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ABSTRACT

Laminar-turbulent transition prediction for boundary-layer flows is a pacing item
in engineering design. This work extends the one-way Navier Stokes (OWNS)
equations to support nonlinear interactions between waves of different frequencies
which enables nonlinear disturbance evolution in spatially-developing shear flows,
with the goal of predicting transition for a reduced computational cost relative to di-
rect numerical simulation (DNS). The OWNS approach linearizes the Navier-Stokes
equations about a user-specified equilibrium solution, and then evolves disturbances
to the equilibrium solution by solving a spatial initial-value problem in the frequency
domain. OWNS yields a reduced computational cost compared to global linear sta-
bility analysis, while also conferring numerous advantages over the parabolized
stability equations (PSE) that we seek to extend to nonlinear OWNS (NOWNS).
We validate NOWNS for two- and three-dimensional disturbances to a low-speed
Blasius boundary layer by comparing to DNS results from the literature. We further
demonstrate that NOWNS can be used to for transition prediction since it accurately
predicts the onset of laminar-turbulent transition in low-speed boundary-layer flows,
relative to DNS. Subsequently, we extend the approach to high-speed boundary-
layer flows, where we apply it to study oblique-wave breakdown of Mack’s first
and second modes. Finally, we formulate a greedy algorithm for choosing opti-
mal OWNS recursion parameters, which achieves rapid error convergence and a
net decrease in computational cost compared to previous approaches to recursion

parameter selection.
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Chapter 1

INTRODUCTION

1.1 Boundary-layer flows

In fluid flows, the boundary layer is a thin region near a solid surface, such as
an airplane wing, where viscous effects dominate.A flow is laminar if it flows in
parallel layers with no disruption between those layers, while it is turbulent if it
is characterized by abrupt changes to the flow. In aerospace design, delaying or
preventing laminar-turbulent transition is desirable, as turbulence increases skin
friction and heating. Despite extensive theoretical, experimental, and numerical

studies, controlling transition remains a challenge.

1.2 Governing equations
For low-speed boundary-layer flows, we formulate the governing equations in terms
of the specific volume, v, the velocity, u, and the pressure, p. Then, the non-

dimensional, compressible Navier-Stokes equations for an ideal gas can be written

as
D
D—:—V(V-u):O, (1.1a)
Du 1
— +yVp=—yV. 1.1
Dt+v p Rev T, (1.1b)
D 1
S+ yp(Vu) = 2= (y = DI(Va) : 7] (1.1¢)
P4 (yV2p +2Vy - Vp + pV3y), (1.1d)
PrRe
for the stress tensor
2
r= ,u(Vu + (Vu)T) - <§,u - K)(V wl, (1.1e)

where u is the dynamic viscosity and « is the bulk viscosity. We take the bulk
viscosity to be zero (x = 0) and we introduce the Reynolds number, the Prandtl

number, and the Blasius length scale

w000l Cpocotloo / T
= p—g’ P}" = e * ’ 58 = * 2 *
Mo k&% pUs%

Here v, denotes the free-stream specific volume, u, the free-stream dynamic

Re

viscosity, k¢, the free-stream thermal diffusivity, ¢}, ., the free-stream specific heat
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capacity at constant pressure, and a, the free-stream sound speed, while x, y, z,
correspond to the streamwise, transverse and spanwise directions, respectively. To
avoid confusion with the kinematic viscosity, we use the free-stream density, pZ,, in
the definition of our dimensionless variables. At low Mach numbers, temperature
fluctuations are minimal, so we take the fluid properties (u, k, and ¢, to be constant.

Throughout this work, we also use the following dimensionless quantities:

Rey=Po"et 22 po '“°°2, :'8*'“":,
Moo 60 pon:o pooUoo

where Re, is the streamwise coordinate, F is the temporal frequency, and b is the

spanwise wavenumber.

1.3 Laminar-turbulent transition in boundary-layer flows
We briefly review the developments in boundary-layer transition prediction and

introduce key definitions and concepts relevant to the transition process.

1.3.1 A brief history of laminar-turbulent transition

Orr (1907) and Sommerfeld (1908) independently formulated a linear eigenvalue
problem, now known as the Orr—Sommerfeld (OS) equation, to study viscous in-
stabilities in two-dimensional (2D) parallel flows. Meanwhile, Prandtl (1904) hy-
pothesized the existence of the boundary layer and employed scaling arguments
to simplify the Navier—Stokes equations within this region. Building on Prandtl’s
theory, Blasius (1908) derived a similarity solution for the steady boundary layer
that develops on a semi-infinite flat plate aligned with a constant unidirectional flow.
Later, Tollmien (1929) and Schlichting (1933) independently solved the OS equa-
tion for the Blasius boundary-layer profile. Their analyses revealed the presence
of at most one unstable mode, now known as the Tollmien—Schlichting (TS) wave,
and enabled the prediction of the critical Reynolds number at which the TS wave

becomes unstable.

Early experiments attributed transition to high levels of freestream turbulence rather
than exponential growth of the TS wave, but Schubauer and Skramstad (1947)
confirmed the existence of TS waves by using damping screens to ensure low levels
of freestream turbulence, showing excellent agreement with theoretical predictions.
Schubauer and Skramstad initially investigated naturally occurring disturbances
from small freestream fluctuations, later introducing a vibrating ribbon to control
their frequency and amplitude. In a similar setup, Klebanoff et al. (1962) placed

evenly spaced tape strips along the plate’s leading edge to generate oblique waves
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at the same frequency as the fundamental TS wave. Although initially weaker,
these oblique waves interact with the TS wave, amplifying both themselves and
their higher harmonics. This interaction leads to the formation of aligned A-vortex
structures, characteristic of the transition path now known as the fundamental (or K-
type, for Klebanoff) path. Similar experiments by Kachanov and Levchenko (1984)
identified the subharmonic path in which the oblique waves have half the temporal
frequency of the fundamental TS wave, while the A-vortex structure is staggered
and transition is delayed relative to the fundamental path. Herbert (1988) developed
a secondary stability theory, using Floquet analysis, to study these transition paths,

so the subharmonic path is also called the H-type path after Herbert.

For high-speed boundary-layer flows, Mack (1984) identified unstable eigenmodes
now known as Mack modes. Mack’s first mode is the high-speed analog of the TS
wave, as both are viscous in nature. However, the TS wave is most unstable for
two-dimensional disturbances (8 = 0), while Mack’s first mode is most unstable for
oblique disturbances (8 # 0). Mack’s first mode is the primary disturbance leading
to transition for Mach numbers up to 4.5, while the higher Mack modes, which are
non-viscous, are the primary instabilities leading to transition for Mach numbers
higher than 4.5.

1.3.2 Notions of stability
Disturbances to the flow lead to flow instabilities, which can be classified either

as absolute or convective instabilities according to the definitions of Huerre and
Monkewitz (1985):

Definition 1.3.1 (absolute instability) Consider a disturbance introduced atx = 0

andt = 0, then it is an absolute instability if its amplitude grows as t — oo for all x.

Definition 1.3.2 (convective instability) Consider a disturbance introduced at x =
Oandt = 0, then it is a convective instability if it is swept away from x = 0 such that

the system returns to its unperturbed state as t — oo.

Figure 1.1 compares absolute and convective instabilities in the x — 7-plane using
Figure 7.6 from Schmid and Henningson (2001). Note that the TS wave, and other
disturbances to boundary-layer flows, are convective in nature, so this work will

focus on these types of instabilities.



(b)

Figure 1.1: Sketch of convective and absolute stability from Figure 7.6 in Schmid and
Henningson (2001): (a) x — ¢ plane diagram of an absolutely unstable disturbance;
(b) x — t plane diagram of a convectively unstable disturbance.

1.3.3 Types of disturbances
We divide disturbances into the following three categories: (i) modal, (ii) multi-

modal, and (iii) non-modal.

Definition 1.3.3 (modal disturbance) For a specified frequency, a disturbance that

propagates in the streamwise direction with a well-defined streamwise wavelength.

Definition 1.3.4 (multi-modal instabilities) For a specified frequency, there are

multiple modal disturbances, each evolving with different streamwise wavelengths.

Definition 1.3.5 (non-modal instabilities) The linearized Navier-Stokes operator
is non-normal so that its eigenvectors are not mutually orthogonal. Therefore, the
superposition of linearly stable modes can temporarily increase in magnitude, even

as each mode decays, leading to transient growth.

The TS wave is a modal disturbance, as illustrated in Figure 1.2, which shows
contours of the streamwise (1) and wall-normal (v) velocity disturbances. These
contours demonstrate that the TS wave evolves with a well-defined streamwise
wavelength, characteristic of a modal instability. Low-speed boundary-layer flows
typically experience only modal disturbances, while multi-modal disturbances are

characteristic of high-speed flows (Fedorov, 2011).

Figure 1.3 uses Figure 4.1 from Schmid and Henningson (2001) to illustrate transient
growth. Both vectors ®@; and @, are decaying, but their superposition temporarily
grows in time due to the mutual non-orthogonality. Appendix J investigates transient

growth for low-speed boundary-layer flows.
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Figure 1.2: Contours of the u- and v-velocity disturbance contours for the 2D TS
wave, demonstrating that it evolves with a well-defined wavelength that is constant
in the streamwise direction.
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Figure 1.3: Figure 4.1 from Schmid and Henningson (2001) illustrating transient
growth due to non-orthogonal superposition of two decaying vectors.

1.3.4 Paths to transition for compressible boundary-layer flows

Initially disturbances enter the boundary-layer flow through a process known as re-
ceptivity, in which energy from the free stream enters and excites instability waves
inside the boundary layer (Morkovin, 1969). Following receptivity, there are multi-
ple paths to transition, as discussed by Morkovin et al. (1994). Figure 1.4 reproduces
Figure 1 from Fedorov (2011), adapted from Morkovin et al. (1994), which presents

the different transition paths. We summarize them as follows:

* Modal path: if the initial disturbances are sufficiently small, then modal growth
is the dominant growth mechanism, and the disturbances grow exponentially

before reaching triggering secondary instabilities and reaching the nonlinear
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Figure 1.4: Figure 1 from Fedorov (2011), adapted from Morkovin et al. (1994),
showing transition paths in boundary-layer flows.

regime.

* Transient path: if the modal disturbances are initially linearly stable, then
non-orthogonality can transient growth to increase disturbance amplitude
prior to reaching the region of the flow where the modal disturbances are
linearly unstable. If the transient growth is sufficiently large, then secondary

instabilities can be triggered without exponential growth.

* Bypass path: if the free-stream disturbances are sufficiently large, or if the
transient growth is sufficiently large, then bypass transition can be triggered,
where the nonlinear regime is reached directly (without exponential growth

and secondary instabilities).

This work will focus on the modal path to transition, while future work could

investigate transient growth.

1.4 Methods for hydrodynamic stability analysis
In hydrodynamic stabiltiy analysis we study the evolution of a time-varying distur-

bance, ¢’, to a time-invariant equilibrium solution, ¢. Therefore, we decompose the
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flow into terms associated with ¢ and ¢’, as described in appendix A, yielding the

stability equations (A.6), for the vector of primitive variables ¢ = (v, u,v,w, p).

1.4.1 Locally-parallel linear stability theory

The theory developed by Tollmien and Schlichting is now known as locally-parallel
linear stability theory (LST). In LST, the flow is assumed locally parallel, meaning
the base flow does not vary in the streamwise direction (0xg = dyg = 0), and
the wall-normal velocity vanishes (v = 0), so the boundary-layer thickness remains
constant. We consider the spatial stability problem with the following wave-like
ansatz for the disturbance:

q (x,y,z,1) = §(y) exp (i/xa/()f) dx +i(Bz—wt)], (1.2)

X0

where ¢ is the eigenfunction, w the temporal frequency, @ the streamwise wavenum-
ber, 5 the spanwise wavenumber, and x the streamwise coordinate. While stability
studies of low-speed boundary layers often express the streamwise location in terms
of R = VRe,, we use Re, throughout this work.

Tollmien and Schlichting conducted temporal stability analysis, which assumes
that disturbances grow in time. However, disturbances to boundary-layer flows
grow in the streamwise direction, so later studies instead solved the spatial stability
problem. In this approach, the streamwise coordinate x, spanwise wavenumber /3,
and temporal frequency w are specified, with 8 and w real-valued. The complex

streamwise wavenumber « and eigenfunction ¢ (x) must then satisfy

i §(x) = L(w, B,x) §(x), (1.3)

where L(w, B, x) is the linear operator governing spatial stability. Disturbances are
unstable if @; < 0, stable if @; > 0, and neutrally stable if @; = 0. The TS wave
exhibits two neutral stability points, termed branches I and II, and is stable except
within x € (xg, xy). The growth of the TS wave amplitude is given by
In (A(x)) - —/x o (%) dF, (1.4)
Ao X0

where A(x) is the disturbance amplitude and Ay is the disturbance amplitude at

branch I. Building on Tollmien and Schlichting’s initial work for incompressible
flows, Mack (1984) extended the theory to hypersonic boundary layers. We further
note that for H- and K-type transition, although LST can be used to predict the
growth of the TS and oblique waves separately, the growth of the oblique wave
is affected substantially by the TS wave. Therefore, Herbert (1988) introduced a

secondary stability theory, using Floquet analysis, to account for this effect.



1.4.2 Linear global stability analysis

LST is computationally efficient, but neglects history and non-parallel effects, which
can be included using linear global stability analysis (GSA). In GSA, we specify an
inlet disturbance at xy, and/or a forcing function for x € [xp,, Xout], and solve for
the resulting disturbance. However, this approach entails high computational and
memory costs because a large linear system of equation, O(N, X Ny X N;) must
be solved. Here Ny, Ny, and N, denote the resolution in x, y, and z, respectively.
Moreover, the disturbances associated with high-speed boundary-layer flows evolve
with short wavelength over long streamwise domains, so that global methods are

particularly expensive for these flows (Fedorov, 2011).

1.4.3 The Parabolized Stability Equations
The linear parabolized stability equations (PSE) also include history and non-parallel
effects, and entail much lower computational and memory costs than GSA (Bertolotti

et al., 1992). PSE uses a wavelike ansatz

q’(x, Y, 2, t) = q(x’ y)el.fxo a(j)djei(ﬁz—wt)’

so that
g _ (@ +iaq)ei/"; (DT i(pz-wr)
ox ox
62 ’ (9 a;\ Corx _ o

where we have assumed that 82§ /dx* = 0. In addition, nonlinear analyses can be
performed using the nonlinear PSE (NPSE).

PSE has proven effective for boundary-layer flows (Bertolotti et al., 1992; Herbert,
1997; Paredes et al., 2015; Chang et al., 1993; Chang and Malik, 1994; Paredes
et al., 2016a; Joslin et al., 1993) and mixing layers (Day, 1999; Day et al., 2001).
However, to achieve a stable march, PSE relies on ad hoc regularization techniques
(Li and Malik, 1996; Li and Malik, 1997; Broadhurst and Sherwin, 2008) to suppress
(rather than eliminate) upstream-propagating waves. This introduces a minimum
step size requirement for numerical stability, which limits the streamwise resolution.
Furthermore, Towne et al. (2019) demonstrated that PSE is generally not accurate for
multi-modal disturbances because it can track only the most dominant disturbance,
and that the other disturbances are neither necessarily damped away, nor properly
evolved. While some studies have reported success when applying PSE to non-modal
disturbances (transient growth) (De Tullio et al., 2013; Paredes et al., 2016a; Hack
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and Moin, 2017), others have documented limitations and challenges (Cheung and
Lele, 2007; Rodriguez et al., 2018). Although PSE has been applied to hypersonic
boundary-layer flows (Pruett et al., 1995; Paredes et al., 2016b; Lakebrink et al.,
2017), such flows often feature multiple discrete modes and disturbance branches
that can synchronize, which proves challenging for PSE (Towne et al., 2019; Fedorov,
2011).

1.4.4 The One-Way Navier-Stokes equations

Towne and Colonius (2015) developed the linear One-Way Navier—Stokes (OWNS)
equations, which use recursive filtering to construct efficient and well-posed one-way
approximations to linear hyperbolic systems. This original formulation, now known
as OWNS outflow (OWNS-0), is based on non-reflective boundary conditions for
outflow boundaries and is limited to homogeneous (unforced) equations. To address
this, Towne et al. (2022) introduced OWNS projection (OWNS-P), which extends
the method to inhomogeneous (forced) equations. Subsequently, Zhu and Towne
(2023) developed OWNS recursive (OWNS-R), offering a more computationally

efficient approach for inhomogeneous equations compared to OWNS-P.

OWNS overcomes several limitations of the Parabolized Stability Equations (PSE),
particularly by correctly removing all upstream-traveling waves. As a result, it
avoids the minimum step-size requirement and accurately captures non-modal and
multi-modal instabilities (Towne et al., 2019). The method has been applied to
low-speed boundary-layer flows by Rigas et al. (2017a) and extended to high-speed
boundary-layer flows by Kamal et al. (2020).

1.4.5 Empirical methods for transition prediction

The linear methods discussed above can be combined with empirical correlations to
predict transition. For example, the e method (Smith et al., 1956; Van Ingen et al.,
1956) computes the N-factor

N:mflxln(Asz)), (1.5)

and predicts transition for N > 9. While effective for low-speed flows, the method

faces challenges for high-speed flows (Fedorov, 2011).

1.5 Frequency domain analysis
Time-marching, with finite difference discretization in the spanwise direction, allows

all frequencies and wavenumbers to be considered simultaneously, as long as they are
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resolved properly using a sufficiently refined grid and time step. If the disturbances

are periodic, then they can be represented using a Fourier series

M N

¢ x5y = Y > dmnlx,y,2)e T, (1.6)

m=—M n=—N
where w and g are the fundamental frequency and fundamental wavenumber, respec-
tively. We do not discuss in detail conditions under which Fourier series converge,

but note that increasing M and N will generally lead to a better approximation.

In flight and wind tunnel tests, multiple modes and frequencies are excited simulta-
neously, which broadband forcing can replicate. However, this complicates analysis
due to overlapping transition scenarios (e.g., oblique-wave breakdown, fundamental,
or subharmonic transition). Although not representative of experiments, selectively
forcing dominant instabilities at specific frequencies and spanwise wavenumbers
enables focused study of individual transitions. While NOWNS could be applied
to study periodic broadband disturbances, this would require many Fourier compo-
nents to converge. Instead, NOWNS is better suited for selective forcing of dominant
frequencies and wavenumbers. We demonstrate throughout this work that NOWNS
can rapidly and accurately simulate such transition scenarios. We further note that
NOWNS is well-suited to do so, compared to time domain analysis, since time
domain analysis must time march through a transient to reach to a periodic state,
which require small time-steps and many periods of the fundamental frequency to

achieve.

1.6 Outline of thesis

The goal of this work is to develop the nonlinear OWNS (NOWNS) procedure and
use it to predict laminar-turbulent transition for boundary-layer flows. Chapter 2
reviews OWNS-P and OWNS-R, while Chapter 3 extends OWNS-P to include non-
linear effects and validates it for low-speed boundary-layer flows. Chapter 5 applies
NOWNS to transition prediction for low-speed boundary-layer flows. Chapter 4 de-
velops a greedy algorithm for recursion parameter selection, which is demonstrated
for high-speed boundary-layer flows in Chapter 6. We make recommendations for

future work and concluding remarks in chapter 7.
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Chapter 2

ONE-WAY MARCHING OF LINEAR HYPERBOLIC
EQUATIONS

This section reviews the OWNS-P and OWNS-R formulations in preparation for
the exposition of NOWNS in Chapter 3, and for the greedy recursion parameter

selection algorithm in Chapter 4.

2.1 Introduction

Many physical phenomena, such as wave propagation, can be modeled by (linear)
systems of hyperbolic partial differential equations (PDEs), solvable either as time-
domain initial boundary value problems or frequency-domain elliptic boundary
value problems. When wave propagation is predominantly unidirectional, one-way
(parabolic) wave equations can be used to evolve the downstream-going solution.
For accuracy and well-posedness, the one-way equation must retain the downstream-

going waves, while not supporting any of the upstream-going waves.

One-way wave equations can be obtained by factoring the dispersion relation in
Fourier-Laplace space into upstream- and downstream-going factors, and then re-
taining only the downstream-going branch. Since the resulting equation contains
a square root of the Fourier-Laplace variables, the transformation back to physical
space results in a nonlocal integro-differential equation, which can be localized
using rational approximations of the square root (Lee et al., 2000). Although these
methods are accurate, well-posed, and efficient for simple wave equations (Trefethen
and Halpern, 1986; Halpern and Trefethen, 1988) such as the equations for geophys-
ical migration of seismic waves (Claerbout, 1976, 1985) and underwater acoustics
(Collins, 1989; Jensen et al., 1995), they can only be applied in cases where the
eigenvalues can be determined analytically, since the dispersion relation must be
factored analytically. Methods for one-way marching that do not depend on this
factorization have been developed by Guddati (2006) for acoustic and elastic wave

equations, and by Towne and Colonius (2015) for general hyperbolic systems.

To avoid factoring the dispersion relation, the method of Towne and Colonius first
discretizes the transverse directions, yielding a semi-discrete ordinary differential

equation (ODE) in the marching direction (2.7). An eigendecomposition of the
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discretized operator, M in (2.7), then enables classification of its eigenvectors as
upstream- or downstream-going via Briggs’ criterion (Briggs, 1964), allowing con-
struction of a one-way equation. However, to avoid taking the eigendecomposition, a
recursive filter based on work by Givoli and Neta (2003) and Hagstrom and Warbur-
ton (2004) for non-reflective boundary conditions (NRBCs) at “outflow” boundaries
is used to construct an approximation to the one-way equation. The framework has
been extensively refined and generalized for the linearized Navier-Stokes equations
(Towne et al., 2022; Kamal et al., 2020, 2021, 2022; Rigas et al., 2017a). For
simplicity, we will refer to the general framework as the One-Way Navier-Stokes
(OWNYS) equations, but note that many of the techniques are broadly applicable to
other hyperbolic systems.

The OWNS projection method (OWNS-P) generalizes the approach to handle inho-
mogeneous (forced) equations (Towne et al., 2022). Both OWNS-O and OWNS-P
involve high computational costs compared to PSE, which motivated the develop-
ment of the more efficient OWNS recursive method (OWNS-R) (Zhu and Towne,
2023). We also note that a similar method, which uses recursive filters to approx-
imate the eigenvectors of M for wave propagation in complex media, has been
developed by Rudel et al. (2022).

2.2 OWNS equations
Here we will develop the OWNS approach for a general linear system of hyperbolic
equations. First we note that a hyperbolic system is defined as in Definition 2.2.1.

Definition 2.2.1 (Hyperbolic system of first-order equations) Consider the follow-
ing system of first-order partial differential equations for N unknown functions
q =g} qy), q =q(x,y,1) where y € R4 and v/ € C'(RN,RN) are once

continuously differentiable (nonlinear) functions:

d
6q’ .
—1/ 7/(q") = 0. 2.1
(g Z; (4) @.1)
We introduce the Jacobians
61’{ GT{
a4} gy
B;=1: cl, j=1,...,N, A=B, 2.2)
671{] 6‘1‘1{]
R e
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and we say that (2.1) is hyperbolic if for all y1, . ..,yq € R the matrix
YIA+y2By+ - +yaBg

has only real eigenvalues and is diagonalizable.

Consider the constant-coefficient hyperbolic system of equations

d ’

aq’  0q dq ,
— +A B; Ccq =f, 2.3
or ax+; fayj+ ¢=f 23)

in d spatial-dimensions for A, B;,C € RM*N with A and B ; defined as in (2.2), with
forcing function f € RY where f = f(x,y,1).

Remark 2.2.2 System (2.3) is a general first-order linear hyperbolic system of
equations. We delay writing explicit expressions for A, B; and C until Chapter 3
where we specialize the approach to the Navier-Stokes equations, for the operators

presented in Appendix A.

Applying finite differences (or other discretizations) in (y, ..., yy) yields

d
oq’ aq’
—+A—+ » B;D;q'+Cq = f, 2.4
for the difference operator D ;. Since (2.3) is hyperbolic, we know that A is diago-
nalizable with real eigenvalues A = TAT~! and eigenvectors 7~!, which we use to
define the characteristic variables ¢ = T'q’. Next we write
d
op -0¢ _ 0 -
— +A—+ Bi— +Co¢ = 34, 2.5
ot ax;fayj ¢=Jo (23)
where Ej = TBJ-T_1 forj=2,...,d, C =TCT™', and Js =T f. We assume that
A is non-singular (we treat the singular case in Appendix C) so that

0 A__

(2.6)

for N, X N, diagonal matrix A, with A, > 0 and N_ X N_ diagonal matrix
A__ < 0, where N, + N_ = N. Taking a Laplace transform in time, and Fourier

transforms in space for j = 2,...,d, we obtain

A

¢ .
L =M+ fo @.7)
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where ¢ and f represent ¢ and S, respectively, in the frequency domain, while
d
M(s) = A~ (sl + 3 iw;B; + c). (2.8)
j=2

For the problems considered in this work, the matrix M (s) is diagonalizable, which
simplifies the exposition of the OWNS methodology. Therefore, we assume M (s) to
be diagonalizable and note that the defective case is handled by Towne and Colonius
(2015).

We use Briggs’ criterion (Definition 2.2.3) to classify eigen-vectors as upstream- or
downstream-going, while Proposition 2.2.4 tells us that M () has precisely NV, and

N_ downstream- and upstream-going eigenvalues.

Definition 2.2.3 (Briggs’ criterion) Consider a wave with complex wave-number
ia =ia, —q; for some s = iw+n with real w and n. Take n — oo, then according to
Briggs’ criterion, this wave is downstream-going if a; — oo, while it is upstream-

going if a; — —oo (Briggs, 1964).

Proposition 2.2.4 For R(s) > 0, the matrix M(s) has precisely N, and N-_
downstream- and upstream-going eigenvalues, respectively, according on Briggs’

criterion (Towne and Colonius, 2015).

Proof: The eigenvalues are the solutions to the characteristic equation

d
det(A™) "V det(M — ial) = det(—sI — Z iw;B; - iaA - C).
j=2
The eigenvalues are continuous functions of s so taking the limit R(s) — oo yields

N, eigenvalues with 7 (@) > 0 and N_ eigenvalues with 7 (@) < 0. O
We then partition M into upstream- and downstream-going blocks as

N [V+ V_]_l, 2.9)

M = [v+ V_]

where the columns of V, € CNV*N+ and V_ € C¥*N- the eigenvectors associated with
the downstream- and upstream-going eigenvalues of M, and we have dropped the
argument s for brevity. Next we introduce the coefficients i, € CN+ and y_ € CN-
such that

=V +V iy, (2.10)
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while for notational convenience, we define
iY=1,...,N,, iD=N.+1,...,N, (2.11)

to denote indices associated with downstream- and upstream-going modes, respec-

tively.

2.2.1 Exact projection equations

OWNS-O (Towne and Colonius, 2015) has two notable drawbacks: (i) it does
not allow a forcing function, and (ii) it couples upstream- and downstream going
modes through dV/dx for flows that vary in the marching direction. These limita-
tions can be overcome by OWNS-P (Towne et al., 2022) and OWNS-R (Zhu and
Towne, 2023). Here we introduce the exact one-way projection approach, while
we subsequently introduce the approximations to this approach using OWNS-P and
OWNS-R. Definitions 2.2.5 and 2.2.8 introduce the exact projection matrix and
its associated one-way equations, while Proposition 2.2.10 demonstrates that these
one-way equations are consistent with the global equations, even for systems vary-
ing in the marching direction. This is in contrast to the OWNS-O approach, which
is consistent if and only if it is applied to constant coefficient systems (Towne and
Colonius, 2015).

Definition 2.2.5 We define the one-way projection matrix

[v+ v_]_l : 2.12)

which partitions the solution into downstream- and upstream-going components as

#=Pi=Pvi=|v, V| i | L3 (2.13a)
7o o g ’
A A 0 o |[d, .
=[I-Pl=[I-PIV§=|V, V. =V, 2.13b
¢ =11-Plg=1I-PIV§ = |V v]»o 1__”¢_ V. (213b)
For brevity define )
E= | 0 (2.14)
1o o) '

so that P = VEV~L,

Proposition 2.2.6 P is a projection matrix (Towne et al., 2022).
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Proof: We see that
P> =VEV'VEV ' =VEV ! =P,

where E? = E, so that P> = P, and (2.12) is a projection matrix by definition since
P =P O

Proposition 2.2.7 P commutes with M (Towne et al., 2022).

Proof: Diagonal matrices commute with each other so that ED = DE and

PM =VEDV~ ' =VDEV~™' = MP.

Definition 2.2.8 (exact one-way projection equations) The projection matrix, P,

can be used to obtain one-way equations

09 _ P[M¢ + 8], (2.15a)
o

09" _ [I - P][M¢" + 8], (2.15b)
ox

Jfor the downstream- and upstream-going modes, respectively (Towne et al., 2022).

Proposition 2.2.9 The exact one-way projection equations are well-posed as spatial

initial value problems according to the criterion of Kreiss (1970).

Proof: See the discussion by Towne and Colonius (2015) and Towne et al. (2022),
the criterion developed by Kreiss (1970), and the review by Higdon (1986). O

Proposition 2.2.10 The exact one-way projection equations are consistent with the

global equations.

Proof: If ¢’ and ¢” are solutions to (2.15a) and (2.15b), respectively, then sum-

ming these equations yields

P +¢")
ox B
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so that rﬁ’ + (5” is a solution to (2.7). If ¢? is a solution to (2.7), then by linearity

—=M$+3
0x
lPgl | OlU - P)#] _ MP$+Pg+M(I—-P)d+(I-P)g
0x 0x
(9(5/ 8&’/ ., A ., .
o S = PIM + 8]+ (I - P) M + ),
X 0x
so that P¢ and (I — P)¢ are solutions to (2.15a) and (2.15b), respectively. O

Remark 2.2.11 The exact OWNS projection framework can be re-interpreted using

a variational formulation, as shown in Appendix E.

2.2.2 Approximate projection using OWNS-P

To avoid taking the eigendecomposition of M, OWNS-P uses a recursive filter to
approximate the projection matrix (2.12). Definition 2.2.12 introduces this recur-
sive filter, while Proposition 2.2.13 recasts it in a matrix form, where the matrix is
a projection matrix by Proposition 2.2.14. Proposition 2.2.15 provides a criterion
for OWNS-P convergence, while Proposition 2.2.16 provides a necessary condition
for convergent recursion parameters to exist. The error introduced by this approx-
imation is bounded in Proposition 2.2.17, while Proposition 2.2.20 shows that the

approximate projection matrix does not generally commute with M.

Definition 2.2.12 The action of P can be applied approximately using the OWNS-P

recursive filter
5. =0 (2.16a)
(M —iB D¢~ —(M-ipl¢ 7' =0, j=1,...,Ng—1, (2.16b)
(M —-ip°D¢° — (M -iB’Dé~' = (M -ip’1)¢, (2.16¢)
(M —iBlh¢’ — (M —ig D" =0, j=0,...,Ng—1, (2.16d)
5 — 0, (2.16€)

where (ﬁi, BL) are the recursion parameters and ¢’ the auxiliary variables for
J=0,...,Ng—1(Towne et al., 2022).

Proposition 2.2.13 The recursive filter (2.16) can be recast in matrix form

Py, = VRN,ERy, V™, (2.172)
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for
I Fo ViV F'
Rng=| 1o 1o B (2.17b)
F_VIV_Fy, I__
where F, which is a diagonal matrix
Ng—-1 Vi
F 0 -
= o Fe=] k ﬁj*., k=1,...,N, (2.17¢)
O F__ j=0 dr — ﬁ_
as shown by Towne et al. (2022).
Proof: See Appendix D.I. O
Proposition 2.2.14 Py, is a projection matrix (Towne, 2016).
Proof: Note that
P2 =VRN,ER\\V VRN ERIV ' =VRy,ERy'V I =P
NB - Nﬁ Nﬂ Nﬁ Nﬁ - Nﬁ NB - Nﬁ’
so that it is a projection matrix by definition. O
Proposition 2.2.15 Py, converges to P if and only if
Ng-1 ol Y
Np—eo =0 lam — B~ lan — B4
for all pairs (a,,, a,) such that m = i and n = i) (Towne et al., 2022).
Proof: See Appendix D.I. O

Proposition 2.2.16 Recursion parameters such that Py, converges to P exist if and
only if ay, # ay, forallm = i™) and n = i), In particular, if N, < N_, then choose
Ng = N, with

Z_l =a, B '#a, n=1,...,N,, j=1,...,N,,
while if N_ < N,, then choose Ng = N_ with

= ay, i_lqta/n, n=N,+1,...,N, j=1,...,N_.
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Proof: See Appendix D.1. O

Proposition 2.2.17 (OWNS-P error bound) The errorintroduced by the OWNS-P

approximation is bounded by
1Pns = Pl < WVIHF HEN (VA Vel + IV2IVo ) IV + O(€7), (2.19a)
Jor |IF|lIIFZL| < € where
e = min{é, |V V|72 vIvo, |73, (2.19b)

for some small € > 0 such that € < 1. Here we have used the Euclidean vector

norm

vl = Vi 2+--+vaf?, vech, (2.19¢)

and its induced matrix norm.

A
| All2 = sup lAVI2 = ¢ ovan (2.19d)
20 [VIl2
where we have dropped the subscript for brevity, so that || - || = || - ||2.
Proof: See Appendix D.I. O

Proposition 2.2.18 If ﬁi = a,, for any downstream-going mode, it will be retained
accurately by the OWNS-P filter; if B = a, for any upstream-going mode, it will be

removed.

Proof: See Appendix D.I. O

Remark 2.2.19 Proposition 2.2.17 shows that the error ||Py, — P|| scales with
| Fyi || F==|| for sufficiently small || Fyi|||| F--||, while Proposition 2.2.18 shows it is

always possible to achieve zero error for any upstream- or downstream-going mode.

Proposition 2.2.20 Py, commutes with M if and only if R1_v; =1
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Proof: If Ry =1, then
B
Py,M = VRNBER;,;V‘IM =PM = MP = MPy,.

If R;,; # I, then R]‘\,; is not diagonal and does not commute with D, so that
R;,;D # DRy, and Py, does not commute with M. O

Remark 2.2.21 Proposition 2.2.14 establishes that Py, is a projection operator
for any choice of recursion parameters, while Proposition 2.2.20, in conjunction
with Proposition 2.2.15, establishes that Py, commutes with M if and only if the

recursion parameters are chosen such that Py, = P.

Proposition 2.2.22 The error in treating Py, and M as if they commute is bounded

by
1Py M = MPg || < 20VIHEeFZLI (VA Vel 220
+ VIV IDIVHIIM| + O(€),
for |Fot|I|IF=1| < € and € as in Proposition 2.2.17.
Proof: See Appendix D.1. O

Remark 2.2.23 Although Py, and M do not generally commute, the introduced by

treating them as if they commute is small if ||P — Py, || is small.

2.2.3 Approximate projection using OWNS-R

OWNS-R constructs approximations to (2.12), but with a reduced computational
cost relative to OWNS-P. Definition 2.2.24 presents the OWNS-R recursive filter.
Unlike OWNS-P, Proposition 2.2.27 shows that the resulting matrix is not generally
a projection, while Proposition 2.2.28 shows that it always commutes with M.
Proposition 2.2.30 provides a criterion for convergence, while Proposition 2.2.31
provides a necessary condition for convergent parameters to exist. While Zhu
and Towne (2023) suggested that the OWNS-P recursion parameters would also
work for OWNS-R, we show in Proposition 2.2.32 that this is not always true.
In addition, Proposition 2.2.38 shows that repeated applications of the OWNS-
R matrix leads to unbounded growth or decay unless the approximation is fully
converged. We then conclude by discussing the practical implementation of OWNS-
R in Definition 2.2.40 and Proposition 2.2.41.
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Definition 2.2.24 The action of P can be applied approximately using the matrix

PI(\,’;) =(I+c2)7", 2.21)
for
Np
Z= ]_[(M —igtD(M —i; D), (2.22)
=1

where c is a freely chosen parameter (Zhu and Towne, 2023).

Proposition 2.2.25 If we define the approximate eigenvalues
En, = (I+cF)™, (2.23)

then Pj(\f;) =VE NﬁV_] (Zhu and Towne, 2023).
Proof: See Appendix D.2 O

Remark 2.2.26 Zhu and Towne (2023) showed that setting ¢ = 0 gives E,(\f;) =1, so
that the march is unstable since all upstream-going modes are retained. Similarly,
taking ¢ — oo gives E 1(\/]2 = 0, so that the march is stable but inaccurate. Therefore,

they recommend taking ¢ ~ 1, and so we take ¢ = 1 for the rest of this paper.

Proposition 2.2.27 The matrix Pz(\;;) is a projection matrix if and only if E ](V];) =1
(k) _ _
orENB =0fork=1,...,N.

Proof: See Appendix D.2. O

Proposition 2.2.28 The matrix P](VIZ) commutes with M for any choice of recursion
parameters.
Proof: Note that
(R) g _ -1 _ -1 _ (R)
PNﬁ M =VEN,DV™ =VDEN, V™ = MPNB ,
since Ey, and D are both diagonal matrices. m|
Remark 2.2.29 OWNS-P always produces a projection matrix (Proposition 2.2.14)

but it does not always commute with M (Proposition 2.2.20). Conversely, OWNS-R

may not yield a projection matrix (Proposition 2.2.27) but it always commutes with
M (Proposition 2.2.28).
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Proposition 2.2.30 PJ(VI;) converges to P if and only if EI(VI;) — 1 for k =i and
Eﬁ,"ﬁ) — 0 for k = i) (Zhu and Towne, 2023).

Proof: Clearly P](Vl;) — P if and only if Ey, — E, while by definition, E®) = 1
for k =i and E® = 0 for k = i), so that ENﬁ — FE if and only if E](Vl;) — 1 for
k=i andE;\é) — 0fork =i O

Proposition 2.2.31 Recursion parameters such that P](VI;) converges to P exist if and

only if a, # @y for all pairs of m = i) and n = i), In particular, choose

T_l = a’m’ ’;Vl_l 7& a’n, m,n = i(+)’ (2243)
o, Bl ta,, mn=i0). (2.24b)
Proof: See Appendix D.2. O

Proposition 2.2.32  The minimal parameter set such that Py, = P for OWNS-P
(Proposition 2.2.16) yields Pl(vl;) # P for OWNS-R.

Proof: If N, < N_, then Ng = N,, with 877! = @, and "' # a, forn = i) and
for the upstream-going modes
N, ;
() _ ;2 (o — 1) B
[T (@ = B + e T2 (ax = BY)

N, 0, k=i,

since ay # B2 for k =i”) and j = i), Then P,(\,IZ) # P since Ez(v];) # 0 for k =i,
O

Remark 2.2.33 Zhu and Towne (2023) claimed that the minimal parameter set
ensuring OWNS-P convergence also apply to OWNS-R, but Proposition 2.2.32
disproves this, while Proposition 2.2.31 identifies a different minimal set for OWNS-
R.

Proposition 2.2.34 The error introduced by OWNS-R is bounded by
1P = PRIl < max {lelllFwell, IFZLIHIVIV ' + 0D, (2.25)

where ||Fyi||, ||F--|| < € for small € > 0 such that € < 1 (Zhu and Towne, 2023).
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Proof: See Appendix D.2. O

Proposition 2.2.35 If ﬁ_{ = a,, for any downstream-going mode, it will be retained
accurately by the OWNS-R filter; if B/ = a,, for any upstream-going mode, it will be

removed.

Remark 2.2.36 Proposition 2.2.34 establishes that the error in introduced by
OWNS-R scales with max{|||Fy+|l, ||F=L||} for sufficiently small ||F..|| and |F-_||,
while Proposition 2.2.18 shows it is always possible to achieve zero error for any
upstream- or downstream-going mode, while Proposition 2.2.18 shows it is always

possible to achieve zero error for any upstream- or downstream-going mode.

Remark 2.2.37 The OWNS-P error converges with |Foi||||F=1|l, so that we have
convergence with either ||[F~L|| = 0 or ||Fi.|| = 0, while the OWNS-R error scales
with max{|||Fsi||, |F=1||} so that we must have ||F~}|| = || Fist|| = 0. Thus, OWNS-R

generally requires a larger and more carefully chosen parameter set.

Proposition 2.2.38 Repeated application of PI(VI;) causes unbounded growth if |E](\,l;) | >
1 and decay to zero if |E](Vl;)| < 1 forany k =1,...,N. Therefore, repeated appli-

cations introduce additional error unless |E1(\,r2| < 1foralln=i"), and E](\Z) =1

forallm =i,
Proof: See Appendix D.2. O

Remark 2.2.39 By Proposition 2.2.38, PJ(VI;) should be applied only once for OWNS-

R to avoid solution blow-up or decay.

Definition 2.2.40 The action of PJ(VI;) is applied to ¢ by solving for (5;\,5 as

#° = %(ﬁ, (2.262)
(M —iB))¢/ = (M —ip)¢'™, j=1,...,Np, (2.26b)
Py, = P (2.26¢)

where ﬁi are defined such that

Ng M8 Np .
2| @=8) =] [@-8D)+] [(a-8D. (2.26d)
j=1 j=1 j=1



24
Proposition 2.2.41 The action of PI(VIZ) can be applied using (2.26).

Proof: See Appendix D.2. O

Remark 2.2.42 In theory, the OWNS-R error decreases with increasing Ng if both
|Frill and ||FZL|| decrease. In practice, computing ,B;". numerically (e.g., via roots

in MATLAB) introduces rounding errors that can prevent convergence.

2.3 Recursion parameter selection

All three OWNS formulations, as well as the method by Rudel et al., require selecting
a set of recursion parameters that govern the convergence, stability, and accuracy of
the approximation. These parameters are, loosely speaking, estimates of key eigen-
values (or their branches) representing upstream and downstream modes. Previous
work has selected them heuristically, based on the Euler equations linearized about a
uniform flow Towne and Colonius (2015). We refer to this as the heuristic approach,
and note that it avoids computing the eigenvalues of M, but requires flow-specific
tuning (e.g., different parameters for low- and high-speed boundary layers) and often
results in slow error convergence. We delay a more detailed discussion of recur-
sion parmaeter selection until Chapter 4, where we develop a greedy algorithm that

automates parameter selection, while also ensuring rapid convergence and stability.

2.4 Summary

We have presented the OWNS-P and OWNS-R formulations for hyperbolic equa-
tions. Whereas OWNS-P yields a projection matrix that generally does not commute
with M, OWNS-R yields a matrix that commutes with M but is not generally a
projection. Although they can use similar recursion parameters, Proposition 2.2.32
shows that there exists parameter sets for which OWNS-P is converged while OWNS-
R is not. In general, OWNS-R requires more careful parameter selection for stability
and accuracy. Finally, Proposition 2.2.18 and 2.2.35 show that it is always possible
to choose recursion parameters such that zero error is achieved for any upstream-
or downstream-going mode. We will show in Chapter 3 how the procedure can be

applied to the Navier-Stokes equations, and extended to include nonlinear effects.
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Chapter 3

NONLINEAR OWNS METHODOLOGY

This chapter has been adapted from Sleeman et al. (2023), Sleeman et al. (2024b),
and Sleeman et al. (2025). Here we develop the NOWNS methodology and validate
it by comparing to direct numerical simulation (DNS) data for low-speed Blasius
boundary-layer flows. The OWNS-P approach presented in Chapter 2 was applied to
hyperbolic equations, but the Navier-Stokes equations are not hyperbolic, so we will
first demonstrate how to apply one-way marching to the Navier-Stokes equations, as
done by Towne et al. (2022).

3.1 Linear OWNS
In Appendix A, we rewrite the Navier-Stokes equations (1.1) in operator form (A.6)
for the vector of primitive variables ¢ = (v, u, v, w, p), where the nonlinear terms,
F(q’), are defined as in (A.4), while the linear operator, £(§), is defined as in (A.5).
To simplify the exposition, we temporarily neglect the streamwise diffusion terms
by introducing the exogeneous forcing function f* = fiorcing + fviscous Where

aq’ 82q’ 92a’ 8%q’

0

fviscous = _Bx(q)a - Bxx(q)w - Bxy(q)% - sz(q_)m,

represents streamwise diffusion terms associated with the disturbance variable, while
JSforcing 18 an arbitrary forcing function. We then neglect the nonlinear term and re-
write equation (A.6) to obtain the linear stability equation

oq’
0x

Ad(@)——=L(@)q + [ (3.1

Previous work OWNS has often neglected fyiscous because this simplifies the pro-
cedure without significantly impacting its accuracy (Towne and Colonius, 2015;
Rigas et al., 2017a; Kamal et al., 2020), but we have found that this term impacts
more significantly the nonlinear calculation, as discussed in Appendix G.1, so we

re-introduce it (approximately) in Section 3.1.5.

In NOWNS, we consider a system of linear OWNS equations coupled together
through the nonlinear term, which acts as an inhomogeneous forcing function taking
the place of f in (3.1). The OWNS-O approach (Towne and Colonius, 2015) supports
only homogeneous equations, so we must instead consider either the OWNS-P
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(Towne et al., 2022) or the OWNS-R (Zhu and Towne, 2023) approaches. OWNS-

R entails a reduced computational cost compared to OWNS-P, but we have found
OWNS-P to be more robust, so we use it to develop the NOWNS approach.

3.1.1 Semi-discrete equations
Throughout this work, we assume that our disturbances are periodic in the spanwise
direction with wavenumber £ and in time with frequency w so that we can expand

our disturbances as Fourier series

(o)

¢y, 50= D Gualx,y)e e, (3.2)

m,n=—o0

In the linear case, all Fourier modes evolve independently, and we consider a single
disturbance of the form ¢’ (x, y, z,1) = §(x, y)é’ (nBz—mwt) wwhile we discretize in the
wall-normal direction using a 4th-order central finite differences which we represent

using D ~ d/dy. Our semi-discrete linear operator is then

L(§) = iwl — [Ay(§) + By(§)]1D — iB[A.(§) + B.(§)] (3.3)
—C(q) - Byy(§)D* + B*B.(§) — iBB,.(§) =0, (3.4)

and we obtain 30’
Ac(q) 6‘1 =L(§)q +f. (3.5)

a system of ODEs in x comprising N, variables, where N, = 5N,, (N, = 4N,) in 3D
(2D), for the Ny grid points in y.

3.1.2 Parabolization using the OWNS projection procedure

The above ODE:s in x contain components that propagate both upstream and down-
stream, and cannot be stably integrated without further intervention. Therefore, we
remove upstream effects using a projection operator that we apply in the character-
istic variables, ¢ = Tq’, where T are the eigenvectors of A,, while A, =TA, T " are
the eigenvalues. Here we have dropped the argument g for brevity. We transform

our equations to characteristic variables as

=L+ fy. (3.6a)
with

(3.6b)
fo=TF (3.6¢)
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where L and f¢ denote the linear operator and forcing function in characteristic

variables, respectively. We then re-organize the diagonal matrix A,

A 0 0
A=l0 A_ 0], 3.7)
0 0 Ay

for the N, positive eigenvalues A,, > 0, the N_ negative eigenvalues A__ < 0, and
the Ny zero eigenvalues Aoo = 0, where No+ N_ + N, = N,. For a boundary-layer
flow, A = 0 at the wall (& = 0) or at a sonic point (i — ¢ = 0). We further define

AL 0 - . |4
A, = ++ ) ’ ~ Lo é = ¢Ai ,
0 A Lio=|: | Po
- : Lo -
= Z++ I:+— = A Aqb +
Lii = |~ ~ s Loi = [LO LO—] H f - A b
Ly L] ’ " oo
and so that our equations become
O T A
Ass aqj: = Lix@s + LioPo + fo+, (3.8a)
0= Los@s + Loodo + 0, (3.8b)

which is a differential algebraic equation (DAE) of index 1. We can use the algebraic

constraint (3.8b) to obtain ¢30 = —Z&} [ZOJ_,@_, + f¢,o] so that we can re-write our
DAE as an ODE R
0P L
=M¢.+3g, (3.9)
ox

The upstream- and downstream-going modes of (3.9) can be determined based on
the eigenvalues of M, according to Brigg’s criterion from definition 2.2.3 (Briggs,
1964) to introduce the projection operator from definition 2.2.5, as described in
(Towne and Colonius, 2015; Towne et al., 2022). Then we obtain the linear OWNS
equation from definition 2.2.8, yielding the equation for the downstream-going

solution R
09’

0x
where we used that P and M commute, as shown by Towne et al. (2022).

=P[M§, + 2], (3.10)
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3.1.3 Approximate projection operator

Exact OWNS is prone to numerical error and entails a high computational cost to
compute the eigenvalues and eigenvectors of the linear operator. Therefore, instead
apply the projection operator approximately using a recursive filter (Towne and
Colonius, 2015; Towne et al., 2022). Whereas in definition 2.2.12 we apply the
filter to the variable ¢, here we instead apply the filter to the residual. We define the
residuals 7.(¢) = ALk, [Lesds+Laoo+ fo.2], and Fo(9) = Loxs + Loodo + fp.0
based on (3.8), and following the approach of Towne et al. (Towne et al., 2022), we

can apply P approximately to the residual using the recursive filter

FN) = (3.11a)

(L-ip DA D —(L-ipPA)FI V=0, j=1,....Ny—1  (3.11b)
(L - A)FO — (L -ipV A)pY = (L - ip D A)# (3.11c)
P = Fo, (3.11d)

(L —ipPA)f) — (L —ipD A)pU*) =0, j=0,...,N,—1  (3.11e)
FV0) = 0, (3.11f)

where 7y = 0 when the algebraic constraint (3.8b) is satisfied. We introduce the
vector auxiliary variables #,,x € CMux, and the approximate projection operators

Py € CNawXNv  py ¢ CNaxXNax = py ¢ RN=XNax where P17 and Pyf,x give the

right- and left-hand sides of (3.11), respectively, while P3 extracts ff_,o) from 7,y  as

f(io) = P3Fx. The action of the approximate projection operator on the DAE (3.8)

can expressed compactly as

0 7’
9 _ P3P aux, (3.12a)
Ox
AZNLosd) + Lood, +
Pofaux = P e o ig‘ﬁo Jozl (3.12b)
Lo+ @, + Loo®;, + f4.0
0= Loxd, + Loodly + fs0- (3.12¢)

3.1.4 Fully-discrete equations
We define A*, L¥ € RWVvNaw)X(Nv+Naw) apd ¥, f; € CNv*Nax guch that

0 0 AxP3
L. 0 0 e )
% * AiiLss AiiL+o
A*=10 0 0f, L"=|P I Py I —-Py |,
0 0 0 0+ 00
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and
¢ 0
A o Ah o
¢ =00 fi=|P -:‘7’]
S50
raux A
S50

Then, following the previous work on linear OWNS (Rigas et al., 2017a; Kamal
et al., 2020), we apply an s-order BDF scheme to obtain the linear OWNS equation

s—1
[C(O)Ai _ Li(kx*'l)]‘ﬁi(kx“) - _ Z C(lx)Aiéi(ka—lx) + f;(kx“)’ (3.13)
=1

for k, =1,...,N,, where N, denotes the number of streamwise stations, while s
denotes the order of the BDF scheme and ¢ for I, = 0,...,s — 1 denotes the

marching coefficients.

3.1.5 Streamwise diffusion terms
Following discretization in the wall-normal direction and trasnformation to charac-
teristic variables, our streamwise diffusion terms become
A - 0% -0 .

fqb,viscous = _BXXW - By,— Ix — B¢,
for Bxx = TB.T7!, B, = 2TB,, 35’1 + T[By + ByyD + iB,]T™!, and B =
T Bxx = 2 Ly T[B;+ BxyD + zﬁBxZ] BT . We discretize the second-derivative using
a second-order backward dlfference, Whlle we discretize the first-derivative using
the BDF scheme to obtain

plk+1) _ 5 (k) 4 Hk=1) s—1
skl) o5 @ " +¢ D@ 2k+1-D\ _ pak+D)
f¢ viscous ~Bu (A)C)z ( Z B ) - B¢ ’

and we add this term back into the fully-discrete OWNS equations (3.13).

3.2 Nonlinear OWNS

Whereas infinitesimal disturbances (in the linear case) evolve independently from
each other so that each Fourier mode can be considered separately, finite amplitude
disturbances (in the nonlinear case) are coupled through the nonlinear term. Since
it is not feasible to consider an infinite number of Fourier modes, we truncate the

Fourier (3.2) series

g (x.y,2,1) = Z Z pe (Pzmmn), (3.14)

m=—M n=—
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resulting in (2M + 1) X (2N + 1) Fourier modes. However, we require that ¢’

be real-valued, which yields the constraint §,,;, = §—_mn, sO that we need only
track (M + 1) X (2N + 1) Fourier modes. We can additionally introduce a spanwise
symmetry condition, as described in Section 3.2.5, which further reduces the number
of modesto (M + 1) X (N +1).

The nonlinear terms in primitive variables, F(q’), are defined in (A.4), and we
transform them to primitive variables in a way that mimics the transformation of the
linear terms, to obtain the nonlinear terms in characteristic variables, F(¢$). We use

our assumption of periodicity to obtain the Fourier series

L@ = 23 }2 Lpn@ne’ P, (3.15)
-M n=—

F(¢) = Z Z B ()P (3.16)
-M n=—

f¢= Z Z f¢ z(nﬁz—mwt). (3.17)
m=—M n=—

Note that f¢ is the forcing function in characteristic variables defined in (3.6¢). The

Fourier modes are mutually orthogonal, yielding the following system of equations:
0P
A
0x
forZy={x€Z|l-M <x<M}andZy ={x € Z| - N < x < N}, where Z is the

set of all integers. We follow a procedure that mimics the linear OWNS approach

= z/mn‘ﬁmn + ﬁmn(¢) + fqﬁ,mn’ Vm € Zy, Vné€Zy, (3.18)

to obtain
a¢Iimn A ~ 2 ~ ’
P = Pmn [an¢+ mn + gmn(P¢+)]’ Vm € ZMa Vn € ZN- (319)
X +, +

In the linear case, P and M commute so that two one-way parabolic equations can
be solved to recover the full elliptic solution (Towne et al., 2022). However, this
property does not apply in the nonlinear case because the P does not commute
with the nonlinear term (Pg(¢.) # Pg(P¢.) in general), so that (3.19) removes
the upstream effect, ¢”, from the nonlinear term, and when we sum the upstream-
and downstream-going equations together, we do not recover the elliptic equation.
This is a reasonable choice for convective instabilities, where the disturbances travel
primarily in one direction, and we verify a posteriori that we match closely DNS

results in the literature.
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3.2.1 Fully-discrete equations

We define L € ROy +Nan)X(Nv+Nawx) gpq ¢mn, fjm s € CNv*Nax a5 in the linear case,
forallm € Zy and n € Zy, and further introduce the nonlinear term F7,, € CNv+Nux
such that it mimics the definition of the forcing function fjm 4 Then we discretize
the first-derivatives in both the linear and nonlinear terms using the BDF scheme

yielding the fully-discrete nonlinear system of equations

s—1
Z c(’x)Aiqif,f,f*”_” (k +1)¢;t(k x+1) Fi(nkxﬂ) +fi,(n]1<;+l)’ (3.20)
1,=0

formeZy,neZy,andk, =1,...,N,.

3.2.2 Pseudo-spectral method

We employ a pseudo-spectral method whereby we solve our equations in Fourier
space, while we evaluate the nonlinear terms in physical space. Given the Fourier
coeflicients qamn form =0,...,2M and n = 0,...,N, we can use the inverse

discrete Fourier transform (iDFT) to compute the solution in physical space as

2M 2N

1 1 127rkm/(2M+1) t27rln/(2N+1)
= . 3.21
Pu 2M+12N+1ZZ¢’”’“ 62D
m=0 n=0
for discrete times and spanwise locations associated with indices k =0, ...,2M and
[ =0,...,2N, respectively. Then, we can evaluate the nonlinear terms in physical

space, F,,, = F(¢,,,), and employ the discrete Fourier transform (DFT) to compute

the Fourier components of the nonlinear terms as

2M 2N
Fkl — Z Z ane—iank/(ZMH)e—i27rnl/(2N+1)’ (322)
m=0 n=0

fork=0,...,2M and [ =0, ...,2N. In practice, the DFT and iDFT are performed

using fast Fourier transform (FFT) libraries.

3.2.3 Nonlinear solution procedure and computational cost
We must ensure that the residual

s—1
fi(rllcxﬂ) _ Z c(l")Aié,q;f,f"H_l) L—(k +1)¢ S(kx+l) (k +1) f¢(k <t (3.23)
=0

is converged for every Fourier mode (m € Zy and n € Zy) at every step of the

march (k, = 1,..., N,). We will use Newton’s method to iteratively force the norm
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of the residual to zero in both an absolute and relative sense to a tolerance of 10710:
At (kx+1
[

151 < 10719, <107,

~(k o+l
NI Tl D

We concatenate the residual and solution vectors as

Ai(k +1) 25 (kx+1)
P —(N-1) ¢m (N 1)
R’gfx*']) = N s ¢’(/’fx+]) = . s m :0""’2’M’ (3'24)
AL (kyt]) j,(k +1)
TN-1 b N1
and
R(()kx+1) CD(()kXH)
RUx+D) : , okt - : ) (3.25)
(kx+1) (kx+1)
R2M q)ZM

In 2D with M = 1 we obtain

f;t(k+l) Ai(k+l) ¢;t(k+1) ¢i(k+l)
0
R+ _ fflp(k+1) _ Ai(k+l) o@D = ¢i(k+1) _ ¢i(k+1) ’ (3.26)
pE(k+1) AT (k+1 i(k+1) k+1
7 rﬂlt( +1) : ¢ilt( +1)

where we have used that

pilke) _ i) jilke) _ )
FoMs1—m> =Popii Mm>M.

Using Newton’s method, we obtain the Newton iterations

aR(k+1),0'
PR APKh+D .o+l _ _R(k+1),0', o=0,1,...,0%k+1) (3.27)

where we take ®@*+1-0 = @k).ow) for o (k) denoting the number of Newton iterations

at streamwise station k, while the Jacobian d R k+1)-o / A®K*+D)-7 is ag defined in (F.6).
Neglecting matrix blocks that are not on the diagonal, and writing the expression

for 3D disturbances, we obtain the Newton iterations

[C(O)Ai _ ii(rllwl), " ]”(k"'l) o-]A¢j;(k+1) ,o+1 _rArin(’fH),a- (3.28)

’

form =-M,..., M, n=-N,...,N,and o = 0,1,...,03441). If we neglect

Jg(()kﬂ)"f, then we obtain

[C(O)Ai _ zi(rllwl),a]Aq;’j%(rlch),o-H _ _f’i(rllwl),o- (3.29)

b

form=-M,....M,n=-N,...,N,and o = 0,1,...,0(41). To solve (3.28)
or (3.29), we mimic the NPSE solution procedure (Bertolotti, 1991; Chang et al.,
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1993; Day, 1999): we take the lower-upper (LU) decomposition of [c@AF- I:,ff,f +1)]
to solve for Aqf,ff,f +1)"T+1, then we update the nonlinear term, and repeat until the
residual is converged. We typically prefer solving (3.28) over (3.29) because it re-
duces the number of iterations to convergence, without increasing the computational
cost. Alternatively, if we accept a larger computational cost, then we can further

reduce the number of iterations by solving (3.27).

The linear OWNS system (3.13) comprises N, + Nyux = Ny, + (2N, + 1) N}, equations,
where N, scales with Ny, so that the computational cost to solve this system using
a direct multifrontal solver (LU decomposition) scales as O(NyN} ), where a is a
problem dependent coeflicient that depends on the sparsity pattern. Theoretically,
I < a £ 3 and we typically observe a = 1.5 for 2D problems and a = 2 for 3D
ones, see (Towne et al., 2022) for further details. The cost to integrate over N,
stations is then O(N;NyNy), while a global method entails a cost of O(N{NY), so
that OWNS is more efficient for N, << N,. The nonlinear OWNS system (3.20)
comprises (M + 1) X (2N + 1) X (N, + Naux) equations, and can be solved using
Newton’s method (3.27), which entails a cost of O(M*N “NyNy). However, this
cost can be reduced by instead solving (3.28) or (3.29), since we can perform the
LU decomposition of [¢(® A% — I:L(,/f +1)] separately for each Fourier mode, yielding
a cost of O(MNNyNy). Therefore, the cost to integrate the NOWNS equations is
O(NxMNN;lNg) using (3.28) or (3.29), while it increases to O(NXM“N“N;NS)
for Newton’s method (3.27), as compared to the cost O(NyM“N“Ny) for nonlinear
global methods.

Although (3.28) and (3.29) entail a lower computational cost, these methods fail
for strong nonlinearities and we must instead employ Newton’s method (3.27). In
practice we implement a hybrid approach whereby we first solve (3.28) to harness its
reduced computational cost, and then if more than O(100) iterations have elapsed,
we switch to Newton’s method to harness its better convergence properties. We

compare the performance of these three methods in Appendix G.3.

To reduce the computational cost of Newton’s method, we re-use the LU factors from
the first iteration as a pre-conditioner for the Generalized Minimal Residual Method
(GMRES), and we note that a similar procedure was performed for linear OWNS
in (Araya et al., 2022). We also tested the block-Jacobi relaxation method, which
entails a cost of O(MNNyN})), and although we found this approach converged
quickly in the early stages of the march, it failed as the nonlinearity grew stronger

and we did not pursue relaxation methods further.
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3.2.4 Special treatment of the zero-frequency modes

We have three options for obtaining a stable march for the zero-frequency modes, as
depicted in table 3.1. In the first approach, which mimics how the zero-frequency
modes are handled by NPSE (Chang et al., 1993; Day, 1999), we neglect the stream-
wise pressure gradient, dpg,/dx, and the streamwise diffusion terms, 0%qon/ 0x>,
associated with the zero-frequency modes. However, in general we would prefer to
avoid neglecting terms, and to instead parabolize these equations using the OWNS
approach. In the second approach, we include the streamwise diffusion terms (but
exclude the streamwise pressure gradient) associated with the zero-frequency modes,
and parabolize the equations for all modes using OWNS. This approach yields a
stable spatial march that agrees well with DNS, but offers no advantages over the
first approach: for all of the cases examined in this paper, neglecting the streamwise
diffusion terms associated with the zero-frequency modes does not change substan-
tially the results of the NOWNS calculation. In the third approach, we include both
the streamwise diffusion terms and the streamwise pressure gradient associated with
the zero-frequency modes. Although the OWNS approach yields a stable spatial
march, we have found that this approach produces inferior comparisons to DNS

solutions from the literature, as discussed in Appendix G.2.

We are applying NOWNS to boundary-layer flows where we wish to maintain zero
mean streamwise pressure gradient. The base flow has zero streamwise pressure
gradient, while the corrected mean flow will have zero streamwise pressure gradient
if dpo,/0x = 0. In general, we will have dpg,/dx # 0, but as long as it is
small, the streamwise pressure gradient of the corrected mean flow will be nearly
zero. It is possible that neglecting dpg,/dx leads to better agreement with the
zero mean streamwise pressure gradient condition, which is why we observe better
agreement with DNS. We further note that for flows with non-zero streamwise
pressure gradients, we will likely also wish to neglect dpg,/dx = 0 since the base

flow will have the desired streamwise pressure gradient.

In summary, including the streamwise pressure gradient for the zero-frequency
modes worsens agreement with DNS, while including the streamwise diffusion
terms for the zero-frequency modes has nearly no impact on the solution. Since ne-
glecting these terms is more computationally efficient while still providing excellent

agreement with DNS, we recommend that these terms be neglected.
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‘ Include dpo,, /0x? ‘ Include 82y, /Ox%? ‘ Parabolized using OWNS? ‘ Agreement with DNS?

1 No No No Yes
2 No Yes Yes Yes
3 Yes Yes Yes No

Table 3.1: Three approaches to parabolizing the zero-frequency modes

3.2.5 Spanwise symmetry

If the disturbances are symmetric, then we can enforce a symmetry condition to
reduce the number of equations from (M + 1) X 2N + 1) to (M + 1) X (N +1).
All variables have even-symmetry (¥, _, = V., Uy, = Uy s V0 = Vs

Pm—n = Dmn)» With the exception of the w-velocity which has odd-symmetry

(W;n—n = _Wllnn)

3.2.6 Boundary conditions

At the wall, we impose no-slip isothermal boundary conditions (' =v' =w’' =T’ =
0) and solve for the specific volume, v/, using the (nonlinear) continuity equation.
At the far-field boundary, we impose 1D (in y) inviscid Thompson characteristic
boundary conditions to minimize spurious numerical reflections (Thompson, 1987),

which we implement using the linearized boundary-layer flow equations.

Some previous work on NPSE has used similar characteristic far-field boundary
conditions (Day, 1999). Chang et al. (1993) used the far-field boundary condition
Grun(Ymax) = 0 for m,n # 0. As the boundary layer must be allowed to grow in the
wall-normal direction (due to nonlinear interactions), they used 89(,,/dy = 0 at ymax
for the mean-flow distortion (MFD). The characteristic far-field boundary conditions
are advantageous because they allow us to use the same boundary conditions for all

Fouriers modes, instead of handling the MFD as a separate case.

3.2.7 Effects of the mean-flow distortion

In NOWNS, the disturbances interact to excite the MFD, so that the corrected mean
flow, g + g0, differs from the baseflow, §. We have experimented with linearizing
about both the baseflow and the corrected mean flow and found that it does not have a
large impact on the NOWNS calculation, as discussed in Appendix G.4. Linearizing
about the corrected mean flow increases the computational cost of NOWNS because
the projection operators change between iterations, since the MFD changes, so the
LU factorization must be updated. On the other hand, linearizing about the baseflow
allows us to use the same LU factorization at each iteration because the baseflow is

not affected by changes in the MFD. Since it is more computationally efficient to
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linearize only about the baseflow, we choose this approach moving forward.

3.2.8 Recursion parameters

The choice of recursion parameters is described in Sleeman et al. (2024b), and
matches the recursion parameters used by Rigas et al. (2017a), which are based on
the recursion parameters originally developed by Towne and Colonius (2015). We
briefly discuss our strategy for selecting the recursion parameters when w = 0 in

Appendix H.

3.2.9 Modeling errors

NOWNS removes upstream effects, which introduces a modeling error, since the
real flow does allow waves to propagate in the upstream direction. We discuss
this modeling error and its effect on the NOWNS methodology in more detail in
Section 5.4.2.

3.3 Validation

We validate NOWNS by applying it to 2D and 3D Blasius boundary layer flows,
where the base flows are generated following the procedure outlined in Appendix B,
for which there are existing DNS and NPSE results in the literature. We choose a
Mach number of May, = 0.1 to study flows near the incompressible limit. We refer
to modes according to their temporal frequency and their spanwise wave number
as (m,n), where m refers to the frequency w,, = mw and n refers to the spanwise
wave number 5, = nf. To be consistent with previous literature, we measure the

amplitude of disturbances as

u;‘f(lglx’n) (x) = cm,n m;lx |u;n,n (x9 y) |’ (3303)

for
1 m=n=0,

Con=3V2 m=0,n%0;n=0,m #0, (3.30b)

2 otherwise.

3.3.1 2D evolution of a Tollmien-Schlichting wave

We consider the test case developed by Bertolotti et al. (1992) which has been
widely used in the literature as a validation case for NPSE (Joslin et al., 1991; Joslin
et al., 1993; Paredes et al., 2015). This case examines the evolution of a Tollmien-

Schlichting (TS) wave excited at the inlet at a frequency F = 86x 107 and amplitude
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Figure 3.1: Amplitude of u’ v.s. streamwise coordinate, Rey, for 2D evolution of TS
wave.

u;flg (x0) = 0.25%. All other Fourier components initially have zero-amplitude and
are generated through nonlinear interactions with the TS wave. The grid extends
over the domain Re, € [1.6 x 10°,10°] and y € [0, 75] with 4000 stations evenly
spaced in x and 150 grid points in y, with the majority of the grid points clustered

towards the wall, while the Fourier series is truncated at M = 5 temporal modes.

Figure 3.1 compares NOWNS to DNS and NPSE for «"")(x), while the u- and
v-velocity profiles for the MFD and TS waves are shown in Figure 3.2. Excellent
agreement is obtained; the discrepancy for the MFD of v can be attributed to the

Dirichlet boundary conditions used in the DNS.

3.3.2 3D oblique-wave breakdown

Next we consider the oblique-wave breakdown case studied by Joslin et al. (1993),
where transition is initiated by two oblique waves with opposite wave angle. They
defined two cases—with small and large initial amplitude. In this section, for valida-
tion purposes, we consider the small amplitude case for which NPSE was previously

successful.

Oblique-wave breakdown has also been studied using both experiment and spatial
DNS by Berlin et al. (1999), while it was studied using NPSE for compressible
flows by Chang and Malik (1994). We further note that whereas fundamental and
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Figure 3.2: u-and v-velocity profiles at streamwise coordinate Re, = 7.80 x 10° for
2D evolution of TS wave.

subharmonic transition can be studied using Herbert’s secondary stability theory
(Herbert, 1988), no such theory exists for oblique-wave breakdown, so that either
experiment or numerical simulation is necessary to study this transition scenario
(Joslin et al., 1993; Berlin et al., 1999).

The oblique waves have amplitude u;,(];;(l) (x0) = V2 x 1073 at the inlet at a frequency

F = 86 x 107 and spanwise wavenumber b = 2/9 x 1073, while the grid extends
over the domain Re, € [2.74 % 10°,6.08 x 10°] and y € [0, 75] with 2, 000 stations
evenly spaced in x and 150 grid points in y, while the Fourier series is truncated at
M =3 and N = 4. Figure 3.3 compares NOWNS to DNS and NPSE for /" (x),
while Figure 3.4 compares the u-velocity profiles at Re, = 4.69 x 10°; we see that
we have excellent agreement between the DNS and NOWNS results for all modes.
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Figure 3.3: Amplitude of u’ v.s. streamwise coordinate, Re,, for the small-amplitude
oblique-wave breakdown case at frequency F = 86 x 107, spanwise wavenumber

b =2/9 x 1073, with initial amplitude of u/\1:" (x) = V2 x 1073

3.4 Advantages of the NOWNS procedure
In this section, we apply NOWNS in three scenarios where NPSE is known to break
down, to demonstrate that NOWNS can succeed where NPSE fails.

3.4.1 High amplitude evolution of TS wave

It is well-known that NPSE can fail for sufficiently strong nonlinearities (Day, 1999;
Towne et al., 2019). Here we consider a 2D test case from Scholten et al. (2024),
where we modify the validation case discussed in Section 3.3.1, such that we march
over the domain Re, € [1.6 X 10%,8.59 x 10°] with 2663 stations evenly spaced in
x, while the wall-normal domain remains the same as before, and the Fourier series
truncate at M = 10 temporal modes. Scholten et al. (2024) compute a high-fidelity
solution using a harmonic Navier-Stokes equation (HNSE) solver, and demonstrate
that NPSE agrees with HNSE with an inlet amplitude of u;fl}& (x0) = 0.4%, but
that the NPSE march fails. In Figure Scholten et al. (2024), we plot the NOWNS
amplitudes against those from HNSE and demonstrate that NOWNS marches farther
than NPSE, while still being accurate, but that it too fails (by fail, we mean that the
Newton solver fails to converge). This highlights that NOWNS can march farther
than NPSE, while still being accurate, and that the failure of NPSE may not be
related to its minimum step-size requirement or the regularization techniques it uses
to suppress the upstream-going waves. As discussed in 3.2.3, the quasi-Newton

method is more computationally efficient than the full Newton’s method, but takes
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Figure 3.4: u-velocity profiles at streamwise coordinate Re, = 4.69 x 10° for small-
amplitude oblique-wave breakdown.

more iterations to converge. In addition, the full Newton’s method is more likely to
converge for stronger nonlinearities. In Figure 3.5, we indicate where each of the
the quasi-Newton and full Newton methods fail. Even without employing the full
Newton’s method, NOWNS is able to march farther downstream than NPSE.

3.4.2 High amplitude oblique-wave breakdown

Here we apply NOWNS the high amplitude oblique-wave breakdown case studied by
Joslinetal. (1993). We modify the setup of Section 3.3.2 by increasing the amplitude
of the oblique wave at the inlet by a factor of 10 to u;ﬁ;;(l) (x0) = \/EZ) % 1072, while
we change the streamwise domain so that it comprises 2,000 grid points over the
domain Re, € [2.73529 x 10°,4.9 x 105], and the Fourier series are truncated at
M = N = 7. We plot the amplitudes of the u-velocity as a function of streamwise

station in Figure 3.6. First we note that we have excellent agreement between the
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Figure 3.5: Amplitude of u’ v.s. streamwise coordinate, Re,, for 2D evolution of TS
wave with u;flg( (x0) = 0.4%.

amplitudes predicted by NOWNS, NPSE, and DNS for the early stages of transition.
However, NPSE begins to fail towards the end of the domain, while NOWNS is able
to march all the way to the end of the DNS calculation. The DNS calculation is
under-resolved near the end of the domain (Joslin et al., 1993), which may explain
the discrepancy between the DNS and NOWNS calculations. We further note that
although the oblique-wave, (1, 1), is initially the dominant instability, it is rapidly
overtaken by the vortex mode, (0,2), leading to streaks, which we observe in the
contour plots of the u-velocity (u = it + u’), shown Figure 3.7. The maximum
amplitude of the oblique-wave occurs at y = 2.55 (Figure 3.7a), while the maximum
amplitude of the vortex mode occurs at y = 1.31 (Figure 3.7b). We also note that the
QN solver fails before the NPSE solver. However, the NPSE calculation becomes

inaccurate earlier than the QN solver fails.

3.4.3 Low amplitude oblique-wave breakdown with random noise

Here we demonstrate for the low amplitude oblique wave breakdown case of Sec-
tion 3.3.2 that NOWNS is robust to random noise applied to the inlet boundary
condition. Given the eigenfunction from the locally parallel linear stability theory,
q1sT, we add random noise, ¢poise, to obtain the inlet condition qy.sT + £ pnoise. We

choose complex random noise such that

qnoise = qnoise,r + 1q noise,i > qnoise,r> 4noise,i ~ 7/I[O,l] P
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Figure 3.6: Amplitude of u’ v.s. streamwise coordinate, Re,, for high amplitude
oblique-wave breakdown.

where Uj, ) represents the uniform distribution over the interval [a, b]. We then
normalize the noise to obtain ¢peise, such that the maximum amplitude of the
u-velocity noise is equal to the free-stream u-velocity, U,. We recall that the
amplitude of g st 18 V2 x 1073, and we choose & = V2% 1075, In Figure 3.8, we
plot the profile of the u- and v-velocities, as well as the thermodynamic variables.
We see that the random noise has a relatively small effect on the u-velocity, and a
slightly more pronounced effect on the v-velocity, while it has a larger impact on
the thermodynamic variables. Like the u-velocity profile, the random noise has a

relatively small effect on the w-velocity profile, so we omit this plot.

The NOWNS march succeeds even if we introduce large disturbances to the ve-
locity fields, but the u” amplitudes differ substantially from the noise-less case due
to the large perturbations. Therefore, we instead introduce relatively large random
disturbances to the thermodynamic variables, and relatively small ones to the ve-
locity field. In Figure 3.9, we see that the amplitudes predicted by NOWNS for
the noisy inlet condition agree closely with those without noise. We also see that

although NPSE initially is able to accurately predict the evolution of the u-velocity

’

(0,0)
failing. We also plot the contours of the real part of the u- and v-velocities of the

amplitudes, it eventually becomes inaccurate (especially for u and “,(1 1)) before
oblique wave, with and without noise in Figure 3.10. We see that despite the noisy
inlet condition, NOWNS evolves the u-velocity of the oblique wave such that it

matches closely the case without noise. On the other hand, the v-velocity is more
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Figure 3.7: Contours of the instantaneous u-velocity for high amplitude oblique-
wave breakdown.
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Figure 3.8: Oblique-wave inlet boundary condition with and without random noise.

affected by the numerical noise, yet we still obtain good qualitative agreement. The
other modes (e.g., the vortex mode) are evolved accurately by the NOWNS calcula-
tion with noisy inlet condition, and the contour plots with and without the numerical

noise are indistinguishable from each other, and so are not plotted here.

3.4.4 Blowing/suction strip

Blowing/suction strips are frequently used to study laminar-turbulent boundary
layer transition in low-speed boundary layer flows (Fasel et al., 1990; Rist and Fasel,
1995; Sayadi et al., 2013; Huai et al., 1997; Rigas et al., 2021). Here, we introduce
disturbances by specifying a non-zero wall-normal velocity such that v(y = 0) =
f(x,z,1), for some function f(x,z,t) that is periodic in ¢ and z. NPSE does
not support blowing/suction strips because they introduce non-modal disturbances,
demonstrating an advantage of NOWNS. However, we note that Herbert’s second
stability theory yields an inlet boundary condition so that NPSE (and NOWNS)



45

1072

——NOWNS (1,1)
——NOWNS (0,2)
] NOWNS (0,0)
= |—NOWNS (1,3)
——NOWNS (2,0)
7 NOWNS (2,2)
——NOWNS (0,4)
.......... Noisy NOWNS
- - =Noisy NPSE
|- - =NPSE failure

10741

max

~

S 1076

6
Re, x10°

Figure 3.9: Amplitude of u’ v.s. streamwise coordinate, Re,, for low amplitude
oblique-wave breakdown with and without random noise.
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Figure 3.10: Contour plots of the u- and v velocities of the oblique wave, with and
without random noise.
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can be used to study fundamental (K-type) and subharmonic (H-type) transition
(Herbert, 1988, 1997).

Rist and Fasel (1995) used DNS with a blowing/suction strip to study K-type tran-
sition (Rist and Fasel, 1995), while similar studies were performed by Sayadi et al.
(2013) using DNS (Sayadi et al., 2013), and by Rigas et al. (2021) using a harmonic
balance method (HBM) (Rigas et al., 2021). The blowing/suction strip is given by

f(x,2,1) =5 % 1073 sin(wt)va(x) + 1.3 x 1074 cos(Bz) v, (x), (3.31a)
where
0, Re, < Re,(x1)
(Rey) 15.1875&° — 35.43756% +20.2563, Re,(x1) < Rex < Reyx(x)
Va(lké€y) =
—Va (2Rex(xm) - Rex)a Rey(xpm) < Rex < Rey(x2)
0, Re (x7) < Rey,
(3.31b)
0, Re, < Rey(x))
—3¢% 4+ 483, Re,(x1) < Rey < Rey(xp,
vs(Rey) = £rde ex(n1) < Rey < Rexlrm) 5 41
vs(2Rey(xpm) — Rex), Rex(xm) < Rey < Rey(x2)
0, Re,(x2) < Re,

for Re,(x1) = 1.3438 x 10°, Re,(xp) = 1.5532 x 10°, x,, = (x; + x2)/2, and
& = (Rey — Rey(x1))/(Rex(x,) — Rex(x1)). We choose F = 110 x 107® and
b =0.423 x 1073 with M = N = 4, while the grid extends over Re, € [1.33956 X
10°,2.72 x 10°] and y € [0, 60], with 1,300 stations in x and 100 grid points in y.

Figure 3.11 shows excellent agreement between the u’ amplitudes of NOWNS and
the DNS of Rist and Fasel (1995) (Rist and Fasel, 1995). We note that in the
early stages of the march there is disagreement between the DNS and NOWNS
calculations because the blowing/suction strip causes upstream effects that NOWNS
neglects by construction. However, these disturbances are convective in nature, and
the amplitudes predicted by NOWNS rapidly converge to those predicted by DNS

as the march progresses downstream.

3.5 Summary

In this chapter we developed the NOWNS approach and validated for low-speed
flat-plate boundary-layer flows by comparing to DNS data in the literature for the
2D evolution of a TS, 3D oblique-wave breakdown, and a fundamental (K-type)
transition case. In addition, we demonstrated that NOWNS supports stronger non-
linearities than NPSE. For the 2D high amplitude evolution of a TS wave, we find
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Figure 3.11: Amplitude of u’ v.s. streamwise coordinate, Re,, for K-type transition

that the NOWNS march remains accurate until the point where the Newton solver
fails to converge, while for the 3D high amplitude oblique-wave breakdown case,
NOWNS marches all the way to the end of the DNS calculation. We also show that
NOWNS is robust to numerical noise in the inlet boundary-condition, and that a
blowing/suction strip can be used to introduce disturbances, which is advantageous
because blowing/suction strips are frequently used in DNS studies but cannot be

used in NPSE calculations.
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Chapter 4

A GREEDY APPROACH TO RECURSION PARAMETER
SELECTION

As discussed in Chapters 2 and 3, previous work on OWNS has chosen recursion
parameters heuristically, based on the Euler equations, linearized about a uniform
flow. This section proposes a greedy algorithm for recursion parameter selection,
and we demonstrate that it achieves rapid error convergence relative to the heuristic
approach for low-speed boundary-layer flows. This section is adapted from Sleeman
and Colonius (2025).

4.1 Greedy algorithm for recursion parameter selection

Assuming a,, # a, for all m = i) and n = i”), propositions 2.2.16 and 2.2.31
define recursion parameter sets that ensure convergence. However, these sets are
large and require the eigenvalues of M, so previous work has used heuristic parameter
selection to avoid this eigendecomposition while maintaining stability and accuracy
with Ng < N. Although it has been used successfully, heuristic selection converges

slowly, so we propose a greedy algorithm to accelerate convergence.

4.1.1 Objective function

We define ﬁi = {ﬁi, B’} and the recursion parameter set = Ng = {ﬁi ;vfo, as well as
the functions
Ng-1 ¥ Ng—1 :
5 le —Bil o o - BL|
Ju@gy) = [| =2, J@Ey) =[] —=. (4.12)
J:O |a_ _| ]:O |a_ +|
and N
B~ J j
5 - |am — Byl lan — B
T (@m, @3 Eng) = ]—[ ﬂj - = (4.1b)
j=0 lam — B=| |an — Byl
Then, by proposition 2.2.17 the OWNS-P error scales as
JEny) = max  J(am anBr,) = IFIFZ, (4.1c)
m=i(+) n=i(=)
while by proposition 2.2.34 the OWNS-R error scales as
j(R)(EN/g) = maX{ max xﬁ(a’m;EN/j)’ max gﬁ-—(a{m9ENﬁ)}
m=i(+) n=i(-) (4.1d)

= max {|| Foll, [IFZ1]}.
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4.1.2 A summary of the greedy algorithm
By Propositions 2.2.17 and 2.2.34, the OWNS-P and OWNS-R errors scale linearly

with J (En,) and I (R) (= n,) for small values, respectively. Thus, for two recursion

=)
Ng

J (31(\2)' We seek Ey, such that 7 is minimized for Ng << N, which is well-posed

parameter sets EI(\}) and Eﬁ), we expect to introduce less error if (EE\;)) <
B B B

as an optimization problem due to the continuity of the objective function (a quotient

of polynomials with a non-zero denominator). However, identifying the optimal set

is computationally intractable because we must consider

N,! N_!
Ng!(Ny — Ng)! Ng!(N_ = Np)!

combinations of recursion parameters, since we must choose Ng recursion pa-
rameters from the N, downstream-going and the N_ upstream-going eigenvalues.
Therefore, we use the greedy algorithm outlined in algorithm 1, which we briefly

summarize below, to choose quasi-optimal parameter sets.

Given a recursion parameter set = with Ngreeqy < Np, we can add two new

greedy
. Nereedy ,NVgreed
recursion parameters, (3, %", -*Y), to reduce the error. We compute

m = arg 111112(13% m(am’ :'Ngreedy)’ h = arg gll?'_)% l(an’ :'Ngreedy)’
Nereed Nereed . . :
and choose B, *“" = @ and B-**°" = @;;. This choice does not necessarily lead to

the optimal error decrease, but it locally eliminates the largest source.

Remark 4.1.1 Previous work on OWNS combined heuristic parameter selection
with mode-tracking, where important discrete modes (e.g., Kelvin-Helmholtz in free-
shear flows or Mack’s second mode in high-speed boundary layers) were added to the
recursion parameter set to improve approximation accuracy (Towne and Colonius,
2015; Towne et al., 2022; Zhu and Towne, 2023). While previous methods manually
identified eigenvalues to track, the present work proposes an automatic approach

with minimal user intervention.

Remark 4.1.2 The greedy algorithm can be modified so that it is initialized with
user-specified recursion parameters instead of randomly chosen recursion parame-
ters. For example, choose 8 corresponding to Mack’s second mode, and 8° as the

upstream-going mode closest to the real axis.
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Algorithm 1 Greedy recursion parameter selection

B% « a,, for randomly chosen m = i)
B° — a, for randomly chosen n = i(”)
ENpecay < (B2} where B2 = {1, 5%}
N greedy < 1

while Ngeeqy < Ng do

m «— arg Inaszi(+) «%—(am’ ENgreedy)

ii « argmax,_;) J_(ay; ENgreeay)
B — {am, a7}

E gyl (BLY I
N, greedy < N, greedy t 1

end while

4.1.3 Numerical stability of the recursive filter

OWNS solves equations of the form

(M —il)¢/*' = (M —ipl)¢/, j=0,...,Ng—1.
If the exact solution is given by @/*!, then the rounding error introduced by solving
the linear system is bounded by

|¢/+ — g/ (M =i/ D$/* — (M —ip. D)/

— < k(M - iplI) —
llg/+| (M —ip. D)@/ ||
WM =B TINNGIF = $7 1 + 18 — BT Il
< K(M_l.’BJ_I)H il .¢ I Alﬁ+ B¢ ||.
(M i 1)@/ ||
If B, = B/, then ||¢/*' — ¢/|| = O(emach), Where €mach is machine epsilon, and

the error is O(€machk (M — i/ 1)). However, this error grows as | ,8{; — B/ grows,
and accumulates for j = 0,...,Ng — 1. Therefore, it is preferable for |8/ — ,8_{|
to be small, so we re-order the recursion parameters such that |,8{_1| < |,8{| and
187! < |BL| for j = 1,...,Ng — 1. We further note that the error bounds and
objective functions do not depend on the order of the recursion parameters, so we

are free to re-order them, which is necessary when using greedy selection.

Remark 4.1.3 Heuristic parameter selection does not explicitly sort the recursion

parameters, but in practice they are chosen such that each pair has the same
. i 1 p
magnitude (|By| ~ |BL]).

4.1.4 Greedy algorithm and spatial marching
For systems where M varies slowly in x, the recursion parameters computed at the

inlet can be reused downstream. However, they generally need to be updated to
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keep the error low, which can be done by tracking them as they evolve downstream,
as shown in algorithm 2. When the number of upstream- and downstream-going
characteristics changes, such as supersonic boundary-layer flows when the number
of subsonic and supersonic grid points changes, it can be advantageous (although

not necessary) to perform the greedy algorithm again to keep the error low.

. . —(i—1 . . . .
Consider the recursion parameters, :1(\;5 ), at station i — 1, which are eigenvalues

of M~V If the number of upstream- and downstream-going characteristics is the

. . . . : . —(i-1
same at stations i — 1 and i, then given M () the recursion parameters from :](\',ﬁ ) can

be used with, for example, MATLAB’s eigs function to update to Eg\l/; For large,
sparse M, this is much less costly than solving for the complete eigenspectrum. If
the number of characteristics changes, the greedy algorithm is performed again, as

shown in algorithm 2.

Algorithm 2 Recursion parameter tracking

Compute NJ(rl) and NV
Compute Ez(vl,z using algorithm 1 with the eigenvalues of M1
fori=2,...,N,do
Compute Nf) and N
if Nf) = NJEH) then
for j=0,...,Ngdo

B. — B from zli-1

. Nﬁ
Compute ,Bfr by finding eigenvalue of M (@) closest to ﬁ+
Compute B/ by finding eigenvalue of M @) closest to 3-
BL — {BL.B}
EI?? for Moo
= J\Ng—
= < (BLYY
else
Compute =
end if
end for

](\2,: using algorithm 1 with the eigenvalues of M (@)

4.1.5 Cost trade-off

OWNS avoids computing the eigendecomposition of M by using a recursive filter,
whereas the greedy algorithm selects recursion parameters based on these eigenval-
ues. While this may seem contradictory, the greedy approach can reduce the overall
computational cost by requiring fewer recursion parameters, thereby lowering the
cost of solving the OWNS system. Moreover, the full eigenspectrum is needed only

at a small number of stations, potentially just at the inlet, and the selected eigenval-
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ues can be efficiently updated by tracking them downstream. Moreover, as noted in
remark 4.1.1, this approach has previously been employed for eigenvalues chosen

manually by the user.

For linear calculations, OWNS-R can reduce computational cost relative to OWNS-
P, though selecting appropriate recursion parameters is more challenging. We
show that OWNS-P with greedy selection outperforms OWNS-P with heuristic
selection, and that OWNS-R with greedy selection is more efficient than both. In
optimization tasks, such as the resolvent analysis by Towne et al. (2022), the initial
cost of computing recursion parameters can be amortized over many optimization
iterations. For nonlinear calculations, we demonstrate that NOWNS with greedy

selection is more efficient than with heuristic selection.

Remark 4.1.4 This work focuses on flows with a single inhomogeneous direction
(normal). Computing the eigenvalues of M for flows with two inhomogeneous
directions (normal and spanwise) may not be feasible, making heuristic selection

the preferred method for these flows.

4.2 Demonstration of the greedy algorithm for a single station

Here we demonstrate the greedy algorithm for a two-dimensional (2D) subsonic
boundary-layer flow, where the disturbance frequency is F = 86 x 107, while the
wall-normal extent is y € [0,75] with N, = 150 grid points, which matches the
parameters used by Bertolotti et al. (1992). For now, we focus only on comparing

the greedy and heuristic parameters at Re, = 1.6 x 10°. We show the following:

1. Greedy parameter selection yields a much more rapid convergence of the
objective functions for both OWNS-P and OWNS-R.

2. Heuristic parameter selection yields a stable march for OWNS-P, while the

same recursion parameters yield an unstable march for OWNS-R.

3. Rounding errors when computing ,8{,; for OWNS-R lead to increasing error with

increasing Ng, while the OWNS-P error is zero to machine zero-precision.

4.2.1 Convergence of the objective function
Figure 4.1a shows that although the J decreases with increasing Ng for both greedy
and heuristic parameter selection, it decreases far more rapidly for greedy selection

(although greedy selection leads to larger values of J for small Ng). In contrast, for
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Figure 4.1: Convergence of the objective function for greedy and heuristic parameter
selection.
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Figure 4.2: Convergence of the objective function, split into upstream- and
downstream-going components, for greedy and heuristic parameter selection.

OWNS-R, heuristic selection leads to an increase in J %), while greedy selection
leads to a rapid decrease. Figure 4.2 plots both ; and J_, showing that although J_
is decreasing for heuristic selection, ﬁ is increasing, which causes J (R) to increase.
This highlights that OWNS-P will always have a lower error than OWNS-R small
[|Fisll and [|FZL]|, since

IF IFZH < max{||Feell, IFZ2Y, N Fell IFZ2) < 1.

Figure 4.3 shows the greedy and heuristic recursion parameter sets for Ng = 20.
The greedy algorithm places parameters along the branches of acoustic and vortical
waves, focusing near the origin where the eigenvalues are closest, and uses the
discrete Tollmien-Schlichting (TS) wave as a recursion parameter. The heuristic
approach targets the same eigenvalues but is less efficient, with many parameters far

from their targets, which explains its slower convergence.
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Figure 4.3: Recursion parameters plotted against spectrum for heuristic and greedy
recursion parameter selection with Ng = 20.

4.2.2 Stability of the march

All upstream-going modes must be removed for the march to be stable. Figure 4.4a
demonstrates for heuristic parameter selection that Py, removes all upstream-going
waves from M, while Figure 4.4b demonstrates that PJ(VI;) does not. For n = 0,
we observe that the OWNS-R spectrum has many eigenvalues with 7 (@) < 0, and
taking 7 = 1000 allows us to verify that these are upstream-going modes according
to Briggs’ criterion. Therefore, the exist parameter sets where the march is stable for
OWNS-P, but unstable for OWNS-R. Repeating this analysis with greedy selection
yields stable marches for both OWNS-P and OWNS-R.

Remark 4.2.1 Zhu and Towne (2023) noted that OWNS-P and OWNS-R approx-
imate the V and E, respectively. Therefore, we expect OWNS-P to better remove
upstream-going modes since it makes no approximations to E, which is consistent

with the above observations.

Remark 4.2.2 Figures 3 and 6 from Zhu and Towne (2023) show that the OWNS-
R operator removes all upstream-going modes for the dipole and jet test cases,
while Figure 10 suggests it still supports upstream-going modes for their supersonic
boundary-layer case. Thus, our observations in Figure 4.4b for the low-speed
boundary-layer flow align with those of Zhu and Towne (2023) for their supersonic

case.
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Figure 4.4: Comparison of OWNS spectrum with heuristic parameter selection for
n = 0 and n = 1000. According to Briggs’ criterion, 7 (@) < 0 for large values
of n indicates a downstream-going mode. For = 0, we wish to have 7 (a) > 0
for the march to be stable. We achieve a stable march using OWNS-P, but not for
OWNS-R.

4.2.3 Accuracy of the projection operator
Consider a solution ¢ = Vi, + V_f_, where P = V., by definition. We choose

random coefficients ¥ and compute the relative errors

1Py, Vit + Vo 1 = Vil 1P [Vt + Vo] = V|
Vil ’ Vil

for OWNS-P and OWNS-R, respectively. Similarly, we consider specifically the

, 4.2)

ability to retain only the TS wave and compute the relative errors

(R)
1PNy é1s — prsll 1Py, ¢1s — Sl
sl ’ sl

Figure 4.5a shows for OWNS-P that greedy selection yields rapid error convergence,

4.3)

and that machine zero precision is achieved at Ng = 29, while heuristic selection
yields slow convergence. For OWNS-R, we observe that the error is large compared
to OWNS-P, and that although the error initially decreases with increasing Ng, it
begins to grow again around Ng = 45 for greedy selection and Ng = 55 for heuristic.

Figures 4.5a and 4.5b show that whereas the OWNS-P projection error is (nearly)
a monotonically decreasing function of Ng, the OWNS-R projection error is an
increasing function of Ng for sufficiently large values of Ng (Ng ~ 45 and Ng ~ 55
for greedy and heuristic parameter selection, respectively). Figure 4.5b shows that

although J® is decreasing rapidly for greedy selection, the projection error is
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Figure 4.5: Error convergence as a function of Ng for OWNS-P and OWNS-R for
the 2D low-speed boundary-layer flow.

increasing due to rounding error when computing ,8{; . We demonstrate this in
Figure 4.6 by plotting an estimate for the relative error in the polynomial factor-
ization, which we compute by choosing random complex numbers c; = ay + iby
with ay, by € [-1,1] for k = 1,..., 100 and computing the error in the polynomial
approximation as
211} (i = BL) =TI, (ex = B2) = TT17, (cx = B
el IT1% (e = BL) = T2, (ex = BD) oo
j=11k j=1\Ck T P

Figure 4.6 shows that this error is an increasing function of Ng, which explains

why adding more recursion parameters for sufficiently large values of Ng increases,
rather than decreases the OWNS-R projection error. OWNS-R can lead to a reduced
computational cost relative to OWNS-P, but this is helpful only if the OWNS-R
march is stable and accurate. Therefore, future work should investigate how to
perform the polynomial factorization such that the effects of rounding errors on the
accuracy of the OWNS-R approximation are minimized.
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Figure 4.7: Error convergence as a function of Ng for OWNS-P and OWNS-R for
the low-speed oblique wave case.

4.2.4 3D low-speed boundary-layer flow

We investigate the oblique-wave case studied by Joslin et al. (1993), with disturbance
frequency and wavenumber are F = 86x 107% and b = 0.222x 1073, respectively, for
the wall-normal domain y € [0, 60] with Ny, = 100 at Re, = 2.74 X 10°. Figure 4.7
shows that greedy selection yields rapid convergence of the objective function and
projection error. Moreover, OWNS-P achieves machine-zero error with Ng = 24,
while OWNS-R does not, due to rounding errors in computing B{ . We further note
that the 3D case converges with fewer recursion parameters because the upstream-
and downstream-going branches are more widely separated than in the 2D case,
which makes it easier to choose recursion parameters that keep both ||F,.|| and
|F~1|| small, as noted by Towne and Colonius (2015).
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4.3 Demonstration of the greedy algorithm for spatial marching

The greedy algorithm is advantageous because it yields a rapidly convergent OWNS
approximation without the need to manually choose flow-dependent recursion pa-
rameters. However, this requires that the eigenvalues of M be computed, which adds
a cost that is not present in the heuristic approach. Here we demonstrate that the
overall computational cost of spatial-marching using OWNS can be reduced using

the greedy selection (algorithm 1) and tracking (algorithm 2) procedures.

4.3.1 Linear calculation

We first demonstrate, for the oblique-wave case studied by Joslin et al. (1993) and
discussed in Section 4.2.4, that greedy parameter selection reduces computational
cost in both linear and nonlinear calculations. The problem parameters remain the
same as before, and we consider the streamwise domain Re, € [2.74,6.08] x 10°
with N, = 2000 stations. We compare the number of recursion parameters required
for convergence and measure speed-up based on total wall-clock time, including all

steps of the greedy selection process.

Due to instability in OWNS-R with heuristic parameter selection for the linear
evolution of the oblique wave, we compare OWNS-P and OWNS-R with greedy
selection to OWNS-P with heuristic selection. To ensure meaningful comparisons,
we select Ng as the smallest value that yields 10%, 1%, and 0.1% relative error
in the N-factor, measured against the OWNS-P greedy calculation with Ng = 30.
We choose to measure error using the N-factor. Table 4.1 summarizes the data,
and shows that the speed-up of OWNS-R with greedy parameter selection is most
pronounced when the desired error is 1%, while for OWNS-P with greedy parameter
selection it is 0.1%. If a tight error tolerance is desired, then OWNS-P is preferable,
while OWNS-R is preferable for looser error tolerances. We further that the greedy
approach yields a net decrease in computational cost, despite the added cost of

computing the eigenvalues, as it allows convergence with fewer recursion parameters.

4.3.2 Nonlinear calculation

For the nonlinear calculations, we truncate the Fourier series at M = 3 temporal
and N = 4 spanwise modes, while we specify at the inlet that the oblique wave
has amplitude u;r(l;li;gl) = V2 x 1073, We again select Ng as the smallest value
for which the relative error in the N-factor is 0.1% with respect to the reference
solution. For NOWNS, heuristic and greedy parameter selection require Ng = 18

and Ng = 6, respectively, resulting in a speed-up of 3.83 for the greedy approach
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Ng Speed-up

Error | P-H P-G R-G | P-H P-G R-G
10% | 11 5 29 | 1.0 23 3.6
1% 17 5 29 | 1.0 3.9 6.0

0.1% | 18 5 36 | 1.0 4.2 4.9

Table 4.1: Speed-up achieved by using greedy parameter selection with OWNS-P
(P-G) and OWNS-R (R-G) relative to heuristic parameter selection with OWNS-P
(P-H) for different relative errors in the N-factor for the 3D low-speed boundary-
layer flow.

- = =Heuristic

3 4 5 6
Re, x10°

Figure 4.8: NOWNS for oblique-wave breakdown, comparing greedy and heuristic
recursion parameter selection with Ng = 6. Although NOWNS with greedy selection
is sufficiently converged, heuristic selection is not, and the solution blows-up.

relative to the heuristic. Figure 4.8 compares solutions obtained using NOWNS
with both parameter selection methods using Ng = 6. While greedy selection yields

a converged solution, the heuristic does not and the solution diverges.

4.4 Summary

We demonstrated that our proposed greedy algorithm can yield faster convergence
and a reduced computational cost, relative to heuristic parameter selection, for linear
and nonlinear stability analyses of boundary-layer flows. We have focused on flows
with a single inhomogeneous direction (the wall-normal direction), and we note that
the approach may not extend directly to flows with two inhomogeneous directions
(wall-normal and spanwise) due to the increased grid size. Future work should
explore how to adapt the greedy algorithm for such cases. Additionally, future
work should investigate the development of a posteriori error estimates so that we

can estimate the error introduced by a recursion parameter set without needing to
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calculate the eigen-spectrum of M, which may also make it possible to indirectly

implement the greedy algorithm without solving for the eigenvalues of M.
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Chapter 5

THE NOWNS APPROACH FOR LOW-SPEED
BOUNDARY-LAYER TRANSITION PREDICTION

In Chapter 3 we demonstrated that NOWNS can replicate the K-type transition
scenario simulated using DNS by Rist and Fasel (1995). More recently, Sayadi
et al. (2013) computed the complete transition to turbulence for the H- and K-type
paths. We show that NOWNS matches the u-velocity amplitudes predicted by
Sayadi et al. (2013) in the early stages of transition, and that it is able to qualitatively
reproduce their u-velocity contour plots demonstrating the aligned (staggered) A-
vortex structure that is characteristic of K-type (H-type) transition. The NOWNS
march fails before the flow becomes fully-turbulent, but we plot the mean skin
friction coefficient to demonstrate that NOWNS is able to accurately predict the
initial rise in skin-friction coeflicient, relative to DNS, during the onset of laminar-
turbulent transition. This section is adapted from Sleeman et al. (2024a). We further
note that Fasel et al. (1990) and Rist and Fasel (1995) have previously compared
their DNS results to experimental results in the literature. Since we are applying
NOWNS to these DNS cases, we forego discussions of experimental results and
refer to Fasel et al. (1990) and Rist and Fasel (1995).

5.1 K-type transition

For K-type transition, we use the blowing/suction function specified in (3.31), which
corresponds to the function used in Rigas et al. (2021) and Rist and Fasel (1995).
However, to match the calculations of Sayadi et al. (2013), we modify the parameters
such that Re,(x;) = 1.36 x 10°, Re,(x2) = 1.56 x 10°, F = 110 x 107 and
b = 0.419 x 1073 to match Sayadi et al. (2013). We further choose M = 4 temporal
modes and N = 8 spanwise modes, with 1,300 stations over the streamwise domain
Re, € [1.36x 10°,2.73 x 10°], and 100 grid points in the wall-normal direction for
y € [0, 60].

Figure 5.1 shows excellent agreement between the u’ amplitudes of NOWNS and
the DNS Sayadi et al. (2013), where the gray strip denotes the blowing/suction
strip. Recall that we refer to modes according to their temporal frequency and
their spanwise wave number as (m, n), where m refers to the frequency w,, = mw

and n refers to the spanwise wave number (5, = nf, while the amplitudes are
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Figure 5.1: u’-velocity amplitudes for K-type transition, compared to the DNS
of Sayadi et al. (2013).

defined as (3.30). We note that in the early stages of the march there is disagreement
between the DN'S and NOWNS calculations because the blowing/suction strip causes
upstream effects that NOWNS neglects by construction. However, these disturbances
are convective in nature, and the amplitudes predicted by NOWNS rapidly converge
to those predicted by DNS as the march progresses downstream. We also note that
Sayadi et al. (2013) do not plot the u” amplitudes for the entire streamwise domain,
which is why the NOWNS amplitudes extend farther downstream. Figure 5.2 shows
the u-velocity contours at y/diner = 0.6, as in Sayadi et al. (2013). We observe
the aligned A-vortex structure that is characteristic of K-type transition, and good

qualitative agreement with Sayadi et al. (2013).

5.2 H-type transition

For H-type transition we use the blowing/suction strip function
f(x,z,1) = 1.5 x 107 sin(2wt)ve (x) + 1.5 x 107 sin(wr) cos(Bz)va(x), (5.1)

where for v, (x) defined in (3.31b). We choose Re,(x;) = 1.65x 10° and Re,(x2) =
1.81 x 10°, with 2F = 124 x 107 and b = 0.419 x 1073, To match the parameters
of Sayadi et al. (2013), we choose M = 8 temporal modes and N = 14 spanwise
modes, with 2,370 stations over the streamwise domain Re, € [1.65 X 10°,5.16 x

10°], and 100 grid points in the wall-normal direction for y € [0,60]. As in the
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Figure 5.2: u-velocity contours at y/din1er = 0.6 for K-type transition, demonstrating
the aligned A-vortex structure.
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Figure 5.3: u’-velocity amplitudes for H-type transition, compared to the DNS
of Sayadi et al. (2013).

K-type transition case, Figure 5.3 demonstrates that the amplitudes predicted by
NOWNS agree well with those from DNS, for the streamwise domain where DNS
results are available, while Figure 5.4 demonstrates the staggered A-vortex structure

characteristic of H-type transition.
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Figure 5.4: u-velocity contours at y/dinet = 0.6 for H-type transition, demonstrating
the staggered A-vortex structure.

5.3 Skin friction
Boundary-layer transition is characterized by a rapid rise of the skin friction drag. We

will measure the skin friction drag using the dimensionless skin-friction coefficient
T ou*

1 o

2 (UL /v

where 7,, is the wall shear stress. We rewrite this in terms of the dimensionless

Cr=

variables as

C; = vy, LO0u" vZo,u"‘(')_u_2 Vi oo Uy, Ou 2u  du

* H P ® T =M * % F 9o .
(U)?" oy 6yUL Oy Us \xjusve 0y \[Rey(xg) 9V

so that from NOWNS we obtain the time- and spanwise-averaged skin friction

coeflicient as

Crave = / /“l/@”ﬁ) 2u 6ud g = 2T + Too) 91 + ]
hae T27r/3 o |

Re(xq) 9 VRex(x0) dy

Next, the laminar value can be obtained from the Blasius solution, while we use the

turbulent correlation from White (2006). In summary, we plot the following skin

friction coefficients:

c _2u(T +Too) O] + o] c _0.664 c 0455
f,ave. P f,lam. \/R_ex, f.turb. ln2 (O_O6Rex) .

VRex (o) dy

Figure 5.5 compares these values against the DNS values from Sayadi et al. (2013),

and we see that for both H- and K-type transition NOWNS correctly predicts the

initial rise in the skin friction coefficient, but following the initial rise, the NOWNS
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Figure 5.5: Skin friction coefficient for K- and H-type transition, compared to the
DNS of Sayadi et al. (2013).

predicts a much more rapid growth than DNS, before eventually failing. When we
say the NOWNS march fails, we mean that the Newton solver fails to converge to

the desired error tolerance.

Transition is characterized by a rise in skin friction coefficient, in which it initially
overshoots the turbulent correlation, before converging to this value downstream
(see Figure 5.5). If NOWNS overshot the turbulent value before failing, we could
likely say that it predicted transition. However, NOWNS fails before reaching this

value, so it is not clear when we can say that it predicts transition.

5.4 Investigations into the failure of the NOWNS march

We discuss the root cause of NOWNS’ failure, separating errors into modeling and
discretization errors. We also note that we say that NOWNS fails when the Newton’s
method fails to converge. However, it becomes inaccurate before it fails, since the
skin friction coefficient no longer agrees with the value predicted by DNS. Even if
we modified the nonlinear solution method so it continued to converge, it would be

inaccurate.
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5.4.1 Discretization errors

Section 1.4.3 discusses PSE’s minimum step-size requirement, which prevents it
from properly resolving all streamwise length scales, while also making it more
challenging for the nonlinear solver to converge. NOWNS does not have this
minimum step-size requirement, yet it still becomes inaccurate following the onset
of transition, before eventually failing (the Newton solver does not converge to the
desired error tolerance). This suggests that the minimum step-size requirement is
not necessarily the root cause of NPSE’s failure, since taking arbitrarily small steps
using NOWNS still leads to failure.

To ensure that the failure is not due to a lack of resolution, we doubled the resolution
inx,y, M, and N, and we found that the results did not change substantially. We also
performed the calculation without enforcing symmetry in z, and again found that the
result did not change substantially. Prior to the development of the greedy algorithm
(see Chapter 4), we were concerned that the recursion parameters were not properly
tuned following the onset of transition, since they were originally developed for a
Blasius profile. However, the greedy algorithm allows us to automatically choose
recursion parameters that achieve any desired error tolerance, even following the
onset of transition. Increasing Ng does not change the results substantially, so that

recursion parameter selection is also not likely the root cause of failure.

5.4.2 Modeling errors in NOWNS

Proposition 2.2.10 shows that the linear OWNS approach can evolve the upstream-
and downstream-going modes independently of each other, and recover the global
solution as the sum of the upstream- and downstream-going solutions. However,
this property is lost for the nonlinear equations, since we lose the effect of the

upstream-going solution on the nonlinear term:
PF(§' +¢") # PF(¢').

If |P[F (¢’ +¢") — F(¢')]|| is small, then we expect NOWNS to be accurate, while

it becomes less accurate as this term becomes larger.

The 3D Euler equations have characteristics i, i, i, it — ¢, and i + ¢. For a subsonic

boundary-layer flow, we have iz > 0 and &t < ¢, so that

u,u,u,u+c>0, u—-¢<0.

The OWNS approach removes upstream-going modes associated with i — ¢, which

is a modeling error, since the NOWNS model is not consistent with flow it is
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trying to model. It is possible that modes associated with this characteristic are
important following the onset of transition, and that NOWNS cannot be accurate
since it neglects these upstream-going modes, which is a limitation of one-way

spatial-marching.

In linear OWNS, we linearize the projection operator about the base flow, g. In
contrast, for nonlinear OWNS we have the choice to linearize about either the
base flow or the corrected mean flow, g + §,,. Appendix G.4 compares these two
approaches for K-type transition and finds that it does not substantially affect the
calculation. However, the mean flow distortion calculated by NOWNS neglects
upstream effects by construction, which represents a modeling error. Therefore, it
is possible that the results would change more substantially if we linearized about

the mean flow computed using a global solver.

5.4.2.1 Negative upstream streamwise velocity

For Blasius boundary layers, the u-velocity is downstream-going throughout the
whole domain, so that iz > 0 everywhere. In nonlinear calculations, we must also
consider the corrected mean flow, it + ﬁf)o’ which arises due to nonlinear interactions
of the mean flow distortion, %0, with the base flow. For the cases considered in this
work, we find that the corrected mean flow is also downstream-going throughout
the whole domain, i + u60 > 0, but that the flow can instantaneously have a
negative u-velocity, i + u’ < 0. For the 2D high-amplitude TS wave evolution from
Section 3.4.1, as well as the H- and K-type transition scenarios considered here, we

find that the negative u-velocity precedes the failure of the NOWNS march.

For the 2D case from Section 3.4.1, we find that NOWNS is able to (accurately)
march farther downstream than NSPE before failing. In Section 3.4.2, we also
applied NOWNS to a large-amplitude oblique-wave breakdown case where NPSE
fails. We found that although NOWNS is not accurate compared to DNS, it is able
to march farther downstream than NPSE, and does not fail. We further note that
no negative u-velocity is observed for this case. It appears that the failure of the

NOWNS march is correlated with instantaneous u-velocities.

5.5 Summary
We have demonstrated that NOWNS accurately simulates the early stages of tran-
sition by matching the u-velocity amplitudes predicted by DNS, while correctly

predicting the initial rise in the skin friction coefficient, showing that NOWNS can
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be used to predict transition onset analytically. Our investigation into the cause of
NOWNS’ failure suggests that it is due to a modeling error, since NOWNS neglects
upstream effects by construction. Future work should develop a criterion with which
to predict transition using NOWNS, and should consider potential modifications to

the routine such that it can march farther downstream while matching accurately
DNS results.
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Chapter 6

NOWNS FOR STABILITY AND TRANSITION ANALYSIS OF
HIGH-SPEED BOUNDARY-LAYER FLOWS

This chapter presents the extension of NOWNS to high-speed flows, along with a
demonstration of the greedy algorithm from Chapter 4, and some of the results are

adapted from Sleeman and Colonius (2025).

High-speed boundary-layer transition is challenging to study experimentally using
wind and shock tunnel measurements because of the high noise levels (Schneider,
2001), while they are not necessarily representative of flight tests because free-
stream fluctuations introduce higher amplitude disturbances than those typically
experienced in flight. Quiet tunnels can relieve some of these problems, but are
limited by the Reynolds number they can achieve. Therefore, NOWNS could be a

valuable tool for studying transition mechanisms in high-speed flows.

6.1 Governing equations

Whereas for low-speed flows we performed our analysis in terms of the primitive
variables (v, u, p), for high-speed flows we will instead use (p,u,T), as was done
in (Kamal, 2023). The non-dimensional compressible Navier-Stokes equations for

an ideal gas can be written as

‘Z—’; +V - (pu) =0, (6.12)
Du 1
— +Vp=—V. 1b
P tVP = VT (6.1b)

pT Dp 1
cC,— — — =
P’ Dr " Dr T PrRe

for the stress tensor (1.1e). We assume that Pr and ¢, are constant, while u is a

V- (k(T)VT) + ér : Vu, (6.1¢)

function of temperature according to Sutherland’s law

R (T*)3/2T;;+s*
A=) Tas

where §* = 110.4K, so that k5 (T) = u*(T)c,/ Pr.

; (6.2)

6.2 Demonstration of greedy algorithm for high-speed flows
We consider the Mach 4.5 boundary-layer flow over an adiabatic flat plate studied
by Ma and Zhong (2003), which was used by Zhu and Towne (2023) as a validation
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case for the OWNS-R formulation. The flow conditions are M, = 4.5, T = 65.15
K, pi, = 728.44 Pa, Pr = 0.72, and unit Reynolds number Re, = pi UL /us, =
7.2 %109/ m.

6.2.1 Error convergence at the domain inlet

First we compare the greedy and heuristic approaches at Re, = 5.625 x 103, where
Figure 6.1 shows the convergence of the error as a function of Ng for OWNS-
P and OWNS-R. We again observe that OWNS-P achieves machine zero error,
while OWNS-R does not. We also highlight that for OWNS-R only, we excluded
downstream-going eigenvalues with @; > 100 from the selection procedure, which
improves the accuracy of the approximation. Excluding these modes does not
significantly affect the accuracy of the approximation because they decay rapidly.
We also note that heuristic parameter selection does a better job of capturing Mack’s
second mode (MM), which is the dominant instability for high-speed boundary-layer
flows. For low-speed flows, the eigenvalue associated with the TS wave is far (in
the complex plane) from the rest of the eigenvalues of M, while for high-speed
flows, MM is close to the other eigenvalues. Therefore, the greedy algorithm does
not choose MM as a recursion parameter, explaining the slower convergence. In
contrast, Kamal (2023) places the heuristic recursion parameters such that many are
clustered near MM. As described in Remark 4.1.1, the user could specify MM as an
eigenvalue to track, improving the performance of the greedy approach.

6.2.2 Linear calculation for Mack’s second mode

We use OWNS with greedy and heuristic recursion parameter selection to perform
a linear stability calculation of Mack’s second mode over the streamwise domain
Re, € [5.625,12.1] x 10° with N, = 4,500 streamwise stations. We compute the
N-factor based on the temperature disturbance and find that the greedy approach

leads to a cost increase relative to heuristic recursion parameter selection.

The reference solution is the greedy OWNS-P calculation with Ng = 20, and table 6.1
shows that heuristic recursion parameter selection generally converges with fewer
recursion parameters, which is consistent with our observations in section 6.2.1 that
the error in Mack’s second mode converges more quickly using heuristic, rather than

greedy, parameter selection. Although greedy selection will generally achieve faster
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Figure 6.1: Convergence of the error for greedy and heuristic parameter selection
for 2D high-speed boundary-layer flow.

Ng Speed-up

Error | P-H P-G R-G | P-H P-G R-G
10% | 1 6 17 | 1.0 0.34 0.83
1% 1 6 21 | 1.0 0.34 0.83

0.1% | 2 7 22 1 1.0 0.32 0.82

Table 6.1: Speed-up achieved by using greedy parameter selection with OWNS-P
(P-G) and OWNS-R (R-G) relative to heuristic parameter selection with OWNS-P
(P-H) for different relative errors in the N-factor for the 2D high-speed boundary-
layer flow.

convergence, heuristic selection can be better when parameters are carefully chosen.
We note that if the greedy algorithm is initialized with Mack’s second mode, then it
also converges with Ng = 1 for OWNS-P.

6.3 Extension of NOWNS to high-speed flows
Kamal et al. (2020) extended linear OWNS from low- to high-speed boundary-layer
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flows, and we follow a similar procedure for NOWNS.

6.3.1 Temperature-dependent fluid properties

For the low-speed flows discussed in Chapters 3, 4, and 5, we assumed that the fluid
properties were constant, while they are function of temperature for high-speed
flows. Let ®(T) denote a temperature-dependent fluid property, where T =T + T".
In linear OWNS we take a Taylor series expansion about 7 and discard all terms

higher than linear order to obtain

D(T) =d(T) + g—?‘Tsz’ +O(T"). (6.3a)
However, we wish to retain these terms in NOWNS, so we instead write
®(T) = &(T) + a_q>) T+ @ (T,T), (6.3b)
oT Ir=r
for
OT.T) = oF +T) - o) - 22| 7. (6.30)
oT |r=r

As an example, we consider the quadratic product

7 . _ L)
(G+q)XDP(T+T)= gxo(T) +q'><cI)(T)+qX_‘ T
N oT Ir=T

Discarded terms

Linear terms
+@x (T, T +q % [acI) T+ (T T’)]
1 ’ |57 lr=r e

T=

Nonlinear terms
where terms without a disturbance variable are discarded (the baseflow satisfies the
governing equations), while terms that are higher than first-order in the disturbance
variables are used only by nonlinear OWNS. Therefore, in the nonlinear calculation
(after simplification), we write

) _ OD
§+q)XOT+T) =g xO(T)+gx—| T
(§+q)x®(T+T')=¢q" X ()+qX8TT=T

Linear terms (64)
+@gx O (T, T")+q x [®(T) —D(T)].

Nonlinear terms

We can simplify further to obtain
(q+q)x DT +T) =g xO(T) +[q +q'] x [®(T) - D(T)], (6.5)

which matches the expression commonly employed in high-speed NPSE (Chang
et al., 1993; Chang and Malik, 1994).
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6.3.2 Linearizing about the corrected mean flow

In Chapter 3, we presented NOWNS for projection operators linearized about the
base flow, ¢. In Appendix G.4, we compared results for low-speed K-type transition
linearized about the base flow, ¢, and the corrected mean flow, g + §oo, and we found
that the difference was not substantial. However, we might expect the difference
to be more pronounced for high-speed flows because the number of upstream- and

downstream-going modes can be different for § and g, as explained below.

The number of upstream- and downstream-going modes are determined by the

T, it, i, it — YR, T, it + YR, T,

characteristics of A(§)

or A(q + §oo)

i+ Uog, it + Hoo, U + oo, U + Hoo — \/’ng(T + To()), i+ oo + ﬂng(T + T()()).

For the low-speed flows considered in this work, the characteristics of A(g) and
A(q + §oo) have the same signs, since & and #igp have the same sign and Too is small.

In contrast, for high-speed flows, Tyy can grow large, so that

sign(it — [y R,T) # sign(ii + figo — /YR (T + Tp)).

Therefore, the base flow and corrected mean flow will have different numbers of
upstream- and downstream-going modes, and we might expect that linearizing about
the corrected mean flow instead of the base flow will have a larger impact than in
the low-speed cases. However, we find again that the difference between linearizing

about g and § is negligible for high-speed flows.

6.3.3 Disturbance amplitude
Whereas for low-speed flows we have measured disturbance amplitude in terms of

the u-velocity, we will instead measure it in terms of the temperature as

4 C s 4
T () = 2 max [Ty, (x, )1, (6.62)
for
1 m=n=0,
Cmn=3V2 m=0,n#0:n=0,m #0, (6.6b)

2 otherwise.
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6.4 2D nonlinear evolution of Mack’s second mode

We make the calculation from 6.2.2 nonlinear by specifying that Mack’s second
mode has an amplitude of 10% based on the temperature disturbance, relative to the
free-stream value, while we truncate the Fourier series at M = 10, with Ng = 12
recursion parameters chosen using the greedy algorithm. We plot the temperature
disturbance amplitudes for both the linear and nonlinear OWNS calculations in
Figure 6.2. We see that the two calculations initially match, but as the disturbances
grow, the linear calculation exhibits larger growth of the fundamental disturbance,

while the MFD grows substantially for the nonlinear calculation.

Figures 6.4a and 6.4b show that the heuristic parameter selection yields reasonable
temperature profiles for the MFD and fundamental disturbance, respectively. How-
ever, Figures 6.4c and 6.4e show that there are non-physical grid effects present near
the sonic line for heuristic parameter selection, while these are not present when
greedy selection is used, as shown in Figures 6.4d and 6.4f. We additionally com-
pare the temperature profiles at the domain outlet for the first and second harmonics
of Mack’s second mode in Figure 6.5. Although heuristic parameter selection out-
performs greedy (in terms of computational cost) for the linear problem, the same
set of heuristic parameters do not work in the nonlinear case. As discussed above,
the high-speed heuristic recursion parameters have been tailored to track Mack’s
second mode, but they do so at the expense of the other modes, and this effect is

noticeable for the higher harmonics in nonlinear calculations.

Figure 6.3 compares the amplitudes computed when linearized about the base flow
to the amplitudes computed when linearized about the corrected mean flow. The
results are nearly indistinguishable, but this may be due to the small disturbance

amplitude.

6.5 Oblique breakdown of Mack’s first mode

While TS waves are most unstable for 8§ = 0, Mack’s first and second modes are
most unstable when 8 # 0, so we extend our analysis to 3D disturbances. 3D distur-
bances to Mach 6 flat-plate boundary-layer flows have been studied using DNS by
Leinemann et al. (2021) and Franko and Lele (2013). Both studies introduce distur-
bances using a blowing/suction strip. Both groups investigated oblique breakdown
of Mack’s first mode and fundamental transition for Mack’s second mode, while
Franko and Lele (2013) additionally studied oblique breakdown of Mack’s second
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Figure 6.2: Temperature disturbance amplitudes for 2D nonlinear evolution of
Mack’s second mode for a Mach 4.5 flat-plate boundary-layer flow, computed using
NOWNS and compared to linear OWNS.
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Figure 6.3: Comparison of temperature disturbance amplitudes for NOWNS calcu-
lation linearized about base flow and corrected mean flow for 2D nonlinear evolution
of Mack’s second mode for a Mach 4.5 flat-plate boundary-layer flow.

mode. We will use the conditions of Leinemann et al. (2021), where the free-stream
Mach number is M, = 6, the stagnation pressure and temperature are 956.3 kPa
and 420 K, respectively, while the unit Reynolds number is Re., = 10.8224 x 106/
m. We assume the fluid to be a perfect gas with v = 1.4, while we also assume a
constant Pr = 0.71. The dynamic viscosity is computed according to Sutherland’s
law. Although both Leinemann et al. (2021) and Franko and Lele (2013) introduced
disturbances using a blowing/suction strip, which NOWNS can do, we will introduce
our disturbance using LST. The disturbance frequency is f* = 35 kHz while the
spanwise wavenumber is 8% = 330/m. We use a fourth-order Padé-filter (Gaitonde
and Visbal, 2000) with ay = 0.3 to remove numerical oscillations. Increasing the

wall-normal resolution does not affect the solution substantially, indicating that we
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Figure 6.4: Temperature contours for first and second harmonic of Mack’s second
mode with heuristic and greedy recursion parameter selection.
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Mack’s second mode with heuristic and greedy recursion parameter selection.
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Figure 6.6: Temperature disturbance amplitudes for small amplitude oblique break-
down of Mack’s first mode for Mach 6 flat-plate boundary-layer flow.

have enough grid-points to resolve all physically-relevant waves.

6.5.1 Small amplitude

We consider first a low-amplitude case, with an amplitude of 1.4% based on temper-
ature. The domain is x X y € [0.15 m,0.55 m] X [0 m, 0.025 m] with N, = 2,500
and Ny = 200, while we M = 3 and N = 4 temporal and spanwise Fourier modes,
respectively, with Ng = 12 recursion parameters chosen using the greedy algo-
rithm. We plot the disturbance amplitudes in Figure 6.6, where we observe that the
amplitude of the oblique wave grows more slowly in the nonlinear calculation, as
compared to the linear calculation. Additionally, the vortex mode (0, 2) grows to
be the largest disturbance near the end of the domain. We find that the difference in
linearizing about the corrected mean flow instead of the base flow is negligible, and

so we do not compare the results.
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Figure 6.7: Temperature disturbance amplitudes for large amplitude oblique break-
down of Mack’s first mode for Mach 6 flat-plate boundary-layer flow.

6.5.2 Large amplitude

We increase the amplitude to 14%, while we truncate the domain to x X y €
[0.15m,0.45 m] X [0 m, 0.025 m] with N, = 2000 and N, = 200. We increase the
number of Fourier modes to M = N = 7, while we maintain the same number of
recursion parameters. We plot the temperature amplitudes in Figure 6.7, where we
see again that the amplitude of the oblique wave grows more slowly in the nonlinear
calculation, while the vortex mode (0, 2) grows to be nearly the largest disturbance
near the end of the march. We further note that the march fails at x = 0.288m,
corresponding to station 919. We see from Figure 6.8 that the rise in the skin
friction coefficient is small, indicating the transition has only just begun. Future
work should explore why NOWNS fails so early into the transition process compared
to the low-speed flows studied in Chapter 5. We also note that linearizing about the

corrected mean flow instead of the base flow has a negligible impact on the solution.

6.6 Oblique breakdown of Mack’s second mode

Mack’s first mode is the dominant instability at lower frequencies, while Mack’s sec-
ond mode is dominant for higher frequencies. Leinemann et al. (2021) investigated
fundamental transition of Mack’s second mode for the same Mach 6 boundary-layer
flow for which they investigated oblique breakdown of Mack’s first mode, but with
a frequency of f* = 95 kHz and a spanwise wavenumber 8* = 500/m. Rather than
study fundamental transition, we consider oblique breakdown of Mack’s second
mode. We use a fourth-order Padé-filter (Gaitonde and Visbal, 2000) with oy = 0.3

to remove numerical oscillations.
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Figure 6.8: Skin friction coefficient for large amplitude oblique breakdown of
Mack’s first mode for Mach 6 flat-plate boundary-layer flow.

6.6.1 Small amplitude

We consider first a low-amplitude case, with an amplitude of 1.4% based on temper-
ature. The domain is x X y € [0.15 m,0.55 m] X [0 m,0.025 m] with N, = 2,000
and N, = 200, while we M = 3 and N = 4 temporal and spanwise Fourier modes,
respectively, with Ng = 12 recursion parameters chosen using the greedy algo-
rithm. We plot the disturbance amplitudes in Figure 6.6, where we observe that the
amplitude of the oblique wave grows more slowly in the nonlinear calculation, as
compared to the linear calculation. Additionally, the vortex mode (0, 2) grows to be
the largest disturbance near the end of the domain. Note that NOWNS calculation
is linearized about ¢ + ¢, instead of ¢. Figure 6.9 compares the linear calculation
to the nonlinear calculation linearized about the corrected mean flow. We see that
the vortex mode (0, 2) becomes the largest disturbance, while the oblique wave has

a smaller amplitude in the nonlinear calculation than in the linear calculation.

6.6.2 Large amplitude

We increase the amplitude to 14%, while we truncate the domain to x X y €
[0.15m, 0.45 m] x [0 m, 0.025 m] with N, = 2000 and N, = 200. We increase the
number of Fourier modes to M = N = 7, while we maintain the same number of
recursion parameters. We plot the temperature amplitudes in Figure 6.10, where we
see again that the amplitude of the oblique wave grows more slowly in the nonlinear
calculation, while the vortex mode (0,2) quickly overtakes the oblique wave to
be the largest disturbance. We further note that the march fails at x = 0.0.350m,

corresponding to station 1336. We see from Figure 6.11 that the rise in the skin
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Figure 6.9: Temperature disturbance amplitudes for small amplitude oblique break-
down of Mack’s second mode for Mach 6 flat-plate boundary-layer flow.
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Figure 6.10: Temperature disturbance amplitudes for large amplitude oblique break-
down of Mack’s second mode for Mach 6 flat-plate boundary-layer flow.

friction coefficient is larger than for the oblique breakdown of Mack’s first mode in
figure 6.8, but still smaller than the low-speed cases. We again find that linearizing
about the corrected mean flow instead of the base flow has a negligible impact on

the solution.

We plot the u-velocity contours in figure 6.12, where we observe that streaks associ-
ated with the (0, 2) mode develop towards the end of the domain. Figure 6.13 plots
the temperature contour in the y — z plane at the domain outlet, while figure 6.14
plots the pressure contour in the symmetry plane and figure 6.15 plots the pressure
contour at the wall.

6.7 Summary
We have demonstrated that greedy parameter selection works well for both linear

and nonlinear calculations in high-speed boundary-layer flows. Although heuristic
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Figure 6.11: Skin friction coefficient for large amplitude oblique breakdown of
Mack’s second mode for Mach 6 flat-plate boundary-layer flow.
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Figure 6.12: Contours of u-velocity at y = 0.00189m for oblique breakdown of
Mack’s second mode, exhibiting streaks towards the end of the domain

parameter selection outperforms greedy for tracking Mack’s second mode in the
linear calculation, greedy outperforms heuristic in the nonlinear calculation because
other modes are introduced by the nonlinear term for the higher harmonics, and
these are not properly evolved by the heuristic recursion parameters. In principle, it
is possible to modify the heuristic parameters to enable accurate nonlinear calcula-
tions, but the greedy algorithm circumvents this problem by automatically choosing
parameters that yield a rapidly convergent error in the OWNS approximation. We
have demonstrated that NOWNS can be used to study the nonlinear evolution of
Mack’s first and second modes in high-speed boundary-layer flows, and we have

compared results obtained when linearized about the base flow to results obtained
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Figure 6.13: Temperature contours in the y — z plane at the domain outlet for oblique
breakdown of Mack’s second mode.
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Figure 6.14: Pressure contours at z = 0 for oblique breakdown of Mack’s second
mode.

when linearized about the corrected mean flow. For both the oblique breakdown of
Mack’s first and second mode, the march fails before a significant rise in the skin
friction coefficient occurs. Future work should attempt to modify the routine such
that NOWNS can march farther into the transitional regime.
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Chapter 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

This thesis developed the nonlinear One-Way Navier-Stokes (NOWNS) equations
based on the OWNS projection (OWNS-P) approach. Chapter 1 provided back-
ground information on boundary-layer flows and methods for hydrodynamic stabil-
ity analysis. Although linear methods can be used to predict transition in low-speed
boundary-layer flows by combining them with an empirical correlation, this ap-
proach is less accurate for high-speed flows, particularly with complex geometries.
In principle, laminar-turbulent transition can be predicted using DNS and LES, but
these methods are limited by their high computational costs. NPSE is a low-cost
alternative, but it fails for strong nonlinearities, is inaccurate for non-modal and
multi-modal instabilities, and has a minimum step-size for numerical stability. In
contrast NOWNS does not have a minimum step-size requirement and is accurate for
non-modal and multi-modal instabilities, and succeeds for stronger nonlinearities
than NPSE.

Chapter 2 introduced the OWNS-P (Towne et al., 2022) and OWNS-R (Zhu and
Towne, 2023) approaches, while Chapter 3 developed NOWNS based on OWNS-P.
We validated NOWNS against DNS for low-speed boundary-layer flows in cases
where NPSE is already successful, and then we highlighted three strengths of
NOWNS relative to NPSE:

1. It can handles larger disturbances than NPSE, although it also fails for suffi-

ciently large disturbances.
2. It can handle large amounts of numerical noise, while NPSE fails.

3. It can handle arbitrary disturbances, such as those introduced using a blow-
ing/suction strip, while NPSE requires the disturbances to specified as a

(modal) inlet boundary condition.

The OWNS approximation relies on a recursive filter to remove upstream-going
waves, which requires that recursion parameters be specified. Previous work has

chosen these parameter heuristically, based on the Euler equations linearized about
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a uniform flow. Chapter 4 develops a greedy algorithm for recursion parameter
selection, which we demonstrate to have better convergence properties than the

heuristic approach, leading to a new decrease in computational cost.

In Chapter 5 we demonstrate that for the H- and K-type transition scenarios com-
monly observed in low-speed boundary-layer flows, NOWNS is able to accurately
predict the onset of transition, relative to DNS, before the march eventually fails.
We do not believe this failure is due to discretization errors, and is instead due
to modeling errors related to upstream effects which are removed (neglected) by

construction.

Chapter 6 extends the NOWNS procedure to high-speed boundary layer flows and
demonstrates the importance of the greedy algorithm for high-speed NOWNS. In
particular, we show that heuristic parameter selection leads to a non-physical grid-
effect along the sonic line. We further demonstrate that NOWNS has the potential
to predict transition in high-speed boundary-layer flows by applying it oblique
breakdown of Mack’s first and second modes for a Mach 6 isothermal flat-plate

boundary-layer flow.

7.2 Future Work
The results from this thesis suggest several avenues for future work on nonlinear

disturbance evolution using NOWNS.

7.2.1 Transition prediction

We have developed and validated NOWNS for low-speed flows, showing that it
can accurately predict transition onset. While DNS predicts an overshoot of the
turbulent correlation, followed by agreement with the turbulent correlation, NOWNS
fails before this can occur. Therefore, future work should develop a criterion to
enable NOWNS to predict transition without skin-friction overshoot. Alternatively,
NOWNS should be modified so that it can march far enough downstream to observe

skin-friction overshoot.

7.2.2 High-speed boundary-layer flows

High-speed flows are characterized by multi-modal disturbances with short wave-
lengths and long streamwise domains over which they are unstable, so that NOWNS
is well-suited to study these disturbances. Therefore, NOWNS should be validated
for high-speed boundary-layer flows and applied to study realistic flight geometries,
such as the HiFIRE-5 flight vehicle. In particular, it should be used to study
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stationary and traveling crossflow vortices. Moreover, it should be used to identify
optimal (worst-case) disturbances for high-speed boundary-layer flows in a multi-
fidelity optimization framework, where NOWNS is used as a low-fidelity model to
be queried rapidly, while a high-fidelity model (such as DNS/LES) is used to ensure

accuracy.

7.2.3 Recursion parameter selection

In our initial work to extend NOWNS to high-speed flows, we observed non-physical
grid-like effects along the sonic line, which we eliminated using the greedy algo-
rithm. In principle, it is possible to choose heuristic recursion parameters such that
the grid-like effects disappear, which should be another focus of future work. In
addition, the recursion parameters chosen by the greedy algorithm could be used as

a guide for choosing better recursion parameters using the heuristic approach.

7.2.4 Numerical filtering
For the high-speed flows, we used a fourth-order Padé-filter (Gaitonde and Vis-
bal, 2000) with ay = 0.3 to remove numerical oscillations. Future work should

investigate alternative filtering strategies.

7.2.5 Free-shear flows

This thesis has focused only on boundary-layer flows. However, future work could
use NOWNS to study nonlinear disturbance evolution in free-shear flows, such as
jets and mixing layers.

7.2.6 Parallelization

The current NOWNS code is written in MATLAB is runs in serial. However, the
LU decomposition for each linear OWNS system could be performed in parallel, so
future work should parallelize the code in a different programming language, such
as C++.
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Appendix A
NAVIER-STOKES EQUATIONS

Given the non-dimensional Navier-Stokes equations (1.1), we define the vector

= (v,u,v,w, p) and write

0 0 0
Gy @ B 5]+ (A (@) + By(@)) 5]

2 2 2

0 0
+ [A. <q>+B<q>] +Bxx<q> 4 "+Bzz<q>a—z‘§ (A1)

02
+ Bxy(q)wgy +

>t Byy(q)_

02

q
sz(q)ax yz( )3 az 0,

where B denotes viscous terms while A denotes inviscid terms. Next we decompose
the flow into a time-invariant equilibrium solution, ¢, and a time-varying disturbance
variable, ¢’, such that ¢ = ¢4 + q’, which we use to obtain
aql _ _ aql 8ql I
5 7A@ + Bo(@] -+ [Ay(9) + By(q)] 3y * [A:(q) + B (q)]
Ny _ 82q1 B an/ B 2 ’
+C(q)q +Bxx(q)W+Byy(Q)W+Bzz(q)a_Z2 (A.2)
2. 2 7 2,7

_. 0°q _. 0°q _ 0°q ,
+Bxy(4)m Bﬂ(q)m +Byz(‘1)m =F(q'),

where we have defined C(q) such that

C@ = [Aa) + BN 5E +14,(0) + B (a1
+1A(g) + BN + Bula) 2 i B0 >‘92 . (A3)
FBed) 5 L4 B @) 4 B e Byz(q')%,
and the nonlinear term
F(a) = ~1A(0) + B0 5 = 4,0 + B (@) 5
- [4:(a") + BN L - Bxx(q’)&{ - Byy<q'>§—y"2' (A%)

2.7 2,7 2/ ’

n97q N4 n9%q
B, (¢) 2L _ B, B, e



We further define the linear operator

_ 0 _ _,0q
L(q) =- Frin [Ay(q) + By(q)] 9y
B anl B an/
- Byy(q)a_yz - Bzz(‘])a—zz
yielding
— a ’ - ’
Ac(q) aq =L(q)q +F(q
X

02ql
- By () —= —

(q) T2

- [AZ(Q) + Bz(q_)]
dydz

- Byz(q_)

, _.0q’
) — B«(q) P

anl
0xdy

By (q)

’

0z

0,

- sz(q)

anl

0x07

0 .
1 -C(q)q
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(A.S)

(A.6)

The operators for the first derivatives (without viscous terms), A, Ay, and A, as

well as the operators for the first derivatives (with viscous terms) B,, By, and B,

are given by

Ax(q) =

o O © O §
]

o O & O O

S O O <= O

o
I
<

Ay(q) =

SO = O O O o T o o o

= O =< O O

S O O O <
S O O <
(en)

Yp

A(q) =

o o o = ©
o o T o o
o

o o o o =
T % o o o .

Yp

2y
B.(4) =5 &

2y
B\(9) =5 re

2y
Bz(q) = _PrRe

o o o o Yo o o o Po o o o

S O O OO O O o o o o o o o o

S O O O O O O O o o o o o o o

S O O OO O O o o o o o o o o

o o0 o o oo o PPPo oo o
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For the second derivatives By,, Byy, B;;, Byy, By, and B, we have

r0 O 0 0 0
0 -5z 0 0 0 00 0 007
Bxx(q) = 0 0 “Re OV 0 s 0 0 _ﬁ 00
3,; 0 0 -z (;)/v Byy(q)=|0-5 0 00},
L~ RePr 0 0 0 ~ RePr 8 8 8 8 8
r 0 0 0 0 0 0 0 0 0 0
0 -z 0 0 0 0 0 0-7%0
4 v ke
B = 0 0 -3 0 O B =10 0 0 0 0
yy(q) 0 0 0 € —é 0 ’ XZ(q) 0 —ﬁ 0 0 0 s
~_R)ej¥’r 0 0 0 _Rz;r :80000 8 8:
B
0 (I){e v 0 0 Byz(q) = 00 0 “3Re 0
B..(q) = ~“Re , 00-3% 0 0
0 0 0 -3% 0 00 0 0 Ol
-_R‘)ejll)’r 0 0 0 _RZ;r
Finally, the operator C is given by
o 9 9
-V-u &= 6—‘y’ a_Z 0
g—i——Vzu—SRe [Oxxtt+0xyv+0x W] g—z g—; g—;‘ 0
a dv v 9
C(q) = %—szv—we [Oxyu+dyyv+dy.wl G 5 G5 0 ,
P - o Vo w—shs [Dcu+dy v+ w] Gu G Go 0
1) 1) op
~7epr VP o oy a5 YVUmE VY

while the nonlinear term is a vector comprising the following components:

; yI% _ N 1 (82u+ 3%y N 02W)
Ox ox 0Oy 9z Re 3Re\ox2  0xd0y 0xd0z/)°

op dv v v 1 _, 1 (0% 0% 0*w
F =v——-u——-v——-w—+—vVu+ + +
34 Vay " ox v@y Yo TR 3Re(8x6y dy? 8y62)’
op ow  Ow 6w I _, 1 (0%u 0> &*w
F. =V——Uu——v— —+—VV
14 0z “ox TV 8y (9z " Re’ " * 3Re (Bxﬁz " 0yoz " 07> )

Fs5(q) = ZPr [VW2p +2Vp -Vv+pV2y] —u-Vp —ypV - u.
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Appendix B
SIMILARITY SOLUTIONS

B.1 Blasius equation

A time-invariant equilibrium solution (base flow) can be obtained for flat-plate
boundary-layer flows by solving the Blasius equation (Blasius, 1908). We assume
a 2D steady flow where dp/dx = 0, and the streamwise length scale is much larger

than the wall-normal length scale, yielding the equations

o(p"u’)  9(p™v) _

0, (B.1a)
Ox" * ax** *
p*(u*‘;z* +v*gz*) _ 8?* (ﬂgz) B.1b)
L LORF  Oh*  d (utOm* L (OpT\2
P (u o Y ay* ay*(lljr 8y*) + (6/;*) , (B.1c)

where p* = 1/v* is the density and A" is the enthalpy. In addition, the y-
momentum equation yields dp/dy so that the pressure is uniform throughout the
flow. We introduce self-similar variables using the Howarth—Dorodnitsyn transfor-
mation (Schlichting and Gersten, 2017)

LUL Y pt S
) / ’ dy, ¥ =N2unpsUsx* f(n), (B.2)
0

2o P
where ¥ is a stream function such that

*u*_a'?b *v*__aw
P Oy PV =T

so that conservation of mass is satisfied by construction. Next

on __n  On_p |psUs
ox* 2x*7 Ayt pi \ 2uix*’

while 1o 1 P
w=— w = —VUpR Ut f 5k = UL,
pr oy p dy
so that a s a a % a
u « o OT] u w« o ON
= U ) = UOO ax
o~ U=l g Gy oy
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and conservation of x-momentum becomes

9 (PH ., "
—(EL=p)+ 117 =0
N \PooMoo
We assume that the temperature is a function of 7 only so that 7* = T*(n), while
for an ideal gas dh™ = ¢,dT™" and ai, = yR*T, so that the conservation of energy

equation becomes

* * *

@) + (y - Ml LT

17”\2
B LS (R 1) =

(9017(1 .

Assuming that y* oc T* we obtain in non-dimensional form

f/// + ff” — O, (B3a)
%T” + fT" + (y — DMaZ (f”)* = 0. (B.3b)

We must enforce the no-slip and no-penetration boundary conditions so that
f(0) = f'(0) = 0, while in the far-field we must have lim, . u(n7) = Us so
that lim, . f'(17) = 1. At the wall we satisfy either isothermal, 77(0) = 0, or
adiabatic, T(0) = 0, boundary conditions, while in the free-stream we must have
lim,,_,o T'(17) = 1. We solve this ODE for (f, f’, f”/,T,T’) using a shooting method,
which we then use to compute the base flow as a function of x and y. Then the base

flow (v, u, v, p) can be obtained using

0
Y =T w) = Gh v =T[5l =l p=s B4)

where the expression for p comes from the ideal gas law and by using that p is

constant, while for a given x, we solve for y in terms of 1 as

y(n) = @Re/anﬁ. (B.5)
0
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Appendix C

SPECIAL CASES OF SINGULAR A

If A is singular, then we obtain

Ay 0 0
A=10 A_ 0 (C.1)
0 0 Ay

for diagonal A,, € RV>N+ with A,, > 0, A__ € RV->*N- with A__ < 0, and
Ago € RNo*No with Ay = 0, where N, + N_ + Ny = N. Then we define

~ A 0
A, = A (C.2a)
0 A__
and
~ L., L.
Lisy=|=
Lo+ Lo
: A L (C.2b)
_ Slii +2]=2 iijj,ii-i_Cii Zj=2 lw]Bj,iO-l-CiO
Z?:2 l'a)jgﬂ()i + é()i sloo + 2?22 ia)jgj,oo + é()() ’
so that
. dé . A
Ais ji =Lis@s+ Liodo + fgb,i (C.3a)
X
0= Los¢= + Loodo + fs0- (C.3b)

The zero eigenvalues, Aq, correspond to points in the base flow where the stream-
wise velocity is exactly zero or sonic. In practice, unless a grid point is placed exactly
on the sonic line, we will have AOO associated with wall boundary-conditions only,

so that Loy will be invertible and we can eliminate (ﬁo as

b0 = —Lyg (Los s + fs.0). (C4)
‘We then define
M = AL (Lss — LioLog Los), €= AL (foe — LioLgg fo0) (C.5)
to obtain the ODE R
de¢ A
—=Me.+g, (C.6)
dx

which can be treated as in the non-singular case.
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Appendix D

PROOFS FOR OWNS-P AND OWNS-R

D.1 Proofs for OWNS-P
Proof: [Proof of Proposition 2.2.13] First note that (2.16b) through (2.16d) can

be diagonalized using
(M —iBl)¢ = (VDV™' —ipvVv YV = V(D - iBD)y,

where V has full rank while (D — iBI) is diagonal so that each scalar component of

J ].Vf_ and ¥ can be treated separately as
Jj= NB p y
(ax =B = (=B =0, j=1... . Ng—1,

(ak — B — (ax = BOY" = (ax — By,
(ax = BOY] = (ax =B =0, j=0,...,Ng—1,

for k =1,...,N. For the downstream-going modes we obtain
ar— By -N —N,
v -vie=| | Sy = (D.1a)
=0 (043 —ﬁ_
Ng-1 N ﬂj
N, k=
v = | ] Wy = F, (D.1b)
j=0 ¥k = P=
so that
-N N
Fop P =y -y Fryd=y.", (D.1c)
for k =1,..., N;. Similarly, for the upstream-going modes we obtain
Ng-1 .
ap—pL N _1.N
9”2 = l_[ j wkﬂ = Fk llﬁkﬁ, (DZa)
j=0 @k — B
Ng-1 .
-N ay — L _
v = 1_[ 7 Wy —wi) = F (W) — ), (D.2b)

j=0 @k ~ P+
so that
Fly™ =y 0 —y) =y, (D.2¢)
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fork =N, +1,...,N. Nextrecall that

(£+ _ Vie Vi | |¥+ _ Virhy + Vi g

$-| Ve V| |¥-| |[VostitV_y
so that (2.16a) and (2.16e) are equivalent to

_Nﬁ’
b, V++‘ﬁ+ + Vi 'ﬁ—
él—\]ﬁ:V—+ + +V——¢— =

or

-N, - -N, N, _ N,

VR U AR A S G A

We pre-multiply by F,, and F~! to obtain

-N, _ -N, _ _
‘ﬁg —Yi.=Fy, F= —F++V++1V+—¢- F = —F++V++1V+—F——1(‘//9 -y-),
— N, _ — N, _ _
Wl =F Yy =-F v Iv_y” =-F 'V IV_F ),

and rearranging yields

Yo+ F vlve FFlWyS =y, v+ F vV, Fly
Flvlv  Fo iyl +y® =0

wk_ [/
Y Y-
Using RNB from (2.17b), the above is equivalent to R;,; qpo = ER;,;(//, so that

#° = VRN, E R;,;V_lqs = PNﬁqﬁo. Thus, we have shown that the action of the
filter (2.16) can be applied using the projection matrix (2.17a). O

which in matrix form becomes

Ly F. ++V+
F-lv-lv_,F,, I__

I++ F++V+ V+_F__
0 0

Proof: [Proof of Proposition 2.2.15] Clearly Py, — P if and only if R]‘\,; — 1,
while F is diagonal so that

Np-1

j
(FaVelVoe b = [ ] 22 ﬁj : ﬁ‘( Vs
j n
= - B
(F—_—lv——lv +F++)nm = 1—(! ﬁ] @, — _( V+ )nm’

and R&; — [ if and only if (2.18) holds. |
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Proof: [Proof of Proposition 2.2.16] First we show that if @, # @, forallm =i )
and n = i(7) then we can always choose recursion parameters such that the OWNS-O

approximation converges. Without loss of generality, assume that N, < N_. Then

N.-1

[ jam = B lan = B

- - =0, Vm:i(+),n:i(_),
j=0 | — B2 |, _ﬁ+|

were we have used

Ay — Tl 0, Vm=1,...,N,,
—BM£0, Vm,j=1,...,N,,
an—-B #0, Vj=1,...,N,, Vn=1,...,N_.

An identical procedure for N_ < N, proves that @, # a, forallm =i ) andn =i

is a sufficient condition for convergence.
If @ = @ for some some /i = i) and 7i = i), then

Np—1

(F—_—IV—_—I V—+F++)fzﬁ1 n

ﬂ+an ﬁ—( _IV .

¥ i = (VV_Dam
- p-a; —

so that Rz_v[l; # I, no matter how the recursion parameters are chosen, proving the

necessity of the condition. O

Theorem D.1.1 (Block matrix inverse) If a matrix is partitioned into four blocks

such that
R R, _
=" T, (D.3a)
R_. R__
then it can be inverted blockwise as
-1
R—l — Ri+ R4 — [R_1]++ [R_1]+— (D.3b)
R, R__ (R [RT']-|
where
[R™ 1]++ = (Rys — Ry_R_ R—+) 1 (D.3¢)
[R7'].- = —(R++—R+_R:_R_+)‘1R+_R:£, (D.3d)
[R"']-+ =-R'R_;(Res — R_R”'R_)7", (D.3e)
[R7']_- =R +R'R_,(Res — R_RZR_,)'R,_R7L. (D.3f)
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Theorem D.1.2 (Neumann series) For a matrix R, if the sum 3.}, R¥ converges

to a finite value, then

(I-R)™ = ZR". (D.4)
k=0

The proof of Proposition 2.2.17 relies on two theorems. Theorem D.1.1 provides an
expression for the inverse of a block matrix, while theorem D.1.2 provides conditions
under which || (1,4 — F++V+_+1V+_F_2V_1V_+F++)_l || is finite.

Proof: [Proof of Proposition 2.2.17] First note that
1P~ Pyl = IVEV™' = VRy ERy,V ™"l
= IV(E = Ry, ERn,)V™'|
< IVIIIE = Ry, ERn, IV,

while by theorem D.1.1 for the inverse of a block matrix

R;/II;ERN[,» _ _[R]E/%]++ [Rlz[/}]+— [I++ 0 [RNB]++ [RNB]+—
>[RNﬁ]_+ [RN,B]__ 0 0 [RN/;]—+ [Rng]——
_ >[R1_V[1;]++ 0 [RN[;]++ [RN[;]+—
[Ry!1-+ O 0 0
_ _[R]_\/'IB]++[RNB]++ [R]:];]++[RN[;]+—]
»[R;];]—+[RN5]++ [RI_\/[I;]—+[RN5]+—
so that
E— R_lER _ [R]_\/;]++[RN5]++ S [R;];]++ [RNB]+—]
M T R Ry e IR RN |

By the triangle inequality
IE = Ry, ERng Il < I1[Ryy s [Rip Lo = Lol + 11 TR, 1 [Rig ]|
R o [Rag Lell + TR, 1 [Ros L.

while

e =—F VIV F (I - FLVIVeF2VIIVOFL) ™,
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so that

IRRA o [Rp 1 os = Toell < 1Fas VR Ve FZU X |FZIVEIVL P
X |y = FulVoIVe F2V WV FL )7L
IRRA Lo [Rp ool < 1Fw Vi Vi P2
X || (Ly = ol VoIV F2V WV FL )7L
RN -+ [Rug el < IFZIVEIVL Fo|
X Loy = Fru VoV F2VYV, FL) 7L

RN -+ [RNg Lol < IFZIVEIVo P X I PV Vi P2

X | (s = Fua Vi Ve  F2VIVO FL) 7L

Combining these results yields

I1E - R;];ERN[;” < [[(Les — F++V;+1V+—F_ZV_IV—+F++)_1 I (||F++V+_+1V+-F___l||
+ 20| Fu VIV FIFZIVIVO Fo || + | FZVIVOL Fu)).

Next we note that -
S Fa Vi Ve F2VIVL R
k=0
is finite if
I IHIFZL < (VA Ve IVEV D ™2,
Take some € > 0 such that € < 1 and define
e = min{&, ||V Vi |7V IvIve, 3.
Then assuming ||F..||||F=!|| < e, theorem D.1.2 for Neumann series applies and

(L = Fr VRV F22VIIVOLF) 7|

< Y WPV Ve F2VIIVLF
k=0

< > WFIPIFZIPIVA VA NVEV_ )
k=0
= 1+ |FalPIFIPIVE VNIV Vo + OUIF I IFHS),
while

IF eV Ve F2H < N Fe I EZHNIVE Vi,

IFZ VIV Fopll < IFNIFZHIIVIVA,
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so that

IE = RNLERN, I < [1+ 1FasPIFZHPIVE VA HIVEIVo ]+ O(eh)]
X | FreMIEZN IV Vil + VAV

+ 20 F FZNVA VL VA V-]
= [|E MFZH IV Vil + VIV ) + O(€D),

and
1PN, = Pll < IVIHFIF IV Vil + IVIVCL DIV + O (€,

where we have used ||F..||||[F~}]| < e. O

Proof: [Proof of Proposition 2.2.22] Note that ||[PM — M P|| = 0 while

1Px;M = MPy, || = [|(Py; = PYM + M(P = Pp)l
<2||Pn, - PllIM]|
< 2VIIFIIFZAI IV Vil

+IVIVe ) IvVHHIMIL + O (e,

by Proposition 2.2.17. m|

Proof: [Proof of Proposition 2.2.18] A downstream-going mode associated with

a,, is retained accurately if 0 — y,, = 0, while by equation (D.1a) we have

Ng-1

l/’?n_‘/’m: n am_ﬁ_{

"y M=
j=0 @m — :8]—

since @, = Bi for some ﬁi, while a,, # B/ for all 8/. An upstream-going mode

associated with a,, is removed if /¥ = 0, while by equation (D.2a) we have

Ng-1 ;
w1220

J n
j=0 @n = s

since a,, = B/ for some B/, while a,, # ﬁi for all ,8{;. m|
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D.2 Proofs for OWNS-R
Proof: [Proof of Proposition 2.2.25] First note that

Np Jjo_
B = (15 =g)
_ (Hffl(ak B +e H?J:I(ak _8)) )_1
[177, (ax = B2)
l—[;vfl(ak -p7)
(=B + e T (o B

fork =1,...,N, then observe that

P = (I4e2)™ = VU + PV = V(I +eF) 'V = VE VT

Proof: [Proof of Proposition 2.2.27] First note that
(R) p(R) _ -1 -1 _ 2 -1
PNﬂ PNB =VEN,V VENV —VENBV ,

so that P](\Z) is a projection matrix if and only if Ejz\,ﬁ = En,. Since Ey,, is diagonal,
we can consider each entry separately so that we must have Ejzvﬁ ¢ = Engx for
k=1,....N. We know that E§ , = En, if and only if Ey, s = 0 or Eny = 1,
concluding the proof. O

Proof: [Proof of Proposition 2.2.31] First we show that if a,, # a, for all pairs of
m =i™) and n = i), then we can always choose recursion parameters such that the
OWNS-R approximation converges. Note that
N .
E(k) _ Hj:] (a/k _BJ—)

Ng —

> - =1, k=i",
Hj;] (ax —p2) +0
EW = 0 _ =0, k=i"
Y 0w e TTY (e - BY)

where [T, (@i = 1) # 0 for k = i and [T}, (ax — 1) # 0 for k = i) by

construction.

Next we show that if a,; = a; for some /i = i**) and /i = i), then there does not exist

any choice of recursion parameters such that Pz(v? — P. By contradiction, suppose
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there exists recursion parameters such that P](f) converges to P when «a;; = a; for
some 7 = i) and 7i = i*¥). Then we must have EI(V'Z) — 1 and Ez(\;? — 0, but

E ](vm) = E](f) and 1 # 0, leading to a contradiction. m]
[ B

Proof: [Proof of Proposition 2.2.34] Note that
R - - —
1P = PN = IVEV™ = VEN, VIl < IVIIIE = En, IV,

where for the downstream-going modes

Hj'vzl(a’k _IBJ—)
I (e = L)+ T (e — D)
) e [0, (e — BD)

[T (e = L)+ T (e = BY)
_ CFk
1+ cFy’

EW-Ey) =1-

for k = i), while for the upstream-going modes

Hj‘v:l(a/k - IBJ—)
V(e =B + e T (o = BY)
F!

_1 ’
Fk +c

EW-Ey) =0-

for k = i), Assuming that |F¢| < € < 1 for k = i® and |F;'| < € < 1 for
k = i") we obtain

X~ EQ)| = el Fel + O(FP), k=i
k - - (=
E® - B = 1F [ +OUF'P), k=it

Since E — EN, is a diagonal matrix we obtain

.....

= max {lell|Fue |l [EZ1])} + O(D),

so that
R _ _
1P = Py < IVl max {|cl1Frl IFZAIV ]+ O(e).
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Proof: [Proof of Proposition 2.2.35] If ,8_{ = @, for downstream-going mode «,,,
then E](\,'Z) = 1. Taking ¢ such that ¢, = O for k # m and ¥, = 1, we have

P](\,I;)V«ﬁ = VEN,¥ = Vi. Similarly, if B/ = a, for upstream-going mode a,,

then Ez(vﬁ”) = (0. Taking ¢ such that ¥, = 0 for k # n and ¥, = 1, we have
R

P](\,B)V«p = VEn,¥ =0. O

Proof: [Proof of Proposition 2.2.38] Note that
R _
Py =VER V™,
and that
(k)
N 0 |ENﬁ| <0,
. k
Jim By =11 1B = 1.
(k)
00 |ENE| > 1.
(R)

Ng~
which is desirable for upstream-going modes, but not for downstream-going modes.

If |E](\,];)| < 1, then mode k will be removed by repeated applications of P

In contrast, if |E1(V];)| > 1, then mode k will grow without bound through repeated
applications of PI(VIE) , which is undesirable for both upstream- and downstream-going
modes. If EI(\,I;) = 1, then mode k will be accurately retained. Therefore, repeated
applications of PI(V? introduces error unless unless |E1(\,'2| < 1forall n =i, and

EV =1forallm =i, o
B

Proof: [Proof or Proposition 2.2.41] Note that

[1)% (ex = L) T - B

12 (= B + T (e = D) 2 T3 (e = 1)

Ng

so that

P = VEN, V™!
Yo -porw-pinv
2 i1 * -
o pinan-gin
5 [Jor-# in,

which can be-rearranged into (2.26). O
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Appendix E

A VARIATIONAL APPROACH TO OWNS

We will now consider a variational approach to OWNS. Consider the equation for

the downstream-going modes in characteristic variables

¢, .
L PM¢, + Pg. (3.10)
0x =
We note that
M=vpv-=vpy=| " Ve || P O U Us-
Vo, V__ 0 D__||lUu, U]’

where U = V=1, while the projection operator is defined such that

V++ V+_
Ve V__

0 O

U++ U+_
U, U

ViU Vi Uy
V_+ U++ V_+ U+_

M has full rank (N.), while P is rank-deficient unless there are no upstream-going
characteristics (N_ = 0), since rank(P) = N, < N., while
vive  vHyH

Ui vH yHyH

PH =

We further define the left and right bases

V.
P = ++ > Pg:[U++ U+—],
V_i
so that
V. \ Vi Us_
PLPH: ++ [ U, U, ] _ ++Ut++ Vi Ug - p,
V_, V_ U V_, U,
while

V.
= Uit Vir + ULV =14,

_ L. 0O = 1I...
0 I_

It is shown in Towne et al. (2022) that P> = P, so that P is a projection.

PgPL:[UH U+—]

—+
where we have used

U++V++ + U+_V_+ U++V+_ + U+_V__
u_ v, +u__v_, U_V,_+U__V__

Uv =
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E.1 Petrov-Galerkin method

The (Bubnov-)Galerkin method requires an orthogonal projection, while the Petrov-
Galerkin method does not. If M is a normal operator, then M = VDV by the
spectral theorem so that P is self-adjoint and thus orthogonal. In general, M is

non-normal, so we consider only the Petrov-Galerkin approach.

We consider the space V of elliptic solutions
YV = {¢. | ¢. is bounded},
which we use to define the trial space V; of downstream-going solutions
Vi={¢. €V |d.=Po.},

and the test space
W,={weV|w=Plw}.

Any solution in the trial space and can be expressed as
¢.=Ph.=PLPid.=Pra, a=PipeC™,

while any test function can be expressed as
w = P%w = PgrPw = PrB, B =PlweC™.

We now consider the weak form of problem (3.9): find (13i € V, such that

.
w0

o = wiMe. +wig, vYweW,.
x

Choosing B; = é;, where é; is the unit vector associated with the ith axis, we state

our problem: find @ € CN+ such that

0(PLa) N
pH 6; =PiMPLa+Plg. (E.1)

E.1.1 Constant-coefficient system

If the problem has constant coeflicients (in the streamwise direction), then it is
straightforward to show that if @ is a solution to (E.1), then Ppa is a solution
to (3.10). We left multiply (E.1) by P, to obtain

IPLY) _ piarp,a+gl. (E.2)
ox
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where we have used that PP; @ = P;« and that P is not a function of x. We take
the difference of (E.2) and (3.10) to obtain

d(Pra -4, s |
%—PM[PLO’—(bi]:(a—x—M)[PLa,_¢i]:O

and we use that (% — M has full rank to assert that the above equation is satisfied if
and only if Pra = ¢/,.
We can similarly show that the projection of ¢, into the space V,, @, = Pg [/
satisfies (E.1). First we note that ¢, = P¢’. = PLPIF{ ¢, = Pra., then we left
multiply (3.10) by Pg to obtain
O(PLa.)
pHZ Z7E)
R ox
The difference of (E.1) and (E.3) yields

H@(PL[Q' - a.])
Pk 0x

= PHP[MPra. + 8] = P [MPLa. + §]. (E.3)

P
—PUMP e - a.] = pg(a - M)PL[a/ — @] =0,

and we use that PH(£ — M)P; has full rank to assert that @ = PH¢’, = a..
Therefore, we conclude for a constant-coefficient system that (E.1) and (3.10) are

equivalent problems.

E.1.2 Variable-coefficient system

If the coefficients vary in x, then we can show that the projection of ¢’ onto

vV, satisfies (E.1) using the procedure outline for the constant-coefficient system.

However, we cannot show that P; « is a solution to (3.10). Let us assume that Py«
is a solution to (3.10), then we left multiply (E.1) by P to obtain

I(PLa)

0x

If we take the difference of the above equation with (3.10), then we obtain

LOPLa) 38,

o0x o0x

and we can no longer assert that Pra = ¢’,.

P

=PMPra+Plg. (E-4)

—PM[PLa—-¢.] =0, (E.5)

Let us instead consider the problems that result from discretizing in the streamwise
direction. Following discretization with an s-order BDF scheme we obtain the
fully-discrete form of (3.9)

s—1
Z C(]')¢S_r”+1—1) — AX[M(n+1)¢(in+1) + g(n+1)].
Jj=0
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At station n + 1, the Petrov-Galerkin approach yields the problem

s—1
C(O)a,(n+1) — A.ngH-l)H [M(nH)Png)a’(nH) + g(n+1)] _ Z C(j)P(Rn+1)H¢-(_Fn+1_J)'

j=1
(E.6)

Similarly, if we apply the OWNS projection operator, P+, to the discrete form
of (3.9) we obtain

s—1
c(0)¢;("+1) _ AxP(n+l)[M(n+1)¢'i(n+1) +g(n+1)] _ Zc(j)P(n+l)¢’i(n+1—J). (E.7)
j=1

We left multiply (E.6) by P(L”+1) and take the difference with (E.7) to obtain
(¢ = AxM D) [P VoD — g1 = 0, (E8)

and we use that ¢(Q I, — AxM D has full rank to assert that P(L”+1)a(”+1) =\

Next we left multiply (E.7) by PZI("H) and take the difference with (E.6) to obtain
(0L = AxPR MV P ) [0 — @D =0, (E9)

and we use that ¢(0] — Ang("H)M (””)Pé””) has full rank to assert that ¢! =
a1 Therefore, we conclude for a constant-coefficient system, as well as a

constant-coefficient system, that (E.6)and (E.7) are equivalent problems.

Let us now consider the OWNS system that results from discretizing (3.10)
s—1
C(O)¢’i("+1) — A)CP(n+1) [M(n+l)¢’i(n+1) + g(n+l)] _ Z C(j)P(n+1_j)¢,i(n+l_])- (ElO)
j=1
The only difference between system (E.7) and (E.10) are how the projection operator

+1) and take the

is applied to the derivative term. We left multiply (E.6) by P,

difference with (E.10) to obtain
[C(O)L_ri _ AXM(n+1)] [P(Ln+l)a(n+1) 3 ¢E_Ln+l)]

N

(E.11)

+ 37 D[P _ plrri=i)) gni=i) _

-1
j=1
We can no longer assert that &™*!) and ¢(i"+1)' are equal because of the left-over
spatial-marching term. We see that while (E.6)and (E.7) are equivalent systems,
the system (E.10) is not. We return now our attention to (E.5). If we discretize
using an s-order BDF scheme, then we obtain (E.11), showing that Petrov-Galerkin
approach is not generally equivalent to the OWNS approach when the coefficients
vary. However, the OWNS approach assumes slowly-varying coefficients so that the

Petrov-Galerkin and OWNS approaches should yield similar results.
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Appendix F
JACOBIAN OF THE NOWNS EQUATIONS

Here we derive the Jacobian of the fully-discrete system of NOWNS equations (3.20)
for 2D disturbances. Note that this analysis readily extends to 3D disturbances. We
introduce the 2D residual

s—1
frin(kxﬂ) _ Z C([)Ai‘ﬁi(kxﬂ—l) _ zl’q; A’q;1(kx+l) _ ﬁi(kx+1) _ fni;(kxﬂ), (F.1)
=0

for m € Zyy, which mimics the 3D residual defined in (3.23). We take its derivative

with respect to qﬁf,(k"ﬂ) to obtain

dFp D ©) 45 _ §3(ketD) gF; Y
m:(c A _Lm )6mp—m, m,p:0,...,2M, (FZ)
o, o)

Using the definition DFT, it can be shown (for 2D disturbances) that

aﬁi(kxﬂ) o % 9 Fikat1) ol o 3)
9 A;t)(kx+l) ToOM + 1 " AP ker) =g, ’ .
which allows us to write
0 0 0
A ~(kyt)y—1 p(kytl ~(kxt1)y—1 plkyt1
o FFkxtD) _ | pkern (AL IJ-ii,;—)m plhatD) (ALY 1Ji0,;_,)ﬂ 0
Mi(ketl) |7 Lm JlkxtD) Lm JkatD) ’
v i o
2kt 2k x+
JOi,p—m JOO,p—m 0
(F.4)
form,p=0,...,2M. We define
N 8Fi(kx+1)
JilarD o o (F.5)

pom T T S k)
9 p

form,p =0,...,2M and taking M = 1, we obtain the Jacobian AR+ 15 k+1).o
shown in (F.6), where o~ denotes the index for the Newton iteration, while R*+1)-o
and ®**D-7 are the concatenated residual and solution vectors defined in (3.26).

Note that we have used f,i(k"ﬂ) = fi%;;[?l and f,f,(kX“) = fff,f"“) form=0,...,M.




aR(kH),o-

oD (k+l),0 -

25 (ky+l1 st(kx+1),
(cOA% - Lg( + )) +J§( +1),0
jit(kx+1),0'

jix:(kx+1),0'

ji{:(kx+1),0'

(cDA* - lA,fIF(k"H)) +f§(kx+l),0'

jit(kx+l),0'

ji:(kx+l),0'
j;‘.(kxﬂ),o—

P E(kx+l st(kx+1),
(C(O)Ai_Lii(l +))+J(f)F( +1),0

(F.6)

Gl
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Appendix G

DESIGN CHOICES FOR NOWNS

G.1 Streamwise diffusion terms

Here we demonstrate for the 2D validation case discussed in Section 3.3.1 that
although streamwise diffusion effects have a minimal impact on the linear calculation
(Figure G.1a), the impact is more pronounced in the nonlinear case (Figure G.1b).
We see that prior to the second neutral stability point, the calculations with and
without the streamwise diffusion terms yield similar amplitudes, but that downstream
of this point, the amplitudes of the calculation including the streamwise viscous
terms has much lower amplitudes (particularly for the higher harmonics in the

nonlinear case).

G.2 Inclusion of the streamwise pressure gradient

Unlike the NPSE approach, the NOWNS approach has no minimum step size re-
quirement for the march to be numerically stable, but it is still necessary to neglect
the streamwise pressure gradient for the zero-frequency modes. If the streamwise
pressure gradient for these modes is retained, the NOWNS march remains stable but
becomes inaccurate, as demonstrated in Figure G.2. We plot the u-velocity ampli-
tudes with and without d, p in Figure G.2a, where we see that we have reasonable
agreement for m # 0, but disagreement for m = 0. In Figure G.2b we plot the profile
of the v¢, and we notice that the profile predicted by NOWNS when 0, p is included
is substantially different from the profiles predicted by NPSE and DNS.

If we neglect d, po, but include the streamwise diffusion terms dx,qo, then we must
project the MFD and we find that we have good agreement between the DNS and
NOWNS calculations. Therefore, we can conclude that the recursion parameters we
are using for the zero-frequency modes are valid. However, as discussed above, the
calculation remains stable but becomes inaccurate when we include d, pg. Although
our march remains stable, there including d,p¢ leads to inaccuracies in the march

for unknown reasons.

In Figure G.3a, we plot the u-velocity amplitudes computed by NOWNS with
and without the pressure gradient for the zero-frequency modes. Mode (1,0) is

tracked reasonably accurately, but the other modes are not. In particularly, the (1,2),
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Figure G.2: 2D validation case with and without streamwise pressure gradient for
zero-frequency modes.

(1,1), and (0,1) modes and the MFD have higher amplitudes than they should. In
Figure G.3b, we see that we have better qualitative agreement in the early stages
of the march between the NOWNNS and DNS calculations when the streamwise
pressure gradient terms are include for the zero-frequency modes. However, we have
worse quantitative agreement in the later stages of the march, which in turn causes

the larger amplitudes of the (1,2), (1,1) and (0,1) modes observed in Figure G.3a.

G.3 Comparison of nonlinear solution procedures
We have discussed three procedures for solving the nonlinear system of equations:
(i) Newton’s method, (ii) a quasi-Newton method that includes part of the nonlinear

Jacobian, and (iii) a quasi-Newton method that excludes the Jacobian of the nonlinear
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Figure G.4: Comparison of solution procedures for the nonlinear system of equa-

tions.

term. We plot the iterations to converge as a function of streamwise station in

Figure G.4. For the 2D validation case, we compare the iterations to convergence

for the quasi-Newton method and Newton’s method in Figure G.4a, which shows that

Newton’s method converges in fewer iterations. In Figure G.4b, we make the same

comparison for linear and nonlinear quasi-Newton methods for K-type transition.

We see that farther downstream, where the nonlinearity is stronger, the nonlinear

quasi-Newton method converges in fewer iterations than the linear version. However,

for sufficiently strong nonlinearities, it is necessary to use Newton’s method.
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G.4 Linearization about the baseflow vs. the corrected mean flow

Whereas in linear stability analysis, the mean flow is determined only by the baseflow,
g, in the nonlinear case the disturbances interact to excite the MFD, ¢,,, which
yields the corrected mean flow, g +¢j,,. In linear OWNS, we linearize the projection
operators about the baseflow, while in nonlinear OWNS, we can choose to instead

linearize about the corrected mean flow.

G.4.1 Equations linearized about the corrected mean flow

Consider nonlinear equations of the form
N(gq)=0. (G.1)

To linearize about the base flow, we take ¢ = § + ¢’ and assume that the base flow

satisfies the governing equations, so that N'(g) = 0 and
N(@+q)=N(q)+L(q)q +F(q.9)=L(qq +F(q.q),

where L(§)q’ and F(q, q’) are the linear and nonlinear terms, respectively. This
yields
L(q)q'+F(q.94") =0. (G.2)

If we linearize about the corrected mean flow, then we define §" = ¢’ — §oo so that
N(G+§4oo+q") =N(g+qoo) + L(§+§o0)§" + F(§ +§oo,§")
= N(§) + L(§)§oo + F(§,4o0) + L(§ +§oo)g" + F(§ + oo, §")s
yielding
L(q)§oo + F(q.Goo) + L(§ +§o0)d" + F (g +Goo,§4’) = 0. (G.3)

In the current form, we must update the LU decomposition after each Newton
iteration, so we decrease the computational cost by linearizing about a fixed corrected
mean flow. We take the MFD from the previous streamwise station and label it q..

Then we take §’ = ¢’ — g to obtain

L(§)qc+F(q,9c) +L(§+q.)§ +F(§+q..4) =0. (G4)
If g. = §oo, then we recover (G.3).

We consider three approaches:

1. Solve (G.3) by updating g after each Newton iteration, or
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2. Take g, equal to the MFD from the previous station and then solve (G.4).
Update g, by taking g, = Goo + g, each time the Newton solver converges.
We say that the solver has converged when ||§qo|| is sufficiently small.

3. Take q. equal to the MFD from the previous station and then solve (G.4). Do
not update ¢, unless A(§ +q.) and A(q + q. + §oo) have characteristics with

different signs.

For the sake of computational efficiency, we take the third approach. This ensures
that the signs of our characteristics are consistent with those of the corrected mean
flow, without an increase in computational cost relative to linearizing about the base

flow.

G.4.1.1 Results for K-type transition

For the K-type transition case of Section 3.4.4, we perform the NOWNS calculation
again, but we instead linearize about the corrected mean flow. In Figure G.5, we
compare the amplitudes computed by the two approaches to NOWNS and we see that
in the early stages of the march, when the amplitudes are small, the two calculations
are nearly identical, but that they begin to differ slightly as the disturbance amplitudes
increase. The differences are small, but are most notable for the MFD, qao, and the
vortex mode, g, , after Re, = 2.5 % 10°, which corresponds to an MFD amplitude of
roughly 3% of Us. The two NOWNS marches continue to yield similar results until
the end of the calculation at Re, = 2.74 x 10°, where the MFD amplitude is 11% of
Us. Since linearizing about the corrected mean flow has a negligible impact on the

solution, we recommend linearizing about the base flow for the sake of simplicity.
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Figure G.5: Amplitude of u’ v.s. streamwise coordinate, Re,, for fundamental
breakdown. Compare linearizing NOWNS about g vs. § + g,
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Appendix H
HEURISTIC RECURSION PARAMETER SETS

This thesis requires recursion parameter sets for the following low- and high-speed
boundary-layer flows. We use the heuristic recursion parameters for high-speed
boundary-layer flows from Kamal (2023), and the heuristic recursion parameters for

low-speed boundary-layer flows from Rigas et al. (2017a), which we present below.

H.1 Recursion parameters for non-zero frequencies
The recursion parameters are chosen based on the eigenvalues of the Euler equations
linearized about a uniform flow, as described in Towne and Colonius (2015). The
eigenvalues are

ik M, + pu(2) -M, — ju(z)

o, = —, iy (2) =ik = . lag, (z) =ik =
C Mx al() l—M)% az() l—M)%

b

where M, = ii/¢ is the local streamwise Mach number, k = w/¢ is the streamwise
wave number, 7z is a composite wave-number (for the transverse directions), and the

function u(z) is given by

u(z) = \/1 —(1-M2)22.

For subsonic boundary layer flows, we use the same recursion parameters as in (Rigas
et al., 2017a), which differ slightly from those developed originally in (Towne and

Colonius, 2015), so we will briefly explain the new choice of recursion parameters.

The present choice of recursion parameters are separated into the following groups:
(1) vortical modes, which replace convective modes, (i) fast and slow stream evanes-
cent acoustic modes, and (iii) fast and slow stream propagating acoustic modes,
where fast stream modes are associated with the free-stream streamwise Mach num-
ber, while slow stream modes are associated with a small Mach number (inside the
boundary layer). The recursion parameters for the vortical modes of the present study
match closely the parameters for convective modes in (Towne and Colonius, 2015),
while the recursion parameters for the propagating acoustic modes are distributed
the same way in both the present study and in (Towne and Colonius, 2015). The
parameters for the evanescent acoustic modes are distributed in a slightly different

way, so we focus our discussion on these parameters.
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To distribute the parameters for the evanescent acoustic modes, we define

k L,

= = =15-—
TIC 1—Mx, nm Aya

where Ly is the (dimensionless) extent of the domain in the wall-normal direction,
while Ay is the (uniform) wall-normal grid-spacing. These define the spacing

parameter

NMm —Tc
N, -1

2" = + (e +0.1 i) h=0, . Ne- 1,

N,-1

which in turn defines
u™ = @™y, h=0,...,N,—1.

This contrasts with the choice

h
(h):,umaxﬁ, h:07"'72N€_1’

e

u

used in Towne and Colonius (2015), where pmax = #(Zmax)- Here, zmax represents
the maximum transverse wave number supported by the semi-discrete Euler equa-
tions (wave numbers larger than z,x need not be considered because they are not
supported by the semi-discrete equations). The present approach considers a range
of z near zymax (distributed according to n(h)) which is then used to define ,u(h) , while
the approach presented in Towne and Colonius (2015) considers only one z to get
Umax, Which is then used to define u(h) spaced linearly over [0, umax]. The present

approach is advantageous because u(z) is nonlinear in z.

The recursion parameter sets for a subsonic boundary layer flow are summarized in
Table H.1. The fast-stream values are denoted k; and Mx,l, while the slow-stream
values are denoted k, and Mx,z. The acoustic modes must be computed for both the

fast- and slow-stream values.

H.2 Zero-frequency modes

The recursion parameter sets for non-zero frequency modes match those used in Slee-
man et al. (2024b). They depend on w through the streamwise wave number k = w/¢,
and when k = 0, the recursion parameters associated with the vortical and propagat-

ing acoustic waves go to zero, leaving only the evanscent acoustic waves, as shown
in Table H.2.
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Type Spacing ij ) Y
Vortical b = % + Niw(;jvz - Mk_ll) (1+i)bD —12_’<_12V11‘§2 AT
h=0,...,Ny, -1
Evanescent acoustic ~ u) = \/k2 = (1 = M2)(nM)?2 %&gm _Ml’:k—]\;gm
h=0,...,N. -1
Propagating acoustic o =2 k _M"ltclf;;;w) k=M If(;\;g(zﬁl)

P
h=0,...,2N, - 1

Table H.1: Recursion parameter sets for subsonic boundary layer flows.

Type Spacing Erj ) Y
Evanescent acoustic  u = y/—(1 — M2)(y)2 % 1)
h=0,...,N,—1

Table H.2: Recursion parameter sets for subsonic boundary layer flows for zero-
frequency modes.
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Appendix I

LABELING EIGENVALUES ACCORDING TO BRIGGS’
CRITERION

To evaluate J (+) and J ®)(-), we must know whether an eigenvalue is upstream- or
downstream-going, which we can do using Briggs’ criterion (see definition 2.2.3).
By proposition 2.2.4, M (s) has N, downstream- and N_ upstream-going eigenvalues
so that taking 7 — oo yields N, eigenvalues with 7 () > 0 and N_ eigenvalues
with 7 (@) < 0. In principle, we can choose a large value of 1 such that there N,
eigenvalues with 7 (@) > 0 and N_ eigenvalues with 7 (@) < 0, and then slowly
decrease n to zero while tracking the eigenvalues (since they are a continuous
function of 7) to assign a label of upstream- or downstream-going. However, for
problems of interest, the sign of 7 (@) remains the same for most eigenvalues as
increases, as shown in Figure I.1a. For this configuration, the sign of 7 (@) changes
for only one eigenvalue, as shown in Figure I.1b. Since the sign of 7 (@) does not
change as n increases for most eigenvalues, we choose the smallest 7 > 0 such that
there N, eigenvalues with 7 (a) > 0 and call it oy (see algorithm 3). Then we
match each eigenvalue associated with 7,y to the closest eigenvalue associated with
n = 0, where we measure distance as |a(77opt — iw) — @(—iw)| (see algorithm 4).
There is no guarantee that this algorithm will always correctly label the eigenvalues,
but we have found this to work well in-practice. Moreover, if an eigenvalue is labeled
incorrectly, then the OWNS march will not be well-posed and will fail. Therefore,
any failure in labeling the eigenvalues will be easy to identify.
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Figure I.1: Spectrum of TS wave at Re, = 1.6 x 10’ for different values of 7.

Algorithm 3 Bisection search for smallest 77 such that there are N, eigenvalues with
I (a) > 0 and N_ eigenvalues with 7 (@) <0
Input: (real) frequency w
Nmax < 1, Nmin < 0
while 7max — min > Jmax X 107> do
U (nmin + nmax)/z
a « eigenvalues of M (n — iw)
N, « number of @ such that 7 (¢;) > Ofori=1,...,
N_ « number of a such that 7 (a;) <Ofori=1,...,
if N, = N, and N_ = N_ then
nmax — )7
else
Nmin < 7]
end if
end while
etagpt «— 17
return 77,p¢

z =
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Algorithm 4 Apply Briggs’ criterion to label eigenvalues

Given a (real) frequency w, compute 770 using algorithm 3
@op; — eigenvalues of M (17op; — iw)
Uyero < eigenvalues of M (—iw)
NZ « number of @ero such that 7 (@zero;) > 0 fori=1,...,N
N%™ « number of @ero such that 7 (@zero;) < Ofori=1,...,N
prt « number of @p such that 7 (agp;) > O0fori=1,...,N
NPt « number of @opt such that I (agp;) <Ofori=1,...,N
Nﬂip - | Niero _ ngtl
NCOlll'lt — O7l — O’ a+ — {}9 a_ — {}
while Neount < Nﬂip do
l—i+1
Jj < arg miIlJ':l ,,,,, N |a'zero,i - a’opt,jl-
if sign(7 (@zer0,i)) # sign(Z (aopy,;)) then
Ncount — Ncount + 1
if sign(Z (@zer0i)) > O then
a_ «— append @zero,i
else
@, < append zero,i
end if
else
if sign(7 (@zer0,i)) > O then
@y append zero,i
else
a_ < append Qyero
end if
end if
end while
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Appendix J

TRANSIENT GROWTH IN LOW-SPEED BOUNDARY-LAYER
FLOWS

OWNS can be used to find optimal (worst-case) disturbances, as done by Rigas
et al. (2017b) and Towne et al. (2022). We also note that Monokrousos et al.
(2010) have investigated optimal disturbances for 3D low-speed boundary-layer
flows using time-stepping methods, while Tempelmann et al. (2010) have used PSE
to investigate optimal disturbances for incompressible boundary-layer flows, and
Tempelmann et al. (2012) did the same for compressible boundary-layer flows. We
follow the procedure introduced by Rigas et al. (2017b), adapted to a low-speed

boundary-layer flow, where we use the kinetic energy

y
gl = ¢"WKq ~ /0 Lo + pv + pw]dy, oD

to measure the size of our disturbances. Then we can seek, for example, the inlet

boundary condition that leads to the largest kinetic energy at the domain outlet:

 lgoullz
I (gin, Qour) = 5 J.2)
I ginll%
We introduce the inner product
Ws, ) = /‘/ffoﬁidx ~ //!/!ffﬁidydx, (J.3)
X xdJy
and note that our solution must satisfy the forward problem
0. _
P PMge, T i) = g (.4)

which allows us to introduce the Lagrangian

96,
L(ains $rows $usths) = T(T $uins T Gaout) — W 22— PM@L). (15)

Ox
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Integration-by-parts yields

W, ‘% _PM¢.) = / wiiw
'x X

6¢idx— / YEIWPM . dx
o0x M

(/IH
:—/ﬁwmdx—/(MHPHwi)HWrﬁidx

+ ¢f,0utW¢t,out - wginw¢i,in
O
= —<% +MIP Y, @) + 9L Wb ou =Y Wi,

so that

o/
-£(¢i,in, ¢i,0ut’ ¢ia ‘pi) = j(T_l¢i,in’ T_]¢i,out) + < a!/;_

H H
- wi,outW¢i,0ut + wi,inW‘pi,in-

+MYPHy . ¢.)

Variations with respect to each variable must be zero, yielding the following con-

straints:
0¢:
(Vy,08) =0= - PM¢, =0, (J.6a)
X
(Vg,00) =0 = % +MiPHg, =0, (J.6b)
<V¢0u[5 6¢0ut> =0= ‘ﬁi,out = T_HWKT_1¢¢,0ut (J6C)
(Vi 0Fin) =0 = Poin = (THWKT )y s, (J.6d)

The solution procedure is summarized as follows:

1. Solve the direct equation (J.6a).
2. Solve for the adjoint outlet boundary condition (J.6¢), rescaled to unit norm.
3. Solve the adjoint equation (J.6b).

4. Solve for the inlet boundary condition (J.6d), rescaled to unit norm.

J.1 Preliminary results

The Tollmien-Schlichting (TS) wave is the only unstable mode in low-speed boundary-
layer flows. Therefore, it is the optimal modal inlet boundary condition. Moreover,
given a sufficiently long streamwise distance over which the TS wave is unstable, we
expect any other disturbance to eventually turn into a TS wave, since any components
that are colinear with the TS wave will be amplified. However, since the linearized

Navier-Stokes operator is non-normal, there should exist an inlet boundary condition
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that causes non-modal (transient) growth, which leads to more growth than the TS

wave on its own.

We verify that our results agree with expectation for 2D disturbances to the Blasius
profile at Ma = 0.1 with disturbance frequency F = 50 x 107, The TS wave is
unstable over Re, € [3.75 x 10°,1.43 x 10°], and so we seek the optimal inlet
boundary condition over this streamwise domain with y € [0, 150], N, = 6000 and
N, = 200. Figure J.1 plots the norms associated with the optimal, random, and TS
wave boundary conditions, showing that the optimal solution experiences transient
growth, before turning into a TS wave and evolving like a TS wave. Similarly, the
random inlet boundary condition also turns into a TS wave, but more slowly than
the optimal. To assess how similar a disturbance is to a TS wave, we measure it

using the inner product

qWqrs

T TT—T d.7
lqlixllligrslix

TS Score of g =

which is zero if g is orthogonal to the TS wave, and 1 if it is the TS wave. We see
that the optimal inlet boundary condition becomes a TS wave much more quickly
than the random inlet boundary condition. Figure J.2 compares the optimal inlet
boundary condition to the TS wave. We see that the optimal inlet condition has a
large amplitude u-velocity disturbance near the surface of the plate, while both the
u- v-velocity disturbances are smaller farther from the wall. We repeat this analysis
for a range of frequencies, and plot the gain as a function of F in Figure J.3, where
we see that both the optimal and TS gains decrease with increasing F at roughly
the same rate. Figure J.4 plots Gopim — Gs and shows that the transient growth

decreases with increasing F.
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Figure J.1: Norm of optimal inlet boundary condition, compared to random and TS
wave inlet boundary conditions for F = 50 X 107, between branches I and II.
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Figure J.2: Optimal inlet boundary condition for F = 50 x 1075, compared to TS

wave.
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Figure J.4: Difference in optimal and TS gains for a range of frequencies.
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