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Abstract 

Our goal is a quantitative algorithm for protein design which is not 

limited to particular protein folds. In this endeavor there have been previous 

successes designing protein cores, where van der Waals packing, and the 

tendency of hydrophobic amino acids to avoid contact with solvent, are the 

dominant forces. On the surfaces of proteins, efforts at a-helix surface design 

have also been successful, where hydrogen bonding and a-helix propensities 

are additionally important. However, there are no algorithmically designed 

stable ~-sheet surfaces. 

One of the energy terms expected to be important for ~-sheet surface 

design is ~-sheet propensity. No concise theory explaining the amino acids' 

differing ~-sheet propensities has previously been developed. In this thesis, I 

examine the underlying physical-chemical basis for ~-sheet propensities, and 

show that they are caused primarily by van der Waals interactions between 

the side chains and the local backbone. 

I then consider an additional energy term, a penalty for the exposure of 

hydrophobic surface area. This is not a thermodynamic term, but rather one 

that can be justified through "negative design," in which alternative badly 

folded ground state structures are disfavored. I show experimentally that this 

term improves the algorithm's predictive ability, and determine its strength 

in the context of our previously published energy expression. In order to do 

this, I developed a two body approximation for buried and exposed surface 

area calculation which very closely reproduces the true surface areas. 

Finally, I develop a general method for calculation of the optimal 

energy expression for protein design, from theoretical lattice model studies, 

and apply it to real proteins. In particular the method is applicable to ~-sheet 
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surfaces. The P-sheet surfaces of two real proteins are thus redesigned and 

made experimentally. The culmination is a protein of greater stability than 

the naturally occurring protein. This is the first time greater stability has been 

achieved solely through mutations to the P-sheet surface, and marks a major 

step towards an ability to completely design de nova arbitrary proteins of 

arbitrary size. 

Successful protein design will lead to many practical applications, from 

new catalysts for industrial processes, to improved stability for existing 

medicines, to completely novel enzymes. 
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Chapter 1. 

Introduction 

"I am, as I said, inspired by the biological phenomena in which 

chemical forces are used in repetitious fashion to produce all 

kinds of weird effects, one of which is the author." 

Richard P. Feynman, "There's plenty of room at the bottom," 1959. 

Introduction 

In 1959 Richard Feynman outlined his hopes that one day physicists 

would be able to create materials by manipulating the locations of individual 

atoms, vastly superseding current chemical synthesis techniques. As a first 

step, he suggested two competitions. One was to take the information on the 

page of a book and shrink it twenty-five thousand times, but so that it could 

still be read. The second was to build a motor only half a millimetre across. 

As Feynman was aware, biological systems encode information far 

more compactly than the winner of the first competition would. After all, 

practically every nucleus of every cell in our bodies contains all the 

information necessary (i.e., about three billion base pairs of DNA) for us to 

grow up from a zygote, stored in chromosomes only a few millionths of a 

metre across. For example, this thesis, written in the language of DNA, would 

be 1017 times smaller (and easily readilble by current sequencing techniques) -

a sizable improvement over Feynman's initial challenge! 

The second challenge, it turns out, was also long ago taken up by 

nature. Every cell of our body also contains a huge number of 
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electrochemically-driven motors, which undergo a three-stroke cycle to 

generate a molecule (adenosine triphosphate, or ATP) which can be utilized 

by many other processes in the cell for their energy needs. These motors are 

part of a protein known as ATP synthase, and are a tiny ten billionths of a 

metre across - about fifty thousand times smaller than stipulated by the 

competition. Many other protein motors have also been discovered, 

including bacterial flagellar motors, which propel bacteria; kinesin, 

responsible for neuronal transport; and myosin, responsible for muscle 

contraction, and thus for our ability to move at all. 

Nature having satisfactorily solved the two challenges, how might we 

achieve Feynman's grand vision of designing materials by manipulating the 

positions of individual atoms? He envisioned a purely "physics" approach to 

the problem, but given nature's proficiency at the job, it makes sense to 

consider instead a "biophysics" approach. 

In this thesis I describe advances I have made in the field of 

computational protein design. Proteins are complex three-dimensional 

molecules which perform most of the tasks necessary for life. They can be 

viewed as tiny machines, only a few billionths of a metre across, whose 

abilities include everything from the synthesis of ATP described above, to 

metabolism, to oxygen transport in the blood, to regulating salt 

concentrations in our cells, to duplicating DNA. Despite proteins' wide­

ranging capabilities, an individual protein can actually be uniquely specified 

by a one-dimensional sequence in DNA (i.e., a gene). This sequence is 

translated into a one-dimensional sequence of amino acids which, with no 

further external help, self-assembles into a functional complex three­

dimensional protein. This correspondence between one-dimensional 

sequence and three-dimensional shape means something very complex arises 
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from something very simple, enabling a description of our entire bodies to be 

encoded in a few cubic micrometres, and thus making evolution through 

natural selection possible. Quite apart from the intellectual satisfaction of 

understanding such a critical element of life, a knowledge of the rules which 

govern protein self-assembly would enable us to make molecules with shapes 

of our own design, thereby achieving the spirit of Feynman's vision. An 

ability to design proteins thus opens up a whole realm of nanotechnology 

whose possibilities are almost unfathomable. 

From these heady heights, let us examine the details . 

What is a Protein? 

Proteins are linear polymers of ammo acids. Because it is a linear 

polymer, a protein (or polypeptide) consists of a sequence of amino acid side 

chains branching off an unbranched backbone. The twenty naturally 

occurring amino acids are shown in Figure 1. The sequence of amino acids is 

called the primary structure of a protein. 

In the cell, particular amino acid sequences are specified by genes, . in 

deoxyribonucleic acid (DNA). The DNA is first transcribed into ribonucleic 

acid (RNA), which is then translated into protein. Three neighboring RNA 

bases (of which there are four, adenine, cytosine, uracil and guanine, denoted 

A, C, U and G respectively) are read at a time, and interpreted as a particular 

amino acid to be appended to the protein, according to the "genetic code." In 

some cases a protein is then modified to better carry out its function; 

hemoglobin, for example, contains the prosthetic group heme. Additionally, 

functional proteins may result from assemblies of more than one polypeptide 

chain. 
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As discussed above, proteins are perhaps best viewed as self-organizing 

molecular machines - the ultimate nanotechnology. They are the enzymes 

that make life possible, even responsible for the translation and transcription 

of DNA to form new proteins (although proteins are sometimes coupled with 

other molecules, including RNA). Proteins can also play structural roles, such 

as that of collagen, which maintains the cellular structure of connective 

tissue, and messenger roles, such as that of the polypeptide hormone insulin. 

Proteins are also ubiquitous - they make up 18% of the weight of a 

mammalian cell (water accounts for 70%). 

Protein Folding 

The incredible range of protein functions is possible because, 

depending on the sequence of amino acids which constitute it, a protein 

always folds into a particular "native" compact structure (under physiological 

conditions, and not considering exceptional cases such as prions). Only the 

sequence of amino acids comprising the protein is necessary to determine the 

ultimate structure of the protein - for example, dilute protein solutions may 

be heated until the protein unfolds (denatures), and cooled again, to form 

functional protein again. However, as discussed in more detail below, no 

theory can yet predict a protein's native structure from just its sequence, 

despite nature's ability to solve this problem in usually less than a second. 

The ability of a protein to fold is demonstrated in Figure 2. The 

backbone has a degree of freedom at each single bond, at which rotation 

around the bond is possible. Such rotation is described by a dihedral angle. 

Each amino acid has three dihedral angles, not including those specific to the 

side chain, denoted <j>, \jf and w. The last of these, however, corresponds to 

rotation about the peptide bond (the bond formed by the polymerization 
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between two amino acids), which has a slight double bond character and is 

constrained to be flat, with w "" 180°, as shown in the figure (although co ""0° 

may also precede praline). Therefore, a folded protein backbone can be largely 

described by a sequence of (cp, \jf) pairs, with one pair for each amino acid (or 

"residue") in the protein. 

Protein structures, while not as regular as the double helix of DNA, 

nevertheless show some regularity. The backbone often adopts conformations 

known as a-helices and ~-sheets; these are known as elements of secondary 

structure (Figure 3). (Frequently, protein structures are depicted showing only 

the backbone, with stylized a-helices and ~-sheets.) One feature which 

identifies units of secondary structure is their pattern of hydrogen bonding, as 

shown in the figure. They also have characteristic (cp, \jf) angles, as shown in 

Figure 4. Linking these elements are less well-defined turns, some of which 

are themselves common motifs. 

The organization of secondary structure units in a protein is known as 

the protein's tertiary structure. The same tertiary structures can be seen even 

in proteins with markedly different sequences. 

Protein Structure Prediction 

No theory currently explains which physical and chemical forces are 

most important in the folding process, or is able to predict the structure that a 

particular amino acid sequence will adopt upon folding. One reason is that 

the process occurs in aqueous solution. Indeed, the desolvation of 

hydrophobic side chains into a hydrophobic core - often referred to as the 

"hydrophobic effect" - is characteristic of protein folding. Unfortunately, an 

accurate but computationally tractable way to model salvation has yet to 
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emerge - modeling every solvating water molecule is beyond current 

computing power. 

Another reason is that protein stability is finely balanced between 

competing effects. A protein's stability is defined to be the change in free 

energy, t,.,_G, between its native (folded) and denatured (unfolded) states. Both 

enthalpy and entropy contribute to free energy. The change in entropy on 

folding is large and negative, as the polypeptide chain moves from a loosely 

restricted state to an essentially unique state. This opposing force almost 

exactly cancels the benefits gained from improved physical and chemical 

interactions in the native state. For example, at 25 °C and pH 2.5, the protein 

ribonuclease, which hydrolyzes RNA, has a change in enthalpy on folding, 

t,.,_H, of -238 kcal/mol, but an entropic contribution to free energy, -Tt,.,_S (where 

Tis the temperature), of 231 kcal/ mol. The resulting protein stability is thus 

only -7 kcal/mol. 

Protein Design 

It makes sense to approach the issue of what forces are most important 

in protein folding from another direction. Instead of asking what structure a 

given amino acid sequence will adopt, we can ask what amino acid sequence 

will adopt a given protein structure. This approach has a number of 

advantages over the more direct approach. In particular, it is easier to 

experimentally test our method by actually constructing the predicted 

sequences and determining their structures. Another important advantage is 

provided by degeneracy - there are many sequences which will fold to a given 

structure, but only one structure per (foldable) sequence. 

As discussed earlier, successful protein design will lead to practical 

applications, from new catalysts for industrial processes, to improved stability 
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for existing medicines, to completely de nova enzymes. It may also pave the 

way towards a general theory for designing self-organizing macro-molecules. 

The Road Ahead 

Computational protein design is taken up in more detail in Chapter 2, 

giving an overview of the forces thought to be important for protein design, 

and the main algorithms we use to search through the enormous number of 

sequences available. Important issues such as backbone flexibility and 

negative design are also discussed. 

In Chapter 3, I take a step back from designing proteins and ask what 

causes some amino acids to occur more frequently than others in ~-sheets. A 

concise physical theory behind this phenomenon had previously been 

lacking. I show that it is largely due to the van der Waals interactions between 

the side chain and the local backbone. This result is interesting because the 

non-local nature of ~-sheets (i.e., ~-strands from different regions of the 

sequence fold up adjacent to each other) had suggested that non-local effects 

might play a dominant role. 

In Chapter 4, I embark on a study of the role of negative design in the 

design of ~-sheet surfaces. Specifically, I examine whether penalizing 

exposure to solvent of hydrophobic surface area can improve ~-sheet surface 

design efforts. Chapter 5 details my development of a new two body treatment 

of surface area determination, which was required for accurate calculation of 

the exposed hydrophobic surface area. 

Finally, in Chapter 6, I develop a general theoretical approach for 

incorporating negative design into the design of real proteins (again, 

specifically their ~-sheet surfaces), and apply it to the design of two real 

proteins. The culmination is a protein of greater stability than the naturally 
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occurring protein. This is the first time greater stability has been achieved 

solely through mutations to the ~-sheet surface, and marks a major step 

towards an ability to completely design de nova arbitrary proteins of arbitrary 

size. 
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Figure 1-1. Amino acids. a) The naturally occurring biological amino acids are 

all a-amino acids, meaning they have one carbon (called the a-carbon) 

between the amino (NH3+) and acid (COO-) termini. They differ from one 

another only in the side chain R. The a-carbon has four different substituents, 

so that sterically different molecules result from the two possible placements 

of the side chain and the hydrogen; all naturally occurring amino acids have 

the same left-handed placement shown (with the side chain coming out of 

the page and the hydrogen going into the page). b) The side chains of the 20 

naturally occurring amino acids, and their three-letter abbreviations. The 

respective full names and one-letter codes are glycine G, alanine A, cysteine C, 

methionine M, valine V, leucine L, isoleucine I, serine S, threonine T, 

aspartic acid D, aspargine N, glutamic acid E, glutamine Q, lysine K, arginine 

R, histidine H, proline P, phenylalanine F, tyrosine Y and tryptophan W. 

Proline is unique in that it reconnects to the backbone nitrogen. 
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Figure 1-2. A section from a sequence of polymerized amino acids (peptide) 

showing the backbone dihedral angles q> and \jf, whose rotation lead to the 

phenomenon of protein "folding." The direction defined as positive rotation 

is shown. The extended conformation of the chain is shown, when both 

dihedral angles are defined to be 180°. Figure copyright Irving Geis. 
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Figure 1-3. The major types of secondary structure. a) The a-helix. b) The 

parallel P-sheet, in which neighboring P-strands go in the same direction. c) 

The anti-parallel P-sheet, in which neighboring P-strands go in opposite 

directions. Figures copyright Irving Geis. 
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Figure 1-4. A "Ramachandran" plot showing the sterically allowed regions of 

(cp, \JI) space. The broad features of this plot are valid for all amino acids except 

glycine, which has more flexibility, and proline, which is more restricted. 

Specific regions on this plot are associated with the a-helix, the parallel ~­

sheet and the anti-parallel ~-sheet, as shown. 80% of (cp, \jf) angles from 

crystallographically-determined structures lie within the dark regions of the 

plot, 95% lie within the dark and medium regions, and 98% lie within all the 

shaded regions. 
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Chapter 2. 

Computational Protein Design 

The text of this chapter is partially adapted from the publication 

Street A.G. and Mayo S.L. (1999) Structure 7, R105-R109. 

Abstract 

A "protein design cycle," involving cycling between theory and 

experiment, has led to recent advances in rational protein design. In 

particular a reductionist approach, in which protein positions are classified by 

their local environments, has aided development of an appropriate energy 

expression. Here we discuss the computational principles and practicalities of 

the protein design cycle, including energy minimization, backbone flexibility 

and negative design issues. 

Introduction 

There are many reasons to pursue the goal of protein design. In 

medicine and industry, the ability to precisely engineer protein hormones 

and enzymes to perform existing functions under a wider range of conditions, 

or to perform entirely new functions, has tremendous potential. 

Furthermore, in the case of rational protein design, the obtained knowledge 

would likely be linked to a more complete understanding of the forces 

underlying protein folding, enabling more rapid interpretation of the wealth 

of genomic information being amassed. Advances in protein design may also 

make possible the construction of a range of other self-organizing 

macromolecules. 
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Although some steps have been taken towards rationally designing 

functional enzymes (Wilson et al., 1991), such a goal lies some distance away. 

Currently, attention is focused on redesigning portions of proteins to insert 

particular motifs, increase stability or modify function. Examples include the 

engineering of metal binding centers, reviewed recently by Hellinga 

(Hellinga, 1998b), and the introduction of disulfide bonds (Pabo & Suchanek, 

1986; Matsumura & Matthews, 1991; Yan & Erickson, 1994). Theoretical work 

in the context of lattice models has also led to important insights. This work 

has been recently reviewed (Dill et al., 1995; Shakhnovich, 1998). 

Attempts to design entire proteins de nova have been increasingly 

successful over the past decade. Early design efforts typically led to poorly 

characterizable states or molten globules, instead of a single target fold (Betz et 

al., 1993). Other difficulties became apparent when a designed a-helical dimer 

(O'Neil & DeGrado, 1990) was shown to actually form a trimer (Lovejoy et al., 

1993). This and subsequent studies relied on largely qualitative examination 

of the target molecule (Bryson et al., 1995), making generalization to other 

targets difficult. 

This review focuses on the advances made in computational 

approaches to protein design. In particular, we examine those atomistic 

approaches which involve cycling between experiment and theory in a 

"protein design cycle." 

Energy Expression 

Atomistic protein design requires an energy expression or force-field to 

rank the desirability of each amino acid sequence for a particular backbone 

structure. Over the last decade, elements of a suitable energy expression for 

atomistic protein design have been suggested and explored. To avoid over-
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fitting and to focus on only the most important contributors, the energy 

expression should contain as few terms as possible while maintaining 

predictive power. Communication between theory and experiment is 

required to determine which energy terms to include, and the relative 

importance of the included terms. In a protein design cycle, an energy 

expression is used to generate sequences which are subsequently made in the 

laboratory. Alterations and additions to the energy expression are then 

considered which improve the correlation between the computed and 

experimentally determined properties of the sequences. The improved energy 

expression is then used to generate new sequences, completing the cycle. 

Energy Minimization 

In order to experimentally test the energy expression, the minimum 

energy sequence on the target backbone must be determined. In the simplest 

implementation, the energy of every possible sequence is calculated using the 

energy expression, and the lowest energy sequence is reported. The size of 

most problems of interest renders this exhaustive approach impractical. 

Ignoring the possibility of multiple conformations of each amino acid, 

allowing the 20 naturally occurring amino acids at every position of a 100 

amino acid protein yields 10130 possible sequence solutions. Clearly, 

ingenious energy minimization techniques are necessary. 

Published search algorithms including self-consistent mean-field 

approaches (Lee, 1994; Vasquez, 1995; Koehl & Delarue, 1996), Monte Carlo 

techniques (Lee & Levitt, 1991; Hellinga & Richards, 1994), neural networks 

(Kono & Doi, 1996) and genetic algorithms (Desjarlais & Handel, 1995; 

Pedersen & Moult, 1996) share the advantage of being able to sample large 

combinatorial space but the disadvantage of not being guaranteed to find the 
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global optimal solution. By contrast dead-end elimination, and branch and 

terminate (discussed in more detail below) are search algorithms whose final 

solution is guaranteed to be the global optimum, but which require the 

discretization of side chain conformations into rotamers (Janin et al., 1978; 

Ponder & Richards, 1987). Such requirements will be discussed below. Search 

algorithms have been recently reviewed (Desjarlais & Clarke, 1998). 

Dead-End Elimination 

The dead-end elimination theorem was originally introduced (Desmet 

et al., 1992) to aid protein homology modeling, in which side chain identities 

are known and the adopted side chain conformations (or rotamers) are 

desired. Iteration of the theorem progressively eliminates rotamers which can 

be shown not to be part of the global minimum energy conformation 

(GMEC). Denoting positions on the protein backbone by i, J and specific 

rotamers at each position by ic, Jc (where c is a position-specific index 

indicating the rotamer present), the energy E of a conformation can be written 

E=Etemplate+ LE(ic)+ LLE(ic,Jc) · 
i j<i 

(1) 

Here Etemplate is the template (or backbone) self-energy, E(ic) is the energy of 

the rotamer ic interacting with the template only, and E(ic,Jc) is the pairwise 

energy of interaction between rotamers ic and Jc- The theorem states that, for a 

pair of rotamers rand t at the same position i (denoted ir and it), if 

(2) 

then ir is not in the GMEC. Conceptually, the theorem says that if the best 

possible energy a rotamer could achieve in its interactions with other 

rotamers is higher than the worst possible energy of another rotamer at the 
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same position, then it cannot be a member of the GMEC. This is illustrated in 

Figure la. 

The method has since been improved substantially, so that it may be 

applied to the much larger problem of protein design, in which the number 

of rotamers allowed at each position may be an order of magnitude greater 

than in homology modeling. Typically an energy cutoff is applied to remove 

the worst rotamers from consideration before applying dead-end elimination 

(DeMaeyer et al., 1997). A less restrictive criterion (Goldstein, 1994) replaces (2) 

with 

(3) 

as demonstrated in Figure lb. Goldstein also considered unifying two or more 

positions into one "super-residue." Critical to the ability of the method to find 

the GMEC is the extension of the theorem to eliminate pairs of rotamers 

(Desmet et al., 1994). Defining 

(4) 

and 

(5) 

a rotamer pair [irJ5 ] is flagged if there exists another rotamer pair [iuJv] such 

that 

t:([ ir, j s ])- t:([ iu, j v]) + L min { t:([ ir, j s ], kt)- t:([ iu, j v ], kt)} > 0; i, j * k . ( 6) 
k t 

Flagged pairs are inconsistent with the GMEC and may be ignored in the 

"singles" summation of (3) as well as in future iterations of (6). 

Application of (6) to every possible pair of rotamers involves a 

calculation which scales as the fourth power of the number of rotamers per 
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position, which significantly slows the search. By carefully employing 

quantities which can be calculated more quickly, it is possible to apply (6) only 

to pairs with a high likelihood of being flagged (Gordon & Mayo, 1998). 

Symmetry arguments further reduce the number of pairs which need to be 

examined by a factor of four. 

Further enhancements can be derived from "conformational splitting" 

(N. Pierce, unpublished resultst in which conformational space is partitioned 

by pulling, for a given position k, the interaction energies involving position 

k outside the summation in (3). The technique can be further extended to 

more than one such position. 

Branch And Terminate 

Branch and bound algorithms, from which the branch and terminate 

algorithm derives, have been applied to many problems of interest in 

structural biology in recent years (Gordon & Mayo, 1999). The search problem 

is arranged as a combinatorial tree, where each path through the tree 

corresponds to a solution to the problem. For protein design, each level of the 

tree corresponds to an amino acid position, and each node represents a 

particular rotamer at each position. The object is to find the one path through 

the tree which corresponds to the GMEC. Given a path down to a given level 

of the tree (i.e., with certain rotamers already chosen for some positionst a 

bounding energy is computable which is guaranteed to be lower than (or 

equal to) the lowest energy possible through the remainder of the tree. The 

algorithm keeps track of the lowest energy it has found so far, and 

exhaustively searches the combinatorial tree, in the process pruning away 

branches with higher bounding energies. 



II-7 

Two features of the branch and bound algorithm are apparent. First, 

the calculation of the bounding energy must balance stringency (so that as 

many branches are pruned as possible, resulting in faster execution) against 

the time it takes to compute (since the energy is calculated at each node, a 

complex bounding expression can significantly affect performance). A suitable 

balance can be found by recasting the energy (1) as 

E = LLJ(ic,jc) (7) 
i j #i 

where 

(8) 

and p is the number of amino acid positions. Then, at a given level in the 

tree, all the rotamers above that level have been fixed (denote the set of such 

positions F), and the remaining rotamers are variable (V). One can then 

expand (7) into four terms, two of which are identical, to yield 

(9) 

The most stringent bounding expression that can be derived from (9) is thus 

Ebound = L LF(ic,jc)+ Imin 2:IiF(ir,jc)+ L minF(ir,js) (10) 
iEFjEF iEV r jEF jEV 5 

jic-i jic-i 

The second observation is that when the levels in the tree correspond 

to amino acid positions, their ordering is arbitrary. Yet the organization of the 

tree significantly impacts the performance of the algorithm - placing a branch 

at the lowest level of the tree that would be pruned if placed at the top level 

results in the same pruning step being repeated unnecessarily. This suggests a 
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pre-processing procedure in which each amino acid in turn is placed at the 

top level of the tree, and rotamers pruned from this position are discarded 

from the rest of the optimization. This procedure is called "termination," and 

may be repeated until no further rotamers are pruned. The branch and 

terminate algorithm applies termination at each level of the tree, resulting in 

a significant performance improvement over the original branch and bound 

algorithm (Gordon & Mayo, 1999). 

The search algorithms described in these two sections can be used m 

concert. In particular, we have found that once application of dead-end 

elimination has reduced the number of rotamer conformations available by 

several (often over twenty) orders of magnitude, branch and terminate can 

frequently be used to find the GMEC more quickly than continuing with 

dead-end elimination. This opens up the possibility of applying 

computational protein design to ever larger systems. 

Discretization of Side Chain Conformations 

To place a reasonable limit on the complexity of the computation, the 

allowed side chain conformations are typically chosen from a library of 

discrete possibilities, known as rotamers. This discretization is necessary for 

some efficient search algorithms to be applicable - in particular, the dead-end 

elimination theorem. 

Discretization of the side chain conformations increases the likelihood 

of "false negative" results. To be useful, atomistic protein design has only to 

output a subset of the sequences leading to the target fold, with simulation 

energies that correlate with their experimental stabilities. The simulation 

does not need to predict how well externally supplied sequences will fit the 

target fold. For example, the crystallographic structure of the Streptococcal 
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protein G Bl domain (GB 1) (Gronenborn et al., 1991) shows Leu 7 in an 

unusual conformation which does not appear in standard rotamer libraries 

(Ponder & Richards, 1987). Therefore, an atomistic algorithm using such a 

library may not suggest Leu at position 7 in the top ranked sequences. 

The effect of the size of the rotamer library has also been considered 

(DeMaeyer, et al., 1997; Tuffery et al., 1997); in general, the larger the better. 

However, if the library contains too many similar conformations of each 

amino acid, the energy landscape is flattened and energy minimization can be 

slow. 

Residue Classification 

A reductionist approach to protein design, in which subsets of a protein 

are designed independently, has proven fruitful. Computational attempts to 

design protein cores date back many years. More recently, there have been 

attempts to design surfaces and boundary positions as well. 

The size of the design problem is reduced if only a subset of amino acid 

types need be considered in each of these three classes of residue positions. 

Protein cores are typically composed of hydrophobic amino acids, and protein 

surfaces are largely composed of hydrophilic amino acids, but the boundary 

residues must be selected from the full range of amino acids since these 

positions are observed to be both hydrophobic and hydrophilic. An 

automated way to classify residue positions is desirable, and a number of 

approaches have been described (Sun et al., 1995; Dahiyat & Mayo, 1997a). 

The important components of the energy expression relevant to the 

core, surface and boundary will be discussed in the following sections. 
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The Core 

Early attention on the protein design problem focused on the generally 

hydrophobic cores of proteins. It is believed that the folding process is driven 

principally by hydrophobic collapse of the polypeptide, implying that a well­

designed hydrophobic core is crucial to the protein's structure and stability 

(Dill, 1990). 

As might be expected, van der Waals forces (that is, packing 

constraints) are crucial when designing the protein core. Models in which 

packing constraints are the only element of the energy expression are able to 

predict the stabilities of core mutations with high accuracy, when polar 

substitutions are not allowed (Hellinga & Richards, 1994; Desjarlais & Handel, 

1995; Dahiyat & Mayo, 1996; Dahiyat & Mayo, 1997b; Lazar et al., 1997). The 

importance of packing constraints can be determined by scaling the atomic 

van der Waals radii by a factor a . When a is varied to very high (> 105%) or 

very low ( <85%) values, implying too little or too much volume being packed 

into the available space, the resulting proteins exhibit unfolded or molten 

globule-like behavior (Dahiyat & Mayo, 1997b ). This is not surprising. Too 

much volume clearly requires the backbone to shift to accommodate the 

excess (Baldwin et al., 1993). Too little volume would either leave cavities in 

the core, which have been shown to destabilize proteins (Lim & Sauer, 1989), 

or again force the backbone to shift to fill the cavity. When the protein 

backbone is significantly different from the model backbone, the model can 

no longer accurately predict the protein's stability, and there may cease to be a 

single stable folded state. The optimal value of a was found to be 90%, 

implying that a slight over-packing of hydrophobic residues in the core can 

actually stabilize a designed protein (Dahiyat & Mayo, 1997b ). The benefit of 

using slightly diminished van der Waals radii can also be interpreted in 
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terms of accommodating some backbone and rotamer flexibility (discussed in 

a later section). 

Consistent with the belief that the hydrophobic effect is a dominant 

cause of protein folding, the protein design cycle has been used to show that 

solvation effects also play an important role in the design of protein cores 

(Dahiyat & Mayo, 1996). The hydrophobic effect is usually approximated as an 

energy benefit proportional to the amount of solvent-accessible hydrophobic 

surface area that is buried upon folding (Eisenberg & McLachlan, 1986). A 

penalty for burying polar area may also be included. Calculation of solvation 

energies is complicated by the need to construct the energy expression as a 

sum of two-body interactions (Kurochkina & Lee, 1995; Street & Mayo, 1998). 

An entropic term has been tested (Kono et al., 1998), which may 

improve correlation between predicted energy and biological activity 

(Hellinga & Richards, 1994). Such a term should in particular penalize 

methionine, whose loss of rotational freedom upon burial in a protein core 

can otherwise lead to destabilized proteins (Gassner et al., 1996). 

The Surface 

With the successful redesign of a range of protein cores, it is natural to 

consider the redesign of protein surfaces. Despite the incontrovertible role of 

the hydrophobic core in folding, the surface is also crucial to a protein's 

structure and stability. 

The protein design cycle has been utilized to design surface sites, using 

as a starting point the energy expression determined from studies of protein 

cores. These studies showed the importance of electrostatics and 

hybridization-dependent hydrogen bonds (Dahiyat et al., 1997). In the case of 

a-helical surfaces, no further energy terms are necessary to achieve good 
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predictive ability. This is possibly because the side chains which are better 

hydrogen bond formers are also good ex-helix formers, as quantified by ex­

helical propensity (Chakrabartty et al., 1994; Dahiyat, et al., 1997). 

The above energy terms are not sufficient to design ~-sheet surfaces 

(Hecht, 1994). It may be necessary additionally to directly bias the energy 

expression towards those side chains with good ~-sheet propensities (see 

Chapter 3). This is physically justifiable because common energy expressions 

do not otherwise include side chain self-energies, which must at some level 

lead to propensities. 

It is also possible that a main source of ~-sheet stability is to be found 

elsewhere, for example in the hydrogen bonds that cause alignment with 

neighboring ~-strands. In the case of anti-parallel ~-strands, the turn joining 

the two strands plays an important role. Modifying the turn's component 

residues can seriously affect protein stability (Garrett et al., 1996; Ybe & Hecht, 

1996; Blanco et al., 1998). In the case of non-continuous strands, it has been 

suggested that small clusters of hydrophobic area on the surface may help to 

set the register (Tisi & Evans, 1995). The hydrophobic effect may drive 

neighboring strands to align in such a way as to bury as much of the exposed 

hydrophobic area as possible, for example by covering it with long 

amphiphilic side chains. The role of hydrophobic exposure will be examined 

in Chapter 4. 

The Boundary 

Some residues cannot be easily classified as core or surface. Depending 

on the side chain orientation they can interact with either the protein's core 

or with the solvent. One example is Trp 43 of GBl (Dahiyat & Mayo, 1997b), 

which is predicted by modeling to rotate out into the solvent when nearby 
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core residues are replaced with larger side chains. Such unfavorable behavior 

can be attenuated by a hydrophobic exposure penalty (Sun, et al., 1995; Dahiyat 

& Mayo, 1997b). 

Recent work has shown that the design of boundary residues can lead 

to impressively enhanced stability (Malakauskas & Mayo, 1998). Just four 

boundary site mutations in the 56-residue GB 1 improve the stability from 3.3 

kcal/mol to 7.1 kcal/mol at 50 °C, converting a mesophilic protein into a 

h yperthermophilic protein. 

Full de Novo Sequence Design 

To date there exists only a single example of a complete sequence 

calculation in which the structure of the designed protein was experimentally 

shown to achieve the design target (Dahiyat & Mayo, 1997a). This calculation 

included one core position, 7 boundary positions and 18 surface positions, 

leading to a total of 1027 possible sequence solutions. The success of this 

design effort underscores the power of computational approaches. 

Backbone 

Most atomistic protein design efforts require a fixed backbone. The 

calculation is performed under the assumption that the target backbone is 

precisely the backbone that will be achieved by the computed sequence. 

Fortunately, alterations in the backbone do not necessarily lead to large 

changes in the accessible sequence space (Su & Mayo, 1997). In one study, a 2 A 

root mean square deviation (r.m.s.d.) in the backbone led to only a 0.5 A 

r.m.s.d. in predicted side chain conformations (Tuffery, et al., 1997). Backbone 

flexibility can be modeled by using a softer van der Waals potential - in other 

words, giving the modeled atoms a fuzzy edge. This effect can be obtained by 
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using reduced atomic radii, which has been shown to improve the stability of 

designed proteins (Dahiyat & Mayo, 1997b ). 

Protein backbone movements may be incorporated if the backbone is 

parameterizable (Harbury et al., 1995; Su & Mayo, 1997), although to keep the 

calculation tractable, the number of side chain rotamer combinations may be 

limited. A coiled-coil with right-handed superhelical twist, whose backbone 

was necessarily designed de nova, has recently been reported (Harbury et al., 

1998), where 216 amino acid sequences were considered. 

Negative Design 

The importance of negative design is the subject of much discussion. 

Recent work by Hellinga (Hellinga, 1998a) highlights the importance of this 

issue in computational protein design. The inverse-folding design method 

determines the sequence of amino acids whose energy is lowest when 

threaded onto the target backbone. It is conceivable that in some cases the 

computed sequence may actually prefer to fold to a different target structure, 

and that a sequence with a slightly higher computed energy would fold to the 

desired target (Figure 2). Unfortunately, knowledge of which structure will be 

adopted by the computed sequence requires a solution to the protein folding 

problem. Lattice models consisting of only two amino acid types can, 

however, be used to perform both sequence design and fold prediction. In this 

context, proposals to include non-thermodynamic potential functions aimed 

at addressing negative design issues have been developed (Shakhnovich & 

Gutin, 1993; Deutsch & Kurosky, 1996; Chiu & Goldstein, 1998), and are 

discussed in more detail in Chapter 6. The hydrophobic exposure penalty is 

one example of negative design that improves predictive power (Sun, et al., 

1995; Dahiyat & Mayo, 1997b). Despite the power of lattice model simulations, 
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it has been suggested that the design procedure may be qualitatively different 

in such binary patterned systems (Micheletti et al., 1998). 

Conclusions 

The design of proteins which fold to a specified target backbone 

structure is becoming possible. Future advances are likely to follow from a 

tight coupling of experimental and computational work in a protein design 

cycle, with the near future revealing ever larger protein sequences being 

designed de nova. Discovering the forces critical to the determination of 

backbone conformation and their coupling to sequence selection is the major 

challenge in solving the "complete" protein design problem. A general ability 

to design specific protein structures will pave the way toward the goal of 

rationally designing novel functional molecules. 
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Figure 2-1. The elimination of dead-ending rotamers. a) Criterion (2) 

eliminates a rotamer ir if all conformations containing it have energies 

higher than all conformations containing some other rotamer it, b) Criteron 

(3) eliminates a rotamer ir if, for every conformation containing it, replacing 

ir with a rotamer it lowers the energy. 
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Figure 2-2. The role of negative design. Using a thermodynamic energy 

expression, a protein design algorithm computes that sequence 1 is the lowest 

energy sequence when threaded onto the target structure T. The ground state 

structure of sequence 1, however, is an alternative structure X. In this case, 

the design algorithm would ideally return sequence 2, the lowest energy 

sequence with ground state structure T. 
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Chapter 3. 

Understanding the Origin of Intrinsic ~-Sheet 
Propensities 

The text of this chapter is partially adapted from the publication 

Street A.G. and Mayo S.L. (1999) Proceedings of the National Academy of 

Sciences U.S.A. 96, 9074-9076. 

Abstract 

The intrinsic secondary structure-forming propensities of the naturally 

occurring amino acids have been measured both experimentally in host-guest 

studies and by statistical examination of the protein structure databank. There 

has been significant progress in understanding the origins of intrinsic a­

helical propensities but a unifying theme for understanding intrinsic ~-sheet 

propensities has remained elusive. To this end we modeled dipeptides using 

a van der Waals energy function and derived Ramachandran plots for each of 

the amino acids. These data were used to determine the entropy and 

Helmholtz free energy of placing each amino acid in the ~-sheet region of <j>­

\j/ space. We quantitatively demonstrate that the dominant cause of intrinsic 

~-sheet propensity is the avoidance of steric clashes between an amino acid 

side chain and its local backbone. Standard implementations of electrostatic 

and solvation effects are seen to be less important. 

Introduction 

Understanding the relationship between a sequence of amino acids and 

its folded three-dimensional structure is of paramount importance for 
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protein design and protein folding studies. Conceptually, the relationship can 

be simplified by considering the formation of secondary and tertiary structure 

separately. One may then independently consider what forces drive the 

formation of secondary structure, and how these structures then pack 

together to form tertiary structure. Our concern here is with the first of these 

questions. 

Examination of the frequencies of occurrence of the naturally occurring 

amino acids in a-helices or P-sheets of proteins of known structure led to the 

early recognition that amino acids exhibit differing propensities to form 

secondary structure (Chou & Fasman, 1974). The existence of stable helical 

peptides then enabled relatively unambiguous experimental determination 

of a-helical propensities (Lyu et al., 1990; O'Neil & DeGrado, 1990; 

Padmanabhan et al., 1990; Rohl et al., 1996), which agree with statistical 

studies of the protein structure database (Munoz & Serrano, 1994). Together, 

these studies quantify the concept of "a-helical propensity," but do not 

elucidate the physical-chemical basis of propensities. Clarification of the 

physical-chemical basis of a-helix propensities awaited theoretical studies 

which compared distributions of side chain dihedral angles for each amino 

acid in a 9- or 11-residue a-helix and in a dipeptide standard state (Creamer & 

Rose, 1992; Creamer & Rose, 1994). These studies supported the view that the 

a-helical propensities of hydrophobic amino acids result from the loss of side 

chain entropy on folding. Thus alanine has the best a-helical propensity, 

since it loses no side chain entropy when its backbone is constrained to a 

helical conformation. Other studies have utilized molecular dynamics 

simulations using an elaborate energy expression (Hermans et al., 1992). 

Because P-sheets do not appear to fold in isolation, experimental 

determination of P-sheet propensities has been more difficult than for a-
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helices. A model protein with a suitable host site is required, and different 

choices yield different propensity scales (Kim & Berg, 1993; Minor & Kim, 

1994b; Minor & Kim, 1994a; Smith et al., 1994; Luo et al., 1999). The preference 

for a certain amino acid to be in a ~-sheet is therefore a more complicated 

issue than for a-helices, depending also on the structural context of the 

amino acid in the ~ -sheet. A statistical survey of the protein structure 

database nevertheless correlates well with an average of the experimental 

scales, supporting the idea that intrinsic ~-sheet propensities do play an 

important role in determining a protein's stability (Mufi.oz & Serrano, 1994). 

Correlation has been observed between one experimental ~-sheet 

propensity scale and the ability of a side chain to sterically interfere with the 

formation of hydrogen bonds between its neighboring peptide group and 

solvent molecules (Bai & Englander, 1994). Electrostatic screening has also 

been proposed as an important factor (Avbelj & Moult, 1995). Other work has 

modeled equilibrium constants for secondary structure formation using a 

complex energy function (Finkelstein & Ptitsyn, 1977), which was extended to 

model ~-sheet propensities (Finkelstein, 1995). There has also been related 

work modeling NMR coupling constants (Smith et al., 1996; Penkett et al., 

1997). However, no concise theoretical description that fully explains the ~­

sheet propensities of the naturally occurring amino acids has yet emerged. 

Our approach is to construct an ensemble of self-avoiding states of a 

dipeptide chain by fixing the bond angles and lengths and allowing the 

dihedral angles (<!>, \jf and the x's) to vary randomly over a uniform 

distribution. The resulting ensemble of structures represents the denatured 

state of the peptide. Assuming a microcanonical ensemble, the entropy 

change on occupying ~-space is 
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w 
L1S = kB ln ___§_ w (1) 

where kB is the Boltzmann constant, Wis the number of members in the 

entire ensemble, and W ~ is the number of members in ~-space (i.e., those 

members with appropriate q> and \j/
1

S, as defined in Methods). Comparison of 

tiS calculated in this way (Table 1) with the experimentally observed ~-sheet 

propensities is shown in Figure la. In order to average out as much as 

possible the context effects in individual experimental studies, we compare 

our results here with the average of the normalized available experimental 

data (Luo, et al., 1999). Excluding the amino acids Pro, Gly and Asn (discussed 

below), the correlation coefficient R is 0.92. 

With the inclusion of an additional parameter to calibrate the 

calculated energies, this analysis can be furthered by assigning an energy £i to 

each self-avoiding chain i. The partition function over a canonical ensemble 

is 

(2) 

where ~ = 1/ k8 T, T is the temperature, and where the summation is over all 

chains i in the ensemble. The change in Helmholtz free energy on folding 

into a ~-sheet is then 

Q13 
M=-kBTln­

Q 
(3) 

where Q is the partition function for the entire ensemble and Q ~ is the 

partition function for the ~-space ensemble. However, the assigned energies 

£i may need to be scaled in order to correspond to experimental energies. This 

can be achieved by appropriately selecting a value of ~- In order for the range 

of tiA's to reproduce the experimental range of the tiG's (for central strands 
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the experimental scales each range over approximately 2.5 kcal/ mol excluding 

Cly and Pro), we select 1/~ to be 9 kcal/mol. Comparison of ~A calculated in 

this way with the experimentally observed ~-sheet propensities is shown in 

Figure lb, with R = 0.95. 

It is conceivable that forces other than the van der Waals force may 

also play important roles in determining ~-sheet propensity. The canonical 

ensemble formalism provides a convenient framework to explore this 

possibility, since the energies £i of each chain may include terms other than 

just the van der Waals energy. We therefore considered additional energy 

terms proportional to the amount of exposed ( or, mathematically 

equivalently, buried) hydrophobic surface area, and electrostatic energies. No 

combination of these terms improved the correlation beyond that in Figure 

lb. Electrostatic and solvation effects, in their standard implementations, are 

thus less important in determining ~-sheet propensity. 

Discussion 

Our results reproduce the marked high preference in ~-sheets for the ~­

branched amino acids Ile, Val and Thr, as well as the aromatic amino acids 

Phe and Tyr, and the marked low preference for Ala and Asp. Cly and Pro are 

excluded due to the imprecise determination of their experimental 

propensities. The only amino acid which lies significantly off the line of best 

fit in the figures is Asn. We note that, sterically, Asn and Asp have very 

similar side chains, so the calculated energies for the two are expected to be 

similar despite the wide experimental difference between their propensities. 

However, including surface area or charge terms in our energy expression 

does not improve the position of Asn. One possible explanation for Asn's 

better than expected experimental propensity is that hydrogen bonding may 
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play a greater role in determining the P-sheet propensity of Asn than for the 

other amino acids (Baker & Hubbard, 1984; Srinivasan et al., 1994). 

One important implication of this work is that inherent P-sheet 

propensities can indeed be dissociated from context, as for ex-helical 

propensities. In fact, the results of this study indicate that P-sheet propensity 

arises from even more local phenomena than a-helical propensity - namely, 

the steric interaction of an amino acid side chain with its local backbone. 

Thus, even in the absence of neighboring P-strands (Smith & Regan, 1995), 

the notion of P-sheet propensity remains valid. This agrees with studies in 

which a high correlation is seen between the statistically-derived preferences 

of amino acids in P-sheets and P-coils, where P-coils are defined to be residues 

in P-space but not in true P-sheets (Swindells et al., 1995). However, the 

existence of neighboring P-strands imposes additional contextual constraints 

- in particular, edge strands and central strands may present consistently 

different environments (Minor & Kim, 1994a). In contrast to the local nature 

of our description of P-sheet propensities, a-helical propensity is believed to 

arise from interactions between a side chain and the backbone of the 

neighboring turns (Creamer & Rose, 1992) (that is, from non-local 

interactions). 

We have demonstrated that the dominant cause of intrinsic P-sheet 

propensity is the avoidance of steric clashes between an amino acid side chain 

and its local backbone. Standard implementations of electrostatic and 

solvation effects are less important. Our work shows, surprisingly, that the 

origins of P-sheet propensities may be more straightforward than those of cx­

helices. 



III-7 

Methods 

We modeled each amino acid Xaa in a dipeptide environment, Ala­

Xaa-Ala, with bond angles and lengths fixed (Brant & Flory, 1965). Each model 

peptide chain was created de nova using backbone and side chain dihedral 

angles chosen randomly from a uniform distribution. Chains were discarded 

if the DREIDING (Mayo et al., 1990) van der Waals energy of any atom 

exceeded a threshold of 2.5 kcal/mol; this threshold was chosen to best 

reproduce the standard Ramachandran plot for Ala (the results were not 

overly sensitive to changes in this value). The 1-4 van der Waals interaction 

energy was included except for intra-side chain contacts. Using chains which 

terminated at the Ca position on each flanking residue instead of full 

dipeptide chains did not significantly affect the results. All runs consisted of 

105 successful chains, with relative standard errors of < 0.5%. 

Our definition of ~-space is based on the definition of Munoz and 

Serrano (Mufi.oz & Serrano, 1994), bounded by the closed polygon with the 

following vertices in(<!>, \jf) space: (-180, 180), (-54, 180), (-54, 90), (-144, 90), (-144, 

108), (-162, 108), (-162, 126) and (-180, 126). 

It is noted that the absolute propensities obtained depend quite 

sensitively on the N-Ca-C~ bond angle, although the relative propensities do 

not. However, when this bond angle was allowed to vary according to a 

Gaussian distribution with mean 110° and standard deviation 2°, the reported 

correlations were not significantly affected. 

Surface areas were calculated using the Connolly algorithm (Connolly, 

1983), with a dot density of 10 A-2, a probe radius of zero and an add-on radius 

of 1.4 A (Lee & Richards, 1971). Atoms that contribute to the hydrophobic 

surface area are carbon, sulfur, and hydrogen atoms attached to carbon and 
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sulfur. Trials were conducted using the side chain area only, and the side 

chain and backbone areas together. 

Electrostatic energies were calculated using Gasteiger (Gasteiger & 

Marsili, 1980) or charge equilibration (Rappe & Goddard, 1991) point charges; 

neutral and charged versions of the side chains where appropriate were both 

tried, as were both 1/r and l/r2 forms of the Coulomb potential. Trials were 

conducted using energies of the side chain only and alternatively of the full 

residue. 
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Table 3-1. Calculated change in entropy, 1).5, and Helmholtz free energy, L).A, 

on folding into a ~-sheet, and the average normalized experimental 

propensity (Luo, et al., 1999) of the naturally occurring amino acids. The 

average normalized experimental propensities are calculated from four 

published studies (Kim & Berg, 1993; Minor & Kim, 1994b; Minor & Kim, 

1994a; Smith, et al., 1994) and a similar study in apo-azurin (Luo, et al., 1999). 

Each scale was normalized to range from zero to one, with Pro excluded, and 

averaged. 

Amino acid 1).5 L).A Average 

(cal mol-1 K-1) (kcal mol-1) normalized 

experimental 

propensity 

I -1.59 6.58 0.10 

V -1.69 6.88 0.13 

T -1.70 6.79 0.06 

F -1.73 7.14 0.13 
y -1.74 7.15 0.11 

E -1.80 7.47 0.35 

Q -1.80 7.47 0.34 

C -1.81 7.50 0.25 

L -1.82 7.56 0.32 

K -1.84 7.60 0.34 

s -1.84 7.58 0.30 

R -1.85 7.66 0.35 

M -1.86 7.70 0.26 

H -1.88 7.81 0.37 

w -1.89 7.66 0.24 

A -1.99 8.30 0.47 

D -2.19 8.95 0.72 

N -2.19 8.95 0.40 
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Figure 3-1. Correlation between calculated and average normalized 

experimental ~-sheet propensities (Luo, et al., 1999). All amino acids except 

Gly and Pro are shown. Asn, represented by the open circle, is discussed in the 

text. a) The negative of the entropy calculated using (1). b) Helmholtz free 

energy calculated using (2) and (3), and 1/ ~ = 9 kcal mol-1. 
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Chapter 4. 

A Quantitative Model for Examining 
Hydrophobic Context Effects on ~-Sheet 

Stability 

Abstract 

Previous work has shown that inclusion of a penalty for exposed 

hydrophobic solvent-accessible surface area can improve the designability of 

proteins. Here we demonstrate this experimentally. We mutate position 6 on 

the p -sheet surface of the p 1 immunoglobulin-binding domain of 

streptococcal protein G to several different amino acids of similar P-sheet 

propensity. The melting temperatures of the mutant proteins are correlated 

with simulations using a previously published energy expression, with a 

modification that penalizes hydrophobic surface area exposure. We find that 

penalizing hydrophobic exposure at 1.6 times the strength at which 

hydrophobic burial is benefited increases the correlation between experiment 

and simulation to R2 = 0.97. Our data support the claim that hydrophobic 

context is an important factor in the stability of P-sheets. 

Introduction 

Several quantitative methods have been proposed and tested which 

analyze the compatibility of possible sequences with a given protein fold 

(Hellinga et al., 1991; Hurley et al., 1992; Kono & Doi, 1994; Desjarlais & 

Handel, 1995; Harbury et al., 1995; Klemba et al., 1995; Nautiyal et al., 1995; 

Betz & Degrado, 1996; Dahiyat & Mayo, 1996). These algorithms calculate the 

spatial positioning and steric complementarity of side chains by explicitly 
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modeling the atoms of the considered sequence. Such techniques have 

typically focused on designing the cores of proteins where the van der Waals 

and sometimes hydrophobic solvation potentials are sufficient to yield 

reasonable results. Success has also been achieved by applying a hydrogen 

bonding potential to the design of ex-helical surfaces (Dahiyat et al., 1997a). In 

addition, the design of an entire sequence for a small protein fold has been 

recently reported (Dahiyat & Mayo, 1997a). These potentials, however, are 

insufficient to design extensive ~-sheet surfaces. We seek to extend the 

computational sequence selection approach to address ~-sheet design with the 

goal of developing a complete de nova design algorithm. 

The forces which are thought to be important in determining the 

formation and stability of ~-sheet regions can be grouped into two categories. 

The first is the inherent propensity of the amino acids to form ~-sheets, as 

determined by experimental host-guest site studies (Kim & Berg, 1993; Minor 

& Kim, 1994b; Smith et al., 1994) and by a statistical examination of the 

protein databank (Munoz & Serrano, 1994). The second is the context of each 

site. Context encompasses both tertiary and hydrophobic effects. The tertiary, 

or structural, context of an amino acid is where it is physically located in the 

~-sheet; in particular, whether it is on an edge strand or a central strand 

(Minor & Kim, 1994a). We use hydrophobic context to mean the hydrophobic 

environment of a particular residue position, which can be quantitatively 

evaluated by measuring solvent-accessible hydrophobic surface areas (Otzen 

& Fersht, 1995). This study examines the role of hydrophobic context. 

Our simulations implement a previously described benefit for the 

burial of hydrophobic surface area and a penalty for the burial of polar surface 

area (Dahiyat & Mayo, 1996; Street & Mayo, 1998). Improved correlation 

between calculated and experimentally determined stabilities is achieved 
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when the solvation potential is supplemented with a penalty for the exposure 

of hydrophobic surface area. An exposure penalty imposes a "reverse" 

hydrophobic effect (Pakula & Sauer, 1990). 

Previous theoretical work (Sun et al., 1995) concluded that use of a 

hydrophobic exposure penalty for protein design leads to sequences with well 

separated native and denatured energies, and that a hydrophobic exposure 

penalty can be thought of as an example of negative design. Negative design 

is the process of choosing sequences such that structures other than the 

desired target structure are disfavored (Hecht et al., 1990). An excessive 

amount of exposed hydrophobic area on the surface of a protein can lead to a 

lack of specificity in folding, and therefore can lead to structural heterogeneity 

in the native state. 

We chose as our model system the ~1 immunoglobulin-binding 

domain of streptococcal protein G (GBl) (Gronenborn et al., 1991). A solution 

structure (Gronenborn, et al., 1991) and several crystal structures (Gallagher et 

al., 1994) are available to provide backbone templates for the side chain 

selection process. Its small size, 56 residues, makes computations feasible. GBl 

contains no disulfide bonds and does not require a cofactor or metal ion to 

fold. We consider residue position 6, a surface position in the middle of a 

central ~-strand in which the wildtype Ile is approximately 70% buried 

(Figure 1). The relatively high burial of Ile6 is achieved by van der Waals 

contacts with Lys4, Glu15, Thr51 and Thr53. 

A series of mutations to amino acids of similar ~-sheet propensity were 

made at position 6, and the resulting proteins' stabilities measured. The 

stability data were then used to determine the optimal strength of the 

hydrophobic exposure penalty. 
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Results and Discussion 

Ile6 of GBl was mutated to Thr, Val, Tyr and Phe. Because these amino 

acids have similar P-sheet forming propensities, stability differences between 

the respective proteins should reflect context specific effects. Mutations to 

amino acids of markedly different P-sheet propensity were not considered 

since this would have introduced a further variable into the experiment. 

Circular dichroism (CD) determined melting temperatures and LiLiG's are 

listed in Table 1. We note the surprising result that, despite being polar and 

having high P-sheet forming propensity, Thr yields the lowest stability of the 

mutants considered, 10 °C below Ile, which supports the notion that 

hydrophobic context plays an important role at this site. 

In order to quantitatively model the effect of the mutations, we used 

the dead-end elimination (DEE) theorem (Desmet et al., 1992; Gordon & 

Mayo, 1998) to find the minimum energy conformation of the 12 P-sheet 

surface residues shown in Figure 1. We introduced an additional energy term 

into our previously published energy expression (Dahiyat & Mayo, 1996; 

Dahiyat, et al., 1997a; Street & Mayo, 1998) in order to penalize solvent­

exposed hydrophobic surface area, 

_ exposed 
Epenalty - KCYnpAnp 

where A~?osed is the amount of solvent-exposed hydrophobic surface area 

and CTnp is an atomic solvation parameter for hydrophobic surface area burial. 

The dimensionless scale factor K, whose value is to be determined, sets the 

strength of this term relative to the strength at which burial of hydrophobic 

surface area is benefited. Note that the fraction of a residue's hydrophobic area 
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that must be buried for a zero net surface area contribution to the energy is K / 

(K+ 1). 

When the simulation only includes terms for van der Waals, 

electrostatic and hydrogen-bonding, the calculated energies do not correlate 

with the experimentally observed melting temperatures (Figure 2a). The 

correlation rises to R2 = 0.72 (Figure 2b) when, in addition to the above 

potential energy terms, hydrophobic burial is benefited and polar burial is 

penalized, but with K = 0. The value of K was determined by evaluating cross­

validated correlation coefficients (Figure 3). When K = 1.6, the correlation 

between the calculated energies and experimentally determined melting 

temperatures is R2 = 0.97 (Figure 2c). 

The high correlation between calculated energies and experimentally 

determined melting temperatures led us to examine the possibility of 

including amino acids with diminished P-sheet propensities at position 6. We 

did not expect these mutations to fit the previous model, but were interested 

in whether they would lie in the region where an adjustment to the 

simulation energies to penalize them for their lower propensities could 

account for any discrepancies. We made two such substitutions: Arg and Trp. 

The resulting molecules' melting temperatures (Table 1) are much higher 

than would be expected based purely on P-sheet propensities, but lower than 

expected based purely on context (by 3.2 and 1.1 kcal/mol, respectively, 

corresponding well to the magnitude of their P-sheet propensities). Thus, an 

additional energy term which explicitly penalizes lower P-sheet propensities 

could be used to model amino acids not considered in this study. 

We have found that mutating a single P-sheet surface site on GBl leads 

to changes in melting temperature as large as 10 °C, even when only amino 

acids of similar P-sheet propensity are considered. We have shown that a 
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solvation potential term that penalizes the exposure of solvent-accessible 

hydrophobic surface area can capture the context effects that are believed to be 

important in ~-sheet formation. The improved potential function should 

prove useful for computational protein design efforts. 

Materials and Methods 

Modeling 

The initial GBl structure was taken from PDB entry lpga (Bernstein et 

al., 1977; Gallagher, et al., 1994). The program BIOGRAF (Molecular 

Simulations Incorporated, San Diego, California) was used to generate explicit 

hydrogens on the structure which was then conjugate gradient minimized for 

50 steps using the DREIDING force field (Mayo et al., 1990). All atoms except 

those of the side chains of residues 4, 6, 8, 13, 15, 17, 42, 44, 46, 51, 53, and 55 

were held fixed for subsequent DEE calculations. 

A Lennard-Jones 6-12 potential was used for van der Waals 

interactions with atomic radii scaled by 90% (Dahiyat & Mayo, 19976). The Lee 

and Richards definition of solvent-accessible surface area (Lee & Richards, 

1971) was used, areas being calculated with the Connolly algorithm (Connolly, 

1983). Buried and exposed areas were calculated as previously described (Street 

& Mayo, 1998). We include a hydrogen-bonding and electrostatics potential 

(Dahiyat, et al., 1997a). 

DEE optimization followed previously published methods (Gordon & 

Mayo, 1998). Calculations were performed on a 12 processor RlO000-based 

Silicon Graphics Power Challenge. 

Cross-validated R2 values were calculated by removing each point (xi, 

Yi) in turn and using least squares to predict its location (xi, Zi) based on the 

remaining points. The cross-validated R2 is then 
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where (y) is the average of the y/s. 

The simulation results depend, of course, on the precise rotamer 

library and solvation parameters selected. As in our previous work (Dahiyat, 

et al., 1997a), a backbone-dependent rotamer library was used (Dunbrack & 

Karplus, 1993). The results reported here use a library in which Xl angle 

values of all rotamers were expanded ±1 standard deviation about the mean 

value (known as the "el" library), and solvation parameters that benefit 

hydrophobic burial by CTnp = 26 cal mol-1 A-2 and penalize polar burial by CTp = 

100 cal mol-1 A-2 (Street & Mayo, 1998). To increase the speed of larger 

calculations, previous work (Dahiyat et al., 19976) has utilized the "a2hlp0" 

rotamer library, in which the Xl and x2 angles of aromatic side chain rotamers 

are expanded, the Xl angles of hydrophobic side chain rotamers are expanded, 

and only the mean X 1 angles of polar side chain rotamers are used. An 

alternative solvation potential, in which hydrophobic burial is benefited by 48 

cal mol-1 A-2 and only polar hydrogen burial is penalized (when not engaged 

in hydrogen bonding), was also used (Dahiyat, et al., 1997a). The optimal 

value of K found in this study is 1.6 for both of these energy functions. 

However, other combinations led to other values (Figure 4). This is to be 

expected, since the hydrophobic exposure penalty is itself a solvation 

parameter and so depends on the values of the other solvation parameters. 

We have reported the results for the most commonly used solvation 

parameters. 
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Mutagenesis and protein purification 

A synthetic GBl gene (Minor & Kim, 1994b) was cloned into a pETlla 

vector (Novagen), C-terminally His-tagged and used as the template for PCR 

mutagenesis. The correctness of the constructs was confirmed by DNA 

sequencing. The expression and purification of the various proteins followed 

published procedures. 

Circular dichroism 

CD spectra were measured on an Aviv 62DS spectrometer at pH 5.5, in 

50 mM phosphate and 25 µM protein. A 1 mm path length cell was used. The 

temperature was controlled by a thermoelectric unit. Thermal melts were 

performed at 218 nm using 2 °C temperature steps with an averaging time of 

10 s and an equilibration time of 90 s. The melting temperatures (Tm) were 

derived by evaluating the maximum of a d821s/dT versus T plot.Tm's were 

reproducible to within 0.5 °C. Protein concentrations were determined by UV 

spectrophotometry. ~~G's were calculated (Becktel & Schellman, 1987) using 

~Hm = 61 kcal/mol (Alexander et al., 1992), resulting in errors of ±0.08 

kcal/mol. In the case of a 6-fold mutant of GBl with a ~Tm of 8 °C, the 

Becktel-Schellman method holds (Alexander et al., 1992). Guanidinium­

induced denaturation was also used, with results in line with the melting 

temperature results but with greater experimental uncertainties (±0.2 

kcal/mol), as determined from multiple measurements using an auto­

titrator. The correlation between stabilities derived from guanidinium 

denaturation and from melting temperatures is shown in Figure 5. 



IV-9 

References 

Alexander P, Fahnestock S, Lee T, Orban J, Bryan P. 1992. Thermodynamic 

analysis of the folding of the streptococcal protein G IgG-binding 

domains ~ 1 and ~2 - Why small proteins tend to have high 

denaturation temperatures. Biochem 31: 3597-3603. 

Becktel WJ, Schellman JA. 1987. Protein stability curves. Biopolymers 26: 

1859-1877. 

Bernstein FC, Koetzle TF, Williams GJB, Meyer EE, Jr, Brice MD, Rodgers JR, 

Kennard 0, Shimanouchi T, Tasumi M. 1977. The protein data bank: a 

computer-based archival file for macromolecular structures. J Mal Biol 

112: 535-542. 

Betz SF, Degrado WF. 1996. Controlling topology and native-like behavior of 

de novo-designed peptides - design and characterization of antiparallel 

4-stranded coiled coils. Biochem 35: 6955-6962. 

Connolly ML. 1983. Solvent accessible surfaces of proteins and nucleic acids. 

Science 221: 709-713. 

Dahiyat BI, Gordon DB, Mayo SL. 1997a. Automated design of the surface 

positions of protein helices. Prat Sci 6: 1333-1337. 

Dahiyat BI, Mayo SL. 1996. Protein design automation. Prat Sci 5: 895-903. 

Dahiyat BI, Mayo SL. 1997a. De novo protein design: fully automated 

sequence selection. Science 278: 82-87. 

Dahiyat BI, Mayo SL. 1997b. Probing the role of packing specificity in protein 

design. Proc Natl Acad Sci USA 94: 10172-10177. 

Dahiyat BI, Sarisky CA, Mayo SL. 1997b. De nova protein design: towards fully 

automated sequence selection. J Mal Biol 273: 789-796. 

Desjarlais JR, Handel TM. 1995. De novo design of the hydrophobic cores of 

proteins. Prat Sci 4: 2006-2018. 



IV-10 

Desmet J, De Maeyer M, Hazes B, Lasters I. 1992. The dead-end elimination 

theorem and its use in protein side-chain positioning. Nature 356: 539-

542. 

Dunbrack RL, Karplus M. 1993. Backbone dependent rotamer library for 

proteins - an application to side-chain prediction. J Mol Biol 230: 543-

574. 

Gallagher T, Alexander P, Bryan P, Gilliland GL. 1994. Two crystal structures 

of the ~1 immunoglobulin-binding domain of streptococcal protein G 

and comparison with NMR. Biochem 33: 4721-4729. 

Gordon DB, Mayo SL. 1998. Radical performance enhancements for 

combinatorial optimization algorithms based on the dead-end 

elimination theorem. J Comp Chem 19: 1505-1514. 

Gronenborn AM, Filpula DR, Essign NZ, Achari A, Whitlow M, Wingfield 

PT, Clore GM. 1991. A novel, highly stable fold of the immunoglobin 

binding domain of streptococcal protein G. Science 253: 657-661. 

Harbury PB, Tidor B, Kim PS. 1995. Repacking protein cores with backbone 

freedom: structure prediction for coiled coils. Proc Natl Acad Sci USA 

92: 8408-8412. 

Hecht MH, Richardson JS, Richardson DC, Ogden RC. 1990. De novo design, 

expression, and characterization of Felix: a four-helix bundle protein of 

native-like sequence. Science 249: 884-891. 

Hellinga HW, Caradonna JP, Richards FM. 1991. Construction of new ligand­

binding sites in proteins of known structure 2. Grafting of buried 

transition-metal binding site into E. coli thioredoxin. J Mol Biol 222: 

787-803. 



IV-11 

Hurley JH, Baase WA, Matthews BW. 1992. Design and structural analysis of 

alternative hydrophobic core packing arrangements in bacteriophage 

T4 lysozyme. J Mal Biol 224: 1143-1154. 

Kim CA, Berg JM. 1993. Thermodynamic ~-sheet propensities measured using 

a zinc-finger host peptide. Nature 362: 267-270. 

Klemba M, Gardner KH, Marino S, Clarke ND, Regan L. 1995. Novel metal­

binding proteins by design. Nature Struct Biol 2: 368-373. 

Kono H, Doi J. 1994. Energy minimization method using automata network 

for sequence and side-chain conformation prediction from given 

backbone geometry. Proteins 19: 244-255. 

Lee B, Richards FM. 1971. The interpretation of protein structures: estimation 

of static accessibility. J Mal Biol 55: 379-400. 

Mayo SL, Olafson BD, Goddard WA, III. 1990. Dreiding - a generic force-field 

for molecular simulations. J Phys Chem 94: 8897-8909. 

Minor DL, Kim PS. 1994a. Context is a major determinant of ~-sheet 

propensity. Nature 371: 264-267. 

Minor DL, Kim PS. 1994b. Measurements of the ~-sheet-forming propensities 

of amino acids. Nature 367: 660-663. 

Munoz V, Serrano L. 1994. Intrinsic secondary structure propensities of the 

amino acids, using statistical <p-\jf matrices: comparison with 

experimental scales. Proteins 20: 301-311. 

Nautiyal S, Woolfson DN, King DS, Alber T. 1995. A designed heterotrimeric 

coiled coil. Biochem 34: 11645-11651. 

Otzen DE, Fersht AR. 1995. Side-chain determinants of ~-sheet stability. 

Biochem 34: 5718-5724. 

Pakula AA, Sauer RT. 1990. Reverse hydrophobic effects relieved by amino­

acid substitutions at a protein surface. Nature 344: 363-364. 



IV-12 

Smith CK, Withka JM, Regan L. 1994. A thermodynamic scale for the ~-sheet 

forming tendencies of the amino acids. Biochem 33: 5510-5517. 

Street AG, Mayo SL. 1998. Pairwise calculation of protein solvent accessible 

surface areas. Folding and Design 3: 253-258. 

Sun S, Brem R, Chan HS, Dill KA. 1995. Designing amino acid sequences to 

fold with good hydrophobic cores. Prat Eng 8: 1205-1213. 



IV-13 

Table 4-1. Experimentally determined melting temperatures and free energy 

differences of the proteins used in this study. 

Mutant Tm (°C) LiliG 

(kcal/mol) 

Ile6 86.4 0 

Val6 85.0 -0.24 

Tyr6 80.2 -1.06 

Phe6 79.8 -1.13 

Thr6 75.7 -1.83 

Arg6 82.7 -0.63 

Trp6 76.5 -1.69 
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Figure 4-1. Schematic diagram of GBl showing the 12 P-sheet surface residues 

considered in this study. 
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Figure 4-2. Correlation between energies calculated with different potential 

functions and the experimentally observed stabilities of the proteins used in 

this study. a) Potential function containing only van der Waals, electrostatics 

and hydrogen-bonding terms; b) Potential function that includes additional 

terms that benefit hydrophobic surface area burial and penalize polar surface 

area burial, but without the additional hydrophobic exposure penalty (i.e., 

K = O); c) Potential function including all terms with K = 1.6. 



A 

(!) 
<l 
<l 

IV-17 

0.0 - • 
I- lle6 
I- • I-

Val6 
-0.5 ,_ 

-1 .5 ,_ 

Thr6 • 
-2.0 ,___ __ ~1 __ ~1 __ ~1 __ 

-73 -72 -71 -70 -69 

Simulation Energy (kcal/mol) 



IV-18 

B 
0.0 • lle6 

• Val6 

-- -0.5 R2 = 0.72 0 
E 
---co 
() 

-1.0 .Y. ._.. • (9 Phe6 <J 
<J 

-1.5 

-2.0 ...____._ __ __.__ __ .....__ __ _._____. 
-21 -20 -19 -18 

Simulation Energy (kcal/mol) 



IV-19 

C 
0.0 

.-. -0.5 R2 = 0.97 0 
E --co 
(.) 

-1.0 .Y. ._. 

(9 
<:l 
<:l 

-1 .5 

-2.0 .___ _ ___. __ ____,__ __ ___._ __ ___. 
-2 -1 0 1 2 

Simulation Energy (kcal/mol) 



IV-20 

Figure 4-3. Cross-validated correlation between stabilities and calculated 

energies of the five mutants as a function of the value of the exposed 

hydrophobic surface area penalty, K. 



IV-21 

1 

• • 0.9 - • • C\J • a: • 
"'O 0.8 -

• • Q) 
+-' • co 0 "'O 0.7 ..... 

co 
> 

I 
CJ) 

0.6 • CJ) ..... 

0 
:..... 
(.) 

0.5 ..... 

4. 

0.40 
I I I I I 

0.5 1 1.5 2 2.5 3 

K (penalty strength) 



IV-22 

Figure 4-4 . Effect of rotamer library and solvation parameters on the 

correlation between stabilities and calculated energies of the five mutants, as a 

function of K. Shown are the "el" rotamer library (described in the text) with 

solvation potential A (crnp = 26 cal mol-1 A- 2

, crp = 100 cal mol- 1 A- 2

) (circles); 

"el" with solvation potential B (crnp = 48 cal mol- 1 A- 2 and a polar hydrogen 

burial penalty of 2 kcal mol-1 per hydrogen) (squares); the "a2hlp0" library 

with solvation potential A (crosses) and with solvation potential B 

(diamonds); and the "e2" library with solvation potential A (plusses). In the 

"e2" library, the XI and x2 angle values of all rotamers are expanded ±1 

standard deviation about the mean value. The correlation is greatest at K = 1.6 

for the most commonly used parameter sets but is less clear for other 

parameter sets. 
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Figure 4-5. Comparison of the stabilities obtained from proteins' melting 

temperatures via the Becktel-Schellman method, and the stabilities derived 

from guanidinium denaturation. Repeated temperature scans yielded very 

little change in the calculated melting temperature. Variation in stability 

resulting from repeated guanidinium denaturation experiments, however, 

was significant and is shown. In particular, the Tyr6 mutant was studied 

extensively. 
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Chapter 5. 

Pairwise Calculation of Solvent-Accessible 
Surf ace Area 

The text of this chapter is partially adapted from the publication 

Street A.G. and Mayo S.L. (1998) Folding and Design 3, 253-258. 

Abstract 

Many algorithms for determining the energy state of a system depend 

for their tractability on the pairwise nature of an energy expression. Some 

energy terms, such as the standard implementation of the van der Waals 

potential, satisfy this criterion while others do not. One class of important 

potentials that is not pairwise involves benefits and penalties for burying 

hydrophobic and/ or polar surface areas . It has been previously found that, in 

some cases, a pairwise approximation to these surface areas correlates with 

the true surface areas. We develop a pairwise expression with one scalable 

parameter that closely reproduces both the true buried and the true exposed 

solvent-accessible surface areas. We then refit our previously published coiled 

coil stability data (Dahiyat BI, Mayo SL, 1996, Prat Sci 5:895-903) to give 

solvation parameters of 26 cal/mol/ A2 favoring hydrophobic burial and 100 

cal/mol/ A2 opposing polar burial. 

Introduction 

Many energy minimization schemes require an energy expression that 

depends exclusively on the superposition of two body interactions. Of 

particular interest to us is the dead-end elimination theorem (Desmet et al., 
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1992) which allows at most two body interactions between amino acid 

sidechain rotamers and the protein backbone (or template) and between pairs 

of rotamers. Terms that depend on more than two bodies cannot be included. 

This leads to a general problem of accommodating surface area dependent 

terms in such energy expressions, since the buried and/ or exposed surface 

areas of three or more interacting bodies cannot be calculated exactly as the 

sum of two body interactions. 

The problem is exacerbated when calculating surface areas using the 

Lee and Richards definition of solvent-accessible surface area (Lee & Richards, 

1971) where 1.4 A is added to every atomic radius before calculation of the 

area. This increas·es the number of intersecting atoms and makes an accurate 

calculation of solvent-accessible surface areas by a two body method 

problematic (Figure la,b). As Figure lb shows, a simple two body method to 

calculate exposed hydrophobic solvent-accessible surface areas correlates 

poorly with the true surface areas, and as such limits a simple two body 

method's utility in protein design calculations. 

A two body approach has been considered in the context of increasing 

the speed of calculation of buried hydrophobic surface area for folding studies 

(Wodak & Janin, 1980; Kurochkina & Lee, 1995) where the areas of individual 

atoms or pseudo-atoms were calculated pairwise. These areas were either 

combined statistically (assuming randomly distributed atoms) or added and 

scaled, finding high correlation with the true Lee and Richards surface areas. 

The use of reduced van der Waal radii to compensate for pairwise over­

counting has also been discussed (Hodes et al., 1979; Augspurger & Scheraga, 

1996). Other (not necessarily pairwise) techniques for calculating surface areas 

have been recently reviewed (Connolly, 1996). Here we find empirically that 

by scaling only the portion of the expression for pairwise area that is subject to 
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over-counting, we can achieve excellent agreement with both the true buried 

and the true exposed solvent-accessible surface areas. 

Results and Discussion 

The pairwise calculation of surface areas used in this study differs in 

several key respects from that of our previous work (Dahiyat & Mayo, 1996). 

Here we include backbone atoms (N, HN, CA, HCA, C and 0) in the 

calculation of surface areas. For each sidechain rotamer r at residue position i 

with a local tri-peptide backbone t3 ([CA, C, O]i-1, [N, HN, CA, HCA, C, Oh, [N, 

HN, CAli+l), we calculate Af t3, the exposed area of the rotamer and its r 

backbone in the presence of the local tri-peptide backbone, and A. t' the 
lr 

exposed area of the rotamer and its backbone in the presence of the entire 

template t which is the protein backbone (Figure 2). The difference between 

Af t 3 and A
1
• t is the total area buried by the template for a rotamer rat residue 

r r 

position i. For each pair of residue positions i and j and rotamers rand s on i 

and j, respectively, we calculate Ai 
1
. t' the exposed area of the rotamer pair in 

r s 

the presence of the entire template. The difference between Ai 
1
. t and the sum 

r s 

of Ai t and A
1
. t is the area buried between residues i and j, excluding that area 

r s 

buried by the template. The pairwise approximation to the total buried surface 

area 1s 

(1) 

As shown in Figure 2, the second sum in (1) over-counts the buried area. We 

have therefore multiplied the second sum by a scale factors whose value is to 

be determined empirically. Expected values of s are discussed below. 
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Noting that the buried and exposed areas should add to the total area, 

Li Afrt3, the solvent-exposed surface area is 

(2) 

The first sum of (2) represents the total exposed area of each rotamer in the 

context of the protein template ignoring interactions with other rotamers. 

The second sum of (2) subtracts the buried areas between rotamers and is 

scaled by the same parameters as in (1). 

Some insight into the expected value of s can be gained from 

consideration of a close-packed face centered cubic lattice of spheres of radius 

r. When the radii are increased from r to R, the surface area on one sphere 

buried by a neighboring sphere is 2nR(R- r). We take r to be a carbon radius 

(1.95 A), and R is 1.4 A larger. Then, using 

true buried area 
S=--------

pairwise buried area 

and noting that each sphere has 12 neighbors, we have 

4nR2 
s=------

12 x 2nR(R- r) 

This yields s = 0.40. We note that a close-packed face centered cubic lattice has 

a packing density of 74%, and that protein interiors have a similar packing 

density, although because many atoms are covalently bonded the close 

packing is exaggerated (Creighton, 1993; Richards & Lim, 1994). We therefore 

expect s = 0.40 to be a lower bound for real protein cores. For non-core 

residues, where the packing density is lower, we expect a somewhat larger 

value of s. 
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We classified residues from ten proteins ranging in size from 54 to 289 

residues into core or non-core, as described in Materials and Methods (Table 

1). The classification into core and non-core was made because core residues 

interact more strongly with one another than do non-core residues. This 

leads to greater over-counting of the buried surface area for core residues. 

Considering the core and non-core cases separately, the value of s 

which most closely reproduced the true Lee and Richards surface areas was 

calculated for the ten proteins. The pairwise approximation very closely 

matches the true buried surface area (Figure 3a,b). It also performs very well 

for the exposed hydrophobic surface area of non-core residues (Figure 4b). The 

calculation of the exposed surface area of the entire core of a protein involves 

the difference of two large and nearly equal areas and is less accurate 

(Figure 4a); as will be shown, however, when there is a mixture of core and 

non-core residues, a high accuracy can still be achieved. These calculations 

indicate that for core residues sis 0.42 and for non-core residues s is 0.79. 

To test whether the classification of residues into core and non-core 

was sufficient, we examined subsets of interacting residues in the core and 

non-core positions, and compared the true buried area of each subset with 

that calculated by (1) (using the above values of s). For both subsets of the core 

and of the non-core, the correlation remained high (R2 = 1.00) indicating that 

no further classification is necessary (data not shown). (Subsets were 

generated as follows: given a seed residue, a subset of size two was generated 

by adding the closest residue; the next closest residue was added for a subset of 

size three, and this was repeated up to the size of the protein. Additional 

subsets were generated by selecting different seed residues.) 

It remains to apply this approach to calculating the buried or exposed 

surface areas of an arbitrary selection of interacting core and non-core residues 
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in a protein. When a core residue and a non-core residue interact, we replace 

(1) with 

Ab~~::Jse = ~ ( A frt3 - Airt) + ~ ( siAirt + sjAjst - SijAir j5t) (3) 
l l < J 

and (2) with 

Apairwise _"' A _ "'(s-A +s-A -s·-A·. ) 
exposed - ~ i,.t ~ z i,.t J M 17 1,.75 t (4) 

l l < J 

where Si and Sj are the values of s appropriate for residues i and j, respectively, 

and Sij takes on an intermediate value. Using subsets from the whole of lpga, 

the optimal value of Sij was found to be 0.74. This value was then shown to be 

appropriate for other test proteins (Figure Sa,b ). The correlation shown in 

Figure Sb represents a substantial improvement over that shown in Figure lb 

and demonstrates the utility of our approach. 

In previous work we examined the ability of a simple van der Waals 

potential energy function to predict the thermal stability of a series of coiled 

coils (Dahiyat & Mayo, 1996). We noted a significant improvement in the 

correlation between calculated stabilities and experimentally measured 

stabilities when a hydrophobic burial benefit of O"npA~~ried was included in 

the calculated energies, where O'np is a hydrophobic salvation parameter 
o np 

whose value was determined to be 23 cal/mol/ A2, and Aburied was the 

calculated buried hydrophobic area. The correlation between calculated 

energies and experimental melting temperatures was further improved by 

penalizing polar surface area burial by a-pAburied' where cr p is a polar 

salvation parameter and Aburied was the calculated buried polar area. The 

best values of O'np and crp were found to be 16 cal/mol/ A2 and 86 cal/mol/ A2, 

respectively, when both salvation terms were used together. In order to 
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benefit from the more accurate pairwise surface area method in protein 

design studies, it is necessary to update the values of CTnp and crp. We use (3) 

and the values of s described above. Residue 26 of the coiled coil used in the 

previous study was the only residue determined to be in the core. When only 

the hydrophobic burial benefit was considered, the best fit value of CTnp was 

determined to be 48 cal/mol/ A2. When both the hydrophobic burial benefit 

and the polar burial penalty were considered together, the best fit values of 

CTnp and CTp were determined to be 26 cal/mol/ A2 and 100 cal/mol/ A2, 

respectively (Figure 6). 

By examining a test set of proteins of vanous sizes, we have 

determined that the true Lee and Richards buried and exposed surface areas 

can be approximated well as a superposition of two body interactions using (3) 

and (4), with values for the parameter s that depend on the structural context 

of each residue. For core residues s is 0.42, for non-core positions s is 0.79, and 

for interactions between core and non-core positions Sij is 0.74. 

Methods 

We considered ten representative proteins whose Brookhaven Protein 

Databank codes (Bernstein et al., 1977) are listed in Table 1. The program 

BIOGRAF (Molecular Simulations Incorporated, San Diego, California) was 

used to generate explicit hydrogens on the structures which were then 

conjugate gradient minimized for 50 steps using the DREIDING force field 

(Mayo et al., 1990). 

We classified residues as core or non-core usmg an algorithm that 

considered the direction of each sidechain's Ca-C~ vector relative to a surface 

computed using only the template Ca atoms with a carbon radius of 1.95 A, a 

probe radius of 8 A and no add-on radius. A residue was classified as a core 
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position if both the distance from its Ca atom (along its Ca-C~ vector) to the 

surface was greater than 5.0 A and the distance from its C~ atom to the nearest 

point on the surface was greater than 2.0 A (Dahiyat & Mayo, 1997). The 

advantage of such an algorithm is that a knowledge of the amino acid type 

actually present at each residue position is not necessary. 

Surface areas were calculated using the Connolly algorithm with a dot 

density of 10 A-2 (Connolly, 1983), using a probe radius of zero and an add-on 

radius of 1.4 A (Lee & Richards, 1971) and atomic radii from the DREIDING 

forcefield (Mayo, et al., 1990). Atoms that contribute to the hydrophobic 

surface area are carbon, sulfur, and hydrogen atoms attached to carbon and 

sulfur. 

Energy calculations and parameter optimizations for the coiled coil 

system were performed as previously described (Dahiyat & Mayo, 1996). 
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Table 5-1. Selected proteins, total number of residues and the number of 

residues in the core and non-core of each protein (Gly and Pro were not 

considered). 

Brookhaven Total size Core size Non-core size 

identifier 

lenh 54 10 40 

lpga· 56 10 40 

lubi 76 16 50 

lmol 94 19 61 

lkpt 105 27 60 

4azu-A 128 39 71 

lgpr 158 39 89 

lgcs 174 53 98 

ledt 266 95 133 

lpbn 289 96 143 
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Figure 5-1. Comparison of true solvent-accessible surface area and that 

calculated with the simplest pairwise technique (equations (1) and (2) with s = 

1) for subsets of lmol. a) Buried area. The line of best fit has slope 1.24 and a 

correlation coefficient R2 = 1.00. Differences between calculated and true 

buried areas vary from 0 to 22%. b) Exposed hydrophobic area, with 

differences between calculated and true areas from 0 to 250% for small areas, 

converging to 100% for areas above 1000 A2. The line of best fit (not shown) 

has slope 0.00 and R2 = 0.00. In each case, a dashed line of slope 1 is shown. 
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Figure 5-2. Areas involved in calculating the buried and exposed areas of 

equations (1) and (2). The dashed box is the protein template (i.e., the protein 

backbone), the heavy solid lines correspond to three rotamers at three 

different residue positions, and the lighter solid lines correspond to surface 

areas. a) Afrt3 for each rotamer. b) Airt for each rotamer; notice that the 

template has buried some area from the lower two rotamers. c) ( Afrt3 - Airt) 

summed over the three residues. The upper residue does not bury any area 

against the template except that buried in the tri-peptide state Af t3 . d) A . . t 
r 1r] s 

for one pair of rotamers. e) The area buried between rotamers, 

(Ai,t +Ajst -Ai
1
j

5
t), for the same pair of rotamers as in (d). f) The area buried 

between rotamers, ( Airt + Ajst -Ai,jst ), summed over the three pairs of 

rotamers. The area intersected by all three rotamers (and only that area) is 

counted twice and is indicated by the double lines. The buried area calculated 

by (1) is the area buried by the template, represented in (c), plus s times the 

area buried between rotamers, represented in (f). The scaling factor s accounts 

for the over-counting shown by the double lines in (f). The exposed area 

calculated by (2) is the exposed area in the presence of the template, 

represented in (b ), minus s times the area buried between rotamers, 

represented in (f). 
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Figure 5-3. Comparison across ten proteins of the true buried surface area and 

the pairwise buried surface area calculated using (1). a) Core residues using s = 

0.42. b) Non-core residues using s = 0.79. In each case the correlation 

coefficient R2 = 1.00. The lines of best fit have slope 0.99 and 1.00 respectively, 

and differences between calculated and true buried areas are at most 2.5%. 
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Figure 5-4. Comparison across ten proteins of the true exposed hydrophobic 

surface area and the pairwise exposed hydrophobic surface area calculated 

using (2). a) Core residues using s = 0.42, with R2 = 0.69 (for reference, a dashed 

line of slope 1 is shown). The maximum difference between calculated and 

true exposed hydrophobic areas is 170%. b) Non-core residues using s = 0.79. 

The line of best fit has slope 1.02 and a correlation coefficient R2 = 1.00. The 

maximum difference between calculated and true exposed hydrophobic areas 

is 5%. 
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Figure 5-5. Comparison of true surface area and that calculated with (3) and (4) 

for subsets of lmol using Sij = 0.74. The subsets are the same as in Figure 1. a) 

Buried area. The line of best fit has slope 1.01, a correlation coefficient R2 = 

1.00, and a maximum difference between calculated and true buried area of 

2%. b) Exposed hydrophobic area. The line of best fit has slope 1.05 and a 

correlation coefficient R2 = 1.00, with differences between calculated and true 

areas from 0 to 30% for small areas, converging to 5% for areas above 1000 A2. 

These percent differences represent approximately an order of magnitude 

improvement over Figure 1. 
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Figure 5-6. Correlation between calculated and measured stability for designed 

coiled coils using buried surface areas calculated using (3) (compare to Figure 

Sb of (Dahiyat & Mayo, 1996)). Solvation parameter values are 26 cal/mol/ A2 

favoring hydrophobic burial and 100 cal / mol / A2 opposing polar burial. The 

labels A through H correspond to proteins PDA-3A through PDA-3H of 

(Dahiyat & Mayo, 1996). 
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Chapter 6. 

Designing Real Protein ~-Sheet Surf aces by 
Z-Score Optimization 

The text of this chapter is partially adapted from the manuscript 

Street A.G., Datta D., Gordon, D.B. and Mayo S.L. (to be submitted) 

Abstract 

Studies of lattice models of proteins have suggested that the 

appropriate energy expression for protein design may include non­

thermodynamic terms in order to accommodate negative design concerns. A 

method has been developed to improve protein design in lattice model 

studies where enumeration of all possible sequences, and their ground state 

structures, is possible. The method maximizes a quantity known as the "Z­

score," which compares the lowest energy sequence whose ground state 

structure is the target structure to an ensemble of random sequences. Here we 

show that, in certain circumstances, the technique can be applied to real 

proteins. The energy expression is then optimized using the assumption that 

the wildtype sequence is a low energy sequence (and its ground state is known 

to be the target structure). The new energy expression is used to design the ~­

sheet surfaces of two real proteins. We find experimentally that the resulting 

proteins are stable and well folded, and in one case is even more thermostable 

than the wildtype. 
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Introduction 

Much effort m the field of computational protein design is directed 

towards developing a potential function to rank the compatibility of amino 

acid rotamer sequences with a target structure (Gordon et al., 1999). In a 

"protein design cycle" (Dahiyat & Mayo, 1996; Street & Mayo, 1999), the 

potential function is developed by cycling between experiment and 

simulation, so that the computational potential ideally approaches nature's 

"true" potential. This technique has had some remarkable recent successes 

(Dahiyat & Mayo, 1997a; Malakauskas & Mayo, 1998). 

The approach nevertheless rests on a controversial assumption. 

Rotamer sequences are threaded onto the target structure, and the sequence 

with the lowest energy (as determined by the potential function) is reported as 

the best sequence for that structure. It is conceivable, though, that in some 

circumstances this sequence will not adopt the desired ground state structure. 

An extreme example is provided by imagining that the true potential 

function is one that only benefits hydrophobic contacts (and hydrophobic­

polar and polar-polar interactions contribute zero energy) (Lau & Dill, 1989). 

Then, for any target structure, an all-hydrophobic sequence must be one of the 

best sequences. This sequence, of course, is not likely to fold specifically to the 

target structure - some polar residues ought to be included to characterize the 

surface of the molecule. Overcoming this problem involves introducing non­

thermodynamic considerations to the design procedure, collectively known 

as "negative design" (Hellinga, 1997). 

There are a number of schemes proposed to implement negative 

design, often specifically to solve the problem of the example in the last 

paragraph (or variations on it based on the Ising model of ferromagnetism). 

Perhaps the simplest is to use a fixed sequence composition, that is, to hold 
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the total number of hydrophobic and polar residues constant (Shakhnovich & 

Gutin, 1993). Even with this constraint, however, designed sequences are 

frequently found to fold to alternative structures of lower energy than the 

target structure (Shakhnovich, 1994; Yue et al., 1995). Alternatively, instead of 

minimizing the potential function, it is possible to choose a sequence to 

maximize the occupation probability of the target structure (Micheletti et al., 

1998b; Seno et al., 1998). 

Other approaches employed in lattice model studies involve adding 

non-thermodynamic terms to the potential function. One method is to 

introduce a "clamping potential" to force the molecule into the target 

structure, and then to minimize the difference between the clamping 

potential and the "true" potential (Kurosky & Deutsch, 1995; Deutsch & 

Kurosky, 1996). Another approach involves the addition of a penalty for 

exposing hydrophobic surface area (Sun et al., 1995). 

Negative design is thus clearly important, at least in lattice model 

studies with simple potential functions and a limited set of amino acids 

(Crippen, 1996; Micheletti et al., 1998a). For real proteins and more physical 

potential functions, negative design can be necessary to guarantee the correct 

multimeric state of designed proteins (Harbury et al., 1993). A penalty for 

exposing hydrophobic surface area has also been shown to improve the 

designability of real proteins (Dahiyat & Mayo, 1997b; Malakauskas & Mayo, 

1998). 

In this chapter we take yet another approach to determining the 

optimal potential function for protein design, in which we maximize the 

energy gap between a low energy sequence known to fold to the target 

structure, and the average energy of an ensemble of random sequences 

threaded onto a target structure (Chiu & Goldstein, 1998). In a cubic 3x3x3 
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lattice simulation, the desired "true" potential can be selected manually and 

the protein folding problem can be solved. Thus a sequence S, whose ground 

state structure is the target structure, can be determined and its energy 

calculated. If the distribution of energies of the random sequences is assumed 

to be Gaussian, the success of the test potential for protein design is measured 

by the energy gap between the mean of the distribution and the energy of 

sequence S, normalized by the standard deviation of the distribution (Figure 

1). This quantity is known as the Z-score of the sequence S on the target 

structure. The test potential is then adjusted to maximize the Z-score. 

Chiu and Goldstein applied the method to a 3x3x3 lattice model, using 

statistically-derived pair potentials (Miyazawa & Jernigan, 1985) as the "true" 

potential. They found that the potential generated by maximizing the Z-score 

across many structures led to significantly better success at solving the protein 

design problem than the true potential. Here we show that the technique does 

not transfer readily to real proteins in their entirety. Nevertheless, we show 

that the technique can be applied to certain subsections of proteins . In 

particular we use it to design the P-sheet surfaces of the Pl immunoglobulin­

binding domain of streptococcal protein G (GBl) and of a variant of poplar 

apoplastocyanin with the metal binding site removed (PCV). 

The Z-Score Applied to Real Proteins 

One of the key assumptions of the lattice model method of Chiu and 

Goldstein (Chiu & Goldstein, 1998) is that the energies of random sequences 

threaded onto the target structure form a Gaussian distribution. It would be 

surprising if this assumption were to hold for real proteins. In particular, one 

would expect that placing random amino acid side chains in the core of a 

protein would typically lead to unresolvable steric clashes, especially since the 
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modeled backbone of the target structure is held rigid . Indeed, Figure 2a 

shows the distribution of potential energies of random sequences threaded 

onto the core of GBl. The distribution is clearly not Gaussian, with most 

sequences yielding enormous energies. A Gaussian distribution may be 

achievable by using a statistically derived pair potential instead of an 

atomistic van der Waals potential, but designs using pair potentials have not 

yielded uniquely characterizable folded states (Isogai et al., 1999). 

When only surface residues are considered, the situation is improved. 

For a-helix and ~-sheet surface residues of GBl, the distribution of energies of 

random sequences is close to Gaussian, as shown in Figures 2b and 2c, 

respectively. Thus it appears that on the surface, even randomly selected 

amino acids are always able to find suitable rotamers that avoid severe steric 

interference. The Z-score analysis may therefore provide some insight into 

the appropriate potential function for a-helix and ~-sheet surface design, 

provided one can find an appropriate sequence with which to calculate the Z­

score. In lattice models, one knows the true potential function and can 

exhaustively search all conformations to solve the protein folding problem 

(Shakhnovich & Gutin, 1993). Hence the Z-score of a structure could be 

calculated using the lowest-energy sequence whose ground state is the target 

structure. 

In contrast, in the lattice model study of Chiu and Goldstein (Chiu & 

Goldstein, 1998), the Z-score is actually calculated without knowledge of this 

lowest-energy sequence. One thousand 27-residue random amino acid 

sequences are constructed, which are found to correspond to 992 unique 

ground state structures. Eight sequences are discarded to yield a one-to-one 

correspondence between structures and sequences. The Z-score is calculated 

for each sequence in its ground state structure, using the 992 sequences to 
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determine the energy distribution. The potential function is then modified to 

maximize an appropriately formed average of the Z-scores. Thus, the 

reference sequence used to calculate the Z-score is not necessarily the lowest­

energy sequence whose ground state structure is the target structure, but 

instead an arbitrary sequence whose ground state structure is the target 

structure. Nevertheless, the resulting potential function is significantly better 

for protein design than the "true" potential. 

In our application of the theory to real proteins, we therefore expect 

that any arbitrary sequence known to fold to a target structure will suffice for 

calculating the Z-score of that structure. Given an experimentally determined 

structure, we can thus use the protein's wildtype sequence to calculate its Z­

score. In essence, the method then chooses the potential function which 

locates the protein's wildtype sequence as far as possible down the tail of the 

distribution of energies. 

Since a number of successful computational redesigns of a-helical 

surfaces have been reported (Dahiyat et al., 1997; Morgan, 2000), we chose to 

examine the Z-score technique on the ~-sheet surface, where there have been 

few successful computational protein design efforts. Negative design issues 

are also expected to play a larger role in ~-sheet design (Hecht, 1994). Rather 

than maximizing the Z-score of a large number of structures, as a first step we 

consider just one structure, so that the resulting potential function is 

optimized for protein design on that structure. This method should increase 

the possibility of the technique being successful for at least the one selected 

structure. The resulting potential function may then be applied to other 

proteins to test its generality, or a new potential function may be calculated by 

considering more protein structures . In particular, we chose to apply che 

technique to the eight ~-sheet surface residues of GBl which are not involved 
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in stabilizing interactions with neighboring turns (Figure 3a), and to the 

seven ~-sheet surface residues on one face of PCV (Figure 4a). 

The computational potential function, E, included van der Waals 

interactions, EvdW (Mayo et al., 1990; Dahiyat & Mayo, 1997b ), electrostatics, 

Ee!ec, and a hydrogen bonding potential, EHB (Dahiyat, et al., 1997), a bias for 

secondary structure propensity, Ess (Dahiyat, et al., 1997), and solvation 

energies. The solvation energies were a benefit for burial of hydrophobic 

surface area, A~ried' a penalty for burial of polar surface area, At~{l;d' and a 

penalty for exposure of hydrophobic surface area, A~?osed (Street & Mayo, 

1998), and a further penalty for polar hydrogen burial, Ephb (Dahiyat, et al., 

1997). 

E _ E Aburied J; Aexposed Aburied 
- V vdW - O"np np + ~np np + O"p polar + 

1 
-Eelec +DEHB +PEphb +Ess(N) 
£ 

(1) 

The magnitude of the van der Waals interactions, v, was held fixed 

and the relative magnitudes of the other seven energy terms (crnp, ;np, <Jp, £, 

D, P, and N as shown, where Ess is an exponential function of N) were 

allowed to vary individually until the Z-score was maximized. 

Results and Discussion 

The resulting potential functions are shown in Table 1. For GBl, the 

maximum Z-score is 2.6, i.e., the wildtype sequence is assigned an energy 

lower than 99.5% of all possible sequences. For PCV, the maximum Z-score is 

2.2. Also shown in Table 1 is the potential function built up over many 

experiments using the protein design cycle, which has been successful in 

particular for core design and ex-helix surface design (Street & Mayo, 1999). 

The Z-score optimized potential functions exhibit some interesting common 
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features. The hydrophobic burial benefit, which is the main embodiment of 

the hydrophobic effect (Wesson & Eisenberg, 1992), has disappeared. This 

reflects the relative lack of importance of hydrophobic burial on the surface of 

proteins (although there may be some role for small hydrophobic clusters on 

the surface of P-sheets (Tisi & Evans, 1995)). The other solvation parameters 

are broadly similar to the experimental potential function. 

The most dramatic difference from the protein design cycle potential is 

the increased importance of electrostatic interactions. The value of the 

dielectric constant used in the protein design cycle is similar to that of water, 

and leads to electrostatic interactions being de-emphasized. This value was 

never experimentally tested, however. Although saltbridges are not 

encouraged, the hydrogen bonding potential from the protein design cycle is 

quite strong (an ideal hydrogen bond receives a benefit of 8.0 kcal/mol). The 

Z-score optimized dielectric constant is an order of magnitude smaller, closer 

to unity. This is justifiable because we are considering effects at the molecular 

level, where the assumptions behind the use of the dielectric constant break 

down. The screening effect of solvent is also approximated by using a distance 

attenuated Coulomb potential (Mayo, et al., 1990). 

To determine if the Z-score technique may be useful, this potential 

function must be used for real protein design. We used a combination of 

dead-end elimination (Desmet et al., 1992; Gordon & Mayo, 1998) and branch 

and terminate (Gordon & Mayo, 1999) to find the lowest energy sequence for 

each P-sheet surface, using the new potential functions. (These minimization 

algorithms are guaranteed to produce the absolute lowest energy sequence, 

unlike stochastic algorithms such as Monte Carlo.) 

The resulting GBl variant, GBl-Zl, is a five-fold mutant of the 

wildtype protein. One can clearly see the impact of the electrostatic term in 



VI-9 

the potential function. The modeled side chain configurations are shown in 

Figure 3, alongside those of the wildtype crystal structures (Gallagher et al., 

1994). A cluster of threonines and an isoleucine have been replaced by cross­

strand saltbridge networks, Asp42 to Arg55, and Arg6 to Glu53 to Lys44. The 

wildtype saltbridge formed by Lys4 and Glu15 is maintained. Such cross­

strand saltbridges might be expected to contribute to ~-sheet formation and 

stability, and surface networks of saltbridges are postulated to be a stabilizing 

factor in hyperthermophilic proteins (Elcock, 1998; de Bakker et al., 1999). 

The resulting PCV variant, PCV-Zl, is a three-fold mutant of the 

wildtype protein. The modeled side chain configurations are shown in 

Figure 4, alongside those of the apoplastocyanin wildtype crystal structure 

(Garrett et al., 1984). Again, the impact of the electrostatic term is clear, with a 

saltbridge network formed by Glul8, Lys95, Lys97 and Glu79. 

The designed proteins were made experimentally using standard 

molecular biology techniques and their properties measured. Their far UV 

circular dichroism spectra overlay those of the wildtype proteins. The melting 

temperature of GBl-Zl was determined to be 71 °C (Figure 5). The melting 

temperature of GBl is 86 °C. Although the designed protein is not as stable as 

the wildtype protein, it appears to fold to the correct structure. Although the 

literature contains many examples of alterations to the ~-sheet surface of GBl, 

we know of no instances resulting in greater than wildtype stability. This is 

the first example of a well formed, many-stranded ~-sheet designed through 

purely computational means. 

The results for PCV-Zl were even more impressive. The melting 

temperature of PCV-Zl was determined to be 64 °C, compared to the melting 

temperature of PCV of 56 °C (Figure 6). The designed protein is thus even 
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more stable than the natural one. To our knowledge, this is the first time a 

natural protein's stability has been increased by redesigning its ~-sheet surface. 

Materials and Methods 

Simulation 

The core residues of GBl are positions 3, 5, 7, 20, 26, 30, 34, 39, 52, and 

54. The eight ~-sheet surface positions of GBl considered here are 4, 6, 15, 17, 

42, 44, 53, and 55. The a-helix surface positions of GBl are 24, 27, 28, 31, 32, 35, 

and 36. The seven ~-sheet surface positions of PCV considered here are 18, 20, 

79, 81, 93, 95, and 97. These follow from our residue classification algorithm 

(Dahiyat & Mayo, 1997a). The potential function used in Figure 1 is derived 

from the protein design cycle, shown in Table 1. 

The Z-score maximization algorithm searched along each potential 

function basis vector (that is, varying the scale factor for each energy term in 

(1)) individually to maximize the Z-score. The search was initiated at the 

potential function derived from the protein design cycle, from the van der 

Waals potential alone, and from other random potentials, and always 

converged to the same result. Further, the ordering of the search through 

basis vectors had no effect on the result. It was found that this optimization 

algorithm was sufficient to find the maximum Z-score. 

The Z-score was calculated using 4000 random sequences to determine 

the energy distribution of the potential function on the structure, resulting in 

an uncertainty in the Z-score of ±0.04. The random sequences were composed 

of the polar amino acids Ser, Thr, Asp, Asn, Glu, Gln, Lys and Arg, as well as 

the hydrophobic amino acids Ala, Val and Ile. The results were surprisingly 

robust to changes in the set of amino acids considered. In particular, the 
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results were not significantly different if Ala was removed from 

consideration, or if His, Met and Gly were included. 

In contrast to the case in lattice models, real amino acids may adopt 

many different conformations, or rotamers. The energy of a given amino acid 

sequence on a structure is thus calculated by minimizing the energy across all 

possible rotamer configurations, using dead-end elimination. For this 

procedure a backbone-dependent rotamer library was used (Dunbrack & 

Karplus, 1993), in which the Xl angles of all hydrophobic amino acid rotamers 

were expanded ±1 standard deviation about the mean value (Dahiyat, et al., 

1997). 

Experimental 

A synthetic GBl gene (Minor & Kim, 1994) was cloned into a pETlla 

vector (Novagen) and used as the template for QuikChange mutagenesis 

(Qiagen) . A synthetic PCV gene was constructed by recursive PCR 

(Prodromou & Pearl, 1992). The genes were confirmed by DNA sequencing. 

The expression and purification of the protein followed published 

procedures, and was verified by mass spectrometry. The 56-residue form of 

GBl (with N-terminal methionine processed) and the 100-residue form of 

PCV (including the N-terminal methionine) were used. PCV was derived 

from wildtype poplar apoplastocyanin (Garrett, et al., 1984) by removing its 

metal binding site through the mutations His37 to Val and Cys84 to Ala. 

These mutations are in the core of the molecule and are not expected to 

interact with changes to the surface of the protein. The melting temperature 

of PCV was observed to be 56 °C compared to 51 °C for unmodified 

apoplastocyanin. 



VI-12 

Far UV circular dichroism spectra were measured on an Aviv 62DS 

spectrometer. The spectra of GBl and GBl-Zl were measured at pH 5.5, in 50 

mM phosphate and 50 µM protein, using a 1 mm path length, with thermal 

melts performed at 218 nm using 2 °C temperature steps with an averaging 

time of 30 s and an equilibration time of 2 min. A guanidinium denaturation 

of GBl-Zl was also performed using an auto-titrator and a 10 minute 

equilibration time, yielding a stability of 3.6 kcal/mol at 1 °C (Santoro & 

Bolen, 1988). The spectra of PCV and PCV-Zl were measured at pH 7.0, in 50 

mM potassium phosphate, 0.5 M sodium sulfate, and 70 µM protein, with 

thermal melts performed at 210 nm. The melting temperatures were derived 

by evaluating the maximum of a d0 / d T versus T plot. Protein concentration 

was determined by UV spectrophotometry. 

Conclusion 

We report the first time a natural protein's stability has been increased 

by redesigning its ~-sheet surface. Further, it is notable that we have in fact 

designed two stable protein ~-sheet surfaces using different potential 

functions. Indeed, further application of the technique to other proteins 

suggests yet different potentials may be appropriate. This supports the belief 

that there may be alternative routes taken by nature to stabilize protein 

surfaces, and which may be taken in de nova design too (Cordes et al., 1996). 

Of course, one test of this proposal is to use the potential derived from one 

protein to design the ~-sheet surface of another, and preliminary results in 

this regard appear promising. A further advantage of the approach outlined 

in this chapter is that it could lead to a faster turn-around time for protein 

design, since it optimizes the potential function with less frequent recourse to 

experiment. 
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Table 6-1. 

Potential functions determined through different methods. The energy terms 

considered are shown in (1). The van der Waals energy scale factor v was held 

fixed. A potential function has been developed using the protein design cycle 

(Street & Mayo, 1999), and has been successful for core and a-helix surface 

design in particular. The Z-score method applied to the ~-sheet surface of PCV 

and of GBl yield new potential functions. Also shown are the ranges over 

which each parameter may be changed while keeping the Z-score within 5% 

of its maximum (when the other parameters are kept fixed). The units of the 

solvation parameters are kcal/mol/ A2. 

Energy term Design PCV Range GBl Range 

cycle 

van der Waals v 1.0 1.0 n .a. 1.0 n.a. 

np burial CJnp 0.05 0.0 0.0 - 0.01 0.0 0.0 - 0.02 

np exposure ~np 0.05 0.10 0.04 - 0.16 0.06 0.02 - 0.08 

polar burial CJp 0.0 0.0 0.0 - 0.04 0.03 0.01 - 0.06 

dielectric £ 40.0 4.0 2.0 - 6.0 4.0 2.0 - 6.0 

H-bond D 8.0 1.0 1.0- 8.0 6.0 1.0 - 8.0 

polar H burial P 2.0 9.0 6.0 -15.0 3.0 1.0- 7.0 

secondary n.a. 1.0 0.0 - 1.4 1.4 0.8 - 1.6 

structure bias N 
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Figure 6-1. The assumed distribution of energies of sequences threaded onto 

the target structure. Sequence So is the lowest energy sequence whose ground 

state structure is the target structure. Note that there may be sequences of 

lower energy which do not fold to the target structure. By altering the energy 

function non-thermodynamically, negative design seeks to move these 

sequences above So. 
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Figure 6-2. The actual distribution of energies of various subsets of the real 

protein GBl, using the potential function derived from the protein design 

cycle (Table 1). a) The core (only the 2.5% lowest-energy sequences are shown), 

b) the ex-helix surface, and c) the P-sheet surface. 
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Figure 6-3. Views of the eight designed positions on the ~-sheet surface of 

GBl. a) The crystographically-determined wildtype side chain orientations, 

and b) the orientations modeled using the Z-score-derived potential function. 
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Figure 6-4. Views of the seven designed positions on the ~-sheet surface of 

PCV. a) The crystographically-determined wildtype side chain orientations, 

and b) the orientations modeled using the Z-score-derived potential function. 



VI-28 

A 



VI-29 

B 



VI-30 

Figure 6-5. Circular dichroism measurements of GBl (open circles) and GBl­

Zl (solid circles) with temperature at 218 nm. Their melting temperatures are 

respectively 86 °C and 71 °C. 
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Figure 6-6. Circular dichroism measurements of PCV (open circles) and PCV­

Zl (solid circles) with temperature at 210 nm. Their melting temperatures are 

respectively 56 °C and 64 °C. 
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Appendix A. 

Calculations for Rational Design of a Catalytic 
Antibody 

Introduction 

A significant goal of protein design is the design of novel enzymes. 

Although there are notable examples of rational design leading to fully 

functional proteins with improved thermostability (Malakauskas & Mayo, 

1998), improving or redesigning protein function is more difficult. Here we 

discuss an attempt to use our protein design method to improve the binding 

strength of an enzyme. 

We chose to study the catalytic antibody AZ-28 (Ulrich et al., 1997). 

Catalytic antibodies are artificial enzymes which can be created by injecting an 

animal with an antigen containing a transition state analog (that is, a stable 

molecule which resembles the hypothesized transition state in a chemical 

reaction - hapten 1 of Figure 1 in the case of AZ-28). Antibodies are created in 

the animal which bind to the antigen, and may be purified. These antibodies 

should then catalyze the desired reaction (substrate 2 to product 3 in this case) 

by forcing reactants into the transition state, and thus over the activation 

barrier to the reaction. The process can result in effective novel catalysts 

(Schultz & Lerner, 1995). It is our hope that by applying the techniques of 

rational protein design to this essentially evolutionary approach, further 

improvements in catalysis can be made. 

There are two versions of AZ-28, since the immune system refines its 

response over time - the initial "germline" antibody is first on the scene, and 

later gives rise to "mature" antibodies with small numbers of mutations from 
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the germline that bind more efficiently to the antigen. One would expect that 

the mature antibody would be the more efficient catalyst, but in the case of 

AZ-28 the germline has a 35-fold greater rate enhancement over the mature 

antibody (a turnover rate, kcat, of 0.80 min- 1 versus 0.023 min- 1 - for 

comparison, natural enzymes are usually 102 to 1Q6 secl ). The reason for this 

requires an understanding of the structure of the antibody, which is available 

for the mature antibody only (Ulrich, et al., 1997), and shown in Figure 2. 

The antibody AZ-28 catalyzes the oxy-Cope rearrangement of substrate 

2 to product 3. The reaction proceeds fastest when the central cyclohexyl ring 

is coplanar with the flanking phenyl substituents, so that re-orbital overlap is 

maximized. The structure of the mature antibody reveals, however, that the 

cyclohexyl ring is bound at right angles to the phenyl rings. An examination 

of the structure indicates that L34 Asn (position 34 of the light chain) is largely 

responsible for holding the cyclohexyl ring in its conformation. In the 

germline antibody, this residue is L34 Ser . This suggests that in the germline 

antibody, the cyclohexyl ring is free to rotate - hence its increased activity 

(Ulrich, et al., 1997). 

The considerations above suggest a useful role for rational protein 

design. Computationally, one is not limited by the necessity to create stable 

analogs of the transition state. For example, we can require in our modeling 

that the phenyl and cyclohexyl rings remain coplanar - a requirement that is 

difficult to achieve experimentally. 

Results and Discussion 

In order to cause minimal disruption to the binding site, we modeled 

the hapten in its crystallographically determined structure, with the deepest 
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bound 5-phenyl ring rotated through 180°. At an 80° rotation, the rr-orbital 

overlap between the 5-phenyl and cyclohexyl rings is greatest. 

We identified those hydrophobic residues within 7.1 A of the 5-phenyl 

ring, and additionally H35 Glu (a polar residue), which sterically clashes with 

the rotated 5-phenyl substituent. These are not positions which were mutated 

in the original analyses (Ulrich, et al., 1997). All positions were constrained to 

remain hydrophobic (except for H35 Glu). A detailed rotamer library was 

used, as discussed in Materials and Methods. A hydrophobic burial benefit 

was included, which has been shown to improve designability (Dahiyat & 

Mayo, 1996) and which should increase the amount of hydrophobic packing 

around the hapten. 

The resulting sequences are shown in Table 1. There are some 

concerted changes from the wildtype sequence. In particular, H103 Trp and 

H37 Val are replaced with H103 Phe and H37 Ile for an improvement in 

simulation energy of 2.5 kcal/mol. 

As discussed earlier for the wildtype sequence, the zero degree sequence 

cannot accommodate the rotated 5-phenyl. The +80° sequence, however, has a 

simulation energy of -262 kcal/mol when it is combined with the unrotated 5-

phenyl. This is actually better than its energy with the 80°-rotated hapten, 

because there have been no mutations from small side chains to large side 

chains to hold the 5-phenyl in its new conformation. The +80° sequence may 

therefore prefer the hapten conformation found in the crystal structure, but 

should at least be flexible enough to allow the 5-phenyl to rotate. With a fixed 

backbone, this is the best result possible without leading to destabilizing steric 

clashes. It does point to the desirability, however, of including some backbone 

flexibility in future calculations. 
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Whether ignoring backbone flexibility in rational protein design can 

nevertheless lead to some improvements in catalysis must of course await 

experimental verification. The sequences in Table 1 were sent to the Schultz 

group in July 1998 and the resulting molecules' stabilities were not available 

at the time of writing. 

Materials and Methods 

The program BIOGRAF (Molecular Simulations Incorporated, San 

Diego, California) was used to generate explicit hydrogens on the structure of 

the mature antibody AZ-28 provided by the Schultz group . This was 

conjugate gradient minimized for 50 steps using the DREIDING force field 

(Mayo et al., 1990). All atoms except those of the side chains in question were 

held fixed for subsequent DEE calculations. Two crystallographically observed 

waters in the binding site were left in place during the minimization and 

subsequent calculations. 

A Lennard-Jones 6-12 potential was used for van der Waals 

interactions with atomic radii scaled by 90% (Dahiyat & Mayo, 1997). The Lee 

and Richards definition of solvent-accessible surface area (Lee & Richards, 

1971) was used, areas being calculated with the Connolly algorithm (Connolly, 

1983). Buried areas were calculated as previously described (Street & Mayo, 

1998). An atomic solvation parameter of <Jnp = 48 cal/mol/ A2 was used to 

favor hydrophobic burial (Street & Mayo, 1998). We include a hydrogen­

bonding and electrostatics potential (Dahiyat et al., 1997). 

As in our previous work (Dahiyat et al., 1997), a backbone-dependent 

rotamer library was used (Dunbrack & Karplus, 1993). The Xl and X2 angles of 

all rotamers were expanded ±1 standard deviation about the mean value. DEE 

optimization followed previously published methods (Dahiyat & Mayo, 1996). 
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Calculations were performed on a 12 processor RlO000-based Silicon Graphics 

Power Challenge. 

The resulting structure files, which were sent to Alex Varvak of the 

Schultz group, use our numbering scheme, which differs from the original 

numbering scheme because it increases from 1 monotonically, continuing 

where it left off from one chain to the next. The light chain therefore has the 

same numbering in both schemes, but the heavy chain is quite different, 

particularly because of residues such as 100a, 100b, 100c in the original. Both 

schemes are shown in Figure 3. 
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Table A-1. Designed sequences for the mature AZ-28 antibody. Different 

sequences are predicted for different orientations of the deepest bound 5-

phenyl ring. Vertical bars indicate there is no change from wildtype. 

Simulation energies (kcal/mol) are also shown for each sequence. The 

wildtype energy (*) is not directly comparable, however, since it is calculated 

by applying the energy expression directly to the minimized crystal structure, 

rather than by forcing the wildtype side chains to their nearest available 

rotamers. 

5-phenyl L L L L L H H H H H H H Energy 

rotation 36 89 91 96 98 35 37 45 47 91 93 103 

(wild type) F L y y F E V L w y A w -308 * 

0 F L w I F F -267 

+20 V F L w I F F -266 

+40 V F L w A I F F -260 

+60 V F L w A I F F -259 

+80 V F L w A I F F -250 

-80 L F L A I F F -237 

-60 L F L A I F F -251 

-40 F L w N I F F -261 

-20 F L w I F F -265 
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Figure A-1. Transition-state analog (1) and the reaction catalyzed by antibody 

AZ-28 (2, 3). Figure adapted from (Ulrich, et al., 1997). 
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Figure A-2. The structure of the antigen-binding fragment (Fab) of the AZ-28 

mature antibody. The light chain is shown in yellow, the heavy chain in 

orange. The hapten 1 (excluding the group R) is shown in its binding site. The 

cyclohexyl ring is seen to be at right angles to the flanking phenyl rings. 
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Figure A-3. Views of the AZ-28 mature antibody binding site. The displayed 

side-chains are those close to the 5-phenyl group, a) with the heavy chain 

removed from view, b) with the light chain removed from view. The 

original and our sequential numbering schemes are both shown. 
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