110
APPENDIX

MATLAB Programs and Functions Utilized in Data Analysis

The programs and functions given on the following pages were utilized in the

analysis of time-resolved UV-VIS spectroscopy data from the 10 ps laser.

The function streak_a.m (p. 113) was used to convert streak camera image files
into text files with data. It was called with the command:
[t,yl=streak a;

Once converted, the resulting vectors were saved to a text file.

The file max_ent.m (p. 116) was utilized for a cursory fit to the data (when there
was no concern over the instrument response). The program actually does a lot more

than fitting, but for the purpose of the fits, the function was exited when asked:

Do you want to fit with a single MEM...

by hitting Ctrl-C.

The program splice_datal.m (p. 124) was used to splice data from different
timescales together so that analysis could be performed on complete data sets with better

data at faster timescales.

The function crystal.m (p.126) was utilized to convolve instrument response with

a theoretical curve; the convolved curve would be compared to the data, and chi square

111
would be calculated. It calls another function multiexp_conv.m (p.127) that executes the

convolution on a spliced data set.

112

streak_a.m

function [X,Y]=streak a()
%

%

% function: streak a

% action: bins selected streak camera image data collected
with

% streak camera GPIB controller turned off.
% into a time vector (t) and

% an intensity vextor (y)

%

% syntax:

%

% [t,y]=streak;

%

% remember to end with a semicolon

% to avoid printing out the results

% on the screen

%
%
load streak scl
%
%deltat=[0.31329345703125; 0.9678955078125; 1.904541015625;
4.92431640625; 12.11328125; 21.474609375; 42.72265625; 102.48828125];
%
time=s[AB CDE F G H];
%
filename=input("Enter the data file name: ","s");
%
fprintf(" Data in file: %24s\n",filename)
%
fid=fopen(filename,"r-);
%
%
if fid <0
fprintf (" Error opening : %24s\n",Ffilename)
return
end
%
%
im=Fread(fid,2, "uchar™);
IM=char(im®);
length=Fread(fid,1,"intl6");
width=Fread(fid,1,"intl6");
height=Ffread(fid,1,"intl6");
xoff=fFread(fid,1,"intl6");
yoff=fread(fid,1, intl6");
filetype=fread(fid,1,"intl6");
reserved=fread(fid,51,"intl6");
icomment=fread(fid, length-52, "uchar");
comment=char(icomment”);
fprintf(l, "\n%34s\n",comment(171:204))
fprintf(l, "%55s\n",comment(207:261))
fprintf(l, "%43s\n",comment(264:284))
for i=1:height-1
tmp=Ffread(fid,width, "intl6");

113

image(i,l:width)=tmp"~;
end
%
%
fclose(fid);
%
%
fprintf(l, "\n\nTime Bases:\n")

fprintf(1,” 1 --> 0.2 ns\n%)
fprintf(1,” 2 --> 0.5 ns\n%)
fprintf(l1,” 3 --> 1.0 ns\n")
fprintf(1,” 4 --> 2.0 ns\n")
fprintf(1,” 5 --> 5.0 ns\n%)
fprintf(1,” 6 --> 10 ns\n%)
fprintf(1,” 7 --> 20 ns\n%)
fprintf(l,” 8 --> 50 ns\n")
itst=-1;

while itst<0
timebase=input("\nEnter the number of the timebase -->);
if timebase >= 1 & timebase <= 8
itst=1;
end
end
%
%
y=sum(image);
plot(y);
axis([1 640 min(y)-((max(y)-min(y)) -*0.025) max(y)+((max(y)-

min(y))-*0.025)1)
xlabel ("Channel Number™)

ylabel (" Intensity")
%
%
itst=-1;
while itst<0
fprintf(l, "\n\nEnter columns numbers to bin in the following
format:\n")

fprintf(l," [leftl rightl; left2
right2; ... J\n\n%)
comb=input("Enter the columns to bin ---> %);

%
[a,b]=size(comb);
if b==2 & a>=1
itst=1;
end
end
%
%
J=1;
for i=l:a
if comb(i,l) >= 1 & comb(i,1l) <= 640 & comb(i,2) >= 1 & comb(i,2) <=
640 & comb(i,1) <= comb(i,2)
COMB(J ,1:2)=comb(i,1:2);
J=j+1;
end
end
%

114

%

[A,B]=size(COMB);

%

%

for i=1:A
y=sum(image(:,COMB(i,1):COMB(i,2))");

end

%

%

plot(y)

axis([1 512 min(y)-((max(y)-min(y)).*0.025) max(y)+((max(y)-

min(y))-*0.025)1)
xlabel (*Channel Number®)

ylabel (" Intensity”)
%
%
itst=-1;
while itst<0
fprintf(l, "\n\nEnter first and last data points in the following
format:\n")
fprintf(l,” [First last]\n\n")
firlas=input("Enter the data points ---> 7);
%
[a,b]=size(firlas);
if b==2 & a>=1
itst=1;
end
end
%
if firlas(1,1) <= 0 | firlas(1,1) >= firlas(4,2)
firlas(1,1)=1;
end
%
if firlas(1,2) > 512 | firlas(1,2) <= firlas(1,1)
firlas(1,2)=512;
end
%
Y=y(firlas(l1,1):firlas(1,2))";
%X = O:deltat(timebase):(Firlas(l1,2)-firlas(l,1)).*deltat(timebase);
X=time(firlas(1,1):firlas(1,2),timebase);
X=X./1000;
%
%
plot(X,Y)
axis(Imin(X) max(X) min(Y)-((max(Y)-min(Y)).-*0.025) max(Y)+((max(Y)-
min(Y)).*0.025)])
xlabel ("Time, ns®)
ylabel (" Intensity”)
%
%
clear time ABCDEFGH
%
%

115

max_ent.m
%
%
%
% script to fit two-column ascii kinetics data
% to a distribution of rate constants using the maximum entropy method
%
%
clear all
clf
%
%
%
% define fit function
func=["laplace_mem"];
%
fprintF(°"\r\r Data must be in two-column or two-row, space delimited,
ascii format:\r column(row)-1 is time; column(row)-2 is intensity\r\r®)
Ffilename=input("Enter the data file name --> ", "s");
%
%
Mm=dImread(filename);
M=Mm(:,1:2);
[rM cM]=size(M);
ifcM~=2
M=M"* ;
end
%
%
ifcM~=2
[aa, bb]=size(M");
fprintfF("\r\r Data are not in two-column or two-row, space delimited,
ascii format \r")
fprintf("\r %51 Rows and %5i Columns \r", aa, bb)
return
end
%
%
t=M(:,1);
t=t-t(1);
y_un=M(:,2);
y=y_un;
%y=y_un./max(y_un); %set max value to 1
%[t,y,wlog]=logtime(te,ye,50);
%[rt ct]=size(t);

%if ct ~= 1

% t=t";

%end

wlry cy]=size(y);
%if cy ~= 1

% o y=yT©;

%end

%Lrw cw]=size(wlog);
%if cw ~= 1

% wlog=wlog”;
%end

116

%

%

tleng=length(t); %length of the logarithmically space data record

%

%

fprintF(°"\r\r Weighting methods: (1) uniform (DEFAULT) (2) relative;

(3) Poisson\r")

weight_method=input(“Select a weighting method (1,2,3) --> ");

%

%

if isempty(weight _method)
weight_method=1;

end

%

%

smll=sort(y);

test_y=-1;

icnt=1;

while test y <= 0
test_y=smll(icnt);
icnt=icnt+1;

end

%

%

ifT weight_method==1
wt=ones(tleng,1);

elseif weight _method==2
wt=y_un.”"2;
tty=test y."2;
wt=(max(wt,tty));
wt=sqrt(wt);

% wt=sqrt(wt./wlog);

elseif weight_method==3
tty=sqrt(test_y./max(y_un));
wt=sgrt(y./max(y_un));
wt=max(wt, tty);

% wt=sqrt(wt./wlog);

end

%

%

clf
subplot(3,1,2)
plot(t,y)
pause(0.1)
%

%
Itest=-1;
Itestl=-1;

while Itest < 0O
while Itestl < O

fprintfF("\r\r 1/tmin = %12.8e ; 1./tmax = %12.8e \r\r", 1./7(t(2)-
t(1)), 1l./max(t))

kmax=input(® Enter the value for the maximum rate constant in the
distribution --> ");

kmin=input(® Enter the value for the minimum rate constant in the
distribution --> ");

if kmax > kmin

117

Itestl=1;
else
fprintf(" kmax must be greater than kmin %)
end
end
delta=input(" Enter the value for the resolution ratio of adjacent
rate constants [k(i+1)/k(i)] --> ");
lkspace=10og10(kmin):logl0(delta): logl0(kmax);
Ikleng=length(lkspace);
if (lkleng > 1) & (tleng > lkleng)
fprintf("\r\r k-space vector has %4i elements ",lkleng)
fprintf("\r time vector has %4i elements °,tleng)
Itest=1;
elseif (tleng <= Ikleng)
fprintF(°\r\r # of fit parameters exceeds number of observables
")
fprintf("\r k-space vector has %41 elements; time vector has %4i
elements *,lkleng,tleng)
else
fprintfF(°"\r\r k-space vector is too short: %4i element °,lkleng)
end
end
%
%
kspace=ones(1, Ikleng);
kspace=kspace.*(10."lkspace);
mink=min(min(kspace),1./max(t));
kspace=[mink./1e4 ,kspace];
kleng=length(kspace); % length of k-space vector
A=t*kspace;
A=exp(-A);
%
% get the Isgnonneg solution for the initial guesses
%
fprintF(°"\r\r Finding the Isgnonneg solution for the initial guess \r")
X0=Isgnonneg(A,Y);
%
%
ycalc=A*X0;
Isqchisqg=((ycalc-y) ./wt) **((ycalc-y)./wt);
%
%
subplot(3,1,1)
plot(t,y-ycalc,"b",[min(t),max(t)],[0,0], " k--")
axis([min(t) max(t) 1.05.*min(y-ycalc) 1.05.*max(y-ycalc)])
ylabel ("I-1_{calc}")
subplot(3,1,2)
plot(t,y,"b",t,y,"bo",t,ycalc, "r*,[min(t),max(t)],[0,0], "k--)
axis([min(t) max(t) 1.05.*min(min(min(y),min(ycalc)),0)
1.05.*max(max(y) ,max(ycalc))])
xlabel ("time")
ylabel (" Intensity”)
Isqchisq=(ycalc-y) "*(ycalc-y);
tt=[" \chi”™2 = " num2str(lsqchisq)];
title(tt)
subplot(3,1,3)
bar(lkspace,X0(2:kleng))

118

xlabel ("log(k) ")
ylabel("P(k)")
pause(0.1);
%
%
lamscan=3;
while lamscan > 2
fprintf("\r\r Do you want to fit with a single MEM regularization
parameter?®)
fprintf("\r Or scan through a range of MEM regularization
parameters? \r")
lamscan=input(® Enter (1) for a single fit or (2) for a scan: (1 or
2) -—=>7);
if (isempty(lamscan))
lamscan=3;
elseif (lamscan ~= 1) & (lamscan ~= 2)
lamscan =3;
end
end
%
%
if lamscan ==
%
%
fprintF("\r\r MEM regularization parameter (0 --> LSQ; inf = MEM)
\r-);
memlsg=input(® Enter a value ---> 7);
memlsg=abs(memlsq) ;
old_stol=0.0001;
old_niter=100;
it memlsq ==
memlsq_1=1;
memlsq_2=1;
memlsg_delt=1;
else
memlsq_l=log(memlsq);
memlsq_2=log(memlsq);
memlsq_delt=1;
end
ip2=1;
%
%
else
%
%
goodnum=-1;
while goodnum < O
fprintfF("\r\r-)
memlsq_min=input(® Enter the value for the minimum MEM
regularization parameter --> %);
memlsq_max=input(" Enter the value for the maximum MEM
regularization parameter -->);
ifT memlsg_max > memlsqg_min
goodnum=1;
else
fprintf(" maximum must be greater than minimum I")
end

119

end
memlsq_rat=input(®™ Enter the increment for adjacent MEM
regularization parameter [lamda(i+l)/lambda(i)] --> °);
memlsq_l=log(memlsqg_min);
memlsqg_2=log(memlsg_max);
memlsq_delt=log(memlsqg_rat);
fprintf("\r\r-)
old_stol=input(® Enter the fitting tolerance value (CR = default =
le-5) ---> *);
if isempty(old_stol)
old_stol=le-5;
elseif (old_stol > 1) | (old_stol < 0)
old_stol=1le-5;
end
%
fprintf(°\r\r-)
old_niter=input(® Enter the maximum number of iterations (CR =
default = 200) ---> ");
if isempty(old_niter)
old_niter=200;
elseif (old_niter <= 1)
old_niter=200;

end
%
goodname = -1;
while goodname < 0O
fprintf("\r\r-)
fname=input(® Enter a filename (including directory, but no
extension) for the fit results ---> ", "s");

it ~isempty(fname)
goodname=1;
end
end
ip2=2;
%
%
end
%
%
X00=(X0.*0)+(1./(kleng-1));
X00(1,1)=0;
%6%9%6%6%%%6%6%%%%%%%%%%%
%
init_guess=-1;
while init _guess < 0
fprintf("\r\rinitial guess:\r")
init_guess=input(® Enter (1) for NNLS guess, or (2) for Maximum
entropy guess (1 or 2) ---> ");
iT isempty(init_guess)
init_guess=-1;
elseif (init_guess < 1) | (init_guess > 2)
init_guess=-1;
end
end
%
%
%

120

icount=0;
for iijj=memlsq_1l:memlsq_delt:memlsq 2
%
if init _guess == 1
pfit=X0;
else
pFit=X00;
end
%

icount=icount+1;

%

%

if lamscan ~= 1

memlsg=exp(iijj);

end

%

stol=o0ld_stol;

niter=old_niter;

iter=0;

stest=1;

ochisqg=-1;

chisqg=-1;

lamda=-1;

lista=zeros(kleng,1);

alpha=zeros(kleng);

beta=zeros(kleng,1);

more_fit=1;

while more_ fit==1
fprintfF(°\r\r\r°)
while (stest>stol)&(iter<niter)

%

%

[ycalc, memout pfit, chisq, alpha, beta,
lamda]=mrgmin_mem(A,memlsq,y,wt,pfit,kleng,func, lamda,alpha,beta,ochisq
)

if (iter == 0) | (chisqg < ochisq)

it (iter ~= 0)

stest=abs((chisg-ochisq)./chisq);

end

fprintf("lteration %3i; Chi-squared = %12.4e; Fractional
Change = %12.4e \r",iter,chisq,stest);

ochisg=chisq;

subplot(3,ip2,1)

plot(t,y-ycalc,"b", [min(t),max(t)],[0,0], "k--")

axis([min(t) max(t) 1.05.*min(y-ycalc) 1.05.*max(y-ycalc)])

ylabel (" 1-1_{calc}")

subplot(3,ip2,2)

plot(t,y,"b",t,ycalc, "r", [min(t) ,max(t)],[0,0], "k--")

axis([min(t) max(t) 1.05.*min(min(min(y),min(ycalc)),0)
1.05.*max(max(y) ,max(ycalc))])

xlabel ("time")

ylabel (" Intensity”)

Isqchisqg=((ycalc-y) ./wt) "*((ycalc-y)./wt);

tt=[" LSQ \chi”2 = " num2str(lIsqchisq)];

title(tt)

subplot(3,ip2,3)

121

bar(lkspace,pfit(2:kleng))
xlabel ("log(k) ™)
ylabel ("P(k) ™)
pause(0.1);
end
iter=iter+1;
%
%
end
if lamscan == 1
if iter >= niter
fprintf("\r\r Iteration count of %61 exceeded \r\r-,niter)
niter=2_*niter;
else
fprintF("\r\r Change in chi-squared less than %12.4e;
iterations stopped \r\r-,stol)
stol=stol ./10;

end
fprintf(" Do you want to continue iterating ?\r\r-")
more_fit=input(® stop = 0; continue = 1 or CR: --> ");

if isempty(more_fit)
more_fit=1;
end
else
more_fit=0;
end
%
end
%
%
if lamscan ==
fprintf(°\r\r-)
isave=input(® Enter a (1) to save the data, 0 or CR to quit ---> ");
if isempty(isave)
isave=0;
end
if isave == 1
goodname = -1;
while goodname < O
fprintfF(°\r\r*)
fname=input(® Enter a filename (including directory, but no
extension) for the fit results ---> ", "s");
if ~isempty(fname)
goodname=1;
end
end
evalstr=[fname];
evalstr=["save ",evalstr,” fTilename t y ycalc kspace lkspace
kleng A pfit chisq Isqchisq memlsqg memout X0"];
eval (evalstr);
% save fname filename t y ycalc A pfit chisq Isqchisq memlsq
memout XO
end
else
pfit_out(:,icount)=pfFit;
ycalc_out(:,icount)=ycalc;
chisqg_out(icount)=chisq;

122

Isqchisg_out(icount)=Isqchisq;

memlsq_out(icount)=memlsq;

memout_out(icount)=memout;

subplot(3,ip2,4)

hold on
plot(lkspace,pfit(2:kleng), "b", lkspace,pfit(2:kleng), "bo")
xlabel ("log(k) ™)

ylabel ("P(k) ™)

hold off

subplot(3,ip2,5)

plot(logl0(memlsqg_out), Isqchisq_out, "r-,logl0(memlsq_out), Isqgchisq _out,
"ro")
xlabel (" log(MEM regularization parameter)®)
ylabel ("LSQ \chi”™2")
subplot(3,ip2,6)
plot(logl0(Isgchisq _out), loglo(-
(memlsqg_out."2)./memout_out), "r°,logl0(Isqchisqg_out),logl0(-
(memlsqg_out."2)./memout_out),"ro")
ylabel (" log(1/5)")
xlabel (" log(LSQ \chi™2)")
pause(1);
evalstr=[fname];
evalstr=["save ",evalstr,” fTilename t y ycalc out kspace lkspace
kleng A pfit _out chisq_out Isqchisq _out memlsqg_out memout out X0"];
eval (evalstr);
% save Tname filename t y ycalc out A pfit_out chisg_out
Isqgchisq_out memlsq_out memout out XO
end
%
%
end
%
%
%6%9%6%6%%%%6%%%%%%%%%%%

123

splice_datal.m
%
% script to splice together streak camera data from different time
bases
%
%
fprintf(® Data must be in two-column (time,intensity) format\n-®);
Ffiles=input("\n How many data sets will be spliced ? ---> ");
%
clear n
for i=1:files
%
fprintf("\n Data set #%i:",i)
Ffilename=input(" enter the file name --> ", "s");
%
t_y=importdata(filename);
%
eval(["time" num2str(i) "=t y(:,1)-t yv(1,1);"D;
eval(["intensity” num2str(i) "=t y(:,2):;"D;
eval(["n(" num2str(i) ")=length(time” num2str(i) "):;:"D:
end
%
%
[a,b]=max(n);
%
Time=zeros(a,files);
Intensity=zeros(a,files);
%
%
for i=1:files
if n(i) < n()
del=n(b)-n(1);
eval(["Time(:,D)=[[minCtime” num2str(i) ")-del:1:min(time~
num2str(i) ")-1]""; time" num2str(i) "1:°'D
eval(["Intensity(:,1)=[zeros(del,l); intensity” num2str(i)

1:°D
else
eval(["Time(:,i)=[time” num2str(i) "1:°1)
eval(["Intensity(:,1)=[intensity” num2str(i) "1:;:"D
end
end

%

% order the matrix in increasing time base

%

[P,Q]=sort(max(Time));

Time=Time(:,Q);

Intensity=Intensity(:,Q);

%

for i=1:files
[a,b]=max(Intensity(:,1));
Time(:,1)=Time(:,i1)-Time(b,i);
Intensity(:,i)=Intensity(:,i)./a;

end

%

%

[a,b]=size(Time);

124

%

first_pnt=floor(0.9.*a);

last_pnt=a;

%

factor=ones(files,1);

for 1=2:Ffiles
ytmp=interpl(Time(:,1),Intensity(:,i1),Time(first _pnt:last pnt,i-

1), "spline®);
ytmp=ytmp(:);

factor(i:files)=Factor(i:files).*(sum(Intensity(First_pnt:last pnt,i-

1) ./ytmp)./(last_pnt-first_pnt+l));

end

%

%

Intensity=Intensity*diag(factor);

subplot(3,1,1)

semilogx(Time, Intensity)

%

Tsplice=Time(:,1);

Isplice=Intensity(:,1);

%

for i=2:Ffiles
I=Find(Time(:,i)>Time(last_pnt,i-1));
Tsplice=[Tsplice; Time(l,i1)];
Isplice=[Isplice; Intensity(l,i)];

end

%

W = Ffind(Tsplice>=0);

a=size(Tsplice);

Tsplice = Tsplice(W:a);

Isplice = Isplice(W:a);

subplot(3,1,2)

semilogx(Tsplice, Isplice)

%

subplot(3,1,3)

plot(Tsplice, Isplice)

125

crystal.m

function chi = crystal(x,R,E,t)

%This function finds the chi square of a expression derived from
%convolution and data.

[O0,Radj] = multiexp_conv(t,R,Xx);
%0 = conv(R,T);

a = length(E);

%01l = 0(1l:a);

chi = (0-E)"*(0-E);
%subplot(2,1,1);
semilogx(t,E,"b",t,0,"g")
%subplot(2,1,2);

%plot(t,0)

%plot(t,01);

%plot(t(P1:P1+125) ,R(P1:P1+125), " m");
%plot(R);

126

multiexp_conv.m

function [0,Radj]=multiexp_conv(x,R,pram)

%

% Syntax: [0,Radj]=multiexp_conv(X,R,pram);
%

% X = time vector

% R = response function (must have same length as x)
%

% Fitting to multi-exponential function: f(x)=alpha 0 +

% alpha_1l1*exp(-alpha_2*x)
+

% alpha_3*exp(-alpha_4*x)
+

%
%
%
%
% Fit parameters: pram

% pram(1l) = delta (response function time-shift
value)

% pram(2) = alpha_0
% pram(3) = alpha_1
% pram(4) = k_1

% pram(5) = alpha_2
% pram(6) = k_2

% -

%

%

%

x=x(1);

R=R(:);

pram=pram(:);
%
len=length(X);
exps=(length(pram)-2)./2;
%
if length(R) ~= len
fprintf("Unequal lengths of time vector and response function\r");
return
end
%
X1=x-pram(1);
Radj=interpl(x",R",XI1","spline”,0);
Radj=Radj ./trapz(x,Radj);
Radj=Radj(:);
%
Rsums=zeros(len,exps+1);
%
for i=2:len
%
Rsums(i,1)=Rsums(i-1,1)+(pram(2).*0.5.*(x(1)-x(i-
1)) -*(Radj(i)+Radj(i-1)));
%
for j=l:exps
%
exdx=exp(-pram(2.*(+1)) - *x(1)-x(i-1)));

127

Rsums (i, j+1)=(Rsums(i-
1,j+1) . *exdx)+(pram((2.*j)+1) . *0.5.*(x(1)-x(i-1)) .- *((Radj (i -
1) .*exdx)+Radj (1)));
%
end
%
end
%
%
O=sum(Rsums,2);
%
%
%subplot(2,1,1)
%semilogx(x,Radj ./max(Radj), "b",x,0,"r")
%subplot(2,1,2)
%plot(x,Radj./max(Radj), "b",x,0,"r")
%
%

