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Abstract

Using Feynman's path integral variational principle with a generai qua-
dratic trial actioﬁ, we obtain equations for the absorption f.unction of Frolich's
polaron model. We evaluate numerically this absorption function in several
cases. To test the accuracy of the variational absorption function, we develop
formulas for the second order corrections to the absorption function and evalu-

ate these numerically.

Rather than evaluating the correction directly in the double path integral
formalism, we make analytic continuations in time which reduce the amount of
labor involved in deriving the expressions for the corrections. The method of
analytic continuation in time is generalized in such a way as to allow application
of the variational principle to nonlinear transport problems and time dependent

problems.

Finally, we present the variational equations and the second order correc-

tions to them for a somewhat more realistic model of an electron in a crystal.
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1. INTRODUCTION

1.1. History

The problem of getting reliable numbers from field theories whénlperturba-
tive methods are inapplicable is of immense interest. A successful example of
such a calculation is Feynman's [1] application of his path integral variational
principle to find the energy and effective mass of an electron in a polarizable
crystal. The calculation was actually done on an idealized model of a polaron *
developed by Frz;lich [2]. This model has become a standard on which to try vari-

ous methods of computation. We discuss the details of this model below.

Others extended Feynman's calculation to find the polaron free energy at
nonzero temperatures. Feynman,Hellworth,Iddings,and Platzman [4] (referred
to as FHIP in the following) used path integral technigdes to obtain an expres-
sion for the electron’s response to weak external fields (that is, it's impedance

function) at all frequencies,temperatures, and coupling strengths.

A check on the accuracy of Feynman's original calculation was made by
Marshall and Mills [5] who computed the second order corrections to the
polaron's energy. They found that the correction was never more than two per-

cent at any value of the coupling.

The purpose of this thesis is to improve the FHIP impe;dance calcu]atilm b_;f
using a more general trial action in the variational method and to obtain an esti-
mate of the reliability of the variational impedance function by calculating the
second order corrections to it. The variational equations we obtain for the

impedance function have recently been obtained by others by a nonvariational

method [6].

* Polaron is the term used for the quasiparticle consisting of an electron with its associated
cloud of virtual phonons.




1.2. Frolich's Model

Frolich's model takes the electron part of the Lagrangian to be just -é—mi‘z

‘where m is an effective mass and F is the electron’'s velocity vector. This approx-
‘imation has some justification for slow electrons in a crystal with sufficient sym-

‘metry. As far as the path integral approach is concerned, the electron kinetic

energy could be generalized to say —é—zmuz,zJ where z; is a component of the
1.

relectron velocity and my; is an effective mass tensor. The effect of the crystal
‘lattice on the electron could be better accounted for by including a periodic
‘potential V(r) in the electron Lagrangian. However,this would make it more

difficultto find a calculationally tractable trial action for the variational method.

The main idealization which Frolich’s model makes about the lattice portion
of the Lagrangian is that the harmonic approximation is ade)vuate. This is impor-
tant for the path integral approach since it permits the lattice variables to be
integrated away exactly. However,applying the variational inequality twice,we
can approximately integrate the lattice variables and get an upper bound on the

.free energy even in the anharmonic case. We will say more about this later. For

:now, we stay with the Frolich model.

The electron interacts with the lattice via its electric field which attracts
‘the positive ions and repels the negative ions. The electron interacts most
:strongly with lattice modes in which nearby ions of opposite sign move in oppo-
:site directions (optical modes). The Frolich model assumes that the electron
‘interacts only with the optical phonons. To simplify further, the model assumes
‘'that the crystal has two ions per unit cell and that the optical phonon frequency
+does not vary with the wavevector k. This wavevector independence of the pho-
non frequency is equivalent to no coupling between different unit cells. Let du be

‘the deviation from equilibrium of the vector from the negative to the positive ion
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in a unit cell. The kinetic energy of the optical modes per unit volume of the cry-
1 [déu)’

stal is then EﬂM[Ttu—] . Here m is the number density of unit cells and ¥ is the

reduced mass of the ions in a unit cell. For convenience we introduce rescaled
phonon variables by w=VnM 6u. w can be separated into its longitudinal and
transverse pieces: w=w;+w;. Here V-'w; =0 and Vxw,;=0. We shall shortly see that
only the longitudinal optical phonons (LO phonons) interact with the electron.
Since we assume dispersionless LO phonons,the LO phonon Lagrangian can now

be written as
1 5
Lip = "2—_/-[%2—&);217;2](18!' (1.2.1)

Here w, is the frequency of the longitudinal optical phonons.

It now remains to write down the electron-phonon interaction. Frolich's
model divides the polarization of the crystal into the sum of two pieces P; and
P;. P, is due to distortions of the lattice and is proportional to w. P; is due to dis-
tortion of the ions themselves. It is assumed that frequencies of interest are

much less than the excitation frequencies of the ions. In this case we can write
|
P¢=—E‘_—E where £. is the dielectric constant of the crystal with the ions held

fixed and E is the total electric field. From V-(E+47P)=0 and the expression for

P; we now obtain

V2 = 4nV-P = %lv-P, (1.2.2)

Since P; is proportional to w,we have
Vg = 4nCVw, (1.2.8)

Here ¢ is the electrostatic potential generated by a given deformation field w



-4 -

and C is a constant to be determined. For a particle in the crystal at r with
charge g the interaction term in the Lagrangian will be —q ¢(r). To determine C
we consider two heavy charged particles in the crystal. Their interaction energy
is given by

1 9.9e

1.2.4
o [T (1.2.4)

Here gp is the static dielectric constant of the crystal. If the ions are immobil-
ized, the interaction energy of the two particles is

1 gi192
—_—— 1.2.5
tw |r—T2| ( )

If we allow the ions to move, the effect of the optical phonons must be to restore
(1.2.5) to (1.2.4). Thus if we write down the path integral for this system and
integrate away the phonon variables, we should recover (1.2.4) as the interaction

term between the two particles.

The action for several charged particles in a crystal is in Frolich's model

4o
S = [(Lpant +LL0—Zi:qi¢(ri))dt (1.2.8)
where
g N | qi9j
= Dol o F, —— 1.2.7
Tt z;z ' Z.Ejs-]r,-—-rjl ( )

In (1.2.8) ¢ is linear in w;, as can be seen from (1.2.3). To find the effective
action for the particles alone,the L.O phonon variables must be integrated away.

(units are such that = 1)

eSess = fD(phonon variables)e™ (1.2.8)
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To carry this out,define first new phonon variables u (k) by

w(r) = fzn)s mlkl u (k) (1.2.9)

Note that u *(k) = —u(-k). Also let

o= [ (‘;SS etk (k) (1.2.10)
(1.2.3) gives —k?@(k) = 4miCu (k). (1.2.6) now becomes

= f Lpart + —f ik w0 () -ofu " (u (W] - 4mgCiY) f__u(‘;k; ulkkl “"4]

{1.2.11)
Now use the path integral

[ +=
fD:c exp[if (é—s’:g—%waz:%'yz)dt

[
xexp l— ﬁ-f y(t)e tlt—s |7(s)dtds]

(1.2.12)

to find that

202 dks kmt)nE) o]
fDue‘sncexp'Lflpmdt-—Am ZIfdtdsf _ 2 S

(1.2.13)

: dikd e'*r 1
Using f @ & an|r] we have

—iu,lt—sl

- mC?, e
Sesy = Lyartdt =1 gffdtds FOEAO] (1.2.14)

For a slow heavy particle r(t) is nearly a constant for times of the order of w, ™!
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If such particles labeled by 1 and 2 are not too close to each other,then by using

f etelel= —.z—.we find from Sg;; that their interaction energy is
1w

1 anc?] 1
——— 1.2.18
9192 e &712 J 11'1—!‘21 ( )
Comparing to (1.2.4) we have
1 1 _ 4nC (1.2.18)
£ o wf

This determines C. For further work it will be convenient to choose the units of
time and distance in such a way that m=1 and w;=1. Following Frolich,we define

the dimensionless interaction strength or coupling constant

1
_1.[1  1lem]®
rx-—-z—-q [8.., g][wl (1.2.17)

The effective action for one particle in the lattice can now be written as

Sypr = frzdt+ fdtds t;i‘g')l (1.2.18)
The path integrals used to obtain S,;, are real time path integrals. They are
matrix elements of e where H is the Hamiltonian of the system. One may
also consider imaginary time path integrals for the matrix elements of e ™,
These are related to the real time path integrals by analytic continuation. 1t is
these imaginary time path integrals to which Feynman's variational principle
applies.
The free energy F of a system at temperature 87! is given by e #F=Tr ¢ #H

If ¢ denotes the set of all system coordinates,then

Tre?H = [dg<q|e?H|g> (1.2.19)
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Thus e #F may be evaluated by imaginary time path integrals over paths which
close on themselves after time 8. The "action'" which appears in these integrals

is the time integral of the classical Hamiltonian of the system. Thus if

=2y V(r),then
em

B B
Trefl = fDrexp —%—fi’zdt—fV(r)dt = fDre's (1.2.20)
0 0

The imaginary time action is obtained from the real time action by the replace-

ment of £ by —it. Thus (1.2.7),the particle Lagrangian, becomes”

o : _ 995
= = 'myri+ 1.2.21
2; : 25‘; |ry—ry | ( )

The LO phonon Lagrangian (1.2.1) becomes
1 .
Lig = é—f[wf+wlzw;2]dr3 (1.2.22)

The interaction term is

Lint = ?fm(r‘-) (1.2.23)
Finally,the action (1.2.11) becomes

g = {{Lpa:rt Zf(z =g flu K) |2 +0f (k)| ]+4ﬂa2 _dks—u(l_(l_elkrt]

2?3 |k
(1.2.24)

Now using the path integral

*We shall use the italic I for real time Lagrangians and the roman L for the corresponding
imaginary time Legrangiens. The same convention will also apply to actions.



1 B B
LT [#n6udm-s)t0)
c 0

B 8
fDx exp|—- 1—f(2':2+a)2z2)d7+if7zd7 = ——l—exp -
%% ° 2s1nh[pi]

(1.2.25)
where

_ g~ wT ; e vt 1
u(T) 2&, ll—e —wB ' up__lj

(1.2.26)

the u(k)'s may be integrated away and we obtain (after rescaling r and 7 as

before) for one particle

. 58 _
5= L - —a—ffd'rda’GlLil)—- (1.2.28)
00

1
2% 2 r(7)—{0) |

We have dropped the subscript from Sg;;. The action (1.2.28) will be the starting

point for our further discussion and calculations.
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2. FORMULATION OF THE PROBLEM AS A PATH INTEGRAL

2.1. Response Function

We can calculate such things as the absorption spectrum,mobility and
effective mass for an electron in a polar crystal if we know the electron's
response to a weak external force. We take the external field to be constant in
space but variable in time. In this chapter we will present the details of this
idea. We will also review how FHIP calculate the response function. Finally, we
will present a method which allows a less laborious calculation of the response
(when compared to the FHIP method) in the case that the crystal is initially in

thermal equilibrium.

Weakness of the applied field implies that we can expand the response in
powers of the field and retain only the terms which are linear in the field. This

linearity in turn implies that we need only consider the effect of a brief pulse.

Frolich's polaron model and in particular the action given in (1.2.28) are
invariant under rotations. The substitution r(t)-»F/r(t) makes no change in the
value of S in (1.2.28). This implies that correlations such as <z;(7)z;(0)> are
zero for i#j and that there is no response in the y direction to an applied force
in the x direction. Thus,in this chapter, we look at the response in the z direc-
tion to an impulse in the z direction. In chapter five we will give the equations
which apply teo an anisotropic crystal. Letting the applied force be
y(t) = 7:6(t),a term —y(t)z is added to the Hamiltonian. The effect of the pulse
is to multiply the wavefunction of the system at a time just before £ =0 by e'7"
to produce the wavefunction at a time just after £ =0. Subsequently the
wavefunction evolves in accordance with the unperturbed system Hamiltonian

H. If the system is initially in the state |¥;> with probability p;,then at a time

t >0 we have for the expected position of the electron
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<z(t)>=Yp; <Y |e V707 gt g g—ift 1N |y s (2.1.1)
1

Let z(t)=e'® z e ™ and expand (2.1.1) to first order in 7,

<z(t)> = ;pi <Yy |z(t)]\I"->+i702<‘Iq| [z(t),z(0)] |[¥:; >+ - (2.1.2)

We assume that there are no net currents flowing in the unperturbed system. In

this case Y,p;<¥; |z(t)|¥;> = constant, which can be taken as zero. Now we

define a response function

R(t) = 8(t) Zi:p,-olq |[z(£).z(0)]]|¥:;> (2.1.3)

8(t)’is 1 for t>0 and O for £<0. The linear response to a general time varying

force y(t) is now given by
4+
<z(t)> =if R(t—s)y(s)ds (2.1.4)

Now we investigate some properties of R(t). From (2.1.3) we see that R(¢)
is pure imaginary. Consider the Fourier transform R(A) of R(t). Using the

causality condition, R(¢) = 0 for £ <0,we have
B = [e™ R(t)dt (2.1.5)
()

If our system is stable in the presence of a weak external force ¥(t),then R(t)
will not rise exponentially as f-e. In this case,Z(A) will be analytic for all
ImA>0 since the integral (2.1.5) then converges absolutely. Using this informa-

tion and Cauchy's theorem one finds that R()\) may be represented as

+w -~
Roy= L rReRW@) ;0 mmaso (2.1.8)
imJ, w—A
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We also note that since K°(t) = —R(t) we have from (2.1.5) for real A that
R°(\) = =R(-\) and

ReR(A) = —Re B(-A) ,Areal (2.1.7)

This allows us to write

RO = L M«w (2.1.8)

img wP—(A+i0)?

In the following we denote 2wReR () by s (w).

To get a better idea of the significance of R(t) and R(\) insert
Y |¥;><¥; | = 1 into (2:1.8). Letting E; be the eigenvalue of |¥;> and defining
1

Wni = En—F;, we have

R(t) = ~2i T py | <¥s |z | ¥ns | sin(eont J6(2) (2.1.9)

Taking the Fourier transform of (2.1.9) yields (we put in a convergence factor

e~ and later let £-0)

1 1]

RN =iY p |<¥ |z |¥,>]? (2.1.10)

im

—zzp._lclf |z |[¥,>|?

We see from (2. = P i——in 6(z) that

O

ReB(N) = J—L Y | < [z ¥ [HmE (A=) ~TO (o)} (2.1.11)

1t.n

Now apply a weak external force y(t) = ygcos{wt) to the x coordinate of the

system and ask at what rate the system absorbs energy. The answer is given by
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first order time dependent perturbation theory. The transition rate from a state

[¥;> to a state |¥,> is given by
78
Wpoi(w) = T n&(o—wm-)+7r6(w+w,,,;)] |<¥; |z | ¥, >]? (2.1.12)

For each transition, the energy of the system changes by w,;. Thus w,; #,. ()
gives the energy absorbed per unit time at frequency w by the system in transi-
tions from |¥;> to |¥,>. Averaging over initial states and summing over final

states, the total energy absorption rate at w is ) p; wp; Wpey OF
ni

wyé » _ 7€
- Y 2i | <¥ |2 [ ¥ > |2 6(w—wp ) —1 8 (wtown;)} = Vi (w) (2.1.13)
in

Thus s (w) is proportional to the energy absorption rate, and (2.1.8),(2.1.5) show
that the entire response function can be expressed in terris of it. Therefore we

can concentrate on finding s ().

Next we derive a sum rule which will be important later. First observe that

[ s(w)dw = 2nY, py | <¥; |7 | 0> | Pom (.1.14)
0 i.n

Choose units so that the mass associated with coordinate z is 1.
' ,
H= %—+ ++ - ,where p is the momentum conjugate to z. We suppose that the

rest of H commutes with z, as it does for our case. This implies that

[[z,H].z] = 1. Forming Zpi <¥; |[[z.H],z]|¥;> and inserting ), |¥,><¥,| =1

gives the result

Ry P |<¥; |z | ¥ > |2y = 1 (2.1.15)
i

Comparing (2.1.15) with (2.1.14) gives



[s(w) 3= (2.1.18)
If we examine (2.1.B) in the light of (2.1.16) we see that as A+
ANE }\"T (2.1.17)

This says that at sufficiently high frequencies the electron responds as though it
were free. Time is needed for the electron to interact appreciably with the pho-
nons. Also,if we knew that B(\) had the behavior given in (2.1.17), then (2.1.18)

would follow.

2.2. Response from Path Integral:General Density Matrix

R(t),as given in (2.1.3),can be rewritten as

R(t) = )\ p; <¥; | z e 2 | ¥, >— complez conjugate (2.2.1)
1

Take T, <0, 7T, >>0. The first term of (2.2.1) can be written as

Y P <Y |eiH(T"—T")e_iH(T°_t)z g it 7 o*Ta | ¥ > (2.2.2)
1

Let g represent the coordinates of the system including z. Now
~iH(t, iS[t, .t
<grle g = S Dapie [ty 4] (2.2.3)

t
i
where if L is the Lagrangian associated with H,then S[f;.t;] = det and the
]
path integral is over all paths g(f) which begin at g; = g(f;) and end at
gy =g(ty). The notation Dgy; means that we integrate over all paths with ends
fixed at g; and at g;. On the other hand, taking the complex conjugate of (2.2.3)

gives
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iH(t, ¢ —S[t, .t
<qi|e® ™ g,> = [Dgpe T4 (2.2.4)

Note that the paths still run from g; at time £;'to g, at time £,. Finally
<gy e MU TN g5 = f DUz (0)2(0)  (225)
Combining (2.2.3),(2.2.4),(2.2.5) and letting

p =2 1¥>p; <¥i| (2.2.8)
1]

gives

AS[Ty T,)+iS[Ty. T, ]

qua dqw -Dq 'ba'DQba e z'(t)zﬂ(O) <qa lp | 9a'> (227)

Dq'ye is associated with the primed action. The paths associated with the primed

action run from g, at 7; to g, at 7, while the paths of the unprimed action run

from g, at T, to g, at T,. Noting that iz(t) = [——6———eij7z

,we see that

(2.2.7) is obtainable from

[ 490090 DgveDgoe e~ 5 7 g, 151 ga> (2.2.8)

When the system is in thermal equilibrium at temperature 7%,

e FH

p:

a1t the density matrix was

Going back to (2.2.2), consider the factor eWT?pe
p at time T, then this factor is the density matrix at time £ = 0. However,as we
let 7, —,we can just as well start with the density matrix of the noninteract-
ing system (& = 0). We expect that the electron comes into equilibrium with the
effectively infinite lattice in a finite time so that by £ = 0 the density matrix is

exactly that of the interacting system (a#0) in thermal equilibrium at the
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original lattice temperature. This replacement allows the path integrals over
the phonon variables to be carried out in a simple fashion.

The approach described in this section is used by FHIP to calculate the
response function However,in the special case that the system is initially in
thermal equilibrium,it is possible to do the calculation more simply. We do it by
first calculating some other functions (§(A\) and f (7) below) and working back

from them to s(w). This method is described in the next section.

2.3. Response from Path Integral:Thermal Density Matrix

When the system is initially in thermal equilibrium,so that the density

matrix is given by (2.2.9),we need to compute

Tr[ePH gl z g—iHt 1 ]

%}p,-olfile‘mxe""”‘z |[¥> = Tr o FH (2.3.1)
Note that this is the analytic continuation to 7 = if of
Tr[e-B7H -TtH
g(n=Trle g z ] (2.32)
Equation (2.3.2) may be reexpressed in terms of path integrals as
z(T)z(0)e S
e Lelauay (2.53)

Jpges

B
Here S = f LdT where L is the imaginary time Lagrangian of the system and the
(]

path integration is over closed paths. For real 7 and s in the range 0 to 8 we
have <z(7)z(s)> = g(|7—s|). From (R.3.2) we can easily verify that for all com-

plex T

g(g-7) =g(7) (2.3.4)
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Also since g (7) is real on the real axis g () = g *(7). From this and (2.3.4) with T

replaced by -,
g(B+7) =g°(-7") (2.3.5)

On the interval 0 to § we can expand g(7) in terms of functions e " with

A = Zga and «=...,-2-1,0,1,2,.... 1t is important to note that while

g(1) =ﬁ“lzfi(k‘,‘)e—i}"‘T for 0<7<B, for —B<7<B the sum gives g(|7|). The

Fourier sum is pericdic in 7 with period 8 while g (7) does not have this property.

From (2.3.2) we obtain by inserting ¥ |¥;><¥; | = 1 where necessary
1
g (1) = eFF Y e P e T |y |z | ¥, > |2 (2.3.6)
in

Multiplying by e™" and integrating over 7 from O to 8,we have

gF \I, | l\I, 2 e‘pEn__e"pEt
g = < > . 2.3.7
IO = ¢ T | kel 19> £ (237)
s i
where §(Ay) = fg (T)e "1 This may be reexpressed as
0
Ay = S _do -
70 = [ 50 (2:3.8)

where s(w) is given by (2.1.11). The analytic continuation of (2.3.7) to general A

which behaves as A when A- is

g = Z Jie) 40 (2.3.9)

A+e?

Comparing this to (2.1.8) we see that §(—iA) = R(A) and that s(w) may be

obtained by (as £-0)
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s(w) = ImRw§ (e—iw) (2.3.10)

Define now a function f (7),0=7m<g, by

1
T = 527 0
F(D)=p1TF )™ (2.3.11)

In the following we shall obtain the solution to our problem as a series for
7 (7). This will allow us to find f (A,). However, to find s(A) or the response func-
tion R(t),we need to know J for general values of A. §(A) will then~ be given by
G(A) = (A2+F (7)) L. The problem is that specifying a function at a discrete set of
points does not uniquely determine the analytic continuation of the function.
However,the condition that §(A)»A2 as |A| »= for all cor/n/glex A is sufficient to
fix the physically correct analytic continuation. We now use this condition to
continue f(\,) to F(A). We assume that we are given f(7) in the complex T

plane (at least for ReT>0). If we start with
= P INT
F) = {e f(ndr (2.3.12)
then an obvious attempt at f () is
R B
T = fe™r(ndr (2.3.13)
()

This has the problem that for some directions in the complex A plane f (\) rises

exponentially as |A|+=. §(\) then falls more rapidly than A2,

It is possible to see how to correct the problem by changing the path of

integration in (2.8.13). Suppose that ReA>0 and consider the following contour
1'5 is +,3
in the 7 plane:

-~ pey
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As s »=,the piece from is to is +8 goes to zero. We can now write
- . p
FO) =ife™ f(it)dt —ie™ [e™ f(g+it)dt (2.3.14)
0 0

So far this f()\) is the same as in (2.3.12). However,we have isolated the bad
behavior. It is given by the e*» in the second term of (2.3.14). For A = ), this
factor is just 1. If we remove this factor,the new f(A) will still have the correct
values at A = A, and it will have the correct behavior as A goes to infinity. For
ReA<0 we must construct a different expression,but we shall not need this.

On the real axis f (1) is real and f (8—7) = f (7). The first property implies
F(7°) = £ °(7). The second property can be extended to the whole complex plane
for f (1) analytic. Thus f(7) shares properties (2.3.4) and (2.3.5) with g (7). In

particular f (B+it) = f *(it) for real £, Thus

8
FO) = =2 fe™Imf (it)dt (2.3.15)
0

We can now summarize our calculational procedure. First we shall obtain

f (1) as a series
F (1) = Fo(n)+fa(n)+f2()+ - - (2.3.18)

We shall obtain f from a variational calculation. In this case f; will vanish and
f 2 will be the result of calculating the second order perturbation about the trial
action. It will be possible to continue the f's to complex 7 (and therefore to find
7 (\) from (2.3.15)). From (2.3.10) we are actually interested in A = e—iw for

real. Using (2.3.15)

fle—iw) = —2}2“‘“"“‘ Imf (it) (2.3.17)
¢



-19_

Finally, we compute s(w) by

s{w) = limIm Rw

20 (e—iw)?+] (e—iw) (2.3.18)
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3. DEVELOPHENT OF THE APPRCXTHMATION

3.1. Variational Method and Perturbation Expansion
The path integral for g(7) in (2.3.3) cannot be performed for the polaron

action S given by (1.2.28). Thus we shall imitate S by a trial action Sy and use

Feynman's variational principle to pick out the best 5
If A is & functional of the path r(f) of the system, then averages <A>; are

defined by
-5
Jprae™ -
e (3.1.1)

Define S; = S—5p and note that fDre‘S =<e _s’>ofDre 59 The variational ine-

quality states that®
(3.1.2)

-s B
<e >g=e V0

The best Sg is now taken to be the one which maximizes the right hand side of

(3.1.2). In terms of free energies Fy and F defined by
g #F =fDre'S (3.1.8)

e o~ fDre—S"

*This follows from the fact that if Z is a random variable with probability distribution P(z)
and f (x ) is any function which lies above any of its tangent lines (a convex function),then

SP)f(z)dz = <f >=F (<z>)

To see thisnote that f (z)=f (Zo)+f '(zo){x —Z o) for any X Averaging this over the
distribution P{z) gives <f>2f (zg)+f (zg)(<z>—2p). Let Zg = <x> to find
<f>=f(<x >> Since e7 aiways lies above its tangent lines, <e?>2e“*>, Finally note

that
B fDrd(x—-Sl) e

is a protability distribution for the values of 3.



we can rewrite (3.1.2) as

In the limit of f- this reduces to an upper bound for the ground state energy

of the system.

The path integrals involving the action S given by (1.2.28) diverge as the
volume of the system becomes infinite. This is because S is invariant under the

transformation r{7)-r{t)+Ar. To avoid this problem we impose a weak harmonic
oscillator potential é—ﬂzrz on the electron. Although the free energies F and Fy
diverge as {1-0, we can obtain finite results by subtracting from each of them

the free energy of an electron which is in a harmonic oscillator potential —é—ﬂerz

but which is not interacting with the lattice. In this way we obtain as 0-»0 AF and
AFy which are exact and approximate free energies of a polaron relative to an
electron which does not interact with the optical phonons. The variational princi-

ple now applies to AF and AFy

AF<AFq+ é—<s,>tJ (3.1.5)

The best Sp is taken to be the one which minimizes the right hand side of (3.1.5).
If Sg is a trial action which minimizes the right hand side of (3.1.5) and we make
a small variation in Sp then first order change in the right hand side must be

Zero.

¥e now let the action be

B

: 02 f o Ff p
r2d7+2—0r2d7— /é‘{'o[i —d71do (3.1.6)

Nlb—*

0

For the trial action we take



-20 .-

B B
So = _{0 drdor{t) r(o)ge’(|7-0o]) (3.1.7)

Here gg! is inverse to a function g in the sense that

8
,0[9’61(171—0”90(}0—72{)[10 = 6(71-7e) (3.1.8)

for O<7,,75,5<8.

The path integral fDre_S"J'f“ may be performed by analogy to the

discrete Gaussian integral

»

1 1 .
""2141'7131*21{7 2 —rondihy
Jateq HETTT s Bl P (3.1.9)

Here N is the dimension of the symmetric matrix A. gg! corresponds to A; and

go to A;'. The result is

: £ E
syt [yrat - L[ [audsyie)ns)gqlit-s)
fDre o =g g 28 (3.1.10)
8 BB
Sreat 3 [atdsvie) os)golle~s 1)
<0 p o

Here e 770 ig by (3.1.3) the value of the path integral in (3.1.10) with ¥ = 0. We
shall evaluate e * © later.

[

Noting that S 7"’>0} = <r{T)r{e)>;, we have from (3.1.10)

62
AT e
67(7)év(a) 4=0

that
<z;(T)z;(0)>c = 8i;90(|T—0]) (3.1.11)

In this equation the z; are the components of r. (We use z and =z, interchange-

ably.)
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Since <z (T)z(0)>0 = go{|7—0]) .go(7) is for the action Sy what g(7) is for
the action S. We define

P 4 T
GolAa) = {e"‘“ go(7) (3.1.12)

As we did for g (7),we can for go(7) define related functions f(\,) and f (1) by

-~

= 1 — )2
T o(Aa) 503 Aa (3.1.18)

Fo() = B8 Foha)e e

In the time domain, the relations between g (7) and f (7) and between g¢(7) and

Jo{T) following from (3.1.13) and (2.3.11) are

d? B ’ '
~gzd oD+ [ (Ir=r)g (I7'~o|)d7" = é(r~0) (3.1.14)

d? E
~ a0 IT—GI)+_0ffo( |7=7'go(|T~0])d T = 6(7-0)

Comparing the second of the equations (3.1.14) and the equation (3.1.8) we see

that ggl(|7—0]) = ~F6( 7—0)+f o{|7—0|). The trial action can be written as

42/ [ fetrye(@)f o [7-ol)irda (8..15)

o

L9))
[=]
N|+—*

Note that the kinetic terms in Sy and S coincide. If one leaves the mass in the
trial action as a free parameter, the variational method forces it to have the
same value as in the true action. For this reason we have defined f¢(7) in such a
way that the kinetic terms in the two actions agree. When we say that the kinetic

terms agree,what we really mean is that for very short times the kinetic term is
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the dominant term in the action and these dominant terms in S and Sg agree
with each other. Equivalently,we may Fourier analyze the actions, rewriting

2na

B
them in terms of variables B()\,) = f e"‘“’r('r)df Aa = .ainteger), The
/ .

12
25 a
action, the kinetic term there would be the S kinetic term just given multiplied

M) B (A)AE. 1f we used a mass m #1 in the trial

kinetic term in S is now

by m. The large A, pieces of these kinetic terms make such a large contribution
to <S-Sp>p that we are forced to m =1 in the trial action. That m =1 in the

trial action implies that as A »=,§o(A,)*As%.(For m # 1 it goes to mA;%.)

An action like Sg in (3.1.15) can be gotten from the action of a system which
consists of a particle coupled by linear interaction terms to a set of harmonic
oscillators. Sg is obtained by integrating away the oscillator variables in the path
integral for the particle-oscillator system. Since the partic/l,a»"oscillator system is
described by a Hamiltonian, we can repeat the discussion of the last chapter and
derive dispersion relations,sum rules,etc. for the response function Ry{t) and its

Fourier transform Eo(\) associated with the trial action Sg.

From the comments in the preceding paragraph we see that ﬁg()\)—»;—a—as

A-o so that the absorption function so{\) for the system with action S; satisfies

the same sum rule f%@—so(w) = 1 as does s (w) for the system with action S.
0 1

Next we note that the righthand side of equation (3.1.4) is the beginning of a

series for the free energy F. This series is obtained by writing

<7L
—-—-———S 2% (3.1.16)

g BF = fqu ~5p—54 _fDq ‘503“ ( 1) ‘ﬁfoi(_
n= O n=_0

and then taking logarithms to second order on S; we have

BF = ﬁFo+<Sl>c—%—[<S§>—<S,>2]+ e (3.1.17)
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I'rem this expansion it is also possible to get an expansion for g (7). First define

h(T-0) = 0%6(7—0)—f o(7—0). Then S in (3.1.6) can be rewritten as

(3.1.18)

S—”‘fl'\T)I‘ (0)f o(T—0)+ f’ed"""_ffr reh (7—0)= \/— ¥ ;rGi§—;otz)l}

Now generalize this by letting A (7—0) be independent of f o Denote the piece in

bracket in (3.1.18) by A. Now vary f g leaving h(7—0) constant. Then

4-1 [ [5nre)1 ofr—0)

8(ePF) =6 [Dre (3.1.19)

= [Drl-Lf [eor(o)s or—o)le ™ F Sl

On the other hand &(e#F) = §(—BF)e #F. Combining this and (3.1.19) using

<z;(1)z;(0)> = 6; g(|7—0c|) we find that

6(BF) = g—fg(['r—al)dfo(l,*—ol)d'rda (3.1.20)
If we vary BF, with respect to f g we find

8(BF o) = -g——fgo(lr—aI)dfo({‘r—al)d'rda (3.1.21)

If we vary both sides of the expansion (3.1.17) (with S given by (3.1.18) and h
independent of f; ) we obtain a series for g(|7—0|). Once we have obtained the
series we set h{7-0¢) = Q®6(7—0)—f o(7—0). This procedure gives us a perturba-

tion expansion for g about any S;. We shall call the expansion for g the g series.

g(7) = go(m)+g:(T)+g2(T)+ - (3.1.22)

Experience with simple examples shows that it is better to transform the series
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and g is a different harmonic oscillator action, then the g series is an infinite
series. The f series in this case terminates at f, and the result is exact. Other
examples such as a single anharmonic oscillator show that the f series gives a

qualitatively better picture of the spectrum.

Suppose that f = fo+f1+f2+fa+ - - . Denote an equation such as (3.1.8)

schematically by gglgg = 1. From (3.1.14) we have

g5t (l7=al) = = L3s(r-0) + £ o | 7o)

g7 I7=01) = ~Lo6(r—0) + 7.1(| 7o)

Thus we can write
g l=ggl + f1+fe+ - (3.1.23)
=gg' +Af
Inverting
g = (gt +0f )7 = go(1+Af g~
9 =90-908fgotgodSgodfgo— - - (3.1.24)
Comparing this with the g series (3.1.28) and equating items of equal order gives
91= —gof 190 (3.1.25)
gz = —gof290+gcf 190f 190

Solving for f 1 and f; gives
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f1=-9¢'g190" (3.1.26)
J2=—-g0'(g2—g0f 19cf 190)90 "

The next section will discuss the variational calculation of f,. The section
after that will give the explicit construction of the g series and its reduction to

the f series.

3.2. The variational equations

We begin by computing <S—Sp>¢=<S;>;. Using (3.1.18) for S and (3.1.15) for

Sp, then S, is
pe 3 ik (r{(7)-x{0))
1 d’k e’
5—_[ ‘roh{|T— o])-—cxm/—f £ 2 Gi(|7—0o]) (3.2.1)
where f d% e'kr = 1 1 has been used to rewrite the a term. From
(em)? K* 4 |r| '

(3.1.11) <r{7) r{0)> = 3go(|7—0|). To evaluate <e'*®7-x5  use (3.1.10) with

y(u) = iké(u—7)—ikd{(u—0). The result is

ek En-Kes = g ¥DoliT-ol) (3.2.2)

where Dy(7) is defined by Do(7) = go{0)—go(7). This combination occurs repeat-
edly and also has the nice property that as the 0% potential used to confine the
electron to a finite portion of the crystal vanishes Dy(7) stays finite. So far we

have

dak e _kgpo( ;7—6 I)

(2m)® K?

s el
<8130 = {[—g—hw—o!muf—aw—am@ Gi(I7-a)
(3.2.3)

Making the replacement k=2 = fe'“kzdu. the k® integral can be done. This
o
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leaves a u-integral. The necessary integral is
w

f du - =24
8 (u+4)?

i
2 (3.2.4)

Finally, we may use the time translation invariance of the integrals to reduce

the double time integrals to single integrals.

<s >o—ﬁf Sa(ImgolI7h) - (3.2.5)

Now we are almost ready to vary f¢(7) to find the conditions for a minimum
of BFo+<S,>g. First replace A(7) by 0%6(7)—f¢(7). From (3.1.14) we find that
when fg is varied the change in gg is given by 8gg= —go'6fog¢’ or in more

detail by

6go(|7=0l) = —ffgo (lm=7'D6fo(|7-0'Dgo ' (|o'~a|)dr'da’ (3.2.6)

Combining this with (3.1.21) which gives §(8F) we obtain finally

{
Folr) = a(1) = =] S g )f A (3.2.7)
D¢ (7) ° b (o)

This equation makes sense with (0* = 0, so we shall drop the ( term in the follow-

ing. It is convenient to define a function x¢{7) by

kolr) = (3.2.8)

so that f o(7) will be given by

8
Fo(r) = =ko(7) + 6(7) [ol) 1328
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From this we have

£ ) ]
o) = [ (1—e™"Yeo(T)dr, A = z—é‘%—. ainteger (3.2.10)
[4]

Following the methods of chapter 2 this may be continued away from the
discrete valves A,. We now write down the cycle of equations which self con-
sistently determine the quantities Dg(it), s¢(@), fo{~iA) ( sg(w) is for the action

Sy what s (w) was for S - the energy absorption function). Suppose we start with

some so{w) { this should obey the sum rule f%risc(m) = 1) using the equivalent
()

AT ‘
of (2.2.8) for sg(w) and §o(A,) and the relation LZ " = G,{7) where G,(7) is

B & AE+o?

given by (1.2.28) and noting Dg(it) = go{(0)—g (it ), we can write

o Tdo oy 1 [1-eiet  1—gist
DO('Lt) i { e "(w) zwl l_e_ﬁu + eﬁ—l j (3211)

From this Dg(it) we may construct xg(if) which we then use in the equivalent of

(2.2.8) to find
2t s e} F iAs 1) GI(T‘S) 1
Fol=in) = z20=f (™ —1)Im ———"ds (3.2.12)
’ D¢ (is)

Finally, referring to (2.2.18), we may complete the cycle by

solw) = Im[ L (3.2.13)

Jo(—iw)—w?
Of course, we can start this cycle of equations (3.2.11) - (3.2.13) with Dg(it) or
Fo(—iA) just as well as with so(w). These equations have been also derived in [6]

by another method not connected with a variational principle.
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Since one may also ask to know the free energy associated with a particular

sp(w). we briefly stretch how gFy may be calculated.

It is sufficient to consider the path integral over closed paths z (0) = z(B)

B

£E
-;— - é— fz(-r)z(u)f(l'r—ai)d'rdu
Z = [Dze °7 0 (3.2.14)

To avoid worrying about the normalization of Dz divide (3.2.14) by the

corresponding path integral for the free energy of a harmonic oscillator of fre-

quency w.
B B
1 ~Llfe _c;i Sz2 "
j= fDIE " v (3.2.15)
2sinh >

é— e 2 (A, =,% a integer ). Since
a

z{7) is real £, = £_,, so that the independent variables are Ref, and for A,>0

Introduce new variables Z, by z(7) =

%—22—1)“' F(A\) and the f(A,) are real. Letting £
a

denote integration over the independent variables, the ratio of path integrals is

ReZ,, ImZ,. Also, f(|7—0|) =

f 2 _ 1 2 p 2 2
[DEe Hez) TTe §(M+fa\ka))[(R&a) +(ime )¢
i ﬁ&)\ = a>0
(2sinh 552 = e % - . ot i (3.2.16)
e e
a>0

Numerator and denominator are each just a product of Gaussian integrals. Car-

rying out the integrations and using the formula sinh H TT) with
J:

7= g%we finally obtain

] .. (3.2.17)
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—BF is the logarithm of (3.2.17). Using this and our result (3.2.5) for <S;> we
have an expression for fF+<S;>. Let A(r—0g) = D*F6(7—0)—f o(7—0). Now we may
treat the fo(As) as variational parameters. In particular, if we find the best value

off(O) by

6 | _
ansm] =0 (3.2.18)

we find that f(0) = 0°. For now we leave the other F (A\,)' ( a#0 ) arbitrary. If

from BFg+<S;>p we subtract g times ( free energy for electron in potential

%z—r'r but not interacting with the phonons ) and then take the limit as Q-0 we

get a finite result which is just an upper bound on difference in free energy
between a polaron and an electron not interacting with the optical phonons. If

we denote the actual value of this energy difference by AF', then we have

”
_ FOD) oo Folda)  pa f Gi(D)
ﬂAF_.SEDmH \E 3‘§0 i F O Vard £ é“(r)ﬂ‘r (3.2.19)

The factors of 3 in the first two terms of the right hand side of (3.2.19) are due

to the three degrees of freedom of the electron.

3.3. Second Order Calculation

First we work out the second order contribution to the free energy given by

—-;—-{<S,2>0 - <Sl>€]. Letting

} (1) r(o)drdo (3.3.1)
0

(\)lb—*

B g Sy, ik (r{r)-x{0)
= —\/B'ﬂafdedaffu“g-Gl(lf—o})g——
00 (Rm) K?
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so that S;=A + B, we have to evaluate <4?>(—<A4A>f, <B%>¢—<F>E and
<AB>¢—<A>o<B>p. A useful theorem in these evaluations is gotten by integra-

tion by parts (see [7])

60 s &S g
Srag e = I i
or
0 — oS
<tSq('r) >s <Qt‘igr(‘r) S

Here S is any action with variables g and @ is a functional of the g. For the Gaus-

sian action Sg in (3.1.7) we find

g = f 95" (I7-01)<@n(0)>0 (3.3.9)

or

6@

()

: ]
<= (M@0 = [o(lT0l)<gh s>

Consider now the term <B?>,. To evaluate this we first need to compute

<o (RT) — o) e o) —rlog) (3.3.4)

Letting ¥(u i [6(u—71)—6(u—0y)]

and using (3.1.10) and Dy(T) = go(0) — go(7) we find that (3.3.4) is given by

d® k, o
(2r2)2 ff (3.3.5)

The A; are defined by
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A; = %{Do(lﬂ“”j )+ Do(| 03 =75 [)=Do(|03—0; | )=Do( | 7: =75 1) (3.3.6)

To do the k integrals we use fdm;e e L S The k integrals are then Gaus-
0

kf
sian integrals. Evaluating these and then performing the resulting integrals

over u, and wz, we finally obtain

1 e 1 I N N PR
<|1‘(71)“1‘(01)| |r(- »—-r(ag)|>o Ag) VA1 g | (3.3.7)

In <AB >y we encounter

<1'(T1)'I'(O’1) Il'(‘rz)ir(ﬂg)l > (338)

Applying (3.3.3) several times and using V? Irial = —4n63%(r—a), we find that

(3.3.8) is given by

1
<r(Ty) r(o,)>e< m) (3.3.9)

~4m<6%(x(m2) ~r{0))>o|Do{ | 17 )~Do( 1 71=02 )] [Dol | 0172 1)~ Dol | o102 )]

The expectation of the delta function is found by using é3(r) = f(z s ik and
(3.1.10) to give
3 TN By .
<6(r(7)-r{0))>¢ = —5 Do (|T=o]) (3.3.10)
Br?
Also note that
<r(m1)'r{oy r{rz) r(oz)>e = <r(1)'r{0,)>c <r{7g) r{02)>0 (3.3.11)

+3gc(|T1—Te!)go(lo1—02] ) +3go( i T1—02])go( | T2—0, )
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Combining (3.3.1), (3.8.7), (3.3.9), (3.3.10), (3.3.11), and previous results for

<S}o we can finally write down BAF to second order.

Before doing this, however, we shall extend the schematic notation which we
introduced earlier in equations (3.1.23) to (3.1.26). Thus symbols such as
a,b, - wil refer to .a(|7-0|),b(|7—0|), - -+ 1f we wish to be more explicit
about some of the variables, we will write (a),, for a(|7—0|). A product notation

ab will be used to denote integrals, so that (ab),, will stand for

g
fa([T—aI)b(IU—-pl)da. If we wish to explicitly display integration over a vari-
0

B .
able, we will write f for f d7. The notation [a] will denote
()

6(T—a)fa(|‘r—a' Ndo'.

With this notations the free energy to first order is

BAFg +

S hgodee = o], L (3.3.12)
# i (Do)r%

The second order free energy is ( g is defined in (3.2.8) )

-3 3
== f(gchgoh)er + 5-f (gohgoko)rr (3.3.13a)
) 24

5 T
= g‘f (ko)rolgohgo)wr

— G (=0 )il | me=021)q (7104 | 70)

L T191T2%
The function g is defined by

q(1101|7202) = - rlsm—l[\/Alz “] - E_1
Az A11A22J VA Az J

(3.3.13b)
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with { from (3.3.6) )
All = Do( IT[‘U] ]) . (33130)

Age = Do(|T2—02])

Az = S{Do(171-021)+ Dol |01=72])=Do| 0102 1)=Do( 71 -2 )]

Do([T=0]) = go(0)—go(|T—01)

The next step is to find the variation of the series (3.3.12) as we vary the
function fgo with h fixed. After setting hA(7) = 0%(7)—fo(7) in the result ( we
shall take Q=0 ), we obtain a series for g(7). This series will then be
transformed to an expansion for f. These expansions do-hot require that fg
satisfy the variational equation (3.2.9), but we shall find that many terms drop

out if (3.2.9) is satisfied.

From ggg! =1 ( 1 will represent the delta function (1),, = 6(7—0¢) ) and
2
—gtTd(T_o) +fo(l7—0|) =go'(|7—c|) we have shown that &gg= —g¢dfego.

Since many of the terms involve Dy 's it is helpful to see what contributions such
terms give when DD+ 0Dg as a result of fo»>fo+0fo. Let A represent such a

term. Using Do(7) = go(0)—go(7) and (go)rr = (g0)or We find that

6A = f_D“) {908/ e90)ro — fd Do)ea {g00f090)~r (3.3.14)

Here the functional derivatives are to be taken as if (Dg),¢ is not symmetric in 7

and ¢. Since 6{BF) = g—f(g 67 0)rr (3.3.14) leads to a contribution to the series
:

for (g )re of
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f(g(J)'rr 5(D) (r'- U)f DO)‘rp (g90)oe (3.3.15)

We note that the delta function term in (3.3.15) is completely determined by the
other term. Applying (3.3.15) and égy = —gobf ogo to (8.3.12) we find the g series
to first order. Setting h = —f and using the first of equations (3.1.26), we find

that f;, the first order correction to f g is given by
J 1= —fo—Kot[ro] (3.3.18)

or more fully
g
Fi(]T=0o]) = —fo(l'r-a[)—icg(l‘r—al)+6(‘r—o){do’lc( lT—d'|)  (8.8.17)

Here kg is the function defined in (3.2.8). We note from (3.2.9) that for the best

trial action Sp, f g satisfies f o+xg—[kg] = 0. so that f, vanishes for the best S.

Before giving the second order terms in the f series we discuss the varia-
tion of the g - terms in ( 3.3.13a) in order to establish our notation. The varia-

tion of g is entirely due to the variations in 4,,;, Az, 4z, so we may write
09 = 4116411+ 9220 Aze+9 12042 (3.3.1B)

The g;; are given by

e . - (3.3.19)

iz~ RAgpArz | 1—-z%
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From (3.3.132) and (3.3.19) we note some symmetries of the 4; and gy. If
7y and 0; (in 3.3.13c ) or 7; and 0; are interchanged then 4;,~»A4;;, Azz-> Az, and
Ap»—A;z. The behavior of the gy under the same transformations is given by
9117911, 922922 and gp»—g2. If we interchange the pair 7,0, with the pair
7203 we find that Apy, A;, and also gpp, g4, are interchanged while g5 and A;; are
not changed. Using (3.8.18), (8.3.19), (3.3.15) and the symmetries just men-
ticned we can readily construct the contribution of the g - term in the free

energy expansion to the g - series. From (8.1.28) the contribution to (f )., is

g;"!cl“""‘f’l)f?x(]7'—0'])q11('ra}1"a’) (3.3.20)

ng: -[,Gl(IT_T'!)GI(10“0'1)5112(77'100')

+delfa function terms
The rest of the second order contribution to (f ), is
(o ~{r0])g olio—[K0]))ro (3.3.21)
={L)=o((gof cg0)re—(gcS o 0)rr)
+del?a function terms

where

(3.3.22)

(L)'m = L(IT—UD =

We note the delta term associated with the second term in (3.3.20) vanishes
due to the antisymmetry of the integral in ¢ and o'. The delta function terms

associated with the first term in (3.3.21) also vanishes.
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It seems strange that the first term in (3.3.21) survives. When we do pertur-
bation theory with polynomial Lagrangians such terms always cancel out. This
suggests that further simplifications may be possible. Suppose that we expand

g1z in powers of z. The lowest order term is

4
= é ¥ (3.3.23)

(A114z2)

4
3 4

] i
|

By using the expressions (3.3.13c) for the A; and doing some rearranging we find
that the contribution to the f series involving (3.8.23) cancels the first term in

(3.3.21). Similarly, the lowest order term in g, is

3 AZ
0SS sl ... (3.3.24)

The contribution to the f series involving this piece of g,; combined with the

second term in (3.3.21) is

"'(L)'rc;_{l(f 0+’CO—['CO])7‘U'(90)70’((9 0)07""(90)1‘1") (3-3'25)

Note the factor +f, = —f g—kg+[xg]. We see that when we use the best Sg so that
f1 =0, the contribution from (3.3.25) vanishes. The corresponding delta func-
tion term also vanishes. We can in this case write the second order piece of f,

that is f,, as

To{l7-0l) = ~ke(I7-0])+6(r=0) [a(|7-0"]) (3.3.262)

where the function «,{|7—0|) is defined by

2
ke(17=01) = 2=f Gi(l7=7 ) Gi(|0~0'|)T 1z(77" | 00") (3.3.28b)

7o'



- 39_
az ] ' ' -_— | Bk
“ngL(IT“UDQI(IT =a'|)qu(re|7'0)
7o'
where §; and 7,, are given by

2
— _ Z_ 114+ Z 1 ]
‘]11\710117’202) 2‘411A12 l 2 \/I?J

(3.3.28¢)

G12(T101]|T202) = -—Il [—z'—--Sin_ll'-za
AR | V1-—2? 3

where

and as before
Ay = Do(|71~04]) (3.3.26d)

Aze = Do(|T2—02])
4se = $1Dol|T1=02])+Do( | ma=011)=Do( | =72 1)=Dol | 1~ )]

Dq(T) is given by

_ Tso(®) do J1—emer | 1—per o
Do(7) -jo‘ o il—z"ﬂﬂ’ ; eﬁf_l} (3.3.28¢)

Here sg{w) is the absorption function for the trial action Sg. Note that this
expression allows us to analytically continue Dg(7) into the complex T plane as
leng as O<Ret=§8.

The absorption function s()A), correct to second order is given by

] 2\ ]
SO = I G ot P | ween
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Fo(=iA) is given by (3.2.12) and f,(—i\) is presumed to be zero. Ja(—i)) is

given by
Fa(=in) = Zj(ei‘s—l)lmxg(is) (3.3.28)

kp(is) is the continuation of ky(7) given by (3.3.28b) for real 7T to imaginary

T =18 .
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4. NUMERICAL RESULTS

4.1. Solution of the Variational Equations

The first method of solution for the variational absorption function sg(w)
which we used is based on the cycle of equations (3.2.11) to (3.2.13). In the
actual program it is possible to start at several different points in this cycle. We

shall briefly describe the program.

An array containing the values of Dg(is) at equally spaced values of s is

formed. From this a table of values of

G, (3s)

Im 3
D§ (is)

(4.1.1)

in the integrand of (3.2.12) is formed. This function falls off-slowly as s+ and
has a singularity at s = 0. To immprove its behavior, we modify it by subtracting a

function ®(s) to get a table of values of

(4.1.2)

The function ®(s) is chosen so that it has the same singular behavior at s = 0 as
the quantity in {4.1.1) and also falls off at e in the same way as (4.1.1). &(s) is

also chosen so that the integral
Biv%;_;f(e*“—l)@(s)ds (4.1.3)
0

may be carried out analytically. The numerical integration of (4.1.2) multiplied

by %{e“‘s—l) is carried out by using a Fast Fourier Transform and the
L]

results are added to the results of (4.1.3) to form an array of fo{—iA) values at
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equally spaced values of A. Equation (3.2.13) is now used to form a table of s¢(A).
If an older version of this table exists, the entries are compared to see if they
agree well enough that the iteration may be stopped. If the iterations are

stopped, a table of fo(—i]) is output. Otherwise a table of
so(A) —u(A) {4.1.2)
is constructed, where w(A) has the same behavior as sg(A\) as A-»e. The integral

dw 1 [1—e et 1-—ei°f]
—u(w ——1 + ods
_{ T (Cv) 20 1"'8 ) Qﬁu'—l l (4 1 5)

is performed analytically while

1 [1-gist  q-giet]
20[1—9'5‘-’ ' eﬁ"’—lj

) 29 {5 ofw) - ()] (4.1.8)

is done numerically. The resuits are added to form a table of values of Dg(if).
(see (8.2.11)). This is where we started. The program goes on this way until con-
vergence is achieved.

Our second approach to the computation of sg{w) begins from the expres-
sion {3.2.19) for the free energy AF. We only worked out the f = = case in this

approach. In this case (3.2.19) becomes

w01 N i
dA | fo(}\)] FolN) ] o e™”
AF <3 [ S8 n1+ = - s - =/ T (4.1.7)
_m A 2+ T 1
o 2 | R I IR Y
so(w) was assumed to have the form (for w=1)
L
so(w) = Clw—1)* R(w) (4.1.8)

Here C is a constant and R{w) is a rational function in w. For 0<w<1 , so{w) is
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1
taken to be zero. The factor (w—1)?

was included because the threshold at w = 1
is known to have this form. Also, it is known that as w-e, sg(w)- 1}359'"2'5. Thus

the form (4.1.8) can have the correct behavior at w—1 and as w-os,

C and the roots of the numerator and denominator of F(w) are taken as

variational parameters. Dg(7) is obtained (numerically) from

Do(T) = QoT 5 fSc ) __].a_,_{l_e-m de (£.1.9)
1

with sg given by (4.1.8). g is just 1—fs—(’—1(ri))—dw. F(\) is obtained analytically by
1 X

evaluating (see (2.3.11) and (2.3.9))

1 _ 7rsolw) 1
FiF ) _{ w09 (4.1.10)

The integrals in (4.1.7) are then evaluated numerically to find the right hand
side of (4.1.7). A minimization program was then used to find the values of the
parameters in sg(w) which give the smallest value for the right hand side of

(4.1.7).

Some results for a = 5 ( § = = ) are shown in figure 4.1.1. The value of sg(w)
is plotted against w. Curve 1 is the result of the iteration method (the first
method described in this chapter). Curves 2 and 3 are both results of the
minimization method. Curve 3 is apparently spurious for when the sg{(w) of
curve 3 is used as an input to the iteration method, the results rapidly converge
to curve 1. Also, when a fit of the form {4.1.8) is made to curve 1 and the result-
ing parameters used as a first guess in the minimization method, curve 2 is the
result. These results illustrates some of the pitfalls of minimization methods in

general. The free energy is a functional of some functicn but is not very sensitive
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to the form of the function in the vicinity of the minimum.
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Figure Caplions

[1] Results from two methods of computing so(w) for a=5. The continuous curve

(3]

[4]

is the result of the iteration method described by equations 4.1.1 to 4.1.6.
The dashed curves are both the results of the minimization method using
equations 4.1.7 to 4.1.10 with different initial guesses for sp{(w). When
inserted into the iteration program both of these curves converge to the

continuous curve.

The continuous curve is the result of the iteration method for a=3. The
dashed curve results from starting with an initial
so(w) =(1-ad(w)+a,;6(w—w,) and iterating once. @, and w, are determined
by minimizing the free energy. This is the ansatz used by FHIP.

This is the same as figure 4.1.2 except that it is for a=5. Note that the self
consistent sg{w) is quite different from the FHIP s¢{w): Interpretations of
the structure in the dashed curve have been given in [10],but we see that

this structure goes away in the self consistent solution.

Self consistent results of the iteration method for o= 3,4,5.
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4.2. Second order correction

s(X), the absorption.function, is given correct to second order by (8.3.27).

This requires the computation of f3(—i)\) as in equation (3.3.28), which is
fa(—iA) = 2 [ (e —1)Imiy(is)ds (4.2.1)
0

For real T and o, kp{|7—0|) is given by (3.3.26b) and the following equations. We
need to continue these to imaginary 7 = is. A simple example illustrates how

this may be done. If we wish to continue a(7) given by
a(r) = fe™l™ldg (4.2.2)
0
into the complex 7 plane, we can rewrite it as
T )
afr) = e”“”fe“"’da+ e""’fe ~“do (4.2.3)
0 T

Now since the integrands are analytic and convergent, we are free to move the

contours around. Thus a (i) may be computed by
5 u 5

a(it) = e"“"‘fe””da+ e"’*"fe g g (4.2.4)
() it

Consider the contour C running from 0 to some complex 7 and then to =. for o,,
oz on this contour write o,>0; if we encounter oz first as we traverse the contour
starting at 0. For complex T and o on C define |7—0 |, to be 7—0 if 7>0 and 0—7

if 7<0. Then for complex 7

a(r) = _{e ~wlrelegr (4.2.5)

where T must be on the contour C. With this notation «z(is) is given by
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2
w(is) = o—f Gi(lis =" | ) G1(0)Fselis 7' [0,0) (4.2.6)

a2 . B 1 1 = 3 ! et
~ 85 fGI(ZS)Gl( |7'=0"| ¢)@11(is,0|T'0")
7o
Here 7', ¢' are on a contour C such as:

¢S

0 3

We also have

T ,_1[2_,._1_5“7

g12(is,7'|0,0") = m gt sin"'z ﬂ (4.2.7a)

Ay
withz = ———————and
VA 1Az
A1 = Do(lis—7'|¢) (4.2.7b)
/
Azz = Do)

1 (3 1 ! ~¢ ! '
Ayz = Loo([i5 =01 0) + Do(7) = Dolis) = Dol | 7=’ )]
while for §9;, we have

[ zF
I
R i 4.9
ll 2 Vi-z° (4.2.8a)

4

g(is,0{7.0") = AAn

A
gain with £ = ———but with
& Y% ~411-422
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Aq = Do(is) (4.2.8b)
Aze = Do(|T'—0"[¢)

Ap= é—{[)g( |7'=0"[¢) + Do(T) = Do(lis —7"[¢) ‘Do(U')]

1 [1—9“"’, l—e”"]
2w |1—e B ep“’—lj

Dy(T) = }%o (4.2.9)
0

It is convenient to put these equations into a form in which the limit f-= is

easily taken. Consider G,(T) as f becomes very large.

_lje™ | e7 ] .
GI(T) - 41_2-3 w e’—l] (4210)

For fixed finite o, G,(0) and G,(8—0) have finite limits as §-«. Both limits are

given by

G\(0) = G\(B-0) = ez;" B-eo (4.2.11)

We must also consider the behavior of Dg(T) as f~»w=. From (4.2.9) we see that for

finite o
~.splw
Do) = Delf—0) = [ —°1‘T—)—dw i{ e o (4.2.12)

At == (zero temperature) there are no optical phonon present initially in the
crystal. The electron can absorb energy from the field at zero frequency (elec-
tron accelerated by a time constant field) or it can absorb energy from a time
varying fleld and emit a phonon. However, this cannot happen until the fre-
quency of the applied field is equal to or greater than the optical phonon fre-
quency. From these consideration s{&) has a delta function at w = 0 and is zero

for O<w<1. Letting



a, = [——duw (4.2.13)

and defining ay = 1—a,; we find that at 8 = =, Dg(7) has the form

aeT o Sple
Dy(7) = g +[ er)dw —2%—{1-—2“” (4.2.14)

Note that this becomes = as 7=,

Consider now the integrals in (4.2.8) and (4.2.7). Using (4.2.14), (4.2.12),
and (4.2.11) we find that the integrand is now zero as f-= only if 7' or §—7" and
¢ or f—o' remain finite as §»=. Denote the integrand in the sum of (4.2.8) and

(4.2.7) by I(is,7',0") so that
Ka(is) = fd7 [fdo'l(is,7.0) (4.2.15)
C C

When f-= only the pieces of C near to 0 or 8 give any contribution. Let C; run

from O to g— If 7 is on C, take Cp to be the set of all points {§—7). C, and Cp

together form C. Rewrite each integral over C as

fa(T)dT = fa(-r)d'r+fa(r)d7 (4.2.16)
o1 £, Cs

= fa(nyd7+ [a(g-7)dT
£y C

1
so that (4.2.15) becomes

(4.2.17)

Ko(is) = Jdr’{da’{[(is,r’,o'ﬂ[(is ,,6—7',6')4-](7’5,T',ﬁ—o')+]('z;s,ﬁ—’r‘,ﬂ—n’)]
1 1

Finally use Do(B—7) = Do(7), G1{f—7) = G,(7) to rewrite the integrands. The f-=
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limit may now be taken. Of course, we may also use the form (4.2.17) for f#e.
(4.2.17) is the form we actually used in the numerical computations.

To compute the second order corrections we did not use directly the table
of values for Dy(it) computed by the iteration method. Rather a fit was made to
the s¢(w) computed by the iteration method of the form

el -
so(w) = eriA.;w(w-l) Rg~9o-1) (4.2.18)
1=0

Here the 4 and b are parameters which we are free to vary. Figures 4.2.1

and 4.2.2 show the fits for a =3 and a =5 respectively. The Dg(it) arising from

(4.2.18) is given by

[ —»i—g. _,,;_5
Do(7) = %T—+ P4+ %a![b Z—e~T(b +7) 2’] (4.2.19)
i=0

- _ T so(w) - ) _
where gg=1—g; and a; = f—ﬂ_——dw An important feature of this Do(7) is that
1

for 7 = i and large ¢, the oscillating term in Dg(1) = Dg(it) - 0 as £ »e,

To evaluate kp(is) along the interval from s=0 to s =a we use a contour in

the 7=is plane such as:

& LG +0

¥e split this contour into straight line segments. An integral along any segment
may be done numerically by Gaussian integration. For each segment of contour

we have a set of points and a weight for each point. Combining the points and
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weights for all of the segments gives an array of points and an associated array
of weights describing the contour. The integrals in {4.2.17) are carried out using
these points and weights. Using a set of such contours a table of «z(is) is built
up. Similarly, a table of xp(s) may be constructed using a contour Iyuig along
the real axis in the 7 plane. Finally f,(—i)) is evaluated using (3.3.28) and s{A)
is constructed from fo{—iA)+ f 2{—i)).

In the path integral variational method, the trial action Sy {(or sq(w) from
which we may construct the trial action) plays a role analogous to the wave func-
tion in the usual Hamiltonian variational method. At «=3 the second order
correction to the polaron energy is one percent while at a=5 the cérrection is
1.5 percent. The second order corrections to the absorption function shown in
figures 4.2.3 and 4.2.4 are quite reasonable in relation to the size of the energy
corrections. For example,the difference in area under the variational curves and
the corrected curves between w=1 and w=w= is in each case less than 10 per-
cent. For a=3 the correction is quite small except between w=1.5 and w=2.5
and in this range its maximum is 25 percent. For a =5 the location of the peak
is shifted by about 10 percent and its width at half maximum is changed by

about 20 percent.
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Figure Captions
[1] Fit of form (4.2.18) to variational results for a =3,
[R] Fit of form (4.2.18B) to variational results for a=5.

[38] Second order correction to the variational result for o =3 computed using

the fit shown in figure 4.2.1.

[4] Second order correction to the variational result for a =5 computed using

the fit shown in figure 4.2.2.
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5. FURTHER DEVELOPMENTS

5.1. Possibility of Improving the Method

To what extent can we remove the idealizations made in the Frolich model
and still retain the ability to perform an accurate variational calculation for the

free energy and the response functions?

The treatment of the crystal as a continuum is nonessential, as is the res-
triction to one type of phonon. The phonon dispersion relations can also be gen-
eralized. Of course, dropping these simplifications makes the numerical work
more laborious, but this is a quantitative and not a qualitative difference. At
least the solution of the variational equations could be carried out in a reason-
able amount of time if one were sufficiently clever in formulating the numerical

algorithms.

The most crucial idealizations which the Frolich model makes are that the
lattice oscillations are harmonic and that the electron-phonon interaction is
linear in the phonon variables. Of these, the latter is perhaps the more impor-
tant approximation. The great virtue of Feynman's method of treating the
polaron problem is that the phonon variables are intergrated away exactly. A
variational calculation in which one tries to imitate the whole Frolich action by a
Gaussian trial action cannot be expected to work as well as the Feynman method
does. No coupling linear in both the electron and lattice variables can simulate

correctly the distortion of the lattice by the electron.

If the electron-lattice coupling remains linear in the lattice variables but
the lattice anharmonicity is taken into account in the lattice Lagrangian itsell,
we may still approximately integrate away the phenons in such a way that the
variational inequality is preserved. Let 5; be the lattice action. Let the g

denote the lattice variables and let the 7 be functionals of the electron path
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such that f’y-q is the electron lattice coupling term. We need to do the path

integral

que's‘*f” (5.1.1)

When S, is Gaussian this can be done. If S; is not Gaussian then take a trial

action of the form

So- f74 (5.1.8)

where Sp is a Gaussian in the g's. The difference between Slffy-q and
S — f Yq is 'mdepéhdent of the v's. Finaliy, choose Seo by mirﬁmizif;g
BF's,+ <S,—S¢>s, Here Fg is the free energy of Sp alone ( with the 7 in (5.1.2)

set to zero ). This seems like a reasonable procedure and gives the exact resuit

if 5, is Gaussian. Of course, it would be nicer to replace (5.1:2) by
So = So~ 74 (5.1.3)

where S; is again Gaussian but 7 is different from 7. Now choose Sq and ¥ so as

to minimize
BFs, + <S— [7q -So>3, (5.1.4)

The result is a set of nonlinear equations which, if solved, would give Sy and ¥ as
functionals of 5; and, more importantly, of . While we may solve these equations
numerically to find Sy and ¥ for a given 7, this is not of much use in writing down
an effective action for the electron. Either the nonlinear eguations resulting
from the minimization of {5.1.4) must be solved explicitly for general ¥y or we
must find an indirect method. To carry out a variational appreximation to the
electron effective action resulting from the approximate integration of the pho-

non variables, we need to calculate averages of quantities such as Sg and ¥ which
g o



- 83 -

are given as implicit functionals of the electron path’

( since 7 is a functional of the electron path ). If this problem were solved, it
would also be possible to treat the situation of an electron-phonon coupling non-
linear in the phonon variables. In fact it might be possible to éonstruct
sequences of increasingly better variational approximations to a wide variety of

problems. However, we have not discovered any way to solve the problem.

5.2. More General Method of Analytic Continuation

In this section we present a generalization of the method described in sec-
tion 2.3. These generalizations allow us to treat nonthermal density matrices
and to extend the path integral variational principle to a wider range of prob-

lems. To motivate the generalization we consider a particular problem.

A system consisting of an electron and a crystal has a Hamiltonian H. ( H
could be Frolich's Hmﬁﬂtoman. ) The system is initially in thermal equilibrium at
temperature 87!. At time £=0 a steady force F is applied to the electron. The
Hamiltonian becomes H = H —Fr ( ris the electron position ). No assumption is
made that the force F is weak. We wish to compute <r(t)> . This function tells
us how the electron responds to the force. In particular, it can tell us whether a
steady state is reached in which the energy pumped into the electron by Fis
balanced by the energy lost by the electron due to interactions with phonons,
etc.. We can also discover such things as the rate of energy dissipation at a

given velocity, ete..

If the system is initially in state |\¥;> with probability p; we have

Srlt}> = Zp.; <¥; e e~ |, > {6.2.1)

3

* The variational equations coming from the minimization of (5.1.4) provide the implicit rela-
tions between Sp,7, end the eleciron path.
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This problem has been discussed by Thornber & Feynman [B].

For a thermal density matrix we have

Tr {e —pH o 1Pl p iRl

<r(t)> = p— (5.2.2)
(5.2.1) is the analytic continuation of
Yo <& Je " re T T, (5.2.3)
i
to 7, = —it and T, = it while (5.2.2) is the analytic continuation of
Trie8He 2 g _T’H]
, (5.2.4)

Tr e BH

again to 7, = =it and 7y =if. In terms of path integrals (5/.&3) may be written

as

7'1+7'2
= f lar
S Dapplara)e ° xlmy (5.2.5)
Here the g are all the coordinates of the system including the electron coordi-

nates. L is the classical energy associated with ~ H.

Plar.qi) = E(qf | ¥;>p;<¥; |g;> and the path integral is over the path beginning
i

at g; and ending at gy.

We can compute the path integral in (5.2.5) from path integrals of the form

71'”'2 T1+Tz

-1+ [ 5r

S Dagiplar.qide e (5.2.8)

Here L iz the imaginary time lLagrangian of the system with Hamiltonian . To

use (5.2.5) or (5.2.8) we need an expression for the density matrix p(g,.g;). In
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order to use a variational principle for the approximate calculation of (5.2.6) it

is necessary that p(g,.9;)=0.

The numerator of (5.2.4) requires the evaluation of the path integral

p+-rl+72 kel +-rE p~H’1 -Ha

~det+fFr+ f‘y-r
. ' . (6.2.7)

fqu

over all closed paths g(0) = g(8+7,+72). L has the same meaning in (6.2.7) as in
(5.2.8). In the case that L is the imaginary time Lagrangian of the Frolich model,
we integrate the phonon variables in (5.2.7) and find an effective action for the
electron alone. The integral over the electron paths is now approximated using
a trial action and the variational principle. The results must then be continued
back to real times. The continuation process given in section 2.3 will not work in

the present case because the action in (5.2.7) has explicit time dependence due

Tl'l"‘l'a
to the term f F'r even when ¥ = 0. The best trial action will also have explicit
-0 .

time dependence.

To see how to carry out the analytic continuation, we shall return to the
problem of the weak response of an electron to a time varying field which we for-
mulated in chapters 2 and 3. Although the effective action and the best trial
action no longer have explicit time dependence in that case, the method of con-

tinuation in time will apply also to the path integral in (5.2.7).

The condition for the trial action given in (3.1.15) to be the best one with

which to imitate the action (3.1.6) (with D = 0) was found to be from (3.2.7)

| - B o

g (’) 7 G ’)

folT) = —35}_7_7! :L +5'\7)f——‘;%——d'r (5.2.8)
!Dé (7) ° D§ (1)

with Dg(7) = go(0) —go(7). In addition go{7) and fo(7) are related by (3.1.14)
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d? [
~LogoiT-a) + [7o(lT-T Dgol|P-od7 = 6(r—0)  (5.29)
0

To compute the real time response function Ry(t) we need gg(it) since
Ro(t) = golit) —gg(it). (5.2.8) and (5.2.9) enable us to solve for g¢(7) for 7 real
and in the interval 0<7<f. In principle this is enough information to obtain the
analytic continuation of go(7) to all complex 7. However, it is difficult to see how
to do this directly by means of (5.2.8) and (5.2.9). It is not clear how to treat the
absolute values and especially the delta function é(7—g) as 7, o, and 7 become
complex.

To see what to do recall from equation (2.2.1) that we expressed the

response function R(t) in terms of

zp-g(\l’i |8im‘xe_‘iH‘lI l‘l’i> (5210)
i

or in terms of
Tr{e ~H g H1zg -w“z] (6.2.11)
In chapter 2 we continued this to
Tr{e PHgTH e “THI] (6.2.12)

and expressed it as a single path integral. However (5.2.11) is also expressable
as a single path integral if we merely allow the time variable to follow some con-

tour in the complex ¢ -plane (or 7 plane). Thus (5.2.11) is

fD:re ¢ z(t;)z(0) (5.2.13)

Here the contour C in the {-plane starts at £ = 0, moves along the positive real

axis tof = {,, and then finally follows some contour to { = —1i8.
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L in (5.2.13) is the continuation of the real time Langrangian to times which lie
along €. We must also impose on C the condition that Im{ is decreasing as we
traverse C from its beginning at £ = 0 to its end at { = —ig since otherwise the

path integrals in (5.2.13) diverge.

It is convenient for us to work in the complex 7 -plane where 7 =if. The

contour C abaove is now C

(t\ 2

and the path integral (5.2.13) is now

—[Ld‘r
[Dze © z(r)z(0) T, =it (5.2.14)

where L is the continuation of the imaginary time Lagrangian (which is the clas-

sical energy) of the system to 7 along C.

Order the contour C with 0 considered the least point and g the greatest
point. If 7 and o are two points on this contour, write 7<¢ if 7 is encountered
first as the contour is traversed from 0 to B, otherwise write 7=0. |7—0|z

denotes 7—o if ™0 and o—71 if 7<0.

Consider now the Gaussian action
Se= [T+ é—fffc(§T—6§C)z(7)x(o)d7do (5.2.15)
(63 6'e

= [z(n)=z(o)gg' (I7-olp)
g
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We wish to evaluate

—Spt+ LMz (7)
_[7(7):!(7)«11’ fme : 'g

<e® o=
) 4 sze-S"

(5.2.16)

By analogy to a discrete Gaussian integral such as (3.1.9) we need to find

go(|7—0|z) inverse to gg!(|7—0]|p) in the sense that

{ go(|7=0"|c)gg  (lo'=0|c)do’ = 6c(T—0) (5.2.17)

Here 6o(7—0) is a representation of the identity. It satisfies

alr) = fdc(‘r—o)a(o)da (5.2.18)
c

for 7 and ¢ on C and a(7) a test functionon C. (5.2.17) may/also be written as

d? , ,

*Fgo(l‘r"‘alc)*'{fo(l‘f“a le)golla'—ole) = b¢(7—0) (5.2.19)
And this is the generalization of (5.2.9) which we need. Let's check that we get
its correct results. Define C to the contour shown below Let T and ¢ be on the
left piece of the contour and let 7=t , 0 =4s. ¢' = i5' on left piece of contour
while ¢' = is'+8 on right piece of contour. By using (5.2.19) and its complex con-
jugate and the relations go(8—7) = go(7), folB-7) = Fol7), o(7) = golT")
Fo(7) = fo(7") which are true for complex 7, we arrive at an equation

d2

i
ot s ) —Z[Imfo(it —~is)Ro{|s'~s |)ds' = —Rié(t-s) (5.2.20)

Here R; is the response function given by Rp(t) = go(it)—gg¢(it) for £>0 and

Rof(t) = 0 for £ <0. (5.2.20) implies that

2 t
%—Z-Ro(t)—zflmfc(u —is)Ro(s )ds = —i6(t) (5.2.21)
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400
Substituting Ro(t) = fe ™ %ﬁo(x) into (5.2.21) we find that

Bo\) = A  (5.2.22)
N+2 [[Imfo(is)]e™ds
D

so that from (2.1.11), the absorption function is

2A

so(A) = Re2ARo(A) = Im - (5.2.23)
—N2=2 [ [Imf o(is)]e™ ds
0
comparing to (2.3.18) we see that
Fo(—=iX) = =2 fe™Imff o(is )ds (5.2.24)
[+}

which is just (2.3.17). Thus we have recovered the results 6f chapter 2 on analyt-
ical continuation by means of a different approach. The utility of this approach
is that it allows the application of the variational method to problems such as
the electron in a constant arbitrary strength electric field discussed earlier in
this section. The method of analytic continuation in section 2.3 cannot be used
for this problem. Also, the idea of working with the analytically continued path
integrals such as given in (5.2.7) in order to evaluate expressions such as (5.2.2)
seems to have the advantage that the computational labor involved working with
the analytically continued path integrals is less than the labor involved on work-

ing with a direct path integral representation of the original problem.
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5.3. Hore Realistic Medel

In this section we present the variational and second order equations for a

generalized version of Frolich's model.

We retain the assumption of a harmonic lattice. However we do not make
the continuum approximation nor do we make any assumpticns about the pho-
non dispersion relations or about the types of phonons coupled to the electron.
We do assume that the electron-phonon coupling is linear in the phonon vari-

ables,

For the electron we initially assume that the energy is of the form
1 s
z—zm,;_jxixj + V(r) (6.3.1)
i

Here r is the positron vector of the electron and the z; are the components of r.
V(r) may be a periodic potential or it may include contributions due to impuri-
ties, etc. By a combination of an orthogonal transformation and a rescaling of
coordinates one may always bring (5.3.1) into the form

S(2)2 + V() (5.3.2)

%

NI»—-

Lelec =

Herer', z'; are the new coordinates. In the following we shall drop the primes on
the new coordinates and take (5.3.2) és our starting point for the electron por-
tion of the energy.

We work with a very large crystal with NV unit cells and use periodic boun-
dary conditions. N will denote the position of a unit cell and /H Xy, will be the
displacement from equilibrium of the o atomic coordinate in the unit cell at N.
¥, is the mass associated with the a** coordinate. In terms of the Xy, the lat-

tice energy is { retaining only quadratic terms in the potential )
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| 2 1
Loy = ?AN é— E XN,alXNZagJalaz(Nl—Nz) (5.3.3)
N0 Nya,
We define ja,az(k) by
1 . ikN7T
Jalaa(N) = 1—\7—28 kNJa,aa(k) (6.3.4)

The k sums will always be over a unit cell in k space. Because J,4(N) is real and

Jga(N) = Jog(—N), J,p(k) has the properties
Jag(k) = T56(-k) (5.3.5)
op(K) = Tga (K)

Note that J,4(k) is a Hermitian matrix. For each k we have £}(k) and wy(k) such

that

YT as(k)ed(k) = wf(k)ed(k) (5.3.6)
B

We now define new variables gy, by
(Na = Z‘IuSa(k)e‘kN (5.3.7)

Note that gy = gy @)\(k) is the frequency of a phonon of type A as a function
of its wave vector k and £2(k) is a phonon "polarization”. In terms of the g's the
lattice energy is

{. .
4 Gmn§ -+ wF (K —kA] (5.3.8)

Ligtt = J

l\)i»—*

kA

The most general electron-lattice interaction which does not invelve time
derivatives and is linear in the Xy, and is invariant under simultaneous displace-

'!Ii

ment of the electron and the displacements field Xy, by a lattice vector K

-
1741
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Line = EUa(r_N)XNa (5.3.9)
Na

The reciprocal lattice vectors G satisfy
gi®N = 1 (5.8.10)

for all lattice vectors N. Once we chose a unit cell in k -space any vector q can
be uniquely decomposed into the sum of a reciprocal lattice vector G and a vec-
tor k within the unit cell. Any periodic function (f (r) = f (r+N) for all N) can be

written as f (r) = Y f ¢e®. Now define
G
Bu(B) = Y (22(k))" [dire (&N Ty (r) (5.3.11)
a

Note that By, (G) = B _1a(—G). The interaction energy can now be rewritten as

1 .
Line = 7—F§Q—m3k\((})e e (5.3.18)

Now we have established our notation and formulated a total energy
L = Lgiec + Lugst + Ling for the system. The next step is to integrate away the lat-
tice variables and arrive at an effective imaginary time action S for the electron.

That is,

[
~ [ e + Ling + LygyydaT
eS= [Dge © (5.3.13)

where the integration is over all closed g paths g (0) = g (f).

¥With the aid of the path integral given in (1.2.25) we may carry out the

integration in (5.3.13) and find
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£
= % (P24 V(r)]dT (5.3.14)
0
g B
1 1 {[(Gy +E) x{(ry)~(Gp+ 1) -x{
—g [andn gL 3 AW TIEWD g (11 ) Bua(G) Bun(Go)
0 GG,
where

e _T"?;\(k) & TU}_(k)
G(7) = 5 (k) o e (5.3.15)
The second term in (5.8.14) can also be written as
B B8
-é— S (x(r).e(n)dTidTe (5.3.16)
°

If a lattice vector N is added both arguments of W(a,b) then its value remains

unchanged
W(ab) = W(a+N,b+N) (5.3.17)

This is not true if we add on an arbitrary vector R to a+b. This is due to the
G,#0 and G;#0 terms in (5.3.14). The presence of these terms and the periodic
potential V{r) makes it difficult to formulate a good trial action for the problem.
¥We have formulated some possible trial actions, but have not derived the varia-
tional equations or done any other calculations with these. For this reason we
only consider those cases in which it is reasonable to take V(r) = 0 and to drop
the G;,Gy#0 terms in the second term of {(5.3.14). Thus the action we consider is
‘?f'

J
0

g ik (7)—x{0)) i Bk)\! G}.’Akl T —g‘?) (5318)

%)
!
I"

s

l\)lr*

_'.’

[4%]

¢

For a trial action we now take
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B g B
So= 2/t Lf [ardo¥ 1 o5(|7~0])z(7)z;(0) (53.19)
0 R o0 1.5
As in equation (3.1.18B), it is convenient to rewrite S as
1 g B

5= 3 [TFoullr=ozdnz (o) + (5.3.20)

L Tezgr s L 37 (I7=zs(7)z; (o)

- === h.l 7—0|)z;(T)z; (0

g 0 Tt q " e

BB

1 1 2 - ik (r{r)-x{0))

=—f{ (drdg— = r

20_[7 UN§IE»\| Ga(|7—0|)e

Here we eventually set hy = —fg 4. For the purpose of computing the series

expansion of gy;(|7—0|) = <z;(7)z;(0)>, the hy; are initially allowed to be arbi-

trary functions as k was in chapter 3.

For the trial action S, note that if we define gq4; () by

g
_%90&':'( l7—0]) + [ foa(l7—0'Ngoxi(|o'~0|)d o' = 8;6(7—0) (5.3.21)
0% |

then

gosi (I7—0]) = <z (T)z;(0)>¢ (5.3.22)

where <>g denotes an average taken with e Masa weight. (Asin (3.1.1).)

S; = S—5g = A+F is now given by

(5.3.23)

I\)l*—*

B B
fhu(}’r o)z (7T)z;{c)dTda
o

B g
1 _ -
= — [ [drdo e EIHD | By [2Gia(r—0)
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To evaluate <S;>; and <S#>; — <S,>¢ we need the results

—Ek kyDp 4(|7—0])
& 171704

<eik(rn) o))y, = ¢ (5.3.24)
where Do ;(|7-0]) = goy(l7—0]) and
2
<o FmIHe 1) ke (rg)xled)y R (5.3.25)
where now
(Aap)ij (Ta0o | Taog) = (5.3.28)
LID0(17a=081) + Dogs (| 5=0al) = Dogs (10a=0p1) = Doy (1 7a=Ts)
Note that, in particular
(Aaa)ij (Ta0al Ta0a) = Dosi (| Ta—0al) (5.3.27)

If Fyy is the free energy associated with Sy and F' is the free energy associ-

ated with S, then to first order in S; we have

B B
" . _
BF = BFo+ ?{{th( |7—0])g0y(|T—0|)dTdo (5.3.28)
iJ
B B ~2kihi Dogi(lT—al)
_ 1 1svip 120 (1o G

o] Jardo 78 Bul*GuliT-ol)e

It we set hy; = —f ¢4 and then set the first order variation in the right hand side

of (5.3.28) to zero for an arbitrary variation in f¢4;, we find the condition
B
Foi(7) = —koy(T) + 5(T)fko,{j(0>d0 (5.3.29a)
°

where
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1
- -Z—Ejlc‘kj[)o.,u (n

1
ko (1) = 72 | B [*hik; Gua(m)e ™ (5.3.29b)

for the free energy to be a minimum.

If the states of the whole system (before we integrate away the phonon vari-
ables) can be taken as real {(which is true for the Hamiltonian associated with
Letecs + Ling+ Ligee ), then we find that Ry;(t), the response of the coordinate z; to a

kick in the j direction at zero time, satisfies
Ry (t) = Ru(t) | (5.3.30)
R;;(t) is given by |
Ry (t) = <z (t)z;(0)> — <z (£)z;(0)>° {5.3.31)
= g4 (t)—g45(t)

The same comments apply to Fg4(t), the response function associated with the

trial function Sg.
Roy(t) = goy(t)—gou(t) (5.3.32)
Royi(t) = Rozult)

If we apply a weak external force ygncoswt to the electron ( n is a unit vector),
so that there is is an extra term —ygn'rcosw!? in the Hamiltonian, we find by an
application of time dependent perturbation theory that the rate of energy

absorption is proportional to (at frequency A )

Lnin;si(A) (5.3.33)
L]

where
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sy (A) = 2ARe Ry (A) (5.3.34)

It

g .
etx“‘rfo,ij (ndr Ao = L

, a an integer  (5.3.35)
0 B

fo,ij O\a) =

'Obl*—*

then the analytic continuation of f 0.5 (Aa) to general values of A may be obtained
by methods discussed in section 2.3 or in the previous section 5.2. We now write
down the cycle of equations for the solution of the variational problem. Starting

with s4;;(w) as in equation (3.2.11), we have

—twt _ iot]
 l-e

o rdw _ 1 jl-e
Dogi(it) = .Of‘ﬂ,—so,;j(w)zz{ (g Fo T gRo] J (5.3.38)

From this we construct kg;; (it ) by means of (5.3.29b). Then
fg,-,;j(—'i?\) = 2{(eih—1)lmk0'ij(’l:8) (5337)

Finally, we recover s¢4(w) from

Ao(—iw)—wz]; (5.3.38)

P

sg4j(w) = Im2w

the inverse referring to the matrix inverse of fg(—iw)—u®.

Now we turn to the second order corrections to the variational results. As

in chapter 3, the first order corrections vanish.

First we extend the notation discussed on page 34 of the third chapter. Let
go k., fo, etc. stand for the matrices gg 45, Ay, S04, ete.. Extend the meaning of

the product notation ab so that

(@b)rpu = L foy(|l7—0)bg(lo—pl) (5.3.39)
Jj o
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Using the expansion (3.1.17) with S; as given in (5.3.23) and applying (5.8.25) we
find after some work that the free energy to second order is given by the first

order free energy in (5.3.28) plus

-i—;[(gmgm)ﬂ.ii + é—;(gohgoko)rr,ii = f P(7,0,|7Te02) (5.3.40a)

(6 \Ta0s
where
(A1) = Doyi(lm1—0,]) (5.3.40b)
(Az2)ij = Doy {iT2—02])
(A12)y = ‘é—{DO,ij( | T1—02]) + Dy 45 (| T2—01|) = Dy 45( | T1—T2l) — Do 4( l01—02|)]
and where P is given by

P(10,]7205) = (5.3.40c)

11 1
'é”ﬁ‘kz F&IBM,|2|Bk2x2|26k,x1(|7'1-011)%3(”2“02])

1M

Tk i g (A gt
e Lkarkaj aa)'d[e—(Ala)”(kﬁkai{-kuka)_l]

Now fqis varied while keeping h constant. We use the relation

696 = —900S 90 (5.3.41)

and for a term T which depends on Dy's we use the analogue of (3.3.14)

6T = [y, 'G—CST—‘(Q 6 cgc)ress — J E(Di#(gc(?fogo)w.ﬁ (5.3.42)

05 0(D0)ro.ij ki ij

The contribution to the f series from such a term comes out to be (specifically

the contribution to (f ),e4 )
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6T

-2 __,__— —g
6(00)1‘03‘,}' )f Dc)-rp 15

(5.3.43)

After the second order contribution to the f series is worked out, we specialize

to the case that (see (3.3.18))
F1= —forot{ke] =0 (5.3.44)

where kg is given now by (5.3.29b). This is just the statement that f is the vari-
ational fg.

Takiﬁ,g into account the vanishing of terms due to (5.3.44) and other cancel-
lations discussed in chapter 3, we may now write down the second order contri-
bution to the f series in the case that fg is given by the variational equations

(5.3.29) and (5.3.36) to (5.3.38).

(f 2roij = —(K2)rosj +6(7—0) f (t2)rp a5 (5.8.45a)
P
and kp is given by two terms. First we have

1 r1 )
24, NkmNgxaIBklx,i | Bigrg |2Gun, (1 7=01) Gap{ [7'—0'])  (5.8.45b)

—Tkeskai(A,)y LAy (ko +h gk o)
-3 Q. - 1
x- g - kyikyjle * “5‘{;(A12)lk(kllk2}c+klkkzl) -t
where
(A = Doy (lr—0al) (5.3.45¢)

(Azg)ij = Doy (|T—0'|)

1 n 1 ‘ . P 1 | ] ( '
(Aig)y = _Z‘{UO.ij<iT—U D+Dos(|7=0])=Dos(|7—7'|)—=Dg 45 (|o—0'])
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The second term is given by
zf N W Z By ¥ Brng 26 (170 ) Gag{ [ 7=0']) (5.3.450)
171

Ekntkwu a)fJ

& 4 (Eqekogtk ik

X g (kyikgjtkj+kg)le ~sdy Barketh kel +3 (A (k llk2k+klkk2t)]
1k

where now
(A11)y = Do y(l7=0']) (5.3.45¢e)
(Az2)y = Dogg(I7—01)
(12 = 2{Doyy(I7=01)+ Doy (|7'~0")=Do{|7-71)=Dosy(lo-'])]

To evaluate ky(it) we proceed as in chapter 4. The integrals from 0 to g are
replaced by integrals along a contour € which runs from 0 to g through if. The
absolute values |7—o| are replaced by |7—o|, as defined in section 5.2 or in

chapter 4.
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6. CONCLUSION

In this the;is we have treated Frolich's polaron model by Feynman's path
integral variational method and have calculated corrections to the variational
approximation. Following Feynman, we first integrate away the lattice variables
in a path integral for the free energy of the system and obtain an effective ima-
ginary time action for the electron alone. This effective action is then imitated
by general quadratic trial action. The path integral variational inequality gives
an upper bound on the true free energy of the system as a functional of the trial
action. Minimizing this upper bound yields a set of variational equations for the

functions which appear in the trial action.

Rather than working with real time double path integrals as FHIP [4] do, we
work with the imaginary time path integrals for the free energy and obtain
results for real time functions by carrying out an analytical continuation. In
chapter 2 this analytical continuation is carried out by work/ing with the absorp-
tion function s(A). s(A) is proportional to the rate of energy absorption by the
electron in a weak spatially uniform time varying field of frequency A. Other
functions of interest such as the response function of the electron R (¢) may be
expressed in terms of this absorption function. The method of working with ima-

ginary time path integrals rather than real time double path integrals saves a

great deal of computational labor.

We obtain equations which may be solved numerically for the variational
approximation sg(A) to the absorption function. Some numerical results for
so(A\) are presented. We also compute corrections to so{A) which are second
order in the difference between the trial action and the true action.

The same equations but different numerical results for sg(A) have been
obtained by Klyukanov, Muntyan, and Pokatilov [8] using a nonveriational

method. Our numerical results disagree with theirs in that they cbtain an
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absorption function with two peaks at, for example, a = 4 and temperatures as
high as 8 =4 ( 7! = temperature ) while we only have a single peak for a = 4
even at zero temperature.

We next compute the second order corrections to sg(A) as a test of the
accuracy of sg{A). We only obtain results for moderate o ( up to a =5 ). For
these values of o the ceorrections are reasonable in comparison to the secend
order corrections of the free energy. This is discussed more fully at the end of
chapter four. It would be of interest to see how large the corrections are for
large values of @. From other examples to which we have applied the variational
method, we expect that for large «, the corrections are of the same relative size

as for moderate a.

There are many problems in which much greater accuracy is needed than
the variational method seems capable of attaining. It would be very useful to
find ways of systematically increasing the accuracy of the variational method.
At present it is a one shot approximation, and if the accuracy is insufficient,

there is not very much which can be done to improve it. *

In section 5.2 we present a generalization of the method of analytic con-
tinuation used in chapter 2. This generalization would allow us to use the path
integral variational principle to choose the best trial action in the problem of a
polaron in a space-time constant electric field (this field may be strong) crlisr-
cussed by Thornber and Feynman [8]. In their paper Thornber and Feynman
lacked a principle by which to choose a gquadratic action to imitate the true

ction. We have not yet applied the method of section 5.2 to this problem of a
polaron in & strong constant electric fleld, nor have we investigated in what

other problems this method may be of use. Also, the reasoning of section 5.2 is

This is not true for systems of a finite number of degrees of freedom at ncnzero tempera-
ture. Inthat cese there exists a series of better and better variational inequalities,
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very nonrigorous and it is necessary to investigate under what conditions the

methods discussed there might fail.

In section 5.3 we present the variational equations and the second order
corrections to them for a more realistic version of an electron in a crystal lat-
tice. We retain the assumption that the lattice is harmonic. Within the frame
work of this assumption the biggest flaw in the treatment of section 5.3 is that
we cannot deal effectively with the periodicity of the crystal lattice. It would be
useful to find a trial action which could in some way imitate the effect of

periodic crystal potential V{(r) in which the electron moves.
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