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ABSTRACT

The nature and function of some of the protein-DNA interactions
in eukaryotic chromatin were investigated. The nucleosome structure
of isolated template-active chromatin was determined. In vitro chemical
acetylation of chromatin was shown to result in a structure similar
to that of deproteinized DNA, which represents a shift towards the
properties of isolated template active chromatin, and chromatin
containing specific transcribed genes.

The process of chromatin replication was shown to include a
shortening of the internucleosomal spacer, resulting in decreased
nuclease sensitivity. Newly-replicated chromatin was separated
from bulk chromatin in shallow metrizamide density gradients.
Newly-synthesized histone and newly-acetylated protein were shown
to be present predominantly in the unreplicated chromatin fraction.

The accuracy and reproducibility of mon-linear least squares
determinations of the thermal denaturation transitions of DNA and
chromatin were determined using computer programs designed for ease of
use and adaptability to mini-computer configurations. Direct fitting
of melt data to a normalized error function gave results very similar
to those obtained by fitting Gaussian curves to derivatized data. This
approach avoids errors introduced by the derivatization method, and

requires fewer data points.
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ALKALINE EXTRACTION OF NON-HISTONE PROTEINS FROM RAT
LIVER CHROMATIN

ROBERT F. MURPHY and JAMES BONNER
Division of Biology, California Institute of Technology, Pasadena, Cal. 91125 (U.S.A.)
(Received March 18th, 1975)

SUMMARY

The dissociation of non-histone proteins from chromatin by alkaline pH was
studied using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A significant
degree of selectivity of dissociation was observed. This selectivity may provide a
new method for fractionating non-histone proteins.

INTRODUCTION

Much work has been done on the selective dissociation of histones from
nucleohistones at low pH [1-3]: Other investigations have reported on the dissociation
of histones from DNA at high pH, particularly at pH 12 and above [4-7]. In this
paper we describe experiments on the selective dissociation of .chromosomal proteins
by titration in the range pH 8-11.

MATERIALS AND METHODS

Preparation of chromatin. Chromatin was prepared from Sprague-Dawley rat
livers (Pel-freeze), by the sucrose purification method of Marushige and Bonner [8].
After pelleting through a 1.7 M sucrose cusion, the chromatin was resuspended in
four volumes of 10 mM sodium bisulfite, 10 mM Tris buffer, pH 8.0, and spun at
12000 x g for 10 min. The chromatin pellet was resuspended at a concentration of
20 A,, nm units per ml and sheared for 90 s at 30 V in the Virtis homogenizer. The
sheared chromatin was spun at 12 000 x g for 20 min to remove a small amount of
material not solubilized by shearing.

Alkaline dissociation of chromatin. 10 ml of sheared chromatin was titrated to
the desired pH (using a Radiometer 22 pH meter) by the dropwise addition of I M
NaOH with stirring (pH values were checked by warming a small sample of the
matearial to 25 °C and determining the pH again). The chromatin was then stirred
for 30 min and centrifuged at 45000 rev./min for 20 h in a Beckman Ti50 rotor
(134 800 x g). The chemical composition of the material in the supernatants and
peliets was determined, and the proteins of each sample were analyzed by poly-
acrylamide gel electrophoresis.

Chemical composition. RNA and DNA were separated by the Schmidt-
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Tannhauser procedure. The amount of DNA was determined from the absorption
at 260 nm and RNA was determined by the orcinol procedure [9]. Total protein was
determined by the procedure of Lowry et al. [10] using bovine serum albumin as
standard. Histones were extracted with 0.2 M H,SO, and the insoluble non-histones
removed by centrifugation at 12 000 x g for 10 min. Pellets from this extraction were
resuspended in 1 M NaOH and the amount of non-histone proteins determined by
the procedure of Lowry et al. [10], while the amount of histone protein was deter-
mined from the absorption at 230 nm using the relation 1 mg/ml = 4.15 4,3, ,, units.

Polyacrylamide gel electrophoresis. Sodium dodecyl sulfate-10%, acrylamide
gels were run, stained and scanned as described previously, and the scans were resolved
into a number of Gaussian curves such that the sum of those curves equaled the
original data [11, 12].

RESULTS

Table I presents the results of protein and nucleic acid determination for the
supernatants and pellets of chromatins titrated to pH 8-11 and pelleted as described
above. As can be seen, more than 959 of the DNA is recovered in the pellets at all
pH values. Increasing amounts of RNA, histone and non-histone are dissociated
from chromatin as the pH is increased. The greatest increase in the release of all
three components occurs between pH 10 and pH 11. This may be due to the titration
of lysine residues (pK approx. 10.5). Indeed, in the titration of chromatin to pH 11,
the buffering effect of the lysine residues is clear as evidenced by the need for a greater
amount of NaOH to raise the pH from 10 to 11 than is needed to raise the pH from
8 to 9 or from 9 to 10. There is also a noticeable rise in viscosity of the preparation
above pH 10 perhaps correlated with the dissociation of protein from DNA in some
regions of the chromatin and concomitant unfolding of DNA.

To discover whether particular non-histone proteins are released as the pH
of chromatin is increased, we have run sodium dodecyl sulfate gels on the various
fractions. Fig. 1 shows the composite gel scans of the supernatants (dissociated
material) at pH 8-11. Each Gaussian does not necessarily represent one peptide, but
may represent one or more peptides of identical or similar molecular weight.

TABLE I

DISSOCIATION OF CHROMATIN CONSTITUENTS BY ALKALINE pH

Chromatin isolation, titration and centrifugation were as described in Materials and Methods.
Amounts are expressed as percent of starting material of each component + one standard deviation.
Ratio given-is the weight ratio of each component to DNA in whole chromatin. S, supernatant (dis-
sociated); P, pellet (undissociated).

pH DNA RNA Histone Non-histone
S P + S P + - 8 P + S P o
8 1 9 0.5 12 88 5 3 97 1 5 95 3
9 1 99 0.7 26 74 9 3 97 1 8 92 3
10 2 98 0.8 36 64 10 7 93 1 12 88 4
11 2 98 0.8 55 45 10 18 82 3 22 78 6
Ratio: 1.0 0.03 1.1 0.8
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Fig. 1. Composite gel scans of protein dissociated at several alkaline/SH values. Samples of 100 ug
protein from each supernatant were separated on 10-cm sodium dodecyl sulfate gzis, and then the
absorbances normalized to represent equivalent amounts of starting chromatin. Protein to DNA
ratios are as follows: pH 8, 0.07; pH 9, 0.09; pH 10, 0.17; pH 11, 0.35.

In the first place there is a small general increase in release of material from
chromatin as the pH is increased from 8 to 11. In addition, however, there is a signi-
ficant increase in the release of particular protein fractions over this pH range. This
increase in dissociated material is particularly marked in the high (140 000-180 000)
molecular weight and low (22 00043 000) molecular weight regions of the gel.

Since mobility in these gels is proportional to log molecular weight, the
molecular weight of each band can be determined using established standards [12].
The area under each peak is proportional to the mass of protein in that component.
Therefore, the number of molecules in each band can be calculated. Table II presents
the data in terms of molecules per genome (3-10° base pairs) and in percent of total
number of molecules per genome for each molecular weight class [12]. The fact that
some classes of proteins are dissociated to a significantly higher degree or to a signi-
ficantly lesser degree than the percent of total protein dissociated at that pH, is
evidence of selectivity of dissociation.

Proteins which are dissociated at pH 8 (the pH at which the chromatin is
prepared) may be released by the shearing process (no control for this is possible
since unsheared chromatin is an aggregate of very high molecular weight). In addi-
tion, the proteins dissociated at pH 8 evidently have a very low affinity for chromatin
and may indeed be bound to chromosomal proteins rather than to DNA itself.
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TABLE II

DISSOCIATION OF NON-HISTONE PROTEINS BY ALKALINE pH

Results of calculations on data in Fig. 1. Total number of molecules column gives data from Garrard
et al. [12] for number in each class per haploid genome (1.8-10"* mol. wt).

Molecular Total Percent of total
weight number = e i
(x10% of pH 8 pHY9 pH 10 pH 11
molecules
(x10%)
>195 46 13 17 57 57
171-190 101 1 5 19 106
150-170 122 2 2 9 35
140-149 92 0 0 0 64
130-139 91 0 0 0 0
100-129 554 3 6 5 11
92-98 122 0 0 0 12
80-90 450 1 3 6 14
68-79 1460 2 4 4 7
65 690 0 5 3 18
56-63 1005 0 6 8 16
50-55 4790 1 2 3 5
48 660 5 5 ) 13
45 1950 1 11 10 14
3143 1620 23 34 41 70
23-30 2876 15 38 62 98
<22 6708 0 0 0 28
Total 22582 5 8 12 22

One of the principal proteins released at pH 8 is a major non-histone and one
which appears to be identical with the muscle protein, actin. It is possible that F
actin is attached or bound to chromatin at one point and protrudes from chromatin
as an F actin fiber, and is thus easily released by hydrodynamic forces.

DISCUSSION

The significance of our findings is 2-fold. First, we have established that the
non-histone proteins of rat liver chromatin are subject to selective dissociation at
alkaline pH. Second, our results indicate that it should be possible to enrich for a
rather specific subset of non-histone chromosomal proteins by first titrating chromatin
to pH 10, removing the dissociated material and then titrating the chromatin again
to pH 11 and removing the dissociated material. This procedure would provide still
another method of fractionating and characterizing the non-histone chromosomal
proteins.
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Contributed by James Bonner, September 10, 1975

ABSTRACT Rat-liver chromatin has been fractionated
into transcriptionally active and inactive regions [Cottesfeld
et al. (1974) Proc. Nat. Acad. Sc: USA 71, 2193—219‘7] and the
distribution of 1 in these frac-
tions has been mves(lgnled About hal{ of the DNA of both
fractions is resistant to attack by the endonuclease DNase II.
The nuclease—resnslant structures of inactive chromnhn are
DNA-h (»bodies) which sedi t at 11-13
S. Template-active chromatin yle(ds two peaks of nuclease-
resistant nucleoprotein. These complexes sediment at 14 and
19 S, and contain DNA, RNA, hist and histone chro-

al pr Polyncry id gel is re-
veals a complex pattern of chromatin proteins, suggesting
that the complexes are heterogeneous in composition.

1 N
P

A regular repeating unit in chromatin was first suggested
from the x-ray diffraction studies of Pardon et al. (1): a se-
ries of reflections were observed in the x-ray patterns of na-
tive and reconstituted nucleohistones, but not in the x-ray
diffraction patterns of DNA or histones by themselves. It
was proposed that the chromatin fiber is organized into a
regular supercoil of pitch 100-120 A. This model, although
widely accepted for some time, has now come under ques-
tion. Olins and Olins (2) have observed regular spacings of
chromatin particles (termed v-bodies) in water-swollen nu-
clei centrifuged onto electron microscope grids. These parti-
cles are 60-80 A in diameter and are joined by thin fila-
ments 15 A in diameter. These results have been confirmed
and extended by other laboratories (3-5). Nuclease digestion
studies also support a subunit or particulate structure for
chromatin. Both endogenous (6-7) and exogenous (8-14) nu-
cleases appear to recognize a repeating nucleoprotein unit
along the chromatin fiber. Furthermore, chromatin particles
isolated from nuclease-treated or sonicated chromatin re-
semble »-bodies in the electron microscope (15-17). Thus
many lines of evidence support the subunit or “beads-on-a-
string” model of chromatin structure (2, 18).

Studies on chromatin structure have been generally car-
ried out with whole chromatin, unfractionated with respect
to transcriptional activity. Since only a minor portion of the
DNA in any differentiated cell type is ever transcribed into
RNA, the properties of unfractionated chromatin reflect pri-
marily the structure of inactive regions. We are interested in
whether template-active chromatin is organized as is the in-
active region or whether it is in a different conformation.
Previous work from this laboratory has shown that it is possi-
ble to separate chromatin into transcriptionally active and
inactive fractions (19-21). In this communication we report
that both fractions contain nuclease-resistant nucleoprotein
complexes. However, the nuclease-resistant structures of in-
active chromatin are DNA-histone complexes, while the nu-

Abbreviation: DFP, diisopropylfluorophosphate.
* Present address: MRC Laboratory of Molecular Biology, Hills
Road, Cambridge, England CB2 2QH.
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clease-resistant structures of active chromatin are complexes
of DNA, RNA, histone, and nonhistone chromosomal pro-
tein.

MATERIALS AND METHODS

Chromatin Fractionation. Chromatin was prepared from
rat liver by the method of Marushige and Bonner (22) and
treated with diisopropylfluorophosphate (DFP) to inhibit
endogenous protease activity (23). Fractionation was carried
out as diagrammed in Fig. 1; details of this method have
been published previously (21).

Preparation of Ch tin Subunits. Nucl resistant
subunits of rat-liver chromatin were prepared as follows:
DNase II was added to 10 units per Aggo unit of chromatin
in 25 mM sodium acetate (pH 6.6). Digestion was carried
out at 24° and was terminated after 90 min by raising the
pH to 7.5 with 0.1 M Tris-HCI (pH 11). Nuclease-resistant
subunits from chromatin fraction P1 were prepared by ho-
mogenizing the pellet fraction in 25 mM sodium acetate (pH
6.6) and redigesting with DNase as described above for
whole chromatin. Undigested chromatin (about 20% of the
input DNA) was removed by, centrifugation at 27,000 X g
for 10-15 min. The supepmatant was layered on isokinetic
sucrose gradients in SW25.1 cellulose nitrate tubes. The gra-
dients were formed according to Noll (24); the parameters
were Ctop = 15% (weight/volume), Cres = 34.2% (weight/
volume), and VMix = 31.4 ml. All solutions contained 10
mM Tris-HCI (pH 8). Centrifugation was at 25,000 rpm for
36-42 hr. Gradients were analyzed with an ISCO UV Ana-
lyzer and chart recorder. Fractions from these gradients
were rerun on 5-24% isokinetic sucrose gradients. The pa-
rameters were Ctop = 5.1% (weight/volume), Crgs =
31.4% (weight/volume) and Vyix = 9.4 ml. Centrifugation
was in the SW 41 rotor at 39,000 rpm at 4° for 16.5 hr.

Subunits were also prepared from chromatin devoid of
histone I. Removal of this histone was accomplished by ex-
traction of Virtis-sheared chromatin (45 V, 90 sec) with 0.5
M NaCl at 4°. The resultant nucleohistone was pelleted by
centrifugation in the Ti 50 rotor at 50,000 rpm for 18 hr.
The pellet was digested with nuclease as described above.

Redigestion of Chromatin Fraction $2. Chromatin of
fraction S2 was redigested with nuclease in three different
ways: the DNase II present in fraction S2 from the first nu-
clease treatment was reactivated by adding EDTA to 20 mM
and lowering pH to 6.4 with dilute HCl. Alternatively, aki-
quots of chromatin fraction S2 were dialyzed against either
25 mM sodium acetate (pH 6.6) or 5 mM sodium phosphate
(pH 6.7) containing 2.5 X 107¢ M CaClz and 2.5 X 107* M
MgCl;. DNase 1 was added to the chromatin in sodium ace-
tate buffer to 10 units/Asso unit of chromatin; staphylococ-
cal nuclease was added to the chromatin in sodium phos-
phate buffer to 50 units/ml. Reactions were carried out at
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24°. Aliquots were taken at various times to test for the pro-
duction of trichloroacetic-acid-soluble material (measured
by absorbance of the supernatant at 260 nm after centrifu-
gation at 27,000 X g at 4° for 15 min).

DNA Size Estimation. Single-strand DNA lengths were
estimated by velocity sedimentation in alkaline sucrose gra-
dients. The parameters for the isokinetic gradients were
Crop = 15.9% (weight/volume), Cgrgs = 38.9% (weight/vol-
ume), and Vyix = 6.1 ml (24). All solutions contained 0.1 N
NaOH. Chromatin samples were suspended in 0.1 N NaOH,
2% sodium dodecyl sulfate, 2 M urea, and 100-200 ul ali-
quots were layered on each gradient. Centrifugation was in
the SW50.1 rotor at 48,000 rpm for 16 hr at 20°. DNA mo-
lecular weights were determined relative to a standard sized
by electron microscopy (320 nucleotide-long, 5.4 S, calf thy-
mus DNA; a gift of Ms. M. Chamberlin). Double-strand
lengths were determined in the analytical ultracentrifuge
(25).
Analysis of Chromatin Composition. Histone and nonhi-
stone protein content was determined as described (26). Pro-
tein was analyzed by sodium dodecyl sulfate-disc gel elec-
trophoresis (27) and by acid-urea gel electrophoresis (28).
DNA and RNA were determined by the methods of Schmidt
and Tannhauser (29).

Enzymes. DNase II (EC 3.1.4.6) and micrococcal nu-
clease (EC 3.1.4.7) from Staphylococcus were purchased
from Worthington.

RESULTS

Chromatin Fractionation. DNase II preferentially at-
tacks a select portion of chromatin DNA. The amount of
DNA in this fraction varies depending upon the source of
the chromatin, but corresponds quite closely to the mea-
sured template activity of the particular chromatin (20). The
fractionation scheme used herein is diagrammed in Fig. 1.
After 5 min exposure to DNase II, 15% of rat-liver chroma-
tin DNA remains soluble after centrifugation (fraction S1).
About 11% of the total DNA is Mg**-soluble and is found in
fraction S2. This DNA comprises a subset of whole genomal
DNA sequences and is enriched 5-fold in transcriptionally
active sequences (21). The DNA has a double-strand length
of about 700 base pairs and a single-strand length of 200-
600 nucleotides (range of observed values). About 1-3% of
this DNA is acid-soluble. After 30 min exposure to DNase II,
nearly 80% of the chromatin is found in fraction S1, and
20-24% is found in fraction S2. After prolonged nuclease di-
gestion roughly half of the DNA of both fraction S1 and
fraction S2 is acid-soluble. A more detailed description of
the kinetics of DNase II action on chromatin is presented
elsewhere (J. Gottesfeld, G. Bagi, B. Berg, and J. Bonner,
manuscript submitted).

Table 1 lists some of the properties of the chromatin frac-
tions: the composition of fraction P1 is similar to that of un-
fractionated rat-liver chromatin (21, 22). Fraction S2, how-
ever, is enriched in RNA and nonhistone protein and has a
reduced content of histone protein. All the major histone
species are present in fraction S2 isolated from DFP-treated
chromatin. In a previous communication (21) we reported
that fraction S2 lacked histone I; the absence of this histone
was presumable due to its proteolytic degradation, since the
chromatin was not treated with protease inhibitors.

Subunit Structure of Chromatin. Rat-liver chromatin
and fraction P1 chromatin have been digested with DNase
II for extended periods of time (90 min), and the resulting
soluble chromatin has been analyzed by centrifugation in

Proc. Nat. Acad. Sci. USA 72 (1975) 4405

Chromatin (370 ug/mi DNA,
25 mM Na Acetate, pH 6.6)

DN
(IOGO':n%s/mh) incubate 5 min a1 24°

Centrifuge (27,0004, I5min)

; l
Pellet Supernatant
846+48%
of ONA 2mM MqClp
Centrifuge

(27,0004, !5 min)

Pellet Supernatant
4.122.5% 11.3£39%

FIG. 1. Fractionation scheme. The yields of DNA in each frac-
tion are the mean and standard deviation for 11 determinations.

isokinetic sucrose gradients (Fig. 2). About 40% of the input
DNA sediments extremely slowly; the bulk of this DNA is
acid-soluble and hence has been reduced to oligonucleotides
by the nuclease. Fig. 2 présents data for whole chromatin
depleted of histone I (Fig. 2A) and for P1 chromatin (Fig.
2B). Most of the chromatin sediments at about 11-138 S, with
some material sedimenting more rapidly. The properties of
nuclease-resistant particles from unfractionated chromatin
have been described in detail elsewhere (8-14, 16, 17). We
find similar properties for the particles from P1 chromatin:
they are composed of equal amounts of protein and DNA
(by weight), and the protein complement is almost entirely
histone (Table 1). Subunits from native chromatin sediment
slightly more rapidly than subumits from histone-I-depleted
chromatin (Fig. 2). The mentation coefficients (+ SD)
estimated from ten isokinetic 5-24% sucrose gradients were
12.6 + 0.9 S for subunits of native chromatin and 11.4 £+ 0.7
S for subunits of histone-1-depleted chromatin. The length of
DNA contained in the subunits has been studied by many
workers; values of 120 to 210 base pairs have been obtained

Table 1. Chemical composition of rat-liver
chromatin fractions

Composition relative to DNA (w/w)

Non-
Sample Histone histone RNA

Unfractionated

chromatin 1.06 0.65 0.05
P1 chromatin* 1.15 0.58 0.05
11-13S subunitst 1.03 <0.05 —
S2 chromatin* 0.61 1.60 0.25
S2 subfractions

3-58 0.24 0.60 —

14.0 + 0.8S% 0.72 1.35 0.3-0.4

18.7 + 1.08% 0.54 3.2 0.3-0.7

* Fractionation carried out as in Fig. 1.

t Similar compositions were obtained for native and histone-I-
depleted subunits.

1 Sedimentation values + SD determined from 24 gradients equiv-
alent to those in Fig. 3.



10

4406  Biochemistry: Gottesfeld et al.
A ) 11,48 8 . mae
£ § ¥
3 5
=t & 2 &
£ 5 3 s
ar 2 2 3t 2
8 3 ] 135 35
ol g s} 4
2 € ¥
2 Top 4 Bottom 5| Top Bottom
-1 S
2 8
3 ql
= ot
T ST N " " L . L L
t 8 3 244 (! 5 10 15 4
Top Fraction Number Sottom  Top Fraction Number Bottom

FIG. 2. Sucrose gradient sedimentation of DNase-II-treated
chromatin samples. (A) Histone-I-depleted chromatin was digest-
ed and soluble chromatin was centrifuged for 42 hr as discussed.
(B) Fraction P1 chromatin was digested and soluble chromatin
was centrifuged for 36 hr. Fractions were pooled as indicated and
rerun on 5-24% gradients (insets).

(10, 13, 14, 16, 17). The 11-13S subunits resemble v-bodies
(2) in the electron microscope (17).

Subunit Structure of Active Chromatin. We now ask*
whether nuclease-resistant structures occur in transcription-
ally active regions of chromatin. Chromatin from rat liver
was treated with DNase II for 5 min, fractionated as before
(Fig. 1), and S2 material was analyzed on isokinetic sucrose
gradients (Fig. 3, curve A). About half of the UV-absorbing
material applied to the gradient sediments at 3-5 S; greater
than 90% of this material is acid-precipitable after the 5 min
nuclease treatment. Two more rapidly sedimenting peaks
are seen in the gradient of S2 chromatin, one at 14 S and an-
other at 19-20 S. These gradients were calculated for parti-
cles of density 1.44 g/cm3, and so the observed sedimenta-
tion coefficients could be in error if the particle densities are
very different from 1.4 to 1.5 g/cm?®. About 6% of the input
nucleic acid pelleted during the centrifugation.

To test whether the 14 and 19S nucleoprotein complexes
might be multimers of the 11-13S subunit (i.e., dimers and
trimers), chromatin fraction S2 was reincubated with
DNase. Upon analysis in isokinetic sucrose gradients (Fig. 3,

Absorbance (at 254 nm)

L i
Top Bottom

FI1G. 3. Sucrose gradient sedimentation of template-active
fraction S2 chromatin. Curve A: chromatin was fractionated (Fig.
1) and S2 material was centrifuged for 17.5 hr at 39,000 rpm in
5-24% sucrose gradient. Curve B: fraction S2 was isolated and
DNase II reactivated by the addition of 20 mM EDTA (pH 6.4).
Incubation was for 1 hr at 24°. The reaction was terminated by
raising the pH to 8 with 0.1 M Tris-HCI (pH 11), and the sample
was centrifuged as described above.

Proc. Nat. Acad. Sci. USA 72 (1975)
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FIG. 4. Kinetics of digestion of chromatin fraction S2. Chro-
matin was fractionated as described (Fig. 1). S2 chromatin was in-
cubated with nucleases in three ways: reactivation of DNase II (0);
addition of fresh DNase II (A); addition of staphylococcal nuclease
(0). Aliquots were taken at various times to test for the production
of trichloroacetic-acid-soluble material.

curve B) no significant changes were observed in the >108
region. Reincubation with DNase has been carried out in
three ways (reactivation of DNase II, addition of fresh
DNase II, addition of staphylococcal nuclease), and similar
results were obtained with each of these methods. The kinet-
ics of redigestion of S2 chromatin are presented in Fig. 4.
With each method of redigestion, about 50-60% of the input
Age0 became acid-soluble. As the reaction approached com-
pletion the solutions first became turbid and eventually a
precipitate developed.

S2 chromatin has been isolated after various times of nu-
clease treatment (30 sec to 30 min) and analyzed in sucrose

MOLECULAR WEIGHT X 1m™”
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chromatin subfractions. Total protein of the 3-5S (upper gel) and
14S (lower gel) complexes was electrophoresed as described (27).
The stained gels were scanned and the densitometer profiles were
resolved into gaussian components by a least-squares computer
analysis.
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gradients. It was found that the 14 and 19S complexes ap-
pear in fraction S2 simultaneously. Thus there is no evidence
for a precursor-product relationship between the 19 and 14S
complexes. The nuclease-resistant S2 DNA (14 and 19S) was
found to have a weight-average single-strand length of 170
nucleotides after the initial DNase treatment (5 min). After
prolonged digestion (up to 120 min), the single-strand length
was reduced to 120 nucleotides. Nearly all the DNA which
sedimented at 3-5 S after the initial DNase digestion was
rendered acid-soluble by redigestion.

We have investigated the chemical compositions of the
subfractions of S2 chromatin (Table 1). The material at
14-19 S is enriched in both RNA and nonhistone chromo-
somal proteins. All the major histone species are present in
the 14 and 19S complexes; however, these complexes exhibit
reduced histone to DNA ratios relative to either unfraction-
ated chromatin or 11-13S subunits (Table 1). The protein
population of S2 chromatin has been investigated by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (Fig. 5).
Material from the 3-5S (upper gel) and from the 14S (lower
gel) position in the sucrose gradient (Fig. 3) has been ana-
lyzed. Densitometer scans of the stained gels were resolved
into gaussian components by a least squares computer analy-
sis. Numerous quantitative and qualitative differences be-
tween the 3-5S and 14S proteins can be recognized in these
gels. From the length of DNA contained in the 14S chroma-
tin complex (170 nucleotides), the protein-to-DNA ratio
(Table 1), and the complexity of the protein population (Fig.
5), we conclude that the 14S peak consists of a heterogene-
ous population of nucleoprotein species.

DISCUSSION

The template-active fraction of rat-liver chromatin is orga-
nized in a fashion similar to that of inactive chromatin; both
fractions consist of regions of nuclease-sensitive and nu-
clease-resistant DNA. Nuclease-resistant segments in tran-
scriptionally inactive chromatin are due to histone-DNA in-
teractions, while the nuclease-resistant segments of active
chromatin are due to DNA complexed with both histone and
nonhistone proteins. Nuclease-resistant structures of inactive
chromatin sediment at 11-13 S and resemble v-bodies (2) in
the electron microscope (17). The nuclease-resistant com-
plexes of active chromatin sediment at 14-19 S and contain
RNA as well as protein and DNA.

Our results shed new light on the findings of Felsenfeld’s
laboratory (8, 9, 31). These investigators have reported that
portions of the globin gene are found in both nuclease-sensi-
tive (“open”) and nuclease-resistant (“closed”) regions of re-
ticulocyte chromatin. Our results suggest that nuclease sensi-
tivity in a limit digest does not discriminate between active
and inactive chromatin regions. Felsenfeld's data indicate
that regions of the globin genes are always covered with pro-
tein (30) but make no distinction between histone and non-
histone protein. On the basis of our data we speculate that
active genes are complexed with nonhistone as well as his-
tone protein in the 14 and 198 structures.

Inactive genes are complexed mainly with histone and are
in the »-body structures. Although active, like inactive, chro-
matin contains nuclease-resistant and sensitive regions, there
are other major differences. Thermal denaturation and cir-
cular dichroism studies. (31-33) suggest that active chroma-
tin is in a more extended, more DNA-like conformation than
inactive chromatin. The electron microscope has revealed
differences in the structure of transcriptionally active and
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inactive regions of chromatin. Ribosomal genes in the act of
transcription are the length of their transcription product
(pre-TRNA) (34). On the other hand, DNA complexed with
histones in the »-body configuration is one-seventh the
length of the same deproteinized DNA (4). The basic fiber
diameter of inactive chromatin is 100 A. Active chromatin
has a fiber diameter of about 30 A (35, 36). Thus both physi-
cal chemical and electron microscopy studies suggest that
DNA of active chromatin is more extended than is the DNA
of inactive chromatin. It is probable that this is why active
chromatin is more susceptible to nuclease attack. This differ-
ential sensitivity to nuclease forms the basis of our fraction-
ation procedure (Fig. 1).

We wish to thank Dr. K. Peters and Mr. W. Wheatley for helpful
discussions. This work was supported by the U.S. Public Health Ser-
vice (GM 86 and GM 13762).
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ABSTRACT  The physical properties of rat liver chromatin
and nucleosomes acetylated with acetic anhydride were ex-
amined in order to clarify the mechanism by which chemical
acetylation of histones increases template activity in vitro
[Marushige, K. (1976) Proc. Natl. Acad. Sci. USA 73, 3937-3941).
Acetylation was found to have dramatic effects on the magne-
sium solubility, nuclease sensitivity, thermal denaturation, and
dimentati h tin and nucl The signifi
of the results to models of gene activation and chromatin rep-
lication is considered.

The five principal species of histone are associated with DNA
to form the eukaryotic chromosome. These basic proteins are
involved in the repression of template activity of chromatin (1,
2). It has long been thought that a degree of transcriptional
control might be achieved by the selective modification of
certain basic residues of the histones (3, 4).

In the current model of chromatin structure, 200 base pairs
of DNA are complexed with histones to form the nucleosomal
subunit. Although the nucleosome is a general feature of all
eukaryotic chromatin thus far examined, there appears to be
heterogeneity within the nucleosomes of any single cell type
(5). Some of this heterogeneity consists of different conforma-
tions of nucleosomes of active and inactive genes (6, 7), which
may result from histone modification (4).

Marushige (8) has reported that chemical acetylation of calf
thymus chromatin increases its template activity in vitro
without resulting in significant removal of the histones from
the DNA. These results suggest that acetylation of histones
participates in activation of genes for transcription. In this re-
port we describe the effect of chemical acetylation on the
physical properties of rat liver chromatin and nucleosomes.

MATERIALS AND METHODS

Preparation of Nuclei. Rat liver nuclei were prepared from
frozen rat livers (Pelfreeze). All manipulations were performed
at 0° unless otherwise stated. Livers were thawed in 0.25 M
sucrose/10 mM Tris-HCl, pH 7.4/6 mM KCl/5 mM
Mg(OAc);/0.1 mM ethylene glycol-bis(8-aminoethyl ether)-
N-N’-tetraacetic acid (EGTA). Livers were transferred to three
volumes of the same buffer containing 1 mM phenylmethyl-
sulfonyl fluoride (homogenization buffer) and homogenized
with five to seven strokes in a motor-driven glass/Teflon ho-
mogenizer. The homogenate was diluted to 10 volumes with
homogenization buffer, strained through cheesecloth, and
centrifuged at 1500 rpm in an HG-4L rotor (Sorvall RC-3
centrifuge) for 10 min. The pellet was washed twice in 10 vol-
umes of homogenization buffer containing 0.5% Nonidet-P40
(Particle Data Laboratories, Ltd), two to four times in ho-
mogenization buffer containing 0.1 mM phenylmethylsulfonyl
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fluoride and 0.5% Nonidet-P40, and finally once in homoge-
nization buffer. The nuclear pellet was resuspended in ho-
mogenization buffer and an equal volume of 5 mM Mg-
(OAc)2/98% glycerol was added. This suspension is stored at
—20° for up to 1 month.

Preparation of Chromatin. Nuclei were recovered from the
glycerol suspension by centrifugation at 3000 rpm in an HB-4
rotor (Sorvall RC-2 centrifuge) and washed once in 10 mM
Tris-HC, pH 7.4/6 mM KCl/5 mM Mg(OAc); (TKM). The
nuclei were lysed by vigorous homogenization in 2.5 mM
Tris-HCI, pH 7.4/2.5 mM ethylenediaminetetraacetic acid
(EDTA), followed by centrifugation at 10,000 rpm in the HB-4
rotor for 10 min. The chromatin was then washed once in the
same buffer and twice in 5 mM sodium borate, pH 8.2/10 mM
NaCl and finally was suspended in 5 mM sodium borate, pH
8.2/10 mM NaCl at an A of 10 (all chromatin absorbances
are measured in 1 M NaOH).

Novikoff hepatoma cells [line NISI-67 adapted for growth
in Swimms 210 medium (Gibco)] were cultured as described
by Plagemann (9). Cells were labeled with [2-14C]thymidine
(56 mCi/mmol) at 0.05 uCi/ml for two cell generations.
Preparation of nuclei will be described elsewhere (R. B. Wal-
lace, S. K. Dube, and J. Bonner, unpublished data); they were
mixed with 4-fold excess of rat liver nuclei. Chromatin was
prepared as described above.

Preparation of Nucleosomes. Nuclei were recovered from
the glycerol suspension as described above, washed once in
TKM, and suspended in TKM at an A 60 of 150-200. The sus-
pension was warmed to 37°, brought to 0.25 mM CaCls, and
digested for 5 min with 0.24 ug (7.5 units) of staphylococcal
nuclease (P-L Biochemicals) per Aggo unit. The nuclei were
cooled to 0° and centrifuged at 3000 rpm in the HB-4 rotor for
5 min. The nuclear pellet was homogenized in 2.5 mM Tris
HCI, pH 7.4/2.5 mM EDTA and centrifuged at 10,000 rpm in
the HB-4 rotor for 10 min. The supernatant was then passed
over a Sephadex G-50 column equilibrated with 5 mM sodium
borate, pH 8.2/0.1 mM EGTA,; the excluded fraction, repre-
senting nucleosomes, was adjusted to an Ageo of 10. Typical
preparations were 5-15% acid soluble and 50-70% monomer
nucleosomes.

Acetylation of Chromatin and Nucleosomes. Chromatin
and nucleosomes were acetylated with acetic anhydride as
described by Wong and Marushige (10). Chromatin solutions
were acetylated with 0.14 mM, 0.7 mM, and 7 mM acetic an-
hydride at an A 6o of 10. Acetylated chromatin samples were
dialyzed overnight against 10 mM Tris-HCI, pH 7.4. The in-
corporation of acetate groups was monitored by acetylating
chromatin with [3HJacetic anhydride (Schwartz/Mann) diluted
to 0.4 mCi/mmol. The amount of acetylation achieved with
the three concentrations was essentially the same as that re-
ported by Wong and Marushige.

Abbreviations: EGTA, ethylene glycol-bis(8-aminoethyl ether)-
N,N’-tetraacetic acid; TKM buffer, 10 mM Tris-HCI, pH 7.4/6 mM
KCl/5 mM Mg(OAc)y; EDTA, ethylenediaminetetraacetic acid.
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FIG. 1. Solubility of acetylated chromatin in magnesium acetate.
Nucleosomes were acetylated with acetic anhydride at 0 (¢), 0.14 (+),
0.7 (), and 7 mM (O) (see Materials and Methods), dialyzed against
10 mM Tris-HCI, pH 7.4/0.1 mM EGTA, and diluted to an A of 1.0.
Aliquots were adjusted to the desired magnesium acetate concen-
tration and centrifuged at 0° for 10 min at 10,000 rpm in an SS-34
rotor (Sorvall RC-2B). The A g0 of the supernatant was measured,
and the values are expressed as percentage of total Aze. The lines

represent nonlinear least-squares exponential fits to the data (13).

Thermal Denaturation. Acetylated and control chromatins
were dialyzed exhaustively against 0.25 mM EDTA (pH 8) and
adjusted to an Aggo of approximately 1.5. Melting was per-
formed with a Gilford 2400 spectrophotometer equipped with
a thermal cuvette and digital absorbance meter under control
of a Tektronix-31 programmable calculator. Absorbances were
recorded every 0.4°, each point being the average of 10 read-
ings. The data were corrected for the small hyperchromicity
of the buffer and derivatized by using the least-squares method
of Savitzky and Golay (11) (15-point cubic quartic polynomial
first-derivative smooth). The derivative data were normalized
to percentage hyperchromicity and resolved into gaussian
components by using a nonlinear least-squares fitting program
(12, 13).

Sucrose Density Gradient Centrifugation of Nucleosomes.
Isokinetic sucrose gradients were prepared by the method of
Noll (14), assuming a particle density of 1.44 g/cm? and using
the following parameters: gradient volume, 11.6 ml; Ciop, 5%
(wt/wt) sucrose; Cres, 26.7% (wt/wt) sucrose; sample volume,
0.5 ml. The gradient buffer was 10 mM Tris-HCI, pH 8/0.1 mM
EGTA. The gradients were run at 36,000 rpm in an SW41 rotor
for 18 hr at 4°. The gradients were scanned by using an ISCO
UA-5 ultraviolet monitor equipped with a digital absorbance
meter, and data were collected by a Tektronix-31 program-
mable calculator. Fractions of the gradients containing nu-
cleosomes acetylated with [*Hacetic anhydride were collected
and assayed for radioactivity directly in Aquasol 2 scintillation
fluid (New England Nuclear).

Polyacrylamide Gel Electrophoresis. The products of
DNase I digestion of control and acetylated chromatins were
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FIG. 2. Nuclease sensitivity of acetylated chromatin. Chromatin
was prepared from ['4C|thymidine-labeled cells and acetylated as
indicated in Materials and Methods. The samples were dialyzed
against 10 mM Tris-HCI, pH 7.4, the A6 was adjusted to 0.4, and the
sample was adjusted to 10 mM NaCl, 3 mM Mg(OAc);, and 1 mM
CaCl,. DNase I at 0.5 ug/ml (Left) or staphylococcal nuclease at 0.14
ug/ml (Right) was added, and the digestions were carried out at 24°.
Aliquots (0.5 ml) were removed at intervals and precipitated with 1
ml of cold 0.3 M perchloric acid. Insoluble material was removed by
centrifugation. The supernatant was neutralized with NaOH, adjusted
to 1% sodium dodecy! sulfate, 50 mM Tris-HCI (pH 7.4), and assayed
for radioactivity in Aquasol 2. After 1 hr of digestion, the remaining
chromatin was adjusted to 1% sodium dodecyl sulfate, 50 mM Tris-
HCI (pH 7.4), 0.2 M sodium perchlorate and assayed for total radio-
activity. Acetic anhydride concentrations: 0 (#), 0.14 mM (+), 0.7 mM
(¢), and 7 mM (Q). The lines represent nonlinear least-squares ex-
ponential fits to the data (13), with the uppermost line in each panel
representing the digestion of deproteinized rat liver DNA (see Table
1).

analyzed on 12% polyacrylamide/7 M urea gels as described
by Maniatis et al. (15). Slab gels, 2 X 120 X 150 mm, were
prepared and aged overnight. Samples were brought to 50%
formamide, boiled for 3 min, and quenched on ice. Electro-
phoresis was at 200 V and continued until the bromophenol blue
dye was 0.5 cm from the end of the gel. The gel was stained for
2 hr with ethidium bromide (1 ug/ml in 0.5 M ammonium
acetate) and photographed under ultraviolet light with a yellow
filter.

RESULTS

One of the most obvious physical changes that accompanies
chemical acetylation of rat liver chromatin is its solubilization.
Under the conditions of the acetylation reaction (i.e., 0.15 M
NaCl), chromatin is a condensed, insoluble precipitate. Chro-
matin is similarly condensed in the presence of 2 mM Mg?*.
Upon the addition of acetic anhydride at 0.7 or 7 mM, the
chromatin precipitate becomes noticeably more soluble. We
investigated this phenomenon by comparing the solubility of
control and acetylated nucleosomes in various concentrations
of magnesium (Fig. 1). The control nucleosomes were very
insoluble, less than 10% remaining soluble in 10 mM magne-
sium. Acetylation increased the solubility of nucleosomes, the
0.7 mM and 7 mM acetylated material becoming almost com-
pletely soluble.

Template active regions of chromatin are more sensitive to
DNase I (6, 7) than are inactive regions. If acetylation is re-
sponsible for gene activation in vivo, in vitro acetylated chro-
matin might be expected to show greater nuclease sensitivity
than unacetylated chromatin. Fig. 2 left and Table 1 show the
kinetics of digestion of acetylated '4C-labeled chromatin with
DNase I. Increased acetylation of chromatin dramatically al-
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Table 1. Kinetic parameters from Fig. 2

Staphylococcal

DNase I nuclease
k* Mt  R! k M R

Control 0079 320 1.0 0.054 405 1.0
Acetylated chromatin:

0.14 mM 0.237 416 39 0054 539 1.3

0.7mM 0458 833 152 0.110 789 3.9

7 mM 1300 956 494 0322 988 144
DNA 1.290 1000 51.3 0.653 100.0 29.6

* First-order rate constant (min~!).

* Maximal percentage digested.

! Relative initial rate of reaction. The initial rate for control chromatin
was 0.01 Ao unit/ml per min with DNase I and 0.0088 A 2o unit/ml
per min with staphylococcal nuclease.

tered the sensitivity of the DNA to the nuclease. Chromatin
acetylated with 0.14 mM acetic anhydride was digested 4 times
faster than control chromatin, and that acetylated at 0.7 mM
was digested 15 times faster. Maximally acetylated chromatin
(7 mM) was as sensitive as deproteinized DNA to DNase I. Fig.
2 right shows the results of a similar experiment with staphy-
lococcal nuclease. It can be seen that 0.14 mM acetylated
chromatin was slightly more sensitive than control chromatin
to staphylococcal nuclease, and 0.7 mM acetylated chromatin
was digested 4 times as fast as control chromatin; 7 mM acety-
lated chromatin was digested approximately half as fast as
deproteinized DNA. Thus, chemically acetylated chromatin
is moderately sensitive to staphylococcal nuclease but extremely
sensitive to DNase I.

Weintraub and Groudine (6) reported that, during the di-
gestion of active genes with DNase I, the digested DNA appears
as multiples of 10 nucleotides. Fig. 3 shows that 0.14 mM and
0.7 mM acetylated chromatins were digested by DNase I to the
same 10-nucleotide repeat pattern as control chromatin. This
result suggests that the histone-DNA interaction that produces
this periodic pattern is not disrupted by the acetylation. On the
other hand, the 7 mM acetylated chromatin did not have this
repeat pattern (although faint bands are apparent at 10-nu-
cleotide intervals).

The DNA of the transcriptionally active regions of chromatin

Table 2. Summary of melting transitions from Fig. 4

Tml % Tm2 % Tm3 % Tmd4 %
Nucleosomes
Control 645 344 763 60.6 8l1.1 50 — —
Acetylated:

0.14mM 602 393 738 520 79.7 88 — —
0.7mM 483 480 657 390 757 130 — —

7mM 42.1 552 522 316 697 132 — —
DNA 40.8 100.0 — —_ - — — —
Chromatin
Control 62.0 29.1 71.1 187 77.1 234 834 288
Acetylated:
0.14 mM 53.3 208 65.0 264 736 20.5 81.3 323
0.7 mM 476 449 633 287 — — 798 264
7 mM 43.7 83.7 507 64 — — 156 99
DNA 40.8 100.0 — — — — — —

Temperatures are in degrees Celsius. Transitions are numbered
in order of increasing temperature. Percentages refer to the fraction
of the total hyperchromicity of each sample in a given transition.
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FiG. 3. Polyacrylamide gel electrophoresis of DNase I-digested
chromatin DNA. Control and acetylated chromatins were prepared
as described in Materials and Methods. The samples were dialyzed
against 10 mM Tris-HCI (pH 7.4) and adjusted to A4 of 10. Each was
brought to 10 mM NaCl, 3 mM Mg(OAc);, and 1 mM CaCl,, and
DNase I, 10 ug/ml, was added. Each sample was digested for various
times at 24° such that the percentage of acid-soluble A g was 25, 30,
15, and 15 for control, 0.14 mM, 0.7 mM, and 7 mM acetic anhydride,
respectively. Reactions were stopped by bringing each to 1% sodium
dodecyl sulfate; then the samples were phenol/chloroform extracted
as described by Marmur (29). DNA was precipitated with ethanol and
dissolved in gel buffer (15); 25 ug of each was brought to 50% form-
amide, boiled for 3 min, and cooled on ice. Electrophoresis was per-
formed as described in Materials and Methods. From left to right:
DNA from unacetylated chromatin and 0.14 mM, 0.7 mM, and 7 mM
acetylated chromatin.

is believed to have a lower melting temperature than the DNA
of the inactive regions. This belief is supported by the thermal
fractionation experiments of McConaughy and McCarthy (16).
In addition, DNase II-fractionated template-active chromatin
melts at a lower temperature than does unfractionated chro-
matin (ref. 17; unpublished data).

The thermal denaturation of control and acetylated chro-
matins and nucleosomes, as well as deproteinized DNA, is
shown in Fig. 4. The data are presented as first-derivative
melting profiles, fitted to three or four gaussian components
to quantitate the transitions observed. Table 2 summarizes the
melting transitions and the contribution of each to the total
hyperchromicity. The most obvious effect of chemical acety-
lation on thermal denaturation is the dramatic shift to lower
melting temperatures of all the observed transitions. This is true
for both chromatin and nucleosomes, although the melting
p;oﬁles of control and acetylated chromatin were more com-
plex.

Fig. 5 shows the effect of acetylation ou the sedimentation
behavior of nucleosomes. The sedimentation of acetylated
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FIG. 4. First-derivative melting profiles (see Materials and
Methods). Full scale for each profile is 3% change in hyperchromicity
per degree. From top to bottom: unacetylated material, 0.14 mM, 0.7
mM, and 7 mM acetylated material, and deproteinized rat liver DNA.
(Left) Nucleosomes. (Right) Chromatin. - - -, dH/dT. —, Gaussian
components.

nucleosomes was dramatically retarded compared with that
of control nucleosomes and approached that of sodium dodecyl
sulfate-treated control nucleosomes. To determine whether all
of these nucleosomes were acetylated equally and whether all
of the acetate remained bound to the nucleohistone, the acet-
ylation reaction was carried out with [3H|acetic anhydride. Fig.
5 also shows the distribution of [*Hacetate across the gradients.
From 0.14 to 0.7 mM acetic anhydride there was a 4-fold in-
crease in acetate incorporation per nucleosome whereas from
0.7 to 7 mM acetic anhydride there was only a 2-fold increase.
This demonstrates the limit acetylation reported by Wong and
Marushige (10). All nucleosomes, monomer through trimer,
were acetylated. At 7 mM acetic anhydride, [H Jacetate counts
were found at the top of the gradient, perhaps representing
dissociated histone H1.

DISCUSSION

We have demonstrated that chemical acetylation of nucleo-
histone in vitro results in dramatic changes in its physical
properties. The results obtained suggest possible functions for
acetylation in vivo.

The chemical acetylation of nucleosomes was found to in-
crease their solubility in the presence of Mg2*. Previous studies
from this laboratory have shown that DNase Il digestion fol-
lowed by precipitation with 0.15 M NaCl (18) or 2 mM MgCl,
(19) yields a fraction of rat liver chromatin enriched in se-
quences transcribed in vivo (19).

Proc. Natl. Acad. Sci. USA 74(1977) 3247

Absorbance at 254 nm (—)
cpm (<)

T 1
0o 0.5 1.0

Fraction of gradient

FIG. 5. Sucrose gradient sedimentation of nucleosomes. Sedi-
mentation is from left to right. From top to bottom: nucleosomes, 0.14
mM acetylated nucleosomes, 0.7 mM acetylated nucleosomes, 7 mM
acetylated nucleosomes, and sodium dodecyl sulfate-treated nu-
cleosomal DNA (30). The sedimentation coefficients of the monomer
peak are 11.3, 10.6, 8.6, 6.2, and 5.4 S, respectively. The specific ac-
tivity of the labeled samples was 19.1, 67.4, and 119 acetates per 200
base pairs of DNA for 0.14 mM, 0.7 mM, and 7 mM acetylated nu-
cleosomes, respectively. Under the conditions of acetylation, ap-
proximately half as much acetate was incorporated into nonhistones
as into histones, and no detectable acetate was incorporated into
DNA.

The sensitivity of chromatin to DNase I and, to a lesser extent,
to staphylococcal nuclease is significantly increased after
treatment with acetic anhydride. Similar nuclease sensitivity
properties have been reported for transcriptionally active se-
quences (6, 7, 20), although the biochemical basis for this
phenomenon has not been determined. Marushige (8) reported
that the derepression of template activity by chemical acety-
lation with 0.7 mM acetic anhydride was a result of the acety-
lation of histones H2A and H2B, with H3 and H4 not contrib-
uting significantly. H3 and H4 have been implicated in the
protection of multimers of 10 nucleotides of DNA from di-
gestion by DNase I (21). Fig. 3 demonstrates that the 10-nu-
cleotide repeat pattern is observed in 0.7 mM acetylated
chromatin even though the rate of digestion by DNase I is
dramatically accelerated (Fig. 2 left). This suggests that the
interaction of H3 and H4 with the DNA has not been greatly
perturbed, whereas the template activity measurements by
Marushige suggest that the interaction of H2A and H2B with
DNA has been functionally altered by acetylation. Higher levels
of acetylation result in a disruption of the 10-nucleotide repeat
pattern (Fig. 3).

Thermal denaturation of nucleohistone demonstrates the
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dramatic stability of the histone-DNA complex. In order to
make DNA sequences available for transcription (or replica-
tion), it might be necessary to decrease the stability of this
complex (22). Although no direct correlation of nucleohistone
thermal denaturation behavior with functional state has been
demonstrated, isolated template-active chromatin has a lower
melting temperature than does the bulk of chromatin (17), and
active sequences of chromatin elute from hydroxylapatite at
lower temperatures (16). The results presented in Fig. 4 and
Table 2 demonstrate that chemical acetylation lowers the
melting temperature of nucleohistone, as might be expected
if acetylation were correlated with transcriptional activation.
The transitions observed in the first-derivative melting profiles
are similar to those reported by others (23-25). We have re-
solved the transitions into gaussian components in order to
quantitate the contribution of each transition to the total hy-
perchromicity. From previous work (2, 23), as well as unpub-
lished observations in our laboratory, tentative assignments may
be made to the transitions of control nucleosomes. The two
transitions at the highest temperatures are due to the denatur-
ation of the histone octamer-DNA complex. The lowest tran-
sition is due to a more heterogeneous set of interactions as re-
flected by the breadth of this transition. One of these contrib-
uting interactions is probably H1-DNA complexes (26). Acet-
ylation of nucleosomes with 0.14 mM acetic anhydride had little
effect on the profile. The relative contribution of each transition
remained unchanged, and the transitions were shifted to lower
temperatures, T1 being shifted by the largest amount. This is
consistent with the role of H1 in the T1 transition, in view of
the extensive acetylation of this histone by acetic anhydride
(10). The acetylation of nucleosomes with 0.7 mM acetic an-
hydride resulted in dramatic changes in the melting profile: all
three transitions were shifted to lower temperatures and the
relative contributions of T1 and T2 were increased at the ex-
pense of T3. This may reflect the differential effect of acety-
lation of H2A/H2B and H3/H4 as discussed above. Acetylation
with 7 mM acetic anhydride virtually abolished the stabilization
of DNA melting by histones, even though histones remain as-
sociated with the DNA (refs. 8 and 10; Fig. 5). The thermal
denaturation profiles of chromatin show the same general
features as those of nucleosomes.

At the lowest level of acetylation used (0.14 mM acetic an-
hydride), there were dramatic changes in magnesium solubility
(Fig. 1) and DNase I sensitivity (Fig. 2 left). However, staph-
ylococcal nuclease sensitivity (Fig. 2 right), DNase I digestion
pattern (Fig. 3), and thermal denaturation (Fig. 4 and Table
2) were only slightly perturbed by the acetylation. Although
the sites of chemical acetylation have not been determined, it
is possible that this low level of acetylation destabilizes inter-
actions that are qualitatively different from those affected by
higher levels.

The demonstration of a direct role of acetylation of histones
in gene activation, as suggested by Allfrey et al. (3), has been
elusive. Jackson et al. (27) argued that histone acetylation is too
extensive to be a specific mechanism of gene regulation.
However, histone modification may be important in DNA
replication and histone deposition, as well as in gene activation
(4, 28). The many functions of acetylation might be accom-
plished through different classes of sites for acetylation on the
histones. For gene activation, it may be sufficient to alter his-
tone-histone or histone-DNA interactions slightly as in the 0.14

Proc. Natl. Acad. Sci. USA 74 (1977)

mM acetylation. This could result in the conversion of nucleo-
somes to a conformation more conducive to transcription of the
associated DNA. On the other hand, DNA replication or histone
deposition might require a more extensive destabilization of
these histone-DNA interactions, as in the higher levels of
acetylation reported here.
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ABSTRACT  Chromatin from Friend leukemia cells labeled
with [1Clthymidine for 24 hr followed by [*H]thymidine for 10
min is converted into nucleosomes by staphylococcal nuclease
at only half the rate that total chromatin is converted. Polyac-
rylamide gel electrophoresis of nucleosomal DNA from cells
labeled for 24 hr with [*4Cjthymidine followed by 10 mm with
[3HJthymidine demonstrates that the inter

of newly replicated chromatin is approxlmalely 20 base airs
shorter than that of total chromatin. The i tions of this
difference for models of chromatin structure are discussed.

Considerable evidence from a number of laboratories indicates
that the bulk of eukaryotic DNA exists in a repeated, globular
form [reviewed by Kornberg (1)]. The repeat unit (the nu-
cleosome), contains 140 base pairs of DNA associated with an
octamer of the “inner” histones (H2A, H2B, H3, and H4), and
between 40 and 80 base pairs in an internucleosomal spacer.
Recent experiments suggest that 30-50 base pairs of this spacer
are complexed with histone H1 (2-4). Variations in the spacer
length have been observed between species and cell types
(5-11), and the breadth of the bands observed in DNA gels has
led to the postulation of heterogeneity within a single cell type
(12). Investigations have so far revealed no differences in
nucleosome spacing between transcribed and untranscribed
chromatin (13-18). In this report we present evidence of a
difference in repeat length between newly replicated and total
chromatin from Friend leukemia cells.

MATERIALS AND METHODS

Cell Culture and Labeling. Friend leukemia cells, clone
FSD-3, were grown in suspension culture as described previ-
ously (19). Cells were labeled with [!4Cjthymidine (61 Ci/mol,
Moravek Biochemicals) at 0.1 Ci/ml for 24 hr (1.5 generations)
followed by [*Hthymidine (21 Ci/mmol, Amersham) at 10
uCi/ml for 10 min or at 4 4Ci/ml for 30 min (1 Ci = 3.7 X 10!
becquerels).

Preparation of Nuclei and Nucleosomes. Cells were har-
vested at the end of the 3H labeling period, washed once in
phosphate-buffered saline, and suspended in 10 mM Tris-HCI,
pH 8.0/10 mM NaCl/5 mM Mg(OAc);/0.5% Nonidet-P40
(Shell Chemical). After 10 min, a nuclear pellet was formed by
centrifugation at 2000 X g for 2 min. The nuclei were washed
once in Tris/NaCl/Mg/Nonidet-P-40 and once in Tris/
NaCl/Mg and were resuspended in Tris/NaCl/Mg/0.25 mM
CaCly. The suspension was adjusted to approximately 50 ug of
DNA per ml and brought to 37°C. Staphylococcal nuclease (P-L
Biochemicals) was added to aliquots of the nuclear suspension
at concentrations of 0.01-65 units/ml (1 unit produces 15 A 250
units of acid-soluble material from DNA in 30 min at pH 8.8,
37°C), and digestion was stopped after 5 min by addition of 4

vol of ice-cold Tris/NaCl/Mg. The reaction mix was centri-
fuged at 2000 X g for 2 min, and the soluble material was re-
moved (this fraction was found to be equivalent to the fraction
soluble in 5% perchloric acid). The pellet was suspended in 2.5
mM Tris-HCI, pH 8.0/2.5 mM ethylene glycol bis(8-aminoethyl
ether)-N,N,N’,N’-tetraacetic acid (EGTA). The Tris/EGTA-
insoluble (undigested) fraction was removed by centrifugation
at 2000 X g for 3 min. The amount of DNA in the various
fractions was determined by bringing aliquots to 1% sodium
dodecyl sulfate and scintillation counting in Aquasol-2 (New
England Nuclear). A 4C to 3H spilldown correction of 17% was
performed (the labeling conditions produced roughly equal
amounts of 3H and '4C cpm). Under these counting conditions,
the sum of the cpm in the three fractions for each isotope was
constant from low to high enzyme concentration, and equal to
the total input cpm. Thus the differences observed were not due
to preferential quenching of large [*H]DNA. In addition, no
differences between 24-hr “C-labeled and 24-hr 3H-labeled
DNA were seen (data not shown).

Preparation of DNA and GCel Electrophoresis. DNA was
extracted from digested nuclei essentially by the procedure of
Marmur (20) and dissolved in 89 mM Tris/89 mM boric acid/
2.5 mM EDTA containing 5% (vol/vol) glycerol and 0.01%
bromophenol blue. Approximately 10 ug of the DNA samples
was applied to 15-cm 4% polyacrylamide gels [in Tris/
borate/EDTA, (21)] and electrophoresed at 150 V for 2 hr. Gels
were fractionated into 2-mm slices (Aliquogel fractionator,
Gilson) and scintillation counted in Aquasol-2. Data were cor-
rected for spilldown of !4C and converted to mobility relative
to the dye. The replicative form 2 DNA of phage ¢X174 was
cleaved with restriction endonuclease Hae III and labeled by
a slight modification of the procedure of Berkner and Folk
(22).

RESULTS

We have examined the digestion by staphylococcal nuclease
of DNA in isolated nuclei from cells that had been labeled for
24 hr with [1C]thymidine followed by 10 or 30 min with
[®*H]thymidine. The amount of radioactivity in acid-soluble,
Tris/EGTA-soluble and Tris/EGTA-insoluble form was de-
termined at various ratios of enzyme to substrate. [From analysis
of sucrose gradient profiles, the Tris/EGTA-soluble fraction
represents nucleosome multimers from 1 to about 20 (data not
shown).] Fig. 1 and Table 1 show that 30-min-labeled chromatin
is digested into nucleosomes at about %; the rate, and 10-min-
labeled chromatin at less than ¥, the rate that total chromatin
is digested. However, the fact that there is no difference in the
production of acid-soluble material suggests a difference in the
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Fic. 1. Dig of newly labeled and total chromatin by

staphylococcal nuclease. The percent of total cpm in each fraction (P)
is plotted versus the log of enzyme concentration (E, units/ml). (This
semilogarithmic plot expands the low enzyme region.) (4) Ten-minute
labeling, 3H total cpm = 35,421 (£6.3%), !4C total cpm = 13,710
(+8.3%) (uncertainties are % SD). (B) Thirty-minute labeling, data
from three experiments. °H total cpm = 164,524, 110,084, 167,690;
14C total cpm = 46,223, 100,724, 100,750 (all £3-4%). ¢, 4C (total)
Tris/NaCl/Mg-soluble (acid-soluble); ¢, 3H (new) Tris/NaCl/Mg-
soluble (acid-soluble); m, ¥C (total) Tris/EGTA-soluble (nucleo-
somes); 0, *H (new) Tris/EGTA-soluble (nucleosomes). The lines
represent fits to the equation P = Me*E drawn by using a nonlinear
least-squares fitting program (R. F. Murphy, W. R. Pearson, and J.
Bonner, unpublished and ref. 23) (see Table 1).

initial availability of internucleosomal DNA. The accuracy of
these estimates depends in large part on the adherence of nu-
clease digestion to pseudo-first-order kinetics under our con-
ditions. This problem may be avoided by plotting the same data
as 14C/3H ratio (Fig. 2). It can be seen that the difference is

Table 1. Kinetic parameters from Fig. 1

Chromatin k* M? R?
10-min new 0.224 70.2 15.7
10-min total 0.416 76.9 32.0

Ratio new/total 0.539 0.912 0.491
30-min new 0.665 61.4 40.9
30-min total 0.956 66.8 639

Ratio new/total 0.696 0.920 0.640

* First-order rate constant (ml unit~! min~!).
tM ry Az abadd

* Initial rate of reaction (k X M).
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FiG. 2. Comparison of digestion of total and newly labeled
chromatin. Data from Fig. 1 replotted as '*C/°H ratio for each sample.
¢, 10-min Tris/NaCl/Mg-soluble; ¢, 30-min Tris/NaCl/Mg-soluble;
®, 10-min Tris/EGTA-soluble; 0, 30-min Tris/EGTA-soluble.

greatest at low enzyme-to-chromatin ratios, approaching 8-fold
for a 10-min labeling.

The difference in digesfion rates observed suggests a dif-
ference in the structure of newly replicated chromatin. In order
to examine that possibility, total DNA from various digests of
nuclei labeled for 24 hr with [14C]thymidine followed by 10 min
with [3H]thymidine was prepared and electrophoresed in 4%
polyacrylamide gels (Fig. 3). The monomer peaks in each gel
are coincident, but a difference in the higher multimers is ev-
ident. The 3H peaks appear broader, so that for dimers and
trimers the !4C peak is almost included in the ®H peak. The
panels on the right show the data plotted as 3H/'4C ratio. Peaks
are seen to the right of the position of the 14C-labeled multimers
(marked by the arrows), demonstrating a difference in the
average size of the two types of multimer DNA.

To quantitate this difference, Gaussian curves were fit to the
data from each gel for each isotope by using a nonlinear least-
squares fitting program (R. F. Murphy, W. R. Pearson, and J.
Bonner, unpublished; ref. 24). 32P-Labeled fragments of ¢X174
replicative form 2 DNA cleaved with Hae III were either run
on parallel gels or mixed with the H and '4C samples. These
gels were also fractionated and their radioactivities were de-
termined. The mobilities of these fragments were 1-2% higher
at low DNA concentrations (approximately 100 ng/gel),
compared to the same fragments mixed with the Friend cell
DNA samples (approximately 10 ug/gel; data not shown). For
the standardization, values from the latter gels were used. Fig.
4 shows the nucleotide length of each fragment [determined
from the nucleotide sequence (25)] plotted semilogarithmically
versus its mobility. This yields a straight line, from which the
sizes of the 3H and !4C nucleosomes were calculated.

Fig. 5 shows the variation in nucleasome size with multimer
number, from which the nucleosome repeat length can be de-
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FIG. 3. Polyacrylamide (4%) gel electrophoresis of DNA from newly labeled and total nucleosomes. (A-C) Percent of total nuclear cpm for
3H (+, new) and '4C (9, total) nucleosomal DNA is plotted versus mobility relative to bromophenol blue. 3H total cpm: A, 4019; B, 4571; C,
3605. 14C total cpm: A, 5772; B, 6259; C, 4873. The lines represent the sum of Gaussian curves fit to the data by using a nonlinear least-squares
fitting program (R. F. Murphy, W. R. Pearson, and J. Bonner, unpublished). The arrows mark the approximate position of the '4C core and
multimers, and the associated numbers of base pairs were calculated from the standards as described in the text. The enzyme concentration
increases 3.16-fold from A to B and from B to C. (D-F) Ratio of H/!*C cpm from A-C.

termined independently of the extent of digestion. Table 2
summarizes this data. The difference in size is clearly due to
a difference in spacer length, which varies from 10 base pairs
in the least digested sample to 29 in the most. Because the
breadth of the bands appears to decrease with digestion, the
average value of 17 is probably an underestimate.

Table 2. Nucleosomal DNA sizes

Spacer

Chromatin Mono Di  Tri Unit Spacer* difference

At New 168 387 563 198 58

Total 164 397 579 208 68 10
Bt New 151 349 528 188 48

Total 150 365 548 199 59 11
' New 144 331 187 47

Total 148 358 210 70 23
Ct'  New 140 323 527 194 54

Total 139 348 585 223 83 29
¢ New 138 320 182 42

Total 140 . 336 195 55 13

Average 1748

* Assuming a core size of 140 base pairs.
* Fig. 3 panel number.
t Gel not shown; enzyme concentration as for preceding gel.

DISCUSSION

Much evidence has been accumulated to indicate that nucle-
osomes from different species and cell types have different
repeat lengths (5-11). A correlation between nucleosome size
and transcriptional activity has been suggested (9-10). As has
been pointed out by Thomas and Thompson (11), however, it
would appear unlikely that two different cells from the same
organism would have a significant difference in their average
repeat size because of differences in the small fraction of total
DNA coding for structural genes. Some reports of the presence
of transcribed genes in nucleosome structures have included
data that indicate that the spacing for transcribed and non-
transcribed DNA is the same. Two of these methods—com-
parison of unlabeled DNA in parallel gels (17) and comparison
of unlabeled total DNA and labeled, hybridized probe for the
examined sequence (15, 16, 18)—are severely limited in their
accuracy due to difficulties in aligning and scaling the different
sets of data. The third method—double-labeling—has been
used to show that 60- to 120-min labeled ribosomal DNA and
long-term labeled total DNA from Tetrahymena macronuclei
nucleosomes have the same size (13, 14). No direct evidence of
a relationship between nucleosome spacing and transcriptional
activity has been reported.

As we have shown above, newly replicated nucleosomal DNA
from mouse Friend cells is different in size from total nucleo-
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FI1G. 6. Changes in nucl arrang t during ch tin
replication. All circles represent 140-base-pair nucleosome cores. O,
1

with normal (200-base-pair) spacing; ®, nucleosomes

FiG. 4.

acrylamide gels. DNA length L (base pairs) is plotted garith-
mically versus mobility relative to bromophenol blue for ¢X174
replicative form DNA cut with Hae II1 [ ¢, lengths determined from
the DNA sequence (24)]. The line represents the least-squares fit log
L = 3.308 — 1.473 R (correlation coefficient r = —0.9963, % error =
1.06) for the ¢ X 174 markers, whose lengths are 118, 194, 234, 271 and
278, 310, 606, 872, and 1078 base pairs.

600 .

370 =1

370 1

DNA length, base pairs

1

2 3
Nucleosome number

FIG. 5. Determination of nucleosome spacing. DNA length (base

pairs, determined from the center of fitted Gaussian curves) is plotted
versus nucleosome multimer number (n) for the gels from Fig. 3. +,
3H; ¢, C. The lines are least-squares fits L = a + br, in whicha is
the sum of the lengths of the ends on each multimer minus the spacer
length and b is the unit nucleosome size (core length plus the spacer
length) (see Table 2).

140

with shortened (180-base-pair) ing. The ber of nucl
depicted in each configuration is arbitrary. In reality, the number of
nucleosomes (and hence the length of time) between the passage of

lication fork and regaining of normal spacing is certainly much
larger. (A) Chromatin after replication has been initiated. Com-
pression of nucleosomes has occurred to allow for replication complex.
A random dispersive model is shown, but semiconservative and con-
servative models are not ruled out. Current data are conflicting in this
regard, but the proposed compression during replication is inde-
pendent of the exact dispersion mechanism. Nuclease digestion of
chromatin labeled for short times (1-30 sec, depending on the rate
of replication for the specific cell type) yields an increased rate of
production of both acid-soluble material and mononucleosomes. (B)
New nucleosome cores cover the free DNA, but shortened spacing
remains intact. Additional free DNA generated by compression is
present at the fork. Longer pulses (5-10 min) detect no difference in
production of acid-soluble material, decreased oligonucleosome
production, and shortened nucleosome spacing. (C) Normal spacing
is slowly regained by nucleosome sliding (20-30 min). The amount
of free DNA at the fork is thus kept constant.

somal DNA. This might suggest a relationship between nu-
cleosome spacing and chromatin replication rate, because the
general correlation between shortened nucleosomal spacings
and high transcriptional activity [reviewed by Kornberg (1)]
can also be made between shortened spacing and short gener-
ation times. However, there is no difference in spacing between
Chinese hamster ovary cell nuclei and mitotic chromosomes
(17), or between confluent and exponentially growing C6 rat
glial tumor cells (10). These experiments used unlabeled DNA
in parallel gels, and hence do not have the sensitivity of our
experiments. However, the conclusion that nuclecsome spacing
is not significantly related to rate of chromatin replication is
probably justified, because the fraction of chromatin in newly
replicated form is too small to account for spacing differences
in total DNA from cells with different generation times. Instead,
a gradual increase in nucleosome spacing with time is possible
(perhaps to comp for small ts of histone degra-
dation or as a result of changes in the level of histone modifi-
cation).

Some laboratories have reported that chromatin pulse-labeled
for from 0.5 to 10 min produces acid-soluble material at an
increased rate (relative to total chromatin) when digested with
staphylococcal nuclease (26-28). These studies have generally
used shorter pulses than we have, and those that have used
longer pulses have indicated that the difference disappears (26,
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28). Considering the variation in chromatin replication rate
among different cell lines, it would appear that the published
data are consistent with an increased sensitivity during and
immediately following DNA replication and normal sensitivity
once histone cores are deposited on the free DNA. The short-
lived acid-soluble difference is followed by a longer-term de-
crease in production of nucleosomes by staphylococcal nuclease,
due to smaller nucleosome spacers (Fig. 6).

In any case, our results indicate that elongation can take place
after histone deposition (perhaps caused by the binding of
histone H1 and/or some nonhistone protein). This suggests that
the interaction between core histones and DNA is not strong
enough to prevent nucleosome “sliding,” a conclusion that may
be sigaificant for models of chromatin replication and tran-
scription.

After this manuscript was prepared, Levy and Jakob (29) and
Seale (30) reported similar results for sea urchin embryos la-
beled for 7 sec and HeLa cell nuclei labeled #n vitro for 20 min,
respectively.
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Abstract

The properties of chromatin containing newly synthesized DNA
and protein are investigated. Nuclease digestion rates suggest
that histones are segregated conservatively at the replication
fork. A fraction of soluble nucleosomes enriched in
newly-replicated DNA has been isolated by means of its increased
density in metrizamide relative to bulk chromatin. This fraction
is shown to be packaged into nucleosomes, but at an interval of
approximately 160 base-pairs, as opposed to the 200 base-pair
repeat seen for total chromatin. Evidence is presented that the
density difference is due to this altered épacing. While
pulse-labeled DNA is present in this dense fraction, nucleosomes
labeled with short pulses of arginine or acetate are of normal
density. The data presented are consistent with the conclusion
that newly replicated DNA is associated with pre-existing
histones in a short-lived, compact structure, while
newly-synthesized histones are deposited at normal spacing some

distance from the replication fork.
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The events involved in the replication of eukaryotic
chromatin have been analyzed by fixation of chromatin with
formaldehyde (e.g., Fakan et al., 1972; Jackson et al., 1975;
Seale, 1976a; Hancock, 1977) and inhibition of protein synthesis
with cycloheximide (e.g., Seale & Simpson, 1975; Weintraub,
1976). Some of these investigations have yielded conflicting
results. 1In addition, possible disruption of chromatin structure
resulting from the methods of sample preparation and analysis

used has led to objections to the results of previous

experiments. In this paper we describe the determination of some
of the properties of replicating chromatin using metrizamide

density gradient centrifugation of native chromatin.
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Materials and Methods

Cell culture and labeling. Friend leukemia cells,

uninducible clone F4+, were grown in suspension culture as
described previously (Keppel et al., 1977). The generation time
under our conditions was 15.2 hr. For various experiments, cells

were labeled with 14

C-thymidine (61 Ci/mmol, Amersham) at 4
nCi/ml, 14C-L-arginine (312 mCi/mmol, Schwartz/Mann) at 50
nCi/ml, 3H-thymidine (22 Ci/mmol, Amersham) at 40 uCi-min/ml,
3H-L-arginine (8.8 Ci/mmol, Amersham) at 250 uCi-min/ml, and
3H-acetic acid (2 Ci/mmol, Moravek Biochemicals) at 300

uCi-min/ml (1 €i=3.7 x 1010

becquerels). All samples for
scintillation counting were brought to 0.1% SDS in a final volume
of 0.4 ml and counted in 3 ml of Aquasol-2 (New England Nuclear).
Under these conditions, the spillover from the 3H window to the

14 14C to H spillover was 11%. No

C window was 4%, and the
effect on the counting efficiencies or spillover ratios was seen
from 0-507, metrizamide. The presence of the SDS eliminated

almost all self-quenching of large molecules.

Preparation of nuclei and nucleosomes. Nucleosomes were

prepared from purified nuclei as described previously (Murphy et al.,
1978), with the exception that micrococcal nuclease was

purchased from Worthington (1 unit produces 1 Aggo unit of
acid-soluble material from DNA in 30 min at pH 8.0, 37°C). To
facilitate comparison of different experiments, digestions were
carried out for 5 min at 37°C at specified ratios of nuclease units

to number of nuclei.
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Metrizamide gradient centrifugation. Metrizamide was

obtained from Nyegaard and Co. A/S, Oslo, Norway. All
metrizamide solutions contained 2.5 mM Tris pH 8.0/ 2.5 mM
ethyleneglycol-bis-( -aminoethyl ether)N,N'-tetraacetic acid
(EGTA). 2.3 ml of sample in 30% (w/v) metrizamide was layered
over 1.7 ml of 60% (w/v) metrizamide in a % x 2 in cellulose
nitrate centrifuge tube, and overlayered with 1 ml of Tris/EGTA.
Gradients were run at 10,000 rpm for 16 hr at 4°C in the Sorvall
TV-865 rotor, and fractions collected dropwise from the bottom.
Density was determined from the refractive index at 25°C (Birnie,
1978). DNA samples for electrophoresis were prepared by
proteinase K (EM Laboratories) digestion of gradient fractions.

Polyacrylamide gel electrophoresis and fluorography. 47

polyacrylamide slab gels containing 89 mM Tris/89 mM Boric acid/
2.5 mM EDTA (pH 8.3) were prepared as described by Maniatis et al.

(1975). 3

H radioactivity was visualized by fluorography

(Bonner & Laskey, 1974; Laskey & Mills, 1975). 2.5% polyacrylamide/
0.5% agarose Tris/Borate/EDTA tube gels were prepared similarly.
Tube gels (0.6 x 15 cm) were run for 3 hr at 100V and

fractionated into 2 mm slices (Aliquogel fractionator, Gilson).

Gel fractions were counted as described above. Counting of gels
polymerized with various sizes of 3H and 14C DNA showed no

quenching by the polyacrylamide fragments, and minimal dependence

of the efficiency and spillover on DNA length.
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Results

Nuclease sensitivity of pulse-labeled chromatin. 1In a

previous paper (Murphy et al., 1978), we demonstrated that
chromatin pulse-labeled for 10 min was digested to nucleosomes
more slowly than bulk chromatin, using the criteria of solubility
in Tris/EGTA. We attributed this to the shortened nucleosome
spacing of newly-replicated chromatin (Murphy et al., 1978; Levy
& Jakob, 1978; Seale, 1978b). While an increased rate of
digestion to acid-soluble DNA by micrococcal nuclease had been
reported for pulse-labeled chromatin (Hildebrand & Walters, 1976;
Seale, 1976b), we did not observe this difference for our 10 min
labeled material. Because of possible differences in replication
rates between different cell lines, we have determined the
relative rates of production of acid-soluble and Tris/EGTA
soluble material for cells labeled for 1-30 min. Figure 1 shows
that digestion of newly-replicated chromatin results in an
increased rate of production of acid-soluble material, but a
decreased rate of production of soluble nucleosomes. In view of
the smaller spacing and decreased nucleosome production of newly-
replicated chromatin, we attempted to fractionate unfixed
nucleosomes using metrizamide gradients.

Buoyant density of pulse-labeled chromatin. Cells were

14

labeled with =~ C-thymidine for 24 hr, and then with
3H-thymidine for 1, 10 or 100 min. After brief digestion with

micrococcal nuclease, the total nucleosomal fraction was

centrifuged in metrizamide. Figure 2 shows that the 1 min
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Figure 1. Digestion of pulse-labeled chromatin with
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Figure 2. Separation of newly-replicated chromatin from

bulk chromatln in metrizamide gradients. Cells were labeled for
24 hr with lé4c- thgmldlne and then for 1 min (B), 10 min (C) or
100 min (D) with 9ym1d1ne After digestion with micrococcal
nuclease at 5.33 x 10’ units/nucleus and removal of acid-soluble
material (2.4% l%4c; 8.8, 2.4, 2.4% 3 H), the total nucleosomal
fraction was centrifuged in metrizamide. The data in B-D are
plotted so that the total area of each panel represents Zeven
t1me§ the number of cpm in the gradient. + density. § C cpm.
a H cpm. (See Table I.)
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Table I. Density of chromatin fractions in
metrizamide gradients of Figure 22

Heavy

Light

3y 91b 14. 97 H 144
1 min 1.2034 28.2 1.2070 2.9 L1712 1.1664
10 min 1.2106 10.4 1.2107 6.0 .1730 1.1701
100 min 1.2097 3.6 1.2093 3.4 .1678 1.1669
Mean 1.2079 ===~ 1.2090 4.1 ;1707 1.1678
SD 0.0039 ==-- 0.0019 1.7 .0026 0.0020

dpeak densities and percentages were determined using a

non-linear least-squares fitting program (Murphy et al., 1979)
o fit two Gaussian curves to the data.

Percent of total cpm in gradient.
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labeled nucleosomes are more dense than the long-term labeled
nucleosomes, and that this density difference disappears on
longer labeling. Table I gives the densities of the two
chromatin fractions, and shows that bulk chromatin has a dense
shoulder constituting approximately 57 of the total DNA. Birnie
et al. (1973) found the density of native mouse DNA to be 1.118
g/cm3, and the density of purified proteins to vary from 1.24 to
1.29 g/cm3. The density of nuclear DNA (proteinase K treated) in

metrizamide is 1.12 g/cm3

, and that of nucleosomal protein (DNAse I
treated) is 1.23 g/cm3 (data not shown). Thus, it is likely

that the increased density of newly-replicated chromatin is due

to an increased protein/DNA ratio, as would be expected due to

its decreased nucleosomal spacing.

To confirm that the material in the dense peak is present in
nucleosomes, the material from that peak was isolated and run on
isokinetic sucrose gradients (Noll, 1967). The 3H labeled
material showed the typical nucleosomal pattern (data not shown).
Figure 3 also shows that the DNA of this fraction has nucleosomal
spacing. Since there is more newly-replicated DNA in the
mononucleosome bands of the light fractions than in the
corresponding bands of the denser fractions, the separation may
be at least partly due to a decreased rate of production of low

multimers of newly-replicated chromatin.

Removal of density difference by extensive nuclease

digestion. If the density difference were totally due to the

presence of newly-replicated DNA in higher nucleosome multimers,
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Figure 3 (next page). Nucleosome distribution of metrizamide
gradient fractions. Nuclei labeled for 3 min with 3H-thymidine
were digested at 2 x 10 units/nucleus (187 acid-soluble), and the
tot§1 nucleosomal fraction was centrifuged in metrizamide.

A) “H distribution across gradient. B) 13 day fluorogram of a

47 polyacrylamide slab gel. The outermost slots contain DNA from
an aliquot of the nucleosomes before centrifugation. The other
slots (from left to right) contain DNA from the fractions marked
by diamonds in A.
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it would disappear if soluble nucleosomes (i.e., low multimers)
were isolated and run. That this is not the case is demonstrated
by the fact that 1 min labeled soluble nucleosomes are more dense
than long-term labeled nucleosomes (Figure 4). However, the
density difference disappears as the chromatin is digested to
monomers, as would be predicted if the higher density were due to
decreased nucleosomal spacing.

Figure 4 also suggests that there is a shift in density of
bulk nucleosomes as nuclease digestion proceeds. This is further
demonstrated by the data from a number of experiments summarized
in Table II.

Nucleosome spacing of isolated newly—replicated chromatin.

The data presented above show that it is possible to isolate a
fraction of nucleosomes which are enriched in newly-replicated
DNA. To confirm that indeed the nucleosome spacing of this
fraction is significantly smaller than that of bulk chromatin
from the same digest, DNA from these fractions was isolated and
analyzed on polyacrylamide gels (Figure 5). Estimating
molecular weight from relative mobility using 32P—1abeled PBR322
DNA digested with the restriction endonuclease HinFl, the repeat
spacing of the 1 min labeled nucleosomes is about 160 bp, while
that of the bulk chromatin is 200 bp. This is smaller than our
previous estimate of 180 bp for 10 min labeled nucleosomes
(Murphy et al., 1978). As we pointed out, however, this is due
to the reversion to normal spacing which occurs in the 10 min

labeling period.
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normalized cpm

0 0.5 D 0.5 i
fraction from bottom of gradient

Figure 4. Effect of extent of digestion on separation of
newly-replicated chromatin from bulk chromatin, Tris/EGTA-soluble
nucleosomes from cells %abeled for 24 hr with *7C-thymidine (&)
followed by 1 min with “H-thymidine ([ ) were centrifuged in
metrizamide. The total area of each panel is six times ghe

total nuc%ear cpm. Digest{zns (A-F) were from 1.67 x 10° to

6.67 x 10° units/nucleus. C acid-soluble increases from

0.6% to 23%, and “H acid-soluble from 47 to 39%. The lines
through the points are 5 point quadratic smooths of the data
(Savitzky & Golay, 1964).
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Table II. Buoyant density of nucleosoges as
a function of extent of digestion

Enzyme Thymidine Arginine

Range N Mean SD N Mean SD
-8 to ~7.1 5 1.1577 0.0024 3 1.1580 0.0078
-7 to -6.1 7 1.1517 0.0059 7 1.1547 0.0068
- to -5,1 5 1.1363 0.0049 2 1.1417 0.0007

%peak densities were determined by fitting a Gaussian curve to
gata for 24 hr labeled material.

Log of enzyme concentration (units/nucleus); lower and upper
limits for grouped data.

CNumber of gradients.
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Figure 5. Nucleosomal DNA spacing of heavy fraction from
metrizamide gradients. 2.5% polyacrylamide/0.5% agarosiagels.
Samples were from the gradient shown in Figure 4C. A) C cpm
for Tris/EGTA soluble fraction before centrifugation. B) 3y cpm
for heavy peak from gradient (fractions 25&26). Mobility is
relative to bromphenol blue. The arrows mark the positions of
P-labeled PBR322 DNA cut with HinFl, and correspond to DNA
sizes of 1631, 516/506, 396, 344, 298, and 221/220 base-pairs.
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Buoyant density of newly-deposited nucleosomal protein.

Some investigators have suggested that newly-synthesized
chromosomal protein is deposited on unreplicated DNA (Jackson

et al., 1976; Seale, 1976a; Hancock, 1977; Hancock, 1978). There
has been some uncertainty about this conclusion, since CsCl
gradients of formaldehyde-fixed chromatin were used. To
determine the degree of association of newly-synthesized histone
with newly-replicated DNA using unfixed chromatin, cells were

labeled with L+

C-L-arginine for 24 hr, and then with

3H-L-arginine for 5 min. Tris/EGTA soluble nucleosomes from these
cells were run on metrizamide gradients after digestion to

varying extents. Figure 6B shows one of these gradients, along
with a gradient of 24 hr 14C-thymidine/ 5 min 3H—thymidine

labeled Tris/EGTA soluble nucleosomes (at the same nuclease
conéentration). In no case were 3H-arginine counts detected in
the dense region. Indeed, the 14C and 3H counts were nearly
identical, as can be seen in Figure 6. Similar results were

obtained for cells labeled with arginine for 10 or 100 min, and

for cells labeled with acetate for 1, 10 or 100 min.
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normalized cpm

0 0.5 | 0.5
fraction from bottom of gradient

Figure 6. Comparison of density distribution of thymidine and
arginine_labeled Tris/EGTA soluble nucleosomes. Digestion was at

1.0 x 107 units/nucleus. A) 24 hr 14C-thymidine 0 ; % 8% acid-soluble)/
5 min 3H-t:hymidine (@ ; 3.7% acid-soluble). B) 24 hr 4C-L-arginine
(¢)/ 5 min 3H-L-arginine (Q). The total area of each panel is 6.6
times the total cpm in each gradient.
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Discussion

Nuclease sensitivity and histone segregation mechanism.

Chromatin pulse-labeled with thymidine for short periods of time
has been shown to be digested to acid-soluble material more
quickly than bulk chromatin by micrococcal (staphylococcal)
nuclease (Hildebrand & Walters, 1976; Seale, 1976b; Levy & Jakob,
1978) and DNase I (Seale, 1975; Burgoyne et al., 1976). This
increased production of acid-soluble material has also been
demonstrated for chromatin from cells which have been exposed to
cycloheximide (Seale & Simpson, 1975; Weintraub, 1976). While
Seale (1976b) suggested that newly-replicated chromatin was
digested to nucleosomes faster than total chromatin, Marshall &
Burgoyne (1976) demonstrated a slightly decreased rate of
production of nucleosomes for 10 min labeled chromatin using sucrose
gradients. We have confirmed this decreased rate of production of
nucleosomes by measuring solubility in Tris/EGTA, which is
proportional to fragment length (Murphy et al., 1978 and Figure 1).
These seemingly contradictory results can best be explained
by assuming a conservative mechanism of histone segregation at
the replication fork. Such a mechanism has been demonstrated
using cycloheximide treated cells (Weintraub, 1976; Riley &
Weintraub, 1979) and by ﬁistone-histone cross-linking (Leffak et al.,
1977). The fact that other investigators (e.g., Jackson et al.,
1975) have presented evidence for a random mechanism may be

a result of problems involved in chromatin fixation, or
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difficulties in correcting for the presence of non-histone
protein.

Metrizamide fractionation of chromatin. Because metrizamide

is an inert, non-ionic density gradient material, it has been

used to examine chromatin properties (e.g., Birmie et al., 1973).
Rickwood et al. (1974) demonstrated the separation of chromatin into
two fractions as a function of the extent of mechanical shearing,
and took this as an indication of the presence of protein-rich

and protein-poor regions. The data of Figure 4 and Table II
suggest that the separation is instead due to the decreased

density of low nucleosome multimers. This shift may well be due

to the removal of non-histone proteins and/or histone Hl during
digestion (Noll & Kormberg, 1977).

Buoyvant density of pulse-labeled chromatin. 1In CsCl

gradients of formaldehyde-fixed chromatin, a decreased density
has been reported for pulse-labeled chromatin (Fakan et al.,
1972; Seale & Simpson, 1975; Jackson et al., 1976),
cycloheximide-treated chromatin (Seale & Simpson, 1975), and

in vitro labeled chromatin (Seale, 1978a). This decreased density
in CsCl corresponds to the increased density in metrizamide
demonstrated above, since protein is less dense than DNA in CsCl,
but more dense than DNA in metrizamide. Both increased (Levy

et al., 1975) and decreased (Burke & Pearson, 1976) densities in
metrizamide have been reported for pulse-labeled chromatin which
had been mechanically sheared. As Noll et al. (1975) have

pointed out, there is significant disruption of nucleosome



45

structure during mechanical shearing. 1In addition, the results
presented above demonstrate the importance of controlling the
extent of shearing during sample preparation. These facts make
interpretation of the previous reports difficult.

Hancock (1974) has shown that the preparation of nuclei and
chromatin by methods very similar to those used in these
experiments do not allow exchange of histones between
deoxyribonucleoprotein molecules. The lack of histone exchange,
the fact that nuclease digestion was used to prepare nucleosome
samples, and the use of the non-ionic density gradient material
make it very unlikely that the results presented above are due to
distortion or disruption of the chromatin structure.

Deposition of newly-synthesized histone. Having established

a method for isolating native nucleosomes containing
newly-replicated DNA, it was then possible to examine the
distribution of newly-synthesized histones. Figure 6 shows that
no significant deposition of this histone occurs on new DNA
during the lifetime of the closely packed nucleosomal structure.
This is in agreement with the results reported for fixed
chromatin (Jackson et al., 1976; Seale, 1976a; Hancock, 1977;
Hancock, 1978). Our data do not rule out the possibility that
new histones are deposited on the unpackaged new DNA strand at
normal spacing. However, previous results with fixed chromatin

would appear to make this unlikely.
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PART V

Chapter 6. Computer programs for analysis of nucleic acid
hybridization, thermal denaturation, and gel electrophoresis

data
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ABSTRACT

Computer programs for the analysis of data from techniques
frequently wused in nucleic acids research are described. 1In
addition to calculating non-linear 1least-squares solutions to
equations describing these systems, the programs allow for data
editing, normalization, plotting and storage, and are flexible
and simple to |use. Typical applications of the programs are
described.

INTRODUCTION

The increasing complexity and volume of data being generated
in biochemical and biophysical experimentation, and the
proliferation of mini-computer systems, has created a need for
portable, interactive data storage and analysis programs. This
paper describes non-linear least-squares fitting programs which
have been used for the analysis of data from gel electrophoresis
(1-4), DNA-DNA and RNA-DNA hybridization (5-7), and DNA,
chromatin and protein-DNA thermal denaturation (8-10). These
programs have been implemented on a PDP-11 mini-computer system,
and are written in FORTRAN for ease of transfer to other computer
systems. The programs require approximately 16,000 16-bit words
of memory and a disk mass storage device (such as flexible disk).
Mini-computers capable of running this data analysis system are
currently available for less than $5,000.

In this paper we will first describe three different
programs in the package, and then discuss the reliability and
significance of the parameter estimates calculated by the
programs.
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PROGRAM DESCRIPTIONS

The three programs in the least-squares fitting package are
COTFIT, for analysis of nucleic acid hybridization and
denaturation data, GELFIT, for determination of the positions and
areas of Gaussian curves fit to gel electrophoresis data, and
MELSMR, for removal of noise from closely-spaced data. These
programs use a common data file format, which allows interaction
of the various programs for uses other than those described
above. For example, CsCl density gradient data could be entered
with COTFIT, smoothed with MELSMR, and then analyzed with GELFIT.
COTFIT

COTFIT is a non-linear 1least-squares fitting program
developed from the NNNBAT program described by Pearson, Davidson
and Britten (11), which was in turn based on the FINGER program
of Britten, Graham and Neufeld (12). The program accepts English
commands to control data entry and fitting. Data may be read
from disk files or entered at the terminal. 1In addition to
least-squares fitting, COTFIT provides general facilities for
entering and editing data, and offers a variety of options for
plotting and printing the curves calculated from the data.

Initial parameter estimates are improved by a modification
of the method of Marquardt (13). Parameter values which would
produce undefined function values are detected without causing
arithmetic errors. This enables the fitting routine to try a
broad range of possible parameter values without causing program
termination.

As an additional option, files containing function values
(with or without specified errors in the parameters) over a given
interval can be generated. This feature is useful for displaying
the functions under various conditions.

The functions described by Pearson, Davidson and Britten
(11) have been modified, and a new function has been added. The
NNNBAT function names and the corresponding COTFIT names are
listed below.
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N COTFIT NNNBAT DESCRIPTION

1 FINGER FINGER second order DNA renaturation.

2 DIGEST WHATOR variable order renaturation.

3 DRIVEN NUFORM tracer/driver reaction with different
nucleation rates.

) EXCESS EXCESS first order renaturation.

5 MELTFN «==we-- thermal denaturation function.

The MELTFN function is

m T
H(T) = I + I Fi{0.5 + " J exp [:$¥-I!il_]dx} (1)
i=1 YT Tmi 2Si

where H is the hyperchromicity at temperature T, I is the initial

hyperchromicity, m is the number of components, Fi, Tmi, and Si

are the hyperchromicity, transition midpoint and transition width
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large numbers of data points commonly collected during gel
scanning in our laboratory. The fitting method is similar to
that used by COTFIT. 1In order to reduce program size, a band
matrix (15) is used in place of the symmetric triangular matrix
COTFIT uses. The number of adjacent curves whose values are
allowed to affect an individual curve's parameter estimates can
be adjusted at run-time by the user.
MELSMR

The MELSMR program smooths and/or derivatizes data having a
constant X increment between points using the method of Savitzky
and Golay (16-18). The degree to which the data are smoothed is
controlled by the wuser. Digital data which have been collected
from instruments such as spectrophotometers frequently contain
fluctuations in the less significant digits. MELSMR provides a
means of reducing or eliminating this noise.

RESULTS AND DISCUSSION

While these programs can significantly shorten the time
required to analyze gel and melt data, and are essential for
accurate measurement of nucleic acid hybridization rates and
component amounts, the significance of the calculated parameter
estimates must not be overestimated. This section addresses
three issues encountered in fitting nucleic acid data with least
squares programs: 1) The significance of the exponent in 81
nuclease-assayed reassociation data analysis; 2) the effect of
using equation (1) to analyze melt data; and 3) the
reproducibility of melt data parameter estimates.
Analysis of nuclease-assayed reassociation data

Morrow (19) and Smith, Britten and Davidson (20) have
analyzed the kinetics of DNA-DNA reassociation assayed by the
single-strand-specific S1 nuclease of Aspergillus oryzae. They
concluded that data from S1 nuclease assayed renaturations were
best fit using the equation

2. = (1 + kCot)™P (2)

where S is the S1 nuclease sensitive (single stranded) DNA NT
concentration, Co is the total DNA NT concentration, t is time, k
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Table 1. Parameters for equation (3)
for data of Sala-Trepat et al (6)

DRIVER® c-DNA+ N++ U F K n FE+++
liver RSA 16 -0.0482 1.0490 0.001104 0.440 3.021
0.1154 0.8782 0.000466 0.965 2.257
kidney RSA 14 -0.0389 1.0414 0.001160 0.440 3.760
0.1240 0.8543 0.000472 0.976 3.033
hepatoma RSA 17 -0.0713 1.0644 0.001109 0.440 2.404
0.0885 0.8980 0.000506 0.903 1.748
liver AFP 14 -0.0543 1.0510 0.001344 0.440 2.204
0.0628 0.9280 0.000736 0.745 1.718
kidney AFP 12 -0.0643 1.0542 0.001317 0.440 3.370
0.0925 0.8884 0.000498 1.000 2.128
hepatoma AFP 17 -0.0663 1.0593 0.001420 0.440 2.932
0.0742 0.9110 0.000673 0.846 2.422

. sheared to 300-400 nucleotides. The first values are with n
fixed, the second with n allowed to vary.

+ 1000-2200 nucleotides (7). RSAzrat serum albumin. AFP=zalpha
feto-protein.

++ N = number of points.

+++ %E = root mean square error (RMS) divided by data mean.

is the rate constant which would be observed if the reaction were
assayed on HAP, and n was found to be 0.44 (19) or 0.453 (20) for
driver and tracer DNAs of the same size. The deviation from
second order kinetics indicated by a value of n less than 1 was
attributed to the 1lowered reactability of the single strand
regions of partial duplexes relative to free single strands.
Smith, Britten and Davidson (20) observed that while no simple
physical meaning can be associated with the exponent n, equation
(2) is useful for data reduction.

For incomplete reactions, or reactions consisting of
multiple components, COTFIT uses the DIGEST function

F(L) = U + I Fi(1 + KiCot)™P (3)
i=1

where U is the fraction unreacted (single-stranded) at infinite

time, m 1is the number of components, and Fi and Ki are the

fraction and rate for component i. Table 1 contains the best-fit

parameters of this function for the data of Sala-Trepat et al (6)
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Table 2. Comparison of melt fitting methods
using data from Wallace et al (8)

Difference Mean StdDev fMean relative to A
iF(B) - F(a)| 0.0167 0.0285 42.0

{Tm(B) - Tm(A)! 1.1 2.9 1.99

1S(B) - S(A)i 2.1 1.1 33.0

Parameter Mean StdDev Maximum

S(A) 6.2 2.4 11.8

S(B) 4.4 1.6 TeT

$E(A) 5:23 1.32 7.41

$E(B) 1.22 0.41 1.92

Initial absorbances were 0.9-1.3 A260 unitg at 25°c. Data were

collected every 0.4° while heating at 0.25°%min.

A. Parameters for Gaussian curves fit to 15-point cubic-quartic
first derivative of absorbance data (using GELFIT).

B. Parameters for equation (1) fit to the absorbance data
normalized to fraction hyperchromicity (using COTFIT).

when the exponent n is fixed at 0.44 or allowed to vary. The
unfixed exponents vary from O0.745 to 1. This shift toward
second-order kinetics may be due either tothe different driver
and tracer 1lengths wused, or to the interrupted nature of the
albumin and AFP genes in rat DNA (T.D. Sargent, J.R. Wu,
J. Sala-Trepat, R.B. Wallace, T. Reyes, and J. Bonner, manuscript
in preparation). In either case, the results demonstrate the
need for careful determination of the exponent for individual S1
assayed experiments, since the calculated K values may vary by
greater than 2.5 fold. Values of n significantly different from
the expected value may indicate inaccurate tracer and driver
length determinations or other systematic error.
Analysis of DNA and chromatin thermal denaturation data

Since many estimates of chromatin and DNA melting component
parameters have been made by fitting Gaussian curves to
derivatized data, we have compared this method to the use of the
COTFIT MELTFN function. Data from our previously published melts
of various chromatin and nucleosome samples (8), which had been
derivatized with MELSMR and fit with GELFIT, were re-fit using
COTFIT. As Table 2 shows, the two methods yield similar results,
the Tm's differing by an average of only 2%. However, COTFIT
yields an average error almost five times 1lower than that
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Table 3. Rat liver chromatin melting transitions

Sample 1 Sample 2 Sample 3 Mean StdDev $StdDev
1 0.0068 0.0033 0.0047 0.0049 0.0018 36
F1 0.0989 0.1034 0.1076 0.1033 0.0044 4
Tm1 65.5 60.7 56.4 60.9 4.5 7
S1 9.5 7.9 6.2 7.9 1.6 21
F2 0.0789 0.0978 0.0508 0.0758 0.0237 31
Tm2 76.9 76.8 69.1 74.3 4.5 6
S2 5.8 5.2 37 4.9 T 1 23
F3 0.0742 0.0811 0.0652 0.0735 0.0080 1
Tm3 77.9 T7.4 76.4 Ti(+2 0.8 1
S3 6.0 9.7 8.4 8.0 1.9 24
F4 0.0660 0.0431 0.1188 0.0760 0.0389 51
Tm4 82.4 82.6 79.8 81.6 1.6 2
Sy 2.1 1.9 4.2 2.7 1.3 46
%E 1.67 1.09 1.62 1.46 0.30 22
Melts were performed in 0.25 mM EDgA pH 8. Initial absorbances
were o0.7-1.5 A268 ubits at 25 C. Dataowere collected from
25-95°C every 0.4 while heating at 0.257/min, and fit to
equation (1) using COTFIT. The average percent standard
deviations in F, Tm, and S are 24, 4, and 29, respectively.
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Figure 1. Fitting of DNA melting transitions using MELTFN. From
left to right are rat liver DNA and oligomers A (every 4th point

shown), C (every other point shown), and B (every other point
shown) (see Table U4).
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Table 4. DNA melting transitions

I F1 Tm1 S1 3E

I. Unsheared Rat liver DNA. 1.1-1.6 A260 units/ml, 0.25 °C/min.

A. 0.25 mM EDTA pH 8 0.4 °c/pt, 30-60 °c.
Mean (5) =-0.0011 0.3369 43.6 3.86 1.88
StdDev 0.0040 0.0108 3.9 0.47 0.81
$StdDev 378 3.2 9 13.1 43.4

8.

B. 0.01 x SSC pH 7 0.4 °/pt, 135-75 °c. '
Mean (2) 0.0064 0.3554 58.2 6.09 1.83
StdDev 0.0008 0.0069 0.1 0.28 0.01
$StdDev 12.6 2.0 0.2 4.6 0.4

II. Synthetic oligonucleotides. 1 M NaCl 0.01 M PB, 0.5 °C/min.

CCGAATTCGG & A
A. GGCTTAAGCC 0.77-0.78 A260 units/ml, 0.1 “C/pt, 25=-65 “C.

Mean (2) 0.0049 0.2808 50.3 9.28 3.18

StdDev 0.0019 0.0223 0.4 0.49 0.39
gStdDev 38.1 7.9 0.8 5.2 12
B. gg%ig%ggggg 0.72-0.77 A260 units/ml, 0.2 °C/pt, 40-70 °C.
Mean (3) 0.0151 0.1817 58.6 17.26 2.06
StdDev 0.0012 0.0050 0.2 0.40 0.56
%StdDev 7.9 2.9 0.3 5.5 27
c. g%§g%§§{g%§g 0.55-0.57 A260 units/ml, 0.2 °C/pt, 25-70 °cC.
Mean (2) 0.0047 0.2396 49.7 8.34 2.29
StdDev 0.0006 0.0118 0.3 0.32 0.29
%StdDev 12.8 4.9 0.6 3.8 1

produced by GELFIT. Thus, although the MELSMR/GELFIT method has
the advantage of ease of visual interpretation of plots, the
COTFIT method produces more accurate parameter estimates.

To test the reproducibility of this function, data from
melts of rat 1liver chromatin, rat 1liver DNA, and synthetic
oligonucleotides were fit using COTFIT (Tables 3 and 4 and Figure
1= The rat 1liver chromatin and DNA melts are of different
sample preparations, and the oligonucleotide melts are of
different samples from the same preparation. All melts were from
separate runs. Some fluctuations in Tm resulting from
differences in buffer concentration can be seen for the 0.25 mM
EDTA melts, but the standard deviation in Tm is still 1less than
10%. The deviations for the other melts are much smaller.

The closeness of the data and fit is in accordance with the

shape predicted by theoretical treatments of nucleic acid melting
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(21-24), although there is no immediate correlation between the
parameters of equation (1) and the physical parameters of the
system. The agreement of the rat DNA melt data with equation (1)
is probably due to the variation in nucleotide composition of rat
DNA, and a resulting combination of a Gaussian distribution of

small transitions (25). Deviations from the fitted curve are
more apparent for the oligonucleotide melts, as might be
expected. In 1light of the ease of estimation of the parameters

of equation (1), our results lend support to its use in fitting
nucleic acid thermal denaturation data, especially for
comparative purposes.

CONCLUSIONS

We have described a set of flexible, 1interactive programs
for the analysis and storage of biochemical data. The ability of
the programs to accept English commands and prompt the operator
for needed information allows even an inexperienced computer user
to analyze a reassociation curve or gel profile in under an hour.
In addition to the analysis of data from nucleic acid
hybridization, thermal denaturation, and gel -electrophoresis
(1-10), the programs may be wused for a number of other
applications, such as resolution of components in velocity and
equilibrium density gradients and the determination of rate
constants for enzyme reactions. The programs also provide a
framework for the development of other data analysis systems.

The programs described in this paper are available from the
authors on a variety of machine-readable media.
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APPENDIX A

GELFIT, a non-linear, least-squares Gaussian curve fitting program
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The following program has been used for determination of

peak positions and areas for polyacrylamide gel scans (Chapters

1, 2, and 4), thermal denaturation derivative profiles (Chapter 3),
and density gradient distributions (Chapter 5). 1In this listing,
input/output related routines, some of which may be computer system
specific, have been omitted. Most of these are part of a library
of subroutines for handling of standardized data files. The data
file format used allows access by all programs in the system to

files created by any program.
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APPENDIX B

GELFIT fitting session example



85

In the example which follows, the operator first requested
a command summary. If more information had been needed about a
particular command, the user could have typed HELP/LONG to obtain
it. The file GRR209.DAT was then read in for use in the standards
calculation, and the LOG molecular weight calculation suppressed.
(Normally, standards data are expressed as log molecular weight
versus relative mobility.) The data for a metrizamide gradient
(Chapter 5, Figure 4B) were then read from a file which had been
created from the output of a scintillation counter by a data collection
program. The program was then requested to estimate peak positions
(the GUESS command), with the constraint that each peak be greater than
1000 counts per minute. The guesses were refined by fitting, with
the maximum number of iterations set to 20. As the fitting proceeded,
the values of impoftant parameters were output. A listing of the
final parameter values was printed, which includes the calculated
'"Mol.Weight" (in this case the peak density). A rough plot was
generated on the terminal, the fit values stored in a new copy of
the input file, and the program exited. The entire process took

a little over a minute.
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+DATE

2-Jul-79

« TIME

16130818

+RU GELFIT

GELFIT V04-10R
$HELF

GELFIT Command Summarw!

The minimum recuired letters of each command or ortion
are shown. All commands are terminated by the return kew.
#list> indicates a set of ortional arduments.

A <list> ADD more curves

B k fit k BANDS wide

C CLOSE outrut file

D oisd DELETE curves i-J

FIT ksl FIT k its with 1 cits
FIX iyd FIX curve i raram J

GE isyxl1syx2re GENERATE data from rarams
GU wfilyzfil GUESS curve rarameters

H tyre this HELP summarw
/L ture SYI!GELFIT.HLP
I infile det INFUT file
/A ADD to Pprevious data
K myn KILL roints m-n
L men LIST roints m—n
M isd MODIFY curves i-J
N get NEW curves
0 outfil set OUTFUT filename
/LT set LIST filename
/PL set FLOT filename
FL <list> PLOT data and fit
/G rlot in CRT format
ZLP rlot in LF format
FO add more FPOINTS
Q asbk set QUIT criterisa
S stdfil det STANDARDS
T isd TYFE curves i-J
U isd UNFIX curve i param J
W a set max relative WIDTH
X arb XSCALE (x+a)%b
Y arb YSCALE (u+a)%b
$STANDARDS/NOLOG GRR209

$FIT 20



ET(SEC)

1'

RN
.

e e o+ s

WMRN
.« o o

RMS
447 ,9610
370.2311
321.2720
286.9051
286.1761
286.1088
286.,0698
286.0692
286.0439
286.0317

87

MAX .REL . CHANGE IN

0.9626734
1.174351
1.110425

0.1601599

0.,2930580E-01

0.92214476E-02
0.4176276E-02
0.8147353E~-03
0.6298451E-03
0.8411340E-04

A A A A A~

NEW VALUE

0.4717965E-01

0.1025851
0.2164982

3801.431

1010.346
0.2216258
0.2207003
0.2205205
0.2203816
0.2203630

CIT#

N= Qg0 OO0 O0OCO



GRH202

53 rPoints 6 rarameters

curvesry
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Usind MW standards file GRR209.DAT

Xmax Ymax
1 0.46609 3785.3
2 0.59149 1015.2
Area(fit) = 470.01251

RMS = 286.0317

Ymean = 678.30188

HalfW Area
0.,29404E-01 222,61
0,22036 447 .41

Area(data) = 675.00000

= 2882142,

ZE(RMS/Ymean) = 42.169

Fitting terminated with Max.Rel.Chande <= 0.,1000E-03

$FLOT

#03 GELFIT V04-10B 02-JUL-79 PRF62.2-2 1’THY (SP.04,.112)

Band matrix 6 rarameters wide

Fraction Mol.Weight
0.,33224 1.17272%
0.66776 1.1400

Xdiff = 0.739

NDF = 47
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GRH202 #03 GELFIT V04-10R 02-JUL-79 PRF62.2-2 1°THY (SP.04,.112)
0.,00000E+00 0.33333E+00 0.66667E4+00 0.10000E+01
e s § e it e J e e H
0.46E+04~ 0 =
H XX H
H *X H
H *k :
! :
H ¥ X H
0.35E+04~ X 0 =
H H
H X X |
H H
H H
! X '
- %0 H
' H
0.24E+04~ X X
] ]
| %0 H
! X :
H X '
i L S :
10 H
H X X0 H
H X H
0.12E+04~ X X 0 -
' X0 H
H X XKOXXKOO0%X H
' X Q0% % H
H X OX0x H
H %0 [0} § H
i 00 b & 00x H
H XX 000 H
H 0 00 0 X*kx O X%000 H
H 00 0 0O 000%%x0000 X%X%000 0000]
0.10E+03- OX0OXXX0 TRRKKX  —
| FeEsEaees § e | S S — e s et s § s H
0,00000E+00 0.,33333E+00 0.66667E+00 0.10000E+01
$CLOSE
$EXIT
+ TIME

161313219



