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Summary: 

This research consists of a study of several methods of 

computing the slope of lift curve for a two-dimensional 

symmetrical airfoil of finite thickness in completely 

supersonic potential flow. An "exact" formula is derived 

by considering the flow conditions over the airfoil surface 

including the effects of the oblique shock waves emitted 

from the leading edge of the airfoil. Thie "exact" formula 

is applied to two simple cases: (1) a 5% thick circular arc 

airfoil, and (2) a 10% thick circular arc airfoil. The 

computation results are compared with (1) Ackeret's linearized 

theory, (2) Busemann's second order theory and (3) Busemann's 

third order theory. It is found that the presence of shock 

waves at the airfoil leading edge will lead to a reversal in 

sign of the slope of lift curve at low Mach numbers close to 

1.00, this effect is also sometimes observed experimentally. 

Furthermore, it has been shown that the linearized theory 

and the second order theory give too low dCL /do£. values at 

high Mach numbers. The third order theory agrees with the 

"exact" theory in general tendency but is not quite so accurate 

in very high Mach number region and at Mach numbers close to 

1.00. Thus, for accurate determination of the slope of lift 

curve, the "exact" formula may find some engineering uses. 

To facilitate future computations, charts for the necessary 

coefficients are prepared and steps in applying the formula 

for engineering cases are outlined and discussed in some 

detail. 
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Symbols : 

( )eo conditions in free stream, i.e. ahead of the oblique 

shock, 

( )a conditions immediately behind the oblique shock, 

Free stream conditions: 

M00 :Mach number 

:Pc,o . static pressure 

Woo velocity 

aoo sound velocity 

qoo dynamic pressure 

foo density 

Po~ stagnation pressure 

Conditions at 2: 

Local 

Angles 

Mz Mach number 

p 2 static pressure 

Wz velocity 

0z_ Prandtl-Meyer angle 

Poz stagnation pressure 

conditions over the airfoil 

M 

p 

w 

e 

~ 

• • 

Mach number 

static pressure 

velocity 

Prandtl-Meyer angle 

density 

• • 

t expansion angle between two adjacent elements of the 

airfoil surface 
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/3 wave angle of the oblique shock 

o(. ang:te c, of attack 

q> flow deflection due to the oblique 

z. 'I/ vertex angle of the airfoil 

1 ratio; .. of specific heats of air 

a* critical speed of sound 

T airfoil thickness ratio 

~ running airfoil chord ratio 
C 

shock 

~ total pressure on the upper surface of the airfoil 

L lift force 

Cr pressure cefficient: 

Cr, in isentropic flow 

Cp~ in oblique shock flow 



, -

In tr oduc ti on: 

It is well-known that in a completely supersonic steady 

flow the partial differential equation governing the flow is 

of the hyperbolic type. •A given disturbance cannot be pro­

pagated forward into the field; in fact, there exists the 

Ma.ch line or the characteristic line on one side of w.hich the 

disturbance produces no effects. ( Ref. 1, 2) Based upon 

this principle and neglecting the effects of viscous boundary 

layer, the supersonic flow past a two-dimensional airfoil of 

finite thickness can be determined by a step by step calculation. 

The conditions at acy point on the airfoil surface depends only 

on the geometry of the surface. They can be calculated for 

all points on the surface if the conditions at one point are 

known. It is usually observed in wind tunnel experiments that 

an oblique shock wave is emitted at the leading edge of an 

airfoil in supersonic flow. This oblique shock wave represents 

an irreversible adiabatic process. If the shock strength is 

not too strong, as for example the oblique shock wave created 

at the leading edge of an airfoil at low angle of attack, it 

has been shown that the flow before and after the shock wave 

is essentially isentropic. { Ref. 3) In such case, as before, 

the step by step calculation method can be used to obtain in­

formation about the airfoil characteristics as long as the 

airflow before and after the shock is everywhere supersonic. 

Knowing the free stream conditions i.e. the conditions far 

away ahead of the airfoil, the oblique shock formulae will 



give a definite solution for the conditions at the surface of 

the airfoil immediately after the shock at the leading edge. 

Having calculated the conditions immediately after shock, it 

is possible to apply the Prandtl-Meyer expansion law to determine 

the conditions at all points on the airfoil with the understandirg 

that flow is everywhere supersonic and isentropic after the 

shock, and that the boundary layer effects are neglected. It 

is the purpose of this present research to carry out a calcu­

lation of this nature in order to determine the behavior of the 

slope of lift curve for a two-dimensional symmetrical airfoil 

in supersonic flight. However, for calculation of the slope 

of lift curve for an airfoil, it is more convenient to deal 

directly with the differential increment of pressure on the 

airfoil surfaces with respect to the differential increment of 

the angle of attack of the airfoil. In symbolic form, this 

pressure differential may be represented as dp/do(. A pro-

cedure of exactly determining this pressure differential is 

worked out in great detail in the present analysis. It will 

be seen that under the aforesaid conditions, it is possible 

to develop an II exact II method of calculation of the slope of 

lift curve for a two-dimensional symmetrical airfoil by summing 

up the local pressure differentials over the airfoil surfaces. 

It will also be seen that the results of such a calculation 

differ considerably from the familiar linearized formula 
½ 

dC~/d~ = 4/ ( :(- 1 )2 especially in very high Jiach number 

regions and at Mach number close to 1.00. The Busemann second 

5 



and third order theories ( Ref. 4) however give a closer 

agreement with the calculation. Especially, the third order 

theory which has taken into account the shock wave terms shows 

a general trend agreeing pretty well with the present calcu-

lation. At present, the control surfaces for supersonic 

missiles and aircraft are generally designed on the basis of 

the linearized theory. It is hoped that the present calcu-

lation may lead to a better design analysis of the control 

effectiveness. To meet this design need, several charts are 

presented here which will facilitate the calculation of the 

slope of lift curve for any two-dimensional symmetrical airfoil 

in supersonic flow. 

Ideal supersonic flow around a two-dimensional symmetrical 

&ir:foil: 

To clarify the idea of the reader, it is desirable to define 
I 

I 
I 

'/ I 
I I 

I I 
I I 

7 I I 
I I 

I 

T 

here the ideal supersonic flow 

case that is going to be dealt 

with in this paper. Fig. 1 

represents a section view of a 

two-dimensional symmetrical 

airfoil of finite thickness 

placed parallel to the free 

stream. The free stream Mach 

number M0o is above 1.00, i. e. 

supersonic, and the flow is 
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isentropic before encountering the airfoil. At the leading 

edge L, locally plane shock waves of equal strength are emitted 

from both the upper and the lower sides of the airfoil. These 

shock waves are assumed infinitely thin. They are regarded as 

an irreversible adiabatic process. The geometry of the airfoil 

surfaces is assumed known. The airfoil surfaces are continuous 

arcs which may be considered as composed of a large number of 

small straight elements intersected at a small angle E • Neg­

lecting the boundary layer effects, i.e. in potential flow, it 

can easily be seen that the air in passing from one element to \ 

the next element along the airfoil surface will be deflected by 

an angle C . The dotted lines in Fig. 1 represent ::the Mach 

lines or the characteristic lines emitted from the intersections 

of the adjacent elements of the airfoil surface. Each Mach 

line represents a Mach wave which will interfere with the oblique 

shock wave from L. Through the interference of the Mach waves, 

the oblique shock waves from L will eventually be transformed 

into Mach waves extending to infinity. Besides, other Mach 

waves will be reflected towards the airfoil •. These reflected 

Mach waves are certainly very weak and in the present analysis 

their effects are ignored. Thie is essentially an assumption 

that the plane oblique shock waves from L will be preserved far 

enough from the airfoil that the flow may be considered every­

where irrotational behind the ehock. In other words, the flow 

is regarded as isentropic after the shock. Another important 

limitation is that the complete flow field is assumed supersonic. 

7 



With this ideal flow field, it is possible to make an exact 

analysis of the slope of lift curve of the airfoil by employing 

the oblique shock laws and the Prandtl-Meyer flow expansion laws. 

Fundamental formulae of oblique shock and definition of Frandtl• 

Meyer angle : 

Consider a configuration as in fig. l in which a steady 

uniform supersonic stream with free stream Mach number Moo is 

impinging on a two-dimensional symmetrical airfoil lying 

parallel to the main stream. Oblique shock waves of equal 

streagth are created at Lon both sides of the airfoil. The 

oblique shock will deflect the flow such that flow direction 

after the shock is inclined to the main stream at an angle ¢, 

( Fig. 2). In fig. 2, fl denotes 

the wave angle of the oblique shock, 

M2 denotes the local Mach number 

behind the shock. Knowing M00 and 

¢ , it is possible to determine~ 

and M~ by the following oblique 

shock formulae: ( Ref. 1) 

)"+I -2 

,.,~, .s,"., ¢> 
c-s (jJ-4>) 

where f denotes the ratio of specific heats of air. 

(1) 

( 2) 

In the 
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present calculation Y is taken to be 1.40. 

to a certain Prandtl-Meyer angle 8z • 

M, will correspond 

The meaning of Prandtl-Meyer angle 0z will be clear with 

an examination of fig. 3. 

This figure represents a 

hodograph plane. The 

region outside the unit 

Ma.ch number circle ( M = 1) 

represents supersonic 

flow. If the hodograph 

of a two-dimensional 

supersonic flow along a 

curved wall is plotted 

on this hodograph plane, 

it will result in a characteristic curve ( an epicycloid). ln 

particular, the curve "ab" in fig. 3 represents the characteristi: 

corresponding to the supersonic expansion flow ( sometimes called 

Prandtl-Meyer flow) with initial flow direction horizontal and 

initial Mach number one. By "ab", the unique relationship be.;. 

tween flow direction and ::!:'low velocity, i. e. Mach number is 

clearly defined. The angle 0 indicated in fig. 3 will be 

called the Prandtl-Meyer angle corresponding to the Mach number 

M. ( Ref. 1) Then, M~ will correspond to the Prandtl-Meyer 

angle 0z indicated in the figure. 

The supersonic flow around the airfoil is separated by the 

oblique shock waves into two regions of isentropic flow. Let 

9 



Po0o and Po.z represent .. tne stagnation pressures before and after 

the shock respectively. P-,z will be different from P 6 oa because 

of the entrppy increase through the introduction of the oblique 

shock wave. The following formula gives the relation between 

P~oo and Po.a : ( Ref. 1 ) 

I y 

- - JVll)o ~, ... '-;1- -
( 

z. y 1 . z.. Y- ')-;:;-( (Y-1) M:, .s,;,2;) -1- 2) r-1 

Y+I }'-1-1 (Y+I) /V/~S,-.,,1/3 ( 3) 

The local pressure p 2 on the airfoil surface immediately behind 

the shock may also be determined by the follow~ng formula: 

( Ref. 1 ) 

-- z>' 
y+J 

Y-t 
l'+I 

where p00 is the free stream pressure. 

(4) 

Therefore the condition at the surface of the airfoil 

immediately after the oblique shock can be determined. The 

step-by-step calculation of the airfoil characteristics can be 

then carried out without great difficulty. 

Fundamental formulae for change of local pressure at the airfoil 

surface due to change in angle of attack: 

In fig. 1 the airfoil is placed at an angle of attack of 

zero degree with respect to the main stream. Let p and M denote 

the local pressure and Mach number at the airfoil surface. It 

is known from the characteristics of supersonic flow that local 

l) 



pressure may be expressed as a function of the local Prandtl­

Meyer flow angle & which is uniquely related to the local 

Mach number M. 

airfoil: 

In symbolic form, for the flow past the 

f(M) OY 

In potential flow, the local flow direction is everywhere 

(5) 

tangential to the airfoil surface. Considering the airfoil 

surface as made of straight elements { Fig. 4, upper surface), 

the flow direction at the nth element of the airfoil will 

differ from the leading edge element of the airfoil by an angle 

e"' . E rt represents the flow 

expansion angle between the 

leading edge element and the 

nth element. Then, the local 

nth element of the surface of 

the airfoil will be given by: 

= 

L.I:. element 

I 
I 
I 
I 
I 

I 
I 

I 
I 

I 

(6) 

It will be interesting to study the effects of changing the 

angle of attack of the airfoil, to be more specific, the change 

of local pressure due to the change of angle of attack. This 

may be found as follows: 

Write: 

f = (7) 
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Differentiating formally with respect tool-: 

f! ( d %02.J dS 
o2. da dcl 

d_f -
de(. 

But from equation (6): 

dd 

dol 

Hence, 
df 

do<. 

= 

= 

Jez 
d,L 

d8z 
dol 

+ (81 

(9) 

( 10) 

Eq. (10) is the fundamental equation of the present report. 

In eq. ( 10), the term ( d (p/ P,>2)/d e ) is a function of local 

Mach number; this oan be shown explicitly by introducing the 

relation for pressure change through a small wave ( Ref. 1) : 

z de ( 11) 
Jr = - .f W JM"--/ 

where f , w, M are local density, velocity and Mach number 

respectively. 

This relation can be transformed into the following: 

J(L) = _ fw'A. .fl. de 
fo2. Yf /oz J ML-I 

This is readily seen to be expressible as follows: 

= - rt. /vf7. 
f,,z / A1 1

- I 

( 12) 

As can now be easily eeen that dp/dol in eq. (10) can be 

determined for any point on the airfoil provided that the 

derivatives of 8z and p02 with respect to ct. are known. d cJz,'dc(,, 

represents the change in Frandtl-Meyer angle behind the shock 

at the leading edge element of the airfoil surface due to dt.£. 

1.2 



dPo2 /dol represents the change in stagnation pressure behind the 

oblique shock due to d ol • In the following sections, these 

two quanjities will be determined. 

Determination of d 8z /d~ : 

As has been mentioned previously, the 62 is determined from 

M z calculated from eqs. ( 1) and (2). It is possible to write: 

{
d0z.) ( .) M 2

) ( ;,(J) ( 13) 
d/111.,_ ~ /J ¾""' Jo( Meo 

The determination of derivative of ~z with respect tool then can 

be handled by determination of d8.z,'d.M2 , ("~,a)"'°", ("~/9/dal) Mt1o 

separately. However, it is found that dealing with the velocity 

vector W2 is more conveaient than dealing with the Mach number M2 • 

Fig. 5 is a flow picture of the oblique shock wave at the leading 

edge of the airfoil. ( upper surface) The components of 

velocities w~ and Wz before and after the oblique shock res­

pectively are related by the following formulae: 

~ 91adr 
"' ...... w.,., s;,,, f1 wave = 

~~~ ~~ w"°t - 6'\lp., Ct>S /3 
W.i< 

= Wz-t C: Wz (.PS (f-4>) 
w.., 

Wzn = ~ S,~ {/- </,) { 14) 
F✓g. s 

The energy equation of the flow upstream of the oblique shock 

can be written as : 

+ 
_!_ 2. 

aN r-, -= 
)"+I 

zO-') (15) 

where a 04 is the speed of sound in ·: free stream , i. e. a!= yf..,/ J>co 

13 
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and a! is the critical speed of sound in a direction normal to 

the shock surface. 

is known : 

From normal shock theory ( Ref. 1 ), it 

* 2. a,, = 

Substituting (16) into (15) : 

z { Y-t) 
Y+I 

- ""' [ 

t Z 

-2 0o,., 
+ -

Y-1 

( 16) 

( l?) 

In (1?), a°" is held constant, wb<>,,,. and Wz.,. are however changing 

with angle of attack of the airfoil. 

or 
dw2 ,, 

+ 

It is thus found: 

J wz,, 
= 

From the relation: 

.... 
= Wz., 

it follows that: 

= 

z {Y-t} 

r-1-1 

Thus, 

w...,,, 

Introducing the relations in eq. (14), this last equation can 

be written as: 

Also from ( 14) , 

(18) 

(19) 



From (15) and (16) : 
z 

= 
a ... .. 
woo,, 

= c(Y-t) 

Y+I 

Combining (14), (18), (19), (20) and (21) and reducing, it is 

finally found: 

Let w = w/a*, i.e. w is the velocity ratio to the critical 

speed of sound. 

w (cl.Wz) 

Then, 

Z clot M0o 
= 

.,,.z. - (cl~) 
a, ~ - A6 

~o(, '"'oa 

From (23) and (22) , 

Novi in eq. ( 1), holding M,,., constant, varying / and ¢,, it is 

found that: 

or 

( 
Y+t /fl/,,,, Z <P } dll - { Y+I s,-...2# } d</, = o 

s,-.,. 2/1 - z za,~zr1- (/>) r 2 z. c~szf/-1>> 

-- 4 
Y+I 

s,-;,.,zJ 
.r,;,,, Zfl 

15 

( 20) 

( 21) 

( 22) 

( 23) 

( 24) 

It is easily seen that c/, = </,I - <I.. where 2 'P is the vertex 

angle of the airfoil at the 

leading edge. ( Fig. 6) M. .. 
"" 



Then d<p /do(.: -1. 

Therefore, 

- r:;tDO = }':I Cos2(1J-</>) -

Substituting (25) into (24) : 

Introducing the Prandtl-Meyer 

dWz 
c/0z /M~z. - I - Wz. 

d/J1. = Jfft - I ~7. -dol wz dcx., 

It follows therefore, 

In this equation 

wo! CPS ~{tf- <f>) 

Thus, 

dbz 

dol 

= 

( 25) 

( 26) 

angle ~z now, 

( 27) 

(28) 

( 29) 

In eq. (29), the right-hand side contains four variables t:/>, /1 ~ 

Mo,,n, and M2 • These four variables are related by the oblique 

shock wave equations (1) to (4). It is found that for aim-

plicity of computation it would be better to further manipulate 

eq. (29) such that in its final form only two variables are 

16 



involved. In the present presentation, it is felt that the 

variables Moc,n and Mz should be expressed in terms of </> and $ • 

This can be done as follows: 

Write: 

From eq. ( 1) : 

I-

Using this relation, it can be found that: 

= Y+t [s,;,.,zjls,;,,z((J-<l>J +fJ'-1-iJ~,;,~ l 
4-St~ o/J c.osz(fJ- ti,) ') 

After eliminating M term in (l) and (2), it is found: 

Then, 

M:-1 -

S,',,,<t, :s,'.,,,((1-.P) 

C.os-(jJ-¢) 

coS/J eos(p-t/>) - Y+I s,;., ff> s,;, (f!..-¢2 
-z cos{p-4>) 

s,;,/1 s,;,, {f-<I>) ~ £::.!_ s,-.. r/> s,;,(/!._- ¢.) 
2 Cos (t8-¢>) 

( 30) 

( 31) 

( 32) 

17 

Putting into eq • . (29), finally the following formula is obtained, 

[ 
s,;,,z({J-¢) ..,. S,~z.p j 

dlJz 
z J'+I s,hZ/J - = ( 33) 

dd. [A] [B]Yz 

where 
_±_ eq52{p-<JJ) S,nZ~ 

[A] == -
r+1 s;;,,z[s 

[8] 
[ 

s,;, /i .r,;, ( (3- t:/>) + ~, s,;,,t, kln{p-t/.) } == 
Cos f1 Cos { (s- ;J,) - Y+I S,-,,f/,-h,n((l-¢) 

z 



It is desired to , prepare an engineering chart of d0z/dcie vs 

Moo. This is done in twi steps : first, eq. (33) is used 

to compute a set of curves of d8z/dce. vs (3 , for each of 

these curves cp is held constant; second, on the set of curves 

prepared from eq. (33), a set of Ma:> curves computed from eq. 

(1) is then cross-plotted. From this last cross-pltt, a set 

of d 0z /doc.. vs Moo curves for engineering use is prepared. 

These final cprves are presented in this report as fig. 7. 

The corresponding values of d0z/dol and M()() are also tabulated 

in !able 1. 

Determination of dpoz /d~ : 

In previous discussion, it has been pointed out that 

d 8z /de<. and dp0 z /d~ are the two important factors to be 

determined. The determination of dpoz /do( f olows a similar 

procedure as the determination of d ez /d°'- • 

seen from (3) that Po2.= .Poz( Moo, fl). 

It is easily 

Holding M():> constant, the derivative of p 02 with respect to~ 

may be written as: 

From (3), 

(35) 

Differentiating (35} with respect to /j , it is found that: 

(:36) 



where 

C = 

I> = 

z Y-t 
y+I + (. 2. )'-11) Meon 

z.Y 2 
-- Moo -
Y-t1 

L::..!.. 
Y-t I 

After proper manipulation, it is then found: 

( 37) 

The relation (30) may now be used to expreas M~n in eq. (37) in 

terms of cf> and /3 • After doing this, it is found that (37) 

is transformed into the following: 

= _ (Y-1) s,·.,.z.c:b 
44>S {J S,",,,, f(J-,1,) [ 5,"n (zf1-tl>) + J's,;,,,:/, J {38) 

Combining (25), (34), (36) and (38) : 

d?o-z. Y/oz 
s,;., <I> 

~ = [/1][E] 
(39) 

where s,-,,,, ztf, 
[Al 4-

Cos z. (fj- .4>) = -
Y-#t .s,-..., 2/J 

19 

[E] 
. { s,"n(zp-¢1 

S,;.fl Sm {p-¢>) s,;,,. <I> + r) (40) 
= 

The :preparation of an engineering chart of dp0 z /doC vs Mo0 is 

carried out in two ste:ps just as in the case of de~ /do( : 

first, eq. ( 39) is used to com:pute a set of curves of dp02 /d~ 

vs p, for each of these curves ct> is held constant; second, 

a set of M00 curves computed from eq. (1) is cross-plotted 

with the set of curves dp oz. /doC. vs (:J • From this last 

cross-plot, a set of dPoa /d(X_ vs Mo0 curves for engineering 
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use is prepared. These final curves are presented in this 

report as fig. 8. For computation convenience, (1/Y p02 ) (dfo2/J,) 

rather than dp 0 z /doe. is plotted vs M00 in fig. 8; see eq. ( 46) . 

Corresponding values of ( lf y Poz. ) ( dPoz. / do(. ) and Moo are tabulated 

in Table 1. 

"Exact" formula for dC&../d°'- at d..= 0°: 

Under ihe limitations of the ideal flow conditions stated 

in section 2, it is possible to derive an "exa.cttt formula for 

dCL /dot at d..= 0° for a two-dimensional symmetrical airfoil. As 

has been mentioned previously, at .J..= 0° , total preseures <on \ the 

upper and the lower surfaces of the airfoil a~e in equilibrium. 

No lift is exerted on the airfoil at this state. The effect of 

a purturbation os a momentary change in ol is such that this 

equilibrium is destroyed. It is well-known that in a superson~ 

flow an airfoil placed at a positive angle of attack °" will 

produce a lift force L. Furthermore, the upper and the lower 

surfaces of the airfoil contribute equally to this total lift. 

This fact can be expressed symbolicly as follows: 

L = -2P ( 41) 

*( In (41), P and L are assumed acting parallel; furthermore, 

If-

in (43), the local pare also considered as acting perpendicular 

to the free stream. This includes an approximation which will 

introduce very small error. ) 

Thus, dL _ 
2 

<!.f: 
~ = do(. 

(42) 



where P is the suction existing on the upper ;~ surface of the 

airfoil. 

In section 4, it has been sho'Wll ( fig. 4) that the response 

of the local pressure p on the upper surface with change in 

angle of attack d~ may be calculated from (10). 

(10) and (12), it is found: 

Combining 

Integrating along the airfoil chord, 
I 

dP = _ JB,. h J1

J'f ,._.,.._ d(f} + Jh,&.jLd(:_) 
doL. do(. roz. r.z j H"=-1 do<.. 1:,2. 

o 0 

( 43} 

where x/c is the ratio of the variable airfoil station to the 

airfoil chord c, Pis the integral of pressure on the upper 

surface of the airfoil. 

Combining {42) and (43) : 

(44) 

But { c =unit of length) 

(45) 

Combining (44) and (45), it is thus found: 
I 

JC,.. C 4- [l'r. JO,. JU M.,_ d/:'1) - i&-2-/.f.. dt: ,J 
do<. J',h M. 'Z. oz. de<. b p:;-.._ I G d(J( !!1. 

roa 1o o roz <> 

For convenience in computation, this last equation may be 

written in the form: 

JcL -= 4 l'oi { JEJ,_f'_t_ M,_ d/.5.) _ .L ~,.Jj dt/J] ( 46) 
d ~ 17- ,.,.z. J, dd. l'o-i. IM ... _, C Yf,,i. do<. o r.z. 

_ ,-~ rot><> O 

foPO 

21 

This is the "exact" formula compatible with the ideal conditions 

defined in section 2. The computation of dCL /do<. at o(=0° now 



resolves into the evaluation of two integrals: 

d 8& 1' _e_ ML d(~) and _, d t'o2 j '_l d 1x J 
dd:. D ?oz. jM..._I (: Y/'02. do<. D 1:.-Z. {e, • 

Using figs.? and 8 with a set of Prandtl-Meyer flow charts 

(as the standard set prepared by GALCIT ), this can be done 

without great difficulty. Indeed, after being used to the 

procedure, the evaluation of the integrals can be quickly 

done by an engineer with the labour of an hour or two. Since 

this is an 11 exact 11 solution of the flow state defined in 

section 2, it is expected the result of calculation from (46) 

will be more accurate than the linearized or the second order 

or the third order theories. 

following sections. 

This will be discussed in the 

Discussion on d 8z /doe. and dp oz /d~ : 
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Before going into illustrative examples showing the applications 

of eq. (46), it is felt that a few more words on the behavior 

of the d ez /do<. and dp()a. /do<. curves will be helpful. 

As has been mentioned in section 2, the present method is 

restricted to completely supersonic flow only. Thus the 

limiting case will be when the Mach number immediately behind 

the shock, Mz , becomes 1.00. For if the Mach number behind 

the shock, Mz, is less than 1.00, there will be a subsonic 

flow region in the flow, and the differential equation governing 

the subsonic flow is of the elliptic type. The characteristics 

of this flow are not real. The disturbance at one point will 

be propagated forward into the fluid. The present analysis 



will therefore break down. 

It will be clearer to state the limiting cases in the following 

manner: 

1. For a certain given airfoil with given vertex angle f , 

there exists a minimum free stream Mach number MA:.,,, , such that 

with free stream Mach number Meo lower than Mdo,.. , the present 

method will not apply. 
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2. Alternatively, if the free stream Mach-, number M"" ie fixed, 

there will an airfoil with a vertex angle fm, such that for any 

airfoil with vertex angle /.P greater than W,,, , the present 

method does not apply. 

Now, it will be interesting to study the behavior of d 82 /dol 

and dpo~ /d~ in this limiting case, namely, when Mz = 1.00. 

From (27), 

dlJ.2 
dol = -

/M:-1 dwz 

Wz dq, 

v4).en 11.z = 1.00, 
/""4----1 

:a. = 0 
wz. 

But dw-a. /d¢' remains finite. 

from the oblique shock polar 

( fig. 9 ) . This oblique 

shock polar is actually a 

hodograph diagram of the 

oblique shock flow field. 

w, represents a velocity 

This fact can be seen easily 

+ii 

vector with horizontal and vertical components of u~ and v~ 

respectively. It is clear that when point A is moving along 

the shaded (supersonic) portion of the polar, w,. will be 



monotonicly decreasing as cf> increases. dw2 /defl at A' 

( M.z. = 1.00 ) will be negative but finite. A" is the point 

representing maximum possible deflection of the flow without 

occurence of detached shock wave. It is concluded therefore, 

d e.z. /dsJ... = o when llz. =- 1.00. 

The values of dpo~ /d~ have been actually computed for the 

case of M~= 1.00; the values are given in !able l. 

all positive finite values. 

They are 

Referring back to (46), it is easily seen that in the limiting 

case M2 = 1.00 the first integral vanishes leaving a negative 

quantity arising from the second integral. Hence, dCL /do<. 

at el..= 0° for this limiting case becomes negative; this reslt 

will be discussed later. 

dCt. /do( formulae from approximate theories : 

In the following section, illustrative examples are 

computed from the present "exact" formula (46). For the 

purpose of comparison, the Ackeret's linearized theory (Ref. 1) 

and the Busemann's second order and third order approximation 

theories (Ref. 4) are studied. It is found that Busemann's 

calculation of the coefficients of the approximate series for 

the pressure change due to flow deflection in isentropic flow 

and in oblique shock flow involved several errors. The error 

in the case of the approximation series for oblique shock flow 

was discovered lately by E. V. Laitone (Ref. 3). Laitone's 

new derivation has been checked. Buseann's mistake in the 
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isentropic flow case has been corrected. ( For details see 

Appendix. ) With these corrections, the approximate formulae 

for dCL /d~ of the two-dimensional symmetrical airfoil will 

take the following forms: 

Linearized theory: 

= 2 c, 

Second order theory: 

c!.5- = {z.-+ 34- z-... ) c, 
d~ 

Third order theory: 

where T = maximum thickness/chord 

i.e. thickness ratio 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 

In (51) to {55), the c, , Cz , C..1 and b, , bz , b 3 are res­

pectively the coefficients of the first three terms in the 

following infinite series expressions for the pressure coe-
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fficients Cp, and Cp$ corresponding to the flow deflection 

angle 4> in the ieentrppic flow case and in the oblique shock 

flow case respectively, namely, 

Definition of pressure coefficient: 

(56) 

Isentropic flow: 
~ n 3 

Cp, = L. C,.. <P = c, cf:, + Cz <l>z. + c., c:j, + ••• (57) 
r,:. I 

Oblique shock flow: 
00 ,. J. I, ..J.. Z /, ~3 

C ~ b ..J... - b,-,, + z."t' + :., + ... 
Ps = C- n't-' -

(58) 
,, ... , 

The values o:4 c, , Cz , c3 are computed for various ll00 and 

tabulated in Table 2, in which also values of b3 taken from 

Laitone's paper are included. d represents the difference 

between the coefficients, of third terms in the approximation 

series (57) and (5e). Thus, d actually represents the effect 

of the oblique shock wave. And, therefore, it is evident 

from (47), (48) ani (49) that: 
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1. In linearized theory the airfoil is assumed of zero thickness 

and the flow around the airfoil is everywhere supersonic and 

isentropic. 

2. In second order theory the airfoil is assumed of finite 

thickness and the flow around the airfoil is everywhere super-

sonic and isentropic. 

in the term involving 

Thet. effect:: of thickness ie expressed 

7:-2. 
3. In third order theory the airfoil is assumed of finite 

thickness and the airfoil introduces oblique shock waves in 

the flow which is however isentropic before and after the 



oblique shock and everywhere supersonic. The effects of 

thickness and shock waves are expressed in the terms involving 

--z-z and d. 

In the present theory, the flow around a two-dimensional 

symmetrical airfoil of finite thickness is considered with 

the presence of oblique shock waves. Hence, it is expected 

that the third order theory will show a better agreement with 

the present thoery. This will be seen to be true in the 

following calculations for two simple cases. 

Illustrative examples: 

The present theory is used to compute the dCL /do<. at cl..= 0° for 

two cases, namely, 1. a symmetrical circular arc: airfoil of 5% 

thickness, and 2. a symmetrical circular arc aiffoil of 1&% 

thickness. In both cases, the computation procedure may be 

outlined as follows: 

l. Determination of geometry of the airfoil surface: 

In the present method of calculation, it is evident that the 

accuracy of the results depends on the care given in the de-

termination of the geometry of the airfoil surface. For the 

illustrative examples included in this report, the circular 

arc surfaces are approximated by 20 straight line elements. 

For greater accurauy, a higher number of elements may be used. 

In general, for a circular arc airfoil, the following formulae 

hold : The half vertex angle of the airfoil, <y , (fig . 1.q) 

27 



(59) 

where 

T is the thickness ratio of the 

given airfoil, N is the number of 

straight elements to be used in 

the approximation • 
0 

Fur o( = O , 

• 

The expansion angle between successive straight elements is 

determined by the formula: 
2.r t = - N 

(60) 

For any other given airfoil shape, the vertex angle '// and the 

expansion angle t can be found also. In such cases, proper 

formulae should be determined in substitution of (59) and (60). 

2. Determination of the conditions immediately after shock: 

The flow deflection angle </> at the leading edge element being 

determined by (59), it is now possible to use (1) and (2) to 

determine /J and M2 for given Meo. Another method is to de-

termine /J <.from an oblique shock chart. (Ref. 1) 

pute Pz /Pt>o from (4). Compute Po0o /Poz from ( 3) • 

compute p 00 /Pr>"° by the familiar formula : 

Combining these results to find PL /Poz, namely, 

f z fz foo !'t>H 

Po,. =- fo,, /'o"'9 foz 

Then com­

And 

( 61) 

Again using ( 61), it is possible to dete1m1ine M 2. • Thie 

second procedure is used in actually carrying out the present 
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exwµples because Pooo /Poz and Poo /p"O() charts:~vailable in 

GALCIT and therefore the computations involved in the second 

method seem to be easier than applying (1) and (2) directly. 

(Mz may also be read directly from oblique shock charts but 

the accuracy will be poorer. ) A1·-r.er Mz is determined, the 

corresponding Frandtl-Meyer angle 6z is read from the Prandtl-

Meyer flow charts. These computations have been carried out 

for a series of Meoo 's for both the 5% thick airfoil and the 10% 

thick airfoil. 

3. Determination of the integral I I _t d(:J 
0 foz • • 

The next step is to find local Pra.ndtl-Meyer angle 0 at 

successive e~ementa of the airfoil surface. This can be easily 

done using ( 6). The standard p/p0 ~ vs B charts (aa prepared 

in GAWIT) are now used to find p /Poz existing over the 

various elements. These readings of P/Poz can be plotted 

against x/c and the area under 

the curve (fig. 11) can be 

graphically integrated. In the 

present calculation, the p/p02 

values existing over the twenty 

elements are averaged over the 
0 

entire surface, and the area under the rectangle with height of 

(P/Poz)Q.,. is taken to be equal to the integral. This calculation 

has been repeated at a number of Moo 's for both the 5%thick 

airfoil and the 10% thick airfoil. 

4. Determination of the integral 
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Knowing the local Prandtl-Meyer angle 9 at the successive 

elements of the airfoil surface, the local Mach number M can 

be found from standard M vs 9 charts. Calculate the factor 

""- M z / ( Mz. - 1 )Vz • • ..t ~ F,·xed ..,, and multiply J. t 
b ~ One/ M~ fi,;;.JM-c...f 

by p/p02 found in step 3. And 
..e., M'-

/>oz. ,.J Mt_ I 
then the quantity 
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can be plotted against x/c resulting 

0 
JC 
c 

in a diagram like fig. 12. Then 

the integral is evaluated at a 

Fig. IZ 

number of M0o 's by the same approxi.,;,;­

ma tion procedure as in step 3. 

5. Determina.tion of d8~/dot ahd l/yp(dp0 z./do(. ) : 
0-t, 

For the known flow deflection ¢, and at the various free stream 

Mach numbers used in the foregoing steps, the values of dBz/dol 

and (1/Y p) (dp0 z /do<.) are read from figs. 8 and 7. 
Ol. 

6. Determination of dCL /dot : 

Finally the values found in the previous :--steps are substituted 

in (46) and the values of dC~ /d~ are calculated. 

These computation results are given in Tables 3 and 4. It 

should be pointed out at last that the computations though a 

little tedious are very straight forward and with the help pf 

standard oblique shock charts and Prandtl-Meyer flow charts 

very rarely any errors in the intermediate steps will be likely 

to occur. Ror completeness, the basic formulae for computation 

of the Prandtl-Meyer flow charts are given below. (Ref. 1) 
h -L 

L = {1 + Y;I 1vf') Y-t 
p6 

( 61) 
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( 62) 

It will be found in Tables 3 and 4 that dCt.. /dd... values computed 

from the approximate formulae (4?),(48), and (49) are also listed 

for comparison. The computation procedures for these approxi-

mation theories are self-evident and no further elaborations are 

needed. 

and 14. 

The data from Tables 3 and 4 are plotted in figs. 13 

It is possible to draw the following conclusions from 

the results of computations. 

COnclusion: 

1. The famous linearized theory formula gives a value of dCL /d~ 

too low in comparison with the preaent theory. The difference 

becomes very great at very high Mavh number region. In extreme 

case like the 10% thick airfoil at free atream Mach number of 

8.00, the dCL /d~ obtained from linearized theory is about 50% 

lower than the dC L. / do{ from the present theory. Furthermore, 

by comparing the second order theory with the present tae 

pr~eesi theory, it is seen that the second order theory has very 

little improvement over the linearized theory. It may therefore 

be concluded that this enormous difference in dCL /d~ between 

the "exact" theory and the linearized theory is mostly due to 

the shock effects. This conclusion is substantiated by the fact 

that the Busemann's third order theory which includes a shock 

wave term, brings the dCL /d~ values at vari•us Mach numbers in 

much better agreement with the present theory. ( Even in the 



extreme case of very high Mach number , say M00= 8 .oo, for•, the 

10% thick airfoil, the discrepancy is about 25%. ) 

2. The thickness of airfoil, however, to some extent, determines 

the strength of the shock wave. For thinner airfoil, the 

oblique shock wave produced will be weaker. Thus, if comparison 

is made between two airfoils of different thicknesses at same 

free stream Mach number, it will bw expected that for the thinner 

airfoil, the difference between the "exact" theory and the 

approximate theories will be smaller. This is proved to be 

true by the present calculations. 

3. From the present theory, the slope of lift curve will reverse 

its sign in the lower Mach number region. This is due to the 

vanishing of d9.z/do{ at the limiting case, Mz = 1.00. A study 

of the behavior of the integrals .J__ df>oi I' i cl("). and rt.,. d~ lo Po2 C 

de2 1' J_ M... d(~) shows that as the free stream Mach ~ 0 l'oa. Ji.,, .. _, 

number decreases bpth integrals increases in magnitude and always 

the second integral dominates except when the region close to the 

limiting case is reached. In the region near the limiting case, 

the second integral decreases violently due to the variation of 
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d ez. /do( while the first integral is comparatively very stable. 

Thus, the values of d.CL /d~ are dominated by the second integral 

at all Mach numbers except those Mach numbers close to the 

limiting case. The first integral expresses the effect of 

change in stagnation pressure behind the oblique shock. This 

integral accounts for the effect of change of entropy. In 

other words, it may be asserted that the reversal of sign in the 

slope of lift curve at Mach number close to 1.00 is a result 
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from the oblique shock effects. In linearized theory and 

.. second order theory, the oblique shock waves are ignored, thus, 

this tendency of reversal in sign in dCL /d~ is obscured. This 

fact is further substantiated by a calculation of the slope of 

lift curve near Mach number of 1.00 using the third order theory. 

The third order theory actually shows the same tendency only the 

occurence of the reversal of sign is at a Mach number still closEr 

to Moo= 1.00. This is explainable by the fact that the third 

order theory has not been able to avcount for the oblique shock 

effects completely due to the omission of higher order terms. 

The reversal of sign in de .. /d c{ is actually observed in certain 

recent experimental study of the airfoil characteristics in 

transonic regions. It is hereby shown that this behavior of the 

airfoil is explainable by a potential theory with proper assum­

ptions regarding the oblique shock. 

4. In the present calculation, it has been stressed that the Iowa: 

limit is the case in which Mz = 1.00. There appears to be no 

limit in the high Mach number end. However, it must be re­

membered that the irrotationality of the flow behind the shock 

is a very essential postulate. If this postulate ia violated 

the theory will break down. Thus, as a geheral rule, it may 

be stated that for thinner airfoil the theory will find its 

application extended further in the direction of the high Mach 

number end. For thicJ airfoil, the results of calculation from 

the present theory may not be s9 accurate at very high Mach 

numbers because the flow behind the shock in such cases may be 

rotational. However, for such cases, the linear theory certainly 



does not apply. 

5. Lastly, it should be pointed out that effects of viscosity 

are completely ignored in the present analysis. The effects 

of viscosity may be important in determining the local flow ,; -· 

conditions. And from recent reseaches, it has been found out 

that in transonic regions the nature of the shock wave depends 

to a large extent on the nature of the boundary layer. 
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Table 1 

<I>= 20° 4'= 80 

Moo d8z/Jd. 
.!.. cljJ1. 

MN dB2/dc1. 
1 d?oz 

Y.'f: drl. y,~ doC. c,& oz. 

1.825 0 .730 1.36 () .151 
2 1.409 .i6o 2 l.063 .061 
3 1.485 .571 3 1.101 .150 
4 1.633 .968 4 1 . 154 .307 
5 l.78? 1.418 5 1.218 .526 
6 1.92 1.840 6 1.287 .aoo 
7 2.039 2.242 7 1.360 1.152 
8 2.14 2.607 8 1.436 1.570 
9 2.228 2.900 9 1.510 2.000 

10 ----- 3.168 10 1.580 2.450 

cl>= 16° <I>= 40 

1.672 0 .463 1.21 0 .0595 
2 1.246 .210 2 1.01? .020 
3 1.331 .428 s l.028 .040 
4 1.458 .765 4 l.043 .090 
5 1.60 1.185 5 1.063 .170 
6 1.735 1.660 6 1.084 .270 
7 1.856 2.120 7 1.111 .410 
8 1.962 2.560 8 1.141 .580 ·-
9 2.053 2.960 9 1.171 .780 

10 2.127 3.320 10 1.203 1.020 

cp = 12° 

1.51 0 .281 
2 1.137 .122 
3 1.264 .280 
4 1.299 .550 
5 1.409 .905 
6 1.518 1.330 
7 1.628 1.790 
8 1.733 2.258 
9 1.826 2.740 

10 1.902 3.180 
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Table 2 

MQO 1.1 1.2 1.3 1.4 1.5 1.6 
c, 867 53.8 14.40 5.80 3.06 1.97 
d 322.6 .58 .13 .328 .271 .183 
c, 4.364 3.015 2.41 2.05 1.79 1.60 
c~ 30.32 8.31 4.30 2.92 2.29 1.95 

Mao 2.0 3.0 4.0 5.0 10.0 
C .1 .92? 1.13 1.51 1.91 3.9 
d .092 .061 .105 .136 .322 
c, 1.16 .707 .516 .408 .201 
CZ 1.47 1.27 1.23 1.22 1.204 

Table 3 

5% thick symmetrical circular arc airfoil 
dC1-/dd.. dC,.jdd. dC,./dd dt'c../do< 

M..., "exa.e,t" Linearized 2nd. order 3rd. order 
(46) (47) (48) (49) 

1.1 8.728, 8;,728 6.628 
1.2 

__ .. _ 
6.030 6.036 7.047 

1.2?8 - .198 5.ooo 5.000 5.050 
1.4 4.lJO 4.096 4.100 4.178 
2.0 2.36 2.310 2.312 2.314 
4.0 1.13 1.033 1.034 1.053 
6.0 .757 .676 .6?7 .707 
8.0 .649 .504 .505 .548 

Table 4 

10% thick symmetrical circular arc airfoil 
dr,,./4o< dt',./do< dft./dr1. Jt;_/dd.. 

Moo "exact" Linearized 2nd. order 3rd. order 
(46) (47) (48) (49) 

1.1 ----- .461 
1.4 4.096 4.111 4.572 
1.465 - .435 -----
2.0 2.545 2.310 2.319 2.369 
4.0 1.261 1.033 1.037 1.112 
6.0 .995 .676 .6?9 .aoo 
s.o .907 .504 .506 .678 
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Appendix: 

Derivation of c, , c 2 , aild c 3 • • 

The pressure rise in isentropio flow due to flow deflection¢> 

may be written as: 
dcp 

This may be expanded as a Taylor series: 

;rtf>) = j:,(o) +fto}¢, +;f 1

(0)¢z + ~ f 1

fo)¢,
3
+•·· 

It is found that: 
.f' VII z. 

J M'L-1 

~-.. [(M ... -Z)1-+:M4-} 
Z (,v,-~·-1) 

Now introduce : 

P- f04 = == 
ID "-z J...,W0c, 

Then c, , Cz, and c3 given in (51), (52) and (53) are easily 

found. 
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