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ABSTRACT

As gravitational-wave detectors have become increasing more sensitive since the
first detection in 2015, the now routine observations of gravitational waves have
provided a lens through which the field of gravitational-wave astronomy has been
able to study the universe. In this thesis, I explore a substantial number of facets re-
garding the inference challenges associated with observations from binary compact
object mergers. I demonstrate the difficulties conducting and interpreting accurate
spin measurements from real observations. In addition, I then present a framework
for testing general relativity from an ensemble of events without underlying sta-
tistical assumptions. This framework is then extended to incorporate theoretically
motivated information into these tests. These methods were utilized to analyze
observational data from the LIGO-Virgo-KAGRA Collaboration’s third observing
period. Additionally, I present a novel summary statistic for diagnosing model
misspecification in astrophysical compact binary coalescence population studies.
Finally, I conclude with a demonstration of the utility of novel detector readout
schemes for future gravitational-wave interferometer designs. My thesis presents
a sweeping view of a number of current research avenues with current and future
gravitational-wave detectors.
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1.2 Fig. 2 from Ref. [2]. The top panel highlights the different phases
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detectable strain. As the velocities of the balck holes approach 0.6𝑐,
the gravitational-wave strain as measured in ground-based detectors
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1.4 Fig. 2 from Ref. [65]. The numerical relativity simulations of a
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2.1 One- and two-dimensional marginalized posteriors for select intrin-
sic binary parameters: detector frame chirp-mass M, mass ratio 𝑞,
effective spin 𝜒eff, and precessing spin 𝜒𝑝. See Table 2.1 for anal-
ysis settings and App. 2.6 for detailed parameter definitions. Two-
dimensional panels show 50% and 90% contours. The black dashed
line marks the minimum bound of 𝑞=1/6 in NRSur7dq4’s region of
validity. Shaded regions shows the prior for 𝑞, 𝜒eff, 𝜒𝑝. The M prior
increases monotonically to the maximum allowed value (see App. 2.6
for details on choices of priors). Left panel: comparison between
analyses that use solely LIGO Hanford (red; H), LIGO Livingston
(blue; L), and Virgo (purple; V) data. Right panel: comparison
between analyses of all three detectors (yellow; HLV), only LIGO
data (green; HL) and only Virgo data (purple; V). The evidence for
spin-precession originates solely from the LIGO Livingston data as
the other detectors give uninformative 𝜒𝑝 posteriors. Additionally,
the binary masses inferred based on Virgo only are inconsistent with
those from the LIGO data. . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Similar to the right panel of Fig. 2.1 but for select extrinsic parameters:
luminosity distance 𝑑𝐿 , angle between total angular momentum and
line of sight 𝜃jn, right ascension 𝛼, and declination 𝛿. For reference,
the median optimal SNR for each run is HLV: 27.6, HL: 26.9, V: 6.7. 16

2.3 90% credible intervals for the whitened time-domain reconstruction
(left) and spectrum (right) of the signal in Virgo from a Virgo-only
(purple; V) and a full 3-detector (yellow; HLV) analysis; see Table 2.1
for analysis settings. The data are shown in gray and the noise PSD in
black. The time on the left plot is relative to GPS 1264316116. The
high value of the PSD at ∼ 50 Hz was imposed due to miscalibration
of the relevant data [77]. Vertical shaded regions at each panel
correspond to the 90% credible intervals of the merger time (left;
defined as the time of peak strain amplitude) and merger frequency
(right; approximated via the dominant ringdown mode frequency as
computed with qnm [120], merger remnant properties were computed
with surfinBH [121]). The Virgo data point to a heavier binary
that merges ∼ 20ms earlier than the full 3-detector results that are
dominated by the LIGO detectors. . . . . . . . . . . . . . . . . . . . 17
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2.4 Whitened time-domain reconstruction (left) and spectrum (right) of
GW200129 in LIGO Hanford (top) and LIGO Livingston (bottom).
Shaded regions show the 90% credible intervals for the signal using
a spin-precessing (light blue and red) and a spin-aligned (dark blue
and red) analysis based on NRSur7dq4, see Table 2.1 for run settings.
In gray we show the analyzed data where the gwsubtract estimate
for the glitch (black line) has already been subtracted. The black line
in the right panels is the noise PSD. The glitch overlaps with the part
of the inferred signal where the spin-aligned amplitude is on average
larger than the spin-precessing one. . . . . . . . . . . . . . . . . . . 19

2.5 One- and two-dimensional marginalized posterior for the mass ratio
𝑞, the precession parameter 𝜒𝑝, and the effective spin parameter 𝜒eff

for analyses using a progressively increasing low frequency cutoff in
LIGO Livingston but all the LIGO Hanford data, see Table 2.1 for
details. The median network SNR for each value of the frequency
cutoff is given in the legend. Contours represent 90% credible regions
and the prior is shaded in gray. As the glitch-affected data are removed
from the analysis, the posterior approaches that of an equal-mass
binary and becomes uninformative about 𝜒𝑝. This behavior does
not immediately indicate data quality issues and we only use this
increasing- 𝑓low(𝐿) analysis to isolate the data which contribute the
evidence of spin-precession when compared to the rest of the data to
within 20–50 Hz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 90% contours for the two-dimensional marginalized posteriors for the
mass ratio 𝑞 and the precessing parameter 𝜒𝑝 obtained from analyzing
data from each LIGO detector separately for 10 simulated signals.
The signal parameters are drawn from the posterior for GW200129
when using LIGO Livingston data only and true values are indicated
by black lines. Due to the spin priors disfavoring large 𝜒𝑝, the injected
value is outside the two-dimensional 90% contour in some cases. We
only encounter an inconsistency between LIGO Hanford (red; H) and
LIGO Livingston (blue; L) as observed for GW200129 in Fig. 2.1 in
O(5/100) injections. . . . . . . . . . . . . . . . . . . . . . . . . . . 22
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2.7 Spectrogram of the data in each detector, plotted using plotted using
the Q-transform [126, 127]. Listed times are with respect to GPS
1264316116. Besides the clear chirp morphology in LIGO, there is
visible excess power ∼ 1 s after the signal in LIGO Livingston. Virgo
demonstrates a high rate of excess power, though most is due to
scattered light and concentrated at frequencies < 30 Hz. The excess
power in Virgo that is coincident with GW200129 does not have a
chirp morphology. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.8 Whitened time-domain reconstruction of the signal in Virgo ob-
tained after analysis of data from all three detectors relative to GPS
1264316116. Shaded regions correspond to 90% and 50% (where
applicable) credible intervals. Green corresponds to the same 3-
detector result obtained with NRSur7dq4 as Fig. 2.3, while pink and
gold correspond to the CBC and glitch part of the “CBC+glitch”
analysis with BayesWave. See Tables 2.1 and 2.2 for run settings.
The two CBC reconstructions largely overlap, suggesting that the
lack of spin-precession in BayesWave’s analysis does not affect the
reconstruction considerably. A glitch overlapping with the signal is,
however, recovered. . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.9 Comparison of optimal SNR estimates for Virgo from different anal-
yses. In green is the posterior for the expected SNR in Virgo from
just the LIGO data using the NRSur7dq4 waveform (HL analysis of
Fig. 2.1), while purple corresponds to the SNR from an analysis of
the Virgo data only (V analysis of Fig. 2.1). The CBC and glitch SNR
posterior from BayesWave’s full “CBC+glitch” model (Fig. 2.8) are
shown in pink and orange respectively. Part of the latter is consistent
with zero, which corresponds to no glitch (as also seen from the 90%
credible interval in Fig. 2.8). The SNR posterior from a “glitchOnly”
BayesWave is shown in blue. . . . . . . . . . . . . . . . . . . . . . 26
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2.10 Whitened time-domain reconstruction of the data in LIGO Livingston
obtained after analysis of data from the two LIGO detectors. Shaded
regions correspond to 90% and 50% (where applicable) credible
intervals and gray gives the original data without any glitch mitiga-
tion. Green corresponds to the same 2-detector result obtained with
NRSur7dq4 as Fig. 2.4, while pink and gold correspond to the CBC
and glitch part of the joint “CBC+glitch” analysis with BayesWave.
The black line shows an estimate for the glitch obtained through
auxiliary channels. All analyses use only LIGO data. . . . . . . . . . 27

2.11 Bottom: Whitened, time domain reconstructions of various glitch
reconstructions subtracted from LIGO Livingston data. The green
line corresponds to the glitch reconstruction obtained from auxiliary
data using gwsubtract. The rest are glitch posterior draws from the
BayesWave “CBC+Glitch” analysis on HL unmitigated data. Top:
Marginalized posterior distributions corresponding to parameter esti-
mation performed with the NRSur7dq4 waveform model on HL data
where each respective glitch realization was subtracted from LIGO
Livingston (same colors). Pink corresponds to the original data with-
out any glitch subtraction. Larger glitch reconstruction amplitudes
roughly lead to less informative 𝜒𝑝 posteriors and eliminate the 𝑞−𝜒𝑝

inconsistency between LIGO Hanford and LIGO Livingston. . . . . . 29
2.12 Two-dimensional posterior distributions for 𝜒𝑝 and 𝑞 (50% and 90%

contours) from single-detector parameter estimation runs. The far
left panel shows the same tension as the LIGO Hanford and LIGO
Livingston data plotted in Fig. 2.1 when using the gwsubtract es-
timate for the glitch. Subsequent figures show inferred posterior
distributions using data where the same three different BayesWave
glitch models as Fig. 2.11 have been subtracted. These results show
less tension between the two posterior distributions. . . . . . . . . . 29

2.13 Comparison between the two glitch reconstruction and subtraction
methods for a glitch in LIGO Livingston ∼ 1 s after GW200129, see
the middle panel of Fig. 2.7. We plot the original data with no glitch
mitigation (grey), the glitch reconstruction obtained from auxiliary
channels with 90% confidence intervals (black), and the 50% and
90% credible intervals for the glitch obtained with BayesWave that
uses only the strain data (gold). . . . . . . . . . . . . . . . . . . . . 30



xix

2.14 Similar to Fig. 2.1, using data from LIGO Livingston and LIGO
Hanford. The comparison shows slight tension between results
when using NRSur7dq4 and IMRPhenomXPHM, though qualitatively
IMRPhenomXPHM also seems to support the evidence for spin-precession. 40

3.1 Two-dimensional distribution of spin parameters, 𝜒eff and 𝜒𝑝, for
detectable low-spinning first-generation binary black holes (BBHs)
(1G1G; purple), and hierarchically formed BBHs (yellow). The one-
dimensional marginal cumulative distribution functions (CDFs) are
shown in the top and right panels. The spins of the low-spinning pop-
ulation are drawn uniformly and isotropically with spin-magnitudes
from 0 to 0.2 in post-processing. All black hole masses are de-
termined from the cluster simulations. We have selected for sig-
nals that are detectable by enforcing a signal-to-noise ratio threshold
of 10 across the three detector LIGO-Virgo network at the LIGO–
Virgo–KAGRA Collaboration (LVK)’s sensitivity during their third
observing period. The threshold of 𝜒thres = 0.2 used throughout the
manuscript is indicated by the black lines for 𝜒eff and 𝜒𝑝. A signif-
icantly greater fraction of the hierarchical systems possess 𝜒𝑝 > 0.2
than 𝜒eff < −0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 The complementary cumulative distribution function (1 − CDF) of
detectable 1G1G (shaded; purple) and hierarchical BBH mergers
(lines) as a function of the logarithmic likelihood ratio, ln LR, defined
in Eq. (3.3). The three different linestyles correspond to different
threshold choices (𝜒thres = 0.2, 0.3, 0.4), and shadings correspond to
simulated signals detected in the first half of the LVK’s third observ-
ing period (O3) sensitivity (dark), or a three-detector LIGO-Virgo
network at design sensitivity (light). The top and bottom panels cor-
respond to the complementary cumulative distribution functions for
𝜒𝑝 and 𝜒eff , respectively. Finally, the observed values of ln LR at the
different thresholds for three gravitational-wave observations made
during O3—GW190521 (purple), GW191109_010717 (pink), and
GW200129_065458 (yellow)—are marked. A significantly larger
fraction of the hierarchical population possess a confidently measur-
able value of 𝜒𝑝, whereas only the most relaxed threshold at design
sensitivity can lead to a confident negative 𝜒eff measurement in a
single event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
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4.1 Posterior distributions for the 0PN deviation coefficient 𝛿𝜑0, detector-
frame chirp mass M(1 + 𝑧), and symmetric mass ratio 𝜂 for the
gravitational-wave event GW191216_213338 [14, 4], as inferred by
a modified SEOBNRv4 waveform [271, 272, 273, 274, 254]. Poste-
riors are conditioned on two different astrophysical assumptions: the
broad prior used during parameter estimation (red), and the astrophys-
ical population inferred by the data using the model in Sec. 4.2 (blue).
The black dashed curves show the expected correlation (App. 4.6).
Due to the correlations between astrophysical and deviation param-
eters, different astrophysical populations lead to different posteriors
for 𝛿𝜑0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Ratio between the network maximum a posteriori gravitational-wave
inspiral and the total SNRs as a function of detector-frame total mass,
𝑀 (1+ 𝑧) ≡ (𝑚1 +𝑚2) (1+ 𝑧), for all gravitational-wave observations
in the LIGO-Virgo-KAGRA third observing run [4, 77, 14, 15] with
a false-alarm rate less than 10−3/yr. The solid blue line is the median
best-fit line to the observations, with the band representing the 90%-
credible uncertainty. While computing this fit, we also estimate the
uncertainty in the individual data points. We use this fit to compute
the inspiral SNR for the injections used to estimate the detection
probability, 𝑝det(𝜃), as described in Sec. 4.2. . . . . . . . . . . . . . 66

4.3 Marginal one-dimensional posterior distributions for the mass of a
massive graviton. In practice, we compute the shared value of gravi-
ton mass by assuming a shared deviation parameter log10(𝑚𝑔𝑐

2/eV)
then reweighting to a uniform graviton mass prior. The dashed lines
correspond to the 90% upper limits from the two analyses. We
compare the result when astrophysical information is not included,
equivalent to multiplying individual event likelihood functions (yel-
low), to also modeling the astrophysical population (dark blue). The
result shifts towards smaller values of𝑚𝑔 if simultaneously modelling
the astrophysical population and the graviton’s mass. . . . . . . . . . 67
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4.4 Two-dimensional marginal posterior distributions for the hyperpa-
rameters of the Gaussian PN deviation distribution informed by the
20 events in the third LIGO-Virgo-KAGRA observing run passing
the selection criteria, analysed with a modified SEOBNRv4 [271,
272, 273, 274, 254] waveform. The contours indicate the 50% and
90% credible regions. Each panel corresponds to a separate anal-
ysis where the coefficient varied was at a different PN order. The
analysis was undertaken with an implicitly assumed, astrophysically-
unrealistic population (yellow), and a model which simultaneously
infers the astrophysical population model (dark blue). Modelling
both the astrophysical population and the PN deviation population
systematically shifts the inferred mean, 𝜇PN, closer to zero. . . . . . 68

4.5 Displacement of the deviation parameter distribution from GR for
each PN deviation coefficient. The displacement corresponds to the
credible levels at which the hyperparameter values corresponding to
GR, (𝜇PN, 𝜎PN) = (0, 0), reside for two different models as shown
in Fig. 4.4. This quantity is indicative of the relative position of the
posterior to the GR value. Incorporating the astrophysical population
as well as the hierarchical model for the PN deviation leads to an
inferred result more consistent with GR for most cases. . . . . . . . . 68

4.6 Marginal one- and two-dimensional posterior distributions for the
𝛿𝜑6 PN deviation and a subset of astrophysical population hyperpa-
rameters. Contours correspond to the 50% and 90% credible regions.
Results from four analyses are shown—population inference using the
PN deviation population only with the “default” sampling prior astro-
physical population (yellow), astrophysical population only (green),
astrophysical population under the assumption that GR is correct
(dashed green), and the joint analysis inferring the post-Newtonian
deviation and astrophysical populations simultaneously (dark blue).
No strong correlations exist between either the mean or standard
deviation of the deviation Gaussian and astrophysical population pa-
rameters. The starkest difference is that inferring the population when
the PN deviation population is ignored leads to broad spin magnitude
populations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
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4.7 One- and two-dimensional posterior distributions for the 3PN devi-
ation parameter, the mass ratio, and the primary black-hole spin for
GW191216_213338 under four different assumptions: broad sam-
pling priors (red), informed by the GR deviation population analysis
(yellow), informed by the astrophysical population (green), informed
by the joint inference of PN deviation and astrophysical populations
(dark blue). Contours indicate the 90% credible region. Evidence for
both a low mass ratio and larger primary spins is strongly contingent
upon the astrophysical assumptions. Broad priors such as those used
while sampling the posterior distribution have significant support for
lower mass ratios. Inclusion of information from both the deviation
population and the astrophysics leads to an inferred result with both
low primary spin and high mass ratio. . . . . . . . . . . . . . . . . 72

4.8 Similar to Fig. 4.6, one- and two-dimensional posterior distributions
for the 𝛿𝜑0 deviation and a subset of astrophysical population hy-
perparameters. A strong correlation is found between the width of
the inferred post-Newtonian deviation population and the index of
the mass ratio power-law when jointly inferring the deviation and
astrophysical population models. There is also a less pronounced
correlation between the deviation and spin population standard de-
viations. In the absence of modelling the astrophysical population,
the inferred PN population is pulled to a higher mean with a reduced
width. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.9 Marginal two-dimensional posterior distributions for the 0PN devi-
ation coefficient and the detector-frame chirp mass for the events
analyzed under the broad prior assumptions (light red), informed
PN deviation population only (yellow), and informed by the jointly
inferred deviation and astrophysical populations (dark blue). Con-
tours indicate the 90% credible regions. This result demonstrates
that as additional information is incorporated into the population dis-
tribution, more stringent constraints on the deviation parameters are
placed on an individual event level. In the case demonstrated here,
this pulls the inferred value towards 𝛿𝜑 = 0 for all events. . . . . . . 76
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4.10 Same figure as Fig. 4.4 but using 12 events from the first half of the
third LIGO-Virgo-KAGRA observing run, with individual event pos-
terior distributions constructed with IMRPhenomPv2. We generally
observe similar structure to the results with SEOBNRv4, although
parameters are less constrained—likely due to fewer observations
incorporated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.11 Same as Fig. 4.5, for the results from the IMRPhenomPv2 analysis.
As seen throughout the manuscript, inclusion of the astrophysical
population model in general leads to improved consistency with GR.
Furthermore, the posterior distributions sit closer to GR for IMR-
PhenomPv2 than SEOBNRv4, likely as a result of analyzing fewer
events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1 A representative background distribution for BBHs collected for the
LIGO Livingston detector. The background is parameterized in
𝜉2/𝜌2 vs 𝜌 space. Regions with high ln 𝑃 indicate where noise
is most likely (brighter color). The shaded contour enclosed by a
white edge corresponds to our detection criterion, 𝜌̄ ≥ 10. This
region is largely separate from the collected background. . . . . . . . 88

5.2 The response of a single search template to a 30𝑀⊙ − 30𝑀⊙ BBH
without (left) and with (right) deviations to 𝛿𝜑−2 for SNR ∼ 24
(top) and ∼ 15 (bottom) injections in Gaussian noise colored to O3
sensitivities. The injections that deviate from GR use 𝛿𝜑−2 = −0.1.
The black line shows the measured SNR time series for a single
template waveform, with the gray band denoting the 1𝜎 measurement
uncertainty. The beyond-GR phasing results in an SNR loss of ∼
40% between the left and right columns. Additionally, there is a
mismatch between the measured SNR time series and the SNR scaled
autocorrelation that weakens the signal consistency test, 𝜉2. Both
effects lead to a reduction of our detection statistic 𝜌̄, Eq. (5.1), and
thus a loss in sensitivity. . . . . . . . . . . . . . . . . . . . . . . . . 92
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5.3 Histograms of recovered injections with deviations from GR in the
-1PN (𝛿𝜑−2, left) and 0.5PN (𝛿𝜑1, right) coefficients. Although the
initial injection set was assigned deviations from a uniform distribu-
tion (dotted black), the pipeline selects against large negative values
of the deviation parameters, as indicated by the dearth of detections
in the leftmost bins (gray histograms). Besides the total set of injec-
tions, we show sub-distributions corresponding to different injected
mass bins in the detector frame (colored histograms). The distribu-
tions of recovered injections are largely flat over the span of values
allowed by the analysis of the 12 events considered in Sec. 5.4 (which
are ∼4× broader than GWTC-3 constraints [15]; vertical gray band,
median and 90% CL), suggesting that the selection bias is not strong
enough to affect the population constraints. . . . . . . . . . . . . . . 93

5.4 Inference on the mean and standard deviation of the−1PN coefficient,
𝛿𝜑−2. The orange contours show the result of the hierarchical analysis
without accounting for selection effects, while the purple contours
show the result when the selection function is included. The two
results are consistent with each other, with the selection function
widening the population only slightly. We find no difference in the
coupling between 𝜇 and 𝜎 and the parameters controlling the mass
distribution either (not shown). . . . . . . . . . . . . . . . . . . . . 96

5.5 Posterior predictive distributions (also known as the population-
marginalized expectation) for deviations at all PN orders we consider,
without (orange) and with (purple) selection effects factored in. No
coefficient shows a significant impact when factoring in the selection:
the 𝛿𝜑−2 displays the strongest effect, with a slight broadening of the
inferred distribution at the level of ∼10%. . . . . . . . . . . . . . . . 97

6.1 Posterior distribution for the −1PN deviation population parameters
inferred from the 20 GW observations in GWTC-2 and GWTC-3
which pass the threshold criteria [15, 4, 77, 84], confirming con-
sistency with GR, (𝜇0, 𝜎0) = (0, 0). Due to the non-detection of
a violation, the constraint is dominated by 𝑀I ∈ [15, 25] 𝑀⊙ and
the posterior is bounded per Eq. (6.3) (lines). While the marginal
posterior for the scaling parameter, 𝑝, indicates preference for larger
values, it is a product of this bounded structure. . . . . . . . . . . . . 105
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6.2 Posterior predictive distributions, Eq. (6.5), for deviations across all
PN orders (main panel) and the precision, P (top sub-panel), as
a function of binary total mass. We show results for fixed values
of 𝑝 = 0, 4, 6 indicative of different theoretical models and when
marginalizing over 𝑝. The 90% credible regions of the 20 individual-
event posteriors are shown in faint blue. The precision indicates
the relative contribution on the constraints for the different curvature
orders, generally maximized at ∼ 20 𝑀⊙; it is normalized for each 𝑝. 106

6.3 Inferred curvature scaling 𝑝 (top) and standard deviation 𝜎0 (bot-
tom) at the 90% level as a function of the number of simulated GW
observations. The blue bounds correspond to an analysis that in-
fers the curvature index, 𝑝, whereas the orange corresponds to fixing
𝑝 = 0. The true values are shown in solid black horizontal lines. For
this population we infer a violation of GR, i.e., 𝜎0 > 0, starting at
𝑁 ∼ 100 (dotted black vertical line), while 𝑝 = 0 and 6 are ruled out
by the data after 𝑁 ∼ 500 observations. Fixing 𝑝 = 0 misestimates
the deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.1 Examples of the distribution –𝜋(𝜃) described in Subsections 7.2-7.2.
Each column represents a different dataset. The top-panel dots show
the set of 𝑁 = 10 maximum-likelihood estimates {𝜃̂𝑖}. The top-panel
horizontal lines represent error bars; (in the first column they are too
small to see), and the vertical lines (blue) indicate the inferred delta
function locations. The bottom panels show the distribution of –𝜋(𝜃)
associated with each data set. The left-hand column (a) represents
data in the high-SNR limit so that the likelihood functions for each
measurement approach delta functions (this is why the error bars
are not visible). In this case, –𝜋(𝜃) consists of 𝑁 delta functions,
each associated with one of the maximum likelihood points 𝜃̂𝑖. In
the middle column (b), we are no longer in the high-SNR limit, but
the maximum likelihood points are all assumed to be identical with
𝜃̂𝑖 = 0. In this case, –𝜋(𝜃) consists of one delta function peaking at
𝜃 = 0. In the right-hand column (c), the data are not in the high-SNR
limit, and each 𝜃̂𝑖 is random. In this case, –𝜋(𝜃) consists of 𝑛 = 3 delta
functions, each with different heights. . . . . . . . . . . . . . . . . 117
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7.2 Demonstration of different methods for calculating –𝜋, –L. Each panel
shows the results for a different number of measurements with (a)
𝑁 = 10, (b) 𝑁 = 100, and (c) 𝑁 = 1000. The black distribution
is the true distribution 𝜋(𝜃) used to generate the data. The colored
spikes show the reconstructed distribution –𝜋(𝜃) as determined by
different methods. Cyan is for the “combined” technique, which
uses the iterative grid to obtain a first guess that is refined with
the optimization method. Meanwhile, orange is for the grid-based
technique by itself and gray is for the stochastic method. . . . . . . . 120

7.3 Comparison between a binned representation of –𝜋 as computed for
the toy model data set with 𝑁 = 1000 observations and the true
underlying population distribution. This representation more clearly
shows that –𝜋 is approaching the true distribution in the limit of many
observations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.4 An illustration of model criticism with the –L formalism. In the
left-hand panel, we plot ( –L,Lmax(𝑀)) for five different underlying
populations (each with ten different realizations), analyzed a toy-
model with a mean of 𝜇 = 0 and standard deviation 𝜎 = 1. Each
population is represented by a different color. The gray contours show
the 1, 2, and 3-sigma credible intervals for the expected distribution
of 𝑝( –L,Lmax(𝑀)) from the toy-model. By comparing the measured
values of ( –L,Lmax(𝑀)) from an observed population to the expected
distribution from our choice of model, one may determine if the
dataset is typical of what one would expect given the model. If the
measured values of ( –L,Lmax(𝑀)) fall outside these intervals, one
may conclude that the toy-model is misspecified (does not accurately
model the data). Moreover, the location of a point on this plot
relative to the expected distribution, conveys information about the
way in which a model is misspecified. The right-hand panel shows the
toy-model (grey), the true population distribution for the starred and
labeled datapoint (a-d), and the respective –𝜋 for the observed data
(turquoise). This demonstrates that shifts away from the expected
distribution (left-hand panel; grey) in ( –L,Lmax(𝑀)) can be visually
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7.5 Population predictive distributions (90% credibility) and –𝜋 for (a) the
primary black-hole mass (𝑚1), (b) effective inspiral parameter (𝜒eff),
and (c) redshift (𝑧) distributions. For the redshift, we divide by the
evolution of the comoving volume and time delay as a function of
redshift to plot the merger rate, R(𝑧). Comparison of the different
models with –𝜋 highlights which features are present in the data and
which are due to assumptions in the model. . . . . . . . . . . . . . . 129

7.6 The joint distribution –𝜋(𝑞, 𝜒eff) represented by eight colored pixels.
The pixel color is related to the delta-function weight. The purely
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Correlated model from Ref. [195] and the Copula model from
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7.8 Visual illustrations of the proof in Ref. [419]. The left-hand col-
umn panels show the atomic likelihood vectors (red), the convex hull
produced from the red curve (grey with black outline), and the cyan
point on the convex-hull boundary with the maximum population
likelihood –L. The black points correspond to the points from the set
of atomic likelihood vectors which generate the maximum popula-
tion likelihood. The right-hand column panels show three examples
of 𝑁 = 2 single-event likelihood functions (purple and red). The
distribution of –𝜋 is indicated with one or more cyan spikes. These
spikes correspond to the –L solution (cyan dot) in the corresponding
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ulation likelihood (cf. Fig. 1 in Ref. [419]). As the two single-event
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closer together as shown in (b). Moving the single-event likelihoods
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8.1 Fig. 5 from Ref. [449]. The post-merger strain amplitude for a
source at a distance of 100 Mpc multiplied by 𝑓 1/2, is shown for
three different equations-of-state. These different equations-of-state
present different fundamental frequency peaks that may be resolved.
The dashed blue curve indicates the design sensitivity of aLIGO [1]. . 145



xxix

8.2 Demonstration of the interaction between the temporal mode basis
that was constructed and the measurement of a binary neutron star
post-merger signal. In the upper panel, the strain amplitude and
basis filter amplitudes are shown as a function of frequency. The
basis modes are colored according to their expected number of signal
photons. While each basis mode is initially constructed according
to Eq. (8.23), and the parameters laid-out above, the process of or-
thonormalization leads to unexpected basis filter structures. In the
lower panel, the time, frequency, and phase (sine or cosine) of the
temporal basis are presented. This grid summarizes the 200 basis
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homodyne (orange) and photon counting (blue) readouts’ data out-
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8.5 Impact on the change in the noise backgrounds for the homodyne
(upper; orange) and photon counting (lower; blue) readouts. The left
panel shows the post-merger strain simulated, as well as 𝑆HD( 𝑓 ) for
the homodyne and 𝑆𝑛 ( 𝑓 ) for the photon counting at various differ-
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𝑛̄sig/𝑛̄cl ∼ |ℎ( 𝑓 ) |2/𝑆n( 𝑓 ). These quantities, for their respective read-
out schemes, control the constraints placed on the parameters such
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correspond to the expected results with CE’s designed squeezing
level (10 dB; for the homodyne), or classical noise realization (for the
photon counting), and the white lines on the colorbars indicate their
corresponding values. . . . . . . . . . . . . . . . . . . . . . . . . . 163

8.6 90% credible levels of simulated post-merger signal posteriors with
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8.8 One-dimensional posterior distributions of the simulated inference of
the radius of a 1.6 𝑀⊙ neutron star with both a homodyne (orange)
and photon counting (blue) readout schemes. While the homodyne
result with 10 dB of squeezing has a more localized mode near the true
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C h a p t e r 1

INTRODUCTION

Over the past decade, gravitational-wave astronomy has revolutionized our under-
standing of the universe. In 2015, the Laser Interferometer Gravitational-Wave
Observatory (LIGO) [1] in the United States made the first direct detection of grav-
itational waves, originating from the coalescence of two black holes [2]. Since this
Nobel Prize-winning observation, the field has rapidly expanded. Each successive
observing run and corresponding observational catalog [3, 4, 5] has yielded new
insights into the formation and population of compact objects [6, 7, 8], the nature
of matter at densities beyond nuclear saturation [9, 10, 11], and the fundamental
properties of gravity itself [12, 13, 14, 15]. With the cumulative number of detec-
tions made by the LIGO-Virgo-KAGRA Collaboration (with addition of the Virgo
detector [16]) now approaching three hundred signals as highlighted in Fig. 1.1 [17,
18]1, the primary challenge has shifted. No longer solely an engineering triumph,
gravitational-wave astronomy now hinges on our ability to rigorously analyze nu-
merous individual observations and to synthesize these into robust inferences about
population-level properties of binary black hole, binary neutron star, and neutron
star-black hole mergers [20].

Gravitational waves are a fundamental and emergent prediction of General Relativ-
ity [21]—a theory formulated nearly a century before their first direct detection. At
its core, General Relativity expresses gravity through the language of differential
geometry [22]. Einstein’s field equations describe a relationship between spacetime
curvature (a second-order derivative of the metric) and the stress-energy tensor.
Solving these equations yields the metric, which governs the geodesic trajectories
of objects moving under the influence of gravity. This framework predicts a range
of phenomena, from the deflection of light [23] to geodetic [24] and Lense-Thirring
precession [25], and, crucially for my thesis, gravitational waves [26]. A standard
derivation begins with a linear perturbation to a static background spacetime. The
perturbation ultimately satisfies a homogeneous wave equation, describing the free
propagation of disturbances in the spacetime metric, i.e. gravitational waves [27].

1There is some degree of ambiguity to this number given the uncertain nature of observations
near the detection threshold. See Ref. [19] for a discussion regarding these statements.
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Figure 1.1: Fig. 3 from Ref. [17], summarizing the number of gravitational-wave
observations over observing runs O1 through to the first 6 months of O4b. The grey
line indicates the average O3 event detection rate projected into the duration of O4.
The difference between the cumulative number (black) and the O3 rate projection
demonstrates the instrumental improvement between observation periods.

The generation of gravitational waves is considerably more complex. Only non-
spherically symmetric, accelerating stress-energy configurations can radiate gravi-
tational waves [27]. In a multipole expansion [28], the leading-order contribution
arises from the second time derivative of the mass quadrupole moment, though
higher-order terms can, and do, contribute sub-dominantly in astrophysical con-
texts [29, 5]. The coefficient coupling stress-energy to curvature is necessarily
small (𝐺/𝑐4), and therefore it is not unexpected that detectable gravitational waves
are sourced from rapidly moving, compact sources [27]. Such sources include
mergers of compact binaries, rapidly rotating aspherical neutron stars, core-collapse
supernovae, and other exotic astrophysical phenomena. In Fig. 1.2 from Ref. [2],
the inspiral, merger, and ringdown phases of a compact binary coalescence are
schematically shown, including the gravitational-wave strain associated with each
stage, as well as the velocity and separation of the binary. From this depiction, it is
clear that immense systems are required to produce even a quiet gravitational-wave
signal.

Ground-based gravitational-wave detectors such as LIGO are designed to observe
gravitational radiation from compact binary coalescences [30]. By the time this
radiation reaches detectors on Earth, the dimensionless strain is minuscule, of order
O(10−21). Such an extreme sensitivity requirement poses a formidable engineering
challenge. The core design of these detectors is based on a Fabry-Pérot Michelson
interferometer [1], which measures the optical path-length differences between two
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Figure 1.2: Fig. 2 from Ref. [2]. The top panel highlights the different phases of
the compact binary inspiral and the associated gravitationa-wave strain. The lower
panel shows the separation and velocity of the binary system as a function of time.
This schematic figure demonstrates just how energetic systems need to be in order
to produce a detectable strain. As the velocities of the balck holes approach 0.6𝑐,
the gravitational-wave strain as measured in ground-based detectors on Earth only
reaches O(10−21).

perpendicular arms (each 4 km long in the current generation of detectors). These
arms house evacuated beam tubes and sustain approximately 400 kW of circulating
laser power as of this observing run [17]. Light from each arm is recombined
at the beam splitter, producing an interference signal at the output photodiodes.
As a gravitational wave passes through the interferometer, it induces differential
arm-length changes, modulating the interference pattern. Through precise calibra-
tion, the photodiode output is converted back into a strain measurement [31, 32,
33]. While these detectors achieve extraordinary sensitivity—capable of detecting
gravitational-wave induced displacements a fraction of a proton’s radius—various
noise sources inevitably contaminate the measurement. These include stationary
Gaussian noise as well as non-Gaussian transient noise artifacts, commonly referred
to as “glitches” [34, 17, 35]. Understanding and mitigating these noise sources is
critical for conducting statistically robust analyses of astrophysical signals.

Despite the sheer difficulty of building and operating such instruments, the LIGO
and Virgo observatories have entered a phase of routine detection [5]. In the ongoing
fourth observing run, they are now observing multiple compact binary merger signals
each week [18]. Thanks to recent advances in parameter estimation algorithms,
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posterior probability distributions for each event can be computed within hours [36,
37]. However, these inferences remain sensitive to both instrumental noise [38, 39,
40] and waveform modeling systematics [41, 42, 43], necessitating careful vetting
to avoid biased conclusions.

With the growing catalog of detections, gravitational-wave astronomy has facilitated
the development of population studies [6, 7, 8]. Rather than analyzing events in
isolation, we can now study ensembles of signals using hierarchical inference tech-
niques. This enables investigations into the underlying astrophysical distributions of
binary compact objects [8], the neutron star equation of state [44], and possible devi-
ations from General Relativity [15]. Nevertheless, population-level analyses are not
immune to bias. In addition to biases present in individual event analyses, abstract
sources of error can arise in hierarchical studies from prior mismatches, incorrect
modeling of selection effects, and model misspecification. These subtle effects can
propagate through hierarchical pipelines and impact astrophysical conclusions.

Looking toward the future, third-generation detectors such as Cosmic Explorer [45,
46] and the Einstein Telescope [47] promise to extend gravitational-wave astronomy
to its cosmic horizon. These instruments will be capable of detecting nearly all
compact binary mergers in the observable Universe [46]. Their unprecedented
sensitivity will not only improve the precision of parameter estimation but may
also enable the detection of new phenomena, such as post-merger gravitational-
wave radiation from neutron star collisions. The conceptual design and technical
planning of these observatories are active areas of current research.

In this thesis, I will expand upon several aspects of robust gravitational-wave data
analysis. I focus on methods for reliable inference of individual binary parameters
and for ensemble-level studies relevant to tests of General Relativity and population
modeling. I also discuss future prospects for enhancing detector capabilities, with
an emphasis on enabling neutron star post-merger science.

1.1 Motivation for testing gravity with gravitational waves
In this thesis, I will spend Chapters 4, 5, and 6 focusing on improvements to tests
of gravity with gravitational-wave observations. While these chapters explore my
contributions into this topic within the field, here I outline the importance and
relevance of such studies using gravitational-wave signals from compact binaries.

To motivate this discussion, we can consider the form of possible extensions to
general relativity as higher-order curvature terms in the expansion of the Einstein-
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Hilbert action [48],

𝑆 ∼
∫

d4𝑥
√−𝑔

(
𝑅 × 𝜗0 + 𝛼1𝜗1 curvature2 + 𝛼2 curvature3 + ...). (1.1)

In this expression, 𝑅 is the Ricci scalar, 𝜗𝑖 are additional fields, 𝛼𝑖 are coupling
coefficients, and “curvature𝛾” is used to represent a number, 𝛾, of Riemann tensor,
Ricci scalar and/or tensor terms contracted together. In this expression, as 𝛼𝑖 → 0
and 𝜗0 → 1, the Einstein-Hilbert action, and hence general relativity is recovered.

From the schematic expression in Eq. (1.1), the different classes of modifications
to general relativity manifest at each relevant curvature order. First, at the linear
curvature order, cosmological effects appear corresponding to deviations at arise
over large distances. Theories of this class include Brans-Dicke gravity [49] and
massive gravity [50, 51]. Solar system tests have greatly constrained these classes
of theories [52, 53]. The second class that appears arises from second order curva-
ture terms. Since second order curvature terms—without an additional field—are
a topological invariant in four-dimensional spacetimes [54], deviations at this cur-
vature order require the introduction of additional physics in the form of additional
fields or dimensions. Theories of this nature include many that are often discussed
in strong-field tests of gravity such as Einstein-dilaton Gauss-Bonnet gravity [55],
dynamical Chern-Simons gravity [56], and Lovelock gravity [57]. Finally, higher-
order curvature terms are added to the expansion can be viewed as the most generic
term thus far—falling under the broad categorization of general expectations from
effective field theory arguments [58, 59, 60]. These terms may not (but can) include
additional fields, and so generically these terms can appear at these higher orders.
At present, there is still ongoing discourse over whether the cubic order term can
exist without introducing a “fifth force” or long-range interactions. See Ref. [58]
and references therein for an extended discussion regarding this. The relevance of
this discussion of specific theories will become more relevant in Chap. 6.

Now, it is important to understand the relative importance of gravitational-wave
observations when attempting to probe these theories. To illustrate their role, Fig. 1.3
from Ref. [61] shows the characteristic gravitational potential and curvature for a
number of different tests of gravity. In this figure, the lower left corner corresponds to
the curvature and potentials associated with solar system tests such as the perihelion
precession of Mercury and the Shapiro delay in signals from the Cassini probe [62].
As we move to higher potentials, past the orbital trajectory observations of the S2
star around Sgr A∗, the plot shows the scales associated with massive black holes
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Figure 1.3: Fig. 1 from Ref. [61]. Gravitational potential and curvature for a
number of different tests of General Relativity. The plot covers scales and tests from
within the Solar System (Mercury’s perihelion precession and the Shapiro delay of
the Cassini probe’s signal) to massive black holes Sgr A∗ and M87. In the top right
corner, the characteristic potential and curvature swept by two binary black-hole
inspirals are shown.

such as Sgr A∗ and the central black hole of M87, both now observed by the Event
Horizon Telescope [63, 64]. These observations are probing high potentials but the
curvature is still rather small given these black holes have a mass of the order of
O(106 − 109) 𝑀⊙. Then, while there is a fundamental limit on the gravitational
potential such that it is less than one, higher curvature can still be observed as
the mass of the black hole decreases. This leads to observations made of stellar-
mass black-hole binaries by ground-based gravitational-wave detectors [12, 13, 14,
15]. Under the expectation that these O(10) 𝑀⊙ binary black-hole systems are the
lightest such astrophysically-formed systems in the Universe, their gravitational-
wave radiation will encode effects present in the highest curvature environments.
Relating this to Eq. (1.1), this implies that any higher-order curvature terms will
manifest more greatly in these systems, and therefore that gravitational waves from
stellar-mass binary black holes will provide the best probes of such effects.

Finally, given that gravitational-wave observations provide the potential to most
deeply probe the nature of gravity, it is important to consider the impact such exten-
sions to general relativity might have on the gravitational radiation. An example of
the impact of extensions to general relativity, Fig. 1.4 from Ref. [65] shows numer-
ical simulations of gravitational-wave radiation generated from binary black-hole
coalescences under dynamical Chern-Simons gravity [56] with varying coupling
lengthscale, ℓ. The crucial detail from these results—which, in turn, is typically the
case for many realistic extensions to general relativity—is that the extension leads
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Figure 1.4: Fig. 2 from Ref. [65]. The numerical relativity simulations of a
binary black-hole merger assuming dynamical Chern-Simons gravity with different
coupling lengthscales, ℓ. The observed gravitational-wave strain experiences an
increased dephasing of the signal as the lengthscale increases. There are also
amplitude modifications that occur closer to merger, though these are subdominant
in any statistical analyses of gravitational-wave observations.

to an accumulated dephasing of the signal. This anticipated modification allows
for the construction of statistical tests that primarily search for these dephasings.
The current, most-common approach in gravitational-wave astronomy is to use a
post-Newtonian parameterization [66, 67, 68, 69, 70, 71]. This parameterization is
discussed in Sec. 4.5 and used extensively throughout Chapters 4, 5, and 6. There are
additional effects that can also be considered such as additional polarizations [72]
and birefringence [73], but for these studies, I have focused my time on direct
modifications to the tensorial gravitational-wave strain.

1.2 Overview of Thesis’ Contents
The advent and rapid growth of the field of gravitational-wave astronomy has lent
itself well to allowing for many impactful studies to be undertaken across a range of
topics. Since many of the analysis methods rely on Bayesian inference techniques
at their core [74], many approaches are transferrable from exploring individual-
event spin parameter constraints to formulating statistical methods for potentially
radical improvements to future gravitational-wave detector designs. In my thesis, the
primary focus has been on a series of improvements made to heirarchical methods
for testing General Relativity. The overview of my thesis is as follows.

Chapter 2 contains published work from Ref. [75], in which we revisit the potential
evidence for spin-orbit coupling and therefore spin-precession in GW200129_065458
(henceforth GW200129) [76]. This gravitational-wave observation was known to
possess a glitch in the 20-50 Hz frequency range in LIGO Livingston (in addition to
noise artifacts in Virgo) [77]. We show that the difference between a spin-precessing
and a non-precessing interpretation for GW200129 is smaller than the statistical and
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systematic uncertainty of the subtraction, finding that the support for spin-precession
depends sensitively on the glitch modeling. We conclude that while our analysis
does not disprove the possibility of spin-precession in GW200129, we argue any
inference is contingent upon the statistical and systematic uncertainty of the glitch
mitigation.

Chapter 3 contains published work from Ref. [78]. In this work, we aim to determine
the utility of spin alignment, quantified by 𝜒eff, and spin-precession, quantified
by 𝜒p, at classifying the formation channel through which a binary black-hole
system formed. In dense stellar environments, black-hole binaries can form through
dynamical captures, leading to isotropic orientations of their spins [79, 80, 81].
Whereas in isolated binary formation channels, black hole binaries are expected
to form with small spin magnitudes preferentially aligned with the orbital angular
momentum. Given the expected isotropic distribution of component spins of binary
black hole in gas-free dynamical environments [81], the presence of anti-aligned
or in-plane spins with respect to the orbital angular momentum is considered a
tell-tale sign of a merger’s dynamical origin. Using Monte Carlo cluster simulations
to generate a realistic distribution of hierarchical merger parameters from globular
clusters [82, 83], we simulate the detection and inference of the binary black-hole
mergers’ parameters. Using a “likelihood-ratio”-based statistic, we find that ∼ 2%
of the recovered population by the current gravitational-wave detector network has a
statistically significant 𝜒p measurement, whereas no 𝜒eff measurement was capable
of confidently determining a system to be anti-aligned with the orbital angular
momentum at current detector sensitivities. These results indicate that measuring
spin-precession is a more detectable signature of hierarchical mergers and dynamical
formation than anti-aligned spins.

Chapters 4 and 5 contain published works from Ref. [84] and Ref. [85], respectively.
These works focus on important improvements to tests of gravity with ensembles
of observations. In Chapter 4, we incorporate, for the first time in the literature,
information about the underlying astrophysical population to avoid biases in the
inference of deviations from general relativity. Current tests assume that the astro-
physical population follows an unrealistic fiducial prior chosen to ease sampling of
the posterior which is is inconsistent with both astrophysical expectations and the
distribution inferred from observations [15]. We propose a framework for fortifying
tests of general relativity by simultaneously inferring the astrophysical population
using a catalog of detections. Using observations from LIGO-Virgo-KAGRA’s third
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observing run, we show that concurrent inference of the astrophysical distribution
strengthens constraints and improves the overall ability to detect deviations from
general relativity if present.

In Chapter 5 we estimate the impact of selection effects for tests of gravity using
the inspiral phase evolution of compact binary signals with a simplified version
of the GstLAL search pipeline. Leveraging the work presented in Chapter 4, we
find that selection biases affect the search for very large values of the deviation
parameters, much larger than the hierarchical constraints implied by the detected
gravitational-wave signals. Therefore, combined population constraints for devia-
tions from general relativity from confidently detected events are mostly unaffected
by selection biases. These findings suggest that current population constraints on
the inspiral phase are robust without factoring in selection biases.

Chapter 6 is based on work in Ref. [86]. In this study, we consider the role theoretical
information high-energy extensions to General Relativity play in more theoretically
motivated tests of gravity. High-energy extensions to General Relativity modify the
Einstein-Hilbert action with higher-order curvature corrections and theory-specific
coupling constants [87, 88]. The order of these corrections imprints a universal
curvature dependence on observations while the coupling constant controls the de-
viation strength. We leverage the theory-independent expectation that modifications
to the action of a given order in spacetime curvature (Riemann tensor and contrac-
tions) lead to observational deviations that scale with the system length-scale to a
corresponding power. We incorporate this universal scaling into the theory-agnostic
tests of General Relativity presented in Chapter 4 with current gravitational-wave
observations, thus enabling constraints on the curvature scaling without compro-
mising the agnostic nature of these tests.

Chapter 8 is based on work currently in preparation for publication. In this work,
we turn our attention to improvements to future third-generation gravitational-wave
detectors in the coming decades for improving their observational capabilities. Bi-
nary neutron star post-merger signals are a high-priority target for third-generation
gravitational-wave detectors, as they encode valuable information about the dense-
matter equation of state in their high-frequency gravitational-wave signatures [89,
45, 90]. Future detectors like Cosmic Explorer and the Einstein Telescope are ex-
pected to observe millions of compact binary coalescences; however, their sensitivity
is dominated by quantum noise above ∼ 1 kHz [91], hindering the detection of these
signals [17]. We present the statistical background and methodology for utilizing a
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newly suggested readout scheme for future detectors, known as photon counting [92].
In such a readout, signals and noise become quantized into discrete distributions
corresponding to the detection of single photons measured in a chosen basis of
modes for each event. Through simulations of realistic binary neutron star signals,
we demonstrate that photon counting can extract meaningful information even from
signals with low signal-to-noise ratios. Furthermore, we show that this capability
improves the prospects for equation-of-state parameter inference from post-merger
signals. We also demonstrate that the hierarchical constraints scale more favorably
with possible detector classical noise sensitivity improvements. These results in-
dicate that photon counting offers a promising alternative to traditional homodyne
readout techniques for extracting information from low signal-to-noise ratio post-
merger signals. These methods can potentially be extended to other observational
science targets in the third-generation detector era.

Finally, in Chapter 9, I summarize the work presented and I outline possible future
avenues for the ideas put forward in this thesis.
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C h a p t e r 2

THE CURIOUS CASE OF GW200129: INTERPLAY BETWEEN
SPIN-PRECESSION INFERENCE AND DATA-QUALITY

ISSUES

E. Payne, S. Hourihane, J. Golomb, R. Udall, D. Davis, and K. Chatzi-
ioannou. “Curious case of GW200129: Interplay between spin-precession
inference and data-quality issues”. In: Phys. Rev. D 106.10 (2022), p. 104017.
doi: 10.1103/PhysRevD.106.104017. arXiv: 2206.11932 [gr-qc].

E.P. carried out the majority of the parameter estimation analyses using
Parallel Bilby for the results presented, and contributed significantly to the
writing of the manuscript.

2.1 Introduction
GW200129_065458 (henceforth GW200129) is a gravitational wave (GW) candi-
date reported in GWTC-3 [77]. The signal was observed by all three LIGO-Virgo
detectors [1, 16] operational during the third observing run (O3) and it is con-
sistent with the coalescence of two black holes (BHs) with source-frame masses
34.5+9.9

−3.2 𝑀⊙ and 28.9+3.4
−9.3 𝑀⊙ at the 90% credible level. Though the masses are typ-

ical within the population of observed events [8], the event’s signal-to-noise-ratio
(SNR) of 26.8+0.2

−0.2 makes it the loudest binary BH (BBH) observed to date. Addi-
tionally, it is one of the loudest triggers in the Virgo detector with a detected SNR
of 6–7 depending on the detection pipeline [77]. The signal temporally overlapped
with a glitch in the LIGO Livingston detector, which was subtracted using informa-
tion from auxiliary channels [38]. The detection and glitch mitigation procedures
for this event are recapped in App. 2.6.

The interpretation of some events in GWTC-3 was impacted by waveform systemat-
ics, with GW200129 being one of the most extreme examples. As part of the catalog,
results were obtained with the IMRPhenomXPHM [93] and SEOBNRv4PHM [94] wave-
form models using the parameter inference algorithms Bilby [36, 95] and RIFT [96]
respectively. Both waveforms correspond to quasicircular binary inspirals and in-
clude high-order radiation modes and the effect of relativistic spin-precession arising
from interactions between the component spins and the orbital angular momentum.

https://doi.org/10.1103/PhysRevD.106.104017
https://arxiv.org/abs/2206.11932
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All analyses used the glitch-subtracted LIGO Livingston data. The IMRPhenomXPHM
result was characterized by large spins and a bimodal structure with peaks at ∼ 0.45
and ∼ 0.9 for the binary mass ratio. The SEOBNRv4PHM results, on the other hand,
pointed to more moderate spins and near equal binary masses. Both waveforms,
however, reported a mass-weighted spin aligned with the Newtonian orbital angular
momentum of 𝜒eff ∼ 0.1, and thus the inferred large spins with IMRPhenomXPHM
corresponded to spin components in the binary orbital plane and spin-precession.
Such differences between the waveform models are not unexpected for high SNR
signals [41]. Waveform systematics are also likely more prominent when it comes to
spin-precession, as modeling prescriptions vary and are not calibrated to numerical
relativity simulations featuring spin-precession [93, 97, 94]. Data quality issues
could further lead to evidence for spin-precession [98]. Due to differences in the
inference algorithms and waveform systematics, GWTC-3 argued that definitive
conclusions could not be drawn regarding the possibility of spin-precession in this
event [77].

Stronger conclusions in favor of spin-precession [76] and a merger remnant that
experienced a large recoil velocity [99] were put forward by means of a third
waveform model. NRSur7dq4 [100] is a surrogate to numerical relativity simulations
of merging BHs that is also restricted to quasicircular orbits and models the effect of
high-order modes and spin-precession. This model exhibits the smallest mismatch
against numerical relativity waveforms, sometimes comparable to the numerical
error in the simulations. It is thus expected to generally yield the smallest errors
due to waveform systematics [100]. This fact was exploited in Hannam et al. [76]
to break the waveform systematics tie and argue that the source of GW200129
exhibited relativistic spin-precession with a primary component spin magnitude of
𝜒1 = 0.9+0.1

−0.5 at the 90% credible level.

During a binary inspiral, spin-precession is described through post-Newtonian the-
ory [101, 102]. Spin components that are not aligned with the orbital angular
momentum give rise to spin-orbit and spin-spin interactions that cause the orbit to
change direction in space as the binary inspirals, e.g., [103, 104, 105, 106, 107, 108,
71, 109, 110, 111]. The emitted GW signal is modulated in amplitude and phase, and
morphologically resembles the beating between two spin-aligned waveforms [112]
or a spin-aligned waveform that has been “twisted-up” [105, 106]. As the binary
reaches merger, numerical simulations suggest that the direction of peak emission
continues precessing [113]. Parameter estimation analyses using NRSur7dq4 find
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that spins and spin-precession can be measured from merger-dominated signals for
certain spin configurations [114], however the lack of analytic understanding of the
phenomenon means that it is not clear how such a measurement is achieved.

The main motivation for this study is to revisit GW200129 and attempt to understand
how spins and spin-precession can be measured from a heavy BBH with a merger-
dominated observed signal. In Sec. 2.2 we use NRSur7dq4 to conclude that the
evidence for spin-precession originates exclusively from the LIGO Livingston data
in the 20–50 Hz frequency range, where the inferred signal amplitude is lower
than what a spin-aligned binary would imply given the rest of the data. This range
coincides with the known data quality issues described in App. 2.6 and first identified
in GWTC-3 [77]. LIGO Hanford is consistent with a spin-aligned signal, causing
an inconsistency between the inferred mass ratio 𝑞 and precession parameter 𝜒𝑝

inferred from each LIGO detector separately. By means of simulated signals, we
argue that such 𝑞 − 𝜒𝑝 inconsistency is unlikely to be caused solely by the different
Gaussian noise realizations in each detector at the time of the signal, rather pointing
to remaining data quality issues beyond the original glitch-subtraction [77]. We
also re-analyze the LIGO Livingston data above 50 Hz, (while keeping the original
frequency range of the LIGO Hanford data) and confirm that all evidence for spin-
precession disappears.

In the process, we find that the Virgo trigger, though consistent with a spin-aligned
BBH, is inconsistent with the signal seen in the LIGO Hanford and LIGO Livingston
detectors. Specifically, the Virgo data are pointing to a much heavier BBH that
merges ∼20 ms earlier than the one observed by the LIGO detectors. We discuss
Virgo data quality considerations in Sec. 2.3 within the context of a potential glitch
that affects the inferred binary parameters if unmitigated. As a consequence, we do
not include Virgo data in the sections examining spin-precession unless otherwise
stated. The Virgo-LIGO inconsistency can be resolved if we use BayesWave [115,
116, 117] to simultaneously model a CBC signal and glitches with CBC waveform
models and sine-Gaussian wavelets respectively [118, 39]. The Virgo data are now
consistent with the presence of both a signal that is consistent with the one in the
LIGO detectors and an overlaping glitch with SNR ∼ 4.6.

In Sec. 2.4 we revisit the LIGO Livingston data quality issues and compare the
original glitch-subtraction based on gwsubtract [119, 38] that uses information
from auxiliary channels and the glitch estimate from BayesWave that uses only
strain data. Though the CBC model used in BayesWave does not include the effect
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of spin-precession, we show that differences between the reconstructed waveforms
from a non-precessing and spin-precessing analysis for GW200129 are smaller than
the statistical uncertainty in the glitch inference. Such differences can therefore
not be reliably resolved in the presence of the glitch and its subtraction procedure.
The two glitch estimation methods give similar results within their statistical errors,
however gwsubtract yields typically a lower glitch amplitude. We conclude that
any evidence for spin-precession from GW200129 is contingent upon the systematic
and statistical uncertainties of the LIGO Livingston glitch subtraction. Given the low
SNR of the LIGO Livingston glitch and the glitch modeling uncertainties, we can
at present not conclude whether the source of GW200129 exhibited spin-precession
or not.

In Sec. 2.5 we summarize our arguments that remaining data quality issues in LIGO
Livingston cast doubt on the evidence for spin-precession. Besides data quality
studies (i.e., spectrograms, glitch modeling, auxiliary channels), our investigations
are based on comparisons between different detectors as well as different frequency
bands of the same detector. We propose that similar investigations in further events
of interest with exceptional inferred properties could help alleviate potential con-
tamination due to data quality issues.

2.2 The origin of the evidence for spin-precession
Our main goal is to pinpoint the parts of the GW200129 data that are inconsistent
with a non-precessing binary and understand the relevant signal morphology. Due
to different orientations, sensitivities, and noise realizations, different detectors in
the network do not observe an identical signal. The detector orientation, especially,
affects the signal polarization content and thus the degree to which spin-precession
might be measurable in each detector. Motivated by this, we begin by examining
data using different detector combinations.

We perform parameter estimation using the NRSur7dq4waveform and examine data
from each detector separately (left panel) as well as the relation between the LIGO
and the Virgo data (right panel) and show posteriors for select intrinsic parameters
in Fig. 2.1. Analysis settings and details are provided in App. 2.6 and in all cases
we use the same LIGO Livingston data as GWTC-3 [77] where the glitch has been
subtracted. Though we do not expect the posterior distributions for the various
signal parameters inferred with different detector combinations to be identical, they
should have broadly overlapping regions of support. If the triggers recorded by the
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Figure 2.1: One- and two-dimensional marginalized posteriors for select intrinsic
binary parameters: detector frame chirp-mass M, mass ratio 𝑞, effective spin
𝜒eff, and precessing spin 𝜒𝑝. See Table 2.1 for analysis settings and App. 2.6
for detailed parameter definitions. Two-dimensional panels show 50% and 90%
contours. The black dashed line marks the minimum bound of 𝑞=1/6 inNRSur7dq4’s
region of validity. Shaded regions shows the prior for 𝑞, 𝜒eff, 𝜒𝑝. The M prior
increases monotonically to the maximum allowed value (see App. 2.6 for details
on choices of priors). Left panel: comparison between analyses that use solely
LIGO Hanford (red; H), LIGO Livingston (blue; L), and Virgo (purple; V) data.
Right panel: comparison between analyses of all three detectors (yellow; HLV),
only LIGO data (green; HL) and only Virgo data (purple; V). The evidence for spin-
precession originates solely from the LIGO Livingston data as the other detectors
give uninformative 𝜒𝑝 posteriors. Additionally, the binary masses inferred based on
Virgo only are inconsistent with those from the LIGO data.

different detectors are indeed consistent, any shift between the posteriors should be
at the level of Gaussian noise fluctuations.

The left panel shows that the evidence for spin-precession arises primarily from
the LIGO Livingston data, whereas the precession parameter 𝜒𝑝 posterior is much
closer to its prior when only LIGO Hanford or Virgo data are considered. A sim-
ilar conclusion was reached in Hannam et al. [76]. There is reasonable overlap
between the two-dimensional distributions that involve the chirp mass M, the mass
ratio 𝑞, and the effective spin 𝜒eff inferred by the two LIGO detectors, as expected
from detectors that observe the same signal under different Gaussian noise real-
izations. The discrepancy between the spin-precession inference in the two LIGO
detectors, however, is evident in the 𝑞 − 𝜒𝑝 panel. The two detectors lead to non
overlapping distributions that point to either unequal masses and spin-precession
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Figure 2.2: Similar to the right panel of Fig. 2.1 but for select extrinsic parameters:
luminosity distance 𝑑𝐿 , angle between total angular momentum and line of sight
𝜃jn, right ascension 𝛼, and declination 𝛿. For reference, the median optimal SNR
for each run is HLV: 27.6, HL: 26.9, V: 6.7.

(LIGO Livingston), or equal masses and no information for spin-precession (LIGO
Hanford).

Besides an uninformative posterior on 𝜒𝑝, the left panel points to a bigger issue with
the Virgo data: inconsistent inferred masses. The right panel examines the role of
Virgo in more detail in comparison to the LIGO data. Due to the lower SNR in
Virgo, the intrinsic parameter posteriors are essentially identical between the HL
and the HLV analyses. The lower total SNR means that the Virgo-only posteriors
will be wider, but they are still expected to overlap with the ones inferred from the
two LIGO detectors. However, this is not the case for the mass parameters as is
most evident from the two dimensional panels involving the chirp mass. While the
LIGO data are consistent with a typical binary with (detector-frame) chirp mass
30.3+2.5

−1.6 𝑀⊙ at the 90% credible level, the Virgo data point to a much heavier binary
with 66.7+19.7

−22.6 𝑀⊙ at the same credible level.

The role of Virgo data on the inferred binary extrinsic parameters is explored
in Fig. 2.2. In general, Virgo data have a larger influence on the extrinsic than
the intrinsic parameters as the measured time and amplitude helps break existing
degeneracies. The extrinsic parameter posteriors show a large degree of overlap.
The Virgo distance posterior does not rail against the upper prior cut off, suggesting
that this detector does observe some excess power. The HL sky localization also
overlaps with the Virgo-only one, though the latter is merely the antenna pattern
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Figure 2.3: 90% credible intervals for the whitened time-domain reconstruction
(left) and spectrum (right) of the signal in Virgo from a Virgo-only (purple; V) and
a full 3-detector (yellow; HLV) analysis; see Table 2.1 for analysis settings. The
data are shown in gray and the noise PSD in black. The time on the left plot is
relative to GPS 1264316116. The high value of the PSD at ∼ 50 Hz was imposed
due to miscalibration of the relevant data [77]. Vertical shaded regions at each panel
correspond to the 90% credible intervals of the merger time (left; defined as the
time of peak strain amplitude) and merger frequency (right; approximated via the
dominant ringdown mode frequency as computed with qnm [120], merger remnant
properties were computed with surfinBH [121]). The Virgo data point to a heavier
binary that merges ∼ 20ms earlier than the full 3-detector results that are dominated
by the LIGO detectors.

of the detector that excludes the four Virgo “blind spots.” We use the HL results
to calculate the projected waveform in Virgo and calculate the 90% lower limit on
the signal SNR to be 4.2. This suggests that given the LIGO data, Virgo should be
observing a signal with at least that SNR at the 90% level.

In order to track down the cause of the discrepancy in the inferred mass parameters,
we examine the Virgo strain data directly. Figure 2.3 shows the whitened time-
domain reconstruction (left panel) and the spectrum (right panel) of the signal in
Virgo from a Virgo-only and a full 3-detector analysis. Compared to Figs. 2.1
and 2.2, here we only consider a 3-detector analysis as the reconstructed signal
in Virgo inferred from solely LIGO data would not be phase-coherent with the
data, and thus would be uninformative. Given the higher signal SNR in the two
LIGO detectors, the signal reconstruction morphology in Virgo is driven by them,
as evident from the intrinsic parameter posteriors from the right panel of Fig. 2.1.
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The two reconstructions in Fig. 2.3 are morphologically distinct. The 3-detector
inferred signal is dominated by the LIGO data and resembles a typical “chirp” with
increasing amplitude and frequency. This signal is, however, inconsistent with the
Virgo data as it underpredicts the strain at 𝑡 ∼0.382 s in the left panel. The Virgo-
only inferred signal matches the data better by instead placing the merger at earlier
times to capture the increased strain at 𝑡 ∼0.382 s as shown by the shaded vertical
region denoting the merger time. Rather than a “chirp”, the signal is dominated
by the subsequent ringdown phase with an amplitude that decreases slowly over ∼2
cycles. As also concluded from the inferred masses in Fig. 2.1, the Virgo data point
to a heavier binary with lower ringdown frequency (vertical regions in the right
panel).

Despite these large inconsistencies, the issues with the Virgo data do not affect our
main goal, which is identifying the origin of the evidence for spin-precession. In
order to avoid further ambiguities for the remainder of this section we restrict to
data from the two LIGO detectors unless otherwise noted. In Fig. 2.1 we concluded
that LIGO Livingston alone drives this measurement and here we attempt to further
zero in on the data that support spin-precession by comparing results from a spin-
precessing and a spin-aligned analysis with NRSur7dq4, see App. 2.6 for details.
Figure 2.4 shows the whitened time-domain reconstruction (left panel) and the
spectrum (right panel) in LIGO Hanford (top) and LIGO Livingston (bottom). The
two reconstructions remain phase-coherent, however there are some differences in
the inferred amplitudes, with the spin-aligned amplitude being slightly larger at
∼30–50 Hz and slightly smaller for ≳ 100 Hz. Comparison to the estimate for
the glitch that was subtracted from the data based on information from auxiliary
channels with gwsubtract shows that the glitch overlaps with the part of the signal
where the spin-precessing amplitude is smaller than the spin-aligned one. The
glitch subtraction and data quality issues are therefore related to the evidence for
spin-precession.

We confirm that the low-frequency data in LIGO Livingston (in relation to the rest
of the data) are the sole source of the evidence for spin-precession, by carrying out
analyses with a progressively increasing low frequency cutoff in LIGO Livingston
only, while leaving the LIGO Hanford data intact. Figure 2.5 shows the effect on
the posterior for 𝜒𝑝, 𝑞, and 𝜒eff. When we use the full data bandwidth, 𝑓low(𝐿) =
20 Hz, we find that 𝑞 and 𝜒𝑝 are correlated and their two-dimensional posterior
appears similar to the combination of the individual-detector posteriors from Fig. 2.1.
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Figure 2.4: Whitened time-domain reconstruction (left) and spectrum (right) of
GW200129 in LIGO Hanford (top) and LIGO Livingston (bottom). Shaded regions
show the 90% credible intervals for the signal using a spin-precessing (light blue
and red) and a spin-aligned (dark blue and red) analysis based on NRSur7dq4, see
Table 2.1 for run settings. In gray we show the analyzed data where the gwsubtract
estimate for the glitch (black line) has already been subtracted. The black line in the
right panels is the noise PSD. The glitch overlaps with the part of the inferred signal
where the spin-aligned amplitude is on average larger than the spin-precessing one.
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Figure 2.5: One- and two-dimensional marginalized posterior for the mass ratio
𝑞, the precession parameter 𝜒𝑝, and the effective spin parameter 𝜒eff for analyses
using a progressively increasing low frequency cutoff in LIGO Livingston but all
the LIGO Hanford data, see Table 2.1 for details. The median network SNR for
each value of the frequency cutoff is given in the legend. Contours represent 90%
credible regions and the prior is shaded in gray. As the glitch-affected data are
removed from the analysis, the posterior approaches that of an equal-mass binary
and becomes uninformative about 𝜒𝑝. This behavior does not immediately indicate
data quality issues and we only use this increasing- 𝑓low(𝐿) analysis to isolate the
data which contribute the evidence of spin-precession when compared to the rest of
the data to within 20–50 Hz.

However, as the low frequency cutoff in LIGO Livingston is increased and the
data affected by the glitch are removed, the posterior progressively becomes more
consistent with an equal-mass binary and 𝜒𝑝 approaches its prior. By 𝑓low(𝐿) =

50 Hz, 𝜒𝑝 is similar to its prior and further increasing 𝑓low(𝐿) has a marginal effect.
This confirms that given all the other data, the LIGO Livingston data in 20–50 Hz
drive the inference for spin-precession.

The signal network SNR (i.e., the SNR in both detectors added in quadrature) is
given in the legend for each value of the low frequency cutoff. By 𝑓low(𝐿) = 50 Hz
where all evidence for spin-precession has been eliminated, the SNR reduction is
only 1.5 units, suggesting that the large majority of the signal is consistent with a
non-precessing origin. This might also suggest that 𝜒𝑝 inference is not degraded
solely due to loss of SNR, as the latter is very small. The 𝜒eff posterior is generally
only minimally affected, with a small shift to higher values driven by the 𝑞 − 𝜒eff

correlation [122]. We have verified that these conclusions are robust against re-
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including the Virgo data (using their full bandwidth).

The above analysis is not on its own an indication of data quality issues in LIGO
Livingston, but we now turn to an observation that might be more problematic: the
𝑞 − 𝜒𝑝 inconsistency between LIGO Hanford and LIGO Livingston identified in
Fig. 2.1. In order to examine whether such an effect could arise from the different
Gaussian noise realizations in each detector, we consider simulated signals. We use
100 posterior samples obtained from analyzing solely the LIGO Livingston data,
make simulated data that include a noise realization with the same noise PSDs as
GW200129, and analyze data from the two LIGO detectors separately. To quantify
the degree to which the LIGO Hanford and LIGO Livingston posteriors overlap, we
compute the Bayes factor for overlapping posterior distributions relative to if the
two distributions do not overlap [123, 124],

Boverlapping
not overlapping =

x
d𝜒𝑝d𝑞

𝑝𝐿 (𝜒𝑝, 𝑞 |𝑑)𝑝𝐻 (𝜒𝑝, 𝑞 |𝑑)
𝜋(𝜒𝑝, 𝑞)

, (2.1)

where we compute the overlap within the 𝑞−𝜒𝑝 plane, 𝑝𝐿 (𝜒𝑝, 𝑞 |𝑑) and 𝑝𝐻 (𝜒𝑝, 𝑞 |𝑑)
are the LIGO Livingston and LIGO Hanford posteriors, and 𝜋(𝜒𝑝, 𝑞) is the prior.
While evaluating this quantity is subject to sizeable sampling uncertainty for events
where the two distributions are more distinct (i.e., the case of GW200129), we
find O(5/100) injections have a similar overlap as GW200129 (Fig. 2.1). Figure 2.6
shows a selection of 𝑞−𝜒𝑝 posteriors for 10 injections as inferred from each detector
separately. The posteriors typically overlap, though they are shifted with respect to
each other as expected from the different noise realizations.

We conclude that the evidence for spin-precession originates exclusively from the
LIGO Livingston data that overlapped with a glitch. This causes an inconsistency
between the LIGO Hanford and LIGO Livingston that we typically do not encounter
in simulated signals in pure Gaussian noise. This inconsistency suggests that there
might be residual data quality issues in LIGO Livingston that were not fully resolved
by the original glitch subtraction. Though inconsequential for the spin-precession
investigation, we also identify severe data quality issues in Virgo. Before returning
to the investigation of spin-precession, we first examine the Virgo data in detail
in Sec. 2.3 and argue that they should be removed from subsequent analyses. We
reprise the spin-precession investigations in Sec. 2.4.

2.3 Data quality issues: Virgo
Having established that the Virgo trigger is coincident but not fully coherent with the
triggers in the two LIGO detectors, we explore potential reasons for this discrepancy.
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Figure 2.6: 90% contours for the two-dimensional marginalized posteriors for the
mass ratio 𝑞 and the precessing parameter 𝜒𝑝 obtained from analyzing data from
each LIGO detector separately for 10 simulated signals. The signal parameters are
drawn from the posterior for GW200129 when using LIGO Livingston data only
and true values are indicated by black lines. Due to the spin priors disfavoring large
𝜒𝑝, the injected value is outside the two-dimensional 90% contour in some cases.
We only encounter an inconsistency between LIGO Hanford (red; H) and LIGO
Livingston (blue; L) as observed for GW200129 in Fig. 2.1 in O(5/100) injections.

Figure 2.7 shows a spectrogram of the data in each detector centered around the
time of the event. A clear chirp morphology is visible in the LIGO detectors but
not in Virgo, though this might also be due to the low SNR of the Virgo trigger.
Within a few seconds of the trigger, however, a number of other glitches are also
present in Virgo, mostly assigned to scattered light. We estimate the SNR of the
Virgo trigger without assuming it is a CBC signal (i.e., without using a CBC model)
through Omicron [125] and BayesWave using its glitch model that fits the data
with sine-Gaussian wavelets, see Table 2.2 for run settings1. The former finds a
matched-filter Omicron SNR2 of 7.0, while the latter finds an optimal SNR of 7.3
for the median glitch reconstruction.

Given the prevalence of glitches, the first option is that the Virgo trigger is actually
a detector glitch that happened to coincide with a signal in the LIGO detectors. To
estimate the probability that such a coincidence could happen by chance, we consider
the glitch rate in Virgo. In O3, the median rate of glitches in Virgo was 1.11/min,

1The BayesWave analyses described here do not concurrently marginalize over the PSD uncer-
tainty.

2The SNR reported by Omicron is normalized so that the expectation value of the SNR is 0,
rather than

√
2 [125]. To highlight this difference, we use the phrase “Omicron SNR” whenever a

reported result uses this normalization.
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Figure 2.7: Spectrogram of the data in each detector, plotted using plotted using the
Q-transform [126, 127]. Listed times are with respect to GPS 1264316116. Besides
the clear chirp morphology in LIGO, there is visible excess power ∼ 1 s after the
signal in LIGO Livingston. Virgo demonstrates a high rate of excess power, though
most is due to scattered light and concentrated at frequencies < 30 Hz. The excess
power in Virgo that is coincident with GW200129 does not have a chirp morphology.

with significant variation versus time [77]. When we consider the hour of data
around the event, the rate of glitches with Omicron SNR > 6.5 is 10.2/min. Most of
the glitches in Virgo at this time are due to scattered light [128, 129, 130, 131, 132].
While Fig. 2.7 shows that there are scattered light glitches in the Virgo data near
the time of GW200129, the excess power from these glitches are concentrated at
frequencies < 30 Hz. To account for the excess power corresponding to GW200129
in Virgo, there must be a different type of glitch present in the data. The rate of
glitches at frequencies similar to the signal is much lower; using data from 4 days
around the event, the rate of glitches with frequency 60-120 Hz is only 0.06/hr.
Given this rate, we calculate the probability that a glitch occurred in Virgo within
a 0.06 s window (roughly corresponding to twice the light-travel time between the
LIGO detectors and Virgo) around a trigger in the LIGO detectors. We find that if
glitches at any frequency are considered, the probability of coincidence per event
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Figure 2.8: Whitened time-domain reconstruction of the signal in Virgo obtained
after analysis of data from all three detectors relative to GPS 1264316116. Shaded
regions correspond to 90% and 50% (where applicable) credible intervals. Green
corresponds to the same 3-detector result obtained with NRSur7dq4 as Fig. 2.3,
while pink and gold correspond to the CBC and glitch part of the “CBC+glitch”
analysis with BayesWave. See Tables 2.1 and 2.2 for run settings. The two
CBC reconstructions largely overlap, suggesting that the lack of spin-precession
in BayesWave’s analysis does not affect the reconstruction considerably. A glitch
overlapping with the signal is, however, recovered.

is O(0.01), and if only glitches with similar frequencies are considered, the same
probability is O(10−5).

Another option is that the Virgo trigger is a combination of a genuine signal and
a detector glitch. We explore this possibility using BayesWave [115, 116, 117] to
simultaneously model a potential CBC signal that is coherent across the detector
network and overlapping glitches that are incoherent [118, 39]. In this “CBC+glitch”
analysis, BayesWavemodels the CBC signal with the IMRPhenomD waveform [133,
134] and glitches with sine-Gaussian wavelets. Details about the models and run
settings are provided in App. 2.6. An important caveat here is that IMRPhenomD does
not include the effects of higher-order modes and spin-precession. A concern is,
therefore, that the CBC model could fail to model precession-induced modulations
in the signal amplitude and instead assign them to the glitch model. This precise
scenario is tested in Hourihane et al. [39] where the analysis was shown to be robust
against such systematics. Below we argue that the same is true here for the Virgo
data, especially since they are consistent with a spin-aligned binary as shown in
Fig. 2.1.

Figure 2.8 compares BayesWave’s reconstruction in Virgo with the one obtained
with the NRSur7dq4 analysis from Fig. 2.3 that ignores a potential glitch but models
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spin-precession and higher order modes. All results are obtained using data from
all three detectors. The CBC reconstruction from BayesWave with IMRPhenomD is
consistent with the one from NRSur7dq4 to within the 90% credible level at all times.
This is unsurprising given Fig. 2.1 that shows that Virgo data are consistent with a
spin-aligned BBH. Crucially, there is no noticeable difference between the two CBC
reconstructions for times when the inferred glitch is the loudest. This suggests that
the lack of higher-order modes and spin-precession in IMRPhenomD does not lead to
a noticeable difference in the signal reconstruction and could thus not account for
the inferred glitch. The differences between the inferred signals using IMRPhenomD
and NRSur7dq4 are much smaller than the amount of incoherent power present in
Virgo. In fact, the glitch reconstruction is larger than the signal at the 50% credible
level, though not at the 90% level. This result suggests that a potential explanation
for the trigger in Virgo is a combination of a signal consistent with the one in the
LIGO detectors and a glitch.

Figure 2.9 summarizes the various SNR estimates for the excess power in Virgo.
We plot an estimate of the SNR in Virgo suggested by LIGO data; in other words it
is the SNR that is consistent with GW200129 as observed by LIGO. In comparison,
we also show the SNR from a Virgo-only analysis and the SNR from BayesWave’s
“glitchOnly” analysis that models the excess power with sine-Gaussian wavelets
without the requirement that it is consistent with a CBC. The fact that the SNR
inferred from HL data is smaller than the other two again suggests that the Virgo
trigger is not consistent with the one seen by LIGO and contains additional power.
BayesWave’s “CBC+glitch” analysis is able to separate the part of the trigger that is
consistent with a CBC and recovers a CBC SNR that is consistent to the one inferred
from LIGO only. The “remaining” power is assigned to a glitch with SNR ∼ 4.6
(computed through the median BayesWave glitch reconstruction).

Based on the glitch SNR calculated by the BayesWave “CBC+glitch” model, we
revisit the probability of overlap with a signal based on the SNR distribution of
Omicron triggers. Since the lowest SNR recorded in Omicron analyses is 5.0, we
fit the SNR distribution of glitches with Omicron SNR > 5.0 with a power-law and
extrapolate to SNR 4.6. We find that the rate of glitches with frequencies similar to
the one in Fig. 2.8 with SNR > 4.6 is 0.31/min and the probability of overlap with a
signal in Virgo is O(10−3). Given the 60 events from GWTC-3 that were identified
in Virgo during O3, the overall chance of at least one glitch of this SNR overlapping
a signal is O(0.1).
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Figure 2.9: Comparison of optimal SNR estimates for Virgo from different analyses.
In green is the posterior for the expected SNR in Virgo from just the LIGO data using
the NRSur7dq4 waveform (HL analysis of Fig. 2.1), while purple corresponds to
the SNR from an analysis of the Virgo data only (V analysis of Fig. 2.1). The CBC
and glitch SNR posterior from BayesWave’s full “CBC+glitch” model (Fig. 2.8)
are shown in pink and orange respectively. Part of the latter is consistent with
zero, which corresponds to no glitch (as also seen from the 90% credible interval in
Fig. 2.8). The SNR posterior from a “glitchOnly” BayesWave is shown in blue.

The above studies suggest that the most likely scenario is that the Virgo trigger
consists of a signal and a glitch. However, due to the low SNR of both, this
interpretation is subject to sizeable statistical uncertainties and we therefore do
not attempt to make glitch-subtracted Virgo data. Such data would be extremely
dependent on which glitch reconstruction we chose to subtract, for example the
median or a fair draw from the BayesWave glitch posterior. For these reasons and
due to its low sensitivity, we do not include Virgo data in what follows.

2.4 Data quality issues: LIGO Livingston
The data quality issues in LIGO Livingston were identified and mitigated in GWTC-
3 [77] through use of information from auxiliary channels [119, 38] and the
gwsubtract pipeline as also described in App. 2.6. The comparison of Figs. 2.1
and 2.6, however, suggest that residual data quality issues might remain, as the
two LIGO detectors result in inconsistent inferred 𝑞 − 𝜒𝑝 parameters beyond what
is expected from typical Gaussian noise fluctuations. Here we revisit the LIGO
Livingston glitch with BayesWave and again model both the CBC and potential
glitches. This analysis offers a point of comparison to gwsubtract as it uses solely
strain data to infer the glitch instead of auxiliary channels. Additionally, BayesWave
computes a posterior for the glitch, rather than a single point estimate, and thus al-
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Figure 2.10: Whitened time-domain reconstruction of the data in LIGO Livingston
obtained after analysis of data from the two LIGO detectors. Shaded regions
correspond to 90% and 50% (where applicable) credible intervals and gray gives
the original data without any glitch mitigation. Green corresponds to the same 2-
detector result obtained with NRSur7dq4 as Fig. 2.4, while pink and gold correspond
to the CBC and glitch part of the joint “CBC+glitch” analysis with BayesWave. The
black line shows an estimate for the glitch obtained through auxiliary channels. All
analyses use only LIGO data.

lows us to explore the statistical uncertainty of the glitch mitigation. In all analyses
involving BayesWave we use the original LIGO Livingston data without any of the
data mitigation described in App. 2.6.

Figure 2.10 shows BayesWave’s CBC and glitch reconstructions in LIGO Livingston
compared to the one based on the NRSur7dq4 (from glitch-mitigated data) and the
glitch model computed with gwsubstract. All analyses use data from the two
LIGO detectors only. Unsurprisingly, now, the CBC reconstructions based on
IMRPhenomD and NRSur7dq4 do not fully overlap around t=0.3 s, though they are
consistent during the signal merger phase. This is expected from the fact that LIGO
Livingston supports spin-precession as well as Fig. 2.4. However, this difference
is smaller than the statistical uncertainty in the inferred glitch from BayesWave
(yellow) and well as differences between the BayesWave and the gwsubtract
glitch estimates. This suggests that even though the BayesWave glitch estimate
might be affected by the lack of spin-precession in its CBC model, this effect is
smaller than the glitch uncertainty.

We also model the signal as a superposition of coherent wavelets in addition to
the incoherent glitch wavelets using BayesWave [115, 116, 117]. This approach
has been previously utilized for glitch subtraction [77]. However, we do not recover
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strong evidence for a glitch overlapping the signal in LIGO Livingston when running
with this “signal+glitch” analysis. The “signal+glitch” analysis attempts to describe
both the signal and the glitch with wavelets and hence it is significantly less sensitive
than the “CBC+glitch” model. In the data of interest, both the signal and the glitch
whitened amplitudes are ∼ 1𝜎 and as such they are difficult to separate using
coherent and incoherent wavelets. Given that we know (based on the auxiliary
channel data) that there is some non-Gaussian noise in LIGO Livingston, we find
that the “signal+glitch” analysis is not sensitive enough for our data.

The large statistical uncertainty in the glitch reconstruction (yellow bands in Fig. 2.10)
implies that the difference between the spin-precessing and non-precessing inter-
pretation of GW200129 cannot be reliably resolved. To confirm this, we select three
random samples from the glitch posterior of Fig. 2.10, subtract them from the un-
mitigated LIGO Livingston data, and repeat the parameter estimation analysis with
NRSur7dq4. The BayesWave glitch-subtracted frames and associated NRSur7dq4
parameter estimation results are available in [135]. For reference, we also ana-
lyze the original unmitigated data (no glitch subtraction whatsoever). Figure 2.11
confirms that the spin-precession evidence depends sensitively on the glitch sub-
traction. The original unmitigated data and the gwsubtract subtraction yield the
largest evidence for spin-precession, but this is reduced -or completely eliminated-
with different realizations of the BayesWave glitch model. In general, larger glitch
amplitudes lead to less support for spin-precession, suggesting that the evidence for
spin-precession is increased when the glitch is undersubtracted.

Figure 2.12 compares the corresponding 𝑞 − 𝜒𝑝 posterior inferred from LIGO Han-
ford and LIGO Livingston separately under each different estimate for the glitch.
Each of the 3 BayesWave glitch draws results in single-detector posteriors that fully
overlap, thus resolving the inconsistency seen in 𝑞− 𝜒𝑝 when using the gwsubtract
glitch estimate. Due to the lack of spin-precession modeling in the “CBC+glitch”
analysis of Fig. 2.10, however, we cannot definitively conclude that any one of
the new glitch-subtracted results is preferable. The 3 BayeWave glitch draws re-
sults in different levels of support for spin-precession. It is therefore possible that
GW200129 is still consistent with a spin-precessing system. We do conclude,
though, that the evidence for spin-precession is contingent upon the large statistical
uncertainty of the glitch subtraction.

As a further check of whether the lack of spin-precession in BayesWave’s CBC
model could severely bias a potential glitch recovery, we revisit the 10 simulated
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Figure 2.11: Bottom: Whitened, time domain reconstructions of various glitch
reconstructions subtracted from LIGO Livingston data. The green line corresponds
to the glitch reconstruction obtained from auxiliary data using gwsubtract. The
rest are glitch posterior draws from the BayesWave “CBC+Glitch” analysis on
HL unmitigated data. Top: Marginalized posterior distributions corresponding to
parameter estimation performed with the NRSur7dq4 waveform model on HL data
where each respective glitch realization was subtracted from LIGO Livingston (same
colors). Pink corresponds to the original data without any glitch subtraction. Larger
glitch reconstruction amplitudes roughly lead to less informative 𝜒𝑝 posteriors and
eliminate the 𝑞 − 𝜒𝑝 inconsistency between LIGO Hanford and LIGO Livingston.
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Figure 2.12: Two-dimensional posterior distributions for 𝜒𝑝 and 𝑞 (50% and 90%
contours) from single-detector parameter estimation runs. The far left panel shows
the same tension as the LIGO Hanford and LIGO Livingston data plotted in Fig. 2.1
when using the gwsubtract estimate for the glitch. Subsequent figures show
inferred posterior distributions using data where the same three different BayesWave
glitch models as Fig. 2.11 have been subtracted. These results show less tension
between the two posterior distributions.
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Figure 2.13: Comparison between the two glitch reconstruction and subtraction
methods for a glitch in LIGO Livingston ∼ 1 s after GW200129, see the middle
panel of Fig. 2.7. We plot the original data with no glitch mitigation (grey),
the glitch reconstruction obtained from auxiliary channels with 90% confidence
intervals (black), and the 50% and 90% credible intervals for the glitch obtained
with BayesWave that uses only the strain data (gold).

signals from Fig. 2.6 and analyze them with the “CBC+glitch” model. These signals
are consistent with GW200129 as inferred from LIGO Livingston data only, and
thus exhibit the largest amount of spin-precession consistent with the signal. In all
cases we find that the glitch part of the “CBC+glitch” model has median and 50%
credible intervals that are consistent with zero at all times. This again confirms that
the differences between the spin-precessing and the spin-aligned inferred signals in
Fig. 2.10 is smaller than the uncertainty in the glitch. This test suggests that the
glitch model is not strongly biased by the lack of spin-precession, however it does
not preclude small biases (within the glitch statistical uncertainty); it is therefore
necessary but not sufficient.

As a final point of comparison between BayesWave’s glitch reconstruction that is
based on strain data and the gwsubtract glitch reconstruction based on auxiliary
channels, we consider a different glitch in LIGO Livingston approximately 1s after
the signal (see Fig. 2.7). Studying this glitch offers the advantage of direct compar-
ison of the two glitch reconstruction methods without contamination from the CBC
signal and uncertainties about its modeling. We analyze the original data with no
previous glitch mitigation around that glitch using BayesWave’s glitch model and
plot the results in Fig. 2.13. For the gwsubtract reconstruction we also include
90% confidence intervals, as described in App. 2.6.

The two estimates of the glitch are broadly similar but they do not always overlap
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within their uncertainties. The main disagreement comes from the sharp data
“spike” at 𝑡 = 1.43 s that is missed by gwsubtract, but recovered by BayesWave.
The reason is that the the maximum frequency considered by gwsubtract was
128 Hz and thus cannot capture such a sharp noise feature [38]. Away from the
“spike,” the two glitch estimates are approximately phase-coherent. On average
BayesWave recovers a larger glitch amplitude as the gwsubtract result typically
falls on BayesWave’s lower 90% credible level.

Figures 2.10 and 2.13 broadly suggest that BayesWave recovers a higher-amplitude
glitch. Figure 2.11 shows that the evidence for spin-precession is indeed reduced,
the LIGO Hanford-LIGO Livingston inconsistency is alleviated (Fig. 2.12), and the
LIGO Livingston data become more consistent across low and high frequencies
(Fig. 2.5) if the glitch was originally undersubtracted. However, due to the low SNR
of the glitch and other systematic uncertainties it is not straightforward to select
a “preferred” set of glitch-subtracted data. All studies, however, indicate that the
statistical uncertainty of the glitch amplitude is larger than the difference between
the inferred spin-precessing and spin-aligned signals.

2.5 Conclusions
Though it might be possible to infer the presence of spin-precession and large spins
in heavy BBHs, our investigations suggest that in the case of GW200129 any such
evidence is contaminated by data quality issues in the LIGO Livingston detector.
In agreement with [76] we find that the evidence for spin-precession originates
exclusively from data from that detector. However, we go beyond this and also
demonstrate the following.

1. The evidence for spin-precession in LIGO Livingston is localized in the 20–
50 Hz band in comparison to the rest of the data, precisely where the glitch
overlapped the signal. Excluding this frequency range from the analysis, we
find that GW200129 is consistent with an equal-mass BBH with an uninfor-
mative 𝜒𝑝 posterior; it is thus similar to the majority of BBH detections [6,
7, 8]. However, the fact that there is no evidence for spin-precession if
𝑓low(𝐿) > 50 Hz is not on its own cause for concern as it might be due
to Gaussian noise fluctuations or the precise precessional dynamics of the
system.

2. LIGO Hanford is not only uninformative about spin-precession (which again
could be due to Gaussian noise fluctuations or the lower signal SNR in that
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detector), but it also yields an inconsistent 𝑞− 𝜒𝑝 posterior compared to LIGO
Livingston. Using simulated signals, we find that the latter, i.e., the 𝑞 − 𝜒𝑝

inconsistency, is larger than O(95%) of results expected from Gaussian noise
fluctuations.

3. Given the LIGO Livingston glitch’s low SNR, the statistical uncertainty in
modeling it is larger than the difference between a spin-precessing and a non-
precessing analysis for GW200129. Inferring the presence of spin-precession
requires reliably resolving this difference, something challenging as we found
by using different realizations of the glitch model from the BayesWave glitch
posterior. Crucially, any evidence for spin-precession in GW200129 depends
sensitively on the glitch model and priors employed.

4. Given the large statistical uncertainty in modeling the glitch, evidence for
systematic differences between BayesWave and gwsubtract that use strain
and auxiliary data respectively is tentative. However, the BayesWave estimate
typically predicts a larger glitch amplitude, which would reduce the evidence
for spin-precession and alleviate the tension between LIGO Hanford and LIGO
Livingston. Additionally, we do not recover any support for a glitch when
injecting spin-precessing signals from the LIGO Livingston-only posterior
distribution into Gaussian noise. This indicates that BayesWave is unlikely
to be strongly biasing the glitch recovery due to its lack of spin-precession.

Overall, given the uncertainty surrounding the LIGO Livingston glitch mitigation,
we cannot conclude that the source of GW200129 was spin-precessing. We do not
conclude the opposite either, however. Though we obtain tentative evidence that
the glitch was undersubtracted, we can at present not estimate how much it was
undersubtracted by due to large statistical and potential systematic uncertainties. It
is possible that some evidence for spin-precession remains, albeit reduced given the
glitch statistical uncertainty.

In addition, we verify that this uncertainty in the glitch modeling is larger than uncer-
tainty induced by detector calibration. We repeat select analyses in Appendix 2.6 and
confirm that the inclusion of uncertainty in the calibration of the gravitational-wave
detectors negligibly impacts the spin-precession inference, as expected. Indeed, the
glitch impacts the data at a level comparable to the signal strain, c.f., Fig. 2.10,
whereas the calibration uncertainty within 20 to 70 Hz is only ∼ 5% in amplitude
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and 5◦ in phase [33]. Therefore, the glitch in LIGO Livingston’s data dominates
over uncertainties about the data calibration.

Though not critical to the discussion and evidence for spin-precession, we also
identified data quality issues in Virgo. The inconsistency between Virgo and the
LIGO detectors is in fact more severe than the one between the two LIGO detectors,
however the Virgo data do not influence the overall signal interpretation due to the
low signal SNR in Virgo. Nonetheless, we argue that the most likely explanation is
that the Virgo data contain both the GW200129 signal and a glitch.

These conclusions are obtained with NRSur7dq4, which is expected to be the
more reliable waveform model including spin-precession and higher-order modes
in this region of the parameter space [100, 76]. We repeated select analyses with
IMRPhenomXPHMwhich also favored a spin-precessing interpretation for GW200129 [77].
We found largely consistent but not identical results between NRSur7dq4 and
IMRPhenomXPHM, suggesting that there are additional systematic differences be-
tween the two waveform models. Appendix 2.7 shows some example results.
Nonetheless, our results are directly comparable to the ones of [76, 99] as they
were obtained with the same waveform model.

Our analysis suggests that extra caution is needed when attempting to infer the
role of subdominant physical effects in the detected GW signals, for example spin-
precession or eccentricity. Low-mass signals are dominated by a long inspiral
phase that in principle allows for the detection of multiple spin-precession cycles or
eccentricity-induced modulations. However, the majority of detected events, such
as GW200129, have high masses and are dominated by the merger phase. The
subtlety of the effect of interest and the lack of analytical understanding might make
inference susceptible not only to waveform systematics, but also (as argued in this
study) potential small data quality issues.

Indeed, Fig. 2.11 shows that a difference in the glitch amplitude of < 0.5𝜎 can
make the difference between an uninformative 𝜒𝑝 posterior and one that strongly
favors spin-precession. This also demonstrates that low-SNR glitches are capable
of biasing inference of these subtle physical effects. Low-SNR departures from
Gaussian noise have been commonly observed by statistical tests of the residual
power present in the strain data after subtracting the best-fit waveform of events [13,
14, 15]. If indeed such low-SNR glitches are prevalent, they might be individually
indistinguishable from Gaussian noise fluctuations. Potential ways to safeguard
our analyses and conclusions against them are (i) the detector and frequency band
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consistency checks performed here, (ii) extending the BayesWave “CBC+glitch”
analysis to account for spin-precession and eccentricity while carefully accounting
for the impact of glitch modeling and priors especially for low SNR glitches, (iii)
and modeling insight on the morphology of subtle physical effects of interest such
as spin-precession and eccentricity in relation to common detector glitch types.

2.6 Appendix: analysis details
In this appendix we provide details and settings for the analyses presented in the
main text. All data are obtained via the GW Open Science Center [136]. Throughout
we use geometric units, 𝐺 = 𝑐 = 1.

Detection and Glitch-subtracted data
GW200129 was identified in low latency [137] by GstLAL [138, 139], cWB [140],
PyCBC Live [141, 142], MBTAOnline [143], and SPIIR [144]. The quoted false
alarm rate of the signal in low latency was approximately 1 in 1023 years, making
this an unambiguous detection. Below we recap the detection and glitch mitigation
process from [77].

Multiple data quality issues were identified in the data surrounding GW200129.
As a part of the rapid response procedures, scattered light noise [128, 131] was
identified in the Virgo data, as seen in Fig. 2.7 in the frequency range 10–60 Hz.
These glitches did not overlap the signal, and no mitigation steps were taken with
the Virgo data. During offline investigations of the LIGO Livingston data quality,
a malfunction of the 45 MHz electro-optic modulator system [145] was found to
have caused numerous glitches in the days surrounding GW200129. To help search
pipelines differentiate these types from glitches, a data quality flag was generated
for this noise source [146]. These data quality vetoes are used by some pipelines to
veto any candidates identified during the data quality flag time segments [147]. The
glitches from the electro-optic modulator system directly overlapped GW200129,
meaning that the time of the signal overlapped the time of the data quality flag.

Although clearly an astrophysical signal, the data quality issues present in LIGO
Livingston introduced additional complexities into the estimation of the significance
of this signal [77]. Due to the data quality veto, the signal was not identified in
LIGO Livingston by the PyCBC [148, 149] MBTA [150], and cWB [140] pipelines.
PyCBC was still able to identify GW200129 as a LIGO Hanford – Virgo detection,
but the signal was not identified by MBTA due to the high SNR in LIGO Hanford
and cWB due to post-production cuts. The GstLAL [151, 152] analysis did not
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incorporate data quality vetoes in its O3 analyses and was therefore able to identify
the signal in all three detectors.

The excess power from the glitch directly overlapping GW200129 in LIGO Liv-
ingston was subtracted before estimation of the signal’s source properties [77, 38]
using the gwsubtract algorithm [119]. This method relies on an auxiliary sensor at
LIGO Livingston that also witnesses glitches present in the strain data. The transfer
function between the sensor and the strain data channel is measured using a long
stretch of data by calculating the inner product of the two time series with a high
frequency resolution and then averaging the measured value at nearby frequencies
to produce a transfer function with lower frequency resolution [153]. This transfer
function is convolved with the auxiliary channel time series to estimate the contri-
bution of this particular noise source to the strain data. Therefore, the effectiveness
of this subtraction method is limited by the accuracy of the auxiliary sensor and
the transfer function estimate. This tool was previously used for broadband noise
subtraction with the O2 LIGO dataset [119], but this was the first time it was used
for targeted glitch subtraction. Additional details about the use of gwsubtract for
the GW200129 glitch subtraction can be found in Davis et al. [38].

The gwsubtract glitch model does not include a corresponding interval that ac-
counts for all sources of statistical errors as is done by BayesWave. However, a
confidence interval based on only uncertainties due to random correlations between
the auxiliary channel and the strain data can be computed. For the GW200129
glitch model, this interval is ±0.022 in the whitened strain data [38]. Additional
systematic uncertainties due to time variation in the measured transfer function and
effectiveness of the chosen auxiliary channel are expected to be present but are not
quantified. The relative size of these uncertainties is dependent on the specific noise
source that is being modeled and chosen auxiliary channel.

Bilby parameter estimation analyses
Quasicircular BBHs are characterized by 15 parameters, divided into 8 intrinsic and
7 extrinsic parameters. Each component BH has source frame mass 𝑚𝑠

𝑖
, 𝑖 ∈ {1, 2}.

In the main text we mainly use the corresponding detector frame (redshifted) masses
𝑚𝑖 = (1 + 𝑧)𝑚𝑠

𝑖
, where 𝑧 is the redshift, as we are interested in investigating data

quality issues and detector frame quantities better relate to the signal as observed.
Each component BH also has dimensionless spin vector ®𝜒𝑖, and 𝜒𝑖 is the magni-
tude of this vector. We also use parameter combinations that are useful in various
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contexts: total mass 𝑀 = 𝑚1 + 𝑚2, mass ratio 𝑞 = 𝑚2/𝑚1 < 1, chirp mass
M = (𝑚1𝑚2)3/5(𝑚1 + 𝑚2)−1/5 [154, 155, 156], effective orbit-aligned spin param-
eter [157, 158, 159]

𝜒eff =
®𝜒1 · ®𝐿 + 𝑞 ®𝜒2 · ®𝐿

1 + 𝑞
, (2.2)

where ®𝐿 is the Newtonian orbital angular momentum, and effective precession spin
parameter [107, 160]

𝜒𝑝 = max
(
𝜒1⊥, 𝑞𝜒2⊥

3𝑞 + 4
4𝑞 + 3

)
, (2.3)

where 𝜒1⊥ is the ®𝜒𝑖 component that is perpendicular to ®𝐿. The remaining parameters
are observer dependent, and hence referred to as extrinsic. The right ascension 𝛼

and declination 𝛿 designate the location of the source in the sky, while the luminosity
distance to the source is 𝑑𝐿 . The angle between total angular momentum and the
observer’s line of sight is 𝜃 𝑗𝑛; for systems without perpendicular spins it reduces to
the inclination 𝜄, the angle between the orbital angular momentum and observer’s
line of sight. The time of coalescence 𝑡𝑐 is the geocenter coalescence time of the
binary. The phase of the signal 𝜙 is defined at a given reference frequency, and the
polarization angle 𝜓 completes the geometric description of the sources position
and orientation relative to us; neither of these are used directly in this work.

Parameter estimation results are obtained with parallel Bilby [36, 95, 161]
using the nested sampler, Dynesty [162]. The numerical relativity surrogate,
NRSur7dq4 [100], is used for all main results due to its accuracy over the regime
of highly precessing signals. Its space of validity is limited by the availability of
numerical simulations [163] to 𝑞 > 1/4 and component spin magnitudes 𝜒 < 0.8,
though it maintains reasonable accuracy when extrapolated to 𝑞 > 1/6 and 𝜒 <

1 [100].

The majority of our analyses use the publicly released strain data, including the
aforementioned glitch subtraction in LIGO Livingston [38], and noise power spec-
tral densities (PSDs) [77]. The exception to the publicly released data was the
construction of glitch-subtracted strain data using BayesWave for LIGO Livingston,
as discussed in Sec. 2.4. We do not incorporate the impact of uncertainty about
the detector calibration as the SNR of the signal is far below the anticipated regime
where calibration uncertainty is non-negligible [164, 165, 166, 167]. Furthermore,
we confirm that including marginalization of calibration uncertainty does not quali-
tatively change the recovered posterior distributions or our main conclusions by also
directly repeating select runs.
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Figure(s) Models Detector Network
2.8, 2.9 CBC+glitch HLV

2.10, 2.11 CBC+glitch HL
2.9 glitch V
2.13 glitch L

Table 2.2: Table of BayesWave runs and settings. All analyses use 4 s of data, a low
frequency cut-off of 𝑓low = 20 Hz, a sampling rate of 2048 Hz, and the IMRPhenomD
waveform when the CBC model is used. Furthermore, all analyses use the original
strain data without the glitch mitigation described in Sec. 2.6. Columns correspond
to the main text figures each analysis appears in, the BayesWavemodels that are used,
and the detector network (H: LIGO Hanford, L: LIGO Livingston, V: Virgo). While
not plotted in any figure, we also performed “CBC+Glitch” analyses on injections
into the HL detector network as a glitch background study on GW200129-like
sources; see Sec. 2.4.

As is done in GWTC-3 [77], we choose a prior that is uniform in detector frame
component masses, while sampling in chirp mass and mass ratio. The mass ratio
prior bounds are 1/6 and 1, where we utilize the extrapolation region of NRSur7dq4.
Since NRSur7dq4 is trained against numerical relativity simulations which typically
have a short duration, only a limited number of cycles are captured before coales-
cence. With a reduced signal model duration, our analysis is restricted to heavier
systems so that the model has content spanning the frequencies analyzed (20 Hz and
above). We therefore enforce an additional constraint on the total detector-frame
mass to be greater than 60 𝑀⊙. We verify that our posteriors reside comfortably
above this lower bound. The luminosity distance prior is chosen to be uniform in
comoving volume. The prior distribution on the sky location is isotropic with a
uniform distribution on the polarization angle. Finally, for most analyses, the prior
on the spin distributions is isotropic in orientation and uniform in spin magnitude
up to 𝜒 = 0.99. For the spin-aligned analyses, a prior is chosen on the aligned spin
to mimic an isotropic and uniform spin magnitude prior. These settings and data
are utilized in conjunction with differing GW detector network configurations and
minimum frequencies in LIGO Livingston. The differences between runs and their
corresponding figures are presented in Tab. 2.1.

BayesWave CBC and glitch analyses
BayesWave [115, 116, 117] is a flexible data analysis algorithm that models com-
binations of coherent generic signals, glitches, Gaussian noise, and most recently,
CBC signals that appear in the data [39, 118, 168]. To sample from the multi-
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dimensional posterior for all the different models, BayesWave uses a “Gibbs sam-
pler” which cycles between sampling different models while holding the parameters
of the non-sampling model(s) fixed.

For this analysis, we mainly use the CBC and glitch models (a setting we refer to
as “CBC+Glitch”). The CBC model parameters (see App. 2.6) are sampled via
a fixed-dimension Markov Chain Monte Carlo sampler (MCMC) using the priors
described in Wijngaarden et al. [168]. The glitch model is based on sine-Gaussian
wavelets and samples over both the parameters of each wavelet (central time, central
frequency, quality factor, amplitude, phase [115]) and the number of wavelets via
a trans-dimensional or Reverse-jump MCMC. In some cases, we also make use of
solely the glitch model (termed “glitchOnly” analyses) that assumes no CBC signal
and the excess power is described only with wavelets. The differences between runs
and the figures in which they appear are presented in Tab. 2.2.

Though BayesWave typically marginalizes over uncertainty in the noise PSD [116],
in this work we use the same fixed PSD as the Bilby runs for more direct compar-
isons. Additionally, we use identical data as App. 2.6 for the LIGO Hanford and
Virgo detectors. However, when it comes to LIGO Livingston we use the original
(i.e., “unmitigated,” without any glitch subtraction) data in order to independently
infer the glitch. We do not marginalize over uncertainty in the detector calibration.

2.7 Appendix: Select results with IMRPhenomXPHM
In this Appendix, we present select results obtained with the IMRPhenomXPHM [93]
waveform model that also resulted in evidence for spin-precession in GWTC-3 [77].
Even though IMRPhenomXPHM and NRSur7dq4 both support spin-precesion, in con-
trast to SEOBNRv4PHM, there are still noticeable systematic differences between
them. Figure 2.14 shows that while NRSur7dq4 and IMRPhenomXPHM generally
have overlapping regions of posterior support, IMRPhenomXPHM shows slightly
more preference for higher 𝑞 and less support for extreme precession when com-
pared to NRSur7dq4. Waveform systematics are expected to play a significant role
in GW200129’s inference (e.g. Refs. [77, 76, 169]), which motivates utilizing
NRSur7dq4 for all of our main text results.
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Figure 2.14: Similar to Fig. 2.1, using data from LIGO Livingston and LIGO Han-
ford. The comparison shows slight tension between results when using NRSur7dq4
and IMRPhenomXPHM, though qualitatively IMRPhenomXPHM also seems to support
the evidence for spin-precession.
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C h a p t e r 3

HOW TO DIAGNOSE A HIERARCHICAL MERGER ORIGIN
VIA SPIN PARAMETERS

E. Payne, K. Kremer, and M. Zevin. “Spin Doctors: How to Diagnose a
Hierarchical Merger Origin”. In: Astrophys. J. Lett. 966.1 (2024), p. L16.
doi: 10.3847/2041-8213/ad3e82. arXiv: 2402.15066 [gr-qc].

E.P. conceived the project, carried out all the research, and led the writing
of the manuscript.

3.1 Introduction
Following the first handful of observations of BBH mergers through their gravitational
wave (GW) emission [2, 3, 4], many studies predicted that the dominant formation
channel of BBHs would be determined after O(10 − 100) observations [170, 171,
172, 173, 174, 175, 176, 177, 178]. However, despite the LVK detector network
accumulating nearly 100 confident BBH observations [77], prominent formation
pathways for BBH mergers remains an open question in GW astrophysics. The
incongruity between prior expectation and reality can be attributed to a number of
factors:

1. The diversity in the gravitational-wave events detected thus far does not show
a strong preference for any one formation channel, with observations spanning
a broad range of masses and mass ratios [e.g. 3, 4, 77, 179, 179].

2. Additional potential formation channels have been proposed in addition to the
canonical “dynamical-versus-isolated” distinction [see e.g. 180, for a review],
as well as subchannels to these canonical birth environments, which muddles
the ability to pin down specific birth environments [181].

3. Uncertainties in massive-star evolution, binary physics, and formation en-
vironments are more vast than previously appreciated, translating to larger
uncertainties in expected parameter distributions and generally making infer-
ence difficult [see e.g. 182, 183, for reviews].

4. Unlike black holes (BHs) in high-mass X-ray binaries in the Milky Way, which
have been argued to have spin estimates that are near extremal [184, 185, 186],

https://doi.org/10.3847/2041-8213/ad3e82
https://arxiv.org/abs/2402.15066
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the population of spins for GW-detected BHs are relatively small [7], making
it difficult to distinguish between small, aligned spins expected from isolated
evolution and moderate, in-plane spins expected from dynamical assembly.

In addition to spins, trends in the mass spectrum [e.g. 171, 170, 187, 8, 188, 189,
190], redshift evolution [e.g. 191, 192, 193], orbital eccentricity [e.g. 194], and
correlations between BBH parameters [e.g. 195, 196, 197, 198, 199, 200, 201, 202,
203] have been investigated to elucidate the contribution of the various proposed
BBH formation channels, although a robust conclusion is still far from being reached.

Although the holistic approach of examining features of the full BBH population
holds promise for constraining formation scenarios [204], a complementary ap-
proach is the identification of individual merger events with distinguishing features
uniquely associated with one or a subset of formation pathways. One example of
this is eccentricity: BBH mergers with measurable eccentricity in the LVK sensitive
frequency range (≳ 0.05 at 10 Hz, [205, 206]) strongly point to a recent dynami-
cal interaction, as orbital eccentricity quickly dissipates if a BBH system inspirals
over a long timescale. Although no eccentric BBH mergers have been confidently
detected to date (though see [207]), the detection of a small number of eccentric
mergers (or non-detection of eccentric mergers) would place stringent constraints
on the contribution of dynamical formation pathways [194].

Another possible smoking-gun signal of dynamical formation is the presence of
hierarchical mergers—BBH mergers where one or both of the component BHs have
gone through a previous merger event. Hierarchical mergers have masses that are
typically larger than their “first-generation” progenitors that were born from mas-
sive stars as well as distinctive signatures in their spin magnitudes (𝑎 ≈ 0.7, with
a dispersion based on the mass ratio and component spins of the prior merger) and
spin orientations (an isotropic distribution assuming a gas-free dynamical formation
environment). Although hierarchical mergers are predicted to contain black holes
with masses in the (pulsational) pair instability mass gap and studies have attempted
to quantify the likelihood of particular GW systems being hierarchical merger [208,
209, 210, 211], uncertainties in the size and location of the gap [212, 8, 213],
measurement uncertainties for high-mass black holes [214], and prior considera-
tions [215, 216, 217] make mass alone difficult to pin down whether a particular
system contains a black hole that was the result of a prior merger.

To identify the tell-tale signatures of hierarchical mergers, it is useful to consider
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the leading-order (i.e., typically best-measured) spin terms from the post-Newtonian
expansion of the GW waveform: the effective spin [218, 219]

𝜒eff =
𝑎1 cos 𝜃1 + 𝑞𝑎2 cos 𝜃2

1 + 𝑞
, (3.1)

and precessing spin [220]

𝜒𝑝 = max
(
𝑎1 sin 𝜃1, 𝑞

3 + 4𝑞
4 + 3𝑞

𝑎2 sin 𝜃2

)
, (3.2)

parameters where 𝑞 is the mass ratio between the secondary and primary black
holes, and 𝑎1 and 𝑎2 are the primary and secondary black holes’ spins, respectively.
The effective spin encodes a mass-weighted projection of the spin vectors on the
orbital angular momentum axis, whereas 𝜒𝑝 depends on the projection of the spin
vector on the plane of the orbit and is related to the strength of precession of the
orbital angular momentum about the total angular momentum.

Hierarchical mergers are expected to have distinctive signatures in both of these
spin parameters; due to generally large spin magnitudes (acquired during their
first generation merger, [79, 80]) and isotropic spin orientations (a natural feature
of dynamical formation in gas-poor environments, e.g. [81]), some hierarchical
mergers should show evidence for negative 𝜒eff , and others for large 𝜒𝑝. While
a positive 𝜒eff is possible, such systems may not be distinguishable from other
formation channels whereas spin anti-alignment is difficult to form in the field [221].
Being a typically better-measured parameter [222, 114], studies have focused on
negative 𝜒eff as a potential sign for a hierarchical merger event [e.g., 223, 224, 225].
However, due to the inherent isotropic spin orientation distribution that is expected
for hierarchical mergers in most astrophysical environments, many more systems
will have large in-plane spins as opposed to large spins anti-aligned with the orbital
angular momentum. For example, from cluster population simulations (see Sec. 3.2),
∼ 0.5% (∼ 20%) of hierarchical systems will have 𝜒eff < −0.5 (𝜒eff < −0.2) whereas
∼ 67% (∼ 96%) of systems will have 𝜒𝑝 > 0.5 (𝜒𝑝 > 0.2). So while 𝜒eff is expected
to be better measured, a significantly higher fraction of the hierarchical population
will have the distinct signature of precession.

In this letter, we investigate the ability to measure each of these parameters for
the purpose of identifying specific BBH mergers that are likely of a hierarchical
origin. We take synthetic BBH mergers from realistic models of globular clusters,
performing full parameter estimation on 6 × 103 events. Using these realistic
measurement uncertainties, we quantify the fraction of hierarchical mergers that
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confidently exhibit negative 𝜒eff and large 𝜒𝑝. Despite larger typical measurement
uncertainties, we show that 𝜒𝑝 is a better indicator of hierarchical mergers than
𝜒eff—a consequence of the generic properties of hierarchically-formed BBHs.

The remainder of this letter is as follows. We outline the cluster population models
used to construct the simulated set of first-generation (1G1G) and hierarchical BBH
mergers in Sec. 3.2 before discussing how we quantify the measurements of the spin
parameters in Sec. 3.3. The results of this calculation using the simulated population
of BBH mergers as well as a selection of observed gravitational-wave signals are
presented in Sec. 3.3. Finally, concluding remarks and implications of this study
are presented in Sec. 3.4.

3.2 Cluster population models
We assemble our synthetic sample of dynamically-formed binary black hole mergers
using the CMC Cluster Catalog, a suite of 𝑁-body cluster simulations spanning
the parameter space of globular clusters observed in the local universe [82]. This
catalog of models is computed using CMC [83], a Hénon-type Monte Carlo code that
includes various physical processes specifically relevant to the dynamical formation
of black hole binaries in dense star clusters including two-body relaxation, stellar
and binary evolution [computed using COSMIC; 226], and direct integration of small-
𝑁 resonant encounters including post-Newtonian effects [227]. In total, this catalog
contains 148 independent simulations with variation in total cluster mass, initial
virial radius, metallicity, and cluster truncation due to galactic tidal forces. The
chosen values for these parameters reflect the observed properties of the Milky Way
globular clusters [e.g., 228], but also serve as reasonable proxies for extragalactic
clusters [e.g., 229] enabling a robust exploration of the formation of gravitational-
wave sources in dense star clusters throughout the local universe.

To obtain a realistic astrophysically-weighted sample of binary black hole mergers,
we follow Rodriguez and Loeb [191] and Zevin et al. [194]: each of the 148 simula-
tions are placed into equally-spaced bins in cluster mass and logarithmically-spaced
bins in metallicity. Each cluster model is then assigned a relative astrophysical
weight corresponding to the number of clusters expected to form in its associated
2D mass-metallicity bin across cosmic time, assuming that initial cluster masses fol-
low a ∝ 𝑀−2 distribution [e.g., 230] and that metallicities (as well as corresponding
cluster formation times) follow the hierarchical assembly distributions of El-Badry
et al. [231]. For all binary black hole mergers in a given model, the drawn cluster
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formation time is then added to the black hole binary’s merger time, yielding a real-
istic distribution of binary black hole merger events as a function of redshift. This
scheme yields a predicted binary black hole merger rate of roughly 20𝐺𝑝𝑐−3 𝑦𝑟−1

in the local universe from dense star clusters.

We account for detectability of the simulated binary systems by generating colored
Gaussian noise corresponding to a three-detector LIGO-Virgo gravitational-wave
detector network at both design sensitivity [1, 16] and at the sensitivity the network
achieved during the first half of LVK’s third observing period [O3; 4]. We then
add the simulated signals, randomly generating the binary’s orientation and sky
position, to the detector network noise and calculate the matched-filter signal-to-
noise ratio [122]. Signals which pass the threshold signal-to-noise ratio (SNR) of
ten are kept within the set of simulated detections.

In the CMC simulations, all black holes formed via stellar evolution are assumed
to have negligible birth spin, a reasonable assumption if angular momentum trans-
port in their massive-star progenitors is highly efficient [e.g., 232, 233]. However,
spin can be imparted to cluster black holes through previous black hole merger
events [79]. We assume all spin tilts are isotropically distributed. In addition to the
non-spinning first-generation mergers, we consider two additional populations—the
population of hierarchical BBHs formed consistently from these non-spinning first-
generation systems, and first-generation mergers with black hole spins artificially
included between [0, 0.2]. The latter population is included as a “worst-case” sce-
nario for first-generation mergers that are not formed with small spins. While we
do not self-consistently generate a fourth population corresponding to hierarchical
mergers from this spinning first-generation population, modifications to the spin
properties of first-generation BHs only marginally change the distribution of hier-
archical merger parameters (cf. Figs. 4, 6, and 7 from [81]). The dominant impact
of a spinning first-generation population is a significant reduction in the rate of
hierarchical mergers, which does not affect our conclusions significantly regarding
distinguishing the mergers within the hierarchical population but would affect their
rates via the number of systems that are retained [81, 211, 234].

In Fig. 3.1 we show the spin parameters, 𝜒eff and 𝜒𝑝, of the O3-detected set of
simulations from the low-spinning first-generation (purple), and hierarchical BBHs.
The black lines indicate reasonable thresholds beyond which no 1G1G systems
reside in the 𝜒eff-𝜒𝑝 parameter space. While 𝜒𝑝 is typically less well-measured
in gravitational-wave observations [222, 114], hierarchical systems overwhelming
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Figure 3.1: Two-dimensional distribution of spin parameters, 𝜒eff and 𝜒𝑝, for de-
tectable low-spinning first-generation BBHs (1G1G; purple), and hierarchically
formed BBHs (yellow). The one-dimensional marginal cumulative distribution
functions (CDFs) are shown in the top and right panels. The spins of the low-
spinning population are drawn uniformly and isotropically with spin-magnitudes
from 0 to 0.2 in post-processing. All black hole masses are determined from the
cluster simulations. We have selected for signals that are detectable by enforcing
a signal-to-noise ratio threshold of 10 across the three detector LIGO-Virgo net-
work at the LVK’s sensitivity during their third observing period. The threshold of
𝜒thres = 0.2 used throughout the manuscript is indicated by the black lines for 𝜒eff
and 𝜒𝑝. A significantly greater fraction of the hierarchical systems possess 𝜒𝑝 > 0.2
than 𝜒eff < −0.2.

produce more moderate-to-high 𝜒𝑝 BBHs and occupy a unique region of the 𝜒eff−𝜒𝑝

plane [235]. Therefore, in the following section, we explore the use of both 𝜒eff and
𝜒𝑝 as potential “smoking-gun” signatures of a BBH’s hierarchical origin.

3.3 Distinguishing hierarchical mergers
In this section, we turn our attention to how we might observationally identify the
hierarchical mergers predicted from cluster populations using only the effective and
precession spin parameters inferred from the observed GW signals. We first outline
how we quantify the significance of the measurement before applying the calculation
to the simulated cluster populations following Sec. 3.2 in addition to a number of
gravitational-wave events from the LVK’s third observing period which may present
evidence of hierarchical origin based on their leading-order spin measurements.
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Quantifying spin measurement significance

To understand the detectability of 𝜒𝑝 and 𝜒eff in the simulated populations produced
in Sec. 3.2, we infer the 15 binary parameters (assuming quasi-circular orbits) for
each merger injected into the two gravitational-wave networks considered. We then
calculate the posterior distributions on 𝜒eff and 𝜒𝑝 directly from the inferred spin
parameters, using Eqs. (7.29) and (3.2).

To quantify how significantly 𝜒eff and 𝜒𝑝 are measured beyond the chosen thresholds,
we utilize a “likelihood-ratio”-based statistic, denoted LR. This threshold boundary
is somewhat arbitrary but can be motivated from the cluster simulations in Sec. 3.2.
We compute LR by integrating over the marginal single-event likelihood and a
uniform prior bounded between the threshold and the parameter boundaries (here
denoted 𝜒𝐿 and 𝜒𝑈 for the lower and upper edges respectively). For example,

LR𝜒>𝜒thres
𝜒≤𝜒thres

=

∫ 𝜒𝑈

𝜒thres
L(𝑑 |𝜒)𝑈 (𝜒thres, 𝜒𝑈) d𝜒∫ 𝜒thres

𝜒𝐿
L(𝑑 |𝜒)𝑈 (𝜒𝐿 , 𝜒thres) d𝜒

(3.3)

computes the likelihood-ratio for support above the threshold, 𝜒thres, compared to
below the threshold. Here, L(𝑑 |𝜒) is the marginal likelihood for the observed event
data, 𝑑 given the spin parameter 𝜒 (either 𝜒𝑝 or 𝜒eff). We use the analytical ex-
pressions from [195] to construct the marginal likelihood (i.e. all prior dependence,
𝜋(𝜒 |𝑞), is removed). It is important to note, however, that in marginalizing over all
other degrees of freedom we have made implicit choices for the prior distributions
on other parameters, such as the individual black hole masses and redshift. We use
uniform-in-detector-frame component mass priors when sampling in chirp mass and
mass ratio [95, 195], and a Euclidean luminosity distance prior (∝ 𝑑2

𝐿
). While these

choices will inevitably have an impact on the inferred LR values, we are aiming
to identify unequivocally spinning systems. Equation (3.3) can also be inverted to
compute the likelihood-ratio for support below the threshold.

Upon close examination of Eq. (3.3), astute readers would note that it closely resem-
bles a Bayes factor between two possible hypotheses (a spin parameter either above
or below 𝜒thres)1. Therefore, we can interpret the inferred value in a similar way—
the likelihood-ratio quantifies the amount of support above (below) the threshold
against the support below (above) it. A common metric in the field of Bayesian
statistics is that a ln LR𝜒>𝜒thres

𝜒≤𝜒thres
> 8 quantifies significant evidence, corresponding to

1We have opted for the terminology “likelihood-ratio” here as we are removing the explicit and
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a ∼ 3000:1 preference for 𝜒 > 𝜒thres [236]. Due to the nature of this calculation,
there is statistical uncertainty due to a finite number of posterior distribution samples
above 𝜒thres. The uncertainty in ln LR scales approximately, ignoring the impact of
the removal of the prior, as ∼

√︁
LR/𝑁 , where 𝑁 in the posterior samples. Since

we have ∼ 4 × 104 samples per event, this corresponds to an uncertainty of ∼ 0.3
at ln LR = 8. This may slightly modify the exact percentage of systems passing
the chosen ln LR = 8 threshold, though the broader conclusions of the Letter are
unaffected.

There are, of course, many other parameters and methods to quantify this signifi-
cance [237, 112, 238, 239]. Here we utilize this straightforward approach for two
reasons. The first is that it is intuitive to interpret from the one-dimensional marginal
distribution—how much support is above or below a threshold? And the second
is that this statistic is more directly understood by the leading order terms in the
gravitational-wave radiation due to both 𝜒eff and 𝜒𝑝, rather than being related first
to the noise properties as in [237, 112]. Therefore, with a choice of spin threshold
for the LR (𝜒thres; motivated by Sec. 3.2) and under the assumption that all systems
which pass 𝜒thres are hierarchical mergers, we can use measurements of LR as a
proxy for a definitive detection of a hierarchical merger. A 𝜒thres value of 0.2 is mo-
tivated by confidently bounding observations above the expected small spins from
[232] and [233]. We further choose more conservative thresholds (𝜒thres = 0.3, 0.4)
in the case where first-generation black holes might have some mechanism of being
spun up (e.g. Ref. [240]). However, these systems still typically possess spins below
0.4 and are rare (e.g. see App. A.1.3 of Ref. [204]). Additionally, it is expected
that the presence of hierarchical mergers formed from first generation BBH merg-
ers with birth spins above 0.2 is heavily suppressed due to ejection of the merger
remnant from the cluster environment [81]. Finally, the more conservative bound
of 𝜒thres = 0.4 is consistent with the population observed thus far by the LVK [8]
being consistent with only first generation black holes. This measure relies heavily
on only the spins of the system, and so the statements in following sections are
conservative. Information about the masses could be incorporated to boost the sig-
nificance, though a threshold on masses will then need to be chosen as well, may

complex behavior of the posterior distribution with respect to the prior. If interested,

LR𝜒>𝜒thres
𝜒≤𝜒thres

=

∫ 𝜒𝑈

𝜒thres
𝑝(𝜒 |𝑑) d𝜒∫ 𝜒thres

𝜒𝐿
𝑝(𝜒 |𝑑) d𝜒

(3.4)

could be computed instead, where 𝑝(𝜒 |𝑑) is the marginal posterior distribution.
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be less motivated given large uncertainties in the underlying first-generation mass
distributions [182, 183], and will inadvertently remove lighter hierarchical systems
from consideration.

Application to cluster population models

To explore how effectively hierarchical mergers can be selected out from a given
population using spin parameters, we infer the properties of 1000 mergers from each
of the three simulated populations (1G1G, 1G1G with uniform spin magnitudes in
the range [0, 0.2], and hierarchical systems; as described in Sec. 3.2) in the current
gravitational-wave detector network (from the third observing period; [4]) and at
design sensitivity [1, 16]. We simulate these signals using the gravitational wave-
form model IMRPhenomXPHM [241], which we add into Gaussian noise colored
by the respective noise power spectral densities. We arrive at 6 × 103 posterior dis-
tributions2, using the nested sampling algorithm dynesty [162] embedded within
the Bayesian inference library Bilby [36, 95], from which we calculate the LR
following Eq. (3.3). From these results, we can then construct the complementary
cumulative distribution function indicating the recovered fraction of observations
that have a LR above a given value. The result of this calculation is shown in Fig. 3.2
for both 𝜒𝑝 (top) and 𝜒eff (bottom). We find little difference in the inferred distri-
bution of values of LR for 1G1G systems, independent of detector sensitivity and
only slightly dependent on the choice of threshold and spin distribution. We there-
fore group all such possible distributions into the hatched purple region in Fig. 3.2.
The fraction of hierarchical binaries for different thresholds are shown in black and
grey for LVK’s gravitational-wave detector network at O3 sensitivity and at design
sensitivity, respectively. The complementary cumulative distribution function as a
function of the LR represents the fraction of simulated observations above a LR
value. Finally, we also include the relevant values from three gravitational-wave
observations with ticks above the curves: GW190521 (purple; [214, 242, 243]),
GW191109_010717 (pink), and GW200129_065458 (yellow; [77]).

From Fig. 3.2, we can identify the fraction of hierarchical binaries which pass a
particular threshold of likelihood-ratio for both 𝜒𝑝 and 𝜒eff . Focusing on observa-
tions in the third LVK observing period (O3), ∼ 2% of hierarchical mergers possess
ln LR𝜒𝑝>0.2

𝜒𝑝≤0.2 > 8, indicating a confident detection. Signal-to-noise ratio has a mild
2Publicly available posterior samples are available at https://doi.org/10.5281/zenodo.

10558308.

https://doi.org/10.5281/zenodo.10558308
https://doi.org/10.5281/zenodo.10558308
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Figure 3.2: The complementary cumulative distribution function (1 − CDF) of de-
tectable 1G1G (shaded; purple) and hierarchical BBH mergers (lines) as a function
of the logarithmic likelihood ratio, ln LR, defined in Eq. (3.3). The three differ-
ent linestyles correspond to different threshold choices (𝜒thres = 0.2, 0.3, 0.4), and
shadings correspond to simulated signals detected in the first half of the LVK’s third
observing period (O3) sensitivity (dark), or a three-detector LIGO-Virgo network
at design sensitivity (light). The top and bottom panels correspond to the com-
plementary cumulative distribution functions for 𝜒𝑝 and 𝜒eff , respectively. Finally,
the observed values of ln LR at the different thresholds for three gravitational-wave
observations made during O3—GW190521 (purple), GW191109_010717 (pink),
and GW200129_065458 (yellow)—are marked. A significantly larger fraction of
the hierarchical population possess a confidently measurable value of 𝜒𝑝, whereas
only the most relaxed threshold at design sensitivity can lead to a confident negative
𝜒eff measurement in a single event.
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impact on the systems with high LRs, with higher SNR systems somewhat more
likely to have a higher LRs. For example, 15% of hierarchical systems have SNR
> 20, whereas 63% of all hierarchical systems with ln LR𝜒𝑝>0.2

𝜒𝑝≤0.2 > 4 possess an
SNR > 20. We anticipate much of the support for higher values of 𝜒𝑝 in these
systems is also a product of clear imprints of spin precession in the waveform from
specific spin configurations. However, no choice of 𝜒thres can provide a confident
measurement for negative 𝜒eff except with the most liberal threshold (𝜒thres = 0.2)
at design sensitivity of the three-detector LIGO-Virgo detector network. There-
fore, from the simulated population of binary black hole mergers from globular
clusters, 𝜒eff is a wholly ineffectual parameter for distinguishing individual3 hierar-
chical mergers4. Furthermore, if we instead treat the 1G1G population as a “null”
background distribution from which to define a threshold (which is a very liberal
threshold—requiring complete confidence in the population model), we still arrive
at similar conclusions. With a detection threshold informed from the 1G1G LR
distribution (ln LR𝜒>0.2

𝜒≤0.2 > 3), we find ∼ 8% of hierarchical mergers would be dis-
tinguishable via precession effects, while only ∼ 3% would be distinguishable from
𝜒eff measurements. While we believe it to be difficult to claim any one observation
is of a hierarchical origin with ln LR ∼ 3, an ensemble of such observations would
indicate some number of these observations were hierarchical. This may lead to
hints at the level of a population of hierarchical BBH mergers in the LVK’s current
fourth observing period—even if we are not confident in the origin of any one event.

Finally, we briefly turn our attention to a select few events from the LVK’s third
observing period (O3) that have been discussed in the literature as potential systems
with anti- or mis-aligned spins: GW190521, GW191109_010717, and GW200129_065458 [214,
242, 4, 243, 77]. For simplicity and direct comparison to the simulated mergers,
we use only posteriors constructed using IMRPhenomXPHM5. Using the LR cal-
culation, no events surpass ln LR > 8 for either 𝜒𝑝 or 𝜒eff , although with a reduced
threshold of ln LR > 3, GW200129_065458 and GW191109_010717 pass the
thresholds for 𝜒𝑝 and 𝜒eff , respectively. However, since the impact of data quality

3This does not invalidate hierarchical studies where a population of potentially anti-aligned
systems may be identified, as more information is extracted from a population of sources [e.g. 7,
224, 244].

4We also computed LR with the primary black-hole spin magnitude (𝑎1). We find that ∼ 4% of
hierarchical mergers possess ln LR𝑎1>0.2

𝑎1≤0.2 > 8. While insightful, this does not factor in spin alignment
and therefore such a measure may be contaminated by other channels.

5While GW190521 [4] and GW200129_065458 [77, 245] have results with waveform models
more closely resembling numerical relativity (NRSur7dq4; [100]), using these samples for these
two results only marginally affects these conclusions.
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issues impacting the interpretation of these events is still an open question, caution
should be taken when interpreting these results [see 38, 75, 246, 247].

3.4 Conclusions

Unequivocal detections of a hierarchical BBH merger via gravitational-wave obser-
vations will help understand the formation channels and histories of such systems.
While studies often focus on identifying a hierarchical merger from anti-aligned
spins [see e.g., 225, 224], we have focused on both the measurement of spin-
precession in addition to anti-alignment in a simulated BBH merger population
from realistic cluster models [83]. From this study, the key insights are as follows:

1. We have demonstrated that, in a realistic cluster population, determining a
system to be hierarchical will likely first come from the measurement of spin-
precession (cf. Fig. 3.2).

2. Additionally, from these simulated BBH mergers from 1G1G and hierarchical
systems, we can approximately discern the number of gravitational-wave
observations needed to uncover a hierarchical system in such a manner. We
generally find that we should not yet have expected to confidently identify a
hierarchical merger. Since ∼ 25% of the detectable BBHs from the cluster
population are hierarchical, and ∼ 2% are confidently detectable at current
sensitivity of the gravitational-wave network (from Fig. 3.2), there is only a
25% chance one or more hierarchical mergers would have been detectable
in the LVK’s third observing run [4, 77, 243]. This probability should be
considered a generous upper limit, as it assumes dynamical formation in
globular clusters as the only channel and environment.

3. Future observations appear much more fruitful. At design sensitivity ∼ 4%
of hierarchical mergers become distinguishable. With an increased number
of detections (ranging from ∼200–1000; [248]), one can reasonably expect
∼ 2–10 identifiably hierarchical systems. Crucially, this analysis cannot be
undertaken using anti-alignment of spins (i.e. 𝜒eff), as such effects will not
be detectable, even in the most optimistic of circumstances.

As the ground-based gravitational-wave detector network evolves and approaches its
design sensitivity, the tangible possibility of observing an unequivocally spinning,
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hierarchical merger will become a reality. As we enter this era, the conclusions
drawn here will be important in future discussions about the hierarchical origins
of yet-to-be-detected BBH mergers. When discussing such a system, in this Letter
we find it will be significantly more advantageous to investigate the spin-precession
than spin misalignment. This motivates current and future research into both popu-
lation modelling for hierarchical systems (and their first-generation progenitors) and
waveform modeling to accurately capture this effect.
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C h a p t e r 4

FORTIFYING GRAVITATIONAL-WAVE TESTS OF GENERAL
RELATIVITY AGAINST ASTROPHYSICAL ASSUMPTIONS

E. Payne, M. Isi, K. Chatziioannou, and W. M. Farr. “Fortifying gravitational-
wave tests of general relativity against astrophysical assumptions”. In: Phys.
Rev. D 108.12 (2023), p. 124060. doi: 10.1103/PhysRevD.108.124060.
arXiv: 2309.04528 [gr-qc].

E.P. helped conceive the project, carried out all the analyses presented, and
led the writing of the manuscript.

4.1 Motivation

Gravitational-wave observations from compact binary mergers have provided a
unique laboratory to test Einstein’s theory of gravity in the strong-field regime [249,
250, 251, 12, 13, 14, 15]. These individual detections by the Advanced LIGO [1]
and Advanced Virgo [16] detectors allow for various tests—such as inspiral-merger-
ringdown consistency [252, 253], parameterized inspiral deviations [69, 70, 254],
gravitational-wave dispersion [255, 256], birefringence [257, 73] and nontensorial
polarizations [258, 258, 259, 260, 261], among many more; see Ref. [15] for recent
results—to both target specific properties of general relativity (GR) as well as broadly
explore its consistency with observations. Beyond analyzing events individually,
the ensemble of detections can be analyzed collectively to study the possibility
of deviations from GR at the population level [262, 263, 14, 15]. Hierarchical
population tests rely on inferring the distribution of deviation parameters across all
events and confirming that it is consistent with a globally vanishing deviation [262,
264, 265].

In this study we explore the systematic impact of astrophysical population assump-
tions on these studies, show that they already come into play for current catalogs due
to the increasing number of detections, and offer a solution under the framework of
hierarchical population modeling.

In inferences about deviations from GR, there are strong likelihood-level correlations
between the deviation parameters and the astrophysical parameters of the source,

https://doi.org/10.1103/PhysRevD.108.124060
https://arxiv.org/abs/2309.04528
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such as the masses and spins of compact binaries [249, 266, 267]. Therefore,
any inference of deviations from GR signals from black hole coalescences will be
affected by assumptions about the distribution of binary black-hole masses and spins
in the universe—otherwise known as the astrophysical population distribution [8].
This is true at both the individual-event and catalog levels, regardless of the specific
assumptions made in combining deviation parameters across events, whether the
analysis is hierarchical or not. Even when astrophysical parameters do not explicitly
appear in the catalog-level test of GR, assumptions about these parameters are
implicitly encoded in the individual-event deviation posteriors through the prior.
As the catalog of gravitational-wave observations grows and the precision of the
measurements improves, these systematic effects become more important.

In presence of correlations between deviation and astrophysical parameters, we must
simultaneously model the astrophysical population distribution in conjunction with
testing GR. By not explicitly doing so, as has been the case in previous tests of
GR [249, 250, 251, 12, 13, 14, 262, 15], the astrophysical population is typically
implicitly assumed to be uniform in detector-frame masses and uniform in spin
magnitude. This fiducial sampling prior is adopted to ensure broad coverage of the
sampled parameter-space, and not to represent a realistic astrophysical population.
In reality, the primary-black hole mass population more closely follows a decreasing
power-law with an excess of sources at ∼35 𝑀⊙, and preferentially supports low
spins [7, 8]. This mismatch can lead to biased inference regarding deviations from
GR. Simultaneously modeling the astrophysical and deviation distributions will not
eliminate the influence of the former on the latter, but it will ensure that this interplay
is informed by the data and not arbitrarily prescribed by analysis settings.

While this insight applies to all tests of GR, for concreteness we devote our attention
to constraints on the mass of the graviton [255, 256] and deviations in parameterized
post-Newtonian (PN) coefficients [66, 67, 68, 69, 70, 71]. A massive graviton would
affect the propagation of a gravitational wave over cosmological distances; this leads
to a frequency-dependent dephasing of the gravitational wave which is related to
the mass of the graviton, 𝑚𝑔, and the propagated distance. The PN formalism
describes the Fourier-domain phase of an inspiral signal under the stationary phase
approximation through an expansion in the orbital velocity of the binary system;
each 𝑘/2 PN expansion order can then be modified by a deviation parameter, 𝛿𝜑𝑘 ,
which vanishes in GR. See App. 4.5 for further details about both calculations. We
focus on these tests as they target the signal inspiral phase, which also primarily
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informs astrophysical parameters such as masses and spins; we leave other tests [252,
253, 255, 256, 258, 258, 259, 260, 261, 13, 14, 15] to future work.

As motivation, Fig. 4.1 shows how inference on the 0PN coefficient of a real event
(GW191216_213338) depends on astrophysical assumptions. This figure compares
measurements with (blue) and without (red) a simultaneous measurement of the
population of black hole masses and spins (see Sec. 4.2). The observed binary
black-hole population shows a preference for systems with comparable masses; as a
consequence of the strong correlation between the 0PN deviation coefficient and the
mass ratio of GW191216_213338, this preference then “pulls” the system towards
more equal masses and a more negative deviation coefficient. This is a direct mani-
festation of the fact that tests of GR are contingent on our astrophysical assumptions.
Higher PN orders are expected to display similar correlations as in Fig. 4.1 with
these and other parameters. For example, spins are known to be correlated with
the coupling constant of dynamical Chern-Simons gravity which modifies the phase
at the 2PN order [268, 269, 270, 65]. While we have constructed the posterior
informed results here, it is more robust to simultaneously infer the astrophysical
population while also testing GR. Fixing the prior to one astrophysical population
realization or marginalizing over possible distributions from other analyses will not
capture any correlated structure between the inferred deviation parameters and the
astrophysical distributions. The above example serves only to illustrate the impact
of the arbitrary choices previously made.

The remainder of the manuscript focuses on combining information from many
observations to simultaneously infer the astrophysical population while testing GR;
it is structured as follows. We first introduce our hierarchical analysis framework, as
well as astrophysical and GR deviation models, in Sec. 4.2. We then demonstrate the
impact of incorporating astrophysical information by constraining the graviton mass
and inferring the PN deviation properties with an ensemble of gravitational-wave
observations in Sec. 4.3. We analyze events from LIGO-Virgo-KAGRA (LVK)’s
third observing run with individual-event results from Ref. [15] (the posterior sam-
ples are available in Ref. [275]) —a subset of the events in GWTC-3 [77]. The
simultaneous modeling of the astrophysical population while testing GR tightens
the graviton mass upper limit by 25%, and improves consistency with GR on the
PN coefficients by ∼0.4𝜎, when using a modified SEOBNRv4 waveform [271,
272, 273, 274, 254]. Finally, we conclude in Sec. 4.4, where we summarize the
case for jointly modeling the astrophysical population when testing GR in order to
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Figure 4.1: Posterior distributions for the 0PN deviation coefficient 𝛿𝜑0, detector-
frame chirp mass M(1 + 𝑧), and symmetric mass ratio 𝜂 for the gravitational-
wave event GW191216_213338 [14, 4], as inferred by a modified SEOBNRv4
waveform [271, 272, 273, 274, 254]. Posteriors are conditioned on two different
astrophysical assumptions: the broad prior used during parameter estimation (red),
and the astrophysical population inferred by the data using the model in Sec. 4.2
(blue). The black dashed curves show the expected correlation (App. 4.6). Due to the
correlations between astrophysical and deviation parameters, different astrophysical
populations lead to different posteriors for 𝛿𝜑0.

avoid biases and hidden assumptions, and comment on how the same is true for
gravitational-wave studies of cosmology or nuclear matter.

4.2 Population Analyses

In this section, we introduce the fundamentals of inferring a population distribution
from individual observations and discuss the population models we employ. We
also outline the implementation and importance of observational selection effects
in accounting for the events used within the analysis.

Preliminaries

We infer the astrophysical population distribution and deviations from GR (see
Refs. [276, 74, 277] for a discussion of hierarchical inference in the context
gravitational-wave astronomy). This framework has already been extensively ap-
plied to tests of GR and astrophysical population inference separately [262, 263,
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14, 15, 6, 7, 8, 278, 279, 280, 281, 195, 224, 202, 174, 172, 282, 283, 284, 285,
286, 287, 288]. Here we focus on combining both methods to jointly infer the
astrophysical population while testing GR.

Our approach is based on a population likelihood, 𝑝({𝑑}|Λ), for the ensemble of
observations, {𝑑}, given population hyperparameters, Λ = {Λastro, ΛnGR}. We
separate the hyperparameters into the parameters describing the astrophysical popu-
lation distribution, Λastro, and parameters describing the deviation to GR,ΛnGR. The
hyperparameters encode the shape of the population distribution, 𝜋(𝜃 |Λ), where 𝜃

are parameters of a single event; we describe our population models in the following
subsections. This hierarchical approach allows us to test GR while concurrently
inferring the astrophysical population from the data. Given the likelihoods of indi-
vidual events, 𝑝(𝑑𝑖 |𝜃𝑖), the population likelihood is

𝑝({𝑑}|Λ) = 1
𝜉 (Λ)𝑁

𝑁∏
𝑖=1

∫
d𝜃𝑖 𝑝(𝑑𝑖 |𝜃𝑖) 𝜋(𝜃𝑖 |Λ) , (4.1)

where 𝑑𝑖 and 𝜃𝑖 are respectively the data and parameters for the 𝑖th event, and {𝑑} is
the collection of data for the ensemble of 𝑁 observations1. We address the technical
aspects of the likelihood calculation in App. 4.7.

In Eq. (4.1), 𝜉 (Λ) is the detectable fraction of observations given a set of population
hyperparameters and accounts for selection biases [276]. It is defined as

𝜉 (Λ) =
∫

d𝜃 𝑝det(𝜃) 𝜋(𝜃 |Λ) . (4.2)

Here 𝑝det(𝜃) is the probability of detecting a binary black-hole system with param-
eters 𝜃. The selection factor in Eq. (4.2) accounts for both the intrinsic selection
bias of a gravitational-wave detector (e.g., heavier binaries are more detectable), as
well as selection thresholds used when deciding which gravitational-wave events to
analyze. The detected fraction can also be framed as a “normalizing factor”, which
relaxes the need for normalizable population distributions (so long as the integrals in
Eqs. 4.1 and 4.2 are finite) [289]. This correction will become important in Sec. 4.2
when discussing the selection criteria for events to be included in the analysis.

In theory, the selection factor should account for the effect of both astrophysical
and deviation parameters. However, we ignore the latter here, the effect of which

1Equation (4.1) assumes a prior on the rate of observations as 𝜋(𝑅) ∝ 1/𝑅, which was analytically
marginalized [284].
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is subject of ongoing research [85]. For the former, we compute the detectable
fraction, 𝜉 (Λ), from a set of recovered injections,

𝜉 (Λ) = 1
𝑁inj

𝑁rec∑︁
𝑖=1

𝜋(𝜃𝑖 |Λ)
𝜋draw(𝜃𝑖)

, (4.3)

where 𝑁inj is the number of injected signals, 𝑁rec is the number of recovered signals,
and 𝜋draw(𝜃𝑖) is the distribution from which the injected signals were drawn (for
more details see Refs. [74, 276, 277, 6, 7, 8]). The subset of injected signals that
are recovered is determined by the particular thresholds used to determine which
gravitational-wave observations to use within the hierarchical analysis. To avoid
biases, the criteria on the threshold for the detectable fraction calculation must
match that of the observed signals. We address the specifics of the relevant criteria
for our analysis in Sec. 4.2.

Finally, Eq. (4.1) explicitly shows the need for jointly modeling the astrophysical
population when testing GR. While the astrophysical population may be separa-
ble from the deviation distribution so that 𝜋(𝜃 |Λ) = 𝜋(𝜃astro |Λastro) 𝜋(𝜃nGR |ΛnGR),
this factorization cannot be undertaken for individual event likelihoods, as the de-
viations are often correlated with astrophysics (see Fig. 4.1), i.e. 𝑝({𝑑𝑖}|𝜃) ≠

𝑝({𝑑}|𝜃nGR) 𝑝({𝑑}|𝜃astro). Therefore, the integrals of Eq. (4.1) do not separate and
tests of GR cannot be undertaken in isolation from the astrophysics.

From the hyperposterior distribution on the population parameters, we can construct
the individual event population-informed posteriors following Refs. [290, 291, 292]
(and references therein). Such distributions represent our best inference about the
properties of a given event in the context of the entire catalog of observed signals.
These calculations are subtle as they avoid “double-counting” the gravitational-wave
events which also used to infer the population distribution.

Population models

In this subsection, we outline the population models for both the GR deviations and
the astrophysical population. While many astrophysical population models have
been proposed [6, 7, 8, 278, 279, 280, 281, 195, 224, 202, 174, 172, 282, 283, 284,
285, 286, 287, 288] as a product of the increasing number of observations [77, 8],
in this work we restrict ourselves to standard parameterized models motivated by
previous analyses.
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GR deviation population models

There are two typical approaches to combining posteriors on GR deviation param-
eters obtained from different gravitational-wave observations, each stemming from
different assumptions behind the deviations (see, e.g., discussions in [14, 15]). The
first, more general approach is to assume that the population describing deviations
from GR is, to the lowest order, a Gaussian distribution with a mean, 𝜇, and standard
deviation, 𝜎 [264, 262]. In the limit that all observations are consistent with GR,
(𝜇, 𝜎) → (0, 0) and the inferred distribution approaches a Dirac delta function at
the origin. Since a Gaussian distribution encapsulates the lowest order moments
of more complicated distributions, given enough events any deviation from a delta
function at the origin will be identified as a violation of GR, even if the exact shape of
the deviation distribution is not captured by a Gaussian [262, 265]. This approach is
now routinely applied to post-Newtonian deviations tests, inspiral-merger-ringdown
consistency tests and ringdown analyses [262, 14, 15], but it can be naturally ex-
tended to any analysis that recovers GR in the limit of some vanishing parameter.
This method provides a null test in cases where the exact nature of the deviation is
unknown.

The second approach assumes all observations share the same value of the deviation
parameter [13, 69, 70, 293, 294, 252, 253, 295, 274, 254]. This is the limiting
case of the aforementioned Gaussian model when 𝜎 → 0. This model (in the ab-
sence of astrophysical information) is equivalent to simply multiplying the marginal
likelihoods of the deviation parameter obtained from the individual events. The
assumption of a shared parameter is only suitable in the context of specific theories
or models, in which case the expected degree of deviation for each event can be pre-
dicted exactly as a function system specific parameters (e.g., BH masses and spins)
and universal, theory-specific parameters (e.g., coupling constants), the second of
which can be measured jointly from a catalog of detections by multiplying likeli-
hoods. In practice, the lack of complete waveform models beyond GR means that
this approach has so far only been well-suited for measurements such as the mass of
the graviton, and features of the propagation of gravitational waves whose observa-
tional signatures are independent of specific source properties by construction [13,
14, 15].
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Astrophysical population models

Following Refs. [6, 7, 8], we model the primary black-hole mass (𝑚1) distribution
as a power-law whose slope is given by an index 𝛼, with a sharp cut-off governed
by the minimum mass, 𝑚min, and a higher-mass Gaussian peak,

𝜋(𝑚1 |Λ) = (1 − 𝑓peak) P[𝛼, 𝑚min] (𝑚1)+
𝑓peak N[𝜇peak, 𝜎

2
peak] (𝑚1) . (4.4)

Here, 𝑓peak is the fraction of binaries in the Gaussian peak, the powerlaw is given by

P[𝛼, 𝑚min] (𝑚1) ∝

𝑚−𝛼

1 , 𝑚1 ≥ 𝑚min

0, 𝑚1 < 𝑚min ,
(4.5)

and N[𝜇, 𝜎2] (𝑥) is the probability density function for a Gaussian with mean 𝜇 and
variance 𝜎2. We fix 𝑚min = 5 𝑀⊙ for simplicity. Unlike other studies [280, 7, 8],
we do not infer much structure in the Gaussian peak as higher mass features become
unresolvable when looking at the light binary systems that provide constraints of
PN coefficients (see Sec. 4.2).

We parameterize the distribution of mass ratios, 𝑞 ≡ 𝑚2/𝑚1, as a conditional
power-law, with index 𝛽, and a sharp cut-off imposed by 𝑚min, such that

𝜋(𝑞 |𝑚1;Λ) ∝

𝑞𝛽, 1 ≥ 𝑞 ≥ 𝑚min/𝑚1

0, 𝑞 ≤ 𝑚min/𝑚1 .
(4.6)

Here 𝛽 can take any value without leading to a singularity due to the lower bound
on the mass ratio.

We adopt a truncated Gaussian population model for the component spins with a
mean, 𝜇𝜒, and standard deviation, 𝜎𝜒, bounded between zero and one, assuming
both spins are drawn independently from the same population distribution. This
differs from standard Beta distribution utilized in many recent analyses [296, 281,
6, 7, 8]. as it allows for non-zero support at the edges of the spin-magnitude
domain [297]. Furthermore, adopting a Gaussian model allows for efficient com-
putation of the population likelihood via analytic integration (see App. 4.7). For
individual-event analyses where the spins are assumed to be aligned with the or-
bital angular momentum (as is the case for posteriors using a modified SEOBNRv4
waveform [271, 272, 273, 274, 254]), this model treats the measured spin along the
orbital angular momentum as the total spin magnitude.
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For analyses where the individual event inferences also possess information about
the spin-precession degrees of freedom, we adopt a model for the spin tilts, cos 𝜃1/2,
whereby the population is parameterized as a mixture of isotropically distributed
and preferentially aligned spins [281],

𝜋(cos 𝜃1, cos 𝜃2 |Λ) =
𝑓iso
4

+ (1 − 𝑓iso)×

N [1, 𝜎2
𝜃 ] (cos 𝜃1) N [1, 𝜎2

𝜃 ] (cos 𝜃2) , (4.7)

where 𝑓iso is the mixing fraction, and 𝜎𝜃 is the standard deviation of the preferen-
tially aligned Gaussian component. This model is only relevant for analyses with
precessing spins. In this manuscript, this includes the massive graviton constraints
(Sec. 4.3), and PN deviation tests with the IMRPhenomPv2 [68, 134, 71] waveform
(App. 4.8).

Finally, we also adopt a power-law model for the merger-rate density as a function
of redshift [284],

𝜋(𝑧 |Λ) ∝ 1
1 + 𝑧

d𝑉𝑐

d𝑧
(1 + 𝑧)𝜆 , (4.8)

where d𝑉𝑐/d𝑧 denotes the evolution of the comoving volume with redshift, and 𝜆

is the power-law index. When 𝜆 = 0, the binary black-hole population is uniformly
distributed within the source-frame comoving volume.

Selection criteria and observations

We limit ourselves to binary black-hole observations made during LIGO-Virgo-
KAGRA’s third observing run [77] with false-alarm-rates of less than 10−3 per
year2. This mirrors the selection criteria chosen for the tests of GR within Refs. [13,
14, 15], and therefore we do need not reanalyze any individual gravitational-wave
observations [298, 275]. The events that pass these criteria are listed in Table
IV of Ref. [14] and Table V of Ref. [15]. In future studies, the false-alarm-rate
threshold could be raised to increase the number of included gravitational-wave
events. This would likely improve inference of the astrophysical population and GR
deviation constraints due to the larger catalog of observations. In our analyses, we
exclude gw190814 [299] as it is an outlier from the binary black-hole population [7]
and GW200115_042309 since it is a black hole-neutron star merger [300]. It

2For comparison, the population analyses presented Ref. [8] used a false alarm rate threshold of
1 per year. A more stringent false-alarm-rate threshold is often adopted when testing GR to avoid
contaminating from false detections.
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is straightforward to extend this analysis to additionally incorporate binary neutron
star and neutron star-black hole mergers by adopting a mixture model of the different
source classifications (see Ref. [8] for one example). We then use all events except
GW200316_2157563 when inferring the mass of the graviton, mirroring the analysis
in Ref. [15]. When constraining the PN deviation coefficients, we include the
additional criterion that signal-to-noise ratios (SNRs) during the binaries’ inspiral
must be greater than 6, again mirroring previous analyses [14, 15].

We use posteriors for the graviton’s mass inferred using a modified IMRPhe-
nomPv2 [68, 134, 71] waveform, whereas we use both modified SEOBNRv4 [271,
272, 273, 274, 254] (for results in Sec. 4.3) and modified IMRPhenomPv2 [68, 134,
71, 70, 69, 294, 295] (for results in App. 4.8)4 waveform models when inferring the
PN deviations. We summarize these events and their relevant properties in Tab. 4.1.
We do not include gravitational-wave events from the first and second LIGO-Virgo
observing runs, as a semi-analytic approximation was used to estimate the sensi-
tivity of the detector network during that time [13]. This approximation does not
compute a false-alarm rate and therefore cannot be unambiguously incorporated
into this methodology.

As described in Sec. 4.2, selection effects are estimated through an injection cam-
paign. While we know the total network SNR of the individual injections, part of our
selection criteria is based on the inspiral network SNR. We approximate the inspiral
SNR from the total SNR by constructing a linear fit to their ratio as a function of
detector-frame total mass (Fig. 4.2). This fit is constructed by inferring the slope and
offset of the line, as well as the uncertainty on the data points. We assume identical
uncertainties on all SNR ratios, and marginalize over this parameter to fit the line.
We validate this approximation by computing the detection probability 𝑝det(𝜃) with
different draws of the linear fit. We find that different realizations of the approxima-
tion do not change the detection probability, and so we consider this approximation
to be sufficiently accurate for our purposes. Future injection campaigns may also
opt to compute the inspiral SNR directly.

4.3 Results

3GW200316_215756 was excluded from propagation tests within Ref. [15] due to poor sampling
convergence.

4Single-event results with IMRPhenomPv2 were only produced during the first half of the third
observing run [14, 15].
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Table 4.1: Observations from the LIGO-Virgo-KAGRA’s third observing run that
pass our selection criteria [4, 77, 14, 15]. The different columns outline the
gravitational-wave event, the detector-frame chirp mass, the total and inspiral max-
imum a posteriori SNRs (𝜌tot and 𝜌insp respectively), and whether it was included
in the graviton constraint calculation (𝑚𝑔) or the post-Newtonian deviation tests
(PN). Horizontal lines split events from the two halves of the third observing period.
While we use all events marked under “PN” in Sec. 4.3, we are limited to the first
half of observing run when using IMRPhenomPv2 posterior samples in App. 4.8.

Event (1 + 𝑧)M [𝑀⊙] 𝜌tot 𝜌insp 𝑚𝑔 PN

GW190408_181802 23.7+1.4
−1.7 15.0 8.3 ✓ ✓

LIGOScientific:2020stg 30.1+4.7
−5.1 19.1 15.1 ✓ ✓

GW190421_213856 46.6+6.6
−6.0 10.4 2.9 ✓ -

GW190503_185404 38.6+5.3
−6.0 13.7 4.3 ✓ -

GW190512_180714 18.6+0.9
−0.8 12.8 10.5 ✓ ✓

GW190513_205428 29.5+5.6
−2.5 13.3 5.1 ✓ -

GW190517_055101 35.9+4.0
−3.4 11.1 3.4 ✓ -

GW190519_153544 65.1+7.7
−10.3 15.0 0.0 ✓ -

GW190521_074359 39.8+2.2
−3.0 25.4 9.7 ✓ ✓

GW190602_175927 72.9+10.8
−13.7 13.1 0.0 ✓ -

GW190630_185205 29.4+1.6
−1.5 16.3 8.1 ✓ ✓

GW170706_222641 75.1+11.0
−17.5 12.7 0.0 ✓ -

GW190707_093326 9.89+0.1
−0.09 13.4 12.2 ✓ ✓

GW190708_232457 15.5+0.3
−0.2 13.7 11.1 ✓ ✓

GW190720_000836 10.4+0.2
−0.1 10.5 9.2 ✓ ✓

GW170727_060333 44.7+5.3
−5.7 12.3 2.0 ✓ -

GW190728_064510 10.1+0.09
−0.08 12.6 11.4 ✓ ✓

Table 3.1 continued on the following page...
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Event (1 + 𝑧)M [𝑀⊙] 𝜌tot 𝜌insp 𝑚𝑔 PN

GW190828_063405 34.5+2.9
−2.8 16.2 6.0 ✓ ✓

GW190828_065509 17.4+0.6
−0.7 9.9 6.3 ✓ ✓

GW190910_112807 43.9+4.6
−3.6 14.4 3.3 ✓ -

GW190915_235702 33.1+3.3
−3.9 13.1 3.7 ✓ -

GW190924_021846 6.44+0.04
−0.03 12.2 11.8 ✓ ✓

GW191129_134029 8.49+0.06
−0.05 14.1 12.8 ✓ ✓

GW191204_171526 9.70+0.05
−0.05 18.0 16.3 ✓ ✓

GW191215_223052 24.9+1.5
−1.4 10.6 5.5 ✓ -

GW191216_213338 8.94+0.05
−0.05 17.9 15.6 ✓ ✓

GW191222_033537 51.0+7.2
−6.5 13.1 3.1 ✓ -

GW200129_065458 32.1+1.8
−2.6 25.7 10.4 ✓ ✓

GW200202_154313 8.15+0.05
−0.05 11.1 10.5 ✓ ✓

GW200208_130117 38.8+5.2
−4.8 9.9 3.0 ✓ -

GW200219_094415 43.7+6.3
−6.2 11.2 2.8 ✓ -

GW200224_222234 40.9+3.5
−3.8 19.4 4.7 ✓ -

GW200225_060421 17.7+1.0
−2.0 12.9 6.8 ✓ ✓

GW200311_115853 32.7+2.7
−2.8 17.5 6.5 ✓ ✓

GW200316_215756 10.7+0.1
−0.1 11.5 10.7 - ✓

In this section we simultaneously infer the astrophysical population while testing
GR and quantify the impact of fixing the population distribution to the sampling
prior. Throughout, we use the nomenclature “fixed” and “inferred” to refer to
whether the analysis uses the fixed sampling prior or infers the distribution from data,
respectively. We implement the analyses using NumPyro [301, 302] and JAX [303],
leveraging AstroPy [304, 305, 306] and SciPy [307] for additional calculations, and
matplotlib [308], arViz [309] and corner [310] for plotting purposes. The code for
the hierarchical tests is available in Ref. [311].
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Figure 4.2: Ratio between the network maximum a posteriori gravitational-wave
inspiral and the total SNRs as a function of detector-frame total mass, 𝑀 (1 + 𝑧) ≡
(𝑚1+𝑚2) (1+𝑧), for all gravitational-wave observations in the LIGO-Virgo-KAGRA
third observing run [4, 77, 14, 15] with a false-alarm rate less than 10−3/yr. The solid
blue line is the median best-fit line to the observations, with the band representing the
90%-credible uncertainty. While computing this fit, we also estimate the uncertainty
in the individual data points. We use this fit to compute the inspiral SNR for the
injections used to estimate the detection probability, 𝑝det(𝜃), as described in Sec. 4.2.

Massive graviton constraints

We begin by demonstrating that astrophysical assumptions are crucial even in the
simplest scenarios, where a global deviation parameter is shared across events. This
is the case for the mass of the graviton, 𝑚𝑔 [255, 256] (see App. 4.5), for which
we produce an updated upper limit by simultaneously inferring the astrophysical
distribution.

We combine results from individual-event likelihoods under the assumption of a
shared deviation parameter as described in Sec. 4.2. In practice, we compute this as
the limit of a vanishing standard deviation of the hierarchical analysis described in
Sec. 4.2. For technical reasons, we assume a uniform prior distribution on log10(𝑚𝑔)
when combining observations, which differs from Refs. [13, 14, 15] which applied a
uniform prior prior on 𝑚𝑔 itself; this is to avoid poor convergence when reweighting
between individual-event posterior distributions. In the end, we reweight the shared
graviton mass inference to a uniform prior to report upper limits on𝑚𝑔. We compare
this to results obtained assuming the sampling prior for the astrophysical parameters.
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Figure 4.3: Marginal one-dimensional posterior distributions for the mass of a
massive graviton. In practice, we compute the shared value of graviton mass
by assuming a shared deviation parameter log10(𝑚𝑔𝑐

2/eV) then reweighting to a
uniform graviton mass prior. The dashed lines correspond to the 90% upper limits
from the two analyses. We compare the result when astrophysical information is not
included, equivalent to multiplying individual event likelihood functions (yellow),
to also modeling the astrophysical population (dark blue). The result shifts towards
smaller values of 𝑚𝑔 if simultaneously modelling the astrophysical population and
the graviton’s mass.

The one-dimensional marginal distributions of the shared mass of the graviton are
shown in Fig. 4.3. The inclusion of astrophysical information changes the inferred
distributions of the graviton’s mass increasing support for 𝑚𝑔 = 0. When using the
sampling prior for the astrophysical population (and thereby assuming the incorrect
distribution), the graviton’s mass is constrained to be 𝑚𝑔 ≤ 1.3 × 10−23 eV/𝑐2 at
the 90% level5; however, upon inferring the astrophysical population the graviton’s
mass becomes more constrained, with 𝑚𝑔 ≤ 9.6 × 10−24 eV/𝑐2 at the 90% credible
level. Under the expectation that GR is correct and 𝑚𝑔 = 0, a reduced constraint
is generically expected as we have included the correct information regarding the
astrophysical population. This highlights the effect of unreasonable astrophysical
assumptions, which are inconsistent with the observed population, on tests of GR.

Hierarchical post-Newtonian deviation constraints from SEOBNRv4

We repeat the population analysis, this time measuring the hierarchical PN deviation
5This constraint differs from the 90% upper limit of 1.27 × 10−23 eV/𝑐2 calculated in Ref. [15],

which is determined by additionally incorporating observations from the first and second LIGO-
Virgo-KAGRA observing periods [3, 13]. We do not include these observations due to the ambiguity
in the detector network sensitivity during these periods.
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Figure 4.4: Two-dimensional marginal posterior distributions for the hyperparame-
ters of the Gaussian PN deviation distribution informed by the 20 events in the third
LIGO-Virgo-KAGRA observing run passing the selection criteria, analysed with a
modified SEOBNRv4 [271, 272, 273, 274, 254] waveform. The contours indicate
the 50% and 90% credible regions. Each panel corresponds to a separate analysis
where the coefficient varied was at a different PN order. The analysis was under-
taken with an implicitly assumed, astrophysically-unrealistic population (yellow),
and a model which simultaneously infers the astrophysical population model (dark
blue). Modelling both the astrophysical population and the PN deviation population
systematically shifts the inferred mean, 𝜇PN, closer to zero.
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Figure 4.5: Displacement of the deviation parameter distribution from GR for each
PN deviation coefficient. The displacement corresponds to the credible levels at
which the hyperparameter values corresponding to GR, (𝜇PN, 𝜎PN) = (0, 0), reside
for two different models as shown in Fig. 4.4. This quantity is indicative of the
relative position of the posterior to the GR value. Incorporating the astrophysical
population as well as the hierarchical model for the PN deviation leads to an inferred
result more consistent with GR for most cases.
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distribution with a mean, 𝜇PN, and standard deviation, 𝜎PN, for all PN orders. This
is corresponds to ten separate analyses where only one PN deviation coefficient is
allowed to vary. To compare with the default approach (which implicitly assumes
a flat-in-detector-frame mass, uniform mass ratio, uniform spin-magnitude aligned
spin, and comoving volume redshift distributions), we also fit the GR deviation in
isolation under the assumption of the (astrophysically unrealistic) sampling prior [14,
15].

Figure 4.4 shows the two-dimensional posterior distribution of the deviation hyper-
parameters for −1 through to 3.5 PN orders. The standard results implicitly using
the sampling prior are shown in yellow, while the results from the simultaneous
modeling of the astrophysical and deviation populations are shown in dark blue.
When concurrently modeling the astrophysical distribution, in all PN deviation pa-
rameters the inferred mean resides closer to zero, i.e., the expected value from GR,
while there is no clear trend in 𝜎PN. Overall, (𝜇PN, 𝜎PN) = (0, 0) is retained with
greater significance for almost all PN orders.

We quantify this improvement by comparing the two-dimensional credible level6

at which the expected GR value, (𝜇PN, 𝜎PN) = (0, 0), resides in Fig. 4.5. A lower
value for the credible region implies that the value of hyperparameters expected
from GR resides closer to the bulk of the distribution. In all but one PN order,
jointly inferring the astrophysical and PN deviation distributions moves the inferred
distribution to be more consistent with GR. For the 0.5PN deviation coefficient,
𝛿𝜑1, there is little change in the credible level at which GR is recovered. Generally,
inference of the astrophysical population allows our inferences of GR deviations to
be more consistent with GR, with an average improvement of 0.4𝜎.

To shed further light on the interaction between the GR and astrophysics parameters,
we focus on two specific deviation parameters. In particular, we draw attention to
the 3PN coefficient (which shows the largest tightening of the supported hyperpa-
rameter space in Fig. 4.4) and the 0PN coefficient (where the PN deviation is most
inconsistent with GR in Fig. 4.5).

6This “displacement” is the quantile, QGR, reported in Refs. [14, 15] as (displacement)2 =

−2 ln(1 − QGR) 𝜎2. The quantile is computed by integrating over all regions of the hyperposterior
distribution which are at a higher probability than (𝜇PN, 𝜎PN) = (0, 0). We report values in terms of
the standard deviation in two dimensions, 1𝜎 and 2𝜎 correspond to ∼39.3% and ∼86.5% credibility,
respectively.
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Example: 3PN deviation coefficient, 𝛿𝜑6

To understand the origin of the improved measurement for 𝛿𝜑6 when modeling
astrophysics in Fig. 4.4, we show an expanded corner plot in Fig. 4.6 with an ad-
ditional subset of the hyperparameter posterior distributions. The top left corner
reproduces the corresponding panel in Fig. 4.4, wherein the yellow posterior dis-
tribution is obtained under the assumption of the astrophysical population given by
the sampling priors, while the dark blue is obtained by simultaneously inferring the
astrophysical-population and the GR deviation parameters.

Additionally, we use the same set of individual-event posterior samples to separately
infer the astrophysical population independently of the PN deviation parameters,
which amounts to assuming a uniform distribution of deviations across events (solid
green). This differs from standard astrophysical population inference, which as-
sumes that GR is correct a priori and thus starts from individual-event posteriors
conditioned on 𝛿𝜑 = 0 [6, 7, 8]. Finally, we also compute the astrophysical popula-
tion under the assumption that GR is correct, (𝜇PN, 𝜎PN) = (0, 0) (dashed green).
The result assuming GR is correct is computed by fixing (𝜇PN, 𝜎PN) → (0, 0) to en-
sure equivalent samples are used between analyses, and is consistent with the usual
population inference modulo model choices at the individual-event and population
levels [6, 7, 8].

From the two-dimensional marginal distributions, the most apparent feature is that
inferring the astrophysical population under the assumption of a broad uniform
GR deviation population (shown in solid green) leads to inferences consistent with
broad spin populations (large 𝜎𝜒𝑧 ) and populations favoring uneven mass ratios
(𝛽 < 0). This can be straightforwardly explained by the presence of correlated
structure between 𝛿𝜑6, mass ratio, and the component spins at the individual-event
level.

To demonstrate this, Fig. 4.7 shows four different posteriors for GW191216_213338
under different priors. The four distributions shown are the posterior obtained with
the sampling priors (red), the one informed by the GR deviation population only
analysis (yellow), the one informed by the astrophysical population only analysis
(green), and the one informed by the jointly-inferred GR deviation and astrophysical
populations (blue). The posteriors which involve information from inferred popu-
lations are computed following Ref. [290], and do not double-count the data from
GW191216_213338, as discussed in Sec. 4.2.
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Figure 4.6: Marginal one- and two-dimensional posterior distributions for the 𝛿𝜑6
PN deviation and a subset of astrophysical population hyperparameters. Contours
correspond to the 50% and 90% credible regions. Results from four analyses are
shown—population inference using the PN deviation population only with the “de-
fault” sampling prior astrophysical population (yellow), astrophysical population
only (green), astrophysical population under the assumption that GR is correct
(dashed green), and the joint analysis inferring the post-Newtonian deviation and
astrophysical populations simultaneously (dark blue). No strong correlations ex-
ist between either the mean or standard deviation of the deviation Gaussian and
astrophysical population parameters. The starkest difference is that inferring the
population when the PN deviation population is ignored leads to broad spin magni-
tude populations.
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Figure 4.7: One- and two-dimensional posterior distributions for the 3PN deviation
parameter, the mass ratio, and the primary black-hole spin for GW191216_213338
under four different assumptions: broad sampling priors (red), informed by the GR
deviation population analysis (yellow), informed by the astrophysical population
(green), informed by the joint inference of PN deviation and astrophysical popula-
tions (dark blue). Contours indicate the 90% credible region. Evidence for both a
low mass ratio and larger primary spins is strongly contingent upon the astrophysical
assumptions. Broad priors such as those used while sampling the posterior distri-
bution have significant support for lower mass ratios. Inclusion of information from
both the deviation population and the astrophysics leads to an inferred result with
both low primary spin and high mass ratio.

Under the sampling astrophysical prior, posteriors exhibit a low-𝑞, high-𝜒1 mode.
Since the inferred astrophysical population is inconsistent with low mass ratios
and high spin magnitudes, the astrophysical-population-informed posteriors have
reduced support for unequal masses (compare the red contour to the green one).
Additionally incorporating the GR deviation information (blue), the population-
informed posterior further reduces support for high-spinning systems. The similarity
of the results under the sampling prior (red) with those in which only the GR
deviation population is inferred (yellow) suggests that inferring small GR deviations
is on its own not enough to significantly affect the inference of the astrophysical
parameters in this case.

The tightening of the 𝜎𝜒𝑧 hyperposterior distribution (i.e., inferring a more narrow
spin population) when jointly inferring the GR deviation and astrophysical popu-
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lations is precisely what we observe at the population level in Fig. 4.6 comparing
the dark blue and green contours. Additionally, when enforcing that 𝛿𝜑6 = 0 for
all events (dashed green), we no longer recover support for broad spin populations.
Interestingly, the astrophysical population inferred jointly with the GR deviation
population is very similar to the result obtained when fixing 𝛿𝜑6 = 0. This illus-
trates that, if we allow the model to infer that the scale of GR deviations is small,
we will recover similar inferences overall as if we had fixed 𝛿𝜑 = 0 a priori: we
are learning both that spins are small and that any GR deviation must be small at
this PN order. Conversely, an assumption of a broad GR deviation population leads
to unrealistic astrophysical populations to account for the far-fetched astrophysical
systems such analyses allow. We can also use this example to understand why
inferring the deviation population in the absence of astrophysical modelling leads
to a different deviation population with a larger inferred mean. Figure 4.7 shows
that 𝑞 and 𝛿𝜑6 are correlated at the individual-event level, and therefore a broader
𝑞 distribution will lend more support to the higher values of 𝛿𝜑6. This correlation
then systematically pulls the mean of the PN deviation distribution to higher values.

Example: 0PN deviation coefficient, 𝛿𝜑0

We now turn to 𝛿𝜑0, for which the standard analysis with a fixed astrophysical prior
finds the least consistency with GR, at the 2.2𝜎 credible level (yellow circle for
𝛿𝜑0 in Fig. 4.5), driven by a displacement away from 𝜇PN = 0 (Fig. 4.4). Since
this parameter is strongly correlated with the chirp mass and mass ratio (Fig. 4.1),
we expect improvements when jointly modeling the astrophysical and deviation
distributions; indeed that is the case, with GR recovered at the 1.6𝜎 level (blue
circle in Fig. 4.5). This analysis infers a 𝜎PN distribution that peaks slightly away
from zero.

We can understand this behavior with Fig. 4.8, where we plot a subset of the two-
dimensional marginal population posterior distributions in the same color scheme
as Fig. 4.6. The structure of the PN deviation distribution is directly correlated
with the mass ratio power-law index, 𝛽: steeper power-laws correspond to more
variance in the GR deviation (larger 𝛽, larger 𝜎PN). This is also manifested in the
fact that when the PN deviation is assumed to be uniformly distributed (solid green),
the astrophysical inference prefers steeper mass ratio power-laws (larger 𝛽), and
that the analysis with deviations fixed to zero (dashed green) leads to a shallower
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slope (𝛽 ≲ 6). There is also a correlation between 𝜎PN and the width of the spin
distribution, 𝜎𝜒𝑧 , by which a narrower spin distribution demands for a greater spread
in deviation parameters within the population.

Such correlations highlight precisely why we need to account for the astrophys-
ical population when testing GR. By assuming a particular, fixed model for the
astrophysical population, the hyperparameter correlations will not be captured in
the marginal posterior for the GR deviation population. The analysis assuming the
sampling prior for the astrophysical population (yellow), infers a value of 𝜎PN which
peaks at zero. Among other hyperparameters, the sampling prior corresponds to
a uniform (𝛽 = 0) mass-ratio distribution. Fixing the astrophysical population in
such a way will lead to the hyperparameter posterior peaking at 𝜎PN = 0, as seen in
Fig. 4.8.

4.4 Conclusions

In this study, we have shown the importance of modeling the astrophysical population
when testing GR with gravitational waves. Current tests do not explicitly model the
astrophysical population, and therefore implicitly treat the prior used for sampling
the posterior distribution as the assumed astrophysical population. Due to the
presence of correlations between many GR deviations and astrophysical parameters,
inappropriate astrophysical population choices will bias the test of GR. Like other
sources of systematics, including waveform modeling [312, 313, 314, 315], the
severity of this bias increases with the number of detections. We have shown that
the effect of this bias is already being felt in the present catalog. This issue can only
be fully addressed by simultaneously modelling both the astrophysical population
in addition to the GR deviations.

We demonstrate the effect of inappropriate astrophysical models using constraints of
the graviton’s mass and tests of PN deviations as concrete examples. We show that
jointly modeling the astrophysical population distribution while testing GR leads to
results more consistent with GR. Furthermore, for some deviations at various PN
orders there are correlations between hyperparameters governing the astrophysical
and deviation populations. The impact of the astrophysical distribution is not
just important for these parameters and these hierarchical models: any test of GR
should accurately account for the astrophysical population. In fact, this problem is
not unique to tests of GR; attempts to infer cosmological properties [316] or the
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Figure 4.8: Similar to Fig. 4.6, one- and two-dimensional posterior distributions
for the 𝛿𝜑0 deviation and a subset of astrophysical population hyperparameters.
A strong correlation is found between the width of the inferred post-Newtonian
deviation population and the index of the mass ratio power-law when jointly inferring
the deviation and astrophysical population models. There is also a less pronounced
correlation between the deviation and spin population standard deviations. In the
absence of modelling the astrophysical population, the inferred PN population is
pulled to a higher mean with a reduced width.
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Figure 4.9: Marginal two-dimensional posterior distributions for the 0PN deviation
coefficient and the detector-frame chirp mass for the events analyzed under the
broad prior assumptions (light red), informed PN deviation population only (yellow),
and informed by the jointly inferred deviation and astrophysical populations (dark
blue). Contours indicate the 90% credible regions. This result demonstrates that
as additional information is incorporated into the population distribution, more
stringent constraints on the deviation parameters are placed on an individual event
level. In the case demonstrated here, this pulls the inferred value towards 𝛿𝜑 = 0
for all events.

equation of state of dense nuclear matter [317] are also impacted by these same
considerations.

We can generically understand the impact of folding in the astrophysical population
as follows. The standard sampling prior is chosen to broadly cover the parameter
range of interest, and not to accurately represent the true astrophysical population.
The actual population distribution will then typically provide support on a more
narrow region of parameter space than the sampling prior. As a result, population-
informed posteriors will not only avoid systematic biases but will also provide more
stringent constraints on GR due to the additional information from the associated
narrower population.

This posterior shrinkage is illustrated in Fig. 4.9, which shows the 0PN deviation
parameter and detector frame chirp mass for the 20 events considered in our study
(Table 4.1). The three sets of distributions correspond to the posteriors under dif-
ferent priors: fixed sampling priors (light red), fixed astrophysical prior and an
inferred PN deviation population (yellow), and the case where both PN-deviation
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and astrophysics distributions are inferred (blue). As more information about the
GR deviation distribution is included, the inferred posterior of 0PN deviation pa-
rameter and the detector-frame chirp mass is more constrained. The posteriors are
then constrained further still as additional information regarding the astrophysical
population is included.

There are a number of directions in which to extend our work. The first would
be to account for selection effects on the hyperparameters of the GR deviation
distribution; this is to be addressed in upcoming work [85]. Additionally, here we
have assumed a strongly parameterized model for the astrophysical population, with
a power law and a Gaussian peak. This model is currently flexible enough given the
number of events, with the primary mass Gaussian peak not impacting the inferred
PN deviations with the selection of events considered. As the number of events used
with these tests increases, and subtle features in the astrophysical population reveal
themselves, we will likely need more flexible models [285, 286, 287, 288] to further
avoid biases from misspecified population models [318, 319, 320]. Furthermore, in
the case of PN coefficients, one would ideally constrain all orders simultaneously,
in addition to the astrophysical parameters [249, 321, 322, 323, 324, 325].

Concurrently modeling the astrophysical population when testing GR is inevitable.
Models that do not include a parameterized astrophysical population are implicitly
assuming the sampling prior as the fixed population model. Such an assumption
may induce systematic biases, cause false detections of GR violations, or incorrectly
claim a stronger confirmation of GR than is warranted by the data. Moreover,
even when accounting for the astrophysical population, correlations between GR
deviation and astrophysical hyperparameters suggest that a true deviation could be
absorbed into an unphysical inferred astrophysical population, a case that can only be
noticed in studying the hyperposterior relating astrophysical to deviation parameters.
Hierarchically modeling the astrophysical population while testing GR provides the
solution to the implicit bias of assuming a fixed astrophysical population, and allows
us to explore correlations between astrophysical parameters and deviations from
GR, with fewer hidden assumptions.

4.5 Appendix: Formulation of parameterized tests of general relativity

In this appendix we outline the calculations required to constrain the graviton’s mass
and infer the PN deviation parameters.
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Massive graviton measurements

The impact of a massive graviton on the propagation of gravitational waves has been
studied in Refs. [255, 256] and references therein. A graviton with mass𝑚𝑔 modifies
the dispersion relation of the gravitational wave. In a cosmological background,
𝑔𝜇𝜈,

𝑔𝜇𝜈𝑝
𝜇𝑝𝜈 = −𝑚2

𝑔, (4.9)

where 𝑝𝜇 is the 4-momentum of the graviton. This leads to a dephasing of the
gravitational wave, 𝛿Φ( 𝑓 ), that scales with the distance over which the signal
propagates,

𝛿Φ( 𝑓 ) = −
𝜋(1 + 𝑧)𝐷2

𝐿
𝑚2

𝑔𝑐
3

𝐷0ℎ2 𝑓 −1 , (4.10)

where 𝐷𝐿 is the luminosity distance, ℎ is Planck’s constant, and

𝐷0 =
𝑐(1 + 𝑧)

𝐻0

∫ 𝑧

0
d𝑧′

(1 + 𝑧′)−2√︁
Ω𝑚 (1 + 𝑧′)3 +ΩΛ

. (4.11)

Here, 𝐻0 = 67.9 km s−1 Mpc−1 is the Hubble constant, and Ω𝑚 = 0.3065 and
ΩΛ = 0.6935 are the matter and dark energy density parameters, respectively,
adopting the values used in previous analyses [77, 15, 326].

Post-Newtonian deviation tests

Current parameterized PN tests are constructed by single-parameter modifications
to the post-Newtonian description of the inspiral gravitational-wave phase in the
frequency domain. This is given by [327, 68]

Φ( 𝑓 ) = 2𝜋 𝑓 𝑡𝑐 − 𝜙𝑐 −
𝜋

4
+ 3

128
×

7∑︁
𝑘=0

1
𝜂𝑘/5

(
𝜑𝑘 + 𝜑𝑘,𝑙 ln 𝑓

)
𝑓 (𝑘−5)/3 . (4.12)

Here, Φ( 𝑓 ) is the frequency-domain gravitational-wave phase under the stationary-
phase approximation, 𝑓 = 𝜋𝐺M(1+ 𝑧) 𝑓 /𝑐3, whereM(1+ 𝑧) is the redshifted chirp
mass, M = (𝑚1𝑚2)3/5/(𝑚1+𝑚2)1/5 is the source-frame chirp mass, 𝜂 = 𝑚1𝑚2/𝑀2

is the symmetric mass ratio, 𝑡𝑐 and 𝜙𝑐 are the coalescence time and phase of the
binary; finally, 𝑘 indexes the 𝑘/2 PN order, and 𝜑𝑘 and 𝜑𝑘,𝑙 are the PN coefficients.
The logarithmic coefficients, 𝜑𝑘,𝑙 only enter at 2.5 and 3.5 PN orders and otherwise
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vanish [328, 329]. In GR, the coefficients are functions of the intrinsic parameters
of the binary, their masses and spins. From this prescription, modifications to GR
are incorporated by modifying [66, 69, 70]

𝜑𝑘 → (1 + 𝛿𝜑𝑘 ) 𝜑𝑘 , (4.13)

except for 𝑘’s for which 𝜑𝑘 = 0 in GR (𝑘 = −2, 1); in these cases, the modification
is 𝜑𝑘 → 𝛿𝜑𝑘 , and 𝛿𝜑𝑘 is an absolute deviation [330].

In practice, modifications to IMRPhenomPv2 [68, 134, 71, 70, 69, 294, 295] and
SEOBNRv4 [271, 272, 273, 274, 254] waveforms are computed differently, then
the latter is transformed to the former. For the modified SEOBNRv4 waveform,
the deviation is applied as above [254]. While, IMRPhenomPv2 is modified to
only apply the deviation is onto the nonspinning portion of the PN coefficient [70,
69]. We translate all inferred deviation parameters to the IMRPhenomPv2 deviation
parameter 𝛿𝜑IMR

𝑘
for consistency,

𝛿𝜑IMR
𝑘 = 𝛿𝜑𝑘

𝜑𝑘

𝜑NS
𝑘

, (4.14)

where 𝜑NS
𝑘

is the nonspinning value of the PN coefficient—calculated by setting
the spins to zero for a particular set of compact binary masses. Additionally, care
needs to be taken when translating to a uniform prior on 𝛿𝜑IMR

𝑘
, as the appropriate

Jacobian,
d𝛿𝜑IMR

𝑘

d𝛿𝜑𝑘

=
𝜑𝑘

𝜑NS
𝑘

, (4.15)

is necessary. If the original prior is uniform on 𝛿𝜑𝑘 , then the 𝛿𝜑IMR
𝑘

must be weighted
by the Jacobian to be effectively translated to another uniform prior.

4.6 Appendix: Computing expected parameter correlations

Correlations between GR deviation and astrophysical parameters can be analytically
approximated by identifying regions of the parameter space that lead to a similar
frequency evolution [266] and signal duration. The dominant correlation is the one
between the detector-frame chirp mass, M(1 + 𝑧), and the symmetric mass ratio,
𝜂. The duration of a gravitational-wave signal is related to the detector-frame chirp
mass and some fiducial cut-off frequency [122],

𝑇 ∝ M5/3(1 + 𝑧)5/3 𝑓
−8/3
cut . (4.16)
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If we relate the final frequency to the innermost stable orbit or any cut-off which
scales inversely with the binary’s total mass, then 𝑇 ∝ 𝜂−8/5M13/3(1 + 𝑧)13/3. A
constant duration then implies

M(1 + 𝑧) ∝ 𝜂−24/65 . (4.17)

Here we have ignored both the contributions of a spin-induced “hang-up” effect [331]
and GR deviations.

Correlations between astrophysical parameters and GR deviations can then be com-
puted at lowest order [266] by enforcing that the second-order derivative of the phase
evolution as a function of frequency be constant. As an example, for the correlation
in Fig. 4.1, we compare the phase evolution when 𝛿𝜑0 = 0 and when varying 𝛿𝜑0 at
the leading PN order, resulting in

M−5/3
0 (1 + 𝑧0)−5/3 ∼ (1 + 𝛿𝜑)M−5/3(1 + 𝑧)−5/3 . (4.18)

Here M0 and 𝑧0 are the values of the chirp mass and redshift when there is no
deviation. We find the 0PN deviation coefficient to only be directly correlated with
the detector frame chirp mass,

𝛿𝜑0 ∼
(
M(1 + 𝑧)
M0(1 + 𝑧0)

)5/3

− 1 . (4.19)

This calculation can be repeated for higher PN orders as well, however care needs
to be taken as lower PN orders need to be retained when computing higher PN
deviation coefficient correlations.

4.7 Appendix: Population likelihood approximation

In practice, we carry out single-event parameter estimation with a fiducial sampling
prior, 𝜋(𝜃), before the hierarchical population analysis. We therefore do not possess
representations of the individual event likelihoods, 𝑝(𝑑 |𝜃), but rather samples drawn
from the fiducial posterior distribution 𝑝(𝜃 |𝑑) ∝ 𝑝(𝑑 |𝜃) 𝜋(𝜃). Therefore, it is
common to instead reformulate the integral within Eq. (4.1) as an average over
samples drawn from each event’s posterior distribution [276, 74, 277],

𝑝({𝑑}|Λ) ∝ 1
𝜉 (Λ)𝑁

𝑁∏
𝑖=1

1
𝑀𝑖

𝑀𝑖∑︁
𝑘=1

𝜋(𝜃𝑖,𝑘 |Λ)
𝜋(𝜃𝑖,𝑘 )

, (4.20)



81

where 𝑀𝑖 is the number of posterior samples for the 𝑖th event. It is possible for this
Monte Carlo integration to not converge—particularly if the population distribution
𝜋(𝜃 |Λ) is narrower than posterior distributions for individual events [289, 74, 283,
297, 332, 333]. This is particularly important in our scenario, since the inferred
population of deviations from GR is typically narrower than marginal measure-
ments from many individual events. This leads to a dearth of samples within the
inferred GR deviation population, which subsequently leads to unreliable Monte
Carlo integration in Eq. (4.20).

To address this issue, we use Gaussian kernel density estimates to represent the
individual-event posteriors in a number of parameters, and simplify the calculation
analytically by leveraging Gaussian population models. Dividing the parameters
into the subset described by the Gaussian population distributions, 𝜃G, and the non-
Gaussian distributions, 𝜃NG, we can analytically integrate over the former without
resorting to Eq. (4.20). The Gaussian population parameters are the GR deviation pa-
rameter and the binary-hole spin magnitudes, whereas the black-hole primary mass
and mass ratio, redshift, and spin tilts (for the analysis in App. 4.8) are included in
the non-Gaussian set of parameters. For the kernel density estimation, we determine
the corresponding covariance matrix for each individual event’s distribution using
Scott’s rule [334],

Σ𝐵𝑊,𝑖 ≈
Σ𝑖

𝑛
2/(𝑑+4)
eff,𝑖

, (4.21)

where Σ𝑖 is the weighted covariance matrix of the parameters being estimated, 𝑑 is
the number of Gaussian dimensions, and 𝑛eff is the effective number of samples [335,
336],

𝑛eff,𝑖 =

( ∑𝑀𝑖

𝑘=1 𝑤(𝜃𝐺
𝑖,𝑘
)
)2∑𝑀𝑖

𝑘=1 𝑤(𝜃𝐺
𝑖,𝑘
)2

, (4.22)

with the weights, 𝑤(𝜃𝐺
𝑖,𝑘
) = 1/𝜋(𝜃𝐺

𝑖,𝑘
).

Since the integrand in the 𝜃G-space is a product of Gaussian distributions, the result-
ing integral is also a Gaussian [337]. This leads to the straightforward expression
for the likelihood function

𝑝({𝑑}|Λ) ∝ 1
𝜉 (Λ)𝑁

𝑁∏
𝑖=1

1
𝑀𝑖

𝑀𝑖∑︁
𝑘=1

𝜋(𝜃NG
𝑖,𝑘

|Λ)
𝜋(𝜃𝑖,𝑘 )

×

N [𝜇(Λ), Σ𝐵𝑊 + Σ(Λ)] (𝜃G
𝑖,𝑘 ) , (4.23)
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Figure 4.10: Same figure as Fig. 4.4 but using 12 events from the first half of the third
LIGO-Virgo-KAGRA observing run, with individual event posterior distributions
constructed with IMRPhenomPv2. We generally observe similar structure to the
results with SEOBNRv4, although parameters are less constrained—likely due to
fewer observations incorporated.
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Figure 4.11: Same as Fig. 4.5, for the results from the IMRPhenomPv2 analysis.
As seen throughout the manuscript, inclusion of the astrophysical population model
in general leads to improved consistency with GR. Furthermore, the posterior dis-
tributions sit closer to GR for IMRPhenomPv2 than SEOBNRv4, likely as a result
of analyzing fewer events.

where 𝜇(Λ) = (𝜇, 𝜇𝜒, 𝜇𝜒) and Σ(Λ) = diag(𝜎2, 𝜎2
𝜒, 𝜎

2
𝜒), though more complicated

structure can be imposed on the population model. Since this integral is computed
analytically, we empirically find improved convergence.

4.8 Appendix: Constraints from IMRPhenomPv2

While we have focused on results from SEOBNRv4 [271, 272, 273, 274, 254],
these analyses do not include precessing degrees of freedom. However, evidence
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for precession has been found at the population level within gravitational-wave
observations [7, 8]. Therefore, to explore if there are any major changes when
incorporating precession effects, we use the 12 events from the first half of the
third observing run analysed with IMRPhenomPv2 [68, 134, 71, 70, 69, 294, 295]
which meet our selection criteria [14]. There are no equivalent results from the
second half of the third observing run [15]. We show the summary of the marginal
two-dimensional posterior distribution for the Gaussian population hyperparameters
with and without the inclusion of astrophysical information in Fig. 4.10. Generally,
these results are less constrained due to the smaller number of events, though we
still witness a similar shift in the means of the Gaussian populations as in Fig. 4.4.
We also summarize the quantiles at which the expectation from GR presides in
Fig. 4.11. Generally, the IMRPhenomPv2 results are more consistent with GR than
the equivalent SEOBNRv4 results presented in Sec. 4.3. This could be a product
of this waveform model incorporating precession, or simply that fewer events were
analyzed, leading to a decrease in precision.
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C h a p t e r 5

THE IMPACT OF SELECTION BIASES ON TESTS OF
GENERAL RELATIVITY WITH GRAVITATIONAL-WAVE

INSPIRALS

R. Magee, M. Isi, E. Payne, K. Chatziioannou, W. M. Farr, G. Pratten,
and S. Vitale. “Impact of selection biases on tests of general relativity with
gravitational-wave inspirals”. In: Phys. Rev. D 109.2 (2024), p. 023014. doi:
10.1103/PhysRevD.109.023014. arXiv: 2311.03656 [gr-qc].

E.P. carried out the hierarchical analyses presented, and contributed to the
writing of the manuscript.

5.1 Introduction
Gravitational wave (GW) signals detected by LIGO [1] and Virgo [16] have provided
otherwise-inaccessible constraints on deviations from general relativity (GR) in the
dynamical and strong-field regimes [249, 338, 13, 14, 15]. When considered in
aggregate, the set of detected binary black hole (BBH) signals is fully consistent
with the null hypothesis of quasicircular mergers in vacuum GR. However, existing
constraints apply only to signals that have been confidently detected and identified as
compact binaries by pipelines based on GR. Even though generic searches exist [140,
117, 339, 340, 341], all current BBH signals have been detected with search pipelines
that are based on templates produced within Einstein’s theory. It remains possible
that there exist binaries whose signals depart from GR but have been selected against
by searches [342, 343, 344]. This raises two interrelated questions: (i) what is the
largest deviation from GR that current searches can detect, and (ii) are current
constraints on deviations from GR artificially narrow because they are based on
signals that were detected in the first place?

Answering these questions amounts to quantifying the selection biases that modulate
the probability of signal detection as a function of its parameters. The impact of
regular binary parameters within GR—such as black hole (BH) masses or spins—
can be approximated through their influence on the expected signal-to-noise ratio
(SNR) of a given signal [6, 7], or more robustly by assessing the performance of
the search pipeline on simulated signals [8]. The resulting selection function is an
indispensable ingredient in inferring the astrophysical distributions of the detected

https://doi.org/10.1103/PhysRevD.109.023014
https://arxiv.org/abs/2311.03656
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events [6, 7, 8]. While this effect is well understood for GR parameters, the selection
on beyond-GR parameters is currently largely unknown and generally unquantified.
Nevertheless, studies under specific models suggest searches have nonnegligible
selection for sufficiently large deviations [342, 343, 344].

In the absence of a quantified selection function for tests of GR, current constraints
are restricted to assessing agreement of the population properties of detected events
with GR. Such an analysis can be performed without reference to any specific
alternative theory of gravity by inferring the general shape of the population of
deviations using hierarchical inference [345, 346, 347, 348]. This procedure can
detect anomalies in a collection of signals even if the deviation manifests differently
for each individual event [264, 262, 265]. However, without selection effects, this
procedure does not infer the intrinsic population of deviations, which could contain
undetectable signals [262, 14, 15]. Furthermore, if selection biases are strong, these
population constraints do not formally correspond to the detected population either
on account of detector noise [349]. This concern also extends to cases in which
events can be combined by simply multiplying likelihoods for a shared deviation
parameter.

In this paper, we study the selection function within template-based search pipelines
for parameterized tests of the inspiral phasing parameters [66, 69, 350, 351]. Among
the wide array of possible GR tests, we focus on post-Newtonian (PN) modifications
to the waveform phasing, 𝜑( 𝑓 ), due to anomalous dynamics [352, 69, 350, 351,
353, 354, 355, 356, 357, 358, 359, 360, 361], which could arise from corrections to
the theory or due to exotic sources following other nonstandard physics, such as BH
mimickers. We use the deviation parameters 𝛿𝜑𝑖, where 𝑖/2 denotes the associated
PN order. We focus on PN modifications as they are one of the flagship tests of GR
with LIGO, Virgo, and KAGRA [362], and their effect is to modify the full inspiral,
which dominates the detectability of all but the most massive systems. The latter
can more easily be detected by theory-agnostic burst pipelines, potentially reducing
the expected impact of selection biases induced by deviations from GR.

We generate simulated signals (also called injections) and recover them with a
simplified version of the GstLAL pipeline [138, 151, 152, 363]in Sec. 5.2. Rather
than evaluating the computationally expensive likelihood ratio that would normally
be computed by GstLAL as a detection statistic, we approximate detection efficiency
with a proxy ranking statistic based on the recovered SNR and an autocorrelation-
based consistency check. In Sec. 5.3 we find that, under these circumstances,
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selection biases affect the detectability of signals only for very large values of
the deviation parameters. These values are significantly higher than the precision
achieved by current tests; we therefore expect that incorporating selection effects in
population inference will have a minimal impact on the resulting constraints.

Armed with the results from our injection campaign, we confirm this expectation
by enhancing existing hierarchical tests of GR [15] with a selection factor, and
compute the resulting astrophysical distribution of deviation parameters in Sec. 5.4.
We parametrize the deviation population with a Gaussian and infer its mean and
standard deviation while taking into account selection effects. Following [84],
we simultaneously model the astrophysical distribution of the binary component
masses. For most phase deviation terms we consider, the inferred astrophysical
distributions for beyond-GR parameters are identical to those obtained by ignoring
the GR selection effects. We recover the strongest impact for the −1PN term, where
incorporating selection effects widens the inferred population distribution by 10%.
We therefore conclude that the quantitative impact of ignoring selection effects in
tests of GR with GW inspirals is small.

This conclusion may be surprising given the crucial role of selection effects in
estimating, for example, the mass distribution of BBHs. The crucial difference
between deviation parameters and BBH masses is that the former population is
inferred to be intrinsically very narrow as all events are consistent with a vanishing
deviation. Indeed, after a dozen high-significance BBHs, the population for all
deviation parameters inferred from LIGO-Virgo data is already narrower than the
impact of selection effects. As more events are detected (and assuming they remain
consistent with GR), the inferred deviation population will continue to narrow,
making selection effects even less relevant. In other words, selection effects do exist
in the population, but their impact is only appreciable for deviation values that are
already ruled out. Other population distributions, such as those for the mass and
spin, are not inherently narrow and selection effects remain important no matter how
many events are detected. These considerations suggest that our conclusions only
apply under the assumption that all events come from a narrow, unimodal population
of deviation parameters. They do not rule out a disjoint population with deviations
large enough to remain hidden to searches; such extreme non-GR signals can only
be ruled out with a dedicated search [342, 343, 344]. We further this argument in
our concluding remarks (Sec. 5.5).
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5.2 Estimating the matched-filter selection function for signals with GR devi-
ations

In this section, we describe the procedure for quantifying the effect of GR deviations
on the GW selection function. In summary, we follow the standard practice of
estimating detection efficiency by simulating a large set of signals, analyzing them
with a detection pipeline, and determining which signals are detectable.

Injection Set
We start with the publicly available set of 156 878 BBH injections associated with
GWTC-3, which target only GR parameters [364]; we leave detailed explorations
of binary neutron stars and neutron-star–black-hole binaries to future work. In
this injection set, the primary and secondary binary masses are distributed as
𝑝(𝑚1) ∝ 𝑚−2.35

1 and 𝑝(𝑚2 |𝑚1) ∝ 𝑚2 and bounded, in the source frame, such
that 2 𝑀⊙ < 𝑚2 ≤ 𝑚1 < 100 𝑀⊙; the BH spins are isotropically distributed with
uniformly distributed magnitudes |𝜒1,2 | ≤ 0.998. Further specifics of the within-GR
population are described in Table XII of [77]. The simulations are generated using
a baseline IMRPhenomPv2 waveform approximant [133, 134, 107], which includes
the effects of spins misaligned with the orbital angular momentum. We implement
deviations from GR using the TIGER framework [69, 350, 351], as in [15].

To reduce the computational burden on the original GWTC-3 analysis [77], these
injections have already been selected against a minimum optimal network signal-
to-noise ratio (SNR) threshold of 6. The network SNR was calculated by adding
the LIGO-Livingston and LIGO-Hanford SNRs in quadrature. Systems with a
lower optimal network SNR are considered “hopeless” for detection. To further
enhance computational efficiency, we only consider BBHs that have optimal LIGO
Livingston SNRs ≥ 6 and redshifted total masses below 300 𝑀⊙. For our purposes,
restricting the total mass injected has negligible effect due to the additional inspiral
SNR selection criterion typically applied in PN tests of GR [15, 84]; we return to
this in Sec. 5.4. These initial cuts result in 84 119 injections.

To measure the selection bias against beyond-GR populations, we perturb the inspiral
phasing of the injections and recover them with an approximation of the GstLAL-
based inspiral pipeline described in Sec. 5.2. Following the standard parametrized
post-Einsteinian test [66], we perturb each PN order and repeat the analysis sepa-
rately. Each simulation is assigned a random fractional1 deviation drawn from a

1In GR, the coefficients corresponding to the -1PN and 0.5 PN terms are exactly zero. 𝛿𝜑−2 and
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Figure 5.1: A representative background distribution for BBHs collected for the
LIGO Livingston detector. The background is parameterized in 𝜉2/𝜌2 vs 𝜌 space.
Regions with high ln 𝑃 indicate where noise is most likely (brighter color). The
shaded contour enclosed by a white edge corresponds to our detection criterion,
𝜌̄ ≥ 10. This region is largely separate from the collected background.

uniform distribution with bounds ±0.1, ±1, ±5, ±3, ±2, ±15, ±5, ±10, ±50, and
±30 for the 𝛿𝜑−2, 𝛿𝜑0, 𝛿𝜑1, 𝛿𝜑2, 𝛿𝜑3, 𝛿𝜑4, 𝛿𝜑5𝑙 , 𝛿𝜑6, 𝛿𝜑6𝑙 , and 𝛿𝜑7, respectively,
where the “𝑙” subscript denotes the logarithmic phase terms. The bounds are chosen
such that the inferred deviations from individual events are entirely covered by the
selection. We only vary one coefficient at a time to match the analysis usually
applied to actual data [15]. This procedure results in one BBH injection set per PN
order, each containing the same number of BBHs with identical GR parameters, dif-
fering only in the order and strength of the random GR deviations. After specifying
injection parameters, we generate a corresponding waveform using the IMRPhe-
nomPv2 approximant andadd it to the data stream of a single detector. We space
the simulated signals 7 seconds apart through a single stretch of data collected in
the LIGO Livingston detector during April of 2019 with global-positioning-system
(GPS) times in the range [1239641219 s, 1240334066 s] [365].

Detection criterion and efficiency
We analyze the injection sets with a simplified infrastructure based on GstLAL,
one of the matched-filter-based search pipelines presently used to search for GWs
from compact binaries [151, 139, 138, 363, 366, 367, 368, 369, 148, 143, 150,
370, 371]. Matched-filter based search pipelines discretely sample the GR-based
signal manifold to create template banks of possible signals. The discretization
results in a 1%−3% loss of SNR over the parameter space covered by the bank [372,

𝛿𝜑1 therefore represent absolute deviations.
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373]. Pipelines presently restrict their searches to emission from sources with spin
angular momenta aligned with the orbital angular momenta, and therefore neglect
the impact of precession or higher-order angular modes; the signal loss incurred
for these systems is, therefore, larger. We specifically consider the GstLAL-based
matched filtering pipeline for its signal consistency check and because it most densely
sampled the signal space in LIGO-Virgo’s third observing run (O3), and thus had the
minimum expected SNR loss from discreteness. For BBHs, the GstLAL bank used
an effective-one-body model of the GW emission, SEOBNRv4_ROM [374]. The
specific structure and maximum SNR loss of GstLAL’s template bank is described
in Table II of the GWTC-2 publication [4].

Pipelines correlate waveforms from the template bank with the data collected in
each detector to produce an SNR time series. Peaks in the SNR time series,
called triggers, are checked for coincidence across detectors, and are then ranked
according to the pipeline’s detection statistic. GstLAL’s ranking statistic is the
likelihood ratio L, defined in [375, 363], which relates the probability of observing
a set of parameters under the signal hypothesis to that of the instrumental-noise
hypothesis. This quantity is a function of a number of factors: the set of instruments
participating in a detection, the matched-filter SNR, a signal-based-veto parameter,
the event time and phase in the frame of each detector, and the masses and spins of
the identifying template. In general, it is computationally expensive to accurately
estimate the background of the search and recover simulated signals via L. Since
no background for O3 is publicly available, and to minimize the analysis cost, we
instead employ an approximate detection statistic 𝜌̄ that weights the measured SNR
by a signal consistency check [376, 377], namely

𝜌̄ =
𝜌[ 1

2
(
1 + max(1, 𝜉2)3) ]1/5 , (5.1)

where 𝜌 is the matched-filter SNR and 𝜉2 is a signal consistency test defined from
the autocorrelation as

𝜉2
𝑗 =

∫ 𝛿𝑡

−𝛿𝑡 d𝑡 |𝑧 𝑗 (𝑡) − 𝑧 𝑗 (0) 𝑅 𝑗 (𝑡) |2∫ 𝛿𝑡

−𝛿𝑡 d𝑡 (2 − 2
��𝑅 𝑗 (𝑡)

��2) , (5.2)

where 𝑧 𝑗 and 𝑅 𝑗 denote the complex SNR and autocorrelation of template 𝑗 , respec-
tively, and the integrand in the denominator is the expectation value in Gaussian
noise [138]. We compute a value of 𝜉2 for each trigger by integrating Eq. (5.2)
over a small window of time ±𝛿𝑡, centered about the trigger. We use 𝛿𝑡 = 0.17 s
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(𝛿𝑡 = 0.34 s) for templates with chirp masses greater (less) than 15 𝑀⊙, which was
also done in production by the full GstLAL pipeline. When the observed strain data
closely matches the template 𝑗 , then 𝜌̄ = 𝜌. For each BBH injection, we compute
the matched-filter SNR 𝜌 and 𝜉2 value against the GstLAL template bank. Since
signals generally match with multiple templates in a bank, we perform the same data
reduction clustering as the GstLAL pipeline does in GWTC-3. We discard triggers
within 0.1 s of other triggers with a larger 𝜌̄ value, breaking ties by 𝜌.

Since we consider the response in only a single detector, we conservatively set a
detection threshold of 𝜌̄ ≥ 10. This choice is motivated by the fact that significant
candidates from GWTC-2 and GWTC-3 were identified for network SNR 𝜌net ≳ 10,
which typically corresponded to events with single detector SNRs 𝜌H ∼ 𝜌L ∼ 7.
As we only filter a single detector, we assert that a signal in a single detector
with 𝜌 = 10 will have approximately the same significance as a signal observed in
multiple detectors with 𝜌net = 10. We further assert that our proxy detection statistic
threshold is approximately equivalent to the false-alarm-rate (FAR) threshold of
O(10−3/yr) adopted in past tests of GR [13, 14, 15]. This choice is conservative for
our study in that a weaker detection criterion could only reduce the detection bias,
i.e., it could only increase the fraction of signals that are detected by the pipeline.

Although we use an abbreviated version of the detection pipeline, we argue that the
resulting selection function is a good approximation for the full selection effect for
the following reasons:

1. The threshold of 𝜌̄ > 10 selects triggers that are disjoint from the background
typically collected by the search. Triggers that meet this criterion exist in
the shaded contour shown in Fig. 5.1, which is cleanly off a representative
background observed by the search. In other words, 𝜌̄ > 10 implies vanishing
support from the background.

2. In addition to the background, L contains a signal term that we do not
explicitly take into account here. This is justified because, in the 𝜌̄ > 10
region, the noise distribution varies significantly more rapidly than the signal
distribution (see Figs. 9 and 10 in [138]). Therefore, the contribution of the
signal term to L is approximately constant over this region, and the FAR is
mostly determined by the noise distribution.

3. Finally, although L depends on parameters beyond 𝜌 and 𝜉, namely the event
time, phase, mass, and spin, those should be minimally affected by the kinds
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of GR deviations that we consider here. Since the polarizations are unaffected
by phasing corrections and the signals still propagate at the speed of light, the
expected distribution of time delays and phase differences across detectors
will remain the same. Regarding masses and spins, it is possible for non-GR
signals to be identified by GR templates with masses and spins that differ from
the source. Though this would change the population model’s contribution,
the model itself is broad (see Section IVB of the GWTC-2 publication [4])
and contributes weakly to the overall value of L.

These three reasons justify our 𝜌̄ criterion as a proxy for detecting signals with high
significance.

5.3 Impact on detection efficiency
To develop intuition for how deviations in the PN parameters affect the detection
statistic, 𝜌̄ in Eq. (5.1), Fig. 5.2 shows the SNR and autocorrelation time series with
(right) and without (left) a deviation applied to the−1PN coefficient, 𝛿𝜑−2, for a high
(top) and low (bottom) injected SNR. We examine these two ingredients of the total
detection statistic 𝜌̄ for a characteristic BBH with redshifted masses 30−30 𝑀⊙ in the
detector frame. The two components of 𝜌̄, 𝜌 and 𝜉2, are represented in these plots by,
respectively, the peak of the SNR time series (black) and the integrated area between
it and the scaled autocorrelation time series (blue). Mismatches between a signal
and the template bank induced by a GR deviation will impact detection efficiency
due to both a loss in the recovered SNR 𝜌 (reduction in the peak height) and increase
in the signal consistency check value 𝜉2 (increased disagreement between blue and
black curves).

Indeed, the beyond-GR deviation causes a reduction in the recovered SNR, seen
through a reduced peak between the left and right panels of Fig. 5.2, thus directly
affecting 𝜌̄. Moreover, the introduction of beyond-GR effects creates secondary
peaks in the SNR time series obtained from filtering with a GR waveform. The os-
cillations in SNR further reduce the signal consistency check, 𝜉2—that is, the square
difference between the measured SNR and the scaled autocorrelation, per Eq. (5.2).
These oscillations become harder to discern from the Gaussian background with
decreasing SNR, thus minimizing the effect of 𝜉2 on the detectability of the signal.
Figure 5.2 is helpful in understanding the interplay between 𝜌 and 𝜉2 in the presence
of a deviation from GR. However, it is not sufficient to determine the degree of
selection bias against beyond-GR signals, as it only shows the effect of a single
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Figure 5.2: The response of a single search template to a 30𝑀⊙ − 30𝑀⊙ BBH
without (left) and with (right) deviations to 𝛿𝜑−2 for SNR ∼ 24 (top) and ∼ 15
(bottom) injections in Gaussian noise colored to O3 sensitivities. The injections
that deviate from GR use 𝛿𝜑−2 = −0.1. The black line shows the measured SNR
time series for a single template waveform, with the gray band denoting the 1𝜎
measurement uncertainty. The beyond-GR phasing results in an SNR loss of ∼ 40%
between the left and right columns. Additionally, there is a mismatch between the
measured SNR time series and the SNR scaled autocorrelation that weakens the
signal consistency test, 𝜉2. Both effects lead to a reduction of our detection statistic
𝜌̄, Eq. (5.1), and thus a loss in sensitivity.

injection relative to the corresponding GR template with the same parameters. In
an actual search, we compare a beyond-GR injection against the entire bank, and
the detection statistic is based on the best match.

To quantify the actual impact of GR deviations on the detection efficiency, we study
the distribution of parameters of the signals that made it through our simplified
detection pipeline, i.e., those that returned a value of 𝜌̄ > 10 when compared against
any template in the GR bank. This amounts to measuring the detectable fraction,

Ê (Λ) =
∫

d𝜃 𝑝det(𝜃) 𝜋(𝜃 |Λ) , (5.3)

where Λ is the set of hyperparameters that describe the underlying population dis-
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Figure 5.3: Histograms of recovered injections with deviations from GR in the -1PN
(𝛿𝜑−2, left) and 0.5PN (𝛿𝜑1, right) coefficients. Although the initial injection set
was assigned deviations from a uniform distribution (dotted black), the pipeline
selects against large negative values of the deviation parameters, as indicated by the
dearth of detections in the leftmost bins (gray histograms). Besides the total set
of injections, we show sub-distributions corresponding to different injected mass
bins in the detector frame (colored histograms). The distributions of recovered
injections are largely flat over the span of values allowed by the analysis of the 12
events considered in Sec. 5.4 (which are ∼4× broader than GWTC-3 constraints
[15]; vertical gray band, median and 90% CL), suggesting that the selection bias is
not strong enough to affect the population constraints.

tribution, 𝜋(𝜃 |Λ), and 𝑝det(𝜃) is the selection function that describes the probability
of detecting a system with parameters 𝜃.

Figure 5.3 shows the marginal selection function, 𝑝det(𝛿𝜑), for the -1PN coefficient
(𝛿𝜑−2, left) and the 0.5PN coefficient (𝛿𝜑1, right), over the whole mass space (gray)
as well as subsections for different BBH mass bins (colors). For both parameters,
the distribution of detected signals departs from the uniform intrinsic distribution
that we injected (black): there is a dearth of detected signals with large negative
values of the deviation parameters, indicating that such signals are selected against.
This can be explained by the fact that a negative value for these parameters will
shorten the inspiral, which in turn reduces the SNR of the signal. This effect is more
pronounced for the −1PN coefficient, which is consistent with the intuition that this
coefficient should have a larger impact on the GW phase than the 0.5PN coefficient
over the duration of an inspiral because it is associated with a correction entering
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at a lower power of the frequency. The drop in detection efficiency is also sharper
for lower masses, as expected given the scaling of the inspiral length with the BBH
mass.

In spite of the drop in sensitivity observed at the edges of the histograms in Fig. 5.3,
the recovered distributions are generally flat in the region that is allowed by the
population constraints from GWTC-3 (gray band). Lower detector-frame masses
demonstrate a larger gradient across these regions (e.g. 𝑀 (1+ 𝑧) < 10 𝑀⊙; purple).
However, the observed events considered here do not reside in this region of the mass
parameter-space. Since there is no gradient in the region allowed by the observations,
there is no preference for any particular value of the deviation parameter in the
range still consistent with current data. This suggests that the selection bias is not
strong enough to affect the population constraints, which are more sensitive to GR
deviations than the detection pipeline. We confirm this below by repeating catalog
analysis of GR deviations with and without the selection effects.

5.4 Updated population estimates
We incorporate the selection function computed from Sec. 5.3 into population-
level inference for inspiral tests of GR. By computing the astrophysical distribution
of beyond-GR parameters, we can now make statements about the types of GR
deviations consistent with an observed set of detections. In practice, computing
the astrophysical distribution requires incorporating knowledge of the detection
efficiency over parameter space to deconvolve the instrument’s selection function
from the set of observed measurements.

We evaluate the consistency of a set of observations with GR through a hierarchical
analysis without imposing strong assumptions about the nature of the deviation
across events. As a null test, we follow [262, 265, 84, 15] in parameterizing the
intrinsic distribution of individual-event values for some deviation parameter 𝛿𝜙 as
a Gaussian 𝛿𝜙 ∼ N(𝜇, 𝜎). This model targets the mean 𝜇 and variance 𝜎2 of GR
deviations, regardless of the true shape of the underlying distribution. Beyond-GR
parameters are typically defined to vanish in GR, so that the null hypothesis that GR
is valid for all events predicts 𝜇 = 𝜎 = 0. If GR is not correct, then the deviation
parameters may take different (nonzero) values as a function of source parameters,
resulting in nonvanishing 𝜇 or 𝜎. We apply the approach in [84] to simultaneously
model the distribution of astrophysical parameters.

Existing implementations of this hierarchical analysis characterize the set of ob-
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served events but do not inform about possible intrinsic deviation distributions that
predict events with such large deviations that are undetectable. To factor this in,
we use the result of Sec. 5.3 following the techniques used in the context of astro-
physical inference to study the astrophysical distribution of within-GR parameters,
such as masses and spins. The key additional step is to incorporate the detection
efficiency into the hierarchical likelihood through a term that can be approximated
as the Monte-Carlo sum population weights over a set of 𝑚 detected injections with
parameters 𝜃𝑘 [289, 282, 332],

Ê (Λ) = 1
𝑀

𝑚∑︁
𝑘

𝜋(𝜃𝑘 |Λ)
𝑝(𝜃𝑘 |draw) , (5.4)

where 𝑀 is the total number of drawn injections (out of which 𝑚 were detected),
𝑝(𝜃𝑘 |draw) is the probability of drawing parameters 𝜃𝑘 from the population adopted
in the injection campaign, with Λ = {𝜇, 𝜎}, in addition to the parameters describing
the astrophysical population of GR quantities (like masses and spins). The hierachi-
cal likelihood, 𝑝({𝑑}|Λ), governing the inferred astrophysical population from 𝑁

observations with dataset {𝑑} is

𝑝({𝑑}|Λ) = 1
Ê (Λ)𝑁

𝑁∏
𝑖

∫
d𝜃𝑖 𝑝(𝑑𝑖 |𝜃𝑖)𝜋(𝜃𝑖 |Λ) , (5.5)

where 𝑝(𝑑𝑖 |𝜃𝑖) are the individual event likelihoods. The selection function influ-
ences the inferred hyperparameters through its inclusion in Eq. (5.5).

In order to include an injection in the “detected” sum of Eq. (5.4), besides GstLAL’s
detection threshold of 𝜌̄ > 10 from Sec. 5.2, we additionally require that the
measured SNR in the inspiral satisfy 𝜌insp > 6. The latter corresponds to the
selection criterion for estimating the inspiral PN coefficients in [13, 14, 15]. In order
to avoid computing the inspiral SNR for each injection in the set, we approximate
the fraction of SNR in the inspiral as a linear function of the detector frame total
mass as in [84].

In addition to hierarchically modeling the beyond-GR astrophysical distribution, we
incorporate population models for the within-GR population distributions. Due to
a lower number of recovered injections than the standard set of injections used in
population studies [332], we only infer the primary mass and mass ratio distributions
jointly with the beyond-GR population, using the models outlined in Ref. [84]. We
fix the spin distribution to be uniform in spin-magnitude and isotropic about all
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Figure 5.4: Inference on the mean and standard deviation of the −1PN coefficient,
𝛿𝜑−2. The orange contours show the result of the hierarchical analysis without
accounting for selection effects, while the purple contours show the result when the
selection function is included. The two results are consistent with each other, with
the selection function widening the population only slightly. We find no difference in
the coupling between 𝜇 and 𝜎 and the parameters controlling the mass distribution
either (not shown).

possible spin orientations; the redshift distribution is consistent with the maximum
a posteriori power-law found in Ref. [8].

With the setup described above, we repeat the hierarchical analysis in [262, 14,
15, 84] applied to 12 events in O3a, to be consistent with times over which the
selection function is estimated. A list of the included events can be found in Table
I of Ref. [84]. Figure 5.4 shows the resulting inference on 𝜇 and 𝜎 for the −1PN
coefficient, 𝛿𝜑−2, compared to the result that does not account for selection biases
in the beyond-GR parameters. Although this was the coefficient with the strongest
detection bias as evaluated in the previous section (Fig. 5.3), this effect is very small,
and the two results, with and without selection, are consistent with each other up to
a slight widening of the population when selection is factored in. This is consistent
with the expectation from Fig. 5.3, which suggested the impact of selection should be
minimal in light of the accuracy of the constraint from parameter estimation. Figure
5.5 shows that this is the case for all coefficients, none of which show significant
differences between the two results.



97

ϕ−2

−0.02

−0.01

0.00

0.01

0.02
δϕ

i

ϕ0 ϕ1 ϕ2 ϕ3

−1.0

−0.5

0.0

0.5

1.0

ϕ4 ϕ5l ϕ6

−2

−1

0

1

2

ϕ6l ϕ7

−6

−4

−2

0

2

4

6
−1PN 0PN 0.5PN 1PN 1.5PN 2PN 2.5PN(l) 3PN 3PN(l) 3.5PN

Without δϕ selection effects With δϕ selection effects

Figure 5.5: Posterior predictive distributions (also known as the population-
marginalized expectation) for deviations at all PN orders we consider, without
(orange) and with (purple) selection effects factored in. No coefficient shows a
significant impact when factoring in the selection: the 𝛿𝜑−2 displays the strongest
effect, with a slight broadening of the inferred distribution at the level of ∼10%.

5.5 Conclusions
In this study, we revisited tests of GR from the inspiral GW phase by accounting
for the selection effect of templated searches against signals with GR deviations.
We estimated the selection function by considering the performance of a simplified
version of the GstLAL search pipeline against simulated signals with beyond-GR
effects affecting the PN evolution of a BBH inspiral. Since GstLAL detects signals
by comparing them to a template bank constructed with GR waveforms, its detection
efficiency decreases under sufficiently large deviations from GR. However, we found
that this threshold for deviations is less stringent than the precision of GWTC-3
constraints, suggesting that population inference on the inspiral deviation parameters
is minimally affected by selection effects. In other words, existing constraints are
already a very good approximation to the full astrophysical population of deviation
parameters, apart from the possibility of a disconnected subpopulation of sources
with very high deviations.

This finding can be understood by noting that the sensitivity of parameter estimation
to deviations from GR scales inversely with the SNR of the signal, while the detection
threshold imposed by the search pipelines is best represented as a hard SNR cutoff.
A deviation 𝛿𝜑 that induces a mismatch M relative to the best-fitting GR template
will result in an SNR loss of order 𝜌 → M 𝜌; accordingly, the measurement
precision in parameter estimation will scale as Δ(𝛿𝜑) ∼ 1/𝜌. For a given SNR, the
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mismatch tolerated by the search pipeline will be much higher than the sensitivity
of the parameter estimation. Therefore, signals that incur an SNR penalty would
still be detectable as long as they remain above the search’s threshold; meanwhile,
given a GR signal in the data, parameter estimation will constrain the magnitude of
a deviation tightly around zero, with much better precision than would be directly
associated with the pipeline’s detection threshold.

In other words, the tolerance for detection is much larger than the tolerance for
parameter estimation, and the latter is what determines the population constraints.
Since the population of observed deviations is extremely narrow (a delta function
at zero if GR is correct), the hierarchical measurement is minimally affected by
selection effects, as we have shown in Fig. 5.5. This argument does not apply to
other parameters, such as the BH masses, since their distribution is intrinsically
broad.

Our main conclusion is that the deviation population is already narrower than the
extent of the selection effects, and thus the latter do not impact the former. However,
this assumes that deviations form a single, compact population whose mean and
standard deviation we constrain. Since no observed events are inconsistent with
GR, the inferred width of this population grows smaller as the catalog increases. We
are therefore not considering, and thus not ruling out, disjoint populations with a
subset of events that have extremely large (and potentially undetectable) deviations
or a mass-dependent deviation population model. It remains conceivable that a
subpopulation of signals with extremely high deviations could exist and remain
hidden from GR-based pipelines, motivating dedicated searches [342, 343, 344].
However, that does not translate into selection biases for the components of the
population that are already constrained by the existing catalog.

This distinction also suggests that there is no contradiction between our results
and those of Ref. [342, 343, 344]: we both find appreciable selection effects for
sufficiently large values of the deviation parameters, c.f., Fig. 5.3. Our study,
however, highlights that under the assumption of a single, unimodal population
distribution of the deviation parameters, such large values of the deviation parameters
are already ruled out.

As Essick and Fishbach [349] recently pointed out, the existence of prominent se-
lection biases would complicate the interpretation of hierarchical constraints that do
not factor in selection effects, as the inferred population would not be strictly repre-
sentative of neither the true astrophysical distribution nor the observed distribution
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of parameters. However, in the absence of strong selection effects, hierarchical
inference without a selection term remains a valid tool to constrain the population
of beyond-GR parameters, as we have shown here for PN tests of the BBH inspiral.
This, of course, may not be the case for other tests or implementations.

Our results are subject to a number of caveats, and selection effects might be stronger
for different GR tests or population models. First, to mitigate computational costs,
we have used an approximate ranking statistic that only incorporates information
from a single detector. We impose a detection threshold of 𝜌 ≥ 𝜌̄ ≥ 10 to maximize
purity in accordance with the FAR threshold adopted in past GR tests [13, 14, 15].
We do not expect a full injection campaign utilizing the complete ranking statistic
described in [363] would yield more precise results at this threshold and for the
inspiral deviation test considered here. However, our results do not obviate the need
for a full injection campaign for other tests of GR or other pipelines.

Besides the adopted threshold, the 𝜌̄ ranking statistic differs from the full likelihood
ratio also on the information it considers. The latter also includes information
about the phase and time of the signal in different detectors. Though we do not
expect those terms to be important for the inspiral deviation parameters we consider
here, they could become important for other tests of GR, such as those considering
propagation effects or the signal polarization. Quantifying selection effects for such
tests would require a full multi-detector and likelihood ratio calculation.

We produce injected signals with GR deviations using standard infrastructure [133,
134, 107, 69, 350, 351], and choose parameter ranges consistent with priors used
in LIGO-Virgo-KAGRA publications. However, for some of these extreme values,
the resulting waveform could become pathological [378], and may not represent a
physically meaningful configuration [324]. Although this might affect the overall
applicability and physical interpretation of the tests, it does not affect the interpre-
tation of our results that relate to the selection effects of the tests as formulated.
Reformulations of the inspiral tests to ensure the GW phase calculation remains
in the convergent series expansion regime [324, 267] would likely be affected by
selection effects even less, as they restrict the allowed range of possible deviations.

Among the compact-binary pipelines, we restrict to a simplified version of GstLAL.
We expect the impact of this assumption to be small, as we only consider the
most confidently-detected BBHs with single detector SNRs ≳ 10, all of which are
detectable by GstLAL. If we decreased the SNR threshold, we might encounter
events detected by other compact-binary pipelines, in which case we would need
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to quantify their selection effects. However, we expect that relaxing SNR or FAR
thresholds should only make pipelines more tolerant to signals beyond GR.

Extending beyond matched-filter pipelines, we expect weakly-modeled search meth-
ods [140, 117] to surpass template-based ones for sufficiently large GR deviations.
However, it is the case that both all events we consider here and all events that have
been detected in general are detected significantly by at least one template-based
search. Ultimately, the sensitivity of weakly-modeled searches should also be quan-
tified and taken into account, though some have started to explore the biases this
would introduce [344].

As the sensitivity of GW detectors improves, so does the number and quality of
detections, leading to increasing sensitivity to both subtle deviations from GR and
systematics in our models. While here we have focused on tests of GR based on GW
inspiral phases and single-Gaussian populations, exploring the effect of selection
biases in other tests or under other population models will also become important.
As both our detectors and techniques evolve, future studies need to evaluate this and
other potential systematics.
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6.1 Introduction
Searches for deviations from General Relativity (GR) with gravitational waves
(GWs) are hampered by the vast landscape of alternative theories [379, 380] and the
scarcity of detailed predictions under any specific theory. Faced with these chal-
lenges, most tests are framed as theory-agnostic searches for generic deviations [249,
12, 13, 14, 15]. Although this approach has provided increasingly precise null tests,
it forgoes physical expectations for the likely behavior of realistic deviations, making
constraints harder to interpret and potentially less sensitive [324, 254]. However,
even without reference to a specific beyond-GR theory, general arguments limit how
deviations may manifest under broad theory classes. This presents an opportunity
for improving tests of GR with GWs.

In this paper, we exploit one such argument arising from effective field theory:
the magnitude of the beyond-GR effect should scale with the spacetime curvature
of the source, e.g., [87, 88]. Since curvature is proxied by mass, lighter systems
should manifest larger—and hence more measurable—deviations. In the context of
binaries observed with GWs, this expectation has been folded in (though not directly
inferred from) post-merger (ringdown) constraints [381, 382, 383] and simulations
of residual cross-correlated power between detectors [384]. Here, we go beyond
folding in fixed values of the curvature scaling [381, 382, 383]: we exploit the
fact that the curvature scaling will manifest within an ensemble of observations
to directly infer the curvature dependence of GR extensions without resorting to

https://doi.org/10.1103/PhysRevLett.133.251401
https://doi.org/10.1103/PhysRevLett.133.251401
https://arxiv.org/abs/2407.07043
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theory-specific assumptions. A direct measurement of the curvature scaling will
then provide insights on the modification to the Einstein-Hilbert action.

We propose a search for deviations from GR in a catalog of GW observations that
leverages this effective field theory insight. Instead of committing to a specific
theory, we constrain expected morphologies from a large set of potential theories
at once. Deviations from GR are linked to the leading power correction in the
Einstein-Hilbert action, e.g., [385, 386, 58, 59, 60, 387], with a Lagrangian

L = LGR + 𝜆 𝐹𝛾 (R, 𝜙) , (6.1)

where LGR is the GR term, 𝐹𝛾 (R, 𝜙) is some functional of the curvature R (and
potentially other degrees of freedom 𝜙) scaling as R𝛾, and 𝜆 is the dimensionful
coupling coefficient.1 Dimensional analysis reveals that 𝜆 ∼ ℓ2(𝛾−1) , representing a
theory-specific coupling governed by a theory-specific length-scale, ℓ. Importantly,
this scaling is imprinted in (dimensionless) deviations from GR regardless of the
physical mechanism they induce.

For instance, consider beyond-GR theories with cubic or quartic curvature correc-
tions, 𝛾 = {3, 4}, and no further degrees of freedom. Such theories introduce
tidal effects in black hole binaries, under the assumption that the theory-specific
length scale is smaller than the lightest black hole. Such deviations first appear
at the 5th post-Newtonian (PN) order through tidal Love numbers whose mag-
nitude depends on the specific correction.2 Crucially, these deviations scale as
𝜆/𝑀2(𝛾−1) ∝ 𝑀−{4,6} [388, 60, 389], with 𝑀 the binary total mass. Additional
degrees of freedom impact these scalings. For instance, quadratic theories, 𝛾 = 2,
with additional degrees of freedom yield hairy black holes with deviations in the
inspiraling GW signal at either −1 or 2PN order depending on the parity of the
correction [390]. Now the dimensionless deviation is (𝜆/𝑀2(𝛾−1))2 ∝ 𝑀−4 with the
additional square power coming from the coupling of the scalar degree of freedom
and the metric tensor. In either case, constraining the value of the mass exponent
has tremendous power in narrowing viable corrections.

In this chapter, we exploit the expected curvature/mass scaling in the context of
deviations in the post-Newtonian inspiral phase of binary black-hole coalescences.
We incorporate the mass dependence into hierarchical tests of GR and infer both the

1The functional 𝐹𝛾 (R, 𝜙) could include any combination of curvature tensors, and/or their
derivatives (not just the Ricci scalar 𝑅), derivatives of 𝜙, and couplings that scale as ℓ−2𝛾 [386].

2Nominally 2PN effects are also introduced, but their contribution is subleading to tidal effects
if ℓ ≲ 5 km.
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magnitude and the curvature dependence of measured deviations. Using observa-
tions from the third LIGO-Virgo-KAGRA [1, 16, 362] GW transient catalog [4, 77],
we confirm the validity of GR. We further highlight the method’s ability to constrain
the curvature order at which a modification appears with simulated observations.

6.2 Constraining the curvature dependence with gravitational waves
Combining information from a catalog of GW observations in a theory-agnostic
way amounts to characterizing the distribution of putative deviations [264, 262,
265], with GR recovered under vanishing deviations for all sources. This hierar-
chical framework can incorporate arbitrary numbers of deviation parameters [391],
astrophysical parameters [84], and selection effects [85]. In all cases so far, the
deviation population has been modeled as a (potentially multidimensional) Gaus-
sian, whose mean 𝜇 and variance 𝜎2 are global parameters, independent of source
properties. This framework provides a powerful null test of GR, which is recovered
for 𝜇 = 𝜎 = 0, see Ref. [392] for inference caveats; however, it does not impose any
structure on the scale of the deviations as a function of source parameters.

We extend the hierarchical framework to incorporate the expectation that the magni-
tude of deviations scales with source curvature by anchoring the deviation distribu-
tion to the total binary (source-frame) mass 𝑀 . We achieve this by reparametrizing
𝜇 and 𝜎 as

𝜇 = 𝜇0

(
𝑀

10 𝑀⊙

)−𝑝
, 𝜎 = 𝜎0

(
𝑀

10 𝑀⊙

)−𝑝
, (6.2)

where 𝜇0 and 𝜎0 control the magnitude of the conditional mean and spread of the
GR deviation at 𝑀 = 10 𝑀⊙. The curvature scaling order, 𝑝, is directly related to
the index, 𝛾 in Eq. (6.1), as either 𝑝 = 2(𝛾 − 1) in the absence of additional fields
or 𝑝 = 4(𝛾 − 1) in their presence. In this notation, 𝑝 = 4 corresponds to quadratic
curvature corrections with additional degrees of freedom or cubic corrections in
their absence while 𝑝 = 6 implies quartic corrections. Propagation effects, such as
modifications to the GW dispersion relation [255, 256], impose source-independent
deviations and, thus, 𝑝 = 0. Even when the deviation distribution is not Gaussian,
this method will still identify a violation of GR [265] and, if the shape of the
distribution is unchanged over the binary mass range, also identify the scaling, 𝑝.
Irrespective of 𝑝, GR corresponds to 𝜇0 = 𝜎0 = 0.

While this framework can be applied to any test that infers both the deviation and
the system total mass (such as correlated power among detectors [384, 393]), we
turn our attention to the post-Newtonian phase deviation test [66, 354, 69, 70, 254].
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Deviations at the (𝑘/2)PN order are inferred by varying the respective phasing
coefficient by some (dimensionless) fractional deviation, 𝛿𝜑𝑘 [70]. Since GR is
recovered when 𝛿𝜑𝑘 = 0 and the parameter is dimensionless, this is a null test
that should follow a curvature scaling as we have described. Below, we consider
deviations from −1PN up to 3.5PN order, including logarithmic terms [4, 77].

Following Refs. [4, 77, 15, 84], we consider the 20 observations from the third
LIGO-Virgo observing run with a false-alarm-rate of less than 1/1000 yr and with
an estimated inspiral signal-to-noise ratio greater than 6 (Tab. I of Ref. [84]). We
do not consider data from the first and second observing periods as semi-analytic
simulations for sensitivity estimation are not available. Individual-event posteriors
were computed in Refs. [4, 77, 15] with a modified form of the SEOBNRv4 wave-
form [271, 272, 274, 273, 254] and released in Refs. [298, 275]. To mitigate against
systematic bias due to incorrect astrophysical assumptions, we jointly model the
distribution of the GR deviation parameter and the system masses and spins with the
astrophysical population models and selection function [84]. Based on Ref. [85], we
assume that there are no direct selection effects for the magnitude of the deviation.
We infer the population distribution of each post-Newtonian term separately with
uniform hyperpriors on 𝜇0 ∈ [−30, 30], 𝜎0 ∈ [0, 100], and 𝑝 ∈ [−1, 8], chosen so
as to remain agnostic on the magnitude and character of the curvature scaling.

The expected inference structure depends on a number of considerations. Observa-
tions of signals spanning 10−100 𝑀⊙ in total mass [4, 77] have yielded no evidence
for a violation of GR [15]. Among those, constraints are generally stronger for
lighter signals with more inspiral cycles [394], however, there are more observed
signals at 𝑀 ∼ 60 𝑀⊙ [8]. Importantly, for 𝑝 ≥ 4 lighter systems are expected to
manifest larger deviations. Absent a detected deviation, we expect those systems to
provide the overall strongest constraints. This expectation plays out in the results
below.

Figure 6.1 shows results for the −1PN deviation, related to deviations due to a
scalar field coupling to the Gauss-Bonnet invariant, i.e., Einstein-scalar Gauss-
Bonnet [390]. We discuss this order in detail, but obtain qualitatively similar results
for other PN orders. The constraints are consistent with (𝜇0, 𝜎0) = (0, 0) and, thus,
GR.

To further understand the posterior, consider that, in the absence of inferred devi-
ations and denoting the most informative mass range as 𝑀I , the allowed values of
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Figure 6.1: Posterior distribution for the −1PN deviation population parameters
inferred from the 20 GW observations in GWTC-2 and GWTC-3 which pass the
threshold criteria [15, 4, 77, 84], confirming consistency with GR, (𝜇0, 𝜎0) =

(0, 0). Due to the non-detection of a violation, the constraint is dominated by
𝑀I ∈ [15, 25] 𝑀⊙ and the posterior is bounded per Eq. (6.3) (lines). While the
marginal posterior for the scaling parameter, 𝑝, indicates preference for larger values,
it is a product of this bounded structure.

{𝜇0, 𝜎0, 𝑝} correspond to deviations that would be undetectable at 𝑀I:

{𝜇0, 𝜎0}
(

𝑀I
10 𝑀⊙

)−𝑝
∼ const. , (6.3)

where the constant represents the test sensitivity. To determine 𝑀I , we split events
based on their total mass into 5 𝑀⊙ bins and compute the precision

P(𝑀, 𝑝) ≡ 1
Σ2(𝑀, 𝑝)

=

𝑁b∑︁
𝑖=1

1

Σ2
𝑖

(
𝑀𝑖

10 𝑀⊙

)2𝑝 , (6.4)

where 𝑖 runs over the 𝑁b events within the bin with central mass 𝑀 , Σ2
𝑖

is the
variance of the GR deviation of an individual event marginalized over all other
parameters, and 𝑀𝑖 is the median total mass. The precision corresponds to the total
inverse variance scaled by the expected value of the deviation in each mass bin; it
therefore quantifies which mass range is more constraining. For the −1PN order,
the precision is maximized when 𝑀I ∈ [15, 25] 𝑀⊙, resulting in the black lines in
Fig. 6.1, which track the general shape of the posterior.

Equation (6.4) qualitatively characterizes the inference: constraints are improved
either with more observations or with better measurements. The 𝑀−2𝑝 term further
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indicates that upper limits from heavier systems are less informative than numerically
similar upper limits from lighter systems for 𝑝 > 0. The funnel-like structure in
𝜇0 − 𝑝 and 𝜎0 − 𝑝 is driven by Eq. (6.4) and leads the marginal for 𝑝 to prefer higher
values (since lower values are disallowed by the data). This feature is, however, prior-
dominated and will remain so until a deviation is detected and (𝜇0, 𝜎0) = (0, 0) is
excluded.

In Fig. 6.2 we plot the distribution of deviations that are consistent with observations
for each PN order, i.e., the posterior predictive distribution,

𝑝(𝛿𝜑𝑘 |𝑀, 𝑑) =
∫

dΛ 𝑝(Λ|𝑑) 𝜋(𝛿𝜑𝑘 |Λ, 𝑀) , (6.5)

where Λ ≡ {𝜇0, 𝜎0, 𝑝}, 𝜋(𝛿𝜑𝑘 |Λ, 𝑀) is the deviation Gaussian distribution, 𝑝(Λ|𝑑)
is the posterior on Λ (cf., Fig. 6.1), and 𝑑 is the data. The integral is computed
by averaging Gaussian distributions 𝜋(𝛿𝜑𝑘 |Λ, 𝑀) over the posterior 𝑝(Λ|𝑑). We
present Eq. (6.5) for 𝑝 = 0, 4, 6 (blue, purple, and orange) as well as integrating
over 𝑝 (shaded). The distributions areconsistent with GR, 𝜇0 = 𝜎0 = 0, constrained
within the QGR < 46% credible intervals for all PN orders. We find overall similar
behavior across orders. In each panel, the upper sub-panel shows the precision
P(𝑀, 𝑝), normalized independently for each index 𝑝. For all cases of 𝑝, the
precision is maximized at ∼20 𝑀⊙. For 𝑝 ≥ 4, corresponding to corrections for
gravity in 4-dimensional spacetimes [395, 58, 396], constraints are dominated by
lower total mass binaries.

6.3 Detectability of simulated violations
The current GW catalog does not exhibit evidence of a deviation from GR, we
therefore explore inference in the presence of deviations with a simulated catalog
of 𝑁 = 5000 observations. We consider the 0PN order and simulate data with
𝜇0 = 0, 𝜎0 = 0.3, 𝑝 = 4 per Eq. (6.2), which is consistent with current constraints.
For simplicity, we adopt a mass distribution that matches the current observations
and apply no selection effects. With this simulated catalog, we repeat the analysis
and present 90% constraints on 𝜎0 and 𝑝 for varying numbers of detections in
Fig. 6.3 (blue). For reference, we compare to an analysis that fixes 𝑝 = 0 (orange),
corresponding to the standard procedure of Refs. [84, 15].

Fewer observations are required to identify a deviation from GR (𝜎0 > 0) than to
constrain its curvature scaling. For these simulations, 𝜎0 = 0 is excluded at the 90%
level after∼100 observations, whereas data-driven (as opposed to prior-dominated—
c.f., discussion of Fig. 6.1) constraints on 𝑝 require O(500) observations (blue). A
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Figure 6.3: Inferred curvature scaling 𝑝 (top) and standard deviation 𝜎0 (bottom)
at the 90% level as a function of the number of simulated GW observations. The
blue bounds correspond to an analysis that infers the curvature index, 𝑝, whereas
the orange corresponds to fixing 𝑝 = 0. The true values are shown in solid black
horizontal lines. For this population we infer a violation of GR, i.e., 𝜎0 > 0, starting
at 𝑁 ∼ 100 (dotted black vertical line), while 𝑝 = 0 and 6 are ruled out by the data
after 𝑁 ∼ 500 observations. Fixing 𝑝 = 0 misestimates the deviation.

model without curvature scaling (fixing 𝑝 = 0) identifies a violation of GR with
a similar number of observations but provides no information about its curvature
scaling and infers a lower value of 𝜎0 ∼ 0.08 (orange). The addition of the curvature
dependence in the inference unlocks the capability to infer the curvature structure
and characterize the properties of a putative deviation. In this example, we would
be able to rule out propagation effects (𝑝 = 0) and quartic curvature corrections
(𝑝 = 6) after ∼500 observations. Although these exact numbers depend on the mass
distribution and simulated deviation, we expect the general trends to be robust.

6.4 Conclusions
In this chapter, we have extended tests of GR with GW inspirals to incorporate physi-
cal expectations for the curvature dependence of extensions of GR. This approach not
only incorporates more physically realistic—albeit still theory-agnostic—models,
but also allows us to better characterize the nature of the deviation by inferring its
scaling with spacetime curvature. We applied this method to existing LIGO-Virgo-
KAGRA observations, finding consistency with GR. We also demonstrated, with
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simulated signals, how the curvature dependence can be constrained and thus pro-
vide clues about the properties of the beyond-GR theory. Although we focused on
PN inspiral deviations, this method can be applied to any test with a dimensionless
deviation parameter. More broadly, the key realization of this work, namely that the
curvature scaling can be agnostically inferred from data, can be leveraged across
all tests of GR—beyond the field of GW astronomy. Beyond GR, this agnostic
approach can be tailored to any effective-field-theory treatment, e.g., to analyze the
temperature-dependent scaling of transport coefficients affecting viscous effects in
hydrodynamics [397].

Beyond constraining the curvature dependence, our physical arguments suggest
ways to either strengthen confidence in a detected deviation or safeguard against
systematics, e.g., [398]. Firstly, if GR is found to be incorrect and the curvature
scaling 𝑝 is inferred to be an integer, it will immediately inform on viable theories.
Further, extraction of 𝑝 at different PN orders would not only allow for consistency
checks, but also—in case of differences—to draw key information on potential
theories. For example, it is possible that some specific PN corrections are subleading,
displaying a higher curvature scaling than the majority of the other PN corrections
due to the underlying model under consideration (e.g., no dipole radiation for equal-
mass objects in scalar-tensor theories). In all cases, different tests (e.g., PN phase
and ringdown) should give compatible results. This idea can further be extended to
multiparameter tests [321, 325].

Secondly, false deviations could be induced by missing physics [398], waveform
systematics [41, 312], or detector glitches [399]. These effects often have specific
mass-dependent behavior, e.g., 𝑀−5/6 for eccentricity [314, 400] or large deviations
only present for heavy binary masses due to glitches [98]. Therefore constraining the
mass dependence would help distinguish between such systematics and a genuine
GR deviation under the effective-field-theory framework.

Finally, the expectation that 𝑝 ≥ 4 suggests that the highest-curvature black holes,
i.e., the lightest black holes, will yield the strongest constraints3. For example,
a O(0.1) deviation constraint from a 10 𝑀⊙ binary is equivalent to a O(10−21)
constraint from a 106 𝑀⊙ system if 𝑝 = 4—the expectation for cubic or quadratic
corrections with an additional degree of freedom. This suggests that ground-based
GW detectors, including the next-generation Einstein Telescope [401, 47] and Cos-

3For non-vacuum systems, the expected value is 𝑝 = 2 as quadratic curvature corrections would
be the leading modification in the EFT action. However, such events represent a more difficult
challenge for testing GR with lower observational rates and the introduction of matter effects.
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mic Explorer [45, 46] detectors, will provide deeper probes of GR than observations
of supermassive black holes with pulsar timing arrays [402, 403], the Event Horizon
Telescope [404, 405] or LISA (beyond the extreme mass ratio regime) [406, 407].
Modeling the curvature dependence within these GW tests allows us to more deeply
probe the fundamental nature of gravity and/or invalidate whole families of theories
without resorting to theory-specific models.
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C h a p t e r 7

MODEL EXPLORATION IN GRAVITATIONAL-WAVE
ASTRONOMY WITH THE MAXIMUM POPULATION

LIKELIHOOD

E. Payne and E. Thrane. “Model exploration in gravitational-wave astronomy
with the maximum population likelihood”. In: Phys. Rev. Res. 5.2 (2023),
p. 023013. doi: 10.1103/PhysRevResearch.5.023013. arXiv: 2210.
11641 [astro-ph.IM].

E.P. helped with the conception of the idea, developed and implemented all
the of analysis methods, and led the writing of the manuscript.

7.1 Motivation
Bayesian inference has become a mainstay of modern scientific data analysis as a
means of analysing signals in noisy observations. This procedure determines the
posterior distributions for parameters given one or more model. In order to study
the population properties of a set of uncertain observations, a hierarchical Bayesian
framework can be employed. The basic idea is to model the population using a
conditional prior 𝜋(𝜃 |Λ, 𝑀), which describes, for example, the distribution of black
hole masses {𝑚1, 𝑚2} ∈ 𝜃 given some hyper-parameters Λ, which determine the
shape of the prior distribution. Here, 𝑀 denotes the choice of model. One then
carries out Bayesian inference using a “population likelihood”

L(𝑑 |Λ, 𝑀) =
𝑁∏
𝑖

1
𝜉 (Λ)

∫
d𝜃𝑖 L(𝑑𝑖 |𝜃𝑖)𝜋(𝜃𝑖 |Λ, 𝑀), (7.1)

where L(𝑑𝑖 |𝜃𝑖) is the likelihood for data associated with event 𝑖 given parameters
𝜃𝑖, and 𝜉 (Λ) is the detected fraction for a choice of hyper-parameters. Meanwhile,
𝑁 is the total number of observations. For an overview of hierarchical modeling in
gravitational-wave astronomy including selection effects, see Refs. [74, 277, 276].

The LIGO-Virgo-KAGRA (LVK) Collaboration’s third gravitational-wave transient
catalog (GWTC-3) [77] contains the cumulative set of observations of 𝑁 = 69
confident binary black-hole mergers1 detected by the LVK [1, 16, 362]. Additional
detection candidates have been put forward by independent groups [179, 408, 409,

1We adopt the threshold utilized in [8] of a false-alarm-rate < 1 yr−1.

https://doi.org/10.1103/PhysRevResearch.5.023013
https://arxiv.org/abs/2210.11641
https://arxiv.org/abs/2210.11641
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410, 411]. Hierarchical inference is employed to study the population properties
these merging binary black holes; see, e.g., Refs. [6, 7, 8, 278, 279, 280, 281,
195, 224, 412, 202, 174, 172, 282, 283, 284, 285, 286, 287]. These analyses have
revealed a number of exciting results, such as the surprising excess rate of mergers
with a primary black hole mass of ∼ 35 𝑀⊙ [7], and the evolution of the binary
merger rate with redshift [8], to name just two.

However, Bayesian inference has its limitations. One can use Eq. (7.1) in order
to infer the distribution of binary black hole parameters—given some model; and
one can compare the marginal likelihoods of two models to see which one better
describes the data. However, Bayesian inference does not tell us if any of the
models we are using are suitable descriptions of the data. While all models for
the distribution of binary black hole parameters are likely to be imperfect, some
may be adequate for describing our current dataset2. When a model fails to capture
some salient feature of the data, it is said to be “misspecified” [318, 319]. Some
effort has been made to assess the suitability of gravitational-wave models, both
qualitatively and quantitatively; see, e.g., [7, 8, 318, 413]. However, the idea
of “model criticism”—testing the suitability of Bayesian models—is still being
developed within the context of gravitational-wave astronomy and beyond.

Hierarchical Bayesian inference studies often depend upon parametric models. Mod-
elers design parameterizations in order to capture the key features of the astrophysical
distributions. However, one must still worry about “unknown unknowns”—features
which do not occur to the modeler to add. For example, recent studies [7, 8, 297,
414] find a sub-population of binary black holes merge with spin vectors that are
misaligned with respect to the orbital angular momentum axis. However, the degree
to which the spins are misaligned might be model dependent. In Refs. [7, 8, 297],
the inferred minimum spin tilt is confidently ≳ 90◦. In contrast, Refs. [278, 283,
414] argue this signature could be due to a lack of flexibility in LVK models to
account for a sub-population of black holes with negligible spin magnitude, finding
support for misalignment at smaller minimum tilt angles. The inferred population
distribution of spin misalignment has important consequences for understanding
the formation channels of binary black-hole channels. This debate highlights how
astrophysical inferences can be affected by model design.

In order to help alleviate some of the issues arising from model misspecification in
2Here, we paraphrase the aphorism attributed to statistician, George Box: “all models are wrong,

but some are useful.”
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Bayesian inference, we present a framework for assessing the suitability of a model.
This framework is built around the concept of the maximum population likelihood
–L (pronounced “L stroke”)—the largest possible value of L(𝑑 |Λ) in Eq. (7.1),
maximized over all possible choices of population model 𝜋(𝜃 |Λ) independent of the
choice of parameterization. The “prior” distribution, which yields this maximum is
–𝜋(𝜃) (pronounced “pi stroke”). It is not a true prior because it is determined by the
data. The theory behind the maximization of population likelihoods has been studied
previously in optimization and statistics literature [415, 416, 417, 418, 419, 420].
This work is underpinned by Carathéodory’s theorem [421] and the mathematics
of convex hulls [419]. However, its application to observational science has been
somewhat limited as far as we can tell.

The –L framework is useful for several reasons. First, the numerical value of –L
is an upper bound on the population likelihood. We can compare the maximum
likelihood for a specific model

Lmax(𝑀) = max
Λ∼𝑝(Λ|𝑑)

L(𝑑 |Λ, 𝑀) (7.2)

to –L. Often in Bayesian model selection, the Bayesian evidence values (Z𝑖) of two
hypotheses can be used to determine the extent to which one model is preferred
over the other. A typical threshold chosen to rule out one model in favor of another
is that ln(Z1/Z2) > 8 [422]. In a similar vein, if ln( –L/Lmax(𝑀)) ≲ 8, we can
be sure the model 𝑀 is not badly misspecified since there is no second model 𝑀′

that can be written down with that will yield a statistically significant improvement.
We emphasize that a model which does not satisfy this condition is not necessarily
misspecified.

Second, the –L framework can be used to quantitatively assess if a model 𝑀 is
misspecified. By generating synthetic data from 𝑀 , one can generate the expected
distribution of ( –L,Lmax(𝑀)). In this paper, we show how one can compare the
observed values of ( –L,Lmax(𝑀)) to the expected distribution in order to determine
the extent to which 𝑀 is misspecified—and the way in which it is misspecified.

Third, the –L framework can be used for “model exploration”—providing clues of
where in parameter space unmodeled features might be lurking. By comparing
–𝜋(𝜃) with the prior from our phenomenological model 𝜋(𝜃 |𝑀), one can see if
the phenomenological model is capturing key structure present in –𝜋 and use the
comparison to design new models to test on forthcoming datasets.
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The remainder of this paper is organized as follows. In Sec. 7.2, we introduce the
–L formalism, illustrating key features with a simple toy model. In Sec. 7.3, we
show how the formalism can be used for model criticism. In Sec. 7.4, we apply the
formalism to study the population properties of merging binary black holes observed
by the LVK. Our concluding remarks are presented in Sec. 7.5.

7.2 The maximum population likelihood –L
Preliminaries
We begin with a brief review of Bayesian hierarchical inference with a parametric
model. Our starting point is the population likelihood (copied here from Eq. (7.1)):

L(𝑑 |Λ, 𝑀) =
𝑁∏
𝑖

1
𝜉 (Λ)

∫
d𝜃𝑖 L(𝑑𝑖 |𝜃𝑖)𝜋(𝜃𝑖 |Λ, 𝑀). (7.3)

Here, L(𝑑𝑖 |𝜃𝑖) is the likelihood of event-𝑖 data 𝑑𝑖 given parameters 𝜃𝑖. The quantity
𝜋(𝜃𝑖 |Λ, 𝑀) is a conditional prior for 𝜃𝑖 given hyper-parameters for some population
model 𝑀 , which describes the shape of the prior distribution. The term 𝜉 (Λ)
accounts for selection effects; for example, high-mass systems are typically easier
to detect than low-mass systems. It is the detectable fraction of the population given
the model given hyper-parameters Λ

𝜉 (Λ) =
∫

d𝜃 𝑝det(𝜃)𝜋(𝜃 |Λ, 𝑀). (7.4)

Here, 𝑝det(𝜃) is the detection probability of an observation with parameters 𝜃.

The maximum population likelihood –L
The maximum population likelihood –L is obtained by taking Eq. (7.3) and max-

imizing over all possible prior distributions 𝜋(𝜃). Thus, –L is an upper bound (or
supremum) on the set of likelihoods from all possible choices of models for 𝜋(𝜃)
such that

–L ≡ L(𝑑 | –𝑀) ≥ L(𝑑 |Λ, 𝑀), (7.5)

for all models 𝑀 . The “prior” distribution that yields –L is denoted

–𝜋(𝜃) (7.6)

(pronounced “pi stroke”). It is not a true prior because the distribution which
maximizes the population likelihood in Eq. (7.3) depends on the data. One should
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therefore refer to –𝜋 as a pseudo-prior. The associated model is denoted –𝑀 (pro-
nounced “M stroke”). Combining this notation into a single equation, we have

–L ≡
𝑁∏
𝑖=1

1
𝜉 ( –𝑀)

∫
d𝜃𝑖 L(𝑑𝑖 |𝜃𝑖)–𝜋(𝜃𝑖). (7.7)

Calculating –𝜋: special cases
Having introduced the concept of –L and –𝜋, the natural next question is: given data
𝑑, how does one calculate these quantities? Before answering this question, we
study three special cases where we can work out –𝜋 from intuition. This discussion
will help sharpen our instincts for the more general solution that follows. Readers
looking to skip to the punchline may wish to skip this subsection.

A single measurement

For the first case, we consider a single measurement (𝑁 = 1) with a unimodal
likelihood function L(𝑑 |𝜃), which is maximal when the parameter 𝜃 is equal to the
maximum likelihood value 𝜃̂. For the sake of simplicity, we ignore selection effects
so that 𝜉 ( –𝑀) = 1. In this case, –L in Eq. (7.7) is clearly maximized if the prior
support is entirely concentrated at 𝜃̂. Thus, –𝜋 is a delta function

–𝜋(𝜃) = 𝛿(𝜃 − 𝜃̂), (7.8)

which yields

–L =

∫
d𝜃 L(𝑑 |𝜃) 𝛿(𝜃 − 𝜃̂)

=L(𝑑 |𝜃̂). (7.9)

This result is intuitive: the prior that maximizes the population likelihood is the one
that concentrates all its support at the maximum-likelihood value of 𝜃.

𝑁 signals in the high-SNR Limit

For the second case, we consider a scenario in which the data consists of 𝑁 obser-
vations carried out in the high-SNR limit. In this limit, the likelihood of the data for
each measurement 𝑑𝑖 given some parameter 𝜃 approaches a delta function

L(𝑑𝑖 |𝜃𝑖) = 𝛿(𝜃𝑖 − 𝜃̂𝑖), (7.10)

located at the maximum-likelihood value 𝜃̂𝑖. We assume that each measurement is
distinct so that no two maximum-likelihood values 𝜃̂𝑖 are exactly the same. Again,
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for the sake of simplicity, we ignore selection effects so that 𝜉 ( –𝑀) = 1, though, the
argument here holds even if we relax this assumption. Equation (7.7) becomes

–L =

𝑁∏
𝑖=1

∫
d𝜃𝑖 𝛿(𝜃𝑖 − 𝜃̂𝑖)–𝜋(𝜃𝑖). (7.11)

The population likelihood is maximized when –𝜋 is a sum of delta functions peaking
at the set of {𝜃̂𝑖}:

–𝜋(𝜃) =
𝑁∑︁
𝑘=1

𝑤𝑘 𝛿(𝜃 − 𝜃̂𝑘 ) (7.12)

𝑤𝑘 =1/𝑁. (7.13)

This solution for –𝜋 ensures that there is maximal prior support at every likelihood
peak. Obviously, the population likelihood is not maximized if any prior probability
density is wasted to values of 𝜃 where all the likelihood functions are zero. Choosing
an equal weight for each delta function 𝑤𝑖 = 1/𝑁 produces the largest possible
population likelihood3.

We illustrate this case in Fig. 6.1(a) using high-SNR, toy-model data drawn from
a mean-zero, unit-variance Gaussian distribution. In the top-panel, we plot the set
of 𝑁 = 10 maximum likelihood points {𝜃̂𝑖} and the position of the delta functions
(blue). In the lower panel, we “plot” the –𝜋(𝜃) for these ten data points. We put the
word “plot” in quotation marks because, technically, we are not plotting –𝜋(𝜃), which
goes to infinity, but rather we are plotting the weights 𝑤𝑘 (Eq. (7.13)), which allows
us to see the relative weight given to each delta function—something that will prove
useful below. Throughout the paper, when we refer to plots of –𝜋(𝜃), it should be
understood that we are actually plotting representations of –𝜋(𝜃) using the weights
𝑤𝑘 . Finally, note that each peak in the distribution of –𝜋(𝜃) matches up with one of
the maximum likelihood points in the upper panel.

𝑁 identical measurements

For the third case, we consider a set of 𝑁 observations. This time, we do not assume
the high-SNR limit, but we assume that every measurement has the same maximum-
likelihood value of 𝜃̂. This case is highly contrived—one does not typically work
with multiple identical measurements—but the example is nonetheless helpful for
illustrative purposes. In this case, the integral in Eq. (7.7) is maximized when the

3This is a well-known result known as the empirical distribution function [417].
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Figure 7.1: Examples of the distribution –𝜋(𝜃) described in Subsections 7.2-7.2.
Each column represents a different dataset. The top-panel dots show the set of
𝑁 = 10 maximum-likelihood estimates {𝜃̂𝑖}. The top-panel horizontal lines rep-
resent error bars; (in the first column they are too small to see), and the vertical
lines (blue) indicate the inferred delta function locations. The bottom panels show
the distribution of –𝜋(𝜃) associated with each data set. The left-hand column (a)
represents data in the high-SNR limit so that the likelihood functions for each mea-
surement approach delta functions (this is why the error bars are not visible). In this
case, –𝜋(𝜃) consists of 𝑁 delta functions, each associated with one of the maximum
likelihood points 𝜃̂𝑖. In the middle column (b), we are no longer in the high-SNR
limit, but the maximum likelihood points are all assumed to be identical with 𝜃̂𝑖 = 0.
In this case, –𝜋(𝜃) consists of one delta function peaking at 𝜃 = 0. In the right-hand
column (c), the data are not in the high-SNR limit, and each 𝜃̂𝑖 is random. In this
case, –𝜋(𝜃) consists of 𝑛 = 3 delta functions, each with different heights.

prior support is entirely concentrated at 𝜃̂ (where all of the likelihood functions
peak), so that –𝜋 is a single delta function:

–𝜋(𝜃) = 𝛿(𝜃 − 𝜃̂), (7.14)

while

–L =

𝑁∏
𝑖=1

L(𝑑𝑖 |𝜃̂). (7.15)

This scenario is demonstrated in Fig. 6.1(b). The top panel shows the set of 𝑁 = 10
maximum-likelihood points {𝜃̂𝑖}, all with the same value. The horizontal lines
represent the error bars for each measurement, which we draw from a uniform
distribution on the interval (0.01, 1). In the lower panel, we plot –𝜋(𝜃) for these ten
data points. This time, since every measurement is identical, –𝜋(𝜃) is a single delta
function peaking at 𝜃 = 0.
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From these three examples, we observe a pattern: in each case, –𝜋(𝜃) can be written
as a weighted sum of delta functions. Indeed, it has been proven that this is in fact the
case [415, 416, 417, 418, 419, 420]. We refer readers interested in an explanation
of the delta function structure of –𝜋 to Appendix 7.6, where we summarize the key
concepts surrounding the proof outlined in Ref. [419] using the mathematics of
convex hulls. We do not reproduce the proof in its entirety, but rather we use
visualisations to explain how it works with 𝑁 = 2 observations, before providing a
qualitative explanation for how it generalizes to arbitrary values of 𝑁 . We explore
this general structure and the consequences thereof in the next subsection.

The general form of –𝜋
We proceed with the knowledge that Eq. (7.7) is true in general, regardless of the
form of the likelihood L(𝑑 |𝜃) and the selection effect term 𝑝det(𝜃). For any set of
observations, –𝜋(𝜃) is always of the form,

–𝜋(𝜃) =
𝑛∑︁

𝑘=1
𝑤𝑘 𝛿(𝜃 − 𝜃𝑘 ), (7.16)

where 𝑤𝑘 are weights which sum to unity
𝑛∑︁

𝑘=1
𝑤𝑘 = 1. (7.17)

The number of delta function is always less than or equal to the number of mea-
surements and the solution is unique in all but the most pathological of cases (e.g.,
multimodal distributions with regions of equivalent maximum likelihoods) so that

𝑛 ≤ 𝑁. (7.18)

The ratio

I ≡ 𝑛/𝑁, (7.19)

is a measure of the “informativeness” of the data. It compares the typical likelihood
width to the scatter in the astrophysical distribution. In the high-SNR limit, I = 1,
since a delta function is required for every data point (see Fig. 6.1(a)). The other
limiting case is,I = 1/𝑁 , which happens when the likelihood for each measurement
completely overlaps (see Fig. 7.1(b)).

Using this insight into the structure of –𝜋(𝜃), we now consider a variation on the
toy-model problems discussed in the earlier subsections. In particular, we consider
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finite-SNR data drawn from our Gaussian, toy-model distribution. Using Eqs. (7.16-
7.17) as an ansatz, we calculate –𝜋(𝜃) for 𝑁 = 10 random data points. The maximum
likelihood values 𝜃̂𝑖 are drawn from a mean-zero, unit-variance Gaussian and the
error bars are drawn from a uniform distribution on the interval (0.01, 1). The
results of this calculation are shown in Fig. 6.1(c). The top panel shows the data,
represented by the maximum-likelihood values {𝜃̂𝑖}, which are arranged from bot-
tom to top in increasing order. The horizontal lines show the uncertainty for each
measurement and the vertical blue lines indicate the positions of the delta functions.
In the bottom panel, we show –𝜋(𝜃) for this dataset. It consists of just 𝑛 = 3 delta
functions of varying heights (I = 0.3). The exact weights, locations, and num-
ber of delta functions are not obvious; we obtain them numerically by maximising
Eq. (7.16) subject to Eq. (7.17) using the “combined” method described below in
Subsection 7.2. Comparing the red data points with error bars to the turquoise
representation of –𝜋(𝜃), one can see that every data point can be plausibly associated
with at least one of the delta functions.

Given the form of –𝜋(𝜃) described by Eq. (7.16), we can write down a general
expression for –L:

–L =

𝑁∏
𝑖=1

1
𝜉 ( –𝑀)

𝑛∑︁
𝑘=1

𝑤𝑘 L(𝑑𝑖 |𝜃𝑘 ), (7.20)

where

𝜉 ( –𝑀) =
𝑛∑︁

𝑘=1
𝑤𝑘 𝑝det(𝜃𝑘 ). (7.21)

Given Eqs. (7.20) and (7.21), the problem of calculating –L, –𝜋 reduces to the problem
of simply finding the locations and weights of 𝑛 delta functions. In Section 7.2, we
explore three different approaches to this problem.

Computing –𝜋
In this subsection, we consider three techniques that can be applied to compute
–L, –𝜋: optimization, iterative grid, and stochastic methods. We show that a com-
bined approach, which uses a grid-based approach to guess a solution, which is
subsequently refined through optimization performs the best out of the algorithms
we tried. Meanwhile, the stochastic approach allows us to illustrate the existence of
the delta function structure proven in Ref. [419], but with minimal assumptions.
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(c)Combined: ln –L = −1582.98

Grid-based: ln –L = −1589.56

Stochastic: ln –L = −1585.28

Figure 7.2: Demonstration of different methods for calculating –𝜋, –L. Each panel
shows the results for a different number of measurements with (a) 𝑁 = 10, (b)
𝑁 = 100, and (c) 𝑁 = 1000. The black distribution is the true distribution 𝜋(𝜃)
used to generate the data. The colored spikes show the reconstructed distribution
–𝜋(𝜃) as determined by different methods. Cyan is for the “combined” technique,
which uses the iterative grid to obtain a first guess that is refined with the optimization
method. Meanwhile, orange is for the grid-based technique by itself and gray is for
the stochastic method.
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Optimization

The first approach we consider is to use an optimization algorithm subject to the
constraint in Eq. (7.17) 4. We use Scipy’s trust-constr optimization implemen-
tation [423, 424]. We find this approach fails to find the correct global maximum
of Eq. (7.20) once the number of peaks 𝑛 becomes large. However, this issue can
be resolved if a sufficiently close guess to the true shape of –𝜋(𝜃) can be made.
Fortunately, the iterative-grid approach can be used to supply this initial guess.

Iterative grid

The second approach we consider is to iteratively place delta functions on a fixed
grid. There are two steps: the greedy addition of many delta functions, and the
removal of no-longer-useful delta functions. In the first step, we first attempt to
place a delta function with a fixed height at each grid point and evaluate Eq. (7.20)
(with appropriate normalization of the distribution). We determine which of all
possible delta function additions produces the highest population likelihood. We
then vary the height of this delta function between zero and twice the initial height in
order to obtain an updated guess for –𝜋(𝜃). The addition of delta functions is repeated,
reducing the initial height by a factor at each iteration. After many iterations, we then
attempt to remove no-longer-useful delta functions to further increase the population
likelihood. We repeat this procedure five times, iteratively adding 30 delta functions
with varying heights at each iteration. After these iterations, –L is usually well-
converged for the problems we are studying. In some iterations, this procedure
adds support to preexisting delta functions. This is how the approach “corrects”
under-supported delta functions.

This method has a significant advantage over generic constrained optimization tech-
niques as the procedure does not require the optimization of individual parameters
governing the delta functions through the {𝜃𝑘 , 𝑤𝑘 } space. However, we find that this
method is improved by pairing it with optimization. The most accurate optimization
of the maximum population likelihood and structure of the distribution occurs when
we utilize grid-based approximation to inform the starting location and weights

4In theory, the constraint condition does not need to be enforced during the analysis. The
normalization appears in the selection function term and –𝜋 . However, since any multiple of the
weights (without normalization) would produce an identical likelihood, many numerical optimization
methods can falter at these likelihood “plateaus”. Therefore, we enforce the constraint to ensure a
more robust analysis.
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for the constrained optimization. This allows for the grid-based approximation to
find the region of parameter space where –L is nearly maximal. The constrained
optimization then purifies the delta function structure and slightly increases the max-
imum population likelihood. The combined method is used for all the maximum
population likelihood computations in Sec. 7.4.

Stochastic construction

Our final approach is to stochastically generate samples for –𝜋(𝜃), which are ac-
cepted/rejected depending on whether the new samples increases the population
likelihood. This is a form of importance sampling in which an arbitrary “proposal
distribution” is used to generate proposal samples. When a proposal sample is gen-
erated, we add it to a list of previously accepted points and evaluate –L as a Monte
Carlo integral,

–L =

𝑁∏
𝑖=1

1
𝜉 ( –𝑀)

〈
L(𝑑𝑖 |𝜃𝑖)

〉
𝜃𝑖∼–𝜋(𝜃𝑖)

, (7.22)

where
𝜉 ( –𝑀) =

〈
𝑝det(𝜃)

〉
𝜃∼–𝜋(𝜃)

. (7.23)

Here, the angled brackets indicate averaging over the samples. If the addition of the
new sample increases –L, we retain the sample in the list of samples from –𝜋. As the
process is repeated, the set of samples produces an ever-improving representation
of –𝜋.

This method can be extended to employ an additional burn-in phase and/or a thinning
phase to ensure more rapid convergence by removing unfavorable samples that
sometimes get accepted early on before the distribution is well-converged. While
this approach converges more slowly than the other two methods, it does not employ
any assumptions about the structure of the distribution. Thus, this method can be
used to validate the structure put forward in Eqs. (7.20-7.21), that –𝜋(𝜃) is a sum of
delta functions.

Numerical study

We demonstrate each method using our Gaussian, toy-model distribution described
in the last subsection: true maximum likelihood values 𝜃̂𝑖 drawn from zero-mean,
unit-variance Gaussian with error bars drawn from a uniform distribution on the
interval (0.01, 1). The observed maximum likelihood values are then shifted from
the true value by an offset generated from each individual observation’s uncertainty.
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The results of this demonstration are compiled in Fig. 7.2. The three panels of
Fig. 7.2 represent tests performed with 𝑁 = 10, 100, and 1000 observations. In
each panel, the black curve represents the true distribution 𝜋(𝜃). The colored spikes
illustrate different numerical solutions for –𝜋(𝜃): cyan is the “combined” approach,
which uses the iterative grid to obtain an initial guess that is subsequently refined
using the optimization method. Meanwhile, orange represents the iterative grid
approach by itself. For the grid-based approach we run 30 iterations of adding peaks
with variable but decreasing weights, before repeating this process an additional ten
times. Finally, gray represents the stochastic approach. For the stochastic method,
we generate 3000 samples with 1000 samples for burn-in.

We see that the combined approach better estimates –L relative to the other techniques
considered 5. We observe that, as 𝑁 increases, –𝜋(𝜃) increasingly resembles the true
Gaussian distribution 𝜋(𝜃) (shown in Fig. 7.2 as a black curve). To illustrate this
more clearly, we take the inferred delta function locations from the 𝑁 = 1000
“combined” result in Fig. 7.2(c) and compute the weighted histogram. This result is
directly compared to the true distribution in Fig. 7.3, from which we see that indeed
the inferred distribution is (albeit slowly) approaching the true distribution. We
conjecture that, in general, –𝜋(𝜃) approaches the true distribution in the infinite-data
limit:

lim
𝑁→∞

–𝜋(𝜃) → 𝜋true(𝜃). (7.24)

Computational challenges

Before continuing, we discuss two computational challenges. First, we note that the
examples illustrative above are all one-dimensional. The discussion above gener-
alizes to ≥ 2 dimensions; –𝜋(𝜃) is still a sum of delta functions in ≥ 2 dimensions.
However, it becomes increasingly challenging to determine the location and height
of these peaks in higher dimensions. Furthermore, by increasing the dimensionality
of the problem, constructing continuous representations of the individual-event like-
lihoods and the detection probability, 𝑝det(𝜃), becomes increasing difficult. Recent
developments in using Gaussian mixture models to produce continuous representa-
tions of these distributions might alleviate these concerns [425, 426]. Second, even

5A method is “better” if it yields a larger value of –L than another approach.
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Figure 7.3: Comparison between a binned representation of –𝜋 as computed for the
toy model data set with 𝑁 = 1000 observations and the true underlying population
distribution. This representation more clearly shows that –𝜋 is approaching the true
distribution in the limit of many observations.

if we stay in one dimension, the computational cost of calculating –𝜋, –L grows with
𝑁 6.

7.3 Model criticism with –L
In this section, we show how the –L formalism can be used to determine if a model
𝑀 is an adequate description of data. The first step is to generate synthetic datasets
based on the posterior distribution for the model hyper-parameters 𝑝(Λ|𝑑). For each
data set, we calculate the maximum population likelihood –L (Eq. (7.7)) as well as
the maximum likelihood for 𝑀 , which we denote

Lmax(𝑀) = max
Λ∼𝑝(Λ|𝑑)

L(𝑑 |Λ, 𝑀), (7.25)

where L(𝑑 |Λ, 𝑀) is the population likelihood defined in Eq. (7.3). In this way we
can estimate

𝑝( –L,Lmax(𝑀)), (7.26)

the joint distribution for –L and Lmax(𝑀) given model 𝑀 . By comparing the
measured values of ( –L,Lmax(𝑀)), to this distribution of expected values, one can
see if the dataset is typical of what one would expect given 𝑀 . If the measured values

6For the results in Fig. 7.2, the computation time of the “combined” approach was the following:
10 observations required only 5.3 seconds, 100 observations required 65 seconds and 103 observations
required 2.78 × 103 seconds. Generally, more data tends to require more delta functions (each with
a location and a height), meaning the computational difficulty grows with 𝑁 .
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of ( –L,Lmax(𝑀)) are atypical, one can conclude that 𝑀 is misspecified. Moreover,
one may determine the nature of the misspecification by noting the location of the
observed value of ( –L,Lmax(𝑀)) relative to the typical values of ( –L,Lmax(𝑀)).
This is best illustrated with an example.

In our example, we imagine that an observer measures 𝑁 = 100 values of some
parameter 𝜃. Their model 𝑀 for the distribution of 𝜃 consists of a Gaussian
distribution with mean 𝜇 = 0 and width 𝜎 = 1:

𝜋(𝜃 |𝑀) ∼ N (𝜇 = 0, 𝜎 = 1). (7.27)

However, their model may be misspecified so that 𝜃 is not really distributed according
to 𝑀 . We consider five “possible worlds” 7, one in which the observer’s model is
correctly specified and four in which it is not. Each world is assigned a color:

• Black: model is correctly specified (𝜇 = 0, 𝜎 = 1).

• Purple: model is too wide because the true distribution is (𝜇 = 0, 𝜎 = 0.6).

• Blue: model is too narrow because the true distribution is (𝜇 = 0, 𝜎 = 1.4).

• Salmon: model is shifted to one side because the true distribution is (𝜇 =

1, 𝜎 = 1).

• Yellow: model is too wide and shifted to one side because the true distribution
is (𝜇 = 0.8, 𝜎 = 0.6).

We create ten mock datasets for each of the five possible worlds (black, purple, blue,
salmon, and yellow) and 5000 mock datasets from the model 𝑀 (grey contours).
For each dataset, we compute ( –L,Lmax(𝑀))—always using model 𝑀 (Eq. 7.27)
even if the data are generated according to, say, the blue-world distribution. This
is because we are studying the case where our observer might apply a misspecified
model.

The results are shown in Fig. 7.4. The vertical axis is ln –L while the horizontal
axis is lnLmax(𝑀). The dark-grey region in the bottom-right corner is forbidden
since –L ≥ Lmax(𝑀) by construction. The grey contours show the one, two,
and three-sigma contours for the expected distribution from the model. Only the

7We borrow the language of “possible worlds” from the philosopher, David Lewis, who invokes
them in his account of counterfactuals and necessity [427].
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Figure 7.4: An illustration of model criticism with the –L formalism. In the left-
hand panel, we plot ( –L,Lmax(𝑀)) for five different underlying populations (each
with ten different realizations), analyzed a toy-model with a mean of 𝜇 = 0 and
standard deviation 𝜎 = 1. Each population is represented by a different color.
The gray contours show the 1, 2, and 3-sigma credible intervals for the expected
distribution of 𝑝( –L,Lmax(𝑀)) from the toy-model. By comparing the measured
values of ( –L,Lmax(𝑀)) from an observed population to the expected distribution
from our choice of model, one may determine if the dataset is typical of what
one would expect given the model. If the measured values of ( –L,Lmax(𝑀)) fall
outside these intervals, one may conclude that the toy-model is misspecified (does
not accurately model the data). Moreover, the location of a point on this plot relative
to the expected distribution, conveys information about the way in which a model is
misspecified. The right-hand panel shows the toy-model (grey), the true population
distribution for the starred and labeled datapoint (a-d), and the respective –𝜋 for the
observed data (turquoise). This demonstrates that shifts away from the expected
distribution (left-hand panel; grey) in ( –L,Lmax(𝑀)) can be visually identifiable to
the reconstruction of –𝜋.

black world datasets are consistent with the expected distribution, as the model
is correctly specified in the black world. The colored dots, meanwhile, show
ten random realizations of (ln –L, lnLmax(𝑀)) in colored worlds where the model
is misspecified in various ways. This is fundamentally different from a typical
Bayesian inference plot where the data are fixed and the model is varied. Here, the
model is fixed to 𝑀 (Eq. 7.27), and we consider different datasets, which may or
may not be misspecified depending on the world of our observer.

When the model 𝑀 is sufficiently misspecified with respect to the true distribution,
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it becomes unlikely for our observer to obtain values of ( –L,Lmax(𝑀)) that reside
within the expected three-sigma interval—a sign of misspecification. Interestingly,
the different colored dots cluster in different regions. For example, in the world
where the model 𝑀 is too broad (purple), the dots cluster above-right of the gray
contours. In the world where the model 𝑀 is shifted away from the true peak
(salmon), the dots cluster to the left of the gray contours. By studying where one’s
observed values of ( –L,Lmax(𝑀)) fall on this diagram, one can gain some insight
into the way in which one’s model is misspecified. This example focuses on relatively
simple forms of misspecification involving the mean and variance. Other forms of
misspecification (e.g., involving skewness and kurtosis) are, of course possible as
well. Given all the ways that a model can be misspecified, the “shifting model” /
“narrowing model” arrows on Fig. 7.4 should be taken as rule-of-thumb signposts.

In practice, it is computationally challenging to create plots like Fig. 7.4 for popula-
tion studies in gravitational-wave astronomy. While it is easy to create mock datasets,
it is time-consuming to calculate individual-event likelihoods for one dataset, let
alone thousands. There may be workarounds. We discuss this possibility in greater
detail below.

7.4 Application to gravitational-wave astronomy
In this section, we apply the –L formalism to results from gravitational-wave astron-
omy to stress-test models for the population of merging binary black holes. We ana-
lyze data from the second gravitational-wave transient catalog (GWTC-3) [77, 428],
which includes 69 confidently detected binary black hole mergers with false alarm
rates < 1 yr−1. To ensure similarity to the GWTC-3 LVK population analysis [8,
429], we utilize the same individual-event posterior samples—constructed from
equally weighted samples generated from effective-one-body (SEOBNRv3 [430,
431], SEOBNRv4PHM [271, 94]) and phenomenological (IMRPhenomPv2 [107],
IMRPhenomXPHM [241]) waveform results (see [8] for more details). To construct
the lower-dimensional individual-event likelihoods, we utilize the same samples
while marginalizing over all other “nuisance” parameters. For these “nuisance”
parameters, we chose the distributions associated with the maximum a posteriori
hyper-parameters from the LVK’s GWTC-3 population analysis with the Power
Law+Peak-Default-Power Law model [8].

We divide out the sampling prior to convert the one-dimensional posterior to a
likelihood. The likelihood normalization is computed using the Bayesian evidence of
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each event. The normalization is not important for the calculation of –𝜋, but it affects
the misspecification tests demonstrated in Sec. 7.4. We calculate the hyperparmeter
distributions and Lmax(𝑀) using GWPopulation [432], which employs Bilby [36,
95] and Dynesty [162]. We utilize the combined injection set from Ref. [433] to
compute the estimated detectable fraction of binary black-hole mergers over the first
three observing runs.

Model inspiration through visual inspection
One straightforward application of the –L formalism is to visually compare the

reconstructed population distribution (obtained using a phenomenological model)
with –𝜋(𝜃). By comparing these two distributions, it is possible to see which features
in the phenomenological model reconstruction are due to prior assumptions, which
features are due to real trends in the data, and which features might be missing
from the phenomenological model. Formally, we compare –𝜋(𝜃) to the population
predictive distribution (PPD)

PPD(𝜃 |𝑑, 𝑀) =
∫

dΛ 𝑝(Λ|𝑑)𝜋(𝜃 |Λ, 𝑀), (7.28)

which describes the astrophysical distribution of 𝜃 given a phenomenological model
𝑀 with hyper-parameters Λ.

In Fig. 7.5, we present –𝜋(𝜃) with the PPDs from the LVK analysis of GWTC-3 [8,
429] for source-frame primary mass 𝑚1 (top), the effective inspiral spin parameter
𝜒eff (middle), and redshift 𝑧 (bottom). Each row contains two sub-panels; the small
upper panel shows the maximum-likelihood estimate for each gravitational-wave
event and the 90% confidence interval while the larger lower panel compares –𝜋 with
the PPD. The PPD is plotted as a thick band to show the 90% credibility region at
each value of 𝜃.

We first turn our attention to the primary mass distribution in the top row. There
are 𝑀 = 10 delta function peaks, implying an informativeness of I = 0.15 (see
Eq. (7.19)). This result is computed in 169.3 seconds. The gray band is the Power
Law + Peak model from [280] while the orange band is a (more flexible) semi-
parametric power-law-spline model denoted Spline from [285]. The agreement
between –𝜋 and the two PPDs is striking, with cyan spikes closely matching several
of the features in both models including the turn-over at low masses near ≈ 12𝑀⊙

and the bump at 30𝑀⊙. Furthermore, we see that –𝜋 also recovers some of the finer
detail features found only by the Spline model. In particular, the shift in the low-
mass peak and the dips in posterior support at ∼ 16 𝑀⊙ and ∼ 25 𝑀⊙ are present in
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Figure 7.5: Population predictive distributions (90% credibility) and –𝜋 for (a) the
primary black-hole mass (𝑚1), (b) effective inspiral parameter (𝜒eff), and (c) redshift
(𝑧) distributions. For the redshift, we divide by the evolution of the comoving volume
and time delay as a function of redshift to plot the merger rate, R(𝑧). Comparison
of the different models with –𝜋 highlights which features are present in the data and
which are due to assumptions in the model.

the structure of –𝜋. Based on our visual inspection, it appears that current models
are capturing much if not all of the structure present in –𝜋.

Turning our attention to the middle row, we study the distribution of effective inspiral
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spin parameter [218],

𝜒eff ≡ 𝜒1 cos 𝜃1 + 𝑞𝜒2 cos 𝜃2
1 + 𝑞

, (7.29)

which measures the mass-weighted black hole spin projected along the orbital
angular momentum 8. This time, only 𝑛 = 4 delta function spikes are required to
fit the data (I = 0.06), showing how much harder it is to measure 𝜒eff than 𝑚1.
Computing –𝜋(𝜒eff) requires 71.3 seconds. The quicker computation time is likely a
result of the lower number of delta functions required. In gray, we plot the PPD for
the Default model from Refs. [7, 8], which draws on work from Refs. [281, 296]. In
orange we plot the PPD for the Extended model from Refs. [283, 414], which only
analyse 68 binary black-hole events in the population due to data quality concerns
regarding one event [75]. To plot the Extended model results, which incorporates
a delta function at 𝜒eff = 0, we plot the 90% interval for the delta function height,
𝛿, multiplied by the same scale factor as –𝜋. The continuous contribution to the
Extended model is then scaled by the ratio of the PPD evaluated at only the non-
zero 𝜒eff –𝜋 delta functions to the previously computed scaling.

The data-driven –𝜋 includes a delta function at 𝜒eff ≈ 0 and three smaller peaks in
the 𝜒eff > 0 region, but no peaks with 𝜒eff < 0. The lack of support for 𝜒eff < 0 is in
contrast to Refs [7, 8], which find support for a sub-population of binary black holes
with 𝜒eff < 0. The strong delta function at 𝜒eff = 0 lends support to the argument
put forward in Refs. [282, 278, 283] that the data can be well-modeled with a sub-
population of “non-spinning” 𝜒eff = 0 binaries, even if there is not strong statistical
support for the existence of such a peak [297, 434, 414]. However, our visual
comparison suggests that the Extended model may over-predict the abundance of
binaries with 𝜒eff ≈ 0.3. Moreover, we note that the distribution of 𝜒eff = 0 appears
to also be consistent with a smooth, one-sided distribution, maximal at 𝜒eff = 0, and
slowly decaying at larger positive values of 𝜒eff = 0—that is, a single population.

Turning our attention to the bottom row of Fig. 7.5, we consider the case of redshift.
For this parameter, 𝑛 = 6 (I = 0.09), and takes 116 seconds to compute. Here
we plot the merger rate as a function of redshift, R(𝑧) by dividing the posterior
predictive distribution by the PPD by the evolution of the comoving volume and
time delay with respect to redshift. The merger rate is more commonly utilized for
interpreting the redshift evolution. The –𝜋 distribution fits a decrease in the merger

8In Eq. (7.29), 𝑞 ≡ 𝑚2/𝑚1 is mass ratio, 𝜒1,2 are the dimensionless black hole spins, and 𝜃1,2
are the spin vector tilt angles relative to the orbital angular momentum.
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rate at a redshift of 𝑧 ∼ 0.13. While we caution that –𝜋 is purely data-informed, and
such a feature might diminish with additional observations, the Power Law model
utilized in Refs. [7, 8] lacks the flexibility to resolve such a feature. Comparing
our results to Ref. [286], we observe that –𝜋 is qualitatively different from the “non-
parametric” model 9 used in that paper. Our best guess is that the reconstruction
from Ref. [286] is reasonable, and that the different features in –𝜋 are due to noise
fluctuations, though, it is possible that the smooth spline structure imposed by
the [286] model is misspecified or that the prior on “knot location” is somehow
subtly influencing the fit. As more gravitational-wave observations are made, finer
structure may emerge in the redshift evolution of the binary merger rate. These
differences between the parametric reconstructions and –𝜋 might present the first
hints of such structure. We suggest that future redshift models include additional
flexibility to study the possibility of a deficit of mergers in the nearby Universe.

By using the iterative “grid-based” method (without further constrained optimiza-
tion), we also demonstrate the computation of a two-dimensional –𝜋 distribution. In
particular, we study the joint distribution of mass ratio 𝑞 and effective spin inspiral
parameter 𝜒eff . Recent studies have explored the possibility of astrophysical correla-
tions between 𝑞 and 𝜒eff [195, 200, 8], finding an anticorrelation, i.e. more unequal
mass systems typically possess a effective spin inspiral parameter. The presence
of an anticorrelation in the 𝑞-𝜒eff distribution has implications for the formation
environments of binary black holes. Ref. [199], for example, propose that such an
anticorrelation could be due to assembly of binary black holes in active galactic
nuclei.

In Fig. 7.6 we plot –𝜋(𝑞, 𝜒eff) as eight colored pixels. It is easier to digest this –𝜋 plot
than the superposition of single-event, 90% credible intervals for all 69 events (gray).
In order to compare –𝜋 to recent models, we plot the 90% contours of maximum a
posteriori distribution estimates for the Default model in Ref. [8] which assumes
no correlation (black curve), the Correlated model from Ref. [195] (blue curve)
and the Copula model from Ref. [200]. From visual examination of –𝜋 , it is clear
that the anticorrelation identified in Ref. [195] is based on actual features in the data:
the pixels corresponding to the delta functions –𝜋 are consistent with anticorrelation
between (𝑞, 𝜒eff). However, –𝜋 is also consistent with they hypothesis that there are
separate sub-populations located at different regions in the 𝑞-𝜒eff space (an instance
of Simpson’s reversal [435]).

9Ref. [286]’s spline model is probably better described as “ultra-parameterized”.
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Figure 7.6: The joint distribution –𝜋(𝑞, 𝜒eff) represented by eight colored pixels. The
pixel color is related to the delta-function weight. The purely data-derived –𝜋 can be
compared to the 90% contours of maximum a posteriori distribution estimates for
three specific models. The black curve shows the reconstructed population given
the Default model from Ref. [8] (which does not allow for correlation) while the
blue and orange curves show the reconstructed population given by the Correlated
model from Ref. [195] and the Copula model from Ref. [200], respectively. The
grey contours correspond to the 90% credible intervals of the 69 events in GWTC-
3 [77, 8].

Upper bounds on population model likelihoods
In Table 7.1 we report the difference in natural log likelihood comparing the various
population models to the maximum population likelihood –L:

ln –B ≡ ln –L − lnLmax(𝑀). (7.30)

The ln –B values in Table 7.1 measure the fit of population models relative to the
best possible fit. Motivated by the typical threshold for model selection in terms of
Bayes factors [422], a value of ln –B ≲ 8 indicates that the population model is very
close to the maximum population likelihood [74], which would imply that the fit
cannot be dramatically improved. A large value of ln –B by itself does not imply that
a model is “wrong” or unsuitable to describe the data, but it does quantify the extent
to which an alternative model can in-principle improve over the current offerings.

Returning to Table 7.1, the Power Law + Peak model for 𝑚1 shows the most
potential room for improvement. This may be due to structure identified using
the Spline model, which is missing from the less flexible Power Law + Peak.
However, the 𝑚1 measurements are also the most informative in Table 7.1 (with the
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Parameter I Model ln –B
𝑚1 0.15 Power Law + Peak 14.89

Spline 6.66

𝜒eff 0.06 Default 7.70

Extended 3.53

𝑧 0.09 Power Law 8.93

Spline 6.59

Table 7.1: The performance of different population models relative to the –𝑀 . The
quantity –B (Eq. (7.30)) is a measure of the population likelihood of each model
relative the maximum possible population likelihood –L. The “informativeness” I
(Eq. (7.19)) is a measure of the information available about the distribution of each
parameter.

largest value of I). With more information, it is probably easier to concoct an a
posteriori model with a large population likelihood that explains various features in
the distribution of𝑚1 through over-fitting. The Default and Extended spin models
both exhibit ln –B < 8, which implies that neither model can be unequivocally ruled
out, though, the Extended model provides a somewhat better fit with a natural log
likelihood difference of 4.17. We also note that the 𝜒eff and 𝑧 observations are
noticeably less informative, and simultaneously the associated values of Lmax(𝑀)
are closer to –L. This might indicate that, while there are features present in –𝜋 that
are present in the data, they are not statistically significant.

Model criticism in gravitational-wave astronomy

It would be interesting to make a version of the left-hand panel of Fig. 7.4 using
the population models from gravitational-wave astronomy discussed in the previous
subsection. Unfortunately, this is quite computationally difficult. First, we would
need to run single-event parameter estimation of 𝑁 ≈ 69 events drawn from a
random realization of the population fit to the observed gravitational-wave events.
This needs to be repeated O(1000) times to produce the refined contours as those
shown in the toy-model example (Fig. 7.4). However, as an initial demonstration,
we generate three simulated catalogs of 69 events using three draws from the Power
Law + Peak - Default - Power Law hyperposterior informed by observations from
GWTC-3 [8]. These simulated observations were produced with injections of the
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IMRPhenomXPHM [241] waveform into simulated Gaussian noise colored by the
power spectral density from the first half of the third LVK observing run.

We then run Bayesian hierarchical inference to determine the posterior predictive
distributions from the parameterized model. Using the posterior predictive distribu-
tions, following the calculation undertaken for the collection of real gravitational-
wave observations, we produce the one-dimensional marginal likelihoods which are
then used to compute –L and Lmax(𝑀). Unlike in Sec. 7.4, where enough simulated
catalogs are produced to construct an expected distribution in the ( –L,Lmax(𝑀))
plane, here we are required to model and fit the distribution. We employ Bayesian
inference and a simple multivariate Gaussian distribution model to estimate the
structure in the expected ( –L,Lmax(𝑀)) distribution. We use a Wishart prior on the
covariance matrix [436]. We use the posterior predictive distribution of fitted Gaus-
sian distributions to estimate whether the models utilized in Ref. [8] are inadequate
for the observations.

The results are shown in Fig. 7.7 for the primary black-hole mass, effective in-
spiral parameter, and redshift. The blue dots correspond to the three simulated
gravitational-wave catalogs, whereas the black star corresponds to the observed
values from GWTC-3. The gray ellipses are 3𝜎 intervals for ( –L,Lmax(𝑀)), each
associated with a different realisation of our Gaussian fit. (The large amount of
scatter is due to the fact that we are attempting to fit a Gaussian to just three points.)
The dashed blue curve corresponds to the maximum a posteriori (MAP) estimate.
The value of Lmax(𝑀) has been normalized to the value found for GWTC-3. The
inferred points in ( –L,Lmax(𝑀)) for GWTC-3 typically reside beyond the 3𝜎 con-
fidence interval, which we use as our criteria for misspecification.

We calculate a 𝑝-value for each panel, which quantifies the probability of observing
the GWTC-3 values for ( –L,Lmax(𝑀)) given our fit; small 𝑝-values are indicative
of misspecification. For the Power Law + Peak primary black-hole mass model is
misspecified we find 𝑝 = 47%, for the Default 𝜒eff model we find 𝑝 = 44%, and for
the redshift Power Law model we find 𝑝 = 10%. None of the models we consider
are clearly ruled out as misspecified, as the sensitivity of this test is somewhat
hamstrung by the small number of simulated catalogs. It would not surprise us
if a more aggressive follow-up study O(1000) simulations identified one or more
models as more obviously misspecified.

One important caveat to these results is that the overall normalization of the likeli-
hood depends on the computation of the individual observation Bayesian evidences.
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Figure 7.7: Demonstration of the ( –L,Lmax(𝑀)) model misspecification test for
three parameterized models used in Ref. [8]—(a) the Power Law + Peak model for
the primary black-hole mass distribution, (b) the Default for the 𝜒eff distribution,
and (c) the Power Law redshift distribution. Due to the limited number of simulated
gravitational-wave catalogs, we model the expected distribution 𝑝( –L,Lmax(𝑀)) as
a multivariate Gaussian distribution and infer the possible mean and covariance
matrix from the three simulated values (blue). The grey ellipses correspond to the
3𝜎 confidence intervals for 100 different realizations of the possible distribution.
The dashed blue ellipses correspond to the maximum a posteriori (MAP) predictive
distributions. The inferred values of ( –L,Lmax(𝑀)) from the 69 events in GWTC-3
are shown by the black point. The likelihoods are normalized by the maximum
likelihood inferred from the GWTC-3 model. From the inferred ellipses, we can
conclude that there is a possibility that some or all models used are inadequate for
the observations. Further studies with larger simulated catalogs are required to truly
determine whether these models are misspecified.

With stark differences between the analyses made in Refs. [77, 8], it is difficult to
accurately emulate the correct overall normalization of the likelihood. This globally
impacts in the scale of Lmax(𝑀) for the simulated catalog—potentially shifting the
distributions closer or further from the inferred GWTC-3 result. In addition, the
robustness of the evidences computed within Ref. [77] are not guaranteed (see e.g.
Ref. [297]).

There are a number of solutions to address the computational cost of this analy-
sis. While probably not realistic in the near future, it may be possible to represent
the likelihood functions of simulated events using a Fisher matrix approximation,
which would speed up the calculation significantly. However, verifying that this
approximation produces adequately estimates for –L,Lmax(𝑀) could remain a chal-
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lenge. Another possibility worthy of investigation is the idea that the distribution
of –L,Lmax(𝑀) might have some quasi-universal properties. If it can be shown that
a large class of problems produce a similarly-shaped distribution of –L,Lmax(𝑀),
perhaps a relatively small number of simulations can be used to work out the shape
of 𝑝( –L,Lmax(𝑀)). We leave this for future work. Perhaps most promising are
efforts to speed up inference with various machine learning schemes; see, e.g.,
Ref. [437]. As these tools become more reliable, it may become possible to estimate
( –L,Lmax(𝑀)) in a matter of seconds, which would in turn enable precision tests of
misspecification.

7.5 Conclusion
The –L formalism provides a useful lens through which to view population studies in
gravitational-wave astronomy. It provides an upper bound on the Bayesian evidence
for population models, –L. The associated pseudo-prior distribution –𝜋 is a sum
of delta functions. The –𝜋 distribution can be used to see which features in a
reconstructed distribution are model-dependent, and which are genuinely present
in the data. The –𝜋 distribution can also draw attention to features in the data
that are not fit by current models, providing a tool for the design of new models.
Finally, the –L formalism can be used to determine if a model is misspecified,
by comparing the values of ( –L,Lmax(𝑀)) to the expected distribution of these
quantities given the model 𝑀 . This comparison can be made quantitatively with a 𝑝-
value. And, by comparing the measured values of ( –L,Lmax(𝑀)) to the distribution
expected given the model, it is possible to see the way in which the model is
misspecified. Constructing a distribution of –L,Lmax(𝑀) may be computationally
prohibitive in gravitational-wave astronomy, though, future work is required to
investigate simplifying assumptions that might bring down the cost.

While we have introduced the –L formalism within the context of gravitational-wave
astronomy, the framework is general, and we expect it can be applied to a broad
range of problems in astronomy and beyond where one seeks to infer the distribution
of parameters 𝜃 with potentially unreliable hierarchical models.
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7.6 Appendix: Outline of –𝜋 structure proof
Overview
In this appendix we outline the basic ideas underpinning the proof from Ref. [419]
by Lindsay that –𝜋 consists of a sum of ≤ 𝑁 delta functions:

–𝜋(𝜃) =
𝑛∑︁

𝑘=1
𝑤𝑘 𝛿(𝜃 − 𝜃𝑘 ). (7.31)

Our aim is to provide readers with a qualitative understanding. To this end, we
consider a simple example of 𝑁 = 2 measurements, each characterized by a Gaussian
likelihood functions. Our example measurements are depicted in the right-hand
column of Fig. 7.8, which shows two single-event likelihoods (one in purple, the
other in red), both conditioned on some parameter 𝜃. In each row of Fig. 7.8, we
vary the separation of these two single-event likelihood functions relative to their
width: far apart in the top row, becoming closer together in the two subsequent rows.
We show below how –𝜋 consists of either one or two delta functions, depending on
this relative separation and explain how this generalizes to 𝑁 > 2.

Lindsay’s proof relies on the mathematics of convex hulls, geometric shapes which
can be defined in arbitrarily high dimensions. If one draws a line between any two
points on a convex hull, all the points on that line are also part of the hull. (The
gray shaded regions in the left-hand column of Fig. 7.8 are all examples of convex
hulls.) Convex hulls are often used in optimization problems with constraints where
the optimal solution occurs on the boundary of the hull, which is determined by the
constraints. In Lindsay’s proof, the relevant constraint equation is the unitarity of
the –𝜋(𝜃): ∫

𝑑𝜃 –𝜋(𝜃) = 1. (7.32)

The unitarity constraint means that the form of –𝜋(𝜃) that maximizes the population
likelihood exists on the boundary of a complex hull.

A geometric picture
For the sake of simplicity, we ignore the impact of the selection function 10. We
represent the observations using what Lindsay refers to as an atomic likelihood
vector,

𝐿 (𝜃̂) ≡ {L(𝑑1 |𝜃̂),L(𝑑2 |𝜃̂), ...,L(𝑑𝑁 |𝜃̂)}. (7.33)
10The selection function term, 𝑝det (𝜃), can be absorbed into the prior to determine –𝜋 on the

observed population before correcting the detection probability afterwards.
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Figure 7.8: Visual illustrations of the proof in Ref. [419]. The left-hand column
panels show the atomic likelihood vectors (red), the convex hull produced from
the red curve (grey with black outline), and the cyan point on the convex-hull
boundary with the maximum population likelihood –L. The black points correspond
to the points from the set of atomic likelihood vectors which generate the maximum
population likelihood. The right-hand column panels show three examples of 𝑁 = 2
single-event likelihood functions (purple and red). The distribution of –𝜋 is indicated
with one or more cyan spikes. These spikes correspond to the –L solution (cyan dot)
in the corresponding left-hand panel. In (a), the two single-event likelihoods are
mostly disjoint and so two delta functions are required to maximize the population
likelihood (cf. Fig. 1 in Ref. [419]). As the two single-event likelihoods begin
to overlap further, these two delta functions move closer together as shown in (b).
Moving the single-event likelihoods closer still, the set of atomic likelihood vectors
becomes the boundary of the convex hull, at which point only one delta function is
required to maximize the likelihood as shown in (c).
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Each element of this vector is a single-event likelihood marginalised over a delta-
function prior peaking at 𝜃̂:

L(𝑑𝑖 |𝜃̂) =
∫

𝑑𝜃𝑖 L(𝑑𝑖 |𝜃𝑖) 𝛿(𝜃 − 𝜃̂). (7.34)

This allows us to represent the problem in an abstract 𝑁-dimensional likelihood
space. The left-hand column of Fig. 7.8 provides a visualization of such a two-
dimensional atomic likelihood vector space. Scanning over all possible values of 𝜃̂
traces out the red curve in the atomic likelihood vector space, which represents all
possible values of the atomic likelihood vector 𝐿 (𝜃). By varying 𝜃̂, we can make
an individual element of the atomic likelihood vector large, but doing may make
other elements of the vector small as we see in the top row with widely separated
single-event likelihood functions.

The weighted sum of atomic likelihood vectors

𝐿 ( ®𝑤) =
∑︁
𝑘

𝑤𝑘 𝐿 (𝜃̂𝑘 ) (7.35)

yields a vector of likelihoods with elements

L(𝑑𝑖 | ®𝑤) =
∑︁
𝑘

𝑤𝑘 L(𝑑𝑖 |𝜃̂𝑘 ), (7.36)

corresponding to the marginal likelihood given a prior of delta functions

𝜋(𝜃) =
∑︁
𝑘

𝑤𝑘 𝛿(𝜃 − 𝜃̂𝑘 ), (7.37)

where ∑︁
𝑘

𝑤𝑘 = 1. (7.38)

This means we can construct more general marginal likelihood vectors with a linear
combination of atomic vectors. Furthermore, in the continuum limit, any prior can
be used to marginalize over the atomic likelihood vectors. Elements of the marginal
likelihood vector in the continuum limit take the form,

L(𝑑𝑖 |𝑀) =
∫

𝑑𝜃̂𝑖 L(𝑑𝑖 |𝜃̂𝑖) 𝜋(𝜃̂𝑖 |𝑀). (7.39)

Let us consider again the 𝑁 = 2 example illustrated in Fig. 7.8. If we pick any two
points on the red curve, each corresponding to some value of 𝜃̂, which we denote
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𝐴 and 𝐵, we can define two basis vectors: 𝑒𝐴 and 𝑒𝐵. The linear combinations of
these two basis vectors forms a line connecting 𝐴 and 𝐵. All of the points along
this line represent likelihood vectors constructed from 𝑁 = 2 delta functions. By
connecting together every possible pair of points on the red atomic likelihood points,
we map out the gray region—the convex hull. Every possible marginal likelihood
vector (for any choice of prior) is part of the hull. That is, the set of all possible
summations is the convex hull and is a representation of all possible probability
distributions in the likelihood space. This result is profound—our original problem
is reduced from an infinite set of possible population distributions to a closed region
in an 𝑁-dimensional likelihood space. The construction of the convex hull is unique
[419], except in pathological cases further discussed in Sec. 7.6.

Now that we have studied the geometry of the atomic likelihood vector space, we ask
the question: what point in our convex hull corresponds to the maximum population
likelihood? The population likelihood can be written as a product of the marginal
likelihood vector elements:

Lpop( ®𝑑 |𝑀) =
𝑁∏
𝑖=1

L(𝑑𝑖 |𝑀). (7.40)

In 𝑁 = 2 dimensions, we can fix Lpop( ®𝑑) and identify hyperbolic curves of the form

L(𝑑2) = L( ®𝑑)/L(𝑑1), (7.41)

represented in the left-hand column of Fig. 7.8 by gray curves. All the points on one
of these curves have the same population likelihood. If we jump up and to the right
from one gray curve to another, the population likelihood increases. These constant-
population-likelihood, hyperbolic curves do not depend on any population model.
The population likelihood is then maximized by finding the point on the boundary
of the hull tangent to the gray curve with the largest population likelihood (the most
up-and-to-right gray curve). In general, the maximum population likelihood point
lies on the boundary of the hull [438, 419]. Our maximization problem can therefore
be rewritten as a geometry problem.

We now turn our attention to the different rows of Fig. 7.8. In the top row, the two
single-event likelihoods (right) are widely separated. The cyan dot on the left-hand
plot shows the maximum population likelihood point on the surface of the hull.
This is where the population likelihood has a value of –L. It falls on a straight black
surface of the hull, but not on the red atomic likelihood vector curve. This means
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that the cyan point is a linear combination of two atomic likelihood vectors, which
are indicated by the two black points (cf. Fig. 1 in Ref. [419]). Thus, the maximum
population likelihood solution consists of two delta functions, each corresponding
to a different atomic vector. This linear combination of delta functions is shown in
the right-hand panel with cyan spikes. Unsurprisingly, they coincide with the two
single-event likelihood function peaks.

Moving down to the second row, the single-event likelihood functions (right) are
now closer together. The shape of the hull changes accordingly (left). The hull
boundary point that maximizes the population likelihood still does not fall on the
red curve of atomic vectors. Again, it is a linear combination of two black points.
However, since the shape of the hull has changed, the black points have moved
relative to the top row. The corresponding delta function spikes (right) therefore
shift toward 𝜃 = 0 and no longer correspond to the maximimum likelihood points
of the single-event likelihoods.

In the bottom row, the single-event likelihood functions (right) are closer still. The
hull (left) has now changed shape so that the cyan point marking the maximum
population likelihood falls on the red curve denoting the set of atomic vectors (left).
This means that the likelihood can be maximized with a single delta function at
𝜃 = 0 (right). In each case (and almost all scenarios, see Sec. 7.6) the convex hull is
unique, and so the cyan point of maximum population likelihood is unique as well.
In all but the most pathological cases, Carathéodory’s theorem [421, 439] states
that all points on the boundary of a convex hull can be constructed by, at most, 𝑁
points that were used to initially construct the hull (in our problem these are the
atomic likelihood vectors). The relative weight of each delta function corresponds
to the position along the boundary of the hull [419]. Thus, the population prior
corresponding to the maximum population likelihood is a construction of a finite
set of, at most, 𝑁 delta functions.

The transition from two delta functions to one delta function occurs when the red
curve passes through the black one (when the set of atomic likelihood vectors
becomes convex). During this transition, the cyan point changes from residing on
a straight line connecting two atomic vectors to residing on a single atomic vector
point. This picture generalizes to higher dimensions. Solutions with three delta
functions (which can only exist when 𝑁 ≥ 3) reside on two-dimensional planes.
Solutions with four delta delta functions (which can only exist when 𝑁 ≥ 4) reside
on three-dimensional hyper-planes. And so on.
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Pathological cases

While we see that the maximum population likelihood almost always corresponds
to a finite, unique set of 𝑁 or fewer delta functions, there are pathological cases
(not likely to come up in real-world data analysis) where this is not the case. Such
cases stem from the maximum population likelihood point not being unique. So
while the maximum population likelihood point is still found, multiple distributions
can map to the same point in likelihood space. This requires artificial degeneracies
in the measurements. In Fig. 7.9, we demonstrate one such example with two
likelihood functions perfectly symmetric about 𝜃 = 0 and one of which is bimodal.
In the likelihood space, the –L point corresponds to two possible positions of the
delta function. However, unlike in Fig. 7.8(a) where the two possible delta function
positions are separated, here they correspond to same point in likelihood space.
Therefore, any normalized combination of the two delta functions produces the
maximum population likelihood. This is emphasized by the dashed blue lines in the
right column of Fig. 7.9(a), indicating that any combination of the two delta functions
here is a permissible solution. However, we emphasize that this pathology arises
from an artificial degeneracy, which is immediately broken if the likelihood functions
are not precisely symmetric as demonstrated in Fig. 7.9(b). Other, even more
pathological, situations can be constructed where infinitely many atomic likelihood
vectors reside at the maximum population likelihood point, allowing for arbitrarily
structured –𝜋 distributions. However, all such situations require regions of perfectly
uniform likelihood functions, which we do not expect in realistic observations—at
least, not in gravitational-wave astronomy.
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Figure 7.9: Demonstration of a pathological failure of the uniqueness of –𝜋. This
occurs when multiple distributions map to exactly the same point on the convex
hull. In (a), a perfectly symmetric, bimodal single-event likelihood has two delta
functions with produce the same population likelihood. Therefore, any combination
of the two is a valid –𝜋. However, such perfectly symmetric multi-modal distributions
do not typically occur in gravitational-wave data analysis. We see here we can break
this degeneracy by only slightly breaking the symmetry, shown in (b).
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C h a p t e r 8

NEUTRON STAR POST-MERGER GRAVITATIONAL-WAVE
INFERENCE WITH PHOTON COUNTING READOUT

SCHEMES

8.1 Motivation
An important scientific goal for future generations of gravitational-wave detectors is
the study of dense nuclear matter through the detection of binary neutron-star (BNS)
mergers and the characterization of their post-merger remnant through gravitational-
wave radiation [89, 45, 90]. Since binary neutron stars exhibit densities beyond the
nuclear saturation density, they exist as astrophysical laboratories for which no
terrestrial experiment or astrophysical object can emulate. Therefore, direct obser-
vations of binary neutron stars and their post-merger signals stand to provide provide
unprecedented insights into the dense matter equation-of-state [440, 441, 442] (in-
cluding the possibility of phase transitions [443, 444]), the nature of hyper- and
supramassive neutron stars [445], and the production of electromagnetic radiation
from BNS merger remnants [446, 447].

Post-merger signals present a rich scientific opportunity, though detecting these
signals with future generations of gravitational-wave detectors remains a significant
challenge when using standard interferometric methods [45, 448]. Redshifted post-
merger signals typically fall within the ∼ 500 Hz to 4 kHz frequency range, though
the most detectable post-merger signals will fall between ∼ 1.5 kHz to 4 kHz; see
Fig. 8.1 from Ref. [449] for examples of Fourier-domain strains from BNS post-
mergers described by different equations-of-state. For ground-based detectors such
as LIGO [1], Virgo [16], KAGRA [362] and future observatories like the Cosmic
Explorer (CE) [45] and Einstein Telescope [47], sensitivity at these frequencies is
primarily limited by quantum measurement noise that results from photon shot noise
on the interferometer fringe light that is recorded [91]. Modulations of that light are
calibrated into a strain time-series [31, 33]. The quantum shot noise is now being
reduced by almost 6 dB by injecting squeezed light (see Fig. 17 from Ref. [17] for
current sensitivity improvements in O4 due to squeezing) [450, 451, 17], and future
observatories plan to achieve 10 dB of quantum noise power suppression [45, 47].
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Figure 8.1: Fig. 5 from Ref. [449]. The post-merger strain amplitude for a source
at a distance of 100 Mpc multiplied by 𝑓 1/2, is shown for three different equations-
of-state. These different equations-of-state present different fundamental frequency
peaks that may be resolved. The dashed blue curve indicates the design sensitivity
of aLIGO [1].

However, even with improvements in squeezing, third-generation detectors like CE
are only expected to detect post-merger signals with a signal-to-noise ratio (SNR)
greater than five at a rate of approximately one per year [45] (also see the upper
panel of Fig. 8.7 for a summary of the SNR distribution from 104 observations).
Post-merger waveform signals with SNRs below this threshold result in almost
entirely uninformative posteriors [440]. Given that CE is projected to observe
hundreds of thousands of BNS mergers annually [452, 453, 454], this threshold
results in a low post-merger detection rate and prevents the complete utilization
of future detector designs towards their scientific goals. Future observatories are
assumed to operate using the same measurement process as existing detectors,
where the interferometer generates a time-series by recording modulations fringe
light. In quantum measurement literature, this measurement process is known as
homodyne readout [455]. The sensitivity of Gravitational-Wave interferometers
with this readout is quantified through the power spectral density of their strain
readout channel, where the total density is the sum of quantum and classical noise
power contributions. The time-series data product and quantum shot noise are
both a result of using homodyne readout as the typical measurement process for
interferometer observatories.

The quantum noise contribution is unlike the classical noise contributions, because
its impact can be influenced by the choice of quantum measurement process. Alter-
nate quantum measurements on the output of interferometers are physically possible
and modify the influence of both signals and noise on data distributions. Alter-
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nate readout methods are still limited by randomness from quantum mechanical
indeterminacy, but can have more favorable statistical figures of merit than that as-
sumed of additive quantum shot noise power, even with squeezing applied [456, 457,
458]. For this work, we assume the eventual existence of hardware that performs
matched-template computations directly on the electro-magnetic field emitted from
an interferometer, and we choose a quantum measurement of power rather than
of amplitude. Power measurements are discretized into photon counts [92]. We
present the statistical framework and observational methodology required to pre-
dict and interpret post-merger detections using photon counting techniques, and we
compare it to the standard time-series readout that provides a continuous measure
of electromagnetic amplitude through homodyne readout.

A heuristic argument why photon counting may benefit the observation of a post-
merger signal follows. If post-merger inference requires marginalization of nuisance
parameters such as the difficult-to-predict ringdown waveform phase, then inference
becomes similar to an excess power search. To detect excess power of an event pop-
ulation below detection threshold requires a number of events that scales inversely
to the square of the total noise power spectral density. If photon counting is used,
one can compute that the rate that signal waveforms emit photons scales inversely
to the power spectrum of shot noise, due to common calibration factors between the
emission rate and noise process [92, 459]. In the regime that classical noise is small
and emits many fewer photons per event than signals, even a single photon detection
event provides a significant detection. The detection rate for counting thus has a
better scaling than excess power search with homodyne readout. In reality, the rate-
constants are important, the classical noise is non-zero, and the complete inference
process must be compared to determine which method is superior. The potential for
improved detection and complexity of this statistical argument motivates our work
to implement a fully Bayesian analysis and directly compare quantum measurement
methods for this important astrophysics science goal.

In this manuscript, we explore the possibility of using a photon counting readout
in-depth. In Sec. 8.2, we outline the photon counting methodology and its transla-
tion into the standard Bayesian formulation that has become the gold-standard for
inference techniques in gravitational-wave astronomy. In Sec. 8.3, we then present
the scientific value of photon counting for individual post-merger signals and ad-
dress some of the quirks that manifest in inferences which rely on this discrete
observational data, as opposed to the more continuous nature of homodyne readout-
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based observations of the gravitational-wave detector’s strain. We find that photon
counting measurements are able to gain meaningful information from post-merger
observations with SNRs≲ 1. Then, in Sec. 8.4 we demonstrate the resolving power
of photon counting to place meaningful constraints on equation-of-state parameters
through observations of the post-merger. We find that, in a hierarchical context,
photon counting will perform as well as a homodyne readout with 10 dB of squeez-
ing. Furthermore, a reduction of classical noise by an order of magnitude allows for
significantly greater constraining power. Implications of the construction of such an
readout scheme and concluding remarks are presented in Sec. 8.5. For the remainder
of the manuscript, while this analysis can be extended to multiple detectors, we will
focus on the implementation of such a method in a single CE interferometer.

8.2 Photon Counting for Post-merger detection and inference

In this section, we present the statistical framework and physical instrumentation
elements required to realize photon counting as an alternative to the standard time-
series readout of homodyne detection. We first summarize the experimental setup
and statistical properties of the more familiar homodyne readout in Sec. 8.2. We
then detail the photon counting readout to detect and measure discretized signals
from simulated BNS post-merger gravitational-wave signals in Sec. 8.2, as well as
how the underlying distributions follow from the measured photons from signal and
noise sources. Finally, in Sec. 8.2, we outline the full likelihood function describing
the photon counting measurement scheme.

Summary of the homodyne readout

Here we provide simple expressions that describe the physical process of detecting
waveforms with an interferometer. This helps establish the statistical framework for
the standard homodyne readout [460], which we then translate to the framework of
the less familiar photon counting approach.

Michelson interferometers are generally described as directing laser light to a beam-
splitter, where it splits and then simultaneously travels down both arms to accumulate
a phase shift, reflects at respective end-mirrors, and then is recombined upon a sec-
ond pass through the beamsplitter. The combined fields are emitted into constructive
and destructive interference outputs. The differential phase accumulation that car-



148

ries strain waveform information is encoded in the optical field 𝐸ℎ (𝑡) and measured
from the modulations of an otherwise-constant fringe light power at the destructive
interference output. The output field is expressed as a sum of the time varying
waveform component and the static fringe field,

𝐸out(𝑡) = 𝐸h(𝑡) + 𝐸fringe. (8.1)

The output-port power that is monitored is then

𝑃out(𝑡) = |𝐸out(𝑡) |2 = 𝑃fringe + 𝛿𝑃(𝑡), (8.2)

where
𝛿𝑃(𝑡) = 2 Re{𝐸h(𝑡) · 𝐸fringe} + 𝑃𝑞 (𝑡). (8.3)

In this expression, 𝛿𝑃(𝑡) purely captures the time-varying component (ignoring the
minuscule |𝐸ℎ (𝑡) |2 contribution). 𝑃𝑞 (𝑡) represents the mean-0 quantum shot noise
fluctuation term, discussed below. The optical field, 𝐸ℎ (𝑡), encodes the differential
length signal of the interferometer which includes the strain waveform, ℎ(𝑡) as
well as a noise contribution from classical noise sources, 𝑛(𝑡). Classical noise
source encompass almost all sources such as seismic, thermal, electronics noise [34,
17]—all noise sources that aren’t inherent to the nature of the readout scheme itself.

Both the waveform and classical noise are calibrated from their units of strain into
optical field by applying an optical detector gain, 𝑔( 𝑓 ), expressed in the frequency
domain as a linear time-invariant filter. Gravitational wave detectors use recycling
cavities optimized for a detection bandwidth of Δ𝐹det (typically around 450 Hz [1])
and circulating arm power 𝑃arm (around 400 kW in O4 LIGO [17] to 1.5 MW in
future detectors [45, 47]). An idealized but accurate expression for the optical
calibration function is [461]

𝑔( 𝑓 ) = 𝑖𝑘

√︂
𝑐𝐿𝑃arm
𝜋Δ𝐹det

(
1 + 𝑖 𝑓

Δ𝐹det

)−1
, (8.4)

from which we can define the sensing function,

𝐶 ( 𝑓 ) = 2𝑔( 𝑓 )
√︁
𝑃fringe. (8.5)

In the expression for the optical gain, 𝑘 is the wavenumber of the interferometer’s
source laser, 2𝜋/1064 nm for LIGO and Cosmic Explorer [1, 45]. The factor of
𝑖 on the calibration applies the convention that signals are imprinted in the phase
component of the light. It makes 𝐸ℎ (𝑡) purely imaginary and 𝐸fringe is also purely
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imaginary in this convention. Applying the calibration gives the frequency domain
expressions for the emitted optical field that carries the signal and classical noise
components,

𝐸ℎ ( 𝑓 ) = 𝑔( 𝑓 ) (ℎ( 𝑓 ) + 𝑛( 𝑓 )). (8.6)

We can directly apply Eq. (8.3) to write

𝛿𝑃( 𝑓 ) = 𝐶 ( 𝑓 ) (ℎ( 𝑓 ) + 𝑛( 𝑓 ) + 𝑞( 𝑓 )). (8.7)

The new term 𝑞( 𝑓 ) represents the quantum noise process in units of strain. Specifi-
cally, 𝑃𝑞 ( 𝑓 ) = 𝐶 ( 𝑓 )𝑞( 𝑓 ). The classical noise, 𝑛( 𝑓 ), is assumed to be mean-0, and
its power spectral density obeys the relation

⟨𝑛( 𝑓 )𝑛∗( 𝑓 ′) |𝑛( 𝑓 )𝑛∗( 𝑓 ′)⟩ = 𝑆𝑛 ( 𝑓 )𝛿( 𝑓 − 𝑓 ′)/2. (8.8)

Note that the angled brackets indicate the time-averaged expectation over many
realizations. The classical noise spectrum 𝑆𝑛 ( 𝑓 ) will be used extensively with
photon counting, even though it is much smaller than the quantum noise process at
high frequencies where post-merger waveforms are most informative.

The quantum noise process imposes a noise power on the measurement of the fringe
light into photons,

𝑆𝑃𝑞
( 𝑓 ) = 2ℏ𝑘𝑐𝑃fringe · 10−dBsqz/10. (8.9)

This spectral density represents the white-noise fluctuations of photo-power at the
readout detector. Improved (lower) noise from injecting squeezed states can be
applied through the parameter dBsqz in decibels of observed quantum noise power
reduction. Without squeezing (dBsqz = 0), this spectral density represents shot noise
from Poissonian statistical fluctuations in the arrival of photons from the fringe light.

The shot noise power spectral density (PSD) calibrated in units of strain is given by
𝑆𝑞 ( 𝑓 ) with the expression [451],

𝑆𝑞 ( 𝑓 ) =
𝑆𝑃𝑞

( 𝑓 )
|𝐶 ( 𝑓 ) |2

=
ℏ𝑘𝑐

2|𝑔( 𝑓 ) |2
· 10−dBsqz/10. (8.10)

Note that the shot noise, after calibration, no longer depends on the specific level
of 𝑃fringe, and only depends on the amount of power in the interferometer arms, the
interferometer bandwidth, and the amount of observed squeezing. Although shot
noise is Poissonian in nature, the large number of photons in 𝑃fringe allows for it to
be well-approximated as a Gaussian distribution.
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Altogether, after calibrating into units of strain, the strain measured using the fringe
light as a homodyne readout follows from Eq. (8.7),

ℎHD( 𝑓 ) = ℎ( 𝑓 ) + 𝑛( 𝑓 ) + 𝑞( 𝑓 ), (8.11)

with a noise backgreound given by

𝑆HD( 𝑓 ) = 𝑆𝑛 ( 𝑓 ) + 𝑆𝑞 ( 𝑓 ). (8.12)

In summary, the astrophysical strain waveform, ℎ( 𝑓 ) adds to two separate noise
processes to result in the measured strain ℎHD( 𝑓 ). The first noise process is classical
noise 𝑛( 𝑓 ), 𝑆𝑛 ( 𝑓 ) which arises from random thermal, mechanical, electrical and
laser processes in the interferometer that mask signal waveforms [34]. The second
is quantum noise 𝑞( 𝑓 ) with power spectral desnity 𝑆𝑞 ( 𝑓 ), which results from the
Poissonian arrival of photons from the fringe light [91]. From this result, a Gaussian
likelihood can be constructed to infer the properties of the observed gravitational-
wave signal with waveform model, ℎ( 𝑓 ; 𝜃).

Photon counting readout

Due to the dominating effect of quantum shot noise at frequencies above ∼ 500 Hz,
an alternative readout scheme has been proposed using single photon sideband
detection, also known as a photon counting readout [92]. In broad strokes, the
implementation of photon counting requires additional infrastructure in the beam-
path between the gravitational-wave detectors signal recycling mirror and the DC
readout photodiodes. The principle is that one can build an apparatus to interact
with and filter specific photonic signal temporal modes present in the output. By
then reading out the occupation number in each temporal mode basis used during
the filtering, the underlying signal can be detected and interpreted. In this readout
scheme, rather than generating shot noise, vacuum states lead to simply reducing
the rate of signal photons. This implies that shot noise no longer imposes the
fundamental limit on the observability of a signal with this readout. Instead the
background rate of photons from other noise sources provides this limit. It is
important to note that shot noise in a form is still present—now signal photons have
shot noise associated with their observation and therefore follow an appropriate
statistical distribution.

The crucial difference between the incremental improvements that have been made
to the typical readout of gravitational-wave detectors and the inclusion of photon
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counting, is that photon counting fundamentally changes the output measurement
data. Rather than recording a continuous representation of the strain present on the
detector, instead a discrete set of photon counts are recorded for a discrete set of
filters in series. This leads to a measurement described by fundamentally different
statistics. This difference in readout methodology leads to a reduced sensitivity
to louder signals (demonstrated further in Sec. 8.3) however leads to increased
sensitivity in the very low signal-to-noise ratio (SNR) regime.

In order to formulate the expected number of photons from a gravitational-wave
signal with a background of classical noise sources, we can return to the definition
of the emitted optical field in Eq. (8.6). From this expression, we see that quantum
noise effects are not present in the measurement. Labelling the bases of temporal
modes as {𝑑𝑘 ( 𝑓 )}, we can write down the electric field in each mode as

𝐸𝑘 =

∫ ∞

−∞
d 𝑓 𝑑𝑘 ( 𝑓 )𝐸∗

ℎ ( 𝑓 ) . [unitless] . (8.13)

In order to undertake this analysis, these optical mode filters, {𝑑𝑘 ( 𝑓 )}, correspond
to an orthonormal basis which should mimic the signals of interest (i.e. have the
same amplitude and phase behavior as a function of time/frequency). The condition
of orthonormality is to simplify the experimental design. With an orthonormal
filter basis, the filters can be placed in series along the beampath (which maintains
a higher sensitivity than the parallel array of filters) without the complication of
tracking the order of each filter in the process. Note that 𝑑𝑘 ( 𝑓 ) has the units
1/
√

Hz. Within the experimental design this template bank can be implemented via
filter cavities or—more likely for sophisticated signal inference – quantum memory
technologies which are not currently developed to a level of maturity required for
such an application [92].

Then the expected number of photons in a template given a particular realization of
the optical field, which is again directly related to the strain in via Eq. (8.6),

𝑛̄𝑘 = ⟨𝐸𝑘𝐸
∗
𝑘⟩ = |𝐸𝑘 |2 , [unitless or counts] . (8.14)

Thus, following Eq. (8.6) through to Eq. (8.14), will lead to the expected photon
count for a particular realization of a strain signal. Experimentally, when an ob-
servation is then made, some discrete number of photons are generated in each
mode basis filter. With this photon count per template, we are able to construct the
likelihood function and perform statistical inference using this result. However, the
specifics of the photon count depend on the origin of the signal. The exact functions
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are discussed in detail below, though it is important to note that the underlying
photon count distributions differ between signal-sourced photons, classical noise
source photons, and single photon count readout photons. This allows for different
photon sources to be disentangled in hierarchical studies without exact knowledge
of the noise background. For the remainder of the manuscript, we assume perfect
efficiency in our single photon readout devices.

Classical noise photons

The classical photons contribute a background of photons which will diminish the
resolving power of counting individual signal photons. To compute the expected
photon count from a classical noise background, we can compute expected number
following Eqs. (8.13) and (8.14) to write

𝑛̄cl,𝑘 =
〈( ∫ ∞

−∞
d 𝑓 𝑑𝑘 ( 𝑓 )𝐸∗

𝑛 ( 𝑓 )
) ( ∫ ∞

−∞
d 𝑓 ′ 𝑑∗𝑘 ( 𝑓

′)𝐸𝑛 ( 𝑓 ′)
)〉

, (8.15)

where 𝐸𝑛 ( 𝑓 ) = 𝑔( 𝑓 )𝑛( 𝑓 ). The above expression can be rearranged, noting that the
basis filters are unchanging functions so that ⟨𝐸𝑛 ( 𝑓 )𝑑𝑘 ( 𝑓 )⟩ = ⟨𝐸𝑛 ( 𝑓 )⟩𝑑𝑘 ( 𝑓 ), as

𝑛̄cl,𝑘 =

∫ ∞

−∞
d 𝑓

∫ ∞

−∞
d 𝑓 ′ 𝑑𝑘 ( 𝑓 )𝑑∗𝑘 ( 𝑓

′)⟨𝐸∗
𝑛 ( 𝑓 )𝐸𝑛 ( 𝑓 ′)⟩ . (8.16)

Using the definition of 𝐸𝑛 ( 𝑓 ), we can relate the expected number of classical noise
photons to the classical noise power strain power spectral density, 𝑆𝑛 ( 𝑓 ),

𝑛̄cl,𝑘 =

∫
d 𝑓 |𝑑𝑘 ( 𝑓 ) |2 |𝑔( 𝑓 ) |2𝑆𝑛 ( 𝑓 ) , [counts] . (8.17)

With the expected number of classical noise photons calculated, we can also outline
the underlying distribution from which their count is generated. This fundamentally
determines how many photons are actually observed due to classical noises. The
corresponding distribution differs for different noise sources as a result of different
occupation of the state in phase space. For the majority of noise sources, and all
noises that we will consider here, the classical noises purely manifest in the phase
quadrature. This leads to a specific distribution on the discrete photon count in a
particular basis due to this occupation. The distribution is [458],

N𝜑 (𝑛cl,𝑘 |𝑛̄cl,𝑘 ) =
(2𝑛cl,𝑘 )!

2𝑛cl,𝑘 (𝑛cl,𝑘 !)2

𝑛̄
𝑛cl,𝑘
cl,𝑘

(2𝑛̄cl,𝑘 + 1)𝑛cl,𝑘+1/2 . (8.18)

Note that broadly speaking, squeezing will complicate this further since it introduces
additional photons due to the squeezed states, and such photons will not follow the
above distribution. Therefore, it is actually more reasonable to operate a photon
counting readout in the absence of squeezing [92, 459].



153

Signal photons

The expected number of signal photons in a particular basis mode, denoted 𝑛̄sig,𝑘 (𝜃),
where 𝜃 are the parameters of the signal model, are computed nearly similarly to
Eqs. (8.13) and (8.14),

𝑛̄sig,𝑘 (𝜃) =
����∫ ∞

−∞
d 𝑓 𝑑𝑘 ( 𝑓 )𝑔ℎ ( 𝑓 )ℎ∗sig( 𝑓 ; 𝜃)

����2 , [counts] . (8.19)

Note that the expected signal photon count increases quadratically with the signal
amplitude. In particular, it is expected that

∑
𝑘 𝑛̄sig,k(𝜃) ∼ SNR2/2, provided the

template bases can perfectly match the observed signals. While this is not feasible
in practice it provides a useful baseline to compare observations.

Now, unlike the classical noise photons which will typically follow the distribution
in Eq. (8.18), the signal photons exist as a coherent state that is filtered via the basis
filters from the strain signal. Therefore, the number of signal photons follows a
Poisson distribution,

𝑃

(
𝑛sig,𝑘

���𝑛̄sig,𝑘 (𝜃)
)
= 𝑒−𝑛̄sig,𝑘 (𝜃) 𝑛̄sig,𝑘 (𝜃)𝑛sig,𝑘

𝑛sig,𝑘 !
. (8.20)

The fundamental reason for these different distributions is that the photons from
background originate from a stochastic process which leads to a geometric-like
distribution (with a mean ∼ 𝑛̄ and variance ∼ 𝑛̄2). In contrast, the signal photons
follow Poisson distribution with mean ∼ 𝑛̄ and variance ∼ 𝑛̄.

Photon counting likelihood for transient signals

Now that we have the underlying distribution which we expect both signal and noise
photons to follow, we can construct the likelihood for an observation of {𝑛𝑘 } photons
from 𝑁 basis modes. Since, when we observe a set of photons, we will have no
information on whether the photon is a signal or a noise photon and therefore need
to convolve the uncertainties – marginalizing over whether each of the 𝑛𝑘 photons
are associated with a transient signal or classical noise processes. To do this, we
rely on a measurement of the classical noise PSD to calculate 𝑛̄cl,𝑘 for noise photons
following Eq. (8.17). For a single filter template, we can write the likelihood as

𝑝(𝑛𝑘 |𝜃) =
𝑛𝑘∑︁
𝑚=0

𝑃(𝑚 |𝑛̄sig,𝑘 (𝜃))N𝜑 (𝑛𝑘 − 𝑚 |𝑛̄cl,𝑘 ) , (8.21)

This convolution is simply a mixing of the two distributions.
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It helps to think of this with a single photon. When a single photon is detected
in a filter, Eq. (8.21) evaluates the likelihood as the sum of the probabilities that
the photon was a signal photon multiplied by the probability that the photon does
not originate from a noise process or vice versa (signal photon and not a noise
photon). While the probabilities are fixed for the classical noise photons (under the
assumption that the PSD is known), varying the parameters of the signal 𝜃 will lead
to different probabilities of P(𝑚 |𝑛̄sig,𝑘 (𝜃)), thereby leading to the inference of the
model parameters. Additionally, note that as 𝑛̄cl,𝑘 → 0, Eq. (8.21) reduces to the
Poisson distribution.

To write the full likelihood for a photon counting readout with 𝑁 filters {𝑑𝑘 ( 𝑓 )} for
𝑘 = 1, ..., 𝑁 , we can multiply the likelihoods from each filter together,

𝑝({𝑛𝑘 }|𝜃) =
𝑁∏
𝑘=0

𝑝(𝑛𝑘 |𝜃) , (8.22)

since all the 𝑁 templates are orthonormal by construction. This is analogous to the
construction of the Whittle likelihood for homodyne readout analyses, where the
likelihood functions from individual frequency bins are multiplied together [462,
463]. This therefore lays out the foundation for conducting gravitational-wave
inference calculations with a photon counting readout. For the remainder of the
manuscript, we will simulate photon counting readout observations for BNS post-
merger detection and inference, and compare to standard homodyne methods.

8.3 Individual-event post-merger inference

Having laid out the statistical background for the photon counting readout and
its relation to the homodyne observations, we turn our attention to its utility for
observations of BNS post-merger remnants. Since these signals are anticipated to
be high-frequency observations (with the most detectable between 1.5 and 4 kHz),
the benefit of photon counting is anticipated to be greater since 𝑆𝑞 ( 𝑓 ) ≫ 𝑆𝑛 ( 𝑓 ).
In this section, we explore a photon counting readout’s role as a viable readout
alternative in the context of individual BNS post-merger observations. We also
outline the designed set of basis filters used for the analysis. We then continue
on to explore the impact of different noise backgrounds, different photon counts,
and different SNRs on the constraints placed on the dominant behavior of the BNS
post-merger signals’ fundamental modes.
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Filter design for post-merger signals

To optimize the information gained from photon counting measurements for specific
signals, we need to model the temporal mode filter responses to closely mimic the
signal to be observed. In the context considered here, the temporal modes should
mimic the structure of post-merger signals. This can be understood, figuratively, as
in-situ hardware-based matched filtering where the basis mode must closely match
the signal (i.e. maximize Eq. (8.19)) in order for the filter to lead to a non-negligible
photon count expectation.

The salient features of a post-merger signal are governed by peak features within
their frequency spectrum which can be closely modeled as damped sinusoids. The
general function for the damped sinusoid in the frequency domain is given by

𝐿 ( 𝑓 | 𝑓0, 𝛾, 𝐴, 𝜙0, 𝑡0) =
𝐴𝛾𝑒−2𝑖𝜋 𝑓 𝑡0

2
√

2𝜋3/2
×(

𝑒−𝑖𝜙0

𝛾2 + ( 𝑓 − 𝑓0)2 + 𝑒𝑖𝜙0

𝛾2 + ( 𝑓 + 𝑓0)2

)
. (8.23)

The amplitude profiles of this function capture Lorentzian line-shape structures in
the data. Here, 𝑓0 is the peak frequency of the damped sinusoid, 𝛾 is the half-width
at half-maximum (HWHM), 𝐴 is the amplitude (in the time domain), and 𝜙0 and 𝑡0

are phase and time offsets of the function.

To construct our simulated photon counting readout observations, we need to define
the set of bases to consider. The general expectation from the signal duration, Δ𝑇 ,
and the bandwidth of the observation, Δ𝐹, is that the number of filters required to
adequately cover the space is given by

𝑁 ∼ 2Δ𝐹Δ𝑇 . (8.24)

This follows directly from the number of terms present in a Fourier transform of
post-merger signal over a Δ𝑇 duration. The factor of two accounts for both sine
and cosine components. Since we are designing the temporal basis modes to target
post-merger signals of larger SNR, we construct the bases to span 1.5 to 4 kHz, and
the duration of the window under consideration is ∼ 40 ms, we anticipate having
∼ 200 filters (with 100 sine and 100 cosine filters). The filters have the following
parameters:

1. 𝐴 is set according to the orthonormalization (discussed shortly),
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2. 𝛾 = 100 Hz to mimic the rough width of a post-merger signal’s frequency
behavior.

3. 𝑓0 spans 1.5 to 4 kHz with 10 equally spaced frequencies,

4. 𝑡0 spans −20 to 20 ms with 10 equally spaced points.

5. 𝜙0 is set to either 0 or 𝜋/2 for the cosine or sine component.

These choices lead to 200 filters to be used in the simulated photon counting readout
design. This of course may not be optimal since the damped sinusoidal basis does
not exactly mimic the post-merger signal. The resolving power of the basis design
could be improved by constructing filters that mimic the full structure of the post-
merger signal. Finally, these modes are then shuffled into a random order and
the Gram Schmidt method is applied to orthonormalize the set of filters, {𝑑𝑘 ( 𝑓 )}.
This ends up generating basis modes which are orthonormal, though some of the
properties of the mode are warped to accommodate this.

As an example of these temporal mode bases in action, we simulate a BNS post-
merger signal generated from a supervised learning model trained on numerical
relativity simulations [464]. This model assumes an APR4 equation of state. The
simulated post-merger signal was generated with a total mass of 2.4 𝑀⊙, at a redshift
of 5 × 10−2, and has an optimal SNR of 1.10 (in an unsqueezed version of CE).
The corresponding peak frequency of the signal is ∼ 3100 Hz (see upper panel
of Fig. 8.2). To demonstrate the measurement, we plot the strain, as well as the
temporal mode basis functions colored by their expected number of signal photons
in Fig. 8.2. In the upper panel, we show the amplitudes of these filters as well as the
strain amplitude as a function of frequency. The basis filters possess non-regular,
“warped” patterns and features as a result of the orthonormalization procedure. In
the lower panel, we represent the time, frequency, and phase (sine or cosine) of the
signal, where the half circles correspond to the cosine (right) and sine (left) sides.
The filters will not exactly correspond to these time and frequency grid points due
to the orthonormalization. However, it is a useful visual indicator of which basis
templates are leading to possible photon generation. Unsurprisingly, the greatest
number of expected photons are originate from the templates which overlap the
greatest with the signal.

Single-event inference of damped sinusoids



157

1500 2000 2500 3000 3500 4000

Frequency [Hz]

−0.020

−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015

0.020

T
im

e
o
ff

se
t

[s
]

10−3

10−2

10−1

|d
k
(f

)|
[1

/
√

H
z]

0 1× 10−2 2× 10−2 3× 10−2
n̄sig,k [quanta]

10−27

10−26

10−25

S
tr

a
in

[1
/
√

H
z] Post-merger

Figure 8.2: Demonstration of the interaction between the temporal mode basis that
was constructed and the measurement of a binary neutron star post-merger signal.
In the upper panel, the strain amplitude and basis filter amplitudes are shown as
a function of frequency. The basis modes are colored according to their expected
number of signal photons. While each basis mode is initially constructed according
to Eq. (8.23), and the parameters laid-out above, the process of orthonormalization
leads to unexpected basis filter structures. In the lower panel, the time, frequency,
and phase (sine or cosine) of the temporal basis are presented. This grid summarizes
the 200 basis filters which are present in the observational strategy.

With this understanding of the photon count readout design from an analysis point-
of-view, and in broad strokes how it interacts with the post-merger signal, we can now
move forward with inferring the signal properties. Utilizing the photon counting
likelihood presented in Eq. (8.22), we model the post-merger signal approximately as
a damped sinusoid as expressed in Eq. (8.23), and sample the posterior distribution
of the model parameters, 𝜃 = { 𝑓0, 𝛾, 𝐴, 𝜙0, 𝑡0}. While we have chosen the same
functional form for the basis mode construction (prior to orthonormalization) and the
signal model, these do not need to be same. In fact, in future studies with a photon
counting readout method, it is plausible a more fine-tuned model for the signal can
be applied. The priors on all parameters are flat. The peak frequency ranges from
1.5 to 4 kHz, 𝛾 range from 0 to 400 Hz, 𝐴 from 0 to 10−19, and 𝜙0 from 0 to 2𝜋.
Due to the highly oscillatory nature of the signal, and therefore sharp and frequent
peaks in the 𝑡0 posterior, the 𝑡0 samples are marginalized numerically between −20
and 20 ms. To demonstrate the utility of the photon counting readout, we consider
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three different scenarios, and compare the observations to an unsqueezed version
of Cosmic Explorer. Doing so allows for a direct comparison between homodyne
and photon counting readouts, and the optimal SNRs computed. In the remaining
results in this section, we consider no noise contamination in either the homodyne
or photon counting readouts corresponding to no Gaussian noise fluctuations for
the homodyne, and no background noise photons for the photon counting readout.
In order to mitigate the impact of model misspecification between the simulated
signals being observed and recovered, we use our simple damped sinusoid model
for both injection and recovery.

The first scenario to consider is a super-threshold observation—a post-merger sig-
nal where it would comfortably be detected with a standard homodyne readout.
We simulate a damped sinusoid with an optimal SNR of 5, a peak frequency of
2.75 kHz, 𝛾 = 50 Hz, 𝜙0 = 𝜋/2, and 𝑡0 = 0 ms. This injection has an expectation
of generating 3.13 signal photons (this differs from the optimal 12.5 expected pho-
tons due to mismatches between the mode basis and the signal1). In this simulated
observation, 3 signal photons were detected. In Fig. 8.3, the posterior distributions
of the model parameters from both the homodyne readout (orange) and the photon
counting readout (orange) are shown. The shades correspond to the 50% and 90%
credible intervals. Overall, we find that both readouts are able to confidently able
to constrain 𝐴, 𝑓0, 𝛾, and 𝑡0 well, with less certainty in the phase of the signal. In
the superthreshold case of an SNR 5 post-merger-like signal, the homodyne out-
performs the photon counting readout—the homodyne readout constraining the the
amplitude 1.5 times and peak frequency 3 times more tightly at the 68% credible
interval.

However, such a loud post-merger signal is not expected, even for the vast majority
of signals observed with a network of third-generation detectors. For a more realistic
example, we now consider a subthreshold observation of an SNR 1 post-merger-
like signal—the same damped sinusoid with a smaller amplitude. The expected
number of photons for the SNR 1 signal is 0.125, corresponding to a 11.8% chance
that at least a single photon is generated. The result presented here corresponds
to one photon being generated. The posterior distributions for this analysis are
depicted in Fig. 8.4. This result demonstrates the broad benefit of the photon
counting readout scheme. While the homodyne readout is incapable of providing

1Specifically, in this case the filter mode basis has a broader 𝛾 = 100 Hz, does not have a filter
that lies on the exact peak frequency, and are orthonormalized. All these contribute to the reduced
photon count expectation.



159

22
50

25
00

27
50

30
00

32
50

f 0
[H

z]

40

80
12

0
16

0

γ
[H

z]

1.
5

3.
0

4.
5

6.
0

φ
0

[r
a
d

]

2 4 6 8 10

A
×10−22

−4

0

4

8

t 0
[m

s]

22
50

25
00

27
50

30
00

32
50

f0 [Hz]

40 80 12
0

16
0

γ [Hz]

1.
5

3.
0

4.
5

6.
0

φ0 [rad]

−4 0 4 8

t0 [ms]

Homodyne

Photon Counting

Figure 8.3: Corner plot representation of the posterior distributions for the inferred
damped sinusoidal parameters using measurements from the homodyne (orange)
and photon counting (blue) readouts’ data outputs for an SNR 5 damped sinusoid.
The true values for the simulated damped sinusoid are shown in grey. The contours
correspond to the 50% and 90% credible levels. Overall, the homodyne constraints
on the observations are more stringent in this relatively higher SNR regime—as
expected. The jagged structure in the 𝜙0 homodyne readout posterior distributions
originates from the rapid oscillatory nature of a 2.75 kHz signal. This is not present
in the photon counting readout, since the resolution of the time offset is only ∼ 4 ms.
While more photons in individual filters can shrink the time posterior, it is less
drastic than the homodyne readout result.
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Figure 8.4: Corner plot representation of the posterior distributions for the inferred
damped sinusoidal parameters using measurements from the homodyne (orange)
and photon counting (blue) readouts’ data outputs for an SNR 1 damped sinusoid.
The true values for the simulated damped sinusoid are shown in grey. The contours
correspond to the 50% and 90% credible levels. We see that such a low SNR signal
is not resolved by the homodyne readout. However, in the case of photon counting,
𝑛̄sig = 0.125, and so there is a 11.8% chance that at least one photon is generated
by such a signal. The posterior distribution for the photon counting readout can be
informed by an individual photon, leading to meaningful constraints.
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information from such a low SNR signal observation, the photon counting readout is
able to constrain both the peak frequency and the time offset well. In the context of
post-merger signals, gaining this information regarding the peak frequency is useful
for understanding the equation-of-state and NS properties and will be the primary
target for future discussions in this manuscript.

Role of noise backgrounds and photon counts
Having seen the straight-forward examples demonstrating how photon counting can
lead to improved constraints, there are two unintuitive behaviors of a photon counting
readout scheme that need to be conveyed. Unlike the homodyne readout where the
width of parameter posterior can be directly related to the inverse of the total PSD,
𝑆HD( 𝑓 ), the inferred posterior distributions from photon counting depend on both
the relative relationship between the signal, ℎ( 𝑓 ), quantum shot noise, 𝑆𝑞 ( 𝑓 ), and
the other noises, 𝑆𝑛 ( 𝑓 ), and the number of signal photons generated which is an
inherently random process.

For the former behavior relating the noise sources, as made apparent in Eqs. (8.17)
and (8.19), 𝑛̄cl ∼ 𝑆𝑛 ( 𝑓 )/𝑆𝑞 ( 𝑓 ), and 𝑛̄sig ∼ |ℎ( 𝑓 ) |2/𝑆𝑞 ( 𝑓 ). With these relevant
ratios in mind, we can consider a number of different cases.

1. |ℎ( 𝑓 ) |2 ≫ 𝑆𝑞 ( 𝑓 ) & 𝑆𝑛 ( 𝑓 ) corresponds to the high SNR regime, where
the signal is comfortably above the noise backgrounds. In this situation,
the relative sensitivity loss due to quantum effects and classical noises are
unimportant. This is analogous to the result in Fig. 8.3 with and SNR 5
post-merger-like signal. In this regime, a homodyne readout is expected to
outperform photon counting.

2. 𝑆𝑛 ( 𝑓 ) ≫ |ℎ( 𝑓 ) |2 corresponds to a classical noise background that buries the
signal in the data. For a homodyne readout, this results in significant Gaussian
noise due to classical effects (such as controls noise in LIGO detectors at lower
frequencies). For a photon counting readout, this leads to too many noise
photons to distinguish the signal photons. In the photon counting case, if
𝑆𝑞 ( 𝑓 ) ≫ 𝑆𝑛 ( 𝑓 ), the fewer photons are seen each observation, but the classical
noise photons still dominate over an ensemble. Here, no readout choice will
be able to lead an observable signal. Conversely, when 𝑆𝑛 ( 𝑓 ) ≫ 𝑆𝑞 ( 𝑓 ), many
noise photons will appear in even a single observation.

3. 𝑆𝑞 ( 𝑓 ) ≫ |ℎ( 𝑓 ) |2 ≫ 𝑆𝑛 ( 𝑓 ) corresponds to a low SNR observation, that
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will still produce more signal photons than background noise photons. This
is analogous to the observations shown in Fig. 8.4 with an SNR 1 signal.
In this low SNR regime with the specific hierarchy of noise sources, photon
counting will show the most promise, especially in regions of parameter space
where quantum shot noise dominates the homodyne readout PSD. This will
correspond to signals in the frequency band above ∼ 1 kHz and motivates this
study focusing on post-merger signals.

To understand this quantitatively, we simulate the signal presented in Fig. 8.2 which
corresponds to an optimal SNR of 1.10 in an unsqueezed CE in Fig. 8.5. For the
photon counting readout, this observation has an expected photon count rate of
0.19, and therefore a 16% chance to generate a single photon (and a 1.5% chance
to generate two photons). We then vary the overall sensitivity of the readouts by
scaling the shot noise in the case of the homodyne readout, or by scaling the classical
noise background in the case of the photon counting readout. The scaling of the
homodyne readout is approximately equivalent to different dB of squeezing from 0
to 20 dB. The thicker lines in the figure correspond to the expected total PSD for
CE [45] (including squeezing; 10 dB) for the homodyne results, and to the expected
classical noise background for the photon counting results. In the left panels we
show both the simulated post-merger signal, as well as the different PSDs, and in
the right panels we show the marginal posterior distributions on the inferred peak
frequency. For all results shown, a single photon is detected in the most likely basis
filter to observe a photon following Eq. (8.19).

The key observation from these posterior distributions is that their behavior is
fundamentally different between the homodyne and photon counting readouts. For
a homodyne readout, as the SNR increases, the overall width of the posterior
decreases. However, this is only true up to a point for photon counting. Once
𝑛̄sig ≳ 𝑛̄cl (which is closely related to the third scenario), the width of the posterior
is unchanging. This is due to the resolution attainable from a single photon. Finally,
note that once the SNR exceeds ∼ 5, the homodyne readout provides significantly
better constraints than photon counting.

In order to generate tighter constraints on the post-merger parameters with photon
counting, it is then necessary to observe more photons for a given observation. We
explore this in Fig. 8.6, where 4 realizations are generated with no photons through
to 3 photons. While more photons could in principle be used, higher photon counts
suffer from the model misspecification between the post-merger signal simulated
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Figure 8.5: Impact on the change in the noise backgrounds for the homodyne (upper;
orange) and photon counting (lower; blue) readouts. The left panel shows the post-
merger strain simulated, as well as 𝑆HD( 𝑓 ) for the homodyne and 𝑆𝑛 ( 𝑓 ) for the
photon counting at various different levels. The relevant statistic for the homodyne
readout is SNR ∼ 1/𝑆HD( 𝑓 ), while the relevant statistic for the photon counting is
𝑛̄sig/𝑛̄cl ∼ |ℎ( 𝑓 ) |2/𝑆n( 𝑓 ). These quantities, for their respective readout schemes,
control the constraints placed on the parameters such as the peak frequency, as
seen in the right panels. The thicker lines correspond to the expected results
with CE’s designed squeezing level (10 dB; for the homodyne), or classical noise
realization (for the photon counting), and the white lines on the colorbars indicate
their corresponding values.

and the damped sinusoid model used for recovery. Note that this leads to generating
photons in multiple different bases for 𝑛sig ≥ 2. The amplitude of the signal is
scaled such that a realization with the desired number of photons is generated.
This is a subtlety of a photon counting readout. An observation has the total
Poisson probability 𝑃(𝑛sig |𝑛̄sig) of generating 𝑛sig photons. Therefore, there are two
options for generating a desired photon count; either increase the signal amplitude
such that 𝑛̄sig increases, or simply wait until a fortuitous photon count realization
occurs. In these results, we see that as the photon count increases, constraints on
all parameters shrink in a similar manner to homodyne constraints in e.g. Fig. 8.5.
While the behavior of other parameters indicates the improved constraints since



164

20
00

25
00

30
00

35
00

40
00

f 0
[H

z]

80
16

0
24

0
32

0
40

0

γ
[H

z]

1.
5

3.
0

4.
5

6.
0

φ
0

[r
a
d

]

2 4 6 8 10

A
×10−22

−1
6
−8
0

8

16

t 0
[m

s]

20
00

25
00

30
00

35
00

40
00

f0 [Hz]

80 16
0

24
0

32
0

40
0

γ [Hz]

1.
5

3.
0

4.
5

6.
0

φ0 [rad]

−1
6 −8 0 8 16

t0 [ms]

nsig = 0

nsig = 1

nsig = 2

nsig = 3

Figure 8.6: 90% credible levels of simulated post-merger signal posteriors with
varying photon counts. As the photon count increases, constraints on all the param-
eters of interest narrow in a manner similar to a homodyne readout result. Note that
the different photon counts origin from different basis modes (not all photons are in
the same basis). Therefore this is only one plausible realization of each posterior
with 𝑛sig photons. This is an exercise in understanding how the readout behaves
from an analysis point-of-view. For the SNRs anticipated for post-merger signal
observations, 𝑛sig > 1 will be highly unlikely for the majority of observed signals.

these parameters are fixed as 𝑛sig increases, the amplitude is scaled in such a way to
generate the desired photon count.

To summarize, a photon counting readout can lead to significantly improved con-
straints in the low SNR regime when, and only when, quantum noise dominates both
the signal strain and the classical noise. Rather than having a single noise term like
a homodyne readout, the overall result from photon counting is determined by both
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Figure 8.7: Summary of the capabilities of a photon counting readout scheme
for detecting and measuring BNS post-merger signals. The peak frequency 68%
credible intervals are shown for 100 observations at each SNR from 0.1 to 10 in the
lower panel for the homodyne readout (orange) and photon counting readout (blue).
The solid lines correspond to the mean at each SNR value. In the middle panel, the
fraction of detected signals according to the photon counting readout are shown, as
well as the theoretical expectation if 𝑛̄sig follows SNR2/2. The top panel highlights
the expected distributions of SNRs from 104 observations both in an unsqueezed
CE (blue), as well as at design sensitivity (green).

the quantum noise, 𝑆𝑞 ( 𝑓 ), and the classical noise 𝑆𝑛 ( 𝑓 ). The relative background
floor in the posterior distribution is determined by the ratio of the signal strength
to the classical noise, |ℎ( 𝑓 ) |2/𝑆𝑛 ( 𝑓 ). While the number of photons, and hence the
tightness of the constraints, is given by the ratio of the signal strength to the quantum
noise, |ℎ( 𝑓 ) |2/𝑆𝑞 ( 𝑓 ).

Summary of individual constraints
Equipped with this understanding of inferences made with a photon counting read-
out, we can put these observations in the context of ensembles of realistic post-merger
signals. For SNRs ranging from 0.1 to 10, we generate 100 different post-merger
signals for each SNR using the KNN APR4 EoS model [464] with a peak frequency
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between 1.5 and 4 kHz. We simulate the detection of this signal in both a homodyne
readout (CE with no squeezing) and a photon counting readout. We assume no
background noise from either the homodyne noise PSD, or the classical background
photon counts. In Fig. 8.7, we then show the different 68% credible intervals on the
peak frequency from the two readout schemes, as well as the mean from the 100
observations (solid curve). We find, as expected, photon counting readout observa-
tions are capable of making meaningful measurements from very low SNR signals.
We find that ∼ 1 in O(100) observations of an SNR 0.1 post-merger signal lead to an
𝑓0 68% credible interval ≲ 500 Hz. In the middle panel, we highlight what fraction
of observations resulted in a detection, and how this relates to the theoretical result
when 𝑛̄sig ∼ SNR2/2. The detected fraction in our simulated dataset is typically be-
low this theoretical curve, since there are some inefficiencies due to the mismatches
between the signal and templates bases. Finally, in the top panel, we highlight the
distribution of expected SNRs in CE from post-merger signals. Presenting both the
SNR distributions when there is no squeezing present (relevant for photon count-
ing), or when 10 dB of squeezing is present (relevant for design sensitivity CE), it is
clear that the vast majority of signals will fall in the low SNR regime where photon
counting can provide tighter constraints due to the serendipitous detection of the
occasional photon. The rate of single photon detection is somewhat surprisingly
high even for low SNR signals.

8.4 Hierarchical Equation-of-state constraints

Thus far, we have explored the analysis of individual post-merger signals. However,
since many observations will be in the low SNR regime, it prudent to discuss
strategies to combine information across multiple observations. In particular, when
discussing whether photon counting is a viable alternative for high frequency readout
schemes in third generation detectors such as CE, it is appropriate to study its role
on a hierarchical level.

To demonstrate how the overall impact of the readout scheme on hierarchical con-
straints, we follow Ref. [465] relating the peak frequency of a post-merger signal to
the chirp mass of the binary progenitor and an equation-of-state (EoS) parameter—
the radius of a 1.6 𝑀⊙ neutron star, denoted 𝑅1.6. The underlying expression follows

𝑓peak = 𝛽0 + 𝛽1M + 𝛽2M2 + 𝛽3𝑅1.6M
+ 𝛽4𝑅1.6M2 + 𝛽5𝑅

2
1.6M + 𝜖, (8.25)



167

where 𝛽1 through 𝛽5 are fit parameters to numerical simulations. Their exact values
can be found in Table I of Ref. [465]. The additional error term 𝜖 is assumed to follow
a Gaussian distribution with a standard deviation of 61 Hz. While this expression
depends on the binary chirp mass (which we do not simulate), we assume all the
mergers are equal mass binaries, since the EoS model used here does not take mass
ratio into consideration. The KNN model approximates the APR4 equation-of-state
𝑅1.6 = 11.07 km—slightly lower than the standard APR4 equation-of-state value
of 𝑅1.6 = 11.27 km [466]—and thus this will be considered the true value for the
population.

Again somewhat following Ref. [465], we can then construct the population likeli-
hood for the hierarchical analysis as

𝑝({𝑑}|𝑅1.6) =
𝑁events∏
𝑖=1

𝑝

(
𝑑𝑖

����� 𝑓0,𝑖 = 𝑓peak(𝑀𝑖 |𝑅1.6)
1 + 𝑧𝑖

)
. (8.26)

This expression assumes we know the total mass and redshift from the inspiral of
the BNS. While this is only approximate, it provides a “best-case scenario” that can
be used to compare the photon counting result and the homodyne result.

Equation (8.26) can be evaluated with either the marginal likelihood from either
the photon counting or homodyne readout inference results. However, in order to
construct the marginal likelihood efficiently (for both the homodyne and photon
counting cases), we take the following steps. Before we can start the analysis of
an individual signal, we need to ensure that there are no prior mismatches between
the simulated population and the population models used during the recovery. This
would be not be as problematic if we both generating and recovering the properties
of the signal with the same model. However, in a more realistic scenario, we do
not know the underlying post-merger model, and so would need to assume some
functional form, such as a damped sinusoid, for a simplistic model. This means that
we do not have an understanding of the appropriate amplitude or HWHM prior of the
Lorentzian model when fitting the signal. Therefore, to simulate this, we generate
104 simulated signals and extract the best-fit (maximum likelihood) amplitude, and
width 𝛾 to construct the “astrophysical” prior on the damped sinusoid parameters.
These signals follow the APR4 EoS. The primary and secondary masses of the BNS
are drawn from a uniform distribution ranging from 1.2 to 1.4 𝑀⊙, the redshift from
the Madau-Dickinson star formation rate, the sky location isotropically across the
sky, and rotation angles uniformly through all possible angles. This is then used in
the marginalization procedure outlined below.
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To produce the simulated ensemble of observations, we generate 104 strain signals
following the same distributions as above. Due to the broad uncertainty in the BNS
merger rate density [8], this corresponds to duration anywhere between 5 × 10−3

and 0.75 years. From each signal, we can compute the observed gravitational
strain for the homodyne readout and the photon count (per basis) for the photon
counting readout. We note that 95% of these signals possess SNRs ≲ 0.47 in
design sensitivity CE (with squeezing), and only a total of 14 signal photons were
observed. In contrast, 1145 background noise photons were measured with the
design sensitivity classical noise, and 93 background noise photons were measured
when the classical noise was reduced by an order of magnitude. In order for the
hierarchical inference to succeed in measuring the hierarchical EoS parameter from
the ensemble, it needs to overcome the noise background present.

To compute the individual event marginal likelihoods, 𝑝(𝑑𝑖 | 𝑓0,𝑖), we then compute
the likelihood for 𝑓0,𝑖 given the “known” values of 𝑀𝑖 and 𝑧𝑖 and a choice of 𝑅1.6.
The expected amplitude is marginalized over a uniform distribution from zero to
the fitted value from the maximum-likelihooe estimate. The other parameters for
the damped sinusoid are drawn from their population distributions as discussed
above. The error term on the peak frequency, 𝜖 , is also randomly drawn from
its appropriate distribution. We can compute the summation over the likelihood
values corresponding to these draws to generate the marginalized likelihood at a
particular EoS parameter value. We can then sweep over values of 𝑅1.6 to construct
the marginal likelihood each individual event. Finally, we then employ Eq. (8.26)
to construct the final hierarchical likelihood, 𝑝({𝑑}|𝑅1.6). Ultimately, this is an
approximation to what would be necessary in future studies, where the underlying
hierarchical model should provide information both about the peak frequency and
the amplitude of post-merger signal.

For a fair comparison of the hierarchical analysis, we present four different results.
Until now in the manuscript, we have presenting results comparing the photon
counting to an unsqueezed homodyne readout. While this is appropriate for a
comparison between readout methods, to understand the viability of photon counting
in future detectors, it needs to be compared to their design sensitivity, which involves
squeezing. For CE, the design sensitivity is achieved with 10 dB of squeezing.
Therefore for the hierarchical analysis comparison, we compare photon counting
with no squeezing and design sensitivity classical noise PSD to a homodyne readout
for CE with 10 dB of squeezing. We also present inferences for when the classical
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Figure 8.8: One-dimensional posterior distributions of the simulated inference of the
radius of a 1.6 𝑀⊙ neutron star with both a homodyne (orange) and photon counting
(blue) readout schemes. While the homodyne result with 10 dB of squeezing has
a more localized mode near the true value of 𝑅1.6 = 11.07 km, it finds additional
possible viable features in the distribution which increase the inferred credible
intervals. As the SNRs of the ensemble increase, this mode vanishes. Finally, as the
detector is improved for either a homodyne readout through increased squeezing or
for a photon counting readout with a lower classical noise, the overall constraint on
𝑅1.6 improves to a similar degree.

noise PSD is reduced by an order of magnitude, and when squeezing is increased to
15 dB.

The one-dimensional posterior distributions on the EoS parameter 𝑅1.6 in Fig. 8.8
for the hierarchical inference analysis with 104 observations. From these results, we
find that the current design sensitivity would lead to photon counting outperforming
a homodyne readout by about a factor of 2.5, with the total 68% credible region
width for 𝑅1.6 found to be 1.25 km and 0.51 km for the homodyne with 10 dB of
squeezing and photon counting with design sensitivity (and no squeezing), respec-
tively. Interestingly, the 10 dB squeezing result also finds additional viable radii
given the observed data. Their significance decreases with more observations or
higher SNRs, and are likely a product of the mismatch between the simulated wave-
form model and the recovery with the damped sinusoidal model. Furthermore, either
increasing squeezing or reducing the classical noises leads to improved constraints.
The homodyne readout result with 15 dB of squeezing leads to the best constraints,
however such a degree of squeezing is not expected in CE, and the constraint is
dominated by a few loud observations.
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8.5 Implications

We have explored the possibility of utilizing a photon counting readout to aid future
gravitational-wave detectors in the task of detecting BNS post-merger signals. We
have demonstrated at photon counting readout methods can plausibly outperform
a homodyne readout in CE for BNS post-merger detection. Future studies will be
required to further investigate the design of such a readout scheme to optimally detect
post-merger signals and continue to compare with homodyne readout methods.

Photon counting clearly has a number of advantages and disadvantages. In terms
of disadvantages, the current technology required for these temporal basis mode
filters has not reached maturity and such a detector design will crucially rely in near-
future development of quantum memory and metrology apparatuses. Furthermore,
its utility is applicable to a very specific domain where the signal models can be
relatively straightforward to lead to simple interpretation of single- or few-photon
count measurements, and that the quantum noises dominate over both the signal and
the classical noise background. As studied here, the salient, detectable details of
BNS post-mergers are relatively simple and are sufficiently quiet in a gravitational-
wave detector for the photon counting to potentially outperform a homodyne readout.
The clear benefits of the photon counting readout are that when these criteria are met,
information can be gained from large ensembles of low SNR observations. We find
that with post-merger signals, photon counting could plausibly detect 1 BNS post-
merger out of only 100 SNR 0.1 signals which fall within its designed bandwidth.
Furthermore for hierarchical ensembles of observations, this translates into photon
counting providing a competitive alternative for inferring EoS parameters from the
post-merger. Additionally, it will allow for more clear classification of which signals
are contributing information to the hierarchical constraints.

Beyond BNS post-merger signals, there are other possible applications for such a
readout scheme. One such possibility is the use of photon counting readouts for
more optimal, experimentally-enhanced strategies for stochastic gravitational-wave
signal searches. Another intriguing possibility is the use of photon counting readout
methods for probing deviations from general relativity, which will be inherently
low SNR. Such applications will require careful construction of basis filters and
many design studies. While we have demonstrated a straightforward application of
photon counting readouts for gravitational-wave detection and inference for BNS
post-merger signals, there are likely many prospective science cases for this potential
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experimental readout scheme.
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C h a p t e r 9

SUMMARY AND FUTURE OUTLOOK

In this thesis, I have presented my research aimed at improving field of gravitational-
wave astronomy through careful statistical analysis. I have looked at making ro-
bust statements about the spin-effects of individual gravitational-wave observations
(Chapter 2) and the implications of such statements for formation channels of com-
pact binary mergers (Chapter 3). I then formulated the analysis framework required
to undertake hierarchical tests of gravity to account and correct for both the as-
trophysical population model (Chapter 4) and selection biases that originate from
searches only targeting observations consistent with Einstein’s theory (Chapter 5).
The framework I developed was then extended to incorporate theoretical expecta-
tions for the behavior of plausible deviations from general relativity through the
expected curvature dependence (Chapter 6). In addition to these improvements to
specific hierarchical tests, I developed a summary statistic that is useful for quantify-
ing model misspecification in hierarchical population studies (Chapter 7). Finally,
looking toward future development of third-generation gravitational-wave detec-
tors, I proposed how such detectors can utilize a photon counting readout scheme
to potentially observe the post-merger signal from binary neutron star mergers for
effectively (Chapter 8).

While I have presented complete, published works on these topics in this thesis, no
research is ever truly finished. Below, I will summarize possible future avenues for
the work presented here.

9.1 Outlook for theoretically motivated tests of gravity
In Chapter 6, I exploited the theoretical expectation that higher-order corrections
to general relativity will necessarily appear as higher-order curvature terms in the
action [87, 88]. For gravitational-wave observations, this leads to a deviation that
scales inversely with the total mass of the binary (to an integer power greater than
one) [388]. While I demonstrated that this information can be incorporated into
the theory-agnostic hierarchical gravitational-wave tests, there is more theoretical
knowledge that can be gained from theoretical calculations. In particular, in the
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absence of additional fields such as in Einstein-dilaton Gauss-Bonnet [55, 467,
468] or Chern-Simons extensions [469, 470], the leading order correction occurs
specifically at the 5 post-Newtonian expansion order. The term is analogous to
tidal effects in neutron-star mergers [471]. In the presence of these additional
fields, the expected post-Newtonian order decreases to either the -1, 2, or 3.5 order
depending on the relevant lengthscales in the system [472]. Future extensions to
the framework presented in Chapters 4 and 6 could be implemented to both infer
the relevant curvature dependence of any possible deviations, and distinguish any
possible preferred post-Newtonian order. This would allow for significantly stronger
tests of gravity, and would strengthen any claims of a possible deviation if the inferred
orders agree with existing possible extensions.

9.2 Outlook for hierarchical model misspecification tests
In Chapter 7, I outlined the population-level summary statistic—the maximum
population likelihood—as data driven measure of the goodness-of-fit of a hierar-
chical population model to an ensemble of gravitational-wave observations. In
this work, I presented a number of different approaches to compute this summary
statistic. However, their extendability to an increased number of observations and
increased dimensionality was not optimal. With the rapid increase in the number
of gravitational-wave observations [5, 18], more robust computation methods are
needed to make this statistic a viable tool for future analysis diagnostics. Further-
more, as studies begin to probe correlations in the population distributions [195,
202, 200, 473], the maximum population likelihood needs to be computed over
more dimensions. While this is computationally difficult, work is ongoing to realize
these future goals.

9.3 Future applications of photon counting readout schemes
I presented the analysis framework required for a novel photon counting readout for
gravitational-wave astronomy in Chapter 8. In this chapter, I framed the demonstra-
tion of the experimental design difference in the context of neutron-star post-merger
remnants [89]. While such observations are an important science case for future
generations of detectors [45], and will likely require these novel technological im-
provements, post-merger signals are not the only science case. The criteria required
for photon counting to be a viable observational strategy are that the signals an-
ticipated are very low signal-to-noise ratio, and they reside in a frequency range
where third-generation detectors will be dominated by quantum shot noise. One
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incredibly powerful use case for such a readout, I personally think, is for excess
power-related tests of general relativity. While this is similar to signal-to-noise ratio
residual tests presently undertaken [13, 14, 15], by leveraging photon counting the
presence of violations from general relativity can be teased out from an ensemble of
signals. The exact details of this calculation depend crucially on the structure of the
basis design—requiring careful design to ensure exotic phenomena are not confused
with GR deviations—though far fewer bases may be required. Future studies into
the construction of such a readout for general relativistic deviations may prove as
the most promising avenue to search for such violations in the third generation of
detectors.

Over the past decade, gravitational-wave astronomy has evolved from an improbable
observational breakthrough into a routine—yet still profoundly transformative—
scientific endeavor. The regular detection of gravitational waves from compact
binary coalescences has provided deep insights into the astrophysical processes
shaping our Universe. At the same time, this rapid influx of data has created a
pressing need for robust, scalable methods of analysis, both at the level of individual
events and for population-wide inference. As the field continues to expand, the sta-
tistical techniques and approaches developed in this thesis will serve as a foundation
for numerous different analyses.
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