Chapter 2

BASIC LANGUAGE MODELS ARE SKEWED MIRRORS OF
THE PROTEIN UNIVERSE

2.1 Introduction

Protein language models (PLMs) — and more recently, their genomic language
model (GLM) cousins — have become increasingly utilized as descriptors and
generators of real and synthetic biological components (Ferruz et al., 2022; Hie et al.,
2022; Hwang et al., 2024; Lin et al., 2023; Nguyen et al., 2024). That PLMs are
consistent with natural protein-space as far as sequence statistics, structure statistics,
and biochemical and biophysical properties is a critical prerequisite if we are to use
and trust PLMs as vehicles to answer fundamental questions about the nature of
protein-space, such as those posed in the preceding chapter. Likewise if PLMs
are to prove dependable and formidable as engines for adding novelty in sequence,
structure, or function to the protein universe (Ferruz and Hocker, 2022). In general,
the ability of PLMs to implicitly internalize the relevant knowledge is assumed
to follow from: (1) the sheer depth and volume of large training datasets such as
UniRef50 (= 50 million sequences), UniRef90 (= 100M sequences), and UniRef
100 (= 3 billion sequences); and (2) the application of well-benchmarked model
architectures and unsupervised learning methods from natural language processing
(NLP) (Chen et al., 2023; Suzek et al., 2007; Vaswani et al., 2017). This faith is
broadly placed despite the fact that features such as tokenization scheme, vocabulary
size, and loss functions, and hyperparameters including learning rate and masking
fraction, are often ported directly from NLP work without adapting for the imperfect
analogy between English and amino-acid "texts."! PLMs may indeed be learning
and storing energy functions and co-evolutionary statistics deep within stacked and
layered transformers, but does that manifest in the boundless synthetic protein "texts"
— natural-like or novel — that can now be generated at the push of a button (Roney
and Ovchinnikov, 2022; Zhang et al., 2024)?

Answering this question is complicated further by the fact that generating out of a

! Although it is beyond the scope of this thesis, intriguingly, protein "text" corpora may boast
several advantages over human-created texts as far as language model training tractability, total-
parameter scaling, and time to convergence. This points to an opportunity to systematically perturb
training schemes and hyperparameter selection to craft bespoke PLMs with reduced compute over-
head. For further discussion, see Frey et al. (2024).



7

PLM is not a single universal concept, but rather covers a multitude of approaches
permitted by model architecture, application-specific factors, and personal philoso-
phy. The idea and mechanism of generating a single sequence is intuitive with an
autoregressive decoder-only model such as ProtGPT2 or ProGen — start with a blank
slate, add one token (a single amino-acid or a short subsequence, depending on the
model in question) at a time, moving from left-to-right, conditioned on whatever has
come before (Ferruz et al., 2022; Madani et al., 2023). It is less straightforward for
a model trained with a masked language modeling (MLM) objective and/or lacking
a decoder. In such instances, obtaining a single sequence might be done via Gibbs
sampling — filling in one sequence position at a time in a Markov Chain Monte
Carlo (MCMC) process, left-to-right or randomly, often with additional model fine-
tuning and/or a natural seed sequence (Garcia et al., 2024; Johnson et al., 2021).
Another common choice, beam search, incorporates heuristics that land somewhere
between greedy decoding and fully probabilistic sampling, while more indirect
schemes might incorporate PLM-derived metrics (e.g. sequence likelihood, pre-
dicted 3D contact maps) into an external energy function facilitating MCMC search
on a traditional sequence landscape in single amino-acid mutational steps (Elnaggar
et al., 2022; Verkuil et al., 2022). Still others have trained supplemental decoders
of ESM2 embeddings to map high-dimensional latent space representations back to

amino-acid sequences in tailored use cases (Chen et al., 2024).

Given the potential of PLMs to reach into novel sequence-spaces as highlighted in
Chapter 1, and the proliferation of PLMs and associated sampling strategies in the
absence of detailed analysis of generative output (computational or experimental),
we perform the first at-scale in silico statistical characterization of sequence and
structure composition in PLM-generated amino-acid sequences. We demonstrate
that not all models and sampling strategies are created equal. In particular, au-
toregressive sampling from ProtGPT2 dramatically outperforms Gibbs sampling
from ESM?2 in proposing realistic protein structures and achieving structural diver-
sity. Despite outperforming ESM2, however, the structural coverage of ProtGPT2
sharply distorts the distribution of natural protein structures. Further, we discover
that while ProtGPT?2 displays an impressive ability to sample and assemble novel
sequence motifs, maximizing sequence novelty through hyperparameter tuning ex-
acerbates its already substantial shortcomings as far as preserving structural breadth.
Together, our results identify a critical need for PLM-based generative strategies that
accurately capture rare and novel protein features if we are to push the boundaries

of fundamental biophysics and protein design.



2.2 Results & Discussion

Creating a fold-annotated database of PLM-generated protein structures

In order to characterize sequence and structure statistics, we initially constructed a
database of Al-generated artificial protein sequences from a suite of representative
models. We selected two commonly-used PLMs, both transformer-based but other-
wise starkly contrasting in architecture and compatible sequence generation meth-
ods: (1) ProtGPT2, an autoregressive decoder-only model with 774M parameters;
and (2) ESM2, a bidirectional encoder-only model with 150M parameters (Fig. 2.1)
(Ferruzetal., 2022; Lin et al., 2023).2 Sequence generation from ProtGPT2 involves
stepwise addition of tokens drawn probabilistically from a SwissProt-extracted vo-
cabulary of 50,256 short amino-acid subsequences, proceeding left-to-right while
conditioning on the in-progress sequence to the left. Generation begins with a blank
seed sequence and continues until either a prespecified number of tokens is reached
or a STOP token is generated, whichever occurs first. For our database, we sampled
100,000 sequences with ProtGPT2, applying the default best-performing hyperpa-
rameters — sampling temperature 1, top_k 950, top_p 1.0, repetition penalty 1.2
— from the original study, and enforcing a stopping criterion after 40 tokens in
the absence of a STOP token. Generated sequences were truncated to a maximum
length of 100aa, and sequences containing rare or ambiguous amino acids (B=Asx,
J=Ile/Leu, O=Pyl, U=Sec, X=Xaa, or Z=Glx) were filtered out, leaving 99,982

sequences for downstream analysis.

For ESM2-150M, we elected a left-to-right Gibbs sampling approach in single-
token increments for ease of fair comparison to the autoregressive method and to
align with existing benchmarks in the field (Johnson et al., 2021). In contrast to
ProtGPT2 sampling, ESM2-150M uses the amino-acid alphabet (20 canonical AAs
+ 6 rare/ambiguous AAs) as its vocabulary and generates up until a fixed sequence
length is reached.®> We generated 148,500 sequences of length 100aa from ESM2-
150M, with default hyperparameters of sampling temperature 1 and no repetition
penalty, and applying the same filtering for rare/ambiguous amino acids as with
ProtGPT?2.

ZESM2 may refer to a family of associated language models of various transformer stack height
and layer count, all trained on the 2021_09 release of UniRef50. Here, we use the 150M-parameter
model to manage compute overhead on the generation task. The full ESM2 model collection includes
versions with 8M, 35M, 150M, 650M, 3B, and 15B parameters.

3In theory, the ESM2 vocabulary also alows for an early STOP (end-of-sequence/<eos>) token
to be generated, but we did not observe this in practice, and it is highly unlikely to occur given that
the ESM2 models were trained without explicit <eos> tokens in training data clusters.
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Figure 2.1: Workflow for structural annotation of pLLM-generated sequences.
Schematic overview of pLM generation, structure prediction, and structural
search+assignment pipeline for representative models ProtGPT2 and ESM2-150M.

We also generated a control set of 74,250 random amino-acid sequences of fixed
length 100aa, weighting sampling probability for each of the 20 canonical amino
acids to be proportional to natural abundance in UniProt, i.e. preserving first-
order sequence statistics but none of the second- and higher-order correlations
between residues that transformers are expected to capture. Lastly, to benchmark
against a completely different class of generative models, we added an inverse-
folding comparison set comprised of 110,700 sequences, three per each of the
36,900 representative experimental structures in the Structural Classification of
Proteins (SCOP) database, designed from backbone-to-sequence inference by ESM-
IF1 following default hyperparameters (Andreeva et al., 2020; Hsu et al., 2022).
After filtering to exclude rare ligands in template structures and rare/ambiguous
amino acids in outputs, the inverse-folding set was reduced to 104,591 sequences in
total.

We predicted structures for all ~ 430,000 sequences with ESMFold. ESMFold
has been shown to exceed the prediction accuracy of AlphaFold2 in the absence
of deep multiple sequence alignment (MSA) information, which far-from-natural
sequences lack by definition (Jumper et al., 2021; Lin et al., 2023). ESMFold’s
MSA-free single-sequence transformer architecture is additionally suitable for ef-

ficient inference in large-scale structure prediction tasks and for more transparent
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Figure 2.2: ESMFold achieves single-angstrom structure prediction accuracy on
de novo designed sequences. Backbone atom root-mean-square deviation (RMSD;
median= 0.92+0.14) for ESMFold predicted structures of n = 122 de novo designed
proteins vs. experimental ground-truth structures, covering «, £, and mixed-of
global topologies, and including designs obtained from physics-based and generative
Al'models. All sequences in the validation set had experimental structures deposited
in the Protein Data Bank (PDB) after the ESMFold training cutoff date of 05-01-
2020.

analysis of model behavior. Bolstering this contention, we assessed the accuracy of
ESMFold structural prediction on out-of-distribution samples by evaluating model
performance on de novo proteins with structures deposited in the Protein Data Bank
(PDB) on-or-after the ESMFold training cutoft date of 05-01-2020. Mirroring the
training set construction process described in the original ESMFold publication, we
filtered out structures with resolution > 9 A, length < 20aa, rare or ambiguous amino
acids (BJOUXZ), or containing > 20% sequence composition of any one amino acid,
and clustered remaining sequences at the 40% identity level, obtaining a validation
set of n = 122 sequences. For each of the 122 sequences, the backbone RMSD
was calculated between the ESMFold predicted structure and the ground-truth PDB
experimental structure, with a median alignment RMSD of 0.92 + 0.14 A and cov-

erage of diverse structure topology classes, indicating sufficient generalization of
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ESMFold beyond natural training data for use as a structure prediction oracle on

PLM-generated sequences (Fig. 2.2).

Finally, to identify common natural structural motifs in PLM-generated, inverse-
folded, and control variants, we annotated our database of predicted structures at
the "fold" level of the SCOP classification, covering 1579 possible fold labels.
Each predicted structure was assigned to a consensus fold label by performing a
structure-based search against all SCOP representative PDB structures (n = 36900;
the same structures used as backbone templates for inverse-folding) with Foldseek
in accelerated TMalign mode and selecting the SCOP fold accounting for the most
hits satisfying TM-score > 0.5 and max(query coverage, target coverage) > 0.8; in
the absence of a hit satisfying these criteria, the predicted structure in question was
labeled as un-assignable. The full generation, folding, and annotation workflow is

summarized in Fig 2.1.

PLM-generated sequences are protein-like

For a first-pass analysis, we consider whether generated sequences and their cor-
responding (predicted) structures recapitulate the global characteristics of natural
proteins. To determine where pLM-generated sequences lie with respect to natural
sequence-space, we extract the ESM2-150M final hidden-layer internal represen-
tations ("embeddings") of all >400,000 generated sequences and 100,000 diverse
natural sequences coding for SCOP fold examples mined from the AlphaFoldDB
(Varadi et al., 2022).* We reduce dimensionality to 2D using UMAP, and apply
a rule-of-thumb that the embeddings of qualitatively similar sequences should co-
localize (Mclnnes et al., 2018). We observe that ProtGPT2-generated sequences
separate into two subpopulations, one co-localizing with natural sequences, and
a second co-localizing with random sequences (Fig. 2.3A). In contrast, ESM2-
150M-generated sequences co-localize most substantially with random sequences.
Inverse-folded sequences from ESM-IF1 largely mirror the distribution of natural
sequences, implying that they do not represent any significant departure from natural

protein-space.

Turning towards coarse structural properties, the compactness/globularity of pre-
dicted structures for pLM-generated sequences — estimated as the fractional burial
of all amino-acid surface area relative to the linear polypeptide chain — does not

map onto whether generated variants are co-localizing with natural vs. random

“Except where otherwise specified, natural sequences/structures are drawn uniformly from a
custom SCOP-UniRef50 database for which assembly details may be found in Section 2.4.
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Figure 2.3: PLM-generated sequences reflect the basic properties of compact,
globular proteins. (A) Dimension-reduced UMAP representation of ESM2-150M
embeddings of natural, pLM-generated, inverse-folded, and random control se-
quences. (B) UMAP representation of pLM-generated sequences, colored by the
fraction of amino-acid surface area buried (a measure of protein compactness). (C)
UMAP representation of pLM-generated and random sequences assignable to a
SCOP fold. (D) Fraction of amino-acid surface area buried for natural and pLM-
generated sequences. (E) Fraction of residues annotated as random coils by DSSP
for natural and pLM-generated sequences.

sequences (Fig. 2.3B). Similarly, SCOP folds are confidently assigned for large
swaths of ProtGPT2-generated and ESM2-150M-generated sequences that do not
co-localize with natural proteins (Fig. 2.3C). This suggests that both ProtGPT2
and ESM2-150M can emit sequences that are distinct in some statistical sense from
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natural ones yet able to fold into plausible and familiar 3D structures. However,
this finding is tempered slightly by the realization that sequences from both PLMs
are predicted to adopt structures that are less compact and less rich in secondary
structure content (a-helix and -sheet) on average than natural proteins in the SCOP
reference set, implying that PLM output may tilt towards disordered regions (Fig.
2.3D-E).

PLM-generated structures do not follow the natural distribution

For a finer-grained perspective on structure, we look to the SCOP fold label assign-
ment procedure and observe that while a respectable 32.7% of ProtGPT2-generated
sequences are assignable to a fold label, this is only the case for 5.5% of ESM2-
150M-generated sequences, on par with the 6.1% assignment rate for random se-
quences (Fig. 2.4A). That the ESM2-150M fold assignment rate is no improvement
over a control approach that includes first-order sequence statistics sparks doubt
as to whether Gibbs sampling can reflect the higher-order sequence correlations
presumably learned by ESM2-150M without manipulating the generation task to

mimic the increased availability of contextual information during the training task.

Fold label assignments for both ESM2-150M and random sequences also skew
heavily towards all-a topologies like helical bundles and @ + S topologies like
ferredoxins (Fig. 2.4A). SCOP topology class coverage with ProtGPT2 bears more
resemblance to the natural distribution, especially as far as reaching the « /g folds
that include most enzymatic diversity, but still overweights all-a content (Fig. 2.4A)
(Choi and Kim, 2006). These trends in structural coverage breadth propagate to the
fold level; 668/1579 (42.3%) of SCOP folds are detected in ProtGPT2 output, or
~ 1.9x the 356/1579 (22.5%) represented in ESM2-150M output (Fig. 2.4B).
Focusing on ProtGPT2, overrepresented folds include several flavors of a-helical
bundles, Rossmann(2x3)oids, and the all-8 immunoglobulin-like domain, while
underrepresented folds include ubiquitous and diversified functional folds such as
TIM B/a barrels, G-protein coupled receptors (GPCRs), and ferredoxins (Fig. 2.4C-
D, Table S2.2). Evidently, plucked off the shelf, PLMs do not reproduce the natural

frequencies of known protein folds.

Prioritizing sequence novelty shrinks accessible structure-space
While the structural ensembles sampled by PLMs fail to cover the breadth of nat-
ural structural-space and distort frequencies in the corners that they do touch, the

plausible structures that they do access come with notable sequence novelty. In
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Figure 2.4: Structural ensembles generated by pretrained language models
cover natural protein-space imperfectly. (A) Comparison of global protein topol-
ogy preferences of natural, pLM-generated, and random sequences. (B)) Rank-
ordered fold ensemble frequency plots for natural and pLM-generated sequences.
(C) Fold ensemble comparison of ProtGPT2-generated sequences vs natural (SCOP-
UnitRef50) sequences. (D) The six most-common SCOP folds among ProtGPT2
outputs; representative structures are of far-from-natural sequences (no MMseqs2
hit with E-value < 0.01).

particular, out of the 32,694/99,982 (32.7%) ProtGPT2-generated sequences with
a fold label assignment, a further 18,962 (58.0% of assignable; 19.0% of all) have
no detectable homology to any of the ~ 50 million representative protein sequences
in UniRef50, a phenomenon that we dub sequence "escape" (Fig. 2.4A, Table 2.1).
One hypothesis, inspired by typical NLP approaches, is that higher rates of sequence
escape, and perhaps some of the missing structure coverage, might be reached by
loosening sampling hyperparameters to encourage diversity in generated text. Con-
tinuing with ProtGPT?2, the two critical and tunable hyperparameters are top_k and
sampling temperature — increasing top_k allows for more tokens to be considered
for sampling at a given step, while increasing temperature flattens the probability
distribution over the token pool under consideration — both leading in theory to

greater diversity in sequence output.
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Table 2.1: Base ProtGPT2 sequence and structure generation performance de-
pends on sampling hyperparameters. As sampling temperature and vocabulary
size increase, generated sequences are more likely to lack homology to natural pro-
teins, but also more likely to be unstructured and/or unassignable to any categorized

SCOP fold label.

Hyperparams Results

top_k temp Valid Seq. # Folds Struct. Hit Seq. Esc.

600  0.800 1.000 658 0.347 0.445
1.000 1.000 635 0.336 0.545
1.200 1.000 645 0.322 0.629
1.500 1.000 617 0.304 0.717
2.000 0.999 606 0.282 0.797
5.000 0.981 513 0.160 0.912

950  0.800 1.000 643 0.345 0.466
1.000 1.000 668 0.327 0.580
1.200 0.999 620 0.306 0.674
1.500 1.000 625 0.287 0.766
2.000 0.998 587 0.262 0.855
5.000 0.985 473 0.151 0.958

1500 0.800 1.000 649 0.340 0.484
1.000 1.000 646 0.315 0.609
1.200 0.999 627 0.290 0.708
1.500 1.000 608 0.263 0.816
2.000 0.998 577 0.239 0.903
5.000 0.988 476 0.144 0.981

2400 0.800 1.000 634 0.334 0.493
1.000 1.000 634 0.303 0.628
1.200 1.000 617 0.277 0.742
1.500 1.000 588 0.248 0.857
2.000 0.998 542 0.222 0.944
5.000 0.991 460 0.139 0.993

4000 0.800 1.000 662 0.334 0.510
1.000 1.000 644 0.298 0.650
1.200 0.999 618 0.271 0.778
1.500 1.000 574 0.238 0.894
2.000 0.998 540 0.212 0.968
5.000 0.993 442 0.145 0.998

We systematically vary both temperature (7 = 0.8,1.0,1.2,1.5,2.5,5.0) and top_k
(N = 600,950, 1500, 2400, 4000), generating 100,000 sequences from ProtGPT2

for each of the 30 hyperparameter pairs on this grid and following the same trunca-

tion, filtering, structure prediction, and annotation workflow described previously.
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Figure 2.5: Sequence escape rates increase across most folds as sampling tem-
perature increases, at the cost of a shift towards all-o topologies. Sequence
escape rates for all assigned SCOP folds generated from ProtGPT2 within batches
of 100k sequences for several sampling temperatures (0.8, 1, 1.2, 1.5, 2, 5) x several
top_k values (number of highest-probability tokens considered in sampling out of
50,256 total; 600, 950, 1500, 2400, 4000.

Consistent with the NLP hypothesis, we see that sequence escape rates increase dra-
matically when temperature or top_Kk is increased, and approach 100% of assignable
structures when both are increased simultaneously; this trend holds in aggregate
and at the level of individual fold classes (Table 2.1, Fig. 2.5). However, far from
rescuing the missing structural breadth, boosting sequence novelty exacerbates the
issue. As temperature and/or top_k are increased, the number of unique SCOP folds
detected plummets, the fraction of assignable structures (the "structural hit rate")
falls precipitously, and topology class representation vanishes in favor of all-a he-
lical bundles, largely at the expense of «/f proteins (Table 2.1, Fig. S2.1-S2.2).
Again, these trends propagate down to individual fold classes, with a handful of

helical bundles dominating the generative space, albeit with impressive sequence
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escape rates (Tables S2.1-S2.5). While obtaining far-from-natural versions of heli-
cal bundles could yet prove useful for protein design writ large (e.g. in minibinder
design campaigns), the structural biases accentuated by by prioritizing sequence
novelty reinforce the reality that without additional tuning or optimization, pre-
trained PLMs are at best flawed mirrors of natural protein-space thanks to severe

structural dropout.

2.3 Conclusion

We showed that, after "seeing" tens of millions of real protein sequences, PLMs are
sufficiently aware of the sequence and structure statistics of natural proteins to yield
realistic proteins that pass the in silico biophysical smell test — compact, globular,
containing familiar secondary elements, and often bearing a passing resemblance to
known structural motifs. In the case of ProtGPT?2, this capacity emerges seamlessly
in a free generation task that echoes the model’s training task. We also demonstrated
that ProtGPT2 is a powerful instrument for accessing sequence novelty, specifically
sequences devoid of measurable homology to natural proteins even under highly
sensitive search conditions. However, this sequence novelty comes at a substantial
cost. Namely, limited structural breadth in model output, sacrificing much of the
richness of nature’s structural landscape. This presents as a fundamental tradeoff.
The more sequence novelty is pursued by tuning sampling hyperparameters to
explore the vastness of sequence-space, the more complete the collapse to a small

collection of structural modes, often biophysically simple a-helical bundles.

In contrast to situations encountered in foundational ML subfields including natural
language processing and computer vision, this collapse to a subset of modes occurs
without obvious training data contamination and only weakly reflects the relative
frequencies of these modes in the UniRef50 training data common to both ProtGPT2
and the ESM2 model family.> Put in plainer biological terms, while the long alpha-
hairpin and the spectrin repeat come to dominate model output, it’s the TIM B/«
barrels (or stable subsectors thereof) and ferredoxins that ought to carry the day if
natural abundance were the guiding factor. Instead, this behavior may well stem from
a combination of limitations baked into model architecture (e.g. the unidirectional
context window of ProtGPT2) and mechanistic discordance between training and

generation tasks (e.g. 15% vs 100% sequence masking in training vs. generation

3 Although ProtGPT2 and ESM2 were trained on different versions of UniRef50 (ProtGPT2:
2021_04, ESM2: 2021_09), with distinct train-test partitioning approaches, it is unlikely that this
would translate into any significant difference in database composition or contamination.
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contexts respectively for ESM2). The absence of many rare and/or functionally
relevant structural motifs from generative PLM output could prove deleterious for
future Al-driven protein design campaigns. Further, this shortcoming suggests that
alternative forcing strategies will be required for harnessing sequence novelty and
reliably sampling functional protein populations from PLMs, particularly in the
pursuit of "linguistically consistent” proteins well beyond the confines of natural
sequence-space. Tailored strategies for achieving these goals are explored in the

subsequent chapters.

2.4 Methods
Except where otherwise specified, all model access and interfacing was via TRILL
v1.3.11 (Martinez et al., 2023).

Sequence Generation from Protein Language Models

For the model comparison experiment, sequences (n = 100000) were sampled
from ProtGPT2 by L-to-R next-token prediction with the default best-performing
hyperparameters from Ferruz et al. (2022); sampling temperature 1, top_k 950,
top_p 1.0, repetition penalty 1.2. The termination condition was set following the
40th token or the first STOP token occurring prior to the 40th token; sequences
longer than 100aa were truncated to 100aa as the maximal length. Sequences
containing rare or ambiguous amino acids (B, J, O, U, X, or Z) were filtered out
as invalid, leaving 99,982 sequences. Sequences were sampled from ESM2-150M
(n = 148500), from L-to-R with next-token prediction with Gibbs sampling, with a
default sampling temperature of 1, no repetition penalty, and allowing for sampling
from the full token distribution. The termination condition was set following the
100th amino-acid or the first STOP token occurring prior to the 100th amino-acid.
Truncation and filtering were applied as for ProtGPT2.

For the hyperparameter scan experiment, sequences (n = 100000 per configuration)
were generated from ProtGPT2 by L-to-R next-token prediction with top_p 1.0 and
repetition penalty 1.2 fixed, and a grid search over 30 (temperature, top_k) pairs de-
rived from six possible temperatures (7' = 0.8, 1.0, 1.2, 1.5, 2.0, 5.0) x five possible
top_k pool sizes (N = 600, 950, 1500, 2400, 4000). Truncation and filtering were

applied as in the model comparison experiment.
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Sequence Generation from Control Models

The random-sequence control set was generated by position-independent sampling
of n = 74250 sequences of length 100aa from the 20 proteinogenic amino acids,
with sampling probability for each amino acid proportional to its natural abundance.
As sequence length was fixed and the rare/ambiguous amino acids B, J, O, U, X,

and Z excluded, no filtering or truncation steps were required.

The inverse-folding control set was constructed by generating three sequences from
ESM-IF1 with each of the 36,900 representative structures in the SCOP database as a
backbone template, for n = 110700 sequences in total. Pre- and post-processing for
rare ligands in templates and rare/ambiguous amino acids in outputs, respectively,
reduced inverse-folding output to 104,591 sequences. Default hyperparameters for

sampling were taken as in Hsu et al. (2022).

Structure Prediction and Assignment

All structures (for filtered, truncated sequences as described above) were predicted
with default ESMFold inference parameters as in Lin et al. (2023). For the model
comparison experiment, structures were singly-inferenced (batch size 1), with com-
pute resource collaboration with Yurts Al (now Legion Intelligence). For the hyper-
parameter scan experiment, structures were batch-inferenced with batch size 100 to
optimally utilize memory allocation on A100-80GB GPUs, with compute resource

collaboration through Oracle Cloud Infrastructure (OCI).

Predicted structures were annotated to SCOP fold labels via FoLDSEEK structure-
based search against the custom SCOP-UniRef50 database (construction described
in a standalone subsection) running in accelerated TMalign mode. The consensus
SCOP fold was defined as the fold accounting for the most hits with TMscore > 0.5

and max(query_coverage, target_coverage) > 0.8.

Sensitive Sequence Search and Novelty Characterization

In both the model comparison and hyperparameter scan experiments, PLM-generated
and control sequences were searched against UniRef50 using MMseQs2 with de-
fault easy-search parameters and maximum e-value 0.01. Sequence escape rate was
computed as the fraction of sequences not returning an alignment hit of any length

to any cluster representative from UniRef50 at the specified e-value threshold.
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Construction of the SCOP-UniRef50 Sequence-Structure Database

The SCOP-UniRef50 custom sequence-structure fragment database was constructed
by performing reciprocal FoLDsEEK searches (in fast TM-align mode) of the SCOP
database of superfamily representative PDB structures (n = 36900) against the
UniRef50 portion (based on the 2021_04 release) included in the July 2022 update
to the AlphaFoldDB as first reported in Varadi et al. (2022) and made available
as a precompiled ForLbseek database in van Kempen et al. (2023), filtering for
reciprocal hits with fractional query and target coverage > 0.8 and TMscore> 0.5,

and clustering the filtered fragments at 100% identity.

For the model comparison experiments, n = 100000 natural sequences were uni-
formly sampled from SCOP-UniRef50 and jointly embedded along with PLM-
generated and control sequences using ESM2-150M. This choice was made vs.
sampling directly from SCOP in order to (1) obtain a similar number of natural se-
quences (~ 10°) to model-generated and control batches, and (2) draw sequence frag-
ments with representative taxonomic coverage for evolutionarily conserved folds, as
opposed to the narrower taxonomic coverage in SCOP, itself a function of skewed

taxonomic coverage in the Protein Data Bank (Andreeva et al., 2020).

Basic Chemical Property Calculations

Amino-acid surface area burial fraction was calculated using custom code and refer-
ence individual amino-acid surface areas (HMS Bionumbers: 103239). Secondary
structure annotations were assigned with DSSP via the corresponding PYMOL

v3.1.0 wrapper.

2.5 Supplemental Material

Supplemental Figures
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Figure S2.1: Structure hit rates from base ProtGPT2 decrease as sampling tem-
perature and top_k increase. Structure hit rates from batches of 100k sequences
generated from ProtGPT?2 for several sampling temperatures (0.8, 1, 1.2, 1.5, 2, 5)
and top_k values (number of highest-probability tokens considered in sampling out
of 50,256 total) — (A) 600, (B) 950, (C) 1500, (D) 2400, (E) 4000; broken down by
protein global topology class (a, 8, @ + B, @/, or "small / minimal 2° structure").
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Figure S2.2: Generated fold distributions shift towards all-a proteins and away
from « /3 proteins as sampling temperature increases. Frequency of each protein
global topology class (a, B8, @ + 8, @/, or "small / minimal 2° structure") among
all structure hits within batches of 100k sequences generated from ProtGPT2 for
several sampling temperatures (0.8, 1, 1.2, 1.5, 2, 5) and top_k values (number of
highest-probability tokens considered in sampling out of 50,256 total) — (A) 600,
(B) 950, (C) 1500, (D) 2400, (E) 4000.
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Supplemental Tables

Table S2.1: Most common SCOP folds generated by base ProtGPT2 at various
sampling temperatures with top_k 600.

temp: 0.8
Fold Class Freq. Abs. HitRate Esc. Rate
Long alpha-hairpin a 0.095 0.033 0.810
Spectrin repeat-like a 0.050 0.017 0.871
Rossmann(2x3)oid (Flavodoxin-like) a/B 0.048 0.017 0.146
Immunoglobulin-like beta-sandwich B 0.036 0.012 0.510
alpha-alpha superhelix a 0.033 0.011 0.386
temp: 1
Fold Class Freq. Abs. HitRate Esc. Rate
Long alpha-hairpin a 0.112 0.038 0.874
Spectrin repeat-like a 0.056 0.019 0.907
Rossmann(2x3)oid (Flavodoxin-like) a/B 0.043 0.014 0.252
Immunoglobulin-like beta-sandwich B 0.034 0.012 0.596
Hemerythrin-type up-and-down 4-helical bundle « 0.032 0.011 0.903
temp: 1.2
Fold Class Freq. Abs. Hit Rate Esc. Rate
Long alpha-hairpin @ 0.122 0.039 0.908
Spectrin repeat-like a 0.063 0.020 0.929
Rossmann(2x3)oid (Flavodoxin-like) a/B 0.043 0.014 0.330
Hemerythrin-type up-and-down 4-helical bundle « 0.036 0.012 0.937
Immunoglobulin-like beta-sandwich B 0.030 0.010 0.696
temp: 1.5
Fold Class Freq. Abs. Hit Rate Esc. Rate
Long alpha-hairpin a 0.130 0.040 0.943
Spectrin repeat-like a 0.068 0.021 0.950
Rossmann(2x3)oid (Flavodoxin-like) a/B 0.042 0.013 0.424
Hemerythrin-type up-and-down 4-helical bundle « 0.040 0.012 0.958
Immunoglobulin/albumin-binding domain-like  « 0.033 0.010 0.955
temp: 2
Fold Class Freq. Abs. HitRate Esc. Rate
Long alpha-hairpin a 0.141 0.040 0.969
Spectrin repeat-like a 0.075 0.021 0.968
Hemerythrin-type up-and-down 4-helical bundle « 0.044 0.013 0.978
Rossmann(2x3)oid (Flavodoxin-like) a/B 0.043 0.012 0.500
Immunoglobulin/albumin-binding domain-like ~ « 0.032  0.009 0.966
temp: 5
Fold Class Freq. Abs. HitRate Esc. Rate
Long alpha-hairpin a 0.154 0.025 0.989
Spectrin repeat-like a 0.084 0.014 0.989
Hemerythrin-type up-and-down 4-helical bundle « 0.060 0.010 0.984
alpha-alpha superhelix a 0.040 0.006 0.905
Immunoglobulin/albumin-binding domain-like  « 0.033  0.005 0.987
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Table S2.2: Most common SCOP folds generated by base ProtGPT2 at various
sampling temperatures with top_k (vocabulary size) 950.

temp: 0.8
Fold Class Freq. Abs. HitRate Esc. Rate
Long alpha-hairpin a 0.101 0.035 0.841
Spectrin repeat-like a 0.050 0.017 0.872
Rossmann(2x3)oid (Flavodoxin-like) a/B 0.048 0.016 0.177
Immunoglobulin-like beta-sandwich B 0.032 0.011 0.534
Canonical WHD (winged helix domain) fold a+p 0.031 0.011 0.342
temp: 1
Fold Class Freq. Abs. HitRate Esc. Rate
Long alpha-hairpin a 0.111 0.036 0.893
Spectrin repeat-like a 0.058 0.019 0.918
Rossmann(2x3)oid (Flavodoxin-like) a/f 0.042 0.014 0.273
Hemerythrin-type up-and-down 4-helical bundle « 0.034 0.011 0.926
alpha-alpha superhelix a 0.031 0.010 0.571
temp: 1.2
Fold Class Freq. Abs. Hit Rate Esc. Rate
Long alpha-hairpin a 0.126  0.039 0.930
Spectrin repeat-like a 0.065 0.020 0.946
Rossmann(2x3)oid (Flavodoxin-like) a/B  0.041 0.013 0.345
Hemerythrin-type up-and-down 4-helical bundle « 0.038 0.012 0.948
Canonical WHD (winged helix domain) fold a+£ 0.030 0.009 0.530
temp: 1.5
Fold Class Freq. Abs. HitRate Esc. Rate
Long alpha-hairpin a 0.136  0.039 0.943
Spectrin repeat-like a 0.069 0.020 0.969
Hemerythrin-type up-and-down 4-helical bundle « 0.046 0.013 0.960
Rossmann(2x3)oid (Flavodoxin-like) a/f 0.042 0.012 0.491
Immunoglobulin/albumin-binding domain-like  « 0.030 0.009 0.960
temp: 2
Fold Class Freq. Abs. HitRate Esc. Rate
Long alpha-hairpin a 0.149 0.039 0.978
Spectrin repeat-like a 0.076  0.020 0.984
Hemerythrin-type up-and-down 4-helical bundle « 0.045 0.012 0.976
Rossmann(2x3)oid (Flavodoxin-like) a/B  0.040 0.010 0.596
Immunoglobulin/albumin-binding domain-like  « 0.035 0.009 0.974
temp: 5
Fold Class Freq. Abs. HitRate Esc. Rate
Long alpha-hairpin a 0.178 0.027 0.991
Spectrin repeat-like a 0.090 0.014 0.996
Hemerythrin-type up-and-down 4-helical bundle « 0.064 0.010 0.989
Immunoglobulin/albumin-binding domain-like  « 0.038 0.006 0.986
alpha-alpha superhelix a 0.035 0.005 0.934
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Table S2.3: Most common SCOP folds generated by base ProtGPT2 at various
sampling temperatures with top_k (vocabulary size) 1500.

temp: 0.8
Fold Class Freq. Abs. HitRate Esc. Rate
Long alpha-hairpin a 0.101 0.035 0.847
Spectrin repeat-like a 0.052 0.018 0.878
Rossmann(2x3)oid (Flavodoxin-like) a/B  0.045 0.015 0.210
Immunoglobulin-like beta-sandwich B 0.033 0.011 0.555
alpha-alpha superhelix a 0.031 0.010 0.426
temp: 1
Fold Class Freq. Abs. HitRate Esc. Rate
Long alpha-hairpin a 0.119 0.037 0.895
Spectrin repeat-like a 0.059 0.019 0.918
Rossmann(2x3)oid (Flavodoxin-like) a/B  0.040 0.013 0.304
Hemerythrin-type up-and-down 4-helical bundle « 0.035 0.011 0.930
Canonical WHD (winged helix domain) fold a+pB 0.029 0.009 0.472
temp: 1.2
Fold Class Freq. Abs. HitRate Esc. Rate
Long alpha-hairpin a 0.129 0.038 0.930
Spectrin repeat-like a 0.067 0.019 0.956
Rossmann(2x3)oid (Flavodoxin-like) a/Bf  0.042 0.012 0.425
Hemerythrin-type up-and-down 4-helical bundle « 0.040 0.012 0.951
Canonical WHD (winged helix domain) fold a+pB 0.029 0.008 0.528
temp: 1.5
Fold Class Freq. Abs. HitRate Esc. Rate
Long alpha-hairpin a 0.145 0.038 0.963
Spectrin repeat-like a 0.077 0.020 0.984
Hemerythrin-type up-and-down 4-helical bundle « 0.047 0.012 0.976
Rossmann(2x3)oid (Flavodoxin-like) a/B  0.040 0.011 0.566
Immunoglobulin/albumin-binding domain-like  « 0.033  0.009 0.968
temp: 2
Fold Class Freq. Abs. HitRate Esc. Rate
Long alpha-hairpin a 0.158 0.038 0.988
Spectrin repeat-like a 0.078 0.019 0.989
Hemerythrin-type up-and-down 4-helical bundle « 0.050 0.012 0.986
Rossmann(2x3)oid (Flavodoxin-like) a/B  0.039 0.009 0.708
Immunoglobulin/albumin-binding domain-like  « 0.034 0.008 0.987
temp: 5
Fold Class Freq. Abs. Hit Rate Esc. Rate
Long alpha-hairpin a 0.182 0.026 0.993
Spectrin repeat-like a 0.094 0.014 0.999
Hemerythrin-type up-and-down 4-helical bundle « 0.070 0.010 0.994
Ferredoxin-like a+p 0.040 0.006 0.984

Immunoglobulin/albumin-binding domain-like  « 0.038 0.005 0.993
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Table S2.4: Most common SCOP folds generated by base ProtGPT2 at various
sampling temperatures with top_k (vocabulary size) 2400.

temp: 0.8
Fold Class Freq. Abs. HitRate Esc. Rate
Long alpha-hairpin a 0.106 0.036 0.850
Spectrin repeat-like a 0.052 0.018 0.894
Rossmann(2x3)oid (Flavodoxin-like) a/f 0.043 0.014 0.210
alpha-alpha superhelix a 0.032 0.011 0.435
Canonical WHD (winged helix domain) fold a+p 0.031 0.011 0.358
temp: 1
Fold Class Freq. Abs. HitRate Esc. Rate
Long alpha-hairpin a 0.125 0.038 0.905
Spectrin repeat-like a 0.062 0.019 0.939
Rossmann(2x3)oid (Flavodoxin-like) a/f  0.040 0.012 0.353
Hemerythrin-type up-and-down 4-helical bundle « 0.038 0.011 0.917
Canonical WHD (winged helix domain) fold a+pB 0.028 0.008 0.446
temp: 1.2
Fold Class Freq. Abs. HitRate Esc. Rate
Long alpha-hairpin a 0.138 0.038 0.945
Spectrin repeat-like a 0.071 0.020 0.959
Hemerythrin-type up-and-down 4-helical bundle « 0.043 0.012 0.957
Rossmann(2x3)oid (Flavodoxin-like) a/f 0.041 0.011 0.456
Ferredoxin-like a+pB 0.030 0.008 0.792
temp: 1.5
Fold Class Freq. Abs. HitRate Esc. Rate
Long alpha-hairpin a 0.158 0.039 0.976
Spectrin repeat-like a 0.077 0.019 0.985
Hemerythrin-type up-and-down 4-helical bundle « 0.052 0.013 0.981
Rossmann(2x3)oid (Flavodoxin-like) a/B 0.038 0.010 0.601
Ferredoxin-like a+p 0.033 0.008 0.888
temp: 2
Fold Class Freq. Abs. HitRate Esc. Rate
Long alpha-hairpin a 0.167 0.037 0.994
Spectrin repeat-like a 0.086 0.019 0.992
Hemerythrin-type up-and-down 4-helical bundle « 0.056 0.012 0.991
Immunoglobulin/albumin-binding domain-like  « 0.041 0.009 0.991
Ferredoxin-like a+pB 0.036 0.008 0.956
temp: 5
Fold Class Freq. Abs. HitRate Esc. Rate
Long alpha-hairpin a 0.190 0.027 0.998
Spectrin repeat-like a 0.095 0.013 0.998
Hemerythrin-type up-and-down 4-helical bundle « 0.069 0.010 0.998
Ferredoxin-like a+p 0.041 0.006 0.993
Immunoglobulin/albumin-binding domain-like  « 0.041 0.006 0.996
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Table S2.5: Most common SCOP folds generated by base ProtGPT2 at various
sampling temperatures with top_k (vocabulary size) 4000.

temp: 0.8
Fold Class Freq. Abs. HitRate Esc. Rate
Long alpha-hairpin a 0.108 0.036 0.855
Spectrin repeat-like a 0.054 0.018 0.892
Rossmann(2x3)oid (Flavodoxin-like) a/f 0.042 0.014 0.217
alpha-alpha superhelix a 0.031 0.010 0.448
Hemerythrin-type up-and-down 4-helical bundle « 0.031 0.010 0.896
temp: 1
Fold Class Freq. Abs. HitRate Esc. Rate
Long alpha-hairpin a 0.123  0.037 0.904
Spectrin repeat-like a 0.065 0.019 0.939
Rossmann(2x3)oid (Flavodoxin-like) a/B  0.039 0.012 0.377
Hemerythrin-type up-and-down 4-helical bundle « 0.038 0.011 0.930
alpha-alpha superhelix a 0.028 0.008 0.609
temp: 1.2
Fold Class Freq. Abs. HitRate Esc. Rate
Long alpha-hairpin a 0.146  0.039 0.949
Spectrin repeat-like a 0.071 0.019 0.974
Hemerythrin-type up-and-down 4-helical bundle « 0.046 0.012 0.967
Rossmann(2x3)oid (Flavodoxin-like) a/f 0.041 0.011 0.544
Ferredoxin-like a+pB 0.031 0.008 0.812
temp: 1.5
Fold Class Freq. Abs. HitRate Esc. Rate
Long alpha-hairpin a 0.161 0.038 0.981
Spectrin repeat-like a 0.086 0.020 0.991
Hemerythrin-type up-and-down 4-helical bundle « 0.054 0.013 0.982
Immunoglobulin/albumin-binding domain-like  « 0.039 0.009 0.983
Rossmann(2x3)oid (Flavodoxin-like) a/B  0.035 0.008 0.699
temp: 2
Fold Class Freq. Abs. HitRate Esc. Rate
Long alpha-hairpin a 0.183 0.039 0.997
Spectrin repeat-like a 0.092 0.019 0.994
Hemerythrin-type up-and-down 4-helical bundle « 0.062 0.013 0.998
Immunoglobulin/albumin-binding domain-like  « 0.038 0.008 0.995
Ferredoxin-like a+pB 0.038 0.008 0.970
temp: 5
Fold Class Freq. Abs. Hit Rate Esc. Rate
Long alpha-hairpin a 0.196 0.029 0.999
Spectrin repeat-like a 0.097 0.014 1.000
Hemerythrin-type up-and-down 4-helical bundle « 0.079 0.011 1.000
Ferredoxin-like a+p 0.040 0.006 0.998

Immunoglobulin/albumin-binding domain-like  « 0.038 0.005 1.000




