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Abstract 

The problem is to decide on the basis of repeated independent 

observations whether 00 or e1 is the true value of the para.meter e 

of a Koopman-Da.rmois family of densities, where i < e < i. The 

probability of falsely rejecting e0 is to be at most o:0, and that of 

falsely rejecting e1, at most a 1. Procedures are studied from the 

point of view of minimizing the maximum (over a) expected number of 

observations required when e is the true value of the parameter. 

Two types of tests are considered. The first, based on the 

well-lmown sequential probability ratio test (SPRT), dictates after 

each observation whether to stop and ma.ke a decision, or whether to 

continue sampling. An explicit method is derived for determining a 

combination of one-sided SPRT's, lmown as a 2-SPRT, which minimizes 

the maximum expected number of observations to within o((n(a
0

,o:1))1/ 2 ) 

as o:0 and a 1 go to o, where n(a0,a1 ) is the minim.um of the ma.x:imum 

expected sample size, taken over all procedures with error probabilities 

at most o:0 and o:1. The second test uses several stages of observations, 

deciding whether to stop or continue only at the end of each stage. 

A procedure designed to "do what a sequential test would do", while 

using at most three stages, is defined and shown to minimize the maximum 

expected number of observations to within O(~(a0,o:1)y/4(log n(a0,a1)?/2 ) 

as o:
0 

and a 1 go to o. 

Finally, using backward induction, optimal procedures were 

develOJ?ed on the computer for the case where the mean of an exponential 

density is tested. Then extensive computer calculations comparing 
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·the proposed 2-SPRT with these optimal procedures show that the 2- SPRT 

comes within 1i of minimizing the maximum expected sample size over a 

broad range of error probability and para.meter va.lues. 
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1. Background and Definition of the Problem 

Hypothesis testing has long been one of the .most studied 

statistical areas. As the name implies, two (or perhaps :more) 

hypotheses, H0 and H1, are formula.ted, and then one of these must 

be chosen as correct. 'Ibis decision will be based upon the observed 

values of random variables x1, ~, ... which are assumed to be 

independent and identically distributed with density r
8
(x) for sane 

value of e. 

In this and the following chapters, the testing problem under 

consideration will be to determine which probability density, t
8 

(x) 
0 

or f 8 (x), is true, where e0 < e1. 
1 
When performing a test there are two errors which can be committed: 

rejecting a0 when it is true (called a type I error), or accepting e0 

when the alternative e1 is true (called a type II error). The 

probabilities of these errors will be denoted by a0 and a1, respectively, 

so that 

and 

a 1 = P
8 

(reject e
1

). 
1 

Of course, the most desirable test is one which will keep to a 

m1n1mum the probability of these two types of error. Unfortunately, 

when the number of observations is given, both probabilities of error 

cannot be controlled simultaneously. It is customary to assign a 

bound to the probability of incorrectly rejecting e0 when it is true, 
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and to attempt to minimize the other error probability subject to 

this condition. 

Neyman and. Pearson, who were the first to introduce the distinction 

between the two types of error, proposed the following "likelihood ratio 

test", and established a fundamental lemma bearing their names [13 ] . 

Fork= 1,2, ... , the likelihood function of the observations x1,~,··• 

is defined by 

Assume that a fixed number n of observations will be taken, and. choose 

a constant c > o. If 

then e0 is rejected; otherwise e0 is accepted. Once n has been 

established, the value of c controls the value of the type I error of 

the test. The Neyman-Pearson lemma states that among all tests using 

n observations and satisfying P
8 

(reject e0 ) ~a0, the likelihood 
0 

ratio test (with error probability a 0 ) minimizes cx1. 

Hence if the sample size is fixed, the likelihood ratio test 

provides the best procedure. Significant improvement in the likelihood 

ratio test is possible, however, if the number of observations is not 

fixed in advance but is allowed to depend on the observations themselves. 

Procedures which take samples one at a time until enough information has 

been accumulated to make a decision are called sequential tests. 

These tests based on sequential sampling will be written as the 

pair T = (N,D). N is called a stopping rule -- it states when the 
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sampling should end, based on the observations taken up to that point. 

Dis the decision rule, indicating which of the hypotheses should be 

accepted once sampling has stopped. 

The earliest of these tests, called a. sequential probability ratio 

test (SPRT), is due to Abraham Wald [15]. Given AO and A1 in (o, 1) 

the stopping rule N is the first n (or~ if there is non) such that 

the inequa.lity 

( 1. 1 ) 

does not hold. The decision rule D rejects e0 if the inequa.lity is 

violated to the right, and rejects e1 if it tails to hold on the left. 

N is a random variable which depends on the observations, that is, 

on the true distribution of the Xi's. If the true value of 8 is less 

than 00, then the test will quickly violate the left inequa.lity, 

resulting in a small N. Similarly, if the true value of 9 is greater 

than e1, the right-hand inequality will tail after relatively few 

observations. Should 8 lie between 00 and e1, the SPRT will require 

more observations in order to make a choice. 

E
8
N will denote the expectation of N when 8 is the true parameter 

value, and represents the average or expected number of observations 

which will be needed to complete the SPRT if e is true. 

The performance of any sequential test is judged on the basis of 

its error probabilities and its expected sample sizes. Wald and 

Wolfowitz [ 17] established the remarkable property that among all tests-­

sequential or not--with equal or smaJJ.er error probabilities, the SPRT 



-4-

minimizes both E8 N and E8 N. 
0 1 

In practice the values of A0 and A1 in (1.1) must be chosen so 

that the resulting SPRT has prescribed error probabilities a
0 

and a1. 

WaJ.d [ 15] showed that if a0' and a1' are the actual error probabilities 

of the SPRT using A0 and A
1 

, then 

Hence choosing A0 = a0 and A1 = a1 in ( 1 • 1 ) guarantees that the SPRT 

will have error probabilities at most a0 and a1 . 

WaJ.d aJ.so provided approximations for E
8 

N and E8 N. Define for 
0 1 

n = 1,2, ... 

and Yn = z1 

inequality 

+ .•• + z . n By taking logs, (1.1) is equivalent to the 

Since N is a stopping rule, 

(1.3) 

where the first equality is known as WaJ.d's equation and I(e1,e0) is 

the Kullback-Leibler information number defined by 

-1 If the SPRT rejects e0, then~ is ap:proximately log A0 , while if it 

rejects e1, ~ is near log A1. Hence 
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(1.4) 

_, 
where ~ indicates that the terms YN - log A1 and YN - log A0 , call.ed 

excess over the boundary, have been neglected. If A
0 

and A1 a.re chosen 

equaJ. to o:0 and o:1, then (1.3) and (1.4) combine to yield 

-1 log o:0 E N~----
81 I(a1,a0 ) 

for smaJ.l values of o:0 and o:1 . In fact, if var
8 

z1, the variance of , 
z1 under e1, is finite, then E

8 
N is within 0(1) of the right-hand , 

side as o:0 and o:1 tend too, with a similar expression holding for e0 • 

Even though the SPRT minimizes E
8 

N and E
8 

N among all tests with 
0 1 

prescribed error probabilities, its performance is unsatisfactory for 

values of e between e0 and e1. In sane cases E
8

N is larger than the 

number of observations required by a fixed sample size test with the 

same error probabilities. Mu.ch of the development of sequential 

analysis has been directed toward finding procedures which improve 

the performance of the SPRT for these parameter va.lues. 

Let ,1(o:0,o:1 ) denote the class of all tests (N, D) which have error 

probabilities at most o:0 and o:1, and define 

The problem of finding a procedure (N' ,D') which minimizes the maximum 

expected sample size subject to the error probability constraints o:0 

and o:1 -- that is, so that sf E
8
N' = n(o:0,o:1 ) -- is known as the 

Kiefer-Weiss problem. No optimal results (in the sense of the 

optima.li ty property of the SPRT) have been found for this problem. 
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Kiefer and Weiss [ 5] proved structure theorems about tests which 

minimize E N for a fixed 8 = e2 (this is called the modified Kiefer-
92 

Weiss problem). Weiss (18] showed that the Kiefer-Weiss problem 

reduces to the modified problem in symmetric cases involving normal and 

binomial distributions . Lai [ 7] investigated the Wiener process case. 

A test (N,D) is customarily judged by its efficiency, which in this 

context is 

n(a
0
,a1) 

s~p E9N 
( 1 • 5) 

A procedure is said to be asymptotica.l.ly efficient if (1.5) tends to 1 

as a 0 and a 1 go too, and for such tests the rate of approach of (1.5) 

to 1 is of interest. Thus, finding fairly simple procedures which are 

not only asymptotica.l.ly efficient, but have efficiencies close to 1 

for practical values of a 0 and a 1, is important. 

Anderson [ 1] studied a class of easily constructable procedures 

for the symmetric case of testing the mean drift of a Wiener process. 

In a general context Lorden [8] studied a subclass of Anderson's 

procedures, related to SPRT's and caJ.led 2-SPRT's. Given e0 < 8 < e1, 

and O < A0,A1 ~ 1, the stopping rule M( 8 ,A0,A1 ) is the smallest n ( or 00 

if there is non) such that 

f ~.n 
J. 

-f- < A. 
- J. en 

( 1. 6) 

for either i = 0 or 1. The decision rule D rejects 80 if (1.6) does 

not hold for i = 1, and rejects e1 if it does not hold for i = 0. 

If (1.6) is true for both values of i, then any fixed rule can be used 
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for deciding between e0 and e
1

. A useful alternate way to write the 

stopping rule is M(a,AO,A1 ) = min(Mo(e,AO),M,(e,Ai)) where Mi(e,Ai) 

is the smallest n such that ( 1. 6) holds. 

As Lorden pointed out, the method which Wald used to derive (1.2) 

is applicable to the 2-SPRT and yields 

a.< A. P
0
(reject e1 ), i = 0,1 

l. - l. 
(1. 7) 

so that setting Ai= ai in (1.6) insures error probabilities of at most 

a 0 and a 1 . The main theorem in [ 8] states that if a
0 

and a 1 are the 

true error probabilities of the 2-SPRT (M(e,AO,A1 ),D), then 

as a O,a1 ➔ o where e is fixed. Thus, for any fixed a, the 2-SPRT 

provides an asymptotic solution to the modified Kiefer-Weiss problem. 

In the symmetric normal. case, where e is the mean and a 0 = a 1 = a, say, 

the Kiefer-Weiss problem reduces to the modified problem for 

cp = (e0 + e1)/2 [18], where only procedures symmetric about q, need be 

considered. So in this case, the 2-SPRT gives an approximate solution 

to the Kiefer-Weiss problem. Lorden showed that over a wide range of 

values of a, e0 and e1, the 2-SPRT has an efficiency of more than 99.2i. 

Hence, setting Ai= ai so the 2-SPRT's are in .r(aO,a1), if 9 can 

be found so that E
8
M(e,aO,a1) is nearly maximized at 8 = e, then the 

resulting 2-SPRT will be an approximate solution to the Kiefer-Weiss 

problem. Chapter 2 derives an explicit method for determining 1!' 

as a function of a0 and a 1, in the context of the Koopman-Darmois 

family of densities (defined in the next paragraph). Theorem 1 shows 
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- 1/2 
that the efficiency of the 2-SPRT so obtained is 1 - o((log a

0
-
1

) ) 

as a
0 

and a
1 

go too, subject to the condition that 

O < c
1 

< log a0/log a 1 < c
2 

< oo for fixed but arbitrary constants c
1 

and c2 • 

In Chapters 2 and 3 it is assumed that x1, ~, ••• have one of 

the Koopman-Darmois densities given by 

with respect to a non-degenerate a-finite measureµ.. (Common members 

of this family include the normal, eJQ?OnentiaJ.., binomial. and Poisson 

densities.) The function b(8) is necessarily convex and infinitely 

differentiable on (~ 9), and its first two derivatives satisfy 

b' (e) = E
0
x and bn(a) = va:r

8
x = cl(e) ([ 6] a.nd [15]). A simple 

calculation shows that 

I(8,r.p) = (a - q,)b'(e) - (b(e) - b(cp)). 

For n = 1,2, ... , let S = x1 + ... + X, and define the log-n n 

likelihood ratios 

f 
= log fen 

ein 

= (e - e.)s - n(b(e) - b(ei)), i = 0,1. 
1 n 

Then (1.6) is equival.ent to ,t,i(e,n) ~ log Ai-l. The 2-SPRT can be 

described graphically in the plane of n a.nd Sn. There are two 

converging lines given by (e - ei)Sn - n(b(e) - b(81 )) = log A
1

-
1

. 

Sampling is stopped as soon as the sequence (1,s1), (2,s2 ), ... 

leaves the triangular region bounded by the lines, and the decision 

depends on which line is crossed . 
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In practice it is sometimes easier to collect and use data in sets 

rather than one at a time. In this case it is preferable to use a 

testing procedure which is based on taking observations in several 

stages. Typically the maximum number of stages is fixed in advance, 

and a:f'ter each set of observations is taken, a decision is ma.de 

whether to stop or to continue to the next stage. The number of 

observations in each stage _is based on the observations taken up to 

that point . To design such a multistac;e test, it is natural to try 

to imitate the performance of a sequential test by setting up each 

stage to 11do what the best sequential test would do 11 based on the 

previous stages. Chapter 3 is concerned with defining a three-stage 

test, based on the sequential likelihood ratio test (SLRT) [9], in 

such a way as to achieve good asymptotic performance. 

Theorem 2 shows that the procedure defined in the third chapter 

has an efficiency of 1 - O(y-3/ 4(log y)3/ 2 ), where y = log a 0- 1 
+ 

log a 1 -
1, indicating that the performance of the three-stage test would 

be very good for sma.11 enough a
0 

and a 1. Unfortunately, the test and 

theory are not refined enough to indicate what should be done to achieve 

high efficiencies in practical use. In particular, since there is no 

analog of Lorden's o(1) result for the 2-SPRT, it seems unlikely that 

at this level of refinement the three- stage procedure would attain 

efficiencies as high as those of the 2-SPRT. 

Chapter 4 describes the results of computer calculations comparing 

the test proposed in Chapter 2 with actual Kiefer-Weiss solutions in 

the case of the exponential density. A method of computing the latter 

was developed, incorporating the well-known backward induction method 
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for computing modified Kiefer-Weiss solutions. It is shown that the 

2-SPRT comes within 1% of minimizing the maximum expected sample size 

over a fairly broad range of error probability and parameter values. 

In addition, the expected sample sizes under e0 and e1 are compared 

with those of the SPRT having the same error probabilities, indicating 

a relatively insignificant increase in the number of observations 

required by the 2-SPRT. 
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2. 2-SPRT's and the Kiefer-Weiss Problem 

2. 1 Introduction and Sumtl\8ry of Results 

For the results in this chapter it suffices to choose Ai= ai 

for i = O, 1, which insures that all the 2-SPRT's under consideration 

are in .r(a
0
,a

1
). It will also be assumed that there are fixed but 

arbitrary constants c
1 

and c2 such that 

log a
0 o < c

1 
< 1 < c

2 
< oo. og a

1 
(2.,) 

Let S = x1 + ... + X for n = 1,2, .... In the {n,S) plane the n n n 

boundaries of M( e,a
0

,o:
1
), defined by equa.li ty in ( 1. 6), are lines 

given by 

Defining Ii(e) = I(e,e1) and a1(e) 

intersect at (n(e),v(e)) where 

n ( e) 

and 

v(o) 

-1 
= (log a1 

, I
1 

( e) 

= ( e - e. ) /r. ( e), 
1 1 

these lines 

(2.3) 

(2.4) 

By virtue of the fact that b( e) is convex, I0 ( fl) is strictly increasing, 

I1 (A) is strictly decreasing, and both are positive on (e0,e1 ). Thus 

for any e in (00,A1), a1 (e) < O < a0 (e), which implies that n(e) is 

positive. Hence the 2-SPRT is truncated and can take at most 

[n(e)] + 1 observations. 
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Let ai., Ii, a and n denote the values of ai(e), Ii(e), a(8) and 

n( 8) tor 8 = 'J. Also let ii = min(M0,i1 ) represent M(e,a0,a1 ) . 

F.quations (2.11), (2.14), (2.15) and (2 . 16) given below define 'J and r 
so that the following theorem holds. 

Theorem 1. If (2.1) is satisfied then as a0,a1 ➔ O 

sup E/ = n - a{a0 - a1 )cp(r)n1 
/ 2 

+ o(n1 
/ 2 ) (2. 5) 

8 
and 

where c;p(•) is the standard normal. density function. Thus 

•• -1/2 
- o( (log a

0 
-
1

) ) • (2. 7) 

The proof of Theorem. 1 consists of establishing relations (2.8) -

(2. 1 O) below. (2. 5) follows immediately from 

°¥ ~ n - a(aO - al )cp(r)n1/2 - o(nl/2) (2.8) 

and 

sup E/<3_n -aCa0 -a1)cp(r)n1/ 2 + o(n1/ 2 ), (2.9) 
e 

while (2.6) follows from these relations together with 

inf Ef ~ Y - 0(1 ). 
.r(a0,a1 ) 

(2.7) is an immediate consequence of (2.5) aoo (2.6). 

(2.10) 

The key to the argument is to choose '8' so that the supremum over 

8 of E9't. is attained at 8, at least to within 0 (n1 / 2 ). 
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To determine how to choose l', first define 9* so that 

(2. 11 ) 

and let n* be the canon value of the two aides (which by (2.3) equals 

n ( 8*) ) . The monotonicity of the information numbers implies that 8* 

is uniquely determined, and (2.1) implies that 8* lies in a fixed 

closed subinterval of (e0,e1), say [q,0,q,1]. As above for 1iof, let 

M* = M(8*,cx0,a1) = min(Mc,*,M, *) and define a1 *, Ii* and a* accordingly. 

In the {n,Sn) plane, relation {2.Ji) shows that the line determined 

by the points (n,E8*sn) = (n,nb' (8*)) for n = 1,2, ... passes through 

the vertex (n*,v(8*)). So under 8* the points (n,s) will tend to n 

drift toward the vertex. In general, however, E
9
M* is not maximized 

at 8 = 8*. This is because for n < n* one of the boundaries will be 

closer to the line (n,nb' (e*)) so that the nuctuations ins will n 

cause the 2-SPRT to end too early by going over the closer boundary. 

More precisely, essentiaJ.ly the same argument that will be used 

to show (2.5) can be extended to show that for 8.,. 8* + c(n*)-1/ 2 

(where c is restricted to any bounded interval) 

where the expectation on the right-hand side is with respect to the 

standard normal variable z. Choosing e to ma:dm1 -ze E8M* to within 

o{{n*) 1/ 2 ) is then equivalent to finding c to minimize the expectation 

on the right-hand side. This expectation can be written 
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00 

j P(max(ai*(Z +a-Mc))> t) dt 
0 i=0,1 

Joo t t 
= (P(Z > ;-,,: - O'-IEc) + P(Z < --:.: - O'-tfc)) dt. 

o ao a, 

(2. 13) 

Using xt(x) + q,(x) as a primitive for the standard normal distribution 

t(x), straightforward integration shows that the integral equals 

a-Mca1*+ (a0* - a1*)(a-1Ect(O'i!-c) + ,,(O'-lfc)). Differentiating with respect 

to c shows that the minimum value of (2.13) occurs at c = r*/a* where 

In addition, the value ot (2.13) at c = r*/a* is given by 

(a0* - a1*)~(r*). 

In general, define r ( e) by the relation 

a1(e) 
t(r(e)) = a {8) - a (9) ' 

1 0 

so that r* = r(e*). 

In Theorem 1 l and r are given by 

r* l = e* + 1/2 
cr*(n*) 

and 

r = r(l). 

(2. 14) 

(2. 15) 

(2. 16) 

With this choice of 1', it turns out that the analog of (2.12) using 1r 

in place of M* is extremized by the same choice of c. Thus, E
8

YI. is 

maximized to within o(n.1 / 2 ) by e = l. 

It will be assumed in the remainder of the chapter that a 0 and a 1 

are small enough so that 9* and 1' are in [q:,01 q,1]. Thia assures that 

ai*, a1, and the information numbers are bounded away f'rcm O and oo. 
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Before continuing to the proofs of (2.8) - (2.10), given in the 

following sections, several relationships concerning the boundaries 

of i{ will be established. 

Let T = S - nb' (e) for n = 1,2, ... and lets= v(l) - nb' (e). n n 
Then in the (n,T ) plane, (n,s) is the vertex of i{ and from (2.2) 

n 

the boundaries are given by the equations 

-1 log cx1 ui (n) = ;:n + --­
ai l - ei 

for i = 0,1. 

(Sampling is stopped as soon as either Tn ~ u0(n) or Tn ~ u1(n), 

the decision depending on which inequality holds.) These are lines 

with slope -ai -l passing through (n,s) so the above is equivalent to 

-1 Solving for log cxi using the last two equations yields 

log (Xi - l = (n + ais)Ii 

The final relationship is given by 

~ ~ sl/2 = -"; + o(l ). 
o-{n) 

To show (2.19) it suffices to establish 

~ 
s 1/2 = -r* +0(1), 

O'*(~) 

(2. 17) 

(2. 18} 

(2.19) 

(2.20) 

since r* is bounded by virtue of (2.1) and 8 - 9* ➔ 0 ensures n ~ n*, 

r ~ r* and a~ cr*. (2.4) a.nd the definitions of sand n* give 
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It is easily seen that I 1' (e) = (8 - e1 )a2 (e), so that expanding 

I
1 

(1n in a Taylor series about 8* yields 

where the ~i are numbers between 8* and l. Substituting into the 

above expression for sand dividing by cr*(n*)1/ 2 gives 

s* {(02(~,)(~, - e,) cr2(~0)<~0 - 80)) -11 __ ..,.....,,.. = --.,..---- - __ ..,... ___ (a (l) - a (1')) r* 
cr*(n*) 1/2 (cr*)2I1 (l) (cr*/Io(l') O 1 

Noting that cr2 (~i)(c*)-2 = 1 + o(1) and (~1 - e1)/I1(l') = a1(l) + 0(1) 

completes the demonstration of (2.20). 

2.2 Proof of (2.10) 

As pointed out after (2. 16), ai' 'Ii and a are bounded awey- from 0 

and oo, so that tbe following lemma yields (2.10) . 

(2 .21 ) 

Proof. Let Mand Mi denote M(e,a0,cx1 ) a.nd M1(e,ai) respectively. 

Let (N, D) be any test in ..1(a0,cx1 ) , a.nd let [D = i 1 be the event that 
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81 is rejected by that test. As in the proof of Theorem 1 in [ 9] 

define 

where N(D = i} = N if D = 1 and 00 otherwise. Clearly for all e, 

M - N < t (M1 - N. ) . 
- i::O 1 

(2.22) 

By Wald's equation -1 
log cxi + o 

E(11 = I (8) 
i 

where o = E8(t1 (e,M1) - log cx0- 1) is the expected excess over the 

boundary log ex 
1 

_, . By '.theorem 1 of [ 11 ] , 

var
8
ti( e, 1) (e - e /a-2 ( 8) 

o < -~-- = i (2.23) 
- ri(e) I 1 (8 ) 

which yields 

(2.24) 

To estimate E
8
N1, the inequality 

canbined with Wald's lower bound on the expected sample size of a 

one-sided SPRT [15] shows 

(2.25) 

Ta.king expectations in (2.22) and using (2.24) and (2.25) shows that 

(2 .21 ) is true, (N, D) being an arbitrary member of .r(cx0,cx
1 

) . 
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2.3 Proof of (2.8) 

[~ ~1/2 ~1 Let m = n - n log n. The derivation of (2.8) relies mainly 

on two facts, the first being that with overwhelming probability under 

1' the test requires at least m observations, and the second being that 

once them observations are taken, the behavior of the remainder of 

the test is sufficiently predictable by the value of T. More 
m 

specifically, the first claim is given by 

~ 1 
P8(M ~ m) ~ O(n ) (2.26) 

and is proven in Lemma 2.4 at the end of this section, while the 

second is given by the following lemma. 

Lemma 2. 2. On the event {M > m} 

E,.,.e~IT ) > n - max (e;i(T - s)) - o(n
1
/
2

). 
m - i=0,1 m 

(2.27) 

Proof. At time m the log-likelihood ratios have values 

ti (1,m) = (a1 Tm + m)l'i for i = O, 1. If' M > m then based on observations 

Y1, Y2, ... , where Yk = x.+k' let Ni be the first n such that 

ti (l,n) ~ Ki = log a 1 -
1 

- (a1 Tm + m)l'i. 

Substituting for log ai-l according to (2.18) shows 

Ki• (n - ai(Tm - s) - m)l'i. (2.28) 

On {M>m}, 

(2.29) 

By Lemma 2.3 below there is a constant D such that 

(2. 30) 
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By (2.28), 
K 

min (~1
) = n - m - max (ai (Tm - s) ), (2.31) 

i=0,1 Ii i=0,1 

which is at most n1/ 2log n. Using (2.30) and (2.31) in (2.29) yields 

relation (2.27). 

The following lemma. establishes (2.30) by giving a general lower 

bound on E8M(8rA0,A1). 

• 1 1fe 
Lemma 2.3. Let D = 2 max ((a

0
(a) - a.

1
(e) ) a(e)). 

[ cpo, q,1 l 

EeM(e,A0,A1) ~ K - DK l/2, 
-1 

. (log Ai ~ 
where K = nun I {e) )" 

i=0,1 i 

(2.32) 

Proof. As in the proof of inequality ( 1 • 4) in [ 4 ] , define for 

n = 1,2, ... , 

i = o, 1 

and y = Yo - Y, • n ,n ,n 

Clearly K :S max(Y0 M'Yl M). Therefore, writing max(Y0 M'Y1 M) = , , , , 
} (Y0,M + Y1,M) +} l\il and noting that E8Yi,M = E8M by Wald's 

equation (since E8Yi,l = 1), 

Also, 

Since E
8
Y1 = o, Wald's second moment equation yields 

2 
Ee(~)~ (EeM)Va.reY,. 

(2.33) 

(2.34) 

(2 . 35) 
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2 A simple computation shows that the variance equals (a0(8)-a1(e))cr (e). 

Combining (2.33) - (2.35) with the definition of D leads to 

K ~ E8M + D(E~)
1
/
2 

from which (2 .32) follows easily, proving the lemma. 

Lemma 2.2 and the estimate of 1l'(j.'f ~ m) in (2.26 ) give 

~ ~n - ~ _max(a1(Tm - s)) + o(n
1

/
2

) . 
1=0, 1 

The expectation on the right-hand side can be written 

~ 1 /2 r00 

(Tm - 8\ 
om .I~( ms.x(ai~ 172-) ) >t) dt. 

o i=0,1 om 

As in the evaluation of (2.13), the integrand is the sum of the 

probabilities of the inequality holding for i = 0 and for i = 1 . 

In the case i = o, for example, this equals 

n.. . ( Tm > t + s \ -rf t s ) + 0 (m-1 /2 ) , 
-'a ~ 1 72 =- ~ 1 72") C • \ z > =- + ~ 1/2 am a0 om a0 om 

where Z is standard normal, by virtue of the Berry-Esseen theorem [3] 

and the fa.ct that v~1 and~(IT113) are bounded awey from O and 00, 

respectively. 

i ~~ ~1/2 ~/'!t 1/2 ~ ~ Snee a1a n --and hence s1 a m -- tends to -r, the first term 

on the right-hand side converges to P{a0(z+r) > t). Together with a 

~irn1Jar result for 1 = 1, this shows that the integrand in (2.36) 

converges pointwise to P( max (a
1 

( z + r) ) > t). Using Chebyshev' s 
1::0, 1 

~ -1 ~ ~ nt 1 /2 inequality and the boundedness of a
1 

and a
1

s, ~ m , the integrands 
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in (2.36) are seen to be bounded above by a :f'unction that goes to 0 

-2 like t as t ➔ 00 • Therefore, by the dominated convergence theorem 

~ ~ ~1 /2 r,:, ( ~)) (~1 /2) = n - a n E max:,ai Z + r + o n . 

i=O, 1 

(2.37) 

The evaluation of (2.13) given in section 2.1 shows that (2.37) is 

equivalent to (2 .8). 

To prove (2.8) it remains only to establish (2.26), which is 

contained in the followinr5 lemma. (also to be used in the next section). 

Lemma 2. 4. Let B be a positive constant. Then 

P
8

(M ~ m) ~ o(n1
) 

uniformly for I 0 - el < B n 1

/

2

• 

Proof. It suffices to show 

Pa(Tk ~ Uo(k)) = o(rt2 ), k = 1, ... ,m (2 .39) 

uniformly in k and I 0 - el ~ B n 1 
/

2
, with a similar bound for 

Tk ~ u1(k), since (2.38) follows by summing over k = 1, ... ,m. 

The boundedness of a0 together with (2.17) and (2.19) imply there 

is a positive constant c such that 

( ) ~1/2 ~ u
0 

k ~ c n log n = y 

for all k < m. For a:rry t > o, 

Applying Chebyshev 's inequality to the right-hand side yields 
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Pe(Tk ~ ~) ~ exp(-yt)(Ee(exp(tT,)))k 

= exp(-yt + k(b(t + e) - b(8) - tb' (l'))). 

Using a Taylor expansion of b(t + 8) about e, the continuity and 

boundedness of bn(e) imply 

for some q > o. Expanding b' (e) about l s1m1Ja.rly yields a constant 

q' > O such that 

( ~1/2 2 Pe Tk ~ y) ~ exp(-yt + ktq'.i,n + qkt ). 

Replacing k by non the right-hand side and setting t = 2/(c n.1/ 2 ) 

shows 

P (T > U(k)) < n2exp(~ + 24' B) 
8 k- - 2 c 

C 

for any k ~ m, which yields (2.39). 

2.4 Proof of (2.9) 

The proof of (2.9) is divided into two parts, the first being 

to show that there is a B >Osuch that 

Only the case e >l will be considered, as the case e <l is similar. 

For B' > O (to be chosen below), there is a B >Osuch that 

0 > l + B n 1/ 2 implies 

Eeto(e, 1) ~ Io + B' n 1
/
2

• (2.41) 
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~e same analysis which established (2.23) in Lemma 2.1 shows 

~ -1 that the expected excess of M0 over log a
0 

is at most 

(e - e0)2a2(e) 

E
8
t 0 (e, 1) 

(2.42) 

')t ~-1 /2 ( 4 ) ( 4 ) For 8 > ti + B n , 2. 2 is bounded, so that by 2. 1 and Wald's 

equation 
-1 log a

0 EJA- ~ E0ttiO ~ 1' ,~-i/2 + 0(1 ). 
0 +Bn 

Replacing log a O-
1 according to (2.18) and using the fact thats is of 

~1/2 order n yields 

~ ~~ ~ n + aOs 
E M < -----,,--..::,----,,- + 0 ( 1 ) 

8 - ,~-1/2-:::!. -1 1 + B n r0 

Since s ~ -r o n1
/
2 by virtue of (2. 19), this last impl.ies 

"l,J ~ < ,,.,,, -1 ~ ~ ~'0'1/2 c~1/2) E8m ~ n - B i 0 + S.c:f a1n +on • (2.43) 

Choose B' sufficiently large so that (2.40) follows from (2.43). 

For the remainder of this section, J(B) will denote the interval 

of 9 values given by le - al < B r 1
/
2

• 

~e next lemma parallels Lemma 2.2 by establishing a bound on 

the conditional. expectation of M given T . 
m 

Lemma 2.5. On the event (M > m} 

E (l!IT ) <n - max (ai(Tm - s)) + o(n.112
) 

8 m - i=O, 1 
{2.44) 

uniformly fore in J(B). 
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Proof. Assume T > s, the proof for T < s being similar . Define m- m 

N0 and Ko as in the proof of Lemma 2 . 2. Under e the expected excess 

of N0 over K0 is boun:led above by (2.42 ), and is thus bounded 

uniformly on J(B) (since E
8
t 0 (l', 1 ), being continuous and positive at e, 

~ 
is eventua.lly bounded below by a positive number for 8 in J(B) ) . 

Hence 
(n - a0 (T - s) - m)I0 (1) 

E (MjT) < m + E8N0 
< m + m + 0(1) (2 .45) 

8 m - - • E
0
t

0 
(e, 1 ) 

uniformly for 8 in J(B) . Si nce the ratio of I 0 (e) to E
8
t 0 (e,1) is 

1 + o(n1
/
2

) uniformJ.y for 8 in J(B), and n - a0 (Tm - s) - m :Sn - m :S 

O (n1 / 2log n), (2. 45) implies 

Ee(MIT) <n - ao(T - s) + O(log n) m - m 

uniformly for e in ~ (B), which yields ( 2. 44) for the case T > s, m-

proving the lemma. 

From (2.44) 
~ 

Eji. ~ n -a n1
/
2

Ee( max Ca1(~m~~/2) )l[M > m}) + o(n
1

/
2

), 
i=O, 1 a n 

where l{.} denotes the indicator :f'unction and the inequality holds 

uniformly for 8 in J(B). 

To complete the proof of (2.9) it will suffice to show 

~ inf E( max (a1(z + r))) - o(1) 
r i=0, 1 

uniformJ.y for 8 inJ(B), since the right-hand side is at least 

(2 . 46 ) 
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(a0 ·• a1 ),:p(r) + o(1) by the argument eval.ua.ting (2.13). To prove (2.46), 

note that by arguing as in the proof of Lemma 2.2, fort> 0 
T - ,..~ 

Pe( max (ai(~m~1/~) > t) 
i=O, 1 er n 

uniformly for a in J (B). 

Since P
8

('M ~ m) ➔ 0 uniformly by Lemma 2.4, the last relation 

yields for fixed L > O 

(2.4 7) 

uniformly for e in J(B). 

Because r + m1/2;;-l/2E
8
T
1 

= r + m1/2cr-1/ 2(b' (e) - b' (l')) 

is bounded for 8 in J(B), the.re is a Q such that the integre.l on the 

right-hand side of (2.47) is at least 

inf f P( max (a1 (Z + r)) > t) dt 
lrl~ o 1=0,1 

(2.48) 
00 00 

> inf' J P( max (a1(z + r)) > t) dt - J g (t) dt 
- Ir!~ O i=0,1 L 

where g( •) is an integrable f'unction which can be chosen to dominate 

the integrands (since the range of r is bounded). 

(2.47) and (2.48) establiflh (2.46) to within the last term in 

(2.48), which can be :ma.de arbitrarily small by choosing L large. 
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Thus, (2.46) follows and the proof of (2.9) and, hence, Theorem 1 is 

COIDJ?lete. 

2. 5 Refinement 

The actu.aJ. error probabilities of the 2-SPRT M can be evaluated 

asymptotically using the relat ions 

P
9 

(reject a.)= 
• l 
l . 

i = 0,1. Using (2 .1 9) and the limit distribution of Tm' 1l(reject e0) 

is asymptotically P(Z > -r) =a,/(a, -ao). Since to(e,M) - logao_, 

is the excess over the boundary when e0 is rejected, Theorem 5 of [10] 

then shows for the nonlattice case that 

where 1(1!', e0 ) is defined in [ 5]. A similar expression holds for the 

other error probability. 

In practice it seems advisable to use this information in defining 

the test , so that the actu.aJ. error probabilities attained will be close 

to those desired. The following formulation, used for the calculations 

in Chapter 4, is recommended for practical use. Define 

and 
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log (A0(cp*)) - 1 

IO(cp*) 
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=------ , 

and let n(tp*) be the common value of the two sides. Let 

m = cp* + r(5e*) 
a((?*)(n(t9*)) 1/2 

and use the 2-SPRT N = M(~,A
0

(tp),A
1 

(cp')). 

Theorem 1 now holds for N, with a
0 

and a 1 replaced by A0 c;') and 

A1 {;), and n, a, ai and r determined by ~- The proof of Theorem 1 goes 

through nearly unchanged, it being necessary only to modify the deriva­

tion of (2 .19 ), using the fact that the ratios log A1(~*)/log Ai(cp) 

tend to 1. 
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3. Three-Stage Tests and the Kiefer-Weiss Problem 

In this chapter a three-stage test designed to imitate a 

sequential likelihood ratio test (SLRT) is defined so that it 

minimizes the maxim.um expected sample size to within O(y1/ 4 log y-1) 

-1 - 1 where y is defined as log a 0 + log a 1 . It is assumed that 

condition (2 . 1) holds as in Chapter 2. 

For any (n,S ), n = 1,2, ... , define i to be the solution to n n 

b' (8) = sn/n if b' (80) < sn/n < b' (81). If sn/n ~ b' (a0 ) define 

" " I '( ) " e 0 = e0, and if S n > b 8
1 

define 8 = e
1

. is well-defined 
n n - n n 

since b' (8) is strictly increasing, and it maximizes the likelihood 

function 8Sn - nb' (e) on [e0,a1]. Note that 

(3. 1 ) 

A 

in which case en is the maximum likel:ihood estimate of e. 
Given A0 and A1 in (0,1) the SLRT consists of the stopping time 

,. 
N = smallest n (or~ if there is non) such that 

for i = O or 1, (3.2) 

and the decision rule D, which r ejects e0 if (3.2) holds only for 

i = o, and rejects e1 if (3.2) holds only for i = 1. In the case 

that both inequalities hold, any fixed rule can be used to decide 

between 80 and 01 . 

SLRT' s have been studied by Schwarz [ 14], Wong [ 19] and Lorden 

[ 9 ] . Lorden gives a concise SUIIIID8XY of the results of Schwarz and 

Wong in his paper, where he extends Wong's results and shows that 
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the SLRT with error probabilities o:0, o:1 has expected. sample sizes 

exceeding n(o:0 ,o:
1

) by at most M lo~og q-1 uniformly in e, where 

q = min(o:
0

,o:
1 

) . 

To insure that the SLRT has error probabilities at most o:0 and o:1, 

define r(e) = min I.(e) and choose 
i=0,1 1 

/ 
-1 

Ai = ai D log ai i ,., o, 1 (3.3) 

where Dis chosen to satisfy D/log D ~ 6(1 + (min(I(8))-1) as in 

Theorem 1 of [ 9 ). 

In this chapter 8* is defined by the relation 

(3 .4 ) 

a.nd n* is the common value of the two sides. Let m* = [n*] + 1. 

Then the SLRT can take at most m* observations. To see this, note 

that if, sa:y, em*~ 8*, then 

;. 

;. 

~ m* I 0 (em*) 

~ n* r0(8*) 

-1 = log A0 , 

and the case em*< 9* is similar. Final.ly, under condition (2.1), 

the ratio y/n* is bounded awa:y from O and 00 • 
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The three-stage test (N(A0,A1), D) is defined as follows: 

(i) Take 

observations and stop if (3.2) holds, deciding 

as D prescribes. 

(ii) otherwise, continue to time 

,- = . min ( m*, 1 
l.=0,1 

,. 
If (3.2) holds, stop and use D. 

(3. 5) 

(3.6) 

(iii) otherwise, continue to time m* e.nd follow D. 
Note that case (iii) arises only if,-< m*. 

By (3.4) and the monotonicity of the information numbers, 

if em~ 8* then the term inside the greatest integer function in (3.6) 

is minimized by i = o, and if\_< 8* it is minimized by 1 m 1. 
,. ,. .. 

Assume e1 > 0 > 8*. If 8 stays close toe for n = m+1,m+2, ... , m - n m 

then 

so when n reaches ,- (3.2) should be satisfied. The extra term of 

(n*)1/ 4(1og n*)3/2 in the definition of Tis designed to insure that 

the three-stage test will end with high probability at time,-. 

Let 

A routine calculation shows that there exists an A small enough so that 
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for aJ.l 8 in J(A), i = 0, 1. Fixing this A, note that if 

8m E J(A) n (80,81) then (3 . 1) and (3.4) imply 

A A -1 
t 1(8 ,m) = mI.(8) < log Ai , i = 0,1, m 1. m 

so that N(Ao,A,) > m. 

Theorem 2. For the Ai given by (3.3), (N(A0,A1), D) is in 

~T(a0,a1). In addition, if (2.1) is satisfied, then 

sup E
8
N(A0,A1) = n(a0,a1) + o(y114(1og y)3/ 2 ) (3.7) 

8 

(3.8) 

Proof. To show that the three-stage procedure is in J"(a
0
,a

1 
) , 

note that in the proof of Theorem 1 of [ 9 ] , Lorden shows that for 

the SLRT, 

P8i (reject ei) ~ P8i (ti(~n,n) ~ log Ai-l for some n ~ m*) 

~ ai for i = o, 1 • 

Since (N(A0,A
1

), D) can reject e1 only if ti(;
0
,n) ~ log Ai-l for 

some n ~ m*, its error probabilities are likewise at most a0 and a 1. 

Using Theorem 1 , (3 . 8) follows immediately from ( 3. 7). The proof' 

of (3.7) consists of establishing the following three relations. 

uniformly for 8 E J(A/2). 
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EeN(AO,A1) - E8M(8,Ao,A,) ~ O(y
1
/ 4(1og y)3/2 ) 

uniformly for 8 € J(A/2). 

(3 .9) and (3.10) show that 

E
8
N(A0,A1 ) ~ n(a0,a1 ) + o(y1/ 4(1og y)3/2 ) 

(3.10) 

(3. 11) 

uniformly for 8 € J(A/2), and this combines with (3.11) to give (3.7). 

To verify ( 3. 9), note that the method of proof in Lemma 2. 1 still 

applies when M(e,a0,a1) is replaced by M(8,A0,A1 ), so in fact the 

left-hand side of the inequal.ity in (3 .9) is at most 

( -1 ) 1 2 2 log 1 + Dilog ai 
L ( ai ( 8 )o- ( 8) + I ( 8) ) , 

bO i 

which establishes (3. 9). 

For the proofs of (3.10) and (3.11), first note that the proof 

of Lemma. 2.4 shows that for any 8 € (e0,e1 ) and for all k ~ n*, 

P
8
(l3it - kb' (e)I ~ c (n*)

1
/ 2log n*) ~ (n*)-

2 exp(~), (3.12) 
C 

where q is a constant independent of 8 (since it depends only on b 0 (8) 

being continuous and bounded on (e0,e1 )). The same proof also 

establishes for all k with m < k < m* that - -

P8(1sk - Sm - (k - m)b' ( 8)1 ~ c(n* - m)
1
/
2
1og n*) 

= 0( (n*)-2 ) 

uniformly in 8 on (80,81 ). 

(3. 13) 
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Let 

and 

where Q1 and'½ are constants to be determined. 

It will next be established that for sutticiently small'½, 

Also, 

(3.15) 

uniformly in 8. It follows that 

(3. 16) 

uniformly in e. 

To see (3.14) note that if N(A0,A1) > m and ~m ~ 8*, then either 

T = m* (so that (3.14) is trivial) or else 

-1 
1/4 3/2 log Ao 

+ (n*) (log n*) > --- , 
- I 0 (e,.) 

(3.17) 

the last inequ.e.lity holding provided'½ is chosen sufficiently small. 

Arguing as in the verification following (3.4) that the SLRT takes at 

) (
A -1 

most m* observations, (3.17 implies that t 0 eT,T) ~ log A0 , which 

yields (3.14). The case where 8m < 8* is similar. 

To establish (3.15), first assume 8 € [e0' ,e1'] where!< 80' < e0, 

and e1 < e1' < i are fixed, and note that for m ~ n ~ m* 

s s n m -1( ---=n S -S 
n m n m 

- (n - m)b' (e)) + m - n(s - mb' (e)). 
mn m 
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Since b"(8) is bounded on [e0' ,e1' ], (3.13) and (3.12) extend to show 

that therefore 

max lsn - sml = o((n*)-3/4{1og n*)3/2) + O((n*)-l(log n*)2) 
m<n<ln* n m 

= O((n*)-3/4(1og n*)3/2) (3.18) 

-1 
with probability at least 1 - O((n*) )uniformly for 8 in [00' ,91' ]. 

Now, e, which is a function of S /n, has bounded derivative on n · n 

(e
0
,e

1
) since b*(e) is bounded away from o, and is constant for 

sn/n ~ e0 or sn/n::: e1. Hence (3.18) implies that (3.15) holds 

uniformly fore E [e0' ,e1' ]. To show (3.15) holds uniformly for all 

e, note that if, say, 8 > e1' then 

p <e = 
8 m 

A 

.•. = 8 = m* 

::: P8 ,(Sn - nb' (81')::: 0n for n = m, ... ,m*) 
1 

where p = b' (e1') - b'(e1) > o. By (3.12) this last probability is 

at lea.st 1 - o{(n*)-1 ). A similar argument for e < e0' shows that 

(3.15) is uniform for all e. 

The derivation of (3.11) can now be completed. The basic idea 

is that the second stage when 8* is true will with high probability 

be at least as large as the second stage when any 8 outside of J(A/2) 

is true. 

Let e-(c) and e+(c) denote the left-hand and right-hand endpoints 

of J(c), respectively. Choose B small enough so that 
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(3.19) 

Suppose e > e+(A/2). Then by (3.12), the last part of the argument 

for (3.15), and (3.16), the probability is at least 1 - O((n*)-1) 

" + that both em> e (A/4) and N(A0,A1) ~ T· In this case, 

N(A0,A1) ~ min(m*, LHS + (n*) 1/ 4(1og n*)3/2 ), (3.20) 

where LHS stands for the left-hand side of (3.19). Now if e* is true, 

(3.12) implies that with probability at least 1 - O((n*)-2 ), e € J(B), 
m 

in which case 

(3.21) 

where Rl:IS stands for the right-hand side of (3.19). (3.11) follows 

from ( 3. 19) - (3 .21 ) and a similar argument for e < e- (A/2). 

To complete the proof of Theorem 2 it remains only to show (3.10). 

Fore E J(A/2) and k ~ n*, 18k_ - kb' (e*)I ~ lsk - kb' (e)I + 

o((n*)1/ 2 log n·*), so that by (3.12), P
8

(E1 ) :::: 1 - o((n*)-1) 

uniformly for e € J(A/2). With (3. 15) this shows 

(3.22) 

uniformly for e E J(A/2). It will be shown that for a Q1 chosen 

sufficiently small, 

(3.23) 
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on E1 n ~, uniformly for 8 € J(A/2). Since N(A0,A1) ~ m*, relations 

(3.22) and (3.23) yield (3.10). 

It will first be established. that for 8 € J(A/2) 

If 8 € J(A/2 ), then for sufficiently small a 0,a1, 8 is sufficiently 

close to 9* so that in the relation 

the bracketed expression is positive. Hence on E1, tor k < m 

t 0(e,k) ~ (e-e0 )Q1(n*)
1/ 21og n* 

+ m{<e-e0 )b' (e*) - (b(e) - b(e0 ))}. 

(3.24) 

The right-hand side of (3 .24) is the value of t 0 (e,m) when Sm= mb'(e*) 

+ Q1 (n*) 11210g n*. By the argument following the definition of J(A), 

it follows that for sufficient1y smal.l Q1 this t 0 (e,m) is less than 

log A0-1. Thus on E1 n ~ and for 9 E J(A/2), M(e,A0,A1) does not 

reject e0 by time m and, similarly, does not reject e1 by time m. 

I I 1/2 In ad.di tion, for sufficiently smal.l Q1 , Sm - mb' ( 8*) ~ Q1 ( n*) log n* 

implies 8m E J(A), so that N(A0,A1) > m also. 

Let M denote M(8,A0,A1 ). If M > m* then (3.23) holds trivially. 

Otherwise, for sufficiently small a0,a1, on the event E1 n ~ 

"' ( 8) -1 ("' ) - 1 9i~ E (e0,e1 ) and hence either MI0 "'M ~ log A0 or MI1 8M ~ log A1 • 

Therefore, for all 8 € J(A/2), on E1 n ~ 

-1 _, 

(
log Ai ) (log Ai ) 

M > min --- > min 
- i=0,1' I 1(~) - 1=0,1 Ii(em) 
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Using the definition of T and the fact that N(A0,A1) ~Ton~ gives 

M ~ T - O{y

1

/
4(1og v)3/2) ~ N(Ao,A,) - O(y

1
/
4(1og y)

3/ 2
). 

Since the lower bounds on M do not depend on 8, this proves (3.23) 

and concludes the proof of Theorem 2. 
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4. Comparison of 2-SPRT' s with Kiefer-Weiss Solutions 

4.1 Summary of Resul.ts 

Calcul.ations were carried out comparing the 2-SPRT as described 

in section 2.5 with Kiefer-Weiss solutions, in the case of testing 

the parameter 8 of the exponential density. 

f
8
(x) = e exp(-ex), e > o, x > o. 

In testing 8 = e0 against 8 = e1, it can be assumed that e0 = 1, 

since that can always be achieved by scaling the X's . 

Desired values of a0 and a 1 were used to define the 2-SPRT 

'if and 7,;. E;}i, sf E8N and the actual error probabilities a 0' and a 1' 

of the 2-SPRT were ccmputed. nien, as described in section 4.2, 

the boundaries of the Kiefer-Weiss solution with error probabilities 

a 0' and a 1' were calcul.ated, along with its operating characteristics. 

This proviided the values of n(a0' ,a1') used to compute the efficiency 

n(a0' ,a1' )/sf E8i of the 2-SPRT. 

In Figure 1 are the boundaries attained by this process for 

testing e0 = 1 against e1 = 1.5 with desired error probabilities of 

a0 = a 1 = .05. The straight line bounda.ries are those of the 2-SPRT, 

which had actual error probabilities of a0' = .045 and a 1' = . 044. 

The curved boundaries are those of the corresponding Kiefer-Weiss 

solution. For col'IV'enience these were drawn in the (n,T) plane where n 

T = S - .8n, S = x1 + ••• + X. To conduct the 2-SPRT, observations n n n n 

are taken and the points (1,T1), (2,T2 ), ... plotted until one of the 

2-SPRT boundaries is crossed. The Kiefer-Weiss test is conducted 
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similarly. In both cases, if the top boundary is crossed, then 

e1 = 1.5 is rejected, while if the lower boundary is crossed, e0 = 1 

is rejected. For this test sup E
8
11 = 51.72, whereas n(a0' ,a1') = 51.39, 

8 
resulting in an efficiency,of 99.3%. A typical feature is that the 

maximum possible number of observations with the 2-SPRT is much 

smaller than that of the Kiefer-Weiss solution. The truncation point 

of the 2-SPRT is at 113 observations, while that of the Kiefer-Weiss 

solution is at 194 observations. 

The most extensive calculations were carried out for the case 

e
1 

= 2 and are recorded in Table 1. The 2-SPRT is seen to have an 

efficiency of over 9% over a broad range of desired error 

probabilities, with both the efficiency and the closeness of the 

actual error probabilities to the desired ones decreasing as the 

ratio of a 0 to a 1 becomes extreme. The last column records the values 

of F.f, which are in general within~ of sr EeN' indicating that 

~ indeed nearly lllBJ[imizes E
8
'ii1. 

Lorden indicates in [8] that in the symmetric normal case the 

observed efficiencies depended on the desired error probabilities, 

but that over a broad range they depended hardly at all on the 

parameter values. To confirm this for the exponential density, two 

cases were computed for e1 = 1.5. As stated earlier, the a 0 = a 1 = .05 

case resulted in 99.3% efficiency. The case a
0 

= .1, a 1 = .05 obtained 

a 0' = .11 and a 1' = .035 with an efficiency of 99.2%. Both of these 

efficiencies agree exactly with the corresponding cases for e1 = 2. 

In addition to the characteristics aJ.ready mentioned, E8 N and 
0 

E8 N were computed. For the exponential case Lorden and Eisenberger [12) 
1 
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TABLE 1 

Error probabilities and efficiencies, e0 = 1, e1 = 2. 

a' a I n(a0' ,a1' ) ~ % ao a1 sr E8N 0 1 
ef:f'icienci 

10 5 9.5 3.3 14.84 14.95 99.2 

5 5 4. t 4. 1 18.96 19.08 99.3 

5 1 5. 1 .6 25.65 25.83 99.3 

1 5 .7 5.8 26.98 27.24 99. 1 

. 1 5 .06 8.2 37.02 37.60 98.4 

ai = desired error probabilities (in~). 

a.'= actual error probabilities attained by 2-SPRT (in%). 
1 

~ E..N 
fl) 

14.88 

19.00 

25.76 

27. 11 

37. 35 

n(ao' ,a, I ) = inf{ sr EeN} where the inf is taken over all tests with 

error probabilities at most a 0' ,a1' • 

efficiency= n(a0' ,a1' )/s~p E
8
N. 

N, q;' = 2-SPRT and 'q, as defined in section 2.5. 
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give an accurate approximation to the expected sample sizes of the 

SPRT with error probabilities a
0

' and a 1' . Typical results are 

recorded in Table 2, and indicate that the loss in performance of 

the 2-SPRT is fairly mild. 

4.2 Method for Computing Kiefer-Weiss Solutions 

Given a0' ,a1', it is desired to find a procedure which attains 

n(a
0

' ,a
1

' ), i.e. to solve the Kiefer-Weiss problem, which i s related 

to the modified Kiefer-Weiss problem in the following way. If (N,D) 

solves the modified problem for a0' ,a
1

' and e = e
2

, say, and if 

in addition sup E
8
N = E8 N, then (N,D) solves the Kiefer-Weiss problem. 

8 2 
To see this, note that for any (N' ,D') in :r(a0' ,a 1' ), 

s~p EeN' ~ E82 lf 

~ E8 N = sup E
8
N. 

2 e 
For any test T = (N,D), let a 0 (T) and a 1(T) denote the error 

probabilities of T. Kiefer and Weiss [5] showed that finding all 

solutions to the modified problems of minimizing E
8 

N is equivalent 
2 

to finding all procedures which, for some positive constants p0, o1, 

o2 stumning to 1, minimize 

P~o(T) + p,a,(T) + P2Ee N 
2 

over all tests T. This is known as a Bayes problem and p = (p0,o 1,o2 ) 

is called the prior distribution of e. 
If n observations have been taken and Sn= s, the vector 

p(n,s) = (p 0 (n,s),p1(n,s), 02 (n,s)) where 
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TABLE 2 

Comparison of expected sample sizes 
of 2-SPRT and SPRT N, e0 = 1, e1 = 2. 

0: ' 0: ' ~ ~ 
0 1 Ee N Ee N Ee N E

8 
N 

0 0 1 1 

9.5 3.3 10.60 9.93 12.33 11. 15 

4. 1 4. 1 11.47 10.36 16.27 15.08 

5. 1 .6 17.30 16.08 18.21 15.22 

.7 5.8 12.33 10.07 24.38 23. 13 
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r:,.ein exp(-e.s) 
• 1 1 

p. (n, s) = -=--------
1 

r. p .e.nexp(-ejs) 
j=O J J 

is called the posterior distribution of e. The Bayes problem is 

characterized by the following "stationarity" property [16]: Given 

that n observations have been taken and S = s, the optimaJ. test n 

proceeds so as to minimize 

pO(n,spO(T) + p1(n,sp1(T) + p2 (n,s)E
8 

N', 
2 

where N' denotes the number of observations taken from now on. 

( 4. 1 ) 

Another way to state this property is that at each (n,s), the optimal 

procedure either stops or it takes one observation x and then proceeds 

from (n + 1, s + x) according to the optimal procedure from that point. 

Let R(n,s) be the infimum of (4.1) over a.11 tests, R1(n,s) the 

infimum of (4.1) over all tests which take at least one observation, 

and define RO(n,s) = min(pO(n,s),p1(n,s)). R is known as the Bayes 

risk, R1 is called the continuation risk, and RO is the stopping risk. 

As a result of the stationarity property the following relations 

hold [ 16]: 

(4.2) 

and 
2 00 

R1(n,s) = p2(n,s) +i~O 0i(n,s) J
O 

R(n+1,s+x)f0i(x) dx. (4 .3) 

The second relation is particularly important. If it is assumed 

that at least one observation will be taken from (n,s), then 

2 
~ . 0 .(n,s) f 9 (x) 

i=O 1 i 
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is called the posterior distribution of the next observation X 1. n+ 

(4 .3) sa~rs the continuation risk is the risk (or "cost") incurred by 

taking the next observation, plus the expectation of the Bayes risk 

R(n + l,s + x) under the posterior distribution (4.4). 

(l+.3) also forms the basis for caJ.culating solutions by "backward" 

induction [2]. For a given p0,p1,p
2

, there is an n0 such that 

p2 (n0,s) > min(p0(n0,s),p1(n0,s)) for alls, so that R1(n0,s) > R0(n0,s) 

for alls. Hence the solutions to the Bayes problem can take at most 

n0 observations. R(n0,s) = R0(n0,s) is easily caJ.culable for alls, 

so that numerical integration and (4.3) can be used to compute 

R1(n0 - 1, s) for any s, and (4 .2) provides the value of R(n0 - 1, s) . 

After calculating R(n0 - 1, s) on a suitable grid of s-values, the 

induction proceeds backwards to n
0 

- 2, and so on. For each n, the 

upper boundary of the test is calculated by finding the s where 

R1(n,s) - 01 (n,s) changes sign, and the lower boundary by finding 

the s where R1(n,s) - o0(n,s) changes sign. Once these boundaries 

have been located, further numerical integration yields the operating 

characteristics. 

In fact, every set of operating characteristics so obtained 

provides the error probabilities and expected sample size of some 

solution to the modified Kiefer-Weiss problem. To see this, assume 

that from (n, s) the calculations yield a0*,a,* and m* for the values 

of the error probabilities and the expected sample size. These values 

minimize (4.1), so that for any T = (N, D), 
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p0(n,s):x0(T) + p1 (n,s):x1 (T) + p2 (n,s)E8 N 
2 

2: p0(n,s):x0* + p1 (n,s):x1 (T) + p2(n,s)m*. 

Hence if a 0(T) ::: a0* and a 1 (T) ::: a 1 *, then m*::: E8 N. 
2 

For each n in the range of the computations, a Kiefer-Weiss 

solution is found by obtaining an s1 between the lower and upper 

boundaries so that the optimal test starting from (n,s1) has its 

maximum expected sample size at 8 = e2 . If a0 * and a 1 * are the 

computed error probabilities, then the expected sample size equals 

n(a0*,a,*). (It seems reasonable that such an s1 can be found, 

because one expects that for s near one boundary, the maximizing 8 

should be smaller than e2, while for s near the other boundary, it 

should be larger.) 

Unfortunately, this routine requires large amounts of computer 

time and, because the relationship between p
0
,o 1,o

2 
and the attained 

error probabilities is unknown, the procedure must be iterated in 

order to obtain the solution with the desired error probabilities 

a0' and a 1'. Not only is the program. laborious to write, but it is 

dependent upon the family of distributions being tested. Thus, 

caJ.culation of Kiefer-Weiss solutions by this method proves impracticaJ. 

for standard use. The much simpler 2-SPRT appears to provide a mare 

convenient, yet efficient procedure. 
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