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A B S T R A C T 

Analytic solutions for the relation between compressive load 

and natural frequency are obtained for a simple column and a circular 

ring under uniform radial load. The relation is of the form 

P == P -K A. 2 
er n 

An implicit analytic solution for a rectangular frame under symmetrical 

axial load and for symmetrical buc·kling is also obtained. The com­

plexity of the final transcendental equation indicates that the relation 

between P and ).11 will not be linear. 

The relation is checked experimentally for a simple column. 

The extrapolated critical load is within 2% of the computed value. 

The experiment on a rectangular frame shows that the relation 

between P and ).,, can be very closely approximated by a linear one. 

The extrapolated critical load is 17,500 lbs. which is about 49% higher 

than that for the lowest symmetrical mode and about 3% higher for the 

lowest unsymmetrical mode. Evidently, the measured frequency is in 

the latter mode. The misleading result is due to the fact that these 

modes have frequencies very close to each other, and the unsymmetrical 

mode becomes more stable because of restraints at the supports and 

dynamic coupling between the modes. 

Some interesting points in this work are stressed in the con­

clusion and some suggestions for the additional experiments are made. 
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I. INTRODUCTION 

Buckling problems in elasticity have been studied for many 

years. Mathematical solutions have been obtained for many idealized 

problems, such as prismatic bars, plates, shells, etc. of different 

shapes and end conditions. However, such solutions are still very li­

mited, and then? remain many problems involving complicated structures, 

which are too cumbersome, and can not be practicably solved by analy­

tic methods. This is especially true for a built-up structural frame 

in compression. In practice, a destructive experimental method is 

usually employed to find out the safe load. 

The relations between compressive load and frequency for 

some simple cases have been studied analytically by Charles Massanet 

in his article 11 Les Relations entre les Modes Normaux. de Vibration 

et la Stabilit~ des Systemes Elastiques 11 • (l) ➔l- Further work has 

been explored by Dr. Felix Buckens at the California Institute of 

Technology. However, the work is limited to theoretical discussions 

for cases where buckling problems have mathematical solutions. 

Massonnet has shown that, for a simple prismatic column with 

pinned end, the relation between axial compressive load and the square 

of the frequency is linear, and deviates slightly from linearity for 

columns with other end conditions. He also has shown that the load 

at zero frequency is the critical load corresponding to the associated 

mode of vibration. Therefore, if a few points on the curve of load 

* The number in the parenthesisrefers to the number in the Table of 
of References following the text. 
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versus square of frequency could be determined, then the critical 

load could be extrapolated for zero frequency. If this law can be 

' extended to structures where no analytic solution or no simple analytic 

solution is possible, we shall have a non-destructive experimental 

method for determining the critical load. 

Before such a method can be applied, the accuracy of the ex­

trapolation must first be investigated and compared with the theoret-

ical value. It is the purpose of the present attempt, (a) to correlate 

buckling load and frequency for a few simple cases, (b) to check ex­

perimentally for a case where the relation is solved analytically and 

is known to be linear, and (c) to determine experimentally for a case 

where the relation is non-linear, but the critical loads can be computed, 

so that it may be seen how far the relation may be approximated by a 

linear one and how accurate the extrapolated critical load will be. 
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II. THEORY 

In the theoretical study, the following nomenclature is used: 

I Second moment of area of a section 

E Young's modulus of elasticity 

M Moment at a section 

P Axial force 

q Radial uniformly distributed load 

f Mass density per unit length 

1 Length of a member 

r Radius 

Ah Frequency of the n'th mode in cycles per unit time 

x Coordinate along the direction of the axial load 

y Lateral displacement 

w Radial displacement 

u Tangential displacement 

0 Angle in polar coordinates 



(1) Simple Column. 
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p 

p 

Fig. 1 

p 

When a straight prismatical column under an axial compressive 
rzJ'l.y 

load Pis deformed, the moment at a section (x,y) is - £I 'ox:.,. 

Theintensity of the lateral restoring force is then - £ I 0 "':l,,. 
'<}:( 

The lateral restoring force due to the axial force Pis 

-ae _ 7/·:1 
- p ~ - - p 'c)~'-

"?>LJ 
The inertia force is - f ?JC . For equilibrium, the sum of the forces 

must be zero. 

Let 

Then 

a2 ::: __E_ 
EI 

and 

y = 

XIV ..,. 

b2 = _f_ 
EI 

X(x) .T(t) 

aJ.x•' 

X 

where K is an arbitrary constant. 

. , and 

b 1. T" = J:.z 
T 
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Therefore, T11 -f (!)4r = 0 

x'y + a2x11 - k2x = 0 

The solutions of equations (1) and (2) are 

7 == A .s,"n 4f -1- Bco.5 !i 

(1) 

(2) 

(3) 

X - C, s/n(hlx).,. c:. cos(m)() + C.J S//lh{n,'x}.J C Cosli(m':e,) 

where 

I 

'Po satisfy the boundary conditions: 

(a) at X = 0, X= O· 
' (b) at X 

(c) at X =- 1, X = O; (d) at X 

we obtain, from equation (4), the condition 

sin ml - 0 

or ml - n7T 

where n = 1, 2, 3, ...... 
Hence 

/_ 2. -:= h v.,, 4 17 2TT ~ Oz. 

,c t~ lz 

(4) 

- o, X" = O; 

- 1, X" = O; 

' I k But from equation (3), An=znfh) is the natural frequency of the 

n 1th mode. Therefore, 

z. I ( k z An = 4llz_ • b) 

.2. L "1. z 4b 21 L \ Z, 
Cl = .2....J!.. - A L ._ n a. .,, 

or 

Substituting values of 1a 1 and 1b 1 , we have 

( 5) 
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From equation (5), it is seen that there is a linear relationship 

between An 2 and P. 

When An = O, 

P= 

which is Euler's buckling load. 

When P = O, 

, _ = n~,r -j EI 
"-n z l 1. p 

which is the natural frequency of the colwnn in free vibration. 

A further discussion of the equation will be found in Part 

r:t, where the results of the experiment on a simple column are 

considered. 
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(2) Circular Ring. 

'lr 

I 

- -' --+--- ---

p p 

Fig. 2 

The effect of a constant uniform radial load upon the fre­

quency of a circular ring of uniform cross section, has been studied 

by Massonnet (Ref. 1). However, he did not give the derivation of his 

basic equation connecting the frequency and t he radial load. A some­

what simpler equation can be obtained with the following assumptions: 

(a) the axial load in the ring remains constant; 

(b) the circumferential length of the ring remains constant (Ref. 2) 

i.e., the circumferential strain 

or du 
d8 - w - 0 
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Let 

Then u = J ur Je 

~ a,, ' 1 = - L. h cos ne SI n l\n "T. 

The moment at a section of the ring due to a change in curvature 

(Ref. 3) is 

Therefore, the strain energy due to this moment is 
2n 

V. == f g ('<> ... tu.., 7.J)z."(; d8 
I Z,fo.,. 'QB.,_ O 

0 
-ill 

. ~ V ::; EI J ( "b"tu..,. 2 7)1.-w' + w) ~-w-ol e 
• • ~ I T;, 3 08¥ '<)87. 

0 

The effect of the axial load P is equivalent to a radially distri­

buted load of intensity (Ref. 3) 

Therefore, the total radial l oad 

The potential energy of this load with a deflection 1w1 is 

0 

But 

?.Ti 

b ½ == f ; C~~ -. lA]") ~ -w- cJ e 
0 
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The kinetic energy of the ring is 
"?. Tl 

T = j { [ (;,7t/· + (:;t f] Y'o de 
0 

0 

For a particular mode wn , 

(1) 

'c .,_" C" Q h '- "I. • "'\. t -~ Cl n C • \ 1 
__!] a Litt= - A co~ t"\B s1" "" • - os nG .sin /\n L <ot.,_ n n n 

= - ~~ ~; cos1 ne sin"l.~" t. Sa., 

Substituting in equation (7), we have 
2. "If 

'\ -i. • -i.\ 1 J ( . "l.. cos.,.n(J) <' Je 'bT = - f'"to Qnl\n SITI /\n 1. su, n0 + ~ oa" 
0 

and also for the n 1th mode, equation (6) gives 

l.lJ 

1) V = ~! an sin).0 -l J [ n'sin "e -<z~ :;\n'sin nil 
0 

+ ( I -+ p v; 1.) sin n s] b a" s in n B sin An -l de 
E.I 

(9) 
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By Hamilton's Principle, 

f\-sr- SVJol-L =O 
t, 

Therefore, substituting equations (8) and (9), we have 
t . l ' [-('lo>-:(,<,)+ ~J ~n•- ,J'- (n'-t) :r1 Qn s in"Anl San ,H = 0 

l, 

Since ~ =\: 0 , and b ¾ is arbitrary, therefore 

f 't;.(1+...!..)\ "L= g [Cnl...1),..-(n'--1)P!!'"J 
o h... n Y..3 EI 

( o"L-1 ) EI r r., '\ n 1..+ I) \_ ~ 
.". P == y--/ n"'-(n"L-1) " 

But P is assumed to be constant, 

which gives the relation between 1q 1 and \.n2 • 

When ").__n = 0 , the equation gives 

q -
(n2 - l)EI 

r3 
0 

which isft:, he critical load of the ring when it will buckle with the 
l 

n 1th mode (Ref. 3). 

Also when q == 0 , 

which is he natural frequency of a ring in free vibration (Ref. 4). 
i 

(10) 

Equation (10) also shows that load and the square of frequency 

have a linear relationship. 
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(3) Rectangular Frame. 

p p 
e b 

A 
I , l I 

I 2L L 

J 
p p 

Fig. 3 Fig. 4 

When a rectangular frame of constant cross section is loaded 

as shown in fig. 3, the symmetrical mode of vibration may be replaced 

by its equivalent system CAB shown in fig. 4. Members AB and AC are 

now to be considered separately and the16onditions at the point A 

are to be matched. 

( i) Member AB . p 

A1 

I L 
X 

l B 
Fig. 5 

The differential equation of motion is 

E I 'o4~ + P·,>1·3 -+ f <>2.J = o 
"<) x,-1 1>.X."- '1>-l'-

Let 

For a particular 'n', 
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or Y IV -+ Q ~ y ,, - cJ <l y = Q 
n n 

where a2 = P / EI , and d4 = f' A~/EI. 

The solution to the equation is 

where k 1. = ./a"~ 4a~ + al.. 

z , k'z = ./a~-+ 4c(" - a1.. 

2 

The boundary conditions are: 

(a) at x = 0 , Yn = 0 ,· (b) t 1 a x = ' yn r - 0 • • 

_Therefore, 

and 

or 

The slope 

C2 -+ C 4 = O , or C 4 = - c2 ; 

~ C1 c.os(k.L) + k'C3 Co$:h<k'l) = O 

, where 

at the point A is 

Ol == cos(lel) 
cosh. (k'{) 

Yn' I~=-
0 

= [c, ~ (cos.be. - o< C.o5/.. /e '-:x..)-+ C 1. ( -k. .s,"n kx- I,. 1si11/iJ'x. )_}.x.::.o 

- C,k(t-Ol) (11) 

and the moment at the point A is 

EI y~· Ix.=- O =EI [c, ~(-k sin k-x. - ()(. k sinh k. 'x.) -1- Cz(-J. ccs k:t-'':01A~~g 
:X=O 
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(ii) Member AC. 

Fig~ 6 

The differential equation of motion is 
_.., l. 

E I ·~ -+ 0 'c) J = o 
I 'c>:c." l '1)x.."\. 

Let 

For a particular 1n 1 , 

--:::z ~v _ p \: :i = 0 
z;;;,. EI Z::n 

Let q4 = f A~I ; then the solution of the equation is 

~"' =- Crs sin1x.-+ c. c.osi -x. ~ c,coshj x. + c1 sinhix 

The boundary conditions are 

(a) at x :: 0 , Zri = 0 ; (b) at x - b , Zn' = 0. 

Therefore, c6 + Cg = 0 , or Cg = - ?6 

and 

or 

C5 V cos 1" -+ C7 i C.05h 7h = 0 

co.s ?i, 
C7 = - /J Cs , where JS = il-

l COE.It'll, 

~" =- c~ ( 5/fl 1 r-; s,,,I, !x.) -f c6 ( cos r~ - cos/, 0 x) 

The slope at the point A is 

rn' / :x. =o = [CsjC cosj x-;, ccsl. 3 x) - c, f (~inf X -1- sin A j x.) J X=-D 

ll3) 

and the moment at the point A is 

EI, z~' lx~o = E1.[c37/"(-s,-nrx-plinhb-X.)-c,f(co~zxtcosAix)l(;;:;,O 

:::. -ZC, j,.EI, (14) 
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(iii) At the Point A. 

The conditions to be sat isfied at · the point A are that the slopes 

and moments are to be equal. Equat ing ~ equations (11) and (12) to 

equations (13) and (H.) respect ively, we have 

c. kc, - o1) - c~ i c, -; ) ==- o 

c~(P,4 -t _k ~2 )- zc.6i2. i' = 0 

Also we have the conditions that 

y / = 0 
n -X =Zl 

z I == o n -x.=Zb 

which give 

c,(sin.ekl- i~ .sir,hzk-'l) + c2 (c.os.2kl-c.o.slt zk'L) =O 

and • 

From equations (15), (16), (17) and(18), for the constants to be 

consistent, t he following relation must be satisfied: 

0 0 

(sirt zkl-t~sinli:zk'l) 
(cos zkL -cosh zk 'l) o 0 

0 0 

0 0 

==- 0 

(15) 

(16) 

u,J 
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or - z i z. i' k (/- o<} (coszJt - COS~ ,Z~ 'I) ( s/;,,,,z!..6-/ u~J.rrl,) 

-1- f(l;&Jf i '-.J.J'7j(s1°q.zJt- :':' s/nA2J'{J(cos.z1/,-c"sAzf6) 

== 0 

Substituting the values of k, ki", q, o<, and f , we will get a trans­

cendental equation in An' whose roots give the frequency of vibration 

of the various symmetrical modes, with the load Pas a parameter. 

Hence it is also an equation relating P and An 2 . It will be evident 

from the complex nature of the equation that the relation between P 

and An2 will not be linear, and hence a graph of P vs. An2 will 

be a curve rather than a straight line. Due to the complexity of this 

relationship, we will leave to experimental investigations the problem 

of determining how far this curvalinear relation deviates from a straight 

line, and whether the method of frequency measurement is applicable 

for the determination of a critical load in this case. 



III. EXPERIMENTS 

(1) Simple Column. 

(A) Description of the Model. 

The column is made of cold rolled dural (24-ST) bar, supported 

on both ends on knife edges. Detailed dimensions of the column and a 

section of the support are shown in fig. 7 and 8. Fig . 9 shows the 

experimental set un of the instruments. 

The ends of the column are reinforced with hardened steel 

anvils to serve as seats for the knife edges. The top knife edge is 

mounted on a differential screw and nut arrangement, so that load 

may be applied to the column by turning theput. Stress in the colwnn 

is measured by a pair of strain gauges at about a quarter distance 

from the support. The gauges form one leg of a wheatstone bridge. 

The unbalanced voltage of the bridge circuit is measured by a self­

balancing potentiometer. The strain is then deduced by using the gauge 

constant supplied by the manufacturer. 

The potentiometer is first calibrated for a known change of 

resistance in the strain gauges by shunting a known resistance across 

the gauges . A pair of du.mnw gauges mounted on a similar bar hanging 

freely beside the column are used as the other corresponding leg in 

the bridge circuit, as a means of compensating the temperature effect. 

The frequency of the column is of the order of 50 cycles per 

second. Hence it is easily measured by a stroboscope. 

- 16 -
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(B) Calculation of the 1st Critical Load and Stress. 

25-1/16 11 Length of the column 

Cross-section 0. 750 11 X 0.40011 

Young's Modulus (dural) 

Specific weight 

6 · 2 10.6 X 10 lbs./in. 

'Jf 1. EI 
Per - 12 

_ 7r1.. X 10.6 X 106 X 0. 75 X 0.l? 
12 X 25.062 

= 665 lbs. 

0.100 lb./in_3 

665 
0.750 X 0. 400 - 2210 lbs ./in. 2 

(C) Calibration of Potentiometer and Calculation of Stress. 

V 
The Calibration data are: 

V 6.22 volts. 

V0 0.427 mv. 

V1 1.970 mv. 

Rx 245,000 ohms. 

R 243 ohms. 
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-6 V 0. 001543 
-v- = 6.22 

A R = 243 
R 2L~5,000 

_ 243 X 6.22 
- 245,000 X 0.001543 

Gauge Constant = 2.00 ± 1% 

Strain ( e) = 2 00 x A R • R 

= 2.00 X 3.96 X A V 
V 

= 7.92 X 6 V 
6.22 

C- = E.e 

= 10 6 x 106 x 7 • 92 x ,,.. v • • 6.22 ~ 

= 13 . 5 X lo3 X .6. V . 

where 4 V is measured in millivolts. 
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(D) Experimental Results. 

The measured results are tabulated below: 

0- \2. No. V mv. L} V #/in2 A cps. 

1 O.l+27 0.000 0 52.2 2,730 

2 0.448 0.021 284 48.8 2,380 

3 0.470 0 .043 580 ·44.7 2,000 

4 0.490 0 . 063 850 41.0 1,680 

5 0.506 0.079 1,065 37.2 1,380 

6 0.525 0.098 1,321 33.8 1,140 

7 0.540 0.113 1,522 28.9 838 

The graphical representation of the above result s is shown 

in fig. 10. It may be noted here that the extrapolated critical load 

is 2200 lbs./in. 2 as compared to the calculated value of 2210 lbs . /in. 2 
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(2) Rectangular Frame~ 

(A) Description of the Model. 

The frame is made of cold rolled steel. Each member is an­

nealed before being brazed together at the four corners. The whole 

frame is again annealed after completion. At the corners on the center 
I 

line of each member, a shallow notch is cut to r eceive the lmife edge 

for l ibading. Fig . 11 shows the dime1tsions and corner details of the 

frame. The lmife edges are¼ x ¼ tool bits. At the bottom side they 

rests on two small V-blocks. On the top, the lmife edges are carried 

by a heavy I-beam. The load is applied through another lmife edge on 

the beam, mid-way between the other two knife edges, so that t he total 

load is equally divided between the two legs of the frame. The load 

is applied by a universal testing machine with a maxium capacity of 

30,000 lbs. Fig . 12 is a close-up view of the model aligned in the 

testing machine. 

The frequency is measured by recording the output of gauges 

on an oscillograph. The frame is excited by hitting one o! the vertical 

members with a rubber mallet. 

A check on the final dimension of the frame showed that 

the corners deviated from a right angle by an amount of about one 

and half degrees. This error is taken care of in the test set-up, 

where the bottom lmife edge seats are adjusted so that the center line 

of the vertical member is perpendicular to the base of the testing 

machine. 
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(B) CalcuJ.ation of Critical Loads. 
p p 

6 b ------

I, T 
I L I 

p p p p 
(a) ( b) 

Fig . 13 

The condition required for buckl:ing in the mode sho1tm in 

fig . 13a is {i" 

We have I - r . 
' 

1 

b 
1 

tan kl 
2 

kl 
2 

= 14-5/gu 

10 
14.63 

kl 
2 = 2.1g 

bI = --1I1 

' 
and b - 1011 , 

= o.6g3 

4 X 2.182 X 30 X 106 X 0.0044 
Per = · 14.632 

= 11,700 lbs. 

➔i- The derivation of the condition may be found in 11 Theory of Elastic 
St.ability11 by Timoshenko, page 90 and the following pages. 
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The condition for buckling in the mode shown in fig . 13b is 

For 

tan kl 
2 

kl 
2 

b IT - 0.22a , kl/2 = 2.62 . 

Per - 11 700 x (2 •62)2 
' 2.18 

= 17 ,00O lbs. 
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(C) Experimental Results. 

The measured results are tabulated below: 

p-'n~ A. \."l. p➔f- \. x 
lbs. cps. 104/sec. 2 lbs. cps. 104/sec.2 

0 204 4.15 4,515 179 3.21 

55.0 205 4.20 5,010 175 3.09 

1,030 204 4.16 5,455 172 2.95 

1,515 202 4.08 6,025 168 2.82 

2,005 199 3.95 6,515 165 2.74 

2,460 196 3.85 7,490 161 2.60 

3,020 192 3.69 8,005 157 2.49 

3,505 189 3.56 8,420 155 2.36 

4,000 183 3.35 

A graphical representation of the above data is shown in 

fig. 14. 

It should be noted that: (1) there is a rise in frequency in 

the earlier part of the loading; and (2) the experimental points lies 

close to a straight line, and the extrapolated buckling load is 17,500 

lbs. which is about 49% higher than the calculated lowest critical 

load of ll,700 lbs., but is about 3% higher than the lowest critical 

load of 17,000 lbs. for unsymmetrical buckling. 

* Correction for the weight of the loading beam has been added. 



rl. COMPARISON OF ANALYSIS AND EXPERIMENT. 

(1) Simple Column. 

The experimental points, being very close to a straight line, 

give a good check on the analysis of the simple column. The extra­

polated critical stress of 2200 lbs./in. 2 also checks well with the 

calculated value of 2210 lbs./in. 2 

The biggest error in the measurement is A V, which is the 

difference of two small values. An estimate of the maximum value 

of the errors is about ± 4%. Hence the extrapolated result of the 

critical load is well within the expected experirnental error. However, 

it must also be remembered that the calculated value is only theoretical, 

and it is subjected to errors in the choice of value E, and in the 

measured values of I and l . 

i.e., 

It is also interesting to check the slope of the curve, K, 

K = 2200 X 0.3 
2730 

2 = 0.241 lb.-sec. 

But the equation (5 ), for n = l, gives 

K = 4 f l 2 

4 X 0.1 X 0,4 X 0. 75 X 25.062 
32.2 X 12 

= 0.195 lb.-sec. 2 

The experimental value is about 23% higher. 

For thepurpose of better bearing of the pivots, the ends of 
! 

- 24 -
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the column are reinforced with two pieces of hardened steel. Evidently 

these masses lowers the frequencies of the column, for the theoretical 

natural frequency of the column is 

A= I 2 X 25.062 

- 58.5 cps. 

10.6 X 106 X 0.43 X 0.75 X 32.2 X 12 
12 X 0.1 X 0.4 X 0 .75 

while the measured frequency is 52.2 cps. 

The correction factor for the critical load due to these 

reinforcements (Ref. 5) is [1 T :~(zla)3], where 1a 1 is the l ength of 

reinforcements. For t his case the factor does not have any signific-

ance. 

The important r esult is that the linear relationship and t he 

critical load check very well with the theory. 
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(2) Rectangular Frame. 

The interesting result brought out by the experiment is that 

the curve of A.n2 vs. P comes out to be rather close to a straight 

line as far as the data go, although the theory indicates that the 

relation is non-linear. The fact that the extrapolated critical load 

of 17,500 lbs., as compared to the computed value of 17,000 lbs., for 

unsymmetrical buckling, indicates that the relation can be approximated 

with reasonable accuracy by a linear one, even though the data only 

extend up to about 50% of the buckling load. An increase in accuracy 

would be expected if the loads are carried closer to the buckling 

point. 

The data obtained might be somewhat misleading, because the 

critical load extrapolated is not the lowest one, 11,700 lbs., which 

one would naturally expect to obtain. However, the rise in frequency 

at the early part of the loading indicates that the frame changes its 

mode of vibration when load is applied. Therefore, the critical load 

extrapolated will correspond to the mode in which the frequencies are 

measured. The records show that there is a beat frequency of the order 

of 10 cycles per second at the beginning of loading . Hence there are 

two dominant frequencies present, and they are very close to each 

other. It will be shown later that the supports will absorb less energy 

for unsymmetrical modes than for symmetrical ones. As the frequencies 

are so close together, it may happen that the total energy required 

for exciting the slightly higher mode is actually lower. The unsym-
Q. . 
rnt,rical mode is the next higher one, and its frequency appears very 

close to that of the lowest symmetrical mode. Hence it is this mode 
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in which the frequencies are measured. However, no analysis of the 

natural frequency of the system is made. It is interesting to see, 

however, from the experimental curve, that when the straight portion 

of the curve is extrapolated to zero load, a frequency of 211 cps. is 

found. This is probably the natural frequency of the unsymmetrical 

mode, and is about 7 cps. higher than the frequency measured at zero 

load, which probably is the frequency for the symmetrical mode, the 

difference being of the order of the beat fr equency. 

The method of excitation by hitting one of the vertical members 

is certainly capable of introducing the two basic modes simultaneously. 

With no device to indicate the mode, it is difficult to tell whether 

one mode is completely absent or not. However, the beat frequency 

may give some kind of indication. The beat frequency increases with 

the load, as is expected, while the amplitude of the beat decreases 

with the load. The presence of beats is not marked when load reaches 

4,000 lbs., and the beats disappear completely from the records for 

loads above 6,000 lbs. This indicates that one of the modes is more 

stable than the other. This may be clarified by considering the con­

ditions at the supports. 

It was noticed during loading, that local yielding at the 

knife edges took place at loads above 4,000 lbs. and the frame had 

to be excited several times before the load became steady. Inspection 

made after the test showed that the knife edges made indentations as 

deep as 1/3211 in the notches in the frame. This indentation of the 

knife edge introdues friction and absorbs energy of vibration. The 

energy lost at the supports will be proportional to the amount of 
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rotation of the corners. It has been shown that, for the same corner 

moment, the corners rotate three times as much for the synnnetrical 

mode as for the unsymmetrical mode (the rotation being 2EIM and 6EIM 
b b 

respectively). So, as the lmife edges dig deeper into the notches, 

it becomes more difficult to excite the lowest symmetrical mode, and 

the unsymmetrical mode becomes the only dominant one. Therefore, the 

measured frequency is in this mode. The check on the critical load 

for this~ode also indicates that the frequency is in the same mode. 

When two frequencies are very close together :· as in this case, 

even though the initial motion may be in the symmetrical mode , the dy­

namic coupling between the modes ca.used by non-symmetry either in 

dimensions, in l oad, in density of material, or in friction at the 

supports, etc., may be enough to start the other mode, initiated by 

a small phase difference on the two sides of the frame. Evidently, 

what happened in this case, is that the coupling between the modes 

has stabilized the unsymmetrical mode. In a full scale structure, 

where non-symmetry in construction and loading etc. is more likely to 

occur than in a model, it is quite possible to have enough such dynamic 

coupling to throw off the frequency from the lowest mode. Therefore, 

one should look out for the possibility of such misleading results. 

Though the measurement indicates the structure is s t able in 

the unsymmetrical mode of vibration, one can not, however, conclude 

that the structure will buckle in that mode first. Its dominance 

may be purely because of the method of excitation and the support 

conditions. To check this a further experiment will be required, 

where some refinement in technique may be followed. 
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First, a definite method of exciting the frame should be 

devised, such that the simplest mode will be the only dominant one. 

A possible method consists of stretching a wire across the middle of 

the vertical members to draw them toward each other, and then cutting 

it to start the motion. Second, the support notches should be hardened 

or hardened inserts should be used, in order that they may not damp 

out the simplest mode, and that they will not introduce too much 

damping force at heavy loads. 

I 

It is difficult to say thatiwith these r efinements we shall . 
be able to record the simplest mode with the absence of the next 

higher mode, because they are so close together, and one might be 

excited by the other though possible dynamic coupling between them. 

If this seems likely, the mode of vibration should be measured as 

well as the frequency. 

One method of deterrnining the modes could be to r ecord the 

traces from corresponding pairs of strain gauges on opposite members 

of the frame simultaneously, so that the phase differences could be 

compared. Another method could be to connect the gauges in the same 

bridge circuit in such a way that they would give double output for 

a symmetrical mode, but would nullify each other for an unsymmetrical 

mode. 
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V. CONCLUSIONS & SUGGESTIONS 

The interesting points which represent the worthwhile results 

of this work are: 

(1) For a s:im.ple pin-ended beam, the theory and experiment check very 

well. 

(2) The analytic solution for a circular ring shows that there is a 

linear relation between the uniform radial load and the square of 

frequency. 

(3) The analytic solution shows that for a r ectangular frame, the re­

lation of P and An2 is not linear, but the experimental result 

indicates that the relation is very clmse to a linear one. 

(4) The experimental results show that if there are modes with f re­

quencies very close to each other, the stable one may not be the 

lowest mode, and thus the results may be misleading, unless the 

modes of vibration are measured as well as the fre quencies. 

The structures covered in this work are of a very simple 

type, and therefore no generalized conclusion can be drawn. Thus 

far, it may be said that the r elation of P and An 2 for prismatic beams 

is very close to a linear one for all end conditions except the case 

with fixed ends, which may be the next step to be investigated. 

Other experiments which might profitably be conducted involving 

structures of the following types: 

(1) Compression members in a truss. 



- 31 -

(2) Different types of elastically unstable frameworks. 

(3) Columns built-up with stiffening lattice work. 

(4) Curved beams and arches, 

(5) Plates and shells. 

(6) Webs of plate girders in bending. 

When the structures become sufficiently complicated so that 

many modes of vibration are possible, some definite controllable means 

of exciting the structure and devices of detecting the modes must be 

provided, or the results may become meaningless. Such tests should 

be checked for some complicated structures by actually carrying the 

structures to failure. 
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FIGURES 

Title 

Dimensions of the test model of a simple column. 

A section through the top support of the simple column. 

Photograph of the experimental set-up of the simple 
column. 

Stress vs. (frequency)2 relation of the simple column. 

Dimensions of the test model of a ractangular frame. 

A close-up view of the rectangular frame in the testing 
machine. 

Frequency and load relation of the rectangular frame -
the longer members being loaded. 
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SECTION A-A 
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Photograph of 1the experimental set-up of 

the simple column. 
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FRAME. 
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Fig. 12 - A close-up view of the rect~ngular frame 

in the testing machine. 
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