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Summary ¢

This research consiasts of a study of several methods of
computing the slope of 1lift curve for a two-dimensional
symmetrical airfoil of finite thickness in completely
supersonic potential flow,. An "exact" formuls is derived
by considering the flow conditions over the airfoil surface
including the effects of the oblique shock waves emitted
from the leading edge of the airfoil. This "exact" formula
is applied to two simple cases : (1) a 5% thick circular arc
airfoil, and (2) & 10% thick circular arc airfoil. The
computation results are compared with (1) Ackeret's linearized
theory, (2) Busemann's second order theory and (3) Busemann's
third order theory. It is found that the presence of shock
waves at the airfoil leading edge will lead to a reversal in
sign of the slope of 1ift curve at low lach numbers close to
1,00, this effect is also sometimes observed experimentally,
Furthermore, it has been shown that the linearized theory
and the second order theory give too low dC. /dol values at
high Mach numbers, The third order theory agrees with the °
"exact" theory in general tendency but is not quite so accurate
in very high Mach number region and at Mach numbers close to
1.00, Thus, for accurate determination of the slope of 1lift
curve , the "exact" formula may find some engineering uses,
To facilitate future computations, charts for the necessary
coefficients are prepared and steps in applying the formula
for engineering cases are outlined and discussed in some

detail.



Symbols :
( Joo conditions in free stream, i, e, ahead of the obligue
shock,
( ), conditions immediately behind the oblique shock,
Free gtream conditions :
M, Mach number
Po 8tatic pressure
Weo vVelocity
20 Sound velocity
Q. dynamic pressure
Qoo density
P, 8tagnation pressure
Conditions at 2 ¢
Mz, Mach number
p, static pressure
W, velocity
6, Prandtl-Meyer angle
P,» stagnetion pressure
Local conditions over the airfoil :
M  Mach number

static pressure

w velocity
e Prandtl=-Meyer angle
(4 density

Angles :

& expansion angle between two adjacent elements of the

airfoil surface



oM

L& B ow

B wave angle of the oblique shock
« angle: of attack
@ flow deflection due to the obligque shock
2¥ vertex angle of the airfoil
ratio: of specific heats of air
critical speed of sound
airfoil thickness ratio

running airfoil chord ratio

total pressure on the upper surface of the airfoil
lift force
pressure cefficient:

Cpc in isentropic flow

Cps in oblique shock flow



lgtréauction :

It is well-known that in a completely supersonic steady
flow the partial differential equation governing the flow is
of the hyperbolic type. A given disturbance cannot be pro-
pagated forward into the field; in fact, there exists the
Mach line or the characteristic line on one side of which the
disturbance produces no effects. ( Ref., 1, 2 ) Based upon -
this principle and neglecting the effects of viscous boundary
layer, the supersonic flow past a two-dimensional airfoil of
finite thickness can be determined by a step by step calculation.
The conditions at any point on the airfoil surface depends only
on the geometry of the surface, They can be calculated for
all points on the surface if the conditions at one point are
known. It is usually observed in wind tunnel experiments that
an oblique shock wave is emitted at the leading edge of an
airfoil in supersonic flow. This obligque shock wave represents
an irreversible adiabatic process. If the shock strength is
not too strong, as for example the oblique shock wave created
at the leading edge of an airfoil at low angle of attack, it
has been shown that the flow before and after the shock wave
is essentially isentropic. ( Ref, 3 ) In such case, as before,
the step by step calculation method can be used to obtain in-
formation about the airfoil characteristics as long as the
airflow before and after the shock is everywhere supersonic,
Knowing the free stream conditions i. e. the conditions far

away ahead of the airfoil, the obligue shock formulae will



give a definite solution for the conditions at the surface of
the airfoil immediately after the shock at the leading edge.
Having calculated the conditions immediately after shock, it

is possible to apply the Prandtl-Meyer expansion law to determine
the conditions at all points on the airfoil with the understandim
that flow is everywhere supersonic and isentropic after the
shock, and that the boundary layer effects are neglected., It
is the purpose of this present research to carry out a calcu-
lation of this nature in order to determine the behavior of the
slope of 1lift curve for a two-dimensional symmetrical airfoil
in supersonic flight. However, for calculation of the slope
of 1lift curve for an airfoil, it is more convenient to deal
directly with the differential increment of pressure on the
airfoil surfaces with respect to the differential increment of
the angle of attack of the airfoil. In symbolic form, this
pressure differential may be represented as dp/d«L . A pro-
cedure of exactly determining this pressure differential is
worked out in great detail in the present analysis. It will
be seen that under the aforesaid conditions, it is possibdble

to develop an " exact " method of calculation of the slope of
1ift curve for a two-dimensional symmetrical airfoil by summing
up the local pressure differentiels over the airfoil surfaces,
It will also be seen that the results of such a calculation
differ considerably from the familiar linearized formula

aC, /det = 4/ ( M:- 1 )yz especially in very high Mach number

regions and at Mach number close to 1.00. The Busemann second



and third order theories ( Ref. 4 ) however give a closer
agreement with the calculation. Especially, the third order
theory which has taken into account the shock wave terms shows
a general trend agreeing pretty well with the present calcu-
lation. At present, the control surfaces for supersonic
missiles and aircraft are gemerally designed on the basis of
the linearized theory, It is hoped that the present calcu-
lation may lead to a better design analysis of the control
effectiveness, To meet this design need, several charts are
presented here which will facilitate the calculation of the
slope of 1lift curve for any two-dimensional symmetrical airfoil

in supersonic flow,

Ideal supersonic flow around a two-dimensional gymmetrical
girfoil :

To clarify the idea of the reader, it is desirable to define

here the ideal supersonic flow
case that is going to be dealt
with in this paper, Fig. 1
represents a section view of a
two-dimensional symmetrical
airfoil of finite thickness
placed parallel to the free
stream, The free stream Mach

number Mo, is above 1.00, i. e.

supersonic, and the flow is



isentropic before encountering the airfoil. At the leading
edge L, locally plane shock waves of equal strength are emitted
from both the upper and the lower sides of the airfoil, These
shock waves are assumed infinitely thin. They are regarded as
an irreversible adiabatic process, The geometry of the airfoil
surfaces is assumed known. The airfoil surfaces are continuous
arcs which may be considered as composed of a large number of
small straight elements intersected at a small angle & . Neg-
lecting the boundary layer effects, i. e. in potential flow, it
can easily be seen that the air in passing from one element to =
the next element along the airfoil surface will be deflected by
an angle €& . The dotted lines in Fig. 1 represent the Mach
lines or the characteristic lines emitted from the intersectiocns
of the adjacent elements of the airfoil surface., Each Mach
line represents a Mach wave which will interfere with the oblique
shock wave from L, Through the interference of the Mach waves,
the oblique shock waves from L will eventually be transformed
into lMach waves extending to infinity. Besides, other Mach
waves will be reflected towards the airfoil.. These reflected
ach waves are certainly very weak and in the present analysis
their effects are ignored, This is essentially an assumption
that tiie plane oblique shock waves from L will be preserved far
enough from the airfoil that the flow may be considered every-
where irrotational behind the shock, In other words, the flow
is regarded as isentropic after the shock. Another important

limitation is that the complete flow field is assumed supersonic,



With this ideal flow field, it is possible to make an exact
analysis of the slope of 1ift curve of the airfoil by employing

the oblique shock laws and the Prandtl-lMeyer flow expansion laws.

Fundamental formulae of obligue ghock and definition of Prandtl-

lleyer angle ¢

Consider a configuration as in fig. 1 in which a steady
uniform supersonic stream with free stream Mach number Mo.is
impinging on a two-dimemsional symmetrical airfoil lying
parallel to the main stream, Obligue shock waves of equal
stremgth are created at L on both sides of the airfoil, The
oblique shock will deflect the flow such that f'low direction
after the shock is inclined to the main stream at an angle &
( Fig. 2 ). In fig. 2, B denotes

the wave angle of the oblique shock,

M, denotes the local Mach number M, B_, My
———p L
behind the shock., Knowing M, and A o
¢ , it is possible to determine g
and M, by the following oblique s
13.
shock formulae: ( Ref, 1 )
L. s - Ll oA d (1)
e i+ T Mo Co5'f (2)
Ml B T e & Y1 +* Yot 2 a-t
)/MMJ‘I"/"—E‘ /"'TM“,Slnﬂ

where ) denotes the ratio of specific heats of air, In the



present calculation Y is taken to be 1.40. M, will correspond
to a certain Prandtl-Meyer angle 6, .

The meaning of Prandtl-Meyer angle 4, will be clear with
an examination of fig. 3. v
This figure represents a

hodograph plane, The

region outside the unit

Mach number circle ( M=1) /?;::
; 8,

represents supersonic \i::: -

flow. If the hodograph

of a two-dimensiocnal
supersonic flow along a

curved wall is plotted Frg.3 6

on this hodograph plane,

it will result in a characteristic curve ( an epicycloid ). In
particular, the curve "ab" in fig., 3 represents the charagteristic
cocrresponding to the supersonic expansion flow ( sometimes called
Prandtl-Meyer flow ) with initial flow direction horizontal and
initial Mach number one. By "ab", the unique relationship bes
tween flow direction and tlow velocity, i. e. Mach number is
clearly defined, The angle € indicated in fig. 3 will be
called the Prandtl-leyer angle corresponding to the Mach number
M. ( Ref. 1 ) Then, M, will correspond to the Prandtl-Meyer
angle 0, indicated in the figure,

The supersonic flow around the airfoil is separated by the

oblique shock waves into two regions of isentropic flow. Let



P,., @nd p,, represent tne stagnation pressures before and after
the shock respectively. P,z Will be different from p.,.. because
of the entrppy increase through the introduction of the oblique
shock wave, The following formula gives the relation between

Poooe @Nd Doy 3 ( Ref. 1)

Y

T e g x
o = .E.ZM‘:SI;L/;_L—_/)Y'< (Y/)MNSMZ/?J-Z)
fea ! Fel (¥+1) Mg $iaB

(3)

The local pressure p, on the airfoil surface immediately behind
the shock may also be determined by the following formula :

( Ref. 1 )

—P-l— = 24 M:S':"?}'g Sl

/bw Y+ r+/ (4)

where p,, 1is the free stream pressure.

Therefore the condition at the surface of the airfoil
immediately after the oblique shock can be determined, The
step-by-step calculation of the airfoil characteristics can be

then carried out without great difficulty.

Fdndament@; formulae for change of local pregssure at the airfoil

surface due to change in angle of attack

In fig. 1 the airfoil is placed at an angle of attack of
zero degree with respect to the main stream, Let p and M denote
the local pressure and Mach number at the airfoil surface, It

is known from the characteristics of supersonic flow that local



pressure may be expressed as a function of the local Prandtl-
lleyer flow angle 8 which is uniquely related to the local
Mach number M, In symbolic form, for the flow past the

airfoil :

—f— = f(mM) or g(e) (5)

In potential flow, the local flow direction is everywhere
tangential to the airfoil surface, Congidering the airfoil
gurface as made of straight elements ( Fig. 4, upper surface ),
the flow direction at the nth element of the airfoil will
differ from the leading edge element of the airfoil by an angle
En « €n represents the flow
expansion angle between the
leading edge element and the
nth element, Then, the local

Prendtl-lMeyer angle © at the ff”

7
nth element of the surface of L.£ element nth element
Frg. 4
the airfoil will be given by : 7
6 = 62 + En (6)

It will be interesting to study the effects of changing the
angle of attack of the airfoil, to be more specific, the change
of locai pressure due to the change of angle of attack, This
may be found as follows:

Write

/é - Foz (75;) (7)

e



Differentiating formally with respect to oL :

dr _ Jd Dba) db £ db. 8
d< a da d< T ke a4 el
But from equation (6):
dé d6:z (9)
Jod do
Hence,
b
F - kit % . & (10)
doc d o dol Bz d

Eq. (10) is the fundamental equation of the present report.
In eq., (10), the term (d(p/ P..)/d6) is a function of local
Mach number; this can be shown explicitly by introducing the

relation for pressure'change through a small wave ( Ref, 1 ) :

2 _deé (11)
Jf’ = -fw _M"——-I—I

where ¢ , w, Il are local density, velocity and Mach number
respectively.

This relation cen be transformed into the following

d{f) = - £w" XE _dE
h:l )/Ib /Zz JM"
This is readily seen to be expressible as follows :
(a ”/m) _ v M (12)
Jdé bz JM*-1

As can now be easily seen that dp/do« in egq. (10) can be
determined for any point on the airfoil provided that the

derivatives of 6, and p,, with respect to « are known, d46&/£d«
represents the change in Prandtl-Meyer angle behind the shock

at the leading edge element of the airfoil surface due to d«L ,
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dp,, /4« represents the change in stagnation pressure behind the
oblique shock due to dX . In the following sections, these

two quangities will be determined,

Determination of 4% /d«L :

As has been mentioned previously, the 8, is determined from

M, calculated from egs. (1) and (2). It is possible to write :

dbz (de) 4M1) {dez)( ) ( ) (13)

am,

The determination of derivative of 6, with respect to « then can
be handled by determination of dé/fdu, , (""%,g ) PP (%P5 ) p1,,
separately, However, it is found that dealing with the velocity
vector w, is more convemient than dealing with the Mach number I,
Fig. 5 is a flow picture of the oblique shock wave at the leading
edge of the airfoil. ( upper surface ) The components of
velocities w,, and w, before and after the oblique shock res-
pectively are related by the following formulae:

LIS %2 .
it W, = Weo Sinf

& Wy, = Wio Cos 8

<5 "

Wy Sin (- 4) (14)

: w,
Fg.$

[}

The energy equation of thé& flow upstream of the oblique shock
can be written as :

L * - al = )/+/ a*
2 Woon v By 20(r-1) “ (15)

where a,, is the speed of sound in:free stream , i. €. Q= ’/é“/fw
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and @5 is the critical speed of sound in a direction normal to
the shock surface, From normal shock theory ( Ref. 1 ), it
is known :

a: = W, wa, (16)

Substituting (16) into (15) :

2 ’ 2
oy ey = 2LZD [l e e (17)

In (17), a, is held constant, w,._ and w,, are however changing

with angle of attack of the airfoil. Thus,

-/
=< r+t
or
d vy, dw, Wos, o Wi,
+ n =
/ 2 ’ o
th Woc,, E ng" + }7__—7 Qpy

It is thus found :

J w2, _ M/,;," - } i:’_‘“n (18)
Wapn zl ”":;v r'.!:‘ By Woon
From the relation :
2
sz = WZ: * Wy
it follows that :
wy sz = 'vZn JWZ’) ok “/Zt vazt

Introducing the relations in eq. (14), this last equation can

be written as

Also from (14),
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Q/Wm_é_ = - W 5"1;1/3 d/g (20)
From (15) and (16) :
W, _al . 2(r-1) £y b J (21)
where M‘x =Wsop /aoo,, °
Combining (14), (18), (19), (20) and (21) and reducing, it is
finally found :
2 .
_ 4‘Wp° Smﬁtosﬁ )/ + (22)
“ I < (r+1)* [ ] »
Let w = w/a*, i, e. W is the velocity ratioc to the critical
speed of sound, Then,
aw, — 4 o i,‘"?z 23
w3, - RO (22
From (23) and (22) ,
—2
— T 4w S,Z-,/fcw/?[" M4]
an = - s
e (a z)Mm (y+1)* )M“ (24)

Now in eg. (1), holding M, constant, varying # and ¢, it is
found that

. Yl Pin2P Yl _Sin2f } db = o
[S'"ZIB' 2 zc»s*(/a ¢)} /‘9 { 2 Zas‘/ﬂ-¢)

or by _ 4 cos¥(B-4) — Sin2d
(3/9)MM =y ° Siazf

It is easily seen that & = Y- vwhere 2¢ is the vertex

angle of the airfoil at the

py T —& __

g

leading edge. ( Fige. 6 )

F'fg. 6



Then d¢/da= -1,

Therefore,
- - 2 270 @) - Sin2zd 25
( ) = ;:7 Cos {/e ¢) S‘l;tlﬂ ( )
Subgtituting (25) into (24)
-2 . 26
(dwz} = ol sopeorp [ ¥+ a3 | (z6)
2/ 4 2/ Sm2é
(¥+1) [7’;7 Cos /,3 é) - :,"zﬂ
Introducing the Prandtl-lieyer angle 6, now,
duw,
de, = M: -/ --3.:‘
(27)
dé, _ JIui-1 d%
dot w d&
2
It follows therefore,
-
/
d6, 2 _g‘f S}b/&avﬂ['}’-f;':; /,«4;-/ 26)
— = 2
do
2 SI”Z¢
(r+1¢) [_-- 6“63 é) - szﬂ
In this equation
E/‘: _ cost(ﬂ-¢)
ﬁ: (ps"/?
Thus,
3 A Y | -/
2 _ Gl “)j[’* 4] -
;o.( B 4— 2 - ﬂlz_‘é_ 29
‘v*, eos [/e“é) ‘I;'zlg

In eq. (29), the right-hand side contains four variables ¢, A ,
Mporps @nd M, . These four variables are related by the obligque
shock wave equations (1) to (4). It is found that for sim-

plicity of computation it would be better to further manipulate

(29) such that in its final form only two variables are

16
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involved, In the present presentation, it is felt that the
variables M,, and M, should be expressed in terms of ¢ and £ .
This can be done as follows

Write: M2 = Mg S8

From eq. (1)

/ Y+l ﬁ"é
Mz F= % 2 i cos (B-#) (30)

Using this relation, it can be found that :

[ sepsiep-d) srensae] (31)

(y+ 74;") - 4&u‘,@asz(p—
After eliminating M term in (1) and (2), it is found :

Sind St (/g “é}
Cos ge—sa)

_)_’_-;/ St D Sror (é "¢)

= cos/@-¢)

Cos$p —
Mz

z =

Sllﬂﬂjl;vga’ @)+

Then,
cosg Cos(B-4) - r e 5""04; J;';f,i )¢Z

ME-1 = -
y : " 109 162 (B~ D
o )+ G L

Putting into eq. (29), finally the following formula is obtained}
f Sm2(B-B) Si 2P
2 +

db, ¥+ St 2B
= - 33
dot (4] (8] =
where sin2d
4 .2p-) - SnZP
(Al = Ty O (i shzf
i v ( - ¢) + -{:—i S,;p¢ 'hﬂ(/‘&)
(5] - { sth B Sia (B 2
cosR Cos(ﬁ—d) = th- ln¢'ﬁ7ﬂ(ﬁ ¢)



It is desired to. prepare an engineering chart of d46z/d« ws
M;a. This is done in twé steps : first, eq. (33) is used
to compute a set of curves of d6z/dxX ve f# , for each of
these curves ¢ is held cohstant; second, on the set of curves
prepared from eqg, (33), a set of M, curves computed from eq,
(1) is then cross-plotted., From this last cross-plbét, a set
of 462 /d« vs Me curves for engineering use is prepared.
These final curves are presented in this report as fig. 7.

The corresponding values of d6:/d« and M. are also tabulated

in Table 1.

Determination of dpo=/d«& ¢

In previous discussion, it has been pointed out that
A0, /d« and dp,/dKk are the two important factors to be
determined, The detsrmination of dpoz /dx folows 2 similar
procedure as the determination of d46: /d« . It is easily
seen from (3) that D,,= Poz( Me B ).
Holding M., constant, the derivative of p,. with respect to «

may be written as :
dbox . (2} (28) (34)
de ap Mo & 0K Mo,

From (3), /

- — -—

X
r-i

2Y  mZsad —-)-':—/}y—'/u+._.__...___z
B & Poa, [—)—;;7 et Yyl Ly+r (re0) M sutp (35)
Differentiating (35) with respect to 8 , it is found that :

a/bo) = by (zr smzp[ = M.o,, J (26)

r=1/ s/ia%B
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where M,: gl;rzﬁ = M:cn
Y-t P4

C = —— 4 ——

y+i (¥+1) /‘4,,:;,

D = Zr Ma . )/"/

Yeo o yti

After proper manipulation, it is then found :

B e {=m = 2] (37)
M C P [()’-l)+ A;;,] [z,_ ;;;-l/ ]

oon

The relation (30) may now be used to express M., in eg. (37) in
terms of ¢ and (3. After doing this, it is found that (37)

is transformed into the following :

[ / _ﬁ"_g:__r_-] - - (y-1) Sin’d (38)

ML C D 4Co5 3 Sim (G-9) [Sim(2(-#)+ VSing]

Combingng (25), (34), (36) and (38) :

d/boz. _ Sin®
Iz Yfra [AILE] £
where
= -2 2g.4) — Sm2d
[14] = .)-’:T Cos //3 ¢) Sin2p
. . S (28-P 40
[E] = sSwp sialp-9[ __—&—JSIM «r] (40)

The preparation of an engineering chart of dp,, /d«L vs M., is
carried out in two steps just as in the case of 460z /d 3
first, eq. (39) is used to compute a set of curves of dp,, /de«
vs B , for each of these curves ¢ is held constant; second,
a set of M, curves computed from eg., (1) is cross-plotted
with the set of curves dp,z /d« vs £ . From this last

cross-plot, a set of dp.. /d« ¥s 1o curves for engineering
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use is prepared, These final curves are presented in this
report as fig., 8, For computation convenience, (L/y‘p“,)(dquL)
rather than dp,,/d« is plotted vs M, in fig. 8; see eq. (46).
Corresponding values of (1£y D, ) (dpe2 /dL ) and M, are tabulated
in Table 1.

"Exact" formula for dC./d« at «=0°:

Under the limitations of the ideal flow conditions stated
in section 2, it is possible to derive an "exact" formula for
dC, /d« at &=0° for a two-dimensional symmetrical airfoil. As
has been mentioned previously, at «£=0° , total pressures on:the
upper and the lower surfaces of the airfoil atre in equilibrium,
No 1lift is exerted on the airfoil at this state, The effect of
a purturbation o e momentary change in «£ is such that this
equilibrium is destroyed, It is well-known that in a supersoni
flow an airfoil placed at a positive angle off attack « will
produce a 1lift force L , Furthermore, the upper and the lower
gsurfaces of the airfoil contribute equally to this total 1lift.

This fact can be expressed symbolicly as follows:
*
L = -2P (41)

*( In (41), P and L are assumed acting parallel; furthermore,

in (43), the local p are also considered as acting perpendicular
to the free stream, This includes an approximation which will

introduce very small error. )

Thus, dL _ _ , dP (42)
dd ~ doC



where P is the suction existing on the upper. surface of the
airfoil.

In section 4, it has been shown ( fig. 4 ) that the response
of the local pressure p on the upper surface with change in

angle of attack dx may be calculated from (10). Combining
(10) and (12), it is found:

dlb‘:—-foz_ﬁ—_ﬁz:_ o,lg" +_£_0/P°1

da by Jar—1 el By dx
Integrating along the airfoil chord,
_ Je, yt .M o’k» ——4 43
_ /,“/hw 4(z) + / (£ (43)

where x/c¢ is the ratio of the variable airfoil station to the
airfoil chord ¢, P is the integral of pressure on the upper
surface of the airfoil.

Combining (42) and (43) :

6x [ VP x o_’/_‘%z/ld(g-
il _ zp, / SE L di: | % ) (44)
But L = G 9upec = ;q/P,.Mm (c =unit of length)
ol Az = de
. - 2 Yheo M s (45)

Combining (44) and (45), it is thus found :
dé. dé [yp_r_ yx) _ dpa -ﬁa/(*—')]
Zigrfﬂh[ﬁ’z //’/"_*TT z """.>//"’l ‘

For convenience in computation, this last equation may be

written in the form :

JCL _ 4' q’éz __t M T ___q1x ’/_a__fﬁ’l/—ﬁ‘ql( ]
dL /’ a* f;n_ t£) .V/;,_ dol

ol

This is the "exact" formula compatible with the ideal conditions

defined in section 2. The computation of dC. /dX at L=0° now
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resolves into the evaluation of two integrals.

don ['f i dZ) ana 3y, I [ ) :
Using flgs. 7 and 8 with a set of Prandtl-lMieyer flow charts
(as the standard set prepared by GAICIT ), this can be done
without great difficulty. Indeed, after being used to the
procedure, the evaluation of the integrals can be quickly
done by an engineer with the labour of an hour or two. Since
this is an "exact" solution of the flow state defined in
section 2, it is expected the result of calculation from (46)
will be more accurate than the linearized or the second order
or the third order theories, This will be discussed in the

following sections.

Digcussion on dfz /dx and dpez /d<

Before going into illustrative examples showing the applications
of eq. (46), it is felt that a few more words on the behavior

of the d62/dx and dp.a /dx curves will be helpful,

As has been mentioned in section 2, the present method is
restricted to completely supersonic flow only. Thus the
limiting case will be when the llach number immediately behind
the shock, M, , becomes 1.00. For if the Mach number behind
the shock, M, , is less than 1,00, there will be a subsonic

flow region in the flow, and the differential equation governing
the subsonic flow is of the elliptic type. The characteristics
of this flow are not real, The disturbance at one point will

be propagated forward into the fluid, The present analysis
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will therefore. break downe.

It will be clearer to state the limiting cases in the following
mannex:

1. TFor a certain given airfoil with given vertex angle ¢ ,
there exists a minimum free stream lMach number M,,,, , such that
with free stream Mach number Mas lower than Ms,. , the present
method will not apply.

2. Alternatively, if the free stream Mach  number M, is fixed,
there will an airfoil with a vertex angle ¥, , such that for any
airfoil with vertex angle ¥ greater than ¢, , the present
method does not apply.

Now, it will be interesting to study the behavior of d 6z /d«L

and dp.- /d« in this limiting case, namely, when M, = 1.00,
From (27),

d« W, db
Wgen I, = 1,00, L=l .o

But dW. /d¢ remains finite, This fact can be seen easily

N

from the oblique shock polar -~ +v

( fige 9 ). This oblique

ghock polar is actually a ’5\\\\1

=z o
hodograph diagram of the ru
obligue shock flow field.
N
W, represents a velocity Fig. 9 S | R,

vector with horizontal and vertical components of u, and v,
respectively, It is clear that when point A is moving along

the shaded (supersonic) portion of the polar, w, will be
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monotonicly decreasing as ¢ increases. dwz /d¢ at A’

(M, = 1.00 ) will be negative but finite., A" is the point
representing maximum possible deflection of the flow without
occurence of detached shock wave, It is concluded therefore,
462 /dd=0 when M,= 1,00.

The values of dp.= /dx have been actually computed for the
case of M,= 1,00; the values are given in Table 1. They are
all positive finite values,

Referring back to (46), it is easily seen that in the limiting
case M, = 1,00 the first integral vanishes leaving a negative
quantity arising from the second integral, Hence, dC, /d«
at L= 0° for this limiting case becomes negative; this reslt

will be discussed later,

daCe /dX formulae from approximate theories :

In the following section, illustrative examples are

computed from the present "exact" formula (46), For the
purpose of comparison, the Ackeret's linearized theory (Ref. 1)
and the Busemann's second order and third order approximation
theories (Ref., 4) are studied. It is found that Busemann's
calculation of the coefficients of the approximete series for
the pressure change due to flow deflection in isentropic flow
and in oblique shock flow involved several errcors, The error
in the case of the approximation series for oblique sﬁock flow
was discovered lately by E. V. Laitone (Ref, 3). Iaitone's

new derivation has been checked. Busemann's mistake in the
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isentropic flow case has been corrected, ( For details see
Appendix. ) With these corrections, the approximate formulae
for dCL /dx of the two-dimensicnal symmetrical airfoil will
take the following forms:

Linearized theory :

de  _ (47)
da za

=

Second order theory :

dé 4 a
o = (2+57) e (48)

Third order theory :
de,

—_—

o< < (2+%2) ¢ +(G-F S)get -2¢dT” (49)

where 7 = maximum thickness/chord

i. e. thickness ratio (50)
Cl = 2 = b, (51)

Mo —1
< ["*’ - M. +z} (52)
* =
L L

2 6 ¥ 2
(ur) -3V +12V+7 Mo 3(y)My - 2Mp + 2 }

b= g [ GO (B 5 (s
d = G - bg (55)

In (51) to (55), the ¢, , ¢, , ¢; and b, , b, , by are res-
pectively the coefficients of the first three terms in the

following infinite series expressions for the pressure coe-
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fficients Cp, and Cp, corresponding to the flow deflection
angle ¢ in the isentrppic flow case and in the oblique shock
flow case respectively, namely,

Definition of pressure coefficient:

c o L= e (56)

£ R
Isentropic flow

o Bt b adteate -

Oblique shock flow ¢
oo = E b= 8P bt 5P (58)

The values of ¢, 4 ¢2 5 €3 are computed fof various M, and
tebulated in Table 2, in which also values of by taken from
Laitone's paper are included. d represents the difference
between the coefficients: of third terms in the approximation
series (57) and (58)., Thus, d actually represents the effect
of the oblique shock wave, And, therefore, it is evident
from (47), (48) and (49) that:

1. In linearigzed theory the airfeoil is assumed of zeroc thickness
and the flow around the airfoil is everywhere supersonic and
isentropic.

2, In second order theory the airfcil is assumed of finite
thickness and the flow around the airfoil is everywhere super-
sonic and isentropic. The:: effect: of thickness is expressed
in the term involving 7?1

3. In third order theory the airfoil is assumed of finite
thickness and the airfoil introduces oblique shock waves in

the flow which is however isentropic before and after the



oblique shock and everywhere supersonic, The effects of
thickness and shock waves are expressed in the termg involving
7% and d.

In the present theory, the flow around a two~dimensional
symmnetrical airfoil of finite thickness is considered with

the presence of obligque shock waves, Hence, it is expected
that the third order theory will show a better agreement with

the present thoery, This will be seen to he true in the

following calculations for two simple cases,

Illustrative examples ¢

The present theory is used to compute the dC, /d« at &=0° for
two cases, namely, l. a symmetrical circular arc airfoil of 5%
thickness, and 2. & symmetrical circular arc aiffoil of 16%
thickness, In both cases, the computation procedure may be
outlined as follows :

1., Determination of geometry of the airfoil surface :

In the present method of calculation, it is evident that the
accuracy of the results depends on the care given in the de-
termination of the geometry of the airfoil surface, For the
illustrative examples included in this report, the circular
arc surfaces are approximated by 20 straight line elements.
For greater accurasy, a higher number of elements may be used.
In general, for a circular arc airfoil, the following formulae

hold : The half vertex angle of the airfoil, ¢ , (fig. 10)

27
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g=s5('"x (59)
-1 2T
where = Sin ——
/ff’/_‘q'/‘_\ S ,_,_Tz
%h—re— % —|
7 1is the thickness ratio of the
given airfoil, N is the number of
¢ Py L straight elements to be used in
C
the approximation, For «=0°,

Fig. 10 Y = ¢ .
The expansion angle between successive straight elements is
determined by the formula :

£ = £ (60)
For any other given airfcil shape, the vertex angle ¢ and the
expansion angle ¢ can be found also. In such cases, proper
formulae should be determined in substitution of (59) and (60),
2. Determination of the conditions immediately after shock:
The flow deflection angle ¢ at the leading edge element being
determined by (59), it is now possible to use (1) and (2) to
determine B8 and I, for given Meo. Another method igs to de-
termine B from an oblique shock chart, (Ref, 1) Then com-
pute p, /Pn from (4). Compute Poee/Poz from (3). And

compute Poo /Pomw Py the familiar formula :
Sy
P y-1 2] It (61)
Al

Combining these results to find p, /Poz , namely,
Ibz _fz /boc FOM

Be P Poos Pz
Again using (61), it is possible to deteemine M, , This

secoldd procedure is used in actually carrying out the present

28



examples because Pow /Poz 8N4 Dow /Dyu, Charts.avsilable in

GALCIT and therefore the computations involved in the second
method seem to be easier than applying (1) and (2) directly,
(M, may also be read directly from oblique shock charts but
the accuracy will be poorer., ) Arter M, is determined, the
corresponding Prandtl-Meyer angle 6, is read from the Prandtl-
Meyer £low charts. These computations have been carried out
for a series of Mo 's for both the 5% thick airfoil and the 10%
thick airfoil, |

! ﬁ X
3¢ Determination of the integral j; oz d(z :

The next step is to find local Prandtl-leyer angle & at

successive ehements of the airfoil surface,. This can be easily

done using (6). The standard p/p,, vs @ charts (as prepared
in GAICIT) are now used to find p /p,, existing over the
various elements, These readings of p/p,, can be plotted
against x/c¢c and the area under A
the curve (fig. 11) can be
graphically integrated., In the P

present calculation, the P/ Poa

fae—————~—
v

values existing over the twenty
elements are averaged over the Fig.
entire surface, and the area under the rectangle with height of
(P/Poz)av. is taken to be equal to the integral., This calculation
has been repeated at a number of Meo 's for both the 5%thick
airfoil and the 10% thick airfoil.

’ M* x
4, Determination of the integral fo ’/%J;U d(Z) :

29
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Knowing the local Prandtl-leyer angle @ at the successive
elements of the airfoil surface, the local Mach number M can

be found from standard M vs & charts., Calculate the factor

Y,
\p_M* Frxed & M2/ (M* - 1)° and multiply it
by =1 and My

by /P, found in step 3. And

then the quantity 'f;z J,.T.-f—’,—-

can be plotted against x/c¢c resulting

e

in a diagram like fig. 12. Then

the integral is evaluated at a

v

e
T NSO Y

olx

number of Mo 's by the game approxis:

Frg. 12 5 0
9 mation procedure as in step 3.

5. Determination of d6:/d« ahd 1/y13£dp,,_/do(. ) s
For the known flow deflection ¢ and at the various free stream
Mach numbers used in the foregoing steps, the values of d6z/d«
and (1/y 132(:1}:',,z /dk ) are read from figs. 8 and 7.

6. Determination of dC. /d&L

Finally the values found in the previous -steps are substituted
in (46) and the values of dC. /d« are calculated,

These computation results are given in Tables 3 and 4. It
should be pecinted out at last that the computations though a
little tedious are very straight forward and with the help pof
standard oblique shock charts and Prandtl-Meyer flow charts

very rarely any errors in the intermediate steps will be likely
to occur., For completeness, the basic formulae for computation

of the Prandtl-lMeyer flow charts are given below. (Ref., 1)

' '
7'5— = (/ + )—:—Z’JM”) v (61)
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6 = 7! fan ' [LL [pr - fan " [p*-1 (62)

y-1 V+
It will be found in Tables 3 and 4 that dC. /d& values computed
from the approximate formulae (47),(48), and (49) are also listed
for comparison, The computation procedures for these approxi=-
mation theories are self-evident and no further elaborations are
needed, The date from Tables 3 and 4 are plotted in figs. 13
and 14, It is possible to draw the following conclusions from

the results of computations.

COnclusion ¢

1. The famous linearized theory formula gives a value of dC, /d«
too low in comparison with the present theory. The difference
becomes very great at very high lMagh number region. In extreme
case like the 10% thick airfoil at free stream lach number of
8,00, the dC: /d« obtained from linearized theory is about 50%
lower than the dC. /dX from the present theory. Furthermore,
by comparing the second order theory with the present +he
prosent theory, it is seen that the second order theory has very
little improvement over the linearized theory. It may therefore
be concluded that this enormous difference in dC. /do between
the "exact" theory and the linearized theory is mostly due to

the shock effects, This conclusion is substantiated by the fact
that the Busemann's third order theory which includes a shock
wave term, bringd the dC. /d values at varigas Mach numbers in

much better agreement with the present theory. ( Even in the
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extreme case of very high lMiach number , say Mg=8.00, for the

10% thick airfoil, the discrepancy is about 25%. )

2. The thickness of airfoil, however, to some extent, determines
the strength of the shock wave, For thinner airfoil, the
obligue shock wave produced will be weaker. Thus, if comparison
is made between two airfoils of different thicknesses at same
free stream lMach nuwber, it will be expected that for the thinner
airfoil, the difference between the "exact" theory and the
approximate theories will be smaller., This is proved to be

true by the present calculations.

3. ¥From the present theory, the slope of 1lift curve will rewerse
its sign in the lower lMach number region. This is due to the
vanishing of d46,/d« at the limiting case, M,= 1.00, A study
of the behavior of the integrals -—'—- dP“‘ / -ﬁ—z d). ana

L ] L. d(X)

number decreases both integrals increases in magnitude and always

shows that as the free stream Mach

the second integral dominates except when the region close to the
limiting case is reached. In the region near the limiting case,
the second integral decreases violently due to the variation of
d6z /dX while the first integral is comparatively very stable,
Thus, the values of dC, /d« are dominated by the second integral
at all Mach numbers except those Mach numbers close to the
limiting case, The first integral expresses the effect of
change in stagnation pressure behind the oblique shock. This
integral accounts for the effect of change of entropy. In

other words, it may be asserted that the reversal of sign in the

slope of 1lift curve at Mach number close to 1.00 is a result



from the oblique shock effects. In linearized theory and
.second order theory, the oblique shock waves are ignored, thus,
this tendency of reversal in sign in dC. /d« is obscured. This
fact is further substantiated by a calculation of the slope of
1ift curve near Mach number of 1.00 using the third order theory.
The third order theory actually shows the same tendency only the
occurence of the reversal of sign is at a lMach number still closer
t0 Mgp=1,00, This is explainable by the fact that the third
order theory has not been able to awcount for the oblique shock
effects completely due to the omission of higher order terms.

The reversal of sign in dC. /A is actually observed in certain
recent experimental study of the airfoil characteristics in
transonic regions. It is hereby shown that ihis behavior of the
airfoil is explainable by a potentizl theory with proper assum-
ptions regarding the oblique shock,

4, In the present calculation, it has been stressed that the lowe
limit is the case in which M, = 1.00. There appears to be no
limit in the high Mach number end., However, it must be re-
membered that the irrotationality of the flow behind the shock

is a vexry essential postulate. If this postulate ig viclated
the theory will break down. Thus, as a geheral rule, it may

be stated that for thinner airfoil the theory will find its
application extended further in the direction of the high Mach
number end. For thick airfoil, the results of calculation from
the present theory may not be s¢ accurate at very high Mach
numbers because the flow behind the shock in such cases may be

rotational. However, for such cases, the linear theory certain 1y



does not apply.

5, Lastly, it should be pointed out that effects of viscosity
are completely ignored in the present analysis. The effects
of viscosity may be important in determining the local flow -
conditions, And froﬁ recent reseaches, it has been found out
that in transonic regions the nature of the shock wave depends

te a large extent on the nature of the boundary layer,

34



35

List of references :.

1.

2.

e

4.

H. W, Liepmann and A. E. Puckett Introduction to
Aer odynamics of a Compressible Fluid, Wiley, 1947

Ge I. Taylor and J. W. Maccoll The Mechanics of
Compressible Fluids, Aerodynamic Theory vol, 3, 1934
E., V. Laitone : Exsct and Approximate Solutions of
Oblique Shock Waves, Journal of Aero. Sciences,

Jan, 1947

A, Busemann : Volta Congress, pp. 328-360, 193B



=

|

-

COWXTOO LN

Table 1

QOO QP

COOMTOU P L H

Moo

.825

«730

1.418
1.840
2242
2,607
2,900
3,168

463
«210
0428
«765
1,185
1.660
2.120
2.560
2,960
54320

« 281
el22
« 280
« 950
«905
1.330
1.790
2,258
2,740
34180

|

=

1,36

(o RToRs v RO RGN I R\VE o

OCOVBROUPUWN

°
A}
i—-l

s dPe
5, 9
151
061
«150
¢ 307
526
«800
1.152
1,570
2.000
24450

0595
020
040
.090
«170
« 270
«410

«580 -

«780
1,020
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Table 2

Moo l.1 1.2 1,3 l.4 L:s5
c3 86 53.8 14,40 580 3.06
d 522.6 «58 13 528 ol
Cq 4,364 5,015 2.41 2,05 1,79
c, 30.32 8.31 4,30 2,92 229
Moo 2.0 3.0 4,0 5.0 10.0
C, .927 1,18 1,51 1.91 3.9
d .092 061 .105 «136 D22
c, 1:10 707 «516 .408 «201
c, 1.47 1.2% 1,23 1etle 1.204
Table 3
5% thick symmetrical circular arc airfoil

dC/dd 4G /do dG/dd
M, "exaot" Linearized 2nd. order

(46) (47) (48)
1.1 ———— 84728 84728
1.2 - 6,030 6,036
1,278 = ,198 5,000 5,000
1.4 4,190 4,096 4,100
2.0 2436 2,310 2.312
4,0 1,13 1.033 1,034
6.0 «'15% 0676 «677
8.0 « 649 «504 « 505
Table 4
10% thick symmetrical circular arc airfoil

dC /d dC/dx 4G /o
M, "exact" Linearized 2nd. order

(46) (47) (48)
1.1 ———— mmea- ———
1 ———— 4,096 4,111
1.465 = 0435 - o am em o e
240 2.545 2.310 24319
4,0 12861 1.033 1.037
6.0 «995 «676 679
8.0 « 907 +«504 «506

-

1097
«183
1.60
1.95

dG /de
drd., order
(49)

6,628
7.047
5.050
4,178
2,314
1,053

o707

« 548

4G /dA
drd., order
(49)

461
4,572
26369
1,112

800

.678
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Appendix :
Derivation of ¢, 4 ¢, , ahd c3

The pressure rise in isentropic flow due to flow deflection ¢

may be written as :

P8 = b bo

M-t

¢ 2
[«
o
This may be expanded as a Taylor series :
P(@) = plo) + pla) ¢ + $P o) B ¢ L pro) 7

It is found that :

peg) = £
=
e £ [
lb (}) = 2£% ZPW /1“’/\48 2)- ______:J’ o3 m© 4 (/+}’)M -3M -1-2}
(r2-1)"
Thus Pro Woo

pld) = 2=~ + Bt [ (Mog=2)" # Y j %2

JM“"I 4‘ (Ma.-l)l

4
ZPpa'Voo _/_t_‘:My-f __.y:’i}::—‘gM‘ * f{l*}'}Mu —BM:*Zj

e 7R < o <
5(”4-:”)

Now introduce :

oa
C . o= 'b = FM — -——ﬁ'(_d;,{" = Z C, ¢
Pc Y > $o0Wos =

Then ¢, 5 C; » and ¢y given in (51), (52) and (53) are easily

found.





