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ABSTRACT

Multi-angle illumination-based computational microscopes have emerged as a promis-
ing class of imaging systems due to their capabilities and robustness across a wide
range of applications, from biological imaging to materials inspection. In particu-
lar, quantitative phase imaging methods such as Fourier Ptychography Microscopy,
Angular Ptychographic Imaging with Closed-form solutions and Kramers-Kronig
relations leverage multi-angle illumination to surpass traditional space-bandwidth
limitations and digitally correct aberrations. However, the performance of these
systems is highly sensitive to misalignment in the illumination angles, and even
minor perturbations can significantly degrade reconstruction quality and necessi-
tate time-consuming recalibration. Thus, there is a pressing need for efficient and
robust illumination angle calibration in such imaging modalities. We investigate
how angular misalignments affect reconstruction fidelity and systematically evalu-
ate a range of digital calibration strategies, including classical geometric models,
cross-correlation-based methods, and learning-based approaches. These methods
are benchmarked across varying signal levels and sample types. Our findings offer
practical insights into selecting and deploying robust calibration techniques, ulti-
mately supporting more resilient, reproducible, and high-throughput computational
microscopy systems.
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C h a p t e r 1

INTRODUCTION

1.1 Computational Imaging
Computational imaging refers to a class of imaging techniques that integrate phys-
ical imaging systems with algorithmic reconstruction to overcome the intrinsic
limitations of conventional optics. Traditional imaging systems are constrained by
physical limitations in optical design, such as the limited space-bandwidth product
(SBP), and optical aberrations. These limitations present challenges for applications
that demand both detailed structural information and large-area coverage, such as
biological samples, semiconductor inspection, and materials analysis. By incorpo-
rating computational models into the image reconstruction process, these methods
can synthetically increase resolution, correct for aberrations, and extract otherwise
inaccessible information from raw intensity data.

A key subfield of computational imaging is quantitative phase imaging (QPI),
which enables the recovery of a sample’s complex optical field (amplitude and
phase) from intensity-only measurements. This capability is particularly valuable
for revealing intrinsic properties at the microscale, including those of biological
specimens, microstructures, and engineered materials. Several QPI techniques have
been developed to achieve this, including digital holography, coherent diffractive
imaging (CDI), differential phase contrast (DPC), transport-of-intensity equation
(TIE) methods, and FPM [1–6]. Among these, advanced methods such as FPM,
Kramers-Kronig (KK) phase retrieval, and Angular Ptychographic Imaging with a
Closed-form solution (APIC) stand out due to their ability to overcome the SBP,
digitally correct for optical aberrations, and seamlessly integrate with LED-array
microscope hardware [7].

1.2 Multi-angle illumination microscopy
To achieve those advantages, many QPI techniques leverage multi-angle illumina-
tion schemes, including FPM, APIC, and KK methods. These techniques capture
and combine information from multiple illumination directions without any axial
scanning, and they allow for the recovery of a broader range of the object’s spatial
frequencies. Multi-angle illumination can be realized through a variety of hard-
ware configurations, such as a programmable LED array, galvanometric mirrors, a
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digital micromirror device (DMD), or a spatial light modulator (SLM). The choice
of illumination scheme depends on the imaging modality, sample type, and desired
resolution or throughput. These methods have a wide range of applications, in-
cluding cell biology, label-free live-sample imaging, digital pathology, and even
non-destructive inspection of semiconductor devices.

1.3 Fourier Ptychography Microscopy
A notable method that relies on multi angled illumination is Fourier Ptychography
Microscopy (FPM), which combines many low-resolution measurements to form
a high-resolution image. FPM uses a programmable LED array to sequentially
illuminate the sample from different angles. Each image captures a different band
of spatial frequency content in the Fourier domain, and these low-resolution images
are computationally stitched together to reconstruct a high-resolution complex field
of the sample. This approach significantly extends the system’s numerical aperture,
yielding a higher-resolution, quantitative phase image without axial mechanical
scanning. FPM also enables digital aberration correction and can be easily adapted
to conventional microscope platforms, making it a flexible and powerful tool in
biomedical imaging.

Figure 1.1: Overview of the FPM system and reconstruction pipeline. The setup
consists of an LED array for multi-angle illumination, a standard 4f system with an
objective and tube lens, and a camera for image acquisition. The LEDs provide a
set of unique oblique illumination angle, producing a set of low-resolution measure-
ments, as shown in the illumination map in spatial frequency space. These angles
are used to computationally instruct iterative reconstruction of FPM high resolution
images from the low-resolution measurements via an alternating projection (AP)
algorithm.
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1.4 Other angular illumination based imaging methods
Some other notable computational imaging techniques that also employ multi-angle
illumination to enhance imaging capabilities include APIC, Structured Illumination
Microscopy. One such method is Angular Ptychographic Imaging with Closed-form
solutions (APIC), which, unlike FPM’s iterative solvers, relies on NA-matching
rings and analytical expressions to reconstruct the object’s complex field, providing
a fast and stable alternative for specific configurations [2]. Similarly, Structured
Illumination Microscopy (SIM) uses patterned illumination, often generated using
a spatial light modulator (SLM) or a digital micromirror device (DMD), to shift
high-frequency object information into the passband of the microscope. DMD-
based illumination systems, in particular, are capable of rapidly switching between
illumination patterns, enabling high-speed acquisition and precise angular control
[8].

In refractive index tomography [9, 10], angular scanning is typically achieved using
galvanometric mirrors, which steer collimated beams across a range of incident
angles. These systems enable volumetric reconstructions and three-dimensional
imaging by combining multi-angle views with depth-resolved algorithms [11, 12].

Additionally, Kramers–Kronig (KK) phase retrieval has been adapted into angular-
illumination-based setups where programmable illumination tiling improves spectral
coverage and phase recovery. These illumination strategies enhance robustness and
resolution without requiring mechanical scanning or complex optics. Across these
techniques, angular diversity is a unifying mechanism that extends spatial frequency
support, enables phase reconstruction, and facilitates computational aberration cor-
rection [13].

1.5 Illumination angle calibration
Despite the diverse range of applications and capabilities, all these techniques share
a common challenge: accurate calibration of illumination angles. These systems
are highly sensitive to misalignment, and even slight deviations such as bumping the
optical setup or mechanical drifts over time can significantly degrade image quality,
rendering the reconstructions unusable. Additionally, system modifications, such as
switching to a different objective lens, necessitate recalibration, posing significant
challenges for practical implementation. Thus, ensuring the reproducibility and
accessibility of these image techniques necessitates the development of robust and
efficient angle calibration strategies.



4

Figure 1.2: An illustration of the calibration scheme. On the left is a system that
captures raw measurements illuminated at different angles. The illumination can
be provided by a DMD, Galvo or an LED array. Each raw measurement has an
intensity spectrum that corresponds to a unique illumination angle. Calibration
aims to recover the correct illumination angles corresponding to each image for
reconstruction usages.

Several approaches have been developed, ranging from mechanical pre-calibration
methods to computational post-processing techniques. Mechanical alignment meth-
ods include precision LED array positioning and mirror-based localization, where
markers or reflections are used to determine the exact illumination angles before
imaging. While effective in controlled environments, these approaches often fail to
correct dynamic misalignments that arise during long-term system operation.

To address these issues, simulated annealing-based methods such as SC-FPM,
pcFPM, and mcFPM iteratively refine illumination positions by optimizing a mis-
alignment correction term within the reconstruction pipeline [14–16]. These ap-
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proaches are particularly useful for correcting global shifts rather than individ-
ual illumination angles, improving convergence speed by isolating parameter up-
dates. Alternatively, cross-correlation-based methods leverage overlapping spec-
tral information to refine illumination angles. The “Efficient Illumination Angle
Self-Calibration" in FPM method [11eckert2016algorithmic] employs a two-step
optimization approach, first estimating brightfield angles and then refining them
iteratively using spectral correlations (BF-SC). Similarly, the translation position
determination method integrates cross-correlation as a loss function within an op-
timization framework [17]. Machine learning (ML) based methods have also been
explored, with Mask-RCNN-based calibration reformulating illumination estimation
as an object detection problem in Fourier space. Deep learning approaches such as
the Boundary Attention Method further enhance robustness in edge cases by refining
angle predictions near object boundaries. While promising, these methods require
extensive training datasets and may not generalize well across different experimen-
tal conditions [14polansky2023boundary, 18], Finally, vignetting-based correction
techniques, such as LED Array Positional Misalignment Correction via Superim-
posed Images, overlay experimental and simulated images to estimate illumination
shifts. These methods exploit center-region alignment and cross-correlation to
improve calibration accuracy in non-uniform illumination conditions [19].

1.6 Roadmap
In this thesis, we demonstrated a generic robust calibration framework for multi-
angle illumination microscopy. We systematically explore different methodologies
for illumination angle calibration in FPM and related computational microscopy
techniques. We discuss both hardware-based and post-acquisition computational
calibration strategies, highlighting their trade-offs in terms of accuracy, robustness,
and efficiency.

In section 2, we introduce the principals of FPM and derive the forward model of
the system. In section 3, we demonstrate the effect of slight mismatches between the
actual illumination angles and the illumination angles used for reconstruction. We
simulate several scenarios that could cause such mismatches, including a deviation
in height or lateral position, drifting over time, and random errors from DMDs or
customized 3D printed systems. In section 4, we introduce the general calibration
pipeline, and discuss some popular methods for calibration. In section 5, we focus
on the cross-correlation term of the Fourier spectra of intensity measurements to
digitally obtain illumination angles in a post-acquisition manner. In section 6,
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we present experimental results, show how we can use the outlined methods for
calibration, and bring in insights for sample selection and signal level adjustments
for robust calibration settings.
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C h a p t e r 2

PRINCIPLES OF FPM

To investigate the effects of angular misalignment and evaluate calibration strate-
gies, we focus our analysis on FPM as a case study for multi-angle illumination
microscopes. FPM synthesizes a high-resolution image by stitching together mul-
tiple low-resolution intensity measurements acquired under different illumination
angles. This illumination scheme is typically achieved using a programmable LED
array, where each LED is sequentially lit up.

The illumination from a single LED can initially be modeled as a point source,
emitting a spherical wave at a distance to the sample. Through free space propaga-
tion, the spherical wave gradually becomes a quasi-plane wave, according to the van
Cittert Zernike theorem [20]. Within a small field-of-view, the quasi-plane wave
can be considered as a coherent plane wave incident at some angle 𝜃𝑖.

The sample 𝑜(𝑥, 𝑦) illuminated by an oblique plane wave incident at an angle 𝜃𝑖 can
be modeled as

𝑈𝑖 (𝑥, 𝑦) = 𝑜(𝑥, 𝑦) · exp
(
𝑗2𝜋(𝑘𝑥,𝑖𝑥 + 𝑘𝑦,𝑖𝑦)

)
(2.1)

where 𝑖 = 1, 2, 3, . . . , 𝑛 indicates the sequence number of the LED, 𝑈𝑖 denotes the
field at the sample plane, 𝑘𝑥,𝑖 and 𝑘𝑦,𝑖 denote the spatial frequency components in the
x and y directions, respectively, given by 𝑘𝑖 =

2𝜋
𝜆

sin(𝜃𝑖), where 𝜆 is the wavelength
emitted by the LED.

The field then passes through the objective lens in the 4f system, which can be
mathematically modeled as an optical Fourier transform

F {𝑈𝑖 (𝑥, 𝑦)} = 𝑂 (𝑘𝑥 − 𝑘𝑥,𝑖, 𝑘𝑦 − 𝑘𝑦,𝑖) (2.2)

where F { } is the Fourier transform, 𝑂 (𝑘𝑥 , 𝑘𝑦) = F {𝑜(𝑥, 𝑦)}, and 𝑘𝑥,𝑖 and 𝑘𝑦,𝑖

correspond to shifts incurred by 𝜃𝑖.

The pupil constraint of the objective lens acts as a low-pass filter and can be modeled
by a coherent transfer function 𝐻

Ψ𝑖 (𝑘𝑥 , 𝑘𝑦) = 𝐻 (𝑘𝑥 , 𝑘𝑦) · 𝑂 (𝑘𝑥 − 𝑘𝑥,𝑖, 𝑘𝑦 − 𝑘𝑦,𝑖) (2.3)
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where Ψ𝑖 (𝑘𝑥 , 𝑘𝑦) is the intermediate optical field at the pupil plane of the 4f system.

Then, the complex field passes through the tube lens of the 4f system

𝜓𝑖 (𝑥, 𝑦) = F −1 {Ψ𝑖 (𝑘𝑥 , 𝑘𝑦)
}

(2.4)

where 𝐹−1{ } is the inverse Fourier transform, 𝜓 = F −1{Ψ}

Finally, the measurement from angle 𝜃𝑖 illumination is formed and captured by the
camera

𝐼𝑖 (𝑥, 𝑦) = |𝜓𝑖 (𝑥, 𝑦) |2 (2.5)

For simplicity, the general process of forward image formulation can be expressed
as

𝐼𝑖 (𝑥, 𝑦) =
��F −1 {𝐻 (𝑘𝑥 , 𝑘𝑦) · 𝑂 (𝑘𝑥 − 𝑘𝑥,𝑖, 𝑘𝑦 − 𝑘𝑦,𝑖)

}��2 (2.6)

This process is repeated across a series of LED positions, typically including several
brightfield and some darkfield NA rings. Once all measurements are acquired, they
are passed to a computational reconstruction algorithm that combines all the spectral
information into a single high-resolution, quantitative phase image.

2.1 Theoretical representation of illumination angles in the spectral domain
In the reconstruction phase of FPM, all the low-resolution intensity measurements
are combined to recover a high-resolution complex field of the sample through an
iterative alternating projection algorithm. This algorithm alternates between the
spatial and Fourier domains, updating the estimated object’s phase and amplitude
by enforcing consistency with the measured intensities. At each iteration, a portion
of the Fourier domain is cropped based on the assumed illumination angle, propa-
gated to the spatial domain, compared to the measured intensity, and then updated
accordingly before returning to the frequency domain. Thus, to correctly stitch
these measurements together, the reconstruction algorithm must accurately identify
which region of the Fourier domain each image corresponds to.

This is typically estimated from the nominal LED angle using the relation

𝑘𝑖 = 2𝜋
sin(𝜃𝑖)

𝜆
(2.7)

where, as before, 𝜆 is the wavelength, 𝜃𝑖 is the incident illumination angle, and
𝑜(𝑥, 𝑦) denotes the object field.
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However, if there are slight shifts in the system, the spectral regions will be incor-
rectly mapped, resulting in a faulty reconstruction.

If the incident wave has a perturbation (𝛿𝑘𝑥,𝑖, 𝛿𝑘𝑦,𝑖), then from Eq. 1, the field can
be expressed as

𝑈𝑖 (𝑥, 𝑦) = 𝑜(𝑥, 𝑦) · exp
(
𝑗2𝜋

(
(𝑘𝑥,𝑖 + 𝛿𝑘𝑥,𝑖) · 𝑥 + (𝑘𝑦,𝑖 + 𝛿𝑘𝑦,𝑖) · 𝑦

) )
(2.8)

For slightly perturbed illumination angle 𝜃′ = 𝜃 + 𝛿𝜃, the actual shift 𝑘′
𝑖
is

𝑘′𝑖 = 2𝜋
sin(𝜃𝑖 + 𝛿𝜃)

𝜆
(2.9)

We can simplify this with the first-order Taylor expansion

𝑘′𝑖 = 2𝜋
sin(𝜃𝑖) + 𝛿𝜃 · cos(𝜃𝑖)

𝜆
(2.10)

Thus, the cropped spectral region will be erroneously shifted by the amount

𝛿𝑘𝑖 = 𝑘′𝑖 − 𝑘𝑖 = 2𝜋
𝛿𝜃𝑖 · cos(𝜃𝑖)

𝜆
(2.11)

Plugging into (2.6), the actual measurement intensity will be shifted by the amount

𝐼𝑖 (𝑥, 𝑦) =
��F −1 {𝐻 (𝑘𝑥 , 𝑘𝑦) · 𝑂 (𝑘𝑥 − 𝑘𝑥,𝑖 − 𝛿𝑘𝑥,𝑖, 𝑘𝑦 − 𝑘𝑦,𝑖 − 𝛿𝑘𝑦,𝑖)

}��2 (2.12)

Figure 2.1: The effect of an illumination angle mismatch on the Fourier spectrum
of a raw measurement. The actual (green) spectrum contains the frequency in-
formation of the intensity measurement, shifted by 𝑘′. However, our illumination
angle map corresponds to the intended (red) spectra. Without calibration, the FPM
reconstruction algorithm will end up using the red spectrum shifted by 𝑘 .
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C h a p t e r 3

EFFECTS OF ILLUMINATION ANGLE MISMATCH

The slight mismatch in spectral shift has significant implications in terms of im-
age quality. To quantify the impact of illumination angle misalignment on image
reconstruction quality, we conducted controlled simulations of the FPM pipeline,
introducing three distinct types of angular perturbations. These simulations were
performed using Matlab’s imaging library on two standard sample datasets, al-
lowing for direct comparison of reconstruction quality under varying degrees of
misalignment.

• Random LED Jitter: Each LED position was perturbed by a small, random
displacement sampled from a uniform distribution, with a maximum devi-
ation of one pixel. This simulates potential inconsistencies in LED array
positioning due to fabrication errors or mechanical misalignment. These ran-
dom mismatches could occur with DMDs, SLMs, or customized 3D printed
domes, where individual pixels might have some mechanical or human error.

• Global Shift: A systematic translation was applied to all LEDs, shifting their
positions by a uniform one-pixel displacement. This mimics errors arising
from improper LED array alignment during setup, or from the system slightly
drifting over time.

• Height Mismatch: A radial displacement was introduced to LED positions,
mimicking misalignment due to incorrect LED array height relative to the
sample plane. Such deviations lead to nonlinear illumination angle errors,
significantly impacting high-frequency reconstruction accuracy. This is a
more common alignment error, since the height is often manually adjusted.

The effects of illumination angle misalignment on FPM reconstruction quality were
assessed by computing the peak signal-to-noise ratio (PSNR) of the reconstructed
images relative to a ground truth reference, as outlined in Figures 3.1 and 3.2. To
simulate the perturbations, we designed a forward model in MATLAB, based on the
FPM formulation in Section 2. The illumination setup mimics a standard LED array
system with a 10×, 0.25 NA objective lens and green light illumination from an LED
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array. The samples imaged are constructed with example images from MATLAB’s
internal library. For FPM simulations, we use the “cameraman” figure for the
amplitude and the “west concord orthophoto” for the phase. For APIC simulations,
we use the “cell” figure for the amplitude and the “west concord orthophoto” for
the phase. All images are typical benchmarking samples used by the computational
imaging community. For each simulation, we generated low-resolution intensity
measurements using shifted LED positions, then reconstructed the high-resolution
complex object using an iterative alternating projection algorithm.

To model different system imperfections, we introduced random LED jitter, global
shift, and height mismatch errors, as described above, in the illumination model.
In the jitter condition, each LED’s position was perturbed randomly in x and y,
sampled from a uniform distribution with a maximum deviation of 3 pixels, corre-
sponding to a few microns at the LED plane. For global shifts, we applied uniform
displacement to all LED positions to simulate mounting misalignments or drift. For
the height mismatch, the illumination angle was recalculated assuming incorrect
vertical distance between the LED array and the sample, leading to non-uniform
radial displacement in the spectrum.
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Figure 3.1: Quantification of the effect of misalignment. The PSNR of the image
is plotted against the LED misalignment, measured by the mean squared error in
𝑘 space. There is a noticeably sharp initial decline in image quality for a slight
misalignment. For a total shift in illumination accuracy of 0.015 (in k space), which
corresponds to a < 0.2 cm shift of the LED, the image quality degrades by up to 10
dB.
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Figure 3.2: Impact of illumination angle misalignment on FPM (top) and APIC (bot-
tom) reconstruction quality. Each row represents a different perturbation scenario
applied to the illumination angles; from top to bottom, calibrated FPM (reconstruc-
tion with no mismatch), random shifts, global shift and height mismatch. The left
column shows the illumination angle maps, with blue dots representing the ground
truth positions (used in reconstruction) and red dots indicating perturbed angles
(used for illumination). The middle column displays the reconstructed amplitude
images, and the right column shows the corresponding phase reconstructions. Each
reconstruction is paired with a peak signal-to-noise ratio (PSNR) value measuring
fidelity against a ground truth reference.

Each reconstructed image was compared against the ideal reconstruction, with no
illumination angle misalignments, using PSNR. As shown in Figure 3.1, image
quality degrades noticeably even for small misalignments: PSNR drops by over 10
dB as the mean squared shift increases from zero to just 3 pixels, which corresponds
to an LED displacement of < 3 um. The degradation sharply declines after a small
threshold, which further underscores the high sensitivity to slight perturbations.
In the FPM and APIC examples (Figure 3.2), the reconstructions exhibit loss of
high-frequency detail and increased artifacts.

This behavior reflects the high sensitivity of such imaging methods on accurate
illumination angle calibration. Because each LED illumination contributes new
information to specific bands of spatial frequencies, any shift in the estimated angle
misplaces those frequency components, leading to incorrect spectrum stitching and
phase reconstruction. The resulting artifacts are particularly pronounced in the
high-frequency regime, as seen in the FPM and APIC examples (Figure 5bc), where
edge sharpness is lost, and fine structural features become distorted or aliased.

These findings highlight the sensitivity of FPM and APIC to illumination angle accu-
racy; even small misalignments in illumination geometry can significantly degrade
reconstruction quality. We showed that illumination angle misalignment signifi-
cantly degrades image quality, even when all other system parameters are ideal.
Thus, it is evident that mechanical setup alone is insufficient to ensure reliable
performance, and robust digital calibration procedures must be integrated into the
imaging pipeline to dynamically estimate and correct angular errors. This need be-
comes even more critical in systems using DMDs, galvo mirrors, or large-area LED
arrays, where alignment variation can be systematic or spatially non-uniform. Our
demonstration strongly motivates the development of robust, accurate, and practical
calibration methods, which we address in the next section.



16

C h a p t e r 4

GENERAL CALIBRATION PIPELINE

As shown, accurate calibration is essential to ensure the fidelity of reconstructions
in multi-angle illumination-based computational microscopy systems such as FPM
and APIC. Calibration typically begins with mechanical alignment during the initial
assembly or reconfiguration of the system. This involves physically aligning the
LED array, adjusting the sample height, centering the objective, and ensuring that
the optical components are positioned according to the design specifications. These
mechanical steps are essential for establishing a baseline alignment, especially when
the system is first installed or after major hardware changes, such as switching
objectives or repositioning the sample stage.

After the initial setup, frequent mechanical adjustments are typically unnecessary,
since once the system is aligned, we can rely on digital calibration methods to
more precisely fine-tune and maintain performance over time. Digital calibration
can estimate and correct residual misalignments in the illumination angle model,
compensate for sample tilts, and perform aberration correction. This digital step of
calibration significantly reduces the need for repeated manual tuning and supports
consistent performance across experiments. It also enhances the system’s usability
and robustness, making computational microscopy platforms more adaptable to
non-expert users and better suited for commercial, clinical, or field deployment.
This general pipeline is illustrated in Figure 4.1.



17

Figure 4.1: A flowchart representing the general calibration pipeline. The cali-
bration process can be broadly divided into two categories: mechanical methods
(left) and algorithmic methods (right). Mechanical calibration begins with coarse
system alignment followed by fine-tuning procedures that may include inspection
of vignetting effects or Fourier spectrum analysis. Algorithmic calibration refers
to calibration that no longer has access to the system hardware and is performed
post-acquisition. It includes methods such as joint optimization during image recon-
struction, analysis of vignetting effects, machine learning based calibration methods,
and cross-correlation term analysis.

There are several methods for digital calibration. One class of methods focuses
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on joint optimization, such as such as SC-FPM, pcFPM, and mcFPM, in which
both the sample field and illumination angles are iteratively refined within the
reconstruction loop. This is accomplished by refining angle estimates by minimizing
a misalignment-dependent error term, often via simulated annealing algorithms [14–
16]. These methods are particularly effective for correcting global shifts across the
LED array and optimizing system-wide calibration with fewer assumptions about
individual angles. Their main limitation is the computational cost and convergence
guarantee, especially for systems with larger misalignments or many illumination
angles.

Another method introduces vignetting effects into a superimposed image alignment
algorithm (SIA). The vignetting effect is a natural intensity fall-off toward the edges
of images caused by angular illumination. The SIA overlays simulated and experi-
mental low-resolution images to iteratively estimate the illumination angles that best
explain the observed vignetting patterns [19]. By optimizing the similarity between
experimental and simulated vignetting profiles using normalized cross-correlation,
the method can recover sub-pixel corrections without any hardware changes. This
approach is highly precise, however, its accuracy is highly dependent on the sam-
ple being centrally located and relatively uniform, as strong object features may
confound the vignetting pattern. Additionally, it assumes consistent illumination
intensity across LEDs and uniform sample scattering, which may not hold in all
scenarios.

Recently, machine learning methods have also emerged. These approaches refor-
mulate angle calibration as a data-driven inference task and train deep convolutional
neural networks trained to predict illumination positions from Fourier-domain in-
tensity patterns, usually through segmentation. One notable example is the Mask
R-CNN–based calibration framework, which treats angle estimation as an object de-
tection problem in Fourier space. [18] The primary advantage of ML approaches is
their speed, scalability, and robustness to noise and sample variation. Once trained,
these models can infer angle shifts rapidly and consistently across diverse imaging
conditions. However, it is challenging to create representative training datasets that
can generalize to unseen experimental settings. Additionally, these models can be
rather computationally expensive to train. ML approaches are especially useful for
large illumination schemes, such as 3D FPM, since it allows for batchwise operations
that quickly calibrate a large group of illumination angles at once.

Lastly, of the many methods for calibration, another common and robust one is to
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look at the cross-correlation term of the Fourier transform of the intensity measure-
ments, which we will focus on in the next section. The underlying idea is that by
identifying and cropping the relevant sections in the Fourier domain, which corre-
spond to shifted replicas of the object spectrum, we can estimate the spatial frequency
shift. These shifts can then be directly mapped to the corresponding illumination
angles using a simple geometric relationship. As a result, the cross-correlation
term can be accessed directly by applying a Fourier transform to the low-resolution
intensity measurement, which makes this a fast, accurate, and accessible means for
digital calibration.
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C h a p t e r 5

DIGITAL CALIBRATION USING CROSS-CORRELATION

To understand the origin of the cross-correlation term in the intensity spectrum,
we begin by analyzing a single low-resolution measurement taken under oblique
illumination. First, consider a Fourier transform to the low-resolution intensity
measurement. The resulting Fourier spectrum contains distinct features, including
central autocorrelation lobes and sidebands arising from interference between the
object and the background (or DC) term. These cross-correlation sidebands appear
symmetrically offset from the center and encode the shift of the object’s spectrum
due to oblique illumination.

Recall from (2.5) that a low-resolution measurement can be expressed as

𝐼𝑖 (𝑥, 𝑦) = |𝜓𝑖 (𝑥, 𝑦) |2 (5.1)

where
𝜓𝑖 (𝑥, 𝑦) = F −1 {𝐻 (𝑘) · 𝑂 (𝑘 − 𝑘𝑖)} (5.2)

The sample 𝑜(𝑥, 𝑦) can be expressed as a summation of two terms: the scattered
sample 𝑜𝑠 and the DC component 𝑟, so we can write

𝜓𝑖 (𝑥, 𝑦) = F −1 {𝐻 (𝑘) · F {𝑜𝑠 + 𝑟}} (5.3)

Since 𝑟 is the DC component of 𝑜,

𝐻 (𝑘) · F {𝑟} = 𝛿(𝑘 − 𝑘𝑖) (5.4)

where 𝛿(𝑘) is the dirac delta function

For simplicity, since 𝐻 (𝑘) acts as a low-pass filter, let us define

𝑂𝑆𝐿 = 𝐻 (𝑘) · F {𝑜𝑠} (5.5)

With (5.4) and (5.5), we can express 𝜓𝑖 as

𝜓𝑖 (𝑥, 𝑦) = F −1{𝑂𝑆𝐿 + 𝛿(𝑘 − 𝑘𝑖)} (5.6)
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Now, to access the Fourier spectrum of the low-resolution measurement 𝐼𝑖, we take
the Fourier transform

F {𝐼𝑠 (𝑥, 𝑦)} = F
{��F −1{𝑂𝑆𝐿 + 𝛿(𝑘 − 𝑘𝑖)}

��2} (5.7)

By the convolution theorem,

F {𝐼𝑠 (𝑥, 𝑦)} = (𝑂𝑆𝐿 + 𝛿)∗ ∗ (𝑂𝑆𝐿 + 𝛿) (5.8)

Thus, the Fourier spectrum can be expressed as

F {𝐼𝑠 (𝑥, 𝑦)} = 𝑂𝑆∗𝐿 ∗ 𝛿(𝑘 − 𝑘𝑖) +𝑂𝑆𝐿 ∗ 𝛿∗(𝑘 − 𝑘𝑖) +𝑂𝑆∗𝐿 ∗𝑂𝑆𝐿 + 𝛿 (5.9)

F {𝐼𝑠 (𝑥, 𝑦)} contains two cross-correlation terms and two autocorrelation terms.
The former corresponds to the smaller circles in Figure 5.1 that are symmetrically
shifted. The latter corresponds to the large outer circle.

Figure 5.1: A breakdown of the Fourier intensity spectra of a low-resolution mea-
surement. On the left is an object illuminated from an angle. On the right is its
corresponding Fourier spectra, F {𝑂𝑆𝐿}, which has multiple terms. The autocorre-
lation terms 𝑂𝑆∗

𝐿
∗ 𝛿(𝑘 − 𝑘𝑖) +𝑂𝑆𝐿 ∗ 𝛿∗(𝑘 − 𝑘𝑖), shown in blue, make up the central

region and appears as a large circle. The cross-correlation terms, 𝑂𝑆∗
𝐿
∗ 𝑂𝑆𝐿 + 𝛿,

shown in orange and green, appear as the two shifted smaller circles, and are located
symmetrically about the center at positions determined by the illumination angle.
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Now, since these cross-correlation terms encode the spatial frequency shift intro-
duced by the illumination angle, we can work backwards from the cross-correlation
term to infer the illumination angle.

Rearranging (2.7), we can express 𝜃𝑖 as

𝜃 = sin−1(𝜆𝑘𝑖
2𝜋

) (5.10)

Thus, by detecting the position of the smaller circles, we can quantify the spectrum
shift 𝑘𝑖 and directly calculate the illumination angle 𝜃𝑖. However, this formulation
assumes the presence of a DC term in the sample, which corresponds to a weakly
absorptive object. For strongly absorptive samples, the delta function representation
breaks down, and the cross-correlation term in Eq. (5.9) will not be valid.
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C h a p t e r 6

METHODS FOR ILLUMINATION ANGLE CALIBRATION

Having established how we can identify the true illumination angle by segmenting
the cross-correlation term, we now demonstrate how this method can be applied
in practice. This section presents an experimental evaluation of three calibration
strategies: a classical circle detection method (Hough transform), a recent iterative
algorithm (BF-SC), and a ML-based method using boundary attention models. We
test across varying signal levels and sample conditions to assess their performance,
robustness, and failure modes.

In our experiments, we first collect a batch of low-resolution images illuminated
from different angles. Then, we apply the calibration method to the image stack.
Each method segments the low-resolution image’s Fourier spectra to identify the
LED locations. Then, the LED locations can simply be passed to the reconstruction
algorithm. This pipeline is outlined in Figure 6.1.

It is important to acknowledge that calibration methods are also influenced by the
sample being imaged and the overall signal level. Certain samples, such as those
with fine structural details or strong phase contrast, exhibit a full spectrum, which
ensures better convergence in calibration algorithms. In contrast, weakly scattering
or low-contrast samples, such as thin biological specimens, can pose challenges due
scattering or limited frequency information available in their Fourier spectra. They
may not produce strong or well-defined circles, making it more difficult to estimate
the spectrum’s shift and thereby the illumination angle. Additionally, low signal-
to-noise ratio (SNR) settings reduce the system’s ability to capture and preserve
high-frequency features, which make calibration difficult for similar reasons. The
effects are shown in the bottom row of Figure 6.1. In our experiments, we selected
a sample with well-defined cross-correlation features to better outline the effects of
signal level.
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Figure 6.1: Calibration pipeline and sample selection. The top row depicts an
overview of the calibration pipeline based on the cross-correlation term. The Fourier
spectra of a stack of low-resolution measurements is passed through some calibration
method, which may use either an AI-based model or a classical algorithm. This pro-
cess identifies the location of the spectral shift in each image through segmentation,
which we can then use to estimate LED illumination angles. Thus, we have a stack
of calibrated LED positions. The bottom row depicts some examples of Fourier
intensity spectra from three different samples, illustrating variability in spectral fea-
tures due to differences in structure, signal level and scattering properties. Such
variation impacts the clarity of the cross-correlation terms and, consequently, the
performance of calibration methods.

6.1 Benchmark Calibration Algorithms
We compare several algorithms against each other. The first benchmark method
we use is a classical circle detection method called the Hough transform. This
is a feature detection algorithm that detects edges through a voting scheme in the
parameter space (a, b, r), where (a, b) is a potential center and r is a potential radius
[21, 22]. It is computationally efficient and simple to implement but is sensitive to
noise and can thus be unreliable.

The second benchmark method we evaluate against is an efficient self-calibration al-
gorithm that iteratively estimating initial LED illumination positions based on rough
geometric alignment or brightfield estimates and then refines them by leveraging
the redundancy in overlapping Fourier spectra using spectral correlations (BF-SC).
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In each iteration, the algorithm compares simulated and measured spectral shifts to
update LED positions. It is robust to moderate noise and structural variation in the
sample but is computationally more expensive and specific to FPM [21].

The third benchmark method we use is a machine learning-based algorithm that
we designed, inspired by the Boundary Attention (BDA) network architecture origi-
nally developed for robust segmentation in noisy and low-contrast imaging scenarios.
[14polansky2023boundary] Our method applies the BDA network to segment the
cross-correlation regions in the Fourier spectra. After segmentation, we perform
circle fitting on the three strongest detected edge points, as determined by a combi-
nation of edge confidence from the BDA output and proximity to a rough geometric
prior based on the known LED array layout. This approach is designed to not only
be more robust across a range of sample types and signal levels but also be less
computationally intensive due to the batch processing abilities in machine learning.
Thus, it can scale up to 3D FPM or larger illumination schemes with ease.

6.2 FPM Experimental Setup
We show experimental results from a conventional FPM system with an objec-
tive lens (Olympus PLAN 10x/0.25NA), at 520 nm wavelength from green LEDs
(Adafruit Inc. 5050 RGB LED). The illumination was provided by an LED array
controlled via an Arduino Uno board. A human breast cancer with HER2 mutation
sample was imaged. We achieved variations in SNR by sweeping through different
exposure levels (16 values between 500 ms to 5 s) and capturing a full set of images
for each value. Then, we compared the LED location accuracy between the three
calibration algorithms for each image set.

For each exposure level, a full set of raw images was captured and processed in-
dependently through each calibration method. The performance of each algorithm
was evaluated by measuring the mean squared error of estimated illumination angles
from a high-SNR ground truth. To quantify the sample’s ease of angle-identification,
we computed the power density of the sample spectra. We opted for this metric
in order to provide an interpretable measure of the visibility and sharpness of
cross-correlation features in the Fourier domain. Moderate power density (between
approximately 0.01 and 0.5) indicates broader and more distinguishable spectral
components, enabling more accurate calibration. High power density (> 0.5) indi-
cates that the Fourier spectrum is centered around the DC region and thus may not
be fully complete. Examples of each case are shown in Figure 10. Lower power
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density (<0.01) corresponds to samples that are overexposed and thus have smaller
average signal values due to increased scattering.

6.3 Results
Our experimental design allowed us to directly compare the sensitivity of each
method to noise and isolate failure modes. The results are summarized in Figure
6.2.

Figure 6.2: Comparison of calibration methods across SNR conditions. The left
side depicts the calibration error plotted as a function of spectra power density for
each of the three methods: the Hough transform-based method (blue), efficient
algorithmic self-calibration (red), and a machine learning-based approach (green).
Data points marked with “x” indicate large errors ( >10) or cases in which the
algorithm fails to identify a boundary. We observe that the machine learning method
maintains consistently low error across all SNR levels, but struggles to segment
some samples, the iterative method fails under low-SNR conditions, and the Hough
method struggles with ambiguous features. The right side depicts example spectra
and their corresponding segmentations by each method at three selected points (a, b,
c) on the graph. The top right depicts a radar plot summarizing a rough qualitative
comparison of the three methods across speed, accuracy, and robustness to sample
variation.

From our results, it’s evident that the SNR of the system can significantly degrade
calibration accuracy. When the Fourier spectrum is sufficiently rich and well-defined
across spatial frequencies, which corresponds to moderate power densities, all three
calibration methods perform well and typically localize LED shifts within 1–2 pixels.
The Hough and BF-SC methods have the most consistently low error; both rely on
algorithmic optimization rather than learned/data-driven behavior, which makes
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their performance stable under suitable conditions. The former uses a deterministic
algorithm for detecting circular features, and thus will work reliably when circle-like
structures are clearly visible in the Fourier domain. Similarly, since BF-SC leverages
overlapping spectral content and geometric constraints, it is also quite accurate when
the input data is clean. While the BDA method performs well in these conditions, it
has slight sensitivity to spectral edge ambiguity due to its tendency to overemphasize
strong boundary signals, which can cause it to misidentify edges. In terms of speed,
the BDA method and the Hough transform have the fastest performance, operating
on the order of milliseconds per frame. BF-SC, being an iterative method with
global optimization steps, typically takes several seconds per frame, making it less
suitable for real-time applications but more reliable in complex scenarios

As the power density increases further, the spectra tend to collapse toward the DC
region. This trend is indicative of lower SNR conditions and results in poorly
defined circles, as the higher frequencies may blend in with the system noise, as
can be seen in example (c) of Figure 10. Under these conditions, the BF-SC
method begins to show notable limitations. Its brightfield–darkfield classification
step often mislabels weak brightfield measurements as darkfield, and will fail to
calibrate the measurement. Furthermore, because the high-frequency edge of the
spectrum becomes incomplete or blurred, the spectral correlation step slightly loses
precision, leading to calibration errors of up to 3 pixels. In contrast, the Hough
transform method continues to stay within the 1 to 2 pixel margin, likely due to its
voting-based framework, which aggregates information from individual edge pixels
across the spectrum. This allows it to detect circles even when the boundary is
incomplete or blurred, as it can leverage localized segments of the spectrum to
infer the overall circular geometry. The BDA method also demonstrates strong
robustness, as its segmentation strategy focuses only on the three strongest points
of the spectrum boundary. In low SNR cases, it can prioritize points closer to the
DC term, allowing it to remain effective even when peripheral features are less
identifiable. However, this also makes it more susceptible to failure. If it identifies
a strong edge that is not on the circle boundary, it will completely misidentify the
spectrum shift.

For lower power densities, which correspond to samples with excessive scattering,
or other features that blur the boundaries of the cross-correlation lobes, all three
methods become less reliable. In these cases, the circle boundaries are weak or
ambiguous, making accurate segmentation difficult. The Hough transform and
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BDA methods can often still produce estimates within 1–2 pixels of the ground
truth, but this apparent success is largely attributable to strong priors, rather than
accurate extraction of spectral features. In low-SNR or heavily blurred conditions,
the calibration algorithm lacks sufficient signal to make a confident inference and
instead defaults to prior expectations. The BF-SC method is particularly vulnerable,
with average errors of around 7 pixels. Because its optimization process relies on
accurate correlation between overlapping spectral regions, inconsistently blurred
spectral boundaries might mislead the update direction and cause it to converge to a
local minimum. However, as shown in example (a) of Figure 10, all three methods
are prone to outright failure when the signal quality falls below a critical threshold.

6.4 Discussion
Between the three calibration methods evaluated, each presents distinct strengths
and limitations depending on the sample characteristics and signal conditions. For
samples with abundant frequency information, strong SNR, and thus reasonably
well-defined spectrum boundaries, the Hough circle transform is the most efficient
and accurate algorithm. For these samples, if computation time is critical, the BDA
method is also a great option. It performs reliably and can calibrate a large number
of LEDs at once, thanks to ML batch processing abilities. For samples with slightly
weaker high-frequency features, the BF-SC and Hough methods demonstrate the
best performance. For samples with strong scattering, the Hough and BDA methods
are optimal.

In terms of methods, each has its own advantages and disadvantages. The Hough
circle transform is accurate and efficient but is susceptible to scattering samples.
The BDA method is robust to situations where the high frequency components are
weaker, and can batch process, but has a higher likelihood of failing to calibrate.
The BF-SC method is accurate, but slower than the other two and more susceptible
to samples that do not have clearly defined spectra.

Thus, our experiments reveal clear tradeoffs between simplicity, robustness, and
generalizability across classical, algorithmic, and learning-based methods. In par-
ticular, calibration accuracy is highly dependent on the sample’s spectral richness
and the signal-to-noise regime. These insights underscore the need for adaptive and
context-aware calibration pipelines. Future work may explore hybrid calibration
schemes, integrate novel image processing advancements, and leverage machine
learning frameworks to further enhance robustness and scalability.
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C h a p t e r 7

CONCLUSION

Overall, in this thesis, we investigated the methods of illumination angle calibra-
tion in multi-angle illumination-based imaging systems, with a particular focus on
FPM. These imaging methods offer significant advantages, such as digital aberration
correction and overcoming the SBP but are critically sensitive to angular misalign-
ments. We demonstrated how small deviations that shift the spectrum by up to 3
pixels can lead to substantial degradation (up to 10 dB in PSNR) in reconstruction
quality. To address this challenge, we presented a comprehensive illumination an-
gle calibration framework and benchmarked different methods (Hough transform,
BF-SC, BDA algorithm) under varying signal levels and sample types, highlight-
ing trade-offs between speed, sample robustness, and accuracy. We found that
the sample characteristics and system SNR can significantly affect the success of
illumination angle calibration. By characterizing the strengths and limitations of
different approaches under real-world conditions, this thesis provides a framework
for understanding and improving angle calibration in computational microscopy,
and it offers practical guidance for selecting or designing calibration pipelines that
suit specific applications.

Ultimately, improving the efficiency and robustness of illumination angle calibra-
tion contributes to the broader goal of making computational microscopy more
practically accessible, including in applications such as live-cell imaging, digital
pathology, and materials characterization. However, while the three methods have
different advantages and disadvantages, there are scenarios where they all become
unreliable, such as when there is excessive scattering or when the sample is overex-
posed. Thus, there is a pressing need for more adaptive and intelligent illumination
angle calibration algorithms that can operate reliably across a broader range of
sample conditions. Future work could explore hybrid approaches that combine ge-
ometric priors with learned features. It would be interesting to take advantage of
recent advancements in computer vision and image processing to develop a more
targeted illumination angle calibration algorithm for example, a novel boundary
detection ML algorithm could be trained with optimization methods used in BF-SC
by introducing a spectral correlation term into the loss function of the ML training
process. This would also make the ML model self-supervised, which would alle-
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viate concerns about out-of-distribution generalization. Additionally, an extensive
pretraining process would no longer be necessary.
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