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Abstract

Our goal is a quantitative algorithm for protein design which is not
limited to particular protein folds. In this endeavor there have been previous
successes designing protein cores, where van der Waals packing, and the
tendency of hydrophobic amino acids to avoid contact with solvent, are the
dominant forces. On the surfaces of proteins, efforts at a-helix surface design
have also been successful, where hydrogen bonding and a-helix propensities
are additionally important. However, there are no algorithmically designed
stable 3-sheet surfaces.

One of the energy terms expected to be important for B-sheet surface
design is B-sheet propensity. No concise theory explaining the amino acids’
differing B-sheet propensities has previously been developed. In this thesis, I
examine the underlying physical-chemical basis for B-sheet propensities, and
show that they are caused primarily by van der Waals interactions between
the side chains and the local backbone.

I then consider an additional energy term, a penalty for the exposure of
hydrophobic surface area. This is not a thermodynamic term, but rather one
that can be justified through “negative design,” in which alternative badly
folded ground state structures are disfavored. I show experimentally that this
term improves the algorithm’s predictive ability, and determine its strength
in the context of our previously published energy expression. In order to do
this, I developed a two body approximation for buried and exposed surface
area calculation which very closely reproduces the true surface areas.

Finally, I develop a general method for calculation of the optimal
energy expression for protein design, from theoretical lattice model studies,

and apply it to real proteins. In particular the method is applicable to f-sheet
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surfaces. The B-sheet surfaces of two real proteins are thus redesigned and
made experimentally. The culmination is a protein of greater stability than
the naturally occurring protein. This is the first time greater stability has been
achieved solely through mutations to the B-sheet surface, and marks a major
step towards an ability to completely design de novo arbitrary proteins of
arbitrary size.

Successful protein design will lead to many practical applications, from
new catalysts for industrial processes, to improved stability for existing

medicines, to completely novel enzymes.
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Chapter 1.
Introduction

“I am, as I said, inspired by the biological phenomena in which
chemical forces are used in repetitious fashion to produce all

kinds of weird effects, one of which is the author.”
Richard P. Feynman, “There's plenty of room at the bottom,” 1959.

Introduction

In 1959 Richard Feynman outlined his hopes that one day physicists
would be able to create materials by manipulating the locations of individual
atoms, vastly superseding current chemical synthesis techniques. As a first
step, he suggested two competitions. One was to take the information on the
page of a book and shrink it twenty-five thousand times, but so that it could
still be read. The second was to build a motor only half a millimetre across.

As Feynman was aware, biological systems encode information far
more compactly than the winner of the first competition would. After all,
practically every nucleus of every cell in our bodies contains all the
information necessary (i.e., about three billion base pairs of DNA) for us to
grow up from a zygote, stored in chromosomes only a few millionths of a
metre across. For example, this thesis, written in the language of DNA, would
be 1017 times smaller (and easily readable by current sequencing techniques) —
a sizable improvement over Feynman's initial challenge!

The second challenge, it turns out, was also long ago taken up by

nature. Every cell of our body also contains a huge number of
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electrochemically-driven motors, which undergo a three-stroke cycle to
generate a molecule (adenosine triphosphate, or ATP) which can be utilized
by many other processes in the cell for their energy needs. These motors are
part of a protein known as ATP synthase, and are a tiny ten billionths of a
metre across — about fifty thousand times smaller than stipulated by the
competition. Many other protein motors have also been discovered,
including bacterial flagellar motors, which propel bacteria; kinesin,
responsible for neuronal transport; and myosin, responsible for muscle
contraction, and thus for our ability to move at all.

Nature having satisfactorily solved the two challenges, how might we
achieve Feynman's grand vision of designing materials by manipulating the
positions of individual atoms? He envisioned a purely “physics” approach to
the problem, but given nature's proficiency at the job, it makes sense to
consider instead a “biophysics” approach.

In this thesis I describe advances I have made in the field of
computational protein design. Proteins are complex three-dimensional
molecules which perform most of the tasks necessary for life. They can be
viewed as tiny machines, only a few billionths of a metre across, whose
abilities include everything from the synthesis of ATP described above, to
metabolism, to oxygen transport in the blood, to regulating salt
concentrations in our cells, to duplicating DNA. Despite proteins’ wide-
ranging capabilities, an individual protein can actually be uniquely specified
by a one-dimensional sequence in DNA (i.e., a gene). This sequence is
translated into a one-dimensional sequence of amino acids which, with no
further external help, self-assembles into a functional complex three-
dimensional protein. This correspondence between one-dimensional

sequence and three-dimensional shape means something very complex arises
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from something very simple, enabling a description of our entire bodies to be
encoded in a few cubic micrometres, and thus making evolution through
natural selection possible. Quite apart from the intellectual satisfaction of
understanding such a critical element of life, a knowledge of the rules which
govern protein self-assembly would enable us to make molecules with shapes
of our own design, thereby achieving the spirit of Feynman's vision. An
ability to design proteins thus opens up a whole realm of nanotechnology
whose possibilities are almost unfathomable.

From these heady heights, let us examine the details.

What is a Protein?

Proteins are linear polymers of amino acids. Because it is a linear
polymer, a protein (or polypeptide) consists of a sequence of amino acid side
chains branching off an unbranched backbone. The twenty naturally
occurring amino acids are shown in Figure 1. The sequence of amino acids is
called the primary structure of a protein.

In the cell, particular amino acid sequences are specified by genes, in
deoxyribonucleic acid (DNA). The DNA is first transcribed into ribonucleic
acid (RNA), which is then translated into protein. Three neighboring RNA
bases (of which there are four, adenine, cytosine, uracil and guanine, denoted
A, C, U and G respectively) are read at a time, and interpreted as a particular
amino acid to be appended to the protein, according to the “genetic code.” In
some cases a protein is then modified to better carry out its function;
hemoglobin, for example, contains the prosthetic group heme. Additionally,
functional proteins may result from assemblies of more than one polypeptide

chain.
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As discussed above, proteins are perhaps best viewed as self-organizing
molecular machines - the ultimate nanotechnology. They are the enzymes
that make life possible, even responsible for the translation and transcription
of DNA to form new proteins (although proteins are sometimes coupled with
other molecules, including RNA). Proteins can also play structural roles, such
as that of collagen, which maintains the cellular structure of connective
tissue, and messenger roles, such as that of the polypeptide hormone insulin.
Proteins are also ubiquitous - they make up 18% of the weight of a

mammalian cell (water accounts for 70%).

Protein Folding

The incredible range of protein functions is possible because,
depending on the sequence of amino acids which constitute it, a protein
always folds into a particular “native” compact structure (under physiological
conditions, and not considering exceptional cases such as prions). Only the
sequence of amino acids comprising the protein is necessary to determine the
ultimate structure of the protein — for example, dilute protein solutions may
be heated until the protein unfolds (denatures), and cooled again, to form
functional protein again. However, as discussed in more detail below, no
theory can yet predict a protein's native structure from just its sequence,
despite nature's ability to solve this problem in usually less than a second.

The ability of a protein to fold is demonstrated in Figure 2. The
backbone has a degree of freedom at each single bond, at which rotation
around the bond is possible. Such rotation is described by a dihedral angle.
Each amino acid has three dihedral angles, not including those specific to the
side chain, denoted ¢, y and ®. The last of these, however, corresponds to

rotation about the peptide bond (the bond formed by the polymerization
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between two amino acids), which has a slight double bond character and is
constrained to be flat, with @ = 180°, as shown in the figure (although ® = 0°
may also precede proline). Therefore, a folded protein backbone can be largely
described by a sequence of (¢, y) pairs, with one pair for each amino acid (or
“residue”) in the protein.

Protein structures, while not as regular as the double helix of DNA,
nevertheless show some regularity. The backbone often adopts conformations
known as o-helices and B-sheets; these are known as elements of secondary
structure (Figure 3). (Frequently, protein structures are depicted showing only
the backbone, with stylized o-helices and B-sheets.) One feature which
identifies units of secondary structure is their pattern of hydrogen bonding, as
shown in the figure. They also have characteristic (¢, y) angles, as shown in
Figure 4. Linking these elements are less well-defined turns, some of which
are themselves common motifs.

The organization of secondary structure units in a protein is known as
the protein’s tertiary structure. The same tertiary structures can be seen even

in proteins with markedly different sequences.

Protein Structure Prediction

No theory currently explains which physical and chemical forces are
most important in the folding process, or is able to predict the structure that a
particular amino acid sequence will adopt upon folding. One reason is that
the process occurs in aqueous solution. Indeed, the desolvation of
hydrophobic side chains into a hydrophobic core — often referred to as the
“hydrophobic effect” — is characteristic of protein folding. Unfortunately, an

accurate but computationally tractable way to model solvation has yet to
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emerge — modeling every solvating water molecule is beyond current
computing power.

Another reason is that protein stability is finely balanced between
competing effects. A protein’s stability is defined to be the change in free
energy, AG, between its native (folded) and denatured (unfolded) states. Both
enthalpy and entropy contribute to free energy. The change in entropy on
folding is large and negative, as the polypeptide chain moves from a loosely
restricted state to an essentially unique state. This opposing force almost
exactly cancels the benefits gained from improved physical and chemical
interactions in the native state. For example, at 25 °C and pH 2.5, the protein
ribonuclease, which hydrolyzes RNA, has a change in enthalpy on folding,
AH, of -238 kcal/mol, but an entropic contribution to free energy, -TAS (where
T is the temperature), of 231 kcal/mol. The resulting protein stability is thus

only -7 kcal/mol.

Protein Design

It makes sense to approach the issue of what forces are most important
in protein folding from another direction. Instead of asking what structure a
given amino acid sequence will adopt, we can ask what amino acid sequence
will adopt a given protein structure. This approach has a number of
advantages over the more direct approach. In particular, it is easier to
experimentally test our method by actually constructing the predicted
sequences and determining their structures. Another important advantage is
provided by degeneracy — there are many sequences which will fold to a given
structure, but only one structure per (foldable) sequence.

As discussed earlier, successful protein design will lead to practical

applications, from new catalysts for industrial processes, to improved stability
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for existing medicines, to completely de novo enzymes. It may also pave the

way towards a general theory for designing self-organizing macro-molecules.

The Road Ahead

Computational protein design is taken up in more detail in Chapter 2,
giving an overview of the forces thought to be important for protein design,
and the main algorithms we use to search through the enormous number of
sequences available. Important issues such as backbone flexibility and
negative design are also discussed.

In Chapter 3, I take a step back from designing proteins and ask what
causes some amino acids to occur more frequently than others in B-sheets. A
concise physical theory behind this phenomenon had previously been
lacking. I show that it is largely due to the van der Waals interactions between
the side chain and the local backbone. This result is interesting because the
non-local nature of B-sheets (i.e., B-strands from different regions of the
sequence fold up adjacent to each other) had suggested that non-local effects
might play a dominant role.

In Chapter 4, I embark on a study of the role of negative design in the
design of B-sheet surfaces. Specifically, I examine whether penalizing
exposure to solvent of hydrophobic surface area can improve B-sheet surface
design efforts. Chapter 5 details my development of a new two body treatment
of surface area determination, which was required for accurate calculation of
the exposed hydrophobic surface area.

Finally, in Chapter 6, I develop a general theoretical approach for
incorporating negative design into the design of real proteins (again,
specifically their B-sheet surfaces), and apply it to the design of two real

proteins. The culmination is a protein of greater stability than the naturally
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occurring protein. This is the first time greater stability has been achieved
solely through mutations to the B-sheet surface, and marks a major step
towards an ability to completely design de novo arbitrary proteins of arbitrary

size.



I-9

Figure 1-1. Amino acids. a) The naturally occurring biological amino acids are
all a-amino acids, meaning they have one carbon (called the a-carbon)
between the amino (NH3z*) and acid (COO-) termini. They differ from one
another only in the side chain R. The a-carbon has four different substituents,
so that sterically different molecules result from the two possible placements
of the side chain and the hydrogen; all naturally occurring amino acids have
the same left-handed placement shown (with the side chain coming out of
the page and the hydrogen going into the page). b) The side chains of the 20
naturally occurring amino acids, and their three-letter abbreviations. The
respective full names and one-letter codes are glycine G, alanine A, cysteine C,
methionine M, valine V, leucine L, isoleucine I, serine S, threonine T,
aspartic acid D, aspargine N, glutamic acid E, glutamine Q, lysine K, arginine
R, histidine H, proline P, phenylalanine F, tyrosine Y and tryptophan W.

Proline is unique in that it reconnects to the backbone nitrogen.
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Figure 1-2. A section from a sequence of polymerized amino acids (peptide)
showing the backbone dihedral angles ¢ and y, whose rotation lead to the
phenomenon of protein “folding.” The direction defined as positive rotation
is shown. The extended conformation of the chain is shown, when both

dihedral angles are defined to be 180°. Figure copyright Irving Geis.
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Figure 1-3. The major types of secondary structure. a) The a-helix. b) The
parallel B-sheet, in which neighboring B-strands go in the same direction. c)
The anti-parallel B-sheet, in which neighboring B-strands go in opposite

directions. Figures copyright Irving Geis.
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Figure 1-4. A “Ramachandran” plot showing the sterically allowed regions of
(¢, v) space. The broad features of this plot are valid for all amino acids except
glycine, which has more flexibility, and proline, which is more restricted.
Specific regions on this plot are associated with the o-helix, the parallel B-
sheet and the anti-parallel B-sheet, as shown. 80% of (¢, y) angles from
crystallographically-determined structures lie within the dark regions of the
plot, 95% lie within the dark and medium regions, and 98% lie within all the

shaded regions.
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Chapter 2.
Computational Protein Design

The text of this chapter is partially adapted from the publication
Street A.G. and Mayo S.L. (1999) Structure 7, R105-R109.

Abstract

A “protein design cycle,” involving cycling between theory and
experiment, has led to recent advances in rational protein design. In
particular a reductionist approach, in which protein positions are classified by
their local environments, has aided development of an appropriate energy
expression. Here we discuss the computational principles and practicalities of
the protein design cycle, including energy minimization, backbone flexibility

and negative design issues.

Introduction

There are many reasons to pursue the goal of protein design. In
medicine and industry, the ability to precisely engineer protein hormones
and enzymes to perform existing functions under a wider range of conditions,
or to perform entirely new functions, has tremendous potential.
Furthermore, in the case of rational protein design, the obtained knowledge
would likely be linked to a more complete understanding of the forces
underlying protein folding, enabling more rapid interpretation of the wealth
of genomic information being amassed. Advances in protein design may also
make possible the construction of a range of other self-organizing

macromolecules.
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Although some steps have been taken towards rationally designing
functional enzymes (Wilson et al., 1991), such a goal lies some distance away.
Currently, attention is focused on redesigning portions of proteins to insert
particular motifs, increase stability or modify function. Examples include the
engineering of metal binding centers, reviewed recently by Hellinga
(Hellinga, 1998b) and the introduction of disulfide bonds (Pabo & Suchanek,
1986; Matsumura & Matthews, 1991; Yan & Erickson, 1994). Theoretical work
in the context of lattice models has also led to important insights. This work
has been recently reviewed (Dill et al., 1995; Shakhnovich, 1998).

Attempts to design entire proteins de novo have been increasingly
successful over the past decade. Early design efforts typically led to poorly
characterizable states or molten globules, instead of a single target fold (Betz et
al., 1993). Other difficulties became apparent when a designed o-helical dimer
(O'Neil & DeGrado, 1990) was shown to actually form a trimer (Lovejoy et al.,
1993). This and subsequent studies relied on largely qualitative examination
of the target molecule (Bryson et al., 1995), making generalization to other
targets difficult.

This review focuses on the advances made in computational
approaches to protein design. In particular, we examine those atomistic
approaches which involve cycling between experiment and theory in a

“protein design cycle.”

Energy Expression

Atomistic protein design requires an energy expression or force-field to
rank the desirability of each amino acid sequence for a particular backbone
structure. Over the last decade, elements of a suitable energy expression for

atomistic protein design have been suggested and explored. To avoid over-
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fitting and to focus on only the most important contributors, the energy
expression should contain as few terms as possible while maintaining
predictive power. Communication between theory and experiment is
required to determine which energy terms to include, and the relative
importance of the included terms. In a protein design cycle, an energy
expression is used to generate sequences which are subsequently made in the
laboratory. Alterations and additions to the energy expression are then
considered which improve the correlation between the computed and
experimentally determined properties of the sequences. The improved energy

expression is then used to generate new sequences, completing the cycle.

Energy Minimization

In order to experimentally test the energy expression, the minimum
energy sequence on the target backbone must be determined. In the simplest
implementation, the energy of every possible sequence is calculated using the
energy expression, and the lowest energy sequence is reported. The size of
most problems of interest renders this exhaustive approach impractical.
Ignoring the possibility of multiple conformations of each amino acid,
allowing the 20 naturally occurring amino acids at every position of a 100
amino acid protein yields 10130 possible sequence solutions. Clearly,
ingenious energy minimization techniques are necessary.

Published search algorithms including self-consistent mean-field
approaches (Lee, 1994; Vasquez, 1995; Koehl & Delarue, 1996), Monte Carlo
techniques (Lee & Levitt, 1991; Hellinga & Richards, 1994), neural networks
(Kono & Doi, 1996) and genetic algorithms (Desjarlais & Handel, 1995;
Pedersen & Moult, 1996) share the advantage of being able to sample large

combinatorial space but the disadvantage of not being guaranteed to find the
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global optimal solution. By contrast dead-end elimination, and branch and
terminate (discussed in more detail below) are search algorithms whose final
solution is guaranteed to be the global optimum, but which require the
discretization of side chain conformations into rotamers (Janin et al., 1978;
Ponder & Richards, 1987). Such requirements will be discussed below. Search

algorithms have been recently reviewed (Desjarlais & Clarke, 1998).

Dead-End Elimination
The dead-end elimination theorem was originally introduced (Desmet
et al., 1992) to aid protein homology modeling, in which side chain identities
are known and the adopted side chain conformations (or rotamers) are
desired. Iteration of the theorem progressively eliminates rotamers which can
be shown not to be part of the global minimum energy conformation
(GMEC). Denoting positions on the protein backbone by i,j and specific
rotamers at each position by i, jo (where ¢ is a position-specific index
indicating the rotamer present), the energy E of a conformation can be written
E= Etemplate + ZE(ic) + ZZE(iC/jC) : (1)
i i j<i
Here Etemplate 18 the template (or backbone) self-energy, E(i.) is the energy of
the rotamer i, interacting with the template only, and E(i.j.) is the pairwise
energy of interaction between rotamers i, and j.. The theorem states that, for a
pair of rotamers r and ¢ at the same position i (denoted 7, and i), if

E(i,)+ Y minE(i,, j) > E(ir) + Y, maxE(iy, jg); i#j (2)
joe joe

then i, is not in the GMEC. Conceptually, the theorem says that if the best
possible energy a rotamer could achieve in its interactions with other

rotamers is higher than the worst possible energy of another rotamer at the
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same position, then it cannot be a member of the GMEC. This is illustrated in
Figure 1a.

The method has since been improved substantially, so that it may be
applied to the much larger problem of protein design, in which the number
of rotamers allowed at each position may be an order of magnitude greater
than in homology modeling. Typically an energy cutoff is applied to remove
the worst rotamers from consideration before applying dead-end elimination
(DeMaeyer et al., 1997). A less restrictive criterion (Goldstein, 1994) replaces (2)

with
me( iv,js)—E(it, js))>0; i#j, (3)

as demonstrated in Figure 1b. Goldstein also considered unifying two or more
positions into one “super-residue.” Critical to the ability of the method to find
the GMEC is the extension of the theorem to eliminate pairs of rotamers

(Desmet et al., 1994). Defining

e([ir,js]) = E(ir) + E(js) + E(ir. js) (4)

and

e([irjs] ke) = E(ir e ) + E(js Ke) o )

a rotamer pair [i]s] is flagged if there exists another rotamer pair [i, j,] such

that

([ rols ) (Zu/]v]) Zmln{ (er]s] kt) ([ u/jv]/kt)}> 0; i,j#k. (6)

Flagged pairs are inconsistent with the GMEC and may be ignored in the
“singles” summation of (3) as well as in future iterations of (6).
Application of (6) to every possible pair of rotamers involves a

calculation which scales as the fourth power of the number of rotamers per
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position, which significantly slows the search. By carefully employing
quantities which can be calculated more quickly, it is possible to apply (6) only
to pairs with a high likelihood of being flagged (Gordon & Mayo, 1998).
Symmetry arguments further reduce the number of pairs which need to be
examined by a factor of four.

Further enhancements can be derived from “conformational splitting”
(N. Pierce, unpublished results), in which conformational space is partitioned
by pulling, for a given position k, the interaction energies involving position
k outside the summation in (3). The technique can be further extended to

more than one such position.

Branch And Terminate

Branch and bound algorithms, from which the branch and terminate
algorithm derives, have been applied to many problems of interest in
structural biology in recent years (Gordon & Mayo, 1999). The search problem
is arranged as a combinatorial tree, where each path through the tree
corresponds to a solution to the problem. For protein design, each level of the
tree corresponds to an amino acid position, and each node represents a
particular rotamer at each position. The object is to find the one path through
the tree which corresponds to the GMEC. Given a path down to a given level
of the tree (i.e., with certain rotamers already chosen for some positions), a
bounding energy is computable which is guaranteed to be lower than (or
equal to) the lowest energy possible through the remainder of the tree. The
algorithm keeps track of the lowest energy it has found so far, and
exhaustively searches the combinatorial tree, in the process pruning away

branches with higher bounding energies.
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Two features of the branch and bound algorithm are apparent. First,
the calculation of the bounding energy must balance stringency (so that as
many branches are pruned as possible, resulting in faster execution) against
the time it takes to compute (since the energy is calculated at each node, a
complex bounding expression can significantly affect performance). A suitable

balance can be found by recasting the energy (1) as

E=Y > Flicj) (7)

ij#i
where
E(i.)+E(7
Pl o) = 5 LD i ) ®

and p is the number of amino acid positions. Then, at a given level in the
tree, all the rotamers above that level have been fixed (denote the set of such
positions F), and the remaining rotamers are variable (V). One can then
expand (7) into four terms, two of which are identical, to yield
E=YY Flic,jo)+2 ), Y. Flic,jc)+ Y, D Flic,je) - 9)
ieFjeF ieVjeF ieVjeV
j#i j#i

The most stringent bounding expression that can be derived from (9) is thus

Epound = 2, O, Flic.jc)+ X, mind2 Y F(i,, jc)+ >, minF(i,,js)¢ . (10)
icF jeF iev " | jeF jev ®
J#i J#i
The second observation is that when the levels in the tree correspond
to amino acid positions, their ordering is arbitrary. Yet the organization of the
tree significantly impacts the performance of the algorithm — placing a branch

at the lowest level of the tree that would be pruned if placed at the top level

results in the same pruning step being repeated unnecessarily. This suggests a
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pre-processing procedure in which each amino acid in turn is placed at the
top level of the tree, and rotamers pruned from this position are discarded
from the rest of the optimization. This procedure is called “termination,” and
may be repeated until no further rotamers are pruned. The branch and
terminate algorithm applies termination at each level of the tree, resulting in
a significant performance improvement over the original branch and bound
algorithm (Gordon & Mayo, 1999).

The search algorithms described in these two sections can be used in
concert. In particular, we have found that once application of dead-end
elimination has reduced the number of rotamer conformations available by
several (often over twenty) orders of magnitude, branch and terminate can
frequently be used to find the GMEC more quickly than continuing with
dead-end elimination. This opens up the possibility of applying

computational protein design to ever larger systems.

Discretization of Side Chain Conformations

To place a reasonable limit on the complexity of the computation, the
allowed side chain conformations are typically chosen from a library of
discrete possibilities, known as rotamers. This discretization is necessary for
some efficient search algorithms to be applicable — in particular, the dead-end
elimination theorem.

Discretization of the side chain conformations increases the likelihood
of “false negative” results. To be useful, atomistic protein design has only to
output a subset of the sequences leading to the target fold, with simulation
energies that correlate with their experimental stabilities. The simulation
does not need to predict how well externally supplied sequences will fit the

target fold. For example, the crystallographic structure of the Streptococcal
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protein G Bl domain (GB1) (Gronenborn et al., 1991) shows Leu 7 in an
unusual conformation which does not appear in standard rotamer libraries
(Ponder & Richards, 1987). Therefore, an atomistic algorithm using such a
library may not suggest Leu at position 7 in the top ranked sequences.

The effect of the size of the rotamer library has also been considered
(DeMaeyer, et al., 1997; Tufféry et al., 1997); in general, the larger the better.
However, if the library contains too many similar conformations of each
amino acid, the energy landscape is flattened and energy minimization can be

slow.

Residue Classification

A reductionist approach to protein design, in which subsets of a protein
are designed independently, has proven fruitful. Computational attempts to
design protein cores date back many years. More recently, there have been
attempts to design surfaces and boundary positions as well.

The size of the design problem is reduced if only a subset of amino acid
types need be considered in each of these three classes of residue positions.
Protein cores are typically composed of hydrophobic amino acids, and protein
surfaces are largely composed of hydrophilic amino acids, but the boundary
residues must be selected from the full range of amino acids since these
positions are observed to be both hydrophobic and hydrophilic. An
automated way to classify residue positions is desirable, and a number of
approaches have been described (Sun et al., 1995; Dahiyat & Mayo, 1997a).

The important components of the energy expression relevant to the

core, surface and boundary will be discussed in the following sections.
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The Core

Early attention on the protein design problem focused on the generally
hydrophobic cores of proteins. It is believed that the folding process is driven
principally by hydrophobic collapse of the polypeptide, implying that a well-
designed hydrophobic core is crucial to the protein’s structure and stability
(Dill, 1990).

As might be expected, van der Waals forces (that is, packing
constraints) are crucial when designing the protein core. Models in which
packing constraints are the only element of the energy expression are able to
predict the stabilities of core mutations with high accuracy, when polar
substitutions are not allowed (Hellinga & Richards, 1994; Desjarlais & Handel,
1995; Dahiyat & Mayo, 1996; Dahiyat & Mayo, 1997b; Lazar et al., 1997). The
importance of packing constraints can be determined by scaling the atomic
van der Waals radii by a factor a. When o is varied to very high (>105%) or
very low (<85%) values, implying too little or too much volume being packed
into the available space, the resulting proteins exhibit unfolded or molten
globule-like behavior (Dahiyat & Mayo, 1997b). This is not surprising. Too
much volume clearly requires the backbone to shift to accommodate the
excess (Baldwin et al., 1993). Too little volume would either leave cavities in
the core, which have been shown to destabilize proteins (Lim & Sauer, 1989),
or again force the backbone to shift to fill the cavity. When the protein
backbone is significantly different from the model backbone, the model can
no longer accurately predict the protein’s stability, and there may cease to be a
single stable folded state. The optimal value of a was found to be 90%,
implying that a slight over-packing of hydrophobic residues in the core can
actually stabilize a designed protein (Dahiyat & Mayo, 1997b). The benefit of

using slightly diminished van der Waals radii can also be interpreted in
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terms of accommodating some backbone and rotamer flexibility (discussed in
a later section).

Consistent with the belief that the hydrophobic effect is a dominant
cause of protein folding, the protein design cycle has been used to show that
solvation effects also play an important role in the design of protein cores
(Dahiyat & Mayo, 1996). The hydrophobic effect is usually approximated as an
energy benefit proportional to the amount of solvent-accessible hydrophobic
surface area that is buried upon folding (Eisenberg & McLachlan, 1986). A
penalty for burying polar area may also be included. Calculation of solvation
energies is complicated by the need to construct the energy expression as a
sum of two-body interactions (Kurochkina & Lee, 1995; Street & Mayo, 1998).

An entropic term has been tested (Kono et al.,, 1998), which may
improve correlation between predicted energy and biological activity
(Hellinga & Richards, 1994). Such a term should in particular penalize
methionine, whose loss of rotational freedom upon burial in a protein core

can otherwise lead to destabilized proteins (Gassner et al., 1996).

The Surface

With the successful redesign of a range of protein cores, it is natural to
consider the redesign of protein surfaces. Despite the incontrovertible role of
the hydrophobic core in folding, the surface is also crucial to a protein’s
structure and stability.

The protein design cycle has been utilized to design surface sites, using
as a starting point the energy expression determined from studies of protein
cores. These studies showed the importance of electrostatics and
hybridization-dependent hydrogen bonds (Dahiyat et al., 1997). In the case of

o-helical surfaces, no further energy terms are necessary to achieve good
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predictive ability. This is possibly because the side chains which are better
hydrogen bond formers are also good o-helix formers, as quantified by o-
helical propensity (Chakrabartty et al., 1994; Dahiyat, et al., 1997).

The above energy terms are not sufficient to design B-sheet surfaces
(Hecht, 1994). It may be necessary additionally to directly bias the energy
expression towards those side chains with good B-sheet propensities (see
Chapter 3). This is physically justifiable because common energy expressions
do not otherwise include side chain self-energies, which must at some level
lead to propensities.

It is also possible that a main source of B-sheet stability is to be found
elsewhere, for example in the hydrogen bonds that cause alignment with
neighboring B-strands. In the case of anti-parallel B-strands, the turn joining
the two strands plays an important role. Modifying the turn’s component
residues can seriously affect protein stability (Garrett et al., 1996; Ybe & Hecht,
1996; Blanco et al., 1998). In the case of non-continuous strands, it has been
suggested that small clusters of hydrophobic area on the surface may help to
set the register (Tisi & Evans, 1995). The hydrophobic effect may drive
neighboring strands to align in such a way as to bury as much of the exposed
hydrophobic area as possible, for example by covering it with long
amphiphilic side chains. The role of hydrophobic exposure will be examined

in Chapter 4.

The Boundary

Some residues cannot be easily classified as core or surface. Depending
on the side chain orientation they can interact with either the protein’s core
or with the solvent. One example is Trp 43 of GB1 (Dahiyat & Mayo, 1997b),

which is predicted by modeling to rotate out into the solvent when nearby
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core residues are replaced with larger side chains. Such unfavorable behavior
can be attenuated by a hydrophobic exposure penalty (Sun, et al., 1995; Dahiyat
& Mayo, 1997b).

Recent work has shown that the design of boundary residues can lead
to impressively enhanced stability (Malakauskas & Mayo, 1998). Just four
boundary site mutations in the 56-residue GB1 improve the stability from 3.3
kcal/mol to 7.1 kcal/mol at 50 °C, converting a mesophilic protein into a

hyperthermophilic protein.

Full de Novo Sequence Design

To date there exists only a single example of a complete sequence
calculation in which the structure of the designed protein was experimentally
shown to achieve the design target (Dahiyat & Mayo, 1997a). This calculation
included one core position, 7 boundary positions and 18 surface positions,
leading to a total of 1027 possible sequence solutions. The success of this

design effort underscores the power of computational approaches.

Backbone

Most atomistic protein design efforts require a fixed backbone. The
calculation is performed under the assumption that the target backbone is
precisely the backbone that will be achieved by the computed sequence.
Fortunately, alterations in the backbone do not necessarily lead to large
changes in the accessible sequence space (Su & Mayo, 1997). In one study, a 2 A
root mean square deviation (r.m.s.d.) in the backbone led to only a 0.5 A
r.m.s.d. in predicted side chain conformations (Tufféry, et al., 1997). Backbone
flexibility can be modeled by using a softer van der Waals potential — in other

words, giving the modeled atoms a fuzzy edge. This effect can be obtained by
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using reduced atomic radii, which has been shown to improve the stability of
designed proteins (Dahiyat & Mayo, 1997b).

Protein backbone movements may be incorporated if the backbone is
parameterizable (Harbury et al., 1995; Su & Mayo, 1997), although to keep the
calculation tractable, the number of side chain rotamer combinations may be
limited. A coiled-coil with right-handed superhelical twist, whose backbone
was necessarily designed de novo, has recently been reported (Harbury et al.,

1998), where 216 amino acid sequences were considered.

Negative Design

The importance of negative design is the subject of much discussion.
Recent work by Hellinga (Hellinga, 1998a) highlights the importance of this
issue in computational protein design. The inverse-folding design method
determines the sequence of amino acids whose energy is lowest when
threaded onto the target backbone. It is conceivable that in some cases the
computed sequence may actually prefer to fold to a different target structure,
and that a sequence with a slightly higher computed energy would fold to the
desired target (Figure 2). Unfortunately, knowledge of which structure will be
adopted by the computed sequence requires a solution to the protein folding
problem. Lattice models consisting of only two amino acid types can,
however, be used to perform both sequence design and fold prediction. In this
context, proposals to include non-thermodynamic potential functions aimed
at addressing negative design issues have been developed (Shakhnovich &
Gutin, 1993; Deutsch & Kurosky, 1996; Chiu & Goldstein, 1998), and are
discussed in more detail in Chapter 6. The hydrophobic exposure penalty is
one example of negative design that improves predictive power (Sun, et al.,

1995; Dahiyat & Mayo, 1997b). Despite the power of lattice model simulations,
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it has been suggested that the design procedure may be qualitatively different

in such binary patterned systems (Micheletti et al., 1998).

Conclusions

The design of proteins which fold to a specified target backbone
structure is becoming possible. Future advances are likely to follow from a
tight coupling of experimental and computational work in a protein design
cycle, with the near future revealing ever larger protein sequences being
designed de novo. Discovering the forces critical to the determination of
backbone conformation and their coupling to sequence selection is the major
challenge in solving the “complete” protein design problem. A general ability
to design specific protein structures will pave the way toward the goal of

rationally designing novel functional molecules.
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Figure 2-1. The elimination of dead-ending rotamers. a) Criterion (2)
eliminates a rotamer i, if all conformations containing it have energies
higher than all conformations containing some other rotamer i;. b) Criteron
(3) eliminates a rotamer i, if, for every conformation containing it, replacing

ir with a rotamer i; lowers the energy.
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Figure 2-2. The role of negative design. Using a thermodynamic energy
expression, a protein design algorithm computes that sequence 1 is the lowest
energy sequence when threaded onto the target structure T. The ground state
structure of sequence 1, however, is an alternative structure X. In this case,
the design algorithm would ideally return sequence 2, the lowest energy

sequence with ground state structure T.
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Chapter 3.

Understanding the Origin of Intrinsic B-Sheet
Propensities

The text of this chapter is partially adapted from the publication
Street A.G. and Mayo S.L. (1999) Proceedings of the National Academy of
Sciences U.S.A. 96, 9074-9076.

Abstract

The intrinsic secondary structure-forming propensities of the naturally
occurring amino acids have been measured both experimentally in host-guest
studies and by statistical examination of the protein structure databank. There
has been significant progress in understanding the origins of intrinsic a-
helical propensities but a unifying theme for understanding intrinsic -sheet
propensities has remained elusive. To this end we modeled dipeptides using
a van der Waals energy function and derived Ramachandran plots for each of
the amino acids. These data were used to determine the entropy and
Helmholtz free energy of placing each amino acid in the B-sheet region of ¢-
y space. We quantitatively demonstrate that the dominant cause of intrinsic
B-sheet propensity is the avoidance of steric clashes between an amino acid
side chain and its local backbone. Standard implementations of electrostatic

and solvation effects are seen to be less important.

Introduction
Understanding the relationship between a sequence of amino acids and

its folded three-dimensional structure is of paramount importance for
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protein design and protein folding studies. Conceptually, the relationship can
be simplified by considering the formation of secondary and tertiary structure
separately. One may then independently consider what forces drive the
formation of secondary structure, and how these structures then pack
together to form tertiary structure. Our concern here is with the first of these
questions.

Examination of the frequencies of occurrence of the naturally occurring
amino acids in a-helices or B-sheets of proteins of known structure led to the
early recognition that amino acids exhibit differing propensities to form
secondary structure (Chou & Fasman, 1974). The existence of stable helical
peptides then enabled relatively unambiguous experimental determination
of o-helical propensities (Lyu et al., 1990; O'Neil & DeGrado, 1990;
Padmanabhan et al., 1990; Rohl et al.,, 1996), which agree with statistical
studies of the protein structure database (Mufoz & Serrano, 1994). Together,
these studies quantify the concept of “a-helical propensity,” but do not
elucidate the physical-chemical basis of propensities. Clarification of the
physical-chemical basis of a-helix propensities awaited theoretical studies
which compared distributions of side chain dihedral angles for each amino
acid in a 9- or 11-residue o-helix and in a dipeptide standard state (Creamer &
Rose, 1992; Creamer & Rose, 1994). These studies supported the view that the
a-helical propensities of hydrophobic amino acids result from the loss of side
chain entropy on folding. Thus alanine has the best a-helical propensity,
since it loses no side chain entropy when its backbone is constrained to a
helical conformation. Other studies have utilized molecular dynamics
simulations using an elaborate energy expression (Hermans et al., 1992).

Because B-sheets do not appear to fold in isolation, experimental

determination of P-sheet propensities has been more difficult than for a-
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helices. A model protein with a suitable host site is required, and different
choices yield different propensity scales (Kim & Berg, 1993; Minor & Kim,
1994b; Minor & Kim, 1994a; Smith et al., 1994; Luo et al., 1999). The preference
for a certain amino acid to be in a B-sheet is therefore a more complicated
issue than for o-helices, depending also on the structural context of the
amino acid in the B-sheet. A statistical survey of the protein structure
database nevertheless correlates well with an average of the experimental
scales, supporting the idea that intrinsic B-sheet propensities do play an
important role in determining a protein’s stability (Munoz & Serrano, 1994).
Correlation has been observed between one experimental B-sheet
propensity scale and the ability of a side chain to sterically interfere with the
formation of hydrogen bonds between its neighboring peptide group and
solvent molecules (Bai & Englander, 1994). Electrostatic screening has also
been proposed as an important factor (Avbelj & Moult, 1995). Other work has
modeled equilibrium constants for secondary structure formation using a
complex energy function (Finkelstein & Ptitsyn, 1977), which was extended to
model B-sheet propensities (Finkelstein, 1995). There has also been related
work modeling NMR coupling constants (Smith et al., 1996; Penkett et al.,
1997). However, no concise theoretical description that fully explains the B-
sheet propensities of the naturally occurring amino acids has yet emerged.
Our approach is to construct an ensemble of self-avoiding states of a
dipeptide chain by fixing the bond angles and lengths and allowing the
dihedral angles (¢, y and the y’s) to vary randomly over a uniform
distribution. The resulting ensemble of structures represents the denatured
state of the peptide. Assuming a microcanonical ensemble, the entropy

change on occupying B-space is
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where kg is the Boltzmann constant, W is the number of members in the
entire ensemble, and Wy is the number of members in -space (i.e., those
members with appropriate ¢ and y's, as defined in Methods). Comparison of
AS calculated in this way (Table 1) with the experimentally observed B-sheet
propensities is shown in Figure la. In order to average out as much as
possible the context effects in individual experimental studies, we compare
our results here with the average of the normalized available experimental
data (Luo, et al., 1999). Excluding the amino acids Pro, Gly and Asn (discussed
below), the correlation coefficient R is 0.92.

With the inclusion of an additional parameter to calibrate the
calculated energies, this analysis can be furthered by assigning an energy €; to
each self-avoiding chain i. The partition function over a canonical ensemble

is
Q=Y exp(-Pe;) 2)

where B=1/kgT, T is the temperature, and where the summation is over all
chains i in the ensemble. The change in Helmholtz free energy on folding

into a B-sheet is then

Q
AA = —kBTlnEﬁ 3)

where Q is the partition function for the entire ensemble and Qpis the
partition function for the B-space ensemble. However, the assigned energies
g; may need to be scaled in order to correspond to experimental energies. This
can be achieved by appropriately selecting a value of B. In order for the range

of AA's to reproduce the experimental range of the AG's (for central strands



II1-5

the experimental scales each range over approximately 2.5 kcal/mol excluding
Gly and Pro), we select 1/f to be 9 kcal/mol. Comparison of AA calculated in
this way with the experimentally observed B-sheet propensities is shown in
Figure 1b, with R = 0.95.

It is conceivable that forces other than the van der Waals force may
also play important roles in determining B-sheet propensity. The canonical
ensemble formalism provides a convenient framework to explore this
possibility, since the energies €; of each chain may include terms other than
just the van der Waals energy. We therefore considered additional energy
terms proportional to the amount of exposed (or, mathematically
equivalently, buried) hydrophobic surface area, and electrostatic energies. No
combination of these terms improved the correlation beyond that in Figure
1b. Electrostatic and solvation effects, in their standard implementations, are

thus less important in determining B-sheet propensity.

Discussion

Our results reproduce the marked high preference in B-sheets for the B-
branched amino acids Ile, Val and Thr, as well as the aromatic amino acids
Phe and Tyr, and the marked low preference for Ala and Asp. Gly and Pro are
excluded due to the imprecise determination of their experimental
propensities. The only amino acid which lies significantly off the line of best
fit in the figures is Asn. We note that, sterically, Asn and Asp have very
similar side chains, so the calculated energies for the two are expected to be
similar despite the wide experimental difference between their propensities.
However, including surface area or charge terms in our energy expression
does not improve the position of Asn. One possible explanation for Asn's

better than expected experimental propensity is that hydrogen bonding may
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play a greater role in determining the B-sheet propensity of Asn than for the
other amino acids (Baker & Hubbard, 1984; Srinivasan et al., 1994).

One important implication of this work is that inherent B-sheet
propensities can indeed be dissociated from context, as for o-helical
propensities. In fact, the results of this study indicate that B-sheet propensity
arises from even more local phenomena than o-helical propensity — namely,
the steric interaction of an amino acid side chain with its local backbone.
Thus, even in the absence of neighboring B-strands (Smith & Regan, 1995),
the notion of B-sheet propensity remains valid. This agrees with studies in
which a high correlation is seen between the statistically-derived preferences
of amino acids in B-sheets and B-coils, where B-coils are defined to be residues
in B-space but not in true PB-sheets (Swindells et al.,, 1995). However, the
existence of neighboring B-strands imposes additional contextual constraints
— in particular, edge strands and central strands may present consistently
different environments (Minor & Kim, 1994a). In contrast to the local nature
of our description of B-sheet propensities, o-helical propensity is believed to
arise from interactions between a side chain and the backbone of the
neighboring turns (Creamer & Rose, 1992) (that is, from non-local
interactions).

We have demonstrated that the dominant cause of intrinsic B-sheet
propensity is the avoidance of steric clashes between an amino acid side chain
and its local backbone. Standard implementations of electrostatic and
solvation effects are less important. Our work shows, surprisingly, that the
origins of B-sheet propensities may be more straightforward than those of o-

helices.



I-7

Methods

We modeled each amino acid Xaa in a dipeptide environment, Ala-
Xaa-Ala, with bond angles and lengths fixed (Brant & Flory, 1965). Each model
peptide chain was created de novo using backbone and side chain dihedral
angles chosen randomly from a uniform distribution. Chains were discarded
if the DREIDING (Mayo et al.,, 1990) van der Waals energy of any atom
exceeded a threshold of 2.5 kcal/mol; this threshold was chosen to best
reproduce the standard Ramachandran plot for Ala (the results were not
overly sensitive to changes in this value). The 1-4 van der Waals interaction
energy was included except for intra-side chain contacts. Using chains which
terminated at the Co position on each flanking residue instead of full
dipeptide chains did not significantly affect the results. All runs consisted of
105 successful chains, with relative standard errors of < 0.5%.

Our definition of B-space is based on the definition of Mufioz and
Serrano (Mufoz & Serrano, 1994), bounded by the closed polygon with the
following vertices in (¢, y) space: (-180, 180), (-54, 180), (-54, 90), (-144, 90), (-144,
108), (-162, 108), (-162, 126) and (-180, 126).

It is noted that the absolute propensities obtained depend quite
sensitively on the N-Ca-CPB bond angle, although the relative propensities do
not. However, when this bond angle was allowed to vary according to a
Gaussian distribution with mean 110° and standard deviation 2°, the reported
correlations were not significantly affected.

Surface areas were calculated using the Connolly algorithm (Connolly,
1983), with a dot density of 10 A-2, a probe radius of zero and an add-on radius
of 1.4 A (Lee & Richards, 1971). Atoms that contribute to the hydrophobic

surface area are carbon, sulfur, and hydrogen atoms attached to carbon and
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sulfur. Trials were conducted using the side chain area only, and the side
chain and backbone areas together.

Electrostatic energies were calculated using Gasteiger (Gasteiger &
Marsili, 1980) or charge equilibration (Rappé & Goddard, 1991) point charges;
neutral and charged versions of the side chains where appropriate were both
tried, as were both 1/r and 1/r2 forms of the Coulomb potential. Trials were
conducted using energies of the side chain only and alternatively of the full

residue.
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Table 3-1. Calculated change in entropy, AS, and Helmholtz free energy, AA,
on folding into a P-sheet, and the average normalized experimental
propensity (Luo, et al., 1999) of the naturally occurring amino acids. The
average normalized experimental propensities are calculated from four
published studies (Kim & Berg, 1993; Minor & Kim, 1994b; Minor & Kim,
1994a; Smith, et al., 1994) and a similar study in apo-azurin (Luo, et al., 1999).

Each scale was normalized to range from zero to one, with Pro excluded, and

averaged.
Amino acid AS AA Average
(cal mol-1 K-1) (kcal mol-1) normalized
experimental
propensity
I -1.59 6.58 0.10
\% -1.69 6.88 0.13
T -1.70 6.79 0.06
F -1.73 7.14 0.13
Y -1.74 7.15 0.11
E -1.80 7.47 0.35
Q -1.80 7.47 0.34
C -1.81 7.50 0.25
L -1.82 7.56 0.32
K -1.84 7.60 0.34
S -1.84 7.58 0.30
R -1.85 7.66 0.35
M -1.86 7.70 0.26
H -1.88 7.81 0.37
\4Y -1.89 7.66 0.24
A =159 8.30 0.47
D 2.19 8.95 0.72
N -2.19 8.95 0.40
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Figure 3-1. Correlation between calculated and average normalized
experimental B-sheet propensities (Luo, et al., 1999). All amino acids except
Gly and Pro are shown. Asn, represented by the open circle, is discussed in the
text. a) The negative of the entropy calculated using (1). b) Helmholtz free

energy calculated using (2) and (3), and 1/ = 9 kcal mol-L.
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Chapter 4.

A Quantitative Model for Examining
Hydrophobic Context Effects on B-Sheet
Stability

Abstract

Previous work has shown that inclusion of a penalty for exposed
hydrophobic solvent-accessible surface area can improve the designability of
proteins. Here we demonstrate this experimentally. We mutate position 6 on
the PB-sheet surface of the Bl immunoglobulin-binding domain of
streptococcal protein G to several different amino acids of similar B-sheet
propensity. The melting temperatures of the mutant proteins are correlated
with simulations using a previously published energy expression, with a
modification that penalizes hydrophobic surface area exposure. We find that
penalizing hydrophobic exposure at 1.6 times the strength at which
hydrophobic burial is benefited increases the correlation between experiment
and simulation to R2= 0.97. Our data support the claim that hydrophobic

context is an important factor in the stability of 3-sheets.

Introduction

Several quantitative methods have been proposed and tested which
analyze the compatibility of possible sequences with a given protein fold
(Hellinga et al., 1991; Hurley et al., 1992; Kono & Doi, 1994; Desjarlais &
Handel, 1995; Harbury et al., 1995; Klemba et al., 1995; Nautiyal et al., 1995;
Betz & Degrado, 1996; Dahiyat & Mayo, 1996). These algorithms calculate the

spatial positioning and steric complementarity of side chains by explicitly
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modeling the atoms of the considered sequence. Such techniques have
typically focused on designing the cores of proteins where the van der Waals
and sometimes hydrophobic solvation potentials are sufficient to yield
reasonable results. Success has also been achieved by applying a hydrogen
bonding potential to the design of a-helical surfaces (Dahiyat et al., 1997a). In
addition, the design of an entire sequence for a small protein fold has been
recently reported (Dahiyat & Mayo, 1997a). These potentials, however, are
insufficient to design extensive [B-sheet surfaces. We seek to extend the
computational sequence selection approach to address B-sheet design with the
goal of developing a complete de novo design algorithm.

The forces which are thought to be important in determining the
formation and stability of B-sheet regions can be grouped into two categories.
The first is the inherent propensity of the amino acids to form [-sheets, as
determined by experimental host-guest site studies (Kim & Berg, 1993; Minor
& Kim, 1994b; Smith et al., 1994) and by a statistical examination of the
protein databank (Mufoz & Serrano, 1994). The second is the context of each
site. Context encompasses both tertiary and hydrophobic effects. The tertiary,
or structural, context of an amino acid is where it is physically located in the
B-sheet; in particular, whether it is on an edge strand or a central strand
(Minor & Kim, 1994a). We use hydrophobic context to mean the hydrophobic
environment of a particular residue position, which can be quantitatively
evaluated by measuring solvent-accessible hydrophobic surface areas (Otzen
& Fersht, 1995). This study examines the role of hydrophobic context.

Our simulations implement a previously described benefit for the
burial of hydrophobic surface area and a penalty for the burial of polar surface
area (Dahiyat & Mayo, 1996; Street & Mayo, 1998). Improved correlation

between calculated and experimentally determined stabilities is achieved
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when the solvation potential is supplemented with a penalty for the exposure
of hydrophobic surface area. An exposure penalty imposes a “reverse”
hydrophobic effect (Pakula & Sauer, 1990).

Previous theoretical work (Sun et al., 1995) concluded that use of a
hydrophobic exposure penalty for protein design leads to sequences with well
separated native and denatured energies, and that a hydrophobic exposure
penalty can be thought of as an example of negative design. Negative design
is the process of choosing sequences such that structures other than the
desired target structure are disfavored (Hecht et al., 1990). An excessive
amount of exposed hydrophobic area on the surface of a protein can lead to a
lack of specificity in folding, and therefore can lead to structural heterogeneity
in the native state.

We chose as our model system the B1 immunoglobulin-binding
domain of streptococcal protein G (GB1) (Gronenborn et al., 1991). A solution
structure (Gronenborn, et al., 1991) and several crystal structures (Gallagher et
al., 1994) are available to provide backbone templates for the side chain
selection process. Its small size, 56 residues, makes computations feasible. GB1
contains no disulfide bonds and does not require a cofactor or metal ion to
fold. We consider residue position 6, a surface position in the middle of a
central B-strand in which the wildtype Ile is approximately 70% buried
(Figure 1). The relatively high burial of Ile6 is achieved by van der Waals
contacts with Lys4, Glul5, Thr51 and Thr53.

A series of mutations to amino acids of similar B-sheet propensity were
made at position 6, and the resulting proteins’ stabilities measured. The
stability data were then used to determine the optimal strength of the

hydrophobic exposure penalty.
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Results and Discussion

Ile6 of GB1 was mutated to Thr, Val, Tyr and Phe. Because these amino
acids have similar B-sheet forming propensities, stability differences between
the respective proteins should reflect context specific effects. Mutations to
amino acids of markedly different B-sheet propensity were not considered
since this would have introduced a further variable into the experiment.
Circular dichroism (CD) determined melting temperatures and AAG’s are
listed in Table 1. We note the surprising result that, despite being polar and
having high B-sheet forming propensity, Thr yields the lowest stability of the
mutants considered, 10 °C below Ile, which supports the notion that
hydrophobic context plays an important role at this site.

In order to quantitatively model the effect of the mutations, we used
the dead-end elimination (DEE) theorem (Desmet et al., 1992, Gordon &
Mayo, 1998) to find the minimum energy conformation of the 12 B-sheet
surface residues shown in Figure 1. We introduced an additional energy term
into our previously published energy expression (Dahiyat & Mayo, 1996;
Dahiyat, et al., 1997a; Street & Mayo, 1998) in order to penalize solvent-

exposed hydrophobic surface area,

exposed
Epenalty = KanAnpp
exposed . .
where App is the amount of solvent-exposed hydrophobic surface area

and opp is an atomic solvation parameter for hydrophobic surface area burial.
The dimensionless scale factor x, whose value is to be determined, sets the
strength of this term relative to the strength at which burial of hydrophobic

surface area is benefited. Note that the fraction of a residue's hydrophobic area
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that must be buried for a zero net surface area contribution to the energy is « /
(k+1).

When the simulation only includes terms for van der Waals,
electrostatic and hydrogen-bonding, the calculated energies do not correlate
with the experimentally observed melting temperatures (Figure 2a). The
correlation rises to R? =0.72 (Figure 2b) when, in addition to the above
potential energy terms, hydrophobic burial is benefited and polar burial is
penalized, but with k = 0. The value of ¥ was determined by evaluating cross-
validated correlation coefficients (Figure 3). When k = 1.6, the correlation
between the calculated energies and experimentally determined melting
temperatures is R2 = 0.97 (Figure 2¢).

The high correlation between calculated energies and experimentally
determined melting temperatures led us to examine the possibility of
including amino acids with diminished [-sheet propensities at position 6. We
did not expect these mutations to fit the previous model, but were interested
in whether they would lie in the region where an adjustment to the
simulation energies to penalize them for their lower propensities could
account for any discrepancies. We made two such substitutions: Arg and Trp.
The resulting molecules” melting temperatures (Table 1) are much higher
than would be expected based purely on B-sheet propensities, but lower than
expected based purely on context (by 3.2 and 1.1 kcal/mol, respectively,
corresponding well to the magnitude of their B-sheet propensities). Thus, an
additional energy term which explicitly penalizes lower B-sheet propensities
could be used to model amino acids not considered in this study.

We have found that mutating a single B-sheet surface site on GB1 leads
to changes in melting temperature as large as 10 °C, even when only amino

acids of similar B-sheet propensity are considered. We have shown that a
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solvation potential term that penalizes the exposure of solvent-accessible
hydrophobic surface area can capture the context effects that are believed to be
important in B-sheet formation. The improved potential function should

prove useful for computational protein design efforts.

Materials and Methods
Modeling

The initial GB1 structure was taken from PDB entry 1pga (Bernstein et
al., 1977; Gallagher, et al., 1994). The program BIOGRAF (Molecular
Simulations Incorporated, San Diego, California) was used to generate explicit
hydrogens on the structure which was then conjugate gradient minimized for
50 steps using the DREIDING force field (Mayo et al., 1990). All atoms except
those of the side chains of residues 4, 6, 8, 13, 15, 17, 42, 44, 46, 51, 53, and 55
were held fixed for subsequent DEE calculations.

A Lennard-Jones 6-12 potential was used for van der Waals
interactions with atomic radii scaled by 90% (Dahiyat & Mayo, 1997b). The Lee
and Richards definition of solvent-accessible surface area (Lee & Richards,
1971) was used, areas being calculated with the Connolly algorithm (Connolly,
1983). Buried and exposed areas were calculated as previously described (Street
& Mayo, 1998). We include a hydrogen-bonding and electrostatics potential
(Dahiyat, et al., 1997a).

DEE optimization followed previously published methods (Gordon &
Mayo, 1998). Calculations were performed on a 12 processor R10000-based
Silicon Graphics Power Challenge.

Cross-validated R? values were calculated by removing each point (x;,
yi) in turn and using least squares to predict its location (x;, z;) based on the

remaining points. The cross-validated R2 is then
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cross - validated R? =

where (y) is the average of the y;'s.

The simulation results depend, of course, on the precise rotamer
library and solvation parameters selected. As in our previous work (Dahiyat,
et al., 1997a), a backbone-dependent rotamer library was used (Dunbrack &
Karplus, 1993). The results reported here use a library in which x1 angle
values of all rotamers were expanded 1 standard deviation about the mean
value (known as the "el" library), and solvation parameters that benefit
hydrophobic burial by 6np = 26 cal mol-! A-2 and penalize polar burial by Op =
100 cal mol-1 A-2 (Street & Mayo, 1998). To increase the speed of larger
calculations, previous work (Dahiyat et al., 1997b) has utilized the "a2h1p0"
rotamer library, in which the %1 and %2 angles of aromatic side chain rotamers
are expanded, the 1 angles of hydrophobic side chain rotamers are expanded,
and only the mean y1 angles of polar side chain rotamers are used. An
alternative solvation potential, in which hydrophobic burial is benefited by 48
cal mol-1 A-2 and only polar hydrogen burial is penalized (when not engaged
in hydrogen bonding), was also used (Dahiyat, et al., 1997a). The optimal
value of k¥ found in this study is 1.6 for both of these energy functions.
However, other combinations led to other values (Figure 4). This is to be
expected, since the hydrophobic exposure penalty is itself a solvation
parameter and so depends on the values of the other solvation parameters.
We have reported the results for the most commonly used solvation

parameters.
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Mutagenesis and protein purification

A synthetic GB1 gene (Minor & Kim, 1994b) was cloned into a pET11a
vector (Novagen), C-terminally His-tagged and used as the template for PCR
mutagenesis. The correctness of the constructs was confirmed by DNA
sequencing. The expression and purification of the various proteins followed

published procedures.

Circular dichroism

CD spectra were measured on an Aviv 62DS spectrometer at pH 5.5, in
50 mM phosphate and 25 uM protein. A 1 mm path length cell was used. The
temperature was controlled by a thermoelectric unit. Thermal melts were
performed at 218 nm using 2 °C temperature steps with an averaging time of
10 s and an equilibration time of 90 s. The melting temperatures (T'm) were
derived by evaluating the maximum of a d0218/dT versus T plot. Ty's were
reproducible to within 0.5 °C. Protein concentrations were determined by UV
spectrophotometry. AAG’s were calculated (Becktel & Schellman, 1987) using
AHpmy = 61 kcal/mol (Alexander et al., 1992), resulting in errors of +0.08
kcal/mol. In the case of a 6-fold mutant of GB1 with a ATy, of 8 °C, the
Becktel-Schellman method holds (Alexander et al., 1992). Guanidinium-
induced denaturation was also used, with results in line with the melting
temperature results but with greater experimental uncertainties (+0.2
kcal/mol), as determined from multiple measurements using an auto-
titrator. The correlation between stabilities derived from guanidinium

denaturation and from melting temperatures is shown in Figure 5.
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Table 4-1. Experimentally determined melting temperatures and free energy

differences of the proteins used in this study.

Mutant T () AAG
(kcal/mol)
Ile6 86.4 0
Valé6 85.0 -0.24
Tyr6 80.2 -1.06
Pheb6 79.8 -1.13
Thré 75.7 -1.83
Argb 82.7 -0.63

Trp6 76.5 -1.69
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Figure 4-1. Schematic diagram of GB1 showing the 12 B-sheet surface residues

considered in this study.
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Figure 4-2. Correlation between energies calculated with different potential
functions and the experimentally observed stabilities of the proteins used in
this study. a) Potential function containing only van der Waals, electrostatics
and hydrogen-bonding terms; b) Potential function that includes additional
terms that benefit hydrophobic surface area burial and penalize polar surface
area burial, but without the additional hydrophobic exposure penalty (i.e.,

K = 0); ¢) Potential function including all terms with k = 1.6.
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Figure 4-3. Cross-validated correlation between stabilities and calculated
energies of the five mutants as a function of the value of the exposed

hydrophobic surface area penalty, x.
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Figure 4-4. Effect of rotamer library and solvation parameters on the
correlation between stabilities and calculated energies of the five mutants, as a
function of k. Shown are the "el" rotamer library (described in the text) with
solvation potential A (onp = 26 cal mol-! A2 op = 100 cal mol-1 A-2) (circles);
"el" with solvation potential B (onp = 48 cal mol'l A-2 and a polar hydrogen
burial penalty of 2 kcal mol-l per hydrogen) (squares); the "a2hl1p0" library
with solvation potential A (crosses) and with solvation potential B
(diamonds); and the "e2" library with solvation potential A (plusses). In the
"e2" library, the x1 and y2 angle values of all rotamers are expanded *1
standard deviation about the mean value. The correlation is greatest at k = 1.6
for the most commonly used parameter sets but is less clear for other

parameter sets.



Correlation co-efficient R

IV-23

0.6 -

05|

04 -

0.3

I 1 1 1 1 I 1 1 1 1

0.0

1.3

2.0

3.0 4.0 5.0

non-polar exposure multiplication factor



IV-24

Figure 4-5. Comparison of the stabilities obtained from proteins' melting
temperatures via the Becktel-Schellman method, and the stabilities derived
from guanidinium denaturation. Repeated temperature scans yielded very
little change in the calculated melting temperature. Variation in stability
resulting from repeated guanidinium denaturation experiments, however,
was significant and is shown. In particular, the Tyr6 mutant was studied

extensively.
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Chapter 5.

Pairwise Calculation of Solvent-Accessible
Surface Area

The text of this chapter is partially adapted from the publication
Street A.G. and Mayo S.L. (1998) Folding and Design 3, 253-258.

Abstract

Many algorithms for determining the energy state of a system depend
for their tractability on the pairwise nature of an energy expression. Some
energy terms, such as the standard implementation of the van der Waals
potential, satisfy this criterion while others do not. One class of important
potentials that is not pairwise involves benefits and penalties for burying
hydrophobic and/or polar surface areas. It has been previously found that, in
some cases, a pairwise approximation to these surface areas correlates with
the true surface areas. We develop a pairwise expression with one scalable
parameter that closely reproduces both the true buried and the true exposed
solvent-accessible surface areas. We then refit our previously published coiled
coil stability data (Dahiyat BI, Mayo SL, 1996, Prot Sci 5:895-903) to give
solvation parameters of 26 cal/mol/A2 favoring hydrophobic burial and 100

cal/mol/A2 opposing polar burial.

Introduction
Many energy minimization schemes require an energy expression that
depends exclusively on the superposition of two body interactions. Of

particular interest to us is the dead-end elimination theorem (Desmet et al.,
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1992) which allows at most two body interactions between amino acid
sidechain rotamers and the protein backbone (or template) and between pairs
of rotamers. Terms that depend on more than two bodies cannot be included.
This leads to a general problem of accommodating surface area dependent
terms in such energy expressions, since the buried and/or exposed surface
areas of three or more interacting bodies cannot be calculated exactly as the
sum of two body interactions.

The problem is exacerbated when calculating surface areas using the
Lee and Richards definition of solvent-accessible surface area (Lee & Richards,
1971) where 1.4 A is added to every atomic radius before calculation of the
area. This increases the number of intersecting atoms and makes an accurate
calculation of solvent-accessible surface areas by a two body method
problematic (Figure la,b). As Figure 1b shows, a simple two body method to
calculate exposed hydrophobic solvent-accessible surface areas correlates
poorly with the true surface areas, and as such limits a simple two body
method's utility in protein design calculations.

A two body approach has been considered in the context of increasing
the speed of calculation of buried hydrophobic surface area for folding studies
(Wodak & Janin, 1980; Kurochkina & Lee, 1995) where the areas of individual
atoms or pseudo-atoms were calculated pairwise. These areas were either
combined statistically (assuming randomly distributed atoms) or added and
scaled, finding high correlation with the true Lee and Richards surface areas.
The use of reduced van der Waal radii to compensate for pairwise over-
counting has also been discussed (Hodes et al., 1979; Augspurger & Scheraga,
1996). Other (not necessarily pairwise) techniques for calculating surface areas
have been recently reviewed (Connolly, 1996). Here we find empirically that

by scaling only the portion of the expression for pairwise area that is subject to
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over-counting, we can achieve excellent agreement with both the true buried

and the true exposed solvent-accessible surface areas.

Results and Discussion

The pairwise calculation of surface areas used in this study differs in
several key respects from that of our previous work (Dahiyat & Mayo, 1996).
Here we include backbone atoms (N, HN, CA, HCA, C and O) in the
calculation of surface areas. For each sidechain rotamer r at residue position i
with a local tri-peptide backbone t3 ([CA, C, Ol;.1, [N, HN, CA, HCA, C, O];, [N,
HN, CAli+1), we calculate Af’rtg,, the exposed area of the rotamer and its
backbone in the presence of the local tri-peptide backbone, and Airtf the
exposed area of the rotamer and its backbone in the presence of the entire
template t which is the protein backbone (Figure 2). The difference between
Af’rtg, and Airt is the total area buried by the template for a rotamer r at residue
position i. For each pair of residue positions i and j and rotamers r and s on i

and j, respectively, we calculate A; . ,, the exposed area of the rotamer pair in

rist’

the presence of the entire template. The difference between A, ., and the sum

I’jSt
of Air ;and A i is the area buried between residues i and j, excluding that area
buried by the template. The pairwise approximation to the total buried surface
area is
AR = (4515 = Ay )+ 53 (A + Ay - A ) (1)
1 <]
As shown in Figure 2, the second sum in (1) over-counts the buried area. We

have therefore multiplied the second sum by a scale factor s whose value is to

be determined empirically. Expected values of s are discussed below.
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Noting that the buried and exposed areas should add to the total area,
ZiAfrm , the solvent-exposed surface area is
D) WD) CHEV ISV 2)
i i<j
The first sum of (2) represents the total exposed area of each rotamer in the
context of the protein template ignoring interactions with other rotamers.
The second sum of (2) subtracts the buried areas between rotamers and is
scaled by the same parameter s as in (1).

Some insight into the expected value of s can be gained from
consideration of a close-packed face centered cubic lattice of spheres of radius
r. When the radii are increased from r to R, the surface area on one sphere
buried by a neighboring sphere is 27zR(R—r). We take r to be a carbon radius
(1.95 A), and R is 1.4 A larger. Then, using

true buried area

pairwise buried area

and noting that each sphere has 12 neighbors, we have

47R>
g =
12x27R(R - )

This yields s = 0.40. We note that a close-packed face centered cubic lattice has
a packing density of 74%, and that protein interiors have a similar packing
density, although because many atoms are covalently bonded the close
packing is exaggerated (Creighton, 1993; Richards & Lim, 1994). We therefore
expect s = 0.40 to be a lower bound for real protein cores. For non-core
residues, where the packing density is lower, we expect a somewhat larger

value of s.
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We classified residues from ten proteins ranging in size from 54 to 289
residues into core or non-core, as described in Materials and Methods (Table
1). The classification into core and non-core was made because core residues
interact more strongly with one another than do non-core residues. This
leads to greater over-counting of the buried surface area for core residues.

Considering the core and non-core cases separately, the value of s
which most closely reproduced the true Lee and Richards surface areas was
calculated for the ten proteins. The pairwise approximation very closely
matches the true buried surface area (Figure 3a,b). It also performs very well
for the exposed hydrophobic surface area of non-core residues (Figure 4b). The
calculation of the exposed surface area of the entire core of a protein involves
the difference of two large and nearly equal areas and is less accurate
(Figure 4a); as will be shown, however, when there is a mixture of core and
non-core residues, a high accuracy can still be achieved. These calculations
indicate that for core residues s is 0.42 and for non-core residues s is 0.79.

To test whether the classification of residues into core and non-core
was sufficient, we examined subsets of interacting residues in the core and
non-core positions, and compared the true buried area of each subset with
that calculated by (1) (using the above values of s). For both subsets of the core
and of the non-core, the correlation remained high (R? = 1.00) indicating that
no further classification is necessary (data not shown). (Subsets were
generated as follows: given a seed residue, a subset of size two was generated
by adding the closest residue; the next closest residue was added for a subset of
size three, and this was repeated up to the size of the protein. Additional
subsets were generated by selecting different seed residues.)

It remains to apply this approach to calculating the buried or exposed

surface areas of an arbitrary selection of interacting core and non-core residues
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in a protein. When a core residue and a non-core residue interact, we replace
(1) with
A = XA = Ay Zloid i 5414 -5i10) ©)
i i<j
and (2) with
e Y
i i<j
where s; and sj are the values of s appropriate for residues i and j, respectively,
and s;; takes on an intermediate value. Using subsets from the whole of 1pga,
the optimal value of sj; was found to be 0.74. This value was then shown to be
appropriate for other test proteins (Figure 5a,b). The correlation shown in
Figure 5b represents a substantial improvement over that shown in Figure 1b
and demonstrates the utility of our approach.

In previous work we examined the ability of a simple van der Waals
potential energy function to predict the thermal stability of a series of coiled
coils (Dahiyat & Mayo, 1996). We noted a significant improvement in the
correlation between calculated stabilities and experimentally measured
stabilities when a hydrophobic burial benefit of O-HPAQEri od Was included in
the calculated energies, where onp is a hydrophobic solvation parameter
whose value was determined to be 23 cal/mol/A2, and Alr:;gried was the
calculated buried hydrophobic area. The correlation between calculated
energies and experimental melting temperatures was further improved by
penalizing polar surface area burial by GpAguried' where 6 is a polar
solvation parameter and All;)uried was the calculated buried polar area. The

best values of Onp and Cp were found to be 16 cal/mol/A2 and 86 cal/mol/A2,

respectively, when both solvation terms were used together. In order to
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benefit from the more accurate pairwise surface area method in protein
design studies, it is necessary to update the values of onp and cp. We use (3)
and the values of s described above. Residue 26 of the coiled coil used in the
previous study was the only residue determined to be in the core. When only
the hydrophobic burial benefit was considered, the best fit value of onp was
determined to be 48 cal/mol/A2. When both the hydrophobic burial benefit
and the polar burial penalty were considered together, the best fit values of
Onp and op were determined to be 26 cal/mol/A2 and 100 cal/mol/A2,
respectively (Figure 6).

By examining a test set of proteins of various sizes, we have
determined that the true Lee and Richards buried and exposed surface areas
can be approximated well as a superposition of two body interactions using (3)
and (4), with values for the parameter s that depend on the structural context
of each residue. For core residues s is 0.42, for non-core positions s is 0.79, and

for interactions between core and non-core positions sjj is 0.74.

Methods

We considered ten representative proteins whose Brookhaven Protein
Databank codes (Bernstein et al., 1977) are listed in Table 1. The program
BIOGRAF (Molecular Simulations Incorporated, San Diego, California) was
used to generate explicit hydrogens on the structures which were then
conjugate gradient minimized for 50 steps using the DREIDING force field
(Mayo et al., 1990).

We classified residues as core or non-core using an algorithm that
considered the direction of each sidechain's Ca-Cf vector relative to a surface
computed using only the template Co, atoms with a carbon radius of 1.95 A, a

probe radius of 8 A and no add-on radius. A residue was classified as a core
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position if both the distance from its Co. atom (along its Ca—Cp vector) to the
surface was greater than 5.0 A and the distance from its Cp atom to the nearest
point on the surface was greater than 2.0 A (Dahiyat & Mayo, 1997). The
advantage of such an algorithm is that a knowledge of the amino acid type
actually present at each residue position is not necessary.

Surface areas were calculated using the Connolly algorithm with a dot
density of 10 A-2 (Connolly, 1983), using a probe radius of zero and an add-on
radius of 1.4 A (Lee & Richards, 1971) and atomic radii from the DREIDING
forcefield (Mayo, et al., 1990). Atoms that contribute to the hydrophobic
surface area are carbon, sulfur, and hydrogen atoms attached to carbon and
sulfur.

Energy calculations and parameter optimizations for the coiled coil

system were performed as previously described (Dahiyat & Mayo, 1996).
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Table 5-1. Selected proteins, total number of residues and the number of

residues in the core and non-core of each protein (Gly and Pro were not

considered).
Brookhaven Total size Core size Non-core size
identifier
lenh 54 10 40
1pga 56 10 40
lubi 76 16 50
1mol 94 19 61
1kpt 105 27 60
4dazu-A 128 39 71
1gpr 158 39 89
1ges 174 53 98
ledt 266 95 133

1pbn 289 96 143
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Figure 5-1. Comparison of true solvent-accessible surface area and that
calculated with the simplest pairwise technique (equations (1) and (2) with s =
1) for subsets of 1mol. a) Buried area. The line of best fit has slope 1.24 and a
correlation coefficient RZ = 1.00. Differences between calculated and true
buried areas vary from 0 to 22%. b) Exposed hydrophobic area, with
differences between calculated and true areas from 0 to 250% for small areas,
converging to 100% for areas above 1000 A2. The line of best fit (not shown)

has slope 0.00 and R? = 0.00. In each case, a dashed line of slope 1 is shown.
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Figure 5-2. Areas involved in calculating the buried and exposed areas of
equations (1) and (2). The dashed box is the protein template (i.e., the protein
backbone), the heavy solid lines correspond to three rotamers at three
different residue positions, and the lighter solid lines correspond to surface
areas. a) A3 for each rotamer. b) Airt for each rotamer; notice that the
template has buried some area from the lower two rotamers. c) (Afr,g _Airt)
summed over the three residues. The upper residue does not bury any area
against the template except that buried in the tri-peptide state A};3. d) Ai, ot
for one pair of rotamers. e) The area buried between rotamers,
iyjst

between rotamers, (A, +A.,—A; ;;|, summed over the three pairs of
lrt ]st 17’]5

(Airt +Ajst -A ), for the same pair of rotamers as in (d). f) The area buried
rotamers. The area intersected by all three rotamers (and only that area) is
counted twice and is indicated by the double lines. The buried area calculated
by (1) is the area buried by the template, represented in (c), plus s times the
area buried between rotamers, represented in (f). The scaling factor s accounts
for the over-counting shown by the double lines in (f). The exposed area
calculated by (2) is the exposed area in the presence of the template,
represented in (b), minus s times the area buried between rotamers,

represented in (f).
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Figure 5-3. Comparison across ten proteins of the true buried surface area and
the pairwise buried surface area calculated using (1). a) Core residues using s =
0.42. b) Non-core residues using s = 0.79. In each case the correlation
coefficient R2 = 1.00. The lines of best fit have slope 0.99 and 1.00 respectively,

and differences between calculated and true buried areas are at most 2.5%.
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Figure 5-4. Comparison across ten proteins of the true exposed hydrophobic
surface area and the pairwise exposed hydrophobic surface area calculated
using (2). a) Core residues using s = 0.42, with R? = 0.69 (for reference, a dashed
line of slope 1 is shown). The maximum difference between calculated and
true exposed hydrophobic areas is 170%. b) Non-core residues using s = 0.79.
The line of best fit has slope 1.02 and a correlation coefficient R2 = 1.00. The
maximum difference between calculated and true exposed hydrophobic areas

is 5%.
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Figure 5-5. Comparison of true surface area and that calculated with (3) and (4)
for subsets of 1mol using sij= 0.74. The subsets are the same as in Figure 1. a)
Buried area. The line of best fit has slope 1.01, a correlation coefficient R2 =
1.00, and a maximum difference between calculated and true buried area of
2%. b) Exposed hydrophobic area. The line of best fit has slope 1.05 and a
correlation coefficient R2 = 1.00, with differences between calculated and true
areas from 0 to 30% for small areas, converging to 5% for areas above 1000 A2.
These percent differences represent approximately an order of magnitude

improvement over Figure 1.
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Figure 5-6. Correlation between calculated and measured stability for designed
coiled coils using buried surface areas calculated using (3) (compare to Figure
5b of (Dahiyat & Mayo, 1996)). Solvation parameter values are 26 c:al/mol/./gx2
favoring hydrophobic burial and 100 cal/mol/A2 opposing polar burial. The
labels A through H correspond to proteins PDA-3A through PDA-3H of
(Dahiyat & Mayo, 1996).
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Chapter 6.

Designing Real Protein B-Sheet Surfaces by
Z-Score Optimization

The text of this chapter is partially adapted from the manuscript
Street A.G., Datta D., Gordon, D.B. and Mayo S.L. (to be submitted)

Abstract

Studies of lattice models of proteins have suggested that the
appropriate energy expression for protein design may include non-
thermodynamic terms in order to accommodate negative design concerns. A
method has been developed to improve protein design in lattice model
studies where enumeration of all possible sequences, and their ground state
structures, is possible. The method maximizes a quantity known as the “Z-
score,” which compares the lowest energy sequence whose ground state
structure is the target structure to an ensemble of random sequences. Here we
show that, in certain circumstances, the technique can be applied to real
proteins. The energy expression is then optimized using the assumption that
the wildtype sequence is a low energy sequence (and its ground state is known
to be the target structure). The new energy expression is used to design the -
sheet surfaces of two real proteins. We find experimentally that the resulting
proteins are stable and well folded, and in one case is even more thermostable

than the wildtype.
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Introduction

Much effort in the field of computational protein design is directed
towards developing a potential function to rank the compatibility of amino
acid rotamer sequences with a target structure (Gordon et al., 1999). In a
“protein design cycle” (Dahiyat & Mayo, 1996; Street & Mayo, 1999), the
potential function is developed by cycling between experiment and
simulation, so that the computational potential ideally approaches nature’s
“true” potential. This technique has had some remarkable recent successes
(Dahiyat & Mayo, 1997a; Malakauskas & Mayo, 1998).

The approach nevertheless rests on a controversial assumption.
Rotamer sequences are threaded onto the target structure, and the sequence
with the lowest energy (as determined by the potential function) is reported as
the best sequence for that structure. It is conceivable, though, that in some
circumstances this sequence will not adopt the desired ground state structure.
An extreme example is provided by imagining that the true potential
function is one that only benefits hydrophobic contacts (and hydrophobic-
polar and polar-polar interactions contribute zero energy) (Lau & Dill, 1989).
Then, for any target structure, an all-hydrophobic sequence must be one of the
best sequences. This sequence, of course, is not likely to fold specifically to the
target structure — some polar residues ought to be included to characterize the
surface of the molecule. Overcoming this problem involves introducing non-
thermodynamic considerations to the design procedure, collectively known
as “negative design” (Hellinga, 1997).

There are a number of schemes proposed to implement negative
design, often specifically to solve the problem of the example in the last
paragraph (or variations on it based on the Ising model of ferromagnetism).

Perhaps the simplest is to use a fixed sequence composition, that is, to hold



VI-3

the total number of hydrophobic and polar residues constant (Shakhnovich &
Gutin, 1993). Even with this constraint, however, designed sequences are
frequently found to fold to alternative structures of lower energy than the
target structure (Shakhnovich, 1994; Yue et al., 1995). Alternatively, instead of
minimizing the potential function, it is possible to choose a sequence to
maximize the occupation probability of the target structure (Micheletti et al.,
1998b; Seno et al., 1998).

Other approaches employed in lattice model studies involve adding
non-thermodynamic terms to the potential function. One method is to
introduce a “clamping potential” to force the molecule into the target
structure, and then to minimize the difference between the clamping
potential and the “true” potential (Kurosky & Deutsch, 1995; Deutsch &
Kurosky, 1996). Another approach involves the addition of a penalty for
exposing hydrophobic surface area (Sun et al., 1995).

Negative design is thus clearly important, at least in lattice model
studies with simple potential functions and a limited set of amino acids
(Crippen, 1996; Micheletti et al., 1998a). For real proteins and more physical
potential functions, negative design can be necessary to guarantee the correct
multimeric state of designed proteins (Harbury et al., 1993). A penalty for
exposing hydrophobic surface area has also been shown to improve the
designability of real proteins (Dahiyat & Mayo, 1997b; Malakauskas & Mayo,
1998).

In this chapter we take yet another approach to determining the
optimal potential function for protein design, in which we maximize the
energy gap between a low energy sequence known to fold to the target
structure, and the average energy of an ensemble of random sequences

threaded onto a target structure (Chiu & Goldstein, 1998). In a cubic 3x3x3
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lattice simulation, the desired “true” potential can be selected manually and
the protein folding problem can be solved. Thus a sequence S, whose ground
state structure is the target structure, can be determined and its energy
calculated. If the distribution of energies of the random sequences is assumed
to be Gaussian, the success of the test potential for protein design is measured
by the energy gap between the mean of the distribution and the energy of
sequence S, normalized by the standard deviation of the distribution (Figure
1). This quantity is known as the Z-score of the sequence S on the target
structure. The test potential is then adjusted to maximize the Z-score.

Chiu and Goldstein applied the method to a 3x3x3 lattice model, using
statistically-derived pair potentials (Miyazawa & Jernigan, 1985) as the “true”
potential. They found that the potential generated by maximizing the Z-score
across many structures led to significantly better success at solving the protein
design problem than the true potential. Here we show that the technique does
not transfer readily to real proteins in their entirety. Nevertheless, we show
that the technique can be applied to certain subsections of proteins. In
particular we use it to design the B-sheet surfaces of the f1 immunoglobulin-
binding domain of streptococcal protein G (GB1) and of a variant of poplar

apoplastocyanin with the metal binding site removed (PCV).

The Z-Score Applied to Real Proteins

One of the key assumptions of the lattice model method of Chiu and
Goldstein (Chiu & Goldstein, 1998) is that the energies of random sequences
threaded onto the target structure form a Gaussian distribution. It would be
surprising if this assumption were to hold for real proteins. In particular, one
would expect that placing random amino acid side chains in the core of a

protein would typically lead to unresolvable steric clashes, especially since the
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modeled backbone of the target structure is held rigid. Indeed, Figure 2a
shows the distribution of potential energies of random sequences threaded
onto the core of GB1. The distribution is clearly not Gaussian, with most
sequences yielding enormous energies. A Gaussian distribution may be
achievable by using a statistically derived pair potential instead of an
atomistic van der Waals potential, but designs using pair potentials have not
yielded uniquely characterizable folded states (Isogai et al., 1999).

When only surface residues are considered, the situation is improved.
For o-helix and B-sheet surface residues of GB1, the distribution of energies of
random sequences is close to Gaussian, as shown in Figures 2b and 2c,
respectively. Thus it appears that on the surface, even randomly selected
amino acids are always able to find suitable rotamers that avoid severe steric
interference. The Z-score analysis may therefore provide some insight into
the appropriate potential function for o-helix and B-sheet surface design,
provided one can find an appropriate sequence with which to calculate the Z-
score. In lattice models, one knows the true potential function and can
exhaustively search all conformations to solve the protein folding problem
(Shakhnovich & Gutin, 1993). Hence the Z-score of a structure could be
calculated using the lowest-energy sequence whose ground state is the target
structure.

In contrast, in the lattice model study of Chiu and Goldstein (Chiu &
Goldstein, 1998), the Z-score is actually calculated without knowledge of this
lowest-energy sequence. One thousand 27-residue random amino acid
sequences are constructed, which are found to correspond to 992 unique
ground state structures. Eight sequences are discarded to yield a one-to-one
correspondence between structures and sequences. The Z-score is calculated

for each sequence in its ground state structure, using the 992 sequences to
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determine the energy distribution. The potential function is then modified to
maximize an appropriately formed average of the Z-scores. Thus, the
reference sequence used to calculate the Z-score is not necessarily the lowest-
energy sequence whose ground state structure is the target structure, but
instead an arbitrary sequence whose ground state structure is the target
structure. Nevertheless, the resulting potential function is significantly better
for protein design than the “true” potential.

In our application of the theory to real proteins, we therefore expect
that any arbitrary sequence known to fold to a target structure will suffice for
calculating the Z-score of that structure. Given an experimentally determined
structure, we can thus use the protein’s wildtype sequence to calculate its Z-
score. In essence, the method then chooses the potential function which
locates the protein’s wildtype sequence as far as possible down the tail of the
distribution of energies.

Since a number of successful computational redesigns of o-helical
surfaces have been reported (Dahiyat et al., 1997; Morgan, 2000), we chose to
examine the Z-score technique on the B-sheet surface, where there have been
few successful computational protein design efforts. Negative design issues
are also expected to play a larger role in 3-sheet design (Hecht, 1994). Rather
than maximizing the Z-score of a large number of structures, as a first step we
consider just one structure, so that the resulting potertial function is
optimized for protein design on that structure. This method should increase
the possibility of the technique being successful for at least the one selected
structure. The resulting potential function may then be applied to other
proteins to test its generality, or a new potential function may be calculated by
considering more protein structures. In particular, we chose to apply the

technique to the eight B-sheet surface residues of GB1 which are not involved
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in stabilizing interactions with neighboring turns (Figure 3a), and to the
seven f-sheet surface residues on one face of PCV (Figure 4a).

The computational potential function, E, included van der Waals
interactions, Eyqw (Mayo et al., 1990; Dahiyat & Mayo, 1997b), electrostatics,
Eelec, and a hydrogen bonding potential, Egp (Dahiyat, et al., 1997), a bias for
secondary structure propensity, Ess (Dahiyat, et al., 1997), and solvation
energies. The solvation energies were a benefit for burial of hydrophobic

surface area, AE}‘;ried, a penalty for burial of polar surface area, Aggfaifd, and a

penalty for exposure of hydrophobic surface area, Arel;posed (Street & Mayo,
1998), and a further penalty for polar hydrogen burial, Ephp (Dahiyat, et al.,

1997).

E=vE,qw - anAE;ried + gnpArel;posed + o-pAg(l)llraiSd +
X (1)
- Eetec + DEpip + PEphp, + Ess(N)

The magnitude of the van der Waals interactions, v, was held fixed
and the relative magnitudes of the other seven energy terms (Cnp, ﬁnp, Op, &,
D, P, and N as shown, where Egs is an exponential function of N) were

allowed to vary individually until the Z-score was maximized.

Results and Discussion

The resulting potential functions are shown in Table 1. For GBI, the
maximum Z-score is 2.6, i.e., the wildtype sequence is assigned an energy
lower than 99.5% of all possible sequences. For PCV, the maximum Z-score is
2.2. Also shown in Table 1 is the potential function built up over many
experiments using the protein design cycle, which has been successful in
particular for core design and o-helix surface design (Street & Mayo, 1999).

The Z-score optimized potential functions exhibit some interesting common
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features. The hydrophobic burial benefit, which is the main embodiment of
the hydrophobic effect (Wesson & Eisenberg, 1992), has disappeared. This
reflects the relative lack of importance of hydrophobic burial on the surface of
proteins (although there may be some role for small hydrophobic clusters on
the surface of B-sheets (Tisi & Evans, 1995)). The other solvation parameters
are broadly similar to the experimental potential function.

The most dramatic difference from the protein design cycle potential is
the increased importance of electrostatic interactions. The value of the
dielectric constant used in the protein design cycle is similar to that of water,
and leads to electrostatic interactions being de-emphasized. This value was
never experimentally tested, however. Although saltbridges are not
encouraged, the hydrogen bonding potential from the protein design cycle is
quite strong (an ideal hydrogen bond receives a benefit of 8.0 kcal/mol). The
Z-score optimized dielectric constant is an order of magnitude smaller, closer
to unity. This is justifiable because we are considering effects at the molecular
level, where the assumptions behind the use of the dielectric constant break
down. The screening effect of solvent is also approximated by using a distance
attenuated Coulomb potential (Mayo, et al., 1990).

To determine if the Z-score technique may be useful, this potential
function must be used for real protein design. We used a combination of
dead-end elimination (Desmet et al., 1992; Gordon & Mayo, 1998) and branch
and terminate (Gordon & Mayo, 1999) to find the lowest energy sequence for
each B-sheet surface, using the new potential functions. (These minimization
algorithms are guaranteed to produce the absolute lowest energy sequence,
unlike stochastic algorithms such as Monte Carlo.)

The resulting GB1 variant, GB1-Z1, is a five-fold mutant of the

wildtype protein. One can clearly see the impact of the electrostatic term in
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the potential function. The modeled side chain configurations are shown in
Figure 3, alongside those of the wildtype crystal structures (Gallagher et al.,
1994). A cluster of threonines and an isoleucine have been replaced by cross-
strand saltbridge networks, Asp42 to Arg55, and Arg6 to Glu53 to Lys44. The
wildtype saltbridge formed by Lys4 and Glul5 is maintained. Such cross-
strand saltbridges might be expected to contribute to f-sheet formation and
stability, and surface networks of saltbridges are postulated to be a stabilizing
factor in hyperthermophilic proteins (Elcock, 1998; de Bakker et al., 1999).

The resulting PCV variant, PCV-Z1, is a three-fold mutant of the
wildtype protein. The modeled side chain configurations are shown in
Figure 4, alongside those of the apoplastocyanin wildtype crystal structure
(Garrett et al., 1984). Again, the impact of the electrostatic term is clear, with a
saltbridge network formed by Glul8, Lys95, Lys97 and Glu79.

The designed proteins were made experimentally using standard
molecular biology techniques and their properties measured. Their far UV
circular dichroism spectra overlay those of the wildtype proteins. The melting
temperature of GB1-Z1 was determined to be 71 °C (Figure 5). The melting
temperature of GB1 is 86 °C. Although the designed protein is not as stable as
the wildtype protein, it appears to fold to the correct structure. Although the
literature contains many examples of alterations to the B-sheet surface of GB1,
we know of no instances resulting in greater than wildtype stability. This is
the first example of a well formed, many-stranded B-sheet designed through
purely computational means.

The results for PCV-Z1 were even more impressive. The melting
temperature of PCV-Z1 was determined to be 64 °C, compared to the melting

temperature of PCV of 56 °C (Figure 6). The designed protein is thus even
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more stable than the natural one. To our knowledge, this is the first time a

natural protein’s stability has been increased by redesigning its B-sheet surface.

Materials and Methods
Simulation

The core residues of GB1 are positions 3, 5, 7, 20, 26, 30, 34, 39, 52, and
54. The eight B-sheet surface positions of GB1 considered here are 4, 6, 15, 17,
42, 44, 53, and 55. The o-helix surface positions of GB1 are 24, 27, 28, 31, 32, 35,
and 36. The seven B-sheet surface positions of PCV considered here are 18, 20,
79, 81, 93, 95, and 97. These follow from our residue classification algorithm
(Dahiyat & Mayo, 1997a). The potential function used in Figure 1 is derived
from the protein design cycle, shown in Table 1.

The Z-score maximization algorithm searched along each potential
function basis vector (that is, varying the scale factor for each energy term in
(1)) individually to maximize the Z-score. The search was initiated at the
potential function derived from the protein design cycle, from the van der
Waals potential alone, and from other random potentials, and always
converged to the same result. Further, the ordering of the search through
basis vectors had no effect on the result. It was found that this optimization
algorithm was sufficient to find the maximum Z-score.

The Z-score was calculated using 4000 random sequences to determine
the energy distribution of the potential function on the structure, resulting in
an uncertainty in the Z-score of £0.04. The random sequences were composed
of the polar amino acids Ser, Thr, Asp, Asn, Glu, Gln, Lys and Arg, as well as
the hydrophobic amino acids Ala, Val and Ile. The results were surprisingly

robust to changes in the set of amino acids considered. In particular, the
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results were not significantly different if Ala was removed from
consideration, or if His, Met and Gly were included.

In contrast to the case in lattice models, real amino acids may adopt
many different conformations, or rotamers. The energy of a given amino acid
sequence on a structure is thus calculated by minimizing the energy across all
possible rotamer configurations, using dead-end elimination. For this
procedure a backbone-dependent rotamer library was used (Dunbrack &
Karplus, 1993), in which the x1 angles of all hydrophobic amino acid rotamers
were expanded *1 standard deviation about the mean value (Dahiyat, et al.,

1997).

Experimental

A synthetic GB1 gene (Minor & Kim, 1994) was cloned into a pET1la
vector (Novagen) and used as the template for QuikChange mutagenesis
(Qiagen). A synthetic PCV gene was constructed by recursive PCR
(Prodromou & Pearl, 1992). The genes were confirmed by DNA sequencing.
The expression and purification of the protein followed published
procedures, and was verified by mass spectrometry. The 56-residue form of
GB1 (with N-terminal methionine processed) and the 100-residue form of
PCV (including the N-terminal methionine) were used. PCV was derived
from wildtype poplar apoplastocyanin (Garrett, et al., 1984) by removing its
metal binding site through the mutations His37 to Val and Cys84 to Ala.
These mutations are in the core of the molecule and are not expected to
interact with changes to the surface of the protein. The melting temperature
of PCV was observed to be 56 °C compared to 51 °C for unmodified

apoplastocyanin.
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Far UV circular dichroism spectra were measured on an Aviv 62DS
spectrometer. The spectra of GB1 and GB1-Z1 were measured at pH 5.5, in 50
mM phosphate and 50 puM protein, using a 1 mm path length, with thermal
melts performed at 218 nm using 2 °C temperature steps with an averaging
time of 30 s and an equilibration time of 2 min. A guanidinium denaturation
of GB1-Z1 was also performed using an auto-titrator and a 10 minute
equilibration time, yielding a stability of 3.6 kcal/mol at 1 °C (Santoro &
Bolen, 1988). The spectra of PCV and PCV-Z1 were measured at pH 7.0, in 50
mM potassium phosphate, 0.5 M sodium sulfate, and 70 uM protein, with
thermal melts performed at 210 nm. The melting temperatures were derived
by evaluating the maximum of a d6/dT versus T plot. Protein concentration

was determined by UV spectrophotometry.

Conclusion

We report the first time a natural protein’s stability has been increased
by redesigning its B-sheet surface. Further, it is notable that we have in fact
designed two stable protein B-sheet surfaces using different potential
functions. Indeed, further application of the technique to other proteins
suggests yet different potentials may be appropriate. This supports the belief
that there may be alternative routes taken by nature to stabilize protein
surfaces, and which may be taken in de novo design too (Cordes et al., 1996).
Of course, one test of this proposal is to use the potential derived from one
protein to design the B-sheet surface of another, and preliminary results in
this regard appear promising. A further advantage of the approach outlined
in this chapter is that it could lead to a faster turn-around time for protein
design, since it optimizes the potential function with less frequent recourse to

experiment.
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Table 6-1.

Potential functions determined through different methods. The energy terms
considered are shown in (1). The van der Waals energy scale factor v was held
fixed. A potential function has been developed using the protein design cycle
(Street & Mayo, 1999), and has been successful for core and a-helix surface
design in particular. The Z-score method applied to the B-sheet surface of PCV
and of GB1 yield new potential functions. Also shown are the ranges over
which each parameter may be changed while keeping the Z-score within 5%
of its maximum (when the other parameters are kept fixed). The units of the

solvation parameters are kcal/mol/A2,

Energy term Design PCV Range GB1 Range
cycle
van der Waals v 1.0 1.0 n.a. 1.0 n.a.
np burial onp 0.05 0.0 0.0-0.01 0.0 0.0-0.02
np exposure &np 0.05 0.10 0.04-0.16 0.06 0.02-0.08
polar burial op 0.0 00 0.0-0.04 0.03 0.01-0.06
dielectric € 40.0 4.0 2.0-6.0 4.0 20-6.0
H-bond D 8.0 1.0 1.0-8.0 6.0 1.0 -8.0
polar H burial P 2.0 90 6.0-15.0 3.0 1.0-7.0
secondary n.a. 1.0 0.0-1.4 14 0.8-16

structure bias N
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Figure 6-1. The assumed distribution of energies of sequences threaded onto
the target structure. Sequence Sp is the lowest energy sequence whose ground
state structure is the target structure. Note that there may be sequences of
lower energy which do not fold to the target structure. By altering the energy
function non-thermodynamically, negative design seeks to move these

sequences above Sp.
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Figure 6-2. The actual distribution of energies of various subsets of the real
protein GB1, using the potential function derived from the protein design
cycle (Table 1). a) The core (only the 2.5% lowest-energy sequences are shown),

b) the a-helix surface, and c) the B-sheet surface.
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Figure 6-3. Views of the eight designed positions on the B-sheet surface of
GB1. a) The crystographically-determined wildtype side chain orientations,

and b) the orientations modeled using the Z-score-derived potential function.
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Figure 6-4. Views of the seven designed positions on the B-sheet surface of
PCV. a) The crystographically-determined wildtype side chain orientations,

and b) the orientations modeled using the Z-score-derived potential function.
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Figure 6-5. Circular dichroism measurements of GB1 (open circles) and GBI1-
'Z1 (solid circles) with temperature at 218 nm. Their melting temperatures are

respectively 86 °C and 71 °C.
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Figure 6-6. Circular dichroism measurements of PCV (open circles) and PCV-
Z1 (solid circles) with temperature at 210 nm. Their melting temperatures are

respectively 56 °C and 64 °C.
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Appendix A.

Calculations for Rational Design of a Catalytic
Antibody

Introduction

A significant goal of protein design is the design of novel enzymes.
Although there are notable examples of rational design leading to fully
functional proteins with improved thermostability (Malakauskas & Mayo,
1998), improving or redesigning protein function is more difficult. Here we
discuss an attempt to use our protein design method to improve the binding
strength of an enzyme.

We chose to study the catalytic antibody AZ-28 (Ulrich et al., 1997).
Catalytic antibodies are artificial enzymes which can be created by injecting an
animal with an antigen containing a transition state analog (that is, a stable
molecule which resembles the hypothesized transition state in a chemical
reaction — hapten 1 of Figure 1 in the case of AZ-28). Antibodies are created in
the animal which bind to the antigen, and may be purified. These antibodies
should then catalyze the desired reaction (substrate 2 to product 3 in this case)
by forcing reactants into the transition state, and thus over the activation
barrier to the reaction. The process can result in effective novel catalysts
(Schultz & Lerner, 1995). It is our hope that by applying the techniques of
rational protein design to this essentially evolutionary approach, further
improvements in catalysis can be made.

There are two versions of AZ-28, since the immune system refines its
response over time — the initial “germline” antibody is first on the scene, and

later gives rise to “mature” antibodies with small numbers of mutations from
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the germline that bind more efficiently to the antigen. One would expect that
the mature antibody would be the more efficient catalyst, but in the case of
AZ-28 the germline has a 35-fold greater rate enhancement over the mature
antibody (a turnover rate, kcat, of 0.80 min-l versus 0.023 min'l - for
comparison, natural enzymes are usually 102 to 10¢ sec'l). The reason for this
requires an understanding of the structure of the antibody, which is available
for the mature antibody only (Ulrich, et al., 1997), and shown in Figure 2.

The antibody AZ-28 catalyzes the oxy-Cope rearrangement of substrate
2 to product 3. The reaction proceeds fastest when the central cyclohexyl ring
is coplanar with the flanking phenyl substituents, so that m-orbital overlap is
maximized. The structure of the mature antibody reveals, however, that the
cyclohexyl ring is bound at right angles to the phenyl rings. An examination
of the structure indicates that L34 Asn (position 34 of the light chain) is largely
responsible for holding the cyclohexyl ring in its conformation. In the
germline antibody, this residue is L34 Ser . This suggests that in the germline
antibody, the cyclohexyl ring is free to rotate —hence its increased activity
(Ulrich, et al., 1997).

The considerations above suggest a useful role for rational protein
design. Computationally, one is not limited by the necessity to create stable
analogs of the transition state. For example, we can require in our modeling
that the phenyl and cyclohexyl rings remain coplanar — a requirement that is

difficult to achieve experimentally.

Results and Discussion
In order to cause minimal disruption to the binding site, we modeled

the hapten in its crystallographically determined structure, with the deepest
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bound 5-phenyl ring rotated through 180°. At an 80° rotation, the m-orbital
overlap between the 5-phenyl and cyclohexyl rings is greatest.

We identified those hydrophobic residues within 7.1 A of the 5-phenyl
ring, and additionally H35 Glu (a polar residue), which sterically clashes with
the rotated 5-phenyl substituent. These are not positions which were mutated
in the original analyses (Ulrich, et al., 1997). All positions were constrained to
remain hydrophobic (except for H35 Glu). A detailed rotamer library was
used, as discussed in Materials and Methods. A hydrophobic burial benefit
was included, which has been shown to improve designability (Dahiyat &
Mayo, 1996) and which should increase the amount of hydrophobic packing
around the hapten.

The resulting sequences are shown in Table 1. There are some
concerted changes from the wildtype sequence. In particular, H103 Trp and
H37 Val are replaced with H103 Phe and H37 Ile for an improvement in
simulation energy of 2.5 kcal/mol.

As discussed earlier for the wildtype sequence, the zero degree sequence
cannot accommodate the rotated 5-phenyl. The +80° sequence, however, has a
simulation energy of -262 kcal/mol when it is combined with the unrotated 5-
phenyl. This is actually better than its energy with the 80°-rotated hapten,
because there have been no mutations from small side chains to large side
chains to hold the 5-phenyl in its new conformation. The +80° sequence may
therefore prefer the hapten conformation found in the crystal structure, but
should at least be flexible enough to allow the 5-phenyl to rotate. With a fixed
backbone, this is the best result possible without leading to destabilizing steric
clashes. It does point to the desirability, however, of including some backbone

flexibility in future calculations.
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Whether ignoring backbone flexibility in rational protein design can
nevertheless lead to some improvements in catalysis must of course await
experimental verification. The sequences in Table 1 were sent to the Schultz
group in July 1998 and the resulting molecules’ stabilities were not available

at the time of writing.

Materials and Methods

The program BIOGRAF (Molecular Simulations Incorporated, San
Diego, California) was used to generate explicit hydrogens on the structure of
the mature antibody AZ-28 provided by the Schultz group. This was
conjugate gradient minimized for 50 steps using the DREIDING force field
(Mayo et al., 1990). All atoms except those of the side chains in question were
held fixed for subsequent DEE calculations. Two crystallographically observed
waters in the binding site were left in place during the minimization and
subsequent calculations.

A Lennard-Jones 6-12 potential was used for van der Waals
interactions with atomic radii scaled by 90% (Dahiyat & Mayo, 1997). The Lee
and Richards definition of solvent-accessible surface area (Lee & Richards,
1971) was used, areas being calculated with the Connolly algorithm (Connolly,
1983). Buried areas were calculated as previously described (Street & Mayo,
1998). An atomic solvation parameter of onp =48 cal/mol/A2 was used to
favor hydrophobic burial (Street & Mayo, 1998). We include a hydrogen-
bonding and electrostatics potential (Dahiyat et al., 1997).

As in our previous work (Dahiyat et al., 1997), a backbone-dependent
rotamer library was used (Dunbrack & Karplus, 1993). The 1 and %2 angles of
all rotamers were expanded *1 standard deviation about the mean value. DEE

optimization followed previously published methods (Dahiyat & Mayo, 1996).
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Calculations were performed on a 12 processor R10000-based Silicon Graphics
Power Challenge.

The resulting structure files, which were sent to Alex Varvak of the
Schultz group, use our numbering scheme, which differs from the original
numbering scheme because it increases from 1 monotonically, continuing
where it left off from one chain to the next. The light chain therefore has the
same numbering in both schemes, but the heavy chain is quite different,
particularly because of residues such as 100a, 100b, 100c in the original. Both

schemes are shown in Figure 3.
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Table A-1. Designed sequences for the mature AZ-28 antibody. Different
sequences are predicted for different orientations of the deepest bound 5-
phenyl ring. Vertical bars indicate there is no change from wildtype.
Simulation energies (kcal/mol) are also shown for each sequence. The
wildtype energy (*) is not directly comparable, however, since it is calculated
by applying the energy expression directly to the minimized crystal structure,
rather than by forcing the wildtype side chains to their nearest available

rotamers.

5phenyl L L L L L H H H H H H H Energy
rotation 36 89 91 96 98 35 37 45 47 91 93 103

(wildtype) ¥ L Y Y F E V L W Y A W -308"

0 ] | F L w | I | F | | F -267
+20 | v F » w | I | F | | F -266
+40 | v Fr L. w A I | F | | F -260
+60 | v Fr L w A I | F | | F -259
+80 | v F L w A I | F | | F -250
-80 L. | 7 L» | a 1 | F | | F -237
-60 L | F L | A I | F | | F -251
-40 | | 7 L w N I | F | | F -261

-20 | | 7 » w | I | F | | F -265
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Figure A-1. Transition-state analog (1) and the reaction catalyzed by antibody
AZ-28 (2, 3). Figure adapted from (Ulrich, et al., 1997).
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Figure A-2. The structure of the antigen-binding fragment (Fap) of the AZ-28
mature antibody. The light chain is shown in yellow, the heavy chain in
orange. The hapten 1 (excluding the group R) is shown in its binding site. The

cyclohexyl ring is seen to be at right angles to the flanking phenyl rings.
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Figure A-3. Views of the AZ-28 mature antibody binding site. The displayed
side-chains are those close to the 5-phenyl group, a) with the heavy chain
removed from view, b) with the light chain removed from view. The

original and our sequential numbering schemes are both shown.
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