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ABSTRACT

In this thesis the norms of the Mehler kernel operators are calcu-
lated. In particular, Babenko's conjecture about the norms of these
operators with purely imaginary parameter is settled. The proof is in-
spired by Wiener's approach to Fourier theory and his proof of Plancherel's
theorem. An account is given of Wiener's approach, as well as of the
important tools and theorems, particularly those of Beckner, needed to
prove the main result. Applications to Kober operators and smoothing

operators are given.
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NOTATION
Throughout this thesis we will use the following definitions.

R 1is the set of real numbers.
€ is the set of complex numbers.

If 1<p<o then

LP = LP(R) = {Lebesgue measurable f:R - C]flf(x) |Pdx <=}
and, if f eLP, then -

ety = firre) 7

L® = {Lebesgue measurable f:R + € |essential sup|f(x)]| < c}»
X

and, if f €L%, then

| | _ = essential sup|f(x) |
X

Let A be a linear mapping of LP into L9 (1 < p,q < ).

We write

1Allg,q = P ARl IEFIL,
felP,f 20

and call this the p,q operator norm of A.

du be a measure other than Lebesgue measure.

If 1 <p <o then

LP(dp) = {p—measurable fR+ € 1[1f(x) [Pdu(x) < m}

- 0

and
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L%(dp) = { u-measurable f:R - @ |essential supif(x)| < w} .
X

The corresponding norms , l[fl[p.p, l[fllp,m, and l[Allp,p i have

the obvious definitions.



INTRODUCTION

This thesis deals with integral operators associated with the kernels

2. 2 2
Ty e ] exp{{4xyw - (xS+y9) (1 +u )} ,
. (1 -of) 2(1-uF)

where x and y are real and w 1is a complex number with |w| <1
and w # =1 . Our main results consist of formulae for the values of
the norms of these integral operators as mappings of L into
Lq(l <p<2 and 1/p +1/q =1). This generalizes the work of Babenko
where the case that w 1is purely imaginary and q 1is an even integer
was considered. By taking |w| =1, w# 1, we get expressions for
the norms of what are called the Kober operators, and by taking
0 <w<1 we get expressions for the norms of the smoothing operators
which were considered by De Bruijn.

The kernel Nw was introduced by F. G. Mehler [ 9] in 1866 in

connection with the Laplace equation. He proved the identity

N (xs¥) = éo w e, (x)e (¥),

where %, denotes the nth

Hermite function. This identity, which
plays a very important role in this thesis, was reestablished as an
identity for the corresponding integral operators by Myller and
Lebedeff in 1907 [10].

For sufficiently well behaved functions f we define

() 0x) = [ Ny fly)ay (x €R) .

-CC



If we take w= - i then wa becomes &f, the Fourier transform of
f. If 1<p<2 and 1/p+ 1/9g =1 then it is well known that & is
a bounded linear mapping of LP into L9, 1n fact, we have the classi-
cal Hausdorff-Young inequality

el < (am?/al/2

However, & 1is not a compact operator. This sometimes makes the study
of F difficult. The Mehler kernel operator N, for |w| <1, fis
compact and it may be used to approximate JF. For this reason Nw has
become an important tool in Fourier transform theory.

In 1933, N. Wiener [15] used the Mehler kernel operators to give a
proof of Plancherel's theorem which states that F 1is an isometry of
LZ(R). Wiener's approach was used in 1961 by K. I. Babenko [2] to find
the norm of the Fourier transform as a mapping of LP into L9 in the
case q 1is an even integer. This was done by calculating the norms of
Nw as a mapping of LP “into L9 for w purely imaginary and q an
even integer. Babenko conjectured that the formula he found for this
norm (with q even) holds for all q >2. One of the purposes of this
thesis is to settle this conjecture.

In the proof of Babenko's conjecture we shall use a result of W.
Beckner [4] which was generalized by F. B. Weissler [16]. This result,
which was proven using a method of E. Nelson [11] concerns the norms of

Mehler-type operators defined on Lp(du), where 1 <p <2 and du de-

notes the Gaussian measure on the real line. Beckner was able, by this

method, to find the exact value of “3“p q
We now briefly mention some areas in mathematics where operators of

the Mehler type occur.



g

In a paper of 1939, H. Kober [8] considered the operators Nw with
@] =1 as roots of the Fourier operator 3. At about the same time
(1937), E. U. Condon [5] considered the same operators to construct a
continuous group of transformations that includes the cyclic group of
transformations generated by 3.

In 1961, V. Bargmann [3] constructed a Hilbert space of entire
functions on which Fock's operator solution to a commutation relation is
realized (Bargmann-Fock representation). The transition from the usual

Hilbert space LZ(R) to this space is given as follows. The mapping B

defined by
Y 2, 2
(Bf)(x) = m fy)exp{-%(x"+y) + .2 xy }dy
maps LZ(R) onto the space of all entire functions, g, of order <2 and

type < % such that

flg(z) 2 eIz 12dz 2 o
J .

The latter space is a Hilbert space if we take the obvious inner product.

th Lermite function onto 2"/ AT .

Then B is an isometry that maps the n
If, now, w is a complex number of modulus less than or equal to one,

then
(BN,f)(z) = (Bf)(u2) ,

(where we take '(wa)(x) = f(ux) if w= x1),
N. G. De Bruijn, in a paper of 1973 [b] presented, among other

things, a method for studying generalized functions by means of smoothing
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operators. For o > 0, the smoothing operator SOL is essentially the
Mehler operator with w = g (see proposition 5.5). He also noted that
the set of smoothing operators (and so the set of Mehler operators)
forms a semigroup under composition. To sketch De Bruijn's approach to
generalized functions, we let S be the set of all functions of the

form S_f with a>0 and f e Ll

(R). Thus S can be thought of as
the test function space on which the theory 1is built. A generalized
function is then defined as a trace in the space S, i.e. a mapping

F of (0,=) into S such that SaF(a) = F(a+p) for all 0<q,B< =

Both De Bruijnand Bargmann note that if H 1is the Hermite operator

H:(_a;-xz)
X
(harmonic oscillator), then

v - 512 (logw) i

In particular, if we put U(t) = e‘t/zN ;¢ for t €R, then U is the
e

solution to the Schrddinger equation Ut = - % i HU with U(0) = I.

We finally give a survey of the chapters of this thesis.

In chapter one of this thesis, the basic properties of Nw are de-
veloped and Plancherel's theorem is proven by the method of Wiener.
Chapter two deals with the Hausdorff-Young inequality for & and the
result and conjecture of Babenko. The Gaussian measure form of the

Mehler operator is treated in chapter three. Chapter four contains the
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main result, i.e.the calculation of I[Nw}[p’q. The norm is expressed as
a function of a parameter y which is given implicitly interms of the
roots of a certain fourth degree polynomial. In chapter five we calcu-
late y and hence lle[lp,q in the special cases for Kober and smooth-
ing operators. We also complete the Wiener-style proof of the sharp

Hausdorff-Young inequality for the Fourier transform.
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Chapter 1

L2 THEORY AND THE FOURIER TRANSFORM

We begin by defining the Fourier transform. For functions

f € L] (R) we may define, for x €R,

(3)(x) = ﬁ/ fy)e WVay . (1.1)

Norbert Wiener, in his book The Fourier Integral and Certain of Its
Applications [15], showed by using Hermite expansions that 3 is also
definable for f G’LZ(R) and that & is in fact an isometry of LZ(R).
This result is usually referred to as Plancherel's theorem. Because
Wiener's methods are similar to those we will use in a more general
form lTater in this thesis, it is instructive to study them in some de-
tail.

We begin with some elementary properties of 3.

PROPOSITION 1.1(i) 3 is a linear operator from L' to L=

(i) If A <s the operator defined by (Af) (x) = ixf(x) then

o' = AFf and FAf = - (3f)’ .
(i11) If B is the operator defined by (Bf) (x) = £(x) - x*f(x)

then

Bf = B3f .

Here we assume f s sufficiently well behaved for these statements to



make sense. The validity of (i) is clear, (ii) follows from direct
calculation, and (iii) is a conseauence of (ii).

From (iii) one might expect the eigenfunctions of the operator B
to be of some importance in the study of the Fourier transform. Hence

we fix a complex number A and consider the differential equation

y' - xy = N. (1.2)

, where each a, is

5 n-1_,0nn
We Tet h (x) = g Fapx F ot X +27x ;

sl '
complex, and substitute g(x) = e X /Zhn(x) into this equation. This

yields the formulae

- _k(k-1)

a0 = Trho3 (k =2,3, ..., n),

an_1(2n + A=-1) = an(2n + 2+1)=0,

from which we find A= - (2n+1) and

hn(x) - zn(xn_ngqflz Xn-2 4 n(n-l)(g£2)(n-3) xn-4_ ), (1.3)

where the last term in the series involves x or 1 according to

2
whether n 1is even or odd. It is clear that e /zhn(x) is the only
solution of (1.2)(aside from constant multiples) of the form
_x2/2 5
e P(x), where P is a polynomial of degree n, and

A= - (2n41).
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DEFINITION 1.2. The polynomial hn defined in (1.3) for a nonmnegative

integer n is called the nth Hermite polynomial.
2 .n 2

PROPOSITION 1.3. h_(x) = (-1)"e* 47X -

n n

dx
n x2 q" -x2 Then one may verify that is
PROOF. Let g(x) = (-1)"e* =™ - y g
dx

2
a polynomial of degree n and e™* /zg(x) is a solution of (1.2) with
A= - (2n+l). Furthermore, its leading coefficient is 2" whence g=nh

n
by uniqueness.

DEFINITION 1.4. We define the nth Hermite function by

2 2
-x"/2 -x /2 _
X h.(x)/ [l h. (x) [, (n=0,1, 2, ...).

qh(x) = e

We notice that @ e LP for each p>1 as h_ decays exponentially

n
to zero at +« and -«

Some important properties of the Hermite functions are contained

in the following theorem.

THEOREM 1.5. Let n be a nomnegative integer. Then the following are

true.

(1) lh‘*z/zhnmn% = 2" nt .

(i1) @ <sasolution of (1.2) with A= - (2n+1).
(111) ag = (-1)" @

(iv) {qk};;o is an orthonormal system in L2.
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2 2 = k 2

PROOF. Using proposition 1.3 and integration by parts we get the recur-
sion relation

@© 2 ® 2

2 2
f[e'x /2hn+](x] dx = 2(n+1) / %'X /zhn(x)J dx.

- T - cC

Also, h0 =1 so

< 2 «

2 2
f [e'x /zho(xﬂ dx =/ e dx = s,

- -

and (i) follows. (ii) is clearly true. To prove (iv) let n and

m # n be nonnegative integers. Then from (ii) we know

Gy B Gy By = 2n-mg @

We integrate this equation by parts twice to get

f ¢ (x)q,(x)dx = 0,

whence {qh} is an orthonormal system in L2.

2
To prove (v) let gn(x) -8 /zhn(x). Then expanding the function

exp(-x2/2 + Zxkrk?) = exp(xz/z)exp(-(x-x)z) about A =0 we get

gn(x‘) = (—i‘ﬁ exp(-x2/2 + 2XA- k2)>(0)
di
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so (v) follows from Taylor's theorem and (i).

We may now prove (iii) by calculating

1

kzé ) [%f%?J (3 )(y) = &(e™ /2+2x =X,

@

}f exp(—x2/2 + x(21-1y) - 12) dx

- CC

1
xeT

-] . 2
L exp(- [x/uZ- f%‘ﬂj

Ll

¥ [(221y)%/2 - 29)dx

e-y2/2-21yA+A?

1
= k ~12
-z A [%;«.EJ - () (e,

(iii) now follows by comparing coefficients of xk.

We are now ready to introduce the Mehler kernel.

DEFINITION 1.6. Let |w| <1 but w# x1 and let (J is prineipal

value)

N (x,y) = 1 — 4nyJ" LX2+y2)(]+w2)

v K- =P 2(1-u)
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Nw(x,y) 18 called the Mehler kermel of parameter w.

THEOREM 1.7. Let |w| < 1. Then

Nw(x,y) = nzg n qh(x)qh(Y) .

PROOF. Fix |w] <1. Direct computation yields

2 2
9 Syl = 9 Y S - R VR
E;E Nw X Nm E;? Nw y Nw 2w awNw Nw .

It may be shown by induction that there exist polynomials Bn(x,y) in

x and y with coefficients dependent on « such that

& = .
= Bn(x,y)Nw(x,y) .

Taylor's theorem then implies

® 2, 2
N(xy) = I P (xy)dle” X2,
n=0

where the Pn are polynomials in x and y that are independent of

w and so

2,72

n '(X ty )/2 . (].5)

- Oy =2 - N, = - (2n11)P_(x,y)u'e

Lus
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We may write
N, (x,5y)

Zn+1 dz ,

e

0 (%35 Q (x,¥) = }

where the contour of integration lies inside |Z| <1. From this one

Nw(x,y) = )

may show that for all positive Aand B, r >1, and nonnegative
integers k and £ we have
k+4

o) n
Q. (x,y) = 0(r")
> kE 4L n

uniformly in |x| <A, |y| <B. Hence the sum in (1.5) converges
uniformly on compact sets and hence we may differentiate it with re-
spect to x and y freely. Doing this we obtain

2 2

N @ 2.2
= - N = Do jiz - x2 Pn(x,y)e (x"+y")/2
x° W h=0 X

and, of course, a similar equation with x and y interchanged. Then

(1.5) implies

2

& _ 2 2
o

(kP42 b
o P (xsy)e

2,2
x“+y“)/2 -(x"+y7)/2
P (x;y)e

2, 2
- (2n+1)Pn(x,y)e'(x /2

whence Pn satisfies the differential equations

32 d 32
gz-Pn-2x.c—)-)-(-Pn+2nPn=g72-Pn-2yPn+2nPn—0.

This has the same form as the differential equation for hn (compare

with (1.2) and following paragraph), therefore there exist functions
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F and G such that

PL(xsy) = F(y)h (x) = G(x)h (y) .

Now G(x)/hn(x) = F(y)/hn(y) whence F and G are constants. We

have obtained

for constants Cn' Hence

@
-
—

od"“’n @, (g (¥)
n=

N, (xs¥) =

for some constants dn that depend only upon n. We now have

© # 2
N, (X,x) = == )exp {- x? %;—‘:} = 2 dowi(e(x))

- (1-w

and, in particular, for x = 0,

[r(1-)1™ = T 4 (g (002 .
n=0

From theorem 1.5 (v) we know that for n even,

2 n!
0 = )
(e,(0)) 2",ﬁ-?[(n/2)!]2

whence, expanding (l-uF) ° in its power series, we find
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n even. Furthermore

azNw = N, 4 2 2w
axay (an) = n§0dnw (Cpn(o)) = :”?' N (O’O) s

and a similar, though more involved calculation of q%(O) implies

dn =1 for n odd also. The theorem is now proven.

DEFINITION 1.8. For |w| <1, we define the Mehler kermel operator,

Nw > with parameter w by
() = [ N (xy)dy

For now we will consider the domain of Nw to be L2 although later
we will consider other domains. Some important properties of Nw are

listed in the following proposition.

PROPOSITION 1.9. Let |w| <1. Then the following are true.
. _ n _
(1) chpn—u)cpn for n=20,1, 2, ...
(1) Nw is a bounded operator of LZ.

(i1d) Nw i8 a compact operator of L2.

PROOF (i) follows directly from theorem 1.7. To prove (ii) we let

2

f €L~ and calculate,
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I, f1G = [ |f x.y)dy [2dx

@

< !'f('z f f le(x,y)lzdydx :

-

However, we also know

f f le(x,y) lzdydx = f f | Z o cpn l dydx

1A

i lwncpn(x) lzdx
n=0

-

1
1- |w]

Finally, Nw is a bounded integral operator with a kernel that is in

L2 (®%)

R°), hence it is compact and we have (ii) and (iii) (see [17] page

319).

We have mentioned that ¢ € LP  for each 1 <p =< <= The follow-

ing theorem gives bounds on the LP norm of @, -

THEOREM 1.710. Let 1 <p <®, 0 <a < 1. Then there exists a function

c(a,p) depending only on a and p such that [{cpn“psa-nc(a,p),
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PROOF. Let 1 <p < e« From proposition 1.9 (i) we have

2" eyl = Nyl

I f" B (YINg (x5y)dy

A

< [1Clke, llp N oy ) 1)l

) e {2 )

= c(a,p).

THEOREM 1.11. Let |w| <1. Then

quJE,z = 1.
PROOF. Let f €L2. Then
_ =
Nf = ng% S (faq e
SO
K - gi\ 2n 2
B = = lul™ (fg) |

IA

D |(fag) [
n=0

IF15 .
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Also, we clearly have equaiity if and only if f 1is a constant multi-

ple of %

THEOREM 1.12. (i) Let f €LP;1 <p< o Then

Tim IN.f - [ =0 .

(i1) {@.} 5. 1s a complete orthonormal system in LZ.
n-n=0 5

PROOF. Let 0 <a <1. We calculate

Y daxy - (x2+y2)(1+a2) |

- 1 3
.(; N, (x,y)dy = ;ZRTT;Z; _!; exp[ 201 a2) I dy

2 2
] exp{ S LR
(1-a%) 1-a 2(1-a")

© —g 2
) f ) y'zHaz % a4 )
P, exp (-l_a )- 1-a y

-

-[_2 4 - 1-a° }
(1—3) exp{ * (2(1+a2)>

<7

Let 1/p + 1/qg = 1. We will now prove [lNal]p 5 <.2. The case p =1

may be easily verified so we will assume p > 1. Then if f € Lp,

[Naflg =f lff(y)Na(x,y)dylpdx

- o
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(=] (=< <

/
Sf (f If(y)lea(x,y)dy>< f N, (x,y)dy )p qu

- - -cc

<

R o«
S(ﬁ)qf f [f(y) lea(x,_y)dy dx.

-® -

We use Fubini's theorem to interchange the order of integration and in

so doing we conclude

Nl p = 2

We now allow the value p=1. Let ¢>0 and let g be a step func-
tion with a finite number of jumps such that “f-g”p < ¢/4. Then it may

be verified that there exist positive numbers M and A such that

2
[(8,9)(x) | < Me™

for all 0<a<1 and all real x. Also, Nag - g pointwise except
possibly at the points where g 1is not continuous. It now follows

from Lebesgue's dominated convergence theorem that
Tim M.g-gjl, = 0.
arl @ %

Let a be so close to one that HNag-ng < ¢/4.
Then

N -l < IN(F-a)l + INg -l + o=l < c

and we have proven (1).
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Now let f € L2. Let €e>0 and let a be so close to one that

HNaf- fﬂz < ¢/2. Define for each positive integer m

m
(Pa)(x) = 2 a"(f,q,)@,(x)

Then

I Za"(fq )l

INf-P f|
Ma m' 12 s

L Fl Eéan .
el T

Let m be so large that “Naf-meuz < ¢/2. Then

if - Poflly < If - N Flp + INF - Pofif<e.
This completes the proof of (ii).
We may now prove Plancherel's theorem by Wiener's method.

THEOREM 1.13. For all f el nL% we have

“zﬁ:uz = fuz ’

whence 3 may be extended to an isometry of L2.
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PROOF. Let O <t <1, and f eL' nL% Then

2/ 2
1-
[FON_5 (x¥) | < [f(y) | exp [ - %(T:—z?)]

< [fy)] €L

1
Also
. 1 _-ixy
1im N ., (x,y) = —.e .
o B V2T

It then follows from Lebesgue's dominated convergence theorem that

Tim (N_; . f)(x) = (3f)(x)

pointwise.

Fatou's Temma and theorem 1.11 imply

gt | N
L3$L2.§ 1Lm*1?f ”N-jtf[h = Ilfllz .

Since any function in L2 may be approximated in L2 by functions in

1 2

L' NL", we have shown that & can be extended to a bounded 1inear

operator of L2. We now have, by Theorem 1.12, for f € Lz,

ol = 5 Z (F.5)5

(-~}

12 (-1)"(Foq ), [

n=0



= l:f “2
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Chapter 2

THE FOURIER TRANSFORM IN LP

In this chapter we will examine the development of the classical
Hausdorff-Young inequality. Throughout this chapter p will be a
real number in the range 1 <p <2, and q will be defined by the
conjugacy relation 1/p + 1/q =1. We will allow the value q = +=,
The first inequality we will look at is due originally to Titchmarsh and
its complete proof may be found in his book Introduction to the Theory

of Fourier Integrals [14].

THEOREM 2.1. For f €LP nL! we have
If Iy < (2m)/971/2 ).

so & may be extended to a continuous linear operator of LP into LY

such that the above inequality holds.

PROOF. The case p =1 1is treated separately. If f €L' then

. f fly)e' Vay |

ol = sup j;:

3

< sup -l_f [f(y) | lé'""'ldyl

X | J2m
1
== |If
= Uty
-x2/2
Notice that if we take g(x) =e then
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Il3sll. = = llally »
« Aﬁ.ﬁ- 1
whence l]&[l] e = ]/vﬁﬁ. In the remainder of this proof we will assume
p >1. The proof of theorem 2.1 makes no use of the Mehler kernel oper-
ator. Titchmarsh first treats the case of q an even integer. For
such q, 3f may be written as a g-fold convolution and so the norm

of &f may be easily calculated. To do this, several lemmas are

needed.

LEMMA 2.2, (YOUNG'S INEQUALITY) 17 £ e L/ (V-2 gy g € 1701-0)
where A, >0 and AN+ pu<1, then

o« ) ]-)\-p, 3 . g
|f foax| s(flfl”“'” s I”“'“)dX> ([ lfl”“‘“dx)
B B -m A

| (f lgﬂ/“'%x> |

LEMMA 2.3. Let A,u,f,g be as in lemma 2.2, and let
c(x) = f*q (x) = ff(t)g(x-t)dt.

Then

“C“V(]_;\_u) . “f“]/(]-)\) llgll]/(]-p)

We now assume f to be a continuous function of compact support.
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LEMMA 2.4. Let k be an integer. Then the Kk-fold convolution

ck(x) = _/.f(uk_1) —_ ‘/.f(u1)f(x-u]-u2... - uk_])du] Sea duk_]

-0 - CC

belongs to L2 and

p- 2k-1
e 16 < (flﬂﬂf”““”w)

Lemma 2.2 follows directly from Holder's inequality for three functions.

Using Temma 2.2 and ¢ as in lemma 2.3 we see

- -\ 1-
kunf(flﬂwﬂ”“”mu¢n”“*Mt' “IEIay

. ‘b “3\/(] "H)
1/(V-p) °
Whence

% (1)
; T-A0 1=\ = 1-A-
flce()i'l/(]-)\'}-l)dx ﬁ{llfll]/(]_k)} . K {“9“]/(]-“)} M & s

and lemma 2.3 follows. To prove lemma 2.4 we notice

¢ = F ¥ e

so upon several applications of lemma 2.3 we have

-k
llell1/(]-k/2kyf ”7111/(1-1/2k) ’
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and hence the desired result.

Now let Cy be as in Temma 2.4. Then by writing the iterated inte-

gral as a multiple one and performing a change of variables,
(36)¢ = 3 ((2n)‘k/2+‘/2ck> :

and we may use theorem 1.10 to get

« @ « 2k-1
[ lsefac= @' [ e, fPax < (zn)"k(fm?k/(?k'”dx)

By our usual extension procedure, the above inequality holds for

all f e¢LP and g an even integer.

Titchmarsh then attacks the problem of general q by using the

following lemma of Hausdorff and Young [14].

LEMMA 2.5. For any finite set of real numbers {d m}rT1=-n we have

" , " 1/(p-1)
|E d e‘”‘x]qu5< 2 ldm1p>

i
21 gy T

3 S

The proof of this lemma is long and cumbersome;it will not be presented
here.

Let f be a continuous function of compact support, A >0, b >0,

and define (v+1)/2
8, = ./' f(x)dx
v/ A

for integers v, and



g,(x) = T ave'ivx”‘
v=-n
where n = [Ab] - 1. So
b
Tim g,(x) = ff(y)e'mydy .
o b

uniformly on compact sets. Furthermore, by lemma 2.5

nk " 1/(p-1)
P
f lgn(x)lqu < 2n>\< 2. |a,| >
-=TIA Ll
< 2n<f [f(x) ]pdx)
-b

Hence, by Fatou's lemma

(-}

f [(3£)(x) [Ydx = [h‘m inf g, () %X, 9%

A <
-cc

p/
<emf, P

We again approximate a general f € LP by continuous functions of com-

pact support to finally prove the theorem.
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There is another, very quick proof of theorem 2.1 using M. Riesz's

convexity theorem (see [12] chapter 5).

THEQREM 2.5 (M. RIESZ) Let T be a linear operator of norm Ki from
P q;
L' to L (i=1,2) (the p

}-tKE from P % LY where

; and q; are not necessarily conjugate) -

Then T has norm < K

-t , 1

1 1
P P B 9 9 9

The proof of this theorem is not important to this thesis. However, if
we use the already proven facts that T 1is an isometry on L2 and that
it has norm equal to 1/.,2m from L] to L™ we get immediately

1-2(1-4)

Pl w12

Izl q < (;l:)
which is exactly theorem 2.1. It is interesting to note that even this
extremely powerful theorem gives no better result than theorem 2.1.

In order to improve on theorem 2.1 we return to the study of Mehler
kernel operators, - this time on LP. We will need a few more proper-
ties of the Hermite functions and of the operator Nw in order to pro-

ceed.

THEOREM 2.6. Let 1 <a <« 1<b<eo, |u| <1, and f €% Then

_ s N
Nu‘f = n{:—_.o w (f,q)n)fﬁ,] ’
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where the sum converges in Lb. Moreover, Nw 18 a compact operator of
a b ; a
L™ into L” and N =N N -fbrl | <71, o, | <1 (i.e. {N j forms a
wup wy twy T K v

semigroup).

PROOF. From theorem 1.7 we know that, for fixed x,

n

NS(Xsy) = Zw g (x)e(y) ,

&1

b

and from theorem 1.10 this sum converges in L sense (as |[lq || . = ot

for all 0<t<1,1<c<w=). Hence

(NI (x) = [ N, () ly)dy

nE% up(f’qh)qh(x)

for all x. The convergence of the latter series is surely in Lb

sense, again because of theorem 1.10. Also,

«©

”'\f' Z/ W(f cPnCP “b— 2 lwlnl(fs‘l?n)l “an“b
n=0 n=m
< 71, Z ful e ll2

This last sum approaches zero as m =+ « , again by theorem 1.10. This

shows that Nw can be approximated by the finite rank operators Pm,
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where

P f=

o (g )e, (f eL?) .
n

Lrs

It follows that Nw is a compact operator of L2, The semigroup proper-

ty of Nw follows easily from the identity for wa proven in this theorem.

THEOREM 2.7. The linear span of the set {w ), is dense in L2 for

I <a<we

PROOF. Let f €L? and ¢>0. Let g be a continuous function of
compact support such that ][f—g[[a < ¢4, Let t <1 be soclose to
one that [[N.f-f|| < e/4. Let P be defined by

(P_g)(x) =

i

t"(g,, ), (x)
n

Since g € Lb, where 1/a + 1/b =1, it follows from the proof of theorem

2.6 that for m sufficiently large .[l(Nt-Pm)gjla < ¢/4. Hence
1 f-Poally < IINF-FIL, + NIN(F-a) ([, + [T (NPl < e s

and the theorem is proven.
A bit more calculation gets us our first Hausdorff-Young inequality

for N .
w
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THEOREM 2.8. Let |w|<1,1<p <2, and let w be real. Then -

-1/2 1/q
NI, <[ﬂ1w2)] (21/q)

PROOF. Let a = (1+u?)/2(1-u?). Then a is positive and we calculate

© © -Q/2 c: [
f f le(x,y)lqdy dx = [rr(l-wz)] j fexp{-aq(x2+y2)

+ ZqA/éz-Vll xy} dy dx

-q/2 1/2
. [n(]_wZ)] 9 (_d'l_;_) f-QX /4adx

- O

- [n(1-8) ] 72 (2wq) .

We now have,

HN-HI <[n(1-«")]  (2wq) “f”p
for any f € LP. The theorem follows.

Theorem 2.8 is already good enough to give us a result for the

'smoothing operators of De Bruijn (see page 71). We may also bound

{NwH for w purely imaginary.
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THEOREM 2.9. Let |w| <1, 1 <p <2, and let w be purely imaginary.
Then

-1/2

, 1/q
INylq < [n(1-69)T 7 [2n(1-oP)/a(1+%)]

PROOF. We again let a = (1+u?)/2(1-u?). Then a 1is positive and we
have

-~ r -q/2f

[ [ v Payex = tn(1-)3 | exptaata?) 1 avex

q/2 .
n(1-o%)] [n/qal.

H

We now have,
-1/2
Nflly < Tn(1-6)1 7 el /9 e,
for any f € LP. The theorem follows.

We observe that the bounds of theorems 2.8 and 2.9 both approach
infinity as |w| -~ 1. For this reason theorem 2.9, for example, is not
good enough to prove a Hausdorff-Young inequality for the Fourier trans-
form. If a bound for [N [| s proven that remains finite as w-~ -1,
then such an inequality could be proven using the method of Wiener.

For special values of w and p, K.I. Babenko was able to calcu-

~ late the norm HNpr ] explicitly. We summarize his
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results in the following theorem. The full proof may be found in [2].

THEOREM 2.10 (BABENKO'S THEOREM) Let -1 <t <1 and let q be a posi-

tive even integer. Define

1/2

2 +p2) i

2

= # [-p(1-t%) + (p%t*-(2p%-16p+16)t

Then

o, > 1/2p-1/2q

il q = WA <‘—Y—§-

my(1+t7)

Moreover, this norm is achieved for the Gaussian function

2t2

k(X).= exp {-XZ (’]‘LYT—)} .

py(1+t%)

If we let t =-1 we get

1311, = (2m) 2071/ 20(p/ 20 g /20 )

SKETCH OF PROOF. Babenko's proof is much too 1ong to be presented
here in detail. Instead we present an outline of his proof. We approach
the theorem as an extremal problem. Let . = llN~itllp,q and let f

be an Lp function of Lp norm one for which N achieves its norm.

-it

Let g = N_;.f. If f exists then it can be shown that f satisfies
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LEMMA 2.12. —= f N, (g 97 %g)e™ay = w3 [F(x) | P2 (x).
Tf

This lemma is proven by perturbation of f.

We now define u(x) = lf(x)]p'zf(x). Then it can be shown that u

and g are entire functions of order two and finite type . Let

2l 2
= J_+_Y_t_ E(X) = esx u(x)‘

qv(1+t2)

Then the following is true.

LEMMA 2.13. For all real x and y we have

@

2
fe'qes [£(s+x+iy) |? ds 2 1.

- C

The proof of lemma 2.13 relies heavily on the theory of entire functions.
At one point in the proof the path of integration must be changed. To

do this, q must be an even integer to assure that the integrand is en-
tire.

As a consequence of lemma 2.13, for any h > 0, the entire function
h

- 2
g(z) = f'e'qes g9(s+z)ds
0

is bounded and hence is constant. Therefore
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h h ’
f e-qss?' £(s+z)ds = f e”985 £9(5)ds,
0

0

and, as h is arbitrary, £ 1is a constant. Since

2
1™ g3(s) || = 1

we have

It follows that

1/2 2
£(x) = (91:?) pe'qex /p

and the theorem follows by direct computation of N._ f.
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Chapter 3
THE MEHLER KERNEL OPERATOR FOR GAUSSIAN MEASURE

Throughout this chapter we denote by . the Gaussian measure for

Lebesgue measure will be denoted by X or simply by dx if there is no
confusion possible. The measure pu is finite and has been normalized

so that u(R) = 1. We define the modified Hermite polynomials Hn by

H(x) = h(x/42) .

n

The role played by the Hermite functions in the previous chapters will

now be played by the polynomials Hn' Some of the properties of Hn are

listed in the following proposition, which is a direct consequence of

theorems 1.5 and 2.7.

PROPOSITION 3.1. (1) {Hn }:= 0 18 a complete orthonormal system in

Lz(dp) ;

(i1) The linear span of {Hn}:\:o is dense in La(dp) for 1 <a<eo,

- /2 2}3‘
= T2

(iii) e = —T-Hk(x) (A €1).
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We now define the Mehler kernel operator for Gaussian measure.

DEFINITION 3.2. Let |w| <1. We denote by

Ky(x9) = == B Cavilay

i :;E - W =P 2(1-w2)

the Mehler kermel for Gaussian measure and parameter w. We denote by
Kw the operator defined for f € Lp(dp),] <p<2, by

(-}

(k) = [ £y K xp)duty),

-

and we call Kw the Mehler kermel operator for Gaussian measure and

parameter w.

F. Weissler, in his paper [16], presents a more general version of
the following theorem. For‘the case we are immediately interested in,

this simplified version suffices.

THEOREM 3.3. Let 1 <p <2, 1/p+1/q=1, and let w be a complex

number of modulus less than one that satisfies the two relations

Re]—l—-z > 1/p (3.1)
- W
andl
1 1 2 w 2
[Re —5 - 21 > [Re —] . (3.2)

1-uw 1-w
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Then K 18 a compact operator of Lp(dp) to Lq(dp).

PROOF. Let p >1 and put

a:Re_]Z._]_
1-w P
and
b = Re ‘”2.
1-w
Then

o« c«

2 [ [ Ik [Faulyduto) =

-CC -

@ (=]

-q/2 '
[1 - w2] f fexp{ - 925 (x2+y2) + quy} dydx

- -

@

-q/2 172 2
[1-w2lq (Zn/qa)/ fexp{%— (bT-a)}dx

-0

1/2
- of |

2
(2r/qa)/%(2ra/q(a?-b?)) = >

which is finite by (3.1) and (3.2). It follows that Kw is compact
(see [17] page 319). If p = 1 then we notice that (3.1) implies

| - 1/2] <1/2 so
_ W
a+b—Re -]"'_w >0

and
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2 2

whence a~ - b~ <0 for all & and so (3.1) and (3.2) are never satis-

fied. The theorem now follows trivially.

We also have the following theorem.

THEOREM 3.4. Let w, W and W, be complex numbers of modulus less

than one that satisfy (3.1) and (3.2). Then the following statements are

true.

PROOF. To prove (i) we let s = x/42 , t = y/»2 and calculate

fH )K (x5 ¥)du(y)

2
-t Kw(ﬁs, N2t} dt

5““\9
o
=
s
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By o 2
=5 /2 j‘(hn(t)e't /Z)Nw (s,t)dt

2 2
= e° /Zu;n(hn(s)e's /2)

upHn(x).

The kernel defined in the sum in (ii) defines a kernel operator

that also maps Hn to uPHn, hence it must be the same operator as

K .
W

W. Beckner, in his paper [ 4], was the first person to precisely
calculate the norm of Kw for ® pure imaginary and satisfying (3.1)
and (3.2). He was able, from this, to determine the norm of the Fourier
operator' F. The norm Beckner derived for JF is the same as that de-
rived by Babenko for the special case that q 1is an even integer. We
state and sketch a proof of Beckner's theorem below. The main idea is
to prove the result first for Mehler-type operators over a discrete
probability measure and then use the central limit theorem. The main

tool in the proof is the "two point inequality" (see lemma 3.6).

THEOREM 3.5 (BECKNER'S THEOREM) ILet 1 <p <2, %+ =1 and

- WP St 2 AB-T

1
q

Then
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;e H3P,q
REMARKS. Beckner states this theorem only for t = ,p-1 , however his
proof still works if t 1is in the above specified range. Also, he does

not consider the case P =1 which is trivially proven as then t = 0.

SKETCH OF PROOF. The idea of Beckners proof is due to Nelson [11]. We
will use the central 1imit theorem to obtain the Gaussian measure, du,
as a limiting probability measure of convolutions of Bernoulli measures.
Let dv(x) be the discrete probability measure with weight 1/2 at the
points x = x1. The measure dV is referred to asBernoulli measure-

Let dvn be the n-fold convolution of the measure d¥(yh x) with itself.
The central 1imit theorem says that dvn converges to du in the sense

*
of the space CO(R) (CO(R) is the set of continuous functions of R

that vanish at +« with the topology induced by the L° norm§C0CR)*
is its dual). So, if f € CO(R),
ff(x)dvn(x) =f sne ff(x-]. + . +xn)dv(A/ﬁx]) eo. dyv(yham),

and

«<

lim ff(x)dvn(x) ) f £(x)du(x) .

->cc
n o

Beckner proves that a result analogous to theorem 3.5 holds with
respect to each of the measures dvn. The inequality of the theorem then

follows as a limit of inequalities with respect to these product measures.
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The product measures du = dv (i x1) «oo dv(/h xa) are discrete
and each X can assume only the values =+ 1//n. If f is a function
on the corresponding measure space, then f always has a representative
that is a polynomial of degree at most one in each of the n variables.
By imitating the action of Kw on the first two modified Hermite poly-
nomials (Ho(x) =1, H](x) = x) we define, inductively, Mehler type
operators over these discrete measure spaces. On the measure space over

dv we define an operator C by

Cu) (a+bx) = a + wbx.
The following lemma may be proven by careful calculation [4].

LEMMA 3.6. Let - Jp-1 <t <. P-1 . Then Cit ?s a bounded operator of
norm one of Lp(dV) to Lq(d V).

Lemma 3.6 is known as a two-point inequality. We define operators

Bw n.k on the set of functions defined on the measure space over d“n
by

B (a+bxk) = a +(ubxk (k=1,2, ..., n),

w, N,k
where a and b are functions of the remaining n-1 variables. Let

C%n = B%nJ ...Bm’n,n

From lemma 3.6 each B is an operator of norm one of Lp(dvn) to

Tt 0k

Lq(dyn). It follows that Cit " is also an operator of norm one of

9
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Pra q
L (dwq) to L (dA%).
Let X  denote the space of functions symmetric in the n variables

Xys +ee X, OvVer dvn, and let Dw,n be the restriction of Cw,n to Xn.

Then Dit n may be shown to also be an operator of norm one. The sym-

metric functions

(0} = Z!Z X see X (1‘:0-[

n,4 m < «-e<m,om m sz rusll) s

form an orthonormal basis in Lz(Xn). We also have

let g € Xn and write
)= T
g(Xqs veus X ) = d,o
1 n =0 4 N4
Then we have || Dyt n an;q < |lall vip or more explicitly,

© o« n q ]/q
(f flzom o, gl 4,
@ 1/p

n
<(f -/.l,zé) d, g, zldvn . (3.3)

By comparing the generating functions for Hn and C,., One may prove

that if each x; = % 1/, then
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1L4/2]
Gn,.@(XT’ . >(n) B HL(XT * e RS rg a4
. + ee. +
H,@-ZY‘(X] Xn),
where the coefficients a, . are bounded with respect to n for fixed

4. It may now be shown that the 1nequaTity (3.3) implies the theorem
as n + ®, A complete account of this proof may be found in [4].

It should be noted here that lemma 3.6 is still true for w real
and 1 -p<w<p-1, that is Cw,] has norm one for these values of

w. The rest of the theorem remains unchanged and we get the following.

COROLLARY 3.7. Iet 15p52,]5+]a=1, and 1 -p<t<p-1, then

Kl p,q = 1

Beckner was then able to use his theorem to prove the sharp Haus-

dorff-Young inequality that Babenko conjectured.

COROLLARY 3.8. Let 1 <p<2 and 1/p+1/q=1. Then

131l q = (2m)!/2971/2Rp1 20 1/29)

PROOF. The case p =1 was treated in chapter 2 (see theorem 2.1). We

now assume p > 1. Theorem 3.5 for t =3p-1 may be written as

« © q 1/q «© ]/p
flfx_wﬁ (xa)gdu ') [ <] [ ls) Pautn) L,

- -0 -
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for all g €LP(du). Ifwelet x=.@ u and y =.p v then this

becomes

Jr lJ/.équvh(v)dvl du < (zﬂ)]/Zq-l/Zp(p1/Zp/ql/Zq)

© ]/
f [h(v)}de} P

where

F. Weissler was able to determine necessary and sufficient con-
ditions on w for Kw to be bounded. In the case that Kw is

bounded, Weissler showed further that its norm is usually equal to one.

THEOREM 3.8. (WEISSLER'S THEOREM) Let 1 <p, qQ < = but exclude the

values 2 <p<q<3 and 3/2<p<q<2. Let %.+‘€7.= %.+ gr =1,
and let |w| <1, w# =1 satisfy
Re —]2' >max{1/p, 1/9’} (3.4)
1-w
and
11 ] 1 g <
(Re > --E)(Re 5 - aT) > (Re ————7) . (3.5)
1-w 1-w i 1-w
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“ Kw“ M3Psq =1

Moreover, Kw 18 bounded if and only if w satisfies (3.4) and (3.5).
1 +1= 1 1is covered by this
P q

1 with equality allowed only

We observe that the case 1 <p <2,
theorem. In this case, (3.4) implies |w| <
if p=2.

For some p and q the case |w| =1 is allowed in Weissler's
theorem. By this we mean that K, May be extended to lw] =1,

w# £1 and that the extension is an operator of norm one.

SKETCH OF PROOF. Weissler proves the boundedness of Kw by relating

Kw to the Gauss-Weierstrass operator
(e24)(x) = (4m2) "% [ #(y)exp { - 3 (x-y)?} ay.

If w satisfies (3.4) and (3.5) then the Gauss-Weierstrass operator
with z = Y(T-u?)/4w (where Re(y/w) > 0) is bounded, from which he con-
cludes that KuJ is bounded. It is possible, however, to prove this

theorem without using the Gauss-Weierstrass operator. If o [wj <]

satisfies

o|—
-

0|—
-

——

Re—]z- > max{
1-w

and



2
(Rel—z--})—)(Re-]—z-]—c) > (Re —2)
-w 1-w 1-w

then calculations similar to those in theorem 3.3 imply the boundedness
of K, The result that “Kw“p;p,q =1 for these w will then imply
boundedness for the region (3.4) and (3.5). To prove that K, is
bounded implies (3.4) and (3.5), Weissler exhibits explicitly the effect
of Kw on Gaussian functions and shows that for w satisfying (3.4)
and (3.5), their images are unbounded under Kw.

To show that [K [[ =1 1in the prescribed cases, Weissler proves
a two point inequality. It is the same one as in Beckner's proof but
Weissler was more careful with his estimates and so he could prove it to
hold for more general p,q, and w. The remainder of the proof is then
identical to the proof of Beckner's theorem. A detailed account of the

proof of this theorem is to be found in [16].
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Chapter 4
THE NORM OF THE MEHLER KERNEL OPERATOR

This chapter is devoted to proving the main result of this disser-
tation. The norm of Nw as an operator from LP to L9 is calculated
explicitly for all |w| <1, w# +1. Since Ny, is unbounded for all
other w this settles the question completely. We will also show that
if p#1 then Nw always achieves its norm for Gaussian functions of

a particular form. The main result is stated in theorem 4.1.

THEOREM 4.1 (MAIN RESULT) et |w| <1, w# =1 ,1<p<2, aua

1 ¥ % = 1. Then there exists a complex number Y such that
p

2 2 2
Rel 1+w2 'p_]+Y(éU } =0 (4.1)
2(1-w)  p¥(1-w)
and
(1 - Pef)/y(1 - of) >0 . (4.2)

For any such Y we have

1/2p-1/2q

| X | 1 - ZuF
ol g = I¥] <—L=;)>

my(1-w
Moreover, this norm is achieved for the function

1/2p

2 2 2
[ 1-+4d 2(1+w 1 .
i <m<1 -w2)> exp{x 201-f) (1 -4f) )}
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We remark that the operators Nw have not yet been defined on LP
for |wl =1, w# £1, and for this case the theorem should be read
more carefully. What we mean to say is that Nw, defined at least on

Ll n L2, satisfies

Fl < ¢ Ll

for f € L] n Lz, where C 1is the bounding constant in the theorem.

Hence, Nw may be extended linearly to LP in such a way that
“Nw”p,q < C and the norm 1is assumed for the Gaussian function f of
the theorem.

In the course of the proof it will be apparent that we can choose

Y= y(w) 1in such a way that for lubl =1, w# £1 we have
0

11 =
G Y(u) = Ylup)

The inequality “Nwollp g 5 C 1is thus a consequence of the corresponding in-

1 2

equality for |w| <1, for if f €L NL%, then we have (see theorem

1.3 for method),

©

HNubf[E’q 11T11?f [(Nubrf)(x)[qu

-0

IA

Tim inf C(wyr)
ot et I

= Clup) [iflly
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We also remark that the case p =1 will be treated separately at
the end of this chapter.

We begin the proof of theorem 4.1 with the following lemma.

LEMMA 4.2. Let |w| <1, w# 21, 1 <p<2 and 1/p +1/q=1. Then
there exists a complex number Y that satisfies (4.1) and (4.2).

PROOF. Let a and b be real numbers with a > 0. Then (4.1) and
(4.2) are true if and only if we can choose a and b so that the

following are true:

1+w2_p-1+Y2w2 = ib

2(1-0f)  py(1-oF)

(1-y2w2)/y(1-w2) =a .,

These may be rewritten in the form

1+w2 __p-1
2(1-6f)  p(1-a?)

1 w2 % 1
e ]

which are equivalent to the following equations.

2
_p 1t D 5 --% = a - ipb

1-w 1 -w

2
ﬁp- .]+”’2-pf_’].w2.y=a+b—8—1—ib

1-w 1-w

This system of equations has a solution y if and only if there



52
exist a >0 and b €R such that

2 2 22
(a-ipb-+% . ! +‘”2 ) % 5 l;tE%.- (p-1)a-ipb| = _E_S%_? . (4.3)
1- w 1-w (1-w")

Hence there exists such a y if and only if there exist real numbers

a and b with a >0 that satisfy (4.3). We let

2
-g-.]—-*._u_)z.=x+1'y

1-w
where x and y are real. It follows that x > 0. Also

2 2 2\2 2
_P_wz__2_=<g_ ]_*’Lw"z.) -4E = (xz-yz-p2/4) + 2ixy ,

(1-w) 1-
whence (4.3) becomes
[(a+x) + i(y-pb)I[(x-a(p-1)) + i(y-pb)] = (x2-y-p%/a) + 2ixy.

We take real and imaginary parts of the above equation to get the fol-

lowing two equations.

2 £y 2

- (p-1)a” + (2-p)xa - p"b™ + 2by + p%/4 =0 , (4.4)

(2-p)ya - (2-p)pab - 2xpb = 0. (4.5)

It will now be shown that for all w and p satisfying the hypothesis
of the lemma we may find real solutions a,b of (4.4) and (4.5) such
that a > 0. This suffices to prove the lemma.

First suppose p=2 or x =y = 0. Then we have the solution
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Also, if p #2 and x 1is equal to zero then (4.4) and (4.5)

have the solution

b =y/p , a=/[(%-1)y2+%:| /(p-1)

S ) e (4.6)

substituting this into (4.4) gives us

-(p-1)4 xzpzb2 + 2(2-p)2x2pb(y-pb) o (2-p)2(y-pb)2(2pyb

2
_ p2b2 +4g )

= 0. (4.6a)

g(b)

Now g(b) 1is a fourth degree polynomial in b. The coefficient of b4

in g is -(2-p)2p4 which is always negative as p # 2. Also,
g(0) = [(2-p)py/2]2 which is nonnegative.
If y=0 then (4.5) implies b = 0 whence (4.4) becomes the fol-

lowing quadratic equation in a.

2

- (p-1)a” + (2-p)xa + p2/4 = 0,

We then take
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which is always positive.

Finally, if y # 0, then g(0) >0 and so g has at Teast two

real roots, one positive and the other negative. We now notice that

a(y/p) = - (p-1) &x%% <0 ,

as x #0. So g has a real root b that satisfies

0< |b] < ly/p| » sign(y) = sign(b),

whence (4.6) yields a positive a. The lemma is now proven.

We need to analyze the root b of (4.6a) for w near the unit

circle in more detail. Let lubl =1, wg # 1. If we now write
1+w02 .
%<1 2—)=x°+w° ’

then Xg = 0. Suppose Yo # 0. From what we found above we see that

we can take

oy ] 2,
bo=Y%’p » 3" \/[(%-1) Yo+ ]/

This gives rise to a y(uwy). Let

fy(b,y) = (2-p)?(2pyb - pb? + p74) ,
fo(b) = 2(2-p)pb ,
Fi(b) = (p-1)4p%b° .
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We may then rewrite (4.6a) as

£1(b,y) (y-pb)? + x%(y-pb)f,(b) = xf,(b)

By an appeal to the implicit function theorem one can show the above
equation has two roots (one to the left and one to the right of y/p)
which are close to yo/p if x>0 and x + iy 1is close to iyo.
Taking for b the root whose modulus is less than lgf/pl, we get a
positive a and a y(w) that satisfies y(w) ~ y(ub) if |w] <1 and
UJ'*(,UO.

If Yo = 0 then Wy = +i. If w=it, for -1 <t<1, then y

may be calculated explicitly (see theorem 5.1)

L
v(it) = Z%g [- p(1-t?) + (%t - (2p-16p+16)t% + p) 1.

This y is clearly continuous in t for t close to =1.

With this rather technical lemma out of the way we may proceed with
the proof of the main theorem. In the following pages we will find a
relation between Nw and Kyu; From the results of chapter 3, we know
a great deal about the norm of Kw.

In particular, we will show that for the y of lemma 4.2 Ko

is in fact a bounded operator with norm equal to one from LP(du) to
Lq(du). This will be done by applying Weissler's theorem to yw rather
than w. The factor vy 1is just small enough to force +yw to be within

the domain specified by Weissler.
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LEMMA 4.3, Let |u| <1, wi# 21,1<p<2,1/p+1/q=1, and let

Y satisfy (4.1) and (4.2). Then KYw has norm equal to one.

PROOF. We need only show that yw satisfies

1-yuw P
and
Re ——p— IV e (4.8)
T-y w P/=\ 1- qu?

for then Weissler's theorem (theorem 3.8) will imply that Kyw has norm
equal to one. We let « and B be as in theorem 4.5. Then

= Re E-—1-+]?u?
p(l-Ysz)

2 2

%Rem%_w_

py(1-w")

2
4 Re l_fi%? > 0

8 1-w

2

as 8>0 and (1+w )/(1-u?) maps |w| <1 1into Re w» 0. This

implies (4.7). We now notice that (4.8) may be rewritten as
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o) o)

(T-yw) T-yuw
We multiply both sides by /2 (which does not change the sign of the
inequality as g >0) to get
2 2 2 2
ReP_-‘L%LL > (Re —25 ) ,
Py(1-w") 1-w

which is equivalent to

Re —1t U pe U, =i Re L >0 (4.10)
2(1-w") 1-w
and
Re “’2+Re w_o - lpelte o (4.11)
2(1-u?) 1-8 2 T-w =

because the transformations zy = (1+w)/(1-w) and zy = (1-w)/ (1+w) are
both conformal mappings of |w| <1 dinto the right half plane. Hence
Rez1 >0 and Rez, > 0. Multiplying (4.10) and (4.11) together then
yields (4.9) and our lemma is established.

In order to state the relationship between Kyw and Nw we will

need the following definitions.
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DEFINITION 4.4. Let a >1, let B be a real number, B # 0, and let

o be a complex number, Re a > 0.

(i) Define the map I, from L3 (dp) to L%(dx) By

2
(1,F)(x) ={(zn)“/2"=1 X2 it <
f(x) if a=o,

(11) Define the map M_ from L3(dx) to L¥(dx) by

2
(MF)(x) = e™® £(x).

(111) Define the map T, from L%(dx) to L%(dx) by

B

(TgF)(x) = £(x).

We have the following proposition.
PROPOSITION 4.5. Let a >1. Then the following are true.
(1) Ia is an isometry from La(dp.) to L%(dx).

(i1) If Re a =0 then Ma. 18 an isometry of L3 (dx) .
(i111) For real 8# 0 and f €L%(dx) we have

meflly = lel™/2 I fl,

PROOF. The proof is by computation. Let f € L¥(du). Then if a <=,

<

2
“Iaf[r; - f l(zﬂ)-'I/Za e‘X /23 f(x)la dx = “f“ia '
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Since wa = f, this result is trivial for a = «, hence (i) is true.

Now Tet f ¢ L%(dx) and compute

Ml = 1]l

(LA

IFly -

and so (ii) is true. Lastly, if a < =,

@

f |£(8x) Pdx

-

Imf I

@

[-]é]f [f(x)[adx ;

- O

u

and if a = « then H-rsf”m= [fl, trivially. This proves (iii).

We now state theidentity that relates Kyw to Nw.

THEOREM 4.6. Let |w| <1, 1<p<2,1/p+1/q=1, and let Y satis-
fy (4.1) and (4.2). Then

- 1/2q9-1/2p 1/2 -1
N, = (2m) VM T el Ky T T M

where

= 2(1-Y2w2)/v(1-w2)

and
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1+w2 _ p-'l+yzw2

. 2(1-0f) PY(1-w2)

We remark that the identity in theorem 4.5 is aiso true if we re-

move the restriction 1/p +1/q =1 and replace the leftmost Ma with

M where

_ 1 xgf (g-1)yPu? +1
b I N ?
2(1-w) qy(1-w")
This will be evident from the proof.
PROOF. Let f eLP and compute
(ToKyulp 5 F1x)
1/2q -x%/2q 1 C o 12522 ~(y-yux)®
= (2m) e f(2n) e f(y)exp ! - -ﬂ?—z— dy
m1-y w )%= 2(1-y w")

1/2p- 1/?q 2 2
- {2m) ff y)exp {-y —Y-—z-?-p al LA AN PR —
Aéﬁ('l - 2p(1-y w T-y w

14( g2 2
- X2 ]+ "'1 2(.!) dy .
2q(1-y w’)
Substituting .Bx and By for x and y respectively in the above

gives us
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(T K 17

VB ylp FIX) |

_ (zﬂ)1/2p-1/2q p 3] Tl )
G fo o] {120 o 2]

-

2
X
Y—]/Z(Zn)l/Zp-Vquq'l f

-0

2
(T g (y) N (x,y)e™ dy

v 1/2(2m1/2a-1/2p (M-c.‘ NM_o Tgf)(x)

whence

_ o1/2g-1/2p.1/2 1

If 1/p+1/q =1 then (p-1)(q-1) =1 and we have, in addition

1462 (p-1)(a-1)yPuf +p-1 = 4

2(1-uF) (p-1)ay(1-u?)

and the theorem is proven.

G’l=

We may now prove theorem 4.1. If we let wand p be according to

the hypothesis of the theorem and let y satisfy (4.1) and (4.2),
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then it follows immediately from theorem 4.5, proposition 4.4, and lemma

4.6 that

“Nw”p ; 5 (2_”)]/2q-]/2p lYl]/Z (6)1/2p—1/2q
1/2p-1/2q
i ,Yp/Z(Lﬁ;ﬁ\

my(1-of) |

It suffices now to prove that for the function

22\ 2 1+ 1
Flx) = Lo d
" <ny(1-w)> . <z(1-w2) ,Y(1-w2)>

/A
(S/Z‘IT)]/ZP e(a'B/ZP)X

]

Nw actually achieves this bound. We use the fact that a 1is purely

imaginary and g >0 to compute

I Fll, = (8/2n) jilep (f -6 /2dx>]/p 1.

Also

/2n]/2pf a-8/2p)y 2 exp[4uxy (2 yz)(1+w2) dy
A0 2(1-u)
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1/2p 7 _2
) (/\—46/2“)2 pf =F -yz[ . +g - at B/Zp] "'xyl: sz]
A (]"UJ) 2(]‘(.0) ]

-w
-

1/2p ~ : : 2
_ Es/znz o 20 7211+ T,
m(1-w") !;EXP‘ ! [y('l-w )]+xy[] -w ] " [2(1-(1) )]} d
_ (grem)!/% {2( Py 1+df )] - { cux >2}dy
m(1-w") =" 1- w2 2(1-w2) -j;exp (;;Y('l-w ) e __i?' ’

2 2
= /% (gom)/%P exp{xz( Wy, . 1tu )}

1-w 2(1-0.)2)

We now have

1/4

lvl”zwxzﬂ)‘”p(

5‘\59

N f] expthz Re[ szz ) sz] )
w *q — o,

exp quZ Re [(P-] )(Yzwz- 1 )] } d 1/9
py(1-w’)

lYlW(s/zn)”zP(

e g

@

lYl]/z(p/Zn)]mp( f

-0

: 1/
2
e-BX/Z dx )

v/ 2(gr2m)/2P-1/29

1/2p-1/2q

lYl]/Z <__] = 12w2 )
TTYU-wZ)
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This completes the proof of theorem 4.1

We now treat the case p = 1.

THEOREM 4.7. Let lw]lf 1, w# £1. Then

-1/2
Nl o = In(1-6®) |

PROOF. We again assume at first that |w| <1.

Let
1+ u?

a = Re
2(1-u?)

— W
3 b—Re]—-—vz.
-Ww

Then a >0 and

a+b=Re ?%T§E%~ > 0

a-b=Re ?%Tii% > 0
S0 a2 - b2 > 0. We then have
-1/2
sup [Nw(x,y)l = [n(]-u?)l sup exp{nyb - (x2+y2)a}
Yy Y
3 e iae 3 Lo e 2
= |m(1-u") | exp{x (b°-a )/a}sup exp]f(vhy-bx/vﬁ7 }
Yy

-1/2 .
ln(]-u?)l exp{xz(bz-az)/a}'.

Hence, if f €L,



NIl

"
(7]
=

o
b
<
=

8’\

x
<
S~
=Y
<

IA

St el S;p IN(xs¥) |

-1/2

11, sup |n(1-o%) | exp{xz(bz-az)/a}
X

2
1l In-®) ],

and so

: . 9 -1/2
NI, e = im(1-w7) ]

To show we have equality, we consider, for u > 0, the function

g(x) = e™¥ | Let

2
R Kl , t=—U

2“-&) 1-w

so we know Re s >0 and

2 Fa 2
t® - s -us) _ 1 (1+2u) - (1-2u)w

We calculate
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@©

-172
(N,9)(x) (n(1-w2)) f exp{-( s+u)y2 + 2txy - sxz} dy

-0

@

-1/2 2_.2 :
(n(1-u%)) explxz(i%%}f exp{-( yﬁ*“ys—ﬁ—u X> Z}dy

-0

-1/2 2 2
[(1-0?)(s+a)] ! exp xz(zi;-‘f‘-)! :

s +u J

and so

NSl & -1/2

e gy | ()2

llgll]
-1/2
= n(1-?) | u(s+u)f/? .
' 9 -1/2

Since this ratio approaches ln(]-w )| as u -+ = we have completed

the proof of the theorem for |uw| <1.
Now let f € L1. Let e€e>0and 1let g be a continuous function

of compact support such that [ff-gl, <e. If [o] =1 it follows that

N (F-9)(x) | < ke

for all r <1 where k depends only on w. Integration by parts yields
the result
(Nrup)(x) + 0 as x| > =

uniformly in r(i.e., Nw obeys a Riemann-Legesgue type theorem). Hence

Tin (4, £ = (8,0

uniformly for x €R. The usual arguments may now be used to extend

the result of this theorem to |w| = 1.
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Chapter 5
APPLICATIONS

1. BABENKO'S CONJECTURE

In chapter 3 we mentioned a theorem of K. I. Babenko which exhib-
its the norm of N(D for w dimaginary and q equal to an even integer.
Based on the results of chapter 4 we can now prove this theorem for gen-

eral q. The theorem is restated in this general form for convenience.

THEOREM 5.1. et -1 <t <1, 1 <p <2, and ]EJ’]E:]‘ Define

1/2
y = 21;2' [-p(1-t%) + (p%t* - (2p®-16p +16)t2+p%) 1.

Then

N1l q = <_le :

my(1+t7)

Moreover, this norm is achieved for the Gaussian function

2.2
o iyt
g(x) = exp {-x (py(Ht ) )}

-1/2

Finally || N. = (n(1+t2))

ith,e
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PROOF. The case p =1 1is a direct consequence of theorem 4.7. We

assume now that p >1. Let

1/2
o = [p?t 4= (2p% - 16p +16)t% + p°] (5.1)
SO
2
- - +
y = p(1 t2) a (5.2)
4t
We now compute
2.2 1, 2,0 .22 2 2
p-T-yti=p-1 -W(pﬂ-t) + o - 2p(1-t%)a)
- % (- p°t* +2p%t? - p* - p(1-t%)a)
8t
= B (- p(1-t%) + ) (1 - t2) ,
8t
whence
p-1-yt2 1-t2
py(1+t%) 2(14t%)

which is exactly condition (4.1) for w = it in theorem 4.1. Also

1+ Pt - p’t + (8p-2p°)t° + p* p(1-t%)
Y('I+t2) 2(1+t2) (-p(]-t2)+a)

_ pl(2-p) (1-t%) + ) 1[-p(1-t) + o]
4(p-1)(14t%) (-p(1-t°) + q)
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9 [(2-p) (1-t?) + . (5.3)
)

4(1+t
However, we have

2

-2p~ < 2p2 - 16p + 16 < 2p2

whence from (5.1)

a>pll-t|>0. (5.4)

If we now assume t # 1 then by (5.3),condition (4.2) is also satisfied

for w=1it and we apply theorem 4.1 to get

L 22
TNEY: —JT>

my(1+t7)

i ! = 1§ i h -
Since l,Nin’q 11? IlNitllp,q we get by the usual argument the cor

responding equation for t =1 also. Finally 4.1 says that Nit achieves

this norm for

2
_ 2({ _1-t> 1
g(x) exp{x (2(1+t2) Y(th))
= exp x2 <E-_.|_-_g2ﬁ = 1
. py(1+t%) Y(1+t2)

py(1+t™)

The theorem is now proven.
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We may now Tet t=-1 in theorem 5.1 to achieve the sharp Haus-
dorff-Young inequality for the Fourier transform & first proven by

Beckner (see theorem 3.5 and corollary 3.8).

COROLLARY 5.2. Let 1 <p <2 and 1/p +1/q=1. Then

ol (o) 207 /20 <p‘/2p/q‘/2q>

From this it is seen that the method used by Wiener to prove
Plancherel's theorem can be generalized to yield the Hausdorff-Young in-
equality directly from the norm of Nw.

Finally, we notice that we may replace t by i.t everywhere in the

proof of theorem 5.1 and so doing we get the following theorem.

THEOREM 5.3. Let -1 <t <1,1<p<2, and 1/p +1/q =1. Define

1/2
y= 4—17 [p(1+t%) - (pt*+ (2p%-16p+16)t2 +p%) 1 .
Then
2 2 ]/2p'1/2q
N, | = W(J_;JL .
=P \ﬂv(l-tz)

Moreover, this norm is achieved for the Gaussian function
2( 1-4t?
g(x) = exp{-x" [ —X5=

py(1-t7)

Finally, if t # £1 then
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2 -1/2
”Nt“],m = (m(1-t"))

2. SMOOTHING OPERATORS

Smoothing operators, as used by De Bruijn [ 6] are invaluable tools

in the study of generalized functions. They are defined as follows.
DEFINITION 5.4. Let a >0 and define
od sinha

S (z,u) = (sinha)™"/2 exp {- 1 ((22+u2)cos ha—22u)}

for all complex Z and u. We define Sa » the smoothing operator with

parameter w, by

(5 f Xz) = fSa(z,u)f(u)du :

We also have the following representation of sa .

PROPOSITION 5.5 (MYLLER-LEBEDEFF) Let a > 0. Then

S (z,u) = J2m T e (n)a @, (zv2m) g, (u/2m) , (5.5)

n=0

and so

- -a/2
SQ—JZ_rr'e TA/Z—E Ne_a TﬁTT . (5.6)
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The identity in (5.5) follows from comparison with theorem 1.7.

PROOF.
To prove (5.6) we take f to be a function in LP(1 <p <2)

(Saf)(z/ﬁﬁ )~=f$a(z/~/2—ﬂ,u)f(u)du

from which the result follows.
We may now calculate the norm of the smoothing operator from LP
to LY,
THEOREM 5.6. Let 1 <p <2, 1/p+1/9=1, and o >0. Define
2a 15
Y= & [p(1+e 7% - (p%e 4% + (2p%-16p+16)e 2%+ p%) 1.
Then
V/2p7 /24
_ 172 2 -2a
Isglly g = (™ | =%
A my(1-e™°7)

Moreover, the norm is achieved for the Gaussian function
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g(x) = exp{-—x2 (———Y—Z—] - 28_2&)}

py(1-e™“%)

Finally,

Isglly .= %3 (n(1-e2en ™2

PROOF. This is an immeaiate consequence of proposition 5.5 and theorem

5.3 with o =e &,

3. THE OPERATORS OF KOBER

In [8] and [5], H. Kober and Condon used yet another Mehler-type
operator in their study of the Fourier and Hankel transforms. These

operators are defined as follows.

DEFINITION 5.7. Let r be real, -5 <r <% and define

_ ix _ 2, .2y,1 ’
T.(x,y) = C,. exp {a-n—ﬁ% (x“+y )(gcothr)} :

where

C. = (Zrﬂsirszmi)-1/2 e%iﬂ(% sign(r) - 2r)

for x and y real. Tr(x,y) is called the Kober kermel of parameter

v Bow T EL, we define
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(T ) = [ FNTxy)ay

and call Tr the Kober operator of parameter r.

The operator T may also be defined on LP(1 <p <2) but the
same care must be taken as in the case of the Mehler operator on the
unit circle.

The following lemma relates the Kober operator to the Mehler kernel
operator.

LEMMA 5.8. Tr = NeZﬁir

PROOF. We let w = e16 for © real and calculate

2 2ig

T+w _ _1+te . _isin268
2(]_‘”2) 2(]_e219) Z-ZCOSZ 0
= % cote
and .
2w _ _2¢'% _ 4ising
1 -u? 1 _eﬁie 2-2cos2 6
.
sing
Furthermore,

1 _ 1 142
Aﬁdl-u?) <TK1-eZie) >
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. 1/2
_ je~10
2msin 6
8

1.
-1/2 xin(% si - ).
= (2m|sin 6]) e? SIgt =

We now have
2. 2 2
N (x,y) = ————= exp{d'xyw' (xZy7) (4l )}
v Jrl1-of) 2(1-4)
1. ,17 8
NP2 A= ) . .
= (2m|sin 8] ) o 2 T exp {;—1—%[9 - (x2+y2)(%cot9)}

= TG/ZTT(X"Y)
and the lemma follows by letting 6 = 2mr.

We now know that Tr maps LP into L9 (compare with theorem
4.1 to see how Tr may be defined for Lp, 1 <p<2) and we may cal-

culate its norm.

THEOREM 5.9. Let 1 <p <2, 1/p+1/q=1. Let r be a real number

but - % <r <%, Define

S dp-T sign(sin2mr).

Y Jiemr

Then
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1 -1
2,14mr \ /2P /24
1.41'17‘))

127
Mollpq = b (

(1 -e

Moreover, this norm is achieved by the Gausstian function

_ e 1
f(x) = exp{x (%coth‘- y(1-e‘4“‘”))}

Finally

12
1T lly o = g T .

PROOF. The cases p =1 and p =2 are clear so we will assume

p# 1,2 and 2r 1is not an integer. Let w = e12w. Then

Yy = lﬁ? sign(sin 2 nr)

and so
1+w2 p-'l+\(2m2 - '|+w2
gy 2 2
2(1-w") py(1-w") 2(1-w")
_ i
= §cot,27m
Also

2 2
. = sign(sin2mr)

v(1-w") i,\/m(w-] -w)
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(2-p)sign(sin 2 1)
ivp -1(-21 sin2mr)

2-p

The theorem now follows from theorem 4.1.

2yp-T|sin2 mr| >0 .
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