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ABSTRACT

This work sets out to meet some of the demands created by advancements in glucose
oxidase enzyme electrode fabrication techniques. The application of microfabrica-
tion techniques to enzyme electrodes has enabled not only greater control over
enzyme geometry but also the possibility of monolithic low-power fully wireless
implantable biosensors with sensor-on-CMOS construction. Such efforts must be
guided by a strong grasp of the theory of diffusion-limited electrochemistry of the
products of enzymatically catalyzed reactions. Low power requirements demand a
full understanding of sensor turn-on transients and the reduced device size impacts
diffusion phenomena and increases the importance of considerations such as oxygen
recycling from the reaction at the working electrode. With analytical solutions to
the nonlinear differential equations involved not forthcoming, there is a need for
sophisticated simulation tools that build upon other efforts in the field and deliver
novel capabilities. Such simulation tools must also be complemented by robust,
convenient, reproducible, and ideally automated empirical measurement tools to
enable the design-test-redesign iteration process to converge quickly to the desired
outcomes.

This work presents the development of finite element simulations of enzyme elec-
trodes incorporating full two-substrate enzyme kinetics, a dynamic simulation of
the sensor environment, and a full treatment of oxygen recycling at the working
electrode. While the simulations presented in this work are carried out with ax-
isymmetric RZ meshes, they are ready for use with full 3D meshes. It additionally
presents the development of an automated wafer-scale measurement system enabling
the testing of up to twenty sensors in parallel, still on the wafer on which they were
fabricated. We present this with the hope that the ability to attack the problem
from both sides — better in silico simulation and faster and more controlled in vitro
iteration — should assist in the development of new sensing technologies.

We also present selected results studied through the use of these tools, in particular
the determination of the impact of enzyme geometry on sensor response. These re-
sults show the promise of thin-film deposition via spin-coating and vapor deposition
crosslinking to enable the kind of fast response-time high-sensitivity electrodes that
are needed for achieving monolithic wireless implantable biosensors.
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C h a p t e r 1

INTRODUCTION, BACKGROUND, AND RECENT
ADVANCEMENTS

1.1 Global Burden of Diabetes and the Role of Continuous Glucose Monitor-
ing

Diabetes mellitus (DM) represents one of the most pressing public-health challenges
of the twenty-first century. The International Diabetes Federation Diabetes Atlas
reports that 537 million adults (aged 20–79 years) were living with diabetes in 2021;
this number is projected to rise to 783 million by 2045, an increase of 46% in just
over two decades [1]. In the United States alone, the Centers for Disease Control
and Prevention estimates that 38.4 million people — 11.6% of the population —
live with diabetes, and a further 97.6 million adults have prediabetes [2].

Beyond its prevalence and economic cost, diabetes imposes substantial morbidity
and mortality. Chronic hyperglycemia drives microvascular complications such
as retinopathy, nephropathy, and neuropathy, alongside macrovascular disease that
markedly elevates cardiovascular risk [3]. The Diabetes Control and Complications
Trial (DCCT) in type 1 diabetes and the UK Prospective Diabetes Study (UKPDS)
in type 2 established that intensive glycemic control confers lasting reductions in
these complications [4, 3]. Achieving and maintaining normoglycemia, however,
remains a continuous challenge.

Conventional self-monitoring of blood glucose (SMBG) relies on intermittent cap-
illary measurements that provide only snapshot information. While SMBG is in-
dispensable, its discrete nature can miss rapid glucose excursions and imposes a
significant burden of finger-stick testing. Continuous glucose monitoring (CGM)
overcomes these limitations by providing near-real-time data every 1–5 minutes,
enabling dynamic assessment of glucose trends and variability[5]. Modern CGM
systems fall into two broad categories: real-time CGM (rtCGM), which streams
data continuously to a receiver or smartphone, and intermittently scanned CGM
(isCGM), in which readings are obtained on demand by scanning a sensor patch [6].

A robust body of evidence demonstrates the clinical impact of CGM across diverse
patient populations. Randomized controlled trials in type 1 diabetes have shown
that rtCGM reduces hemoglobin A1c (HbA1c), increases time in range, and reduces
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the incidence of severe hypoglycemia [7, 6, 8]. Comparable benefits have been
reported in insulin-treated type 2 diabetes [9] and in pregnancy [10].

Clinical guidelines now advocate CGM as standard of care for most individuals
using intensive insulin therapy. The American Diabetes Association Standards of
Medical Care in Diabetes (2025) recommend rtCGM or isCGM for all youths and
adults on insulin therapy to improve glycemic outcomes and quality of life [11]. The
European Association for the Study of Diabetes and other international bodies have
issued concordant guidance [12].

The continued refinement of CGM technology is therefore a priority for both clinical
and research communities. Advances in microfabrication, materials science, and
computational modeling show great promise to address longstanding technical chal-
lenges, enable faster and cheaper iteration of designs, and give researchers greater
control over short- and long-term sensor behavior. Coupled with complementary
experimental approaches, finite element analysis (FEA) enables quantitative under-
standing of how micro-scale geometry and material properties influence macro-scale
performance. The present dissertation builds upon this foundation, integrating
finite-element models with wafer-scale empirical data to accelerate development of
microfabricated continuous glucose sensors.

1.2 Advancements in Microfabricated Biosensors
Modern micro- and nanofabrication have transformed amperometric CGM devices
from hand-assembled catheters into wafer-scale, highly integrated microsystems.
Photolithography, thin-film deposition, and 3-D microstructuring now allow engi-
neers to sculpt both the transducer and the biorecognition layer with micron-level
precision, yielding faster, smaller, and more reproducible sensors.

Early glucose oxidase (GOx) layers were hand-dispensed gels that introduced large
variability and slow diffusion. Photopatternable hydrogels now enable in situ im-
mobilization of active enzyme exactly where electrochemical transduction occurs.
Mugweru and co-workers photopolymerized PEG-diacrylate films containing GOx
over gold microdisks on flexible polyimide using standard lift-off lithography, pro-
ducing addressable arrays with linear response up to 20 mM glucose [13]. Yan et al.
extended this strategy to multi-analyte chips by UV-crosslinking enzyme-containing
PEG on gold arrays, demonstrating µm-scale feature control [14].

In previous work, we have described spin-coating a 500 nm GOx film across 4-inch
wafers and using liftoff to define active regions directly above on-chip potentiostats;
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the monolithic “sensor-on-CMOS” achieved sub-second stabilization and <5 %
device-to-device variability in trasient response time [15]. Such advances bring
closer the prospect of fully integrated monolithic wireless implants.

However, in addition to creating new possibilities, such developments also create
new demands, namely for wafer-scale processing to be matched with wafer-scale
testing, and for a more sophisticated theoretical and mathematical understanding of
the underlying phenomena to enable rapid iteration and well-optimized design.

1.3 Theory of Operation, Modeling, and Simulation
The glucose sensors this work focuses on use the most common transduction modal-
ity: amperometric detection at an enzyme electrode. In this transduction method, an
electrochemical sensor is coated with a layer (typically a hydrogel) containing glu-
cose oxidase (GOx) enzyme. Glucose oxidase catalyzes the reaction of glucose with
oxygen to form hydrogen peroxide and 𝛿-gluconolactone. The hydrogen peroxide
thus formed can then be amperometrically detected by the underlying electrochemi-
cal sensor. While this modality is conceptually simple and one of the most common
transduction modalities in use [16], the design of sensors proceeding on it needs
to incorporate a nuanced and multifaceted approach due to the complexity of the
underlying phenomena.

It has been understood since the early days of enzyme electrodes that the development
of mathematical models is a worthwhile endeavor not only due to the intellectual
unsatisfactoriness of a purely phenomenological understanding but also due to the
inefficiency of a trial-and-error approach to electrode design [17]. This need for
accurate mathematical modeling is now greater than ever, given the possibilities
opened up by the application of microfabrication techniques to enzyme electrodes.
In particular, the possibility of monolithic fully wireless implantable sensors [15],
with the possibility of employing energy harvesting [18] and intermittent operation
to remove the need for wired power or a battery, requires a complete understanding
of the phenomena involved not just at steady state but also in the transient.

The complex nature of glucose oxidase (and other oxidase enzyme) based biosen-
sors has meant that simple analytical solutions have been elusive and the field has
endeavored instead to producing increasingly sophisticated numerical solutions with
the progress both of numerical methods and computational power over time. The
phenomena to consider in such modeling include the enzyme kinetics, which in-
volve two substrates and are nonlinear in each [19, 20, 21]. In order for the sensor
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to function, the two analytes involved — glucose and oxygen — must enter the
biosensor stack at its outer boundary and diffuse through the immobilized enzyme,
where their enzymatically catalyzed reaction must take place. If the sensor functions
on the detection of one of the reaction products, such as amperometric detection of
hydrogen peroxide, this product must then continue on diffusing and make its way
to the final transduction element. The nonlinear two-variable enzyme kinetics and
the transport of species interact in the diffusion-reaction equation:

𝐷𝑖∇2𝑐𝑖 + 𝑅𝑖 =
𝜕𝑐𝑖

𝜕𝑡
(1.1)

Here 𝐷𝑖 is the diffusivity of species 𝑖, 𝑐𝑖 its concentration, 𝑅𝑖 its reaction rate, and
𝑡 is time. The nonlinearity of the reaction term 𝑅 due to the nonlinear enzyme
kinetics has meant that this equation has remained intractable to analytical solution.

There’s additionally the complication that the sensor does not leave the environment
unperturbed. The consumption of glucose and oxygen by the immobilized enzyme
naturally creates a diffusion gradient in the sensor environment, whose depth and
gradient of course depend on the properties of the environment itself, as well as the
change in diffusivity and partitioning [22] between the sensor and environment.

In the case of amperometric sensors based on detecting hydrogen peroxide, there is
the additional consideration that detection of hydrogen peroxide produces oxygen
[23], which is one of the analytes of glucose oxidase. This oxygen is free to diffuse
back into the immobilized enzyme matrix, complicating the boundary condition
that must exist on the interface between the enzyme and the sensing electrode. We
would also expect the reaction products to diffuse not only towards the transducer
but also outwards towards the sensor environment, meaning that the assumption of
zero concentration at the outer boundary would also only be a simplification.

𝐻2𝑂2 + 2𝑃𝑡 (𝑂𝐻) −→ 𝑂2 + 2𝑃𝑡 + 2𝐻2𝑂 (1.2)

2𝐻2𝑂2 + 2𝑃𝑡 −→ 2𝐻+ + 2𝑃𝑡 (𝑂𝐻) + 2𝑒− (1.3)

Mell & Maloy provided one-dimensional steady-state and transient analyses using
explicit finite difference methods [24, 25], using a simplified one-substrate version
of glucose oxidase’s ping-pong kinetics. Although performed in one dimension,
with simplified enzyme kinetics, and with a simplified treatment of the enzyme
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environment, their seminal work provided an illustrative view of the dynamics of
enzyme electrodes. In the decades since then, many analyses have been published,
with varying levels of sophistication and different balances struck between model
simplicity and fidelity, and computational efficiency and versatility. Parker and
Schwartz provided a detailed one-dimensional analysis of the steady-state concen-
tration profiles that develop in the enzyme-containing hydrogel layer [26], with a
detailed treatment of glucose oxidase’s kinetics but using simplifying assumptions
about the sensor environment and without consideration of oxygen recycling. They
correctly criticize the application of single-substrate Michaelis-Menten kinetics to
glucose sensors due to the requisite assumptions rarely holding in practical appli-
cations. Further work studied specific geometries [27, 28], the impact of enzyme
concentration [29], and applications to sensors with oxygen-consuming transducers
[30].

Recent work has been relatively sparse [31] and much that has been published
has regressed to a single-substrate Michaelis-Menten kinetics treatment of enzyme
kinetics [32, 33, 34, 35]. However there has been some work incorporating the
full reaction mechanism, including modeling the diffusion of intermediate species,
and providing steady-state and transient solutions [36, 31, 37]. Although carried
out in one dimension and making some simplifying assumptions (such as fixed
diffusion thickness) about the environment, it provides a sophisticated simulation of
immobilized glucose oxidase.

Although one-dimensional analyses are very informative, the possibility now of
patterning enzyme layers precisely using lithographic techniques [38, 15] leaves
one-dimensional analysis wanting. There is a gap in the field of a sophisticated 3D
or pseudo-3D (by way of axisymmetric meshing) simulation that incorporates:

• Two-substrate enzyme kinetics of glucose oxidase

• The interaction of the sensor and the environment, such as the growing dif-
fusion layer, diffusion of reaction product into the environment, and solute
partitioning and hindered diffusion betwen environment and sensor

• The impact of oxygen recycling from the enzyme substrate through consump-
tion of hydrogen peroxide at the working electrode

• Enough spatial degrees of freedom to simulate and iterate through different
possible microfabricated enzyme geometries
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• The transient dynamics upon sensor turn-on or changes to environment analyte
concentration

We offer an advancement in this field by creating an axisymmetric RZ simulation,
with easy expansion to full 3D geometry (by changing the mesh to a full 3D one),
which models two-substrate enzyme kinetics, considers the role of oxygen recy-
cling at the working electrode, implements two parameters for modeling hindered
analyte transport in hdyrogels (one corresponding to solute partitioning and one to
hindered diffusion), and treats the bulk solution as a dynamically changing envi-
ronment, impacted by and impacting the biosensor, rather than a static environment
characterized either by fixed concentration or a fixed diffusion layer.

The decision only to use axisymmetric meshing at this juncture is entirely due to
consideration of computational cost and the desire to make the design iteration
process tractable on an enthusiast-class personal computer and avoid the need for
expensive computational hardware or rented server time.
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C h a p t e r 2

AXISYMMETRIC FINITE ELEMENT ANALYSIS

2.1 Overview
The application of semiconductor fabrication techniques to enzyme electrode fab-
rication has not enabled the fabrication of novel enzyme geometries, including the
ability not only to develop sub-micron enzyme-containing hydrogels but also to
pattern them lithographically [1, 2]. We believe it’s essential for the theoretical
understanding of sensor behavior to keep pace with these fabrication possibilities
to inform and govern design decisions in the engineering of enzyme electrodes. It
is especially important to understand not only the steady state but also the tran-
sient behavior of such electrodes if low energy-per-measurement devices are to
be possible. This is likely a necessity for any miniaturized wireless battery-less
implantable device, whether powered wirelessly from outside the body or through
energy harvesting within the body. In vivo energy harvesting schemes can yield
𝜇W-range power output [3] and devices utilizing them would likely benefit from
periodic measurements that don’t necessitate keeping the sensor continuously on.
Here, it is necessary to distinguish between two types of transient analysis – one that
looks at the transient when the bulk glucose concentration is changed, and one that
looks at the transient after the sensor is turned on. For designing low energy-per-
measurement devices, we are most concerned with understanding the transient upon
sensor turn-on, as understanding that is what would enable making short-duration
low-energy measurements.

The behavior of our sensors, and enzyme electrodes more broadly, is governed by
myriad complex phenomena including the diffusion of the substrates (glucose and
oxygen) and the sensed product (hydrogen peroxide), nonlinear enzyme kinetics [4,
5, 6], sensor and enzyme geometry, and the partition of concentrations between
the sensor environment and the enzyme layer [7]. In the case of glucose oxidase
(and other oxidase enzymes for amperometric measurement), matters are further
complicated by the production of oxygen at the electrode due to the consumption of
hydrogen peroxide [8], which must be accommodated in any full theoretical model
of the system.

In this chapter, we develop a finite element simulation to enable a systematic theo-
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retical study of different sensor geometries and pull at each of these threads to see
the impact it has on the dynamic sensor performance. The simulation developed has
broader application than glucose sensors. At the very least, it can model other planar
oxidase enzyme-based amperometric sensors by tweaking the input parameters to
match the kinetics of a different enzyme. Diffusivity and partition coefficients for
the enzyme-containing hydrogel are also tunable parameters.

2.2 System Description
The full system simulated consists of the sensor environment (measurement cell in
vitro or interstitial fluid in vivo), which contains glucose and oxygen. Glucose and
oxygen diffuse into the immobilized enzyme matrix, where they are catalytically
converted to gluconolactone and hydrogen peroxide [4, 6, 5, 9]. This hydrogen
peroxide diffuses through the enzyme matrix both towards the sensor surface and
towards the sensor environment. The hydrogen peroxide may be consumed in the
environment, depending on the nature of the environment being considered. When
the sensor is turned on, it consumes the hydrogen peroxide at its surface, depleting
it and setting up a concentration gradient reaching into the enzyme and potentially
the sensor environment. Additionally, the sensor also produces oxygen while active
[8], which diffuses back into the enzyme matrix, affecting the local rates of glucose
consumption and hydrogen peroxide production.

2.3 Enzyme Kinetics
Single-Substrate Model
Much recent work [10, 11, 12, 13] uses the single-substrate Michaelis-Menten ki-
netics description for glucose oxidase, which proceeds from the following simplified
reaction scheme:

𝐸 + 𝑆 𝑘1←→
𝑘2

𝐸𝑆
𝑘3−→ 𝑃 (2.1)

Here, E is the enzyme, S is the (sugar) substrate, ES is the enzyme-substrate complex,
and P is the product. This leads to the following description of enzyme kinetics:

𝑉 = 𝑉𝑚𝑎𝑥
[𝑆]

[𝑆] + 𝐾𝑚
(2.2)

Here V is the reaction rate, 𝑉𝑚𝑎𝑥 is the maximum reaction rate, and 𝐾𝑚 is the
(effective) Michaelis constant. The single-substrate Michaelis-Menten model is
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only an approximation of the ping-ping kinetics of glucose oxidase, reliant on a
spatially and temporally fixed and known (or excell) oxygen concentration [9]. The
value of 𝐾𝑚 is often reported without an account of the oxygen concentration at all,
limiting the value of such data. Additionally, we wish to include in our analysis
the impact, if any, of oxygen recycling at the working electrode, which would be
ignored by the single-substrate simplification. Therefore, we reject this in favor
of using a more complete two-substrate descriptions of the reaction scheme and
enzyme kinetics.

Two-Substrate Model
Gibson et al. determined the general two-substrate mechanism for glucose oxidase to
be as follows [4] (reverse reactions are ignored as their rate constants are effectively
zero when the oxidizer is oxygen) [14]:

𝐸𝑂 + 𝐺
𝑘1−→ 𝐸𝑅-𝑃1

𝑘2−→ 𝐸𝑅 + 𝛿-lactone

𝐸𝑅 +𝑂2
𝑘3−→ 𝐸𝑂−𝑃2

𝑘4−→ 𝐸𝑂 + 𝐻2𝑂2

(2.3)

This gives us the velocity equation [4, 9]:

1
𝑣
=
𝑘2 + 𝑘4

𝑘2𝑘4
+ 1
𝑘1𝑐𝑔

+ 1
𝑘3𝑐𝑂2

(2.4)

Leading naturally to the definition of kinetic parameters:

𝑣𝑚𝑎𝑥 =
𝑘2𝑘4

𝑘2 + 𝑘4
(2.5)

𝐾𝐺 =
𝑣𝑚𝑎𝑥

𝑘1
(2.6)

𝐾𝑂2 =
𝑣𝑚𝑎𝑥

𝑘3
(2.7)

And the following two-substrate Michaelis-Menten kinetics equation:

𝑉 = 𝑉𝑚𝑎𝑥
[𝐺] [𝑂2]

𝐾𝑂2 [𝐺] + 𝐾𝐺 [𝑂2] + [𝐺] [𝑂2]
(2.8)
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where:

𝑉𝑚𝑎𝑥 = [𝐸]𝑣𝑚𝑎𝑥 (2.9)

Gibson et al. determined the kinetic parameters 𝐾𝐺 = 110𝑚𝑀 and 𝐾𝑂2 = 0.48𝑚𝑀
at 27℃ and pH 5.6 [4]. These parameters are strongly dependent on pH [6], but
for the example simulation we use them as-is. While 𝐾𝐺 and 𝐾𝑂2 are wholly
determined by the enzyme kinetic constants, 𝑉𝑚𝑎𝑥 is additionally dependent on
(live) enzyme concentration (equation 2.9). The concentration of live enzyme in
the final crosslinked and wetted matrix depends on a variety of factors including
enzyme loss during the fabrication process due to leaching and inactivation, change
in layer volume due to crosslinking, and degree of swelling upon wetting. Therefore
in general it is difficult to estimate the density of live enzyme remaining post-
immobilization and wetting. Glucose oxidase from Aspergillus niger is typically
sold with some specification of specific activity although unit definitions can vary
across suppliers (e.g. due to measurement at different pH by different suppliers).
Enzyme stocked in our lab (BBI Solutions #GO3A) has typical activity around 285
units per mg, specified at pH 7.0. At a hypothetical live enzyme concentration of
2 𝑔𝐿−1 after accounting for loss and inactivation during fabrication and exposure
to solvents, this converts to 𝑉𝑚𝑎𝑥 ≈ 10 𝑚𝑀𝑠−1, which we use for our illustrative
example simulation.

Parameter Description Value
𝑉𝑚𝑎𝑥 Maximum enzymatic reaction rate per unit vol-

ume
10 𝑚𝑀𝑠−1

𝐾𝐺 Michaelis constant with respect to glucose 110 𝑚𝑀
𝐾𝑂2 Michaelis constant with respect to oxygen 480 𝜇𝑀

Table 2.1: Enzyme kinetic parameters for the example simulation.

2.4 Mass Transport
The fundamental equation governing mass transport in our system is the well-known
diffusion-reaction equation:

𝐷𝑖∇2𝑐𝑖 + 𝑅𝑖 =
𝜕𝑐𝑖

𝜕𝑡
(2.10)

where 𝑐𝑖 is the concentration of species 𝑖, 𝐷𝑖 is its diffusivity, 𝑅𝑖 represents its rate
of production (negative if consumption) per unit volume, and 𝑡 is time.
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In bulk solution, we use the reported values for the diffusivity of each species in
water, specifically 𝐷𝐻2𝑂2 = 1.43 × 10−9 𝑚2𝑠−1, 𝐷𝑂2 = 1.93 × 10−9 𝑚2𝑠−1, and
𝐷𝑔𝑙𝑢𝑐𝑜𝑠𝑒 = 7.20 × 10−10 𝑚2𝑠−1 [15].

In hydrogel, two additional phenomena are at play: solute partitioning and hindered
diffusion [7]. In the absence of specific interactions between a solute and the
hydrogel polymer matrix, ideal point solutes are partitioned in proportion to the
volume water fraction of the hydrogel whereas larger solutes are subject to size
exclusion. Hindered diffusivity is owed to interactions between the solute and
the polymer matrix, including physical obstruction and increased hydrodynamic
resistance.

We define 𝛼𝑖 to be the partitioning coefficient for solute 𝑖 and 𝛽𝑖 to be a penalty
coefficient applied to the diffusivity in free solution to obtain diffusivity in the
hydrogel:

𝛼𝑖 =
concentration in hydrogel
concentration in solution

(2.11)

𝛽𝑖 =
diffusivity in hydrogel
diffusivity in solution

(2.12)

Empirical measurements of partition and diffusivity coefficients depend on the spe-
cific hydrogel used. Stroe-Biezen et al. [15] studied essentially the product 𝛼𝑖 · 𝛽𝑖
by our definitions. In each hydrogel they studied, they found the “effective diffu-
sivity” (incorporating the combined mass transport hindrance of solute partitioning
and hindered diffusion) to be reduced relative to diffusivity in free solution by the
same factor for oxygen and hydrogen peroxide, and by a greater factor for glucose.
They found values between 0.19 and 0.40 for oxygen and hydrogen peroxide, and
between 0.062 and 0.086 for glucose, in different polyvinyl alchohol hydrogels.
Raja et al. estimated glucose diffusivity ∼ 10−11 𝑚2𝑠−1 in albumin hydrogel [16].
Krupa et al. found glucose diffusivity in the range of 2.0 × 10−10 𝑚2𝑠−1 in sil-
ica hydrogels [17]. Benavidez and Baruzzi found the total glucose permeability
of mucin/chitosan hydrogels could be varied by changing the mucin-chitosan ratio
[18]. Figueiredo et al. found that the diffusivity of oxygen could be varied from
3.4 × 10−10 𝑚2𝑠−1 to 2.4 × 10−10 𝑚2𝑠−1 by changing the polymer concentration in
silated-hydroxypropylmethylcellulose hydrogels [19].

Since these are parameters that can be engineered by appropriate choice of hy-
drogel, their choice is somewhat arbitrary. The simulation leaves all of them as
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tunable parameters and for the example simulation we use 𝛼 = 0.2 for all three
species, 𝛽𝐻2𝑂2 = 𝛽𝑂2 = 1.0, and 𝛽𝐺𝑙𝑢𝑐𝑜𝑠𝑒 = 0.3. These values maintain the relative
relationship between the effective diffusivity coefficients of 𝐻2𝑂2, 𝑂2, and glucose
measured by Stroe-Biezen et al.

Parameter Description Value
𝐷𝐺 Glucose diffusivity in water 7.20 × 10−10 𝑚2𝑠−1

𝐷𝑂2 Oxygen diffusivity in water 1.93 × 10−9 𝑚2𝑠−1

𝐷𝐻2𝑂2 Hydrogen peroxide diffusivity in wa-
ter

1.43 × 10−9 𝑚2𝑠−1

𝛼𝐻2𝑂2 Partition coefficient for 𝐻2𝑂2 0.2
𝛼𝑂2 Partition coefficient for 𝑂2 0.2
𝛼𝐺𝑙𝑢𝑐𝑜𝑠𝑒 Partition coefficient for glucose 0.2
𝛽𝐻2𝑂2 Relative diffusion coefficient for

𝐻2𝑂2

1.0

𝛽𝑂2 Relative diffusion coefficient for 𝑂2 1.0
𝛽𝐺𝑙𝑢𝑐𝑜𝑠𝑒 Relative diffusion coefficient for glu-

cose
0.3

Table 2.2: Mass transport parameters for the example simulation.

2.5 Sensor Dynamics
We expect the following two-step process at the sensing electrode:

𝐻2𝑂2 + 2𝑃𝑡 (𝑂𝐻) −→ 𝑂2 + 2𝑃𝑡 + 2𝐻2𝑂 (2.13)

2𝐻2𝑂2 + 2𝑃𝑡 −→ 2𝐻+ + 2𝑃𝑡 (𝑂𝐻) + 2𝑒− (2.14)

This chemical-electrochemical reaction overall results in the consumption of one
mole of 𝐻2𝑂2 and the generation of one mole of oxygen. Recalling from equation
5.1 that one mole of 𝐻2𝑂2 is produced from consumption of one mole of glucose
and one mole of𝑂2, this means we obtain back all of the oxygen that was used in the
enzymatic reaction, some portion of which (which doesn’t diffuse away) will again
be available for reaction with glucose.

We model the hydrogen peroxide consumption as a concentration of zero at the
sensor surface. This is a standard assumption in mass transport simulations [20, 21].
We model the oxygen recycling by imposing flux equality between 𝐻2𝑂2 and 𝑂2 at
the sensor surface. We ignore double-layer charging effects, as impedance spectra
of microfabricated sensors show a very small effective double-layer capacitance
(Appendix A).
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2.6 Simulation Platform
We implemented the simulation using the free and open-source MOOSE framework
[22]. We implemented custom physics to incorporate two-substrate enzyme kinetics
and oxygen recycling at the sensor electrode and performed steady-state and transient
simulations for a variety of in vitro and in vivo configurations. The simulation was
performed as a pseudo-3D simulation in the form of an axisymmetric RZ simulation.
This enables us to visualize simulations carried out with identical mathematics as
would apply to a full 3D simulation, and gives us the spatial degrees of freedom
we need to simulate the geometries of interest, while also being able to use the
symmetry to reduce the computation time to that of a 2D simulation.

MOOSE framework simulations are also particularly amenable to being automated
via Bash (the popular Unix scripting language) scripting to, for example, run the
same simulation multiple times with different bulk concentrations, or to keep all
other parameters the same but vary the enzyme layer thickness, and such scripts
were implemented for exploring sensor geometries.

Automatic differentiation [23] was leveraged in the creation of this simulation.

2.7 Mesh Design
Mesh design is a key component of analysis using the finite element method, re-
quiring balancing computing time and resources with the desired accuracy and
resolution. Since we have set up the problem as an axisymmetric RZ simulation,
we generate a 2D mesh to represent one half of a slice through a cylinder, with the
y-axis of the mesh representing the axis of symmetry. We used a combination of a
coarse mesh representing the sensor environment and a fine mesh representing the
enzyme layer.

We generated meshes with cells growing geometrically (constant ratio) along the
x-axis the further away they are from the sensor center, as we need less resolution
far away from the sensor. Within the enzyme layer, the cells grow until reaching the
halfway point of the enzyme layer and shrink back down, until reaching the top of
the enzyme layer, as diffusion gradients are highest near the top and bottom of the
enzyme layer and these are the locations where precision is most needed. Finally,
the environment mesh grows geometrically in both the x- and y-dimensions.

Figure 2.1 shows the mesh used in the example simulation presented later. It
represents half the cross-section of a cylindrical geometry (the y-axis representing
the axis of symmetry). The red mesh at the bottom-left is the mesh for the enzyme
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Figure 2.1: The mesh used in the example simulation.

whereas the coarse green mesh is the mesh for the bulk solution. Figure 2.2 shows a
close-up of the finer enzyme mesh whereas Figure 2.3 shows the complete simulated
slice through cylindrically symmetric geometry after mirroring around the axis of
symmetry in postprocessing.

Figure 2.2: Closeup of the finer-meshed enzyme portion.
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Figure 2.3: The mirrored mesh after postprocessing represents a slice through a
cylindrically-symmetric 3D geometry.

2.8 Physics and Boundary Conditions Implementation
Two-substrate enzyme kinetics were implemented with custom kernels, and per-
oxide consumption at the electrode was implemented with a Dirichlet boundary
condition enforcing zero concentration at the electrode surface. Oxygen recycling
was implemented as a custom Neumann boundary condition enforcing equality be-
tween the oxygen flux from the electrode surface and the peroxide flux into it. The
inactive part of the sensor surface (around the electrode) was implemented with a
zero-valued Neumann boundary condition. The interface between the solution and
the enzyme was implemented using a combination of a matched-value boundary
condition with coefficients enforcing partition of concentrations between the two
media, and an interface diffusion kernel enforcing mass conservation. Finally, the
very outer edges of the environment were implemented using the inbuilt Diffusion
Flux boundary condition, which adds the gradient of the concentration profile to the
residual at the boundary, or a zero-valued Neumann boundary condition to enforce
zero flux and simulate a finite and bounded environment.

2.9 Time Stepping
Control over the time-stepping algorithm is another key area requiring optimization
for faster processing and better precision. The specific time-stepping strategies
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employed will, of course, vary by the specific geometry being simulated, but the
broad approach we use is of combining multiple time steppers. MOOSE Framework
allows us to specify more than one time-stepping algorithm, each of which may be
dependent on the phase or state of the simulation, and allow the simulation to
choose the one with the smallest time step. We combine an iterative adaptive
time stepper with pre-programmed function-of-time time steppers to force higher
temporal resolution in critical phases of the simulation.

2.10 Example Simulation
For the example simulation, we simulate a cylindrical sensor environment with
’extended’ boundary conditions (allowing flux into and out of the boundary). The
sensor has a radius of 70𝜇𝑚. The enzyme-containing hydrogel layer is 20 𝜇𝑚 thick
and has a radius of 80 𝜇𝑚. The simulation was run six times, each time with a
different bulk glucose concentration between 1 and 32 𝑚𝑀 . Bulk solution oxygen
concentration was kept fixed at 260 𝜇𝑀 , the equilibrium concentration at room
temperature and pressure.

The example simulation conjures a scenario where the enzyme-coated sensor, fully
deprived of both glucose and oxygen, is suddenly brought into contact with a solution
containing both at time 𝑡 = 0. For 30𝑠, the glucose and oxygen are allowed to diffuse
into and react in the enzyme layer, at which point the sensor is turned on. While not
physically realizable, this simulation showcases the diffusive, enzyme kinetic, and
sensor turn-on dynamics.
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Parameter Description Value
𝑉𝑚𝑎𝑥 Maximum enzymatic reaction rate per

unit volume
10 𝑚𝑀𝑠−1

𝐾𝐺 Michaelis constant with respect to
glucose

110 𝑚𝑀

𝐾𝑂2 Michaelis constant with respect to
oxygen

480 𝜇𝑀

𝐷𝐺 Glucose diffusivity in water 7.20 × 10−10 𝑚2𝑠−1

𝐷𝑂2 Oxygen diffusivity in water 1.93 × 10−9 𝑚2𝑠−1

𝐷𝐻2𝑂2 Hydrogen peroxide diffusivity in wa-
ter

1.43 × 10−9 𝑚2𝑠−1

𝛼𝐻2𝑂2 Partition coefficient for 𝐻2𝑂2 0.2
𝛼𝑂2 Partition coefficient for 𝑂2 0.2
𝛼𝐺𝑙𝑢𝑐𝑜𝑠𝑒 Partition coefficient for glucose 0.2
𝛽𝐻2𝑂2 Relative diffusion coefficient for

𝐻2𝑂2

1.0

𝛽𝑂2 Relative diffusion coefficient for 𝑂2 1.0
𝛽𝐺𝑙𝑢𝑐𝑜𝑠𝑒 Relative diffusion coefficient for glu-

cose
0.3

𝑟𝑠 Sensor radius 70 𝜇𝑚
𝑟𝑒 Enzyme radius 80 𝜇𝑚
ℎ𝑒 Enzyme height 20 𝜇𝑚
𝑡𝑜𝑛 Time at which sensor is turned on 30 𝑠
𝑡𝑑𝑢𝑟 Measurement duration 60 𝑠
𝑐𝐺 Bulk glucose concentration 1 − 32 𝑚𝑀
𝑐𝑂2 Bulk oxygen concentration 260 𝜇𝑀

Table 2.3: All parameters for the example simulation.

2.11 Glucose Diffusion and Reaction
Figure 2.4 shows the initial glucose concentration, zero in the enzyme layer and
1.0𝑚𝑀 in bulk solution. Figure 2.5 shows the concentration profile after 0.1 𝑠. The
glucose has begun diffusing into the hydrogel layer, where it will react with oxygen.
Figure 2.6 shows the glucose concentration profile after 2.0 𝑠. The glucose profile
remains largely changed after this point. The glucose concentration is lower deep
into the enzyme layer (due to consumption) than it is on the boundaries, where it is,
of course, in equilibrium with bulk solution.

To prevent the partition coefficient between bulk solution and hydrogel distorting
the visualization, the color bars have been rescaled for inside the hydrogel layer vis-
à-vis outside. With a partition coefficient of 0.2, as here, a concentration of 0.2𝑚𝑀
inside the hydrogel layer has the same color as a concentration of 1.0 outside. This
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enables the colors to transition smoothly from bulk to hydrogel, properly visualizing
the equilibrium between the two.

Figure 2.4: Glucose concentration profile with 𝑐𝐺 = 1.0 𝑚𝑀 at 𝑡 = 0.0 𝑠

Figure 2.5: Glucose concentration profile with 𝑐𝐺 = 1.0 𝑚𝑀 at 𝑡 = 0.1 𝑠
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Figure 2.6: Glucose concentration profile with 𝑐𝐺 = 1.0 𝑚𝑀 at 𝑡 = 2.0 𝑠

2.12 Oxygen Diffusion and Reaction
Figure 2.7 shows the starting oxygen concentration profile, 0.26𝑚𝑀 in bulk solution
and zero in the hydrogel. Figure 2.8 shows the 𝑂2 concentration profile at 0.1 𝑠.
Due to the higher diffusivity of oxygen, the oxygen has penetrated deeper into the
hydrogel here than glucose had at the same time (Figure 2.5). Figure 2.9 shows
the 𝑂2 concentration profile at 0.5 𝑠, where it has penetrated fully into the hydrogel
layer. Despite the lower concentration of oxygen and the 1:1 stoichiometric ratio
of glucose and oxygen consumed by the glucose oxidase reaction, oxygen reaches
deeper into the enzyme layer simply due to its higher diffusivity. Intuitively, we
would expect the extent of this to depend on glucose concentration and the level of
live enzyme loading.

The same color bar rescaling for inside vs. outside hydrogel is done as for the
glucose concentration profiles in the previous section.
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Figure 2.7: 𝑂2 concentration profile with 𝑐𝐺 = 1.0 𝑚𝑀 at 𝑡 = 0.0 𝑠

Figure 2.8: 𝑂2 concentration profile with 𝑐𝐺 = 1.0 𝑚𝑀 at 𝑡 = 0.1 𝑠
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Figure 2.9: 𝑂2 concentration profile with 𝑐𝐺 = 1.0 𝑚𝑀 at 𝑡 = 0.5 𝑠
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2.13 Hydrogen Peroxide Generation and Diffusion
Figure 2.10 shows the starting hydrogen peroxide concentration profile, which is
zero everywhere. Fig 2.11 shows the 𝐻2𝑂2 concentration profile at 15.0 𝑠. The
enzyme has been generating hydrogen peroxide, which has not only been building
up in the hydrogel layer itself but also been diffusing into the solution. The area in
the vicinity of the hydrogel has built up a small hydrogen peroxide reservoir. Fig
2.12 shows this reservoir at 30.0 𝑠, the instant before the sensor is turned on in this
simulation.

The color bars have been kept consistent for figures 2.11 and 2.12 to enable com-
parison. The same partition coefficient rescaling has been performed as was done
for glucose and oxygen.

Figure 2.10: 𝐻2𝑂2 concentration profile with 𝑐𝐺 = 1.0 𝑚𝑀 at 𝑡 = 0.0 𝑠
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Figure 2.11: 𝐻2𝑂2 concentration profile with 𝑐𝐺 = 1.0 𝑚𝑀 at 𝑡 = 15.0 𝑠

Figure 2.12: 𝐻2𝑂2 concentration profile with 𝑐𝐺 = 1.0 𝑚𝑀 at 𝑡 = 𝑡𝑜𝑛

2.14 Hydrogen Peroxide Consumption
Figure 2.13 shows the hydrogen peroxide concentration profile 0.2 𝑠 after the sen-
sor is turned on. The hydrogel layer has developed a peroxide ’depletion’ region
immediately above it, seen in black, and the built-up reservoir is collapsing into the
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sensor surface. Figure 2.14 shows the 𝐻2𝑂2 profile 0.4 𝑠 after sensor turn-on. The
reservoir is not quite depleted. Finally, Figure 2.15 shows the concentration profile
2.0 𝑠 after sensor turn-on, by which time the built-up reservoir is gone but 𝐻2𝑂2

continues to be generated by the enzyme and consumed by the sensor.

Figure 2.13: 𝐻2𝑂2 concentration profile with 𝑐𝐺 = 1.0 𝑚𝑀 at 𝑡 = 𝑡𝑜𝑛+0.2 𝑠

Figure 2.14: 𝐻2𝑂2 concentration profile with 𝑐𝐺 = 1.0 𝑚𝑀 at 𝑡 = 𝑡𝑜𝑛+0.4 𝑠
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Figure 2.15: 𝐻2𝑂2 concentration profile with 𝑐𝐺 = 1.0 𝑚𝑀 at 𝑡 = 𝑡𝑜𝑛+2.0 𝑠

Hydrogen Peroxide Consumption at High Glucose Concentration
We now look at the other end of the glucose range simulated, with 𝑐𝐺 = 32.0 𝑚𝑀 .
We skip the glucose and pre-sensor turn-on oxygen profiles and look directly at
the 𝐻2𝑂2 profile. At this end of the range, the 𝐻2𝑂2 ’bubble’ extends deeper into
the sensor’s environment as of the instant the sensor is turned on (Figure 2.16) and
remains present even as the measurement progresses, seen at 0.5 𝑠 (Figure 2.17) and
10.0 𝑠 (Figure 2.18) into the measurement.
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Figure 2.16: 𝐻2𝑂2 concentration profile with 𝑐𝐺 = 1.0 𝑚𝑀 at 𝑡 = 𝑡𝑜𝑛+0.0 𝑠

Figure 2.17: 𝐻2𝑂2 concentration profile with 𝑐𝐺 = 1.0 𝑚𝑀 at 𝑡 = 𝑡𝑜𝑛+0.5 𝑠
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Figure 2.18: 𝐻2𝑂2 concentration profile with 𝑐𝐺 = 1.0 𝑚𝑀 at 𝑡 = 𝑡𝑜𝑛+10.0 𝑠
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2.15 Oxygen Recycling
Finally, we turn our attention to oxygen recycling at the electrode. Each mole of
𝐻2𝑂2 consumed at the electrode produces a mole of 𝑂2, as described earlier in this
chapter, which diffuses back towards the hydrogel, where it is free once again to
react enzymatically with glucose and produce 𝐻2𝑂2 to be detected at the sensor.

Figure 2.19 shows the oxygen concentration profile the instant the sensor is turned
on, before recycling has begun. The initial bulk glucose concentration here is
𝑐𝐺 = 32.0𝑚𝑀 and noticeably more oxygen has been depleted not only in the sensor
environment but also in the hydrogel layer than was depleted in the corresponding
profile with 𝑐𝐺 = 1.0𝑚𝑀 (Figure 2.9). Figure 2.20 shows oxygen concentration 0.5𝑠
into the measurement, where the oxygen in the hydrogel layer has been replenished by
oxygen beign produced at the sensor surface from consumption of 𝐻2𝑂2. Evidently,
with the parameters used, this initial burst of oxygen gives way to a comparatively
reduced high-oxygen zone near the sensor surface as the measurement continues
(Figure 2.21).

Figure 2.19: 𝑂2 concentration profile with 𝑐𝐺 = 32.0 𝑚𝑀 at 𝑡 = 𝑡𝑜𝑛
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Figure 2.20: 𝑂2 concentration profile with 𝑐𝐺 = 32.0 𝑚𝑀 at 𝑡 = 𝑡𝑜𝑛+0.5 𝑠

Figure 2.21: 𝑂2 concentration profile with 𝑐𝐺 = 32.0 𝑚𝑀 at 𝑡 = 𝑡𝑜𝑛+10.0 𝑠

2.16 Simulated Dynamic Response and Sensitivity
The normal 𝐻2𝑂2 flux into the sensor was converted to current in 𝑛𝐴. Figure 2.22
shows the turn-on transient current at the sensor for each concentration over time.
There is a rapid initial reduction in the current as the accumulated 𝐻2𝑂2 reservoir is
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depleted, followed by a slow rise as the enzyme continues to produce more 𝐻2𝑂2,
which diffuses into the sensor and into the environment, raising the environment
𝐻2𝑂2 concentration and increasing the percentage of newly-generated 𝐻2𝑂2 that
diffuses to the sensor instead of diffusing into the environment.

Figure 2.23 shows the sensitivity and linearity of this simulated sensor by plotting the
mean current sampled between 59 and 60 s vs. the simulated glucose concentration.

Figure 2.22: Sensor turn-on transients at the simulated glucose concentrations.
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Figure 2.23: Glucose sensitivity of the simulated sensor. Current averaged from
samples from 59-60 s. Interpolating spline fit curve shown as dotted line.

2.17 Discussion and Future Improvements
The simulations developed here are a potent tool for predicting trends in the behavior
of microfabricated enzyme electrodes. They have the potential to allow a reduction
in fabrication time and cost as initial iterations could be performed in silico instead
of in vitro. Additionally, they are a potent pedagogical tool for understanding and
explaining the transport phenomena involved in microfabricated electrodes.

These simulation tools could also help characterize fabricated electrodes and help
determine unknown constants (such as partition or hindered diffusion coefficients),
although there is a word of caution there regarding there being too many possible
unknown parameters to fit and consequent false confidence in fit results. Never-
theless, it would likely be a powerful future development to add scripts to control
the simulation programmatically, process its outputs, and modify selected unknown
inputs to fit observed data, especially when as many parameters as possible have
otherwise been determined, and fit results are regarded with the due uncertainty.

One major remaining area of improvement is the development of more advanced
post-processing tools and methods to expand their scope past MOOSE’s inbuilt
postprocessors.
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C h a p t e r 3

AUTOMATED MEASUREMENT SYSTEM

3.1 Overview
Despite advances in sensor design, characterizing new enzyme electrodes is still
largely a labor-intensive process. Traditional benchtop testing involves pipetting
reagents, manually switching samples, and calibrating sensors one at a time. Such
manual workflows are slow and susceptible to human error. Additionally, elec-
trochemical measurements are highly susceptible to diffusion effects and are often
impacted by factors such as reaction container shape and fill level, the exact position
of the sensor within the reaction chamber, and distance from the stir bar if one is
used [1][2].

Automation of biosensing systems holds the promise of increasing data throughput
and reducing the impact of human error and bias [3]. Automated flow injection
systems [4] and sequential injection systems [5] have long been described in the
literature and applied to a wide variety of sensors, such as in-line glucose monitor-
ing for cell cultures [6] and fermentation [7], Flow-ELISA [8] and amperometric
detection of ethanol [9]. However, to the best of our knowledge, we present here the
first automated measurement system for wafer-scale testing of chronoamperometric
enzyme electrodes directly on the wafer on which the electrodes were fabricated.

To combat the inconsistencies of manual measurement and enable higher data
throughput, we developed an automated measurement system and accompanying
software to test sensors at the wafer scale in a repeatable way day after day and
sensor across sensor. The goal was to build a system that can recreate an identical
environment each time it flushes in a new solution and carries out an electrochemical
measurement, while also maintaining a measurement error smaller than 1 nA.

The automated measurement system also enables the use of protocols incorporat-
ing randomized concentration order to prevent temporally correlated confounding
variables from obfuscating the data while replicating an identical measurement en-
vironment each time a new solution is flushed in. An early example of such an
error was insulation failures leading to growing electrode area with each successive
measurement, which was easily isolated due to automated randomization of analyte
concentration order. Additionally, the system increases our data throughput by en-
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Figure 3.1: The automated measurement system. Labeled are A: computer running
measurement software, B: peristaltic pump, C: source and waste containers, D: flow
rate noise dampener, E: wafer-holding and flow cell assembly, and F: sourcemeter
panel.

abling us to test up to ten sensors at a time, largely unsupervised after the initial
setup for a measurement session.

The central piece of the automated measurement system is the wafer-holding and
flow cell assembly, where the mechanical, electrical, and fluidic subsystems meet
and interface with the fabricated test wafers. The fluidics subsystem consists of
a peristaltic pump, pinch valves, a flow rate noise dampener, and plumbing to
connect these components to the source and waste containers. The electronics
subsystem consists of ten Keithley 2450 sourcemeters acting as potentiostats, a
printed circuit board in the flow-cell assembly to make electrical contact with the
wafer, an interposer board to connect the two, and a contact tester to ensure the wafer
had been correctly aligned. The software subsystem consists of custom application
software that controls the sourcemeters, pump, and pinch valves, to direct liquid flow
and electrochemical measurement, and collect and store data as well as forensic and
diagnostic information. It additionally comprises of scripts to parse and analyze the
data files and collate comments entered by experimenters through the course of a
measurement session through the main application software.
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3.2 Flow Cell Assembly
The flow cell assembly was the central piece of the automated measurement system.
It provided a precisely machined 6061 aluminum base on which to place the wafer
and align it precisely using the wafer flat. The wafer flat was also used in a sister
wafer-marking assembly to create mechanical marks on the wafer, which were
subsequently referenced during lithography steps. Consequently, wafer features
were ultimately precisely aligned to the flat and enabled the electrical contacts to
end up in the same location each time.

Figure 3.2: 250 µm mechanical mark aligned with lithographically defined feature.

The top manifold contained flow cells milled into PMMA with machined 6061
aluminum backing. The bottom of each flow cell had a groove for an O-ring whereas
the top had two 9-gauge thin wall stainless steel needles to enable connection to
flexible plastic tubing. It was also fitted with a printed circuit board with spring
connectors for making electrical contact with the wafer and female headers on the
other side for connection to the sourcemeters. The spring connectors were hand
soldered with extreme care as to mechanical placement to ensure alignment with
the wafer contact pads. This manifold was precisely aligned to the base using
metal dowel pins inserted into corresponding holes in the base and the manifold
aluminum backing and then screwed into place to maintain the correct pressure for
O-ring sealing. Figure 4: The flow cell assembly with a test wafer in the system.
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Figure 3.3: Flow cell assembly. Pictured is an early iteration of the interposer with
mini grabber cables instead of the ribbon cables used later.

The bottom of the flow cells is exposed, showing the flow cells themselves, the
spring connectors that contact the wafer, and the O-rings that form the seal. The
aluminum backing contains alignment holes (one on each side) and holes for screws
for maintaining sealing pressure (two on each side).

Figure 3.4: The flow cell assembly with a test wafer in the system. The bottom of
the flow cells is exposed, showing the flow cells themselves, the spring connectors
that contact the wafer, and the O-rings that form the seal. The aluminum backing
contains alignment holes (one on each side) and holes for screws for maintaining
sealing pressure (two on each side).
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3.3 Fluidics Subsystem
After some initial experimentation with single- and dual-syringe pump configura-
tions, a peristaltic pump was chosen for the final system build. A Langer Instruments
BT100 was selected as the primary pump, with a BT300 available if needed for high-
speed flushes. Silicone tubing from the pump manufacturer was selected for the
tubing within the pump. Chemical-resistant clear plastic tubing with 1/8” inner
diameter was selected for the rest of the tubing.

Figure 3.5: Inline flow rate noise dampener comprising of four syringes with
plungers fixed in place with adhesive.

It was desired to be able to carry out both ‘flow’ and ‘static’ measurements (with
and without liquid flow during measurement), but peristaltic pumps create a noisy
flow rate due to the effect of the rollers [10]. A very effective low-cost solution
was found in the form of a noise dampener consisting of partially-filled syringes in
which the plunger was fixed in place with permanent adhesive placed in-line with
liquid flow. The air gap in the syringes would compress and relax with changing
pressure, effectively smoothing out the flow rate. The dampener reduced all flow
rate-related noise from the measurements to below measurement threshold.

Solenoid pinch valves were used to select between different premixed source solu-
tions. A custom electronic controller was designed to allow our software to control
the experiment. Luer-lock or barb connectors were used for tubing connections.
The system was primarily used in a negative pressure configuration both to enable
placing the flow noise dampener downstream of the flow cells to avoid contamina-
tion with the buffer liquid in the syringes and to reduce chances of liquid leakage,
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Figure 3.6: Solenoid pinch valves, controller, and fluid source containers

which (though rare) necessitated elaborate cleaning and drying to eliminate current
leakage paths and return to the specified < 1 nA precision requirement.

3.4 Electrical Subsystem

Figure 3.7: Interposer board
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The electrical subsystem consisted of a rack of ten Keithly 2450 sourcemeters
used in four-wire (potentiostatic) mode, an interposer board to connect these to
the headers on the flow cell manifold, the pinch valve controller described in the
previous section, and a board to adapt the banana connectors on the Keithly output
panel to flat ribbon cables, which connected to the interposer board, pictured here.
The interposer board and adapter contained guard traces around the working and
reference electrode traces to avoid current leakage through the FR4 PCB material
and maintain < 1 nA leakage current.

3.5 Software Subsystem
Full-featured application software was created for use not only by this researcher
but also by colleagues and collaborators. The goal was to enable automated testing
by any member of the overall project (or partnered projects led by collaborators)
without needing knowledge of programming.

Figure 3.8: Software main screen
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The system was highly multithreaded, allowing a live-updating and fully responsive
graphical interface running in parallel with threads managing each piece of con-
nected equipment. Additionally, there were threads constantly logging interthread
messages to save forensic data.

At a low level, the software interfaces with the pump, sourcemeters, and pinch valve
controller, issuing commands, verifying readbacks, and collecting data. At a higher
level, it enables the creation of custom experimental protocols through a convenient
user interface, also allowing them to be saved and loaded.

The main software screen provides an overview of the loaded experimental protocol
and an estimated finish time once it’s running. A separate detailed live-updated
system status screen is also provided for live-monitoring of the link status with each
connected instrument.

Sourcemeter Control
The Tektronix TSP command interface was used to drive the Keithly sourcemeters
and obtain data. Each sourcemeter was run on a separate thread for full nonblocking
operating and to avoid communication issues with one sourcemeter affecting mea-
surements on another. A sensor panel configuration screen allows the user to select
the sourcemeter IDs.

Fluidics Control
Support is provided for Langer BT100 and BT300 pumps, including support for
connecting more than one pump simultaneously and using each at a different time
in the experiment protocol. The BT300 pump has higher flow rate but less precision
in adjusting it, allowing for faster flushes for static measurements whereas the
BT100 pump allows greater precision in tuning the flow rate. A protocol could, for
instance, use a BT300 pump to flush new fluid in and then switch to a BT100 pump to
maintain a precise flow rate during measurement. Both pumps need routine flow rate
calibration due to gradual tubing degradation before the tubing needs replacement,
and the software provides a feature for researchers to perform a calibration protocol
and update a calibration table.

A container/valve control screen allows the researcher to connect to the pinch valve
controller and designate which containers are connected to the system as well as the
name and concentration of the fluid in each. A ping feature is made available for
the researcher to confirm connections on the correct COM ports for the valves and
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Figure 3.9: Pump control subsystem

the pump.
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Experiment Control
A manual experiment control screen allows the user to test out the system or its
features before starting an automated run. It enables full manual control of the
pump(s), fluid source pinch valves, and sourcemeters to have the system carry out
any task it could perform during an automated session. This screen is typically
used during automated measurement session setup to ensure the first fluid is flushed
through with no bubbles in the system.

Figure 3.10: Manual system control screen

The true utility of the system, however, lies in the automated measurement protocol
functionality. A convenient user interface allows the user to create custom protocols
using ‘blocks.’ Examples of blocks are “random source select,” “flush,” “flow,”
and “delay,” each corresponding to one or more steps the software would take to
implement the block.

Figure 3.11: Automated protocol control

A typical measurement protocol was to make a specified number of measurements,
randomly selecting a source for each and inserting a delay between the flush and
measurement, and then flushing PBS through the system at the end of the session
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to avoid the enzyme sitting in a high glucose concentration until the experimenter
returned to the bench.

3.6 Performance
The automated measurement system has provided a highly repeatable testing envi-
ronment for the studies performed in addition to improving data throughput. Some
of the data presented later in this document is previewed here as a demonstration of
the measurement system’s capabilities. Figure 3.12 shows 40 chronoamperometry
curves for 6 unique solutions containing glucose and acetaminophen plotted on the
same graph, showcasing the repeatability of the system. Each measurement was
taken with a randomized source selected from the solutions. Figure 3.13 shows mean
chronoamperometry curves for 12 measurements with 3 unique concentrations of
hydrogen peroxide. Measurement-to-measurement standard deviation is plotted as
a shaded region around each average curve. Table 3.1 summarizes the system’s data
throughput performance in a typical measurement session when used by a colleague.

Metric Value
Sensors simultaneously tested 10
Measurements 40 (typical) × 10 sensors = 400
System setup time 30 minutes
Measurement cycle 4 minutes × 40 measurements
Cleanup time 2 minutes
Total time 3.2 hours
Measurement rate 126 measurements/hour

Table 3.1: Data throughput metrics for the automated measurement system
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Figure 3.12: Interference data collected using the automated measurement system.
A total of 40 curves are plotted here, distributed over six source fluids. All curves
are plotted but effectively only one is seen for each source fluid due to the high
repeatability of the measurement system.
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Figure 3.13: The mean of four nonconsecutive chronoamperometry curves in hy-
drogen peroxide is plotted for each concentration. The solutions were tested in
randomized order using random selection without replacement until each concen-
tration had been measured and then starting over. Standard deviation error between
measurements is shown as a shaded region. A zoomed-in inset is added so that the
error bounds can be seen.
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3.7 Discussion and Future Improvements
The automated measurement system enables testing sensors at wafer scale on the
substrates on which they were fabricated. This eliminates the need for dicing prior
to measurement, enables automated randomized measurement protocols, facilitates
exact replication of the testing environment, and improves data throughput. The
main labor-intensive tasks at this stage are solution preparation and flow rate cali-
bration, which can be reduced or eliminated via further improvements to the system.
An inline flow rate gauge would reduce the need for manual calibration and act as an
early warning before peristaltic pump tubing degradation (which, in our experience,
appears as a reduction in flow rate at a given RPM before catastrophic failure).
The solution preparation bottleneck could be reduced by adding metered solution
mixing, but achieving analytical accuracy in such a system was deemed beyond the
scope of this implementation. It would also be useful, in the alternative, to expand
the total number of source fluids supported by the system (currently between 6 and
8 depending on the service status of the solenoid valves).

This measurement system has enabled the characterization of different sensor ar-
chitectures and enzyme deposition techniques over short and long time spans [11]
[12] [13]. Enabling on-wafer testing immediately after fabrication has the poten-
tial to vastly speed up iteration of enzymatic and electrochemical sensor design by
eliminating intermediate steps.
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C h a p t e r 4

SIMULATION AND EXPERIMENTAL CHARACTERIZATION
OF MICROFABRICATED HYDROGEN PEROXIDE SENSORS

4.1 Abstract
Here we present the results of simulations and experimental measurements of mi-
crofabricated planar electrodes. An automated measurement system (AMS) flow
cell was simulated along with a circular sensor of area 1.8×104 𝜇𝑚2 placed bottom-
center of the flow cell. The dynamics of the sensor and its environment upon sensor
turn-on were simulated. A microfabricated electrochemical sensor with a rectangu-
lar working electrode of the same area was then tested in the AMS and the practical
results compared to simulation. The shape of the measured dynamic response of the
rectangular sensor was found to be in reasonably good agreement with the dynamic
response of the simulated circular sensor, whereas the magnitude error reduced with
increasing mesh fineness and was found to be < 10% across the wafer for the finest
mesh tested.

4.2 Introduction
The transient current at planar electrodes was originally described by Cottrell in the
now well-known Cottrell equation[1]:

𝑖 =
𝑛𝐹𝐴𝑐0

√
𝐷

√
𝜋𝑡

(4.1)

=
𝑘
√
𝑡

(4.2)

where 𝑛 is the number of electrons involved in the reaction, 𝐹 is the Faraday constant
(96, 485 𝐶 𝑚𝑜𝑙−1), 𝐴 is the electrode area, 𝑐0 is the initial analyte concentration,
and 𝐷 is the analyte diffusivity. The various constants can also be combined into
one constant 𝑘 . However, this description is for macroscopic planar electrodes and
proceeds on the reduction of the problem to one dimension.

Improvements and refinements have been calculated and published over the years[1][2][3]
for other electrode geometries as well as for including finite volume effects. Of par-
ticular interest to us, for small disk electrodes, the Shoup-Szabo equation provides
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a de-facto solution with 0.6% theoretical accuracy[3] and 3% accuracy reported[4]
compared to empirical measurements.

𝑓 (𝜏) = 0.7854 + 0.8862𝜏−
1
2 + 0.2146𝑒−0.7823𝜏−

1
2 (4.3)

Having developed a finite element simulation for simulating various microfabricated
enzyme electrodes, as described in Chapter 2, as well as an automated measurement
system, as described in Chapter 3, enabling the testing of physical realizations of
the same at wafer scale, we applied those tools first to testing the simplest case
of an electrochemical sensor containing no enzyme and simply detecting hydrogen
peroxide with fixed initial starting concentration. By testing the performance of
the simulation and the measurement system with a simpler problem with known
solutions, we undergird our confidence in applying these tools to more complex sen-
sor geometries, such as with different enzyme geometries and top coats, especially
those that leverage the additional degree of freedom provided by our axisymmetric
simulation and might be less amenable to explicit (analytical or numerical) solutions.

4.3 Simulation
Methods

One of the flow cells of the automated measurement system (AMS) described in
Chater 3 was simulated. The flow cells have a radius of 1.4 𝑚𝑚 and a height of
1.25 𝑚𝑚. A stripped-down version of the simulation described in Chapter 2 was
used (no enzyme, glucose, or oxygen was simulated) using a mesh matching the
size and shape of the AMS flow cells. A sensor with radius 76 𝜇𝑚 was simulated to
yield an area of 1.8 × 104 𝜇𝑚2 to match the working electrode area of the physical
sensor.

The "no flux" boundary condition was selected for the outer boundaries to simulate
a finite measurement cell. However, experimenting with other boundary condi-
tions revealed that 60 seconds measurement is insufficient time for the boundary
conditions to make a difference to the recorded current values, indicating that the
simulated flow cell volume is sufficient to avoid finite volume effects.

Time was stepped in 0.1 𝑠 increments. An initial concentration of 1.0 𝑚𝑀 𝐻2𝑂2

was used. Different concentrations weren’t simulated as the Diffusion-Reaction
Equation is linear in the absence of a reaction term, so the solution for different
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concentrations would simply be the solution for 1.0 𝑚𝑀 multiplied by a scalar.
Coarser and more refined versions of the mesh were also tested.

Results

The evolving hydrogen peroxide concentration profile is shown. The diffusion layer
grows with near-spherical symmetry around the sensor and snapshots of it are shown
at 0.1 𝑠 (Figure 4.1), 5.0 𝑠 (Figure 4.2), 10.0 𝑠 (Figure 4.3), 30.0 𝑠 (Figure 4.4), and
60 𝑠 (Figure 4.5) after start of chronoamperometry measurement. The color scales
have been discretized to 10 color steps for easier visualization from one time point
to another.

Figure 4.1: 𝐻2𝑂2 concentration at 0.1 𝑠. The sensor has just begun consuming
hydrogen peroxide, seen as the small black area immediately above the sensor
surface (center-bottom).
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Figure 4.2: 𝐻2𝑂2 concentration at 5.0 𝑠. The diffusion layer begins to grow with
close to shperical symmetry.

Figure 4.3: 𝐻2𝑂2 concentration at 10.0 𝑠. The diffusion region expands further.
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Figure 4.4: 𝐻2𝑂2 concentration at 30.0 𝑠. The rate of growth of the diffusion region
has slowed down at this stage.

Figure 4.5: 𝐻2𝑂2 concentration at 60.0 𝑠. This is the final diffusion region in a 60 𝑠
measurement.
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The dynamic response was calculated by multiplying the total normal flux into the
sensor by the using the relationship 𝑖 = 𝑛 × 𝐹 × flow rate where n is the number
of electrons involved in the reaction (2), F the Faraday constant (96,485 𝐶 𝑚𝑜𝑙−1),
and flow rate the area integral of the simulated flux over the sensor. It was found to
agree highly with the Shoup-Szabo equation (Figure 4.6).

Figure 4.6: The simulated dynamic response at 1.0 mM 𝐻2𝑂2 (green, dotted)
compared to the Shoup-Szabo equation (red, dashed). Other concentrations would
result in this curve multiplied by a scalar.

4.4 Experimental Characterization
Methods
The electrochemical sensors used here were described in detail previously by Adalian
[5]. They employ a three-electrode setup with a working electrode (WE), a counter
electrode (CE), and a reference electrode (RE). All three are made of platinum, which
is deposited using electron beam evaporation. The wafer area outside the platinum
electrodes is insulated with silicon oxide/silicon nitride. The working electrode area
is 0.018 𝑚𝑚2 enclosed by an RE and CE within a total area of 500𝜇𝑚 × 500𝜇𝑚.
WE is held at a potential of 0.4𝑉 relative to RE.

Hydrogen peroxide solutions were made in 1× phosphate buffered saline (PBS)
immediately prior to measurement. The wafer under test was aligned and seated
in the automated measurement system described in Chapter 3. Hydrogen peroxide
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concentrations were cycled through in random order. 60 ml of each concentration
was flowed through the measurement system before turning off flow and waiting 5
s to the system to stabilize.

After the 5 s stabilization time, chronoamperometry was performed at 0.4 V vs. the
platinum reference electrode while maintaining static conditions. Each measurement
was performed for 60 s with current samples taken every 0.1 s. Ten sensors were
tested but measurements for one were excluded due to poor electrical contact.

Results
The measured dynamic responses showed a high degree of consistency measurement-
to-measurement for the same sensor, indicating low sensor drift. Four of the nine
sensors had nearly identical responses to each other whereas the other five showed
sensor-to-sensor variation. Cross-wafer statistics are summarized in Table 4.1. The
recorded chronoamperometry curves for one of the sensors is provided in Figure
4.7, showing its measurement-to-measurement consistency. For each curve shown,
standard deviation error over four nonconsecutive measurements (with the other
concentrations measured in between) is represented by a shaded region around the
curve.

Figure 4.7: The measured dynamic response of one of the sensors at 0.2, 0.4, and 0.8
mM𝐻2𝑂2. Zoomed-in inset shows standard deviation error over four measurements
at 0.8 mM.
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The sensitivity, of course, depends on the time at which the current is sampled, due
to the nature of the dynamic response seen in Figure 4.7. Linear fits were done
at selected time points between 1.0 and 60.0 s and the sensors had good linearity
regardless of the point in the dynamic response where current was sampled. The
linear fit for a sensor at 60.0 s is shown in Figure 4.8.

Figure 4.8: The measured sensitivity and linearity of one of the measured sensors.
Standard deviation error bars are shown (across four measurements at each concen-
tration).

Parameter Mean Standard Deviation
Sensitivity @ 60.0 s 102 nAmM−1 18 nAmM−1

𝑅2 @ 60.0 s 0.9980 0.0010

Table 4.1: Sensitivity and linearity parameter statistics across the 9 sensors tested.

4.5 Comparison of Simulated and Experimental Results
The measured dynamic response was in good agreement with the simulation for four
of the nine sensors tested whereas for the other five, the shape was in good agreement
but there was disagreement in the magnitude due to the sensor-to-sensor variation
mentioned in the previous section (and summarized in Table 4.1). In assessing the
goodness of fit with experimental data, we keep in mind that a practical electrode may
deviate from the ideality assumptions inherent in the simulation or have fabrication
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errors affecting available electrode area. Figure 4.9 shows the comparison of the
simulated and measured responses of one of the sensors tested.

Figure 4.9: The measured dynamic response (solid) compared to the simulated
dynamic response (dotted) for 0.2, 0.4, and 0.8 mM 𝐻2𝑂2 (green, purple, and blue
respectively) for one of the sensors tested.

4.6 Discussion
The results of the finite element analysis simulation correspond extremely tightly
to the de-facto solution provided by Shoup and Szabo [3] (Equation 4.3, Figure
4.6). They also show good agreement with the transient response of practical sen-
sors measured empirically (cross-wafer variation notwithstanding), with some error
likely due to deviations from ideality of the sensors tested. This gives us confidence
in applying these tools to more complex sensor geometries and constructions.
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C h a p t e r 5

SIMULATION OF MICROFABRICATED GLUCOSE SENSORS
AND EMPIRICAL VALIDATION

5.1 Abstract
In this chapter, we apply the simulations described in Chapter 2 to consider the
impact of hydrogel geometry and enzyme loading on sensor performance, and
carry out empirical validation of the results considering the impact of hydrogel
geometry. We simulate thin and thick (2.2 𝜇m and 47 𝜇m) enzyme-containing
hydrogels on top of the sensor. We also explore the impact of patterning the enzyme
layer to cover only the active electrode areas vs. leaving the enzyme unpatterned,
covering the wafer as a whole. Empirical validation was carried out by comparing
measurements from spin-coated sensors using a technique we have found to produce
layers as thin as 500 nm at the highest spin speeds, and conventional drop-coated
sensors, which produce thicker coatings. The simulated geometries are thicker than
the profilometer measurements of dry hydrogel primarily to account for hydrogel
swelling upon wetting, which hydrophilic albumin-based hydrogels are particularly
prone to.

5.2 Introduction
In Chapter 2, we looked at the development of an axisymmetric finite element
simulation enabling the mathematical modeling of enzyme electrodes and their
liquid environment. The goal of developing these simulation tools was to help
understand the empirically-observed behavior of enzyme electrodes fabricated by
our group and guide the future effort towards predictive and deterministic design.
In Chapter 3, we looked at the development of an automated measurement system
to enable wafer-scale measurements, and in Chapter 4 an initial look at applying
these tools to basic hydrogen peroxide sensors. Now we look at the application of
these tools to the more complex glucose sensors, combining theoretical study with
empirical testing. We shall modify the simulation parameters to suit the sensors
tested and compare simulation results to the observed empirical ones. In particular,
we shall take a second look at the modification of enzyme kinetic constants, which
are strongly dependent on pH [1] and were originally measured at glucose oxidase’s
optimal pH of 5.5 [2].
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5.3 Geometries Simulated
The sensors we developed and tested contain glucose oxidase (GOx) immobilized in
a hydrogel comprised, in addition to the GOx, of bovine serum albumin crosslinked
with glutaraldehyde. Such hydrogels have been reported to have a swelling ratio of
up to around 4x (weight/weight) at netural pH [3]. Work by our group has found
spin-coating to have the ability to produce layers as thin as 300-500 nm, measured
when dry [4, 5]. While exact thickness of the wet hydrogel proved difficult to
measure, we use the 2.2 𝜇m enzyme thickness run from our thickness sweep as the
illustrative example here. (Thicknesses were swept as 1.0 𝜇m, 2.2 𝜇m, 4.7 𝜇m, 10
𝜇m, and so on, to have three points per decade.)

The geometries of drop-coated sensors were even more difficult to measure owing to
their irregular shape and uneven thickness over the sensor surface. They were also
significantly more variable in thickness than spin-coated sensors due to the critical-
ity of the time between mixing and depositing, as mixing together the composite
chemicals begins the crosslinking process. We use the 47𝜇m thickness simulation
as illustrative. Due to the high degree of swelling assumed, we also adjust the solute
partitioning ratio to 0.9.

In addition to varying the hydrogel thicknesses, we also varied the simulated widths
of each hydrogel. While drop-coated sensors were not patterned, spin-coated sensors
were optionally patterned by being preceded by lithography and followed by acetone
liftoff.

pH Correction of Enzyme Kinetics
We presented a first look at the two-substrate enzyme kinetics of glucose oxidase in
Chapter 2 but did not discuss the modification of kinetic parameters to their expected
values at pH 7.4. To recap, the two-substrate mechnism determined by Gibson et al.
is [2]:

𝐸𝑂 + 𝐺
𝑘1−→ 𝐸𝑅-𝑃1

𝑘2−→ 𝐸𝑅 + 𝛿-lactone

𝐸𝑅 +𝑂2
𝑘3−→ 𝐸𝑂−𝑃2

𝑘4−→ 𝐸𝑂 + 𝐻2𝑂2

(5.1)

With velocity equation:

1
𝑣
=
𝑘2 + 𝑘4

𝑘2𝑘4
+ 1
𝑘1𝑐𝑔

+ 1
𝑘3𝑐𝑂2

(5.2)
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Kinetic parameters:

𝑣𝑚𝑎𝑥 =
𝑘2𝑘4

𝑘2 + 𝑘4
(5.3)

𝐾𝐺 =
𝑣𝑚𝑎𝑥

𝑘1
(5.4)

𝐾𝑂2 =
𝑣𝑚𝑎𝑥

𝑘3
(5.5)

And the two-substrate Michaelis-Menten kinetics equation:

𝑉 = 𝑉𝑚𝑎𝑥
[𝐺] [𝑂2]

𝐾𝑂2 [𝐺] + 𝐾𝐺 [𝑂2] + [𝐺] [𝑂2]
(5.6)

Where:

𝑉𝑚𝑎𝑥 = [𝐸]𝑣𝑚𝑎𝑥 (5.7)

While in the illustrative simulation we use Gbison’s kinetic parameters measured
at pH 5.6, the sensors we plan to test will be tested in phosphate buffered saline
at pH 7.4, so we shall adapt these parameters to that pH. Weibel and Bright used
effectively the following reaction mechanism in their study [1]:

𝐸𝑂 + 𝐺
𝑘𝑟𝑒𝑑−→ 𝐸𝐵

𝑘𝑐𝑎𝑡−→ 𝐸𝑅 + 𝛿-lactone (5.8)

𝐸𝑅 +𝑂2
𝑘𝑜𝑥−→ 𝐸𝑂 + 𝐻2𝑂2 (5.9)

Although this mechanism is missing the second step in the second reaction accord-
ing to Gibson, that last step is not the limiting step and we can compare these rate
constants to the rate constants of Gibson et al. Effectively, 𝑘𝑟𝑒𝑑 and 𝑘𝑜𝑥 are approx-
imately equivalent to 𝑘1 and 𝑘3 respectively [6]. Therefore, with this model, our
kinetic parameters become:

𝑣𝑚𝑎𝑥 = 𝑘𝑐𝑎𝑡 (5.10)
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𝐾𝐺 =
𝑣𝑚𝑎𝑥

𝑘𝑟𝑒𝑑
(5.11)

𝐾𝑂2 =
𝑣𝑚𝑎𝑥

𝑘𝑜𝑥
(5.12)

Graphically interpolating Weibel and Bright’s published data, we estimate at pH 7.4
(the pH maintained by the PBS buffer used in our in vitro studies) that 𝑘𝑐𝑎𝑡 = 850𝑠−1,
𝑘𝑟𝑒𝑑 = 12, 000 𝑀−1𝑠−1 ,and 𝑘𝑜𝑥 = 1 × 106 𝑀−1𝑠−1. These rate constants evaluate
approximately to 𝐾𝐺 = 71 𝑚𝑀 , and 𝐾𝑂2 = 0.85 𝑚𝑀 . We note here that at pH
7.4, 𝑘𝑜𝑥 has a sharp slope and has a larger uncertainty associated with it due to the
compounding of uncertainty in the original data and possible interpolation error.

Parameter Description Value
𝑉𝑚𝑎𝑥 Maximum enzymatic reaction rate per

unit volume
100 𝑚𝑀𝑠−1

𝐾𝐺 Michaelis constant with respect to
glucose

71 𝑚𝑀

𝐾𝑂2 Michaelis constant with respect to
oxygen

850 𝜇𝑀

𝐷𝐺 Glucose diffusivity in water 7.20 × 10−10 𝑚2𝑠−1

𝐷𝑂2 Oxygen diffusivity in water 1.93 × 10−9 𝑚2𝑠−1

𝐷𝐻2𝑂2 Hydrogen peroxide diffusivity in wa-
ter

1.43 × 10−9 𝑚2𝑠−1

𝛼𝐻2𝑂2 Partition coefficient for 𝐻2𝑂2 0.9
𝛼𝑂2 Partition coefficient for 𝑂2 0.9
𝛼𝐺𝑙𝑢𝑐𝑜𝑠𝑒 Partition coefficient for glucose 0.9
𝛽𝐻2𝑂2 Relative diffusion coefficient for

𝐻2𝑂2

0.2

𝛽𝑂2 Relative diffusion coefficient for 𝑂2 0.2
𝛽𝐺𝑙𝑢𝑐𝑜𝑠𝑒 Relative diffusion coefficient for glu-

cose
0.06

𝑟𝑠 Sensor radius 66 𝜇𝑚
𝑟𝑒 Enzyme radius 300 𝜇𝑚
ℎ𝑒 Enzyme height 2.2 − 47 𝜇𝑚
𝑡𝑜𝑛 Time at which sensor is turned on 30 𝑠
𝑡𝑑𝑢𝑟 Measurement duration 60 𝑠
𝑐𝐺 Bulk glucose concentration 0.47 − 10 𝑚𝑀
𝑐𝑂2 Bulk oxygen concentration 260 𝜇𝑀

Table 5.1: Parameters used for simulation study.
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5.4 Thickness Sweep Results
Two types of thickness sweeps were done, one for "wide" hydrogel layers, where
the sensor and its surrounding wafer surface are completely covered with hydrogel,
and one for "patterned" hydrogel layers, where the enzyme is limited to a 300 𝜇𝑚
radius around the working electrode. For both types of hydrogel layers, the thickness
played the dominant role in determining response settling time, being significantly
slower for the thick layer than for the thin layers. The chronoamperometry curves
for a simulated concentration of 4.7 mM are shown in Figure 5.1 for the wide-type
hydrogels and Figure 5.2 for the patterned-type hydrogels.

Additionally, the thick layer for each type showed lower currents than the thin layer
for each type, despite the greater total quantity of enzyme. The comparison for the
two thicknesses of wide type hydrogels is shown in Figure 5.3, and of the patterned
type in Figure 5.4.

We also show the final hydrogen peroxide concentration profiles for the thin and
thick wide-type sensors in figures 5.5 and 5.6 respectively.

Figure 5.1: Chronoamperometry simulation of "wide" hydrogel layers of thickness
2.2 and 4.7 𝜇 𝑚 at 4.7 mM concentration.
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Figure 5.2: Chronoamperometry simulation of "patterned" hydrogel layers of thick-
ness 2.2 and 4.7 𝜇 𝑚 at 4.7 mM concentration.

Figure 5.3: Concentration-current curves for the simulated wide hydrogels. The
thick hydrogel produces lower currents (purple) than the thin hydrogel (green).
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Figure 5.4: Concentration-current curves for the simulated patterned hydrogels.
The thick hydrogel produces lower currents (purple) than the thin hydrogel (green).

Figure 5.5: Final hydrogen peroxide concentration profile of thin enzyme-containing
hydrogel.
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Figure 5.6: Final hydrogen peroxide concentration profile of thick enzyme-
containing hydrogel.
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5.5 Experimental Methods
Materials
Glucose oxidase from Aspergillus niger was obtained from BBI Solutions (#GO3A).
Bovine serum albumin (AMRESCO #97064-340), molecular biology grade 10×
phosphate buffer saline (Corning #46-013-CM), d-(+) glucose (Sigma #G8270), and
25% electron microscopy grade glutaraldehyde (ACROS #23328) were purchased
from VWR. 99.0% sodium benzoate (ACROS #AC148980010) was purchased from
Fisher Scientific. PBS solutions were diluted to 1× concentration using deionized
water filtered through 0.22 𝜇m pores (Durapore #CVDI02TPE) and UV sterilized.

Fabrication of Drop-Coated Enzyme Sensors (Type 0)
As described in previously published work [5], a 20 𝜇l GOx-BSA solution consisting
of 1.6 mg GOx and 1.3 mg BSA in 1x PBS was vortexed for 15 s and then centrifuged
for 15 s. Then 25% glutaraldehyde was diluted 10:1 with 1× PBS. Then 2 𝜇l
glutaraldehyde was mixed with 6 𝜇l of the GOx-BSA solution. Since this step begins
the crosslinking process, the rest of the deposition was carried out expeditiously.
The mixture was vortexed for 5 s and centrifuged for 5 s and 1 𝜇l of the mixture was
pipetted onto each sensor.

Fabrication of Spin-Coated Enzyme Sensors (Type 1)
As described in previously-published work [5], 0.56 g GOx and 0.47 g BSA were
dissolved in 7 ml 1x PBS. The enzyme solution was vortexed for 30 s and centrifuged
for 1 min before being passed through a 0.22 𝜇𝑚 filter. An open container of
glutaraldehyde was placed inside a bell jar on a hot plate heated to 80 °C to prepare
for vapor deposition after spin coating. The filtered solution was dispensed onto the
wafer and spin-coated at 500 RPM for 10 s followed by 4000 RPM for 30 s. The
coated wafer was then placed on a thermally insulating wooden block inside the bell
jar containing the open container of glutaraldehyde and coated for 7.5 minutes to
complete the crosslinking process. The wafer was left to stand for 30 minutes before
further handling.

Sensor Characterization
Glucose solutions were mixed to their final concentrations and stabilized with 1 gl−1

sodium benzoate at least three hours prior to testing to allow for mutarotation equi-
librium. All sensors were tested in the automated measurement system described
previously. The system cycled through all the concentrations being tested in random
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order. 60 ml of each solution was flowed at the maximum flow rate to flush the
flow cells and then flow was stopped and the system was kept steady for 5 s. This
allowed the analytes to diffuse into the enzyme layer and form the product so we
could measure the sensor turn-on dynamics after product had already been allowed
to form and diffuse into the sensor environment.

After the 5 s stabilization time, the working electrode was biased to the measurement
potential (0.4 V vs. platinum reference electrode). Bias was kept on for 60 s for
each measurement and current sampled every 0.1 s.

5.6 Experimental Results
The measured currents showed the same trends as the simulated results, both for
current magnitude and for response settling time. The drop-coated sensors showed
high variability sensor-to-sensor in their settling time, which is to be expected as
the coating geometry had high variability too. To illustrate the difference in settling
times, the currents for each type of sensor were normalized to the 60-second settling
current and averaged over nine sensors of each type. This data has previously
appeared in published work [5] and is reproduced here.

Figure 5.7 shows the settling times across five sensors of each type. The current for
each measurement is normalized to its final value to show the shape of the transient
response. Figure 5.8 shows the concentration-current behavior, also across five
sensors of each type. The thicker drop-coated sensors exhibit lower currents than
the thinner spin-coated sensors.
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Figure 5.7: Settling times across five thick hydrogel drop-coated sensors (red) and
five thin hydrogel spin-coated sensors (blue). The currents are normalized to the
final measured current at 60 s. The green horizontal lines represent 5% deviation
from the final current value. Reproduced from previous work [5].
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Figure 5.8: Final (60 s) currents across five thick hydrogel drop-coated (red) and
five thin hydrogel spin-coated (blue) sensors. The dark lines show an average of
each sensor type’s behavior whereas the faint lines show the data for each individual
sensor. Reproduced from previous work [5].
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5.7 Discussion
This practical application of the simulation tools developed allows us to have a better
understanding of the factors at play in the overall performance if microfabricated
enzyme electrodes. It explains observed experimental results pertaining both to the
long-duration or steady-state behavior and to the short-duration transient behavior.
Coupled with wafer-scale microfabrication enabling the production of substantively
identical biosensors and wafer-scale automated testing allowing the observation of
many sensors at a time in identical and reproducible conditions, we believe we
demonstrate a potent set of tools for enzyme electrode design, fabrication, testing,
and iteration.

More specifically to the research question addressed by this set of simulations and
experiments, the demonstration that thin spin-coated enzyme layers produce sen-
sors with higher currents and fast settling times compared to thick enzyme layers
deposited via other methods is a vital one in the design of low power intermittently-
on implantable biosensors. In addition to the cross-wafer consistency that can
be accomplished via refinement of the spin-coating process, the thinner layers so
produced provide tangible performance benefits for the final application. These
findings and their theoretical basis represent a key milestone on the path to miniatur-
ization and a major step towards the goal of a fully wireless low-power implantable
electrochemical biosensing platform.
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C h a p t e r 6

CHEMICAL AND ELECTROCHEMICAL INTERFERENCE

6.1 Overview
Interference with oxidase-based biosensors by electrochemically active compounds
is well documented. Two compounds of particular interest are acetaminophen (the
common antipyretic and analgesic drug [1]) and ascorbic acid (Vitamin C), due to
their electrochemical activity[1, 2, 3, 4, 5] and common presence in the human body.
We studied interference with our sensors by both acetaminophen and ascorbic acid.

Acetaminophen is expected to increase sensor current (which would correspond to
an erroneously high glucose reading) in the potential range typically used to detect
hydrogen peroxide in implanted CGMs[5]. We found the expected increase at a
measurement voltage of 0.4 V with respect to the platinum reference electrode.
However, upon additional testing, we found that reducing the measurement voltage
to 0.2 V effectively gets rid of this interference while maintaining a high degree of
precision in the glucose measurement. At an intermediate measurement potential
of 0.3 V, there is reduced interference from acetaminophen with no drop in glucose
currents.

These findings suggest an effective strategy either of reducing the measurement
potential to get rid of interference from acetaminophen or of using a mixed-voltage
switching measurement regimen if measurements at the standard measurement po-
tential are desired for the higher currents and signal-to-noise ratio. Such a strategy
would involve making the bulk of measurements at the higher voltage to maintain a
higher degree of precision, with occasional measurements at the reduced voltage to
detect interference by acetaminophen. Detection of such interference could result
in a temporary switch to the lower measurement potential until the interference is
no longer a factor, a warning to the patient, or be used for algorithmic correction.

Such strategies would allow the fabrication of a sensor without the need for additional
membranes to filter out acetaminophen as is otherwise suggested [5], reducing
fabrication cost and complexity.

For ascorbic acid, we observed a negative effect, where the presence of ascorbic
acid was found to reduce the observed current, corresponding to an erroneously low
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glucose reading if left uncorrected. This suggests the interference is via hydrogen
peroxide depletion rather than an direct electrochemical reaction at the electrode.
We found the effect to be relatively small (-4.2%, 95% CI:[-6.0%, -2.5%]) at physi-
ological concentrations.

The interference due to ascorbic acid typically occurs due to electrochemical ox-
idation of ascorbic acid at the electrode. We hypothesize that, in our case, we
observe the opposite effect due to oxidation of ascorbic acid by the hydrogen per-
oxide produced by the glucose oxidase and sensed by the sensor. By reducing part
of the generated hydrogen peroxide, ascorbic acid reduces the hydrogen peroxide
that ultimately reaches the sensor, lowering sensor current. At the higher hydrogen
peroxide concentrations present in the enzyme matrix in our sensors, the ascorbic
acid is depleted by reaction with hydrogen peroxide, being unable to reach the
electrochemical sensor to cause electrochemical interference.

6.2 Acetaminophen
Introduction
Acetaminophen (N-(4-hydroxyphenyl)acetamide, APAP) undergoes a quasi-reversible
redox reaction primarily involving the conversion to N-acetyl-p-benzoquinone imine
(NAPQI).

𝐴𝑃𝐴𝑃→ 𝑁𝐴𝑃𝑄𝐼 + 2𝑒− + 2𝐻+ (6.1)

This is a two-electro two-proton reaction that generally occurs around +0.4 to +0.6V
vs. Ag/AgCl at physiological pH. This has been problematic for many commercial
glucometers. Oral administration of 1g acetaminophen has been reported [6] to
cause glucometer measurements to vary from 85 to 400 mg/dL despite plasma glu-
cose concentrations remaining constant at approximately 90 mg/dL (approximately
5 mM). This interference was measured using FDA-approved commercially avail-
able CGM systems from Dexcom and Medtronic, among others. Furthermore, oral
administration of acetaminophen has been shown to continue to cause interference
for up to eight hours [7].

Strategies to mitigate this interference have included permselective membranes
such as in the Decon G6 CGM system. With the permselective membrane, the
bias in glucose readings after the third acetaminophen dose of the day is reduced to
14.0 mg/dL [8]. Therapeutic concentrations of acetaminophen are 66-132 𝜇M [9].
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We tested acetaminophen interference at a concentration of 200 µM with glucose
concentrations of 1mM and 5mM at voltages of 0.2-0.4V.

Methods
Preparations were made of 0mM, 1mM, and 2mM glucose in 1x phosphate-buffered
saline. Half of each solution was separated out and spiked with acetaminophen to
a concentration of 200 µM. Chronoamperometry was performed with ten sensors,
fabricated as described elsewhere in this thesis, at 0.2, 0.3, and 0.4V. Settling
current was reached within ten seconds, and the average current in the tenth second
of measurement was used as the sensor current at that voltage and concentration.
The sensor current was sampled at a rate of 10 measurements per second. To avoid
bias due to any temporal variables, each subsequent measurement was in a different
solution concentration, chosen at random using a random number generator. Several
measurements were taken in each concentration, for a total of 40 measurements.
Overall, the sensors behaved similarly to each other and data from an exemplar
sensor was analyzed and is presented below.

Results and Analysis
Chronoamperometry Curves

The raw chronoamperometry curves showed a high level of agreement between
successive measurements for each concentration, indicating low sensor drift. After
the initial transient, the curves for glucose with acetaminophen (dotted) are vertically
offset from the curves for glucose (solid), indicating a constant additional signal due
to acetaminophen. The offset is largest at 0.4 V, reduced at 0.3 V, and virtually
negligible at 0.2 V, at which point the dotted and solid lines merge with each other.
The exceptions are the curves with a glucose concentration of 0.0 mM, where the
acetaminophen-spiked curves continue to maintain an offset even at a measurement
potential of 0.2 V. Each time-current graph shown plots raw unaveraged data from
a total of 40 time-current curves overlaid on top of each other.
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Figure 6.1: Chronoamperometry curves for glucose preparations of 0.0, 1.0, and
2.0mM (solid lines) and the same preparations spiked to an acetaminophen concen-
tration of 200 µM (dotted lines), measured at 0.4 V. n=40 (6-7 per concentration).
All 40 curves plotted.

Figure 6.2: Chronoamperometry curves for glucose preparations of 0.0, 1.0, and
2.0mM (solid lines) and the same preparations spiked to an acetaminophen concen-
tration of 200 µM (dotted lines), measured at 0.3 V. n=40 (6-7 per concentration).
All 40 curves plotted.
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Figure 6.3: Chronoamperometry curves for glucose preparations of 0.0, 1.0, and
2.0mM (solid lines) and the same preparations spiked to an acetaminophen concen-
tration of 200 µM (dotted lines), measured at 0.2 V. n=40 (6-7 per concentration).
All 40 curves plotted.
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Concentration-Current Curves

The concentration-current curves show a vertical offset between the current with
glucose at 1.0 or 2.0 mM (green line) and the current with glucose at those con-
centration and 200𝜇M acetaminophen (purple line). There is a greater offset in the
absence of glucose. The offset is smaller at 0.3 V than at 0.4 V, and virtually gone
at 0.2 V (except when glucose is not present).

Figure 6.4: Glucose concentration vs. current plots with (green) and without
(purple) acetaminophen at 0.4 V. Standard deviation error bars shown. Current is
mean current between 9.0 and 10.0 s. Acetaminophen concentration 200𝜇M.
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Figure 6.5: Glucose concentration vs. current plots with (green) and without
(purple) acetaminophen at 0.4 V. Standard deviation error bars shown. Current is
mean current between 9.0 and 10.0 s. Acetaminophen concentration 200𝜇M.

Figure 6.6: Glucose concentration vs. current plots with (green) and without
(purple) acetaminophen at 0.4 V. Standard deviation error bars shown. Current is
mean current between 9.0 and 10.0 s. Acetaminophen concentration 200𝜇M.
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Statistical Summary and Discussion
The tables presented here show a statistical summary of the data measured for
this sensor. In the presence of glucose, while interference from acetaminophen is
clearly present at a measurement potential of 0.4 V (adding on average 4.5 nA to
an average signal of 30.2 nA at 2.0 mM glucose), it is significantly reduced at a
measurement potential of 0.3 V without significant reduction in the glucose current
signal (adding on average 1.9 nA to an average signal of 28.9 nA at 2.0 mM). At a
measurement potential of 0.2 V, there is no statistically significant interference due
to acetaminophen and the signal due to glucose, while lower than at 0.4 V, is still
high enough for precise measurement. Each sensor tested showed a similar result,
with a statistically significant interference current from acetaminophen at 0.3 and
0.4 V but not at 0.2 V.

Glucose
Concentration
(mM)

Mean Current
(nA)

Mean
Additional

Current with
Acetaminophen

(nA)

95%
Confidence

Interval (nA)

0.0 0.2 5.6 5.5 - 5.7
1.0 17.2 4.7 4.5 - 4.9
2.0 30.2 4.5 4.1 - 4.9

Table 6.1: Acetaminophen interference at 0.4V

Glucose
Concentration
(mM)

Mean Current
(nA)

Mean
Additional

Current with
Acetaminophen

(nA)

95%
Confidence

Interval (nA)

0.0 0.1 3.5 3.3 - 3.6
1.0 16.6 2.0 1.8 - 2.2
2.0 28.9 1.9 1.6 - 2.2

Table 6.2: Acetaminophen interference at 0.3 V
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Glucose
Concentration
(mM)

Mean Current
(nA)

Mean
Additional

Current with
Acetaminophen

(nA)

95%
Confidence

Interval (nA)

0.0 0.0 1.7 1.6 - 1.7
1.0 14.9 -0.1* -0.2 - 0.0
2.0 25.9 0.2* 0.0 - 0.4

Table 6.3: Acetaminophen interference at 0.2 V. Numbers marked with * are statis-
tically insignificant.

In the absence of glucose, a signal due to acetaminophen is detectable even when
we reduce the voltage to 0.2 V. We believe this is due to instability of the platinum
reference electrode in the absence of hydrogen peroxide, causing the true electro-
chemical potential at the working and counter electrodes to vary from their values
when the reference electrode is stable. This is not too concerning because, while
realizable in vitro, the complete absence of glucose is unlikely to be encountered in
vivo in an alive patient.

6.3 Ascorbic Acid
Introduction
Ascorbic acid (vitamin C) is another source of potential interference with continuous
glucose monitors. Vitamin C is among the most commonly used antioxidant dietary
supplements and can cause both overestimation and underestimation of glucose
levels. Vitamin C is a strong reducing agent which can be oxidized at the electrode
surface of electrochemical glucometers, adding to the total signal generated, which
is interpreted as falsely high glucose readings. This mechanism has been reported
[10] to cause false indications of hyperglycemia in patients undergoing Vitamin C
therapy with Abbott Precision Xceed Pro and Roche Inform II glucometers whereas
the Nova StatStrip was reported to detect the ascorbic acid present and display an
error message instead.

Meanwhile, pseudohypoglycemia indications have been reported with glucose oxi-
dase based laboratory assays [11] as well as in peroxidase-based assays [12], where
peroxide depletion is considered to be the main mechanism of interference. Due
to the principle of operation of our sensors, we are potentially susceptible to either
mechanism of interference, depending on whether ascorbate or hydrogen peroxide
are present in excess in the immobilized glucose oxidase layer.
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The assumed optimal plasma concentration of Vitamin C is 50 µM [13]. We tested
interference at a concentration of 60 µM and found that in this concentration range,
we are susceptible to a small reduction (≈ 4.2%) in sensor current and underesti-
mation of glucose level. Due to this being an underestimation, we conclude that
the chemical interference pathway must be the dominant one at this concentration
range.

Being chemical rather than electrochemical in nature, this interference is not amenable
to mitigation by strategies similar to those shared for acetaminophen above and we
present this information here for consideration in the overall design process of any
final product proceeding on the basis of this technology. However, since the effect
size is small at physiological concentrations, there may be limited benefit from
increasing device complexity to reduce ascorbic acid interference.

Methods
A preparation was made of 1.0 mM glucose in phosphate buffered saline. This
was divided into two equal volumes, one of which was spiked with ascorbic acid
to a final concentration of 60 µM. Nine sensors were tested five times each in both
the neat and spiked solutions, for a total of 45 measurements per solution. The
currents with and without ascorbic acid were compared to each other to determine
the interference caused by ascorbic acid.

Results and Analysis

Sensor ID Mean current Standard error Mean current Standard error
Glucose Glucose AA + Glucose AA + Glucose
(nA) (nA) (nA) (nA)

A 39.1 2.1 37.8 1.6
B 26.0 1.2 24.7 0.5
C 34.5 2.4 33.1 1.3
D 35.7 1.8 33.4 0.8
E 38.5 2.5 36.9 1.2
F 28.9 1.7 28.0 0.9
G 42.9 2.6 41.4 1.4
H 30.9 1.6 30.0 0.6
I 32.1 1.8 30.2 1.3

Table 6.4: Currents recorded for glucose with and without ascorbic acid. "Glucose"
values are for 1.0 mM glucose and "AA + Glucose" values are for 1.0 mM glucose
with 60𝜇M ascorbic acid.
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The sensors used for this analysis had high drift resulting in high standard error
(2.6 nA in the worst case), and the effect size of ascorbic acid interference was
small, so results were aggregated across all sensors to make a statistically justified
conclusion. Each sensor’s currents were normalized to its sensitivity (measured
by its mean current with 1.0 mM glucose) and the percentage change caused by
ascorbic acid doping was used. On average, the ascorbic acid reduced the measured
current by 4.2% (95% CI: [-6.0%, -2.5%]).

Due to this being a net reduction in measured signal, we conclude the interference
must predominantly be via the route of depletion of hydrogen peroxide rather than
the route of direct reaction at the electrode.
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A p p e n d i x A

IMPEDANCE SPECTRA

Impedance spectra for nine sensors with spin-coated and lithographically patterned
enzyme. Impedance data were collected at the Molecular Materials Research Center
in the Beckman Institute of the California Institute of Technology and fit using ZView
software to the circuit model in Figure A.1. Fit results are shown in table A.1.

Figure A.1: The circuit model fit to impedance spectrum data. CPE indicates a
Constant Phase Element.

Figure A.2: Example of impedance spectrum collected.
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Sensor Element Value Error Error %
R 830.9 25.815 3.1069

A CPE-T 9.70E-09 1.39E-10 1.4334
CPE-P 0.91643 0.0019282 0.2104
R 1854 107.15 5.7794

B CPE-T 1.81E-08 3.19E-09 17.69
CPE-P 0.91544 0.01989 2.1727
R 965.2 60.661 6.2848

C CPE-T 1.04E-08 1.36E-09 13.023
CPE-P 0.91714 0.013622 1.4853
R 1650 82.984 5.0293

D CPE-T 5.41E-09 6.16E-10 11.395
CPE-P 0.94106 0.011975 1.2725
R 1593 80.128 5.03

E CPE-T 5.37E-09 5.74E-10 10.686
CPE-P 0.93019 0.011141 1.1977
R 967.4 40.559 4.1926

F CPE-T 3.20E-08 2.87E-09 8.9714
CPE-P 0.84121 0.0095478 1.135
R 1525 73.942 4.8487

G CPE-T 6.69E-09 7.14E-10 10.679
CPE-P 0.92474 0.011199 1.211
R 1040 38.443 3.6964

H CPE-T 7.73E-09 6.35E-10 8.2171
CPE-P 0.94294 0.0085715 0.90902
R 1525 67.389 4.419

I CPE-T 7.35E-09 7.24E-10 9..8411
CPE-P 0.91772 0.010337 1.1264

Table A.1: Values fit for imedance spectra for 9 sensors
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A p p e n d i x B

EXAMPLE SIMULATION INPUT FILE

This appendix shows an example input file to use for using the FEA simulation.
While the input files used for the simulations in this work typically comprised of
multiple files, each representing a related group of dynamics, a combined input file
is shown here for easier illustration. The Mesh file used must define the enzyme and
solution subdomains, the interface boundary, the external (’extended’) boundaries,
and the inactive sensor surface.

# MESH

MESH_FILE = ’/path/to/mesh.e’

# OUTPUT

OUTPUT_FILE_BASE = ’/path/to/output_file’

# PARTITION AND HINDERED DIFFUSION

ALPHA_PARTITION = 0.9 # Dimensionless

GLUCOSE_BETA = 0.06 # Dimensionless

SMALLMOLECULE_BETA = 0.2 # Dimensionless

# ENZYME KINETICS

RMAX = 100 # mM/s

GLUCOSE_KM = 71 # mM

OXYGEN_KM = 0.85 # mM

# CONCENTRATIONS

GLUCOSE_CONC = 1 # mM

OXYGEN_CONC = 0.26 # mM
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PEROXIDE_CONC = 0 # mM

# TIME

SENSOR_ON_TIME = 30.0 # s

MEASUREMENT_DURATION = 20.0 # s

# FREE DIFFUSIVITY

GLUCOSE_FREE_DIFFUSIVITY = 720 # um^2/s

OXYGEN_FREE_DIFFUSIVITY = 1930 # um^2/s

PEROXIDE_FREE_DIFFUSIVITY = 1430 # um^2/s

# CALCULATED

GLUCOSE_ENZYME_DIFFUSIVITY = ${fparse

GLUCOSE_BETA

* GLUCOSE_FREE_DIFFUSIVITY}

(# um^2/s)

OXYGEN_ENZYME_DIFFUSIVITY = ${fparse

SMALLMOLECULE_BETA

* OXYGEN_FREE_DIFFUSIVITY}

(# um^2/s)

PEROXIDE_ENZYME_DIFFUSIVITY = ${fparse SMALLMOLECULE_BETA

* PEROXIDE_FREE_DIFFUSIVITY}

(# um^2/s)

END_TIME = ${fparse SENSOR_ON_TIME + MEASUREMENT_DURATION} # s

[Problem]

type = FEProblem

[]

[Variables]
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[glucose_e]

block = ’enzyme’

[]

[oxygen_e]

block = ’enzyme’

[]

[peroxide_e]

block = ’enzyme’

[]

[glucose_s]

block = ’solution’

[]

[oxygen_s]

block = ’solution’

[]

[peroxide_s]

block = ’solution’

[]

[]

[Kernels]

[glucose_diffusion_e]

type = ADMatDiffusion

variable = ’glucose_e’

block = ’enzyme’

diffusivity = ${GLUCOSE_ENZYME_DIFFUSIVITY}

[]

[oxygen_diffusion_e]

type = ADMatDiffusion
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variable = ’oxygen_e’

block = ’enzyme’

diffusivity = ${OXYGEN_ENZYME_DIFFUSIVITY}

[]

[peroxide_diffusion_e]

type = ADMatDiffusion

variable = ’peroxide_e’

block = ’enzyme’

diffusivity = ${PEROXIDE_ENZYME_DIFFUSIVITY}

[]

[glucose_diffusion_s]

type = ADMatDiffusion

variable = ’glucose_s’

block = ’solution’

diffusivity = ${GLUCOSE_FREE_DIFFUSIVITY}

[]

[oxygen_diffusion_s]

type = ADMatDiffusion

variable = ’oxygen_s’

block = ’solution’

diffusivity = ${OXYGEN_FREE_DIFFUSIVITY}

[]

[peroxide_diffusion_s]

type = ADMatDiffusion

variable = ’peroxide_s’

block = ’solution’

diffusivity = ${PEROXIDE_FREE_DIFFUSIVITY}
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[]

[glucose_reaction]

type = TwoSubstrate

block = ’enzyme’

variable = ’glucose_e’

variable_coupled = ’oxygen_e’

r_max = ${RMAX}

k_m = ${GLUCOSE_KM}

k_m_coupled = ${OXYGEN_KM}

[]

[oxygen_reaction]

type = TwoSubstrate

block = ’enzyme’

variable = ’oxygen_e’

variable_coupled = ’glucose_e’

r_max = ${RMAX}

k_m = ${OXYGEN_KM}

k_m_coupled = ${GLUCOSE_KM}

[]

[peroxide_reaction]

type = TwoSubstrateProduct

block = ’enzyme’

variable = ’peroxide_e’

variable_coupled_1 = ’glucose_e’

variable_coupled_2 = ’oxygen_e’

r_max = ${fparse -RMAX}

k_m_coupled_1 = ${GLUCOSE_KM}

k_m_coupled_2 = ${OXYGEN_KM}

[]
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[glucose_timederivative_e]

type = ADTimeDerivative

block = ’enzyme’

variable = ’glucose_e’

[]

[oxygen_timederivative_e]

type = ADTimeDerivative

block = ’enzyme’

variable = ’oxygen_e’

[]

[peroxide_timederitative_e]

type = ADTimeDerivative

block = ’enzyme’

variable = ’peroxide_e’

[]

[glucose_timederivative_s]

type = ADTimeDerivative

variable = ’glucose_s’

block = ’solution’

[]

[oxygen_timederivative_s]

type = ADTimeDerivative

variable = ’oxygen_s’

block = ’solution’

[]

[peroxide_timederitative_s]

type = ADTimeDerivative

variable = ’peroxide_s’

block = ’solution’

[]

[]
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[InterfaceKernels]

[glucose_interface_kernel]

type = InterfaceDiffusion

variable = ’glucose_s’

neighbor_var = ’glucose_e’

boundary = ’interface’

D = ${GLUCOSE_FREE_DIFFUSIVITY}

D_neighbor = ${GLUCOSE_ENZYME_DIFFUSIVITY}

[]

[oxygen_interface_kernel]

type = InterfaceDiffusion

variable = ’oxygen_s’

neighbor_var = ’oxygen_e’

boundary = ’interface’

D = ${OXYGEN_FREE_DIFFUSIVITY}

D_neighbor = ${OXYGEN_ENZYME_DIFFUSIVITY}

[]

[peroxide_interface_kernel]

type = InterfaceDiffusion

variable = ’peroxide_s’

neighbor_var = ’peroxide_e’

boundary = ’interface’

D = ${PEROXIDE_FREE_DIFFUSIVITY}

D_neighbor = ${PEROXIDE_ENZYME_DIFFUSIVITY}

[]

[]

[BCs]

[glucose_interface_bc]

type = ADMatchedValueBC
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variable = ’glucose_s’

v = ’glucose_e’

boundary = ’interface’

u_coeff = ${ALPHA_PARTITION}

[]

[oxygen_interface_bc]

type = ADMatchedValueBC

variable = ’oxygen_s’

v = ’oxygen_e’

boundary = ’interface’

u_coeff = ${ALPHA_PARTITION}

[]

[peroxide_interface_bc]

type = ADMatchedValueBC

variable = ’peroxide_s’

v = ’peroxide_e’

boundary = ’interface’

u_coeff = ${ALPHA_PARTITION}

[]

[extended_noflux_glucose]

type = ADNeumannBC

variable = ’glucose_s’

boundary = ’extended’

value = 0

[]

[extended_noflux_oxygen]

type = ADNeumannBC

variable = ’oxygen_s’

boundary = ’extended’
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value = 0

[]

[extended_noflux_peroxide]

type = ADNeumannBC

variable = ’peroxide_s’

boundary = ’extended’

value = 0

[]

[inactive_noflux_glucose]

type = ADNeumannBC

variable = ’glucose_s’

boundary = ’inactive’

value = 0

[]

[inactive_noflux_oxygen]

type = ADNeumannBC

variable = ’oxygen_s’

boundary = ’inactive’

value = 0

[]

[inactive_noflux_peroxide]

type = ADNeumannBC

variable = ’peroxide_s’

boundary = ’inactive’

value = 0

[]

[peroxide_consumption]

type = ADDirichletBC

variable = ’peroxide_e’

boundary = ’sensor’

value = 0
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[]

[oxygen_recycling]

type = ADCoupledFluxBC

variable = ’oxygen_e’

boundary = ’sensor’

coupled_variable = ’peroxide_e’

alpha = -${PEROXIDE_ENZYME_DIFFUSIVITY}

[]

[]

[ICs]

[glucose_initial_s]

type = ConstantIC

variable = ’glucose_s’

block = ’solution’

value = ${GLUCOSE_CONC}

[]

[oxygen_initial_s]

type = ConstantIC

variable = ’oxygen_s’

block = ’solution’

value = ${OXYGEN_CONC}

[]

[peroxide_initial_s]

type = ConstantIC

variable = ’peroxide_s’

block = ’solution’

value = ${PEROXIDE_CONC}

[]
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[glucose_initial_e]

type = ConstantIC

variable = ’glucose_e’

block = ’enzyme’

value = 0

[]

[oxygen_initial_e]

type = ConstantIC

variable = ’oxygen_e’

block = ’enzyme’

value = 0

[]

[peroxide_initial_e]

type = ConstantIC

variable = ’peroxide_e’

block = ’enzyme’

value = 0

[]

[]

[Controls]

[sensor_on]

type = TimePeriod

start_time = ${SENSOR_ON_TIME}

enable_objects = ’BCs/peroxide_consumption BCs/oxygen_recycling’

[]

[]

[Functions]

[max_timestep]

type = PiecewiseConstant
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xy_data = ’0.0 1.0

${fparse SENSOR_ON_TIME - 1.0} 0.05’

[]

[]

[Executioner]

type = Transient

solve_type = NEWTON

line_search = ’none’

l_max_its = 30

nl_max_its = 10

l_tol = 1.0e-5

nl_rel_tol = 1.0e-5

start_time = 0.0

end_time = ${END_TIME}

steady_state_detection = true

steady_state_start_time = ${fparse SENSOR_ON_TIME + 5.0}

automatic_scaling = true

[TimeSteppers]

[function]

type = FunctionDT

function = max_timestep

[]

[adaptive]

type = IterationAdaptiveDT

dt = 0.1

cutback_factor = 0.8

growth_factor = 1.5

optimal_iterations = 7

[]
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[]

[]

[Postprocessors]

[oxygen_generation]

type = ADSideDiffusiveFluxIntegral

boundary = sensor

variable = ’oxygen_e’

diffusivity = ${OXYGEN_ENZYME_DIFFUSIVITY}

execute_on = NONLINEAR_CONVERGENCE

[]

[peroxide_consumption]

type = ADSideDiffusiveFluxIntegral

boundary = sensor

variable = ’peroxide_e’

diffusivity = ${PEROXIDE_ENZYME_DIFFUSIVITY}

execute_on = NONLINEAR_CONVERGENCE

[]

[]

[Mesh]

type = FileMesh

file = ${MESH_FILE}

coord_type = ’RZ’

[]

[Outputs]

[exodus]

type = Exodus

file_base = ${OUTPUT_FILE_BASE}

[]

[csv]
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type = CSV

file_base = ${OUTPUT_FILE_BASE}

[]

[console]

type = Console

execute_on = ’FINAL’

enable = false

[]

[]


