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ABSTRACT 

In this thesis the norms of the Mehler kernel operators are calcu-

lated. In particular, Babenko's conjecture about the norms of these 

operators with purely imaginary parameter is settled. The proof is in­

spired by Wiener's approach to Fourier theory and his proof of Plancherel 's 

theorem. An account is given of Wiener's approach, as well as of the 

important tools and theorems, particularly those of Beckner, needed to 

prove the main result. Applications to Kober operators and smoothing 

operators are given. 



V 

TABLE OF CONTENTS 

Notat.ion .. 

Introduction . . ... 

Chapter 1. L2 Theory and the Fourier Transform 

Page 

l 

3 

8 

Chapter 2. The Fourier Transfonn in LP. 24 

Chapter 3. The Mehler kernel operator for Gaussian measure 37 

Chapter 4. The nonn of the Mehler kernel operator . . . . . 49 

Chapter 5. Applications 

1. Babenko's conjecture . 

2. Smoothing operators 

3. The operators of Kober 

References 

67 

71 

73 

78 



NOTATION 

Throughout this thesis we will use the following definitions. 

(l) R is the set of real numbers. 

(2) C is the set of complex numbers. 

( 3) If 1 ,::: p < a, then 

and, if f E LP , then 

( 

er 1/ 
II f II P = J Jf(x) jPdx) P . 

-er 

er 

-a:: 

(4) L ~ = { Lebesgue measurable f:R + t Jessential s~p Jf(x) I < ~} 

and, if f E La:,, then 

ll f II"'= essential sup lf(x) I . 
X 

(5) Let A bealinearmappingof LPintoLq (1_:::p,q<a:,). 

Let 

(6) 

We write 

II A II p,q = sup II Af II l II f II P 
f E LP, f rO 

and call this the p,q operator norm of A. 

dµ be a measure other than Lebesgue measure. 

If 1 < p < 0) then 

cc 

LP ( dµ) = {µ-measurable f :1R -+ t Ir jf(x) jPdµ(x) < "'} 

and 
-a:, 
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L cr(dµ) = {µ-measurable 

The corresponding norms , II f II µ; p' 

the obvious definitions. 

f:R ➔ 0 !essential supjf(x) j < ~} 
X 

llfllµ;a:' and II A II . P q have 
µ, ' 
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INTRODUCTION 

This thesis deals with integral operators associated with the kernels 

N ( X ,y) = l exp { 4xyw - (x
2
;y

2
) (l +w

2
) } 

./n( l -w2) ' w 2 ( l -w ) 

where X and y are real and w is a complex number with lwl ~ l 

and w f ± l . Our main results consist of formulae for the values of 

the norms of these integral operators as mappings of LP into 

Lq(l _s p ~ 2 and 1/p + 1/q = l ). This generalizes the work of Babenko 

where the case that w is purely imaginary and q is an even integer 

was considered. By taking lwl = l, w f ± l , we get expressions for 

the norms of what are called the Kober operators, and by taking 

0 < w < l we get expressions for the norms of the smoothing operators 

which were considered by~ Bruijn. 

The kernel N was introduced by F. G. Mehler [ 9] in 1866 in 
w 

connection with the Laplace equation. He proved the identity 

C: 

N (x,y) = L wncpn(x)Cfh(Y), 
w n=O 

where cpn denotes the nth Hermite function. This identity, which 

plays a very important role in this thesis, was reestablished as an 

identity for the corresponding integral operators by Myller and 

Lebedeff in 1907 [10]. 

For sufficiently well behaved functions f we define 
a:, 

U\f) (x) = J Nw(x,y)f(y)dy (x ER) . 
-cc 
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If we take w = - i then N f becomes J f, the Fourier transform of 
w 

f. If 1 ~ p ~ 2 and 1 / p + 1 / q = 1 then it is we 11 known that a: is 

a bounded linear mapping of LP into Lq. In fact, we have the classi­

cal Hausdorff-Young inequality 

I!;;!! p,q ~ (2n) l/q-1;2 . 

However, J is not a compact operator. This sometimes makes the study 

of ~ difficult. The Mehler kernel operator N , for lwl < 1, is 
w 

compact and it may be used to approximate J. For this reason N has 
UJ 

become an important tool in Fourier transform theory. 

In 1933, N. Wiener [15] used the Mehler kernel operators to give a 

proof of Plancherel 's theorem which states that 3' is an isometry of 

L2(R). Wiener's approach was used in 1961 by K. I. Babenko [2] to find 

the norm of the Fourier transform as a mapping of LP into Lq in the 

case q is an even integer. 

N as a mapping of LP · into 
w 

This was done by calculating the norms of 

Lq for w purely imaginary and q an 

even integer. Babenko conjectured that the formula he found for this 

norm (with q even) holds for all q,::: 2. One of the purposes of this 

thesis is to settle this conjecture. 

In the proof of Babenko's conjecture we shall use a result of W. 

Beckner [4] which was generalized by F. B. Weissler [16]. This result, 

which was proven using a method of E. Nelson [11] concerns the norms of 

Mehler-type operators defined on Lp(dµ), where 1 ~ p ~ 2 and dµ de­

notes the Gaussian measure on the real line. Beckner was able, by this 

method, to find the exact va 1 ue of l!Jllp, q. 

We now briefly mention some areas in mathematics where operators of 

the Mehler type occur. 
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In a paper of 1939, H. Kober [8] considered the operators N with 
u; 

/wl = l as roots of the Fourier operator J. At about the same time 

(1937), E. U. Condon [5] considered the same operators to construct a 

continuous group of transformations that includes the cyclic group of 

transfonnations generated by J. 

In 1961, V. Bargmann [3] constructed a Hilbert space of entire 

functions on which Fock's operator solution to a corrmutation relation is 

realized (Bargmann-Fack representation). The transition from the usual 

Hilbert space L2(1R) to this space is given as follows. The mapping B 

defined by 
0C 

(Bf)(x) -¾ = TT 

maps L2(1R) onto the space of all entire functions, g, of order< 2 and 

type ~~such that 

f /g(z) 1_
2 e- lz 1

2
dz 

( 

The latter space is a Hilbert space if we take the obvious inner product. 

Then B is· an isometry that maps the nth Hennite function onto zn/,.fa!. 

If, now, w is a complex number of modulus less than or equal to one, 

then 

(where we take (N f)(x) = f(UJ<) if w = ±1). 
u., 

N. G. De Bruijn, in a paper of 1973 [£] presented, among other 

things, a method for studying generalized functions by means of smoothing 
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operators. For a.> 0, the smoothing operator S is essentially the a. 
Mehler operator with w = e-a. (see proposition 5.5). He also noted that 

the set of smoothing operators (and so the set of Mehler operators) 

forms a semigroup under composition. To sketch De Bruijn's approach to 

generalized functions, we let S be the set of all functions of the 

form S f with a. > 0 and f E L 2(1R). Thus S can be thought of as a. 
the test function space on which the theory is built. A generalized 

function is then defined as a trace in the space S, i.e. a mapping 

F of (Q,cx,) into S such that Sa.F(S) = F(a.+ ~) for all O<a.,S< CXl, 

Both De Bruijn and Bargmann note that if H is the Hermite operator 

(harmonic oscillator), then 

N = UJ-l/2e-(-}'log w) H . 
w 

In pa rt i cul a r, if we put U(t) = eit/2N . 
e,t for t ( R, then u is the 

sol u t ion to the Schr~di nger equation Ut = - '}' i HU with U(O) = I. 

We finally give a survey of the chapters of this thesis. 

In chapter one of this thesis, the basic properties of N are de-
w 

veloped and Plancherel 's theorem is proven by the method of Wiener. 

Chapter two deals with the Hausdorff-Young inequality for a:- and the 

result and conjecture of Babenko. The Gaussian measure form of the 

Mehler operator is treated in chapter three. Chapter four contains the 
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main result, i.e. the calculation of II Nwll p,q· The norm is expressed as 

a function of a parameter y which is given impl icit_ly i.n terms of the 

roots of a certain fourth degree polynomial. In chapter five we cal cu-

late y and hence II N II in the special cases for Kober and smooth-w p,q 
ing operators. We also complete the Wiener-style proof of the sharp 

Hausdorff-Young inequality for the Fourier transform. 



8. 

Chapter l 

L2 THEORY AND THE FOURIER TRANSFORM 

We begin by defining the Fourier transfonn . For functions 

f E L1(lR) we may define, for x ER, 

(Jf)(x) (1.1) 

Norbert Wiener, in his book The Fourier Integral and Certain of Its 

Applications Ds], showed by using Hennite expansions that J is also 

definable for f ~ L2(1R) and that J is in fact an isometry of L2(1R). 

This result is usually referred to as Plancherel 's theorem. Because 

Wiener's methods are similar to those we will use in a more general 

form later in this thesis, it is instructive to study them in some de­

tail. 

We begin with some elementary properties of J. 

PROPOSITION 1 .l(i) J is a linear operator from L1 to L~. 

(ii) If A is the operator defined by (Af) (x) = ixf(x) then 

Jf' = AJf and JAf = - ( Jf)' . 

{iii) If B is the operator defined by (Bf) {x) = f 8 (X) - x2f(x) 

then 

Here we assume f is sufficiently well behaved for these statements to 
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make sense. The validity of (i) is clear, (ii) follows from direct 

calculation, and (iii) is a consequence of (ii). 

From (iii) one might expect the eigenfunctions of the operator B 

to be of some importance in the study of the Fourier transform. Hence 

we fix a complex number A and consider the differential equation 

complex, and substitute 

yields the formulae 

+ ... 

g (x) = 

a = k(k-1) ak 
k-2 2k + A- 3 

+ n-1 +2nxn h h a
0

_1x , were eac ai 

e-x
2
/ 2h (x) into this equation. 

n 

(k = 2, 3, ... , n) , 

from which we find A= - (2n + 1) and 

( l . 2) 

is 

This 

where the last term in the series involves x or 1 according to 
2 

whether n is even or odd. It is clear that e-x 12h (x) is the only n 

solution of (l .2)(aside from constant multiples) of the form 
2/ 

e-x 2P(x), where P is a polynomial of degree n, and 

A = - ( 2n+l). 



l 0 

DEFINITION l .2. The poZynomiaZ hn defined in (1 .3) for a nonnegative 

integer n is oaZZed the nth Hermite polynomiaZ. 

PROPOSITION l .3. 
2 n 2 

hn(x) = (-1 )nex _d_ e-x • 
dxn 

PROOF. Let 
2 n 2 

g(x) = (-l)nex j__ e-x • Then one may verify that g is 
dxn 

a polynomial x2/2 of degree n and e- g(x) is a solution of (1 .2) with 

11. = - ( 2n+l). Furthermore, its leading coefficient is 2n whence g = h 

by uniqueness. 

DEFINITION l .4. We define the nth Hermite funotion by 

(n=O, 1, 2, ... ). 

We notice that % E LP for each p ~ 1 as hn decays exponentially 

to zero at +m and -m. 

Some important pr~perties of the Hennite functions are contained 

in the following theorem. 

THEOREM 1 . 5. Let n be a nonnegative integer. Then the foZZowinq are 

true. 

( i) I ✓-n. TT , 

(ii) % isasoZution of (1.2) with 11. = - (2n+l ). 

(iii) Jcpn = (-i)n ~n· 

(iv) [Cfk };=O is an orthonormaZ system in L 2. 

n 
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(v) e-x
2
/2+2x"A-l = f / [2~f]} C/\(x) 

k=O 

PROOF. Using proposition l .3 and integration by parts we get the recur­

sion relation 

Also, ho= l so 

ex: 

dx = J 2 
e-x dx = Jn, 

and (i) follows. (ii) is clearly true. To prove (iv) let n and 

m r n be nonnegative integers. Then from (ii) we know 

We integrate this equation by parts twice to get 

a, 

J cpm ( x ) cpn ( x ) dx = 0 , 
-ex: 

whence {cq,) is an orthonormal system in L2. 
2 

To prove (v) let gn(x) • e-x 12hn(x). Then expanding the function 

exp(-x2/2 + 2x"A-l) = exp(x2/2)exp(-(x-"A.} 2) about "A.= 0 we get 

g
0

(X) = Ld:n exp(-x212 + 2xA- i)) (0) 
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so (v) follows from Taylor's theorem and (i). 

We may now prove (iii) by calculating 

cc 

= J;- f exp(-x2/2 + x(211.-iy) - l) dx 

(iii) now follows by comparing coefficients of 11.k. 

We are now ready to introduce the Mehler kernel. 

DEFINITION l . 6. Let jw I ~ l • but w 'f ± l and Zet (,r is principal, 

vaZue) 

l N (x,y) = ~~~ 
w f 2 

,/IT( l - u.; ) 
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N (x,y) is aaZZed the Mehler kernel of parameter w. w 

THEOREM 1 .7. Let lwl < 1. Then 

C0 

N (x,y) w = L wn Cft,(X)Cft,(Y) . 
n=O 

PROOF. Fix ju;j < 1. Direct computation yields 

-i x2N = i N 2 o ~ N - u.: ~ w - y N = - 2<L - N - NW . 
~~ w ~~ w ~ w 

It may be shown by induction that there exist polynomials Bn(x,y) in 

x and y with coefficients dependent on u.: such that 

Taylor's theorem then implies 

N (x,y) 
w 

where the Pn are polynomials in x and y that are independent of 

w and so 

cN a: 2 2) 
- 2w~- N = L - (2n+l)Pn(x,y)u.:ne-(x +y . / 2 

~ w n=O 
(1.5) 
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We may write 

N ( X ,y) 
w 

where the contour of integration lies inside jzj < l. From this one 

may show that for all positive A and B, r > l, and nonnegative 

integers k and £ we have 

uniformly in jxj~A, jyj ~B. Hence the sum in (1.5) converges 

uniformly on compact sets and hence we may differentiate it with re­

spect to x and y freely. Doing this we obtain 

and, of course, a similar equation with x and y interchanged. Then 

(1.5) implies 

whence P
0 

satisfies the differential equations 

i ~ i - P - 2x __ P + 2nP =--,, P - 2yPn + 2nPn = 0 • 
oX2 n ox n n aye. n 

This has the same form as the differential equation for hn (compare 

with (1.2) and following paragraph), therefore there exist functions 
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F and G such that 

Now G(x)/hn(x) = F(y)/hn(y) whence F and G are constants. We 

have obtained 

for constants en. Hence 

N ( X ,y) 
UJ 

for some constants dn that depend only upon n. We now have 

and, in particular, for x = 0, 

From theorem 1.5 (v) we know that for n even, 

(~ (0))2 = n! 
n 2nJrr[(n/2)!]2 

2 -k 
whence, expanding (1-w) 2 in its power series, we find dn = 1 for 
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n even. Furthermore 

and a similar, though more involved calculation of ~~(O) implies 

d = l for n odd also. The theorem is now proven. n 

DEFINITION 1 .8. For jwj < 1, we define the Mehler kernel operator, 

N , with parameter w by 
w 

For now we will consider the domain of N to be L2 although later 
w 

we will consider other domains. Some important properties of N are 
w 

listed in the following proposition. 

PROPOSITION 1 .9. Let Jwl < 1. Then the following are true. 

( i) Nw~n 
n for n = 0, 1 , 2, = w er., ... . 

(ii ) N is a bounded operator of L2. 
w 

(iii) N is a aompaat operator of L2. 
w 

PROOF (i) follows directly from theorem 1 .7. To prove (ii) we let 

f E L2 and calculate, 
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cg cg 

l!Nwf 11~ = r If f(y)Nw(x,y)dy 12dx 
-co -co 

cg cg 

2 IN ( x , y ) I dydx . w 
-co -co 

However, we also know 

cg cg CD cg 

[ f IN (x,y) 12dydx = 
w f J I £ wncpn(x)cpn(y) 1

2
dydx 

n=O 
-cc -cc -co -co 

= 
CD 

luPcpn(x) !2dx < J ~ - n=O 
-ai 

1 = 2 • 
1 - lwl 

Finally, N is a bounded integral operator with a kernel that is in 
w 

L2(R2), hence it is compact and we have (ii) and (iii) (see [17] page 

319). 

We have mentioned that cp
0 

E LP for each 1 ,::: p ~ =. The follow­

ing theorem gives bounds on the LP norm of ~. 
n 

THEOREM 1 . 10. Let 1 ,::: p ,::: co, 0 < a < 1 . Then there exists a function 

c(a,p) depending only on a and p suah that l:%I:p ~ a-"c(a,p), 

(n = 0, 1, 2, ... ) . 
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PROOF. Let 1 ~ p ~ ~. From proposition 1 .9 (i) we have 

= c(a,p). 

THEOREM 1 . 11 . Let lw I < 1. Then 

PROOF. Let f E: L 2. Then 

so 
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Also, we clearly have equality if and only if f is a constant multi­

ple of C/b· 

THEOREM 1 . 12. ( i) Let f E LP;. 1 < p < ex,. Then 

PROOF. Let O <a< 1. We calculate 

exp --,,- - -____,,.... x 
\( 

2a 
2 

1 +a 
2 

) 2 l 
1 - a 4 

2 ( 1 -a 2 ) 

= J ( / 1 +a 
2 §Z"_)2 

) , •. J exp 1- Y J(l-a2)- x)l-a4 dy 
-a: 

_ 2 exp x2 . 1-a 
( ) 1'2 l ( 

2 

)l - ~ - 2(1+a2) 

Let 1/p + 1/q = 1. We will now prove IINa l~,p ~ ~- The case p = 1 

may be easily verified so we will assume p > 1. Then if f E LP, 

er, = 
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.e. ex: ex: 

~(JZ)qf J jf(y) jPNa(x,y)dy dx. 
-a, -ex: 

We use Fubini 1 s theorem to interchange the o~der of integration and in 

so doing we conclude 

We now allow the value p = 1. Let e > O and let g be a step func­

tion with a finite number of jumps such that l:f-glip < e/4. Then it may 

be verified that there exist positive numbers M and A such that 

for all O < a < 1 and all real x. Also, Nag-+ g pointwise except 

possibly at the points where g is not continuous. It now follows 

from Lebesgue's dominated convergence theorem that 

Let a besoclosetoonethat llNag-g[IP<e/4. 

Then 

and we have proven (i). 
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Now let f E L2. Let e > 0 and let a be so close to one that 

l:Naf-fl:2 < €/2. Define for each positive integer m 

Then 

~ 

llNa f - Pm f 1:2 = ll L an ( f, % ) cpn 1:2 n=m 

This completes the proof of (ii). 

We may now prove Plancherel 's theorem by Wiener's method. 

l 2 THEOREM 1.13. For aZZ f E: L f1 L we have 

whence J ma:y be extended to an isometry of L 2 . 
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PROOF. Let O < t < 1 , and f E L l n L 2. Then 

. 
s jf(y) I E L1 . 

Also 

1• N ( ) = _1_ e-ixy ,m ·t x,y !'J-:"n • t-+1 _, ..;c..11 

It then follows from Lebesgue's dominated convergence theorem that 

pointwise. 

lim (N_itf)(x) = (Jf)(x) 
t-+1 

Fatou's lerruna and theorem 1 .11 imply 

Since any function in L2 may be approximated in L2 by functions in 

L1 n L2, we have shown that a can be extended to a bounded linear 

operator of L2. We now have, by Theorem 1 .12, for f E L2, 

C0 

IIJf lk = Ua I; ( f, CfJi, ) q;n 112 
n=O 
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=( f (f rn ,2)~ 
n=O , 't'n, 

= /'fl' ! 12 • 
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Chapter 2 

THE FOURIER TRANSFORM IN LP 

In this chapter we will examine the development of the classical 

Hausdorff-Young inequality. Throughout this chapter p will be a 

real number in the range 1 ~ p ~ 2, and q will be defined by the 

conjugacy relation 1/p + 1/q = 1. We will allow the value q = +~. 

The first inequality we will look at is due originally to Titchmarsh and 

its complete proof may be found in his book Introduction to the Theory 

of Fou.rier Integrats [14]. 

THEOREM 2. 1. F·or f E LP n L l we have 

liJfl~ ~ (2n)l/q-l/ 2 llfllp, 

so J may be extended to a aontinuous Zinear operator of LP into Lq 

suah that the ahove inequaZi ty ho ids. 

PROOF. The case p = 1 is treated separately. If f E L1 then 

1 =-
,/2.n 

-- e-x2 /2 Notice that if we take g(x) then 
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whence II ;:, 11 1, oc = 1 / ,fin. In the remainder of this proof we wi 11 assume 

p > l. The proof of theorem 2.1 makes no use of the Mehler kernel oper­

ator. Titchmarsh first treats the case of q an e"en integer. For 

such q, :Jf may be written as a q-fold convolution and so the norm 

of ;;.f may be easily calculated. To do this, several lemmas are 

needed. 

LEMMA 2. 2. ( YOUNG I S INEQUALITY) If f E L l / ( l - "' ) ana g E L l / ( l -µ) 

where 11., µ > 0 and 11. + µ < 1 , then 

a- Q) l-11.-µ er µ 

1£ fgdx I~ (Dfjl/(1-A) Jg 11/(l-µ)d1 (L Jfjl/(1-A)dx) 

"' 
( l Jg 11/(1-µ)dx) . 

LEMMA 2.3. Let 11.,µ,f,g be as in Zemma 2.2, and Zet 

Q) 

c(x) = f * g (x) = J f(t)g(x-t)dt. 

Then 

We now assume f to be a continuous function of compact support. 
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LEMMA 2.4. Le~ k be an integer. Then the k-fotd convolution 

ck(x) = f f(uk-1) f f(u1 )f(x-u1-u2 •.. - uk-l )du1 •.. duk-l 
-cc -ex: 

be tongs to L 2 and 

Lemma 2.2 follows directly from Holder's inequality for three functions. 

Using lerrma 2.2 and c as in lemma 2.3 we see 

( 

a:, ( ( ) ) 
1 -1,,-µ II II µ/ ( l - 1,,) 

lc(x) I.'.: L lf(t) 111 l-A) lg(x-t) 111 l-µ dt f 1/(H,) 

• lb 11"'0 -µ} 
1/(1-µ) 

vJhence 

-a. 

and lerrma 2.3 follows. To prove lerm,a 2.4 we notice 

so upon several applications of lerrma 2.3 we have 
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and hence the desired result. 

Now let ck be as in lemma 2 .4. Then by writi.ng the iterated inte­

gral as a multiple one and performing a change of variables, 

(Jf)k = ;, ((2n)-k/2+1/2ck) ' 

and we may use theorem l .10 to get 

By our usual extension procedure, the above inequality holds for 

all f E LP and q an even integer. 

Titchmarsh then attacks the problem of general q by using the 

following lemma of Hausdorff and Young [lA]. 

LEMMA 2.5. z;, f • ·t t f 1 umb [d 1n=-n we have cor any ~n~ e se o rea~ n ers lTl111 

The proof of this lemma is long and cumbersome;it will not be presented 

here. 

Let f be a continuous function of compact support, A> 0, b > 0, 

and define 

for integers v, and 

( v+l )/ A 

av= J f(x)dx 

v/ A 
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n • / = 6 a e-,vx "-
v=-n v 

where n = [ ~ J - l . So 

uniformly on compact sets. Furthennore, by lemma 2.5 

b l / ( p-1 ) 

~ 2n([ jf(x) jP dx) 

Hence, by Fatou's lemma 

a: 0:, 

J j(Jf)(x) Jqdx = f l~+i~f Jg"-(x) lqX(-n;\,n;\)dx 
-a: -a: 

We again approximate a general f E LP by continuous functions of com­

pact support to finally prove the theorem. 
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There is another, very quick proof of theorem 2.1 using M. Riesz's 

convexity theorem (see [12] chapter 5). 

THEOREM 2.5 (M. RIESZ) Let T be a linear operator of norm Ki from 
p. q. 

L 1 to L 1 (i=l ,2) (the pi and qi are not neaessariZy conjugate) 

Then T has norm < K1 -tKt from LP to L q where 
- 1 2 

The proof of this theorem is not important to this thesis. However, if 

we use the already proven facts that J is an isometry on L2 and that 

it has norm equal to 1/..;Zn from L1 to Lea we get immediately 

which is exactly theorem 2.1. It is interesting to note that even this 

extremely powerful theorem gives no better result than theorem 2.1. 

In order to improve on theorem 2.1 we return to the study of Mehler 

kernel operators, - this time on LP. We will need a few more proper­

ties of the Hennite functions and of the operator N~ in order to pro­

ceed. 

THEOREM 2.6. Let 1 _::: a _sex., 1 < b ~ °"• lwl < l, and f E La. Then 
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where the sum converges in Lb. Moreover, N is a compact operator of 
UJ 

semi group) . 

(i.e. [N j forms a 
UJ 

PROOF. From theorem 1 .7 we know that, for fixed x, 

C0 

Nw(x,y) = L,wn C+t,(x)%(y) , 
n=O 

and from theorem 1.10 this sum converges in Lb sense (as !lCfinllc = O(t-n) 

for a 11 0 < t < 1 , 1 ,::: c ,::: co). Hence 

for all x. 

a: 

( N f) ( x) = J N ( x, y) f ( y) dy w w 

00 

= I: wn ( f' qh) Cfln ( x) 
n=O 

The convergence of the latter series is surely in Lb 

sense, again because of theorem 1 .10. Also, 

C0 

L, lwlnl(f,%)1 11%llb 
n=m 

er. 

< II f ll a L lwln 
n=m 

This last sum approaches zero as m ~er., again by theorem 1 .10. This 

shows that Nw can be approximated by the finite rank operators Pm, 
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where 

It follows that N is a compact operator of La. The semigroup proper­w 

ty of N follows easily from the identity for N f proven in this theorem. 
w w 

THEOREM 2.7. The Zinea:t' span of the set [%};=O is dense in La for 

1 < a < o:,, 

PROOF. Let f E La and e > 0. Let g be a continuous function of 

compact support such that II f-g II a < €/4. Let t < 1 be so close to 

one that II Ntf-fl!a < €/4. Let Pm be defined by 

Since g E Lb, where 1/a + 1/b = 1, it follows from the proof of theorem 

2.6 that form sufficiently large : II (Nt-Pm)g Ila < e/4. Hence 

and the theorem is proven. 

A bit more calculation gets us our first Hausdorff-Young inequality 

for N . w 
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THEOREM 2.8. Let lwl <l,] <p < 2, and let w be real. Then 

-1/2 1/q 
11 N w II p , q ~ [ n( l -w2 )J ( 2 n/ q ) • 

PROOF. Let a= (l+w2)/2(1-w2). Then a is positive and we calculate 

0::, 00 (X) 0::, 

f f 2 -q/ 2 1 J { 2 2 jN
0
}x,y) lqdy dx = [n(l-w )] J exp -aq(x +y ) 

-o::, -cc -00 -o:> 

± 2~ xy} dy dx 

We now have, 

for any f E LP. The theorem follows. 

Theorem 2.8 is already good enough to give us a result for the 

smoothing operators of De Bruijn (see page 71 ). We may also bound 

!IN 11 for w purely imaginary. w 
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THEOREM 2.9. Let lwl < 1, 1 < p ~ 2, and "let w be purely imagirzax,y. 

Then 

' 2 -1/2 . 2 2 1/q 
IINwllp,q ~ [n(l-w )] [2n(l-w )/q(l+w )] 

PROOF. We again let a= (l+w2)/2(1-w2). Then a is positive and we 

have 

co co 

J J 
-co -co 

2 -q/2 
IN (x,y) jqdydx = [n(l-w )] w 

co co 

f J exp[qa(x2+y2)] dydx 

2 -q/2 . 
= [n(l-w )] [n/qa]. 

We now have, 

for any f E LP. The theorem follows. 

We observe that the bounds of theorems 2.8 and 2.9 both approach 

infinity as lwl-+ 1. For this reason theorem 2.9, for example, is not 

good enough to prove a Hausdorff-Young inequality for the Fourier trans­

form. If a bound for jjN II is proven that remains finite as w-+ -i, w 

then such an inequality could be proven using the method of Wiener. 

For special values of w and p, K.I. Babenko was able to calcu­

late the norm IINwllp,q explicitly. We summarize his 
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results in the following theorem. The full proof may be found in [2 ]. 

THEOREM 2 .10 ( BAB EN KO I S THEOREM) Let -1 < t < 1 and let q be a posi-

tive even integer. Define 

Then 

( 
2 2 ) l/2p-l/2q 

II Nit JI p q = Jy l + y ~ . 
' rry( 1 +t ) 

Moreover, this norm is achieved for the Gaussian function 

k(x) = exp {-x2 ( 1 + y2~
2 

) } • . 
py(l +t ) 

If we let t = -1 we get 

SKETCH OF PROOF. Babenko's proof is much too long to be presented 

here in detail. Instead we present an outline of his proof. We approach 

the theorem as an extremal problem. Let ~ = II N-it II p,q and let f 

be an LP function of LP norm one for which N-it achieves its norm. 

Let g = N-itf. If f exists then it can be shown that f satisfies 
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co 

LEMMA 2.12. ~ J Nt( jg lq-2g)eixydy = ~ q jf(x) I P-2f(x). 
-ex: 

This lemma is proven by perturbation off. 

We now define u(x) = jf(x) jP-2f(x). Then it can be shown that u 

and g are entire functions of order two and finite type. Let 

1 + 2t2 0 2 
a= y , E;(x) = eµX u(x). 

qy{l +t2) 

Then the following is true. 

LEMMA 2.13. For all real x and y we have 

-a: 

The proof of l_errma 2.13 relies heavily on the theory of entire functions. 

At one point in the proof the path of integration must be changed. To 

do this, q must be an even integer to assure that the integrand is en­

tire. 

As a consequence of lemna 2.13, for any h > 0, the entire function 

is bounded and hence is constant. Therefore 
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and, as h is arbitrary, ; is a constant. Since 

we have 

l/2q 
;(x) = ( ~) • 

It follows that 

1 /2p 2 
f(x) = ( B!) e -qSX /p 

and the theorem follows by direct computation of ~itf. 
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Chapter 3 

THE MEHLER KERNEL OPERATOR FOR GAUSSIAN MEASURE 

Throughout this chapter we denote by µ the Gaussian measure for 

2 
dµ(x) = - 1- e-x 12 dx 

.,/Zn 

Lebesgue measure will be denoted by A or simply by dx if there is no 

confusion possible. The measure µ is finite and has been normalized 

so that µ(R) = 1. We define the modified Hermite polynomials Hn by 

The role played by the Hermite functions in the previous chapters will 

now be played by the polynomials Hn. Some of the properties of Hn are 

listed in the following proposition, which is a direct consequence of 

theorems 1 .5 and 2.7. 

PROPOSITION 3 .1. ( i) [Hn }~= 0 is a aompZete orthonormal system in 

L 2( dµ). 

(,·,·,·) eAX - /12 ;._ t..k H ( ) = '-- -kl k X 
k=O • 

( t.. E 0:). 
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We now define the Mehler kernel operator for Gaussian measure. 

DEFINITION 3. 2. Let lw I < 1 . We denote by 

1 .{ 2 ( 2 + 2 ) 2 1 
K (x,y) - --- exp wxy - x 2Y w ' 

w - J -w2 2(1-w ) J 

the Mehler kernel for Gaussian measure and parameter w. We denote by 

K the operator defined for f E LP(dµ), 1 ~ p ~ 2 , by 
w 

(K f)(x) = J f(Y) ' K (x,y)dµ(y), w w 

and we call K the Mehler kernel operator for Gaussian measure and 
UJ 

parameter w. 

F. Weissler, in his paper [16], presents a more general version of 

the following theorem. For the case we are immediately interested in, 

this simplified version suffices. 

THEOREM 3.3. Let 1 ~ p < 2, 1/p + 1/q = 1, and let w be a complex 

number of modulus less than one that satisfies the two relations 

Re 1 
> 1/p ( 3. 1 ) 2 

1 - w 

and 

1 1 2 2 
[Re [Re w 

2J (3.2) 2 - -] > 
1 - w p 1 - w 
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PROOF. Let p > 1 and put 

a = Re 1 1 

1 - ,} p 

and 

b • Re w 
2 

. 
1 - w 

Then 

0: 0: 

2n f J IKw(x,y) JQdµ(y)dµ(x) = 

- co -co 

2 -q/2 JCD JO: { 2 2 } 
= jl - w I exp - T (x +y ) + qbxy dydx 

-a: -cc 

-q/2 1/2 CIC 2 2 
= 11 -w21 (2rv'qa) J exp{.9f- (ba - a) }dx 

-CIC 

which is finite by (3.1) and (3.2). It follows that K is compact 
w 

(see . [17] page 319). If p C? 1 then we notice that (3.1) implies 

I w2 - 1 ; 2 I < 1 ; 2 so 

and 

a + b = Re 
1
_1£_ > O -w 
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a - b = - Re 1 ~ w < O 

whence a2 - b2 < 0 for all w and so (3.1) and (3.2) are never satis­

fied. The theorem now follows trivially. 

We also have the following theorem. 

THEOREM 3.4. Let w, Wi and wz be aomplex nwnbers of modulus less 

than one that satisfy (3.1) and (3.2). Then the following statements are 

true. 

( i ) K H = J"H 
w n n 

(n = 0, 1, 2, ... ). 

CX) 

(ii) K (x,y) 
w = I: wn Hn(x)Hn(y). 

n=O 

PROOF. To prove (i) we let s = x/,/l, t ~ y/,/l and calculate 

ex: 

1 =-
ex: 2 f hn(t)e-t Kw(,/ls, $t)dt 

-= 
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2 cc 2 
= es 12 J (hn(t)e-t 12 )Nw (s,t)dt 

-cc 

The kernel defined in the sum in (ii) defines a kernel operator 

that also maps Hn to 

K . 

hence it must be the same operator as 

w 

W. Beckner, in his paper [ 4 ], was the first person to precisely 

calculate the norm of K for w pure imaginary and satisfying (3.1) 
w 

and (3.2). He was able, from this, to determine the norm of the Fourier 

operator J. The norm Beckner derived for J is the same as that de­

rived by Babenko for the special case that q is an even integer. We 

state and sketch a proof of Beckner's theorem below. The main idea is 

to prove the result first for Mehler-type operators over a discrete 

probability measure and then use the central limit theorem. The main 

tool in the proof is the 11 two point inequality" ( see lemma 3. 6). 

THEOREM 3.5 

Then 

(BECKNER'S THEOREM) Let l < p < 2, .!_ + l = l p q and 
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REMARKS. Beckner states this theorem only for t = Jp'=1'"", however his 

proof still works if t is in the above specified range. Also, he does 

not consider the case P = 1 which is trivially proven as then t = 0. 

SKETCH OF PROOF. The idea of Beckners proof is due to Nelson [11]. We 

will use the central limit theorem to obtain the Gaussian measure, dµ, 

as a limiting probability measure of convolutions of Bernoulli measures. 

Let dv(x) be the discrete probability measure with weight 1/2 at the 

points x = ±1. The measure dv is referred to as Bernoulli measure, 

Let dvn be then-fold convolution of the measure dv(,.fa" x) with itself. 

The central limit theorem says that dvn converges to dµ in the sense 

* of the space C
0 

(]R) ( C
0 

{R) is the set of continuous functions of R 

CD * that vanish at ±ex> with the topology induced by the L norm;c
0

(R) 

is its dual). So, if f c C
0

{R}, 

ex, ex, CD 

and 
CX> co 

l im f f{x)d vn{x) = f f{x}dµ{x) • 
n-+o: 

-0:l -co 

Beckner proves that a result analogous to theorem 3.5 holds with 

respect to each of the measures dvn. The inequality of the theorem then 

follows as a limit of inequalities with respect to these product measures. 
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The product measures dfln = dv(J, x1) •·· dv(,jnx.1) are discrete 

and each xi can assume only the va 1 ues ± 1 / ,jn. If f is a function 

on the corresponding measure space, then f always has a representative 

that is a polynomial of degree at most one in each of the n variables. 

By imitating the action of K on the first two modified Hermite poly-
w 

nomials (H0(x) = 1, H1(x) = x) we define, inductively, Mehler type 

operators over these discrete measure spaces. On the measure space over 

d v we define an operator C by 

C (a+bx) = a + u;b x. 
w 

The following lemma may be proven by careful calculation [4]. 

LEMMA 3. 6. Let - ~ _s t _s ~ . Then Cit is a bounded operator of 

norm one of L p ( dv ) to L q ( d v) . 

Lemma 3.6 is known as a two-point inequality. We define operators 

B on the set of functions defined on the measure space over w,n, k 

by 

B k ( a +bx k) = a + w b x k w,n, (k = 1, 2, ... , n) , 

where a and b are functions of the remaining n-1 variables. Let 

C = B l ••• B w, n w, n , w, n , n 

From lemma 3.6 each B is an operator of norm one of LP(dvn) to it,n,k 

Lq(dyn). It follows that Cit,n is also an operator of norm one of 
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Let Xn denote the space of functions symmetric in the n variables 

x1, ... xn over dvn' and let D n be the restriction of C to X . w, w, n n 

Then Dit,n may be shown to also be an operator of norm one. The sym­

metric functions 

= i! 6 X .•. X 
m1 < • • • < m .e m1 mi, (.e=O, 1, ... ,n) , 

form an orthonormal basis in L2(Xn). We also have 

D w, n 

Let g E Xn and write 

n 
= I:; d a 

..e=O .e n, .e 

Then we have II Dit n9 II v ·q s_ II 9 ll v ·p , or more explicitly, 
' n' n' 

(J.·· j 
-a: -a, 

By comparing the generating functions for Hn and 

that if each xi = ± 1/J,, then 

(3 . 3) 

a O one may prove 
n,;t, 
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l [i/2] 
+x)+-6 a 

n n r=l .e,r 

where the coefficients an are bounded with respect to n for fixed 
A/,r 

.e. It may now be shown that the inequality (3.3) implies the theorem 

as n + 00• A comp1eta account of this proof may be found in [4]. 

It should be noted here that leITTna 3.6 is still true for w real 

and 1 - p ~ w < p - 1, that is C 1 has norm one for these values of w, 
w. The rest of the theorem remains unchanged and we get the following. 

COROLLARY 3. 7. Let 1 < p ~ 2, ¼ + ½ = 1 , and 1 - p ~ t ~ p - 1 , then 

IIKt II µ;p,q = 1. 

Beckner was then able to use his theorem to prove the sharp Haus­

dorff-Young inequality that Babenko conjectured. 

COROLLARY 3.8. Let 1 < p < 2 and 1/p + 1/q = 1. Then 

PROOF. The case p = 1 was treated in chapter 2 (see theorem 2.1). ~~e 

now assume p > 1 . Theorem 3. 5 for t = ~ may be written as 

{

a: co }1/q co }1/p L IL°K;Jp::r (x,y)g(y)dµ(y) lqdµ(x) :<, ¥ jg(y) jPctµ(y) , 
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for all g E LP(dµ). If we let x = Jl u and y = ~ v then this 

becomes 

{£ 
{ 

CX) }l/ . l ih(v1°dv p 

where 

2 
h(v) = g(hv)e-v 12 . 

F. Weissler was able to determine necessary and sufficient con­

ditions on w for K to be bounded. In the case that K is w w 
bounded, Weissler showed further that its norm is usually equal to one. 

THEOREM 3.8. (WEISSLER'S THEOREM) Let l < p, q < ~, but e:r:cZude the 

vaZues 2 < p < q < 3 and 3/2 < p ~ q < 2. l l l l Let - + -::::-r = - + -=-r = l p p q q , 

and Zet lwl < 1, w F ± l satisfy 

and 

Re 1 ~ max[l/p, 1/q'} 
l -w2 

2 
( Re l 2 - .!_) ( Re l 2 - ~) ~ ( Re w 2 ) 

1-w P 1-w 1-w 

(3 .4) 

(3.5) 
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Then 

Ii K II ·P q = 1 • 
UJ µ, ' 

Moreover, K is bounded if and on Zy if w satisfies ( 3 . 4 ) and ( 3. 5) . 
UJ 

We observe that the case 1 < p < 2, J_ + l ~ 1 is covered by this 
- - p q 

theorem. In this case, (3.4} implies lwl < i with equality allowed only 

if p = 2. 

For some p and q the case lwl = 1 is allowed in Weissler's 

theorem. By this we mean that Kw may be extended to lwl = 1, 

w 'f ± l and that the extension is an operator of nonn one. 

SKETCH OF PROOF. Weissler proves the boundedness of K by relating 
UJ 

K to the Gauss-Weierstrass operator 
UJ 

cc 

(e2 ~)(x) = (4nz)-112 J f(y)exp { - 4
1
2 

(x-y) 2 } dy. 
-cc 

If w satisfies (3.4) and (3.5) then the Gauss-Weierstrass operator 

with z = y(l-w2)/4w (where Re(y/w) ~ O) is bounded, from which he con­

cludes that Kw is bounded. It is possible, however, to prove this 

theorem without using the Gauss-Weierstrass operator. If w 1wi < 1 

sati~fies 

Re 1 
2 > max { l l, 1 

1 - UJ p' g J 

and 
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2 
( 1 ,)( 1 1 ) ( w ) Re 2 - -P Re 2 - -q, > Re 2 1 - w 1 - w - 1 - w 

then calculations similar to those in theorem 3.3 imply the boundedness 

of K . The result that IIK II = 1 for these w wil 1 then imply w w µ;p,q 
boundedness for the region (3.4) and (3.5). To prove that K is 

w 

bounded implies (3.4) and (3.5), Weissler exhibits explicitly the effect 

of K on Gaussian functions and shows that for w satisfying (3.4) 
w 

and (3.5), their images are unbounded under K. 
w 

To show that IIK II= 1 in the prescribed cases, Weissler proves 
w 

a two point inequality. It is the same one as in Beckner's proof but 

Weissler was more careful with his estimates and so he could prove it to 

hold for more general p,q, and w. The remainder of the proof is then 

identical to the proof of Beckner's theorem. A detailed account of the 

proof of this theorem is to be found in [16]. 
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Chapter 4 

THE NORM OF THE MEHLER KERNEL OPERATOR 

This chapter is devoted to proving the main result of this disser­

tation. The norm of N as an operator from LP to Lq is calculated 
w 

explicitly for all jwj < 1, w 'f ±1. Since Nw is unbounded for all 

other w this settles the question completely. We will also show that 

if pf 1 then N always achieves its norm for Gaussian functions of 
w 

a particular form. The main result is stated in theorem 4.1. 

THEOREM 4.1 (MAIN RESULT) Let lwl :s 1, w f ±1 , 1 < p :S 2, ana 

1 1 p + q • 1 . Then there exists a comp Zex nwnber y such that 

( 4. 1 ) 

and 

(4.2) 

For any such y we have 

2 2 l/2p-l/2q 

II !' - l l~ ( l - y w ) 
iNw ip,q - y rry(l-w2) • 

Moreover, this norm is achieved for the function 

( 
2 2 ), /2p l 2 

f ( x) = 1 - Y w 2 ex P x 2 ( 1 + w 2 - l 2 ) l . 
rry( l - w ) 2 ( l - w ) y( 1 - w ) 
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We remark that the operators N have not yet been defined on LP 
w 

for [wl = 1, w "f ± 1 , and for this case the theorem should be read 

more carefully. What we mean to say is that Nw' defined at least on 

L1 nL2, satisfies 

for f E L1 n L2, where C is the bounding constant in the theorem. 

Hence, N may be extended linearly to LP in such a way that 
w 

l'N II < C and the norm is assumed for the Gaussian function f of 
I W p,q 

the theorem. 

In the course of the proof it will be apparent that we can choose 

y = y(w) in such a way that for luial = 1, w I± 1 we have 
0 

The inequality IINlllo l~,q < C is thus a consequence of the corresponding in­

equality for lw I < 1, for if f E L 1 n L 2, then we have ( see theorem 

1.3 for method), 

C0 

IINWof l~,q = J li; ti~f [(Nw
0
rf)(x) [qdx 

-cc 

~ 1 im inf C( llbr) IJf II 
r t 1 'P 
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We also remark that the case p = 1 will be treated separately at 

the end of this chapter. 

We begin the proof of theorem 4.1 with the following lemma. 

LEMMA 4 . 2 . Let I w I _s l , w 'f ± l , l < p ~ 2 and l / p + l / q = l . Then 

there exists a complex number y that satisfies (4.1) and (4.2). 

PROOF. Let a and b be real numbers with a> O. Then (4.1) and 

(4.2) are true if and only if we can choose a and b so that the 

following are true: 

2 2 2 
l + w p - l + y w = ib 

2 ( l -w2 ) - p y( l -w2 ) 

These may be rewritten in the form 

l +w2 
2 

2(1-w) 

p -1 l w2 
p{l-w2) •y - p(l-w2) 

• y = ib 

l l w2 
2 •-y - 2 • Y = a, 

1-w 1-w 

which are equivalent to the following equations . 

.P. l + w
2 

P . l = - 2 • 2 • 2 a - i pb 
1-w 1-w Y 

l + u} 2 
_LP- • 2 - .......P._P - l • w 2 • Y = a + bp - i b 2 ( p- l ) l - w l - w 

This system of equations has a solution y if and only if there 
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exist a > O and b E lR such that 

( a-ipb+¥ •; :w:2 ) ( ¥ 1 
+tu~ - (p-l)a-ipb) = P

2
w~ 

l - tu (l -w2 )2 
(4.3) 

Hence there exists such a y if and only if there exist real numbers 

a and b with a> 0 that satisfy (4.3). We let 

l + 2 
__ Ul.,..2 = X + iy 
1 - tu 

where x and y are real. It follows that x > 0. Also 

whence (4.3) becomes 

[(a+x) + i(y-pb)][(x-a(p-1 )) + i(y-pb)] = (x2-y2-p2/ 4) + 2ixy. 

We take real and imaginary parts of the above equation to get the fol­

lowing two equations. 

(4.4) 

(2-p)ya - (2-p)pab - 2xpb = 0. (4.5) 

It will now be shown that for all tu and p satisfying the hypothesis 

of the lerrma we may find real solutions a,b of (4.4) and (4.5) such 

that a > 0. This suffices to prove the lemma. -

First suppose p = 2 or x = y = 0. Then we have the solution 

b = 0 , 
.:. p • 

a - 2,1p-:i- • 
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Also, if pf 2 and x is equal to zero then (4.4) and (4.5) 

have the solution 

b = y / p , a = / IT ¾- 1) / + f ] / ( p-1 ) 

If pf 2 then from (4.5) we obtain 

a = (2-p) 

substituting this into (4.4) gives us 

(4.6) 

g(b) = - (p-1 )4 x2p2b2 + 2(2-p) 2x2pb(y-pb) + (2-p) 2~-pb) 2(2pyb 

2 
- p2b2 + f ) 

= 0. ( 4. 6a) 

Now g(b) is a fourth degree polynomial in b. The coefficient of b4 

• • ( 2 )2 4 h • h • 1 • "' 2 Al 1n g 1s - -p p w 1c 1s a ways negative as pr . so, 

g(0) = [(2-p)py/2]2 which is nonnegative. 

If y = 0 then (4.5) implies b = 0 whence (4.4) becomes the fol­

lowing quadratic equation in a. 

- (p-l)a2 + (2-p)xa + p2/4 = 0. 

We then take 
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which is always positive. 

Finally, if y f 0, then g(O) > 0 and so g has at least two 

real roots, one positive and the other negative. We now notice that 

g(y/p) 

as x f 0. So g has a real root b that satisfies 

0 < Jb I < jy/p I , sign(y) = sign(b), 

whence (4.6) yields a positive a. The lemma is now proven. 

We need to analyze the root b of (4.6a) for w near the unit 

circle in more detail. Let IWo I = l, We f ± l . If we now write 

then x0 = 0. Suppose Yo f 0. From what we found above we see that 

we can take 

a = 
0 

This gives rise to a y(Wo). Let 

2 2 2 21/ f1 (b,y) = (2-p) (2pyb - p b + p 4) , 

= 2(2-p) 2pb , 

= ( p-1 ) 4p2b2 . 
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We may then rewrite (4.6a) as 

By an appeal to the implicit function theorem one can show the above 

equation has two roots (one to the left and one to the right of y/p) 

which are close to y0/p if x > a and x + iy is close to iy0. 

Taking for b the root whose modulus is less than /·y/pj, we get a 

positive a and a y(w) that satisfies y(w) + y(uu) if lwl < l and 

w + ut)· 

If y O = O then lLb = ± i . If w = it, for - 1 ~ t ~ 1 , then y 

may be calculated explicitly (see theorem 5.1) 

This y is clearly continuous in t for t close to ±.1. 

With this rather technical lemma out of the way we may proceed with 

the proof of the main theorem. In the following pages we will find a 

relation between Nw and Kyw· From the results of chapter 3, we know 

a great deal about the nonn of K. 
w 

In particular, we will show that for the· y of lemma 4.2 Kyw 

is in fact a bounded operator with norm equal 4o one from LP(dµ) to 

Lq(dµ}, This. will be done by applying Weisslerls theorem to yw rather 

than w. The factor y is just smal 1 enough to force )OJ to be within 

the domain specified by Weissler. 
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LEMMA 4 . 3. Let I u; I .:S 1 , w -f: ± 1 , 1 < p .:S 2, l / p + l / q = l , and 7,et 

y satisfy (4.1) and (4.2). Then K has norm equal, to one. 
yw 

PROOF. We need only show that '(I.I) satisfies 

R l > l. 
e 2 2 - p 

l - y w 

and 

( l 1)2 ~ )Ul J Re 2 2 - - .2: Re 2 2 
1-yw P 1-yu.i 

for then Weissler's theorem (theorem 3.8) will imply that K yw 

equal to one. We let a. and S be as in theorem 4.5. Then 

l 
Re 2 2 

l - y w 

2 2 
l = Re p - l + y w 
p p(1-iw2) 

2 2 
= £ Re p - l + t w 

e py(l -w ) 

2 
=l.Re l+w > 0 

8 1 2 -w 

(4. 7) 

( 4 .8) 

has norm 

as p > 0 and (l+w2)/(l-w2) maps lwl .:s l into Re w .2: 0. This 

implies (4.7). We now notice that (4.8) may be rewritten as 
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~ 2 2)
2 

R p-1 + y w 
e 2 2 ~ 

p(l-y w ) ( 
yw )2 Re 2 2 . 

1 - y w 

We multiply both sides by ~/2 (which does not change the sign of the 

inequality as S > O) to get 

(
Re w 2 )

2 

, 
1 - w 

which is equivalent to 

(R 1+w2)2 e 2 > 
2(1-w) (

Re w2) . 
2 

. 
1 - w 

(4.9) 

We now notice that 

1 + w2 1 1 Re -----,,,.-- - Re w 2 = - Re ~ > O 
2 ( l -w2) 1 - w 2 1 + w -

(4.10) 

and 
2 

R 1 + w 
e 2 

2(1-w) 
+ Re w = l Re 1 + w > O 

l _ w2 2 1 - w ' 
(4.11) 

because the transformations z1 = (l+w)/(1-w) and z2 = (1-w)/(l+w) are 

both conformal mappings of lwl ~ 1 into the right half plane. Hence 

Rez1 ~ 0 and Rez2 ~ 0. Multiplying (4.10) and (4.11) together then 

yields (4.9) and our lerrma is established. 

In order to state the relationship between 

need the following definitions. 

K and N we will yw w 
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DEFINITION 4. 4. Let a > 1, let a be a real nwnber, ~ 'j: O.J and let 

a. be a: aomp Zex nwnber, Re a. > 0. 

0/)(x) ={(2rr)-1/2a .-x3/2af(x) if a < m 

f(x) if a = a;, 

(ii) Define the map M from La(dx) to La(dx) by 
a. 

(iii) Define the map T
6 

from La(dx) to La(dx) by 

We have the following proposition. 

PROPOSITION 4.5. Let a ,2: 1. Then the following are true. 

(ii) If Re a.= 0 then M is an isometry of La(dx) . 
a. 

(iii) For real a f O and f E La ( dx) we have 

PROOF. The proof is by computation. Let f E La ( dµ). Then if a < a;, , 
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Since If= f, this result is trivial for a= co, hence (i) is true. 
co 

Now let f c La(dx) and compute 

I:Maf I~ = Ii IM f I Ila a 

= II If I I~ 

= llf Ila , 

and so (ii) is true. Lastly, if a < co, 

co 

ltr sf 1ra =f jf (ex) ladx 

-a:, 

C0 

= ~I J jf(x) jadx , 
-a:, 

and if a= C0 then !;T
6
f[!(X) = llfll(X) trivially. This proves (iii). 

We now state the identity that relates K'YW to Nw. 

THEOREM 4.6. Let lwl < l, l < p < 2, 1/p + 1/q = 1, and let y satis-

fy ( 4 . 1 ) and ( 4 . 2 ) . Then 

where 

and 
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1 +2 1+22 a. = w p- y w 

2(1-w2) - py(l-w2) 

We remark that the identity in theorem 4.5 is also true if we re­

move the restriction 1/p + 1/q = l and replace the leftmost M with 
a. 

M where a, 

l + 2 a. = w 
1 2(1-w2) 

(q-1 )lw2 + l 
2 qy(l -w ) 

This will be evident from the proof. 

PROOF. Let f E LP and compute 

= (2n).-l/2qe-x /2q l 2 2 j(2n)l/2pey /2pf(y)exp -Jy~ dy 2 (X) 2 1 2 } 
Jn(l-y w }-m 2(1-y UJ) 

a, 

(2n)l/2p-1/2q J 1 · 2[p-l+y2w2] [ w ] = z 2 f(y)exp -y 2 2 + xy 2 2 
Jn(l-y w ) ~~ 2p(l-y o; 1-y w 

_ x2 [l+(g-l~y~w2 ] ) dy . 
2q(l -y w ) 

Substituting Jex and ~y for x and y respectively in the above 

gives us 
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TJi:i'I K I f)(x) .., q yw p 
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7 )l/2p-l/2q 
00 i [ 2 2j = ~TT 2 J(r 'Sf) (y )exp -y2 p-1 +\ w + xy [ 2w21 

yn(l-w) -a, AJ y(l-w) 1-wJ 

whence 

If 1/p + 1/q = 1 then (p-1 Y(q-1) = 1 and we have, in addition 

= a. 

and the theorem is proven. 

We may now prove theorem 4.1. If we let wand p be according to 

the hypothesis of the theorem and let y satisfy (4.1) and (4.2), 
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then it follows immediately from theorem 4.5, proposition 4.4, and lemma 

4.6 that 

IINwllp,q ~ (2n)l/2q-l/2p hll/2 (a)l/2p-l/2q 

2 2 \ 1/2p-l/2q 
= hll/2( l-y2 

ny(l -w ) / 

It suffice? now to prove that for the function 

f(x) = 1 - y w exp x2 l + w _ 1 
( 

2 2 )l 1
2
P l ( 2 ) l 

ny( 1 -w2 ) 2 ( l -w 2 ) ;y( l -w2 ) 

N actually achieves this bound. We use the fact that a is purely 
w 

imaginary and S > 0 to compute 

( 

c» 2 )1/ II f II P = (S/2n)112P £ e-SX 12dx p = 1. 

Al so 

(Nr f)(x) = (S/2n~ e(a-~/2p)y exp 40J<y- (x +~ )(l+w) dy 1/2p 10> 2 l 2 2 2 l 
" )rr( l - w ) ·_ CX) 2 ( 1 - w ) 
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[ 
2 j} 2 l + w dy 

- X 2 
2(1-w ) 

= 8/2n 
1 
l

2
PJ(X) exp (-y2[. l ] + xyl- 2w ]- x2 [. l + w~ ] ] dy 

n(l-w) -(X) y(l-w2) ll - w
2 

2(1-w) 

= (0/2n p exp x2 w y2 - l + w2 exp - - u;x ~ t. dy , /2 l ( 2 2 )l a: l ,.. 

n(l-w) 1 - w 2(1-w) J {JrJ-i) E) l 
-cc 

= Yl /2 ( S/2n) 1 /2p expjx2(A - 1 + w~ ) l · 
1-w 2(1-w) 

We now have 

l!Nwfllq = hl112 (S/2n) 112P(J(X) expfqx2 Re[A- 1 +w~])dx l/q 1 , -w 2 (1-w ) 
-ex, 

( 

CX) l 2 2 l 1/q = hll/2(~/2n)l/2p f exp qx2 Re[(p-1 )(~w - l)J dx 
L py(l -w ) 

-ex, 

= jy 11 /2( p/2n) 1 /2p ( j •-?;x.3/ 2. dx y /q 

-ex, 

= IY11/2(e/2n)l/2p-l/2q 

( 

2 2 )1/2p-l/2q 
= jy 

1
, /2 l - y w

2 ny( 1-w ) 
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This completes the proof of theorem 4.1 

We now treat the case p = l. 

THEOREM 4. 7. Let jw I _::: l, w j: ± l . Then 

2 -1/2 
j11(l -w ) I 

PROOF. We again assume at first that lwl < l. 

Let 

l + 2 
a = Re ~ , 

2 ( 1-w ) 
b=Re UJZ 

l - w 

Then a> 0 and 

l + w 
a + b = Re 2 ( 1 -w) 

1 - w 
a - b = Re 2 (1 +w) 

> 0 

> 0 

so a2 - b
2 

> 0. We then have 

2 -1/2 { 2 2 } 
sup jN (x,y) I = 111(1-w )j sup exp 2xyb - (x +y )a 
y w y 

2 - l 12 J 2 2 2 } 
= ln(l-w) I exp\x (b -a )/a • . 

Hence, if f E L 1 , 
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CD 

II Nwf II ex:= s~p If f(y)Nw(x,y)dy i 
-ex: 

~ sup II f 11 1 sup INw(x,y) I 
X y 

2 - l 12 { 2 2 2 
= l!fll 1 s~p ln(l-w )I exp x (b -a )/a} 

2 -1/2 
= llfll1 ln(l-w)I 

and so 

To show we have equality, we consider, for u > 0, the function 
2 

g(x) = e-ux . Let 

- 1 + w2 
s - 2 

2(1-w) 

so we know Re s > 0 and 

t = w 
2 ' l - w 

Re(t
2 

- s2 - us) = _ 1 Re [-(1+2u) - (l-2u)w~] < 0. 
5 + u (1+2u) + (1-2u)w 

We calculate 
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CD 

2 -1 /2! { 2 2 (Nwg)(x) = (n(l-w )) exp -( s+u)y + 2txy - sx } dy 

and so 

Ii NuJJ II CD 

119111 
= 

= 

-1/2 
j(l-w2)(s+u) I (n/uf1I2 

-1 /2 
ln(l-w2) I ju/(s+u)~ I2 

Since this ratio approaches 
• 

2 
-1 /2 

jn(l-w) I as u ~ ~ we have completed 

the proof of the theorem for lw r < 1. • 

Now let f E L1 . Let € > 0 and let g be a continuous function 

of compact support such that llf-g I~ < €. If jwj = ·1 it follows that 

for all r < 1 where k depends only on w. Integration by parts yields 

the result 

as 

uniformly in r(i.e., N obeys a Riemann-Legesgue type theorem). Hence 
w 

l im (Nrwf)(x) = (Nwf)(x) 
r tl 

uniformly for x E :R. The usual arguments may now be used to extend 

the result of this theorem to jwj = l. 
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Chapter 5 

APPLICATIONS 

1. BABENKO 1 S CONJECTURE 

In chapter 3 we mentioned a theorem of K. I. Babenko which exhib­

its the norm of N for w imaginary and q equal to an even integer. 
w 

Based on the results of chapter 4 we can now prove this theorem for gen-

eral q. The theorem is restated in this general form for convenience. 

THEOREM 5.1. Let -1 < t::: l, l < p::: 2, and l + l = l. Define p q 

Then 

Moreover, this norm is achieved for the Gaussian function 

FinaZZy 
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PROOF. The case p = 1 is a direct consequence of theorem 4.7. We 

assume now that p > 1 . Let 

a. = 

so 

2 
1 

= -p(l -t ) + a. 
4t2 

We now compute 

whence 

22 1 2 2 2 2 2 p - 1 - y t = p - 1 - :-.::-:-z ( p ( 1 - t ) + a. - 2 p ( 1 - t ) a.) 
16t 

1 24 22 4 2 
= ~ ( - p t + 2 p t - p - p ( 1 -t ) a.) 

Bt 

__Q__ 2 2 = -::-7 ( - p ( 1 -t ) + a.)( 1 - t ) , 
8t 

2 2 
p-1-tt 
py(l +t ) 

which is exactly condition (4.1) for w = it in theorem 4.1. Also 

22 24 2 2 4 2 
1 + y t = p t + ( 8 p-2 p ) t + p - p ( 1 - t ) a. 

y(l +t2) 2(1 +t2) ( -p(l-t2)+a.) 

_ p [ ( 2 -p )( l - t 2 ) + a.) ] [ - p ( 1 - t 2 ) + a.] 
- 2 2 

4 ( p-1 )( 1 +t )( -p ( l -t ) + a.) 

( 5. 1 ) 

(5.2) 



However, we have 

whence from (5.l) 

CL?:'.:Pll-tl?:'.:0. 

69 

(5.3) 

(5.4) 

If we now assume t fl then by (5.3),condition (4.2) is also satisfied 

for w = it and we apply theorem 4.1 to get 

Since llNill p,q = i ~r II Nit ii p,q we get by the usual argument the cor­

responding equation for t = l also. Finally 4.1 says that Nit achieves 

this nonn for 

g(x) = exp {x2 c(~ :3~ - y(l :t2))} 

= exp{x
2 
(:~~)~t

2 

_ y(l:t2))} 

= exp{-x
2
(:~;::~) )} • 

The theorem is now proven. 
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We may now let t = -1 in theorem 5. l to achieve the sharp Haus­

dorff-Young inequality for the Fourier transform J, first proven by 

Beckner (see theorem 3.5 and corollary 3.8). 

COROLLARY 5.2. Let l::: p::: 2 and 1/p + 1/q = l. Then 

II :r-11 = (2n) 2q ;2p P ;2p/q ;2q • 1/ -1 ( l 1 / l ) 
p,q 

From this it is seen that the method used by Wiener to prove 

Plancherel 's theorem can be generalized to yield the Hausdorff-Young in­

equality directly from the norm of N . 
w 

Finally, we notice that we may replace t by i- t everywhere in the 

proof of theorem 5.1 and so doing we get the following theorem. 

THEOREM 5.3. Let -1 ::: t::: l, l < p::: 2, and 1/p + 1/q = l. Define 

Then 

Moreover, this norm is aahieved for the Gaussian function 

g(x) = exp -x - Y 2 . 
{ 2( l 

2

t2 )~ 
py(l -t ) 

FinaZZy, if t 'f ± l then 
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2. SMOOTHING OPERATORS 

Smoothing operators, as used by De Bruijn [ 6] are invaluable tools 

in the study of generalized functions. They are defined as follows. 

DEFINITION 5.4. Let a> 0 and define 

Sa(z,u) = (sin h a)-1I2 exp {- 1 ((z2+u
2

)cos ha- 2zu)} 
sin a . 

for aU complex z and u. 

pa.rameter w, by 

We define S ,the smoothing operator with 
a 

CX) 

{Saf ){z) = f Sa(z,u)f(u )du . 

-= 

We also have the following representation of S . 
a 

PROPOSITION 5.5 (MYLLER-LEBEDEFF) Let a> 0. Then 

and so 

(5.5) 

(5.6) 
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PROOF. The identity in (5.5) follows from comparison with theorem l .7. 

To prove (5.6) we take f to be a function in LP(l ,:::: p < 2) 

a: 

(S f)(z/Fn)=fs (z/,fln,u)f(u)du a. a. 
-a:, 

C0 

= f f(u)Fn I:. e-(n~)a.%(z)cpn(u/,fln)du 
-a:, n=O 

C0 

= Fn f f(,fln u) I: e-(n~)a.%(z)cp,,(u)du 
n=O 

-c:c 

from which the result follows. 

We may now calculate the nonn of the smoothing operator from LP 

to L q. 

THEOREM 5.6. Let l < p ~ 2, 1/p + 1/q = 1, and a.> 0. Define 

Then 

Moreover, the norm is achieved for the Gaussian function 
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g(x) = r 2 ( , - le-20. )} 
exp 1-x py(l -e-2°') . • 

PROOF. This is an irrmeaiate consequence of proposition 5.5 and theorem 

5. 3 with w = e -a.. 

3. THE OPERATORS OF KOBER 

In [ 8 ] and [SJ, H. Kober and Condon used yet another Meh1 er-type 

operator in their study of the Fourier and Hankel transforms. These 

operators are defined as follows. 

DEFINITION 5.7. Let r be reaZ, -t < r < t and define 

( ) = { i X y ( 2 2 ) ( i ) '} Tr x,y Cr exp sinZnr - x +y rot2nr , 

where 

C (2 I. 2 1)-1/2 tin(¾ sign(r) - 2r) r = TT sin nr I e 

for x and y reaZ. Tr(x,y) is aaUed the Kober kerneZ of parameter 

r. For f E L1 , we define 
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CX) 

(Trf)(x) = J f(y)Tr(x,y)dy 
-CX) 

and caZZ Tr the Kober operator of pa:rconeter r. 

The operator Tr may also be defined on LP(l < p < 2) but the 

same care must be taken as in the case of the Mehler operator on the 

unit circle. 

The following lemma relates the Kober operator to the Mehler kernel 

operator. 

LEMMA 5.8. T = N . 
r e2n1r 

PROOF. We let w = eie for e real and calculate 

and 

1 +w2 
2 2(1-w) 

2w 
2 

1 - w 

Furthermore, 

1 

l+e2ie isin2e 
= 2(l-e2ie)= 2-2cos2e 

i = 2 cot e , 

= _i_ 
sine • 

4i sine = 2 - 2cos 2 e 

= ( l )1 /2 
n(l -e2i e) 



( 
ie-ie )l/2 

= 2nsine 
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-l/2 }in(~ sign(r) - i). 
= (2njsin 0j) e n 

We now have 

N (x,y) = 
w 

= T 8/2n(x,y) 

and the lemma follows by letting 8 = 2nr. 

We now know that T maps LP into Lq (compare with theorem r 

4.1 to see how Tr may be defined for LP, l ~ p ~ 2) and we may cal-

culate its norm. 

THEOREM 5.9. Let 1 < p < 2, 1/p + 1/q = 1. Let r be a real number 

but - t < r < ~- Define 

Y = i$-T sign{sin 2 nr) 
e i 2nr • 

Then 
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1 -1 
1 /2 ( 2 i4nr ) 12P f 2q 

I I 1 - y e 
Y ( i4nr) ny 1 - e 

Moreover, this norm is achieved by the Gaussian function 

{ 
2 • 1 

f (x) = exp x ( ½:ot 2 nr - , 4nr ) } • 
y(l -e ) 

FinaZZy 

PROOF. The cases p = 1 and p = 2 are clear so we will assume 

pf 1,2 and 2r is not an integer. Let w = ei 2nr . Then 

and so 

Al so 

y = ih:J sign(sin 2 nr) 
w 

2 2 2 l+w p-l+yw 

2(1-w2) - py(l-w2) 

2 2 
1 - y w 

2 y(l -w ) 
= 2 - p 

1 + 2 - w - 2 
2 ( 1 -w ) 

i = z<=Ot 2 Tir • 

sign(sin 2 nr) 

(5.7) 
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= (2-p)sign(sin 2 nr) 
i~(-2i sin 2nr) 

= 2 - p > 0 
2,Jp-ljsin2nrj • 

The theorem now follows from theorem 4.1. 

(5.8) 
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