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Abstract

The problem is to decide on the basis of repeated independent
observetions whether 8, or 8 is the true value of the parameter 8
of a Koopman-Darmois femily of densities, where § < 8 < 8, The
probability of falsely rejecting eo is to be at most OLO, and that of
falsely rejecting 91, at most a1. Procedures are studied from the
point of view of minimizing the maximum (over a) expected number of
observetions required when @ is the true value of the parsameter.

Two types of tests are considered. The first, based on the
well-known sequential probability ratio test (SPRT), dictates after
each observation whether to stop and make a decision, or whether to
continue sampling. An explicit method is derived for determining a
cambination of one-sided SPRT's, known as a 2-SPRT, which minimizes
the maximm expected number of observations to within o((n(ao,a1 ))1/2)
as 0 and @, go to O, where n(ao,a1) is the minimum of the maximm
expected sample size, taken over gll procedures with error probsbilities
at most o, and 051 . The second test uses several stages of observations,
deciding whether to stop or continue only at the end of each stage.

A procedure designed to "do what a sequential test would do", while
using at most three stages, is defined and shown to minimize the maximum
expected number of observations to within 0((11(040,a1 ))1/ u(log n(on,oz1 ))3/ 2)

as 0, and Q, go to O,

(0]
Finally, using backward induction, optimal procedures were
developed on the computer for the case where the mean of an exponential

density is tested. Then extensive computer calculations comparing
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‘the proposed 2-SPRT with these optimal procedures show that the 2-SPRT

comes within 14 of minimizing the maximum expected sample size over a

broad range of error probability and parameter values.
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1. Background and Definition of the Problem

Hypothesis testing has long been one of the most studiled
statistical areas. As the name implies, two (or perhaps more)
hypotheses, HO and H1 , are formulsted, and then one of these must
be chosen as correct. This decision will be based upon the observed
values of rgndom variables Xl, X2, «so Which are assumed to be
independent and identically distributed with density fe(x) for some
value of 6.

In this and the following chapters, the testing problem under
congideration will be to determine which probability density, feo(x)
or J‘E‘e1 (x), is true, where 8y < 8-

When performing a test there are two errors which can be committed:
rejecting 0, when it is true (called a type I error), or accepting 8o
when the alternative 8, is true (called a type II error). The

probabilities of these errors will be denoted by &, and Qs respectively,

0
so that

g = Peo(re;ject eo)
and

a

1= P91 (reject 91).

Of course, the most desiraeble test is one which will keep to a
minimum the probability of these two types of error. Unfortunately,
when the number of observations is given, both probabilities of error
cannot be controlled simulteneously. It is customary to assign a

bound to the probability of incorrectly rejecting eo when it is true,
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and to attempt to minimize the other error probebility subject to
this condition.

Neyman and Pearson, who were the first to introduce the distinction
between the two types of error, proposed the following "likelihood ratio
test", and established s fundamental lemma bearing their names [13].

For k = 1,2,..., the likelihood function of the observations Xy9%Xpp 00

is defined by
fok = fe(x1)...fe(xk).
Assume that a fixed number n of observations will be taken, and choose
a constent ¢ > O, If 7
0,1
— O

faon
then eo is rejected; otherwise 8o is accepted. Once n has been
established, the value of c¢ controls the value of the type I error of
the test. The Neyman-Pearson lemma states that among all tests using
o’ the likelihood
ratio test (with error probability'ao) minimizes o

n observations and satisfying Peo(reject eo) <a
1°

Hence if the sample size is fixed, the likelihood ratio test
provides the best procedure. Significant improvement in the likelihood
ratio test is possible, however, if the number of observations is not
fixed in advance but is allowed to depend on the observations themselves.
Procedures which take samples one at a time until enough information has
been accumulated to meke a decision are called sequential tests.

These tests based on sequential sampling will be written as the

pair T = (N,D). N is called a stopping rule -- it states when the
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sempling should end, based on the observations taken up to that point.
D is the decision rule, indicating which of the hypotheses should be
accepted once sampling has stopped.

The eerliest of these tests, called a sequential probebility ratio

test (SPRT), 1s due to Abraham Weld [15]. Given A, and A, in (0,1)

0
the stopping rule N is the first n (or « if there is no n) such that

the inequality

£
8n

A1<-——-<-A— (1.1)
f 0

81

does not hold. The decisgion rule D rejects eo if the inequality is
violated to the right, and rejects 91 if it fails to hold on the left.

N is a random variable which depends on the observations, that is,
on the true distribution of the Xi's. If the true value of ¢ is less
than 8o then the test will quickly violate the left inequality,
resulting in a small N. Similarly, if the true value of 9 is greater
than 91, the right-hand inequality will fail after relatively few
observations. Should @ lie between 8o and 91, the SPRT will require
more observetions in order to make a choice.

ESN will denote the expectation of N when ¢ is the true parameter
value, and represents the average or expected number of observations
vhich will be needed to complete the SPRT if ¢ is true.

The performance of any sequential test is Judged on the basis of
its error probabilities and its expected sample sizes. Wald and
Wolfowitz [ 17] esteblished the remarkasble property that among all tests--

sequential or not--with equal or smaller error probasbilities, the SFPRT



minimizes both E. N and E_ N.
% 9

In practice the values of A, and A, in (1.1) must be chosen so

0 1

that the resulting SPRT has prescribed error probabilities ¢, and o

0 1°
Weld [15] showed that if ao' and a1’ are the actual error probabilities

of the SPFRT using A, and A‘I’ then

)

a’ng(l-a1') and a'5A1(1-ao') (1.2)

0 1

Hence choosing A, = &, and A, =0, in (1.1) guarantees that the SPRT

will have error probabilities at most o, and O

0 1°

Wald also provided spproximations for Ee N and Ea N. Define for
0 1
n = 1,2,.0.
£ (xn)
Z = log
n
£ (x)
60 n

a.ndYn=Z1

inequality

+ ... + Z . By taking logs, (1.1) is equivalent to the

-1
log .l\.1 &< Yn < log Ao =

Since N is a stopping rule,
Bg, Ty = (B N)Eq

where the first equality is known as Weld's equation and 1(91’90) is

1z1 = (E91N)I(91,90) (1.3)

the Kullback-Leibler information number defined by

£,(%,)

I(e,0') = EG log ?‘e,—(f;)' ”

If the SFRT rejects 8¢ then IN is approximately log A '1, while if it

0

rejects 0., is near log A,. Hence
1 1
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-1
E91IN o~ Pe1 (reject e.l) log A, + ]i’e1 (reject eo) log Ay (1.%)

where a2 indicates that the terms YN - log A‘l and. YN

excess over the boundery, have been neglected. If AO and A1 are chosen

equal to Q, and 0, then (1.3) and (1.%4) combine to yileld

-1
0

1(91)90)

- log Ay, called

log &

E N~
9,

for small values of o, and Q. In fact, if Vaso:re
1
Z, under @,, is finite, then Ee N is within 0(1) of the right-hand
1
side as o, and a, tend to 0, with a similar expression holding for eo.

Z1, the variance of

Even though the SPRT minimizes EGON and E91N among all tests with
prescribed error probabilities, its performance is unsatisfactory for
values of ¢ between eo and 91. In some cases ESN is larger than the
number of observations required by a fixed sample size test with the
same error probabilities. Much of the development of sequentiel
analysis has been directed toward finding procedures which improve
the performance of the SPRT for these parameter values.

Let J‘(ao,a1) denote the class of all tests (N,D) which have error

probabilities at most a, and gy and define
n(ag,q, ) = in:f‘{mezp EN | (N,D) € LRI

The problem of finding a procedure (N',D’) which minimizes the maximum
expected sample size subject to the error probability constreints ao

and @ N = n(ao,a1) -- is known as the

1 8
Kiefer-Weiss problem. No optimal results (in the sense of the

-- that is, so that sgp E

optimality property of the SPRT) have been found for this problem.
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Kiefer and Weiss [ 5 ] proved structure theorems about tests which
minimize E92N for a fixed 6 = 6, (this is called the modified Kiefer-
Weiss problem). Weiss [18] showed that the Kiefer-Weiss problem
reduces to the modified problem in symmetric cases involving normel and
binomial distributions. Lai [ 7] investigated the Wiener process case.
A test (N,D) is customarily judged by its efficiency, which in this

context is

(a p1e )
e ko (1.5)

sgp EeN

A procedure is said to be asymptotically efficient if (1.5) tends to 1
as ao and a, g0 to 0, and for such tests the rate of approach of (1.5)
to 1 is of interest. Thus, finding fairly simple procedures which are
not only asymptotically efficient, but have efficiencies close to 1
for practical values of ao and a5 is important.

Anderson [ 1] studied a class of easily constructable procedures
for the symmetric case of testing the mean drift of a Wiener process.
In a general context Lorden [8] studied a subclass of Anderson's

procedures, related to SPRT's and called 2-SFRT's. Given % <8< G

and O <AyA, <1, the stopping rule M(G,AO,A1) is the smallest n (or «
if there is no n) such thet
fein
7 <A. (1.6)
on :

for either i = O or 1. The decision rule D rejects 8, if (1.6) does
not hold for i = 1, and rejects 9, if it does not hold for i = O,

If (1.6) is true for both values of i, then any fixed rule can be used
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for deciding between eo and 91 . A useful alternate way to write the
stopping rule is M(a,AO,A1) = min(MO(e,Ao),M1(a,Ai)) where Mi(e,Ai)
is the smallest n such that (1.6) holds.

As Lorden pointed out, the method which Wald used to derive (1.2)

is applicable to the 2-SPRT and yields
o, <A Pa(reaect 91)’ i=0,1 (1.7)

so that setting Ay = o, in (1.6) insures error probabilities of at most

@, and Q. The main theorem in [8] states that if e

true error probsbilities of the 2-SPRT (M(e,.t\.o,A1 ),D), then

and a1 are the

EeM(e,AO,A1) = inf{EeN | (w,D) e 70,01 )3 + o(1)

as Q0 - O where 6 is fixed. Thus, for any fixed 9, the 2-SFRT
provides an asymptotic solution to the modified Kiefer-Weiss problem.
In the symmetric normal case, where © is the mean and ao =Q, =0, say,
the Kiefer-Weiss problem reduces to the modified problem for
@ = (eo + 8, )/2 [18], where only procedures symmetric about ¢ need be
considered. So in this case, the 2-SPRT gives an approximaste solution
to the Kiefer-Weiss problem. Lorden showed that over a wide range of
velues of &, 8y and 8,, the 2-SPRT has an efficiency of more than 99.24,
Hence, setting A; =, so the 2-SPRT's are in .‘7’(0&0,a1 ), if ® can
be found so that EaM('E,ao,al) is nearly maximized at @ = ¥, then the
resulting 2-SPRT will be an approximate solution to the Kiefer-Weiss
problem. Chapter 2 derives an explicit method for determining ¥

as a function of o, and Qs in the context of the Koopmen-Darmois

0
family of densities (defined in the next paragreph). Theorem 1 shows
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q.-1/2
that the efficiency of the 2-SPRT so obtained is 1 - o((logtzo )

as ao and &, go to O, subject to the condition that

1

0<¢C, <log 0/log @, < C

and 02.

In Chapters 2 and 3 it is assumed that X5 Xé, .+ have one of

5 < o for fixed but arbitrary constants C1

the Koopman-Darmois densities given by
£o(x) = exp(ex - b(0)), 8 <0< 05

with respect to a non-degenerate o-finite measure p. (Conmon members
of this family include the normal, exponential, binomial and Poisson
densities.) The function b(®) is necessarily convex and infinitely
differentiable on (9,8), and its first two derivatives satisfy

b’ (9) = E.X and b”(8) = Var X = 0°(8) ([ 6] and [15]). A simple

) 0
calculation shows that

I(e,) = (8 - )b’ (8) - (b(0) - blgp)).

For n = 1,2,..., let Sn = X1

t as Xn’ and define the log-

likelihood ratios

{zi(e)n) log

8;n

(6 - 8,)8, - n(b(e) - b(e;)), 1 =0,1.

-1
i °
described grephically in the plane of n and Sn' There are two

Then (1.6) is equivalent to Li(e,n) > log A The 2-SPRT can be

-1
i L]
Sempling is stopped as soon as the sequence (1,81), (2,S2), s

converging lines given by (o - ei)Sn - n(b(s) - b(ei)) = log A

lesves the triangular region bounded by the lines, snd the decision

depends on which line is crossed.

)
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In practice it is sometimes easier to collect and use data in sets
rather than one at a time. In this case it is prefergble to use a
testing procedure which is based on taking observations in several
stages. Typically the maximum number of stages is fixed in advance,
and after each set of observations is taken, a decision is made
whether to stop or to continue to the next stage. The number of
observations in each stage is based on the observations taken up to
that point. To design such a multistage test, it is natural to try
to imitate the performance of a sequential test by setting up each
stage to "do what the best sequential test would do" based on the
previous stages. Chapter 3 is concerned with defining a three-stage
test, based on the sequential likelihood ratio test (SLRT) [9], in
such a way as to achieve good asymptotic performance.

Theorem 2 shows that the procedure defined in the third chapter
has an efficiency of 1 - O(Y-3/h(log Y)3/2), where ¥y = log ozo"1 +
log a1"1, indicating that the performance of the three-stage test would
be very good for smsall enough ao and a1. Unfortunately, the test and
theory are not refined enough to indicate what should be done to achieve
high efficiencies in practical use. In particular, since there is no
analog of Lorden's o(1) result for the 2-SPRT, it seems unlikely that
at this level of refinement the three-stage procedure would attain
efficiencies as high as those of the 2-3FRT.

Chapter L4 describes the results of computer calculations comparing
the test proposed in Chapter 2 with actual Kiefer-Weiss solutions in
the case of the exponential density. A method of computing the latter

was developed, incorporating the well-known backward induction method
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for computing modified Kiefer-Weiss solutions. It is shown that the
2-SPRT comes within 1% of minimizing the maximum expected sample size
over a fairly broad range of error probability and parameter velues.
In addition, the expected sample sizes under 90 and 61 are compared
with those of the SPRT having the same error probabilities, indiceting
a relatively insignificant increase in the number of observetions

required by the 2-SFRT,
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2. 2-SPRT's and the Kiefer-Weiss Problem

2.1 Introduction and Summary of Results

For the results in this chapter it suffices to choose Ai = ai

for 1 = 0, 1, which insures that all the 2-SPRT's under consideration
are in J(ao,a1). It will also be assumed that there are fixed but
arbitrary constants C1 and C2 such that

log ao
O<C1<~1—o'g-a—< C2<°°. (2.1)

1
Let S =X, + ... +X forn=1,2... . Inthe (n,Sn) plane the
boundaries of M(a,ao,a1), defined by equality in ( 1.6), are lines

given by
-1 .
(B - ei)sn - n(b(e) - b(ei)) = 1Og ai s l“o)“' (9,?)

Defining Ii(e) = 1(9,91) and ai(e) = (8 - ei)/Ii(e)’ these lines
intersect at (n(8),v(e)) where
log ao—1 P

1’1(3) = (\_1_1—(—6)——— 80(9) = ’]‘:(')Te')'—“81(9)>(80(9) - 81(9)) (2.3)
and

-1 -1
log @ log g
()’ (0) + (g - (e Bo(® - M (@)

v(a)

By virtue of the fact that b(g) is convex, Io(e) is strictly increasing,
11(9) js strictly decreasing, and both are positive on (90,91). Thus
for any o in (90,91), a1(9) <0< ao(e), which implies that n(p) is
positive. Hence the ?-SPRT is truncated and can take at most

[n(e)] + 1 observations.
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Let 'S.'i, 'i‘i,

n(e) for 8 =¥. Also let ¥ = min(ﬂo,ﬁ‘) represent M(’é’,ao,a1 9

¢ and T denote the values of 8, (8), I,(0), o(0) and

Equations (2.11), (2.14), (2.15) and (2.16) given below define ¥ and T

so that the following theorem holds.

Theorem 1. If (2.1) is satisfied then as &A=+ 0
~ o~ ~ 1/2 1/2
sup EM =1 - G(z, - & )e(x) 12 o o512y (2.5)
0

nEga,) =% - 3@, - 5 @RE/2 + o@/2),  (2.6)
where ¢(°) is the standard normal density function. Thus

-1/2

(@) |
il LR RN T PP A 2.7)

E
sxexpeﬁ

The proof of Theorem 1 consists of establishing relations (2.8) -

(2.10) velow. (2.5) follows immediately from

Bl > % - 5, - 5 e@H/? - o@/?) (2.8)
and
sw B <F - T, - T D@2 + oE/2), (2.9)
8
while (2.6) follows from these relations together with
inf > - 0(1). (2.10)
ACHVERD) 2

(2.7) is an immediate consequence of (2.5) and (2.6).
The key to the argument is to choose ¥ so that the supremum over

8 of EJ is etteined at D, at least to within of% / &y,
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To determine how to choose ¥, first define e* so that

-1 -1
log a, log a1

T,(6%) T I, (6%)

(2.11)

and let n* be the common value of the two sides (which by (2.3) equals
n(6*)). The monotonicity of the information numbers implies that ©%
is uniquely determined, and (2.1) implies that ©* lies in a fixed
closed subintervel of (eo, LS ), say [wo,(pl]. As sbove for M, let

M¥* = M(O*,ao,a1) = min(MO*,M1 *) and define a;* I,% and 0% accordingly.

i

In the (n, Sn) plane, relation (2.%) shows that the line determined
by the points (n,Ee*Sn) = (n,nb’ (6*)) for n = 1,2,... passes through
the vertex (n¥,v(6%)). So under 6% the points (n,Sn) will tend to
drift toward the vertex. In general, however, ESM* is not meximized
at 8 = %, This is because for n < n* one of the boundaries will be
closer to the line (n,nb’ (8%*)) so that the fluctuations in s, will
cause the 2-SPRT to end too early by goling over the closer boundary.

More precisely, essentially the same argument thet will be used
to show (2.5) can be extended to show that for 8 = % + c(n¥)™/2

(where ¢ is restricted to any bounded interval)

EM¥ = n¥ - o*(n*) PE(max(a, ¥(z + o%))) + o((@®)'/?), (2.12)
§ iw0,1 *

where the expectation on the right-hand side is with respect to the
standard normel variable Z. Choosing 0 to maximize EOM* to within
o((n*)1/ 2) is then equivalent to finding ¢ to minimize the expectation

on the right-hand side. This expectation can be written
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j‘ P(ma.x(ai*(z + g¥c)) >t) dt
0 1i=0,1
(2.13)
ke r (P(z > =t - g¥e) + P(Z < —2= - g¥e)) dt
0 a¥ ~ ° & * '
Using x3(x) + o(x) as a primitive for the standard normal distribution
8(x), straightforward integration shows that the integral equals
o¥ca, ¥ + (ao* - a1*)(a*c§(c*c) + p(o¥*e)). Differentiating with respect
to ¢ shows that the minimum value of (2.13) occurs at ¢ = r*/g* where

»*
B

&(r¥*) = :‘—*—:—3—0—; . (2.1%)

In addition, the value of (2.13) at ¢ = r*/g* is given by
(ag* - &, *)p(r*).
In general, define r(@) by the relation

2, (8)
i O S O

so that r* = r(e%).

In Theorem 1 § and T are given by

T =o*+ ;;(_::_)vé (2.15)
and
T = r(3). (2.16)

With this choice of ¥, it turns out that the analog of (2.12) using ¥
in place of M* is extremized by the same choice of c¢. Thus, Eeﬁ is
sexiuwized to within ofF/2) by ¢ = %.

It will be assumed in the remainder of the chapter that ao and oz1
are small enough so that 0* and ¥ are in [cpo,m1 ]. This assures that

ai*, 'é.'i, and the information numbers are bounded away from O and «,
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Before continuing to the proofs of (2.8) - (2.10), given in the
following sections, several relationships concerning the boundaries
of M will be established.

Let T =8 - mb'(¥) for n=1,2,... and let & = v(¥) - b’ (¥).
Then in the (n,‘l‘n) plene, (R,8) is the vertex of M and from (2.2)

the boundaries are given by the equations

Ui(n) o e for i = 0,1.

(Sampling is stopped as soon as either T, > Uo(n) or T <U, (n),

the decision depending on which inequality holds.) These are lines

1

with slope -'é.'i" passing through (@,3¥) so the sbove is equivalent to

- e - - (2.17)

Ui(n) =

By

Solving for log C =1 using the last two equations yields

i

..1 ~ o
loga,” = (n + 8,8)I, (2.18)

The final relationship is given by

~

~_ﬁ7_(~; 5= -1 + o(1). (2.19)
n

(o)

To show (2.19) it suffices to establish

~

m‘ = -r¥ +O(1 ), (2.20)

since r¥* is bounded by virtue of (2.1) and § - 6% 4 O ensures & ~ n%,

Taer*¥and G~ o*. (2.4) and the definitions of ¥ and n¥* give
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*(Io(e*) I, (6%)
= n o
1% I,

)(a'o('y) = 31 ('E) )-1

(5) -1 (9*) (®) - 1,(0%)
*< 1 O 0 -1
= ‘y b °

It is easily seen that Ii' (8) = (& - ei)az(e) , 80 that expanding

Ii('é') in a Taylor series about 0% yields

(g, - 0,)o° (g, )r*
o*(nx)'/2

I, (¥) - 1,(e%) =

vhere the g; are numbers between 8% and ¥, Substituting into the
above expression for B and dividing by o*(n*)1/ & gives

s* 02(51)(E1 - 91) 62(50)(50

. o) §
- ' (8 (¥) - &, (8)") £*
—c {(<ﬁfa@) (*1P15(®) ) =y )5

Noting that cyg(t;i)(o*)'2 =1+ 0(1) and (g - ei)/Ii(‘b’) = ai(K) + o(1)

completes the demonstration of (2.20).

2,2 Proof of (2.10)
As pointed out after (2.16), "I and & are bounded away from O

and =, go that the following lemma yields (2.10).

Lemme 2.1. If 0 ¢ (90,91), then

EeM(e,ao,a1) = J‘(ézfa )EeN < Z (a 2(0)2(8) + —-%—7) (2.21)

Proof. Let M and M, denote M( 9’0‘0"’1) and Mi(e,ai) respectively.

Iet (N,D) be any test in .T(ao,a1 ), and let {D = i} be the event that



1

8 is rejected by that test. As in the proof of Theorem 1 in [ 9]
define

N, = min(M;, N{D = i})

1

where N{D = i} = N 4f D = 1 and = otherwise. Clearly for sll o,

M-N< é (M, - N,). (2.22)
i=0
By Wald's equation -1
log & + 8
EM, = 4
G 1,(e)

where § = Ee(&i(e,Mi) - log ao—1) is the expected excess over the

-1

boundary log & By Theorem 1 of [11],

2
Vare{,i(eﬂ) (e - ei)2c2(e)
8 < = (2.23)
I,(e) 1,(8)
vhich yields -1
JOE &4 2, |2
EM, < —=—+ 8 “(8)o"(0). (2.24)
gi- i
1,(e)
To estimate EeNi’ the inequality
Pei(Ni <w) < Pei(Mi < ®) + Pei(D =1) < 201,

combined with Wald's lower bound on the expected sample size of a

one-sided SPRT [15] shows

1 - log 2

1,(e)

log o

EN, >

&y > (2.25)

Taking expectations in (2.22) and using (2.24) and (2.25) shows that

(2.21) is true, (N,D) being an arbitrary member of J'(Czo,cx1 Y
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2.3 Proof of (2.8)

Let m = [7 -'5'1/2

log ©']. The derivation of (2.8) relies mainly
on two facts, the first being that with overwhelming probability under
Y the test requires at least m observations, and the second being that
once the m observations are taken, the behavior of the remsinder of

the test is sufficliently predictable by the value of Tm' More

specifically, the first claim is given by
B(M <m) < OE ) (2.26)

and is proven in ILemma 2.4 at the end of this section, while the

second is given by the following lemms.

Lemma 2.2. On the event {M > m)

Ex(M|T,) >7 - max (& (T, - %)) - o@/?). (2.27)
i=0,1

Proof. At time m the log-likelihood ratios have values
Li@,m) = GiTm = m)'I':l for 1 = 0,1, If M > m then based on observations

Y1 Y2, .«sy Where Yk = xm-k’ let Ni be the first n such that
.t,i('y,n)>K —1oga - (V'J‘m+m)'1'

Substituting for log ai" according to (2.18) shows

K, = (@ - Zi(Tm - %) - m),. (2.28)
on {M > m},
Ey(ﬁl'l'm) = m + By(min(N,, N, )). (2.29)
By Lemms 2.3 below there is a constant D such that
i 1 2
Ee(min(N oN, )) > 1%!11(?) - D(i:(:gn1<lr> / (2.30)

1 i
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By (2.28),
Ky o ~
min (~—> =7 -m - max (Ei(Tm - 8)), (2.31)
30,1 T, 1=0, 1

which is at most '1‘1'1/2103 T. Using (2.30) and (2.31) in (2.29) yields
relation (2.27).
The following lemms establishes (2.30) by giving a general lower

bound on EaM(e’AO’A1 )

Lemms 2.3. Tet D =% max ((ay(e) - a,(8))"/2a(0)).
[wgseq]
For any 8 in ["’0""1]
EgM(8,Ay,A,) > K - DK 12, (2.32)

-1
log Ai

where K = min ( )
1=0,1" 14(0)

Proof. As in the proof of inequality (1.4) in [4 ], define for
n= 1,2,...,
Y, = i = 0,1
i,n 11195
Clearly K < ma.x(YO’M,Y1 ,M)' Therefore, writing m(YO,M’Yl,M) =
1

1
& (YO’M + Y1,M) + 5 |¥,| and noting that EgY; 3 = EgM by Wald's
equation (since EeYi,1 =1),
1

K<EM+ §E9|I}4| 5 (2.33)

Also,
2,1/2
Eql ¥yl < (BT, ) /. (2.34)

Since EeY1 = 0, Wald's second moment equation ylelds

By (1,7) = (BM)Var,¥,. (2.35)
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A simple computation shows that the variance equals (ao(e)-a1(e))02( 9).

Combining (2.33) - (2.35) with the definition of D leads to
1/2
K < EgM + D(EgM)

from which (2.32) follows easily, proving the lemma.

Lemma 2.2 and the estimate of By(M < m) in (2.26) give

B > - By max(d, (T, - D) + oE/).

i=0, 1

The expectation on the right-hand side can be written

/2 [ Ta = % ) >t) dt. (2.36)
om jopa'( 1233,{1 a1(,3m"‘172's>

As in the evaluation of (2.13), the integrand is the sum of the
probebilities of the inequality holding for i = O and for i = 1.

In the case i = O, for example, this equals

T

£ t s -1/2
Pv<—7-m >-—-+——]—)=P(z>-—+——7—>+o(m )

2

where Z is standard normal, by virtue of the Berry-Esseen theorem [3]

and the fact that VaryT, and Eé'(l’l‘1 |3) are bounded away from O and e,

1
respectively.

Since B/ ! / 2_-and hence B/5 n' /2 tends to -r, the first term
on the right-hand side converges to P(ZO(Z +T) > t), Together with a
similar result for i = 1, this shows that the integrand in (2.36)

converges pointwise to P( max ('S.‘i(z + 7)) >%). Using Chebyshev's
1=0, 1

inequality and the boundedness of '5.'1'1 and a,s m1/ 2, the integrands
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in (2.36) are seen to be bounded above by & function that goes to O

like t—2 as t » », Therefore, by the dominated convergence theorem

W% -3/ g 5 S 1/2
Bl >0 -G m ir:gic?’i( +7)) +o0(@’Y)

E - H/2 B max(E, (2 + ) + o@/2). (2.37)
1=0, 1

The evaluation of (2.13) given in section 2.1 shows that (2.37) is
equivalent to (2.8).
To prove (2.8) it remains only to establish (2.26), which is

contained in the following lemms (also to be used in the next section).

T.emma 2.4. Let B be a positive constant. Then
PG <m) <o) (2.38)

uniformly for |e - 8] 53'5.1/2.

Proof. It suffices to show

Po(Ty > Up(k)) = 0G), k= 1,.00m  (2.39)

o~

uniformly in k and |9 - 6] <B X 1/2, with a similer bound for

T

e < U1(k)’ since (2.38) follows by summing over k = 1,...,m.

The boundedness of '5.'0 together with (2.17) and (2.19) imply there
is a positive constant ¢ such that

U (k) >c 5/ Pl0e % = y
for all k <m. For amy t > O,
Po(Ty > ¥) = Plexp(t(T - v)) > 1).

Applying Chebyshev's inequality to the right-hand side ylelds
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Po(T, > ¥) < exp(-vt) (Bg(exp(tT, )"

exp(-yt + k(b(t + 0) - b(8) - tb’ (¥))).

Using a Taylor expansion of b(t + ©) sbout 6, the continuity and

boundedness of b”(9) imply
By(T, >y) < exp(-vt + kt(b' (0) - v (¥)) + qit?)

for some q > 0. Expanding b’ (0) about ¥ similarly yields a constant
q’ > 0 such that

Py(T, >¥) < expl-vt + ktq' B /2 + qut).

Repinedng & by'S on the wight-band side sl setbing © =2/ n KV 2)
shows

~2 rhg  29'B
Pe(’l'k_>_U(k)) <n ex'p(c2 + =2 >

for any k < m, which yields (2.39).

2.4 Proof of (2.9)
The proof of (2.9) is divided into two parts, the first being

to show that there is a B > O such that

s BMSE - 56 - 7@ + oE'/?). (2.40)

le - 8] >n

Only the case © > ¥ will be considered, as the case & < 8§ is simllar.
For B > 0 (to be chosen below), there is a B > O such that

e>F+ B'r‘{'1/2 implies

/ ~=1/2

Eglo(®,1) z'io +B @ (2.41)
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The same analysis which established (2.23) in Lemma 2.1 shows

that the expected excess of M. over log & =) is at most

0 0

(2.42)

For § >0 + B"'-1/2

(2.42) is bounded, so that by (2.41) and Wald's
equation
log ozo"1

EM < EN 0"’1‘ gy + 0(1).

Replacing log ao'1 according to (2.18) and using the fact that § is of

order &' /2 yields

- A+ TR
EM< + 0(1)
® —1 4 3'3_1/2}‘0_1
<% -¥R/E Vx5 w+o01).

0 0

~~1

Since §~ -¥ T 1 /2 by virtue of (2.19), this last implies
B<T - @Y7 B IR 2 0@, (23)

Choose B’ sufficiently large so that (2.40) follows from (2.43).

For the remainder of this section, J(B) will denote the interval
of 8 values given by |e - 8] < B-1/2
The next lemme parallels Lemmsa 2.2 by establishing a bound on

the conditionel expectation of M given Tm.
Lemma 2.5. On the event {M > m}

By (M%) <% - max (7, - D) + o®/2) ()

uniformly for 8 in J(B).



2l

Proof. Assume T >§, the proof for T, < T being similar. Define
NO and KO a8 in the proof of Lemms 2.2. Under 6 the expected excess

of N, over K, is bounded above by (2.4%2), and is thus bounded

uniformly on J(B) (since EeLO('§,1 ), being continuous and positive at 8,

is eventually bounded below by a positive number for © in J(B)).

" Hence

NN (T - F) - m)1,(¥)

Ee(ﬁITm) <m+EN <m+ +0(1) (2.45)

60

uniformly for o in J(B). Sinece the ratio of I (" ) to Ee{,o('é'ﬂ) is
1 +0(*1/2) uniformly for 6 inJ(B), and B - a ('1‘ -8) -m<TE-m<
o(EP10g T), (2.45) tmplies

Ee(me) <7 - a‘O(Tm -8) + 0(log ®)

uniformly for © in J(B), which yields (2.44) for the case T >78,

proving the lemma.

From (2.44)
Eeﬁg'ﬁ'-’&"ﬁ"/E ( mex ('” s))l{M>m})+o(?f1/2),

1=0,1 o
where 1{.} denotes the indicator function and the inequality holds
wniformly for 6 in J(B).

To complete the proof of (2.9) it will suffice to show

Ryl ez Gy (:——7- ) 1{8 > n})

(2.46)

> inf E( max (a,(2 + r))) - o(1)
r i=0,1

uniformly for © in':T'(B), since the right-hand side is at least
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('EO - 3’1 Yp(¥) + o(1) by the argument eveluating (2.13). To prove (2.46),

note that by arguing as in the proof of Lemms 2.2, for t > 0

-t.
ryl e 5y (2 (27 T PN

= P( max (“ (z + m(]/2‘?;?1/21139501 + 7)) >1t) + o(1)
1=0,1

uniformly for & in J(B).
Since PG(M <m) + O uniformly by Lemma 2.4, the last reletion
vields for fixed L > 0
rP(ma.x(N S>)1{M>m}>t)dt
c

4] i=0,1
(2.47)

f P (mex (3,(z + 0% P m +F) > 1) at + o(1)
0 i=0,1

uniformly for @ in J(B).
Because » + m1/2c~r‘"‘i/2EefI.‘1 =T + m]/ac":'-1/2('b' () - v’ (¥))
is bounded for € in E(B), there is a Q such that the integral on the

right-hand side of (2.47) is at least

inf P(max(‘“(z+r))>t)dt

lrj<q "0 1=0,1
(2.48)
>  inf wP(max(v(Z+r))>t) it - rog(t) dt
v "0 1=0,1 L

where g(-) is an integrable function which can be chosen to dominate
the integrands (since the range of r is bounded).
(2.47) and (2.48) establieh (2.46) to within the last term in

(2.48), which cen be made arbitrarily small by choosing L large.
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Thus, (2.46) follows and the proof of (2.9) and, hence, Theorem 1 is

complete.

2.5 Refinement
The actual error probabilities of the 2-SERT'ﬁ can be evalusted

agymptotically using the relations

Pei(reJect Bi) =

g -1 o
Ba(regect ei) Ay Eg(exp(log a, " - &i(a,M))lreject ei),

i = 0,1. Using (2.19) and the limit distribution of Ty Pa(reject eo)

is asymptotically P(Z > -¥) = C* /(?3."1 - ”50). Since 4,0(3’,34‘) - log ozo"1

is the excess over the boundary when 8o is rejected, Theorem 5 of [10]
then shows for the nonlattice case that

3% LCE}eo)
Pa (reject eo) st A

~ ~ 0

where LCB}SO) is defined in [S5]. A similar expression holds for the
other error probability.

In practice it seems advisable to use this informetion in defining
the test, so that the actual error probabilities attained will be close
to those desired. The following formulation, used for the celculations

in Chapter k4, is recommended for practical use. Define

31(3) = ao(e)
Ay(e) = a8 0

and

ao(e) = a1(6) o .

Al(e) = ao(e) 1
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Choose o* to satisfy

log (Ay(e*))™" Loz (4, (%))

Io(ep*) I, (o*)

and let n(g*) be the common value of the two sides. Let

o~ (.x. I‘(CP*)
P o) (ale*) T

and use the 2-SPRT N = M('?P’,AO(?(5),A1 ().

Theorem 1 now holds for N, with o, end @, replaced by A,(p) and
A, (¢), and B, T, '?a,'i and T determined by %. The proof of Theorem 1 goes
through nearly unchanged, it being necessery only to modify the deriva-
tion of (2.19), using the fact that the ratios log Ai(cp*)/log Ai('ci)

tend to 1.
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3. Three-Stage Tests and the Kiefer-Weiss Problem

In this chapter a three-stage test designed to imitate a
sequential likelihood ratio test (SLRT) is defined so that it
minimizes the maximum expected sample size to within O(Yl/h log Y—1)
where vy is defined as 1og<10-1 + log a1"1. It is assumed that
condition (2.1) holds as in Chapter 2.

For any (n,sn), n=1,2,..., define %n to be the solution to
b’ (8) = Sn/n if v’ (8y) < Sn/n <v'(8,). If Sn/n <bv (8,) define
8, = 8, and if § /n > D' (8,) define §n = 0,. 3n 1g well-defined
since b’ (8) is striectly increasing, and it maximizes the likelihood

function eSn - nb’ (9) on [90,91]. Note that
2,(6 ,n) = nI,(8 ) 1f @ e (6,,0,), (3.1)
in which case §n is the maximum likelihood estimate of ©.

Given Ay and A, in (0,1) the SLRT consists of the stopping time

0
N = smallest n (or « if there is no n) such that

Li(an,n) > log Ai" for i = 0 or 1, (3.2)

and the decision rule 5, which rejects eo if (3.2) holds only for
i =0, and rejects 0, if (3.2) holds only for i = 1. In the case
that both lnequelities hold, any fixed rule can be used to decide
between 8 and 8.

SLRT's have been studied by Schwarz [14], Wong [19] and Lorden
[9]. Lorden gives a concige summary of the results of Schwarz and

Wong in his paper, where he extends Wong's results and shows that
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the SLRT with error probabilities ¢ ., @, has expected sample sizes

0 1
exceeding n(ao,a1) by at most M loglog g_-1 uniformly in 0, where

o = min(a,,a, ).

To insure that the SILRT has error probabilities at most g and Qs
define I(8) = min I,.(®) and choose
i
i=0,1
-1
Ay =ay/Dloga,” 1 =0,1 (3.3)

where D is chosen to satisfy D/log D > 6(1 + (min(I(a))_1) as in
Theorem 1 of [ 9 ].
In this chapter o* is defined by the relation

-1 1

log AO log A.1

6% = I, (6%) (3.4)

and n¥* is the common value of the two sides. ILet m* = [n*] + 1,
Then the SLRT can take at most m¥* observations. To see this, note

that if, say, 8 , > 0%, then

208 ) = (8, - 8,)S , - m¥(b(8_,) - b(e,))

~

> m¥* Io( Om*)

v

n¥ IO(B*)

-1

= log AO 3

and the case Bm* < o% ig gimilar. Finslly, under condition (2.1),

the ratio y/n* is bounded away from O and o,
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The three-stage test (N(AO,A1), D) is defined as follows:
(i) Teke

m = [n* - (n*)1/210g n*] (3.5)

observations and stop if (3.2) holds, deciding
as D prescribes.

(11) Otherwise, continue to time

log A~
B4 wnPos 2¥2]). (3.6)

T = min(m*,1+L i(e)

1=0, 1

»N

If (3.2) holds, stop and use D.
(1ii) Otherwise, continue to time m* and follow D.
Note that case (iii) arises only if ¢ < m¥,
By (3.4) and the monotonicity of the information numbers,
if Em > 0% then the term inside the greatest integer funmction in (3.6)
is minimized by i = O, and if Qm < o* it is minimized by 1 = 1.
Agsume 91 > Bm > e¥. If ﬁn stays close to 3m for n = m+1,m+2,...,

then

-1
log A
to(8yn) & nTo(8,) M n—o=

so when n reaches 7 (3.2) should be satisfied. The extrs term of
(n*)1/h(log n*)3/2 in the definition of T is designed to insure that
the three-stage test will end with high probability at time .

Let

J(A) = {e[ le - 6% <A (n*)"/elog n¥},

A routine calculation shows that there exists an A small enough so that



s
n, (8) < n¥T, (6%)

for all @ in J(A), 1 = 0,1, Fixing this A, note that if

8, € J(A) N (8,,6,) then (3.1) and (3.}) imply

-1

(e ,m) =mI (g ) <logh,~, i=0,1,

so that N(AO,A1) > m.

Theorem 2. For the A, given by (3.3)s (N(AO,A1 ), D) is in

J(ao,a1). In addition, if (2.1) is satisfied, then

sxezp EeN(Ao:A1) = n(Qy,x, ) + 0(Y1/h(l°8 Y)3/2) (3.7)

-5
as OLO,Ot1 0. Hence

n(ozo,cx1 )

sup Ealﬁl(.l&o,A1 )
©

=1 - o(y'3/l‘(1og Y)3/2). (3.8)

Proof. To show that the three-stage procedure is in J (on,Ot1 )s
note that in the proof of Theorem 1 of [ 9 ], Lorden shows that for

the SIRT,

;  for some n < m¥)

Pe (reject ei) < Pai(Li(én,n) > log A

i

<@, fori=0,l.

Since (N(A,A,), D) can reject o, only if Li(ﬁn,n) > log Ai-1 for

some n < m¥, its error probabilities are likewise at most oy and Q,.

0
Using Theorem 1, (3.8) follows immediately from (3.7). The proof
of (3.7) consists of establishing the following three relations.
E M(B,AO,A ) - inf E_N < 0(log v) (3.9)
0’
uniformly for © e J(A/2).
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EN(ApA,) - EM(8,A0,A,) < 0(y'* (108 vI¥2)  (3.10)
uniformly for 8 ¢ J(A/2).

N 3 2 ° e
. gsJupEA/z)Ee (AO A1) < Ee*N(AO A1) + 0(1) (3.11)

(3.9) and (3.10) show that
B N(Agrhy) < nlag,,) + oly'*(10g v)3/2)

uniformly for © € J(A/2), and this combines with (3.11) to give (3.7).
To verify (3.9), note that the method of proof in Lemma 2.1 still
applies when M(egxo¢11) is replaced by M(B,AO,A1), so in fact the

left-hand side of the inequality in (3.9) is at most

1 log (1 + D,log a, )
2 2 i i

which establishes (3.9).
For the proofs of (3.10) and (3.11), first note that the proof

of Lemma 2.4 shows that for any 8 € (90,91) and for all k < n¥%,

P (|8 - w0’ (6)] > c(n*)1/2log %) < (%) exp(?); (3.12)

where q is a constant independent of 6 (since it depends only on b”(8)
being continuous and bounded on (90,91)). The same proof also
establishes for all k with m < k < m¥ that

Po(I8, - 8, - (& - mb’ ()] > clu* - a0 oy 0m m#)

(3.13)
= o((n%)®)

uniformly in © on (90,91).
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Let

B, = fmex 5, - B (6%)] < Q, (%) Pl0g n¥]
k<m

and

5= Lo |8 - ] < oyem ™ (208 w0 ¥4

where Q1 and Q2 are constants to be determined.

It will next be established that for sufficiently swmall Qz,

N(AO,A1) <t onkE,. (3.14)

Also,
-1

1 - B(Ey) = o((n¥)"") (3.15)

uniformly in 6. It follows that
Py(N(Agph,) > 1) = O((m¥)™") (3.16)

uniformly in @.

To see (3.14) note that if N(Ay,A;) >m and 8 > 0%, then either

t = m* (so that (3.14) is trivial) or else

- -1
log A log A
v 2 (00) Paog )32 > 20, (3.a7)
Io(ey,) N C

the last inequality holding provided Q,a is chogen sufficiently small.

Arguing as in the verification following (3.4) that the SIRT tekes at

most m* observations, (3.17) implies that LO(ET,T) > log A,

» which
yields (3.14). The case where Bm < o* ig similar.
To establish (3.15), first assume © € [eo"°1'] where § < eo' < 8,

and 8, < 8," < © are fixed, and note that for m < n < m¥*

m-n

= (s, -5, - (n - (8)) + B=B(s - m’ (o).
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Since b”7(8) is bounded on [eo',e1’ 1, (3.13) and (3.12) extend to show
that therefore

S S
max I_zl . n = 0((n*)-3/u(log n*)3/2) + O((n*)—1 (lOg n*)e)

0((n*)-3/h(log n*)3/2) (3.18)

with probability at least 1 - O((n*)-1)uniformly for 8 in [90',91' 1.
Now, §n, which is a function of Sn/n, has bounded derivative on
(eo, 61) since b“(0) is bounded away from O, and is constant for
S/n<eyorsS /n>e,. Hence (3.18) implies that (3.15) holds
uniformly for @ € [90',91’ ]. To show (3.15) holds uniformly for all

®, note that if, say, 0 > 91' then

> Py ) (8, - nb’ (8,") > pn for n = m,...,m*)

1
where p = b’ (8,") - b'(e1) > 0. By (3.12) this last probability is

at least 1 - O (n*)”‘). A similar argument for @ < 90' shows that
(3.15) is uniform for all 0.

The derivation of (3.11) can now be completed. The basic idea
is that the second stage when 8% is true will with high probebility
be at least as large as the second stage when any © outside of J (A/2)
is true.

Let 67 (c) and 6 (c) denote the left-hand and right-hand endpoints

of J(c), respectively. Choose B small enough so that
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-1

—— 9% < 5 . (3.19)
Ip(ex(a/2)) n<Io(e+(13)) 11(6-(3))>

log A log AO-1 log A

Suppose & > e+(A/2). Then by (3.12), the last part of the argument
for (3.15), and (3.16), the probebility is at least 1 - O((n*)™)

that both §_ > o' (a/k) and N(AjA,) < 7. In this case,
W(AqA, ) < min(w¥, 15 + (a%)'/*(108 00)/2),  (3.20)

where IHS stands for the left-hand side of (3.19). Now if g* is true,
(3.12) implies that with probability at least 1 - O((n*)'z), Em e J(B),
in which case

W(AgyA;) 2 min(mr, mS + () *(10g 2)3/%),  (3.21)

where RHS stands for the right-hand side of (3.19). (3.11) follows
from (3.19) - (3.21) and a similar argument for 8 < @ (A/2).

To complete the proof of Theorem 2 it remains only to show (3.10).
For 8 € J(A/2) and k < n¥, |sk - kb’ (8%)] < |sk - ¥’ (9)] +
0((2%)'/2 1og n¥), so that by (3.12), Ry(E,) > 1 - 0((m®)™")

uniformly for & ¢ J(A/2). With (3.15) this shows
~3
Py(E; NEy) > 1 - 0((n¥) (3.22)

uniformly for @ e J(A/2). It will be shown that for a Q, chosen

sufficiently small,

M(e,Agh) > W(AsA,) - 00/ *(20g ¥)3/2) (3.23)
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on E, N E,, uniformly for @ ¢ J (A/2). Since N(AO,A1) < m*, relations
(3.22) and (3.23) yield (3.10).
It will first be established that for 8 € J(A/2)

M(0,ApA;) >m and N(Aj,A;) >m on E, N E,.

If @ € J(A/2), then for sufficiently small ®p,Q, 0 is sufficiently

close to 8% so that in the relation

1o(0,k) = (0-0,) (s, - Kb (e%)) + K{(0-0,)b" (6%) - (b(0) - b(8,))}
the bracketed expression is positive. Hence on E1, for k<m

£(0,K) < (0-8.)a, (n%)210g nx
0 0/ Og n (3.21)

+ m{ (8-90)b" (6%) - (b(0) - b(e,))}.
The right-hand side of (3.24) is the value of 1,(8,m) when S, = mb’ (9%*)

+Q (n*)1/ 2log n*. By the argument following the definition of J(A),

it follows that for sufficiently small Q1 this Lo(e,m) is less than

=1
0

reject eo by time m and, similarly, does not reject 91 by time m.

log A Thus on E; N E, and for 8 € J(a/2), M(e,Ao,A1) does not
In addition, for sufficiently small Q,, lsm - mb’ (8%)| < Q, (n*)valog n*
implies Em € J(A), so that N(AO,A1) > m also.

Let M denote M(e,Ao,A1 ). If M >m* then (3.23) holds trivially.
Otherwise, for sufficiently small ®,sQ,, on the event E, NE,
» -1 a -1
8 € (64»8,) and hence either MI(8,) >log A, or MI, (6,) > log A
Therefore, for all 6 ¢ J(A/2), on E, NE,

-1 log A,
L) > min (——2) - o((@0)/¥(20g w)3/2).

T 1=0,1" Ii(’éM) 1=o,1( Ii(‘ém)



L
Using the definition of 7 and the fact that N(AO,A1) < r on E, gives
M > - oy *(10g v)¥2) > Ha,a,) - oly'*(a0g )P/

Since the lower bounds on M do not depend on §, this proves (3.23)

and concludes the proof of Theorem 2.
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4., Comparison of 2-SPRT's with Kiefer-Weiss Solutions

4.1 Summary of Results
Calculations were carried out comparing the 2-SPRT as described
in section 2.5 with Kiefer-Weiss solutions, in the case of testing

the parameter @ of the exponential density.
fe(x) = @ exp(-6x), 6 >0, x > 0.

In testing @ = @, against & = 8¢5 it can be assumed that 8 = 1»
since that can always be achieved by scaling the X's.

Desired wvalues of ¢, and a1 were used to define the 2-SPRT

0

eﬁ and the actual error probabilities ao' and al'

of the 2-SPRT were computed. Then, as described in section 4.2,

N and 5. E-N, sng

the boundaries of the Kiefer-Weiss solution with error probasbilities
ao' and a1' were calculated, along with its operating characteristics.
This provided the values of n(ao' ,al’) used to compute the efficiency
n(ao' ,a1’ )/sgp Eei of the 2-SPRT.

In Figure 1 are the boundaries attained by this process for
testing eo = 1 against 8, = 1.5 with desired error probebilities of
ao =Q, = .05, The straight line boundaries are those of the 2-SFRT,

which had esctual error probebilities of . = .045 and o,/ = .04k,

0 1
The curved boundaries are those of the corresponding Kiefer-Weiss
solution. For convenience these were drawn in the (n,‘l'n) plane where
T =8 ~-.8n 8 =X, + ... + X . To conduct the 2-SPRT, observations
n n n 1 n

are taken and the points (1,'1'1 | (2,T2), «e. Plotted until one of the

2-SPRT boundaries is crossed. The Klefer-Weiss test is conducted
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similarly. In both cases, if the top boundary is crossed, then

e1 = 1.5 is rejected, while if the lower boundary is crossed, eo = ]

is rejected. For this test sup EéN = 51,72, whereas n@zo',a1') = 51,39,
resulting in an efficiency.ofe99.3%. A typical festure is that the
maximum possible number of observations with the 2-SPRT is much

smaller than that of the Kiefer-Weiss solution. The truncation point
of the 2-SPRT is at 113 observations, while that of the Kiefer-Weiss
solution is at 194 observations.

The most extensive calculations were carried out for the case

91 = 2 and are recorded in Table 1. The 2-SPRT is seen to have an

efficiency of over 999 over a broad range of desired error
probabilities, with both the efficiency and the closeness of the
actual error probabilities to the desired ones decreasing as the
ratio of a, to a, becomes extreme. The last column records the values
of E%ﬁg which are in general within #% of sgp Eéﬁ, indicating that
% indeed nearly maximizes Eéﬁ.

Lorden indicates in [8] that in the symmetric normal case the
observed efficiencies depended on the desired error probebilities,
but that over a broad range they depended hardly at all on the
parameter values. To confirm this for the exponential density, two

cases were computed for 91 = 1.5. As stated earlier, the ao = Oy = .05

case resulted in 99.3% efficiency. The case ao = .1, o, = .05 obtained

1

ao’ = .11 and a1’ = ,035 with an efficiency of 99.2%. Both of these

efficiencies agree exactly with the corresponding cases for 91 = 2,

In addition to the characteristics already mentioned, Ee'ﬁ and
0
E, N were computed. For the exponential case Lorden and Eisenberger [12]

%
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TABLE 1

Error probabilities and efficiencies, eo =1, 91 =2,

~

o o ) af nly,q’) sw Eéﬁ effiZiency BN

10 5 9.5 3.3 14,84 14,95 99.2 14,88
5 5 L1 4,1 18.96 19.08 99.3 19.00
5 1 5.1 6 25.65 25.83 99.3 25.76
1 5 7 5.8 26.98 27.24 99.1 27.11
.1 5 .06 8.2 37.02 37.60 98.4 37.39

; = desired error probabilities (in %).

o.'= actual error probabilities attained by 2-SPRT (in %).

1

/ '
n(c:to 50 )

error probabilities at most ao' e .

’ ’ =
efficiency n(ao 20y )/sgp EQN.

¥, & = 2-SPRT and 5 as defined in section 2.5.

inf{Sgp EeN} where the inf is taken over all tests with



2.

give an accurete approximation to the expected sample sizes of the
SPRT with error probabilities ao' and @,’. Typical results are
recorded in Taeble 2, and indicate that the loss in performance of

the 2-SPRT is fairly mild.

4,2 Method for Computing Kiefer-Weiss Solutions

Given.ao',a1', it is desired to find a procedure which attains
nGzo',a1'), i.e. to solve the Kiefer-Weiss problem, which is related
to the modified Kiefer-Welss problem in the following way. If (N,D)

solves the modified problem for ao’ ,0. and 9§ = o,, say, and if

1

in addition sup EeN = Ee N, then (N,D) solves the Kiefer-Weiss problem.
© 2

To see this, note that for any (N',D') in Jﬂuo’,a1'),

uw EN >E, W
% 0 =
> E, N = sup E_N.
0, g ©

For any test T = (N,D), let ao(T) and a1(T) denote the error
probebilities of T. Kiefer and Weiss [5] showed that finding all

solutions to the modified problems of minimizing E, N is equivalent

)
2
to finding all procedures which, for some positive constants 00? 092

05 suming to 1, minimize

DOaO(T) * 1% (T) + p2E62N
over 8ll tests T. This is known as a Bayes problem and p = (90,91,02)
is called the prior distribution of 8.
If n observations have been taken and Sn = s, the vector

O(nys) = (oo(n}s):01(nys)}OQ(n,s)) where
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TABLE 2

Comparison of expected sample sizes

of 2-SPRT and SPRT N, 0, = 1, 8, = 2.
o' a,’ E eo'if E eoN Ee1'171' E91N
9.5 3.3 10.60 9.93 12,33 11.15
41 b1 1147 10.36 16.27 15.08
5.1 .6 17.30 16.08 18.21 15.22
T 5.8 12.33 10,07 24,38 23,13



o

n

pi(n:s) =3
n
kA 0595 exp(-045)
is called the posterior distribution of @. The Bayes problem is
characterized by the following "stationarity" property [16]: Given
that n observations have been taken and Sn = 8, the optimal test

proceeds so as to minimize
\

po(n’sho(T) + Q1(n}sb1(T) * pe(n’s)EezN,, ("“'1)

where N’ denotes the number of observations taken from now on.

Another way to state this property is that at each (n,s), the optimal

procedure either stops or it takes one observation x and then proceeds

from (n + 1, s + x) according to the optimal procedure from that point.
Let R(n,s) be the infimum of (4.1) over all tests, R, (n,s) the

infimum of (4.1) over all tests which take at least one observation,

and define Ro(n,s) = min(po(n,s),p1(n,s)). R is known as the Bayes

risk, R. is called the continuation risk, and Ro is the stopping risk.

1
As a result of the stationarity property the following relations

hold [16]:
R(n,s) = min(RO(n,s),R1(n,s)) (4.2)
and
2 0
Ry(m,8) = pp(mss) + T oy (mys) [ Rlntt,sex)ey (x) ax.  (4.3)

The second relation is particularly important. If it is assumed

that at least one observation will be taken from (m,s), then

2

Y 0s(n,s) £ (x) (k)
1=0 i
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is called the posterior distribution of the next observation Xn+1'
(4.3) says the continuation risk is the risk (or "cost") incurred by
taking the next observation, plus the expectation of the Bayes risk
R(n + 1,5 + x) under the posterior distribution (4.h).

(4.3) also forms the basis for calculating solutions by "backward"
induction [2]. For a given Po?012 007 there is an n, such that
pg(no,s) > min(go(no,s),QT(no,s)) for all s, so that R1(n0,s) > RO(nO,s)
for all s. Hence the solutions to the Bayes problem can take at most
n, observations. R(no,s) = Ro(no,s) is easily calculable for all s,
so that numerical integration and (4.3) can be used to compute
R1(nO -1, s8) for any s, and (4.2) provides the value of R(nO -1, 8).
After calculating R(nO -1, s) on a suitable grid of s-values, the

induction proceeds backwards to n. - 2, and so on. For each n, the

0
upper boundary of the test is calculated by finding the s where
R1(n,s) = n1(n,s) changes sign, and the lower boundary by finding
the s where Rl(n,s) - po(n,s) changes sign. Once these boundaries
have been located, further numerical integration yields the operating
characteristics.

In fact, every set of operating characteristics so obtained
provides the error probabilities and expected sample size of some
solution to the modified Kiefer-Weiss problem. To see this, assume

that from (n,s) the calculations yield *3a1* and m* for the values

0

of the error probabilities and the expected sample size. These values

minimize (4.1), so that for any T = (N,D),
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po(n:s)ao(T) + p1(n,8)0«’.| (T) + pe(n,S)EeaN
> Oo(n:s)ao* + 91(nxs)a-| (T) + pg(n’s)m*‘

Hence if ocO(T) <o, ¥* and O:T(T) <o, % then m¥ <E, N,

0 e

For each n in the range of the computations, i Kiefer-Weiss
solution is found by obtaining an S between the lower and upper
boundaries so that the optimel test starting from (n,sl) hag its
maximum expécted sample size at § = 92. If ao* and a1* are the
computed error probabilities, then the expected sample size equals
n@mo*;a1*). (It seems reasonable that such an s, can be found,
because one expects that for s near one boundary, the maximizing 6
should be smaller than 92, while for s near the other boundary, it
should be larger.)

Unfortunately, this routine requires large amounts of computer
time and, because the relationship between Po?P1205 and the attained
error probabilities is unknown, the procedure must be iterated in
order to obtain the solution with the desired error probebilities
ao' and a1'. Not only is the program laborious to write, but it is
dependent upon the family of distributions being tested. Thus,
calculation of Kiefer-Weiss solutions by this method proves impractical
for standard use. The much simpler 2-SPRT appears to provide & mare

convenient, yet efficient procedure.



47
References

[1] Anderson, T. W. (1960). A modification of the sequential
probability ratio test to reduce the sample size.

Ann, Math, Statist. 31, 165-197.

[2] Chow, Y. S., Robbins, H. and Siegmund, D. (1971). Grest
Expectations: The Theory of Optimal Stopping.
Houghton Mifflin, Boston.

[3] Feller, W. (1971). An Introduction to Probability Theory

and its Applicetions, Vol. 2. Wiley, New York.

[4] Hoeffding, W. (1960). Lower bounds for the expected sample
size and the average risk of a sequential procedure.

Ann, Math, Statist. 31, 352-368.

[5] Kiefer, J. and Weiss, L. (1957). Some properties of generalized
sequential probability ratio tests. Ann, Math. Statist. 28,

5T-15.

[6] Xoopmen, B. O. (1936). On distributions admitting a sufficient
statistic. Trens., Amer. Math, Soc. 39, 399-409.

[7] Lai, T. L. (1973). Optimal stopping and sequential tests which
minimize the maximum expected sample size. Ann, Statist. 1,
659-673.

[8] Iorden, G. (1976). 2-SPRT's and the modified Kiefer-Weiss
problem of minimizing an expected sample size.

Ann. Statist. 4, 281-291,



(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

8.

Lorden, G. (1972). Likelihood ratio tests for sequential

k~decision problems, Ann, Math. Statist. 43, 1412-1427,

Lorden, G. (1977). Nearly-optimal sequential tests for finitely

many parameter values. Ann. Statist. 5, 1-21.

Lorden, G. (1970). On excess over the boundary. Ann. Math,

Statist. 41, 520-527.

Lorden, G, and Eisenberger, I. (1973). Detection of failure

rate increases. Technometrics 15, 167-175.

Neyman, J. and Pearson, E. S. (1933). On the problem of the
most efficient tests of statistical hypotheses.

Phil. Trans. Roy. Soc., Ser. A, 231, 289-337.

Schwarz, G. (1962). Asymptotic shapes of Bayes sequential
testing regions. Ann, Math, Statist. 33, 224-236.

Wald, A. (1947). Sequential Analysis. Wiley, New York.

Weld, A. and Wolfowitz, J. (1950). Bayes solutions of

sequential problems. Ann. Math, Statist. 21, 82-99.

Wald, A, and Wolfowitz, J. (1948). Optimum character of the
sequential probability ratio test. Ann. Math. Statist. 19,
326-339.

Weiss, L. (19€2). On sequential tests which minimize the

maximum expected sample size. J. Amer. Statist. Assoc. 57,
551-566.



49-

[19] Wong, S. P. (1968). Asymptotically optimum properties of
certain sequential tests. Ann. Math. Statist. 39,

1244 -1263.



