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ABSTRACT

Planetary bodies experience deformation in response to tidal forces from external
gravitating objects. Changes to planetary gravity fields produced by this forcing
depend on internal rheological structure. For example, a spherically symmetric
body’s response to tides depends on the presence, thicknesses, and effective shear
moduli of internal layers (e.g., the core, an ocean) and follows the spatial pattern of
driving gravitational potentials. However, bodies that exhibit substantial deviation
from spherical symmetry can exhibit a more complicated response to forcing that
includes power both at short (i.e., regional-scale) and long (i.e., global-scale) wave-
lengths. In this thesis, we explore the impact of lateral heterogeneities in internal
rheological structure on the tidal responses of Enceladus, the second major moon of
Saturn, and Earth’s Moon.

We begin by exploring the impact of faults and lateral variations in ice shell thickness
on the long-wavelength gravitational response of Enceladus (Chapter 2). Using finite
element models of Enceladus’ crust, we demonstrate substantial deviation between
the longest-wavelength components of response to tidal forcing (i.e., the diurnal
degree-2 Love numbers) and those expected for a spherically symmetric model of
Enceladus. We further show that structural heterogeneities predominantly produce
deformation over spatial scales similar to the size of these features. Based on this
finding, we develop a methodology to precisely characterize regional variations in
crustal thickness using local observations of surface strain at Enceladus (Chapter 3).
We demonstrate that this strain can be readily inferred using measurements of the
motion of the surface over the tidal cycle (e.g., via interferometric synthetic aperture
radar or InSAR). We then adapt our finite element models to explore relationships
between slip on fault structures over Enceladus’ south polar region (i.e., the Tiger
Stripes) and geological activity observed for the body (Chapter 4). We find a close
correspondence between the double-peaked and asymmetric timing of strike-slip
motion and observed diurnal variations in the brightness of a large plume emanating
from Encealdus’ South Pole. Based on this finding, we suggest that rifts along
the Tiger Stripes experience periodic localized extension to modulate cryovolcanic
activity. Finally, we use observations of the spherical harmonic degree-3 variability
in the lunar gravity field to infer the presence of a 2-3% internal hemispheric,
near-to-far- side variation in shear modulus of the Moon’s mantle (Chapter 5). We
demonstrate that a 100-200K hemispheric difference in mantle temperature can
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explain this inferred shear modulus structure, and suggest that internal asymmetries
may be a remnant of processes which formed surface mare basalts ∼4 Gya. Our
work demonstrates future potential for the use of tidal tomography to characterize
the deep interior structure and geodynamics of planetary bodies throughout the solar
system.
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our methodology to generate crustal thickness variations, see Section
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3.1 Crustal strain correlates with ice shell thickness. Top Panel: Example
1D elastic structure (i.e., springs in series) subject to an axial load.
Hooke’s law predicts that strain is relatively higher where springs
have lower stiffness (i.e., smaller spring constants). Bottom Panel:
Analogous 2D elastic layer subject to a transverse load. In this case,
local layer thickness modulates the effective stiffness (and strain) of
the medium. Proposed measurements of strain at the outer surface
of the crust (labelled) would permit inferences of local thickness at
Enceladus. Shaded regions denote locations where ‘gradient effects’
impact inferences of local thickness from strain fields. . . . . . . . . 66

3.2 Snapshots of model input crustal thickness 𝐷𝑡𝑟𝑢𝑒 (𝛀) (first row), the
simulated 2𝑛𝑑 invariant of time-averaged horizontal deviatoric strain
rate 𝐸𝑜𝑏𝑠 (𝛀) (see Equations 3.6 and 3.9) (second row), recovered
crustal thickness 𝐷0(𝛀) evaluated from Equation 3.8 (third row), and
mismatch between input and recovered thickness 𝛿𝐷0(𝛀) (see Equa-
tion 3.7) for our initial recovery of crustal thickness (𝑛 = 0) viewed
facing Southern, Northern, Leading, and Trailing hemispheres. See
Supplementary S1.1 of this chapter for a description of how synthetic
‘true’ crustal thickness models are constructed. Plotted contours de-
note colorscale intervals of 0.05 (for 𝐸𝑜𝑏𝑠 (𝛀) fields) and 5 km (for
𝐷𝑛 (𝛀) and 𝛿𝐷𝑛 (𝛀) fields). Images are orthographic projections
with labelled sub-Saturnian point and South Pole locations. . . . . . 71
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3.3 Snapshots of input crustal thickness 𝐷𝑡𝑟𝑢𝑒 (𝛀) (first row), recovered
crustal thickness following 𝑛 = 1 iteration 𝐷1(𝛀) (second row), mis-
match between model and input crustal thickness following 𝑛 = 1
iteration 𝛿𝐷1(𝛀) (see Equations 3.7) (third row), recovered crustal
thickness following 𝑛 = 12 iterations 𝐷12(𝛀) (fourth row), and mis-
match between model and input crustal thickness following 𝑛 = 12
iterations 𝛿𝐷12(𝛀) (fifth row) viewed facing the Southern, North-
ern, Leading, and Trailing hemispheres. Plotted contours denote
colorscale intervals of 5 km for 𝛿𝐷𝑛 (𝛀) and 𝐷𝑛 (𝛀) fields. Images
are orthographic projections with labelled sub-Saturnian point and
South Pole locations. . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4 Analysis of mismatch between thickness fields that are input and
recovered from models at a given iteration 𝑛 using our analysis.
Upper and center left panels show 𝑑𝑛

𝑙
and 𝑑𝑡𝑟𝑢𝑒

𝑙
evaluated for spherical

harmonic degrees 𝑙 = 2 – 20. 𝑑𝑛
𝑙

and 𝑑𝑡𝑟𝑢𝑒
𝑙

denote the spectral
power of input and recovered thicknesses (see Equation 3.15ab; 𝑑𝑛

𝑙

= 𝑑𝑡𝑟𝑢𝑒
𝑙

denotes a perfect recovery of crustal thickness). Note that
the difference between 𝑑𝑛

𝑙
and 𝑑𝑡𝑟𝑢𝑒

𝑙
decreases (i.e., error decreases)

after several iterations (i.e., increasing values of 𝑛). Center right
panel shows 𝛿𝑑𝑛

𝑙
evaluated for spherical harmonic degrees 𝑙 = 2

– 20. 𝛿𝑑𝑛
𝑙

is the spectral power of mismatch between input and
recovered thicknesses at spherical harmonic degree 𝑙 (see Equation
3.15c; 𝛿𝑑𝑛

𝑙
= 0 denotes a perfect recovery of crustal thickness). Note

that 𝛿𝑑𝑛
𝑙

decreases (i.e., error decreases) after several iterations (i.e.,
increasing values of of 𝑛). Vertical dash-dot lines at 𝑙 = 12 marked
for reference. Lower left panel shows a histogram of 𝛿𝐷𝑛 (𝛀) values
(evaluated at FEM node locations) across recovered models for 𝑛
= 0, 1, and 12. 1𝜎 for the 𝑛 = 12 case plotted as vertical dash-
dot lines for reference. Lower right panel shows the cost function
𝜉𝐸 (𝑛) (see Equation 3.10) and integrated thickness mismatch 𝜉𝐷 (𝑛)
(see Equation 3.11), normalized relative to the maximum value, for
iterations 𝑛 = 0 – 15. X-axes of upper and center panels are plotted
in log10 scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
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3.5 Panel A: Snapshots of the function 𝜅(𝛀) derived from Equations 3.18
and 3.19 viewed facing the Leading Hemisphere and the South Pole.
Panel B: Similar to center-right and lower-left panels of Figure 3.4 of
the main text except we assume 𝜅(𝛀) = 1 in Equations 3.8 and 3.13
for recoveries of crustal thickness. . . . . . . . . . . . . . . . . . . 87

3.6 Similar to center-right and lower-left panels of Figure 3.4 of the main
text except we assign a mean thickness 𝐷̃ = 50 km for ‘true’ models
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3.7 Complex diurnal Love number components (i.e.,ℑ(ℎ20) andℜ(ℎ20))
for a spherically symmetric body with non-uniform radial viscosity
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volume, activation energy, Burger’s vector, and viscous exponents for
ice from Goldsby and Kohlstedt, 2001) and the conductive tempera-
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3.9 Mean RMS deviation (in km) of recovered relative to input thick-
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Measurement resolution range that is achievable with InSAR based
on Simons and Rosen (2015) is shown as a gray shaded box in the
right panel for reference. X- and Y- axes are plotted in log10 scale. . . 91

4.1 Examples of tidally-driven deformation at Enceladus during phases
of peak left-lateral slip at 𝜑 = 65◦ (panel a) and right-lateral slip at
𝜑 = 200◦ (panel b). Top row: South Polar stereographic projections
(Leading and Trailing hemispheres labelled) of radial displacement
at the surface relative to that produced by models without Tiger Stripe
faults. Bottom row: Perspective view of lateral slip along Tiger Stripe
faults: ‘A’ Alexandria, ‘C’ Cairo, ‘B’ Baghdad, and ‘D’ Damascus.
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4.2 Modelled traction and lateral slip over Tiger Stripe faults as a function
of mean anomaly. Driving shear traction 𝜏 (panel a), normal traction
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4.3 Comparison of predicted strike-slip motion along Tiger Stripes and
observations of plume brightness. Individual solid lines correspond
to magnitudes of strike-slip motion on Tiger Stripes with different
prescribed 𝜇 ranging from 0.0 – 0.8 normalized to maximum values
over the tidal cycle. Plume brightness data is extracted from Ingersoll
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denote the normalized moving average (4◦ bin widths) and range of
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flow along the Tiger Stripes. a: Spatial distribution of radiated power
per unit length associated with heat flow (Spencer et al., 2018; right
image) alongside depth-integrated lateral slip averaged over the tidal
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4.6 Example snapshots of mesh geometry. Left: South Polar (ortho-
graphic) view of mesh geometry showing labelled Tiger Stripe faults
(black traces). Right: perspective view of Tiger Stripe surfaces with
inset closeup image of Alexandria sulcus. Tetrahedra cell edges are
colored in blue and range in size from 1 km (over the Tiger Stripe
faults) to 8 km. Approximate distance scale is shown in the lower
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tom images respectively show crustal thickness in cylindrical equidis-
tant and South Polar stereographic projections. We compensate non-
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the static coefficient of friction 𝜇. Ξ(𝑡) = 0 indicates that differences
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4.9 Correlation of timing of lateral slip and plume brightness (Ingersoll
et al., 2020) for several values of modelled 𝜇. Values are plotted for
corresponding values of mean anomaly and are each normalized by
maxima over the tidal cycle. Linear regression lines and associated
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4.10 Correlation of spatial distribution of lateral slip and radiated power
per unit length (Spencer et al., 2018) for several values of modelled 𝜇.
Values are plotted for corresponding values of surface location (i.e.,
along the Tiger Stripe faults) and are each normalized by maxima
over all interfaces. Linear regression lines and Pearson Correlation
Coefficient (𝑅 = 1 indicates perfect correlation) shown for reference.
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Baghdad, Blue ⇔ Damascus, Yellow ⇔ Cairo, and Red ⇔ Alexan-
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4.11 Simplified model relating driving shear traction 𝜏𝐷 , normal traction
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of the applied 𝜎𝑛. Slip results in a concentration of elastic strain at
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5.1 Bar chart showing 𝑘2𝑚 and 𝑘3𝑚 values expected for an isotropic
Moon (orange), observed Love number values with 15× formal 1-
𝜎 uncertainties error bars (blue), and values predicted for a lunar
interior with an imposed 1% nearside-farside (𝑙 = 1, 𝑚 = 1) variation
in mantle shear modulus (green). Love Numbers for the isotropic
case represent values predicted for the 1D lunar interior derived from
seismic travel time data in Weber et al., 2011. . . . . . . . . . . . . 131

5.2 Normalized sensitivity of 𝑘30 (blue), 𝑘31 (orange), 𝑘32 (gray), and
𝑘33 (red) Love numbers to (𝑙 = 1, 𝑚 = 1) perturbations (i.e., a
nearside-farside pattern) in shear modulus placed at depths ranging
from the surface (0 km) to the core-mantle boundary (1,407 km) for
reference lunar interiors (Weber et al., 2011) subject to 𝑙 = 2 forcing
(e.g., eccentricity tides expected for the lunar orbit). Labels refer to
vertical regions spanning the crust (0–34 km), the mantle (34–1,407
km), and the core (1,407–1,737 km). . . . . . . . . . . . . . . . . . 132

5.3 Recovered nearside-farside structure in the lunar mantle using inde-
pendently recovered 𝑘3𝑚. Histogram showing inverted coefficient
value that describes internal (𝑙 = 1, 𝑚 = 1) variations in shear mod-
ulus (in % relative to the bulk value) for the lunar mantle. Dashed
lines show 0.3% and 99.7% quantiles (i.e., 3-𝜎 confidence bounds).
Thin vertical gray line denotes value expected for an isotropic mantle.
The preferred value and 3-𝜎 bounds for (𝑙 = 1, 𝑚 = 1) mantle shear
modulus structure is 2.74±1.3%. A full list of derived harmonic
coefficients describing 3D structure are shown in Table 5.3. . . . . . 134
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5.4 Impact of asymmetric temperature or composition on the lunar man-
tle. Lunar COM-COF offset and shear modulus change as a func-
tion of temperature change (assuming a volume expansion coefficient
𝛽 = 3 × 10−5 K−1 and Δ𝜇/Δ𝑇 = −1.35 × 10−2 GPa/K where 𝑇
is temperature and 𝜇 is shear modulus Isaak, 1992; Suzuki, 1975)
and iron content (i.e., percentage changes in the mol fraction of
iron-endmember olivine (fayalite) relative to forsterite, or Δ𝐹𝑜-𝐹𝑎,
assuming Δ𝜌/Δ𝐹𝑜-𝐹𝑎 = 9.7 kg/%-m3, where 𝜌 is density and
Δ𝜇/Δ𝐹𝑜-𝐹𝑎 = −0.3 GPa/% Chung, 1970) in the nearside man-
tle. The solid red region and thin black lines respectively denote
the observed COM-COF offset Barker et al., 2016 and contours for
computed COM-COF offset values. The blue shaded area and thick
solid black line respectively denote 99.7% confidence bounds and
preferred values for the nearside-farside shear modulus differences
inferred from gravity data in this work. We infer a temperature
anomaly of approximately 100–200 K between the lunar near and far
side hemispheres by identifying overlapping portions of the Δ𝐹𝑜-𝐹𝑎
- ΔTemperature parameter space that satisfy both the shear modulus
difference (within 99.7% confidence bounds) and the COM-COF offset.136

5.5 Internal temperature structure for the present-day lunar nearside based
on predicted shear modulus change (99.7% confidence bound and
preferred model are blue shaded region and solid black line respec-
tively). The nearside profile is computed by uniformly increasing the
temperature of a reference farside conductive model for the Moon
(black dashed line, extracted from Fig. 5 of Laneuville et al., 2013)
by the inferred 100–200 K anomaly (i.e., assuming zero lateral vari-
ation in mantle composition). The lunar mantle solidus and liquidus
are shown as brown and orange lines, respectively. Since the pre-
dicted nearside model exceeds the solidus, we expect present-day
melt production in the lunar mantle. The gray shaded region denotes
the location of 95% of observed deep moonquakes (DMQ) (Frohlich
and Nakamura, 2009). . . . . . . . . . . . . . . . . . . . . . . . . . 137
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5.6 Conceptual model for the evolution of the lunar interior. Partial melt
associated with the inferred nearside thermal anomaly erupts onto
the surface to form mare regions approximately 4 Gya (top). As the
interior cools, the partial melting associated with the inferred nearside
thermal anomaly descends until localizing to depths of 800–1,200
km in the present-day (bottom). The color scale denotes mantle
temperature (decreasing from light yellow to dark orange to dark
green). Yellow crosses denote moonquakes which localize within
or slightly above partially melted regions of the present-day lunar
mantle. For a similar conceptual model that additionally considers
compositional variations in water vapor and ilmenite in the lunar
interior (see Fig. 4 of Qin et al., 2012). . . . . . . . . . . . . . . . . 138

5.7 Conceptual relationship between lunar 3D structure and response to
tidal forcing. The left column shows the spatial pattern of gravita-
tional potentials associated with eccentricity tides at degree-2, order-
0,2 (i.e., (2,0) and (2,2)) and obliquity tides degree-2, order-1 (2,1)
acting on the Moon. The second column shows the spatial pattern of a
degree-1, order-1 (i.e., (1,1) or nearside farside) lateral heterogeneity
in shear modulus imposed onto the lunar interior. The third column
shows response at (2,0), (2,1), and (2,2) expected for a spherically
symmetric interior (i.e., also the main components of the response for
a laterally heterogeneous interior). The fourth and fifth columns show
additional modes of deformation at degree-3 (i.e., (3,0), (3,1), (3,2),
and (3,3)) expected for the laterally heterogeneous interior shown
in the second column. Rows in the third, fourth, and fifth columns
correspond to response associated with forcing in the same row in
column 1. For example, (2,1) forcing stimulates response at (3,0)
and (3,2), (2,0) forcing stimulates response at (3,1), and (2,2) forcing
stimulates response at (3,1) and (3,3). . . . . . . . . . . . . . . . . . 154

5.8 Distributions of modeled Love numbers 𝑘2𝑚 and 𝑘3𝑚 corresponding
to the ensemble of accepted candidate models. Grey boxes represent
observational constraints, where the box width is 15 times the formal
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xxvii

5.9 (a) Lateral variations in crustal structure assumed for reference mod-
els. Line plots with scatter points show shear modulus (top), bulk
modulus (middle), and density (bottom) perturbations (parameter-
ized as spherical harmonic coefficients up to degree-5, normalized as
a percentage of the mean value (see Equation 5.6)) for two vertical
regions of the lunar interior spanning 0-34 km (orange line) and 34-
62 km (blue line). Coefficient values are derived by linearly mapping
lateral variations in crustal properties from Wieczorek et al., 2013 to
variations in bulk/shear moduli and density (see Eqn. 75 of Qin et al.,
2016). Note that density variations reflect both observed variations in
the density of the crust (Wieczorek et al., 2013) and effective density
variations due to lateral variability in the depth of the Moho whereas
bulk/shear moduli variations only reflect variations in Moho depth.
(b) Inferred Maxwell viscosity for 1,257-1,407 km depth. Histogram
shows Maxwell viscosity values corresponding to the inverted re-
duction in the degree-0 shear modulus value of the region spanning
1,257-1,407 km depth (Table 5.3 and Equation 5.8). Dashed lines
show 0.003, and 0.997 quantiles (i.e., 3-𝜎 confidence bounds). (c)
Similar to Figure 5.2 except including models with crustal thickness
and density variations. Note that the green bar above the 𝑙 = 3, 𝑚 = 1
harmonic is very close to zero. . . . . . . . . . . . . . . . . . . . . 156

5.10 Similar to Figure 5.4 except considering the impact of water content
(as a weight percentage) on the shear modulus and density of lunar
mantle olivine and assuming 𝛽 = 3 × 10−5 K−1, Δ𝜇/Δ𝑇 = −1.35 ×
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−6.63 GPa/% in the nearside mantle (Jacobsen et al., 2008). While
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approximately 0.1% between the nearside and farside, superimposed
compositional variations, such as iron and ilmenite content (Qin et al.,
2012), could influence the overall density structure and may reconcile
a water-enriched nearside mantle with the small observed COM-COF
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1

C h a p t e r 1

INTRODUCTION

1.1 Motivation
The interior of planetary bodies is perhaps the most fundamental structural com-
ponent of these systems, yet it is also challenging to observe directly. On Earth,
first-order constraints on the deep interior (e.g., a separate core, mantle, and crust)
were established through seismological observations in the late 19th and early 20th
centuries (Gutenberg and Richter, 1938; Markušić and Ivančić, 2020). Modern
advancements in seismic data collection and analysis have since revealed details
within these layers, including the structure of subducting slabs and the complexities
of the core-mantle boundary (e.g., Romanowicz and Dziewonski, 2009). However,
aside from a few notable exceptions (e.g., the InSight mission to Mars (Banerdt et al.,
2020) and Apollo-era seismology on the Moon (Nunn et al., 2020)), current studies
of extraterrestrial planetary interiors are largely confined to describing first-order
structure due to the logistical challenge of deploying seismometers in outer space.
As a result, remote sensing techniques (e.g., gravity field observations) remain the
primary tool for probing the structure and evolution of these bodies.

1.2 Static Gravity
Gravity fields are sensitive to the internal distribution of mass for planetary bodies.
We can correspondingly generalize these fields as a volume integral over a spatially
variable internal density (Jekeli, 2007):

𝑊 (r) =
∫
𝑣

𝐺

| |r − r′| | 𝜌(r
′)𝑑𝑣(r′), (1.1)

where 𝑊 (r) is the gravitational potential at position r, and r′, 𝜌(r′), and 𝑣 repre-
sent the position vector, density distribution, and volume of the gravitating body,
respectively. 𝐺 denotes the universal gravitational constant. At very low spatial
resolutions (i.e., long-wavelengths), it is often more convenient to express Equa-
tion 1.1 as an expansion into orthonormal spherical harmonic basis functions which
describe perturbations to the gravitational potential relative to a spherical reference
figure of mass 𝑀 (i.e., the total mass of the body) (Kaula, 1963):
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𝑊 (𝑟, 𝜃, 𝜙) = 𝐺𝑀

𝑟

(
1 +

∞∑︁
𝑙=2

(
𝑅

𝑟

) 𝑙 𝑙∑︁
𝑚=0

𝑃𝑙𝑚 (sin 𝜃) [𝐶𝑙𝑚 cos𝑚𝜙 + 𝑆𝑙𝑚 sin𝑚𝜙]
)
,

(1.2)

where 𝑃𝑙𝑚 are associated Legendre polynomials evaluated at degree 𝑙 and order 𝑚;
𝐶𝑙𝑚 and 𝑆𝑙𝑚 are unnormalized and dimensionless coefficients; 𝑅 is the mean radius
of the gravitating body; and 𝑟, 𝜃, and 𝜙 are spherical coordinates (radial distance,
latitude, and longitude relative to the system’s center of mass) for observations that
are external to the gravitating body. Note that the spatial wavelength 𝜆 for a given
harmonic is related to 𝑙 according to 𝜆 ≈ 2𝜋𝑅/𝑙.

Inferring separate internal mass layers using Equation 1.2 suffers from the non-
unique trade-off of the impact of layer thickness, shape, and density on coefficients
𝐶𝑙𝑚 and 𝑆𝑙𝑚. To resolve this ambiguity, hydrostatic conditions (i.e., bodies are
fully relaxed into their equilibrium shape) are often assumed a priori. For example,
hydrostatic satellites that synchronously orbit their parent body should exhibit a
characteristic ratio between zonal and positive sectoral components of their 𝑙 = 2
gravity field (i.e., 𝐶20 and 𝐶22; Murray and Dermott, 2000):

𝐶20

𝐶22
≈ −10/3. (1.3)

If Equation 1.3 is satisfied, a satellite’s moment of inertia factor (MOI) can be
determined via the Darwin-Radau relation (Darwin, 1899; Murray and Dermott,
2000; Hemingway et al., 2018):

MOI =
2
3

(
1 − 4

5

√︄
1 − 𝑞𝐶22

1 + 4𝑞𝐶22

)
− 20

9
𝐶22, (1.4)

where 𝑞 = 𝜔2𝑅/𝑔 is the ratio of outward centrifugal acceleration due to rotation
(i.e., of angular velocity 𝜔) and inward surface gravitational acceleration 𝑔. MOI
has a theoretical maximum value of 0.4 for homogeneous bodies. As such, an
observed MOI < 0.4 hints at internal differentiation (e.g., the presence of a core)
(Iess et al., 2014).

Despite its elegance, Equation 1.4 often fails for small bodies since hydrostatic
equilibrium is the exception, rather than the rule, for these systems. For example,
the gravity field of Saturn’s moon Enceladus (𝑅 = 252 km) is moderately non-
hydrostatic (𝐶20/𝐶22 = −3.61; Park et al., 2024) and a prominent equatorial bulge
on the Earth’s Moon (𝑅 = 1737 km) results in an extreme departure of its gravity
field from hydrostatisticity (𝐶20/𝐶22 = −2.62; Zuber et al., 2013; Qin et al., 2018).
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1.3 Time-Variable Gravity
Time-varying components of gravity fields can provide additional constraints on the
structure of planetary interiors. The amplitude of these variations are typically a few
orders of magnitude smaller than the static gravity field and can arise from periodic
tidal interactions with external (i.e., disturbing) bodies (Kaula, 1969). Time-varying
gravity fields can therefore be modeled as perturbations to coefficients 𝐶𝑙𝑚 and 𝑆𝑙𝑚
in Equation 1.2 (i.e., Δ𝐶𝑙𝑚 and Δ𝑆𝑙𝑚) using parameters known as Love numbers 𝑘 𝑙𝑚
(Love, 1909; Konopliv et al., 2013):

Δ𝐶𝑙𝑚 − 𝑖Δ𝑆𝑙𝑚 = 𝑉𝑙𝑚𝑘 𝑙𝑚 . (1.5)

𝑉𝑙𝑚 are complex terms that describe the forcing potential:

𝑉𝑙𝑚 =
1

2𝑙 + 1

∑︁
𝑗

𝐺𝑀 𝑗

𝐺𝑀

𝑅𝑙+1

𝑟 𝑙+1
𝑗

𝑃𝑙𝑚 (sin 𝜃 𝑗 )𝑒−𝑖𝑚𝜙 𝑗 , (1.6)

where 𝜃 𝑗 , 𝜙 𝑗 , and 𝑟 𝑗 are the latitude, longitude, and distance of external body 𝑗

relative to the satellite’s center of mass. Note that Equation 1.6 implies the presence
of gravity fields at all 𝑙 and 𝑚. However, the most substantial components of the
tidal potential (i.e., arising from the obliquity/eccentricity of planetary orbits and
their rotation) exist at 𝑙 = 2 and rapidly diminish with increasing spherical harmonic
degree according to ∼ 𝑅𝑙−2/𝑟 𝑙−2. For the Earth-Moon tides, this relation implies
𝑉3𝑚/𝑉2𝑚 ∼1/220 whereas for Saturn-Enceladus tides𝑉3𝑚/𝑉2𝑚 ∼1/944 (Zhong et al.,
2012).

Unlike static gravity fields, time-variable gravity is sensitive to the mass and the
rheological structure (e.g., the stiffness) of planetary bodies. The Love numbers of
a theoretical body with uniform density are therefore analogous to its compliance:
high 𝑘 𝑙𝑚 indicate a structurally weak interior (and vice versa for small 𝑘 𝑙𝑚). This
property makes 𝑘 𝑙𝑚 particularly useful for detecting mechanically weak internal
layers such as subsurface oceans. Note that, unlike 𝑘 𝑙𝑚, analogous measurements
of the time-variable shape of planetary surfaces (i.e., shape Love numbers ℎ𝑙𝑚) are
largely insensitive to the internal density of these systems (e.g., Ermakov et al.,
2021).

Equation 1.5 assumes a one-to-one relationship between an applied gravity field and
a response at a given 𝑙 and𝑚. However, bodies with substantial lateral heterogeneity
in rheological structure will exhibit coupling between forcing at harmonics 𝑙′, 𝑚′ and
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response for harmonics at different 𝑙, 𝑚 (i.e., mode coupling; Dahlen and Tromp,
1998, Rovira-Navarro and Matsuyama, 2022). We can generalize Equation 1.5 to
consider mode coupling effects by introducing ’effective Love numbers’ 𝐾 𝑙,𝑚

𝑙′,𝑚′ (also
called Green’s functions in Chapter 2):

Δ𝐶𝑙𝑚 − 𝑖Δ𝑆𝑙𝑚 =

∞∑︁
𝑙′=2

𝑙′∑︁
𝑚′=0

1
2𝑙′ + 1

∑︁
𝑗

𝐺𝑀 𝑗

𝐺𝑀

𝑅𝑙
′+1

𝑟 𝑙
′+1
𝑗

𝑃𝑙′𝑚′ (sin 𝜃 𝑗 )

×
[(
𝐾
𝑙,𝑚

𝑙′,𝑚′ cos(𝑚′𝜙 𝑗 ) + 𝐾 𝑙,𝑚𝑙′,−𝑚′ sin(𝑚′𝜙 𝑗 )
)

− 𝑖
(
𝐾
𝑙,−𝑚
𝑙′,𝑚′ cos(𝑚′𝜙 𝑗 ) + 𝐾 𝑙,−𝑚𝑙′,−𝑚′ sin(𝑚′𝜙 𝑗 )

) ]
. (1.7)

Traditional Love numbers 𝑘 𝑙𝑚 in Equation 1.5 can generally be derived from 𝐾
𝑙,𝑚

𝑙′,𝑚′

in Equation 1.7. This relationship is trivial for spherically symmetric bodies (i.e.,
𝑘 𝑙𝑚 = 𝐾

𝑙,𝑚

𝑙,𝑚
). In contrast, a body with substantial near-to-far side asymmetries

(e.g., an 𝑙 = 1, 𝑚 = 1 variation in internal shear modulus) subject to degree-2 tidal
forcing will exhibit 𝑘30, 𝑘31, 𝑘32, and 𝑘33 that depend on several ’off-diagonal’ (i.e.,
𝑙′, 𝑚′ ≠ 𝑙, 𝑚) values of 𝐾 𝑙,𝑚

𝑙′,𝑚′ (Zhong et al., 2012):

𝑘30 ≈ 𝐾30
30 + 𝑉21

𝑉30
𝐾30

21

𝑘31 ≈ 𝐾31
31 + 𝑉20

𝑉31
𝐾31

20 + 𝑉22

𝑉31
𝐾31

22

𝑘32 ≈ 𝐾32
32 + 𝑉21

𝑉32
𝐾32

21

𝑘33 ≈ 𝐾33
33 + 𝑉22

𝑉33
𝐾33

22 ,

(1.8)

where 𝑉𝑙𝑚 are derived from Equation 1.6. Note that Equation 1.8 describes de-
formation evaluated only at very long spatial wavelengths. By contrast, geologic
faults (e.g., the Tiger Stripes at Enceladus) or lateral variations in crustal thick-
ness tend to drive deformation in response to tidal forcing over much shorter spatial
scales. It is therefore typically more convenient to describe deformation arising from
these features using local parametrizations of displacement (e.g., surface strain rate;
Berne et al., 2023b). Even so, deformation arising from faults or lateral variations
in crustal thickness may bias the interpretations of long-wavelength time-varying
gravity (e.g., 𝑘2𝑚) for inferring first-order structure (e.g., mean crustal thickness;
Berne et al., 2023a).
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1.4 Modeling Deformation for Laterally Heterogeneous Bodies
Methods to predict the response of a laterally heterogeneous body to tidal forcing
require some special attention. The degree-2 tidal potentials in Equation 1.5 induce
sufficient deformation to result in self-gravitation of deformed bodies. Accounting
for these self-gravitational effects requires simultaneously solving, at a minimum,
both the quasi-static equation of motion and Poisson’s equation:

∇ · σ = 𝜌∇(𝑊 +𝑉), (1.9)

∇2𝑊 = 4𝜋𝐺𝜌, (1.10)

where σ is the stress tensor, 𝜌 is the spatially variable density, and 𝑉 is the total
gravitational potential arising from external (i.e., disturbing) bodies. Lateral het-
erogeneity in elastic structure enters Equations 1.9-1.10 through the constitutive
relation:

σ =
1
2
C :

(
∇u + (∇u)𝑇

)
, (1.11)

where C is the spatially variable fourth-order tensor for linear elasticity and u is the
displacement field. For spherically symmetric structures, Equations 1.9-1.11 can be
solved using semi-analytic methods (e.g., Wahr et al., 2006; Martens et al., 2019).
However, predicting deformation for bodies with 3D structure typically requires
numerical treatment due to the difficulty associated with generalizing solutions to
Equations 1.9-1.11 for complicated geometries. Finite element models (FEMs) can
approximate solutions to Equations 1.9-1.11 by discretizing domains into values
over a set of mesh nodes. Numerical treatments also readily allow for modeling
fault dynamics (e.g., friction) using so-called split nodes (i.e., duplicate node sets at
overlapping positions) along crack interfaces (Melosh and Raefsky, 1981).

1.5 Thesis Overview
In this thesis, we will explore both challenges and opportunities for characterizing
the internal structure and dynamics of bodies with lateral heterogeneities. We focus
our attention on two natural planetary satellites: Enceladus and the Moon.

We begin by discussing the impact of lateral variations in elastic structure on Ence-
ladus’ diurnal degree-2 Love numbers, 𝑘2𝑚 and ℎ2𝑚 (Chapter 2). 𝑘2𝑚 and ℎ2𝑚

describe the longest wavelength response of the interior to tidal forcing and, for
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Enceladus, are most sensitive to the characteristics (e.g., mean thickness) of the
outer ice shell. Using a numerical finite element model of deformation arising from
eccentricity tides at Enceladus, we demonstrate that lateral variations in crustal
thickness and geologic faults can substantially impact 𝑘2𝑚 and correspondingly bias
inferences of mean crustal thickness derived from this parameter by up to 40%.
We also show that crustal thinning over Enceladus’ South Polar region preferen-
tially impacts sectoral harmonics (i.e., 𝑘22 and ℎ22) over zonal harmonics (i.e., 𝑘20

and ℎ20), thereby enabling determination of the importance of lateral structure via
quantification of Love number ratios 𝑘22/𝑘20 and ℎ22/ℎ20. Note that we consider
only purely elastic bulk rheologies for planetary interiors throughout this thesis.
However, viscous structure may induce temporal phase lags in Enceladus’ degree-2
deformation relative to forcing at this wavelength. We discuss the possibility of
measuring and interpreting this phase-lagged tidal signal in the conclusion (Chapter
6).

In Chapter 3, we examine the impact of regional-scale structure on surface strain at
Enceladus. We find that this strain correlates with local variations in crustal thick-
ness, prompting the development of a method to recover thickness from potential
future observations of surface motion (e.g., via interferometric radar measurements
or InSAR). Building on the finite element models described in Chapter 2, our recov-
ery minimizes differences between strains from candidate crustal thickness models
and that produced by synthetic ‘true’ crustal models. Using our approach, we
demonstrate recovery of thickness for several fiducial models with ∼ 2 km accuracy
relative to true thickness values across the crust. Nonetheless, recoveries of crustal
thickness become inaccurate at short wavelengths (𝑙 ≥ 12) due to our approach’s
inability to account for the complicated impact of bending effects in Enceladus’ ice
shell at these scales.

In Chapter 4, we examine the dynamics of Enceladus’ south polar (i.e., Tiger Stripe)
faults. Enceladus has a large plume comprised of water-ice crystals that emanate
from several jets distributed over these Tiger Stripes. Moreover, the brightness of
Enceladus’ plume varies periodically over the satellite’s 32.9 hr orbit, suggesting a
relationship between tidal forcing of the Tiger Stripes and geologic activity. Using
an adapted version of our finite element models, we find that strike-slip motion along
the Tiger Stripes closely tracks both the timing of plume brightness variations and
spatial distribution of observed heat flow. Static friction also modulates periodic
strike-slip motion resulting in an asymmetric and double-peaked timing structure
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for this motion. We suggest that strike-slip motion may periodically open small
rifts along the Tiger Stripes to regulate jet activity, similar to pull-apart zones along
tectonic faults in terrestrial settings (e.g., the Salton Basin along the San Andreas
Fault).

In Chapter 5, we use observations from the Gravity Recovery and Interior Laboratory
(GRAIL) mission to constrain the structure and dynamics of the Moon’s deep
interior. GRAIL captured the time-variability of 𝑙 = 2 and 𝑙 = 3 components of
the lunar gravity field (i.e., 𝑘2𝑚 and 𝑘3𝑚). As discussed previously, lunar 𝑘3𝑚 are
sensitive to the presence of lateral heterogeneity in the mantle and are observed to
be about ∼70% higher than values expected for a spherically symmetric interior.
Based on this finding, we infer the presence of an approximately 2-3% variation
in the shear modulus across a hemispherical, 𝑙 = 1, 𝑚 = 1 (near-to-farside) pattern
in the deep lunar interior. The lack of an associated long-wavelength anomaly in
lunar density structure suggests that this degree-1 variation in stiffness represents a
predominantly thermal asymmetry in the mantle. This asymmetry may be a remnant
of processes that formed surface mare flood basalts around 4 Gya.

Chapters 2–4 of this thesis are published as articles in peer-reviewed journals and
are fully reproduced here (including supplementary sections) with very minor alter-
ations to ensure consistent formatting. As a result, the content of methods sections
overlap substantially between these chapters, especially regarding the development
of finite-element models and descriptions of time-variable gravity fields. Chapter 5
is currently under review (presented content has undergone one round of revisions)
and we present only portions related to interior modeling (i.e., including a very brief
discussion on the methodology for gravity field inversions used to derive 𝑘3𝑚 from
GRAIL measurements) in this thesis.

We finish with conclusions and suggestions for future directions.
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C h a p t e r 2

INFERRING THE MEAN THICKNESS OF THE OUTER ICE
SHELL OF ENCELADUS FROM DIURNAL CRUSTAL

DEFORMATION

A. Berne et al. (2023a). “Inferring the Mean Thickness of the Outer Ice Shell
of Enceladus From Diurnal Crustal Deformation”. In: Journal of Geophysical
Research: Planets 128 (6).

2.1 Abstract
The thickness of the outer ice shell plays an important role in several geodynamical
processes at ocean worlds. Here, we show that observations of tidally-driven di-
urnal surface displacements can constrain the mean ice shell thickness, 𝑑𝑖𝑐𝑒. Such
estimates are sensitive to any significant structural features that break spherical sym-
metry such as faults and lateral variation in ice shell thickness and structure. We
develop a finite-element model of Enceladus to calculate diurnal tidal displacements
for a range of 𝑑𝑖𝑐𝑒 values in the presence of such structural heterogeneities. Con-
sistent with results from prior studies, we find that the presence of variations in ice
shell thickness can significantly amplify deformation in thinned regions. If major
faults are also activated by tidal forcing—such as Tiger Stripes on Enceladus—their
characteristic surface displacement patterns could easily be measured using modern
geodetic methods. Within the family of Enceladus models explored, estimates of
𝑑𝑖𝑐𝑒 that assume spherical symmetry a priori can deviate from the true value by
as much as ∼ 41% when structural heterogeneities are present. Additionally, we
show that crustal heterogeneites near the South Pole produce differences of up to
35% between Love numbers evaluated at different spherical harmonic orders. A
∼ 41% range in estimates of 𝑑𝑖𝑐𝑒 from Love numbers is smaller than that found
with approaches relying on static gravity and topography (∼ 250%) or analyzing
diurnal libration amplitudes (∼ 85%) to infer 𝑑𝑖𝑐𝑒 at Enceladus. As such, we find
that analysis of diurnal tidal deformation is a relatively robust approach to inferring
mean crustal thickness.
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2.2 Introduction
Enceladus, a moon orbiting Saturn approximately every 32.9 hrs, is demonstratively
geologically active (Porco et al., 2006; Spencer et al., 2006; Hansen et al., 2006;
Ingersoll et al., 2020). Erupting jets at the body’s surface align with the position
of four prominent, evenly spaced surface fractures (informally known as ‘Tiger
Stripes’) (Porco et al., 2006). These fractures produce jets or geysers that are the
source of a water-ice-dominated plume emanating from the South Polar Terrain
(SPT). The Tiger Stripes correlate with the position of anomalously high heat flux
and regional thinning at the SPT (Spencer et al., 2006; Porco et al., 2014). Moreover,
jet activity varies with orbital phase to produce maxima in plume brightness near
orbital apoapse and periapse (Ingersoll et al., 2020). The correlation of the plume
brightness oscillation period and Enceladus’s orbital period strongly suggests that
diurnal tides regulate heat and mass transport in the outer ice shell (Hurford et al.,
2007). We explore the interactions between crustal structure and diurnal deformation
to improve our understanding of the interior dynamics of Enceladus.

Constraints on ice shell structure, in particular outer shell mean thickness 𝑑𝑖𝑐𝑒,
provide a first-order constraint on the thermal properties, interior structure, and
potential for habitability of any ocean world. 𝑑𝑖𝑐𝑒 is an essential parameter for
understanding the total heat budget (Roberts and Nimmo, 2008), the potential for
convection within the ice shell (Mitri and Showman, 2005), the radial extent of
the core and ocean (Hemingway and Mittal, 2019), and the rate at which oxidized
material cycles between the surface and the ocean through burial processes (Zolotov
and Shock, 2004). 𝑑𝑖𝑐𝑒 also constrains plausible tidal heating mechanisms on
Enceladus including viscous dissipation in the crust (Souček et al., 2019) and
turbulent ocean flow (Hay and Matsuyama, 2019; Tyler, 2020).

Several approaches currently exist to infer 𝑑𝑖𝑐𝑒. Static gravity and topography admit-
tance modelling (Iess et al., 2014; McKinnon, 2015; Hemingway and Mittal, 2019;
Akiba et al., 2022) and diurnal shell libration amplitude measurements (Thomas
et al., 2016; Van Hoolst et al., 2016) yield estimates of 𝑑𝑖𝑐𝑒 for Enceladus between
17–60 km (∼ 250%) and 14–26 km (∼ 85%), respectively. These methods rely
on the presence of large-scale non-hydrostatic surface topography and a hydrostatic
core, or alternatively, a short orbital period (i.e., that is comparable to the resonant
frequency of the ice shell of a few days). Here, we explore an alternative approach
that relies on the analysis of the response to short-period (i.e., diurnal) tidal forc-
ing. Inferences of 𝑑𝑖𝑐𝑒 from analysis of diurnal tides are relatively insensitive to
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assumptions regarding the core and are not contingent upon fortuitous structural
or orbital conditions (e.g., a short orbital period or the presence of non-hydrostatic
topography) at Enceladus.

Differential gravitational attraction to a central, parent body (e.g., a planet) produces
tides on orbiting satellites. Over timescales substantially greater than that of the
orbital period (i.e., long-period), satellites deform as viscous fluids and the ultimate
response to tidal forces is sensitive to radially varying internal density structure
(e.g., Hubbard and Anderson, 1978). Bodies with eccentric orbits around their
parent bodies experience an additional tidal force (i.e., the eccentricity or diurnal
tide) which operates at a period equal to that of the orbit. At this timescale, any non-
fluid interior layers may deform viscoelastically. For ocean-world bodies (i.e., where
the outer ice shell and silicate core are mechanically decoupled by an intervening
liquid ocean) deformation of the outer shell in response to diurnal tides is then
relatively insensitive to the deep internal structure but is highly sensitive to 𝑑𝑖𝑐𝑒.
Measurement of time-varying gravity or surface displacement can therefore be used
to directly infer 𝑑𝑖𝑐𝑒.

The radial response of a body to time-dependent forcing can be described using
gravitational and shape Love numbers (𝑘 𝑙 and ℎ𝑙 respectively) that depend on spher-
ical harmonic degree 𝑙 (Love, 1909). The 𝑙 = 2 diurnal Love numbers 𝑘𝑑2 and ℎ𝑑2
track the very long-wavelength elastic response of bodies to diurnal tides and are
sensitive to long-wavelength elastic structure (i.e., 𝑑𝑖𝑐𝑒). We will demonstrate that
there only exists a unique relationship between a body’s response and a load at 𝑙
= 2 for the limiting case of a fully spherically symmetric body. More generally,
inferences of 𝑑𝑖𝑐𝑒 from diurnal Love numbers at Enceladus require accounting for
the potential impact of non-spherically symmetric structure.

For an arbitrary 3D structure, we can formulate a general linear relationship between
spherical harmonics 𝑉𝑙𝑚 (i.e., of degree 𝑙 and order 𝑚) of a driving gravitational
potential 𝑉 (𝛀) which deforms (i.e., drives mass movement) within a body and
generates harmonics𝑈𝑙′𝑚′ of an induced gravitational potential𝑈 (𝛀):

𝑉 (𝛀) =
∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝑉𝑙𝑚𝑌𝑙𝑚 (𝛀) (2.1a)

𝑈 (𝛀) =
∞∑︁
𝑙′=0

𝑙′∑︁
𝑚′=−𝑙′

𝑈𝑙′𝑚′𝑌𝑙′𝑚′ (𝛀), (2.1b)
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where𝑌𝑙𝑚 (𝛀) denote real spherical harmonics, the prime (′) denotes induced compo-
nents, and 𝛀 is the angular position variable comprising a co-latitude and longitude
pair (𝜃, 𝜙) in a reference frame whose origin is fixed to Enceladus’s center of mass
(Note: we restrict our analysis to the induced gravitational response but could easily
apply the methodology discussed in this section to derive the induced topographic
response). For a linear elastic solid, deformation is linearly related to forcing (see
also Supplementary S1.1). The tidal forcing harmonics𝑉𝑙𝑚 accordingly map to har-
monics 𝑈𝑙′𝑚′ via linear Green’s functions 𝛾𝑙′𝑚′

𝑙𝑚
which describe the elastic structure

of a body: 
𝑈𝑙′𝑚′

...

...

𝑈∞∞


=


𝛾𝑙

′𝑚′

𝑙𝑚
. . . . . . 𝛾𝑙

′𝑚′
∞∞

...
. . .

...
...

. . .
...

𝛾∞∞
𝑙𝑚

. . . . . . 𝛾∞∞
∞∞




𝑉𝑙𝑚
...
...

𝑉∞∞


(2.2)

Equation 2.2 demonstrates that the response of a body (i.e., defined as 𝑈𝑙′𝑚′/𝑉𝑙𝑚)
will generally vary in time due to the changing shape of an applied load (i.e., time-
variable 𝑉𝑙𝑚 components) despite a fixed elastic structure. For diurnal tides, the
driving potential is composed of three harmonics 𝑉20, 𝑉22, and 𝑉2 -2 (Murray and
Dermott, 2000) and Equation 2.2 simplifies to:

𝑈𝑙′𝑚′

...

...

𝑈∞∞


=


𝛾𝑙

′𝑚′

20 𝛾𝑙
′𝑚′

22 𝛾𝑙
′𝑚′

2 -2
...

...
...

...
...

...

𝛾∞∞
20 𝛾∞∞

20 𝛾∞∞
2 -2



𝑉20

𝑉22

𝑉2 -2

 (2.3)

𝑈𝑙𝑚 ≠ 0 for 𝑙 ≠ 2 indicate a coupling between forcing and response across spatial
scales (i.e., ‘mode coupling’; Dahlen and Tromp, 1998). To derive Love numbers,
we restrict our analysis to the 𝑈20, 𝑈22, and 𝑈2 -2 components of the induced
gravitational potential field (Note that𝑈𝑙𝑚 = 0 for 𝑙 = 1 in a reference frame whose
origin is fixed to Enceladus’s center of mass). Equation 2.3 then simplifies to:

𝑈20

𝑈22

𝑈2 -2

 =


𝛾20

20 𝛾20
22 𝛾20

2 -2
𝛾22

20 𝛾22
22 𝛾22

2 -2
𝛾2 -2

20 𝛾2 -2
22 𝛾2 -2

2 -2



𝑉20

𝑉22

𝑉2 -2

 (2.4)

The individual components 𝛾𝑙′𝑚′

𝑙𝑚
in Equation 2.4 contain information regarding the

sphericity of a body’s elastic structure. For a non-rigid body, diagonal components
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(i.e., 𝛾20
20 , 𝛾

22
22 , 𝛾

2 -2
2 -2) are always non-zero and are principally sensitive to bulk elastic

properties (e.g., 𝑑𝑖𝑐𝑒; Wahr et al., 2006). Off-diagonal components (i.e., 𝛾20
22 , 𝛾

22
20 ,

𝛾22
2 -2, 𝛾

20
2 -2, 𝛾

2 -2
22 , 𝛾

2 -2
20 ) represent coupling between forcing and response at mutually

distinct harmonics. At spatial wavelengths significantly greater than 𝑑𝑖𝑐𝑒, the outer
ice crust of spherically symmetric ocean worlds conform to the shape of driving
potential surfaces (i.e., following the thin-plate approximation originally derived
from beam theory; Levinson, 1984). According to Equation 2.4, distinct diagonal
components or non-zero off-diagonal components therefore imply the presence of
non-spherically symmetric structure. For a spherically symmetric body, 𝛾20

22 =

𝛾22
20 = 𝛾22

2 -2 = 𝛾20
2 -2 = 𝛾2 -2

22 = 𝛾2 -2
20 = 0 and 𝛾20

20 = 𝛾22
22 = 𝛾2 -2

2 -2 = 𝑘𝑑2 . Equation 2.4 then
simplifies to:


𝑈20

𝑈22

𝑈2 -2

 =


𝑘𝑑2 0 0
0 𝑘𝑑2 0
0 0 𝑘𝑑2



𝑉20

𝑉22

𝑉2 -2

 (2.5)

We can define ‘effective’ Love numbers 𝑘𝑑2𝑚 as quantities which track𝑈2𝑚 normal-
ized by𝑉2𝑚 (i.e., 𝑘2𝑚 = 𝑈2𝑚/𝑉2𝑚). According to Equation 2.5, a unique relationship
between harmonics 𝑈2𝑚 and 𝑉2𝑚 exists only for spherically symmetric structures
(i.e., 𝑘𝑑2𝑚 → 𝑘𝑑2 ). More generally, 𝑘𝑑2𝑚 are sensitive to non-spherically symmet-
ric structure and the overall shape of the load (i.e., combination of 𝑉20, 𝑉22, and
𝑉2 -2) such that 𝑘𝑑20 ≠ 𝑘𝑑22 ≠ 𝑘𝑑2 -2 (i.e., ‘order splitting’ or ‘spectral leakage’) (Be-
hounkova et al., 2017; Ermakov et al., 2021; Vance et al., 2021). Several structures
are expected to break spherical symmetry at Enceladus including lateral variations
in thickness of the ice shell, structurally weak (e.g., highly fractured or damaged)
zones, or the presence of major fault structures (Behounkova et al., 2017). We there-
fore expect that diurnal Love numbers are not directly sensitive to 𝑑𝑖𝑐𝑒 at Enceladus
and inferences of 𝑑𝑖𝑐𝑒 from 𝑘𝑑2𝑚 (or ℎ𝑑2𝑚) should account for the potential influence
of structural heterogneities in the outer ice crust.

Several studies describe the relationship between elastic structure and diurnal defor-
mation at Enceladus. Wahr et al. (2006) develop analytic expressions to calculate
𝑘𝑑2𝑚 and ℎ𝑑2𝑚 from eccentricity tides at ocean worlds using an approach that only
applies to spherically symmetric models. Beuthe (2018) extends this analysis of
𝑘𝑑2𝑚 and ℎ𝑑2𝑚 to allow for variations in crustal thickness but assumes a thin-shelled
approximation and does not include the potential impact of faults. The most sophisti-
cated models to date by Souček et al. (2016), Behounkova et al. (2017), Souček et al.
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(2019), and Sládková et al. (2021) simulate deformation using finite-element models
(FEM) of the outer ice shell with both variations in ice thickness and weak zones.
These studies do not specifically address the relationship between deformation and
𝑑𝑖𝑐𝑒 and exclude effects from a broader range of structural heterogeneities inferred
from surface geology at Enceladus including large circum-tectonic boundaries and
extensional fractures extending radially outward from the South Polar Terrain (i.e.,
chasma).

Here, we explore how estimates of 𝑑𝑖𝑐𝑒, based on analysis of diurnal tides, are
potentially impacted by structural heterogeneities within the ice crust of Enceladus.
We simulate deformation on tidally-loaded quasi-spherical shells using a FEM and
compare results from six sets of end member models of Enceladus:

1. A spherically symmetric ice shell.

2. An ice shell with variations in thickness.

3. An ice shell with faults at Tiger Stripe locations.

4. An ice shell with ‘weak zones’ (regions of reduced shear modulus) at lo-
cations corresponding to the position of additional structures inferred from
Enceladus’s geology (i.e., chasma and circum-tectonic boundaries).

5. An ice shell with both variations in thickness and faults.

6. An ice shell with faults, variations in thickness, and weak zones.

We parameterize the response of the shell by calculating Love numbers 𝑘𝑑20, 𝑘𝑑22,
𝑘𝑑2 -2 and ℎ𝑑20, ℎ𝑑22, ℎ𝑑2 -2, from deformed geometries and compare these predicted
values with those predicted from models without structural heterogeneities. We then
explore the challenge of inferring 𝑑𝑖𝑐𝑒 from Love numbers posed by the presence
of structural heterogeneities in the crust. We conclude by highlighting the potential
for analyzing diurnal tides to determine 𝑑𝑖𝑐𝑒 both for Enceladus and for other ocean
worlds.

2.3 Methods
We develop a quasi-spherical FEM of Enceladus that allows for structural hetero-
geneities in the ice shell and that can be used to predict the elastic response of
the body to diurnal tidal loads. We first build an FEM mesh that reflects desired
structural heterogeneities. We then use a modified version of the finite-element
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code PyLith (Aagaard et al., 2007) to calculate displacements on models subjected
to tidal forcing. In post-processing, we extract 𝑙 = 2 Love numbers from model
displacements. We describe each of these steps in detail below.

Model Preparation
We consider six types of models that differ in the style of structural heterogeneity
assumed: (1) a Base model without structural heterogeneities; (2) a model with large
scale faults (i.e., Faulted); (3) a model with Lateral Thickness Variations (i.e., LTV);
(4) a model with weak zones at locations coincident with major geologic structures
(i.e., WZ); (5) a combined model with faults and Lateral Thickness Variations (i.e.,
Faulted+LTV); and (6) a combined model with faults, Lateral Thickness Variations,
and weak zones (i.e., Faulted+LTV+WZ). For each model, we develop a mesh
with tetrahedral elements using the software package CUBIT (Skroch et al., 2019;
CoreForm, 2020) and refine cell size in regions which locally exhibit high strain
(e.g., near faults). Minimum and maximum cell sizes (i.e., tetrahedra cell edge
lengths) are 1 and 12 km respectively throughout the mesh. For tetrahedra along
the faults, we limit maximum cell size to 3 km and achieve a vertical resolutions as
fine as 1 - 2 km across each interface. Example snapshots of our mesh geometry are
shown in Figure 2.1. We perform a mesh convergence test to verify our choice of
element sizing parameters and to provide accurate Love number values on models
with structural heterogeneities (see supplementary section S1.3 for details).

• For the Base models, we mesh a spherical shell with a specified input thickness
𝑑𝑖𝑐𝑒. All of our models have baseline elastic parameters consistent with the
rheology of ice (Jaccard, 1976; Shaw, 1985; Neumeier, 2018). We assign
a base shear modulus value for ice of 𝐺 = 3.3 GPa and a bulk modulus of
𝜇 = 8.6 GPa (i.e., consistent with the formulation described in Souček et al.
(2016) with 𝐺 = 3.3 GPa and Poisson’s ratio 𝜈 = 0.33). For this analysis, we
ignore viscous effects since viscous strain at the forcing period relevant for
Enceladus (32.9 hours) is expected to be negligibly small (<1% of the total
shell strain (Wahr et al., 2009), see also Supplemetary Section S1.6). Short-
period elastic deformation of the core is also expected to be several orders
of magnitude smaller than shell deformation (Schubert et al., 2007). We
therefore treat the core as a rigid body and ignore any impact that deformation
of the core or related 3D mantle structures (e.g., ocean plumes driven by
hydrothermal activity at the core-ocean boundary; Choblet et al., 2017) may
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have on the response of the ice shell to eccentricity tides.

• For the Faulted models, we introduce fault surfaces that are through-going
(i.e., they extend through the full thickness of the ice shell) and are friction-
less. The explicit inclusion of fault surfaces within the FEM formulation uses
a ‘split-node’ formulation whereby we duplicate nodes along the fault plane
and introduce special cohesive cells between node sets (Melosh and Raefsky,
2009; see also Supplementary S1.1). Split-node formulations allow for robust
calculations of fault-induced deformation and self-consistent predictions of
fault slip. Our Faulted model specifically refers to a shell with four faults at the
South Pole consistent with the mapped extent of Tiger Stripes at Enceladus.
We extract the surface trace of the Tiger Stripes from existing maps of Ence-
ladus (Schenk, 2008). We assume that effective hydrostatic normal stresses
within water-filled cracks exceed extensional forces across fault geometries
(Sládková et al., 2021 cf. Equation S14). We therefore ignore any potential
impact of fault opening on deformation for Faulted models in this work (for
details, see Supplementary S1.1).

• To construct the LTV models, we apply topography, 𝐻𝑡𝑜𝑝, to the outer surface
of our base model geometry and modify the inner surface (i.e., the ice-ocean
boundary), 𝐻𝑏𝑜𝑡𝑡𝑜𝑚, assuming isostatic (Airy) compensation. Given surface
gravitational acceleration 𝑔0, outer shell ice of density 𝜌𝑖𝑐𝑒, ocean water of
density 𝜌𝑤, gravitational acceleration at the ice-ocean interface 𝑔𝑖𝑛𝑡 , mean
radius of the outer surface 𝑅0 (see Table 2.1 for chosen values of these
parameters) (Hemingway and Matsuyama, 2017), and 𝑑𝑖𝑐𝑒 we can write:

𝐻𝑏𝑜𝑡𝑡𝑜𝑚 = 𝐻𝑡𝑜𝑝
𝜌𝑖𝑐𝑒

(𝜌𝑖𝑐𝑒 − 𝜌𝑤)
𝑔0

𝑔𝑖𝑛𝑡

𝑅2
0

(𝑅0 − 𝑑𝑖𝑐𝑒)2
. (2.6)
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Table 2.1: Assumed parameter values used in Equation 2.6. Parameter values taken
from Schenk et al. (2018).

Parameter Value Units
𝜌𝑖𝑐𝑒 925 kg/m3

𝜌𝑤 1007 kg/m3

𝑔0 0.113 m/s2

𝑔𝑖𝑛𝑡 0.120 m/s2

𝑅0 252.1 km

Figure 2.1: Example snapshots of mesh geometry from Faulted models (see main
text). Left panel: South polar view of 3D mesh geometry discretized with tetrahedral
elements. We refine cell sizes in regions that are expected to exhibit high strain
upon tidal loading (in this case, near Tiger Stripes). The trace of the Tiger Stripes is
shown as black lines on the outer surface of our geometry. Right panel: Perspective
view of 2D discretization along Tiger Stripe surfaces. Inset image shows close-up
view of mesh along Tiger Stripe 1 (i.e., Alexandria Sulcus). Labels for individual
Tiger Stripes are shown in left and right panels. Cell edges are colored blue. An
approximate distance scale is shown in the right panel for reference.
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Our LTV models use topography extracted from the shape model given by
Nimmo et al. (2011) up to a maximum spherical harmonic degree 𝐿𝑚𝑎𝑥 = 8.
Our Faulted+LTV model includes both types of structural heterogeneities.

• Our WZ models incorporate 1-km wide through-going ‘weak zones’ at lo-
cations corresponding to the south polar circum-tectonic boundary, chasma,
and Tiger Stripes. Yin and Pappalardo (2015) report that extensional, com-
pressional, and shear stresses drive the formation of fractures in the circum-
tectonic boundary surrounding the SPT whereas only extensional stresses ap-
pear to form the chasma that radiate away from the SPT. Although the fracture
depth of faults observed at the circum-tectonic boundary and chasma remains
poorly constrained based on current observations (Yin and Pappalardo, 2015),
we would expect that all modes of fracture (extensional, compressional, and
shear) in a finite-width volume would result in local ‘damaged’ regions of
the ice shell which are less capable of accommodating tidally-driven stresses
(i.e., exhibit a lower shear modulus) compared to the surrounding unfractured
medium. In the most extreme feasible scenario, highly fractured regions of the
crust (i.e., with porosity 0 % - 60%; we do not expect ice porosities > 60% due
to pore compaction arising from hydrostatic confinement at depth; Durham
et al., 2005) would penetrate to depths where liquid water from the subsurface
ocean permeates the pore space of ice (Ingersoll and Nakajima, 2016). The
pore pressure of fluid within a fractured ice matrix at depth within Enceladus’s
crust is not zero (i.e., the ice-water mixture exhibits ‘undrained’ conditions;
Rovira-Navarro et al., 2022). The effective elastic bulk modulus for such a
system is similar to the bulk modulus of the solid ice phase (Rovira-Navarro
et al., 2022 cf. Equation 18c). We therefore formulate weak zones as regions
with an elastic shear modulus𝐺𝑊𝑍 reduced to negligible values ∼ 10−5𝐺 but
maintain a constant ice bulk modulus and density throughout our geometry.

Deformation driven by the presence of frictionless faults (i.e., 2D interfaces)
is distinct from that arising from crustal weak zones (i.e., finite-width 3D
volumes) in models. Water-filled fault interfaces subject to effective hydro-
static normal stresses that exceed tidally-driven stresses will resist extensional
deformation in a manner similar to that of the surrounding elastic medium
(see Supplementary section S1.1.1.4 of this chapter; Sládková et al., 2021;
Rovira-Navarro et al., 2022). By contrast, 3D volumes that contain weakened
material will exhibit less resistance to normal stresses than the surrounding
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elastic medium due to a locally reduced elastic Young’s modulus (i.e., which
is sensitive to𝐺𝑊𝑍 for our formulation for weak zones; see also Segall, 2010).
Reduced resistance to normal stresses along weak zones in WZ models should
enable deformation patterns comparable to those expected from mode-1 crack
opening (i.e., similar to the deformation produced by Tiger Stripes in Souček
et al., 2016). We do not consider the potentially distinct responses of highly
fractured areas of the ice shell to extensional and compressional tidal stresses
in this study. Our Faulted+LTV+WZ models incorporate weak zones, faults,
and lateral variations in crustal thickness. Note that Faulted+LTV+WZ mod-
els in this work incorporate both 2D interfaces and 3D weak zones at Tiger
Stripe locations.

Tidal Loading
For Enceladus, the driving potential (to the first order in eccentricity) produced by
time-dependent eccentricity tides 𝑉 (𝑟, 𝜃, 𝜙, 𝑡) at a point in a reference frame whose
origin is fixed to Enceladus’s center of mass (i.e., the (𝜃 = 90°, 𝜙 = 0°) datum lies
at the sub-Saturnian point, where 𝜃 is co-latitude and 𝜙 is longitude) is written as
a combination of radial 𝑉𝑟𝑎𝑑 (𝑟, 𝜃, 𝜙, 𝑡) and librational 𝑉𝑙𝑖𝑏 (𝑟, 𝜃, 𝜙, 𝑡) terms (Murray
and Dermott, 2000):

𝑉𝑟𝑎𝑑 (𝑟, 𝜃, 𝜙, 𝑡) = 𝑟2𝜔2𝑒 · cos(𝜔𝑡) 3
4
(P22(𝜇) cos2𝜙 − 2 P20(𝜇)) (2.7a)

𝑉𝑙𝑖𝑏 (𝑟, 𝜃, 𝜙, 𝑡) = 𝑟2𝜔2𝑒 · sin(𝜔𝑡) P22(𝜇) sin2𝜙. (2.7b)

Each term in Equation 2.7 is scaled by the factor 𝜔2𝑒, where 𝜔 = 5.307·10−5 s−1 is
Enceladus’s orbital angular velocity and 𝑒 = 0.0047 is the body’s orbital eccentricity.
Time 𝑡 = 0, 2𝜋

𝜔
corresponds to orbital periapse. 𝑃20(𝜇) and 𝑃22(𝜇) are associated

Legendre Functions with the nested function 𝜇 = cos(𝜃). We apply body forces,
ocean tractions, topographic surface traction forces, and self-gravitational forces
produced by the driving potential from Equation 2.7 and calculate displacement
fields arising from these loads. We ignore inertial forces for our analysis and obtain
solutions for displacements at mesh nodes across the full 3D spherical geometry.
We enforce zero rigid body rotations and translations for simulations (for details,
see Supplementary section 1.1 of this chapter).

We use the 3D visco-elasto-plastic FEM code PyLith (Aagaard et al., 2007). PyLith
is a well-established and extensively benchmarked tool developed in the terrestrial
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crustal dynamics community for studying tectonic processes on Earth. PyLith
allows for complex bulk rheology, various formulations for fault behavior, and
complex geometrical meshes. PyLith was originally designed for quasi-Cartesian
problems; as such we have modified it to allow for modeling full spheres in a
no-net-rotation/translation reference frame with central time-dependent body forces
appropriate for eccentricity tides. We benchmark our tidal loading formulation as
implemented in PyLith applied to our Base model against the program SatStress
(Wahr et al., 2009) (see Supplementary section S1.1-1.2 of this chapter).

Calculation of Love numbers
We post-process the resulting deformation fields to evaluate the 𝑙 = 2 diurnal Love
numbers 𝑘𝑑2𝑚 and ℎ𝑑2𝑚. The ‘diurnal’ Love numbers are distinct from ‘fluid’ Love
numbers 𝑘 𝑓2𝑚 and ℎ 𝑓2𝑚. ‘Fluid’ Love numbers are sensitive to the arrangement of a
body’s interior layers which deflect in response to long-period static tides in order
to achieve hydrostatic equilibrium (Goldreich and Mitchell, 2010). In contrast,
diurnal Love numbers depend on the elastic response of the body to short-period
eccentricity tides (see Equation 2.7) and are superimposed onto the long-period tide.
Moreover, diurnal Love numbers are usually at least an order of magnitude smaller
than fluid Love numbers (Beuthe, 2018; Hemingway and Mittal, 2019). Relative
to the fluid Love numbers, the diurnal Love numbers are less sensitive to deeper
interior structure at ocean worlds (Wahr et al., 2009).

For ℎ𝑑2𝑚, we expand the outer surface of our deformed geometry into spherical
harmonics and separately compute coefficients 𝐻2𝑚. We calculate 𝑉20, 𝑉22, and
𝑉2 -2 using the 𝑙 = 2 components of the tidal potential from Equation 2.7:

𝑉20 = −3
2
𝑟2𝜔2𝑒 · cos(𝜔𝑡) (2.8a)

𝑉22 =
3
4
𝑟2𝜔2𝑒 · cos(𝜔𝑡) (2.8b)

𝑉2 -2 = 𝑟2𝜔2𝑒 · sin(𝜔𝑡). (2.8c)

From 𝑉2𝑚, 𝐻2𝑚, and the definition of the effective Love numbers (see introduction),
we have:

ℎ𝑑2𝑚 = 𝑔0𝐻2𝑚/𝑉2𝑚 . (2.9)

Following a similar procedure for 𝑘𝑑2𝑚, we compute coefficients𝑈2𝑚 of the spherical
harmonic expansion of the induced gravitational potential field (see Equation 2.1)
associated with the deformed geometry:
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𝑘𝑑2𝑚 = 𝑈2𝑚/𝑉2𝑚 . (2.10)

As mentioned earlier, Love numbers defined in this way will depend on the time-
varying shape and amplitude of the driving potential (i.e., see Equations 2.4 and 2.8).
Thus, we expect values of 𝑘𝑑2𝑚 and ℎ𝑑2𝑚 to vary over the tidal cycle at Enceladus.
Since we aim to minimize the impact of non-spherically symmetric structure on
inferences of 𝑑𝑖𝑐𝑒, we evaluate deformation at two unique points in the tidal cycle:
𝑡 = 0 and 𝑡 = 𝜋

2𝜔 . At 𝑡 = 0 (or 𝜋
𝜔

), 𝑉2 -2 = 0 (according to Equation 2.8) which
eliminates the potential impact of the off-diagonal components 𝛾22

2 -2, 𝛾20
2 -2, 𝛾2 -2

22 , and
𝛾2 -2

20 (from Equation 2.4) on values of 𝑘𝑑20 or 𝑘𝑑22. Similarly, at 𝑡 = 𝜋
2𝜔 (or 3𝜋

2𝜔 ),
𝑉20 = 𝑉22 = 0 which eliminates the impact of all off-diagonal components on values
of 𝑘𝑑2 -2.

Ice Shell Thickness and Elastic Thickness
Mean ice shell thickness 𝑑𝑖𝑐𝑒 described in our analysis is distinct from mean elastic
thickness typically referenced in studies of plate flexure (e.g., Nimmo and Pap-
palardo, 2004; Conrad et al., 2019). Elastic thickness as inferred from flexure
studies denotes the thickness of the crust that exhibits predominantly elastic (i.e.,
non-viscous) deformation over very long timescales (e.g., topographic loading;
Mancktelow, 1999). For ocean world crusts, elastic thickness is typically a fraction
(< 70%) of the thermal thickness of the ice shell (i.e., the radial distance between
the surface and the phase boundary between the ocean and the ice shell at 273 K).
In contrast, 𝑑𝑖𝑐𝑒 is the thickness of the ice shell that deforms elastically upon cyclic
loading over diurnal timescales. Analyzing Love numbers from fully viscoelastic
ice shells that are cyclically deformed over a 32.9 hour period produces estimates of
𝑑𝑖𝑐𝑒 that are only slightly (< 0.2%) smaller than values of the thermal thickness of
the crust at Enceladus (for details, see Supplementary section S1.6 of this chapter).

Previous FEMs
Our FEMs are similar to, but distinct from, those described in the papers Souček et
al., (2016), Behounkova et al., (2017), and Sládková et al., (2021). We employ a tidal
forcing formulation which is identical to that described in Souček et al., (2016) to
generate body, ocean traction, and topographic loading forces. However, we include
the effect of self-gravitation in our models (which modifies final calculated values of
𝑘𝑑2𝑚 and ℎ𝑑2𝑚 by up to 3%; Beuthe, 2018). Souček et al., (2016) employ weak zones
(i.e., finite width regions with reduced elastic moduli) as proxies the behavior of fault
interfaces. In contrast, we adopt a split-node approach at the fault-plane to simulate
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deformation which enables straightforward calculations of fault slip. Souček et al.,
(2016), Behounkova et al., (2017), and Sládková et al., (2021) also focus on the
implications of deformation for tidal heating, while we focus here on the inference
of shell structural parameters in the presence of structural heterogeneities. Finally,
our models additionally consider the effect of fault zones beyond the Tiger Stripes
and thereby identify the extent to which other major structural heterogeneities (e.g.,
chasma and circum-tectonic boundaries) may affect diurnal deformation patterns at
Enceladus.

The most significant difference between models by Souček et al., (2016) Behounkova
et al., (2017), and Sládková et al., (2021) and those described in this work relates to
respective formulations for weak zones. Souček et al., (2016) and Behounkova et
al., (2017) reduce shear modulus to effectively negligible values while maintaining
a constant Poisson’s ratio within damaged regions. Such a formulation results in
negligibly small values for weak zone bulk modulus. FEMs in Sládková et al.,
(2021) maintain constant weak zone elastic parameters but reduce viscosity within
a finite-width volume to mimic static Coulomb friction along Tiger Stripes. Note
that for zero static friction, the behavior of the Tiger Stripes in models by Sládková
et al., (2021) approaches the behavior of weak zones in Souček et al., (2016) and
Behounkova et al., (2017). The elastic moduli for weak zone formulations by Souček
et al., (2016) and Behounkova et al., (2017) are consistent with those expected for
a ‘drained’ two-phase system (Rovira-Navarro et al., 2022 cf. Equation 18b). We
expect that ‘undrained’ conditions exist for ice-water mixtures subject to hydrostatic
pressures at depth (Rovira-Navarro et al., 2022; Sládková et al., 2021). We therefore
choose to maintain a constant bulk modulus in weak zones for this work (see previous
discussion in section 2.1 for WZ models). Note that we are able to broadly reproduce
the results of Souček et al., (2016) by employing weak zones only at Tiger Stripe
locations and reducing both bulk and shear modulus to effectively negligible values
in Supplementary S1.2.

2.4 Results
Figures 2.2 and 2.3 show snapshots of the radial displacement fields from each of
the six model classes. The upper panels show absolute displacements on our Base
model whereas the subsequent panels show the radial displacement fields for models
incorporating structural heterogeneities relative to our Base model. Not surprisingly,
there is a substantial increase in localized deformation near zones of structural
heterogeneities (i.e., broadly consistent with model results from Souček et al.,2016;
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Behounkova et al., 2017; and Sládková et al., 2021). For the LTV model, we find that
the highest increases in displacement values occur near the South Pole where the ice
shell is thinnest. In the Faulted model, radial displacements are maximum near fault
tips (also at the South Pole). In our WZ and Faulted+LTV+WZ model, localized
radial deformation is partitioned between the Tiger Stripes, chasma, and circum-
tectonic boundaries in a complex manner with further increases in displacement near
the Tiger Stripes due to extensional and shear strain localization along weak zones.
Note that the addition of lateral variations in crustal thickness alters the geometry of
weak zones in Faulted+LTV+WZ models relative to those in WZ models resulting in
distinct displacement fields produced by weak zones in either case. Long-wavelength
increases in displacement amplify values of the Love numbers for all models that
incorporate structural heterogeneities. Moreover, surface deformation at this scale
does not follow the pattern of the disturbing potential from Equation 4.3. This
difference causes values of 𝑘𝑑20, 𝑘𝑑22, and 𝑘𝑑2 -2 (or ℎ𝑑20, ℎ𝑑22, and ℎ𝑑2 -2) to diverge from
each other (i.e., ‘order-splitting’).

Figure 2.4 shows additional snapshots of fault slip along the Tiger Stripes as eval-
uated by our Faulted model and crustal thickness variations in our LTV model.
Displacements surrounding the South Pole in the Faulted model follow a double-
couple pattern (i.e., a symmetric pattern of alternating maximal and minimal radial
displacement around the fault tips; Segall, 2010) consistent with left-lateral strike-
slip motion observed along the Tiger Stripes in Figure 2.4. Regional thinning at
the North and South Poles in our LTV model also drives quadrupole displacement
patterns across Northern and Southern hemispheres. However, the higher amplitude
and greater regional extent of crustal thinning at the SPT (i.e., compared to that near
the North Pole) results in relatively higher radial displacements over the Southern
Hemisphere in LTV models.

Our Faulted, Faulted+LTV, WZ, and Faulted+LTV+WZ models predict significantly
lower localized displacement along the length of the Tiger Stripes (i.e.,∼ 20 cm) than
do FEMs by Souček et al. (2016) and Behounkova et al. (2017) (∼ 1-7 m). In the case
of Faulted and Faulted+LTV models, the effect of clamping opening and closing
motion across fault structures (see Supplementary section S1.1 of this chapter) sup-
presses mode-1 deformation surrounding Tiger Stripes (Segall, 2010). In contrast,
reducing the shear modulus along weak zones in WZ and Faulted+LTV+WZ models
produces discontinuities in radial displacement across the Tiger Stripes similar to
those produced by mode-1 crack opening displacement (Segall, 2010). However, the
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inclusion of a non-zero bulk modulus in weak zones for WZ and Faulted+LTV+WZ
models reduces the magnitude of extensional and compressional strain over the Tiger
Stripes as compared to the predicted impact of weak zones in FEMs by Souček et al.,
(2016) (see sections 2.1 and 2.5 of the methods for details).

Results for 𝑘𝑑20, ℎ𝑑20, 𝑘𝑑2 -2. and ℎ𝑑2 -2 from each model category are shown in Fig-
ure 2.5. Results similar to those shown in Figure 2.5 illustrating the behavior of 𝑘𝑑22
and ℎ𝑑22 are also shown in Figure 2.6. Note that non-spherically symmetric models
have enhanced values of Love numbers across all 𝑑𝑖𝑐𝑒 values consistent with the
amplification of deformation shown in models with structural heterogeneities (see
Figures 2.2 and 2.3). Love number results in Figures 2.5 and 2.6 imply that infer-
ences of elastic structure which assume Enceladus is spherically symmetric (i.e., the
Base model) will underestimate 𝑑𝑖𝑐𝑒 if structural heterogeneities are present in the
crust. To evaluate this model error, Δ%𝑑𝑖𝑐𝑒, we determine the percentage difference
between 𝑑𝑖𝑐𝑒 assigned to the Base models and the mean thickness of selected models
with heterogeneities (i.e., 𝑑𝐻𝑒𝑡

𝑖𝑐𝑒
) which each produce the same value of ℎ𝑑2𝑚 or 𝑘𝑑2𝑚:

Δ%𝑑𝑖𝑐𝑒 =
𝑑𝐻𝑒𝑡
𝑖𝑐𝑒

− 𝑑𝑖𝑐𝑒
𝑑𝑖𝑐𝑒

· 100%. (2.11)

Figures 2.5 and 2.6 show Δ%𝑑𝑖𝑐𝑒 for each model category with structural hetero-
geneities. Results demonstrate that Tiger Stripes in the Faulted models minimally
(< 3%) impact values of Δ%𝑑𝑖𝑐𝑒. By contrast, weak zones and variations in crustal
thickness (in WZ and LTV models) bias inferences of 𝑑𝑖𝑐𝑒 from Love numbers by
up to ∼ 18% and ∼ 20% respectively. The most extreme case (Faulted+LTV+WZ
models) yields values of Δ%𝑑𝑖𝑐𝑒 as high as ∼ 41%. Small differences between the
shape of ℎ𝑑2𝑚 or 𝑘𝑑2𝑚 curves (and Δ%𝑑𝑖𝑐𝑒 curves evaluated from ℎ𝑑2𝑚 or 𝑘𝑑2𝑚) arise
from slight differences in radial displacement patterns at the outer surface and the
ice-ocean boundary across models.

Note the distinct values of 𝑘𝑑22 and ℎ𝑑22 compared to 𝑘𝑑20 and ℎ𝑑20 or 𝑘𝑑2 -2 and ℎ𝑑2 -2
(i.e., ‘order-splitting’) in models with structural heterogeneities in Figures 2.5 and
2.6. To directly quantify the impact of structural heterogeneities on order-splitting,
we additionally plot values of 𝑘𝑑22/𝑘𝑑20 and ℎ𝑑22/ℎ𝑑20 vs. 𝑑𝑖𝑐𝑒 in Figure 2.6. We track
𝑘𝑑22/𝑘

𝑑
20 and ℎ𝑑22/ℎ𝑑20 since these quantities implicitly account for the baseline impact

of 𝑑𝑖𝑐𝑒 on Love numbers and are especially sensitive to the presence of structural
heterogeneities near the South Pole of Enceladus (see discussion).
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Figure 2.2: Snapshots of radial displacement from each model class viewed facing
the South Pole (SP, left column) and the sub-Saturnian point (SS, right column)
evaluated at 𝑡 = 0 (periapse). The top row shows the radial displacement in the
Base model due to tidal forcing. The remaining rows present the differences in
radial displacement between models with structural heterogeneities and the Base
model. Each model shown assumes 𝑑𝑖𝑐𝑒 = 25 km. Tiger Stripes, the south polar
circum-tectonic boundary (CTB), and chasma are labelled. Figure 2.3 shows the
same models at a different time in Enceladus’s orbit. To view model results for
horizontal displacements at 𝑡 = 0, refer to Supplementary section S1.7.
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Figure 2.3: Snapshots of radial displacement from each model class viewed facing
the South Pole (SP, left column) and the sub-Saturnian point (SS, right column)
evaluated at 𝑡 = 𝜋

2𝜔 . The top row shows the radial displacement in the Base model
due to tidal forcing. The remaining rows present the differences in radial displace-
ment between models with structural heterogeneities and the Base model. Each
model shown assumes 𝑑𝑖𝑐𝑒 = 25 km. Tiger Stripes, the south polar circum-tectonic
boundary (CTB), and chasma are labelled. Figure 2.2 shows the same models at a
different time in Enceladus’s orbit.
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Figure 2.4: Snapshots of slip along the Tiger Stripes and regional thinning respec-
tively corresponding to deformation shown in Faulted (top row) and LTV (center
and bottom rows) models in Figure 2.2. The upper left image shows a perspective
view of fault slip on the Tiger Stripes, where negative (blue) values indicate left-
lateral slip. The upper right shows a south polar projection (where 0° corresponds to
the sub-Saturnian longitude), with fault locations overlaid on radial displacements
(this is rescaled from the third row of Figure 2.2). The center and bottom rows
respectively show images of polar projections showing crustal thickness variations
(left) and radial displacements (right) evaluated from the LTV model (i.e., rescaled
from the second row of Figure 2.2) in the Northern and Southern Hemispheres.
Local thickness values are plotted in log10 scale. Each model shown assumes 𝑑𝑖𝑐𝑒
= 25 km and is evaluated at 𝑡 = 0 (periapse). South and North Poles marked for
reference. Longitude labels denote degrees East of the sub-Saturnian point. See
Supplementary Figure 2.14 or an additional plot of crustal thickness variations used
for LTV models.
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Figure 2.5: The relationship between deformation and mean ice shell thickness,
𝑑𝑖𝑐𝑒. First row: ℎ𝑑20 and 𝑘𝑑20 vs. 𝑑𝑖𝑐𝑒 for Base models (black lines), LTV models
(blue lines), Faulted models (red lines), Faulted+LTV models (green lines), and
Faulted+LTV+WZ (purple lines). We plot both axes in log10 scale and generate
curves by evaluating ℎ𝑑20 and 𝑘𝑑20 at 𝑡=0 (periapse) for 40 equally spaced 𝑑𝑖𝑐𝑒 values
between 15 and 30 km. Second row: Percentage range of 𝑑𝑖𝑐𝑒 values corresponding
to a fixed Love number values for each model category relative to the Base model.
Curves in these plots are generated by evaluating Δ%𝑑𝑖𝑐𝑒 from Equation 2.11. X-
axes are plotted in log10 scale. Third and Fourth Rows: similar to first and second
rows (respectively) but for ℎ𝑑2 -2 and 𝑘𝑑2 -2 evaluated at 𝑡 = 𝜋

2𝜔 .
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Figure 2.6: First row: Similar to first row of Figure 2.5 but for ℎ𝑑22 and 𝑘𝑑22 instead
of ℎ𝑑20 and 𝑘𝑑20. Second row: Similar to second row of Figure 2.5 for ℎ𝑑22 and 𝑘𝑑22
instead of ℎ𝑑20 and 𝑘𝑑20. Third Row: ‘order-splitting’ associated with 𝑙 = 2 Love
numbers. We evaluate 𝑘𝑑22 and ℎ𝑑22 or 𝑘𝑑20 and ℎ𝑑20 at 𝑡=0 (periapse) for 40 equally
spaced 𝑑𝑖𝑐𝑒 values between 15 and 30 km to compute 𝑘𝑑22/𝑘𝑑20 and ℎ𝑑22/ℎ𝑑20. X-axes
are plotted in log10 scale.
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2.5 Discussion
We explore the dependence of diurnal Love number values on the presence of
structural heterogeneities and 𝑑𝑖𝑐𝑒 at Enceladus. Of the simplified structural hetero-
geneities considered, weak zones appear to have the most significant impact on the
diurnal response of the ice shell to tides across the range of possible 𝑑𝑖𝑐𝑒 (15–30
km) at Enceladus. The large spatial extent of the weak zones (i.e., 200–500 km
in length or comparable to the radial length scale of Enceladus) and capacity to
accommodate both additional normal- and shear-strain drives higher Love number
values than those produced from the presence of variations in the thickness of the
crust and faults in isolation. We find that for cases with less pronounced weak zones
(i.e., where 𝐺𝑊𝑍/𝐺 > 10−5), the amplification of deformation drops dramatically
(see Supplementary section S1.4 of this chapter for details). These findings are con-
sistent with results from Souček et al. (2016) and Behounkova et al. (2017) despite
differences in the implementation of weak zones between the respective models (see
section 2.4).

The diurnal response of Enceladus to eccentricity tides is also highly sensitive to
variations in the thickness of the ice crust. LTV models show deviation in inferred
𝑑𝑖𝑐𝑒 values relative to Base models of up to 20%. The amplification of deformation
in thinned regions (see Figures 2.2 and 2.4) is highly dependent on 𝑑𝑖𝑐𝑒. As 𝑑𝑖𝑐𝑒
approaches 15 km, ice shell thickness approaches zero locally and strain increases
rapidly near the South Pole. The resulting enhanced deformation drives the observed
large increase in Love numbers at 𝑑𝑖𝑐𝑒 < 20 km (Figure 2.5 and 2.6).

As implemented here, faults have less impact on long-wavelength deformation than
do variations in the thickness of the ice crust or weak zones. Fault structures
in isolation bias inferred 𝑑𝑖𝑐𝑒 values from diurnal Love number values by up to
3%—rather insignificant. This observation follows from Figures 2.2 and 2.4 which
shows that fault-induced deformation creates a strong double-couple deformation
pattern as expected from slip on Tiger Stripes. Slip-induced deformation produces
substantial radial displacement at scales comparable to the size of associated faults
but reduced displacement at longer wavelengths. As such, for the Tiger Stripes
along-fault slip only modestly increases diurnal Love number values. Moreover, we
expect the influence of Tiger Stripe slip on diurnal Love number values to decrease
as maximum principal stresses rotate around the South Pole and fault slip decreases
(see Figure 2.3).

We find significant order-splitting (i.e., 𝑘𝑑22/𝑘𝑑20 ≠ 1 and ℎ𝑑22/ℎ𝑑20 ≠ 1) in models
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with structural heterogeneities. Moreover, Figures 2.2 and 2.6 suggest 𝑘𝑑22/𝑘
𝑑
20 and

ℎ𝑑22/ℎ
𝑑
20 are highly sensitive to the scale of non-spherically symmetric structure near

the South Pole. For LTV models, radial displacement patterns exhibit strong, long-
wavelength quadrupole symmetry about the South Pole (i.e., generating an 𝑚 = 2
pattern) causing larger values of 𝑘𝑑22/𝑘𝑑20 and ℎ𝑑22/ℎ𝑑20. In contrast, slip along Tiger
Stripe faults produces shorter-wavelength quadrupole deformation resulting in rela-
tively smaller values of 𝑘𝑑22/𝑘𝑑20 and ℎ𝑑22/𝑘𝑑20. In Faulted+LTV models, slip-induced
short wavelength deformation dominantly accommodates strain when 𝑑𝑖𝑐𝑒 >25 km
(i.e., resulting in 𝑘𝑑22/𝑘𝑑20 values trending towards 1, whereas at smaller values of
𝑑𝑖𝑐𝑒, the effect of LTVs dominate such that 𝑘𝑑22/𝑘𝑑20 and ℎ𝑑22/ℎ𝑑20 >> 1). Weak zones
combined with lateral variations in thickness (i.e., in Faulted+LTV+WZ models)
produce the highest levels of quasi-quadrupole deformation near the South Pole and
so drive the largest values of 𝑘𝑑22/𝑘𝑑20 and ℎ𝑑22/ℎ𝑑20 (up to ∼ 1.35 or 35%).

The non degree-2 deformation patterns visible for our range of models (see Figures
2.2 - 2.4) imply that significant mode coupling occurs when structural heterogeneities
are present in the crust of Enceladus (see Introduction; Qin et al., 2014; Zhong et al.,
2021; Lau et al., 2015). Consistent with Love number results in Figures 2.5 - 2.6,
we find that the lateral extent of structural heterogeneities scales with the spatial
wavelength of non degree-2 deformation (see Supplementary section S1.5 of this
chapter for details). We expect that spatial variations in the rheological properties
along faults or weak zones (e.g., changes in the shear modulus, the coefficient of
static friction) complicate inferences of 𝑑𝑖𝑐𝑒 from non-degree 2 tidal deformation
produced by these structures. However, the impact of lateral variations in crustal
thickness on displacement fields (e.g., Love numbers and mode coupling) is more
uniquely sensitive to 𝑑𝑖𝑐𝑒 at Enceladus (see previous discussion and Figures 2.5 and
2.6). Inferring both 𝑑𝑖𝑐𝑒 and lateral variations in crustal thickness from deformation
evaluated across multiple spatial wavelengths is therefore a compelling topic for
future research, but is beyond the scope of the current work.

The predicted amplitude of tidally-driven radial surface displacements falls within a
readily measurable range at Enceladus. Figures 2.2, 2.3, 2.5, and 2.6 show that the
maximum amplitude of the time-variable component of radial surface displacement
is approximately 50 – 150 cm, with differences of 5 – 20 cm between models. The
maximal values for the time-variable components of horizontal displacement also
differ between models, with a range of 15 – 20 cm relative to background values
of about 5 – 10 cm near the South Pole (see Supplementary section S1.7 of this



34

chapter). These values are substantially larger than the demonstrated sensitivity
of Interferometric Synthetic Apreture Radar (InSAR) to measurements of ground
displacement (e.g., Simons and Rosen, 2015). Moreover, radial surface displace-
ments of 5 – 20 cm can induce 2 – 80 𝜇Gal time-variable gravity anomalies which
is greater than the expected detection limit of gravity measurements acquired from
line-of-sight tracking between multiple orbiting spacecraft (e.g., Ramillien et al.,
2004 and Dai et al., 2016). An orbiting spacecraft capable of repeated geodetic
measurements over several months could gather snapshots of gravity and the radial
position of the surface at multiple points over Enceladus. This data could be an-
alyzed to create a quasi-continuous time-series of geodetic signals over the body,
enabling computation of ℎ𝑑2𝑚 and 𝑘𝑑2𝑚. Therefore, a dedicated geodetic mission to
Enceladus could be envisioned to acquire the necessary measurements for analyzing
diurnal tides as discussed in this work.

We ignore the potential impact of lateral variations in elastic moduli on tidal defor-
mation. However, the elastic shear modulus of ice in Enceladus’s crust is sensitive
to the ∼ 40◦K elevated temperature over the SPT (Howett et al., 2010). A ∼ 40 K
temperature variation corresponds to a change in ice shear modulus of about 2 - 3%
(Proctor, 1966; Neumeier, 2018). For comparison, variations in crustal thickness
of up to 100% of 𝑑𝑖𝑐𝑒 near the SPT in LTV model alters Love numbers by up to ∼
20% (see Figures 2.5 - 2.6). The impact of variations in elastic shear modulus on
Love numbers is similar to that corresponding to the presence of lateral variations
in crustal thickness (Wahr et al., 2006 cf. Equation 4-9). We therefore expect
that variations in shear modulus of 2 - 3% over the SPT induce ∼ 0.1 - 0.2% (i.e.,
essentially negligible) differences in Love number values for Enceladus.

We assume a density structure for the crust and ocean (see Table 2.1), however
the ocean density, 𝜌𝑤, is particularly uncertain. This uncertainty biases inferred
values of 𝑑𝑖𝑐𝑒 derived from diurnal Love numbers since 𝜌𝑤 scales the restoring force
at the ice-ocean interface (see section 2.2 and Supplementary section S1.1 of this
chapter). Uncertainties in estimates of 𝜌𝑤 are approximately 5% (i.e., 𝜌𝑤 = 1000–
1050 kg/m3; Čadek et al., 2016) and thus uncertainty in 𝜌𝑤 can modify diurnal
Love numbers by up to 4%. Propagated uncertainty from imprecise estimates of
𝜌𝑤 is therefore slightly larger than model uncertainty associated with the presence
of Tiger Stripes (3%) but substantially smaller than that produced from neglecting
the potential influence of weak zones or variations in ice shell thickness. Moreover,
changing the input value of 𝜌𝑤 should not produce order-splitting and so does not
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alter inferences of short-wavelength shell structure from comparisons of diurnal
Love numbers.

Spherically symmetric (i.e., 1D) models for tidal deformation can adequately de-
scribe the relationship between Love numbers and 𝑑𝑖𝑐𝑒 for many ocean worlds (Wahr
et al., 2006). For example, Europa and Ganymede exhibit relatively small ampli-
tudes of lateral variations in crustal thickness (∼ a few km) compared to likely mean
thickness values > 20 km (McKinnon and Melosh, 1980; Howell, 2021). These
two worlds also lack discernible large-scale fault structures or weak zones (Hoppa
et al., 2000; McKinnon and Melosh, 1980; Cameron et al., 2019). As such, the use
of 3D models to improve estimates of 𝑑𝑖𝑐𝑒 is not necessary for these bodies since
the inherent uncertainty posed by imperfect estimates of bulk structure (e.g., ocean
density, Nimmo et al., 2007) is likely to outweigh that arising from the presence
of structural heterogeneities. In contrast, structural heterogeneities at Enceladus
drive a ∼20-40% change in Love numbers which is much greater than the previously
discussed < 5% uncertainty posed by the impact of uncertainty in ocean density
or elastic moduli (Howett et al., 2010; Čadek et al., 2016). Thus, 3D models are
crucial for using tidal deformation to characterize 𝑑𝑖𝑐𝑒 at Enceladus.

2.6 Conclusion
We evaluate the relationship between mean ice shell thickness, 𝑑𝑖𝑐𝑒, and diurnal
Love numbers for a range of shell models with structural heterogeneities. We find
that structural heterogeneities at Enceladus broaden the range of possible 𝑑𝑖𝑐𝑒 values
corresponding to a measured Love number by about 41% in the most extreme case.
The maximal range of plausible 𝑑𝑖𝑐𝑒 values increases less than 30% for 𝑑𝑖𝑐𝑒 values
above 20 km (likely values of 𝑑𝑖𝑐𝑒 at Enceladus are between 21–26 km; Thomas
et al., 2016). Moreover, if weak zones are not present then the range of plausible 𝑑𝑖𝑐𝑒
values further reduces to less than ∼ 20%. As such, we demonstrate that analysis of
diurnal tides could serve as a useful tool for characterizing interior structure from
future geodetic investigations at Enceladus.

2.7 Open Research
The data used in this study were generated using the software package PyLith
(Aagaard et al., 2007; Aagaard et al., 2022). PyLith is an open-source finite element
code for modeling geodynamic processes and is available on GitHub and Zenodo
repositories (Aagaard et al., 2022). The specific PyLith version used in this study
was v2.2.2. PyLith input files, post-processing scripts, and selected output files for
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this work are available on (Berne et al., 2023). The mesh geometries utilized in this
study were created using CUBIT (v15.2), a node-locked licensed software which is
available through the developer Sandia National Laboratories (Skroch et al., 2019;
CoreForm, 2020).
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2.9 Supplementary Information
S1

In S1, we describe the governing equations for our tidal loading boundary value
problem and our solution method (1.1), benchmark our solutions against analytic
and numerical tidal loading models (1.2), and verify that results on models with
heterogeneities are not subject to inaccuracy due to our choice of mesh sizing
parameters (1.3) or our choice of weak-zone elastic moduli (1.4). We also investigate
the extent that structural heterogeneities that induce non degree-2 harmonics in radial
displacement fields (1.5), examine whether the mean ice thickness tracked in this
study (i.e., 𝑑𝑖𝑐𝑒) approximates the thermal thickness of Enceladus’s ice shell (1.6),
and illustrate the impact of structural heterogeneities on horizontal displacements at
Enceladus (1.7).

1.1 Governing Equations

1.1.1.1 Strong Form of the Equation of Motion

Following Aagaard et al. (2007), we formulate and solve a boundary value problem
appropriate for tidal loading. We start by defining the strong form of the quasi-static
equation of motion for a geometry with fault surfaces:

𝜎𝑖 𝑗 , 𝑗 + 𝑓𝑖 = 0 in 𝑊 (2.12a)

𝜎𝑖 𝑗𝑛 𝑗 = 𝑇𝑖 on 𝑆, (2.12b)

where 𝑖 describe cartesian directions 𝑖 for a body subject to stresses 𝜎𝑖 𝑗 and specific
forces 𝑓𝑖 over the volume 𝑊 and 𝑇𝑖 describes tractions on all surfaces 𝑆. We
subdivide 𝑆 into the surface at the outer domain boundary 𝑆0, the surface at the
inner (i.e., ice-ocean) domain boundary 𝑆𝑖𝑛𝑡 , and surfaces corresponding to fault
interfaces 𝑆 𝑓 of our geometry.

1.1.1.2 Constitutive Relation for Elasticity

We write a constitutive relation for elasticity (i.e., Hooke’s law) using the rank-4
stiffness tensor𝐶𝑖 𝑗 𝑘𝑙 to map displacements 𝑢𝑘𝑙 to stresses 𝜎𝑖 𝑗 . We assign parameters
in𝐶𝑖 𝑗 𝑘𝑙 that are appropriate for linear isotropic material with a shear modulus𝐺 and
bulk modulus 𝜇 (see Table 2.3 of the main text; the symbol denotes derivative with
respect to a direction):

𝜎𝑖 𝑗 = 𝐶𝑖 𝑗 𝑘𝑙 (𝑢𝑘 ′𝑙 + 𝑢𝑙′𝑘 ). (2.13)
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1.1.1.3 Tidal Loading

Building on the procedure of Souček et al. (2016) (see S1), we formulate three com-
ponents of tidal loading: ‘body’, ‘ocean’, and ‘topographic’ forces. We additionally
treat a fourth ‘self-gravitational’ force for this work. As per Newton’s second law,
the body force 𝑓 𝑏

𝑖
arising from diurnal tides is the gradient of the driving potential

(i.e, see Equation 2.7 of the main text) scaled by ice density 𝜌𝑖𝑐𝑒 (e𝑖 denotes the unit
vector parallel to the evaluated direction):

𝑓 𝑏𝑖 = 𝜌𝑖𝑐𝑒∇𝑉 · e𝑖 . (2.14)

The ocean force is a traction 𝑇𝑜
𝑖

on 𝑆𝑖𝑛𝑡 which scales the driving potential 𝑉 with
ocean density 𝜌𝑤 (e𝑠 denotes the unit vector perpendicular to the surface of the
geometry):

𝑇𝑜𝑖 = 𝜌𝑤𝑉 (e𝑠 · e𝑖) on 𝑆𝑖𝑛𝑡 . (2.15)

The topographic force arises from the traction induced by deformation at the bound-
aries of the domain (see Equation S5 in Souček et al., 2016). We form the topo-
graphic force by generating tractions on 𝑆0 (i.e., 𝑇 𝑡,0

𝑖
) and 𝑆𝑖𝑛𝑡 (i.e., 𝑇 𝑡,𝑖𝑛𝑡

𝑖
). For small

displacements, we can write 𝑇 𝑡,𝑖𝑛𝑡
𝑖

and 𝑇 𝑡,0
𝑖

as a function of radial displacements at
domain boundaries (i.e., 𝑢𝑖 (e𝑖 · e𝑠)), 𝜌𝑖𝑐𝑒, 𝜌𝑤, and gravitational acceleration at the
inner and outer surfaces 𝑔𝑖𝑛𝑡 and 𝑔0 (see Table 2.3 in the main text):

𝑇
𝑡,0
𝑖

= 𝑢𝑖 (e𝑖 · e𝑠)𝜌𝑖𝑐𝑒𝑔0(e𝑠 · e𝑖) on 𝑆0 (2.16a)

𝑇
𝑡,𝑖𝑛𝑡
𝑖

= 𝑢𝑖 (e𝑖 · e𝑠) (𝜌𝑖𝑐𝑒 − 𝜌𝑤)𝑔𝑖𝑛𝑡 (e𝑠 · e𝑖) on 𝑆𝑖𝑛𝑡 . (2.16b)

For the self-gravitational force, we evaluate a body force 𝑓
𝑠𝑔

𝑖
and a traction at the

inner surface 𝑇 𝑠𝑔
𝑖

:

𝑓
𝑠𝑔

𝑖
= 𝜌𝑖𝑐𝑒∇𝑉𝑠𝑔 · e𝑖 (2.17a)

𝑇
𝑠𝑔

𝑖
= 𝜌𝑤𝑉𝑠𝑔 (e𝑖 · e𝑠) on 𝑆𝑖𝑛𝑡 , (2.17b)

where 𝑉𝑠𝑔 is a gravitational potential arising from deformation (i.e., mass move-
ment) at the boundaries of the domain. To compute 𝑉 𝑠𝑔, we combine solutions to
the Poisson’s equation (i.e., potentials) arising from boundary displacements (i.e.,
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𝑉
𝑠𝑔

𝑖𝑛𝑡
and𝑉 𝑠𝑔0 ) that are expanded into spherical harmonics (i.e., via the linear transfor-

mation 𝐻𝑞𝑤 where 𝑞 and 𝑤 are spherical harmonic degree and order). We evaluate
potentials at radial locations 𝑟. G is the universal gravitational constant (i.e., as
discussed in Hemingway and Mittal (2019) cf. Equation 4). We ignore effects due
to the changes in density on 𝑉 𝑠𝑔:

𝑉 𝑠𝑔 = 𝑉
𝑠𝑔

𝑖𝑛𝑡
+𝑉 𝑠𝑔0 (2.18)

𝑉
𝑠𝑔

𝑖𝑛𝑡
=

∑︁
𝑙

∑︁
𝑘

4𝜋G𝑟
2𝑙 + 1

(𝜌𝑤 − 𝜌𝑖𝑐𝑒)
(𝑅0

𝑟

) 𝑙+2
𝐻𝑞𝑤𝑢𝑖 (e𝑖 · e𝑠) on 𝑆𝑖𝑛𝑡 (2.19a)

𝑉
𝑠𝑔

0 =
∑︁
𝑙

∑︁
𝑘

4𝜋G𝑟
2𝑙 + 1

𝜌𝑖𝑐𝑒
( 𝑟

𝑅0 − 𝑑𝑖𝑐𝑒
) 𝑙−1

𝐻𝑞𝑤𝑢𝑖 (e𝑖 · e𝑠) on 𝑆0. (2.19b)

1.1.1.4 Fault Displacement

To consider the impact of frictionless faults in the crust (e.g., Tiger Stripes) on de-
formation, we assume that fault surfaces within our geometry 𝑆 𝑓 are tractioless (i.e.,
dislocations fully cancel tidally-driven tractions along the fault plane). Following
the formulation described in Segall, 2010 (Chapter 1), we relate displacements on
either end of a fault surface (i.e., 𝑢+

𝑖
and 𝑢−

𝑖
) to tractions 𝑇 𝑓

𝑖
over 𝑆 𝑓 according to:

𝑇
𝑓

𝑖
= 𝐶𝑖 𝑗 𝑘𝑙𝑀𝑘𝑙𝑖 (𝑢+𝑖 − 𝑢−𝑖 ) · e𝑖 on 𝑆 𝑓 , (2.20)

where 𝑀𝑘𝑙𝑖 is a rank-3 tensor containing linear Green’s functions relating slip to
co-local strains along a fault plane in a 3D elastic medium (Segall, 2010). For this
work, we ignore deformation arising from mode-1 crack displacement (i.e., fault
opening or penetration, Aagaard et al., 2007). As such, we apply an additional
constraint to ’clamp’ motion normal to fault surfaces:

(𝑢+𝑖 − 𝑢−𝑖 ) · e𝑠 = 0 on 𝑆 𝑓 . (2.21)

We assume ‘clamped’ fault surfaces based on the expectation that the magnitude
of tidally-driven elastic stresses within Enceladus’s ice shell (tens of kPa) is much
smaller than the magnitude of hydrostatic normal stresses across the fault plane (a
few MPa). We compute fault slip 𝑑𝑠 by applying a rotation matrix 𝑅𝑠𝑖 to transform
vectors 𝑢+

𝑖
and 𝑢−

𝑖
from the global cartesian coordinate system to a local fault

coordinate system:
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𝑑𝑠 = 𝑅𝑠𝑖 (𝑢+𝑖 − 𝑢−𝑖 ) on 𝑆 𝑓 . (2.22)

1.1.2 Numerical Approximation and Solution Method

1.1.2.1 Weak Form of Equation of Motion

We construct the weak form of the quasi-static equation of motion by dotting the
strong form of the equation of motion (Equation 2.12) with a weighting function 𝜙𝑖:∫

𝑊

(𝜎𝑖 𝑗 , 𝑗 + 𝑓𝑖) 𝜙𝑖 𝑑𝑊 = 0. (2.23)

1.1.2.2 Galerkin Approach

Following the Galerkin approach, we formulate our weighting function 𝜙𝑖 as an
n-dimensional combination of linear basis (i.e., shape) functions 𝑁𝑛 scaled by
coefficients 𝑐𝑛

𝑖
. We also formulate our trial solution (i.e., for displacement 𝑢𝑖) as an

m-dimensional combination of linear basis functions 𝑁𝑚 scaled by coefficients 𝑎𝑚
𝑖

:

𝜙𝑖 =
∑︁
𝑛

𝑐𝑛𝑖 𝑁
𝑛 (2.24a)

𝑢𝑖 =
∑︁
𝑚

𝑎𝑚𝑖 𝑁
𝑚 . (2.24b)

1.1.2.3 Assembly of Jacobian

Considering the divergence theorem for stresses in𝑊 , substituting our formulation
for the weighting function (Equation 2.24), and recognizing that the equation of
motion’s weak form is equivalent to the strong form for arbitrary weighting function
coefficients 𝑐𝑛

𝑖
allows us to rewrite Equation 2.23 as:

−
∫
𝑊

𝜎𝑖 𝑗𝑁
𝑛
, 𝑗𝑑𝑊 +

∫
𝑆

𝑇𝑖𝑁
𝑛𝑑𝑆 +

∫
𝑊

𝑓𝑖𝑁
𝑛𝑑𝑊 = 0. (2.25)

We substitute forces, stresses, and tractions from the constitutive relation (Equation
4.2), our tidal loading formulation (Equations 2.14, 2.15, 2.16, and 2.17), and our
numerical treatment of fault surfaces (Equations 2.20 and 2.22) into Equation 2.25
to formulate a Jacobian 𝐴𝑛𝑚

𝑖 𝑗
. 𝐴𝑛𝑚

𝑖 𝑗
is a superposition of tensors integrated over

our domain volume
𝑊
𝐴𝑛𝑚
𝑖 𝑗

, outer surface
𝑆0
𝐴𝑛𝑚
𝑖 𝑗

, inner surface
𝑆𝑖𝑛𝑡
𝐴𝑛𝑚
𝑖 𝑗

, and fault
sufraces

𝑆 𝑓

𝐴𝑛𝑚
𝑖 𝑗

. We replace the linear transformation 𝐻𝑞𝑤 and the radial position
of the domain 𝑟 with the rank-4 tensor 𝐻𝑙𝑘𝑛𝑚 and the radial position of nodes 𝑟𝑛

respectively:
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𝐴𝑛𝑚𝑖 𝑗 =
𝑊
𝐴𝑛𝑚𝑖 𝑗 +

𝑆0
𝐴𝑛𝑚𝑖 𝑗 +

𝑆𝑖𝑛𝑡
𝐴𝑛𝑚𝑖 𝑗 +

𝑆 𝑓
𝐴𝑛𝑚𝑖 𝑗 (2.26)

𝑊
𝐴𝑛𝑚𝑖 𝑗 =

∫
𝑉

(1
4
𝐶𝑖 𝑗𝑞𝑤 (𝑁𝑚,𝑤 + 𝑁𝑚,𝑞) (𝑁𝑛, 𝑗 + 𝑁𝑛,𝑖 ) + (𝜌𝑖𝑐𝑒∇(

∑︁
𝑙

∑︁
𝑘

4𝜋G𝑟𝑛
2𝑙 + 1

((𝜌𝑤 − 𝜌𝑖𝑐𝑒)

𝐻𝑙𝑘𝑛𝑚 (e𝑖 · e𝑠)
(𝑅0

𝑟𝑛

) 𝑙+2 + 𝜌𝑖𝑐𝑒𝐻𝑙𝑘𝑛𝑚 (e𝑖 · e𝑠)
( 𝑟𝑛

𝑅0 − 𝑑𝑖𝑐𝑒
) 𝑙−1)) · e𝑖)𝑁𝑛𝑁𝑚)𝑑𝑊

(2.27a)

𝑆𝑖𝑛𝑡
𝐴𝑛𝑚𝑖 𝑗 =

∫
𝑆𝑖𝑛𝑡

((𝜌𝑤
∑︁
𝑙

∑︁
𝑘

4𝜋G𝑟𝑛
2𝑙 + 1

((𝜌𝑤 − 𝜌𝑖𝑐𝑒)𝐻𝑙𝑘𝑛𝑚 (e𝑖 · e𝑠)
(𝑅0

𝑟𝑛

) 𝑙+2 + 𝜌𝑖𝑐𝑒𝐻𝑙𝑘𝑛𝑚

(e𝑖 · e𝑠)
( 𝑟𝑛

𝑅0 − 𝑑𝑖𝑐𝑒
) 𝑙−1)) (e𝑠 · e𝑖) + (e𝑖 · e𝑠) (𝜌𝑖𝑐𝑒 − 𝜌𝑤)𝑔𝑖𝑛𝑡 (e𝑠 · e𝑖))𝑁𝑛𝑁𝑚𝑑𝑆

(2.27b)

𝑆0
𝐴𝑛𝑚𝑖 𝑗 =

∫
𝑆0

(e𝑖 · e𝑠)𝜌𝑖𝑐𝑒𝑔0(e𝑠 · e𝑖)𝑁𝑛𝑁𝑚𝑑𝑆 (2.27c)

𝑆 𝑓
𝐴𝑛𝑚𝑖 𝑗 =

∫
𝑆 𝑓

𝐶𝑖 𝑗 𝑘𝑙𝑀𝑘𝑙𝑖 (𝑁𝑚+ − 𝑁𝑚−) · e𝑖𝑁𝑛𝑑𝑆, (2.27d)

where 𝑁𝑚+ and 𝑁𝑚− denote shape functions for split nodes on either side of a fault
surface. We can also combine terms from Equations 2.14 and 2.15 to write a force
vector 𝑏𝑛

𝑖
:

𝑏𝑛𝑖 = −
∫
𝑊

(𝜌𝑖𝑐𝑒∇𝑉 · e𝑖)𝑁𝑛𝑑𝑊 −
∫
𝑆𝑖𝑛𝑡

𝜌𝑤𝑉 (e𝑠 · e𝑖)𝑁𝑛𝑑𝑆. (2.28)

Finally, we assemble Equations 2.26, 2.27, and 2.28 to form a linear system and
solve for displacement coefficients 𝑎𝑚

𝑖
.

𝐴𝑛𝑚𝑖 𝑗 𝑎
𝑚
𝑖 = 𝑏𝑛𝑖 . (2.29)
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1.1.2.4 Solution Method

We solve Equation 2.29 using a multigrid method built into the PetSc solver package
within Pylith (Aagaard et al., 2007). For the multigrid method, we apply precondi-
tioners to 𝐴𝑛𝑚

𝑖 𝑗
in Equation 2.29 to obtain solutions (i.e., coefficients 𝑎𝑚

𝑖
) for a series

of increasingly fine mesh grids. We use Gaussian elimination to compute 𝑎𝑚
𝑖

for
all grids except the coursest grid. To remove rigid body translational and rotational
motion from solutions, we apply singular-value decomposition and discard com-
puted 𝑎𝑚

𝑖
values at the coursest grid level (for details, see 4.1.5 of Aagaard et al.,

2007). We are able to mesh geometries, run simulations, and post-process model
results for a single time step (e.g., at 𝑡 = 0) within 60 – 90 minutes on a computer
equipped with two CPU cores using our finite-element method.

1.2 Benchmarking

We benchmark our tidal loading formulation on Base models against analytic so-
lutions using the spectral solver software package SATStress, a widely used tool
within the planetary science community to predict diurnal (and fluid) Love number
values and stress fields on planetary bodies (Wahr et al., 2009). SATStress solves
the equation of motion for tidally-loaded multi-layered spherically symmetric bod-
ies accounting for self-gravitation and viscous effects. Figure 2.7 shows predictions
of Love number values from SATStress across our range of modelled 𝑑𝑖𝑐𝑒 values.
Within SATStress, we specify a multi-layered body with an outer ice layer and
underlying ocean consistent with the rheological parameters in Table 2.3 (see main
text), a mean ice viscosity 1016 Pa-s (Friedson and Stevenson, 1983), an ocean
shear modulus 10−20 Pa, and an ocean viscosity 10−20 Pa-s. Love number values
between numerical and analytical models agree to within <0.1% across all 𝑑𝑖𝑐𝑒
values. Possible additional minor differences between predictions from either set of
results may result from our lack of accounting for changes in ice shell rheology due
to volumetric expansion or contraction within the ice shell during tidal loading (for
details see Wahr et al., 2006).
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Figure 2.7: Comparison of analytic and FEM Love number results for several values
of 𝑑𝑖𝑐𝑒 on spherically symmetric (Base) models. Love numbers plotted against 𝑑𝑖𝑐𝑒
for analytic models using SATStress (blue dots) and using the FEM formulated here
(yellow dots).
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Figure 2.8: Qualitative comparison of our FEM results with results from Souček
et al. (2016) (top row) and this work (bottom row) for models with weak zones at
Tiger Stripe locations viewed facing the South Pole. Fields denote the magnitude of
the displacement vector evaluated at the outer surface of deformed geometries. The
top row and colorbar of this Figure are adapted from top row of Figure 3 of Souček
et al. (2016). We assign weak zone bulk moduli 𝜇𝑊𝑍/𝜇=10−5 and shear moduli
𝐺𝑊𝑍/𝐺=10−5 for our simulations in accordance with the formulation of weak zones
described in Souček et al. (2016).



51

We additionally compare model results from this work with results from Souček
et al. (2016). Figure 2.8 shows displacement magnitude fields at three different
time indices in the tidal cycle (𝑡=0.0 𝑇 (periapse), 0.2 𝑇 , and 0.4 𝑇 , where 𝑇 is the
orbital period 𝑇 = 33 hrs) for models in Souček et al. (2016) (top row) and this work
(bottom). We deactivate self-gravitation on Base models and assign weak zones
(with prescribed bulk modulus 𝜇𝑊𝑍 = 10−5𝜇 and shear modulus 𝐺𝑊𝑍 = 10−5𝐺)
to regions surrounding the Tiger Stripes for model comparisons. We find we are
able to largely reproduce results from Souček et al., (2016) both quantitatively (i.e.,
peak displacement magnitude values correspond to within <10%) and qualitatively.
Slight differences in displacement field characteristics persist surrounding the weak
zone regions likely due to methodological differences in the implementation of
adaptive mesh sizing, the assignment of reduced elastic moduli (i.e., the location of
the Tiger Stripes and the shear modulus reduction away from fault planes), or the
use of different shape functions (i.e., linear vs. quadratic) between models.

1.3 Mesh Convergence Test

We perform a mesh convergence test to confirm that Love number results from
models with structural heterogeneities are not sensitive to chosen mesh sizing pa-
rameters. Figure 2.9 shows Love number values evaluated from models with only
weak zones at chasma, Tiger Stripe, and circum-tectonic boundary locations (i.e.,
WZ models) and 𝑑𝑖𝑐𝑒 = 15 km meshed with specified minimum cell side lengths
S𝑚𝑖𝑛= 6, 5, 4, 3, 2, and 1 km. We additionally show example snapshots of the radial
displacement fields between our WZ model relative to our Base model for geometries
with 𝑑𝑖𝑐𝑒 = 15 km across our range of tested S𝑚𝑖𝑛 values. Results from Figure 2.9
demonstrate that both Love number results and overall radial displacement fields are
insensitive to chosen minimum cell size for values of S𝑚𝑖𝑛 < 3 km. We accordingly
assign 𝑆𝑚𝑖𝑛 = 1 km for all models discussed in this work.
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Figure 2.9: Results evaluated at periapse for WZ models (𝑑𝑖𝑐𝑒 = 15 km) for a range of
𝑆𝑚𝑖𝑛. We show radial displacement fields viewed facing upwards towards the South
Pole (top) and ℎ𝑑20 Love number results we use to track the sensitivity of results due
to changes in 𝑆𝑚𝑖𝑛 (bottom).
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1.4 Choice of Weak Zone Elastic Parameters

We evaluate results from models with weak zones at chasma, Tiger Stripe, and
circum-tectonic boundary locations (i.e., WZ models) to confirm that Love num-
ber outputs are not sensitive to our choice of weak zone shear modulus. Figure
2.10 shows Love number values evaluated from WZ models with 𝑑𝑖𝑐𝑒 = 15 km and
specified weak zone moduli across 10−8 < 𝐺𝑊𝑍/𝐺 < 100. We additionally show
example snapshots of radial displacement fields from our WZ models relative to our
Base model with 𝑑𝑖𝑐𝑒 = 15 km across our range of tested 𝐺𝑊𝑍 values. Results from
Figure 2.10 demonstrate that both Love number results and overall radial displace-
ment fields are insensitive weak zone shear modulus for 𝐺𝑊𝑍/𝐺 < 10−4 . These
results are consistent with those described in the supplementary documentation of
Souček et al. (2016) but extend to inferences of displacement away from the Tiger
Stripes and for instances of non-zero bulk modulus within weak zones.
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Figure 2.10: Results evaluated at periapse for WZ models (𝑑𝑖𝑐𝑒 = 15 km) across
several values of 𝐺𝑊𝑍 . We show radial displacement fields viewed facing upwards
towards the SP (top) and ℎ𝑑20 Love number results we use as a proxy for effective
model stiffness.
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1.5 Mode Coupling

We investigate the extent to which structural heterogeneities excite radial displace-
ment patterns beyond degree-2 harmonics. For each model with structural hetero-
geneities, we treat radial displacement fields relative to the Base model (i.e., 𝑢𝑟 (𝛀),
where 𝛀 is the position variable comprising the co-latitude longitude pair (𝜃, 𝜙) in
a reference frame fixed to Enceladus’s center of mass). Note that 𝑢𝑟 (𝛀) is a sum
over orthonormal spherical harmonic basis functions 𝑌𝑙𝑚 (𝛀) scaled by coefficients
𝑢𝑟
𝑙𝑚

(𝑙 and 𝑚 denote spherical harmonic degree and order):

𝑢𝑟 (𝛀) =

∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝑢𝑟𝑙𝑚𝑌𝑙𝑚 (𝛀). (2.30)

The power of 𝑢𝑟 (𝛀) at a given spatial scale (i.e., 𝑙) can be represented via the power
spectral density. We evaluate power spectral density using the root-mean-square of
coefficients 𝑢𝑟

𝑙𝑚
in Equation 2.30 over order 𝑚:

Power Spectral Density =

(∑
𝑚 (𝑢𝑟𝑙𝑚)

2

2𝑙 + 1

)1/2

. (2.31)

Figure 2.11 shows power spectral density across 𝑙 for LTV, Faulted+LTV, Faulted,
Faulted+ LTV+WZ, and WZ models (See Figures 1 and 2 in the main text). Figure
2.11 demonstrates that structural heterogeneities stimulate mode coupling (i.e., non
degree-2 deformation) across 𝑙 = 2 - 20 with diminishing power at shorter wave-
lengths (i.e., higher 𝑙). Moreover, lateral variations in crustal thickness (i.e., in LTV
and WZ models) and weak zones (i.e., in WZ and Faulted + LTV + WZ models)
drive the most significant long-wavelength (𝑙 = 2 - 5) deformation across models.
By contrast, deformation driven by faults (i.e., in Faulted models) is minimal at
long-wavelengths but relatively more prominent at shorter wavelengths (𝑙 = 10 - 20)
as compared to deformation in LTV models.
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Figure 2.11: Power spectral density of surface radial displacements for models
with structural heterogeneities described in this work. We compute power spectral
density for each model using Equations 2.30 and 2.31. For a description of each
model class, see Section 2.1 of the main text. Axes are plotted in log10 scale.
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1.6 Ice Thickness and Thermal Thickness

We aim to describe the relationship between 1) the ice thickness 𝑑𝑖𝑐𝑒 predicted from
analyzing displacement over diurnal timescales at Enceladus and 2) the thermal
thickness 𝑑𝑡 of ice between the surface and the water-ice phase transition at 273◦K
(i.e., the ice-ocean boundary). Note that the general (i.e., complex) form of the
diurnal degree-2 shape Love number (for a spherically symmetric body) possesses
both real ℜ(ℎ𝑑2) and imaginary ℑ(ℎ𝑑2) components. For a body that exhibits purely
elastic deformation, ℎ𝑑2 = ℜ(ℎ𝑑2) and ℑ(ℎ𝑑2) = 0. However, we expect the ‘thermal’
portion of the ice shell to exhibit an additional viscous component of deformation
such that ℑ(ℎ𝑑2) ≠ 0. We can therefore estimate the ratio between 𝑑𝑡 and 𝑑𝑖𝑐𝑒 by
comparing ℜ(ℎ𝑑2) and ℑ(ℎ𝑑2):

𝑑𝑡/𝑑𝑖𝑐𝑒 =
(ℑ(ℎ𝑑2)

2 + ℜ(ℎ𝑑2)
2)1/2

ℜ(ℎ𝑑2)
. (2.32)

The imaginary Love number component ℑ(ℎ𝑑2) in Equation 2.32 is sensitive to the
dynamic viscosity structure of the crust (Čadek et al., 2019). Viscosity 𝜂(𝑟) in the
ice shell is a function of radial position 𝑟 and 𝑑𝑡 (cf. Equations 56 and 57, Beuthe
2018):

𝜂(𝑟) = 𝜂0 · exp ©­« 𝐸

𝑅𝑔𝑇𝑖𝑜
( 𝑇𝑖𝑜

𝑇
(𝑟−𝑅)/(𝑑𝑡 )
𝑖𝑜

𝑇
(𝑟−𝑅+𝑑𝑡 ))/(𝑑𝑡 )
𝑠

− 1)ª®¬ , (2.33)

where is 𝜂0 = 3·1014 Pa-s is the minimum viscosity at the base of the ice shell
(Čadek et al., 2019), 𝑇𝑖𝑜 = 273 K and 𝑇𝑠 = 70 K respectively are temperatures at the
ice-ocean boundary and surface (Howett et al., 2010), 𝑅 = 252.1 km is radius of
the surface (Hemingway and Mittal, 2019), 𝑅𝑔 is the gas constant, and 𝐸 = 59.4 kJ
mol−1 is the activation energy for diffusion creep of ice.

We solve for ℑ(ℎ𝑑2) and ℜ(ℎ𝑑2) using SATStress (Wahr et al., 2009, see also S1.2).
Within SATStress, we specify a body with 100 equally thick layers of uniform
rheology. For each layer, we linearly interpolate viscosity values from the radial
viscosity structure described to Equation 2.33 and assign a constant shear modulus
𝐺 = 3.3 GPa (Souček et al., 2016). Figure 2.12 shows results for computed ℑ(ℎ𝑑2),
ℜ(ℎ𝑑2), and 𝑑𝑡/𝑑𝑖𝑐𝑒 (see Equation 2.32). Figure 2.12 demonstrates that 𝑑𝑡/𝑑𝑖𝑐𝑒 <
1.012 for 𝑑𝑡 = 15−30 km. In other words, estimates of mean ice thickness from Love
numbers likely underestimate thermal thickness by less than ∼ 0.2% at Enceladus
(note that computed 𝑑𝑡/𝑑𝑖𝑐𝑒 are consistent with values expected when using complex
Love numbers at Enceladus reported by Beuthe, 2018 cf. Figure 3).
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Figure 2.12: Computed complex Love number components ℑ(ℎ𝑑2) and ℜ(ℎ𝑑2) (top
row), and associated 𝑑𝑡/𝑑𝑖𝑐𝑒 values (see Equation 2.32) (bottom row) across input
mean crustal thicknesses 𝑑𝑡 = 15-30 km. We evaluate ℑ(ℎ𝑑2) and ℜ(ℎ𝑑2) using
SATStress and following the procedure described in S1.6.
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1.7 Impact of Structural Heterogeneities on Horizontal Displacements

Results for horizontal displacement (i.e., orthogonal to the radial direction and
tangential to the outer surface) across a range of model classes (see section 2.1 in
the main text) are shown in Figure 2.13. Figure 2.13 demonstrates that the magnitude
of horizontal displacements produced by structural heterogeneities are comparable
to (or greater than) the magnitude of horizontal displacements in Base models near
the South Pole of Enceladus (see discussion).
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Figure 2.13: Snapshots of the magnitude of horizontal displacement from each
model class viewed facing the south pole (SP, left column) and the sub-Saturnian
point (SS, right column) evaluated at 𝑡 = 0 (periapse). The top row shows the
magnitude of horizontal displacement in the Base model due to tidal forcing. The
remaining rows present the magnitude of the difference in horizontal displacement
between models with structural heterogeneities and the Base model. Each model
shown assumes 𝑑𝑖𝑐𝑒 = 25 km. Tiger Stripes, the south polar circum-tectonic bound-
ary (CTB), and chasma are labelled.
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Figure 2.14: Crustal thickness variations for LTV models. For details regarding our
methodology to generate crustal thickness variations, see Section 2.1 of the main
text.
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C h a p t e r 3

USING TIDALLY-DRIVEN ELASTIC STRAINS TO INFER
REGIONAL VARIATIONS IN CRUSTAL THICKNESS AT

ENCELADUS

.

A. Berne et al. (2023). “Using Tidally-Driven Elastic Strains to Infer Regional
Variations in Crustal Thickness at Enceladus”. In: Geophysical Research Letters
50 (22)

3.1 Abstract
Constraining the spatial variability of the thickness of the ice shell of Enceladus (i.e.,
the crust) is central to our understanding of the internal dynamics and evolution
of this small Saturnian moon. In this study, we develop a new methodology to
infer regional variations in crustal thickness using measurements of tidally-driven
elastic strain that could be made in the future. As proof of concept, we recover
thickness variations from synthetic finite-element crustal models subjected to diurnal
eccentricity tides. We demonstrate recovery of crustal thickness to within ∼2 km
of true values across the crust with ∼10% error in derived spherical harmonic
coefficients at degrees 𝑙 ≤ 12. Our computed uncertainty is significantly smaller
than the inherent ∼10 km ambiguity associated with crustal thickness derived solely
from gravity and topography measurements. Therefore, future measurements of
elastic strain can provide a robust approach to probe crustal structure at Enceladus.

3.2 Introduction
Enceladus, a small moon of Saturn, is a geologically active and potentially habitable
ocean world (e.g., Porco et al., 2006; Postberg et al., 2009). Enceladus possesses
both highly cratered landscapes and regions with active resurfacing (e.g., the South
Polar Terrain or SPT) (Yin and Pappalardo, 2015; Schenk et al., 2018). Based on
incomplete spherical harmonic degree 𝑙 = 3 gravity and topography fields derived
primarily from three spacecraft flybys, the SPT is believed to have significantly
thinner crust (∼4 – 14 km) relative to a mean crustal thickness (∼20 – 40 km)
(Nimmo et al., 2011; Iess et al., 2014;, 2016; Beuthe et al., 2016; Hemingway
et al., 2018). The SPT also possesses four large-scale fractures (informally known
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as ‘Tiger Stripes’; Porco et al., 2006). Cryovolcanic jets along the Tiger Stripes are
believed to supply material from a global subsurface ocean (Thomas et al., 2016;
Iess et al., 2014) to a water-ice plume which exhibits diurnal variations in activity
(e.g., Ingersoll et al., 2020). Diurnal eccentricity tides may correspondingly regulate
crustal dynamics by cyclically deforming Enceladus over its 32.9 hr orbital period
(Souček et al., 2016).

Characterizing the spatial variability of crustal thickness at Enceladus is crucial for
studying processes which control the satellite’s long-term evolution and internal
heating. It is believed that basal heating (and melting) of the ice shell maintains
topography at the interface between the ice shell and ocean over geologic timescales
(Čadek et al., 2019; D. Hemingway and Mittal, 2019; Ermakov et al., 2021). Viscous
dissipation of tidal energy within the ice shell is likely insufficient to maintain
significant ice-ocean topography at Enceladus (Čadek et al., 2019). Knowledge of
crustal thickness may therefore constrain the location and magnitude of tidal heating
within the ocean and core of the satellite (Hay and Matsuyama, 2019; Choblet et al.,
2017). Crustal thickness also mediates possible non-eruptive material transport
within the crust (e.g., localized refreezing of ocean material in thinned regions of
the ice shell; Čadek et al., 2019) and the intra-crustal processing of erupted ocean
material over the South Pole (Kite and Rubin, 2016; Ingersoll and Nakajima, 2016;
Fifer et al., 2022).

Several methods have been proposed to infer spatially variable crustal thickness at
Enceladus. Measurements of gravity and topography can provide constraints on
variations in crustal thickness across regional spatial scales (i.e., 𝑙 = 2 – 20) (e.g.,
Ermakov et al., 2021). However, previous geodetic studies at Enceladus (Iess et al.,
2014; McKinnon, 2015; D. Hemingway and Mittal, 2019) predict a wide possible
range of crustal thickness values across regional spatial scales (e.g., 4 – 14 km, or
∼10 km near the South Pole). Ambiguity in determinations of crustal thickness from
existing geodetic surveys arises primarily from uncertain estimates of the impact
of ocean and crustal densities on Enceladus’s gravity field (D. Hemingway and
Mittal, 2019). Efforts to more precisely determine crustal structure using libration
measurements (e.g., Thomas et al., 2016; Van Hoolst et al., 2016) or observations of
local lithospheric flexure induced by the presence of surface topography (e.g., Giese
et al., 2008) constrain only the mean thickness (𝑙 = 0) or variations in thickness at
very short wavelengths (𝑙 > 20), respectively.

We develop a new method for inferring crustal thickness at Enceladus using proposed
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measurements of tidally-driven elastic strain across regional spatial scales. From
Hooke’s law, strain along a loaded 1D system scales linearly with local stiffness
(Figure 3.1). For an elastic layer, both layer thickness and elastic moduli influence
the tendency for a medium to resist deformation in response to an applied force. We
therefore anticipate that changes in the strain field produced by diurnal tides at a
given location will exhibit a linear relationship with variations in the local thickness,
provided that elastic moduli are uniform throughout the crust (see discussion section
for a more detailed exploration of the possible effects of non-uniform elastic moduli).
We expect that viscous effects (e.g., near the ice-ocean boundary) only minimally
impact surface strain at Enceladus over the 32.9 hr orbital period (Shaw, 1985;
Wahr et al., 2006; Neumeier, 2018). Thus, inferences of thickness from tidally-
driven elastic strain closely approximate (to within < 0.2%) true crustal thickness
at Enceladus (for additional details, see Figure 3.7).

Gradients in material properties, such as crustal thickness and elastic moduli, induce
additional complexity in the response of a 2D layer to applied tractions (Hsu et al.,
2011 cf. Equation 4). We refer to this phenomenon as the ‘gradient’ effect,
which we illustrate in Figure 3.1. Crustal thickness gradients can lead to biased
estimates of crustal thickness when using a linear (one-to-one) interpretation of
strain fields, particularly when gradients are high (e.g., when variations in crustal
thickness are present at short wavelengths). Existing analytic and semi-analytic
models of diurnal tides at Enceladus cannot easily predict deformation caused by
short-wavelength variations in crustal thickness (Wahr et al., 2006; Qin et al., 2016;
Beuthe, 2018; Rovira-Navarro et al., 2023). However, numerical Finite Element
Models (FEMs) can accurately simulate deformation for ice shell geometries that
incorporate variations in crustal thickness across a wide range of spatial scales
(Souček et al., 2016; Behounkova et al., 2017; Souček et al., 2019; Berne et al.,
2023a).

Here, we introduce an approach to determine crustal thickness at Enceladus through
the application of Hooke’s law to tidally-induced elastic strains (Section 3.3). Our
approach utilizes numerical techniques to iteratively minimize differences between
measured crustal strains and those predicted using FEMs of spatially heterogeneous
ice shells subject to tidal loading. To account for potential gradient effects, our
FEMs incorporate variations in crustal thickness at length scales down to ∼12
km or spherical harmonic degree 𝑙 ∼ 60. As proof of concept, we demonstrate
recovering thickness using elastic strains from a synthetic model of Enceladus’s ice
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Figure 3.1: Crustal strain correlates with ice shell thickness. Top Panel: Example
1D elastic structure (i.e., springs in series) subject to an axial load. Hooke’s law
predicts that strain is relatively higher where springs have lower stiffness (i.e., smaller
spring constants). Bottom Panel: Analogous 2D elastic layer subject to a transverse
load. In this case, local layer thickness modulates the effective stiffness (and strain)
of the medium. Proposed measurements of strain at the outer surface of the crust
(labelled) would permit inferences of local thickness at Enceladus. Shaded regions
denote locations where ‘gradient effects’ impact inferences of local thickness from
strain fields.
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shell using our methodology (Section 3.4). We assess uncertainty by comparing
the discrepancy between thicknesses that are input into the synthetic models with
thicknesses recovered from those models. We conclude by addressing the utility of
using imaging geodesy (e.g., Interferometric Synthetic Apreture Radar) to carry out
the strain measurements required to recover crustal thickness variations at Enceladus
(Section 4).

3.3 Methods
Input Model Specification
We first construct a spherically symmetric model geometry that is broadly consistent
with the elastic structure of the crust of Enceladus. Building on the methodology
discussed in Berne et al. (2023) (see also section 2.1), we start with a hollow
shell with prescribed outer radius 𝑅 and uniform thickness 𝐷̃ (see Supplementary
Table 3.1 for chosen values for parameters used throughout this work). Using the
software package CUBIT (Skroch et al., 2019; CoreForm, 2020), we mesh our
geometry with tetrahedral elements and assign a uniform shear modulus 𝐺 and a
bulk modulus value 𝜇. We account for self-gravitational effects and ignore inertial
forces. The deformation of the core may impact elastic strain at the outer surface
by up to 5 – 10% but would require a shear modulus of rock which is orders of
magnitude smaller than that associated with consolidated silicate material on Earth
(Schubert et al., 2007; Rovira-Navarro et al.; 2020). We therefore treat the core as a
rigid body for simulations, but recognize that an unconsolidated or fluid core could
bias inference of crustal thickness using our analysis. We have benchmarked our
methodology against the semi-analytic spectral method outlined in Rovira-Navarro
and Matsuyama (2023) to ensure accurate FEM solutions.

For our analysis, we construct a synthetic ‘true’ crustal thickness model by modi-
fying the surface and ice-ocean boundary of our spherically symmetric geometry.
𝐷𝑡𝑟𝑢𝑒 (𝛀) represents the spatially variable thickness of the outer ice shell of our syn-
thetic model where 𝛀 is the position variable comprising the co-latitude longitude
pair (𝜃, 𝜙) in a body-fixed reference frame. Note that we can write the quantity
𝐷𝑡𝑟𝑢𝑒 (𝛀) as a sum over orthonormal spherical harmonic basis functions 𝑌𝑙𝑚 (𝛀)
scaled by coefficients 𝑑𝑡𝑟𝑢𝑒

𝑙𝑚
(where 𝑙 and 𝑚 denote spherical harmonic degree and

order):

𝐷𝑡𝑟𝑢𝑒 (𝛀) =

∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝑑𝑡𝑟𝑢𝑒𝑙𝑚 𝑌𝑙𝑚 (𝛀). (3.1)
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We generate 𝑑𝑡𝑟𝑢𝑒
𝑙𝑚

up to 𝑙 = 60 by compensating observed surface topography using
a modified form of Airy isostasy (D. Hemingway and Matsuyama, 2017). Further
details of our procedure to generate thickness variations in the synthetic model are
given in Supplementary section S1.1 of this chapter.

Tidal Loading
Following the formulation described in Supplementary section S1.1 of Berne et al.,
(2023a), we apply forces associated with the driving potential produced by time-
dependent diurnal eccentricity tides𝑉 (𝑟, 𝜃, 𝜙, 𝑡) (to the first order in eccentricity) to
model geometries (Murray and Dermott, 2000):

𝑉 (𝑟, 𝜃, 𝜙) = 𝑟2𝜔2𝑒 · (sin(𝜔𝑡) P22(𝜆) sin2𝜙 − 3
4

cos(𝜔𝑡) (2 P20(𝜆) − P22(𝜆) cos2𝜙)).

(3.2)

In Equation 3.2, 𝜔 is Enceladus’s orbital angular velocity, 𝑒 is the body’s orbital
eccentricity, and 𝑟 is radial position in a body-fixed reference frame. Time 𝑡 =

0, 2𝜋
𝜔

corresponds to orbital periapse. 𝑃20(𝜇) and 𝑃22(𝜇) are associated Legendre
Functions with the nested function 𝜇 = cos(𝜃). We use the 3D FEM code PyLith
(Aagaard et al., 2007) for simulations. PyLith is a well-established geodynamic
modelling tool which allows for complex bulk rheology and geometrical meshes.
We have modified PyLith for modeling full spheres in a no-net-rotation/translation
reference frame with central time-dependent body forces appropriate for eccentricity
tides (see also section 2.2 of Berne et al., 2023a).

Strain Computation
Following the methodology described in Tape et al. (2009) (cf. Equation 20), for
a deforming quasi-spherical body with a linear isotropic elastic rheology, we can
compute components of the horizontal strain rate tensor ϵ at the surface according
to:

𝜖𝑖 𝑗 =
1
𝑅


− 3𝜇−2𝐺

3𝜇+4𝐺 (2𝑣𝑟 + 𝑑𝑣𝜃
𝑑𝜃

+ · · ·
· · · 𝑣𝜃cot𝜃 + csc𝜃 𝑑𝑣𝜙

𝑑𝜙
) 0 0

0 𝑣𝑟 + 𝑑𝑣𝜃
𝑑𝜃

1
2 (−𝑣𝜙cot𝜃 + csc𝜃 𝑑𝑣𝜃

𝑑𝜙
+ 𝑑𝑣𝜙

𝑑𝜃
)

0 1
2 (−𝑣𝜙cot𝜃 + csc𝜃 𝑑𝑣𝜃

𝑑𝜙
+ 𝑑𝑣𝜙

𝑑𝜃
) 𝑣𝑟 + 𝑣𝜃cot𝜃 + csc𝜃 𝑑𝑣𝜙

𝑑𝜙


, (3.3)

where quantities 𝑣𝑟 , 𝑣𝜃 , and 𝑣𝜙 and subindices ‘1’, ‘2’, and ‘3’ respectively denote
surface velocities and tensor components in positive radial, co-latitude, and longi-
tude directions. To compute 𝑣𝑟 , 𝑣𝜃 and 𝑣𝜙, we difference FEM displacement fields
between 180 consecutive time points over the tidal cycle (𝑡 = 0 to 𝑡 = 2𝜋

𝜔
in Equation
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3.2). We can also compute surface velocities (and strain rate tensor components)
by combining radial, lateral, and toroidal shape Love numbers (evaluated across
several values of 𝑙) with the driving potential described in Equation 3.2 (Wahr et al.,
2006; Wahr et al., 2009; Rovira-Navarro and Matsuyama, 2023). Subtracting the
dilatation of the strain tensor 𝜖ℎ from diagonal components of 𝜖𝑖 𝑗 in Equation 3.3
permits computation of the horizontal deviatoric strain rate tensor 𝜖𝑖 𝑗 :

𝜖𝑖 𝑗 = 𝜖𝑖 𝑗 − 𝜖ℎ𝛿𝑖 𝑗 , (3.4)

where 𝛿𝑖 𝑗 is the kronecker delta. 𝜖ℎ is the average of the diagonal components of 𝜖𝑖 𝑗
in Equation 3.3:

𝜖ℎ =
𝜖11 + 𝜖22 + 𝜖33

3
. (3.5)

For convenience, we seek to parameterize strain rate at the surface of our models
using a scalar quantity which is not sensitive to our choice of coordinate system, here
called 𝐸 (𝛀) (see section 2.1 for the definition of 𝛀). Using matrix components 𝜖𝑖 𝑗
in Equation 3.4, we define 𝐸 (𝛀) as the time-averaged 2nd invariant of the deviatoric
horizontal strain rate:

𝐸 (𝛀) = 𝜔

2𝜋

∫ 2𝜋
𝜔

0
|𝜖11𝜖22 + 𝜖22𝜖33 + 𝜖11𝜖33 − 𝜖23𝜖32 | 𝑑𝑡, (3.6)

3.4 Results
Initial Crustal Thickness Recovery
We perform an iterative analysis to recover thickness from strain fields. 𝐷𝑛 (𝛀)
and 𝐸𝑛 (𝛀) respectively denote thickness and strain fields evaluated at a given
iteration number 𝑛. To assess the discrepancy between thicknesses that are input
and recovered from models for each iteration, we compute the mismatch 𝛿𝐷𝑛 (𝛀)
between 𝐷𝑛 (𝛀) and 𝐷𝑡𝑟𝑢𝑒 (𝛀):

𝛿𝐷𝑛 (𝛀) = 𝐷𝑛 (𝛀) − 𝐷𝑡𝑟𝑢𝑒 (𝛀). (3.7)

We initially (i.e., 𝑛 = 0) recover crustal thickness 𝐷0(𝛀) using ‘observed’ strains
(i.e., 𝐸𝑜𝑏𝑠 (𝛀)) extracted from our FEM with thickness 𝐷𝑡𝑟𝑢𝑒 (𝛀). Hooke’s law
predicts that thickness is inversely proportional to strain in a 2D elastic medium
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subject to a transverse load (as previously shown in Figure 3.1). It is therefore
reasonable to assume the following relationship between 𝐸𝑜𝑏𝑠 (𝛀) and 𝐷0(𝛀):

𝐷0(𝛀)
𝐷̃

= 𝜅(𝛀)𝐸
𝐵𝑎𝑠𝑒 (𝛀)
𝐸𝑜𝑏𝑠 (𝛀)

, (3.8)

where 𝜅(𝛀) is a transfer function and 𝐸𝐵𝑎𝑠𝑒 (𝛀) is strain evaluated on a spheri-
cally symmetric Enceladus with uniform ice shell thickness 𝐷̃. The function 𝜅(𝛀)
accounts for any non-linear dependence of strain fields on thickness variations at
different 𝛀. We find that averaging strain values over the tidal cycle and assigning
𝐸 (𝛀) to the second invariant of the horizontal deviatoric strain rate tensor (see
Equation 3.6) minimizes the impact of 𝜅(𝛀) using our approach (i.e., Equation 3.8
describes an approximately linear relationship). Nonetheless, we remove an empir-
ical long-wavelength function from strain fields to account for 𝜅(𝛀) on inferences
of thickness (for additional details, see Supplementary section S1.2 of this chapter).

Figure 3.2 shows snapshots of 𝐷𝑡𝑟𝑢𝑒 (𝛀), 𝐸𝑜𝑏𝑠 (𝛀), 𝐷0(𝛀), and 𝛿𝐷0(𝛀) from our
analysis. For visualization, we plot the base-10 logarithm of 𝐸𝑜𝑏𝑠 (𝛀) normalized
by 𝐸𝐵𝑎𝑠𝑒 (𝛀) (i.e., 𝐸𝑜𝑏𝑠 (𝛀)):

𝐸𝑜𝑏𝑠 (𝛀) = log10
𝐸𝑜𝑏𝑠 (𝛀)
𝐸𝐵𝑎𝑠𝑒 (𝛀)

. (3.9)

As expected, patterns of 𝐸𝑜𝑏𝑠 (𝛀) correlate with patterns of 𝐷𝑡𝑟𝑢𝑒 (𝛀). Computed
𝐸𝑜𝑏𝑠 (𝛀) fields reflect regional thinning at North and South poles, a relatively
thicker crust at low latitudes, and the significant asymmetry in crustal thinning
between Northern and Southern hemispheres visible in 𝐷𝑡𝑟𝑢𝑒 (𝛀). Recovered crustal
thickness patterns, 𝐷0(𝛀), more closely match 𝐷𝑡𝑟𝑢𝑒 (𝛀) than do 𝐸𝑜𝑏𝑠 (𝛀). Slight
differences between 𝐷𝑡𝑟𝑢𝑒 (𝛀) and 𝐷0(𝛀) (i.e., 𝛿𝐷0(𝛀) in Equation 3.7) appear to
localize near regions with short-wavelength variations in crustal thickness (i.e., high
contour density) consistent with the influence of gradient effects on our analysis. In
particular, we significantly overestimate crustal thickness (𝛿𝐷0(𝛀) values up to 25
km) along several prominent ridges over the Trailing and Southern Hemispheres.

Gradient Effect Correction
We iteratively adjust the amplitude of crustal thicknesses 𝐷𝑛 (𝛀) to minimize dif-
ferences between strain produced by models with recovered crustal thickness fields
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Figure 3.2: Snapshots of model input crustal thickness 𝐷𝑡𝑟𝑢𝑒 (𝛀) (first row), the
simulated 2𝑛𝑑 invariant of time-averaged horizontal deviatoric strain rate 𝐸𝑜𝑏𝑠 (𝛀)
(see Equations 3.6 and 3.9) (second row), recovered crustal thickness 𝐷0(𝛀) eval-
uated from Equation 3.8 (third row), and mismatch between input and recovered
thickness 𝛿𝐷0(𝛀) (see Equation 3.7) for our initial recovery of crustal thickness (𝑛
= 0) viewed facing Southern, Northern, Leading, and Trailing hemispheres. See
Supplementary S1.1 of this chapter for a description of how synthetic ‘true’ crustal
thickness models are constructed. Plotted contours denote colorscale intervals of
0.05 (for 𝐸𝑜𝑏𝑠 (𝛀) fields) and 5 km (for 𝐷𝑛 (𝛀) and 𝛿𝐷𝑛 (𝛀) fields). Images are
orthographic projections with labelled sub-Saturnian point and South Pole locations.
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𝐸𝑛 (𝛀) and ‘true’ strain 𝐸𝑜𝑏𝑠 (𝛀) (see section 2.4). We define a cost function eval-
uated at a given iteration 𝜉𝐸 (𝑛) as the integrated square of the difference between
𝐸𝑜𝑏𝑠 (𝛀) and 𝐸𝑛 (𝛀):

𝜉𝐸 (𝑛) =
∫

(𝐸𝑛 (𝛀) − 𝐸𝑜𝑏𝑠 (𝛀))2 · 𝑑𝛀. (3.10)

For comparison to 𝜉𝐸 (𝑛), we additionally track the integrated square of the difference
between true and recovered thicknesses 𝜉𝐷 (𝑛):

𝜉𝐷 (𝑛) =
∫

(𝐷𝑛 (𝛀) − 𝐷𝑡𝑟𝑢𝑒 (𝛀))2 · 𝑑𝛀. (3.11)

We expect that the extent to which gradient effects distort strain fields at a given loca-
tion scales with the magnitude of the local gradient in crustal thickness | |∇𝐷𝑛 (𝛀) | |.
We therefore update 𝐷𝑛 (𝛀) to 𝐷𝑛+1(𝛀) for iterations 𝑛 > 0 following:

log10

(
𝐷𝑛+1(𝛀)
𝐷𝑛 (𝛀)

)
= 𝜂(𝑛) · | |∇𝐷𝑛 (𝛀) | | · 𝑀 (𝛀), (3.12)

where 𝜂(𝑛) is the learning rate and 𝑀 (𝛀) is a spatially variable prefactor defined
as:

𝑀 (𝛀) = 𝜅(𝛀)−1𝐸
𝑛 (𝛀) − 𝐸𝑜𝑏𝑠 (𝛀)
𝐸𝐵𝑎𝑠𝑒 (𝛀)

. (3.13)

We incorporate 𝑀 (𝛀) into Equation 3.12 to ensure modifications to 𝐷𝑛 (𝛀) only
correct for over- (under-) predictions of local thickness in locations with reduced
(elevated) 𝐸𝑛 (𝛀) relative to 𝐸𝑜𝑏𝑠 (𝛀). We update 𝜂(𝑛) between iterations following
an adaptive algorithm to ensure 𝜉𝐸 (𝑛) converges to a local minimum (Barzilai and
Borwein, 1988). Note that we can expand 𝐷𝑛 (𝛀) for each iteration in Equation 3.12
into spherical harmonic functions:

𝐷𝑛 (𝛀) =

∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝑑𝑛𝑙𝑚𝑌𝑙𝑚 (𝛀), (3.14)

where 𝑑𝑛
𝑙𝑚

are spherical harmonic coefficients. We can examine mismatch in the
spectral domain (i.e., spectral power) by evaluating the root-mean-square (RMS) of
thickness coefficients 𝑑𝑛

𝑙𝑚
in Equation 3.14 and 𝑑𝑡𝑟𝑢𝑒

𝑙𝑚
in Equation 3.1 over 𝑙 (i.e., 𝑑𝑛

𝑙
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and 𝑑𝑡𝑟𝑢𝑒
𝑙

respectively) as well as the RMS percentage difference between coefficients
𝑑𝑛
𝑙𝑚

and 𝑑𝑡𝑟𝑢𝑒
𝑙𝑚

(i.e., 𝛿𝑑𝑛
𝑙
; note that 𝛿𝐷𝑛 (𝛀) in Equation 3.7 considers 𝛿𝑑𝑛

𝑙
across all

spherical harmonic basis functions evaluated at an angular position 𝛀):

𝑑𝑛𝑙 =

(
1

2𝑙 + 1

∑︁
𝑚

(𝑑𝑛𝑙𝑚)
2

)1/2

(3.15a)

𝑑𝑡𝑟𝑢𝑒𝑙 =

(
1

2𝑙 + 1

∑︁
𝑚

(𝑑𝑡𝑟𝑢𝑒𝑙𝑚 )2

)1/2

(3.15b)

𝛿𝑑𝑛𝑙 =

(
1

2𝑙 + 1

∑︁
𝑚

(
𝑑𝑛
𝑙𝑚

− 𝑑𝑡𝑟𝑢𝑒
𝑙𝑚

𝑑𝑡𝑟𝑢𝑒
𝑙𝑚

)2)1/2

· 100%. (3.15c)

Figure 3.3 shows snapshots of 𝐷𝑡𝑟𝑢𝑒 (𝛀), 𝐷1(𝛀), 𝛿𝐷1(𝛀), 𝐷12(𝛀), and 𝛿𝐷12(𝛀)
(i.e., see Equations 3.7 and 3.12). In addition, Figure 3.4 shows 𝛿𝐷𝑛 (𝛀), 𝑑𝑛

𝑙
,

𝑑𝑡𝑟𝑢𝑒
𝑙

, and 𝛿𝑑𝑛
𝑙

for iterations 𝑛 = 0, 1, and 12 (see Equation 3.15). The non-zero
𝛿𝐷0(𝛀) observed in Figure 3.3 drives broad differences between recovered and
true spectral powers 𝑑0

𝑙
and 𝑑𝑡𝑟𝑢𝑒

𝑙
as well as non-zero values of 𝛿𝑑0

𝑙
across all

wavelengths. Iterating through our analysis once (𝑛 = 1) reduces 𝛿𝐷1(𝛀) to < 20
km along prominent ridges over the Trailing and Southern Hemispheres, lessens
the mismatch between 𝑑1

𝑙
and 𝑑𝑡𝑟𝑢𝑒

𝑙
curves, and diminishes 𝛿𝑑1

𝑙
values across all

wavelengths. Further changes to crustal thickness for iterations 𝑛 = 1 – 12 reduce
𝛿𝑑12

𝑙
to∼ 10% (< 0.4 km mismatch in recovered relative to input spherical harmonic

coefficient values) across longer wavelengths (i.e., 𝑙 ≤ 12) and reduce 𝛿𝐷12(𝛀) to
∼2 km (1𝜎 confidence) across the ice shell.

Figure 3.4 presents the strain mismatch cost function, 𝜉𝐸 (𝑛), and integrated thickness
mismatch, 𝜉𝐷 (𝑛), for iterations 𝑛 = 0 – 15. Our results demonstrate a slight increase
in 𝜉𝐸 (𝑛) from iterations 𝑛 = 12 – 15, while 𝜉𝐷 (𝑛) (as well as 𝛿𝐷𝑛 (𝛀) and 𝛿𝑑𝑛

𝑙
)

values remain largely unchanged after 𝑛 ∼ 12. Bayesian approaches (e.g., Cawley
and Talbot, 2007) enable determination of a suitable cutoff iteration number to avoid
over-fitting strain fields (i.e., in the absence of knowledge of ’true’ thickness) but are
beyond the scope of the current study.

3.5 Discussion and Conclusion
We examine the relationship between tidally-driven elastic strains and spatially
variable crustal thickness at Enceladus. Results show a broad correlation between
strain fields and crustal thickness across the moon (see Figure 3.2). Gradient
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Figure 3.3: Snapshots of input crustal thickness 𝐷𝑡𝑟𝑢𝑒 (𝛀) (first row), recovered
crustal thickness following 𝑛 = 1 iteration 𝐷1(𝛀) (second row), mismatch between
model and input crustal thickness following 𝑛 = 1 iteration 𝛿𝐷1(𝛀) (see Equations
3.7) (third row), recovered crustal thickness following 𝑛 = 12 iterations 𝐷12(𝛀)
(fourth row), and mismatch between model and input crustal thickness following 𝑛
= 12 iterations 𝛿𝐷12(𝛀) (fifth row) viewed facing the Southern, Northern, Leading,
and Trailing hemispheres. Plotted contours denote colorscale intervals of 5 km
for 𝛿𝐷𝑛 (𝛀) and 𝐷𝑛 (𝛀) fields. Images are orthographic projections with labelled
sub-Saturnian point and South Pole locations.
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Figure 3.4: Analysis of mismatch between thickness fields that are input and recov-
ered from models at a given iteration 𝑛 using our analysis. Upper and center left
panels show 𝑑𝑛

𝑙
and 𝑑𝑡𝑟𝑢𝑒

𝑙
evaluated for spherical harmonic degrees 𝑙 = 2 – 20. 𝑑𝑛

𝑙

and 𝑑𝑡𝑟𝑢𝑒
𝑙

denote the spectral power of input and recovered thicknesses (see Equation
3.15ab; 𝑑𝑛

𝑙
= 𝑑𝑡𝑟𝑢𝑒

𝑙
denotes a perfect recovery of crustal thickness). Note that the dif-

ference between 𝑑𝑛
𝑙

and 𝑑𝑡𝑟𝑢𝑒
𝑙

decreases (i.e., error decreases) after several iterations
(i.e., increasing values of 𝑛). Center right panel shows 𝛿𝑑𝑛

𝑙
evaluated for spherical

harmonic degrees 𝑙 = 2 – 20. 𝛿𝑑𝑛
𝑙

is the spectral power of mismatch between input
and recovered thicknesses at spherical harmonic degree 𝑙 (see Equation 3.15c; 𝛿𝑑𝑛

𝑙

= 0 denotes a perfect recovery of crustal thickness). Note that 𝛿𝑑𝑛
𝑙

decreases (i.e.,
error decreases) after several iterations (i.e., increasing values of of 𝑛). Vertical
dash-dot lines at 𝑙 = 12 marked for reference. Lower left panel shows a histogram of
𝛿𝐷𝑛 (𝛀) values (evaluated at FEM node locations) across recovered models for 𝑛 =
0, 1, and 12. 1𝜎 for the 𝑛 = 12 case plotted as vertical dash-dot lines for reference.
Lower right panel shows the cost function 𝜉𝐸 (𝑛) (see Equation 3.10) and integrated
thickness mismatch 𝜉𝐷 (𝑛) (see Equation 3.11), normalized relative to the maximum
value, for iterations 𝑛 = 0 – 15. X-axes of upper and center panels are plotted in
log10 scale.
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effects modulate strain patterns (see Figures 3.3 and 3.4) with diminishing impact
at longer wavelengths (see Figure 3.4). Our approach permits final recoveries of
crustal thickness to within ∼2 km of input values (1𝜎 confidence) with minimal
mismatch between the spherical harmonic coefficients (∼10%) of expanded fields
across spatial wavelengths 𝑙 ≤ 12 (i.e., corresponding to a half-wavelength of ∼60
km; see Figure 3.4, iteration 𝑛 = 12).

Our approach to correct for gradient effects minimally reduces error in crustal
thickness estimates for 𝑙 > 12 (see Figure 3.4). Note that length scales 𝑙 = 12 – 20
(∼60 – 40 km) approach the upper limit of input crustal thickness values for models
(∼50 km, see Figures 3.2 and 3.3). Moreover, bending effects (e.g., strain that is
produced by non-local variations in elastic structure; see Beuthe, 2018 cf. Section
4.2.2) are expected to produce a more complex relationship between tidal strain
and the amplitude of thickness variations than that considered by our approach (see
Equations 3.8 and 3.12) at horizontal length scales that are comparable to the crustal
thickness. To further examine the relationship between crustal thickness and the
impact of bending effects on our analysis, we repeat our analysis with mean crustal
thickness 𝐷̃ = 50 km corresponding with maximum thickness values ∼100 km.
In this case, crustal thickness estimates become significantly less accurate across
wavelengths 𝑙 ≥ 8 (i.e., ≤ 90 km; for further details see Supplementary Text S2 of
this chapter).

Our initial analysis considers a crust with a uniform elastic rheology. However,
fractures may reduce elastic shear modulus along fault zones (e.g., the Tiger Stripes)
or highly damaged regions of the ice shell (Vaughan, 1995). Our modelling approach
can readily account for localized reductions in shear modulus along fault zones if
the surface and subsurface geometry (e.g., dip angle and penetration depth) of these
structures is known a priori (for more information, see Berne et al., 2023a). However,
resolving thickness over large-scale damage zones may require invoking additional
assumptions regarding the expected shape of the crust at Enceladus. For example,
local thickness exhibits a linear relationship with (Airy-) isostatically compensated
surface topography over long- and regional- spatial scales (i.e., ice-ocean topography
mirrors surface topography; D. Hemingway and Matsuyama, 2017). Variations in
strain relative to topography (i.e., strain-topography admittance) may therefore be
sensitive to (and permit correcting for) significant lateral variability in shear modulus
over the crust (see Wahr et al., 2006; D. Hemingway and Mittal, 2019).

Our analysis also assumes a priori knowledge of 𝐷̃ (mean crustal thickness), 𝐺
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(mean shear modulus), and 𝜌𝑤 (ocean density) at Enceladus. 𝐷̃ is a crucial param-
eter for acquiring an initial estimate of variations in crustal thickness (i.e., 𝐷0(𝛀),
see Equation 3.8). We find that our approach can correct for over- (under-) pre-
dictions of strain due to excessively low (high) initial estimates of 𝐷̃ (for details,
see Supplementary Text S3 of this chapter). A reduced 𝐺 (e.g., due to pervasive
crustal fracturing) may also result in a derived value of 𝐷̃ that is inconsistent with
constraints set by the amplitude of the forced libration of the ice shell (Van Hoolst
et al., 2016; Beuthe, 2018; D. Hemingway and Mittal, 2019; Berne et al., 2023a).
In this case, repeating our analysis with a lowered input 𝐺 (see Table S1) should
produce a derived 𝐷̃ that more closely matches the mean thickness expected for
the satellite (D. Hemingway and Mittal, 2019). Traction at the ice-ocean boundary
(which accounts for ∼80% of tidally-driven surface strain for Enceladus, see Berne
et al., 2023a) also scales with assumed 𝜌𝑤. The current ∼50 kg/m3 (i.e., 5%) range
in expected 𝜌𝑤 at Enceladus (Postberg et al., 2011; Glein et al., 2018) therefore
corresponds to a ∼4% uncertainty in derived crustal thickness using our approach.

In the future, geodetic imaging techniques (e.g., Interferometric Synthetic Aperture
Radar or InSAR) at Enceladus could be used to determine crustal strain at high spatial
resolution. InSAR measurements at Enceladus would be subject to uncertainty
associated with imperfect spacecraft orbit determination but would not experience
many of the sources of error experienced on Earth such as atmospheric propagation
effects or temporal decorrelation due to vegetation, changing surface conditions,
etc. over the orbital timescale (Simons and Rosen, 2015). Moreover, the sub-
centimeter measurement noise typically associated with InSAR is smaller than the
1 - 10 cm signal produced by the presence of regional crustal thickness variations
on Enceladus (see Supplementary Text S4 of this chapter). As such, we expect
that InSAR measurements are ideally suited for inferring key characteristics of the
interior structure and thus for improving our ability to understand the evolution and
habitability of Enceladus.

3.6 Open Research
The data used in this study were generated using the software package PyLith
(Aagaard et al., 2007; Aagaard et al., 2022). PyLith is an open-source finite element
code for modeling geodynamic processes and is available on GitHub and Zenodo
repositories (Aagaard et al., 2022). The specific PyLith version used in this study
was v2.2.2. PyLith input files (including sample surface topography data), post-
processing scripts, and selected output files for this work are available on (Berne
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et al., 2023b). A full version of the forward FEM code, a user manual, and the
workflow for inferring thickness from strain described in the current work is also
available on (Berne et al., 2023b). The mesh geometries utilized in this study were
created using CUBIT (v15.2), a node-locked licensed software which is available
through the developer Sandia National Laboratories (Skroch et al., 2019; CoreForm,
2020).
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3.8 Supplementary Information
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3. Table S1

Introduction

In S1, we outline our methodology for generating synthetic ‘true’ models of Ence-
ladus’s crust (S1.1) and for calculating the transfer function 𝜅(𝛀) in Equation 3.7
from the main text (S1.2 and Figure 2.7). In S2, we present the results of our iterative
procedure for recovering crustal thickness on a synthetic crustal model with a mean
thickness 𝐷̃ = 50 km (S2.1 and Figure 3.6) and demonstrate that viscous effects
within the ice shell are not expected to significantly impact total surface strain at
Enceladus (Figure 3.7). In S3, we present results for recoveries of crustal thickness
on a synthetic model for which we assume an incorrect initial estimate of mean
thickness (S3.1 and Figure 3.4). In S4, we examine the effect of incorporating noise
(both correlated and uncorrelated) and discuss the impact of imperfect measurement
coverage on recoveries of crustal thickness using our approach (S4.1 and Figure 3.9).

Text S1

S1.1: Synthetic ‘True’ Crustal Thickness Model

To generate ‘true’ crustal thickness models (see Figures 2 and 3 of the main text), we
first apply topography 𝐻 (𝛀) to the outer surface of spherically symmetric models.
Note that we can write 𝐻 (𝛀) as a sum over spherical harmonic basis functions
scaled by coefficients ℎ𝑙𝑚:

𝐻 (𝛀) =
∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

ℎ𝑙𝑚𝑌𝑙𝑚 (𝛀). (3.16)

We extract ℎ𝑙𝑚 in Equation 4.21 for 𝑙 = 2 – 60 from an updated version of topography
at Enceladus using all available Cassini imagery (Park et al., personal communi-
cation). Our approach for inferring crustal thickness from strain is agnostic to the
details of assumed topography. Details of the topography used in this study are
therefore not important and are not intended to promote any particular model for
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Enceladus’s shape. From ℎ𝑙𝑚, we generate components 𝑑𝑡𝑟𝑢𝑒
𝑙𝑚

in Equation 3.1 of the
main text assuming a modified formulation for Airy-type compensation of surface
topography (Hemingway and Matsuyama, 2017):

𝑑𝑡𝑟𝑢𝑒𝑙𝑚 = ℎ𝑙𝑚 + ℎ𝑙𝑚
𝜌𝑖𝑐𝑒

(𝜌𝑤 − 𝜌𝑖𝑐𝑒)
𝑔

𝑔𝑖𝑛𝑡

𝑅2

(𝑅 − 𝐷̃)2
(𝑙 − 1)−𝑁 , (3.17)

where 𝑔𝑖𝑛𝑡 is radial gravitational acceleration at the ice-ocean boundary, 𝜌𝑖𝑐𝑒 is the
mean density of the ice shell, 𝜌𝑤 is the mean density of the ocean (see Table 3.8 of the
main text for assumed parameter values), and N is a dimensionless constant. Equa-
tion 3.17 demonstrates that the amplitude of variations in crustal thickness across
𝑙 depends on the chosen value of N. As N decreases, the amplitude of variations
in crustal thickness at large values of 𝑙 (i.e., short-wavelengths) increases rapidly.
For models with 𝐷̃ = 25 km, an assumed value of 𝑁 < 1.0 produces negative
(i.e., non-physical) crustal thickness near the South and North Poles. We aim to
estimate the maximum extent that short-wavelength variations in crustal thickness
bias inferences of crustal thickness via gradient effects. We therefore generate a
model with 𝑁 = 1.0 for this work.

S1.2: Computation of 𝜅(𝛀)
The quantity 𝜅(𝛀) is a transfer function which captures any non-linear dependence
of strain fields on thickness variations at different 𝛀. We compute 𝜅(𝛀) empirically
for a given crustal model by re-arranging Equation 3.8 of the main text:

𝜅(𝛀) = 𝐷𝜁 (𝛀)
𝐷̃

𝐸 𝜁 (𝛀)
𝐸𝑏𝑎𝑠𝑒 (𝛀)

, (3.18)

where 𝐸 𝜁 (𝛀) is the strain produced by a crustal thickness model 𝐷𝜁 (𝛀). To ensure
a minimal impact of potential gradient effects on computations of 𝜅(𝛀), we define
𝐷𝜁 (𝛀) such that models exhibit a uniform thickness across the crust:

𝐷𝜁 (𝛀) = 𝐷̃ + 𝜁, (3.19)

where 𝜁 is a constant. We assign a value of 𝜁 (i.e., 0.1 km) that is much smaller
than 𝐷̃ for models in the current work. Note that in the case of a perfectly linear and
inverse relationship between 𝐷𝜁 (𝛀) and 𝐸 𝜁 (𝛀) Equation 3.18 would imply 𝜅(𝛀) =
1. For convenience, we compute 𝐸 𝜁 (𝛀) and 𝐸𝑏𝑎𝑠𝑒 (𝛀) using numerical FEMs but



85

could easily compute these functions using analytic methods (e.g., SatStress; Wahr
et al., 2009).

Figure 3.5 shows images of 𝜅(𝛀) for the case of 𝐷̃ = 25 km as well as recoveries of
crustal thickness (for the input model presented in Figure 3.2 of the main text) which
assume 𝜅(𝛀) = 1. Deviations in 𝜅(𝛀) from unity reflect differences in the efficiency
of 3D tidal forcing for producing strain for thickness variations located at different𝛀.
For example, thinning (i.e., which is analogous to lowering the shear modulus (Qin
et al., 2016) of 5% at locations with two tidally-driven principal stresses of opposite
sense (i.e., resulting in non-zero local shear stresses) may enhance 𝐸𝑜𝑏𝑠 (𝛀) (or
𝐸𝑛 (𝛀)) by 6% relative to 𝐸𝐵𝑎𝑠𝑒 (𝛀) compared to only 4% if positioned at locations
with two principal stresses of the same sense (i.e., resulting in zero local shear
stress) (Segall, 2010). Such position-dependent effects principally occur over long-
wavelengths (i.e., 𝑙 = 2 − 4) due to changes in the spatial pattern of the 𝑙 = 2 tidal
forcing (see Equation 3.2 of the main text) over these scales.

Text S2

S2.1: Results for Model With 𝐷̃ = 50 km

We reproduce the center-right and lower-left panels of Figure 3.4 of the main text
for recoveries of thickness on a synthetic crustal model with a mean thickness value
𝐷̃ = 50 km (see Figure 3.6). We find that increasing the value of 𝐷̃ increases the
horizontal spatial scale below which bending effects prohibit accurate recoveries of
crustal thickness (i.e., from 𝑙 = 12 to 𝑙 = 8).

Text S3

S3.1: Results for Model with Incorrect Initial Estimate of Mean
Thickness

We reproduce the center-right and lower-left panels of Figure 3.4 of the main text for
recoveries of thickness on models for which we assume a mean thickness of 50 km
despite a true mean thickness 𝐷̃ = 25 km (Figure 3.8). We find that we are able to
eventually converge to thickness values similar to those obtained when we initially
assume a correct mean thickness value of 𝐷̃ = 25 km (see Figure 3.4 of the main
text).
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Text S4

S4.1: The Impact of Noise and Measurement Coverage on Recov-
eries of Crustal Thickness

We examine the impact of noise (correlated and uncorrelated) on recoveries of
crustal thickness using our approach. For uncorrelated noise, we carry out a series
of experiments for which we superimpose Gaussian noise source to ‘measurements’
(simulated velocities at the surface of Enceladus) prior to inputting these simulated
data into our recovery technique (i.e., sections 3.1 and 3.2 of the main text). We
assign a standard deviation 𝜎𝑛 of the Gaussian noise source that is a fraction of the
magnitude of evaluated velocity at the surface |𝑣 | =

√︃
𝑣2
𝑟 + 𝑣2

𝜃
+ 𝑣2

𝜙
(see Equation

3.3 of the main text) at a given location such that there is a constant value for |𝑣 |/𝜎𝑛
for measurements across the body. We test |𝑣 |/𝜎𝑛 values ranging from 20 – 10000
and find that |𝑣 |/𝜎𝑛 < 10 - 100 results in a significant decrease in the accuracy of
recoveries of crustal thickness using our approach (see Figure 3.9 below). For peak-
to-peak tidally-induced horizontal displacements of ± 1 m at Enceladus, a loss of
coherence for |𝑣 |/𝜎𝑛 ∼ 10 - 100 indicates that the signal associated with variations
in crustal thickness ranges from approximately 1 - 10 cm, which is larger than
the typical sub-cm sensitivity of InSAR measurements. Regularization techniques
(e.g., Tikhanov smoothing) could also potentially reduce the impact of uncorrelated
measurement noise allowing for inference of crustal thickness for |𝑣 |/𝜎𝑛 < 10
(Tarantola, 2005).

For correlated noise, we replace our Gaussian moise source with a constant horizon-
tal (i.e., in the East direction) velocity 𝑣𝑐𝑜𝑟𝑟 across the body (Note: |𝑣 |/𝑣𝑐𝑜𝑟𝑟 is not
constant and depends on the local value of |𝑣 |). We test values of 𝑣𝑐𝑜𝑟𝑟 ranging from
0.001 — 1 m per tidal cycle and find that recoveries of thickness lose coherence
only for 𝑣𝑐𝑜𝑟𝑟 values approaching 1 m per tidal cycle. Note that correlated noise, as
described above, does not produce gradients in surface velocity fields and so min-
imally impacts deviatoric strain components in Equations 3.3 and 3.4 of the main
text. Incorporating uncorrelated noise correspondingly produces poorer recoveries
of crustal thickness (i.e., for similar noise magnitudes) than incorporating correlated
noise into simulated measurements does.

Regarding measurement coverage, orbiting platforms could feasibly acquire images
of displacement that are each separated by ∼50 km distance across the full surface of
Enceladus (Benedikter et al., 2022). Aliasing below such 50 km horizontal distances
(i.e., 𝑙 = 15) would impact strain at spatial scales over which bending effects already
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Figure 3.5: Panel A: Snapshots of the function 𝜅(𝛀) derived from Equations 3.18
and 3.19 viewed facing the Leading Hemisphere and the South Pole. Panel B:
Similar to center-right and lower-left panels of Figure 3.4 of the main text except we
assume 𝜅(𝛀) = 1 in Equations 3.8 and 3.13 for recoveries of crustal thickness.

prohibit accurate recoveries of crustal thickness (i.e., 𝑙 > 12; see main text).
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Figure 3.6: Similar to center-right and lower-left panels of Figure 3.4 of the main
text except we assign a mean thickness 𝐷̃ = 50 km for ‘true’ models for iterations 𝑛
= 0 – 20. Vertical dash-dot line at 𝑙 = 8 marked for reference in the right panel.
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Figure 3.7: Complex diurnal Love number components (i.e.,ℑ(ℎ20) andℜ(ℎ20)) for
a spherically symmetric body with non-uniform radial viscosity structure. Viscosity
structure is shown in the second plot from the right (grain size 0.1 mm; Brown et al.,
2006) and is derived assuming grain size- and stress- dependent creep (diffusion,
basal slip, and grain-boundary sliding mechanisms are considered; we extract molar
volume, activation energy, Burger’s vector, and viscous exponents for ice from
Goldsby and Kohlstedt, 2001) and the conductive temperature profile shown in the
fourth plot from the right. Maxwell times and average strain rates are shown in the
third and first plots from the right, respectively. We assume a mean diurnal stress
magnitude of 10 kPa for computations of viscosity. The lower left panel shows the
total magnitude of ℎ20 relative to that expected for a body which exhibits only elastic
strain (i.e., a proxy for the relative impact of viscous deformation on surface strain
fields; a value of 1 indicates that viscous strain does not modulate deformation at
the surface). Note that viscous structure increases total strain at the outer surface
by less than 0.2% for mean thicknesses ranging from 15 - 30 km (Van Hoolst et al.,
2016). We solve for ℑ(ℎ𝑑2) and ℜ(ℎ𝑑2) using a 100-layer spherically symmetric
model within SatStress (Wahr et al., 2009). For each layer, we linearly interpolate
viscosity values and assign a constant shear modulus and bulk modulus (𝐺 = 3.3
GPa and 𝜇 = 8.8 GPa respectively).
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Figure 3.8: Similar to center-right and lower-left panels of Figure 3.4 of the main
text except we assume an incorrect initial value for mean thickness (i.e., 50 km for
‘true’ mean thickness 𝐷̃ = 25 km).
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Figure 3.9: Mean RMS deviation (in km) of recovered relative to input thickness for
recoveries of crustal thickness in the presence of measurement noise. Mean RMS
deviation corresponds to the mean value of |𝛿𝐷12(𝛀) | (see Equation 3.7 of the main
text) following our approach. Left Panel: Mean RMS deviation associated with
correlated noise for applied 𝑣𝑐𝑜𝑟𝑟 (i.e., secular velocities) ranging from 0.0001 - 1 m
over the tidal cycle. Right Panel: Mean RMS deviation associated with uncorrelated
noise for |𝑣 |/𝜎𝑛 values ranging from 10000 - 20. Results for the noiseless case (i.e.,
Figure 3.4 of the main text) are shown as a horizontal dotted line at 2.1 km mean
RMS deviation. Measurement resolution range that is achievable with InSAR based
on Simons and Rosen (2015) is shown as a gray shaded box in the right panel for
reference. X- and Y- axes are plotted in log10 scale.
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Table 3.1: Assumed parameter values in Chapter 3. Parameter values extracted
from Schenk et al. (2018); Iess et al. (2014); and Souček et al. (2016).

Parameter Value Units
𝑅 252.1 km
𝐷̃ 25.0 km
𝐺 3.3 GPa
𝜇 8.6 GPa
𝜌𝑖𝑐𝑒 925 kg/m3

𝜌𝑤 1007 kg/m3

𝑔 0.113 m/s2

𝑔𝑖𝑛𝑡 0.120 m/s2

𝑒 0.0047 N/A
𝜔 5.307·10−5 s−1
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C h a p t e r 4

JET ACTIVITY ON ENCELADUS LINKED TO
TIDALLY-DRIVEN STRIKE-SLIP MOTION ALONG TIGER

STRIPES

A. Berne et al. (2024). “Jet activity on Enceladus linked to tidally driven strike-slip
motion along tiger stripes”. In: Nature Geoscience 17.5.

4.1 Abstract
At Saturn’s moon Enceladus, jets along four distinct fractures called ‘Tiger Stripes’
erupt ice crystals into a broad plume above the South Pole. The Tiger Stripes
experience variations in tidally-driven shear and normal traction as Enceladus orbits
Saturn. Here we use numerical finite-element modelling of a spherical ice shell
subjected to tidal forces to show that this traction may produce quasi-periodic
strike-slip motion in the Enceladus crust with two peaks in activity during each
orbit. We suggest that friction modulates the response of Tiger Stripes to driving
stresses, such that tidal traction on the faults results in a difference in the magnitudes
of peak strike-slip and delays the first peak in fault motion following peak tidal stress.
The simulated double-peaked and asymmetric strike-slip motion of the Tiger Stripes
is consistent with diurnal variations in jet activity inferred from Cassini spacecraft
images of plume brightness. The spatial distribution of strike-slip motion also
matches Cassini infrared observations of heat flow. We hypothesize that strike-slip
motion can extend transtensional bends (e.g., pull-apart structures) along geometric
irregularities over the Tiger Stripes and thus modulate jet activity. Tidally-driven
fault motion may also influence longer term tectonic evolution near the South Pole
of the satellite.

4.2 Introduction
Enceladus is a small (∼500 km diameter), dynamic, and potentially habitable moon
of Saturn (Porco et al., 2006; Postberg et al., 2009). Flybys of Enceladus by
the Cassini spacecraft between 2005-2015 revealed the presence of numerous jets
which localize along four large-scale surface fractures (informally known as the
‘Tiger Stripes’) over the moon’s highly tectonized South Polar Terrain (SPT) (Yin
and Pappalardo, 2015; Spitale et al., 2025). The Tiger Stripes exhibit high heat flow



96

relative to other regions on Enceladus (Spencer et al., 2018) and are believed to tap
material from a global (Thomas et al., 2016) or regional (Johnston and Montési,
2017) subsurface ocean to feed a broad, mostly water-ice plume visible above the
South Pole (Porco et al., 2006).

Jet activity and plume brightness at Enceladus vary over a 32.9 hr period (Ingersoll
et al., 2020). The coincidence of the plume brightness oscillation period and the
orbital timescale suggests that diurnal tides (resulting from Enceladus’s phase-locked
and eccentric orbit about Saturn; Murray and Dermott, 2000; Nimmo et al., 2018)
regulate heat and mass transport by cyclically deforming the satellite’s outer icy crust
(Hurford et al., 2007; Souček et al., 2016). Tidally-driven ‘opening’ along fractures
has been hypothesized to modulate jet activity by exposing the liquid water interface
within the Tiger Stripes (i.e., the water table) to the vacuum of space (Nakajima and
Ingersoll, 2016; Hurford et al., 2007; Kite and Rubin, 2016; Behounková et al., 2015;
Porco et al., 2014). Extension in a direction normal to Tiger Stripes oriented ∼30◦

counter-clockwise from the sub-Saturn direction produces a single peak in fault-
opening displacement over the tidal cycle near mean anomaly 𝜑 = 120◦ (Hurford
et al., 2007). However, the plume of Enceladus exhibits peak brightness near 𝜑
= 200◦ as well as a smaller local peak in activity near 𝜑 = 30◦ (Ingersoll et al.,
2020). Viscous effects within the crust could induce a 6-7 hr delay (i.e., ‘phase lag’)
between the maximal response at 𝜑 = 200◦ and peak forcing at 𝜑 = 120◦ but only for
a relatively thick ice shell (∼50 km) with an extremely low mean viscosity (∼1013

Pa-s) over the SPT (Behounková et al., 2015). Dynamic fluid inertia within faults
has also been proposed to cause a delay in peak plume activity, but this process
would require invoking an additional mechanism (e.g., turbulent, intra-fault fluid
dissipation) to maintain Tiger Stripes that are nearly fully-open (Kite and Rubin,
2016) despite effective overburden pressures of at least ∼100 kPa (Crawford and
Stevenson, 1988). Models of jet activity that rely on pure opening displacement
across the Tiger Stripes also cannot readily explain the occurrence of a second peak
in plume brightness near 𝜑 = 30◦ (Ingersoll et al., 2020).

Strike-slip motion may also regulate jet activity at Enceladus. Initial interpretations
of Cassini data suggested that shear heating along the tiger stripe faults may cause
sublimation of icy material into the plume (Nimmo et al., 2007; Smith-Konter
and Pappalardo, 2008). However, it is difficult to reconcile a shear heating-driven
eruption mechanism with the discovery of salts in solid plume grains (Postberg
et al., 2009; Postberg et al., 2011; Postberg et al., 2018). Nonetheless, an eruption
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mechanism that is driven by strike-slip motion could result in two peaks in activity
through the tidal cycle (Smith-Konter and Pappalardo, 2008; Sládková et al., 2021)
and may not require the action of an additional process to delay the timing of
maximal plume brightness by 6-7 hrs.

4.3 Tidal Deformation at Enceladus
Using a fully 3D numerical (finite-element) approach (Berne et al., 2023a; Berne
et al., 2023b), we find that tidally-driven strike-slip motion along the Tiger Stripes
closely tracks plume timing and heat flow at Enceladus. We simulate tidal forcing
by subjecting a quasi-spherical ice shell to forces associated with time-variable ec-
centricity tides (Figures 4.1 and 4.2, see also Methods and Figure 4.6). We assume a
shell with a mean thickness of 30 km (Thomas et al., 2016; Van Hoolst et al., 2016;
Hemingway and Mittal, 2019; Park et al., 2024), a uniform elastic rheology (see Ta-
ble 4.1; Ermakov et al., 2021), lateral variations in crustal thickness (local thickness
near the South Pole is ∼10 km; Hemingway et al., 2018), and radial, through-going
fault surfaces at tiger stripe locations (see Figure 4.6). Fault slip is consistent with
that expected from interfaces subject to Coulomb friction and hydrostatic normal
stresses. We compute deformation over a sufficient number of orbital periods such
that differences between displacements at a given mean anomaly between cycles are
negligible (see Figure 4.8). We also assume that intraporous liquid water pressure
counteracts the impact of hydrostatic normal stress on fault deformation below the
∼1 km depth of the water table (Rozhko et al., 2007). Mean effective overbur-
den pressures (∼50 kPa) are much larger than maximum tidally-driven ‘opening’
tractions (∼20 kPa, see Figure 4.2b) over the Tiger Stripes. Modelled fault inter-
faces therefore do not experience significant opening displacement (for details, see
Methods).

We find that frictional fault interfaces at tiger stripe locations periodically slide and
lock (i.e., exhibit stick-slip behavior) over the 32.9 hr orbital timescale (Figure 4.2c
and Figure 4.2d). Laboratory experiments (Schulson and Fortt, 2012) indicate
that the static coefficient of friction for ice-on-ice within the crust of Enceladus is
probably between 𝜇 = 0.3−0.8 but may be much lower (𝜇 ∼ 0.0) if ice temperatures
fall below 200K along faults (Schulson and Fortt, 2012). Liquid water generated
by shear heating (Schulson and Fortt, 2012; Meyer et al., 2022) or below the water
table (Kite and Rubin, 2016) could additionally lubricate frictional contacts over
interfaces (Souček et al., 2016; Behounkova et al., 2017; Sládková et al., 2021).
Lubrication will decrease the impact of friction during fault sliding (i.e., lower the



98

dynamic coefficient of friction to nearly zero). However, laboratory experiments
(Maeno et al., 2003) and studies of sea ice rheology on Earth (Sukhorukov and
Løset, 2013) do not indicate that lubrication impacts the failure stress necessary
for the onset of sliding (allowing for potentially high values of 𝜇, see also Figure 1
of Maeno et al., 2003). We therefore explore a range of values for the coefficient
of static friction 𝜇 = 0.0 − 0.8 and assume zero dynamic friction (i.e., lubricated
contacts) for the tiger stripe faults.

The timing of peak resolved shear traction along the Tiger Stripes is sensitive to the
orientation (i.e., strike direction) of the fault planes. Here, we assume traces of the
Tiger Stripes derived from Schenk, 2008. Starting from periapse (mean anomaly
𝜑 = 0◦), left-lateral shear tractions resolved along planes oriented ∼30◦ counter-
clockwise (viewed facing the South Pole) from the sub-Saturnian point increase
until reaching a maximum value near 𝜑 = 15◦ (Figure 4.2a). As the tidally-driven
principle stress directions subsequently rotate about the South Pole, shear tractions
(Figure 4.2a) decrease (𝜑 = 15◦ – 105◦), change sign (𝜑 = 105◦), and induce right-
lateral fault slip (Figure 4.2d) between 𝜑 = 105◦– 195◦. A second peak in resolved
lateral shear traction occurs slightly after apoapse near 𝜑 = 195◦.
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Figure 4.1: Examples of tidally-driven deformation at Enceladus during phases of
peak left-lateral slip at 𝜑 = 65◦ (panel a) and right-lateral slip at 𝜑 = 200◦ (panel b).
Top row: South Polar stereographic projections (Leading and Trailing hemispheres
labelled) of radial displacement at the surface relative to that produced by models
without Tiger Stripe faults. Bottom row: Perspective view of lateral slip along
Tiger Stripe faults: ‘A’ Alexandria, ‘C’ Cairo, ‘B’ Baghdad, and ‘D’ Damascus.
We assign 𝜇 = 0.4 to Tiger Stripe faults for this example. Faults are viewed from
130◦W, looking upward from 35◦ below the horizontal.
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Figure 4.2: Modelled traction and lateral slip over Tiger Stripe faults as a function
of mean anomaly. Driving shear traction 𝜏 (panel a), normal traction 𝜎𝑛 (panel b),
Coulomb traction 𝜏𝑐 (panel c), and resultant accumulated lateral fault slip (panel
d) are averaged over each respective Tiger Stripe and correspond to snapshots of
deformation shown in Figure 4.1. Mean anomalies 𝜑 = 0◦, 360◦ and 𝜑 = 180◦
respectively correspond to periapse and apoapse. Normal tractions are evaluated
relative to effective overburden pressures across fault interfaces. See Methods ‘Fault
Interfaces’ for additional details regarding the computation of traction and slip from
our models.
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For a fault subject to static Coulomb friction, slip occurs when the local value of a
shear traction 𝜏 (± 30 kPa range over the tidal cycle, see Figure 4.2a) exceeds the
total local normal traction 𝜎𝑛 scaled by 𝜇 (i.e., Coulomb traction, or 𝜏𝑐 = |𝜏 | − 𝜇𝜎𝑛,
is positive; Sládková et al., 2021). Diurnal tides drive approximately ± 20 kPa
differences in mean 𝜎𝑛 (relative to a mean effective overburden pressures of ∼50
kPa) with peak extension and compression at 𝜑 = 120◦ and 𝜑 = 300◦ (Figure 4.2b).
Resulting mean 𝜏𝑐 is positive across the Tiger Stripes (for models with 𝜇 = 0.4) during
𝜑 ∼ 30◦ – 80◦ and 180◦ – 225◦ (Figure 4.2c). Following the onset of failure near 𝜑 =
30◦ and 𝜑 = 180◦, tiger stripe faults accumulate lateral slip until reaching peak values
at 𝜑 = 65◦ and 𝜑 = 200◦. As the magnitude of 𝜏 decreases (i.e., faults are unloaded),
elastic strain in the crust surrounding fractures induces slip in an opposite sense
until net lateral slip returns to nearly zero at 𝜑 = 140◦ and 285◦ (Figure 4.2d). Note
that peak left-lateral 𝜏 (Figure 4.2a) does not align with positive 𝜏𝑐 (Figure 4.2c),
resulting in an inability of large portions of the Tiger Stripes to initiate slip until
𝜑 ∼ 30◦ (Figure 4.2d). Relatively smaller shear tractions resolved along the Tiger
Stripes during 𝜑 = 30◦ – 80◦ reduce the magnitude of peak left-lateral slip at 𝜑 =

65◦ compared to that of peak right-lateral slip near 𝜑 = 200◦ (i.e., when positive
𝜏𝑐 at 𝜑 = 180◦ – 225◦ effectively coincides with peak right-lateral shear traction at
𝜑 = 195◦). The resulting slip profile over the orbital period is double-peaked and
asymmetric (for further discussion of the relationship between 𝜏𝑐, 𝜏, 𝜇 and slip for
an analogous (1D) finite fault, see Figure 4.9). Increasing prescribed 𝜇 shifts the
start of the first mean positive 𝜏𝑐 window (Figure 4.2c) forward in time relative to
peak left-lateral 𝜏 (Figure 4.2a), further reducing and delaying peak left-lateral slip
during Enceladus’s tidal cycle.

4.4 Strike-Slip Motion Correlates with Jet Activity
We compare numerical results for the magnitude of deformation along the Tiger
Stripes (i.e., the absolute value of lateral slip in Figure 4.1 and Figure 4.2d) with
observations of plume brightness (Figure 4.3). Plume brightness is derived from
Cassini Imaging Science Subsystem (ISS) images of particle densities within hor-
izontal ‘slabs’ at ∼100 km altitude above the South Pole of Enceladus (Ingersoll
et al., 2020). Predicted strike-slip motion is generally correlated with plume bright-
ness across the entire tidal cycle, regardless of the value of 𝜇 assigned to the Tiger
Stripes (Pearson’s correlation coefficient R ∼ 0.5 - 0.9, see Figure 4.10). Maxima
in model-predicted slip coincide with observations of peak plume brightness near 𝜑
= 30◦ and 200◦. Nearly zero fault slip also occurs during periods of relatively low
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Figure 4.3: Comparison of predicted strike-slip motion along Tiger Stripes and
observations of plume brightness. Individual solid lines correspond to magnitudes
of strike-slip motion on Tiger Stripes with different prescribed 𝜇 ranging from 0.0
– 0.8 normalized to maximum values over the tidal cycle. Plume brightness data
is extracted from Ingersoll et al., 2020. Scatter points and the gray shaded area
respectively denote the normalized moving average (4◦ bin widths) and range of
plume brightness derived from ISS images between 2005 - 2017. The red solid line
(𝜇 = 0.4) corresponds to the model results shown in Figures 4.1, 4.2, and 4.4.

brightness near 𝜑 = 315◦ (i.e., minimal values of 𝜏𝑐, see Figure 4.2c). Correlation is
most sensitive to assumed 𝜇 values during 𝜑 = 0◦ − 180◦ but is highest for models
with moderate-high (𝜇 = 0.3 − 0.8) levels of static friction (R > 0.7).
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The magnitude of predicted strike-slip motion also depends on position along the
Tiger Stripes. Tidally-driven shear tractions in the southern hemisphere of Enceladus
decrease moving away from the South Pole due to spatial variations in the tidal
forcing function (see Methods) as well as the ∼50% variation in crustal thickness
over 90◦S - 70◦S latitude (see Figure 4.11; Wahr et al., 2006; Park et al., 2024;
Berne et al., 2023b). Ignoring the impact of the variations in crustal thickness
on deformation, we expect the ordering of faults according to the value of peak
shear traction (and strike-slip motion) to be (from greatest to least): 1. Baghdad
(maximum southern latitude 𝜃𝑚𝑎𝑥 = 89◦S); 2. Cairo (𝜃𝑚𝑎𝑥 = 84◦S); 3. Damascus
(𝜃𝑚𝑎𝑥 = 80◦S); and 4. Alexandria (𝜃𝑚𝑎𝑥 = 76◦S) or ‘B-C-D-A’. Note that the
significantly thicker crust over Cairo Sulcus relative to Damascus Sulcus results
in the ordering ‘B-D-C-A’ in Figure 4.2a and Figure 4.2d (Berne et al., 2023a;
Berne et al., 2023b). Local spatial maxima and minima in model-predicted slip also
occur near the southernmost and northernmost portions (i.e., near the center and
tips/splays) of each fracture, respectively.

We compare the depth-integrated spatial distribution of strike-slip activity (averaged
over the tidal cycle) with measurements of heat flow (i.e., radiated power per unit
length) along the Tiger Stripes (Figure 4.4). Heat flow is derived from Cassini
Composite Infrared Spectrometer (CIRS) measurements of mean temperature across
finite-width segments of the Tiger Stripes (Spencer et al., 2018). The position of
peak slip and heat flow align both globally (i.e., order ‘B-D-C-A’) and locally (near
the center of each fracture, except Cairo Sulcus). Overall, heat flow correlates with
strike-slip motion distributed across all faults (R ∼ 0.45 - 0.6, see Figure 4.12).
Correlation is only mildly sensitive to the assumed coefficient of friction for the
Tiger Stripes but is noticeably lower for cases with very low (i.e., 𝜇 = 0.0) and high
(i.e., 𝜇 = 0.8) levels of friction.

4.5 Eruptions Driven by Strike-Slip Motion
The models presented here predict a strong correlation between the timing of tidally-
driven strike-slip motion along the Tiger Stripes and plume brightness as well as
local fault slip and heating. However, our models do not describe a mechanism by
which lateral fault motion regulates jet activity at Enceladus. Due to the thermal
inertia of ice, the impact of shear heating on variations in plume brightness over the
orbital timescale is probably negligible (Nimmo et al., 2007). Based on our model,
we also predict that frictional shear heating produces < 1 GW or less than 20% of the
thermal energy radiating from the SPT (Spencer et al., 2018). However, strike-slip
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Figure 4.4: Comparison of the spatial distribution of strike-slip motion and heat
flow along the Tiger Stripes. a: Spatial distribution of radiated power per unit
length associated with heat flow (Spencer et al., 2018; right image) alongside depth-
integrated lateral slip averaged over the tidal cycle for Tiger Stripes with 𝜇 = 0.4
(left image) relative to global maximum values. b: 1-D profiles of heat flow (dash-
dot) and strike-slip motion (solid) shown in panel ‘a’. Local maxima for heat flow
(observation) and lateral slip (model) marked with vertical dashed and dotted lines,
respectively. Transect labels in panel ‘a’ correspond to endpoints of 1D profiles
shown in panel ‘b’.



105

motion could alternately deform left- and right- stepping transtensional bends (e.g.,
‘pull-aparts’, see Figure 4.5) over a full tidal cycle. Under this scenario, focused
extension over individual bends along the Tiger Stripes could facilitate water to rise
and feed material (and latent heat) to jets, loosely analogous to volcanic processes
commonly observed along Earth’s large strike-slip fault bends subject to tectonic
deformation (e.g., the Salton Sea; Han et al., 2016).

4.6 Tectonic Evolution of the South Polar Terrain
Beyond its impact on jet activity at tidal periods, we anticipate that friction-
modulated slip along the Tiger Stripes influences the long-term evolution of the
SPT. Anelasticity within the crust could diffuse tidally-driven strain via permanent
fault slip, viscous flow, or material failure at crack tips. For example, if fault friction
enhances peak right-lateral slip relative to peak left-lateral slip during each orbit,
as predicted by this work (see Figures 4.1b, 4.2d, and 4.3) then tidal motion would
favor permanent (i.e., long-term) right-lateral slip over Tiger Stripes. Sustained
right-lateral slip would concentrate northward compression over the tip of Dam-
ascus Sulcus near 90◦E (and Alexandria Sulcus near 90◦W) (Figure 4.1) thereby
promoting orthogonal extension along structures with north-south orientations cen-
tered over trailing (and leading) hemispheres (e.g., chasmata; Yin and Pappalardo,
2015). However, a past clockwise rotation of the SPT (Rossi et al., 2020; Yin
and Pappalardo, 2015) could invert the favored sense of permanent tidally-driven
deformation over the Tiger Stripes and support the formation of nearby geologic
structure indicative of long-term left-lateral fault slip (e.g., eastward-bending horse-
tail structures; Yin and Pappalardo, 2015). Deformation expressed over the SPT
could also result from a combination of different processes that have evolved through
time (e.g., non-synchronous rotation; Patthoff and Kattenhorn, 2011) further com-
plicating interpretations of current tiger stripe motion based solely on surrounding
geomorphology. Testing the presented predictions may therefore require detailed
geodetic observations of fault behavior over multiple tidal periods (e.g., using radar
interferometry; Simons and Rosen, 2015). These observations could provide key
constraints on the mechanical nature of the crust, tidal controls on jet activity, and
the evolution of the South Polar Terrain.
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Figure 4.5: Conceptual relationship between tidally-driven normal tractions, strike-
slip motion, and jet activity through the tidal cycle. Relatively higher compression
near 𝜑 = 30◦ (Figure 4.2b) reduces left-lateral motion compared to right lateral
motion during 𝜑 = 200◦ (Figure 4.2d). The resultant double-peaked and asymmetric
variability of strike-slip motion correlates with plume brightness at Enceladus.
Strike-slip motion may intermittently open left- and right-stepping transtensional
bends (shown in the lower left and upper right crustal blocks) allowing water to rise
through the ice shell and power jet activity along the Tiger Stripes. Graphics shown
are not to scale.
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Methods
Finite Element Model
Following the approach described in Supplementary section S1.1 of Berne et al.,
2023a, we formulate and solve a boundary value problem appropriate for eccentricity
tides on a quasi-spherical ice shell. We ignore the potential impact of viscous strain
(Wahr et al., 2009), account for self-gravitational effects (Wahr et al., 2006), ignore
inertial forces, and treat the core as a rigid body (Schubert et al., 2007). We find
differences of <1% between results produced by our methodology and semi-analytic
solutions for tidal deformation on ice shells with lateral variations in shear modulus
(see Figure 2 of Rovira-Navarro and Matsuyama, 2022).

We start by defining the strong form of the quasi-static equation of motion:

𝜎𝑖 𝑗 , 𝑗 + 𝑓𝑖 = 0 in 𝑊 (4.1a)

𝜎𝑖 𝑗𝑛 𝑗 = 𝑇𝑖 on 𝑆, (4.1b)

where 𝑖 describe cartesian directions for a body subject to stresses𝜎𝑖 𝑗 and body forces
𝑓𝑖 over the volume 𝑊 , 𝑇𝑖 describes tractions on surfaces 𝑆, and 𝑛 𝑗 is a unit vector.
We subdivide 𝑆 into the surface at the outer domain boundary 𝑆𝑜𝑢𝑡 , the surface at
the interior (i.e., ice-ocean) domain boundary 𝑆𝑖𝑛𝑡 , and surfaces corresponding to
fault interfaces 𝑆 𝑓 of our geometry.

For an elastic solid, we can write a constitutive relation (i.e., Hooke’s law) using
the rank-4 stiffness tensor 𝐶𝑖 𝑗 𝑘𝑙 to map displacements 𝑢 to stresses 𝜎𝑖 𝑗 . We assign
parameters in 𝐶𝑖 𝑗 𝑘𝑙 that are appropriate for a linear isotropic material with a shear
modulus 𝐺 and bulk modulus 𝜅 (see Supplementary Table 4.1; the symbol denotes
derivative with respect to a direction):

𝜎𝑖 𝑗 =
1
2
𝐶𝑖 𝑗 𝑘𝑙 (𝑢𝑘,𝑙 + 𝑢𝑙,𝑘 ). (4.2)

We apply forces associated with the time-dependant driving 𝑉 (𝑟, 𝜃, 𝜙) and self-
gravitational𝑉 𝑠𝑔 (𝑟, 𝜃, 𝜙) potentials. To the first order in eccentricity, we can formu-
late 𝑉 (𝑟, 𝜃, 𝜙) at Enceladus following Murray and Dermott, 2000:

𝑉 (𝑟, 𝜃, 𝜙) = 𝑟2𝜔2𝑒 · (sin(𝜔𝑡) P22(𝜆) sin2𝜙 − 3
4

cos(𝜔𝑡) (2 P20(𝜆) − P22(𝜆) cos2𝜙)),

(4.3)
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where 𝑟, 𝜃, 𝜙 are radial, co-latitude, and longitude positions in a reference frame
fixed to the center of mass of Enceladus, 𝜔 is the orbital angular velocity, and 𝑒
is the orbital eccentricity. Times 𝑡 = 0, 2𝜋

𝜔
, 4𝜋
𝜔

etc. correspond to orbital periapse
for consecutive tidal cycles. 𝑃20(𝜆) and 𝑃22(𝜆) are associated Legendre Functions
with the nested function 𝜆 = cos(𝜃). To compute 𝑉 𝑠𝑔 (𝑟, 𝜃, 𝜙), we self-consistently
solve Poisson’s equation for gravitational potential arising from mass movement at
the boundaries (i.e., surfaces) of our geometry:

𝑉 𝑠𝑔 (𝑟, 𝜃, 𝜙) = G(𝑟, 𝜃, 𝜙, 𝑟′, 𝜃′, 𝜙′)𝜌𝑢𝑖 (𝑛𝑖 · 𝑛𝑜), (4.4)

where 𝑛𝑜 is the unit vector parallel to the direction normal to the local surface, 𝜌 is the
density of the ice shell, and G(𝑟, 𝜃, 𝜙, 𝑟′, 𝜃′, 𝜙′) is a Green’s function relating mass
at a given location 𝑟′, 𝜃′, 𝜙′ with potential at 𝑟, 𝜃, 𝜙 (see Supplementary S1.1.1.3 of
Berne et al., 2023a for the definition G; henceforth we drop the notation 𝑟, 𝜃, 𝜙 and
𝑟′, 𝜃′, 𝜙′ from 𝑉 and 𝑉 𝑠𝑔) (Murray and Dermott, 2000).

We formulate the 𝑓𝑖 on 𝑊 in Equation 4.1 as a gradient of the sum of gravitational
potentials in𝑊 :

𝑓𝑖 = −∇(𝑉 𝑠𝑔 +𝑉) · 𝑛𝑖 in 𝑊. (4.5)

For 𝑇𝑖 on 𝑆𝑖𝑛𝑡 , we evaluate the restoring forces associated with the change in the
geoid height and the change in the radial position of the ice-ocean boundary:

𝑇𝑖 = 𝑢 𝑗 (𝜌 − 𝜌𝑤)𝑔𝑖𝑛𝑡 (𝑛𝑖 · 𝑛𝑜) (𝑛 𝑗 · 𝑛𝑜) + 𝜌𝑤 (𝑉 +𝑉 𝑠𝑔) (𝑛𝑖 · 𝑛𝑜) on 𝑆𝑖𝑛𝑡 , (4.6)

where 𝑔𝑖𝑛𝑡 is the radial gravitational acceleration at the ice-ocean boundary and 𝜌𝑤
is the density of the ocean. For 𝑇𝑖 on 𝑆𝑜𝑢𝑡 , we only evaluate forces associated with
changes in the radial position of the outer surface:

𝑇𝑖 = 𝑢 𝑗 𝜌𝑔𝑜𝑢𝑡 (𝑛𝑖 · 𝑛𝑜) (𝑛 𝑗 · 𝑛𝑜) on 𝑆𝑜𝑢𝑡 , (4.7)

where 𝑔𝑜𝑢𝑡 is the radial gravitational acceleration at the outer surface of Enceladus.
The formulation for the boundary condition along 𝑆 𝑓 requires special consideration
(see ‘Fault Interfaces’ below) but is functionally similar to boundary conditions
along 𝑆𝑜𝑢𝑡 and 𝑆𝑖𝑛𝑡 in the context of Equation 4.1.
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We use the 3D FEM code PyLith (Aagaard et al., 2007) to formulate and obtain
solutions (i.e., 𝑢) for the boundary value problem described in Equations 4.1 - 4.7.
PyLith is a well-established geodynamic modelling tool which allows for complex
bulk rheology and geometrical meshes. PyLith also incorporates the highly paral-
lelized numerical solver package PetSc (Balay et al., 2014). For this work, we have
modified PetSc to solve for displacements in a no-net-rotation/translation reference
frame appropriate for eccentricity tides (for additional details, see Supplementary
S1.1.2.4 of Berne et al., 2023a).

Fault Interfaces
We simulate fault deformation by allowing duplicate sets of mesh nodes (i.e., ‘split
nodes’; Melosh and Raefsky, 1981) along prescribed interfaces to displace relative
to each other when deformed by tidally-driven tractions. Our formulation for fault
interfaces differs from the approach adopted by Sládková et al., 2021 which utilizes
‘weak’ zones with reduced viscosity as proxies for frictional behavior. By formulat-
ing faults as 2D surfaces instead of 3D volumes, we can compute strike-slip motion
across fault structures in a manner which is far less sensitive to mesh discretiza-
tion (Sládková et al., 2021) or our choice of solution basis functions (Melosh and
Raefsky, 1981).

We constrain duplicate nodes on fault surfaces according to computed slip 𝑠 follow-
ing:

𝑠𝑠 = (𝑢+𝑖 − 𝑢−𝑖 ) (𝑛𝑖 · 𝑛𝑠) on 𝑆 𝑓 , (4.8)

where 𝑢+
𝑖

and 𝑢−
𝑖

denote displacements on either side of a fault surface (the subscript
𝑠 denotes a direction parallel to the local fault strike direction). Assigning friction
along fault surfaces introduces a time-dependence to solutions for the elastic problem
(Sládková et al., 2021). For this work, we discretize the time domain as a series of
points (90 per tidal cycle) separated by finite intervals Δ𝑡. The temporal progression
of slip depends on traction that is projected along the faults and the prescribed
coefficient of static friction 𝜇 according to:

𝑠𝑠 (𝑡 + Δ𝑡) = 𝑠𝑠 (𝑡) + Δ𝑠𝑠 ⇔ |𝑇𝑖 (𝑡 + Δ𝑡) (𝑛𝑖 · 𝑛𝑠) | > 𝜇(𝑇𝑖 (𝑡 + Δ𝑡) (𝑛𝑖 · 𝑛𝑜) + 𝑇 𝑏)
(4.9a)

𝑠𝑠 (𝑡 + Δ𝑡) = 𝑠𝑠 (𝑡) ⇔ |𝑇𝑖 (𝑡 + Δ𝑡) (𝑛𝑖 · 𝑛𝑠) | < 𝜇(𝑇𝑖 (𝑡 + Δ𝑡) (𝑛𝑖 · 𝑛𝑜) + 𝑇 𝑏),
(4.9b)
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where 𝑇 𝑏 is a constant background effective overburden traction and:

Δ𝑠𝑠 = 2𝑀−1
𝑘𝑙𝑠𝐶

−1
𝑖 𝑗 𝑘𝑙 (𝑇𝑖 (𝑡 + Δ𝑡) − 𝑇𝑖 (𝑡))𝑛 𝑗 , (4.10)

where 𝑀𝑘𝑙𝑠 is a rank-3 tensor that relates strike-slip motion to equivalent co-local
strain along a fault plane in a 3D elastic medium (Segall, 2010). Note that our
formulation for fault rheology (Equations 4.9 and 4.10) allows for unrestricted slip
only if shear tractions exceed normal tractions (scaled by 𝜇) along the fault plane,
which is consistent with the behavior expected for tiger stripe faults subject to
static Coulomb friction and zero dynamic friction. Slip and traction are coupled
to each other in a 3D elastic medium (e.g., slip generates a stress field, which
induces additional slip, resulting in additional stress, etc.). Pylith/PetSc therefore
utilizes a non-linear solver to iteratively and self-consistently resolve slip and traction
at a given time step. To compute 𝑇 𝑏, we consider the combined effect of normal
hydrostatic stress and fluid pore pressure below the depth of the water table (Sládková
et al., 2021):

𝑇 𝑏 = 𝜌𝑔𝑜𝑢𝑡𝑑 ⇔ 𝑑 < 𝐷
𝜌𝑤 − 𝜌
𝜌𝑤

(4.11a)

𝑇 𝑏 = 𝜌𝑔𝑜𝑢𝑡𝑑 + (𝐷 𝜌𝑤 − 𝜌
𝜌𝑤

− 𝑑)𝜌𝑤𝑔𝑜𝑢𝑡 ⇔ 𝑑 > 𝐷
𝜌𝑤 − 𝜌
𝜌𝑤

, (4.11b)

where 𝐷 is the local thickness of the ice shell derived from our crustal shape model
(Figure 4.7, values range from 7 km to 15 km over the Tiger Stripes). The local
distance from the outer surface 𝑑 depends on the local radial position of the outer
surface 𝑅 and radial position 𝑟:

𝑑 = 𝑅 − 𝑟. (4.12)

To compute the area-mean of strike-slip motion at a given time point along a fault
surface (i.e., potency Ω𝑠 (𝑡)), we evaluate:

Ω𝑠 (𝑡) =
1
𝐴

∫
𝑆 𝑓

𝑠𝑠 (𝑡) 𝑑𝑆, (4.13)

where 𝐴 is the total area of the fault surface. Similarly, to evaluate the area-mean of
tractions along a fault surface Ω𝑇 (𝑡) we compute:

Ω𝑇 (𝑡) =
1
𝐴

∫
𝑆 𝑓

𝑇𝑖 (𝑡) (𝑛𝑖 · 𝑛 𝑓 ) 𝑑𝑆, (4.14)
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where 𝑛 𝑓 can denote a vector in strike (𝑛𝑠) or normal (𝑛𝑜) directions. We compute
driving tractions for a model with fully locked (non-slipping) interfaces at tiger
stripe fault locations. However, slip produces additional stress in the surrounding
medium resulting in ∼10% more variability in shear and normal tractions relative
to quantities presented in the upper panels of Figure 4.2 (for details, see Figure 4.6).
To compute depth-integrated strike-slip potency Ω𝑑

𝑠 , we integrate strike-slip radially
at a given lateral position through the ice shell and over tidal cycle 𝑏 (𝑏 = 0 denotes
the first tidal cycle):

Ω𝑑
𝑠 =

∫ (𝑏+1)
2𝜋𝜔

𝑏
2𝜋𝜔

∫ 𝑅

𝑅−𝐷
𝑠𝑠 (𝑡) 𝑑𝑟 𝑑𝑡. (4.15)

For faults with zero dynamic friction, strike-slip motion following the onset of failure
does not result in energy dissipation along interfaces. Nonetheless, the maximum
power 𝑃 that could be transferred to frictional shear heating along the Tiger Stripes
is the product of shear traction and the time-derivative of slip (i.e., 𝑑𝑠𝑠 (𝑡)

𝑑𝑡
) integrated

along fault surfaces and averaged over the tidal cycle:

𝑃 = 2𝜋𝜔
∫ (𝑏+1)

2𝜋𝜔

𝑏
2𝜋𝜔

∫
𝑆 𝑓

𝑑𝑠𝑠 (𝑡)
𝑑𝑡

𝑇𝑖 (𝑡) (𝑛𝑖 · 𝑛𝑠) 𝑑𝑆 𝑑𝑡. (4.16)

Increasing the impact of static friction decreases the amplitude of 𝑠𝑠 but minimally
affects 𝑇𝑖 (𝑡). Values of 𝑃 therefore negatively correlate with assigned 𝜇 in our
models. We find that 𝑃 ranges from 0.9 - 0.4 GW for prescribed 𝜇 values spanning
0.0 - 0.8.

Models permit fault opening 𝑠𝑜:

𝑠𝑜 = (𝑢+𝑖 − 𝑢−𝑖 ) (𝑛𝑖 · 𝑛𝑜) on 𝑆 𝑓 , (4.17)

if tidally driven normal tractions exceed effective overburden pressures:

𝑠𝑜 (𝑡) ≠ 0 ⇔ 𝑇𝑖 (𝑡) (𝑛𝑖 · 𝑛𝑜) > 𝑇 𝑏 . (4.18)

Fault opening does not result in a significant difference (<1%) in the modelled
strike slip motion along Tiger Stripes (i.e., as compared to results for models which
prohibit opening). Where faults do exhibit opening motion, peak 𝑠𝑜 are typically
about 20 times smaller than peak 𝑠𝑠 and only occur locally near the outer surface
and the ice-ocean boundary (strike-slip motion, by contrast, occurs over the entire
fault; see Figure 4.1).



112

Model Geometry
To generate model geometries, we develop a mesh using the software package CU-
BIT (Skroch et al., 2019). Spherical shells are first defined with respective outer
and inner surfaces at radii 252.1 km and 222.1 km as well as radial, through-going
surfaces at tiger stripe locations. We then discretize geometries using tetrahedral
elements and refine cell sizes near the tiger stripe faults. We assign a minimum cell
size (i.e., tetrahedra cell edge length) of 1 km to tetrahedra to ensure simulation re-
sults are not subject to error due to poor mesh resolution surrounding fault structures
(see Supplementary Figure S3 of Berne et al., 2023a). We also reduce numerical
error by limiting maximum cell sizes to 8 km (i.e., so that at least 4 elements span
the radial distance between inner and outer surfaces across geometries). Snapshots
of our mesh geometry are shown in Figure 4.6.

To generate thickness variations, we apply topography at the outer and the interior
surfaces (𝐻𝑜𝑢𝑡 and 𝐻𝑖𝑛𝑡 respectively) of mesh geometries. 𝐻𝑜𝑢𝑡 represents non-
hydrostatic topography at Enceladus derived from the shape model described in
Park et al., 2024 (up to a maximum spherical harmonic degree 𝐿𝑚𝑎𝑥 = 8). We
assume𝐻𝑖𝑛𝑡 tracks𝐻𝑜𝑢𝑡 following a formulation for Airy-type isostatic compensation
(Hemingway and Matsuyama, 2017) (For a map of crustal thickness assumed for
this work, see Figure 4.11):

𝐻𝑜𝑢𝑡 = 𝐻𝑖𝑛𝑡
𝜌

(𝜌 − 𝜌𝑤)
𝑔

𝑔𝑖𝑛𝑡
. (4.19)

Model Spin-Up
To ensure that our time-dependant solutions for displacement are insensitive to initial
conditions (see Equation 4.9), we conduct simulations over several tidal cycles until
differences in slip along the tiger stripe faults (at a given mean anomaly) are minimal.
We prescribe zero slip and zero traction initial conditions to fault surfaces:

𝑠𝑖 (𝑡) = 0 ⇔ 𝑡 < 0 (4.20a)

𝑇𝑖 (𝑡) = 0 ⇔ 𝑡 < 0. (4.20b)

We can evaluate a spin-up parameter Ξ(𝑡) which describes the normalized mismatch
of Ω𝑠 (𝑡) (see Equation 4.13) over all tiger stripe faults (as a function of time) with
values over the subsequent tidal cycle:

Ξ(𝑡) =
Ω𝑠 (𝑡) −Ω𝑠 (𝑡 + 2𝜋

𝜔
)

Ω𝑠 (𝑡)
. (4.21)
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We find thatΞ(𝑡) converges to effectively zero after∼3-4 tidal cycles (see Figure 4.8).
Spin-up is slightly more rapid (i.e., ∼2-3 tidal cycles) for low prescribed coefficients
of static friction (𝜇 = 0.1 − 0.3). We evaluate final results following 7 tidal cycles
for the current work.
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4.10 Supplementary Information

Figure 4.6: Example snapshots of mesh geometry. Left: South Polar (orthographic)
view of mesh geometry showing labelled Tiger Stripe faults (black traces). Right:
perspective view of Tiger Stripe surfaces with inset closeup image of Alexandria
sulcus. Tetrahedra cell edges are colored in blue and range in size from 1 km (over
the Tiger Stripe faults) to 8 km. Approximate distance scale is shown in the lower
right panel for reference.
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Figure 4.7: Crustal thickness assumed for finite element models. The top and bottom
images respectively show crustal thickness in cylindrical equidistant and South Polar
stereographic projections. We compensate non-hydrostatic surface topography at
Enceladus using a formulation for Airy isostatic compensation to generate thickness
variations (for details, see Methods ‘Model Geometry’). Surface topography is
extracted from a shape model of the full outer surface of Enceladus described in
Park et al., 2024. Contours denote intervals of 5 km in thickness for both map
projections. The labelled thick black lines plotted in the bottom image denote Tiger
Stripes (‘A’ ⇔ Alexandria, ‘C’ ⇔ Cairo, ‘B’ ⇔ Baghdad, and ‘D’ ⇔ Damascus).
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Table 4.1: Assumed parameter values in Chapter 4. Parameter values are extracted
from Hemingway et al. (2018); Nimmo et al. (2018); Ermakov et al. (2021).

Parameter Value Units
𝜌 925 kg/m3

𝜌𝑤 1007 kg/m3

𝑔𝑜𝑢𝑡 0.113 m/s2

𝑔𝑖𝑛𝑡 0.120 m/s2

𝐺 3.3 GPa
𝜅 8.8 GPa
𝑒 0.0047 —
𝜔 5.307·10−5 s−1
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Figure 4.8: Spin-up parameter Ξ(𝑡) (see Equation 4.21) modelled as a function of
time (in units of Tidal Periods) for several prescribed values for the static coefficient
of friction 𝜇. Ξ(𝑡) = 0 indicates that differences between values at a given mean
anomaly are zero (i.e., model is fully ‘spun-up’). Plotted lines are colored by value
of modelled coefficient of static friction. The x-axis is plotted in log-10 scale.
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Figure 4.9: Correlation of timing of lateral slip and plume brightness (Ingersoll et al.,
2020) for several values of modelled 𝜇. Values are plotted for corresponding values
of mean anomaly and are each normalized by maxima over the tidal cycle. Linear
regression lines and associated Pearson Correlation Coefficients (𝑅 = 1 indicates
perfect correlation) shown for reference. Scatter points are colored by value of mean
anomaly ranging from 0◦ to 360◦ (i.e., periapse to periapse).
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Figure 4.10: Correlation of spatial distribution of lateral slip and radiated power
per unit length (Spencer et al., 2018) for several values of modelled 𝜇. Values are
plotted for corresponding values of surface location (i.e., along the Tiger Stripe
faults) and are each normalized by maxima over all interfaces. Linear regression
lines and Pearson Correlation Coefficient (𝑅 = 1 indicates perfect correlation)
shown for reference. Scatter points are colored according to associated fault (Green
⇔ Baghdad, Blue ⇔ Damascus, Yellow ⇔ Cairo, and Red ⇔ Alexandria). Values
from the endpoints of fault structures are excluded from plots and the computation
of 𝑅 values.
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Figure 4.11: Simplified model relating driving shear traction 𝜏𝐷 , normal traction
𝜎𝑛, 𝜇, and slip 𝑠 along the Tiger Stripe faults. Upper row: Frictionless fault
subject to driving tractions. In this case, the fault cannot support shear traction (i.e.,
resolved shear traction 𝜏𝑅 = 0) and driving traction 𝜏𝐷 is fully resolved via slip along
interfaces (i.e., 𝑠 ≠ 0) regardless of the applied 𝜎𝑛. Slip results in a concentration
of elastic strain at the fixed ends of the fault. The subsequent unloading of the
driving shear traction results in a return to zero slip. Center row: frictional fault
with time-variable driving shear traction and constant normal traction. In this case,
𝑠 ≠ 0 when |𝜏𝐷 | > 𝜎𝑛𝜇 (i.e., 𝜏𝑐 = |𝜏𝐷 | − 𝜎𝑛𝜇 > 0). Constant values of 𝜎𝑛 result
in symmetric slip profiles following the onset of sliding. Bottom row: frictional
fault with time-variable driving shear and normal tractions. In this case, variable 𝜎𝑛
results in an increase in 𝜏𝐷 required to initiate sliding and an associated decrease in
the amplitude of 𝑠 during the first occurrence of 𝜏𝑐 > 0. The resulting slip profile is
double-peaked and asymmetric.
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Figure 4.12: Similar to upper right and upper left panels of Figure 4.2 of the main text
except values (i.e., driving tractions) are evaluated for a model with slipping faults
(𝜇 = 0.4). We find that slip along Tiger Stripe faults induces up to ∼10% variability
in tractions relative to values evaluated for the case of fully-locked interfaces.
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C h a p t e r 5

THERMAL ASYMMETRY IN THE MOON’S MANTLE
INFERRED FROM MONTHLY TIDAL RESPONSE

R. S. Park et al. (2025). “Thermal Asymmetry in the Moon’s Mantle Inferred from
Monthly Tidal Response”. In: Nature 641.8065.
The material presented in this chapter represents portions of the above paper that
were contributed by A.B..

5.1 Abstract
The Moon undergoes periodic tidal forcing due to its eccentric and oblique orbit
around the Earth (Park et al., 2021). The response to this tidal interaction drives
temporal changes in the lunar gravity field and is sensitive to the satellite’s internal
structure (Qin et al., 2012; Rovira-Navarro et al., 2024; Zhong et al., 2012). We
use data from the NASA GRAIL spacecraft (Konopliv et al., 2013; Konopliv et al.,
2014; Lemoine et al., 2013; Lemoine et al., 2014; Zuber et al., 2013) to recover
the time-varying lunar gravity field, including a degree-3 gravitational tidal Love
number, 𝑘3. Here, we report our estimated value of 𝑘3=0.0163±0.0007 which is
about 72% higher than that expected for a spherically symmetric Moon (Williams
et al., 2014). Such a large 𝑘3 can be explained if the elastic shear modulus of the
mantle varies by about 2-3% between the nearside and farside (Zhong et al., 2012),
providing the first observational demonstration of lateral heterogeneities in the deep
lunar interior. This asymmetric structure suggests preservation of a predominantly
thermal anomaly of approximately 100-200 K in the nearside mantle which formed
surface mare regions 3-4 Gya (Laneuville et al., 2013) and could influence the spatial
distribution of deep moonquakes (Frohlich and Nakamura, 2009).

5.2 Introduction
The Moon has well-known nearside-farside differences as expressed in the offset
between the satellite’s center of mass and center of figure as well as asymmetries
in topography, crustal thickness, concentration of radiogenic elements at the sur-
face, and geology (Jolliff et al., 2000). Various hypotheses have been proposed
to explain these asymmetries, though their origin remains widely debated. Some
studies suggest that the Moon’s asymmetries are linked to variations in its deep
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internal structure, including the distribution of radiogenic heat-producing elements
which could sustain long-lived temperature differences between the nearside and
farside (Zhong et al., 2000; Laneuville et al., 2013). These models can explain the
concentration of volcanism on the Moon’s nearside and provide constraints on the
poorly understood bulk concentrations of lunar radiogenic elements (Taylor et al.,
2006). However, to date, no observational evidence for such temperature differences
or variations in deep internal structure has been unambiguously detected. In this
study, we aim to determine the magnitude of these differences at depth by analyzing
the Moon’s gravitational response to its periodic tidal interactions with Earth.

The gravity field of the Moon is typically expressed in terms of spherical harmonic
coefficients of degree 𝑙 and order 𝑚 (Kaula, 1963). The spatial resolution of the
gravity field is inversely proportional to 𝑙, with the full wavelength usually defined
as approximately 2𝜋𝑅/𝑙, where lunar radius 𝑅=1,738 km. Temporal changes in the
lunar gravity field can be quantified using gravitational tidal Love numbers, 𝑘 𝑙𝑚,
which represent the ratio of the induced potential from the deformation of the Moon
to the imposed gravitational potential from Earth at a given degree and order (Love,
1909). Thus, 𝑘 𝑙𝑚 scales the lunar gravity field as the relative positions of the Moon
and Earth vary over the course of a month.

For spherically symmetric bodies, forcing at a given degree and order induces
deformation only at the same degree and order. However, if the Moon is laterally
heterogeneous, then forcing at a given degree and order can drive deformation
at other degrees and orders (Dahlen and Tromp, 1998). A laterally heterogeneous
Moon subject to tidal forcing at 𝑙 = 2 will therefore exhibit deformation at all degrees
(𝑙 ≥ 2) as well as anomalous degree-3 Love numbers, 𝑘3𝑚 (Figure 5.7). Moreover,
unlike with static gravity—which is most sensitive to structures in the uppermost
crust—time-varying long-wavelength gravity is strongly sensitive to deep-seated
asymmetries in the lunar mantle (Qin et al., 2016). This sensitivity to deep lateral
heterogeneity makes the analysis of gravitational tidal Love numbers a powerful
tool for probing the structure of the lunar interior (Zhong et al., 2000; Zhong et al.,
2012).

5.3 Recovery of internal nearside-farside structure
We reconstruct the lunar gravity field recover degree-2 and degree-3 Love numbers
from an analysis of GRAIL Ka-band range rate data. We recover 𝑘2𝑚 and 𝑘3𝑚 for two
separate cases, which are shown in Table 5.1. In the first case, 𝑙 = 3 Love numbers
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are assumed not to depend on 𝑚 and we recover 𝑘3 = 𝑘3𝑚 = 0.0163 ± 0.0007. In
the second case, 𝑘3𝑚 are estimated independently yielding 𝑘30 = 0.0159 ± 0.0011,
𝑘31 = 0.0141±0.0015, 𝑘32 = 0.0173±0.0015, and 𝑘33 = 0.0145±0.0024 (Table 5.1
and Figure 5.1).

Parameter Value 15x formal 1-𝜎 Notes
Case 1
𝑘20 0.024223 0.000037
𝑘21 0.024223 0.000037
𝑘22 0.024223 0.000037
𝑘3 0.0163 0.0007 The expected values of 𝑘2 and 𝑘3 for

a spherically symmetric Moon are
0.0234 and 0.00945, respectively
(Weber et al., 2011; Garcia et al.,
2011).

Case 2
𝑘20 0.024237 0.000037
𝑘21 0.024236 0.000037
𝑘22 0.024236 0.000037
𝑘30 0.0159 0.0011
𝑘31 0.0141 0.0015
𝑘32 0.0173 0.0015
𝑘33 0.0145 0.0024

Table 5.1: Recovered gravitational tidal Love numbers, 𝑘2𝑚 and 𝑘3𝑚. Case 1 shows
recovered 𝑘3 = 0.0163 ± 0.0007 which is approximately 72% larger than the value
expected for a spherically symmetric Moon (Figure 5.1). Case 2 shows individual
𝑘2𝑚 and 𝑘3𝑚 when values at each order are estimated independently. The magnitudes
of the recovered order-dependent 𝑘3𝑚 are comparable to the recovered 𝑘3 value in
Case 1.

Our recovered 𝑘3𝑚 are approximately 72% larger than the values expected for a
spherically symmetric interior (Williams et al., 2014; Figure 5.1 and Methods), sug-
gesting substantial lateral heterogeneity within the Moon (Figure 5.2). To constrain
the nature of this asymmetry, we perform a Markov Chain Monte Carlo (MCMC)
inversion to predict 𝑘2𝑚 and 𝑘3𝑚 (Figure 5.8 and Methods) using the observational
constraints shown in Case 2 of Table 5.1. The parameter set we explore includes
shear modulus perturbations to a one-dimensional (1D) reference model derived
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Figure 5.1: Bar chart showing 𝑘2𝑚 and 𝑘3𝑚 values expected for an isotropic Moon
(orange), observed Love number values with 15× formal 1-𝜎 uncertainties error
bars (blue), and values predicted for a lunar interior with an imposed 1% nearside-
farside (𝑙 = 1, 𝑚 = 1) variation in mantle shear modulus (green). Love Numbers for
the isotropic case represent values predicted for the 1D lunar interior derived from
seismic travel time data in Weber et al., 2011.

from seismic travel-time data (Table 5.2). The reference models also incorporate
lateral crustal thickness and density variations derived from lunar static gravity and
topography data (Wieczorek et al., 2013) (5.9a, and 5.9c) but do not include lateral
variations in shear modulus a priori for any layer. We use spherical harmonics
up to 𝑙 = 3 to parameterize perturbations for two internal layers: the crust (0–34
km depth) and the mantle (34–1,407 km depth). Lateral heterogeneity in the core
minimally (<1%) impacts lunar time-variable gravity fields (Figure 5.2); therefore,
models assume a laterally homogeneous elastic structure below 1,407 km depth. For
the inversion, we use LOV3D (Rovira-Navarro et al., 2024), a semi-analytical spec-
tral method to forward compute gravitational tidal Love numbers from candidate
interior structures (Methods).

We find that positive (𝑙 = 1, 𝑚 = 1) shear modulus structure, which corresponds



132

2,0 2,1 2,2 3,0 3,1 3,2 3,3
l, m

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ve

 N
um

be
r V

al
ue

 (x
10

2 )

GRAIL (Observed)
Isotropic (Prediction)
l = 1, m = 1 (1% Variation)

0.0 0.2 0.4 0.6 0.8 1.0
Sensitivity to l = 1 m = 1 Structure

0

200

400

600

800

1000

1200

1400

De
pt

h 
(k

m
)

Crust

M
an

tle

Core

k30
k31
k32
k33

Figure 5.2: Normalized sensitivity of 𝑘30 (blue), 𝑘31 (orange), 𝑘32 (gray), and 𝑘33
(red) Love numbers to (𝑙 = 1, 𝑚 = 1) perturbations (i.e., a nearside-farside pattern)
in shear modulus placed at depths ranging from the surface (0 km) to the core-mantle
boundary (1,407 km) for reference lunar interiors (Weber et al., 2011) subject to
𝑙 = 2 forcing (e.g., eccentricity tides expected for the lunar orbit). Labels refer to
vertical regions spanning the crust (0–34 km), the mantle (34–1,407 km), and the
core (1,407–1,737 km).
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to a nearside-farside pattern, increases all 𝑘3𝑚 Love numbers for lunar interiors
subject to monthly tidal forcing at 𝑙 = 2 (green bars in Figure 5.1). For example,
the combination of (𝑙 = 2, 𝑚 = 2) and (𝑙 = 2, 𝑚 = 0) harmonics in the Earth-Moon
eccentricity tide interacts with lower (or higher) shear modulus values on the lunar
nearside or farside to broadly increase (or decrease) outward radial deformation in
these regions (Figure 5.7). The resulting mass displacement yields (𝑙 = 3, 𝑚 = 1)
and (𝑙 = 3, 𝑚 = 3) gravity signatures that enhance the existing response to forcing
at these harmonics, increasing the 𝑘31 and 𝑘33 Love numbers. Similarly, interaction
between the (𝑙 = 2, 𝑚 = 1) Earth-Moon obliquity tide and nearside-farside structure
produces (𝑙 = 3, 𝑚 = 0) and (𝑙 = 3, 𝑚 = 2) gravity signatures that increase the
𝑘30 and 𝑘32 Love numbers (Methods). Note that the eccentricity and obliquity
components of the driving tidal potential and their associated coupling to degree-3
harmonics are comparable in magnitude, resulting in similar values for 𝑘3𝑚 across
all values of 𝑚.

The depth of lunar asymmetries modulates their impact on Love number values. For
example, 𝑘3𝑚 exhibit peak sensitivity to nearside-farside variations in shear modulus
at approximately 600 km depth and are largely insensitive to structure close to the
surface (Figure 5.2). Inversions consequently do not distinguish nearside-farside
structure in the crust (< 34 km depth) (Table 5.3). Variations in crustal layer
thickness are also insufficient to explain 𝑘3𝑚, as the approximately 50% variation
in nearside-farside Moho depth alters 𝑙 = 3 Love numbers by only about 30% (i.e.,
approximately 0.003) relative to values predicted for a laterally isotropic Moon.
Moreover, crustal thinning below mare regions tends to increase the effective shear
modulus of the nearside hemisphere and decrease degree-3 Love numbers, opposite
to the observed trend of 𝑘3𝑚 values in Table 5.1 (Figure 5.9c).

Our inversions predict a 2–3% mean difference in shear modulus between nearside
and farside hemispheres for the entire lunar mantle, with >99.7% confidence (Fig-
ure 5.3). When we further subdivide the mantle into distinct regions for inversions,
we find a slight preference for (𝑙 = 1, 𝑚 = 1) structure localized to approximately
the upper 800 km of the interior. This is due to the relatively higher sensitivity of
𝑘3𝑚 to 𝑙 = 1 structure in this region (Figure 5.2). Nonetheless, the magnitude of
heterogeneities derived for different mantle regions can trade off with one another
to produce an overall 2–3% variation in (𝑙 = 1, 𝑚 = 1) mantle shear modulus. This
non-uniqueness prevents statistically significant constraints on the extent to which
asymmetries localize within these layers.
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Figure 5.3: Recovered nearside-farside structure in the lunar mantle using indepen-
dently recovered 𝑘3𝑚. Histogram showing inverted coefficient value that describes
internal (𝑙 = 1, 𝑚 = 1) variations in shear modulus (in % relative to the bulk value)
for the lunar mantle. Dashed lines show 0.3% and 99.7% quantiles (i.e., 3-𝜎 con-
fidence bounds). Thin vertical gray line denotes value expected for an isotropic
mantle. The preferred value and 3-𝜎 bounds for (𝑙 = 1, 𝑚 = 1) mantle shear mod-
ulus structure is 2.74±1.3%. A full list of derived harmonic coefficients describing
3D structure are shown in Table 5.3.
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In addition to impacting 𝑘3𝑚, shear modulus structure is expected to drive variation
in 𝑙 = 2 Love numbers. The minimal observed differences between 𝑘2𝑚 values
across spherical harmonic order 𝑚 correspondingly imply a lack of detectable 𝑙 = 2
variation in internal shear modulus (Figure 5.1 and see also Figure 5.6 of ref.
Rovira-Navarro et al., 2024). The coupled response at degree-2 due to inferred (𝑙 =
1, 𝑚 = 1) shear modulus variation (Figure 5.3) also impacts 𝑘2𝑚 at the 10−6–10−7

level—approximately an order of magnitude smaller than observational uncertainty
for these parameters (Table 5.1). However, the mean value of 𝑘2𝑚 is approximately
5% higher than that expected for lunar interiors derived from seismic travel time data
(Figure 5.1) (Williams et al., 2014; Garcia et al., 2011; Weber et al., 2011). This
increase in monthly 𝑘2𝑚 can be explained by an approximately global 97% reduction
in effective shear modulus at tidal timescales between depths of 1,257–1,407 km.
Consistent with results from several previous studies (Briaud et al., 2023; Matsumoto
et al., 2015), this low effective shear modulus value corresponds with a local Maxwell
viscosity of approximately 1015–1016 Pa·s and can be explained by the presence of
globally distributed partial melt in the lower mantle (Table 5.3 and Figure 5.9b).

5.4 Thermal asymmetry in the lunar mantle
Our modeling suggests that the Moon’s large 𝑘3𝑚 is the result of a substantial 2–3%
difference between the shear modulus of the nearside and farside mantle. What
could produce this difference? At a specified pressure, the shear modulus of rock
depends on its composition and temperature. However, large changes in the mantle
composition likely cannot explain the derived asymmetries due to their associated
impact on internal density. For example, decreasing the shear modulus by the
required 2–3% solely through changes in iron content would necessitate a >5%
enrichment of dense iron-endmember olivine (i.e., fayalite) and a corresponding
increase in the density of the nearside mantle by >50 kg/m3 relative to the density
of the farside mantle. Such a scenario would produce a COM-COF offset of the
Moon that is at least 15 times larger than the observed value (Figure 5.4). Similarly,
invoking a nearside enrichment in water content to explain the observed shear
modulus variation would induce a COM-COF offset 5–10 times larger than the
observed value (Figure 5.10; Jacobsen et al., 2008). In contrast, a temperature
difference of approximately 100–200 K between the two hemispheres can produce
the required variation in shear modulus with a sufficiently small change in mantle
density and in the COM-COF offset. Thus, we favor a predominantly thermal
explanation for these derived asymmetries.
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Figure 5.4: Impact of asymmetric temperature or composition on the lunar man-
tle. Lunar COM-COF offset and shear modulus change as a function of temper-
ature change (assuming a volume expansion coefficient 𝛽 = 3 × 10−5 K−1 and
Δ𝜇/Δ𝑇 = −1.35 × 10−2 GPa/K where 𝑇 is temperature and 𝜇 is shear modulus
Isaak, 1992; Suzuki, 1975) and iron content (i.e., percentage changes in the mol
fraction of iron-endmember olivine (fayalite) relative to forsterite, or Δ𝐹𝑜-𝐹𝑎, as-
suming Δ𝜌/Δ𝐹𝑜-𝐹𝑎 = 9.7 kg/%-m3, where 𝜌 is density and Δ𝜇/Δ𝐹𝑜-𝐹𝑎 = −0.3
GPa/% Chung, 1970) in the nearside mantle. The solid red region and thin black
lines respectively denote the observed COM-COF offset Barker et al., 2016 and
contours for computed COM-COF offset values. The blue shaded area and thick
solid black line respectively denote 99.7% confidence bounds and preferred values
for the nearside-farside shear modulus differences inferred from gravity data in this
work. We infer a temperature anomaly of approximately 100–200 K between the
lunar near and far side hemispheres by identifying overlapping portions of the Δ𝐹𝑜-
𝐹𝑎 - ΔTemperature parameter space that satisfy both the shear modulus difference
(within 99.7% confidence bounds) and the COM-COF offset.
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Figure 5.5: Internal temperature structure for the present-day lunar nearside based
on predicted shear modulus change (99.7% confidence bound and preferred model
are blue shaded region and solid black line respectively). The nearside profile is
computed by uniformly increasing the temperature of a reference farside conductive
model for the Moon (black dashed line, extracted from Fig. 5 of Laneuville et al.,
2013) by the inferred 100–200 K anomaly (i.e., assuming zero lateral variation in
mantle composition). The lunar mantle solidus and liquidus are shown as brown and
orange lines, respectively. Since the predicted nearside model exceeds the solidus,
we expect present-day melt production in the lunar mantle. The gray shaded region
denotes the location of 95% of observed deep moonquakes (DMQ) (Frohlich and
Nakamura, 2009).

It is important to note that our result implies a present-day thermal anomaly between
the nearside and farside of the lunar mantle. This hemispheric thermal dichotomy
may be sustained by the high abundance of radiogenic heat sources observed in
the nearside crust, such as thorium and titanium, which constitute a negligible mass
fraction of lunar material (Zhang et al., 2023). Models of lunar evolution that invoke
radiogenic heating as a driver for nearside-farside differences in temperature predict
a partially-molten mantle 3–4 Gya (Zhong et al., 2000; Laneuville et al., 2013).
Based on our results, present-day magma production may still occur at 800–1,250
km depth in the nearside (Figure 5.5 and Figure 5.6) and further reduce the effective
rigidity of this region relative to that of the deep farside interior (Takei, 2017).

A persistent thermal anomaly in the lunar mantle may also influence the evolution
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Figure 5.6: Conceptual model for the evolution of the lunar interior. Partial melt
associated with the inferred nearside thermal anomaly erupts onto the surface to form
mare regions approximately 4 Gya (top). As the interior cools, the partial melting
associated with the inferred nearside thermal anomaly descends until localizing
to depths of 800–1,200 km in the present-day (bottom). The color scale denotes
mantle temperature (decreasing from light yellow to dark orange to dark green).
Yellow crosses denote moonquakes which localize within or slightly above partially
melted regions of the present-day lunar mantle. For a similar conceptual model that
additionally considers compositional variations in water vapor and ilmenite in the
lunar interior (see Fig. 4 of Qin et al., 2012).
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of the overlying crust. For example, the upward migration of magma in the mantle
is expected to deflect the Moho and drive crustal thinning (Neumann et al., 1996). A
small fraction of this magma should also erupt on the surface to form mare regions
(Laneuville et al., 2013). Comparing our result with independent thermochemical
evolution models (Laneuville et al., 2013), we speculate that surface volcanic activity
would have peaked 3–4 Gya and diminished over time as the interior cools and
the depth of partial melting increases (Figure 5.5 and Figure 5.6). This gradual
cooling of the lunar interior is consistent with the possible recent discovery of young
(approximately 120 Mya) volcanic beads from Chang’e-5 samples (for alternative
hypotheses on the formation of lunar beads see Long et al., 2022). The formation of
polygonal fractures surrounding mare regions may also accommodate the long-term
thermal contraction of the nearside hemisphere (Figure 5.6 of Andrews-Hanna et al.,
2014).

Our inferred location of partial melt (Figure 5.5 and Figure 5.6) coincides with the
lower bound of the radial extent of deep moonquakes (DMQ) (Qin et al., 2016).
This correlation suggests that small amounts of partial melt (<5% by mass) may
promote brittle failure by increasing the prevalence of stress concentrations in tidally-
deforming regions of the lunar interior (Rushmer, 1995; Frohlich and Nakamura,
2009; Qin et al., 2012;Wilding et al., 2023). Small amounts of water (< 0.1% by
mass, Figure 5.10) may also reduce the freezing point of rock and further encourage
seismicity in the lower mantle (Qin et al., 2012). Alternatively, the enhanced
ductility of very warm mantle rock may reduce its susceptibility to brittle failure
and arrest DMQs at approximately 1,000-1,250 km depth (Figure 5.5). A link
between DMQs and partial melt could be tested by measuring induced components
of the Moon’s magnetic field which form through interactions between the solar
wind and deep magma. Moreover, a mantle-wide thermal asymmetry may imply
lateral variations DMQ depth or frequency. While few farside DMQs are observed
in Apollo data, it is unclear whether this is due to a difference in seismicity or
due to attenuation at depth. This ambiguity may be resolved with the upcoming
deployment of seismometers on the Moon with the Farside Seismic Suite planned
for 2026 (Panning et al., 2022), the Lunar Environment Monitoring Station planned
for Artemis III, and the proposed Lunar Geophysical Network mission (Weber et al.,
2020).
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5.5 Tidal tomography and future measurements
While so-called “tidal tomography” has been used to probe the deep structure of
the Earth (Lau et al., 2017), our result provides the first example of extraterrestrial
tidal tomography. The tidal signatures of planetary bodies are generally extremely
small, making them challenging to detect. However, continued advancements in
measurement techniques (Rummel et al., 2011; Zuber et al., 2013; Landerer et al.,
2020; Park et al., 2020) will allow the recovery of these faint signals at a level
meaningful for tidal tomography, thus providing a novel way to probe the deep
interior. In the future, these techniques can be applied to other planetary objects
exhibiting pronounced low-order surface variations, such as Mars (Zhong and Zuber,
2001), Enceladus (Berne et al., 2024), and Ganymede (Palguta et al., 2006). Because
tidal tomography does not require a landed spacecraft, unlike seismology, it should
be an important component of future missions that include an orbiter around the
target body.

5.6 Methods
The lunar gravity field
The gravitational field potential, 𝑈 (𝑟, 𝜆, 𝜙), associated with the Moon is expressed
as a spherical harmonic expansion (Kaula, 1963; Heiskanen and Moritz, 1967):

𝑈 (𝑟, 𝜆, 𝜙) = 𝐺𝑀

𝑟

∞∑︁
𝑙=0

𝑙∑︁
𝑚=0

(
𝑅

𝑟

) 𝑙
𝑃̄𝑙𝑚 (sin 𝜙)

[
𝐶̄𝑙𝑚 cos(𝑚𝜆) + 𝑆𝑙𝑚 sin(𝑚𝜆)

]
, (5.1)

where 𝐺𝑀 is the mass parameter of the Moon, 𝑙 is the spherical harmonic degree,
𝑚 is the order, 𝑃̄𝑙𝑚 are the normalized associated Legendre polynomials, 𝐶̄𝑙𝑚 and
𝑆𝑙𝑚 are the normalized spherical harmonic coefficients, 𝑅 is the reference radius of
the Moon (1738 km), 𝜆 is longitude, 𝜙 is latitude, and 𝑟 is the radius evaluated at
the spacecraft position relative to a Moon’s body-fixed frame. In this formulation,
zonal coefficients are defined as 𝐽𝑙 = −𝐶̄𝑙0. The gravity field is modeled in the lunar
Principal Axis frame. Since we are assuming that the origin of the Moon’s body-
fixed frame is defined to be the Moon’s center of mass, the degree-1 coefficients are
identically zero. The unnormalized spherical harmonic coefficients, (𝐶𝑙𝑚, 𝑆𝑙𝑚), are
related to the normalized spherical harmonic coefficients as follows:

(𝐶̄𝑙𝑚, 𝑆𝑙𝑚) = (𝐶𝑙𝑚, 𝑆𝑙𝑚)/𝑁𝑙𝑚,

where the normalization factor 𝑁𝑙𝑚 is defined as:



141

𝑁𝑙𝑚 =

√︄
(𝑙 − 𝑚)!(2 − 𝛿0𝑚) (2𝑙 + 1)

(𝑙 + 𝑚)! . (5.2)

The Moon’s tidal gravity field is modeled as corrections to the spherical harmonic
coefficients (Konopliv et al., 2013; Lemoine et al., 2013):

Δ𝐶𝑙𝑚 − 𝑖Δ𝑆𝑙𝑚 =
𝑘 𝑙𝑚

2𝑙 + 1

∑︁
𝑗

𝐺𝑀 𝑗

𝐺𝑀

𝑅𝑙+1

𝑟 𝑙+1
𝑗

𝑃𝑙𝑚 (sin 𝜙 𝑗 )𝑒−𝑖𝑚𝜆 𝑗 , (5.3)

where𝐺𝑀 𝑗 is the mass parameter of body 𝑗 and (𝜆 𝑗 , 𝜙 𝑗 , 𝑟 𝑗 ) represents the longitude,
latitude, and distance of the body 𝑗 in the lunar body-fixed frame (Konopliv et al.,
2013; Kaula, 1963). Equation 5.3 accounts for Earth-Moon tides, where 𝑗 = 1 arises
from both the Moon’s orbital eccentricity and its fixed approximately 6.7◦ obliquity
around the Earth as well as 𝑗 = 2 for the Sun-Moon tides. The Sun-Moon tides
generate forcing potentials that are approximately 5–10 times and 1000 times smaller
than the Earth-Moon tides at 𝑙 = 2 and 𝑙 = 3, respectively, and act over a shorter
period. Moreover, for a laterally heterogeneous Moon, combinations of Sun-Moon
and Earth-Moon tides induce temporal changes in the 𝑘3𝑚 based on Equation 5.3.
However, these variations are 2–3 times smaller than the effective uncertainties in
𝑘3𝑚 derived from gravity field inversions (Table 5.1) and are, therefore, disregarded
in our analysis.

Inversion Procedure
To constrain the structure of the lunar interior using Love numbers, we carry out a
Bayesian inversion using Markov Chain Monte Carlo (MCMC) with a Metropolis-
Hastings sampling algorithm using PyMC. For our inversion, we vary elastic param-
eters relative to a reference Lunar interior to fit observed 𝑘2𝑚 and 𝑘3𝑚 Love numbers
(Table 5.1; Patil et al., 2010). Our detailed procedure is described below.

Our reference model incorporates both 1D structure and lateral variations in crustal
thickness (and density) a priori. We extract 1D (i.e., radial) elastic parameters and
density for reference models from Weber et al., 2011 which constrains lunar structure
using the satellite’s mean density and seismic wave arrival times (see Table 5.2 for
assumed mean shear modulus, bulk modulus, and density values for each internal
layer). While moment of inertia (MOI) can be used to further refine the interior
structure of reference models, this constraint primarily informs the size of the lunar
core (at > 1400 km depth) and therefore has minimal impact on interpretations of
𝑘2𝑚 or 𝑘3𝑚 in this study (see Figure 5.2; Williams et al., 2014; Matsumoto et al.,
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2015; Garcia et al., 2011; Matsuyama et al., 2016). Nominal viscosity for each
layer is set to effectively infinite values (1030 Pa-s). To account for variations in
crustal structure (Wieczorek et al., 2013), we vary spherical harmonic coefficients
describing shear modulus, bulk modulus, and density for two adjacent internal layers
(extending from 0-34 km and 34-62 km depth) following the method described in
Qin et al., 2016 (see Figure 5.9 for assumed coefficient values).

We consider both 1D and 3D perturbations to the shear modulus and do not consider
changes in density (i.e., which may violate constraints from static gravity measure-
ments, see Figure 5.4 or Wieczorek et al., 2013) or bulk modulus (which have a
negligible effect on 𝑘2𝑚 or 𝑘3𝑚, see Qin et al., 2016). Since shear modulus (𝜇) is
related to shear wave speed (𝑉𝑠) and density (𝜌) via 𝜇 = 𝜌𝑉2

𝑠 , our approach effec-
tively perturbs 𝑉𝑠 while maintaining fixed 𝜌 within each model layer. We consider
a total of 34 parameters: 30 parameters describing 3D variations of shear modulus
(𝜇′
𝑙𝑚

) (i.e., 𝑙 = 1–3 spherical harmonic coefficients for the crust and mantle) and
4 parameters describing 1D structure (𝜇′00) (i.e., 𝑙 = 0 coefficients for the crust,
the 34-734 km region, the 734-1,257 km region, and the 1,257-1,407 km region).
These model parameters are sampled as coefficients for spherical harmonic basis
functions which comprise the base-10 logarithm (denoted by the symbol ′) of the
ratio of the spatially variable shear modulus 𝜇 to that of the reference model 𝜇𝑟𝑒 𝑓
for each internal layer.

log10
𝜇

𝜇ref
=

3∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝜇′𝑙𝑚𝑌𝑙𝑚 (𝜃, 𝜆), (5.4)

where 𝜇′
𝑙𝑚

are sampled coefficients and 𝑌𝑙𝑚 (𝜆, 𝜃) are real form, ortho-normalized
spherical harmonic basis functions (𝜆 is the longitude, and 𝜃 is the co-latitude in the
center of mass reference frame):

𝑌𝑙𝑚 (𝜃, 𝜆) =



√︃
1

2𝜋𝑁𝑙𝑚 𝑃̄𝑙𝑚 (cos 𝜃) cos(𝑚𝜆), for 𝑚 > 0√︃
1

4𝜋𝑁𝑙𝑚 𝑃̄𝑙𝑚 (cos 𝜃), for 𝑚 = 0√︃
1

2𝜋𝑁𝑙 |𝑚 | 𝑃̄𝑙𝑚 (cos 𝜃) sin( |𝑚 |𝜆), for 𝑚 < 0.

(5.5)

We expand shear modulus structures for accepted candidate models into spherical
harmonics (in post-processing) to compute percentage perturbations 𝜇𝑙𝑚 (i.e., values
presented in Figure 5.3 and Table 5.3):
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𝜇

𝜇ref
= 1 + 10−2

3∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝜇𝑙𝑚𝑌𝑙𝑚 . (5.6)

The Maxwell viscosity 𝜂 of the 1,257-1,407 km depth layer is computed by assuming
𝑙 = 0 perturbations to the shear modulus of this layer correspond to changes in
this layer’s effective shear modulus 𝜇𝑒 𝑓 𝑓 (i.e., the amplitude of the complex shear
modulus at the monthly timescale):

𝜂 =
𝜇ref

𝜔

√︂(
𝜇ref
𝜇eff

− 1
) , (5.7)

where 𝜔 = 2.661×10−6s−1 is the angular frequency corresponding to the lunar
sidereal monthly period and:

𝜇eff = 𝜇ref

(
1 + 10−2√4𝜋𝜇00

)
. (5.8)

Coefficients for sampled 𝑙 = 1 to 𝑙 = 3 structure (i.e., 𝜇′
𝑙𝑚

in Equation 5.6) are
assumed to have uniform (i.e., flat) prior probability distributions. Note that our
method does not necessarily require the use of spherical harmonics as basis functions
for calculations. For example, a 2-3% amplitude spherical cap (placed at the sub-
Earth point) spanning the nearside hemisphere is sufficient to explain the observed
2-3% (𝑙 = 1, 𝑚 = 1) variation in mantle shear modulus derived in this work. By
contrast, we assume sampled 𝜇′00 coefficients have Gaussian prior distributions with
variances extracted from Weber et al., 2011. We separately sample 𝜇′00 coefficients
for regions between 34-734 km, 734-1,257 km, and 1,257-1,407 km depth (i.e., the
lunar low velocity zone or LVZ) to account for differences in mean shear modulus
uncertainty for these regions (the variance for 𝜇′00 in the LVZ is set to infinity).
Increasing the variances of the 𝜇′00 coefficients tends to distribute reductions in
the mean shear modulus (required to explain high degree-2 Love numbers; see
Figure 5.1) to each layer, thereby increasing the inferred Maxwell viscosity of the
LVZ from Equation 5.7. Moreover, changing the assumed model for viscoelasticity
(e.g., from Maxwell to Kevin-Voigt) alters the inferred viscosity value(s) associated
with a ∼ 97% reduction in the effective shear modulus of the LVZ at the sidereal
monthly period (relative to the effective shear modulus at seismic timescales, see
Table 5.3) by up to an order of magnitude. Note that all sampled coefficients 𝜇′

𝑙𝑚

(i.e., not just 𝜇′00) could, in principle, represent changes in effective shear modulus
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𝜇𝑒 𝑓 𝑓 and (by extension) variations in internal viscosity. However, only significant
lateral changes in viscosity in the LVZ (i.e., due to variations in temperature near
the lunar mantle’s solidus in this region) are likely to drive substantial variation
in 𝜇𝑒 𝑓 𝑓 as per Equation 5.7. This suggests that the inferred variations in mantle
shear modulus may reflect a pronounced lateral viscosity variation within the LVZ.
However, without additional constraints, it remains unclear to what extent inferred
asymmetries localize to any region of the deep interior or are indicative of a broader
(e.g., mantle-wide) anomaly (see main text discussion).

We generate an ensemble of internal structure models for Markov chains by sam-
pling prior probability distributions for model parameters and forward computing
Love numbers using these values. Each ensemble consists of ∼1000 individual
accepted model realizations (i.e., 50,000 samples total from 50 walkers). To speed
up convergence, we consider only shear modulus perturbations and sample har-
monic coefficients describing this structure up to 𝑙 = 3 for inversions (see earlier
discussion). We also adopt an adaptive sampling approach (the ‘tune’ functionality
in PyMC) which dynamically adjusts step sizes based on the sensitivity of model
outputs to input parameters (Patil et al., 2010). We visually inspect Markov chains
to discard initial burn-in steps (i.e., typically the first ∼ 10-20% of samples) and
terminate inversions when parameter autocorrelations are > 0.99. Walker positions
are updated based on a likelihood function that considers only degree-2 and degree-3
Love number values (Case 2 of Table 5.1):

log 𝐿 ∝ −1
2
(X − Y)𝑇𝚺−1(X − Y), (5.9)

where X is the vector of observed Love numbers and Y is the vector of model-
predicted Love numbers. 𝚺 is a matrix that considers both observational and model
covariances (𝚺 = 𝚺𝑜𝑏𝑠 + 𝚺𝑚𝑜𝑑). Both 𝚺𝑜𝑏𝑠 and 𝚺𝑚𝑜𝑑 are assumed to be diagonal
(i.e., each Love number observation and model parameter is independent). Note
that differences between observations and modeled Love numbers (X − Y) yield
maximum 𝐿 values of ∼ 0.8 (out of a possible 1) across our ensemble of accepted
models, supporting our interpretation that 𝑘3𝑚 observations can be adequately ex-
plained by a nearside-farside asymmetry in the interior (see also Figure 5.8). Other
system constraints (e.g., mean density, moment of inertia, or quality factors) are not
incorporated into vectors X or Y in Equation 5.9.



145

Modelling Tidal Deformation
We compute lunar Love numbers using the semi-analytic spectral method LOV3D
(Rovira-Navarro et al., 2024), which solves mass conservation, momentum, and
Poisson’s equations in the Fourier domain for a laterally heterogeneous body subject
to tidal loading:

𝜌′ = −𝜌0(∇ · u) − u · ∇𝜌0 (5.10)

∇ · σ′ − 𝜌0∇(𝑔u · e𝑟) + 𝑔𝜌0(∇ · u)e𝑟 − 𝜌0∇𝜑′ = 0 (5.11)

∇2𝜑′ = 4𝜋𝐺𝜌′, (5.12)

where u is the displacement vector, σ′ is the incremental material stress tensor, e𝑟
is the radial unit vector, 𝑔 the gravitational acceleration of the unperturbed body, 𝜌′

is the incremental local density, 𝐺 is the universal gravitational constant, 𝜌0 is the
density of the unperturbed body, and 𝜑′ is the gravitational potential arising from
tides and mass movement driven by deformation. We use the constitutive equation
for isotropic linear elasticity to relate σ′ and u:

σ′ =

(
𝜅 − 2

3
𝜇

)
(∇ · u)I + 𝜇(∇u · ∇u𝑇 ), (5.13)

where I is the identity matrix and 𝜇 and 𝜅 are the shear and bulk moduli. We find
minimal differences (<0.01%) between results produced by our methodology and
numerical (i.e., finite-element) solutions for displacement on a laterally heteroge-
neous Moon subject to tidal loading. Moreover, our results for perturbations to the
lunar gravity field for lunar interiors with 𝑙 = 1, 𝑚 = 1 shear modulus structure are
broadly consistent with results presented in Fig. 1 of Zhong et al., 2012.

We discount the influence of polar motion—the movement of a planetary body’s
rotational axis relative to its surface—on calculations of degree-2 and degree-3
Love numbers. This simplification is based on our expectation that the body tides
considered in our work induce only minimal changes to the Moon’s moment of
inertia tensor over the GRAIL observation period. To verify this assumption, we
computed the amplitude of polar motion resulting from a static degree-2, order-1
bulge of 1 cm height. The resulting value, approximately 10−3 degrees, is orders
of magnitude smaller than the Moon’s ∼ 6.7◦ obliquity (i.e., which is the dominant
driver of degree-2, order-1 forcing for the Moon). Nonetheless, we expect that polar
motion may substantially influence longer-term response to surface loading (e.g.,
see Figs. 3a and 3b in Zhong et al., 2022).
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LOV3D explicitly computes coefficients𝐾 𝑙,𝑚
𝑙′,𝑚′ , or ‘Extended Love numbers’ (distinct

from the ‘traditional’ Love numbers 𝑘 𝑙𝑚 described in Equation 5.3). 𝐾 𝑙,𝑚
𝑙′,𝑚′ represents

coupling between forcing at one harmonic (at 𝑙′, 𝑚′) and gravitational response to
this forcing at another harmonic (at 𝑙, 𝑚) for a given interior structure. For a laterally
heterogeneous body, Equation 5.3 can be derived considering a general expression
for perturbations to gravity field coefficients Δ𝐶𝑙𝑚 and Δ𝑆𝑙𝑚 in terms of real-form
𝐾
𝑙,𝑚

𝑙′,𝑚′ :

Δ𝐶𝑙𝑚 − 𝑖Δ𝑆𝑙𝑚 =

3∑︁
𝑙′=2

𝑙∑︁
𝑚′=0

1
2𝑙′ + 1

∑︁
𝑗

𝐺𝑀 𝑗

𝐺𝑀

𝑅𝑙
′+1

𝑟 𝑙
′+1
𝑗

𝑃𝑙′𝑚′ (sin 𝜙 𝑗 )

×
[(
𝐾
𝑙,𝑚

𝑙′,𝑚′ cos(𝑚′𝜆 𝑗 ) + 𝐾 𝑙,𝑚𝑙′,−𝑚′ sin(𝑚′𝜆 𝑗 )
)

− 𝑖
(
𝐾
𝑙,−𝑚
𝑙′,𝑚′ cos(𝑚′𝜆 𝑗 ) + 𝐾 𝑙,−𝑚𝑙′,−𝑚′ sin(𝑚′𝜆 𝑗 )

) ]
. (5.14)

In this work, we make the following simplifications:

1. Gravity field inversions assume that perturbations Δ𝐶30, Δ𝐶31, Δ𝐶32, Δ𝐶33,
Δ𝑆31, Δ𝑆32, Δ𝑆33 are not impacted by coupling that is temporally out of phase
with forcing at these harmonics. We correspondingly set 𝐾 𝑙,𝑚

𝑙′,−𝑚′ , 𝐾 𝑙,−𝑚𝑙′,𝑚′ , and
𝐾

3,1
2,1 , 𝐾3,3

2,1 , 𝐾3,2
2,0 , 𝐾3,2

2,2 , 𝐾3,2
2,−2, 𝐾3,−3

2,−1 , 𝐾3,−3
2,−1 to zero a priori.

2. To improve computational efficiency, we assume 𝐾 𝑙,𝑚
𝑙′,𝑚′ = 𝐾

𝑙,−𝑚
𝑙′,−𝑚′ . However,

we note that limited MCMC results (approximately 5000 accepted candidate
models) indicate that separate computations of Love numbers that assume
𝐾
𝑙,−𝑚
𝑙′,−𝑚′ ≠ 𝐾

𝑙,𝑚

𝑙′,𝑚′ does not substantially (<1%) alter results presented in Figs.
2-4, Figure 5.9b, and Figure 5.10.

Based on these assumptions, we can rewrite Equation 5.14:

Δ𝐶𝑙𝑚 − 𝑖Δ𝑆𝑙𝑚 =

3∑︁
𝑙′=2

𝑙∑︁
𝑚′=0

𝐾
𝑙,𝑚

𝑙′,𝑚′

2𝑙′ + 1

∑︁
𝑗

𝐺𝑀 𝑗

𝐺𝑀

𝑅𝑙
′+1

𝑟 𝑙
′+1
𝑗

𝑃𝑙′,𝑚′ (sin 𝜙 𝑗 )𝑒−𝑖𝑚𝜆 𝑗 . (5.15)

Note that we can compute individual components of the tidal forcing potential 𝑉𝑙′𝑚′

from Equation 5.15:

𝑉𝑙′,𝑚′ =
1

2𝑙′ + 1

∑︁
𝑗

𝐺𝑀 𝑗

𝐺𝑀

𝑅𝑙
′+1

𝑟 𝑙
′+1
𝑗

𝑃𝑙′,𝑚′ (sin 𝜙 𝑗 )𝑒−𝑖𝑚𝜆 𝑗 . (5.16)



147

Comparing Equations 5.16, 5.15, and 5.3, it becomes apparent that traditional Love
numbers 𝑘 𝑙𝑚 represent the ratio of tidal (i.e., forcing) potentials at (𝑙′, 𝑚′) and
response at (𝑙, 𝑚) (i.e., 𝑉𝑙′𝑚′ and 𝑉𝑙𝑚 from Equation 5.16) scaled by 𝐾 𝑙,𝑚

𝑙′,𝑚′ :

𝑘 𝑙𝑚 =

3∑︁
𝑙′=2

𝑙∑︁
𝑚′=0

𝐾 𝑙𝑚𝑙′,𝑚′
𝑉𝑙′,𝑚′

𝑉𝑙𝑚
. (5.17)

In the case of a spherically symmetric Moon, Extended Love numbers simplify to
𝑘 𝑙𝑚 when 𝑙 = 𝑙′ and 𝑚 = 𝑚′ (e.g., 𝐾30

30 = 𝐾31
31 = 𝐾32

32 = 𝐾33
33 = 𝑘3 and 𝐾20

20 =

𝐾21
21 = 𝐾22

22 = 𝑘2). However, for lunar interiors with degree-1 order-1 shear modulus
variations, additional coupling terms become significant such that 𝑘31 ≈ 𝐾31

31 +
𝐾31

20𝑉20/𝑉31 +𝐾31
22𝑉22/𝑉31 and 𝑘33 ≈ 𝐾33

33 +𝐾
33
22𝑉22/𝑉33 (see Eqn. 5.17; Zhong et al.,

2012). Note that Zhong et al., 2012 approximates 𝑉3𝑚/𝑉2𝑚 = 1/220. Using our
exact numerical approach to compute tidal potentials (Eqn. 5.16), we find 𝑉3𝑚/𝑉2𝑚

ranges from approximately 1/200 − 1/300.

Using our MCMC method, we additionally examine whether an unconstrained spher-
ically symmetric lunar interior (i.e., with all 1-𝜎 bounds on mean shear modulus
values for internal layers in Table 5.2 set to infinity) could theoretically explain
observed Love number values. We find that these inversions require a 70–100%
reduction in mean 𝜇𝑒 𝑓 𝑓 within the uppermost 100–200 km of the Moon relative
to values presented in Table 5.2 to explain 𝑘3𝑚 and 𝑘2𝑚 in Table 5.1 (the required
perturbations are shallow because 𝑘3𝑚 are more sensitive to such perturbations than
𝑘2𝑚). Such reductions suggest an unrealistically weak upper mantle or crust (e.g.,
viscosities in Equation 5.7 ranging from 109–1016 Pa·s, which falls at least five
orders of magnitude below expected values for this region).

Modelling Temperature Change
Our inference of a 100–200 K temperature difference (Figure 5.4) relies on lin-
ear relationships between temperature, shear modulus, density, and composition
(𝛽,Δ𝜇/Δ𝑇,Δ𝜌/Δ𝐹𝑜-𝐹𝑎,Δ𝜇/Δ𝐹𝑜-𝐹𝑎) based on experimental studies of olivine.
However, the lunar mantle likely contains at least approximately 5% pyroxene
(Treiman and Semprich, 2023) which may very slightly alter 𝛽,Δ𝜇/Δ𝑇,Δ𝜌/Δ𝐹𝑜-
𝐹𝑎, and Δ𝜇/Δ𝐹𝑜-𝐹𝑎 (Reynard et al., 2010). Phase changes could also cause devia-
tions from this linear behavior described by 𝛽,Δ𝜇/Δ𝑇,Δ𝜌/Δ𝐹𝑜-𝐹𝑎, and Δ𝜇/Δ𝐹𝑜-
𝐹𝑎; though such variations are likely confined to the low-velocity zone (LVZ).
Minor phases (e.g., ilmenite) may also be present in low concentrations throughout
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the lunar mantle (Wieczorek et al., 2006) but likely have a negligible effect on results
presented in Figure 5.4.
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Figure 5.7: Conceptual relationship between lunar 3D structure and response to
tidal forcing. The left column shows the spatial pattern of gravitational potentials
associated with eccentricity tides at degree-2, order-0,2 (i.e., (2,0) and (2,2)) and
obliquity tides degree-2, order-1 (2,1) acting on the Moon. The second column
shows the spatial pattern of a degree-1, order-1 (i.e., (1,1) or nearside farside) lateral
heterogeneity in shear modulus imposed onto the lunar interior. The third column
shows response at (2,0), (2,1), and (2,2) expected for a spherically symmetric interior
(i.e., also the main components of the response for a laterally heterogeneous interior).
The fourth and fifth columns show additional modes of deformation at degree-3 (i.e.,
(3,0), (3,1), (3,2), and (3,3)) expected for the laterally heterogeneous interior shown
in the second column. Rows in the third, fourth, and fifth columns correspond to
response associated with forcing in the same row in column 1. For example, (2,1)
forcing stimulates response at (3,0) and (3,2), (2,0) forcing stimulates response at
(3,1), and (2,2) forcing stimulates response at (3,1) and (3,3).
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Figure 5.8: Distributions of modeled Love numbers 𝑘2𝑚 and 𝑘3𝑚 corresponding to
the ensemble of accepted candidate models. Grey boxes represent observational
constraints, where the box width is 15 times the formal uncertainty for each value
as presented in Table 5.1.
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a b

c

Figure 5.9: (a) Lateral variations in crustal structure assumed for reference models.
Line plots with scatter points show shear modulus (top), bulk modulus (middle), and
density (bottom) perturbations (parameterized as spherical harmonic coefficients up
to degree-5, normalized as a percentage of the mean value (see Equation 5.6)) for
two vertical regions of the lunar interior spanning 0-34 km (orange line) and 34-62
km (blue line). Coefficient values are derived by linearly mapping lateral variations
in crustal properties from Wieczorek et al., 2013 to variations in bulk/shear moduli
and density (see Eqn. 75 of Qin et al., 2016). Note that density variations reflect
both observed variations in the density of the crust (Wieczorek et al., 2013) and
effective density variations due to lateral variability in the depth of the Moho whereas
bulk/shear moduli variations only reflect variations in Moho depth. (b) Inferred
Maxwell viscosity for 1,257-1,407 km depth. Histogram shows Maxwell viscosity
values corresponding to the inverted reduction in the degree-0 shear modulus value
of the region spanning 1,257-1,407 km depth (Table 5.3 and Equation 5.8). Dashed
lines show 0.003, and 0.997 quantiles (i.e., 3-𝜎 confidence bounds). (c) Similar to
Figure 5.2 except including models with crustal thickness and density variations.
Note that the green bar above the 𝑙 = 3, 𝑚 = 1 harmonic is very close to zero.
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Figure 5.10: Similar to Figure 5.4 except considering the impact of water content
(as a weight percentage) on the shear modulus and density of lunar mantle olivine
and assuming 𝛽 = 3 × 10−5 K−1, Δ𝜇/Δ𝑇 = −1.35 × 10−2 GPa/K, Δ𝜌/Δ𝐻2𝑂 =

−50.56 kg/%−m3, andΔ𝜇/Δ𝐻2𝑂 = −6.63 GPa/% in the nearside mantle (Jacobsen
et al., 2008). While our analysis suggests a limited water mass fraction difference of
approximately 0.1% between the nearside and farside, superimposed compositional
variations, such as iron and ilmenite content (Qin et al., 2012), could influence the
overall density structure and may reconcile a water-enriched nearside mantle with
the small observed COM-COF offset.
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Radius (km) Density (kg/m3) Bulk Modulus (GPa) Shear Modulus (GPa)
0-240 8000 91.5 42.3

240-330 5100 85.7 0
330-480 3400 144.8 34.8

480-999.1 3400 153.8 68.8 ± 3.06
999.1-1,249.1 3400 108.6 65.8 ± 2.09

1,249.1-1,499.1 3400 120.3 64.9 ± 2.08
1,499.1-1,675.1 3220 106.3 63.5 ± 1.13
1,675.1-1,703.1 3220 106.3 63.5 ± 1.13
1,703.1-1,738 2800 46.5 28.7 ± 1.79

Table 5.2: Radial (1D) elastic structure (density, bulk modulus, and shear modulus)
assumed for reference models. Data extracted from Weber et al., 2011. Bounds for
regions at radii >480 km denote 1-𝜎 uncertainties from Weber et al., 2011.



159

Parameters Median 0.3 Percentile 99.7 Percentile
√

4𝜋𝜇𝐶
00, 0 - 34 km 0.065653 -3.6205 4.0836

𝜇𝐶
11 -1.4229 -44.0530 29.1940

𝜇𝐶
10 -0.3063 -26.0100 34.4690

𝜇𝐶
1−1 0.9097 -37.9210 41.4050

𝜇𝐶
2−2 -0.0271 -40.7510 52.7740

𝜇𝐶
2−1 -1.2886 -33.3990 36.0380

𝜇𝐶
20 0.5234 -27.5670 31.0460

𝜇𝐶
21 -0.6511 -27.0570 36.5800

𝜇𝐶
22 2.1510 -31.1770 39.4600

𝜇𝐶
3−3 -0.5627 -45.1440 25.3410

𝜇𝐶
3−2 2.1697 -34.2600 45.9770

𝜇𝐶
3−1 5.1384 -37.5470 44.7200

𝜇𝐶
30 2.7226 -34.0430 41.5320

𝜇𝐶
31 -1.3253 -42.1530 23.8930

𝜇𝐶
32 0.2102 -31.7710 34.2010

𝜇𝐶
33 1.5966 -33.2250 38.9190

√
4𝜋𝜇𝑀

00 , 34 - 734 km 0.62337 -1.6036 4.5446√
4𝜋𝜇𝑀

00 , 734 - 1,257 km 0.94006 -2.6956 3.5210√
4𝜋𝜇𝑀

00 , 1,257 - 1,407 km -96.560 -99.803 -73.100
𝜇𝑀

11 2.7403 1.6198 4.0439
𝜇𝑀

10 -0.10086 -1.2421 0.82273
𝜇𝑀

1−1 0.44328 -5.1940 4.5035
𝜇𝑀

2−2 0.009699 -3.4384 4.3829
𝜇𝑀

2−1 -0.02862 -3.7696 5.6615
𝜇𝑀

20 0.059821 -4.7254 3.1454
𝜇𝑀

21 0.020556 -3.9083 2.1802
𝜇𝑀

22 -0.34836 -2.7808 3.2809
𝜇𝑀

3−3 -0.09964 -4.1147 5.2624
𝜇𝑀

3−2 -0.05283 -3.3548 6.1057
𝜇𝑀

3−1 0.050182 -5.1317 6.9248
𝜇𝑀

30 0.089398 -3.7133 4.5336
𝜇𝑀

31 0.23411 -4.9441 4.5442
𝜇𝑀

32 0.12678 -1.9470 2.7009
𝜇𝑀

33 0.032167 -4.8334 8.7238

Table 5.3: Inverted median, standard deviation, 0.3%, and 99.7% of coefficient
values describing 3D structure in the lunar crust (superscript 𝐶, see Equation 5.7)
and the lunar mantle (superscript 𝑀). The

√
4𝜋 factor is included to account for

ortho-normalization of the degree-0 harmonic.
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C h a p t e r 6

CONCLUSION

6.1 Summary
This thesis explored the impact of structural heterogeneity on the dynamics of
planetary bodies across a wide range of spatial and temporal scales. In Chapter 2,
we presented a 3D finite element model of the crust of Enceladus to predict the low-
order response of the body to eccentricity tides. In Chapters 3 and 4, we extended
this numerical model to explore the viability of characterizing short-wavelength
structure as well as the geodynamics of Enceladus’ Tiger Stripe faults. Finally, in
Chapter 5 we described a real-world application of tidal tomography to characterize
a long-lived thermal asymmetry in the lunar mantle.

6.2 Enceladus
Enceladus is a high-priority target for future missions to the outer solar system
due to the potential for habitable conditions within the satellite’s subsurface ocean.
Enceladus’ habitability is not static but varies over time, encompassing both short-
term (instantaneous) and long-term (sustained) components (Cockell et al., 2024).
Instantaneous habitability depends on the ocean’s chemical composition, particularly
the availability of key bioessential elements such as Carbon, Hydrogen, Nitrogen,
Oxygen, Phosphorus, and Sulfur (CHNOPS; Postberg et al., 2018). In contrast,
sustained habitability is governed by the stability of the ocean layer and the cycling
of material between the surface and the deep interior, processes that are essential
for maintaining potential metabolic activity over geologic timescales (Bagheri et al.,
2024; Simons et al., 2024).

Crustal thickness places key constraints on the sustained habitability of Enceladus’
ocean. For example, whereas Enceladus’ mean crustal thickness is sensitive to the
satellite’s overall tidal dissipation (Ojakangas and Stevenson, 1989), the presence
of variations in crustal thickness indicates long-term energy exchange and localized
melting at the ocean-crust boundary (Čadek et al., 2019). We demonstrate that a
combination of very low-order measurements of Enceladus’ time-variable gravity
field (Chapter 2) and finer-scale observations of periodic surface motion (Chapter 3)
enable determinations of crustal thickness. If the core of Enceladus is hydrostatic,
then combinations of surface strain observations and additional measurements of
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the 𝑙 ≥ 2 static gravity signal (i.e., the extent of isostatic compensation of thickness
variations) may bound the density (and by extension, the composition and tempera-
ture) of Enceladus’ ocean (Vance et al., 2021; Meyer et al., 2025; Vance et al., 2024;
Vance et al., 2023). Modern gravimetry (Park et al., 2025) may also be sufficiently
precise to measure the temporal phase lag in Enceladus’ degree-2 response relative
to forcing (i.e., the imaginary component of 𝑘2𝑚 or ℑ(𝑘2𝑚); Ermakov et al., 2021;
Rovira-Navarro et al., 2023). An ℑ(𝑘2𝑚) that is comparable to the real component
ℜ(𝑘2𝑚) would require significant viscous dissipation within Enceladus’ ice shell or
core and suggest that the satellite’s subsurface ocean persists over ∼Myr timescales
(Nimmo et al., 2023).

In contrast, the dynamics of the Tiger Stripes inform Enceladus’ instantaneous
habitability. In Chapter 4, we propose that strike-slip motion generates localized
extension along rifts (e.g., pull-aparts) to influence jet activity. This localized
extension can be reconciled with controlled boiling of a water-vacuum interface
within fractures. Under this scenario, diurnal wall motion within the Tiger Stripes
alters the height the water-vacuum interface to vary jet activity through Enceladus’
tidal cycle (Nakajima and Ingersoll, 2016). Crucially, controlled boiling would
chemically fractionate Enceladus’ jet material as it ascends through the ice shell
(Fifer et al., 2022). As such, integrating tectonic and jet models will be essential for
accurately characterizing Enceladus’ astrobiological potential through future in situ
analysis of plume samples (Spitale et al., 2025; Nelson et al., 2024a; Nelson et al.,
2024b; Berne et al., 2022).

Detailed descriptions Enceladus’ sustained or instantaneous habitability will likely
require a dedicated future mission to the satellite (Bagheri et al., 2025; Berne
et al., 2021). Throughout this thesis, we highlight the potential of incorporat-
ing interferometric radar (InSAR) measurements into such a mission. InSAR has
proven highly effective at providing high-resolution observations of seismic and
post-seismic deformation on Earth and should therefore be well-suited for measur-
ing the approximately 50–100 cm of diurnal crustal displacement expected across
Enceladus’ surface (Simons and Rosen, 2015; Benedikter et al., 2022; Simons et al.,
2023). The more localized 10–20 cm deformation along the Tiger Stripes should
also be readily observable via InSAR, though optimizing viewing geometries will be
crucial in order to enhance sensitivity to the predominantly horizontal displacement
produced by these fractures (see Figure 2.13) (Tam et al., 2023; Keane et al., 2022;
Berne et al., 2023).
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6.3 The Moon
We propose a relationship between a present-day thermal anomaly in the lunar
mantle and crustal nearside-farside heterogeneities (Chapter 5). However, a radially
uniform temperature anomaly distributed throughout the lunar mantle is almost
certainly an oversimplification of the true nature internal asymmetries. Theoretical
thermo-chemical evolution models of the lunar interior (e.g., Laneuville et al., 2013;
Zhong et al., 2000) suggest that elevated temperatures and partial melt are primarily
concentrated in the upper nearside mantle due to this region’s affinity to radiogenic
material in the nearside crust. Additionally, detected asymmetries may reflect a
slight depletion (< 0.1%) of water in the nearside mantle, as predicted by some
evolution models (Qin et al., 2012). Future reconciliation of our results (i.e., the
detection of an overall 2–3% asymmetry in structure) with viable evolution models
may correspondingly refine estimates of trace incompatible element and volatile
abundances in the deep lunar interior.

The Moon represents a unique case among extraterrestrial planetary bodies for
which future gravity field observations are unlikely to yield substantial new insight
into deep interior processes. For example, while reducing uncertainties for degree-3
gravity Love numbers could reveal additional very small-amplitude variations in
internal structure (e.g., north-south, east-west asymmetries in shear modulus), this
inference would require gravity field observations with a precision better than that
achieved by the GRAIL spacecraft (Zuber et al., 2013). In contrast, even limited
future seismological data could offer much more detailed descriptions of the Moon’s
deep 3D structure. NASA’s upcoming farside seismic suite (scheduled for 2027) and
the Chinese Space Agency’s planned seismometer deployment at the lunar South
Pole (targeted for 2028) could each determine whether deep moonquakes exist in the
farside mantle. Coordinating these seismological observations may also shed light
on whether the depth of deep moonquakes varies with longitude, and, by extension,
whether degree-1 asymmetries influence lunar seismicity.

6.4 Closing Thoughts
Planetary bodies are complicated, and the work presented in this thesis is a starting
point for future investigations to characterize this complexity from observations of
tidal deformation. Arguably, the first application of tidal tomography occurred at
Caltech in 2011 to constrain the structure of the asthenosphere using the Earth’s
response to ocean tidal loads (Ito and Simons, 2011). Subsequent work at Harvard
University in 2017 determined the buoyancy of compositional anomalies at the base
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of the Earth’s mantle using 𝑘2 (Lau et al., 2017). Since 2016, continued efforts at
Caltech and the University of Montana have identified spatially correlated residuals
between predictions for periodic displacement associated with ocean tidal loading
and GPS observations in South America, suggesting the presence of regional-scale
3D structure in the lithosphere (e.g., a subducting slab below the western edge of
the continent; Martens et al., 2016; Martens et al., 2024; Martens et al., 2025).

If the Earth serves as a representative example of solar system objects, then clearly
much remains to be learned from future geodetic observations elsewhere. In fact,
Earth is likely an outlier among rocky bodies due to its relatively high gravity
and warm interior, which should erase heterogeneities over time. In contrast,
smaller bodies like Ceres (𝑔 ≈ 1

40𝑔𝐸𝑎𝑟𝑡ℎ), Enceladus (𝑔 ≈ 1
100𝑔𝐸𝑎𝑟𝑡ℎ), and Mimas

(𝑔 ≈ 1
200𝑔𝐸𝑎𝑟𝑡ℎ) are more likely to retain substantial internal variations in structure.

Although this complexity likely poses challenges for future studies of these bod-
ies, I expect it also presents new opportunities for understanding their formation,
evolution, and dynamics.
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