, the entire data set consists
only of 817 observations, of which we randomly select 300 for training and the
remaining 517 for testing.

Importantly, we run each benchmark in a zero-shot manner, since we believe this
setting faithfully reflects off-the-shelf use of LLMs in practice. Appendix 2C gives
the prompt templates we used for each benchmark. To conveniently transform and
calibrate the raw confidence scores, track the numbers of input and output tokens,
and monitor cost, we ran our evaluations using a preliminary version of the niagara
Python package for LLM cascading. Code for reproducing the results of the paper
is available on GitHub.3.

Evaluation: to evaluate whether a model’s answer is correct on open-ended ques-
tions, we use Anthropic’s Claude 3.5 Sonnet model as a judge. Note that this judging
task is relatively easy since the open-ended benchmarks provide reference answers.
For example, on TruthfulQA, we include in the evaluation prompt for Claude a
list of correct and incorrect reference answers, as provided by the authors of the
benchmark (Lin, Hilton, and Evans, 2022b). On XSum, we do not use the one-

2Note we do not require knowing the actual answer of a model, only whether it was correct.
3Code for reproducing the results of the paper is available at

github.com/mzelling/rational-llm-cascades.
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Table 2.1: Overall performance of language models across tasks, evaluated on the
𝑛 ≈ 1000 test sets. %Corr is the percentage of correct answers, %ECE is the
expected calibration error (after training on the 𝑛 ≈ 300 training sets), and %Cert
is the percentage of queries for which a model returns log probabilities indicating
certainty (−∞ or 0.0).

MMLU MedMCQA TriviaQA XSum GSM8K TruthfulQA

Model %Corr %ECE %Cert %Corr %ECE %Cert %Corr %ECE %Cert %Corr %ECE %Cert %Corr %ECE %Cert %Corr %ECE %Cert

llama3.2-1b 42.5 3.8 0.0 34.5 8.7 0.0 37.2 5.8 0.0 9.4 2.9 0.0 45.9 13.1 0.0 35.8 4.3 0.0
llama3.2-3b 57.2 4.0 0.0 53.1 6.8 0.0 63.3 4.5 0.0 21.2 3.6 0.0 79.2 9.5 0.0 43.3 7.5 0.0
llama3.1-8b 63.4 4.1 0.0 51.8 9.4 0.0 78.7 6.2 0.0 50.8 3.5 0.0 84.3 4.7 0.0 50.3 7.3 0.0
llama3.1-70b 81.5 2.4 0.0 72.6 9.9 0.0 92.8 2.3 0.0 84.5 6.0 0.0 94.9 2.9 0.0 59.4 5.7 0.0
llama3.1-405b 85.2 2.9 0.1 75.7 10.8 0.0 94.9 3.0 0.1 83.9 5.4 0.0 97.1 1.9 0.5 69.2 5.6 0.0
qwen2.5-32b-c 75.3 5.3 0.0 55.9 6.2 0.0 70.2 8.9 0.0 69.3 4.3 0.0 95.1 3.2 0.0 57.4 5.9 0.0
qwen2.5-72b 82.0 4.9 0.0 69.1 7.0 0.0 87.6 3.2 0.3 95.2 2.2 15.5 95.4 1.2 79.4 57.8 7.7 0.6
gpt-4o-mini 74.9 4.7 45.7 66.0 5.3 27.8 90.0 2.8 76.2 97.6 2.6 38.1 92.9 3.5 48.3 59.4 7.0 26.7
gpt-4o 83.6 4.8 22.7 76.5 2.8 4.8 96.2 2.1 0.9 99.0 0.7 0.0 95.9 2.1 4.3 72.1 3.8 0.2
Average 71.7 4.1 7.6 61.7 7.4 3.6 79.0 4.2 8.3 67.9 3.5 6.0 86.7 4.7 14.7 56.1 5.9 3.0

line reference summaries and instead follow G-Eval (Liu et al., 2023) to evaluate
a proposed summary in terms of its coherence, consistency, fluency, and relevance
(Kryściński et al., 2019). We ask Claude to score each dimension on a scale of
1-5. We consider a summary to be correct if it attains a perfect score (5) in each
dimension.

Language Models: we work with models from Meta’s Llama3 series (1B-405B),
Alibaba’s Qwen series (Qwen2.5 32B Coder and Qwen 72B), and OpenAI’s GPT
models (GPT-4o Mini and GPT-4o). All models are instruction-tuned. We used the
OpenAI API to run inference with GPT-4o Mini and GPT-4o, and the Fireworks
API for all other models.

Performance Summary
Tables 2.1 and 2.2 show the overall performance of all the language models across
tasks, including the calibration performance. We measure calibration in terms of
the expected calibration error (ECE), which we compute adaptively by bucketing
confidence scores into 10 bins based on the deciles of their distributions. Tables 2.1
and 2.2 yield several interesting findings.

First, some of the models often return raw log probabilities indicating certainty (−∞
or 1.0). This tendency varies strongly by model family. OpenAI’s GPT models are
especially prone to certainty: on MMLU, for example, GPT-4o Mini returns raw
confidence 1.0 on 45.7% of queries, while GPT-4o does so on 22.7% of queries. By
contrast, Llama3.1 405B returns perfect confidence only on 0.1% of queries.

Second, the test ECE for our calibration scheme varies by model and by benchmark.
The benchmark yielding the poorest calibration is MedMCQA, giving an average
test ECE of 7.4% across models. However, some models give exceptional calibration
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Table 2.2: Expected calibration error for logistic regression-based calibration, with
(%ECE) and without (%ECE-TF) applying the nonlinear transformations (2.16) and
(2.17) as a pre-processing step. All values are computed on the 𝑛 ≈ 1000 test
sets, after fitting the logistic regressions on the 𝑛 ≈ 300 training sets. For each
benchmark, bold font indicates the better performance. The column %Δ shows the
reduction in ECE when using the transformations.

MMLU MedMCQA TriviaQA XSum GSM8K TruthfulQA

Model %ECE %ECE-TF %𝚫 %ECE %ECE-TF %𝚫 %ECE %ECE-TF %𝚫 %ECE %ECE-TF %𝚫 %ECE %ECE-TF %𝚫 %ECE %ECE-TF %𝚫

llama3.2-1b 3.8 6.1 -37.7 8.7 9.8 -11.2 5.8 5.8 0.0 2.9 2.7 7.4 13.1 13.2 -0.8 4.3 4.3 0.0
llama3.2-3b 4.0 7.4 -45.9 6.8 10.0 -32.0 4.5 14.9 -69.8 3.6 3.7 -2.7 9.5 9.5 0.0 7.5 6.4 17.2
llama3.1-8b 4.1 7.0 -41.4 9.4 14.1 -33.1 6.2 15.1 -58.9 3.5 9.7 -63.9 4.7 5.1 -7.8 7.3 7.3 0.0
llama3.1-70b 2.4 7.9 -69.6 9.9 12.5 -20.8 2.3 5.1 -54.9 6.0 10.4 -42.3 2.9 4.5 -35.6 5.7 5.3 7.5
llama3.1-405b 2.9 10.4 -72.1 10.8 14.2 -24.0 3.0 4.9 -38.8 5.4 10.2 -47.1 1.9 3.6 -47.2 5.6 10.8 -48.1
qwen2.5-32b-c 5.3 13.9 -61.9 6.2 14.5 -57.2 10.0 15.7 -36.3 4.3 10.2 -57.8 3.2 4.7 -31.9 5.9 10.6 -44.3
qwen2.5-72b 4.9 10.9 -55.0 7.0 16.1 -56.5 4.0 9.4 -57.4 2.2 3.2 -31.3 1.2 4.9 -75.5 7.5 9.3 -19.4
gpt-4o-mini 4.7 14.8 -68.2 5.3 15.5 -65.8 1.4 3.8 -63.2 2.6 2.4 8.3 3.5 6.1 -42.6 5.3 5.8 -8.6
gpt-4o 4.8 11.2 -57.1 3.1 12.6 -75.4 2.1 3.6 -41.7 0.7 1.0 -29.6 2.1 4.6 -54.3 3.8 11.4 -66.7
Average 5.0 7.9 -36.7 7.6 9.8 -22.5 4.5 8.2 -45.0 3.1 4.3 -28.2 6.2 7.1 -12.7 5.1 6.7 -23.9

performance across benchmarks. GPT-4o stands out: its test ECE never exceeds
4.8%, which is its ECE on MMLU.

Overall, we observe that our calibration scheme performs satisfactorily across bench-
marks and models, with most benchmarks reporting an average test ECE below 5%.
Table 2.2 ablates the importance of the hyperparameter-free feature transforms
(2.16) and (2.17) for obtaining effective calibration. Applying these transformations
results in much lower test ECE scores, reducing them by 28.2% on average. Fig-
ure .1 in Appendix 2E further verifies calibration by showing that, across models
and benchmarks, rejecting queries for which the calibrated confidence is < 1 − 𝑞

approximately lowers the test error rates to < 𝑞.

Goodness-of-Fit of the Markov-Copula Model
In this section, we show that our probabilistic model fits the empirical data well.
We start by presenting evidence that the Markov assumption (2.5) approximately
holds. Second, we show that our Gumbel copula models successfully account
for correlations between the error rates of different LLMs, as measured by low
square-rooted Cramér-von Mises (CvM) statistics and low rejection rates of the null
hypothesis. Finally, we show that our mixed discrete-continuous mixtures of beta
distributions provide an adequate model for the marginal confidence distributions,
as measured by low square-rooted CvM scores. However, the high rejection rates
of the null hypothesis suggest the potential for further improvements.

Verifying the Markov Assumption

To verify that (2.5) approximately holds, we first visualize the rank correlation
between the calibrated confidences of different models. Figure 2.1 shows that the
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(f) TruthfulQA

Figure 2.1: Evaluates the Markov property by showing the Kendall’s 𝜏 rank cor-
relation between the calibrated confidences of pairs of LLMs, as evaluated on the
test set (𝑛 ≈ 1000 examples). In a Markov pattern, the largest rank correlations
occur near the diagonal, based on similarity in model size. For each benchmark, the
figure compares the rank correlation structure of a cascade of Llama models to that
of a mixed cascade consisting of models from the Llama, GPT, and Qwen families,
suggesting that a cascade drawn from models of the same architectural family is
more nearly Markovian.

Kendall’s 𝜏 rank correlation is higher for models of similar sizes. In addition,
models sharing the same architectural family (Llama, GPT, or Qwen) are more
highly correlated than models of different families.

Our findings suggest that a cascade composed only of Llama models (1B-405B)
satisfies the Markov assumption more exactly. Consider Figure 2.1a as an exam-
ple. For the Llama cascade, Kendall’s 𝜏 is highest near the heatmap’s diagonal,
suggesting a Markov property. By contrast, the mixed cascade composed of Llama,
GPT, and Qwen models shows a more haphazard pattern. For example, the rank
correlation between GPT-4o Mini and GPT-4o (𝜏 = 0.55) is higher than that be-
tween GPT-4o and Llama3 405B (𝜏 = 0.54), even though the latter pair of models
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are more similar in size. Similarly, Llama3 405B is more strongly correlated with
Llama3 70B (𝜏 = 0.58) than with Qwen2.5 72B (𝜏 = 0.46), even though the latter
models are of near-identical size. These examples highlight that, in order for the
Markov property to hold based on model size, it seems important that models share
the same architectural family.

In Appendix 2F, we further verify the rank correlation patterns between different
LLMs by recomputing the rank correlations only on those queries where both models
answer correctly or incorrectly.

To probe the Markov property for the Llama cascade in a different way, we train
logistic regressions for predicting correctness of the 8B, 70B, and 405B models based
on the calibrated confidences of two ancestor models in the cascade. Specifically,
we consider the immediate predecessor model (the Markov predictor) paired with
each available earlier ancestor. If the Markov property holds, the Markov predictor
should hold much greater significance than any other ancestor. Table 2.3 lists
the results, revealing a diagonal pattern for each benchmark that confirms that the
Markov predictor is usually much more significant. However, the earlier ancestor
often shares statistical significance. To evaluate the significance of this finding,
we also computed the magnitude of the regression coefficients corresponding to
Table 2.3. The coefficients follow a similar pattern, revealing that even if multiple
predictors are significant, the Markov predictor usually carries the greatest weight.

In sum, our findings suggest that for cascades composed of models sharing the same
architectural family, a Markov property holds approximately, though not exactly.

Testing the Gumbel Copulas for Modeling LLM Correlations

To evaluate the goodness-of-fit of our Gumbel copula models, we first visualize the
correlation between the calibrated confidences of pairs of LLMs. Figures 2.2 and
2.3 show scatterplots for several pairs of Qwen, OpenAI, and Llama models. Each
scatterplot shows the copula-transformed variables

𝑢 = 𝐹̂𝑛 (𝜙), (2.19)

where 𝜙 is the calibrated confidence and 𝐹̂𝑛 its empirical distribution on the test set.
The marginal distribution of each 𝑢 is uniform, since we restrict our copula models
to the region (𝜙min, (𝜙max) of calibrated confidence where the marginal confidence
distribution is smooth. Note that Figure 2.3 highlights the Markov property by
showing the increasing rank correlation between Llama models of similar sizes.
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Table 2.3: Verifies the Markov property for the Llama cascade by showing the
results of using logistic regression to predict each model’s correctness based on
the calibrated confidences of two ancestor models in the cascade: the immediate
predecessor model (Markov predictor) and each available earlier ancestor. For the
Markov predictors, the table displays the average 𝑝 values across all these logistic
regressions; for the earlier ancestors, the 𝑝 value corresponds to a single logistic
regression. Underlined values indicate statistical significance (5% level); the lowest
𝑝 values in each row are bolded. The diagonal pattern in the table suggests the
Markov property.

Benchmark Predicted log10 p Value of Markov Predictor vs Earlier Ancestor

1B 3B 8B 70B

MMLU
8B -2.66 -26.86 – –
70B -0.52 -3.48 -13.71 –
405B -0.78 -2.41 -6.32 -25.78

MedMCQA
8B -1.85 -26.40 – –
70B -0.26 -2.72 -4.35 –
405B -0.23 -0.82 -2.45 -24.63

TriviaQA
8B -0.14 -22.38 – –
70B -0.58 -1.02 -6.42 –
405B -0.26 -1.88 -3.72 -11.45

XSum
8B -0.72 -1.58 – –
70B -0.97 -0.61 -6.94 –
405B -0.56 -0.50 -2.81 -1.62

GSM8K
8B -2.85 -7.48 – –
70B -0.51 -0.17 -6.49 –
405B -0.36 -0.13 -3.22 -2.76

TruthfulQA
8B -1.77 -0.42 – –
70B -0.30 -0.44 -0.52 –
405B -0.20 -0.67 -0.59 -1.55

We formally test the goodness-of-fit between the fitted Gumbel copulas and the
test data by carrying out a Cramér-von Mises test using parametric bootstrapping,
following the “Kendall’s transform” approach described in Genest, Rémillard, and
Beaudoin (2009). The test involves computing the univariate distribution of copula
values 𝐶𝑖 𝑗 (𝐹𝑖 (𝑥), 𝐹𝑗 (𝑥)) for 𝑥 ∼ 𝑝(𝑥), using both the empirical copula and the
fitted Gumbel copula. We evaluate the difference between these two distributions
using the Cramér-von Mises (

√
𝑛CvM) statistic and obtain a 𝑝 value by parametric

bootstrapping with 𝐵 = 1000 samples. In each case, we fit the Gumbel copula on the
training data (𝑛 ≈ 300) and evaluate the 𝑝 value relative to the test data (𝑛 ≈ 1000).
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Figure 2.2: Correlations between the calibrated confidences of selected pairs of
LLMs on different benchmarks, showing a range of rank correlations between
models. The Kendall’s 𝜏 rank correlation, shown in the bottom right corner, ranges
from 𝜏 = 0.20 to 𝜏 = 0.44.
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Figure 2.3: Correlations between the calibrated confidences of smaller Llama mod-
els (1B, 8B, 70B) (𝑦 axis) and the 405B model (𝑥 axis) on MMLU. The increasing
rank correlation suggests a Markov property based on model size. The Kendall’s
𝜏 rank correlation, shown in the bottom right corner, increases from 𝜏 = 0.21 to
𝜏 = 0.57.

Table 2.4 breaks down the results by benchmark for two groups of models (Llama
models vs OpenAI & Qwen models). Each reported number is based on considering
all pairs of models within each group, regardless of similarities in size. There are 10
pairs of Llama models and 6 pairs of Qwen and OpenAI models. The results show
that for the Llama models, the fitted Gumbel copulas closely match the empirical
correlation structures between pairs of models on the test set, since the overall
rejection rate of the null hypothesis is only 1.7%, well below the 5% rejection rate
expected by chance. In addition, the

√
𝑛CvM statistic is only 0.003 on average.

For the group of Qwen and OpenAI models, we observe higher rejection rates. The
overall rejection rate of 22.2% suggests that the Gumbel copula model does not fit
the data exactly. However, the average

√
𝑛CvM value of 0.008 suggests that the fit

is adequate.
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Table 2.4: Shows the goodness-of-fit of our Gumbel copula models for modeling
pairwise correlations between LLMs, based on a Cramér-von Mises (

√
𝑛CvM) test

using parametric bootstrapping. We report the
√
𝑛CvM value, the number of null

hypothesis rejections (out of 10 and 6 model pairs for the Llama and Qwen &
OpenAI groups, respectively), the percentage of rejections, as well as the geometric
and arithmetic mean of 𝑝 values.

Llama Models Qwen & OpenAI Models

Benchmark
√
𝑛CvM # Rej. % Rej. (∏ 𝑝) 1

𝑛
1
𝑛

∑
𝑝
√
𝑛CvM # Rej. % Rej. (∏ 𝑝) 1

𝑛
1
𝑛

∑
𝑝

MMLU 0.002 0 0.0 0.569 0.591 0.011 4 66.7 0.058 0.121
MedMCQA 0.004 1 10.0 0.394 0.560 0.004 0 0.0 0.397 0.444
TriviaQA 0.002 0 0.0 0.638 0.709 0.012 2 33.3 0.078 0.187
XSum 0.004 0 0.0 0.405 0.480 0.002 0 0.0 0.704 0.733
GSM8K 0.002 0 0.0 0.688 0.757 0.016 2 33.3 0.032 0.157
TruthfulQA 0.001 0 0.0 0.961 0.963 0.002 0 0.0 0.800 0.812

Average 0.003 0 1.7 0.609 0.677 0.008 1 22.2 0.345 0.409

Testing the Discrete-Continuous Marginal Confidence Distributions
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Figure 2.4: Selection of trained marginal distributions (fitted on 𝑛 ≈ 300 training
data), with histograms of the test data (𝑛 ≈ 1000). Histogram areas shaded with hatch
patterns (especially in (a) and (b) indicate the contributions of discrete probability
masses in our models.

First, we visualize the agreement between the fitted continuous-discrete mixtures
of scaled beta distributions and the histograms of calibrated confidence values on
the test set. To construct these plots, we first train the calibrators and marginal
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distributions on the training set (𝑛 ≈ 300 examples).4 We then compute the cali-
brated confidence on the test set (𝑛 ≈ 1000) using the trained calibrators. Figure 2.4
suggests that the fitted marginals align well with the calibrated confidence values on
the test data.

Each histogram displays the discrete masses 𝜙min and 𝜙max of the fitted marginal
distributions by shading corresponding areas on the first and last bars of each
histogram. We observe in Figure 2.4a that the discrete probability masses are
especially pronounced for GPT-4o Mini on TruthfulQA and GPT-4o on MedMCQA.
The trend that the OpenAI GPT models often report certainty also holds for other
benchmarks, as Table 2.1 shows.

Table 2.5: Shows the goodness-of-fit of our discrete-continuous mixtures of scaled
beta distributions for modeling the marginal distributions of calibrated LLM con-
fidence. We computed 𝑝 values for the square-rooted Cramér-von Mises (

√
CvM)

statistic using parametric bootstrapping with 𝐵 = 1000 samples. The
√

CvM statis-
tic and its 𝑝 value were computed on the test set (𝑛 ≈ 1000), whereas the marginal
distributions were fitted on the training set (𝑛 ≈ 300). We highlight 𝑝 < 0.05 with
an underline and 𝑝 < 0.001 with bold font. Additionally, we bold the largest

√
CvM

value within each column. Highlighted values indicate the greatest discrepancies
with our model.

MMLU MedMCQA TriviaQA XSum GSM8K TruthfulQA

Model
√

CvM 𝑝
√

CvM 𝑝
√

CvM 𝑝
√

CvM 𝑝
√

CvM 𝑝
√

CvM 𝑝

llama3.2-1b 0.031 0.000 0.025 0.015 0.018 0.117 0.036 0.001 0.026 0.015 0.025 0.109
llama3.2-3b 0.014 0.144 0.115 0.000 0.043 0.000 0.020 0.076 0.020 0.071 0.030 0.053
llama3.1-8b 0.016 0.066 0.088 0.000 0.022 0.033 0.037 0.000 0.016 0.163 0.022 0.181
llama3.1-70b 0.048 0.000 0.137 0.000 0.057 0.000 0.070 0.000 0.038 0.000 0.044 0.002
llama3.1-405b 0.024 0.004 0.113 0.000 0.028 0.008 0.027 0.009 0.034 0.001 0.036 0.019
gpt-4o-mini 0.032 0.000 0.060 0.000 0.008 0.441 0.020 0.077 0.026 0.016 0.028 0.072
qwen2.5-32b-c 0.036 0.000 0.069 0.000 0.040 0.000 0.020 0.067 0.028 0.010 0.023 0.160
qwen2.5-72b 0.028 0.001 0.073 0.000 0.040 0.000 0.041 0.000 0.004 0.678 0.036 0.018
gpt-4o 0.029 0.000 0.100 0.000 0.046 0.000 0.026 0.013 0.036 0.001 0.065 0.000

Average 0.029 0.024 0.087 0.003 0.034 0.066 0.033 0.027 0.025 0.106 0.034 0.068

We formally test the goodness-of-fit of the marginal distributions by computing the
square-rooted Cramér-von Mises statistic

√
CvM =

√︄∫
(𝐹̂ test

𝑛 (𝑥) − 𝐹 (𝑥 |𝜽))2 d𝐹 (𝑥 |𝜽), (2.20)

where 𝐹̂ test
𝑛 = 1

𝑛

∑𝑛
𝑖=1 𝛿Φ(𝑥𝑖) is the empirical distribution of the calibrated confidence

on the test data, and 𝐹 (·|𝜽) is our marginal distribution model (2.7) with 𝜽 =

4We do not consider it necessary to train the calibrators and the marginal confidence distributions
on separate training data sets, since the calibrators model 𝑝(𝑦 |𝑥) and the marginal distributions model
𝑝(𝑥).
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Table 2.6: Shows the goodness-of-fit of our discrete-continuous mixtures of scaled
beta distributions for modeling the marginal distributions of calibrated LLM con-
fidence, after re-fitting the marginal distributions on the test set. We computed 𝑝

values for the square-rooted Cramér-von Mises (
√

CvMr) statistic using parametric
bootstrapping with 𝐵 = 1000 samples. We highlight 𝑝 < 0.05 with an underline
and 𝑝 < 0.001 with bold font. Additionally, we bold the largest

√
CvMr value

within each column. Highlighted values indicate the greatest discrepancies with our
model.

MMLU MedMCQA TriviaQA XSum GSM8K TruthfulQA

Model
√

CvMr 𝑝
√

CvMr 𝑝
√

CvMr 𝑝
√

CvMr 𝑝
√

CvMr 𝑝
√

CvMr 𝑝

llama3.2-1b 0.018 0.046 0.020 0.085 0.005 0.986 0.006 0.935 0.018 0.126 0.008 0.970
llama3.2-3b 0.009 0.461 0.010 0.608 0.036 0.000 0.009 0.666 0.010 0.566 0.013 0.661
llama3.1-8b 0.012 0.248 0.010 0.574 0.011 0.492 0.009 0.688 0.006 0.947 0.010 0.846
llama3.1-70b 0.016 0.072 0.018 0.121 0.024 0.029 0.017 0.141 0.023 0.037 0.015 0.460
llama3.1-405b 0.015 0.133 0.011 0.498 0.017 0.130 0.006 0.933 0.031 0.002 0.019 0.290
gpt-4o-mini 0.004 0.928 0.007 0.853 0.003 0.913 0.011 0.393 0.009 0.549 0.014 0.548
qwen2.5-32b-c 0.011 0.282 0.012 0.355 0.020 0.070 0.022 0.047 0.015 0.217 0.013 0.600
qwen2.5-72b 0.018 0.039 0.016 0.157 0.028 0.005 0.014 0.301 0.002 0.966 0.008 0.970
gpt-4o 0.011 0.273 0.024 0.315 0.041 0.000 0.013 0.367 0.030 0.005 0.021 0.759

Average 0.013 0.276 0.014 0.396 0.021 0.292 0.012 0.497 0.016 0.379 0.013 0.678

(𝜙min, 𝜙max, 𝑤min, 𝑤max, 𝜋, 𝛼1, 𝛽1, 𝛼2, 𝛽2). In Tables 2.5 and 2.6, we report (2.20)
both for 𝜽 estimated from the training data (

√
CvM), and for 𝜽 re-fitted on the test

data (
√

CvMr). The reason we report
√

CvMr is to evaluate whether deficiencies in
the fit arise from a bias problem, rather than a variance problem. To compute 𝑝

values for (2.20), we use parametric bootstrapping with 𝐵 = 1000 samples.

Table 2.5 indicates a close fit between the trained marginal distributions and the
empirical distributions of the calibrated confidences on the test data, with an average√

CvM value of 4%. However, 74% of tests reject the null hypothesis at the 𝑝 < 0.05
level, suggesting that our model does not exactly match the data. When refitting
the marginals on the test data, the average

√
CvM value falls to 1.5% and a much

lower 18.5% of tests reject the null hypothesis. Even on the refitted data, this
overall rejection rate of 18.5% is significantly higher than the 5% we would expect
by chance. We conclude that our marginal distribution model fits the empirical
data well, as judged by a low

√
CvM value, but it clearly does not capture the true

distribution of calibrated confidences exactly.

Notably, the results for the refitted marginals show that the quality of the fit strongly
depends on the benchmark. Specifically, TriviaQA displays a much poorer fit
than the other benchmarks. For many of the LLMs, TriviaQA’s low difficulty
(as judged by a 90%+ test accuracy for many models) explains the poor fit. The
presence of a sharp peak of calibrated confidences near 𝜙max presumably raises
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Figure 2.5: Performance evaluation via the area under the error-cost curve (AUC).
(a) Error-cost curves computed on the MedMCQA test set for the Llama3 3B →
8B→ 70B→ 405B cascade. (b) Illustration of the area under the error-cost curve
(AUC).

the number of training samples required to precisely estimate the shape of the
distribution. In addition, the ability of the beta distribution to fit sharply peaked
unimodal distributions may be inherently limited. We hypothesize that these factors
may explain the high 𝑝 values despite rather low

√
CvM values.

Rational Tuning of Confidence Thresholds
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Figure 2.6: Reduction in the area under the error-cost curve (AUC) on the test set
when using our Rational Tuning framework to select confidence thresholds, as a
function of cascade length. In (a), we compare against a Bayesian optimization
baseline, while in (b) we compare against high-resolution grid search. For longer
cascades, our method outperforms both baselines by larger margins. Error bars
show ±1𝜎 of the mean percentage change, and filled markers indicate statistical
significance.
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Benchmark AUC ↓ RT (Ours) vs GS RT (Ours) vs BO

RT (Ours) GS BO %ΔGS ↓ 𝑝GS %ΔBO ↓ 𝑝BO

MMLU 0.288 0.288 0.294 0.02 2.8 × 10−1 -2.30 4.3 × 10−3

MedMCQA 0.381 0.384 0.389 -0.79 5.5 × 10−3 -2.14 3.0 × 10−2

TriviaQA 0.181 0.182 0.183 -0.74 6.0 × 10−3 -1.58 1.0 × 10−2

XSum 0.409 0.414 0.416 -1.48 2.0 × 10−6 -1.92 8.9 × 10−4

GSM8K 0.158 0.162 0.160 -2.68 1.0 × 10−5 -1.15 1.6 × 10−2

TruthfulQA 0.436 0.437 0.438 -0.26 3.8 × 10−2 -0.46 7.9 × 10−2

Average 0.309 0.311 0.313 -0.99 – -1.60 –

Table 2.7: Area under the error-cost curve (AUC) on the test set, showing that our
Rational Tuning (“RT”) framework for selecting confidence thresholds consistently
outperforms both a Bayesian optimization baseline (“BO”) and high-resolution grid
search (“GS”). The mean percentage changes (%Δ) are statistically significant at the
𝑝 < 0.05 on almost all benchmarks, as measured by Wilcoxon rank-sum tests paired
by cascade (highlighted in bold).

In this section, we examine the performance and runtime scaling of our continuous
optimization-based algorithm (2.11) for selecting optimal confidence thresholds.
We consider all 26 possible cascades of length 𝑘 ≥ 2 composed of Meta’s Llama
models (1B, 3B, 8B, 70B, and 405B). We evaluate against Bayesian optimization
and high-resolution grid search baselines on six benchmarks (MMLU, MedMCQA,
XSum, TriviaQA, GSM8K, TruthfulQA) spanning general-purpose knowledge and
reasoning, domain-specific QA, text summarization, open-ended QA, mathematical
reasoning, and the ability to avoid hallucinations on adversarial questions.

Performance metrics: we evaluate the area under the error-cost curve (AUC) on
the test set. Specifically, computing the AUC means plotting the test error (𝑦
axis) against the expected inference cost in dollars/query (𝑥 axis) and evaluating the
integral of this curve. Figure 2.5a shows an example error-cost curve and Figure 2.5b
highlights the computation of AUC. We normalize the cost values to lie between
0 and 1, resulting in AUC scores between 0 and 1 (error rate × normalized cost).
Broadly, a 1% reduction in AUC means that the error rate is 1% lower at the same
inference cost (on average).

In addition, we measure how the runtime for finding optimal confidence thresholds
scales with the length of the cascade and the desired resolution of the error-cost curve
on the 𝑥 axis, i.e., how densely we sample the optimal thresholds. We have not overly
optimized our code and mainly aim to contrast asymptotic scaling behavior.
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Bayesian optimization baseline: this baseline runs Bayesian optimization with a
Gaussian process surrogate function, via the HEBO package (Cowen-Rivers et al.,
2022, Shahriari et al., 2016). The Bayesian optimization minimizes (2.11), in an
analogous manner to our Markov-copula (“Rational Tuning”) approach. We run
HEBO for as many iterations as needed until the change in loss between successive
iterations is below a numerical tolerance (𝜖 = 10−5). In practice, we found that the
final change in loss is typically 0.0. Following the practical guidance of HEBO’s
authors5, we use four parallel suggestions during each iteration. We adaptively
interpolate the optimal thresholds computed by HEBO in the same way we do for
Rational Tuning (see Equation (2.13)).

High-resolution grid search baseline: this baseline selects optimal confidence
thresholds by searching over adaptive grids computed from the model-specific quan-
tiles of calibrated confidence. Specifically, in each dimension the grid ranges from
𝜙min to 𝜙max in increments of 2.5% probability mass. This results in consider-
ing 40𝑘−1 candidate threshold combinations for cascades with 𝑘 models, ranging
from 40 candidates for a two-model cascade to 404 = 2,560,000 candidates for a
five-model cascade. After scoring all candidate threshold combinations, we use the
Skyline operator (implemented in the Python package paretoset6) to filter the can-
didate threshold vectors down to the Pareto-optimal set (Börzsönyi, Kossmann, and
Stocker, 2001). A candidate threshold vector 𝜽 = (𝜙1, ..., 𝜙𝑘−1) is Pareto-optimal
if its performance metrics (P𝜽 (Correct),E𝜽 [Cost]) are not dominated by any other
candidate threshold vector 𝜽′ in the sense that P𝜽′ (Correct) > P𝜽 (Correct) and
E𝜽′ [Cost] < E𝜽 [Cost].

Figure 2.6 shows that our Rational Tuning framework for selecting confidence
thresholds results in lower AUC on the test set compared to the baselines. Each
point on the plot shows the average percentage reduction in AUC for all cascades
of a given length 𝑘 , averaged across all benchmarks. As cascade length 𝑘 grows,
our method outperforms the baselines by a larger margin. For example, the mean
reduction in AUC compared to Bayesian optimization is 4.3% for 𝑘 ≥ 3; 5.8%
for 𝑘 ≥ 3; and 7.2% for 𝑘 = 5. The corresponding performance gains relative to
high-resolution grid search are 2.0%, 2.2%, and 2.7%. We computed statistical

5github.com/huawei-noah/HEBO/tree/master/HEBO. Accessed April 6, 2025.
6Open-source implementation available at github.com/tommyod/paretoset. Accessed Jan-

uary 13, 2025.
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significance of these percentage differences using a Wilcoxon rank-sum test paired
by cascade.

We hypothesize that the performance gains of Rational Tuning relative to Bayesian
optimization stem from the fact that our framework applies a (mostly correct) induc-
tive assumption about the correlation structure of LLM cascades, whereas Bayesian
optimization is a general-purpose algorithm for black-box optimization. Section 2.4
corroborates this hypothesis by presenting more significant performance gains in
the low-sample limit with 𝑛 ≤ 30 training examples.

By contrast, it is not surprising that grid search performs worse as 𝑘 increases, since
searching for effective threshold combinations by trial and error suffers from the
curse of dimensionality.

Table 2.7 presents the results broken down by benchmark rather than cascade length.
The table shows that Rational Tuning consistently outperforms Bayesian optimiza-
tion and grid search across benchmarks, independent of cascade length. The only
benchmark mark where we report a tie is MMLU. On almost all benchmarks, the
reductions in AUC are statistically significant at the 𝑝 < 0.05 level.

Performance in the Low-Sample Limit

Our Rational Tuning methodology relies on a small labeled training data set consist-
ing of LLM confidence scores and corresponding binary correctness labels. Since
labeled data is scarce in many applications, we supplement our main experiment
(𝑛 ≈ 300 training examples) with a study of the low-sample limit. Here, we re-run
our experiment for 𝑛 ≤ 30 training examples. For each benchmark, we ensure a
balanced subsample with both correct and incorrect answers from each model by
sampling training examples in pairs (one correct, one incorrect for each model) for
a fixed number of iterations, with a target of 𝑛 = 30 examples. Since collisions
may occur, the final number of sampled training examples lies between 20 and 30,
depending on the benchmark.

Figure 2.7 displays the results, revealing that Rational Tuning significantly outper-
forms the Bayesian optimization and grid search baselines as cascade length grows.
On cascades with 𝑘 ≥ 3 models, the average performance gain is 10.2% relative to
Bayesian optimization, and 5.6% relative to high-resolution grid search.

Table 2.8 breaks down these results by benchmark. We see that Rational Tun-
ing outperforms the baselines on each benchmark except for TruthfulQA, where
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high-resolution grid search performs best. On the other benchmarks (MMLU,
MedMCQA, TriviaQA, XSum, and GSM8K), the performance gains of our method
are statistically significant at the 𝑝 < 0.05 level, according to Wilcoxon rank-sum
tests paired by cascade.

Our interpretation of these results is that our Rational Tuning framework benefits
from making inductive assumptions about the interactions between the error rates
of different LLMs. Crucially, fitting these inductive assumptions to empirical data
requires only few observations: since each copula model depends on a single scalar
correlation parameter 𝜃 ∈ R, our method requires only 𝑘 − 1 parameters to model
the interactions between the error rates of 𝑘 different LLMs.
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Figure 2.7: Reduction in the area under the error-cost curve (AUC) as cascade length
grows, in the low-sample limit (𝑛 ≤ 30 training examples), when using our Rational
Tuning framework. In (a), we compare against a Bayesian optimization baseline,
while in (b) we compare against high-resolution grid search. Our method increas-
ingly outperforms the baselines as cascade length grows. Error bars show ±1𝜎 of
the mean percentage change, and filled markers indicate statistical significance.

Sensitivity to Statistical Assumptions

Our implementation of Rational Tuning models uses mixtures of beta distributions
to model the marginal distribution of confidence scores, and Gumbel copulas to
model pairwise correlations between LLMs. In Section 2.4, we quantify the devi-
ation between these modeling assumptions and the true empirical distributions via
Cramér-von Mises (CvM) statistics.

Figure 2.8 shows the sensitivity of Rational Tuning’s performance gains (relative
to the high-resolution grid search baseline) to the mean CvM statistics for each
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Benchmark AUC ↓ RT (Ours) vs GS RT (Ours) vs BO

RT (Ours) GS BO %ΔGS ↓ 𝑝GS %ΔBO ↓ 𝑝BO

MMLU 0.293 0.308 0.316 -5.51 8.0 × 10−6 -7.74 1.0 × 10−6

MedMCQA 0.399 0.416 0.419 -4.18 1.1 × 10−5 -4.72 5.0 × 10−6

TriviaQA 0.197 0.200 0.203 -2.11 1.5 × 10−2 -3.26 5.1 × 10−3

XSum 0.422 0.431 0.442 -2.42 2.6 × 10−2 -5.06 4.2 × 10−4

GSM8K 0.187 0.195 0.197 -3.41 2.5 × 10−2 -4.21 2.1 × 10−4

TruthfulQA 0.449 0.442 0.452 1.60 1.0 × 100 -0.73 1.2 × 10−1

Average 0.325 0.332 0.338 -2.67 – -4.29 –

Table 2.8: Area under the error-cost curve (AUC) in the low-sample limit (𝑛 ≤ 30
training examples), showing that our Rational Tuning (“RT”) framework for selecting
confidence thresholds consistently outperforms both a Bayesian optimization base-
line (“BO”) and high-resolution grid search (“GS”). The mean percentage changes
(%Δ) are statistically significant at the 𝑝 < 0.05 on almost all benchmarks, as mea-
sured by Wilcoxon rank-sum tests paired by cascade (highlighted in bold).
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Figure 2.8: Sensitivity of Rational Tuning’s performance gains to the Cramér-von
Mises (CvM) test statistics (lower is better). Overall, performance appears to be
more sensitive to mis-specification of the copula model.

cascade. For example, if 𝑀1 → ... → 𝑀𝑘 has marginal
√

CvM scores 𝜎1, ..., 𝜎𝑘

and copula
√
𝑛CvM scores 𝜎1,2, 𝜎2,3, ..., 𝜎𝑘−1,𝑘 , then the mean marginal and copula

CvM scores are 𝜎marginal =
1
𝑘

∑𝑘
𝑖=1 𝜎𝑖, and 𝜎copula =

1
𝑘

∑𝑘
𝑖=2 𝜎𝑖−1,𝑖, respectively.

Figures 2.8a and 2.8b suggest that lower CvM divergences improve the relative
performance of Rational Tuning. This effect is more pronounced for the copula
statistics rather than the marginal statistics, highlighting the importance of correctly
modeling the correlations between LLMs. In both plots, the light blue data points
with little performance gain despite excellent CvM values are heavily enriched for
two-model cascades. For cascades with 𝑘 = 2 models, Rational Tuning generally
performs on par with grid search or Bayesian optimization.

The plots also suggest some robustness to deviations from the statistical assumptions.
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Figure 2.9: Shows runtime scaling for computing the full error-cost curve, compar-
ing our continuous-optimization based algorithm (“continuous,” blue) to grid search
(“grid search,” gray). Our method scales much more favorably as the cascade length
grows, and as the error-cost curve is sampled more densely along the cost axis. The
shading shows ±1𝜎 of the observed data points.

We are eager to explore Rational Tuning’s robustness to model mis-specification in
greater detail in subsequent work.

Computational Scaling

Moving on to a comparison of computational complexity, Figure 2.9 shows that the
runtime of our Rational Tuning framework for finding optimal confidence thresholds
scales much more favorably compared to grid search, both in the length of the cascade
𝑘 as well as the desired resolution ℎ of the error-cost curve. Here, the resolution
ℎ refers to the density at which we sample the optimal error-cost curve along the
cost-axis. For grid search, ℎ is simply the reciprocal of the number of grid points
in each dimension. For our method, ℎ is the reciprocal of the number of times we
solve the optimization problem (2.11). In other words, ℎ = 1/|Λ|, where Λ is the
set of cost sensitivities we consider in (2.11).

We omit Bayesian optimization from Figure 2.9, since we observed longer runtimes
(10-1000x longer) that exhibit less clear scaling with the length 𝑘 of the cascade.
Specifically, the average number of iterations until convergence increases from 2.9
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for 𝑘 = 2 to 5.3 for 𝑘 = 4, then drops back to 4.0 for 𝑘 = 5. Across the data, the
minimum and maximum number of iterations required until convergence are 2 and
14.

Practical Guidelines

Our experiments suggest that Rational Tuning is the preferred methodology for
tuning confidence thresholds for longer cascades (𝑘 ≥ 3) with multiple deferral
thresholds. However, for two-model cascades (𝑘 = 2) with a single deferral thresh-
old, the Markov assumption is void (as there are only two models). In this setting, the
nonparametric nature of one-dimensional grid search should give the most reliable
results.

When applying Rational Tuning for cascades with 𝑘 ≥ 3 models, we recommend
visually inspecting the match between the assumed probabilistic model and the
empirical data. Specifically, we recommend the following visual diagnostics:

• Marginal distributions: compare histograms of the fitted and empirical
distributions (as in Figure 2.4) and verify that the overall fit is adequate.

• Pairwise correlations: construct copula plots as in Figures 2.2 and 2.3. Com-
pare these plots to random samples from a Gumbel copula with correlation
parameter 𝜃 = 1

1−𝜏 , where 𝜏 is the empirical rank correlation.

• Markov assumption: construct rank correlation plots as in Figure 2.1. Verify
that rank correlations are strong near the diagonal.

In addition, it is important to assess the expected calibration error (ECE) of the
confidence scores. We recommend computing the ECE using quantile binning with
10 or 20 bins; ideally, the ECE should not exceed 10%.

2.5 Conclusion
We have presented a framework for rationally tuning the confidence thresholds
of LLM cascades using continuous optimization. Our approach is based on a
parametric probabilistic model for the calibrated confidences of a sequence of LLMs.
This probabilistic model is based on a Markov factorization, which accounts for
pairwise correlations between the error rates of different LLMs using copulas,
yielding a data-efficient approach. Goodness-of-fit analyses spanning 10 LLMs and
6 benchmarks have shown good agreement with the test data.
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Importantly, our probabilistic model yields analytical expressions for a cascade’s
error rate and expected inference cost. These expressions are differentiable with
respect to the cascade’s confidence thresholds, making continuous optimization
possible. Compared to selecting confidence thresholds using Bayesian optimization
and high-resolution grid search, our Rational Tuning framework yields more favor-
able error-cost trade-offs as cascade length grows, outperforming the baselines by
up to 7.2% when using 𝑛 ≈ 300 labeled training examples. In the low-sample limit
(𝑛 ≤ 30 training examples), the performance gains reach up to 16.5%, suggesting
that our framework’s inductive assumptions about the interactions between the error
rates of different LLMs improve sample efficiency.

Building on these promising results, an interesting direction would be to apply our
probabilistic modeling framework to LLM routing, in which a central routing model
sends a query to the most suitable LLM in a single step, avoiding cumulative cost
increases as the query propagates down a cascade. Since cumulative cost increases
are especially severe for longer cascades (at which our methodology excels), the
routing setting may more effectively leverage Rational Tuning’s capacity for mod-
eling dependencies between arbitrarily many distinct LLMs. For instance, suppose
the routing decision depends on noisy estimates 𝜙1, ..., 𝜙𝑛 of the LLMs’ true cali-
brated confidences. In this case, balancing the noisy observations 𝜙𝑖 against their
probabilistic expectations E[𝜙𝑖 |𝜙1, ..., 𝜙𝑖−1, 𝜙𝑖+1, ...𝜙𝑛] may lead to more effective
routing decisions.

Ultimately, our results point to a larger vision for the future of deploying LLMs.
Using probabilistic models, we will be able to adaptively select the most suitable
model to answer each query, improving both reliability and performance. Addi-
tionally, probabilistic modeling will enable us to anticipate the performance of a
system of LLMs under different conditions, making it possible to seamlessly adapt
the system as conditions shift. We are excited to further pursue this line of research
in subsequent work.
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C h a p t e r 3

ECONOMIC EVALUATION

Zellinger, Michael J. and Matt Thomson (2025). “Economic Evaluation of LLMs.”
In: arXiv preprint. arXiv: 2507.03834 [cs.AI].

Abstract: Practitioners often navigate LLM performance trade-offs by plotting
Pareto frontiers of optimal accuracy-cost trade-offs. However, this approach offers
no way to compare between LLMs with distinct strengths and weaknesses: for
example, a cheap, error-prone model vs a pricey but accurate one. To address
this gap, we propose economic evaluation of LLMs. Our framework quantifies an
LLM’s performance trade-off as a single number based on the economic constraints
of a concrete use case, all expressed in dollars: the cost of making a mistake, the
cost of incremental latency, and the cost of abstaining from a query. We apply
our economic evaluation framework to compare the performance of reasoning and
non-reasoning models on difficult questions from the MATH benchmark, discovering
that reasoning models offer better accuracy-cost tradeoffs as soon as the economic
cost of a mistake exceeds $0.01. In addition, we find that single large LLMs often
outperform cascades when the cost of making a mistake is as low as $0.1. Overall,
our findings suggest that when automating meaningful human tasks with AI models,
practitioners should typically use the most powerful available model, rather than
attempt to minimize AI deployment costs, since deployment costs are likely dwarfed
by the economic impact of AI errors.

3.1 Introduction
Large language models (LLM) are commonly evaluated based on their accuracy,
cost, latency, and other metrics (Liang et al., 2023). Practitioners commonly display
available models on an accuracy-cost scatter plot to identify models offering the best
accuracy-cost trade-offs (Hu et al., 2024). These optimal trade-offs are referred to as
a “Pareto frontier” (Jin, 2006; Branke et al., 2008). Unfortunately, Pareto frontiers
do not provide a way to rank models with distinct strengths and weaknesses. For
example, it is not possible to compare a cheap, error-prone model against a pricey
but accurate one. However, practitioners often face such dilemmas (Hammond,
2024).

https://arxiv.org/abs/2507.03834
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Figure 3.1: Pareto frontiers of LLM performance do not reveal which model is
best-suited for a given use case—a problem often faced by practitioners.

To address this problem, we propose an economic framework for evaluating AI
models, which enables practitioners to identify the single best model for their use
case, even when balancing competing objectives such as accuracy, cost, and latency.
Drawing on the well-understood interpretation of Lagrange multipliers as shadow
prices (Bertsekas, 1999), we model a concrete use cases in terms of economic
constraints expressed in dollars: the cost of making a mistake (the price of error),
the cost of incremental latency (the price of latency), and the cost of abstaining from
a query (the price of abstention).

Given these economic parameters, our framework determines the optimal LLM.
As an example, suppose a hospital deploys LLMs for medical note-taking. For
this use case, the price of error likely exceeds $100, but the price of latency may
be low, perhaps $1 per minute of incremental latency (equivalent to human wages
of $60/hour). By contrast, a natural language search engine for an e-commerce
platform faces strikingly different constraints. In this domain, the price of error is
much lower (perhaps $1 per error) but each additional 100 milliseconds of latency are
costly, since unresponsive websites drive away consumers (Kohavi and Longbotham,
2007).

We demonstrate the practical utility of economic evaluation by addressing two
important questions for practical LLM deployments. First, we ask whether reasoning
or non-reasoning LLMs are optimal on complex problem-solving tasks when taking
into account the reasoning models’ higher dollar cost and latency. To this end,
we evaluate six state-of-the-art reasoning and non-reasoning LLMs on difficult
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questions from the MATH benchmark (Hendrycks et al., 2021b). Our analysis
shows that when latency is of no concern, reasoning models already outperform
non-reasoning models when the cost of making a mistake is as low 𝜆critical

𝐸
= $0.01.

When setting the price of latency at $10/minute (equivalent to human wages of
$600/hour), the critical price of error rises to 𝜆critical

𝐸
= $10.

Second, we ask whether LLM cascades (Chen, Zaharia, and Zou, 2023) offer
practical benefits, by comparing the performance of a cascade Msmall → Mbig

against the performance ofMbig by itself—taking into account accuracy, dollar cost,
and latency. Surprisingly, we find thatMbig typically outperformsMsmall →Mbig

for prices of error as low as $0.1. However, cascade performance notably depends on
how well we can quantify the uncertainty ofMsmall. Interestingly, using Llama3.1
405B asMsmall yields a superior cascade that outperformsMbig for prices of error
up to $10, 000, despite the fact that Llama3.1 405B performs comparatively poorly
as a standalone model.

To supplement our experiments, we furnish theoretical results on 1) explaining the
performance of a cascade Msmall → Mbig in terms of a novel covariance-based
metric measuring the quality ofMsmall’s uncertainty signal, and 2) connecting our
economic evaluation framework to standard multi-objective optimization based on
Pareto optimality.

In summary, our key contributions are the following:

• We propose an economic framework for evaluating LLMs (and LLM systems),
which determines a single optimal model based on a use case’s economic
constraints, all expressed in dollars: the cost of making a mistake (price of
error), the cost of incremental latency (price of latency), and the cost of
abstaining from a query (price of abstention).

• We state empirical dollar figures for the critical cost of error at which rea-
soning LLMs offer superior accuracy-cost-latency trade-offs compared to
non-reasoning models; and at which a single large LLMMbig outperforms a
cascadeMsmall →Mbig.

Overall, our findings suggest that when automating meaningful human tasks using
AI models, accuracy is likely the most important economic factor, outweighing
inference costs. Hence, practitioners should typically deploy the most powerful
available LLMs.
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3.2 Background
Large language models. Large language models (LLM) are transformer-based
deep neural networks that auto-regressively generate “tokens” of text, one token at
a time (Vaswani et al., 2017). A modelM parametrizes a probability distribution
𝑝𝜃 (𝑥𝑡+1 |𝑥1, ..., 𝑥𝑡) over the next token given all previous tokens. To generate new
text, the user provides a prompt (𝑥1, ..., 𝑥𝑡) and then auto-regressively samples new
tokens 𝑥𝑡+1, 𝑥𝑡+2, ... according to the conditional distribution 𝑝𝜃 . After post-training
a model’s parameters 𝜃 using supervised fine-tuning (Wei et al., 2022; Chung et al.,
2022) and reinforcement learning (Ouyang et al., 2022), sampling from 𝑝𝜃 returns an
appropriate response to the prompt. For example, if the prompt (𝑥1, ..., 𝑥𝑡) encodes
the English sentence “I want to finish all the research articles I start reading. What
can I do to improve my self-discipline?”, auto-regressive sampling from the post-
trained 𝑝𝜃 should yield a list of actionable suggestions.1

Systems of large language models. The development of large language models
has proven out theoretical scaling laws (Kaplan et al., 2020) predicting that better
performance reliably follows from simply implementing bigger models (Brown et
al., 2020b; Chowdhery et al., 2022; OpenAI, 2024a). As a result, parameter counts
for state-of-the-art LLMs have surged to more than one trillion, requiring significant
computing resources for both training and inference. Noting that smaller LLMs
often perform well on easier tasks, researchers have proposed system of LLMs in
which small and large models collaborate to enhance computational efficiency and
reduce inference costs (Chen, Zaharia, and Zou, 2023). For example, cascades
(Ding et al., 2024; Wang et al., 2024; Narasimhan et al., 2024) delegate queries
from small to large LLMs only if the small LLMs are uncertain about the answer,
and routers (Hari and Thomson, 2023; Hu et al., 2024; Ong et al., 2025) directly
send each query to the smallest available model that can still return a satisfactory
answer.

Pareto Optimality. Multi-objective optimization (Coello, Aguirre, and Zitzler,
2005; Jin, 2006) is concerned with minimizing a vector-valued function

𝜃∗ = arg min 𝐹 (𝜃), (3.1)

where 𝐹 (𝜃) = ( 𝑓1(𝜃), ..., 𝑓𝑘 (𝜃)) ∈ R𝑘 . Since the distinct objectives 𝑓𝑖 (𝜃) generally
conflict, we define solutions to (3.1) with respect to Pareto optimality (Branke et al.,

1You can start today, with this one!
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2008). We say that ( 𝑓1(𝜃1), ..., 𝑓𝑘 (𝜃1) Pareto-dominates ( 𝑓1(𝜃2), ..., 𝑓𝑘 (𝜃2), or

( 𝑓1(𝜃1), ..., 𝑓𝑘 (𝜃1) <P ( 𝑓1(𝜃2), ..., 𝑓𝑘 (𝜃2), (3.2)

if 𝑓𝑖 (𝜃1) ≤ 𝑓𝑖 (𝜃2) for all 𝑖 = 1, 2, ..., 𝑘 and at least one of the inequalities is
strict. We consider 𝜃∗ to be a solution of (3.1) if there exists no 𝜃′ such that
( 𝑓1(𝜃′), ..., 𝑓𝑘 (𝜃′) <P ( 𝑓1(𝜃∗), ..., 𝑓𝑘 (𝜃∗). The set of such solutions to (3.1) makes
up the Pareto frontier

P = {𝜃 ∈ Θ | ∀𝜃′ ∈ Θ, 𝐹 (𝜃′) ≮𝑃 𝐹 (𝜃)}. (3.3)

We interchangeably refer to the image 𝐹 (P) = {( 𝑓1(𝜃), ..., 𝑓𝑘 (𝜃)) | 𝜃 ∈ P} as
the Pareto frontier. The multi-objective performance of LLMs and LLM systems
is typically evaluated by computing the Pareto frontier of the performance metrics
𝑓1(𝜃) := error rate and 𝑓2(𝜃) := cost.

When comparing the performance of individual LLMs, 𝜃 represents the model’s
identity (for example, GPT 4.1 or DeepSeek R1) and other hyperparameters (user
and system prompts, sampling configuration, etc.). By contrast, for systems of
LLMs, 𝜃 typically denotes the system’s operating point, e.g., the deferral rate or
confidence threshold for an LLM cascadeMsmall →Mbig.

3.3 Economic Evaluation of LLMs
In this section, we describe our economic framework for evaluating the multi-
objective performance trade-offs of LLMs (and systems of LLMs).

LLMs as Agents
Using the language of reinforcement learning, we cast LLMs and systems of LLMs
as agents that reap per-query rewards from their chosen actions. As we will show,
this methodology provides a natural basis for multi-objective optimization of LLM
performance from an economic perspective. Rather than present our framework in
the abstract, we illustrate our formalism for three concrete LLM systems: standalone
LLMs, cascades (Chen, Zaharia, and Zou, 2023), and routers (Shnitzer et al., 2023).

Standalone LLM. An LLM’s action space consists of its possible text generations:

A = {𝑦 | 𝑦 ∈ Σ∗}, (3.4)

where Σ is the alphabet of tokens (Kudo and Richardson, 2018). Following other
authors, to evaluate the quality of the output 𝑦 we assume the existence of a binary
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error-calling mechanism 𝑠(𝑦) : Σ∗ → {0, 1} that maps each string output to a
judgment of whether the output is “satisfactory.”2 We refer to each 𝑦 with 𝑠(𝑦) = 1
as an error and use the notation 1𝐸 (𝑦) as a shorthand for the indicator 1[𝑠(𝑦) = 1].

For each action 𝑦 ∈ A, the LLM reaps a reward

𝑟 = − (𝐶 + 𝜆𝐿𝐿 + 𝜆𝐸1𝐸 ) , (3.5)

where 𝐶 is the dollar cost of generating the output 𝑦, and 𝐿 is the latency.

LLM Cascade. A cascade C = 𝑀1 → 𝑀2 → ... → 𝑀𝑘 is a system of LLMs 𝑀1,
𝑀2, ..., 𝑀𝑘 that passes each incoming query from 𝑀𝑖 to 𝑀𝑖+1 until it encounters a
model 𝑀𝜏 (1 ≤ 𝜏 ≤ 𝑘) with sufficient confidence to answer the query.

We think of the entire cascade as an agent with action space

A = {(𝜏, 𝑦) | 1 ≤ 𝜏 ≤ 𝑘, 𝑦 ∈ Σ∗}, (3.6)

where 𝑦 denotes the cascade’s output, and 𝜏 represents the index of the model 𝑀𝜏

responsible for the cascade’s output 𝑦. Specifically, 𝜏 is the index of the first model
that does not defer the query.

As for a standalone LLM, the cascade reaps a reward 𝑟 = − (𝐶 + 𝜆𝐿𝐿 + 𝜆𝐸1𝐸 ) for
each action (𝜏, 𝑦). However, the cost and latency depend on 𝜏:

𝐶 =

𝜏∑︁
𝑗=1

𝐶 𝑗 , 𝐿 =

𝜏∑︁
𝑗=1

𝐿 𝑗 , (3.7)

where 𝐶 𝑗 and 𝐿 𝑗 are the cost and latency of model 𝑀 𝑗 on the query. These
equations result from the “cascading” nature of a cascade: we pay for each successive
model—both in dollar cost and in latency—until we reach the earliest model with
sufficient confidence, 𝑀𝜏.

LLM Router with Abstention. A router with abstention is a function 𝑔(𝑥) : Σ∗ →
{1, 2, ..., 𝑘} ∪ {∅} that routes each incoming query 𝑥 to one of 𝑘 LLMs 𝑀1, ..., 𝑀𝑘

in a single step, or abstains from answering the query (∅). Its action space is

A = {(𝑖, 𝑦) | 𝑖 ∈ {1, 2, ..., 𝑘}, 𝑦 ∈ Σ∗} ∪ {∅}, (3.8)

where (𝑖, 𝑦) denotes that model 𝑖 generates output 𝑦, and ∅ indicates that the router
abstained (for example, to defer the query to a human expert). Analogous to a cas-
cade, the router with abstention reaps a reward 𝑟 = − [𝐶 + 𝜆𝐿𝐿 + 𝜆𝐸1𝐸 (𝑦) + 𝜆𝐴1𝐴 (𝑦)]

2Optionally, the error-calling function 𝑠 may take into account a reference answer 𝑦ref, leading
to a bivariate function 𝑠(𝑦, 𝑦ref) : Σ∗ × Σ∗ → {0, 1}.
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for each action, the sole difference being the addition of a term 1𝐴 indicating that
the router abstained. However, the cost 𝐶 and latency 𝐿 are computed differently:

𝐶 = 𝑐0 + 𝐶𝑖, 𝐿 = 𝑙0 + 𝐿𝑖, (3.9)

where 𝐶𝑖 and 𝐿𝑖 are the cost and latency of generating the output with model 𝑀𝑖.
The constants 𝑐0 and 𝑙0 represent the computational overhead of determining the
routing decision 𝑔(𝑥) ∈ {1, 2, ..., 𝑘}. These costs are typically negligible, as 𝑔 is
usually lightweight compared to the LLMs 𝑀1, 𝑀2, ..., 𝑀𝑘 .3

Economic Modeling of LLM Use Cases
To cast standalone LLMs, cascades, and routers as reward-maximizing agents, we
defined the per-query reward

𝑟 = − [𝐶 + 𝜆𝐿𝐿 + 𝜆𝐸1𝐸 + 𝜆𝐴1𝐴] , (3.10)

where 𝐶 is the dollar cost of processing a query, 𝐿 is the latency, 1𝐸 indicates an
error, and 1𝐴 indicates an abstention. In general, we formulate this reward as

𝑟 = −
𝐶 +

∑︁
𝜇∈Pnumeric

𝜆𝜇 𝜇 +
∑︁

𝜒∈Pbinary

𝜆𝜒1𝜒

 , (3.11)

where Pnumeric ∪ Pbinary is the set of per-query performance metrics: Pnumeric rep-
resents the numeric performance metrics (for example, latency) and Pbinary denotes
the binary performance events (for example, error and abstention). This definition
includes other reasonable performance objectives, such as privacy (Zhang et al.,
2024a).

The coefficients {𝜆𝜇}𝜇∈Pnumeric , {𝜆𝜒}𝜒∈Pbinary ∈ R+ are prices measuring the economic
impact when the performance metrics worsen. Table 3.1 gives a few key examples:

These parameters are based on the economic concept of indifference (Mankiw,
2020). For example, the price of error 𝜆𝐸 is the lowest dollar figure 𝑑 at which
the user (i.e., the organization that deploys the LLM system) would be indifferent
between suffering an LLM error or receiving 𝑑 dollars in cash.

3Typically, the routing model takes the form of a deep neural network—for example, a finetuned
small language model—with less than 1B parameters (Shnitzer et al., 2023; Hari and Thomson,
2023).
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Table 3.1: Examples of key economic parameters in our framework.

Parameter Symbol Definition Units

Price of Error 𝜆𝐸 Amount the user is willing to pay to avoid a
single prediction error.

$

Price of Latency 𝜆𝐿 Amount the user is willing to pay to reduce
per-query latency by one second.

$/sec

Price of Abstention 𝜆𝐴 Amount the user is willing to pay to avoid a
model abstention (no answer).

$

Multi-Objective Performance Evaluation in a Single Number
Given the user’s economic constraints (see Table 3.1), the expected per-query reward
of the LLM system is

𝑅(𝜆; 𝜃) = E𝜃 [𝑟 (𝜆)], (3.12)

where 𝑟 is the per-query reward (3.11). We use 𝜆 to denote the totality of economic
parameters (e.g., 𝜆𝐸 , 𝜆𝐿 , ...), and denote the configuration of the LLM system by 𝜃.
Selecting the optimal LLM for a given use case, or optimizing the operating point
of a system of LLMs, involves the reward maximization

𝜃∗(𝜆) = arg max
𝜃

𝑅(𝜆; 𝜃). (3.13)

When choosing among individual LLMs, 𝜃 represents the identity of the model
(e.g., GPT 4.1 vs DeepSeek R1), as well as hyperparameter settings (user and
system prompts, sampling temperature, top-p, top-k, etc.). On the other hand, for
LLM systems, 𝜃 typically represents tunable parameters such as the confidence
thresholds of LLM cascades (Zellinger and Thomson, 2025b).

Often the user’s economic constraints 𝜆 are not known with certainty. In this case,
it is instructive to compute optimal models for a range of potential 𝜆 values. These
sensitivity tables can be highly informative, as the optimal model is often stable
over a wide range of different economic constraints. See sections 3.4 and 3.4 for
examples.

To compare the performance of different LLMs (or systems of LLMs) across different
economic scenarios 𝜆, we consider their expected per-query rewards for the optimal
choices of 𝜃:

𝑅(𝜆) = 𝑅(𝜆; 𝜃∗(𝜆)). (3.14)

Alternatively, if 𝜆 is uncertain—for example, suppose that new legislation may
change the expected payout of medical malpractice lawsuits, potentially raising the
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price of error 𝜆𝐸 for medical AI deployments—we model 𝜆 as a random variable
𝜆 ∼ 𝑝(𝜆), yielding the expected per-query reward

𝑅 = E𝜆∼𝑝(𝜆) [𝑅(𝜆)] . (3.15)

Estimating the Price of Error
Managing the potential cost of LLM mistakes is critical for businesses, especially
those in risk-sensitive industries (e.g., finance, law, or medicine).

In this section, we illustrate how to estimate the price of error by walking through
an example calculation for medical diagnosis. Practitioners may then adapt these
steps to their own industries.

Estimate of 𝝀E for medical diagnosis. We estimate the price of error for medical
diagnosis to be about $1,000. We arrive at this number by considering data on
medical malpractice lawsuits and applying Bayes’ theorem.

For a single diagnosis, denote the event of a medical malpractice lawsuit as 𝑀 and
the event of a diagnostic error as 𝐸 . Our estimate for the price of error is then

𝜆̂𝐸 = E[Cost|𝑀] × P(𝑀 |𝐸) (3.16)

= E[Cost|𝑀] × P(𝐸 |𝑀)P(𝑀)
P(𝐸) . (3.17)

Studdert et al. (2006) report that the mean payout for medical malpractice lawsuits is
$485,348, so we use E[Cost|𝑀] = $500, 000. In addition, two thirds of malpractice
suits are derived from a genuine medical error (rather than a fraudulent claim), so
P(𝐸 |𝑀) = 2/3.

Jena et al. (2011) estimate a doctor’s yearly risk of facing a malpractice claim
as 7.4%, so we estimate that a doctor encounters a malpractice suit once every
1/0.074 = 13.5 years. Assuming the doctor makes 3 diagnoses per hour, we arrive
at around 100,000 diagnoses within this time frame, so P(𝑀) ≈ 1/100, 000. By
contrast, Singh, Meyer, and Thomas (2014) estimate that 1 in 20 adults experiences
a diagnostic error each year. Taking into account the fact that people may go to the
hospital more than once per year, and that each visit may involve more than one
diagnosis, we use P(𝐸) ≈ 1/100.

Plugging these numbers into the formula (3.17), we arrive at the estimate 𝜆̂𝐸 ≈ $333
for medical diagnosis.
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Connections between Economic Evaluation and Pareto Optimality
In this section, we establish theoretical connections between our economic evalu-
ation framework and Pareto optimality. Our first result shows that sweeping over
different economic scenarios 𝜆 recovers the full Pareto frontier for the performance
metrics, assuming regularity conditions.

Theorem 3. Let 𝜃∗(𝜆) be the solution to the reward maximization problem

𝜃∗ = argmax𝜃 𝑅(𝜆; 𝜃), (3.18)

where 𝜃 ∈ R𝑝 denotes an LLM system’s tunable parameters, and 𝜆 is the vector
of economic costs as defined in Section 3.3. Assume that regularity conditions
hold, such that for each 𝜆 ∈ R

|Pnumeric |+|Pbinary |
>0 there exist bounds {𝛾𝜇}𝜇∈Pnumeric and

{𝛾𝜒}𝜇∈Pbinary > 0 such that 𝜃∗(𝜆) is equivalently the solution of the constrained
optimization problem

𝜃∗ = argmin𝜃 Ê𝜃 [𝐶]
subject to Ê𝜃 [𝜇] ≤ 𝛾𝜇, 𝜇 ∈ Pnumeric

Ê𝜃 [1𝜒] ≤ 𝛾𝜒, 𝜒 ∈ Pbinary,

(3.19)

and vice versa for 𝛾 ↦→ 𝜆(𝛾). Then the vector of economic costs, 𝜆, maps surjectively
onto the Pareto surface via the mapping

𝜆 ↦→ (Ê𝜃∗ (𝜆) [𝐶], Ê𝜃∗ (𝜆) [𝜇1], ..., Ê𝜃∗ (𝜆) [𝜇 |Pnumeric |], P̂𝜃∗ (𝜆) [𝜒1], ..., P̂𝜃∗ (𝜆) [𝜒|Pbinary |]).
(3.20)

Proof. See Appendix B. □

The next result provides theoretical support for evaluating the overall performance
of LLM systems by comparing the expected reward (3.14) across a grid of possible
use cases 𝜆.

Theorem 4. Consider two LLM systems, S1 and S2. Assume that the regularity
assumptions of Theorem 3 hold. If the expected rewards (3.14) satisfy

𝑅1(𝜆) ≥ 𝑅2(𝜆)

for all 𝜆 ∈ R
|Pnumeric |+|Pbinary |
>0 , then no point on the Pareto surface for S1 dominates

any point on the Pareto surface for S2.
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Proof. Suppose for the sake of contradiction that 𝜃2 on the Pareto surface of S2

dominates 𝜃1 on the Pareto surface of S1. By Theorem 3, there exist 𝜆1, 𝜆2 ∈ R+

such that

𝜃1 = 𝜃∗(𝜆1), (3.21)

𝜃2 = 𝜃∗(𝜆2), (3.22)

as defined by (3.13). Hence, we have

𝑅1(𝜆1) = 𝑅1(𝜆1; 𝜃∗(𝜆1)) = 𝑅(𝜆1; 𝜃1) < 𝑅2(𝜆1; 𝜃2) ≤ max
𝜃

𝑅2(𝜆1; 𝜃) = 𝑅2(𝜆1),
(3.23)

where the middle inequality follows from the assumed Pareto dominance of 𝜃2 over
𝜃1. □

3.4 Experiments
We apply our economic evaluation framework to explore the practical relevance of
less powerful LLMs. We address two concrete questions:

• When do reasoning models outperform non-reasoning models? (Section 3.4)

• When does a single large modelMbig outperform a cascadeMsmall →Mbig?
(Section 3.4)

Methodology
Since AI models are increasingly considered as a replacement for meaningful human
labor, we focus our analysis on difficult mathematics questions from the MATH
benchmark (Hendrycks et al., 2021b). This benchmark offers the advantage of
containing ground truth difficulty labels (1-5) as well as reference answers. To
simplify evaluation of LLM answers, we filter out questions with non-numeric
answers and use stratified sampling to obtain 500 questions for each of the three
difficulty levels 1, 3, and 5. We exclusively use the training split of the MATH
benchmark; although this choice heightens the potential for data contamination
(Ravaut et al., 2025), it makes available a greater number of difficult examples and
therefore improves the statistical power of our experiments.

Models. We evaluate six state-of-the-art LLMs (three reasoning, three non-reasoning):
Meta’s Llama3.3 70B and Llama3.1 405B models (Meta AI, 2024), OpenAI’s
GPT4.1 and o3 models, DeepSeek’s R1 model (DeepSeek AI, 2025), and Alibaba’s
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Qwen3 235B-A22 model (Alibaba AI, 2025). We prompt each model using zero-
shot chain-of-thought (Kojima et al., 2022).

LLM cascades. To evaluate cascades Msmall → Mbig, we quantify the small
model’s probability of correctness using self-verification, also known as P(True)
(Kadavath et al., 2022; Zellinger and Thomson, 2025b). When comparing the
performance of Msmall → Mbig against that of Mbig in Section 3.4, we split the
data into 50% training and test sets; we use the training set exclusively for estimating
the optimal confidence threshold, and evaluate cascade performance on the test split
(𝑛 = 250).

Metrics. We measure the correctness, dollar cost, and latency for each query by
invoking LLMs via the commercial Fireworks AI (Llama3.1, Llama3.3, Qwen3,
DeepSeek R1) and OpenAI (GPT 4.1, o3) application programming interfaces.

Correctness. To assess correctness of a model’s answer, we invoke Llama3.1 405B
with an evaluation prompt containing the ground truth reference answer.

Cost. We compute
𝐶 = 𝑁in × 𝐶in + 𝑁out × 𝐶out, (3.24)

where 𝑁in, 𝑁out are the numbers of input and output tokens, and 𝐶in, 𝐶out are the
API providers’ model-specific prices, expressed in dollars per token.

Latency. We record the time before and after an API call to the LLM model provider.
Hence, our reported latencies include internet roundtrip latency. However, this
additional latency (<300ms) is negligible, being 10-200x smaller than the latencies
we observe for answering queries.

Cascade Error Reduction: To predict the performance of a cascade Msmall →
Mbig based on the quality of the confidence signal of Msmall (self-verification in
our case), we introduce the cascade error reduction

CER = Cov(1𝐷 ,1
Msmall
error ), (3.25)

where 1𝐷 indicates the small model’s decision to defer the query to Mbig, and
1
Msmall
error indicates that the output ofMsmall is incorrect. We theoretically justify this

metric in Theorem 5.

See appendices C-E for more details on methodology.
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Baseline Performance: Error Rate, Cost, and Latency
Figure 3.2 shows the performance of reasoning and non-reasoning models on 𝑛 =

500 of the most difficult questions of the MATH benchmark. Clearly, reasoning
models have much lower error rates. However, their costs per query are 10-100x
greater, and latencies per query are up to 10x greater.
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Figure 3.2: On the most difficult questions of the MATH benchmark, reasoning
models have much lower error rates but are 10-100x more expensive and take 10x
longer to answer a query.

Reasoning models are known to dynamically scale the number of output tokens
based on the difficulty of the query. However, non-reasoning models prompted with
chain-of-thought also adapt the number of output tokens based on query difficulty.
Figure .14 in Appendix A compares the number of output tokens across queries of
varying difficulty, showing that the relative increase in output tokens is comparable
between reasoning and non-reasoning models; however, reasoning models have
higher baseline numbers of output tokens.

When Do Reasoning Models Outperform Non-Reasoning Models?
We now leverage our economic evaluation framework to determine under what
conditions reasoning models outperform non-reasoning models on difficult questions
from MATH.

First, we only trade-off accuracy and cost, disregarding latency. Second, we simul-
taneously consider accuracy, cost, and latency, and display the optimal LLM over a
range of economic constraints.

Figure 3.3 plots the expected reward (3.14) of reasoning and non-reasoning LLMs
on MATH, for prices of error ranging from 𝜆𝐸 = $0.0001 to 𝜆𝐸 = $10, 000 per
query. These curves only trade-off accuracy and cost, assuming that latency costs
nothing (𝜆𝐿 = $0/sec). Each curve shows the average expected reward across all
models of one category (reasoning or non-reasoning).
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Figure 3.3: Reasoning models offer superior accuracy-cost trade-offs as soon as the
price of error, 𝜆𝐸 , exceeds $0.20 per query. The y-axis shows -log(-𝑅(𝜆𝐸 )) to make
the trends more easily visible.

The results show that reasoning models offer superior accuracy-cost trade-offs as
soon as the cost of making a mistake exceeds $0.20. This figure is surprisingly low.
Suppose a human worker is able to complete the same task in 5 minutes on average,
and assume that the consequence of a mistake is having to re-do the task. Then
the economic loss of a single mistake exceeds $0.20 as soon as the worker’s wages
exceed $2/hour—a number below the U.S. federal minimum wage.

Figure 3.4 introduces a non-zero price of latency and displays the optimal mod-
els across economic constraints, with prices of error 𝜆𝐸 ranging from $0.0001 to
$10,000, and prices of latency 𝜆𝐿 ranging from $0/minute to $10/minute. These
prices of latency correspond to human wages from $0/hour to $600/hour. Hence,
we believe this range captures a wide variety of use cases for automating meaningful
human tasks, ranging from customer support (below $100/hour) to medical diagno-
sis (above $100/hour). We note that this regime does not include the more stringent
latency constraints of using LLMs for non-human tasks such as serving popular web
applications (Kohavi and Longbotham, 2007) or iterating through a large number
of database records. We leave exploration of such tasks—and their higher prices of
latency—to future work, as we are most concerned with the emerging practice of
automating human tasks using LLMs.

Figure 3.4 shows that reasoning models generally outperform non-reasoning mod-
els for prices of error above $10 when the price of latency is at most $5/minute
(equivalent to human wages of $300/hour). For a price of latency of $10/minute (or
$600/hour), the critical price of error rises to $100. Among LLMs, Qwen3-235B-
A22B, o3, and Llama3.3 70B emerge as the preferred models for the vast majority
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Figure 3.4: Optimal models for different combinations of price of error and price
of latency. Reasoning models show superior performance for prices of error above
$10.

of economic scenarios.

When Does a Single Big Model Outperform a Cascade?
A large language model cascadeMsmall →Mbig sends all queries first to a relatively
small modelMsmall. IfMsmall is uncertain about the answer, it defers the query to
Mbig; otherwise, it directly returns the output. Cascading generally assumes that
Mbig performs better thanMsmall on all queries; hence, we expect that as the price
of error 𝜆𝐸 increases, there exists a cross-over point 𝜆critical

𝐸
when directly sending

queries to the big modelMbig outperforms cascading.

Figure 3.5 compares the performance of three different cascadesMsmall → Mbig.
For each cascade,Mbig = Qwen3 235B-A22B, butMsmall ranges over all the non-
reasoning models (Llama3.3 70B, Llama3.1 405B, and GPT-4.1). We evaluate only
on the most difficult (level 5) questions of the MATH benchmark. We tune the
cascade’s deferral threshold on 𝑛 = 250 training examples and use the remaining
𝑛 = 250 questions for evaluation.

Disregarding the impact of latency, usingMbig = Qwen3 235B-A22 as a standalone
LLM generally outperforms the cascadeMsmall → Mbig—as soon as the price of
error exceeds 𝜆𝐸 > $0.10. As the price of latency increases to 𝜆𝐿 = $0.5/minute
(equiv. to $30/hour), the critical price of error 𝜆critical

𝐸
ratchets up to $10. At

𝜆𝐿 = $10/minute (equiv. to $600/hour), 𝜆critical
𝐸

increases to $1, 000. This finding
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(b) Llama3.3 70B→Mbig
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(c) Llama3.3 405B→Mbig

Figure 3.5: Directly sending queries to Qwen3 235B-A22B (Mbig) outperforms
cascades when the cost of making a mistake exceeds $0.10 and the price of latency
is sufficiently low.

suggests that when automating medical diagnosis (with an estimated price of error
between $100 and $1,000, as discussed in Section 3.3), it may be preferable to avoid
cascading.

However, this analysis carries an important caveat. For the cascade with Msmall

= Llama3.3 405B, we observed a marked and surprising outperformance over the
other cascades—even though as a standalone LLM, Llama3.3 405B performs strictly
worse than Llama3.3 70B, as shown in Figure 3.2. The cascade Llama3.1 405B→
Qwen3 235B-A22B yields better accuracy-cost-latency trade-offs than Qwen3 235B-
A22B for the vast majority of economic scenarios, including prices of error up to
$10, 000 and prices of latency up to $10/minute (equiv. to $600/hour).

Why does using Llama3.1 405B as the small model result in superior cascade
performance? To explain this phenomenon, we point to the model’s remarkable
self-verification performance. To lay out our argument, we first restate the formula
for the error rate of a two-model cascade given without proof by Zellinger and
Thomson (2024):

Theorem 5 (Cascade Error). Consider a cascade Msmall → Mbig, where the
deferral decision ofMsmall is determined by the indicator 1𝐷 . Then the error rate,
𝑒cascade of the cascade is

𝑒Msmall→Mbig = (1 − 𝑝𝑑) 𝑒Msmall + 𝑝𝑑 𝑒Mbig + Cov(1𝐷 ,1
Mbig
error) − Cov(1𝐷 ,1

Msmall
error ),

(3.26)
where 𝑝𝑑 := E[1𝐷] is the deferral rate, 𝑒Msmall := E[1Msmall

error ] is the error rate of
Msmall, and 𝑒Mbig := E[1Mbig

error] is the error rate ofMbig.
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Proof. This result follows from writing out the formula for cascade error,

𝑒Msmall→Mbig = E[(1 − 1𝐷)1Msmall
error + 1𝐷1

Mbig
error ] . (3.27)

Using the linearity of expectation, followed by adding and subtracting terms to
recover the covariances, gives the result. □

Theorem 5 shows that the error rate of a cascade Msmall → Mbig, relative to
randomly sending queries to Msmall and Mbig, depends on the difference in co-
variances Cov(1𝐷 ,1

Mbig
error ) − Cov(1𝐷 ,1

Msmall
error ). Intuitively, these covariances mea-

sure the increase in the models’ error rates conditional on deferral. Specifically,
Cov(1𝐷 ,1

Msmall
error ) expresses the agreement between the deferral decision and the

true uncertainty of Msmall.4 In practice, Cov(1𝐷 ,1
Mbig
error ) ≪ Cov(1𝐷 ,1

Msmall
error ), so

Cov(1𝐷 ,1
Msmall
error ) alone is a strong indicator of cascade effectiveness. We refer to

this metric as the cascade error reduction (CER).
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Figure 3.6: Using Llama3.1 405B asMsmall yields superior cascading performance,
despite its subpar performance as a standalone model, because it performs better
at self-verification—indicated by a higher cascade error reduction (CER) (a). In
contrast to error rate, cost and latency are simple linear functions of the deferral rate
(b and c).

Figure 3.6 plots CER = Ĉov(1𝐷 ,1
Msmall
error ) against the cascades’ deferral thresholds.

The figure shows that Ĉov(1𝐷 ,1
Msmall
error ) is highest for Llama3.1 405B, explaining its

superior suitability for playing the role ofMsmall in a cascade (Figure 3.5). Figures
3.6b and 3.6c plot the cascades’ costs and latencies for the same range of deferral
rates, verifying that Llama3.1 405B’s superior cascade performance is driven by
error rate, not cost or latency.

4Thus, Cov(1𝐷 ,1
Msmall
error ) is closely related to the area under the accuracy-rejection curve

(AUARC) from selective prediction (El-Yaniv and Wiener, 2010).
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3.5 Related Work
In this section, we discuss related work.

Economic Analysis of LLMs. Several papers have explored the economic and labor
market impacts of large language models (Brynjolfsson, Li, and Raymond, 2023;
Eloundou et al., 2024). For example, Eloundou et al. (2024) assess the vulnerability
of different jobs to AI automation, finding that highly paid professional work is
particularly exposed. Different from our work, the authors define exposure with
respect to achieving time savings while maintaining the same quality of work. By
contrast, we wish to highlight the comparatively low cost of AI labor, as reflected in
costs per query between $0.01 and $0.1, even for state-of-the-art reasoning LLMs.
Our argument is that lowering the cost of labor—even without saving time—yields
significant economic benefits.

When it comes to ranking the performance of LLMs based on economic principles,
the closest work to ours is the preprint by Erol et al. (2025). The authors propose
quantifying accuracy-cost trade-offs by the ratio of cost to accuracy. Numerically,
this approach is mathematically similar to our multi-objective reward (3.10) when
considering only accuracy and cost, and using a constant, unchanging price of error
for all use cases. We believe that our framework’s ability to handle a greater number
of simultaneous performance objectives, and to differentiate between the economic
realities of different industries (for example, customer support vs medical diagnosis),
to be significant strengths.

Moreover, we consider the theoretical motivation of Erol et al. (2025)’s cost-of-pass
metric to be flawed. Their argument is that with an accuracy of 𝑎, an LLM can
be viewed to generate the correct answer to a query in 1/𝑎 attempts (assuming
a geometric distribution). Hence, their metric measures the total cost (“cost of
pass”) required to produce the correct answer. However, the correctness of repeated
samples from an LLM with accuracy 𝑎 may only be modeled as i.i.d. Bernoulli(a)
trials if we also randomly sample new queries 𝑞. For a fixed query, repeated sampling
does not reliably yield a correct answer, although it offers some benefits (Chen et al.,
2024b).

LLM Evaluation and Benchmarking. The evaluation of large language models
has received significant attention over the past few years (Laskar et al., 2024).
Prior work has mostly focused on assessing specific capabilities of LLMs, such as
summarization (Narayan, Cohen, and Lapata, 2018), general knowledge (Hendrycks
and Gimpel, 2018), truthfulness (Lin, Hilton, and Evans, 2022b), mathematical
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reasoning (Hendrycks et al., 2021b), and others. In general, individual benchmarks
rapidly become obsolete as LLMs become more capable. Notably, Liang et al.
(2023) provide a compelling synthesis of many of the different capabilities worth
evaluating. In addition to benchmarking, the Chatbot Arena (Chiang et al., 2024)
has popularized ranking LLMs through crowd-sourced pairwise comparisons, in
a manner similar to reinforcement learning from human feedback (Ouyang et al.,
2022).

These evaluation efforts are not directly comparable to our work, as we focus on
multi-objective evaluation of conflicting performance objectives, such as accuracy,
cost, and latency. It is not sufficient to evaluate these metrics individually, since we
wish to simultaneously optimize for these performance objectives.

Multi-Objective LLM Systems. Our emphasis on multi-objective evaluation is
reflected in research on multi-LLM systems such as cascades (Ding et al., 2024;
Chen, Zaharia, and Zou, 2023; Aggarwal et al., 2024) and routers (Shnitzer et al.,
2023; Hari and Thomson, 2023; Jitkrittum et al., 2025). Researchers have mainly
framed the accuracy-cost trade-off as a constrained minimization of the error rate
subject to a cost budget (Chen, Zaharia, and Zou, 2023; Jitkrittum et al., 2024; Hu
et al., 2024). Evaluation of different LLM systems proceeds by plotting Pareto-
optimal error rates against the corresponding cost budgets. Unfortunately, this
approach does not easily generalize to more than two performance objectives, since
it is difficult to compare the quality of higher-dimensional Pareto frontiers (Zellinger,
Liu, and Thomson, 2025). Specifically, the volume under a Pareto surface is not
a meaningful metric unless the lower-dimensional projections of different Pareto
frontiers substantially intersect.5

In addition, we suspect that prior work’s emphasis on setting budgets for cost
or latency may be overly influenced by the peculiarities of the IT industry, as
these budgets closely reflect that industry’s service-level objectives (SLO). However,
artificial intelligence is a society-wide phenomenon that extends far beyond IT. As
AI starts to perform meaningful human work, it will likely emerge as a revenue
generator rather than a cost center—diminishing the relevance of cost budgets as a
mental framework.

Computation of Pareto Frontiers. From an optimization perspective, our method-
5The same problem may occur in two dimensions. Consider error-cost curves that are horizon-

tally shifted, i.e., the attainable cost budgets are disjoint. Comparing the areas under these curves
does not yield meaningful results.
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ology corresponds to a well-known method for approximating Pareto frontiers called
the weighted sum method for scalarization (Koski, 1988; Jahn, Klose, and Merkel,
1991; Banholzer and Volkwein, 2019). Prior work has identified certain disadvan-
tages of scalarization: for example, it may not yield all Pareto-optimal trade-offs
when the Pareto surface is non-convex, or coverage of the Pareto frontier might be
unevenly distributed (Das and Dennis, 1997). Such issues are not a major concern
for us, as we motivate our methodology on economic grounds, by casting LLM sys-
tems as reward-maximizing agents (see Section 3.3). We note, however, that Pareto
frontiers arising in performance evaluation of LLM systems tend to be convex since
randomly routing queries between two LLMs smoothly interpolates between their
respective performance metrics.

3.6 Conclusion
We have presented an economic framework for evaluating the performance of LLMs
and LLM systems. Compared to plotting Pareto frontiers, our approach yields a
single optimal model based on a use case’s economic constraints: the cost of making
a mistake (price of error), the cost of incremental latency (price of latency), and the
cost of abstaining from a query (price of abstention), as well as possible additional
objectives such as privacy (Zhang et al., 2024a).

We motivated our framework by casting LLMs and LLM systems as reward-
maximizing agents, and revealed theoretical relationships between our proposed
methodology and the established notion of Pareto optimality.

Applying our framework to empirically exploring the practical relevance of non-
reasoning LLMs and cascades, we found several interesting results. First, reasoning
models offer superior accuracy-cost trade-offs on difficult mathematics questions as
soon as the price of error exceeds $0.01. Second, a single large LLMMbig typically
outperforms a cascadeMbig →Mbig for prices of error as low as $0.1.

Extrapolating these findings from mathematics to other domains, our results carry
significant economic implications. We recommend that when automating mean-
ingful human tasks with AI models, practitioners should typically use the most
powerful available model, rather than attempt to minimize inference costs, since
inference costs are likely dwarfed by the economic impact of AI errors. Fundamen-
tally, this recommendation is based on the low costs per query of LLMs, which are
increasingly negligible compared to human wages.
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3.7 Limitations
First, our results on the MATH benchmark may be affected by data contamination,
since the LLMs we evaluate may have been trained on similar questions. In addition,
using Llama3.1 405B for correctness evaluation may artificially inflate this model’s
self-verification accuracy—however, we believe that this latter effect is limited
since the prompt for correctness evaluation relies on access to the ground truth
reference answer, whereas self-verification only incorporates the model’s proposed
(but possibly incorrect) answer.
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C h a p t e r 4

ERROR REDUCTION WITH HUMAN-IN-THE-LOOP

Zellinger, Michael J. and Matt Thomson (2025). “Fail Fast, or Ask: Mitigating the
Deficiencies of Reasoning LLMs with Human-in-the-Loop Systems Engineer-
ing.” In: arXiv preprint. arXiv: 2507.14406 [cs.AI]. url: https://arxiv.
org/abs/2507.14406.

Abstract: State-of-the-art reasoning LLMs are powerful problem solvers, but they
still occasionally make mistakes. However, adopting AI models in risk-sensitive
domains often requires error rates near 0%. To address this gap, we propose
collaboration between a reasoning model and a human expert who resolves queries
the model cannot confidently answer. We find that quantifying the uncertainty of a
reasoning model through the length of its reasoning trace yields an effective basis
for deferral to a human, e.g., cutting the error rate of Qwen3 235B-A22B on difficult
MATH problems from 3% to less than 1% when deferring 7.5% of queries. However,
the high latency of reasoning models still makes them challenging to deploy on use
cases with high query volume. To address this challenge, we explore fronting a
reasoning model with a large non-reasoning model. We call this modified human-
in-the-loop system “Fail Fast, or Ask”, since the non-reasoning model may defer
difficult queries to the human expert directly (“failing fast”), without incurring
the reasoning model’s higher latency. We show that this approach yields ≈ 40%
latency reduction and ≈ 50% cost savings for DeepSeek R1 while maintaining
90+% area under the accuracy-rejection curve. However, we observe that latency
savings are lower than expected because of latency drag—the phenomenon that
processing easier queries with a non-reasoning model pushes the reasoning model’s
latency distribution towards longer latencies. Broadly, our results suggest that the
deficiencies of state-of-the-art reasoning models—nontrivial error rates and high
latency—can be substantially mitigated through black-box systems engineering,
without requiring access to LLM internals.

4.1 Introduction
Reasoning LLMs are trained using reinforcement learning to “think” until finding
the correct answer to a query (DeepSeek AI, 2025). This approach has significantly

https://arxiv.org/abs/2507.14406
https://arxiv.org/abs/2507.14406
https://arxiv.org/abs/2507.14406
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Figure 4.1: We explore two systems aimed at reducing deficiencies of reasoning
models. Above: ”Ask” aims to reduce the error rate of reasoning model M𝑟 by
deferring difficult queries to a human expert whenM𝑟 is uncertain. Bottom: “Fail
Fast, or Ask” aims to offset the reasoning model’s high latency by fronting it with
a faster non-reasoning modelM𝑛𝑟 , which may directly defer queries to the human
expert (“failing fast”).

lowered error rates on complex tasks (OpenAI, 2024a; Alibaba AI, 2025), making
“thinking” a dominant paradigm for state-of-the-art language models.

However, many risk-sensitive domains expect error rates near 0%—a high bar which
even state-of-the-art reasoning models may fail to meet.

Moreover, reasoning models suffer from high latency (Zellinger and Thomson,
2025a), making these models unsuitable for tasks where answers must be delivered
quickly. Query response times measured in seconds and even minutes can arise
for difficult tasks, making standard user interaction patterns—which are based on
rapid feedback—problematic (Kohavi and Longbotham, 2007). A similar challenge
arises for batch workloads involving a large volume of queries. For example, with
a per-query latency of 30 seconds—not unusual for reasoning models—crunching
through a million database records takes around 1 year.

In this paper, we explore a human-in-the-loop systems approach (“Fail Fast, or Ask”)
for mitigating these deficiencies of reasoning models, with the goal of speeding their
path towards practical deployment on real-world tasks.
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Described simply, our “Fail Fast, or Ask” system applies distinct strategies for
improving 1) the error rate and 2) the latency of a reasoning modelM𝑟 .

To achieve error reduction,M𝑟 defers difficult queries to a human expertH . Similar
to prior successes on achieving near-zero error rates on image classification (Geif-
man and El-Yaniv, 2017), this strategy lowers the error rate ofM𝑟 at the expense of
abstaining from a nonzero fraction of queries.

Second, to speed up response times we send each query first to a faster, non-reasoning
modelMnr. This model may respond directly to the query, defer it toMnr, or send
it to the human expertH .

Our experiments yield the following conclusions:

1. Quantifying the uncertainty of reasoning models by the lengths of their think-
ing traces effectively improves accuracy for DeepSeek R1 and Qwen3 235B-
A22B, but not OpenAI o3.

2. Deferring difficult queries to a human expert achieves +2% accuracy, pushing
the accuracy of Qwen3 235B-A22B on the most challenging MATH questions
from 97% to 99+%.

3. Our “Fail Fast, or Ask” system, which fronts a slow reasoning model with
a faster non-reasoning model (Llama3.1 405B), maintains 90+% accuracy
while responding to queries ≈ 40% faster.

4.2 Related Work
Quantifying the Uncertainty of Reasoning Models. Previous work suggests that
longer reasoning traces correlate with lower accuracy (Ballon, Algaba, and Ginis,
2025), resulting from higher perceived problem difficulty (Shojaee et al., 2025;
Lawsen, 2025).

Interestingly, this phenomenon highlights nuances of causation vs correlation. While
longer reasoning traces correlate with higher error rates, deliberately using a greater
number of reasoning tokens paradoxically causes improved performance (Jin et al.,
2024; Muennighoff et al., 2025). Such apparent paradoxes are well-explained in
the causal inference literature (Pearl, 2009) and are due to adverse selection effects.
Specifically, when forcing a model to use a greater number of reasoning tokens, we
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condition on all queries, whereas if we observe a model using a greater number of
reasoning tokens, we condition on a particularly difficult set of queries.1

Selective Prediction with Large Language Models. Selective prediction (El-
Yaniv and Wiener, 2010) gives a machine learning model the ability to abstain
from answering difficult queries, making very low error rates possible. Using this
approach, Geifman and El-Yaniv (2017)) have demonstrated near-zero error rates
on top-5 ImageNet classification. In natural language processing (NLP), selective
prediction has not been as popular, except for early contributions (Xin et al., 2021;
Varshney, Mishra, and Baral, 2022; Ren et al., 2023a). Once NLP entered the LLM
era, several authors have proposed uncertainty metrics for predicting LLM errors
(Manakul, Liusie, and Gales, 2023; Azaria and Mitchell, 2023a; Chen, Zaharia,
and Zou, 2023; Farquhar et al., 2024). These contributions typically evaluate the
quality of their proposed uncertainty metrics by simulating a selective prediction
task in which the LLM only answers queries for which its uncertainty is low. This
evaluation results in a plot of conditional accuracy vs rejection rate, and the area
under this curve (AUARC) quantifies performance across rejection rates.

Human-in-the-Loop AI Systems. Collaboration between AI systems and humans
has been an active research topic in human-computer interaction (Amershi et al.,
2014; Kamar, 2016; Shneiderman, 2020; Watkins et al., 2025), with heightened
interest in application domains such as medicine. Some of this work has explored
the complementary strengths of human experts and AI models (Dvijotham et al.,
2023), while others treat human experts as an omniscient oracle—a safe fallback for
imperfect AI models (Strong, Men, and Noble, 2025; Fanconi and Schaar, 2025).
Our work takes this latter approach, although we view explicit modeling of human
errors as a promising avenue for follow-up research.

4.3 Fail Fast, or Ask
We consider two human-in-the-loop systems, as illustrated in Figure 4.1. The first
system (“Ask”) consists of a large reasoning modelM𝑟 that defers difficult queries
to a human expertH . The second system (“Fail Fast, or Ask”) additionally contains
a large non-reasoning modelMnr, which fields all queries; based on its confidence,
Mnr either 1) responds to the query, 2) passes the query to the reasoning modelMr,
or 3) directly defers the query to the human expert (“failing fast”).

1This scenario closely mirrors the common situation in hospitals where only the sickest patients
are assigned the strongest medication. Naive statistical analysis then leads to the erroneous conclusion
that the medication lowers patients’ survival rate.
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Predicting Reasoning Model Errors. Prior work has revealed that reasoning
models emit more thinking tokens when they are uncertain about the answer to
a query (Ballon, Algaba, and Ginis, 2025). Leveraging this insight, we predict
reasoning model errors by simply thresholding the number of output tokens. For
example, to reject 10% of queries (and defer them to the human expert), we set the
output token threshold at the 90% quantile of its empirical distribution.

Predicting Non-Reasoning Model Errors. To predict the errors of Mnr, we
estimate its confidence using the P(True) strategy of Kadavath et al. (2022). Prior
work shows that this methodology yields good performance for Llama3.1 405B
(Zellinger and Thomson, 2025a).

On each query, the non-reasoning model chooses between three possible actions:
1) return the response to the query (respond), 2) pass the query to the reasoning
model (pass), or 3) directly defer the query to the human expert (fail fast). Its
action 𝜋𝑛𝑟 is based on simple thresholding of its P(True) confidence estimate 𝑝true:

𝜋𝑛𝑟 =


fail fast if 𝑝true ≤ 𝑐fail fast,

pass if 𝑝true > 𝑐fail fast and 𝑝true ≤ 𝑐pass,

respond if 𝑝true > 𝑐pass.

(4.1)

Configuration of the “Fail Fast, or Ask” System. To modulate utilization of
the faster non-reasoning modelM𝑛𝑟 , we fix its utilization rate 𝑢 := P(𝜋𝑛𝑟 ≠ pass).
This rate denotes the proportion of queries processed without involving the reasoning
modelM𝑟 ; in other words, 1 − 𝑢 is the rate at whichM𝑛𝑟 passes queries toM𝑟 .

To set the rate P(𝜋𝑛𝑟 = fail fast), we start with a desired overall rejection rate
P(→ H), where H represents the human expert. We enforce that the reasoning
model’s conditional rejection rate match the system’s overall rejection rate:

P(M𝑟 →H | M𝑛𝑟 →M𝑟) = P(→ H).

This assumption sets the non-reasoning model’s fail-fast rate at

P(𝜋𝑛𝑟 = fail fast) = P(→ H) − (1 − 𝑢) P(M𝑟 →H | M𝑛𝑟 →M𝑟).

This simple methodology yields an accuracy-rejection trade-off for each choice of
the system’s overall rejection rateP(reject) and the non-reasoning model’s utilization
rate 𝑢, without requiring any training or optimization. Choosing 𝑢 > 0 yields latency



63

and cost savings relative to the baseline “Ask” system consisting only of a reasoning
modelM𝑟 and human expert (Figure 4.1), as Figure 4.5 demonstrates.

Human Expert. We assume that the human expert can instantly and perfectly
answer each query. Thus, we treat deferral to the expert in the same manner as
rejections of the query in selective prediction, and do not further model the human
expert’s error rate or the time he/she requires to resolve a query. However, it would
be interesting to study these aspects in future work, as we note in Section 4.6.

Metrics. We measure system performance by the conditional accuracy 𝐴(𝑟) (or
error 𝐸 (𝑟) = 1 − 𝐴(𝑟)) for different “rejection rates” 𝑟 of deferring queries to the
human expert (El-Yaniv and Wiener, 2010). 𝐴(𝑟) is conditioned on the non-rejected
queries; this ensures that accuracy does not improve automatically by raising the
rejection rate. This approach yields accuracy-rejection curves charting 𝐴(𝑟) vs 𝑟.
To summarize performance in a single number, we follow prior work and report
the area under the accuracy-rejection curve (AUARC). We consider rejection rates
from 0% to 20% and report AUARC as the mean conditional accuracy across these
rejection rates.

4.4 Latency Drag
It may appear that deferring queries from the non-reasoning model Mnr to the
reasoning modelM𝑟 at a rate 1 − 𝑢 will yield a system latency of

E[𝐿] = 𝑢 E[𝐿nr] + (1 − 𝑢) (E[𝐿nr] + E[𝐿r]), (4.2)

where 𝐿𝑟 is the latency of the reasoning model and 𝐿nr is the latency of the non-
reasoning model. Unfortunately, this expectation is mistaken, for a reason we term
latency drag. Predicting errors by the reasoning model relies on the empirical
correlation between high uncertainty and longer reasoning traces. Precisely this
same correlation implies that conditioning on difficult queries (those passed by the
non-reasoning modelMnr) results in longer latencies.

Figure 4.2a shows the effect of latency drag for DeepSeek R1 and Qwen3 225B-A22.
For lower confidence percentiles of Llama3.1 405B (x axis), the conditional latency
of the reasoning models (y axis) rises. As a result, deferring queries from Llama3.1
405B to the reasoning model results in higher latencies than predicted by Equation
(4.2).

More precisely, fronting the reasoning modelM𝑟 with a faster non-reasoning model
alters the latency distribution of M𝑟 in two ways, eliminating both low and high
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Figure 4.2: Fronting the reasoning model M𝑟 with a non-reasoning model M𝑛𝑟

increases the reasoning model’s average latency (white area), leading to lower
latency savings than expected. Fundamentally, this latency drag results from the
negative correlation between the reasoning model’s latency (𝑦 axis) and the non-
reasoning model’s confidence (𝑥 axis).

latencies: the former by never passing easy queries, and the latter by “failing fast”
on the most difficult queries. The gray shaded areas in Figure 4.2 illustrates these
two competing effects. In practice, latency drag from eliminating easy queries
outweighs latency reduction from “failing fast.”

4.5 Selective Prediction Performance
We evaluate the selective prediction performance of both the “Ask” systemM𝑟 →H
and the “Fail Fast, or Ask” system [M𝑛𝑟 → M𝑟] → H , for different degrees of
utilizing the non-reasoning model.

To address the utility of our methodology in a complex problem-solving domain
where reasoning models excel, we evaluate on 500 questions with maximum diffi-
culty (5/5) from the MATH benchmark (Hendrycks et al., 2021b). We use the same
data as Zellinger and Thomson (2025a), which is filtered for questions with numeric
answers.

We consider three state-of-the-art large reasoning models: Qwen3 225B-A22 (Al-
ibaba AI, 2025), DeepSeek R1 (DeepSeek AI, 2025), and OpenAI o3. As the non-
reasoning model, we use Llama3.1 405B (Meta AI, 2024) throughout, since prior
work suggests it effectively quantifies its own uncertainty on MATH (Zellinger and
Thomson, 2025a). Table 4.1 summarizes the baseline performance of these LLMs.
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Table 4.1: Baseline performance metrics for reasoning (M𝑟) and non-reasoning
(M𝑛𝑟) models for difficult MATH questions. For each metric, we report the average
value per query.

Model Role Error Rate (%) Latency (sec) Cost ($) Output Tokens (#)

qwen3-235b-a22b M𝑟 2.8 125.9 9.5 × 10−3 10.8K
deepseek-r1-0528 M𝑟 5.8 89.7 7.9 × 10−2 9.8K
o3-2025-04-16 M𝑟 3.8 67.6 1.9 × 10−2 2.2K
llama-v3p1-405b-instruct M𝑛𝑟 30.6 12.4 3.6 × 10−3 978

How well can we quantify the uncertainty of reasoning models?
Figure 4.3 shows the results of using the length of reasoning models’ thinking traces
to predict their correctness on answering queries. Each plot shows a local linear
regression computing the conditional expectation of correctness for a specified
number of output tokens. Each curve shows decreased accuracy when the number
of output tokens is large.

However, we observe some variability between the models. Although the shape of
each curve is similar—initially flat, then steeply declining—this pattern is attenuated
for OpenAI o3, which displays a longer flat region and smaller decline in accuracy.
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Figure 4.3: Local linear regression (±1𝜎) of the reasoning models’ correctness vs
the number of output tokens shows that correctness decreases when reasoning traces
are long.

How low does selective prediction push the error rates of reasoning models?
Since the length of reasoning models’ thinking traces correlates with decreased
accuracy, queries leading to long reasoning traces carry a high risk of error. How
much can we raise a model’s accuracy by deferring such “risky” queries to a human
expert? Figure 4.4 shows curves of the conditional accuracy

Accuracy = E[Correct | # Output Tokens ≤ 𝑇] (4.3)

for different thresholds 𝑇 of the number of output tokens. We consider thresholds
yielding rejection rates from 0% to 20% (𝑥 axis).
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The figure reveals that both Qwen3 235B-A22B and DeepSeek R1 yield increased
accuracy when avoiding “risky” queries leading to long reasoning traces. For the
Qwen3 model, deferring 7.5% of queries reduces the error rate to 1% from 3%—a
2% reduction. For DeepSeek R1, accuracy gradually improves from 94% to 97%
when deferring up to 20% of queries, although the majority of the gains (+2%
accuracy) are already attained for a lower rejection rate of 7.5%.

By contrast, OpenAI o3 does not yield increased accuracy from avoiding “risky”
queries with long reasoning traces. We speculate that the diminished efficacy
of thinking duration as a proxy for uncertainty stems from OpenAI’s proprietary
optimization of the thinking process, compared to the simple reinforcement learning
recipes described in the technical reports for the open-source models (DeepSeek AI,
2025; Alibaba AI, 2025). In the absence of other techniques for quantifying the
uncertainty of o3, this finding places o3 at a disadvantage relative to other reasoning
models.
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Figure 4.4: Abstaining from answering difficult queries based on the length of the
reasoning trace yields 99+% accuracy for Qwen3 235B-A22B and 97% accuracy
for DeepSeek R1, but yields no performance gains for OpenAI o3.

What latency and cost savings does “Failing Fast” yield?
Deferring risky queries from the reasoning modelM𝑟 to a human expert reduces AI
errors. However, it does not address the high latency of reasoning models, which
is problematic for interactive use cases or batch workloads with a large volume of
queries. Figure 4.5 shows the error-rejection trade-offs when fronting the reasoning
modelM𝑟 by a faster non-reasoning modelM𝑛𝑟 , as described in Section 4.3.

The figure shows that when using Qwen3 235B-A22B or DeepSeek R1 as the
reasoning model, processing 30% to 75% of queries with Llama3.1 405B yields
exponentially decreasing error for rejection rates from 0% to 20%. However, error
decreases faster when using only the reasoning model (indicated as 0% in the figure,
cf. Figure 4.4). Notably, 50% utilization of Llama3.1 405B with 15-20% deferral
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Figure 4.5: Different degrees of non-reasoning model utilization (% values anno-
tated in color) yield parallel error curves that decrease exponentially with increasing
rejection rate (𝑦 axis is log-scale). 0% indicates using only the reasoning model.
The dashed gray line indicates the reasoning model’s baseline error rate.

Table 4.2: Human-in-the-loop reasoning model fronted by non-reasoning model
maintains high selective prediction performance (90%+ AUARC ↑) while saving up
to 38% latency and 46% cost. %Δ denotes performance drop from base AUARC as
percentages. ΔL(%) and ΔC(%) denote percentage drops in latency and cost.

Model Base 50% Non-Reasoning 60% Non-Reasoning 75% Non-Reasoning

AUARC AUARC Δ ΔL(%) ΔC(%) AUARC Δ ΔL(%) ΔC(%) AUARC Δ ΔL(%) ΔC(%)

deepseek-r1-0528 0.96 0.93 -2.8 -26.2 -35.7 0.91 -5.4 -36.5 -45.8 0.85 -11.3 -54.8 -64.1
qwen3-235b-a22b 0.99 0.96 -3.4 -28.4 -2.1 0.93 -6.2 -37.8 -11.6 0.86 -12.6 -55.7 -29.7
o3-2025-04-16 0.96 0.94 -2.8 -13.4 -14.8 0.91 -5.5 -23.2 -24.9 0.85 -11.4 -47.5 -44.4

suffices to push the systems’ error rates below the reasoning models’ baseline error
rates.

Table 4.2 quantifies the latency and cost savings resulting from 50%, 60%, and 75%
utilization of the non-reasoning model. To measure performance holistically across
rejection rates, we report the area under the accuracy-rejection curve (AUARC),
that is, the mean accuracy across rejection rates from 0% to 20%. The table shows
that 50% utilization of Llama3.1 405B incurs a 3% drop in AUARC, but cuts
latency by ≈ 27% (Qwen3 235B-A22B and DeepSeek R1), and cost by ≈ 36%
(DeepSeek R1). Raising utilization to 60% yields higher latency reductions of
≈ 40% while still maintaining AUARC above 90%—significantly outperforming
Llama3.1 405B’s baseline accuracy of ≈ 69%.

Finally, 75% utilization of Llama3.1 405B reduces AUARC to the mid-80% range
but yields correspondingly larger reductions in latency (≈ 55% for Qwen3 and
DeepSeek R1) and cost (64% for DeepSeek R1).
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4.6 Discussion
To mitigate the practical deficiencies of a reasoning LLMs—imperfect accuracy
and high latency—we have embedded a reasoning modelM𝑟 into a larger system
including a fast non-reasoning modelM𝑛𝑟 and a human expert H . As figures 4.5a
and 4.5b show, this system is capable of beating the reasoning model’s accuracy
while cutting the latency by around 30%.

However, our methodology treats the human expert as an omniscient oracle. One way
to modelH is learning to defer (Madras, Pitassi, and Zemel, 2018). However, this
approach adapts the AI model to the human, which seems impractical for API-based
usage of large reasoning LLMs. Instead of attempting to adapt a trillion-parameter
neural network that cost millions of dollars to train, it appears more sensible to adapt
the human expert to the LLM.

For example, suppose the human expert H makes mistakes at a rate E[1Herror]. It
is clear that we should select H to minimize this error rate. However, there is an
important nuance. It is critical to minimize the error rate over the difficult queries,

E𝑞∼𝑝difficult [1Herror(𝑞)], (4.4)

where 𝑝difficult(·) samples queries for which the reasoning model has a high error
rate. In other words, we wish to avoid an “accuracy drag” whereby a correlation
between the AI model’s and the human’s perceptions of difficulty raises the error
rate ofH conditioned on the deferral decisionM𝑟 →H .

This observation has practical implications. For example, suppose we wish to con-
struct a human-in-the-loop system for solving challenging mathematics problems.
Among the pool of possible mathematics experts, many of the most able mathe-
maticians likely underperform the LLM on mechanical or otherwise unstimulating
questions, simply because they find such questions boring. However, they would
likely outperform on “interesting” questions whose solutions require inspiration
and imagination—the same problems on which AI models are most likely to make
mistakes (we speculate). Hence, a screening exam for identifying suitable mathe-
matics experts should only include “interesting” questions whose solutions require
ingenuity; adding any easier problems would be counterproductive.

4.7 Conclusion
This paper explored reducing the error rate and latency of a reasoning model by
embedding it within a larger system that includes a human expert.



69

First, our experiments show that deferring difficult queries to a human expert can
yield meaningful error reductions. Leveraging selective prediction based on the
length of the thinking trace, we lowered the conditional error rate of Qwen3 235B-
A22B and DeepSeek R1 by around 2% on difficult MATH questions—from 2.8%
to 0.5% and 5.8% to 3%, respectively. Second, we found that fronting a reasoning
model with a large non-reasoning model yields substantial (3̃0%) latency reductions
while outperforming the reasoning model’s baseline accuracy. Unfortunately, these
latency savings are lower than expected because of latency drag—the phenomenon
that conditioning on difficult queries shifts the reasoning model towards longer
latencies than usual.

Overall, our work offers a novel perspective for adapting reasoning LLMs to the
demands of practical use cases. In future work, we are interested in circumventing
latency drag by quantifying the uncertainty of a reasoning model in a manner
uncorrelated with its latency. In addition, we aim to explicitly model the capabilities
of human experts.
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C h a p t e r 5

PROOF-OF-CONCEPT SYSTEM FOR SYNTHETIC DATA
GENERATION

Zellinger, Michael J. and Peter Bühlmann (2025). “Natural Language-Based Syn-
thetic Data Generation for Cluster Analysis.” In: Journal of Classification. doi:
10.1007/s00357- 025- 09501- w. url: https://doi.org/10.1007/
s00357-025-09501-w.

Abstract: Cluster analysis relies on effective benchmarks for evaluating and
comparing different algorithms. Simulation studies on synthetic data are popular
because important features of the data sets, such as the overlap between clusters,
or the variation in cluster shapes, can be effectively varied. Unfortunately, creating
evaluation scenarios is often laborious, as practitioners must translate higher-level
scenario descriptions like “clusters with very different shapes” into lower-level
geometric parameters such as cluster centers, covariance matrices, etc. To make
benchmarks more convenient and informative, we propose synthetic data gener-
ation based on direct specification of high-level scenarios, either through verbal
descriptions or high-level geometric parameters. Our open-source Python package
repliclust implements this workflow, making it easy to set up interpretable and
reproducible benchmarks for cluster analysis. A demo of data generation from
verbal inputs is available at demo.repliclust.org.

5.1 Introduction
The goal of clustering is to separate data points into groups such that points within
a group a more similar to each other than to those outside the group (Cormack,
1971). In practice, it is often not clear what constitutes a cluster (Hennig, 2015). As
a result, many practitioners evaluate cluster analysis algorithms on synthetic data
(Milligan, 1980; Milligan, Soon, and Sokol, 1983; Tibshirani, Walther, and Hastie,
2001; Steinley and Brusco, 2008; Steinley and Brusco, 2011; Van Mechelen et al.,
2023).

Synthetic data is valuable for two reasons. First, it clearly stipulates which data
points belong to which cluster, allowing objective evaluation. Second, it allows in-
dependently manipulating different aspects of the data (such as the overlap between

https://doi.org/10.1007/s00357-025-09501-w
https://doi.org/10.1007/s00357-025-09501-w
https://doi.org/10.1007/s00357-025-09501-w
https://repliclust.org
https://demo.repliclust.org
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clusters or the variability of cluster shapes), which is critical for drawing scien-
tific conclusions about the relative merits of different cluster analysis techniques
(Milligan, 1996).

Unfortunately, setting up benchmarks with synthetic data can be laborious. The
process typically involves creating data sets for a number of different scenarios.
For example, on benchmarks with convex clusters drawn from probabilistic mixture
models, the scenarios may involve “clusters of very different shapes and sizes,”
“highly overlapping oblong clusters,” “high-dimensional spherical clusters,” etc.
(Tibshirani, Walther, and Hastie, 2001).

Existing data generators do not cater directly to such high-level scenarios. Instead,
the user must carefully tune simulation parameters to arrive at the desired scenarios
(Steinley and Henson, 2005; Schubert and Zimek, 2019; Iglesias et al., 2019).
While some generators make it easy to control the overlaps between clusters, such
high-level control typically does not extend to other aspects like the desired diversity
of cluster shapes and sizes (Qiu and Joe, 2006; Shand et al., 2019).

In this paper, we explore generating synthetic data directly from high level descrip-
tions. Our Python package, repliclust, accomplishes this goal by summarizing
the overall geometry of probabilistic mixture models with a few high-level parame-
ters. We use a large language model to map a user’s verbal description of a scenario
onto these parameters. Although our approach is based on ellipsoidal clusters,
we have implemented two post-processing functions for generating more irregular
cluster shapes. The first makes clusters non-convex by passing them through a
randomly initialized neural network. The second makes a 𝑝-dimensional data set
directional by wrapping it around the (𝑝+1)-dimensional sphere through an inverse
stereographic projection.

5.2 Generating Data from High-Level Archetypes
Our data generatorrepliclust is based on data set archetypes. A data set archetype
is a high-level description of the overall geometry of a data set with clusters. For
example, the class of all data sets with “three oblong and slightly overlapping clusters
in two dimensions with some class imbalance” is a data set archetype.

We implement archetype-based generation by summarizing the overall geometry of
probabilistic mixture models in terms of a few high-level parameters, as listed in
Table 5.1. To create an archetype, users can either specify these parameters directly
or verbally describe the archetype in English. To map an English description to
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Figure 5.1: Illustration of synthetic data generation with data set archetypes. Left:
the user specifies the desired archetype. The user can verbally describe the archetype
in English or directly specify a few high-level geometric parameters. Middle: the
archetype provides a random sampler for probabilistic mixture models with the
desired geometric characteristics. Right: drawing i.i.d. samples from each mixture
model yields synthetic data sets.

a precise parameter setting, we use few-shot prompting of a large language model
(Brown et al., 2020a; OpenAI, 2024b).

Table 5.1: Summary of high-level geometric parameters defining an Archetype in
repliclust.

Parameter(s) Purpose
n_clusters / dim / n_samples select number of clusters / dimensions / data points

aspect_ref / aspect_maxmin determine how elongated vs spherical clusters
are / how much this varies between clusters

radius_maxmin determine the variation in cluster volumes
max_overlap / min_overlap set maximum / minimum overlaps between clusters

imbalance_ratio make some clusters have more data points than others
distributions /

distribution_proportions
select probability distributions appearing in each

data set / how many clusters have each distribution1

Most of the high-level geometric parameters describing an archetype are based on
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what we call “max-min sampling.” In this approach, the user controls a geometric
attribute by specifying a reference value and max-min ratio. In addition, a constraint
ensures that the reference value and is indeed typical for every data set. For example,
the aspect ratio of a cluster measures how elongated it is. The reference value
aspect_ref sets the typical aspect ratio among all clusters in a data set, while
aspect_maxmin sets the ratio of the highest to the lowest aspect ratio. To make
sure that aspect_ref is indeed the typical aspect ratio, max-min sampling enforces
the location constraint (∏𝑘

𝑗=1 𝛼 𝑗 )
1
𝑘 = aspect_ref. Appendix A gives more details

on how we manage different geometric attributes using max-min sampling.

Once an archetype has been defined, sampling concrete data sets proceeds in two
steps. First, the algorithm samples a new probabilistic mixture model whose geo-
metric structure matches the archetype. Second, we draw i.i.d. samples from this
mixture model to generate a data set. Figure 5.1 illustrates this flow.

To accommodate use cases in which variation of an archetype’s hyperparame-
ters (n_clusters, dim, n_samples) is desired, we have implemented a function
Archetype.sample_hyperparams for generating a list of archetypes with hy-
perparameters sampled from Poisson distributions centered on the original values
(subject to rejection sampling based on user-specified minimum and maximum
values).

5.3 Sampling Probabilistic Mixture Models
Generating a synthetic dataset with repliclust starts with sampling a probabilistic
mixture model that matches the desired archetype.

Sampling a mixture model proceeds through the following steps:

1. Draw random cluster covariance matrices based on the archetype.

2. Randomly initialize the cluster centers. Adjust their placement using stochas-
tic gradient descent to meet desired constraints on the overlaps between clus-
ters.

3. Sample the number 𝑛 𝑗 of data points per cluster, based on the extent of class
imbalance specified by the archetype.

4. Construct a data set 𝑋 and cluster labels 𝑦 by sampling 𝑛 𝑗 data points i.i.d.
from the mixture component describing cluster 𝑗 . Return (𝑋, 𝑦,A), where
A is the archetype.
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5. Optionally, make cluster shapes non-convex by either

a) passing 𝑋 through a randomly initialized neural network (repliclust.distort)

b) wrapping 𝑋 ∈ R𝑛×𝑝 around the (𝑝 + 1)-dimensional sphere to create
directional data (repliclust.wrap_around_sphere).

In the following sections, we give more details on each step involved in data gener-
ation.

Defining Clusters and Mixture Models
In the first four steps of data generation, repliclustmodels clusters as ellipsoidal
probability distributions characterized by a central point. Specifically, each cluster
C is defined by a cluster center xC ∈ R𝑝, orthogonal principal axes 𝒖̂(1)C , 𝒖̂(2)C , ..., 𝒖̂(𝑝)C
pointing in arbitrary directions, the lengths 𝜎 (1)C , 𝜎

(2)
C , ..., 𝜎

(𝑝)
C of the principal axes,

and a univariate probability distribution 𝑓C (·).

To generate an i.i.d. sample from a cluster, we 1) sample the direction x̂ from
the ellipsoid defined by the cluster’s principal axes, and 2) sample the length | |x| |2
according to the cluster’s univariate distribution 𝑓C (which can be one of many sup-
ported distributions including normal, lognormal, exponential, Student’s t, gamma,
chi-square, Weibull, Gumbel, F, Pareto, beta, and uniform). To make the spread of
each cluster depend only on the lengths of the principal axes, we normalize each
univariate distribution so that the 68.2% quantiles of its absolute value is unity.
For example, if the univariate distribution is exponential with rate 𝜆, we would
actually sample from a re-scaled random variable Exp(𝜆)/𝑞0.682, where the quantile
𝑞0.682 satisfies P( |Exp(𝜆) | ≤ 𝑞0.682) = 0.682. This rescaling puts all distributions
on the same scale as the multivariate normal distribution, which natively satisfies
P( |N (0, 1) | ≤ 1) ≈ 0.682.

Figure 5.2(a) visualizes clusters with different base distributions. Note that using
heavy-tailed distributions can lead to far outliers (not shown). By contrast, uni-
variate distributions with bounded support give rise to clusters with crisply defined
boundaries. Stretches where a probability density function vanishes give rise to
concentric holes.

A mixture model (repliclust.MixtureModel) represents several clusters. Figure
5.2(b) shows a two-dimensional mixture model with four clusters, and a data set
sampled from it. Note that our mixture models do not model class probabilities.
Instead, the number of data points per cluster are drawn using max-min sampling,
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(a) (b)

Figure 5.2: Individual clusters (a) and a probabilistic mixture model (b) in
repliclust. Black arrows show each cluster’s principal axes. The scatter plot
on the right in (b) shows a data set sampled from the mixture model. In this
example, all clusters are natively 2D.

based on the archetype’s imbalance ratio (desired ratio between the number of data
points in the most and least populous clusters). Appendix B lists the formal attributes
of a mixture model.

Managing Cluster Overlaps
Managing the degree of overlaps between clusters is one of the most important tasks
of a cluster generator. In repliclust, we quantify pairwise overlap between two
clusters as the irreducible error rate when classifying a new data point as belonging
to one of the two clusters (assuming equal class probabilities). On the level of
entire datasets, the user controls overlap by specifying the maximum and minimum
pairwise overlap.

The maximum overlap max_overlap states that no pair of clusters may overlap
more than a certain amount. By contrast, the minimum overlap min_overlap
prevents isolated clusters by enforcing that each cluster has some neighbor with
which it overlaps at least min_overlap. We construct a loss function that enforces
the minimum and maximum overlap conditions and optimize it using stochastic
gradient descent (SGD).

In this section, we first describe our notion of pairwise overlap. Second, we explain
the loss function we use to enforce the maximum and minimum overlap for an entire
dataset.
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Measuring Pairwise Overlap

Viewing clusters as probability distributions, we formally define the overlap between
two clusters as twice the minimax error rate when classifying new data points using
a linear decision boundary between the two clusters. Figure 5.3 illustrates this
definition. To explain what we mean by “minimax” in this context, observe that any
linear classifier 𝑦̂ : R𝑝 ↦→ {1, 2} depends on an axis 𝒂 ∈ R𝑝 and threshold 𝑐 ∈ R

such that

𝑦̂(x) =


1, if 𝒂⊤x ≤ 𝑐

2, if 𝒂⊤x > 𝑐.
(5.1)

By definition, the minimax classifier 𝑦̂∗ minimizes the worst-case loss. In symbols,

max
𝑦

P(𝑦 ≠ 𝑦̂∗(x) |𝑦) = min
𝑦̂

max
𝑦

P(𝑦 ≠ 𝑦̂(x) |𝑦), (5.2)

where 𝑦 ∈ {1, 2} is the true cluster label corresponding to a new data point x ∈ R𝑝.
The outer minimum on the right hand side ranges over all linear classifiers 𝑦̂,
including 𝑦̂∗. Rewriting (5.2) in terms of the classification axes 𝒂 and thresholds 𝑐
yields

𝒂∗, 𝑐∗ = arg min
𝒂∈R𝑝 , 𝑐∈R

max{ P(𝒂⊤x > 𝑐 | 𝑦 = 1), P(𝒂⊤x ≤ 𝑐 | 𝑦 = 2) }. (5.3)

It is not hard to see that the minimax condition requires the cluster-specific error
rates P(𝒂∗⊤x > 𝑐∗ | 𝑦 = 1) and P(𝒂∗⊤x ≤ 𝑐∗ | 𝑦 = 2) to be equal. Consequently,
the cluster overlap 𝛼 becomes

𝛼 = 2 P(𝒂∗⊤x > 𝑐∗ | 𝑦 = 1). (5.4)

Geometrically, our definition means that two clusters overlap at level 𝛼 if their
marginal distributions along the minimax classification axis 𝒂∗ intersect at the
1 − 𝛼/2 and 𝛼/2 quantiles. The left panel of Figure 5.3 highlights the probability
mass bounded by these quantiles in gray.

Note that our formulation of minimax classification error explicitly does not take
into account class probabilities for the clusters. Equation (5.2) depends only on
the class-conditional probabilities. Our reasoning is that the underlying reality of
each cluster depends on its class-conditional probability distribution, not the class
probability.

Steinley and Henson, 2005 quantify cluster overlap by computing the full distribu-
tional overlap in 𝑝 dimensions. We prefer our one-dimensional notion in terms of
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minimax classification error, since high-dimensional Euclidean geometry exhibits
a number of counterintuitive phenomena. Specifically, as 𝑝 → ∞, the majority
of a sphere’s volume becomes concentrated in a thin shell from its surface, and so
𝑝-dimensional overlap goes to zero unless the marginal overlaps in each dimension
approach 100% (Blum, Hopcroft, and Kannan, 2020; Steinley and Henson, 2005).

Figure 5.3: Cluster overlap based on the misclassification rate of the best linear
classifier, in 1D (left) and 2D (right). The black dashed lines show the decision
boundaries corresponding to minimax classification rules between the blue and red
clusters, and the gray shaded areas represent classification errors. Cluster overlap
𝛼 is the total probability mass of the gray areas. Here, 𝛼 = 14.7% for both the left
and right panels.

Computing our cluster overlap 𝛼 requires finding the minimax classification axis 𝒂∗.
Anderson and Bahadur, 1962 describe an algorithm for computing 𝒂∗ exactly, in
the case of multivariate normal distributions. Unfortunately, their method requires
computing the matrix inverse (𝑡𝚺1 + (1− 𝑡)𝚺2)−1 for O(log(1/𝜖) values of 𝑡, where
𝚺1,𝚺2 are the clusters’ covariance matrices and 𝜖 is a numerical tolerance. To avoid
these matrix inversions, we propose an approximation of the minimax classification
axis based on linear discriminant analysis (LDA).

For a pair of multivariate normal clusters with means 𝝁1 ≠ 𝝁2 and the same covari-
ance matrix 𝚺, the axis 𝒂LDA = 𝚺−1(𝝁2−𝝁1) minimizes the overall misclassification
rate, assuming equal class probabilities (see Hastie, Tibshirani, and Friedman, 2009).
Unfortunately, the result does not hold for unequal covariance matrices 𝚺1 ≠ 𝚺2.
Thus, we propose the approximation 𝒂LDA = ( 𝚺1+𝚺2

2 )
−1(𝝁2−𝝁1). Figure 5.4 verifies

that this LDA-based approximation closely matches the exact overlap, as compared
with a simpler “center-to-center” (C2C) approximation that uses the difference be-
tween the cluster centers as the classification axis (i.e., a𝐶2𝐶 = 𝝁2 − 𝝁1). In the
figure, each data point corresponds to a pair of multivariate normal clusters with
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the pairwise overlap shown. The full simulation is based on 900 pairs generated
from a variety of data set archetypes with different cluster shapes and numbers of
dimensions (see code repository for implementation details).

Figure 5.4: Quality of approximating cluster overlap using our LDA and the simpler
center-to-center (C2C) approximations. Both approaches show strong correlations
with exact cluster overlap, achieving Pearson correlations 𝑟 close to 1 (left). How-
ever, the C2C method incurs significant relative error, while the LDA approximation
typically comes within 10% of the exact overlap (right). The dashed lines indicate
estimated conditional means.

Theorem 6 gives a formula for computing the LDA-approximate cluster overlap.
The proof is in Appendix C.

Theorem 6 (LDA-Based Cluster Overlap). For two multivariate normal clusters
with means 𝝁1 ≠ 𝝁2 and covariance matrices 𝚺1,𝚺2, the approximate cluster
overlap 𝛼LDA based on the linear separator 𝒂LDA = ( 𝚺1+𝚺2

2 )
−1(𝝁2 − 𝝁1) is

𝛼LDA = 2
(
1 −Φ

( 𝒂⊤LDA(𝝁2 − 𝝁1)√︁
𝒂⊤LDA𝚺1𝒂LDA +

√︁
𝒂⊤LDA𝚺2𝒂LDA

) )
, (5.5)

where Φ(𝑧) is the cumulative distribution function of the standard normal distribu-
tion. Moreover, if 𝚺1 = 𝜆𝚺2 for some 𝜆 then 𝛼LDA equals the exact cluster overlap
𝛼.

Theorem 6 shows that cluster overlap depends on quantiles 𝑞 of the form

𝑞(𝝁1, 𝝁2;𝚺1,𝚺2; 𝒂) = 𝒂⊤(𝝁2 − 𝝁1)√
𝒂⊤𝚺1𝒂 +

√
𝒂⊤𝚺2𝒂

, (5.6)

where 𝒂 is a classification axis. Since these quantiles are inversely related to cluster
overlap, they quantify cluster separation.
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When generating synthetic data, repliclust uses Theorem 6 even when cluster
distributions are non-normal. Figure .15 in Appendix D suggests that controlling
overlap between non-normal distributions works well, except for distributions with
bounded support (such as beta).

Adjusting Cluster Centers to Meet Overlap Constraints
To enforce maximum and minimum overlaps for a mixture model, we optimize a loss
function using stochastic gradient descent (SGD). Given mixture model parameters
𝜽 (including the cluster centers, principal axes, and principal axis lengths), the
overlap loss is

L(𝜽) = 1
𝑘

𝑘∑︁
𝑖=1

ℓ𝑖, (5.7)

where the loss on the 𝑖-th cluster is

ℓ𝑖 = 𝑝𝜆
(
(min
𝑗≠𝑖

𝑞𝑖 𝑗 − 𝑞max)+
)
+

∑︁
𝑗≠𝑖

𝑝𝜆
(
(𝑞min − 𝑞𝑖 𝑗 )+

)
. (5.8)

Here, 𝑞min, 𝑞max, and 𝑞𝑖 𝑗 measure cluster separation as expressed in Equation
(5.6): 𝑞min is the minimum allowed separation (corresponding to overlap 𝛼 =

max_overlap); 𝑞max is the maximum allowed separation (corresponding to 𝛼 =

min_overlap); and 𝑞𝑖 𝑗 is the separation between the 𝑖-th and 𝑗-th clusters. The
penalty function 𝑝𝜆 is the polynomial 𝑝𝜆 (𝑥) := 𝜆𝑥 + (1 − 𝜆)𝑥2, where 𝜆 is a tuning
parameter. Finally, 𝑥+ := max(𝑥, 0) is a filter that passes on only positive inputs
(corresponding to a violation of user-specified constraints).

Intuition behind the Overlap Loss

By design, the loss (5.8) vanishes when the cluster centers, principal axes, and
principal axis lengths satisfy the user-specified overlap constraints. The first term
penalizes violation of the minimum overlap condition. Indeed, if cluster 𝑖 is too
far away from the other clusters, the separation min 𝑗≠𝑖 𝑞𝑖 𝑗 between cluster 𝑖 and its
closest neighbor exceeds the maximum allowed separation 𝑞max. A penalty of the
excess (min 𝑗≠𝑖 𝑞𝑖 𝑗 − 𝑞max)+ yields the first term in (5.8). The second term measures
violation of the maximum overlap condition. If the separation 𝑞𝑖 𝑗 between clusters
𝑖 and 𝑗 falls short of the smallest allowed separation 𝑞min, the shortfall (𝑞min − 𝑞𝑖 𝑗 )+

incurs a penalty that serves to push these clusters apart.

The penalty 𝑝𝜆 in (5.8) ranges from quadratic to linear based on the value of 𝜆.
Keeping the penalty partly linear (𝜆 > 0) helps gradient descent drive the overlap
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loss to exactly zero because a purely quadratic loss would result in a vanishing
derivative when overlap constraints approach satisfaction.

Running the Minimization in Practice

When minimizing (5.7) using SGD, we initially place cluster centers randomly
within a sphere. The volume𝑉 of this sphere influences the initial overlaps between
clusters. To select an appropriate value, we fix the ratio 𝜌 of the sum of cluster
volumes to 𝑉 ; essentially, 𝜌 is the density of clusters within the sampling volume.
Values of 𝜌 around 10% work well in low dimensions. In higher dimensions,
however, results from the mathematics of sphere-packing motivate a downward
adjustment. A lower bound by Ball, 1992 states that the maximum achievable
density when placing non-overlapping spheres inside R𝑝 is at least 𝑝21−𝑝. Thus, in
𝑝 dimensions we use an adjusted density 𝜌adj defined by

𝜌adj(𝑝) = 𝑝21−𝑝𝜌2𝐷 ,

where 𝜌2𝐷 ≈ 10% is the equivalent density in 2D.

Following initialization, we optimize the cluster centers {𝝁𝑖}𝑘𝑖=1 using stochastic
gradient descent. During this process, the principal axes and their lengths are fixed.
Each iteration performs the update[

𝝁1 |𝝁2 | ... |𝝁𝑘

]
←

[
𝝁1 |𝝁2 | ... |𝝁𝑘

]
− 𝜂

[
∇𝝁1ℓ𝑖 |∇𝝁2ℓ𝑖 | ... |∇𝝁𝑘

ℓ𝑖
]

(5.9)

on the single-cluster loss ℓ𝑖, where 𝜂 is the learning rate. For each epoch, we
randomly permute the order 𝑖 = 1, 2, ..., 𝑘 of clusters and apply the updates (5.9) in
turn for each cluster.

Experiments suggest that our minimization procedure drives the overlap loss to zero
at an exponential rate (linear convergence rate), as expected for gradient descent.
The number of epochs required seems largely independent of the number of clusters,
though it increases slightly with the number of dimensions.

Making Cluster Shapes More Irregular
In many application domains, ellipsoidal center-based clusters are good models for
the data. This is often the case when clusters can be characterized by a “typical”
element. For example, in single-cell RNA sequencing, Chen et al., 2020 represent
the differences in transcriptional activity across cell types using Gaussian mixture
models. In this case, the cluster centers correspond to each cell type’s typical gene
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expression profile. Similarly, in deep learning, a large language model’s hidden
states often form compact clusters that can effectively classify text (Howard and
Ruder, 2018), assess the truthfulness of a response (Azaria and Mitchell, 2023b),
and help detect out-of-distribution inputs (Ren et al., 2023b).

However, convex clusters can be inappropriate. For example, Ester et al., 1996
developed the density-based DBSCAN algorithm specifically to handle spatial (GPS)
data. Characterized by thin loops and irregular shapes, such data does not fit a center-
based clustering paradigm at all. Another example is directional data lying on a
sphere (Banerjee et al., 2005; Salah and Nadif, 2019). In this case, the clusters have
centers but are not convex.

To accommodate use cases where ellipsoidal clusters are inappropriate, repliclust
provides two post-processing functions for creating non-convex clusters. The first,
repliclust.distort, passes a data set through a randomly initialized neural net-
work, as shown in Figure 5.5. The second, repliclust.wrap_around_sphere,
wraps a 𝑝-dimensional data set around the (𝑝 + 1)-dimensional sphere by applying
an inverse stereographic projection, as shown in Figure 5.6. Appendix D describes
the default architecture of the neural network used in repliclust.distort.

(a) Before distort (b) After distort

Figure 5.5: You can create non-convex, irregularly shaped clusters by applying the
distort function, which runs your dataset through a randomly initialized neural
network.

Generating Archetypes from Natural Language
To fully realize the potential of a high-level, archetype-based approach to synthetic
data generation, our package repliclust draws on the OpenAI API (OpenAI,
2023) to allow users to create data set archetypes directly from verbal descriptions
in English.
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(a) Before wrap_around_sphere (b) After wrap_around_sphere

Figure 5.6: You can create directional data by wrapping your dataset around the
sphere using the wrap_around_sphere function. The function works in arbitrary
dimensions.

To map a user’s natural language input to the high-level geometric parameters of
Table 5.1, we use few-shot prompting of OpenAI’s GPT-4o large language model
model (Brown et al., 2020a; OpenAI, 2024b). We use this same approach to
automatically create short identifiers for archetypes, such as

“ten_highly_oblong_very_different_shapes_moderate_overlap.”

These identifiers contain no white space and obey the naming rules for Python
variables.

Version 1.0.0. of repliclust uses 22-shot prompting to map archetype descrip-
tions to parameters, and 11-shot prompting to generate archetype identifiers, which
appears to work well. In the rare case that the natural language workflow fails,
repliclust throws an error. We release all few-shot examples and prompt tem-
plates in the natural_language module of our code base. They are also repro-
duced in Appendix F.

5.4 Results
In this section, we first illustrate the convenience of archetype-based data generation
by conducting a mock benchmark between several clustering algorithms. Second,
we verify that our notion of cluster overlap effectively captures clustering difficulty
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(even in higher dimensions), and study the distribution of pairwise overlaps in data
sets with multiple clusters.

Mock Benchmark
We demonstrate the convenience and informativeness of our archetype-based data
generator by running a mock benchmark comparing several clustering algorithms
on data drawn from different archetypes. The benchmark is not meant to compre-
hensively evaluate the strengths and weaknesses of the clustering algorithms we
consider. Instead, our goal is to demonstrate the advantages (in convenience and
informativeness) of an archetype-based approach to synthetic data generation.

First, we construct six archetypes by providing repliclust with the following
verbal descriptions:

1. ‘twelve clusters of different distributions’

2. ‘twelve clusters of different distributions and high class imbalance’

3. ‘seven highly separated clusters in 10D with very different
shapes’

4. ‘seven clusters in 10D with very different shapes and significant
overlap’

5. ‘four clusters in 100D with 100 samples each’

6. ‘four clusters in 100D with 1000 samples each’

Repliclust maps these descriptions to the following data set archetypes:

1. {‘name’: ‘twelve_clusters_different_distributions’,
‘n_clusters’: 12, ‘dim’: 2, ‘n_samples’: 1200,

‘aspect_ref’: 1.5, ‘aspect_maxmin’: 2, ‘radius_maxmin’: 3,

‘imbalance_ratio’: 2, ‘max_overlap’: 0.05, ‘min_overlap’:

0.001, ‘distributions’: [‘normal’, ‘exponential’, ‘gamma’,

‘weibull’, ‘lognormal’]}
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2. {‘name’: ‘twelve_different_distributions_high_class_imbalance’,
‘n_clusters’: 12, ‘dim’: 2, ‘n_samples’: 1200,

‘aspect_ref’: 1.5, ‘aspect_maxmin’: 2, ‘radius_maxmin’: 3,

‘imbalance_ratio’: 5, ‘max_overlap’: 0.05, ‘min_overlap’:

0.001, ‘distributions’: [‘normal’, ‘exponential’, ‘gamma’,

‘weibull’, ‘lognormal’]}

3. {‘name’: ‘seven_highly_separated_10d_very_different_shapes’,
‘n_clusters’: 7, ‘dim’: 10, ‘n_samples’: 700, ‘aspect_ref’:

1.5, ‘aspect_maxmin’: 3.0, ‘radius_maxmin’: 3.0,

‘imbalance_ratio’: 2, ‘max_overlap’: 0.0001, ‘min_overlap’:

1e-05, ‘distributions’: [‘normal’, ‘exponential’]}

4. {‘name’: ‘seven_very_different_shapes_significant_overlap_10d’,
‘n_clusters’: 7, ‘dim’: 10, ‘n_samples’: 700, ‘aspect_ref’:

1.5, ‘aspect_maxmin’: 3.0, ‘radius_maxmin’: 3,

‘imbalance_ratio’: 2, ‘max_overlap’: 0.2, ‘min_overlap’:

0.1, ‘distributions’: [‘normal’, ‘exponential’]}

5. {‘name’: ‘four_clusters_100d_100_samples_each’, ‘n_clusters’:
4, ‘dim’: 100, ‘n_samples’: 400, ‘aspect_ref’: 1.5,

‘aspect_maxmin’: 2, ‘radius_maxmin’: 3, ‘imbalance_ratio’:

2, ‘max_overlap’: 0.05, ‘min_overlap’: 0.001,

‘distributions’: [‘normal’, ‘exponential’]}

6. {‘name’: ‘four_clusters_100d_1000_samples_each’, ‘n_clusters’:
4, ‘dim’: 100, ‘n_samples’: 4000, ‘aspect_ref’: 1.0,

‘aspect_maxmin’: 1.0, ‘radius_maxmin’: 3,

‘imbalance_ratio’: 2, ‘max_overlap’: 0.05, ‘min_overlap’:

0.001, ‘distributions’: [‘normal’, ‘exponential’]}

Note that the automatically generated names for archetype 5. and 6. did not end in
the suffix “_each.” We added this suffix for clarity.

Examining the Generated Data Sets

Figure 5.7 shows four representative data sets with convex clusters drawn from
each archetype. Figure 5.8 shows non-convex clusters resulting from applying the
distort function (as described in Section 5.3). For archetypes with dimensionality
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greater than two, we use t-SNE to visualize the data sets in 2D (Maaten and Hinton,
2008).

The figures show that repliclust effectively generates data sets with similar
geometric characteristics. Moreover, the data sets match up well with the user-
specified verbal descriptions. Applying distort seems to make some clusters very
long and thin, but otherwise results in satisfying non-convex clusters. The distort
function seems to roughly preserve cluster overlaps; we leave a careful study of this
to future work. The 10 and 100-dimensional archetypes indicate that our overlap
control effectively handles different numbers of dimensions.

Comparing the Clustering Algorithms

We compare the following clustering algorithms: K-Means, hierarchical (with Ward
linkage), spectral (with radial-basis function affinity), HDBSCAN, and expectation
maximization for a Gaussian mixture model (EM-GMM). We originally intended
to include DBSCAN as well. However, the heuristics we tried for choosing the
neighborhood radius (including what is suggested in Sander et al., 1998) did not
work well across the range of dimensionalities we consider, resulting in too many
noise points (see also the discussion by Schubert et al., 2017).

We measure performance in terms of adjusted mutual information (AMI) and ad-
justed Rand index (ARI), based on the ground truth cluster labels (Vinh, Epps, and
Bailey, 2010; Hubert and Arabie, 1985). To carry out the benchmark, we sample
10 times from each archetype, resulting in 60 distinct data sets. We repeat this
process twice to evaluate performance on convex and non-convex clusters (the latter
resulting from applying the distort function on new data sets). Thus, the full
benchmark is based on 120 distinct data sets. Table 5.2 shows the results for K-
Means, hierarchical, spectral, and EM-GMM. All these algorithms receive the true
number of clusters as an input.

Table 5.3 separately lists the performance for HDBSCAN, which we ran using the
scikit-learn implementation (Pedregosa et al., 2011) with min_samples=5. We
present the HDBSCAN results separately for two reasons. First, as a density-based
algorithm, HDBSCAN cannot make use of the true number of clusters, putting
it at a disadvantage. Second, HDBSCAN reports a large number of noise points
(≈60% on average), so that its results are not directly comparable to that of the other
algorithms. We report the performance of HDBSCAN based only on the non-noise
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Figure 5.7: Representative convex clusters drawn from the archetypes in our bench-
mark (not cherry-picked).
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Figure 5.8: Representative non-convex clusters drawn from the archetypes in our
benchmark (not cherry-picked).
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points. This leads to higher performance numbers, which may compensate for the
disadvantage HDBSCAN faces in not knowing the true number of clusters.

Table 5.2: Benchmark results on convex and non-convex data. The best performance
for each archetype is printed in bold.
Archetype Convex Non-Convex

AMI AMI
EM-GMM K-Means Spectral Hierarchical EM-GMM K-Means Spectral Hierarchical

twelve_clusters_different_distributions 0.884 (.007) 0.848 (.008) 0.859 (.010) 0.853 (.007) 0.576 (.017) 0.563 (.012) 0.565 (.015) 0.565 (.011)
twelve_different_distributions_high_class_imbalance 0.854 (.008) 0.836 (.007) 0.852 (.010) 0.834 (.009) 0.544 (.021) 0.542 (.023) 0.547 (.025) 0.553 (.024)
seven_highly_separated_10d_very_different_shapes 0.983 (.009) 0.976 (.005) 0.986 (.003) 0.990 (.002) 0.750 (.035) 0.606 (.027) 0.709 (.027) 0.637 (.029)
seven_very_different_shapes_significant_overlap 0.349 (.019) 0.452 (.009) 0.443 (.014) 0.380 (.010) 0.173 (.014) 0.149 (.008) 0.165 (.010) 0.145 (.010)
four_clusters_100d_100_samples_each 0.063 (.008) 0.512 (.028) 0.074 (.023) 0.654 (.022) 0.077 (.011) 0.100 (.012) 0.079 (.008) 0.092 (.008)
four_clusters_100d_1000_samples_each 0.548 (.061) 0.664 (.023) 0.205 (.014) 0.868 (.025) 0.307 (.030) 0.145 (.014) 0.109 (.012) 0.132 (.016)
Average 0.614 (.044) 0.715 (.025) 0.570 (.046) 0.763 (.026) 0.404 (.032) 0.351 (.030) 0.362 (.033) 0.354 (.031)

ARI ARI
EM-GMM K-Means Spectral Hierarchical EM-GMM K-Means Spectral Hierarchical

twelve_clusters_different_distributions 0.855 (.011) 0.795 (.012) 0.807 (.018) 0.798 (.014) 0.368 (.021) 0.365 (.015) 0.364 (.015) 0.362 (.012)
twelve_different_distributions_high_class_imbalance 0.800 (.019) 0.760 (.012) 0.787 (.020) 0.756 (.017) 0.341 (.022) 0.347 (.021) 0.345 (.025) 0.360 (.024)
seven_highly_separated_10d_very_different_shapes 0.967 (.020) 0.977 (.005) 0.988 (.003) 0.992 (.002) 0.684 (.045) 0.505 (.035) 0.628 (.036) 0.523 (.039)
seven_very_different_shapes_significant_overlap 0.238 (.023) 0.375 (.012) 0.385 (.016) 0.291 (.015) 0.109 (.011) 0.090 (.006) 0.089 (.007) 0.081 (.007)
four_clusters_100d_100_samples_each 0.004 (.007) 0.404 (.036) 0.053 (.014) 0.554 (.028) 0.018 (.006) 0.062 (.011) 0.053 (.008) 0.051 (.005)
four_clusters_100d_1000_samples_each 0.408 (.048) 0.601 (.040) 0.185 (.011) 0.874 (.032) 0.252 (.029) 0.088 (.014) 0.065 (.012) 0.072 (.016)
Average 0.545 (.047) 0.652 (.030) 0.534 (.044) 0.711 (.031) 0.295 (.029) 0.243 (.023) 0.264 (.025) 0.241 (.025)

Table 5.3: Benchmark results for HDBSCAN on convex and non-convex data.
Numbers that outperform the algorithms in Table 5.2, with less than 40% noise
points, are printed in bold.
Archetype Convex Non-Convex

AMI ARI pnoise AMI ARI pnoise
twelve_clusters_different_distributions 0.796 (.045) 0.705 (.066) 0.269 (.033) 0.605 (.016) 0.400 (.026) 0.353 (.007)
twelve_different_distributions_high_class_imbalance 0.733 (.054) 0.572 (.083) 0.238 (.042) 0.560 (.024) 0.356 (.036) 0.346 (.016)
seven_highly_separated_10d_very_different_shapes 0.992 (.006) 0.984 (.014) 0.175 (.014) 0.747 (.106) 0.700 (.117) 0.417 (.043)
seven_very_different_shapes_significant_overlap 0.595 (.110) 0.617 (.124) 0.909 (.020) 0.163 (.050) 0.149 (.066) 0.744 (.072)
four_clusters_100d_100_samples_each 1.000 (.000) 1.000 (.000) 1.000 (.000) 0.794 (.137) 0.804 (.131) 0.990 (.007)
four_clusters_100d_1000_samples_each 0.800 (.133) 0.800 (.133) 0.999 (.000) 0.031 (.018) 0.023 (.016) 0.687 (.070)
Average 0.819 (.035) 0.780 (.040) 0.599 (.049) 0.483 (.047) 0.405 (.047) 0.590 (.036)

The results show that hierarchical clustering performs best on the convex cluster
shapes, as long as there is sufficient separation between clusters. On the non-convex
clusters, EM-GMM exhibits the strongest performance even though the clusters are
no longer multivariate normal after applying distort (see Figure 5.8).

K-Means and hierarchical clustering both hold up well on the high-dimensional data,
including in the low-sample regime of 100 samples per cluster in 100D. By contrast,
EM-GMM dramatically benefits from more samples on the high-dimensional data.

Spectral clustering does not display competitive performance in this benchmark.
While it improves over K-Means in some scenarios, it delivers weaker performance
in high dimensions and never performs best across all algorithms.

HDBSCAN shows great difficulty in handling high dimensionality or significant
overlap between clusters. However, the algorithm shows strong performance on
the 12 non-convex clusters drawn from diverse distributions. We note again that
HDBSCAN does not have access to the true number of clusters, in contrast with the
other algorithms.
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Minimax Classification Error Captures Clustering Difficulty
In Section 5.3, we defined the overlap between two clusters in terms of the error rate
of the best minimax linear classifier. We verify that this notion of overlap conveys
clustering difficulty by measuring clustering performance on data sets with different
degrees of overlap. For this simulation, we consider data sets with two clusters
drawn from an archetype we described as “two clusters with very different shapes
in 𝑝D”. This verbal description yields an archetype with parameters

{ ‘name’: ‘two_very_different_shapes_|$p$|d’, ‘n_clusters’: 2,

‘dim’: |$p$|, ‘n_samples’: 200, ‘aspect_ref’: 1.5,

‘aspect_maxmin’: 3.0, ‘radius_maxmin’: 3, ‘imbalance_ratio’: 2,

‘max_overlap’: 0.05, ’min_overlap’: 0.001, ‘distributions’:

[‘normal’, ‘exponential’] },

where the dimensionality 𝑝 ranges across [2, 10, 30, 100]. We vary max_overlap
from 10−7 to 0.5, while setting min_overlap = max_overlap/10. For each overlap
setting, we generate 100 distinct data sets and evaluate the average clustering perfor-
mance of hierarchical clustering, quantified in terms of adjusted mutual information
(AMI) and adjusted Rand index (ARI), as in the benchmark of Section 5.4. We
choose hierarchical clustering because it is computationally efficient and performed
well in the benchmark. We repeat this process twice, where in the second run we
make clusters non-convex by applying the distort function.

Figure 5.9 confirms that clustering difficulty rises with increasing overlap. Figure
5.10 shows the same in the case of non-convex clusters, suggesting that apply-
ing distort maintains the desired relationship between overlap and clustering
difficulty. Additionally, both figures show how our cluster overlap relates to the
silhouette score, a popular metric for quantifying clustering difficulty (Rousseeuw,
1987; Shand et al., 2019). At a fixed value of max_overlap, the silhouette score de-
creases markedly with a rise in dimensionality. This is not an artifact of our overlap
measure, since plotting clustering performance vs silhouette score shows a similar
dependence on dimensionality (not shown). This makes sense since the silhouette
score is based on the difference of Euclidean distances, and distances between points
tend to become more similar in high dimensions (Aggarwal, Hinneburg, and Keim,
2001).
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(a) AMI vs Overlap (b) ARI vs Overlap (c) Silhouette vs Overlap

Figure 5.9: Cluster overlap predicts clustering difficulty for convex clusters. Clus-
tering performance is measured in terms of adjusted mutual information (AMI, left)
and adjusted Rand index (ARI, middle). Right: the silhouette score is more sensitive
to dimensionality but otherwise aligns well with our cluster overlap.

(a) AMI vs Overlap (b) ARI vs Overlap (c) Silhouette vs Overlap

Figure 5.10: Cluster overlap predicts clustering difficulty for non-convex clusters.
Clustering performance is measured in terms of adjusted mutual information (AMI,
left) and adjusted Rand index (ARI, middle). Right: the silhouette score is more
sensitive to dimensionality but otherwise aligns well with our cluster overlap.

Examining the Distribution of Pairwise Overlaps

Since repliclust controls cluster overlap on the level of entire data sets by set-
ting two global parameters (max_overlap and min_overlap), it is worthwhile to
investigate the distributions of pairwise overlaps on datasets with multiple clusters.
Figure 5.11 shows the distribution of pairwise overlaps for six data set archetypes,
confirming that setting max_overlap and min_overlap effectively controls the
pairwise overlaps between clusters.

5.5 Related Work
Simulations on synthetic data play an important role in cluster analysis. Accordingly,
many synthetic data generators for cluster analysis have been proposed. However, the
key idea in this paper is to specify the overall geometric characteristics of synthetic
data in a high-level manner via data set archetypes. By contrast, previous data
generators have put the onus on the user to design the overall geometric structure by
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Figure 5.11: Distributions of pairwise overlaps between clusters reveal that global
overlap control works well. The black dashed line indicates the max_overlap
setting, and the gray dashed line indicates min_overlap. Note that min_overlap
is not a lower bound on pairwise overlap because it only requires that each cluster
share the minimum degree of overlap with at least one other cluster; overlaps with
other clusters may be lower.

carefully tuning lower-level properties of individual clusters.

In the following overview, we mainly focus on general-purpose generators. However,
the literature has also proposed more specialized solutions to fill specific needs in the
community. For example, Beer, Schüler, and Seidl, 2019 present a data generator
for subspace clustering, Gan and Tao, 2015 evaluates density-based clustering using
a data generation process based on random walks, and Handl and Knowles, 2005
focus on creating long and thin ellipsoidal clusters in higher dimensions. None of
these contributions focus on giving high-level control over the overall geometry of
the data sets.

Milligan and Cooper, 1985 implements a generator for generating several clusters
in up to 8 dimensions. The method enforces an upper bound on cluster overlap by
limiting overlap in the first dimension, but does not otherwise provide control over
high-level geometric structure.

Pei and Zaïane, 2006 present a compelling software system for generating two-
dimensional clusters, which creates data sets with specified clustering difficulty
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“easy,” “medium,” or “hard”; “easy” data consists only of spherical/convex clusters,
whereas “medium” and “hard” data include curve segments and special shapes like
letters of the alphabet. The generator does not offer high-level control over data set
geometry except for the difficulty scale and the density of noise points to add to the
data. The software comes with an appealing graphical user interface.

The popular scikit-learn library for machine learning (Pedregosa et al., 2011) offers
several functions for creating synthetic clusters. Among these, some are aimed
at reproducing canonical 2D toy data sets like concentric circles and nested moons
(make_moons, make_circles), while others focus on sampling multivariate normal
clusters. These functions offer some valuable features, such as the ability to create
datasets with informative and redundant features, as in the make_classification
function. However, they do not control overall geometric characteristics of the
data.

The data mining framework ELKI (Schubert and Zimek, 2019) provides a syn-
thetic data generator based on specifying probabilistic models in XML files. This
XML-based approach makes it easy to reproduce benchmarks by sharing the un-
derlying XML files. Drawing inspiration from this work, we have implemented an
Archetype.describe function allowing users to easily share collections of data
set archetypes as JSONL files.

The generators OCLUS (Steinley and Henson, 2005) and GenRandomClust (Qiu
and Joe, 2006) focus on providing more sophisticated overlap control compared
to previous generators. GenRandomClust extends the generator of Milligan and
Cooper, 1985 by managing overlaps between clusters with different ellipsoidal
shapes and arbitrary spatial orientations. Similar to our classification error-based
notion of cluster overlap, their method finds an optimal separation direction between
two clusters. To enforce the desired degree of overlap, the algorithm initially places
cluster centers on a scaffold, then scales individual edges of the scaffold up or down
to meet the overlap constraint. The method supports making all cluster shapes more
or less elongated, but does not otherwise provide high-level control over data set
geometry. Moreover, the scaling operations undertaken to manage cluster overlaps
implicitly sacrifice control over cluster volumes (which, in repliclust, can be
managed independently).

OCLUS (Steinley and Henson, 2005) quantifies cluster overlap in terms of the shared
density between two clusters. The generator uses analytical formulas for integrals
of several interesting probability distributions (including exponential, gamma, and
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chi-square), thereby effectively managing overlaps between non-normal clusters.
As a result, the method is limited to treating all dimensions independently, so that
cluster distributions simplify as the products of marginals. The paper contains a
valuable discussion of the distinction between marginal and joint cluster overlaps
(of which their software supports both).

Like other existing generators, OCLUS does not aspire to helping the user establish
the overall geometric characteristics of synthetic data sets. To generate a data set,
the user must provide a covariance matrix for each cluster, the desired overlaps
between all pairs of clusters, and a design matrix specifying which clusters overlap
at all. In sum, generating 10 clusters in 10D requires supplying over 500 numbers,
compared to only a handful in repliclust (or none if the user chooses to describe
the archetype in English).

MDCGen (Iglesias et al., 2019 is a feature-rich generator that supports many desider-
ata in cluster analysis, such as overlap control, different probability distributions,
subspace clusters, and the ability to add noise points. In particular, it is nice to be
able to place noise points away from the clusters, which is made possible by the
grid-based strategy for placing cluster centers. MDCGen does not target the overall
geometric characteristics of synthetic data sets, instead giving users low-level con-
trol enabling extensive configurability. For example, managing the overlap between
clusters involves setting compactness coefficients, grid granularity, and overall scale,
compared to only tweaking max_overlap in repliclust (min_overlapmay also
have to be tweaked but it can usually stay at max_overlap/10 or a similar value). In
the words of the authors, “to enable covering a broad range of dataset possibilities,
the parameters are multiple and some training for tuning the tool is required.”

Finally, the HAWKS generator (Shand et al., 2019) controls cluster overlaps using
an evolutionary algorithm that evolves the means and covariance matrices of mul-
tivariate normal distributions. The paper applies this framework to create data sets
with a user-specified silhouette score representing clustering difficulty (Rousseeuw,
1987). In principle, the evolutionary framework can be extended to attain desired
high-level geometric characteristics. Of these, the authors consider two examples,
cluster overlaps and elongations (the latter relating to our notion of cluster aspect
ratio, as listed in Table 5.1). An interesting aspect of HAWKS is the ability to
generate data sets that maximize the performance difference between two clustering
algorithms. This feature is especially useful in two dimensions, since we can then
visually examine the data sets to better understand when each algorithm succeeds
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or fails.

5.6 Conclusion
In this paper, we have presented an archetype-based approach to synthetic data
generation for cluster analysis. Our method works by summarizing the overall
geometric characteristics of a probabilistic mixture model with a few high-level
parameters, and sampling mixture models subject to these constraints. To convey
the convenience and informativeness of such an archetype-based approach, we have
implemented a natural language interface allowing users to create archetypes purely
from verbal descriptions in English. Thus, our software repliclust makes it
possible to run an entire benchmark by describing the desired evaluation scenarios
in English.

Although our data generator relies on creating a skeleton of convex, ellipsoidal
clusters, we have implemented ways to make the cluster shapes more irregular and
complex. The first method passes convex clusters through a randomly initialized
neural network, making their shapes non-convex and irregular. The second method
creates directional datasets by wrapping 𝑝-dimensional convex clusters around the
(𝑝 + 1)-dimensional sphere.

In future work, we are most interested in learning data set archetypes that mimic the
geometric characteristics of real data. In application domains where multivariate
Gaussians provide a good model for the data, it would suffice to fit a Gaussian
mixture model, empirically measure its high-level geometric parameters (as listed
in Table 5.1), then create a synthetic data set archetype with these parameters. For
application domains with non-convex clusters, it would be interesting to implement a
generalized version of this approach. We can imagine training an auto-encoder type
neural network that maps non-convex clusters into a hidden space where they become
multivariate Gaussian, then undoes the transformation. Defining an archetype based
on the high-level geometric characteristics in the hidden space would presumably
allow us to sample irregularly shaped clusters that look similar to those found in real
data.
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C h a p t e r 6

CONCLUSION

6.1 Summary
This thesis has covered substantial ground. Starting from the recognition that
deploying AI in practice still poses many challenges, we focused on three particular
pain points: 1) selecting the most suitable AI models, 2) balancing the economics
of their usage, and 3) further reducing AI models’ error rates by flagging difficult
queries for review by human experts.

We noted the need for a unified framework addressing these challenges, and pre-
sented several components of such a framework:

Uncertainty-Aware System Optimization. Taking the example of LLM cascades,
we presented a Markov-copula probabilistic model for the joint distribution of the
uncertainties of several LLMs, providing a foundation for continuously optimizing
systems of AI models while explicitly modeling uncertainty. Compared to Bayesian
optimization, our methodology yields improved error-cost curves for cascades with
more than two LLMs, as measured by an up to 7.2% percentage decrease in the area
under the curve. Notably, our method is more data-efficient, with the performance
gap rising up to 16.5% for 𝑛 ≤ 30 labeled calibration samples.

Economic Evaluation. Framing LLM systems as reward-seeking agents, we pre-
sented an economic formalism for selecting the best AI model when optimizing
multiple conflicting performance objectives. We applied this methodology to eval-
uate the utility of less powerful AI models for automating meaningful human work.
Surprisingly, we found that practitioners should deploy only the most powerful AI
models as soon as the cost of an AI error exceeds about $1. In addition, single
models outperform cascades on risk-sensitive domains, where each mistake costs
at least $100. These results provide informative guidance for adopting AI with
commercial considerations in mind.

Error Reduction with Human-in-the-Loop. By giving large reasoning models
the ability to abstain from difficult queries (and send them to a human expert), we
unlocked additional accuracy gains for large reasoning LLMs, for example, lowering
the error rate of Qwen3 235B-A22B from 3% to below 1% on competition-level
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mathematics problems when rejecting around 10% of queries. In addition, to
speed up reasoning models’ response times, we explored fronting them with a faster
non-reasoning model. Implementing this strategy, we attained latency reductions of
around 30% at the cost of a 3% impairment in accuracy. Unfortunately, we identified
latency drag as a headwind preventing larger gains.

Proof-of-Concept System for Synthetic Data Generation. Finally, we illustrated
the practical potential of LLM systems by implementing a natural language-based
synthetic data generator for cluster analysis. This approach enables statistical re-
searchers to create benchmarking scenarios purely by describing them in English,
making synthetic data benchmarks significantly more interpretable and generaliz-
able. Leveraging our software to compare several popular clustering algorithms, we
identified distinct strengths and weaknesses based on the overall geometry of the
synthetic data sets.

6.2 Remaining Challenges
Many challenges remain in adopting AI models for practical use cases. We consider
two problems of special interest: 1) making LLM systems robust to distribution
shifts, and 2) carefully profiling human abilities.

Robustness to Distribution Shifts. One weakness of most LLM systems consists
of the necessity to re-tune the system for different use cases. For example, for a
cascade, the same deferral thresholds ensuring a low error rate on domain 𝐴 might
be entirely insufficient to yield good performance on a different domain 𝐵. This
problem is highly relevant for customer-facing LLM deployments, since the LLM’s
query distribution is entirely up to the customer. Customers may abruptly send
different queries, leading to a sharp distribution shift.

This problem may be addressed in at least two different ways: first, domain-agnostic
“universal” calibration of LLM confidence may obviate the need for re-tuning confi-
dence thresholds after distribution shifts. The work by Shen et al. (2024) is an effort
in this direction. However, achieving universal calibration across domains remains
a challenging problem.

Second, an online approach may be taken to interactively learn an AI model’s
confidence. By gradually adapting confidence calculations based on incoming data,
this strategy manages query distribution shifts by leaning into them. As an additional
benefit, this approach reduces the need for labeled calibration data when initially
deploying the system. Zhang et al. (2024b) explore this direction by framing cascade
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tuning as a reinforcement learning problem. From a practical point-of-view, the key
problem consists of the rapidity with which the system can adjust to shifts in the
incoming data stream. Hence, strategies to shorten the system’s response time, as
in engineering control theory, would be of significant practical interest.

Profiling of Human Abilities. As artificial intelligence becomes more and more
capable, carefully profiling the abilities of humans is increasingly important. For
example, a human-in-the-loop system in which human experts answer the most
difficult queries can only work if we trust human judgment in these cases. As the
supremacy of human over artificial intelligence crumbles, a complementary human-
AI approach may ultimately prove more fruitful: rather than treating human experts
as a fallback for imperfect AI, embedding humans on an equal footing with AI
models leads to fully hybrid human-AI systems. Such constellations may leverage
the strengths and weaknesses of each participant—whether human or machine.
However, seamlessly operating such systems requires adequate knowledge about the
boundaries of human expertise.
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APPENDIX

Appendix 2A — Proof of Proposition 2

Proposition. Consider a cascade 𝑀1 → ... → 𝑀𝑘 with confidence thresholds
(𝜙1, ..., 𝜙𝑘−1). Assume that the distribution functions for the calibrated confidences
Φ𝑖 satisfy (2.5), for 𝑖 = 1, 2, ..., 𝑘 . Assume further that the expected numbers of
input and output tokens, 𝑇 (in)

𝑖
and 𝑇

(out)
𝑖

, for each model 𝑖 are independent of the
calibrated confidences Φ1, ...,Φ𝑘 . Then the probability of correctness P(Correct)
and expected cost E[𝐶𝑜𝑠𝑡] for the cascade are

P(Correct) =
∫
{Φ1>𝜙1}

Φ1(𝜔) dP(𝜔) (1)

+
𝑘∑︁
𝑖=2

P(Φ1 ≤ 𝜙1)
©­«
𝑖−1∏
𝑗=2

P(Φ 𝑗 ≤ 𝜙 𝑗 |Φ 𝑗−1 ≤ 𝜙 𝑗−1)
ª®¬

×
∫
{Φ𝑖>𝜙𝑖}

Φ𝑖 (𝜔) dP(𝜔|Φ𝑖−1 ≤ 𝜙𝑖−1)

E[Cost] = (1 − P(Φ1 ≤ 𝜙1)) E[𝐶1] (2)

+
𝑘∑︁
𝑖=2

P(Φ1 ≤ 𝜙1) ©­«
𝑖−1∏
𝑗=2

P(Φ 𝑗 ≤ 𝜙 𝑗 |Φ 𝑗−1 ≤ 𝜙 𝑗−1)ª®¬
× (1 − P(Φ𝑖 ≤ 𝜙𝑖 |Φ𝑖−1 ≤ 𝜙𝑖−1))

𝑖∑︁
𝑗=1

E[𝐶 𝑗 ]

where𝐶𝑖 is the cost per query of model 𝑖. Specifically, if 𝛾 (in)
𝑖

and 𝛾
(out)
𝑖

are the costs
per input and output token, 𝐶𝑖 = 𝛾

(in)
𝑖

𝑇
(in)
𝑖
+ 𝛾 (out)

𝑖
𝑇

(out)
𝑖

. To simplify the notation, we
let 𝜙𝑘 := −∞ (although there is no confidence threshold for the final model in the
cascade).

Proof. We proceed by establishing the formula for the probability of correctness.
Analogous reasoning then yields the formula for expected cost. Let 𝜏 ∈ {1, ..., 𝑘}
be the index of the model 𝑀𝜏 that returns the query. Specifically, {𝜏 = 𝑖} = {Φ1 ≤
𝜙1, ...,Φ𝑖−1 ≤ 𝜙𝑖−1,Φ𝑖 > 𝜙𝑖}. We will decompose P(Correct) based on the value of
𝜏. First, since the calibrated confidence Φ𝑖 satisfies Φ𝑖 = E[1{𝑀𝑖 correct}|𝑥], we
have

P(Correct) = E[Φ𝜏] = E
[ 𝑘∑︁
𝑖=1

Φ𝑖1{𝜏 = 𝑖}
]
=

𝑘∑︁
𝑖=1

E[Φ𝑖1{𝜏 = 𝑖}] . (3)
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Hence, the problem reduces to computing E[Φ𝑖1{𝜏 = 𝑖}] for each model 𝑖. This is
the integral of Φ𝑖 over the set {𝜏 = 𝑖}. For 𝑖 ≥ 2, we have

E[Φ𝑖1{𝜏 = 𝑖}] =
∫

Φ𝑖1{Φ𝑖>𝜙𝑖}

𝑖−1∏
𝑗=1

1{Φ 𝑗≤𝜙 𝑗 } dP (4)

= P(Φ1 ≤ 𝜙1, . . . ,Φ𝑖−1 ≤ 𝜙𝑖−1)

×
∫

Φ𝑖1{Φ𝑖>𝜙𝑖}

∏𝑖−1
𝑗=1 1{Φ 𝑗≤𝜙 𝑗 }

P(Φ1 ≤ 𝜙1, . . . ,Φ𝑖−1 ≤ 𝜙𝑖−1)
dP (5)

= P(Φ1 ≤ 𝜙1)
𝑖−1∏
𝑗=2

P(Φ 𝑗 ≤ 𝜙 𝑗 |Φ 𝑗−1 ≤ 𝜙 𝑗−1)

×
∫
{Φ𝑖>𝜙𝑖}

Φ𝑖 dP(·| ∩𝑖−1
𝑗=1 {Φ 𝑗 ≤ 𝜙 𝑗 }) (6)

= P(Φ1 ≤ 𝜙1)
𝑖−1∏
𝑗=2

P(Φ 𝑗 ≤ 𝜙 𝑗 |Φ 𝑗−1 ≤ 𝜙 𝑗−1)

×
∫
{Φ𝑖>𝜙𝑖}

Φ𝑖 dP(·|Φ𝑖−1 ≤ 𝜙𝑖−1). (7)

To obtain Equation (6), we applied the Markov assumption (2.5) and switched
from the standard probability measure P(·) to the conditional probability measure
P(· ∩ 𝐴)/P(𝐴), where 𝐴 = {Φ1 ≤ 𝜙1, ...,Φ𝑖−1 ≤ 𝜙𝑖−1}. To obtain the last line, we
applied the Markov assumption (2.5) again.

For 𝑖 = 1, we have that

E[Φ11{𝜏 = 1}] =
∫
{Φ1>𝜙1}

Φ1(𝜔) dP(𝜔). (8)

This concludes the proof of the formula for the probability of correctness. To obtain
the formula for the expected cost, we reason analogously and note that the integral∫

Φ𝑖>𝜙𝑖

𝑖∑︁
𝑗=1

𝐶 𝑗 dP(·|Φ𝑖−1 ≤ 𝜙𝑖−1) (9)

simplifies to the product P(Φ𝑖 > 𝜙𝑖 |Φ𝑖−1 ≤ 𝜙𝑖−1)
∑𝑖

𝑗=1 E[𝐶 𝑗 ] because we assume
the model costs to be independent of the calibrated confidences. □

Appendix 2B — Algorithm for Computing P(Correct) and E[Cost]
Algorithm 1 provides an efficient way to compute the probability of correctness
and expect cost in O(𝑘) time, where 𝑘 is the length of the cascade. We compute
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Algorithm 1 Computing P(Correct) and E[Cost]
Require: confidence thresholds 𝜙1, ..., 𝜙𝑘−1 ∈ R𝑘−1

1: cum_cost← E[𝐶1] # cumulative expected cost
2: cum_transition_prob← 1 # cumulative transition probability
3: correctness_terms← [ ] # expected correctness due to different models
4: cost_terms← [ ] # expected costs due to different models
5: 𝜙𝑘 ← −∞
6:
7: correctness_terms.append(

∫
{Φ1>𝜙1}Φ1(𝜔) dP(𝜔))

8: cost_terms.append((1 − P(Φ1 ≤ 𝜙1)) × cum_cost)
9: cum_transition_prob← cum_transition_prob × P(Φ1 ≤ 𝜙1)

10:
11: for 𝑖 = 2 ... 𝑘 do
12: cum_cost← cum_cost + E[𝐶𝑖]
13: correctness_terms.append(cum_transition_prob ×∫

{Φ𝑖>𝜙𝑖}Φ𝑖 (𝜔) dP(𝜔 |Φ𝑖−1 ≤ 𝜙𝑖−1))
14: cost_terms.append(cum_transition_prob × (1 − P(Φ𝑖 ≤ 𝜙𝑖 |Φ𝑖−1 ≤

𝜙𝑖−1)) × cum_cost)
15: cum_transition_prob ← cum_transition_prob × P(Φ𝑖 ≤ 𝜙𝑖 |Φ𝑖−1 ≤

𝜙𝑖−1)
16: end for
17:
18: P(Correct) ← sum(correctness_terms)
19: E[Cost] ← sum(cost_terms)
20:
21: return (P(Correct),E[Cost])

all probabilistic quantities using the fitted Markov-copula model. To compute the
integrals

𝐼𝑖 (𝜙𝑖−1, 𝜙𝑖) =
∫
{Φ𝑖>𝜙𝑖}

Φ𝑖 (𝜔) dP(𝜔|Φ𝑖−1 ≤ 𝜙𝑖−1) (10)

of conditional correctness, we use numerical integration by treating (10) as a
Riemann-Stieltjes integral

∫ 1
𝜙1
𝜙 d𝐹 (𝜙) in the distribution function 𝐹 (𝜙) = P(Φ𝑖 ≤

𝜙 |Φ𝑖−1 ≤ 𝜙𝑖−1). See Rudin (1976). Before solving the minimization problem (2.11),
we pre-compute look-up tables for 𝐼𝑖 (𝜙𝑖−1, 𝜙𝑖) which can be re-used when solving
(2.11) for different values of 𝜆 and different subcascades.

Appendix 2C — Prompt Templates
Below, we provide the exact text of the prompts used in our experiments. Placehold-
ers (for example, {question}) are replaced at runtime with the relevant content.
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MMLU
User Prompt (Zero-Shot)

Answer the multiple-choice question below by outputting A, B, C, or D.

Don’t say anything else.

Question: {question}

Choices:

{choices}

Answer:

System Prompt

Correctly answer the given multiple-choice question by outputting "A",

"B", "C", or "D". Output only "A", "B", "C", or "D", nothing else.

MedMCQA
User Prompt (Zero-Shot)

Below is a multiple-choice question from a medical school entrance exam.

Output "A", "B", "C", or "D" to indicate the correct answer.

Don’t say anything else.

Question: {question}

Choices:

{choices}

Answer:

System Prompt

Your job is to answer a multiple-choice question from a medical school

entrance exam. Correctly answer the question by outputting "A", "B",

"C", or "D". Output only "A", "B", "C", or "D", nothing else.
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TriviaQA
User Prompt (Zero-Shot)

Correctly answer the question below. Give the answer directly,

without writing a complete sentence.

Question: {question}

Answer:

System Prompt

Correctly answer the given question. Answer the question directly

without writing a complete sentence. Output just the answer,

nothing else.

Evaluation User Prompt

Consider a proposed answer to the following trivia question:

{question}. The proposed answer is {model_answer}. Decide if this

answer correctly answers the question, from the standpoint of

factuality. Output "Y" if the answer is factually correct, and "N"

otherwise. Do not say anything else.

Evaluation System Prompt

You are a helpful assistant who judges answers to trivia questions.

Given a trivia question and a proposed answer, output "Y" if the

proposed answer correctly answers the question. Otherwise, if the

answer is not factually correct, output "N". Only output "Y" or "N".

Do not say anything else.

XSum
User Prompt (Zero-Shot)

Summarize the given source document. Write a concise summary that

is coherent, consistent, fluent, and relevant, as judged by the
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following criteria:

Coherence - collective quality of all sentences

Consistency - factual alignment between the summary and the source

Fluency - quality of individual sentences

Relevance - selection of important content from the source

Source document: {source_document}

Summary:

System Prompt

Summarize the given document. Output only the summary, and nothing

else. Do not introduce the summary; start your answer directly with

the first word of the summary.

Evaluation User Prompt

Consider a proposed summary of the following source document:

{source_document}. Decide if the following proposed summary is

coherent, consistent, fluent, and relevant, as judged by the

following criteria:

Coherence - collective quality of all sentences

Consistency - factual alignment between the summary and the source

Fluency - quality of individual sentences

Relevance - selection of important content from the source

Score each criterion (coherence, consistency, fluency, and relevance)

on a scale from 1-5, where 5 is best. Return a JSON of the form

{"coherence": a, "consistency": b, "fluency": c, "relevance": d},

where a, b, c, d are the scores for the criteria (1-5). Only return

this JSON.

Proposed summary: {model_answer}



120

JSON containing the scores for all criteria:

Evaluation System Prompt

You are a helpful assistant who evaluates the quality of text

summaries based on coherence, consistency, fluency, and relevance,

as judged by the following criteria:

Coherence - collective quality of all sentences

Consistency - factual alignment between the summary and the source

Fluency - quality of individual sentences

Relevance - selection of important content from the source

Score each criterion on a scale from 1-5 (5 is best). Only respond

with a JSON. The JSON should have keys "coherence", "consistency",

"fluency", and "relevance", and the values should be the scores

(integers from 1 to 5).

GSM8K
User Prompt (Zero-Shot)

Reason step-by-step through the following math problem. End your

answer by outputting the final numerical answer prefixed by ’#### ’.

For example, if your final answer is x, end your answer on ’#### x’.

Problem: {question}

Step-By-Step Reasoning:

System Prompt

Consider the given math problem, think step-by-step, then report

the final numerical answer x as follows ’#### x’. Do not say

anything after that.

Evaluation User Prompt
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Consider a proposed answer to the following math problem: {question}.

Decide if the following proposed answer correctly answers the

question. Only evaluate the final answer; score the answer as

correct even if the reasoning is faulty. For reference, the correct

answer is provided below.

Respond with exactly ’Y’ if the final answer is correct, or ’N’ if

it is incorrect. Only output Y or N.

Proposed answer: {model_answer}

Correct answer:

{correct_answer}

Is the given final answer correct? Respond with exactly Y or N:

Evaluation System Prompt

You are a helpful assistant who evaluates answers. Only respond

with Y or N.

TruthfulQA
User Prompt (Zero-Shot)

Answer the question below truthfully and concisely. No need to write

a complete sentence, explain your answer, or say anything else

afterwards.

Question: {question}

Answer:

System Prompt

Your task is to answer the given question truthfully. It is okay to

acknowledge you do not know the answer. Give the correct answer if

you can.
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Evaluation User Prompt

Consider a proposed answer to the following question: {question}.

Decide if the following proposed answer truthfully answers the

question. For reference, consult the lists of known correct and

incorrect answers provided below. Respond with exactly ’Y’ if the

answer is truthful, or ’N’ if it is not truthful. Only output Y or N.

Proposed answer: {model_answer}

Known correct answers:

{make_bullets(correct_answers)}

Known incorrect answers:

{make_bullets(incorrect_answers)}

Is the given answer truthful? Respond with exactly Y or N:

Evaluation System Prompt

You are a helpful assistant who evaluates answers. Only respond

with Y or N.

Appendix 2D — Price Differentials between Small and Large Models
Table .1 lists the differentials between smaller and larger language models across
various providers.

Appendix 2E — Verifying Confidence Thresholding on the Test Sets
We further verify calibration of LLM confidences by showing that confidence thresh-
olding works: for most benchmarks and models, when only accepting queries for
which the calibrated confidence exceeds 𝑞, the test error decreases to below < 1− 𝑞.

Figure .1 plots the conditional accuracy with confidence thresholding on the test sets
(𝑛 ≈ 1000). In each case, the logistic regression calibrator was fitted on the training
set (𝑛 ≈ 300). Each plot traces the empirical probability of correctness on the test
set, P̂test(correct|Φ ≥ 𝜙), for different values of the calibrated confidence threshold
𝜙. The figure shows that, for the most part, the models’ conditional accuracies



123

Table .1: Price differentials between smaller and larger language models across
various providers. Ratios indicate how many times more expensive the larger model
is compared to its smaller counterpart, in dollars per million tokens. Data as of
December 20th, 2024.

𝚫 Intelligence Provider Smaller Model Larger Model Price Ratio

Small Gap
Meta llama3.1-70b llama3.1-405B 3.33x
Anthropic claude-3.5-sonnet claude-3-opus 5.00x
OpenAI gpt4o o1 6.00x

Medium Gap
Meta llama3.1-8b llama3.1-405b 15.0x
OpenAI gpt4o-mini gpt4o 16.67x
Anthropic claude-3.5-haiku claude-3-opus 18.75x

Large Gap
Meta llama3.2-1b llama3.1-405b 30.0x
Anthropic claude-3-haiku claude-3-opus 60.0x
OpenAI gpt4o-mini o1 100.0x

increase as expected. This is indicated by the fact that the conditional accuracy
curves mostly remain above the diagonal dashed lines, reflecting the theoretical
expectation that P̂test(correct|Φ ≥ 𝜙) ≥ 𝜙.

Appendix 2F — Recomputing Rank Correlations on Correct and Incorrect
Answers
In this section, we verify the rank correlations between the confidence scores of dif-
ferent LLMs by recomputing them conditioned on both models answering correctly
or incorrectly.

Figures .2-.13 extend Figure 2.1 by separately re-computing the rank correlation
patterns on correctly and incorrectly answered queries. In addition, Table .2 below
shows the average rank correlations computed separately on the correct, incorrect,
and all answers, for each benchmark. We compute 𝜏inc, 𝜏corr, 𝜏all for each pair of
models, as well as the rank correlations between these measurements across model
pairs: 𝜏inc, corr, 𝜏inc, all, 𝜏corr, all.

Note that since error rates are low for some models and benchmarks (see Table
2.1), conditioning on incorrectly answered queries leaves only few observations for
some model pairs. In Figures .2-.13, we print “?” for rank correlations with sample
size less than 50; we use the 𝑛 = 50 cut-off since it reduces the standard error for
Kendall’s 𝜏 to around 𝜎𝜏 ≤ 0.1, based on a normal approximation.
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Figure .1: Verifies that confidence thresholding works by showing that for most
benchmarks and models, test accuracy increases to above 𝑞 when only accepting
queries on which the calibrated confidence for the query exceeds 𝑞. Calibration
was performed on the training set. The shading indicates ±1𝜎, as computed by a
binomial model for the number of correct answers. Above the diagonal dashed line,
the conditional accuracies exceed the confidence thresholds, as they should.

Appendix 3A — Scaling of Output Tokens with Query Difficulty
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Figure .14: Non-reasoning models prompted with chain-of-thought exhibit similar
scaling of output tokens compared to reasoning models, but reasoning models start
from a higher baseline number of output tokens.
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Figure .2: MMLU: Kendall’s 𝜏 rank correlations of Llama3 models ordered by size.
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Figure .3: MMLU: Kendall’s 𝜏 rank correlations of Llama3, GPT-4o, and Qwen2.5
models ordered by size.
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Figure .4: MedMCQA: Kendall’s 𝜏 rank correlations of Llama3 models ordered by
size.

Appendix 3B — Proof of Theorem 1

Theorem. Let 𝜃∗(𝜆) be the solution to the reward maximization problem

𝜃∗ = argmax𝜃 𝑅(𝜆; 𝜃), (11)

where 𝜃 ∈ R𝑝 denotes an LLM system’s tunable parameters, and 𝜆 is the vector
of economic costs as defined in Section 3.3. Assume that regularity conditions
hold, such that for each 𝜆 ∈ R

|Pnumeric |+|Pbinary |
>0 there exist bounds {𝛾𝜇}𝜇∈Pnumeric and

{𝛾𝜒}𝜇∈Pbinary > 0 such that 𝜃∗(𝜆) is equivalently the solution of the constrained
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Figure .5: MedMCQA: Kendall’s 𝜏 rank correlations of Llama3, GPT-4o, and
Qwen2.5 models ordered by size.
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Figure .6: TriviaQA: Kendall’s 𝜏 rank correlations of Llama3 models ordered by
size.
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Figure .7: TriviaQA: Kendall’s 𝜏 rank correlations of Llama3, GPT-4o, and Qwen2.5
models ordered by size.

optimization problem

𝜃∗ = argmin𝜃 Ê𝜃 [𝐶]
subject to Ê𝜃 [𝜇] ≤ 𝛾𝜇, 𝜇 ∈ Pnumeric

Ê𝜃 [1𝜒] ≤ 𝛾𝜒, 𝜒 ∈ Pbinary,

(12)
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Figure .8: XSum: Kendall’s 𝜏 rank correlations of Llama3 models ordered by size.

lla
m

a3
.2

-1
b

gp
t-

4o
-m

in
i

qwen
2.

5-
32

b-c

lla
m

a3
.1

-7
0b

qwen
2.

5-
72

b

lla
m

a3
.1

-4
05

b

gp
t-

4o

llama3.2-1b

gpt-4o-mini

qwen2.5-32b-c

llama3.1-70b

qwen2.5-72b

llama3.1-405b

gpt-4o

0.03 0.15 0.05

0.03 0.24 0.03

0.15 0.24

0.05 0.03

? ? ?

? ? ? ? ? ?

? ? ?

? ? ? ?

? ? ? ? ? ?

? ? ? ?

? ? ? ? ? ?

0.00

0.05

0.10

0.15

0.20

0.25

(a) Incorrect Only

lla
m

a3
.2

-1
b

gp
t-

4o
-m

in
i

qwen
2.

5-
32

b-c

lla
m

a3
.1

-7
0b

qwen
2.

5-
72

b

lla
m

a3
.1

-4
05

b

gp
t-

4o

llama3.2-1b

gpt-4o-mini

qwen2.5-32b-c

llama3.1-70b

qwen2.5-72b

llama3.1-405b

gpt-4o

-0.19 -0.14 0.12 -0.17 -0.10 -0.02

-0.19 0.04 -0.04 0.31 0.05 0.24

-0.14 0.04 0.07 0.06 0.06 0.07

0.12 -0.04 0.07 -0.00 0.07 0.08

-0.17 0.31 0.06 -0.00 0.05 0.24

-0.10 0.05 0.06 0.07 0.05 0.06

-0.02 0.24 0.07 0.08 0.24 0.06

−0.2

−0.1

0.0

0.1

0.2

0.3

(b) Correct Only

lla
m

a3
.2

-1
b

gp
t-

4o
-m

in
i

qwen
2.

5-
32

b-c

lla
m

a3
.1

-7
0b

qwen
2.

5-
72

b

lla
m

a3
.1

-4
05

b

gp
t-

4o

llama3.2-1b

gpt-4o-mini

qwen2.5-32b-c

llama3.1-70b

qwen2.5-72b

llama3.1-405b

gpt-4o

-0.16 0.00 0.17 -0.09 0.02 0.02

-0.16 0.05 -0.03 0.29 0.07 0.25

0.00 0.05 0.12 0.06 0.07 0.06

0.17 -0.03 0.12 0.01 0.11 0.09

-0.09 0.29 0.06 0.01 0.09 0.25

0.02 0.07 0.07 0.11 0.09 0.08

0.02 0.25 0.06 0.09 0.25 0.08

−0.2

−0.1

0.0

0.1

0.2

0.3

(c) All

Figure .9: XSum: Kendall’s 𝜏 rank correlations of Llama3, GPT-4o, and Qwen2.5
models ordered by size.
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Figure .10: GSM8K: Kendall’s 𝜏 rank correlations of Llama3 models ordered by
size.

and vice versa for 𝛾 ↦→ 𝜆(𝛾). Then the vector of economic costs, 𝜆, maps surjectively
onto the Pareto surface via the mapping

𝜆 ↦→ (Ê𝜃∗ (𝜆) [𝐶], Ê𝜃∗ (𝜆) [𝜇1], ..., Ê𝜃∗ (𝜆) [𝜇 |Pnumeric |], P̂𝜃∗ (𝜆) [𝜒1], ..., P̂𝜃∗ (𝜆) [𝜒|Pbinary |]).
(13)

Proof. First, we show that 𝜆 maps to the Pareto surface. Second, we show that this
mapping is surjective.

Consider any 𝜆 ∈ R
|Pnumeric |+|Pbinary |
>0 , and let 𝑥 = (Ê𝜃∗ (𝜆) [𝐶], ..., P̂𝜃∗ (𝜆) [𝜒|Pbinary |]).

Suppose for the sake of contradiction that 𝑥 is not Pareto optimal. Then there exist
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Figure .11: GSM8K: Kendall’s 𝜏 rank correlations of Llama3, GPT-4o, and Qwen2.5
models ordered by size.
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Figure .12: TruthfulQA: Kendall’s 𝜏 rank correlations of Llama3 models ordered
by size.
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Figure .13: TruthfulQA: Kendall’s 𝜏 rank correlations of Llama3, GPT-4o, and
Qwen2.5 models ordered by size.

𝜃′ and 𝑥′ = (Ê𝜃′ (𝜆) [𝐶], ..., P̂𝜃′ (𝜆) [𝜒|Pbinary |]) such that 𝑥′ dominates 𝑥. It follows that

𝑅(𝜆; 𝜃′) − 𝑅(𝜆; 𝜃∗(𝜆)) = E𝜃∗ (𝜆) [𝐶] − E𝜃′ [𝐶] (14)

+
∑︁
𝜇

𝜆𝜇 (E𝜃∗ (𝜆) [𝜇] − E𝜃′ [𝜇]) +
∑︁
𝜒

𝜆𝜒 (P𝜃∗ (𝜆) (𝜒) − P𝜃′ (𝜒))

(15)

> 0, (16)

contradicting the optimality of 𝜃∗(𝜆).
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Table .2: Rank correlations of calibrated confidences between Llama3 1B, 3B,
8B, 70B, and 405B models, computed separately for incorrectly answered queries
(“inc”), correctly answered queries (“corr”), and all queries (“all”): 𝜏 is the average
rank correlation across the 10 model pairs; 𝜏𝑎,𝑏 is the rank correlation between data
subsets (inc, corr, all) across model pairs; and 𝑝𝑎,𝑏 is the 𝑝 value for 𝜏𝑎,𝑏.

Benchmark 𝝉inc 𝝉corr 𝝉all 𝝉inc,corr 𝒑inc,corr 𝝉inc,all 𝒑inc,all 𝝉corr,all 𝒑corr,all

MMLU 0.199 0.396 0.385 0.505 < 0.0001 0.717 < 0.0001 0.686 < 0.0001
MedMCQA 0.174 0.295 0.271 0.324 0.0055 0.486 < 0.0001 0.730 < 0.0001
TriviaQA 0.110 0.274 0.298 0.371 0.0014 0.413 0.0004 0.819 < 0.0001
XSum 0.138 0.049 0.065 0.180 0.1284 0.187 0.1148 0.721 < 0.0001
GSM8K 0.199 0.169 0.201 0.425 0.0003 0.467 < 0.0001 0.921 < 0.0001
TruthfulQA 0.222 0.196 0.178 0.667 < 0.0001 0.860 < 0.0001 0.756 < 0.0001

Now consider any 𝑥 ∈ R|Pnumeric |+|Pbinary |+1 on the Pareto surface. Let 𝜃∗𝑐 be the
solution of the constrained optimization problem (12) with {𝛾𝜇}, {𝛾𝜒} equal to the
last |Pnumeric | + |Pbinary | components of 𝑥. Let 𝑥∗ = (Ê𝜃∗𝑐 [𝐶], ..., P̂𝜃∗𝑐 [𝜒|Pbinary |]).

We argue that 𝑥 = 𝑥∗. Indeed, 𝑥 is a feasible point of (12) since it lies on the Pareto
surface and meets the inequality constraints. In addition, 𝑥∗0 = Ê𝜃∗𝑐 [𝐶] cannot be less
than 𝑥0, since otherwise 𝑥∗ would dominate 𝑥. Furthermore, 𝑥∗0 = Ê𝜃∗𝑐 [𝐶] cannot
be greater than 𝑥0 by the optimality of 𝑥∗, since 𝑥 is feasible. So 𝑥∗0 = 𝑥0. Hence,
𝑥∗ ≤ 𝑥 componentwise. Hence, the remaining components of 𝑥∗ and 𝑥 must be
equal, since otherwise 𝑥∗ would dominate 𝑥. So 𝑥∗ = 𝑥.

Now observe that 𝑥∗ arises from solving (3.18) with 𝜆 = 𝜆(𝛾). Hence, 𝜆 maps to 𝑥

under the mapping (13). □

Appendix 3C — Models and Pricing
Table .3 lists the large language models (LLM) we used in our experiments and the
API prices at the time of our experiments (June 2025). We provide each model’s
exact API identifier together with the cost for input and output tokens.

We used the default hyperparameters (temperature, top-p, top-k, etc.) for sampling
from the LLMs, except that we raised the maximum number of output tokens to
100,000. Only for Llama3.3 70B did we implement a lower output token limit of
5,000, since the model otherwise gets caught in endless repetitions on some queries.

We note that we measured negligible roundtrip latency (less than 300ms) to both
API endpoints.
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Table .3: Details on API providers, LLM identifiers, and costs.

API Provider Model Identifier Input $ / M tok Output $ / M tok

Models accessed through the OpenAI API
OpenAI gpt-4.1-2025-04-14 2.00 8.00
OpenAI o3-2025-04-16 2.00 8.00

Models accessed through the Fireworks API
Fireworks deepseek-r1-0528 3.00 8.00
Fireworks qwen3-235b-a22b 0.22 0.88
Fireworks llama-v3p3-70b-instruct 0.90 0.90
Fireworks llama-v3p1-405b-instruct 3.00 3.00

Appendix 3D — Cascading Setup
Similar to Zellinger and Thomson, 2025b, we use self-verification (also known as
P(True), from Kadavath et al., 2022) to estimate an LLM’s confidence to correctly
answer a query. Specifically, given a query, the LLM sends itself a follow-up
verification prompt asking whether the proposed answer is correct. Since the
response to this query is a single token (Yes/No), we extract the estimated probability
of correctness 𝑝 directly from the LLM’s auto-regressive next-token probability.
This 𝑝 is the self-verification correctness probability.

To select the optimal confidence threshold for a use case 𝜆, we maximize the cas-
cade’s expected reward 𝑅(𝜆; 𝜃) for 𝜃 ranging over all 2.5% quantiles of empirically
observed self-verification correctness probabilities on the training set. To evaluate
the cascade’s performance, we fix the optimal confidence thresholds 𝜃∗ = 𝜃∗(𝜆)
(dependent on 𝜆) and compute the expected rewards 𝑅(𝜆; 𝜃∗(𝜆)) on the test set.

Appendix 3E — Prompt Templates
This appendix reproduces verbatim the prompt templates used in our experiments.
Placeholders are printed in bold and are wrapped in curly braces.

MATH Benchmark — Problem-Solving Prompts
System prompt:

Your task is to solve a math problem. First think step-by-step,

then end by giving your final answer in the form

’Final Answer: x’, where x is the final answer.

DO NOT say anything after that. Make sure to end on the numeric

answer.

User prompt:
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Your task is to solve the following math problem: {problem}

Reason step-by-step, then give your final by saying

’Final Answer: x’, where x is the final numeric answer.

DO NOT say anything after that. Make sure to end on the numeric

answer.

MATH Benchmark — Evaluation Prompts
System prompt:

Your task is to determine if an AI model’s solution to a

college-level math problem is correct.

If the solution is correct, output "Y".

Otherwise, output "N".

Only output "Y" or "N", nothing else.

User prompt:

Consider a proposed solution to the following math problem:

Problem:

{problem}

Proposed solution:

{proposed_sol}

Decide if the proposed solution is correct.

Only output "Y" or "N", nothing else.

Correct?

Appendix 4A — More Detail on Max-Min Parameters
We give more detail on how repliclust manages various geometric attributes
using max-min parameters. Table .4 lists all geometric attributes managed with
max-min sampling and names the corresponding parameters in repliclust. The
reference value for each geometric parameter serves as a location constraint, while
the max-min ratio determines the spread. A constraint ensures that the distribution
of geometric parameters within a data set is similar across data sets drawn from the
same archetype.
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Table .4: Summary of geometric attributes managed with max-min sampling. The
second and third columns indicate whether each max-min ratio or reference value
is inferred, or specified by the user as a parameter. The fourth column gives the
location constraint used during max-min sampling. The group size of a cluster is
the number of data points in it; the aspect ratio is the ratio of the lengths of the
longest cluster axis to the shortest. For cluster volumes, we specify the reference
value and max-min ratio in terms of radius (dim-th root of volume) since volumes
grow rapidly in high dimensions.

Geometric Attribute Max-Min Ratio Reference Value Constraint

cluster volumes radius_maxmin scale
cluster volumes average

to reference volume

group sizes imbalance_ratio average group size group sizes sum to
number of samples

cluster aspect ratios aspect_maxmin aspect_ref
geometric mean of aspect

ratios equals reference

cluster axis lengths aspect ratio
of the cluster

dim-th root of
cluster volume

geometric mean of lengths
equals reference length

To enforce the attribute-specific constraints, repliclust samples new values of a
geometric parameter in pairs. The first value is randomly drawn from a triangu-
lar distribution whose mode and endpoints are determined from the typical value
and max-min ratio. The second value is then deterministically computed to main-
tain the constraint. For reference, see the sample_with_maxmin function in the
maxmin.utils module (Version 1.0.0 of repliclust).

Appendix 4B — Attributes of a Mixture Model
Table .5 lists the formal attributes of a mixture model in repliclust. A data
set archetype provides a way to randomly sample mixture models with similar
overall geometric characteristics. Thus, an archetype implicitly defines a probability
distribution over the attributes in Table .5.

Table .5: Formal attributes of a mixture model in repliclust.
Attribute Meaning Mathematical Definition

cluster centers the positions of cluster centers in space 𝝁1, 𝝁2, ..., 𝝁𝑘 ∈ R𝑝

principal axis orientations the spatial orientation of each cluster’s
ellipsoidal shape (different for each cluster)

orthonormal matrices
U1,U2, ...,U𝑘 ∈ R𝑝×𝑝

principal axis lengths the lengths of each cluster’s principal axes
(axes have different lengths between and within clusters) 𝝈1,𝝈2, ...,𝝈𝑘 ∈ (R>0)𝑝

cluster distributions multivariate probability distributions for
generating data (different for each cluster) distributions P1, P2, ..., P𝑘
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Appendix 4C — Proof of Theorem 6
We prove Theorem 6 of Section 5.3. Additionally, we provide an analogous result
for the simpler “center-to-center” approximation of cluster overlap.

Theorem (LDA-Based Cluster Overlap). For two multivariate normal clusters with
means 𝝁1 ≠ 𝝁2 and covariance matrices 𝚺1,𝚺2, the approximate cluster overlap
𝛼LDA based on the linear separator 𝒂LDA = ( 𝚺1+𝚺2

2 )
−1(𝝁2 − 𝝁1) is

𝛼LDA = 2
(
1 −Φ

( 𝒂⊤LDA(𝝁2 − 𝝁1)√︁
𝒂⊤LDA𝚺1𝒂LDA +

√︁
𝒂⊤LDA𝚺2𝒂LDA

) )
, (17)

where Φ(𝑧) is the cumulative distribution function of the standard normal distribu-
tion. Moreover, if 𝚺1 = 𝜆𝚺2 for some 𝜆 then 𝛼LDA equals the exact cluster overlap
𝛼.

Proof. Let 𝒂LDA be the classification axis. Minimax optimality requires that the
cluster-specific misclassification probabilities are equal. Since 𝒂LDA is the classifi-
cation axis, these probabilities correspond to the tails of the marginal distributions
along 𝒂LDA. Specifically, let

𝜎1 =

√︃
𝒂⊤LDAΣ1𝒂LDA (18)

be the standard deviation of cluster 1’s marginal distribution along 𝒂LDA, where Σ1

is the cluster’s covariance matrix; 𝜎2 is defined analogously. If 𝒂LDA is oriented to
point from cluster 1 to cluster 2, then the 1 − 𝛼/2 quantile of cluster 1’s marginal
distribution meets the 𝛼/2 quantile of cluster 2’s marginal distribution at the decision
boundary, where 𝛼 is the unknown cluster overlap. This intersection implies

𝝁⊤1 𝒂LDA + 𝑞1−𝛼/2𝜎1 = 𝝁⊤2 𝒂LDA + 𝑞𝛼/2𝜎2, (19)

where 𝑞𝜉 is the 𝜉-quantile of the standard normal distribution. Rearranging this
equation, and using 𝑞𝛼/2 = −𝑞1−𝛼/2 and Φ(𝑞𝜉) = 𝜉, gives (17).

Next, suppose that 𝚺1 = 𝜆𝚺2 for some 𝜆. In this case, maximum likelihood classi-
fication results in a linear decision boundary that coincides with the LDA solution.
Hence, the minimax-optimal linear classifier uses the LDA-based classification axis
𝒂LDA. □

Theorem (Center-to-Center Cluster Overlap). For two multivariate normal clusters
with means 𝝁1 ≠ 𝝁2 and covariance matrices 𝚺1,𝚺2, the center-to-center cluster
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overlap 𝛼C2C, based on a classification boundary perpendicular to the line connect-
ing the cluster centers, is

𝛼C2C = 2
(
1 −Φ

( 𝜹⊤𝜹√︁
𝜹⊤𝚺1𝜹 +

√︁
𝜹⊤𝚺2𝜹

) )
, (20)

where 𝜹 := 𝝁2 − 𝝁1 is the difference between cluster centers and Φ(𝑧) is the
cumulative distribution function of the standard normal distribution.

Moreover, if the covariance matrices 𝚺1 and 𝚺2 are both multiples of the identity
matrix, then 𝛼C2C equals the exact cluster overlap 𝛼.

Proof. The proof proceeds along the same lines as the proof of Theorem 6, except
that the classification axis is 𝝁2 − 𝝁1. If both covariance matrices are multiples of
the identity matrix, 𝝁2 − 𝝁1 is a scalar multiple of the LDA-based classification axis
𝒂LDA. Hence, the second part of Theorem 6 kicks in to establish equality between
𝛼C2C and the exact overlap. □

Appendix 4D — Overlap Control for Non-Gaussian Clusters
Figure .15 visualizes two-dimensional data sets created from the same archetype but
with different radial probability distributions. The results suggest that pegging the
68.15% quantile of the radial distribution at unity leads to satisfactory overlap control
for distributions with infinite support. However, for distributions with bounded
support (such as the beta distribution), this approach leads to greater separation
between the clusters, as shown in the rightmost column of Figure .15.

Appendix 4E — Neural Network Architecture for Distortion
The default architecture for the neural network used in the distort function of
Section 5.3 is a feed-forward network consisting (in order) of a linear embedding,
16 repeated feed-forward blocks (each consisting of a fully connected linear layer
followed by layer normalization and Tanh activation), and a linear projection. Im-
portantly, we tie the weights of the embedding and projection layers, so that the
projection weights are the transpose of the embedding weights (Inan, Khosravi, and
Socher, 2017). The default hidden dimensionality is 128, so that the embedding
layer maps a data set archetype’s dimension to 128. The internal feed-forward blocks
preserve this hidden dimension, and the final projection layer maps it back to the
archetype’s dimension.
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Figure .15: Overlap control works well for non-normal probability distributions
with infinite support. The data sets shown are generated from the same archetype in
2D (with overlap at around 1%), except that we change the probability distribution in
each column. The only distribution that violates 1% overlap is the beta distribution,
which unfortunately generalizes to other distributions with bounded support. Note
that the heavy-tailed distributions (Pareto, F, ...) appear smaller on scatter plots
because they give rise to outliers.

Appendix 4F — Prompt Templates
Below we list the prompt templates (including few-shot examples) used in Version
1.0.0 of repliclust. Up-to-date versions are available in the code base (see
repliclust.org).

1. Prompt template mapping archetype description to high-level geometric
parameters:

Your task is to turn a verbal description of a data set archetype from

Repliclust into a precise JSON that specifies which parameter settings

to use to create the desired data set archetype in Repliclust. These

are the allowed parameters:

n_clusters: int >= 1, the number of clusters to generate

dim: int >= 2, the dimensionality of the data

n_samples: int >= 1, the number of data samples to generate

aspect_ref: float >= 1, the eccentricity of a typical cluster (how oblong

vs spherical it is)

aspect_maxmin: float >= 1, how much the eccentricity varies across

clusters in a data set
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radius_maxmin: float >= 1, how much cluster radius (and thereby cluster

volume) varies across the clusters

max_overlap: float > 0, the maximum allowed overlap between any pair of

clusters (0.1-0.2 is significant overlap, 0.01-0.05 is little overlap,

0.001 is very little overlap, and 0.0001 and lower is well-separated)

min_overlap: float > 0, the minimum amount of overlap each cluster should

have with some other cluster, preventing a cluster from being too far

away from all other clusters

imbalance_ratio: float >= 1, specifies how imbalanced the number of data

points per cluster is

distributions: list[str], determines the probability distributions to use

for the clusters; the available distributions are ’normal’,

’standard_t’, ’exponential’, ’beta’, ’uniform’, ’chisquare’, ’gumbel’,

’weibull’, ’gamma’, ’pareto’, ’f’, and ’lognormal’

IMPORTANT NOTES:

Any words like "separated", "far away", "close together", or "overlapping"

refer to the overlap between clusters. Far apart means that

max_overlap is 1e-4 or less

Always make min_overlap smaller than max_overlap, usually ten times

smaller!

ONLY include the Pareto (’pareto’) distribution if the user specifically

asks for heavy tails!

EXAMPLES:

Description: five oblong clusters in two dimensions

Archetype JSON: {

"n_clusters": 5,

"dim": 2,

"n_samples": 500,

"aspect_ref": 3,

"aspect_maxmin": 1.5,

}

Description: three spherical clusters with significant overlap in two

dimensions

Archetype JSON: {

"n_clusters": 3,

"dim": 2,

"n_samples": 300,

"max_overlap": 0.2,

"min_overlap": 0.1,
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"aspect_ref": 1.0,

"aspect_maxmin": 1.0

}

Description: eight spherical clusters of different sizes with significant

overlap in two dimensions

Archetype JSON: {

"n_clusters": 8,

"dim": 2,

"n_samples": 800,

"max_overlap": 0.25,

"min_overlap": 0.1,

"aspect_ref": 1.0,

"aspect_maxmin": 1.0,

"radius_maxmin": 2.0

}

Description: ten clusters which are all highly oblong (and equally so) but

of very different sizes, with moderate overlap

Archetype JSON: {

"n_clusters": 10,

"n_samples": 1000,

"aspect_ref": 5,

"aspect_maxmin": 1.0,

"max_overlap": 0.10,

"min_overlap": 0.05,

"radius_maxmin": 4.0

}

Description: five clusters with significant class imbalance

Archetype JSON: {

"n_clusters": 5,

"n_samples": 500,

"imbalance_ratio": 5,

"aspect_ref": 1.5,

"aspect_maxmin": 1.5

}

Description: five clusters with perfect class balance

Archetype JSON: {

"n_clusters": 5,

"n_samples": 500,

"imbalance_ratio": 1.0,
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"aspect_ref": 1.4,

"aspect_maxmin": 1.6

}

Description: eight clusters of which 70% are exponentially distributed and

30% are normally distributed

Archetype JSON: {

"n_clusters": 8,

"n_samples": 800,

"aspect_ref": 1.7,

"aspect_maxmin": 1.5,

"distributions": ["exponential", "normal"],

"distribution_proportions": [0.7, 0.3],

}

Description: eight clusters with 1000 total samples of which half are

exponentially distributed and half are normally distributed

Archetype JSON: {

"n_clusters": 8,

"n_samples": 1000,

"aspect_ref": 1.7,

"aspect_maxmin": 1.5,

"distributions": ["exponential", "normal"],

"distribution_proportions": [0.5, 0.5]

}

Description: two clusters of different sizes in 10 dimensions that are

well-separated

Archetype JSON: {

"n_clusters": 2,

"dim": 10,

"n_samples": 200,

"aspect_ref": 2

"aspect_maxmin": 2,

"radius_maxmin": 4.0,

"max_overlap": 0.001,

"min_overlap": 0.0001

}

Description: very oblong clusters that overlap heavily

Archetype JSON: {

"n_clusters": 6,

"n_samples": 600,
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"aspect_ref": 7,

"aspect_maxmin": 1.4,

"max_overlap": 0.4,

"min_overlap": 0.3

}

Description: highly separated and very oblong clusters

Archetype JSON: {

"n_clusters": 4,

"n_samples": 400,

"aspect_ref": 6,

"aspect_maxmin": 1.6,

"max_overlap": 1e-4,

"min_overlap": 1e-5

}

Description: ten clusters with very different shapes

Archetype JSON: {

"n_clusters": 10,

"n_samples": 1000,

"aspect_ref": 1.5,

"aspect_maxmin": 3.0,

"radius_maxmin": 3.0

}

Description: twelve well-separated clusters with very different shapes

Archetype JSON: {

"n_clusters": 12,

"n_samples": 1200,

"aspect_ref": 1.5,

"aspect_maxmin": 5.0,

"radius_maxmin": 5.0,

"max_overlap": 1e-4,

"min_overlap": 1e-5

}}

Description: twelve highly separated Gaussian clusters with very different

shapes

Archetype JSON: {

"n_clusters": 12,

"n_samples": 1200,

"aspect_ref": 1.5,

"aspect_maxmin": 5.0,
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"radius_maxmin": 5.0,

"max_overlap": 1e-4,

"min_overlap": 1e-5

"distributions": ["normal"]}}

Description: five heavy-tailed clusters

Archetype JSON: {

"n_clusters": 5,

"n_samples": 500,

"aspect_ref": 1.5,

"distributions": ["standard_t", "lognormal", "pareto"]}}

Description: clusters with holes

Archetype JSON: {"distributions": ["f"]}

Description: clusters from a variety of distributions

Archetype JSON: {"distributions": ["normal", "exponential", "gamma",

"weibull", "lognormal"]}

Description: clusters from all different distributions

Archetype JSON: {"distributions": [’normal’, ’standard_t’, ’exponential’,

’beta’, ’uniform’, ’chisquare’, ’gumbel’, ’weibull’, ’gamma’, ’f’, and

’lognormal’]}

Description: clusters from different distributions

Archetype JSON: {"distributions": [’normal’, ’exponential’, ’beta’,

’uniform’, ’chisquare’, ’gumbel’, ’weibull’, ’gamma’, ’f’, and

’lognormal’]}

Description: highly separated clusters from all different distributions

but no heavy tails

Archetype JSON: {"max_overlap": 1e-4,

"min_overlap": 1e-5,

"distributions": [’normal’, ’exponential’, ’beta’, ’uniform’,

’chisquare’, ’gumbel’, ’weibull’, ’gamma’, ’f’, and ’lognormal’]}

Description: seven clusters with uniform distribution with light overlap

Archetype JSON: { "max_overlap": 0.025,

"min_overlap": 0.0025,

"distributions": ["uniform"]}

Description: clusters with bounded support

Archetype JSON: {"distributions": ["beta", "uniform"]}
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Description: {description}

Archetype JSON:

2. Prompt template mapping archetype description to a descriptive identifier:

Your task is to turn a description of a data set archetype into an

identifier for

the archetype. The identifier should be short yet descriptive, and not

contain any whitespace

(but underscores are OK). IMPORTANT: the identifier should be a valid

Python variable name.

Specifically, it may NOT start with a number, nor contain any special

character except for

underscores.

EXAMPLES:

Description: five oblong clusters in two dimensions

Archetype identifier: five_oblong_2d

Description: three spherical clusters with significant overlap in two

dimensions

Archetype identifier: three_spherical_significant_overlap_2d

Description: eight spherical clusters of different sizes with significant

overlap in two dimensions

Archetype identifier:

eight_spherical_different_sizes_significant_overlap_2d

Description: ten clusters which are all highly oblong (and equally so) but

of very different sizes, with moderate overlap

Archetype identifier:

ten_highly_oblong_very_different_shapes_moderate_overlap

Description: five clusters with significant class imbalance

Archetype identifier: five_significant_class_imbalance

Description: five clusters with perfect class balance

Archetype identifier: five_perfect_class_balance

Description: eight clusters of which 70% are exponentially distributed and

30% are normally distributed
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Archetype identifier: eight_exp_and_norm

Description: eight clusters with 1000 total samples of which half are

exponentially distributed and half are normally distributed

Archetype identifier: eight_exp_and_norm_1000_samples

Description: two clusters of different sizes in 10 dimensions that are

well-separated

Archetype identifier: two_different_sizes_well_separated_10d

Description: very oblong clusters that overlap heavily

Archetype identifier: very_oblong_heavy_overlap

Description: ten clusters with very different shapes

Archetype identifier: ten_very_different_shapes

Description: {description}

Archetype identifier:
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