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ABSTRACT

Many problems in science and engineering require visualizing objects that are not
directly observable—such as black holes that are millions of light-years away from
the Earth or internal anatomical structures hidden within the human body. Compu-
tational imaging is a powerful paradigm that combines sensor design with advanced
computational algorithms to make the invisible visible. The typical computational
imaging pipeline involves first collecting indirect measurements of the target ob-
ject and then solving a reconstruction problem. This thesis focuses on two core
challenges about sampling along this pipeline: (1) optimizing the sampling process
for measurement acquisition, and (2) sampling the posterior distribution of possible
reconstructions given noisy measurements.

The first part of the thesis investigates how to design adaptive and task-specific ac-
quisition strategies for computational imaging systems, with a focus on compressed
sensing magnetic resonance imaging (CS-MRI). We propose a sequential sampling
method that learns to select measurements in multiple stages, and an approach that
tailors sampling patterns for specific downstream tasks such as region-of-interest
reconstruction, segmentation, and classification. These methods enable a better
selection of measurements taken during acquisition, leading to improved perfor-
mance compared to conventional baselines. We have also implemented our learned
sequences on a real MRI scanner and verified their improvement in practice.

The second part of the thesis develops a principled framework for posterior sampling
using diffusion models (DMs)—a state-of-the-art class of generative models. By
revealing a key connection between DMs and the Split Gibbs Sampling, we introduce
a posterior sampling method that rigorously incorporates pre-trained DMs as image
priors for solving inverse problems, which exhibits strong performance on a variety
of applications. We then show that this framework can be naturally extended into a
series of instantiations for solving more general inverse problems, addressing topics
like text conditioning, video inverse problems, non-differentiable forward models,
and discrete-space sampling. We also present a comprehensive benchmark for
systematically evaluating state-of-the-art DM-based posterior estimation methods.

By leveraging machine learning to address challenges in both data acquisition and
posterior estimation, this thesis provides new possibilities for building more intelli-
gent and reliable imaging systems across science and engineering.
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the bottom number is the 𝑝-value given by the paired samples 𝑡-test.
A higher percentage and a lower 𝑝-value indicate a more signifi-
cant improvement. We also provide the 95% confidence intervals
for all methods below their names. For both acceleration ratios,
Tackleseg. outperforms other baselines in terms of all the statistical
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4.6 Comparison of segmentation results under 16× acceleration on
one sample of the SKM-TEA dataset. We show the input of the
predictor in the first row, a zoom-in on the region that contains the
tissues to be segmented in the second row, and the output of the
predictor in the third row. Note that Tackleseg. circumvents the
typical “reconstruction” in terms of pixel-wise similarity with the
ground truth image. Instead, it learns a feature map that accurately
localizes the anatomy, leading to better segmentation prediction than
other baselines both for this sample and on average over the test set
(Table 4.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.7 Box plots of the brain tissue segmentation results under 16× (a)
and 64× (b) accelerations. Within the rectangle between each pair
of methods, the top number is the percentage of samples that get
improved, and the bottom number is the 𝑝-value given by the paired
samples 𝑡-test. A higher percentage and a lower 𝑝-value indicate a
more significant improvement. We also provide the 95% confidence
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one sample from the OASIS dataset. Similar to the knee segmen-
tation results, Tackleseg. circumvents the typical “reconstruction” in
terms of pixel-wise similarity with the ground truth image. Instead,
it learns an anatomically accurate feature map, which enables better
segmentation prediction than other baselines both for this sample and
on average over the test set (Table 4.3). The zoom-in panels high-
light a region where Tackleseg. more accurately predicts the outline
of white matter (in yellow) than other methods. This improvement
leads to a more precise estimation of the thickness of the cortex (in
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4.9 Confusion matrices of the classification results by LOUPErecon. and
Tackleclass.. Overall, Tackleclass. achieves greater accuracy in
terms of both classification accuracy and 𝐹1 score than LOUPErecon..
Tackleclass. also has a significantly lower number of false negatives
(bottom left) compared to LOUPErecon., which could lead to more
patients receiving early treatment. . . . . . . . . . . . . . . . . . . . 53

4.10 Per-slice difference histograms. (a): TackleFOV over LOUPEFOVon
the full-FOV reconstruction task and (b): TackleROI over LOUPEFOV on
the ROI-oriented reconstruction task. The 95% confidence intervals
are given in the top left corner of each plot. In both cases, the vast ma-
jority of slices improve, and the 𝑝-values given by the paired samples
𝑡-test are highly significant. . . . . . . . . . . . . . . . . . . . . . . 54

4.11 Reconstruction comparison of two samples in the experimentally
collected dataset (top: from subject 1; bottom: from subject 2)
by different methods under 4× acceleration. The sampling mask,
a zoom-in on the ROI, and the error map are presented for each
method. By sampling more frequencies along the vertical direction
in 𝑘-space, TackleROI has a higher vertical resolution in the image
space and thus outperforms other baselines optimized for full-FOV
reconstruction on the ROIs with directional anatomical structure. . . 55

4.12 Reconstruction comparison between the implemented prospec-
tive subsampling sequence and the retrospective subsampling se-
quence. Our learned sequence can be implemented on an MRI scan-
ner and generates images of quality indistinguishable from those re-
covered from retrospectively sampled data. Compared to the ground
truth image, our prospectively subsampled reconstruction recovers
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6.1 A schematic diagram of our method. Our method alternates be-
tween a likelihood step that enforces data consistency and a prior step
that solves a denoising posterior sampling problem by leveraging
the Split Gibbs Sampler [296]. An annealing schedule controls the
strength of the two steps at each iteration to facilitate efficient and ac-
curate sampling. A crucial part of our design is the prior step, where
we identify a key connection to a general diffusion model framework
called the EDM [151]. This connection allows us to easily incorpo-
rate a family of state-of-the-art diffusion models as priors to conduct
posterior sampling in a principled way without additional training.
Our method demonstrates strong performance on a variety of linear
and nonlinear inverse problems. . . . . . . . . . . . . . . . . . . . . 68

6.2 A conceptual illustration of the non-stationary and stationary
time-continuous processes as interpolations of 𝐾 discretize itera-
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6.3 Results on a synthetic problem with the ground truth posterior
available. PnP-DM can sample it more accurately that DPS [64]. . . 73

6.4 Visual examples for the motion deblur problem (𝜎𝒚 = 0.05). We
visualize one sample generated by each sampling algorithm. . . . . . 75

6.5 Comparison of uncertainty quantification (UQ) for the motion
deblur. Left 3 columns: absolute error (|𝒙̂ − 𝒙0 |), standard deviation
(std), and absolute z-score (|𝒙̂ − 𝒙0 |/std) with the outlier pixels in
red. Right column: scatter plot of |𝒙̂ − 𝒙0 | versus std. Note that PnP-
DM leads to a better UQ performance than the baselines by having
the lowest percentage of outliers while avoiding having overestimated
per-pixel standard deviations. . . . . . . . . . . . . . . . . . . . . . 76

6.6 Results of the Fourier phase retrieval problem. (a) PnP-DM pro-
vides both upright and rotated reconstructions (two modes given
by the invariance of the forward model to 180◦ rotation) with high
fidelity, while the baseline methods cannot. (b) We visualize the
percentages of upright and rotated reconstructions out of 90 runs for
a test image with two samples for each orientation. . . . . . . . . . . 77
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6.7 Results on the black hole imaging problem with simulated data.
Due to severe noise corruption and measurement sparsity, this prob-
lem is non-convex and highly ill-posed, leading to a bi-modal pos-
terior distribution as previously found in [269]. Here we compare
our method, PnP-DM, with the DPS baseline [64]. A metric quan-
tifying the mismatch with the observed measurements is labeled for
each sample, which should be around 2 for an ideal measurement
fit. Samples generated by PnP-DM exhibit two distinct modes with
sharp details and a consistent ring structure, while samples given by
DPS display inconsistent ring sizes and sometimes fail to capture the
black hole structure entirely, with samples having poor measurement
fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.8 Results on the black hole imaging problem with the real data
for the M87 black hole from April 6th, 2017 [71]. The posterior
samples from PnP-DM contain fine-grained features that align with
the prior distribution; see left for a few samples generated by the pre-
trained diffusion model from the prior. Besides having high visual
quality, our posterior samples accurately capture key features of the
official reconstruction by EHT as well, such as the bright spot location
and ring diameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.9 Visual examples of the DSA deconvolution problem in radio as-
tronomy. All images undergo a nonlinear transformation to visualize
the weaker galaxies. (a): The mean image of PnP-DM (based on 20
samples) significantly outperforms the reconstruction of the classic
CLEAN algorithm [134]. (b): We visualize three posterior samples
and the per-pixel standard deviation map computed from all 20 sam-
ples. Zoom-in regions highlight areas with notable sample variability. 81

6.10 Comparison of galaxy property estimation accuracy between
CLEAN (blue) and PnP-DM (orange). Each scatter plot shows
predicted versus true values for semi-major axis 𝜃𝐴 (left), semi-minor
axis 𝜃𝐵 (middle), and flux (right), across all detected sources. The
dashed line indicates perfect prediction. PnP-DM produces estimates
that lie closer to the diagonal, indicating more accurate recovery of
galaxy shapes and fluxes. Notably, PnP-DM avoids the strong over-
estimation biases seen in CLEAN. . . . . . . . . . . . . . . . . . . 82
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7.1 Illustration of the prior step with different text inputs. Starting
from a noisy image 𝒗 (𝑘) , the prior step performs text-guided denoising
through reverse diffusion to generate a cleaner sample 𝒖(𝑘+1) on the
clean image manifold. The images are visualized after decoding.
Different text prompts steer the denoising process toward distinct yet
plausible modes of the image. . . . . . . . . . . . . . . . . . . . . . 89

7.2 Visual examples for the super-resolution (16×), gaussian deblur
(𝜎 = 6), and box inpainting tasks with matching prompts. The
proposed instantiations, DAPS and DCDP in particular, produce more
detailed and perceptually coherent reconstructions, while the baseline
methods suffer from artifacts and a decrease in quality. . . . . . . . 91

7.3 Visual examples of DAPS on the 16× super-resolution task using
different prompts. The examples show that varying descriptions
lead to semantically different yet feasible reconstructions. Despite
the severe degradation of the input measurements, the restored im-
ages are of high quality and closely align with the information from
the provided text prompts, while still consistent with the original
measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.4 Visualization of the image generation process of DAPS. The top
row shows outputs from the prior steps (𝒖(𝑘+1) for 𝑘 ∈ {9, 19, 29, 39}),
which denoise and integrate text conditioning to guide the sample
toward the target distribution, while the bottom row shows outputs
from the likelihood steps (𝒗 (𝑘) for 𝑘 ∈ {9, 19, 29, 39}), which enforce
data consistency with added noise. Initialization starts from pure
noise, and the two processes alternate to progressively generate a
realistic image. The images are visualized after decoding. . . . . . . 95
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7.5 Effect of prompt specificity on posterior samples generated by
DAPS for 16× super-resolution. We repeatedly generate samples
using DAPS with prompts of varying specificity. As prompts become
more generic, the samples exhibit greater semantic diversity—e.g.,
several yellow scoops in the “a plate of food” panel look like mashed
potatoes, which are not seen in the more specific “a plate of desserts”
panel. However, the overall diversity in appearance remains simi-
lar—i.e., the bottom two panels appear to be equally diverse at first
glance. Modes with highly specific details, such as “two scoops of
ice cream with a cannoli” or “a plate of macarons” (top right), are
only recovered when given the corresponding prompts. These results
underscore the importance of text conditioning in uncovering rare
modes and improving mode coverage in posterior estimation. . . . . 96

7.6 An overview of our proposed framework with spatiotemporal dif-
fusion priors, STeP, for scientific video inverse problems. Left:
STeP combines the physics model of the target problem with a spa-
tiotemporal diffusion prior that directly characterizes the video dis-
tribution. We show that such a prior can be efficiently obtained by
fine-tuning a pre-trained image diffusion model with limited video
data. Right: STeP can generate diverse solutions to a black hole
video reconstruction problem that exhibit equally good fidelity with
the measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.7 A schematic comparison between prior works (top) and our
STeP framework (bottom) for video inverse problems. The bold
texts highlight the key differences between them. While prior works
use an image diffusion model and enforce temporal consistency using
simple heuristics or warping noise with optical flow, we directly learn
a spatiotemporal diffusion prior. . . . . . . . . . . . . . . . . . . . . 100

7.8 Architecture of the spatiotemporal module. Given a pre-trained
image diffusion U-Net, we add a zero-initialized temporal module
with an ON/OFF switch to each 2D spatial module and initialize the
additive weight 𝛼 to zero. Thus, it will have no effect at the start
of fine-tuning and gradually learn from the video training data. The
number of frames, height, and width are denoted by 𝑛 𝑓 , 𝑛ℎ, and 𝑛𝑤,
respectively. The numbers of channels for input features ( 𝑓in) and
output features ( 𝑓out) are denoted by 𝑛in and 𝑛out, respectively. . . . . 101
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7.9 Visual examples of STeP (bottom left) and baselines for black hole
video reconstruction. To facilitate analysis of the reconstructed spa-
tiotemporal structures, we present results in three ways: (1) a single
frame to illustrate spatial fidelity, (2) an 𝑥-𝑡 slice depicting temporal
evolution of a vertical line to evaluate temporal consistency, and (3)
the averaged optical flow visualized using the standard color scheme
from [278] to assess spatiotemporal coherence jointly. Compared to
baselines, STeP exhibits clearer alignment with ground truth videos
across all aspects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.10 Visual examples of STeP (bottom left) and baselines for dynamic
MRI. We visualize a representative frame along with two zoomed-in
regions for each method to better illustrate spatial fidelity. Benefiting
from its robust spatiotemporal prior, STeP provide reconstructions
with fewer structural artifacts and temporal fluctuations, as indicated
by its averaged optical flow aligning more closely with the ground
truth. This demonstrates the effectiveness of our learned spatiotem-
poral prior in enhancing both spatial and temporal consistency. . . . . 107

7.11 Detailed comparison on black hole video reconstruction and dy-
namic MRI. Left: We compare STeP (joint) and the BCS base-
line [168] by visualizing the averaged delta frames (difference images)
over an expanding window. The delta frames given by STeP (joint)
better align with the ground truth, indicating better temporal consis-
tency. Right: We also compare the spatial fidelity between STeP (joint)
and its variant STeP (video-only). Trained on both images and videos,
STeP (joint) provide reconstructions with less spatial hallucinations
compared to STeP (video-only). . . . . . . . . . . . . . . . . . . . . 108

7.12 Consistent improvement in image-video joint fine-tuning. We
evaluate intermediate checkpoints of (a) black hole video reconstruc-
tion and (b) dynamic MRI (8×). Spatial similarity (measured by
PSNR), temporal consistency (measured by d-PSNR), and measure-
ment data fit (measured by data misfit) all show steady improvement. 108
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7.13 Comparison between running STeP with DAPS versus PnP-DM as
the inference backbone. The DAPS version of STeP exhibits sig-
nificantly better spatial consistency (shown by the first frames in the
first row) and temporal consistency (shown by the 𝑥-𝑡 slice in the
second row). This comparison illustrates the better compatibility of
DAPS with latent video diffusion models than PnP-DM. . . . . . . . 110

7.14 Sampling results of the XOR task on the discretized MNIST
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8.1 Illustration of five benchmark problems in the InverseBench.
A represents the forward model that produces measurements from
the underlying target. A† represents the inverse map. In the lin-
ear inverse scattering problem (left two), the measurements are the
recorded data from the receivers, and the unknown source we aim to
infer is the permittivity map of the object. The bottom panel displays
the efficiency and accuracy plots for our benchmarked algorithms.
Certain characteristics of the problem cause the efficiency and accu-
racy trade-offs of each algorithm to vary across tasks. In these plots,
the larger radius of the points indicates greater interaction with the
forward function A, as measured by the number of forward model
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problems. Note that for full waveform inversion, Adam∗ and LBFGS∗

are initialized with Gaussian-blurred ground truth, serving as refer-
ences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
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8.4 Relative performance of plug-and-play diffusion prior methods
compared with traditional baselines under different levels of mea-
surement sparsity on different tasks. Metrics are averaged over
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A.5 Histograms of pair-wise SSIM differences on all 1,851 test images
using 2D line sampling with 4× (first row), 8× (second row), and
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C h a p t e r 1

INTRODUCTION

Imaging technologies enable us to visualize objects that cannot be observed di-
rectly—such as distant stars or internal anatomical structures hidden within the
human body. For example, the German scientist Wilhelm Conrad Röntgen discov-
ered X-rays in 1895 and found that bones and soft tissues absorb X-rays differently.
X-ray images allow doctors to see inside the body and diagnose bone fractures, in-
fections, and other medical conditions. In astronomy, radio telescopes have allowed
scientists to survey the sky, leading to the discoveries of new stars, distant galaxies,
and signals from deep space that help us understand the origins and structure of the
universe.

Traditional imaging techniques have greatly benefited humanity, but they are ap-
proaching their limits as the demands of science and engineering continue to grow.
For instance, while X-rays can distinguish between bones and soft tissues, they strug-
gle to differentiate among various soft tissues, which often share similar physical
properties. To see more subtle and nuanced structures, more sophisticated imaging
techniques are needed. Similarly, imaging the suspected black hole at the center of
the Milky Way would be impossible with a traditional radio telescope—unless its
dish were as large as the Earth [32].

Computational Imaging refers to a class of techniques that integrate sensor design
(hardware) with advanced computational algorithms (software) to form images [30].
Unlike traditional imaging techniques that rely on minimal post-processing, com-
putational imaging techniques leverage complex reconstruction algorithms that are
tightly coupled with the sensor system. These techniques have enabled unprece-
dented capabilities that are far beyond the reach of traditional techniques [71, 204,
304, 355]. To image a black hole, scientists connected radio telescopes distributed
across the globe to create an Earth-sized computational telescope. By combining
measurements from different telescopes in a physically meaningful way, the com-
putational telescope achieves a high enough resolution to see black holes that are
thousands or even millions of light-years away from us. Even so, sophisticated algo-
rithms are required to recover the black holes from the combined measurements. In
medicine, magnetic resonance imaging (MRI) was developed to visualize different
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soft tissues in the human body [171, 186]. MRI uses electromagnetic waves and
their interaction with tissue to acquire frequency-domain measurements, carefully
designed so that the formed measurements correspond to the Fourier components
of the target region. An image reconstruction algorithm is necessary to invert the
Fourier measurements back to the image space. In both cases, computation plays a
central role and is deeply integrated with the sensor system.

1.1 Computational Imaging as Inverse Problems
Many problems in computational imaging can be formulated as inverse problems
[268], such as astronomical imaging [49], optical microscopy [62], and medical
imaging [204]. Inverse problems are also common in many other domains of
science and engineering, including geophysics [294] and fluid dynamics [143].
Mathematically, inverse problems often take the following form

𝒚 = A(𝒙0) + 𝒏. (1.1)

In this equation, 𝒙0 ∈ C𝑛 denotes the target ground truth that we want to image.
Since 𝒙0 cannot be directly observed, we collect indirect measurements 𝒚 ∈ C𝑚

using a sensor system described by the forward model A : C𝑛 → C𝑚. The term
𝒏 ∈ C𝑚 accounts for measurement noise, which includes model mismatch, hardware
imperfection, and other sources of error. For simplicity, we model the noise in an
additive form, although more complex noise models may apply in practice [200,
280].

Solving inverse problems amounts to finding a mapping A† : C𝑚 → C𝑛 such that

𝒙̂ := A†(𝒚) ≈ 𝒙0 (1.2)

where we often refer to 𝒙̂ as a reconstruction of 𝒙0. Directly inverting A is usually
infeasible because the problem is under-constrained andA can be highly nonlinear.
Therefore, the design of the inverse mappingA† becomes challenging and requires
the knowledge of both the forward model A and the underlying image 𝒙0.

1.2 Computational Imaging Pipeline and Some Key Challenges
Conceptually, computational imaging systems consist of two main stages. Figure 1.1
provides a schematic illustration using MRI as an example.

Stage 1: Measurement Acquisition Acquiring measurements is the first stage
of a computational imaging system. The total number of measurements is usually
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Figure 1.1: Pipeline of computational imaging. In Stage 1 (Measurement Acqui-
sition), a physical sensor acquires indirect, noisy measurements of some unknown
ground truth 𝒙0. Mathematically, this can be modeled by 𝒚 = A(𝒙0) + 𝒏 where
𝒏 represents measurement noise. In Stage 2 (Image Reconstruction), an algorithm
A†(·) is designed to obtain a reconstruction 𝒙̂ from the measurements.

limited because each measurement comes with a cost in, e.g., time and hardware.
Therefore, it is important to wisely choose informative measurements of 𝒙0 for
accurate recovery. But how do we define or quantify the amount of information
in a set of measurements? How to choose the most informative measurements?
Mathematically, different forward models have different numerical properties, some
of which will make the recovery of 𝒙0 easier. In the case of linear forward models,
i.e.,A := 𝑨 ∈ R𝑚×𝑛, a matrix with a smaller condition number (defined as the ratio
between the largest and the smallest singular value) is known to be easier to invert.
But what about more general, nonlinear forward models? What if we have prior
knowledge about the distribution of 𝒙0? If we already have some measurements
about 𝒙0, could we use initial measurements to guide the selection of future ones?
What if we particularly care about some local regions and/or specific features of
𝒙0? Answering these questions requires both domain-specific insights and a general
optimization framework. In this thesis, we aim to address them by leveraging
techniques in machine learning.

Stage 2: Image Reconstruction The second stage involves reconstructing an es-
timate 𝒙̂ from the acquired measurements 𝒚. Due to the non-trivial relationship
between 𝒚 and 𝒙0, having the most informative measurements does not guarantee a
successful recovery. Reconstruction algorithms still play an important role because
they are directly responsible for image formation and significantly impact the imag-
ing quality. One central challenge is the ill-posed nature of Equation (1.1), meaning
that multiple solutions could explain the same 𝒚 and they depend sensitively on 𝒚

[268]. There has been a rich literature on various kinds of image reconstruction
algorithms. Some focus on specific domains [107, 134, 205, 267] and others are
designed for generic problems [2, 19, 248, 291]. However, many open problems
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remain. How to solve challenging inverse problems where a significant amount of
information is lost in the forward model? Given that most existing methods focus
on recovering static images, how to solve inverse problems on videos? How to
discover multiple solutions to an inverse problem? Is there a reliable and efficient
way of quantifying the likelihood of different solutions and their degrees of uncer-
tainty? These questions are not only interesting from a theoretical perspective but
also grounded in the needs of real-world applications. Addressing these challenges
is essential for unlocking the next generation of computational imaging techniques.

1.3 Thesis Overview
The word “sample” in the title carries two different meanings. In the context of
measurement acquisition, sampling means choosing a set of measurements from a
space of possible measurements. In the context of image reconstruction, sampling
means generating samples from the distribution of all possible solutions that agree
with the observed measurements. This thesis presents two lines of work that lever-
age various machine learning techniques to address both notions of sampling in
computational imaging.

In Part I, we investigate sampling pattern optimization in compressed sensing MRI
(CS-MRI). Chapter 2 presents an overview of this part and some preliminaries of CS-
MRI. We mainly consider two aspects that are particularly relevant for MRI. First, in
Chapter 3, we present a method that takes advantage of the sequential nature of MRI
acquisition and learns a sequential sampling strategy. Dividing the entire acquisition
process into a few steps, the proposed method sequentially selects the next batch of
measurements based on the previously observed ones. We show that this approach
significantly outperforms the baseline that determines the choice of measurements
ahead of time. Compared to other reinforcement learning-based methods, our
approach is trained in a fully end-to-end manner, leading to better efficiency and
reconstruction quality. Second, in Chapter 4, we propose a new framework for
optimizing sampling patterns with respect to downstream diagnostic tasks beyond
standard reconstruction. We recognize the fact that having a reconstruction is not the
end of the workflow and that common image similarity metrics do not fully reflect
the reconstruction quality from a downstream task perspective. We demonstrate the
effectiveness of the proposed framework on three types of tasks—reconstruction
that focuses on a region-of-interest (ROI), segmentation, and classification. Our
framework shows consistent improvements over baselines that are limited to image
reconstruction in terms of task-relevant metrics.
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In Part II, we present a framework for sampling from posterior distributions using
diffusion models (DMs), a state-of-the-art family of generative models. Chapter 5
covers relevant background on Bayesian inverse problems and DMs. In Chapter 6,
we introduce PnP-DM, a principled posterior sampling framework inspired by the
Split Gibbs sampler (SGS) [296], a rigorous type of Markov chain Monte Carlo
(MCMC) sampler. Our main contribution is to identify a key connection between
SGS and DMs via a unified formulation called the EDM framework [151]. This con-
nection allows us to easily incorporate pre-trained DMs as image priors for solving
inverse problems. We show both a convergence theory and a validation of our ap-
proach on a synthesis Gaussian prior example. Experimental results on a few linear
and nonlinear inverse problems demonstrate that our method provides both better
individual reconstructions and more accurate estimations of posterior distributions.
We then work towards a unified framework for diffusion-based posterior estimation
in Chapter 7. Specifically, we present four instantiations of the unified framework
that handle more general inverse problems. Topics include (1) incorporating text
as prior, (2) harnessing high dimension for video inverse problems, (3) accommo-
dating black box forward models, and (4) generalizing to discrete spaces. Adopting
similar alternating-update structures as PnP-DM, these instantiations exhibit similar
convergence guarantees and strong empirical performance. Finally, in Chapter 8, we
propose a comprehensive benchmark for systematically evaluating diffusion-based
methods for solving scientific inverse problems. The insights gained from these ex-
periments point to promising directions for further improving posterior estimation
in computational imaging.



Part I

Sampling: Measurement Acquisition

6
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C h a p t e r 2

OVERVIEW AND PRELIMINARIES

In this part, we investigate the first topic around sampling in computational imag-
ing—measurement acquisition—in the context of magnetic resonance imaging.

2.1 Magnetic Resonance Imaging (MRI)
Magnetic resonance imaging (MRI) is a widely used imaging technology for clinical
diagnosis and biomedical research [171]. MRI provides powerful tools to non-
invasively visualize anatomy and physiology without ionizing radiation. However,
a central challenge of MRI is its slow acquisition process. This is due to the
fact that the raw measurements of MRI must be sampled one at a time rather
than simultaneously, leading to a total scan time on the order of minutes. This long
acquisition time leads to high cost, patient discomfort, and significant reconstruction
artifacts when patients move. Therefore, there is a strong demand for accelerating
the MRI acquisition process.

2.2 Compressed Sensing MRI (CS-MRI)
Compressed sensing magnetic resonance imaging (CS-MRI) is a popular accelerated
MRI technology based on compressed sensing (CS) [41], which aims to reconstruct
the underlying image from a set of subsampled 𝑘-space measurements [204].

2.2.1 Basics
The common setup of CS-MRI involves reconstructing a target image 𝒙0 ∈ C𝑛 from
its subsampled, noisy 𝑘-space measurements

𝒚 := 𝑴𝑭𝒙0 + 𝒏 ∈ C𝑚 (𝑚 ≪ 𝑛), (2.1)

where 𝑭 is the Fourier transform, 𝑴 ∈ {0, 1}𝑚×𝑛 is the subsampling matrix with 𝒎 ∈
{0, 1}𝑛 denoting its subsampling pattern, and 𝒏 ∈ C𝑚 is the complex measurement
noise. In the parallel imaging setup, the measurements are collected from multiple
receiver coils. For the 𝑗-th coil, the measurements 𝒚 𝑗 can be expressed as

𝒚 𝑗 := 𝑴𝑭𝑺 𝑗𝒙0 + 𝒏 𝑗 ∈ C𝑚, (2.2)

where 𝑺 𝑗 is a diagonal matrix that represents the pixel-wise sensitivity map and 𝒏 𝑗

is the measurement noise of the 𝑗-th coil. For both settings, we refer to 𝑏 := ∥𝒎∥1
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as the sampling budget and 𝑅 := 𝑛
𝑏

as the acceleration ratio of the acquisition. Once
properly implemented1, the accelerated sequence will shorten the scan time by a
factor of 𝑅, leading to significantly higher throughput.

2.2.2 Image Reconstruction
Traditional image reconstruction techniques in CS-MRI include solving a regular-
ized optimization problem [205, 243]. Recently, deep learning (DL) methods have
achieved state-of-the-art performance on CS-MRI reconstruction. One line of work
combines data-driven priors with model-based iterative reconstruction (MBIR) [4,
149, 248, 291]. Another line of work learns a model-free reconstruction network
via end-to-end training [173, 174, 235, 305, 329]. A third line of work, known as
deep unrolling (DU), combines the characteristics of MBIR and end-to-end training
[1, 2, 117, 123, 136, 191, 255, 267, 328, 331, 343]. The idea is to “unroll” an
iterative optimization procedure into a cascade of mappings and train these map-
pings end-to-end so that they can gradually map a low-resolution input image to
a high-quality output reconstruction. Inheriting the advantage of both MBIR and
end-to-end learning, these methods exhibit state-of-the-art performance on CS-MRI
reconstruction.

2.2.3 Sampling Pattern Design
Subsampling patterns in traditional CS-MRI are often generated randomly or hand-
crafted to have a point spread function (PSF) with a high degree of incoherence
defined under the compressed sensing theory [41]. Popular subsampling patterns
include the 2D variable density [204], bidirectional Cartesian [301], Poisson-disc
[288], and continuous-trajectory variable density [54], among others [74, 239].
These subsampling patterns are designed for generic image reconstruction and not
optimized for any specific body part or diagnostic purpose. Therefore, these pat-
terns may lead to suboptimal performance for downstream tasks where specific
anatomical or pathological information is relevant.

Recently, a new group of DL-based methods, known as co-design, has been proposed
to jointly optimize the subsampling pattern 𝒎 and a downstream reconstruction
module, leading to better reconstruction performance than the traditional CS-MRI
methods [3, 8, 12, 216, 229, 237, 299, 300, 302, 307, 327, 330, 344, 351, 362].

1The actual implementation of subsampling in MRI involves physical and hardware constraints,
which can be complicated. Here we omit the details. We will provide details on the implementation
in Chapter 4.
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Due to the sequential nature of MRI acquisition, reinforcement learning (RL) based
methods have also been considered to learn an adaptive policy for determining 𝒎

[13, 195, 231].

2.3 Part Outline
For the rest of this part, we will discuss two topics around the optimization of
sampling patterns for CS-MRI:

• In Chapter 3, we propose an end-to-end approach to learning a sequential
sampling strategy. Our method adaptively selects which measurements to
take on the fly based on the previous selections. We show that the proposed
method not only outperforms previous non-adaptive end-to-end methods but
also improves upon RL-based methods. The improvements are reflected in
terms of both statistical significance and visual quality.

• In Chapter 4, we present a framework for optimizing the sampling patterns
directly for downstream diagnostic tasks. We show that if there is a clear
downstream objective for an MRI scan, such as inspecting a particular region
of interest or type of tissue, optimizing directly for that objective often leads to
significantly better performance than optimizing for reconstruction as a surro-
gate. Besides experiments on publicly available datasets, we also program our
learned sequence on an MRI machine. Notably, our actual implementation
achieves a 4× scan time reduction as expected while providing high-fidelity
reconstructions.
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C h a p t e r 3

LEARNING SEQUENTIAL SAMPLING AND
RECONSTRUCTION STRATEGIES

In this chapter, we investigate one way to improve measurement acquisition: lever-
aging the sequential nature of the acquisition process. Intuitively, if some mea-
surements are observed before we have a chance to choose others, leveraging the
information in the observed measurements allows us to make a wiser choice about
which measurements to observe next. Based on this intuition, we propose a fully
differentiable framework that jointly learns a sequential sampling policy simultane-
ously with a reconstruction strategy. This co-designed framework can adapt during
acquisition to capture the most informative measurements for a particular target
(Figure 3.1). Experimental results on the fastMRI knee dataset demonstrate that
the proposed approach successfully utilizes intermediate information during the
sampling process to boost reconstruction performance. In particular, our proposed
method outperforms the learning-based LOUPE baseline [12] on over 96% of test
samples. We also investigate the individual and collective benefits of the sequential
sampling and co-design strategies.

This chapter is based on our work [335], published in the Proceedings of the 1st
Machine Learning for Health symposium 2021 (ML4H 2021), PMLR volume 158,
ISSN: 2640-3498. This work also received the Best Paper Award for ML4H 2021.
The appendix for this chapter is Appendix A. The code for the work presented in
this chapter is available at https://github.com/tianweiy/SeqMRI.

3.1 Introduction
The success of CS-MRI depends on two critical factors: (a) a carefully designed
𝑘-space subsampling pattern to collect informative measurements, and (b) a re-
construction method that accurately recovers high-quality images from subsampled
data. Current MRI protocols collect measurements over time using static sub-
sampling patterns that were designed a priori. To further accelerate a scan, we are
interested in sequential sampling patterns that adapt to a target based on intermediate
information collected during acquisition.

A high-fidelity MRI reconstruction stems from the cooperation between the 𝑘-space

https://github.com/tianweiy/SeqMRI
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Figure 3.1: We propose a sequential sampling and reconstruction co-design
framework for accelerated MRI that adapts to a target during acquisition.
Here, we visualize the sampling policy and final reconstruction of rotated knees
in a single-coil imaging setting with 8× acceleration (8× subsampling). The first
four columns show the cumulative 𝑘-space measurements selected by the proposed
learned sampler (pink) in acquisition steps 1 through 4 (during a 4-step acquisi-
tion). The fifth column shows the final image recovered by the proposed learned
reconstructor, and the last column is the ground truth. This example illustrates how
our model has learned to adapt to different 𝑘-space distributions: the final sampling
patterns in the fourth column contain visible directional structure that aligns with
the 𝑘-space power spectrum. Rotated anatomical images, such as these rotated knee
images, were not included in the training set (or quantitatively evaluated test set).

sampling strategy and the reconstruction method. Traditionally, MRI subsampling
patterns and reconstruction methods have been largely independently designed. We
are instead interested in co-design, where jointly designing the two components can
synergistically boost reconstruction quality. Our approach builds on neural network-
based co-design frameworks that have shown strong empirical performance and take
advantage of efficient differentiable training [12, 157, 158, 270].

In this chapter, we propose an end-to-end differentiable framework that successfully
combines co-design and sequential sampling. Specifically, we design an explicit
sequential structure of 𝑇 steps, with each step consisting of a jointly learned 𝑘-space
sampler and reconstructor. Comparing our model with prior work in accelerated
MRI, we investigate the individual and collective benefits of sequential sampling
and co-design. We evaluate the proposed model on the NYU fastMRI datasets
and find that: (1) even a single sequential step consistently improves performance
compared to using a pre-designed sampling pattern; (2) more sequential steps can
improve reconstruction quality, but with diminishing returns; and (3) a fully differen-
tiable approach enables more efficient and effective co-design than non-differentiable
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methods. Notably, despite various published works on sequential sampling using re-
inforcement learning [13, 231], we are among the first to demonstrate consistent and
statistically significant improvement over a state-of-the-art learned non-sequential
baseline [12] through the use of a fully-differentiable sequential computation graph.

The rest of the chapter is organized as follows. In Section 3.2, we review past
literature in accelerated MRI from the perspectives of co-design and sequential
sampling. We introduce our proposed framework and its training procedure in
Section 3.3. We then present our experimental settings, comparisons between our
model and other baselines, and ablation studies in Section 3.4. Finally, we conclude
with a discussion on future directions of our framework in Section 3.5.

3.2 Related Work
Prior work in accelerated MRI can be organized into four quadrants, split across two
dimensions: methods that (1) independently (and/or manually) design the sampler
and reconstructor versus data-driven co-design, and (2) specify the sampling pattern
before a scan (pre-designed) versus adapt samples to the target during acquisition.
In Section 3.2.1, we cover traditional methods that independently (and/or manually)
design the sampler and reconstructor. In Section 3.2.2, we discuss previous methods
that perform pre-designed acquisition in a co-design framework. In Section 3.2.3,
we introduce recent work on sequential sampling for accelerated MRI. We conclude
in Section 3.2.4 with an overview of methods that attempt to combine co-design and
sequential sampling, but without end-to-end learning. Our end-to-end framework
efficiently combines co-design and sequential sampling, successfully inheriting the
advantages of both approaches.

3.2.1 Traditional Methods
Accelerated MRI sampling patterns implemented on commercial scanners are moti-
vated by ideas in compressed sensing (CS) [41]. Since anatomical images are sparse
in a linearly transformed space, it is possible to reconstruct a high-fidelity image with
incoherent 𝑘-space data sampled below the Nyquist-Shannon rate [205]. In the con-
text of 2D CS-MRI, prior work has investigated uniform density random sampling,
variable density sampling [204], Poisson-disc sampling [288], continuous-trajectory
variable density sampling [54], and equi-spaced sampling [121]. These sampling
patterns are easy to implement, but not adaptive to specific datasets or target images.

Once sparse 𝑘-space measurements have been acquired, an image is typically recon-
structed via an optimization problem that involves two objectives: the first encour-
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ages a reconstruction that matches the observed data, while the second addresses
the ill-posed nature of the under-determined system through image regularization.
Common regularization terms include total variation (TV) [29] and the ℓ1-norm
after a sparsifying transformation (obtained using wavelets [204, 207] or dictionary
decompositions [140, 243, 340]).

Recently, convolutional neural networks (CNNs) have demonstrated impressive per-
formance in MRI reconstruction. Strategies include unrolled networks [123, 191,
255, 331], UNet-based networks [142, 174], GAN-based networks [235, 329],
among others [190, 305, 360]. These learning methods have achieved state-of-the-
art performance on public MRI challenge datasets [338]. In our proposed co-design
model, we employ a convolutional UNet for image reconstruction.

3.2.2 Co-Design
The goal of co-design is to jointly identify the optimal sampling and reconstruction
strategies. This is an NP-hard combinatorial optimization problem due to the dis-
crete nature of the sampling pattern. Theoretically, one could identify an optimized
reconstructor for every possible sampling strategy, and then pick the overall strategy
that performs best. However, this brute-force optimization approach is not practical,
as it requires enumerating an exponential number of possible sampling combina-
tions. Early work formulated the co-design as a nested (or bi-level) optimization
problem and alternated between optimizing a sampler and a reconstructor [242].

More recently, deep learning has enabled a data-driven solution to the co-design
problem, where the sampler and reconstructor can be jointly learned through end-
to-end training. For example, [12, 312, 344] proposed co-design frameworks for
2D Cartesian 𝑘-space sampling and [299, 311] applied co-design to 2D radial 𝑘-
space sampling.1 These methods have shown superior performance over previous
baselines that combine an individually-optimized sampler and reconstructor pair [12,
270, 299, 312, 344]. However, these methods do not take advantage of the sequential
nature of data collection during an MRI scan, and only solve for a generic sampling
pattern for an entire dataset.

3.2.3 Sequential Sampling
Since MRI scanners acquire measurements in a sequential manner, recent work
has modeled the sampling process in the context of sequential decision making.

1Differentiable co-design of discrete sensing and reconstruction methods has also been success-
fully applied to other imaging domains as well [270].
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Sequential decisions enable the sampling pattern to adapt to different input images
by choosing the next 𝑘-space sample based on prior measurements. Reinforcement
learning (RL) methods have primarily been employed for this purpose. For exam-
ple, [13, 231] formulate the sampling problem as a Partially Observable Markov
Decision Process (POMDP) and use Policy Gradient [18] and DDQN [124] meth-
ods, respectively. These RL methods heavily rely on a pre-trained reconstructor,
which leads to a training mismatch (and thus potentially suboptimal performance),
since the reconstructor was trained with a sampling strategy that does not match the
strategy eventually employed by the RL-learned sampler. Furthermore, these RL
methods are difficult and costly to train, as they are non-differentiable. As a conse-
quence, in the context of accelerated MRI, these methods either fail to be adaptive
to different input images or have only limited improvement over simple baselines
[13, 231].

3.2.4 Co-Design & Sequential Sampling
Several approaches have attempted to combine co-design with sequential sampling
strategies, but they have achieved only limited success to date. The work of [146]
draws inspiration from AlphaGo [258] and trains a sampler to emulate the policy
distribution obtained through a Monte Carlo Tree Search (MCTS); the reconstructor
is trained during alternating optimization steps. However, according to the results in
[13], the MCTS method in [146] has limited improvement over simple baselines, and
is outperformed by the sequential sampling method in [13] without co-design. This
poor performance may be due to the overall MCTS framework not being end-to-end
differentiable. Alternatively, [351] proposes a framework that trains a ResNet to
reconstruct the anatomical image simultaneously with an evaluator network that is
trained to select the most uncertain measurement in 𝑘-space. Although the authors
demonstrate how this framework can be used to sequentially choose the next sample,
it is not explicitly trained end-to-end and is outperformed by [231], which does not
use co-design. This training-testing mismatch limits the potential improvement
of sequential sampling. In contrast, we design a fully differentiable end-to-end
framework that leverages the sequential nature of 𝑘-space MRI acquisition during
both training and testing.

3.3 Method
Figure 3.2 summarizes the co-design framework for our sequential sampling and
reconstruction model. We partition the 𝑘-space sampling budget into 𝑇 steps and
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Figure 3.2: Overview of the proposed sequential sampling framework. Low-
frequency samples are pre-selected and measured in 𝑘-space. The subsampled
𝑘-space is transformed into a zero-filled image, which is fed into a reconstructor
R𝜽 (·) to produce an intermediate image reconstruction (Equation (3.1)). The inter-
mediate reconstruction and measurements are passed into a sampler network S𝒒 (·),
which outputs a discrete probability distribution representing suggested samples for
the next iteration. An action is sampled from this distribution (Equation (3.2)), and
the corresponding 𝑘-space measurements are acquired. The sampling and recon-
struction process is repeated for 𝑇 steps. The sampler and reconstructor are neural
networks learned via end-to-end training with a loss on the final reconstructed im-
age. Weights are shared across all 𝑇 acquisition steps.

denote a model with 𝑇 sequential steps as “𝑇-Step Seq” hereafter. At each step 𝑡,
the pipeline applies a sampler S𝒒 (·) and a reconstructor R𝜽 (·). The reconstructor
aims to remove aliasing artifacts in the zero-filled reconstruction 𝒙̃ (𝑡) of the acquired
measurements 𝒚 (𝑡):

𝒙̂ (𝑡) = R𝜽

(
𝒙̃ (𝑡)

)
= R𝜽

(
𝑭−1𝒚 (𝑡)

)
. (3.1)

The sampler, in turn, seeks to intelligently select which 𝑘-space samples to ob-
serve next, based on previously observed measurements and the 𝑘-space of the
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reconstruction so far:

𝒎 (𝑡) ∼ S𝒒

(
𝒎 (𝑡−1) , 𝒚 (𝑡−1) , 𝑭𝒙̂ (𝑡−1)

)
s.t. ∥𝒎 (𝑡) − 𝒎 (𝑡−1) ∥1 = 𝑏 (𝑡) (3.2)

where 𝒎 (𝑡) is a binary mask representing the sampling pattern collected up until
step 𝑡 and 𝑏 (𝑡) is the sampling budget at step 𝑡.

We model the sampler S𝒒 (·) and reconstructor R𝜽 (·) as neural networks, and jointly
optimize their weights, 𝒒 and 𝜽 , by minimizing the image reconstruction error
between the final-step reconstruction 𝒙̂ (𝑇) and the ground truth target image 𝒙0:

𝒒∗, 𝜽∗ = arg min
𝒒,𝜽
Lrecon.

(
𝒙̂ (𝑇) , 𝒙0

)
, (3.3)

where Lrecon. is an image reconstruction loss function based on, e.g., structural
similarity index measure (SSIM) [310] or peak signal-to-noise ratio (PSNR). We
choose to share sampler and reconstructor weights across all steps. The sampler
and reconstructor are described in more detail in Section 3.3.1 and Section 3.3.2,
respectively.

3.3.1 Sampler
Subsampling Patterns We follow prior work to consider two types of 𝑘-space
sampling: 1D line sampling and unconstrained 2D point sampling [12, 13, 338,
351]. Figure 3.3 illustrates these two sampling scenarios, which enable different
levels of sampling flexibility. In 1D line sampling, only vertical trajectories along
the vertical (frequency encoding) direction can be sampled. This corresponds to the
Cartesian subsampling setting in 2D MRI. On the other hand, 2D point sampling
allows any measurement on the 2D grid in 𝑘-space to be acquired. Unconstrained
2D point sampling represents an upper bound on sampling flexibility and can be
implemented on 3D Cartesian sequences. We note that our sequential sampling
framework is applicable to other patterns, such as radial sampling [26].

As low-frequency 𝑘-space measurements contain the most information about large-
scale anatomical structure, it is common practice in accelerated MRI to fix a small
number of low-frequency 𝑘-space samples to always be collected [13, 231, 351].
We follow this strategy by allocating 1/8 of the total sampling budget to the central
low-frequency region in all experiments.

Probabilistic Modeling We follow [12] to model the subsampling strategy at
step 𝑡 as an element-wise Bernoulli policy. To learn the optimal probabilities at
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Figure 3.3: Visualizations of two types of 𝑘-space sampling patterns: 1D line
sampling and 2D point sampling. White regions are sampled from a uniform
distribution over the space of possible actions. The center low-frequency samples
are pre-selected in all experiments before any further sampling. DC corresponds to
the (0, 0) frequency.

each step, the sampler takes in the sampling mask 𝒎 (𝑡−1) , 𝑘-space measurements
𝒚 (𝑡−1) , and the 𝑘-space of the reconstruction 𝑭𝒙̂ (𝑡−1) up to date (see Equation (3.2)).
The sampler then outputs a set of logits 𝒒 (𝑡)

𝑖
∈ R𝑙 , where 𝑙 denotes the number

of possible sampling indices (i.e., number of columns for the 1D line pattern and
number of pixels for the 2D point pattern). These logits are subsequently turned
into probabilities 𝒑̃ (𝑡)

𝑖
:= Sigmoid(𝒒 (𝑡)

𝑖
). We then rescale 𝒑̃ (𝑡) to obtain a probability

map 𝒑 (𝑡) with 𝑏 (𝑡) measurements in expectation:

𝒑 (𝑡) =


𝛼
𝛽
𝒑̃ (𝑡) if 𝛽 ≥ 𝛼

1 − 1−𝛼
1−𝛽 (1 − 𝒑̃ (𝑡)) otherwise

where 𝛼 := 𝑏 (𝑡 )

𝑛
, 𝛽 := ∥ 𝒑̃ (𝑡 ) ∥1

𝑛
, and 1 is the all-one vector. Additionally, to avoid

acquiring the same measurements again, the probabilities of sampling previously
acquired lines are set to zero:

𝒑 (𝑡) = 𝒑 (𝑡) ⊙ (1 − 𝒎 (𝑡−1)) (3.4)

where ⊙ is the element-wise multiplication. We then draw Bernoulli random sam-
ples for all sampling locations according to the probability map 𝒑 (𝑡) , where 1
indicates sampling a location and 0 indicates otherwise. Mathematically, we can
write this sampling process as the 𝑘-space sampling mask 𝒎𝑡 for acquisition step 𝑡
via:

𝒎 (𝑡) = 1[𝒖 ≤ 𝒑 (𝑡)] + 𝒎 (𝑡−1) , (3.5)

where 𝒖 ∈ [0, 1] 𝑙 is a vector of 𝑙 independent realizations of the uniform distribution
on the interval [0, 1]. We repeatedly sample 𝒖 until ∥𝒎 (𝑡) −𝒎 (𝑡−1) ∥1 ≈ 𝑏 (𝑡) under a
small tolerance. This sampling process encourages exploration of different patterns
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Table 3.1: SSIM comparison of 2D point sampling for 4×, 8×, and 16× accel-
erations. Our 4-step sequential model outperforms the previous approaches when
tested on the fastMRI knee test set. For each model, we compute the test average
and standard deviation obtained across three trained models with independent ini-
tialization.

Method 4× 8× 16×
Random 90.40 (0.02) 87.43 (0.05) 84.25 (0.00)
Spectrum 92.39 (0.01) 90.38 (0.01) 88.37 (0.01)
LOUPE [12] 92.44 (0.01) 90.60 (0.03) 88.73 (0.04)
4-Step Seq. (ours) 92.91 (0.01) 91.07 (0.02) 89.10 (0.03)

and ensures that the sampling patterns approximately satisfy the budget constraint.
Note that the indicator function 1[·] is not differentiable, which hinders the training
of the model through back-propagation. To overcome the non-differentiability, we
use a straight-through estimator that applies the indicator function in the forward
pass, while approximating its gradients by treating the binary indicator function as a
sigmoid during back-propagation [20]. In this way, we can capture binary sampling
in real MR scanning, while retaining gradients for end-to-end training.

Sampler Architecture For the 1D line sampler, we use a Multilayer Perceptron
(MLP) network with five layers separated by ReLU activation functions. For the 2D
point sampler, we instead use an eight-block UNet with ReLU activation functions
whose architecture is more scalable on higher-dimensional action spaces. Further
details of the network architectures for both samplers are included in Appendix A.1.

3.3.2 Reconstructor
Our proposed co-design sequential framework learns the parameters of a reconstruc-
tor jointly with the sampler. Although many networks have been proposed for MR
image reconstruction [123, 255, 267, 331], the choice of reconstructor architecture
is not the main focus of this chapter. We following [12, 13, 338] to adopt a stan-
dard 8-block U-Net architecture [250] . The input to the reconstructor at each step
𝑡 is the complex-valued zero-filled image, 𝒙̂ (𝑡) , and the output is a single-channel
real-valued image, 𝒙̃ (𝑡) . The UNet reconstructor contains four downsampling blocks
and four upsampling blocks, each consisting of two 3×3 convolutions separated by
ReLU and instance normalization [286]. We note that our framework is agnostic to
the specific reconstructor architecture.
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Figure 3.4: Visualizations of example reconstructions with an 4× acceleration
for 1D line sampling. Two zoomed-in image patches are shown along with the
cumulative 𝑘-space measurements selected by each policy. Our sequential approach
often provides more accurate reconstructions with detailed local structures. More
visualizations are included in the Appendix A.4.
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Figure 3.5: Histograms of pair-wise SSIM differences between our sequential
models and LOUPE [12] on all 1,851 test images. Positive numbers indicate
improvement over LOUPE. The results are acquired by averaging three runs of 4×
accelerated 2D point subsampling. More sequential steps lead to a bigger advantage
over LOUPE, with the 4-step sequential model outperforming LOUPE on 96.96%
of samples. This performance pattern holds for the 1D line scenario and other
acceleration factors as well, as shown in Appendix A.3. More quantitative results
are given in Table 3.3.

3.4 Experiments
3.4.1 Setup and Implementation Details
We evaluate our sequential sampling and reconstruction method on the NYU
fastMRI open dataset [338]2. The dataset provides raw single-coil 𝑘-space mea-
surements for knee images, with 973 training set volumes and 97 validation set
volumes [338]. We follow the setup of [231] and split the original validation set
into a new validation set with 48 volumes and a test set with 49 volumes, which
results in 34,742 2D slices for training, 1,785 slices for validation, and 1,851 slices

2https://fastmri.org/

https://fastmri.org/
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Table 3.2: SSIM comparison of 1D line sampling under 4× acceleration. Our
4-step sequential model outperforms the previous approaches when tested on the
fastMRI knee test set. A paired samples 𝑡-test shows a statistically significant
difference between our 4-step sequential model and LOUPE [12], with a 𝑝-value
smaller than 10−300. For each model, we compute the test average and standard
deviation obtained across three trained models with independent initialization.

Random Equispaced Evaluator [351] PG-MRI [13] LOUPE [12] 4-Step Seq. (ours)

85.95 (0.05) 86.86 (0.06) 85.99 (0.04) 87.97 (0.09) 89.52 (0.02) 91.08 (0.09)
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Figure 3.6: Comparison between our sequential model and the LOUPE model
on the fastMRI knee test set. Our sequential model outperforms LOUPE for
all acceleration ratios with an improvement comparable to 25% of the benefit of
doubling the number of 𝑘-space measurements. The performance of our sequential
model in the 1D line sampling case significantly outperforms LOUPE but plateaus
after 2 sequential sampling steps, possibly due to the restricted action space of 1D
line sampling.

for testing. For computational efficiency, we follow [13, 351] to crop the 𝑘-space to
the center 128×128 region.

We use the structural similarity index measure (SSIM) for the primary evaluation
metric, which has been found to correlate well with expert evaluations [164]. We
define the loss function Lrecon.(𝒙, 𝒙0) := −SSIM(𝒙, 𝒙0) following [13, 231, 267],
which is computed using a window size of 7×7 and hyperparmeters 𝑘1 = 0.01,
𝑘2 = 0.03 following the fastMRI challenge’s official implementation. We use the
Adam optimizer [162] and train our model for 50 epochs with a learning rate of 1𝑒−3
for 2D point sampling experiments and 5𝑒 − 5 for 1D line sampling experiments.
The learning rate is decreased by half every ten epochs. Training each model takes
at most one day on a single NVIDIA RTX 2080Ti GPU.
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Figure 3.7: Histograms of pair-wise SSIM comparison on all 1,851 test images
with a different number of sequential steps (𝑇), using 2D point sampling with a
4× acceleration factor. The relative error between the 4-step and 1-step (left) or 2-
step(right) demonstrates that additional sequential steps help to boost performance,
but with diminishing returns as 𝑇 increases.

3.4.2 Results
In Figure 3.1, we visualize our framework’s sequential sampling masks and final
reconstruction for rotated knees in the 8× acceleration setting. Starting from pre-
selected measurements, our model sequentially samples 2D 𝑘-space measurements
based on previous observations. Here, we demonstrate that our model can accurately
estimate and leverage the 𝑘-space structure during the sequential sampling steps. In
particular, the final sampling patterns contain visible directional structures that align
with the true 𝑘-space power spectrum induced by knee rotation. This highlights the
adaptivity of our sequential model, as no rotated anatomical images are included in
the training set.

2D Point Sampling In Table 3.1, we compare our method to several baselines
for 4×, 8×, and 16× accelerations, including: (1) Random [110]: randomly select
points from a uniform distribution, (2) Spectrum [289]: select points with the
largest 𝑘-space magnitude over the training set, (3) LOUPE [12]: select points
before acquisition using a distribution learned via co-design. For each baseline, the
reconstruction network has been trained with the specified sampling policy. Please
refer to Appendix A.2 for the implementation details of these baseline methods.
Our 4-step sequential model achieves the best reconstruction performance across
different acceleration ratios. A paired samples 𝑡-test between our method and the
previous state-of-the-art pre-designed sampling approach, LOUPE [12], indicates a
statistically significant difference in performance, with a 𝑝-value less than 10−160 for
all acceleration ratios. By inspecting Figure 3.6, one can see that our 4-step model
outperforms LOUPE for all acceleration ratios, with an improvement comparable
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to 25% of the benefit of doubling the number of 𝑘-space measurements from 8× to
4×.

1D Line Sampling We compare our model to previous methods for the 1D line
sampling with a 4× acceleration factor in Table 3.2. The baselines we consider
include: (1) Random: randomly select 𝑘-space lines from a uniform distribution,
(2) Equispaced [121]: select equidistant lines, (3) Evaluator [351]: sequentially
select lines following a learned evaluation function, (4) PG-MRI [13]: sequentially
select lines using a conditional distribution trained by a policy gradient algorithm,
(5) LOUPE [12]: select lines before acquisition using a distribution learned via co-
design. The implementation details of these baselines are included in Appendix A.2.
Our 4-step sequential framework significantly outperforms prior methods, with
an SSIM improvement of roughly 1.6 over the previous learning-based method,
LOUPE [12]. A paired samples 𝑡-test also indicates a highly statistically significant
boost in performance compared to LOUPE with a 𝑡-score of 64.01 and a 𝑝-value
smaller than 10−300. Note that our differentiable end-to-end framework also sig-
nificantly outperforms a sequential reinforcement learning optimization approach,
PG-MRI [13].

Figure 3.4 shows sample images reconstructed using the approaches mentioned
above. Using the same number of 𝑘-space samples, our 4-step sequential model
most accurately recovers important anatomical structures and details. The orange
and blue patches under each reconstruction highlight certain regions where our
method significantly outperforms other baselines.

Adaptive vs. Pre-Designed Sampling Figure 3.5 shows histograms of pair-wise
SSIM differences on each test sample, computed between our sequential method
and LOUPE. Here we introduce a non-sequential baseline referred to as “non-seq."
which uses the same network architecture as our sequential model but replaces the
prior 𝑘-space measurements used as input with a random tensor. The “non-seq."
baseline demonstrates a performance comparable to that of LOUPE in Figure 3.5,
Figure 3.6, and Table 3.3. However, more sequential steps consistently lead to a
higher percentage of improved samples. Thus, we can conclude that the improve-
ment is not merely due to a better framework architecture but the adaptive sampling
strategy of our approach.
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Table 3.3: The percentage of test samples on which our method with different
numbers of sequential sampling steps (𝑇) outperforms the LOUPE [12] baseline
for 2D point sampling. The percentage average and standard deviation are obtained
using results from three trained models with independent initialization.

Method 4× 8× 16×
Non-Seq. 74.05 (2.56) 60.18 (3.03) 46.98 (8.58)
1-Step Seq. 77.42 (7.89) 57.05 (4.36) 51.09 (4.16)
2-Step Seq. 88.74 (0.45) 83.04 (3.78) 56.42 (4.62)
4-Step Seq. 96.96 (0.73) 92.62 (0.46) 76.91 (2.29)

Number of Sequential Steps We further ablate the impact of the number of
sequential steps. For the case of 2D point sampling in Figure 3.6, the accuracy
consistently increases as the number of sequential sampling steps increases. To fur-
ther understand the improvements seen with additional sequential steps, we perform
a pair-wise SSIM comparison between our sequential models. Figure 3.7 shows
the result of 2D point sampling with a 4× acceleration ratio. Additional sequential
steps boost the reconstruction performance for almost all subjects, with diminishing
returns as𝑇 increases. Table 3.3 shows quantitative results that compare the percent-
age of test samples that outperform the LOUPE baseline. On 2D point sampling,
our 4-step sequential model outperforms LOUPE roughly 97%, 89%, and 77% of
the time for the 4×, 8× and 16× acceleration factors, respectively.

Ablation Study on Co-Design We demonstrate the advantage of co-designing the
sampler and reconstructor in Table 3.4. Specifically, we pre-train a reconstructor
using a uniform sampling policy and demonstrate the performance improvement
that occurs when jointly learning the reconstructor weights with the sampler. Co-
designing the reconstructor with the sampler significantly improves performance,
with an increase of 2.33–2.51 SSIM for 2D point sampling with a 4× acceleration
factor.

3.5 Conclusion
Accelerating the MRI acquisition process has the potential to reduce patient discom-
fort, increase throughput, and expand the use of MRI worldwide. In this chapter,
we proposed an end-to-end sequential sampling and reconstruction framework for
accelerated MR imaging. We leveraged the sequential nature of MRI acquisition
and design a model with an explicit sequential structure that jointly optimizes a
neural network-based sampler simultaneously with a network-based reconstructor.
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Table 3.4: Ablation results showing the advantage of co-design with a 4× ac-
celeration ratio and 2D point sampling. When co-design is specified as “Yes”
the reconstruction network has been jointly optimized with the sampler. Otherwise,
the sampler was optimized with a fixed reconstructor that was pre-trained with a
random sampling policy.

Co-design 1-Step Seq. 4-Step Seq.

✓ 92.66 (0.06) 92.91 (0.01)
✗ 90.33 (0.01) 90.40 (0.02)

In our experiments, this simple framework outperforms previous state-of-the-art
MR sampling approaches for up to nearly 97% of the test samples on the fastMRI
single-coil knee dataset. Overall, our results suggest that future methods for MRI
sampling can benefit from the collaboration of sequential sampling and co-design
via end-to-end learning.
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C h a p t e r 4

LEARNING END-TO-END STRATEGIES FOR THE
DOWNSTREAM TASK OF INTEREST

In the previous chapter, we discussed one way of improving measurement acquisi-
tion via learning sequential sampling strategies. In this chapter, we explore another
approach to improving measurement acquisition: optimizing the entire pipeline
end-to-end for the downstream task of interest. Traditional CS-MRI methods design
the measurement subsampling strategy independently of the downstream task pre-
diction [12, 204, 305]. For example, these methods are optimized for reconstruction
accuracy over the entire field-of-view, even when the goal of the MRI scan is, e.g.,
to inspect a certain kind of tissue or region of interest. This often results in subop-
timal performance on the task that ultimately matters to the user. To address this
limitation, we propose Tackle, a unified co-design framework that jointly optimizes
subsampling, reconstruction, and prediction strategies to maximize downstream task
performance. The naïve approach of simply appending a task prediction module and
training with a task-specific loss leads to suboptimal downstream performance. In-
stead, we develop a training procedure where a backbone architecture is first trained
for a generic pre-training task (image reconstruction in our case), and then fine-
tuned for different downstream tasks with a prediction head. Experimental results
on multiple public MRI datasets show that Tackle achieves an improved perfor-
mance on various tasks over traditional CS-MRI methods. We also demonstrate
that Tackle is robust to some distribution shift by showing that it generalizes to a
new dataset we experimentally collected using different acquisition setups from the
training data. Without additional fine-tuning, Tackle leads to both numerical and
visual improvements compared to existing baselines. We have further implemented
a learned 4×-accelerated sequence on a Siemens 3T MRI Skyra scanner. Compared
to the fully-sampling scan that takes 335 seconds, our optimized sequence only takes
84 seconds, achieving a four-fold scan time reduction as desired, while maintaining
high performance.

This chapter is based on our work [323], published in the IEEE Transactions on Com-
putational Imaging, vol. 10, pp. 1040-1054, 2024, doi: 10.1109/TCI.2024.3410521.
The appendix for this chapter is Appendix B. The code for the work presented in
this chapter is available at https://github.com/zihuiwu/TACKLE.

https://github.com/zihuiwu/TACKLE
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4.1 Introduction
In the existing co-design literature for CS-MRI, task prediction is often viewed
as a post-processing step decoupled from image reconstruction. Existing methods
focus predominantly on image reconstruction and rely on standard image similarity
metrics such as mean square error (MSE) or peak signal-to-noise ratio (PSNR) as
a proxy for performance on a downstream task. Such a reconstruction-oriented
formulation lacks a direct connection with the downstream tasks that reflect actual
clinical needs [219]. We are thus motivated to ask:

Can one improve the accuracy of downstream task prediction by opti-
mizing the entire CS-MRI pipeline in an end-to-end fashion?

With end-to-end co-design methods, it seems like we are only one step away from
incorporating downstream tasks as part of the optimization. Namely, one can simply
append a task prediction module and add a task-specific loss. However, as shown
in Figure 4.1 and Table 4.2, this approach leads to a suboptimal performance on
the task prediction and is sometimes even worse than the traditional approach of
separate reconstruction and task prediction. These results indicate that it remains a
challenge to learn task-specific strategies robustly for CS-MRI.

In this chapter, we address this challenge by proposing a unified framework, task-
specific codesign of 𝒌-space subsampling and prediction (Tackle), for designing
task-specific CS-MRI systems. Different from existing works that focus on specific
tasks, Tackle is a general framework that accommodates different downstream
tasks. To do so, we design a two-step training strategy that mimics the training of
modern language and vision models. Tackle is first trained for a generic task of
image reconstruction, and then fine-tuned for specific downstream tasks. We find
that this approach can effectively learn generalizable task-specific strategies that lead
to significant and consistent improvements, with an example shown in Figure 4.1
(c). Besides the standard task of reconstructing the full field-of-view (which we call
full-FOV reconstruction hereafter), we demonstrate Tackle on three other tasks
covering both pixel-level and image-level imaging problems: region-of-interest
(ROI) oriented reconstruction, tissue segmentation, and pathology classification.
Our experimental results show that end-to-end optimization for task prediction
sometimes circumvents the typical reconstruction in terms of pixel-wise accuracy,
but leads to improved accuracy on the task of interest by effectively extracting key
visual information for task prediction.
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The main contributions of this chapter are as follows:

• We provide a general framework (Tackle) that learns specific strategies for a
variety of CS-MRI tasks. Tackle optimizes the entire CS-MRI pipeline, from
measurement acquisition to label prediction, in an end-to-end fashion directly
for a user-defined task.

• We validate Tackle on multiple MRI datasets, covering different body parts,
scanning sequences, and hardware setups. Experimental results show that
Tackle outperforms the reconstruction-oriented baseline methods on all con-
sidered settings. We evaluate the proposed end-to-end architecture and training
procedure through ablation studies. Our results offer guidance for designing
effective task-specific CS-MRI systems in the future.

• We show the generalization of Tackle to out-of-distribution data by deploying
it to a dataset we experimentally acquired using a different acquisition sequence
from that of the training data. We further implement a learned 4×-accelerated
sequence on a Siemens 3T MRI Skyra scanner. The sequence shortens the scan
time from 335 seconds to 84 seconds, a four-fold time reduction as desired,
while maintaining high performance. These experiments highlight the real-
world practicality of our method.

4.2 Related Work
4.2.1 Reconstruction-Oriented Co-Design
The success of DL methods in CS-MRI reconstruction motivates the idea of jointly
optimizing acquisition together with reconstruction via end-to-end training. Re-
cently, there has been a rapidly growing literature on optimizing a parameterized
sampling strategy jointly with a CNN reconstructor [3, 8, 12, 216, 229, 237, 299, 300,
302, 307, 327, 330, 344, 351, 353, 362]. These methods have different architectural
designs and applicable scenarios, but all rely on the differentiable nature of neural
networks to optimize the reconstruction accuracy over the choice of 𝑘-space mea-
surements. The learned subsampling pattern and reconstruction network are thus
specific to the dataset. The end-to-end training enables synergistic cooperation be-
tween the learned subsampling pattern and reconstructor, achieving state-of-the-art
reconstruction performance. From a task perspective, however, having a reconstruc-
tion is not the end of the workflow. These methods rely on either human evaluation,
a traditional task prediction algorithm, or a CNN for task predictions, which are out
of the scope of these papers.



28

4.2.2 Task-Oriented Co-Design
Recent work has investigated the co-design idea in the context of limited tasks
beyond full-FOV reconstruction, such as physical parameter estimation [325, 353,
363] and segmentation [98, 271, 308, 309, 311]. Using task-specific loss functions
in their training procedures, these proposed methods demonstrate stronger task
performance than methods trained by a reconstruction-only loss. Most of these
proposed approaches leave either subsampling or prediction as a pre-determined
fixed module, and focus on co-designing the other modules [98, 271, 325, 353,
363]. On the other hand, the authors of [309, 311] proposed to jointly optimize all
three steps and investigated a brain segmentation task using a U-Net reconstructor
and predictor. Although these methods show the potential of extending co-design
beyond reconstruction, they are each fine-tuned for one particular task, do not
easily accommodate different types of data (e.g., multi-coil), and have not been
demonstrated on real out-of-distribution datasets. The most relevant work to ours
in the literature is a concurrent work by Wang et al. [308], in which the authors
presented a thorough investigation of optimizing the entire CS-MRI pipeline for
various segmentation problems. In this work, we cast a wider net for the task-
specific CS-MRI co-design problem. In particular, we demonstrate our unified
framework for designing generalized CS-MRI pipelines, Tackle, on three different
tasks beyond full FOV reconstruction. Tackle performs robustly on this broad range
of tasks and experiments, and is implemented and tested on a Siemens scanner.

4.3 Method
Figure 4.2 illustrates the architecture of Tackle. As a co-design CS-MRI method,
Tackle jointly optimizes the sampler, retriever, and predictor for a task-dependent
loss. In the following subsections, we describe each module in order, and more
implementation details can be found in Appendix B.1.2.

4.3.1 Sampler
We consider 2D Cartesian subsampling patterns, i.e., 𝒎 ∈ {0, 1}𝑛. Similar to the
previous chapter, we model the subsampling strategy as the element-wise Bernoulli
distribution with a probability vector 𝒑 ∈ [0, 1]𝑛, i.e., 𝒎𝑖 ∼ Bernoulli( 𝒑𝑖), following
[12, 327, 335]. To learn the optimal sampling probabilities, we directly optimize a
set of logit parameters 𝒒𝑖 that first give us a set of probabilities 𝒑̃𝑖 := Sigmoid(𝒒𝑖).
We then rescale 𝒑̃ to obtain a probabilistic sampling mask 𝒑 that would result in 𝑏
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measurements in expectation via Bernoulli sampling:

𝒑 =


𝛼
𝛽
𝒑̃ if 𝛽 ≥ 𝛼

1 − 1−𝛼
1−𝛽 (1 − 𝒑̃) otherwise

where 𝛼 := 𝑏
𝑛
, 𝛽 := ∥ 𝒑̃∥1

𝑛
, and 1 is the all-one vector. During training, the sampler

draws a 𝑘-space sampling mask 𝒎 by sampling 𝒎𝑖 ∼ Bernoulli( 𝒑𝑖). We repeat-
edly sample 𝒎 until ∥𝒎∥1 ≈ 𝑏 under a small tolerance. This sampling process
encourages exploration of different patterns and ensures that the sampling patterns
approximately satisfy the budget constraint. Since the sampling process is not dif-
ferentiable, we use the same straight-through estimator technique as in the previous
chapter to overcome the non-differentiability [20]. During testing, we set the top 𝑏
indices of 𝒑 with the highest probabilities to 1 (to sample) and others to 0 (not to
sample). This binarization guarantees that the sampling mask strictly satisfies the
sampling budget constraint and all slices of a volume share the same sampling mask.
We also allocate 1/8 of the sampling budget for the low-frequency region around the
DC component, which we refer to as the pre-select region. The pre-selected mea-
surements provide auto-calibration signals (ACS) for multi-coil reconstruction and
stabilize the training of some baselines. Therefore, we include the pre-select re-
gion for all experiments for consistency. More discussion on this can be found in
Appendix B.1.3. We denote the sampler as S𝒒 where 𝒒 is the vector of learnable
parameters.

4.3.2 Retriever
After acquiring measurements, we employ a retriever to extract visual information
from noisy and subsampled 𝑘-space measurements. We note that we name the
module “retriever” instead of “reconstructor” because it is jointly optimized with
the downstream predictor for non-reconstruction tasks. Hence, the retriever should
not be interpreted as a reconstructor as its output may not be a typical “reconstruc-
tion” in terms of pixel-wise accuracy. We denote the retriever as R𝜽 where 𝜽 is
its weights. We select the E2E-VarNet [267] since it is a model-based DU archi-
tecture that combines the MRI forward model and deep learning architectures, and
achieves excellent performance on CS-MRI reconstruction [338]. E2E-VarNet also
accommodates multi-coil 𝑘-space data with its ability to estimate coil sensitivity
maps. Specifically, our E2E-VarNet retriever operates in 𝑘-space and consists of 12
refinement steps, each of which includes a U-Net [250] with independent weights
from each other. For each U-Net, we use the standard architecture with the follow-
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ing parameters: 2 input and output channels, 18 channels after the first convolution
filter, 4 average down-pooling layers, and 4 up-pooling layers. The final output
layer of the retriever is an inverse Fourier transform followed by a root-sum-squares
reduction for each pixel over all coils. The output of the retriever is a batch of
magnitude images. For reconstruction tasks, a loss function will be directly applied
to the output. For non-reconstruction tasks, the output will be fed into an additional
predictor module described in the next section.

4.3.3 Task-Specific Design: Predictor and Loss Function
We demonstrate Tackle on three tasks that together represent a gradual progression
from generic full-FOV reconstruction to clinically relevant tasks.

4.3.3.1 ROI-Oriented Reconstruction

For many MRI scans, only a small region of the FOV is relevant to the reader, so we
define a task where we aim to maximize reconstruction quality around that region.
In contrast to the full-FOV reconstruction task, the reconstruction accuracy in this
task is only measured over the region of interest (ROI) of each image instead of the
entire FOV. We hereafter refer to this task as ROI-oriented reconstruction. This task
is a first step from generic full-FOV reconstruction to more specific downstream
tasks in CS-MRI.

There is no predictor for this reconstruction task, and the output of the retriever
will directly be used for evaluation. The evaluation metric we use is the local peak
signal-to-noise ratio (PSNR), which is the PSNR within the ROI of an underlying
image 𝒙. Let R𝒙 be the set of indices 𝑖 that are within the ROI of an image 𝒙. Note
that R𝒙 varies from one image 𝒙 to another. We define the local PSNR within the
ROI as

LocalPSNR(𝒙̂, 𝒙;R𝒙) := 10 log10
max(𝒙)2

LocalMSE(𝒙̂, 𝒙;R𝒙)
(4.1)

where LocalMSE(𝒙̂, 𝒙;R𝒙) := 1
|R𝒙 |

∑
𝑖∈R𝒙
(𝒙̂𝑖 − 𝒙𝑖)2 and max(𝒙) is the largest pixel

value of 𝒙. We optimize our model for the local reconstruction quality using
LROI(𝒙̂, 𝒙0) := −LocalPSNR(𝒙̂, 𝒙0;R𝒙0) as the training loss where 𝒙0 is the ground
truth image.
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4.3.3.2 Tissue Segmentation

For this task, we aim to predict segmentation maps of different body tissues. Accu-
rately segmenting a tissue from the rest of the organ provides important anatomical
and pathological information [128, 238, 254]. Conventional segmentation workflow
involves human evaluation and traditional algorithms, which often require standard
reconstructions of certain contrasts as input [105]. On the contrary, Tackle does
not require reconstruction as a necessary intermediate step, and is optimized for
segmentation performance in an end-to-end fashion.

We include an additional predictor P𝝓 with weights 𝝓 after the retriever. We choose
the U-Net architecture due to its ability to solve medical image analysis tasks [14,
116, 250]. The specific parameters are: 1 input channel, 𝑐 output channels (where 𝑐
is the number of segmentation classes), 64 channels after the first convolution filter,
4 average down-pooling layers, and 4 up-pooling layers.

We use the Dice score [88, 222, 364] as the evaluation metric. The Dice score
measures the degree of overlap between two segmentation maps and takes a value
between 0 (no overlap) and 1 (perfect overlap). During training, we employ the Dice
loss Lseg.( 𝒔̂, 𝒔0) := 1−DiceScore( 𝒔̂, 𝒔0) where 𝒔0 is the ground truth segmentation
map. For both training and evaluation, we apply a Softmax function across all the
classes for each pixel and then calculate the Dice loss/score. During the evaluation,
we apply an additional binarization step where we set the class with the highest
value after Softmax as 1 and others as 0. In this way, we assign each pixel of the
predicted segmentation map 𝒔̂ to exactly one class.

4.3.3.3 Pathology Classification

The third task we consider is to determine whether a potential pathology exists
in an MRI image, such as a suspected tumor. Using algorithms to automatically
analyze MRI scans could lead to improved diagnosis accuracy in clinical practice
[219]. We formulate this task as a binary image classification problem, where
the negative class means the underlying image 𝒙 does not contain any pathology
lesion, and the positive class means it does contain a lesion. Through this proof-of-
concept classification task, we go beyond pixel-level problems and show the benefit
of task-specific co-design for solving an image-level problem.

Similar to the segmentation task, we include an additional predictor in the pipeline,
which we also denote as P𝝓 to simplify notations. Specifically, we choose the ResNet
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[126], which is an established architecture for computer vision tasks, especially
image classification. We use the standard ResNet18 architecture except for using 1
input channel and 2 output dimensions.

We use the binary cross entropy (BCE) as the loss function for this classifica-
tion task, Lclass.( 𝒄̂, 𝒄0) := BCE( 𝒄̂, 𝒄0) where 𝒄0 is the ground truth classifica-
tion label. For evaluation metrics, we consider both the classification accuracy
(ClsAcc := TP+TN

TP+TN+FP+FN ) and the 𝐹1 score (F1 score := 2TP
2TP+FP+FN ) where TP, TN,

FP, and FN are the number of True Positive, True Negative, False Positive, and False
Negative, respectively. The classification accuracy is more interpretable, while the
𝐹1 score is more robust to class imbalance. So we include both metrics for a more
comprehensive evaluation.

4.3.4 Training Procedure
We summarize the training objective for each task as follows:

• ROI-oriented reconstruction:

min
𝒒,𝜽
LROI

(
R𝜽

(
S𝒒 ⊙ 𝒌

)
, 𝒙0

)
• Segmentation:

min
𝒒,𝜽 ,𝝓
Lseg.

(
P𝝓

(
R𝜽

(
S𝒒 ⊙ 𝒌

) )
, 𝒔0

)
• Classification:

min
𝒒,𝜽 ,𝝓
Lclass.

(
P𝝓

(
R𝜽

(
S𝒒 ⊙ 𝒌

) )
, 𝒄0

)
where 𝒌 ∈ C𝑛 contains all 𝑘-space measurements of 𝒙 and ⊙ denotes element-wise
multiplication.

When performing end-to-end training over multiple stages, we empirically observed
that a model trained from scratch tends to run into either optimization (hard to train)
or generalization (unable to generalize) issues. Some prior works address these
problems using a hybrid of reconstruction and task-dependent loss [271, 309, 311,
325, 363]. This approach requires tuning a weight parameter that balances the two
losses. We adopt an alternative approach that avoids tuning this additional parameter.
Specifically, we first train the sampler and retriever jointly with a full-FOV PSNR
loss until convergence:

min
𝒒,𝜽
LFOV

(
R𝜽

(
S𝒒 ⊙ 𝒌

)
, 𝒙0

)
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Task Training procedure and loss Notation example

(ROI) recon. S&R: PSNR loss LP+UNFOV
S&R: local PSNR loss (w/ pre-training) TackleROI

Tissue seg. S&R: PSNR loss→ P: Dice loss PD+UNrecon.
S&R&P: Dice loss (w/ pre-training) Tackleseg.

Patho. class. S&R: PSNR loss→ P: BCE loss LOUPErecon.
S&R&P: BCE loss (w/ pre-training) Tackleclass.

S: sampler, R: retriever, P: predictor
&: joint training in an end-to-end fashion
→: separate training stages for reconstruction and prediction

where LFOV(𝒙̂, 𝒙0) := −PSNR(𝒙̂, 𝒙0). We refer to this as the pre-training step in
later sections. With the weights learned for the sampler and retriever, we then add
the predictor (initialized with random weights) into the framework and fine-tune
all three components. We find that the pre-training step allows the model to better
learn task-specific strategies, as demonstrated by an ablation study in Section 4.6.2.
This training procedure mimics the training of foundation models in state-of-the-
art language and vision models, which are first pre-trained on a general task and
then fine-tuned for more specific tasks. Similar procedures can be found in other
task-specific co-design papers, such as [98, 271].

4.4 Experiments on Large-Scale Datasets
We first demonstrate the effectiveness of our framework on the three considered tasks
using large-scale datasets. We categorize all the investigated datasets and settings in
the bottom left panel of Figure 4.2. For each task, we demonstrate that the proposed
task-specific co-design framework achieves better performance than baselines that
separately design reconstruction and prediction. We abbreviate different variants of
the proposed method and baselines in the following way, based on their task and
training procedure:

To clarify, the subscript “recon.” for the segmentation and classification methods
means that the sampler and retriever are trained for full-FOV reconstruction, and
a predictor is subsequently trained for the downstream task with the sampler and
retriever fixed. This is equivalent to training a predictor with the reconstructed
images by these methods as input for the downstream task.
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Table 4.1: Comparison of average test local peak signal-to-noise ratio (Local
PSNR) in decibel (dB) within Meniscus Tear ROIs under different acceleration
ratios (𝑅).

Data 𝑅 LP+UNFOV PD+UNFOV LOUPEFOV TackleROI

Single-coil 8 26.95 28.23 30.32 34.04
16 25.16 26.05 27.32 31.54

Multi-coil 8 27.55 32.68 34.88 40.65
16 26.02 30.00 31.79 37.89

4.4.1 ROI-oriented Reconstruction
Dataset and Setup For the ROI-oriented reconstruction task, we use the images
and raw single- and multi-coil 𝑘-space data from the fastMRI+ knee dataset [338,
354], which contains bounding box annotations for knee pathologies. Specifically,
we investigate the most common knee pathology in the dataset called “Meniscus
Tear” (MT). Each image 𝒙0 in the dataset contains at least one rectangular bounding
box annotation R𝒙0 , which is drawn to include all the pathology but exclude the
normal surrounding anatomy [354]. Therefore, the local image quality within each
bounding box (i.e., ROI) is more indicative of the quality for pathology assessment
than a metric over the entire FOV. We emphasize that the location of the bounding
box R𝒙0 varies sample by sample and is never an input to any method during
inference. R𝒙0 is only used for calculating the training loss and evaluating the
local PSNR during test time according to Equation (4.1). Hence, the local PSNR
performance reflects the quality of reconstructions by different methods for assessing
the considered pathological lesions in the ROIs.

Baselines We compare TackleROI with three full-FOV reconstruction-oriented
baselines.

• LOUPEFOV: Proposed in [12], LOUPEFOV jointly optimizes a sampler and a
residual U-Net reconstructor.

• Low-pass + U-NetFOV (LP+UNFOV): substitute the sampler in LOUPEFOV with
a fixed low-pass filter sampling pattern.

• Poisson-disc + U-NetFOV (PD+UNFOV): substitute the sampler in LOUPEFOV

with a Poisson-disc sampling pattern drawn from a variable density distribution
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and generated with the sigpy.mri.poisson function in the SigPy package1.

Results We compare the average local PSNR of our method and other baselines
over the test set in Table 4.1. For all settings, Tackle outperforms other base-
lines designed for full-FOV reconstruction by at least 3 dB, indicating a significant
improvement of image quality within the ROI.

In Figure 4.3, we provide example reconstructions by our method and three baseline
methods. For each reconstruction, a zoom-in on its ROI is provided at the bottom
with the corresponding local PSNR value labeled above in orange, and its full-FOV
PSNR is labeled on the top right corner. As shown in the ground truth of the
MT example, a meniscus tear is indicated by a streak (dark in the top row and
bright in the bottom row) that is present on the meniscus (bright in the top row
and dark in the bottom row), as indicated by the red pointers. To accurately detect
the existence and assess the severity of a meniscus tear, a reconstruction should
clearly show the boundaries of the meniscus and the details of the tear. However,
the ROIs of both LP+UNFOV and LOUPEFOV reconstructions contain significant
reconstruction artifacts that disguise the tear (see the red arrows). On the other
hand, TackleROI preserves the details of the tear and contains fewer artifacts than
the baselines, providing a more accurate ROI reconstruction with a higher diagnostic
value.

In Appendix B.3 we also include a validation of TackleROI on images that either are
healthy or contain pathologies other than the meniscus tear. Although TackleROI is
not designed to generalize across different pathologies, we empirically find that
TackleROI still yields high-fidelity reconstructions for out-of-distribution images
so that the pathologies on these images remain detectable. This generalization of
TackleROI is consistent across the three acceleration ratios (4×, 8×, and 16×) for
this fastMRI+ dataset.

Discussion Enhancing local ROIs for MRI may seem counterintuitive because the
acquisition happens in 𝑘-space; each frequency measurement in theory corresponds
to the entire FOV. Here, we understand the feasibility via a PSF analysis. Consider
the zero-filled reconstruction 𝒙̃ from some (noiseless) single-coil 𝑘-space data:

𝒙̃ := 𝑭−1 (𝒎 ⊙ (𝑭𝒙)) =
(
𝑭−1𝒎

)
∗ 𝒙

1https://github.com/mikgroup/sigpy (BSD-3-Clause license)

https://github.com/mikgroup/sigpy
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Table 4.2: Comparison of average test Dice score on the SKM-TEA dataset [83]
for segmenting four knee tissues under different acceleration ratios (𝑅).

𝑅 PD+UNrecon. LOUPErecon. SemuNet Tacklerecon. Tackleseg.

16 0.7843 0.7888 0.8108 0.8232 0.8532
64 0.7486 0.6715 0.7741 0.8145 0.8357

where ∗ denotes convolution and the second equality holds due to the Fourier convo-
lution theorem. Here, 𝑭−1𝒎 is the PSF of the subsampling mask 𝒎 and determines
the resolution of the CS-MRI system. We visualize the PSF of a sampling mask
trained for full-FOV reconstruction and another trained for MT ROIs reconstruction
with the same sampling budget in Figure 4.4. We plot the PSF profiles in the verti-
cal direction around the main lobes. The PSF learned for MT ROIs reconstruction
has around 40% improvement in vertical resolution in terms of full width at half
maximum (FWHM) of the PSF profiles. Since MT ROIs contain the thin horizontal
anatomy of the meniscus, it makes sense that the learned subsampling pattern has a
narrower PSF profile (and thus higher resolution) in the vertical direction. This com-
parison demonstrates that the improvement on ROIs is partly due to the capability
of our model to optimize the subsampling PSF for local ROI anatomy via co-design.
This is particularly beneficial when there is a mismatch between the optimal sub-
sampling PSF for full-FOV reconstruction and that for ROI reconstruction due to
directional anatomical structure, which is the case for MT ROI reconstruction.

4.4.2 Knee Tissue Segmentation
Dataset and Setup We then show the performance of Tackle on solving a task
that involves segmenting four types of knee tissues: the patellar cartilage, the
femoral cartilage, the tibial cartilage, and the meniscus. We use the Stanford Knee
MRI with Multi-Task Evaluation (SKM-TEA) dataset [83], which contains pixel-level
segmentation maps of the four tissues. Specifically, we use the raw 3D multi-coil
𝑘-space measurements of knee images and take a 1D inverse Fourier transform along
the left-to-right direction to obtain the 2D 𝑘-space of sagittal slices. We train each
method to minimize the Dice loss until convergence and select the model with the
highest Dice score on the validation set.

Baselines We compare Tackleseg. with four baselines.

• LOUPErecon.: LOUPErecon. is a baseline based on LOUPEFOV. We first train
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a LOUPEFOV model for the full-FOV reconstruction task and then use the
reconstructed images to separately train a segmentation network.

• Poisson-disc + U-Netrecon. (PD+UNrecon.): same as LOUPErecon. except that the
sampler is fixed to be a Poisson-disc sampling mask.

• Tacklerecon.: same as LOUPErecon. except for using the proposed architecture of
Tackle.

• SemuNet: Proposed in [309], SemuNet uses a hybrid of ℓ1 reconstruction loss
and cross-entropy segmentation loss.

Results We provide a quantitative comparison in Table 4.2 and a box-plot compar-
ison in Figure 4.5. Within the rectangle between each pair of methods in Figure 4.5,
the top number is the percentage of samples that get improved, and the bottom
number is the 𝑝-value given by the paired samples 𝑡-test. With an improved ar-
chitecture, Tacklerecon. already outperforms the other baselines. Nevertheless, the
segmentation-oriented method Tackleseg. achieves even better performance on both
16× and 64× accelerations. Tackleseg. also significantly outperforms SemuNet on
both acceleration ratios and has a much smaller performance drop from 16× to
64× than SemuNet, indicating that the proposed approach is more robust to high
acceleration ratios. We further provide some visual examples in Figure 4.6. The
first row visualizes the input of the predictor by different methods, where each image
is labelled by its PSNR value on the top right corner. The last row shows the pre-
dicted segmentation maps by different methods, where each prediction is labelled
by its Dice score on the top right corner. The blue arrows point out the locations
where Tackleseg. provides more accurate reconstructions than other reconstruction-
oriented baselines. We also provide a zoom-in on the region that contains the
segmented tissues in the second row.

Discussion We note that Tackleseg. learns an intermediate feature map as the
input to the predictor, which circumvents a typically “good” reconstruction. It is
interesting how the retriever produces an image where different knee tissues to be
segmented have distinctive textures, which are easy to distinguish both from the
background and from each other. Even though this feature map is not a typical
“reconstruction” in terms of pixel-wise accuracy, it still accurately localizes the
anatomy of the tissues to be segmented. We highlight that Tacklerecon. provides
a high-fidelity reconstruction of the entire FOV with a PSNR of 33.00 dB, which
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Table 4.3: Comparison of average test Dice score on the brain segmentation
task under different acceleration ratios (𝑅).

𝑅 PD+UNrecon. LOUPErecon. SemuNet Tacklerecon. Tackleseg.

16 0.8952 0.9244 0.9196 0.9350 0.9395
64 0.8377 0.8733 0.3824 0.9181 0.9218

demonstrates that our model is well capable of doing the full-FOV reconstruction
task accurately. However, Tackleseg. still outperforms Tacklerecon. in terms of
segmentation performance in Figure 4.6 and on average over the dataset in Table 4.6
(see Section 4.6.1 for more details). This observation demonstrates that finding
the most accurate full-FOV reconstruction does not necessarily lead to the optimal
result on the considered segmentation task.

4.4.3 Brain Tissue Segmentation
Dataset and Setup We demonstrate Tackle on another task that involves seg-
menting four brain tissues: the cortex, the white matter, the subcortical gray matter,
and the cerebrospinal fluid (CSF). Following [135], we use the 109th coronal slice of
each full 𝑘-space sampled volume in the OASIS dataset [213] and the segmentation
maps generated with SAMSEG in FreeSurfer [105]. SAMSEG, which stands for
Sequence Adaptive Multimodal SEGmentation, is an established method for brain
tissue segmentation and is considered a standard method for this task [234]. We use
the segmentation maps generated by SAMSEG as the supervised labels for training.
We use the same measurement simulation procedure as in the tumor classification
experiments. We simulate the single-coil 𝑘-space data for each image by taking the
Fourier transform of the image and adding complex additive white Gaussian noise
(AWGN), according to the forward model in Equation (1). The standard deviation
of the noise for each image is 0.05% of the magnitude of the DC component. We
train each method to minimize the Dice loss until convergence and select the model
with the highest Dice score on the validation set.

Baselines We compare Tackleseg. with the same baselines as the ones in Sec-
tion 4.4.2: LOUPErecon., PD+UNrecon., Tacklerecon., and SemuNet.

Results We first provide a numerical comparison in Table 4.3 and a box-plot
comparison in Figure 4.7. Within the rectangle between each pair of methods in
Figure 4.7, the top number is the percentage of improved samples, and the bottom



39

number is the 𝑝-value given by the paired samples 𝑡-test. With an improved ar-
chitecture, Tacklerecon. significantly outperforms the other reconstruction-oriented
baselines. Nevertheless, Tackleseg. still outperforms Tacklerecon. under both accel-
erations with significant 𝑝-values, highlighting the benefit of task-specific training.
Compared to SemuNet [309], Tackleseg. learns better segmentation strategies for
both acceleration ratios and is more robust to high acceleration. We further provide
some visual examples in Figure 4.8, visualizing the input and output of the predic-
tor across different methods. The zoom-in regions highlight a location where the
segmentation prediction of Tackleseg. outperforms other baselines. Specifically,
Tackleseg. more accurately predicts the outline of the white matter (in yellow) than
other methods. Such an improvement leads to more precise estimation of the thick-
ness of the cortex (in orange), an important task for studying human cognition and
neurodegeneration [10].

4.4.4 Pathology (Tumor) Classification
Dataset and Setup In this section, we demonstrate the effectiveness of the pro-
posed method at detecting the existence of gliomas, a common type of brain tumor
in adults. We use the images acquired by the FLAIR sequence in the Multimodal
Brain Tumor Image Segmentation Benchmark (BRATS) dataset [219]. To obtain
an image-level label of the existence of a tumor, we aggregate the pixel-level peri-
tumoral edema (ED) segmentation annotations in the BRATS dataset by checking
whether there exists any positive pixel in the segmentation map: negative (healthy)
means there is no ED pixel, while positive (unhealthy) means there is at least one ED
pixel. We simulate the single-coil 𝑘-space data for each image by taking the Fourier
transform of the image and adding complex additive white Gaussian noise (AWGN),
according to the forward model in Equation (2.1). The standard deviation of the
noise for each image is 0.05% of the magnitude of the DC component. We train all
models using the BCE loss and evaluate them using the classification accuracy and
𝐹1 score as described in Section 4.3.3.3.

Baselines We compare the proposed method Tackleclass. with the first three base-
lines as in Section 4.4.2 and Section 4.4.3 except that the predictor of each baseline
is subsequently trained for pathology classification rather than tissue segmentation
(with input images optimized for full-FOV reconstruction). We do not include
SemuNet here because it was originally proposed for the segmentation task only.
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Table 4.4: Comparison of average test accuracy on the pathology classification
task under different acceleration ratios (𝑅).

Metric 𝑅 PD+UNrecon. LOUPErecon. Tacklerecon. Tackleclass.

Cls. acc. 16 0.9016 0.9024 0.9062 0.9159
64 0.8809 0.8930 0.9054 0.9136

𝐹1 score 16 0.8853 0.8846 0.8929 0.9039
64 0.8628 0.8768 0.8910 0.8992

Results In Table 4.4, we compare Tackleclass. with reconstruction-oriented base-
lines, and find that Tackleclass. achieves higher classification accuracy under both
performance metrics. Specifically, Tackleclass. outperforms the existing reconstruction-
oriented baseline LOUPErecon. by around 2% in the extreme 64× accelerated acqui-
sition scenario. Both variants of Tackle maintain competitive performance under
the highly accelerated setting (𝑅=64), while PD+UNrecon. and LOUPErecon. suf-
fer from significant performance degradation. Note that Tackleclass. outperforms
Tacklerecon. by more than 0.8% in both cases, despite having the same architecture.
We also visualize and compare the classification performance of Tackleclass. and
LOUPErecon. under 16× acceleration in Figure 4.9, using confusion matrices. The
results show that Tackleclass. has substantially fewer false negatives (bottom left)
and a higher overall accuracy compared to LOUPErecon..

4.5 Validation on an Experimentally Collected Out-of-Distribution Dataset
In practice, creating a large, well-annotated training set for a specific task can be
very time-consuming or even infeasible. To demonstrate the immediate benefit
of our method in a real-world setting, we conduct a validation of Tackle on the
ROI-oriented reconstruction task using experimentally collected data that is out of
the distribution of the training data. Specifically, we train a Tackle model on a
large-scale dataset (fastMRI in this case) and directly test it on raw 𝑘-space data
collected by different hardware using a different type of sequence from that of
the training. Even without extra fine-tuning or test-time optimization, the learned
ROI-specific model provides improved reconstructions on meniscus ROIs. In the
following subsections, we present the details of this experiment.

Data Acquisition and Processing Two subjects were scanned at the Massachusetts
General Hospital in accordance with institutional review board guidelines. Their
right knees were scanned by a 3D-encoded Cartesian gradient-echo sequence with a
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3 Tesla MRI scanner (Model: Skyra; Siemens Healthcare, Erlangen, Germany) and a
single-channel extremity coil. To implement the 2D subsampling pattern in the coro-
nal plane, we used a transversal orientation with the frequency encoding direction
(𝑘𝑥) pointing into the knee cap (anterior-posterior), so that the two phase encoding
directions were left-right (𝑘𝑦) and superior-inferior (𝑘𝑧), respectively. The acqui-
sition parameters were as follows: TE/TR=4.8/9.1ms, FOV=192×192×192mm3,
resolution=1×1×1mm3, flip angle=10◦. The total acquisition time of obtaining the
fully sampled data for each subject was 5 minutes and 35 seconds. The raw 𝑘-space
data has the shape of 192×192×192 (𝑘𝑥 × 𝑘𝑦 × 𝑘𝑧). We apply the 1D inverse Fourier
transform along 𝑘𝑥 for downstream processing. Specifically, we take the middle 40
slices of each volume and annotated bounding boxes around the meniscus region
using an image labelling tool2. Efforts were made such that the locations and sizes
of the bounding boxes roughly match those in the fastMRI MT dataset. We empha-
size that these bounding boxes are only for the purpose of measuring the accuracy
of different models on reconstructing the meniscus region. The locations of the
annotated ROIs are not the input to any of the tested models.

Generalization Gaps There are multiple generalization gaps between the training
(fastMRI single-coil data) and the test data:

• Different hardware: The acquired data are collected directly with a single-
channel extremity coil, while the training data are simulated from 𝑘-space data
collected by multi-channel receive coils [165].

• Different sequence and resolution: The acquired data are given by a gradient-
echo sequence with 1 mm isotropic resolution, while the training data are given
by a spin-echo sequence with 0.5mm in-plane resolution [165].

• Different distribution of the ROI anatomy: The acquired data are collected from
two subjects whose menisci are healthy and have no tears, while the ROIs in the
training data contain meniscus tears.

Despite these generalization gaps, TackleROI works robustly and leads to both
numerical and visual improvement.

Baselines In this section, we compare TackleROI with the following baselines
under 4× acceleration.

2https://github.com/heartexlabs/labelImg (MIT license)

https://github.com/heartexlabs/labelImg
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Table 4.5: Comparison of average reconstruction accuracy on the experimen-
tally collected dataset under 4× acceleration (top: full-FOV reconstruction;
bottom: ROI-oriented reconstruction).

Full-FOV recon. PD+TVFOV LOUPEFOV TackleFOV TackleROI

PSNR (dB) 27.94 28.00 28.70 28.18

ROI recon. PD+TVFOV LOUPEFOV TackleFOV TackleROI

Local PSNR (dB) 24.45 24.67 25.16 25.72
indicates the variant of Tackle with matching training and evaluation metrics

• Poisson-disc + Total VariationFOV (PD+TVFOV): The subsampling pattern is the
same as the Poisson-disc sampling pattern generated by sigpy.mri.poisson
for PD+UNFOV in Section 4.4.1. The reconstruction is obtained by solving
a total variation (TV) regularized optimization problem with the Sparse MRI
toolbox3.

• LOUPEFOV: the same LOUPEFOV baseline as in Section 4.4.1.

• TackleFOV: a Tackle model trained for full-FOV reconstruction.

• LOUPEROI: the same architecture as LOUPEFOV but trained for ROI recon-
struction following the same training procedure as TackleROI.

Results We present a quantitative comparison in Table 4.5. For both the full-FOV
and ROI-oriented reconstruction tasks, Tackle outperforms the baselines under the
corresponding metric. For each task, we highlight the variant of Tackle trained
for the evaluation metric in green. Our results show that the highlighted variant
outperforms the other variant of Tackle, indicating a tradeoff between full-FOV
and ROI reconstruction accuracy.

We further conduct a slice-wise PSNR analysis in Figure 4.10. For both histograms,
the horizontal axis is the improvement on the respective metric, and the vertical
axis is the count. We also quantify the significance of the improvements using
the paired samples 𝑡-test. For the full-FOV reconstruction, TackleFOV outperforms
LOUPEFOV on all 80 slices, giving a highly significant 𝑝-value of 3.10e-57. We then
compare TackleROI with the better full-FOV reconstruction method, TackleFOV,

3https://people.eecs.berkeley.edu/~mlustig/Software.html (unknown license)

https://people.eecs.berkeley.edu/~mlustig/Software.html
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on the ROI-oriented reconstruction task. Despite having the same architecture,
TackleROI still outperforms TackleFOV on 72.5% of slices, leading to a 𝑝-value
of 5.12e-8, which is also statistically significant. This result indicates that the
ROI-oriented model TackleROI indeed provides more accurate ROI reconstructions
on this out-of-distribution dataset. We further provide some visual examples in
Figure 4.11. Below each reconstruction is a zoom-in on the region around the ROI
and the error map of the region with respect to the ground truth. Tackle not only
achieves higher PSNR values in both cases but also visually recovers the ROIs with
fewer artifacts.

Implementation Besides the above results based on retrospective subsampling
for quantitative comparison, we have also tested the learned sequence on a Siemens
3T MRI Skyra scanner. Specifically, we implement a re-ordering loop that iterates
through all the trajectories based on our learned subsampling mask 𝒎. The imple-
mented sequence prospectively subsamples in 𝑘-space and shortens the scan time
from 335 seconds to 84 seconds. In Figure 4.12, we compare the reconstruction
given by the prospectively subsampling sequence we implement with the recon-
struction given by the retrospectively subsampled measurements from the fully
sampling sequence. We note that the images labelled as “TackleROI (retrospec-
tive)” and “TackleROI (prospective)” are taken by two consecutive but separate
scans, so there might be some subtle motion between them. Nevertheless, the two
images have no significant visual difference, indicating that the improvement we
show on retrospective simulations translates into actual improvement in practice.
The prospective reconstruction successfully recovers important anatomical features
around the meniscus region while only taking a quarter of the scan time compared
to the full-sampled image.

4.6 Ablation Studies
4.6.1 Effectiveness of Co-Design
We evaluate the effectiveness of two aspects of co-design used in the proposed
framework: learnable subsampling and task-specific training. In Table 4.6, we
compare four variants of the proposed method that have neither, one, or both aspects
of co-design. The meanings of having or not having each aspect are summarized as
follows:

• Learnable subsampling (column 2)
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Table 4.6: Ablation studies on two aspects of co-design for all the considered
tasks under 16× acceleration.

Method Ablated component ROI-oriented reconstruction Tissue segmentation Pathology classification
(Local PSNR in dB) (Dice score) (Cls. acc.) (𝐹1 score)

Learned
subsampling

Task-specific
training Single-coil Multi-coil Knee Brain Gliomas tumor

PD+VN♭ ✗ (Poisson-disc) ✗ 29.91 36.48 0.8018 0.9257 0.9024 0.8871
PD+VN♯ ✗ (Poisson-disc) ✓ 30.15 36.51 0.8474 0.9256 0.9072 0.8966
Tackle♭ ✓ ✗ 30.14 37.53 0.8232 0.9350 0.9062 0.8929
Tackle♯ ✓ ✓ 31.54 37.89 0.8532 0.9395 0.9159 0.9039
♭ indicates full-FOV reconstruction oriented versions of PD+VN and Tackle
♯ indicates task-specific versions of PD+VN and Tackle

✗ (Poisson-disc): use a Poisson-disc subsampling pattern that is randomly
generated and then fixed

✓: learn the subsampling pattern from data

• Task-specific training (column 3)

✗: separately optimize retriever and predictor

✓: jointly optimize retriever and predictor

To eliminate the effect of different network architectures, all four variants have
exactly the same architectures. Overall, we find both aspects of co-design are bene-
ficial. For the task of reconstructing meniscus tear ROIs, learning the subsampling
pattern is particularly helpful. Task-specific training, on the other hand, is more
important for the knee segmentation task. Highlighted in cyan, the last row is
the full-fledged version of Tackle, which achieves the best performance for all
considered scenarios with both aspects of co-design.

4.6.2 Effectiveness of the Proposed Architecture and Training Procedure
The proposed architecture of the mapping from measurements 𝒚 to prediction 𝒛̂,
which we denote as T𝝍 , consists of an E2E-VarNet retriever and a U-Net predictor.
A natural question is how this architecture compares with a single model-free neural
network with a comparable number of parameters that directly maps subsampled
measurements to the final prediction. We consider the following comparisons in
Table 4.7:

• Single larger predictor (row 1)

– Tissue seg.: U-Net with 128 channels after the first convolution layer and the
same number of pooling layers (42.2M parameters)
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Table 4.7: Ablation studies on model architecture and pre-training for non-
reconstruction tasks under 16× acceleration.

Ablated component Tissue segmentation Pathology classification
(Dice score) (𝐹1 score) (Cls. acc.)

Arch. of T𝝍 Pre-train Knee Brain Gliomas tumor

Predictor only‡ ✗ 0.7539 0.9005 0.8966 0.8788
VN+predictor‡ ✗ 0.8163 0.9371 0.9102 0.8969
VN+predictor§ ✓ 0.8532 0.9395 0.9159 0.9039
‡ U-Net(128) / ResNet(101) for tissue seg. / patho. class.
§ E2E-VarNet + U-Net(64) / ResNet(18) for tissue seg. / patho. class.

Table 4.8: Comparison of average test PSNR (dB) between reconstruction mod-
els trained with task-specific masks and Tacklerecon. on the fastMRI knee
dataset.

Method
Brain seg. Knee seg. Tumor class.

16× 64× 16× 64× 16× 64×
Task-specific mask+VN 38.47 33.04 32.53 30.10 44.20 37.07

Tacklerecon. 38.44 33.13 32.63 30.24 44.48 37.26

– Patho. class.: ResNet101 (42.5M parameters)

• VN+predictor (rows 2&3)

– Tissue seg.: E2E-VarNet + standard U-Net (29.9M + 10.6M = 40.5M param-
eters)

– Patho. class.: E2E-VarNet + ResNet18 (29.9M + 11.2M = 41.1M parameters)

Comparing the first two rows, we find that the proposed “VN+predictor” architec-
ture significantly outperforms the “single larger predictor” baseline on all settings.
This is likely due to the model-based nature of the “VN+predictor” architecture,
which more effectively extracts useful information from subsampled measurements
for downstream tasks. Finally, we include the pre-training step discussed in Sec-
tion 4.3.4. Highlighted in cyan, the full-fledged version of Tackle in the last row
significantly outperforms the ablated baselines on both non-reconstruction tasks,
indicating the importance of both the proposed architecture and training procedure.
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4.6.3 Using Task-specific Sequences for Reconstruction
Our optimized task-specific pipeline learns to adjust the image representation from a
conventional form to one that is more readily interpretable by the predictor network.
This often adds additional textures to the images, making them look different from
traditional reconstructions. However, this does not imply there is a significant loss
in information that could be used for image reconstruction. Despite being optimized
for task-specific objectives, our learned task-specific subsampling patterns can be
used retrospectively for generating high-fidelity reconstructions. To show this,
we conduct an experiment where we take the learned subsampling patterns of
Tackleseg. and Tackleclass. and train an additional reconstruction network for each
subsampling pattern. The subsampling pattern is fixed during the training. This
experiment mimics the scenario if one wants a traditional reconstruction out of the
collected 𝑘-space samples from our task-specific sequences. In Table 4.8, we provide
a comparison with Tacklerecon., which jointly optimizes the subsampling pattern
and reconstructor, on the fastMRI knee dataset. One can see that the reconstruction
models trained with task-specific masks (row 1) come close to Tacklerecon. (row
2) in terms of reconstruction performance. These results indicate that our task-
specific models do not incur a significant loss of image information but achieve a
better trade-off for the downstream task accuracy. It is thus possible to recover better
images retrospectively using the 𝑘-space measurements collected by the task-specific
sequences.

4.7 Limitations
Building on the promising results we have achieved, we acknowledge opportunities
for further improvement of our current study.

Data Usage Similar to other works on task-specific CS-MRI co-design, our ap-
proach requires matched 𝑘-space, image, and annotation labels, which are of limited
quantity in the research community. Due to this limitation, two of our experiments
(brain segmentation and tumor classification tasks) are conducted with 𝑘-space data
simulated from magnitude images.

Sequence Implementation Although we have implemented a prospectively sub-
sampling sequence with a learned sampling pattern by TackleROI on a Siemens
MRI scanner, it was done using only one type of 3D gradient echo sequence. Other
physical constraints affect the deployment of our method for general MRI sequences.
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For example, in spin-echo sequences, the order of sampling should be considered to
mitigate spin-relaxation effects.

Controlled Study The evaluation in the current study is based on conventional
quantitative metrics and qualitative visual comparisons. The number of volunteers
for testing our learned sequences on a Siemens MRI scanner is relatively small. To
further assess prospective subsampling, future evaluations should involve controlled
studies of image quality with radiologists.

4.8 Conclusion
In this chapter, we generalized the objective of CS-MRI co-design to a variety of
tasks beyond full-FOV reconstruction. We introduced Tackle as a unified approach
for robustly learning task-specific strategies. Through comprehensive experiments,
we showed that Tackle outperforms existing DL techniques that separately learn
subsampling pattern, reconstruction, and prediction. Additionally, Tackle outper-
forms naive approaches to co-design that directly learn mappings from measure-
ments to predictions. We found that the optimized strategies sometimes circumvent
the typical reconstruction in terms of pixel-wise accuracy, but effectively extract key
visual information useful for task prediction. Through ablation studies, we justi-
fied multiple design choices about architecture and training procedure, and showed
their importance in effectively learning CS-MRI strategies for tasks that go beyond
full-FOV reconstruction. We further implemented a learned subsampling sequence
and tested it on a Siemens 3T MRI Skyra scanner, which led to a four-fold scan
time reduction without sacrificing visual quality. Our study demonstrates the ex-
citing promise of employing end-to-end co-design techniques, suggesting a future
where clinical CS-MRI requirements are addressed with enhanced efficiency while
maintaining accuracy.
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Dice score ( ): 0.8022↑ Error mapPoisson-disc random sampling

Separately 
designed

Dice score ( ): 0.7970↑ Error mapJoint seg.-recon. sampling

Dice score ( ): 0.8563↑ Error mapTask-specific sampling

(a) Separate reconstruction & task prediction (traditional CS-MRI)

Naïve approach to end-to-end task-specific co-design(b) 

Proposed end-to-end task-specific co-design (Tackle)(c) 

Task-specific 
training

Recon. pre-training + 
task specific fine-tuning

Recon. loss Task loss

Task loss

Task loss

Background:  
g.t. image

Pre-trained 
w/ recon. loss

Forward pass types: No gradient back-propagation With gradient back-propagation

Figure 4.1: Comparison between (a) traditional CS-MRI, (b) a naïve approach
to task-specific CS-MRI, and (c) the proposed Tackle framework. Compared
with panel (a) which separately deals with reconstruction and task prediction, panel
(b) is a simple extension of co-design methods for solving downstream tasks by
adding a learnable mapping from measurements to task predictions. However, this
naïve approach leads to a suboptimal performance and can even lead to a worse task
prediction accuracy, as shown in the example above. On the other hand, we introduce
Tackle for effectively learning task-specific CS-MRI strategies. Tackle is first
pre-trained for generic reconstruction, and then all three modules are fine-tuned
for a more specific downstream task. We find that this training schedule allows
Tackle to robustly learn generalizable task-specific strategies. In the above knee
segmentation example, all three approaches are trained with the same architectures
for the reconstructor (second module) and predictor (third module). Nevertheless,
Tackle significantly outperforms the two baseline approaches.
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Figure 4.2: Block diagram of the proposed framework Tackle and a summary
of the investigated datasets and settings. Tackle uses a task-specific loss to
jointly optimize a sampler, a retriever, and an optional predictor, ranging from
scanner-level sampling to human-level diagnosis. A summary of the investigated
settings is presented in the bottom left panel. FSE, GRE, DESS, and FLAIR stand
for fast spin echo, gradient echo, double-echo steady-state, and fluid-attenuated
inversion recovery, respectively. We comprehensively investigate multiple CS-MRI
tasks on a variety of common MRI settings with six datasets.
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Figure 4.3: Visual examples of two Meniscus Tear samples reconstructed by
different methods in the 16× acceleration single-coil setting. For each recon-
struction, the full-FOV PSNR is labeled in white, and the local PSNR for the ROI is
in orange. Note how TackleROI recovers the structure and details of the ROI more
accurately than the two baselines, as indicated by the red arrows. The better recovery
of TackleROI over the ROI leads to a more accurate diagnosis of the Meniscus Tear.
We emphasize that the location of the ROI is not an input to any of these models and
is only used for evaluating the accuracy of each method on the region that contains
the pathology.
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Figure 4.4: Comparison of a subsampling PSF optimized for full-FOV recon-
struction and another optimized for the reconstruction of menicus tear (MT)
ROIs. Optimizing for MT ROI reconstruction leads to around 40% improvement
on the vertical resolution in terms of the full width at half maximum (FWHM), as
shown by the PSF profiles in the bottom panel. This improved vertical resolution
leads to a better reconstruction of the meniscus that has horizontal anatomy.
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Figure 4.5: Box plots of the knee tissue segmentation results under 16× (a) and
64× (b). Within the rectangle between each pair of methods, the top number is
the percentage of samples that get improved, and the bottom number is the 𝑝-value
given by the paired samples 𝑡-test. A higher percentage and a lower 𝑝-value indicate
a more significant improvement. We also provide the 95% confidence intervals for
all methods below their names. For both acceleration ratios, Tackleseg. outperforms
other baselines in terms of all the statistical measures.
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Figure 4.6: Comparison of segmentation results under 16× acceleration on one
sample of the SKM-TEA dataset. We show the input of the predictor in the first
row, a zoom-in on the region that contains the tissues to be segmented in the second
row, and the output of the predictor in the third row. Note that Tackleseg. circumvents
the typical “reconstruction” in terms of pixel-wise similarity with the ground truth
image. Instead, it learns a feature map that accurately localizes the anatomy, leading
to better segmentation prediction than other baselines both for this sample and on
average over the test set (Table 4.2).
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Figure 4.7: Box plots of the brain tissue segmentation results under 16× (a)
and 64× (b) accelerations. Within the rectangle between each pair of methods,
the top number is the percentage of samples that get improved, and the bottom
number is the 𝑝-value given by the paired samples 𝑡-test. A higher percentage
and a lower 𝑝-value indicate a more significant improvement. We also provide the
95% confidence intervals for all methods below their names. Similar to the knee
segmentation results, the proposed method Tackle outperforms other baselines in
terms of all the statistical measures for both acceleration ratios.
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Figure 4.8: Comparison of segmentation results under 16× acceleration on
one sample from the OASIS dataset. Similar to the knee segmentation results,
Tackleseg. circumvents the typical “reconstruction” in terms of pixel-wise similarity
with the ground truth image. Instead, it learns an anatomically accurate feature
map, which enables better segmentation prediction than other baselines both for this
sample and on average over the test set (Table 4.3). The zoom-in panels highlight
a region where Tackleseg. more accurately predicts the outline of white matter (in
yellow) than other methods. This improvement leads to a more precise estimation
of the thickness of the cortex (in orange), an important task for studying human
cognition and neurodegeneration [10].
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Figure 4.9: Confusion matrices of the classification results by LOUPErecon. and
Tackleclass.. Overall, Tackleclass. achieves greater accuracy in terms of both
classification accuracy and 𝐹1 score than LOUPErecon.. Tackleclass. also has a
significantly lower number of false negatives (bottom left) compared to LOUPErecon.,
which could lead to more patients receiving early treatment.
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Figure 4.10: Per-slice difference histograms. (a): TackleFOV over LOUPEFOVon
the full-FOV reconstruction task and (b): TackleROI over LOUPEFOV on the ROI-
oriented reconstruction task. The 95% confidence intervals are given in the top
left corner of each plot. In both cases, the vast majority of slices improve, and the
𝑝-values given by the paired samples 𝑡-test are highly significant.
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Figure 4.11: Reconstruction comparison of two samples in the experimentally
collected dataset (top: from subject 1; bottom: from subject 2) by different
methods under 4× acceleration. The sampling mask, a zoom-in on the ROI,
and the error map are presented for each method. By sampling more frequencies
along the vertical direction in 𝑘-space, TackleROI has a higher vertical resolution
in the image space and thus outperforms other baselines optimized for full-FOV
reconstruction on the ROIs with directional anatomical structure.

TackleROI (retrospective) TackleROI (prospective) Fully sampled

Scan time: 335 secondsScan time: 84 secondsScan time: 84 seconds

Figure 4.12: Reconstruction comparison between the implemented prospec-
tive subsampling sequence and the retrospective subsampling sequence. Our
learned sequence can be implemented on an MRI scanner and generates images of
quality indistinguishable from those recovered from retrospectively sampled data.
Compared to the ground truth image, our prospectively subsampled reconstruction
recovers important features around the meniscus region, which is the ROI it is trained
to enhance.
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C h a p t e r 5

OVERVIEW AND PRELIMINARIES

In this part, we investigate the second topic around sampling in computational
imaging—posterior estimation—in the context of Bayesian inverse problems.

5.1 Bayesian Inverse Problems
The Bayesian formulation provides a principled framework for solving inverse prob-
lems via a probabilistic viewpoint [268]. We refer to this formulation as Bayesian
Inverse Problems (BIPs) and formally introduce it in this section.

5.1.1 Basics
Recall from Chapter 1 that we consider inverse problems of reconstructing 𝒙̂ ≈ 𝒙0

from measurements

𝒚 = A(𝒙0) + 𝒏, (5.1)

where A is the forward model and 𝒏 is the noise term. Assume that 𝒏 is a random
variable with density 𝜋. Then the probability density of observing measurements 𝒚
given 𝒙0 is

𝑝(𝒚 | 𝒙0) := 𝜋(𝒚 − A(𝒙0)) = 𝜋(𝒏), (5.2)

commonly referred to as the data likelihood (or likelihood in short). Let 𝑝(𝒙0)
denote the prior distribution (or prior in short) of 𝒙0, which encodes our knowledge
about 𝒙0 before any measurements are acquired. According to Bayes’ theorem, the
posterior distribution (or posterior in short) of 𝒙0 given 𝒚 is

𝑝(𝒙0 | 𝒚) =
𝑝(𝒙0, 𝒚)
𝑝(𝒚) =

𝑝(𝒚 | 𝒙0)𝑝(𝒙0)
𝑝(𝒚) =

𝑝(𝒚 | 𝒙0)𝑝(𝒙0)∫
𝑝(𝒚 | 𝒙0)𝑝(𝒙0)d𝒙0

, (5.3)

where the denominator 𝑝(𝒚) is the model evidence (or evidence in short)—a normal-
ization constant ensuring that the posterior is a valid probability distribution. The
posterior distribution represents our updated belief about 𝒙0 after incorporating the
information provided by the measurements 𝒚. Solving BIPs amounts to generating
samples from the posterior distribution, i.e., sampling 𝒙̂ ∼ 𝑝(𝒙0 | 𝒚).

Despite being a standard Bayesian inference problem theoretically, solving BIPs in
computational imaging still faces several challenges:
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• In imaging applications, the unknown target 𝒙0 often represents a high-resolution
image or video. It is common for 𝒙0 to have thousands, millions, or even higher
dimensions. Characterizing a high-dimensional distribution 𝑝(𝒙0) of images or
videos is hard in the first place.

• The posterior distribution involves the normalizing constant (evidence) 𝑝(𝒚),
which is an integration over all candidates 𝒙0’s that could potentially lead to
the measurements 𝒚. Evaluating this term is almost impossible in real-world
problems due to the high dimensionality and lack of a closed form for 𝑝(𝒙0). It
is a challenge to estimate 𝑝(𝒙0 | 𝒚) without access to 𝑝(𝒚).

• Equation (5.3) only elucidates the connection among prior, posterior, likelihood,
and evidence in terms of numerical values. It is non-trivial how to design a
sampler that actually provides samples from the posterior distribution, especially
for high-dimensional problems.

• In many real-world applications, the measurements 𝒚 only provides limited in-
formation for 𝒙0. Successful recovery of 𝒙0 relies on a sophisticated prior 𝑝(𝒙0)
that captures the set of possible solutions. One important challenge in compu-
tational imaging is to design and leverage priors with sufficient expressiveness
for posterior estimation.

5.1.2 Maximum a Posteriori Estimation
Traditional approaches to Bayesian inverse problems circumvent these challenges
by finding the maximum a posteriori (MAP) estimator. Instead of sampling the
full posterior distribution, the MAP approach aims to maximize the (logarithmic)
posterior, i.e., finding

𝒙̂MAP := arg max
𝒙

log 𝑝(𝒙 | 𝒚) = arg max
𝒙
[log 𝑝(𝒚 | 𝒙) + log 𝑝(𝒙)] . (5.4)

Note that the intractable evidence term is eliminated because it does not depend on
𝒙. Assuming Gaussian noise with zero mean and covariance 𝚺, we have that

log 𝑝(𝒚 | 𝒙) = −1
2
∥A(𝒙) − 𝒚∥2

𝚺−1 + 𝐶 (5.5)

where ∥ · ∥𝚺−1 := ⟨·,𝚺−1·⟩ and 𝐶 is a constant that does not depend on 𝒙. The
resulting optimization problem is

𝒙̂MAP := arg max
𝒙

[
−1

2
∥A(𝒙) − 𝒚∥2

𝚺−1 + log 𝑝(𝒙)
]
. (5.6)
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This optimization problem can be solved by existing algorithms for relatively simple
priors [19, 143, 162]. For more sophisticated priors, the plug-and-play prior (PnP)
[291] and regularization by denoising (RED) [248] frameworks provide algorithmic
tools for solving Equation (5.6).

Despite its clear path toward a solution, the MAP approach has some fundamental
limitations:

• Instability: Unlike the full posterior, the MAP estimate does not possess Lip-
schitz continuity with respect to 𝒚 [268]. As a result, small perturbations in
the measurements due to the noise could lead to large variations in the solution
𝒙̂MAP. This is undesirable from a theoretical perspective.

• Lack of uncertainty quantification: Most MAP estimation algorithms only
provide a deterministic solution, which cannot represent the full solution space.
This problem is particularly prominent for ill-posed problems where the recon-
struction comes with significant uncertainty. Even if one can heuristically obtain
multiple solutions by introducing randomness or choosing different initializa-
tions and hyperparameters, these solutions may be biased and lack a principled
interpretation.

These limitations motivate the need for methods that can sample from the full pos-
terior distribution, enabling both accurate reconstructions and rigorous uncertainty
quantification.

5.2 Diffusion Models
5.2.1 Basics
Diffusion models (DMs) are a class of generative models that can capture compli-
cated high-dimensional distributions [131, 151, 266]. They have achieved remark-
able success across a variety of domains, including natural image synthesis [249],
protein structure generation [108], molecular design [203], and robotic trajectory
modeling [59].

We adopt the continuous-time formulation of DMs based on stochastic differential
equations (SDEs), as introduced by Song et al. [266]. First consider a forward
diffusion process that gradually transforms a data distribution 𝒙0 ∼ 𝑝(𝒙0) into an
approximately Gaussian distribution 𝒙𝑇 ∼ N(0, 𝜎2

𝑇
𝑰) where 𝜎𝑇 is the noise level at
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time 𝑇 . Mathematically, the forward process can be characterized by

d𝒙𝑡 = 𝑓 (𝒙𝑡 , 𝑡)d𝑡 + 𝑔(𝑡)d𝒘𝑡 , (5.7)

where 𝑓 is the drift coefficient, 𝑔 is the diffusion coefficient, and 𝒘 is the standard
Wiener process with time 𝑡 flowing from 0 to 𝑇 . A key observation is that this
forward SDE has a reverse time SDE with the same marginal distributions [9]. The
backward process removes noise and gradually transforms a Gaussian sample back
to a clean sample, defined by the reverse-time SDE

d𝒙𝑡 =
(
𝑓 (𝒙𝑡 , 𝑡) −

1
2
𝑔2(𝑡)∇𝒙𝑡 log 𝑝𝑡 (𝒙𝑡)

)
d𝑡 + 𝑔(𝑡)d𝒘̄𝑡 , (5.8)

where 𝑝𝑡 (𝒙𝑡) is the probability density of 𝒙𝑡 at time 𝑡 and 𝒘̄𝑡 is the reverse-time
Wiener process. A neural network is trained to learn the score function∇𝒙𝑡 log 𝑝𝑡 (𝒙𝑡)
for 𝑡 ∈ [0, 𝑇] via denoising score matching [292]. Once trained, we can generate
new samples from the learned data distribution by first sampling 𝒙𝑇 ∼ N(0, 𝜎2

𝑇
𝑰)

and solving Equation (5.8) with numeric solvers.

5.2.2 Latent Diffusion Models
Latent diffusion models (LDMs) [249] offer a way to reduce the computational
cost otherwise necessary to model the original high-dimensional data distribution.
LDMs generate an efficient, low-dimensional latent representation 𝒛0 ∈ R𝑑 of data
𝒙0 ∈ R𝑛 with a pre-trained perceptual compression encoder E and decoder D,
which satisfy 𝒛0 = E(𝒙0) and D(𝒛0) ≈ 𝒙0. The compression models E and D
can be trained as VAE variants [38, 163, 246] with KL divergence regularization or
VQGAN variants [95, 120, 228] with quantization regularization. The generation
process solves the reverse-time SDE (5.8) in the latent space, followed by decoding
with the decoder D.

5.3 Solving Inverse Problems with Diffusion Models
The expressive power of diffusion models for modeling complex, high-dimensional
distributions makes them a promising choice for solving Bayesian inverse problems
[64, 265]. Prior work has largely focused on two main strategies1: conditional
diffusion models (CDMs) and plug-and-play diffusion priors (PnPDP).

1Additional formulations include Variational Bayes [101, 103, 214] and Sequential Monte Carlo
(SMC) [44, 89, 283, 318].
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5.3.1 Conditional Diffusion Models
Inspired by classifier-free guidance [132], conditional diffusion models (CDMs)
consider the conditional reverse diffusion process

d𝒙𝑡 =
(
𝑓 (𝒙𝑡 , 𝑡) −

1
2
𝑔2(𝑡)∇𝒙𝑡 log 𝑝𝑡 (𝒙𝑡 | 𝒚)

)
d𝑡 + 𝑔(𝑡)d𝒘̄𝑡 . (5.9)

where the conditional score function ∇𝒙𝑡 log 𝑝𝑡 (𝒙𝑡 |𝒚) can be learned by applying
denoising score matching to pairs (𝒙0, 𝒚).

CDMs naturally extend DMs to conditional sampling, but suffer two major limita-
tions: (1) Training a CDM requires the joint distribution of 𝒙0 and 𝒚, which depends
on the specific forward model A and noise profile of the inverse problem. As a
result, a CDM is learned for a specific inverse problem and does not generalize if
the forward model A or the noise distribution changes. One needs to retrain the
model for each problem, even when the same prior distribution is considered, mak-
ing this approach inflexible. (2) If ∇𝒙𝑡 log 𝑝𝑡 (𝒙𝑡 |𝒚) is learned directly with a neural
network, the measurements 𝒚 will be an input to the network. In general, especially
for nonlinear inverse problems, 𝒚 may belong to a totally different space from 𝒙𝑡 .
This mismatch poses practical challenges when designing neural networks to learn
the conditional score, as the network must infer a complex relationship between
measurements and image space.

Due to these limitations, CDMs are mainly considered for relatively simpler prob-
lems where the spatial structure of 𝒚 aligns with the target image 𝒙0, such as image
inpainting or super-resolution [17, 79, 253].

5.3.2 Plug-and-Play Diffusion Priors
Plug-and-play diffusion priors (PnPDP) extend the philosophy of plug-and-play
priors [291] to diffusion models. Rather than training a conditional model, PnPDP
relies on pre-trained unconditional diffusion models as stand-alone priors for inverse
problems [34, 64, 262, 265, 306, 361]. Instead of solving Equation (5.9) directly,
one popular approach is to apply Bayes’ theorem and rewrite the conditional score
function as

∇𝒙𝑡 log 𝑝𝑡 (𝒙𝑡 | 𝒚) = ∇𝒙𝑡 log 𝑝𝑡 (𝒚 | 𝒙𝑡) + ∇𝒙𝑡 log 𝑝𝑡 (𝒙𝑡). (5.10)

Note that the second term is exactly the score function of the prior term, which
can be modeled directly by the pre-trained DM. This decomposition decouples the
prior from the likelihood, allowing the same diffusion model to be reused across
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different inverse problems without re-training. However, the first term is difficult to
evaluate as it depends on 𝒙𝑡 , an intermediate noisy variable, instead of 𝒙0. In fact,
the likelihood 𝑝𝑡 (𝒚 | 𝒙𝑡) can be expressed as

𝑝𝑡 (𝒚 | 𝒙𝑡) =
∫

𝑝𝑡 (𝒚 | 𝒙𝑡 , 𝒙0)𝑝(𝒙0 | 𝒙𝑡)d𝒙0 =

∫
𝑝(𝒚 | 𝒙0)𝑝𝑡 (𝒙0 | 𝒙𝑡)d𝒙0, (5.11)

which involves integration over all possible clean images 𝒙0. This integral is analo-
gous to the model evidence term in Equation (5.10), and is similarly intractable in
practice. Various approximations have been proposed to overcome the intractability,
but they often lead to significant sampling errors even in simple, low-dimensional
settings [44, 341].

5.4 Part Outline
In the remainder of this part, we present a series of works that push the boundary of
posterior estimation in computational imaging:

• In Chapter 6, we introduce a novel PnPDP method for posterior sampling with
DMs called PnP-DM. We leverage a principled Markov chain Monte Carlo
(MCMC) approach, called Split Gibbs Sampler (SGS), and identify its key con-
nection with the EDM formulation of DMs. This perspective allows us to use
pre-trained DMs as image priors without re-training or heuristic approxima-
tions. We provide both theoretical guarantees and empirical results, showing
that our method achieves more accurate posterior estimates and higher-quality
reconstructions across a range of linear and nonlinear inverse problems.

• In Chapter 7, we generalize PnP-DM to a unified PnPDP framework for diffusion-
based posterior estimation that can accommodate a broader class of inverse prob-
lems. This framework gives rise to four instantiations, each targeting a specific
challenge beyond the original PnP-DM formulation: leveraging semantic infor-
mation through text conditioning, scaling to high-dimensional video settings,
operating with non-differentiable (black-box) forward models, and performing
posterior inference in discrete domains. Despite tackling different problem set-
tings, all four variants share a common alternating-update structure inspired
by PnP-DM, and they demonstrate both theoretical convergence properties and
strong empirical results across a variety of tasks.

• In Chapter 8, we introduce a comprehensive benchmark that systematically
evaluates diffusion-based methods for solving inverse problems. Specifically,
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we consider 14 popular methods and 5 representative inverse problems in var-
ious scientific domains. Through extensive comparisons and ablation studies,
we highlight key strengths and limitations of existing techniques and identify
promising directions for advancing posterior sampling in computational imag-
ing.
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C h a p t e r 6

PNP-DM: A PRINCIPLED FRAMEWORK FOR POSTERIOR
ESTIMATION USING DIFFUSION MODELS

In this chapter, we propose a new framework that leverages diffusion models (DMs)
for sampling the posterior distribution of an inverse problem. DMs have recently
shown outstanding capability in modeling complex image distributions, making
them expressive image priors for solving Bayesian inverse problems. However, most
existing DM-based methods rely on approximations in the generative process to be
generic to different inverse problems, leading to inaccurate sample distributions that
deviate from the target posterior defined within the Bayesian framework. To harness
the generative power of DMs while avoiding such approximations, we propose a
Markov chain Monte Carlo algorithm that performs posterior sampling for general
inverse problems by reducing it to sampling the posterior of a Gaussian denoising
problem. Crucially, we leverage a general DM formulation as a unified interface
that allows for rigorously solving the denoising problem with a range of state-of-
the-art DMs. We demonstrate the effectiveness of the proposed method on seven
inverse problems (four linear and three nonlinear), including a real-world black
hole imaging problem. Experimental results indicate that our proposed method
offers more accurate reconstructions and posterior estimation compared to existing
DM-based imaging inverse methods.

This chapter is based on our work [320], published in the Proceedings of the
38th Annual Conference on Neural Information Processing Systems 2024 (NeurIPS
2024). The appendix for this chapter is Appendix C. The code for the work presented
in this chapter is available at https://github.com/zihuiwu/PnP-DM-public.

6.1 Introduction
Diffusion models generate samples from a distribution by reversing a diffusion
process from the target distribution to a simple (usually Gaussian) distribution [131,
266]. In particular, it estimates a clean image 𝒙0 from a Gaussian noise image 𝒙𝑇 by
successively denoising noisy images, where 𝒙𝑡 ∼ 𝑝𝑡 is the intermediate noisy image
at time 𝑡 ∈ [0, 𝑇]. Reversing diffusion requires one to estimate the time-varying
gradient log density (score function) ∇ log 𝑝𝑡 (𝒙𝑡) along the diffusion process, or
∇ log 𝑝𝑡 (𝒙𝑡 | 𝒚) in the case of sampling the posterior 𝑝(𝒙 | 𝒚).

https://github.com/zihuiwu/PnP-DM-public
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To design generic DM-based inverse problem solvers, most existing methods attempt
to approximate the time-varying gradient log density ∇ log 𝑝𝑡 (𝒙𝑡 | 𝒚) [34, 60, 64,
65, 155, 189, 251, 260, 262, 265, 306, 324, 361]. In particular, they first apply
Bayes’ rule to separate the forward operator from an unconditional prior over the
intermediate noisy image 𝒙𝑡 :

∇ log 𝑝𝑡 (𝒙𝑡 | 𝒚) = ∇ log 𝑝𝑡 (𝒚 | 𝒙𝑡) + ∇ log 𝑝𝑡 (𝒙𝑡). (6.1)

By instead aiming to evaluate the right-hand side, one can leverage the existing
pre-trained DMs for the unconditional term ∇ log 𝑝𝑡 (𝒙𝑡). However, the main chal-
lenge in this case is that ∇ log 𝑝𝑡 (𝒚 | 𝒙𝑡) is intractable to compute in general, as
𝑝𝑡 (𝒚 | 𝒙𝑡) involves an integral over all possible 𝒙0’s that could give rise to 𝒙𝑡 [64].
Various methods have been proposed to circumvent the intractability and can mostly
be categorized into two groups. One group of methods explicitly approximate
∇ log 𝑝𝑡 (𝒚 | 𝒙𝑡) by making simplifying assumptions [34, 64, 262, 265]. However,
even for arguably the finest approximation to date proposed in the recent work [34],
it is exact only when the prior distribution 𝑝(𝒙) is Gaussian. For general prior distri-
butions beyond Gaussian, these methods do not sample the true posterior 𝑝(𝒙 | 𝒚).
The other group of methods do not make explicit approximations but instead sub-
stitute ∇ log 𝑝𝑡 (𝒚 | 𝒙𝑡) with empirically designed updates where 𝒚 is treated as a
guidance signal [60, 65, 155, 189, 251, 260, 306, 324, 361]. Although these meth-
ods may have strong empirical performance, they have deviated from the Bayesian
formulation and no longer aim to sample the target posterior. In summary, these
existing DM-based inverse methods should be best viewed as guidance methods,
where the generative process is guided towards the regions where the measurement 𝒚
is more likely to be observed, not as posterior sampling methods [34]. We also note
that some recent work considered combining DMs with Sequential Monte Carlo to
ensure asymptotic consistency in posterior sampling [44, 89], but the investigation
has been limited to linear imaging inverse problems.

Chapter Summary In this chapter, we pursue a different path towards posterior
sampling with DM priors by proposing a new Markov chain Monte Carlo (MCMC)
algorithm, which we call Plug-and-Play Diffusion Models (PnP-DM). It incorpo-
rates DMs in a principled way and circumvents the approximation required when
taking the approach in Equation (6.1). The proposed algorithm is based on the Split
Gibbs Sampler [296] that alternates between two sampling steps that separately
involve the likelihood and prior. While the likelihood step can be tackled with tradi-
tional sampling techniques, the prior step involves a Bayesian denoising problem that
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requires careful design. Importantly, we identify a connection between the Bayesian
denoising problem and the unconditional image generation problem under a general
formulation of DMs presented in [151] (which is referred to as the EDM formulation
hereafter). This connection allows us to perform rigorous posterior sampling for
denoising using DMs without approximating the generative process and enables the
use of a wide range of pre-trained DMs through the unified EDM formulation. We
present an analysis of the non-asymptotic behavior of PnP-DM by establishing a
stationarity guarantee in terms of the average Fisher divergence. We further demon-
strate the strong empirical performance of PnP-DM by investigating four linear
and three nonlinear noisy inverse problems, including a black hole interferometric
imaging problem involving real data that is both nonlinear and severely ill-posed.
Overall, PnP-DM outperforms existing baseline methods, achieving higher accuracy
in posterior estimation.

6.2 Preliminaries
Split Gibbs Sampler (SGS) is an MCMC approach developed for Bayesian inference
[296]. It is also related to the Proximal Sampler [58, 97, 176, 336] and serves as the
backbone for the Generative Plug-and-Play (GPnP) [31] and Diffusion Plug-and-
Play (DPnP) [326] frameworks in computational imaging. The goal of SGS is to
sample the posterior distribution

𝑝(𝒙 | 𝒚) ∝ 𝑝(𝒚 | 𝒙)𝑝(𝒙) = exp(− 𝑓 (𝒙; 𝒚) − 𝑔(𝒙)) (6.2)

where 𝑓 (𝒙; 𝒚) := − log 𝑝(𝒚 | 𝒙) and 𝑔(𝒙) := − log 𝑝(𝒙) are the potential functions
of the likelihood and prior distribution, respectively. The dual dependence of
Equation (6.2) on both the likelihood and prior makes it nontrivial to directly sample
from it in general. Instead, SGS leverages the composite structure of the posterior
distribution by adopting a variable-splitting strategy and considers sampling an
alternative distribution

𝜋(𝒙, 𝒛) ∝ exp
(
− 𝑓 (𝒛; 𝒚) − 𝑔(𝒙) − 1

2𝜂2 ∥𝒙 − 𝒛∥22
)

(6.3)

where 𝒛 ∈ R𝑛 is an augmented variable and 𝜂 > 0 is a hyperparameter that controls
the strength of the coupling between 𝒙 and 𝒛. We denote the 𝒙- and 𝒛-marginal
distributions of Equation (6.3) as 𝜋𝑋 (𝒙) :=

∫
𝜋(𝒙, 𝒛)d𝒛 and 𝜋𝑍 (𝒙) :=

∫
𝜋(𝒙, 𝒛)d𝒙,

respectively. As 𝜂 → 0, 𝜋𝑋 converges to the target posterior 𝑝(𝒙 | 𝒚) in terms
of total variation distance [296], so one can obtain approximate samples from the
target posterior by sampling Equation (6.3) instead.
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SGS samples Equation (6.3) via Gibbs sampling. Specifically, SGS starts from an
initialization 𝒙 (0) and, for iteration 𝑘 = 0, · · · , 𝐾 − 1, alternates between

1. Likelihood step: sample 𝒛(𝑘) ∼ 𝜋𝑍 |𝑋=𝒙 (𝑘 ) (𝒛) ∝ exp
(
− 𝑓 (𝒛; 𝒚) − 1

2𝜂2 ∥𝒙 (𝑘) − 𝒛∥22
)

2. Prior step: sample 𝒙 (𝑘+1) ∼ 𝜋𝑋 |𝑍=𝒛 (𝑘 ) (𝒙) ∝ exp
(
−𝑔(𝒙) − 1

2𝜂2 ∥𝒙 − 𝒛(𝑘) ∥22
)
.

Note that the two conditional distributions separately involve 𝑓 (·; 𝒚) and 𝑔(·). The
likelihood and prior are decoupled so that these two steps can be designed in a
modular way. A similar variable-splitting strategy is also adopted in optimization
methods such as the Half-Quadratic Splitting (HQS) method [114] and the Alter-
nating Direction Method of Multipliers (ADMM) [33, 109]. In fact, SGS can be
viewed as a sampling analogue of HQS. SGS is a principled approach to posterior
sampling if the two sampling steps are rigorously implemented.

Existing Works Related to SGS Several works have designed algorithms for
solving imaging inverse problems based on SGS [31, 69, 100, 230, 326]. The key
distinction among these methods lies in their approaches to the prior step. For
instance, the works [31, 100, 230] applied Langevin-based updates for sampling
𝜋𝑋 |𝑍=𝒛 such that the prior information is encoded by either traditional regularizers
or off-the-shelf image denoisers. The work [69] tackled the prior step by heuristically
customizing a diffusion model (i.e., DDPM [131]) for sampling 𝜋𝑋 |𝑍=𝒛. A concurrent
work [326] improved the implementation by devising two diffusion processes that
rigorously solve the prior step. Our method differs from [326] by connecting the
prior step to the EDM formulation [151]. This connection allows us to seamlessly
integrate state-of-the-art DMs as expressive image priors for Bayesian inference
through a unified interface, eliminating the need for additional customization for each
model and leading to better empirical performance. We also note the recent work
[181] that adopted the optimization-based variable-splitting formulation of HQS
and utilized general DMs as image priors. We instead consider the SGS formulation
from a Bayesian posterior sampling standpoint. Additionally, while SGS-based
methods theoretically accommodate general inverse problems, empirical evidence
on real-world nonlinear inverse problems remains scarce in the literature. In this
work, we demonstrate our method on three nonlinear inverse problems, including a
black hole imaging problem. For a more comprehensive review of related works,
see Appendix C.5.
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Figure 6.1: A schematic diagram of our method. Our method alternates between a
likelihood step that enforces data consistency and a prior step that solves a denoising
posterior sampling problem by leveraging the Split Gibbs Sampler [296]. An
annealing schedule controls the strength of the two steps at each iteration to facilitate
efficient and accurate sampling. A crucial part of our design is the prior step, where
we identify a key connection to a general diffusion model framework called the EDM
[151]. This connection allows us to easily incorporate a family of state-of-the-art
diffusion models as priors to conduct posterior sampling in a principled way without
additional training. Our method demonstrates strong performance on a variety of
linear and nonlinear inverse problems.

6.3 Method
A schematic diagram for the proposed method is shown in Figure 6.1. Our method,
dubbed PnP-DM, builds upon the SGS framework with rigorous implementations
of the two sampling steps and an annealing schedule for the coupling parameter
𝜂. We start with our implementations of the first step for solving both linear and
nonlinear inverse problems.

6.3.1 Likelihood Step: Enforcing Data Consistency
For the likelihood step at iteration 𝑘 , we sample

𝒛(𝑘) ∼ 𝜋𝑍 |𝑋=𝒙 (𝑘 ) (𝒛) ∝ exp
(
− 𝑓 (𝒛; 𝒚) − 1

2𝜂2 ∥𝒙
(𝑘) − 𝒛∥22

)
. (6.4)

Linear Forward Model and Gaussian Noise We first consider a simple yet
common case where the forward model A is linear and the noise distribution is
zero-mean Gaussian, i.e., A := 𝑨 ∈ R𝑚×𝑛 and 𝒏 ∼ N(0,𝚺). In this case, the
potential function of the likelihood term is 𝑓 (𝒙; 𝒚) = 1

2 ∥𝒚− 𝑨𝒙∥
2
𝚺 (up to an additive

constant that does not depend on 𝒙 and 𝒚) where ∥ · ∥2𝚺 := ⟨·,𝚺−1·⟩. It is then
straightforward to show that

𝜋𝑍 |𝑋=𝒙 = N(𝒎(𝒙),𝚲−1)
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where 𝚲 := 𝑨𝑇𝚺−1𝑨 + 1
𝜂2 𝑰 and 𝒎(𝒙) := 𝚲−1(𝑨𝑇𝚺−1𝒚 + 1

𝜂2 𝒙). The problem of
sampling from Gaussian distributions has been systematically studied [295]. We
refer readers to Appendix C.3.1 for a more detailed discussion.

General Case For general nonlinear inverse problems, the likelihood step is not
sampling from a Gaussian distribution anymore. Nevertheless, since we have access
to 𝜋𝑍 |𝑋=𝒙 in closed form up to a multiplicative factor, we can use Monte Carlo
methods based on Langevin dynamics to draw samples from it as long as the
likelihood potential is differentiable. Specifically, we first set up the following
Langevin SDE that admits 𝜋𝑍 |𝑋=𝒙 as the stationary distribution

d𝒛𝑡 = ∇ log 𝜋𝑍 |𝑋=𝒙 (𝒛𝑡)d𝑡 +
√

2d𝒘𝑡 =
[
−∇ 𝑓 (𝒛; 𝒚) − 1

𝜂2 (𝒛 − 𝒙)
]

d𝑡 +
√

2d𝒘𝑡 .

We then initialize the SDE at 𝒛0 = 𝒙 and run it with Euler discretization. The
pseudocode is provided in Appendix C.3.1.

6.3.2 Prior Step: Denoising via the EDM Framework
For the prior step at iteration 𝑘 , we sample

𝒙 (𝑘+1) ∼ 𝜋𝑋 |𝑍=𝒛 (𝑘 ) (𝒙) ∝ exp
(
−𝑔(𝒙) − 1

2𝜂2 ∥𝒙 − 𝒛(𝑘) ∥22
)
. (6.5)

A closer examination of Equation (6.5) reveals that this prior step is essentially to
draw posterior samples for a Gaussian denoising problem, where the “measurement”
is 𝒛(𝑘) , the noise level is 𝜂, and the prior distribution is 𝑝(𝒙) ∝ exp(−𝑔(𝒙)).

We tackle this denoising posterior sampling problem within SGS using DMs as
image priors. In particular, we leverage the EDM framework [151], which was
originally proposed to unify various formulations of DMs for unconditional image
generation. To see the connection of the EDM framework to Equation (6.5), consider
a family of mollified distributions 𝑝(𝒙;𝜎) given by adding i.i.d. Gaussian noise of
standard deviation 𝜎 to the prior distribution 𝑝(𝒙), i.e., 𝒙 +𝜎𝝐 ∼ 𝑝(𝒙;𝜎). The core
idea of the EDM framework is that a variety of state-of-the-art DMs can be unified
into the following reverse SDE:

d𝒙𝑡 =
[
¤𝑠(𝑡)
𝑠(𝑡) 𝒙𝑡 − 2𝑠(𝑡)2 ¤𝜎(𝑡)𝜎(𝑡)∇ log 𝑝

(
𝒙𝑡
𝑠(𝑡) ;𝜎(𝑡)

)]
d𝑡 + 𝑠(𝑡)

√︁
2 ¤𝜎(𝑡)𝜎(𝑡)d𝒘̄𝑡

(6.6)

where 𝒘̄𝑡 is an 𝑛-dimensional Wiener process running backward in time, 𝜎(𝑡) > 0
is a pre-defined noise level schedule with 𝜎(0) = 0, 𝑠(𝑡) is a pre-defined scaling



70

schedule, and ¤𝜎(𝑡), ¤𝑠(𝑡) are their time derivatives. As shown in [151], the defining
property of Equation (6.6) is that 𝒙𝑡/𝑠(𝑡) ∼ 𝑝(𝒙;𝜎(𝑡)) for any time 𝑡. Therefore,
solving this SDE backward in time allows us to travel from any noise level 𝜎(𝑡) to
the clean image distribution at 𝑡 = 0. This means that we can use Equation (6.6) to
solve Equation (6.5) with arbitrary noise level 𝜂 as long as 𝜂 is within the range of
𝜎(𝑡). Indeed, the distribution of 𝒙0 conditioned on 𝒙𝑡 is

𝑝(𝒙0 | 𝒙𝑡) ∝ 𝑝(𝒙𝑡 | 𝒙0)𝑝(𝒙0)
∝ N (𝑠(𝑡)𝒙0, 𝑠(𝑡)2𝜎(𝑡)2𝑰) exp(−𝑔(𝒙0))

∝ exp
(
−𝑔(𝒙0) −

1
2𝜎(𝑡)2

∥𝒙0 − 𝒙𝑡/𝑠(𝑡)∥22
)
.

We highlight that the last line exactly matches Equation (6.5) when 𝒙𝑡 = 𝑠(𝑡)𝒛(𝑘)

and 𝜎(𝑡) = 𝜂. Therefore, we can naturally design a practical algorithm that samples
Equation (6.5) by following these three steps: (1) find 𝑡∗ such that 𝜎(𝑡∗) = 𝜂, (2)
initialize at 𝒙𝑡∗ = 𝑠(𝑡∗)𝒛(𝑘) , and (3) solve Equation (6.6) backward from 𝑡∗ to 0 by
choosing the discretization time steps and integration scheme. Through this unified
interface, any DMs, once converted to the EDM formulation, can be directly turned
into a rigorous solver for Equation (6.5).

Leveraging the connection with EDM, our prior step implementation comes with a
large design space that encompasses a variety of existing DMs, such as DDPM (or
VP-SDE) [131], VE-SDE [266], and iDDPM [224]. In our experiments, we conduct
posterior sampling with all these different models within our framework and all of
them provide high-quality samples. The pseudocode of our implementation and
more details on the EDM formulation for the prior step is given in Appendix C.3.2.

6.3.3 Overall Algorithm
The pseudocode of PnP-DM in complete form is presented in Algorithm 1. PnP-
DM alternates between the two sampling steps with an annealing schedule {𝜂𝑘 } for
the coupling parameter. We find that the annealing schedule on 𝜂 accelerates the
mixing time of the Markov chain and prevents the algorithm from getting stuck in
bad local minima for solving highly ill-posed inverse problems. This is a common
practice in both Langevin-based [145, 156, 272] and SGS-based [31, 326] MCMC
algorithms to improve the empirical performance in solving inverse problems.

Our work shares some similarities with PnP-SGS [69] but contains three main key
differences. First, as demonstrated in our experiments, we investigate three nonlinear
inverse problems, while nonlinear inverse problems are beyond the scope of [69].
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Figure 6.2: A conceptual illustration of the non-stationary and stationary time-
continuous processes as interpolations of 𝐾 discretize iterations of PnP-DM.

Our experiments show that PnP-SGS struggles with challenging nonlinear inverse
problems such as Fourier phase retrieval. Second, we adopt the EDM formulation to
ensure that the prior step of PnP-DM is a rigorous mapping from the image manifold
with the desired noise level to the clean image manifold, aligning with the theory of
SGS. In contrast, the prior step of PnP-SGS [69] is heuristic (which is also pointed
out by [326]) and not rigorously designed to sample Equation (6.5). Third, unlike
PnP-SGS [69] that uses a constant 𝜂, we consider an annealing schedule {𝜂𝑘 } for
the coupling parameter, which is important for highly ill-posed inverse problems.

Algorithm 1 Plug-and-Play Diffusion Models (PnP-DM)
Require: initialization 𝒙0 ∈ R𝑛, total number of iterations 𝐾 > 0, coupling strength

schedule {𝜂𝑘 > 0}𝐾−1
𝑘=0 , likelihood potential 𝑓 ( · ; 𝒚) with measurements 𝒚 ∈ R𝑚,

pre-trained model 𝐷𝜽 ( · ; · ) that approximates ∇ log 𝑝 (𝒙;𝜎) with (𝐷𝜽 (𝒙;𝜎) −
𝒙)/𝜎2.

1: for 𝑘 = 0, ..., 𝐾 − 1 do
2: 𝒛(𝑘) ← LikelihoodStep(𝒙 (𝑘) , 𝑓 ( · ; 𝒚), 𝜂𝑘 ) ⊲ Section 6.3.1
3: 𝒙 (𝑘+1) ← PriorStep(𝒛(𝑘) , 𝐷𝜽 ( · ; · ), 𝜂𝑘 ) ⊲ Section 6.3.2
4: end for
5: return 𝒙 (𝑘+1)

6.4 Convergence Analysis
We provide some theoretical insights on the non-asymptotic behavior of PnP-DM via
a convergence analysis. We start with the following definitions. For two probability
measures 𝜇 and 𝜋 such that 𝜇 ≪ 𝜋, the Kullback–Leibler (KL) divergence and
Fisher divergence (or relative Fisher information) of 𝜇 with respect to 𝜋 are defined,
respectively, as

KL(𝜇 | |𝜋) :=
∫

𝜇 log
𝜇

𝜋
and FI(𝜇 | |𝜋) :=

∫
𝜇




∇ log
𝜇

𝜋




2

2
.
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Both divergences are equal to zero if and only if 𝜇 = 𝜋. KL divergence is a
common metric for quantifying the difference of one distribution with respect to
another. Fisher divergence has been used for analyzing the stationarity of sampling
algorithms [15, 273].

We analyze PnP-DM via a continuous-time perspective, leveraging the interpolation
techniques introduced for Langevin Monte Carlo [15, 273, 290]. We assume that
the likelihood step Equation (6.4) can be implemented exactly and the prior step
Equation (6.5) involves running the reverse diffusion process Equation (6.6) with
an approximated score function 𝒔𝑡 ≈ ∇ log 𝑝𝑡 := ∇ log 𝑝( · ;𝜎(𝑡)). Let 𝜇𝑋0 be the
distribution of the initialization 𝒙 (0) . Let 𝜇𝑍

𝑘
and 𝜇𝑋

𝑘+1 be the distributions of 𝒛(𝑘) and
𝒙 (𝑘+1) at the 𝑘 th iteration. Recall that the stationary distributions are 𝜋𝑋 and 𝜋𝑍 . Our
analysis is concerned with two continuous-time processes: (1) the non-stationary
process from 𝜇𝑋0 , a non-stationary initialization, to 𝜇𝑋

𝐾
where Equation (6.6) is

run with the approximated score function 𝒔𝑡 and (2) the stationary process that
alternates between stationary distributions 𝜋𝑋 and 𝜋𝑍 . These two processes are the
interpolation PnP-DM in non-stationary and stationary states and define continuous
transitions over discrete iterations. A conceptual illustration of the two processes
is provided in Figure 6.2 with the exact formulations in Appendix C.1. Now we
present our main result:

Theorem 6.4.1. Consider running 𝐾 iterations of PnP-DM with 𝜂𝑘 ≡ 𝜂 > 0 and a
score estimate 𝒔𝑡 ≈ ∇ log 𝑝𝑡 := ∇ log 𝑝( · ;𝜎(𝑡)). Let 𝑡∗ > 0 be such that 𝜎(𝑡∗) = 𝜂
and 𝛿 := inf𝑡∈[0,𝑡∗] 𝑣(𝑡) where 𝑣(𝑡) := 𝑠(𝑡)

√︁
2 ¤𝜎(𝑡)𝜎(𝑡). Define 𝜇𝜏 and 𝜋𝜏 as the

distributions at time 𝜏 of the non-stationary and stationary process, respectively.
Then, for over 𝐾 iterations of PnP-DM, or equivalently over 𝜏 ∈ [0, 𝑇𝐾] with
𝑇𝐾 := 𝐾 (𝑡∗ + 1), we have

1
𝑇𝐾

∫ 𝑇𝐾

0
FI (𝜋𝜏 | |𝜇𝜏) d𝜏︸                        ︷︷                        ︸

average Fisher divergence
over 𝐾 iterations of PnP-DM

≤
4KL(𝜋𝑋 | |𝜇𝑋0 )

𝐾 (𝑡∗ + 1)min(𝜂, 𝛿)2︸                     ︷︷                     ︸
convergence from initialization

+ 4𝜖score

(𝑡∗ + 1)𝛿2︸      ︷︷      ︸
score error

, (6.7)

where we assume that the score estimation error 𝜖score :=
∫ 𝑡∗+1

1 𝑣(𝜏)2E𝜋𝜏 ∥𝒔𝜏 −
∇ log 𝑝𝜏∥22d𝜏 < ∞.

The proof is provided in Appendix C.1. This theorem states that the average distance
(measured by Fisher divergence) of the non-stationary process with respect to the
stationary process over 𝐾 iterations of PnP-DM goes to zero at a rate of 𝑂 (1/𝐾)
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Figure 6.3: Results on a synthetic problem with the ground truth posterior
available. PnP-DM can sample it more accurately that DPS [64].

Table 6.1: Quantitative comparison on three noisy linear inverse problems for
100 FFHQ color test images. Bold: best; Underline: second best.

Method Gaussian deblur Motion deblur Super-resolution (4×)

PSNR (↑) SSIM (↑) LPIPS (↓) PSNR (↑) SSIM (↑) LPIPS (↓) PSNR (↑) SSIM (↑) LPIPS (↓)
PnP-ADMM [52] 26.88 0.7855 0.3472 26.55 0.7655 0.3600 26.61 0.7634 0.3766

DPIR [345] 28.74 0.8348 0.2677 29.97 0.8529 0.2404 28.75 0.8378 0.2577
DDRM [155] 27.05 0.7819 0.2570 – – – 29.47 0.8437 0.2322

DPS [64] 28.83 0.8212 0.2330 27.87 0.8035 0.2542 29.45 0.8379 0.2274
PnP-SGS [69] 27.46 0.8356 0.2445 28.98 0.8447 0.2190 28.30 0.8349 0.2160
DPnP [326] 29.24 0.8360 0.2098 30.21 0.8527 0.2010 29.32 0.8407 0.2127

PnP-DM (VP) 29.46 0.8215 0.2202 30.06 0.8336 0.2099 29.40 0.8238 0.2219
PnP-DM (VE) 29.65 0.8399 0.2090 30.38 0.8547 0.1971 29.57 0.8431 0.2108

PnP-DM (iDDPM) 29.60 0.8383 0.2203 30.26 0.8507 0.2103 29.53 0.8404 0.2213
PnP-DM (EDM) 29.66 0.8411 0.2170 30.35 0.8547 0.2062 29.60 0.8435 0.2191

under certain conditions up to the score approximation error. Note that our theory
only requires 𝐿2-accurate score estimate under the measure 𝜋𝜏, which is a relatively
weaker condition than the common 𝐿∞-accurate score estimate assumption in prior
analysis of sampling methods involving score estimates [28, 273]. This result
resembles the first-order stationarity for Langevin Monte Carlo [15]. Unlike the
non-asymptotic analysis in [326], we utilize the average Fisher divergence instead
of the total variation distance, enabling us to obtain an explicit convergence rate.
Here 𝛿 is the infimum of the diffusion coefficient along the reverse diffusion in
Equation (6.6); see further discussions on the role of 𝛿 in Appendix C.1.4. Our
theory shows that the accurate implementations of the two sampling steps lead to
a sampler that provably converges to the stationary process that alternates between
the two target stationary distributions.
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6.5 Experiments
6.5.1 Validation with Ground Truth Posterior
We first demonstrate the accuracy of PnP-DM for posterior sampling on a simulated
compressed sensing problem with a Gaussian prior where the posterior distribution
can be expressed in a closed form. The mean and per-pixel standard deviation
of the prior are visualized on the bottom left of Figure 6.3. The linear forward
model 𝑨 ∈ R𝑚×𝑛 is a Gaussian matrix (𝑚 = 𝑛/2), i.e., 𝑨𝑖 𝑗 ∼ N(0, 1). A test
image is randomly generated from the prior (see top left of Figure 6.3), and the
measurement is calculated according to Equation (1.1) with 𝒏 ∼ N(0, 0.012𝑰).
We compare our method with the popular DM-based method DPS [64]. We draw
1,000 samples and visualize the empirical mean and per-pixel standard deviation
for both algorithms. Compared with the true posterior (second column), we find
that both methods accurately estimate the mean. However, the standard deviation
image estimated by DPS significantly deviates from the ground truth. In contrast,
our standard deviation image matches the ground truth in terms of both absolute
magnitude and spatial distribution. These results highlight the accuracy of our
method over DPS by taking a more principled Bayesian approach.

6.5.2 Benchmark Experiments
Dataset and Inverse Problems We test our proposed algorithm and several base-
line methods on 100 images from the validation set of the FFHQ dataset [152] for
five inverse problems: (1) Gaussian deblur with kernel size 61×61 and standard
deviation 3.0, (2) Motion deblur with kernel size 61×61 and intensity of 0.5, (3)
Super-resolution with 4× downsampling ratio, (4) the coded diffraction patterns
(CDP) reconstruction problem (nonlinear) in [42, 221] (phase retrieval with a phase
mask), and (5) the Fourier phase retrieval (nonlinear) with 4× oversampling. We
add i.i.d. Gaussian noise to all the simulated measurements 𝒚. In particular, i.e.,
𝒏 ∼ N(0, 𝜎2

𝒚 𝑰). For all problems except for Fourier phase retrieval, the noise stan-
dard deviation is set as 𝜎𝒚 = 0.05. Due to the severe ill-posedness of Fourier phase
retrieval, we consider a smaller noise standard deviation 𝜎𝒚 = 0.01.

Baselines and Comparison Protocols We consider four variants of DMs as plug-
in priors for our method, namely VP-SDE (VP) [131], VE-SDE (VE) [266], iDDPM
[224], and EDM [151]. We compare our method with various baselines, including
(1) optimization-based methods: PnP-ADMM [52], DPIR [345]; (2) conditional
DMs: DDRM [155], DPS [65]; and (3) SGS-based method: PnP-SGS [69], DPnP
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Figure 6.4: Visual examples for the motion deblur problem (𝜎𝒚 = 0.05). We
visualize one sample generated by each sampling algorithm.

[326]. For fair comparison, we use the same pre-trained score function checkpoint
for all DM-based methods. Since the pre-trained score function was trained with
the DDPM formulation (VP-SDE) [131], we convert it to the EDM formulation by
applying the VP preconditioning [151]. We use the Peak Signal-to-Noise Ratio
(PSNR), the Structural Similarity Index Measure (SSIM), and the Learned Percep-
tual Image Patch Similarity (LPIPS) distance for quantitative comparison. For each
sampling method, we draw 20 random samples, calculate their mean, and report the
metrics on the mean image. More experimental details are provided in Appendices
C.2, C.3, and C.4.

Results: Linear Problems A quantitative comparison is provided in Table 6.1.
PnP-DM generally outperforms the baseline methods, and the VE and EDM variants
consistently outperform the other two variants on these linear problems. Figure 6.4
contains visual examples for the motion deblur problem (see Appendix C.6.2 for
the other two linear problems). PnP-DM provides high-quality reconstructions
that are both sharp and consistent with the ground truth image. We also provide an
uncertainty quantification analysis based on pixel-wise statistics in Figure 6.5. In the
left three columns, we visualize the absolute error (|𝒙̂−𝒙0 |), standard deviation (std),
and absolute z-score (|𝒙̂−𝒙0 |/std). In the third column, red pixels highlight locations
where the ground truth pixel values are outliers of the 3-sigma credible interval (CI)
under the estimated posterior uncertainty. The fourth column contains scatter plots
of |𝒙̂ − 𝒙0 | versus std for each pixel of the reconstructions, where red boxes show
the percentages of outliers (outside of 3-sigma CI) and gray boxes indicate the
percentages within the 3-sigma CI. Similar to the synthetic prior experiment, DPS
tends to have larger standard deviation estimations, as shown by the less concentrated
distribution of gray points around the origin. Compared with baselines, especially
PnP-SGS, our approach captures a higher percentage (97.46%) of ground truth pixels
than the baselines (96.20% and 88.77%). If the true posterior were truly Gaussian,
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Figure 6.5: Comparison of uncertainty quantification (UQ) for the motion
deblur. Left 3 columns: absolute error (|𝒙̂ − 𝒙0 |), standard deviation (std), and
absolute z-score (|𝒙̂ − 𝒙0 |/std) with the outlier pixels in red. Right column: scatter
plot of |𝒙̂ − 𝒙0 | versus std. Note that PnP-DM leads to a better UQ performance
than the baselines by having the lowest percentage of outliers while avoiding having
overestimated per-pixel standard deviations.

99% of the ground-truth pixels should lie within the 3-sigma CI; however, as the
posterior is not Gaussian with a DM-based prior, we do not necessarily expect to
reach 99% coverage.

Results: Nonlinear Problems We provide a quantitative comparison in Table 6.2.
For the CDP reconstruction problem, PnP-DM performs on par with DPS but
outperforms other SGS-based methods. We then consider the Fourier phase retrieval
(FPR) problem, which is known to be a challenging nonlinear inverse problem. One
challenge lies in its invariance to 180◦ rotation, so the posterior distribution has
two modes, one with upright images and another with 180◦-rotated images, that
equally fit the measurement. To increase the chance of getting properly-oriented
reconstructions, we run each algorithm with four different random initializations and
report the metrics for the best run, following the practice in [65]. We find that PnP-
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Table 6.2: Quantitative evaluation on two noisy nonlinear inverse problems for
100 FFHQ grayscale test images. Bold: best; Underline: second best.

Method Coded diffraction patterns Fourier phase retrieval

PSNR (↑) SSIM (↑) LPIPS (↓) PSNR (↑) SSIM (↑) LPIPS (↓)
HIO [104] – – – 20.66 0.4308 0.6469
DPS [64] 33.43 0.9049 0.1374 23.60 0.6804 0.3126

PnP-SGS [69] 32.19 0.8889 0.2010 15.36 0.3659 0.5730
DPnP [326] 32.19 0.8853 0.2000 29.28 0.8397 0.2180

PnP-DM (VP) 32.91 0.8846 0.1906 30.36 0.8553 0.2115
PnP-DM (VE) 33.13 0.8971 0.1663 29.88 0.8464 0.2186

PnP-DM (iDDPM) 33.35 0.9083 0.1471 30.61 0.8718 0.1975
PnP-DM (EDM) 33.25 0.9050 0.1386 31.14 0.8731 0.2024

DPS Ours: PnP-DM (EDM)PnP-SGS Ground truth
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Figure 6.6: Results of the Fourier phase retrieval problem. (a) PnP-DM provides
both upright and rotated reconstructions (two modes given by the invariance of
the forward model to 180◦ rotation) with high fidelity, while the baseline methods
cannot. (b) We visualize the percentages of upright and rotated reconstructions out
of 90 runs for a test image with two samples for each orientation.

DM significantly outperforms the baselines on this highly ill-posed inverse problem.
As shown in Figure 6.6 (a), our method can provide high-quality reconstructions
for both orientations, while the baseline methods fail to capture at least one of the
two modes. We further run our method for a test image with 100 different random
initializations and collect reconstructions in both orientations that are above 28 dB
in PSNR (90 out of 100 runs). The percentage of upright and rotated reconstructions
is visualized by the pie chart in Figure 6.6 (b). With a prior on upright face images,
our method generates mostly samples with the upright orientation. Nevertheless, it
can also find the other mode that has an equal likelihood, demonstrating its ability
to capture multi-modal posterior distributions.

6.5.3 Experiments on Black Hole Imaging
Problem Setup We validate PnP-DM on a real-world nonlinear imaging inverse
problem: black hole imaging (BHI) (see Appendix C.2 for more details). A visual
illustration of BHI is provided in Figure 6.7 (a). This BHI inverse problem is
severely ill-posed. Even with an Earth-sized telescope, only a small fraction of the
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Figure 6.7: Results on the black hole imaging problem with simulated data. Due
to severe noise corruption and measurement sparsity, this problem is non-convex
and highly ill-posed, leading to a bi-modal posterior distribution as previously found
in [269]. Here we compare our method, PnP-DM, with the DPS baseline [64]. A
metric quantifying the mismatch with the observed measurements is labeled for
each sample, which should be around 2 for an ideal measurement fit. Samples
generated by PnP-DM exhibit two distinct modes with sharp details and a consistent
ring structure, while samples given by DPS display inconsistent ring sizes and
sometimes fail to capture the black hole structure entirely, with samples having poor
measurement fit.

Fourier frequencies of the target black hole can be measured (region within the red
box); in reality, this region is further subsampled with a highly sparse pattern (black
lines). Additionally, the atmospheric noise causes nonlinearity of this BHI problem
that sometimes results in a multi-modal posterior distribution of the reconstructed
image [269]. Here we demonstrate the effectiveness of PnP-DM in capturing a
multi-modal posterior distribution. For brevity, we restrict our choice of diffusion
models in PnP-DM to EDM and use DPS as the baseline. The pre-trained diffusion
model is trained on images from the GRMHD simulation [72].

Results on Simulated Data We first use the simulated data from [269] where the
measurements are generated assuming that the ground-truth black hole image was
at the location of the Sagittarius A∗ black hole. Figure 6.7 (b) visually compares the



79

Mean image

Posterior samples

Official image by EHT

* Experiment is performed with 
real data for the M87 black hole

40μas 40μas

Prior samples

Figure 6.8: Results on the black hole imaging problem with the real data for
the M87 black hole from April 6th, 2017 [71]. The posterior samples from PnP-
DM contain fine-grained features that align with the prior distribution; see left for
a few samples generated by the pre-trained diffusion model from the prior. Besides
having high visual quality, our posterior samples accurately capture key features of
the official reconstruction by EHT as well, such as the bright spot location and ring
diameter.

results obtained by PnP-DM and DPS. We use the t-SNE method [210] to cluster
the generated samples (100 for each method) and identify two modes in the samples
generated by PnP-DM and three modes in those generated by DPS. We visualize
the mean and three samples for each image mode. A metric for quantifying the
degree of data mismatch is labeled on the top right corner of each image. As
illustrated by both the mean and sample images, PnP-DM successfully captures the
two modes previously identified for this dataset [269]. Note that PnP-DM generates
high-fidelity samples from both modes with sharp details of the flux ring, and its
samples from “Mode 1” align well with the ground truth image. In contrast, two
out of the three modes sampled by DPS fail to exhibit a meaningful black hole
structure and do not correspond with the observed measurements, as indicated by
the significantly larger data mismatch values.

Results on Real Data We finally apply PnP-DM to the real M87 black hole data
from April 6th, 2017 [71], where the results are shown in Figure 6.8. By leveraging
an expressive DM-based image prior, PnP-DM generates high-quality samples that
are both visually plausible and consistent with the ring diameters observed in the
official EHT reconstruction. These results highlight the robustness and effectiveness
of our method in tackling a highly ill-posed real-world inverse problem.
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Table 6.3: Quantitative results for the DSA deconvolution problem in radio as-
tronomy. We compare PnP-DM with the well-known baseline CLEAN on detecting
the galaxies and estimating their shapes and fluxes. PnP-DM outperform CLEANs
in terms of all the metrics.

Detection Shape & flux estimation

Precision ↑ Recall ↑ 𝐹1 score ↑ Semi-major axis MSE ↓ Semi-minor axis MSE ↓ Flux MSE ↓
CLEAN 0.8675 0.9791 0.9199 26.84 21.94 1.48 × 105

PnP-DM 0.8866 0.9991 0.9395 4.81 3.20 897

6.5.4 Experiments on Deconvolution with the Deep Synoptic Array (DSA)
Problem Setup We finally show the effectiveness of PnP-DM on solving a real-
world deconvolution problem that arises in radio astronomy (see Appendix C.2 for
more details). We adopt the same experimental setup as [73] based on the Deep
Synoptic Array (DSA) [122]. We first generate a dataset of 800 true sky images
of size 512×512 with a spatial resolution of 0.25 arcsecond, used for training the
diffusion model in PnP-DM, and a separate dataset from the same distribution
for testing. The true sky images contain 2D Gaussian ellipsoids with random
orientations on the sky. The brightness, ellipticity, and angular size of each galaxy
are chosen to match the empirically measured distributions for radio galaxies [284].
We simulate dirty sky measurements by convolving the true sky images with the
full-band point spread function (PSF) of DSA with a bandwidth of 1,300 MHz. The
main difference from the deblurring problems in Section 6.5.2 is that the additive
Gaussian noise is applied before the blurring operation for this problem, which
models the random fluctuations in the background of the true sky before reaching
the telescopes. The standard deviation of the noise is chosen to have a signal-to-noise
ratio of around 6, which is the expected level for DSA. Since some galaxies in the
true sky could have intensities on par with the level of the background noise, there
are uncertainties about their existence. Posterior sampling methods are desirable
for quantifying the likelihoods of their existence and discovering new galaxies.

Results We compare PnP-DM with CLEAN [134], a widely used baseline in radio
astronomy, which suppresses PSF-shaped artifacts in the dirty image by iteratively
subtracting the PSF near the bright galaxies. We first provide a visual comparison
in Figure 6.9. The top panel displays the mean of 20 posterior samples generated
by PnP-DM. Since the PSF in DSA lacks strong side lobes, CLEAN is less effective
in this setting where the dirty image does not contain any obvious PSF-induced
artifacts. In contrast, PnP-DM faithfully reconstructs both the positions and shapes
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Figure 6.9: Visual examples of the DSA deconvolution problem in radio as-
tronomy. All images undergo a nonlinear transformation to visualize the weaker
galaxies. (a): The mean image of PnP-DM (based on 20 samples) significantly
outperforms the reconstruction of the classic CLEAN algorithm [134]. (b): We
visualize three posterior samples and the per-pixel standard deviation map com-
puted from all 20 samples. Zoom-in regions highlight areas with notable sample
variability.

of the galaxies, achieving a peak signal-to-noise ratio (PSNR) of 52.41dB. The
bottom panel of Figure 6.9 illustrates three representative posterior samples and the
per-pixel standard deviation map computed from all 20 samples. Zoom-in regions
highlight areas with notable structural differences. As indicated by the yellow
arrows, certain galaxies only appear in some samples but not others, illustrating
the ability of PnP-DM to recover diverse structures in its reconstructions. This
diversity enables us to understand and quantify the uncertainty of the reconstruction.
We further assess the quality of the reconstructed astronomical images in a task-
relevant manner using theextract function from theSEP package1. Specifically, we
quantify their accuracies for detecting galaxies and estimating their shapes and fluxes
and provide the quantitative results in Table 6.3. A detected galaxy is considered

1https://github.com/sep-developers/sep (Lesser GNU Public License)

https://github.com/sep-developers/sep
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Figure 6.10: Comparison of galaxy property estimation accuracy between
CLEAN (blue) and PnP-DM (orange). Each scatter plot shows predicted ver-
sus true values for semi-major axis 𝜃𝐴 (left), semi-minor axis 𝜃𝐵 (middle), and flux
(right), across all detected sources. The dashed line indicates perfect prediction.
PnP-DM produces estimates that lie closer to the diagonal, indicating more accurate
recovery of galaxy shapes and fluxes. Notably, PnP-DM avoids the strong overesti-
mation biases seen in CLEAN.

a true positive if its center lies within 10 pixels of the nearest galaxy in the ground
truth image; otherwise, it is counted as a false positive. Conversely, a false negative
is recorded when no detection falls within the 10-pixel radius of a ground truth
galaxy. Based on these criteria, we compute standard detection metrics: Precision,
Recall, and 𝐹1 score. Additionally, we report the mean squared errors (MSE) of the
semi-major axis (𝜃𝐴), semi-minor axis (𝜃𝐵), and flux based on the metrics provided
by the source detection algorithm. PnP-DM significantly outperforms CLEAN in
terms of all metrics. The improvements are further shown by the scatter plots in
Figure 6.10, where each point represents a galaxy detection. The estimates given
by PnP-DM align with the ground truth much better than those given by CLEAN.

6.6 Conclusion
In this chapter, we introduced PnP-DM, a posterior sampling method for solving
imaging inverse problems. The backbone of our method is a split Gibbs sampler
that iteratively alternates between two steps that separately involve the likelihood
and prior. Crucially, we established a link between the prior step and a general
DM framework known as the EDM formulation. By leveraging this connection,
we seamlessly integrated a diverse range of state-of-the-art DMs as priors through
a unified interface. Experimental results demonstrate that our method outperforms
existing DM-based methods across both linear and nonlinear inverse problems,
including a nonlinear and severely ill-posed black hole interferometric imaging
problem.
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Limitations PnP-DM can be further improved in the following two aspects. First,
PnP-DM currently requires evaluating the likelihood and prior steps for the en-
tire image at a time. This potentially poses computational challenges in solving
large-scale inverse problems (e.g., 3D imaging) or those with expensive likelihood
evaluation (e.g., PDE inverse problems). Second, the current theoretical analysis
does not consider the approximation error introduced in the likelihood step for gen-
eral nonlinear inverse problems when running Langevin MCMC for finite iterations.
Explicit incorporation of this error would offer further insights into the empirical
performance of PnP-DM.
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C h a p t e r 7

BEYOND PNP-DM: TOWARDS A UNIFIED FRAMEWORK FOR
GENERAL POSTERIOR ESTIMATION

In Chapter 6, we introduced PnP-DM as a general method for solving inverse
problems using diffusion models. While it has proven effective across a range
of linear and nonlinear imaging problems, several important challenges remain
unaddressed. In this chapter, we take the core idea of PnP-DM further and work
toward a unified PnPDP framework capable of handling more general classes of
inverse problems.

We begin in Section 7.1 by outlining four challenges that are beyond the reach
of the original PnP-DM in Chapter 6. We then formulate a unified framework in
Section 7.2 for addressing these challenges. The remainder of the chapter presents
four instantiations (Section 7.3, Section 7.4, Section 7.5, Section 7.6), each designed
to address one of these challenges. This chapter is based on our works [22, 63,
297, 352], which collectively expand the scope and applicability of diffusion-based
posterior estimation.

7.1 Limitations of PnP-DM
Recall that our goal is to sample from the posterior distribution 𝑝(𝒙0 | 𝒚) given mea-
surements 𝒚 = A(𝒙0) + 𝒏. PnP-DM turns a pre-trained diffusion model (DM) that
characterizes the prior 𝑝(𝒙0) into a principled sampler for the posterior. However,
a few important issues remain unaddressed by the original formulation.

First, there may be additional sources of information about 𝒙0 that we would like
to incorporate, such as a text description of what 𝒙0 looks like. Text could provide
rich semantic information that significantly constrains the set of possible solutions,
but it often requires working with more advanced latent DMs, which were not
considered in Chapter 6. Can we develop a latent analogue of PnP-DM that can
support state-of-the-art text-conditioned DMs?

Second, many imaging inverse problems are defined for videos, which introduce
higher dimensionality and, more importantly, an extra time dimension compared
to static images. How can we efficiently obtain expressive diffusion priors for
videos? And how can we effectively incorporate them into the PnP-DM framework
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to reconstruct videos that are consistent in both spatial and temporal dimensions?

Third, in many applications (especially those governed by partial differential equa-
tions (PDEs)), the forward model A may only permit forward evaluation but not
differentiation. The likelihood step in Chapter 6 assumes access to the gradient of
A, making it incompatible with such black-box settings. Can we overcome this
limitation and extend PnP-DM to handle non-differentiable forward models?

Fourth, many inverse problems have solution spaces that are inherently discrete,
whereas PnP-DM is designed for continuous domains R𝑛. Modeling data distri-
butions in discrete spaces requires discrete DMs, which differ substantially from
their continuous counterparts. Can we design an analogous version of PnP-DM for
discrete spaces that also offers strong theoretical guarantees and empirical perfor-
mance?

We answer all of these questions affirmatively by introducing four methods in
the remainder of this chapter. To highlight their shared structure and enable future
generalizations, we first present a unifying alternating-update framework that unifies
all four approaches.

7.2 A Unified Diffusion-Based Posterior Estimation Framework
Algorithm 2 A Unified Diffusion-Based Posterior Estimation Framework
Require: initialization 𝒖(0) , total number of iterations 𝐾 > 0, noise schedule
{𝜂𝑘 > 0}𝐾−1

𝑘=0 , measurements 𝒚 ∈ R𝑚, pre-trained diffusion model 𝒔𝜽 .
1: for 𝑘 = 0, ..., 𝐾 − 1 do
2: 𝒗 (𝑘) ← LikelihoodStep(𝒖(𝑘) , 𝒚, 𝜂𝑘 )
3: 𝒖(𝑘+1) ← PriorStep(𝒗 (𝑘) , 𝒔𝜽 , 𝜂𝑘 )
4: end for
5: return 𝒖(𝐾)

We present the unified framework in Algorithm 2. In a nutshell, it alternates between
two updates—the likelihood step and the prior step—until a final sample is obtained.
The likelihood step enforces measurement consistency in a stochastic way, producing
noisy output with noise level 𝜂𝑘 . The prior step denoises the sample back from noise
level 𝜂𝑘 to the clean image manifold. The noise schedule {𝜂𝑘 > 0}𝐾−1

𝑘=0 controls the
progression of the reconstruction from a starting manifold (e.g., the manifold with
noise level 𝜂0) to an ending manifold with noise level 𝜂𝐾−1 ≈ 0.

In Section 7.3 and Section 7.4, we retain the likelihood step from PnP-DM and
extend the prior step. Rather than unconditional image-space DMs for images
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considered in Chapter 6, we investigate either text-conditioned latent-space DMs
(Section 7.3) or latent-space video DMs (Section 7.4). Such extensions enable us
to incorporate text description as a form of prior and solve video inverse problems,
respectively.

In Section 7.5, we keep the prior step the same as in PnP-DM and generalize
the likelihood step. Instead of using a gradient-based MCMC sampler for the
likelihood step, we leverage the Ensemble Kalman technique [143] to implement
the likelihood step via statistical linearization when the gradient ofA is unavailable.
This generalization enables us to solve inverse problems based on, for example, the
Navier-Stokes equation.

Finally, in Section 7.6, we propose a discrete analogue of PnP-DM that requires
re-designing both the likelihood and prior steps. We first construct a discrete version
of Split Gibbs Sampler and then follow the same recipe in PnP-DM to obtain an
implementable algorithm, where the likelihood step involves a Metropolis-Hasting
sampler and the prior step involves a discrete DM.

7.3 Thrust 1: Incorporating More Information as Prior
Text descriptions provide rich semantic information for characterizing image distri-
butions, which may be helpful as priors for solving inverse problems. For example,
for a blurry photograph, we can more accurately resolve it into a sharper image if
we are given a description of its content. However, the instantiation of PnP-DM in
Chapter 6 assumes unconditional DMs and does not take text as an input. It remains
an open question whether and how state-of-the-art text-conditioned DMs, such as
StableDiffusion [249], can be effectively leveraged for solving inverse problems.

In this section, we show how to employ a text-conditioned DM in the prior updates
of Algorithm 2 for incorporating text as a form of prior knowledge. Specifically, we
present three instantiations of Algorithm 2 on the update rules of DCDP [181], PnP-
DM (Section 6.3), and DAPS [341]. We show that they have highly similar likelihood
steps and the same prior steps. Compared to existing text-guided diffusion-based
techniques such as TReg [160], our approach does not require an additional CLIP
model [236]. We demonstrate the effectiveness of our approach on three image
restoration problems with severe ill-posedness. We find that our proposed methods
can generate high-quality solutions while also being able to resolve ambiguity
according to text prompts.

The appendix for this section is Appendix D.1.
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7.3.1 Instantiation of Algorithm 2 with Text-Conditioned Diffusion Models
To incorporate text as a form of prior, we sample from the following posterior
distribution conditioned on both measurements and text

𝑝(𝒙0 | 𝒚, 𝒕) ∝ 𝑝(𝒚 | 𝒙0, 𝒕) 𝑝(𝒙0 | 𝒕) = 𝑝(𝒚 | 𝒙0) 𝑝(𝒙0 | 𝒕) (7.1)

where the equality holds because 𝒚 and 𝒕 are independent conditioned on 𝒙0. The
text-conditioned prior 𝑝(𝒙0 | 𝒕) can be modeled by text-conditioned DMs.

Solve Inverse Problems in Latent Space Since most text-conditioned DMs are
latent-space models, we formulate inverse problems also in latent space. Assuming
that the set of likely targets 𝒙0’s is in the range of a decoder D, we have that ∃ 𝒛0

s.t. 𝒙0 = D(𝒛0) and can thus rewrite Equation (1.1) as:

𝒚 = A(D(𝒛0)) + 𝒏. (7.2)

It follows that the posterior 𝑝(𝒙0 | 𝒚) is the pushforward of the latent posterior
𝑝(𝒛0 | 𝒚) throughD. Then it suffices to first generate latent samples from 𝑝(𝒛0 | 𝒚)
and then decode them by D. This latent-space approach shares a similar spirit as
the Deep Image Prior (DIP) approach [177], which (in our notations) chooses D
to be a convolutional neural network and 𝒛0 to be its weights. However, there are
two key distinctions. First, DIP is deterministic and only provides a single solution
𝒙̂ = D(𝒛0), while we aim to sample from the posterior 𝑝(𝒙0 | 𝒚). Second, DIP
employs an untrained network and optimizes its randomly initialized weights, while
our decoder D is pre-trained in a VAE and fixed when we optimize its input 𝒛0.
Similar to Equation (7.1), the latent posterior 𝑝(𝒛0 | 𝒚) can be written as

𝑝(𝒛0 | 𝒚, 𝒕) ∝ 𝑝(𝒚 | 𝒛0) 𝑝(𝒛0 | 𝒕) (7.3)

where 𝑝(𝒚 | 𝒛0) is given by Equation (7.2) and 𝑝(𝒛0 | 𝒕) can be modelled by
state-of-the-art text-conditioned DMs [240, 249].

Text-Conditioned Latent Diffusion Models (LDMs) Given a text prompt 𝒕, text-
conditioned LDMs sample from the text-guided prior distribution with the classifier-
free guidance technique [132], which models the prior distribution as

𝑝(𝒛0 | 𝒕) ∝ 𝑝(𝒛0) · 𝑝( 𝒕 | 𝒛0)𝑤

where the parameter 𝑤 ≥ 0 controls the strength of the text guidance. During the
reverse diffusion process, where the time-dependent score function∇𝒙0 log 𝑝𝑡 (𝒙0 | 𝒕)
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is required, these models approximate it as

∇𝒛0 log 𝑝𝑡 (𝒛0 | 𝒕) = ∇𝒛0 log 𝑝𝑡 (𝒛0) + 𝑤 · ∇𝒛0 log 𝑝𝑡 ( 𝒕 | 𝒛0)
≈ 𝒔𝜽 (𝒛0, ∅, 𝑡) + 𝑤 · 𝒔𝜽 (𝒛0, 𝒕, 𝑡),

where 𝒔𝜽 is a neural network that takes text as input and ∅ denotes an empty
string. Note that setting 𝑤 = 0 disables text conditioning, reducing the model to an
unconditional diffusion model.

Overall Approach With the latent-space formulations of inverse problems and
DMs in place, we can then follow the same procedure in Section 6.2 to get a latent
version of the Split Gibbs Sampler in the format of Algorithm 2. Below we present
three instantiations of the prior and likelihood steps based on the update rules of
DCDP [181], PnP-DM (Section 6.3), and DAPS [341]. We show that they share the
same prior step and only differ slightly for the likelihood step. We refer the readers
to Appendix D.1.1 for a detailed derivation of each algorithm.

7.3.1.1 Prior Step via Text-Conditioned Denoising Diffusion

The prior step (Line 3 of Algorithm 2) generates a sample 𝒖(𝑘+1) from the following
distribution

exp

(
log 𝑝(𝒖 | 𝒕) − 1

2𝜂2
𝑘




𝒖 − 𝒗 (𝑘)


2

2

)
/𝑍 (7.4)

where 𝑍 is a normalizing constant and 𝒕 is the text prompt. As explained in Sec-
tion 6.3, this sampling task is equivalent to solving a Gaussian denoising problem and
can be implemented rigorously using the EDM framework given a text-conditioned
DM for 𝑝(𝒖 | 𝒕) [151]. To sample from this distribution, we first find the timestep
𝑡 = 𝑡∗ where 𝜎𝑡∗ = 𝜂𝑘 and set 𝒖𝑡∗ = 𝒗 (𝑘) . Then we run the following updated reverse
diffusion probability flow ODE1 from 𝑡 = 𝑡∗ to 𝑡 = 0

d𝒖𝑡 =
[
¤𝑠𝑡
𝑠𝑡
𝒖𝑡 − 𝑠2

𝑡 ¤𝜎𝑡𝜎𝑡 𝒔𝜽
(
𝒖𝑡
𝑠𝑡
, 𝒕, 𝜎𝑡

)]
d𝑡 (7.5)

where the score function 𝒔𝜽 takes the text embedding 𝒕 as input. The score term
𝒔𝜽 (𝒙𝑡/𝑠𝑡 , 𝒕, 𝜎𝑡) can be readily obtained using the built-in support for text prompts
through classifier-free guidance of many state-of-the-art LDMs, such as StableDif-
fusion [249]. As illustrated in Figure 7.1, starting from a noisy iterate 𝒗 (𝑘) , the prior

1This is the ODE version of Equation (6.6). These two processes share the same marginal
distribution at any time 𝑡.
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Figure 7.1: Illustration of the prior step with different text inputs. Starting from
a noisy image 𝒗 (𝑘) , the prior step performs text-guided denoising through reverse
diffusion to generate a cleaner sample 𝒖(𝑘+1) on the clean image manifold. The
images are visualized after decoding. Different text prompts steer the denoising
process toward distinct yet plausible modes of the image.

step can sample distinct yet plausible modes on the clean image manifold matching
different text prompts. In scenarios where the measurement 𝒚 is highly ambiguous
due to the ill-posedness of the forward operator A, the text prompt 𝒕 serves as a
powerful signal to guide the restoration process and enables controllability within
the solution space. Our approach resembles the technique used in the SDEdit al-
gorithm [218], where text prompts are used to guide the image generation process.
Unlike prior methods such as TReg [160], our framework does not rely on a CLIP
image encoder and introduces no additional hyperparameters besides those already
in the LDMs (e.g., classifier-free guidance scale 𝑤).

7.3.1.2 Likelihood Step with Two Sub-Steps

For the likelihood step (Line 2 of Algorithm 2), we summarize the three instantiations
in the following table.

Method Sub-Step 1 Sub-Step 2

DCDP [181] Find argmax of (7.6) Add noise 𝝐 ∼ N(0, 𝜂2
𝑘
𝑰)

PnP-DM (Section 6.3) Sample from (7.6) —
DAPS [341] Sample from (7.6) Add noise 𝝐 ∼ N(0, 𝜂2

𝑘
𝑰)
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Sub-Step 1: Enforcing Data Fidelity The first part of the likelihood step targets
the following distribution

exp

(
− 1

2𝜎2
𝒚

∥A(D(𝒗)) − 𝒚∥22 −
1

2𝜂2
𝑘




𝒖(𝑘) − 𝒗


2

2

)
/𝑍 (7.6)

where 𝑍 is a normalizing constant. This distribution balances fidelity to the observed
measurements 𝒚 with proximity to the current prior sample 𝒖(𝑘) . The way this target
distribution is handled varies slightly across different methods. DCDP performs
MAP estimation by maximizing the log-posterior using gradient-based optimization.
In contrast, PnP-DM and DAPS treat this as a sampling problem and use algorithms
such as Langevin Monte Carlo or Hamiltonian Monte Carlo to draw samples from
Equation (7.6). Although their formulations differ, they can be unified under our
framework by identifying a correspondence between 𝜂𝑘 and the method-specific
hyperparameters used to control the relative weighting between data fidelity and
prior proximity. Specifically, we have:

𝜂𝑘 ≡


𝜎𝒚/
√
𝜇 for DCDP [181],

𝜂𝑘 for PnP-DM (Chapter 6),

𝑟𝑡 for DAPS [341] where 𝑡 ≡ 𝑘 .

This correspondence reveals that all three methods are effectively targeting the same
class of distributions, differing only in their choices of hyperparameters.

Sub-Step 2: Adding Noise The second part of the likelihood step involves adding
Gaussian noise to the intermediate sample obtained in sub-step 1. The intuition
is that Equation (7.6) is equivalent to solving the original inverse problem with a
gaussian prior N(𝒖(𝑘) , 𝜂2

𝑘
𝑰), so ideally the output 𝒗 (𝑘) should contain additional

noise with a standard deviation of 𝜂𝑘 upon 𝒖(𝑘) . However, this may not be the
case in practice, so DCDP and DAPS manually add the expected amount of noise
to maintain a consistent noise level 𝜂𝑘 across iterations, aligning the sample with
the expected input distribution of the subsequent prior denoising step. On the other
hand, PnP-DM strictly follows the Split Gibbs Sampling derivation and thus does
not have this noise adding step. We find in the experiments that this noise-adding
step is helpful empirically when using LDMs as priors.
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Figure 7.2: Visual examples for the super-resolution (16×), gaussian deblur (𝜎 =

6), and box inpainting tasks with matching prompts. The proposed instantiations,
DAPS and DCDP in particular, produce more detailed and perceptually coherent
reconstructions, while the baseline methods suffer from artifacts and a decrease in
quality.

Table 7.1: Quantitative evaluation for the super-resolution (16×), gaussian
deblurring (𝜎 = 6), and box inpainting tasks with matching prompts. Bold:
best; Underline: second best. For each task, we report the mean performance
and standard deviation in PSNR, SSIM, and LPIPS across 14 test images. The
results show that methods based on our unified framework outperform the baseline
approaches, TReg and PSLD, especially on the super-resolution and deblurring
problems. The unified methods maintain strong performance without relying on
additional components, highlighting their efficiency and generality.

Method Super-resolution (16×) Gaussian deblur (𝜎 = 6) Box inpainting
PSNR (↑) SSIM (↑) LPIPS (↓) Data fit (↓) PSNR (↑) SSIM (↑) LPIPS (↓) Data fit (↓) PSNR (↑) SSIM (↑) LPIPS (↓) Data fit (↓)

TReg 20.96 (1.88) 0.48 (0.14) 0.42 (0.05) 1.99 (0.22) 23.81 (2.18) 0.60 (0.14) 0.26 (0.06) 39.44 (5.57) 15.89 (1.37) 0.46 (0.11) 0.32 (0.04) 116.22 (32.73)
PSLD 14.74 (3.33) 0.24 (0.20) 0.53 (0.08) 3.52 (1.76) 20.42 (4.54) 0.41 (0.18) 0.44 (0.10) 79.83 (204.19) 2 19.72 (2.41) 0.83 (0.03) 0.16 (0.02) 88.51 (38.55)

DCDP 22.44 (2.44) 0.55 (0.16) 0.45 (0.07) 1.32 (0.10) 24.98 (2.51) 0.62 (0.15) 0.34 (0.07) 16.74 (1.30) 19.18 (2.34) 0.70 (0.11) 0.27 (0.07) 56.57 (21.59)
PnP-DM 22.04 (2.80) 0.49 (0.19) 0.45 (0.08) 1.76 (0.50) 23.85 (2.43) 0.58 (0.16) 0.39 (0.06) 29.71 (4.73) 18.41 (2.83) 0.66 (0.13) 0.32 (0.06) 69.51 (19.44)
DAPS 22.87 (2.43) 0.47 (0.15) 0.39 (0.08) 1.46 (0.15) 24.33 (2.61) 0.63 (0.15) 0.35 (0.09) 31.74 (2.78) 18.90 (2.57) 0.71 (0.11) 0.27 (0.07) 60.70 (22.39)
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7.3.2 Experiments
7.3.2.1 Setup

Inverse Problems We test our methods on super-resolution, Gaussian deblurring,
and box inpainting. For super-resolution, we consider 16× downsampling. For
deblurring, we use a Gaussian blur kernel of 61×61 pixels and 𝜎 = 6. The box
inpainting is done with a 256×256 pixel mask in the center of each test image.
Each task is repeated with both a matching and non-matching text prompt, and
measurement noise is assumed to be a zero-mean Gaussian with standard deviation
𝜎𝒚 = 0.01.

Datasets and Metrics For validation and testing, we use 512×512 images from
the ImageNet dataset [81]. The output images are evaluated using the peak signal-to-
noise ratio (PSNR), structural similarity index measure (SSIM) [310], and Learned
Perceptual Image Patch Similarity (LPIPS) [349] metrics. Note that the images
are resized to 256 × 256 using bicubic interpolation before being input to LPIPS.
We also report the “data fit” for each task, defined as ∥A(𝒙̂) − 𝒚∥2 where 𝒙̂ is the
reconstructed image, which quantifies how well the reconstruction is consistent with
the measurement 𝒚.

Likelihood Step We perform the likelihood step according to the table in Sec-
tion Section 7.3.1.2. In sub-step 1, sampling is done using Hamiltonian Monte
Carlo (DAPS, PnP-DM) and optimization is performed using the stochastic gradient
descent optimizer with momentum (DCDP). See Table D.1 for the inverse problem-
specific hyperparameters used in each of these. Sub-step 2 varies by method, but
does not need to change for different inverse problems.

Prior Step The prior step is performed with reverse diffusion using StableDiffu-
sion 1.5 [249] with the DPMSolverMultistepScheduler. The number of steps in
the scheduler is set to 𝐾 = 50 in order to match the 𝜂-schedule.

Baselines We compare our methods with PSLD [251] and TReg [160]. The hyper-
parameters for these methods were selected per inverse problem through Bayesian
optimization. TReg is supplied with the same text prompts as the other methods.
PSLD is not given text prompts, as we found this generates significantly worse
results.
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7.3.2.2 Main Results

The quantitative results are shown in Table 7.1. A few qualitative samples for each
method can be found in Figure 7.2. Overall, we see that the methods based on our
unified framework outperform the two baseline approaches, PSLD and TReg, es-
pecially for super-resolution and Gaussian deblurring. Additionally, these methods
avoid the added complexity introduced by external components such as CLIP, which
is required by TReg to function.

We also observe that DAPS, PnP-DM, and DCDP work more robustly than TReg
and PSLD. We see that the images recovered by PSLD tend to contain artifacts
throughout the entire image. Additionally, as mentioned before, we were not able
to use text prompts to guide PSLD, resulting in an inpainting result that does not
contain “two teenagers" as specified in the prompt (in Figure 7.2). TReg performed
well on deblurring, but struggled on box inpainting. Note that the original TReg
paper used a diffusion model fine-tuned specifically for inpainting, while our models
can perform inpainting with the same base StableDiffusion model used for all of the
other tasks.

Within the unified methods, the reconstructions produced by PnP-DM appear blur-
rier and contain fewer details than those from DAPS and DCDP. We hypothesize
that this is because PnP-DM is the only method that does not add noise in sub-step 2
of the likelihood step. Without this noise-adding step, we find that the output of the
likelihood step, 𝒗 (𝑘) , in PnP-DM tends to exhibit less noise than expected. As a re-
sult, the prior step over-denoises the image—removing too many features under the
assumed noise standard deviation—leading to overly smooth and blurry reconstruc-
tions. This issue was less prominent for solving inverse problems with pixel-space
DMs in Chapter 6. However, it becomes more significant in this latent-space setting,
where the decoder in Equation (7.2) introduces a high degree of nonlinearity.

7.3.2.3 Discussions

Through the unified framework, we can naturally control image generation via text
guidance in a consistent manner. For convenience, we use DAPS as a representative
to explore the following three aspects of the proposed approach.

2Note that PSLD failed to converge on two of the test images for the Gaussian deblur test,
resulting in a high data fit term. If these outliers were removed, the data fit term would be 15.92
(1.82).
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Figure 7.3: Visual examples of DAPS on the 16× super-resolution task using dif-
ferent prompts. The examples show that varying descriptions lead to semantically
different yet feasible reconstructions. Despite the severe degradation of the input
measurements, the restored images are of high quality and closely align with the
information from the provided text prompts, while still consistent with the original
measurement.
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Figure 7.4: Visualization of the image generation process of DAPS. The top row
shows outputs from the prior steps (𝒖(𝑘+1) for 𝑘 ∈ {9, 19, 29, 39}), which denoise and
integrate text conditioning to guide the sample toward the target distribution, while
the bottom row shows outputs from the likelihood steps (𝒗 (𝑘) for 𝑘 ∈ {9, 19, 29, 39}),
which enforce data consistency with added noise. Initialization starts from pure
noise, and the two processes alternate to progressively generate a realistic image.
The images are visualized after decoding.

Controllability with Text Guidance We first demonstrate its ability to recon-
struct different image modes from significantly degraded measurements using both
matching and non-matching text prompts, as shown in Figure 7.3. The matching text
prompt was created as a simple description of the image, and the non-matching text
prompt was created by making a slight modification to the matching text prompt.
When there is enough ambiguity in the measurement, DAPS can generate detailed
information that matches each of the given prompts. Sometimes this involves rein-
terpreting what the colors of the image represent: in the second row, the original
image has a single cannoli, but when DAPS is run with a non-matching prompt, it
is changed into two separate macarons.

Different Prompt Specificity We then investigate how the specificity of text
prompts influences the posterior samples generated by DAPS, where the results
are shown in Figure 7.5. With highly specific prompts, such as “two scoops of ice
cream with a cannoli” or “a plate of macarons” (top right), DAPS effectively recon-
structs the corresponding image modes in a controllable manner. As we provide
increasingly generic prompts, such as “a plate of desserts” (middle) or “a plate of
food” (bottom), the generated samples exhibit roughly the same level of diversity
in appearance—i.e., the bottom two panels appear to be equally diverse at first
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Figure 7.5: Effect of prompt specificity on posterior samples generated by
DAPS for 16× super-resolution. We repeatedly generate samples using DAPS
with prompts of varying specificity. As prompts become more generic, the samples
exhibit greater semantic diversity—e.g., several yellow scoops in the “a plate of
food” panel look like mashed potatoes, which are not seen in the more specific
“a plate of desserts” panel. However, the overall diversity in appearance remains
similar—i.e., the bottom two panels appear to be equally diverse at first glance.
Modes with highly specific details, such as “two scoops of ice cream with a cannoli”
or “a plate of macarons” (top right), are only recovered when given the corresponding
prompts. These results underscore the importance of text conditioning in uncovering
rare modes and improving mode coverage in posterior estimation.
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glance—but an increased level of semantic diversity. For example, several yellow
scoops in the “a plate of food” panel look like mashed potatoes, which are not
seen in the more specific “a plate of desserts” panel. However, less likely modes
such as “a plate of macarons” are not recovered by the samples of the more generic
prompts. This highlights the importance of text conditioning in discovering less
likely solutions and improving posterior mode coverage. In addition, samples from
the most generic prompt (“a plate of food”) tend to exhibit structurally incoherent
elements, such as speckled or shredded textures in the brown and yellow objects.
This is consistent with prior observations that conditional DMs often outperform
unconditional ones, as conditioning reduces the complexity of the target distribution
[16]. Hence, beyond improving mode coverage, text conditioning also enhances the
quality of individual samples.

Visualization of Image Generation Process We also visualize the image genera-
tion process in Figure 7.4 where the bottom row contains the inputs to the prior steps
𝒗 (𝑘) and the top row shows the outputs 𝒖(𝑘+1) . The text prompt for this example is
“A dog sitting on the grass.” In the early iterations where 𝜂𝑘 is large, the 𝒗 iterates
are noisier and the prior step is closer to text-conditioned image generation. As 𝜂𝑘
anneals down to 0, the 𝒖-iterates become increasingly similar to the target image.

7.4 Thrust 2: Harnessing Higher Dimension for Video Inverse Problems
Reconstructing high-quality videos from time-varying measurements is a core chal-
lenge in many scientific domains, such as black hole video reconstruction [92] and
dynamic magnetic resonance imaging (MRI) [110]. In these applications, the ac-
curacy of the recovered spatiotemporal features significantly affects downstream
scientific analysis or medical interpretation. These problems are inherently difficult
due to the high dimensionality of the underlying video and the severe loss of both
spatial and temporal information during acquisition, necessitating a prior on both
the spatial and temporal dimensions for meaningful recovery. However, the investi-
gation in Chapter 6 was limited to image DMs. It remains an open question how to
efficiently obtain DMs for videos and use them for solving video inverse problems
(VIPs).

In this section, we introduce an instantiation of Algorithm 2 for solving high-
dimensional scientific VIPs with SpatioTemporal video diffusion Priors (STeP).
Existing methods for VIPs rely on extracting temporal consistency directly from
measurements, which limits their effectiveness on scientific tasks with high spa-
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tiotemporal uncertainty. We instead learn a spatiotemporal diffusion prior for
videos. To do so efficiently, we are inspired by [303] to first train an image la-
tent diffusion model with a 2D U-Net and then turn it into a spatiotemporal video
diffusion model by adding a zero-initialized temporal module to each 2D convolution
module in the U-Net. This enables us to fine-tune a spatiotemporal diffusion prior
from a pre-trained IDM in a data- and time-efficient manner, using only hundreds
to thousands of videos and a few hours of training on a single NVIDIA A100 GPU.
STeP enforces learned priors over both spatial and temporal dimensions and does
not rely on heuristics to ensure temporal consistency, making it well-suited for tasks
with high spatiotemporal uncertainty. Due to its plug-and-play nature, STeP can
handle general inverse problems with nonlinear forward models without the need
for task-specific design or temporal heuristics to enforce temporal consistency.

We demonstrate the effectiveness of STeP on two challenging scientific video inverse
problems: black hole video reconstruction (previewed in Figure 7.6) and dynamic
MRI, where the underlying targets exhibit significantly different spatiotemporal
characteristics. As Figure 7.6 illustrates, STeP not only achieves state-of-the-art
results with improved spatial and temporal consistency but also effectively captures
the multi-modal nature of highly ill-posed problems, recovering diverse plausible
solutions from the posterior distribution. Notably, our approach achieves substantial
improvements in both spatial and temporal consistency, significantly outperforming
baselines across most evaluation metrics. For example, our method demonstrates
1.57 dB and 2.38 dB improvements in PSNR on black hole video reconstruction
and dynamic MRI, respectively. More importantly, for the challenging black hole
video reconstruction, while baseline methods have difficulty accurately recovering
temporal dynamics, our method demonstrates spatiotemporal structure that closely
aligns with ground truth video (Figure 7.9), under extremely sparse measurement
conditions.

The appendix for this section is Appendix D.2. The code for the work presented in
this section is available at https://github.com/zhangbingliang2019/STeP.

7.4.1 Background
Existing Approaches for Video Inverse Problems Existing approaches for video
inverse problems have primarily focused on restoration and editing problems, such
as super-resolution and JPEG artifact removal, for natural videos [53, 77, 82, 168,
169, 365]. Since it is computationally expensive to obtain a well-trained video

https://github.com/zhangbingliang2019/STeP
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Figure 7.6: An overview of our proposed framework with spatiotemporal dif-
fusion priors, STeP, for scientific video inverse problems. Left: STeP combines
the physics model of the target problem with a spatiotemporal diffusion prior that
directly characterizes the video distribution. We show that such a prior can be
efficiently obtained by fine-tuning a pre-trained image diffusion model with limited
video data. Right: STeP can generate diverse solutions to a black hole video recon-
struction problem that exhibit equally good fidelity with the measurements.

diffusion model (VDM) for natural videos, existing methods instead rely on an
image diffusion model (IDM) to process each video frame and propose various
techniques to enforce temporal consistency. For example, the batch-consistent
sampling (BCS) technique fixes the injected noise across all video frames [168,
169]. Another common approach, which we refer to as noise warping, first extracts
optical flow from measurements and uses it to warp the injected noise across all
video frames [53, 77, 82, 334]. It is observed empirically that the dynamic of the
injected noise translates into that of the generated video. These methods work well
in restoration problems where the dynamic is mostly preserved in the measurements
or video editing tasks where the dynamic is given. However, these methods face
challenges when dealing with more challenging problems in scientific domains
because the measurements may belong to a different domain that is nontrivial to
invert, or substantial spatiotemporal information may be lost in the measurement
process.

Plug-and-Play Diffusion Priors for Video Inverse Problems As reviewed in
Section 5.3.2, plug-and-play diffusion priors (PnPDP) constitute a family of methods
that leverage diffusion models as priors for solving inverse problems. A major
advantage of PnPDP is its ability to handle inverse problems in a general way
without task-specific design. Video inverse problems fit into the PnPDP framework
in principle, but existing PnPDP methods have mainly focused on the static image
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Figure 7.7: A schematic comparison between prior works (top) and our
STeP framework (bottom) for video inverse problems. The bold texts high-
light the key differences between them. While prior works use an image diffusion
model and enforce temporal consistency using simple heuristics or warping noise
with optical flow, we directly learn a spatiotemporal diffusion prior.

setting. The main reason is that characterizing the prior distribution 𝑝(𝒙0) for videos
is challenging due to their high dimensionality and a potentially limited number of
samples for training. Prior work [167] has explored the applicability of PnPDP to an
optical scattering problem with a pixel-space video diffusion prior. Video diffusion
models are commonly believed to be hard to train due to the computational overhead
of 3D modules and the requirement of a large video dataset [24, 25, 133, 350, 358].
Many recent methods tend to solve video modeling by fine-tuning from a pre-trained
IDM with a video dataset [24, 25, 317]. In the following sections, we propose a
recipe for efficiently obtaining spatiotemporal diffusion prior and solving VIPs with
an instantiation of Algorithm 2.

7.4.2 Instantiation of Algorithm 2 with Spatiotemporal Diffusion Priors
Instead of taking a per-frame processing approach using IDMs, we propose to
directly learn the video distribution 𝑝(𝒙0) from data (Section 7.4.2.1) and draw
samples from the posterior distribution 𝑝(𝒙0 | 𝒚) ∝ 𝑝(𝒚 | 𝒙0)𝑝(𝒙0) via an in-
stantiation of Algorithm 2 (Section 7.4.2.2). Figure 7.7 illustrates the conceptual
difference between STeP and the prior approaches on video inverse problems. De-
signed mainly for restoration problems on natural videos, prior works rely on IDMs
to incorporate spatial prior and enforce temporal consistency by injecting correlated
noise in the diffusion process. STeP instead adopts a whole-video formulation and
simultaneously handles spatial and temporal dimensions within a PnPDP frame-
work. This enables us to deal with more general problems in which the extraction
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Figure 7.8: Architecture of the spatiotemporal module. Given a pre-trained
image diffusion U-Net, we add a zero-initialized temporal module with an ON/OFF
switch to each 2D spatial module and initialize the additive weight 𝛼 to zero. Thus,
it will have no effect at the start of fine-tuning and gradually learn from the video
training data. The number of frames, height, and width are denoted by 𝑛 𝑓 , 𝑛ℎ,
and 𝑛𝑤, respectively. The numbers of channels for input features ( 𝑓in) and output
features ( 𝑓out) are denoted by 𝑛in and 𝑛out, respectively.

of temporal information directly from measurements is hard.

7.4.2.1 Efficient Training of Spatiotemporal Diffusion Priors

We propose to obtain spatiotemporal diffusion priors for scientific video inverse
problems efficiently via the following three steps.

Step 1: Training a latent diffusion model (LDM) as an image prior We start
by training a VAE [163] using the standard ℓ1 reconstruction loss with a scaled KL
divergence loss on an image dataset. The KL divergence scaling factor is set to
much less than 1 to prevent excessive regularization of the latent space. This allows
us to obtain an image encoder E and decoder D. Once they are trained, we fix
their parameters and train a 2D U-Net model 𝒔𝜽 (𝒛𝑡 ;𝜎𝑡) using the standard denoising
score matching loss [292]. Despite recent progress in 3D spatiotemporal encoders
and decoders [55, 319, 332], we opt for a 2D spatial encoder and decoder to process
each frame independently. This choice is due to efficiency considerations, as the
decoder D will be called repeatedly during inference.

Step 2: Turning an image prior into a spatiotemporal prior Upon obtaining an
LDM as an image prior, we use a spatiotemporal U-Net architecture to parameterize
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the time-dependent video score function, i.e., 𝒔𝜽 (𝒛𝑡 ;𝜎𝑡) ≈ ∇𝒛𝑡 log 𝑝𝑡 (𝒛𝑡 ;𝜎𝑡), lever-
aging recent advancements in video generation [133, 303]. The key component in
the architecture is the spatiotemporal module for 3D modeling, as illustrated in Fig-
ure 7.8. Given a pre-trained IDM with a 2D U-Net, we introduce a zero-initialized
temporal module for each 2D spatial module within the U-Net. Specifically, for an
input feature 𝑓in, let 𝑓out be the output of the spatiotemporal module, with 𝑓spat and
𝑓temp representing the outputs of the spatial and temporal branches, respectively.
These features are combined using an 𝛼-blending mechanism:

𝑓out = (1 − 𝛼) · 𝑓spat + 𝛼 · 𝑓temp, (7.7)

where 𝛼 ∈ R is a learnable parameter initialized as 0 in each spatiotemporal module.
This design allows us to inherit the weights of the 2D spatial modules from the pre-
trained IDM, significantly reducing training time. Additionally, by factorizing the
3D module into a 2D spatial module and a 1D temporal module, the spatiotemporal
U-Net has marginal computational overhead compared to the original 2D U-Net,
striking a good balance between model capacity and efficiency.

Step 3: Image-video joint fine-tuning To further improve performance and be
compatible with both image and video inputs, we introduce an ON/OFF switch
signal in the spatiotemporal module. When the switch is set to OFF (indicating
image inputs), the temporal module is disabled (or equivalently 𝛼 = 0). This
ensures that 𝑓out = 𝑓spat and reduces the spatiotemporal module to the original 2D
spatial module, which processes each frame independently. During training, we
initialize the weights of the spatial modules based on a pre-trained image diffusion
model and fine-tune all parameters of the spatiotemporal U-Net using both image
and video data. During fine-tuning, the model receives video data with probability
𝑝joint ∈ [0, 1] and receives images (with switch set to OFF accordingly) with
probability 1 − 𝑝joint. The probability 𝑝joint is a tunable hyperparameter controlling
the proportion of real video data in training. Pseudo-video regularization helps
the spatiotemporal U-Net retain the spatial capabilities of the initialized spatial U-
Net. This strategy, proven effective in previous work [303], stabilizes training and
prevents overfitting to the video dataset.

7.4.2.2 Likelihood and Prior Steps

As shown in Section 7.3.1, DCDP [181], PnP-DM (Chapter 6), and DAPS [341]
share the same prior step and have slight differences in the likelihood step. We
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find that STeP works the best with the DAPS instantiation due to its better compat-
ibility with latent diffusion models. See the last paragraph of Section 7.3.2.2 for
a discussion on this. For the likelihood step (Line 2 of Algorithm 2), STeP first
samples

𝒗̃ (𝑘) ∼ exp

(
− 1

2𝜎2
𝒚

∥A(D(𝒗)) − 𝒚∥22 −
1
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2

2

)
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where 𝑍 is a normalizing constant, and then samples

𝒗 (𝑘) ∼ N(𝒗̃ (𝑘) , 𝜂2
𝑘 𝑰). (7.9)

For the prior step (Line 3 of Algorithm 2), STeP samples 𝒖(𝑘+1) from the following
distribution

𝒖(𝑘+1) ∼ exp
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2

)
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where 𝑍 is a normalizing constant. As shown in Section 6.3, this sampling task
is equivalent to solving a Gaussian denoising problem and can be implemented
rigorously using the EDM framework given a pre-trained DM for 𝑝(𝒖) [151]. The
pseudocode and more technical details of the STeP with DAPS are provided in
Appendix D.2.1.

7.4.3 Experiments
7.4.3.1 Tasks and Setup

We consider two scientific video inverse problems: black hole video reconstruc-
tion [91] and dynamic MRI [110]. Although both are scientific imaging tasks, they
have significantly different characteristics. Black hole video reconstruction involves
simple spatial structures (usually a ring structure) but complex temporal dynamics
that obey certain physical constraints. In contrast, dynamic MRI requires higher
spatial fidelity with relatively simpler temporal dynamics, such as periodic heartbeat
motion.

Black Hole Video Reconstruction We consider the problem of observing the
Sagittarius A* black hole using the Event Horizon Telescope (EHT) array in
2017 [91]. The measurements consist of sparse vectors with a dimensionality of
1,856 derived from an underlying black hole video comprising 64 frames, each with
a spatial resolution of 256×256 pixels, capturing the black hole’s dynamics during
the 100-minute observation period. These measurements are given by calculating
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the closure quantities based on the complex visibilities (a detailed description of the
problem is available in Appendix D.2.2.1). For the training dataset, we employ the
General Relativistic MagnetoHydroDynamic (GRMHD) simulations [316] of Sagit-
tarius A*, covering various black hole models and observational conditions. The
dataset comprises 648 simulated black hole videos and 50,000 black hole images.

Dynamic MRI We consider a standard compressed sensing MRI setup with two
acceleration scenarios: 8× acceleration with 12 auto-calibration signal (ACS) lines
and 6× acceleration with 24 ACS lines. Further details are provided in Ap-
pendix D.2.2.2. We utilize the publicly available cardiac cine MRI dataset from
the CMRxRecon Challenge 2023 [298] for training. This dataset includes 3,324
cardiac MRI sequences, each containing fully sampled, ECG-triggered 𝑘-space data
from 300 patients, featuring various canonical cardiac imaging views. Each se-
quence is processed into a video consisting of 12 frames with a spatial resolution of
192×192 pixels. We construct the image dataset by extracting the individual frames
from the videos, resulting in 39,888 images in total.

7.4.3.2 Baselines and Our Method

Recall from Section 7.4.2 that our method leverages a learned spatiotemporal prior to
avoid explicitly estimating temporal dynamics from measurements at inference time.
To evaluate the effectiveness of this strategy, we compare our method to existing
IDM-based approaches. Based on how temporal information is incorporated, we
categorize these baseline methods into two groups as follows.

Group 1: Simple Heuristics We consider two baselines: Batch Independent
Sampling (BIS) and Batch Consistent Sampling (BCS) [168]. BIS reconstructs
each frame independently, while BCS implicitly incorporates a static temporal prior
to enforce consistency across frames.

Group 2: Noise Warping We include another line of baselines:
∫

-noise [53,
82], and GP-Warp [77]. These baselines enforce temporal consistency by warping
the noise using optical flow estimated directly from the measurements. Besides,
we include more conventional warping strategies such as Bilinear, Bicubic, Nearest
from work [53]. For the black hole video reconstruction task, a direct inversion from
the sparse measurement vector is infeasible. Thus, to demonstrate the upper-bound
performance of these methods, we leverage the ground truth video as an oracle to
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derive the optical flow. For the dynamic MRI task, we utilize a naïve inversion
obtained via inverse Fourier transformation to estimate the optical flow. We follow
the methodology of [53], leveraging a pre-trained model [278] to extract optical
flow.

Ours: Two Variants of STeP We evaluate two variants differentiated by their
spatiotemporal priors: STeP (video-only), which uses a spatiotemporal prior trained
exclusively on video data, and STeP (image-video joint), which initializes with a pre-
trained IDM and undergoes joint image-video fine-tuning. We follow the procedure
in Appendix D.2.3 to train our priors until convergence. The detailed training
hyperparameters are summarized in Table D.3. To make a fair comparison, we run
all the baselines with DAPS [341]. The detailed implementation of each baseline
can be found at Appendix D.2.1 and Appendix D.2.2.3.

7.4.3.3 Metrics

We evaluate our results on three aspects: (1) spatial similarity, (2) temporal consis-
tency, and (3) measurement data fit.

Spatial Spatial similarity is assessed by calculating Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity Index Measure (SSIM) [310], and Learned Perceptual
Image Patch Similarity (LPIPS) [349]. Metrics are computed per frame and averaged
across all frames. We utilize implementations from piq [153], normalizing images
to the range [0, 1]. For grayscale images, frames are replicated across three channels
before computing LPIPS scores.

Temporal Temporal consistency is quantified using delta-based PSNR (d-PSNR)
and delta-based SSIM (d-SSIM), measuring the similarity of normalized differences
between consecutive frames, with results averaged over all frames. Additionally, we
compute the Fréchet Video Distance (FVD) [287] between the reconstructed videos
and our test dataset to evaluate distributional similarity.

Data Fit Lastly, we report measurement data fit using task-specific metrics. For
the black hole video reconstruction task, we employ the unified average 𝝌̃2 statistic
(defined in Equation (D.14)), where values closer to 1 indicate better data fidelity.
For dynamic MRI, we measure data misfit by computing the mean squared error in
measurement space.
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Table 7.2: Quantitative results on black hole video reconstruction and dynamic
MRI. We compare our method against baselines by reporting the mean and standard
deviation (shown in parentheses) of selected evaluation metrics computed over
10 test videos (FVD is reported without standard deviation since it evaluates the
set of 10 videos collectively). The results clearly demonstrate that by leveraging
the spatiotemporal prior, STeP consistently achieves improvements in both spatial
quality and temporal consistency relative to baseline methods.

Tasks Methods PSNR (↑) SSIM (↑) LPIPS (↓) d-PSNR (↑) d-SSIM (↑) FVD (↓) Data Misfit (↓)

Black hole

BIS [168] 23.79 (1.41) 0.718 (0.047) 0.179 (0.031) 29.26 (1.51) 0.938 (0.015) 1429.42 1.719 (1.277)
BCS [168] 27.66 (2.04) 0.816 (0.053) 0.124 (0.040) 41.71 (1.99) 0.979 (0.008) 564.43 1.426 (0.784)
Bilinear [53] 26.11 (2.05) 0.718 (0.067) 0.151 (0.044) 33.14 (2.33) 0.958 (0.013) 1335.95 1.384 (0.742)
Bicubic [53] 25.68 (1.88) 0.730 (0.058) 0.163 (0.041) 31.70 (1.88) 0.952 (0.015) 1521.14 1.736 (1.259)
Nearest [53] 25.29 (1.80) 0.754 (0.059) 0.164 (0.042) 30.76 (1.75) 0.943 (0.017) 1171.07 1.691 (1.020)∫

-noise [53, 82] 24.90 (1.52) 0.745 (0.058) 0.163 (0.034) 31.87 (1.93) 0.945 (0.017) 1253.81 1.655 (1.020)
GP-Warp [77] 23.98 (1.28) 0.721 (0.043) 0.176 (0.029) 29.21 (1.24) 0.938 (0.014) 1395.15 1.721 (1.225)

STeP (video only) 28.71 (1.81) 0.802 (0.079) 0.120 (0.041) 41.41 (2.39) 0.975 (0.011) 238.36 1.124 (0.136)
STeP (image-video joint) 30.28 (2.71) 0.865 (0.063) 0.095 (0.039) 42.09 (2.63) 0.976 (0.011) 170.67 1.114 (0.154)

MRI (8×)

BIS [168] 35.04 (0.76) 0.889 (0.016) 0.100 (0.012) 38.91 (1.13) 0.918 (0.012) 82.30 9.203 (0.698)
BCS [168] 35.43 (0.97) 0.893 (0.016) 0.099 (0.012) 39.91 (1.09) 0.931 (0.011) 95.68 9.225 (0.693)
Bilinear [53] 35.30 (0.96) 0.896 (0.016) 0.098 (0.012) 39.87 (1.14) 0.931 (0.011) 87.90 9.157 (0.670)
Bicubic [53] 35.31 (0.91) 0.896 (0.016) 0.098 (0.011) 40.11 (1.10) 0.934 (0.010) 108.90 9.189 (0.653)
Nearest [53] 34.87 (0.90) 0.895 (0.018) 0.099 (0.013) 40.09 (1.14) 0.933 (0.011) 108.57 9.188 (0.656)∫

-noise [53, 82] 35.55 (1.03) 0.892 (0.020) 0.099 (0.014) 39.77 (1.36) 0.929 (0.015) 89.59 9.208 (0.693)
GP-Warp [77] 34.49 (0.65) 0.886 (0.016) 0.102 (0.012) 38.71 (1.14) 0.916 (0.013) 92.19 9.209 (0.659)

STeP (video only) 37.00 (1.46) 0.927 (0.019) 0.086 (0.013) 43.50 (2.70) 0.963 (0.015) 75.27 8.817(0.650)
STeP (image-video joint) 39.38 (1.16) 0.951 (0.009) 0.078 (0.011) 44.86 (1.92) 0.974 (0.006) 78.60 8.753 (0.603)

7.4.3.4 Main Results

We summarize the main results as the following four observations.

STeP reconstructs videos with better spatial and temporal coherence. We
provide quantitative results in Table 7.2 and visual comparisons in Figure 7.9 and
Figure 7.10. STeP outperforms baselines in overall video quality across most
metrics and generates video reconstructions with significantly better spatiotemporal
coherence. Figure 7.9 visualizes an 𝑥-𝑡 slice, representing the temporal evolution
(horizontal axis) of a spatial slice (marked by the cyan vertical line). We find that
the noise warping baselines fail to constrain temporal consistency, as indicated by
the fluctuating ring diameters in the 𝑥-𝑡 slices, while BCS provides almost static
reconstructions. In contrast, STeP exhibits closer alignment with the ground truth
and improved temporal consistency. This is further illustrated by the averaged
optical flow visualization, highlighting that STeP faithfully captures the underlying
temporal dynamic. Similar trends can be observed in Figure 7.10.

Noise warping is less effective in scientific problems. We observe that the per-
formance of noise-warping strategies in challenging scientific VIPs does not cor-
relate with noise-warping accuracy. For example, although the

∫
-noise approach

has demonstrated superior noise-warping capability given optical flow (as shown
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Figure 7.9: Visual examples of STeP (bottom left) and baselines for black hole
video reconstruction. To facilitate analysis of the reconstructed spatiotemporal
structures, we present results in three ways: (1) a single frame to illustrate spatial
fidelity, (2) an 𝑥-𝑡 slice depicting temporal evolution of a vertical line to evaluate
temporal consistency, and (3) the averaged optical flow visualized using the standard
color scheme from [278] to assess spatiotemporal coherence jointly. Compared
to baselines, STeP exhibits clearer alignment with ground truth videos across all
aspects.
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Figure 7.10: Visual examples of STeP (bottom left) and baselines for dynamic
MRI. We visualize a representative frame along with two zoomed-in regions for each
method to better illustrate spatial fidelity. Benefiting from its robust spatiotemporal
prior, STeP provide reconstructions with fewer structural artifacts and temporal
fluctuations, as indicated by its averaged optical flow aligning more closely with
the ground truth. This demonstrates the effectiveness of our learned spatiotemporal
prior in enhancing both spatial and temporal consistency.

in [53]), it underperforms simpler strategies such as Bilinear and Bicubic interpola-
tion in challenging VIPs. This discrepancy arises primarily due to: (1) inaccuracies
in the optical flow, and (2) the inherent difficulty of effectively manipulating noise
in latent space through pixel space optical-flow-guided warping. Consequently,
methods relying on precise optical flow and carefully designed warping strategies
struggle with tasks requiring high temporal consistency, such as black hole video re-
construction. In contrast, our approach employs a data-driven spatiotemporal prior
learned from training data, effectively overcoming these limitations and enabling
broader applicability to scientific tasks with significant temporal uncertainty.
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Figure 7.11: Detailed comparison on black hole video reconstruction and dy-
namic MRI. Left: We compare STeP (joint) and the BCS baseline [168] by visu-
alizing the averaged delta frames (difference images) over an expanding window.
The delta frames given by STeP (joint) better align with the ground truth, indicating
better temporal consistency. Right: We also compare the spatial fidelity between
STeP (joint) and its variant STeP (video-only). Trained on both images and videos,
STeP (joint) provide reconstructions with less spatial hallucinations compared to
STeP (video-only).

(a) Black hole imaging (b) Dynamic MRI
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Figure 7.12: Consistent improvement in image-video joint fine-tuning. We
evaluate intermediate checkpoints of (a) black hole video reconstruction and (b)
dynamic MRI (8×). Spatial similarity (measured by PSNR), temporal consistency
(measured by d-PSNR), and measurement data fit (measured by data misfit) all show
steady improvement.

Joint fine-tuning benefits both spatial and temporal consistency. As shown
in Table 7.2, STeP with an image-video jointly fine-tuned spatiotemporal prior
outperforms both IDM-based baselines and STeP trained video data only. To
further illustrate these improvements, we provide a detailed visual comparison in
Figure 7.11. In Figure 7.11 (a), we analyze the temporal dynamics using averaged
delta frames, which visualize the averaged differences between consecutive frames
over a window. We observe that delta frames from BCS remain largely unchanged
as the temporal window expands, indicating limited temporal variation. In contrast,
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STeP (joint) effectively captures more complex and coherent temporal dynamics.
In Figure 7.11 (b), we compare STeP (joint) and STeP (video only) with a focus
on spatial fidelity. Although their reconstructions have similar average optical flow,
STeP (joint) have fewer artifacts and hallucinations as pointed out by the arrows.
Such an improvement highlights the value of using image data in both the pre-
training and fine-tuning stages.

STeP provides diverse and equally plausible solutions. Due to the highly ill-
posed and extremely sparse measurements in black hole video reconstruction,
STeP can produce multiple semantically diverse reconstructions, each visually plau-
sible and consistent with measurement data. Since the true posterior distribution is
unknown, directly quantifying mode coverage is infeasible. Instead, we draw 100
i.i.d. samples and cluster them based on spatial appearance and temporal dynamics.
As illustrated in Figure 7.6, we identify three distinct modes with nearly identical
data fidelity (see Table D.5 exact data misfit values). One recovered mode aligns
closely with the ground truth, while the others differ in rotation direction or spatial
structure. This demonstrates that our method not only accurately reconstructs the
underlying ground truth but also discovers additional plausible solutions.

7.4.3.5 Ablation on Image-Video Joint Finetuning

To show the effectiveness of the proposed image-video joint finetuning technique,
we show the quantitative results of using checkpoints of the spatiotemporal U-Net
that were fine-tuned for different numbers of epochs. We assess performance using
PSNR (blue curve), d-PSNR (red curve), and a data-fitting metric (green curve),
as shown in Figure 7.12. Since the spatiotemporal U-Net is initialized from a
pre-trained image diffusion model, these curves indicate steady improvement in
spatiotemporal consistency and data fitting as the prior is fine-tuned.

7.4.3.6 Discussion on the Choice of Inference Algorithm

In this section, we use DAPS rather than PnP-DM as the base algorithm for in-
ference due to the former’s better compatibility with latent DMs (as discussed
in Section 7.3.2.2 for text-conditioned DMs). Here we deepen the investigation by
running STeP with PnP-DM as the inference algorithm and compare it to the DAPS-
based variant. As shown in Figure 7.13, DAPS leads to significantly better visual
quality in terms of both improved spatial consistency in individual frames (top row)
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Figure 7.13: Comparison between running STeP with DAPS versus PnP-DM as
the inference backbone. The DAPS version of STeP exhibits significantly better
spatial consistency (shown by the first frames in the first row) and temporal consis-
tency (shown by the 𝑥-𝑡 slice in the second row). This comparison illustrates the
better compatibility of DAPS with latent video diffusion models than PnP-DM.

and enhanced temporal coherence in the 𝑥–𝑡 slices (bottom row). Quantitatively,
DAPS achieves higher PSNR in both the black hole video (30.47 dB vs. 28.41 dB)
and dynamic MRI reconstruction (38.57 dB vs. 29.72 dB), highlighting its superior
compatibility with latent video diffusion models over PnP-DM.

7.5 Thrust 3: Accommodating Black-Box Forward Models
Many inverse problems in physical sciences involve partial differential equations
(PDEs), such as weather forecasting [313], geophysics [192], and fluid reconstruc-
tion [94]. The forward models in these problems may involve complicated numerical
algorithms where reliable computation of derivatives is challenging or even infeasi-
ble. These problems are beyond the scope of PnP-DM in Chapter 6, which assumes
the differentiability of A. In this section, we introduce Blade, an instantiation of
Algorithm 2 for derivative-free, ensemble-based posterior estimation. We provide a
convergence analysis of Blade and provide explicit bounds on the sampling error.
We also show the performance of Blade on a challenging nonlinear fluid dynamics
problem. Blade achieves both higher predictive accuracy and better probabilis-
tic calibration compared to competing methods. The appendix for this section is
Appendix D.3.

7.5.1 Instantiation of Algorithm 2 with Derivative-Free Likelihood Step
The name Blade is derived from the key components of the algorithm: Bayesian
inversion, Linearization, Alternating updates, Derivative-free, and Ensemble. We
refer readers to Appendix D.3.2 for a brief review of the relevant background. In
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Algorithm 3 Blade for Derivative-Free Diffusion-Based Posterior Estimation
Require: initial ensemble 𝑿 (0) = {𝒙 ( 𝑗) ∈ R𝑛}𝐽

𝑗=1, number of iterations 𝐾 , {𝜂𝑘 }𝐾−1
𝑘=0 ,

likelihood potential 𝑓 ( · ; 𝒚) with measurements 𝒚 ∈ R𝑚, pre-trained diffusion
model 𝒔𝜽 .

1: for 𝑘 = 0, ..., 𝐾 − 1 do
2: Z(𝑘) ← LikelihoodStep(𝑿 (𝑘) , 𝒚, 𝜂𝑘 ) ⊲ Algorithm 8 (Section 7.5.1.1)
3: 𝑿 (𝑘+1) ← PriorStep(Z(𝑘) , 𝒔𝜽 , 𝜂𝑘 ) ⊲ Algorithm 9 (Section 7.5.1.2)
4: end for
5: return 𝑿 (𝐾)

a nutshell, Blade iteratively updates an ensemble of interacting particles by alter-
nating between a derivative-free likelihood sampling step and a denoising diffusion
prior step. We provide pseudocode for the complete sampling algorithm in Algo-
rithm 3. Section 7.5.1.1 details the derivative-free likelihood step achieved through
statistical linearization using an ensemble of particles. Section 7.5.1.2 describes the
prior step with a denoising DM. At the same time, the noise schedule 𝜂𝑘 is gradually
annealed towards zero. Further details are deferred to Appendix D.3.3.

7.5.1.1 Derivative-Free Likelihood Step via Statistical Linearization

Let 𝑿 (𝑘) = {𝒙 ( 𝑗)}𝐽
𝑗=1 denote the ensemble of 𝐽 particles at 𝑘-th alternating iteration

of the SGS framework. Recall from Chapter 6 that, in the likelihood step, we
aim to sample 𝒛( 𝑗) from 𝜋𝑍 |𝑋=𝒙

( 𝑗 ) (𝒛) ∝ exp(− 𝑓 (𝒛; 𝒚) − 1
2𝜂2 ∥𝒛 − 𝒙 ( 𝑗) ∥22) for each

𝑗 ∈ {1, . . . , 𝐽} where 𝑓 (𝒛; 𝒚) = 1
2𝜎2

𝒚
∥A(𝒛) − 𝒚∥22 for inverse problems of form

Equation (5.1) assuming that 𝒏 ∼ N(0, 𝜎2
𝒚 𝑰).

Statistical Linearization Following [111, 143], we consider the covariance-
preconditioned Langevin dynamics with the large particle limit

d𝒛( 𝑗)𝑡 = −𝐶𝑡∇
(
𝑓 (𝒛( 𝑗)𝑡 ; 𝒚) + 1

2𝜂2 ∥𝒛
( 𝑗)
𝑡 − 𝒙 ( 𝑗) ∥22

)
d𝑡 +

√︁
2𝐶𝑡d𝒘𝑡 , (7.11)

where 𝐶𝑡 := E𝑞𝑡 [(𝒛𝑡 − 𝒛𝑡) (𝒛𝑡 − 𝒛𝑡)𝑇 ] with 𝒛𝑡 := E𝑞𝑡 [𝒛𝑡] and 𝑞𝑡 is the particle
distribution. Since the gradient of 𝑓 with respect to 𝑧 involves the gradient of A
with respect to 𝑧, we approximate the gradient of 𝑓 using the statistical linearization
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technique, i.e.,

∇ 𝑓 (𝒛( 𝑗)𝑡 ; 𝒚) = 1
𝜎2
𝒚

(𝐷𝑇A)(A(𝒛( 𝑗)𝑡 ) − 𝒚)

≈ 1
𝜎2
𝒚

𝐶−1
𝑡 E𝑞𝑡 [ 𝒛̃𝑡 (A(𝒛𝑡) − E𝑞𝑡A(𝒛𝑡))𝑇 ] (A(𝒛

( 𝑗)
𝑡 ) − 𝒚). (7.12)

where 𝐷𝑇A denotes the adjoint of the Jacobian of A and 𝒛̃𝑡 = 𝒛𝑡 − 𝒛𝑡 . The
approximation is given by substituting 𝐷𝑇A with the adjoint (i.e., transpose) of

𝑨𝑡 := E𝑞𝑡 [(A(𝒛𝑡) − E𝑞𝑡A(𝒛𝑡)) (𝒛𝑡 − 𝒛𝑡)𝑇 ]𝐶−1
𝑡 , (7.13)

which is the least-square linear approximation of A. Substituting Equation (7.12)
into Equation (7.11) gives

d𝒛( 𝑗)𝑡 = −
[

1
𝜎2
𝒚

E𝑞𝑡 [ 𝒛̃𝑡 (A(𝒛𝑡) − E𝑞𝑡A(𝒛𝑡))𝑇 ] (A(𝒛
( 𝑗)
𝑡 ) − 𝒚) + 1

𝜂2𝐶𝑡 (𝒛
( 𝑗)
𝑡 − 𝒙 ( 𝑗))

]
d𝑡

+
√︁

2𝐶𝑡d𝒘𝑡 . (7.14)

Thanks to the covariance preconditioner, the dynamics in Equation (7.14) avoid
computing 𝐶−1

𝑡 in 𝑨𝑡 . Further, Equation (7.14) eliminates the reliance on the
forward model’s derivatives, allowing us to run the algorithm with only black-box
access to A.

Practical Implementation We then implement the dynamics in Equation (7.14)
with a finite-particle system in practice and ensure that the invariant measure of
the finite-particle system remains the same as that of Equation (7.14). As shown
in [226], the covariance-preconditioned stochastic process requires an additional
correction term as the diffusion term depends on the evolving particle. For the 𝑗-th
particle, we add a correction term to the drift of Equation (7.14), yielding

d𝒛( 𝑗)𝑡 = −
[

1
𝜎2
𝒚

𝐶𝑡𝑨
𝑇
𝑡 (A(𝒛

( 𝑗)
𝑡 ) − 𝒚) + 1

𝜂2𝐶𝑡 (𝒛
( 𝑗)
𝑡 − 𝒙 ( 𝑗))

]
d𝑡 +

√︁
2𝐶𝑡d𝒘𝑡

+ 𝑛 + 1
𝐽
(𝒛( 𝑗)𝑡 − 𝒛𝑡)d𝑡 (7.15)

where 𝑛 is the dimensionality of 𝒛 and 𝐽 is the ensemble size. Lemma D.3.7
verifies that Equation (7.15) has an invariant measure that is identical to that of
Equation (7.14). Intuitively, the correction term 𝑛+1

𝐽
(𝒛( 𝑗)𝑡 − 𝒛𝑡) pushes the particles

away from each other and vanishes when 𝐽 ≫ 𝑛. For the computation of
√
𝐶𝑡 , we

use the construction proposed in [112] where
√
𝐶𝑡 =

1√
𝐽

[
𝒛(1)𝑡 − 𝒛𝑡 , . . . , 𝒛

(𝐽)
𝑡 − 𝒛𝑡

]
∈

R𝑛×𝐽 , which avoids explicit matrix square roots. Further implementation details can
be found in Appendix D.3.3.1, and the pseudocode is provided in Algorithm 8.
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7.5.1.2 Ensemble-Based Prior Step via Denoising Diffusion

Let 𝒁(𝑘) = 𝒛( 𝑗)
𝐽

𝑗=1 denote the ensemble of 𝐽 particles at the 𝑘-th alternating iteration
of the SGS framework. Recall from Chapter 6 that, in the prior step, our goal
is to sample 𝒙 ( 𝑗) from 𝜋𝑋 |𝑍=𝒛

( 𝑗 ) (𝒙) ∝ exp
(
−𝑔(𝒙) − 1

2𝜂2 ∥𝒙 − 𝒛( 𝑗) ∥22
)

for each 𝑗 ∈
1, . . . , 𝐽, where 𝑔(𝒙) := − log 𝑝(𝒙) denotes the potential function of the prior
distribution. This corresponds to applying the prior step of PnP-DM independently
to each particle in 𝒁(𝑘)3, and we therefore refer the readers to Section 6.3.2 for
details. Further implementation details are provided in Appendix D.3.3.2 and the
pseudocode is available in Algorithm 9.

7.5.2 Convergence Analysis
In this sub-section, we analyze the non-asymptotic behavior of the proposed algo-
rithm through the lens of its continuous-time and large particle limit for the ease of
understanding. In practice, the proposed algorithm incurs two bias terms: 𝜖model

from the statistical linearization and 𝜖score from the learned prior. By extending the
existing interpolation proof techniques from Chapter 6, our analysis also quantifies
how these errors affect the deviation from the reference process over 𝐾 iterations.
The technical definitions and notations are collected in Appendix D.3.1.1.

Theorem 7.5.1. Given 𝜂 > 0, consider the following two processes that alternate
between the likelihood step with horizon 𝑡† and the prior step with horizon 𝑡∗, where
𝜎(𝑡∗) = 𝜂:

• The approximate process that implements the likelihood step as in Equation (7.14)
(with forward model approximation) and the prior step as in Equation (6.6) (with
diffusion model score approximation). Let 𝜇𝜏 denote its distribution at time 𝜏,
𝐶𝜏 the associated covariance matrix, 𝜆∗𝜏 the smallest non-zero eigenvalue of 𝐶𝜏.

• The reference process that starts from the stationary distribution 𝜋𝑋𝑍 and im-
plements the likelihood step as Equation (7.11) with the preconditioner 𝐶𝜏, and
the prior step as Equation (6.6), assuming exact knowledge of both the prior
score function and forward model derivative. Let 𝜇𝜏 denote its distribution at
time 𝜏.

Let 𝑇𝑘 = 𝑘 (𝑡† + 𝑡∗), 𝑘 = 0, . . . , 𝐾 , 𝜆∗ = inf𝑡∈∪𝑘 [𝑇𝑘 ,𝑇𝑘+𝑡†] 𝜆
∗
𝑡 , and 𝛿 = inf𝑡∈[0,𝑡∗] 𝛿(𝑡)

where 𝛿(𝑡) is the diffusion term defined in Equation (D.21). We denote by 𝜖score

3For Blade , we set 𝑠(𝑡) = 1 for simplicity.
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the score approximation error of the diffusion model defined in Assumption D.3.1,
and 𝜖model the forward model derivative approximation error defined in Assump-
tion D.3.2. Assuming that KL(𝜋𝑋 | |𝜇0) < +∞ and Assumption D.3.3 holds, for 𝐾
iterations of Blade, we have

1
𝑇𝐾

∫ 𝑇𝐾

0
FI(𝜇𝜏 | |𝜇𝜏)d𝜏︸                       ︷︷                       ︸

average Fisher divergence
over 𝐾 iterations of Blade

≤ 𝑐KL(𝜋𝑋 | |𝜇0)
𝐾︸           ︷︷           ︸

convergence
from initialization

+ 𝑐𝑡†𝜖model︸    ︷︷    ︸
model error

+ 𝑐𝑡∗𝜖score︸   ︷︷   ︸
score error

(7.16)

where 𝑐 := 4
min(𝜆∗,𝛿) (𝑡†+𝑡∗) is a constant and FI, KL are Fisher divergence and KL

divergence, respectively.

The proof is provided in Appendix D.3.1.3. Theorem 7.5.1 accounts for the effect
of the two generally unavoidable approximations: the statistical linearization of
the forward model and the learned diffusion prior. Equation (7.16) indicates that
the time-average Fisher divergence between the approximate process and reference
process decays at an𝑂 (1/𝐾) rate up to a weighted sum of two approximation errors.
While this bound is structurally similar to that of PnP-DM (Theorem 6.4.1), there are
two key distinctions. First, our method considers fundamentally different likelihood
step dynamics (with linearization and covariance preconditioning); consequently,
the resulting error term depends on additional factors such as covariance matrix
eigenvalues and the linearization error. Second, unlike the analysis in Section 6.4
that assumes exact likelihood steps, our analysis incorporates the effects of model
error 𝜖model and a finite time horizon 𝑡†. Furthermore, this analysis offers theoretical
guarantees with explicit bounds on the approximation errors, which has not been
done in the existing works on the derivative-free algorithms with diffusion priors.

7.5.3 Experiments
We evaluate Blade on the inverse problem of recovering the initial vorticity field
in the 2D Navier–Stokes equations from partial, noisy observations taken at a
later time. This setting mirrors many practical inverse problems in science and
engineering, including weather data assimilation [313], geophysics [192], and fluid
reconstruction [94].

Problem Setup We follow the general experimental setup established in In-
verseBench [357] (Chapter 8), using its publicly released dataset and pre-trained
diffusion prior for all experiments. The true initial vorticity 𝒙0 in resolution 128×128
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Table 7.3: Comparison on the Navier-Stokes inverse problem. Metrics are ab-
breviated as follows: Rel ℓ2 (relative ℓ2 error), CRPS (continuous ranked probability
score), and SSR (spread-skill ratio). − indicates either that probabilistic metrics are
inapplicable (deterministic models) or that it is too expensive to generate enough
samples from the algorithm for reliable calculation. Bold and Underline indicate
best and second best among methods that accommodate unpaired data, respectively.

𝜎𝒚 = 0 𝜎𝒚 = 1.0 𝜎𝒚 = 2.0

Rel ℓ2 ↓ CRPS ↓ SSR→ 1 Rel ℓ2 ↓ CRPS ↓ SSR→ 1 Rel ℓ2 ↓ CRPS ↓ SSR→ 1

Paired data
CDM 1.362 2.900 0.983 1.409 2.872 1.059 1.542 2.993 1.087
U-Net 0.585 – – 0.702 – – 0.709 – –

Unpaired data
EKI 0.577 2.303 0.012 0.586 2.350 0.118 0.673 2.700 0.011
EKS + DM 0.539 1.900 0.181 0.606 2.088 0.218 0.685 2.255 0.280
DPG 0.325 – – 0.408 – – 0.466 – –
SCG 0.961 – – 0.928 – – 0.966 – –
EnKG 0.120 0.395 0.164 0.191 0.651 0.154 0.294 1.032 0.144
Blade (ours) 0.110 0.216 0.955 0.229 0.453 0.950 0.306 0.608 0.949

is evolved forward with a numerical solver, then subsampled and corrupted with
Gaussian noise of standard deviation 𝜎𝒚 = 0, 1, 2. The measurements 𝒚 thus con-
stitute a partial, noisy snapshot of the flow field. More details can be found in
Appendix D.3.5.

Baselines We compare our algorithm against two classes of methods. The first
class is the methods that only require diffusion prior trained on unpaired data,
including DPG [277], SCG [141], EnKG [356], EKI [143], EKS [111] (initialized
from diffusion prior). The second class is provided as reference points, which
requires additional training on paired data, including a conditional diffusion model
(CDM) and an end-to-end UNet. The conditional diffusion learns the posterior
distribution through conditional score matching. The UNet directly learns to predict
the ground truth from the observation. For each noise regime, we re-train both the
conditional diffusion model and the U-Net from scratch, using the same training
configuration. More details can be found in Appendix D.3.4.

Evaluation Metrics For comprehensive evaluation, we consider three different
metrics in the literature [241, 357] to assess the performance from both deterministic
and probabilistic perspectives: relative ℓ2 error, continuous ranked probability score
(CRPS), and spread-skill ratio (SSR). CRPS is a proper scoring rule that rewards
both sharp predictive distribution and well-calibrated predictions, whereas SSR
diagnoses calibration only. An SSR near one is desirable, but must be interpreted
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in conjunction with the other error metrics. Formal definitions and implementation
details of these metrics are in Appendix D.3.5.2.

Results Table 7.3 summarizes performance under three observation noise levels.
Blade offers the best calibrated ensemble predictions: its CRPS is the best among
all, and its SSR remains close to one. The other competing methods are too confident
(SSR < 0.2) and their predictions do not represent the true uncertainty. The CRPS
of CDM has a very high CRPS despite SSR near one, which means that it produces
an overly diffuse distribution with large errors. Overall, Blade achieves both sharp
predictive performance and reliable uncertainty calibration.

7.6 Thrust 4: Tackling Inverse Problems in Discrete Spaces
Finally, we present SGDD, an instantiation of Algorithm 2 for posterior estimation
in discrete spaces using discrete diffusion models (DMs). While existing works
on diffusion-based posterior estimation have been focusing on continuous domains
[64, 320, 341], designing analogous techniques to discrete-state spaces remains
challenging due to the lack of well-defined gradients in both the likelihood and
prior. To address this, we formulate a discrete version of the Split Gibbs Sampler
(SGS) with a generalized regularization potential 𝐷 (𝒙, 𝒛; 𝜂), extending the standard
ℓ2 term to functions compatible with discrete DMs under certain limiting conditions.
This relaxed formulation preserves the alternating update structure of Algorithm 2
and enables seamless integration of pre-trained discrete DMs. We prove theoretical
convergence guarantees for SGDD, with error bounds accounting for discretization
and score approximation. Empirically, we show the effectiveness of SGDD on
inverse problems on discrete images, where SGDD outperforms baselines by more
than 8 dB in PSNR. The appendix for this section is Appendix D.4.

7.6.1 Discrete Diffusion Models
Recent works on discrete diffusion models extend score-based generative methods
from modeling continuous distributions in Euclidean spaces to categorical distri-
butions in discrete-state spaces [11, 40, 198, 259]. Specifically, when the data
distribution lies in a finite support X = {1, . . . , 𝑁}, one can evolve a family of
categorical distributions 𝑝𝑡 over X following a continuous-time Markov chain

𝜕𝑡 𝑝𝑡 = 𝑸fw
𝑡 𝑝𝑡 , (7.17)

where 𝑝0 = 𝑝data and 𝑸fw
𝑡 ∈ R𝑁×𝑁 are diffusion matrices with a simple stationary

distribution. To reverse this continuous-time Markov chain, it suffices to learn the
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concrete score 𝑠(𝒙; 𝑡) :=
[
𝑝𝑡 (𝒙̃)
𝑝𝑡 (𝒙)

]
𝒙̃≠𝒙

, as the reverse process is given by

𝜕𝑡 𝑝𝑇−𝑡 = 𝑸𝑇−𝑡 𝑝𝑇−𝑡 (7.18)

with 𝑸 [𝑖, 𝑗]𝑡 =
𝑝𝑡 (𝒙𝑖)
𝑝𝑡 (𝒙 𝑗 )𝑸

fw[ 𝑗 ,𝑖]
𝑡 and 𝑸 [𝑖,𝑖]𝑡 = −∑

𝒙 𝑗≠𝒙𝑖 𝑸
[ 𝑗 ,𝑖]
𝑡 .

For sequential data 𝒙 ∈ X𝑛, there are 𝑁𝑛 states in total. Instead of constructing
an exponentially large diffusion matrix, we use a sparse matrix 𝑸fw

𝑡 that perturbs
tokens independently in each dimension [198].

Example: Uniform Kernel An example of such a diffusion matrix is

𝑸fw
𝑡 = ¤𝜎𝑡𝑸uniform = ¤𝜎𝑡 (11𝑇/𝑁 − 𝑰), (7.19)

where 𝜎𝑡 ≡ 𝜎(𝑡) is a predefined noise schedule with 𝜎(0) = 0 and 𝜎(𝑇) = 𝜎max.
This uniform kernel transfers any distribution to a uniform distribution as 𝜎 → ∞.
Moreover,

𝑝𝑡 = exp
(∫ 𝑡

0
𝑸fw
𝜏 d𝜏

)
𝑝0 = exp(𝜎𝑡𝑸uniform)𝑝0 =

[
𝑒−𝜎𝑡 𝑰 + (1 − 𝑒−𝜎𝑡 ) 11𝑇

𝑁

]
𝑝0.

When 𝒙 ∈ X𝑛 is a discrete object of 𝑛 dimensions, we have 𝑝𝑡 (𝒙𝑡 | 𝒙0) ∝ 𝛽𝑑 (𝒙𝑡 ,𝒙0)
𝑡 (1−

𝛽𝑡)𝑛−𝑑 (𝒙𝑡 ,𝒙0) , where 𝑑 (·, ·) is the Hamming distance between two sequences and
𝛽𝑡 =

𝑁−1
𝑁
(1 − 𝑒−𝜎𝑡 ).

7.6.2 Instantiation of Algorithm 2 for Discrete-Space Inverse Problems
7.6.2.1 A Generalized Split Gibbs Sampler

Recall that our goal is to sample from the posterior distribution

𝑝(𝒙 | 𝒚) ∝ 𝑝(𝒚 | 𝒙)𝑝(𝒙) = exp(− 𝑓 (𝒙; 𝒚) − 𝑔(𝒙)), (7.20)

where 𝑓 (𝒙; 𝒚) = − log 𝑝(𝒚 | 𝒙) and 𝑔(𝒙) = − log 𝑝(𝒙). The Split Gibbs Sampler
(SGS) relaxes this sampling problem by introducing an auxiliary variable 𝒛, allowing
sampling from an augmented distribution

𝜋(𝒙, 𝒛; 𝜂) ∝ exp(− 𝑓 (𝒛; 𝒚) − 𝑔(𝒙) − 𝐷 (𝒙, 𝒛; 𝜂)), (7.21)

where 𝐷 (𝒙, 𝒛; 𝜂) measures the distance between 𝒙 and 𝒛, and 𝜂 > 0 is a parameter
that controls the strength of regularization.

While PnP-DM (Chapter 6) and other prior works [69, 326] consider 𝐷 (𝒙, 𝒛; 𝜂) =
∥𝒙−𝒛∥22

2𝜂2 , we generalize the potential function to any continuous function 𝐷, such that
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𝐷 (𝒙, 𝒛; 𝜂) → ∞ as 𝜂 → 0 for any 𝒙 ≠ 𝒛. As shown in Appendix D.4.1.3, this
ensures that both marginal distributions,

𝜋𝑋 (𝒙; 𝜂) :=
∫

𝜋(𝒙, 𝒛; 𝜂)d𝒛, and 𝜋𝑍 (𝒛; 𝜂) :=
∫

𝜋(𝒙, 𝒛; 𝜂)d𝒙

converge to the posterior 𝑝(𝒙 | 𝒚). The decoupling of the prior and likelihood in
Equation (7.21) enables Gibbs sampling, which alternates between two steps:

1. Likelihood step: sample 𝒛(𝑘) ∼ 𝜋(𝒙 = 𝒙 (𝑘) , 𝒛; 𝜂) ∝ exp(− 𝑓 (𝒛; 𝒚)−𝐷 (𝒙 (𝑘) , 𝒛; 𝜂))

2. Prior step: sample 𝒙 (𝑘+1) ∼ 𝜋(𝒙, 𝒛 = 𝒛(𝑘); 𝜂) ∝ exp(−𝑔(𝒙) − 𝐷 (𝒙, 𝒛(𝑘); 𝜂))

A key feature of SGS is that it does not rely on the gradient of the guidance
term 𝑓 (𝒛; 𝒚), which is highly desirable in our setting with discrete data. The key
challenge that we tackle is to develop an effective approach for discrete-space DMs
that is easy to implement and enjoys rigorous guarantees (i.e., sampling from the
correct posterior distribution).

7.6.2.2 Prior Step with Discrete Diffusion Models

Suppose 𝑝(𝒙) is a discrete-state distribution overX𝑛 modeled by a diffusion process.
We consider a discrete DM with uniform transition kernel 𝑸fw

𝑡 = 1
𝑁

11𝑇 − 𝑰. To
connect SGS to discrete DMs, we specify the potential function 𝐷 (𝒙, 𝒛; 𝜂) as

𝐷 (𝒙, 𝒛; 𝜂) := 𝑑 (𝒙, 𝒛) log
1 + (𝑁 − 1)𝑒−𝜂
(𝑁 − 1) (1 − 𝑒−𝜂) (7.22)

where 𝑑 (𝒙, 𝒛) denotes the Hamming distance between 𝒙 and 𝒛. When 𝜂 → 0+, the
regularization potential 𝐷 (𝒙, 𝒛; 𝜂) goes to infinity unless 𝑑 (𝒙, 𝒛) = 0, ensuring the
convergence of marginal distributions to 𝑝(𝒙 | 𝒚). Given Equation (7.22), the prior
step can be written as

𝒙 (𝑘+1) ∼ 𝜋(𝒙, 𝒛 = 𝒛(𝑘); 𝜂) ∝ 𝑝0(𝒙)
(

𝛽

1 − 𝛽

)𝑑 (𝒛 (𝑘 ) ,𝒙)
(7.23)

where 𝛽 = 𝑁−1
𝑁
(1 − 𝑒−𝜂). On the other hand, the distribution of clean data 𝒙0

conditioned on 𝒙𝑡 for discrete DMs is given by

𝑝(𝒙0 | 𝒙𝑡) ∝ 𝑝0(𝒙0)𝑝(𝒙𝑡 | 𝒙0) ∝ 𝑝0(𝒙0)𝛽𝑑 (𝒙𝑡 ,𝒙0)
𝑡 (1 − 𝛽𝑡)𝑛−𝑑 (𝒙𝑡 ,𝒙0) (7.24)

where 𝛽𝑡 = 𝑁−1
𝑁
(1 − 𝑒−𝜎𝑡 ). Note that the term (1 − 𝛽𝑡)𝑛 does not depend on 𝒙0

and can thus be dropped. Therefore, sampling from Equation (7.23) is equivalent
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to unconditional generation from 𝑝(𝒙0 | 𝒙𝑡) when 𝛽 = 𝛽𝑡 , i.e., 𝜂 = 𝜎𝑡 . We can
then solve the prior sampling problem by simulating a partial discrete diffusion
sampler that starts from 𝜎𝑡 = 𝜂, 𝒙𝑡 = 𝒛(𝑘) and solves backward to 𝑡 = 0. This is
analogous to the continuous-space setting in Chapter 6 (i.e., 𝐷 (𝒙, 𝒛; 𝜂) = ∥𝒙−𝒛∥22

2𝜂2 ),
where the prior step can be formulated as a Gaussian denoising problem solvable
by a continuous-space DM.

7.6.2.3 Likelihood Step with Metropolis-Hastings

With the potential function 𝐷 (𝒙, 𝒛; 𝜂) specified in Section 7.6.2.2, at iteration 𝑘 , the
likelihood sampling step can be written as:

𝒛(𝑘) ∼ 𝜋(𝒙 = 𝒙 (𝑘) , 𝒛; 𝜂) ∝ exp
(
− 𝑓 (𝒛; 𝒚) − 𝑑 (𝒙, 𝒛) log

1 + (𝑁 − 1)𝑒−𝜂
(𝑁 − 1) (1 − 𝑒−𝜂)

)
. (7.25)

Since the unnormalized probability density function of 𝜋(𝒙 = 𝒙 (𝑘) , 𝒛; 𝜂) is avail-
able, we can efficiently sample from Equation (7.25) using the Metropolis-Hastings
algorithm [125, 220].

7.6.2.4 Overall Algorithm

Algorithm 4 Split Gibbs Discrete Diffusion Posterior Sampling (SGDD)

Require: initialization 𝒙 (0) ∈ X𝑁 , total number of iterations 𝐾 > 0, noise schedule
{𝜂𝑘 }𝐾−1

𝑘=0 , likelihood potential 𝑓 ( · ; 𝒚) with measurements 𝒚 ∈ R𝑚, pre-trained
discrete diffusion model 𝒔𝜽 .

1: for 𝑘 = 0, ..., 𝐾 − 1 do
2: 𝒛(𝑘) ← LikelihoodStep(𝒙 (𝑘) , 𝒚, 𝜂𝑘 ) ⊲ Sample (7.25) (Section 7.6.2.3)
3: 𝒙 (𝑘+1) ← PriorStep(𝒛(𝑘) , 𝒔𝜽 , 𝜂𝑘 ) ⊲ Sample (7.23) (Section 7.6.2.2)
4: end for
5: return 𝒙 (𝐾)

We now summarize the complete SGDD algorithm. Like PnP-DM, SGDD alternates
between a likelihood step and a prior step while employing an annealing schedule
{𝜂𝑘 }, which starts at a large 𝜂0 and gradually decays to 𝜂𝑘 → 0. This annealing
scheme accelerates the mixing time of the Markov chain and ensures the convergence
of 𝜋𝑋 (𝒙; 𝜂) and 𝜋𝑍 (𝒛; 𝜂) to 𝑝(𝒙 | 𝒚) as 𝜂→ 0. We present the complete pseudocode
of our method in Algorithm 4.

7.6.3 Convergence Analysis
We provide theoretical guarantees on the convergence of SGDD. For two probability
measures in a finite domain X, we consider the Kullback-Leibler (KL) divergence
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and the Fisher divergence (or relative Fisher information), respectively, as (where
we define 𝑓 := 𝜇/𝜋)

KL(𝜇∥𝜋) := E𝜇
[
log

𝜇

𝜋

]
,

FI𝑸 (𝜇∥𝜋) :=
∑︁

𝒙𝑖 ,𝒙 𝑗∈X
𝜋(𝒙𝑖)𝑸 [ 𝑗 ,𝑖]

(
𝑓 (𝒙 𝑗 ) − 𝑓 (𝒙𝑖) − 𝑓 (𝒙𝑖) log

𝑓 (𝒙 𝑗 )
𝑓 (𝒙𝑖)

)
.

Both divergences are nonnegative and equal to zero if and only if 𝜇 = 𝜋, when 𝑸 is
irreducible. For the continuous case in Section 6.4 and Section 7.5.2, Fisher diver-
gence can be written as a quadratic form FI(𝜇∥𝜋) = E𝜇∥∇ log(𝜇/𝜋)∥2. However, it
does not have an analogous quadratic form in finite spaces, which poses additional
challenges to the analysis of SGDD. To address this challenge, we adopt a generalized
definition of Fisher divergence [27, 130] and analyze the convergence of SGDD to
the stationary distribution using a more general technique that encompasses both
continuous and discrete settings.

We define a distribution 𝜇𝜏 over X that evolves according to likelihood steps and
prior steps alternatively where 𝜏 is the index for time over 𝐾 iterations of SGDD.
We assume each likelihood step is implemented with the Metropolis-Hastings algo-
rithm, and that each prior step is solved by the Euler method with an approximated
score function. We compare 𝜇𝜏 to the continuous-time stationary distribution 𝜋𝜏,
which alternates between 𝜋𝑋 and 𝜋𝑍 . The definitions of 𝜇𝜏 and 𝜋𝜏 are provided in
Appendix D.4.1.

Theorem 7.6.1. Consider running 𝐾 iterations of SGDD with a fixed 𝜂 > 0 and
an estimated concrete score 𝒔𝜽 (𝒙𝑡 ; 𝑡), and suppose that each prior step is solved
by an 𝐻 step Euler method. Let 𝑡∗ > 0 with 𝜎(𝑡∗) = 𝜂. Let 𝑇𝑘 = 𝑘 (𝑡∗ + 1) + 1 be
the starting time of the 𝑘-th prior step. Define 𝜋𝜏 and 𝜇𝜏 as stationary and non-
stationary distributions. Over 𝐾 iterations of SGDD, the average Fisher divergence
between 𝜇𝜏 and 𝜋𝜏 satisfies

1
𝐾

𝐾−1∑︁
𝑘=0

1
𝑡∗

∫ 𝑇𝑘+𝑡∗

𝑇𝑘

FI𝑸𝜏 (𝜇𝜏∥𝜋𝜏)d𝜏︸                            ︷︷                            ︸
average Fisher divergence

over the k-th prior step

≤ 2KL(𝜇0∥𝜋0)
𝐾𝑡∗︸          ︷︷          ︸

convergence
from initialization

+ 4𝑀𝜖
𝑐︸︷︷︸

score error

+ 2𝑀𝐿𝑡∗

𝑐𝐻︸  ︷︷  ︸
discretization error

.

(7.26)
where ∥ 𝒔𝜽 (·; 𝑡)−𝒔(·; 𝑡)𝒔(·; 𝑡) ∥∞ ≤ 𝜖 < 1, and 𝐿, 𝑀, 𝑐 are positive constants defined in
Appendix D.4.1.
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The proof is provided in Appendix D.4.1. Theorem 7.6.1 states that the average
Fisher divergence of the non-stationary process with respect to the stationary process
in all prior steps converges at the rate of 𝑂 (1/𝐾), up to a constant error term.
This result extends our theoretical understanding of diffusion posterior sampling
by generalizing the analysis in [273] and Section 6.4 on SDEs to general Markov
processes using the free-energy-rate-functional-relative-Fisher-information (FIR)
inequality [129]. Moreover, compared to existing analyses for continuous diffusion
models, our analysis accounts not only for the imperfect score function but also for
the discretization error in solving continuous-time Markov chains as well.

7.6.4 Experiments
We apply SGDD to inverse problems on discrete images to show its effectiveness on
posterior estimation in discrete domains. Implementation details for the experiments
are provided in Appendix D.4.2.3.

Problem Setup We convert the MNIST dataset [172] to binary strings by discretiz-
ing the images, and train a discrete diffusion prior on 60k training data using the
SEDD [198] model with the uniform transition kernel. We consider AND and XOR
operators as examples of linear and nonlinear forward models on binary strings. We
randomly pick 𝛾𝑛 pairs of positions (𝑖𝑝, 𝑗𝑝) over {1, . . . , 𝑛}, and compute

AAND(𝒙) = [𝒙𝑖𝑝 ∧ 𝒙 𝑗𝑝 ] 𝑝=1,...,𝛾𝑛, AXOR(𝒙) = [𝒙𝑖𝑝 ⊕ 𝒙 𝑗𝑝 ] 𝑝=1,...,𝛾𝑛. (7.27)

The likelihood function is defined as 𝑝(𝒚 | 𝒙) ∝ exp(−∥A(𝒙) − 𝒚∥0/𝜎𝒚).

Baselines We compare SGDD to existing approaches that apply to discrete diffu-
sion posterior sampling: DPS [64], SVDD-PM [182], and SMC [318]. Details on
how we adapt these methods to our setting are provided in Appendix D.4.2.2.

Evaluation Metrics We use 1,000 binary images from the test set of MNIST and
calculate the Peak Signal-to-Noise Ratio (PSNR) of the reconstructed image. Fur-
thermore, we train a simple convolutional neural network on MNIST as a surrogate
and report the classifier accuracy of the generated samples.

Results As shown in Table 7.4, SGDD outperforms baseline methods by a large
margin in both XOR and AND tasks. We present the samples generated by SGDD for
the XOR task in Figure 7.14. The reconstructed samples are visually consistent
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Table 7.4: Quantitative results for XOR and AND problems on discretized
MNIST. We report the mean and standard deviation (shown in parentheses) of
PSNR and class accuracy across 1,000 generated samples. SGDD demonstrates
superior performance on both tasks.

XOR AND

PSNR ↑ Accuracy (%) ↑ PSNR ↑ Accuracy (%) ↑
SVDD-PM [182] 11.81 (2.54) 51.4 10.04 (1.49) 33.7
SMC [318] 10.05 (1.54) 27.8 10.25 (1.63) 24.4
DPS [64] 9.04 (1.21) 30.0 8.67 (0.91) 24.5
SGDD 20.17 (3.47) 91.2 17.25 (3.82) 79.4

Figure 7.14: Sampling results of the XOR task on the discretized MNIST dataset.
SGDD faithfully recovers the structural information of the ground truth signal.

with the underlying ground truth signal, which explains the high class accuracy of
SGDD shown in Table 7.4. Furthermore, we demonstrate that SGDD generates
diversified samples when the measurement 𝒚 is sparse. For example, when a digit is
masked with a large box, as shown in Figure 7.15, the measurement lacks sufficient
information to fully recover the original digit. In this scenario, SGDD generate sam-
ples from multiple plausible modes, including digits 1, 4, 7, and 9. This highlights
the ability of SGDD to produce diverse samples from the posterior distribution while
preserving consistency with the measurement.

7.7 Conclusion
In this chapter, we presented four instantiations of Algorithm 2, each designed to
extend the applicability of diffusion-based posterior estimation to broader classes
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Figure 7.15: Diversified samples when the measurement 𝒚 is sparse. Samples
are generated by SGDD when solving an MNIST inpainting task.

of inverse problems. These methods address key limitations of the original PnP-
DM method in Chapter 6 by incorporating richer forms of prior information, scaling
to higher-dimensional video data, accommodating non-differentiable forward mod-
els, and enabling inference in discrete domains. Despite targeting distinct challenges,
all four instantiations share a common alternating-update structure that provides a
modular template for future extensions. Collectively, these developments demon-
strate the versatility of our unified PnPDP framework, which we believe paves the
way for future advances in diffusion-based posterior estimation.
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C h a p t e r 8

INVERSEBENCH: BENCHMARKING DIFFUSION-BASED
METHODS FOR SCIENTIFIC INVERSE PROBLEMS

Plug-and-play diffusion priors (PnPDP), including the methods we presented in
Chapter 6 and Chapter 7, have emerged as a promising paradigm for solving inverse
problems. While many existing methods claim to handle general inverse problems,
they were investigated in different domains (primarily natural image restoration).
They have never been compared in a controlled manner, and it is unclear how they
perform on scientific inverse problems in computational imaging. To address this
gap, we introduce InverseBench, a framework that evaluates diffusion models
across five distinct scientific inverse problems. These problems present unique
structural challenges that differ from existing benchmarks, arising from critical
scientific applications such as optical tomography, medical imaging, black hole
imaging, seismology, and fluid dynamics. With InverseBench, we benchmark 14
inverse problem algorithms that use plug-and-play diffusion priors against strong,
domain-specific baselines, offering valuable new insights into the strengths and
weaknesses of existing algorithms. To facilitate further research and development,
we open-source the codebase, along with datasets and pre-trained models, at https:
//devzhk.github.io/InverseBench/.

This chapter is based on our work [357], published as a Spotlight paper in the
Proceedings of the 13th International Conference on Learning Representations
2025 (ICLR 2025). The appendix for this chapter is Appendix E. The code for
the work presented in this chapter is available at https://github.com/devzhk/
InverseBench.

8.1 Introduction
The existing PnPDP methods are primarily evaluated and compared on a fairly
narrow set of image restoration tasks—such as inpainting, super-resolution, and
deblurring [44, 64, 147, 214, 262, 306]. These problems differ greatly from those
in science and engineering applications such as geophysics [294], astronomy [233],
oceanography [47], and many other fields, which have very different structural
challenges arising from the underlying physics. It is unclear how much insight can
be carried over from image restoration to scientific inverse problems.

https://devzhk.github.io/InverseBench/
https://devzhk.github.io/InverseBench/
https://github.com/devzhk/InverseBench
https://github.com/devzhk/InverseBench
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In this chapter, we introduce InverseBench, a comprehensive benchmarking frame-
work designed to evaluate PnPDP methods in a systematic and easily extensible
manner. We curate a diverse set of five inverse problems from distinct scientific
domains: optical tomography, black hole imaging, medical imaging, seismology,
and fluid dynamics. These problems present structural challenges that differ sig-
nificantly from natural image restoration tasks (cf. Figure 8.1 and Table 8.2), and
encompass a broad spectrum of complexities across multiple scientific fields. Most
notably, the forward model (which maps the target image to measurements) is de-
fined using various types of physics-based models, which can be highly nonlinear
and difficult to evaluate.

We select 14 representative PnPDP algorithms proposed for solving inverse prob-
lems, providing a thorough comparison of their performance across different scien-
tific inverse problems and further insights into their efficacy and limitations. Ad-
ditionally, we establish strong, domain-specific baselines for each inverse problem,
providing a meaningful reference point for assessing the effectiveness of diffusion
model-based approaches against traditional methods.

Through extensive experiments, we find that PnPDP methods generally exhibit
strong performance given a suitable dataset for training a diffusion prior. This
performance is consistent even as we vary the forward model (which is a strength
of a PnP approach), given appropriate tuning. However, for forward models that
require certain constraints on the input (e.g., use a PDE solver), performance can be
very sensitive to hyperparameter tuning. Moreover, the strength of using a diffusion
prior can also be a limitation, as PnPDP methods have difficulty when the source
image is out of the prior distribution (i.e., the use of diffusion models makes it
difficult to recover “surprising” results). Additionally, we find that PnP methods
that use multiple queries of the forward model tend to outperform simpler methods
like DPS, at the cost of requiring additional tuning and computation, which points
to an interesting direction for future method development.

InverseBench is implemented as a highly modular framework that can interface
with new inverse problems and algorithms to run experiments at scale. We open-
source the codebase, along with datasets and pre-trained models, at https://
devzhk.github.io/InverseBench/.

https://devzhk.github.io/InverseBench/
https://devzhk.github.io/InverseBench/
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A†

Figure 8.1: Illustration of five benchmark problems in the InverseBench.
A represents the forward model that produces measurements from the underlying
target. A† represents the inverse map. In the linear inverse scattering problem
(left two), the measurements are the recorded data from the receivers, and the
unknown source we aim to infer is the permittivity map of the object. The bottom
panel displays the efficiency and accuracy plots for our benchmarked algorithms.
Certain characteristics of the problem cause the efficiency and accuracy trade-offs
of each algorithm to vary across tasks. In these plots, the larger radius of the
points indicates greater interaction with the forward functionA, as measured by the
number of forward model evaluations.

Table 8.1: Requirements on the forward model of the algorithms evaluated in
our experiments.

Category Method SVD of A Pseudo inverse of A Linear A Gradient

Linear guidance DDRM [155] ✓ ✓ ✓ –
DDNM [306] ✗ ✓ ✓ –
ΠGDM [262] ✗ ✓ ✗ –

General guidance DPS [64] ✗ ✗ ✗ ✓

LGD [263] ✗ ✗ ✗ ✓

DPG [277] ✗ ✗ ✗ ✗

SCG [141] ✗ ✗ ✗ ✗

EnKG [356] ✗ ✗ ✗ ✗

Variable-splitting DiffPIR [361] ✗ ✗ ✗ ✓

PnP-DM [320] ✗ ✗ ✗ ✓

DAPS [341] ✗ ✗ ✗ ✓

Variational Bayes RED-diff [214] ✗ ✗ ✗ ✓

Sequential Monte Carlo FPS [89] ✗ ✗ ✓ –
MCGdiff [44] ✓ ✓ ✓ –

8.2 Plug-and-Play Diffusion Priors for Inverse Problems
We use the term Plug-and-Play Diffusion Prior (PnPDP) to refer to the class of
recent methods that use diffusion models (or the denoising network within) as plug-
and-play priors [291] for solving inverse problems. See Section 5.3.2 for a brief
overview. Table 8.1 lists the 14 representative PnPDP methods we selected and notes
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their different requirements on the forward model A. Broadly speaking, existing
PnPDP approaches can be grouped into four categories described below.

Guidance-Based Methods Arguably the most popular approach to solving inverse
problems with a pre-trained diffusion model is guidance-based methods [64, 155,
251, 262, 306], which modify Equation (5.8) by adding a likelihood score term,
∇𝒙𝑡 log 𝑝𝑡 (𝒚 | 𝒙𝑡), along the diffusion trajectory using Equation (5.10). This term
is related to the forward model A if the final clean 𝒙0 is a candidate source, in
which case 𝑝(𝒚 | 𝒙0) can be estimated by querying A. However, as we discussed,
log 𝑝𝑡 (𝒚 | 𝒙𝑡) is generally intractable so various approximations have been proposed
[34, 64, 262, 265].

Variable Splitting Variable splitting is a widely used strategy for solving regu-
larized optimization problems and conducting Bayesian inference [176, 296]. The
core idea is to split the inference into two alternating steps. The first step uses the
forward model to update or sample in the neighborhood of the most recent 𝒙𝑡 . The
second step runs unconditional inference on 𝑝(𝒙𝑡), which amounts to running Equa-
tion (5.8) for a small amount of time. Example methods include those presented in
Chapter 6, Chapter 7, and others in the literature [181, 260, 326, 341, 361].

Variational Bayes Variational Bayes methods approximate intractable distribu-
tions such as 𝑝(𝒙 | 𝒚) using some simpler parameterized distribution 𝑞𝜃 [342].
The key idea is to find a 𝑞𝜃∗ that both fits the measurements 𝒚 and agrees with the
prior 𝑝(𝒙) in a KL divergence sense. Instead of directly sampling according to
Equation (5.8), it uses the diffusion model as a prior within a variational inference
framework [101, 103, 214].

Sequential Monte Carlo Sequential Monte Carlo (SMC) methods draw samples
iteratively from a sequence of probability distributions. These methods represent
probability distributions by a set of particles with associated weights, which asymp-
totically converge to a target distribution following a sequence of proposal and
reweighting steps. Recent works have extended SMC methods to the sequential
diffusion sampling process [44, 89, 283, 318], enabling zero-shot posterior sam-
pling with diffusion priors. However, these methods are typically applicable only to
inverse problems with linear forward models.
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Table 8.2: Characteristics of different inverse problems in InverseBench.
From left to right: whether the forward model is linear, whether one can efficiently
compute the SVD from the forward model, the domain in which the inverse problem
is defined, whether the forward model can be solved in closed form, whether one
can access gradients from the forward model, and the noise type.

Problem Linear A Efficient SVD of A Domain Closed-form A Gradient of A Noise type

Linear inverse scattering ✓ ✓ C𝑛 ✓ ✓ Gaussian
Compressed sensing MRI ✓ ✗ C𝑛 ✓ ✓ Real-world

Black hole imaging ✗ ✗ R𝑛 ✓ ✓ Non-additive
Full waveform inversion ✗ ✗ R𝑛 ✗ ✓ Noise-free
Navier-Stokes equation ✗ ✗ R𝑛 ✗ ✗ Gaussian

8.3 InverseBench
In this section, we introduce the formulation and specific challenges of the five
scientific inverse problems considered in InverseBench: linear inverse scattering,
compressed sensing MRI, black hole imaging, full waveform inversion, and the
Navier-Stokes equation. The characteristics of these inverse problems are summa-
rized in Table 8.2. Their computational characteristics are summarized in Figure E.1.
Detailed descriptions and formal definitions can be found in Appendix E.2.

Linear Inverse Scattering Inverse scattering is an inverse problem that arises
from optical microscopy, where the goal is to recover the unknown permittivity
contrast 𝒙0 ∈ R𝑛 from the measured scattered lightfield 𝒚sc ∈ C𝑚. We consider the
following formulation of inverse scattering

𝒚sc = 𝑯( 𝒇tot ⊙ 𝒙0) + 𝒏 ∈ C𝑚 where 𝒇tot = 𝑮 ( 𝒇in ⊙ 𝒙0). (8.1)

Here 𝑮 ∈ C𝑛×𝑛 and 𝑯 ∈ C𝑚×𝑛 are the discretized Green’s functions that model the
responses of the optical system, 𝒇in and 𝒇tot are the input and total lightfields, ⊙ is
the elementwise product, and 𝒏 is the measurement noise. Since this problem is a
linearized version of the general nonlinear inverse scattering problem based on the
first Born approximation, we refer to it as linear inverse scattering. This problem
allows us to test algorithms designed specifically for linear problems.

Compressed Sensing MRI Compressed sensing MRI is a technique that acceler-
ates the scan time of MRI via subsampling. We consider the parallel imaging (PI)
setup of CS-MRI (same as Section 2.2), which is widely adopted in research and
practice. Mathematically, PI CS-MRI can be formulated as an inverse problem that
aims to recover an image 𝒛 ∈ C𝑛 from

𝒚 𝑗 = 𝑴𝑭𝑺 𝑗𝒙0 + 𝒏 𝑗 ∈ C𝑚 for 𝑗 = 1, ..., 𝐽
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where 𝑴 ∈ {0, 1}𝑚×𝑛 is a subsampling operator and 𝑭 is the Fourier transform; 𝒚 𝑗 ,
𝑺 𝑗 , and 𝒏 𝑗 are the measurements, sensitivity map, and the noise of the 𝑗-th coil,
respectively. Compressed sensing MRI is a linear problem, but it poses significant
challenges due to its high-dimensional nature, involvement of priors in the complex
domain, and attention to fine-grained details.

Black Hole Imaging Black hole imaging (BHI) is a technique of imaging black
holes using Very Long Baseline Interferometry (VLBI). Each measurement for BHI,
𝑽𝑡{𝑎,𝑏} ∈ C (often referred to as visibility) is given by cross-correlating the recorded
scalar electric fields of a pair of telescopes {𝑎, 𝑏} at time 𝑡 and measures a Fourier
component of the target image 𝒙0. However, the measurements are corrupted by
the gain errors and phase errors due to the atmosphere. To correct for these errors,
multiple noisy visibilities can be combined into quantities that are invariant to these
errors, which are called closure phase and log closure amplitude measurements [23,
50]

𝒚𝑡cp,{𝑎,𝑏,𝑐} := ∠(𝑽𝑡{𝑎,𝑏}𝑽
𝑡
{𝑏,𝑐}𝑽

𝑡
{𝑎,𝑐}) := A𝑡

cp,{𝑎,𝑏,𝑐} (𝒙0) ∈ R,

𝒚𝑡logca,{𝑎,𝑏,𝑐,𝑑} := log
©­­«
���𝑽𝑡{𝑎,𝑏}��� ���𝑽𝑡{𝑐,𝑑}������𝑽𝑡{𝑎,𝑐}��� ���𝑽𝑡{𝑏,𝑑}���

ª®®¬ := A𝑡
logca,{𝑎,𝑏,𝑐,𝑑} (𝒙0) ∈ R,

where∠ computes the angle of a complex number. Additionally, because the closure
quantities do not constrain the total flux (i.e., summation of the pixel values) of the
underlying black hole image, we add a constraint on the total flux defined as

𝒚flux :=
∫
𝜌

∫
𝛿

𝒙0(𝜌, 𝛿)d𝜌d𝛿 ∈ R. (8.2)

Aggregating data over time intervals and telescope combinations, the overall forward
model of BHI can be expressed as

𝒚 :=
[
Acp(𝒙0),Alogca(𝒙0),Aflux(𝒙0)

]
:=

[
𝒚cp, 𝒚logca, 𝒚flux

]
, (8.3)

where 𝒚cp =

[
𝒚𝑡cp,{𝑎,𝑏,𝑐},∀𝑡 ∈ T , {𝑎, 𝑏, 𝑐}

]
is the set of all closure phase measure-

ments and 𝒚cp =

[
𝒚𝑡logca,{𝑎,𝑏,𝑐,𝑑},∀𝑡 ∈ T , {𝑎, 𝑏, 𝑐, 𝑑}

]
is the set of all log closure

amplitude measurements over the observation period T and combinations of tele-
scopes. Since the closure quantities are nonlinear transformations of the visibilities,
the forward model of BHI is non-convex. The inverse problem is further compli-
cated by the need for super-resolution imaging beyond the intrinsic resolution of
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the observations (i.e., maximum probed spatial frequency), as well as phase ambi-
guities, which can lead to multiple modes in the posterior distribution [269, 273].
Another challenge of BHI is that measurement noise is non-additive due to the usage
of the closure quantities. We refer readers to Appendix C.2 for more details on the
BHI setup.

Full Waveform Inversion Full waveform inversion (FWI) aims to infer subsurface
physical properties—such as compressional and shear wave velocities—using the
full information of recorded waveforms. We consider the problem of recovering the
discrete wave velocity 𝒙0 ∈ R𝑛, or equivalently, the square slowness of the wave
𝒎 := 1

𝒙2
0
, from measurements of the pressure wavefield. The measurements 𝒚 are

given by

𝒚 = 𝑷𝑟 𝒈 = 𝑷𝑟𝑨(𝒎)−1𝑷𝑇𝑠 𝒒𝑠 = 𝑷𝑟𝑨

(
1
𝒙2

0

)−1

𝑷𝑇𝑠 𝒒𝑠 ∈ R𝑚, (8.4)

where 𝑷𝑟 is the sampling operator at the receiver locations, 𝑷𝑇𝑠 is the injection
operator at the source locations, sampling operator at the receiver locations, 𝒈

is the discretized synthetic pressure wavefield (which is a function of location
and time), and 𝒒𝑠 is the corresponding pressure source. Matrix 𝑨

(
1
𝒙2

0

)
is the

discretized operator for the acoustic (scalar) wave equation that models seismic
wave propagation in heterogeneous acoustic media with constant density

1
𝒙2

0
𝜕2
𝑡 𝑔 − ∇2

𝒙𝑔 = 𝑞𝑠, (8.5)

where 𝑣, 𝑔 := 𝑔(𝒙, 𝑡), and 𝑞𝑠 are the continuous counterpart of 𝒙0, 𝒈, and 𝒒𝑠. So,
𝑨

(
1
𝒙2

0

)
is the discretization of operator 1

𝒙2
0
𝜕2
𝑡 − ∇2

𝒙 , where ∇2
𝒙 is the Laplacian oper-

ator. Since we only have measurements at the free surface, the inverse problem has
non-unique solutions. One of the major challenges for FWI is the prohibitive com-
putational expense, especially for large problems, as it usually requires numerous
calls to the forward modeling process. Moreover, the conventional method for FWI,
called the adjoint-state method, casts it as a local optimization problem [293, 294].
This means that a sufficiently accurate initial model is required, as the solution is
only sought in its vicinity. FWI conventionally needs to start with a smoothed model
derived from simpler ray-based methods [194, 211], which imposes a significantly
strong prior. A general method with less reliance on initialization is highly desired.

Navier-Stokes Equation Navier-Stokes equation is a classic benchmarking prob-
lem from fluid dynamics [143]. Its applications range from ocean dynamics to
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climate modeling, where measurements of the atmosphere are used to calibrate the
initial condition for the downstream numerical forecasting. We consider the for-
ward model that is given by the following 2D Navier-Stokes equation for a viscous,
incompressible fluid in vorticity form on a torus.

𝜕𝑡𝝎(𝒙, 𝑡) + 𝒗(𝒙, 𝑡) · ∇𝒙𝝎(𝒙, 𝑡) = 𝜈∇2
𝒙𝝎(𝒙, 𝑡) + 𝑓 (𝒙), 𝒙 ∈ (0, 2𝜋)2, 𝑡 ∈ (0, 𝑇]

∇𝒙 · 𝒗(𝒙, 𝑡) = 0, 𝒙 ∈ (0, 2𝜋)2, 𝑡 ∈ [0, 𝑇]
𝝎(𝒙, 0) = 𝝎0(𝒙), 𝒙 ∈ (0, 2𝜋)2

(8.6)

where 𝒗 ∈ 𝐶
(
[0, 𝑇];𝐻𝑟per((0, 2𝜋)2;R2)

)
for any 𝑟 > 0 is the velocity field, 𝝎 =

∇𝒙 × 𝒗 is the vorticity, 𝝎0 ∈ 𝐿2
per

(
(0, 2𝜋)2;R

)
is the initial vorticity, 𝜈 ∈ R+ is

the viscosity coefficient, and 𝑓 ∈ 𝐿2
per

(
(0, 2𝜋)2;R

)
is the forcing function. The

solution operator G is defined as the operator mapping the vorticity from the initial
vorticity to the vorticity at time 𝑇 , i.e., G : 𝝎0 → 𝝎𝑇 . We consider the problem of
recovering the initial vorticity field 𝒙0 := 𝝎0 from the noisy partial measurements
𝒚 of the vorticity field 𝒘𝑇 at time 𝑇 given by

𝒚 = 𝑷𝑮 (𝒙0) + 𝒏

where 𝑷 is the sampling operator, 𝒏 is the measurement noise, and 𝑮 (·) is the dis-
cretization of G. The Navier-Stokes equation does not admit a closed-form solution,
so there is no closed-form gradient available for the solution operator. We implement
the forward model using a pseudo-spectral solver with adaptive time stepping [127].
Obtaining an accurate numerical gradient via automatic differentiation through the
numerical solver is challenging due to the extensive computation graph expanded
after thousands of discrete time steps.

8.4 Experiments
8.4.1 Experimental Setup
Here we provide a summary of our experimental setup. The details about each
inverse problem and its corresponding datasets can be found in Appendix E.2. For
each problem, we train a diffusion model on the training set using the pipeline
from [151], and use the same checkpoint for all PnPDP methods on each prob-
lem for a fair comparison. Technical details of DM pre-training can be found in
Appendix E.3.

Linear Inverse Scattering We create a dataset of fluorescence microscopy images
using the online simulator [314]. The training set consists of 10,000 HL60 nucleus
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permittivity images. The test and validation sets contain 100 and 10 permittivity
images, respectively. We curate the test and validation samples so that all test
samples have less than 0.6 cosine similarities to those in the training set.

Compressed Sensing MRI We use the multi-coil raw 𝑘-space data from the
fastMRI knee dataset [338]. We exclude the first and last 5 slices of each volume for
training and validation, since they do not contain much anatomical information, and
resize all images down to 320×320 following the preprocessing procedure of [145].
In total, we use 25,012 images for training, 6 images for hyperparameter search, and
94 images for testing.

Black Hole Imaging We leverage a dataset of General Relativistic MagnetoHy-
droDynamic (GRMHD) [223] simulated black hole images as our training data.
The training set consists of 50,000 resized 64×64 images. Since this dataset is not
publicly available, we generate synthetic images from a pre-trained diffusion model
for both the validation and test datasets. Specifically, we use 5 sampled images for
the validation set and 100 sampled images for the test set.

Full Waveform Inversion We adapt the CurveFaultB dataset [80], which presents
the velocity maps that contain faults caused by shifted rock layers. We resize the
original data to a resolution of 128×128 with bilinear interpolation and anti-aliasing.
The training set consists of 50,000 velocity maps. The test and validation sets contain
10 and 1 velocity maps, respectively.

Navier-Stokes Equation We create a dataset of non-trivial initial vorticity fields
by first sampling from a Gaussian random field and then evolving Equation (8.6)
for five time units. The equation setup follows Iglesias, Law, and Stuart [143] and
Li et al. [185]. We set the Reynolds number to 200 and the spatial resolution to
128×128. The training set consists of 10,000 samples. The test and validation sets
contain 10 and 1 samples, respectively.

8.4.2 Evaluation Metrics
Accuracy Metrics We use the Peak Signal-to-Noise Ratio (PSNR) and Structure
Similarity Index Measure (SSIM) [310] as the generic ways to quantify recovery
of the true source. For all the problems except for black hole imaging, we use
the ℓ2 error ∥A(𝒙̂) − 𝒚∥2 to measure the consistency of a reconstruction 𝒙̂ with
the measurements 𝒚. For black hole imaging, the closure quantities are invariant
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under translation, and so we measure the best fit under any shift alignment. We also
assess the Blur PSNR, where images are blurred to match the target resolution of
the telescope. We evaluate data misfit via the 𝝌2 statistic on two closure quantities:
the closure phase (𝝌2

cp) and the log closure amplitude (𝝌2
logca). A 𝝌2 value close

to 1 indicates better data fitting. To facilitate a comparison between underfitting
(𝝌2 > 1) and overfitting (𝝌2 < 1), we report a unified metric defined as

𝝌̃2 = 𝝌2 · 1{𝝌2 ≥ 1} + 1
𝝌2 · 1{𝝌

2 < 1}. (8.7)

For FWI and Navier-Stokes experiments, we also use the relative ℓ2 error ∥𝒙̂ −
𝒙0∥2/∥𝒙0∥2 as it is a commonly used primary accuracy metric in PDE prob-
lems [143].

Efficiency Metrics We define a set of efficiency metrics in Table E.7 to evaluate
the computational complexity of inverse algorithms more thoroughly. These metrics
fall into two categories: (1) total metrics that measure the overall computational
cost; (2) sequential metrics that help identify bottlenecks where forward model or
diffusion model queries cannot be parallelized.

Ranking Score To assess the relative ranking of different PnP diffusion models
across various problems, we define the following ranking score for each problem.
Given a set of accuracy or efficiency metrics {ℎ𝑘 }𝐾𝑘=1, we rank the algorithms
according to each individual metric. Suppose algorithm 𝑙 has the rank 𝑅𝑘 (𝑙) out
of 𝐿 algorithms under the metric 𝑘 . Its ranking score on this metric is given by
score𝑘 (𝑙) = 100 × (𝐿 − 𝑅𝑘 (𝑙) + 1) /𝐿. For each problem, we calculate the average
ranking score to assess overall performance:

scoreproblem(𝑙) = 1
𝐾

𝐾∑︁
𝑘=1

score𝑘 (𝑙).

8.4.3 Main Findings
The full experimental results for each problem are provided in Appendix E.1 as
tables. Below, we highlight some key insights distilled from these results.

How do PnPDP methods work compared to conventional baselines? Our pri-
mary finding is that, given a suitable dataset for training a DM prior, PnPDP methods
generally outperform conventional baselines. This is evident in Figure 8.1, where
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Figure 8.2: Qualitative comparison showing representative examples of PnP-
DP methods and domain-specific baselines across five inverse problems. Note
that for full waveform inversion, Adam∗ and LBFGS∗ are initialized with Gaussian-
blurred ground truth, serving as references.

the PnPDP methods generally lie higher along the vertical axis. This finding is as
expected, given that the baselines do not incorporate such strong prior information.

However, if the classic optimization baselines are initialized well, then they some-
times outperform PnPDP methods, most of which cannot naturally incorporate an
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initialization beyond white noise. For example, in FWI, PnPDP methods clearly
outperform the classic baseline methods if the baselines are initialized randomly or
from a constant. But if initialized with a good guess (e.g., a heavily blurred ground
truth image), they consistently outperform the current PnPDP methods. That being
said, the fact that PnPDP methods rely much less on initialization than the traditional
optimization methods is already an intriguing property. See qualitative comparison
in Figure 8.1 and quantitative comparison in Table E.5.

How do PnPDP methods compare with each other? In the problems where the
forward model has a closed-form expression, methods that require more gradient
queries, such as DAPS and PnP-DM, tend to be more accurate. However, since they
have more queries to the forward model, they are also more expensive, as shown in
Figure 8.1. Additionally, these methods require more careful tuning as they usually
have larger hyperparameter spaces, as shown in Table E.101.

In the problems where the forward model has no closed-form expression, particularly
a forward model defined by a PDE system and implemented as a numerical PDE
solver, this trend does not hold. In fact, DAPS and PnP-DM perform poorly, as shown
in Figure 8.1 and Table E.5. These methods also demonstrate an increased level
of numerical instability and sensitivity to hyperparameters, as shown in Figure 8.3:
minor adjustments in step size can lead to either unconditional generation results that
ignore measurements (with slightly smaller steps) or complete failure (with slightly
larger steps). This performance degradation stems from a critical limitation in many
current PnPDP algorithms: they do not account for stability conditions required
to query a forward model. For example, in the FWI and Navier-Stokes equation,
the input of the forward model must satisfy the Courant–Friedrichs–Lewy (CFL)
condition [76] to produce stable solutions. This issue is particularly pronounced for
methods like DAPS and PnP-DM, which incorporate Langevin Monte Carlo (LMC)
as a subroutine, because LMC introduces additional Gaussian noise at each step and
thus exacerbates instability compared to other PnPDP methods.

How does the performance vary with different levels of measurement sparsity?
As measurement sparsity increases, making the inverse problem more ill-posed,
we observe an increasingly wide performance gap between PnPDP methods and
baselines. Figure 8.4 illustrates this trend across three problems, showing that

1Note that tuning the hyperparameters of PnPDP approaches is still much more efficient than
retraining a neural network that is typically required for end-to-end approaches.
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Figure 8.3: Illustration of the failures of PnPDP methods (DAPS) as an example)
on full waveform inversion. With a small learning rate, DAPS is numerically stable
but does not solve the inverse problem effectively. With a slightly larger learning
rate, DAPS produces a noisy velocity map that breaks the stability condition of the
PDE solver, resulting in a complete failure.

the average performance gain of top PnPDP methods over baselines grows with
increasing measurement sparsity.

How well do PnPDP methods deal with different forward models? For linear
inverse problems, our results demonstrate that PnPDP methods can effectively deal
with varying forward models without the need for parameter tuning. To validate
this, we conduct a controlled experiment in CS-MRI, where we maintain a consis-
tent measurement sparsity while altering the subsampling pattern (from vertical to
horizontal lines). We assess the average performance variation across three method
categories: traditional baselines, end-to-end approaches, and PnPDP methods. The
average absolute performance change for PnPDP methods is 0.48dB (PSNR) and
0.016 (SSIM), comparable to the traditional baseline methods at 1.62dB (PSNR)
and 0.027 (SSIM), but significantly smaller than the end-to-end methods, which
exhibit changes of 9.58dB (PSNR) and 0.21 (SSIM). These findings indicate that
PnPDP methods are more robust than both baseline and end-to-end methods when
handling different forward models.2

How well do PnPDP methods handle out-of-distribution sources? In general,
if the unknown source falls outside the diffusion prior distribution, PnPDP meth-
ods tend to generate solutions that are biased toward the prior. As illustrated in
Figure 8.5a, most solutions produced by PnPDP methods exhibit a black hole ring

2For end-to-end approaches, this is considered as an out-of-distribution test.
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Figure 8.4: Relative performance of plug-and-play diffusion prior methods com-
pared with traditional baselines under different levels of measurement sparsity
on different tasks. Metrics are averaged over multiple PnPDP methods. The per-
formance difference increases in general as the measurement becomes sparser.

RED-diffDPS PnP-DM DAPSGround truth

(a)

DDRM DDNM ∏GDM DPSGround truth LGD

DiffPIR PnP-DM DAPS RED-diff FPS
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PSNR=29.04 PSNR=28.24 PSNR=30.04 PSNR=30.48 PSNR=28.28

(b)

Figure 8.5: PnPDP methods on out-of-distribution test samples. (a) Black-hole
imaging problem on digit inputs; and (b) inverse scattering on sources that contain
9 cells, while the prior model is trained on images with 1 to 6 cells.

feature characteristic of the diffusion prior. This suggests that while PnPDP ap-
proaches are flexible in capturing high-dimensional priors, they are limited in their
ability to reliably recover “surprising” sources that lie outside the support of the
diffusion prior distribution. However, when the unknown source is close to the dif-
fusion prior distribution, PnPDP methods can recover it effectively, as demonstrated
in Figure 8.5b.

8.5 Conclusion
We conclude this chapter by highlighting key research opportunities for advancing
PnPDP methods in solving inverse problems. In this chapter, we only consider
the setting where the forward model is exact and explicit, while the forward model
in real-world problems often involve approximations. Studying the robustness of
PnPDP methods when there is a mismatch between the assumed and actual forward
model would be an essential step toward their practical deployment. This includes
evaluating how well they handle imperfect and/or partially known forward model
representations. Another research challenge we identify is that the current PnPDP
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methods do not account for stability conditions required to query a forward model,
which leads to degraded performance and numerical instability. However, many
scientific inverse problems are based on PDE systems that require certain conditions
on the inputs to simulate numerically and violating these constraints can result in
meaningless solutions. Another direction for improvement is inference speed. As
shown in Figure 8.1, almost all the PnPDP methods are less computationally efficient
than the conventional baselines. There remains substantial room for optimization.
We hope that InverseBench can serve as a systematic benchmark and catalyst for
developing more advanced diffusion-based posterior samplers capable of addressing
these challenges.
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C h a p t e r 9

CONCLUSION

Computational imaging systems push the boundaries of imaging techniques by en-
hancing physical sensors with computational algorithms. In this thesis, we presented
two lines of research that improve sampling in the computational imaging pipeline
using machine learning (ML)—one around measurement acquisition with physical
sensors and another around posterior estimation with computational algorithms.
Together, these contributions address key challenges and unlock new capabilities
for existing computational imaging systems. This chapter concludes the thesis by
highlighting the key takeaways and proposing some promising directions for future
research.

9.1 Key Takeaways
In Part I, we investigated how to improve sampling strategies for compressed sensing
MRI (CS-MRI) through end-to-end ML approaches. Traditional CS-MRI methods
use fixed, predetermined subsampling patterns that are agnostic to both the underly-
ing target and downstream tasks. In contrast, we showed that ML-based approaches
can effectively learn sampling strategies that are adaptive to the underlying target or
specific to the downstream objectives:

• Sequential sampling: In Chapter 3, we proposed a method for learning se-
quential sampling strategies for CS-MRI, leveraging the fact that measurements
in CS-MRI must be taken sequentially rather than simultaneously. Our learned
multi-step strategies decide which measurements to acquire based on the pre-
viously observed samples, thereby making better selections compared to non-
adaptive baselines. In addition, our method outperforms reinforcement learn-
ing–based approaches in both accuracy and training efficiency.

• Task-specific sampling: In Chapter 4, we developed a framework that directly
optimizes sampling patterns of CS-MRI for a downstream task, rather than re-
construction metrics that may not align with clinical or diagnostic objectives.
While this may sound like an easy tweak, we showed that the naïve end-to-end
optimization approach does not lead to a robust strategy. Instead, we introduced a
two-stage training procedure: first pre-training a backbone model for reconstruc-
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tion, followed by task-specific fine-tuning with a prediction head—analogous to
modern foundation model workflows. We showed that our approach consistently
outperforms existing methods that do not consider downstream tasks in terms of
task-specific metrics. We also implemented the learned sampling strategies on a
real MRI scanner and validated their effectiveness with experimentally collected
data.

In Part II, we introduced a new approach of using diffusion models (DMs) as priors
for estimating the posterior distributions of inverse problems in Bayesian inference.
The proposed approach addresses several core challenges:

• Principled method: In Chapter 6, we proposed PnP-DM, a posterior sampling
method based on the Split Gibbs Sampler (SGS) [296]. Unlike previous meth-
ods, our method avoids making uncontrolled approximations that could lead to
significant sampling errors, thereby enabling more accurate posterior estimation.
We drew a key connection between SGS and the EDM framework [151], which
provides a unified and principled way of incorporating DMs as priors for solving
inverse problems.

• Unified framework: In Chapter 7, we built on the core ideas of PnP-DM and
extended them into a unified sampling framework for diffusion-based poste-
rior estimation. We presented four instantiations of this framework, each de-
signed to address one limitation in PnP-DM. These include incorporating text
as a semantic prior, scaling to high-dimensional video data, handling non-
differentiable (black-box) forward models, and enabling posterior inference in
discrete spaces. While addressing diverse challenges, all four methods share
a common alternating-update structure inspired by PnP-DM, and they exhibit
both strong theoretical guarantees and robust empirical performance across a
range of tasks.

• Comprehensive benchmark: In Chapter 8, we presented a large-scale bench-
mark designed to rigorously evaluate diffusion-based approaches for solving
scientific inverse problems. The benchmark encompasses 14 widely used meth-
ods and 5 representative inverse problems spanning multiple scientific fields.
Through comprehensive evaluations and ablation studies, we provided critical
insights into the capabilities and shortcomings of current techniques and high-
lighted future opportunities for improving posterior sampling in computational
imaging.
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9.2 Futures Directions
While the contributions above advance both measurement acquisition and posterior
estimation in computational imaging, many open problems remain. We outline a
few promising directions below.

9.2.1 Measurement Acquisition (Part I)
Optimizing Measurement Acquisition for Posterior Sampling Methods The
proposed methods in Part I rely on end-to-end network architectures, which require
paired data to train and could be prone to overfitting due to a lack of uncertainty
quantification in the decision-making process. Incorporating posterior sampling
methods like PnP-DM from Part II could address problems where paired data is
unavailable and lead to better performance and robustness. It remains a challenge to
optimize the sampling patterns with posterior sampling methods that do not permit
backpropagation.

Implementation of Sequential Strategies While our learned sequential sampling
strategies showed significant improvements in retrospective experiments, it remains
an open question whether these improvements translate to real-world performance
when deployed on an actual MRI scanner. A key implementation challenge lies in
integrating deep learning-based sequential policies into MRI sampling sequences
without causing disruptions for the underlying acquisition protocols.

Extension to Other Imaging Modalities While our methods are developed for
CS-MRI, they may generalize to other modalities. For example, in computed
tomography (CT), one could optimize the angular views of X-ray acquisition for
downstream diagnostic tasks. Exploring these extensions could broaden the impact
of adaptive and task-driven sampling strategies.

9.2.2 Posterior Estimation (Part II)
Partially-Known or Mismatched Forward Models The proposed methods in
Part II assume the forward model A to be accurate, which is sometimes unrealistic
in practice. Many real-world problems, such as photographic deblurring and radio
astronomy, involve uncertainty or a mismatch in the forward process. Developing
posterior estimation methods that can handle these imperfections remains an open
challenge.
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More General Noise Distributions The current framework is designed under
the assumption of additive Gaussian measurement noise. However, many real-
world imaging problems involve structured or non-Gaussian noise. Extending the
framework to accommodate more general and complex noise distributions (e.g.,
Poisson, impulse, structured noise) is an important direction.

4D Imaging While the proposed framework can handle inverse problems on 3D
videos, many real-world imaging problems involve inherently 4D data. Scaling
up the current framework to handle the spatiotemporal evolution of 3D volumes
would be an interesting future direction. For example, one potentially viable idea
is to partition 3D volumes into lower-dimensional slabs or cubes that are more
computationally tractable.

Compatibility with Autoregressive Generative Models Autoregressive models
have recently achieved state-of-the-art performance on generative modeling [281].
Even though they are not strictly DMs, they share a similar iterative generation
procedure over a sequence of image manifolds. It would be worthwhile to explore
whether the insights and techniques we developed for DM-based posterior estima-
tion can be leveraged for designing more powerful techniques with autoregressive
models.

9.3 Concluding Remarks
As computational imaging continues to push the boundaries of science and engineer-
ing, the opportunities to improve how we see and interpret the world are expanding
rapidly. This thesis contributes to that progress by proposing new approaches for
more intelligent measurement acquisition and principled posterior estimation—two
foundational stages of the imaging pipeline. We believe that our results not only ad-
dress concrete challenges and demonstrate practical impact, but also open the door
to promising future directions that further enhance the performance, robustness, and
efficiency of computational imaging systems. Realizing these advances will require
even deeper integration between physical models and learning-based algorithms.
Looking ahead, we hope the insights and frameworks developed in this work will
serve as building blocks for the next generation of intelligent imaging systems.
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A p p e n d i x A

APPENDIX FOR CHAPTER 3

A.1 Model Architectures
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Figure A.1: Flow diagram of the reconstructor, R𝜽 (·), in the proposed frame-
work. We use a residual U-Net reconstructor for all of our models.

A.1.1 Reconstructor
In Figure A.1, we provide the network diagram for the reconstructor. As stated in
the main paper, we use the standard U-Net architecture following [12, 13, 338]. The
input to the reconstructor is the complex-valued zero-filled image, and the output is
a single-channel real-valued image. The initial convolutional layer has 64 channels,
which are doubled after every downsampling layer. The reconstructor uses skip-
connections, depicted as white horizontal arrows, that concatenate feature maps at
different levels for easier optimization.

A.1.2 Samplers
Figure A.2 shows the detailed architecture of our neural samplers. On top, we
show the sampler architecture for the 1D line sampling setting, which is a five-
layer Multilayer Perceptron (MLP) network with 512 channels in the hidden layers.
The input to the sampler includes the up-to-date sampling mask 𝑴 (𝑡) , 𝑘-space
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Figure A.2: Flow diagram of the samplers, S𝒒 (·), in the proposed framework.
We use a Multilayer Perceptron for 1D line sampling and a U-Net for 2D point sam-
pling. Both networks take previous observations as inputs and output a probability
map, which is rescaled and binarized into the final sub-sampling mask at the next
iteration.

measurements 𝒚 (𝑡) , and the 𝑘-space of reconstruction 𝑭𝒙̂ (𝑡) . A uniformly random
vector 𝒖 is also given as an input for Bernoulli sampling. The output is a binary
sampling mask 𝒎 (𝑡+1) generated through stochastic binarization with the random
vector 𝒖. The bottom shows the 2D point sampling architecture. For the 2D setting,
the sampler uses a U-Net architecture [250]. Inputs and outputs are the same as the
1D line sampler.

A.2 Baseline Details
A.2.1 Random
Random subsampling is a widely used 𝑘-space sampling pattern that utilizes stochas-
tic subsampling for creating incoherent artifacts that can be easily recognized and
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removed through post-processing techniques [110]. In our implementation, we first
pre-select the central low-frequency 𝑘-space region and then uniformly sample from
the remaining lines or points until exhausting the sampling budget. We pair this
sampler with a U-Net reconstructor trained with this random sampling pattern for
50 epochs. The reconstructor architecture and training schedule are the same as
those of our sequential models.

A.2.2 Equispaced
Equispaced subsampling is another widely used 1D line sampling baseline [338].
Lines are sampled equidistantly from each other with an offset to achieve the desired
sampling budget. We choose the equispaced baseline due to its ease of implemen-
tation on existing MRI scanners [338].

A.2.3 Spectrum
Spectrum is a data-driven 𝑘-space sampling approach introduced in [289]. The
spectrum method utilizes the fact that 𝑘-space samples with higher power often
contain more information about the image’s large-scale structure. To identify the 𝑘-
space samples, we average the magnitude spectrum of all fully-sampled 𝑘-space data
in the training set. We then select samples with the largest average power, which will
form the final subsampling mask. We pair this sampler with a U-Net reconstructor
trained using measurements acquired according to this learned sampling pattern.

A.2.4 LOUPE
LOUPE [12] is the state-of-the-art single-shot sampling method. It jointly optimizes
an subsampling pattern along with an image reconstruction network. We follow
the official implementation in [12] but replace the binarization function in the
subsampling mask generation with a straight-through estimator following [20, 344].
The same modification is applied to our method as described in Section 3.3.1. The
reconstructor architecture and other hyperparameters are the same as those of our
sequential methods.

A.2.5 PG-MRI
PG-MRI [13] formulates the 𝑘-space sample selection as a partially observable
Markov decision process and learns a sequential sampling policy using the pol-
icy gradient algorithm [18]. According to their evaluations, PG-MRI outperforms
multiple baseline approaches, including uniform random [110], equispaced sam-
pling [338] and another Monte-Carlo tree search-based reinforcement learning ap-
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proach [146]. We use the author’s official code for our implementation. The
reconstructor is pre-trained using the uniform random policy. We then plug the pre-
trained reconstructor into the pipeline to evaluate the image reconstruction reward
for sampling policy training. All other hyperparameters are the same as the original
paper [13].

A.2.6 Evaluator
[351] proposed a greedy acquisition framework that trains a ResNet to reconstruct
the anatomical image simultaneously with an Evaluator network trained to select
the most uncertain measurements in 𝑘-space. As there is no official code available
for [351], we use the reimplementation in [231]. The reconstructor uses a cascade
ResNet architecture with four cascade blocks, each composed of three residual
bottleneck layers [126] followed by a data consistency layer [255]. The evaluator
contains four convolutional blocks, and each consists of a 4×4 convolution, instance
normalization, and a LeakyReLU activation layer [209]. We use a batch size of 128
and train the model for 200 epochs with a learning rate of 1𝑒 − 4 using the Adam
optimizer [162].
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Figure A.3: Histograms of pair-wise SSIM differences on all 1,851 test images
using 1D line sampling with 4× acceleration factor. We calculate the improvement
of our model with different sequential steps over LOUPE. Our sequential model and
non-sequential baseline significantly outperform LOUPE for most subjects.

A.3 Further Analyses
A.3.1 Pair-Wise Comparison for 1D Line Sampling
We report extended pair-wise SSIM comparisons for 1D line sampling on the test
set. Figure A.3 and Figure A.4 show the SSIM improvement distribution on the test
set. Here, we compare our method with the previous sequential sampling approach
Evaluator [351] and PG-MRI [13] by measuring their improvements over the state-
of-the-art single-shot sampling baseline LOUPE [12]. Our model outperforms
LOUPE for 97.19% of the targets while both previous sequential sampling baselines
perform substantially worse than the LOUPE baseline, with only 1.58% and 5.64%
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Figure A.4: Histograms of pair-wise SSIM differences on all 1,851 test images
using 1D line sampling with 4× acceleration factor. We calculate the improve-
ment of the Evaluator (left), PG-MRI (middle), and our best sequential model (4-step
sequential) (right) over LOUPE. Our 4-step sequential model significantly outper-
forms LOUPE, while the other two baselines are substantially worse than LOUPE
for most subjects.

of the subjects outperforming LOUPE for Evaluator and PG-MRI, respectively. This
highlights the importance of combining co-design and sequential sampling in an
end-to-end fashion for MR 𝑘-space sampling.

A.3.2 Pair-Wise Comparison for 2D Point Sampling
In Figure A.5, we show the SSIM improvement distribution for different methods
compared to the LOUPE baseline. The histograms across each row show that, for all
three acceleration factors, the non-sequential model has marginal improvement over
the LOUPE baseline; in contrast, our sequential model significantly outperforms
LOUPE as we increase the number of sequential sampling steps. By inspecting Fig-
ure A.5 down each column, our models demonstrate increasingly larger advantages
over LOUPE as the number of sampled measurements increases from 16× to 4×
(i.e., the acceleration factor decreases).

A.4 Additional Reconstruction Examples
We present some additional reconstruction examples in Figure A.6 and Figure A.7.
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Figure A.5: Histograms of pair-wise SSIM differences on all 1,851 test images
using 2D line sampling with 4× (first row), 8× (second row), and 16× (third row)
acceleration factors. We calculate the improvement of our model with different
sequential steps over LOUPE in each column. For all three acceleration factors,
our sequential model outperforms the non-sequential baseline and LOUPE on an
increasing percentage of test samples as the number of sequential steps increases.
Our sequential models also have increasingly larger advantages over LOUPE as the
number of sampled measurements increases (i.e., the acceleration factor decreases).
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Figure A.6: Visualizations of the reconstructions of the 394th (top), 1083th

(middle), 1506th (bottom) test images with an acceleration factor of 4× for 1D
line sampling. Zoomed-in image patches highlight our significant improvement
over previous methods. We find that our learned masks for the 1D line sampling
case usually consist of adjacent low-frequency samples. However, only a few of
the learned samples have their conjugate symmetric points sampled as well. Our
learned policy appears to leverage the conjugate symmetry of the 𝑘-space and trade
off taking more measurements with taking fewer measurements with higher SNR
(by effectively sampling the same measurement twice).
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Figure A.7: Visualizations of the reconstructions of the 1355th test sample with
an acceleration factor of 4× (top) and 8× (bottom) for 2D point sampling. A
zoomed-in image patch is shown along with the cumulative 𝑘-space measurements
selected by each policy. Orange arrows point out the regions where our sequential
approach provides more accurate and detailed local structures.
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A p p e n d i x B

APPENDIX FOR CHAPTER 4

B.1 Implementation Details
In this section, we describe the implementation details of Tackle and the baseline
methods.

B.1.1 Further Information on Datasets and Their Preparation
For each dataset in Section 4.4, we randomly split the data into training, validation,
and test sets on the patient level, which means that each validation or test slice comes
from a patient whose images are not used for training.

B.1.1.1 ROI-Oriented Reconstruction

For this task, we use all images with Meniscus Tear (MT) annotations in the fastMRI+
dataset [338, 354]. We follow the specific data splitting in [231], which results in
4,158 slices for training, 210 slices for validation, and 201 slices for testing. We
crop the center of the 𝑘-space of each image and adjust the size and position of each
bounding box accordingly.

B.1.1.2 Brain Tissue Segmentation

For this task, we use the 109th coronal slice of each volume in the OASIS dataset
[213]. The access to the dataset can be found here1. Specifically, we use the 4-label
tissue-type segmentation maps, which include segments of the cortex, the white
matter, the subcortical gray matter, and the cerebrospinal fluid (CSF). We split the
data into 248 slices for training (≈60%), 82 slices for validation (≈20%), and 84
slices for testing (≈20%).

B.1.1.3 Knee Tissue Segmentation

For this task, we use all the sagittal slices in the SKM-TEA dataset [83] that contains
all four segmentation labels (the patellar cartilage, the femoral cartilage, the tibial
cartilage, and the meniscus). We split the data into 2,935 slices for training (≈60%),
1,040 slices for validation (≈20%), and 987 slices for testing (≈20%).

1https://github.com/adalca/medical-datasets/blob/master/neurite-oasis.md

https://github.com/adalca/medical-datasets/blob/master/neurite-oasis.md
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B.1.1.4 Pathology Classification

For this task, we use all the images acquired by the FLAIR sequence in the BRATS
dataset [219] to detect the existence of the Glioma tumor. FLAIR stands for fluid
attenuated inversion recovery, a kind of inversion recovery sequence that is com-
monly used for detecting various brain lesions due to its ability to suppress the CSF
signal and enhance lesion-to-background contrast [154]. Empirically, we find that
it is more accurate to detect the existence of the Glioma on FLAIR images than on
images with the other contrasts in the BRATS dataset. We split the data into 30,495
slices for training (≈60%), 9,996 slices for validation (≈20%), and 10,353 slices for
testing (≈20%).

B.1.2 Training and Implementation Details of Tackle
B.1.2.1 Training Details

For all experiments, the models were trained by the Adam [162] optimizer with
𝛽1 = 0.9, 𝛽2 = 0.999 on a single NVIDIA A6000 GPU. We choose the best learning
rate among {1e-2, 1e-3, 1e-4}, and trained all models until convergence (i.e., no
improvement for 10 epochs on the validation set according to the task-specific
evaluation metric). For instance, if a Tackleseg. model achieves a higher Dice score
on the validation set than all previous epochs on epoch 42, the model will be saved
as a checkpoint. If it has no further improvement until epoch 52, then the training
will be terminated, and the saved checkpoint on epoch 42 will be used for reporting
the final results.

The training of our proposed framework is conducted by retrospective subsampling
on fully sampled measurements. The first module is the sampler, which requires
no input and directly learns a matrix that contains the probability of sampling each
𝑘-space frequency. The output of the sampler is the subsampling mask 𝒎, in
which 1 represents the measurements to be sampled and 0 represents those not to
be sampled. Sampling amounts to taking the element-wise product between 𝒎 and
the fully sampled measurements 𝒌, which gives us the subsampled measurements
𝒚 := 𝒎⊙ 𝒌. The retriever will then take the two-channel complex measurements 𝒚 as
the input and output a single-channel real image 𝒙̂. In the multi-coil case, 𝒚 contains
signals from multiple coils with different sensitivity maps, and 𝒙̂ is reconstructed by
taking the root sum of squares across all coils. For reconstruction tasks (full-FOV
reconstruction and ROI-oriented reconstruction), 𝒛̂ = 𝒙̂ will be the final output for
loss calculation and back-propagation. For downstream tasks beyond reconstruction,
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we feed 𝒙̂ into an additional predictor which gives a prediction 𝒛̂. In this case, 𝒛̂ will
be the final output for loss calculation and back-propagation.

B.1.2.2 Retriever Architecture

Following the E2E-VarNet architecture [267], our retriever operates in 𝑘-space and
contains 12 refinement steps, each of which includes a U-Net [250] with independent
weights from each other. The update rule of the 𝑡-th refinement step is

𝒌 (𝑡+1) = 𝒌 (𝑡) − 𝜂(𝑡)𝒎 ⊙
(
𝒌 (𝑡) − 𝒚

)
+G(𝑡)

(
𝒌 (𝑡)

)
where 𝒎 is the subsampling mask, 𝒚 is the measurement, 𝒌 (𝑡) is the reconstructed
𝑘-space, 𝜂(𝑡) is a data consistency parameter, and G(𝑡) is the refinement module
defined as

G(𝑡)
(
𝒌 (𝑡)

)
:= 𝑭𝑬

(
UN(𝑡)

(
𝑹𝑭−1𝒌 (𝑡)

))
.

Here, 𝑬 and 𝑹 are the expand and reduce operations across all coils (see [267] for
more details), and UN(𝑡) is the U-Net model at the 𝑡-th step. Specifically, we use the
standard U-Net [250] architecture with 2 input and output channels, 4 average down-
pooling layers, and 4 up-pooling layers. The model starts with an 18-channel output
for the input layer and doubles the number of channels with each downsampling
layer. Between every two pooling layers are two convolution modules, each of which
consists of a 3 × 3 convolution, an instance normalization [286], and a LeakyReLU
activation with negative slope of 0.2. The input to each U-Net is first normalized
to zero mean and standard deviation of 1 before being fed into the network, and
will be normalized back to the original mean and standard deviation after passing
through the network. After 12 refinement steps, the final output layer of the retriever
is an inverse Fourier transform followed by a root-sum-squares reduction for each
pixel over all coils. The output of the retriever is a batch of single-channel images.
For reconstruction tasks, a loss function will be directly applied to the output. For
non-reconstruction tasks, there is an additional predictor module.

B.1.2.3 Predictor Architecture

For tissue segmentation tasks, the predictor is a U-Net model that has the same
architecture as the refinement network described above, except for the following
differences: There is 1 input channel and 𝑐 output channels (where 𝑐 is the number
of segmentation classes). The model starts with a 64-channel output for the input
layer. The convolution modules use the Parametric ReLU activation. There is no
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normalization after the output. We use the U-Net implementation in the MONAI
package [45]. For the pathology classification task, the predictor is a ResNet18
model with 1 input channel and 2 output dimensions. We normalize the input to
zero mean and a standard deviation of 1 before feeding it into the network. We use
the ResNet implementation in the torchvision package [212].

B.1.3 Pre-Select Region and Sensitivity Map Estimation
Among all the datasets considered in this manuscript, fastMRI+ [338, 354] and
SKM-TEA [83] contain multi-coil 𝑘-space measurements. Reconstruction from
multi-coil 𝑘-space data requires estimation of the coil sensitivity maps, i.e., 𝑺𝑖 in
Equation (2.2), using the central low-frequency region of the 𝑘-space, called the
Auto-Calibration Signal (ACS). We set the ACS region as a square around the DC
component that contains 1/8 of the subsampling budget. For example, if a dataset
contains 𝑘-space measurements of size 256 × 256, for 8× acceleration, we select
the center 32 × 32 low frequencies as the ACS. We also include the pre-determined
ACS region for single-coil 𝑘-space experiments because we find that it stabilizes the
training of some baselines.

Given the ACS, we estimate coil sensitivity maps using the Sensitivity Map Esti-
mation (SME) module introduced in [267]. In contrast to the ESPIRiT algorithm
[285], SME estimates the sensitivity maps with a CNN applied to each coil image
independently. The architecture of the CNN in SME is the same as the U-Net in
each E2E-VarNet cascade, except with an 8-channel output instead of an 18-channel
output for the input layer.

B.1.4 Further Details on the Implementation of SemuNet [309]
For the brain and knee segmentation tasks, we compare the proposed method with
SemuNet [309]. Originally demonstrated for a brain segmentation task, it also aims
to jointly optimize a subsampling mask, a reconstructor, and a task predictor for
the downstream accuracy. SemuNet uses a hybrid of ℓ1 loss for reconstruction
and cross-entropy loss for segmentation. Since the code of SemuNet has not been
released, we have tried to reproduce the results in the original paper to our best
efforts. Specifically, we follow their proposed loss function and architecture of the
sampler, the residual U-Net reconstructor, and a U-Net predictor. We follow the
original paper to use an Adam optimizer [162] and not pre-select low-frequency
measurements. However, since our tasks and datasets are different from those in
[309], we empirically find that the learning rate and the parameter 𝜆 that adjusts
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Figure B.1: Conceptual illustration of the subsampling setup with a knee ex-
ample. The back dots on the 𝑘𝑦-𝑘𝑧 plane represent 𝑘-space trajectories along 𝑘𝑥 ,
which are illustrated by the black arrows. We consider subsampling in the two
phase-encoding dimensions (𝑘𝑦 and 𝑘𝑧) of a 3D Cartesian sequence, where the
subsampling pattern 𝒎 is learned from data for some specific downstream task.

the trade-off between the two losses are suboptimal for our settings. Therefore, we
conduct a grid search on the learning rate in {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5}
and 𝜆 ∈ {0.0001, 0.001, 0.01}. For both 16× and 64× accelerations, we choose the
best combination of parameters based on the performance on the validation set, and
report the Dice score on the test set.

B.2 Subsampling Setup and Implementation
In this work, we optimize the subsampling mask 𝒎 over all 2D subsampling patterns.
We implement 2D subsampling patterns in practice by subsampling in the two
phase encoding dimensions of a 3D Cartesian sequence based on the 2D pattern, as
illustrated in Figure B.1. We denote the number of trajectories along 𝑘𝑦 and 𝑘𝑧 (the
two phase encoding directions) as 𝑛𝑘𝑦 and 𝑛𝑘𝑧 , respectively. For the fully sampling
scenario, one needs to sequentially sample a total of 𝑛𝑘𝑦𝑛𝑘𝑧 trajectories, which
could take a long time to acquire in practice. Given a 2D subsampling mask 𝒎, we
subsample in the 𝑘𝑦-𝑘𝑧 plane according to 𝒎. If 𝒎 has an acceleration ratio of 𝑅,
the subsampling sequence only takes 𝑛𝑘𝑦𝑛𝑘𝑧/𝑅 trajectories, and the acquisition time
will be reduced by a factor 𝑅 in practice. One can obtain the slice-wise 2D 𝑘-space
measurements 𝒚 by taking the 1D inverse Fourier Transform of the raw 3D 𝑘-space
data along 𝑘𝑥 . We have implemented a 4×-accelerated version of the sequence
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Table B.1: Comparison of TackleROI on in- and out-of-distribution samples
under different acceleration ratios (𝑅).

Metric 𝑅
Samples w/ MT Samples w/o MT
(in-distribution) (out-of-distribution)

4 37.65 36.92
PSNR (dB) 8 33.28 32.88

16 32.06 31.74

that we use in Section 4.5 on the Siemens IDEA sequence programming platform,
using the subsampling scheme we describe above. Figure 4.12 demonstrates that the
prospective subsampling version of our learned sequence achieves the same level of
visual quality as the fully sampling version but only takes a quarter of the scan time.
This result highlights the real-world practicality of our approach.

B.3 Additional Validation on Out-of-Distribution Data
In Chapter 4, we show that TackleROI improves the reconstruction of ROIs that con-
tain the meniscus tear (MT). In practice, it is likely that a healthy subject or someone
with a different pathological lesion from the meniscus tear will get scanned. So it
is important that the learned sequence should also generalize to out-of-distribution
subjects. Here we take our trained TackleROI models with 4×, 8×, and 16× accel-
erations from our ROI reconstruction experiments, and directly test them on images
that do not contain the meniscus tear, without additional fine-tuning. The results are
summarized in Table B.1.

Although it is not surprising that TackleROI performs better on the in-distribution
data (samples w/ MT), we want to point out that the two numbers above corre-
spond to two different test sets and are thus not directly comparable. The main
takeaway is that TackleROI can robustly recover samples without MT, even if it is
trained on samples with MT. As discussed in Section 4.4.1, TackleROI improves
the ROI reconstruction by trading off 𝑘-space frequencies for the local anatomy to
attain improved resolution. We find that such a strategy can lead to satisfactory
reconstruction quality even when the underlying subject does not contain the target
pathology.

B.4 Additional Results
We provide a box-plot comparison for the Meniscus Tear ROI reconstruction in
Figure B.2. We also provide some visual examples for the tumor classification task
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(26.95±0.63)95% CI (28.23±0.44) (30.32±0.55) (34.04±0.63)

(25.16±0.60)95% CI (26.05±0.48) (27.32±0.57) (31.53±0.61)

Figure B.2: Box plots of the Meniscus Tear ROI reconstruction results under 8×
(a) and 16× (b) accelerations. Within the rectangle between each pair of methods,
the top number is the percentage of samples that get improved, and the bottom
number is the 𝑝-value given by the paired samples t-test. A higher percentage and
a lower 𝑝-value indicate a more significant improvement. The 95% confidence
intervals for all methods are given below their names.

in Figure B.3. For the three reconstruction-oriented baselines (left three columns),
the inputs to the predictor network are typical reconstructions. Optimized end-to-
end for classification accuracy, the retriever of Tackleclass. learns a feature map
that highlights the region where a tumor could exist. Similar to the segmentation
results, we find that the end-to-end model Tackleclass. circumvents the typical
reconstruction but preserves image-level features that are helpful for downstream
classification prediction.
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Figure B.3: Visualization of the input of the predictor network for the brain
tumor classification task under 16× acceleration on two samples of the BRATS
dataset. Similar to the segmentation results, as a co-design method, Tackleclass. cir-
cumvents the typical “reconstruction” in terms of point-wise similarity with the
ground truth image. Instead, the retriever learns a feature map that highlights the
region around the tumor for the downstream prediction.
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A p p e n d i x C

APPENDIX FOR CHAPTER 6

C.1 Theory
C.1.1 Interpolation of PnP-DM
In this section, we formally introduce the interpolation of PnP-DM. We consider the
case where the coupling strength 𝜂 is constant, i.e., 𝜂𝑘 ≡ 𝜂 and make the following
assumption.

Assumption C.1.1. There exists a unique 𝑡∗ such that 𝜎(𝑡∗) = 𝜂.

This assumption is satisfied for common diffusion models. Popular choices of
the noise level schedule include 𝜎(𝑡) = 𝑡 or 𝜎(𝑡) =

√
𝑡, which are monotonically

increasing functions of 𝑡. We first present two propositions showing that the two
steps in SGS can be implemented by running two SDEs.

Proposition C.1.2 (Brownian bridge for the likelihood step). For iteration 𝑘 with
iterate 𝒙 (𝑘) , the likelihood step of SGS is equivalent to solving the following SDE
from 𝑡 = 0 to 𝑡 = 1:

d𝒙𝑡 = 𝜂2∇ log 𝜙𝑡 (𝒙𝑡)d𝑡 + 𝜂d𝒘𝑡 (C.1)

where 𝒙0 = 𝒙 (𝑘) and 𝜙𝑡 (𝒙) :=
∫

exp[− 𝑓 (𝒛; 𝒚) − 1
2𝜂2 (1−𝑡) ∥𝒙 − 𝒛∥22]d𝒛.

Proof. This proposition is due to the Brownian bridge construction presented in
Lemma 4 of [336]. This SDE satisfies that 𝑝(𝒙1 |𝒙0) ∝ exp

(
− 𝑓 (𝒙1; 𝒚) − 1

2𝜂2 ∥𝒙0 − 𝒙1∥22
)
.

Therefore, solving Equation (C.1) from 𝑡 = 0 to 𝑡 = 1 is equivalent to taking a like-
lihood step.

Proposition C.1.3 (EDM reverse diffusion for the prior step). For iteration 𝑘 with
iterate 𝒛(𝑘) , the prior step of SGS is equivalent to solving the following SDE from
𝑡 = 𝑡∗ to 𝑡 = 0:

d𝒙𝑡 =
[
𝑢(𝑡)𝒙𝑡 − 𝑣(𝑡)2∇ log 𝑝𝑡 (𝒙𝑡)

]
d𝑡 + 𝑣(𝑡)d𝒘̄𝑡 (C.2)

where 𝒙𝑡∗ = 𝑠(𝑡∗)𝒛(𝑘) , 𝑢(𝑡) := ¤𝑠(𝑡)
𝑠(𝑡) , 𝑣(𝑡) := 𝑠(𝑡)

√︁
2 ¤𝜎(𝑡)𝜎(𝑡), and 𝑝𝑡 is the distribu-

tion of 𝑠(𝑡)𝒙 + 𝑠(𝑡)𝜎(𝑡)𝝐 with 𝒙 following the prior distribution 𝑝(𝒙) ∝ exp(−𝑔(𝒙))
and 𝝐 ∼ N(0, 𝑰).
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Proof. First note that Equation (C.2) is exactly Equation (6.6) written in terms of
𝑢(𝑡) and 𝑣(𝑡). We know that the Equation (C.2) is the reverse SDE of the following
SDE

d𝒙𝑡 = 𝑢(𝑡)𝒙𝑡d𝑡 + 𝑣(𝑡)d𝒘𝑡 , (C.3)

where 𝒙0 ∼ 𝑝(𝒙) and 𝑝𝑡 is the marginal distribution of 𝒙𝑡 . As shown in Section 6.3.2,
it holds for Equation (C.3) that

𝑝(𝒙0 |𝒙𝑡) ∝ exp
(
−𝑔(𝒙0) −

1
2𝜎(𝑡)2

∥𝒙0 − 𝒙𝑡/𝑠(𝑡)∥22
)
.

As Equation (C.2) is the time-reversed process of Equation (C.3), they share the
same path distribution and thus the same conditional distribution 𝑝(𝒙0 |𝒙𝑡). So, if
we set 𝒙𝑡∗ = 𝑠(𝑡∗)𝒛(𝑘) , we have that

𝑝(𝒙0 |𝒙𝑡∗) ∝ exp
(
−𝑔(𝒙0) −

1
2𝜎(𝑡∗)2

∥𝒙0 − 𝒛(𝑘) ∥22
)
∝ exp

(
−𝑔(𝒙0) −

1
2𝜂2 ∥𝒙0 − 𝒛(𝑘) ∥22

)
,

which is the desired conditional distribution of the prior step. Therefore, solving
Equation (C.2) from 𝑡 = 𝑡∗ to 𝑡 = 0 is equivalent to taking a prior step.

Due to Proposition C.1.2 and Proposition C.1.3, the SDEs Equation (C.1) and
Equation (C.2) implement the two desired conditional distributions in SGS. In PnP-
DM, the prior step involves a network that approximates the score function of the
prior distribution, i.e., 𝒔𝑡 ≈ ∇ log 𝑝𝑡 , so the continuous-time process for the actual
update is

d𝒙𝑡 =
[
𝑢(𝑡)𝒙𝑡 − 𝑣(𝑡)2𝒔𝑡 (𝒙𝑡)

]
d𝑡 + 𝑣(𝑡)d𝒘̄𝑡 . (C.4)

We can then interpolate PnP-DM by considering a dynamic that alternates between
running Equation (C.1) and Equation (C.4).

Since each likelihood step takes 1 unit of time and each prior step takes 𝑡∗ units
of time, the total time of the interpolating process for 𝐾 iterations of PnP-DM is
𝑇𝐾 := 𝐾 (𝑡∗ + 1). We use 𝜏 to denote the time that has elapsed from initializing
PnP-DM with 𝒙 (0) . We define {𝜇𝜏} and {𝜋𝜏} as the distributions at time 𝜏 of the
non-stationary process initialized at 𝒙 (0) ∼ 𝜇𝑋0 (Figure 6.2 top) and the stationary
process initialized at 𝒙 (0) ∼ 𝜋𝑋 (Figure 6.2 bottom), respectively. Therefore, we
have

• 𝜇𝜏 = 𝜇𝑋𝑘 , 𝜋𝜏 = 𝜋𝑋 for 𝜏 = 𝑘 (𝑡∗ + 1) with 𝑘 = 0, · · · , 𝐾 , and

• 𝜇𝜏 = 𝜇𝑍𝑘 , 𝜋𝜏 = 𝜋𝑍 for 𝜏 = 𝑘 (𝑡∗ + 1) + 1 with 𝑘 = 0, · · · , 𝐾 − 1.
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C.1.2 A Key Lemma for General Diffusion Processes
Before proving our main result, we present a key lemma for our analysis, which
quantifies the time derivative of the KL divergence in terms of the Fisher divergence
along a pair of general diffusion processes.

Lemma C.1.4. Given the following pair of diffusion processes

d𝒙𝑡 = 𝑏(𝒙𝑡 , 𝑡)d𝑡 + 𝑐(𝑡)d𝒘𝑡 (C.5)

d𝒙̃𝑡 = 𝑏̃(𝒙̃𝑡 , 𝑡)d𝑡 + 𝑐(𝑡)d𝒘𝑡 (C.6)

where 𝑏(·, ·) : R𝑛 × R → R𝑛, 𝑏̃(·, ·) : R𝑛 × R → R𝑛, and 𝑐(·) : R → R. Let 𝜇𝑡 be
the distribution of 𝒙𝑡 initialized with 𝒙0 ∼ 𝜇0 for Equation (C.5), and let 𝜇𝑡 be the
distribution of 𝒙̃𝑡 initialized with 𝒙̃0 ∼ 𝜇0 for Equation (C.6). Then we have

𝜕𝑡KL(𝜇𝑡 | |𝜇𝑡) ≤ −
𝑐(𝑡)2

4
FI (𝜇𝑡 | |𝜇𝑡) +

1
𝑐(𝑡)2

∫ 


𝑏̃𝑡 − 𝑏𝑡


2

2
𝜇𝑡 . (C.7)

Proof of Lemma C.1.4. Writing 𝑏(·, 𝑡) as 𝑏𝑡 and 𝑏̃(·, 𝑡) as 𝑏̃𝑡 , by the Fokker-Planck
equations of Equation (C.5) and Equation (C.6), we have that

𝜕𝑡𝜇𝑡 = div
[(
𝑐(𝑡)2

2
∇ log 𝜇𝑡 − 𝑏𝑡

)
𝜇𝑡

]
and 𝜕𝑡𝜇𝑡 = div

[(
𝑐(𝑡)2

2
∇ log 𝜇𝑡 − 𝑏̃𝑡

)
𝜇𝑡

]
.
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Defining 𝜙(𝑥) := 𝑥 log 𝑥 and 𝜙′(𝑥) = d
d𝑥𝜙(𝑥) = log 𝑥 + 1, we can calculate

𝜕𝑡KL(𝜇𝑡 | |𝜇𝑡) = 𝜕𝑡
∫

𝜙

(
𝜇𝑡

𝜇𝑡

)
𝜇𝑡

=

∫
𝜙′

(
𝜇𝑡

𝜇𝑡

) (
𝜕𝑡𝜇𝑡 −

𝜇𝑡

𝜇𝑡
𝜕𝑡𝜇𝑡

)
+

∫
𝜙

(
𝜇𝑡

𝜇𝑡

)
𝜕𝑡𝜇𝑡

=

∫
𝜙′

(
𝜇𝑡

𝜇𝑡

) (
div

[(
𝑐(𝑡)2

2
∇ log 𝜇𝑡 − 𝑏𝑡

)
𝜇𝑡

]
− 𝜇𝑡
𝜇𝑡

div
[(
𝑐(𝑡)2

2
∇ log 𝜇𝑡 − 𝑏̃𝑡

)
𝜇𝑡

] )
+

∫
𝜙

(
𝜇𝑡

𝜇𝑡

)
div

[(
𝑐(𝑡)2

2
∇ log 𝜇𝑡 − 𝑏̃𝑡

)
𝜇𝑡

]
= −

∫ 〈
∇𝜙′

(
𝜇𝑡

𝜇𝑡

)
,
𝑐(𝑡)2

2
∇ log 𝜇𝑡 − 𝑏𝑡

〉
𝜇𝑡 +

∫ 〈
∇

[
𝜙′

(
𝜇𝑡

𝜇𝑡

)
𝜇𝑡

𝜇𝑡

]
,
𝑐(𝑡)2

2
∇ log 𝜇𝑡 − 𝑏̃𝑡

〉
𝜇𝑡

−
∫ 〈
∇𝜙

(
𝜇𝑡

𝜇𝑡

)
,
𝑐(𝑡)2

2
∇ log 𝜇𝑡 − 𝑏̃𝑡

〉
𝜇𝑡

= −
∫ 〈
∇𝜙′

(
𝜇𝑡

𝜇𝑡

)
,
𝑐(𝑡)2

2
∇ log

(
𝜇𝑡

𝜇𝑡

)
− 𝑏𝑡 + 𝑏̃𝑡

〉
𝜇𝑡 +

∫ 〈
∇𝜇𝑡
𝜇𝑡
,
𝑐(𝑡)2

2
∇ log 𝜇𝑡 − 𝑏̃𝑡

〉
𝜙′

(
𝜇𝑡

𝜇𝑡

)
𝜇𝑡

−
∫ 〈
∇𝜇𝑡
𝜇𝑡
,
𝑐(𝑡)2

2
∇ log 𝜇𝑡 − 𝑏̃𝑡

〉
𝜙′

(
𝜇𝑡

𝜇𝑡

)
𝜇𝑡

= −𝑐(𝑡)
2

2

∫ 



∇ log
(
𝜇𝑡

𝜇𝑡

)



2

2
𝜇𝑡 −

∫ 〈
∇ log

(
𝜇𝑡

𝜇𝑡

)
, 𝑏̃𝑡 − 𝑏𝑡

〉
𝜇𝑡

≤ −𝑐(𝑡)
2

4

∫ 



∇ log
(
𝜇𝑡

𝜇𝑡

)



2

2
𝜇𝑡 +

1
𝑐(𝑡)2

∫ 


𝑏̃𝑡 − 𝑏𝑡


2

2
𝜇𝑡

= −𝑐(𝑡)
2

4

∫ 



∇ log
(
𝜇𝑡

𝜇𝑡

)



2

2
𝜇𝑡 +

1
𝑐(𝑡)2

∫ 


𝑏̃𝑡 − 𝑏𝑡


2

2
𝜇𝑡

= −𝑐(𝑡)
2

4
FI (𝜇𝑡 | |𝜇𝑡) +

1
𝑐(𝑡)2

∫ 


𝑏̃𝑡 − 𝑏𝑡


2

2
𝜇𝑡

where we used the fact that−1
2𝑎

2−𝑎𝑏 ≤ −1
4𝑎

2+𝑏2,∀𝑎, 𝑏 ∈ R for the inequality.

C.1.3 Proof of Theorem 6.4.1
Now we are ready to prove Theorem 6.4.1.

Proof. We first consider the likelihood steps over𝐾 iterations of PnP-DM. Applying
Lemma 2 of [336] to the likelihood steps Equation (C.1) of the non-stationary and
stationary processes, we have that

𝜕𝜏KL(𝜋𝜏 | |𝜇𝜏) = −
𝜂2

2
FI(𝜋𝜏 | |𝜇𝜏) ≤ −

𝜂2

4
FI(𝜋𝜏 | |𝜇𝜏),
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for 𝜏 ∈ [𝑘 (𝑡∗ + 1), 𝑘 (𝑡∗ + 1) + 1] with 𝑘 = 0, ..., 𝐾 − 1. Integrating both sides over
𝜏 ∈ [𝑘 (𝑡∗ + 1), 𝑘 (𝑡∗ + 1) + 1], we get∫ 𝑘 (𝑡∗+1)+1

𝑘 (𝑡∗+1)
FI (𝜋𝜏 | |𝜇𝜏) d𝜏 =

4[KL(𝜋𝑋 | |𝜇𝑋
𝑘
) − KL(𝜋𝑍 | |𝜇𝑍

𝑘
)]

𝜂2 (C.8)

for 𝑘 = 0, ..., 𝐾 − 1.

Then, applying Lemma C.1.4 to the prior steps Equation (C.4) with

𝑏(𝒙𝑡 , 𝑡) := 𝑢(𝑡)𝒙𝑡 − 𝑣(𝑡)2∇ log 𝑝𝑡 (𝒙𝑡)
𝑏̃(𝒙𝑡 , 𝑡) := 𝑢(𝑡)𝒙𝑡 − 𝑣(𝑡)2𝒔𝑡 (𝒙𝑡)
𝑐(𝑡) := 𝑣(𝑡)
𝛿 := inf

𝑡∈[0,𝑡∗]
𝑣(𝑡),

we have that

𝜕𝜏KL(𝜋𝜏 | |𝜇𝜏) ≤ −
𝑣(𝜏)2

4
FI (𝜋𝜏 | |𝜇𝜏) +

1
𝑣(𝜏)2

∫ 

𝑣(𝜏)2 (𝒔𝜏 − ∇ log 𝑝𝜏)


2

2 𝜋𝜏

≤ −𝑣(𝜏)
2

4
FI (𝜋𝜏 | |𝜇𝜏) + 𝑣(𝜏)2

∫
∥𝒔𝜏 − ∇ log 𝑝𝜏∥22 𝜋𝜏

≤ −𝛿
2

4
FI (𝜋𝜏 | |𝜇𝜏) + 𝑣(𝜏)2E𝜋𝜏 ∥𝒔𝜏 − ∇ log 𝑝𝜏∥22 ,

for 𝜏 ∈ [𝑘 (𝑡∗ + 1) + 1, (𝑘 + 1) (𝑡∗ + 1)] with 𝑘 = 0, ..., 𝐾 − 1. Integrating both sides
over 𝜏 ∈ [𝑘 (𝑡∗ + 1) + 1, (𝑘 + 1) (𝑡∗ + 1)], we get∫ (𝑘+1) (𝑡∗+1)

𝑘 (𝑡∗+1)+1
FI (𝜋𝜏 | |𝜇𝜏) d𝜏 ≤

4[KL(𝜋𝑍 | |𝜇𝑍
𝑘
) − KL(𝜋𝑋 | |𝜇𝑋

𝑘+1)]
𝛿2 + 4𝜖score

𝛿2 (C.9)

where

𝜖score :=
∫ (𝑘+1) (𝑡∗+1)

𝑘 (𝑡∗+1)+1
𝑣(𝜏)2E𝜋𝜏 ∥𝒔𝜏 − ∇ log 𝑝𝜏∥22 d𝜏

=

∫ 𝑡∗+1

1
𝑣(𝜏)2E𝜋𝜏 ∥𝒔𝜏 − ∇ log 𝑝𝜏∥22 d𝜏.

Finally, combining Equation (C.8) and Equation (C.9) for 𝑘 = 0, ..., 𝐾−1, we obtain∫ 𝑇𝐾

0
FI (𝜋𝜏 | |𝜇𝜏) d𝜏 ≤

4[KL(𝜋𝑋 | |𝜇𝑋0 ) − KL(𝜋𝑋 | |𝜇𝑋
𝐾
)]

min(𝜂, 𝛿)2
+ 4𝐾𝜖score

𝛿2

≤
4KL(𝜋𝑋 | |𝜇𝑋0 )

min(𝜂, 𝛿)2
+ 4𝐾𝜖score

𝛿2

where 𝑇𝐾 := 𝐾 (𝑡∗ + 1). The proof is concluded by dividing 𝑇𝐾 on both sides.
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C.1.4 Discussion
To facilitate the discussion, we first present the following proposition.

Proposition C.1.5. Define a weighting function 𝜆(𝜏) over 𝜏 ∈ [0, 𝑇𝐾] such that for
𝑘 = 0, ..., 𝐾 − 1,

𝜆(𝜏) =

𝜂2 if 𝜏 ∈ [𝑘 (𝑡∗ + 1), 𝑘 (𝑡∗ + 1) + 1],

𝑣(𝜏)2 if 𝜏 ∈ [𝑘 (𝑡∗ + 1) + 1, (𝑘 + 1) (𝑡∗ + 1)] .

Then, under the same settings of Theorem 6.4.1, we have

1
𝑇𝐾

∫ 𝑇𝐾

0
𝜆(𝜏)FI (𝜋𝜏 | |𝜇𝜏) d𝜏 =

4KL(𝜋𝑋 | |𝜇𝑋0 )
𝐾 (𝑡∗ + 1) + 4𝜖score

𝑡∗ + 1
(C.10)

where 𝜖score :=
∫ 𝑡∗+1

1 𝑣(𝜏)2E𝜋𝜏 ∥𝒔𝜏 − ∇ log 𝑝𝜏∥22d𝜏.

Proof. With the definition of 𝜆(𝜏), we can apply Lemma 2 of [336] to the likelihood
steps and obtain∫ 𝑘 (𝑡∗+1)+1

𝑘 (𝑡∗+1)
𝜆(𝜏)FI (𝜋𝜏 | |𝜇𝜏) d𝜏 = 4[KL(𝜋𝑋 | |𝜇𝑋𝑘 ) − KL(𝜋𝑍 | |𝜇𝑍𝑘 )] (C.11)

for 𝑘 = 0, ..., 𝐾 − 1. Similarly, we can apply Lemma C.1.4 to the prior steps and
obtain∫ (𝑘+1) (𝑡∗+1)

𝑘 (𝑡∗+1)+1
𝜆(𝜏)FI (𝜋𝜏 | |𝜇𝜏) d𝜏 ≤ 4[KL(𝜋𝑍 | |𝜇𝑍𝑘 ) − KL(𝜋𝑋 | |𝜇𝑋𝑘+1)] + 4𝜖score

(C.12)

where

𝜖score :=
∫ (𝑘+1) (𝑡∗+1)

𝑘 (𝑡∗+1)+1
𝑣(𝜏)2E𝜋𝜏 ∥𝒔𝜏 − ∇ log 𝑝𝜏∥22 d𝜏

=

∫ 𝑡∗+1

1
𝑣(𝜏)2E𝜋𝜏 ∥𝒔𝜏 − ∇ log 𝑝𝜏∥22 d𝜏.

Together, for 𝜏 ∈ [0, 𝑇𝐾]. We can then get Equation (C.10) by combining Equa-
tion (C.11) and Equation (C.12) for 𝑘 = 0, ..., 𝐾 − 1 and dividing by 𝑇𝐾 :=
𝐾 (𝑡∗ + 1).

Unlike Theorem 6.4.1, this proposition calculates the weighted average of the Fisher
divergence along the two processes with the weighting function 𝜆(𝜏). The bound
in Theorem 6.4.1 on the unweighted average of Fisher divergence can be obtained
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by further lower-bounding the left-hand side of Equation (C.10) using the infimum
of 𝜆(𝜏) over 𝜏 ∈ [0, 𝑇𝐾]. Given this observation, we can see the role of 𝛿 in
Theorem 6.4.1. With a strictly positive 𝛿, the weighting function 𝜆(𝜏) is always
strictly positive, so the (unweighted) average Fisher divergence must converge to
0. This is precisely the case for the VP- and VE-SDE [266]. On the other hand,
if 𝛿 = 0, the Fisher divergence FI (𝜋𝜏 | |𝜇𝜏) may be increasingly large as 𝜆(𝜏) gets
closer to 0. For iDDPM and EDM, this could happen near 𝑡 = 0 in the reverse
diffusion at 𝑣(0) = 0 for these diffusion processes. Nevertheless, we can instead
consider a slightly adjusted diffusion coefficient 𝑣̃(𝑡) := 𝑣(𝑡) + 𝜖 with 𝜖 > 0. Using
the relation between scores and diffusions div(𝑝∇ log 𝑝) = Δ𝑝, we get the following
reverse SDE which has the same law as Equation (6.6) at each 𝑡:

d𝒙𝑡 =
[
¤𝑠(𝑡)
𝑠(𝑡) 𝒙𝑡 +

(
𝜖2

2
− 2𝑠(𝑡)2 ¤𝜎(𝑡)𝜎(𝑡)

)
∇ log 𝑝

(
𝒙𝑡
𝑠(𝑡) ;𝜎(𝑡)

)]
d𝑡+

(
𝑠(𝑡)

√︁
2 ¤𝜎(𝑡)𝜎(𝑡) + 𝜖

)
d𝒘̄𝑡 .

In this case, 𝑣̃(𝑡) = 𝑠(𝑡)
√︁

2 ¤𝜎(𝑡)𝜎(𝑡) + 𝜖 is strictly positive, so the convergence on
the unweighted average Fisher divergence is also guaranteed.

C.2 Inverse Problem Setup
Test Data Here is a summary of the test data for all experiments:

• For the synthetic prior experiment, we take images from the CelebA dataset
[196], turn them into grayscale, rescale them to [−1, 1], and resize them to
32 × 32 pixels for efficient computation. We then find the empirical mean and
covariance of the images to construct the Gaussian image prior. The ground
truth image is randomly drawn from this Gaussian prior.

• For the benchmark experiments, we use the first 100 images (index 00000 to
00099) in the FFHQ dataset [152]. For all linear inverse problems, the test
images are in RGB and normalized to the range [−1, 1]. For all nonlinear
problems, the test images are in grayscale and normalized to the range [0, 1].

• For the radio interferometry experiments, we generate synthetic sky images
using the code1.

• For the black hole experiments, we use the simulated data used in [269] and the
publicly available EHT 2017 data2 that was used to produce the first image of
the M87 black hole.
1https://github.com/liamconnor/polish-torch (unknown license)
2https://eventhorizontelescope.org/blog/public-data-release-event-

horizon-telescope-2017-observations

https://github.com/liamconnor/polish-torch
https://eventhorizontelescope.org/blog/public-data-release-event-horizon-telescope-2017-observations
https://eventhorizontelescope.org/blog/public-data-release-event-horizon-telescope-2017-observations
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Gaussian and Motion Deblur The forward model is defined as

𝒚 ∼ N(𝑩𝒙0, 𝜎
2
𝒚 𝑰)

where 𝑩 ∈ R𝑛×𝑛 is a circulant matrix that effectively implements a convolution
with kernel 𝒌 under the circular boundary condition. For the Gaussian deblurring
problem, we fix the kernel 𝒌 as a Gaussian kernel with standard deviation 3.0 and
size 61 × 61. For the motion deblurring problem, we randomly generate the kernel
𝒌 for each test image using the code3 with intensity of 0.5 and size 61× 61. For fair
comparison, the blur kernel for each test image is set to the same for all compared
methods.

Super-Resolution The forward model is defined as

𝒚 ∼ N(𝑷 𝑓 𝒙0, 𝜎
2
𝒚 𝑰),

where 𝑷 𝑓 ∈ R
𝑛
𝑓
×𝑛 is a matrix that implements a block averaging filter to down-

scale the images by a factor of 𝑓 . Specifically, we set 𝑓 = 4 and used the SVD
implementation from the code4 of [155].

Coded Diffraction Patterns (CDP) CDP is a measurement model originally pro-
posed in [42]. The target 𝒙 is illuminated by a coherent source and modulated by
a phase mask 𝑫. The light field then undergoes the far-field Fraunhofer diffraction
and is measured by a standard camera. Mathematically, the forward model of CDP
is defined as

𝒚 ∼ N(|𝑭𝑫𝒙0 |, 𝜎2
𝒚 𝑰),

where 𝑭 denotes the 2D Fourier transform. We follow [321] to set 𝑫 as a diagonal
matrix with entries drawn randomly from the complex unit circle.

Fourier Phase Retrieval We adopt a similar setting as [65]. In particular, the
forward model is defined as

𝒚 ∼ N(|𝑭𝑷𝒙0 |, 𝜎2
𝒚 𝑰),

where 𝑷 denotes the oversampling matrix that effectively pads 𝒙 in 2D matrix form
with zeros. We consider a 4× oversampling ratio for grayscale images of size
256 × 256, so 𝑷𝒙 has a size of 512 × 512.

3https://github.com/LeviBorodenko/motionblur (unknown license)
4https://github.com/bahjat-kawar/ddrm (MIT license)

https://github.com/LeviBorodenko/motionblur
https://github.com/bahjat-kawar/ddrm
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Black Hole Imaging We adopt the same BHI setup as in [269, 273]. Measure-
ments for black hole imaging are obtained using Very Long Baseline Interferometry
(VLBI). The cross-correlation of the recorded scalar electric fields at two telescopes,
referred to as the (ideal) visibility, is related to the source image 𝒙0 through a Fourier
transform, as given by the van Cittert-Zernike theorem [66, 339]

𝒌𝑡{𝑎,𝑏} (𝒙0) =
∫
𝜂

∫
𝛿

exp
[
−𝑖2𝜋

(
𝑢𝑡{𝑎,𝑏}𝜂 + 𝑣

𝑡
{𝑎,𝑏}𝛿

)]
𝒙0(𝜂, 𝛿)d𝜂d𝛿 ∈ C. (C.13)

Here, (𝜂, 𝛿) denotes the angular coordinates of the source image, and (𝑢𝑡{𝑎,𝑏}, 𝑣
𝑡
{𝑎,𝑏})

is the baseline vector between two telescopes {𝑎, 𝑏}, orthogonal to the source
direction. In practice, these measurements can be time-averaged over short intervals
during which we assume that the target 𝒙0 is static. The relationship between the
black hole image and each interferometric measurement, or visibility, is given by

𝑽𝑡{𝑎,𝑏} = 𝑔
𝑡
𝑎𝑔
𝑡
𝑏 · exp

[
−𝑖(𝜙𝑡𝑎 − 𝜙𝑡𝑏)

]
· 𝒌𝑡{𝑎,𝑏} (𝒙0) + 𝒏𝑡{𝑎,𝑏} ∈ C, (C.14)

where 𝑎 and 𝑏 denote a pair of telescopes, 𝑡 represents the time of measurement
acquisition, 𝑖 is the imaginary unit, and 𝒌𝑡{𝑎,𝑏} (𝒙0) is the Fourier component of the
target image 𝒙0 corresponding to the baseline between telescopes 𝑎 and 𝑏 at time 𝑡.
In practice, there are three main sources of noise in Equation (C.14): gain errors 𝑔𝑡𝑎
and 𝑔𝑡

𝑏
at the telescopes, phase errors 𝜙𝑡𝑎 and 𝜙𝑡

𝑏
, and baseline-based additive white

Gaussian noise 𝒏𝑡{𝑎,𝑏}. The gain and phase errors stem from atmospheric turbulence
and instrument miscalibration and often cannot be ignored. To correct for these
two errors, multiple noisy visibilities can be combined into data products that are
invariant to these errors, which are called closure phase and log closure amplitude
measurements [23, 50]

𝒚𝑡cp,{𝑎,𝑏,𝑐} := ∠(𝑽𝑡{𝑎,𝑏}𝑽
𝑡
{𝑏,𝑐}𝑽

𝑡
{𝑎,𝑐}) := A𝑡

cp,{𝑎,𝑏,𝑐} (𝒙0) ∈ R,

𝒚𝑡logca,{𝑎,𝑏,𝑐,𝑑} := log
©­­«
���𝑽𝑡{𝑎,𝑏}��� ���𝑽𝑡{𝑐,𝑑}������𝑽𝑡{𝑎,𝑐}��� ���𝑽𝑡{𝑏,𝑑}���

ª®®¬ := A𝑡
logca,{𝑎,𝑏,𝑐,𝑑} (𝒙0) ∈ R,

where ∠ computes the angle of a complex number. Given a total of 𝑀 telescopes,
there are in total (𝑀−1) (𝑀−2)

2 closure phase and 𝑀 (𝑀−3)
2 log closure amplitude mea-

surements at time 𝑡, after eliminating repetitive measurements. In our experiments,
we use a 9-telescope array (𝑀 = 9) from the Event Horizon Telescope (EHT)
and construct the data likelihood term based on these nonlinear closure quantities.
Since closure quantities are nonlinear transformations of the visibilities, the forward
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model in black hole imaging becomes non-convex. Additionally, because the clo-
sure quantities do not constrain the total flux (i.e., summation of the pixel values) of
the underlying black hole image, we add a constraint on the total flux defined as

𝒚flux :=
∫
𝜂

∫
𝛿

𝒙0(𝜂, 𝛿)d𝜂d𝛿. (C.15)

To aggregate data over time intervals and telescope combinations, the forward model
of black hole imaging can be expressed as

𝒚 :=
[
Acp(𝒙0),Alogca(𝒙0),Aflux(𝒙0)

]
:=

[
𝒚cp, 𝒚logca, 𝒚flux

]
, (C.16)

where 𝒚cp =

[
𝒚𝑡cp,{𝑎,𝑏,𝑐},∀𝑡 ∈ T , {𝑎, 𝑏, 𝑐}

]
is the set of all closure phase measure-

ments and 𝒚cp =

[
𝒚𝑡logca,{𝑎,𝑏,𝑐,𝑑},∀𝑡 ∈ T , {𝑎, 𝑏, 𝑐, 𝑑}

]
is the set of all log closure

amplitude measurements over the observation period T and combinations of tele-
scopes.

Overall, the potential function of the data likelihood is given by the sum of the 𝝌2

statistics

𝑓 (𝒙0; 𝒚) = − log 𝑝(𝒚 | 𝒙0)

=
1

𝑑cp𝜎
2
cp



Acp(𝒙0) − 𝒚cp


2

︸                          ︷︷                          ︸
𝝌2

cp

+ 1
𝑑logca𝜎

2
logca



Alogca(𝒙0) − 𝒚logca


2

︸                                       ︷︷                                       ︸
𝝌2

logca

+ 1
𝜎2

flux
∥Aflux(𝒙0) − 𝒚flux∥2︸                           ︷︷                           ︸

𝝌2
flux

(C.17)

where 𝜎cp, 𝜎logca, and 𝜎flux are the estimated standard deviations of the measured
closure phase, log closure amplitude, and flux, respectively. Additionally, 𝑑cp and
𝑑logca represent the total number of time intervals and telescope combinations for
the closure phase and log closure amplitude measurements.

The data mismatch metric reported in Figure 6.7 is defined as the sum of 𝝌2
cp and

𝝌2
logca measurements, which are calculated using theehtim.obsdata.Obsdata.chisq



170

function of the ehtim package5. Both 𝝌2 values should ideally be around 1 for data
with a high signal-to-noise ratio (SNR). Therefore, a data mismatch value around 2
to 3 is considered as fitting the measurements well.

Radio Interferometry We consider a deconvolution problem in radio interferom-
etry using the Deep Synoptic Array (DSA), following the setup in [73]. Similar to
black hole imaging, each interferometric measurement is given by a pair of antennas
and samples a Fourier coefficient of the underlying astronomical image. The spa-
tial frequency sampled by each measurement depends on both the locations of the
antennas with respect to each other and the observing wavelength. Given enough
antennas, one could densely sample the entire spatial frequency domain. However,
in practice, the array consists of a finite number of antenna pairs and operates over
a limited range of radio frequencies, resulting in incomplete Fourier coverage. In
the image domain, this translates to a convolution with a blur kernel defined by the
point spread function (PSF) of the antenna array.

Mathematically, the forward model can be formulated as

𝒚 = 𝑩(𝒙0 + 𝝐) (C.18)

where 𝑩 ∈ R𝑛×𝑛 represents convolution with the PSF under circular boundary
conditions, and 𝝐 ∼ N(0, 𝜎2

𝒚 𝑰) models background noise in the true sky image 𝒙0

before the signals reach the telescopes. Due to the linearity of 𝑩, Equation (C.18)
can be equivalently written as:

𝒚 = 𝑩𝒙0 + 𝒏

where 𝒏 ∼ N(0, 𝜎2
𝒚𝑩𝑩

𝑇 ). To apply PnP-DM to this problem, we implement
the likelihood step by setting the forward model as 𝑨 = 𝑩 and noise covariance
as 𝚺 = 𝑩𝑩𝑇 . One caveat is that the likelihood step involves 𝚺−1, which can
be problematic if 𝑩 is low-rank. To ensure numerical stability, we regularize
the inverse computation by adding a small constant of 1e-10 to the diagonal of
𝚺. In our experiments, we set 𝜎𝒚 = 0.05, corresponding to a signal-to-noise
ratio of approximately 5, which aligns with the expected noise level in DSA-2000
observations.

5https://github.com/achael/eht-imaging (GPL-3.0 license)

https://github.com/achael/eht-imaging
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C.3 Technical Details of PnP-DM
C.3.1 Likelihood Step
Linear Forward Model and Gaussian Noise As discussed in Section 6.3.1, in
the case of linear forward models and Gaussian noise, the likelihood step is

𝜋𝑍 |𝑋=𝒙 = N(𝒎(𝒙),𝚲−1)

where 𝚲 := 𝑨𝑇𝚺−1𝑨 + 1
𝜂2 𝑰 and 𝒎(𝒙) := 𝚲−1(𝑨𝑇𝚺−1𝒚 + 1

𝜂2 𝒙). The bottleneck here
is that both the mean and the covariance involve the matrix inverse 𝚲−1, which can
be prohibitive to compute directly for high-dimensional problems. Nevertheless, the
computational cost can be significantly alleviated when the noise is i.i.d. Gaussian,
i.e., 𝚺 = 𝜎2

𝒚 𝑰, and 𝑨 can be efficiently decomposed. For example, if one can
efficiently calculate the SVD of the forward model 𝑨, i.e., 𝑨 = 𝑼𝑺𝑽𝑇 , one can find
the Cholesky decomposition of 𝚲−1 as

𝚲−1 = 𝑳𝑳𝑇 where 𝑳 := 𝑽

(
1
𝜎2 𝑺

2 + 1
𝜂2 𝑰

)− 1
2

.

Since 𝑺 is a diagonal matrix, the second term can be calculated with only 𝑂 (𝑛)
complexity. Then, leveraging the property of multivariate Gaussian distribution,
we can sample 𝝐 ∼ N(0, 𝑰) and calculate 𝒛 = 𝒎(𝒙) + 𝑳𝝐 as a sample that exactly
follows the target Gaussian distribution N(𝒎(𝒙),𝚲−1). An analogous derivation
with the Fourier transform can be done when 𝑨 is a circulant convolution matrix.

Nonlinear Forward Model We provide the pseudocode of the LMC algorithm
for sampling the likelihood step with general differentiable forward models in Al-
gorithm 5.

Algorithm 5 Langevin Monte Carlo for the likelihood step under general A
Require: state 𝒙, coupling strength 𝜂 > 0, likelihood potential 𝑓 ( · ; 𝒚) with mea-

surements 𝒚
Ensure: step size 𝛾 > 0, number of iterations 𝐽 > 0

1: 𝒖(0) ← 𝒙
2: for 𝑗 = 0, · · · , 𝐽 − 1 do
3: 𝝐 𝑗 ∼ N(0, 𝑰)
4: 𝒖( 𝑗+1) ← 𝒖( 𝑗) − 𝛾∇ 𝑓 (𝒖( 𝑗); 𝒚) − 𝛾

𝜂2 (𝒖( 𝑗) − 𝒙) +
√︁

2𝛾𝝐 𝑗
5: end for
6: return 𝒖(𝐽)

Table C.1 summarizes the hyperparameters we used for solving the nonlinear inverse
problems considered in this chapter.
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Table C.1: List of hyperparameters for the likelihood step of PnP-DM.

Inverse problem Step size (𝛾) Number of iterations (𝐽)

Coded diffraction patterns 1.0e-3 100
Fourier phase retrieval 1.0e-4 100

Black hole imaging 1.0e-5 200

C.3.2 Prior step
The EDM Framework We formally introduce the EDM formulation [151] using
our notations. The forward diffusion process is defined as the following linear Itô
SDE

d𝒙𝑡 = 𝑢(𝑡)𝒙𝑡d𝑡 + 𝑣(𝑡)d𝒘𝑡 , (C.19)

where 𝑢(𝑡) : R → R, 𝑣(𝑡) : R → R are the drift and diffusion coefficients. The
generative process is the time-reversed version of Equation (C.19). According to
[9], it is another Itô SDE of the form

d𝒙𝑡 =
[
𝑢(𝑡)𝒙𝑡 − 𝑣(𝑡)2∇𝒙𝑡 log 𝑝𝑡 (𝒙𝑡)

]
d𝑡 + 𝑣(𝑡)d𝒘̄𝑡 , (C.20)

where 𝑝𝑡 (𝒙𝑡) is the marginal distribution of 𝒙𝑡 . There also exists a reverse probability
flow ODE

d𝒙𝑡 =
[
𝑢(𝑡)𝒙𝑡 −

1
2
𝑣(𝑡)2∇𝒙𝑡 log 𝑝𝑡 (𝒙𝑡)

]
d𝑡, (C.21)

which shares the same marginal distributions as Equation (C.20). Based on Equa-
tion (C.19), we have

𝑝(𝒙𝑡 |𝒙0) = N(𝑠(𝑡)𝒙0, 𝑠(𝑡)2𝜎(𝑡)2𝑰),

where 𝑠(𝑡) := exp
(∫ 𝑡

0 𝑢(𝜉)d𝜉
)

and 𝜎(𝑡) :=
√︃∫ 𝑡

0
𝑣(𝜉)2
𝑠(𝜉)2 d𝜉. We also have 𝒙𝑡/𝑠(𝑡) ∼

𝑝(𝒙;𝜎(𝑡)) where 𝑝(𝒙;𝜎(𝑡)) is the distribution obtained by adding i.i.d. Gaussian
noise of standard deviation 𝜎(𝑡) to the prior data. The idea of the EDM formulation
is to write the reverse diffusion directly in terms of the scaling and noise level of 𝒙𝑡
with respect to 𝒙0, which are more important than the drift and diffusion coefficients.
With the relations between 𝑢(𝑡), 𝑣(𝑡), 𝑝𝑡 and 𝑠(𝑡), 𝜎(𝑡), 𝑝(·;𝜎(𝑡)), we can rewrite
Equation (C.20) and Equation (C.21) as

d𝒙𝑡 =
[
¤𝑠(𝑡)
𝑠(𝑡) 𝒙𝑡 − 2𝑠(𝑡)2 ¤𝜎(𝑡)𝜎(𝑡)∇𝒙𝑡 log 𝑝

(
𝒙𝑡
𝑠(𝑡) ;𝜎(𝑡)

)]
d𝑡 + 𝑠(𝑡)

√︁
2 ¤𝜎(𝑡)𝜎(𝑡)d𝒘̄𝑡

(C.22)
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and

d𝒙𝑡 =
[
¤𝑠(𝑡)
𝑠(𝑡) 𝒙𝑡 − 𝑠(𝑡)

2 ¤𝜎(𝑡)𝜎(𝑡)∇𝒙𝑡 log 𝑝
(
𝒙𝑡
𝑠(𝑡) ;𝜎(𝑡)

)]
d𝑡. (C.23)

Note that Equation (C.22) is precisely the SDE 6.6 we considered for the prior step.
Finally, due to the Tweedie’s formula [90], we can approximate ∇𝒙𝑡 log 𝑝 ( · ;𝜎(𝑡))
by a denoiser [𝐷𝜃 ( · ;𝜎(𝑡))− · ]/𝜎(𝑡)2 trained to minimize the ℓ2 error of a denoising
objective. Substituting the score function with the approximation by the denoiser
and using the chain rule, we can further rewrite Equation (C.22) and Equation (C.23)
as

d𝒙𝑡 =
[(

2 ¤𝜎(𝑡)
𝜎(𝑡) +

¤𝑠(𝑡)
𝑠(𝑡)

)
𝒙𝑡 −

2 ¤𝜎(𝑡)𝑠(𝑡)
𝜎(𝑡) 𝐷𝜃

(
𝒙𝑡
𝑠(𝑡) ;𝜎(𝑡)

)]
d𝑡 + 𝑠(𝑡)

√︁
2 ¤𝜎(𝑡)𝜎(𝑡)d𝒘̄𝑡

(C.24)

and

d𝒙𝑡 =
[(
¤𝜎(𝑡)
𝜎(𝑡) +

¤𝑠(𝑡)
𝑠(𝑡)

)
𝒙𝑡 −

¤𝜎(𝑡)𝑠(𝑡)
𝜎(𝑡) 𝐷𝜃

(
𝒙𝑡
𝑠(𝑡) ;𝜎(𝑡)

)]
d𝑡. (C.25)

Pseudocode We provide the pseudocode for our prior step in Algorithm 6. Note
that the update rule is precisely the Euler discretization of Equation (C.24) and
Equation (C.25). The discretization time steps {𝑡𝑖}𝑁𝑖=0, scaling schedule 𝑠(·), and
noise schedule 𝜎(·), are kept the same as in Table 1 of [151]. For all experiments,
we set the total number of time steps to 100, i.e., 𝑁 = 100. We note that this
does not imply that the number of function evaluations (NFE) of each prior step
is 100. Since 𝜂 is to a small value as the algorithm runs, the number of steps in
later iterations of the algorithm is much fewer than 100. The prior step is similar
to the image synthesis process in SDEdit [218] that starts from the middle of the
reverse diffusion process. We use the pf-ODE solver for the CDP problem and the
SDE solver for all other problems. Part of our code implementation is based on the
repository6.

Model Checkpoint For experiments with FFHQ color images, we use the pre-
trained checkpoint from [61] available at the repository7. For experiments with
synthetic data, FFHQ grayscale images, and black hole images, we train our own
models using the same repository. The model network is based on the U-Net

6https://github.com/NVlabs/edm/tree/main (Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International Public license)

7https://github.com/jychoi118/P2-weighting (MIT license)

https://github.com/NVlabs/edm/tree/main
https://github.com/jychoi118/P2-weighting
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Algorithm 6 EDM for the prior step (Bayesian denoising with noise level 𝜂)
Require: noisy image 𝒛 ∈ R𝑛, assumed noise level 𝜂 > 0, pre-trained model

𝐷𝜃 ( · ; · ) that approximates ∇ log 𝑝 (𝒙;𝜎) with (𝐷𝜃 (𝒙;𝜎) − 𝒙)/𝜎2

Ensure: discretization time steps {𝑡𝑖}𝑁𝑖=0 (monotonically decreasing to 𝑡𝑁 = 0),
scaling schedule 𝑠(·), noise schedule 𝜎(·), solver (SDE or pf-ODE)

1: 𝑖∗ ← min {𝑖 ∈ [𝑁] | 𝜎(𝑡𝑖) ≤ 𝜂} ⊲ Find the starting point of the reverse
diffusion

2: 𝒗 (𝑖
∗) ← 𝑠(𝑡𝑖∗)𝒛 ⊲ Initialize at time 𝑡𝑖∗

3: for 𝑖 = 𝑖∗, · · · , 𝑁 − 1 do
4: 𝜆← 2 if solver is SDE else 1
5: 𝒅𝑖 ←

(
𝜆 ¤𝜎(𝑡𝑖)
𝜎(𝑡𝑖) +

¤𝑠(𝑡𝑖)
𝑠(𝑡𝑖)

)
𝒗𝑖 − 𝜆 ¤𝜎(𝑡𝑖)𝑠(𝑡𝑖)

𝜎(𝑡𝑖) 𝐷𝜃

(
𝒗𝑖
𝑠(𝑡𝑖) ;𝜎 (𝑡𝑖)

)
6: 𝒗 (𝑖+1) ← 𝒗 (𝑖) + (𝑡𝑖+1 − 𝑡𝑖)𝒅𝑖 ⊲ Drift
7: if 𝑖 ≠ 𝑁 − 1 and solver is SDE then
8: 𝝐𝑖 ∼ N(0, 𝑰)
9: 𝒗 (𝑖+1) ← 𝒗 (𝑖+1) + 𝑠(𝑡)

√︁
2 ¤𝜎(𝑡)𝜎(𝑡) (𝑡𝑖 − 𝑡𝑖+1)𝝐𝑖 ⊲ Diffusion

10: end if
11: end for
12: return 𝒗 (𝑁)

architecture in [224] with BigGAN [36] residual blocks, multi-resolution attention,
and multi-head attention with fixed channels per head. See the appendix of [61]
for architecture details. Specifically, we change the input and output channels to
1 and 2, respectively, to accommodate grayscale inputs, and reduce the number
of down-pooling and up-pooling levels in the U-Net for smaller images. We train
all models until convergence using an exponential moving average (EMA) rate of
0.9999, 32-bit precision, and the AdamW optimizer [197]. Here is a list of training
data we use for each model:

• For the Gaussian prior model, we randomly generate images from the constructed
Gaussian prior distribution.

• For the FFHQ grayscale model, we use the images with index 01000 to 69999
in the FFHQ dataset.

• For the black hole model, we use 3,068 simulated black hole images from
the GRMHD simulation, which stands for general relativistic magnetohydrody-
namic simulation [72]. See Figure C.1 for some example training images. We
apply data augmentation with random flipping and resizing, so that the flux spin
rotation and the ring diameter vary from sample to sample.
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Figure C.1: Example images from the dataset for training the black hole diffu-
sion model prior.

Preconditioning Since the checkpoints we use are all trained based on the DDPM
(or VP-SDE) formulation [131], we convert them to the denoiser 𝐷𝜃 under the
EDM formulation via the VP preconditioning [151]. Specifically, if we denote the
pre-trained model as 𝐹𝜃 ( · ; · ), the model we use for Algorithm 6 is

𝐷𝜃 (𝒙;𝜎) := 𝑐skip(𝜎)𝒙 + 𝑐out(𝜎)𝐹𝜃 (𝑐in(𝜎)𝒙; 𝑐noise(𝜎)) , (C.26)

where 𝑐skip(𝜎) = 1, 𝑐out(𝜎) = −𝜎, 𝑐in(𝜎) = 1/
√
𝜎2 + 1, and 𝑐noise(𝜎) = 999𝜎−1

VP(𝜎).
Here 𝜎−1

VP(·) is the inverse of the VP-SDE noise schedule defined as 𝜎VP(𝑡) :=√︁
𝑒

1
2 𝛽d𝑡2+𝛽min𝑡 − 1 with 𝛽d = 19.9 and 𝛽min = 0.1. This adaptation allows us to make

a fair comparison with other DM-based methods using the same pre-trained models.
One can also incorporate DMs trained with other formulations into PnP-DM by
properly setting the preconditioning parameters.

Connection to DDS-DDPM in [326] A concurrent work [326] introduced a rigorous
implementation of the prior step, called DDS-DDPM, by converting the DDPM [131]
(or VP-SDE [266]) sampler into a reverse diffusion based on the VE-SDE [266]. The
diffusion process after the conversion can be used to solve Equation (6.5) rigorously
by properly choosing the starting point. In fact, our formulation admits DDS-DDPM
as a special case with the VP preconditioning and reverse diffusion based on the
VE-SDE. Here we explicitly show this connection. For the VE-SDE, we have
𝑠VE(𝑡) = 1, 𝜎VE(𝑡) =

√
𝑡, 𝑢VE(𝑡) = 0, and 𝑣VE(𝑡) = 1. So Equation (C.24) becomes

d𝒙𝑡 =
[
1
𝑡
𝒙𝑡 −

1
𝑡
𝐷𝜃

(
𝒙𝑡 ;
√
𝑡

)]
d𝑡 + d𝒘̄𝑡 . (C.27)

Applying the VP preconditioning Equation (C.26) to Equation (C.27), we obtain

d𝒙𝑡 =
[

1
√
𝑡
𝐹𝜃

(
𝒙𝑡√
𝑡 + 1

; 999𝜎−1
VP(
√
𝑡)
)]

d𝑡 + d𝒘̄𝑡 . (C.28)

We can then rescale the time range from [0, 1] to [0, 1000], discretize Equa-
tion (C.28) backward in time over the time steps {𝜏𝑡} from [326], and apply the
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exponential integrator [348] to the drift term, resulting in the following update rule:

𝒙̂𝑡−1 = 𝒙̂𝑡 − 2(√𝜏𝑡 −
√
𝜏𝑡−1)𝐹𝜃

(
𝒙̂𝑡√
𝜏𝑡 + 1

;𝜎−1
VP(
√
𝜏𝑡)

)
+ √𝜏𝑡 − 𝜏𝑡−1𝝐

where 𝝐 ∼ N(0, 𝑰). Based on the definition 𝜏𝑡 := 𝛼̄−1
𝑡 − 1 = 𝜎VP(𝑡)2 in DDS-DDPM,

we get

𝒙̂𝑡−1 = 𝒙̂𝑡 − 2(√𝜏𝑡 −
√
𝜏𝑡−1)𝐹𝜃

(√
𝛼̄𝑡 𝒙̂𝑡 ; 𝑡

)
+ √𝜏𝑡 − 𝜏𝑡−1𝝐 . (C.29)

This is exactly the update rule of DDS-DDPMwith 𝐹𝜃 ( · ; 𝑡) denoting the noise estimate
𝜖̂𝑡 (·) of DDPM. One can also verify that the initialization in DDS-DDPM is equivalent
to ours by checking that 𝛼̄𝑡 ≥ 1

𝜂2+1 is equivalent to 𝜏𝑡 = 𝜎VP(𝑡)2 ≤ 𝜂2 where 𝜂 ≡ 𝜂 is
the assumed noise level in Equation (6.5). As one can see, DDS-DDPM is equivalent
to our prior step by choosing the VP-preconditioning, VE reverse diffusion, and
a particular integration scheme. In fact, our prior step allows for more general
definitions of diffusion processes and includes both the ODE and SDE solvers.

C.3.3 Others
Annealing Schedule for 𝜂 In this chapter, we consider an exponential annealing
schedule8 for the coupling strength 𝜂. By specifying a starting level 𝜂0, decay rate
𝛼, and a minimum value 𝜂min, we set

𝜂𝑘 = max(𝛼𝑘𝜂0, 𝜂min)

for 𝑘 = 0, · · · , 𝐾 − 1. Table C.2 summarizes the annealing hyperparameters that we
use for all the inverse problems considered in this chapter.

Table C.2: List of hyperparameters for the annealing schedule of 𝜂 in PnP-DM.

Inverse problem Starting level (𝜂0) Minimum level (𝜂min) Decay rate (𝛼)

Synthetic prior experiments 0.03 0.03 1
Gaussian deblur 10 0.3 0.9
Motion deblur 10 0.3 0.9

Super-resolution 10 0.3 0.9
Coded diffraction patterns 10 0.1 0.9

Fourier phase retrieval 10 0.1 0.9
Radio interferometry 0.1 0.1 1
Black hole imaging 10 0.02 0.93

8PnP-DM is compatible with more general schedules, such as linear decay and parabolic decay.
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Initialization For the linear inverse problems, including radio interferometry, we
use the zero initialization, i.e., 𝒙 (0) = 0 ∈ R𝑛. For the CDP and Fourier phase
retrieval problems, we use the Gaussian initialization, i.e., 𝒙 (0) ∼ N(0, 𝑰). For
black hole imaging experiments, we use the uniform random initialization between
0 and 1 for each pixel. We find that PnP-DM, as an MCMC algorithm, is insensitive
to the initialization. Except for the black hole experiments, where we found the
negative values would cause problems, any reasonable initialization would lead to
comparable results. This observation corroborates our convergence result, which
holds for any initialization 𝜇𝑋0 .

Number of Iterations We run 500 iterations for the synthetic prior experiments,
200 iterations for the black hole experiments, and 100 iterations for all other exper-
iments. The numbers were chosen so that the algorithm was fully converged.

Sample Collection To collect multiple samples using our method, there are two
main approaches: (1) Run a single Markov chain and collect samples after a certain
number of iterations, known as the burn-in period, to ensure the chain has converged.
(2) Run several independent Markov chains and collect one sample from each chain
after convergence. The first approach is more efficient, but the collected samples
are not entirely independent and thus may have a small effective sample size. The
second approach ensures all samples are fully independent but takes longer to run. In
our experiments, we use the first approach for all tests involving 256×256 images to
enhance efficiency. Specifically, we set the burn-in period to 40 iterations and collect
20 random samples from the remaining 60 iterations (one every 3 iterations). For
other experiments, due to the smaller image sizes, we employ the second approach
to obtain fully independent samples.

Compute All experiments were performed on NVIDIA RTX A6000 and A100
GPUs. The runtime per image depends on several factors, such as the choice
of GPU, the total number of iterations and the coupling strength schedule {𝜂𝑘 }
(as it takes more network evaluations for larger 𝜂 for our EDM-based denoiser).
In our actual experiments, we ran each image for at least 100 iterations to ensure
convergence, which took around 1 minute for a single Markov chain. Here we present
a comparison of computational efficiency with the major baselines on a linear super-
resolution and a nonlinear coded diffraction patterns problem in Table C.3. The
clock time in seconds and the number of function evaluations (NFE) are calculated
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for each method to measure its computational efficiency. All hyperparameters are
kept the same for each method as those used for Table 6.1 and Table 6.2 in the
manuscript. As expected, DM-based approaches (DDRM & DPS) generally yield
shorter runtimes due to their lower NFEs. Nevertheless, our PnP-DM method
significantly outperforms these methods while achieving comparable runtimes with
DPS (≈ 1.5×), despite its larger NFEs (≈ 3×). This is primarily due to two factors:
(1) PnP-DM avoids running the full diffusion process by adapting the starting noise
level to 𝜂𝑘 at each iteration, and (2) the runtime is further reduced by using an
annealing schedule of 𝜂𝑘 . We also note that the runtime reported for DDRM and
DPS below is the time it takes to generate one sample. For the linear inverse problem
experiments, where we generate 20 samples for each sampling method, PnP-DM is
faster than DPS because we take 20 samples that PnP-DM generated along one
Markov chain of batch size 1 (hence same runtime as below, around 50 seconds) but
DPS requires running a diffusion process with batch size 20, which is significantly
slower (around 330 seconds).

Table C.3: Comparison of computational efficiency between PnP-DM and other
baseline methods.

Inverse problem Metric DDRM DPS PnP-SGS DPnP PnP-DM (ours)

Super-resolution Clock time (s) 0.4 39 20 322 55
NFE 20 1,000 1,030 18,372 3,032

Coded diffraction patterns Clock time (s) – 37 54 261 50
NFE – 1,000 2,572 14,596 2,482

C.4 Implementation Details of Baseline Methods
PnP-ADMM We set the ADMM penalty parameter as 2 and run for 500 iterations
to ensure convergence. We use the pre-trained DnCNN denoiser [346] available
at the deepinv library9. An additional batch dimension is introduced to collect
multiple samples.

DPIR We follow the annealing schedule in [345] and run for 40 iterations. We
use the pre-trained DRUNet denoiser [347] available at the deepinv library. An
additional batch dimension is introduced to collect multiple samples.

DDRM We adopt the default hyperparameters: 𝜂𝐵 = 1.0, 𝜂 = 0.85, and 20
steps for the DDIM sampler [261]. For the Gaussian deblur problem, we use the

9https://github.com/deepinv/deepinv (BSD-3-Clause license)

https://github.com/deepinv/deepinv
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SVD-based forward model implementation based on separable 1D convolution. An
additional batch dimension is introduced to collect multiple samples.

DPS We follow the original paper to use a 1000-step DDPM sampler backbone.
For the linear inverse problems, we use the step size given in [64], i.e., 𝜁 ′ = 1. For
the nonlinear inverse problems, we optimized the step size 𝜁 ′ by performing a grid
search, which led to 𝜁 ′ = 3 for CDP and Fourier phase retrieval and 𝜁 ′ = 0.001 for
black hole imaging. For the synthetic prior experiments, we also optimized the step
size and obtained 𝜁 ′ = 0.1 for compressed sensing and 𝜁 ′ = 1 for Gaussian deblur.
An additional batch dimension is introduced to collect multiple samples.

PnP-SGS We performed a grid search for the coupling parameter 𝜂 and found that
𝜂 = 0.1 worked the best for all problems. We follow the practice in [69] to have a
burn-in period of 20 iterations during which the reverse diffusion is early-stopped.
We run the algorithm for 100 iterations in total and collect 20 samples in the 80
iterations after the burn-in period.

DPnP We implement the DDS-DDPM sampler for the prior step. For fair compari-
son, we use the same annealing schedule for the coupling strength (denoted as 𝜂𝑘 in
[326]) as PnP-DM. We run the algorithm for the same number of iterations for each
inverse problem in the same way of collecting samples as PnP-DM.

HIO We set 𝛽 = 0.7 and applied both the non-negative constraint and the fi-
nite support constraint. To mitigate the instability of reconstruction depending on
initialization, we first repeatedly run the algorithm with 100 different random ini-
tializations and choose the reconstruction with the best measurement fit. Then we
run another 10,000 iterations with the chosen reconstruction to ensure convergence
and report the metrics on the final reconstruction.

C.5 Additional Related Works
Image Reconstruction with Plug-and-Play Priors Plug-and-Play priors (PnP)
[291] is an algorithmic framework that leverages off-the-shelf denoisers for solv-
ing imaging inverse problems. Recognizing the equivalence between the proximal
operator and finding the maximum a posteriori (MAP) solution to a denoising prob-
lem, PnP substitutes the proximal update in many optimization algorithms, such as
ADMM [52, 252] and HQS [345, 347], with generic denoising algorithms, particu-
larly those based on deep learning [217, 345, 347]. The PnP framework enjoys both
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convergence guarantees [252, 272] and strong empirical performance [4, 322] due
to its compatibility with state-of-the-art learning-based denoising priors. Recent
works have also proposed learning-based PnP frameworks that have direction inter-
pretations from an optimization perspective [70, 99]. See [149] for a comprehensive
review on the theory and practice of PnP.

Posterior Sampling with MCMC and Learned Priors Learning-based priors
have also been considered in the Bayesian context, where one seeks to sample
the posterior distribution defined under a learned prior. An important technique
is denoising score matching (DSM) [292], which connects image denoising with
learning the score function of an image distribution. Based on DSM, prior works
have incorporated deep denoising priors into MCMC formulations, particularly
focusing on the Langevin Monte Carlo and its variants as they involve the score
function of the target distribution [145, 156, 170, 244, 273]. Recently, methods
based on SGS have also gained increasing popularity [31, 69, 100, 230, 326].
Unlike PnP methods based on optimization, these sampling methods possess the
ability to generate diverse solutions and quantify the uncertainty of the solution
space.

Solving Inverse Problems with Diffusion Models The remarkable performance
of diffusion models [131, 266] on modeling image distributions makes them desir-
able choices as image priors for solving inverse problems. One popular approach
is to leverage a pre-trained unconditional model and modify the reverse diffusion
process during inference to enforce data consistency [34, 64, 65, 155, 189, 260,
262, 263, 265, 306, 361]. Despite the promising performance of these methods,
they usually involve approximations and empirically driven designs that are hard
to justify theoretically and may lead to inconsistent sample distributions. Another
line of work learns task-specific models, which achieves higher accuracy at the cost
of re-training models for new problems [17, 189, 253]. Methods based on Particle
Filtering and Sequential Monte Carlo are also considered to ensure asymptotic con-
sistency [44, 89, 318]. Diffusion models have also been considered as a prior for
variational inference [103, 214] and pluy-and-play image reconstruction [119, 215].
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Figure C.2: Comparison of our method and DPS [64] on estimating the pos-
terior distribution of a Gaussian deblurring problem under a Gaussian prior.
While the mean estimations of the two methods are of roughly the same quality,
our approach provides a much more accurate estimation of the posterior per-pixel
standard deviation than DPS.

C.6 Additional Experimental Results
C.6.1 Synthetic Prior Experiment
In addition to the compressed sensing experiment presented in the main paper, we
show another comparison on a Gaussian deblurring problem in Figure C.2. Here,
the linear forward model 𝑨 ∈ R𝑚×𝑛 is a 2D convolution matrix with a Gaussian blur
kernel of size 7 × 7 and standard deviation 3.0. Similar to the compressed sensing
experiment, both methods yield accurate reconstructions of the mean. However, in
terms of the posterior standard deviation, DPS exhibits a notable difference from
the ground truth, whereas our method achieves a significantly more accurate result.

C.6.2 Linear Inverse Problems
We provide visual comparisons for the Gaussian deblur and super-resolution prob-
lems in Figure C.3.

Additional visual examples are provided in Figure C.4 (Gaussian deblurring), Fig-
ure C.5 (motion deblurring), and Figure C.6 (super-resolution).

C.6.3 Nonlinear inverse problems
We provide visual comparisons for the CDP reconstruction problem in Figure C.7,
where we visualize one sample for each method. As shown by the red zoom-in
boxes, PnP-DM can recover fine-grained features such as the hair threads that are
missing in the reconstructions by the baselines. Additional reconstruction examples
are given in Figure C.8 for the CDP reconstruction problem.
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Figure C.3: Visual comparison between our method and baselines on solving
the Gaussian deblurring and super-resolution problems with i.i.d. Gaussian
noise (𝜎𝒚 = 0.05). We visualize one sample generated by each algorithm.

Ours (EDM)Measurement Ground truthOurs (VE) Ours (EDM)Measurement Ground truthOurs (VE)

Figure C.4: Additional visual examples for the Gaussian deblurring problem.

We then show some additional reconstruction examples with comparison to DPS
in Figure C.9. For each method, we visualize the best reconstruction out of four
runs for each test image according to the PSNR value. While DPS failed on around
half of the test images, our proposed method provided high-fidelity reconstructions
on almost all test images. This comparison highlights the better robustness of our
method over DPS.
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Figure C.5: Additional visual examples for the motion deblurring problem.

C.6.4 Black Hole Imaging
Finally, we present visual examples from the black hole imaging experiments. Sam-
ples generated by PnP-DM (EDM) and DPS using the simulated data are shown in
Figure C.10, with the data mismatch metric labeled at the top right corner of each
sample. Consistent with the results in Figure 6.7, DPS can only capture one of the
two posterior modes. DPS samples from Mode 2 and Mode 3 significantly deviate
from the measurements and lack the expected black hole structure. In contrast, PnP-
DM successfully samples both posterior modes and consistently produces samples
that fit the measurements well. Additionally, Figure C.11 presents more samples
obtained by applying PnP-DM to the real M87 black hole data. The generated
samples are not only diverse but also fit the measurements well, with data mismatch
values around 2. These samples exhibit a ring diameter consistent with the official
EHT reconstruction in Figure 6.8 and share a common bright spot location at the
lower half of the ring.

C.6.5 Further Analysis
Sensitivity Analysis on the Annealing Schedule {𝜂𝑘 } In Figure C.12, we present
a sensitivity analysis on the annealing schedule {𝜂𝑘 }. In particular, we show the
PSNR curves of 𝒙𝑘 with different exponential decay rates 𝛼 (left) and minimum
coupling levels 𝜂min (right) for one linear (super-resolution) and one nonlinear
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Figure C.6: Additional visual examples for the 4× super-resolution problem.
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Figure C.7: Visual comparison between our method and baselines on solving the
coded diffraction pattern (CDP) reconstruction problems with i.i.d. Gaussian
noise (𝜎𝒚 = 0.05). We visualize one sample generated by each algorithm.

(coded diffraction patterns) problem. We have the following conclusions based on
the results. First, different decay rates lead to different rates of convergence, which
corroborates our theoretical insights that 𝜂 plays the same role as the step size. The
final level of PSNR is not sensitive to different decay rates, as all curves converge
to the same level. Second, as 𝜂min decreases, the final PSNR becomes higher. This
is as expected because the stationary distribution of the 𝒙𝑘 , 𝜋𝑋 , should converge to
the true target posterior, 𝑝(𝒙 |𝒚), as 𝜂 decreases.

Convergence Curves with Intermediate Visual Examples In Figure C.13, we
show some visual examples of intermediate 𝒙𝑘 and 𝒛𝑘 iterates (left) and convergence
plots of PSNR, SSIM, and LPIPS for 𝒙𝑘 (right) on the super-resolution problem.
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Figure C.8: Additional visual examples for the Fourier phase retrieval problem.

As 𝜂𝑘 decreases, 𝒙𝑘 becomes closer to the ground truth and 𝒛𝑘 gets less noisy. Both
the visual quality and metric curves stabilize after the minimum coupling strength is
achieved. Despite being run for 100 iterations in total, our method generates good
images in around 40 iterations, which is around 30 seconds and 1600 NFEs.
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Figure C.9: Additional visual examples for the Fourier phase retrieval problem.
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black hole data.
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Figure C.12: Sensitivity analysis on the annealing schedule 𝜂𝑘 with different
decay rates 𝛼 (left) and minimum coupling strength 𝜂min (right) for a linear
(super-resolution) and a nonlinear (coded diffraction patterns) inverse problem.
Recall from Appendix C.3.3 that 𝜂𝑘 := max(𝛼𝑘𝜂0, 𝜂min), where we set 𝜂0 = 10 for
this experiment.
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<latexit sha1_base64="Xv5hvcck/17CzRKd1xWTsaQHcLQ="></latexit>

z(90)
<latexit sha1_base64="ICRH+XOwh0+Y07RJFS00sW8iHig="></latexit>

z(30)
<latexit sha1_base64="nIeLrLXQuz3AAUOrMBjK88EXu5o="></latexit>

z(20)
<latexit sha1_base64="RKjz1B0NlZw+98XaAUTC4vwkNuw="></latexit>

z(10)
<latexit sha1_base64="LfF11tICqij7C+362g9YoTVJtnc="></latexit>

z(0)

Convergence for 
<latexit sha1_base64="opYhLCgae4wSkmshIAsdO2T/6oY=">AAAF73icbdRLT9tAEAfwheKWpi9oj71ERZXoBSVVRa9AeD8TyAtwitbOJph4bce7JgmWv0Wlnop67afpud+mzuM/Ko+RdjX7mxlpT2MFrqN0Lvd3avrJjPH02ezzzIuXr16/mZt/W1V+FNqiYvuuH9YtroTreKKiHe2KehAKLi1X1KxOYVivXYtQOb5X1oNANCRve07LsblO6czsW/JbvNj5lFzMLeSWcqPIPkzyk2SBTaJ4MT/zx2z6diSFp22XK3WezwW6EfNQO7YrkowZKRFwu8Pb4jxNPS6FasSjLyfZj6k0sy0/TI+nsyP9fyLmUqmBtNJOyfWlul8b4qM10fV4GPLBo0VLJnff90FGrnZCv3dXNbcil4f9JJMxm6JlckvGsZlePEmSMVkgi8gG2URNUJNIgARRC9QiaoPaRJegSyIH5BBdga6IOqAOkQtyiSRIEnkgj8gH+UQBKCDqgrpEISgkUiBFpEGaKAJFRNega6IeqEfUB/WJBqAB0Q3oZkhjW4WtUtsaaI2oACoQrYPWiTZAG0SboE2iLdAW0TZom2gHtEO0C9ol2gPtEe2D9okOQAdEh6BDoiPQEVERVCQqgUpEx6BjohPQCVEZVCaqgCpEVVCVqAaqEdVBdaJT0CnRGegspXQF5u8vvIdJ9fNSfnlpufRlYWVtsgxn2Xv2gS2yPPvKVtg2K7IKs5nHvrOf7NboGj+MW+PXuHV6ajLzjt0J4/c/CiUnQg==</latexit>

x(k)

Figure C.13: Visual examples of intermediate 𝒙 (𝑘) and 𝒛(𝑘) iterates (left) and
convergence plots of PSNR, SSIM, and LPIPS for 𝒙 (𝑘) iterates (right) on the
super-resolution problem. The vertical dashed lines show the iterations at which
the 𝒙 (𝑘) and 𝒛(𝑘) iterates are visualized.
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A p p e n d i x D

APPENDIX FOR CHAPTER 7

D.1 Appendix for Section 7.3
D.1.1 DCDP, PnP-DM, and DAPS as Instantiations of Algorithm 2
D.1.1.1 DCDP

Likelihood Step The likelihood step with LDMs is given in the “Approach I:
Enforcing DC in the Latent Space” section from the DCDP paper [181]. Switching
this to the notation in this paper, we have

𝒗 (𝑘) = arg min
𝒗

1
2
∥A(D(𝒗)) − 𝒚∥22 +

𝜇

2
∥𝒖(𝑘) − 𝒗∥22 (D.1)

for some constant 𝜇. Setting 𝜇 = 𝜎2
𝒚/𝜂2

𝑘
makes this equivalent to

𝒗 (𝑘) = arg min
𝒗

1
2𝜎2

𝒚

∥A(D(𝒗)) − 𝒚∥22 +
1

2𝜂2
𝑘

∥𝒖(𝑘) − 𝒗∥22

= arg max
𝒗

exp

(
− 1

2𝜎2
𝒚

∥A(D(𝒗)) − 𝒚∥22 −
1

2𝜂2
𝑘

∥𝒖(𝑘) − 𝒗∥22

)
/𝑍. (D.2)

Note that Equation (D.2) is exactly finding the MAP estimation of Equation (7.6)
with 𝜂𝑘 = 𝜎𝒚/

√
𝜇. This shows the equivalence of sub-step 1.

In sub-step 2, noise is added as the first half of the Diffusion Purification step
of DCDP. DCDP runs forward diffusion up to an annealed timestep 𝑇𝑘 , which is
equivalent to adding 𝜂𝑘 noise for the correct choice of 𝜂𝑘 .

Prior Step In the second half of the Diffusion Purification step of DCDP, reverse
diffusion is run using the VP-SDE formulation. This is the same as reverse diffusion
in the EDM framework with 𝑠𝑡 = 1/

√︁
𝑒

1
2 𝛽𝑑 𝑡

2+𝛽min𝑡 and 𝜎𝑡 =
√︁
𝑒

1
2 𝛽𝑑 𝑡

2+𝛽min𝑡 − 1 [151].
Since this formulation is representable in the EDM framework, it is equivalent to
Equation (7.4).

D.1.1.2 PnP-DM

Likelihood Step The likelihood step in PnP-DM in Chapter 6, originally designed
for pixel-space diffusion, introduces a hyperparameter 𝜂 with exponential decay
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𝜂𝑘 = max(𝛼𝑘𝜂0, 𝜂min), where 𝛼, 𝜂0, and 𝜂min are preset. Extending this to latent
diffusion amounts to replacing A with A(D(·)), leading to

𝒗 (𝑘) ∼ exp

(
− 1

2𝜎2
𝒚

∥A(D(𝒗)) − 𝒚∥22 −
1

2𝜂2
𝑘

|𝒖(𝑘) − 𝒗∥22

)
/𝑍. (D.3)

This likelihood step matches the distribution in Equation (7.6). No additional noise
is introduced in sub-step 2.

Prior Step The prior step of PnP-DM utilizes various diffusion schedulers, such
as VP-SDE and EDM-SDE. By adopting the EDM scheduler with 𝑠𝑡 = 1 and 𝜎𝑡 = 𝑡,
the prior step matches the form of Equation (7.4).

D.1.1.3 DAPS

Likelihood Step In DAPS [341], the likelihood and prior steps are coupled, as
sampling 𝒙0 ∼ 𝑝(𝒙0 | 𝒙𝑡 , 𝒚) is required. However, by adopting the Gaussian
approximation 𝑝(𝒙0 | 𝒙𝑡) ≈ N (𝒙̂0(𝒙𝑡), 𝜎2

𝑡 𝑰) (where 𝒙̂0(𝒙𝑡) is obtained via a few-
step ODE solver), separation becomes possible. This approximation aligns with the
prior step formulation in Equation (7.4).

With 𝒖(𝑘) = 𝒙̂0(𝒙𝑡), the DAPS update rule is:

𝒗 (𝑘) ∼ exp

(
− 1

2𝛽2
𝒚

∥A(D(𝒗)) − 𝒚∥22 −
1

2𝑟2
𝑡

∥𝒖(𝑘) − 𝒗∥22

)
/𝑍, (D.4)

where 𝛽𝒚 and 𝑟𝑡 are hyperparameters. Setting 𝛽𝒚 = 𝜎𝒚 and 𝑟𝑡 = 𝜂𝑘 recovers the
likelihood step in Equation (7.6).

Prior Step The prior step in DAPS follows from setting 𝒖(𝑘) = 𝒙̂0(𝒙𝑡) via a few-
step ODE solver using the EDM scheduler. Choosing an appropriate 𝜂𝑘 makes this
sampling procedure equivalent to that described by Equation (7.4).

D.1.2 Hyperparameters
To optimize hyperparameters, we run two Bayesian optimization processes for each
task to select the combinations that had the highest PSNR and LPIPS, respectively.
These caused different forms of artifacts in the results, so the parameters that
yielded the best qualitative outputs are chosen. TReg, PSLD, and PnP-DM are
optimized for LPIPS while DCDP is optimized for PSNR. For DAPS, neither of
these optimizations leads to results better than previously handpicked parameters,
so those are used instead.
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Table D.1: Hyperparameters used by each method on each task.

Method Task Super-resolution (16×) Box inpainting Gaussian deblur (𝜎 = 6)

TReg
Classifier free guidance scale (𝑤) 2.87 4.92 3.31
𝜆 for conjugate gradient [160] 9.97e-04 2.05e-05 1.12e-04

Adaptive negation learning rate (𝜂) [160] 1.56e-04 4.17e-04 3.33e-04

PSLD 𝛾 defined in [251] 0.298 0.0187 0.124
𝜂 defined in [251] 0.896 0.102 0.132

DCDP
SGD learning rate 9.95e-02 1.35e-02 3.29e-02
SGD momentum 0.964 0.872 0.642

Likelihood optimization steps 49 28 46

PnP-DM
HMC learning rate 4.83e-04 1.99e-05 1.07e-04
HMC momentum 0.496 0.440 0.404

Likelihood sampling steps 14 15 26

DAPS
HMC learning rate 1.00e-04 2.00e-06 1.00e-05
HMC momentum 0.45 0.45 0.45

Likelihood sampling steps 30 30 30

D.2 Appendix for Section 7.4
D.2.1 Detailed Implementation of STeP
Here, we summarize the proposed framework for solving video inverse problems in
Algorithm 7.

Algorithm 7 STeP: a Framework for Solving Video Inverse Problems with
SpatioTemporal Prior
Require: discretization time steps {𝑡𝑖}𝑁𝑖=1 where 𝑡0 = 0 and 𝑡𝑁 = 𝑇 , noise schedule

𝜎𝑡 , likelihood 𝑝(𝒚 | ·) with measurements 𝒚, HMC step size 𝜂 and damp-
ing factor 𝛾, number of HMC updates 𝑀 , pre-trained latent score function
𝒔𝜽 (𝒛;𝜎) ≈ ∇𝒛 log 𝑝 (𝒛;𝜎) with image decoder D.

1: 𝒛𝑡𝑁 ∼ N(0, 𝜎2
𝑡𝑁
𝑰) ⊲ Initialization

2: for 𝑖 = 𝑁, ..., 1 do
3: 𝒛̂0 ← Backward(𝒛𝑡𝑖 ; 𝒔𝜽) ⊲ Solve PF-ODE (D.5) backward from 𝑡 = 𝑡𝑖 to
𝑡 = 0 to enforce prior

4: 𝒑 ∼ N(0, 𝑰)
5: for 𝑗 = 1, ..., 𝑀 do
6: 𝝐 𝑗 ∼ N(0, 𝑰)
7: ( 𝒛̂0, 𝒑) = HamiltonianDynamics(̂𝒛0, 𝒚, 𝒑, 𝝐 𝑗 ; 𝜂, 𝛾) ⊲ HMC updates

to enforce data consistency
8: end for
9: 𝒛𝑡𝑖−1 ∼ N( 𝒛̂0, 𝜎

2
𝑡𝑖−1

𝑰) ⊲ Proceed to the next noise level at time 𝑡 = 𝑡𝑖−1
10: end for
11: return D(𝒛𝑡0) ⊲ Return the decoded video

The algorithm’s main loop alternates between three key steps: (1) solving the PF-
ODE backward from 𝑡 = 𝑡𝑖 to 𝑡 = 0 (line 3), (2) performing multi-step MCMC
updates (lines 4–8), and (3) advancing to the next noise level (line 9). We will
discuss each step in detail.
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Through the lens of Algorithm 2, line 3 can be viewed as the prior step, and lines
4-9 together can be viewed as the likelihood step. The equivalence can be seen by
pattern matching with 𝐾 ≡ 𝑁 , 𝑘 ≡ 𝑁 − 𝑖 and 𝜂𝑘 ≡ 𝜎𝑡𝑁−𝑖 .

Solving PF-ODE Backward from 𝒕 = 𝒕𝒊 to 𝒕 = 0 The probability flow ordinary
differential equation (PF-ODE) [151] of the diffusion model governs the continuous
increase or reduction of noise in the image when moving forward or backward in
time, given by

d𝒛𝑡 = −¤𝜎𝑡𝜎𝑡∇𝒛𝑡 log 𝑝(𝒛𝑡 ;𝜎𝑡) d𝑡, (D.5)

where ¤𝜎𝑡 denotes the time derivative of 𝜎𝑡 , and ∇𝒛𝑡 log 𝑝(𝒛𝑡 ;𝜎𝑡) represents the
time-dependent score function [264, 266]. Our goal is to solve the probability flow
ODE (PF-ODE), as defined in Equation (D.5), backward from 𝑡 = 𝑡𝑖 to 𝑡 = 0,
given the intermediate state 𝒛𝑡𝑖 and the pre-trained latent score function 𝒔𝜽 (𝒛;𝜎) ≈
∇𝒛 log 𝑝(𝒛;𝜎). Any ODE solver, such as Euler’s method or the fourth-order Runge-
Kutta method (RK4) [39], can be used to solve this problem. Following previous
conventions [341], we adopt a few-step Euler method for solving it efficiently.

Multi-Step MCMC Updates Any MCMC samplers can be used, such as Langevin
Dynamic Monte Carlo (LMC) and Hamiltonian Monte Carlo (HMC). For example,
the LMC update with step size 𝜂 is

𝒛+0 = 𝒛0 + 𝜂∇𝒛0 log 𝑝(𝒚 | D(𝒛0)) + 𝜂∇𝒛0 log 𝑝(𝒛0 | 𝒛𝑡) +
√︁

2𝜂𝝐 . (D.6)

Note that the first gradient term can be computed with a differentiable forward model
A and the neural network decoderD. The second gradient term, on the other hand,
can be calculated by

∇𝒛0 log 𝑝(𝒛0 | 𝒛𝑡) = ∇𝒛0 log 𝑝(𝒛𝑡 | 𝒛0)+∇𝒛0 log 𝑝(𝒛0) ≈ ∇𝒛0 log 𝑝(𝒛𝑡 | 𝒛0)+𝒔𝜽 (𝒛0, 𝑡min).

This approximation holds for 𝑡min ≈ 0, assuming that 𝒛0 lies close to the clean latent
manifold [264]. To improve both convergence speed and approximation accuracy,
the MCMC samplers are initialized with the solutions obtained from the previous
PF-ODE step, leveraging its outputs as a warm start.

Note that during MCMC updates, the decoder D needs to be evaluated multiple
times in the backward pass. To accelerate this process, we adopt Hamiltonian Monte
Carlo (HMC), which typically requires fewer steps for convergence, thereby speeding
up the algorithm. For each multi-step MCMC update, we introduce an additional
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Table D.2: Summary of the hyperparameters of Algorithm 7 (STeP) for black
hole video reconstruction and dynamic MRI. The HMC-related parameters are
tuned on 3 leave-out validation videos. The run time and memory are tested using
one NVIDIA A100 GPU.

Black hole video reconstruction Dynamic MRI

PF-ODE related
number of steps 𝑁ode 20 20
scheduler 𝜎𝑡 𝑡 𝑡

HMC related
number of steps 𝑀 60 53
scaling factor 1 − 𝛾𝜂 0.00 0.83
step size square 𝜂2 1.2e-5 1.2e-3
observation noise level 𝜎𝒚 0.02 0.01

Annealing Schedule related
number of steps 𝑁 25 20
final time 𝑇 100 100

discretization time {𝑡𝑖}, 𝑖 = 1, · · · , 𝑁
(
𝑁−𝑖
𝑁
· 𝑇 1

7

)7 (
𝑁−𝑖
𝑁
· 𝑇 1

7

)7

Inference related
decoder NFE 𝑁dec 1500 1060
diffusion model NFE 𝑁dm 500 400
time (s) per sample 645 332
memory (GB) 48 21

momentum variable 𝒑, initialized as N(0, 𝑰). The HamiltonianDynamics(̂𝒛0, 𝒚,
𝒑, 𝝐 ; 𝜂, 𝛾) update with step size 𝜂 and damping factor 𝛾 is given by:

𝒑+ = (1 − 𝛾𝜂) · 𝒑 + 𝜂∇𝒛0 log 𝑝(𝒚 | D(𝒛0)) + 𝜂∇𝒛0 log 𝑝(𝒛0 | 𝒛𝑡) +
√︁

2𝛾𝜂𝝐 ,

𝒛+0 = 𝒛0 + 𝜂 𝒑+.

Proceeding to Next Noise Level According to Proposition 1 in [341], one can
obtain a sample 𝒛𝑡𝑖−1 ∼ 𝑝(𝒛𝑡𝑖−1 | 𝒚) by simply adding Gaussian noise from a sample
𝒛0 ∼ 𝑝(𝒛0 | 𝒛𝑡𝑖 , 𝒚), given 𝒛𝑡𝑖 ∼ 𝑝(𝒛𝑡𝑖 | 𝒚) from last step. Thus, we solve the target
posterior sampling by gradually sampling from the time-marginal posterior of the
diffusion trajectory. The full hyperparameters and running cost STeP is summarized
in Table D.2. The HMC-related parameters are searched on a leave-out validation
dataset consisting of three videos that are different from the testing videos.

D.2.2 Experimental Details
D.2.2.1 Black Hole Video Reconstruction

We introduce the black hole video reconstruction problem in more detail. The goal
is to reconstruct a video 𝒙0 ∈ R𝑛 𝑓×𝑛ℎ×𝑛𝑤 of a rapidly moving black hole. Each
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measurement, or visibility, is given by correlating the measurements from a pair of
telescopes to sample a particular spatial Fourier frequency of the source with very
long baseline interferometry (VLBI) [66, 339]. In VLBI, the cross-correlation of
the recorded scalar electric fields at two telescopes, known as the ideal visibility, is
related to the ideal source video 𝒙0 through a 2D Fourier transform, as given by the
van Cittert-Zernike theorem [66, 339]. Specifically, the ideal visibility of the 𝑗-th
frame of the target video is

𝒌 [ 𝑗]{𝑎,𝑏} (𝒙0) :=
∫
𝜌

∫
𝛿

exp
[
−𝑖2𝜋

(
𝑢
[ 𝑗]
{𝑎,𝑏}𝜌 + 𝑣

[ 𝑗]
{𝑎,𝑏}𝛿

)]
𝒙 [ 𝑗]0 (𝜌, 𝛿)d𝜌d𝛿 ∈ C, (D.7)

where (𝜌, 𝛿) denotes the angular coordinates of the source video frame, and(
𝑢
[ 𝑗]
{𝑎,𝑏}, 𝑣

[ 𝑗]
{𝑎,𝑏}

)
is the dimensionless baseline vector between two telescopes {𝑎, 𝑏},

orthogonal to the source direction.

Due to atmospheric turbulence and instrumental calibration errors, the observed
visibility is corrupted by gain error, phase error, and additive Gaussian thermal
noise [91, 273]:

𝑽 [ 𝑗]{𝑎,𝑏} := 𝑔 [ 𝑗]𝑎 𝑔
[ 𝑗]
𝑏

exp
[
−𝑖

(
𝜙
[ 𝑗]
𝑎 − 𝜙[ 𝑗]𝑏

)]
𝒌 [ 𝑗]{𝑎,𝑏} (𝒙0) + 𝒏[ 𝑗]{𝑎,𝑏} ∈ C, (D.8)

where gain errors are denoted by 𝑔 [ 𝑗]𝑎 , 𝑔
[ 𝑗]
𝑏

, phase errors are denoted by 𝜙[ 𝑗]𝑎 , 𝜙
[ 𝑗]
𝑏

,
and thermal noise is denoted by 𝒏[ 𝑗]{𝑎,𝑏}. While the phase of the observed visibility
cannot be directly used due to phase errors, the product of three visibilities among
any combination of three telescopes, known as the bispectrum, can be computed
to retain useful information. Specifically, the phase of the bispectrum, termed the
closure phase, effectively cancels out the phase errors in the observed visibilities.
Similarly, a strategy can be employed to cancel out amplitude gain errors and extract
information from the visibility amplitude [23]. Formally, these quantities are defined
as

𝒚 [ 𝑗]cp,{𝑎,𝑏,𝑐} := ∠(𝑽 [ 𝑗]{𝑎,𝑏}𝑽
[ 𝑗]
{𝑏,𝑐}𝑽

[ 𝑗]
{𝑎,𝑐}) := A [ 𝑗]cp,{𝑎,𝑏,𝑐} (𝒙0) ∈ R, (D.9)

𝒚 [ 𝑗]logca,{𝑎,𝑏,𝑐,𝑑} := log
©­­«
���𝑽 [ 𝑗]{𝑎,𝑏}��� ���𝑽 [ 𝑗]{𝑐,𝑑}������𝑽 [ 𝑗]{𝑎,𝑐}��� ���𝑽 [ 𝑗]{𝑏,𝑑}���

ª®®¬ := A [ 𝑗]logca,{𝑎,𝑏,𝑐,𝑑} (𝒙0) ∈ R. (D.10)

Here, ∠(·) denotes the complex angle, and | · | computes the complex amplitude. For
a total of 𝑀 telescopes, the number of closure phase measurements 𝒚 [ 𝑗]cp,{𝑎,𝑏,𝑐} at is
(𝑀−1) (𝑀−2)

2 , and the number of log closure amplitude measurements 𝒚 [ 𝑗]logca,{𝑎,𝑏,𝑐,𝑑} is
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𝑀 (𝑀−3)

2 , after accounting for redundancy. Let 𝑑 [ 𝑗]cp and 𝑑 [ 𝑗]logca to indicate the dimen-
sion of 𝒚 [ 𝑗]cp and 𝒚 [ 𝑗]logca. Since closure quantities are nonlinear transformations of the
visibilities, the black hole video reconstruction problem is non-convex. Addition-
ally, because the closure quantities do not constrain the total flux (i.e., summation
of the pixel values) of the underlying black hole video, we add a constraint on the
total flux for each frame, defined as

𝒚 [ 𝑗]flux :=
∫
𝜌

∫
𝛿

𝒙 [ 𝑗]0 (𝜌, 𝛿)d𝜌d𝛿. (D.11)

To aggregate data over different measurement times and telescope combinations,
the forward model of black hole video reconstruction for the 𝑗-th frame can be
expressed as

𝒚 [ 𝑗] :=
[
A [ 𝑗]cp (𝒙0),A [ 𝑗]logca(𝒙0),A [ 𝑗]flux(𝒙0)

]
:=

[
𝒚 [ 𝑗]cp , 𝒚

[ 𝑗]
logca, 𝒚

[ 𝑗]
flux

]
, (D.12)

where 𝒚 [ 𝑗]cp =

[
𝒚 [ 𝑗]cp,{𝑎,𝑏,𝑐},∀{𝑎, 𝑏, 𝑐}

]
is the set of all closure phase measurements

and 𝒚 [ 𝑗]cp =

[
𝒚 [ 𝑗]logca,{𝑎,𝑏,𝑐,𝑑},∀{𝑎, 𝑏, 𝑐, 𝑑}

]
is the set of all log closure amplitude

measurements over all combinations of telescopes for the 𝑗-th frame. The overall
data consistency is an aggregation over all frames and typically expressed using the
𝝌2 statistics

− log 𝑝(𝒚 | 𝒙0) ∝
𝑛 𝑓∑︁
𝑗=1

1
𝑛 𝑓 𝑑

[ 𝑗]
cp 𝜎

2
cp




A [ 𝑗]cp (𝒙0) − 𝒚 [ 𝑗]cp




2
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𝝌2

logca

+ 𝛽
𝑛 𝑓∑︁
𝑗=1

1
𝑛 𝑓𝜎

2
flux




A [ 𝑗]flux(𝒙0) − 𝒚 [ 𝑗]flux




2

︸                                   ︷︷                                   ︸
𝝌2

flux

(D.13)

where 𝜎cp, 𝜎logca, and 𝜎flux are the estimated standard deviations of the measured
closure phase, log closure amplitude, and flux, respectively, and 𝛽 is a hyperpa-
rameter that controls the strength of the flux regularization, which is empirically
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Figure D.1: The dirty images from the ideal visibilities. We use the standard
implementation in EHT library to get dirty images for each selected frame.

determined. To evaluate the data fitting, we introduce a unified 𝝌̃2 statistics

𝝌̃2 = 𝝌2 · 1{𝝌2 ≥ 1} + 1
𝝌2 · 1{𝝌

2 < 1}. (D.14)

The 𝝌̃2 is no less than 1 and closer to 1, indicating better measurement data fit. In
our experiments we use an average ( 𝝌̃2

cp + 𝝌̃2
logca)/2 for the data misfit metrics for

evaluation.

Our experiments are based on the simulation of observing the Sagittarius A∗ black
hole with the EHT 2017 array of eight radio telescopes over an observation period
of around 100 minutes. We refer the readers to Figure 5 of [178] for a visualization
of the measurement patterns in Fourier space over time. To show the difficulty of
this black hole video reconstruction problem, we visualize the dirty video frames
obtained by applying the inverse Fourier transform to the ideal visibilities, assuming
no measurement errors, in Figure D.1. One can see that substantial spatiotempo-
ral information is lost during the measurement process, so obtaining high-quality
reconstructions relies on the effectiveness of incorporating prior information in the
reconstruction process.

D.2.2.2 Dynamic MRI

MRI is an important imaging technique for clinical diagnosis and biomedical re-
search, where the objective is to recover a video 𝒙0 ∈ C𝑛 𝑓×𝑛ℎ×𝑛𝑤 of the heart from
the subsampled Fourier space (a.k.a 𝑘-space) measurements 𝒚. Despite its many
advantages, MRI is known to be slow because of the physical limitations of the
data acquisition in 𝑘-space. This leads to low patient throughput and sensitivity to
patients’ motion [298]. To accelerate the scan speed, instead of fully sampling 𝑘-
space, the compressed subsampling MRI (CS-MRI) technique subsamples 𝑘-space
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6× acceleration 8× acceleration

Figure D.2: Subsampling masks of 6× (left) and 8× (right) accelerations used
in dynamic MRI experiments. The white areas in the center indicate the auto-
calibration (ACS) signals. The horizontal and vertical directions are the frequency
(𝑘𝑥) and phase (𝑘𝑥) encoding directions, respectively. The same mask is applied to
the sampling of each individual frame of all videos.

with masks {𝒎 [ 𝑗]}𝑛 𝑓
𝑗=1. Mathematically, this can be formulated as

𝒚 [ 𝑗] = 𝒎 [ 𝑗] ⊙
(
𝑭𝒙 [ 𝑗]0

)
+ 𝒏[ 𝑗] ∈ C𝑛 for 𝑗 = 1, ..., 𝑛 𝑓 , (D.15)

where 𝒎 [ 𝑗] ∈ {0, 1}𝑛ℎ×𝑛𝑤 is the subsampling mask for the 𝑗-th frame, ⊙ denotes
element-wise multiplication, and 𝒏[ 𝑗] is the measurement noise. In our experiments,
we used subsampling masks with an equi-spaced pattern (similar to those visual-
ized in [298]) of both 6× acceleration with 24 auto-calibration signal (ACS) lines
(Table D.4) and 8× acceleration with 12 ACS lines (Table 7.2). For dynamic MRI,
we use the Gaussian likelihood function

− log 𝑝(𝒚 | 𝒙0) ∝
1
𝑛 𝑓

𝑛 𝑓∑︁
𝑗=1




A [ 𝑗] (𝒙0) − 𝒚 [ 𝑗]



2

2
, (D.16)

where A [ 𝑗] (𝒙0) := 𝒎 [ 𝑗] ⊙
(
𝑭𝒙 [ 𝑗]0

)
. Figure D.2 visualizes the subsampling masks

used in our experiments, where 𝑘𝑥 , 𝑘𝑦 indicate the frequency encoding and phase
encoding directions, respectively. The same mask is applied to the sampling of each
frame of all videos.

D.2.2.3 Baseline Implementations

We provide details on implementations of our baseline methods, following the same
grouping in Section 7.4.3.1.
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Group 1: Simple Heuristics We implement batch independent sampling (BIS)
and batch consistent sampling (BCS) following [168, 169]. BIS is implemented to
reconstruct each frame independently, whereas BCS promotes temporal consistency
by using identical ("batch-consistent") noise across the temporal dimension. To
ensure a fair comparison, we adapt Algorithm 7 by initializing the noise variables
𝒛𝑡𝑁 (line 1) and 𝒛𝑡𝑖−1 (line 9) with batch-consistent noise.

Group 2: Noise Warping We follow [53, 82] in performing noise warping based
on optical flow estimated from measurements. As described in Section 7.4.3.1,
we derive optical flow using ground-truth black hole videos and inverse Fourier-
transformed dynamic MRI videos with a pre-trained model [278]. Since we utilize
a latent diffusion model, we further downsample the optical flow via interpola-
tion to match the latent noise dimension. We adapt Algorithm 7 accordingly by
replacing the original i.i.d. noise with the warped noise while keeping other compo-
nents unchanged. We implement Bilinear, Bicubic, and Nearest warping strategies
using their corresponding interpolation methods, and follow the implementation
from https://github.com/yitongdeng-projects/infinite_resolution_
integral_noise_warping_code (MIT License) for

∫
-noise. Lastly, since [77]

does not provide publicly available code, we implement GP-Warp following Equa-
tion (2) from their paper.

D.2.3 Training Details for Spatiotemporal Diffusion Prior
In this section, we show the details of getting a video diffusion prior on black hole
video reconstruction and dynamic MRI, and we summarize the training hyperpa-
rameters in Table D.3. We define 𝐷image and 𝐷video as the image and video datasets,
containing 𝑁image and 𝑁video data points, respectively. The image dataset 𝐷image

includes all individual frames from the video dataset 𝐷video, along with additional
large-scale image data to enhance generalization. For data augmentation, we ap-
ply random horizontal/vertical flipping and random zoom-in-and-out to improve
robustness and diversity in training.

We first train the compression functions, the encoder E and decoderD, on an image
dataset. The training objective consists of an ℓ1 reconstruction loss combined with
a KL divergence term scaled by a factor 𝛽𝐾𝐿 . The loss function for training is as
defined in Equation (D.17). The Adam optimizer is used as the default optimizer
throughout the paper. The loss function for training the variational autoencoder

https://github.com/yitongdeng-projects/infinite_resolution_integral_noise_warping_code
https://github.com/yitongdeng-projects/infinite_resolution_integral_noise_warping_code
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(VAE) is given by

LVAE = E𝑞𝜙 (𝒛0 |𝒙0),𝒙0∼𝐷image [∥D(𝒛0) − 𝒙0∥1] + 𝛽KLKL
(
𝑞𝜙 (𝒛0 |𝒙0)∥𝑝(𝒛0)

)
(D.17)

where 𝑝(𝒛0) is the standard GaussianN(0, 𝑰) and 𝑞𝜙 (𝒛0 |𝒙0) is the isotropic Gaussian
distribution over 𝒛0 where the mean and standard deviation is given by E(𝒙0). Next,
we train the image diffusion U-Net 𝒔𝜽 using the standard score-matching loss

LIDM = E𝒛0∼𝑞𝜙 (𝒛0 |𝒙0),𝑥0∼𝐷image,𝜖∼N(0,𝑰),𝑡∼U(0,1)
[
𝜎2
𝑡



𝒔𝜽 (𝒙𝑡 , 𝑡) − ∇𝒙𝑡 log 𝑝𝑡 (𝒙𝑡 |𝒙0)


2

]
,

(D.18)
following [131, 266]. After pre-training, the image diffusion U-Net 𝒔𝜽 is then
converted to a spatiotemporal U-Net by adding zero-initialized temporal modules
to 2D spatial modules and fine-tuned jointly with video and image datasets. We use
the same Equation (D.18) without changing 𝒙0 to video or pseudo-video input and
use the encoder to process each frame independently.

Table D.3: Summary of the training of spatiotemporal diffusion prior. We
provide and group the hyperparameters according to each component in the model.
The model is trained with 1 NVIDIA A100-SCM4-80GB GPU.

Hyper-parameters Black hole video reconstruction Dynamic MRI

Dataset Related
frames 𝑛 𝑓 64 12
resolution 𝑛ℎ × 𝑛𝑤 256×256 192×192
𝑁image 50000 39888
𝑁video 648 3324
VAE Training Related
latent channels 1 2
block channels [64, 128, 256, 256] [256, 512, 512]
down sampling factor 8 4
batch size 16 16
epochs 25 10
𝛽KL 0.06 0.03

IDM Training Related
block channels [128, 256, 512, 512] [128, 256, 512, 512]
batch size 16 16
epochs 200 50

Joint Fine-tuning Related
𝑝joint 0.8 0.8
epochs 500 300

Other Info
VAE parameters 14.8M 57.5M
diffusion model parameters 131.7M 131.7M
VAE training time 4.5h 8.9h
image diffusion model training time 5.5h 3.8h
joint fine-tuning time 13.7h 22.8h
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Table D.4: Additional results on dynamic MRI with 6× acceleration. Following
the same setup as in Table 7.2, we report the quantitative results on 10 test videos.

Tasks Methods PSNR (↑) SSIM (↑) LPIPS (↓) d-PSNR (↑) d-SSIM (↑) FVD (↓) Data Misfit (↓)

MRI (6×)

BIS [168] 39.47 (0.59) 0.958 (0.007) 0.086 (0.011) 43.26 (1.23) 0.962 (0.005) 113.17 11.071 (0.740)
BCS [168] 40.69 (0.57) 0.959 (0.006) 0.081 (0.012) 44.73 (1.31) 0.974 (0.004) 110.01 11.085 (0.720)
Bilinear [53] 40.85 (0.57) 0.960 (0.006) 0.080 (0.012) 44.84 (1.28) 0.975 (0.004) 114.37 11.038 (0.735)
Bicubic [53] 40.71 (0.67) 0.959 (0.007) 0.079 (0.012) 44.74 (1.38) 0.974 (0.005) 106.82 11.068 (0.755)
Nearest [53] 40.37 (0.56) 0.960 (0.007) 0.080 (0.012) 44.81 (1.41) 0.974 (0.005) 110.91 11.050 (0.739)∫

-noise [53, 82] 40.09 (0.50) 0.960 (0.006) 0.082 (0.012) 44.77 (1.34) 0.974 (0.005) 111.92 11.059 (0.731)
GP-Warp [77] 39.50 (0.48) 0.959 (0.007) 0.080 (0.012) 44.53 (1.33) 0.973 (0.005) 105.70 11.070 (0.727)

STeP (video only) 40.76 (0.43) 0.967 (0.005) 0.077 (0.012) 46.38 (1.82) 0.981 (0.005) 101.83 10.788 (0.713)
STeP (image-video joint) 41.39 (0.52) 0.969 (0.005) 0.076 (0.012) 46.61 (1.72) 0.982 (0.004) 98.15 10.808 (0.723)

After pre-training, the image diffusion U-Net 𝒔𝜽 is transformed into a spatiotemporal
U-Net by integrating zero-initialized temporal modules into the existing 2D spatial
modules. The model is then fine-tuned jointly using both video and image datasets.
We use the same loss as in Equation (D.18), by changing 𝒙0 to a video or a pseudo-
video input. Each frame is independently processed using the encoder E, ensuring
that spatial representations remain aligned while temporal consistency is learned
through the added temporal modules.

D.2.4 Limitations
Though STeP is a general framework for solving scientific VIPs with spatiotemporal
diffusion prior, the sampling cost of STeP is relatively high due to the requirement
of backpropagation through decoder D in MCMC updates in Algorithm 7. So we
have to strike a balance between the capability of the decoder and its computational
cost.

D.2.5 More Results and Visualization
Data Misfit Values for Samples in Figure 7.6 We report the data misfit values in
Table D.5.

Table D.5: The data misfit values for samples shown in Figure 7.6. We report the
data misfit metrics for the three obtained modes, which demonstrate that all modes
fit the measurement data equally well.

Metrics Mode 1 Mode 2 Mode 3

𝝌2
cp 1.045 0.987 1.084

𝝌2
logca 1.007 1.001 1.202

Data Misfit 1.026 1.007 1.143

Dynamic MRI with Higher Acceleration To access the capability of using a
spatiotemporal prior for solving more challenging inverse problems, we increase
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(a) black hole imaging

(b) dynamic MRI

Figure D.3: Visualization of VAE reconstructions. The VAE reconstructions are
computed by first encoding the ground truth videos and then decoding them.

the acceleration times in Dynamic MRI, which makes the observation more sparse.
The results are summarized in Table D.4.

More Visualizations Here, we show the VAE reconstruction results in Figure D.3,
unconditional samples in Figure D.4 and additional posterior samples in Figure D.5.

D.3 Appendix for Section 7.5
D.3.1 Theory
D.3.1.1 Notation

Recall that for the prior step, we consider the following SDE that corresponds to
Equation (6.6) with 𝑠(𝑡) = 1

d𝒙𝑡 =
[
−(2 ¤𝜎(𝑡)𝜎(𝑡) + 𝛽(𝑡))∇ log 𝑝𝑡

(
𝒙𝑡
𝑠(𝑡) ;𝜎(𝑡)

)]
d𝑡 +

(√︁
2 ¤𝜎(𝑡)𝜎(𝑡) +

√︁
2𝛽(𝑡)

)
d𝒘̄𝑡 .

(D.19)

We denote the drift coefficient and the diffusion coefficient as ℎ(𝑡) and 𝛿(𝑡), respec-
tively:

ℎ(𝑡) := − (2 ¤𝜎(𝑡)𝜎(𝑡) + 𝛽(𝑡)) (D.20)

𝛿(𝑡) :=
√︁

2 ¤𝜎(𝑡)𝜎(𝑡) +
√︁

2𝛽(𝑡). (D.21)
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(b) dynamic MRI
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Figure D.4: Visualization of video diffusion model unconditional samples. The
videos are sampled by solving the PF-ODE with 100 Euler steps.
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(b) dynamic MRI

Figure D.5: Visualization of STeP posterior samples. The videos are sampled
using the Algorithm 7.
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Recall from Section 6.4 that the Kullback–Leibler (KL) divergence between two
distributions 𝜇 and 𝜋 is defined by

KL(𝜇 | |𝜋) =
∫

𝜇 log
𝜇

𝜋
= E𝜇

[
log

𝜇

𝜋

]
.

The Fisher divergence between two distributions 𝜇 and 𝜋 is defined by

FI(𝜇 | |𝜋) =
∫

𝜇




∇ log
𝜇

𝜋




2

2
= E𝜇




∇ log
𝜇

𝜋




2

2
.

For 𝒙 ∈ R𝑛, we define the weighted norm induced by a positive semi-definite matrix
𝑴 ∈ R𝑛×𝑛 as

∥𝒙∥2𝑴 = 𝒙𝑇𝑴𝒙, (D.22)

and the divergence of a matrix 𝑇 (𝒙) ∈ R𝑛×𝑛 as the vector field

(∇𝒙 · 𝑇)𝑖 =
𝑛∑︁
𝑗=1

𝜕𝑇𝑖 𝑗

𝒙 𝑗
. (D.23)

D.3.1.2 Assumptions and Lemmas

Assumption D.3.1. The average score approximation error of the diffusion model
𝒔𝑡 := 𝒔𝜽 ( · ; 𝑡) is bounded,

𝜖score = sup
𝑘=0,...,𝐾−1

{
1
𝑡∗

∫ 𝑇𝑘+1

𝑇𝑘+𝑡†

ℎ(𝑡)2
𝛿(𝑡)2

E𝜇𝑡 ∥𝒔𝑡 − ∇𝒙𝑡 log 𝑝𝜎(𝑡) ∥22d𝑡
}
< +∞, (D.24)

where ℎ(𝑡) is defined in Equation (D.20) and 𝛿(𝑡) is defined in Equation (D.21).

Assumption D.3.2. The average derivative approximation error of the linear sur-
rogate model 𝑨𝑡 is bounded,

𝜖model = sup
𝑘=0,...,𝐾−1


1
𝑡†

∫ 𝑇𝑘+𝑡†

𝑇𝑘

E𝜇𝑡






∇ 𝑓 (𝒛𝑡 ; 𝒚) − 1
𝜎2
𝒚

𝑨𝑇𝑡

(
A(𝒛( 𝑗)𝑡 ) − 𝒚

)




2

𝐶𝑡

d𝑡
 < +∞,

(D.25)
where ∥ · ∥𝐶𝑡 is the weighted norm defined in Equation (D.22).

Assumption D.3.3. The Radon–Nikodym derivative d𝜇𝑡
d𝜇𝑡 is constant along the null

space of 𝐶𝑡 almost surely, where 𝐶𝑡 is the covariance matrix of 𝜇𝑡 .

d𝜇𝑡
d𝜇𝑡
(𝒙) = d𝜇𝑡

d𝜇𝑡
(𝒙 + 𝒗),∀𝒗 ∈ Ker(𝐶𝑡).
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Remark D.3.4. Assumption D.3.1 coincides with the usual bounded score-matching
error condition that underpins convergence results [57, 175, 320]. Assumption D.3.2
characterizes the ℓ2 accuracy of the linear proxy. Assumption D.3.3 is the weakest
assumption to bound the weighted Fisher divergence in our analysis. Two common
sufficient (but not necessary) scenarios are: (1)𝐶𝑡 is full-rank and (2) 𝜇𝑡 is absolutely
continuous with respect to 𝜇𝑡 , and both log densities are continuously differentiable.

Lemma D.3.5 (Stationary distribution of the likelihood step). Assume the parti-
cle distribution is not a Dirac measure, the dynamics of Equation (7.11) admits
𝜋𝑍 |𝑋=𝒙

( 𝑗 ) (𝒛) ∝ exp(− 𝑓 (𝒛; 𝒚) − 1
2𝜂2 ∥𝒛− 𝒙 ( 𝑗) ∥22) as a stationary distribution. Further,

if the covariance matrix is positive definite, the stationary distribution is unique.

Proof. This result has been proved in various forms in the literature [111, 206].
Here, we provide a simple proof of our use case for ease of understanding. Suppose
𝜇𝑡 (𝒛) is the probability density of 𝒛 at time 𝑡. For the ease of notation, we ignore
the particle index 𝑗 in 𝒛𝑡 . Let Φ(𝒛) := 𝑓 (𝒛; 𝒚) + 1

2𝜂2 ∥𝒛 − 𝒙 ( 𝑗) ∥22. The corresponding
Fokker-Planck equation for Equation (7.11) reads

𝜕𝑡𝜇𝑡 = ∇ · (𝜇𝑡𝐶𝑡∇Φ(𝒛)) + ∇ · (𝐶𝑡∇𝜇𝑡) ,

which can be rewritten as

𝜕𝑡𝜇𝑡 = ∇ · (𝜇𝑡𝐶𝑡 (∇Φ(𝒛) + ∇ log 𝜇𝑡)) . (D.26)

Let 𝜇∞ denote the stationary distribution of Equation (D.26). We have

0 = ∇ · (𝜇𝑡𝐶𝑡 (∇Φ(𝒛) + ∇ log 𝜇∞)) .

If the particle distribution is not Dirac,𝐶𝑡 ≠ 0 due to Lemma 2.1 in [111]. Therefore,

∇Φ(𝒛) + ∇ log 𝜇∞ = 𝑐,

where 𝑐 is a constant. Integrating both sides gives

𝜇∞(𝒛) ∝ exp(−Φ(𝒛)) = exp
(
− 𝑓 (𝒛; 𝒚) − 1

2𝜂2 ∥𝒛 − 𝒙
( 𝑗) ∥22

)
,

showing that 𝜋𝑍 |𝑋=𝒙 ( 𝑗 ) (𝒛) is a stationary distribution of the dynamics of Equa-
tion (7.11). Further, if 𝐶𝑡 is positive definite, it ensures the irreducibility and strong
Feller property, and the stationary distribution is unique [206, 247].
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Lemma D.3.6. Given the following pair of stochastic processes

d𝒙𝑡 = 𝑏(𝒙𝑡 , 𝑡)d𝑡 + 𝐻 (𝑡)d𝒘𝑡 , (D.27)

d𝒙̃𝑡 = 𝑏̃(𝒙̃𝑡 , 𝑡)d𝑡 + 𝐻 (𝑡)d𝒘𝑡 , (D.28)

where 𝑏, 𝑏̃ : R𝑛 × R+ → R𝑛 are the drift terms, 𝐻 : R+ → R𝑛 × R𝑛 is the diffusion
term, 𝒘𝑡 is the standard Wiener process. Let 𝜇𝑡 (respectively 𝜇𝑡) be the law of 𝒙𝑡
(respectively 𝒙̃𝑡), 𝐶 (𝑡) := 𝐻 (𝑡)𝐻 (𝑡)𝑇 , and 𝜆∗𝑡 be the smallest non-zero eigenvalue of
𝐶 (𝑡). Assuming that 𝑏𝑡 − 𝑏̃𝑡 ∈ Range(𝐶 (𝑡)) and Assumption D.3.3 holds, we have

𝜕𝑡KL(𝜇𝑡 | |𝜇𝑡) ≤ −
𝜆∗𝑡
4

FI(𝜇𝑡 | |𝜇𝑡) + E𝜇𝑡



𝑏𝑡 − 𝑏̃𝑡


2

𝐶 (𝑡)†
, (D.29)

where 𝐶 (𝑡)† is the pseudo-inverse of 𝐶 (𝑡).

Proof. Since the diffusion terms only depend on 𝑡 and 𝐶 (𝑡) = 𝐻 (𝑡)𝐻 (𝑡)𝑇 , the
Fokker-Planck equations of Equation (D.27) and Equation (D.28) read

𝜕𝑡𝜇𝑡 = ∇ ·
[(

1
2
𝐶 (𝑡)∇ log 𝜇𝑡 − 𝑏𝑡

)
𝜇𝑡

]
, (D.30)

𝜕𝑡𝜇𝑡 = ∇ ·
[(

1
2
𝐶 (𝑡)∇ log 𝜇𝑡 − 𝑏̃𝑡

)
𝜇𝑡

]
. (D.31)

Let 𝑟𝑡 := 𝜇𝑡
𝜇𝑡

and 𝜙(𝑟𝑡) := 𝑟𝑡 log 𝑟𝑡 (so 𝜙′(𝑟𝑡) = d
d𝑟𝑡 𝜙(𝑟𝑡) = log 𝑟𝑡 + 1). Differentiating

the KL divergence gives

𝜕𝑡KL(𝜇𝑡 | |𝜇𝑡) = 𝜕𝑡
∫

𝜙(𝑟𝑡)𝜇𝑡

=

∫
[𝜙(𝑟𝑡)𝜕𝑡𝜇𝑡 + 𝜙′(𝑟𝑡)𝜕𝑡𝜇𝑡]

=

∫
[𝜙(𝑟𝑡)𝜕𝑡𝜇𝑡 + 𝜙′(𝑟𝑡)𝜕𝑡𝜇𝑡 − 𝜙′(𝑟𝑡)𝑟𝑡𝜕𝑡𝜇𝑡]

=

∫
[(log 𝑟𝑡 + 1)𝜕𝑡𝜇𝑡 − 𝑟𝑡𝜕𝑡𝜇𝑡] , (D.32)

where the last step uses the fact that 𝜙(𝑟𝑡)−𝑟𝑡𝜙′(𝑟𝑡) = −𝑟𝑡 . Plugging Equation (D.30)
and Equation (D.31) into Equation (D.32) and applying integration by parts further,
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we have

𝜕𝑡KL(𝜇𝑡 | |𝜇𝑡)

=

∫
(log 𝑟𝑡 + 1)∇ ·

[(
1
2
𝐶 (𝑡)∇ log 𝜇𝑡 − 𝑏𝑡

)
𝜇𝑡

]
−

∫
𝑟𝑡∇ ·

[(
1
2
𝐶 (𝑡)∇ log 𝜇𝑡 − 𝑏̃𝑡

)
𝜇𝑡

]
= −

∫ 〈
∇ log 𝑟𝑡 ,

1
2
𝐶 (𝑡)∇ log 𝜇𝑡 − 𝑏𝑡

〉
𝜇𝑡 +

∫ 〈
∇𝑟𝑡 ,

1
2
𝐶 (𝑡)∇ log 𝜇𝑡 − 𝑏̃𝑡

〉
𝜇𝑡

= −
∫ 〈
∇ log 𝑟𝑡 ,

1
2
𝐶 (𝑡)∇ log 𝜇𝑡 − 𝑏𝑡

〉
𝜇𝑡 +

∫ 〈
∇ log 𝑟𝑡 ,

1
2
𝐶 (𝑡)∇ log 𝜇𝑡 − 𝑏̃𝑡

〉
𝜇𝑡

= −
∫ 〈
∇ log 𝑟𝑡 ,

1
2
𝐶 (𝑡) (∇ log 𝜇𝑡 − ∇ log 𝜇𝑡)

〉
𝜇𝑡 +

∫ 〈
∇ log 𝑟𝑡 , 𝑏𝑡 − 𝑏̃𝑡

〉
𝜇𝑡

= −1
2

∫
⟨∇ log 𝑟𝑡 , 𝐶 (𝑡)∇ log 𝑟𝑡⟩ 𝜇𝑡 +

∫ 〈
∇ log 𝑟𝑡 , 𝑏𝑡 − 𝑏̃𝑡

〉
𝜇𝑡 . (D.33)

The weighted Young’s inequality states that, for any 𝑢, 𝑣 ∈ R𝑛, when 𝑣 ∈ Range(𝐶),
we have

⟨𝑢, 𝑣⟩ ≤ 1
4
⟨𝑢, 𝐶𝑢⟩ +

〈
𝑣, 𝐶†𝑣

〉
,

where 𝐶† is the pseudo-inverse. By Assumption D.3.3, Equation (D.33) can be
bounded as follows

− 1
2

∫
⟨∇ log 𝑟𝑡 , 𝐶 (𝑡)∇ log 𝑟𝑡⟩ 𝜇𝑡 +

∫ 〈
∇ log 𝑟𝑡 , 𝑏𝑡 − 𝑏̃𝑡

〉
𝜇𝑡

≤ −1
4

∫
⟨∇ log 𝑟𝑡 , 𝐶 (𝑡)∇ log 𝑟𝑡⟩ 𝜇𝑡 +

∫ 〈
𝑏𝑡 − 𝑏̃𝑡 , 𝐶 (𝑡)†(𝑏𝑡 − 𝑏̃𝑡)

〉
𝜇𝑡

≤ −
𝜆∗𝑡
4

FI(𝜇𝑡 | |𝜇𝑡) + E𝜇𝑡



𝑏𝑡 − 𝑏̃𝑡


2

𝐶 (𝑡)†
(D.34)

where 𝜆∗𝑡 is the smallest non-zero eigenvalue of 𝐶 (𝑡).

This is a generalization of Lemma C.1.4 to the general matrix-valued diffusion term.
Intuitively, the condition that 𝑏𝑡 − 𝑏̃𝑡 belongs to the range of𝐶 (𝑡) means that the two
drift terms may only differ along the directions that are actually driven by noise. In
the context of our proof below, this is always satisfied because the drift terms are
either preconditioned with 𝐶 (𝑡) or 𝐶 (𝑡) is full-rank.
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D.3.1.3 Proof of Theorem 7.5.1

Proof. For 𝜏 ∈ [𝑇𝑘 , 𝑇𝑘+𝑡†], 𝑘 = 0, ..., 𝐾−1, we apply Lemma D.3.6 to the likelihood
step with

𝑏(𝒛𝑡 , 𝑡) := −𝐶𝑡∇ 𝑓 (𝒛𝑡 ; 𝒚) −
1
𝜂2𝐶𝑡 (𝒛𝑡 − 𝒙

( 𝑗))

𝑏̃(𝒛𝑡 , 𝑡) := −𝐶𝑡
1
𝜎2
𝒚

𝑨𝑇𝑡 (A(𝒛𝑡) − 𝒚) − 1
𝜂2𝐶𝑡 (𝒛𝑡 − 𝒙

( 𝑗))

𝐻 (𝑡) =
√︁
𝐶𝑡 ,

where 𝑨𝑡 = E𝜇𝑡 [(A(𝒛𝑡)−E𝑞𝑡A(𝒛𝑡))𝒛𝑇𝑡 ]𝐶−1
𝑡 as defined in Equation (7.13). Note that

the condition 𝑏 − 𝑏̃ ∈ Range(𝐶𝑡) is satisfied as both drift terms are preconditioned
with 𝐶𝑡 . Thus, by Assumption D.3.3, we have

𝜕𝜏KL(𝜇𝜏 | |𝜇𝜏) ≤ −
𝜆∗𝜏
4

FI(𝜇𝜏 | |𝜇𝜏) + E𝜇𝜏
〈
𝑏𝜏 − 𝑏̃𝜏, 𝐶†𝜏 (𝑏𝜏 − 𝑏̃𝜏)

〉
≤ −𝜆

∗

4
FI(𝜇𝜏 | |𝜇𝜏) + E𝜇𝜏






∇ 𝑓 (𝒛𝜏; 𝒚) − 1
𝜎2
𝒚

𝑨𝑇𝜏 (A(𝒛𝜏) − 𝒚)





2

𝐶𝜏

where𝜆∗𝜏 is the smallest non-zero eigenvalue of𝐶𝜏 and𝜆∗ := inf𝜏∈[𝑇𝑘 ,𝑇𝑘+𝑡†],𝑘=0,...,𝐾−1 𝜆
∗
𝜏.

By Assumption D.3.2 , integrating both sides over [𝑇𝑘 , 𝑇𝑘 + 𝑡†] gives

KL(𝜇𝑇𝑘+𝑡† | |𝜇𝑇𝑘+𝑡†) − KL(𝜇𝑇𝑘 | |𝜇𝑇𝑘 )

≤ −𝜆
∗

4

∫ 𝑇𝑘+𝑡†

𝑇𝑘

FI(𝜇𝜏 | |𝜇𝜏)d𝜏 +
∫ 𝑇𝑘+𝑡†

𝑇𝑘

E𝜇𝜏






∇ 𝑓 (𝒛𝜏; 𝒚) − 1
𝜎2
𝒚

𝑨𝑇𝜏 (A(𝒛𝜏) − 𝒚)





2

𝐶𝜏

d𝜏

≤ −𝜆
∗

4

∫ 𝑇𝑘+𝑡†

𝑇𝑘

FI(𝜇𝜏 | |𝜇𝜏)d𝜏 + 𝑡†𝜖model, (D.35)

where 𝜖model is defined in Equation (D.25). For 𝜏 ∈ [𝑇𝑘 + 𝑡†, 𝑇𝑘+1], 𝑘 = 0, ..., 𝐾 − 1,
we apply Lemma D.3.6 to the prior step (D.19) with

𝑏(𝒙𝑡 , 𝑡) := ℎ(𝑡)∇𝒙𝑡 log 𝑝𝑡 (𝒙𝑡 ;𝜎(𝑡))
𝑏̃(𝒛𝑡 , 𝑡) := ℎ(𝑡)𝒔𝜽 (𝒙𝑡 ; 𝑡)
𝐻 (𝑡) := 𝛿(𝑡)𝑰,

where ℎ(𝑡) is the drift coefficient defined in Equation (D.20), 𝛿(𝑡) is the diffusion
coefficient defined in Equation (D.21), 𝒔𝜽 is the pre-trained diffusion model with
score approximation error 𝜖score. Note that 𝐻 (𝑡)𝐻 (𝑡)𝑇 is full-rank so that the
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condition of Lemma D.3.6 is satisfied. Therefore, we have

𝜕𝜏KL(𝜇𝜏 | |𝜇𝜏) ≤ −
𝛿(𝜏)2

4
FI(𝜇𝜏 | |𝜇𝜏) +

ℎ(𝜏)2
𝛿(𝜏)2

E𝜇𝜏 ∥∇𝒙𝜏 log 𝑝𝜎(𝜏) − 𝒔𝜏∥22

≤ −𝛿
4

FI(𝜇𝜏 | |𝜇𝜏) +
ℎ(𝜏)2
𝛿(𝜏)2

E𝜇𝜏 ∥∇𝒙𝜏 log 𝑝𝜎(𝜏) − 𝒔𝜏∥22,

where 𝛿 := inf𝜏∈[0,𝑡∗] 𝛿(𝜏)2. Integrating both sides over [𝑇𝑘 + 𝑡†, 𝑇𝑘+1] and applying
Assumption D.3.1 gives

KL(𝜇𝑇𝑘+1 | |𝜇𝑇𝑘+1) − KL(𝜇𝑇𝑘+𝑡† | |𝜇𝑇𝑘+𝑡†)

≤ −𝛿
4

∫ 𝑇𝑘+1

𝑇𝑘+𝑡†
FI(𝜇𝜏 | |𝜇𝜏)d𝜏 +

∫ 𝑇𝑘+1

𝑇𝑘+𝑡†

ℎ(𝜏)2
𝛿(𝜏)2

E𝜇𝜏 ∥ log 𝑝𝜎(𝜏) − 𝒔𝜏∥22d𝜏

≤ −𝛿
4

∫ 𝑇𝑘+1

𝑇𝑘+𝑡†
FI(𝜇𝜏 | |𝜇𝜏)d𝜏 + 𝑡∗𝜖score, (D.36)

where 𝜖score is defined in Equation (D.24). Summing up both sides of Equa-
tion (D.35) and Equation (D.36) for 𝑘 = 0, ..., 𝐾 − 1 gives

KL(𝜇𝑇𝐾 | |𝜇𝑇𝐾 )−KL(𝜇0 | |𝜇0) ≤ −
min(𝜆∗, 𝛿)

4

∫ 𝑇𝐾

0
FI(𝜇𝜏 | |𝜇𝜏)d𝜏+𝐾 (𝑡†𝜖model+𝑡∗𝜖score).

Rearranging the terms gives

1
𝑇𝐾

∫ 𝑇𝐾

0
FI(𝜇𝜏 | |𝜇𝜏)d𝜏

≤ 4
𝑇𝐾 min(𝜆∗, 𝛿)

(
KL(𝜇0 | |𝜇0) − KL(𝜇𝑇𝐾 | |𝜇𝑇𝐾 )

)
+ 4

min(𝜆∗, 𝛿) (𝑡† + 𝑡∗)
(𝜖model + 𝜖score)

≤ 4
min(𝜆∗, 𝛿)

[
KL(𝜇0 | |𝜇0)
𝐾 (𝑡† + 𝑡∗)

+ 𝑡
†𝜖model + 𝑡∗𝜖score

𝑡† + 𝑡∗

]
=
𝑐KL(𝜇0 | |𝜇0)

𝐾
+ 𝑐𝑡†𝜖model + 𝑐𝑡∗𝜖score

where 𝑐 := 4
min(𝜆∗,𝛿) (𝑡†+𝑡∗) . The proof is concluded by the fact that 𝜇0 = 𝜋𝑋 .

Lemma D.3.7. Let 𝜋(𝒛; 𝒙 ( 𝑗)) denote the invariant measure associated with the
potential Φ(𝒛; 𝒙 ( 𝑗)) where ∇𝒛Φ(𝒛; 𝒙 ( 𝑗)) =

[
1
𝜎2
𝒚
𝑨𝑇𝑡 (A(𝒛) − 𝒚) + 1

𝜂2 (𝒛 − 𝒙 ( 𝑗))
]
. Then

𝜋(𝒛; 𝒙 ( 𝑗)) is an invariant measure of the finite-particle system in Equation (7.15) as
well as its large particle limit in Equation (7.14).

Proof. In the large particle limit, the covariance 𝐶𝑡 does not depend on any specific
particle but depends on the particle distribution only. Therefore, the Fokker-Planck
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equation of Equation (7.14) reads:

𝜕𝑡 𝑝𝑡 = ∇ ·
(
𝑝𝑡𝐶𝑡∇Φ(𝒛( 𝑗)𝑡 ; 𝒙 ( 𝑗))

)
+ 𝐶𝑡∇2𝑝𝑡

= ∇ ·
(
𝑝𝑡𝐶𝑡

(
∇Φ(𝒛( 𝑗)𝑡 ; 𝒙 ( 𝑗)) + ∇ log 𝑝𝑡

))
where 𝑝𝑡 is the probability density at time 𝑡. We can see that 𝜋(𝒛; 𝒙 ( 𝑗)) is an invariant
measure by setting both sides to zero. In the finite-particle system, the covariance
𝐶𝑡 =

1
𝐽

∑𝐽
𝑗=1(𝒛

( 𝑗)
𝑡 −𝒛𝑡) (𝒛

( 𝑗)
𝑡 −𝒛𝑡)𝑇 , which depends on the current state 𝒛( 𝑗)𝑡 . Therefore,

the Fokker-Plank equation of the finite-particle dynamics in Equation (7.15) is

𝜕𝑡 𝑝𝑡 =∇ ·
[
𝑝𝑡

(
𝐶𝑡∇Φ(𝒛( 𝑗)𝑡 ; 𝒙 ( 𝑗)) − 𝑛 + 1

𝐽
(𝒛( 𝑗)𝑡 − 𝒛𝑡)

)]
+ ∇ · (∇ · (𝑝𝑡𝐶𝑡))

=∇ ·
[
𝑝𝑡

(
𝐶𝑡∇Φ(𝒛( 𝑗)𝑡 ; 𝒙 ( 𝑗)) − 𝑛 + 1

𝐽
(𝒛( 𝑗)𝑡 − 𝒛𝑡)

)]
+ ∇ · (𝐶𝑡∇𝑝𝑡 + 𝑝𝑡∇ · 𝐶𝑡)

=∇ ·
[
𝑝𝑡𝐶𝑡

(
∇Φ(𝒛( 𝑗)𝑡 ; 𝒙 ( 𝑗)) + ∇ log 𝑝𝑡

)]
− ∇ ·

(
𝑛 + 1
𝐽
(𝒛( 𝑗)𝑡 − 𝒛𝑡)

)
+ ∇ · (𝑝𝑡∇ · 𝐶𝑡)

=∇ ·
[
𝑝𝑡𝐶𝑡

(
∇Φ(𝒛( 𝑗)𝑡 ; 𝒙 ( 𝑗)) + ∇ log 𝑝𝑡

)]
− ∇ ·

(
𝑛 + 1
𝐽
(𝒛( 𝑗)𝑡 − 𝒛𝑡)

)
+ ∇ ·

(
𝑝𝑡∇𝒛 ( 𝑗 )𝑡 ·

1
𝐽

𝐽∑︁
𝑖=1
(𝒛(𝑖)𝑡 − 𝒛𝑡) (𝒛(𝑖)𝑡 − 𝒛𝑡)𝑇

)
=∇ ·

[
𝑝𝑡𝐶𝑡

(
∇Φ(𝒛( 𝑗)𝑡 ; 𝒙 ( 𝑗)) + ∇ log 𝑝𝑡

)]
− ∇ ·

(
𝑝𝑡
𝑛 + 1
𝐽
(𝒛( 𝑗)𝑡 − 𝒛𝑡)

)
+ ∇ ·

(
𝑝𝑡

1
𝐽
(𝑛 + 1) (𝒛( 𝑗)𝑡 − 𝒛𝑡)

)
=∇ ·

[
𝑝𝑡𝐶𝑡

(
∇Φ(𝒛( 𝑗)𝑡 ; 𝒙 ( 𝑗)) + ∇ log 𝑝𝑡

)]
where the divergence of a matrix is defined in Equation (D.23), and we use the
following properties:

∇
𝒛
( 𝑗 )
𝑡

·
(
𝒛( 𝑗)𝑡 𝒛( 𝑗)

𝑇

𝑡

)
= (𝑛 + 1)𝒛( 𝑗)𝑡 ,

∇
𝒛
( 𝑗 )
𝑡

·
(
𝒛( 𝑗)𝑡 𝒛(𝑖)

𝑇

𝑡

)
= 𝒛(𝑖)𝑡 ,

∇
𝒛
( 𝑗 )
𝑡

·
(
𝒛(𝑖)𝑡 𝒛( 𝑗)

𝑇

𝑡

)
= 𝑛𝒛(𝑖)𝑡 ,

∇
𝒛
( 𝑗 )
𝑡

·
(
𝒛𝑡 𝒛

𝑇
𝑡

)
=
𝑛 + 1
𝐽

𝒛𝑡 ,

where 𝑖 ≠ 𝑗 . By taking both sides to zero, we have that 𝜋(𝒛; 𝒙 ( 𝑗)) is an invariant
measure of Equation (7.15) as well.

This proof is largely adapted from [112, 226], which apply to more general scenarios.
We tailor the proof to our case for ease of understanding.
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Algorithm 8 LikelihoodStep of Algorithm 3

Require: initial ensemble 𝑿 = {𝒙 ( 𝑗)}𝐽
𝑗=1, forward model A, observation 𝒚, effec-

tive observation noise 𝜎̃𝒚, coupling strength 𝜂, number of discretization steps
𝑁 , step size scale 𝛾.

1: 𝒁0 = {𝒛( 𝑗)0 }
𝐽
𝑗=1 ← 𝑿

2: for 𝑖 = 0, ..., 𝑁 − 1 do
3: 𝒅 ( 𝑗)1 ← −

1
𝐽

∑𝐽
𝑗 ′=1

1
𝜎̃2
𝒚
⟨A(𝒛( 𝑗

′)
𝑖
) −Ā,A(𝒛( 𝑗)

𝑖
) − 𝒚⟩(𝒛( 𝑗

′)
𝑖
− 𝒛𝑖) for 𝑗 = 1, ..., 𝐽

4: 𝐶𝑖 ← cov
(
𝒛(1)
𝑖
, ..., 𝒛(𝐽)

𝑖

)
5: 𝒅 ( 𝑗)2 ← −

1
𝜂2𝐶𝑖 (𝒙 ( 𝑗) − 𝒛( 𝑗)

𝑖
) + 𝑛+1

𝐽
(𝒛( 𝑗)
𝑖
− 𝒛𝑖) for 𝑗 = 1, ..., 𝐽

6:
√
𝐶𝑖 ← 1√

𝐽

[
𝒛(1)
𝑖
− 𝒛𝑖, ..., 𝒛

(𝐽)
𝑖
− 𝒛𝑖

]
∈ R𝑛×𝐽

7: 𝝐𝑖 𝑗 ∼ N(0, 𝑰𝐽) for 𝑗 = 1, ..., 𝐽
8: 𝜂← 𝛾/∥𝒅1 + 𝒅2∥22
9: 𝒛( 𝑗)

𝑖+1 ← 𝒛( 𝑗)
𝑖
+ 𝜂(𝒅 ( 𝑗)1 + 𝒅

( 𝑗)
2 ) +

√︁
2𝜂
√
𝐶𝑖𝝐𝑖 𝑗 for 𝑗 = 1, ..., 𝐽

10: end for
11: return 𝒁𝑁 = {𝒛( 𝑗)

𝑁
}𝐽
𝑗=1

Algorithm 9 PriorStep of Algorithm 3

Require: initial ensemble 𝒁 = {𝒛( 𝑗)}𝐽
𝑗=1, diffusion model 𝒔𝜽 , assumed noise level

𝜂 > 0, number of discretization steps 𝑁 , noise schedule 𝜎(𝑡) = 𝑡, discretization
time steps {𝑡𝑖}𝑁𝑖=0 (monotonically decreasing to 𝑡𝑁 = 0), solver (SDE or ODE)

1: 𝑖∗ ← min {𝑖 ∈ [𝑁] | 𝜎(𝑡𝑖) ≤ 𝜂}
2: 𝑿𝑖∗ = {𝒙 ( 𝑗)𝑖∗ }𝐽𝑗=1 ← 𝒁

3: for 𝑖 = 𝑖∗, ..., 𝑁 − 1 do
4: 𝜆← 2 if solver is SDE else 1
5: 𝒅 ( 𝑗)

𝑖
← −𝜆𝑡𝑖𝒔𝜽 (𝒙 ( 𝑗)𝑖 ; 𝜎(𝑡𝑖)) for 𝑗 = 1, ..., 𝐽

6: 𝒙 ( 𝑗)
𝑖+1 ← 𝒙 ( 𝑗)

𝑖
+ (𝑡𝑖+1 − 𝑡𝑖)𝒅 ( 𝑗)𝑖 for 𝑗 = 1, ..., 𝐽

7: if 𝑖 ≠ 𝑁 − 1 and solver is SDE then
8: 𝝐𝑖 𝑗 ∼ N(0, 𝑰) for 𝑗 = 1, ..., 𝐽
9: 𝒙 ( 𝑗)

𝑖+1 ← 𝒙 ( 𝑗)
𝑖+1 +

√︁
2𝑡𝑖 (𝑡𝑖 − 𝑡𝑖+1)𝝐𝑖 𝑗 for 𝑗 = 1, ..., 𝐽

10: end if
11: end for
12: return 𝑿𝑁 = {𝒙 ( 𝑗)

𝑁
}𝐽
𝑗=1
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D.3.2 Background
D.3.2.1 Traditional Methods for Derivative-Free Posterior Estimation

Traditional methods for derivative-free posterior estimation include Markov chain
Monte Carlo (MCMC) samplers [75, 113, 115] and Sequential Monte Carlo (SMC)
approaches [78]. These methods offer theoretical convergence guarantees but face
significant scalability challenges in real-world applications, especially in high di-
mensions. On the other hand, approximate Bayesian methods [46, 111, 138] offer
better efficiency, but often struggle to capture complex posteriors. Additionally,
these methods require access to the prior density (up to a normalizing constant).
However, in practice, prior knowledge is often implicit in data (e.g., simulation
archives and historical measurements) and difficult to directly model the density in
high dimensions.

D.3.2.2 Diffusion-Based Derivative-Free Posterior Estimation

Many recent derivative-free algorithms [141, 277, 356] leverage diffusion models
(DMs) as plug-and-play priors for solving high-dimensional inverse problems with
complex prior distributions. DMs can flexibly capture complex prior distributions,
but require optimization or sampling for posterior inference, mainly due to modeling
the score function rather than the density. Optimization-based approaches typically
introduce approximations that can lead to mis-calibrated posterior samples even
in simple linear-Gaussian settings (see Section 5.1 of [297]). Sampling-based
approaches are often asymptotically correct sampling [44, 89, 283, 318], but are
typically strictly restricted to linear problems and do not generalize to nonlinear
settings.

D.3.2.3 Ensemble Kalman Methodology

The Ensemble Kalman methodology was first introduced by [96] in the context
of filtering problems and has gained popularity in applications such as reservoir
modeling [227] and weather forecasting [137] due to its derivative-free nature and
effectiveness in practical settings. In the context of inverse problems, [143] revisits
this idea to propose Ensemble Kalman Inversion (EKI), spawning a variety of exten-
sions: momentum-augmented updates for neural network training [166], Tikhonov
and other regularization schemes for improved stability and efficiency [48, 139,
144]. More recently, [161, 356] have explored this idea to create derivative-free
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diffusion guidance from an optimization perspective to guide the generation of a
diffusion model for different applications.

D.3.3 Implementation Details of Blade
In this sub-section, we provide details on the practical implementation of Blade. The
choices on key hyperparameters are summarized in Table D.6. All the experiments
are conducted on single NVIDIA GH200 GPU.

D.3.3.1 Likelihood Step

Initialization As Theorem 7.5.1 indicates, the initialization of Blade is quite
flexible, provided the initial distribution maintains a finite KL divergence from the
target distribution. We used samples from the prior distribution as initializations for
the Navier-Stokes equation experiments, indicated by “DM” in Table D.6.

Discretization We discretize the SDE in Equation (7.15) using the standard Euler
method with an adaptive step size defined as

Step size =
𝛾

∥drift∥22
,

where 𝛾 is the hyperparameter that controls the scale of the step size, drift is the
drift term of the SDE in Equation (7.15). This adaptive step size is effective across
all our experiments. Further design of adaptive step sizes could potentially reduce
discretization error with fewer steps.

Resample During the likelihood step, we employ a resampling strategy to ensure
that the particles are at the correct noise level 𝜂. Resampling is a commonly used
method that has been shown to help improve the performance of algorithms such
as DAPS [341], DiffPIR [361], and ReSample [260]. Specifically, we define the
following resampling strategy:

𝒛( 𝑗)resample = 𝒛( 𝑗) + 𝜂′𝝐 ,

where 𝝐 ∼ N(0, 𝑰), 𝜂′ = max(0, 𝜂 − tr(𝐶𝑡 )
𝑛
), and 𝑛 is the dimension of the variable

𝒛. Intuitively, we approximate the current noise level in 𝒛 and add a corresponding
amount of noise to bring 𝒛( 𝑗)resample to noise level 𝜂. A key distinction from the prior
work is that our 𝜂′ is estimated from the ensemble while the existing methods need
to tune it as part of the hyperparameters. In our main experiments, we apply a
resampling strategy since it introduces minimal additional computation cost and
yields slightly better results.
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Table D.6: Hyperparameters of Blade for the Navier-Stokes experiments in
Table 7.3.

𝜎𝒚 𝛾 𝜎̃𝒚 𝜂max 𝜂min Anneal schedule # anneal steps # iterations Initialization

0 20 0.03 4.8 0.08 linear 25 50 DM
1 30 0.17 4.8 0.08 linear 25 50 DM
2 30 0.30 4.8 0.08 linear 25 50 DM

Effective Observation Noise In practice, we observe that weighting the likelihood
with a smaller 𝜎𝒚 yields better performance. We denote this adjusted value as the
effective observation noise, 𝜎̃𝒚. Using an effective noise smaller than 𝜎𝒚 potentially
compensates for the smoothing effect introduced by statistical linearization. In
practice, we treat 𝜎̃𝒚 as a hyperparameter and tune it so that the spread-skill ratio is
close to 1.

D.3.3.2 Prior Step

The prior step is implemented as a denoising diffusion process, with its pseudocode
detailed in Algorithm 9. We set 𝜎(𝑡) = 𝑡 for simplicity and employ the Euler ODE
sampler for faster sampling. We discretize the denoising diffusion process with the
standard Euler method. Following [151], we use the following step size:

𝑡𝑖 =

(
𝑡
1/7
max +

𝑖

𝑁 − 1

(
𝑡
1/7
min − 𝑡

1/7
max

))7
for 𝑖 = 0, ..., 𝑁 − 1.

D.3.3.3 Annealing Schedule

We use the linear annealing schedule for the coupling strength 𝜂. Given the number
of iterations 𝐾 , the maximum value 𝜂max, and minimum value 𝜂min, the linear decay
schedule reduces 𝜂𝑘 as

𝜂𝑘 = 𝜂max +
𝑘

𝐾 − 1
(𝜂min − 𝜂max) for 𝑘 = 0, ..., 𝐾 − 1.

D.3.4 Implementation Details of Baselines
For baseline methods that do not require additional training on paired data, such as
DPG [277], SCG [141], EnKG [356], EKI [143], EKS [111] (with diffusion prior
initialization), we follow the implementation provided in InverseBench (Chap-
ter 8). For methods that do require training on paired data, specifically the end-to-
end U-Net and conditional diffusion model (CDM), we first generate a collection
of measurement-target pairs by simulating measurements from the prior training
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dataset available in InverseBench. To evaluate their in-distribution performance,
we retrain the U-Net and CDM for each noise level, which takes around 7-10 hours
on a single NVIDIA GH200 GPU.

The end-to-end U-Net architecture is adapted from the U-Net used in our diffusion
model by removing the time conditioning branch. The measurements are upsampled
to the same resolution before being fed into the U-Net. However, it is important
to note that observations are not always spatially aligned with the unknown signal
in a general setting. Consequently, end-to-end neural networks typically require
additional design considerations for different types of observations.

The CDM is also adapted from the U-Net architecture of the prior diffusion model.
This involved replacing the self-attention module with cross-attention and incorpo-
rating a CNN-based observation encoder, following the conditioning mechanism
used in Rombach et al. [249].

D.3.5 Navier-Stokes Equation
D.3.5.1 Problem Setup

We follow the experimental setup in InverseBench (Chapter 8), which we include
here for completeness. We consider the 2D Navier-Stokes equation for a viscous,
incompressible fluid in vorticity form on a torus,

𝜕𝑡𝝎(𝒙, 𝑡) + 𝒗(𝒙, 𝑡) · ∇𝒙𝝎(𝒙, 𝑡) = 𝜈∇2
𝒙𝝎(𝒙, 𝑡) + 𝑓 (𝒙), 𝒙 ∈ (0, 2𝜋)2, 𝑡 ∈ (0, 𝑇]

∇𝒙 · 𝒗(𝒙, 𝑡) = 0, 𝒙 ∈ (0, 2𝜋)2, 𝑡 ∈ [0, 𝑇]
𝝎(𝒙, 0) = 𝝎0(𝒙), 𝒙 ∈ (0, 2𝜋)2

(D.37)

where 𝒗 ∈ 𝐶
(
[0, 𝑇];𝐻𝑟per((0, 2𝜋)2;R2)

)
for any 𝑟 > 0 is the velocity field, 𝝎 =

∇𝒙 × 𝒗 is the vorticity, 𝝎0 ∈ 𝐿2
per

(
(0, 2𝜋)2;R

)
is the initial vorticity, 𝜈 ∈ R+ is the

viscosity coefficient, and 𝑓 ∈ 𝐿2
per

(
(0, 2𝜋)2;R

)
is the forcing function. The solution

operator G is defined as the operator mapping the vorticity from the initial vorticity
to the vorticity at time 𝑇 , i.e., G : 𝝎0 → 𝝎𝑇 . Numerically, it is realized as a
pseudo-spectral solver [127]. This Navier-Stokes equation is a standard benchmark
problem widely used in the literature [143, 184, 276]. The forward model is given
by

𝒚 = 𝑷𝑮 (𝒘0) + 𝒏, (D.38)

where 𝑷 is the sampling operator and 𝑮 (·) is the discretization of G.
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D.3.5.2 Evaluation Metrics

We adopt the following three standard metrics to evaluate the results from different
perspectives.

Relative ℓ2 Error Suppose 𝒙0 is the ground truth function and 𝒙̂ is the predicted
function. The relative ℓ2 error measures the norm of the error relative to the norm
of the ground truth, defined as ∥𝒙̂−𝒙0∥2

∥𝒙0∥2 .

Continuous Ranked Probability Score (CRPS) The CRPS [118] is a standard
probabilistic metric to assess the quality of the entire predicted distribution for
inverse problems, which is defined as

CRPS = E|𝒙̂ − 𝒙0 | −
1
2
E|𝒙̂ − 𝒙̂′|,

where 𝒙̂, 𝒙̂′ are independent random predictions. Intuitively, it measures the distance
between a predicted distribution and the single ground truth 𝒙0 that actually occurred.
It is minimized when the ensemble prediction is drawn from the same distribution
as the ground truth, i.e., 𝒙 ( 𝑗) ∼ 𝑝(𝒙0) for all 𝑗 . We consider the multi-dimensional
version of CRPS defined in [241]. For an ensemble prediction {𝒙 ( 𝑗)}𝐽

𝑗=1 where
𝒙 ( 𝑗) ∈ R𝑛, the CRPS for the single ground truth 𝒙0 is given by

CRPS =
1
𝑛

𝑛∑︁
𝑖=1

©­«1
𝐽

𝐽∑︁
𝑗=1
|𝒙 ( 𝑗) (𝑖) − 𝒙0(𝑖) | −

1
2𝐽 (𝐽 − 1)

𝐽∑︁
𝑗=1

𝐽∑︁
𝑘=1
|𝒙 ( 𝑗) (𝑖) − 𝒙 (𝑘) (𝑖) |ª®¬ ,

(D.39)
which can be implemented in 𝑂 (𝑛𝐽 log 𝐽) complexity using the equivalent form
introduced in [337]. In our experiments, we report the CRPS averaged over all test
cases.

Spread-Skill Ratio (SSR) The spread-skill ratio (SSR) is a simple yet powerful
metric for quantifying how well an ensemble prediction’s stated uncertainty (spread)
matches its actual error (skill) [106]. Intuitively, if the ensemble distribution truly
captures the variability of the ground truth, then ensemble members should be
statistically indistinguishable from observed outcomes. Formally, let {𝒙∗

𝑖
}𝑁
𝑖=1 denote

a set of observed ground truths. Suppose, for each observed ground truth 𝒙∗
𝑖
, we

have an ensemble prediction {𝒙𝑖, 𝑗 }𝐽𝑗=1. Let 𝒙̄𝑖 := 1
𝐽

∑
𝑗 𝒙𝑖, 𝑗 . The unbiased estimator

of SSR can be written as

SSR =

√︄
spread2

skill2
, (D.40)
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where

spread2 =
1
𝑁

𝑁∑︁
𝑖=1

1
𝐽 − 1

𝐽∑︁
𝑗=1
∥𝒙𝑖, 𝑗 − 𝒙̄𝑖∥22,

skill2 =
1
𝑁

𝑁∑︁
𝑖=1
∥ 1
𝐽

∑︁
𝑗

𝒙𝑖, 𝑗 − 𝒙∗𝑖 ∥22 +
1

𝐽 (𝐽 − 1) spread2.

A value of SSR = 1 indicates the perfect calibration. Small SSR means that the
ensemble prediction is over-confident, while large SSR indicates that the ensemble
prediction is over-cautious.

D.4 Appendix for Section 7.6
D.4.1 Theory
Notations We consider a linear stochastic process whose forward Kolmogorov
equation can be written as 𝜕𝑡𝜋𝑡 = 𝑸𝑡𝜋𝑡 with boundary condition 𝜋𝑡=0 = 𝜋0, where
𝜋𝑡 ∈ P(X) is a probability measure on X. For the simplicity of notation, we
let 𝑸𝑡 to generate reverse continuous-time Markov chain, which means 𝑸 [𝑖, 𝑗]𝑡 =

𝒔(𝒙 𝑗 ; 𝑡)𝒙𝑖𝑸
[ 𝑗 ,𝑖]
uniform where 𝒔(𝒙 𝑗 ; 𝑡)𝒙𝑖 is the concrete score. Time 𝑡 flows forward as

the sampling algorithm progresses, which means that for unconditional generation
𝜋0 is the data distribution and 𝜋𝑇 is the uniform distribution.

For two probability mass functions 𝜇 and 𝜋, we define the KL divergence of 𝜇 with
respect to 𝜋 as

KL(𝜇∥𝜋) := E𝒙∼𝜇
[
log

𝜇

𝜋
(𝒙)

]
. (D.41)

We define the Fisher divergence (or relative Fisher information) of 𝜇 with respect
to 𝜋 as

FI𝑸 (𝜇∥𝜋) :=
∑︁

𝒙𝑖 ,𝒙 𝑗∈X
𝜋(𝒙𝑖)𝑸 [ 𝑗 ,𝑖]

(
𝑓 (𝒙 𝑗 ) − 𝑓 (𝒙𝑖) − 𝑓 (𝒙𝑖) log

𝑓 (𝒙 𝑗 )
𝑓 (𝒙𝑖)

)
, (D.42)

where 𝑓 := 𝜇/𝜋. Note that when𝑸 is irreducible, the Fisher divergence FI𝑸 (𝜇∥𝜋) ≥
0, and FI𝑸 (𝜇∥𝜋) = 0 if and only if 𝜇 = 𝜋. It is also important to see that this
definition of KL divergence for discrete spaces is the same as its continuous version
in Section 6.4 and Appendix D.3.1.1. However, the definition of Fisher divergence
is significantly different because the gradient is not well-defined in discrete spaces.

In continuous state spaces, the Fisher divergence has been used to derive general
first-order guarantees for non-log-concave sampling [15]. This line of analysis
has been adapted to provide theoretical insights for posterior sampling methods
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using diffusion models [273, 320]. The formula in Equation (D.42) represents a
discrete state space analogue of Fisher divergence. We refer interested readers to
[27, 87, 130] for more discussions on this topic and the relation between KL and
Fisher divergence in the discrete state space. Our analysis in this paper adapts these
techniques and provides general first-order guarantees for posterior sampling with
discrete diffusion models.

Time Interpolation of SGDD SGDD alternates between likelihood steps and
prior steps. Let 𝑡∗ > 0 such that 𝜎(𝑡∗) = 𝜂. We define {𝜋𝜏} as the distributions at
time 𝜏 of the stationary process, and {𝜇𝜏} as the distributions of the non-stationary
process.

• In time intervals 𝜏 ∈ [𝑘 (𝑡∗+1) +1, (𝑘 +1) (𝑡∗+1)]. The stationary distribution
is initialized with 𝜋𝑘 (𝑡∗+1)+1(𝒙) = 𝜋𝑍𝜂 (𝒙). We run a prior step on 𝜇𝜏 with the
learned concrete score function for 𝐻 steps, while 𝜋𝜏 evolves in continuous
time with the true concrete score function.

• In time intervals 𝜏 ∈ [𝑘 (𝑡∗ + 1), 𝑘 (𝑡∗ + 1) + 1], we run a Metropolis-Hastings
sampling algorithm on both 𝜋𝜏 and 𝜇𝜏.

Assumptions Our analysis relies on the following assumptions:

(i) Concrete score is well estimated:



 𝒔𝜽 ( · ; 𝑡)−𝒔(·; 𝑡)

𝒔( · ; 𝑡)





∞
≤ 𝜖 < 1.

(ii) Smoothness of score function in 𝑡: ∥ 𝒔( · ; 𝑡+Δ𝑡)−𝒔( · ; 𝑡)𝒔( · ; 𝑡) ∥∞ ≤ 𝐿 · Δ𝑡.

(iii) Strong irreducibility: 𝑸 [𝑖, 𝑗]𝑡 > 0 for 𝑖 ≠ 𝑗 .

(iv) Bounded probability ratio: sup𝑡



log 𝜇𝑡 (𝒙)

𝜋𝑡 (𝒙)





∞
≤ 𝐵.

(v) The entry-wise absolute of the reverse-time transition matrix is bounded:
sup𝑡 ∥|𝑸𝑡 |∥1 ≤ 𝑀 .

D.4.1.1 Lemmas

Lemma D.4.1 (Data processing inequality of Metropolis-Hastings). Running Metropolis-
Hastings algorithm on two distributions 𝜋𝜏 and 𝜇𝜏 does not increase their KL
divergence, i.e.,

KL(𝜇𝑘 (𝑡∗+1)+1∥𝜋𝑘 (𝑡∗+1)+1) ≤ KL(𝜇𝑘 (𝑡∗+1) ∥𝜋𝑘 (𝑡∗+1)). (D.43)
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Lemma D.4.2 (Free-energy-rate-functional-relative-Fisher-information (FIR) in-
equality (from Theorem 6.2.3. in [129])). Consider two continuous time Markov
chains: 𝜕𝑡𝜋𝑡 = 𝑸𝑡𝜋𝑡 and 𝜕𝑡𝜇𝑡 = 𝑸𝑡𝜇𝑡 . Suppose Assumption (iv) holds, then there
exists a constant 𝑐 > 0, such that

𝜕𝑡KL(𝜇𝑡 ∥𝜋𝑡) ≤ −
1
2

FI𝑸𝑡 (𝜇𝑡 ∥𝜋𝑡) +
2
𝑐
L𝑸𝑡 (𝜇𝑡 , 𝜕𝑡𝜇𝑡), (D.44)

where L𝑸 (𝜇𝑡 , 𝜕𝑡𝜇𝑡) ≥ 0 is the Lagrangian defined as

L𝑸 (𝜇𝑡 , 𝜕𝑡𝜇𝑡) = sup
𝜑∈C𝑏 (X)

⟨𝜑, 𝜕𝑡𝜇𝑡⟩ −
∑︁

𝒙𝑖 ,𝒙 𝑗∈X
𝜇𝑡 (𝒙𝑖)𝑸 [ 𝑗 ,𝑖] exp(𝜑(𝒙 𝑗 ) − 𝜑(𝒙𝑖))

 .
(D.45)

Proof Sketch. This lemma follows from Theorem 6.2.3. in [129]. For completeness,
we provide a sketch of the proof here.

By a direct calculation of derivatives, we have

𝜕𝑡KL(𝜇𝑡 ∥𝜋𝑡) = 𝜕𝑡
∑︁
𝒙𝑖

𝜇𝑡 (𝒙𝑖) log
𝜇𝑡 (𝒙𝑖)
𝜋𝑡 (𝒙𝑖)

=
∑︁
𝒙𝑖

(
𝜕𝑡𝜇𝑡 (𝒙𝑖) log

𝜇𝑡 (𝒙𝑖)
𝜋𝑡 (𝒙𝑖)

− 𝜇𝑡 (𝒙𝑖)
𝜋𝑡 (𝒙𝑖)

𝜕𝑡𝜋𝑡 (𝒙𝑖)
)

=
∑︁
𝒙𝑖 ,𝒙 𝑗

(
𝑸 [𝑖, 𝑗]𝑡 𝜇𝑡 (𝒙 𝑗 ) log

𝜇𝑡 (𝒙𝑖)
𝜋𝑡 (𝒙𝑖)

− 𝜇𝑡 (𝒙𝑖)
𝜋𝑡 (𝒙𝑖)

𝑸 [𝑖, 𝑗]𝑡 𝜋𝑡 (𝒙 𝑗 )
)

=
∑︁
𝒙𝑖 ,𝒙 𝑗

𝑸 [𝑖, 𝑗]𝑡 𝜋𝑡 (𝒙 𝑗 )
(
𝜇𝑡 (𝒙𝑖)
𝜋𝑡 (𝒙𝑖)

log
𝜇𝑡 (𝒙𝑖)
𝜋𝑡 (𝒙𝑖)

− 𝜇𝑡 (𝒙𝑖)
𝜋𝑡 (𝒙𝑖)

)
−

∑︁
𝒙𝑖 ,𝒙 𝑗

(
𝑸 [𝑖, 𝑗]𝑡 − 𝑸 [𝑖, 𝑗]𝑡

)
𝜇𝑡 (𝒙 𝑗 ) log

𝜇𝑡 (𝒙𝑖)
𝜋𝑡 (𝒙𝑖)

.

Using the fact that
∑

𝒙𝑖 𝑸
[𝑖, 𝑗]
𝑡 = 0 and the definition in Equation (D.42), we have the

equality ∑︁
𝒙𝑖 ,𝒙 𝑗

𝑸 [𝑖, 𝑗]𝑡 𝜋𝑡 (𝒙 𝑗 )
(
𝜇𝑡 (𝒙𝑖)
𝜋𝑡 (𝒙𝑖)

log
𝜇𝑡 (𝒙𝑖)
𝜋𝑡 (𝒙𝑖)

− 𝜇𝑡 (𝒙𝑖)
𝜋𝑡 (𝒙𝑖)

)
= −FI𝑸𝑡 (𝜇𝑡 ∥𝜋𝑡).

Using the relation 𝜕𝑡𝜇𝑡 = 𝑸𝑡𝜇𝑡 then leads to

𝜕𝑡KL(𝜇𝑡 ∥𝜋𝑡) = −FI𝑸𝑡 (𝜇𝑡 ∥𝜋𝑡) −
(
log

𝜇𝑡

𝜋𝑡

)𝑇
(𝑸𝑡 − 𝜕𝑡)𝜇𝑡︸                      ︷︷                      ︸

error term

. (D.46)

This formula is similar to Lemma 1 in [333].
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We define

L𝑸𝑡 (𝜇𝑡 , 𝜕𝑡𝜇𝑡) = sup
𝜑∈C𝑏 (X)

[⟨𝜑, 𝜕𝑡𝜇𝑡⟩ − (𝑒−𝜑𝜇𝑡)𝑇𝑸𝑇
𝑡 𝑒

𝜑]

= sup
𝜑∈C𝑏 (X)

[⟨𝜑, 𝜕𝑡𝜇𝑡 − 𝑸𝑡𝜇𝑡⟩ − 𝜇𝑇𝑡 (𝑒−𝜑𝑸𝑇
𝑡 𝑒

𝜑 − 𝑸𝑇
𝑡 𝜑)︸                     ︷︷                     ︸

denoted as H̃ (𝜇𝑡 ,𝜑)

] . (D.47)

By the variational characterization of the Lagrangian, for any continuous, bounded
𝜑,

⟨𝜑, 𝜕𝑡𝜇𝑡 − 𝑸𝑡𝜇𝑡⟩ ≤ L𝑸𝑡 (𝜇𝑡 , 𝜕𝑡𝜇𝑡) + H̃ (𝜇𝑡 , 𝜑). (D.48)

If we choose 𝜑 = log 𝜇𝑡
𝜋𝑡

, the inequality above gives a bound to the error term
in Equation (D.46). Moreover, it is easy to verify that

H̃
(
𝜇𝑡 , log

𝜇𝑡

𝜋𝑡

)
= FI(𝜇𝑡 ∥𝜋𝑡). (D.49)

In fact, when the spaceX is continuous, choosing 𝜑(𝒙) = log 𝜇𝑡
𝜋𝑡
(𝒙) exactly recovers

Lemma A.4 in [320]. However, as pointed out in [129], it is necessary to consider
a rescaled 𝜑 = 𝜆 log 𝜇𝑡

𝜋𝑡
with 𝜆 ∈ (0, 1) to derive a bound in finite space X.

Fortunately, according to Lemma 6.2.2. in [129], for any 𝜑 ∈ C𝑏 (X)with ∥𝜑∥∞ ≤ 𝐵,
there exists a positive constant 𝑐 = 𝑐(𝐵) ∈ (0, 1), such that

H̃ (𝜇𝑡 , 𝜆𝜑) ≤
𝜆2

𝑐
H̃ (𝜇𝑡 , 𝜑). (D.50)

Plugging in 𝜑 = 𝜆 log 𝜇𝑡
𝜋𝑡

in Equation (D.48), we have〈
𝜆 log

𝜇𝑡

𝜋𝑡
, 𝜕𝑡𝜇𝑡 − 𝑸𝑡𝜇𝑡

〉
≤ L𝑸𝑡 (𝜇𝑡 , 𝜕𝑡𝜇𝑡) + H̃

(
𝜇𝑡 , 𝜆 log

𝜇𝑡

𝜋𝑡

)
(D.51)

≤ L𝑸𝑡 (𝜇𝑡 , 𝜕𝑡𝜇𝑡) +
𝜆2

𝑐
H̃

(
𝜇𝑡 , log

𝜇𝑡

𝜋𝑡

)
. (D.52)

Combining this with Equation (D.46), we get

𝜕𝑡KL(𝜇𝑡 ∥𝜋𝑡) ≤ −FI𝑸𝑡 (𝜇𝑡 ∥𝜋𝑡) +
1
𝜆
L𝑸𝑡 (𝜇𝑡 , 𝜕𝑡𝜇𝑡) +

𝜆

𝑐
H̃

(
𝜇𝑡 , log

𝜇𝑡

𝜋𝑡

)
= −(1 − 𝜆

𝑐
)FI𝑸𝑡 (𝜇𝑡 ∥𝜋𝑡) +

1
𝜆
L𝑸𝑡 (𝜇𝑡 , 𝜕𝑡𝜇𝑡). (D.53)

Finally, choosing 𝜆 = 𝑐
2 ∈ (0, 1) recovers the statement of Lemma D.4.2.
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Remark D.4.3. The Lagrangian L𝑸 (𝜇𝑡 , 𝜕𝑡𝜇𝑡) = 0 if and only if 𝜕𝑡𝜇𝑡 = 𝑸𝜇𝑡 .

Lemma D.4.4. When the learned score function 𝒔𝜽 satisfies Assumption (i),

L𝑸𝑡 (𝜇𝑡 ,𝑸𝑡𝜇𝑡) ≤ 𝑀𝜖. (D.54)

Proof. By definition,

L𝑸𝑡 (𝜇𝑡 ,𝑸𝑡𝜇𝑡)

= sup
𝜑∈C𝑏 (X)

∑︁
𝒙𝑖 ,𝒙 𝑗∈X

[
𝜇𝑡 (𝒙𝑖)𝑸 [ 𝑗 ,𝑖]𝑡 𝜑(𝒙 𝑗 ) − 𝜇𝑡 (𝒙𝑖)𝑸 [ 𝑗 ,𝑖]𝑡 𝑒𝜑(𝒙 𝑗 )−𝜑(𝒙𝑖)

]
= sup
𝜑∈C𝑏 (X)

∑︁
𝒙𝑖 ,𝒙 𝑗∈X

[
𝜇𝑡 (𝒙𝑖)𝑸 [ 𝑗 ,𝑖]𝑡 (𝜑(𝒙 𝑗 ) − 𝜑(𝒙𝑖)) − 𝜇𝑡 (𝒙𝑖)𝑸 [ 𝑗 ,𝑖]𝑡 𝑒𝜑(𝒙 𝑗 )−𝜑(𝒙𝑖)

]
(1𝑇𝑸𝑡𝒖 = 0 for any 𝒖)

= sup
𝜑∈C𝑏 (X)

∑︁
𝒙𝑖≠𝒙 𝑗

[
𝜇𝑡 (𝒙𝑖)𝑸 [ 𝑗 ,𝑖]𝑡

(
−
𝑸 [ 𝑗 ,𝑖]𝑡

𝑸 [ 𝑗 ,𝑖]𝑡

𝑧𝑖 𝑗 − 𝑒−𝑧𝑖 𝑗
)]
+

∑︁
𝒙𝑖

𝜇𝑡 (𝒙𝑖) (𝑸 [𝑖,𝑖]𝑡 − 𝑸 [𝑖,𝑖]𝑡 )

(𝑧𝑖 𝑗 := 𝜑(𝒙𝑖) − 𝜑(𝒙 𝑗 ))

≤
∑︁
𝒙𝑖≠𝒙 𝑗

[
𝜇𝑡 (𝒙𝑖)𝑸 [ 𝑗 ,𝑖]𝑡 sup

𝑧𝑖 𝑗∈R

(
−
𝑸 [ 𝑗 ,𝑖]𝑡

𝑸 [ 𝑗 ,𝑖]𝑡

𝑧𝑖 𝑗 − 𝑒−𝑧𝑖 𝑗
)]
+ 𝜖

∑︁
𝒙𝑖

𝜇𝑡 (𝒙𝑖)
���𝑸 [𝑖,𝑖]𝑡

��� (D.55)

where the inequality is due to swapping supremum and summation, and that
𝜇𝑡 (𝒙𝑖)𝑸 [ 𝑗 ,𝑖]𝑡 ≥ 0 for 𝑖 ≠ 𝑗 .

Consider the function 𝑔(𝑧) = −𝑢𝑧 − 𝑒−𝑧. When 𝑢 ≥ 0, this function is maximized
when 𝑧 = − log 𝑢. So, −𝑢𝑧 − 𝑒−𝑧 ≤ (𝑢 − 1) log 𝑢. Setting 𝑢 = 𝑸 [ 𝑗 ,𝑖]𝑡 /𝑸 [ 𝑗 ,𝑖]𝑡 =

𝒔𝜽 (𝒙𝑖; 𝑡)𝒙 𝑗/𝒔(𝒙𝑖; 𝑡)𝒙 𝑗 , we can invoke Assumption (i) to obtain

sup
𝑧𝑖 𝑗∈R

(
−
𝑸 [ 𝑗 ,𝑖]𝑡

𝑸 [ 𝑗 ,𝑖]𝑡

𝑧𝑖 𝑗 − 𝑒−𝑧𝑖 𝑗
)
≤ (𝑢 − 1) log 𝑢 ≤ |𝑢 − 1| =

���� 𝒔𝜽 (𝒙𝑖; 𝑡)𝒙 𝑗 − 𝒔(𝒙𝑖; 𝑡)𝒙 𝑗
𝒔(𝒙𝑖; 𝑡)𝒙 𝑗

���� ≤ 𝜖
(D.56)

for
��� 𝒔𝜽 (𝒙𝑖 ; 𝑡)𝒙 𝑗−𝒔(𝒙𝑖 ; 𝑡)𝒙 𝑗𝒔(𝒙𝑖 ; 𝑡)𝒙 𝑗

��� ≤ 1. Combining with Equation (D.55), we have

L𝑸𝑡 (𝜇𝑡 ,𝑸𝑡𝜇𝑡) ≤ 𝜖1𝑇 |𝑸𝑡 |𝜇𝑡 ≤ 𝜖 ∥|𝑸𝑡 |∥1∥𝜇𝑡 ∥1 ≤ 𝜖𝑀. (D.57)
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Remark D.4.5. The Lagrangian L𝑸 (𝜇𝑡 , 𝜕𝑡𝜇𝑡) can potentially be bounded by the
score entropy defined in Definition 3.1 of [198]. To see the this, we calculate

L𝑸𝑡 (𝜇𝑡 ,𝑸𝑡𝜇𝑡)

= sup
𝜑∈C𝑏 (X)

∑︁
𝒙𝑖≠𝒙 𝑗

[
𝜇𝑡 (𝒙𝑖)𝑸 [ 𝑗 ,𝑖]𝑡

(
−
𝑸 [ 𝑗 ,𝑖]𝑡

𝑸 [ 𝑗 ,𝑖]𝑡

𝑧𝑖 𝑗 − 𝑒−𝑧𝑖 𝑗
)]
+

∑︁
𝒙𝑖

𝜇𝑡 (𝒙𝑖) (𝑸 [𝑖,𝑖]𝑡 − 𝑸 [𝑖,𝑖]𝑡 )

(1)
≤

∑︁
𝒙𝑖≠𝒙 𝑗

[
𝜇𝑡 (𝒙𝑖)𝑸 [ 𝑗 ,𝑖]𝑡 sup

𝑧𝑖 𝑗∈R

(
−
𝑸 [ 𝑗 ,𝑖]𝑡

𝑸 [ 𝑗 ,𝑖]𝑡

𝑧𝑖 𝑗 − 𝑒−𝑧𝑖 𝑗
)]
+

∑︁
𝒙𝑖

𝜇𝑡 (𝒙𝑖) (𝑸 [𝑖,𝑖]𝑡 − 𝑸 [𝑖,𝑖]𝑡 )

(2)
≤

∑︁
𝒙𝑖≠𝒙 𝑗

[
𝜇𝑡 (𝒙𝑖)𝑸 [ 𝑗 ,𝑖]𝑡

𝒔𝜽 (𝒙𝑖; 𝑡)𝒙 𝑗
𝒔(𝒙𝑖; 𝑡)𝒙 𝑗

log
𝒔𝜽 (𝒙𝑖; 𝑡)𝒙 𝑗
𝒔(𝒙𝑖; 𝑡)𝒙 𝑗

]
−

∑︁
𝒙𝑖

𝜇𝑡 (𝒙𝑖)
∑︁
𝑗≠𝑖

(𝑸 [ 𝑗 ,𝑖]𝑡 − 𝑸 [ 𝑗 ,𝑖]𝑡 )

(3)
=

∑︁
𝒙𝑖≠𝒙 𝑗

[
𝜇𝑡 (𝒙𝑖)𝑸fw[𝑖, 𝑗]

𝑡

(
𝒔𝜽 (𝒙𝑖; 𝑡)𝒙 𝑗 log

𝒔𝜽 (𝒙𝑖; 𝑡)𝒙 𝑗
𝒔(𝒙𝑖; 𝑡)𝒙 𝑗

− 𝒔𝜽 (𝒙𝑖; 𝑡)𝒙 𝑗 + 𝒔(𝒙𝑖; 𝑡)𝒙 𝑗
)]

(4)
≤ E𝒙𝑖∼𝜇𝑡

∑︁
𝒙𝑖≠𝒙 𝑗

[
𝐾

(
𝒔(𝒙𝑖; 𝑡)𝒙 𝑗
𝒔𝜽 (𝒙𝑖; 𝑡)𝒙 𝑗

)
𝑸fw[𝑖, 𝑗]
𝑡 𝒔𝜽 (𝒙𝑖; 𝑡)𝒙 𝑗

]
where (1) is due to swapping supremum and summation, (2) is due to Equation (D.56)
and the property of transition-rate matrices, (3) is due to the definitions of 𝑸𝑡 and
𝑸𝑡 , and (4) is due to the definition of 𝐾 (𝑥) := 𝑥 − log 𝑥 − 1. Note that the last line
is the score entropy of 𝒔 with respect to 𝒔𝜽 defined as

SE𝑸fw
𝑡
(𝒔( · ; 𝑡) | |𝒔𝜽 ( · ; 𝑡)) :=

∑︁
𝒙𝑖≠𝒙 𝑗

[
𝐾

(
𝒔𝜃 (𝒙𝑖; 𝑡)𝒙 𝑗
𝒔(𝒙𝑖; 𝑡)𝒙 𝑗

)
Qfw[𝑖, 𝑗]
𝑡 𝒔(𝒙𝑖; 𝑡)𝒙 𝑗

]
.

Therefore, by swapping 𝜇𝑡 with 𝜋𝑡 and 𝑸𝑡 with 𝑸𝑡 , we have

L𝑸𝑡
(𝜋𝑡 , 𝜕𝑡𝜋𝑡) = L𝑸𝑡

(𝜋𝑡 ,𝑸𝑡𝜋𝑡) ≤ E𝒙𝑖∼𝜋𝑡SE𝑸fw
𝑡
(𝒔𝜽 ( · ; 𝑡) | |𝒔( · ; 𝑡)) (D.58)

where SE𝑸fw
𝑡
(𝒔𝜽 ( · ; 𝑡) | |𝒔( · ; 𝑡)) is the score entropy of 𝒔𝜽 with respect to 𝒔, which

is the loss function for training the score entropy estimator 𝒔𝜽 . This implies that if
we swap 𝜇𝑡 with 𝜋𝑡 and 𝑸𝑡 with 𝑸𝑡 , we can potentially substitute Assumption (i)
and Assumption (v) with a more interpretable assumption on the score entropy error
and obtain a convergence result that explicitly incorporates this error, which would
resemble that of discrete DMs for unconditional generation [245]. Nevertheless,
we underscore that the right-hand side of Equation (D.58) is an integration over the
stationary process 𝜋𝑡 , which may be different from the path on which the DM was
trained. This is in fact expected and highlights the difference between analyzing the
generative process of discrete DMs versus analyzing the process of using discrete
DMs for solving inverse problems. The ideal process in the generative process of
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discrete DMs is the same as the process for training (only time going in different
directions). In contrast, when using discrete DMs as priors for solving inverse
problems, they conduct inference on arbitrary distributions that may be different
from the training distributions, which is a generalization gap that requires stronger
condition on the DMs for convergence. For the purpose of this chapter, we proceed
with Lemma D.4.4 to simply the subsequent discretization analysis.

D.4.1.2 Proof of Theorem 7.6.1

Proof. We denote the time index in this proof by 𝜏 to align with the time interpolation
of 𝐾 iterations of SGDD introduced earlier. Consider discretizing a prior step [0, 𝑡∗]
uniformly into 𝐻 intervals, [ℎ𝛿, (ℎ + 1)𝛿], for ℎ = 0, . . . , 𝐻 − 1, where 𝛿 = 𝑡∗/𝐻.
In the ℎ-th interval, we have

𝜕𝜏𝜇𝜏 = 𝑸ℎ𝛿𝜇𝜏 . (D.59)

Applying Lemma D.4.2 to the ℎ-th interval for 𝜇𝜏 and 𝜋𝜏, we get

𝜕𝜏KL(𝜇𝜏∥𝜋𝜏) ≤ −
1
2

FI𝑸𝜏 (𝜇𝜏∥𝜋𝜏) +
2
𝑐
L𝑸𝜏 (𝜇𝜏,𝑸ℎ𝛿𝜇𝜏). (D.60)

Denoting the starting time of the 𝑘-th prior step as 𝑇𝑘 = 𝑘 (𝑡∗ + 1) + 1, we then
integrate both sides by 𝜏 and obtain∫ 𝑇𝑘+(ℎ+1)𝛿

𝑇𝑘+ℎ𝛿
FI𝑸𝜏 (𝜇𝜏∥𝜋𝜏)d𝜏 ≤

∫ 𝑇𝑘+(ℎ+1)𝛿

𝑇𝑘+ℎ𝛿

[
−2𝜕𝜏KL(𝜇𝜏∥𝜋𝜏) +

4
𝑐
L𝑸𝜏 (𝜇𝜏,𝑸𝑇𝑘+ℎ𝛿𝜇𝜏)

]
d𝜏

= 2
[
KL(𝜇𝑇𝑘+ℎ𝛿∥𝜋𝑇𝑘+ℎ𝛿) − KL(𝜇𝑇𝑘+(ℎ+1)𝛿∥𝜋𝑇𝑘+(ℎ+1)𝛿)

]
+ 4
𝑐

∫ 𝑇𝑘+(ℎ+1)𝛿

𝑇𝑘+ℎ𝛿
L𝑸𝜏 (𝜇𝜏,𝑸𝑇𝑘+ℎ𝛿𝜇𝜏)d𝜏. (D.61)

Taking a summation over ℎ gives us∫ 𝑇𝑘+𝑡∗

𝑇𝑘

FI𝑸𝜏 (𝜇𝜏∥𝜋𝜏)d𝜏 ≤ 2
[
KL(𝜇𝑇𝑘 ∥𝜋𝑇𝑘 ) − KL(𝜇𝑇𝑘+𝑡∗ ∥𝜋𝑇𝑘+𝑡∗)

]
+
𝐻−1∑︁
ℎ=0

∫ 𝑇𝑘+(ℎ+1)𝛿

𝑇𝑘+ℎ𝛿

4
𝑐
L𝑸𝜏 (𝜇𝜏,𝑸𝑇𝑘+ℎ𝛿𝜇𝜏)d𝜏. (D.62)

Therefore, by Lemma D.4.4, we have∫ 𝑇𝑘+(ℎ+1)𝛿

𝑇𝑘+ℎ𝛿

4
𝑐
L𝑸𝜏 (𝜇𝜏,𝑸𝑇𝑘+ℎ𝛿𝜇𝜏)d𝜏 ≤

∫ 𝛿

0

4
𝑐
𝑀 (𝜖 + 𝐿𝑠)d𝑠 = 4𝑀

𝑐

(
𝜖𝑡∗

𝐻
+ 𝐿𝑡

∗2

2𝐻2

)
.

(D.63)
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where we used the fact that



 𝒔𝜽 (·; 𝑡+Δ𝑡)−𝒔(·; 𝑡)

𝒔(·; 𝑡)





∞
≤ 𝜖 + 𝐿 · Δ𝑡 due to both Assumption

(i) and Assumption (ii). It follows that∫ 𝑇𝑘+𝑡∗

𝑇𝑘

FI𝑸𝜏 (𝜇𝜏∥𝜋𝜏)d𝜏 ≤ 2
[
KL(𝜇𝑇𝑘 ∥𝜋𝑇𝑘 ) − KL(𝜇𝑇𝑘+𝑡∗ ∥𝜋𝑇𝑘+𝑡∗)

]
+ 4𝑀

𝑐

(
𝜖𝑡∗ + 𝐿𝑡

∗2

2𝐻

)
.

Finally, taking summation over 𝑘 = 0, . . . , 𝐾 −1 and applying Lemma D.4.1 to each
likelihood step, we have

𝐾−1∑︁
𝑘=0

∫ 𝑇𝑘+𝑡∗

𝑇𝑘

FI𝑸𝜏 (𝜇𝜏∥𝜋𝜏)d𝜏 ≤ 2KL(𝜇0∥𝜋0) +
4𝑀
𝑐

(
𝜖𝐾𝑡∗ + 𝐿𝐾𝑡

∗2

2𝐻

)
.

Dividing by 𝐾𝑡∗ on both sides gives us

1
𝐾

𝐾−1∑︁
𝑘=0

1
𝑡∗

∫ 𝑇𝑘+𝑡∗

𝑇𝑘

FI𝑸𝜏 (𝜇𝜏∥𝜋𝜏)d𝜏 ≤
2KL(𝜇0∥𝜋0)

𝐾𝑡∗
+ 4𝑀𝜖

𝑐
+ 2𝑀𝐿𝑡∗

𝑐𝐻
. (D.64)

D.4.1.3 Potential Function of Split Gibbs Samplers

As defined in Equation (7.21), the Split Gibbs Sampler draws samples from the
augmented distribution

𝜋(𝒙, 𝒛; 𝜂) ∝ exp(− 𝑓 (𝒛; 𝒚) − 𝑔(𝒙) − 𝐷 (𝒙, 𝒛; 𝜂)).

The key requirement of split Gibbs samplers is that the potential function 𝐷 (𝒙, 𝒛; 𝜂)
satisfies

lim
𝜂→0+

𝐷 (𝒙, 𝒛; 𝜂) = ∞,∀𝒙 ≠ 𝒛. (D.65)

Or more precisely,

lim
𝜂→0+

exp(−𝐷 (𝒙, 𝒛; 𝜂))∫
exp(−𝐷 (𝒙, 𝒛; 𝜂))d𝒛

= 𝛿𝒙 (𝒛). (D.66)

Therefore,

lim
𝜂→0+

𝜋𝑋 (𝒙; 𝜂) ∝ lim
𝜂→0+

∫
𝑝(𝒙)𝑝(𝒚 | 𝒛) exp(−𝐷 (𝒙, 𝒛; 𝜂))d𝒛

=

∫
𝑝(𝒙)𝑝(𝒚 | 𝒛)𝛿(𝒙 − 𝒛)d𝒛 = 𝑝(𝒙)𝑝(𝒚 | 𝒙). (D.67)

Also, the similar derivation holds for 𝜋𝑍 (𝒛; 𝜂). This result has also been shown
in [296]. Combining this with Theorem 7.6.1, SGDD is guaranteed to sample from
the true posterior distribution when 𝜂 goes to zero.
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D.4.2 Experimental Details
D.4.2.1 Pre-Trained Models

We learn prior distributions for each dataset using SEDD [198] discrete diffusion
models. We use the SEDD small architecture with around 90M parameters for all
experiments, and the models are trained with AdamW [197] with batch size 32 and
a learning rate of 3 × 10−4.

D.4.2.2 Baseline Methods

DPS DPS [64] is designed to solve general inverse problems with a pre-trained
(continuous) diffusion model. It performs posterior sampling from 𝑝(𝒙 | 𝒚) by
modifying the reverse SDE

d𝒙𝑡 = −2 ¤𝜎𝑡𝜎𝑡∇𝒙𝑡 log 𝑝(𝒙𝑡 | 𝒚)d𝑡 +
√︁

2 ¤𝜎𝑡𝜎𝑡d𝑡 (D.68)

= −2 ¤𝜎𝑡𝜎𝑡 (∇𝒙𝑡 log 𝑝(𝒙𝑡 ;𝜎𝑡)) + ∇𝒙𝑡 log 𝑝(𝒚 | 𝒙𝑡))d𝑡 +
√︁

2 ¤𝜎𝑡𝜎𝑡d𝑡. (D.69)

To estimate the intractable guidance term ∇𝒙𝑡 log 𝑝(𝒚 | 𝒙𝑡)d𝑡, DPS proposes to
approximate it with 𝑝(𝒚 | 𝒙𝑡) ≈ 𝑝(𝒚 | E[𝒙0 |𝒙𝑡]). The guidance term is thus
approximated by

∇𝒙𝑡 log 𝑝(𝒚 |𝒙𝑡) ≈ −∇𝒙𝑡
∥A(𝒙̂0(𝒙𝑡 ;𝜎𝑡)) − 𝒚∥22

2𝜎2
𝒚

, (D.70)

where 𝒙̂0(𝒙𝑡 ;𝜎𝑡) is a one-step approximation of E[𝒙0 |𝒙𝑡] using the pre-trained
diffusion model, and the measurement is assumed to be 𝒚 = A(𝒙) + 𝒏 with 𝒏 ∼
N(0, 𝜎2

𝒚 𝑰). However, DPS is not directly applicable to inverse problems in discrete-
state spaces since propagating gradients through A and 𝐷𝜃 in Equation (D.70) is
impossible. Therefore, we consider the counterpart of DPS in discrete spaces. We
modify the continuous-time Markov chain of the discrete diffusion model by

𝜕𝑡 𝑝𝑇−𝑡 = 𝑸𝒚
𝑇−𝑡 𝑝𝑇−𝑡 , (D.71)

in which

𝑸𝒚 [𝑖, 𝑗]
𝑇−𝑡 =

𝑝𝑇−𝑡 (𝒙𝑖 |𝒚)
𝑝𝑇−𝑡 (𝒙 𝑗 |𝒚)

=
𝑝𝑇−𝑡 (𝒙𝑖)
𝑝𝑇−𝑡 (𝒙 𝑗 )

𝑝𝑇−𝑡 (𝒚 |𝒙𝑖)
𝑝𝑇−𝑡 (𝒚 |𝒙 𝑗 )

= 𝑸 [𝑖, 𝑗]
𝑇−𝑡 ·

𝑝𝑇−𝑡 (𝒚 |𝒙𝑖)
𝑝𝑇−𝑡 (𝒚 |𝒙 𝑗 )

. (D.72)

Similar ideas are applied to classifier guidance for discrete diffusion models [225],
where the matrix 𝑹𝒚

𝑡 =

[
𝑝𝑇−𝑡 (𝒚 |𝒙𝑖)
𝑝𝑇−𝑡 (𝒚 |𝒙 𝑗 )

]
𝑖, 𝑗

is called a guidance rate matrix. We compute



226

𝑹𝒚
𝑡 at 𝒙 𝑗 -column by enumerating every neighboring 𝒙𝑖 and calculating 𝑝𝑡 (𝒚 |𝒙𝑖)

𝑝𝑡 (𝒚 |𝒙 𝑗 ) for
each 𝒙𝑖. The discrete version of DPS can be summarized by

𝜕𝑡 𝑝𝑇−𝑡 = 𝑸𝑡𝑹
𝒚
𝑡 𝑝𝑇−𝑡 . (D.73)

However, the discrete version of DPS is very time-consuming, especially when the
vocabulary size is large, since it enumerates (𝑁 − 1) × 𝑛 number of neighboring 𝒙

when computing 𝑹𝒚
𝑡 . We find it slow for the discrete image reconstruction problems

on binary MNIST where 𝑁 = 2.

SVDD SVDD [182] aims to sample from the distribution 𝑝𝛽 (𝒙0) ∝ 𝑝(𝒙0) exp(𝛽𝑟 (𝒙0)),
which is equivalent to the regularized MDP problem:

𝑝𝛽 (𝒙0) = arg max
𝜋

E𝒙0∼𝜋𝑟 (𝒙0) − KL(𝜋∥𝑝)/𝛽. (D.74)

They calculate the soft value function as

𝑣𝑡 (𝒙𝑡) = logE𝒙0∼𝑝(𝒙0 |𝒙𝑡 ) [exp(𝛽𝑟 (𝒙0))]/𝛽 (D.75)

and propose to sample from the optimal policy

𝑝★𝑡 (𝒙𝑡 | 𝒙𝑡+1) ∝ 𝑝𝑡 (𝒙𝑡 | 𝒙𝑡+1) exp(𝛽𝑣𝑡 (𝒙𝑡)). (D.76)

In time step 𝑡, SVDD samples a batch of 𝑀 particles from the unconditional distri-
bution 𝑝𝑡 (𝒙𝑡 | 𝒙𝑡+1), and conduct importance sampling according to exp(𝛽𝑣𝑡 (𝒙𝑡)).

Although [182] is initially designed for guided diffusion generation, it also applies
to solving inverse problems by carefully choosing reward functions. We consider
𝑟 (𝒙) = −∥A(𝒙)−𝒚∥0/𝜎𝒚 and 𝛽 = 1, so that it samples from the posterior distribution
𝑝(𝒙 | 𝒚). As recommended in [182], we choose 𝛽 = ∞ (𝛼 = 0 in their notation) in
practice, so the importance sampling reduces to finding the particle with the maximal
value in each iteration. We use SVDD-PM, a training-free method provided by [182]
in our experiments. It approximates the value function by 𝑣𝑡 (𝒙𝑡) = 𝑟 ((𝒙𝑡 ;𝜎𝑡)), where
(𝒙𝑡 ;𝜎𝑡) is an approximation of E[𝒙0 |𝒙𝑡]. In practice, we find that approximating
(𝒙𝑡 ;𝜎𝑡) by Monte Carlo sampling with a few-step Euler sampler achieves slightly
better results. We use 3 Monte Carlo samples to estimate 𝑣𝑡 (𝒙𝑡) in our experiments.

SMC Sequential Monte Carlo (SMC) methods evolve multiple particles to ap-
proximate a series of distributions, eventually converging to the target distribution.
Specifically, in our experiments, we implement the SMC method to sample from
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𝑝(𝒙𝑡 | 𝒚) for 𝑡 = 𝑇,𝑇 − 1 . . . , 0, using the unconditional discrete diffusion sampler
𝑝(𝒙𝑡 | 𝒙𝑡+1) as the proposal function.

We maintain a batch of 𝐽 = 20 particles {𝒙 ( 𝑗)}. At time 𝑡, we sample 𝒙 ( 𝑗)𝑡 ∼
𝑝(𝒙𝑡 | 𝒙 ( 𝑗)𝑡+1) by the pre-trained discrete diffusion model and estimate the likelihood
𝑝(𝒚 | 𝒙 ( 𝑗)𝑡 ) = E

𝒙0∼𝑝
(
𝒙0 |𝒙 ( 𝑗 )𝑡

) 𝑝(𝒚 | 𝒙0) by Monte Carlo sampling. We then resample

the particles {𝒙 ( 𝑗)𝑡 } according to their weights 𝑤 ( 𝑗)𝑡 = 𝑝(𝒚 |𝒙 ( 𝑗)𝑡 )/𝑝(𝒚 |𝒙
( 𝑗)
𝑡+1). In

practice, we find that we have to carefully tune a hyperparameter 𝛽, where 𝑤𝛽𝑡 .
Otherwise, the resampling step can easily degenerate to finding arg max or uniform
random sampling.

D.4.2.3 Hyperparameters

We use an annealing noise schedule of 𝜂𝑘 = 𝜂
𝑘

𝐾−1
min 𝜂

1− 𝑘
𝐾−1

max with 𝜂min = 10−4 and
𝜂max = 20. We run SGDD for 𝐾 iterations. In each likelihood sampling step, we
run Metropolis-Hastings for 𝑇 steps, while in each prior sampling step, we run a
few-step Euler discrete diffusion sampler with 𝐻 steps. The hyperparameters used
for each experiment are listed in Table D.7. We also include the dimension of data
spaces X𝑛 for each experiment in Table D.7, where |X| = 𝑁 .

Table D.7: Hyperparameters of SGDD used in each experiment.

MNIST XOR MNIST AND

Metropolis-Hastings 𝑇 2000 5000
SGDD iterations 𝐾 50 100
Euler sampler 𝐻 20 20

Sequence length 𝑛 1024 1024
Vocab size 𝑁 2 2
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A p p e n d i x E

APPENDIX FOR CHAPTER 8

E.1 Tables of Main Results
We present the main experimental results in Tables E.1, E.2, E.3, E.4, E.5, and E.6.
Bold indicates the best across all PnPDP methods.

Table E.1: Results on linear inverse scattering. PSNR and SSIM of different
algorithms on linear inverse scattering. Noise level 𝜎𝒚 = 10−4.

Number of receivers 360 180 60

Methods PSNR ↑ SSIM ↑ Meas err (%) ↓ PSNR ↑ SSIM ↑ Meas err (%) ↓ PSNR ↑ SSIM ↑ Meas err (%) ↓
Traditional
FISTA-TV 32.126 (2.139) 0.979 (0.009) 1.23 (0.25) 26.523 (2.678) 0.914 (0.040) 2.65 (0.30) 20.938 (2.513) 0.709 (0.103) 6.05 (0.65)

PnPDP
DDRM 32.598 (1.825) 0.929 (0.012) 1.04 (0.26) 28.080 (1.516) 0.890 (0.019) 1.57 (0.39) 20.436 (1.210) 0.545 (0.037) 3.04 (0.92)
DDNM 36.381 (1.098) 0.935 (0.017) 0.78 (0.22) 35.024 (0.993) 0.895 (0.027) 0.58 (0.16) 29.235 (3.376) 0.917 (0.022) 0.28 (0.07)
ΠGDM 27.925 (3.211) 0.889 (0.072) 2.74 (1.23) 26.412 (3.430) 0.816 (0.114) 3.66 (1.79) 20.074 (2.608) 0.540 (0.198) 6.90 (3.38)
DPS 32.061 (2.163) 0.846 (0.127) 4.35 (1.19) 31.798 (2.163) 0.862 (0.123) 4.28 (1.20) 27.372 (3.415) 0.813 (0.133) 4.53 (1.31)
LGD 27.901 (2.346) 0.812 (0.037) 1.17 (0.20) 27.837 (2.337) 0.803 (0.034) 1.06 (0.16) 20.491 (3.031) 0.552 (0.077) 1.45 (0.68)
DiffPIR 34.241 (2.310) 0.988 (0.006) 1.11 (0.24) 34.010 (2.269) 0.987 (0.006) 1.04 (0.23) 26.321 (3.272) 0.918 (0.028) 1.27 (0.23)
PnP-DM 33.914 (2.054) 0.988 (0.006) 1.21 (0.25) 31.817 (2.073) 0.981 (0.008) 1.42 (0.26) 24.715 (2.874) 0.909 (0.046) 2.20 (0.34)
DAPS 34.641 (1.693) 0.957 (0.006) 1.03 (0.25) 33.160 (1.704) 0.944 (0.009) 1.11 (0.25) 25.875 (3.110) 0.885 (0.030) 1.51 (0.25)
RED-diff 36.556 (2.292) 0.981 (0.005) 0.89 (0.23) 35.411 (2.166) 0.984 (0.004) 0.87 (0.21) 27.072 (3.330) 0.935 (0.037) 1.18 (0.23)
FPS 33.242 (1.602) 0.870 (0.026) 0.70 (0.01) 29.624 (1.651) 0.710 (0.040) 0.37 (0.01) 21.323 (1.445) 0.460 (0.030) 0.15 (0.02)
MCGdiff 30.937 (1.964) 0.751 (0.029) 0.70 (0.01) 28.057 (1.672) 0.631 (0.042) 0.38 (0.01) 21.004 (1.571) 0.445 (0.028) 0.21 (0.06)

Table E.2: Results on compressed sensing MRI. Mean and standard deviation are
reported over 94 test cases.

Subsampling ratio ×4 ×8

Measurement type Simulated (noiseless) Raw Simulated (noiseless) Raw

Methods PSNR ↑ SSIM ↑ Data Misfit ↓ PSNR ↑ SSIM ↑ Data Misfit ↓ PSNR ↑ SSIM ↑ Data Misfit ↓ PSNR ↑ SSIM ↑ Data Misfit ↓
Traditional
Wavelet+ℓ1 29.45 (1.776) 0.690 (0.121) 0.306 (0.049) 26.47 (1.508) 0.598 (0.122) 31.601 (15.286) 25.97 (1.761) 0.575 (0.105) 0.318 (0.042) 24.08 (1.602) 0.511 (0.106) 22.362 (10.733)
TV 27.03 (1.635) 0.518 (0.123) 5.748 (1.283) 26.22 (1.578) 0.509 (0.123) 32.269 (15.414) 24.12 (1.900) 0.432 (1.112) 5.087 (1.049) 23.70 (1.857) 0.427 (0.112) 23.048 (10.854)

End-to-end
Residual U-Net 32.27 (1.810) 0.808 (0.080) – 31.70 (1.970) 0.785 (0.095) – 29.75 (1.675) 0.750 (0.088) — 29.36 (1.746) 0.733 (0.100) –
E2E-VarNet 33.40 (2.097) 0.836 (0.079) – 31.71 (2.540) 0.756 (0.102) – 30.67 (1.761) 0.769 (0.085) — 30.45 (1.940) 0.736 (0.103) –

PnPDP
CSGM 28.78 (6.173) 0.710 (0.147) 1.518 (0.433) 25.17 (6.246) 0.582 (0.167) 31.642 (15.382) 26.15 (6.383) 0.625 (0.158) 1.142 (1.078) 21.17 (8.314) 0.425 (0.192) 22.088 (10.740)
ScoreMRI 25.97 (1.681) 0.468 (0.087) 10.828 (1.731) 25.60 (1.618) 0.463 (0.086) 33.697 (15.209) 25.01 (1.526) 0.405 (0.079) 8.360 (1.381) 24.74 (1.481) 0.403 (0.080) 24.028 (10.663)
RED-diff 29.36 (7.710) 0.733 (0.131) 0.509 0.077) 28.71 (2.755) 0.626 (0.126) 31.591 (15.368) 26.76 (6.696) 0.647 (0.124) 0.485 (0.068) 27.33 (2.441) 0.563 (0.117) 22.336 (10.838)
DiffPIR 28.31 (1.598) 0.632 (0.107) 10.545 (2.466) 27.60 (1.470) 0.624 (0.111) 34.015 (15.522) 26.78 (1.556) 0.588 (0.113) 7.787 (1.741) 26.26 (1.458) 0.590 (0.113) 24.208 (10.922)
DPS 26.13 (4.247) 0.620 (0.105) 9.900 (2.925) 25.83 (2.197) 0.548 (0.116) 35.095 (15.967) 20.82 (4.777) 0.536 (0.111) 6.737 (1.928) 23.00 (3.205) 0.507 (0.109) 24.842 (11.263)
DAPS 31.48 (1.988) 0.762 (0.089) 1.566 (0.390) 28.61 (2.197) 0.689 (0.102) 31.115 (15.497) 29.01 (1.712) 0.681 (0.098) 1.280 (0.301) 27.10 (2.034) 0.629 (0.107) 22.729 (10.926)
PnP-DM 31.80 (3.473) 0.780 (0.096) 4.701 (0.675) 27.62 (3.425) 0.679 (0.117) 32.261 (15.169) 29.33 (3.081) 0.704 (0.105) 3.421 (0.504) 25.28 (3.102) 0.607 (0.117) 22.879 (10.712)

E.1.1 Extended Evaluation of CS-MRI
For compressed sensing MRI, achieving good performance on distortion metrics
such as PSNR and SSIM is not always a sufficient signal for high-quality reconstruc-
tion, as hallucinations might lead to wrong diagnoses. We quantify the degree of
hallucination by employing a pathology detector on the reconstructed images of dif-
ferent methods. Specifically, we finetune a medium-size YOLOv11 model [159] on a
training set of fully sampled images with the fastMRI+ pathology annotations [354]
(22 classes in total). We calculate the mAP50 metric over the reconstructed results
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Table E.3: Generalization results on compressed sensing MRI with ×4 acceler-
ation and raw measurements. Mean and standard deviation are reported over 94
test cases.

Generalization Vertical→ Horizontal Knee→ Brain ×4→ ×8

Methods PSNR ↑ SSIM ↑ Data Misfit ↓ PSNR ↑ SSIM ↑ Data Misfit ↓ PSNR ↑ SSIM ↑ Data Misfit ↓

Traditional
Wavelet+ℓ1 27.75 (1.683) 0.627 (0.133) 31.744 (15.362) 25.96 (1.253) 0.747 (0.026) 7.986 (0.965) 24.08 (1.602) 0.511 (0.106) 22.362 (10.733)
TV 28.18 (1.777) 0.533 (0.138) 32.311 (15.487) 25.56 (1.302) 0.686 (0.049) 8.396 (0.990) 23.70 (1.857) 0.427 (0.112) 23.048 (10.854)

End-to-end
Residual U-Net 22.06 (1.682) 0.603 (0.049) – 30.07 (1.364) 0.881 (0.019) – 23.93 (2.176) 0.610 (0.064) –
E2E-VarNet 22.13 (2.925) 0.543 (0.103) – 31.97 (1.452) 0.857 (0.038) – 24.59 (2.012) 0.637 (0.069) –

PnPDP
CSGM 26.56 (3.647) 0.629 (0.129) 31.866 (15.479) 27.19 (7.521) 0.779 (0.189) 7.779 (1.043) 21.17 (8.314) 0.425 (0.192) 22.088 (10.740)
ScoreMRI 25.60 (1.647) 0.473 (0.091) 33.707 (15.274) 28.52 (0.885) 0.674 (0.045) 9.472 (0.948) 24.74 (1.481) 0.403 (0.080) 24.028 (10.663)
RED-diff 28.95 (2.480) 0.628 (0.126) 31.740 (15.421) 30.61 (0.982) 0.811 (0.048) 7.750 (0.996) 27.33 (2.441) 0.563 (0.117) 22.336 (10.838)
DiffPIR 27.93 (1.502) 0.637 (0.113) 34.188 (15.479) 27.75 (0.854) 0.823 (0.026) 10.972 (1.016) 26.26 (1.458) 0.590 (0.113) 24.208 (10.922)
DPS 26.77 (1.546) 0.571 (0.117) 35.233 (16.006) 26.77 (1.137) 0.738 (0.031) 10.806 (1.159) 23.00 (3.205 ) 0.507 (0.109) 24.842 (11.263)
DAPS 28.78 (2.209) 0.696 (0.105) 32.198 (15.538) 29.29 (0.911) 0.882 (0.025) 8.255 (0.986) 27.10 (2.034) 0.629 (0.107) 22.729 (10.926)
PnP-DM 27.93 (3.444) 0.689 (0.121) 32.391 (15.235) 29.96 (0.984) 0.882 (0.028) 8.789 (0.978) 25.28 (3.102) 0.607 (0.117) 22.879 (10.712)

Table E.4: Results on black hole imaging. PSNR and Chi-squared of different
algorithms on black hole imaging. Gain and phase noise and thermal noise are
added based on the EHT library.

Observation time ratio 3% 10% 100%

Methods PSNR ↑ Blur PSNR ↑ 𝝌̃2
cp 𝝌̃2

logca PSNR ↑ Blur PSNR ↑ 𝝌̃2
cp 𝝌̃2

logca PSNR ↑ Blur PSNR ↑ 𝝌̃2
cp 𝝌̃2

logca

Traditional
SMILI 18.51 (1.39) 23.08 (2.12) 1.478 (0.428) 4.348 (3.827) 20.85 (2.90) 25.24 (3.86) 1.209 (0.169) 21.788 (12.491) 22.67 (3.13) 27.79 (4.02) 1.878 (0.952) 17.612 (10.299)
EHT-Imaging 21.72 (3.39) 25.66 (5.04) 1.507 (0.485) 1.695 (0.539) 22.67 (3.46) 26.66 (3.93) 1.166 (0.156) 1.240 (0.205) 24.28 (3.63) 28.57 (4.52) 1.251 (0.250) 1.259 (0.316)

PnPDP
DPS 24.20 (3.72) 30.83 (5.58) 8.024 (24.336) 5.007 (5.750) 24.36 (3.72) 30.79 (5.75) 13.052 (43.087) 6.614 (26.789) 25.86 (3.90) 32.94 (6.19) 8.759 (37.784) 5.456 (24.185)
LGD 22.51 (3.76) 28.50 (5.49) 15.825 (16.838) 12.862 (12.663) 22.08 (3.75) 27.48 (5.09) 10.775 (21.684) 13.375 (56.397) 21.22 (3.64) 26.06 (4.98) 13.239 (17.231) 13.233 (39.107)
RED-diff 20.74 (2.62) 26.10 (3.35) 6.713 (6.925) 9.128 (19.052) 22.53 (3.02) 27.67 (4.53) 2.488 (2.925) 4.916 (13.221) 23.77 (4.13) 29.13 (6.22) 1.853 (0.938) 2.050 (2.361)
PnPDM 24.25 (3.45) 30.49 (4.93) 2.201 (1.352) 1.668 (0.551) 24.57 (3.47) 30.80 (5.22) 1.433 (0.417) 1.336 (0.478) 26.07 (3.70) 32.88 (6.02) 1.311 (0.195) 1.199 (0.221)
DAPS 23.54 (3.28) 29.48 (4.88) 3.647 (3.287) 2.329 (1.354) 23.99 (3.56) 30.10 (5.13) 1.545 (0.705) 2.253 (9.903) 25.60 (3.64) 32.78 (5.68) 1.300 (0.324) 1.229 (0.532)
DiffPIR 24.12 (3.25) 30.45 (4.88) 14.085 (14.105) 10.545 (8.860) 23.84 (3.59) 30.04 (5.03) 5.374 (3.733) 5.205 (5.556) 25.01 (4.64) 31.86 (6.56) 3.271 (1.623) 2.970 (1.202)

Table E.5: Results on FWI. Mean and standard deviation are reported over 10 test
cases. †: initialized from data blurred by Gaussian filters with 𝜎 = 20. ∗: one test
case is excluded from the results due to numerical instability.

Methods Relative ℓ2 ↓ PSNR ↑ SSIM ↑ Data Misfit ↓
Traditional
Adam 0.333 (0.086) 9.968 (2.083) 0.305 (0.120) 115.14 (52.10)
Adam† 0.089 (0.021) 21.273 (2.045) 0.679 (0.073) 15.89 (10.16)
LBFGS† 0.070 (0.023) 23.398 (2.749) 0.704 (0.077) 9.18 (6.47)

PnPDP
DPS 0.250 (0.154) 14.111 (6.820) 0.491 (0.161) 155.08 (92.17)
LGD 0.244 (0.024) 12.288 (0.889) 0.341 (0.047) 258.47 (26.40)
DiffPIR 0.204 (0.129) 16.113 (6.962) 0.554 (0.191) 88.53 (56.91)
DAPS† 0.201 (0.103) 14.914 (4.184) 0.321 (0.067) 111.13 (71.33)
PnP-DM 0.259 (0.075) 11.983 (2.269) 0.431 (0.073) 308.84 (26.34)
REDDiff 0.319 (0.102) 10.372 (2.650) 0.280 (0.108) 94.67 (41.33)

on 14 selected volumes with severe knee pathologies, which includes 171 test im-
ages in total. For each method, we report the Precision, Recall, and mAP50 metrics
for detection, and PSNR, SSIM, and Data Misfit for reconstruction, as shown in
Table E.8. We also provide the rankings based on mAP50 and PSNR. Overall, the
two rankings are correlated, which means that better pixel-wise accuracy indeed
leads to a more accurate diagnosis. However, there are a few algorithms for which
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Table E.6: Results on Navier-Stokes equation. Relative ℓ2 error of different
algorithms on 2D Navier-Stokes inverse problem, reported over 10 test cases. ∗:
one or two test cases are excluded from the results due to numerical instability.

Subsampling ratio ×2 ×4 ×8

Measurement noise 𝜎 = 0.0 𝜎 = 1.0 𝜎 = 2.0 𝜎 = 0.0 𝜎 = 1.0 𝜎 = 2.0 𝜎 = 0.0 𝜎 = 1.0 𝜎 = 2.0

Traditional
EKI 0.577 (0.138) 0.609 (0.119) 0.673 (0.107) 0.579 (0.145) 0.669 (0.131) 0.805 (0.112) 0.852 (0.167) 0.940(0.115) 1.116(0.090)

PnPDP
DPS-fGSG 1.687 (0.156) 1.612 (0.173) 1.454 (0.154) 1.203* (0.122) 1.209* (0.116) 1.200* (0.100) 1.246* (0.108) 1.221* (0.082) 1.260 (0.117)
DPS-cGSG 2.203* (0.314) 2.117 (0.295) 1.746 (0.191) 1.175* (0.079) 1.133* (0.095) 1.114* (0.144) 1.186* (0.117) 1.204* (0.115) 1.218 (0.113)
DPG 0.325 (0.188) 0.408* (0.173) 0.466 (0.171) 0.322 (0.200) 0.361 (0.187) 0.454 (0.207) 0.596 (0.301) 0.591 (0.262) 0.846 (0.251)
SCG 0.908 (0.600) 0.928 (0.557) 0.966 (0.546) 0.869 (0.513) 0.926 (0.546) 0.929 (0.505) 1.260 (0.135) 1.284 (0.117) 1.347 (0.141)
EnKG 0.120 (0.085) 0.191 (0.057) 0.294 (0.061) 0.115 (0.064) 0.271 (0.053) 0.522 (0.136) 0.287 (0.273) 0.546 (0.212) 0.773 (0.170)

Table E.7: Table of metrics we use to capture the computation complexity of
each algorithm.

Metric Description

# Fwdtotal total forward model evaluations
# DMtotal total diffusion model evaluations
# Fwd Gradtotal total forward model gradient evaluations
# DM Gradtotal total diffusion model gradient evaluations
Costtotal total runtime

# Fwdseq sequential forward model evaluations
# DMseq sequential diffusion model evaluations
# Fwd Gradseq sequential forward model gradient evaluations
# DM Gradseq sequential diffusion model gradient evaluations
Costseq sequential runtime

Table E.8: Diagnostic performance of compressed sensing MRI reconstructions.

Methods Precision Recall mAP50 mAP50 Ranking PSNR SSIM Data Misfit PSNR Ranking

Traditional
Wavelet+ℓ1 0.532 0.332 0.385 9 28.16 (1.724) 0.685 (0.064) 23.501 (10.475) 8
TV 0.447 0.251 0.263 11 28.31 (1.834) 0.662 (0.079) 24.182 (10.613) 7

End-to-End
Residual U-Net 0.482 0.462 0.439 8 31.62 (1.635) 0.803 (0.050) – 2
E2E-VarNet 0.610 0.514 0.500 1 32.25 (1.901) 0.805 (0.056) – 1

PnPDP
CSGM 0.501 0.528 0.454 6 27.34 (2.770) 0.673 (0.082) 23.483 (10.651) 9
ScoreMRI 0.412 0.554 0.470 5 26.86 (2.583) 0.547 (0.092) 25.677 (10.491) 10
RED-diff 0.478 0.468 0.448 7 31.56 (2.337) 0.764 (0.080) 23.406 (10.571) 3
DiffPIR 0.536 0.484 0.496 3 28.41 (1.403) 0.632 (0.061) 26.376 (10.555) 6
DPS 0.346 0.380 0.362 10 26.49 (1.550) 0.540 (0.067) 27.603 (11.127) 11
DAPS 0.514 0.556 0.480 4 30.15 (1.429) 0.725 (0.053) 23.978 (10.630) 4
PnP-DM 0.527 0.579 0.500 1 29.85 (2.934) 0.730 (0.056) 24.324 (10.413) 5

Fully sampled 0.573 0.581 0.535 – – – 23.721 (10.824) –

the two rankings disagree: Residual U-Net, Score MRI, and RED-diff. The best
methods for pathology detection are E2E-VarNet and PnP-DM.
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Figure E.1: Computational characteristics of each forward model. Fwd: runtime
of a single forward model evaluation tested on a single A100 GPU. DM: runtime
of a single diffusion model evaluation. Fwd Grad: runtime of a single forward
model gradient evaluation. DM Grad: runtime of a single diffusion model gradient
evaluation. Note that the inverse problem of the Navier-Stokes equation only permits
black-box access to the forward model, so its Fwd Grad has no value.

E.2 Inverse Problem Details
E.2.1 Linear Inverse Scattering
Problem Details Consider a 2D object with permittivity distribution 𝜖 (𝒓) in a
bounded sample plane Ω ∈ R2, which is immersed in the background medium with
permittivity 𝜖𝑏. The permittivity contrast is given byΔ𝜖 (𝒓) = 𝜖 (𝒓)−𝜖𝑏. At each time,
the object is illuminated by an incident light field 𝒇in(𝒓) emitted by one of 𝑁 > 0
transmitters, and the scattered light field 𝒇sc(𝒓) is measured by 𝑀 > 0 receivers.
We adopt the experimental setup in [274] where the transmitters and receivers are
arranged along a circle Γ ∈ R2 that surrounds the object. Here, 𝒓 := (𝑥, 𝑦) denotes
the spatial coordinates. Under the first Born approximation [315], the interaction
between the light and the object is governed by the following equation

𝒇tot(𝒓) = 𝒇in(𝒓) +
∫
Ω

𝑔(𝒓 − 𝒓′) 𝑠(𝒓′) 𝒇in(𝒓′) 𝑑𝒓′, 𝒓 ∈ Ω, (E.1)

where 𝒇tot(𝒓) is the total light field, and 𝑠(𝒓) = 1
4𝜋 𝑘

2Δ𝝐 (𝒓) is the scattering potential.
Here, 𝑘 = 2𝜋/𝜆 is the wavenumber in free space, and 𝜆 is the wavelength of the
illumination. In the 2D space, the Green’s function is given by

𝑔(𝒓 − 𝒓′) = 𝑖

4
𝐻
(1)
0 (𝑘𝑏∥𝒓 − 𝒓′∥2) (E.2)

where 𝑘𝑏 =
√
𝜖𝑏𝑘 is the wavenumber of the background medium, and 𝐻 (1)0 is the

zero-order Hankel function of the first kind. Given the total field 𝒇tot inside the
sample domain Ω, the scattered field at the sensor plane Γ is given by

𝒇sc(𝒓) =
∫
Ω

𝑔(𝒓 − 𝒓′) 𝑠(𝒓′) 𝒇tot(𝒓′) 𝑑𝒓′, 𝒓 ∈ Γ. (E.3)
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Note that 𝒓 denotes the sensor location in Γ, and the integral is computed over Ω.

By discretizing Equation (E.1) and Equation (E.3), we obtain a vectorized system
that describes the linear inverse scattering problem. We denote the 2D vector-
ized permittivity distribution of the object by 𝒙0 := 𝑠(𝒓), and the corresponding
measurement by 𝒚sc = 𝒇sc(𝒓) for notational consistency.

The forward model can thus be written as

𝒚sc = 𝑯( 𝒇tot ⊙ 𝒙0) + 𝒏 = 𝑨𝒙0 + 𝒏, (E.4)

where 𝒇tot = 𝑮 ( 𝒇in ⊙ 𝒙0), matrices 𝑮 and 𝑯 are discretizations of the Green’s
function at Γ and Ω, respectively, and 𝑨 := 𝑯diag( 𝒇tot). We split and concatenate
the real and imaginary parts of 𝑨, and pre-compute the singular value decomposition
of 𝑨 to facilitate the plug-and-play diffusion methods that exploit SVD of linear
inverse problems.

We set the physical size of test images to 18cm×18cm, and the wavelength of the
illumination to 𝜆 = 0.84cm as specified in [272]. The forward model consists of
𝑁 = 20 transmitters, placed uniformly on a circle of radius 𝑅 = 1.6m. We further
assume the background medium to be air with permittivity 𝜖𝑏 = 1. We specify the
number of receivers to be 𝑀 = 360, 180, 60 in our experiments.

Related Work Linear inverse scattering aims to reconstruct the spatial distribu-
tion of an object’s dielectric permittivity from the measurements of the light it
scatters [148, 315]. This problem arises in various applications, such as ultrasound
imaging [37], optical microscopy [62, 275], and digital holography [35]. Due to
the physical constraints on the number and placement of sensors, the problem is
often ill-posed, as the scattered light field is undersampled. Linear inverse scat-
tering is commonly formulated as a linear inverse problem using scattering models
based on the first Born [315] or Rytov [84] approximations. These models enable
efficient computation and facilitate the use of convex optimization algorithms. On
the other hand, nonlinear approaches have been developed to image strongly scat-
tering objects [56, 150, 188, 208, 282], although these methods generally have a
higher computational complexity. Deep learning-based methods have also been
explored for linear inverse scattering. A common approach is to train convolutional
neural networks (CNNs) to directly invert the scattering process by learning an in-
verse mapping from the measurements to permittivity distribution [179, 183, 274,
322]. Recent research has extended these efforts to more advanced deep learning
techniques, such as neural fields [43, 193] and deep image priors [359].
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E.2.2 Compressed Sensing Multi-Coil MRI
Problem Details We refer readers to Section 2.2 for details on the compressed
sensing multi-coil MRI problem. We use the raw multi-coil 𝑘-space data from the
fastMRI knee dataset [338]. We then estimate the coil sensitivity maps of each slice
using the ESPIRiT [285] method implemented in SigPy1. Since different volumes
in the dataset have different shapes, we adopt the preprocessing procedure in [145],
leading to images with a shape of 320×320. The ground truth image is given by
calculating the magnitude image of the Minimum Variance Unbiased Estimator
(MVUE), which is used for all numbers reported in Table E.2 and Table E.3. The
MVUE images are also used as ground truths for training the end-to-end deep
learning methods Residual U-Net and E2E-VarNet [267].

Related Work Compressed sensing magnetic resonance imaging (CS-MRI) is a
medical imaging technology that enables high-resolution visualization of human
tissues with faster acquisition time than traditional MRI [204]. Instead of fully
sampling the measurement space (a.k.a. 𝑘-space), CS-MRI only takes sparse mea-
surements and then solves an inverse problem that recovers the underlying image
[205]. The traditional approach is to solve a regularized optimization problem
that involves a data-fit term and a regularization term, such as the total variation
(TV) [29], and the ℓ1-norm after a sparsifying transformation, such as the Wavelet
transform [207] and dictionary decomposition [140, 243, 340]). End-to-end deep
learning methods have also demonstrated strong performance in MRI reconstruction.
Prior works have proposed unrolled networks [2, 123, 191, 255, 331], U-Net-based
networks [142, 174], GAN-based networks [235, 329], among others [190, 202,
279, 305, 360]. These learning methods have achieved state-of-the-art performance
on the fastMRI dataset [338]. Another line of work is to employ image denoisers as
plug-and-play prior [145, 190, 273] Recently, diffusion model-based methods have
been designed for CS-MRI reconstruction [64, 65, 201].

E.2.3 Black Hole Imaging
Related Work The Event Horizon Telescope (EHT) Collaboration aims to image
black holes using a global network of radio telescopes operating at around a 1mm
wavelength. Using traditional imaging techniques, the EHT Collaboration has
successfully imaged the supermassive black holes M87* [71, 93] and SgrA* [92].
The classical imaging algorithm is CLEAN [67, 134], as implemented in the DIFMAP

1https://github.com/mikgroup/sigpy (BSD-3-Clause license)

https://github.com/mikgroup/sigpy
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Ground truth

DAPSPnP-DM

Figure E.2: Multi-modal example on black hole imaging. The image shows two
image modes discovered by DAPS and PnP-DM.

[256, 257] software. DIFMAP is an inverse modeling approach that starts with
the “dirty” image (given by the inverse Fourier transform of the visibilities) and
iteratively deconvolves the image with an estimate point-spread function to “clean”
the image. Since DIFMAP often requires a human-in-the-loop, we choose not to
present results from DIFMAP. The EHT has also developed and used regularized
maximum-likelihood approaches, namely eht-imaging [49–51] and SMILI [5–7].
Although they regularize and optimize the image differently [71], eht-imaging
and SMILI both iteratively update an estimated image to agree with the measured
data and regularization assumptions. Because of the simple regularization they
choose to use, these baseline methods are limited in the amount of visual detail
they can recover and do not recover detail far beyond the intrinsic resolution of
the measurements. Some deep-learning-based regularization approaches have been
proposed for VLBI [86, 101, 102], but most plug-and-play inverse diffusion solvers
have not been validated on black hole imaging.

Multi-Modal Solutions As previously discussed, the non-convex and sparse mea-
surement characteristics of black hole imaging may lead to multi-modal posterior
distributions. While the solutions potentially look quite different from the ground
truth, they may fit the measurements equally well and exhibit high prior likelihood.
Figure E.2 illustrates two modes of solutions discovered by DAPS and PnP-DM.
This multi-modal behavior has not been extensively formulated or discussed in
previous literature, and we believe it represents a phenomenon worthy of further
investigation.
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E.2.4 Full Waveform Inversion
Problem Details We use an open-source software, Devito [199], for both the
forward and adjoint modeling of FWI2. We discretize a physical domain of 2.54km
× 1.27km with a 128×128 mesh, leading to a horizontal spacing of ≈20m and
a vertical spacing of ≈10m. The time step is set to 0.001s which satisfies the
Courant–Friedrichs–Lewy (CFL) condition [76]. We use a Ricker wavelet with a
central frequency of 5Hz to excite the wavefield and model it for 1s. The natural
boundary condition is set for the top boundary (free surface), which will generate
reflected waves, while the absorbing boundary condition [68] is set for the rest
boundaries to avoid artificial reflections. The absorbing boundary width is set to 80
grid points.

Inferring the subsurface velocity from observed data at receivers defines the inverse
problem. We place 129 receivers evenly near the free surface (at a depth of 10m) to
model a realistic scenario. We excite 16 sources evenly at a depth of 1270m. This
source-receiver geometry is designed for the entire physical medium to be sampled
by seismic waves, making it theoretically feasible to invert for 𝑣. Devito uses the
adjoint-state method to estimate the gradient by cross-correlating the forward and
adjoint wavefields at zero time lag [232]:

∇𝒎
1
2



𝑷𝑟𝑨(𝒎)−1𝑷𝑇𝑠 𝒒𝑠 − 𝒚


2

2 =

𝑁𝑡∑︁
𝑡=1

𝒈[𝑡]𝒉𝑡𝑡 [𝑡], (E.5)

where 𝒎 = 1
𝒙2

0
, 𝑁𝑡 is the number of computational time steps, and 𝒉𝑡𝑡 is the second-

order time derivative of the adjoint wavefield that solves

𝑨𝑇 (𝒎)𝒉 = 𝑷𝑇𝑟 (𝑷𝑟 𝒈 − 𝒚).

Recall that 𝒈 = 𝑨(𝒎)−1𝑷𝑇𝑠 𝒒𝑠 is the synthetic pressure wavefield.

E.2.5 Navier-Stokes Equation
To generate the training and test samples, we first draw independent identically
distributed samples from the Gaussian random fieldN

(
0, (−Δ + 9𝑰)−4) , where −Δ

denotes the negative Laplacian. Then, we evolve them according to Equation (8.6)
for 5 time units to get the final vorticity field, which generates an empirical distri-
bution of the vorticity field with rich flow features. We set the forcing function as
𝑓 (𝒙) = −4 cos(4𝒙2) where 𝒙2 indicates the second dimension of 𝒙.

2See https://www.devitoproject.org/examples/seismic/tutorials/03_fwi.html
for a tutorial.

https://www.devitoproject.org/examples/seismic/tutorials/03_fwi.html
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E.3 Pre-Trained Diffusion Model Details
We train diffusion models following the pipeline from [151], using U-Net architec-
tures from [85] and [266]. Detailed network configurations can be found in Table E.9.

Table E.9: Model card for pre-trained diffusion models.

Inverse scattering Black hole MRI FWI 2D Navier-Stokes

Input resolution 128 × 128 64 × 64 2 × 320 × 320 128 × 128 128 × 128
# Attention blocks in encoder/decoder 5 3 5 5 5
# Residual blocks per resolution 1 1 1 1 1
Attention resolutions {16} {16} {16} {16} {16}
# Parameters 26.8M 20.0M 26.0M 26.8M 26.8M
# Training steps 50,000 50,000 100,000 50,000 50,000

E.3.1 Algorithms and Parameter Choices
E.3.1.1 Problem-Specific Baselines

Linear Inverse Scattering We include FISTA-TV [272] as a traditional optimization-
based method. We set batch size 𝐵 = 20 and 𝜏 = 5 × 10−7 for all experiments.

Compressed Sensing Multi-Coil MRI We utilize both traditional methods, such
as Wavelet+ℓ1 [204, 205] and TV, as well as end-to-end models like Residual
U-Net and E2E-VarNet [267]. For the traditional methods, we apply the same
hyperparameter search strategy for fine-tuning, while the end-to-end models are
trained using the Adam optimizer with a learning rate of 1×10−4 until convergence.

Black Hole Imaging We use SMILI [5–7] and eht-imaging [49–51] as our
baseline methods. To ensure compatibility with the default hyperparameters of
these methods, we preprocess the test dataset accordingly.

Full Waveform Inversion A classic baseline for full waveform inversion is LBFGS
[187]. We set the maximum iteration to 5 and perform 100 global update steps with
a Wolfe line search. The second baseline we consider is the Adam optimization
algorithm [162]. We implement the Adam optimizer with a learning rate of 0.02
with the learning rate decay to minimize the data misfit term. For the traditional
method, the initialization is a smoothed version of the ground truth, which is blurred
using a Gaussian filter with 𝜎 = 20. We perform the inversion for 300 iterations.

Navier-Stokes Equation The traditional baseline we implement is the Ensemble
Kalman Inversion (EKI) first proposed in [143]. It is implemented with 2,048
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particles, 500 update steps, and an adaptive step size used in [166] to ensure a
similar computation budget. Additional baselines include DPS-fGSG and DPS-
cGSG, which are natural extensions based on DPS that replace gradient by zeroth-
order gradient estimation first introduced in [356]. More specifically, we use the
forward and central Gaussian Smoothed Gradient estimation technique [21].

E.3.1.2 Hyperparameter Selection

To ensure sufficient tuning of the hyperparameters for each algorithm, we employ
a hybrid strategy combining grid search with Bayesian optimization and an early
termination technique, using a small validation dataset. Specifically, we first per-
form a coarse grid search to narrow down the search space and then apply Bayesian
optimization. For problems where the forward model is fast, such as linear in-
verse scattering, MRI, and black hole imaging, we conduct 50 to 100 iterations
of Bayesian optimization to select the best hyperparameters. For computationally
intensive problems such as full waveform inversion and Navier-Stokes equation, we
use 10-30 iterations of Bayesian optimization combined with an early termination
technique [180], based on data misfit. The details of the search spaces for Bayesian
optimization and the optimized hyperparameter choices are listed in Table E.10.
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Table E.10: Hyperparameter search space and final choices of the diffusion-
model-based algorithms on all five inverse problems. Columns marked with task
names present the chosen values for the reported main results in Appendix E.1.
These values are selected by a hybrid hyperparameter search strategy described in
Appendix E.3.1.2.

Methods / Parameters Search space Linear inverse scattering (360 / 180 / 60) Black hole MRI (Sim. / Raw) FWI 2D Navier-Stokes

DPS
Guidance scale [10−3, 103] 280/380/625 0.003 0.589/0.428 10−2 –

LGD
Guidance scale [10−3, 104] 3200/6400/13000 0.0082 – 11.73 –
# MC samples [1, 20] 20 8 – 5 –

RED-diff
Learning rate [10−4, 1.0] 0.04 0.05 4 × 10−2 / 2.96 × 10−2 0.01 –
Regularization 𝜆base [10−3, 1.0] 0.0005 0.25 2.33 × 10−1 / 2.72 × 10−3 0.1 –
Regularization schedule constant, linear, sqrt constant constant sqrt linear –
Gradient weight [10−2, 102] 1500 0.0004 6.68 × 101 / 1.7 × 10−2 1 –

DiffPIR
# sampling steps {200, 400, . . . , 1000} 200 1000 1000 1000 –
Regularization 𝜆 [1, 105] 4 × 10−4/2 × 10−4/10−4 113.6 163 / 1.31 80.6 –
Stochasticity 𝜁 [10−5, 1] 1 0.34 0.114 / 0.478 0.11 –
Noise level 𝜎𝑦 [10−2, 101] 0.01 1.4 1.05 × 10−2 / 1.36 × 10−1 0.28 –

PnP-DM
Annealing step [50, 200] 100 100 100 150 –
Annealing sigma max [10, 50] 10 10 10 25 –
Annealing decay rate [0.60, 0.99] 0.9 0.93 0.93 0.99 –
Langevin step size [10−6, 10−3] 2 × 10−5/4 × 10−5/10−4 10−5 10−6 3 × 10−4 –
Langevin step number [10, 500] 200 200 200 10 –
Noise level [10−4, 101] 10−4 1 1.02 × 10−3 / 1.15 × 10−2 1 –

DAPS
Annealing step [50, 200] 200 100 200 150 –
Diffusion step [1, 10] 10 5 5 5 –
Langevin step size [10−6, 10−3] 4 × 10−5/8 × 10−5/2 × 10−4 10−4 1.03 × 10−5 / 1.52 × 10−5 3 × 10−4 -
Langevin step number [10, 500] 50 20 100 50 -
Noise level [10−4, 101] 10−4 1 1.63 × 10−3 / 4.77 × 10−3 1 –
Step size decay [0.1, 1] 1/1/0.5 1 1 1 -

DDRM
Stochasticity 𝜂 [0, 1] 0.85 – – – –

DDNM
Stochasticity 𝜂 [0, 1] 0.95 – – – –
# time-travel steps 𝐿 [0, 5] 1 – – – –

𝚷GDM
Stochasticity 𝜂 [0, 1] 0.2 – – – –

FPS
Stochasticity 𝜂 [0, 1] 0.9 – – – –
# particles [1, 20] 20 – – – –

MCGdiff
# particles [1, 64] 16 – – – –

DPS-fGSG
Guidance scale [10−2, 102] – – – – 0.1

DPS-cGSG
Guidance scale [10−2, 102] – – – – 0.1

DPG
# MC samples {1000, 2000, . . . , 6000} – – – – 4000
Guidance scale [10−1, 103] – – – – 64

SCG
# MC samples {128, 256, 512} – – – – 512

EnKG
Guidance scale {1.0, 2.0, 4.0} - – – – 2.0
# particles {512, 1024, 2048} - – – – 2048
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