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ABSTRACT

With a 20-letter alphabet, conceivable protein sequence-space is enormous; sparks
of structure and function are vanishingly rare. Despite massive advances in AI-
guided protein design, we remain largely ignorant of the sequences and structures
that populate the depths of protein space more than a handful of mutations away
from what nature has tried. In this work, we leverage the potential of one specific
class of AI protein model — the protein language model, or PLM — to internalize
the essential features of the protein sequence-structure map while retaining the
capacity to explore its extremes. Guided by a "novelty first, fitness next" mentality,
we harness this balance towards systematic discovery of new-to-nature sequences
and structures throughout deep protein space.

In the first section, we dissect the ability of PLMs to explore natural and novel
regimes of sequence and structure during free generation. We find that while
these models readily emit novel sequences encoding artificial proteins that appear
biophysically feasible in silico, they fail to completely or representatively capture the
known distribution of natural protein structures. We expose a fundamental tradeoff
between the ability of a PLM to generate with sequence novelty or structural coverage
but not both simultaneously; prioritizing sampling of far-from-natural sequences
triggers a collapse to a handful of simple structural motifs and disordered regions.

Turning this sequence novelty vs. structural breadth tradeoff to our advantage,
the second section is devoted to the development of "foldtuning" — a structure-
preserving, sequence-remodeling engine for navigating the far corners of sequence-
space with PLM-based probes. We successfully scale and deploy foldtuning for
> 700 targets, pushing artificial sequences past the point of detectable homology to
any real protein documented in nature, discovering novel sequence-level semantics
and grammar for mimicking known protein folds, and accessing potential reservoirs
of downstream structural and functional innovation. Experimental validation of
select targets reveals that foldtuning produces realizable and functional binders in
contexts including a toxin/antitoxin system and peptide hormone signaling.

Shifting to focus on structural novelty, the final section introduces two PLM-driven
methods for the discovery of new-to-nature structures. We show that with appro-
priate steering functions, PLMs readily yield well-structured domains (featuring
diverse secondary and supersecondary elements) outside the several thousand such
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families cataloged from among known proteins. Overall, this work makes sub-
stantial inroads towards the challenge of locating viable far-from-natural regions of
protein density across the global sequence-structure map, and revises our notions
of the physical constraints on sequence and structure in valid proteins. Moreover,
it sets the stage for future assembly of synthetic biological systems composed fully
of new-to-nature parts and ultimately for modeling efforts that close the design loop
from sequence all the way to complex phenotype.
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C h a p t e r 1

INTRODUCTION

"A clone is a dead end, a clade is a promise of immortality." — Freeman Dyson

1.1 Design, exploration, and the "concept of a protein-space"
Nature has likely sampled only a fraction of all protein sequences and structures al-
lowed by the laws of biophysics. High-quality genomic and metagenomic databases
together contain ∼ 109 −1010 unique protein sequences distributed across the extant
tree of life (Jumper et al., 2021; Mirdita et al., 2022). The observed protein cata-
log presumably reflects selection over multiple timescales for factors from favorable
folding thermodynamics and kinetics, to metal center scaffolding and cofactor usage,
to essential DNA/RNA-binding and catalytic functions (Alva et al., 2015; Baker,
2000; Dupont et al., 2010; Vyas et al., 2021; Watters et al., 2007). It likely also
reflects the fixation of sequence and structure elements that abounded at the dawn
of life. After all, statistical analyses of experimentally determined structures and
simple physical models that forgo function and reduce proteins to lattices and spin-
glasses agree that backbones vary widely in their "designability" — that is, in the
number and diversity of sequences that encode one versus another (Bornberg-Bauer,
1997; England and Shakhnovich, 2003; Govindarajan and Goldstein, 1996; Helling
et al., 2001; Li et al., 1996; Yue and Dill, 1995). Evolutionary biologists have long
theorized as to how natural sequences and structures are related and organized into
a single "protein-space," or, acknowledging Anfinsen’s dogma that sequence spec-
ifies structure, a unified sequence→structure map where a given sequence encodes
exactly one structure, and a given structure is the outcome of many such sequences
(Anfinsen, 1973; Choi and Kim, 2006). Thinking more ambitiously, John Maynard
Smith pondered how what nature hasn’t tried might fit in, asking whether functional
protein sequences might occupy "two or more distinct networks" separated by evo-
lutionarily uncrossable chasms — entire parallel universes or pocket dimensions of
protein density unknown and inaccessible to one another (Maynard Smith, 1970).1

Suppose that Maynard Smith was on to something. Suppose that nature’s sparse
1The title of this section recalls Maynard Smith’s seminal 1970 rumination on "Natural Selection

and the Concept of a Protein Space." It is indispensable reading for any biologist and may be found
at ref. (Maynard Smith, 1970).
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sampling of proteins neither exhausts the viable solutions of the sequence→structure
map nor offers a neat atlas of direct paths to what’s missing. How then ought we
approach the search problem of finding and enumerating sequences and structures
that are physically realistic, biologically fit, and new-to-nature? The conceivable
scope of sequence-space encompassing them all is vast and daunting. Combinatorial
scaling with the 20 proteinogenic amino acids translates into∼ 10130 strings of length
100; the size, roughly, of a small ∼ 10 kDa protein domain. The mass of the visible
universe — every last speck of it — would allow for making exactly one molecular
copy of each of ∼ 1075 of those. Evolution on Earth has had 4 billion years to work
with; under generous assumptions about population size and reproductive capacity,
and if somehow, no point mutation were ever stepped on twice, this would be enough
to try out "only" ∼ 1040.

We might hope then to get lucky and land on one of the as many as 1-in-1011 func-
tional sparks strewn about sequence-space according to measurements on random
sequence libraries (Keefe and Szostak, 2001; Tong et al., 2021). Or, we might get
luckier still, and find these sparks anchoring their own neutral nets, dense local
pockets of stability and mutational tolerance reminiscent of Maynard Smith-ian par-
allel networks derived from distant evolutionary seeds (Bornberg-Bauer and Chan,
1999; Fontana et al., 1993).

Reality has proved a harsher mistress. Decades of painstaking protein design work
has elucidated rules and heuristics that illuminate only small corners of the global
sequence-structure map. For instance, an alphabet of just three amino-acids —
glutamine (polar), leucine (hydrophobic), and arginine (charged) — is enough in
certain arrangements to confer globularity and cooperative folding (Davidson and
Sauer, 1994; Davidson et al., 1995). Simple hydrophobic/polar patterning — the
protein version of "like prefers to associate with like" — is sufficient to generate
stable 𝛼-helical bundle proteins encoded by novel sequences (Hecht et al., 1997;
Kamtekar et al., 1993). Similar alphabet reduction strategies have been applied
to mimic small 𝛽-barrels like the SH3 domain (Riddle et al., 1997). Deep multi-
ple sequence alignments (MSAs) can capture sparse co-evolutionary signals strong
enough to generate artificial variants with comparable stability to natural examples
(Lockless and Ranganathan, 1999; Socolich et al., 2005; Süel et al., 2003). Mean-
while, taking a structure-first perspective has produced idealized, minimized, and
embellished versions of some of the more ubiquitous natural proteins folds inlcud-
ing TIM 𝛽/𝛼-barrels, thioredoxins, and Rossmannoids (Huang et al., 2016b; Linsky
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et al., 2022; Pan et al., 2020). And experimentally-grounded force fields, saintly
patience, and lifetimes’ worth of CPU-hrs have realized truly de novo folds of all-𝛼,
all-𝛽 and mixed 𝛼, 𝛽 content (Alford et al., 2017; Kim et al., 2023; Kuhlman et al.,
2003; Minami et al., 2023; Sakuma et al., 2024).

On the back of these impressive advances, an explosion in AI-driven modeling, and
more, protein design may indeed be hitting its prophesied "coming of age" moment
(Huang et al., 2016a). But discovering and characterizing sequence and structural
novelty in the far-flung, outlying regions of deep protein-space has remained stub-
bornly scattershot. This is despite the fact that understanding the makeup of the
furthest reaches of protein-space promises to:

1. Empirically answer (without evolutionary biases) the biophysicist’s quandary
of which three-dimensional structures — including any untouched by nature
— are the most designable and what makes them that way.

2. Access untapped ground for protein engineering, improving and expanding
target properties from thermostability and solubility, to enzyme substrate
specificity, to cell-signaling phenotype.

3. Reveal minimal and/or alternate "rulesets" for assembling viable sequences
and structures, a goal with applications and implications for function-centric
protein engineering and life in extreme and/or primordial environments alike.

Shedding light on any or all of these questions requires new attitudes, new algo-
rithms, and new assays to reliably reach beyond the dots and glimpses historically
offered by protein design and reach whole islands, whole continents of structure and
function in deep protein space. The time is nigh to update the sequence→structure
map from hic sunt dracones into a proper Age of Exploration.

1.2 Protein language models are potent agents of exploration
Where Bartolomeu Dias and Vasco da Gama had the caravel, where the architects of
the Space Age had Mariners, Pioneers, and Voyagers, we have the protein language
model.

Protein language models (PLMs), as follows from the name, are the children of
large language models (LLMs) like BERT or GPT-2, developed for human-derived
text and transferred to amino-acid "text" as part of the AI-for-proteins gold rush
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(Devlin et al., 2019; Radford et al., 2019). PLMs are intriguing vehicles for search-
ing the sequence→structure map thanks to their ability to balance exploitation of
internalized knowledge about sequence determinants within natural proteins with
exploration of other sequence rules that they deem physically plausible.2 Model
size (107 − 1011 parameters), training data volume (106 − 108 sequences, generally
sampled from UniRef clusters introduced in Suzek et al. (2007)), high-level archi-
tecture (e.g. autoencoder vs encoder-only vs decoder-only vs encoder-decoder, etc.),
and choices of alphabet/vocabulary discretization (e.g. decomposing sequences into
individual amino-acids or longer subsequences) can vary significantly (Chen et al.,
2023; Ferruz et al., 2022; Heinzinger et al., 2023; Hie et al., 2022; Lin et al., 2023;
Madani et al., 2023). However, modern PLMs share a general organizing principle
in that they are composed of stacks and layers of individual transformer blocks that
pick out informative patterns and correlations across sequence positions (Vaswani
et al., 2017). These patterns are notoriously treacherous to interpret, bordering on
a Rorschach test — one transfomer might pick up on 𝛼-helical content, another a
binding pocket, a third an electrostatic gradient, a fourth a sharp map of 3D contacts
— with a few hundred more defying easy biochemical or biophysical explanation
(Simon and Zou, 2025; Vig et al., 2021).3 Whatever these transformers are cap-
turing all together, it’s enough to succeed at descriptive tasks (variant prediction,
structure prediction) and generative tasks (novel fold and enzyme design), seeping
gradually into sequence and structure novelty in the latter case (Madani et al., 2021,
2023; Verkuil et al., 2022).

And among the ever-expanding menagerie of AI-based protein models, PLMs stand
out for this emergent exploratory capacity that can bridge the levels of information
flow from sequence, to structure, to function. Diffusion models can innovate at the
level of structure, but do not handle sequence information at all (Watson et al., 2023).
Inverse-folding models that consider the flipped structure→sequence problem can
diversify sequence with careful hyperparameter selection, but at the cost of enforcing
strict backbone constraints that preclude the sorts of small structural innovations and
ornamentations that have conferred new and/or expanded functionalities throughout
all of natural protein evolution (Dauparas et al., 2022; Hsu et al., 2022; Pan et al.,
2020; Tóth-Petróczy and Tawfik, 2014). The global perturbations required to escape

2A bold analogy, appealing to the fundamentals of computational linguistics, is that a PLM learns
the production rules of an unrestricted (type-0) grammar that separates semantically meaningful valid
proteins from meaningless nonfunctional amino-acid strings (Chomsky, 1959).

3Some, including the author, view this lack of interpretability as room for attention (pun fully
intended) and growth, although appetite in the field to pursue this point has remained tragically low.
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the gravitational pull of natural sequence-space are likewise inaccessible to directed
evolution – which searches sequence-space locally under strong stability and fit-
ness restrictions – or to machine learning models trained on high-throughput but
unavoidably local fitness data collected in deep-mutational scanning experiments
(Fahlberg et al., 2023; Romero and Arnold, 2009; Wilson et al., 2020).

1.3 Organization of the thesis
The overarching goal of this thesis is to harness the emergent exploratory capacity
of PLMs to make the aforementioned global perturbations and systematically
discover sequence and structure novelty in deep protein space. We organize this
journey as follows.

In Chapter 2, we show that the generative capacity of protein language models
does not internalize the body of knowledge of sequence and structure in protein
biochemistry and biophysics as perfectly as assumed, headlined by a concerning
pathology where sampling with sequence novelty and sampling with structural
completeness stand at odds.

Subsequently, we bypass these limitations in Chapters 3 and 4, developing, apply-
ing, and experimentally validating an original algorithm — that we call "foldtuning"
— to systematically search for sequence novelty in deep protein space by using
known structures as lodestones.

Finally, we find in Chapter 5 that the PLM-based techniques created to search for
sequence novelty can be reformulated and redirected to discover novel protein folds,
completing the crossing of the frontiers of natural protein space.
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C h a p t e r 2

BASIC LANGUAGE MODELS ARE SKEWED MIRRORS OF
THE PROTEIN UNIVERSE

2.1 Introduction
Protein language models (PLMs) — and more recently, their genomic language
model (GLM) cousins — have become increasingly utilized as descriptors and
generators of real and synthetic biological components (Ferruz et al., 2022; Hie et al.,
2022; Hwang et al., 2024; Lin et al., 2023; Nguyen et al., 2024). That PLMs are
consistent with natural protein-space as far as sequence statistics, structure statistics,
and biochemical and biophysical properties is a critical prerequisite if we are to use
and trust PLMs as vehicles to answer fundamental questions about the nature of
protein-space, such as those posed in the preceding chapter. Likewise if PLMs
are to prove dependable and formidable as engines for adding novelty in sequence,
structure, or function to the protein universe (Ferruz and Höcker, 2022). In general,
the ability of PLMs to implicitly internalize the relevant knowledge is assumed
to follow from: (1) the sheer depth and volume of large training datasets such as
UniRef50 (≈ 50 million sequences), UniRef90 (≈ 100M sequences), and UniRef
100 (≈ 3 billion sequences); and (2) the application of well-benchmarked model
architectures and unsupervised learning methods from natural language processing
(NLP) (Chen et al., 2023; Suzek et al., 2007; Vaswani et al., 2017). This faith is
broadly placed despite the fact that features such as tokenization scheme, vocabulary
size, and loss functions, and hyperparameters including learning rate and masking
fraction, are often ported directly from NLP work without adapting for the imperfect
analogy between English and amino-acid "texts."1 PLMs may indeed be learning
and storing energy functions and co-evolutionary statistics deep within stacked and
layered transformers, but does that manifest in the boundless synthetic protein "texts"
— natural-like or novel — that can now be generated at the push of a button (Roney
and Ovchinnikov, 2022; Zhang et al., 2024)?

Answering this question is complicated further by the fact that generating out of a
1Although it is beyond the scope of this thesis, intriguingly, protein "text" corpora may boast

several advantages over human-created texts as far as language model training tractability, total-
parameter scaling, and time to convergence. This points to an opportunity to systematically perturb
training schemes and hyperparameter selection to craft bespoke PLMs with reduced compute over-
head. For further discussion, see Frey et al. (2024).
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PLM is not a single universal concept, but rather covers a multitude of approaches
permitted by model architecture, application-specific factors, and personal philoso-
phy. The idea and mechanism of generating a single sequence is intuitive with an
autoregressive decoder-only model such as ProtGPT2 or ProGen — start with a blank
slate, add one token (a single amino-acid or a short subsequence, depending on the
model in question) at a time, moving from left-to-right, conditioned on whatever has
come before (Ferruz et al., 2022; Madani et al., 2023). It is less straightforward for
a model trained with a masked language modeling (MLM) objective and/or lacking
a decoder. In such instances, obtaining a single sequence might be done via Gibbs
sampling — filling in one sequence position at a time in a Markov Chain Monte
Carlo (MCMC) process, left-to-right or randomly, often with additional model fine-
tuning and/or a natural seed sequence (Garcia et al., 2024; Johnson et al., 2021).
Another common choice, beam search, incorporates heuristics that land somewhere
between greedy decoding and fully probabilistic sampling, while more indirect
schemes might incorporate PLM-derived metrics (e.g. sequence likelihood, pre-
dicted 3D contact maps) into an external energy function facilitating MCMC search
on a traditional sequence landscape in single amino-acid mutational steps (Elnaggar
et al., 2022; Verkuil et al., 2022). Still others have trained supplemental decoders
of ESM2 embeddings to map high-dimensional latent space representations back to
amino-acid sequences in tailored use cases (Chen et al., 2024).

Given the potential of PLMs to reach into novel sequence-spaces as highlighted in
Chapter 1, and the proliferation of PLMs and associated sampling strategies in the
absence of detailed analysis of generative output (computational or experimental),
we perform the first at-scale in silico statistical characterization of sequence and
structure composition in PLM-generated amino-acid sequences. We demonstrate
that not all models and sampling strategies are created equal. In particular, au-
toregressive sampling from ProtGPT2 dramatically outperforms Gibbs sampling
from ESM2 in proposing realistic protein structures and achieving structural diver-
sity. Despite outperforming ESM2, however, the structural coverage of ProtGPT2
sharply distorts the distribution of natural protein structures. Further, we discover
that while ProtGPT2 displays an impressive ability to sample and assemble novel
sequence motifs, maximizing sequence novelty through hyperparameter tuning ex-
acerbates its already substantial shortcomings as far as preserving structural breadth.
Together, our results identify a critical need for PLM-based generative strategies that
accurately capture rare and novel protein features if we are to push the boundaries
of fundamental biophysics and protein design.
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2.2 Results & Discussion
Creating a fold-annotated database of PLM-generated protein structures
In order to characterize sequence and structure statistics, we initially constructed a
database of AI-generated artificial protein sequences from a suite of representative
models. We selected two commonly-used PLMs, both transformer-based but other-
wise starkly contrasting in architecture and compatible sequence generation meth-
ods: (1) ProtGPT2, an autoregressive decoder-only model with 774M parameters;
and (2) ESM2, a bidirectional encoder-only model with 150M parameters (Fig. 2.1)
(Ferruz et al., 2022; Lin et al., 2023).2 Sequence generation from ProtGPT2 involves
stepwise addition of tokens drawn probabilistically from a SwissProt-extracted vo-
cabulary of 50,256 short amino-acid subsequences, proceeding left-to-right while
conditioning on the in-progress sequence to the left. Generation begins with a blank
seed sequence and continues until either a prespecified number of tokens is reached
or a STOP token is generated, whichever occurs first. For our database, we sampled
100,000 sequences with ProtGPT2, applying the default best-performing hyperpa-
rameters — sampling temperature 1, top_k 950, top_p 1.0, repetition penalty 1.2
— from the original study, and enforcing a stopping criterion after 40 tokens in
the absence of a STOP token. Generated sequences were truncated to a maximum
length of 100aa, and sequences containing rare or ambiguous amino acids (B=Asx,
J=Ile/Leu, O=Pyl, U=Sec, X=Xaa, or Z=Glx) were filtered out, leaving 99,982
sequences for downstream analysis.

For ESM2-150M, we elected a left-to-right Gibbs sampling approach in single-
token increments for ease of fair comparison to the autoregressive method and to
align with existing benchmarks in the field (Johnson et al., 2021). In contrast to
ProtGPT2 sampling, ESM2-150M uses the amino-acid alphabet (20 canonical AAs
+ 6 rare/ambiguous AAs) as its vocabulary and generates up until a fixed sequence
length is reached.3 We generated 148,500 sequences of length 100aa from ESM2-
150M, with default hyperparameters of sampling temperature 1 and no repetition
penalty, and applying the same filtering for rare/ambiguous amino acids as with
ProtGPT2.

2ESM2 may refer to a family of associated language models of various transformer stack height
and layer count, all trained on the 2021_09 release of UniRef50. Here, we use the 150M-parameter
model to manage compute overhead on the generation task. The full ESM2 model collection includes
versions with 8M, 35M, 150M, 650M, 3B, and 15B parameters.

3In theory, the ESM2 vocabulary also alows for an early STOP (end-of-sequence/<eos>) token
to be generated, but we did not observe this in practice, and it is highly unlikely to occur given that
the ESM2 models were trained without explicit <eos> tokens in training data clusters.
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Figure 2.1: Workflow for structural annotation of pLM-generated sequences.
Schematic overview of pLM generation, structure prediction, and structural
search+assignment pipeline for representative models ProtGPT2 and ESM2-150M.

We also generated a control set of 74,250 random amino-acid sequences of fixed
length 100aa, weighting sampling probability for each of the 20 canonical amino
acids to be proportional to natural abundance in UniProt, i.e. preserving first-
order sequence statistics but none of the second- and higher-order correlations
between residues that transformers are expected to capture. Lastly, to benchmark
against a completely different class of generative models, we added an inverse-
folding comparison set comprised of 110,700 sequences, three per each of the
36,900 representative experimental structures in the Structural Classification of
Proteins (SCOP) database, designed from backbone-to-sequence inference by ESM-
IF1 following default hyperparameters (Andreeva et al., 2020; Hsu et al., 2022).
After filtering to exclude rare ligands in template structures and rare/ambiguous
amino acids in outputs, the inverse-folding set was reduced to 104,591 sequences in
total.

We predicted structures for all ∼ 430, 000 sequences with ESMFold. ESMFold
has been shown to exceed the prediction accuracy of AlphaFold2 in the absence
of deep multiple sequence alignment (MSA) information, which far-from-natural
sequences lack by definition (Jumper et al., 2021; Lin et al., 2023). ESMFold’s
MSA-free single-sequence transformer architecture is additionally suitable for ef-
ficient inference in large-scale structure prediction tasks and for more transparent
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Figure 2.2: ESMFold achieves single-angstrom structure prediction accuracy on
de novo designed sequences. Backbone atom root-mean-square deviation (RMSD;
median= 0.92±0.14) for ESMFold predicted structures of 𝑛 = 122 de novo designed
proteins vs. experimental ground-truth structures, covering 𝛼, 𝛽, and mixed-𝛼𝛽
global topologies, and including designs obtained from physics-based and generative
AI models. All sequences in the validation set had experimental structures deposited
in the Protein Data Bank (PDB) after the ESMFold training cutoff date of 05-01-
2020.

analysis of model behavior. Bolstering this contention, we assessed the accuracy of
ESMFold structural prediction on out-of-distribution samples by evaluating model
performance on de novo proteins with structures deposited in the Protein Data Bank
(PDB) on-or-after the ESMFold training cutoff date of 05-01-2020. Mirroring the
training set construction process described in the original ESMFold publication, we
filtered out structures with resolution > 9 Å, length ≤ 20aa, rare or ambiguous amino
acids (BJOUXZ), or containing > 20% sequence composition of any one amino acid,
and clustered remaining sequences at the 40% identity level, obtaining a validation
set of 𝑛 = 122 sequences. For each of the 122 sequences, the backbone RMSD
was calculated between the ESMFold predicted structure and the ground-truth PDB
experimental structure, with a median alignment RMSD of 0.92 ± 0.14 Å and cov-
erage of diverse structure topology classes, indicating sufficient generalization of
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ESMFold beyond natural training data for use as a structure prediction oracle on
PLM-generated sequences (Fig. 2.2).

Finally, to identify common natural structural motifs in PLM-generated, inverse-
folded, and control variants, we annotated our database of predicted structures at
the "fold" level of the SCOP classification, covering 1579 possible fold labels.
Each predicted structure was assigned to a consensus fold label by performing a
structure-based search against all SCOP representative PDB structures (𝑛 = 36900;
the same structures used as backbone templates for inverse-folding) with Foldseek
in accelerated TMalign mode and selecting the SCOP fold accounting for the most
hits satisfying TM-score > 0.5 and max(query coverage, target coverage) > 0.8; in
the absence of a hit satisfying these criteria, the predicted structure in question was
labeled as un-assignable. The full generation, folding, and annotation workflow is
summarized in Fig 2.1.

PLM-generated sequences are protein-like
For a first-pass analysis, we consider whether generated sequences and their cor-
responding (predicted) structures recapitulate the global characteristics of natural
proteins. To determine where pLM-generated sequences lie with respect to natural
sequence-space, we extract the ESM2-150M final hidden-layer internal represen-
tations ("embeddings") of all >400,000 generated sequences and 100,000 diverse
natural sequences coding for SCOP fold examples mined from the AlphaFoldDB
(Varadi et al., 2022).4 We reduce dimensionality to 2D using UMAP, and apply
a rule-of-thumb that the embeddings of qualitatively similar sequences should co-
localize (McInnes et al., 2018). We observe that ProtGPT2-generated sequences
separate into two subpopulations, one co-localizing with natural sequences, and
a second co-localizing with random sequences (Fig. 2.3A). In contrast, ESM2-
150M-generated sequences co-localize most substantially with random sequences.
Inverse-folded sequences from ESM-IF1 largely mirror the distribution of natural
sequences, implying that they do not represent any significant departure from natural
protein-space.

Turning towards coarse structural properties, the compactness/globularity of pre-
dicted structures for pLM-generated sequences — estimated as the fractional burial
of all amino-acid surface area relative to the linear polypeptide chain — does not
map onto whether generated variants are co-localizing with natural vs. random

4Except where otherwise specified, natural sequences/structures are drawn uniformly from a
custom SCOP-UniRef50 database for which assembly details may be found in Section 2.4.
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Figure 2.3: PLM-generated sequences reflect the basic properties of compact,
globular proteins. (A) Dimension-reduced UMAP representation of ESM2-150M
embeddings of natural, pLM-generated, inverse-folded, and random control se-
quences. (B) UMAP representation of pLM-generated sequences, colored by the
fraction of amino-acid surface area buried (a measure of protein compactness). (C)
UMAP representation of pLM-generated and random sequences assignable to a
SCOP fold. (D) Fraction of amino-acid surface area buried for natural and pLM-
generated sequences. (E) Fraction of residues annotated as random coils by DSSP
for natural and pLM-generated sequences.

sequences (Fig. 2.3B). Similarly, SCOP folds are confidently assigned for large
swaths of ProtGPT2-generated and ESM2-150M-generated sequences that do not
co-localize with natural proteins (Fig. 2.3C). This suggests that both ProtGPT2
and ESM2-150M can emit sequences that are distinct in some statistical sense from
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natural ones yet able to fold into plausible and familiar 3D structures. However,
this finding is tempered slightly by the realization that sequences from both PLMs
are predicted to adopt structures that are less compact and less rich in secondary
structure content (𝛼-helix and 𝛽-sheet) on average than natural proteins in the SCOP
reference set, implying that PLM output may tilt towards disordered regions (Fig.
2.3D-E).

PLM-generated structures do not follow the natural distribution
For a finer-grained perspective on structure, we look to the SCOP fold label assign-
ment procedure and observe that while a respectable 32.7% of ProtGPT2-generated
sequences are assignable to a fold label, this is only the case for 5.5% of ESM2-
150M-generated sequences, on par with the 6.1% assignment rate for random se-
quences (Fig. 2.4A). That the ESM2-150M fold assignment rate is no improvement
over a control approach that includes first-order sequence statistics sparks doubt
as to whether Gibbs sampling can reflect the higher-order sequence correlations
presumably learned by ESM2-150M without manipulating the generation task to
mimic the increased availability of contextual information during the training task.

Fold label assignments for both ESM2-150M and random sequences also skew
heavily towards all-𝛼 topologies like helical bundles and 𝛼 + 𝛽 topologies like
ferredoxins (Fig. 2.4A). SCOP topology class coverage with ProtGPT2 bears more
resemblance to the natural distribution, especially as far as reaching the 𝛼/𝛽 folds
that include most enzymatic diversity, but still overweights all-𝛼 content (Fig. 2.4A)
(Choi and Kim, 2006). These trends in structural coverage breadth propagate to the
fold level; 668/1579 (42.3%) of SCOP folds are detected in ProtGPT2 output, or
∼ 1.9x the 356/1579 (22.5%) represented in ESM2-150M output (Fig. 2.4B).
Focusing on ProtGPT2, overrepresented folds include several flavors of 𝛼-helical
bundles, Rossmann(2x3)oids, and the all-𝛽 immunoglobulin-like domain, while
underrepresented folds include ubiquitous and diversified functional folds such as
TIM 𝛽/𝛼 barrels, G-protein coupled receptors (GPCRs), and ferredoxins (Fig. 2.4C-
D, Table S2.2). Evidently, plucked off the shelf, PLMs do not reproduce the natural
frequencies of known protein folds.

Prioritizing sequence novelty shrinks accessible structure-space
While the structural ensembles sampled by PLMs fail to cover the breadth of nat-
ural structural-space and distort frequencies in the corners that they do touch, the
plausible structures that they do access come with notable sequence novelty. In
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Figure 2.4: Structural ensembles generated by pretrained language models
cover natural protein-space imperfectly. (A) Comparison of global protein topol-
ogy preferences of natural, pLM-generated, and random sequences. (B)) Rank-
ordered fold ensemble frequency plots for natural and pLM-generated sequences.
(C) Fold ensemble comparison of ProtGPT2-generated sequences vs natural (SCOP-
UnitRef50) sequences. (D) The six most-common SCOP folds among ProtGPT2
outputs; representative structures are of far-from-natural sequences (no MMseqs2
hit with E-value < 0.01).

particular, out of the 32,694/99,982 (32.7%) ProtGPT2-generated sequences with
a fold label assignment, a further 18,962 (58.0% of assignable; 19.0% of all) have
no detectable homology to any of the ∼ 50 million representative protein sequences
in UniRef50, a phenomenon that we dub sequence "escape" (Fig. 2.4A, Table 2.1).
One hypothesis, inspired by typical NLP approaches, is that higher rates of sequence
escape, and perhaps some of the missing structure coverage, might be reached by
loosening sampling hyperparameters to encourage diversity in generated text. Con-
tinuing with ProtGPT2, the two critical and tunable hyperparameters are top_k and
sampling temperature — increasing top_k allows for more tokens to be considered
for sampling at a given step, while increasing temperature flattens the probability
distribution over the token pool under consideration — both leading in theory to
greater diversity in sequence output.
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Table 2.1: Base ProtGPT2 sequence and structure generation performance de-
pends on sampling hyperparameters. As sampling temperature and vocabulary
size increase, generated sequences are more likely to lack homology to natural pro-
teins, but also more likely to be unstructured and/or unassignable to any categorized
SCOP fold label.

Hyperparams Results

top_k temp Valid Seq. # Folds Struct. Hit Seq. Esc.

600 0.800 1.000 658 0.347 0.445
1.000 1.000 635 0.336 0.545
1.200 1.000 645 0.322 0.629
1.500 1.000 617 0.304 0.717
2.000 0.999 606 0.282 0.797
5.000 0.981 513 0.160 0.912

950 0.800 1.000 643 0.345 0.466
1.000 1.000 668 0.327 0.580
1.200 0.999 620 0.306 0.674
1.500 1.000 625 0.287 0.766
2.000 0.998 587 0.262 0.855
5.000 0.985 473 0.151 0.958

1500 0.800 1.000 649 0.340 0.484
1.000 1.000 646 0.315 0.609
1.200 0.999 627 0.290 0.708
1.500 1.000 608 0.263 0.816
2.000 0.998 577 0.239 0.903
5.000 0.988 476 0.144 0.981

2400 0.800 1.000 634 0.334 0.493
1.000 1.000 634 0.303 0.628
1.200 1.000 617 0.277 0.742
1.500 1.000 588 0.248 0.857
2.000 0.998 542 0.222 0.944
5.000 0.991 460 0.139 0.993

4000 0.800 1.000 662 0.334 0.510
1.000 1.000 644 0.298 0.650
1.200 0.999 618 0.271 0.778
1.500 1.000 574 0.238 0.894
2.000 0.998 540 0.212 0.968
5.000 0.993 442 0.145 0.998

We systematically vary both temperature (𝑇 = 0.8, 1.0, 1.2, 1.5, 2.5, 5.0) and top_k
(𝑁𝑘 = 600, 950, 1500, 2400, 4000), generating 100,000 sequences from ProtGPT2
for each of the 30 hyperparameter pairs on this grid and following the same trunca-
tion, filtering, structure prediction, and annotation workflow described previously.
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Figure 2.5: Sequence escape rates increase across most folds as sampling tem-
perature increases, at the cost of a shift towards all-𝛼 topologies. Sequence
escape rates for all assigned SCOP folds generated from ProtGPT2 within batches
of 100k sequences for several sampling temperatures (0.8, 1, 1.2, 1.5, 2, 5) x several
top_k values (number of highest-probability tokens considered in sampling out of
50,256 total; 600, 950, 1500, 2400, 4000.

Consistent with the NLP hypothesis, we see that sequence escape rates increase dra-
matically when temperature or top_k is increased, and approach 100% of assignable
structures when both are increased simultaneously; this trend holds in aggregate
and at the level of individual fold classes (Table 2.1, Fig. 2.5). However, far from
rescuing the missing structural breadth, boosting sequence novelty exacerbates the
issue. As temperature and/or top_k are increased, the number of unique SCOP folds
detected plummets, the fraction of assignable structures (the "structural hit rate")
falls precipitously, and topology class representation vanishes in favor of all-𝛼 he-
lical bundles, largely at the expense of 𝛼/𝛽 proteins (Table 2.1, Fig. S2.1-S2.2).
Again, these trends propagate down to individual fold classes, with a handful of
helical bundles dominating the generative space, albeit with impressive sequence
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escape rates (Tables S2.1-S2.5). While obtaining far-from-natural versions of heli-
cal bundles could yet prove useful for protein design writ large (e.g. in minibinder
design campaigns), the structural biases accentuated by by prioritizing sequence
novelty reinforce the reality that without additional tuning or optimization, pre-
trained PLMs are at best flawed mirrors of natural protein-space thanks to severe
structural dropout.

2.3 Conclusion
We showed that, after "seeing" tens of millions of real protein sequences, PLMs are
sufficiently aware of the sequence and structure statistics of natural proteins to yield
realistic proteins that pass the in silico biophysical smell test — compact, globular,
containing familiar secondary elements, and often bearing a passing resemblance to
known structural motifs. In the case of ProtGPT2, this capacity emerges seamlessly
in a free generation task that echoes the model’s training task. We also demonstrated
that ProtGPT2 is a powerful instrument for accessing sequence novelty, specifically
sequences devoid of measurable homology to natural proteins even under highly
sensitive search conditions. However, this sequence novelty comes at a substantial
cost. Namely, limited structural breadth in model output, sacrificing much of the
richness of nature’s structural landscape. This presents as a fundamental tradeoff.
The more sequence novelty is pursued by tuning sampling hyperparameters to
explore the vastness of sequence-space, the more complete the collapse to a small
collection of structural modes, often biophysically simple 𝛼-helical bundles.

In contrast to situations encountered in foundational ML subfields including natural
language processing and computer vision, this collapse to a subset of modes occurs
without obvious training data contamination and only weakly reflects the relative
frequencies of these modes in the UniRef50 training data common to both ProtGPT2
and the ESM2 model family.5 Put in plainer biological terms, while the long alpha-
hairpin and the spectrin repeat come to dominate model output, it’s the TIM 𝛽/𝛼
barrels (or stable subsectors thereof) and ferredoxins that ought to carry the day if
natural abundance were the guiding factor. Instead, this behavior may well stem from
a combination of limitations baked into model architecture (e.g. the unidirectional
context window of ProtGPT2) and mechanistic discordance between training and
generation tasks (e.g. 15% vs 100% sequence masking in training vs. generation

5Although ProtGPT2 and ESM2 were trained on different versions of UniRef50 (ProtGPT2:
2021_04, ESM2: 2021_09), with distinct train-test partitioning approaches, it is unlikely that this
would translate into any significant difference in database composition or contamination.
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contexts respectively for ESM2). The absence of many rare and/or functionally
relevant structural motifs from generative PLM output could prove deleterious for
future AI-driven protein design campaigns. Further, this shortcoming suggests that
alternative forcing strategies will be required for harnessing sequence novelty and
reliably sampling functional protein populations from PLMs, particularly in the
pursuit of "linguistically consistent" proteins well beyond the confines of natural
sequence-space. Tailored strategies for achieving these goals are explored in the
subsequent chapters.

2.4 Methods
Except where otherwise specified, all model access and interfacing was via trill
v1.3.11 (Martinez et al., 2023).

Sequence Generation from Protein Language Models
For the model comparison experiment, sequences (𝑛 = 100000) were sampled
from ProtGPT2 by L-to-R next-token prediction with the default best-performing
hyperparameters from Ferruz et al. (2022); sampling temperature 1, top_k 950,
top_p 1.0, repetition penalty 1.2. The termination condition was set following the
40th token or the first STOP token occurring prior to the 40th token; sequences
longer than 100aa were truncated to 100aa as the maximal length. Sequences
containing rare or ambiguous amino acids (B, J, O, U, X, or Z) were filtered out
as invalid, leaving 99,982 sequences. Sequences were sampled from ESM2-150M
(𝑛 = 148500), from L-to-R with next-token prediction with Gibbs sampling, with a
default sampling temperature of 1, no repetition penalty, and allowing for sampling
from the full token distribution. The termination condition was set following the
100th amino-acid or the first STOP token occurring prior to the 100th amino-acid.
Truncation and filtering were applied as for ProtGPT2.

For the hyperparameter scan experiment, sequences (𝑛 = 100000 per configuration)
were generated from ProtGPT2 by L-to-R next-token prediction with top_p 1.0 and
repetition penalty 1.2 fixed, and a grid search over 30 (temperature, top_k) pairs de-
rived from six possible temperatures (𝑇 = 0.8, 1.0, 1.2, 1.5, 2.0, 5.0) x five possible
top_k pool sizes (𝑁𝑘 = 600, 950, 1500, 2400, 4000). Truncation and filtering were
applied as in the model comparison experiment.
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Sequence Generation from Control Models
The random-sequence control set was generated by position-independent sampling
of 𝑛 = 74250 sequences of length 100aa from the 20 proteinogenic amino acids,
with sampling probability for each amino acid proportional to its natural abundance.
As sequence length was fixed and the rare/ambiguous amino acids B, J, O, U, X,
and Z excluded, no filtering or truncation steps were required.

The inverse-folding control set was constructed by generating three sequences from
ESM-IF1 with each of the 36,900 representative structures in the SCOP database as a
backbone template, for 𝑛 = 110700 sequences in total. Pre- and post-processing for
rare ligands in templates and rare/ambiguous amino acids in outputs, respectively,
reduced inverse-folding output to 104,591 sequences. Default hyperparameters for
sampling were taken as in Hsu et al. (2022).

Structure Prediction and Assignment
All structures (for filtered, truncated sequences as described above) were predicted
with default ESMFold inference parameters as in Lin et al. (2023). For the model
comparison experiment, structures were singly-inferenced (batch size 1), with com-
pute resource collaboration with Yurts AI (now Legion Intelligence). For the hyper-
parameter scan experiment, structures were batch-inferenced with batch size 100 to
optimally utilize memory allocation on A100-80GB GPUs, with compute resource
collaboration through Oracle Cloud Infrastructure (OCI).

Predicted structures were annotated to SCOP fold labels via Foldseek structure-
based search against the custom SCOP-UniRef50 database (construction described
in a standalone subsection) running in accelerated TMalign mode. The consensus
SCOP fold was defined as the fold accounting for the most hits with TMscore > 0.5
and max(query_coverage, target_coverage) > 0.8.

Sensitive Sequence Search and Novelty Characterization
In both the model comparison and hyperparameter scan experiments, PLM-generated
and control sequences were searched against UniRef50 using mmseqs2 with de-
fault easy-search parameters and maximum e-value 0.01. Sequence escape rate was
computed as the fraction of sequences not returning an alignment hit of any length
to any cluster representative from UniRef50 at the specified e-value threshold.
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Construction of the SCOP-UniRef50 Sequence-Structure Database
The SCOP-UniRef50 custom sequence-structure fragment database was constructed
by performing reciprocal Foldseek searches (in fast TM-align mode) of the SCOP
database of superfamily representative PDB structures (𝑛 = 36900) against the
UniRef50 portion (based on the 2021_04 release) included in the July 2022 update
to the AlphaFoldDB as first reported in Varadi et al. (2022) and made available
as a precompiled Foldseek database in van Kempen et al. (2023), filtering for
reciprocal hits with fractional query and target coverage > 0.8 and TMscore> 0.5,
and clustering the filtered fragments at 100% identity.

For the model comparison experiments, 𝑛 = 100000 natural sequences were uni-
formly sampled from SCOP-UniRef50 and jointly embedded along with PLM-
generated and control sequences using ESM2-150M. This choice was made vs.
sampling directly from SCOP in order to (1) obtain a similar number of natural se-
quences (∼ 105) to model-generated and control batches, and (2) draw sequence frag-
ments with representative taxonomic coverage for evolutionarily conserved folds, as
opposed to the narrower taxonomic coverage in SCOP, itself a function of skewed
taxonomic coverage in the Protein Data Bank (Andreeva et al., 2020).

Basic Chemical Property Calculations
Amino-acid surface area burial fraction was calculated using custom code and refer-
ence individual amino-acid surface areas (HMS Bionumbers: 103239). Secondary
structure annotations were assigned with DSSP via the corresponding PyMOL
v3.1.0 wrapper.

2.5 Supplemental Material
Supplemental Figures
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Figure S2.1: Structure hit rates from base ProtGPT2 decrease as sampling tem-
perature and top_k increase. Structure hit rates from batches of 100k sequences
generated from ProtGPT2 for several sampling temperatures (0.8, 1, 1.2, 1.5, 2, 5)
and top_k values (number of highest-probability tokens considered in sampling out
of 50,256 total) — (A) 600, (B) 950, (C) 1500, (D) 2400, (E) 4000; broken down by
protein global topology class (𝛼, 𝛽, 𝛼 + 𝛽, 𝛼/𝛽, or "small / minimal 2° structure").
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Figure S2.2: Generated fold distributions shift towards all-𝛼 proteins and away
from 𝛼/𝛽 proteins as sampling temperature increases. Frequency of each protein
global topology class (𝛼, 𝛽, 𝛼 + 𝛽, 𝛼/𝛽, or "small / minimal 2° structure") among
all structure hits within batches of 100k sequences generated from ProtGPT2 for
several sampling temperatures (0.8, 1, 1.2, 1.5, 2, 5) and top_k values (number of
highest-probability tokens considered in sampling out of 50,256 total) — (A) 600,
(B) 950, (C) 1500, (D) 2400, (E) 4000.
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Supplemental Tables

Table S2.1: Most common SCOP folds generated by base ProtGPT2 at various
sampling temperatures with top_k 600.

temp: 0.8

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin 𝛼 0.095 0.033 0.810
Spectrin repeat-like 𝛼 0.050 0.017 0.871
Rossmann(2x3)oid (Flavodoxin-like) 𝛼/𝛽 0.048 0.017 0.146
Immunoglobulin-like beta-sandwich 𝛽 0.036 0.012 0.510
alpha-alpha superhelix 𝛼 0.033 0.011 0.386

temp: 1

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin 𝛼 0.112 0.038 0.874
Spectrin repeat-like 𝛼 0.056 0.019 0.907
Rossmann(2x3)oid (Flavodoxin-like) 𝛼/𝛽 0.043 0.014 0.252
Immunoglobulin-like beta-sandwich 𝛽 0.034 0.012 0.596
Hemerythrin-type up-and-down 4-helical bundle 𝛼 0.032 0.011 0.903

temp: 1.2

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin 𝛼 0.122 0.039 0.908
Spectrin repeat-like 𝛼 0.063 0.020 0.929
Rossmann(2x3)oid (Flavodoxin-like) 𝛼/𝛽 0.043 0.014 0.330
Hemerythrin-type up-and-down 4-helical bundle 𝛼 0.036 0.012 0.937
Immunoglobulin-like beta-sandwich 𝛽 0.030 0.010 0.696

temp: 1.5

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin 𝛼 0.130 0.040 0.943
Spectrin repeat-like 𝛼 0.068 0.021 0.950
Rossmann(2x3)oid (Flavodoxin-like) 𝛼/𝛽 0.042 0.013 0.424
Hemerythrin-type up-and-down 4-helical bundle 𝛼 0.040 0.012 0.958
Immunoglobulin/albumin-binding domain-like 𝛼 0.033 0.010 0.955

temp: 2

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin 𝛼 0.141 0.040 0.969
Spectrin repeat-like 𝛼 0.075 0.021 0.968
Hemerythrin-type up-and-down 4-helical bundle 𝛼 0.044 0.013 0.978
Rossmann(2x3)oid (Flavodoxin-like) 𝛼/𝛽 0.043 0.012 0.500
Immunoglobulin/albumin-binding domain-like 𝛼 0.032 0.009 0.966

temp: 5

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin 𝛼 0.154 0.025 0.989
Spectrin repeat-like 𝛼 0.084 0.014 0.989
Hemerythrin-type up-and-down 4-helical bundle 𝛼 0.060 0.010 0.984
alpha-alpha superhelix 𝛼 0.040 0.006 0.905
Immunoglobulin/albumin-binding domain-like 𝛼 0.033 0.005 0.987
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Table S2.2: Most common SCOP folds generated by base ProtGPT2 at various
sampling temperatures with top_k (vocabulary size) 950.

temp: 0.8

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin 𝛼 0.101 0.035 0.841
Spectrin repeat-like 𝛼 0.050 0.017 0.872
Rossmann(2x3)oid (Flavodoxin-like) 𝛼/𝛽 0.048 0.016 0.177
Immunoglobulin-like beta-sandwich 𝛽 0.032 0.011 0.534
Canonical WHD (winged helix domain) fold 𝛼 + 𝛽 0.031 0.011 0.342

temp: 1

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin 𝛼 0.111 0.036 0.893
Spectrin repeat-like 𝛼 0.058 0.019 0.918
Rossmann(2x3)oid (Flavodoxin-like) 𝛼/𝛽 0.042 0.014 0.273
Hemerythrin-type up-and-down 4-helical bundle 𝛼 0.034 0.011 0.926
alpha-alpha superhelix 𝛼 0.031 0.010 0.571

temp: 1.2

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin 𝛼 0.126 0.039 0.930
Spectrin repeat-like 𝛼 0.065 0.020 0.946
Rossmann(2x3)oid (Flavodoxin-like) 𝛼/𝛽 0.041 0.013 0.345
Hemerythrin-type up-and-down 4-helical bundle 𝛼 0.038 0.012 0.948
Canonical WHD (winged helix domain) fold 𝛼 + 𝛽 0.030 0.009 0.530

temp: 1.5

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin 𝛼 0.136 0.039 0.943
Spectrin repeat-like 𝛼 0.069 0.020 0.969
Hemerythrin-type up-and-down 4-helical bundle 𝛼 0.046 0.013 0.960
Rossmann(2x3)oid (Flavodoxin-like) 𝛼/𝛽 0.042 0.012 0.491
Immunoglobulin/albumin-binding domain-like 𝛼 0.030 0.009 0.960

temp: 2

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin 𝛼 0.149 0.039 0.978
Spectrin repeat-like 𝛼 0.076 0.020 0.984
Hemerythrin-type up-and-down 4-helical bundle 𝛼 0.045 0.012 0.976
Rossmann(2x3)oid (Flavodoxin-like) 𝛼/𝛽 0.040 0.010 0.596
Immunoglobulin/albumin-binding domain-like 𝛼 0.035 0.009 0.974

temp: 5

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin 𝛼 0.178 0.027 0.991
Spectrin repeat-like 𝛼 0.090 0.014 0.996
Hemerythrin-type up-and-down 4-helical bundle 𝛼 0.064 0.010 0.989
Immunoglobulin/albumin-binding domain-like 𝛼 0.038 0.006 0.986
alpha-alpha superhelix 𝛼 0.035 0.005 0.934
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Table S2.3: Most common SCOP folds generated by base ProtGPT2 at various
sampling temperatures with top_k (vocabulary size) 1500.

temp: 0.8

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin 𝛼 0.101 0.035 0.847
Spectrin repeat-like 𝛼 0.052 0.018 0.878
Rossmann(2x3)oid (Flavodoxin-like) 𝛼/𝛽 0.045 0.015 0.210
Immunoglobulin-like beta-sandwich 𝛽 0.033 0.011 0.555
alpha-alpha superhelix 𝛼 0.031 0.010 0.426

temp: 1

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin 𝛼 0.119 0.037 0.895
Spectrin repeat-like 𝛼 0.059 0.019 0.918
Rossmann(2x3)oid (Flavodoxin-like) 𝛼/𝛽 0.040 0.013 0.304
Hemerythrin-type up-and-down 4-helical bundle 𝛼 0.035 0.011 0.930
Canonical WHD (winged helix domain) fold 𝛼 + 𝛽 0.029 0.009 0.472

temp: 1.2

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin 𝛼 0.129 0.038 0.930
Spectrin repeat-like 𝛼 0.067 0.019 0.956
Rossmann(2x3)oid (Flavodoxin-like) 𝛼/𝛽 0.042 0.012 0.425
Hemerythrin-type up-and-down 4-helical bundle 𝛼 0.040 0.012 0.951
Canonical WHD (winged helix domain) fold 𝛼 + 𝛽 0.029 0.008 0.528

temp: 1.5

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin 𝛼 0.145 0.038 0.963
Spectrin repeat-like 𝛼 0.077 0.020 0.984
Hemerythrin-type up-and-down 4-helical bundle 𝛼 0.047 0.012 0.976
Rossmann(2x3)oid (Flavodoxin-like) 𝛼/𝛽 0.040 0.011 0.566
Immunoglobulin/albumin-binding domain-like 𝛼 0.033 0.009 0.968

temp: 2

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin 𝛼 0.158 0.038 0.988
Spectrin repeat-like 𝛼 0.078 0.019 0.989
Hemerythrin-type up-and-down 4-helical bundle 𝛼 0.050 0.012 0.986
Rossmann(2x3)oid (Flavodoxin-like) 𝛼/𝛽 0.039 0.009 0.708
Immunoglobulin/albumin-binding domain-like 𝛼 0.034 0.008 0.987

temp: 5

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin 𝛼 0.182 0.026 0.993
Spectrin repeat-like 𝛼 0.094 0.014 0.999
Hemerythrin-type up-and-down 4-helical bundle 𝛼 0.070 0.010 0.994
Ferredoxin-like 𝛼 + 𝛽 0.040 0.006 0.984
Immunoglobulin/albumin-binding domain-like 𝛼 0.038 0.005 0.993
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Table S2.4: Most common SCOP folds generated by base ProtGPT2 at various
sampling temperatures with top_k (vocabulary size) 2400.

temp: 0.8

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin 𝛼 0.106 0.036 0.850
Spectrin repeat-like 𝛼 0.052 0.018 0.894
Rossmann(2x3)oid (Flavodoxin-like) 𝛼/𝛽 0.043 0.014 0.210
alpha-alpha superhelix 𝛼 0.032 0.011 0.435
Canonical WHD (winged helix domain) fold 𝛼 + 𝛽 0.031 0.011 0.358

temp: 1

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin 𝛼 0.125 0.038 0.905
Spectrin repeat-like 𝛼 0.062 0.019 0.939
Rossmann(2x3)oid (Flavodoxin-like) 𝛼/𝛽 0.040 0.012 0.353
Hemerythrin-type up-and-down 4-helical bundle 𝛼 0.038 0.011 0.917
Canonical WHD (winged helix domain) fold 𝛼 + 𝛽 0.028 0.008 0.446

temp: 1.2

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin 𝛼 0.138 0.038 0.945
Spectrin repeat-like 𝛼 0.071 0.020 0.959
Hemerythrin-type up-and-down 4-helical bundle 𝛼 0.043 0.012 0.957
Rossmann(2x3)oid (Flavodoxin-like) 𝛼/𝛽 0.041 0.011 0.456
Ferredoxin-like 𝛼 + 𝛽 0.030 0.008 0.792

temp: 1.5

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin 𝛼 0.158 0.039 0.976
Spectrin repeat-like 𝛼 0.077 0.019 0.985
Hemerythrin-type up-and-down 4-helical bundle 𝛼 0.052 0.013 0.981
Rossmann(2x3)oid (Flavodoxin-like) 𝛼/𝛽 0.038 0.010 0.601
Ferredoxin-like 𝛼 + 𝛽 0.033 0.008 0.888

temp: 2

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin 𝛼 0.167 0.037 0.994
Spectrin repeat-like 𝛼 0.086 0.019 0.992
Hemerythrin-type up-and-down 4-helical bundle 𝛼 0.056 0.012 0.991
Immunoglobulin/albumin-binding domain-like 𝛼 0.041 0.009 0.991
Ferredoxin-like 𝛼 + 𝛽 0.036 0.008 0.956

temp: 5

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin 𝛼 0.190 0.027 0.998
Spectrin repeat-like 𝛼 0.095 0.013 0.998
Hemerythrin-type up-and-down 4-helical bundle 𝛼 0.069 0.010 0.998
Ferredoxin-like 𝛼 + 𝛽 0.041 0.006 0.993
Immunoglobulin/albumin-binding domain-like 𝛼 0.041 0.006 0.996
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Table S2.5: Most common SCOP folds generated by base ProtGPT2 at various
sampling temperatures with top_k (vocabulary size) 4000.

temp: 0.8

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin 𝛼 0.108 0.036 0.855
Spectrin repeat-like 𝛼 0.054 0.018 0.892
Rossmann(2x3)oid (Flavodoxin-like) 𝛼/𝛽 0.042 0.014 0.217
alpha-alpha superhelix 𝛼 0.031 0.010 0.448
Hemerythrin-type up-and-down 4-helical bundle 𝛼 0.031 0.010 0.896

temp: 1

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin 𝛼 0.123 0.037 0.904
Spectrin repeat-like 𝛼 0.065 0.019 0.939
Rossmann(2x3)oid (Flavodoxin-like) 𝛼/𝛽 0.039 0.012 0.377
Hemerythrin-type up-and-down 4-helical bundle 𝛼 0.038 0.011 0.930
alpha-alpha superhelix 𝛼 0.028 0.008 0.609

temp: 1.2

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin 𝛼 0.146 0.039 0.949
Spectrin repeat-like 𝛼 0.071 0.019 0.974
Hemerythrin-type up-and-down 4-helical bundle 𝛼 0.046 0.012 0.967
Rossmann(2x3)oid (Flavodoxin-like) 𝛼/𝛽 0.041 0.011 0.544
Ferredoxin-like 𝛼 + 𝛽 0.031 0.008 0.812

temp: 1.5

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin 𝛼 0.161 0.038 0.981
Spectrin repeat-like 𝛼 0.086 0.020 0.991
Hemerythrin-type up-and-down 4-helical bundle 𝛼 0.054 0.013 0.982
Immunoglobulin/albumin-binding domain-like 𝛼 0.039 0.009 0.983
Rossmann(2x3)oid (Flavodoxin-like) 𝛼/𝛽 0.035 0.008 0.699

temp: 2

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin 𝛼 0.183 0.039 0.997
Spectrin repeat-like 𝛼 0.092 0.019 0.994
Hemerythrin-type up-and-down 4-helical bundle 𝛼 0.062 0.013 0.998
Immunoglobulin/albumin-binding domain-like 𝛼 0.038 0.008 0.995
Ferredoxin-like 𝛼 + 𝛽 0.038 0.008 0.970

temp: 5

Fold Class Freq. Abs. Hit Rate Esc. Rate

Long alpha-hairpin 𝛼 0.196 0.029 0.999
Spectrin repeat-like 𝛼 0.097 0.014 1.000
Hemerythrin-type up-and-down 4-helical bundle 𝛼 0.079 0.011 1.000
Ferredoxin-like 𝛼 + 𝛽 0.040 0.006 0.998
Immunoglobulin/albumin-binding domain-like 𝛼 0.038 0.005 1.000
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C h a p t e r 3

FOLDTUNING TURNS PROTEIN LANGUAGE MODELS INTO
STRUCTURE-GUIDED SEQUENCE PROBES

3.1 Introduction
Sampling sequence novelty one fold at a time

In the preceding chapter, we uncovered a pronounced pathology of protein gener-
ation with protein language models (PLMs) — a tendency to visit only a limited
and unrepresentative collection of structural modes. Generating under conditions
meant to prioritize sequence novelty in the search for functional proteins outside
the constraints wrought by evolution on Earth only heightens this collapse. In
this chapter, we leave this conundrum behind and show how to sample the ex-
tremes of permissible sequence novelty while maintaining fidelity to informative
guidepost structures, balancing large perturbations to sequence against small per-
turbations to structure and transforming PLMs into structure-preserving probes of
far-from-natural sequence-space. Much stands to be gained by seizing the ability to
systematically locate stable, functional proteins that reconstitute known structural
motifs but lie in regions of sequence-space with no meaningful similarity to nature.
From unlocking expanded repertoires of binding partners, signaling interactions,
and substrate scopes for synthetic biology, to revealing key amino-acid sequence
rules and constraints undergirding the fundamental biophysics of molecular ma-
chines, the as-yet-unrealized design capacity of these outlying zones to tile the
functional landscape is tantalizing. Although it has been speculated that such an
effort might be accomplished by rationally painting individual interactions and se-
quence motifs onto a pre-specified backbone template, and accomplished for small
folds using physics-based methods, scaling to (1) large folds, (2) full coverage of
natural structure-space, (3) truly novel sequences lacking detectable similarity to
nature, and (4) sufficiently large variant libraries for functional screening and design
rule elucidation — has not come to pass (Dahiyat and Mayo, 1997; Pabo, 1983).1

The problem before us then, is to find a search strategy that mines these "döppel-
ganger" proteins from the junk and gibberish that presumably occupies much of the

1This explanation deliberately dances around referring to this task by its original name, the
"inverse-folding problem," to avoid confusion with the AI-based inverse-folding models for protein
sequence design that have increasingly co-opted the term and that we encountered in Chapter 2.



29

combinatorial vastness of sequence-space. PLMs, with their apparent exploratory
capacity — born out in occasional design efforts in the literature and in the immense
sequence diversity encountered in Chapter 2 — are natural vehicles for this task
(Verkuil et al., 2022). The main obstacle, however, is the structural collapse likewise
seen in Chapter 2, the downside of choosing novelty (in sequence) over breadth (in
structure). Indeed, this tradeoff between breadth and novelty is considered a general
property of LLMs — not just protein models — exemplified by recent theoretical
results holding that a language model can sample "in the limit" of all valid texts,
beyond yet consistent with its training data, but at the cost of a marked reduction in
output diversity (Kleinberg and Mullainathan, 2024). Instead of accepting arbitrary
model-induced breadth reduction, we choose the form of this limitation to our ad-
vantage. For the protein mimic search problem, we elect to set an anchor structure
as a PLM’s sole target, directing its exploration-by-generation ability to push the
accepted bounds of sequence towards the far-from-natural and sample "in the limit"
of meaningful (and functional) sequences encoding a fold of interest, one target at a
time.

A novel algorithm for structure-oriented PLM generation "in the limit"

Thus, we envision an approach that takes one target fold at a time — a family
of related structures, not a single example, so as to retain degrees of freedom for
structural and functional innovation — and uses it to force a PLM to push outwards
from its familiar training data distribution towards the limit of valid sequences that
respect the same underlying biophysical logic and language rules. Deploying such
an approach requires three features. The first is a way to decide whether a structure
(predicted from a generated sequence) is sufficiently close to the target family to be
structure-preserving, versus drifting into structural breakdown and disorder. This
can be implemented straightforwardly by feeding generated sequences to a predict-
search-assign protocol that links structure prediction models to structural alignment
tools to separate valid structural matches from invalid ones. The second is a way
to measure whether and how quickly generated sequences are moving in a fruitful
direction in sequence-space — towards far-out corners and true novelty — and not
towards, say, evolutionarily distant natural analogs. Given that we hope to reach deep
into sequence-space, the usual bioinformatic parameters like % identity, bit-score,
and E-value are of little help — upon surpassing the bounds of detectable sequence
homology to natural proteins they become no longer calculable — evidence, yes,
of escaping nature’s gravitational pull, but without any sense of by how much. To
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quantify sequence novelty in a more informative way, we borrow the concept of
semantic change from computational linguistics and natural language processing.
Qualitatively, semantic change can be understood as capturing the "displacement
in meaning" between two texts that are equally grammatically valid with respect
to some governing language; quantitatively it is a distance metric evaluated in a
model’s high-dimensional latent-space — all sequences can be mapped to embed-
ding vectors, meaning that semantic change can always be computed, irrespective
of homology or lack thereof. It should also be noted that when evaluated on real
sequences, higher semantic change can correlate with substantive differences in
function and binding, e.g. as in antigenic escape (Hie et al., 2021).

Finally, and most crucially, we must link these two arms together. Ready inspiration
exists in the machine-learning world in the form of generative adversarial networks
(GANs). The traditional picture of a GAN pits two models — a generator and a
discriminator — against each other in a so-called counterfeiting game (Goodfellow
et al., 2014). The generator’s goal is to spit out artificial data (fakes) that go uncaught
by the discriminator; the discriminator’s goal is to detect all the fakes. Over many
rounds of the game, the generator learns to make its output look more like the fakes
that got past the discriminator and less like the ones that were stopped. Meanwhile,
the discriminator similarly learns from its successes and mistakes to get better at
spotting the subtle features separating artificial data from real. In our problem,
the PLM becomes the generator, feeding artificial sequences to the predict-search-
assign procedure as the discriminator, with the PLM learning to make its later-round
outputs more closely resemble those self-generated artificial sequences that "trick"
the discriminator by (1) matching the target fold and (2) taking large steps away
from nature as tracked by semantic change.

These are the broad strokes of a new algorithm, a PLM-powered engine for making
massive-scale sequence perturbations that leap between outlying pockets of struc-
tured, sensible proteins populating deep sequence-space. As this method considers
a single target fold at any one time and iteratively updates ("finetunes" in LLM par-
lance) its PLM generator with batches of high-quality synthetic sequence data, we
dub it "foldtuning," a portmanteu of "target-fold" and "finetuning." We successfully
apply foldtuning to 727 targets spanning topologies, functions, and synthetic biology
applications, in the process gleaning preliminary insight into features distinguishing
easy-to-build targets from more recalcitrant ones. With a battery of in silico tests
we show that foldtuning preserves the contours of a structural family, maximizes se-
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quence novelty as measured by both semantic change and traditional bioinformatics
criteria, and proposes thermodynamically-plausible variants with wide-ranging ex-
pected functions. Additionally, we unpack how foldtuning samples small structural
innovations, expanding the potential scope of downstream engineering campaigns;
we also discover shifted amino-acid usage patterns, strongly implying that foldtuned
models not only master the signature languages of different protein folds, but exper-
iment with distinct and novel candidate "fold languages" as well. Taken all together,
these findings underscore that there is much to be gleaned from deep protein-space
in theory and in practice, with foldtuning positioned to drive further exploration and
illumination of the sequence-structure map.

3.2 Results & Discussion
Foldtuning: sequence exploration with ’soft’ structure constraints
In order to robustly access far-from-natural sequences coding for many structurally
diverse fold classes — a feat beyond the reach of off-the-shelf pretrained PLMs,
which are vulnerable to dramatic mode collapse — we develop "foldtuning," a
structure-oriented algorithm that drives a PLM to sample extreme sequence novelty
(generation "in the limit") while holding to a target fold class, summarized in Fig.
3.1A. The PLM of choice is first finetuned on natural protein fragments that adopt
the target backbone structure of interest; this initial step is analogous to "evotuning"
on a functional family as has been done in PLM-based enzyme design (Madani et al.,
2023).2 Following this extra fold-specific pretraining, foldtuning proceeds through
alternating rounds of (1) sequence generation out of the current model state, and (2)
model update by finetuning on a subset of self-generated artificial sequences that are
predicted to coarsely adopt the target fold while differing maximally from natural
counterparts in terms of sequence (Fig. 3.1B-C). Selection for preserving the target
fold is achieved by predicting each structure with ESMFold and assigning a SCOP
or InterPro label with Foldseek-TMalign search; this is a "soft" structural constraint,
using a TMscore > 0.5 global alignment threshold best understood as placing the
generated candidate within the target fold family or distribution.3 Selection for
sequence dissimilarity is enforced by ranking all structurally-validated sequences
by semantic change — defined for a generated sequence 𝑠

(𝑖)
𝑘

as the smallest 𝐿1-
2Depending on the target, fragments are drawn either from the custom SCOP-UniRef50 database

whose construction was described previously in Section 2.4 or from InterPro entry-associated PDB
metadata as described in Section 3.4.

3Contrast with a "hard" constraint requiring a small RMSD over the entire backbone, the objective
of less-exploratory models like structure→sequence inverse-folding models.
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distance between the ESM2-650M embeddings of 𝑠(𝑖)
𝑘

and any of the natural training
sequences — in decreasing order, and taking the top 100 as the next synthetic
training data for model updating. Dimension-reduced views of these embeddings
for a representative subset of target folds suggest that ESM2-650M captures —
and foldtuning navigates along — a representation of the sequence→structure map
where structural classes (grouping corresponding pairs of natural and foldtuned
artificial sequences) largely separate from one another, with artificial sequences
drifting from their natural parents along concerted trajectories in the embedding-
space (Fig. 3.1D, Fig. S3.1- S3.2). In this way, each foldtuning cycle can be
thought of as a step along a path that drives a PLM to access subpopulations of
progressively further-from-natural artificial sequences while preserving the broad
form of the fixed target structure.

Choosing ProtGPT2 as the base pretrained pLM, we foldtuned models for 727
structural targets; 708 SCOP folds (out of the top 850 ranked by natural abundance,
for an 83.3% success rate), plus 19 cytokines and chemokines of interest curated
from InterPro (out of a collection of 44 target entries; a 43.2% success rate).
Succesfully foldtuned SCOP targets span numerous classes of functional interest for
synthetic biology applications, including transcription factor DNA-binding domains,
GPCR/small GTPase signaling components, modular cell surface receptor domains,
and defense proteins (e.g. antimicrobial peptides, toxins). Foldtuned versions of
ProtGPT2 are effective at landing near the target backbone fold, increasing from a
median structural hit rate of 0.203 after evotuning alone to 0.565 after two rounds of
updates on far-from-natural artificial sequences, falling slightly to 0.509 after four
rounds (Fig. 3.2A). Sequence novelty relative to natural examples increases with
additional update rounds; the sequence escape rate — the fraction of target structure
matches that do not feature any detectable sequence homology to any protein in
UniRef50 — does not change significantly from evotuning (0.134) through two
rounds of foldtuning (0.135), but grows steadily to 0.211 after four update rounds
(Fig. 3.2A). When sequences do exhibit homology to natural proteins, the lengths of
the aligning subsequences tend to decrease with each additional round of foldtuning,
supporting the contention that foldtuning gradually relaxes sequence constraints even
when the target structure appears more tightly restrained (Fig. S3.3). Fold-by-fold
semantic change also captures a clear and steady progression away from natural
sequences, from a median value of 39.9 following evotuning, to 46.9 after two
rounds, to 56.8 after four (Fig. 3.2B). Notably, at least up to four rounds, foldtuning
does not display any significant tradeoff between structural hit rate and sequence
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Figure 3.1: Foldtuning explores far-from-natural sequences encoding alternate
versions of natural protein structures. (A) Conceptual overview of foldtuning.
Beginning from natural protein sequences coding for a target backbone structure,
foldtuning uses a protein language model (pLM)-based strategy to probe outwards in
sequence-space, detecting subpopulations that maintain the target backbone while
progressively decreasing sequence similarity to the closest natural example. (B)
Conceptual overview of foldtuning architecture, which alternates in a closed-loop
between sequence generation and discrimination/selection rounds, roughly analo-
gous to a generative adversarial network. (C) Detailed schematic of the foldtuning
workflow. For a provided backbone target fold, a pLM is initially finetuned (1) on
examples from structural mining of UniRef50. In each subsequent round of fold-
tuning, artificial sequences are generated from the current pLM state and filtered
for target backbone matching based on ESMFold structure prediction and Foldseek
structure-based search (TMalign mode; tmscore cutoff threshold of 0.5); the pLM
is then updated by finetuning on those filtered matches that maximize semantic
change relative to the natural training examples (2). (D) 2D UMAP representation
of ESM2-650M embeddings of natural (dark) and foldtuned (light) sequence exam-
ples for eleven representative target fold classes.

escape rate. In many cases, these metrics can be simultaneously maximized (e.g.
TIM 𝛽/𝛼 barrels, Ig𝛽-like domains); in others, a substantial leap in sequence escape
rate — the more critical mark given that sequence novelty at scale is the main
goal of foldtuning — can be gained with a minimal drop in structural hit rate (e.g.
Ferredoxins, Rossman(2x3)oids) (Fig. 3.2C).
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Figure 3.2: Foldtuned models sample novel sequences for >700 targets. (A)
Sequence escape vs. structural hit rates after natural-only evotuning or two or
four rounds of foldtuning for 727 targets. Selected structural/functional targets are
highlighted: transcription factors (blue), GPCRs/small GTPases (green), cell surface
receptor domains (gold), and small antimicrobial/toxin proteins (red). (B) Semantic
change, defined as the minimal L1-norm between the ESM2-650M embeddings of
a generated sequence and any sequence in the natural training set, increases with
additional rounds of foldtuning. (C) Over up to four rounds of foldtuning, structural
hit and sequence escape rates are generally maximized simultaneously without
explicit conditioning. (D) Target folds are ranked by sequence “designability,”
taking the product of structural hit and sequence escape rates as a proxy.

Consistently high structural hit rates, increasing sequence escape rates, and the
absence of a tradeoff between the two, together strongly imply that foldtuned models
are, as intended, operating as probes that move away from nature and locate patches
of viable far-from-natural protein density in sequence-space, all without veering off
into regions of garbage. The high structural hit rate / high sequence escape rate
regime points to one more interesting feature. Having a high structural hit rate and
a high sequence escape rate would suggest that a fold tolerates substantial sequence
plasticity without major disruption to structure; that is, the fold in question is highly
designable, being encoded by many variable sequences. Taking the product of
structural hit rate and sequence escape rate as a proxy for "designability," we find that
the right-handed 𝛽-helix, ribbon-helix-helix (RHH) domain, TIM 𝛽/𝛼-barrel, anti-
parallel 𝛽/𝛼 (PT) barrel, and 𝛼/𝛼 toroid are ranked as the most designable SCOP
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motifs, followed by transmembrane 𝛽-barrels, Sm-like barrels, defensins, the winged
helix domain, and the POU domain (Fig. 3.2D, Table S3.1). Five of these ten motifs
are symmetric or periodic in structure; three are transcription factor DNA-binding
domains; two have ancient non-specific functions (RNA-binding and antimicrobial
activity by membrane disruption for Sm and defensins, respectively). Each of these
structural and functional traits appears to be a general feature of designable folds,
which span the four standard topology classes, not just the all-𝛼 helical bundles that
are commonly presumed to follow the simplest sequence rules and that are favored
by PLMs in the absence of tuning or steering.4 Furthermore, natural fold abundance
in SCOP-UniRef50 is only weakly explanatory of designability, indicating that
foldtuning is detecting inherent fold-to-fold variation in the strictness of sequence
constraints on a level removed from how evolution has sampled and diversified
sequences (Fig. S3.4).

Foldtuning explores new sequence rules and populations
Given the readiness with which foldtuning generalizes to several hundred targets
covering structural and functional families of significant relevance to synthetic bi-
ology, we turn our attention to sequence features of foldtuning-generated proteins.
Taking generated G-protein coupled receptors (GPCRs) and immunoglobin do-
mains (Ig𝛽-like) as representative examples of interest, we return to PCA→UMAP
dimensionality-reduced ESM2-650M embeddings, noting as before that foldtuned
versions of ProtGPT2 propose sequences that drift further and further from natu-
ral training examples in abstract feature-space; structural fidelity to the targets is
preserved as far as high-level shape and connectivity, with the introduction of local
plasticity on the order of a few-angstrom root mean square deviation (RMSD) in
backbone𝐶𝛼 coordinates vs wild-type (Fig. 3.3A-B). For GPCRs, foldtuning rapidly
converges on generating sequences with no detectable homology against UniRef50,
dropping from a median sequence identity of 0.250 after the initial evotuning round
on natural examples to the median sequence having no detectable homologous re-
gion of any length after the first round of foldtuning, and maintaining that trend
over four rounds (Fig. S3.3D). Sequence constraints are relaxed more gradually for
immunoglobulins, holding at a median sequence identity of 0.336 from evotuning
through four foldtuning rounds; the fractional length of the aligning region drops
from a median value of 0.695 after evotuning alone to 0.531 after the full four
rounds (Fig. S3.3G). It should also be noted that (1) this apparent sequence identity

4As discussed at length in Chapter 2.
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barrier for foldtuned immunoglobulins still represents a leap in sequence novelty
inaccessible to purely experimental approaches and equivalent to separation over
enormous evolutionary timescales, and (2) a population of immunoglobulins below
the detectable sequence homology threshold persists and expands from 35.9% of
valid structure matches (14.5% of all model output) after evotuning to 44.6% of
matches (33.3% of all) after four rounds.

All-against-all deep sequence alignment of foldtuned variants (2703 GPCRs, 3035
immunoglobulins) and SCOP-UniRef50 entries (34,327 GPCRs, 150,258 immunoglob-
ulins) reveals that at the sequence level, many foldtuned variants self-cluster into
distinct subpopulations infilling regions of sequence-space not sampled by nature
(Fig. 3.3C-D). Foldtuning-infilled clusters are more tightly linked with prominent
clusters of natural sequences for the immunoglobulin-like fold than for GPCRs, con-
sistent with the relative degrees of sequence homology observed. However, large
fractions of foldtuned variants (332/2323 = 14.3% for GPCRs; 707/2909 = 24.3%
for immunoglobulins) are not only dissimilar from natural sequences but from each
other, appearing in fold-specific sequence networks as isolated nodes without so
much as a homologous snippet to any counterpart real or artificial.5 Foldtuning,
then, is exploring new semantics at the whole-sequence level; to understand how
models reach this point we must consider how foldtuned sequences are assembled
from shorter local motifs.

To do so, we conducted an n-gram-based "vocabulary" analysis of foldtuned variants
compared to SCOP-UniRef50 examples, splitting sequences into sliding windows
of length 1-4 and calculating the usage frequencies of the 20, 400, 8000, and 16,000
possible 1-grams, 2-grams, 3-grams, and 4-grams respectively. Considering the
12 most-abundant natural folds per the SCOP-UniRef50 database, all of which
contain >50,000-250,000 wild-type examples, we observe noticeable "vocabulary
shifts" — that is, statistically significant upwards or downwards changes in n-gram
frequency — among foldtuned sequences relative to natural ones for 𝑛 = 1-4 across
all folds analyzed (Fig. S3.5- S3.8). For 𝑛 = 1 (equivalent to simple amino-acid
composition), 85-100%, or 17 to 20 of the twenty proteinogenic amino acids, shift
in usage (Fig. S3.5). For 𝑛 = 2, 79.0-94.5% of dipeptide "words" shift (Fig. S3.6).
For 𝑛 = 3, 26.5-75.9% of tripeptides shift (Fig. S3.7). And for 𝑛 = 4 — a length
sufficient as a feature extractor for classifying protein families in past work — as few
as 5.7% (Rossmann2x3oid) and as many as 23.3% (PLP-dependent transferases) of

5Network node counts and total variant counts are not identical due to a necessary preclustering
step preceding all-against-all alignment; refer to Section 3.4 for further information.
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Figure 3.3: Foldtuning accesses new sequence populations and structural in-
novations while ‘fuzzily’ preserving a target backbone. (A) UMAP of round-
by-round foldtuning sequence diversification captured by ESM2-650M final-layer
hidden states with G-protein coupled receptors (GPCRs, SCOP ID: 2000339) as
the target structure. (B) Same as (A), with Immunoglobulin-like domains (Ig𝛽-like,
SCOP ID: 2000051) as the target structure. (C) Network representation of similar-
ity between natural (dark green) and foldtuned (light green) GPCR sequences. (D)
Same as (C), with Ig𝛽-like domains as the target structure (natural: dark purple,
foldtuned: light purple). (E) Network representation of structural similarity between
foldtuned TIM 𝛽/𝛼 barrel (SCOP ID: 2000031) sequences; node coloring reflects
Louvain clustering assignments with cluster-representative structures color-coded
accordingly. (F). Same as (E), with Ig𝛽-like domains as the fold class.

"words" shift in one direction or the other (Fig. S3.8) (Islam et al., 2018).6 In one
6For 𝑛 = 4 in particular, shift percentages will chronically underestimate the degree to which



38

sense, the variation in the extent of vocabulary shifts from fold to fold highlights
different degrees of attainable sequence relaxation and manipulation. In another, the
substantial shift magnitudes support the contention that foldtuning is stringing new
local choices of subsequence motifs into globally perturbed full protein sequences —
proposing novel fold-specific sequence languages in lieu of memorizing natural ones.
This claim is reinforced by observing that rank-ordered n-gram usage by foldtuned
models follows the same general distribution as within natural folds — identities of
favored and disfavored short motifs change with foldtuning, but semantic breadth is
still sampled, forestalling sequence-side compression or collapse (Fig. S3.9- S3.12).

Foldtuning is an implicit innovator of structure and function
As a PLM-based method, foldtuning only directly interfaces with and generates
sequence data. However, over the four rounds of foldtuning, without any explicit
structural direction aside from the TMscore-based filtering and validation steps,
we notice that subsets of predicted structures tweak and elaborate on their formal
SCOP fold templates, trying out alterations both subtle (e.g. shortening disorded
loops, rotating helices) and more substantial (e.g. reversing strand connectivity
or altering global symmetry). The TIM 𝛽/𝛼 -barrel fold is a particularly sharp
example of the latter. The TIM barrel — common to sequentially and functionally
diverse enzyme families — undergoes rampant structural exploration in the course
of attaining impressive structural hit (0.298 after evotuning to 0.770 after four
rounds of foldtuning) and sequence escape rates (0.621 after evotuning to 0.995 after
four rounds). All-against-all global structural alignment and clustering separates
foldtuned TIM barrels into six prominent clusters (Fig. 3.3E). Only one cluster
matches the familiar 8-fold symmetry of the wild-type TIM barrel; a second disrupts
that symmetry, ornamenting it with a non-terminal surface 𝛽-hairpin that resembles
a natural feature found in predicted structures of cofactor-F420-utilizing bacterial
redox proteins. The remaining four clusters correspond to 9-fold, 10-fold (spread
across 2 clusters by slight differences in the manner of barrel closure), and 11-fold
symmetries, none of which are known to nature based on experimental or predicted
structure databases. Applied to foldtuned immunoglobulins, the same structural
clustering procedure picks out six clusters as well; here, the main distinctions
between the clusters are relative orientations of the two 𝛽-sheets in the Ig𝛽-like

subsequence composition changes across all n-grams, as 204 = 160, 000 (# of possible 4-grams) ≈
( 𝑓 ×103)×102 = 𝑓 ×105 (approximate # of total subsequences of length 4 in a collection of foldtuned
variants). A 4-gram that is observed in natural sequences but not in foldtuned ones is not considered
to be shifted, resulting in a "zero-deflating" effect on the overall vocabulary shift percentage.
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sandwich and loop packing (Fig. 3.3F).

Figure 3.4: Rosetta energies of foldtuned vs natural variants. Histograms of
length-normalized (REU / residue) Rosetta energy estimates for foldtuned (colored)
and natural (gray) variants following standard backbone relaxation. Selected folds:
(A) 𝛽𝛽𝛼-zinc finger. (B) Barstar. (C) Defensin. (D) G-protein coupled receptor
(GPCR). (E) Small GTPase. (F) Basic HLH transcription factor (bHLH). (G) Im-
munoglobulin 𝛽-sandwich (Ig𝛽). (H) Leucine-rich repeat (LRR). (I) SH3 domain.
(J) Three-finger toxin domain (3FTx). (K) TIM 𝛽/𝛼 barrel.

Given the significant sequence perturbations and shifts in motif usage achieved by
foldtuning, not to mention the multiple scales of structural exploration, we evaluate
the physical plausibility of foldtuned proteins in silico by scoring their predicted
structures with Rosetta to obtain ground-state energy estimates. For eleven target
folds of interest, we compute estimated energies (normalized to sequence length and
reported in arbitrary Rosetta Energy Units, or REUs) for all filtered and validated
foldtuned variants and compare to 𝑛 = 100 natural training examples (Fig. 3.4). For
all eleven, foldtuned variants sit in the -(1-3) REU/aa regime typically recommended
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as bounds for distinguishing physically reasonable structures from frustrated ones
(Alford et al., 2017). However, examined relative to natural counterparts, the picture
is not quite as rosy for all foldtuned populations. Several targets — 𝛽𝛽𝛼-zinc fingers,
barstar-like proteins, defensins, GPCRs, small GTPases, helix-loop-helix (HLH)
domains — do produce energy estimate distributions substantially overlapping those
of wild-type examples. Other distributions — for immunoglobulin domains, SH3
domains, 3-finger toxins, and TIM barrels — appear shifted towards lower stability
compared to natural versions. Additional rounds of synthetic data feedback to
foldtuning may also drive a shift towards lower stability — aside from the leucine-
rich repeat (LRR) fold, however, the magnitude of this effect is quite small. For a
complementary perspective, variants generated from 55 foldtuned models — targets
chosen for potential use in engineering applications as hydrolase and oxidoreductase
enzymes, nucleases and base-editors, kinases, proteases, and various scaffolds and
mediators of catalysis and protein-protein interactions — were scored with a PLM-
based thermostability predictor (Fig. S3.13) (Pudžiuvelytė et al., 2024). Across
the board, significant fractions of foldtuned proteins are expected to exhibit melting
temperatures > 60◦C, restoring some confidence that despite the level of sequence
remodeling that occurs, these far-from-natural artificial sequences encode realistic
and useful proteins.

Finally, we briefly consider another level of the protein universe that foldtuning only
deals with implicitly, the level downstream of structure, namely that of function.
As with stability, we want to verify — to the speculative extent that is possible
computationally — that foldtuned proteins recapitulate, or perhaps even extend,
the functional capabilities of their parent folds. To this end, foldtuned variants for
several SCOP folds corresponding to specific enzyme families or widely-distributed
enzyme scaffolds (i.e. catalyzing diverse chemical transformations across nature),
were assigned putative Enzyme Commission classification numbers (EC #s) with
a PLM-based predictor (Yu et al., 2023). For families with established reactivities
and mechanisms, top-level EC #s7 are largely predicted as expected — P450s and
nitrite/sulphite reductases are assigned as oxidoreductases, CRISPR Cas1s and 𝛼/𝛽
hydrolases are assigned as hydrolases, protein kinases are assigned as transferases,
and chelatases, albeit less cleanly, are assigned as lyases and ligases, covering their
multiple roles in cofactor biosynthesis (Fig. S3.14). Past the top-level, significant
fractions of foldtuned enzymes are annotated into categories asociated with evolv-

7Top-level EC #s map to functions as follows: Oxidoreductases (1), transferases (2), hydrolases
(3), lyases (4), isomerases (5), ligases (6).
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ability and and promiscuous activity against a broad spectrum of substrates. For
example, nearly one-in-five foldtuned P450s is placed in EC 1.14.14.1, the catch-all
"unspecified monooxygenase" category from which xenobiotic-metabolizing en-
zymes tend to emerge. Similarly, foldtuned versions of CRISPR Cas1 — a metal-
dependent non-site-specific DNA-specific endonuclease — are sometimes labeled
instead as site-specific, as exonucleases, or even as reverse transcriptases — pointing
to fertile ground for engineering stable and sequence-specific gene-editing proteins
from foldtuned starting points positioned away from the pitfalls of the edge of stabil-
ity (Taverna and Goldstein, 2002). Foldtuned protein kinases span serine/threonine
kinases (often with unknown or ambiguous specificity), (receptor)-tyrosine kinases,
and dual-specificity kinases that can act on serine, threonine, and tyrosine residues,
perhaps presaging utility in designing bespoke signaling networks. Foldtuned ver-
sions of common scaffolds, meanwhile, are typified by consistent annotation cover-
age spread across the six top-level EC reaction types, suggesting that foldtuning is
preserving functional breadth when learning the sequence determinants of nature’s
most widely-used and frequently repurposed domains (Fig. S3.15).

3.3 Conclusion
In the face of an apparent tradeoff between breadth and novelty in protein language
models, we developed foldtuning, a PLM-based method that prioritizes the retrieval
of novel — but plausible and useful — protein sequences by using individual target
folds as structural guideposts to turn breadth reduction into a facilitator of novel
sequence generation, speciating a library of several hundred foldtuned PLMs op-
timized for diverse structural and functional motifs. Foldtuning is an unabashedly
"novelty-first" approach to protein design, predicated on the premise that structural
mimics and knockoffs of real functional proteins are logical starting points for nav-
igating the hidden order of protein-space and discovering new downstream binding
and catalytic properties including ones less suited to a priori specification for de novo
design. Across folds that vary in 2° and 3° structure composition and preferences,
foldtuning stays anchored to its target fold family, as captured by high structural hit
rates, while departing from natural sequence-space, as captured by high sequence
"escape" rates; often, these metrics are maximized simultaneously, indicating that
by accepting a self-imposed restriction on breadth, foldtuning frees its base PLM to
chase the extremes of allowable sequence manipulation within the structural con-
fines of the target. We attribute this remarkable performance to round-by-round
PLM updates on self-generated synthetic sequences, validated as structural matches
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and filtered against resemblance to natural versions. In a way, this contradicts recent
claims — made in the context of large language models for text, and invoked in
relation to PLMs — that such recursive re-training on model-generated data risks
complete and unmitigated model collapse to gibberish (Shumailov et al., 2024).8

Perhaps such a fate is avoided thanks to the careful filtering and validation steps;
mayhaps it is a hazard to stay attuned to, that foldtuning stays Pareto efficient with
respect to structure matching and sequence escape as the number of cycles is pushed
past "evo+four." Either way, foldtuning explores substantial sequence novelty as
hoped, powered by relatively small amounts of synthetic data per round; intrigu-
ingly, this is also consistent with recent efforts aiming chemical language models
at the problem of unearthing previously-undetected small molecules (Qiang et al.,
2024; Skinnider et al., 2021).

Despite — as is inherent in the definition of a PLM — only interfacing directly
with sequence data — foldtuned models explore novelty at the levels of sequence,
structure, and function. As far as sequence is concerned, foldtuned models dis-
play distinct preferences for amino-acid and short subsequence usage that depart
from natural examples. To put the magnitude of these changes in subsequence
usage in perspective — the differences in cognate "word" selection here are so
pronounced as to be roughly on par with the pairwise lexical distances9 between
Spanish, French, and Portuguese — emphasizing that foldtuning is penetrating so
far into far-from-natural sequence-space as to generate proteins reflecting newly-
accessed underlying rules of language. Continuing down a level in information
flow to structure, foldtuning samples elaborations, ornamentations, minimizations,
and re-symmetrizations on and of its target fold — structurally plastic modifica-
tions that might translate to perturbed binding surfaces, active/allosteric sites, and
so forth — remaining in the same neighborhood as the target fold, but strictly ver-
boten to de novo backbone design specification. One gets the sense that as far as
sequence and structure considered jointly, foldtuning behaves as an evolution-esque

8For an evocative example of such a catastrophe, consider the following: An image generation
model is trained on real photographs of pet dogs. The generator’s output might start, innocently
enough, by over-emphasizing the most common household breeds: golden retrievers and German
shepherds. Then when updated on its own output, it would produce photorealistic images of goldens
only. And when trained yet further on this newest output, it would offer up a collection of golden
grotesques sprouting extra legs, leathery tails, or Cyclopian eyes — more likely to grace the walls of
a Cubist gallery than the rescue or shelter nearest you.

9"Lexical distance" or lexical similarity is analogous to 1 - (vocabulary shift) as defined above;
for human languages it is generally calculated based on a standard word list of ∼ 100− 225 cognates
(Swadesh, 1955). Here we compare lexical distance to vocabulary shift computed over 160, 000
4-grams.
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novelty generator, unencumbered by fitness, tooling about parts of protein-space
removed from nature’s little sliver. And in light of variable stability predictions
for all these foldtuning-generated variants, a synergistic angle for exploiting the
relative advantages of foldtuning and inverse-folding might be to feed some of the
novel structures emitted by foldtuning to a state-of-the-art inverse-folding model as
templates, in hopes of bolstering stability without fully reverting to natural sequence
patterns. Sliding the last level down to function, according to functional predic-
tors, foldtuning whets the appetite for everything from evolvable enzymes poised to
perform new-to-nature chemistry, to modular domain parts for signaling pathways
and programmable gene-editors, further validating the synthetic biology potential
of coarsely structure-mimicking, sequence-perturbing döppelganger proteins. Of
course, the monstrous caveat to all of the light foldtuning casts on hitherto unseen
parts of the sequence→structure→function map is that all of the findings in this
chapter have been steadfastly in silico; the true burden of utility for bioengineering
and synthetic biology is experimental, and the subject of the next chapter.

3.4 Methods
Except where otherwise specified, all model access and interfacing was via trill
v1.3.11 (Martinez et al., 2023).

Target Fold Selection for Foldtuning
Out of 1562 folds categorized in SCOP v2, 1474 are present in the SCOP-UniRef50
database whose construction is described in Section 2.4 (Andreeva et al., 2020).
The top 850 most-abundant of these comprise the intial target set for foldtuning,
a cutoff selected in part out of consideration for compute resource constraints and
in part to exclude folds with potentially inadequate volumes of natural sequence
starting material. As a second target set, we hand-select 44 cytokine, chemokine,
and growth factor entries from InterPro, motivated by functional protein engineering
applications (Blum et al., 2025).

Sequence Selection for Evotuning
For the preliminary foldtuning round on SCOP target fold 𝑓 , termed the evotuning
round, the base ProtGPT2 model was finetuned for 1-3 epochs on 100 natural
sequences selected at random from the subset of sequences in the custom SCOP-
UniRef50 database (construction described in Section 2.4) annotated to fold 𝑓 .

For the evotuning round on InterPro target entry 𝑓𝐼𝑃, 100 natural sequences were
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selected at random from sequences associated with 𝑓𝐼𝑃 in InterPro v93.0, prelim-
inarily clustered at 100% sequence similarity with mmseqs2 for deduplication and
fragment removal (Blum et al., 2025).

Finetuning of ProtGPT2
All finetuning of ProtGPT2 was performed with the Adam optimizer using a learning
rate of 0.0001, and next-token prediction as the causal language modeling task. For
the evotuning round, finetuning proceeded for 1-3 epochs, with the number of
epochs for a specific SCOP fold 𝑓 or InterPro fold 𝑓𝐼𝑃 determined by a pre-screen in
which ProtGPT2 was finetuned for 1-5 epochs, generating 100 sequences per epoch,
predicting and assigning structures as described below, and finding the minimum
epoch such that ≥ 7% of sequences were assigned to fold 𝑓 in order to ensure
sufficient synthetic data to initiate foldtuning.

In subsequent foldtuning rounds, finetuning was performed with the same optimizer
parameters, for 1 epoch only, on the top-100 previous-round sequences assigned to
𝑓 or 𝑓𝐼𝑃 ranked in order of decreasing semantic change as described in the main text
and below.

Sequence Generation from ProtGPT2
Sampling from finetuned ProtGPT2 models followed the same general procedures,
hyperparameters, and processing steps as for sampling from the base pretrained
ProtGPT2 model as described in Section 2.4, with the following differences: (1)
in each road of foldtuning, 1000 sequences were generated from the appropriate
finetuned model; (2) termination was after 0.4 × 𝑀 tokens, where 𝑀 is the median
length of SCOP-UniRef50 natural sequences for target fold 𝑓 , or the first STOP
token, whichever occurred first; and (3) generated sequences were force-truncated
to a maximum length of 𝑀aa. Inference batch size on a single NVIDIA A100-80G
GPU ranged from 125-500 sequences depending on target sequence length.

Structure Prediction and Assignment
All structures were predicted with default ESMFold inference parameters as in
Lin et al. (2023). Structures were inferenced in batches of 10-500, depending on
sequence length, on single A100-80G GPUs, with compute resource collaboration
through Oracle Cloud Infrastructure (OCI).

Predicted structures were annotated to either (1) SCOP fold labels via Fold-
seek structure-based search against a custom database comprised of the 𝑛 = 36, 900
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superfamily-level representative structures in SCOP v2, or to (2) InterPro entry labels
via Foldseek structure-based search against a custom database comprised of struc-
tures compiled from 44 chemokine, cytokine, and growth factor entries in InterPro
v93.0. Irrespective of target databse, Foldseek was run in accelerated TMalign
mode. The consensus SCOP fold or InterPro entry was defined as the fold/entry
accounting for the most hits with TMscore > 0.5 and max(query_coverage, tar-
get_coverage) > 0.8. In the absence of at least one hit satisfying these criteria, a
structure was considered to be un-assignable.

Sequence Selection for Foldtuning
For each target fold 𝑓 , 𝑓𝐼𝑃 and foldtuning round 𝑘 = 1, 2, ...𝑁 , the semantic change
relative to natural versions was calculated for all generated sequences {𝑠(𝑖)

𝑘
} struc-

turally assigned to fold 𝑓 , 𝑓𝐼𝑃 as

𝑧
(𝑖)
𝑘

= min
𝑗

∥𝑥 (𝑖)
𝑘

− 𝑥
( 𝑗)
𝑡𝑟𝑎𝑖𝑛

∥1 (3.1)

where 𝑠
(𝑖)
𝑘

↦→ 𝑥
(𝑖)
𝑘

∈ R1280 via embedding with ESM2-650M, and the "train" sub-
script denotes the natural sequences selected from SCOP-UniRef50 or InterPro for
the initial foldtuning round. The {𝑠(𝑖)

𝑘
} were ranked by their corresponding {𝑧(𝑖)

𝑘
} in

descending-order and the top 100 combined as the finetuning sequence data for the
(𝑘 + 1)-th round.

In Silico Evaluation of Foldtuned Models & Outputs
Structural Hit, Sequence Escape, and Designability Rates

For a given foldtuned model with target fold 𝑓 , structural hit rate was computed as
the fraction of generated sequences with successful structure assignment to 𝑓 . More
formally, for a generated sequence 𝑠𝑖 and fold 𝑓 , it is Pr(𝑠𝑖 ∈ 𝑓 ). Sequence escape
rate was computed as the fraction of those sequences structurally assigned to the
target that do not return an alignment of any length to any cluster representative from
UniRef50 in an mmseqs2 search with default easy-search parameters and maximum
e-value 0.01. Or, formally, Pr(𝑠𝑖 ∉ N|𝑠𝑖 ∈ 𝑓 ), where we borrow N to stand in for
the set of all natural/natural-resembling/homologous-to-natural sequences. The
"designability" of a fold 𝑓 was computed as the product of the corresponding
structural hit and sequence escape rates, or 𝑑 𝑓 = Pr(𝑠𝑖 ∉ N|𝑠𝑖 ∈ 𝑓 ) × Pr(𝑠𝑖 ∈ 𝑓 ) =
Pr(𝑠𝑖 ∉ N; 𝑠𝑖 ∈ 𝑓 ).
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PCA and UMAP Representations

Mean-pooled embeddings for natural and foldtuned sequences were inferenced with
ESM2-650M and dimension-reduced from R1280 to R100 by principal component
analysis (PCA) and further to R2 by Uniform Manifold Approximation and Projec-
tion (UMAP). For the eleven chosen folds depicted in Figure 3.1, Figure S3.1, and
Figure S3.2, natural sequences were sampled from SCOP-UniRef50 at 5x the num-
ber of filtered, validated foldtuned sequences obtained after initial evotuning+four
rounds.

Sequence Similarity Analysis and Clustering

Sequence network analysis was carried out by separately preclustering foldtuned
sequences and natural SCOP-UniRef50 sequence fragments assigned to fold 𝑓

at 50% identity, via mmseqs2 easy-cluster with default settings and covariance
mode 1. Preclustered sequence sets were then merged and searched all-against-
all using mmseqs2 easy-search with maximum e-value 10−5. Graph represen-
tations were constructed with preclustered sequences as nodes and edges joining
pairs of nodes with reciprocal alignments of any length satisfying a minimum
identity threshold of 30%. Visualization was with networkx, with node posi-
tions calculated according to a force-directed representation with spring constants
𝑘𝑖 𝑗 ∝ {seq. iden. between 𝑠𝑖, 𝑠 𝑗 }.

Structural Similarity Analysis and Clustering

Structural clustering analysis for a fold 𝑓 was carried out by conducting an all-
against-all structural alignment of successfully assigned variants with Foldseek in
fast TM-align mode. Missing values (no alignment passing filters) were imputed
as having a TMscore of 0. Results were represented as a graph with individual
variants as nodes, and an edge joining any pair of nodes with reciprocal average
TMscore > 0.7, and Louvain clustering was performed with networkx with
default parameters to separate the network into fold motif clusters. Isolated nodes
were excluded from clustering and visualization.

Energy Scoring Calculations

Biomolecule energy scores were obtained using the default ‘ref2015‘ energy func-
tion and standard relaxation and scoring workflow in Rosetta v3.11, as described
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in Alford et al. (2017). Energy scores are reported in Rosetta Energy Units (R.E.U.),
normalized to sequence length.

Advanced Chemical Property Prediction and Visualization
Melting temperature bin predictions (𝑇𝑚) for thermostability were obtained for all
foldtuned sequences using the 40◦𝐶, 45◦𝐶, 50◦𝐶, 55◦𝐶, 60◦𝐶, and 65◦𝐶 binary
classifiers released as part of TemStaPro v0.2.6 (Pudžiuvelytė et al., 2024).

Functional enzyme reactivity annotation labels (Enzyme Commission #s; EC#s)
were inferred for thirty-one classes of foldtuned sequences using the fast "max-
separation" mode of CLEAN v1.0.1 (Yu et al., 2023). Where multiple EC#s were
inferred for a given sequence, the closest centroid was retained as the best-scoring
annotation. The full body of EC# annotations across all scored sequences for a
given fold were visualized using KronaTools v2.8.1 with XML customization to
maintain a consistent color scheme for top-level EC# classification: oxidoreductases
(EC 1; red), transferases (EC 2; yellow), hydrolases (EC 3; green), lyases (EC 4;
blue), isomerases (EC 5; purple), and ligases (EC 6; pink).

Sequence N-Gram Decomposition and Analysis

N-gram vocabulary analysis was carried out with custom code by splitting foldtuned
sequences and SCOP-UniRef50 sequence fragments assigned to fold 𝑓 into subse-
quences ("words") of length 1, 2, 3, or 4 and computing their respective frequency
distributions and fold-change for foldtuned variants vs. natural SCOP-UniRef50
sequences. For each fold/word-length pair, 𝑛 = 1000 non-parametric bootstrap
replicates were drawn with the SCOP-UniRef50 sequences as the null distribution
and significance testing for individual word frequency change performed at signif-
icance level 𝛼 = 0.05, applying the Binyamini-Hochberg correction for positively
correlated tests (Benjamini and Yekutieli, 2001).10

Model Availability
A streamlined implementation of foldtuning is now distributed in trill (v1.8.3 and
later; https://pypi.org/project/trill-proteins/) (Martinez et al., 2023).

10This is a conservative handling of false discovery for the problem at hand; testing for n-gram
usage change is indubitably positively correlated between individual "words" as the relative overuse
or underuse of any one word affects the available "lexical density" shared by all the remaining words.
While the standard Binyami-Hochberg correction of rejecting all null hypotheses 𝐻𝑖 for 𝑖 = 1, 2, ...𝑘
where 𝑘 is the largest integer s.t. 𝑝𝑘 < (𝑘/𝑚)𝛼 holds and is applied in this case, a resampling-based
approach as in (Yekutieli and Benjamini, 1999) might be a preferable choice that does not sacrifice
statistical power to the same extent.
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3.5 Supplemental Material
Supplemental Figures

Figure S3.1: Principal component analysis (PCA) of natural and foldtuned
ESM2-650M embeddings. Pairwise plots of top four principal components (frac-
tional variance: 0.386, 0.103, 0.047, 0.039, respectively) of ESM2-650M embed-
dings of natural (SCOP-UniRef50) and foldtuning-generated proteins for 11 SCOP
folds: GPCRs, small GTPases, immunoglobulin-like domains (IgBs), leucine-rich
repeat domains (LRRs), 𝛽𝛽𝛼-zinc finger transcription factors, bHLH transcription
factors, defensins, three-finger toxins (3FTxs), TIM-𝛽/𝛼 barrels, SH3 domains, and
barstar-like domains.
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Figure S3.2: ESM2-650M embeddings capture round-by-round drift of fold-
tuned sequences from their natural parents. 2D UMAP representation of ESM2-
650M embeddings for eleven representative target fold classes, progressing from
natural examples through up to five rounds of foldtuning. Selected folds: (A) 𝛽𝛽𝛼-
zinc finger. (B) Barstar. (C) Defensin. (D) G-protein coupled receptor (GPCR). (E)
Small GTPase. (F) Basic HLH transcription factor (bHLH). (G) Immunoglobulin
𝛽-sandwich (Ig𝛽). (H) Leucine-rich repeat (LRR). (I) SH3 domain. (J) Three-
finger toxin domain (3FTx). (K) TIM 𝛽/𝛼 barrel. Subfigure boundaries are set to
the 5th- and 95th- quantiles in each UMAP component.
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Figure S3.3: Sequence similarity between foldtuned and natural variants. Plots
of normalized alignment length vs. sequence identity over the aligned region for the
closest UniRef50 homolog to each foldtuned variant as identified by ultrasensitive
search with MMSeqs2. Selected folds: (A) 𝛽𝛽𝛼-zinc finger. (B) Barstar. (C)
Defensin. (D) G-protein coupled receptor (GPCR). (E) Small GTPase. (F) Basic
HLH transcription factor (bHLH). (G) Immunoglobulin 𝛽-sandwich (Ig𝛽). (H)
Leucine-rich repeat (LRR). (I) SH3 domain. (J) Three-finger toxin domain (3FTx).
(K) TIM 𝛽/𝛼 barrel.
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Figure S3.4: Designability vs natural abundance for 𝑛 = 708 SCOP fold targets.
Designability proxy (structural hit rate× sequence escape rate) across 𝑛 = 708 SCOP
fold targets is weakly explained by natural abundance in the custom SCOP-UniRef50
database: linear regression 𝑡-test for positive slope; slope= 12.80, 𝑟 = 0.234,
𝑝 = 1.55 × 10−10.
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Figure S3.5: Usage patterns of the 20 canonical amino-acids in foldtuned se-
quences vs. natural sequences for selected folds. Sig. words denotes the
count/fraction of AAs with a statistically significant usage shift (colored red, vs
𝑛 = 1000 bootstrapped SCOP-UniRef50 replicates, 𝑝 < 0.05 under binyamini-
hochberg correction for positively correlated tests). The top-four most-shifted AAs
as ranked by usage fold-change are labeled. Selected folds: (A) TIM 𝛽/𝛼 barrel. (B)
Ferredoxin. (C) Rossmann2x3oid. (D) Ig𝛽-like. (E) Short-chain dehydrogenase
(SDR). (F) Protein kinase (PK). (G) Ribonuclease H. (H) Methyltransferase. (I)
PLP-dependent transferase. (J) OB fold. (K) Thioredoxin. (L) small GTPase.
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Figure S3.6: Usage patterns of amino-acid subsequences of length 2 (“2grams”,
“bigrams”) in foldtuned sequences vs. natural sequences for selected folds. Sig.
words denotes the count/fraction of 2grams with a statistically significant usage shift
(colored red, vs 𝑛 = 1000 bootstrapped SCOP-UniRef50 replicates, 𝑝 < 0.05 under
binyamini-hochberg correction for positively correlated tests). The top-four most-
shifted AAs as ranked by usage fold-change are labeled. Selected folds: (A) TIM
𝛽/𝛼 barrel. (B) Ferredoxin. (C) Rossmann2x3oid. (D) Ig𝛽-like. (E) Short-
chain dehydrogenase (SDR). (F) Protein kinase (PK). (G) Ribonuclease H. (H)
Methyltransferase. (I) PLP-dependent transferase. (J) OB fold. (K) Thioredoxin.
(L) small GTPase.
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Figure S3.7: Usage patterns of amino-acid subsequences of length 3 (“3grams”,
"trigrams”) in foldtuned sequences vs. natural sequences for selected folds.
Sig. words denotes the count/fraction of 3grams with a statistically significant usage
shift (colored red, vs 𝑛 = 1000 bootstrapped SCOP-UniRef50 replicates, 𝑝 < 0.05
under binyamini-hochberg correction for positively correlated tests). The top-four
most-shifted AAs as ranked by usage fold-change are labeled. Selected folds: (A)
TIM 𝛽/𝛼 barrel. (B) Ferredoxin. (C) Rossmann2x3oid. (D) Ig𝛽-like. (E) Short-
chain dehydrogenase (SDR). (F) Protein kinase (PK). (G) Ribonuclease H. (H)
Methyltransferase. (I) PLP-dependent transferase. (J) OB fold. (K) Thioredoxin.
(L) small GTPase.
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Figure S3.8: Usage patterns of amino-acid subsequences of length 4 (“4grams”)
in foldtuned sequences vs. natural sequences for selected folds. Sig. words
denotes the count/fraction of 4grams with a statistically significant usage shift (col-
ored red, vs 𝑛 = 1000 bootstrapped SCOP-UniRef50 replicates, 𝑝 < 0.05 under
binyamini-hochberg correction for positively correlated tests). The top-four most-
shifted AAs as ranked by usage fold-change are labeled. Selected folds: (A) TIM
𝛽/𝛼 barrel. (B) Ferredoxin. (C) Rossmann2x3oid. (D) Ig𝛽-like. (E) Short-chain
dehydrogenase (SDR). (F) Protein kinase (PK). (G) Ribonuclease H. (H) Methyl-
transferase. (I) PLP-dependent transferase. (J) OB fold. (K) Thioredoxin. (L)
small GTPase.
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Figure S3.9: Rank-ordered usage of individual amino-acids for foldtuned se-
quences (purple, labeled) and natural sequences (𝑛 = 1000 SCOP-UniRef50
bootstrap samples; gray) for selected folds. Selected folds: (A) TIM 𝛽/𝛼 barrel.
(B) Ferredoxin. (C) Rossmann2x3oid. (D) Ig𝛽-like. (E) Short-chain dehydroge-
nase (SDR). (F) Protein kinase (PK). (G) Ribonuclease H. (H) Methyltransferase.
(I) PLP-dependent transferase. (J) OB fold. (K) Thioredoxin. (L) small GTPase.
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Figure S3.10: Rank-ordered usage of subsequences of length 2 (“2grams”,
“bigrams”) for foldtuned sequences (purple, labeled) and natural sequences
(𝑛 = 1000 SCOP-UniRef50 bootstrap samples; gray) for selected folds. Selected
folds: (A) TIM 𝛽/𝛼 barrel. (B) Ferredoxin. (C) Rossmann2x3oid. (D) Ig𝛽-like.
(E) Short-chain dehydrogenase (SDR). (F) Protein kinase (PK). (G) Ribonuclease
H. (H) Methyltransferase. (I) PLP-dependent transferase. (J) OB fold. (K) Thiore-
doxin. (L) small GTPase.
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Figure S3.11: Rank-ordered usage of subsequences of length 3 (“3grams”,
“trigrams”) for foldtuned sequences (purple, labeled) and natural sequences
(𝑛 = 1000 SCOP-UniRef50 bootstrap samples; gray) for selected folds. Selected
folds: (A) TIM 𝛽/𝛼 barrel. (B) Ferredoxin. (C) Rossmann2x3oid. (D) Ig𝛽-like.
(E) Short-chain dehydrogenase (SDR). (F) Protein kinase (PK). (G) Ribonuclease
H. (H) Methyltransferase. (I) PLP-dependent transferase. (J) OB fold. (K) Thiore-
doxin. (L) small GTPase.
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Figure S3.12: Rank-ordered usage of subsequences of length 4 (“4grams”) for
foldtuned sequences (purple, labeled) and natural sequences (𝑛 = 1000 SCOP-
UniRef50 bootstrap samples; gray) for selected folds. Selected folds: (A) TIM
𝛽/𝛼 barrel. (B) Ferredoxin. (C) Rossmann2x3oid. (D) Ig𝛽-like. (E) Short-
chain dehydrogenase (SDR). (F) Protein kinase (PK). (G) Ribonuclease H. (H)
Methyltransferase. (I) PLP-dependent transferase. (J) OB fold. (K) Thioredoxin.
(L) small GTPase.
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Figure S3.13: Foldtuned proteins are predicted to exhibit varying degrees of
thermostability. Filtered, validated sequences generated from 55 foldtuned models
of interest are expected to exhibit melting temperatures (𝑇𝑚) ranging from < 40◦𝐶
to > 65◦𝐶, as predicted by TemStaPro (Pudžiuvelytė et al., 2024). Selected models
are grouped into: (A) Hydrolase and oxidoreductase enzymes. (B) Nucleases and
other gene-editing-related proteins. (C) Kinases. (D) Proteases and peptidases. (E)
Common topologies/scaffolds spanning multiple enzyme families. (F) Common
synthetic biology “toolkit” parts for cellular engineering applications.
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Figure S3.14: Foldtuned proteins are predicted to mimic or expand parent
enzymatic functions. Wheel plots of predicted Enzyme Commission (EC) numbers
(top 5 EC#s per fold tabulated below) for foldtuned variants of select catalytic folds,
as annotated by CLEAN (Yu et al., 2023). Sectors are colored by top-level EC #s —
oxidoreductases (EC 1; red), transferases (EC 2; yellow), hydrolases (EC 3; green),
lyases (EC 4; blue), isomerases (EC 5; purple), ligases (EC 6; pink). Selected
folds: (A) Cytochrome c P450s. (B) Nitrite/sulfite reductases. (C) CRISPR Cas1
endonuclease. (D) 𝛼/𝛽-hydrolases. (E) Protein kinases. (F) Chelatases.
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Figure S3.15: Foldtuned proteins for common enzyme scaffolds are predicted
to span wide functional classes. Wheel plots of predicted Enzyme Commission
(EC) numbers (top 5 EC#s per fold tabulated below) for foldtuned variants of select
broad-spectrum catalytic folds, as annotated by CLEAN. Sector coloring follows
Fig. S3.14. Selected folds: (A) TIM 𝛽/𝛼 barrels. (B) FAD/NAD(P)-dependent
enzymes. (C) Rossmann 2x3oid proteins. (D) Canonical Rossmann proteins.
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Supplemental Tables

Table S3.1: Designability of SCOP folds. Top 2% (𝑛 = 14) of succesfully foldtuned
SCOP folds (𝑁 = 727), ranked by designability proxy (structural hit rate × sequence
escape rate), with topology class and structural/functional notes.

SCOP

ID Fold Class Struct. Hit Rate Seq. Esc. Rate Design. Note

2000062 RH 𝛽-helix 𝛽 0.881 0.941 0.829 Periodic
2000239 Ribbon-helix-helix domain 𝛼 0.818 0.958 0.783 DNA-binding
2000031 TIM 𝛽/𝛼 barrel 𝛼/𝛽 0.770 0.995 0.766 Symmetry (8-fold)
2000920 Anti-∥ 𝛽/𝛼 barrel 𝛼 + 𝛽 0.743 0.996 0.740 Symmetry (5-fold)
2000619 𝛼/𝛼 toroid 𝛼 0.704 0.994 0.700 Periodic
2000193 Transmembrane 𝛽-barrel 𝛽 0.731 0.955 0.698 Symmetry (various)
2000308 Sm-like fold 𝛽 0.741 0.889 0.659 RNA-binding
2000440 Defensin n/a 0.625 0.998 0.624 Antimicrobial
2000144 Winged helix domain 𝛼 + 𝛽 0.720 0.860 0.619 DNA-binding
2000087 POU domain 𝛼 0.664 0.920 0.611 DNA-binding
2000419 Pentein 𝛽/𝛼 propeller 𝛼 + 𝛽 0.624 0.954 0.595 Symmetry (5-fold)
2000501 DNA clamp 𝛼 + 𝛽 0.658 0.895 0.589 DNA-binding
2000114 Histone fold 𝛼 0.617 0.953 0.588 DNA-binding
2001248 RecA-like basic 𝛼/𝛽 0.724 0.807 0.584 DNA-binding
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C h a p t e r 4

FOLDTUNED PROTEINS ARE NOVEL AND FUNCTIONAL

4.1 Introduction
In the preceding chapter, we motivated and introduced "foldtuning" as a promising
algorithm for generating far-from-nature and new-to-nature sequences that slot into
the broad contours of natural fold families, leveraging structural plasticity in moder-
ation as an extra, evolution-inspired source of structural and functional novelty. We
also showed that, in addition to reflecting orthogonal-to-nature "language rules" for
"writing" protein sequences, many foldtuned proteins pass a basic computational
screen for physical reasonableness by exhibiting predicted-stable folded states.

In this chapter, we report on preliminary experimental validation for three foldtuned
targets selected for amenability to high-throughput characterization, familiarity in
the general field of protein science, and translational relevance for downstream
synthetic biology and therapeutic applications. These three targets are as follows: (1)
the SH3 domain, a small adaptor domain that mediates protein-protein interactions
in receptor-initiated and cytoplasmic signal transduction pathways, often as part
of tyrosine kinases (Kurochkina and Guha, 2013; Mayer, 2001); (2) the barstar
fold, an antitoxin-like inhibitor of a secreted bacterial ribonuclease, the smallest
and simplest of the known 𝛼/𝛽 folds, and additionally well-studied as a model
system for concerted folding pathways and protein-protein interaction energetics
(Schreiber and Fersht, 1995; Schreiber et al., 1994); and (3) insulin, the first peptide
hormone discovered and characterized, the major regulator of anabolic metabolism
in eukaryotes, and whose absence or dysregulation is the causative agent of diabetes
(Mayer et al., 2007). Tailoring assays for expression, stability, and binding to the
individualized circumstances of the aformentioned three fold targets, we demonstrate
that foldtuned proteins are realizable and functional in certain in vitro and in vivo
contexts. Augmenting these experiments with statistical and theoretical analyses of
generated sequence architecture, structural features, and physicochemical properties
we argue further that foldtuned models learn the minimal structural information
required to maintain a core fold and to either (i) preserve existing function or (ii)
broaden to novel ones depending on the selective pressure applied.
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4.2 Results & Discussion
Foldtuned SH3 domains express stably
Emboldened by the ability of foldtuning to readily propose plausible far-from-natural
protein sequences, we sought to validate selected examples experimentally for ex-
pression, stability, and function with minimal target-specific platform optimazation.
From a roster of small folds (≤ 84aa) for which coding DNA oligo pools could be
easily synthesized, we focused first on the SH3-like barrel (SCOP ID: 2000090).
The SH3 domain is a notable protein-protein interaction component and regulator
of signal transduction, particularly in tyrosine kinase pathways. Engineered SH3
domains have historically been desirable in synthetic biology for roles in designed
artificial protein recognition and signaling cascades, but attempts to develop an SH3
"toolkit" have been stymied by difficulties with de novo 𝛽-barrel design and off-target
crosstalk with natural SH3s (Kim et al., 2023). SH3 structural homologs are strewn
across functionally diverse superfamilies, including the aforementioned adaptor do-
mains that commonly bind polyproline motifs in protein ligands, chromodomains
that recognize histone methylated lysine marks, and large-subunit ribosomal proteins
that scaffold rRNA.

Applying the standard evo+four foldtuning procedure to ProtGPT2 with SH3s as
the target produced 2593 variants after in silico filtering, for a structural hit rate
and sequence escape rate of 0.519 and 0.310 respectively. In contrast to, e.g. deep-
mutational scanning libraries, proteins in foldtuned variant libraries — including for
SH3s — boast high sequence diversity, featuring low pairwise sequence similarities
and unique proteolytic digestion signatures (Fig. S4.1A-C). This enables direct high-
throughput characterization of protein expression and select biophysical properties
by mass-spectrometry-based proteomics without the additional complexity and cost
of typical yeast-, mRNA-, or cDNA- display methods (Fig. 4.1A) (Rocklin et al.,
2017; Tsuboyama et al., 2023). For our SH3 foldtuned library, 1347/2593 (51.9%)
variants express at detectable levels in a reconstituted transcription-translation sys-
tem as measured by untargeted mass-spectrometric profiling (Fig. 4.1B-C). Using
length-normalized signal as a proxy for absolute abundance of expressed proteins,
we observe signal intensity spanning ∼ 6 orders of magnitude, suggesting substan-
tial variance in the intrinsic expressability of foldtuned SH3s and foldtuned designs
more broadly; it must be emphasized, however, that these measurements cannot on
their own account for confounding factors such as the imbalances in the makeup of
the amplified oligo pool encoding the SH3 library. Regardless of this nuance, we
see no evidence that expression level correlates with sequence similarity to natural
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Figure 4.1: Foldtuning-generated SH3s are expressable and stable. (A).
Schematic of mass-spectrometry-based proteomics assays for variant library ex-
pression and folding stability. (B) SH3 expression assay signal intensity normalized
by expected tryptic peptide count vs. sequence identity to most-similar natural hit
in UniRef50 for variants generated from models undergoing 0-4 rounds of foldtun-
ing. (total 𝑁 = 1347) (C) SH3 folding stability vs. expression assay results for
𝑁 = 361variants detected in both contexts. Folding stability (y-axis) is measured
by relative abundance ratio between natural and denaturing purification fractions.
Normalized expression (x-axis) is measured as as in (B). (D) Folding stability vs.
expression for PURExpress transcription-translation protein components (𝑁 = 91)
as an internal control. (E) AlphaFold3 predicted structures and iPTM scores for
selected SH3 variants (green) bound to a classI/II proline-rich peptide (teal), com-
pared to the wildtype G. gallus spectrin SH3 domain.

SH3s or that it shifts based on the number of foldtuning cycles performed (Fig.
4.1B).

To rule out cases where high cell-free expression intensity might mask solubility
and/or aggregation issues from poor folding stability we compared foldtuned protein
recovery under native and denaturing purification conditions via multiplexed pro-
teomics; variants without folding pathologies (e.g. exposed hydrophobic residues,
buried and/or electrostatically clashing charged residues) are expected to show equiv-
alent or greater signal in the native fraction relative to the denatured one (Fig. 4.1A).
Analysis of the native/denatured signal fold-change for an internal control of 𝑁 = 91
E. coli proteins originating from the reconstituted transcription-translation system
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demonstrates that this stability/solubility proxy has a dynamic range spanning up
to ∼ 10 orders of magnitude under the instrument conditions used (Fig. 4.1D).1

Turning back to the foldtuned SH3s, 361 variants are detected confidently in both
the absolute and multiplexed expression assay; absolute expression signal varies
over ∼ 4 orders of magnitude, while the native/denatured signal fold-change varies
over ∼ 6 orders of magnitude (Fig. 4.1C). Of particular interest is a subpopulation
of 87 foldtuned SH3s that are both highly abundant in the initial expression assay
and displaced away from the denatured fraction in the solubility/aggreggation assay,
suggesting expressability, relative folding stability, and low aggregation propensity
(Fig. 4.1C).

With an eye towards designing and optimizing SH3 parts for synthetic signal trans-
duction, we computationally tested the hypothesis that foldtuned SH3 variants with
high expressability and relative folding stability might recognize the proline-rich
peptide motifs found in the full-length protein binding partners of natural SH3 do-
mains (Mayer, 2001). In silico screening with AlphaFold3 predicts that, indeed,
certain physically-plausible foldtuned SH3 variants can bind either class I or class
II proline-rich ligands in a hydrophobic aromatic-sidechain-rich cleft analogous to
the wild-type interface as exemplified by the G. gallus spectrin SH3 domain (Fig.
4.1E). Two exemplary foldtuned putative SH3s that emerge in the AlphaFold3-based
screen are model 3 #61 (3_61) and model 2 # 751 (2_751). Variant 3_61 is a distant
homolog of the guanine nucleotide exchange factor Vav (involved in cytoskele-
tal remodeling during lymphocyte development and activation) and is predicted to
recognize the canonical class I motif RPLPPLP. Variant 2_751 has no detectable
sequence homology to any known protein, yet is predicted to recognize the canonical
class II motif PPPLPPRP.

To clarify how foldtuned models might be preserving critical structural and func-
tional features in SH3s, including ones responsible for stability or binding of polypro-
line motifs, we turned to statistical coupling analysis (SCA). Originally developed
to identify statistically interacting amino-acids from evolutionary-related sequence
data, SCA has historically been applied to natural protein families to infer and
extract physically connected "sectors" posited to comprise the minimal sequence
information required to specify a fold and/or function (Halabi et al., 2009; Lock-

1The exact number and amino-acid sequences of protein components in the particular recombi-
nant transcription-translation system used in this study, PURExpress from New England Biosystems,
is proprietary. As a substitute approach, internal control proteins were mapped to an E. coli reference
proteome.
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less and Ranganathan, 1999; Socolich et al., 2005; Süel et al., 2003). Here, we
applied SCA separately to natural SH3 domains and to the 2593 foldtuned puta-
tive SH3s and extracted sectors from each.2 For both natural and synthetic SH3s,
SCA finds a single small sector, covering eight and five residues in the natural
and synthetic cases respectively (Fig. S4.2A-B). Natural and synthetic sectors are
composed of non-overlapping sets of core residues; only a single sector position
interacts directly with the bound proline-rich motif and it is shared between the
natural and synthetic sectors. This suggests that, in line with the promiscuity and
diversity of SH3-peptide binding, foldtuning may be preserving a bare-minimum
sequence rule for binding few-among-many polyproline-like targets, while trying
out a completely different solution for stably packing the SH3 𝛽-barrel core. Ul-
timately, evaluating this interpretation will necessitate experimental validation of
new foldtuning-enabled synthetic "links" in the SH3 connectome, potentially via
a high-throughput/high-resolution SH3-peptide all-against-all cross-linking mass
spectrometry approach.

Foldtuned barstars rescue bacteria from barnase toxicity
For a target with a more direct experimental readout of not just stability, but also
function, we consider the barstar-like fold (SCOP ID: 2000624). With a single
three-stranded parallel 𝛽-sheet packed against three 𝛼-helices, all connected by short
loops, the barstar-like fold is an exceedingly simple 𝛼/𝛽 unit, familiar from foun-
dational studies of protein folding stability (Schreiber and Fersht, 1995; Schreiber
et al., 1994). The coding gene for its namesake protein, barstar, was originally
identified in Bacillus amyloliquefaciens with orthologs distributed across gram-
positive bacteria and structural homologs in the DNA double-strand break repair
protein Mre11 and ribosomal protein L32e. Leveraging the expanse of the Al-
phaFoldDB, the custom SCOP-UniRef50 sequence-structure database also detects
distant structural homolog barstar-like regions in proteins with putative ATPase and
palmitoyltransferase activity, expanding the landscape of sequence motifs to harvest
from. Barstar’s native function in B. amyloliquefaciens is to inhibit, through a high-
affinity active-site-occluding non-covalent interaction, the potent broad-spectrum
bacterial ribonuclease barnase before its secretion into the surrounding environ-
ment.3 Together, barnase (toxin) and barstar (antitoxin) comprise a toxin-antitoxin

2We believe this analysis and an analogous one on barstar later in the chapter to be the first
examples of applying SCA to synthetic data to retrieve "pseudo"-evolutionary correlations.

3Barnase is so general a ribonuclease that its name is simply a portmanteau of "bacterial" and
"ribonuclease."
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system, presenting an opportunity for functional screening of a foldtuned variant
library for toxic gene rescue.

We apply the standard evo+four foldtuning approach to barstar, yielding 1403 vari-
ants after in silico filtering, for a structural hit rate and sequence escape rate of
0.281 and 0.560 respectively. Variants were co-expressed with barnase from B.
amyloliquefaciens under a single tac promoter, under strong induction conditions,
in a high lacI E. coli strain in order to mitigate confounding adaptations to barnase
expression (Fig. 4.2A). In the absence of proper barstar expression and function,
barnase expression is toxic to E. coli (Hartley, 2001). Functional foldtuned variants
are expected to rescue host cells from the lethal effects of barnase expression. Com-
paring long-read sequencing counts of variant-coding amplicons, we found that 11
foldtuned barstar variants were significantly enriched (𝑝 < 0.05; Binyami-Hochberg
correction for correlated tests) relative to uninduced (non-barnase-expressing) con-
trol under strong induction of barnase-barstar-variant co-expression, suggesting that
the enriched variants are sufficiently functional mimics of barstar so as to mitigate
the toxicity of barnase (Fig. 4.2B). Additionally, enrichment does not correlate with
sequence identity relative to wild-type barstars or any natural protein. To this point,
7/11 of survival-enriched foldtuned barstars do not exhibit any detectable homology
to natural sequences at the domain or sub-domain level (Fig. 4.2C).

For mechanistic insight and hypothesis refinement, we obtained AlphaFold3 pre-
dicted structures of the survival-enriched variants in complex with barnase. For
four foldtuned variants — model 1 #633 (1_633), model 3 #647 (3_647), and model
4 #s 141 (4_141) and 219 (4_219) — these predicted complex structures indicate
that barstar mimics are expected to bind barnase analogously to wild-type barstar,
inserting an 𝛼-helix and adjoining loops into the binding pocket, obstructing the
RNA hydrolsis active site (Fig. 4.2D). Detailed examination of predicted bind-
ing interfaces reveals that foldtuned barstars are expected to form hydrogen-bonds
and salt-bridges with barnase, without steric or electrostatic clashes. Comparison
with a published experimental structure of the endogeneous B. amyloliquefaciens
barnase-barstar complex (pdb: 1BRS) suggests that fewer such contacts are expected
with variants than with wild-type barstar, potentially indicating weaker binding and
consequently reduced inhibition of barnase (Fig. 4.2D). It bears noting that this dif-
ference may stem at least in part from non-ideal bond geometries that persist due to
AlphaFold3’s lack of a side-chain or backbone relaxation step; molecular dynamics
simulations could prove valuable for discriminating between binding strengths in a
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more informative manner, as it has in a related design context for IL7RA minibinders
(Lourenco et al., 2025).

Figure 4.2: Foldtuning-generated barstar variants are expressable, stable, and
functional. (A) Schematic of barnase-inhibition survival assay for barstar variant
library stability and function. (B) Survival assay p-value rank plot for barstar
variants. For a given variant, enrichment is calculated as the ratio of amplicon
sequencing reads with and without induction of co-expression of the lethal binding-
partner barnase (C). Survival assay p-values from (F) vs. barstar variant sequence
identity to most-similar natural hit in UniRef50. (D) Top row: AlphaFold3 predicted
structures, iPTM scores, and Rosetta energy predictions for selected barstar variants
(pink) in complex with barnase (white). An experimental crystal structure of the
wildtype barnase-barstar complex from B. aquaforiensis (pdb: 1BRS) is overlaid
in blue. Bottom row: Predicted complex structures with putative hydrogen bonds
and electrostatic interactions indicated. (E) Results of statistical coupling analysis
(SCA) on 𝑛 = 1493 foldtuned barstar sequences. Left: Second-order coupling
matrix, blocked into two orthogonally co-evolving sectors. Top right: First-order
conservation scores. Bottom right: Visualization of sector positions mapped onto a
representative barstar-barnase complex structure (pdb:2ZA4).
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Looking beyond the interface, AlphaFold3 predictions also imply that some variants
may explore alternate conformations and binding modes in the neighborhood of
expected barstar structure and function, exemplified by 4_141, a zero-homology
variant that is predicted to have low 𝛽-content and rotate 90° relative to the wild-
type while maintaining 𝛼-helical and loop elements in the barnase binding pocket
(Fig. 4.2D). Of note, the two variants predicted to adopt more dramatically different
conformations — 4_141 and 3_647 — are also assigned Rosetta energy scores on
the higher end of plausible; in the absence of experimental structure determination,
these structure-function hypotheses should be taken with a degree of caution.

Given the detection of foldtuned barstar mimics with antitoxin-like function, and
circumstantial indications that at least some among these mimics may utilize similar
structural solutions to wild-type barstar, a natural question to ask is that of what
sequence and/or structure "rules" the foldtuned models themselves have learned?
Multiple sequence alignment of wild-type barstar along with the eleven survival-
enriched foldtuned variants reveals that in the contiguous nineteen-residue region
(columns 38-56) spanning the barnase-binding interface, toxicity-rescuing variants
preserve 6-11 (32-58%) of wild-type amino-acid identities (Fig. S4.3). Clearly,
foldtuned models are not simply memorizing the semantics of barnase-binding and
scaffolding them into redesigned flanks.

For a deeper view of how foldtuned models might be preserving the structural-
functional "grammar" of barstar, we return to SCA, this time treating the 1403
foldtuned barstar variants as a synthetic protein family.4 SCA proposes two sectors;
one, at the C-terminus, is most likely an artifact attributable to ESM batch-inference
token-padding with residual alanines; the other maps onto the barnase-binding
interface (Fig. 4.2E). This suggests that foldtuning has "solved" the barnase-binding
problem by decoupling the critical inserted 𝛼-helix motif from the rest of the protein,
preserving only its most salient sequence features, and inventing wholly new ways
to fill in the remainder of the barstar fold. In other words, foldtuning has distilled
the structural and functional nature of barstar into a single essential grammar rule.

Foldtuned and PLM-sampled insulins are INSR binders and agonists
Lastly, we steered foldtuning to design mimics of insulin, a high-value transla-
tional target well outside of our initial set of 727 SCOP folds, posing several new

4Unlike in the SH3 case, we do not conduct the comparative analysis on natural barstars, as
the wild-type sequences are so highly conserved across gram-positive bacteria as to swamp out the
second-order interaction signatures that SCA relies on.
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challenges for the foldtuning algorithm and workflow to overcome. Insulin hardly
requires introduction as a protein of interest. It is the preeminent peptide hormone
in all eukaryotes; insulin signaling coordinates anabolic metabolism across cells,
tissues, and organs (Mayer et al., 2007). Its absence (due to self-reactive destruc-
tion of most insulin-producing pancreatic 𝛽-cells) is the salient aspect of type I
diabetes; its dysregulation (insulin resistance) underlies type II diabetes. Insulin
presents multiple challenges to the thematic underpinnings and practical application
of foldtuning. To the former aspect, the active form of insulin is deeply conserved
across eukaryotes at the sequence level, and shares a structural neighborhood with
related peptide hormones including insulin-like-growth-factor-1 (IGF-1), relaxins,
and several insulin-like peptides (ILPs) of unclear function; insulin and IGF-1 pref-
erentially bind to and are agonists of their cognate receptor tyrosine kinases, with
weak cross-reactivity; relaxins and ILPs cross-react with several GPCRs (Claeys
et al., 2002). This suggests that foldtuning, with its emphasis on innovation about a
template structure in moderation, may sample a range of specific and promiscuous
binding phenotypes as opposed to binders specific to the insulin receptor INSR.

As far as practical implementation obstacles, insulin is a tricky target for foldtuning
thanks to the post-translational internal cleavage events required to transform inac-
tive, largely disordered proinsulin into structured, active insulin through excision
of the C-peptide (which makes up 31 of the 86 residues in the coding region of
the INS gene) and formation of three disulfide bonds (two interchain between the
A- and B-peptides; one intrachain within the A-peptide). To circumvent this issue
and to align with standard expression and characterization processes in industry, we
foldtunded ProtGPT2 to generate single-chain insulin variants that are fusions of
the A- and B-peptides. Natural training sequences (𝑛 = 335, reduced to 𝑛 = 193
after deduplication clustering) and reference structure fragments were taken from
InterPro entry IPR004825, which ostensibly includes insulin and excludes IGF-1,
relaxin, and ILPs, though sequence homology considerations cast some doubt on
the robustness of this filtering. IPR004825 sequences were multiply aligned to H.
sapiens insulin to identify putative C-peptide regions to be removed before clus-
tering and downsampling, leaving single-chain A/B fusion training data. Standard
evo+four foldtuning rounds yielded 2889 putative insulin variants with structure
hit and sequence escape rates of 0.578 and 7 × 10−4 respectively. The atypically
low sequence escape hit for foldtuned insulin models (only 2/2889 variants lacking
detectable homology to natural proteins), as well as a median 80.0% sequence sim-
ilarity to the closest natural hit, likely stems from the aforementioned high degree
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Figure 4.3: PLM-designed insulin variants bind the endogenous insulin recep-
tor. (A) Relative enrichment plot of foldtuned insulin variant binding to the en-
dogenous INSR receptor (on-target) vs the endogenous IL7R receptor alpha-chain
(off-target) using the Protein CREATE platform. (B) Sandwich ELISA (A450 spec-
trophotometric readout) of INSR phosphorylation in response to explore-exploit
Metropolis-Hastings Monte Carlo (eeMHMC) designed insulin variant #19 (es-
timated EC50=1.6 mM). (C) AlphaFold3 predicted structures of WT H. sapiens
insulin and experimentally plausible designed INSR binders (pink) in complex with
the native INSR receptor ectodomain (blue).

of sequence conservation among natural insulins and from a tradeoff in choosing
a small InterPro family from which to initiate foldtuning in hopes of prioritizing
INSR-specific binders and agonists.

We used the Protein CREATE platform to screen all foldtuned putative insulins for
INSR-specific binding as described in Lourenco et al. (2025). In brief, variants are
displayed on T7 bacteriophage and screened against multiple receptor candidates
ligated to magnetic beads, with a sequencing-based readout of amplicon counts
before- and after- receptor-bead pulldown, resulting in a vector of enrichment scores
for each receptor screened. Here we screen against two receptors, taking enrichment
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after INSR pulldown as a measure of on-target binding, and enrichment after IL7RA
(a type I cytokine receptor) pulldown as a measure of generic off-target binding. For
307 foldtuned variants with sufficient reads to calculate enrichment in both contexts,
41 (13.4% of detected; 1.4% of entire foldtuned pool) are enriched (enrichment
> 1) for INSR-binding and de-enriched (enrichment < 1) for IL7RA-binding (Fig.
4.3A). This is fewer than the 61 variants (19.9% of detected; 2.1% of entire pool)
with the inverse phenotype of IL7RA-binding enrichment and INSR-binding de-
enrichment. The lion’s share of variants — 159 (51.9% of detected; 5.5% of entire
pool) exhibit a doubly-enriched phenotype in this assay — underscoring, altogether,
the inherent difficulty of designing specific binders, as well as an opportunity in
applying foldtuning as a zero-shot generator of binding phenotype diversity suitable
for multiple downstream optimizations.

To validate INSR-binding activity, we attempted chemical synthesis of the two
foldtuned variants with the highest relative enrichment scores (INSR enrichment /
IL7RA enrichment) out of the 41 variants that display the INSR-specific phenotype
in Protein CREATE screening — these are model 3, #781 (3_781) and model 4,
# 404 (4_404). However, neither variant is observed to refold solubly following
synthesis and denaturation, suggesting a failure of proper disulfide bond formation,
pointing potentially to a lack of a uniquely stable ground state among multiple
cyclization isomers; troubleshooting is ongoing. AlphaFold3 predicts that both
priority variants should indeed bind to the INSR ectodomain with ligand-receptor
contacts reminiscent of but not identical to those formed by wild-type insulin,
lending support to the emerging paradigm from our investigations of SH3 and barstar
that foldtuning retains only those sequence rules minimally necessary for marginal
binding while injecting novelty that percolates to perturbed contacts, pockets, and
downstream phenotypes (Fig. 4.3C).

The challenges presented for foldtuning by insulin’s sequence and structure features
led us to develop and evaluate a second PLM-based generation strategy in paral-
lel. We call this strategy "explore-exploit Metropolis-Hastings Monte Carlo", or
eeMHMC. We are far from the first to take an MHMC or Markov Chain Monte Carlo
(MCMC) approach more generally to the problem of sampling over a sequence land-
scape from an encoder-only PLM. What is novel about our approach is the energy
function that determines the acceptance probability of proposed moves. Where
others have written energy functions that consider only the likelihood of a given
sequence as inferred by a PLM, sometimes regularized to explicitly favor memo-
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rization of natural sequence motifs, we propose a two-term function that balances
leveraging what the PLM has internalized about sequence plausibility (the "exploit"
term) with an incentive to make large semantic changes (the "explore" term) (Hie
et al., 2022; Verkuil et al., 2022).5 In this way, eeMHMC stands on common
ground with the grammar-respecting/semantics-altering behavior of foldtuning. We
generate 100 candidate insulin mimics with ESM2-650M-based eeMHMC, seeded
by column-wise independent sampling from a deep insulin MSA. Among these
100 variants, sequence identity to human insulin drops as low as 31.4% while
still respecting the canonical insulin fold (including disulfide staples) and showing
reasonable surface hydrophobicity and electrostatics, according to computational
analysis on predicted structures (Fig. S4.4). Outside collaborators attempted to
express 20 of the eeMHMC variants under standard industrial conditions; of these,
one variant, eeMHMC_19 (56.8% identical to human insulin), was able to be ex-
pressed, purified, and refolded. Furthermore, eeMHMC_19 shows agonist activity
for INSR according to sandwich ELISA readout of receptor phosphorylation (Fig.
4.3B). Although this activity is weak, with an inferred EC50 of 1.6 mM, ∼ 1000x
higher than for wild-type insulin and ∼ 10-50x higher than for wild-type IGF-1,
it still represents remarkable progress towards a functional insulin mimetic with
substantially reduced resemblance to wild-type.

4.3 Conclusion
Picking up from in silico revelation of the potential scope and breath of foldtuning as
a synthetic biology design engine, we completed a fastidious series of experiments,
supported by mechanistic insight from computation, underscoring that foldtuned
proteins are novel, realizable, and functional. Taking the SH3 domain as an initial
representative and experimentally tractable fold, we showed that foldtuning clears
initial but essential criteria of generating expressable, stable, non-aggregation-prone
proteins. Raising the bar to a toxin-antitoxin system where structure and function are
closely linked, and where selective pressure disfavors natural exploration, we found
that foldtuning maintains function as an apparent byproduct of preserving structural
constraints, recapitulating the fold-and-function "grammar" of the barnase-binding
interface of barstar with novel semantics. Coming to insulin, an ambitious target
with a host of obstacles that could have been erected deliberately to thwart foldtun-
ing — sequence deeply and anciently conserved, structure shared across a bucket
of related peptide hormones, significant processing required in vivo to go from an

5Full mathematical details are reported in Section 4.4.
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inactive single-chain propeptide to an active multi-chain species — we still ob-
tained INSR-receptor-specific binder candidates. Moreover, we introduced a second
PLM-based generation mechanism, explore-exploit MHMC, which, like foldtun-
ing, perturbs sequence semantics in a stepwise fashion while implicitly retaining
structural grammar, and applied it to design and validate a novel INSR agonist.

Beyond their utility as interesting and convenient case studies, the three targets
examined in detail here proffer an assortment of pertinent takeaways for the future of
foldtuning. The apparent allowance of foldtuning for recognizing variable sequence
motifs on binding-partners implies that pools of foldtuned SH3s could contain
enough diversity to mine, optimize, and organize sets of orthogonal nature-inspired
parts with new-to-nature recognition logic into synthetic signaling cascades or larger
fully synthetic connectomes. Such an approach would port over conveniently to
other highly modular binding domains such as SH2s and PDZs. Similarly, the
insulin-binding results are a powerful reminder of the many degrees of freedom
in (ant)agonist design — an information-rich way forward will be to embrace the
"novelty first, fitness next" mindset of foldtuning and screen putative binders against
whole receptor repertoires to discover brand-new phenotypes in cell signaling space.

4.4 Methods
Oligo Pool Design and Preparation
Foldtuning-generated sequences selected for experimental characterization were
truncated to remove disorded N- and C-terminal tail regions as predicted by ESM-
Fold and identified in 𝐶𝛼 contact maps computed with biotite. Coding DNA
sequences were designed by reverse translation with dnachisel, codon-optimizing
for E. coli, with additional constraints on GC content (global ≥ 0.25, ≤ 0.65; never
≤ 0.19 or ≥ 0.71 over any subsequence of length 50) and homopolymers (restricted
to < 14nt). Constant flanks — GACTACAAGGACGACGATGACAAG (5’) and
GGTTCCCACCATCATCACCATCAT (3’) were added to code for a 5’ FLAG tag
and a 3’ GSHHHHHH tag.

Oligo pools were ordered from Twist Biosciences as ssDNA fragments for sequences
≤ 300nt or as dsDNA fragments for sequences > 300bp and PCR-amplified with Q5
Hot Start High-Fidelity 2X Master Mix (NEB, M0494S) according to manufacturer
instructions. T7RNAP promoter, ribosome binding site, start codon, stop codon,
and T7 terminator elements were added in a subsequent PCR-amplification step with
the same reagents, and purified, concentrated, and resuspended in ultra-pure water
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using the Monarch Spin PCR & DNA Cleanup Kit (NEB, T1130S) according to
manufacturer instructions.

In vitro Expression Measurements
Foldtuned variant pools were expressed in vitro with PURExpress (NEB, E6800) fol-
lowing the manufacturer’s protocol, with 500ng template dsDNA per 50 µL reaction
volume, incubating 18hrs at 29 °C. Expressed protein was purified under native con-
ditions by His-tag pulldown using NEBExpress Ni Spin Columns (NEB, S1427L);
400 µL of eluate was washed and concentrated with Amicon Ultra Centrifugal Fil-
ters, 3 kDa MWCO (Millipore, UFC5003) 4x with 400 µL phosphate-buffered saline
pH7.4, centrifuging at 14,000g for 30min per exchange, and 50 µL of concentrate
recovered by reverse spin (1000g for 2min).

Concentrated purified protein samples were digested in an S-Trap micro spin col-
umn (Protifi, USA) according to the manufacturer’s instructions and analyzed on
Q-Exactive HF mass spectrometer coupled to EASY-nLC 1200. Peptides were
separated on an Aurora UHPLC Column (25 cm × 75 µm, 1.7 µm C18, AUR3-
25075C18-TS, Ion Opticks) with a flow rate of 0.35 µL/min for a total duration of
1hr and ionized at 2.2 kV in the positive ion mode. Raw data files were searched
against the Uniprot Escherichia coli proteome (UP000531813) and foldtuned vari-
ant sequences. Searches used the Proteome Discoverer 2.5 software based on the
Sequest HT algorithm. Oxidation / +15.995 Da (M), deamidation / +0.984 Da
(N), and acetylation / +42.011 Da(N-term) were set as dynamic modifications; car-
bamidomethylation / +57.021 Da (C) was set as fixed modification. The precursor
mass tolerance was set to 10 ppm, whereas fragment mass tolerance was set to 0.05
Da. The maximum false peptide discovery rate was specified as 0.01 using the
Percolator Node validated by q-value. Absolute abundance signal intensities were
scaled by dividing by the expected peptide count from simulated tryptic digestion.

In vitro Folding Stability Measurements
Foldtuned variant pools were expressed, purified, washed, and concentrated as for
the expression assay, as described above, with the modification that the reaction
volume was split post-expression into 2 × 25 µL aliquots, one purified under native
conditions and the other under denaturing conditions (6 M guanidinium chloride)
following manufacturer instructions.

Concentrated purified protein samples were analyzed by Eclipse mass spectrometer
coupled to Vanquish Neo. 1ug of peptides from S-trap based digestion with TPCK-
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treated trypsin were injected and separated on an Aurora UHPLC Column (25 cm
× 75 µm, 1.7 µm C18, AUR3-25075C18-TS, Ion Opticks) with a flow rate of 0.35
µL/min for a total duration of 1 hour and ionized at 1.8 kV in the positive ion mode.
Raw data files were searched against the Escherichia coli (strain B / BL21-DE3)
proteome (UP000002032) foldtuned variant sequences using the Proteome Discov-
erer(PD) 2.5 software based on the SequestHT algorithm. Oxidation / +15.995 Da
(M), Deamidated / +0.984 Da (N, Q), acetylation / +42.011 Da (protein N-term)
and Met-loss / -131.040 Da (protein N-term, M) were set as dynamic modifications,
and carbamidomethylation / +57.021 Da (C) was fixed modification. The precursor
mass tolerance was set to 10 ppm, whereas fragment mass tolerance was set to 0.6
Da. The maximum false peptide discovery rate was specified as 0.01 using the
Percolator Node validated by q-value. Enrichment was calculated as the abundance
ratio of the natural channel relative to the denatured channel.

Barstar-Barnase Survival Assay
The barstar-like foldtuned variant pool was designed, ordered, and amplified to add
regulatory elements as described above. Barstar variants were cloned as a single pool
into barnase-barstar expression vector pMT416 (gift from Robert Hartley, Addgene
plasmid #8607; http://n2t.net/addgene:8607; RRID:Addgene_8607), replacing the
wild-type barstar-coding region, using NEBuilder HiFi DNA Assembly Master
Mix (NEB, E2621S) according to manufacturer’s instructions. 1 µL of assembly
product was transformed into 10 µL 5-alpha F’Iq Competent E. coli (NEB, C2992I)
following the standard manufacturer heat-shock protocol. Outgrowth product was
used to seed 2mL LB cultures at 1-in-200 dilution and incubated overnight at 37
°C, 250 rpm with carbenicillin as the selection marker. Upon reaching an OD600 of
0.6, cultures were split into two 1 mL aliquots; 1mM IPTG was added to one aliquot
per pair, the other was kept as an untreated control; all aliquots were incubated at
37 °C for 3hrs to strongly induce protein expression. Barstar-variant-coding regions
were amplified directly from 0.2 µL of culture using Q5 Hot Start High-Fidelity
2X Master Mix (NEB, M0494S). PCR product was purified as described above,
diluted to 5 ng/µL, and Premium PCR Sequencing performed by Plasmidsaurus
using Oxford Nanopore Technology with custom analysis and annotation.

Reads were translated and filtered to retain only protein sequences containing the
expected N- and C-terminal tag leader sequences and not prematurely truncated by
a misplaced STOP codon. Translated reads were mapped back to the foldtuning-
generating barstar variant sequences with mmseqs2, requiring an aligned region
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of > 80aa with a minimum sequence identity of 98%. Variant enrichment was
calculated as the ratio of mapped reads under barnase-barstar induction vs the
uninduced control. P-values were computed non-parametrically by assuming a null
model of random read allocation, drawing 106 samples.

Bioinformatics Analysis
Multiple sequence alignments (MSAs) were calculated using MUSCLE v5 via the
EMBL-EBI webserver (Edgar, 2022).

Statistical coupling analysis (SCA) was performed with pySCA v6.1 and visualiza-
tions created with PyMOL v3.1.0 (Rivoire et al., 2016).

Energy Scoring Calculations
Biomolecule energy scores were obtained using the default ‘ref2015‘ energy func-
tion and standard relaxation and scoring workflow in Rosetta v3.11, as described
in Alford et al. (2017). Energy scores are reported in Rosetta Energy Units (R.E.U.),
normalized to sequence length.

Binding Mode Prediction and Analysis
Unless specified to the contrary, AlphaFold3 was used for all structure prediction
tasks involving protein-protein or protein-peptide complexes, via the AlphaFold-
Server interface (https://alphafoldserver.com). For the SH3 domain, predicted com-
plex structures were computed for foldtuning-generated putative SH3 variants in the
presence of a representative class I (RPLPPLP) or class II (PPPLPPRP) proline-
rich peptide motif. For the barstar-like fold, predicted complex structures were
computed for foldtuning-generated putative barstar variants in the presence of wild-
type barnase from B. amyloliquefaciens(uniprot:P00648). Predicted structures were
compared to a wild-type reference, either the spectrin SH3 domain from Gallus
gallus or the barnase-barstar complex from Bacillus amyloliquefaciens (pdb: 1brs).
For insulin, predicted complex structures were computed for foldtuning-generated
and/or PLM-sampled putative insulin variants in complex with the monomeric full-
length ectodomain of human INSR (insulin receptor).

All predicted structures were visualized with PyMOL v3.1.0. For the barnase-
barstar complex, good hydrogen-bonds, acceptable hydrogen-bonds, and electro-
static clashes were inferred and displayed with the PyMOL "show_contacts" third-
party plugin. For insulins, hydrophobicity was visualized using the "color_h"
third-party plugin and electrostatic potential was calculated and visualized using the
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APBS Electrostatics plugin.

High-Throughput Insulin Binding Assay
A library of 2889 insulin variant amino-acid sequences was constructed by foldtun-
ing on InterPro entry IPR004825, containing 335 natural insulin sequences (reduced
to 193 sequences after deduplication clustering at 100% similarity with mmseqs2)
integrated from overlapping entries in the PRINTS, CDD, and PANTHER databases.
Foldtuning was executed as described in Section 3.4, with the modification that gen-
erated variants were post-processed by aligning to the sequence H. sapiens insulin
(uniprot: P01308) and removing residues aligning to the C-peptide region that is
removed by proteolytic cleavage in vivo during the conversion of inactive proinsulin
to active insulin, resulting in a library of single-chain insulin mimics.

High throughput binding measurements (sequencing read enrichment scores) were
obtained using the Protein CREATE platform as described in Lourenco et al. (2025)
with INSR as the on-target receptor and IL7RA as the off-target decoy receptor.

Insulin Variant Generation by MHMC Sampling
Additional insulin variants (not screened with Protein CREATE) were generated
through Metropolis-Hastings Monte Carlo (MHMC) sampling from an insulin-like
sequence landscape with an two-term energy function combining a preference for
accepting mutations that increase sequence-likelihood under the ESM2-650M model
(the "exploit" term) with a preference for accepting mutations resulting in a large
semantic change relative to the current sequence (the "explore" term). An individual
sequence 𝑠𝑖 of length 𝑁 has an associated log-likelihood 𝐿𝑖 =

∏𝑁
𝑘=1 𝑙𝑘 where the

𝑙𝑘 represent indepedent residue-wise likelihoods, and an ESM2-650M final-layer
mean-pooled embedding vector xi. Semantic change is defined as 𝑆𝑖→ 𝑗 = ∥xj − xi∥1

for a pair of sequences 𝑠𝑖, 𝑠 𝑗 . As semantic change is not defined for individual
sequences, it is not possible to define an absolute sequence energy 𝐸𝑖; it is however
possible to define Δ𝐸𝑖→ 𝑗 for a proposed move from 𝑠𝑖 to 𝑠 𝑗 . Precisely

Δ𝐸𝑖→ 𝑗 = (log 𝐿 𝑗 − log 𝐿𝑖) + 𝑤𝑠𝑆𝑖→ 𝑗 (4.1)

where 𝐿𝑖, 𝐿 𝑗 , 𝑆𝑖→ 𝑗 are defined as above and 𝑤𝑠 is a coefficient that controls the
relative weights assigned to the exploit and explore terms.

The standard Metropolis-Hastings acceptance criterion is used; namely, a proposed
move (restricted in this method to a single point mutation, sampled uniformly
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across sequence positions and amino-acid identities) from 𝑠𝑖 to 𝑠 𝑗 is accepted with
probability

𝑝𝑖→ 𝑗 = min{1, exp(𝛽Δ𝐸𝑖→ 𝑗 )} (4.2)

where 𝛽 refers to the thermodynamic 𝛽, the inverse of the sampling temperature 𝑇 .

In all variant generation runs for this study, MHMC was run for 𝑛 = 2000 steps,
𝑤𝑠 = 0.4, and adaptive temperature adjustment at 100-step intervals. For each run,
the intial sequence 𝑠0 was sampled column-wise from a multiple sequence alignment
of 687 wild-type insulin sequences obtained by querying UniProt for all matches to
the INS gene, with individual amino-acid sampling probabilities proportional to the
amino-acid distribution over each individual column. Sampled gap characters and
putative C-peptide regions were removed prior to concatenation into 𝑠0.

A total of 100 independent MHMC replicates were performed. Sequences with
fewer than 4 or an odd number of cysteine residues were removed. Sequences
were converted to single-chain fusions by inserting a GGGRGG loop in-between
the concatenated A-peptide and B-peptide The resulting sequences were binned into
four quadrants by sequence identity % to H. sapiens insulin and predicted iPTM
score in complex with the INSR receptor ectodomain according to AlphaFold-
Multimer prediction, with 20 variants across the quadrants forwarded for attempted
expression, refolding, and activity characterization.

Expression and Validation of Insulin Mimic Cellular Activity
Twenty insulin mimics designed via "explore-exploit" Metropolis-Hastings Monte
Carlo (eeMHMC) sampling from the ESM2-650M model were expressed in E.
coli and refolding was attempted as previously reported in the literature (Chen
et al., 2016; Min et al., 2011). Refolded monomers were isolated by reverse-phase
high pressure liquid chromatography (RP-HPLC) and evaluated for insulin receptor
agonist activity using a sandwich ELISA INSR-𝛽 subunit assay specific for receptor
tyrosine residue phosphorylation (Maloney et al., 2003). EC50 values were inferred
from a four-parameter logistic regression model fit to 450 nm absorbance vs. variant
concentration data.

4.5 Supplemental Material
Supplemental Figures
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Figure S4.1: Sequence diversity and detectability of foldtuning-generated SH3
domains. (A) Hierarchically clustered heatmap of pairwise sequence identity be-
tween 𝑛 = 2593 SH3 domain candidate sequences generated via foldtuning. (B)
Expected detectable peptide counts predicted by in silico tryptic digestion. (C)
Counts of predicted tryptic peptides that map uniquely to single foldtuned SH3
variants.
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Figure S4.2: Statistical coupling analysis of natural and synthetic SH3s. (A)
Results of statistical coupling analysis (SCA) on 𝑛 ≈ 2500 natural SH3 domain
sequences. Left: Second-order compressed coupling matrix, blocked into a single
statistically interacting sector. Top right: First-order conservation scores. Bottom
right: Visualization of sector positions (blue) mapped onto a representative structure
of a natural SH3 domain (from PI3K) bound to a proline-rich peptide ligand (pdb:
3I5R). (B) Results of statistical coupling analysis (SCA) on 𝑛 = 2593 foldtuned SH3
sequences. Left: Second-order compressed coupling matrix, blocked into a single
statistically interacting sector. Top right: First-order conservation scores. Bottom
right: Visualization of sector positions (blue) mapped onto a representative structure
of a natural SH3 domain (from PI3K) bound to a proline-rich peptide ligand (pdb:
3I5R)
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Figure S4.3: Multiple sequence alignment (MSA) of toxicity-rescuing barstar
variants. Muliple sequence alignment (MSA) of the eleven toxicity-rescuing fold-
tuned barstar variants and wild-type barstar from B. aquaforiensis. Columns corre-
sponding to residue positions making physical contacts (positions 38-56; distance
threshold < 4.0 Å) with barnase in a reference crystal structure (PDB: 1BRS) are
boxed.
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Figure S4.4: eeMHMC-generated insulin variants respect structural and
physicochemical plausibility of the canonical insulin peptide. left: ESMFold pre-
dicted structures with disulfide bonds highlighted in red; middle: solvent-accessible
surface visualization colored by hydrophobicity (Eisenberg scale); right: same as
middle, colored by electrostatic potential with positive/negative charge in blue/red
respectively. (A) wild-type human insulin (pdb: 1INS). (B) eeMHMC_19 (56.9%
iden.). (C) eeMHMC_24 (44.6% iden.). (D) eeMHMC_10 (31.4% iden.)
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C h a p t e r 5

PROTEIN LANGUAGE MODELS SPAWN NEW-TO-NATURE
STRUCTURES

5.1 Introduction
In the preceding several chapters, we showed how protein language models (PLMs)
can be steered with synthetic data to explore far-from-natural regions of protein-
space, sampling the extremes of physically-allowable sequence novelty through
generation. Through this approach, which we dub "foldtuning," we branched a base
pretrained PLM, ProtGPT2, into a library of several hundred models, specialized
by protein fold, that favor new "language rules" for assembling amino-acid words
and letters into functional proteins. And we introduced experimental evidence,
gleaned from a select set of targets, that foldtuned models propose real, buildable,
functional proteins, best viewed as reflecting these metamorphosed language rules
while respecting underlying fold-specific grammar at the core of what it means to
have a protein sequence and not a meaningless string. In the process of exploring
novelty of sequence, we touched only glancingly on novelty of structure. In this
chapter, we rectify that wrong and prioritize the search for domain-quality structures
as-yet-unseen in nature, achieving our aim through two complementary strategies
inspired by our preexisting body of work with PLMs.

The beating heart of the pursuit of novel protein structures is a biophysical mys-
tery fusing several questions into one: why might some (or many) compact three-
dimensional structures be permitted by the laws of physics and yet apparently un-
realized in nature? If casualties of a dearth of possible fold-encoding sequences
or a lack of an essential fitness-conferring function, these hypothetical domains
should be reachable by de novo design, and from first principles at that. Or perhaps
flaws in folding thermodynamics or kinetics disfavor or even outright forbid them,
and the documented set of structural units is complete after all. Opinions on the
structural completeness debate have historically been sharply split (Chitturi et al.,
2016; Skolnick et al., 2012; Taylor et al., 2009; Zhang et al., 2006). By the strictest
measures only a handful of published de novo designed proteins — Top7, five all-
𝛼 folds, eight 𝛼/𝛽 folds — qualify as truly new-to-nature (Kuhlman et al., 2003;
Minami et al., 2023; Sakuma et al., 2024). And the advent of massive-scale pre-
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dicted structure databases, dwarfing the ∼ 200, 000 experimental structures of the
Protein Data Bank (PDB) with a rich trove of nearly 1 billion AlphaFold, ESMFold,
and ColabFold predictions has only muddied the divide (Kim et al., 2025a,b; Lin
et al., 2023; Varadi et al., 2022). With hordes of structural "dark clusters" carved
from these databases plus newly collated Pfam families and CATH superfamilies,
the PDB looks incomplete indeed (Barrio-Hernandez et al., 2023; Durairaj et al.,
2023; Lau et al., 2024; Pavlopoulos et al., 2023). Conversely, if a ∼ 1000x infla-
tion of individual structures "only" boosts the number of CATH superfamilies (the
finest-grained level in that hierarchy) from 5,841 to 6,573, a 12.5% increase, and
the number of topologies/folds (the second-finest-grained) from 1,349 to 2,081, a
54.3% increase, how much can nature really have left by the wayside structurally
(Lau et al., 2024)?1, 2

On the surface, PLMs may seem an odd choice of tool for unearthing novel structures.
"Language" is in the name; they are explicitly sequence models. On one hand,
as we have established ad nauseum, PLMs may only "see" sequence, yet they
implicitly capture the key features of structure and function as well. On the other,
we demonstrated in Chapter 2 that left to their own devices, PLMs chop and skew
the natural structural ensemble. Even the most vocal proponents of PLMs are prone
to treating them as vehicles for infilling nature-adjacent variants into, say, an enzyme
class, inducing small structural changes and smaller functional ones, deferring to
the bounds of a CATH superfamily rather than breaking out (Madani et al., 2023;
Munsamy et al., 2022). And yet, the prospect of novel structure enumeration through
PLMs has lingered on the horizon, with examples — sparse ones, but examples
nonetheless — reached through free generation and experimentally verified at a
preliminary level (Ferruz et al., 2022; Verkuil et al., 2022).

Consequently, we reason that unlocking the full latent capacity of PLMs to access
new domain structures requires another embrace of the "novelty first, fitness next"
ethos, this time suited for hitting the rare pinpricks of structural novelty. To do so,
we build and deploy two distinct fitness-agnostic strategies that enrich PLM output
for novel structure generation. The first, inspired by fold recombination events

1A clarification — while 1 billion is ∼ 5000x 200,000, CATH annotation expansion only
considered the ∼ 200 million entries in the AlphaFoldDB; 1000x is therefore the relevant inflation
factor.

2A second clarification — as of CATH v4.4, the 732 novel CATH folds each contain exactly one
novel CATH superfamily — the growth at the fold/topology level is hence more representative of the
novelty uncovered. Still, we are talking about a new topology discovery rate of 732/214, 683, 839 ≈
3.4 × 106; or 3-4 per million newly predicted structures.
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in real-world protein evolution, is a genetic algorithm; the PLM, ESM2-650M
specifically, acts as an oracle favoring sequence plausibility and dense structural
contacts. The second revisits foldtuning; instead of chasing sequence-diverging
structural matches we select against resemblance to the entire set of CATH domains.
Both approaches eschew direct interaction with sequence features. Both employ
structural compactness as the primary or sole selective force. And both deliver an
abundance of novel folds computationally projected to be stable, foldable, and un-
mappable to any CATH example, spanning protein topology classes. We contend
that despite substantial architectural differences between the two methods, they
execute the same overarching tactic of discovery by ignoring natural waypoints,
without needing to overtly design against them.

5.2 Results & Discussion
Novel domains emerge from a fold-recombining genetic algorithm
One potential avenue for finding novel protein domains is to start from primitive
structural elements and recombine them, evolve them, and put them under selective
pressure, all in in silico. With a suitable selective force, one that rewards some
notion of well-foldedness and/or compactness, stable tertiary folds, alike-to-nature
and new-to-nature can both emerge. This approach is a genetic algorithm for domain
diversification, loosely inspired by hypotheses for how early enzymes and ancient
protein folds may have originated from primoridal polypeptides.3 As starting ma-
terial to seed the algorithm, we generate a small library of 800 mini-protein-sized
(40aa) fragments de novo via PLM-informed replica-exchange Metropolis-Hastings
Monte Carlo sampling. Briefly, random amino-acid sequences are evolved in sin-
gle point mutation steps subject to an energy function that favors greater sequence
likelihood and structural contact density, both as inferred by ESM2-650M (full
implementation details are provided in Section 5.4). The mini-proteins produced
sample a variety of topologies varying in relative 𝛼 and 𝛽 content and organization,
as well as loop sizes, geometries, and degrees of order (Fig. S5.1). The choice of
de novo generation is motivated by a desire to mitigate against sequence-side biases
in favor of nature that might be introduced by the most straightforward alternative
of fragmenting real or experimental structures from published databases. Indeed,
while structure-based search with Foldseek (504/800 = 63.0% hit rate against Al-

3The topic of structural and functional emergence and plasticity in polypeptides is far too rich
to cover adequately in the context of this chapter. Specific recommended examples include Longo
et al. (2020b), Longo et al. (2020a), and Vyas et al. (2021). A highly recommended review, albeit
predating the aforementioned studies, is Tóth-Petróczy and Tawfik (2014).
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phaFoldDB50) shows that the generated fragments are plausible and representative
building blocks, sequence-based search with MMseqs2 (48/800 = 6.0% hit rate
against UniRef50) indicates that they are distinct from natural sequences, both as
desired.

Figure 5.1: Emergence of novel folds from a PLM-based genetic algorithm. (A)
Mean fractional amino-acid surface burial (protein compactness proxy) over 200
generations of the structure discovery genetic algorithm. (B) Cumulative counts of
unique CATH-annotated folds and putative novel folds detected over 200 generations
of the structure discovery genetic algorithm.

A randomly selected subset of 100 mini-protein fragments is carried forward as the
initial population for the genetic algorithm, which proceeds for 200 epochs. In each
epoch, 20 recombined and mutated fragments are generated and evolved over the
same energy landscape as used for the fragment library before being added to the
population; stochastic selection with survival rate proportional to burial fraction is
performed to reduce the population back to a target constant size of 100.4, 5 The mean
burial fraction increases with time, demonstrating that compact folds become more
common and/or folds become more compact on average as the algorithm proceeds
(Figure 5.1A). Assigning CATH labels wherever possible with Foldseek-TMalign,
natural folds accrue at a roughly constant rate of 2.4 per epoch, while compact
(burial fraction > 0.5) yet novel folds emerge sporadically; the first new-to-nature
fold (3733B8_R10) appears in epoch 10 with subsequent interfold arrival times as
long as 45 and as short as 2 epochs (Figure 5.1A-B). Working off of building blocks

4Full implementation details, including construction of the selection function, may be found in
Section 5.4.

5The only methodological distance of substance between the MHMC sampling process for the
fragment library and the recombination algorithm is a switch from multiple chains with replica-
exchange in the former case to a single chain with dynamic temperature adjustment in the latter. This
choice reduces total run time per epoch by a factor of ∼ 5x — a significant speedup when one epoch
takes ∼ 0.5-1 gpu-hr with a single chain on typical hardware.
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Figure 5.2: Fifteen novel folds achieved by the structure discovery genetic algo-
rithm. Within each pair: left — putative novel fold (colored by ESMFold pLDDT;
yellow=high, blue=low); right superimposed with closest CATHDB50 Foldseek
hit in TMalign mode, with CATH metadata and global alignment metrics reported
below.

that are almost exclusively displaced from nature in sequence but nearby in structure,
the algorithm reaches ∼500 natural folds and 15 putatively novel ones, suggesting
that natural structure-space is far from complete and that additions are surprisingly
accessible to design when a backbone is not specified a priori.
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Figure 5.3: "Inverse-folding landscapes" for fifteen novel folds achieved by
the structure discovery genetic algorithm suggest variable stability. Length-
normalized energies (from Rosetta) vs. TM-score (from Foldseek in TMalign
mode) for ProteinMPNN-designed sequences inverse-folded off of structure discov-
ery genetic algorithm putative novel folds as templates. Gray dots correspond to all
sequences/structures for a given template after clustering 200 initial sequences per
template at 60% sequence similarity. Red dots show the subset of inverse-folded
seqUences whose ESMFold-predicted structures pass an energy scoring threshold
(𝐸̄ < −2.2 REU/aa) and the standard TM-score global match threshold (TMscore
> 0.5).
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The 15 new-to-nature domains proposed by the evolutionary algorithm are markedly
distinct from their nearest CATH analogs and structurally diverse, visiting three of
the four major topology classes — all-𝛼 (120FD5_R127, 244D7D_R143, 794026_R125,
A49A4F_R116, A783532_R160, B4FC4F_R164, BC2987_R55, DB6817_R178,
F99539_R114), all-𝛽 (0CF85E_R97, 3733B8_R10, C86FA9_R143), and 𝛼 + 𝛽

(120FD5_R127, 9D1265_R55, A0A7B8_R123), as categorized by eye (Fig. 5.2,
Table S5.1). It is curious that no novel 𝛼/𝛽 folds occur, given the prominent
functional speciation of such domains in nature (Choi and Kim, 2006).

For additional insight into this handful of novel domains and whether they are
truly plausible as far as the thermodynamics and kinetics of protein folding, we
introduce the "inverse-folding funnel." The inverse-folding funnel is a heuristic in-
spired by the use of Rosetta ab initio structure prediction simulations to explore a
protein-folding energy landscape. The traditional result is a plot of estimated energy
vs. backbone RMSD to the target for many replicates of the same sequence, with
two ideal features: (1) a clear association between lower energy (higher stability,
i.e. favorable folding thermodynamics) and smaller RMSD; and (2) an absence
of "trapped" subpopulations at moderate-to-high RMSD and local energy minima
(presumed metastable states, indicators of poor folding kinetics). A plot satisfying
both resembles the prototypical folding funnel of a globular protein spontaneously
collapsing to its native-state structure, whereas one failing either or both criteria
warns of folding pathologies precluding viable expression let alone function (Dill
and Chan, 1997). Analogously, we instead use an inverse-folding model (Protein-
MPNN) to generate many sequence-diversified versions expected to encode a given
putatively novel domain structure from Figure 5.2 provided as a backbone tem-
plate. Preclustering by sequence similarity to minimize redundancy, we predict
structures with ESMFold, estimate absolute energies with Rosetta, and quantify
global alignment between inverse-folded structures and templates as TMscores. For
the "inverse-folding" version of the funnel, we look for correlation between lower
energy and higher TMscore and for a lack of low-TMscore/low-energy states —
the former remains a proxy for thermodynamic stability, while the latter rules out
both metastability and the possibility that a particular "novel" domain is no more
than a noised version of a CATH domain recoverable by the slight re-noising of
inverse-folding.

For 8 of the 15 putatively novel domains,6 this procedure evinces a convincing funnel
6Specifically, folds: 0CF85E_R97, 244D7D_R143, 26D32B_R192, 3733B8_R10,
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with the aforementioned essential characteristics, bolstering confidence that these
are realizable new-to-nature structures (Fig. 5.3). Other faux folding landscapes
point to problem spots; for example for 9D1265_R55 multiple equivalent energy
minima are observed, while for BC29B7_R55 a single minimum is centered around
a TMscore well less than 0.5, as if inverse-folding reliably converges to a more
stable neighbor in structure-space (Fig. 5.3). Other landscapes, far from being
funnel-shaped, are almost flat, as in the case of F99539_R114, implying that some
novel domain candidates may lack a true native state. As general guidelines for
stable and robust structures, we additionally set rough threshold values of < −2.2
REU/aa and TMscore > 0.5 for inverse-folded variants to clear and note that even
for those domains that do exhibit funnel-like folding landscapes many variants can
fail one or both, reiterating the importance of the re-noising step for recovering
more-plausible adjacent structures (natural or novel) from novel domain candidates.
Despite the ample evidence that not all potentially novel folds brought forth are
in fact novel, or, when they are, not created equal as far as folding dynamics and
stability, fold recombination and evolution from artificial fragments inculcates a
strong belief that natural structure-space does not enumerate all that can be afforded
by protein biophysics.

Structure-first foldtuning enriches for domains with new-to-nature structures
In an orthogonal approach, we considered whether foldtuning could be transformed
from a sequence-perturbing, fold-preserving method for novel sequence discovery
into a fold-perturbing, sequence-insensitive method for novel structure discovery.
To estimate the latent capacity of our go-to PLM, ProtGPT2, to generate previously
unseen structural motifs off-the-shelf without additional training, we revisited the
hyperparameter scan experiment from Chapter 2. The ∼3 million predicted struc-
tures obtained across thirty (top_k, temperature) pairs were downsampled by 10x
and re-annotated with CATH domain labels wherever possible, running Foldseek in
accelerated TMalign mode with the precompiled CATHDB50 database as the target.
Compactness/globularity was estimated for all predicted structures using fractional
burial of total amino-acid surface area relative to the disordered polypeptide chain
as a proxy metric sufficient for ranking and coarse binning. Aggregated results
are reported in Table 5.1. As thresholds for putative novel structures, we look for
predicted structures with a fractional burial > 0.5 and no assignable CATH domain
label; occurrence rates range from 0.11% for top_k 1500 and temperature 0.8 to

A49A4F_R116, A78532_R160, B4FC4F_R164, DB6817_R178.
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0.41% for top_k 4000 and temperature 5.0. In general, increasing either hyperpa-
rameter corresponds to an increase in this novelty rate, but the trend is imperfect.
In contrast to the compression of SCOP fold uniqueness reported with increasing
top_k and temperature in Chapter 2, the number of unique CATH domains detected
increases slightly in this context. When we move up rung to the CATH topology/fold
level (i.e. CAT), however, we see the same general structural diversity collapse as
with SCOP. This implies that increasing top_k and/or temperature to favor textual
diversity does somewhat emphasize structural novelty, but this comes in the form of
finer-grained structure perturbations and at the expense of the larger supersecondary
rearrangements that we hope to see as evidence of satisfyingly novel folds. Adding
in the fact that the fraction of compact proteins (burial fraction > 0.5) consistently
drops by roughly 2x as temperature goes from 0.8 to 5.0, we fix sampling hyperpa-
rameters at top_k 950 and temperature 1.5, striking a balance between compactness,
CATH non-assignability, and structure perturbation magnitude as we move forward
to what we refer to as "structure-first" foldtuning.

Structure-first foldtuning (described fully in Section 5.4) mirrors the architecture
of the original "sequence-first" foldtuning developed in Chapter 3, with crucial
differences on the discrimination/selection side. In brief, in each of five foldtuning
rounds, 10,000 sequences are generated out of the current (𝑘-th) model and filtered
based on predicted structures to enforce compactness (burial fraction > 0.5) and
CATH non-assignability (no Foldseek-TMalign hit in CATHDB50 with TMscore
> 0.5). Filtered sequence-structure pairs are ranked in order of descending burial
fraction, with the 100 most-compact becoming the training set used to finetune the
(𝑘 + 1)-th model. Given the absence of a specific target fold, there is no need for
an initial evotuning round. Over 5 rounds, structure-first foldtuning progressively
enriches for sequence-structure pairs meeting the compactness/non-assignable nov-
elty criteria, from 111/10,000 (11.1%) after one round to 269/10,000 (26.9%) after
five (Table 5.2). Neither burial fraction nor the number of unique CATH domains
is observed to change significantly at the population level, with a concomitant drop
in the CATH assignability rate (across all sequences/structures), a further indication
that while a non-globular sub-population persists, all of the growth in structural
diversity is diverted to putatively novel domains.

Structure-first foldtuning proposes 1018 novel domains in total over five rounds.7

7As an aside, note that structure-first foldtuning brings along sequence novelty for free, without
any explicit design consideration on the sequence side. Only 10/1018 sequences encoding the
putative novel domains — ≈ 0.1% — exhibit detectable sequence similarity to any natural protein
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Figure 5.4: Ten out of 100 novel folds achieved by structure-first foldtuning.
Within each pair: left — putative novel fold (colored by ESMFold pLDDT; yel-
low=high, blue=low); right superimposed with closest CATHDB50 Foldseek hit in
TMalign mode, with CATH metadata and global alignment metrics reported below.

To accommodate limited computing resources, this set of 1018 is reduced to a
set of high-priority templates to 916 by clustering at a TMscore > 0.5 global
alignment threshold to group templates that would occupy the same superfamily
and/or fold if added to the CATH database. Applying a stricter structural novelty
criterion — no Foldseek-TMalign hit with TMscore> 0.5 to any domain in the
entire AlphaFoldDB50 database — reduces the priority template set further to 762
members. The final high-priority set is contracted to 100 members after ranking
by descending burial fraction and taking the top 100 most-compact. Feeding this

in UniRef50 per mmseqs2 search.
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Table 5.1: CATH domain coverage, structural compactness, and novel fold
discovery rate from base ProtGP2 sampling hyperparameter scan. CAT(H)
folds(superfamilies) detected, CATH hit absence (no hit with TMscore > 0.5),
structural compactness (burial fraction > 0.5), and novel fold discovery rate for 30
sampling hyperparameter combinations from varying top_k (vocabulary size: 600,
950, 1500, 2400, 5000) x temperature (0.8, 1.0, 1.2, 1.5, 2.0, 5.0).

Hyperparams Results

top_k temp # CATH # CAT No CATH Compact Both

600 0.8 905 401 0.224 0.2376 0.0016
1.0 935 412 0.2121 0.2298 0.0021
1.2 975 404 0.2189 0.2176 0.0025
1.5 988 408 0.2218 0.1983 0.0023
2.0 977 407 0.2418 0.1839 0.0025
5.0 967 384 0.3628 0.1039 0.0017

950 0.8 908 402 0.2143 0.2361 0.0018
1.0 955 416 0.2115 0.2293 0.0018
1.2 988 430 0.2261 0.1996 0.0031
1.5 984 419 0.2347 0.1922 0.0037
2.0 994 421 0.2432 0.1746 0.0036
5.0 996 394 0.3584 0.1008 0.0029

1500 0.8 954 404 0.2145 0.2313 0.0011
1.0 964 410 0.2228 0.2113 0.0029
1.2 994 418 0.2378 0.1908 0.0023
1.5 1014 415 0.2464 0.1727 0.0028
2.0 1005 403 0.2612 0.1528 0.0028
5.0 1017 382 0.3634 0.095 0.0028

2400 0.8 941 406 0.2227 0.2221 0.002
1.0 970 410 0.2279 0.2045 0.002
1.2 993 420 0.247 0.1804 0.0029
1.5 1025 412 0.2572 0.1582 0.0036
2.0 1055 425 0.2734 0.1417 0.0034
5.0 1054 396 0.3536 0.0963 0.0033

4000 0.8 962 433 0.2232 0.2303 0.0024
1.0 1021 440 0.2183 0.2001 0.0026
1.2 1012 418 0.2521 0.1767 0.0022
1.5 1076 425 0.2539 0.1519 0.0023
2.0 1010 380 0.2786 0.1358 0.0027
5.0 1008 390 0.341 0.1028 0.0041

final set to ProteinMPNN as inverse-folding templates and calculating TM-scores
and folded-state energies for the respective outputs yields a set of inverse-folding
energy lanscapes as in the preceding section. Predicted structures (with and without
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Figure 5.5: "Inverse-folding landscapes" for ten out of 100 novel folds achieved
by structure-first foldtuning imply high stability. Length-normalized energies
(from Rosetta) vs. TM-score (from Foldseek in TMalign mode) for ProteinMPNN-
designed sequences inverse-folded off of structure-first foldtuning putative novel
folds as templates. Gray dots correspond to all sequences/structures for a given tem-
plate after clustering 200 initial sequences per template at 60% sequence similarity.
Red dots show the subset of inverse-folded seqUences whose ESMFold-predicted
structures pass an energy scoring threshold (𝐸̄ < −2.2 REU/aa) and the standard
TM-score global match threshold (TMscore > 0.5).

closest CATH hits) and inverse-folding landscapes for the best 10 templates as
ranked by average estimated folded-state energy are shown in Fig. 5.4 and Fig. 5.5
respectively.
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Table 5.2: Emergence of novel and CATH-annotated domains over five rounds
of "structure-first" foldtuning. Number of generated sequences successfully an-
notated with a CATH domain by Foldseek ("# CATH"), structural hit rate (fraction of
generated sequences assigned to any CATH label), number of generated sequences
assigned as putative novel folds ("# Novel"; burial fraction > 0.5 and no hit with
TMscore > 0.5), and mean burial fraction over the course of five rounds of structure-
first foldtuning with top_k 950, temperature 1.5, and 10,000 sequences sampled per
round.

Round Mean Burial Frac. # Novel # CATH Struct. Hit Rate

1 0.433 111 1166 0.719
2 0.444 192 1190 0.641
3 0.438 206 1178 0.589
4 0.451 240 1155 0.632
5 0.438 269 1171 0.549

One example, variant 2_385 appears spurious, with a TMscore = 0.526 hit to
CATH 1.10.150.130 and an inverse-folding landscape littered with "metastable"
analogs with sub-0.5 TMscores upon alignment to the foldtuning-emitted template,
suggesting that it is not novel, but a noised version of the natural tyrosine recombinase
N-terminal domain (Figs. 5.4- 5.5, Table S5.2). The remaining nine variants,
by contrast, impute high stability in silico, with strong funnel-esque association
between lower-energy folded-states and high TMscore alignments to their putative
novel templates and most-if-not-all inverse-folded versions clearing the rough energy
targets of < −2.2 REU/aa and TMscore > 0.5 (Fig. 5.5). By eye, TMscore, and
RMSD, these nine are clearly distinct from their closest CATH counterparts and,
annotating by hand, are distributed across all-𝛼 ( 5_4799, 4_2316, 3_8774, 4_6556,
2_3053), 𝛼 + 𝛽 (5_4773, 4_6411), and 𝛼/𝛽 (5_111, 3_5721) topologies (Fig. 5.4).
Altogether, this constitutes strong evidence that structure-first foldtuning is able
to target novel protein structures with meaningful fitness- and topology-agnostic
selection criteria, extracting new-to-nature domains with broad shape diversity from
a PLM by steering with synthetic sequences that impart supersecondary structural
innovation.

5.3 Conclusion
Expanding our novelty-tinged sights from one-dimensional sequences to three-
dimensional structures, we jumped headlong into a long-simmering debate in bio-
physics and structural biology over the existence and frequency of folded domains
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with structures unlike anything found within the bounds of natural protein-space. We
conceived and effectuated two radically different methods for probing new-to-nature
regions of protein structure-space. These two methods are joined only in that they
are both PLM-informed. In one, we endeavored to grow up and fill out fold-space
from scratch using an evolutionary algorithm steered by PLM-driven estimates of
sequence and structure reasonableness, landing on 8-15 novel folds in the course
of tallying 510 natural ones, all collected from 3285 individual sequences/domains.
In the second, we revisited foldtuning and flipped the script to enrich for structural
novelty, honing in on anywhere between several hundred and one thousand novel
folds depending on stringency, close to on par with the 2395 natural ones detected,
stemming from a pool of 49,992 individual sequences/domains in total. The rates
of fold discovery — roughly 1-in-200 for the evolutionary algorithm and 1-in-50
for structure-first foldtuning — are striking when considering that segmenting and
searching the UniRef50 portion of the AlphaFoldDB added new superfamilies to
CATH at a rate closer to 3-per-million.

All of these efforts used structure prediction models and structure-based search
methods; the difference-maker behind our rapid fold emergence rates appears to
come back to our use of PLMs and their capacity to credibly evaluate sequence
motifs and now structure motifs that emanate from different generative rules than
the operative ones of nature. Yet again, PLMs prove to be the ideal agents of a
novelty-first design philosophy. The obvious current limitation of this work is that
despite the extra confidence imparted by inverse-folding landscape characterization
turning up whispers of folding funnels and reasonable physical driving forces, the
ultimate arbiter of whether we have landed on structural novelty must be experi-
mental structure determination. In the interim, however, our findings align squarely
with the position that permissible structure-space is much broader than that covered
by nature, and that, conjecturing a step further, there may exist numerous fold en-
sembles sufficient for the essential processes of life, arising or not based on initial
conditions and/or population size effects.

5.4 Methods
Fragment Library Assembly for Genetic Algorithm
The initial fragment library for the structure discovery genetic algorithm was as-
sembled via a modification of the eeMHMC method first introduced in Chapter 4
(Section 4.4). The first modification is to the form of the energy function, where
the "exploit" term 𝑆𝑖→ 𝑗 is replaced by a term rewarding predicted structural contact
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density, so that Eq. 4.1 is replaced by

Δ𝐸𝑖→ 𝑗 = (log 𝐿 𝑗 − log 𝐿𝑖) + 𝑤𝑐

1
𝑛2 (

∑︁
𝑘𝑙

𝐶 𝑗 ,𝑘𝑙 −
∑︁
𝑘𝑙

𝐶𝑖,𝑘𝑙) (5.1)

where 𝑛 is the fixed sequence length and 𝐶𝑖, 𝐶 𝑗 are binary contact matrices s.t.
𝐶𝑖,𝑘𝑙 = 1 indicates that residues 𝑘 and 𝑙 of sequence 𝑖 are predicted to be in
physical contact within < 8 Åin the corresponding three-dimensional structure.
Contact matrices are inferred from the contact_prediction head of ESM2-650M,
simultaneously with embedding and log-likelihood calculation.

The acceptance probability for a proposed single point mutation move from 𝑠𝑖 to 𝑠 𝑗

remains unchanged from Eq. 4.2, accounting for the change in definition of Δ𝐸𝑖→ 𝑗 .

The second modification is the use of replica-exchange MHMC (RE-MHMC; RE-
eeMHMC for Replica-Exchange explore-exploit Metropolis-Hastings Monte Carlo.
RE-MHMC monitors several chains simultaneously, sampling the same landscape
at different temperatures, thereby balancing riskier less-local moves by "hot" chains
with more conservation local moves by "cold" chains. Adjacent chains in the
temperature array attempt to swap positions on the landscape (and their respective
sequences) periodically at a stochastic frequency𝜆; the proposed swap move between
chains 𝑖, 𝑗 is accepted with probability

𝑝𝑖↔ 𝑗 = min{1, exp[(𝐸𝑖 − 𝐸 𝑗 ) (𝛽𝑖 − 𝛽 𝑗 )]} (5.2)

where as always the {𝛽𝑖} refer to thermodynamic 𝛽, the inverse of the sampling
temperature 𝑇 .

A total of 800 fragments were generated, running for 𝑛 = 5000 steps, stochas-
tically attempting to swap a uniformly randomly selected pair of adjacent ran-
dom chains at a rate of 𝜆 = 0.01 swp/step, 5 chains with inverse temperatures
𝛽 = {20, 13.3̄, 10, 8, 6.6̄} from "cold" to "hot," and 𝑤𝑐 = 1. Initial sequences for all
chains {𝑠0} were random amino-acid strings of length 40; the coldest chain (𝛽 = 20)
sequence at step 5000 was added to the library.

Structure Discovery Genetic Algorithm
The structure discovery genetic algorithm begins by sampling an initial population
𝑃0 of 100 fragments from a fragment library assembled as previously described.
For a fixed number of rounds, the 𝑘-th round proceeds by:
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1. Generating 20 new variants from 𝑃𝑘−1. A pair of variants is generated by draw-
ing two sequences uniformly at random from 𝑃𝑘−1, performing a crossover
operation with the number of crossover points 𝑛𝑐𝑟𝑜𝑠𝑠 ∼ Poisson(𝜆 = 1.535)
and the locations of the crossover points uniformly distributed over the se-
quence length(s), and performing a mutation operation with the number of
mutations 𝑛𝑚𝑢𝑡 ∼ Binom(𝑛𝑖, 𝜆 = 0.05) and mutation locations and identities
uniformly distributed over sequence lengths.

2. Evolving the new (𝑘)-th round variants through eeMHMC with the modified
energy function found in Eq. 5.1 for 𝑛 = 5000 steps, with 𝑤𝑐 = 1, 𝛽 = 10,
and adaptive temperature adjustment at 100-step intervals.

3. Adding the evolved variants to 𝑃𝑘−1 to form 𝑃𝑘 .

4. Predicting structures and computing the amino-acid surface-area burial frac-
tion for all sequences in 𝑃𝑘 .

5. Selection for burial fraction, maintaining a target constant population size of
100.

The above procedure repeats up to a desired number of generations (200 in this
study). To enforce constant population size while stochastically eliminating se-
quences from the population, we note that, if the number of surviving sequences
after round 𝑘 is to be |𝑃𝑘 | = 𝑁𝑠𝑒𝑙 , then the expectation of 𝑁𝑠𝑒𝑙 must be

𝐸 [𝑁𝑠𝑒𝑙] = 𝑁 𝑓𝑠𝑒𝑙 (5.3)

where 𝑁 is the temporary population size after new variants have been added but
before any have been removed, and 𝑓𝑠𝑒𝑙 is the fraction of sequences that are to
survive. We can additionally write that

𝐸 [𝑁𝑠𝑒𝑙] =
∑︁
𝑖

𝐸 [𝑛𝑖] =
∑︁
𝑖

Pr(Θ𝑖 = 1) (5.4)

where Θ𝑖 ∼ Bernoulli(𝑝𝑖) for some mathematically appropriate 𝑝𝑖, as the survival
of a given sequence is independent of the survival probability of all others. We have
the choice of the form of 𝑝𝑖 and so take 𝑝𝑖 = exp[−𝛽𝑘 (0.8 − 𝛾𝑖)], where 𝛽𝑘 is a
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sampling hyperparameter to be determined and 𝛾𝑖 is the burial fraction of sequence
𝑠𝑖.8

𝑁 𝑓𝑠𝑒𝑙 = 𝐸 [𝑁𝑠𝑒𝑙] =
∑︁
𝑖

𝐸 [𝑛𝑖] =
∑︁
𝑖

exp[−𝛽𝑘 (0.8 − 𝛾𝑖)] (5.5)

and making the simplifying assumption that the {𝛾𝑖}’s are roughly normally dis-
tributed, or at least not skewed,9 we can say

𝑁 𝑓𝑠𝑒𝑙 = 𝐸 [𝑁𝑠𝑒𝑙] =
∑︁
𝑖

𝐸 [𝑛𝑖] ≈ 𝑁 exp[−𝛽𝑘 (0.8 − 𝛾𝑖)] (5.6)

where 𝛾𝑖 is the mean of all calculated burial fractions in the temporarily augmented
population 𝑃𝑘 leaving only algebraic rearrangement to solve for our lone sampling
hyperparameter 𝛽𝑘 , effectively a selection inverse temperature, as

𝛽𝑘 =
− log 𝑓𝑠𝑒𝑙

0.8 − 𝛾𝑖
(5.7)

This completes the material necessary to specify and implement the structure dis-
covery genetic algorithm.

Structure-First Foldtuning
Foldtuning was performed and implemented essentially as described in Chapter
3 and Section 3.4, with the following modifications: (1) generation of 10,000
sequences per round in batches of 250, (2) selection of sequences satisfying structural
compactness (amino-acid surface burial fraction> 0.5) and novelty (no CATHDB50
hit with TMscore > 0.5) criteria, and (3) ranking of filtered, validated round 𝑛

sequences for round 𝑛 + 1 finetuning in descending order of amino-acid surface
burial fraction.

Selection of Novel Folds for Computational Characterization
For the genetic algorithm experiment, all fifteen putative novel folds were advanced
to the computational validation and characterization. For the foldtuning-based

8Note that if 𝛾𝑖 > 0.8, then this would imply 𝑝𝑖 > 1. Formally, we ought to say 𝑝𝑖 =

max{1, exp[−𝛽𝑘 (0.8 − 𝛾𝑖)]}, empirically, however, the burial fraction for even exceptionally well-
packed and folded protein domains is bounded above by 𝛾𝑖 = 0.8. See Fig. 2.3D.

9This assumption is empirically justified for ESM2-generated sequences, referring again to Fig.
2.3D. It seems reasonable then to extrapolate this claim to sequences being evolved/sampled on a
landscape subject to an ESM2-based energy function.
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experiment, 1018 putative novel folds were initially cumulatively identified over five
rounds of structure-first foldtuning. To remove redundancy, predicted structures of
the 1018 were clustered with Foldseek at a similarity threshold of TMscore = 0.5,
decreasing the number of templates to 916. Given that the structural diversity of
the whole AlphaFoldDB50 runs deeper than that of the CATHDB50 subset, the
916 remaining putative novel folds were searched, again using Foldseek, against
the entire AlphaFoldDB50, dropping structures with any single hit with alignment
region TMscore > 0.5. This reduced the number of templates to 762. These 762
templates were ranked in order of decreasing surface-area burial fraction and the
top 100 carried through for inverse-folding and energy scoring validation. For Fig.
5.4 and Fig. 5.5, only the further top 10 of these top 100, as ranked by lowest
(most-stable) mean Rosetta-scored energy over all inverse-folded sequences were
are depicted.

Structure Prediction and Assignment
All structures were predicted with default ESMFold inference parameters as in
Lin et al. (2023). Predicted structures were annotated to CATH domain labels
via Foldseek structure-based search against the prebuilt CATHDB50 database
running in accelerated TMalign mode(Lau et al., 2024). The consensus CATH
domain was defined as the fold accounting for the most hits with TMscore > 0.5
and max(query_coverage, target_coverage) > 0.8. In the absence of at least one hit
satisfying these criteria, a structure was considered to be un-assignable.

Basic Chemical Property Calculations
Amino-acid surface area burial fraction was calculated using custom code and
reference individual amino-acid surface areas (HMS Bionumbers: 103239).

Energy Scoring Calculations
Biomolecule energy scores were obtained using the default ‘ref2015‘ energy func-
tion and standard relaxation and scoring workflow in Rosetta v3.11, as described
in Alford et al. (2017). Energy scores are reported in Rosetta Energy Units (R.E.U.),
normalized to sequence length.

Validation of Inverse-Folding Sequences and Structures
For both the genetic algorithm and foldtuning-based experiments, 200 sequences
were generated per structural template with ProteinMPNN, using the vanilla—v_48_020
model, sampling temperature 0.2, backbone noise 0.1 Å2 backbone noise, and forced
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omission of the rare/ambiguous amino acids B, J, O, U, X, and Z (Dauparas et al.,
2022). Within each batch of 200, sequences were downclustered at 60% sequence
identity with mmseqs2, structures predicted with ESMFold, and queried against the
template structure with Foldseek in TMalign mode using the standard TMscore
> 0.5 threshold as confirmation of a global match.

5.5 Supplemental Material
Supplemental Figures

Figure S5.1: Example structure fragments generated by RE-eeMHMC. 10 of
800 structure fragments predicted from sequences designed by replica-exchange
explore-exploit Metropolis-Hastings Monte Carlo sampling (RE-eeMHMC). Indi-
vidual structures are colored by ESMFold pLDDT; yellow=high, blue=low.
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Supplemental Tables

Table S5.1: Metadata and structural alignment metrics for closest CATH do-
main Foldsheek hits to 15 novel folds proposed by the genetic algorithm ap-
proach.

Closest CATH Hit

Novel Fold ID Name PDB/AFDB Pos. TM RMSD (Å)

0CF85E_R97 2.60.40.60 Cadherins 0Q7TSF1 383-484 0.428 7.7
120FD5_R140 1.20.5.4130 n/a A0A0P0YA47 9-126 0.351 5.8
244D7D_R143 1.10.533.10 Death Domain, Fas Q4QQS0 2-94 0.491 4.1
26D32B_R192 2.40.160.200 LURP1-related A0A0K3ARQ4 139-303 0.500 6.3
3733B8_R10 2.30.30.170 n/a Q2FZK7 945-1013 0.430 6.5
794026_R125 1.10.8.430 Helical domain of apop... Q6Z392 364-452 0.319 7.8
9D1265_R55 1.25.40.10 Tetratricopeptide repeat... Q9LEX5 342-409 0.540 3.0
A0A7B8_R123 1.10.472.10 Cyclin-like F4IWI9 175-2664 0.368 7.7
A49A4F_R116 1.10.260.40 𝜆 repressor-like DNA-bind... 1ic8A 87-180 0.319 5.4
A78532_R160 1.20.140.150 n/a Q7YTM8 1-160 0.396 5.1
B4RC4F_R164 3.90.1150.210 F-actin capping protein... 3aa7B 90-244 0.422 6.9
BC29B7_R55 1.10.357.10 Tet repressor, domain 2 1Z77A 47-200 0.430 6.7
C86FA9_R143 3.30.1520.10 Phox-like domain Q54S15 808-935 0.477 6.0
DB6817_R173 1.10.520.10 n/a K7VNV5 33-159 0.393 5.6
F99539_R114 1.10.10.60 Homeodomain-like 1ic8B 203-276 0.473 4.1

Table S5.2: Metadata and structural alignment metrics for closest CATH do-
main Foldsheek hits to 10 novel folds proposed by structure-first foldtuning.

Closest CATH Hit

Novel Fold ID Name PDB/AFDB Pos. TM RMSD (Å)

5_111 1.10.472.10 Cyclin-like I1M2D8 39-142 0.514 4.6
5_4773 1.10.10.10 Winged helix DNA-bind... Q2FWL6 1-80 0.392 11.8
5_4799 1.10.472.10 Cyclin-like Q10QA2 94-195 0.422 9.1
4_2316 1.10.533.10 Death Domain, Fas F8VQ39 371-466 0.479 7.5
2_385 1.10.150.130 Tyr recombinase, N-term... 2keyA 1-112 0.526 4.4
3_8774 1.10.472.10 Cyclin-like P51946 41-159 0.459 5.2
4_6556 1.20.920.10 Bromodomain-like A0A1I9LTJ3 289-399 0.402 5.4
4_6411 1.20.960.30 Mitochondrial import rec... 1uujA 2-77 0.419 3.4
3_5721 3.30.980.10 Threonyl-trna synth... Q9VUJ0 131-293 0.309 5.0
2_3053 1.10.10.1440 PHAX RNA-bind... 2xc7A 1-104 0.398 5.6
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C h a p t e r 6

CONCLUDING REMARKS

6.1 From foldtuning to foundation models
Foldtuning is not an an algorithm or model collection frozen in time. Indeed,
a leading strength of foldtuning is its modularity and generalizability to complex
design tasks. Much of this modular nature is bestowed by the GAN-like division
into generator and discriminator. In principle, any PLM could act as the generator,
provided an appropriate procedure for sampling from the model in question. The
choice of ProtGPT2 as the initial generative model for foldtuning was motivated
by its relative success at proposing novel, reasonable, and representative protein
sequences, but other promising approaches — e.g. direct embedding-to-sequence
decoders for encoder-only architectures (as recently demonstrated for ESM2) —
could be swapped in with minimal implementation burden (Chen et al., 2024). The
discriminator side is in some sense endlessly flexible. We began with a structure-
based filter to pursue minimal constraints on individual fold families, but foldtuning
was designed to be amenable to an arbitrary scoring function — even an ensemble
of scoring functions — from predicted stability or optimal pH, to active site preor-
ganization, to molecular-dynamics-derived root mean square fluctuation (RMSF),
and model-provided confidence metrics, depending on the exact problem of interest.
In that regard, structure-first foldtuning may be considered the first such spinoff of
foldtuning, replacing scoring that favors structural matches with an objective that re-
wards three-dimensional compactness and "anti-matching" so as to prefer structural
novelty.

Other discriminator-side changes could confer improvements in compute perfo-
mance and overhead. The total compute burden (cost + time) of foldtuning, as
currently implemented, is set by the structure prediction step — even a few seconds
of inference time per sequence adds up to four GPU-hrs for four rounds of foldtun-
ing with pre-evotuning.1 Replacing the time-consuming explicit structure prediction
step with conversion to a suitable one-dimensional representation of structure, such
as the increasingly utilized 3Di sidechain-aware structural alphabet developed for

1Benchmarked on a single NVIDIA A100 GPU with 80GB of memory; the optimal monetary
vs time cost tradeoff will depend on the number of foldtuned models required, hardware technical
specifications, and highly variable capital and/or hourly cost differences between providers.
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Foldseek, could accelerate foldtuning by as much as ∼ 10x over current internal
benchmarks (Heinzinger et al., 2023; van Kempen et al., 2023).

As a unit, also, foldtuning need not be an end unto itself. With its iterative update
structure, foldtuning is architecturally amenable to direct integration2 of experimen-
tal measurements — positive and negative — of generated variants via reinforcement
learning (RL). Incorporating RL atop foldtuning is a logical next step for guiding
models that have already learned sequence novelty under hidden language rules
towards empirical evidence of function, whether for the experimental results pre-
sented in this work or for any arbitrary target and/or assay. Beyond improving future
batches of generated proteins based on real-world data, we envision two additional
related model-side advances of import for AI-guided synthetic biology. First, recent
theoretical findings on general LLMs and hands-on application of chemical language
models for small-molecule representation and generation have independently pushed
back on the axiom that breadth and novelty are incompatible and argued that training
on labeled positive and negative examples mitigates the dilemma (Kalavasis et al.,
2025; Skinnider, 2024). Consequently, we can imagine incorporating information
from negative examples — both those filtered out in silico and those deriving from
experiment — into a single foldtuning foundation model that achieves full structural
coverage (including novel domains) without mode collapse or hallucination. Sec-
ond, foldtuning can form one end of an end-to-end model linking sequence-level
specification of, e.g. a binder with an arbitrary agonism/antagonism profile against
cell-surface receptors, to single-cell transcriptomic readout for design of bespoke
cell-signaling programs.

6.2 Producing and propagating protein novelty across scales
In this work, foldtuning was restricted to single-domain targets, a biophysically
meaningful, and well-annotated level at which to first segment. Generation and op-
timization of individual domains offers much to be excited about, including cytokine-
and chemokine-like binders as in the example posed above, host-defense peptide-
mimicking antimicrobials, and biosensor toolkits enabled by fluorescent protein
property expansion, all areas of ongoing interest. Complex systems of proteins, on
the other hand, are built up in layers of physical organization, compartmentalization,
and interaction. As an agent of domain diversification, foldtuning can power the
design of full-blown protein systems for AI-guided synthetic biology and cellular en-
gineering, such as signaling cascades assembled out of foldtuned kinases, SH2s, and

2As opposed to ranking, selection, and updating by finetuning.
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SH3s, or gene regulatory networks based on the many flavors of seemingly highly-
designable DNA-binding domains, or multi-step pathway catalytic machinery for
xenobiotic metabolism.

Lastly, if there is one defining theme of this thesis, it is that PLMs — whether through
foldtuning, MHMC sampling, or any other method — are producers and propagators
of novelty in sequence, structure, and function. With the right steering and forcing,
PLMs readily expand the boundaries of valid protein-space at greater rates than
the accumulation and processing of (meta)genomic data can. Putting generative
novelty ahead of prespecified phenotype leads to new fold-centered language rules,
evolution-esque innovation of structure and function, and mechanistic hints towards
the fundamental constraints that dictate the structure→function transition. Rumi-
nating on the virtues of novelty-first methods for looking forward and backwards in
time leads to persistent open questions including: What can alternate sequence rules
reveal about the primordial emergence of the first proteins? What are the smallest
collections of sequences and structures that can sustain the essential functions of
a minimal cell and how do they overlap (or not) with what we observe in nature
today? How can we leverage the "structure of feature-space" — a PLM’s internal
navigational charts, as it were — to further accelerate the search for new-to-nature
sequences, structures, and functions?

Peering a final time at the sequence→structure map, we have, through several strands
of novelty-directed exploration, replaced certain mythical monsters with the outlines
of heretofore unknown landmasses; the challenge persists to fully characterize and
capitalize on all that these addenda confer.
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