

CHROMOSOMAL PROTEIN-DNA INTERACTIONS

Thesis by

Robert Francis Murphy

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1980

(Submitted July 17, 1978)

ACKNOWLEDGMENT

To Dr. James Bonner, for providing me with the means and opportunity to study whatever seemed interesting;

To Drs. Herschell Mitchell, Elias Lazarides, Jim Strauss, and Jack Richards, for agreeing to oversee this work;

To Dr. R. Bruce Wallace, for his invaluable help and advice;

To the members of the Bonner group, for their cooperation;

To my teammates on various and diverse athletic teams, for making life in this one-horse town a little less unbearable;

To Steve and Bonnie Petersen, for being my friends;

And to my parents and family, with all my love.

The preparation costs of this thesis were defrayed in part by the Weigle Fund.

ABSTRACT

The nature and function of some of the protein-DNA interactions in eukaryotic chromatin were investigated. The nucleosome structure of isolated template-active chromatin was determined. In vitro chemical acetylation of chromatin was shown to result in a structure similar to that of deproteinized DNA, which represents a shift towards the properties of isolated template active chromatin, and chromatin containing specific transcribed genes.

The process of chromatin replication was shown to include a shortening of the internucleosomal spacer, resulting in decreased nuclease sensitivity. Newly-replicated chromatin was separated from bulk chromatin in shallow metrizamide density gradients. Newly-synthesized histone and newly-acetylated protein were shown to be present predominantly in the unreplicated chromatin fraction.

The accuracy and reproducibility of non-linear least squares determinations of the thermal denaturation transitions of DNA and chromatin were determined using computer programs designed for ease of use and adaptability to mini-computer configurations. Direct fitting of melt data to a normalized error function gave results very similar to those obtained by fitting Gaussian curves to derivatized data. This approach avoids errors introduced by the derivatization method, and requires fewer data points.

CONTENTS

PART I

Chapter 1. Alkaline extraction of non-histone proteins
from rat liver chromatin

1

PART II

Chapter 2. Structure of transcriptionally active
chromatin

7

PART III

Chapter 3. Physical properties of chemically acetylated
rat liver chromatin

13

PART IV

Chapter 4. Altered nucleosome spacing in newly replicated
chromatin from Friend leukemia cells

19

Chapter 5. Properties of newly replicated chromatin:
Analysis using shallow metrizamide gradients

25

PART V

Chapter 6. Computer programs for analysis of nucleic acid
hybridization, thermal denaturation, and gel electrophoresis
data

49

Appendix A. GELFIT, a non-linear, least-squares Gaussian
curve fitting program

62

Appendix B. GELFIT fitting session example

84

PART I

Chapter 1. Alkaline extraction of non-histone proteins from
rat liver chromatin

Reprinted from

Biochimica et Biophysica Acta, 405 (1975) 62-66
 © Elsevier Scientific Publishing Company, Amsterdam — Printed in The Netherlands

BBA 37139

ALKALINE EXTRACTION OF NON-HISTONE PROTEINS FROM RAT LIVER CHROMATIN

ROBERT F. MURPHY and JAMES BONNER

Division of Biology, California Institute of Technology, Pasadena, Cal. 91125 (U.S.A.)

(Received March 18th, 1975)

SUMMARY

The dissociation of non-histone proteins from chromatin by alkaline pH was studied using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A significant degree of selectivity of dissociation was observed. This selectivity may provide a new method for fractionating non-histone proteins.

INTRODUCTION

Much work has been done on the selective dissociation of histones from nucleohistones at low pH [1-3]. Other investigations have reported on the dissociation of histones from DNA at high pH, particularly at pH 12 and above [4-7]. In this paper we describe experiments on the selective dissociation of chromosomal proteins by titration in the range pH 8-11.

MATERIALS AND METHODS

Preparation of chromatin. Chromatin was prepared from Sprague-Dawley rat livers (Pel-freeze), by the sucrose purification method of Marushige and Bonner [8]. After pelleting through a 1.7 M sucrose cushion, the chromatin was resuspended in four volumes of 10 mM sodium bisulfite, 10 mM Tris buffer, pH 8.0, and spun at 12 000 \times g for 10 min. The chromatin pellet was resuspended at a concentration of 20 A_{260} nm units per ml and sheared for 90 s at 30 V in the Virtis homogenizer. The sheared chromatin was spun at 12 000 \times g for 20 min to remove a small amount of material not solubilized by shearing.

Alkaline dissociation of chromatin. 10 ml of sheared chromatin was titrated to the desired pH (using a Radiometer 22 pH meter) by the dropwise addition of 1 M NaOH with stirring (pH values were checked by warming a small sample of the material to 25 °C and determining the pH again). The chromatin was then stirred for 30 min and centrifuged at 45 000 rev./min for 20 h in a Beckman Ti50 rotor (134 800 \times g). The chemical composition of the material in the supernatants and pellets was determined, and the proteins of each sample were analyzed by polyacrylamide gel electrophoresis.

Chemical composition. RNA and DNA were separated by the Schmidt-

Tannhauser procedure. The amount of DNA was determined from the absorption at 260 nm and RNA was determined by the orcinol procedure [9]. Total protein was determined by the procedure of Lowry et al. [10] using bovine serum albumin as standard. Histones were extracted with 0.2 M H₂SO₄ and the insoluble non-histones removed by centrifugation at 12 000 × g for 10 min. Pellets from this extraction were resuspended in 1 M NaOH and the amount of non-histone proteins determined by the procedure of Lowry et al. [10], while the amount of histone protein was determined from the absorption at 230 nm using the relation 1 mg/ml = 4.15 A_{230 nm} units.

Polyacrylamide gel electrophoresis. Sodium dodecyl sulfate-10% acrylamide gels were run, stained and scanned as described previously, and the scans were resolved into a number of Gaussian curves such that the sum of those curves equaled the original data [11, 12].

RESULTS

Table I presents the results of protein and nucleic acid determination for the supernatants and pellets of chromatin titrated to pH 8–11 and pelleted as described above. As can be seen, more than 95% of the DNA is recovered in the pellets at all pH values. Increasing amounts of RNA, histone and non-histone are dissociated from chromatin as the pH is increased. The greatest increase in the release of all three components occurs between pH 10 and pH 11. This may be due to the titration of lysine residues (pK approx. 10.5). Indeed, in the titration of chromatin to pH 11, the buffering effect of the lysine residues is clear as evidenced by the need for a greater amount of NaOH to raise the pH from 10 to 11 than is needed to raise the pH from 8 to 9 or from 9 to 10. There is also a noticeable rise in viscosity of the preparation above pH 10 perhaps correlated with the dissociation of protein from DNA in some regions of the chromatin and concomitant unfolding of DNA.

To discover whether particular non-histone proteins are released as the pH of chromatin is increased, we have run sodium dodecyl sulfate gels on the various fractions. Fig. 1 shows the composite gel scans of the supernatants (dissociated material) at pH 8–11. Each Gaussian does not necessarily represent one peptide, but may represent one or more peptides of identical or similar molecular weight.

TABLE I

DISSOCIATION OF CHROMATIN CONSTITUENTS BY ALKALINE pH

Chromatin isolation, titration and centrifugation were as described in Materials and Methods. Amounts are expressed as percent of starting material of each component ± one standard deviation. Ratio given is the weight ratio of each component to DNA in whole chromatin. S, supernatant (dissociated); P, pellet (undissociated).

pH	DNA			RNA			Histone			Non-histone		
	S	P	±	S	P	±	S	P	±	S	P	±
8	1	99	0.5	12	88	5	3	97	1	5	95	3
9	1	99	0.7	26	74	9	3	97	1	8	92	3
10	2	98	0.8	36	64	10	7	93	1	12	88	4
11	2	98	0.8	55	45	10	18	82	3	22	78	6
Ratio: 1.0				0.03			1.1			0.8		

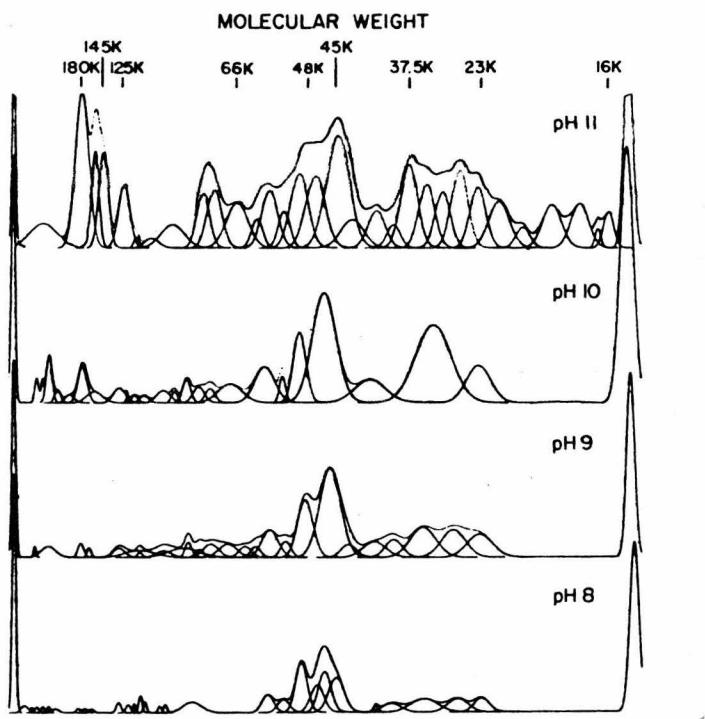


Fig. 1. Composite gel scans of protein dissociated at several alkaline pH values. Samples of 100 μ g protein from each supernatant were separated on 10-cm sodium dodecyl sulfate gels, and then the absorbances normalized to represent equivalent amounts of starting chromatin. Protein to DNA ratios are as follows: pH 8, 0.07; pH 9, 0.09; pH 10, 0.17; pH 11, 0.35.

In the first place there is a small general increase in release of material from chromatin as the pH is increased from 8 to 11. In addition, however, there is a significant increase in the release of particular protein fractions over this pH range. This increase in dissociated material is particularly marked in the high (140 000–180 000) molecular weight and low (22 000–43 000) molecular weight regions of the gel.

Since mobility in these gels is proportional to log molecular weight, the molecular weight of each band can be determined using established standards [12]. The area under each peak is proportional to the mass of protein in that component. Therefore, the number of molecules in each band can be calculated. Table II presents the data in terms of molecules per genome ($3 \cdot 10^9$ base pairs) and in percent of total number of molecules per genome for each molecular weight class [12]. The fact that some classes of proteins are dissociated to a significantly higher degree or to a significantly lesser degree than the percent of total protein dissociated at that pH, is evidence of selectivity of dissociation.

Proteins which are dissociated at pH 8 (the pH at which the chromatin is prepared) may be released by the shearing process (no control for this is possible since unsheared chromatin is an aggregate of very high molecular weight). In addition, the proteins dissociated at pH 8 evidently have a very low affinity for chromatin and may indeed be bound to chromosomal proteins rather than to DNA itself.

TABLE II

DISSOCIATION OF NON-HISTONE PROTEINS BY ALKALINE pH

Results of calculations on data in Fig. 1. Total number of molecules column gives data from Garrard et al. [12] for number in each class per haploid genome ($1.8 \cdot 10^{12}$ mol. wt).

Molecular weight ($\times 10^3$)	Total number of molecules ($\times 10^3$)	Percent of total		
		pH 8	pH 9	pH 10
>195	46	13	17	57
171-190	101	1	5	19
150-170	122	2	2	9
140-149	92	0	0	0
130-139	91	0	0	0
100-129	554	3	6	5
92-98	122	0	0	0
80-90	450	1	3	6
68-79	1460	2	4	4
65	690	0	5	3
56-63	1005	0	6	8
50-55	4790	1	2	3
48	660	5	5	5
45	1950	7	11	10
31-43	1620	23	34	41
23-30	2876	15	38	62
<22	6708	0	0	0
Total	22582	5	8	12
				22

One of the principal proteins released at pH 8 is a major non-histone and one which appears to be identical with the muscle protein, actin. It is possible that F actin is attached or bound to chromatin at one point and protrudes from chromatin as an F actin fiber, and is thus easily released by hydrodynamic forces.

DISCUSSION

The significance of our findings is 2-fold. First, we have established that the non-histone proteins of rat liver chromatin are subject to selective dissociation at alkaline pH. Second, our results indicate that it should be possible to enrich for a rather specific subset of non-histone chromosomal proteins by first titrating chromatin to pH 10, removing the dissociated material and then titrating the chromatin again to pH 11 and removing the dissociated material. This procedure would provide still another method of fractionating and characterizing the non-histone chromosomal proteins.

ACKNOWLEDGMENTS

We wish to thank Dr Angeline Douvas, Mr William R. Pearson and Mr Joel Gottesfeld for advice and helpful counsel, as well as Ms Ryn Miake for technical assistance.

REFERENCES

- 1 Johns, E. W. and Butler, J. A. V. (1962) *Biochem. J.* 82, 15-18
- 2 Murray, K. (1966) *J. Mol. Biol.* 15, 409-419
- 3 Murray, K., Vidali, G. and Neelin, J. M. (1968) *Biochem. J.* 107, 207-215
- 4 Matsuyama, A., Tagashita, Y. and Nagata, C. (1971) *Biochim. Biophys. Acta* 240, 184-190
- 5 Ramm, E. I., Vorob'ev, V. I., Birshtein, T. M., Bolotina, I. A. and Volkenshtein, M. K. (1972) *Eur. J. Biochem.* 25, 245-253
- 6 Ohba, Y. and Hayashi, M. (1972) *Eur. J. Biochem.* 29, 461-468
- 7 Russev, G., Venkov, C. and Tsarev, R. (1974) *Eur. J. Biochem.* 43, 253-256
- 8 Marushige, K. and Bonner, J. (1966) *J. Mol. Biol.* 15, 160-174
- 9 Dische, Z. and Schwartz, K. (1937) *Mikrochim. Acta* 2, 13
- 10 Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951) *J. Biol. Chem.* 193, 265-275
- 11 King, J. and Laemmli, V. K. (1971) *J. Mol. Biol.* 62, 465-477
- 12 Garrard, W. T., Pearson, W. R., Wake, S. K. and Bonner, J. (1974) *Biochem. Biophys. Res. Commun.* 58, 50-57

PART II

Chapter 2. Structure of transcriptionally active chromatin

Reprinted from
Proc. Nat. Acad. Sci. USA
 Vol. 72, No. 11, pp. 4404-4408, November 1975
 Biochemistry

Structure of transcriptionally active chromatin

(chromatin fractionation/deoxyribonuclease II/chromatin subunits/ ν -bodies)

JOEL M. GOTTESFELD*, ROBERT F. MURPHY, AND JAMES BONNER

Division of Biology, California Institute of Technology, Pasadena, Calif. 91125

Contributed by James Bonner, September 10, 1975

ABSTRACT Rat-liver chromatin has been fractionated into transcriptionally active and inactive regions [Gottesfeld *et al.* (1974) *Proc. Nat. Acad. Sci. USA* 71, 2193-2197] and the distribution of nuclease-resistant complexes in these fractions has been investigated. About half of the DNA of both fractions is resistant to attack by the endonuclease DNase II. The nuclease-resistant structures of inactive chromatin are DNA-histone complexes (ν -bodies) which sediment at 11-13 S. Template-active chromatin yields two peaks of nuclease-resistant nucleoprotein. These complexes sediment at 14 and 19 S, and contain DNA, RNA, histone, and nonhistone chromosomal proteins. Polyacrylamide gel electrophoresis reveals a complex pattern of chromatin proteins, suggesting that the complexes are heterogeneous in composition.

A regular repeating unit in chromatin was first suggested from the x-ray diffraction studies of Pardon *et al.* (1): a series of reflections were observed in the x-ray patterns of native and reconstituted nucleohistones, but not in the x-ray diffraction patterns of DNA or histones by themselves. It was proposed that the chromatin fiber is organized into a regular supercoil of pitch 100-120 Å. This model, although widely accepted for some time, has now come under question. Ollins and Ollins (2) have observed regular spacings of chromatin particles (termed ν -bodies) in water-swollen nuclei centrifuged onto electron microscope grids. These particles are 60-80 Å in diameter and are joined by thin filaments 15 Å in diameter. These results have been confirmed and extended by other laboratories (3-5). Nuclease digestion studies also support a subunit or particulate structure for chromatin. Both endogenous (6-7) and exogenous (8-14) nucleases appear to recognize a repeating nucleoprotein unit along the chromatin fiber. Furthermore, chromatin particles isolated from nuclease-treated or sonicated chromatin resemble ν -bodies in the electron microscope (15-17). Thus many lines of evidence support the subunit or "beads-on-a-string" model of chromatin structure (2, 18).

Studies on chromatin structure have been generally carried out with whole chromatin, unfractionated with respect to transcriptional activity. Since only a minor portion of the DNA in any differentiated cell type is ever transcribed into RNA, the properties of unfractionated chromatin reflect primarily the structure of inactive regions. We are interested in whether template-active chromatin is organized as is the inactive region or whether it is in a different conformation. Previous work from this laboratory has shown that it is possible to separate chromatin into transcriptionally active and inactive fractions (19-21). In this communication we report that both fractions contain nuclease-resistant nucleoprotein complexes. However, the nuclease-resistant structures of inactive chromatin are DNA-histone complexes, while the nu-

celease-resistant structures of active chromatin are complexes of DNA, RNA, histone, and nonhistone chromosomal protein.

MATERIALS AND METHODS

Chromatin Fractionation. Chromatin was prepared from rat liver by the method of Marushige and Bonner (22) and treated with diisopropylfluorophosphate (DFP) to inhibit endogenous protease activity (23). Fractionation was carried out as diagrammed in Fig. 1; details of this method have been published previously (21).

Preparation of Chromatin Subunits. Nuclease-resistant subunits of rat-liver chromatin were prepared as follows: DNase II was added to 10 units per A_{260} unit of chromatin in 25 mM sodium acetate (pH 6.6). Digestion was carried out at 24° and was terminated after 90 min by raising the pH to 7.5 with 0.1 M Tris-HCl (pH 11). Nuclease-resistant subunits from chromatin fraction P1 were prepared by homogenizing the pellet fraction in 25 mM sodium acetate (pH 6.6) and redigesting with DNase as described above for whole chromatin. Undigested chromatin (about 20% of the input DNA) was removed by centrifugation at 27,000 $\times g$ for 10-15 min. The supernatant was layered on isokinetic sucrose gradients in SW25.1 cellulose nitrate tubes. The gradients were formed according to Noll (24); the parameters were $C_{TOP} = 15\%$ (weight/volume), $C_{RES} = 34.2\%$ (weight/volume), and $V_{MIX} = 31.4$ ml. All solutions contained 10 mM Tris-HCl (pH 8). Centrifugation was at 25,000 rpm for 36-42 hr. Gradients were analyzed with an ISCO UV Analyzer and chart recorder. Fractions from these gradients were rerun on 5-24% isokinetic sucrose gradients. The parameters were $C_{TOP} = 5.1\%$ (weight/volume), $C_{RES} = 31.4\%$ (weight/volume) and $V_{MIX} = 9.4$ ml. Centrifugation was in the SW 41 rotor at 39,000 rpm at 4° for 16.5 hr.

Subunits were also prepared from chromatin devoid of histone I. Removal of this histone was accomplished by extraction of Virtis-sheared chromatin (45 V, 90 sec) with 0.5 M NaCl at 4°. The resultant nucleohistone was pelleted by centrifugation in the Ti 50 rotor at 50,000 rpm for 18 hr. The pellet was digested with nuclease as described above.

Redigestion of Chromatin Fraction S2. Chromatin of fraction S2 was redigested with nuclease in three different ways: the DNase II present in fraction S2 from the first nuclease treatment was reactivated by adding EDTA to 20 mM and lowering pH to 6.4 with dilute HCl. Alternatively, aliquots of chromatin fraction S2 were dialyzed against either 25 mM sodium acetate (pH 6.6) or 5 mM sodium phosphate (pH 6.7) containing 2.5×10^{-4} M CaCl₂ and 2.5×10^{-4} M MgCl₂. DNase II was added to the chromatin in sodium acetate buffer to 10 units/ A_{260} unit of chromatin; staphylococcal nuclease was added to the chromatin in sodium phosphate buffer to 50 units/ml. Reactions were carried out at

Abbreviation: DFP, diisopropylfluorophosphate.

* Present address: MRC Laboratory of Molecular Biology, Hills Road, Cambridge, England CB2 2QH.

24°. Aliquots were taken at various times to test for the production of trichloroacetic-acid-soluble material (measured by absorbance of the supernatant at 260 nm after centrifugation at 27,000 \times g at 4° for 15 min).

DNA Size Estimation. Single-strand DNA lengths were estimated by velocity sedimentation in alkaline sucrose gradients. The parameters for the isokinetic gradients were $C_{Trop} = 15.9\%$ (weight/volume), $C_{RES} = 38.9\%$ (weight/volume), and $V_{MIX} = 6.1$ ml (24). All solutions contained 0.1 N NaOH. Chromatin samples were suspended in 0.1 N NaOH, 2% sodium dodecyl sulfate, 2 M urea, and 100–200 μ l aliquots were layered on each gradient. Centrifugation was in the SW50.1 rotor at 48,000 rpm for 16 hr at 20°. DNA molecular weights were determined relative to a standard sized by electron microscopy (320 nucleotide-long, 5.4 S, calf thymus DNA; a gift of Ms. M. Chamberlin). Double-strand lengths were determined in the analytical ultracentrifuge (25).

Analysis of Chromatin Composition. Histone and nonhistone protein content was determined as described (26). Protein was analyzed by sodium dodecyl sulfate-disc gel electrophoresis (27) and by acid-urea gel electrophoresis (28). DNA and RNA were determined by the methods of Schmidt and Tannhauser (29).

Enzymes. DNase II (EC 3.1.4.6) and micrococcal nuclease (EC 3.1.4.7) from *Staphylococcus* were purchased from Worthington.

RESULTS

Chromatin Fractionation. DNase II preferentially attacks a select portion of chromatin DNA. The amount of DNA in this fraction varies depending upon the source of the chromatin, but corresponds quite closely to the measured template activity of the particular chromatin (20). The fractionation scheme used herein is diagrammed in Fig. 1. After 5 min exposure to DNase II, 15% of rat-liver chromatin DNA remains soluble after centrifugation (fraction S1). About 11% of the total DNA is Mg⁺⁺-soluble and is found in fraction S2. This DNA comprises a subset of whole genomic DNA sequences and is enriched 5-fold in transcriptionally active sequences (21). The DNA has a double-strand length of about 700 base pairs and a single-strand length of 200–600 nucleotides (range of observed values). About 1–3% of this DNA is acid-soluble. After 30 min exposure to DNase II, nearly 80% of the chromatin is found in fraction S1, and 20–24% is found in fraction S2. After prolonged nuclease digestion roughly half of the DNA of both fraction S1 and fraction S2 is acid-soluble. A more detailed description of the kinetics of DNase II action on chromatin is presented elsewhere (J. Gottesfeld, G. Bagi, B. Berg, and J. Bonner, manuscript submitted).

Table 1 lists some of the properties of the chromatin fractions: the composition of fraction P1 is similar to that of unfractionated rat-liver chromatin (21, 22). Fraction S2, however, is enriched in RNA and nonhistone protein and has a reduced content of histone protein. All the major histone species are present in fraction S2 isolated from DFP-treated chromatin. In a previous communication (21) we reported that fraction S2 lacked histone I; the absence of this histone was presumably due to its proteolytic degradation, since the chromatin was not treated with protease inhibitors.

Subunit Structure of Chromatin. Rat-liver chromatin and fraction P1 chromatin have been digested with DNase II for extended periods of time (90 min), and the resulting soluble chromatin has been analyzed by centrifugation in

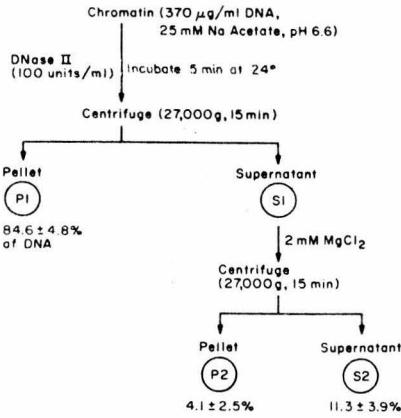


FIG. 1. Fractionation scheme. The yields of DNA in each fraction are the mean and standard deviation for 11 determinations.

isokinetic sucrose gradients (Fig. 2). About 40% of the input DNA sediments extremely slowly; the bulk of this DNA is acid-soluble and hence has been reduced to oligonucleotides by the nuclease. Fig. 2 presents data for whole chromatin depleted of histone I (Fig. 2A) and for P1 chromatin (Fig. 2B). Most of the chromatin sediments at about 11–13 S, with some material sedimenting more rapidly. The properties of nuclease-resistant particles from unfractionated chromatin have been described in detail elsewhere (8–14, 16, 17). We find similar properties for the particles from P1 chromatin: they are composed of equal amounts of protein and DNA (by weight), and the protein complement is almost entirely histone (Table 1). Subunits from native chromatin sediment slightly more rapidly than subunits from histone-I-depleted chromatin (Fig. 2). The sedimentation coefficients (\pm SD) estimated from ten isokinetic 5–24% sucrose gradients were 12.6 ± 0.9 S for subunits of native chromatin and 11.4 ± 0.7 S for subunits of histone-I-depleted chromatin. The length of DNA contained in the subunits has been studied by many workers; values of 120 to 210 base pairs have been obtained

Table 1. Chemical composition of rat-liver chromatin fractions

Sample	Composition relative to DNA (w/w)		
	Histone	Non-histone	RNA
Unfractionated chromatin	1.06	0.65	0.05
P1 chromatin*	1.15	0.58	0.05
11–13S subunits†	1.03	<0.05	—
S2 chromatin*	0.61	1.60	0.25
<i>S2 subfractions</i>			
3–5 S	0.24	0.60	—
14.0 ± 0.8 S‡	0.72	1.35	0.3–0.4
18.7 ± 1.0 S‡	0.54	3.2	0.3–0.7

* Fractionation carried out as in Fig. 1.

† Similar compositions were obtained for native and histone-I-depleted subunits.

‡ Sedimentation values \pm SD determined from 24 gradients equivalent to those in Fig. 3.

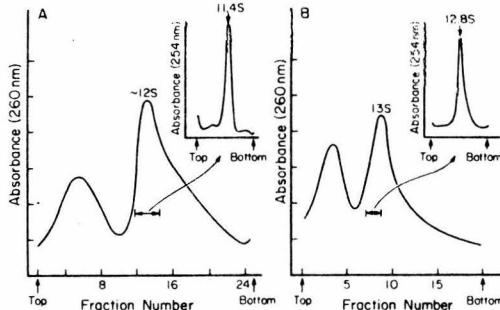


FIG. 2. Sucrose gradient sedimentation of DNase-II-treated chromatin samples. (A) Histone-I-depleted chromatin was digested and soluble chromatin was centrifuged for 42 hr as discussed. (B) Fraction P1 chromatin was digested and soluble chromatin was centrifuged for 36 hr. Fractions were pooled as indicated and rerun on 5–24% gradients (insets).

(10, 13, 14, 16, 17). The 11–13S subunits resemble ν -bodies (2) in the electron microscope (17).

Subunit Structure of Active Chromatin. We now ask whether nuclease-resistant structures occur in transcriptionally active regions of chromatin. Chromatin from rat liver was treated with DNase II for 5 min, fractionated as before (Fig. 1), and S2 material was analyzed on isokinetic sucrose gradients (Fig. 3, curve A). About half of the UV-absorbing material applied to the gradient sediments at 3–5 S; greater than 90% of this material is acid-precipitable after the 5 min nuclease treatment. Two more rapidly sedimenting peaks are seen in the gradient of S2 chromatin, one at 14 S and another at 19–20 S. These gradients were calculated for particles of density 1.44 g/cm³, and so the observed sedimentation coefficients could be in error if the particle densities are very different from 1.4 to 1.5 g/cm³. About 6% of the input nucleic acid pelleted during the centrifugation.

To test whether the 14 and 19S nucleoprotein complexes might be multimers of the 11–13S subunit (i.e., dimers and trimers), chromatin fraction S2 was reincubated with DNase. Upon analysis in isokinetic sucrose gradients (Fig. 3,

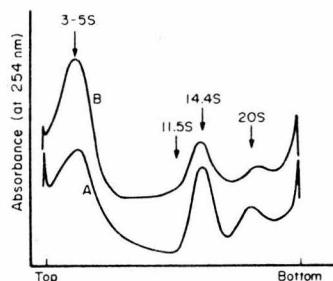


FIG. 3. Sucrose gradient sedimentation of template-active fraction S2 chromatin. Curve A: chromatin was fractionated (Fig. 1) and S2 material was centrifuged for 17.5 hr at 39,000 rpm in 5–24% sucrose gradient. Curve B: fraction S2 was isolated and DNase II reactivated by the addition of 20 mM EDTA (pH 6.4). Incubation was for 1 hr at 24°. The reaction was terminated by raising the pH to 8 with 0.1 M Tris-HCl (pH 11), and the sample was centrifuged as described above.

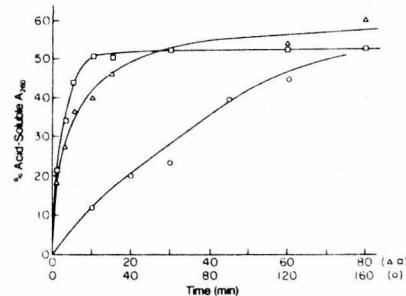


FIG. 4. Kinetics of digestion of chromatin fraction S2. Chromatin was fractionated as described (Fig. 1). S2 chromatin was incubated with nucleases in three ways: reactivation of DNase II (○); addition of fresh DNase II (△); addition of staphylococcal nuclease (□). Aliquots were taken at various times to test for the production of trichloroacetic-acid-soluble material.

curve B) no significant changes were observed in the >10S region. Reincubation with DNase has been carried out in three ways (reactivation of DNase II, addition of fresh DNase II, addition of staphylococcal nuclease), and similar results were obtained with each of these methods. The kinetics of redigestion of S2 chromatin are presented in Fig. 4. With each method of redigestion, about 50–60% of the input A₂₆₀ became acid-soluble. As the reaction approached completion the solutions first became turbid and eventually a precipitate developed.

S2 chromatin has been isolated after various times of nuclease treatment (30 sec to 30 min) and analyzed in sucrose

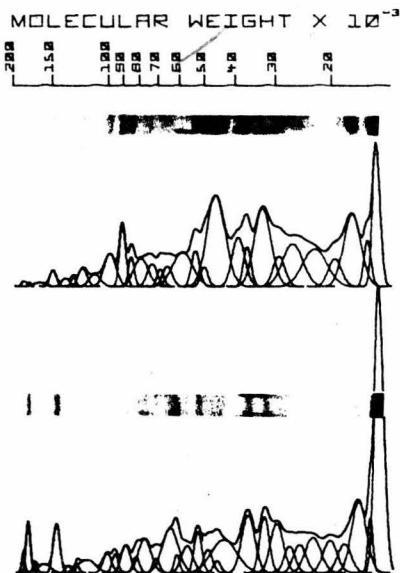


FIG. 5. Sodium dodecyl sulfate-polyacrylamide gels of S2 chromatin subfractions. Total protein of the 3-5S (upper gel) and 14S (lower gel) complexes was electrophoresed as described (27). The stained gels were scanned and the densitometer profiles were resolved into gaussian components by a least-squares computer analysis.

gradients. It was found that the 14 and 19S complexes appear in fraction S2 simultaneously. Thus there is no evidence for a precursor-product relationship between the 19 and 14S complexes. The nuclease-resistant S2 DNA (14 and 19S) was found to have a weight-average single-strand length of 170 nucleotides after the initial DNase treatment (5 min). After prolonged digestion (up to 120 min), the single-strand length was reduced to 120 nucleotides. Nearly all the DNA which sedimented at 3-5 S after the initial DNase digestion was rendered acid-soluble by redigestion.

We have investigated the chemical compositions of the subfractions of S2 chromatin (Table 1). The material at 14-19 S is enriched in both RNA and nonhistone chromosomal proteins. All the major histone species are present in the 14 and 19S complexes; however, these complexes exhibit reduced histone to DNA ratios relative to either unfractionated chromatin or 11-13S subunits (Table 1). The protein population of S2 chromatin has been investigated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Fig. 5). Material from the 3-5S (upper gel) and from the 14S (lower gel) position in the sucrose gradient (Fig. 3) has been analyzed. Densitometer scans of the stained gels were resolved into gaussian components by a least squares computer analysis. Numerous quantitative and qualitative differences between the 3-5S and 14S proteins can be recognized in these gels. From the length of DNA contained in the 14S chromatin complex (170 nucleotides), the protein-to-DNA ratio (Table 1), and the complexity of the protein population (Fig. 5), we conclude that the 14S peak consists of a heterogeneous population of nucleoprotein species.

DISCUSSION

The template-active fraction of rat-liver chromatin is organized in a fashion similar to that of inactive chromatin; both fractions consist of regions of nuclease-sensitive and nuclease-resistant DNA. Nuclease-resistant segments in transcriptionally inactive chromatin are due to histone-DNA interactions, while the nuclease-resistant segments of active chromatin are due to DNA complexed with both histone and nonhistone proteins. Nuclease-resistant structures of inactive chromatin sediment at 11-13 S and resemble ν -bodies (2) in the electron microscope (17). The nuclease-resistant complexes of active chromatin sediment at 14-19 S and contain RNA as well as protein and DNA.

Our results shed new light on the findings of Felsenfeld's laboratory (8, 9, 31). These investigators have reported that portions of the globin gene are found in both nuclease-sensitive ("open") and nuclease-resistant ("closed") regions of reticulocyte chromatin. Our results suggest that nuclease sensitivity in a *limit digest* does not discriminate between active and inactive chromatin regions. Felsenfeld's data indicate that regions of the globin genes are always covered with protein (30) but make no distinction between histone and nonhistone protein. On the basis of our data we speculate that active genes are complexed with nonhistone as well as histone protein in the 14 and 19S structures.

Inactive genes are complexed mainly with histone and are in the ν -body structures. Although active, like inactive, chromatin contains nuclease-resistant and sensitive regions, there are other major differences. Thermal denaturation and circular dichroism studies (31-33) suggest that active chromatin is in a more extended, more DNA-like conformation than inactive chromatin. The electron microscope has revealed differences in the structure of transcriptionally active and

inactive regions of chromatin. Ribosomal genes in the act of transcription are the length of their transcription product (pre-rRNA) (34). On the other hand, DNA complexed with histones in the ν -body configuration is one-seventh the length of the same deproteinized DNA (4). The basic fiber diameter of inactive chromatin is 100 Å. Active chromatin has a fiber diameter of about 30 Å (35, 36). Thus both physical and electron microscopy studies suggest that DNA of active chromatin is more extended than is the DNA of inactive chromatin. It is probable that this is why active chromatin is more susceptible to nuclease attack. This differential sensitivity to nuclease forms the basis of our fractionation procedure (Fig. 1).

We wish to thank Dr. K. Peters and Mr. W. Wheatley for helpful discussions. This work was supported by the U.S. Public Health Service (GM 86 and GM 13762).

1. Pardon, J. F., Wilkins, M. H. F. & Richards, B. M. (1967) *Nature* **215**, 508-509.
2. Ollins, A. L. & Ollins, D. E. (1974) *Science* **183**, 330-332.
3. Woodcock, C. L. F. (1973) *J. Cell Biol.* **59**, 368a.
4. Griffith, J. D. (1975) *Science* **187**, 1202-1203.
5. Oudet, P., Gross-Bellard, M. & Chambon, P. (1975) *Cell* **4**, 281-300.
6. Hewish, D. R. & Burgoyne, L. A. (1973) *Biochem. Biophys. Res. Commun.* **52**, 504-510.
7. Burgoyne, L. A., Hewish, D. R. & Mobbs, J. (1974) *Biochem. J.* **143**, 67-72.
8. Clark, R. & Felsenfeld, G. (1971) *Nature* **229**, 101-106.
9. Clark, R. & Felsenfeld, G. (1974) *Biochemistry* **13**, 3622-3628.
10. Axel, R., Melchior, W., Jr., Sollner-Webb, B. & Felsenfeld, G. (1974) *Proc. Nat. Acad. Sci. USA* **71**, 4101-4105.
11. Rill, R. & van Holde, K. E. (1973) *J. Biol. Chem.* **248**, 1080-1083.
12. Sahasrabuddhe, C. G. & van Holde, K. E. (1974) *J. Biol. Chem.* **249**, 152-156.
13. Noll, M. (1974) *Nature* **251**, 249-252.
14. Oosterhof, D. K., Hozier, J. C. & Rill, R. L. (1975) *Proc. Nat. Acad. Sci. USA* **72**, 633-637.
15. van Holde, K. E., Sahasrabuddhe, C. G., Shaw, B., van Brugge, E. F. J. & Arnberg, A. C. (1974) *Biochem. Biophys. Res. Commun.* **60**, 1365-1370.
16. Senior, M. B., Ollins, A. L. & Ollins, D. E. (1975) *Science* **187**, 173-175.
17. Gottesfeld, J. M., Kent, D., Ross, M. & Bonner, J. (1975) in *Florida Colloquium on Molecular Biology*, eds. Stein, G. & Stein, J. (Academic Press, New York), in press.
18. Kornberg, R. (1974) *Science* **184**, 868-871.
19. Marushige, K. & Bonner, J. (1971) *Proc. Nat. Acad. Sci. USA* **68**, 2941-2944.
20. Billing, R. J. & Bonner, J. (1972) *Biochim. Biophys. Acta* **281**, 453-462.
21. Gottesfeld, J. M., Garrard, W. T., Bagi, G., Wilson, R. F. & Bonner, J. (1974) *Proc. Nat. Acad. Sci. USA* **71**, 2193-2197.
22. Marushige, K. & Bonner, J. (1966) *J. Mol. Biol.* **15**, 160-174.
23. Douvas, A., Harrington, C. & Bonner, J. (1975) *Proc. Nat. Acad. Sci. USA* **72**, in press.
24. Noll, H. (1967) *Nature* **215**, 360-363.
25. Studier, F. W. (1965) *J. Mol. Biol.* **11**, 373-390.
26. Bonner, J., Chalkley, R., Dahmus, M., Fambrough, D., Fujimura, F., Huang, R. C. C., Huberman, J., Jensen, R., Marushige, K., Olenbusch, H., Olivera, B. & Widholm, J. (1968) in *Methods in Enzymology*, eds. Grossman, L. & Moldave, K. (Academic Press, New York), Vol. 12, part B, pp. 3-65.
27. King, J. & Laemmli, U. K. (1971) *J. Mol. Biol.* **62**, 465-477.
28. Panyim, S. & Chalkley, R. (1969) *Arch. Biochem. Biophys.* **130**, 337-346.

4408 Biochemistry: Gottesfeld *et al.**Proc. Nat. Acad. Sci. USA* 72 (1975)

29. Schmidt, G. & Tannhauser, S. J. (1945) *J. Biol. Chem.* **161**, 83-89.
30. Axel, R., Cedar, H. & Felsenfeld, G. (1973) *Cold Spring Harbor Symp. Quant. Biol.* **38**, 773-783.
31. McConaughy, B. L. & McCarthy, B. J. (1972) *Biochemistry* **11**, 998-1003.
32. Gottesfeld, J. M., Bonner, J., Radda, G. K. & Walker, I.O. (1974) *Biochemistry* **13**, 2937-2945.
33. Polacow, I. & Simpson, R. T. (1973) *Biochem. Biophys. Res. Commun.* **52**, 202-207.
34. Miller, O. L. & Hamkalo, B. A. (1972) in *Molecular Genetics and Developmental Biology*, ed. Sussman, M. (Prentice-Hall, Englewood Cliffs, N.J.), pp. 183-199.
35. Griffith, J. (1970) Ph.D. Dissertation, California Institute of Technology, Pasadena, Calif.
36. Miller, O. L. (1965) *Nat. Cancer Inst. Monogr.* **18**, 79-89.

PART III

Chapter 3. Physical properties of chemically acetylated rat liver
chromatin

Reprinted from
Proc. Natl. Acad. Sci. USA
 Vol. 74, No. 8, pp. 3244-3248, August 1977
 Biochemistry

Physical properties of chemically acetylated rat liver chromatin

(acetic anhydride/nucleosomes/thermal denaturation/histones)

R. BRUCE WALLACE, THOMAS D. SARGENT, ROBERT F. MURPHY, AND JAMES BONNER

Division of Biology, California Institute of Technology, Pasadena, California 91125

Contributed by James Bonner, May 23, 1977

ABSTRACT The physical properties of rat liver chromatin and nucleosomes acetylated with acetic anhydride were examined in order to clarify the mechanism by which chemical acetylation of histones increases template activity *in vitro* [Marushige, K. (1976) *Proc. Natl. Acad. Sci. USA* 73, 3937-3941]. Acetylation was found to have dramatic effects on the magnesium solubility, nuclease sensitivity, thermal denaturation, and sedimentation of chromatin and nucleosomes. The significance of the results to models of gene activation and chromatin replication is considered.

The five principal species of histone are associated with DNA to form the eukaryotic chromosome. These basic proteins are involved in the repression of template activity of chromatin (1, 2). It has long been thought that a degree of transcriptional control might be achieved by the selective modification of certain basic residues of the histones (3, 4).

In the current model of chromatin structure, 200 base pairs of DNA are complexed with histones to form the nucleosomal subunit. Although the nucleosome is a general feature of all eukaryotic chromatin thus far examined, there appears to be heterogeneity within the nucleosomes of any single cell type (5). Some of this heterogeneity consists of different conformations of nucleosomes of active and inactive genes (6, 7), which may result from histone modification (4).

Marushige (8) has reported that chemical acetylation of calf thymus chromatin increases its template activity *in vitro* without resulting in significant removal of the histones from the DNA. These results suggest that acetylation of histones participates in activation of genes for transcription. In this report we describe the effect of chemical acetylation on the physical properties of rat liver chromatin and nucleosomes.

MATERIALS AND METHODS

Preparation of Nuclei. Rat liver nuclei were prepared from frozen rat livers (Pelfreeze). All manipulations were performed at 0° unless otherwise stated. Livers were thawed in 0.25 M sucrose/10 mM Tris-HCl, pH 7.4/6 mM KCl/5 mM Mg(OAc)₂/0.1 mM ethylene glycol-bis(β-aminoethyl ether)-N-N'-tetraacetic acid (EGTA). Livers were transferred to three volumes of the same buffer containing 1 mM phenylmethylsulfonyl fluoride (homogenization buffer) and homogenized with five to seven strokes in a motor-driven glass/Teflon homogenizer. The homogenate was diluted to 10 volumes with homogenization buffer, strained through cheesecloth, and centrifuged at 1500 rpm in an HG-4L rotor (Sorvall RC-3 centrifuge) for 10 min. The pellet was washed twice in 10 volumes of homogenization buffer containing 0.5% Nonidet-P40 (Particle Data Laboratories, Ltd), two to four times in homogenization buffer containing 0.1 mM phenylmethylsulfonyl

The costs of publication of this article were defrayed in part by the payment of page charges from funds made available to support the research which is the subject of the article. This article must therefore be hereby marked "advertisement" in accordance with 18 U. S. C. §1734 solely to indicate this fact.

fluoride and 0.5% Nonidet-P40, and finally once in homogenization buffer. The nuclear pellet was resuspended in homogenization buffer and an equal volume of 5 mM Mg(OAc)₂/98% glycerol was added. This suspension is stored at -20° for up to 1 month.

Preparation of Chromatin. Nuclei were recovered from the glycerol suspension by centrifugation at 3000 rpm in an HB-4 rotor (Sorvall RC-2 centrifuge) and washed once in 10 mM Tris-HCl, pH 7.4/6 mM KCl/5 mM Mg(OAc)₂ (TKM). The nuclei were lysed by vigorous homogenization in 2.5 mM Tris-HCl, pH 7.4/2.5 mM ethylenediaminetetraacetic acid (EDTA), followed by centrifugation at 10,000 rpm in the HB-4 rotor for 10 min. The chromatin was then washed once in the same buffer and twice in 5 mM sodium borate, pH 8.2/10 mM NaCl and finally was suspended in 5 mM sodium borate, pH 8.2/10 mM NaCl at an *A*₂₆₀ of 10 (all chromatin absorbances are measured in 1 M NaOH).

Novikoff hepatoma cells [line NISI-67 adapted for growth in Swinns 210 medium (Gibco)] were cultured as described by Plagemann (9). Cells were labeled with [2-¹⁴C]thymidine (56 mCi/mmol) at 0.05 μCi/ml for two cell generations. Preparation of nuclei will be described elsewhere (R. B. Wallace, S. K. Dube, and J. Bonner, unpublished data); they were mixed with 4-fold excess of rat liver nuclei. Chromatin was prepared as described above.

Preparation of Nucleosomes. Nuclei were recovered from the glycerol suspension as described above, washed once in TKM, and suspended in TKM at an *A*₂₆₀ of 150-200. The suspension was warmed to 37°, brought to 0.25 mM CaCl₂, and digested for 5 min with 0.24 μg (7.5 units) of staphylococcal nuclease (P-L Biochemicals) per *A*₂₆₀ unit. The nuclei were cooled to 0° and centrifuged at 3000 rpm in the HB-4 rotor for 5 min. The nuclear pellet was homogenized in 2.5 mM Tris-HCl, pH 7.4/2.5 mM EDTA and centrifuged at 10,000 rpm in the HB-4 rotor for 10 min. The supernatant was then passed over a Sephadex G-50 column equilibrated with 5 mM sodium borate, pH 8.2/0.1 mM EGTA; the excluded fraction, representing nucleosomes, was adjusted to an *A*₂₆₀ of 10. Typical preparations were 5-15% acid soluble and 50-70% monomer nucleosomes.

Acetylation of Chromatin and Nucleosomes. Chromatin and nucleosomes were acetylated with acetic anhydride as described by Wong and Marushige (10). Chromatin solutions were acetylated with 0.14 mM, 0.7 mM, and 7 mM acetic anhydride at an *A*₂₆₀ of 10. Acetylated chromatin samples were dialyzed overnight against 10 mM Tris-HCl, pH 7.4. The incorporation of acetate groups was monitored by acetylating chromatin with [³H]acetic anhydride (Schwartz/Mann) diluted to 0.4 mCi/mmol. The amount of acetylation achieved with the three concentrations was essentially the same as that reported by Wong and Marushige.

Abbreviations: EGTA, ethylene glycol-bis(β-aminoethyl ether)-N,N'-tetraacetic acid; TKM buffer, 10 mM Tris-HCl, pH 7.4/6 mM KCl/5 mM Mg(OAc)₂; EDTA, ethylenediaminetetraacetic acid.

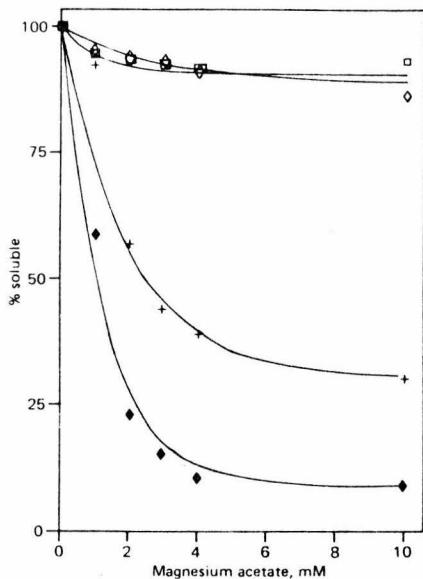


FIG. 1. Solubility of acetylated chromatin in magnesium acetate. Nucleosomes were acetylated with acetic anhydride at 0 (♦), 0.14 (+), 0.7 (◊), and 7 mM (□) (see Materials and Methods), dialyzed against 10 mM Tris-HCl, pH 7.4/0.1 mM EGTA, and diluted to an A_{260} of 1.0. Aliquots were adjusted to the desired magnesium acetate concentration and centrifuged at 0° for 10 min at 10,000 rpm in an SS-34 rotor (Sorvall RC-2B). The A_{260} of the supernatant was measured, and the values are expressed as percentage of total A_{260} . The lines represent nonlinear least-squares exponential fits to the data (13).

Thermal Denaturation. Acetylated and control chromatin were dialyzed exhaustively against 0.25 mM EDTA (pH 8) and adjusted to an A_{260} of approximately 1.5. Melting was performed with a Gilford 2400 spectrophotometer equipped with a thermal cuvette and digital absorbance meter under control of a Tektronix-31 programmable calculator. Absorbances were recorded every 0.4°, each point being the average of 10 readings. The data were corrected for the small hyperchromicity of the buffer and derivatized by using the least-squares method of Savitzky and Golay (11) (15-point cubic quartic polynomial first-derivative smooth). The derivative data were normalized to percentage hyperchromicity and resolved into gaussian components by using a nonlinear least-squares fitting program (12, 13).

Sucrose Density Gradient Centrifugation of Nucleosomes. Isokinetic sucrose gradients were prepared by the method of Noll (14), assuming a particle density of 1.44 g/cm³ and using the following parameters: gradient volume, 11.6 ml; C_{top} , 5% (wt/wt) sucrose; C_{res} , 26.7% (wt/wt) sucrose; sample volume, 0.5 ml. The gradient buffer was 10 mM Tris-HCl, pH 8/0.1 mM EGTA. The gradients were run at 36,000 rpm in an SW41 rotor for 18 hr at 4°. The gradients were scanned by using an ISCO UA-5 ultraviolet monitor equipped with a digital absorbance meter, and data were collected by a Tektronix-31 programmable calculator. Fractions of the gradients containing nucleosomes acetylated with ³H/acetic anhydride were collected and assayed for radioactivity directly in Aquasol 2 scintillation fluid (New England Nuclear).

Polyacrylamide Gel Electrophoresis. The products of DNase I digestion of control and acetylated chromatin were

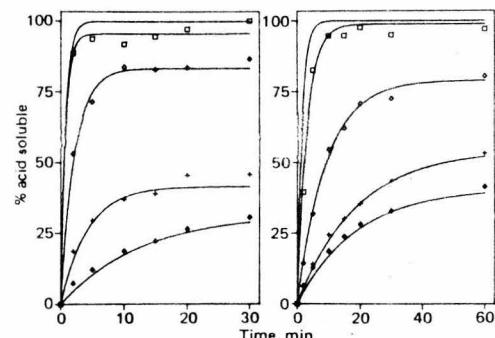


FIG. 2. Nuclease sensitivity of acetylated chromatin. Chromatin was prepared from [¹⁴C]thymidine-labeled cells and acetylated as indicated in Materials and Methods. The samples were dialyzed against 10 mM Tris-HCl, pH 7.4, the A_{260} was adjusted to 0.4, and the sample was adjusted to 10 mM NaCl, 3 mM Mg(OAc)₂, and 1 mM CaCl₂. DNase I at 0.5 μ g/ml (Left) or staphylococcal nuclease at 0.14 μ g/ml (Right) was added, and the digestions were carried out at 24°. Aliquots (0.5 ml) were removed at intervals and precipitated with 1 ml of cold 0.3 M perchloric acid. Insoluble material was removed by centrifugation. The supernatant was neutralized with NaOH, adjusted to 1% sodium dodecyl sulfate, 50 mM Tris-HCl (pH 7.4), and assayed for radioactivity in Aquasol 2. After 1 hr of digestion, the remaining chromatin was adjusted to 1% sodium dodecyl sulfate, 50 mM Tris-HCl (pH 7.4), 0.2 M sodium perchlorate and assayed for total radioactivity. Acetic anhydride concentrations: 0 (♦), 0.14 mM (+), 0.7 mM (◊), and 7 mM (□). The lines represent nonlinear least-squares exponential fits to the data (13), with the uppermost line in each panel representing the digestion of deproteinized rat liver DNA (see Table 1).

analyzed on 12% polyacrylamide/7 M urea gels as described by Maniatis *et al.* (15). Slab gels, 2 \times 120 \times 150 mm, were prepared and aged overnight. Samples were brought to 50% formamide, boiled for 3 min, and quenched on ice. Electrophoresis was at 200 V and continued until the bromophenol blue dye was 0.5 cm from the end of the gel. The gel was stained for 2 hr with ethidium bromide (1 μ g/ml in 0.5 M ammonium acetate) and photographed under ultraviolet light with a yellow filter.

RESULTS

One of the most obvious physical changes that accompanies chemical acetylation of rat liver chromatin is its solubilization. Under the conditions of the acetylation reaction (i.e., 0.15 M NaCl), chromatin is a condensed, insoluble precipitate. Chromatin is similarly condensed in the presence of 2 mM Mg²⁺. Upon the addition of acetic anhydride at 0.7 or 7 mM, the chromatin precipitate becomes noticeably more soluble. We investigated this phenomenon by comparing the solubility of control and acetylated nucleosomes in various concentrations of magnesium (Fig. 1). The control nucleosomes were very insoluble, less than 10% remaining soluble in 10 mM magnesium. Acetylation increased the solubility of nucleosomes, the 0.7 mM and 7 mM acetylated material becoming almost completely soluble.

Template active regions of chromatin are more sensitive to DNase I (6, 7) than are inactive regions. If acetylation is responsible for gene activation *in vivo*, *in vitro* acetylated chromatin might be expected to show greater nuclease sensitivity than unacetylated chromatin. Fig. 2 left and Table 1 show the kinetics of digestion of acetylated ¹⁴C-labeled chromatin with DNase I. Increased acetylation of chromatin dramatically al-

Table 1. Kinetic parameters from Fig. 2

	DNase I			Staphylococcal nuclease		
	<i>k</i> *	<i>M</i> †	<i>R</i> ‡	<i>k</i>	<i>M</i>	<i>R</i>
Control	0.079	32.0	1.0	0.054	40.5	1.0
Acetylated chromatin:						
0.14 mM	0.237	41.6	3.9	0.054	53.9	1.3
0.7 mM	0.458	83.3	15.2	0.110	78.9	3.9
7 mM	1.300	95.6	49.4	0.322	98.8	14.4
DNA	1.290	100.0	51.3	0.653	100.0	29.6

* First-order rate constant (min^{-1}).

† Maximal percentage digested.

‡ Relative initial rate of reaction. The initial rate for control chromatin was 0.01 A_{260} unit/ml per min with DNase I and 0.0088 A_{260} unit/ml per min with staphylococcal nuclease.

tered the sensitivity of the DNA to the nuclease. Chromatin acetylated with 0.14 mM acetic anhydride was digested 4 times faster than control chromatin, and that acetylated at 0.7 mM was digested 15 times faster. Maximally acetylated chromatin (7 mM) was as sensitive as deproteinized DNA to DNase I. Fig. 2 right shows the results of a similar experiment with staphylococcal nuclease. It can be seen that 0.14 mM acetylated chromatin was slightly more sensitive than control chromatin to staphylococcal nuclease, and 0.7 mM acetylated chromatin was digested 4 times as fast as control chromatin; 7 mM acetylated chromatin was digested approximately half as fast as deproteinized DNA. Thus, chemically acetylated chromatin is moderately sensitive to staphylococcal nuclease but extremely sensitive to DNase I.

Weintraub and Groudine (6) reported that, during the digestion of active genes with DNase I, the digested DNA appears as multiples of 10 nucleotides. Fig. 3 shows that 0.14 mM and 0.7 mM acetylated chromatins were digested by DNase I to the same 10-nucleotide repeat pattern as control chromatin. This result suggests that the histone-DNA interaction that produces this periodic pattern is not disrupted by the acetylation. On the other hand, the 7 mM acetylated chromatin did not have this repeat pattern (although faint bands are apparent at 10-nucleotide intervals).

The DNA of the transcriptionally active regions of chromatin

Table 2. Summary of melting transitions from Fig. 4

	Tm1	%	Tm2	%	Tm3	%	Tm4	%
<i>Nucleosomes</i>								
Control	64.5	34.4	76.3	60.6	81.1	5.0	—	—
Acetylated:								
0.14 mM	60.2	39.3	73.8	52.0	79.7	8.8	—	—
0.7 mM	48.3	48.0	65.7	39.0	75.7	13.0	—	—
7 mM	42.1	55.2	52.2	31.6	69.7	13.2	—	—
DNA	40.8	100.0	—	—	—	—	—	—
<i>Chromatin</i>								
Control	62.0	29.1	71.1	18.7	77.1	23.4	83.4	28.8
Acetylated:								
0.14 mM	53.3	20.8	65.0	26.4	73.6	20.5	81.3	32.3
0.7 mM	47.6	44.9	63.3	28.7	—	—	79.8	26.4
7 mM	43.7	83.7	50.7	6.4	—	—	75.6	9.9
DNA	40.8	100.0	—	—	—	—	—	—

Temperatures are in degrees Celsius. Transitions are numbered in order of increasing temperature. Percentages refer to the fraction of the total hyperchromicity of each sample in a given transition.

Fig. 3. Polyacrylamide gel electrophoresis of DNase I-digested chromatin DNA. Control and acetylated chromatins were prepared as described in *Materials and Methods*. The samples were dialyzed against 10 mM Tris-HCl (pH 7.4) and adjusted to A_{260} of 10. Each was brought to 10 mM NaCl, 3 mM Mg(OAc)_2 , and 1 mM CaCl_2 , and DNase I, 10 $\mu\text{g}/\text{ml}$, was added. Each sample was digested for various times at 24° such that the percentage of acid-soluble A_{260} was 25, 30, 15, and 15 for control, 0.14 mM, 0.7 mM, and 7 mM acetic anhydride, respectively. Reactions were stopped by bringing each to 1% sodium dodecyl sulfate; then the samples were phenol/chloroform extracted as described by Marmur (29). DNA was precipitated with ethanol and dissolved in gel buffer (15); 25 μg of each was brought to 50% formamide, boiled for 3 min, and cooled on ice. Electrophoresis was performed as described in *Materials and Methods*. From left to right: DNA from unacetylated chromatin and 0.14 mM, 0.7 mM, and 7 mM acetylated chromatin.

is believed to have a lower melting temperature than the DNA of the inactive regions. This belief is supported by the thermal fractionation experiments of McConaughy and McCarthy (16). In addition, DNase II-fractionated template-active chromatin melts at a lower temperature than does unfractionated chromatin (ref. 17; unpublished data).

The thermal denaturation of control and acetylated chromatins and nucleosomes, as well as deproteinized DNA, is shown in Fig. 4. The data are presented as first-derivative melting profiles, fitted to three or four gaussian components to quantitate the transitions observed. Table 2 summarizes the melting transitions and the contribution of each to the total hyperchromicity. The most obvious effect of chemical acetylation on thermal denaturation is the dramatic shift to lower melting temperatures of all the observed transitions. This is true for both chromatin and nucleosomes, although the melting profiles of control and acetylated chromatin were more complex.

Fig. 5 shows the effect of acetylation on the sedimentation behavior of nucleosomes. The sedimentation of acetylated

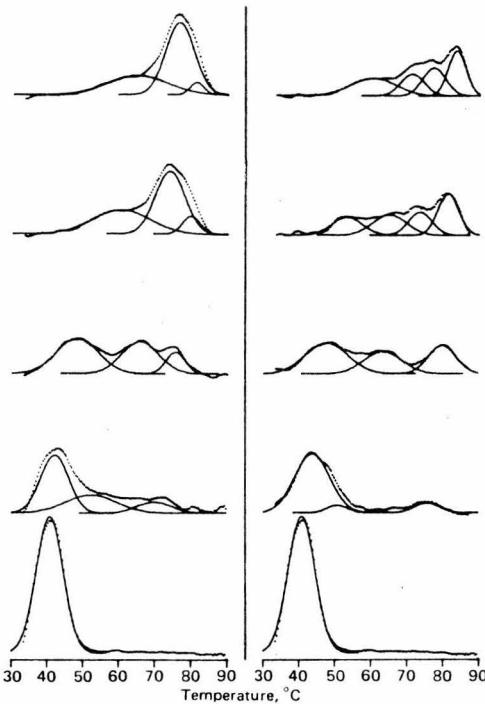


FIG. 4. First-derivative melting profiles (see *Materials and Methods*). Full scale for each profile is 3% change in hyperchromicity per degree. From top to bottom: unacetylated material, 0.14 mM, 0.7 mM, and 7 mM acetylated material, and deproteinized rat liver DNA. (Left) Nucleosomes. (Right) Chromatin. \cdots , dH/dT . —, Gaussian components.

nucleosomes was dramatically retarded compared with that of control nucleosomes and approached that of sodium dodecyl sulfate-treated control nucleosomes. To determine whether all of these nucleosomes were acetylated equally and whether all of the acetate remained bound to the nucleohistone, the acetylation reaction was carried out with [3 H]acetic anhydride. Fig. 5 also shows the distribution of [3 H]acetate across the gradients. From 0.14 to 0.7 mM acetic anhydride there was a 4-fold increase in acetate incorporation per nucleosome whereas from 0.7 to 7 mM acetic anhydride there was only a 2-fold increase. This demonstrates the limit acetylation reported by Wong and Marushige (10). All nucleosomes, monomer through trimer, were acetylated. At 7 mM acetic anhydride, [3 H]acetate counts were found at the top of the gradient, perhaps representing dissociated histone H1.

DISCUSSION

We have demonstrated that chemical acetylation of nucleohistone *in vitro* results in dramatic changes in its physical properties. The results obtained suggest possible functions for acetylation *in vivo*.

The chemical acetylation of nucleosomes was found to increase their solubility in the presence of Mg^{2+} . Previous studies from this laboratory have shown that DNase II digestion followed by precipitation with 0.15 M NaCl (18) or 2 mM $MgCl_2$ (19) yields a fraction of rat liver chromatin enriched in sequences transcribed *in vivo* (19).

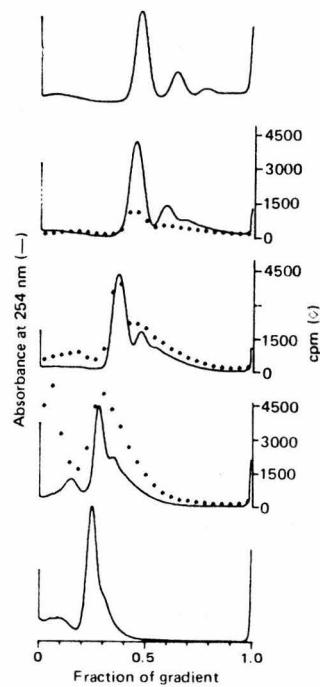


FIG. 5. Sucrose gradient sedimentation of nucleosomes. Sedimentation is from left to right. From top to bottom: nucleosomes, 0.14 mM acetylated nucleosomes, 0.7 mM acetylated nucleosomes, and sodium dodecyl sulfate-treated nucleosomal DNA (30). The sedimentation coefficients of the monomer peak are 11.3, 10.6, 8.6, 6.2, and 5.4 S, respectively. The specific activity of the labeled samples was 19.1, 67.4, and 119 acetates per 200 base pairs of DNA for 0.14 mM, 0.7 mM, and 7 mM acetylated nucleosomes, respectively. Under the conditions of acetylation, approximately half as much acetate was incorporated into nonhistones as into histones, and no detectable acetate was incorporated into DNA.

The sensitivity of chromatin to DNase I and, to a lesser extent, to staphylococcal nuclease is significantly increased after treatment with acetic anhydride. Similar nuclease sensitivity properties have been reported for transcriptionally active sequences (6, 7, 20), although the biochemical basis for this phenomenon has not been determined. Marushige (8) reported that the derepression of template activity by chemical acetylation with 0.7 mM acetic anhydride was a result of the acetylation of histones H2A and H2B, with H3 and H4 not contributing significantly. H3 and H4 have been implicated in the protection of multimers of 10 nucleotides of DNA from digestion by DNase I (21). Fig. 3 demonstrates that the 10-nucleotide repeat pattern is observed in 0.7 mM acetylated chromatin even though the rate of digestion by DNase I is dramatically accelerated (Fig. 2 left). This suggests that the interaction of H3 and H4 with the DNA has not been greatly perturbed, whereas the template activity measurements by Marushige suggest that the interaction of H2A and H2B with DNA has been functionally altered by acetylation. Higher levels of acetylation result in a disruption of the 10-nucleotide repeat pattern (Fig. 3).

Thermal denaturation of nucleohistone demonstrates the

dramatic stability of the histone-DNA complex. In order to make DNA sequences available for transcription (or replication), it might be necessary to decrease the stability of this complex (22). Although no direct correlation of nucleohistone thermal denaturation behavior with functional state has been demonstrated, isolated template-active chromatin has a lower melting temperature than does the bulk of chromatin (17), and active sequences of chromatin elute from hydroxylapatite at lower temperatures (16). The results presented in Fig. 4 and Table 2 demonstrate that chemical acetylation lowers the melting temperature of nucleohistone, as might be expected if acetylation were correlated with transcriptional activation. The transitions observed in the first-derivative melting profiles are similar to those reported by others (23-25). We have resolved the transitions into gaussian components in order to quantitate the contribution of each transition to the total hyperchromicity. From previous work (2, 23), as well as unpublished observations in our laboratory, tentative assignments may be made to the transitions of control nucleosomes. The two transitions at the highest temperatures are due to the denaturation of the histone octamer-DNA complex. The lowest transition is due to a more heterogeneous set of interactions as reflected by the breadth of this transition. One of these contributing interactions is probably H1-DNA complexes (26). Acetylation of nucleosomes with 0.14 mM acetic anhydride had little effect on the profile. The relative contribution of each transition remained unchanged, and the transitions were shifted to lower temperatures, T1 being shifted by the largest amount. This is consistent with the role of H1 in the T1 transition, in view of the extensive acetylation of this histone by acetic anhydride (10). The acetylation of nucleosomes with 0.7 mM acetic anhydride resulted in dramatic changes in the melting profile: all three transitions were shifted to lower temperatures and the relative contributions of T1 and T2 were increased at the expense of T3. This may reflect the differential effect of acetylation of H2A/H2B and H3/H4 as discussed above. Acetylation with 7 mM acetic anhydride virtually abolished the stabilization of DNA melting by histones, even though histones remain associated with the DNA (refs. 8 and 10; Fig. 5). The thermal denaturation profiles of chromatin show the same general features as those of nucleosomes.

At the lowest level of acetylation used (0.14 mM acetic anhydride), there were dramatic changes in magnesium solubility (Fig. 1) and DNase I sensitivity (Fig. 2 left). However, staphylococcal nuclease sensitivity (Fig. 2 right), DNase I digestion pattern (Fig. 3), and thermal denaturation (Fig. 4 and Table 2) were only slightly perturbed by the acetylation. Although the sites of chemical acetylation have not been determined, it is possible that this low level of acetylation destabilizes interactions that are qualitatively different from those affected by higher levels.

The demonstration of a direct role of acetylation of histones in gene activation, as suggested by Allfrey *et al.* (3), has been elusive. Jackson *et al.* (27) argued that histone acetylation is too extensive to be a specific mechanism of gene regulation. However, histone modification may be important in DNA replication and histone deposition, as well as in gene activation (4, 28). The many functions of acetylation might be accomplished through different classes of sites for acetylation on the histones. For gene activation, it may be sufficient to alter histone-histone or histone-DNA interactions slightly as in the 0.14

mM acetylation. This could result in the conversion of nucleosomes to a conformation more conducive to transcription of the associated DNA. On the other hand, DNA replication or histone deposition might require a more extensive destabilization of these histone-DNA interactions, as in the higher levels of acetylation reported here.

We thank Dr. S. K. Dube for many stimulating discussions and critical evaluation of this work and Ms. M. J. Johnson for valuable technical assistance. This work was supported by U.S. Public Health Service Grant GM-13762. R.B.W. is the holder of a Medical Research Council of Canada fellowship. T.D.S. is supported by a predoctoral fellowship from the National Science Foundation.

1. Huang, R. C. C., Bonner, J. & Murray, K. (1964) *J. Mol. Biol.* **8**, 54-64.
2. Shih, T. Y. & Bonner, J. (1970) *J. Mol. Biol.* **48**, 469-487.
3. Allfrey, V. G., Faulkner, R. & Mirsky, A. E. (1964) *Proc. Natl. Acad. Sci. USA* **51**, 786-794.
4. Ruiz-Carrillo, A., Wangh, L. J. & Allfrey, V. G. (1975) *Science* **190**, 117-128.
5. Weintraub, H. (1975) *Proc. Natl. Acad. Sci. USA* **72**, 1212-1216.
6. Weintraub, H. & Groudine, M. (1976) *Science* **193**, 848-856.
7. Carel, A. & Axel, R. (1976) *Proc. Natl. Acad. Sci. USA* **73**, 3966-3970.
8. Marushige, K. (1976) *Proc. Natl. Acad. Sci. USA* **73**, 3937-3941.
9. Plagemann, P. G. W. (1969) *Biochim. Biophys. Acta* **182**, 46-56.
10. Wong, T. K. & Marushige, K. (1976) *Biochemistry* **15**, 2041-2046.
11. Savitzky, A. & Golay, M. J. E. (1964) *Anal. Chem.* **36**, 1627-1639.
12. Marquardt, D. W. (1963) *J. Soc. Ind. Appl. Math.* **11**, 431-441.
13. Pearson, W., Davidson, E. H. & Britten, R. J. (1977) *Nucleic Acids Res.*, in press.
14. Noll, H. (1967) *Nature* **215**, 360-363.
15. Maniatis, T., Jeffrey, A. & van de Sande, H. (1975) *Biochemistry* **14**, 3787-3794.
16. McConaughay, B. L. & McCarthy, B. J. (1972) *Biochemistry* **11**, 998-1003.
17. Duerksen, J. D. & McCarthy, B. J. (1971) *Biochemistry* **10**, 1471-1478.
18. Marushige, K. & Bonner, J. (1971) *Proc. Natl. Acad. Sci. USA* **68**, 2941-2944.
19. Gottesfeld, J. M., Garrard, W. T., Bagi, G., Wilson, R. F. & Bonner, J. (1974) *Proc. Natl. Acad. Sci. USA* **71**, 2193-2197.
20. Reeves, R. (1976) *Science* **194**, 529-532.
21. Sollner-Webb, B., Camerini-Otero, R. F. & Felsenfeld, G. (1976) *Cell* **9**, 179-193.
22. Alberts, B. & Frey, L. (1970) *Nature* **227**, 1313-1318.
23. Li, H.-J. & Bonner, J. (1971) *Biochemistry* **10**, 1461-1470.
24. Woodcock, C. L. F. & Frado, L.-L. Y. (1975) *Biochem. Biophys. Res. Commun.* **66**, 403-410.
25. Li, H.-J., Change, C. & Weiskopf, M. (1973) *Biochemistry* **12**, 1763-1771.
26. Ollins, D. E. (1969) *J. Mol. Biol.* **43**, 439-460.
27. Jackson, V., Shires, A., Chalkley, R. & Granner, D. K. (1975) *J. Biol. Chem.* **250**, 4856-4863.
28. Louie, A. J., Candido, E. P. M. & Dixon, G. H. (1973) *Cold Spring Harbor Symp. Quant. Biol.* **38**, 803-819.
29. Marmur, J. (1961) *J. Mol. Biol.* **3**, 208-218.
30. Smith, C. A., Jordan, J. M. & Vinograd, J. (1971) *J. Mol. Biol.* **59**, 255-272.

PART IV

Chapter 4. Altered nucleosome spacing in newly replicated chromatin
from Friend leukemia cells

Chapter 5. Properties of newly replicated chromatin: Analysis
using shallow metrizamide gradients

Reprinted from

Proc. Natl. Acad. Sci. USA
Vol. 75, No. 12, pp. 5903-5907, December 1978
Biochemistry

Altered nucleosome spacing in newly replicated chromatin from Friend leukemia cells

(nucleosomes/chromatin replication/staphylococcal nuclease)

ROBERT F. MURPHY, R. BRUCE WALLACE*, AND JAMES BONNER

Division of Biology, California Institute of Technology, Pasadena, California 91125

Contributed by James Bonner, September 18, 1978

ABSTRACT Chromatin from Friend leukemia cells labeled with [¹⁴C]thymidine for 24 hr followed by [³H]thymidine for 10 min is converted into nucleosomes by staphylococcal nuclease at only half the rate that total chromatin is converted. Polyacrylamide gel electrophoresis of nucleosomal DNA from cells labeled for 24 hr with [¹⁴C]thymidine followed by 10 min with [³H]thymidine demonstrates that the internucleosomal spacer of newly replicated chromatin is approximately 20 base pairs shorter than that of total chromatin. The implications of this difference for models of chromatin structure are discussed.

Considerable evidence from a number of laboratories indicates that the bulk of eukaryotic DNA exists in a repeated, globular form [reviewed by Kornberg (1)]. The repeat unit (the nucleosome) contains 140 base pairs of DNA associated with an octamer of the "inner" histones (H2A, H2B, H3, and H4), and between 40 and 80 base pairs in an internucleosomal spacer. Recent experiments suggest that 30-50 base pairs of this spacer are complexed with histone H1 (2-4). Variations in the spacer length have been observed between species and cell types (5-11), and the breadth of the bands observed in DNA gels has led to the postulation of heterogeneity within a single cell type (12). Investigations have so far revealed no differences in nucleosome spacing between transcribed and untranscribed chromatin (13-18). In this report we present evidence of a difference in repeat length between newly replicated and total chromatin from Friend leukemia cells.

MATERIALS AND METHODS

Cell Culture and Labeling. Friend leukemia cells, clone FSD-3, were grown in suspension culture as described previously (19). Cells were labeled with [¹⁴C]thymidine (61 Ci/mol, Moravek Biochemicals) at 0.1 μ Ci/ml for 24 hr (1.5 generations) followed by [³H]thymidine (21 Ci/mmol, Amersham) at 10 μ Ci/ml for 10 min or at 4 μ Ci/ml for 30 min (1 Ci = 3.7 \times 10¹⁰ becquerels).

Preparation of Nuclei and Nucleosomes. Cells were harvested at the end of the ³H labeling period, washed once in phosphate-buffered saline, and suspended in 10 mM Tris-HCl, pH 8.0/10 mM NaCl/5 mM Mg(OAc)₂/0.5% Nonidet-P40 (Shell Chemical). After 10 min, a nuclear pellet was formed by centrifugation at 2000 \times g for 2 min. The nuclei were washed once in Tris/NaCl/Mg/Nonidet-P-40 and once in Tris/NaCl/Mg and were resuspended in Tris/NaCl/Mg/0.25 mM CaCl₂. The suspension was adjusted to approximately 50 μ g of DNA per ml and brought to 37°C. Staphylococcal nuclease (P-L Biochemicals) was added to aliquots of the nuclear suspension at concentrations of 0.01-65 units/ml (1 unit produces 15 A₂₆₀ units of acid-soluble material from DNA in 30 min at pH 8.8, 37°C), and digestion was stopped after 5 min by addition of 4

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U. S. C. §1734 solely to indicate this fact.

vol of ice-cold Tris/NaCl/Mg. The reaction mix was centrifuged at 2000 \times g for 2 min, and the soluble material was removed (this fraction was found to be equivalent to the fraction soluble in 5% perchloric acid). The pellet was suspended in 2.5 mM Tris-HCl, pH 8.0/2.5 mM ethylene glycol bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). The Tris/EGTA-insoluble (undigested) fraction was removed by centrifugation at 2000 \times g for 3 min. The amount of DNA in the various fractions was determined by bringing aliquots to 1% sodium dodecyl sulfate and scintillation counting in Aquasol-2 (New England Nuclear). A ¹⁴C to ³H spillover correction of 17% was performed (the labeling conditions produced roughly equal amounts of ³H and ¹⁴C cpm). Under these counting conditions, the sum of the cpm in the three fractions for each isotope was constant from low to high enzyme concentration, and equal to the total input cpm. Thus the differences observed were not due to preferential quenching of large ³H DNA. In addition, no differences between 24-hr ¹⁴C-labeled and 24-hr ³H-labeled DNA were seen (data not shown).

Preparation of DNA and Gel Electrophoresis. DNA was extracted from digested nuclei essentially by the procedure of Marmur (20) and dissolved in 89 mM Tris/89 mM boric acid/2.5 mM EDTA containing 5% (vol/vol) glycerol and 0.01% bromophenol blue. Approximately 10 μ g of the DNA samples was applied to 15-cm 4% polyacrylamide gels [in Tris/borate/EDTA, (21)] and electrophoresed at 150 V for 2 hr. Gels were fractionated into 2-mm slices (Aliquogel fractionator, Gilson) and scintillation counted in Aquasol-2. Data were corrected for spillover of ¹⁴C and converted to mobility relative to the dye. The replicative form 2 DNA of phage ϕ X174 was cleaved with restriction endonuclease *Hae* III and labeled by a slight modification of the procedure of Berkner and Folk (22).

RESULTS

We have examined the digestion by staphylococcal nuclease of DNA in isolated nuclei from cells that had been labeled for 24 hr with [¹⁴C]thymidine followed by 10 or 30 min with [³H]thymidine. The amount of radioactivity in acid-soluble, Tris/EGTA-soluble and Tris/EGTA-insoluble form was determined at various ratios of enzyme to substrate. [From analysis of sucrose gradient profiles, the Tris/EGTA-soluble fraction represents nucleosome multimers from 1 to about 20 (data not shown).] Fig. 1 and Table 1 show that 30-min-labeled chromatin is digested into nucleosomes at about $\frac{1}{3}$ the rate, and 10-min-labeled chromatin at less than $\frac{1}{2}$ the rate that total chromatin is digested. However, the fact that there is no difference in the production of acid-soluble material suggests a difference in the

Abbreviation: EGTA, ethylene glycol bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid.

* Present address: Department of Biology, City of Hope National Medical Center, Duarte, CA 91010.

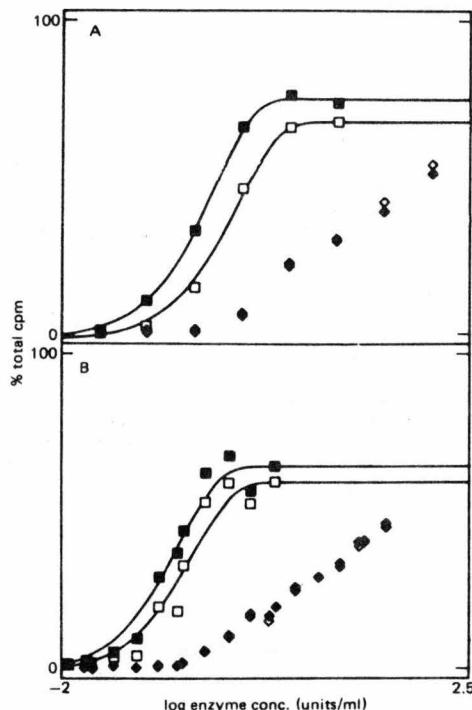


FIG. 1. Digestion of newly labeled and total chromatin by staphylococcal nuclease. The percent of total cpm in each fraction (P) is plotted versus the log of enzyme concentration (E , units/ml). (This semilogarithmic plot expands the low enzyme region.) (A) Ten-minute labeling, ^3H total cpm = 35,421 ($\pm 6.3\%$), ^{14}C total cpm = 13,710 ($\pm 8.3\%$) (uncertainties are $\pm 1\text{SD}$). (B) Thirty-minute labeling, data from three experiments. ^3H total cpm = 164,524, 110,084, 167,690; ^{14}C total cpm = 46,223, 100,724, 100,750 (all $\pm 3\text{--}4\%$). \diamond , ^{14}C (total) Tris/NaCl/Mg-soluble (acid-soluble); \diamond , ^3H (new) Tris/NaCl/Mg-soluble (acid-soluble); \blacksquare , ^{14}C (total) Tris/EGTA-soluble (nucleosomes); \square , ^3H (new) Tris/EGTA-soluble (nucleosomes). The lines represent fits to the equation $P = Me^{kE}$ drawn by using a nonlinear least-squares fitting program (R. F. Murphy, W. R. Pearson, and J. Bonner, unpublished and ref. 23) (see Table 1).

initial availability of internucleosomal DNA. The accuracy of these estimates depends in large part on the adherence of nuclease digestion to pseudo-first-order kinetics under our conditions. This problem may be avoided by plotting the same data as $^{14}\text{C}/^3\text{H}$ ratio (Fig. 2). It can be seen that the difference is

Table 1. Kinetic parameters from Fig. 1

Chromatin	k^*	M^\dagger	R^\ddagger
10-min new	0.224	70.2	15.7
10-min total	0.416	76.9	32.0
Ratio new/total	0.539	0.912	0.491
30-min new	0.665	61.4	40.9
30-min total	0.956	66.8	63.9
Ratio new/total	0.696	0.920	0.640

* First-order rate constant (ml unit $^{-1}$ min $^{-1}$).

\dagger Maximum percent digested.

\ddagger Initial rate of reaction ($k \times M$).

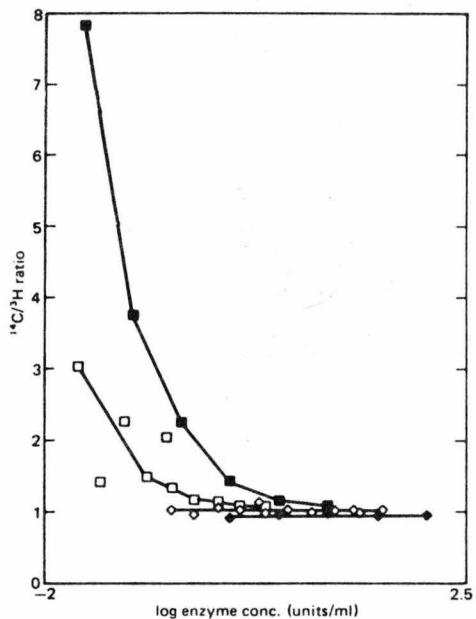


FIG. 2. Comparison of digestion of total and newly labeled chromatin. Data from Fig. 1 replotted as $^{14}\text{C}/^3\text{H}$ ratio for each sample. \diamond , 10-min Tris/NaCl/Mg-soluble; \triangle , 30-min Tris/NaCl/Mg-soluble; \blacksquare , 10-min Tris/EGTA-soluble; \square , 30-min Tris/EGTA-soluble.

greatest at low enzyme-to-chromatin ratios, approaching 8-fold for a 10-min labeling.

The difference in digestion rates observed suggests a difference in the structure of newly replicated chromatin. In order to examine that possibility, total DNA from various digests of nuclei labeled for 24 hr with ^{14}C thymidine followed by 10 min with ^3H thymidine was prepared and electrophoresed in 4% polyacrylamide gels (Fig. 3). The monomer peaks in each gel are coincident, but a difference in the higher multimers is evident. The ^3H peaks appear broader, so that for dimers and trimers the ^{14}C peak is almost included in the ^3H peak. The panels on the right show the data plotted as $^3\text{H}/^{14}\text{C}$ ratio. Peaks are seen to the right of the position of the ^{14}C -labeled multimers (marked by the arrows), demonstrating a difference in the average size of the two types of multimer DNA.

To quantitate this difference, Gaussian curves were fit to the data from each gel for each isotope by using a nonlinear least-squares fitting program (R. F. Murphy, W. R. Pearson, and J. Bonner, unpublished; ref. 24). ^{32}P -Labeled fragments of ϕ X174 replicative form 2 DNA cleaved with Hae III were either run on parallel gels or mixed with the ^3H and ^{14}C samples. These gels were also fractionated and their radioactivities were determined. The mobilities of these fragments were 1–2% higher at low DNA concentrations (approximately 100 ng/gel), compared to the same fragments mixed with the Friend cell DNA samples (approximately 10 $\mu\text{g}/\text{gel}$; data not shown). For the standardization, values from the latter gels were used. Fig. 4 shows the nucleotide length of each fragment [determined from the nucleotide sequence (25)] plotted semilogarithmically versus its mobility. This yields a straight line, from which the sizes of the ^3H and ^{14}C nucleosomes were calculated.

Fig. 5 shows the variation in nucleosome size with multimer number, from which the nucleosome repeat length can be de-

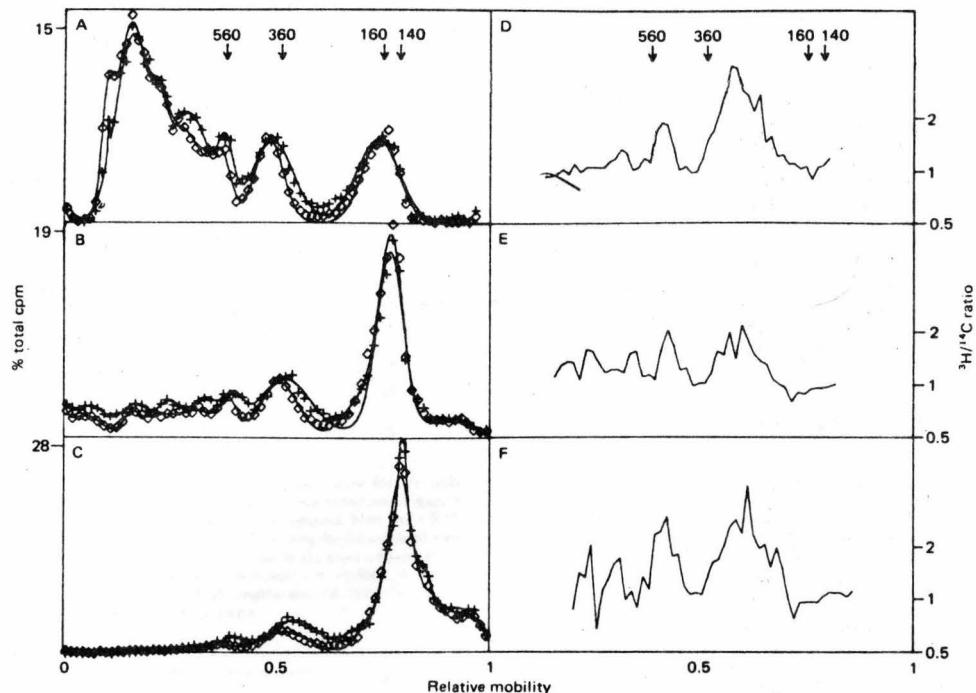


FIG. 3. Polyacrylamide (4%) gel electrophoresis of DNA from newly labeled and total nucleosomes. (A-C) Percent of total nuclear cpm for ^3H (+, new) and ^{14}C (◊, total) nucleosomal DNA is plotted versus mobility relative to bromophenol blue. ^3H total cpm: A, 4019; B, 4571; C, 3605. ^{14}C total cpm: A, 5772; B, 6259; C, 4873. The lines represent the sum of Gaussian curves fit to the data by using a nonlinear least-squares fitting program (R. F. Murphy, W. R. Pearson, and J. Bonner, unpublished). The arrows mark the approximate position of the ^{14}C core and multimers, and the associated numbers of base pairs were calculated from the standards as described in the text. The enzyme concentration increases 3.16-fold from A to B and from B to C. (D-F) Ratio of $^3\text{H}/^{14}\text{C}$ cpm from A-C.

terminated independently of the extent of digestion. Table 2 summarizes this data. The difference in size is clearly due to a difference in spacer length, which varies from 10 base pairs in the least digested sample to 29 in the most. Because the breadth of the bands appears to decrease with digestion, the average value of 17 is probably an underestimate.

Table 2. Nucleosomal DNA sizes

	Chromatin	Mono	Di	Tri	Unit	Spacer*	Spacer difference
A [†]	New	168	387	563	198	58	
	Total	164	397	579	208	68	10
B [†]	New	151	349	528	188	48	
	Total	150	365	548	199	59	11
C [†]	New	144	331	527	187	47	
	Total	148	358	585	210	70	23
C [‡]	New	140	323	527	194	54	
	Total	139	348	585	223	83	29
	New	138	320	527	182	42	
	Total	140	336	585	195	55	13
Average							17 ± 8

* Assuming a core size of 140 base pairs.

† Fig. 3 panel number.

‡ Gel not shown; enzyme concentration as for preceding gel.

DISCUSSION

Much evidence has been accumulated to indicate that nucleosomes from different species and cell types have different repeat lengths (5-11). A correlation between nucleosome size and transcriptional activity has been suggested (9-10). As has been pointed out by Thomas and Thompson (11), however, it would appear unlikely that two different cells from the same organism would have a significant difference in their average repeat size because of differences in the small fraction of total DNA coding for structural genes. Some reports of the presence of transcribed genes in nucleosome structures have included data that indicate that the spacing for transcribed and non-transcribed DNA is the same. Two of these methods—comparison of unlabeled DNA in parallel gels (17) and comparison of unlabeled total DNA and labeled, hybridized probe for the examined sequence (15, 16, 18)—are severely limited in their accuracy due to difficulties in aligning and scaling the different sets of data. The third method—double-labeling—has been used to show that 60- to 120-min labeled ribosomal DNA and long-term labeled total DNA from *Tetrahymena* macronuclei nucleosomes have the same size (13, 14). No direct evidence of a relationship between nucleosome spacing and transcriptional activity has been reported.

As we have shown above, newly replicated nucleosomal DNA from mouse Friend cells is different in size from total nucleo-

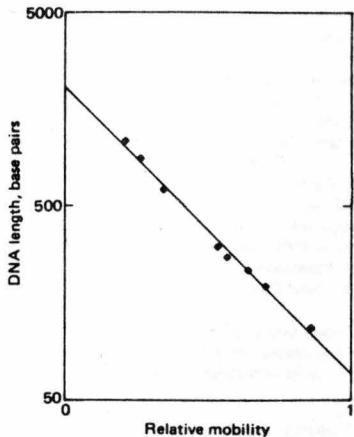


FIG. 4. Molecular weight standardization curve for 4% polyacrylamide gels. DNA length L (base pairs) is plotted semilogarithmically versus mobility relative to bromophenol blue for ϕ X174 replicative form DNA cut with Hae III [\diamond , lengths determined from the DNA sequence (24)]. The line represents the least-squares fit $\log L = 3.308 - 1.473 R_F$ (correlation coefficient $r = -0.9963$, % error = 1.06) for the ϕ X174 markers, whose lengths are 118, 194, 234, 271 and 278, 310, 606, 872, and 1078 base pairs.

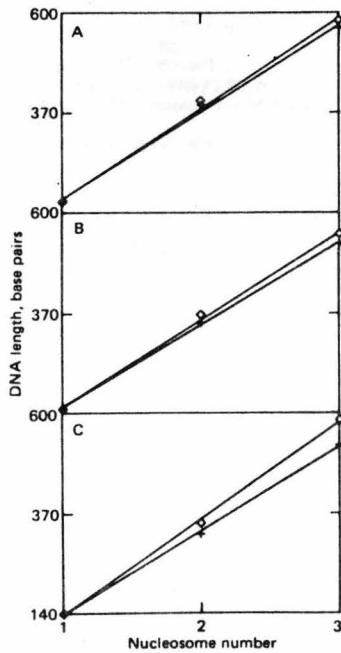


FIG. 5. Determination of nucleosome spacing. DNA length (base pairs, determined from the center of fitted Gaussian curves) is plotted versus nucleosome multimer number (n) for the gels from Fig. 3. $+$, ^{3}H ; \diamond , ^{14}C . The lines are least-squares fits $L = a + bn$, in which a is the sum of the lengths of the ends on each multimer minus the spacer length and b is the unit nucleosome size (core length plus the spacer length) (see Table 2).

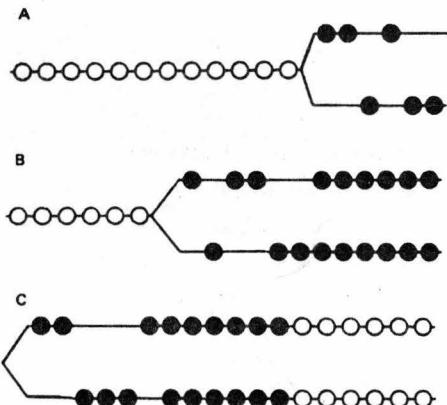


FIG. 6. Changes in nucleosome arrangement during chromatin replication. All circles represent 140-base-pair nucleosome cores. \circ , nucleosomes with normal (200-base-pair) spacing; \bullet , nucleosomes with shortened (180-base-pair) spacing. The number of nucleosomes depicted in each configuration is arbitrary. In reality, the number of nucleosomes (and hence the length of time) between the passage of the replication fork and regaining of normal spacing is certainly much larger. (A) Chromatin after replication has been initiated. Compression of nucleosomes has occurred to allow for replication complex. A random dispersive model is shown, but semiconservative and conservative models are not ruled out. Current data are conflicting in this regard, but the proposed compression during replication is independent of the exact dispersion mechanism. Nuclease digestion of chromatin labeled for short times (1–30 sec, depending on the rate of replication for the specific cell type) yields an increased rate of production of both acid-soluble material and mononucleosomes. (B) New nucleosome cores cover the free DNA, but shortened spacing remains intact. Additional free DNA generated by compression is present at the fork. Longer pulses (5–10 min) detect no difference in production of acid-soluble material, decreased oligonucleosome production, and shortened nucleosome spacing. (C) Normal spacing is slowly regained by nucleosome sliding (20–30 min). The amount of free DNA at the fork is thus kept constant.

somal DNA. This might suggest a relationship between nucleosome spacing and chromatin replication rate, because the general correlation between shortened nucleosomal spacings and high transcriptional activity [reviewed by Kornberg (1)] can also be made between shortened spacing and short generation times. However, there is no difference in spacing between Chinese hamster ovary cell nuclei and mitotic chromosomes (17), or between confluent and exponentially growing C6 rat glial tumor cells (10). These experiments used unlabeled DNA in parallel gels, and hence do not have the sensitivity of our experiments. However, the conclusion that nucleosome spacing is not significantly related to rate of chromatin replication is probably justified, because the fraction of chromatin in newly replicated form is too small to account for spacing differences in total DNA from cells with different generation times. Instead, a gradual increase in nucleosome spacing with time is possible (perhaps to compensate for small amounts of histone degradation or as a result of changes in the level of histone modification).

Some laboratories have reported that chromatin pulse-labeled for from 0.5 to 10 min produces acid-soluble material at an increased rate (relative to total chromatin) when digested with staphylococcal nuclease (26–28). These studies have generally used shorter pulses than we have, and those that have used longer pulses have indicated that the difference disappears (26,

28). Considering the variation in chromatin replication rate among different cell lines, it would appear that the published data are consistent with an increased sensitivity during and immediately following DNA replication and normal sensitivity once histone cores are deposited on the free DNA. The short-lived acid-soluble difference is followed by a longer-term decrease in production of nucleosomes by staphylococcal nuclease, due to smaller nucleosome spacers (Fig. 6).

In any case, our results indicate that elongation can take place after histone deposition (perhaps caused by the binding of histone H1 and/or some nonhistone protein). This suggests that the interaction between core histones and DNA is not strong enough to prevent nucleosome "sliding," a conclusion that may be significant for models of chromatin replication and transcription.

After this manuscript was prepared, Levy and Jakob (29) and Seale (30) reported similar results for sea urchin embryos labeled for 7 sec and HeLa cell nuclei labeled *in vitro* for 20 min, respectively.

ϕ X174 DNA cleaved with *Hae* III was the gift of Richard Parker. We thank Thomas Sargent for labeling the ϕ X174 DNA and for helpful discussion of this manuscript. This work was supported by U.S. Public Health Service Grant GM-13762. R.F.M. is a National Institutes of Health predoctoral trainee. R.B.W. is the holder of a Medical Research Council of Canada Centennial fellowship.

1. Kornberg, R. D. (1977) *Annu. Rev. Biochem.* **46**, 931-954.
2. Whitlock, J. P., Jr. & Simpson, R. T. (1976) *Biochemistry* **15**, 3307-3314.
3. Bakayev, V. V., Bakayeva, T. G. & Varshavsky, A. J. (1977) *Cell* **11**, 619-629.
4. Noll, M. & Kornberg, R. D. (1977) *J. Mol. Biol.* **109**, 393-404.
5. Noll, M. (1976) *Cell* **8**, 349-355.
6. Morris, N. R. (1976) *Cell* **8**, 357-363.
7. Thomas, J. O. & Furber, V. (1976) *FEBS Lett.* **66**, 274-280.
8. Spadafora, C., Bellard, M., Compton, J. L. & Chambon, P. (1976) *FEBS Lett.* **69**, 281-285.
9. Morris, N. R. (1976) *Cell* **9**, 627-632.
10. Compton, J. L., Bellard, M. & Chambon, P. (1976) *Proc. Natl. Acad. Sci. USA* **73**, 4382-4386.
11. Thomas, J. O. & Thompson, R. J. (1977) *Cell* **10**, 633-640.
12. Lohr, D., Corden, J., Tatchell, K., Kovacic, R. T. & van Holde, K. E. (1977) *Proc. Natl. Acad. Sci. USA* **74**, 79-83.
13. Piper, P. W., Celis, J., Kaltoft, K., Lerr, J. C., Nielsen, O. F. & Westergaard, O. (1976) *Nucleic Acids Res.* **3**, 493-505.
14. Mathis, D. J. & Gorovsky, M. A. (1976) *Biochemistry* **15**, 750-755.
15. Bokhona'ko, A. & Reeder, R. H. (1976) *Biochem. Biophys. Res. Commun.* **70**, 146-152.
16. Bostock, C. J., Christie, S. & Hatch, F. T. (1976) *Nature (London)* **262**, 516-519.
17. Compton, J. L., Hancock, R., Oudet, P. & Chambon, P. (1976) *Eur. J. Biochem.* **70**, 555-568.
18. Gottesfeld, J. M. & Melton, D. A. (1978) *Nature (London)* **273**, 317-319.
19. Dube, S. K., Gaedicke, G., Kluge, N., Weimann, B. J., Melderis, H., Steinheider, G., Crozier, T. & Ostertag, W. (1974) in *Proceedings of the 4th Symposium: Princess Takamatsu Cancer Research Fund, Differentiation and Control of Malignancy in Tumor Cells* (Univ. of Tokyo Press, Tokyo), pp. 99-136.
20. Marmur, J. (1961) *J. Mol. Biol.* **3**, 208-218.
21. Maniatis, T., Jeffrey, A. & van de Sande, H. (1975) *Biochemistry* **14**, 3787-3794.
22. Berkner, K. L. & Folk, W. R. (1977) *J. Biol. Chem.* **252**, 3176-3184.
23. Pearson, W. R., Davidson, E. H. & Britten, R. J. (1977) *Nucleic Acids Res.* **4**, 1727-1737.
24. Wallace, R. B., Sargent, T. D., Murphy, R. F. & Bonner, J. (1977) *Proc. Natl. Acad. Sci. USA* **74**, 3244-3248.
25. Sanger, F., Air, G. M., Barrell, B. G., Brown, N. L., Coulson, A. R., Fiddes, J. C., Hutchison, C. A., III, Slocombe, P. M. & Smith, M. (1977) *Nature (London)* **265**, 687-695.
26. Seale, R. L. (1975) *Nature (London)* **255**, 247-249.
27. Hildebrand, C. E. & Walters, R. A. (1976) *Biochem. Biophys. Res. Commun.* **73**, 157-163.
28. Burgoyne, L. A., Mobbs, J. D. & Marshall, A. J. (1976) *Nucleic Acids Res.* **3**, 3293-3304.
29. Levy, A. & Jakob, K. M. (1978) *Cell* **14**, 259-267.
30. Seale, R. L. (1978) *Proc. Natl. Acad. Sci. USA* **75**, 2717-2721.

PROPERTIES OF NEWLY-REPLICATED CHROMATIN: ANALYSIS
USING SHALLOW METRIZAMIDE GRADIENTS [†]

Robert F. Murphy*, R. Bruce Wallace[#] and James Bonner

Running title: Properties of newly-replicated chromatin

[†]From the Division of Biology, California Institute of Technology, Pasadena, CA 91125. This work was supported by U.S. Public Health Service Grant GM-13762.

[#]Present address: Division of Biology, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010.

Abstract

The properties of chromatin containing newly synthesized DNA and protein are investigated. Nuclease digestion rates suggest that histones are segregated conservatively at the replication fork. A fraction of soluble nucleosomes enriched in newly-replicated DNA has been isolated by means of its increased density in metrizamide relative to bulk chromatin. This fraction is shown to be packaged into nucleosomes, but at an interval of approximately 160 base-pairs, as opposed to the 200 base-pair repeat seen for total chromatin. Evidence is presented that the density difference is due to this altered spacing. While pulse-labeled DNA is present in this dense fraction, nucleosomes labeled with short pulses of arginine or acetate are of normal density. The data presented are consistent with the conclusion that newly replicated DNA is associated with pre-existing histones in a short-lived, compact structure, while newly-synthesized histones are deposited at normal spacing some distance from the replication fork.

The events involved in the replication of eukaryotic chromatin have been analyzed by fixation of chromatin with formaldehyde (e.g., Fakan et al., 1972; Jackson et al., 1975; Seale, 1976a; Hancock, 1977) and inhibition of protein synthesis with cycloheximide (e.g., Seale & Simpson, 1975; Weintraub, 1976). Some of these investigations have yielded conflicting results. In addition, possible disruption of chromatin structure resulting from the methods of sample preparation and analysis used has led to objections to the results of previous experiments. In this paper we describe the determination of some of the properties of replicating chromatin using metrizamide density gradient centrifugation of native chromatin.

Materials and Methods

Cell culture and labeling. Friend leukemia cells, uninducible clone F4+, were grown in suspension culture as described previously (Keppel et al., 1977). The generation time under our conditions was 15.2 hr. For various experiments, cells were labeled with ^{14}C -thymidine (61 Ci/mmol, Amersham) at 4 nCi/ml, ^{14}C -L-arginine (312 mCi/mmol, Schwartz/Mann) at 50 nCi/ml, ^3H -thymidine (22 Ci/mmol, Amersham) at 40 uCi-min/ml, ^3H -L-arginine (8.8 Ci/mmol, Amersham) at 250 uCi-min/ml, and ^3H -acetic acid (2 Ci/mmol, Moravek Biochemicals) at 300 uCi-min/ml (1 Ci=3.7 \times 10^{10} becquerels). All samples for scintillation counting were brought to 0.1% SDS in a final volume of 0.4 ml and counted in 3 ml of Aquasol-2 (New England Nuclear). Under these conditions, the spillover from the ^3H window to the ^{14}C window was 4%, and the ^{14}C to ^3H spillover was 11%. No effect on the counting efficiencies or spillover ratios was seen from 0-50% metrizamide. The presence of the SDS eliminated almost all self-quenching of large molecules.

Preparation of nuclei and nucleosomes. Nucleosomes were prepared from purified nuclei as described previously (Murphy et al., 1978), with the exception that micrococcal nuclease was purchased from Worthington (1 unit produces 1 A₂₆₀ unit of acid-soluble material from DNA in 30 min at pH 8.0, 37°C). To facilitate comparison of different experiments, digestions were carried out for 5 min at 37°C at specified ratios of nuclease units to number of nuclei.

Metrizamide gradient centrifugation. Metrizamide was obtained from Nyegaard and Co. A/S, Oslo, Norway. All metrizamide solutions contained 2.5 mM Tris pH 8.0/ 2.5 mM ethyleneglycol-bis-(*-*aminoethyl ether)N,N'-tetraacetic acid (EGTA). 2.3 ml of sample in 30% (w/v) metrizamide was layered over 1.7 ml of 60% (w/v) metrizamide in a $\frac{1}{2} \times 2$ in cellulose nitrate centrifuge tube, and overlayed with 1 ml of Tris/EGTA. Gradients were run at 10,000 rpm for 16 hr at 4°C in the Sorvall TV-865 rotor, and fractions collected dropwise from the bottom. Density was determined from the refractive index at 25°C (Birnie, 1978). DNA samples for electrophoresis were prepared by proteinase K (EM Laboratories) digestion of gradient fractions.

Polyacrylamide gel electrophoresis and fluorography. 4% polyacrylamide slab gels containing 89 mM Tris/89 mM Boric acid/ 2.5 mM EDTA (pH 8.3) were prepared as described by Maniatis et al. (1975). ^3H radioactivity was visualized by fluorography (Bonner & Laskey, 1974; Laskey & Mills, 1975). 2.5% polyacrylamide/ 0.5% agarose Tris/Borate/EDTA tube gels were prepared similarly. Tube gels (0.6 x 15 cm) were run for 3 hr at 100V and fractionated into 2 mm slices (Aliquogel fractionator, Gilson). Gel fractions were counted as described above. Counting of gels polymerized with various sizes of ^3H and ^{14}C DNA showed no quenching by the polyacrylamide fragments, and minimal dependence of the efficiency and spillover on DNA length.

Results

Nuclease sensitivity of pulse-labeled chromatin. In a previous paper (Murphy et al., 1978), we demonstrated that chromatin pulse-labeled for 10 min was digested to nucleosomes more slowly than bulk chromatin, using the criteria of solubility in Tris/EGTA. We attributed this to the shortened nucleosome spacing of newly-replicated chromatin (Murphy et al., 1978; Levy & Jakob, 1978; Seale, 1978b). While an increased rate of digestion to acid-soluble DNA by micrococcal nuclease had been reported for pulse-labeled chromatin (Hildebrand & Walters, 1976; Seale, 1976b), we did not observe this difference for our 10 min labeled material. Because of possible differences in replication rates between different cell lines, we have determined the relative rates of production of acid-soluble and Tris/EGTA soluble material for cells labeled for 1-30 min. Figure 1 shows that digestion of newly-replicated chromatin results in an increased rate of production of acid-soluble material, but a decreased rate of production of soluble nucleosomes. In view of the smaller spacing and decreased nucleosome production of newly-replicated chromatin, we attempted to fractionate unfixed nucleosomes using metrizamide gradients.

Buoyant density of pulse-labeled chromatin. Cells were labeled with ^{14}C -thymidine for 24 hr, and then with ^3H -thymidine for 1, 10 or 100 min. After brief digestion with micrococcal nuclease, the total nucleosomal fraction was centrifuged in metrizamide. Figure 2 shows that the 1 min

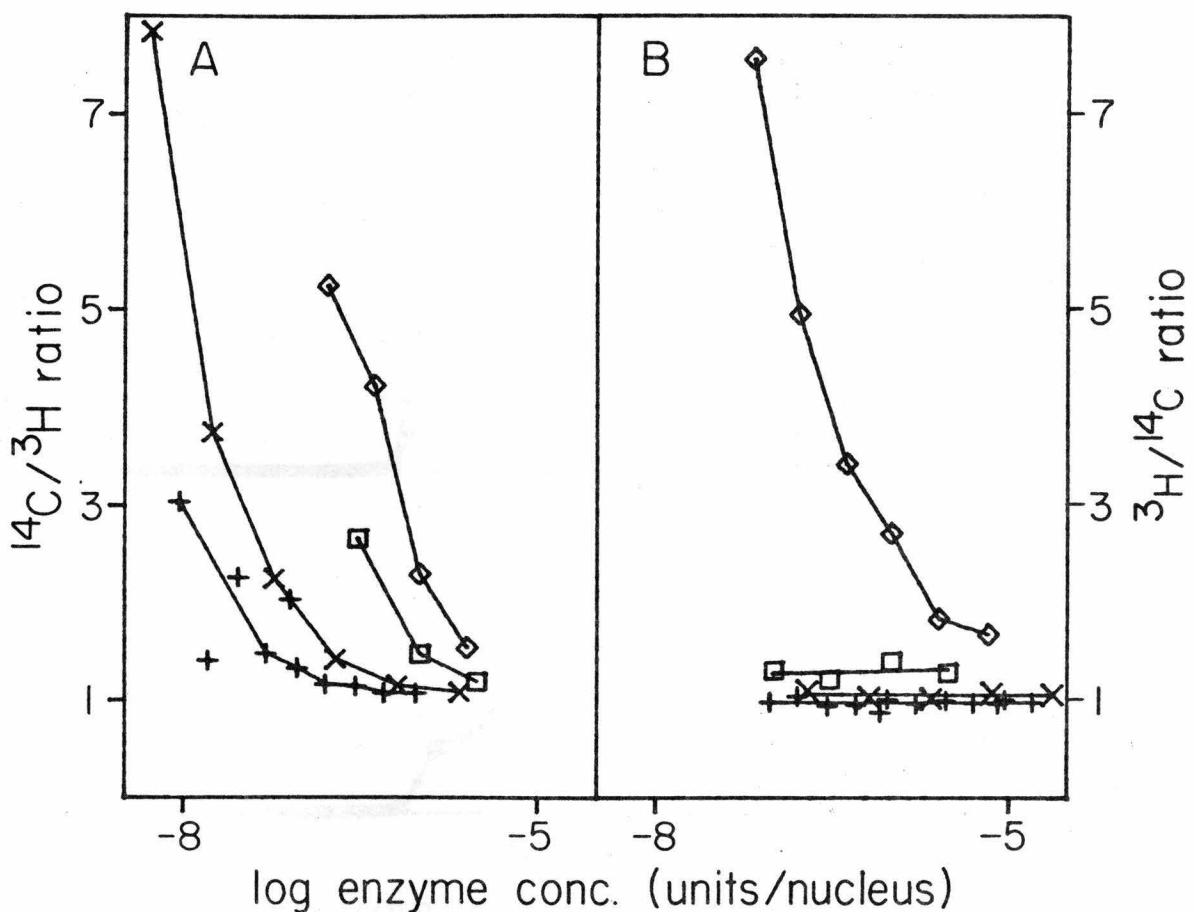


Figure 1. Digestion of pulse-labeled chromatin with micrococcal nuclease. Cells were labeled for 24 hr with ^{14}C -thymidine, followed by 1 min (◊), 5 min (□), 10 min (X), or 30 min (+) with ^{3}H -thymidine. A) $^{14}\text{C}/^{3}\text{H}$ ratios for Tris/NaCl/Mg soluble fraction (equivalent to acid soluble). B) $^{3}\text{H}/^{14}\text{C}$ ratios for Tris/EGTA nucleosomes.

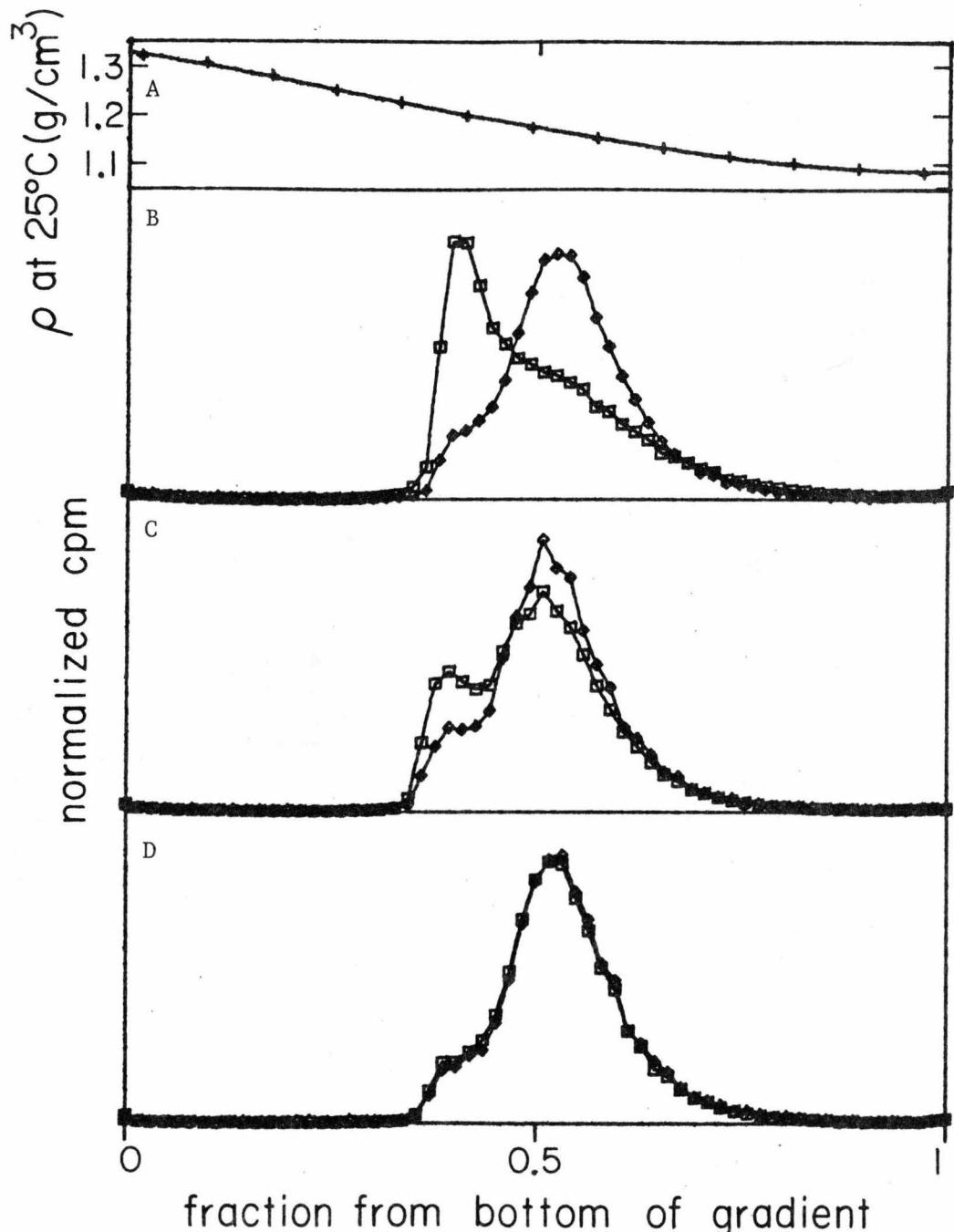
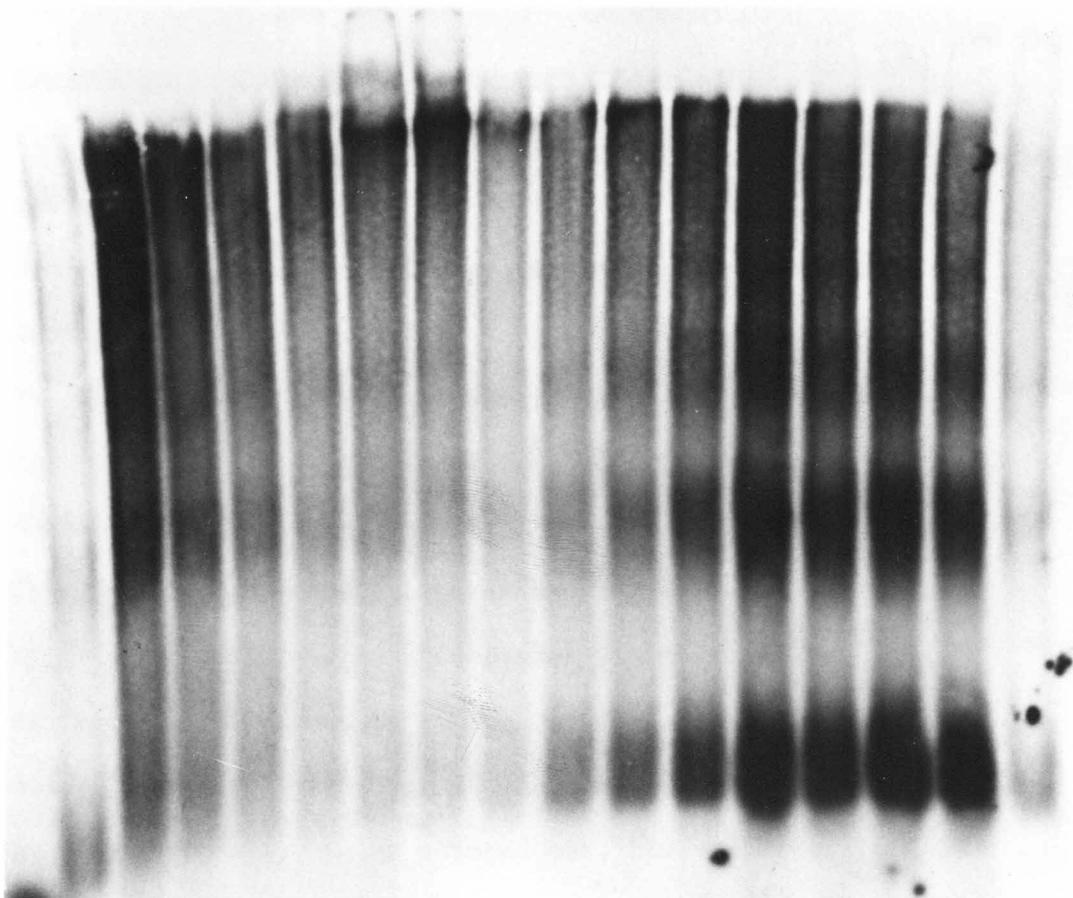
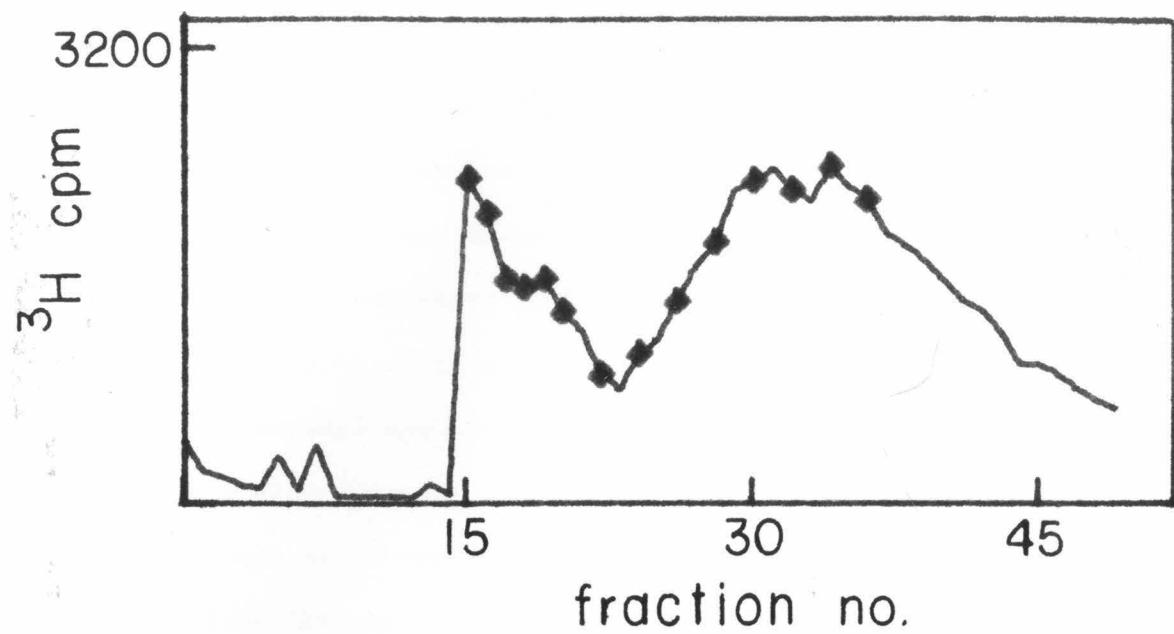


Figure 2. Separation of newly-replicated chromatin from bulk chromatin in metrizamide gradients. Cells were labeled for 24 hr with ^{14}C -thymidine and then for 1 min (B), 10 min (C) or 100 min (D) with ^3H -thymidine. After digestion with micrococcal nuclease at 5.33×10^7 units/nucleus and removal of acid-soluble material (2.4% ^{14}C ; 8.8, 2.4, 2.4% ^3H), the total nucleosomal fraction was centrifuged in metrizamide. The data in B-D are plotted so that the total area of each panel represents seven times the number of cpm in the gradient. + density. \diamond ^{14}C cpm. \square ^3H cpm. (See Table I.)

Table I. Density of chromatin fractions in metrizamide gradients of Figure 2^a

	³ H	%T ^b	Heavy ¹⁴ C	%T	³ H Light	¹⁴ C
1 min	1.2034	28.2	1.2070	2.9	1.1712	1.1664
10 min	1.2106	10.4	1.2107	6.0	1.1730	1.1701
100 min	1.2097	3.6	1.2093	3.4	1.1678	1.1669
Mean	1.2079	----	1.2090	4.1	1.1707	1.1678
SD	0.0039	----	0.0019	1.7	0.0026	0.0020

^aPeak densities and percentages were determined using a non-linear least-squares fitting program (Murphy et al., 1979) to fit two Gaussian curves to the data.



^bPercent of total cpm in gradient.

labeled nucleosomes are more dense than the long-term labeled nucleosomes, and that this density difference disappears on longer labeling. Table I gives the densities of the two chromatin fractions, and shows that bulk chromatin has a dense shoulder constituting approximately 5% of the total DNA. Birnie et al. (1973) found the density of native mouse DNA to be 1.118 g/cm³, and the density of purified proteins to vary from 1.24 to 1.29 g/cm³. The density of nuclear DNA (proteinase K treated) in metrizamide is 1.12 g/cm³, and that of nucleosomal protein (DNase I treated) is 1.23 g/cm³ (data not shown). Thus, it is likely that the increased density of newly-replicated chromatin is due to an increased protein/DNA ratio, as would be expected due to its decreased nucleosomal spacing.

To confirm that the material in the dense peak is present in nucleosomes, the material from that peak was isolated and run on isokinetic sucrose gradients (Noll, 1967). The ³H labeled material showed the typical nucleosomal pattern (data not shown). Figure 3 also shows that the DNA of this fraction has nucleosomal spacing. Since there is more newly-replicated DNA in the mononucleosome bands of the light fractions than in the corresponding bands of the denser fractions, the separation may be at least partly due to a decreased rate of production of low multimers of newly-replicated chromatin.

Removal of density difference by extensive nuclease digestion. If the density difference were totally due to the presence of newly-replicated DNA in higher nucleosome multimers,

Figure 3 (next page). Nucleosome distribution of metrizamide gradient fractions. Nuclei labeled for 3 min with ^3H -thymidine were digested at 2×10^6 units/nucleus (18% acid-soluble), and the total nucleosomal fraction was centrifuged in metrizamide. A) ^3H distribution across gradient. B) 13 day fluorogram of a 4% polyacrylamide slab gel. The outermost slots contain DNA from an aliquot of the nucleosomes before centrifugation. The other slots (from left to right) contain DNA from the fractions marked by diamonds in A.

it would disappear if soluble nucleosomes (i.e., low multimers) were isolated and run. That this is not the case is demonstrated by the fact that 1 min labeled soluble nucleosomes are more dense than long-term labeled nucleosomes (Figure 4). However, the density difference disappears as the chromatin is digested to monomers, as would be predicted if the higher density were due to decreased nucleosomal spacing.

Figure 4 also suggests that there is a shift in density of bulk nucleosomes as nuclease digestion proceeds. This is further demonstrated by the data from a number of experiments summarized in Table II.

Nucleosome spacing of isolated newly-replicated chromatin.

The data presented above show that it is possible to isolate a fraction of nucleosomes which are enriched in newly-replicated DNA. To confirm that indeed the nucleosome spacing of this fraction is significantly smaller than that of bulk chromatin from the same digest, DNA from these fractions was isolated and analyzed on polyacrylamide gels (Figure 5). Estimating molecular weight from relative mobility using ^{32}P -labeled PBR322 DNA digested with the restriction endonuclease *Hin*F1, the repeat spacing of the 1 min labeled nucleosomes is about 160 bp, while that of the bulk chromatin is 200 bp. This is smaller than our previous estimate of 180 bp for 10 min labeled nucleosomes (Murphy et al., 1978). As we pointed out, however, this is due to the reversion to normal spacing which occurs in the 10 min labeling period.

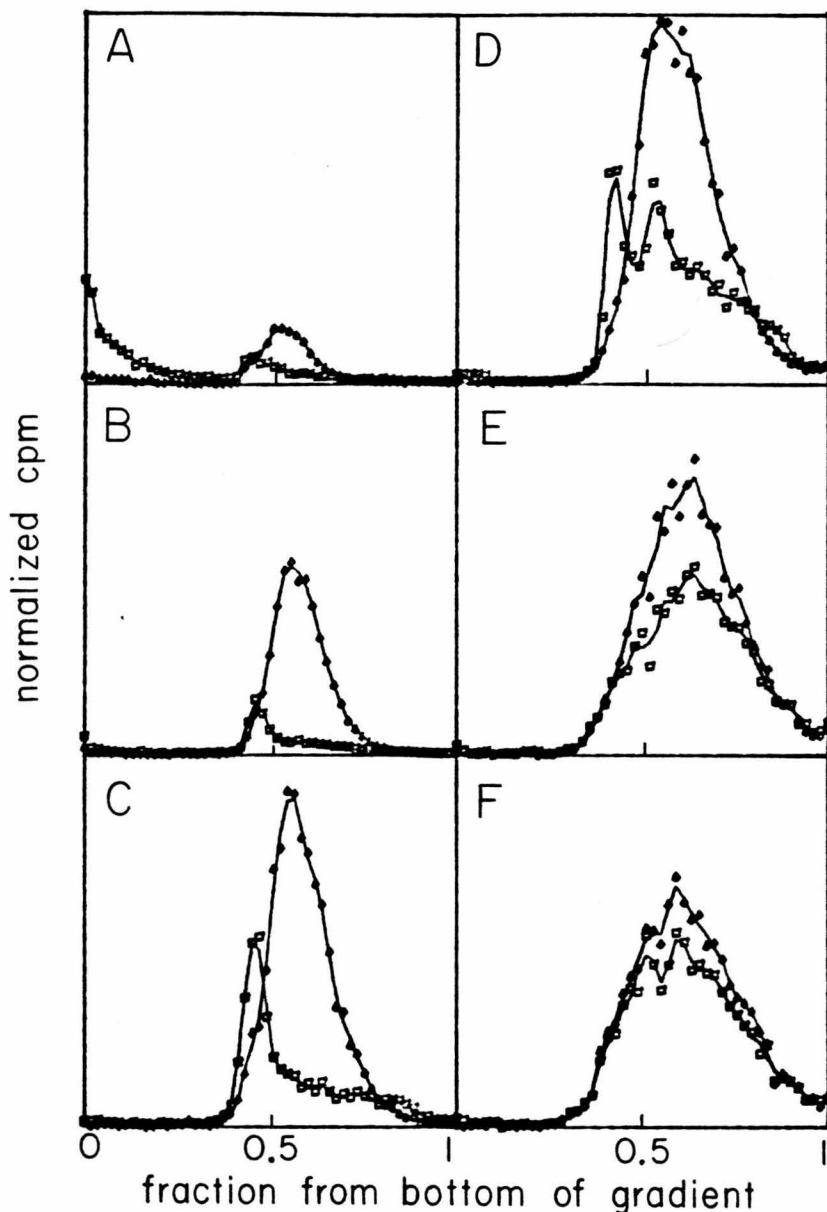


Figure 4. Effect of extent of digestion on separation of newly-replicated chromatin from bulk chromatin. Tris/EGTA-soluble nucleosomes from cells labeled for 24 hr with ^{14}C -thymidine (\diamond) followed by 1 min with ^3H -thymidine (\square) were centrifuged in metrizamide. The total area of each panel is six times the total nuclear cpm. Digestions (A-F) were from 1.67×10^8 to 6.67×10^8 units/nucleus. ^{14}C acid-soluble increases from 0.6% to 23%, and ^3H acid-soluble from 4% to 39%. The lines through the points are 5 point quadratic smooths of the data (Savitzky & Golay, 1964).

Table II. Buoyant density of nucleosomes as a function of extent of digestion^a

Enzyme Range ^b	N ^c	Thymidine		Arginine		
		Mean	SD	N	Mean	SD
-8 to -7.1	5	1.1577	0.0024	3	1.1580	0.0078
-7 to -6.1	7	1.1517	0.0059	7	1.1547	0.0068
-6 to -5.1	5	1.1363	0.0049	2	1.1417	0.0007

^aPeak densities were determined by fitting a Gaussian curve to data for 24 hr labeled material.

^bLog of enzyme concentration (units/nucleus); lower and upper limits for grouped data.

^cNumber of gradients.

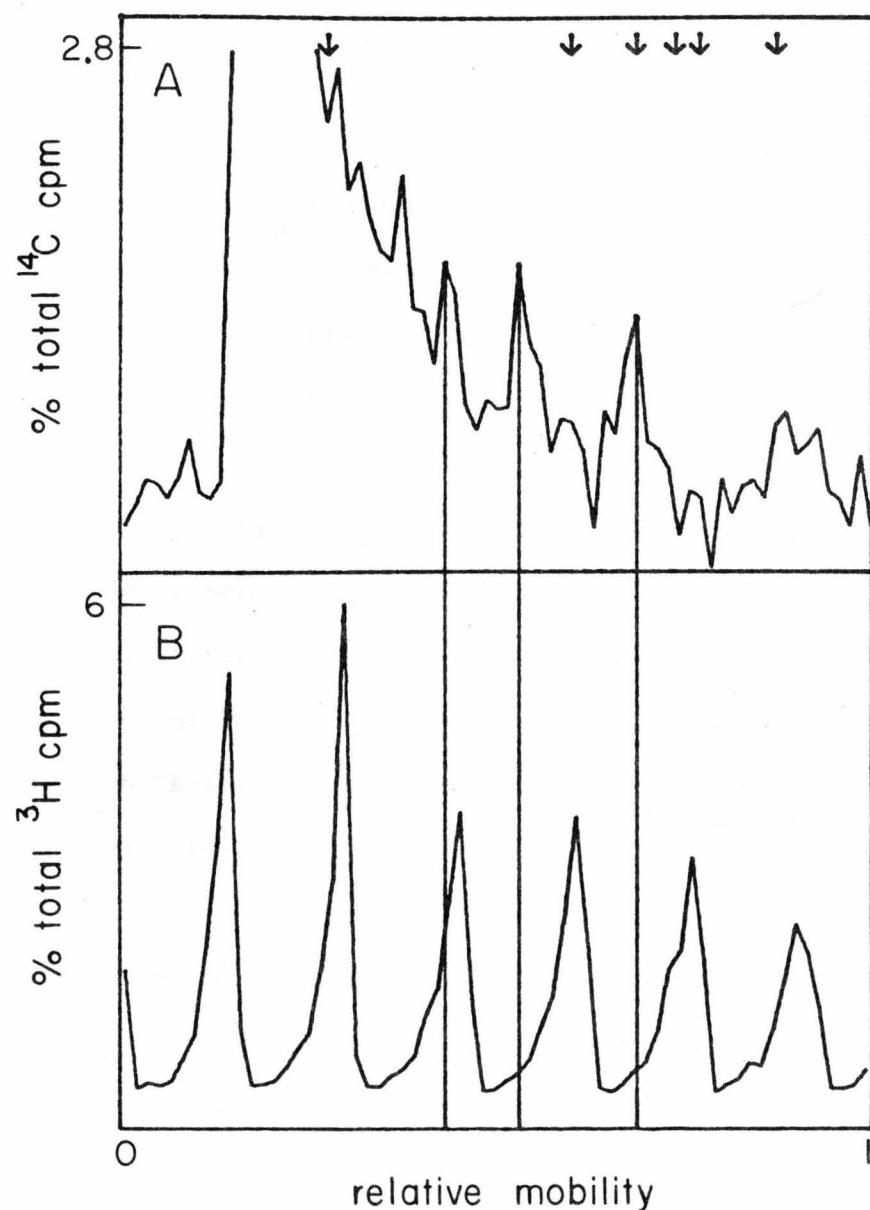


Figure 5. Nucleosomal DNA spacing of heavy fraction from metrizamide gradients. 2.5% polyacrylamide/0.5% agarose gels. Samples were from the gradient shown in Figure 4C. A) ^{14}C cpm for Tris/EGTA soluble fraction before centrifugation. B) ^3H cpm for heavy peak from gradient (fractions 25&26). Mobility is relative to bromphenol blue. The arrows mark the positions of ^{32}P -labeled PBR322 DNA cut with HinF1 , and correspond to DNA sizes of 1631, 516/506, 396, 344, 298, and 221/220 base-pairs.

Buoyant density of newly-deposited nucleosomal protein.

Some investigators have suggested that newly-synthesized chromosomal protein is deposited on unreplicated DNA (Jackson et al., 1976; Seale, 1976a; Hancock, 1977; Hancock, 1978). There has been some uncertainty about this conclusion, since CsCl gradients of formaldehyde-fixed chromatin were used. To determine the degree of association of newly-synthesized histone with newly-replicated DNA using unfixed chromatin, cells were labeled with ^{14}C -L-arginine for 24 hr, and then with ^3H -L-arginine for 5 min. Tris/EGTA soluble nucleosomes from these cells were run on metrizamide gradients after digestion to varying extents. Figure 6B shows one of these gradients, along with a gradient of 24 hr ^{14}C -thymidine/ 5 min ^3H -thymidine labeled Tris/EGTA soluble nucleosomes (at the same nuclease concentration). In no case were ^3H -arginine counts detected in the dense region. Indeed, the ^{14}C and ^3H counts were nearly identical, as can be seen in Figure 6. Similar results were obtained for cells labeled with arginine for 10 or 100 min, and for cells labeled with acetate for 1, 10 or 100 min.

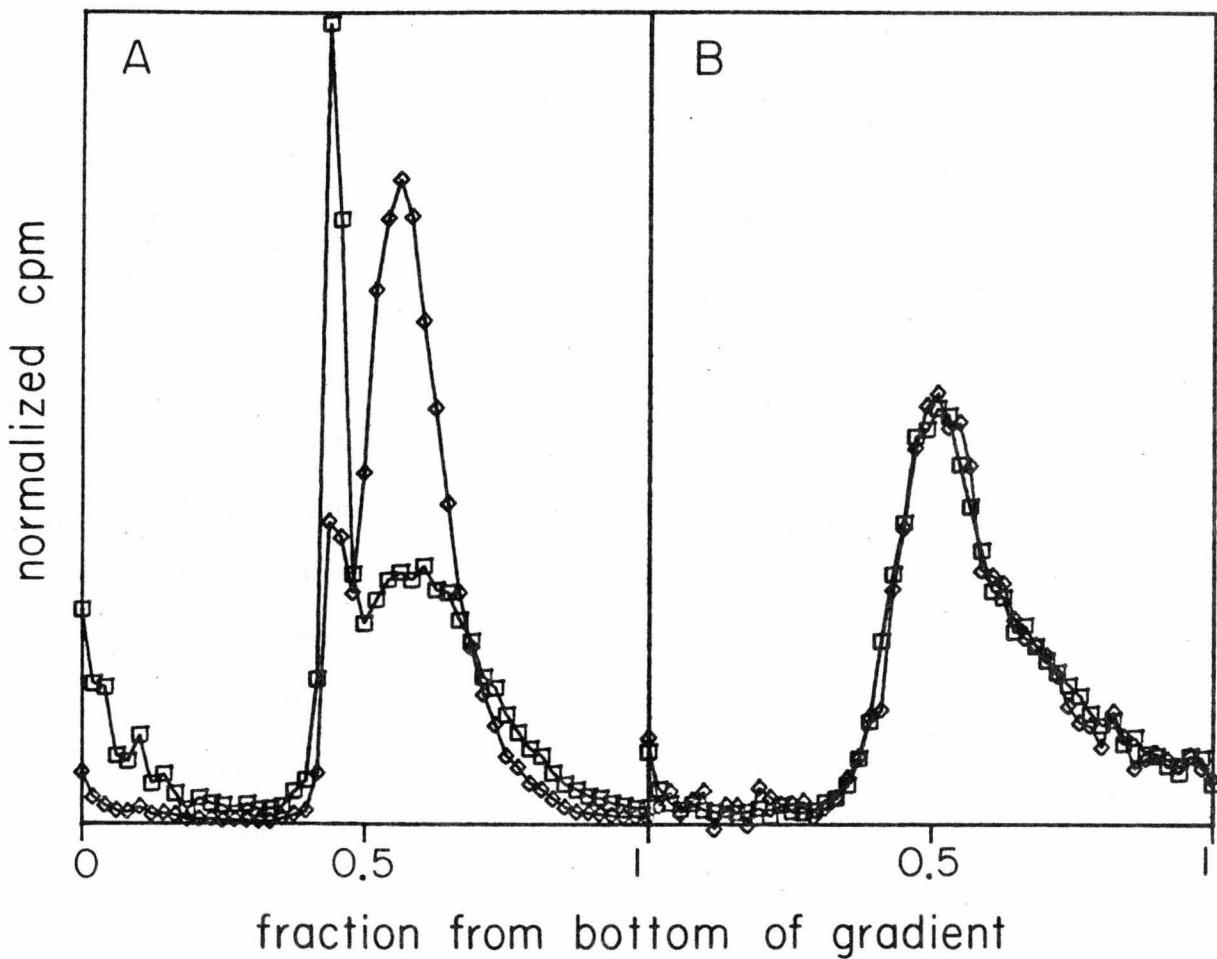


Figure 6. Comparison of density distribution of thymidine and arginine labeled Tris/EGTA soluble nucleosomes. Digestion was at 1.0×10^7 units/nucleus. A) 24 hr ^{14}C -thymidine (\diamond ; 2.8% acid-soluble)/5 min ^3H -thymidine (\square ; 3.7% acid-soluble). B) 24 hr ^{14}C -L-arginine (\diamond)/5 min ^3H -L-arginine (\square). The total area of each panel is 6.6 times the total cpm in each gradient.

Discussion

Nuclease sensitivity and histone segregation mechanism.

Chromatin pulse-labeled with thymidine for short periods of time has been shown to be digested to acid-soluble material more quickly than bulk chromatin by micrococcal (staphylococcal) nuclease (Hildebrand & Walters, 1976; Seale, 1976b; Levy & Jakob, 1978) and DNase I (Seale, 1975; Burgoyne et al., 1976). This increased production of acid-soluble material has also been demonstrated for chromatin from cells which have been exposed to cycloheximide (Seale & Simpson, 1975; Weintraub, 1976). While Seale (1976b) suggested that newly-replicated chromatin was digested to nucleosomes faster than total chromatin, Marshall & Burgoyne (1976) demonstrated a slightly decreased rate of production of nucleosomes for 10 min labeled chromatin using sucrose gradients. We have confirmed this decreased rate of production of nucleosomes by measuring solubility in Tris/EGTA, which is proportional to fragment length (Murphy et al., 1978 and Figure 1).

These seemingly contradictory results can best be explained by assuming a conservative mechanism of histone segregation at the replication fork. Such a mechanism has been demonstrated using cycloheximide treated cells (Weintraub, 1976; Riley & Weintraub, 1979) and by histone-histone cross-linking (Leffak et al., 1977). The fact that other investigators (e.g., Jackson et al., 1975) have presented evidence for a random mechanism may be a result of problems involved in chromatin fixation, or

difficulties in correcting for the presence of non-histone protein.

Metrizamide fractionation of chromatin. Because metrizamide is an inert, non-ionic density gradient material, it has been used to examine chromatin properties (e.g., Birnie et al., 1973). Rickwood et al. (1974) demonstrated the separation of chromatin into two fractions as a function of the extent of mechanical shearing, and took this as an indication of the presence of protein-rich and protein-poor regions. The data of Figure 4 and Table II suggest that the separation is instead due to the decreased density of low nucleosome multimers. This shift may well be due to the removal of non-histone proteins and/or histone H1 during digestion (Noll & Kornberg, 1977).

Buoyant density of pulse-labeled chromatin. In CsCl gradients of formaldehyde-fixed chromatin, a decreased density has been reported for pulse-labeled chromatin (Fakan et al., 1972; Seale & Simpson, 1975; Jackson et al., 1976), cycloheximide-treated chromatin (Seale & Simpson, 1975), and in vitro labeled chromatin (Seale, 1978a). This decreased density in CsCl corresponds to the increased density in metrizamide demonstrated above, since protein is less dense than DNA in CsCl, but more dense than DNA in metrizamide. Both increased (Levy et al., 1975) and decreased (Burke & Pearson, 1976) densities in metrizamide have been reported for pulse-labeled chromatin which had been mechanically sheared. As Noll et al. (1975) have pointed out, there is significant disruption of nucleosome

structure during mechanical shearing. In addition, the results presented above demonstrate the importance of controlling the extent of shearing during sample preparation. These facts make interpretation of the previous reports difficult.

Hancock (1974) has shown that the preparation of nuclei and chromatin by methods very similar to those used in these experiments do not allow exchange of histones between deoxyribonucleoprotein molecules. The lack of histone exchange, the fact that nuclease digestion was used to prepare nucleosome samples, and the use of the non-ionic density gradient material make it very unlikely that the results presented above are due to distortion or disruption of the chromatin structure.

Deposition of newly-synthesized histone. Having established a method for isolating native nucleosomes containing newly-replicated DNA, it was then possible to examine the distribution of newly-synthesized histones. Figure 6 shows that no significant deposition of this histone occurs on new DNA during the lifetime of the closely packed nucleosomal structure. This is in agreement with the results reported for fixed chromatin (Jackson et al., 1976; Seale, 1976a; Hancock, 1977; Hancock, 1978). Our data do not rule out the possibility that new histones are deposited on the unpackaged new DNA strand at normal spacing. However, previous results with fixed chromatin would appear to make this unlikely.

Acknowledgments

We thank Thomas D. Sargent for the gift of the ^{32}P -labeled PBR322 markers, and for helpful discussion of this manuscript.

References

Birnie, G.D. (1978) Methods in Cell Biology 18, 23-29.

Birnie, G.D., Rickwood, D., & Hell, A. (1973) Biochim. Biophys. Acta 331, 283-294.

Bonner, W.M., & Laskey, R.A. (1974) Eur. J. Biochem. 46, 83-88.

Burgoyne, L.A., Mobbs, J.D., & Marshall, A.J. (1976) Nucl. Acids Res. 3, 3293-3304.

Burke, J.F., & Pearson, C.K. (1976) Biochem. Soc. Trans. 4, 787-789.

Fakan, S., Turner, G.N., Pagano, J.S., & Hancock, R. (1972) Proc. Natl. Acad. Sci. USA 69, 2300-2305.

Hancock, R. (1974) J. Mol. Biol. 86, 649-663.

Hancock, R. (1977) Methods in Cell Biology 16, 459-466.

Hancock, R. (1978) Proc. Natl. Acad. Sci. USA 75, 2130-2134.

Hildebrand, C.E., & Walters, R.A. (1976) Biochem. Biophys. Res. Comm. 73, 157-163.

Jackson, V., Granner, D.K., & Chalkley, R. (1975) Proc. Natl. Acad. Sci. USA 72, 4440-4444.

Jackson, V., Granner, D., & Chalkley, R. (1976) Proc. Natl. Acad. Sci. USA 73, 2266-2269.

Keppel, F., Allet, B., & Eisen, H. (1977) Proc. Natl. Acad. Sci. USA 74, 653-656.

Laskey, R.A., & Mills, A.D. (1975) Eur. J. Biochem. 56, 335-341.

Leffak, I.M., Grainger, R., & Weintraub, H. (1977) Cell 12, 837-845.

Levy, A., & Jakob, K.M. (1978) Cell 14, 259-267.

Levy, A., Jakob, K.M., & Moav, B. (1975) Nucl. Acids Res. 2, 2299-2303.

Maniatis, T., Jeffrey, A., & van deSande, H. (1975) Biochemistry 14, 3787-3794.

Marshall, A.J., & Burgoyne, L.A. (1976) Nucl. Acids Res. 3, 1101-1110.

Murphy, R.F., Wallace, R.B., & Bonner, J. (1978) Proc. Natl. Acad. Sci. USA 75, 5903-5907.

Murphy, R.F., Pearson, W.R., & Bonner, J. (1979) Nucl. Acids Res., in press.

Noll, M. (1967) Nature 215, 360-363.

Noll, M., & Kornberg, R.D. (1977) J. Mol. Biol. 109, 393-404.

Noll, M., Thomas, J.O., & Kornberg, R.D. (1975) Science 187, 1203-1206.

Rickwood, D., Hell, A., Malcolm, S., Birnie, G.D., MacGillivray, A.J., & Paul, J. (1974) Biochim. Biophys. Acta 353, 353-361.

Riley, D., & Weintraub, H. (1979) Proc. Natl. Acad. Sci. USA 76, 328-332.

Savitzky, A., & Golay, M.J.E. (1964) Anal. Chem. 36, 1627-1639.

Seale, R.L. (1975) Nature 255, 247-249.

Seale, R.L. (1976a) Proc. Natl. Acad. Sci. USA 73, 2270-2274.

Seale, R.L. (1976b) Cell 9, 423-429.

Seale, R.L. (1978a) Cold Spring Harbor Symp. Quant. Biol. 42, 433-438.

Seale, R.L. (1978b) Proc. Natl. Acad. Sci. USA 75, 2717-2721.

Seale, R.L. & Simpson, R.T. (1975) J. Mol. Biol. 94, 479-501.

Weintraub, H. (1976) Cell 9, 419-422.

PART V

Chapter 6. Computer programs for analysis of nucleic acid
hybridization, thermal denaturation, and gel electrophoresis
data

COMPUTER PROGRAMS FOR ANALYSIS OF NUCLEIC ACID HYBRIDIZATION,
THERMAL DENATURATION, AND GEL ELECTROPHORESIS DATA

Robert F. Murphy, William R. Pearson* and James Bonner

Division of Biology, California Institute
of Technology, Pasadena, CA 91125, USA

*Department of Microbiology, Johns Hopkins
Medical School, Baltimore, MD 21205, USA

ABSTRACT

Computer programs for the analysis of data from techniques frequently used in nucleic acids research are described. In addition to calculating non-linear least-squares solutions to equations describing these systems, the programs allow for data editing, normalization, plotting and storage, and are flexible and simple to use. Typical applications of the programs are described.

INTRODUCTION

The increasing complexity and volume of data being generated in biochemical and biophysical experimentation, and the proliferation of mini-computer systems, has created a need for portable, interactive data storage and analysis programs. This paper describes non-linear least-squares fitting programs which have been used for the analysis of data from gel electrophoresis (1-4), DNA-DNA and RNA-DNA hybridization (5-7), and DNA, chromatin and protein-DNA thermal denaturation (8-10). These programs have been implemented on a PDP-11 mini-computer system, and are written in FORTRAN for ease of transfer to other computer systems. The programs require approximately 16,000 16-bit words of memory and a disk mass storage device (such as flexible disk). Mini-computers capable of running this data analysis system are currently available for less than \$5,000.

In this paper we will first describe three different programs in the package, and then discuss the reliability and significance of the parameter estimates calculated by the programs.

PROGRAM DESCRIPTIONS

The three programs in the least-squares fitting package are COTFIT, for analysis of nucleic acid hybridization and denaturation data, GELFIT, for determination of the positions and areas of Gaussian curves fit to gel electrophoresis data, and MELSMR, for removal of noise from closely-spaced data. These programs use a common data file format, which allows interaction of the various programs for uses other than those described above. For example, CsCl density gradient data could be entered with COTFIT, smoothed with MELSMR, and then analyzed with GELFIT. COTFIT

COTFIT is a non-linear least-squares fitting program developed from the NNNBAT program described by Pearson, Davidson and Britten (11), which was in turn based on the FINGER program of Britten, Graham and Neufeld (12). The program accepts English commands to control data entry and fitting. Data may be read from disk files or entered at the terminal. In addition to least-squares fitting, COTFIT provides general facilities for entering and editing data, and offers a variety of options for plotting and printing the curves calculated from the data.

Initial parameter estimates are improved by a modification of the method of Marquardt (13). Parameter values which would produce undefined function values are detected without causing arithmetic errors. This enables the fitting routine to try a broad range of possible parameter values without causing program termination.

As an additional option, files containing function values (with or without specified errors in the parameters) over a given interval can be generated. This feature is useful for displaying the functions under various conditions.

The functions described by Pearson, Davidson and Britten (11) have been modified, and a new function has been added. The NNNBAT function names and the corresponding COTFIT names are listed below.

N	COTFIT	NNNBAT	DESCRIPTION
1	FINGER	FINGER	second order DNA renaturation.
2	DIGEST	WHATOR	variable order renaturation.
3	DRIVEN	NUFORM	tracer/driver reaction with different nucleation rates.
4	EXCESS	EXCESS	first order renaturation.
5	MELTFN	-----	thermal denaturation function.

The MELTFN function is

$$H(T) = I + \sum_{i=1}^m F_i \left\{ 0.5 + \frac{1}{\sqrt{\pi}} \int_{T_{mi}}^T \exp \left[-\frac{(x-T_{mi})^2}{2S_i^2} \right] dx \right\} \quad (1)$$

where H is the hyperchromicity at temperature T , I is the initial hyperchromicity, m is the number of components, F_i , T_{mi} , and S_i are the hyperchromicity, transition midpoint and transition width (equivalent to the standard deviation of a Gaussian curve) of component i . The function is a normalized form of the error function, which is the integral of the Gaussian distribution. The program uses a polynomial approximation to this integral (14). The addition of this function allows direct fitting of thermal denaturation data, as opposed to the more common use of the Gaussian function to fit derivatized data. Although the two methods are theoretically identical, in practice the new approach eliminates errors introduced by the derivatization and smoothing process, and requires significantly fewer data points to determine component parameters. This is especially useful for analyzing DNA melts assayed by hydroxyapatite or filter binding (R.B. Wallace, G. Schaeffer, T. Hirose, K. Itakura, R.F. Murphy and J. Bonner, submitted to Nucleic Acids Res).

GELFIT

The GELFIT program uses a set of commands which is compatible with that of the COTFIT program, and fits Gaussian curves to integer data with evenly-incremented X values. The program can calculate the molecular weight of the species in a given band using a polynomial approximation to standards data specified by the user. The simplicity of the function being fitted allows the program to make initial estimates of the number and position of the bands in a given gel, and then proceed with fitting. The restriction to Y -only integer data was added to minimize data storage space and computation time in view of the

large numbers of data points commonly collected during gel scanning in our laboratory. The fitting method is similar to that used by COTFIT. In order to reduce program size, a band matrix (15) is used in place of the symmetric triangular matrix COTFIT uses. The number of adjacent curves whose values are allowed to affect an individual curve's parameter estimates can be adjusted at run-time by the user.

MELSMR

The MELSMR program smooths and/or derivatizes data having a constant X increment between points using the method of Savitzky and Golay (16-18). The degree to which the data are smoothed is controlled by the user. Digital data which have been collected from instruments such as spectrophotometers frequently contain fluctuations in the less significant digits. MELSMR provides a means of reducing or eliminating this noise.

RESULTS AND DISCUSSION

While these programs can significantly shorten the time required to analyze gel and melt data, and are essential for accurate measurement of nucleic acid hybridization rates and component amounts, the significance of the calculated parameter estimates must not be overestimated. This section addresses three issues encountered in fitting nucleic acid data with least squares programs: 1) The significance of the exponent in S1 nuclease-assayed reassociation data analysis; 2) the effect of using equation (1) to analyze melt data; and 3) the reproducibility of melt data parameter estimates.

Analysis of nuclease-assayed reassociation data

Morrow (19) and Smith, Britten and Davidson (20) have analyzed the kinetics of DNA-DNA reassociation assayed by the single-strand-specific S1 nuclease of *Aspergillus oryzae*. They concluded that data from S1 nuclease assayed renaturations were best fit using the equation

$$\frac{S}{C_0} = (1 + kCot)^{-n} \quad (2)$$

where S is the S1 nuclease sensitive (single stranded) DNA NT concentration, C₀ is the total DNA NT concentration, t is time, k

Table 1. Parameters for equation (3)
for data of Sala-Trepot et al (6)

DRIVER*	c-DNA+	N++	U	F	K	n	%E+++
liver	RSA	16	-0.0482 0.1154	1.0490 0.8782	0.001104 0.000466	0.440 0.965	3.021 2.257
kidney	RSA	14	-0.0389 0.1240	1.0414 0.8543	0.001160 0.000472	0.440 0.976	3.760 3.033
hepatoma	RSA	17	-0.0713 0.0885	1.0644 0.8980	0.001109 0.000506	0.440 0.903	2.404 1.748
liver	AFP	14	-0.0543 0.0628	1.0510 0.9280	0.001344 0.000736	0.440 0.745	2.204 1.718
kidney	AFP	12	-0.0643 0.0925	1.0542 0.8884	0.001317 0.000498	0.440 1.000	3.370 2.128
hepatoma	AFP	17	-0.0663 0.0742	1.0593 0.9110	0.001420 0.000673	0.440 0.846	2.932 2.422

* sheared to 300-400 nucleotides. The first values are with n fixed, the second with n allowed to vary.

+ 1000-2200 nucleotides (7). RSA=rat serum albumin. AFP=alpha feto-protein.

++ N = number of points.

+++ %E = root mean square error (RMS) divided by data mean.

is the rate constant which would be observed if the reaction were assayed on HAP, and n was found to be 0.44 (19) or 0.453 (20) for driver and tracer DNAs of the same size. The deviation from second order kinetics indicated by a value of n less than 1 was attributed to the lowered reactability of the single strand regions of partial duplexes relative to free single strands. Smith, Britten and Davidson (20) observed that while no simple physical meaning can be associated with the exponent n, equation (2) is useful for data reduction.

For incomplete reactions, or reactions consisting of multiple components, COTFIT uses the DIGEST function

$$F(t) = U + \sum_{i=1}^m F_i(1 + K_i C t)^{-n} \quad (3)$$

where U is the fraction unreacted (single-stranded) at infinite time, m is the number of components, and F_i and K_i are the fraction and rate for component i. Table 1 contains the best-fit parameters of this function for the data of Sala-Trepot et al (6)

Table 2. Comparison of melt fitting methods
using data from Wallace et al (8)

Difference	Mean	StdDev	%Mean relative to A
F(B) - F(A)	0.0167	0.0285	42.0
T _m (B) - T _m (A)	1.1	2.9	1.99
S(B) - S(A)	2.1	1.1	33.0
Parameter	Mean	StdDev	Maximum
S(A)	6.2	2.4	11.8
S(B)	4.4	1.6	7.7
%E(A)	5.23	1.32	7.41
%E(B)	1.22	0.41	1.92

Initial absorbances were 0.9-1.3 A260 units at 25°C. Data were collected every 0.4° while heating at 0.25°/min.

A. Parameters for Gaussian curves fit to 15-point cubic-quartic first derivative of absorbance data (using GELFIT).

B. Parameters for equation (1) fit to the absorbance data normalized to fraction hyperchromicity (using COTFIT).

when the exponent n is fixed at 0.44 or allowed to vary. The unfixed exponents vary from 0.745 to 1. This shift toward second-order kinetics may be due either to the different driver and tracer lengths used, or to the interrupted nature of the albumin and AFP genes in rat DNA (T.D. Sargent, J.R. Wu, J. Sala-Trepot, R.B. Wallace, T. Reyes, and J. Bonner, manuscript in preparation). In either case, the results demonstrate the need for careful determination of the exponent for individual S1 assayed experiments, since the calculated K values may vary by greater than 2.5 fold. Values of n significantly different from the expected value may indicate inaccurate tracer and driver length determinations or other systematic error.

Analysis of DNA and chromatin thermal denaturation data

Since many estimates of chromatin and DNA melting component parameters have been made by fitting Gaussian curves to derivatized data, we have compared this method to the use of the COTFIT MELTFN function. Data from our previously published melts of various chromatin and nucleosome samples (8), which had been derivatized with MELSMR and fit with GELFIT, were re-fit using COTFIT. As Table 2 shows, the two methods yield similar results, the T_m 's differing by an average of only 2%. However, COTFIT yields an average error almost five times lower than that

Table 3. Rat liver chromatin melting transitions

	Sample 1	Sample 2	Sample 3	Mean	StdDev	%StdDev
I	0.0068	0.0033	0.0047	0.0049	0.0018	36
F1	0.0989	0.1034	0.1076	0.1033	0.0044	4
Tm1	65.5	60.7	56.4	60.9	4.5	7
S1	9.5	7.9	6.2	7.9	1.6	21
F2	0.0789	0.0978	0.0508	0.0758	0.0237	31
Tm2	76.9	76.8	69.1	74.3	4.5	6
S2	5.8	5.2	3.7	4.9	1.1	23
F3	0.0742	0.0811	0.0652	0.0735	0.0080	11
Tm3	77.9	77.4	76.4	77.2	0.8	1
S3	6.0	9.7	8.4	8.0	1.9	24
F4	0.0660	0.0431	0.1188	0.0760	0.0389	51
Tm4	82.4	82.6	79.8	81.6	1.6	2
S4	2.1	1.9	4.2	2.7	1.3	46
%E	1.67	1.09	1.62	1.46	0.30	22

Melts were performed in 0.25 mM EDTA pH 8. Initial absorbances were 0.7-1.5 A₂₆₀ units at 25°C. Data were collected from 25-95°C every 0.4° while heating at 0.25°/min, and fit to equation (1) using COTFIT. The average percent standard deviations in F, Tm, and S are 24, 4, and 29, respectively.

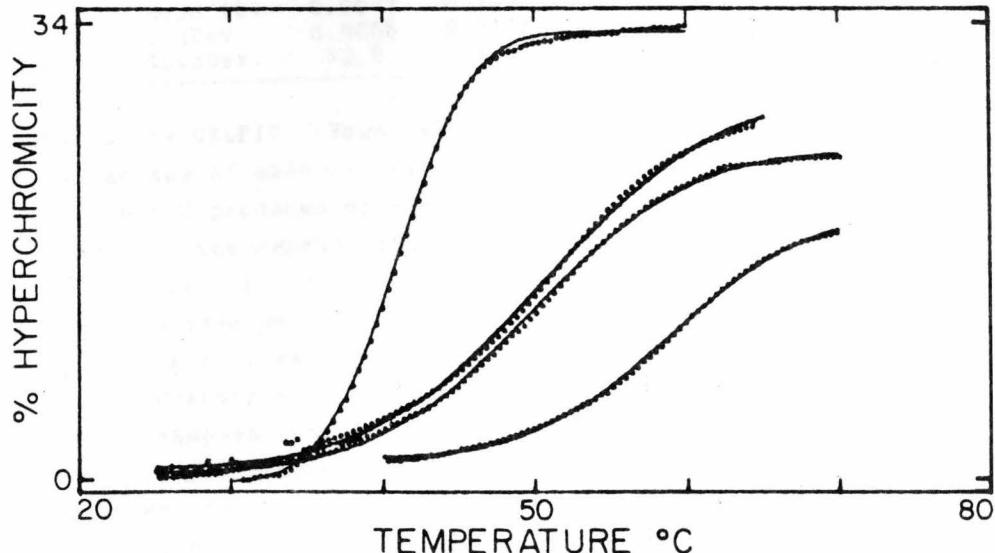


Figure 1. Fitting of DNA melting transitions using MELTFN. From left to right are rat liver DNA and oligomers A (every 4th point shown), C (every other point shown), and B (every other point shown) (see Table 4).

Table 4. DNA melting transitions

	I	F1	Tm1	S1	%E
I. Unsheared Rat liver DNA. 1.1-1.6 A260 units/ml, 0.25 °C/min.					
A. 0.25 mM EDTA pH 8	0.4 °C/pt,	30-60 °C.			
Mean (5)	-0.0011	0.3369	43.6	3.86	1.88
StdDev	0.0040	0.0108	3.9	0.47	0.81
%StdDev	378	3.2	8.9	13.1	43.4
B. 0.01 x SSC pH 7	0.4 °C/pt,	35-75 °C.			
Mean (2)	0.0064	0.3554	58.2	6.09	1.83
StdDev	0.0008	0.0069	0.1	0.28	0.01
%StdDev	12.6	2.0	0.2	4.6	0.4
II. Synthetic oligonucleotides. 1 M NaCl 0.01 M PB, 0.5 °C/min.					
A. CCGAATTCCGG	0.77-0.78 A260 units/ml,	0.1 °C/pt,	25-65 °C.		
GGCTTAAGCC					
Mean (2)	0.0049	0.2808	50.3	9.28	3.18
StdDev	0.0019	0.0223	0.4	0.49	0.39
%StdDev	38.1	7.9	0.8	5.2	12
B. GGATCACCGCC	0.72-0.77 A260 units/ml,	0.2 °C/pt,	40-70 °C.		
CCTAGTGGCGG					
Mean (3)	0.0151	0.1817	58.6	7.26	2.06
StdDev	0.0012	0.0050	0.2	0.40	0.56
%StdDev	7.9	2.7	0.3	5.5	27
C. CATGAATTTCATG	0.55-0.57 A260 units/ml,	0.2 °C/pt,	25-70 °C.		
GTACTTAAGTAC					
Mean (2)	0.0047	0.2396	49.7	8.34	2.29
StdDev	0.0006	0.0118	0.3	0.32	0.29
%StdDev	12.8	4.9	0.6	3.8	13

produced by GELFIT. Thus, although the MELSMR/GELFIT method has the advantage of ease of visual interpretation of plots, the COTFIT method produces more accurate parameter estimates.

To test the reproducibility of this function, data from melts of rat liver chromatin, rat liver DNA, and synthetic oligonucleotides were fit using COTFIT (Tables 3 and 4 and Figure 1). The rat liver chromatin and DNA melts are of different sample preparations, and the oligonucleotide melts are of different samples from the same preparation. All melts were from separate runs. Some fluctuations in Tm resulting from differences in buffer concentration can be seen for the 0.25 mM EDTA melts, but the standard deviation in Tm is still less than 10%. The deviations for the other melts are much smaller.

The closeness of the data and fit is in accordance with the shape predicted by theoretical treatments of nucleic acid melting

(21-24), although there is no immediate correlation between the parameters of equation (1) and the physical parameters of the system. The agreement of the rat DNA melt data with equation (1) is probably due to the variation in nucleotide composition of rat DNA, and a resulting combination of a Gaussian distribution of small transitions (25). Deviations from the fitted curve are more apparent for the oligonucleotide melts, as might be expected. In light of the ease of estimation of the parameters of equation (1), our results lend support to its use in fitting nucleic acid thermal denaturation data, especially for comparative purposes.

CONCLUSIONS

We have described a set of flexible, interactive programs for the analysis and storage of biochemical data. The ability of the programs to accept English commands and prompt the operator for needed information allows even an inexperienced computer user to analyze a reassociation curve or gel profile in under an hour. In addition to the analysis of data from nucleic acid hybridization, thermal denaturation, and gel electrophoresis (1-10), the programs may be used for a number of other applications, such as resolution of components in velocity and equilibrium density gradients and the determination of rate constants for enzyme reactions. The programs also provide a framework for the development of other data analysis systems.

The programs described in this paper are available from the authors on a variety of machine-readable media.

ACKNOWLEDGMENTS

We thank T.D. Sargent, J.W. Posakony and R.B. Wallace for helpful discussion and critical review of this manuscript. This research was supported by U.S. Public Health Service Grants GM-13762 and GM-00086.

REFERENCES

1. Garrard, W.T., Pearson, W.R., Wake, S.K., and Bonner, J. (1974) *Biochem. Biophys. Res. Comm.* 58, 50-57.
2. Murphy, R.F., and Bonner, J. (1975) *Biochim. Biophys. Acta* 405, 62-66.
3. Gottesfeld, J.M., Murphy, R.F., and Bonner, J. (1975) *Proc. Nat. Acad. Sci. USA* 72, 4404-4408.
4. Murphy, R.F., Wallace, R.B., and Bonner, J. (1978) *Proc. Nat. Acad. Sci. USA* 75, 5903-5907.
5. Wallace, R.B., Dube, S.K., and Bonner, J. (1977) *Science* 198, 1166-1168.
6. Sala-Trepaut, J.M., Sargent, T.D., Sell, S., and Bonner, J. (1979) *Proc. Nat. Acad. Sci. USA* 76, 695-699.
7. Sala-Trepaut, J.M., Dever, J., Sargent, T.D., Thomas, K., Sell, S., and Bonner, J. (1979) *Biochemistry*, in press.
8. Wallace, R.B., Sargent, T.D., Murphy, R.F., and Bonner, J. (1977) *Proc. Nat. Acad. Sci. USA* 74, 3244-3248.
9. Bonner, J., Wallace, R.B., Sargent, T.D., Murphy, R.F., and Dube, S.K. (1978) *Cold Spring Harbor Symp. Quant. Biol.* 42, 851-857.
10. Bakke, A.C., Wu, J.R., and Bonner, J. (1978) *Proc. Nat. Acad. Sci. USA* 75, 705-709.
11. Pearson, W.R., Davidson, E.H., and Britten, R.J. (1977) *Nucleic Acids Res.* 4, 1727-1737.
12. Britten, R.J., Graham, D.E., and Neufeld, B.R. (1974) in *Methods in Enzymology* (L. Grossman and K. Moldave, Eds.), Vol. 29E, pp. 363-418, Academic Press, New York.
13. Marquardt, D.W. (1963) *J. Soc. Indust. Appl. Math.* 11, 431-441.
14. Gautschi, W. (1972) in *Handbook of Mathematical Functions* (M. Abramowitz and I.A. Stegun, Eds.), pp. 295-329, Dover Publications, New York.
15. Martin, R.S., and Wilkinson, J.H. (1971) in *Linear Algebra* (J.H. Wilkinson and C. Reinsch, Eds.), pp. 50-56, Springer-Verlag, New York.
16. Savitzky, A., and Golay, M.J.E. (1964) *Anal. Chem.* 36, 1627-1639.

17. Steinier, J., Termonia, Y., and Deltour, J. (1972) Anal. Chem. 44, 1906-1909.
18. Madden, H.H. (1978) Anal. Chem. 50, 1383-1386.
19. Morrow, J. (1974) Ph. D. Thesis, Stanford University.
20. Smith, M.J., Britten, R.J., and Davidson, E.H. (1975) Proc. Nat. Acad. Sci. USA 72, 4805-4809.
21. Zimm, B.H. (1960) J. Chem. Phys. 33, 1349-1356.
22. Applequist, J., and Damle, V. (1963) J. Chem. Phys. 39, 2719-2721.
23. Applequist, J., and Damle, V. (1965) J. Am. Chem. Soc. 87, 1450-1458.
24. Abzel, M.Ya. (1973) Phys. Rev. Lett. 31, 589-593.
25. Abzel, M.Ya. (1979) Proc. Nat. Acad. Sci. USA 76, 101-105.

APPENDIX A

GELFIT, a non-linear, least-squares Gaussian curve fitting program

The following program has been used for determination of peak positions and areas for polyacrylamide gel scans (Chapters 1, 2, and 4), thermal denaturation derivative profiles (Chapter 3), and density gradient distributions (Chapter 5). In this listing, input/output related routines, some of which may be computer system specific, have been omitted. Most of these are part of a library of subroutines for handling of standardized data files. The data file format used allows access by all programs in the system to files created by any program.


```

C NFPAR   />NUMBER OF FREE PARAMETERS
C MAXEND  />MAX FREQ OF NFPAR AND NOFAR
C XTEL    />X CHANGE BETWEEN FOTS
C FIXED   />FIXCOM
C UNFIXD  />FIXCOM
C FIXARR (MAXPAR) />FIXCOM
C XFMIN,XFMAX />FIXCOM
C YMIN,YMAX />FIXCOM
C NYFLOT  />FIXCOM
C NYFLOT  />FIXCOM
C NYPERX  />FIXCOM
C LOGFLG  />FIXCOM
C CRFLT   />FIXCOM
C NOSTD   />STDCOM
C LOGSTD  />STDCOM
C DEBUG   />DEBUG
C

C INTEGER COMMAND
COMMON/LOGNEV/LRD,LWD,LFD
INTEGER LRD,LWD,LFD
COMMON/FILCOM/OUTFIL(16),INFILE(16),LSTFIL(16),
* FLTFIL(16),STDFIL(16)
BYTE OUTFIL,INFILE,LSFIL,FLTFL,STDFIL
COMMON/DATA/TITLE(80),XMIN,XMAX,YMIN,YMAX,
* NOPTS,MAXPTS,IY(100),
BYTE TITLE
INTEGER NOPTS,MAXPTS,IY
REAL XMIN,YMAX,YMIN,YMAX
COMMON/UFRMAT/UFM(10)
INTEGER UFRMAT
COMMON/CURVES/NUCURV,NOPAR,MAXPAR,P(60)
INTEGER NOCURV,NOPAR,MAXPAR
REAL P
COMMON/FITPAR/NIT,NCIT,RMSQU,DELQU,RATMAX,NEIGH,
* NFPAR,MAXBN,DXEL
INTEGER NIT,NCIT,NEIGHBN,NFPAR,MAXBN
REAL RMSQU,DELQU,RATMAX,DXEL
COMMON/FIXCOM/FIXED,UNFIXD,FIXARR(1)
BYTE FIXED,UNFIXD,FIXARR
COMMON/PLOTCM/YFMIN,XFMAX,YFMIN,YFMAX,NXPLOT,
* NYPLOT,NYPERX,LOGFLG,CRTFL
LOGICAL*1 LOGFLG,CRTFL
INTEGER NXPLOT,NYPLOT,NYPERX
REAL XFMIN,YFMAX,YFMIN,YFMAX
COMMON/STDCOM/NOSTD,MAXSTD,LOGSTD
INTEGER NOSTD,MAXSTD
LOGICAL LOGSTD
COMMON/GUESCM/GUESCM,FILT,ZFILT
REAL YFILT,ZFILT
COMMON/DEBUG/DEBUG
INTEGER DEBUG
LOGICAL*1 ADDFLG
LOGICAL*1 LFTFLT
C WHEN 'ADDFLG' IS .TRUE., DATA IS BEING ADDED TO PREVIOUS VALUES
C WHEN 'LFTFLT' IS .TRUE., LINE-PRINTER DEFAULTS ARE SELECTED.
C WHEN 'LFTFLT' IS .TRUE., LINE-PRINTER DEFAULTS ARE SELECTED.
C THIS ARRAY CONTAINS THE DEFAULT FILE FORMAT.
C THESE ARRAYS AND VARIABLES CONTAIN DATA FOR THE COMMUN SUBROUTI
BYTE COMSTR(128),SWISTR(2,26),SWIFTR(2,9),CSTRNG(81)
INTEGER COMPTR(2,26),SWIFTR(2,9),SWIFLG(3,11)

```

INTEGER MAXCOM,MAXSWI,MAXFLG,LSTSTRG,IFTR,LARGS
*ARGTF. <0 IF COMMAND TAKES INTEGER ARGS, >0 IF REAL ARGS.
*REQDAT. TRUE. IF COMMAND REQUIRES PREVIOUS DATA POINTS.
*REQPAR. TRUE. IF COMMAND REQUIRES PREVIOUS PARAMS.
BYTE ARGTYP(26)
LOGICAL*1 REQDAT(26),REQPAR(26)

INTEGER I,J,K,IARG1,IARG2
REAL RARG1, RARG2
REAL OMN,OMX,XT
PROCEDURE TYPE DECLARATION.
INTEGER COMMUN
DATA MAXCOM /26/
DATA MAXSWI /9/
DATA MAXFLG /11/
DATA COMSTR('H','E','L','F','I','N','P','U','T','S','C','L',
*'T','A','N','D','A','R','D','S','C','L',
*'O','S','E','F','I','T','P','O','T',
*'O','U','T','P','U','T','N','E','W','A',
*'T','D','D','E','L','E','M','O',
*'D','I','F','Y','T','Y','P','E',
*'X','U','N','F','I','X','P','O','I','N',
*'T','S','K','I','L','L','I','S','T',
*'Q','U','I','T','B','N','D','S','W',
*'I','D','H','X','S','C','A','L','E',
*'Y','S','C','A','L','E','G','U','E','S',
*'S','E','N','E','R','A','T','E','D',
*'E','B','U','G','E','X','I','T'
DATA COMPTR(1,9,5,18,10,23,19,26,26,
* 30,28,36,31,39,37,42,40,48,43,
* 54,49,58,55,61,61,66,62,72,68,
* 76,73,80,77,84,81,89,85,9,90,
* 100,95,106,101,111,108,119,113,124,122,
* 128,125/
DATA SWISTR('O','L','D','A','D','D','L','O','N','G',
*'C','R','Y','L','D','G','N','O','L','O',
*'G','L','P','L','I','S','T','P','L','O','T',
DATA SWIFTR(3,1,6,4,10,10,13,11,16,16,
* 21,21,23,23,27,25,31,29/
C SWITCHES WHICH ARE ONLY USED BY COFFIT
C HAVE THE COMMAND * SET TO 0,
DATA SWIFLG /1,0,0,
* 2,2,0,
* 3,1,0,
* 4,6,0,
* 5,0,0,
* 6,3,0,
* 5,0,0,
* 6,0,0,
* 7,6,0,
* 8,7,0,
* 9,7,0/
DATA ARGTYP
*-1,-1,-1,0,-1,1,-1,0,
* 1,1,1,0,-1,0/
DATA REQDAT /0,0,0,1,1,1,0,0,0,0,
* 0,0,0,0,1,0,0,0,
* 1,1,1,0,0,0/
DATA REQPAR /0,0,0,1,1,0,0,0,1,1,

```

* 1,1,1,1,0,0,0,0,0,0,
* 0,0,0,1,0,0/
DATA IFRMAT   '/'(1','01','8)',',',',',',',/10/
DATA MAXFF   /10/

C IF LAST COMMAND WAS Input TO AN IMPLICIT New
C IF (COMMAND.EQ.2,AND,NOCURV.LE.0,AND,NOPTS.GT.0) GOTO 80
C RETURN HERE TO GET NEW COMMAND.
C CONVERT COMMAND AND ASSOCIATED SWITCHES INTO COMMAND NUMBER
C AND FLAGS IN SWIFLG.
1  CALL RCTRLO
LSTRING = 0
COMMAND = COMMUM(CSTRNG,LSTRING,COMSTR,COMPFTR,MAXCOM,
*SWISTR,SWIFLG,MAXSWI,SWIFLG,MAXFLG,IFTR)
C CHECK FOR BAD COMMAND OR BAD OPTION.
IF (COMMAND.GT.0) GOTO 4
GOTO (530,520,510,500) COMMAND+4
C IFTR --> START OF ARGUMENTS.
C MAKE LARGS = LENGTH OF ARGUMENTS STRING.
4  LARGS = LSTRING - IFTR + 1
C GET INTEGER ARGS IF NEEDED.
IF (ARGTY(COMMAND) .EQ. 5,9,7
IF (LARGS.LE.0) GOTO 6
DECODE(LARGS,2000,CSTRNG(IFTR),ERR=500) IARG1,IARG2
GOTO 9
6  IARG1 = 0
IARG2 = 0
GOTO 9
C GET REAL ARGS IF NEEDED.
7  IF (LARGS.LE.0) GOTO 8
DECODE(LARGS,2010,CSTRNG(IFTR),ERR=500) RARG1,RARG2
GOTO 9
RARG1 = 0,
RARG2 = 0.
C MAKE SURE REQUIRED DATA AND CURVES EXIST.
8  IF (REQDAT(COMMAND).AND,NOPTS.LE.0) GOTO 540
IF (REQPAR(COMMAND) .AND,NOFAR.LE.0) GOTO 550
GOTO (10,20,30,40,50,60,70,80,90,100,110,130,130,
*150,160,160,180,190,200,210,230,240,250,260) COMMAND

C (01) H(ELF) (/LONG) - PRINT COMMAND SUMMARY
10  IF (SWIFLG(3,3),NE.0) RETURN
    WRITE(LWD,1040)
    GOTO 1

C (02) I(INPUT) (/ADD) (INFILE,EXT) - GET INPUT FILE
C CHECK FOR /ADD.
20  ADDFLG = (SWIFLG(3,2),NE.0)
C SEE IF A FILENAME WAS SPECIFIED.
IF (LARGS.GT.0) GOTO 21
C NO ARG SPECIFIED, PROMPT.
WRITE(LWD,1010)
READ(LRD,2020) INFILE
GOTO 22
C USE ARGUMENT SPECIFIED.
21  DECODE(LARGS,2020,CSTRNG(IFTR)) INFILE
C DEFAULT OUTPUT FILE IS THE INPUT FILE.

C NON-T CHANGE OUTFILE FILE IF ADDING.
22  IF (ADDFLG) GOTO 24
DO 23 I=1,16
OUTFL(I) = INFILE(I)
23  CONTINUE
C GET DEFAULTS FOR LIST AND PLOT FILES
CALL SETFL
C NOT ADDING, DELETE OLD POINTS.
NOPTS = 0
C RETURN TO MAIN PROGRAM TO READ INPUT FILE.
24  RETURN

C (03) S(ТАNDARDS) (/NOLOG) (STDIFL,EXT) - GET STANDARDS FILE
30  IF (LARGS.GT.0) GOTO 31
WRITE(LWD,1050)
READ(LRD,2020) STDIFL
IF (STDIFL(1),NE.0) GOTO 32
C NO FILE SPEC, CANCEL PREVIOUS STANDARDS.
NOSTD = 0
GOTO 1
31  DECODE(LARGS,2020,CSTRNG(IFTR)) STDIFL
C FITS ARE TO LOG MW UNLESS /NOLOG IS SPECIFIED.
32  LOGSTD = (SWIFLG(3,6),EQ.0)
RETURN

C (04) C(CLOSE) - RETURN TO WRITE OUTPUT FILE
40  RETURN

C (05) FIT (NIT)(,NCIT) - RETURN FOR FITTING
50  NIT = IARG1
C LET FIT IMPLY FIT 10.
IF (LARGS.LE.0) NIT = 10
NCIT = IARG2
C LET FIT? IMPLY FIT?30
IF (NCIT.LE.0) NCIT = 30
IF (NEIGHB.LE.0) NEIGHB=MINO(1,MAXBND-NOPAR)/3-1
NEIGHB = (NEIGHB+1)*3
IF (NFFAR.GT.NOFAR) NFFAR = NOFAR
IF ((NFFAR*NOFAR).LE.MAXEND) RETURN
WRITE(LWD,1060) NFFAR,NOFAR,MAXEND
GOTO 1

C (06) PL(OT) (/CRT) - PLOT POINTS & FIT ON TERMINAL
60  CALL IMXMIN(IY,NOPTS,IYMAX,IYMIN)
CRTPLT = (SWIFLG(3,4),NE.0)
LFTPLT = (SWIFLG(3,9),NE.0)
IF (LARGS.LE.0) GOTO 62
DECODE(LARGS,2040,CSTRNG(IFTR),ERR=500) XPMIN,XPMAX,
*YFMIN,YFMAX,NXPLOT,NYFLOT,NYFEX
CRTPLT = (.NOT.LFTPLT)
GOTO 66
CALL PLTLM(XMIN,XMAX,XPMIN,XPMAX)
YMIN = FLOAT(IYMIN)
YMAX = FLOAT(IYMAX)
CALL PLTLM(YMIN,YMAX,YPMIN,YPMAX)
NYFEX = 5

```

```

      IF(.NOT.LPTPLT) GOTO 64
      C USE LINE-PRINTER DEFAULTS
      NXPLOT = 101
      NYPLOT = 51
      GOTO 66
      IF(.NOT.CRTFLT) GOTO 65
      C USE CRT DEFAULTS AND USE CONDENSED PLOTTING
      NXPLOT = 68
      NYPLOT = 16
      GOTO 66
      C USE TELETYPE DEFAULTS AND SET CONDENSED PLOTTING FLAG
      NXPLOT = 61
      NYPLOT = 41
      CRTFLT = .TRUE.
      RETURN
      66
      C (07) OUTPUT/(LIST)/(PLOT)(OUTFIL,EXT)-SLT OUTPUT FILENAMES
      C IF(SWIFLG(3,10).NE.0) GOTO 72
      C IF(SWIFLG(3,11).NE.0) GOTO 74
      C IF(LARGS.LE.0) GOTO 71
      RECODE(LARGS,2020,CSTRNG(IPTR)) OUTFIL
      GOTO 1
      WRITE(LWD,1030)
      READ(LRD,2020) OUTFIL
      READ(LRD,2020) OUTFIL
      C SETTING OUTFIL FILENAME ALSO SETS PLOT AND LIST FILENAMES.
      CALL SEFFIL
      GOTO 1
      IF(LARGS.LE.0) GOTO 73
      DECODE(LARGS,2020,CSTRNG(IPTR)) LSTFIL
      GOTO 1
      WRITE(LWD,1240)
      READ(LRD,2020) LSTFIL
      GOTO 1
      IF(LARGS.LE.0) GOTO 75
      DECODE(LARGS,2020,CSTRNG(IPTR)) PLTFIL
      GOTO 1
      WRITE(LWD,1250)
      READ(LRD,2020) PLTFIL
      GOTO 1
      C (08) N(EW) - GET NEW CURVES
      C MAKE SURE ADD COMMAND READS FROM TELETYPE
      80 NOPAR = 0
      C ADD - ADD TO PREVIOUS PARAMETERS
      C (09) A(DD) - ADD TO PREVIOUS PARAMETERS
      C IF(NOPAR.GE.MAXPAR) GOTO 560
      90 IF(LARGS.GT.0) GOTO 93
      J = NOPAR
      WRITE(LWD,1070)
      READ(LRD,2010,ERR=91,END=94) (F(I),I=J+1,J+3)
      J = J + 3
      IF(J.LT.MAXPAR) GOTO 92
      GOTO 94
      DECODE(LARGS,2010,CSTRNG(IPTR),ERR=500)
      * (F(I),I=NOFAR+1,NOFAR+3)
      J = NOPAR + 3
      94  DO 95 I=NOFAR1,J
            FIXARR(I) = UNFIXD
      95  CONTINUE
      NOFAR = J
      NOCURV = J/3
      NEIGHR = -1
      GOTO 1
      C MAKE SURE DELETE, MODIFY AND TYPE
      C ARGUMENTS ARE WITHIN LIMITS
      C LET *COMMAND N.*CR. - IMPLY *COMMAND N, NOCURV,CR.
      100  IF((CSTRNG(LSTRNG).NE.0)) GOTO 101
      TARG2 = NOCURV
      GOTO 102
      C LET *COMMAND N.*CR. - IMPLY *COMMAND N, N, CR.
      C LET *COMMAND N,CR. - IMPLY *COMMAND N, NOCURV,CR.
      101  IF((IARG2.EQ.0)) IARG2 = IARG1
      C LET *COMMAND CR. - IMPLY *COMMAND 1, NOCURV,CR.
      IF(LARGS.GT.0) GOTO 102
      IARG1 = 1
      IARG2 = NOCURV
      IF((IARG2.LE.0.OR.IARG1.GT.NOCURV.OR.IARG2.LT.IARG1
      * .OR.IARG2.GT.NOCURV)) GOTO 600
      C CONVERT CURVE NUMBERS TO PARAMETER NUMBERS
      IARG1 = IARG1*3 - 2
      IARG2 = IARG2*3
      IF(COMMAND.NE.10) GOTO 110
      C (10) DELETE (I)(J) - DELETE CURVES
      C I = IARG2 - IARG1 + 1
      NOFAR = NOFAR - 1
      NEIGHR = -1
      IF((IARG1.GT.NOPAR)) GOTO 104
      F(IARG1) = F(IARG1+1)
      FIXARR(IARG1) = FIXARR(IARG1+1)
      IARG1 = IARG1 + 1
      GOTO 103
      104  NOCURV = NOFAR/3
      GOTO 1
      C (11) M(ODIFY) (I)(J) - CHANGE CURVES
      C (12) T(YPE) (I)(J) - TYPE CURVES
      C IF TYPING, DON'T GET NEW VALUES.
      110  WRITE(LWD,1080)
      111  WRITE(LWD,1090) IARG1/3+1,
            * (F(I),FIXARR(I),I=IARG1,IARG1+2)
      C IF MODIFY, DON'T GET NEW VALUES.
      IF(COMMAND.EQ.12) GOTO 113
      WRITE(LWD,1100)
      READ(LRD,2010,ERR=114) (F(I),I=IARG1,IARG1+2)
      IARG1 = IARG1 + 3
      IF((IARG1.GT.IARG2)) GOTO 1
      GOTO 111
      CALL ERROR('W','input error - repeat last curve.')
      GOTO 112
      C (13) FIX (I)(J) - HOLD CURVE I PARAMETER J CONSTANT
      C (14) U(NFIX) (I)(J) - ALLOW CURVE I PARAMETER J TO VARY
      C

```

```

130 IF (IARG1.LE.0.OR.IARG1.GT.NOPTS) GOTO 570.
IF (IARG2.LE.0.OR.IARG2.GT.3) GOTO 600
IARG1 = (IARG1-1)*3 + IARG2
IF (IARG2.EQ.0) GOTO 131
IARG2 = IARG1
GOTO 132

C 2ND ARG-0 - FIX ENTIRE CURVE.
131 IARG1 = IARG1 + 1
IARG2 = IARG1 + 2
132 K = FIXED
IF (COMMAND.EQ.14) K = UNFIXD
DO 133 I = IARG1,IARG2
  FIXARR(I) = K
  CONTINUE
133 GOTO 1

C (15) PO(INTS) - ADD TO PREVIOUS DATA POINTS
C IF NO DATA YET, DO A TT: INPUT COMMAND
C MAKE SURE THERE'S ROOM FOR MORE POINTS.
150 IF (NOPTS.GE.MAXPTS) GOTO 580
  IF (NOPTS.GT.0) GOTO 154
  NOPTS = 0
  NOFAR = 0
  DO 152 I=1,43
    TITLE(I) = ' '
    CONTINUE
152  WRITE(LWD,1020)
    READ(LRD,2020) (TITLE(I),I=44,80)
    DO 153 I=1,MAXIFR
      UFRMAT(I) = IFRMAT(I)
    CONTINUE
    WRITE(LWD,1020)
    READ(LRD,2020) (TITLE(I),I=44,80)
    153  WRITE(LWD,1110)
      READ(LRD,2010) XMIN,XDEL
      IF (XDEL.EQ.0.) XDEL = 1.
      WRITE(LWD,1120)
      READ(LRD,2000,ERR=156,END=158) IY(NOPTS+1)
      NOPTS = NOPTS + 1
      IF (NOPTS.GE.MAXPTS) GOTO 580
      GOTO 155
      CALL ERROR('W','input error - repeat last point.')
      GOTO 155
155  IF (NOPTS.LE.0) GOTO 540
      XMAX = XMIN + (NOPTS-1)*XDEL
      IF (NOFAR.EQ.0) GOTO 80
      GOTO 1

C MAKE SURE KILL & LIST ARGUMENTS ARE WITHIN LIMITS
C LET "COMMAND N,<CR>" IMPLY "COMMAND N,NOPTS,<CR>."
160  IF (CSTRING(LSTRNG).NE.'') GOTO 161
      IARG2 = NOPTS
      GOTO 162
161  IF (IARG2.EQ.0) IARG2 = IARG1
      "COMMAND <CR>" IMPLY "COMMAND 1,NOPTS,<CR>."
      GOTO 162
162  IF (IARG1.EQ.0) IARG1 = 1
      IF (COMMAND.NE.16) GOTO 170
      C (16) K(CILL)(M)(N) - DELETE POINTS
      I = IARG2 - IARG1 + 1
      NOPTS = NOPTS - 1
      XMAX = XMIN + (NOPTS-1)*XDEL
      IF (IARG1.GT.NOPTS) GOTO 1
      IY(IARG1) = IY(IARG1+1)
      IARG1 = IARG1 + 1
      GOTO 163

C (17) L(LIST)(M)(N) - LIST POINTS
170  WRITE(LWD,1130) IARG1,IARG2,
    WRITE(LWD,UFRMAT) (IY(I),I=IARG1,IARG2)
    GOTO 1

C (18) Q(UIT) (RMSQUS),DELQU) - SET QUIT CRITERIA
180  IF (LARGS.GT.0) GOTO 181
    WRITE(LWD,1190)
    READ(LRD,2010) RMSQUS
    WRITE(LWD,1200)
    READ(LRD,2010) DELQU
    GOTO 1
    RMSQUS = RARG1
    DELQU = RARG2
    GOTO 1

C (19) R(ANDS)(I) - SET # OF NEIGHBORING BANDS IN FIT
190  IF (IARG1.LT.0.OR.IARG1.GE.NOCURV) GOTO 570
    NEIGHB = IARG1
    GOTO 1

C (20) W(INTH)(A) - SET MAX RELATIVE WIDTH
200  IF (LARGS.GT.0) GOTO 201
    WRITE(LWD,1140)
    READ(LRD,2010) RATMAX
    GOTO 1
    RATMAX = RARG1
    GOTO 1

C GET FACTORS FOR XSCALE AND YSCALE.
210  IF (LARGS.GT.0) GOTO 211
    WRITE(LWD,1230)
    READ(LRD,2010) RARG1,RARG2
    IF (COMMAND.EQ.22) GOTO 220
    C (21) X(SCALE) - SCALE X DATA
    C (22) XMIN = (XMIN+IARG1)*RARG2
    C (23) XMAX = (XMAX+IARG1)*RARG2
    XDEL = XDEL*RARG2
  
```



```

*' PL <list>, T15, 'PLOT data and fit'
*' /C', T15, 'Plot in CRT format'
*' /LP', T15, 'Plot in LF format'
*' PO', T15, 'add more POINTS'
*' Q a,b', T15, 'set QUIT criteria'
*' S stdfil', T15, 'set STANDARDS'
*' T i,j', T15, 'TYPE curves i-j'
*' U i,j', T15, 'UNFIX curve i Param j'
*' W a,b', T15, 'set max relative WIDTH'
*' X a,b', T15, 'XSCALE (x+a)*b'
*' Y a,b', T15, 'YSCALE (y+a)*b'
1050 FORMAT('$STANDARDS FILE: ',)
1060 FORMAT('ORD MAT TOO LRG //', *F= ', I6, ', *N= ', I6, ',')
*' MAXEND= ', I6 /)
1070 FORMAT('ENTER CURVES - X,Y,H<CR> (^Z=END): ',)
1080 FORMAT('...N.....X.....Y.....H.....')
1090 FORMAT('NEW VALUES: ')
1100 FORMAT(' $XMIN,XINC: ')
1110 FORMAT(' ENTER DATA, ONE INTEGER PER LINE (^Z=END) ')
1120 FORMAT(' ODATA POINTS', I4, ', TO ', I4, ',;')
1130 FORMAT(' $MAX.REL.HALFWIDTH: ')
1140 FORMAT(' $RMS.QUIT: ')
1150 FORMAT(' $MAX.CHANGE.QUIT: ')
1200 FORMAT(' $FACTORS: ADDITIVE, MULTIPLICATIVE: ')
1230 FORMAT(' $LISTING FILE: ')
1240 FORMAT(' $PLOT FILE: ')
1250 FORMAT('2I6)
1090 FORMAT(2I6)
2010 FORMAT(3F12.0)
2020 FORMAT(8O1)
2040 FORMAT(4FB.0,3I4)
2050 FORMAT(14,3FB.0)
END
SUBROUTINE SETFIL
C CREATE DEFAULT PLOT AND LIST FILENAMES
C
COMMON/FILCOM/OUTFIL(16),INFFIL(16),LSTFIL(16),
*PLTFIL(16)
BYTE OUTFIL,INFFIL,LSTFIL,PLTFIL
C DEFAULT PLOT AND LIST FILES ARE LP:XXXXXX
C FIND END OF DEVICE NAME, IF SPECIFIED
DO 27 I=1,4
  IF(INFFIL(I).EQ.'.') GOTO 28
CONTINUE
I = 0
27
28
  LSTFIL(1) = 'L'
  LSTFIL(2) = 'P'
  LSTFIL(3) = ','
  DO 29 J=1,6
    IF(INFFIL(I+J).EQ.'.') GOTO 30
    LSTFIL(J+3) = INFFIL(I+J)
CONTINUE
DO 31 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 32 I=1,16
32
CONTINUE
DO 33 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 34 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 35 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 36 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 37 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 38 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 39 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 40 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 41 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 42 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 43 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 44 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 45 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 46 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 47 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 48 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 49 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 50 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 51 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 52 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 53 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 54 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 55 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 56 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 57 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 58 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 59 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 60 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 61 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 62 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 63 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 64 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 65 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 66 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 67 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 68 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 69 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 70 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 71 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 72 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 73 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 74 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 75 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 76 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 77 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 78 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 79 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 80 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 81 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 82 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 83 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 84 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 85 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 86 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 87 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 88 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 89 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 90 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 91 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 92 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 93 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 94 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 95 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 96 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 97 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 98 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 99 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 100 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 101 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 102 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 103 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 104 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 105 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 106 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 107 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 108 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 109 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 110 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 111 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 112 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 113 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 114 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 115 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 116 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 117 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 118 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 119 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 120 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 121 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 122 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 123 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 124 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 125 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
C INPUT FORMATS
C
2000
2010
2020
2040
2050
END
SUBROUTINE SETFIL
C CREATE DEFAULT PLOT AND LIST FILENAMES
C
COMMON/FILCOM/OUTFIL(16),INFFIL(16),LSTFIL(16),
*PLTFIL(16)
BYTE OUTFIL,INFFIL,LSTFIL,PLTFIL
C DEFAULT PLOT AND LIST FILES ARE LP:XXXXXX
C FIND END OF DEVICE NAME, IF SPECIFIED
DO 27 I=1,4
  IF(INFFIL(I).EQ.'.') GOTO 28
CONTINUE
I = 0
27
28
  LSTFIL(1) = 'L'
  LSTFIL(2) = 'P'
  LSTFIL(3) = ','
  DO 29 J=1,6
    IF(INFFIL(I+J).EQ.'.') GOTO 30
    LSTFIL(J+3) = INFFIL(I+J)
CONTINUE
DO 31 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 32 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 33 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 34 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 35 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 36 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 37 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 38 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 39 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 40 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 41 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 42 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 43 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 44 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 45 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 46 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 47 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 48 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 49 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 50 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 51 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 52 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 53 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 54 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 55 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 56 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 57 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 58 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 59 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 60 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 61 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 62 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 63 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 64 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 65 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 66 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 67 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 68 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 69 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 70 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 71 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 72 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 73 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 74 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 75 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 76 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 77 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 78 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 79 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 80 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 81 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 82 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 83 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 84 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 85 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 86 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 87 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 88 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 89 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 90 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 91 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 92 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 93 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 94 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 95 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 96 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 97 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 98 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 99 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 100 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 101 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 102 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 103 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 104 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 105 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 106 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 107 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 108 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 109 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 110 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 111 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 112 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 113 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 114 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 115 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 116 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 117 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 118 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 119 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 120 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 121 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 122 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 123 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 124 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
DO 125 I=I+3,16
  LSTFIL(I) = ','
CONTINUE
C INPUT FORMATS
C
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2890
2900
2910
2920
2930
2940
2950
2960
2970
2980
2990
2990
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
3190
3190
3200
3210
3220
3230
3240
3250
3260
3270
3280
3290
3290
3300
3310
3320
3330
3340
3350
3360
3370
3380
3390
3390
3400
3410
3420
3430
3440
3450
3460
3470
3480
3490
3490
3500
3510
3520
3530
3540
3550
3560
3570
3580
3590
3590
3600
3610
3620
3630
3640
3650
3660
3670
3680
3690
3690
3700
3710
3720
3730
3740
3750
3760
3770
3780
3790
3790
3800
3810
3820
3830
3840
3850
3860
3870
3880
3890
3890
3900
3910
3920
3930
3940
3950
3960
3970
3980
3990
3990
4000
4010
4020
4030
4040
4050
4060
4070
4080
4090
4090
4100
4110
4120
4130
4140
4150
4160
4170
4180
4190
4190
4200
4210
4220
4230
4240
4250
4260
4270
4280
4290
4290
4300
4310
4320
4330
4340
4350
4360
4370
4380
4390
4390
4400
4410
4420
4430
4440
4450
4460
4470
4480
4490
4490
4500
4510
4520
4530
4540
4550
4560
4570
4580
4590
4590
4600
4610
4620
4630
4640
4650
4660
4670
4680
4690
4690
4700
4710
4720
4730
4740
4750
4760
4770
4780
4790
4790
4800
4810
4820
4830
4840
4850
4860
4870
4880
4890
4890
4900
4910
4920
4930
4940
4950
4960
4970
4980
4980
4990
4990
5000
5010
5020
5030
5040
5050
5060
5070
5080
5090
5090
5100
5110
5120
5130
5140
5150
5160
5170
5180
5190
5190
5200
5210
5220
5230
5240
5250
5260
5270
5280
5290
5290
5300
5310
5320
5330
5340
5350
5360
5370
5380
5390
5390
5400
5410
5420
5430
5440
5450
5460
5470
5480
5490
5490
5500
5510
5520
5530
5540
5550
5560
5570
5580
5590
5590
5600
5610
5620
5630
5640
5650
5660
5670
5680
5690
5690
5700
5710
5720
5730
5740
5750
5760
5770
5780
5790
5790
5800
5810
5820
5830
5840
5850
5860
5870
5880
5890
5890
5900
5910
5920
5930
5940
5950
5960
5970
5980
5980
5990
5990
6000
6010
6020
6030
6040
6050
6060
6070
6080
6090
6090
6100
6110
6120
6130
6140
6150
6160
6170
6180
6190
6190
6200
6210
6220
6230
6240
6250
6260
6270
6280
6290
6290
6300
6310
6320
6330
6340
6350
6360
6370
6380
6390
6390
6400
6410
6420
6430
6440
6450
6460
6470
6480
6490
6490
6500
6510
6520
6530
6540
6550
6560
6570
6580
6590
6590
6600
6610
6620
6630
6640
6650
6660
6670
6680
6690
6690
6700
6710
6720
6730
6740
6750
6760
6770
6780
6790
6790
6800
6810
6820
6830
6840
6850
6860
6870
6880
6890
6890
6900
6910
6920
6930
6940
6950
6960
6970
6980
6980
6990
6990
7000
7010
7020
7030
7040
7050
7060
7070
7080
7090
7090
7100
7110
7120
7130
7140
7150
7160
7170
7180
7190
7190
7200
7210
7220
7230
7240
7250
7260
7270
7280
7290
7290
7300
7310
7320
7330
7340
7350
7360
7370
7380
7390
7390
7400
7410
7420
7430
7440
7450
7460
7470
7480
7490
7490
7500
7510
7520
7530
7540
7550
7560
7570
7580
7590
7590
7600
7610
7620
7630
7640
7650
7660
7670
7680
7690
7690
7700
7710
7720
7730
7740
7750
7760
7770
7780
7790
7790
7800
7810
7820
7830
7840
7850
7860
7870
7880
7890
7890
7900
7910
7920
7930
7940
7950
7960
7970
7970
7980
7990
7990
8000
8010
8020
8030
8040
8050
8060
8070
8080
8090
8090
8100
8110
8120
8130
8140
8150
8160
8170
8180
8190
8190
8200
8210
8220
8230
8240
8250
8260
8270
8280
8290
8290
8300
8310
8320
8330
8340
8350
8360
8370
8380
8390
8390
8400
8410
8420
8430
8440
8450
8460
8470
8480
8490
8490
8500
8510
8520
8530
8540
8550
8560
8570
8580
8590
8590
8600
8610
8620
8630
8640
8650
8660
8670
8680
8690
8690
8700
8710
8720
8730
8740
8750
8760
8770
8780
8790
8790
8800
8810
8820
8830
8840
8850
8860
8870
8880
8890
8890
8900
8910
8920
8930
8940
8950
8960
8970
8970
8980
8990
8990
9000
9010
9020
9030
9040
9050
9060
9070
9080
9080
9090
9090
9100
9110
9120
9130
9140
9150
9160
9170
9180
9190
9190
9200
9210
9220
9230
9240
9250
9260
9270
9280
9290
9290
9300
9310
9320
9330
9340
9350
9360
9370
9380
9390
9390
9400
9410
9420
9430
9440
9450
9460
9470
9480
9480
9490
9490
9500
9510
9520
9530
9540
9550
9560
9570
9580
9590
9590
9600
9610
9620
9630
9640
9650
9660
9670
9680
9690
9690
9700
9710
9720
9730
9740
9750
9750
9760
9770
9780
9790
9790
9800
9810
9820
9830
9840
9850
9860
9870
9880
9880
9890
9890
9900
9910
9920
9930
9940
9950
9950
9960
9970
9980
9980
9990
9990
10000
10010
10020
10030
10040
10050
10060
10070
10080
10090
10090
10100
10110
10120
10130
10140
10150
10160
10170
10180
10190
10190
10200
10210
10220
10230
10240
10250
10260
10270
10280
10290
10290
10300
10310
10320
10330
10340
10350
10360
10370
10380
10390
10390
10400
10410
10420
10430
10440
10450
10460
10470
10480
10480
10490
10490
10500
10510
10520
10530
10540
10550
10560
10570
10580
10590
10590
10600
10610
10620
10630
10640
10650
10660
10670
10680
10690
10690
10700
1071
```



```

C BETWEEN LOCAL MAXIMA AND MINIMA OF THE
C FIRST DERIVATIVE (INFLECTION POINTS).
C THESE MAXIMA AND MINIMA MUST BE GREATER THAN
C THE Z FILTER, AND THE Y MAXIMUM IN
C THAT INTERVAL MUST BE GREATER THAN THE Y FILTER.
C REASONABLE VALUES FOR THE FILTERS ARE:
C YFILTER = 0.05*IMAX
C ZFILTER = 0.001*(IMAX-IMIN)/XDEL
C
C INTEGER NOPTS, IY(NOPTS), NOFAR, MAXFAR, IYFILT
C REAL XMIN, XTEL, ZFILT, F(MAXFAR)
C
C LOGICAL*1 UP, LFOUND, RFOUND, INFST
C REAL YLEFT, YRIGHT, ZLEFT, ZRIGHT, ZLINF, ZRINF
C
C SMOOTH THE Y DATA USING A SIMPLE POLYNOMIAL SMOOTH.
C SET UP INITIAL VALUES.
NOFAR = 0
UP = .FALSE.
LFOUND = .FALSE.
LEFT = YLEFT
RIGHT = YRIGHT
ZLEFT = (YRIGHT-YLEFT)/XDEL
ZLINF = ZLEFT
YLEFT = YRIGHT
C REQUIRE INFLECTION POINT TO BE GREATER THAN LEFT BOUNDARY.
C
C START CHECK LOOP.
C
C *UP* IS A FLAG FOR THE PREVIOUS CONDITION ZRIGHT>ZLEFT
C INFLECTION POINT CRITERIA:
C
C LEFT) UP & (ZRIGHT-ZLINF)>ZFILT
C
C RIGHT) .NOT.UP & (ZRIGHT-ZRINF)>ZFILT
C
C CURVE CRITERIA:
C IY(IMAXP)>IYFILT,
C WHERE IMAXP IS BETWEEN INFLECTION POINTS.
C
DO 50 I=2,NOPTS-2
YRIGHT = (IY(I)+2.*IY(I+1)+IY(I+2))/4.
ZRIGHT = (YRIGHT-YLEFT)/XDEL
C SEE IF LEFT INF POINT FOUND ALREADY.
C IF (LFOUND) GOTO 10
C LEFT INF POINT REQUIRES UP; DON'T CHANGE ZLINF UNTIL TRUE.
C IF (.NOT.UP) GOTO 40
C IF (ZLEFT.GT.ZLINF) ZLINF = ZLEFT
C IF ( (ZRIGHT-ZLINF) .GE.ZFILT) GOTO 40
C FOUND LEFT INF POINT, INIT POINTERS.
LFOUND = .TRUE.
ZLINF = ZRIGHT
ILEFT = I-1
IMAXF = I
GOTO 40
C ALREADY FOUND LEFT. UPDATE MAX POINTER.
10 IF (IY(I).GT.IY(IMAXF)) IMAXF = I
C CHECK RIGHT INF CRITERIA.
INFST = (.NOT.UP.AND.(ZRIGHT-ZLEFT).GT.ZFILT)
C
C UPDATE I. UPST = .F.F.
C SEE IF PREVIOUS POINT PASSED THE Y FILTER.
C IF (LFOUND) GOTO 20
LFOUND = .INFST
GOTO 40
C LAST POINT PASSED. IF THIS DOES ALSO, CONTINUE SEARCH.
20 IF (.INFST) GOTO 40
C REGION PASSES Z CRITERIA. CHECK Y FILTER.
IF (IY(IMAXF).LE.TYFILT) GOTO 30
J = NOFAR + 3
IF (J.GT.MAXFAR) GOTO 60
NOFAR = J
F(NOFAR-2) = XMIN + (IMAXF-1)*XDEL
F(NOFAR-1) = FLOAT(IY(IMAXF))
F(NOFAR) = (I-ILEFT)*XDEL/4.
LFOUND = .FALSE.
UP = (ZRIGHT.GT.ZLEFT)
YLEFT = YRIGHT
ZLEFT = ZRIGHT
CONTINUE
GOTO 70
CALL ERROR('W','Param array full - curve(s) last.')
RETURN
END
C
C GENERAL FOR
C
C SUBROUTINE GENERD(X1,X2,LOGFLG,NOFAR,P,ERRP,OLDFL,
*FUNCTN,NOPTS,X,Y,IX,IY,INTFLG,YONFLG)
C
C R.F. MURPHY CREATED 29-MAY-79
C
C GENERATE DATA FROM FUNCTION PARAMETERS, ALLOWING
C PARAMETERS TO VARY IN NORMAL DISTRIBUTIONS WITH
C SPECIFIED STANDARD DEVIATIONS. DATA IS EVENLY
C X-INCREMENED UNLESS LOGFLG IS .TRUE.. IT IS
C REAL UNLESS INTFLG IS .TRUE.. AND IT IS
C X&Y UNLESS YONFLG IS .TRUE.
C OLDFL NEED ONLY BE SUPPLIED IF AT LEAST ONE ERRP IS NON-ZERO.
C ONLY THE NECESSARY SUBSET OF X,Y,IX,IY (DETERMINED BY
C THE INTFLG AND YONFLG SETTINGS) NEED BE SUPPLIED.
C
C INTEGER NOFAR, NOPTS
C LOGICAL LOGFLG,INTFLG,YONFLG
C INTEGER IX(NOPTS),IY(NOPTS)
C REAL X1,X2,FUNCTN
C REAL F(NOFAR),ERRP(NOFAR),OLDFP(NOFAR),X(NOPTS),Y(NOPTS)
C
C INTEGER I,J
C REAL XT,XDEL,YT
C
C MAKE SURE ARGUMENTS ARE VALID.
C IF (NOPTS.LE.1.OR.NOFAR.LE.0) GOTO 50
C SAVE ORIGINAL PARAMETERS.
5 DO 10 I=1,NOFAR
IF (ERRP(I).NE.0.) OLDFP(I) = P(I)
CONTINUE
10

```

```

XDEL = 0.
IF (NOPTS,GT,1) XDEL = (X2-X1)/(NOPTS-1)
XT = X1
IF (,NOT,LOGFLG) GOTO 15
XDEL = 10.*XDEL
XT = 10.*XT
C CALCULATE NEW PARAMETERS FOR EACH POINT,
C AND EVALUATE THE FUNCTION.
15  DO 30 I=1,NOPTS
      DO 20 J=1,NOFAR
          IF (ERRF(CJ),EQ,0.) GOTO 20
          F'(J) = GAUS(OLDP(J),ERRF(J))
20   CONTINUE
          IF (YONFLG) GOTO 24
          IF (INTFLG) GOTO 22
          X(I) = XT
          GOTO 24
          IX(I) = INT(XT)
          YT = FUNCTN(XT)
          IF (INTFLG) GOTO 26
          Y(I) = YT
          GOTO 28
          IY(I) = INT(YT)
          IF (LOGFLG) GOTO 29
          XT = XT + XDEL
          GOTO 30
26   XT = XT*XDEL
28   CONTINUE
30   C RESTORE ORIGINAL PARAMETERS.
      DO 40 I=1,NOFAR
          IF (ERRP(I),NE,0.) P(I) = OLDP(I)
40   CONTINUE
      RETURN
50   END

C-----SUBROUTINE FTGAUS(BANDPP)
C-----28-JUN-79
C V04-04
C R.F. MURPHY CREATED 1-JUL-77

C THIS SUBROUTINE FITS GAUSSIAN COMPONENTS USING A
C MODIFIED DAMP LEAST SQUARES ALGORITHM DESIGNED BY MARQUARDT.
C J. SOC. IND. AFFL. MATH. (1965) 11:431-441.
C RETURNS CHISQ AND DEGREES OF FREEDOM
C FOR SIGNIFICANCE CALCULATION.

C INPUTS
C LWD /LOGDEV/ LOGICAL OUTPUT DEVICE
C XMIN /DATA/ X VALUE ASSOC. WITH IY(1)
C XMAX /DATA/ X VALUE ASSOC. WITH IY(NOFTS)
C NOFTS /DATA/ # OF DATA POINTS
C IY(NOFTS) /DATA/ ARRAY OF Y DATA VALUES
C NOCURV /CURVES/ # OF FIT PARAMETERS
C NOFAR /CURVES/ # OF PARAMETER ARRAY
C P(,NOFAR) /CURVES/ # OF ITERATIONS TO TRY
C NIT /FITFAR/ * OF CORRECTIVE TRIES PER ITERATION
C RMSQ /FITFAR/ QUIT WHEN RMS REACHES THIS VALUE
C DELQU /FITFAR/ QUIT WHEN MAX CHANGE REACHES THIS
C RATMAX /FITFAR/ MAX RATIO OF HW TO YMAX
C NFFAR /FITFAR/ * PARAM WIDTH OF RAND MATRIX
C XDEL /FITFAR/ CHANGE IN X BETWEEN IY(I) & IY(I+1)
C FIXED /FITCOM/ /FITXCOM/ CHARACTER FOR FIXED PARAM
C FIXARR(,NOFAR) /GLOBAL/ INDICATES WHICH FARMS TO FIX
C GELFUN /GLOBAL/ CALCULATES GAUSSIAN FUNCTION
C DEBUG /DEBUG/ DEBUGGING FLAG

C WORKING ARRAYS AND VARIABLES
C (COMMONS ARE DIMENSIONED HERE FOR 30 CURVES
C SO THAT THEY ARE INCLUDED IN WHICHEVER
C OVERLAY THIS MODULE IS PLACED IN;
C COMMONS MAY BE EXTENDED BY MAIN PROGRAM
C IN WHICH CASE THEY WILL BE IN THE ROOT SEGMENT)

C BANDPP(NDIFF*NNFAR*2) <ARG> PARTIAL OF EACH PARAM TO
C EACH PARAM IN LOWER HALF;
C SPACE FOR DECOMPOSITION
C OF BANDPP IN UPPER HALF
C FARCAL /FARCAL/
C DELMX /FARTDX(,NOFAR)
C FARTDX(NDIFF) /FARTDX/
C PARTDY(NDIFF) /PARTDY/
C DELTA(NDIFF) /DELTA/
C OLDF(,NOFAR) /OLDF/
C IMAF(NDIFF) /IMAF/
C MODULES USED
C IRANDT DECOMPOSE BANDPP MATRIX
C BANSOL SOLVE DECOMPOSITION FOR CHANGE VECTOR.

C OUTPUTS
C F(,NOFAR) /CURVES/
C NFREE /CURVES/ NEW PARAMETER VALUES
C QCOND /CURVES/ # OF DEGREES OF FREEDOM
C /FITFAR/ CONDITION & WHICH CAUSED QUIT
C 0 = NIT DONE
C 1 = NCIT EXCEEDED
C 2 = DELQU ATTAINED
C 3 = RMSQ ATTAINED
C 4 = EQUATIONS SINGULAR
C 5 = RATHAX FAILURE
C RMS /FITFAR/ ROOT MEAN SQUARE ERROR OF FIT
C CHISQ /FITFAR/ * GOODNESS OF FIT.

C METHOD:
C 1. STORE PARAMETERS.
C 2. CALCULATE PARTDX, PARTDY, BANDPP, DIFFSQ.
C 3. CALCULATE RMS, CHISQ.
C 4. OUTPUT RMS, CHISQ IF ANY ITS DONE.
C 5. CHECK TERMINATION. IF DONE, RETURN.
C 6. SCALE PARTDX AND BANDPP.
C 7. ADD CORRECTION FACTOR (INITIALLY 0.01) TO
C COLUMN NFFAR OF BANDPP.
C 8. DECOMPOSE BANDPP AND SOLVE FOR DELTA.

C-----
```

```

C
C 6.
C   ADD XKGAM*DELTA TO F.
C   CALCULATE DIFFSQ.
C   IF FIT WORSE: CHECK COSINE CRITERION:
C     .
C     LE, INCREASE FACTOR, GOTO 5.
C     GT, DECREASE XKGAM, GOTO 6.
C
C   FIT BETTER, CHECK HALFWIDTHS
C     .
C     BAD, CORRECT AND GOTO 2.
C     FIT OK, DECREASE CORRECTION FACTOR.
C     GOTO 1.
C
C   REAL FUNCTN
C   EXTERNAL FUNCTN
C
C   REAL BANDOFF(1)
C   COMMON/LOGDEV/LRD,LWD
C   INTEGER LRD,LWD
C   COMMON/DATA/TITLE(80),XMIN,XMAX,YMIN,YMAX,
C   *NOPTS,MAXPTS,IY(1)
C   BYTE TITLE
C   INTEGER NOPTS,MAXPTS,IY
C   REAL XMIN,XMAX,YMIN,YMAX
C   COMMON/CURVES/NOCURV,NOFAR,MAXFAR,F(1)
C   INTEGER NOCURV,NOFAR,MAXFAR
C   REAL F
C   COMMON/FITPAR/NIT,NCIT,RMSQ,DELQU,RATMAX,NEIGHB,NNFAR,
C   * MAXRND,XDEL,NFREE,RCOND,RMS,CHISQ,DELMX
C   INTEGER NIT,NCIT,NEIGHB,NNFAR,MAXRND,NFREE,RCOND
C   REAL RMSQ,DELQU,RATMAX,XDEL,RMS,CHISQ,DELMX
C   COMMON/FARCAL/FARCAL
C   LOGICAL FARCAL
C   COMMON/FIXCOM/FIXFIXD,UNFIXD,FIXARR(1)
C   BYTE FIXED,UNFIXD,FIXARR
C   COMMON/DEBUG/DEBUG
C   INTEGER DEBUG
C   COMMON/PARTDX/FARTDX(90)
C   REAL PARTDX
C   COMMON/PARTDY/PARTDY(90)
C   REAL PARTDY
C   COMMON/DELTA/DELTA(90)
C   REAL DELTA
C   COMMON/OLDP/OLDP(90)
C   REAL OLDP
C   COMMON/IMAP/IMAP(90)
C   INTEGER IMAP
C
C   LOGICAL#1 ALLOC
C   ITC IS THE CORRECTION ITERATION COUNTER,
C   ITNO CONTAINS THE CURRENT ITERATION NUMBER.
C   I-->M ARE TEMPORARY VARIABLES.
C   INTEGER I,IPMAX,ITC,ITNO,J,K,L,M
C   THESE VARIABLES HAVE SPECIFIC VALUES DURING THE FITTING.
C   INTEGER NDIFF,NDIFF1,NNFSIZ,NFFPSZ1
C   MISCELLANEOUS VARIABLES.
C   INTEGER IYFUN,IYDATU
C   REAL DIFFN,DIFFSQ,DIFF,DIFF2,FLAM,XKGAM,XLM,
C   *GAMNUM,TEMP,TEMSQ,DEL,DELSQ,STIME,X
C   PROCEDURE TYPE DECLARATIONS.
C   INTEGER IRNDIT
C   REAL GELFUN
C
C****
C
C   REAL SECNIS
C   C CREATE MAF ARRAY TO POINT TO UNFIXED PARAMETERS.
C   C CALL ERROR('W', 'Debugging code not compiled.')
C   I = 1
C   GOTO 1
C   IF (DEBUG,NE,0)
C     .
C     IF (I.GT.NOFAR) GOTO 3
C     IF (FIXARR(I).EQ.FIXED) GOTO 2
C     NDIFF = NDIFF + 1
C     IMAP(NDIFF) = I
C     I = I + 1
C   GOTO 1
C
C   IF (NDIFF.GT.0) GOTO 4
C   C ALL PARAMETERS ARE FIXED. DON'T DO ANY ITERATIONS.
C   NIT = 0
C   NDIFF = 1
C   IMAP(1) = 1
C
C   C INITIALIZE VARIABLES.
C   4   NFREE = NOPTS - NDIFF
C   NDFNOM = MAX(1,NFREE)
C   IF (NFREE.LE.0)
C     .
C     * CALL ERROR('W', 'solution underdetermined.')
C     IF (NNFAR.GT.NDIFF) NNFAR = NDIFF
C     NFFPAR1 = NFFPAR - 1
C     NDIFF1 = NDIFF - 1
C     NPPSIZ = NDIFF*NNFAR
C     NPPSIZ1 = NPPSIZ + 1
C     XLAM = 0.01
C     QCOND = 0
C     ITC = 0
C     ITNO = 0
C     ALLOK = .TRUE.
C     IF (NIT.GT.0) WRITE(LWD,1000)
C   C MAIN ITERATION LOOP.
C   C SAVE PREVIOUS PARAMETER VALUES.
C   5   DO 10 I=1,NOFAR
C     OLDP(I) = F(I)
C   10   CONTINUE
C   C RETURN HERE IF RATMAX FAILS.
C   C CALCULATE PARTIAL DERIVATIVE MATRICES.
C   C BANDOFF IS ACTUALLY BANDPP(NDIFF,NNFAR), WHERE BANDPP(I,J)
C   C IS THE PRODUCT OF THE PARTIALS OF PARAMS I AND I+NEFAR-J.
C   C THUS, THE SQUARES OF THE PARTIALS OF THE PARAMS ARE IN
C   C COLUMN NFFAR.
C   C IF FARCAL=.TRUE., "GELFUN" WILL CALCULATE PARTDX.
C   15   FARCAL = (ITNO.LT.NIT.AND.ITC.LE.NCIT)
C   IF (.NOT.FARCAL) GOTO 35
C   DO 20 I=1,NDIFF
C     FARTDY(I) = 0.
C   20   CONTINUE
C   DO 30 I=1,NNFSIZ
C     BANDFF(I) = 0.
C   30   CONTINUE
C   DIFFSQ = 0.
C   CHISQ = 0.
C   X = XMIN

```

```

DO 60 I=1,NOPTS
  C ROUND OFF FUNCTION VALUE TO ACCURACY OF DATA;
  C EFFECT OF SMALL DIFFERENCES ON CHISQ AND RMS.
  IYFUNU = INT(GELFUN(X)+.5)
  IYDATV = IY(I)
  DIFF = IYDATV - IYFUNU
  DIFF2 = DIFF*DIFF
  DIFFSQ = DIFFSQ + DIFF2
  C MINIMIZE ERROR DUE TO POINTS WHERE Y(X) = 0.
  IF (IYFUNU.EQ.0) IYFUNU = IYDATV
  C DIFF2 = 0, IF IYFUNU = 0.
  IF (IYFUNU.NE.0) CHISQ = CHISQ + DIFF2*IYFUNU
  X = X + XDEL
  IF (X .NOT. PARCAL) GOTO 60
  DO 50 J=1,NDIFF
    PARTDX(J) = PARTDY(J) + DIFF*PARTDX(IMAF(J))
  K = NFFSIZ - NDIFF + J
  L = MIN(4,J-NDIFF1,NDIFF)
  DO 40 M=J,L
    BANDDFP(K)=
      -BANDDFP(K)+PARTDX(IMAF(J))*PARTDX(IMAF(M))
    K = K - NDIFF1
  40  CONTINUE
  50  CONTINUE
  CONTINUE
  IF (DEBUG.EQ.0) GOTO 59
  CALL REMARK('AFTER 60')
  CALL REMARK('PARTDX')
  WRITE(LWD,3000) (PARTY(I),I=1,NDIFF)
  CALL RCTRLO
  CALL REMARK('BANDDFP')
  WRITE(LWD,3000) (BANDDFP(I),I=1,NFFSIZ)
  CALL RCTRLO
  CONTINUE
  IF (ITNO.EQ.0) GOTO 62
  59  CONTINUE
  C CALCULATE ERROR VALUES AND CHECK TERMINATION CONDITIONS.
  RMS = SORT(DIFFSQ(NOPTS))
  IF (ITNO.EQ.0) GOTO 62
  C*****+
  STIME = SECNDS(STIME)
  IF (ITC.GT.NCIT.OR..NOT.ALLOK) GOTO 61
  WRITE(LWD,1010) STIME,RMS,DELMX,IFMAX,F(IFMAX),ITC
  WRITE(LWD,1010) RMS,DELMX,IFMAX,F(IFMAX),ITC
  ITC = 0
  GOTO 62
  61  WRITE(LWD,1010) STIME
  C REMEMBER TIME EACH ITERATION IS STARTED.
  STIME = SECNDS(0.)
  C*****-
  ITNO = ITNO + 1
  IF (ITNO.LE.NIT) GOTO 63
  GOTO 400
  IF (ITC.LE.NCIT) GOTO 64
  ITNO = 1
  QCOND = 5
  IF (.NOT.ALLOK) QCOND = 5
  GOTO 400
  IF (DELMX.GT.DELQU.OR.ITNO.EQ.1) GOTO 66
  QCOND = 2
  IF (RMS.GT.RMSQ) GOTO 66
  QCOND = 3
  C*****+
  C FILL PARTDX WITH THE ABSOLUTE VALUE OF THE PARTIAL OF
  C EACH UNFIXED PARAM. SCALE MATRICES BY PARTDX.
  68  DO 80 I=1,NDIFF
    K = NFFSIZ - NDIFF + I
    PARTDX(I) = SQRT(BANDDFP(K))
    IF (PARTDX(I).NE.0.) PARTDY(I) = PARTDY(I)/PARTDX(I)
    L = MAX(0,I-NDIFF1)
    DO 70 J=I,L,-1
      X = PARTDX(I)*PARTDX(J)
      IF (X.EQ.0.) BANDDFP(K) = BANDDFP(K)
      K = K - NDIFF
    70  CONTINUE
  80  CONTINUE
  IF (DEBUG.EQ.0) GOTO 82
  CALL REMARK('AFTER 80')
  CALL REMARK('PARTDX')
  WRITE(LWD,3000) (PARTDX(I),I=1,NDIFF)
  CALL RCTRLO
  CALL REMARK('BANDDFP')
  WRITE(LWD,3000) (BANDDFP(I),I=1,NFFSIZ)
  CALL RCTRLO
  82  CONTINUE
  C INITIALIZE CORRECTION VARIABLES.
  FLAM = 0.
  XKGAM = 1.
  C CORRECTIVE LOOP.
  C ADD FACTOR TO COLUMN NFFAR.
  100  FLAM = XLAM - FLAM
  DO 110 I=NFFSIZ-NDIFF1,NFFSIZ
    BANDDFP(I) = FLAM + BANDDFP(I)
  110  CONTINUE
  C DECOMPOSE BANDDFP.
  IF (ITNO.EQ.0) GOTO 120
  * NDIFF, NFFAR).NE.0) GOTO 130
  C EQUATIONS ARE SINGULAR. RESTORE OLD FARAMS AND FORCE RETURN.
  QCOND = 4
  DO 120 I=1,NOFAR
    F(I) = OLDFP(I)
  120  CONTINUE
  ITNO = NIT + 1
  GOTO 5
  C SOLVE FOR DELTA (PARAMETER CHANGE VECTOR).
  130  CALL RANSOL(BANDDFP(NFFSIZ1),NFFSIZ,NFFAR,DELTA,PARTDY)
  DO 140 I=1,NDIFF
    CALL REMARK('AFTER 130')
    CALL REMARK('PARTDX')
    WRITE(LWD,3000) (PARTDX(I),I=1,NDIFF)
    CALL RCTRLO
    CALL REMARK('DELTA')
    WRITE(LWD,3000) (DELTA(I),I=1,NDIFF)
    CALL RCTRLO
  140  CONTINUE
  C SCALE THE DELTA'S.
  DO 140 I=1,NDIFF
    IF (PARTDX(I).NE.0.) DELTA(I)=DELTA(I)/PARTDX(I)
  140  CONTINUE
  C CORRECTIVE LOOP FOR FITS THAT MEET COSINE CRITERION.
  200  DO 210 I=1,NDIFF
    IF (IMAP(I).EQ.0) GOTO 200
    P(IMAP(I)) = F(IMAF(I)) + XGAMADELTA(I)
  200  CONTINUE
  DO 210 I=1,NDIFF
    IF (PARTDX(I).NE.0.) DELTA(I)=DELTA(I)/PARTDX(I)
  210  CONTINUE

```

```

210  CONTINUE
D   IF (DEBUG.EQ.0) GOTO 212
D   CALL REMARK('AFTER 210')
D   CALL REMARK('F')
D   WRITE(LWU,300) (F(I),I=1,NOFAR)
D   CALL RCTRLO
D212  CONTINUE
C   CALCULATE ERROR OF NEW FIT.
D   DIFFN = 0.
FARCAL = .FALSE.
X = XMIN
DO 220 I=1,NOFITS
  DIFF = IY(I) - INT(GELFUN(X)+.5)
  DIFFN = DIFFN + DIFF*DIFF
  X = X + XDEL
220  CONTINUE
C   IF FIT IS BETTER, JUMP OUT OF CORRECTIVE LOOP.
  IF (DIFFN.LT.DELSQ) GOTO 300
C   FIT IS WORSE. RESTORE OLD PARAMS AND CHECK COSINE CRITERION.
  IF (DEBUG.NE.0) CALL REMARK('FIT WORSE')
  DO 230 I=1,NOFAR
    F(I) = OLDP(I)
230  CONTINUE
  ITC = ITC + 1
  IF (ITC.GT.NCIT) GOTO 5
C   CALCULATE VALUES FOR COSINE CORRECTION.
  GAMNUM = 0.
  TEMP = SQRT(TEMSQ*DELSQ) * 0.7071067812
  IF (GAMNUM.LE.TEMP) GOTO 250
C   COSINE CRITERION MET. DECREASE AMOUNT ADDED TO PARAMS.
  XKGM = XKGM/2.
  DELSQ = DELSQ + DEL*DEL
  CONTINUE
240  CONTINUE
C   THAT'S COS(FI/4).
  TEMP = SQRT(TEMSQ*DELSQ) * 0.7071067812
  IF (GAMNUM.LE.TEMP) GOTO 250
C   COSINE CRITERION MET. DECREASE AMOUNT ADDED TO PARAMS.
  XKGM = XKGM/2.
  GOTO 200
C   CRITERION NOT MET. INCREASE AMOUNT ADDED TO BANDFF.
250  XLAM = 10.*XLAM
  GOTO 100
C   FIT IS BETTER. CHECK HALFWIDTH RATIOS.
300  IF (RATMAX.EQ.0.) GOTO 308
D   IF (DEBUG.NE.0)
  D   * CALL REMARK('FIT BETTER - CHECKING RATMAX')
  ALLOK = .TRUE.
  DO 302 I=3,NOFAR,3
    TEMP = F(I-1)
    IF (TEMP.EQ.0.) GOTO 302
    IF (ABS(F(I)/TEMP).LE.RATMAX) GOTO 302
    ALLOK = .FALSE.
302  CONTINUE
C   RATMAX FAILURE. NARROW FAILING CURVE TO YMAX*RATMAX*.8.
C   WIDEN PRECEDING CURVE, EITHER HU#2 OR YMAX*RATMAX*.8.
  PI = RATMAX*TEMP*.8
  IF (I.GT.3) PI = MIN1(F(I-3)*2.,F(I-4)*RATMAX*.8)
  IF (I.LT.3) PI = MIN1(F(I-3)*2.,F(I-4)*RATMAX*.8)
  CONTINUE

```

```

C      COMMON/CURVES/NCRVS,NF,MAXFAR,F(3,1)
C      INTEGER NCRVS,NF,MAXFAR
C      REAL F
C      COMMON/FARCAL/FARCAL
C      LOGICAL FARCAL
C      COMMON/FARTDX/FARTDX(3,1)
C      REAL FARTDX
C
C      INTEGER I,J
C      REAL AMF,ARG,DISK,EXARG,XARG
C
C      GELFUN = 0.
C      DO 20 J = 1,NCRVS
C          IF (F(3,J).EQ.0.) GOTO 10
C          ARG = (X-F(1,J))/F(3,J)
C          XARG = ARG*ARG
C          IF (XARG.GT.15.) GOTO 10
C          EXARG = EXP(-XARG)
C          GELFUN = GELFUN + F(2,J)*EXARG
C          IF (.NOT.FARCAL) GOTO 20
C          FARTDX(2,J) = EXARG
C          AMP = 2.*F(2,J)/F(3,J)
C          DISK = AMF*ARG*EXARG
C          FARTDX(1,J) = DISK
C          FARTDX(3,J) = ARG*DISK
C          GOTO 20
C          IF (.NOT.FARCAL) GOTO 20
C          DO 15 I = 1,3
C              FARTDX(I,J) = 0.
C              CONTINUE
C              CONTINUE
C              RETURN
C          END
C
C      C IBANDT.FOR
C      C VO2-05
C      C R.F.MURPHY 21-JUN-77
C
C      C FORMS LL* DECOMPOSITION OF A SYMMETRIC
C      C POSITIVE BAND MATRIX NM
C      C SEE BANSOL.FOR FOR REFERENCE.
C
C      REAL A(N,M),XL(N,M)
C      INTEGER N,M
C      INTEGER I,J,K,F,R,S
C      DOUBLE PRECISION Y
C      DO 200 I=1,N
C          F=1
C          IF (I,LT,M) F=M-I+1
C          R=I-M+F
C          DO 100 J=F,M
C              S=J-1
C              Q=M-J+F
C              Y=A(I,J)
C              IF (F.GT.S) GOTO 30
C
C      C IBANDT.FOR
C      C VO2-05
C      C R.F.MURPHY 22-AUG-76
C
C      C MODIFICATION HISTORY:
C          22-AUG-76 ADAPTED FROM WILKINSON AND REINSCH
C          LINEAR ALGEBRA 1971 SPRINGER VERLAG
C          CONTRIBUTION 1/4
C          BY WILLIAM PEARSON
C          CONVERTED FOR USE WITH GELFIT
C          BY R.F.MURPHY
C
C      C SOLVES THE EQUATIONS AX=B USING
C      C IBANDT DECOMPOSITION. ACTUALLY
C      C SOLVES LY=UX=Y
C
C      C DIMENSION XL(N,M),X(1),B(1)
C      C INTEGER I,J,K,F,Q,S
C      C DOUBLE PRECISION Y
C      C S=M-1
C
C      C SOLUTION OF LY=B
C
C      DO 50 I=1,N
C          F=1
C          IF (I,LT,M) F=M-I+1
C          Q=I
C          Y=B(I)
C          IF (S,LT,F) GOTO 30
C          DO 20 K=S,F,-1
C              Q=Q-1
C              Y=Y-XL(I,K)*X(Q)
C              30 X(I)=YXL(I,M)
C              50 CONTINUE
C              WRITE(5,55) (X(I),I=1,N)
C              55 FORMAT(1X,8E10.3)
C
C      C SOLUTION OF UX=Y
C
C      C

```



```

12      WRITE(LLD,1060)
13      XT = XMIN
14      DO 20 I=1,NX-20,20
15      WRITE(LLD,1002) XT
16      XT = XT + 20.*XINC
17      CONTINUE
18      WRITE(LLD,1004) XT
19      IF (TOPBOT.EQ.'B') RETURN
20      IF (CRTFLT) GOTO 32
21      WRITE(LLD,1010)
22      GOTO 34
23      WRITE(LLD,1070)
24      DO 40 I=1,NX
25      IT = I
26      J = ' '
27      IF (MOD(IT,10).EQ.1) J = ','
28      WRITE(LLD,1012) J
29      CONTINUE
30      WRITE(LLD,1014)
31      IF (TOPBOT.EQ.'T') RETURN
32      GOTO 10

C----- OUTPUT FORMATS
C----- 1000  FORMAT('+'',7X$)
C----- 1002  FORMAT('+'',E12.5,8X$)
C----- 1004  FORMAT('+'',E12.5/)
C----- 1010  FORMAT('+'',14X$)
C----- 1012  FORMAT('+'',A1$)
C----- 1014  FORMAT('+'',/)
C----- 1060  FORMAT('+'',3X$)
C----- 1070  FORMAT('+'',10X$)
C----- END

C----- SUBROUTINE SORTG(A,NROW,FFLAG)
C----- C VO0
C----- C R.F.MURPHY 17-JUN-78
C----- C SORT A LINEAR ARRAY AS IF IT WHERE DIMENSIONED
C----- C NROW*3 SO THAT THE FIRST ROW IS EITHER IN INCREASING ORDER
C----- C OR IN ORDER OF 'XMIN' (XMAX-3*XHW)
C----- C
C----- INTEGER NROW, FFLAG
C----- REAL A(1)
C----- LOGICAL#1 DONE
C----- DATA NCOL/3/
C----- IF (NROW.LE.NCOL) GOTO 30
NCOL1=NCOL-1
DO 20 J=1,NROW-NCOL,NCOL
L=NROW-J-NCOL1
DONE=.TRUE.
DO 10 K=1,L,NCOL
IF (PFLAG) GOTO 1
IF (A(K).LE.A(K+NCOL)) GOTO 10

```

APPENDIX B

GELFIT fitting session example

In the example which follows, the operator first requested a command summary. If more information had been needed about a particular command, the user could have typed HELP/LONG to obtain it. The file GRR209.DAT was then read in for use in the standards calculation, and the LOG molecular weight calculation suppressed. (Normally, standards data are expressed as log molecular weight versus relative mobility.) The data for a metrizamide gradient (Chapter 5, Figure 4B) were then read from a file which had been created from the output of a scintillation counter by a data collection program. The program was then requested to estimate peak positions (the GUESS command), with the constraint that each peak be greater than 1000 counts per minute. The guesses were refined by fitting, with the maximum number of iterations set to 20. As the fitting proceeded, the values of important parameters were output. A listing of the final parameter values was printed, which includes the calculated "Mol.Weight" (in this case the peak density). A rough plot was generated on the terminal, the fit values stored in a new copy of the input file, and the program exited. The entire process took a little over a minute.

```

.DATE
-----
2-Jul-79

.TIME
-----
16:30:18

.RU GELFIT
-----
GELFIT V04-10B
$HELP
-----

GELFIT Command Summary:

The minimum required letters of each command or option
are shown. All commands are terminated by the return key.
<list> indicates a set of optional arguments.

A <list>      ADD more curves
B k            fit k BANDS wide
C              CLOSE output file
D i,j          DELETE curves i-j
FIT k,l        FIT k its with l cits
FIX i,j        FIX curve i param j
GE i,x1,x2,e  GENERATE data from params
GU yfil,zfil   GUESS curve parameters
H              type this HELP summary
/L             type SY:GELFIT.HLP
I infile       set INPUT file
/A             ADD to previous data
K m,n          KILL points m-n
L m,n          LIST points m-n
M i,j          MODIFY curves i-j
N              set NEW curves
O outfil       set OUTPUT filename
  /LI           set LIST filename
  /PL           set PLOT filename
PL <list>      PLOT data and fit
  /C            Plot in CRT format
  /LP           Plot in LP format
PO              add more POINTS
Q a,b          set QUIT criteria
S stdfil       set STANDARDS
T i,j          TYPE curves i-j
U i,j          UNFIX curve i param j
W a            set max relative WIDTH
X a,b          XSCALE (x+a)*b
Y a,b          YSCALE (y+a)*b
$STANDARDS/NOLOG GRR209
-----
$INP GRH202
-----
$GUESS 1000
-----
$FIT 20

```

ET(SEC)	RMS	MAX.REL.CHANGE	IN P#	NEW VALUE	CIT#
1.	447.9610	0.9626734	(6)	0.4717965E-01	0
2.	370.2311	1.174351	(6)	0.1025851	0
1.	321.2720	1.110425	(6)	0.2164982	0
2.	286.9051	0.1601599	(2)	3801.431	0
2.	286.1761	0.2930580E-01	(5)	1010.346	0
2.	286.1088	0.9214476E-02	(6)	0.2216258	0
1.	286.0698	0.4176276E-02	(6)	0.2207003	0
7.	286.0692	0.8147353E-03	(6)	0.2205205	9
2.	286.0439	0.6298451E-03	(6)	0.2203816	1
3.	286.0317	0.8411340E-04	(6)	0.2203630	2

GRH202 #03 GELFIT V04-10B 02-JUL-79 PRF62.2-2 1' THY (SP.04,.112)

53 Points 6 Parameters 2 curves, Band matrix 6 Parameters wide

Using MW standards file GRR209.DAT

Xmax	Ymax	HalfW	Area	Fraction	Mol.Weight
1 0.46609	3785.3	0.29404E-01	222.61	0.33224	1.1775
2 0.59149	1015.2	0.22036	447.41	0.66776	1.1400

Area(fit) = 670.01251 Area(data) = 675.00000 %diff = 0.739

RMS = 286.0317 CHISQ = 2882142. NDF = 47

Ymean = 678.30188 %E(RMS/Ymean) = 42.169

Fitting terminated with Max.Rel.Change <= 0.1000E-03

\$PLOT

GRH202 #03 GELFIT V04-10B 02-JUL-79 PRF62.2-2 1'THY (SP.04,112)
0.00000E+00 0.33333E+00 0.66667E+00 0.10000E+01

0.46E+04-
0.35E+04-
0.24E+04-
0
0.12E+04-
00
0.10E+03-
0.00000E+00 0.33333E+00 0.66667E+00 0.10000E+01

\$CLOSE

\$EXIT

.TIME

16:31:19