
 110
A P P E N D I X

MATLAB Programs and Functions Utilized in Data Analysis

The programs and functions given on the following pages were utilized in the

analysis of time-resolved UV-VIS spectroscopy data from the 10 ps laser.

The function streak_a.m (p. 113) was used to convert streak camera image files

into text files with data. It was called with the command:

[t,y]=streak_a;

Once converted, the resulting vectors were saved to a text file.

The file max_ent.m (p. 116) was utilized for a cursory fit to the data (when there

was no concern over the instrument response). The program actually does a lot more

than fitting, but for the purpose of the fits, the function was exited when asked:

Do you want to fit with a single MEM...

by hitting Ctrl-C.

 The program splice_data1.m (p. 124) was used to splice data from different

timescales together so that analysis could be performed on complete data sets with better

data at faster timescales.

The function crystal.m (p.126) was utilized to convolve instrument response with

a theoretical curve; the convolved curve would be compared to the data, and chi square

 111
would be calculated. It calls another function multiexp_conv.m (p.127) that executes the

convolution on a spliced data set.

 112
streak_a.m
function [X,Y]=streak_a()
%
%
% function: streak_a
% action: bins selected streak camera image data collected
with
% streak camera GPIB controller turned off.
% into a time vector (t) and
% an intensity vextor (y)
%
% syntax:
%
% [t,y]=streak;
%
% remember to end with a semicolon
% to avoid printing out the results
% on the screen
%
%
load streak_scl
%
%deltat=[0.31329345703125; 0.9678955078125; 1.904541015625;
4.92431640625; 12.11328125; 21.474609375; 42.72265625; 102.48828125];
%
time=[A B C D E F G H];
%
filename=input('Enter the data file name: ','s');
%
fprintf(' Data in file: %24s\n',filename)
%
fid=fopen(filename,'r');
%
%
if fid < 0
 fprintf(' Error opening : %24s\n',filename)
 turn re
end
%
%
im=fread(fid,2,'uchar');
IM=char(im');
length=fread(fid,1,'int16') ;
width=fread(fid,1,'int16');
height=fread(fid,1,'int16');
xoff=fread(fid,1,'int16');
yoff=fread(fid,1,'int16');
filetype=fread(fid,1,'int16');
reserved=fread(fid,51,'int16');
icomment=fread(fid,length-52,'uchar');
comment=char(icomment');
fprintf(1,'\n%34s\n',comment(171:204))
fprintf(1,'%55s\n',comment(207:261))
fprintf(1,'%43s\n',comment(264:284))
for i=1:height-1
 tmp=fread(fid,width,'int16');

 113
 image(i,1:width)=tmp';
end
%
%
fclose(fid);
%
%
fprintf(1,'\n\nTime Bases:\n')
fprintf(1,' 1 --> 0.2 ns\n')
fprintf(1,' 2 --> 0.5 ns\n')
fprintf(1,' 3 --> 1.0 ns\n')
fprintf(1,' 4 --> 2.0 ns\n')
fprintf(1,' 5 --> 5.0 ns\n')
fprintf(1,' 6 --> 10 ns\n')
fprintf(1,' 7 --> 20 ns\n')
fprintf(1,' 8 --> 50 ns\n')
itst=-1;
while itst<0
 timebase=input('\nEnter the number of the timebase --> ');
 if timebase >= 1 & timebase <= 8
 itst=1;
 end
end
%
%
y=sum(image);
plot(y);
axis([1 640 min(y)-((max(y)-min(y)).*0.025) max(y)+((max(y)-
min(y)).*0.025)])
xlabel('Channel Number')
ylabel('Intensity')
%
%
itst=-1;
while itst<0
 fprintf(1,'\n\nEnter columns numbers to bin in the following
format:\n')
 fprintf(1,' [left1 right1; left2
right2; ...]\n\n')
 comb=input('Enter the columns to bin ---> ');
%
 [a,b]=size(comb);
 if b==2 & a>=1
 itst=1;
 end
end
%
%
j=1;
for i=1:a
 if comb(i,1) >= 1 & comb(i,1) <= 640 & comb(i,2) >= 1 & comb(i,2) <=
640 & comb(i,1) <= comb(i,2)
 COMB(j,1:2)=comb(i,1:2);
 j=j+1;
 end
end
%

 114
%
[A,B]=size(COMB);
%
%
for i=1:A
 y=sum(image(:,COMB(i,1):COMB(i,2))');
end
%
%
plot(y)
axis([1 512 min(y)-((max(y)-min(y)).*0.025) max(y)+((max(y)-
min(y)).*0.025)])
xlabel('Channel Number')
ylabel('Intensity')
%
%
itst=-1;
while itst<0
 fprintf(1,'\n\nEnter first and last data points in the following
format:\n')
 fprintf(1,' [first last]\n\n')
 firlas=input('Enter the data points ---> ');
%
 [a,b]=size(firlas);
 if b==2 & a>=1
 itst=1;
 end
end
%
if firlas(1,1) <= 0 | firlas(1,1) >= firlas(1,2)
 firlas(1,1)=1;
end
%
if firlas(1,2) > 512 | firlas(1,2) <= firlas(1,1)
 firlas(1,2)=512;
end
%
Y=y(firlas(1,1):firlas(1,2))';
%X = 0:deltat(timebase):(firlas(1,2)-firlas(1,1)).*deltat(timebase);
X=time(firlas(1,1):firlas(1,2),timebase);
X=X./1000;
%
%
plot(X,Y)
axis([min(X) max(X) min(Y)-((max(Y)-min(Y)).*0.025) max(Y)+((max(Y)-
min(Y)).*0.025)])
xlabel('Time, ns')
ylabel('Intensity')
%
%
clear time A B C D E F G H
%
%

 115
max_ent.m
%
%
%
% script to fit two-column ascii kinetics data
% to a distribution of rate constants using the maximum entropy method
%
%
clear all
clf
%
%
%
% define fit function
func=['laplace_mem'];
%
fprintf('\r\r Data must be in two-column or two-row, space delimited,
ascii format:\r column(row)-1 is time; column(row)-2 is intensity\r\r')
filename=input('Enter the data file name --> ', 's');
%
%
Mm=dlmread(filename);
M=Mm(:,1:2);
[rM cM]=size(M);
if cM ~= 2
 M=M';
end
%
%
if cM ~= 2
 [aa, bb]=size(M');
 fprintf('\r\r Data are not in two-column or two-row, space delimited,
ascii format \r')
 fprintf('\r %5i Rows and %5i Columns \r', aa, bb)
 return
end
%
%
t=M(:,1);
t=t-t(1);
y_un=M(:,2);
y=y_un;
%y=y_un./max(y_un); %set max value to 1
%[t,y,wlog]=logtime(te,ye,50);
%[rt ct]=size(t);
%if ct ~= 1
% t=t';
%end
%[ry cy]=size(y);
%if cy ~= 1
% y=y';
%end
%[rw cw]=size(wlog);
%if cw ~= 1
% wlog=wlog';
%end

 116
%
%
tleng=length(t); %length of the logarithmically space data record
%
%
fprintf('\r\r Weighting methods: (1) uniform (DEFAULT) (2) relative;
(3) Poisson\r')
weight_method=input('Select a weighting method (1,2,3) --> ');
%
%
if isempty(weight_method)
 weight_method=1;
end
%
%
sml1=sort(y);
test_y=-1;
icnt=1;
while test_y <= 0
 test_y=sml1(icnt);
 icnt=icnt+1;
end
%
%
if weight_method==1
 wt=ones(tleng,1);
elseif weight_method==2
 wt=y_un.^2;
 tty=test_y.^2;
 wt=(max(wt,tty));
 wt=sqrt(wt);
% wt=sqrt(wt./wlog);
elseif weight_method==3
 tty=sqrt(test_y./max(y_un));
 wt=sqrt(y./max(y_un));
 wt=max(wt,tty);
% wt=sqrt(wt./wlog);
end
%
%
clf
subplot(3,1,2)
plot(t,y)
pause(0.1)
%
%
ltest=-1;
ltest1=-1;
while ltest < 0
 while ltest1 < 0
 fprintf('\r\r 1/tmin = %12.8e ; 1./tmax = %12.8e \r\r', 1./(t(2)-
t(1)), 1./max(t))
 kmax=input(' Enter the value for the maximum rate constant in the
distribution --> ');
 kmin=input(' Enter the value for the minimum rate constant in the
distribution --> ');
 if kmax > kmin

 117
 ltest1=1;
 else
 fprintf(' kmax must be greater than kmin !')
 end
 end
 delta=input(' Enter the value for the resolution ratio of adjacent
rate constants [k(i+1)/k(i)] --> ');
 lkspace=log10(kmin):log10(delta):log10(kmax);
 lkleng=length(lkspace);
 if (lkleng > 1) & (tleng > lkleng)
 fprintf('\r\r k-space vector has %4i elements ',lkleng)
 fprintf('\r time vector has %4i elements ',tleng)
 ltest=1;
 elseif (tleng <= lkleng)
 fprintf('\r\r # of fit parameters exceeds number of observables
')
 fprintf('\r k-space vector has %4i elements; time vector has %4i
elements ',lkleng,tleng)
 else
 fprintf('\r\r k-space vector is too short: %4i element ',lkleng)
 end
end
%
%
kspace=ones(1,lkleng);
kspace=kspace.*(10.^lkspace);
mink=min(min(kspace),1./max(t));
kspace=[mink./1e4,kspace];
kleng=length(kspace); % length of k-space vector
A=t*kspace;
A=exp(-A);
%
% get the lsqnonneg solution for the initial guesses
%
fprintf('\r\r Finding the lsqnonneg solution for the initial guess \r')
X0=lsqnonneg(A,y);
%
%
ycalc=A*X0;
lsqchisq=((ycalc-y)./wt)'*((ycalc-y)./wt);
%
%
subplot(3,1,1)
plot(t,y-ycalc,'b',[min(t),max(t)],[0,0],'k--')
axis([min(t) max(t) 1.05.*min(y-ycalc) 1.05.*max(y-ycalc)])
ylabel('I-I_{calc}')
subplot(3,1,2)
plot(t,y,'b',t,y,'bo',t,ycalc,'r',[min(t),max(t)],[0,0],'k--')
axis([min(t) max(t) 1.05.*min(min(min(y),min(ycalc)),0)
1.05.*max(max(y),max(ycalc))])
xlabel('time')
ylabel('Intensity')
lsqchisq=(ycalc-y)'*(ycalc-y);
tt=[' \chi^2 = ' num2str(lsqchisq)];
title(tt)
subplot(3,1,3)
bar(lkspace,X0(2:kleng))

 118
xlabel('log(k)')
ylabel('P(k)')
pause(0.1);
%
%
lamscan=3;
while lamscan > 2
 fprintf('\r\r Do you want to fit with a single MEM regularization
parameter?')
 fprintf('\r Or scan through a range of MEM regularization
parameters? \r')
 lamscan=input(' Enter (1) for a single fit or (2) for a scan: (1 or
2) --> ');
 if (isempty(lamscan))
 lamscan=3;
 elseif (lamscan ~= 1) & (lamscan ~= 2)
 lamscan =3;
 end
end
%
%
if lamscan == 1
%
%
 fprintf('\r\r MEM regularization parameter (0 --> LSQ; inf = MEM)
\r');
 memlsq=input(' Enter a value ---> ');
 memlsq=abs(memlsq);
 old_stol=0.0001;
 old_niter=100;
 if memlsq == 0
 memlsq_1=1;
 memlsq_2=1;
 memlsq_delt=1;
 else
 memlsq_1=log(memlsq);
 memlsq_2=log(memlsq);
 memlsq_delt=1;
 end
 ip2=1;
%
%
else
%
%
 goodnum=-1;
 while goodnum < 0
 fprintf('\r\r')
 memlsq_min=input(' Enter the value for the minimum MEM
regularization parameter --> ');
 memlsq_max=input(' Enter the value for the maximum MEM
regularization parameter --> ');
 if memlsq_max > memlsq_min
 goodnum=1;
 else
 fprintf(' maximum must be greater than minimum !')
 end

 119
 end
 memlsq_rat=input(' Enter the increment for adjacent MEM
regularization parameter [lamda(i+1)/lambda(i)] --> ');
 memlsq_1=log(memlsq_min);
 memlsq_2=log(memlsq_max);
 memlsq_delt=log(memlsq_rat);
 fprintf('\r\r')
 old_stol=input(' Enter the fitting tolerance value (CR = default =
1e-5) ---> ');
 if isempty(old_stol)
 old_stol=1e-5;
 elseif (old_stol > 1) | (old_stol < 0)
 old_stol=1e-5;
 end
%
 fprintf('\r\r')
 old_niter=input(' Enter the maximum number of iterations (CR =
default = 200) ---> ');
 if isempty(old_niter)
 old_niter=200;
 elseif (old_niter <= 1)
 old_niter=200;
 end
 %
 goodname = -1;
 while goodname < 0
 fprintf('\r\r')
 fname=input(' Enter a filename (including directory, but no
extension) for the fit results ---> ', 's');
 if ~isempty(fname)
 goodname=1;
 end
 end
 ip2=2;
%
%
end
%
%
X00=(X0.*0)+(1./(kleng-1));
X00(1,1)=0;
%%%%%%%%%%%%%%%%%%%
%
init_guess=-1;
while init_guess < 0
 fprintf('\r\rInitial guess:\r')
 init_guess=input(' Enter (1) for NNLS guess, or (2) for Maximum
entropy guess (1 or 2) ---> ');
 if isempty(init_guess)
 init_guess=-1;
 elseif (init_guess < 1) | (init_guess > 2)
 init_guess=-1;
 end
end
%
%
%

 120
icount=0;
for iijj=memlsq_1:memlsq_delt:memlsq_2
 %
 if init_guess == 1
 pfit=X0;
 else
 pfit=X00;
 end

%
icount=icount+1;
%
%
if lamscan ~= 1
 memlsq=exp(iijj);
end
%
stol=old_stol;
niter=old_niter;
iter=0;
stest=1;
ochisq=-1;
chisq=-1;
lamda=-1;
lista=zeros(kleng,1);
alpha=zeros(kleng);
beta=zeros(kleng,1);
more_fit=1;
while more_fit==1
 fprintf('\r\r\r')
 while (stest>stol)&(iter<niter)
%
%
 [ycalc, memout pfit, chisq, alpha, beta,
lamda]=mrqmin_mem(A,memlsq,y,wt,pfit,kleng,func,lamda,alpha,beta,ochisq
);
 if (iter == 0) | (chisq < ochisq)
 if (iter ~= 0)
 stest=abs((chisq-ochisq)./chisq);
 end
 fprintf('Iteration %3i; Chi-squared = %12.4e; Fractional
Change = %12.4e \r',iter,chisq,stest);
 ochisq=chisq;
 subplot(3,ip2,1)
 plot(t,y-ycalc,'b',[min(t),max(t)],[0,0],'k--')
 axis([min(t) max(t) 1.05.*min(y-ycalc) 1.05.*max(y-ycalc)])
 ylabel('I-I_{calc}')
 subplot(3,ip2,2)
 plot(t,y,'b',t,ycalc,'r',[min(t),max(t)],[0,0],'k--')
 axis([min(t) max(t) 1.05.*min(min(min(y),min(ycalc)),0)
1.05.*max(max(y),max(ycalc))])
 xlabel('time')
 ylabel('Intensity')
 lsqchisq=((ycalc-y)./wt)'*((ycalc-y)./wt);
 tt=[' LSQ \chi^2 = ' num2str(lsqchisq)];
 title(tt)
 subplot(3,ip2,3)

 121
 bar(lkspace,pfit(2:kleng))
 xlabel('log(k) ')
 ylabel('P(k)')
 pause(0.1);
 end
 iter=iter+1;
%
%
 end
 if lamscan == 1
 if iter >= niter
 fprintf('\r\r Iteration count of %6i exceeded \r\r',niter)
 niter=2.*niter;
 else
 fprintf('\r\r Change in chi-squared less than %12.4e;
iterations stopped \r\r',stol)
 stol=stol./10;
 end
 fprintf(' Do you want to continue iterating ?\r\r')
 more_fit=input(' stop = 0; continue = 1 or CR: --> ');
 if isempty(more_fit)
 more_fit=1;
 end
 else
 more_fit=0;
 end
%
end
%
%
if lamscan == 1
 fprintf('\r\r')
 isave=input(' Enter a (1) to save the data, 0 or CR to quit ---> ');
 if isempty(isave)
 isave=0;
 end
 if isave == 1
 goodname = -1;
 while goodname < 0
 fprintf('\r\r')
 fname=input(' Enter a filename (including directory, but no
extension) for the fit results ---> ', 's');
 if ~isempty(fname)
 goodname=1;
 end
 end
 evalstr=[fname];
 evalstr=['save ',evalstr,' filename t y ycalc kspace lkspace
kleng A pfit chisq lsqchisq memlsq memout X0'];
 eval(evalstr);
% save fname filename t y ycalc A pfit chisq lsqchisq memlsq
memout X0
 end
else
 pfit_out(:,icount)=pfit;
 ycalc_out(:,icount)=ycalc;
 chisq_out(icount)=chisq;

 122
 lsqchisq_out(icount)=lsqchisq;
 memlsq_out(icount)=memlsq;
 memout_out(icount)=memout;
 subplot(3,ip2,4)
 hold on
 plot(lkspace,pfit(2:kleng),'b',lkspace,pfit(2:kleng),'bo')
 xlabel('log(k)')
 ylabel('P(k)')
 hold off
 subplot(3,ip2,5)

plot(log10(memlsq_out),lsqchisq_out,'r',log10(memlsq_out),lsqchisq_out,
'ro')
 xlabel('log(MEM regularization parameter)')
 ylabel('LSQ \chi^2')
 subplot(3,ip2,6)
 plot(log10(lsqchisq_out),log10(-
(memlsq_out.^2)./memout_out),'r',log10(lsqchisq_out),log10(-
(memlsq_out.^2)./memout_out),'ro')
 ylabel('log(1/S)')
 xlabel('log(LSQ \chi^2)')
 pause(1);
 evalstr=[fname];
 evalstr=['save ',evalstr,' filename t y ycalc_out kspace lkspace
kleng A pfit_out chisq_out lsqchisq_out memlsq_out memout_out X0'];
 eval(evalstr);
 % save fname filename t y ycalc_out A pfit_out chisq_out
lsqchisq_out memlsq_out memout_out X0
end
 %
 %
end
%
%
%%%%%%%%%%%%%%%%%%%

 123
splice_data1.m
%
% script to splice together streak camera data from different time
bases
%
%
fprintf(' Data must be in two-column (time,intensity) format\n');
files=input('\n How many data sets will be spliced ? ---> ');
%
clear n
for i=1:files
%
 fprintf('\n Data set #%i:',i)
 filename=input(' enter the file name --> ', 's');
%
 t_y=importdata(filename);
%
 eval(['time' num2str(i) '=t_y(:,1)-t_y(1,1);']);
 eval(['intensity' num2str(i) '=t_y(:,2);']);
 eval(['n(' num2str(i) ')=length(time' num2str(i) ');']);
end
%
%
[a,b]=max(n);
%
Time=zeros(a,files);
Intensity=zeros(a,files);
%
%
for i=1:files
 if n(i) < n(b)
 del=n(b)-n(i);
 eval(['Time(:,i)=[[min(time' num2str(i) ')-del:1:min(time'
num2str(i) ')-1]''; time' num2str(i) '];'])
 eval(['Intensity(:,i)=[zeros(del,1); intensity' num2str(i)
'];'])
 else
 eval(['Time(:,i)=[time' num2str(i) '];'])
 eval(['Intensity(:,i)=[intensity' num2str(i) '];'])
 nd e
end
%
% order the matrix in increasing time base
%
[P,Q]=sort(max(Time));
Time=Time(:,Q);
Intensity=Intensity(:,Q);
%
for i=1:files
 [a,b]=max(Intensity(:,i));
 Time(:,i)=Time(:,i)-Time(b,i);
 Intensity(:,i)=Intensity(:,i)./a;
end
%
%
[a,b]=size(Time);

 124
%
first_pnt=floor(0.9.*a);
last_pnt=a;
%
factor=ones(files,1);
for i=2:files
 ytmp=interp1(Time(:,i),Intensity(:,i),Time(first_pnt:last_pnt,i-
1),'spline');
 ytmp=ytmp(:);

factor(i:files)=factor(i:files).*(sum(Intensity(first_pnt:last_pnt,i-
1)./ytmp)./(last_pnt-first_pnt+1));
end
%
%
Intensity=Intensity*diag(factor);
subplot(3,1,1)
semilogx(Time,Intensity)
%
Tsplice=Time(:,1);
Isplice=Intensity(:,1);
%
for i=2:files
 I=find(Time(:,i)>Time(last_pnt,i-1));
 Tsplice=[Tsplice; Time(I,i)];
 Isplice=[Isplice; Intensity(I,i)];
end
%
W = find(Tsplice>=0);
a=size(Tsplice);
Tsplice = Tsplice(W:a);
Isplice = Isplice(W:a);
subplot(3,1,2)
semilogx(Tsplice,Isplice)
%
subplot(3,1,3)
plot(Tsplice,Isplice)

 125
crystal.m
function chi = crystal(x,R,E,t)
 %This function finds the chi square of a expression derived from
%convolution and data.

[O,Radj] = multiexp_conv(t,R,x);
%O = conv(R,T);
a = length(E);
%O1 = O(1:a);
chi = (O-E)'*(O-E);
%subplot(2,1,1);
semilogx(t,E,'b' ,O,'g') ,t
%subplot(2,1,2);
%plot(t,O)
%plot(t,O1);
%plot(t(P1:P1+125),R(P1:P1+125),'m');
%plot(R);

 126
multiexp_conv.m
function [O,Radj]=multiexp_conv(x,R,pram)
%
% Syntax: [O,Radj]=multiexp_conv(x,R,pram);
%
% x = time vector
% R = response function (must have same length as x)
%
% fitting to multi-exponential function: f(x)=alpha_0 +
% alpha_1*exp(-alpha_2*x)
+
% alpha_3*exp(-alpha_4*x)
+
% .
% .
% .
%
% fit parameters: pram
% pram(1) = delta (response function time-shift
value)
% pram(2) = alpha_0
% pram(3) = alpha_1
% pram(4) = k_1
% pram(5) = alpha_2
% pram(6) = k_2
% .
% .
% .
%
x=x(:);
R=R(:);
pram=pram(:);
%
len=length(x);
exps=(length(pram)-2)./2;
%
if length(R) ~= len
 fprintf('Unequal lengths of time vector and response function\r');
 return
end
%
XI=x-pram(1);
Radj=interp1(x',R',XI','spline',0);
Radj=Radj./trapz(x,Radj);
Radj=Radj(:);
%
Rsums=zeros(len,exps+1);
%
for i=2:len
 %
 Rsums(i,1)=Rsums(i-1,1)+(pram(2).*0.5.*(x(i)-x(i-
1)).*(Radj(i)+Radj(i-1)));
 %
 for j=1:exps
 %
 exdx=exp(-pram(2.*(j+1)).*(x(i)-x(i-1)));

 127
 Rsums(i,j+1)=(Rsums(i-
1,j+1).*exdx)+(pram((2.*j)+1).*0.5.*(x(i)-x(i-1)).*((Radj(i-
1).*exdx)+Radj(i)));
 %
 end
 %
end
%
%
O=sum(Rsums,2);
%
%
%subplot(2,1,1)
%semilogx(x,Radj./max(Radj),'b',x,O,'r')
%subplot(2,1,2)
%plot(x,Radj./max(Radj),'b',x,O,'r')
%
%

