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C h a p t e r 5

PROTEIN LANGUAGE MODELS SPAWN NEW-TO-NATURE
STRUCTURES

5.1 Introduction
In the preceding several chapters, we showed how protein language models (PLMs)
can be steered with synthetic data to explore far-from-natural regions of protein-
space, sampling the extremes of physically-allowable sequence novelty through
generation. Through this approach, which we dub "foldtuning," we branched a base
pretrained PLM, ProtGPT2, into a library of several hundred models, specialized
by protein fold, that favor new "language rules" for assembling amino-acid words
and letters into functional proteins. And we introduced experimental evidence,
gleaned from a select set of targets, that foldtuned models propose real, buildable,
functional proteins, best viewed as reflecting these metamorphosed language rules
while respecting underlying fold-specific grammar at the core of what it means to
have a protein sequence and not a meaningless string. In the process of exploring
novelty of sequence, we touched only glancingly on novelty of structure. In this
chapter, we rectify that wrong and prioritize the search for domain-quality structures
as-yet-unseen in nature, achieving our aim through two complementary strategies
inspired by our preexisting body of work with PLMs.

The beating heart of the pursuit of novel protein structures is a biophysical mys-
tery fusing several questions into one: why might some (or many) compact three-
dimensional structures be permitted by the laws of physics and yet apparently un-
realized in nature? If casualties of a dearth of possible fold-encoding sequences
or a lack of an essential fitness-conferring function, these hypothetical domains
should be reachable by de novo design, and from first principles at that. Or perhaps
flaws in folding thermodynamics or kinetics disfavor or even outright forbid them,
and the documented set of structural units is complete after all. Opinions on the
structural completeness debate have historically been sharply split (Chitturi et al.,
2016; Skolnick et al., 2012; Taylor et al., 2009; Zhang et al., 2006). By the strictest
measures only a handful of published de novo designed proteins — Top7, five all-
U folds, eight U/V folds — qualify as truly new-to-nature (Kuhlman et al., 2003;
Minami et al., 2023; Sakuma et al., 2024). And the advent of massive-scale pre-
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dicted structure databases, dwarfing the ⇠ 200, 000 experimental structures of the
Protein Data Bank (PDB) with a rich trove of nearly 1 billion AlphaFold, ESMFold,
and ColabFold predictions has only muddied the divide (Kim et al., 2025a,b; Lin
et al., 2023; Varadi et al., 2022). With hordes of structural "dark clusters" carved
from these databases plus newly collated Pfam families and CATH superfamilies,
the PDB looks incomplete indeed (Barrio-Hernandez et al., 2023; Durairaj et al.,
2023; Lau et al., 2024; Pavlopoulos et al., 2023). Conversely, if a ⇠ 1000x infla-
tion of individual structures "only" boosts the number of CATH superfamilies (the
finest-grained level in that hierarchy) from 5,841 to 6,573, a 12.5% increase, and
the number of topologies/folds (the second-finest-grained) from 1,349 to 2,081, a
54.3% increase, how much can nature really have left by the wayside structurally
(Lau et al., 2024)?1, 2

On the surface, PLMs may seem an odd choice of tool for unearthing novel structures.
"Language" is in the name; they are explicitly sequence models. On one hand,
as we have established ad nauseum, PLMs may only "see" sequence, yet they
implicitly capture the key features of structure and function as well. On the other,
we demonstrated in Chapter 2 that left to their own devices, PLMs chop and skew
the natural structural ensemble. Even the most vocal proponents of PLMs are prone
to treating them as vehicles for infilling nature-adjacent variants into, say, an enzyme
class, inducing small structural changes and smaller functional ones, deferring to
the bounds of a CATH superfamily rather than breaking out (Madani et al., 2023;
Munsamy et al., 2022). And yet, the prospect of novel structure enumeration through
PLMs has lingered on the horizon, with examples — sparse ones, but examples
nonetheless — reached through free generation and experimentally verified at a
preliminary level (Ferruz et al., 2022; Verkuil et al., 2022).

Consequently, we reason that unlocking the full latent capacity of PLMs to access
new domain structures requires another embrace of the "novelty first, fitness next"
ethos, this time suited for hitting the rare pinpricks of structural novelty. To do so,
we build and deploy two distinct fitness-agnostic strategies that enrich PLM output
for novel structure generation. The first, inspired by fold recombination events

1A clarification — while 1 billion is ⇠ 5000x 200,000, CATH annotation expansion only
considered the ⇠ 200 million entries in the AlphaFoldDB; 1000x is therefore the relevant inflation
factor.

2A second clarification — as of CATH v4.4, the 732 novel CATH folds each contain exactly one
novel CATH superfamily — the growth at the fold/topology level is hence more representative of the
novelty uncovered. Still, we are talking about a new topology discovery rate of 732/214, 683, 839 ⇡
3.4 ⇥ 106; or 3-4 per million newly predicted structures.
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in real-world protein evolution, is a genetic algorithm; the PLM, ESM2-650M
specifically, acts as an oracle favoring sequence plausibility and dense structural
contacts. The second revisits foldtuning; instead of chasing sequence-diverging
structural matches we select against resemblance to the entire set of CATH domains.
Both approaches eschew direct interaction with sequence features. Both employ
structural compactness as the primary or sole selective force. And both deliver an
abundance of novel folds computationally projected to be stable, foldable, and un-
mappable to any CATH example, spanning protein topology classes. We contend
that despite substantial architectural differences between the two methods, they
execute the same overarching tactic of discovery by ignoring natural waypoints,
without needing to overtly design against them.

5.2 Results & Discussion
Novel domains emerge from a fold-recombining genetic algorithm
One potential avenue for finding novel protein domains is to start from primitive
structural elements and recombine them, evolve them, and put them under selective
pressure, all in in silico. With a suitable selective force, one that rewards some
notion of well-foldedness and/or compactness, stable tertiary folds, alike-to-nature
and new-to-nature can both emerge. This approach is a genetic algorithm for domain
diversification, loosely inspired by hypotheses for how early enzymes and ancient
protein folds may have originated from primoridal polypeptides.3 As starting ma-
terial to seed the algorithm, we generate a small library of 800 mini-protein-sized
(40aa) fragments de novo via PLM-informed replica-exchange Metropolis-Hastings
Monte Carlo sampling. Briefly, random amino-acid sequences are evolved in sin-
gle point mutation steps subject to an energy function that favors greater sequence
likelihood and structural contact density, both as inferred by ESM2-650M (full
implementation details are provided in Section 5.4). The mini-proteins produced
sample a variety of topologies varying in relative U and V content and organization,
as well as loop sizes, geometries, and degrees of order (Fig. S5.1). The choice of
de novo generation is motivated by a desire to mitigate against sequence-side biases
in favor of nature that might be introduced by the most straightforward alternative
of fragmenting real or experimental structures from published databases. Indeed,
while structure-based search with Foldseek (504/800 = 63.0% hit rate against Al-

3The topic of structural and functional emergence and plasticity in polypeptides is far too rich
to cover adequately in the context of this chapter. Specific recommended examples include Longo
et al. (2020b), Longo et al. (2020a), and Vyas et al. (2021). A highly recommended review, albeit
predating the aforementioned studies, is Tóth-Petróczy and Tawfik (2014).
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phaFoldDB50) shows that the generated fragments are plausible and representative
building blocks, sequence-based search with MMseqs2 (48/800 = 6.0% hit rate
against UniRef50) indicates that they are distinct from natural sequences, both as
desired.

Figure 5.1: Emergence of novel folds from a PLM-based genetic algorithm. (A)
Mean fractional amino-acid surface burial (protein compactness proxy) over 200
generations of the structure discovery genetic algorithm. (B) Cumulative counts of
unique CATH-annotated folds and putative novel folds detected over 200 generations
of the structure discovery genetic algorithm.

A randomly selected subset of 100 mini-protein fragments is carried forward as the
initial population for the genetic algorithm, which proceeds for 200 epochs. In each
epoch, 20 recombined and mutated fragments are generated and evolved over the
same energy landscape as used for the fragment library before being added to the
population; stochastic selection with survival rate proportional to burial fraction is
performed to reduce the population back to a target constant size of 100.4, 5 The mean
burial fraction increases with time, demonstrating that compact folds become more
common and/or folds become more compact on average as the algorithm proceeds
(Figure 5.1A). Assigning CATH labels wherever possible with Foldseek-TMalign,
natural folds accrue at a roughly constant rate of 2.4 per epoch, while compact
(burial fraction > 0.5) yet novel folds emerge sporadically; the first new-to-nature
fold (3733B8_R10) appears in epoch 10 with subsequent interfold arrival times as
long as 45 and as short as 2 epochs (Figure 5.1A-B). Working off of building blocks

4Full implementation details, including construction of the selection function, may be found in
Section 5.4.

5The only methodological distance of substance between the MHMC sampling process for the
fragment library and the recombination algorithm is a switch from multiple chains with replica-
exchange in the former case to a single chain with dynamic temperature adjustment in the latter. This
choice reduces total run time per epoch by a factor of ⇠ 5x — a significant speedup when one epoch
takes ⇠ 0.5-1 gpu-hr with a single chain on typical hardware.
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Figure 5.2: Fifteen novel folds achieved by the structure discovery genetic algo-
rithm. Within each pair: left — putative novel fold (colored by ESMFold pLDDT;
yellow=high, blue=low); right superimposed with closest CATHDB50 Foldseek
hit in TMalign mode, with CATH metadata and global alignment metrics reported
below.

that are almost exclusively displaced from nature in sequence but nearby in structure,
the algorithm reaches ⇠500 natural folds and 15 putatively novel ones, suggesting
that natural structure-space is far from complete and that additions are surprisingly
accessible to design when a backbone is not specified a priori.
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Figure 5.3: "Inverse-folding landscapes" for fifteen novel folds achieved by
the structure discovery genetic algorithm suggest variable stability. Length-
normalized energies (from Rosetta) vs. TM-score (from Foldseek in TMalign
mode) for ProteinMPNN-designed sequences inverse-folded off of structure discov-
ery genetic algorithm putative novel folds as templates. Gray dots correspond to all
sequences/structures for a given template after clustering 200 initial sequences per
template at 60% sequence similarity. Red dots show the subset of inverse-folded
seqUences whose ESMFold-predicted structures pass an energy scoring threshold
(⇢̄ < �2.2 REU/aa) and the standard TM-score global match threshold (TMscore
> 0.5).
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The 15 new-to-nature domains proposed by the evolutionary algorithm are markedly
distinct from their nearest CATH analogs and structurally diverse, visiting three of
the four major topology classes — all-U (120FD5_R127, 244D7D_R143, 794026_R125,
A49A4F_R116, A783532_R160, B4FC4F_R164, BC2987_R55, DB6817_R178,
F99539_R114), all-V (0CF85E_R97, 3733B8_R10, C86FA9_R143), and U + V

(120FD5_R127, 9D1265_R55, A0A7B8_R123), as categorized by eye (Fig. 5.2,
Table S5.1). It is curious that no novel U/V folds occur, given the prominent
functional speciation of such domains in nature (Choi and Kim, 2006).

For additional insight into this handful of novel domains and whether they are
truly plausible as far as the thermodynamics and kinetics of protein folding, we
introduce the "inverse-folding funnel." The inverse-folding funnel is a heuristic in-
spired by the use of Rosetta ab initio structure prediction simulations to explore a
protein-folding energy landscape. The traditional result is a plot of estimated energy
vs. backbone RMSD to the target for many replicates of the same sequence, with
two ideal features: (1) a clear association between lower energy (higher stability,
i.e. favorable folding thermodynamics) and smaller RMSD; and (2) an absence
of "trapped" subpopulations at moderate-to-high RMSD and local energy minima
(presumed metastable states, indicators of poor folding kinetics). A plot satisfying
both resembles the prototypical folding funnel of a globular protein spontaneously
collapsing to its native-state structure, whereas one failing either or both criteria
warns of folding pathologies precluding viable expression let alone function (Dill
and Chan, 1997). Analogously, we instead use an inverse-folding model (Protein-
MPNN) to generate many sequence-diversified versions expected to encode a given
putatively novel domain structure from Figure 5.2 provided as a backbone tem-
plate. Preclustering by sequence similarity to minimize redundancy, we predict
structures with ESMFold, estimate absolute energies with Rosetta, and quantify
global alignment between inverse-folded structures and templates as TMscores. For
the "inverse-folding" version of the funnel, we look for correlation between lower
energy and higher TMscore and for a lack of low-TMscore/low-energy states —
the former remains a proxy for thermodynamic stability, while the latter rules out
both metastability and the possibility that a particular "novel" domain is no more
than a noised version of a CATH domain recoverable by the slight re-noising of
inverse-folding.

For 8 of the 15 putatively novel domains,6 this procedure evinces a convincing funnel
6Specifically, folds: 0CF85E_R97, 244D7D_R143, 26D32B_R192, 3733B8_R10,
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with the aforementioned essential characteristics, bolstering confidence that these
are realizable new-to-nature structures (Fig. 5.3). Other faux folding landscapes
point to problem spots; for example for 9D1265_R55 multiple equivalent energy
minima are observed, while for BC29B7_R55 a single minimum is centered around
a TMscore well less than 0.5, as if inverse-folding reliably converges to a more
stable neighbor in structure-space (Fig. 5.3). Other landscapes, far from being
funnel-shaped, are almost flat, as in the case of F99539_R114, implying that some
novel domain candidates may lack a true native state. As general guidelines for
stable and robust structures, we additionally set rough threshold values of < �2.2
REU/aa and TMscore > 0.5 for inverse-folded variants to clear and note that even
for those domains that do exhibit funnel-like folding landscapes many variants can
fail one or both, reiterating the importance of the re-noising step for recovering
more-plausible adjacent structures (natural or novel) from novel domain candidates.
Despite the ample evidence that not all potentially novel folds brought forth are
in fact novel, or, when they are, not created equal as far as folding dynamics and
stability, fold recombination and evolution from artificial fragments inculcates a
strong belief that natural structure-space does not enumerate all that can be afforded
by protein biophysics.

Structure-first foldtuning enriches for domains with new-to-nature structures
In an orthogonal approach, we considered whether foldtuning could be transformed
from a sequence-perturbing, fold-preserving method for novel sequence discovery
into a fold-perturbing, sequence-insensitive method for novel structure discovery.
To estimate the latent capacity of our go-to PLM, ProtGPT2, to generate previously
unseen structural motifs off-the-shelf without additional training, we revisited the
hyperparameter scan experiment from Chapter 2. The ⇠3 million predicted struc-
tures obtained across thirty (top_k, temperature) pairs were downsampled by 10x
and re-annotated with CATH domain labels wherever possible, running Foldseek in
accelerated TMalign mode with the precompiled CATHDB50 database as the target.
Compactness/globularity was estimated for all predicted structures using fractional
burial of total amino-acid surface area relative to the disordered polypeptide chain
as a proxy metric sufficient for ranking and coarse binning. Aggregated results
are reported in Table 5.1. As thresholds for putative novel structures, we look for
predicted structures with a fractional burial > 0.5 and no assignable CATH domain
label; occurrence rates range from 0.11% for top_k 1500 and temperature 0.8 to

A49A4F_R116, A78532_R160, B4FC4F_R164, DB6817_R178.
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0.41% for top_k 4000 and temperature 5.0. In general, increasing either hyperpa-
rameter corresponds to an increase in this novelty rate, but the trend is imperfect.
In contrast to the compression of SCOP fold uniqueness reported with increasing
top_k and temperature in Chapter 2, the number of unique CATH domains detected
increases slightly in this context. When we move up rung to the CATH topology/fold
level (i.e. CAT), however, we see the same general structural diversity collapse as
with SCOP. This implies that increasing top_k and/or temperature to favor textual
diversity does somewhat emphasize structural novelty, but this comes in the form of
finer-grained structure perturbations and at the expense of the larger supersecondary
rearrangements that we hope to see as evidence of satisfyingly novel folds. Adding
in the fact that the fraction of compact proteins (burial fraction > 0.5) consistently
drops by roughly 2x as temperature goes from 0.8 to 5.0, we fix sampling hyperpa-
rameters at top_k 950 and temperature 1.5, striking a balance between compactness,
CATH non-assignability, and structure perturbation magnitude as we move forward
to what we refer to as "structure-first" foldtuning.

Structure-first foldtuning (described fully in Section 5.4) mirrors the architecture
of the original "sequence-first" foldtuning developed in Chapter 3, with crucial
differences on the discrimination/selection side. In brief, in each of five foldtuning
rounds, 10,000 sequences are generated out of the current (:-th) model and filtered
based on predicted structures to enforce compactness (burial fraction > 0.5) and
CATH non-assignability (no Foldseek-TMalign hit in CATHDB50 with TMscore
> 0.5). Filtered sequence-structure pairs are ranked in order of descending burial
fraction, with the 100 most-compact becoming the training set used to finetune the
(: + 1)-th model. Given the absence of a specific target fold, there is no need for
an initial evotuning round. Over 5 rounds, structure-first foldtuning progressively
enriches for sequence-structure pairs meeting the compactness/non-assignable nov-
elty criteria, from 111/10,000 (11.1%) after one round to 269/10,000 (26.9%) after
five (Table 5.2). Neither burial fraction nor the number of unique CATH domains
is observed to change significantly at the population level, with a concomitant drop
in the CATH assignability rate (across all sequences/structures), a further indication
that while a non-globular sub-population persists, all of the growth in structural
diversity is diverted to putatively novel domains.

Structure-first foldtuning proposes 1018 novel domains in total over five rounds.7

7As an aside, note that structure-first foldtuning brings along sequence novelty for free, without
any explicit design consideration on the sequence side. Only 10/1018 sequences encoding the
putative novel domains — ⇡ 0.1% — exhibit detectable sequence similarity to any natural protein
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Figure 5.4: Ten out of 100 novel folds achieved by structure-first foldtuning.
Within each pair: left — putative novel fold (colored by ESMFold pLDDT; yel-
low=high, blue=low); right superimposed with closest CATHDB50 Foldseek hit in
TMalign mode, with CATH metadata and global alignment metrics reported below.

To accommodate limited computing resources, this set of 1018 is reduced to a
set of high-priority templates to 916 by clustering at a TMscore > 0.5 global
alignment threshold to group templates that would occupy the same superfamily
and/or fold if added to the CATH database. Applying a stricter structural novelty
criterion — no Foldseek-TMalign hit with TMscore> 0.5 to any domain in the
entire AlphaFoldDB50 database — reduces the priority template set further to 762
members. The final high-priority set is contracted to 100 members after ranking
by descending burial fraction and taking the top 100 most-compact. Feeding this

in UniRef50 per ������2 search.
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Table 5.1: CATH domain coverage, structural compactness, and novel fold
discovery rate from base ProtGP2 sampling hyperparameter scan. CAT(H)
folds(superfamilies) detected, CATH hit absence (no hit with TMscore > 0.5),
structural compactness (burial fraction > 0.5), and novel fold discovery rate for 30
sampling hyperparameter combinations from varying top_k (vocabulary size: 600,
950, 1500, 2400, 5000) x temperature (0.8, 1.0, 1.2, 1.5, 2.0, 5.0).

Hyperparams Results

top_k temp # CATH # CAT No CATH Compact Both

600 0.8 905 401 0.224 0.2376 0.0016
1.0 935 412 0.2121 0.2298 0.0021
1.2 975 404 0.2189 0.2176 0.0025
1.5 988 408 0.2218 0.1983 0.0023
2.0 977 407 0.2418 0.1839 0.0025
5.0 967 384 0.3628 0.1039 0.0017

950 0.8 908 402 0.2143 0.2361 0.0018
1.0 955 416 0.2115 0.2293 0.0018
1.2 988 430 0.2261 0.1996 0.0031
1.5 984 419 0.2347 0.1922 0.0037
2.0 994 421 0.2432 0.1746 0.0036
5.0 996 394 0.3584 0.1008 0.0029

1500 0.8 954 404 0.2145 0.2313 0.0011
1.0 964 410 0.2228 0.2113 0.0029
1.2 994 418 0.2378 0.1908 0.0023
1.5 1014 415 0.2464 0.1727 0.0028
2.0 1005 403 0.2612 0.1528 0.0028
5.0 1017 382 0.3634 0.095 0.0028

2400 0.8 941 406 0.2227 0.2221 0.002
1.0 970 410 0.2279 0.2045 0.002
1.2 993 420 0.247 0.1804 0.0029
1.5 1025 412 0.2572 0.1582 0.0036
2.0 1055 425 0.2734 0.1417 0.0034
5.0 1054 396 0.3536 0.0963 0.0033

4000 0.8 962 433 0.2232 0.2303 0.0024
1.0 1021 440 0.2183 0.2001 0.0026
1.2 1012 418 0.2521 0.1767 0.0022
1.5 1076 425 0.2539 0.1519 0.0023
2.0 1010 380 0.2786 0.1358 0.0027
5.0 1008 390 0.341 0.1028 0.0041

final set to ProteinMPNN as inverse-folding templates and calculating TM-scores
and folded-state energies for the respective outputs yields a set of inverse-folding
energy lanscapes as in the preceding section. Predicted structures (with and without
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Figure 5.5: "Inverse-folding landscapes" for ten out of 100 novel folds achieved
by structure-first foldtuning imply high stability. Length-normalized energies
(from Rosetta) vs. TM-score (from Foldseek in TMalign mode) for ProteinMPNN-
designed sequences inverse-folded off of structure-first foldtuning putative novel
folds as templates. Gray dots correspond to all sequences/structures for a given tem-
plate after clustering 200 initial sequences per template at 60% sequence similarity.
Red dots show the subset of inverse-folded seqUences whose ESMFold-predicted
structures pass an energy scoring threshold (⇢̄ < �2.2 REU/aa) and the standard
TM-score global match threshold (TMscore > 0.5).

closest CATH hits) and inverse-folding landscapes for the best 10 templates as
ranked by average estimated folded-state energy are shown in Fig. 5.4 and Fig. 5.5
respectively.
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Table 5.2: Emergence of novel and CATH-annotated domains over five rounds
of "structure-first" foldtuning. Number of generated sequences successfully an-
notated with a CATH domain by Foldseek ("# CATH"), structural hit rate (fraction of
generated sequences assigned to any CATH label), number of generated sequences
assigned as putative novel folds ("# Novel"; burial fraction > 0.5 and no hit with
TMscore > 0.5), and mean burial fraction over the course of five rounds of structure-
first foldtuning with top_k 950, temperature 1.5, and 10,000 sequences sampled per
round.

Round Mean Burial Frac. # Novel # CATH Struct. Hit Rate

1 0.433 111 1166 0.719
2 0.444 192 1190 0.641
3 0.438 206 1178 0.589
4 0.451 240 1155 0.632
5 0.438 269 1171 0.549

One example, variant 2_385 appears spurious, with a TMscore = 0.526 hit to
CATH 1.10.150.130 and an inverse-folding landscape littered with "metastable"
analogs with sub-0.5 TMscores upon alignment to the foldtuning-emitted template,
suggesting that it is not novel, but a noised version of the natural tyrosine recombinase
N-terminal domain (Figs. 5.4- 5.5, Table S5.2). The remaining nine variants,
by contrast, impute high stability in silico, with strong funnel-esque association
between lower-energy folded-states and high TMscore alignments to their putative
novel templates and most-if-not-all inverse-folded versions clearing the rough energy
targets of < �2.2 REU/aa and TMscore > 0.5 (Fig. 5.5). By eye, TMscore, and
RMSD, these nine are clearly distinct from their closest CATH counterparts and,
annotating by hand, are distributed across all-U ( 5_4799, 4_2316, 3_8774, 4_6556,
2_3053), U + V (5_4773, 4_6411), and U/V (5_111, 3_5721) topologies (Fig. 5.4).
Altogether, this constitutes strong evidence that structure-first foldtuning is able
to target novel protein structures with meaningful fitness- and topology-agnostic
selection criteria, extracting new-to-nature domains with broad shape diversity from
a PLM by steering with synthetic sequences that impart supersecondary structural
innovation.

5.3 Conclusion
Expanding our novelty-tinged sights from one-dimensional sequences to three-
dimensional structures, we jumped headlong into a long-simmering debate in bio-
physics and structural biology over the existence and frequency of folded domains
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with structures unlike anything found within the bounds of natural protein-space. We
conceived and effectuated two radically different methods for probing new-to-nature
regions of protein structure-space. These two methods are joined only in that they
are both PLM-informed. In one, we endeavored to grow up and fill out fold-space
from scratch using an evolutionary algorithm steered by PLM-driven estimates of
sequence and structure reasonableness, landing on 8-15 novel folds in the course
of tallying 510 natural ones, all collected from 3285 individual sequences/domains.
In the second, we revisited foldtuning and flipped the script to enrich for structural
novelty, honing in on anywhere between several hundred and one thousand novel
folds depending on stringency, close to on par with the 2395 natural ones detected,
stemming from a pool of 49,992 individual sequences/domains in total. The rates
of fold discovery — roughly 1-in-200 for the evolutionary algorithm and 1-in-50
for structure-first foldtuning — are striking when considering that segmenting and
searching the UniRef50 portion of the AlphaFoldDB added new superfamilies to
CATH at a rate closer to 3-per-million.

All of these efforts used structure prediction models and structure-based search
methods; the difference-maker behind our rapid fold emergence rates appears to
come back to our use of PLMs and their capacity to credibly evaluate sequence
motifs and now structure motifs that emanate from different generative rules than
the operative ones of nature. Yet again, PLMs prove to be the ideal agents of a
novelty-first design philosophy. The obvious current limitation of this work is that
despite the extra confidence imparted by inverse-folding landscape characterization
turning up whispers of folding funnels and reasonable physical driving forces, the
ultimate arbiter of whether we have landed on structural novelty must be experi-
mental structure determination. In the interim, however, our findings align squarely
with the position that permissible structure-space is much broader than that covered
by nature, and that, conjecturing a step further, there may exist numerous fold en-
sembles sufficient for the essential processes of life, arising or not based on initial
conditions and/or population size effects.

5.4 Methods
Fragment Library Assembly for Genetic Algorithm
The initial fragment library for the structure discovery genetic algorithm was as-
sembled via a modification of the eeMHMC method first introduced in Chapter 4
(Section 4.4). The first modification is to the form of the energy function, where
the "exploit" term (8! 9 is replaced by a term rewarding predicted structural contact
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density, so that Eq. 4.1 is replaced by

�⇢8! 9 = (log ! 9 � log !8) + F2
1
=2 (

’
:;

⇠9 ,:; �
’
:;

⇠8,:;) (5.1)

where = is the fixed sequence length and ⇠8,⇠9 are binary contact matrices s.t.
⇠8,:; = 1 indicates that residues : and ; of sequence 8 are predicted to be in
physical contact within < 8 Åin the corresponding three-dimensional structure.
Contact matrices are inferred from the contact_prediction head of ESM2-650M,
simultaneously with embedding and log-likelihood calculation.

The acceptance probability for a proposed single point mutation move from B8 to B 9

remains unchanged from Eq. 4.2, accounting for the change in definition of �⇢8! 9 .

The second modification is the use of replica-exchange MHMC (RE-MHMC; RE-
eeMHMC for Replica-Exchange explore-exploit Metropolis-Hastings Monte Carlo.
RE-MHMC monitors several chains simultaneously, sampling the same landscape
at different temperatures, thereby balancing riskier less-local moves by "hot" chains
with more conservation local moves by "cold" chains. Adjacent chains in the
temperature array attempt to swap positions on the landscape (and their respective
sequences) periodically at a stochastic frequency_; the proposed swap move between
chains 8, 9 is accepted with probability

?8$ 9 = min{1, exp[(⇢8 � ⇢ 9 ) (V8 � V9 )]} (5.2)

where as always the {V8} refer to thermodynamic V, the inverse of the sampling
temperature ) .

A total of 800 fragments were generated, running for = = 5000 steps, stochas-
tically attempting to swap a uniformly randomly selected pair of adjacent ran-
dom chains at a rate of _ = 0.01 swp/step, 5 chains with inverse temperatures
V = {20, 13.3̄, 10, 8, 6.6̄} from "cold" to "hot," and F2 = 1. Initial sequences for all
chains {B0} were random amino-acid strings of length 40; the coldest chain (V = 20)
sequence at step 5000 was added to the library.

Structure Discovery Genetic Algorithm
The structure discovery genetic algorithm begins by sampling an initial population
%0 of 100 fragments from a fragment library assembled as previously described.
For a fixed number of rounds, the :-th round proceeds by:
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1. Generating 20 new variants from %:�1. A pair of variants is generated by draw-
ing two sequences uniformly at random from %:�1, performing a crossover
operation with the number of crossover points =2A>BB ⇠ Poisson(_ = 1.535)
and the locations of the crossover points uniformly distributed over the se-
quence length(s), and performing a mutation operation with the number of
mutations =<DC ⇠ Binom(=8, _ = 0.05) and mutation locations and identities
uniformly distributed over sequence lengths.

2. Evolving the new (:)-th round variants through eeMHMC with the modified
energy function found in Eq. 5.1 for = = 5000 steps, with F2 = 1, V = 10,
and adaptive temperature adjustment at 100-step intervals.

3. Adding the evolved variants to %:�1 to form %: .

4. Predicting structures and computing the amino-acid surface-area burial frac-
tion for all sequences in %: .

5. Selection for burial fraction, maintaining a target constant population size of
100.

The above procedure repeats up to a desired number of generations (200 in this
study). To enforce constant population size while stochastically eliminating se-
quences from the population, we note that, if the number of surviving sequences
after round : is to be |%: | = #B4; , then the expectation of #B4; must be

⇢ [#B4;] = # 5B4; (5.3)

where # is the temporary population size after new variants have been added but
before any have been removed, and 5B4; is the fraction of sequences that are to
survive. We can additionally write that

⇢ [#B4;] =
’
8

⇢ [=8] =
’
8

Pr(⇥8 = 1) (5.4)

where ⇥8 ⇠ Bernoulli(?8) for some mathematically appropriate ?8, as the survival
of a given sequence is independent of the survival probability of all others. We have
the choice of the form of ?8 and so take ?8 = exp[�V: (0.8 � W8)], where V: is a
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sampling hyperparameter to be determined and W8 is the burial fraction of sequence
B8.8

# 5B4; = ⇢ [#B4;] =
’
8

⇢ [=8] =
’
8

exp[�V: (0.8 � W8)] (5.5)

and making the simplifying assumption that the {W8}’s are roughly normally dis-
tributed, or at least not skewed,9 we can say

# 5B4; = ⇢ [#B4;] =
’
8

⇢ [=8] ⇡ # exp[�V: (0.8 � W̄8)] (5.6)

where W̄8 is the mean of all calculated burial fractions in the temporarily augmented
population %: leaving only algebraic rearrangement to solve for our lone sampling
hyperparameter V: , effectively a selection inverse temperature, as

V: =
� log 5B4;
0.8 � W̄8

(5.7)

This completes the material necessary to specify and implement the structure dis-
covery genetic algorithm.

Structure-First Foldtuning
Foldtuning was performed and implemented essentially as described in Chapter
3 and Section 3.4, with the following modifications: (1) generation of 10,000
sequences per round in batches of 250, (2) selection of sequences satisfying structural
compactness (amino-acid surface burial fraction> 0.5) and novelty (no CATHDB50
hit with TMscore > 0.5) criteria, and (3) ranking of filtered, validated round =

sequences for round = + 1 finetuning in descending order of amino-acid surface
burial fraction.

Selection of Novel Folds for Computational Characterization
For the genetic algorithm experiment, all fifteen putative novel folds were advanced
to the computational validation and characterization. For the foldtuning-based

8Note that if W8 > 0.8, then this would imply ?8 > 1. Formally, we ought to say ?8 =
max{1, exp[�V: (0.8 � W8)]}, empirically, however, the burial fraction for even exceptionally well-
packed and folded protein domains is bounded above by W8 = 0.8. See Fig. 2.3D.

9This assumption is empirically justified for ESM2-generated sequences, referring again to Fig.
2.3D. It seems reasonable then to extrapolate this claim to sequences being evolved/sampled on a
landscape subject to an ESM2-based energy function.
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experiment, 1018 putative novel folds were initially cumulatively identified over five
rounds of structure-first foldtuning. To remove redundancy, predicted structures of
the 1018 were clustered with F������� at a similarity threshold of TMscore = 0.5,
decreasing the number of templates to 916. Given that the structural diversity of
the whole AlphaFoldDB50 runs deeper than that of the CATHDB50 subset, the
916 remaining putative novel folds were searched, again using F�������, against
the entire AlphaFoldDB50, dropping structures with any single hit with alignment
region TMscore > 0.5. This reduced the number of templates to 762. These 762
templates were ranked in order of decreasing surface-area burial fraction and the
top 100 carried through for inverse-folding and energy scoring validation. For Fig.
5.4 and Fig. 5.5, only the further top 10 of these top 100, as ranked by lowest
(most-stable) mean Rosetta-scored energy over all inverse-folded sequences were
are depicted.

Structure Prediction and Assignment
All structures were predicted with default ESMFold inference parameters as in
Lin et al. (2023). Predicted structures were annotated to CATH domain labels
via F������� structure-based search against the prebuilt CATHDB50 database
running in accelerated TMalign mode(Lau et al., 2024). The consensus CATH
domain was defined as the fold accounting for the most hits with TMscore > 0.5
and max(query_coverage, target_coverage) > 0.8. In the absence of at least one hit
satisfying these criteria, a structure was considered to be un-assignable.

Basic Chemical Property Calculations
Amino-acid surface area burial fraction was calculated using custom code and
reference individual amino-acid surface areas (HMS Bionumbers: 103239).

Energy Scoring Calculations
Biomolecule energy scores were obtained using the default ‘ref2015‘ energy func-
tion and standard relaxation and scoring workflow in R������ v3.11, as described
in Alford et al. (2017). Energy scores are reported in Rosetta Energy Units (R.E.U.),
normalized to sequence length.

Validation of Inverse-Folding Sequences and Structures
For both the genetic algorithm and foldtuning-based experiments, 200 sequences
were generated per structural template with ProteinMPNN, using the vanilla—v_48_020
model, sampling temperature 0.2, backbone noise 0.1 Å2 backbone noise, and forced
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omission of the rare/ambiguous amino acids B, J, O, U, X, and Z (Dauparas et al.,
2022). Within each batch of 200, sequences were downclustered at 60% sequence
identity with ������2, structures predicted with ESMFold, and queried against the
template structure with F������� in TMalign mode using the standard TMscore
> 0.5 threshold as confirmation of a global match.

5.5 Supplemental Material
Supplemental Figures

Figure S5.1: Example structure fragments generated by RE-eeMHMC. 10 of
800 structure fragments predicted from sequences designed by replica-exchange
explore-exploit Metropolis-Hastings Monte Carlo sampling (RE-eeMHMC). Indi-
vidual structures are colored by ESMFold pLDDT; yellow=high, blue=low.
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Supplemental Tables

Table S5.1: Metadata and structural alignment metrics for closest CATH do-
main Foldsheek hits to 15 novel folds proposed by the genetic algorithm ap-
proach.

Closest CATH Hit

Novel Fold ID Name PDB/AFDB Pos. TM RMSD (Å)

0CF85E_R97 2.60.40.60 Cadherins 0Q7TSF1 383-484 0.428 7.7
120FD5_R140 1.20.5.4130 n/a A0A0P0YA47 9-126 0.351 5.8
244D7D_R143 1.10.533.10 Death Domain, Fas Q4QQS0 2-94 0.491 4.1
26D32B_R192 2.40.160.200 LURP1-related A0A0K3ARQ4 139-303 0.500 6.3
3733B8_R10 2.30.30.170 n/a Q2FZK7 945-1013 0.430 6.5
794026_R125 1.10.8.430 Helical domain of apop... Q6Z392 364-452 0.319 7.8
9D1265_R55 1.25.40.10 Tetratricopeptide repeat... Q9LEX5 342-409 0.540 3.0
A0A7B8_R123 1.10.472.10 Cyclin-like F4IWI9 175-2664 0.368 7.7
A49A4F_R116 1.10.260.40 _ repressor-like DNA-bind... 1ic8A 87-180 0.319 5.4
A78532_R160 1.20.140.150 n/a Q7YTM8 1-160 0.396 5.1
B4RC4F_R164 3.90.1150.210 F-actin capping protein... 3aa7B 90-244 0.422 6.9
BC29B7_R55 1.10.357.10 Tet repressor, domain 2 1Z77A 47-200 0.430 6.7
C86FA9_R143 3.30.1520.10 Phox-like domain Q54S15 808-935 0.477 6.0
DB6817_R173 1.10.520.10 n/a K7VNV5 33-159 0.393 5.6
F99539_R114 1.10.10.60 Homeodomain-like 1ic8B 203-276 0.473 4.1

Table S5.2: Metadata and structural alignment metrics for closest CATH do-
main Foldsheek hits to 10 novel folds proposed by structure-first foldtuning.

Closest CATH Hit

Novel Fold ID Name PDB/AFDB Pos. TM RMSD (Å)

5_111 1.10.472.10 Cyclin-like I1M2D8 39-142 0.514 4.6
5_4773 1.10.10.10 Winged helix DNA-bind... Q2FWL6 1-80 0.392 11.8
5_4799 1.10.472.10 Cyclin-like Q10QA2 94-195 0.422 9.1
4_2316 1.10.533.10 Death Domain, Fas F8VQ39 371-466 0.479 7.5
2_385 1.10.150.130 Tyr recombinase, N-term... 2keyA 1-112 0.526 4.4
3_8774 1.10.472.10 Cyclin-like P51946 41-159 0.459 5.2
4_6556 1.20.920.10 Bromodomain-like A0A1I9LTJ3 289-399 0.402 5.4
4_6411 1.20.960.30 Mitochondrial import rec... 1uujA 2-77 0.419 3.4
3_5721 3.30.980.10 Threonyl-trna synth... Q9VUJ0 131-293 0.309 5.0
2_3053 1.10.10.1440 PHAX RNA-bind... 2xc7A 1-104 0.398 5.6


