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ABSTRACT

The first part of this work describes theoretical studies of a
proposed longitudinal free electron laser. Stimulated coherent radia-
tion in the infrared region is generated in the proposed laser by a
relativistic electron beam passing through a periodically corrugated
waveguide. The wavelength of the radiation is widely tunable by chang-
ing the electron energy.

Theoretical investigations are based on the single-electron analy-
sis. Both linear and nonlinear treatments of the laser mechanism in a
free electron laser are carried out analytically. The phenomena of
homogeneous and inhomogeneous interactions, lossy gain, space-charge
effect, large-signal behavior, large-gain amplification, and electron
dynamics are discussed in detail.

The second part of this work consists of a theoretical study of
the linear electrooptic effect. Application of a d.c. or low frequency
electric field to a crystal can change its electric susceptibility at
optical frequencies. This effect is known as the electrooptic or
Pockel's effect. The semiclassical approach used is based on a one-
energy gap model, dielectric theory, and the concept of bond-charge. A
general expression is obtained for the electrooptic coefficient of a
crystal and is applied to the calculation for diatomic and ternary com-
pounds. The results are generally in good agreement with the measured
values for nearly all the crystals in which the electrooptic coeffici-

ent had been determined.
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PART I
THE LONGITUDINAL FREE ELECTRON LASER



D

Chapter 1
GENERAL INTRODUCTION

1.1 Introduction

The mechanism of laser emission can be described by the interac-
tion of radiation and a system of electrons. The emission of radiation
results in the transition between electron energy states. The radiation
emitted in the process then acts back on the radiating electrons and
further stimulates the emission process. According to the nature of the
electron energy states, lasers are in general divided into two classes:
bound and free electron lasers [1]. Bound electron lasers include most
of the conventional lasers so far developed. The electrons involved in
the stimulating process are in the atomic or molecular orbits which are
discrete energetically. The emissive transition takes place between two
well defined electron energy states. In a free electron laser the radia-
tion interacts with a stream of electrons with a continuous energy spec-
trum. The transition during the stimulating process is between two
states which are part of this continuum. The frequency of the radiated
electromagnetic wave is determined by the electron energy. The popula-
tion inversion is achieved by accelerating the electron beam such that
the electron energy distribution function is shifted toward the high
energies.

Some of the advantages of free-electron lasers are: First, since
the frequency of radiation depends on the electron energy, the output
wavelength can be tuned over a wide range by changing the accelerating

voltage of the electron beam. Second, the laser medium includes the
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electron beam only, and the interaction region is essentially a vacuum.
The problems of radiation reabsorption and material damage at high power
levels are thus avoided. Due to these two unique properties, the free
electron laser is a promising candidate as a high power tunable laser
from the infrared to the soft x-ray region of the spectrum.

Several types of free electron lasers have been proposed. In
general, they fall into two groups. In the transverse type of free
electron lasers, the electron beam is deflected periodically at right
angles to the propagation direction such that electrons can interact
coherently with the transverse field component of the radiation field.
The deflection of the electron beam is caused by either a periodic magnet
or electric fields. In the longitudinal type of free electron lasers the
radiation is confined to a waveguide and electrons interact with the
longitudinal component of the electric field. To derive the gain equa-
tion and Taser mechanism of the longitudinal free electron laser, we use
a ballistic analysis and classical electrodynamics. The results are

compared to those which obtain in a transverse free electron laser.

1.2 Previous Work on Free Electron Lasers

Schrodinger [2] was the first to discuss stimulating Compton scat-
tering. This process involves the scattering of photons from electrons.
A possible experiment was proposed by Kapitza and Dirac [3] to observe
the stimulating Compton scattering of electrons from standing 1ight waves.
Almost two decades later, Motz and Nakamura [4,5] analyzed the possibility

of generating coherent radiation by passing a relativistic electron beam
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through a periodic magnetic field. Then, Pantell, Soncini and Puthoff
[6] showed how to convert a long wavelength electromagnetic wave into
short wavelength radiation by stimulating scattering from a relativis-
tic electron beam. Using the Weizsdcker-Williams approximation, Madey
[7] was able to derive quantum mechanically the gain of a free electron
laser in which a relativistic electron beam passes through a static
helical magnetic field. At the same time, Palmer [8] gave a classical
description of the energy transfer between an electron beam and electro-
magnetic waves inside a static helical magnet. The possibility of using
such a device as a laser and a particle accelerator was discussed.
Sukhatme and Wolff [9] analyzed the stimulating Compton scattering in a
finite length of an interaction region.

Based on this theoretical background, the first free electron
laser was demonstrated at Stanford [10] in 1972. A relativistic elec-
tron beam passes through the axis of a superconducting coil which gen-
erates a static helical magnetic field. Using this device, they were
able to demonstrate the amplification of radiation at 10u [11] and,
later, the laser oscillation at 3.4u [12].

The first experimental demonstration of stimulating amplification
was followed by numerous analyses. It became apparent that a classical
treatment is more appropriate to describe the free electron laser.

Using coupled Maxwell's and Boltzmann equations, Hopf, Meystre,Scully,
and Louisell [13,14] derived the gain classically in the small and
large signal regions. Colson [15,16] used one-body electron dynamics

and related the equation of motion of the electrons in a FEL to that
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of a pendulum. Kwan, Dawson, and Lin [17] demonstrated electron bunch-
ing and gain behavior by computer simulation. Gover and Yariv [18]
gave a quantum mechanical view of the interaction between the electron
beam and radiation in the single-electron and collective regions. Kroll
and McMullin [19] derived the dispersion equation for the stimulated
radiation and obtained the exponential gain in the 1imit of a large
cavity. Louise11, Lam, Copeland, and Colson [20] solved the classical
pendulum equation and showed the gain saturation and the evolution of
the electron distribution. In a separate paper [21] they also dis-
cussed the space charge effect to a first order approximation. Baier
and Milstein [22] pointed out the importance of the phase of the radia-
tion in the free electron laser. Bernstein and Hirshfield [23] indi-
cated that the gain depends critically on the axial momentum distribution
of the beam.

In parallel with the development of the Stanford experiment, some
other types of free electron lasers have been proposed utilizing dif-
ferent interaction mechanisms. The electron cyclotron maser was
proposed to generate enhanced high power submillimeter waves [24].
Stimulated Compton scattering was observed directly using the
up-conversion of microwave radiation "colliding" head-on with an electron
beam [25]. The stimulated Smith-Purcell effect was studied in search of
a possible means of producing coherent radiation with an electron beam
passing close to a grating [26]. Replacing the periodic magnet by a
corrugated waveguide in the interaction region is found theoretically

to achieve low-power and high-efficiency operation [27].



1.3 OQutline of Part I

In Chapter 2 the propagation of electrons and radiation in a
waveguide is discussed. The physical origin of the electron band struc-
ture is also analyzed. The spontaneous emission of an electron passing
through a corrugated waveguide is derived using the radiation theory of
classical electrodynamics. Finally, the limitations on the applicabil-
ity of the classical approach is discussed.

In Chapter 3 the classical approach of the single-electron picture
is used in the linear theory of the longitudinal free electron laser.
The gain behavior in the homogeneous and inhomogeneous interactions is
then discussed. The electron dynamics are investigated to find the
electron energy and phase distribution. In this analysis the phase
diagram is used to describe the evolution of electrons. A two-stage
system is analyzed in the discussion of electron bunching.

In Chapter 4 the nonlinear theory of the longitudinal free elec-
tron laser is introduced. The space-charge effect due to the high
current density is considered. At high radiation energies it is shown
that the equation of motion can be solved exactly by use of special
functions in the low gain limit. A result of this solution is to show
the gain saturation explicitly. In the large gain 1imit the growth of
the field amplitude along the interaction region is described analyti-
cally.

In Chapter 5 the theoretical work is summarized and experimental

conditions are discussed. The electron circulation and the possibility

of electron bunching are studied.
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Chapter 2
ELECTRODYNAMICS IN A WAVEGUIDE

2.1 Introduction

In this chapter we study the phenomena of electrodynamics in a
waveguide which is proposed to be used as an interaction region in a
longitudinal free-electron laser. A wave in a corrugated waveguide
cannot be described as a state having a definite momentum. Its spectrum
is studied in momentum space. An electron passing through the corru-
gated waveguide generates spontaneous radiation. The method of "image
charge" is applied to evaluate the output spontaneous power. The wave
spectrum and the spontaneous process are studied classically. The co-
existence of radiation énd electrons results in the photon-induced elec-
tron band structure. The equation of motion using relativistic quantum
mechanics is solved exactly in terms of momentum eigenstates. The con-
tinuous spectrum of the electron beam is divided into regions of
stability and instability. The physical process in the electron stopping
band is investigated by the Lorentz transformation and space-time
invariant. Finally, the applicability of the classical approach is dis-
cussed from the point of view of the uncertainty principle. The
limitation on the wave frequency and the radiated power is calculated

quantitatively.

2.2 Wave Propagation

The prototypical configuration of the proposed longitudinal free

electron laser is shown in Figure 2.1a. The main part of the device is
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Figure 2-1: (A) Shows the prototypical configuration of a
longitudinal free-electron laser; (B) defines

the parameters in the device.



A
a corrugated metallic waveguide vith the electron beam passing through
its axis. Two mirrors at the two ends are adjusted to form an optical
cavity. The dimensions of the waveguide are given in Figure 2.1b.
L is the length of the interaction region, a 1is the width, A is the
period of the corrugation, and A is the depth of the corrugation. The
corrugation is necessary for an efficient energy transfer from the elec-
tron beam to the radiation. Generally speaking, the periodic structure
supplies the extra momentum needed when the electrons emit photons.
Since electrons interact mostly with the Tongitudinal component
of the field, we are only interested in the waveguide TM modes. From
Maxwell's equations and the boundary conditions, the TM modes of a rec-

tangular metallic waveguide with cross section (axb) are readily found

(1]

_ : i i(kz - wt)
EZ = Eos1n(kxx) s1n(kyy) e
kk .
L% . i(kz - wt)
Ex = i ;2—-E0cos(kxx) s1n(kyy) e
G
kk .
oy . i(kz - wt)
Ey = i ;?X'E051n(kxx) cos(kyy) e
kc (2.1)
B, = -2 E
X Kk Cy
k
= .9
By Tk Ex
Bz =0
= . - . - . o h2.2 s
where kX = mm/a; ky = nm/b; k0 = w/c; kC —./kx-+ky is the cut-off

wave vector and k = /kg-kg is the propagation wave number. m and n
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are integers and denote the TM modes. The fundamental mode in a square

waveguide has m = n = 1. The phase velocity is

K2
v =wk=c/l1-=5 = ¢/ [1-2 (2.2)
p Al s

where X\ is the wavelength of the radiation in free space.

In a corrugated waveguide such as the one depicted in Figure 2.1b
Maxwell's equations cannot be solved exactly. The wave propagating in
this structure does not have a definite value of phase velocity and
cannot interact, as a single wave, with an electron as in the case of
Compton scattering. The best way to proceed is to find its spectrum in
momentum space. Each component in the expansion has a definite value
of momentum and can interact with electrons as a single photon.

The fractional sinusoidal variation of the waveguide width is

defined as

a(z) =a + Acos k'z

n

k' = 2m/A (2.3)

where k' is the unit of lattice momentum. For convenience, the varia-
tion is assumed to be small and slow (i.e., A << a and a << A) and that
the adiabatic approximation is valid. Physically, we expect the wave
to propagate smoothly along the waveguide. The propagation constant K
at z is determined locally by the waveguide width according to (2.2).
With this picture the z-dependent wave equation after the separation of

variables can be written as

82E 2
—7""' k (Z)E =0 (2.4)
0z
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Using the second order WKB approximation, the solution to equation (2.4)
is
K 1fk(Z) dz

E=E 2.5
O KT \2.5)

k(z) can be expanded to first order in A

k(z) = k + %%-A cos k'z (2.6)

An explicit calculation of (2.5) results in the following expression for

E

A 3k i[kz-+ﬁ§-%§-sin k'z]

E = Eo[l - 7% 53 COs k'z] e (2.7)

The wave is defined only in the interaction region which extends
from -L/2 to L/2 with N periods of corrugation. Because both the field
amplitude and the phase depend on position z, the wave must be decomposed
into the states of definite momentum and constant amplitude. Due to
the finite interaction region, the spectrum of the wave is continuous

and can be found by Fourier transformation

E=E, g\k2 J a(q) e 19K'Z 4q (2.8)

where g is dimensionless. The Fourier coefficient a(q) is obtained by

the inverse transform

L/2 A 3k

-i[qk'z-r.-—a—a—sin k'z]

a(q) = gﬁ [1 - f%-g%-cos k'z] e dz
-L/2
PR A ok
= Hq\S) - Wﬁ [Hq+](5) + Hq_-l(S)] (29)
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where s = ﬁ%—%&

Hgls) = Foqaii g ls) (2.10)

Jq(s) is the Anger function [2], which is defined by the integral repre-

sentation:

J(s) = % J cos(gx - s sin x) dx (2.11)
0

This representation is similar to the one for the Bessel function Jq(s),
but q is not necessarily an integer. The dependence of the Auger func-
tion on its index and argument is shown in Figure 2.2. The difference
between the Auger function and Bessel function is apparent, especially
when s = 0. At s = 0, Jq(O) = 0 only when q is an integer and not equal
to zero, while Jq(O) = 0 except when q = 0. As A >> )\, only the first
term on the right side of (2.9) dominates. In Figure 2.3 we show the
spectrum of the wave in a waveguide having ten corrugation periods
(i.e., N =10). The contribution of the first harmonic to the total
wave reaches its maximum at s = 1.84. The spectrum amplitude is en-
hanced when g is close to an integer. The width of the enhanced peak

is proportional to 1/N. Usually, N is very large and the spectrum

becomes discrete,

a(q) = Jq(s) 5(g-n), n is an integer (2.12)

In this 1imit the electric field becomes

©

E=E ] 9 (s) e (k¥nki)z (2.13)

n=-c
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Figure 2-3: The spectrum of a propagating wave in a waveguide
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In the Tongitudinal free electron laser, the stimulating interac-
tion takes place mostly between electrons and the first harmonic. The
growth and instability of the first harmonic field distributes its
energy among other harmonics via the interaction of the wave with the
periodic structure. The fractional intensity of radiation involved in
the stimulating process is thus only J%(s) of the total intensity.

The interaction mechanism of a transverse free electron laser is
somehow different from that of the longitudinal laser described above.
Although the static helical magnet supplies the necessary momentum com-
pensation, the physical process is usually understood as the interaction
between transversely deflected electrons and the transverse electric
field of the radiation. It seems that the stimulating strength should
be much larger because the total wave stimulates the emission process.
But the deflection of electrons by the magnetic field is so small that
the efficiency of the energy transfer is actually much lower than the

efficiency in the longitudinal device.

2.3 Spontaneous Radiation

The spontaneous radiation is due to the classical acceleration
or deceleration of electrons in the waveguide. The acceleration and
deceleration are the result of interactions between the electrons and
the corrugated metal wall. In general, the interaction is very small
so that the velocity of the electron does not change significantly dur-
ing the flight. A section of the symmetrically corrugated waveguide is
shown in Figure 2.4. The best and simplest way to describe the inter-

action is to use the method of "image charge." Based on the adiabatic
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approximation, we assume that an electron at any position on the axis
has one and only one image charge on each wall. The Tine connecting
the electron and the image charge is perpendicular to the wall. This
assumption is true only when the radius of curvature at any point on
the wall is larger than the width of waveguide, a. Assuming a wall

profile

x'"=a+bcos k'z' (2.14)

The criterion is equivalent to

k'éab < 1 (2.15)

which is always obeyed in a practical device. The interaction between
an electron and the wall can be simulated by the force between the elec-
tron and the positive image charge. When the electron travels down the
waveguide, the image charge swings along the path parallel to the axis.
The force due to the excursive motion causes the acceleration and
deceleration of the electron along the periodic structure.

From Figure 2.4, the force in the z-direction is

F = 2e2cos a (2.16)
4r
where P = \/(z--z')2 + x'2
= (a+b cos k'z') [1+k % sink'2’ (2.17)
POE o = k'b sin k'z (2.18)

J1+Kk'%p%sin’k'z
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To the first order in k'b, the force is simplified as

F = e%k'b sin k'z

(2.19)
2(a+n cos k'z)2
z in the right side of (2.19) can be replaced by Vot. The time-depen-
dence velocity is found to be
e2

¥ 8 Y, % s |
2my ¥s

1 1 ]

a+tb ~ a+Db cos k‘vot (2.20)

The radiation intensity generated by this interaction per unit
solid angle d?2 and per unit frequency interval dw is given [1]

m{t-ﬁél 2
dt (2.21)

[e o]
jﬁx(ﬁxv)e

-0

2 2
W

2c2

dI_ _
dQdw

e
4m
Practically, it is impossible to observe the angular dependence of the
radiation intensity in a waveguide. Even the frequency dependence of

the intensity at the output does not follow (2.21). From (2.2), it can

be seen that k and w are not independent of each other for a propagat-

ing waveguide mode. Only that part of the radiation which obeys the
condition for the guided mode can be detected at the output. The total
power which can be detected is less than the total power loss of elec-
trons. To estimate an upper 1imit on the spontaneous radiation intensity,
we integrate (2.21) over angle and frequency to obtain the total power

loss of electrons.

If n is defined in the direction of (6,4), we have

nx (nx8) = Msmecosekms¢§+ﬁn¢§)-sﬂgef] (2.22)



=

and

t-n<=t-%cos 8 (2.23)

ofN
oN

Due to the collective interference of waves, the radiation pattern con-
sists of many spectral lines. The fundamental line is the radiation
from the electron acceleration at the fundamental frequency k'vo. From
(2.21), the electron velocity can be resolved into different orders by
expanding it in power series of b/a. Considering only the fundamental
line, we have

2
- e’b '
vV=y - ———3———2-(1 - cos k vot) (2.24)

0
2
m “v,a

The interaction region is finite, so the integral in (2.21) extends
only from t = -NA/2vo tot = NA/ZVO. The radiation intensity is then

found as

(1 - 2
dl szsinze[J cos k'vot e1(1 B cos 8)ut dt] (2.25)

NAw
57;—(1 - B cos 8) +Nr]

(1 -8 cos 8)+k'vo

szsinze[

sin[gég-(1- B cos 8) - Nm]
0

+

] (2.26)

w(l - B cos B) - k'vO

where
3 2
_ ] e"b
4mmy V,Ca
The functional form, sin Nx/x becomes sharply peaked at x = 0
when N is very large. Therefore, the radiation frequency of the funda-

mental line is
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vok

W= TR cos 8 (2.28)

and the first term in (2.26) is highly suppressed. The radiation spec-
trum of the fundamental line is then obtained as

. 2-NSw
sin~[ (1 -8 cos 6) - Nm]
dI 9% . B 2v

0
To7- = Ak'Tv_ sin"g (2.29)
g 0 [(1-8 cos e)w--k'vo]2 (1-8 cos e)2

By integrating (2.29) over w, we obtain the angular distribution

. 2
do e yrt —3108 (2.30)
(1 - B cos 8)

Tht total power is found by the integration of (2.30) over Q and divided
by the flight time T = NA/vo.

= Ardk' 8 d(gn 18, 48-1
P=Amrk LA 3( T+8 ———?J (2.81)
B 1-8
When B - 1, the total power approaches
Y3 b2
- flril 2 o2 _3n'o 3
P=Ark Vo 3Y Tmmc (232)

In the last step, (2.27) has been used for the expression of A.

Y, = e2/mc? = 2.82x 10713

transverse free electron laser, the spontaneous power is proportional

cm, is the classical electron radius. In the

to yz, while it is proportional to y'4 in (2.32). This dramatic drop
in the y-dependence comes from two sources: First, the dependence of
the radiation spectrum on sinze in (2.29) introduces a factor of Y'Z in
the result. Second, it is more difficult to accelerate electrons

longitudinally than transversely, which adds a factor of y—z in the ex-

pression of v.
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From (2.32), the total power of the fundamental line emitted

spontaneously by an electron passing through the corrugated waveguide

is calculated to be about 10']6 eV. For a continuous electron beam

of 1A, the emitted power is only about 10716 watts which is much

lower than the value in the transverse free electron laser.

2.4 Electron Band Structure

The énergy spectrum of a free electron beam is continuous.
However, in the presence of an electromagnetic field, the spectrum is
modified and generates electron band structure. It has been known [3]
theoretically that the presence of photons can induce band structure
in a medium. The physical origin of this phenomenon is based on the
fact that k # w/c in such a medium. This effect should be observable
for an em wave propagating in a waveguide, even though the waveguide
cannot be represented by a simple index of refraction, n. Therefore,
we expect that an electron beam passing through a waveguide containing
an electromagnetic field should display a band structure in its energy
spectrum. The following analysis follows from the relativistic and
quantum mechanical points of view. All physical quantities are written
in 4-vector notation and the dimensional choice,4 = c = 1, for con-

venience. A four-vector AM represents

AH = (A%,A1,A%,A%) (2.33)
For example, the wave-vector kM is
Mz (w,k) k%K) (2.34)
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and the momentum-vector p% is

Moz 123)

P E.p ,p P (2.35)

>
The usual space vector is denoted as A, such as E and E. A four-vector
A" transforms like a vector in four space. The scalar product of two

vectors is defined as

A-B = AMB = g AMBY
H UV
= 1%8° - (a'B! + a%82 + 33 (2.36)
1 0 0|

1o -1
g =
b 0 0 -1 0

0 0 0 -1 |

and is a scalar in four space. A° s usually known as a "time component"

because

(t,x],xz,xs’) (2.37)

>
i

The band structure can be solved directly from the relativistic
equation of motion with a "minimal coupling" to the electromagnetic
field [4] (i.e., p¥ - p* - eA¥ or ¥ - 3" - ieAM). For a spin-1/2 par-
ticle, such as an electron, the Dirac equation should be used to account
for two spin states. However, the spin complication is not essential
in obtaining the electron spectrum. For a simpler demonstration, the
equation describing a scalar particle is solved. The spin-induced band
splitting will be discussed qualitatively at the end of this section.

Because the criterion for generating band structure is quite general,
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we will not 1imit ourselves to the case of an electron in a waveguide.
The analysis follows a general guideline. The physical interpretations
are then given for (i) v

>c, and (i) v_ < c, separately.

P P
Consider a spinless particle in a given electromagnetic field.
The wavefunction of the particle, y, is the solution of the Klein-Gordon
equation
2
)

[(P-eA)® - mJy = 0 (2.38)

In the x-representation, the equation with the Lorentz condition

BuAu = 0 is rewritten in a covariant form

(aua“-+21e A“au - eZA“ALl +ml)p = 0 (2.39)
The vector potential in the equation is assumed to be only a function
of the single variable ¢ = k:x = wt-Kk-x. Without the electromagnetic
field coupling, the solution of (2.38) is that of a plane wave,

Y = e

(2.39) as

1p-x with p-p = m2. It is reasonable to write the solution for
v =e "PXE(y) (2.40)

Inserting (2.40) into the Klein-Gordon equation, we obtain
k-KF"(¢) - 2iP-k F'(4) + (2eP-A - e?A-A) F(¢) = 0 (2.41)

The order of the differential equation (2.41) depends on the value of
k-k. If k-k =0, it is only a first order equation and the field cor-
responds to a freely propagating electromagnetic wave in vacuum as

w = |E|. When k-k # 0, it becomes a second order equation and two cases
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can be distinguished
(i) k-k > 0: This case indicates w > |k| and v, > c. This kind
of electromagnetic field can be generated either in a plasma
medium (n < 1) or in a hollow waveguide (k-k = mg).
(ii) k-k < 0: This case indicates w < |E| and v, < c. Such elec-
tromagnetic fields can be found in an ordinary medium
(n>1, kek = w?(1-n%)).
2 a3

The vector field A¥ (¢,A],A ,

11

), in general can be written as

AH = fMcos ¢ + gM sin ¢ (2.42)

where f* and g" are space-like vectors (f-f < 0, g-g 0) and orthogonal
to each other (f-g = 0). The polarization of the field in 4-space is
then defined by the relative magnitude of f and g“ . If f-f =g-g,

AH s circularly polarized. If f1 =0 or g =0, AH is linearly polar-
ized. Otherwise, A is a field of elliptic polarization.

For a real photon, k:k = 0, equation (2.41) is solved to obtain

2
F(8) = exp -ilpmp (1530 + 112970 g4n 29)
- Esf (p:f sin ¢ - p-g cos ¢)] (2.43)
and .
ip-x Pefs X
v=ePXF@)=e (2.44)

Usually, Peff is a x“-dependent quantity. Consider a special case: The
wave is circularly polarized and propagates in the z direction. The

electron also travels along z. Then we have f-f = g-g and p-f = p-g=0
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In this case the effective momentum is a constant

u u ezf°f u

Now we consider the case when k-k # 0. In order to eliminate the

first derivative term, we choose
F(¢) = G(¢) expli(p-k/k-k)o ] (2.46)
(2.4.1) reduces to an equation for G(¢)

2 2

For a wave of circular polarization, (2.47) can be written as

d%g
g (r+qcos2n)G =0 (2.48)
dn
where 1 A g
n=gz(6-tan” B (2.49)
2 2
_ar(pek)S  eCfef
" 4[(k T : e
q =2 /() + (prg)° (2.51)

Equation (2.48) is a Mathieu's equation [2,5]. It has the general solu-
tion

G(n) = cyw(n)e™ + cm(-n)e™" (2.52)

where c and c, are constants, w(n) is a periodic function with period

7, and v(r,q) is a characteristic root determining the stability of the
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solution. The characteristic root, v, can be either pure imaginary or
a complex value. If v is an imaginary value, the particle can propa-

gate freely through the electromagnetic field with an effective momentum

Pape = P! - (BK = [v]) &¥ (2.53)

If v has a nonvanishing real part, the wavefunction would include a fac-

Re v) which is a nonstable function in time and space. Accord-

tor of ei¢(
ing to the nature of the wavefunction, the solution on the r-q plane can
be divided into two regions, stable and unstable, separated by charac-
teristic curves. In Figure 2.5, the stability chart of Mathieu's equa-
tion is shown. The shaded area is for the region of stability. The

features of the chart can be summarized as

(i) It is symmetric upon q - -q;
(ii) For g = 0, stability is restricted to r > 0, instability
to r < 0y
(iii) For |q] >> 1, the zone of stability becomes very narrow and

centers about
r=-|q| +vZ (2n+1) /[q[ + 0(g°)

with the bandwidth being N3
17 lqlz“zre"siq‘

%“*T (2.55)
w= 2/t 2 ni :

(iv) The stable region is confined to r > |q].

In any practical situation, the solution can be placed anywhere on the

stability chart by choosing proper values of p“, kM, f¥, and g“.
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Figure 2-5: The stability chart of the Mathieu's function. The
shaded areasare the regions of stable solution.
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Next we treat the case of the waveguide. The necessary condi-
tion for the applicability of the above analysis is that we must find
a four-vector A which can describe the field of a TM mode (2.1). The

electric and magnetic fields are related to the vector field as:

-

B=VxA ; E=-$¢-g—ﬁ (2.56)
or in tensor form

Y = MY o g (2.87)

We can solve ® and A by inserting (2.1) into (2.56). The established
forms for ¢ and K can be proven to be a four-vector by showing that
they obey the Lorentz condition

a“Au = 0 (2.58)

The vector field A is then obtained up to an arbitrary constant

c:
AY = (0,A1,A%,0%)
with
A] = k cE cos k_x sin k e'iqJ
X -0 X yy
: 2.59)
2 - . -1¢ (
A- = kchos1n kxx cos kyy e
k .
. S 0] : ’ =19
A° = i(kc - ;Z) Eos1n kxx sin kyy e
c
. k . . -i¢
® = 1(koc - ;?) E,sin kxx sin kyy e
c

Comparing this with the general expression for A® in (2.42), we find
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fo = f3 = g] = 92 = 0. The 4-vectors f" and gu are orthogonal because

f-g = 0. The sense of polarization is then determined by c. In general,
A¥ is a field of elliptical polarization, but it becomes linearly polar-
ized when ¢ = 0 and circularly polarized when c = kgz//f. The assumption
of a circularly polarized wave is not absolutely necessary for the analy-
sis. It does, however, lead usually to a simpler result. If A¥ is a
wave of linear polarization, the equation for G(n) becomes a Hill-type
equation which includes both cos n and coszn in the coefficient.
Obtaining the solution of a Hill's equation is much more complicated.
Qualitatively, the solutions can also be divided into regions of stabil-
ity and instability according to its parameters. The characteristic
curves of the Hill's equation have not been well defined. So it is more
convenient to treat the problem with a circular wave.

Using (2.50), (2.51), and (2.59) with ¢ = k;Z//?’ we have calcu-

lated r and q to be

P = i%—[Z(koE - pk)? - ezEg] (2.60)
C
8eE
0 E
q = —> [ky(==+ p) - k(E + B)] (2.61)
ke ez vz

Usually q is a very large number. r can be negative or positive, very
small or very large, depending on the values of parameters. At A=10H,
a = 50u, and y = 5, the value of r changes sign around the field inten-

sity of E = 1010

V/m.
For most cases, q is very large and r < 0, and the electron spec-
trum resides mostly in the regions of instability. A physical interpre-

tation of the "instability" is given in the following argument. For
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simplicity, let us assume that the electron momentum does not change.
Therefore, there is a possibility that the electron in the region of
instability emits or absorbs photons and changes its momentum and
energy until it enters the region of stability. This corresponds to
the process of Compton scattering and bremstrahlung.

If the electron stays in the same momentum state, we note that

the factor

> 5
LI eiv(wt-k-x) (2.62)

is similar to the wave decay in time or wave attenuation in space. How-
ever, the simultaneous existence of t and X complicates the interpreta-
tion of (2.62). The best way to solve this problem is to find a Lorentz
transformation such that the system in the new frame can be interpreted
easily. We have noticed that k-x is an invariant quantity under trans-
formation. Therefore, for a time-like wave with k-k> 0, all scalars
are kept positive. A transformation exists which can make k-x equal to
w't' where the space part disappears. As a consequence, only the elec-
tric field is present in this frame. For a space-like wave with k-k < 0,
the time part of a scalar product and the electric field can be elimi-
nated by a Lorentz transformation. In summary,

(i) A time-1ike electromagnetic wave is equivalent to a time

varying homogeneous electric field.

(i1) A space-like electromagnetic wave is equivalent to a

constant periodic magnetic field.

The propagation of an electron in a time-varying electric field

or a periodic magnetic field is demonstrated clearly in Figure 2.6. The
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Figure 2-6: The reflection and transmission of electrons by
periodic structure in space (A) and in time (B).



Bl

path of the electron is shown on a space-time diagram. On the diagram
both the electric field and magnetic field can be represented by a
periodic structure, but one is in time and the other in space. The
transmission and reflection of electrons are easy to understand graphi-
cally. In Figure 2.6a, the electron is reflected by a periodic magnetic
field and propagates in the opposite direction. The situation is very
similar to Bragg reflection. In Figure 2.6b, the electron is reflected
by a periodit (in time) electric field and propagates in the direction
of "reverse time!" An electron propagating into the past can be inter-
preted as a positron propagating into the future. Therefore, the inter-
action between an electron and a time-varying electric field results in
the creation of electron-positron pairs. From this picture, we arrive
at a very interesting conclusion. The physical process in the unstable

region of the electron band structure is the total reflection for a

space-Tike electromagnetic wave and the creation of electron-positron

pairs for a time-like electromagnetic wave.

Similar phenomena have been discussed for an optical wave inter-
acting with a dielectric medium. It is well known [6] that an electromag-
netic wave has a band structure when interacting with a spatially
periodic dielectric medium. The Bragg reflection occurs in the forbidden
band. This case is similar to the electron passing through a periodic
magnetic field or a space-like electromagnetic wave. When an electromag-
netic wave propagates in a time-varying dielectric medium it generates a
time-reversal (or conjugated)wave [7]. This is similar to the creation

of positrons when electrons pass through a time-varying electric field



-35-

or a time-like electromagnetic wave.
If the electron spin is considered, the Dirac equation must be
solved to find out the wavefunction and define the stable and unstable

regions. The solution of the Dirac equation with minimal coupling

- eh-my =0 (2.63)
is [6]
1Puff
vx) = e STTHF (0)e (2.64)

where ¢p is a constant spinor satisfying (P-m)¢_ = 0, F (¢) is dif-

p &
ferent for spin-up and spin-down, and depends only on e1¢'and e'1¢

which have no effect on the band structure. The effective momentum is

o2 ?
Page = P - TR ® +v/ 2 G L#50)

The upper and lower signs refer to different spin states. The value

under the square-root sign can be positive or negative. When it is
negative, the region corresponding to the given PH, kM, and A" belongs
to the region of instability. It can be seen clearly that the band
structures for opposite spin orientations are slightly different. This
effect has been proposed [3] for selecting the spin states in an elec-

tron beam.

2.5 Quantum Limitations

In Section 2.3, we have used the classical approach to describe
the spontaneous radiation of electrons in a periodic waveguide. In

Section 2.4, we solved the electron band structure quantum mechanically.
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Before we describe the stimulated process, a discussion about the advan-
tages and the applicability of the two approaches becomes necessary.

Quantum mechanics usually describes physical phenomena more ac-
curately. However, it involves mathematical complications and for their
solution only the perturbation method is available. Although we have
found the electron band structure exactly, it is still impossible to de-
scribe the interaction in detail.

The classical method, including mechanics and electrodynamics, is
well developed. Its mathematics is readily understood and the results
are easy to interpret. But the classical approach has its limitations.
It describes an electron as a particle and a photon as a pure wave.
Therefore, several physical quantities have to be specified precisely
such as the momentum P and position x of an electron, as well as the amp-
litude E and phase ¢ of the wave.

Consider an electron with momentum P at position x. Because P and
x form a conjugate pair of operators, quantum mechanics shows that it is
impossible to measure both quantities very accurately. The uncertainties

in the measurement follow the uncertainty principle,

Ap Ax > fi/2 (2.66)

or, in terms of the dimensionless electron energyy,

ay axR) > 2 /1 - —zl x 1073 (2.67)
b

For the classical approach to be valid, Ay has to be well within the

electron energy distribution and Ax is much smaller than an optical wave-
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length. Based on the present day electron beam technology, the energy
resolution in an accelerator is about 0.01%. From (2.67), the classi-
cal approach is no longer valid when the device is operated in the soft
x-ray region, i.e., A < 202. For the present stage of experiments this
limitation is still of no concern.

Now we consider the electromagnetic wave. The amplitude and phase
have to be measured very accurately at the laboratory frame. © How-
ever, according to quantum mechanics, such a measurement is impossible.
The uncertainties in the photon number and the wave phase obey the un-
certainty principle [8]

(a2 L8 cos 02 + (asin 9)%] |1 9. 88)
2 : 2 & .
(<cos o> + <sin ¢ >°)

where the uncertainty in ¢ has been expressed in terms of the uncertain-
ties in variables cos ¢ and sin ¢. The quantum limitation on the photon

number can be obtained by assuming the uncertainty of ¢ to be less than

2r. Let's say, Acos ¢ =~ A sin ¢ = 1. Then,

AN > 1/2/2 (2.69)

AN is the number of photons per mode. The radiation power of that mode

corresponding to the uncertainty in the photon number AN is
P = AN‘hw-c/L

where w is the radiation frequency, L is the length of the cavity. Since

AN>1/2V2, we have
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ho oo L
P?-—Z-V—Z—.lr— ,T- C (2.70)

For A = 10p and L = 10cm, we have

P>2x10 "' watts (2.72)

This power is far below the value during the Taser oscillation. There-
fore, the use of a classical approach is justified. Since P is propor-
tional to the radiation frequency, the quantum limitation of the radiation

power might become substantial at very short wavelength.
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Chapter 3

LINEAR THEORY OF THE LONGITUDINAL
FREE ELECTRON LASER

In Section 2.5 the classical approach has been justified for the
analysis of a free-electron laser device. Therefore the following analy-
sis will be entirely from the classical point of view.

The linear theory formulation is the simplest method to understand
the fundamental properties and laser mechanism of a free electron laser.
The "linear" theory is based on three assumptions. First, the current
density is so low that the Coulomb repulsion between electrons is com-
pletely negligible. The gain is thus proportional to the total current.
Second, the field amplitude is sufficiently small so that it can be used
as an expansion constant. An jterative method is then suitable for the
analysis. The enefgy increase is proportional to the input intensity.
Third, the energy transfer between the electron beam and the radiation
is very small in the interaction region. The field amplitude and phase
are thus assumed to be constant, which simplifies the analysis.

Based on these three assumptions, we formulate the Tinear theory
of the longitudinal free electron laser. Starting from the force equa-
tion, we calculate the homogeneous and inhomogeneous gain constants and
demonstrate the tunability of the device. We will also study the electron
dynamics on the phase diagram. Finally, we will analyze an interesting

device--a free electron laser which utilizes a two-stage system.
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3.2 The Single Electron Analysis

In the simplest classical model, the stimulating process in a
longitudinal free electron laser is described by the energy transfer
between electrons and electromagnetic waves. The radiation field loses
or gains energy, depending on whether work is done on or by the driven
electron, which in turn is determined by the relative phase between the
electron and the wave. In the limit of low current density, every elec-
tron interacts with the electromagnetic wave independently. The total
energy transfer is then the average of the individual energy transfer
over the electron phase distribution. This is the single-electron model
and the calculated gain should be proportional to the current.

The equation of the electron motion in the presence of an electro-
magnetic field is given as

>
dp
dt

o<y

= e(F + YxB) (3.1)

e
where 3 and v are the momentum and the velocity of the electron, E and
B are the electric and magnetic fields. If the field corresponds to a

i(wt-82+¢) 4, Eand B. wand 8 are

wave there is a common factor of e
the frequency and the wave number of the wave. The variables t and z
correspond to the time and position of the electron which are defined to
be zero when the electron is at the entrance of the interaction region.
The phase of the electron upon entering the interaction region is given
by ¢.

In general, (3.1) can be solved for the variation of the electron

velocity in the transverse and longitudinal direction. The energy gain
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of an electron in transit can be obtained by calculating
P
Ae = mc”Ay = me"[y(L) - v(0)] {3.2)

or from the work equation
T
= >
he = J et . ¥ dt (3.3)
0

To obtain a simpler analytical result, we solve equation (3.1) and evalu-
ate (3.2), (3.3) in the region of low field intensity. Every physical
quantity in (3.1), (3.2), and (3.3) can be expanded in power series of

the field amplitude. Practically, we are interested only in <Ae>, up to

¢
second order, where < >¢ indicates an average over ¢. If (3.2) is used,

the velocity has to be obtained up to second order. However, in (3.3),

we have
T() R
Ae = eE - v dt
= T
= o). 3000 4r(e) + e j g1 50D g
r 0
+eJE(2) v(0) 4t (3.4)
0
where
-0 D I ) B
ey, () @)
o) = T+at(6) 5  T=unl0

In most cases, the fractional change in the electron velocity which is
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about A/L is smaller than 10'4. This value is much smaller than any
possible expansion constant in the power series. Therefore, the first
and second terms on the right side of (3.4) are negligible compared to

the third term. So,

-
J< 0. ab (3.5)
0
In order to obtain E( ), only the velocity up to first order is neces-
sary.
In terms of velocity components, equation (3.1) is rewritten as
dv 3 v
my ?ﬁ§ = - mlf (v - %%) v, +el[E + 7§-By] (3.6)
c
dv 3 v
I & - . v .z
L - (v Hf) vy + e[Ey = Bx] (3.7)
dv 3 v v
d
F EEE' = ml? (v- a%’ Vo ¥ el:Ez - 7§'By'+7¥'8x] (3.8)
g
where BZ = 0 in the TM mode. In general, Ex,y,z and Bx,y are functions

of x and y. From (2.1), we know their values are comparable excepting
factors of sine and cosine. It is also assumed that the electron has
only a z-component of initial velocity.

Let us examine the transverse force equations (3.6) and (3.7). It

(1) 4ng (1)

is obvious that Vo and Vy are to lowest order Vg and vy According

to equation (3.5), the contribution of E Vo and Eyvy is too small to be

considered. But v£1) and v§1) could enter the right side of (3.8), but
they generate terms proportional to the square of the field amplitude

which can be disregarded because v_ is only up to first order. Therefore,

z
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the transverse force equations and the magnetic force in (3.8) can be
neglected. The remaining equation is very simple

9%—= §E§-Cos[wt-82'+¢] (3.9)

g

where we have deleted the subindex z without leading to ambiguity, and
included the propagation factor in the cosine factor.

Assuming that Ay << vy, we solve equation (3.9) for v and z in an
iterative way. The zeroth order solution for the electron position is
z(t) = Vot where Y is the electron initial velocity. From (3.9) we

obtain the velocity to first order as

& U ¥ eg [sin(Qt -¢) + sin ¢] (3.10)
my°Q
and eF
z = vot t—> [cos ¢ -cos(Qt-¢)+Qt sin ¢] (3.11)
my €
QEBvo-w

\")
ol =11, = w/B (3.12)

v
D p

Q is thus the wave frequency as "seen" by the electron. Exact synchron-
ism, i.e., wave phase velocity vp equals electron velocity Voo obtains
when Q = 0.

The electric field "seen" by an electron is no longer a perfect
sinusoidal wave due to the variation of the electron position from vot.

Substituting z = vot + Az into the field expression,
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E(t,9) = E cos(wt -Bz+¢)

E cos[wt-s(vot-FAz) + 6]

E_cos(Qt -¢)
- =3 sin(Qt - ¢)[cos ¢ - cos(Rt -¢) +Qt sin¢]

The integrand in (3.5) can be calculated to be

<£@) 50y . v0<E(2)>

¢ ¢
Bv ek

= - E——g—?-{sin Qt - ot cos Qt} (3.14)
my @

The phase-averaged energy loss per electron is obtained by integrating

(3.14) over t

BverE2 .
<Az—:>¢=2—-37{2-2 cos QT - QT sin QT} (3.15)
my
_wele?T® (1 sinf(e1/2) _ sin aTy) 2.15)

The function within the curled brackets contains the dependence of the

energy transfer on the electron and wave velocities. The dependence

1 (sin’(a1/2) _ sin oy (3.17)

P~ a7 @1/2)%

)2 )

is plotted in Figure 3.1. It is a fundamental synchronism function for

a single electron-wave interaction. The functional dependence is
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identical to the derivative of the spontaneous radiation spectrum

-
f(x) = - 32-3—)([&(;%—;{31] (3.18)

which is in agreement with the quantum mechanical analysis [1] of the
free electron laser.

Note that f(QT)max = 0.135 at QT = 2.6. Physically, @ > 0 means
the electron velocity is larger than the phase velocity of the wave. But
it is well known that the phase velocity of a waveguide mode is always
larger than c (see (2.2)). This why it is necessary to introduce cor-
rugations on the waveguide. The period of the corrugation is chosen so
that the phase velocity of the first harmonic is less than c. In this
case it becomes possible for the electron to interact with the wave in
positive gain region. It is also noticed that there are other positive
gain regions below QT = -2m. The phase velocity in these regions is
larger than the electron velocity. It is not necessary to have a
periodic structure to generate slow waves. However, the operation in
these regions requires extremely high electron energies and results in
only very low gain. This method is rather impractical compared to the
operation around AT = 2.6.

Once we obtain the average energy loss per electron, the power loss

by the electron beam is found as

_ I
AP = <:A€>’¢ TET

2.3
- w]e E°T I f(QT) (3.]9)

2ny
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The field amplitude appearing in (3.19) is the amplitude of the first
harmonic, which is related to the total field by the wave spectrum dis-
cussed in Section 2.2. For a longitudinal free electron laser, N is

about 500. The spectrum at g = 1 is very narrow with an amplitude

E] = EoJl(S) (3.20)
S:A_a_k‘
k™ 3a

- 17 AAX
a%/] —Az/Za2

where E0 is the field amplitude of the fundamental TM mode. The expres-

(3.21)

sions of S and k can be found in Section 2.2. The field Eo is related

to the total electromagnetic power P by

2

2
EC = 28, P K (3.22)

where KO is the waveguide impedance for the fundamental mode

4

A
Kk =] B (3.23)
0 J % 2n%a*(1-2%/2a%)3/%

Using (3.20), (3.22), and (3.23) in (3.19), we obtain the following

expression for the gain per pass

2 3, .2

wle]d4(s) T°1 g%k
G = %ﬁ.: 1 . 99 £(qT) (3.24)
my

By choosing the beam velocity Vo SO that T = 2.6, we can write the

maximum gain as
0.135]e| (u/e,)

G
max 2 2 2
T e Wn3Gsnta - 25

2a I (3.25)

1/2

3/2

2Y3a4
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For the practical case, a > X and s << 1, we have

2,2.3. 3
_ -4 ATATATLT
Gmax = 0.78x 10 ——————Y3a]0 (3.26)

Equation (3.25) is thus the basic result for the gain in the case of a
perfectly monoenergetic electron beam. It applies in practice to a beam
in which the velocity spread satisfies vo/v0 < (wT)'] (or, equivalently,

AQ < T']). In terms of energy resolution, this condition reduces to

Ay _ 2 Av
YUY
YZA -4
< g 2x10 (3.27)

This case is referred to as the homogeneous situation, in analogy with
ordinary lasers, and requires an electron beam of high energy resolution.
The synchronism condition determines the relation between the elec-

tron energy, radiation frequency and the corrugation period

_ 2r _ w
B'] - B +‘A_' v (3.28)

0 0

Using the dimensionless electron energy, vy, we have
. -1/2
v = (1-10-2%22%) V% + M7 (3.29)

which gives us the tuning curve for the longitudinal free electron laser.
With a fixed period A, the wavelength of the output radiation can be con-
tinuously tuned by only changing the electron energy. The relations
between v and X are plotted in Figure 3.2 for different periods. For

each period, the curve has a minimum which means that there is a lower
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limit to the phase velocity for the first harmonic. In practice, A << a

and X << A, in which case (3.29) becomes

v = M2 (3.30)

which is identical to the result of the transverse free electron laser [1].
As expected, in the 1imit of low current intensity, Gmax is proportional
to I. Other interesting features of GmaX are:

(i) 6 «L3:

i This implies that the gain due to a monoenergetic elec-

tron beam is not exponential. The gain can be made higher by using
a longer interaction region if QT is kept constant so that in prac-
tice as we increase T(=L/vo) we need to operate closer to synchron-
ism.

9/2:

(i) G . =X

A The gain drops dramatically at shorter wavelengths.

That is the reason why it is difficult to operate the free electron

laser at very high frequencies.
(7i4) Gmax « a-]O: This steep tenth power dependence on "a" reflects the
importance of the waveguide dimension. A factor of a'6 is due to
operation in the TM mode. Smaller waveguides have a larger longi-
tudinal component of the electric field and increases the stimulat-
ing strength. A decrease of one-fifth in the dimension leads to a
gain of ten times. This advantage could be used to compensate for

the troubling waveguide loss which is proportional to a.

To get an appreciation of the level of gain predicted by (3.25), we

consider the following example
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A =10 um ; a = 50 um ;
A =10 um ; A= 200 um ;
L=10c¢cm ; I=1mA.

From these independent values, we have y = 3.64,5=0.163, and J%(s)==0.0065.

The calculated gain is

Gmax = 7% per pass (3.31)

This gain is sufficient for laser oscillation when mirror feedback is
present, provided the losses of the waveguide are negligible. We have to
emphasize that the value in (3.31) depends critically on physical param-
~ eters, especially a. For example, if a = 40 um, the gain will rise to

a value of 63%.

The gain expression (3.24) applies to the case of a perfectly
monoenergetic electron beam and is called the homogeneous gain. However,
when the electron velocity distribution is sufficiently broad, electrons
with different velocities provide different value of gain. The total
gain should be the integral of the gain weighted by the electron distribu-
tion. In Figure 3.3 the cases of narrow and broad distributions are
shown in terms of velocity. If the distribution is smooth and its width

exceeds AT by a large factor, it can be expanded around the wave velocity

glv,)

. g(Q)w/vp (3.32)

and

g(@) = go(0) + (3g,(0)/30)a (3.33)

The total gain is found by multiplying (3.33) and (3.24), and then inte-

grating over Q.
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_ 995(0)
S f 6(2) do
., 395(0)
= 76T — (3.34)
where
6' = wle|Ik, 9%(s) 82/ m’ (3.35)

The result in (3.34) is called the "inhomogeneous gain." Since it is
proportional to T, the gain is exponential. A gain which is proportional
to the derivative of the electron distribution at the resonance is well
known in the traveling wave tube [2]. It seems that we can get a very
large gain if the system is operated at the sharp edge of the electron
distribution, but this is in contradiction with the assumption made in
expanding g(Q). Therefore, the gain in (3.35) is usually a small value.
Physically, a broad beam leads to a reduced gain because the net gain is
due to the small excess of electrons which lose energy to the wave over
those which gain energy. If possible, it is best to avoid the inhomogene-
ous interaction experimentally.

The gain we calculate in the homogeneous case is the total gain at
the output, but not the infinitesimal gain along the interaction region.
At the beginning of the device, the gain increases as t4 and reaches its
maximum at the output when QT = 2.6. For QT > 2.6, the gain at the out-
put has already passed its maximum, so that it can be increased by using
a shorter interaction region. For QT < 2.6, the gain is still increasing
at the output. The behavior of this gain is quite different from the

loss mechanism of the waveguide which is an exponential function of the
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distance. At first, the loss is proportional to t which is larger than
the gain for small t. It is thus possible to have a situation in which
the overall gain exceeds the loss but not be larger than the loss on an
incremental basis everywhere. This situation merits an investigation,
since it is not even clear a priori if such a device can oscillate.

The analysis proceeds just as in the calculation of the homogene-

ous gain, except that the force equation (3.9) is replaced by

e™%? cos[wt - Bz + ¢] (3.36)

(=N
<

E
my
where o is the loss constant of the waveguide. The derivation is tedious

but straightforward. The only integral we need to calculate is

-at
-at e :
e cos(bt+c) dt = —2——?-[b sin(bt+c) -a cos(bt+c)]
/’ +b
(3.37)

Other integrals needed in the derivation can be obtained by taking the
derivatives of (3.37) with respect to a, b, or c.
The result is identical to (3.24) except the sychronism function

is replaced by f(p,q), where

-p
f(p,q) = —Lo—s— {[2 cosh p-2 cos q- (£ + 2)p sin q]
(p2+q%) 9P
& r(P_9y ¢; : -(E+a _
t g [(q p) sinh p+2 sin g (q + p)p cos q]} (3.38)

p = al $ q QT

In general, 8 >> a, and the second term in (3.38) can be neglected. When

o >~ 0, (3.38) reduces to the form in (3.17). The total gain is then
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equal to

6+ (e - 1)

o
]

R

G - al (3.39)

where G is given as in (3.14) with f(p,q). The result, (3.39), is im-
portant. It shows that for small traveling wave gain and waveguide
loss we can calculate each one independent of the other and then sub-

tract the result to get the net gain (or loss).

3.3 Electron Dynamics

In a given interaction region, the electron changes its velocity
and position from Ve and vot, respectively, along the path due to the
interaction with the electromagnetic wave. The change of position is on
the order of the radiation wavelength. The variation in the longitudinal
direction essentially changes the relative phase of the electron with
respect to the wave. However, the variation in the transverse direction
results in the divergence of the electron beam and can be neglected.

The modulation of electrons in real and velocity spaces is best
described by plotting its distribution intensity on the v-¢ phase plane.
The evolution of the electron distribution is then clearly visualized
by the changing of its shape and density. In order .to determine the
evolution of the distribution, it is necessary to understand how an elec-
tron propagates in the phase plane. The path of an electron is deter-
mined uniquely by its velocity and phase at time t. Taking t as a
parameter, we can trace the electron motion and form a stream line for

that electron. The stream lines will not interact with each other unless
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they coincide exactly all the time. The stream line of a single electron

can be found from the force equation (3.9)

1ﬂ%—cos ¢ (3.9)

my

aljla.
<

where ¢ = Bz - wt - ¢0 is the phase of the electron with respect to the
electromagnetic wave at z and t. ¢0 is the electron phase upon entry.

Defining a new variable,

ala.
&le

(3.40a)

= = l
w=YV Vp B

which is the relative velocity between the electron and the wave, equation
(3.9) is rewritten as

= fﬂ%-cos ) (3.40b)
my

2

Multiplying both sides of (3.40b) by 2w and integrating,

2) = j&i% d(sin ¢) (3.41)

gmy

d(w

Assuming the electron stream line passes through a point (wo,¢o), (3.41)

is solved to obtain the equation for the stream line

w2 - w2 2eE [s1n ¢ - sin 9 ] (3.42)

&WY
A set of stream lines based on (3.42) is plotted in Figure 3.4. This is

a reduced phase plane which shows only the stream 1ines within one opti-
cal wavelength. The lines ending at ¢ = 27 should reappear at ¢ =
The complete phase plane is obtained by placing the reduced phase planes

side by side. The stream lines are then continuous in the complete
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phase plane. The phase plane can be divided into two regions of stabil-
ity and instability. The stable region is shown as the shaded area in
Figure 3.4. A1l the stream lines in this region are closed. Electrons
in this area will be trapped within the same wavelength of radiation and
keep circling around the center. The region of instability includes all
the open stream lines. Electrons in this area will keep overtaking the
wave of radiation. It should be noticed that the stream-line picture
breaks down when the field amplitude is not a constant. Electrons will
jump continuously from one line to the other due to the variation of E.

It Wy = -vp, the corresponding ¢0 is the entry phase. Instead

Yo
of an electron we consider a monoenergetic electron beam distributed
evenly in ¢. It is easy to see from (3.42) that if

2 4eE

Weos (3.43)
°  gmy

w always has a solution for arbitrary given ¢ and ¢0. If the electron
beam is plotted on the phase plane, the entire beam is in the unstable
region. Thus the electron will not be trapped locally inside the wave
if the electron velocity is high enough. It is interesting to compare
the condition (3.43) with the gain curve. The electron velocity obey-

ing (3.43) with an equality sign will appear on the gain curve at

_ eEL
or =[5 738l 2=

cy
For the previously given example of a longitudinal free electron laser,

the point of maximum gain operation will appear in the unstable region
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if E<x6x 103 V/m. The electron beam following (3.43) is plotted in
Figure 3.5a. The shaded region is the allowed region for electrons dur-
ing propagation.

It wi < &EEF , part of the electron beam enters the region of

stability and w§T¥ be trapped during the interaction. In Figure 3.5b,

we show the position of the electrons and the allowed region. The shaded
area in Figure 3.5a and b also reveals the possible width of the electron
distribution at the output. For a monoenergetic electron beam, the

maximum range of the distribution in velocity is

4eE 4eE 2 _ 4deE
w. + SWD> /W, - —= for w. >
VO amd VO am?® " am3

and (3.45)

4eE
/? deE ek 2 —=
w_ + ———3-> w> - —x for w. < 3
2 gmry Bmry ¢ %

If the electron distribution has a finite width, it is represented

by a strip instead of a line, and each electron still follows the stream
line. The evolution of the distribution can be seen qualitatively on the
phase plane. Because time t is an implicit parameter in the stream line,
the determination of the electron distribution at any instant is not
straightforward.

The electron distribution on the phase plane is Nt(v,¢). The
conservation of electron number requires that Nt(v,¢)dvd¢ should be
invariant. Given the initial distribution N_(v_,¢ ), the distribution

0'' 0’0
at time t can be found from

Nt(v,¢)dv dp = No(vo,q;o)dvodq; (3.46)



L=

O T 2T

Figure 3-5: Electron dynamics in un-trapped (A) and partly trapped (B)
cases. The shaded area is the allowed region for electrons.
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The infinitesimal areas dv d¢ and dv0d¢o are related by

o ¥
oV 9V
dvodq)o “lav. 30 dv d¢ (3.47)
_0 _0
90 39
The distribution at time t is
Bvo 3(1)0 84) BV
Nt(V,q)) = 0( 0’¢0)[ aq) = av a¢ ] (348)

Generally, v and ¢ are functions of ¥y and ¢o' In order to evaluate (3.48)
it is necessary to invert the functions and obtain Vo’¢o as functions of
v and ¢. From the force equation, v and z can be solved iteratively,

and ¢ is equal to
¢ = ¢, - [8z(v,,0,) + at] (3.49)

Using (3.48), it is very easy to calculate the shift and spread

of the electron distribution in velocity. The shift is calculated as

Av = <v> - s _[vN v,9)dvde] - v,
(3.50)

= L[ v N (vgutg)dvgdsy] - v,

If v(vo,¢o) is explicitly known, then Av is obtained by (3.50). The

spread is defined as

- J<v> - <nn? (3.51)

<v> is given in (3.50). <v2> is also obtained in the same way.
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A special case is one where the electrons are distributed uniform-
ly and monoenergetically. Then, due to the conservation of probability,

we have

(3.52)

where we have integrated over ¢ to obtain a distribution which depends

on v only. N0 is the total electron number in unit length, and

N(v) = 5= ld] | (3.53)

In the small field approximation, dv/d¢0 is evaluated by solving
(3.10) up to second order in E. Considering the shift and spread in the

lowest order in E we have, in general,

¥ =5, + p(vo) + f(vo) cos ¢, + g(vo) sin % (3.54)

whereby (3.53) gives

N(V) = 2 ] ' (3.55)

JUEe+ %) - (v-v, -p)*

For given Voo (3.55) is plotted in Figure 3.6a. The shape is symmetric

about Vo TP and the width of the distribution as calculated from (3.50)
is found to be equal to J/(f -+9237E. The shift is on the order of E2,
while the spread is on the order of E and is much larger than the shift.
When the electrons have an initial spread No(v) in v, (3.55) can be
easily generalized to

No(vo)

\/(f2+92) -(V-vo-p)2

dv (3.56)

1
N(V) = g 0
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N(v)
(A)
No
Nt
—] |-
4 v
N(v) Av

Figure 3-6: Electron distribution N , N before and after the interaction
for a monoenergetic (A) or a Gaussian (B) input beam.
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An example where N _(v_) is a Gaussian distribution is shown in Figure

0''o
3.6b. The splitting structure is obvious.

In the small field Timit,gain saturation is not well defined,

since the neglect of space charge forces allows the predicted gain to

increase indefinitely. However, we can get an estimate to the upper

limit of energy transfer by using the phase diagram.

sider the electron beam in the instability region.

transfer for an electron is

AY=Y2AC—V
2
="YE—[\/Q)§+ 4EE3 _/wg_ 4eE]
Bmry Bmy

If the operation is very near the condition (3.44),

R

2
Ay %T V2 W

Q _ 1n-3
2 zs=o

R

For example, con-

The maximum energy

(3.57)

(3.58)

It follows that the upper 1imit for the efficiency of a longitudinal free

electron laser is about 0.1 percent.

3.4 Two-Stage System

As practical free electron lasers were considered, it was real-

ized that the electron beam has to be recycled in order to achieve higher

overall efficiency. Using a magnetic field, the output electrons can be

brought back and made to re-enter the interaction region. The energy

loss of an electron in the interaction region can be compensated by

supplying to the electron on its return, energy equal to that Tost in the
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