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Abslract 

Using Feynman's path integral variational principle v.ith a general qua­

dratic trial action, we obtain equations for tbe absorption function of Frolic h's 

polaron model. We evaluate numerically this absorption function m several 

cases. To test the accuracy of the variational absorption function, we develop 

formulas for the second order corrections to the absorption function and evalu­

ate these numerically. 

Rather than evaluating the correction directly in the double path integral 

formalism, we make analytic continuations in time which reduce the amount of 

labor involved in deriving the expressions for the corrections . The method of 

analytic continuation in time is generalized in such a way as to allow application 

of the variational principle to norilinear transport problems and time dependent 

problems. 

Finally, we present the variational equations and the second order correc­

tions to them for a somewhat more realistic model of an electron in a crystal. 
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1. INTRODUCI10N 

1.1. History 

The problem of getting reliable numbers from field theories when _perturba­

tive methods are inapplicable is of immense interest. A successful exa~ple or 

such a calculation is Feynman's [1] application of his path integral variational 

principle to find the energy and effective mass of an electron in a polarizable 

crystal. The calculation was actually done on an idealized model of a polaron • 

developed by Frolich [2]. This model has become a standard on which to try vari­

ous methods of computation. We discuss the details of this model below. 

Others extended Feynman's calculation to find the polaron free energy at 

nonzero temperatures. Feynman,Hellworth,Iddings,and Platzman [ 4] (referred 

to as FffiP in the following) used path integral techni.,#es to obtain an expres­

sion for the electron's response to weak external fields (that is, it's impedance 

function) at all frequencies,temperatures, and coupling strengths. 

A check on the accuracy of Feynman's original calculation was made by 

Marshall and Mills [5] who computed the second order corrections to the 

polaron's energy. They found that the correction was never more ~han two _per­

cent at any value of the coupling. 

The purpose of this thesis is to improve the FffiP impedance calculation by 

using a more general trial action in the variational method and to obtain an esti­

mate of the reliability of the variational impedance function by calculating the 

second order corrections to it. The variational equations we obtain for the 

impedance function have recently been obtained by others by a nonvariational 

method [6]. 

• Polaron is the term used for the quasipart.ic1e consisting of an electron w:ith its associated 
clou d of virtual phonons. 
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1.2. Fr-olich's Model 

Frolich's model takes the electron part of the Lagrangian to be just ½mi-2 

·where m is an effective mass and r is the electron's velocity vector. This approx­

: imation has some justification for slow electrons in a crystal with sufficient sym­

: metry. As far as the path integral approach is concerned, the electron kinetic 

, energy could be generalized to say ~ ~11Ltj.xixj where ::i; is a component of the 
\.J 

, electron velocity and Tn;.j is an effective mass tensor. The effect of the crystal 

lattice on the electron could be better accounted for by including a periodic 

: potential V(r) in the electron Lagrangian. However,this would make it more 

difl'iculVto find a calculationally tractable trial action for the variational method. 

The main idealization which Frolich's model makes about the lattice portion 

of the ~rangian is that the harmonic approximation is ad/ate. This is impor­

tant for the path integral approach since it permits the lattice variables to be 

integrated away exactly. However.applying the variational inequality twice,we 

can approximately integrate the lattice variables and get an upper bound on the 

. free energy even in the anharmonic case. We will say more about this later. For 

: now;, we •stay with the Frolich model. 

The electron interacts with the lattice via its electric field which attracts 

! the positive ions and repels the negative ions . The electron interacts most 

: strongly with lattice modes in which nearby ions of opposite sign move in oppo­

: site directions (optical modes). The Frolich model assumes that the electron 

; interacts only with the optical phonons. To simplify further, the model assumes 

: that the crystal has two ions per unit cell and that the optical phonon frequency 

, does not vary with the wavevector k. This wavevector independence of the pho-

non· frequency is equivalent to no coupling between different unit cells . Let ou be 

• the ·deviation from equilibrium of the vector from the negative to the positive ion 
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in a unit cell. The kinetic ene.r;-gy of the optical modes per unit volume of the cry­

stal is then ½nM[ d :tu r Here n is the number density of unit cells and M is the 

reduced mass of the ions in a unit cell. For convenience we introduce rescaled 

phonon variables by w=VnlJ:ou.. w can be separated into its longitudinal and 

transverse pieces: w=w1 +w,. Here V·w, =O and Vxw1 =O. We shall shortly see that 

only the longitudinal optical :phonons (LO phonons) interact with the electron. 

Since we assume dispersionless LO phonons, the LO phonon Lagrangian can now 

be written as 

L _ • 1 f f.:..2 ?~ 2] d3 
1..0 - .z l"' -w,-w, r (1.2.1) 

Here w1 is the frequency of the longitudinal optical phonons . 

It now remains to write down the electron-phonon interaction. Frolich's 

model divides the polarization of the crystal into the sum of two pieces P1 and 

P,. P1 is due to distortions of the lattice and is proportional to w. Pi is due to dis­

tortion of the ions themselves. It is assumed that frequencies of interest are 

much less than the excitation fre_quencies of the ions. In this case we can write 

& -1 
P, = ~rr E where e.., is the dielectric constant of the crystal with the ions held 

fixed and Eis the total electric field. From V· (E+ 4rrP)=O and the expression for 

Pi we now obtain 

(1.2.2) 

Since P1 is proportional to w,we have 

(1.2.3) 

Here r,o is the electr ostatic potential generated by a given deformation field w 
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and C is a constant to be determined. For a particle in the crystal at r with 

charge q the interaction term in the Lagrangian Vti.11 be -q 1(r) . To determine C 

we consider two heavy charged particles in the crystal. Their interaction energy 

is given by 

(1.2.4) 

Here e0 is the static dielectric constant of the crystal. If the ions are immobil­

ized, the interaction energy of the two particles is 

(1.2.5) 

If we allow the ions to move, the effect of the optical phonons must be to restore 

(l.2.5) to (1.2.4) . Thus if we write down the path integral for this system and 

integrate away the phonon variables, we should recover (l.2.4) as the interaction 

term between the two particles. 

The action for several charged particles in a crystal is in Frolich's model 

+ ... 

S = j(Lpan+Lw-Liqi.rp(ri,))dt (1.2.6) 
- i 

where 

(1.2.7) 

In (l.2 .6) rp is linear in Wt, as can be seen from (l.2.3). To find the effective 

action for the particles alone.the LO phonon variables must be integrated away. 

(units are such that '/r= 1) 

e iSeJ/ = J D(phonon variables)eiS (1 .2.8) 
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To carry this out.define first new phonon variables u (k) by 

( ) _ j dk3 tkr k (k) 
w, r - (Zrr)3 e l'"kf u (1.2.9) 

Note that u •(k) = -u (-k) . Also let 

(1.2.10) 

(1.2.3) gives -k2s"o(k) = 4rri0u(k). (1.2.6) now becomes 

+J .. I 1 J dk3 [ •( ) ( ) :> __ •( ) ( )] '"f dk3 u(k) fh'} S = _ ½)art+ 2 (2rr)3 u k u k -r..>ru k u k - 4rrqCi7' (Zrr)3 I kl e 

(1.2.11) 

Now use the path integral 

(1.2.12) 

to find that 

. I 47r2,...:, d'-q eflr:·(ri(t)--r,(s)) l 
fDueiSocexpiflpartdt--t.,--Lif J dtdsf ( K)

3 
k:2 - i'-li!t-=.sl -

c.>i ;.,; 2rr 

(1.2.13) 

. dk3 eik·r 
Usmg J (2rr)s k2 

1 we have 
4rrl rl 

(1.2.14) 

For a slow heavy particle r(t) is nearly a constant for times of the order of c.>i-1. 
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If such particles labeled by 1 and 2 are not too close to each other, then by using 

J e--ir.il• I= ~we find from s.11 .that their interaction energy is 
'l, CJ 

(1.2.15) 

Comparing to (1.2.4) we have 

1 1 -- -::::: 
4rrc2 

~ 
(1.2.16) 

This determines C. For further work it will be convenient to choose the units of 

time and distance in such a way that m = 1 and G.>t = 1. Following Frolich, we define 

the dimensionless interaction strength or coupling constant 

(1.2.17) 

The effective action for one particle in the lattice can now be written as 

1 J· ia. ff e--ilt-sl 
Sell= 2 i:2dt+ -v'8 dtdslr(t)-r(s)I (1.2.18) 

The path integrals used to obtain S011 are real time path integrals. They are 

matrix elements of e -iHt where H is the Hamiltonian of the system. One may 

also consider imaginary time path integrals for the matrix elements of e --rH. 

These are related to the real time path integrals by analytic continuation. It is 

these imaginary time path integrals to which Feynman's variational principle 

applies . 

The free energy F of a system at temperature 13-1 is given by e - fJF = Tr e -fJH. 

If q denotes the set of all system coordinates, then 

{1.2.19) 
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Thus e -pF may be evaluated by imaginary time path integrals over paths which 

close on themselves after time /3. The "action" which appears in these integrals 

is the time integral of the classical Hamiltonian of the system. Thus if 

H= 
2
% I V(r),then 

(1.2.20) 

The imaginary time action is obtained from the real time action by the replace­

ment oft by -it. Thus (1.2.7),the particle Lagrangian, becomes• 

(1.2 .21) 

The LO phonon Lagrangian (1.2.1) becomes 

(1.2.22) 

The interaction term is 

(1.2.23) 

Finally.the action (1.2.11) becomes 

(1.2.24) 

Now using the path integral 

•We shall use the italic L for real time Lagrangians and the roman L for the correspondmg 
imaginary time Legrangiens. The same convention will also apply to actions. 
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(1.2.25) 

where 

e= l 
~ 

(1.2.26) 

the u(k)'s may be integrated away and we obtain (after rescaling r and T as 

before) for one particle 

( 1.2.28) 

We have dropped the subscript from S811 . The action (1.2.28) will be the starting 

point for our further discussion and calculations. 
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2. FURMULATION OF THE PROBLEM AS A PATH INTEGRAL 

2.1. Response Function 

We can calculate such things as the absorption spectrum.mobility and 

effective mass for an electron in a polar crystal if we know the electron's 

response to a weak external force. We take the external field to be constant in 

space but variable in time. In this chapter we will present the details , of this 

idea. We will also review how FHIP calculate the response function. Finally, we 

will present a method which allows a less laborious calculation of the response 

(when compared to the FHIP method) in the case that the crystal is initially in 

thermal equilibrium. 

Weakness of the applied field implies that we can expand the response in 

powers of the field and retain only the terms which are linear in the field. This 

linearity in turn implies that we need only consider the effect of a brief pulse. 

Frolich's polaron model and in particular the action given in (1.2 .28) are 

invariant under rotations. The substitution r(t) ➔Rr(t) makes no change in the 

value of S in (1.2.28). This implies that correlations such as <.:i; (T)x; (a)> are 

zero for i~j and that there is no response in they direction to an applied force 

in the x direction. Thus,in this chapter, we look at the response in the x direc­

tion to an impulse in the x direction. In chapter five we will give the equations 

which apply to an anisotropic crystal. Letting the applied force be 

-y(t) = 70o(t),a term ,(t)x is added to the Hamiltonian. The effect of the pulse 

is to multiply the wavefunction of the system at a time just before t = 0 by e 'i?o:z: 

to produce the wavefunction at a time just after t = 0. Subsequently the 

wavefunction evolves in accordance with the unperturbed system Hamiltonian 

H. If the system is initially in the state I--Iri> with probability A,then at a time 

t >0 we have for the expected position of the electron 
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<x (t )> = ~Pi <'1', I e -i-ro= e i.Ht x e-illt e i-ro= I '1',> 
i 

Let x ( t) = e ilit x e -illt and expand (2.1.1) to first order in ')'o 

(2.1.1) 

<x(t)> = I;Pt: <'1',lx(t)1'1r,>+i10I;<'1-tl [x(t),x(O)] 1'1-i>+ • • • (2.1.2) 
i i 

We assume that there are no net currents flowing in the unperturbed system. In 

this case I;Pt: <'1-, Ix (t) I '1',> = constant, which can be taken as zero. Now we 

define a response function 

R(t) = ~(t) I; p,<'1ri l[x(t),x(O)]l'1r,> (2.1.3) 
i 

~(t) 'is 1 for t >0 and O for t <0. The linear response to a general time varying 

force 1(t) is now given by 

+ ... 

<x(t)> = if R(t-s)-y(s)ds {2.1.4) 

Now we investigate some properties of R(t). From (2.1.3) we see that R(t) 

is pure imaginary. Consider the Fourier transform R ( "),.,) of R ( t). Using the 

causality condition.,R(t) = 0 fort <0,we have 

-R(>..) = f ei>.t R(t )dt (2.1.5) 
0 

If our system is stable in the presence of a weak external force -y(t),then R(t) 

will not rise exponentially as t ➔ 00 . In this case)?("),.) will be analytic for all 

Jm")\>0 since the integral (2.1.5) then converges absolutely. Using this informa­

tion and Cauchy's theorem one finds that R(>-..) may be represented as 

(2.1.6) 
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We also note that since R'•(t) -=-R(t) we have from (2.1.5) for real>-.. that 

f?•(>-..) = -R(->-..) and 

Re.R (>-) = -Re R ( -A) ,A real (2.1. 7) 

This allows us to write 

(2. 1.8) 

In the following we denote 2r..>ReR((',..)) bys (r..>). 

To get a better idea of the significance of R ( t) and R (>-..) insert 

~ J '{t,><'11, I = 1 into (2 :1.3). Letting E;, be the eigenvalue of I '11,> and defining 
i 

R(t) = -Zi ~Pi 1<'11, Jx l'11n>l 2 sin((.Jnit)4(f) (2.1.9) 
i,n 

Taking the Fourier transform of (2.1.9) yields (we put in a convergence factor 

e-d and later let t: ➔ 0) 

(2.1.10) 

- . ~ I ,T, I 1,T, J 2 2(',..)ni 
- 'L ~Pi <Ti X Tn> ('+ '0)2- 2. 

t.,n "- 'L (',..)ni 

We see from (2.1.10) using 1.
0 

- P ~rro(x) that 
X+'L X 

ReR (A) = s J~> =· ~Pi I <'Yi Ix I 'i'n > I 2(rro (A -(',..)n( )-m5(.>-. + C,Jni >) (2.1.11) 
1i,n 

Now apply a weak external force -y(t) = ToCos(wt) to the x coordinate of the 

system and ask at what rate the system absorbs energy. The answer is given by 
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first order time dependent perturbation theory. The transition rate from a state 

I '1'i > to a state I 'Yn > is given by 

• (2.1.12) 

For each transition, the energy of the system changes by c.,m. Thus c.,ni Wn ... i(c.,) 

gives the energy absorbed per unit time at frequency c., by the system in transi­

tions from l'1ri> to l'1rn>- Averaging over initial states and summing over final 

states, the total energy absorption rate at c.> is ~Pi c.,m Wn---i or 
n,t 

(2.1.13) 

Thuss (CiJ) is proportional to the energy absorption rate, and (2.1.8),(2.1.5) show 

that the entire respo~se function can be expressed in terrt<s" of it. Therefore we 

can concentrate on finding s(c.,). 

Next we derive a sum rule which will be important later. First observe that 

J s (c.,)dCiJ = 21T~ Pi I <'Yi IX I '1rn > I 2r..>ni 
0 i,n 

(2.1.14) 

Choose units so that the mass associated with coordinate x is 1. 

2 
H = T+ · · · ,where p is the momentum conjugate to x. We suppose that the 

rest of H commutes with x, as it does for our case. This implies that 

[[x ,H],x] = 1. Forming ~Pi <'Yi I [[x ,H],x] I '1ri> and inserting ~ I '1tn><'1rn I = 1 

gives the result 

i n 

2~A I <'1',: Ix l'1rn> l2c.>ni = 1 
i 

Comparing (2.1.15) with (2.1 .14) gives 

(2.1.15) 
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(2.1.16) 

If we examine (2.1.8) in the light of (2.1.16) we see that as ;\➔ co 

(2.1.17) 

This says that at sufficiently high frequencies the electron responds as though it 

were free. Time is needed for the electron to interact appreciably with the pho­

nons. Also.if we knew that R(>,..) had the behavior given in (2.1.17), then (2.1.16) 

would follow. 

2.2. Response from Path Integral.:General Density Matrix 

R(t),as given in (2.1.3),can be rewritten as 

R(t) = ~Pi <'t', leilit x e--illt x l't'i>- complex conjugate 
i 

Take Ta. «0, Tb »0. The first term of (2.2.1) can be written as 

Let q represent the coordinates of the system including x. Now 

t, 

(2.2.1) 

(2.2.2) 

(2.2.3) 

where if L is the Lagrangian associated with H,then S[t1 ,td = f Ldt and the ,, 
path integral is over all paths q ( t) which begin at qi = q (ti) and end at 

q1 = q (t1 ). The notation Dq1i. means that we integrate over all paths with ends 

fixed at q1 and at q-;,. On the other hand, taking the complex conjugate of (2 .2.3) 

gives 
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Note that the paths still run from CJi. at time ti. ·to q1 at time t 1 . Finally 

Combining (2.2.3),(2.2.4),(2.2.5) and letting 

gives 

P = I; l-lri>Pi <-lri. I 
i. 

(2.2.4) 

(2.2.5) 

(2.2.6) 

(2.2.7) 

Dq'ba' is associated with the primed action. The paths associa-ted with the primed 

action run from CJa· at Ta to CJb at Tb while the paths of the unprimed action run 

from CJa at Ta to qb at Tb. Noting that ix(t) = [o,,~t) ei.f-r:z: t=
0
,we see that 

( 2. 2. 7) is obtainable from 

(2.2.8) 

When the system is in thermal equilibrium at temperature /r1. 

e -{JH 

p = Tr e-/JH (2.2.9) 

Going back to (2.2.2), consider the factor e -t.EIT~ p e -mra _ If the density matrix was 

p at time Ta, then this factor is the density matrix at time t = 0. However,as we 

let Ta ➔ - 00 , we can just as well start with the iienslty matrix of the noninteract­

ing system (a = 0). We expect that the electron comes into equilibrium with the 

effectively infinite lattice in a finite time so that ~y t '= 0 the d ensity matrix is 

exactly that of the int eracting system (a#0) in thermal equilibr ium at the 
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original lattice temperature. This replacement allows the path integrals over 

the phonon variables to be carried out in a simple fashion. 

The approach described in this section is used by FHIP to calculate the 

response function However,in the special case that the system is initially in 

thermal equilibrium.it is possible to do the calculation more simply. We do it by 

first calculating some other functions (fj(X) and f (T) below) and working back 

from them to s ((.) ). This method is described in the next section. 

2.3. Response from Path Integral:Thermal Density Matrix 

When the system is initially in thermal equilibrium.so that the density 

matrix is given by (2.2.9),we need to compute 

(2.3.1) 

Note that this is the analytic continuation to T = it of 

Tr f e -(ft---r)H X e ---rH X ] 
g ( T) = Tr e -pH (2.3.2) 

Equation (2.3.2) may be reexpressed in terms of path integrals as 

jDqx(T)x(O)e -s 
g(T) = <x(T)x(O)> = J 

Dq e-s 
(2.3.3) 

p 
Here S = f LdT where Lis the imaginary time Lagrangian of the system and the 

0 

path integration is over closed paths. For real T ands in the range O to {3 we 

have <x(T)x(s)> = g(IT-s J). From (2.3.2) we can easily verify that for all com­

plex T 

(2.3.4) 
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Also since g (,) is real on the real axis g (,•) = g •(T) . From this and (2 .3.4) with T 

replaced by -,, 

(2.3.5) 

On the interval 0 to {J we can expand g ( ,) in terms of functions e -£XciT with 

Ao.= 2;a and a= ... ,-2,-1,0, 1,2,.... It is important to note that while 

g(,) = p-1 ~{j(Aa.) e -iX.XT for 0~%/J, for -{J~,~{J the sum gives g ( 1,1). The 
a 

Fourier sum is periodic in, with period {J while g (T) does not have this property. 

From (2.3.2) we obtain by inserting~ I 'fi><'ft I = 1 where necessary 
( 

g(T)::: e.SF~e-.SEne--T"'m l<'f,lxl'fn>l 2 

i.n 

Multiplying bye tX.XT and integrating over, from Oto {3,we have 

.s ·x.x 
where §'(A.a) = f g (,)e,. d, This may be re expressed as 

0 

{f(X ) = 1"" s (C,)) de.> 
a X 2+,,2 n 

0 a "" 

(2.3.6) 

(2 .3.7) 

(2 .3.8) 

where s(G.>) is given by (2.1.11). The analytic continuation of (2.3 .7) to general>.. 

which behaves as x-2 whenX➔ 00 is 

(2 .3.9) 

Comparing this to (2 .1.8) we see that {j(---iX) = R(X) and that s (G.>) may be 

obtained by (as e ➔ 0) 
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s ( c.,) = lrn2c.,g ( t:-i c.>) (2.3.10) 

Define now a function/ (T).~r-:;;,8, by 

f ( T) = p-l ~ f (>..a) e -i~T {2.3.11) 
a 

In the following we shall obtain the solution to our problem as a series for 

f ( T). This will allow us to find f (>..a). However, to find s (>..) or the response func­

tion R(t),we need to know j for general values of>... §"(>..) will then ·be given ·by 

§(>..) = (>..2+ f (>..))-1. The problem is that specifying a function at a discrete set of 

points does not uniquely determine the analytic continuation of the function. 

However.the condition that 9(>..) ➔ >..-2 as l>..I ➔ o:> for all co~ex A is sufficient to 

fix the physically correct analytic continuation. We now use this condition to 

continue f (>..a) to f (>..). We assume that we are given f (T) in the complex T 

plane (at least for ReT>O). If we start with 

ft .-.. J i~T f (A.a) = e f (T)dT (2.3.12) 
0 

then an obvious attempt at j (>..) is 

(2.3.13) 

This has the problem that for some directions in the complex X plane f (>..) rises 

ex-ponentially as IX I ➔ 00 • !J(X) then falls more rapidly than x-2 . 

It is possible to see how to correct the problem by changing the path of 

integration in (2.3.13). Suppose that ReX>O and consider the following contour 

lS I Ii~ +,8 in the T plane: _ ,, 
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AB s ➔ 00 ,the piece from is to is +{3 goes to zero. We can now write 

.. p 
f (>...)=if e->-t f (it)dt -i ei>-.fl f e-M f ((3+it)dt (2.3.14) 

0 0 

So far this f (>...) is the same as in (2.3.12). However,we have isolated the bad 

behavior. It is given by the e<>-.fl in the second term of (2 .3.14). For X = ~ this 

factor is just 1. lf we remove this factor, the new f (>...) will still have the correct 

values at X == Xa and it will have the correct behavior as X goes to infinity. For 

Rer..<0 we must construct a different expression.but we shall not need this. 

On the real axis/ (T) is real and/ (/3-T) = / (T). The first property implies 

f (T•) = f \r). The second property can be extended to the whole complex plane 

for f (T) analytic. Thus / (T) shares properties (2.3.4) and (2.3.5) with g (T). In 

particular/ ({3+it) = f •(it) for real t. Thus 

p 
f (r..) = -2 f e->-t Imf (it )dt (2.3 .15) 

0 

We can now summarize our calculational procedure. First we shall obtain 

f ( T) as a series 

(2.3.16) 

We shall obtain f O from a variational calculation. In this case f 1 will vanish and 

f 2 will be the result of calculating the second order perturbation about the trial 

action. It will be possible to continue the f's to complex T (and therefore to find 

f (>...) from (2.3 .15)). From (2.3.10) we are actually interested in X = E:-1-(;) for(;) 

real. Using (2.3.15) 

.. 
f(E:-i(;)) = -2/ e - tt+ic.,t Imf (it) (2.3.17) 

0 
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Finally, we computes (c.>) by 

(2.3.18) 
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3. DEVELOPMENT OF THE APPROXIIl.ATION 

3.1. Variational Method and Perturbation Expansion 

The path integral for g(-r) in (2.3.3) cannot be performed for the polaron 

action S given by (1.2.28). Thus we shall imitate S by a trial action S0 and use 

Feynman's variational principle to pick out the best S0 

If A is a functional of the path r(t) of the system, then averages <A>0 are 

defined by 

f DrA e -so 
<A>o = f -s 

Dre 0 
(3 .1.1) 

Define S1 = S-S0 and note that JDre-s = <e-81>0 JDre - 50
. The variational ine­

quality states that• 

(3.1.2) 

The best S0 is now taken to be the one which maximizes the right hand side of 

(3.1.2). In terms of free energies F 0 and F defined by 

e -{JF = JD re -s 

e O = Dre 0 -{JF J -s 

•This follows from the fact that if X is a random variable wit.ri probability distribution P(x) 
and/ (x) is a..'l.y function which lies above any of its tangent lines (a convex :hLTJ.ction),then 

f P(x)f (x)dx = <f>'?:.f(<x>) 

To see this,note that f (x )2.f (xo)+ f '(xo)(x-xo) for any Xo. Averaging this over the 
distribution P(x) gives </ >?:./ (xo)+ f '(xo)( <x >-xo)- Let Xo = <x > to :find 
<f >2.f ( <x >) Since e;z: always lies above its tangent lines, <ez >2.e <z>_ FinaDy note 
that 

is a probabDity d.is:rfou tio~ for the values of S1. 

(3.1.3) 
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we can rewrite (3 .1.2) as 

(3 .1.4) 

In the limit of {3-+ 00 this reduces to an upper bound for the ground state energy 

of the system. 

The path integrals involving the action S given by (1.2.28) diverge as the 

volume of the system becomes infinite. This is because S is invariant under the 

transformation r(T) ➔ r(t)+Ar. To avoid this problem we impose a weak harmonic 

oscillator potential tn2r2 on the electron. Although the free energies F and F0 

diverge as O➔O, we can obtain finite results by subtracting from each of them 

the free energy of an electron which is in a harmonic oscillator potential ½o2r 

but which is not interacting with the lattice . In this way we o.btain as 0-+0 !::,.F and 

!::,.F0 which are exact and approximate free energies of a polaron relative to an 

electron which does not interact with the optical phonons. The variational princi­

ple now applies to !J.F and b.F0 

(3 .1.5) 

The best S0 is taken to be the one which minimizes the right hand side of (3.1.5). 

If S0 is a trial action which minimizes the right hand side of (3.1.5) and we make 

a small variation in S0 then first order change in the right hand side must be 

zero. 

We now let the action be 

(3.1.6) 

For the trial action we take 
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p p 

So = J J d-rdar(T) ·r(a)g 01 ( IT-a j ) (3.1. 7) 
0 0 

Here g 0-
1 is inverse to a function g 0 in the sense that 

p 
Jg o- 1 ( I T 1 - a i ) go ( I a-T 2 I ) d a = 6 ( T 1 -T 2) 
0 

(3.1.8) 

!Dre -S0+ J rr The path integral may be performed by analogy to the 

discrete Gaussian integral 

(3.1.9) 

Here N is the dimension of the symmetric matrix A. g 01 corresponds to ,¾ and 

go to At. The result is 

(3.1.10) 

fJ fJ fJ 

]rrot ½-f J cttd.s7(t) ·?'(s )g 0(1t - s I) 
<e o >o = e o o 

Here e - PFo is by (3 .1. 3) the value of the path integral in (3.1.10) with 7 = 0. We 

shall evaluate e -PFo later. 

fl c52 - j ?' r l ( ) ( ) ( ) Noting that oy(T)o-y(a) <..e >o 
7 

= 
0 

= <r T r a >0, we have from 3.1.10 

that 

(3.1.11) 

ln this equation the X;. are t he components of r . (We use x and x 1 interchange­

ably.) 
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Since <x (T)x (a) >o = g0(I T-a l) ,g0(T) is for t he action S0 what g(T) is for 

the action S. We define 

(3.1. 12) 

As we did for g (T),we can for g 0(T) define related func tions f C>,.,a) and f (T) by 

... 1 2 
I o(>-.a) = §'o(>-.a) - ~ 

f o(T) = (3-I~f 0C>1.a)e --iXaT 
a 

(3.1.13) 

In the time domain, the relations between g (T) and/ (T) and between g 0(,) and 

f 0(T) following from (3.1.1 3) and (2 .3.11) are 

(3.1. 14) 

Comparing the second of the equations (3 .1.14) and the equation (3. 1.8) we see 

that go1 ( I ,-al) = - dd~ 6(T-a)+ f 0( IT-a I) . The trial action can be written as 

(3.1. 15) 

Note that the kinetic terms in S0 and S coincide. If one leaves the mass in the 

trial action as a free parameter, the variational method forces it to have the 

same value as in the true action. For this reason we have defined f 0( T) in such a 

way that the kinetic terms in the two actions agree. When we say that the kinetic 

terms agree.what we really mean is that for very short times the kinetic term is 
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the dominant term in the action and these dominant terms in S and S0 agree 

"\\ith each ot~er. Equivalently.we may Fourier analyze the actions, rewriting 

p . 
them in terms of variables r(Xa) = JeiX,,.-r-r(T)dT (>-.a= 2

;0. ,o.integer) . The 

kinetic term in S is now ;{3 ~ r(Xa)·r·(>1.a)\i. If we used a mass m ,,q in the trial 

action, the kinetic term there would be the S kinetic term just given multiplied 

by m. The large Aa pieces of these kinetic terms make such a large contribution 

to <S-S0>0 that we are forced to m = 1 in the trial action. That m = 1 in the 

trial action implies th.at as Aa ➔ 00 .§0 (Xa) ➔\;:2 .(For m ;,t. 1 it goes to mA;2 .) 

An action like S0 in (3.1.15) can be gotten from the action of a system which 

consists of a particle coupled by linear interaction terms to a set of harmonic 

oscillators . S0 is obtained by integrating away the oscillator variables in the path 

integral for the particle-oscillator system. Since the parti~oscillator system is 

described by a Hamiltonian, we can repeat the discussion of the las t ch.apter and 

derive dispersion relations.sum rules.etc . for the response function R 0(t) and its 

Fourier transform R0 (>...) associated with the trial action S0 . 

From the comments in the preceding paragraph we see that R0(X) ➔ : 2 as 

;\➔ 00 so that the absorption function s 0(>..) for the system v.-ith action S0 satisfies 

the same sum rule j de> s 0 (e.>) = 1 as does s (e.>) for the system with action S. 
0 7T 

Next we note that the righthand side of equation (3. 1.4) is the beginning of a 

series for the free energy F. This series is obtained by VITiting 

and then taking logarithms to second order on S1 we have 

(3.1.17) 
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From this expansion it is also possible to get an expo.nsion for g (T). First define 

h(T-a) = 02o(T-a)-f 0(T-a). Then Sin (3.1 .6) can be rewritten as 

(3.1.18) 

Now generalize this by letting h(T-a) be independent off 0. Denote the piece in 

bracket in (3. 1.1 8) by A. Now vary f O leaving h(T-u) constant. Then 

-RF J - A- -21 J J r.:r )r{r;)fo(-r-a) 
o(e ,., ) = o Dre (3.1.1 9) 

On the other h and o(e - f1F) = o(-{3F)e-fW_ Combining this and (3.1.1 9) using 

<x1 (T)xi(a)> = oii g( IT-ul) we find that 

(3.1.20) 

lf we vary {3F0 with respect to f O we find 

(3.1.21) 

If we vary both sides of the expansion (3.1.17) (with S given by (3.1.1B) and h 

independent of f O ) we obtain a series for g (IT-a I). Once we have obtained the 

series we set h(T-a) = 02o(T-u)-f 0(T-o-). This procedure gives us a perturba­

tion expansion for g about any S0. We shall call the expansion for g the g se ries . 

(3.1.22) 

Experience i-vi.th simple examples shows that it is better to transform the series 
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(3.1.22) for g ( T) into a seri es for f ( T). Thus if S is a harmonic oscillator action 

and So is a different harmonic oscillator action, then the g series is an infinite 

series. The f series in this case terminates at/ 1 and the result is exact. Other 

examples such as a single anharmonic oscillator show that the f series gives a 

qualitatively better picture of the spectrum. 

Suppose that / = / 0 + f 1 + f 2 + f 3+ • • • . Denote an equation such as (3. 1. 8) 

schematically by g 0-
1g 0 = 1. From (3.1.14) we have 

and 

Thus we can write 

(3.1. 23) 

Jnverting 

(3.1.24) 

Comparing this -with the g series (3.1.22) and equating items of equal order gives 

(3.1 .25) 

Solving for f 1 and f 2 gives 
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(3. J.26) 

The next section will discuss the variational calculation of f 0. The section 

after that will give the explicit construction of lhe g series and its reduction to 

the f series . 

3.2. The variational equations 

We begin by computing <S-S0 >0=<S 1>0. Using (3.1.18) for Sand (3.1.15) for 

S0 , then S1 is 

1 1 
4rr Ir ! 

(3.2.1) 

has been used to rewrite the a term. From 

(3.1.11) <r(T) ·r(a)> = 3g 0(IT-a !). To evaluate <eik·(r{r) -:r{u))>o use (3.1.10) with 

o/(µ) = iko(µ-T)--iko(µ-a) . The result is 

(3.2.2) 

whe re D0(T) is defined by D0(T) = g 0(0)-g0(T) . This combination occurs repeat­

edly and also has the nice property that as the O2:r-2 potential used to confine the 

electron to a finite portion of the crystal vanishes D0(T) stays finite . So far we 

have 

(3.2.3) 

00 

Making the replacement k-2 = J e-uk.2du, the k2 integral can be done. Tb.is 
0 
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leaves au-integral . The necessary integral is 

J du ----,3-= 2A 
0 -

(u+A) 2 

1 
2 (3.2.4) 

Finally , we may use the time translation invariance of the integrals t o reduce 

the double time integr als to single integrals . 

(3 .2.5) 

Now we are almost ready to vary f 0( T) to find the c onditions for a minimum 

of {3F
0

+<S
1

>
0

. First replace h(,) by 0 2 6(,)-/ 
0

(,) . From (3.1. 14) we find that 

when/ 
0 

is varied the change in g
0 

is given by 6g 0 = -g0 1 of ag 0 1 or in more 

detail by 

fJ fJ 

ogo(l,-o-j) = -J Jgo1 (1,-,' l)6/o(!,'-o-' l)go1 (!a'-o-l)d , 'do-' (3.2.6) 
0 0 

Combining this with (3 .1. 21) which gives 6({3F0 ) we obtain finally 

(3.2.7) 

This equation makes sense with 02 = 0, so ·we s hall drop the 02 t erm in t h e follow­

ing. 1t is convenient to define a function ,c0(,) by 

so that f 0( ,) will be given by 

fJ 

f o(,) = - tco (,) + o(,)f,co(,) 
0 

(3.2.8) 

(3. 2.9) 
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From this we have 

(3.2.10) 

Follo¥iing the methods of chapter 2 this may be continued away from the 

discrete valves Aa . We now write down the cycle of equations which self con­

sistently determine the quantities D0 (i.t ), s 0 (c.;), f 0(-1,A) ( s 0(GJ) is for the action 

S0 whats (c.,,) was for S - the energy absorption function) . Suppose we start with 

some s 0 (c.>) ( this should obey the sum rule j drrc.> s 0 (e.>) = 1 ) using the equivalent 
0 

1 --iA,iT 

of (2 .2.8) for s 0 (c.>) and § 0(Aa) and the relation ,i"L e 2 2 G"' (T) where Gr.,(T) is 
,., a Aa +r..> 

given by (l.2.26) and noting D0(it) = g 0(0)-g 0(it), we can write 

Do(it) = f ... ~ (e.>) 1 J 1-e-i"'t + 1-e~"'t 
o 1T ~ 1-e -~"' e "'-1 

(3.2.1 1) 

From this D0 (it) we may construct K,0(it) which we then use in the equivalent of 

(2.2.8) to find 

.. G ( . ) 
f ... ( • ') 2a f ( i>.s - 1 ll l is ds 

0 -ii\ = _ = e -, m s... 
3v2rr O 2 (. ) D0 is 

(3.2.12) 

Finally, referring lo (2.2.18), we may complete the cycle by 

(3 .2.13) 

Of course, we can start this cycle of equations (3.2.11) - (3.2.13) with D0(it) or 

J 0(-iA) just as well as 'with s 0 (e.>). These equations have been also derived in I 6] 

by another method not connected with a variational principle . 
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Since one may also ask to know the free energy associated i•:ith a particular 

sa(c.J ) , we briefly strelch how {3F0 may be calculated. 

It is sufficient lo consider the path integral over closed paths x (0) = x (/3) 

(3.2.14) 

To avoid worrying about the normalization of Dx divide (3.2 .14) by the 

corresponding path integral for the free energy of a harmonic oscillator of fre­

quency c.J. 

(3.2.15) 

Introduce new variables Xa by x(T) = ~ ~e - i>,a-rxa ( >-o. =,}:;a., a integer). Since 

x(T) is real x; = !La, so that the independent variables are Rex0 and for Xa>0 

1 ~ -iX -r~ -
Re.fa, Im.fa, Also, /(Ir-al)= p~e a J(>-o.) and the /(>-o.) are real. Letting£ 

denote integration over the independent variables, the ratio of path integrals is .• 

(3.2 .16) · 

Nun1erator and denomi...riator are each just a product of Gaussian integrals. Car-

.. z2 
ryi.ng out the integrations and using the formula s in.,_½(rrz) = ,.z TI (1 + ~ with 

j=l J 

z = flE.._we finally obtain 
2-;; 

(3 .2.17) 
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-{3F0 is the logarithm of (3.2.17). Using this and our result (3.2.5) for <S1>0 we 

have an expression for {3F0+<S1>. Let h(T-a) = 026(T-a)-f o(T-a) . Now we may 

treat the f oCAo.) as variational parameters. In particular, if we find the bes·t value 

off (o) by 

(3.2.18) 

we find that j (0) = 02. For now we leave the other f ("Ao.)' ( a.~O) arbitrary. If 

from f3Fo+<S 1>0 we subtract {3 times ( free energy for electron in potential 

~
2 

r·r but not interacting with the phonons ) and then take the limit as o➔o we 

get a finite result which is just an upper bound on difference in free energy 

between a polaron and an electron not interacting with the optical phonons. If 

we denote the actual value of this energy difference by b.F, then we have 

(3.2.19) 

The factors of 3 in the first two terms of the right hand side of (3.2.19) are due 

to the three degrees of freedom of the electron. 

3.3. Second Order Calculation 

First we work out the second order contribution to the free energy given by 

(3.3.1) 

f3 P dsk e ik·(r(T)-r{c) 

B = -vBm:x J J d Td a J ~(- )s 1 ( IT-a I) ~ 
o o 2rr 
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<AB>o-<A>o<B>0. A usefµl theorem in these evaluations is gotten by integra­

tion by parts (see [7]) 

JDq oQ -s jDqQ os -s 
6q(r)e = og(r)e (3 .3.2) 

or 

< 6Q > = <Q 6S > 
oq(r) s oq(r) s 

Here S is any action with variables q and Q is a functional of the q. For the Gaus­

sian action S0 in (3.1. 7) we find 

(3.3.3) 

or 

Consider now the term <B2>0. To evaluate this we first need to compute 

(3.3.4) 

2 
Letting -y(µ) = I; iki[o(µ-ri)-6(µ-ai)] 

j:1 

and using (3.1.10) and D0(r) = g 0(0) - g 0(r) we find that (3.3 .4) is given by 

(3.3.5) 

The Ai; are defined by 
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(3.3.6) 

.. 
To do the k integrals we use J d'l.4. e -u.ikt -~ = +, The k integrals are then Gaus-

o k.i 

sian integrals. Evaluating these and then performing the resulting integrals 

over u 1 and u 2 , we finally obtain 

(3.3.7) 

ln <AB >0 we encounter 

Applying (3.3.3) several times and using 'v2 
I 

1 
I -4rr63(r-a), we find that 

r-a 

(3.3.8) is given by 

(3.3.9) 

The expectation of the delta function is found by using 63(r) = J (~:~3 eikr and 

(3.1.10) to give 

1 - ;!_ 
<63(r(T)-r(a))>o = ~o 2 (IT-al) (3.3.10) 

8rr2 

Also note that 

(3.3.11) 
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Combining (3.3.1), (3.3.7), (3 .3.9), (3.3.10), (3.3.11), and previous results for 

<S>o we can finally write down {36.F to second order. 

Before doing this, however, we shall extend the schematic notation which we 

introduced earlier in equations (3.1.23) to (3.1.26) . Thus symbols such as 

a,b, • • • will refer to .a(jT-a j),b(jT-aj), • • • If we ·wish to be more explicit 

about some of the variables, we will write ( a )T<1 for a (IT-a I) . A product notation 

ab will be used to denote integrals, so that (ab )-rp will stand for 

p 
fa ( IT-a I )b ( I a-p I )d a. If we wish to explicitly display integration over a vari­
o 

/1 
able, we will write J for f d,. The notation [a] will denote 

T 0 

o(T-a)f a( I ,-a' l)da'. 

With this notations the free energy to first order is 

(3.3.12) 

The second order free energy is ( ,c0 is defined in (3.2.B) ) 

-31 3f 
4 (g chg oh )-r-r + 2 (g chg o!Co)-r-r 

T T 

(3.3.13a) 

The function q is defined by 

(3.3.13b) 
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·with ( from (3 .3.6) ) 

(3.3.1 3c) 

and 

The next step is to find the variation of the series (3.3.1 2) as we vary the 

function f O with h fixed. After setting h(T) = 026(T)-f 0(T) in the result ( we 

shall take O = 0 ) , we obtain a series for g ( T). This series will then be 

transformed to an expansion for f. These expansions do-not require that f 0 

satisfy the variational equation (3 .2. 9), but we shall find that many terms drop 

out if (3 .2. 9) is satisfied. 

From gg 01 = 1 ( 1 will represent the delta function (1)ra = o(T-a) ) and 

- d: 6(,-a) +f 0 ( I ,-a I)= 9o-1 ( I ,-a I) we have shown that ogo = -goof o9o­
d1 

Since many of the terms involve D0 'sit is helpful to see what contributions such 

terms give when D0➔D0 + oD0 as a result off 0 ➔ f O + of 0 . Let A represent such a 

(3.3.14) 

Here the functional derivatives are to be taken as if (Do)rc is not symmetric in, 

and a. Since 6({3F) = ~ f (g 6/ o)rr• (3 .3.14) leads to a contribution to the series 
T 

for (g )ra of 
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(3.3 .15) 

We note that the delta function term in (3.3 .1 5) is completely determined by the 

other term. Applying (3.3.15) and og 0 = -g06f 0g 0 to (3.3.12) we find the g series 

to first order. Setting h = -f O and using the first of equations (3. 1.26), we find 

that/ 1, the first order correction to f O is given by 

(3.3.16) 

or more fully 

fJ 

f 1( I ,-al) = -/ o( IT-a 1)-JCo( I ,-a I )+o(T-a)J da'JC( IT -a' I) (3.3 .17) 
0 

Here JCo is the function defined in (3 .2.8). We note from (3.2.9) that for the best 

trial action S
0

, f 
O 

satisfies f 
0

+,c
0

-[JC
0

] = 0, so that/ 
1 

vanishes for the best S
0

. 

Before giving the second order terms in the f series we discuss the varia­

tion of the q - terms in ( 3.3.13a) in order to establish our notation. The varia­

tion of q is entirely due to the variations in A11 , A22 , A12 , so we may write 

(3.3 .18) 

The % are given by 

(3.3 .1 9) 

~ X l q 12 = [ . ~ sin-1x 
Arz v 1- x -
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From (3.3.13a) and (3.3.19) we note some symmetries of the AJ and qi.j · If 

-r1 and a1 ( in 3.3.13c) or_ •2 and a2 are interchanged thenA 11 ➔A 11 , A22➔A22, and 

A12->-A12 - The behavior of the qii under the same transformations is given by 

-r2a2 we find that A22, A11 and also q 22 , q 11 are interchanged while q 12 and A12 are 

not changed. Using (3.3.18), (3.3.19), (3 .3.15) and the symmetries just men­

tioned we can readily construct the contribution of the q - term in the free 

energy expansion to the g - series. From (3.1 .26) the contribution to (J)ra is 

(3.3.20) 

+delta function terms 

The rest of the second order contribution to (f )-ru is 

(3.3.21) 

+ delta June tion terms 

where 

(3.3.22) 

We note the delta term associated with the second term in (3.3.20) vanishes 

due to the antisymmetry of the integral in a and a'. TI1e delta function terms 

associated with the first term in (3.3.21) also vanishes. 
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It seems strange that the first term in (3 .3.21) survives . Wh en we do pertur­

bation theory with polynomial Lagrangians such terms always cancel out. This 

suggests that further simplifications may be possible . Suppose that we expand 

q 12 in powers of x. The lowest order term is 

1 1 
3 Ar2 

= 1 A12 

3 ~ 
(AllA22) 

2 

(3.3.23) 

By using the e1..-pressions (3.3.13c) for the A1 and doing some rearranging we find 

that the contribution to the f series involving (3.3.23) cancels the first term in 

(3.3.21). Similarly, the lowest order term in q 11 is 

= 1 Arz 
4 Q.. ~ 

Ai\Af2 

(3.3 .24) 

The contribution to the f series involving this piece of q 11 combined with the 

second term in (3 .3.21) is 

-(L )-,-c J (/ 0+1Co-[1Co])-,-,C1,(g c)-,-e7•((g o)a-r•-(g o).,.-,-,) (3.3.25) 
-r'a' 

Note the factor+ f 1 = -/ 0-,c0 +[,c0]. We see that when we use the best S0 so that 

f 1 = 0, the contribution from (3.3.25) vanishes. The corresponding delta func­

tion term also vanishes. We can in this case '\lvTite the second order piece off, 

that is f 2, as 

f 2( I ,-a I) = -1C2( IT-a I )+o(T-a)f !Cz( IT-a' I) (3.3.26a) 
a' 

where the function 1Cz( I ,-a I) is defined by 

(3. 3.26b) 
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cl 
- -3 J G1( IT-a I )g 1( J-,-'-a' J)q ll(Ta j -,-'a') 

TT ru' 

where q 12 and q 11 are given by 

(3.3.26c) 

where 

and as before 

(3 .3.26d) 

D0(T) is given by 

D (,) = J .. so(c.>) de.> Tl 1-e-c.n-
o 

O 
rr 2c.> 1-e -{J<.; 

l_-e c.rr J 
~ 

(3.3.26e) 

Here s 0(c.,) is the absorption function for the trial action S0 . Note that this 

e}...-pression allows us to analytically continue D0( T) into the complex , plane as 

long as Cr-:;Re,~,B. 

The absorption functions (i\), correct to second order is given by 

(3.3.27) 
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J0(-iA) is given by (3.2.12) and J 1(-i>..) is presumed to be zero. [ 2(-i>..) is 

given by 

.. 
f 2(-i>..) = zf (e;,>-.s -1)Irruc2(is) (3.3.28) 

0 

,c2(is) is the continuation of tc2(T) given by (3 .3.26b) for real T to imaginary 
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4-. NUMERICAL RESULTS 

4.1. Solution of the Variational Equations 

The first method of solution for the variational absorption function s 0(c.>) 

which we used is based on the cycle of equations (3.2.11) to (3.2.13). ln the 

actual program it is possible to start at several different points in this cycle. We 

shall briefly describe the program. 

An array containing the values of D0(is) at equally spaced values of s is 

formed. From this a table of values of 

(4.1.1) 

in the integrand of (3.2.12) is formed . This function falls off,.slowly as s ➔ 00 and 
./ 

has a singularity at s = 0. To improve its behavior, we modify it by subtracting a 

function rfi(s) to get a table of values of 

lm------1-rfi(s) I
f G1(is) 

n{(is) 
(4.1.2) 

The function IP(s) is chosen so that it has the same singular behavior at s = 0 as 

the quantity in (4 .1.1) and also falls off at 00 in the same way as (4.1.1) . 4>(s) is 

also chosen so that the integral 

(4.1.3) 

may be carried out analytically. The numerical integration of ( 4.1.2) multiplied 

by ~ (ei>-s -1) is carried out by using a Fast Fourier Transform and the 
3 211 

results are added t o the results of ( 4.1 .3) to form an array off 0(-i >..) values at 
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equally spaced values of>... Equation (3.2.13) is now used to form a table of s0(11.). 

1f an older VE;rsion of this table exists, the entries are compared to see if they 

agree well enough that the iteration may be stopped. If the iterations are 

stopped, a table off 0(--i>..) is output . Otherwise a table of 

s 0 (>..) -u (X) .(4.1.4) 

is constructed, where u(11.) has the same behavior as s 0(11.) as /\➔ 00 . The integral 

(4 .1. 5) 

is performed analytically while 

(4.1.6) 

is done numerically. The results are added to form a table of values of D0(it ). 

(see (3.2.11 )) . This is where we started. The program goes on this way until con­

vergence is achieved. 

Our second approach to the computation of s 0 (c..>) begins from the expres­

sion (3.2.19) for the free energy ~F. We only worked out the {3 = 00 case in this 

approach In this case (3.2.19) becomes 

a J"" e--r --- ---dT 
~ L 

r-::11 O 2 ( ) 

s 0(w) was assumed to have the form (for c..P-:1) 

.L. 
s 0 (c..>) = C(c.;-1) 2 R(CJ) 

D0 T 

(4.1.7) 

(4.1.8) 

Here C is a constant and R(w) is a rational function in CJ. For 0<~1 , so(c..>) is 
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l 

taken to be zero. The factor (CJ-1) 2 was included because the threshold at CJ = 1 

is known to have this form. Also, it is knovm that as CJ ➔ oo, s 0 (c..>) ➔ 4
3
a c.i-2-5 . Thus 

the form ( 4.1. 8) can have the correct behavior at CJ ➔ 1 and as CJ ➔ oo. 

C and the roots of the numerator and denominator of R(CJ) are taken as 

variational parameters. D0( T) is obtained (numerically) from 

(4 .1. 9) 

with s 0 given by (4.1.8) . a 0 is just 1-jso(CJ) dw. f(A) is obtained analytically by 
l 7r . 

evaluating (see (2.3.11) and (2.3.9)) 

1 (4.1.10) 

The integrals in ( 4.1. 7) are then evaluated numerically to find the right hand 

side of (4.1.7). A minimization program was then used to find the values of the 

parameters in so(c..>) which give the smallest value for the right band side of 

( 4.1. 7). 

Some results for a= 5 ( f3 = 00 ) are shown in figure 4.1.l. The value of s 0(c.>) 

is plotted against CJ . Curve 1 is the result of the iteration method (the first 

method described in this chapter). Curves 2 and 3 are both results of the 

minimization method. Curve 3 is apparently spurious for when the s 0(c.>) of 

curve 3 is used as an input to the iteration method, the results rapidly converge 

lo curve 1. Also, when a fit of the form (~. 1. 8) is made to curve 1 and the result­

ing parameters used as a first guess in the minimization method, curve 2 is the 

result. These results illustrates some of the pitfalls of minimization methods in 

general. The free energy is a functional of some function but is not very sensitive 
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t o the form of the function in the vicinity of the minimum. 
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Flgure Caplion s 

[1] Results from two methods of computing s 0 (c.>) for cx=5. The continuous curve 

is the result of the iteration method described by equations 4.1.1 to 4.1.6. 

The dashed curves are both the results of the minimization method using 

equations 4.1.7 to 4.1.10 ·with different initial guesses for s 0 (w) . When 

inserted into the iteration program both of these curves converge to the 

continuous curve. 

[2] The continuous curve is the result of the iteration method for a.=3. The 

dashed curve results from starting with an initial 

s 0(c.>) = (1-a 1)o(c.>)+a 16(c.>-c.>1) and iterating once. a 1 and c.> 1 are determined 

by minimizing the free energy. This is the ansatz used by FHIP. 

[3] This is the same as figure 4.1.2 except that it is for a:=5. Note that the self 

consistent s 0(c.>) is quite different from the FHJP s 0(~. Interpretations of 

the structure in the dashed curve have been given in [10],but we see that 

this structure goes away in the self consistent solution. 

[ 4] Self consistent results of the iteration method for a= 3,4,5. 
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4. 2. Second order correction 

s (>-). the absorption.function, is given correct to second order by (3 .3.27) . 

This requires the computation off 2(-it,) as in equation (3.3.28), which is 

[ 2 (-i>-..) = 2f(ei>-.s_ 1)In1Kdis)ds (4.2.1) 
C 

For real T and a, K:z(IT-al) is given by (3.3.26b) and the follo,ving equations. We 

need to continue these to imaginary T =is . A simple example illustrates how 

this may be done. If we wish to continue a(T) given by 

a ( T) = f e - r..i 1-r-u Id a 
C 

into the complex T plane, we can rewrite it as 

T 

a(T) = e-r..i-rJ e1..1°da + e= f e -(,Juda 
0 T 

(4.2.2) 

(4.2.3) 

Now since the integrands are analytic and convergent, we are free to move the 

contours around. Thus a(it) may be computed by 

it .. 

a (it) = e-iGJt f er.-ada + ei"'t f e -"'0 d a (4.2.4) 
C it 

Consider the contour C running from Oto some complex T and then to 00 • for ai, 

a2 on this contour v.Tite a1>a2 if we encounter a2 first as we traverse the contour 

starting at 0. For complex T and a on C define l T-a ! c to be T-<J if T>a and a-T 

if T-5°,a. T'nen for complex T 

(4.2.5) 

where T must be on the contour C. With this notation K:2(is) is given by 
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Here -r', a' are on a contour C such as: 

t 
c) 

We also have 

r 
- (. I IO ') ftil X ql2 'IS,T , a = 2 -~ 

A12 v1-x~ 

A12 
with x = --;== =-and 

-v'A11A22 

wr.J.le for q 11 we have 

• -1 ~ 
Slil X - 3] 

- ( ' O' I') X rl1+ x 2 h1 q111.S, j T,G' =2A A -2- ~ 
->-111 - 12 V 1-:r 

A12 
again with z = 1 but with 

"\i A11A22 

(4. 2.6) 

(4. 2.?a) 

(4. 2.?b) 
I 

(4.2. Ba) 
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A11 = Do(is) (4.2.Bb) 

(4.2.9) 

It is convenient to put these equations into a form in which the limit {3 ➔ 00 is 

easily taken. Consider G1(T) as f3 becomes very large. 

(4.2.10) 

For fixed finite a, G1(a) and G1({3-a) have finite limits as {3 ➔ 00 • Both limits are 

given by 

{3➔ 00 (4.2.11) 

We must also consider the behavior of D0(T) as {3➔ 00 . From (4.2.9) we see that for 

finite a 

( 4.2.1-2) 

At {!= 00 (zero temperature) there are no optical phonon present initially in the 

crystal. The electron can absorb energy from the field at zero frequency (elec­

tron accelerated by a time constant field) or it can absorb energy from a time 

varying field and emit a phonon. However, this cannot happen until the fre­

quency of the applied field is equal to or greater than the optical phonon fre­

quency. From these considerations (c.;) has a delta function at CJ= 0 and is zero 

for O<c.><l. Letting 
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- f"" so(c..>) d 
al - c..> 

I 1T 
(4.2.13) 

and defining a 0 = 1-a1 we find that at {3 = =, D0(,) has the form 

D ( ) _ aoT , j .. so(r..>) d 1 f1 -,.rr] 
o T - -2-, l TT CJ 2c..> l -e (4.2.14) 

Note that this becomes 00 as T➔ 00 , 

Consider now the integrals in (4.2.6) and (4.2.7) . Using (4.2.14), (4.2 .12), 

and (4.2.11) we find that the integrand is now zero as {3 ➔ 00 only if T' or {3-T' and 

a' or {3-a' remain finite as {3➔ 00 , Denote the integrand in the Slli'TI of (4.2.6) and 

(4.2.7) by !(is ,T',a') so that 

(4.2.15) 

When {3➔ 00 only the pieces of C near to O or f3 give any contribution. Let C1 run 

from O to f If T is on C1 take C2 to be the set of all points ({3-T) . C1 and C2 

together form C. Rewrite each integral over C as 

(4.2.16) 

so that (4.2.15) becomes 

(4.2.17) 

!(;2(is) = f dT'j d a" k (is ,T',a')+ I (is ,{3-,' ,a')+ J(is , , ' ,,B-a')+ J(is ,{3-T',{3-a')] 
c1 C1 

Finally use D0({3-T) = D0(,), G1(p-T) = Gi(T) to rewrite the integrands. The {3 ➔ = 
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limit may now be taken. Of course , we may also use the form ( 4. 2.17) for {Jc/- 00 . 

( 4.2.17) is the form we actually used in the numerical computations. 

To compute the second order corrections we did not use directly the table 

of values for D0( it) computed by the iteration method. Rather a fit was made to 

the s 0 (c..,) computed by the iteration method of the form 

(4.2.18) 

Here the 4- and b are parameters which we are free to vary. Figures 4.2.1 

and 4.2.2 show the fits for ex= 3 and a:= 5 respectively. The D0 (it) arising from 

( 4. 2.1 B) is given by 

(4.2.19) 

where a0 = 1-a1 and a 1 = jso(w) dc.>. An important feature of this D0(r) is that 
l 7T' 

for T = it and large t, the oscillating term in D0( r) = D0(it) ➔ 0 as t ➔ 00 , 

To evaluate ic2 (is) along the interval from s =O to s =a we use a contour in 

the ,=is plane such as: 

0 (b 

We split this contour into s tr aight line segment s. An integr al a long any segment 

may be done numerically by Gaussian integration. For each segment of contour 

we have a set of points and a weight for each point . Combining t he points and 
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weights for all of the segments gives an array of points and an associated array 

of weights des~ribing the contour. The integrals in ( 4.2.17) are carried out using 

these points and weights . Using a set of such contours a table of ,c2(is) is built 

up . Similar ly, a table of ,c2(s) may be constructed using a contour lying along 

the real axis in the , plane. Finally f z( - i">-) is evaluated using (3.3.28) and s (A) 

is constructed from f 0(--i>,..)+ f 2(-i/\). 

In the path integral variational me thod, the trial action S0 (or s 0(CJ) from 

which we may construct the trial action) plays a role analogous to the wave func­

tion in the usual Hamiltonian variational method. At a.=3 t he se cond order 

correction to the polaron energy is one percent while at a=5 the correction is 

1.5 percent. The second order corrections to the absorption function shown in 

figures 4.2.3 and 4.2.4 are quite reasonable in relation to the size of the energy 

corrections. For example.the difl'erence in area under the variational curves and 

the corrected curves between CJ= 1 and CJ= 00 is in each case less than 10 per­

cent. For a=3 the correction is quite small except between CJ =1.5 and CJ= 2.5 

and in this range its maximum is 25 percent. For a= 5 the location of the peak 

is shifted by about 10 percent and its width at half maximum is changed by 

about 20 percent. 
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Flgure Captions 

[ 1} Fit of form ( 4.2.18) to variational results for a:= 3. 

[2] Fit of form (4.2 .18) to variational results for a:= 5. 

[3] Second order correction to the variational result for a= 3 computed using 

the fit shown in figure 4.2 .1. 

[ 4] Second order correction to the variational result for a= 5 computed using 

the fit shown in figure 4 .2.2. 
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5. FURTHER DEVELOPMENTS 

5.1. Possibility of Improving the Method 

To what extent can we remove the idealizations made in the Frolich model 

and still retain the ability to perform an accurate variational calculation for the 

free energy and the response functions? 

The treatment of the crystal as a continuum is nonessential, as is the res­

triction to one type of phonon. The phonon dispersion relations can also be gen­

eralized. Of course, dropping these simplifications makes the numerical work 

more laborious, but this is a quantitative and not a qualitative difference. At 

least the solution of the variational equations could be carried out in a reason­

able amount of time if one were sufficiently clever in formulating the numerical 

algorithms. 

The most crucial idealizations which the Frolich model makes are that the 

lattice oscillations are harmonic and that the electron-phonon interaction is 

linear in the phonon variables. Of these, the latter is perhaps the more impor­

tant approximation. The great virtue of Feynman's method of treating the 

polaron problem is that the phonon variables are intergrated away exactly. A 

variational calculation in which one tries to imitate the whole Frolich action by a 

Gaussian trial action cannot be expected to work as well as the Feynman method 

does. No coupling linear in both the electron and lattice variables can simulate 

correctly the distortion of the lattice by the electron. 

If the electron-lattice coupling remains linear in the lattice variables but 

the lattic e anharmonicity is taken into account in the lattice Lagrangian itself, 

we may still approximately integrate away the phonons in such a way that the 

variational inequality is preserved. Let Si be the lattice action. Let the q 

denote the lattice variables and let the I be functionals of the electron path 
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such that J -y-q is the electron lattice coupling term. We need to do the path 

integral 

J -s, + J-r·q 
Dqe (5 .1.1 ) 

When SL is Gaussian this can be done . If SL is not Gaussian then take a trial 

action of the form 

(5.1.2) 

where S0 is a Gaussian in the q's. The difference between S1 -:-- f -y- q and 

-
So-J 1 ·q is independent of the ,·s. Finally, choose S0 by minimizing 

{3F3o + <St -S0>s
0

. Here Fs
0 

is the free energy of S0 alone ( with the , in (5.1.2) 

set to zero). This seems like a reasonable procedure and gives the exact result 

if Si is Gaussian. Of course, it would be nicer to replace (5. Y2) by 

(5.1.3) 

where So is again Gaussian but J is different from 1. Now choose S0 and J so as 

to minimize 

f3Fs + <S-f,-q -So>s 
0 0 

(5.1.4) 

The result is a set of nonlinear equations which, if solved, would give S0 and J as 

functionals of SL and, more importantly, of y. While we may solve these equations 

numerically to find S0 and J for a given 1 , this is not of much use in writing down 

an effective action for the electron. Either the nonline ar equations resulting 

from the minimization of (5.1.1=) must be solved e:x-plicitly for general I or we 

must find an indirect method. To carry out a variational approximation to the 

electron effective action resulting from the approximate integration of the pho­

non variables, we need to calculate averages of quantities such as S0 and J which 
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are given as implicit functionals of the electron path ' 

( since ')' is a function.al of the electron path ). If this problem were solved, it 

would also be possible to treat the situation of an electron-phonon coupling non­

linear in the phonon variables . In fact it might be possible to construct 

sequences of increasingly better variational approximations to a ·wide variety of 

problems. However, we have not discovered any way to solve the problem. 

5.2. More General Method of Analytic Continuation 

In this section we present a generalization of the method described in sec­

tion 2.3. These generalizations allow us to treat nonthermal density matrices 

and to extend the path integral variational principle to a wider range of prob­

lems. To motivate the generalization we consider a particular problem. 

A system consisting of an electron and a crystal has a Mamiltonian H. ( H 

could be Frolich's Hamiltonian. ) The system is initially in thermal equilibrium at 

temperature p-1. At time t =O a steady force Fis applied to the electron. The 

Hamiltonian becomes H = H - F- r ( r is the electron position ) . No assumption is 

made that the force Fis weak. We wish to compute <r(t )> . This function tells 

us how the electron responds to the force. In particular, it can tell us whether a 

steady state is reached in which Lhe energy pumped into the electron by Fis 

balanced by the energy lost by the electron due to interactions ,\Tith phonons, 

etc.. We can also discover such things as the rate of energy dissipation at a 

given velocity, etc .. 

If the system is initially in state I-I'i > with probability Pi we have 

• Tne variar.io~ equatio:is corning from the rrJ:n:mizatio:i of (5.1.4) :;i;-ovide :he irr.plich rela­
tio:is be:wce:1 So,'l, e.:i.d fae elec':.::-o:i. path. 

(5.2.1) 
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This problem has been discussed by Thornber & Feynman [8) . 

For a thermal density matrix we have 

7r [e -PH e illt re -illt ] 

<r(t )> = Tr e-PH 

( 5. 2.1) is the analytic continuation of 

to T 2 = -it and T 1 = it while (5.2 .2) is the analytic continuation of 

Tr [e -pH e --r2'J re --riR] 

Tr e-PH 

(5.2.2) 

(5.2.3) 

(5 .2.4) 

again to T 2 = -it and T 1 = it. In terms of path integrals (~3) may be written 

as 

T1+Tz 

- J I.d-r 
JDq,ip (qf ,qi)e O r(T1) (5 .2.5) 

Here the q are all the coordinates of the system including the electron coordi-

nates. L is the classical energy associated 1vith H. 

p(qJ ,qi) = ~ <qt I ti>A <ti I qi> and the path integral is over the path beginning 
i 

at qi and ending at q1 . 

We can compute the path integral in (5 .2.5) from path integrals of the form 

Tl+Tz Tl+Tz 

- j L+ j 'y·r 

f DqJiP(qf ,qJe o o (5 .2.6) 

Here L is the imaginary time Lagrangian of the system with Hamiltonian H. To 

use (5 .2 .5) or (5.2.6) we need an e:x--pression for the density matrix p(q1 ,qi). In 
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order to use a variational principle for the approximate calculation of (5.2.6) it 

The nun1erator of (5.2.4) requires the evaluation of the path integral 

(5 .2.7) 

over all closed paths q(0) = q({3+T1+T2). Lhas the same meaning in (5.2.7) as in 

(5.2.6). In the case that Lis the imaginary time Lagrangian of the Frolich model. 

we integrate the phonon variables in (5 .2. 7) and find an effective action for the 

electron alone. The integral over the electron paths is now approximated using 

a trial action and the variational principle. The results must then be continued 

back to real times . The continuation process given in section 2.3 will not work in 

the present case because the action in (5.2. 7) has explicit time dependence due 

'1'1 +T2 

to the term J F- r even when -y = 0. The best trial action will also have explicit 
- o 

time dependence. 

To see how to carry out the analytic continuation, we shall return to the 

problem of the weak response of an electron to a time varying field which we for­

mulated in chapters 2 and 3. Although the effective action and the best trial 

action no longer have explicit time dependence in that case, the method of con­

tinuation in time v.'i.U apply also to the path integral in (5.2. 7). 

The condition for the trial action given in (3.1.15) to be the best one with 

which to imitate the action (3.1.6) (v.ith D = 0) was found to be from (3.2. 7) 

(5.2.8) 

with D0(,) = g 0(0)-g 0(T) . In addition g 0(,) and f 0 (T) are related by (3.1.14) 
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To compute the real time response function R0(t) we need g 0(it) since 

R 0 (t) = g 0(it)-g;(it) . (5.2.8) and (5.2.9) enable us to solve for g 0(-r) for -r real 

and in the interval 0~-r~(3 . In principle this is enough information to obtain the 

analytic continuation of g 0(-r) to all complex,. However, it is difficult to see how 

to do this directly by means of (5.2.8) and (5.2.9). It is not clear how to treat the 

absolute values and especially the delta function 6(-r-a) as -r , a, and -r' become 

complex. 

To see what to do recall from equation (2.2.1) that we e>-.rpressed the 

response function R(t) in terms of 

(5.2.10) 

or in terms of 

(5.2.11) 

In chapter 2 we continued this to 

(5.2.12) 

and expressed it as a single path integral. However (5.2.11) is also e:x-pressable 

as a single path integral if we merely allow the time variable to follow some con­

tour in the complex t-plane (or, plane) . Thus (5.2.11) is 

-;.fw 
f Dxe c x(t 1)x(O) (5.2.13) 

Here the contour C in the t-plane starts at t = 0, moves along the positive real 

a.xis tot = t 1• and then finally follows some contour tot = -i{3. 
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L in (5.2 .13) is the continuation of the real time Langrangian to times which lie 

along C. We must also impose on C the condition that Irnt is decreasing as we 

traverse C from its beginning at t = 0 to its end at t = -i.(3 since otherwise the 

path integrals in (5.2.13) diverge. 

lt is convenient for us to work in the complex T -plane where T = it. The 

contour C above is now C 

and the path integral (5.2.13) is now 

(5.2.14) 

where L is the continuation of the imaginary time Lagrangian (which is the clas­

sical energy) of the system to T along C. 

Order the contour C with O considered the least point and f3 the greatest 

point. If T and u are two points on this contour, write T<a if T is encountered 

first as the contour is traversed from O to {3, otherwise write T~u. IT-CJ I c 

denotes T-a if 2a and a-T if T<u. 

Consider now the Gaussian action 

(5.2.15) 
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We "l'.ri sh t o evaluate 

(5.2.16) 

By analogy to a discrete Gaussian integral such as (3 .1. 9) we need to find 

9o( I T-cr I c) inverse tog 01 ( IT-a I z:,) in the sense that 

Jgo(!T-cr' lc)9o1 ( 1a'-a lc)da' = oc(T-a) 
C 

Here oc(T-a) is a representation of the identity. Jt satisfies 

a(T) = f 6c(T-a}a(a)da 
C 

(5.2.17) 

(5.2.18) 

for T and a .on C and a ( T) a test function on C. (5 .2.17) ma~so be written as 

(5.2.19} 

And this is the generalization of (5.2.9) which we need. Let's check that we get 

its correct results. Define C to the contour shmvn below Let T and a be on the 

left piece of the contour and let T = ii , a =is . a' =is' on left piece of contour 

while a· = is'+(3 on right piece of contour. By using (5. 2.19) and it s complex con-

f ;(T) = f 0(T•) which are true for complex T, we arrive at an equation 

2 ' 
~o(lt-s l)-2fimf 0 (ii -'is ')R 0 ( ls '-s l) ds ' = - Zi o(t-s) (5. 2.20) 
dt s 

Here R0 is the response function given by R 0(t) = g 0 (ii )- gc (it) for t >0 and 

R 0(t) = 0 f or t <0. (5. 2.20) implies that 

2 t 
~ 2 R o(t) - 2 J lmf 0(it - is )R0 (s )ds = - io(t) 
dt - o, 

(5.2 .21) 
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+oo 

Substituting Ro(t) = £e---i."At ~;Ro(>--) into (5.2.21) we find that 

i Ro(r..) = --.. -----

r..2+2f[Imf o(is )]eiM ds 
0 

so that from (2.1.11), the absorption function is 

- 2r.. s 0(>,) = Re 2AR0(>-) =Im---------

->-.2-2 j[lmf o(is )]ei>-s ds 
0 

comparing to (2.3.18) we see that 

fo(-i>-.) = -2fei>-simf 0(is)ds 
0 

(5.2.22) 

(5.2.23) 

(5.2.24) 

which is just (2.3.17). Thus we have recovered the results of chapter 2 on analyt­

ical continuation by means of a different approach. The utility of this approach 

is that it allows the application of the variational method to problems such as 

the electron in a constant arbitrary strength electric field discussed earlier in 

this section. Tne method of analytic continuation in section 2.3 cannot be used 

for this problem. Also, the idea of working with the analytically continued path 

integrals such as given in (5.2. 7) in order to evaluate expressions such as (5.2.2) 

seems to have the advantage that the computational labor involved working with 

the analytically continued path integrals is less thar1 the labor involved on work­

ing with a direct path integral representation of the original problem. 
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5.3. More Realistic Model 

1n this section we present the variational and second or der equations for a 

generalized version of Frolich's model. 

We retain the assumption of a harmonic lattice. However we do not make 

the continuum approximation nor do we make any assurnpticns about the pho­

non dispersion relations or about the types of phonons coupled to the electron. 

We do assume that the electron-phonon coupling is linear in the phonon vari­

ables. 

For the electron we initially assume that the energy is of the form 

(5.3.1) 

Here r is the positron vector of the electron and the x1 are the components of r . 

V(r) may be a periodic potential or it may include contributions due to impuri­

ties, etc. By a combination of an orthogonal transformation and a r e scaling of 

coordinates one may always bring (5.3.1) into the form 

Lawe = ~ ~(:i;\)2 + V'(r') 
\ 

(5.3.2) 

Here r', x\ are the new coordinates . In the following we shall drop the primes on 

the new coordinates and take (5.3 .2) as our s tarting point for the electron por­

tion of the energy. 

We work vvi th a very large crystal ·with N unit cells and use periodic boun­

dary conditions. N vri.11 denot e t he position of a unit cell and ·,JXf;,.X-tfo. v-ri.11 be the 

displacement from equilibrium of the a. th atomic coordinate in the unit cell at N. 

M o. is the mass associated with the a.th coordinate. In terms of the XNo.• the lat­

tice energy is ( relc.ining only quadratic terms in the potential ) 
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(5.3.3) 

(5.3.4) 

The k sums will always be over a unit cell ink space. Because J ap(N) is real and 

Jpo.(N) = Jap(-N) , J0 p(k) has the properties 

J o.p(k) = J;_B ( -k) (5 .3.5) 

Note that Jap(k) is a Hermitian matrix. For each k we have e~(k) and CJ>.(k) such 

that 

(5 .3.6) 

We now define new variables q)c'),. by 

(5 .3.7) 

Note that qk>. = q -le>.· CJ>,.(k) is the frequency of a p honon of type "A. as a function 

of its wave vector k and e;(k) is a phonon "polarization' '. In terms of the q's the 

lattice energy is 

(5.3.8) 

The most general electron-lattice interaction ·which dues not involve time 

derivatives and is linear in the Xmi. and is invariant U...'l.der simultaneous displac e­

m ent of the electr on and the displacements field XNo. by a lattice vector 1I is 
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Ltnt == ~ Ua(r-N)XNa (5.3.9) 
Na 

The reciprocal lattice vectors G satisfy 

(5.3.10) 

for all lattice vectors N. Once we chose a unit cell in k -space any vector q can 

be uniquely decomposed into the sum of a reciprocal lattice vector G and a vec­

tor k within the unit cell. Any periodic function (/ (r) == f (r+ N) for all N) can be 

\'.Titten as/ (r) == LJf ceiG-r. Now define 
G 

BJc.,.(G) == ~(e~(k)f J d3re - i(c+k) ·rua(r) (5.3.11) 
a 

Note that .BkA (G) = .B _kA(-G). The interaction energy can now be rewritten as 

T . == _1_~q B (G)e i(G+k)·r 
'-'int -vN t -k.X k\ 

(5.3.12) 

Now we have established our notation and formulated a total energy 

L == Laiec + Liat, + l...mt for the system. The next step is to integrate away the lat­

tice variables and arrive at an effective imaginary time action S for the electron. 

That is, 

(5.3.13) 

where the integration is over all closed q paths qw,.(O) = qJcA(f3) . 

With the aid of the path integral given in (1.2.25) we may carry out the 

integration in (5.3.13) and find 
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p 
S = ~ j [r+ V(r)]dr 

0 
(5.3.14) 

where 

(5.3.15) 

The second term in (5.3.14) can also be written as 

(5.3.16) 

If a lattice vector N is added both arguments of W(a,b) then its value remains 

unchanged 

W(a,b) = W(a+N,b+N) (5.3.17) 

This is not true if we add on an arbitrary vector R to a+b. This is due to the 

G1¥0 and G2 ¥0 terms in (5.3.14). The presence of these terms and the periodic 

potential V(r) makes it difficult to formulate a good trial action for the problem. 

We have formulated some possible trial actions, but have not derived the varia­

tional equations or done any other calculations ¥iith these. For this reason we 

only consider those cases in which it is reasonable to take V(r) = 0 and to drop 

the G1,G2~0 terms in the second term of (5.3.14) . Thus the action we consider is 

(5.3.18) 

For a trial action we no,v take 
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(5.3.19) 

As in equation (3.1.18), it is convenient to rewrite S as 

(5.3.20) 

Here we eventually set l¼i = -f o,ii. For the purpose of computing the series 

e)..'-pansion of g1.;(IT-al) = <xi(T)x1 (a)>, the I¼; are initially allowed to be arbi­

trary functions as h was in chapter 3. 

For the trial action S0 , note that if we define g 0_ij(T) by 

then 

where <>0 denotes an average t aken with e -So as a weight. (As in (3. i .1). ) 

S1 = S-S0 = A+B is now given by 

(5 .3.22) 

(5.3.23) 
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To evaluate <S1>o and <Sf>o - <S1>5 we need the results 

(5.3.24) 

(5.3.25) 

where now 

(5.3.26) 

Note that, in particular 

(5.3.27) 

If F 0 is the free energy associated with S0 and F is the free energy associ­

ated with S, then to first order in S1 we have 

(5.3.28) 

lf we set l¼J = - f o,ii and then set the first order variation in the right hand side 

of (5 .3 .28) to zero for an. arbitrary variation inf o:ii , we find the condition 

where 

p 
J o.ij(,) = -ko,ij(T) + o(T)Jko.ij(a)du 

0 
(5.3.29a) 
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(5.3.29b) 

for the free energy to be a minimum. 

If the states of the whole system (before we integrate away the phonon vari­

ables) can be taken as real (which is true for the Hamiltonian associated with 

Lciect + Lw+ L1att ), then we find that RiJ (t ), the response of the coordinate :z; to a 

kick in the j direction at zero time, satisfies 

(5.3.30) 

Ri1(t) is given by 

(5.3.31) 

The same comments apply to Ro:i.j(t), the response function associated with the 

trial function S0. 

(5.3.32) 

If we apply a weak external force 10ncosc.>t to the electron ( n is a unit vector), 

so that there is is an extra term --y0n·rcos(;Jt in the Hamiltonian, we find by an 

application of time dependent perturbation theory that the rate of energy 

absorption is proportional to ( at frequency /\ ) 

where 

~~n1si;(r..) 
i,j 

(5 .3.33) 
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(5.3 .34) 

If 

"' ( ) _ 1 ffJ iXa-r (-) f o,ii Ao. - Poe fo,iJ , dT 
2rra • ( ) Acx = -{3-, a an7,nteger 5.3.35 

then the analytic continuation off o.iJ (Xa) to general values of A may be obtained 

by methods discussed in section 2.3 or in the previous section 5.2. We now write 

down the cycle of equations for the solution of the variational problem. Starting 

with s 0_ij ((.,,)) as in equation {3.2.11), we have 

(5.3.36) 

From this we construct ko.iJ (11) by means of (5 .3.29b). Then 

... 
!o,ij(-iA) = 2j(ei'>•.s-1)Imko.ij(is) (5.3.37) 

0 

Finally, we recover so.i;((.,,)) from 

(5.3.38) 

the inverse_ referring to the matrix inverse off 0(-ic.>)-c,.>2 . 

Now we turn to the second order corrections to the variational results . AB 

in chapter 3, the first order corrections vanish. 

First we extend the notation discussed on page 34 of the third chapter. Let 

Uo , h, f 0 , etc. stand for the matrices 9o.iJ, ~i• f o.ij, etc .. Extend the meaning of 

the product notation ab so that 

(ab ).,.p ,ik = LJJ ~i ( IT-a I )bjl, ( I a-p I) (5.3.39) 
j 0 
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Using the expansion (3.1.17) -..•,i.th S1 as given in (5.3.23) and applying (5.3.25) we 

find after some work that the free energy to second order is given by the first 

order free energy in (5.3.28) plus 

-! ~J (gohgoh )-rr,ii + ~ B(gohgoko)rr,ii - J P(T1a1 I T2a2) (5.3.40a) 
\ T \ T1C1TzC2 

where 

(5.3.40b) 

and where P is given by 

(5.3.40c) 

Now f O is varied while keeping h constant. 1Ne use the relation 

(5.3 .41) 

and for a term T which depends on D0's we use the analogue of (3.3 .14) 

J 6T f 6T 
6T = ~ o(D) .. (go6fo9c),a ,ii - r5(D) .. ,gc6fo9o)rr.v 

TU ij O TC,t) TC:,ij O TU,\] 
(5.3.42) 

The contribution to the f series from su8h a term comes out to be (specifically 

the contribution to (/ ),,.o,ij ) 
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(5.3.43) 

After the second order contribution to the f ser ies is worked out, we specialize 

to the case that (see (3.3.16)) 

(5 .3.44) 

where ,c0 is given now by (5 .3.29b) . This is just the s tatem ent that f O is the vari­

ational/ 0. 

Taking into account the vanishing of terms due to (5.3.44) and other cancel­

lations discussed in chapter 3, we may now write down the second order contri­

bution to the f series in the case that f O is given by the variational equations 

(5.3.29) and (5.3 .36) to (5.3 .38). 

(f 2)-ru,ij = -(1C2)-ru,ij + o( T-a) f (,c2)-rp,ij 
p 

and ,c2 is given by two terms. First we have 

where 

(5.3.45a) 

(5. 3.45c) 

(A 12\ ; = ½{Do.iJ ( IT-a' I)+ Do.iJ ( IT. - a I ) - D o.if ( 1, - T' I ) - Do,iJ ( i a-a' I)] 
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The second term is given by 

where now 

(5.3.45e) 

To evaluate ,c2(it) we proceed as in chapter 4. The inte~s from O to {3 are 

replaced by integrals along a contour C which runs from O to {3 through it. The 

absolute values IT-a I are replaced by IT-a I c as defined in section 5.2 or in 

chapter 4. 
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6. CONCLUSION 

In this thesis we have treated Frolich's polaron model by Feynman's path 

integral variational method and have calculated corrections to the variational 

approximation. Following Feynman, we first integrate away the lattice variables 

in a path integral for the free energy of the system and obtain an efl'ective ima­

ginary time action for the electron alone. This effective action is then imitated 

by general quadratic trial action. The path integral variational inequality gives 

an upper bound on the true free energy of the system as a functional of the trial 

action. Minimizing this upper bound yields a set of variational equations for the 

functions which appear in the trial action. 

Rather than working with real time double path integrals as FHIP [ 4] do, we 

work with the imaginary time path integrals for the free energy and obtain 

results for real time functions by carrying out an analytical continuation. In 
/ 

chapter 2 this analytical continuation is carried out by working with the absorp-

tion functions(:>..). s (X) is proportional to the rate of energy absorption by the 

electron in a weak spatially uniform time varying field of frequency X. Other 

functions of interest such as the response function of the electron R (t) may be 

expressed in terms of this absorption function. The method of working with ima­

ginary time path integrals rather than real time double path integrals saves a 

great deal of computational labor. 

We obtain equations which may be solved numericaliy for the variational 

approximation s 0 (>--) to the absorption function. Some numerical results for 

s 0(X) are presented. We also compute corrections to s 0(>--) which are second 

order L11. the difl'erence b etween the trial action and the true action. 

The same equations but different numeric al results for sc(>--) h ave been 

obtained by Klyukanov, }lu..1tyan, and Pokatilov [6] usiP..g a nonvariational 

method. Our numerical results disagree 'rvith theirs in that they obtain an 
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absorption function with two p eaks at, fo r example , a= 4 and temperatures as 

high as f3 = 4 ( {3-1 = temperature ) while we only have a single peak for a.. = 4 

even at zero temperature. 

We next compute the second order corrections to s 0(t,) as a test of the 

accuracy of s 0 (11..) . We only obtain results for moderate a.. ( up to a = 5 ) . For 

these values of a the corrections e.re reasonable in comparison to the second 

order corrections of the free energy. This is discussed more fully at the end of 

chapter four. It would be of interest to see how large the corr ections are for 

large values of ex. From other examples to which we have applied the varia tional 

method, we expect that for large a, the corrections are of the same relative size 

as for moderate a. 

There are many problems in which much greater accuracy is needed than 

the variational method seems capable of attaining. It would be very useful to 

find ways of system atically increasing the accuracy of the variational method. 

At present it is a one shot approximation, and if the accuracy is insufficient, 

there is not very much which can be done to improve it. • 

In section 5 .2 we present a generalization of the method of analytic con­

tinuation used in chapter 2. This generalizat ion would allow us to use the path 

integral variational principle to choose the best trial action in the problem of a 

polaron in a space-time constant electric field (this field may be strong) dis­

cussed by Thornber and Feynman [8]. In their paper Thornber and Feynman 

lacked a principle by which to choose a quadratic action to im itate the true 

action. We have not yet applied the m ethod of s ection 5.2 t o this problem of a 

polaron in a s trong constant electric field, n or have we invesUgated in wh at 

other problem s this me thod may be of use. Also, the reasoning of section 5.2 is 

T:1is is not true fo;:- systems of a finite m1rr1cer of degrees o-; freedorr. at nonzero te::r.pera­
t.1.ll"e. In that case there ex:;sts a se:ies of :::etter a..--i.d :::e~ .. er ve.riatio:iU: beq:.iS.:ities. 
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very nonrigorous and it is necessary to investigate under ·what conditions the 

methods discussed there might fail. 

In section 5.3 we present the variational equations and the second order 

corrections to them for a more realistic version of an electron in a crystal lat­

tice. We retain the assumplion that the lattice is harmonic. Within the frame 

work of this assumption the biggest flaw in the treatment of section 5.3 is that 

we cannot deal effectively "l'r'ith the periodicity of the crystal lattice. It would be 

useful to find a trial action which could in some way imitate the effect of 

periodic crystal potential V(r) in which the electron moves. 
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