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ABSTRACT

Efforts to understand life as we know it and life as it can be have culminated in
the field of synthetic cell research, which aims to build life from the bottom up
using individual biological components. Recent progress in the field has enabled
the reconstitution of many functions of living cells in synthetic cells, from cell-cell
communication to membrane protein expression and function. However, future
progress in the field is limited by many challenges, including irreproducibility,
lack of predictability, difficulties in integrating existing synthetic cell modules (or
subsystems), and the need for autonomous functionalities.

In this work, I describe my efforts towards addressing these challenges. In Chapter
2, I describe sources of variability in transcription-translation (TX-TL) systems,
the biological machinery used to implement biomolecular programs in synthetic
cells. In Chapter 3, I describe a novel methodology for readily building more
predictive models of TX-TL performance. In Chapter 4, I present a design for a
proof-of-concept for integrating an energy regeneration subsystem and a motility
subsystem to achieve autonomous programmable motility and highlight some early
successes towards achieving that goal. Throughout this work, I highlight many
design principles for building synthetic cells reproducibly, more predictably, and
with novel functionalities.
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C h a p t e r 1

INTRODUCTION

1.1 Synthetic biology as a tool to understand and engineer life
Over the past few decades, synthetic biology has emerged as a powerful tool to
understand and engineer life. The vast majority of synthetic biology applications
rely on top-down approaches, where existing biological systems are engineered
from the top down via systematic changes at the molecular level. In top-down
approaches, proteins, nucleic acids, metabolic pathways, and other components are
modified, added to, or removed from biological systems, which typically consist of
whole cells or whole organisms. Recent examples of synthetic biology applications
using top-down approaches include microorganisms engineered to upcycle plastic
waste into commodity chemicals, CAR T-cell therapy for autoimmune diseases,
engineering plant roots and root-associated microoorganisms (bacteria and fungi)
to improve crop resilience, engineering and visualizing morphogen gradients with
Green Fluorescent Protein (GFP) to understand animal development, and thousands
of other applications [1–4].

While top-down approaches have had great success, using these approaches to
engineer cells and organisms — which are extremely complex, poorly characterized,
and often unpredictable systems — has been time-consuming, costly, and inefficient.
Even E. coli, a model microorganism that is one of the most well-studied systems,
is not always easy to engineer. Large swaths of its genome and physiology remain
uncharacterized, and engineering E. coli to perform complex tasks still requires
years of effort due to undesired interactions with non-engineered cell components
and attempts by cells to resist engineering efforts. For engineering non-model cell
types and organisms, these issues are exacerbated. Beyond engineering biological
systems to perform a desired task, top-down synthetic biology has also had limited
success in increasing our understanding of life, because large-scale perturbations to
these systems result in the death of the engineered cells or organisms.

1.2 Cell-free synthetic biology as a bottom-up approach to understand and
engineer life

A complementary strategy to top-down approaches is using bottom-up approaches,
which aim to engineer simpler biological systems from a minimal set of well-
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characterized parts. Bottom-up approaches came into use in the 1940s, when scien-
tists found that they could prepare in vitro systems known as “extracts” or “lysates”
by extracting the contents of living cells after growing the cells and performing cell
lysis [5]. These cell-free systems — prepared from diverse cell types including
bacteria, wheat germ, and rabbit reticulocytes — contained functional cellular ma-
chinery of the cytosol. Although these cell-free systems still contained thousands
of different proteins and were not fully characterized systems, the near-elimination
of cell membrane processes as well as the elimination of cell growth and division
greatly reduced the complexity of these cell-like systems, and thus they allowed
scientists to probe living processes in an open and more controlled reaction envi-
ronment [5]. Among various other discoveries, cell-free systems led scientists to
discover the relationship between nucleotide triplets and their corresponding amino
acids, to learn that protein synthesis requires ATP and GTP, to understand gene
regulation, and to establish “the central dogma” [5].

While in continuous use for the past several decades, cell-free systems became more
widespread in the early 2000s as a tool of synthetic biology. Cell-free synthetic
biology is a growing field aimed at engineering biological parts and systems in a cell-
free context, as opposed to in vivo (i.e., engineering living cells and organisms) [6].
Beyond greater control over the reaction environment, the cell-free approach offers
many advantages over engineering cellular systems, including the ability to produce
toxic small molecules or proteins that are difficult to express in living cells and
scalability for biomanufacturing and other applications. Many cell-free applications
rely on cell-free protein synthesis, where crude cell lysate or purified proteins are
supplemented with DNA and an energy buffer containing small molecules that
enable in vitro transcription and translation (TX-TL) [7–9].

In recent years, cell-free applications have expanded to include protein engineer-
ing [6, 10], metabolic engineering [11–14], high-throughput prototyping of engi-
neered biological components and systems [15–17], biosensing and diagnostics [18–
20], studying the synthesis and assembly of complex biological structures such as
membrane proteins and bacteriophages [21–25], and biomanufacturing [26]. Dur-
ing this time, cell-free synthetic biology — as well as synthetic biology more
broadly — has enabled efforts not just to understand life under through the lens of
molecular biology but also to engineer biology for novel applications in healthcare,
biotechnology, and sustainability [26].
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1.3 Synthetic cells: towards a minimal, autonomous life form
As the capabilities of cell-free synthetic biology have grown, researchers have used it
as a platform for a new approach to understand and engineer life: building synthetic
biological cells. Beyond engineering biomolecular components and systems, would
it be possible to (1) combine these modules and capabilities and (2) encapsulate them
in a contained environment to create a synthetic biological cell? Using top-down
biological approaches has been helpful in validating the functions of biological
components, pathways, and modules, but these approaches make it difficult to
disentangle the effects of interacting or coupled components in cells. However,
building a cell using a bottom-up approach — i.e., assembling a synthetic cell
from individual components — would enable researchers to fully understand the
contribution and function of each component in a way that is not possible with
previous approaches.

Although a fully autonomous synthetic cell has not yet been realized, the past few
decades have seen rapid development of the capabilities that will ultimately be
necessary to build a cell [27–29]. While varying in their definition, form, and
function, synthetic cells typically consist of a biomolecular program encapsulated
by a biomimetic boundary. A variety of biomolecular programs have been recon-
stituted to date, ranging from DNA strand displacement programs in a suitable
aqueous solution to genetic circuits enabled by cell-free protein synthesis systems.
Compartmentalization has also been achieved successfully, through the use of mate-
rials including lipids (to make liposomes), polymers (to make polymersomes), and
protein capsids [29].

Inspired by living cells, researchers have functionalized many components and sys-
tems of living cells in synthetic cells. These modules include TX-TL, membrane
proteins, organelles, cell-cell communication, metabolism, lipid biosynthesis, DNA
replication, motility, energy regeneration, and cell division [29, 30]. Although re-
search labs across the globe typically work on different components and subsystems
of synthetic cells, recent years have seen the development and growth of many
collaborative synthetic cell communities — including Build-a-Cell (global), fabri-
CELL (United Kingdom), MaxSynBio (Max Planck Institute, Germany), BaSyC
(Netherlands), SynCellEU (European Union), SynCell Asia, and SynCell Africa —
that are actively working towards combining different modules towards the goal of
achieving a fully autonomous synthetic cell.

As the field of synthetic cells has grown, researchers’ goals have also expanded
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beyond their primary focus on building cells to understand life. The field has
also focused on engineering synthetic cells for applications in nanomedicine and
environmental monitoring [31, 32]. Another growing aim of the field is to focus not
on life as we know it, but life as it can be; this is especially relevant in the field of
astrobiology, where researchers are working to reproduce environmental conditions
of distant astronomical bodies in the lab to study if and how “protocells” may thrive
in places like Mars and Europa [33, 34].

1.4 Challenges and opportunities in engineering synthetic cells
Despite rapid progress in the field, many critical roadblocks remain in the path to
building a fully autonomous synthetic cell. Below, I highlight four major categories
that capture many of these challenges.

Subsystem integration
In the past few years, there have been relatively few efforts aimed at integrating
synthetic cell subsystems. Some examples include integrating DNA replication with
TX-TL and with membrane biosynthesis [35, 36]. Other efforts include integrating
different membrane proteins to reconstitute energy regeneration pathways [30, 37].
However, most labs in the field of synthetic cell research have focused on individual
modules for the synthetic cell, such as cell division, metabolism, and TX-TL. While
this approach allows labs to build tools, techniques, and expertise and to excel
in a particular research area, it poses a challenge for efforts aimed at combining
different modules together. Improvements in protocol writing have reduced the
barrier to addressing this issue, but gaining the expertise to perform tasks as diverse
as purifying membrane proteins, using microfluidics to generate liposomes, and
preparing cell-free protein synthesis systems reproducibly is not trivial for a graduate
student or even a lab.

Beyond the issue of research expertise, which can be overcome with more technical
training and improved protocols, bioengineering has unique challenges compared
to other engineering disciplines. Biological components and systems used for
building cells are derived from living cells and organisms, which have evolved to
perform as many functions as necessary to survive with as little biomass as possible.
As a consequence, these components and systems have both redundancy (where
multiple components and systems can perform the same task, often synergistically)
and extreme versatility (where a single component or system can perform multiple
functions). While these properties serve living organisms well, they pose challenges
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for researchers who wish to understand and predict the function of each subsystem,
let alone integrated systems consisting of many different subsystems.

Thus, as researchers begin integrating different synthetic cell subsystems together,
they will have to answer many questions. Are these subsystems compatible, espe-
cially if parts are derived from different organisms? Are these subsystems coupled
through the use of a shared resource, such as energy carriers like adenosine triphos-
phate (ATP), and does that pose a challenge for system performance? Given that we
don’t fully understand how living cells work, how might we learn which additional
parts are necessary and sufficient to integrate multiple subsystems?

Reproducibility
A lack of reproducible research is a challenge in synthetic cell research and stems
primarily from two sources. First, as with many other fields of research, insuffi-
ciently detailed protocols and restrictions on sharing materials can hinder efforts
to reproduce a different lab’s work, which is essential for synthetic cell subsystem
integration (see Subsystem integration above).

The second source of irreproducibility arises from user-introduced variability in
the preparation of biological parts and systems. For example, the composition and
concentrations of proteins in cell lysates can vary among batches of lysate due to
indiscernible differences in their preparation, including the growth stage at which
cells are harvested for lysis, variations in instrument usage for cell lysis, and the
quality of chemicals used for lysate preparation and processing. As another example,
components such as proteins, DNA, or small molecules that are purified from cells
or purchased commercially can similarly have variability, albeit arising from user-
introduced variations such as DNA plasmid design, purification quality control, or
instability resulting from long-term freezer storage.

When cell lysate or other additives are then used as components of cell-free pro-
tein synthesis systems to drive biomolecular programs inside synthetic cells, this
variability is propagated to the performance of synthetic cells. For example, these
synthetic cells may not be able to make enough protein for researchers to observe
a phenotype, such as the expression of a fluorescent molecule or morphological
changes in the synthetic cell. In other cases, for synthetic cells containing multiple
subsystems, variability in each subsystem may push the fully integrated system into
an experimental regime it is unable to operate in.
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Predictability
Related to the previous two problem areas, limited characterization of biological
components and systems has inhibited researchers’ ability to predict the performance
of synthetic cells. Most synthetic cell research thus far has focused on proof-of-
concept experiments that demonstrate the functionality of individual components
and subsystems in synthetic cells, mitigating a need for prediction. However, as re-
searchers begin to engineer more complex synthetic cells with multiple subsystems
(see Subsystem integration above), prediction will be necessary to help inform de-
sign considerations of the individual modules and to determine if the fully integrated
system meets desired performance standards.

Mathematical models of synthetic cells have focused primarily on predicting cell-
free protein synthesis, which is the most common type of biomolecular program
encapsulated inside synthetic cells. Varying in complexity, these models have in-
corporated some important processes of protein synthesis, such as utilization of nu-
cleotide triphosphates (NTPs) and amino acids by transcription and translation [38–
43]. Validating these models outside of their original experimental context, however,
has remained a challenge due to difficulties in reproducing or adapting computational
workflows.

New functionalities
As mentioned previously, researchers have worked on various modules for synthetic
cells, from metabolism to energy regeneration to cell division. However, most efforts
have focused on protein synthesis of single proteins within the synthetic cell or
encapsulation of simple purified components within the synthetic cell. Examples of
these efforts include construction of a synthetic mechanosensitive signaling pathway
in compartmentalized artificial cells [44], genetically encoded tissue formation by
expression of pore-forming proteins in synthetic cells [45], and expression and
assembly of bacterial microtubules for shaping synthetic cells [46].

More recently, advanced capabilities are beginning to be implemented in synthetic
cells. These efforts include work towards a genetically encoded divisome [47], an
energy regeneration pathway [37], and motility [48] in synthetic cells. However,
these capabilities (1) have not been fully realized, (2) are incompatible with other
modules in their current implementation, or (3) are not fully autonomous as they
would be in a living cell. For example, current efforts have been successful in
reconstituting and aligning an FtsZ division ring in synthetic cells, but division,
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contraction, and complete scission has not yet been fully realized in synthetic
cells. Meanwhile, efforts to create energy regeneration pathways in synthetic cell
membranes often rely on purification and reconstitution of membrane proteins in
liposomes using a process that is incompatible with encapsulation of a cell-free
protein synthesis system. Existing efforts to reconstitute synthetic cell motility
currently require external modulation or are incompatible with control mechanisms.
Thus, as researchers work to expand the capabilities of synthetic cells, there are many
opportunities for expanding the functionalities for synthetic cells while ensuring that
these functionalities are compatible with other synthetic cell modules.

1.5 Outline of thesis chapters
In this thesis, I describe my efforts to address some of the aforementioned challenges
in engineering synthetic cells.

In Chapter 2, I focus on irreproducibility in synthetic cells by investigating sources
of variability in in vitro transcription-translation (TX-TL) systems, a widely used
platform to implement biomolecular programs in synthetic cells. Our results show
clear roles for how magnesium (Mg2+), fuel, cell lysate preparation, and other TX-
TL reaction components separately affect transcription and translation and give rise
to TX-TL variability. We also show a high-level trend that TX-TL performance
is broadly constrained by energy availability, and that the performance space can
be traversed predictably by varying the concentrations of these TX-TL reaction
components.

In Chapter 3, I focus on improving predictability of synthetic cell performance, by
exploring whether an existing model of TX-TL coupled to cell-free metabolism can
be adapted outside its original experimental context. Using Bayesian parameter
inference, we show that it is relatively straightforward and remarkably powerful to
take the existing model and adapt it to new contexts by modifying just a few model
parameters. We first show that the model architecture is sufficient to capture a broad
range of protein expression dynamics, after which we demonstrate that the model
can both be predictive and provide experimental insights into variability among
TX-TL systems.

In Chapter 4, I focus on new functionalities and subsystem integration and show
preliminary efforts towards the construction of an ATP synthase-based “proto-
flagellum.” In designing a mechanism for autonomous, programmable motility,
we simultaneously attempt to create a proof-of-concept for integrating an energy
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regeneration subsystem with a motility subsystem. We show that these initial efforts
contain some experimental successes, and we highlight promising next steps towards
achieving a “self-driving” synthetic cell.
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C h a p t e r 2

METABOLIC PERTURBATIONS TO AN ESCHERICHIA
COLI-BASED CELL-FREE SYSTEM REVEAL A TRADE-OFF

BETWEEN TRANSCRIPTION AND TRANSLATION

This chapter has been published in the journal article indicated below and reprinted
with permission. It has been reformatted and included here with minor edits.
Copyright 2025 American Chemical Society.

Manisha Kapasiawala and Richard M. Murray. “Metabolic perturbations to an
Escherichia coli-based cell-free system reveal a trade-off between transcription
and translation.” In: ACS Synthetic Biology 13.12 (2024), pp. 3976–3990. doi:
10.1021/acssynbio.4c00361.

2.1 Introduction
Cell-free synthetic biology is a rapidly growing field that leverages synthetic biology
tools and techniques to engineer biological systems outside the traditional context
of living cells [1]. The cell-free approach offers many advantages over engineering
cellular systems, including greater control over the reaction environment, the ability
to produce toxic small molecules or proteins that are difficult to express in living
cells, and scalability for biomanufacturing and other applications. In recent years,
cell-free systems have been used for protein engineering [1, 2], rapid and high-
throughput prototyping of engineered biological components and systems [3–7],
biosensing and diagnostics [8–10] and the development of synthetic life [11–13].

Most cell-free applications rely on cell-free protein synthesis, where crude cell lysate
or purified proteins are supplemented with DNA and an energy buffer containing
small molecules that enable in vitro transcription and translation (TX-TL) [14–
16]. Although cell lysate-based TX-TL systems have many uses, their performance
and scope are limited by issues such as batch-to-batch variability [17], lack of
predictability [18], and limited lifetime [19]. These issues arise because cell lysate’s
proteomic composition largely reflects the cytosolic protein content of living cells.
While some of these proteins are harnessed to regenerate energy molecules for TX-
TL processes, most of them generate metabolites that are benign or even harmful
for TX-TL.
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To address these concerns, previous studies have sought to gain insight into TX-
TL dynamics through a variety of experimental approaches. Most of these studies
have focused on gaining detailed insight into how perturbations to TX-TL reaction
conditions - including salts [20, 21], fuel sources [22, 23], crowding agents [20, 24],
and other components [15, 19, 25–28] - affect TX-TL performance. Some studies
have taken a less targeted approach, with the authors opting instead to harness
lab automation and machine learning along with experiments to rapidly optimize
TX-TL systems [27, 29]. While these studies have helped elucidate which reaction
components and preparation steps affect TX-TL performance and predictability most
significantly, more work is necessary to determine why these factors contribute to
variability and limited TX-TL lifetime as well as the broader implications they have
for design principles for TX-TL systems.

Aiming to get a more holistic view of cell-free reaction dynamics, more recent
studies have focused on measuring small molecules - including NTPs, amino acids,
and central carbon metabolites - that participate in cell-free metabolism and studying
or modeling their effects on TX-TL [30–33]. In one such study, the authors found
that the majority of E. coli metabolic pathways are active during TX-TL [33], and
they subsequently used these insights to form a phenomenological model of TX-
TL coupled to cell-free metabolism, with the model containing “fuel,” “energy,”
and “waste” species and their effects on TX-TL. By linking cell-free metabolism’s
effects on TX-TL dynamics to specific TX-TL reaction components, these studies
have suggested that further insight into TX-TL predictability, variability, and lifetime
could come from further investigation of the effects of metabolism on TX-TL.

Building off the experiments and insights from these previous studies, to understand
the effect of cell-free metabolism on TX-TL variability, we focused our efforts on
the chemical composition of the buffer that is used with cell lysate and DNA to
form a TX-TL reaction. We targeted two classes of small molecules to modulate:
“energy” molecules, specifically nucleotide triphosphates (NTPs), which power
TX-TL processes, and “fuel” molecules, which regenerate NTPs via cell lysate
metabolism. We also considered the effects of magnesium (Mg2+), both because
of its biological importance - in stabilizing nucleic acids and ribosomes, acting as
an essential cofactor for many enzymes, and making ATP bioactive in the form of
Mg-ATP - and because of several previous findings suggesting its role in modulating
TX-TL dynamics [21, 24, 25, 28].

Using malachite green mRNA aptamer (MG aptamer) and destabilized enhanced
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green fluorescent protein (deGFP) as transcriptional and translational readouts,
respectively, we report the presence of a trade-off between optimizing total protein
yield and optimizing total mRNA yield, as measured by integrating the area under the
curve for mRNA time-course dynamics. We found that the trade-off is present across
different fuel sources, that a system’s position along the trade-off curve is determined
strongly by Mg2+ concentration and fuel type, and that the trade-off curve’s location
shifts and range becomes larger as DNA concentration is increased. In systems
where transcription and translation were decoupled, we found that a distinct regime
optimized for translation exists in the translation-only system, but no distinct regime
was optimized for transcription in the transcription-only system, suggesting that
the trade-off arises at the translational level. Finally, in systems where additional
energy is supplied and a fuel source is absent, the trade-off is absent. Overall, our
results suggest that the trade-off arises from limitations in translation regulation
and inefficient energy regeneration. By improving our understanding of the effects
of fuel and energy metabolism on TX-TL in cell-free systems, this work provides
insight into design considerations for future studies aimed at improving TX-TL
performance, lifetime, standardization, and prediction.

2.2 Results
E. coli Rosetta2 cell-free systems exhibit a trade-off between transcription and
translation across fuel sources and concentrations
As most previous studies have utilized either a design of experiments approach (e.g.,
randomly surveying many reaction compositions) or modulated components one at
a time, we chose to simultaneously vary the fuel and Mg2+ concentrations. We
performed TX-TL reactions consisting of fuel versus Mg2+ panels, where the former
was varied between 0 and 45 mM, the latter was simultaneously varied between
0 and 10 mM, and all other reaction components were kept the same [14] (see
Materials and Methods for more details) (Figure 2.1a). As the preparation of cell
lysate varies significantly from lab to lab and is difficult to keep consistent [18], we
performed experiments in two cell lysate preparations - prepared by different lab
members and using different lysis methods, among other differences to see if these
chemical factors acted consistently.

For fuel molecules, we focused on four fuel metabolites with varying degrees
of energy regeneration and waste generation capacity that spanned central car-
bon metabolism to gain insight into how different fuel molecules affect TX-TL
through their effect on metabolism. We chose four central carbon metabolites: 3-
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phosphoglyceric acid (3PGA), maltose, pyruvate, and succinate (Figure 2.1b). We
targeted 3PGA - whose conversion to pyruvate regenerates ATP during glycolysis
- because it is one of the standard molecules [14] used for energy regeneration
in cell lysate-based TX-TL systems (the others being phosphoenolpyruvate (PEP)
and pyruvate). We chose pyruvate because it is located downstream of 3PGA
in the glycolysis pathway and can also participate in energy regeneration, albeit
without contributing potential waste molecule inorganic phosphate (Pi) to the sys-
tem [21]. We selected maltose, which consumes Pi and outputs a glucose molecule
and glucose-6-phosphate (G6P) molecule, because it has been used previously to
improve energy regeneration by recycling Pi [34]. However, as one maltose molecule
can be used to generate two G6P molecules and thus four 3PGA molecules, maltose
produces more candidate waste molecules per molecule of fuel compared to the
other three fuels. These candidate waste molecules include acetate, ethanol, lactate,
and formate (and their conjugate organic acids), which may inhibit TX-TL either
directly or indirectly by reducing pH too low for optimal enzyme activity [35–37].
Finally, we considered succinate, whose conversion from succinyl-CoA regenerates
GTP. As the succinyl-CoA to succinate reaction is reversible, we believed that the
addition of succinate could slow down GTP regeneration by favoring the reverse
reaction, thereby reducing the overall rate of energy regeneration to a level where
energy could be used more efficiently by TX-TL. TX-TL reactions were supplied
with one of two different preparations of cell lysate along with plasmid DNA encod-
ing the sequence for the expression of MG aptamer, which fluoresces upon binding
to malachite green (MG) dye, and deGFP, under a POR1OR2 promoter. For each reac-
tion condition, the total integrated area under MG aptamer fluorescence curve and
maximum deGFP were calculated as measurements of transcription and translation,
respectively. The results of these experiments are shown in Figure 2.1.

By plotting maximum deGFP versus integrated MG aptamer for all fuel sources
across different fuel and Mg2+ concentrations, we observed a trade-off between
optimizing maximum deGFP and optimizing integrated MG aptamer (Figure 2.1c,
d). The same trade-off curve was observed across all fuel sources, and points
corresponding to systems with no added fuel also fell along the same curve (Figure
2.1c). Furthermore, when all fuels are treated equally, a system’s position along
the trade-off curve was mostly unaffected by the concentration of fuel (Figure 2.1d,
bootstrapped Spearman’s rho correlation of 0.22 ± 0.05). Control experiments
indicated that the fluorescence of deGFP was robust across different 3PGA and
Mg2+ concentrations used in these experiments and that MG aptamer fluorescence
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Figure 2.1: TX-TL trade-off across fuel sources and concentrations. (a) Overview
of experimental workflow. (b) Simplified map of E. coli core metabolism with NTP
consumption and regeneration. A simplified glycolysis, TCA cycle, and interacting
branch of the Pentose Phosphate Pathway are shown. Consumption or regeneration
of other cofactors - such as NADH, FADH, QH2, H2O, and CO2 - is omitted for
simplicity. (c,d) Maximum deGFP values versus integrated MG aptamer values,
colored by either (c) fuel type or (d) fuel concentration. Each point represents one
of three replicates of a particular set of fuel and Mg2+ concentrations. The data
shown reflect experiments performed in two preparations of cell lysate, Preparation
1 and Preparation 2 (see Materials and Methods for details), and all experiments
were performed using 5 nM DNA.
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was robust to changes in Mg2+ and pH (Figure S2.1a,c). While deGFP fluorescence
was sensitive to pH, it was robust to Mg2+ in the relevant range of 0-10 mM and
to pH across the estimated range of 6.5-7 [22, 23] (Figure S2.1b). As there was
no observed trend of decreasing deGFP (or increasing MG aptamer) fluorescence
with increasing fuel concentration, there did not appear to be a fuel concentration-
dependent effect on fluorescence, including but not limited to pH. This suggested
that expression of MG aptamer and deGFP, rather than their fluorescence alone,
were changing across the various fuel and Mg2+ concentrations. Overall, these
results suggest the presence of a trade-off between transcription and translation for
the fuels considered here.

The results of this initial experiment were surprising because all points fell along
the same trade-off curve, regardless of fuel type or lysate preparation. These
results seem to suggest that while these TX-TL systems with different fuel types and
concentrations exhibit variability in transcriptional and translational performance,
their performance is constrained to a single trade-off curve that could be traversed
for a given fuel type and desired performance.

Variability along the trade-off curve is controlled by Mg2+ concentration and
lysate preparation
To investigate which factors controlled a system’s position along the trade-off curve,
we colored the data in Figure 1 by Mg2+ concentration and cell lysate preparation,
as shown in Figure 2.2. We found that when considering all fuels equally, as
the concentration of added Mg2+ increases, a TX-TL system generally shifts from
a translation-optimized regime to a transcription-optimized regime (Figure 2.2a,
bootstrapped Spearman’s rho correlation of 0.63 ± 0.02). We also found that while
data for the two preparations of lysate fell along the same curve, variability along
the curve could be further explained by lysate preparation (Figure 2.2b).

As the Mg2+ trend is present across a variety of fuel sources (Figure S2.2), our results
suggest that Mg2+ concentration can be tuned for a given set of cell lysate prepara-
tion, fuel type, and fuel concentration to reduce variability, improve predictability, or
design TX-TL systems optimized for performance, including optimizing transcrip-
tion, translation, or some combination of both. As Mg2+ is an essential cofactor for
many proteins, these results also suggest that the TX-TL trade-off originates in part
from Mg2+-dependent regulation of TX-TL and/or metabolism machinery.

Inspecting Figure 2.2a more closely revealed that the Mg2+ trend was not completely
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Figure 2.2: Effects of varying Mg2+ concentration and lysate preparation on the
TX-TL trade-off. These panels show the same data from Figure 1C,D colored by
the (a) concentration of added Mg2+ (in addition to the Mg2+ that is already in the
cell lysate from its preparation in S30B buffer) or (b) lysate preparation. Each point
represents one of three replicates of a particular set of fuel and Mg2+ concentrations.
The data shown reflect experiments performed in two preparations of cell lysate,
Preparation 1 and Preparation 2, in systems using 5 nM DNA.

consistent; plotting the trade-off separately for each fuel source revealed that a
system’s position along the trade-off curve was less correlated with Mg2+ in 3PGA-
fueled systems than in systems using other fuels (Figure S2.2a, see figure caption for
Spearman’s rho correlation values). Specifically, while TX-TL systems fueled by
pyruvate, succinate, and maltose were able to optimize translation at 0 mM added
Mg2+ and optimize transcription at 10 mM added Mg2+, some 3PGA-fueled systems
were able to achieve high deGFP yields at high concentrations of added Mg2+.

In 3PGA-fueled systems, increasing fuel pushes a system from a transcription-
optimized to a translation-optimized regime
To understand why 3PGA-fueled systems deviated from the Mg2+ trend, we plotted
the data from Figure 2.1d separately for each fuel type, as shown in Figure 2.3. While
systems fueled by maltose, pyruvate, and succinate displayed a weak trend along
the trade-off curve with increasing fuel concentration (Figure 2.3b-d, bootstrapped
Spearman’s rho correlations of 0.33 ± 0.09, 0.14 ± 0.07, and 0.27 ± 0.07, respec-
tively), we found that in 3PGA-fueled systems, increasing fuel concentration was
more strongly correlated with a system’s position along the trade-off curve (Figure
2.3a, bootstrapped Spearman’s rho correlations of 0.55 ± 0.05). Specifically, in-
creasing 3PGA concentration generally shifted a TX-TL system from a transcription-
optimized regime to a translation-optimized regime. This phenomenon was also
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observed in 3PGA-fueled TX-TL systems where the volume fraction of cell lysate
in a TX-TL reaction was increased or decreased by 25% (Figure S2.3), with the
trend becoming stronger as the lysate fraction was increased (Figure S2.3d), thus
extending the relevance of the trend to TX-TL systems using alternative cell lysate
volume fractions [25].

Figure 2.3: Effects of varying fuel concentration on the TX-TL trade-off by fuel
type. The same data are shown as in Figure 2.1c,d with points colored by fuel
concentration. Each point is one of three replicates of a set of fuel and Mg2+ con-
centrations, where fuel is either (a) 3PGA, (b) maltose, (c) pyruvate, or (d) succinate.
Experiments were performed in two preparations of cell lysate, Preparation 1 (o)
and Preparation 2 (+), in systems using 5 nM DNA.

We next sought to confirm whether the TX-TL trade-off and 3PGA trend extended to
systems using different reporter plasmids. The results of these 3PGA versus Mg2+

panels are shown in Figure 2.4. We first switched the promoter from POR1OR2 to
PT7, where we found that the TX-TL trade-off and 3PGA trend were present across
PT7-driven TX-TL systems (Figure 2.4b, bootstrapped Spearman’s rho correlation
of 0.58 ± 0.06), including in a system where the order of fluorophores was flipped
(Figure S2.4), just as they were in POR1OR2-driven systems (Figure 2.4a, bootstrapped
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Figure 2.4: Effects of 3PGA concentration on the TX-TL trade-off across different
reporter plasmids. Shown are trade-off curves corresponding to (a) POR1OR2-MG
aptamer-deGFP, (b) PT7-MG aptamer-deGFP, (c) PTet-MG aptamer-deGFP, and (d)
PTet-F30 Pepper-mTurquoise2. POR1OR2, a strong promoter, and PTet, a medium
strength promoter, are constitutive promoters, and PT7 is a strong non-E. coli pro-
moter expressed in TX-TL reactions supplemented with 10 µM T7 RNA polymerase.
Each point represents one of three replicates of a set of 3PGA and Mg2+ concen-
trations and is colored by 3PGA concentration. The data shown in (a-c) reflect
experiments performed in cell lysate Preparation 3, while the data in (d) reflect ex-
periments performed in cell lysate Preparation 2. All experiments were performed
using 5 nM DNA.
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Spearman’s rho correlation of 0.69 ± 0.05). When the promoter was changed to
PTet, however, the TX-TL trade-off curve was no longer visible, and the 3PGA
trend was weaker (Figure 2.4c, bootstrapped Spearman’s rho correlation of 0.44
± 0.08). In PTet-driven TX-TL systems, it appeared that only some portion of the
data, corresponding to about 15-30 mM 3PGA, fell along the common trade-off
curve (Figure S2.5). The data corresponding to 0-5 mM 3PGA did not give the
highest MG aptamer yields as in Figure 2.4a,b, and at high 3PGA concentrations,
the left edge of the curve dipped, reflecting decreased deGFP yields at high 3PGA
concentrations. To determine if this was a behavior unique to this promoter, we also
performed a 3PGA versus Mg2+ panel in systems expressing the F30-Pepper aptamer
and mTurquoise2 under a PTet promoter (Figure 2.4d). Here, the trade-off curve and
3PGA trend were present as before (bootstrapped Spearman’s rho correlation of 0.51
± 0.06), although as in systems using the PTet-MG aptamer-deGFP plasmid, there
was a decrease in protein yields at higher 3PGA concentrations.

While it is not clear what caused this change in the shape of the trade-off curve in
PTet-driven systems, this finding is consistent with the hypothesis that the TX-TL
trade-off is indicative of a fundamental trade-off in fuel and energy metabolism. In
such systems, weaker promoters would not be able to maximize rates of transcription
and translation output as effectively, resulting in less deGFP being expressed before
energy is dissipated by metabolic processes competing for the same energy pool
and before translation-inhibiting waste is accumulated compared to TX-TL under
strong promoters. This could explain why deGFP yields tend to drop at high
3PGA concentrations in Figure 2.4c,d, although this explanation is insufficient to
explain the shape of the data in Figure 2.4c. While more promoters need to be
tested to determine the generalizability of the TX-TL trade-off to systems using
different genetic parts, the presence of the trade-off in PT7-driven MG aptamer and
deGFP expression was notable, considering that the PT7 promoter is widely used in
applications aimed at maximizing protein expression.

In 3PGA-fueled systems, the TX-TL trade-off and fuel trend are consistent
across DNA concentrations
Having confirmed that the TX-TL trade-off was present in a wide variety of TX-TL
systems, we next sought to confirm whether the trade-off curve scaled with DNA
concentration, as previous experiments had all been performed with 5 nM DNA. For
this set of experiments, we decided to focus on 3PGA-fueled systems since 3PGA
and its downstream metabolic product PEP are the most widely used metabolites
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for energy regeneration in TX-TL systems, and gaining insight into the TX-TL
trade-off in 3PGA-fueled systems would have greater relevance for studies aimed at
characterizing and improving these systems.

We performed 3PGA panels versus Mg2+ panels at DNA concentrations of 1, 2.5,
5, 7.5, and 10 nM, and these results are shown in Figure 2.5. We found that the
TX-TL trade-off curve’s location shifted, and the range of MG aptamer and deGFP
concentrations increased, as DNA concentration was increased, with a curve first
becoming apparent at 2.5 nM DNA and then becoming more apparent as the DNA
concentration was increased (Figure 2.5a).

Figure 2.5: Effects of varying DNA concentration on the TX-TL trade-off. (a)
Each point represents one of three replicates of a particular set of 3PGA and Mg2+

concentrations, where points are colored by DNA concentrations ranging from 1 to
10 nM. (b) Same data are shown as in (a), albeit with the points colored by 3PGA
concentration rather than DNA concentration. The data shown reflect experiments
performed in cell lysate Preparation 2 (see Materials and Methods for details).

As in the 5 nM DNA cases discussed in the previous section, the trend in shifting
a system from a transcription-optimized regime to a translation-optimized regime
at higher 3PGA concentrations was also consistent in the trade-off curves at DNA
concentrations higher than 1 nM (Figure 2.5b, bootstrapped Spearman’s rho correla-
tions of 0.46 ± 0.08, 0.60 ± 0.07, 0.63 ± 0.06, 0.66 ± 0.06, and 0.69 ± 0.06 for DNA
concentrations of 1, 2.5, 5, 7.5, and 10 nM, respectively). Preliminary analyses also
revealed that transcription scaled linearly with increasing DNA concentration in
systems along lines that intersected the trade-off curves (Figure S2.6). This finding
is particularly relevant for transcription-only systems, where this linear relationship
may make it easier to predict the performance of transcriptional circuits based on
the concentrations of DNA species. More experiments are needed to determine
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whether this linear transcriptional scaling is a general phenomenon in the TX-TL
systems.

Trade-off arises at the translational level in 3PGA-fueled systems
Having confirmed that there was a TX-TL trade-off that controlled a system’s tran-
scriptional and translational capacity as a function of Mg2+ concentration broadly,
and additionally as a function of 3PGA concentration when that fuel source was
used, we next sought to gain more insight into the cause of the trade-off in 3PGA-
fueled systems. It was not clear from our previous data whether conditions that
optimized transcription versus conditions that optimized translation were mutually
exclusive in that optimal Mg2+ and 3PGA concentrations were simply different for
transcription versus translation. An alternative explanation was that either or both
of the processes, transcription and translation, had an inhibitory effect on the other
process; in the case where only one process inhibited the other, the first process
could be inhibited by the reaction environment. A third possible explanation was
that transcription and translation were processes competing for the same resources
but that one process had a preferred regime for optimization. In this scenario, the
energy-dominating process would have an optimal regime, and the other process
would only be optimal where the energy-dominating process was strictly not opti-
mal, thereby leaving more resources for the nondominating process. Combinations
of these explanations, or others, could also explain the observed trade-off.

To gain insight into the individual processes of transcription and translation, we
decoupled the TX-TL system into a transcription-only (TX-only) system and a
translation-only (TL-only) system. In the TX-only system, tetracycline was added
to the system to block translation via inhibition of translation initiation through its
binding to the 30S subunit of the ribosome [38]. In the TL-only system, mRNA was
added instead of DNA. The results of these experiments are shown in Figure 2.6.

Using heatmaps to display integrated mRNA and maximum deGFP data, we found
that in the TX-TL system (Figure 2.6a), the regime of Mg2+ and 3PGA concentrations
that optimized transcription was distinct and different than the regime that optimized
translation (Figure 2.6d). Specifically, optimal transcription preferred low 3PGA
and high Mg2+ concentrations, and optimal translation preferred high 3PGA and low
Mg2+ concentrations; both findings are consistent with the trade-off curve. However,
in the TX-only system (Figure 2.6b), MG aptamer expression was not optimized at
low 3PGA and high Mg2+ as in the case of Figure 2.6d; rather, it was broadly optimal
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Figure 2.6: Decoupling of transcription (TX) and translation (TL). (a-c) Experimen-
tal schemes corresponding to the data shown in (d-f), respectively. (a) Simplified
view of TX-TL: POR1OR2-MG aptamer-deGFP DNA is translated by E. coli RNA
polymerase to mRNA, which fluoresces upon binding to MG dye. The mRNA is
then translated by ribosomes into deGFP protein. (b) Simplified view of TX-only
system: TX proceeds as in (a), but translation is inhibited by tetracycline, which
binds to ribosomes and inhibits translation initiation. (c) Simplified view of TL-
only system: MG aptamer-deGFP mRNA, rather than DNA, is added to the system,
and the mRNA is translated into deGFP protein. (d-f) Integrated mRNA (top) and
maximum deGFP measurements (bottom) for the (d) TX-TL system, (e) TX-only
system, to which 200 µg/mL tetracycline was added, and (f) TL-only system, where
0.3 µM mRNA was added at the beginning of the reaction. All reactions shown
used lysate Preparation 2, and the TX-TL and TX-only systems used 5 nM DNA.
Each measurement is the average of three replicates for that experimental condition.
Color bars are scaled separately for each plot.
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at 3PGA concentrations ranging from 0 to 30 mM and 0 to 10 mM added Mg2+

(Figure 2.6e). Overall transcription was also higher, likely due to the abundance
of energy in the absence of translation. Meanwhile, in the TL-only system (Figure
2.6c), higher deGFP yields were achieved, as before, at low Mg2+ and high 3PGA
concentrations, despite reduced mRNA degradation in the regime of high Mg2+ and
low 3PGA concentrations (Figure 2.6f).

These data suggest that the TX-TL trade-off is caused by a combination of translation
optimization at low Mg2+ and high 3PGA concentrations, increased MG aptamer
stability at high Mg2+ and low 3PGA concentrations, and competition for resources
in the TX-TL system. In other words, optimal translation occurs where conditions
are ideal for that process, and optimal transcription occurs where translation is
suboptimal and leaves more fuel and energy resources for transcription. While these
experiments did not shed light on the mechanism governing translation optimization
at lower Mg2+ and higher 3PGA concentrations, they suggest that the TX-TL trade-
off arises at the translational level in 3PGA-fueled systems.

TX-TL trade-off is absent when TX-TL systems are supplied with no fuel or
Mg2+ and additional energy
The TX-TL decoupling experiments had implied that the TX-TL trade-off arose
in part due to competition for fuel and energy resources between transcription and
translation. By this hypothesis, TX-TL systems with abundant energy should not fall
along the trade-off curve, particularly in a regime of low Mg2+ concentration where
both transcription and translation were favorable when not limited by a competing
process (Figure 2.6e,f). To test this hypothesis, we next performed experiments
in which TX-TL systems were supplied with an excess of energy. To mitigate the
potential effects of waste accumulation that came with adding high levels of central
carbon-based fuel sources, we decided against using any central carbon fuel source
(i.e., 3PGA, maltose, pyruvate, or succinate) for energy regeneration. As Mg2+ also
had a translation-inhibition effect, for these experiments, we also decided against
adding additional Mg2+. Instead, to explore the space of different energy sources
and concentrations, we performed a three-dimensional panel of ATP versus GTP
versus NTPs, where each solution was added at a final concentration of 0, 5, 10, or
15 mM. The results of these experiments are shown in Figure 2.7.

As expected, TX-TL systems supplied with additional energy molecules and no fuel
or no Mg2+ did not fall along the previously found trade-off curve corresponding
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Figure 2.7: Absent TX-TL trade-off in the absence of fuel or Mg2+. (a) Overview of
experimental workflow. (b) Maximum deGFP values versus integrated MG aptamer
value. A log scale was chosen for the latter axis to prevent high MG aptamer values
from skewing the data in a way that made it difficult to view the original trade-off
data. Each point represents one of three replicates of a particular set of NTP, added
ATP, and added GTP concentrations, colored by the fuel type. Here, the “central
carbon” fuel data is the same as in Figure 1, and those reactions all contain 4.8 mM
NTPs. The “NTPs” fuel data reflect experiments where no central fuel or Mg2+ has
been added. The data shown reflect experiments performed in two preparations of
cell lysate, Preparation 1 and Preparation 2 (see Materials and Methods for details),
and all experiments were performed using 5 nM DNA.

to that DNA concentration (5 nM), and overall, these NTP-fueled systems dis-
played a weaker trend of decreasing deGFP with increasing integrated MG aptamer
(Spearman’s rho correlation of -0.47) compared to central carbon-fueled systems
(Spearman’s rho correlation of -0.90). Additionally, NTP-fueled systems could
achieve deGFP yields comparable to systems supplied with pyruvate or maltose,
and integrated MG aptamer yields 3-10× higher than in TX-TL systems supplied
with those fuels and Mg2+. While there was no clear trend in ATP, GTP, or total
NTP concentration for the data shown in Figure 7B, generally, as the concentration
of NTPs increased, integrated MG aptamer values increased, and deGFP values de-
creased (Figure S2.7), which is consistent with a previous finding [28] The decrease
in deGFP yields despite the abundance of energy was likely due to the NTP chela-
tion of Mg2+, which is necessary for ribosomes and other translation machinery.
Although Mg2+ was not directly added to the reactions, it was present at a concen-
tration of around 4 mM due to the presence of S30B buffer (used in the preparation
of cell lysate) in the reaction. Our results suggest that fuel-supplied TX-TL systems
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are indeed energy-limited and that the TX-TL trade-off curve exists in part due to
competition for a limited pool of energy for transcription and translation.

The data revealed three additional insights. First, systems with no fuel or no Mg2+

and high NTPs often exhibited unusual transcriptional and translational dynamics
(Figure 2.5). Some systems exhibit long time delays in transcription (Figure 2.5a)
or translation (Figure 2.5e,f). Other systems exhibited biphasic expression (Figure
2.5b,d) or steady-state transcription rates as opposed to the typical transcription
pulse (Figure 2.5c).

Second, although NTP-fueled TX-TL systems did not achieve protein yields as
high as those achieved in systems with 3PGA, supplying systems with 10 mM NTPs
helped achieve integrated MG aptamer and deGFP yields comparable to systems with
about 5 mM NTPs and 10 mM 3PGA, the latter of which should have regenerated
10 mM ATP. This suggests that while energy regeneration is likely occurring in
3PGA-fueled systems, energy being regenerated is not being used efficiently. A
large fraction of that regenerated energy, perhaps the majority, is likely fueling
metabolic processes that are irrelevant to transcription or translation.

Third, if the TX-TL trade-off curve was indicative of a greater trade-off between
efficient energy regeneration and waste minimization, then any potential translation-
inhibiting waste product was likely not produced as a result of total transcription,
since relatively high maximum deGFP yields were achieved with high integrated
MG aptamer values in the case of NTP-fueled systems (Figure 2.7b). The waste
product also did not appear to be solely a product of fast transcription; while there
was negative correlation between the maximum rate of transcription and maximum
deGFP in central carbon-fueled systems (Spearman’s rho correlation of -0.63), there
was a positive correlation between the maximum rate of transcription and maximum
deGFP in NTP-fueled systems (Figure S2.9). These data suggest that the waste was
likely derived from the metabolism of the central carbon fuels. Mg2+ versus fuel
panels performed with all fuels in the regime of low DNA concentration (i.e., 1 nM)
showed that in a transcription-limited regime, central carbon-fueled TX-TL systems
indeed preferred low fuel concentrations for high deGFP yields (Figures S2.10-
S2.13). These results suggest that these systems were not able to sufficiently utilize
central carbon-fueled energy regeneration and thus could not rapidly make protein
before waste accumulated compared to systems with 5 nM DNA, thereby supporting
the idea that waste products were, in part, central carbon metabolism-derived.
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2.3 Discussion
An improved understanding of cell-free TX-TL systems is essential for scaling up,
expanding the scope of, and improving the performance of TX-TL applications in
academic and industrial settings. By using metabolic perturbations as a tool to
gain insight into the behavior of TX-TL systems in different metabolic regimes, this
study has shed light on how Mg2+ and fuel contribute to TX-TL variability and how
these two components and NTPs affect TX-TL performance. Our results indicate
the presence of a trade-off between transcription and translation in E. coli-based
TX-TL systems and show clear roles for how Mg2+, fuel, cell lysate preparation, and
other factors affect transcription and translation and give rise to TX-TL variability.

Armed with these insights, other users of TX-TL systems aiming to reduce variability
and standardize their systems may consider calibrating the concentrations of the
relevant small molecules (fuel, Mg2+, and DNA) for their application so that TX-TL
curves for different systems have similar locations, shapes, and other characteristics.
By characterizing different preparations of cell lysate by the shape and location of
their trade-off curves, for example, we can understand their respective transcriptional
and translational limits. Beyond reducing variability and improving standardization,
this study also has relevance for efforts aimed at increasing the predictability and
performance of TX-TL systems for desired uses. A user can optimize transcription
versus translation optimization in different preparations of cell lysate by choosing
the appropriate set of fuel types, fuel concentrations, and Mg2+ concentrations for
a particular genetic program, whether it be a complex transcriptional circuit or a
simple program for maximum protein yield. The data included with this paper
provide hundreds of unique reaction conditions that can serve as a starting point
for exploring conditions that are optimized for high protein yields, long reaction
lifetime, specific temporal dynamics, or other desired behaviors.

In addition to providing insight into design considerations for TX-TL systems, the
TX-TL trade-off curve, initially a surprising finding, has also provided a simple
yet powerful way of gaining insight into fundamental trade-offs in fuel and energy
metabolism. Taken together, our results suggest that the TX-TL trade-off is present in
energy-limited systems and is indicative of a trade-off between energy regeneration
and waste accumulation that results from fuel metabolism. In other words, while
fuel molecules enable energy regeneration, their own metabolism also results in
waste accumulation (through the generation of immediate or downstream products)
that affects TX-TL processes. While the identities of the waste molecules remain
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unknown, our results suggest that in 3PGA-fueled systems, the waste is partially
3PGA-derived and affects translation. This insight, along with results from the
TX-TL decoupling experiments, have helped us to create a new model of cell-free
metabolism coupled to cell-free TX-TL (Figure 2.8). While this model has not
been validated computationally, doing so may enable improved prediction of TX-TL
performance, perhaps even in non-lysate-based TX-TL systems (e.g., PURE-based
systems [16]), and this remains an active area of future work.

Figure 2.8: New model for cell-free metabolism coupled to cell-free TX-TL. The
conversion of fuel to waste regenerates energy, which can power transcription and
translation, but the accumulation of waste inhibits translation. The fuel-energy-
waste paradigm is derived from an existing model [33]. This model’s key con-
tribution is providing roles for Mg2+ via its inhibition of mRNA degradation and
translation.

In revealing the fundamental metabolic trade-offs in TX-TL systems, this work has
also shed light on why previous studies aimed at increasing protein yield have
been largely unsuccessful. Our data suggest that low Mg2+ concentrations, strong
promoters, and high DNA concentrations - and high 3PGA concentrations where
3PGA is used - are necessary for high deGFP yields. However, it is not possible to
remove more Mg2+ from the system without compromising the function of proteins
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in the cell lysate, nor is adding more fuel possible, as the inability of TX-TL systems
to take advantage of faster energy regeneration will make faster waste accumulation
an issue at high fuel concentrations. Adding too much DNA may skew the systems
toward transcription rather than translation. Previous studies aimed at improving
deGFP yields have focused on other mechanisms of energy regeneration and waste
mitigation, such as using combinations of fuels like 3PGA and maltose [34], and such
approaches and others, including at the level of plasmid design, will be necessary
for vastly improving protein yields in lysate-based TX-TL systems.

Overall, by elucidating the effects of cell-free metabolism on TX-TL systems, this
work lays a foundation for improving TX-TL performance, lifetime, standardization,
and prediction. Ultimately, it represents one of many such steps that will be necessary
for further improvement of TX-TL systems, whether that be for applications in
biomanufacturing, for gaining insight into natural biological systems, or for the
development of synthetic life.

2.4 Materials and methods
Preparation of cell lysate
Cell lysate was prepared from E. coli BL21 Rosetta2 cells using the protocol es-
tablished by Sun and co-workers [14] with some modifications. Briefly, cells were
grown sequentially in 6 mL, 100 mL, and 1 L cultures, where smaller cultures were
used to inoculate larger ones. Once 6 L of culture had grown to roughly an OD600 of
2, cells were repeatedly centrifuged and washed with S30B buffer by resuspension.
Cells were then resuspended in S30B buffer and subjected to cell lysis.

For lysate Preparation 2 and Preparation 3, cells were resuspended at 1.4 g of cells
per mL of S30B buffer and lysed by a French cell press at a pressure of 640 psi.
For lysate Preparation 1, cells were resuspended to 1 g of cells per mL of S30B
buffer and lysed by sonication at a probe frequency of 20 kHz and an amplitude
of 50%. Cells were sonicated at 10 s ON/OFF intervals for a total of 60 s ON (6
ON/OFF cycles), resulting in approximately 300 Joules of energy delivered. After
both methods of cell lysis, 3 µL of 1 M DTT was added per mL of the cell lysate,
and the lysates were then centrifuged to remove cell debris. All preparations of
lysate were then subjected to a 1 h runoff reaction at 37°C, after which they were
subjected to centrifugation to remove additional debris.

Lysate Preparation 2 and Preparation 3 were additionally subjected to dialysis at
4°C via Slide-a-Lyzer G3 cassettes (10 kDa, 15 mL) placed in a beaker containing
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S30B buffer and a magnetic stir bar to facilitate diffusion. Excess air was removed
by using a syringe. Lysate Preparation 2 was dialyzed for 4 h (where cassettes were
transferred to a beaker of fresh S30B at the 2 h mark) at 140 rpm. Lysate Preparation
3 was dialyzed for 2 h (where cassettes were transferred to a beaker of fresh S30B
at the 35 min mark) at 160 rpm.

Finally, both preparations of cell lysate were aliquoted, flash-frozen in liquid nitro-
gen, and stored at –80°C until further use. Bradford assays determined that the final
protein concentrations for the cell lysates were 30-40 mg/mL.

Cloning plasmids used to express deGFP
The POR1OR2-MG aptamer-deGFP plasmid used to express deGFP was originally
prepared by Dan Siegal and modified by Zoila Jurado via site-directed mutagenesis
to change the PT7 promoter to a POR1OR2 promoter and the T7 terminator to a T500
terminator. This plasmid is the POR1OR2-MG aptamer-UTR1-deGFP-T500. The
PTet-MG aptamer-UTR1-deGFP-T500 plasmid was subsequently constructed using
site-directed mutagenesis to change the POR1OR2 promoter to a PTet promoter to
make expression results as comparable as possible. The PT7-MG aptamer-UTR1-
deGFP-T7terminator plasmid was originally prepared by Siegal and modified us-
ing site-directed mutagenesis to add a few extra bases to the PT7 promoter. The
PTet-F30Pepper-UTR1-mTurquoise2-ECK120029600 plasmid was constructed us-
ing Golden Gate Assembly of CIDAR MoClo part plasmids. All plasmid sequences
are given in the Supporting Information section.

Preparation of template DNA plasmids
In experiments in which the POR1OR2-MG aptamer-UTR1-deGFP-T500 plasmid
was used, template DNA for the cell-free reactions was prepared from E. coli
KL740 cells (purchased from Arbor Biosciences) that had been transformed with
the plasmid described above. Cells were grown overnight at 30°C, in lysogeny
broth (LB) medium supplemented with 100 µg/mL carbenicillin, and either Mini-
prepped (using a Qiagen Mini-prep kit) or Midi-prepped (using a Macherey-Nagel
NucleoBond Xtra Midi kit) the next day using the appropriate protocols. When
Mini-prepping, DNA was eluted with nuclease-free water; when Midi-prepping,
after the concentration step, DNA was eluted with IDTE buffer (10 mM Tris-HCl,
0.1 mM EDTA).

The PTet-MG aptamer-UTR1-deGFP-T500, PT7-MG aptamer-UTR1-deGFP-T7ter-
minator, and PTet-F30Pepper-UTR1-mTurquoise2-ECK120029600 plasmids were
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prepared from cells grown overnight at 37°C in LB medium supplemented with
100 µg/mL carbenicillin (for the deGFP plasmids) or 50 µg/mL kanamycin. The
cells were Mini-prepped using a Qiagen Mini-prep kit, where DNA was eluted with
nuclease-free water.

The PT7-UTR1-deGFP-MG aptamer-T7terminator plasmid was constructed from
the plasmid pTXTL-T7p14-deGFP (Arbor Biosciences, myTXTL Toolbox 2.0 plas-
mid collection, now discontinued). The plasmid was modified by the insertion of
a MG aptamer sequenced after the deGFP sequence with the use of the following
primers: CGAGGGGATCCCGACTGGCGAGAGCCAGGTAACGAATGGATCC-
CTTAGGAGATCCGGCTG (forward primer) and GGGATCCATTCGTTACCTG-
GCTCTCGCCAGTCGGGATCCCCTCGAGTTAGATCCCGGC (reverse primer).
The template plasmid was first added to a PCR reaction with these primers, using
an annealing temperature of 60°C and an elongation time of 2.5 min. Next, the PCR
reaction was subjected to a 1 h DpnI digest to remove the template DNA via the ad-
dition of 0.25 µL of DpnI enzyme (purchased from New England Biolabs at 20,000
units/mL) per 25 µL reaction and subsequent incubation at 37°C for 1 h. Next,
PCR cleanup was performed using the Qiagen Mini-prep kit to extract linear DNA.
Finally, the linear DNA was recircularized by performing a Gibson reaction using
NEBuilder HiFi DNA Assembly Master Mix, after which 0.5 µL of the reaction mix
was then used to transform 50 µL of competent cells, which were grown overnight
at 37°C on LB agar plates with 100 µg/mL carbenicillin. Transformed colonies
were sequence verified for insertion of the MG sequence and subsequently cultured
overnight at 37°C with 100 µg/mL carbenicillin and Mini-prepped for plasmid DNA
extraction.

Preparation of cell-free reactions
Cell-free reactions were prepared as per the protocol by Sun and co-workers [14].
Unless otherwise noted, each reaction consisted of the following: 33% (by volume)
of cell lysate, 1.5 mM of each amino acid (except for leucine, which was added
at 1.25 mM), 4.8 nM of NTP mix (containing 1.5 mM each of ATP and GTP, 0.9
mM each of CTP and UTP, pH adjusted to 7.5 using KOH), 50 mM HEPES pH 8,
0.2 mg/mL tRNA, 0.26 mM coenzyme A, 0.33 mM NAD+, 0.75 mM cyclic AMP
(cAMP), 0.068 mM folinic acid, 1 mM spermidine, 10 µM MG dye, and 30 mM
3PGA. Depending on the preparation of cell lysate, a standard reaction used either 8
mM magnesium glutamate and 80 mM potassium glutamate (for lysate Preparations
2 and 3) or 6 mM magnesium glutamate and 140 mM potassium glutamate (for
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lysate Preparation 1); these salt concentrations were chosen because they optimized
deGFP expression in TX-TL reactions supplied with 1 nM POR1OR2-MG aptamer-
deGFP plasmid for a particular lysate preparation (Figure S2.15). For the Mg2+

versus fuel panels, 3PGA and Mg2+ were omitted from the master mix, and the
appropriate concentration of Mg2+ and fuel was added to reactions individually.
Finally, depending on the experiments, a variable amount of DNA plasmid was
added, and the remaining volume of the 10 µL of reaction mixture was filled with
nuclease-free water.

As reactions were all performed in 384-well glass-bottom plates, water, DNA, and
other added components were titrated into the TX-TL reaction using the Echo 525
liquid handler, while the remaining components were added to a bulk solution and
electronically dispensed by a multidispense pipette. Unless otherwise specified,
all reactions containing DNA were supplied with the POR1OR2-MG aptamer-deGFP
plasmid. To prevent the reaction from starting before all the components had been
added in, all reagents were kept on ice until they were added to the reaction mixture
and added sequentially to reduce evaporation and/or degradation. First, a master
mix minus the cell lysate was created and kept on ice in an Eppendorf tube; then,
components to be added by Echo were added to the 384-well plate, where all stock
concentrations were diluted to less than 500 mM so that they could be effectively
dispensed via Echo; next, the cell lysate was added to the master mix; finally, the
master mix was pipetted to the wall of each well. Once the plate was covered with
a plastic seal, it was centrifuged at 4000g for 1 min at 4°C. Finally, the bottom of
the plate was quickly cleaned by Kimwipe to remove any debris and immediately
transferred to a BioTek H1MF plate reader that had reached its set point of 29°C.

Preparation of no-fuel, No Mg2+ cell-free reactions
Reactions were prepared as described in the “Preparation of cell-free reactions” with
minor changes. No fuel or additional Mg2+ were added to the reactions, apart from
what was already there from the preparation of the cell lysate. For the addition of the
NTP mix, we prepared an NTP stock solution at a molar ratio of 1.5:1.5:0.9:0.9 for
ATP/GTP/CTP/UTP, and the pH was adjusted to 7.5 using KOH. For the ATP and
GTP solutions, we prepared stock solutions in nuclease-free water. Each solution
was added at 0, 5, 10, or 15 mM.
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Dynamic measurements of fluorescent molecules
Fluorescence measurements were performed by a BioTek H1MF plate reader at 29C,
and measurements were read from the bottom of the plate every 3 min (preceded by
5 s of linear shaking) at excitation/emission wavelengths suitable for MG aptamer
(610/650 nm, gain 150) and deGFP (485/515 nm, gain 61) for 18 h. For the
experiment corresponding to Figure 4, excitation/emission wavelengths suitable for
F30-Pepper (580/620 nm, gain 150) and mTurquoise2 (434/474 nm, gain 61) were
used.

For MG aptamer and deGFP, arbitrary fluorescence units were converted to mi-
cromolar concentrations using a calibration curve prepared using purified deGFP
protein and MG aptamer mRNA. To create a deGFP fluorescence calibration curve,
serial dilutions of eGFP (purchased from Cell Biolabs) were performed in 1× PBS,
after which 3 sample replicates of 10 µL each were loaded onto a 384-well plate and
read by a BioTek H1MF plate reader at 29°C and at excitation/emission wavelengths
of 485/515 and a gain of 61. Three technical replicates were read over 3 min at
1-min intervals to generate 4 points per replicate, and the average of these 12 points
was used as a single point at a given concentration through which the calibration
line was fit with a zero intercept.

To create a MG aptamer fluorescence calibration curve, mRNA of MG aptamer se-
quence only - specifically rArCrUrGrGrArUrCrCrCrGrArCrUrGrGrCrGrArGrCr-
CrArGrCrArGrGrUrArCrG rArArUrGrGrArUrCrCrArArU - was purchased from
IDT DNA. The lyophilized mRNA was resuspended in nuclease-free water, and its
concentration was determined by a NanoDrop 2000c. Next, serial dilutions of MG
aptamer mRNA were performed in 1× PBS containing 10 µM MG dye, after which
3-4 sample replicates of 10 µL each were loaded onto a 384-well plate and read
by a BioTek H1MF plate reader at 29°C and at excitation/emission wavelengths of
610/650 and a gain of 150. Four technical replicates were read over 10 min at 2.5
min intervals to generate 5 points per replicate, and the average of these 20 points
was used as a single point at a given concentration through which the calibration line
was fit with a zero intercept. The slope of the background-subtracted calibration
curve was used to calibrate the measurements.

mRNA purification for a translation-only system
To obtain an mRNA sequence containing MG aptamer-UTR1-deGFP, a linear DNA
template was first prepared, followed by DNA isolation, in vitro transcription, DNase
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treatment, and mRNA isolation. First, for the generation of the linear DNA tem-
plate, primers of the following sequences were first used to amplify the relevant
sequence off the POR1OR2-MG aptamer-deGFP plasmid by PCR: CCAGAAAAC-
CGAATTTTGCTGG and ATGATAAAGAAGACAGTCATAAGTGCG. A 1 mL
PCR reaction was performed using NEB Q5 2X Master Mix and run for 30 cycles
with an elongation time of 45 s and an annealing temperature of 65°C.

After the PCR reaction was performed, the PCR was aliquoted in three 1.7 mL
Eppendorf tubes (i.e., 333 µL per tube), and DNA was precipitated by adding 33
µL of 3 M sodium acetate and 1 mL of 100% ethanol per tube. After chilling the
tubes at –80°C for 20 min, the tubes were centrifuged at 16,000g for 30 min at
4°C. Finally, all supernatant was pipetted out, and residual ethanol was allowed to
evaporate by leaving the tubes open and uncovered at room temperature. The DNA
was resuspended in 50 µL of nuclease-free water per tube.

In vitro transcription was performed using the HiScribe T7 High Yield RNA Syn-
thesis Kit, and instructions included in the kit’s manual were used for DNase I
treatment of the reaction. Finally, the synthesized mRNA was isolated using the
PureLink RNA Mini kit. 100% ethanol was first added to the reaction to a final con-
centration of 35%, after which the kit’s “Protocol for RNA clean-up and purification
from liquid samples” was used (omitting the lysis step). mRNA concentration was
determined by a NanoDrop 2000c.

Translation inhibition using tetracycline
The translation inhibition experiments were performed in lysate Preparation 2 by
adding 200 µg/mL tetracycline to the TX-TL reactions. Stock tetracycline solutions
were created at 80 mg/mL in DMSO, where they were stored at –80°C until further
use. For addition to TX-TL reactions, the stock solution was diluted to 5 mg/mL in
nuclease-free water and subsequently dispensed using an Echo 525 liquid handler. To
determine the optimal concentration of tetracycline to use for translation-inhibition,
titrations were performed (see Figure S14).

Data analysis
Fluorescence measurements of deGFP and MG aptamer were converted to micro-
molar concentrations via the calibration curves. Maximum deGFP concentration
was determined to be the maximum deGFP concentration achieved for a given ex-
perimental condition at any point over the course of the 18 h experiment. Integrated
MG aptamer measurements were made by using the NumPy [39] trapz function
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for numerical integration using the trapezoidal method. Plots were generated using
the Python package Bokeh [40]. The Jupyter notebooks that were used for creating
tidy data and for subsequent data analysis and plot generation are included with this
work, in addition to all the data that was collected for this study.

Spearman’s rho correlation computation
For figures where a Spearman’s rho correlation value was computed, the SciPy [41]
stats.spearmanr function was used to compute correlation values. A Spearman rho
correlation value has a minimum possible value of –1, corresponding to a perfect
negative rank correlation between two variables, and a maximum possible value of
1, corresponding to a perfect positive rank correlation between two variables. A
value of 0 suggests no rank correlation.

Where a bootstrapped Spearman’s rho correlation value was computed, the pseu-
docode below shows the algorithm used to perform the computation. Briefly, we
first split our data into training and test sets in a 75/25 ratio, where the predictor
variable was Mg2+ or 3PGA and the predicted data were the 2D trade-off data. We
next trained a partial least squares regression (PLS Canonical) model on the train-
ing data using the Python Scikit-learn [42] package. This training simultaneously
reduced the dimensionality of the trade-off data from 2D to 1D; redimensionalized
the predictor variable (i.e., Mg2+ or 3PGA) so that it had a mean value of zero; and
created a model capable of predicting position along the 1D trade-off data for the
predictor variable. The model was then used to map the test data to the new 1D
spaces. A Spearman rho correlation value was computed for the mapped test data
between the 1D predictor variable and the 1D trade-off data using the SciPy [41]
stats.spearmanr function. This process was repeated 5000 times to randomize the
splitting of data. The mean and standard deviation of this “bootstrapped” Spear-
man’s rho correlation value are reported for each plot where applicable.

Although many cross decomposition methods exist, we chose PLS regression be-
cause it is better at preserving variance compared to methods such as principal
component regression (PCR) during the dimensionality reduction step (due to the
addition of supervising learning). PLS is also particularly suitable when there is
collinearity among columns of the predictor or predicted data (as in the case of
MG aptamer and deGFP, where we observed a negative correlation between the
two variables). The Python Scikit-learn package has several functions for PLS:
PLSCanonical, PLSSVD, and PLSRegression (which can implement the PLS1 and
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PLS2 algorithms); in the case of a 1D PLS model, as we have chosen, the underlying
algorithm is the same for all of them, so we arbitrarily chose PLSCanonical.

Due to the redimensionalization of data during PLS regression, the bootstrapped
Spearman’s rho correlations range from 0 to 1 (unlike the traditional Spearman’s
rho correlation that ranges from -1 to 1). In the bootstrapped case, a value of 0
corresponds to no rank correlation, and a value of 1 corresponds to a perfect rank
correlation (with a direction of positive or negative stated in the Results section
where applicable).
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2.5 Supporting information
Supporting figures

Figure S2.1: Exploring the dependence of MG aptamer and deGFP fluorescence
on pH, Mg2+, and 3PGA concentration. In (a) and (b), either (a) 0.2 µM MG
aptamer-UTR1-deGFP mRNA or (b) 6.02 µM purified deGFP was added to 9 µL
of phosphate-buffered saline (PBS) of the appropriate pH, some amount of 100
mM Mg-glutamate to the appropriate concentration, and nuclease-free water to 10
µL. The 384-well plate was incubated for 18 hours in a plate-reader at 29°C, and
the endpoint concentrations, as determined by the fluorescence calibration data,
are indicated in the plots shown. (c) 10 µM purified deGFP was added to TX-TL
reactions and incubated at 29°C for 18 hours. The final deGFP concentrations, as
reported by the fluorescence values that were calibrated to micromolar units, are
shown in the figure. Fluorescence calibrations were performed using concentrations
of 2-40 µM purified deGFP in PBS, where the linear slope of the calibration was
dominated by higher concentrations of deGFP compared to the concentrations used
in (b) and (c). Thus, fluorescence values are lower than expected in (b), where a
higher percentage of the deGFP is likely adsorbed onto the walls of the 384-well
plate (compared to the calibration), and higher than expected in (c), where a lower
percentage of deGFP is adsorbed (compared to the calibration) since the proteins
from the cell lysate are competing for adsorption.
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Figure S2.2: Effects of Mg2+ concentration on the TX-TL trade-off by fuel type.
Each point represents one of three replicates of a particular set of fuel and Mg2+

concentrations, where fuel is either (a) 3PGA, (b) maltose, (c) pyruvate, or (d)
succinate, with corresponding bootstrapped Spearman’s rho correlations of 0.63 ±
0.05, 0.75 ± 0.04, 0.76 ± 0.04, and 0.78 ± 0.04, respectively. The data shown
reflect experiments performed in two preparations of cell lysate, Preparation 1 (o)
and Preparation 2 (+) (see Materials and methods for details), and all experiments
were performed using 5 nM DNA.
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Figure S2.3: Effects of 3PGA concentration on the TX-TL trade-off across different
lysate volume fractions. Each point represents one of three replicates of a particular
set of 3PGA and Mg2+ concentrations. (a) Trade-off curves from three different
lysate volume fractions are overlaid, where the lysate volume fraction is the volume
fraction of a TX-TL reaction that is made up of cell lysate. (b) - (d) Individual lysate
fraction trade-off curves are shown and points are colored by 3PGA concentration,
where the curves correspond to lysate fractions (b) FL = 0.25, (c) FL = 0.33, the
nominal case; and (d) FL = 0.41, with corresponding bootstrapped Spearman’s rho
correlations of 0.49 ± 0.09, 0.63 ± 0.06, and 0.63 ± 0.05, respectively. The data
shown reflect experiments performed in cell lysate Preparation 2 (see Materials
and methods for details), and all experiments were performed using 5 nM DNA.
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Figure S2.4: The TX-TL trade-off in systems expressing MG aptamer and deGFP in
different order under a PT7 promoter. Each point represents one of three replicates of
a particular set of 3PGA and Mg2+ concentrations. The data for PT7-MG aptamer-
deGFP are the same shown in Figures 2.4b and S2.5. The data shown reflect
experiments performed in Preparation 3 of cell lysate (see Materials and methods
for details), and all experiments were performed using 5 nM DNA.

Figure S2.5: The TX-TL trade-off in systems expressing MG aptamer and deGFP
under different promoters. Each point represents one of three replicates of a par-
ticular set of 3PGA and Mg2+ concentrations. The data are the same shown in
Figure 2.4, albeit with the data from panels (a), (b), and (d) overlaid and colored
by promoter type. The data shown reflect experiments performed in Preparation 3
of cell lysate (see Materials and methods for details), and all experiments were
performed using 5 nM DNA.
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Figure S2.6: Scaling of transcription and translation with increasing DNA con-
centration. (a) Five lines were chosen to intersect the trade-off curves at roughly
equi-angular intervals, and the point on each trade-off curve corresponding most
closely to that line is highlighted. (b) Integrated MG aptamer versus DNA con-
centration for each of the intersecting lines for the points highlighted in (a). (c)
Maximum deGFP versus DNA concentration for each of the intersecting lines for
the points highlighted in (b). All experiments were performed in Preparation 2 of
cell lysate. The data in (a) are the same shown in Figure 2.5.
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Figure S2.7: Exploring the effects of total ATP versus total GTP concentration in
NTP-fueled systems. Here, the systems explored were TX-TL systems using 5 nM
DNA to which no central carbon fuel nor Mg2+ had been added. Systems fueled by
NTPs were implemented using a three-way panel of ATP versus GTP versus NTP
mix, where each solution was added at 0, 5, 10, or 15 mM. As the NTP mix also
contained ATP and GTP, the total concentrations of ATP and GTP were calculated
for each system by summing the amount of ATP or GTP in the NTP mix with the
added amount of ATP or GTP, respectively. Results were then averaged over three
replicates and two preparations of cell lysate (Preparation 1 and Preparation 2).
(a) Integrated MG aptamer values for NTP-fueled systems. (b) Maximum deGFP
values for the NTP-fueled systems.
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Figure S2.8: Examples of unusual and potentially desirable transcription and trans-
lation dynamics in TX-TL systems with no fuel or Mg2+ and with additional energy.
These systems have the following (NTP, Added ATP, Added GTP) concentrations
in mM, where a dashed line (-) indicates that a concentration is being varied in that
plot: (a) (0, -, 15), (b) (-, 5, 5), (c) (-, 5, 10), (d) (0, 5, -), (e) (5, 5, -), (f) (-, 5, 5). (a)
shows an example of a system (at 15 mM ATP) exhibiting time-delayed transcription
albeit with a high MG aptamer yield that continues increasing even at 18 hours. (b)
and (c) show examples of systems with biphasic and sustained transcription (both at
15 mM NTPs), respectively. (d) shows examples of systems with varying translation
dynamics, ranging from a near-linear initial increase in deGFP (0 mM GTP),
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biphasic translation (10 mM GTP), slow translation (5 mM GTP), and extremely
time-delayed translation (15 mM GTP). (e) demonstrates that TX-TL systems that
have time-delayed translation do not necessarily have lower deGFP yields, as indi-
cated in the comparison between the 5 mM GTP and 10 mM GTP cases. (f) shows
that under certain regimes (here at 5 mM ATP and 5 mM GTP), TX-TL systems can
exhibit similar translation dynamics, albeit with time delays that are proportional
to the amount of NTPs added to the system. Each point represents one of three
replicates of a particular set of NTP, Added ATP, and Added GTP concentrations.
All experiments were performed at 5 nM DNA in systems using the Preparation 2
lysate. Note: axes have different scales for each plot.



49

Figure S2.9: Maximum deGFP versus maximum MG aptamer slope for central
carbon- and NTP-fueled systems. The data shown here are from the same exper-
iments whose data is shown in Figure 2.7b. Each point represents one of three
replicates of a particular set of NTP, added ATP, and added GTP concentrations,
colored by the fuel type. Here, the “central carbon” fuel data is the same as in Fig-
ure 1, and those reactions all contain 4.8 mM NTPs. The “NTPs” fuel data reflect
experiments where no central fuel or Mg2+ has been added. Maximum MG aptamer
slope was calculated for each experimental condition by computing a series of linear
regressions between MG aptamer and time for points spanning a rolling window of
1 hour over a total period of 18 hours; the maximum slope of MG aptamer expres-
sion over the 18-hour period was plotted for each experimental condition. The data
shown reflect experiments performed in two preparations of cell lysate, Preparation
1 and Preparation 2 (see Materials and methods for details), and all experiments
were performed using 5 nM DNA.
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Figure S2.10: Heatmaps of integrated MG aptamer expression and deGFP expres-
sion at different Mg2+ and 3PGA concentrations at different DNA concentrations.
Experiments were performed using (a) Lysate Preparation 1 and 1 nM DNA, (b)
Lysate Preparation 1 and 5 nM DNA, (c) Lysate Preparation 2 and 5 nM DNA. Each
value is an average of three replicates for that condition. Colorbars were scaled
separately for each plot and normalized to a minimum value of zero.

Figure S2.11: Heatmaps of integrated MG aptamer expression and deGFP expres-
sion at different Mg2+ and maltose concentrations at different DNA concentrations.
Experiments were performed using (a) Lysate Preparation 1 and 1 nM DNA, (b)
Lysate Preparation 1 and 5 nM DNA, (c) Lysate Preparation 2 and 5 nM DNA. Each
value is an average of three replicates for that condition. Colorbars were scaled
separately for each plot and normalized to a minimum value of zero.
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Figure S2.12: Heatmaps of integrated MG aptamer expression and deGFP expres-
sion at different Mg2+ and pyruvate concentrations at different DNA concentrations.
Experiments were performed using (a) Lysate Preparation 1 and 1 nM DNA, (b)
Lysate Preparation 1 and 5 nM DNA, (c) Lysate Preparation 2 and 5 nM DNA. Each
value is an average of three replicates for that condition. Colorbars were scaled
separately for each plot and normalized to a minimum value of zero.

Figure S2.13: Heatmaps of integrated MG aptamer expression and deGFP expres-
sion at different Mg2+ and succinate concentrations at different DNA concentrations.
Experiments were performed using (a) Lysate Preparation 1 and 1 nM DNA, (b)
Lysate Preparation 1 and 5 nM DNA, (c) Lysate Preparation 2 and 5 nM DNA. Each
value is an average of three replicates for that condition. Colorbars were scaled
separately for each plot and normalized to a minimum value of zero.
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Figure S2.14: Tetracycline titrations. Titrations were performed to determine
the concentration of tetracycline necessary for translation inhibition albeit with-
out adding enough DMSO to the reaction to additionally reduce transcription or
translation. Controls were performed by adding the equivalent amount of DMSO to
make sure the tetracycline alone was impacting translation. (a) and (b) show tran-
scription and translation data, respectively, for TX-TL reactions performed with 200
µg/mL tetracycline. (c) and (d) show transcription and translation data, respectively,
for TX-TL reactions performed with the equivalent amount of DMSO for each of
the conditions in (a) and (b). TX-TL reactions were performed using the Lysate
Preparation 2 with 5 nM DNA at 30 mM 3PGA and 8 mM Mg2+.
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Figure S2.15: Salt calibrations for cell lysate preparations. As each preparation of
cell lysate has different optimal Mg2+ and K+ concentrations, the optimal concen-
tration for each preparation was determined by a salt panel, where TX-TL reactions
were performed with the standard formulation, albeit with different pairwise con-
centrations of Mg-glutamate and K-glutamate. The endpoint deGFP concentration
(µM) was recorded after an 18-hour incubation at 29°C for lysate preparations (a) 1,
(b) 2, and (c) 3. Colorbars are scaled separately for each plot, and their range spans
the minimum and maximum endpoint deGFP value for each experiment.



54

Additional supporting information
Additional supporting information includes plasmid sequences for most plasmids
used in this study (except for the PT7-deGFP-MGapt plasmid) and all data and
code used for analysis and figure generation. These are available on GitHub at the
following link: https://github.com/mkapasiawala/txtl-tradeoff and on the journal
website at the following link: https://pubs.acs.org/doi/10.1021/acssynbio.4c00361.
Except for the PT7-deGFP-MGapt plasmid, all plasmids used in this study can be
obtained from Addgene using the catalog numbers #227645, #227646, #227647,
and #227648.
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C h a p t e r 3

FINE-TUNING A METABOLOMICS-INFORMED
COARSE-GRAINED MODEL ENABLES FITTING AND
PREDICTION OF CELL-FREE PROTEIN EXPRESSION

DYNAMICS IN NEW EXPERIMENTAL CONTEXTS

This chapter has been published as part of the pre-print indicated below. M.K.’s
contributions to the paper have been reformatted and included here with major edits.

William Poole, Manisha Kapasiawala, Ankita Roychoudhury, Matthew Haines,
Paul Freemont, and Richard M. Murray. “Metabolomics-informed coarse-
grained model enables prediction of cell-free protein expression dynamics.”
In: bioRxiv (2025). doi: 10.1101/2025.06.20.660830.

3.1 Introduction
Synthetic biology harnesses engineering principles and the versatility of biology
to enable the manipulation and creation of biological parts and systems. Among
its many tools, cell-free systems have emerged as a resourceful tool with diverse
applications [1]. The most widespread use of cell-free systems is cell-free protein
synthesis (CFPS), where crude cell lysate or purified proteins are supplied with a
DNA template and an energy buffer containing building blocks and co-factors for in
vitro transcription and translation (TX-TL) [2]. Operating outside living cells, CFPS
systems offer many advantages, including the ability to produce biomolecules toxic
to cell viability and an open reaction environment compatible with lab automation to
accelerate design-build-test-learn cycles. These benefits have enabled applications
such as biomanufacturing [3]; rapid prototyping of biological parts, pathways, and
circuits [4–8]; point-of-care diagnostics and biosensing [9–11]; elucidating the
synthesis and assembly of complex biological structures such as membrane proteins
and bacteriophages [12–16]; and building synthetic cells [17–19].

Crude cell lysate-based systems remain the most popular type of CFPS systems,
although the cellular machinery needed to drive CFPS is increasingly provided in
the form of a minimal set of proteins necessary and sufficient for CFPS [20, 21]. Be-
yond TX-TL machinery, lysate-based systems also contain much of the cytoplasmic
content of cells — including metabolic enzymes, organelles like the endoplasmic
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reticulum (in eukaryotic lysates), and inverted membrane vesicles — that support
processes such as energy regeneration, membrane protein synthesis, and possibly
oxidative phosphorylation [22]. While not directly involved in CFPS, these con-
tents enable high expression of a diverse set of proteins, including those that require
post-translational modifications, chaperone proteins, and other requirements beyond
simple translation. However, while conferring these advantages, this cytoplasmic
content also has many unknown and potentially harmful effects on CFPS that lead to
poor predictability of CFPS performance. Improving CFPS predictability is crucial
for more advanced applications of lysate-based systems, from integrating synthetic
cell subsystems to translating in vitro learnings into cellular engineering.

Toward improving the predictability of CFPS systems, many previous studies have
focused on understanding and modeling the effects of reaction components, partic-
ularly small molecules, on CFPS. One study focused on the effects of molecular
crowding agents and magnesium (Mg2+) on translation initiation and elongation
rates [23]. Another study measured the effects of 20 reaction components on several
metrics of CFPS dynamics, including the maximum rate of protein production, the
time to reach steady state protein level, and others [24]. A third study focused on
characterizing the interactions between CFPS reaction components — specifically,
Mg2+ and various fuels used to regenerate energy — and their differential effects on
total transcription and translation [25]. These studies have provided critical design
insights for designing CFPS systems with a desired behavior, but they have not led to
improved predictability in systems beyond simple CFPS systems expressing green
fluorescent protein (GFP).

Meanwhile, various other studies have focused on creating predictive mathematical
models of CFPS [26, 27]. The earliest models varied from small coarse-grained
models to complex mechanistic models [28–30], and models that have emerged
since then have varied from continuous versus stochastic, ranged from small (<10
reactions) to large (1000+ reactions), and utilized both mass-action kinetics and
modeling using ordinary differential equations (ODEs) [26]. Recent models have
built on these earlier models and incorporated features like flux balance analysis,
metabolic control analysis, resource utilization, and biophysics [26, 31–33]. While
these computational efforts have been extremely valuable in providing a breadth
of model architectures and approaches, they have focused more on genetic circuit
architecture and CFPS machinery (e.g., RNA polymerase, transcription factors,
ribosomes, etc.) and less on other proteins with an uncharacterized but substantial
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effects on CFPS. Thus, the predictability of these models has been limited to simple
GFP-expressing systems or complex biochemical programs in a single environmental
context (e.g., a model made for a CFPS system corresponding to a single batch of
cell lysate).

Recognizing that CFPS variability is derived largely from the uncharacterized con-
tents of cell lysate, some studies have focused more directly on the interaction
between CFPS and cell-free metabolism. Varner and co-workers combined model-
ing and experiments to create a CFPS model coupled with cell-free metabolism [34,
35]. Using dynamic measurements of nucleotide triphosphates (NTPs), amino
acids, and several key metabolites of central carbon metabolism, they were able to
construct an ensemble of kinetic models that could predict expression of a reporter
protein. Meanwhile, Styczynski and co-workers used metabolomics to character-
ize and compare central carbon and amino acid metabolism under various reaction
conditions, including the absence/presence of CFPS, targeted supplementation of
metabolic enzymes, and different methods of cell lysate preparation [36, 37].

While these papers have made important strides towards understanding the rela-
tionship between cell-free metabolism and CFPS, this work has focused largely on
central carbon, NTP, and amino acid metabolism. The success of cell-free metabolic
engineering, which uses innate cell metabolism to generate biochemical intermedi-
ates that are then used as precursors for engineered metabolic pathways, suggests that
other parts of cell metabolism may be active in cell-free systems [38]. However, the
extent to which all metabolic pathways are active in a cell-free context is unknown.
Beyond a broad characterization of cell-free metabolism, integrating knowledge of
metabolism into predictive models of cell-free protein synthesis, particularly for a
wide range of experimental conditions, remains a challenge.

A recent study by Poole and co-workers used untargeted metabolomics to get a
high-level view of cell lysate metabolism and found that most E. coli metabolic
pathways are active in cell lysates, resulting in complex effects on CFPS [39]. These
experimental observations were used to motivate a novel coarse-grained mechanistic
model of cell lysate metabolism focused on the build-up of metabolic waste prod-
ucts [39]. The model was able to fit experimental data well and capture previously
unmodeled experimental phenomena, including reduced protein expression when
the addition of DNA to the CFPS reaction was delayed.

In this project, we were interested in exploring the generalizability of the Poole
model. In our case, we wondered whether Poole’s metabolism model could be read-
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ily retrained to fit or even predict protein expression dynamics in new CFPS contexts,
including new batches of cell lysate, different experimental initial conditions, and
in the presence of complex biochemical interactions.

For our approach, we were encouraged by the recent successes of foundation models
in biology, where a base model trained on large amounts of data can be further
“fine-tuned” to make it more predictive for a specific application, by retraining the
model on a more relevant data set [40–43]. However, foundation models in biology
typically consist of deep learning models of millions of parameters trained on large
datasets, ranging from hundreds of thousands to millions to billions of data points.
These features allow researchers to create highly predictable models at the cost of
interpretability and large data sets for training.

Thus, for this work, we were interested in using the Poole model, a small chem-
ical reaction network model whose parameters were previously fit using a large
CFPS dataset with Bayesian parameter inference techniques, as a foundation model.
Bayesian parameter inference is a statistical method for estimating parameter values
for a model — where the value of each parameter is represented as a probability
distribution of values — given some experimental data. In recent years, Bayesian
inference has been successfully used in estimating parameter distributions for a wide
range of models, including chemical reaction network models in biology [44, 45].
Beyond inferring parameter distributions, Bayesian inference has also been used to
validate model architectures, choose among various models when model architec-
ture is uncertain, verify properties of models, and create predictive models in spite
of parameter uncertainty [46–50].

For our application, we focused on using the Poole model as a foundation model
and determining whether the model could be adapted and fine-tuned for use in new
experimental contexts using Bayesian inference. We believed that this approach
would allow us to conserve and utilize aspects of the model architecture we believed
to be true — notably, the effect of cell-free metabolism on CFPS — in addition
to parameter values that had previously been estimated by Poole and co-workers.
The strategy of using Bayesian inference for model recalibration has been used
previously to calibrate CFPS performance between different preparations of CFPS
systems, although this approach has only been used to re-fit models rather than
modify and adapt model architectures to new contexts [51].

In this work, we first show that the Poole model can be recalibrated to accurately
predict protein expression dynamics under novel experimental conditions by fine-
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tuning a small subset of its parameters via re-training on smaller condition-specific
datasets. We then demonstrate that this approach can be applied to fit and/or predict
dynamics under a broad range of new experimental conditions, including various
cell lysate batches, DNA concentrations, fuel sources, and more. Finally, we show
that the model can be slightly modified to include the effects of Mg2+ on CFPS, and
that this updated model’s prediction recapitulates a previously observed trade-off
between energy regeneration and waste mitigation. This work establishes a novel
framework for leveraging existing CFPS models in new experimental contexts and
provides new predictive insights into the effects of cell-free metabolism on CFPS.

3.2 Results
A fine-tuning strategy for a chemical reaction network parameterized by Bayesian
parameter inference
We first sought to determine whether the model architecture of Poole’s chemical
reaction network, reprinted below, was sufficiently expressive to fit a broad range of
protein expression dynamics. Briefly, Poole’s CFPS model consists of four reactions.
The first reaction is energy regeneration, where fuel 𝐹 is used to regenerate energy
— convert 𝐸 to 𝐸∗ — while generating waste𝑊 in the process (Equation 3.1). The
second reaction is fuel leak, where 𝐹 is converted to𝑊 without regenerating energy
(Equation 3.2). The third reaction is energy leak, where energy is consumed —
𝐸∗ is converted to 𝐸 — by dissipative processes, such as background metabolic
pathways (Equation 3.3). The final reaction is protein expression, where a gene 𝐺
is transcribed and translated to create protein 𝐺𝐹𝑃 (Equation 3.4).

𝐹 + 𝑛𝐸
𝜌𝑟𝑒𝑔−−−→ 𝑊 + 𝑛𝐸∗ 𝜌𝑟𝑒𝑔 (𝐹, 𝐸,𝑊) = 𝑉𝑟𝑒𝑔

𝐹

𝐾𝐹 + 𝐹 · 𝐸

𝐾𝐸 + 𝐸 · 1
1 + (𝑊/𝐾𝑊 )𝑛𝑊

(3.1)

𝐹
𝜌𝑙𝑒𝑎𝑘
𝑊−−−−→ 𝑊 𝜌𝑙𝑒𝑎𝑘𝑊 (𝐹) = 𝑉 𝑙𝑒𝑎𝑘𝑊

(𝐹/𝐾 𝑙𝑒𝑎𝑘
𝐹

)𝑛𝐹

1 + (𝐹/𝐾 𝑙𝑒𝑎𝑘
𝐹

)𝑛𝐹
(3.2)

𝐸∗ 𝜌𝑙𝑒𝑎𝑘
𝐸−−−−→ 𝐸 𝜌𝑙𝑒𝑎𝑘𝐸 (𝐸∗) = 𝑉 𝑙𝑒𝑎𝑘𝐸

𝐸∗/𝐾 𝑙𝑒𝑎𝑘
𝐸

1 + 𝐸∗/𝐾 𝑙𝑒𝑎𝑘
𝐸

(3.3)

𝐺
𝜌𝑒𝑥−−→ 𝐺 + 𝐺𝐹𝑃 𝜌𝑒𝑥 (𝐺, 𝐸∗) = 𝑉𝑒𝑥𝐺

(𝐸∗/𝐾𝑒𝑥
𝐸
)𝑛𝑒𝑥

1 + (𝐸∗/𝐾𝑒𝑥
𝐸
)𝑛𝑒𝑥 (3.4)

In Poole’s model, the rate of protein production (in Equation 3.4) depends positively
on energy 𝐸∗, so the rate of protein increases with increasing energy availability until
energy is saturated in the system. Meanwhile, the rate of energy regeneration (in
Equation 3.1) depends negatively on waste𝑊 , which is generated both during energy
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regeneration (Equation 3.1) and fuel leak (Equation 3.2). Thus, as time proceeds
and fuel is converted to waste, energy regeneration ceases, and subsequently protein
expression ceases.

The model’s parameters were originally fit using experimental data of CFPS reac-
tions with different initial conditions using a process known as Bayesian parameter
inference. Briefly, Bayesian inference is a statistical methodology that uses Bayes’
theorem to estimate the values of parameters in a model. Bayesian inference as-
sumes that each parameter in a model can be described as probability distribution
of a given type with appropriate description (e.g., “𝐾𝑤 assumes values according to
a uniform distribution bounded by the range (0, 50], 𝑛𝑤 assumes values according
to a normal distribution with a mean of 5 and standard deviation of 2, etc.”).

During Bayesian inference, the likelihood of observing a set of experimental data
(given a model) and the probability of a model (parameterized by some best guesses
of parameter values, known as “prior distributions”) are used to calculate the prob-
ability of a set of parameter values given the model and data (an updated set of
parameter distributions known as “posterior distributions”). During this iterative
process of inference, the parameter space is sampled, the model is simulated, and
the error between model prediction and experimental data is calculated, after which
the size and direction of the next “step” is calculated and taken in parameter space.
Eventually, if the inference problem is well-formed, the samplers (or “walkers”)
converge to a set of parameter distributions that minimize the error between exper-
imental data and model prediction. Thus, for Bayesian inference to be successful,
the following requirements must be met, among others:

1. a model must be capable (in some parameter regime) of capturing a set of
experimental data;

2. appropriate prior distributions must be supplied for each parameter;

3. the number steps and walkers must be sufficiently high for the inference to
converge to an optimal solution, if one exists at all; and

4. the experimental data must be diverse enough to convey enough information
about the system such that model parameters can be informed.

During the original training, all 13 model parameters were inferred by performing
Bayesian parameter inference, where inference was split into two runs: one run
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with 50 walkers for 5000 steps followed by another run with 100 walkers for 10000
steps. However, as the computational resources required for inference increases
with the number of parameters being inferred, we wondered whether it would be
possible to utilize the model training Poole and co-workers had already performed
and perform “fine-tuning,” or re-infer just a few of the model’s parameters and keep
the remaining parameters at the values Poole had found, rather than re-inferring all
parameters from scratch, when adapting the model to new experimental data. We
hypothesized that this strategy would allow us to save both computational resources
and reduce the amount of data required for training the model.

To perform fine-tuning, we first determined which parameter’s values from the
original trained model could be kept fixed and which ones should be re-inferred.
We hypothesized that we could perform fine-tuning by re-inferring 4 of the 13 total
model parameters and fixing the remaining 9 parameters’ values to the median value
of their posterior distributions. These parameters — 𝑉𝑒𝑥 , 𝐾𝑒𝑥𝐸 , 𝐾𝑊 , and 𝑛𝑊 — were
chosen because they were suspected to most likely be affected by new experimental
conditions, such as different fuel sources, cell lysate batches, and promoters. The
parameters𝑉𝑒𝑥 and𝐾𝑒𝑥

𝐸
set the maximum rate of protein production and the energetic

requirement of producing the protein, respectively. 𝐾𝑊 and 𝑛𝑊 determine the extent
to which a given fuel’s waste negatively affects the rate of energy regeneration. In
the case of a modified chemical reaction network, additional parameters resulting
from modified or new reaction rates would also be inferred.

Model can be fine-tuned to fit individual time trajectories of new experimental
data
Using a previously published data set, we first explored whether the Poole model
could be adapted to fit new experimental data, which stems from CFPS systems
using various fuel types and concentrations for energy regeneration, different con-
centrations of Mg2+, multiple cell lysate batches, different promoters for deGFP
expression, and different DNA concentrations [25]. We attempted to fit 576 indi-
vidual time trajectories of deGFP expression by fine-tuning the parameter values for
𝑉𝑒𝑥 , 𝐾𝑒𝑥𝐸 , 𝐾𝑊 , and 𝑛𝑊 and fixing the remaining 9 parameters’ values to the median
value of their posterior distributions (Figure 3.1A). After parameter inference, the
Mean Absolute Scaled Error (MASE; see Materials and methods) was computed
to determine, normalize, and compare error values across different experimental
data and their corresponding model fits.
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Figure 3.1: Verification of fine-tuning approach for individual experimental con-
ditions. (a) Overview of computational workflow. Four parameters (highlighted
in orange) of the already fitted base model were re-inferred to better fit the model
to new experimental data. (b) Violin plots of log MASE values before and after
fine-tuning the model (aggregated data from the plots shown in Figure 3.2). (c)
Violin plots of log MASE values with increasing number of steps taken by walkers
during fine-tuning. 0 steps refers to base model, while 20000 steps corresponds the
most steps performed during this fine-tuning. The leftmost and rightmost violins
are the same as the left and right violins in (b), respectively. (d) Comparison be-
tween experimental data and model predictions before and after fine-tuning for three
different experimental conditions: Condition 1 (Lysate 1, 30 mM maltose, 4 mM
Mg2+, 5 nM DNA with POR1OR2 promoter), Condition 2 (Lysate 2, 30 mM 3PGA,
4 mM Mg2+, 10 nM DNA with POR1OR2 promoter), and Condition 3 (Lysate 3, 20
mM 3PGA, 0 mM Mg2+, 5 nM DNA with PT7 promoter).
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We found that the fine-tuning approach was very successful; the fine-tuned models
better minimized error between model simulations and experimental data, compared
to the base model where all parameters were used without further fine-tuning and
only the initial conditions of the model were changed to reflect those of the ex-
perimental data (Figure 3.1B, 3.2). This simple fine-tuning demonstrated that the
metabolism model’s architecture was sufficient to capture a broad range of endpoint
deGFP concentrations and dynamics (Figure 3.1D), from deGFP expression that
rapidly ceased at 5 hours to sustained deGFP expression that continued for 18 hours.
Equally importantly, we found that these models could often be fine-tuned in as few
as 250 steps and no more than 20000 steps, with model fit increasing as the number of
steps was increased (Figure 3.1C). Compared to Bayesian parameter inference of the
original model, which took 15000 steps during training, the fine-tuning performed
here required comparable or fewer steps (depending on how close of a model fit was
desired) and less computational time due to far fewer parameters being inferred.

Figure 3.2: Violin plots of log MASE values before and after fine-tuning model.
Each of the plots (a), (b), and (c) show data from different experiments. Each violin
represents the distribution of the following number of unique experimental condi-
tions: (a) 72 (2 lysate batches x 6 fuel concentration x 6 Mg2+ concentrations), (b)
36 (6 fuel concentration x 6 Mg2+ concentrations), and (c) 36 (6 fuel concentration
x 6 Mg2+ concentrations).
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Model can be adapted and fine-tuned to fit and predict multiple time trajectories
of new experimental data
We next explored whether the fine-tuning approach could be extended to a model
that was slightly different from the one it was originally trained on. In the previously
published data we used [25], we noticed a DNA saturation effect in CFPS systems,
such that after a certain concentration of DNA, deGFP endpoint yields would not
change with increasing DNA concentration. Furthermore, in some systems, addi-
tional DNA resulted in reduced deGFP yields, perhaps due to a resource competition
between transcription and translation. Both of these phenomena seemed to depend
heavily on the particular Mg2+ and 3PGA concentrations used for the set of exper-
iments. Our original CFPS model did not account for this effect, so we wondered
if the fine-tuning approach could be used as before, albeit with (1) a new reaction
propensity for deGFP expression and (2) when trying to fit multiple time trajectories
instead of a single time trajectory (Figure 3.3A).

For this new fine-tuning workflow, we first created a new model where we kept
Equations 3.1-3.3 the same and modified the reaction rate in Equation 3.4. The
updated reaction rate for the 𝐺

𝜌𝑒𝑥−−→ 𝐺+ GFP reaction was as shown below:

𝜌𝑒𝑥 (𝐺, 𝐸∗) = 𝑉𝑒𝑥
(𝐺/𝐾𝑚𝑖𝑛)𝑛𝑚𝑖𝑛

1 + (𝐺/𝐾𝑚𝑖𝑛)𝑛𝑚𝑖𝑛
· 1

1 + (𝐺/𝐾𝑚𝑎𝑥)𝑛𝑚𝑎𝑥
·

(𝐸∗/𝐾𝑒𝑥
𝐸
)𝑛𝑒𝑥

1 + (𝐸∗/𝐾𝑒𝑥
𝐸
)𝑛𝑒𝑥 (3.5)

In this new reaction rate, the dependence of protein expression on DNA concentra-
tion was much like a bandpass filter, where either too much or too little DNA would
result in no protein expression and where protein expression was optimized over a
range of DNA concentrations. In this new reaction rate, 𝐾𝑚𝑖𝑛 and 𝑛𝑚𝑖𝑛 determine
the minimum amount of DNA necessary for protein expression and the range over
which increasing DNA concentration would increase protein expression. Likewise,
𝐾𝑚𝑎𝑥 and 𝑛𝑚𝑎𝑥 determine the amount of DNA over which protein expression ceases
and the range over which increasing DNA concentration would decrease protein
expression.

Next, we re-inferred the same 4 parameters as before — 𝑉𝑒𝑥 , 𝐾𝑒𝑥𝐸 , 𝐾𝑊 , and 𝑛𝑊 —
and newly inferred 4 more parameters resulting from the new reaction propensity
— 𝐾𝑚𝑖𝑛, 𝐾𝑚𝑎𝑥 , 𝐾𝑚𝑎𝑥 , and 𝑛𝑚𝑎𝑥 . Finally, unlike before, where the fine-tuning was
performed separately for each unique time trajectory corresponding to a unique
experimental condition, we provided 5 time trajectories of deGFP expression corre-
sponding to 5 different DNA concentrations. We performed 36 different fine-tuning
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cases resulting from 36 combinations of Mg2+ and 3PGA concentrations (where all
other variables were kept the same).

As before, we found that the fine-tuning approach was successful; the fine-tuned
models better minimized error between model simulations and experimental data
compared to the base model (Figure 3.3B,C). The fine-tuned models were successful
at fitting a broad range of deGFP concentrations and dynamics (Figures 3.3B, 3.4) as
well as capturing nonintuitive trends, such as deGFP expression being maximized at
a DNA concentration that was not the highest used for that experiment (Figure 3.3B,
Condition 3). The experimental conditions where the fine-tuning did not work well
corresponded to experiments with initial conditions of low 3PGA and high Mg2+

concentrations, which resulted in biphasic protein expression that the model was
not capable of capturing (Figure 3.4). Even in the presence of unusual dynamics,
however, the model often succeeded at matching the endpoint deGFP yields obtained
for different initial concentrations of DNA (Figure 3.4).

The experimental mechanism behind biphasic protein expression remains uncertain,
but one possible hypothesis is that Mg2+ inhibits some crucial CFPS machinery (e.g.,
energy-regenerating enzyme phosphoglycerate kinase, ribosomes, etc.), and that a
downstream byproduct of 3PGA metabolism binds to Mg2+ and “rescues” CFPS.
Another hypothesis is that Mg2+ first binds to a product immediately downstream of
3PGA metabolism (e.g., ATP), and that this complex then inhibits CFPS machinery
until a metabolism product further downstream then binds to Mg2+ and “rescues”
CFPS; both hypotheses are weakly supported by existing experimental evidence [52].
Although we did not focus on biphasic protein expression in this work, future work
could explore whether a more complex CFPS model could model this phenomenon
and improve the fits of protein expression curves at low 3PGA and high Mg2+

concentrations.

To determine whether the model could not only fit data but also predict unseen data,
we next explored fine-tuning where the same experimental data was split into training
and test sets. Here, the fine-tuning was performed on training data only, after which
the test data was compared to model predictions for those experimental conditions.
Due to the reaction propensity of the protein expression reaction in Equation 3.5,
however, we could not simply randomize the assignment of data into training and
test sets. As mentioned above, deGFP yields first increased, then decreased, with
increasing DNA concentration in a CFPS system, with the relationship between
endpoint deGFP yields and initial DNA concentration resembling the shape of
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Figure 3.3: Fine-tuning a model with a modified reaction propensity. (a) Overview
of computational workflow. Four parameters (highlighted in orange) of the already
fitted base model were re-inferred and 4 parameters were newly inferred to better
fit the model to new experimental data. Multiple time trajectories corresponding to
various [DNA] for a given set of [3PGA] and [Mg2+] were provided for the fine-
tuning. (b) Comparison of experimental data (dark points, average of 3 replicates)
and model predictions (solid lines) after fine-tuning for 3 different experimental
conditions: 5 mM 3PGA and 0 mM Mg2+ (Condition 1), 45 mM 3PGA and 0 mM
Mg2+ (Condition 2), and 20 mM 3PGA and 6 mM Mg2+ (Condition 3). (c) Violin
plots of log MASE values (see Methods) before and after fine-tuning the model on
new data. Each violin represents a distribution of 180 MASE values (5 [DNA] x 6
[3PGA] x 6 [Mg2+]). For each of 36 fine-tuning cases, all 5 time trajectories’ data
(corresponding to DNA concentrations of 1 nM, 2.5 nM, 5 nM, 7.5 nM, and 10 nM
for a particular set of [3PGA] and [Mg2+]) were provided as both training data and
test data. (d) The violins correspond to MASE values where the training and test
data were split. For each violin, data corresponding to the following [DNA] was
used for the test set (and withheld in the training set) for each set of 3PGA and Mg2+

concentrations: 5 nM DNA (left violin); 2.5 nM DNA and 7.5 nM DNA (middle
violin); and 2.5 nM, 5 nM, and 7.5 nM DNA (right violin).
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Figure 3.4: Comparison of model prediction and experimental data after fine-tuning
as shown in Figure 3.3 and using training data as test data. For each of 36 fine-
tuning cases, all 5 time trajectories’ data (corresponding to DNA concentrations of
1 nM, 2.5 nM, 5 nM, 7.5 nM, and 10 nM for a particular set of 3PGA and Mg2+

concentrations) were provided as training data and as test data. Darker points are
experimental data; lighter lines of the same color are model predictions.

a bandpass filter. Thus, providing concentrations on the ends of the range of
concentrations used (i.e., 1 nM and 10 nM DNA) was necessary to ensure the shape
of the function could be maintained.

Thus, we split the data into training and test sets in the following manner. For each
fine-tuning case, we first reserved the time-course deGFP dynamics corresponding
to 5 nM DNA for the test set, and used the remaining 4 DNA concentrations’ data (1
nM, 2.5 nM, 7.5 nM, and 10 nM) for the training data used during fine-tuning. We
next repeated this procedure, albeit using data corresponding to 2.5 nM and 7.5 nM
DNA for the test set, and using the remaining 3 DNA concentrations’ data (1 nM, 5
nM, and 10 nM DNA) for the training set. Finally, we repeated this procedure again,
albeit using the data corresponding to 2.5 nM, 5 nM, and 7.5 nM DNA for the test
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set, and using the remaining 2 DNA concentrations’ data (1 nM and 10 nM DNA)
for the training set. The error between model prediction and experimental data for
the test sets are shown in Figure 3.3D (see Figure S3.1 for comparison between
Figure 3.3C and Figure 3.3D).

We found that fine-tuned models were generally successfully at capturing the shapes
of the deGFP time-course dynamics, although they often struggled to recapitulate
the exact concentrations achieved experimentally (Figure S3.2-S3.4, compared to
Figure 3.4). This issue was exacerbated, as expected, when less data was provided
in the training set. It is worth noting that the fine-tuned models were surprisingly
successful at qualitatively predicting some phenomena, including no deGFP expres-
sion in a TX-TL system with 2.5 nM DNA (Figure S3.3, at 45 mM 3PGA and 0
mM Mg2+), relatively high deGFP expression with a different TX-TL system with
2.5 nM DNA compared to other DNA concentrations (Figure S3.3, at 5 mM 3PGA
and 2 mM Mg2+), and comparable deGFP expression in systems with 7.5 nM and
10 nM DNA (Figure S3.4, at 45 mM 3PGA and 10 mM Mg2+).

Adapted and fine-tuned model can be used to gain novel experimental insights
Having confirmed that the fine-tuning approach was successful at fitting and predict-
ing deGFP protein expression dynamics, we next wondered whether the fine-tuning
approach could be used to gain experimental insights in a novel experimental sys-
tem. The study whose data we were using for fine-tuning had found a compensatory
interaction between Mg2+ and 3PGA in CFPS systems, where too much of either
component reduced protein yields, but enough of both was sufficient to revive protein
expression [25]. We wondered if our model could be adapted and our fine-tuning
approach applied to qualitatively model and explore causes for this phenomenon.

For this new fine-tuning workflow, we first created a new model where we kept
Equations 3.1-3.3 the same and modified the reaction rate in Equation 3.4. The
updated reaction rate for the 𝐺

𝜌𝑒𝑥−−→ 𝐺 + 𝐺𝐹𝑃 reaction was as shown below:

𝜌𝑒𝑥 (𝐺, 𝐸∗) = 𝑉𝑒𝑥
(𝐸∗/𝐾𝑒𝑥

𝐸
)𝑛𝑒𝑥

1 + (𝐸∗/𝐾𝑒𝑥
𝐸
)𝑛𝑒𝑥 · 1

1 + (𝐵/𝐾𝐵)𝑛𝐵
(3.6)

We also added an additional reversible reaction, shown below as two separate
reactions:

𝐵 + 4𝑊
𝜌𝑐ℎ𝑒𝑙
𝑊,𝐹−−−−→ 𝑋 𝜌𝑐ℎ𝑒𝑙𝑊,𝐹 (𝐵,𝑊) = 𝑉 𝑐ℎ𝑒𝑙𝑊,𝐹 𝐵𝑊

4 (3.7)

𝑋
𝜌𝑐ℎ𝑒𝑙
𝑊,𝑅−−−−→ 𝐵 + 4𝑊 𝜌𝑐ℎ𝑒𝑙𝑊,𝐹 (𝑋) = 𝑉

𝑐ℎ𝑒𝑙
𝑅,𝐹 𝑋 (3.8)
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In this new model, consisting of Equations 3.1-3.3 and 3.6-3.8, Mg2+ was added as
a new species 𝐵. We also modified our protein expression reaction to account for
the inhibitory effects of Mg2+ on deGFP expression, and added a reversible reaction
for binding of Mg2+ to waste in the model (Figure 3.5A). The binding ratio of one
molecule of Mg2+ to four waste molecules was chosen based on a visual inspection
of the experimental data; other binding ratios were tried but resulted in worse model
fits.

Next, we re-inferred the same 4 parameters as in Figure 3.1 —𝑉𝑒𝑥 , 𝐾𝑒𝑥𝐸 , 𝐾𝑊 , and 𝑛𝑊
— and newly inferred 4 more parameters resulting from the new reaction propensity
and new reactions added to the model —𝐾𝐵, 𝑛𝐵, 𝑉 𝑐ℎ𝑒𝑙

𝑊,𝐹
, and 𝑉 𝑐ℎ𝑒𝑙

𝑊,𝑅
(Figure 3.5A).

Unlike the previous fine-tuning case, however, where we fine-tuned separately for
small sets of experimental data, for each of two fine-tuning cases, we provided 36
time trajectories of deGFP expression corresponding to 6 different 3PGA concen-
trations and 6 different Mg2+ concentrations, where other conditions were kept the
same.

We found that while our fine-tuning approach did not do well quantitatively, it
captured the experimentally observed deGFP dynamics qualitatively at low 3PGA
concentrations (Figures S3.5, S3.6). The model also captured the same general
endpoint trends in deGFP yields as observed experimentally (Figure 3.5B,C) in the
previously published study [25].

By modeling species not measured experimentally, we were also able to glean
some new experimental insights. First, we noticed that the two batches of cell
lysate, whose deGFP dynamics were used to parameterize the model separately
during their respective fine-tunings, metabolized fuel at different rates, with Lysate
Batch 2 metabolizing fuel slower and generating waste slower than Lysate Batch 1
(Figures S3.7, S3.8). Meanwhile, however, energy concentrations were consistent
across the two batches of lysate. This seemed to suggest that the higher deGFP yields
observed in Lysate Batch 2 were due to lower waste generation rather than improved
energy regeneration, which is consistent with our original hypothesis that waste
generation limits protein expression to a greater extent than energy regeneration.

Second, our model simulations also suggested the Mg2+-W binding reaction had
a fast reaction rate (Figures S3.7, S3.8). This is consistent with a previous paper
that found that Mg2+ had to be repeatedly titrated into a CFPS reaction, rather than
added in a high amount all at once, to improve protein expression yields, since
adding too much Mg2+ at once inhibited protein expression [53]. Finally, the model
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Figure 3.5: Fine-tuning a model with an additional reaction. (a) Overview of
computational workflow. Four parameters of the already fitted base model — 𝑉𝑒𝑥 ,
𝐾𝑒𝑥
𝐸

, 𝐾𝑊 , and 𝑛𝑊 — were re-inferred and four parameters — 𝐾𝐵, 𝑛𝐵, 𝑉 𝑐ℎ𝑒𝑙
𝑊,𝐹

, and
𝑉 𝑐ℎ𝑒𝑙
𝑊,𝑅

— were newly inferred to better fit the model to new experimental data. 36
deGFP time trajectories corresponding to 36 sets of 3PGA and Mg2+ concentrations
were provided for the fine-tuning for each of the two fine-tuning cases. (b) and
(c) show endpoint deGFP comparisons between experimental data and model fit
after fine-tuning for Lysate Batches 1 and 2 from the experimental data previously
published [25].

simulations suggested that adding additional fuel above 15-20 mM 3PGA to a CFPS
reaction does not appreciably increase the concentration of energy available in the
system (Figures S3.7, S3.8). This is consistent with the data shown in Figure 5.2 of
the work by Poole and co-workers [39], where they also found that the addition of
3PGA to a CFPS system with 30 mM 3PGA did not improve deGFP yields, and with
a previous paper that suggested that most of the energy regenerated during CFPS is
diverted towards metabolic pathways competing with CFPS for energy [25].

3.3 Discussion
Building accurate and generalizable CFPS models that can be readily trained with
an easily obtained experimental dataset is an essential step towards predicting the
performance of more complex cell-free biomolecular programs, especially when
the combinatorial search space of experimental regimes is too large to be traversed.
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Many existing CFPS models are difficult to parameterize and/or adapt to new exper-
imental contexts, which is a challenge for engineering efforts aimed at combining
or expanding existing biomolecular programs.

Our approach demonstrates a novel modeling strategy where we fine-tuned an ex-
isting coarse-grained metabolism model to fit and predict new protein expression in
new experimental contexts. This methodology is similar to the approach taken in
a previous work where parameter non-identifiability was exploited in order to cor-
rect for batch effects in cell lysates [51]. Our approach is also inspired by modern
machine learning methods; foundation models, both in biological applications and
more broadly, typically consist of a deep learning model trained on large data sets
which are then frequently fine-tuned on more specialized datasets in order to per-
form specific tasks [40–43]. In biology, these large data sets can include omics data
(transcriptomics, genomics, metabolomics, etc.), language data (from the Internet
and other sources), and even images.

We have adapted this approach to use an interpretable mechanistic model fit to a
carefully constructed panel of CFPS time-coarse data and then fine-tuned to model
various CFPS conditions. As our models are simple and mechanistic, we can use
our model to provide experimental insights in addition to predictability, a capability
not typically possible with “black box” deep learning models. In the example
shown in Figure 3.3, we show that model can be readily adapted to fit and predict
protein expression dynamics previously unseen in the original training data. In the
example shown in Figure 3.5, we show that this model can additionally be used to
gain experimental insights into cell-free metabolism and guide future experimental
efforts aimed at characterizing and improving cell-free metabolism to benefit CFPS.

While addressing a critical gap in the field, our work raises some interesting ques-
tions. First, how exactly does the fine-tuning approach work “under the hood,” as
in how do the prior distributions of parameters (supplied by the Poole model) affect
the posterior distributions of parameters obtained after the fine-tuning? One pos-
sibility is that the prior distributions provide a good starting point for fine-tuning,
so that parameters for a new experimental context are in the close vicinity of the
old parameters and can be easily found. Another possibility is that the prior dis-
tributions are sufficiently broad, so that parameters for a new experimental context
are found in a subregion of that broad parameter space. As multiple parameters are
being inferred during the fine-tuning, it is also possible that a combination of these
scenarios is true. Future work — both theoretical and computational — aimed at
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investigating the relationship between the Poole model’s posterior distributions and
the fine-tuned models’ posterior distributions can help shed insight on whether the
fine-tuning approach is always effective, and if not, highlight the failure modes of
the fine-tuning approach.

This work also raises another question: how effective will the fine-tuning approach
actually be for creating predictive models of more complex biomolecular programs?
This work has demonstrated the first few steps towards answering that question
— demonstrating that the metabolism model is sufficiently expressive and readily
adaptable — but, just like the work by Poole and co-workers, focuses exclusively on
the constitutive expression of a single fluorescent molecule, deGFP. We suspect that
building a model based on Poole’s metabolism model with subsequent fine-tuning
will be a better approach than using existing CFPS models, due to the ease of fine-
tuning and the addition of the effects of metabolism on CFPS. However, this does
not necessarily mean the approach will be sufficient for adapting the model in more
complex scenarios; for example, additional parameters may need to be fine-tuned to
more accurately capture the effects of metabolism on CFPS. Future work aimed at
exploring how well our approach works for more complex biomolecular programs
should help shed insight on the generalizability of our approach.

By providing computational frameworks that can be used to model protein expression
dynamics in the presence of metabolic complexity, this work provides a new tool
for understanding the interplay between cell-free metabolism and CFPS. Ultimately,
this work forms a solid step towards improving the predictability of CFPS systems,
which will be necessary for future cell-free applications aimed at building complex
systems, from multi-layered biological circuits to synthetic biological cells.

3.4 Materials and methods
Model recalibration
Fine-tuning was performed by first creating a model parameterized by the mean
values of parameters of the top 100 parameter sets (as measured by parameter
sets that resulted in the lowest error between model simulation and experimental
data) from the posterior distribution of the Bayesian inference performed on the
data shown in Figure 5.2 in the work by Poole and co-workers [39]. Next, any
modifications to model propensities or new reactions were added to the model
where applicable, with parameters for those additions hand-tuned to give the model
a good starting point. Finally, the indicated parameters were then inferred/re-
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inferred by performing Bayesian inference with 100 walkers and a variable number
of steps: 20000 steps for the fine-tuning described in Figure 3.1, 50000 steps for the
fine-tuning described in Figure 3.3, and 50000 steps for the fine-tuning described
in Figure 3.5. As in the case of the original model, models were produced using
BioCRNpyler [54], saved as SBML files [55], and then loaded into Bioscrape [56]
for inference. Bayesian parameter inference was performed on Caltech’s Resnick
High-Performance Computing (HPC) cluster using 24 cores and 4 GiB RAM/core.
All code is available on GitHub at the following link:

https://github.com/mkapasiawala/cellfree_metabolomics_modeling_finetuning.

Mean Average Scaled Error (MASE) plots
For figures where a MASE value was computed, the following approach was used.
First, for each unique experimental condition, the model was simulated using the
same initial conditions of model species (fuel (𝐹), DNA (𝐺), and NTP (𝐸) con-
centrations) as those used in the experiment. Next, the percentage error between
experimental data (averaged over 3 replicates) and model prediction was computed
at each timepoint. Next, the mean value of these errors was computed to create a
single MASE value. Finally, the distribution of MASE values corresponding to a
given set of experimental conditions/data was displayed using a violin plot.
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3.5 Supporting information

Figure S3.1: Violin plots of log MASE values corresponding to fine-tuning model
shown in Figure 3.3a on differentially sized training/test sets. The pink (left)
violin corresponds to MASE values of all 180 experimental conditions (5 DNA
concentrations x 6 3PGA concentrations x 6 Mg2+ concentrations); for each of 36
fine-tuning cases, all 5 time trajectories’ data (corresponding to DNA concentrations
of 1 nM, 2.5 nM, 5 nM, 7.5 nM, and 10 nM for a particular set of 3PGA and Mg2+

concentrations) were provided as training data and as test data. The pink violin is
the same as shown in Figure 3.3b. The blue violins correspond to MASE values
where the training and test data were split. In the second violin, for each of the
36 fine-tunings, data corresponding to DNA concentrations of 1 nM, 2.5 nM, 7.5
nM, and 10 nM were provided as training data, and the data corresponding to 5 nM
DNA for the same set of 3PGA and Mg2+ concentrations were provided as test data.
Likewise, in the third violin, for each of the 36 fine-tunings, data corresponding to
DNA concentrations of 1 nM, 5 nM, and 10 nM were provided as training data, and
the data corresponding to 2.5 nM DNA and 7.5 nM DNA for the same set of 3PGA
and Mg2+ concentrations were provided as test data. Finally, in the last violin, for
each of the 36 fine-tunings, data corresponding to DNA concentrations of 1 nM and
10 nM were provided as training data, and the data corresponding to 2.5 nM DNA,
5 nM DNA, and 7.5 nM DNA for the same set of 3PGA and Mg2+ concentrations
were provided as test data.
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Figure S3.2: Comparison of model prediction and experimental data after fine-
tuning as shown in Figure 3.3 and using 4 time trajectories as training data. For each
of the 36 fine-tunings, data corresponding to DNA concentrations of 1 nM, 2.5 nM,
7.5 nM, and 10 nM were provided as training data, and the data corresponding to 5
nM DNA for the same set of 3PGA and Mg2+ concentrations were provided as test
data (yellow lines). Darker points are experimental data; lighter lines of the same
color are model predictions.
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Figure S3.3: Comparison of model prediction and experimental data after fine-
tuning as shown in Figure 3.3 and using 3 time trajectories as training data. For
each of the 36 fine-tunings, data corresponding to DNA concentrations of 1 nM, 5
nM, and 10 nM were provided as training data, and the data corresponding to 2.5
nM DNA and 7.5 nM DNA for the same set of 3PGA and Mg2+ concentrations were
provided as test data (green and blue lines). Darker points are experimental data;
lighter lines of the same color are model predictions.
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Figure S3.4: Comparison of model prediction and experimental data after fine-
tuning as shown in Figure 3.3 and using 2 time trajectories as training data. For each
of the 36 fine-tunings, data corresponding to DNA concentrations of 1 nM and 10
nM were provided as training data, and the data corresponding to 2.5 nM DNA, 5
nM DNA, and 7.5 nM DNA for the same set of 3PGA and Mg2+ concentrations were
provided as test data (yellow, green, and blue lines). Darker points are experimental
data; lighter lines of the same color are model predictions. Darker points are
experimental data; lighter lines of the same color are model predictions.
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Figure S3.5: Comparison of model prediction and experimental data after fine-
tuning as shown in Figure 3.5 and using all 36 time trajectories as training data for
Lysate Batch 1 from a previously published study [25].

Figure S3.6: Comparison of model prediction and experimental data after fine-
tuning as shown in Figure 3.5 and using all 36 time trajectories as training data for
Lysate Batch 2 from a previously published study [25].
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Figure S3.7: Modeling unmeasured species after fine-tuning as shown in Figure 3.5
for Lysate Batch 1 from a previously published study [25]. A single model was
trained and parameterized for the 36 experimental conditions shown in the plot. The
Mg-W complex species is the same as species X in Figure 3.5A.
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Figure S3.8: Modeling unmeasured species after fine-tuning as shown in Figure 3.5
for Lysate Batch 2 from a previously published study [25]. A single model was
trained and parameterized for the 36 experimental conditions shown in the plot. The
Mg-W complex species is the same as species X in Figure 3.5A.
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Additional supporting information
Additional supporting information includes all data and code used for analysis and
figure generation. These are available on GitHub at the following link:

https://github.com/mkapasiawala/cellfree_metabolomics_modeling_finetuning.
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C h a p t e r 4

TOWARDS AN ATP SYNTHASE-POWERED
PROTOFLAGELLUM FOR SYNTHETIC CELL MOTILITY

4.1 Introduction
Motility is a hallmark of cellular life. In many multicellular organisms, cell motility
enables complex processes like morphogenesis, growth, wound healing, and repro-
duction [1, 2]. In unicellular organisms, motility is essential for survival, allowing
an organism to traverse its environment to search for food, escape predators, seek
microbial communities, exchange genetic information, and reproduce [2]. Unicel-
lular organisms lacking motility can be found in nutrient-rich environments, like K.
pneumoniae in soil, or have adapted to take advantage of their environments, such as
diatoms propelled by ocean currents [3, 4]. In humans, cell motility plays important
in roles in cancer, pathogenicity, and the immune response [5, 6].

Inspired by the prevalence and implications of cell motility, several efforts have been
made towards engineering microswimmers for novel applications. Recent examples
include a DNA origami nanorobot programmed to find tumors and subsequently
release a drug payload in mice, magnetic helical microswimmers functionalized
with pDNA on their surfaces for gene delivery, and optimizing oil-eating marine
bacterium A. borkumensis for improved degradation of hydrocarbons during oil
spills [7, 8]. Given the need for biocompatibility in many of these applications,
several studies have focused on engineering microorganisms, due to their abilities to
carry cargo, process signals from environmental inputs, and make complex decisions
in response to those signals [9, 10]. However, using microorganisms comes with its
own set of challenges, including lack of predictability, arising from crosstalk among
native and engineered cell components, and major safety and efficacy concerns,
including the potential for microorganisms to rapidly mutate and become non-
functional, invasive, or even pathogenic [9, 10].

Seeking the advantages of microbial microswimmers while addressing these chal-
lenges, synthetic biology has aimed to construct motility in synthetic cells [11].
Synthetic cells, built from the bottom up from individual biological components,
are microscopic compartments encapsulating a mixture that enables a biomolecular
program. In the simplest case, synthetic cells are liposomes, bounded by a phos-
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pholipid bilayer and containing an aqueous solution; however, other biological/non-
biological boundaries and inner solutions have been deployed. Ultimately, the field
of synthetic cell research aims to understand the origins and limits of life, gain in-
sight into existing biological systems, and even engineer life from scratch [12]. Past
work has focused on reconstituting many functions of living cells in synthetic cells,
including transcription and translation (TX-TL), DNA replication, metabolism, cell
division, biochemical sensing, membrane transport, and more [12].

Many previous efforts have focused on engineering motility in synthetic cells; these
efforts have ranged from bio-inspired design to novel motility mechanisms [11, 13].
In one study, the authors extracted the flagellar filaments of Chlamydomonas rein-
hardtii and by directly reattaching the filaments to microbeads and liposomes (the
latter via a biotin-streptavidin system), demonstrated ATP-driven motion of these
flagellate micro-objects [14]. Several other studies have described non-flagellar
motion of liposomes, self-propelled by processes such as phototaxis [15], ion ex-
change [16], and osmosis [17]. In another study, the authors demonstrated tumbling
motility of a liposome along a patterned surface [18].

While each of these studies have shown directed motion of liposomes, the need for a
precisely controlled motility environment in each of these experiments underscores
the need for a self-contained actuation system, where velocity and direction of
motility are governed predictably by separate mechanisms and where direction can
be controlled by desired inputs. Here, we describe efforts made towards constructing
a new motility mechanism in synthetic cells: an artificial “proto-flagellum.”

4.2 Experimental design
Cells move using one of many different mechanisms [19, 20]. Flagella, one of
the most widespread motility mechanisms, are tail-like appendages that propel the
cell by (1) rotation of a filament attached to a rotary motor or (2) active beating of
the flagellum induced by the action of motor proteins along the flagellum. Cilia,
another motility mechanism, consist of hundreds or thousands of small hairlike
membrane protrusions on the exterior of a cell whose beating induces movement
of eukaryotic cells. Meanwhile, unicellular organisms belonging to the phylum
Spirochaetes or the genus Spiroplasma have a helical morphology that allows them
to move by twisting. Cells using amoeboid movement can crawl along a surface by
extending their cytoplasm along a surface to form psuedopodia or uropods “false
feet”); amoeboid movement also includes gliding and non-flagellar swimming as
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motility mechanisms. Beyond these mechanisms, additional motility mechanisms
include twitching and non-amoeboid gliding motility, among others [19].

Perhaps the best studied example is flagellar motility in E. coli, which are propelled
by a proton-powered rotor that drive rotation of long protein filaments. In E. coli,
these filaments bundle together and rotate at a rotational speed of about 130 Hz,
enabling the cell to swim at a translational speed of about 25 µm/s [20]. The E. coli
flagellum would be extremely challenging to functionally reconstitute in a synthetic
cell; recent efforts have only been able to reproduce assembly of a bacterial flagellum
starting from partially complete structures, and it remains unknown whether the
flagellum produced was functional [21]. However, these efforts provide a blueprint
for generating a flagellum-inspired motility mechanism consisting of an alternative
rotary engine fused to protein filaments that act as external propellers (Figure 4.1).

Figure 4.1: Synthetic cell powered by an ATP
synthase-based proto-flagellum.

In our design, we chose a sim-
pler rotary motor, E. coli 𝐹1𝐹𝑂

ATP synthase, a membrane pro-
tein complex central to energy
metabolism [22]. In the pro-
posed design (Figure 4.1), lipo-
somes would be co-reconstituted
with a proton pump and ATP syn-
thase. The proton pump would cre-
ate the transmembrane pH gradient
necessary for ATP synthase rota-
tion. This would drive the helical
rotation of an actin filament, bound to the ATP synthase via a streptavidin-biotin
complex, and subsequent propulsion of the liposome.

Three different experimental approaches were considered for implementing the
proposed design: reconstitution of existing actuation complexes, reconstitution of
modified actuation complexes, and in vesicle expression of membrane proteins.

Approach 1: simple reconstitution of functional actuation complexes
In this first approach, the proposed design (Figure 4.1) would be implemented as is,
by simply putting together two individually working systems described previously
in the literature: (1) proteoliposomes co-reconstituted with proton pumps and ATP
synthase, and (2) rotation of actin filaments bound to ATP synthase (Figure 4.2).



94

Figure 4.2: Building blocks for an ATP synthase-based protoflagellum. (a) A
proteoliposome co-reconstituted with a proton pump and ATP synthase. (b) Rotation
of an actin filament covalently attached to a coverslip-bound ATP synthase.

Many prior studies have described the purification and co-reconstitution of ATP syn-
thase and proton pumps, such as bacteriorhodopsin and bo3 oxidase, into liposome
membranes [11]. The resulting proteoliposomes produced ATP either continuously,
with bo3 oxidase (with the appropriate chemical substrates present), or inducibly,
with bacteriorhodopsin (which pumps protons upon illumination by green light).

Many studies have also described the successful rotation of actin filaments covalently
attached to coverslip-bound ATP synthase [23–25]. In these experiments, ATP
synthase was His6x-tagged on one end and bound to a coverslip coated with Ni-NTA
resin, a substrate that is commonly used in the purification of His6x-tagged proteins.
The otherwise cysteine-less ATP synthase had cysteine residues on a protein subunit
on the opposite end of the complex, allowing for the covalent attachment of biotin
maleimide. The subsequent sequential addition of streptavidin and a biotinylated
actin filament resulted in an ATP synthase with an attached actin filament. Upon the
addition of ATP, the resulting ATP hydrolysis caused rotation of the ATP synthase,
and thus rotation of the bound actin filament, as observed under microscopy.

The simplest assembly of an ATP synthase-based protoflagellum would consist
of incubating proteoliposomes with biotinylated actin filaments. The streptavidin
and biotin maleimide could be incubated with either the proteoliposomes before
their incubation with the biotinylated actin filaments, or with the latter before their
incubation with the former. Depending on whether the proton pump used is bacte-
riorhodopsin or bo3 oxidase, subsequent illumination by green light or addition of
ubiquinone Q1 and DTT, respectively, would drive synthetic cell motility.

While this approach is the simplest of the three discussed here, its efficiency is
severely limited by the orientation of the reconstituted membrane proteins. Mem-
brane proteins usually have a preferred orientation during insertion, and the desired
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orientation for both the proton pumps and ATP synthase as shown in Figure 4.1
is only achieved about 10-30% of the time, per protein [26]. This is especially
problematic because membrane proteins that are oriented the wrong way can undo
the proton gradient required for ATP synthase rotation. While various methods
have been employed to manipulate the orientations of membrane proteins, whether
by using charged lipids or different detergents during reconstitution, these methods
have only improved efficiency of the opposite orientation, as that orientation is the
preferred one used for membrane protein assays and energy regeneration modules
[27, 28]. Thus, while we attempted to implement this approach, we also considered
two additional approaches towards creating an ATP synthase-based protoflagellum.

Approach 2: reconstitution of modified actuation complexes
Since achieving the desired orientation of the proton pump and ATP synthase, shown
in Figure 4.1, is difficult, an alternative strategy is to use the preferred orientation of
the membrane proteins as an experimental advantage. Understanding this approach
requires a brief introduction to the structure and function of ATP synthase.

Figure 4.3: 𝐹1𝐹𝑂 ATP synthase structure.

As mentioned previously, ATP synthase
is a protein complex central to energy
metabolism. The bacterial 𝐹1𝐹𝑂 ATP
synthase consists of a total of 20-25
membrane protein subunits that assem-
ble to form a complex with motors: the
𝐹𝑂 motor, located in transmembrane re-
gion, and the 𝐹1 motor, located in the
cytoplasm (Figure 4.3). The 𝐹𝑂 motor
can use a transmembrane proton gradi-
ent to catalyze the production of ATP

from ADP and 𝑃𝑖, while the 𝐹1 motor can use ATP hydrolysis to pump protons
outside the cytoplasm and into the intermembrane space, i.e., between the inner
and outer membranes [29]. In the case of the former, torque is generated from the
rotation of the c-ring, while in the case of the latter, torque is generated from the
rotation of the 𝛾 shaft.

A previous study found that the two motors, while coupled, function independently;
notably, a functional 𝐹𝑂 complex can be assembled in vivo even in the absence of
the 𝛼, 𝛽, 𝜖 , and 𝛾 subunits [30]. This raises an interesting possibility: could we
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create an ATP synthase-powered protoflagellum using a modified ATP synthase,
specifically one lacking its 𝛼 and 𝛽 subunits? The advantage of this approach is
that the orientations of the membrane proteins do not need to be changed; an actin
filament could simply be attached to the now-exposed 𝛾 shaft and rotate upon the
generation of a transmembrane proton gradient (Figure 4.4).

Figure 4.4: Synthetic cell powered by a modi-
fied ATP synthase-based proto-flagellum. The
𝛼, 𝛽, and 𝛿 subunits have been removed.

This approach would require more
effort than Approach 1, since some
molecular cloning is required to
generate plasmids encoding the
ATP synthase variants. An even
greater hurdle is the expression and
purification of these variants from
E. coli; the modified ATP synthase
complexes would likely dissipate
the proton gradients normally main-
tained in these cells and thus reduce
the viability of the cells express-
ing the variants. To mitigate these
growth effects, several variants can be explored, each with different subunits absent
from the protein complex (Figure 4.5).

While molecular cloning was used to make the ATP synthase variants, downstream
bottlenecks encouraged us to prioritize our efforts towards other parts of the project.

Figure 4.5: 𝐹1𝐹𝑂 ATP synthase variants that can used as part of a protoflagellar
complex. (a) Variant with 𝛼 and 𝛽 subunits removed to expose the rotating 𝛾 subunit.
(b) Variant (a) but with 𝛿 subunit removed to prevent any possible interference with
the rotation of an attached actin filament. (c) Variant with 𝛿 subunit, to see if absence
of 𝛿 subunit enables the rotation of the 𝛼/𝛽 ring.
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Approach 3: in vesicle expression of membrane proteins

Figure 4.6: Synthetic cell containing
TX-TL machinery and plasmids for
in vesicle expression of ATP synthase
and a proton pump.

An alternative strategy towards mitigating
the membrane protein orientation issue in
Approach 1 is the in vesicle expression of
both the ATP synthase and the proton pump.
Previous studies have demonstrated the cell-
free expression and assembly of ATP syn-
thase and bacteriorhodopsin [28, 31]. Using
synthetic cells encapsulating transcription
and translation (TX-TL) machinery, along
with plasmids encoding the expression of
ATP synthase and either bacteriorhodopsin
or bo3 oxidase, would enable the insertion
of the membrane complexes in the correct
orientation. Once proteoliposomes have
been constructed, actin filaments could be
attached as described in the sections above,
by incubating proteoliposomes successively with biotin maleimide, streptavidin, and
biotinylated actin filaments. If this strategy is successful, one could also express
actin monomers via the TX-TL system inside the liposome and export them outside
the synthetic cell using export machinery such as the Twin-Arginine Translocation
(Tat) protein export pathway [32], to make a fully self-assembled actuation complex.

4.3 Results
As the various experimental approaches share many of the same experimental mile-
stones, this project mostly focused on building and testing individual components
of the protoflagellar system.

ATP synthase expression, purification, and reconstitution
The first milestone of this project was the expression, purification, and reconstitution
of ATP synthase, which cannot be readily purchased. More details regarding the
protocol can be found in the Materials and methods section.

For expression of ATP synthase, E. coli DK8, a strain with a genome deletion of the
unc operon encoding for ATP synthase, was used. This strain was transformed with a
plasmid pBH2 containing the unc operon encoding for a cysteine-less ATP synthase
variant with a His6x tag. Expression and affinity purification of ATP synthase was
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performed according to a recently published protocol [33]. An SDS-PAGE gel of
the purified complex revealed that all of the subunits were present in the complex,
at roughly the correct positions on the gel with respect to the ladder (Figure 4.7a).

Figure 4.7: ATP synthase expression, purification, and reconstitution. (a) SDS-
PAGE gel showing bands for each of the subunits in the purified ATP synthase
complex. (b) ACMA quenching assay. (c) Results of the ACMA quenching assay.

To verify that the purified ATP synthase was functional, an ACMA (9-amino-6-
chloro-2-methoxyacridine) quenching assay was used, as previously described [33].
Briefly, ACMA is a fluorescent, membrane-permeable small molecule that can
be reversibly quenched by protons. In its quenched state, ACMA cannot cross a
lipid membrane. Proteoliposomes reconstituted with ATP synthase begin pumping
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protons into the liposome upon the addition of ATP to the bulk liposome solution. In
the presence of ACMA, protons in the liposome lumen rapidly quench and trap any
ACMA inside the liposome. This results in a fluorescence drop that can be measured
using a spectrofluorometer or plate reader (in our case, a BioTek Synergy H1 plate
reader). As a control, ATP synthase inhibitor DCCD (dicyclohexylcarbodiimide)
can be added, to ensure that any observed fluorescence drop is due to ATP synthase
activityy (Figure 4.7b).

In our case, ATP synthase was first reconstituted into 100 nm liposomes made of
the lipids DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) and Lissamine Rho-
damine B DHPE (1,2-Dihexadecanoyl-sn-Glycero-3-Phosphoethanolamine) to form
proteoliposomes, using the aforementioned protocol [33]. As seen in the results of
this assay (Figure 4.7c), only proteoliposomes to which ATP was added and DCCD
was not had a large fluorescence drop. Proteoliposomes to which DCCD was added,
or to which water was added in place of ATP, did not have a fluorescence drop,
nor did liposomes lacking ATP synthase. Having verified that we could express,
purify, and functionally reconstitute ATP synthase, we moved on to other parts of
the actuation complex.

Actin polymerization and attachment to proteoliposomes
A key part of the protoflagellar complex is an attached filament whose rotation drives
motility of the liposome. To this end, we first polymerized fluorescently labeled
and biotinylated rabbit muscle actin. We next attached them to silanized coverslips
coated with anti-biotin antibody, based on a modified version of an existing protocol
[34]. Finally, we imaged the actin under TIRF microscopy, a method used to
image samples within 100nm of a coverslip. Microscopy showed that the actin was
polymerized successfully (Figure 4.8).

To determine whether actin filaments could selectively bind to ATP synthase on
liposomes, we next sequentially incubated proteoliposomes with biotin anti-His6x,
streptavidin, and finally biotinylated, fluorescent actin filaments (Figure 4.9a). It is
important to note here that the orientation of ATP synthase is the opposite of the
desired orientation; here we simply wanted to test whether actin filaments bound
to proteoliposomes would be visible under a microscope. While the antibody
incubation process resulted in liposome clumping, we were able to observe actin
filaments bound only to proteoliposomes and not to control liposomes (Figure 4.9b),
although the phenotype was observed at a rate of roughly 5 bound actin filaments
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Figure 4.8: Actin attachment to silanzed coverslips. (a) Schematic for the attachment
of actin filaments to silanized coverslips. (b) TIRF microscopy of actin filaments.

per 1000 proteoliposomes.

Figure 4.9: Actin attachment to proteoliposomes. (a) Schematic for the attachment
of actin filaments to proteoliposomes. (b) Confocal microscope image of actin
filament attached to a cluster of proteoliposomes.

This low rate of success is a concern because if the rate of actin filament attachment
is low, finding and characterizing motile synthetic cells upon construction of a
complete actuation complex may be difficult or close to impossible. Efforts to
increase this phenotype were unsuccessful.

Another relevant issue we encountered is that proteoliposomes subjected to the
antibody-attachment protocol demonstrated no ATP hydrolysis activity (data not
shown). This was likely due to the combination of liposome clumping and the
prolonged exposure to protein destabilizing conditions resulting from prolonged
incubation at the non-freezing temperatures required for antibody binding.

Rotation of actin filaments attached to coverslip-bound ATP synthase
A key milestone necessary en route to the proposed protoflagellar complex is the
observed rotation of actin filaments attached to coverslip-bound ATP synthase (Fig-
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ure 4.2b). We attempted to replicate the results of previous studies [23–25]. While
we were able to achieve the binding of actin filaments to coverslip bound ATP
synthase, as indicated by the rotational pivoting of actin filaments around a central
point (Figure 4.10), we were unable to observe the repeated, rapid rotations reported
in the literature.

Figure 4.10: Rotation of actin filament attached to ATP synthase-bound coverslip
(from top-left to bottom-right). 1.5 counterclockwise rotations were observed over
a span of 30 seconds.

Coupled with the difficulty of finding actin filaments that rotated at all, as well as
rapid photobleaching of the actin filaments, further troubleshooting is required to
confirm that ATP synthase-bound actin filaments can rotate via ATP hydrolysis.

In vitro expression of membrane proteins
Alongside achieving the other milestones, we were interested in expressing the
actuation complexes from inside the synthetic cell. Even without a functional
protoflagellar complex, achieving this milestone would result in the first reported
instance of the assembly of a large membrane protein complex inside a liposome.

Before moving on to in vesicle expression, we first attempted to express ATP syn-
thase in a bulk TX-TL system. We tested expression of ATP synthase in both NEB
PURExpress as well as a cell lysate-based system. NEB PURExpress is a commer-
cial platform consisting of a mixture of proteins and metabolites necessary for in
vitro transcription and translation [35]. For the cell lysate-based system, we used
lysate prepared from E. coli BL21 Rosetta2 cells and followed our lab’s protocol for
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Figure 4.11: In vitro expression of ATP synthase in cell-free systems containing
radioactive 35S-Methionine. TX-TL systems prepared from cell lysate and NEB
PURExpress were supplied with varying amounts of DNA and subjected to different
lysis methods (denaturing in SDS versus denaturing in SDS plus incubation at 65°C,
i.e., “boiling”). ATP synthase subunits are labeled by their name and molecular
weight, with the 𝛿 and b subunits assumed to be flipped in order of molecular weight
on SDS-PAGE gels [33].
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cell lysate preparation [36], although we used a French cell press instead of bead-
beating for cell lysis. In both cases, we labeled newly made proteins with radioactive
35S-Methionine, so that running the completed reactions on a SDS-PAGE gel and
subsequent exposure would indicate only bands for proteins made in the reaction
mixtures (and not the dozens or hundreds of bands corresponding to the proteins
that make up each TX-TL system).

With the exception of the c subunit, which ran off the gel since it is only 8 kDa,
we were able to observe bands for ATP synthase subunits in both TX-TL systems
(Figure 4.11).

Expression in the cell lysate-based system was poor, with only bands for the 𝛼,
𝛽, and 𝜖 subunits visible, as well as a band that did not clearly correspond to a
single subunit but could correspond to the 𝑎, 𝛿, and 𝑏 subunits. Interestingly,
there were many bands not corresponding to any of the subunits, which suggests
that may be some background expression from remaining genomic DNA in the
cell lysate (Figure S4.1). Future efforts towards troubleshooting expression in cell
lysate include adding more DNA to the reaction mixture, using a batch of cell
lysate with a higher TX-TL capacity (as measured by a positive control such as
deGFP expression), and/or adding liposomes to the reaction mixture to help aid the
assembly of the protein complex. A previously published study reported success in
using a cell lysate-based TX-TL systems to express ATP synthase [31], so it is also
possible that expression is present but the bands are not visible.

Expression in the NEB PURExpress system was better, and the pattern of bands
seemed to be consistent with the bands for the purified complex (Figure 4.7), with
the exception of a single band that could not be identified. It is worth noting that
a previous attempt to express ATP synthase in PURE was unsuccessful; it was
suggested that this was due to expression of the subunits in the incorrect ratios,
perhaps due to the lack of membrane protein insertases in PURE [28]. However,
that previous study did not elaborate on whether ATP synthase expression, assembly,
or both were unsuccessful. Thus, to date, the data shown in Figure 4.11 is the first
evidence showing it is possible to express all the individual protein subunits of ATP
synthase in PURExpress. As large membrane protein complexes like ATP synthase
are known to require membrane insertion machinery that is absent in PURE, ongoing
work in the field is focusing on developing a membrane protein expression platform
in PURE to enable proper expression and assembly of protein complexes.
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4.4 Discussion
Given the experimental results, it seems that Approaches 2 and 3 seem to be the ones
with the greatest likelihood of success, albeit with some modifications and further
work. The following sections highlight some suggestions for troubleshooting and
improving upon the proposed experimental approaches.

Actin attachment to proteoliposomes via biotin maleimide

For both approaches, immediate next steps would be to troubleshoot the attachment
of actin to proteoliposomes. Since the proteoliposomes generated for the ACMA
assay were the same ones used for actin attachment, the ATP synthase was the
cysteine-less His6x-tagged pBH2 variant. As a result, the means of attaching the
actin filament to the ATP synthase was via a biotin anti-His6x antibody rather than
biotin maleimide. Since then, however, we have generated ATP synthase variants
with a cysteine residue on the appropriate subunit to enable the actin filament to bind
to the ATP synthase via a covalent bond. This should enable stronger binding of
the filament, since the free energy of a covalent sulfur-sulfur bond (formed between
the sulfur atoms of biotin maleimide and cysteine) is about -266 kJ/mol [37]. While
the binding free energy of the anti-His6x biotin mouse antibody to its antigen, the
His6x region on ATP synthase, is unknown, the limit of binding affinity between
antibodies and protein antigens is about 10−11 L mol−1, which roughly corresponds
to a free energy of -60 kJ/mol [38]. For a weaker antibody-antigen interaction, the
free energy could be as small as -15 kJ/mol [39]. While many more troubleshooting
steps may be required to create a functional protoflagellar complex, testing out actin
filament attachment via biotin maleimide, as originally planned, should result in 4-
10X stronger binding of the filament, thereby increasing the likelihood of observing
bound actin filaments under microscopy.

Improvement of the immunolabeling protocol

As mentioned in Section 4.3, proteoliposomes subjected to immunolabeling, prior
to the attachment of the actin filament, did not demonstrate ATP hydrolysis ac-
tivity. Part of the reason behind this is that the immunolabeling protocols were
adapted from those designed for cell/tissue cultures and are not necessarily suited
for immunolabeling of liposomes.

A typical immunolabeling protocol consists of fixation (preservation of cell com-
ponents in their current state), permeabilization (penetration of the cell membrane
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to allow large molecules to flow through the membrane), and blocking (using a
molecule such as Bovine Serum Albumin (BSA) to bind non-specifically to proteins
and thus reduce background signal). This is followed by prolonged (several hours to
overnight) incubations with a primary antibody, to bind to the molecule of interest,
and secondary antibody, to bind to the primary antibody and label it using a fluo-
rescent molecule. Each step is followed by multiple wash steps to get rid of excess
molecules from the prior step and enable efficient binding of antibodies.

Mammalian cells and tissues are large (10-150 µm in diameter) and have the struc-
tural integrity to withstand the wash steps required for efficient immunolabeling.
Meanwhile, the proteoliposomes used in this project were on the order of 100 nm in
diameter, roughly 100-1000x smaller. Since the proteoliposomes were in a regime
where thermal energy-induced Brownian motion was on the order of gravity, the
liposomes would not settle out of solution after the wash steps. This required us to
centrifuge the liposomes after each step, which subsequently caused clumping and
lysis of the liposomes. After the immunolabeling process, we were typically left
with about 10% of the total number of liposomes we started with.

Despite eliminating the fixation and permeabilization steps prior to blocking, we
were unable to reduce the loss of liposomes. There is a large search space of
steps that can be optimized for improved immunolabeling, but immediate next steps
include the following:

• using a greater number of liposomes to start with;

• reducing incubation times with the primary/secondary antibodies to prevent
degradation of ATPase machinery;

• running liposomes through a Sephadex G50 column instead of centrifuging
them during wash steps; and

• eliminating the blocking step.

Finally, rather than simply incubating proteoliposomes with unpolymerized actin and
adding actin polymerization buffer, we could also try to running the proteoliposomes
- with their actin filaments - through the Sephadex G50 column. This would enable
the removal of any unpolymerized actin and unattached actin filaments. By reducing
background fluorescence, this should help improve the visibility of proteoliposomes
with attached actin filaments.
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Purification and reconstitution of ATP synthase variants

In Section 4.2, we described several ATP synthase variants without the 𝛼 and
𝛽 subunits, among others. This would allow for us to use existing membrane
protein reconstitution protocols while using the preferred protein orientation to our
advantage.

A promising next step would be to perform protein purification of these variants.
While these variants prevented growth when transformed into the E. coli DK8 strain,
likely due to a lethal dissipation of native proton gradients in these cells, they only
slowed growth in the E. coli NiCo21 strain, a strain optimized for the expression
and purification of His6x-tagged proteins. An ACMA assay cannot be used after
subsequent reconstitution into liposomes, since the subunits with ATP hydrolysis
activity have been removed. However, co-reconstituting the liposomes with a proton
pump (see Section 4.4) and subsequent attachment of an actin filament should yield,
in the best case scenario, a successful implementation of an actuation complex
capable of generating motility upon illumination by green light.

Improved ATP regeneration system for actin rotation assay

Although we were able to observe numerous actin filaments that were bound to the
coverslip on one end and capable of pivoting around the contact point, we were
unable to observe rapid, repeated rotations of the actin filaments. A possible cause
for this is the rapid hydrolysis of ATP by coverslip ATP synthases to which no actin
filaments have bound. While prior protocols have used an ATP regeneration system
involving catalase and glucose oxidase, in addition to ATP and phosphoenolpyruvate
(PEP), to power the rotation of ATP synthase, we did not have success with their
approaches.

An alternative ATP regeneration strategy, particularly one that has been used suc-
cessfully for cell-free systems, is the creatine kinase - creatine phosphate system
[35]. Here, the phosphate from creatine phosphate is transferred to ADP to regen-
erate ATP. Using a simplified ATP regeneration system that has been shown to be
successful in many labs in various contexts may help us to observe actin filament
rotation.

Co-reconstitution of bacteriorhodopsin and ATP synthase
Although the co-reconstitution of Bacteriorhodopsin and ATP synthase has been
demonstrated successfully in numerous prior studies [11, 27, 28], we have not yet
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done so in our lab. Using commercially purchased bacteriorhodopsin, we aim
to co-reconstitute the membrane proteins and demonstrate another step towards a
functional actuation complex.

Development of a PURE-based membrane protein expression platform
Thus far, we have described achieved and ongoing efforts towards the specific goal
of generating a protoflagellar complex. Ongoing research efforts and discussions
surrounding the expression of membrane proteins in in vitro TX-TL systems have led
us to propose the following: how might we create a minimal platform for membrane
protein expression?

A good starting point is the minimal TX-TL platform NEB PURExpress (a commer-
cial version of a published protocol [35]), or the equivalent but cheaper in-house
preparation of OnePot PURE [40]. However, these systems are not sufficient. While
small membrane proteins have no difficulty folding and inserting themselves into
membranes, larger membrane proteins and protein complexes such as ATP synthase
require membrane protein insertases for proper folding and insertion [41]. In bacte-
ria, the most widely used ones are SecYEG, YidC, and MPIase [42, 43]. Part of the
reason why membrane protein expression is successful in cell lysate-based TX-TL
systems [31], and not in PURE [28] may be because cell lysates contain inverted
membrane vesicles which may contain these membrane protein insertases and thus
aid the assembly and insertion of these proteins.

A previous study found that performing TX-TL of membrane proteins in the pres-
ence of proteoliposomes reconstituted with SecYEG, YidC, and MPIase led to the
successful expression of membrane proteins dependent on these insertases [43].
However, this system was only used for the TX-TL of small membrane proteins.
We hope to adapt and optimize this system for the construction of a minimal in
vitro TX-TL platform capable of synthesizing large membrane proteins and protein
complexes.

4.5 Conclusion
While unsuccessful in its grand goal, this project and its reported progress have
generated a significant advancement towards the construction of actuation complexes
in synthetic cell membranes. The skills developed by our researchers over the course
of this project - membrane protein purification, TIRF microscopy, working with
various cell-free protein expression platforms, and more - have enabled us to start
working on projects that will greatly increase the capabilities of synthetic cells,
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notably through the construction of a PURE-based membrane protein expression
platform. Furthermore, by informing us of the experimental challenges that lay ahead
with the proposed experimental approaches, this project has guided the development
of alternative mechanisms for synthetic cell motility. Ultimately, this work has shed
light on the creative approaches that will be required to engineer synthetic cells
capable of complex functions.

4.6 Materials and methods
Preparation of electrocompetent E. coli DK8 cells
E. coli DK8 cells were obtained from Dr. Gabriele Deckers-Hebestreit (Universität
Osnabrück, Germany). E. coli DK8 cells contain a knockout of the unc operon and
do not natively encode for their own ATP synthase unless they are supplied with a
plasmid encoding the protein complex, such as the pBH2 plasmid (see next section).

To make electrocompetent E. coli DK8 cells, we used the following protocol, slightly
modified from Murray Lab in-house protocol:

1. Pre-chill all tubes and pipettes in the fridge at 4°C.

2. Autoclave (1) three 500 mL Erlenmeyer flasks filled with 450 mL MilliQ
water and covered loosely with aluminum foil and (2) a 1 L bottle with 1 L
MilliQ water and a loosely fastened lid to remove any residual detergents.

3. Prepare 500 mL LB Lennox and pre-warm it in an incubator at 37°C.

4. Inoculate 2 tubes of 5 mL LB Lennox with E. coli DK8 cells. Grow the
overnight (about 14 hours).

5. To start a larger culture, first add 150 mL LB Lennox to each of the Erlenmeyer
flasks. Then add about 1.5 mL overnight culture to each flask and incubate
them at 37°C with with shaking at 220 rpm until the OD600 is about 0.5. This
growth step should take about 3 hours.

6. Meanwhile, pre-chill a large floor centrifuge and tabletop centrifuge with
appropriate rotors at 4°C. After dumping out the water from the autoclaved 1
L bottle of MilliQ water, rinse the bottle a few times with fresh MilliQ water,
fill it with fresh MilliQ water, and chill it at 4°C.

7. Once the cultures have reached the appropriate OD600, pour the cultures into
a 1 L centrifuge bottle.
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8. Place the tubes on ice for 60 minutes. Change the ice at the 30-minute mark
(or sooner) if the ice is melting. Note: an incubation time as little as 15
minutes may be sufficient, but to ensure the highest competency of the cells,
we opted to incubate the full 60 minutes.

9. Perform the following set of steps two times, ensuring that cells are kept cold:

• Centrifuge the bottle for 10 min at 2000g and 4°C.

• Remove the supernatant completely.

• Gently resuspend the cell pellet first with 20 mL cold MilliQ water, then
with an additional 180 mL cold MilliQ water.

10. Incubate the cells on ice for 30 min.

11. Centrifuge the cells for 15 min at 2000g and 4°C.

12. While the cells are being centrifuged, prepare a 30 mL solution of 10% (
v/v%) glycerol in ice cold MilliQ water.

13. Remove the supernatant completely and gently resuspend the pellet with 25
mL of the glycerol solution. Transfer the solution to a 50 mL conical tube.

14. Incubate the cells on ice for 30 min.

15. Centrifuge liposomes for 15 min at 1500g and 4°C.

16. Remove the supernatant completely and add 500 µL of 10% glycerol. Note:
adjust that amount so that the cells are resuspended in a final volume of
approximately 1 mL.

17. Create 50 uL aliquots of the cells in PCR tubes.

18. Flash-freeze the tubes in liquid nitrogen and store them at –80°C.

Transformation of electrocompetent E. coli DK8 cells
Once the E. coli DK8 cells were made electrocompetent, they were transformed
with plasmids using the following protocol:

1. Incubate a 1.5 mL Eppendorf tube containing 450 µL SOC medium in a 37°C
incubator.

2. Chill an electroporation cuvette on ice.
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3. Thaw a 50 µL aliquot of electrocompetent E. coli DK8 cells.

4. Turn on the electroporator to the appropriate setting for bacteria.

5. Add 1.5 µL DNA to the cells and pipette up and down to mix.

6. Pipette the mixture of cells and DNA into the cuvette. Wipe excess moisture
off the outside of the cuvette and immediately place it the cuvette in the
electroporation chamber. Press the button to electroporate.

7. Pipette the pre-warmed SOC to the electroporated cells. Pipette up and
down to mix and transfer the mixture back to the Eppendorf tube. Place the
Eppendorf tube back into the 37°C incubator for 60 min.

8. While the cells are growing, place an LB agar plate with 100 µL/mL carbeni-
cillen in a 37°C incubator.

9. Pipette 50 µL of the cell culture onto the pre-warmed LB agar plate. Add 3-4
glass beads, cover the plate, and shake the plate to spread the culture across
the plate. Place the plate agar side up in an incubator overnight for roughly
16 hr at 37°C.

10. Pick three colonies to sequence-verify. Specifically, use those colonies to
inoculate three 5 mL liquid cultures in LB media containing 100 µL/mL
carbenicillin, grow the cultures overnight at 37°C and 200 rpm, and separately
reserve 0.5 mL of each culture. Mini-prep the remaining 4.5 mL of each
culture and send off the plasmid DNA for sequencing. Mix the remaining 0.5
mL of each culture with 0.5 mL of 50% glyercol solution in a cryogenic vial,
label the vial, and store at –80°C. For each plasmid, keep one or more glycerol
stocks corresponding to the correctly sequenced colonies.

ATP synthase purification
A plasmid containing the ATP synthase operon (unc operon, containing genes at-
pABCDEFGHI) was obtained from Dr. Gabriele Deckers-Hebestreit (Universität
Osnabrück, Germany). The plasmid, pBH2, encodes for a cysteine-less ATP syn-
thase with a His6x tag on the N-terminus of the 𝛽 subunit protein (coded for by the
atpD gene). ATP synthase was purified using the protocol established by Sobti and
co-workers [33] with some modifications, as noted below.

In the preparation of buffers, described in the Materials section of the protocol, we
noted the following:
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• The term CV refers to column volume, which itself refers to bed volume,
i.e., the amount of TALON resin that has been added to the column during
purification. So for example, in section “3.2.2 Affinity Purification” in step
5 [33], we interpreted “Wash with(sic) column with 20 CV of buffer C” as
“Wash column with 60 mL of buffer C.”

• Digitonin was difficult to dissolve in buffers C, D, and E. To effectively dissolve
the digitonin, for each buffer, we measured the amount of digitonin needed
in grams, added it to an Eppendorf tube with 750-1000 µL of the appropriate
buffer, and centrifuged it in a personal/mini microcentrifuge until the digitonin
pellet completely dissolved. The entire solution was then transferred to the
larger bottle/tube of buffer, and the Eppendorf tube was washed several times
to transfer any residual digitonin to the main container for the buffer.

• As the volume of buffer D we made was very small (7 mL), we did not
vacuum-filter buffer D as we did for buffers C and E. However, we assumed
that any precipitate in buffer D would have settled to the bottom of the Falcon
tube we used to store the buffer, so extra care was taken to pipette out buffer D
during the elution step of the protocol to ensure 1 mL remained in the tube.

In the Expression subsection of the Methods section [33], the following modifica-
tions/clarifications to the protocol were made:

• ATP synthase was expressed in E. coli DK8 cells expressing the pBH2 plasmid
rather than the pFV2 plasmid.

• 100 µL/mL carbenicillin was used instead of ampicillin.

• The plating steps were skipped. A pipette tip was used to directly inoculate
three 6 mL liquid cultures of LB medium from a glycerol stock, which were
later combined and split equally to inoculate four 1.5 L cultures.

• The large cultures were grown at 37°C and 220 rpm (rather than 150 rpm).

• To harvest the cells, the liquid cultures were first distributed across six 1 L
bottles and centrifuged in a pre-chilled centrifuge for 15 min at 5000g and
4°C. Most of the supernatant was removed from the cultures, leaving about 30
mL, and the bottles were placed on ice. The remaining amount of supernatant
in each bottle was used to resuspend the cell pellet, and a serological pipette
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was used to transfer the resuspended cell cultures to 3-6 50 mL conical tubes.
The tubes were then centrifuged in a pre-chilled centrifuge for 15 min at
5000g and 4°C. Finally, the supernatant was removed and the pellets were
flash-frozen in liquid nitrogen and stored at –80°C.

In the Protein Purification subsection of the Methods section [33], the following
modifications/clarifications to the protocol were made:

• As the DNase I was purchased from New England Biolabs, it did not have a
concentration written on the tube. During the step of resuspension of cells in
buffer A, 100 uL of DNase I was added along with 200 uL of the 10X reaction
buffer supplied with the tube. These volumes were arbitrarily chosen.

• During membrane preparation, to perform the freeze-thaw cycles, the 100 mL
cell mixture was flash-frozen in liquid nitrogen in 50 mL conical tubes and
thawed in tube rack in a room-temperature water bath.

• The membrane was pelleted by ultracentrifugation at 38000 rpm in a Type 45
Ti Rotor (Beckman Coulter).

• During affinity purification, the membrane pellet was resuspended with a soft
bristle paintbrush.

• During affinity purification, when incubating the supernatant with TALON
beads, the whole column was placed on a rocking platform (nutator) and
positioned to allow the fluid inside to rock and forth from one end of the
column to the other.

• When using the Amicon 100 kDa MWCO centrifugal concentrator, the sample
was centrifuged at 4000g in 30-60 sec intervals and pipetted up and down
between each spin. These steps were performed to help prevent adsorption of
the protein onto the walls of the concentrator and aggregation of the protein
complexes.

• Size-exclusion chromatography was performed by staff at the Caltech Protein
Expression Center. As a consequence, eluted fractions were stored overnight
at 4°C until they could be retrieved the next day. In subsequent purifications,
the size-exclusion chromatography step was skipped. The concentrations
obtained after purification ranged from 400-800 µg/mL.
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Preparation of DOPC liposomes for ATP synthase reconstitution
Liposomes made from 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and Lis-
samine Rhodamine B, DHPE (LissRhodB) were made using the following protocol.
To a 50 mL beaker in a fume hood, 600 µL of 25 mg/mL DOPC in chloroform was
combined with 15 µL of 1 mg/mL LissRhodB, and the beaker was swirled to mix
the lipids. Next, the chloroform was evaporated by placing the beaker in a metal
bead bath in the fume hood at 55°C for 2 h, after which the beaker was removed and
cooled for 10 min. Next, 1 mL of ice-cold Buffer F (100 mM KCl, 50 mM MOPS pH
7.4, and 1 mM MgCl2) to the lipid thin film, the beaker was covered with Parafilm,
and the beaker was vortexed at the maximum setting for 3 min continuously.

To reduce the size and lamellarity of the liposomes, the liposome solution was
transferred to a 2 mL cryogenic tube and six freeze-thaw cycles were performed.
For each cycle, the tube was placed in liquid nitrogen for 1 min, thawed in a metal
bead bath at 30°C for 30 min, and vortexed at the maximum setting for 30 s.

Finally, the liposomes were reduced further in size to 100 nm using an extruder. A
100 nm extruder membrane was first pre-wet with Buffer F, after which liposomes
were pushed across the membrane 21 times. Once liposomes were verified via
microscopy at 100X zoom, they were stored in aliquots of 52 µL in PCR tubes,
flash-frozen in liquid nitrogen, and stored at –80°C until further use.

Reconstitution of ATP synthase into liposome membranes
Liposomes were reconstituted using the protocol established by Sobti and co-
workers [33] with some modifications and clarifications as noted. Prior to the
reconstitution, 100 nm liposomes were made as described in the previous step. Ad-
ditionally, Sephadex G50 was swelled in MilliQ water for 1 h; swelling the Sephadex
G50 overnight was found to result in bacterial contamination, so fresh Sephadex
G50 was swelled the day it was needed.

For the reconstitution, 300 µL of liposomes and 200 µL of Buffer F (100 mM KCl,
50 mM MOPS pH 7.4, and 1 mM MgCl2) were added to a cuvette kept on ice. Next,
170 µL of 0.75 mg/mL purified ATP synthase was added. The solution was mixed
well, and the OD650 was measured. Next, 0.1 mg/mL sodium cholate was slowly
titrated at about 0.5 µL at a time, followed by pipetting to mix the liposome solution,
a 5-min incubation on ice, and a subsequent OD650 measurement. Once a roughly
16% drop in OD650 was achieved, this procedure was terminated; the total volume
of sodium cholate added was about 10 µL. For control samples, the procedure was
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repeated, albeit with 300 µL Buffer E (20 mM Tris/Cl pH 8.0, 100 mM NaCl, 1 mM
digitonin, and 2 mM MgCl2) instead of liposomes, and using the same volume of
sodium cholate added to the liposome samples.

To remove the detergent from the samples, a 3 mL plastic column was first filled
with about 1 mL final volume of the Sephadex G50 beads and pre-equilibrated with
10 mL of Buffer F (100 mM KCl, 50 mM MOPS pH 7.4, and 1 mM MgCl2).
Next, the liposome solution was added to the column, and turbid (in this case, pink)
fractions were collected. An additional 1 mL or more of Buffer F was added until
the column ran clear. This procedure was repeated with a new column for the
control sample. Finally, each sample was centrifuged at 100000g (75000 rpm using
a TLA-100.3 rotor). Their supernatants were discarded, and each liposome sample
was resuspended in 1 mL of buffer F. Finally, the liposomes were stored in aliquots
of 52 µL, flash-frozen, and stored at –80°C until further use. Although not required,
ATP synthase’s presence in proteoliposome membranes can be verified by running
the proteoliposome on an SDS-PAGE protein gel and using a standard stain (e.g.,
SimplyBlue SafeStain).

ACMA quenching assay
ATP synthase activity in proteoliposome membranes was measured using the ACMA
quenching assay described Sobti and co-workers [33] with some modifications and
clarifications as noted to adapt the assay for a plate reader. 241 µL of buffer F was
mixed with 2.5 µL 100 µM ACMA, 50 µL of either liposomes or proteoliposomes,
and 0.25 uL of one of the following: 100% EtOH (two samples per liposome type)
or 50 mM DCCD dissolved in 100% EtOH (one sample per liposome type). The
liposomes were incubated for 1 h at room temperature, covered to protect them from
light, on a platform shaker. Next, to a 96-well glass-bottom plate, 250 µL of each
of the six samples was added to a separate well.

Once the plate was in the plate reader, the following protocol as used. First, a
fluorescence read was taken to normalize time-course values by the number of
liposomes present in a well (excitation: 560 nm, emission: 583 nm, optics: bottom,
gain: 61). Next, a kinetic run was performed to get baseline fluorescence readings
for each sample (a run was performed for 3 min with reads taken every 20 s using
the following settings - excitation: 419 nm, emission: 483 nm, optics: bottom, gain:
61). Next, the plate was removed, 5 µL 10 mM ATP was added to each well, and
the plate was re-inserted into the plate reader. The kinetic run was then repeated,
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albeit for 10 min at 10 s intervals, with 3 s of linear shaking performed prior to each
read. For one of the 100% EtOH samples for each liposome type, MilliQ water was
added instead, to ensure that any fluorescence drop was due to the addition of ATP.
The expected result is that fluorescence drops dramatically after the addition of ATP
only in the proteoliposome sample with no DCCD (i.e., 100% EtOH instead) and
with ATP added instead of MilliQ water.

Actin polymerization and visualization via TIRF microscopy
Actin was reconstituted and polymerized using a protocol and materials from Cy-
toskeleton, Inc. with one modification as noted. Instead of using just pyrene actin,
an actin solution was prepared in G-buffer (General Actin Buffer supplemented with
0.2 mM ATP and 1 mM DTT) at a concentration of 0.45 mg/mL, at a mass ratio
of 10:1:1 of pyrene actin to biotin actin to rhodamine actin. Polyermization was
performed as per the provided protocol.

A previously described protocol was used for silanization of glass coverslips and
preparation of microfluidic chambers for TIRF microscopy of actin filaments [34].
For the functionalization of the coverslip for actin filament attachment, a slightly
modified protocol from the original paper was used [34]. First, goat anti-biotin
antibodies at 1 mg/mL in PBS were introduced into a flow cell of the microfluidic
chamber and immobilized on the surface for 10 min. Next, 1% Pluronic F127 in
Brb80 buffer (80 mM PIPES, 1 mM MgCl2, 1 mM EGTA) was perfused into the flow
cell. After 30 min, the chamber was rinsed with Brb80 and actin was introduced,
either in the form of monomeric G-actin supplemented with actin polymerization
buffer or polymerized F-actin alone. Finally, the excess actin was washed away with
Brb80 and then Brb20 (20 mM PIPES, 1 mM MgCl2, 1 mM EGTA). The flow cell
channels were sealed on each end with clear acrylic nail polish to prevent evaporation
during TIRF microscopy. Finally, TIRF microscopy was performed using a Nikon
Ti2-E Motorized Inverted confocal microscope with TIRF and STORM capabilities
under a 100X objective.

Attachment of actin filaments to proteoliposomes
Actin filaments were attached to proteoliposomes using two different methods:
polymerizing actin filaments onto proteoliposomes and incubating polymerized
actin filaments with proteoliposomes.

The following protocol was used to polymerize actin filaments onto proteoliposomes:
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1. Proteoliposomes and control liposomes (of the same lipid composition and
treated with the reconstitution protocol albeit without the addition of ATP
synthase) were thawed on ice and pelleted by centrifugation at 100g for 15
min. Their supernatant was removed.

2. About 25 µL of liposome pellet was resuspended with a 100 µL solution
of 1 (w/v)% (equivalent to 0.01 g/mL) bovine serum albumin (BSA) in 1X
phosphate-buffered solution (PBS) in a 1.5 mL microcentrifuge tube.

3. An additional 1.2 mL of PBS was added, and liposomes were centrifuged at
14000g for 10 min at room temperature. The supernatant was removed, the
pellet was resuspended in 1 mL PBS, and the liposomes were centrifuged at
14000g for 5 min at room temperature to remove any residual BSA. Note:
liposomes did not pellet without this PBS addition.

4. The pellet was resuspended with 1 mL PBS supplemented with 1 µL of 1
mg/mL biotin anti-His6x mouse antibody (Biolegend, Cat #906103), with the
mixture pipetted well to mix thoroughly. The liposomes were incubated at
room temperature for 1 h.

5. After the incubation, the liposomes were centrifuged at 14000g for 10 min
at room temperature and the supernatant was removed. The pellet was re-
suspended in 1 mL PBS, and the liposomes were centrifuged again, albeit at
14000g for 5 min at room temperature, to remove any residual antibody.

6. G-actin was prepared as described in the Actin polymerization and visual-
ization via TIRF microscopy section above.

7. 1 µof the liposome pellet was mixed with 60 µL of G-actin containing 1 µg/mL
streptavidin (i.e., 0.6 µL of 0.1 mg/mL streptavidin was mixed in at the time
of adding the liposomes). The whole mixture was pipetted up and down to
mix.

8. 6 µL of actin polymerization buffer was added, and the mixture was pipetted up
and down to mix. The mixture was incubated for 20 min at room temperature.

9. Flow channels were prepared as previously described [34], and about 15 µL
of the liposome mixture was loaded into the flow channels. The ends of the
flow channel were sealed with clear acrylic nail polish, and the liposomes
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were imaged under a Nikon Ti2-E Motorized Inverted confocal microscope
using a 100X objective.

When incubating polymerized actin filaments with proteoliposomes, the same pro-
tocol was used as the one above, with one exception. The actin was first polymerized
in a separate tube as described in the Actin polymerization and visualization via
TIRF microscopy section. After incubating the mixture for 30 min, the liposomes
were loaded into the flow channel and imaged.

Rotation of actin filaments attached to coverslip-bound ATP synthase
Slides were cleaned and dried as described in a previously published protocol [34].
Flow cells were also prepared as described, but silanization and other steps were
omitted.

The actin rotation assay was performed as described in a previously published
protocol [25]. Briefly, 600 µL/mL (0.96 µM) purified ATP synthase was incubated
with 100 µM biotin maleimide for 1 h at 4°C. Next, a solution of 0.8 µM Ni-NTA
HRP conjugate in Buffer A* (Buffer A as described in the protocol but without BSA
or Triton X-100) was made, perfused into the flow cell, and incubated for 5 min.
To minimize non-specific binding, a solution of 1 (w/v)% Pluronic F127 in Buffer
A was perfused into the channel and incubated for 30 min. Next, the biotinylated
ATP synthase was diluted to 10 nM in Buffer A, perfused into the flow channel,
and incubated for 10 min. Next, Streptavidin AlexaFluor 647 was diluted from its
2 mg/mL stock solution to 4 µM in Buffer A, perfused into the flow channel, and
incubated for 5 min. Next, the flow channel was washed with Buffer A to remove
any unbound streptavidin.

Pyrene-biotin-rhodamine actin was added either as (1) monomeric G-actin, prepared
as described in the section above and supplemented immediatelty before use with
polymerization buffer in a 1:10 ratio of polymerization buffer to actin, or as (2)
pre-polymerized F-actin. The actin was perfused in and incubated in the flow
channel for 20 min. Finally, immediately before loading the microfluidic chamber
onto a microscope, a simplified reaction mixture for rotation (100 mM ATP and
1% 𝛽-mercaptoethanol in Buffer A) was perfused into the flow channel. (Note:
the addition of the other components from the original protocol, antioxidants and
energy regeneration components, did not change the outcome of the assay). The
reaction mixture for rotation was perfused into the channel in increments of 15 µL,
with more of the mixture being added until the unbound filaments had washed away.
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Preparation of the pMK2 plasmid
To express ATP synthase under a PT7 promoter, an additional plasmid containing
the ATP synthase operon (unc operon, containing genes atpABCDEFGHI) was first
obtained from Dr. Gabriele Deckers-Hebestreit (Universität Osnabrück, Germany).
The plasmid, pBH2.2, encodes for a cysteine-less ATP synthase and is derived
directly from the pBWU13 plasmid, which has been used canonically for ATP
synthase expression and purification. Next, the ATP synthase coding region (starting
directly from the beginning of the atpI gene to a few bases after the end of the atpC
gene) was PCR-amplified, purified using a DNA gel extraction, and annealed to
a pET21(+) backbone a using Gibson assembly to form the pMK2 plasmid. The
backbone contains a PT7 promoter and T7 terminator. The pMK2 plasmid was
sequence-verified by Nanopore sequencing prior to use.

In vitro expression of membrane proteins
Cell-free expression of ATP synthase was performed in three different cell-free
systems: (1) a commercial New England Biolabs (NEB) PURExpress system, and
(2) an E. coli NiCo21 cell lysate-based system (see above for details of how cell lysate
was prepared), and (3) E. coli NiCo21 cell lysate-based system without methionine
added to the reaction mixture.

Lysate-based cell-free reactions were prepared as per the protocol by Sun and
co-workers [36]. Unless otherwise noted, each 10 µL reaction consisted of the
following: 33% (by volume) of cell lysate, 1.5 mM of each amino acid (except for
leucine, which was added at 1.25 mM), 4.8 nM of NTP mix (containing 1.5 mM
each of ATP and GTP, 0.9 mM each of CTP and UTP, pH adjusted to 7.5 using
KOH), 50 mM HEPES pH 8, 0.2 mg/mL tRNA, 0.26 mM coenzyme A, 0.33 mM
NAD+, 0.75 mM cyclic AMP (cAMP), 0.068 mM folinic acid, 1 mM spermidine,
0.05X 35S-methionine (using a 1X stock solution of Methionine, L-[35S]-EasyTag,
5 mCi (Revvity #NEG709A005MC)), 30 mM 3PGA, 10 mM magnesium glutamate
and 100 mM potassium glutamate; these salt concentrations were chosen because
they optimized deGFP expression in TX-TL reactions supplied with 1 nM POR1OR2-
deGFP plasmid for this batch of cell lysate. Finally, a variable amount of pMK2
plasmid was added, and the remaining volume of the 10 µL of reaction mixture was
filled with nuclease-free water. Reactions were incubated at 30 °C for 18 h.

NEB PURExpress reactions were prepared as per the standard protocol included
with the kit, albeit with the addition of 0.025X RNAsin Ribonuclease Inhibitor
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(Promega #N2111) and 0.05X 35S-methionine. The pMK2 plasmid was added at a
concentration of 1.25 nM. Reactions were incubated for 2 h at 37 °C.

After the cell-free reactions were performed, proteins were denatured via a 15X
dilution in SDS and subsequent incubation at 65 °C and loaded onto a SDS-PAGE
protein gel. After the gel was run at 120 V for about 60-90 min, the gel was dried at
80°C for 30 min in a gel dryer. The gel was finally analyzed using phosphor screen
autoradiography.
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4.7 Supporting information

Figure S4.1: In vitro expression of unknown proteins in cell-free systems containing
35S-methionine. TX-TL systems prepared from 8 different batches of cell lysate
were supplied with no DNA but still showed bands on an SDS-PAGE gel subjected to
autoradiography, suggesting the expression of proteins from genomic DNA lingering
in the cell lysate. The lanes corresponding to TX-TL systems using cell lysate
prepared as described. L1-L4: lysates were prepared from cells lysed by sonication.
L5-L8: lysates were prepared from cells lysed by French press. All lysates were
prepared from E. coli Rosetta2 cells except for the lysate in L1, which was prepared
from E. coli NiCo21 cells. The lysates in L4 and L6 were dialyzed against S30B
buffer before use in TX-TL reactions [36].
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C h a p t e r 5

CONCLUSION

The work in the preceding chapters has attempted to address many critical gaps
in synthetic cell research — irreproducibility, lack of predictability, subsystem
integration, and a need for autonomous, programmable functionalities. In doing so,
this work has highlighted many design considerations for synthetic cells.

In Chapter 2, we show how specific TX-TL reaction components contribute to
variability in TX-TL performance. We further show that TX-TL performance is
constrained in energy availability, resulting in a trade-off between transcription and
translation. As users begin to implement more complex biomolecular programs in
synthetic cells, they must consider how to use these insights to minimize variability
and maximize performance in their systems. Regarding variability, beyond travers-
ing the performance space by modifying the concentrations of TX-TL components as
per our suggested guidelines, another promising approach is to design biomolecular
programs that are robust to cell-free metabolic variability over ranges that are typical
in lab preparations of cell lysate. Regarding performance, biomolecular programs
can be designed keeping in mind energy limitations. Alternatively, NTP-fueled
systems without 3PGA can be further explored to determine whether these systems
are better for biomolecular programs with higher energy requirements.

In Chapter 3, we provide a methodology for adapting and fine-tuning an existing TX-
TL model for improved predictability in new experimental contexts. We show early
work that suggests that synthetic cell users looking to design and implement their
own programs can readily adapt the model to their own systems, although it remains
to be determined whether the approach is sufficient for predicting performance of
complex biomolecular programs. In the case of complex TX-TL programs, it will
still be necessary to perform additional experiments to determine parameter values
corresponding to expression of individual proteins (similar work has been achieved
previously [1]), after which a more complex (and hopefully predictive) model can
be built. In the case biophysical programs such as genetically-driven synthetic cell
division, a promising approach is to combine the Poole model (see Reference [2])
with biophysical models using tools like Vivarium [3].

In Chapter 4, we propose a design by which autonomous, programmable motility can
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be realize in synthetic cells by combining energy and motility subsystems. Although
our efforts were largely unsuccessful, we show preliminary work suggesting that
ATP synthase may be expressed in PURExpress, a minimal TX-TL system, and
that filaments can be attached to proteins in liposome membranes. We further
highlight several design considerations for continuing this work or similar work,
such as considerations for using an immunolabeling protocol to attach filaments
to liposomes and for development of a PURE-based membrane protein expression
platform using SecYEG (or other Sec proteins), YidC, and MPIase. A particularly
promising approach, both for this project and for designing synthetic cells, is to
consider using proteins that are wildly different than those seen in nature, such as
ATP synthase variants with missing subunits.

The future of synthetic cell research
Beyond these design considerations, as we look to the future, there are many more
promising avenues in synthetic cell research. Perhaps the most promising is artificial
intelligence-guided protein design and evaluation, which can open up the protein
design space considerably [4]. In due time, synthetic cell users will be able to use
AI to design proteins that are less promiscuous (i.e., only perform one function),
smaller (and therefore less burdensome for TX-TL systems to produce), and more
effective at their function, enabling synthetic cells that are more capable and more
efficient.

Another useful approach includes looking beyond E. coli, from which many syn-
thetic cell components have been derived, to nature, which offers an abundance of
biomolecular parts that can be used in synthetic cells. Some previous work has not
only utilized components from non-E. coli organisms but also combined components
from different organisms, such as a synthetic cell containing bacteriorhodopsin from
Halobacterium salinarum and ATP synthase from Bacillus PS3 [5]. As we begin
to sequence the genome and proteome of more organisms, including extremophiles,
the set of novel or improved components available for use in synthetic cells will
rapidly expand, as will the functionalities of synthetic cells.

As we look beyond understanding life as we know it, a final consideration in design-
ing synthetic cells is less a technical approach and more a useful thought exercise
pertaining to the two previous points. Once we overcome some of the challenges
and adopt approaches like the ones I have highlighted in this chapter, I argue that we
can and should begin to think more freely about what we want a synthetic cell to be.
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For example, how might we implement cell division using a novel, more efficient
implementation? How might we implement a function in synthetic cells that is not
found anywhere in nature? How might we design a collection of synthetic cells that
rapidly self-assemble to form a novel synthetic life form? Perhaps most importantly,
at what point does this research start to become an ethical concern? As research
in the field progresses, addressing these types of questions can help us to ethically
navigate the boundaries of life and engineer synthetic cells to benefit mankind.
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