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ABSTRACT 

The first part of this work describes theoretical studies of a 

proposed longitudinal free electron laser. Stimulated coherent radia­

tion in the infrared region is generated in the proposed laser by a 

relativistic electron beam passing through a periodically corrugated 

waveguide. The wavelength of the radiation is widely tunable by chang­

ing the electron energy. 

Theoretical investigations are based on the single-electron analy­

sis. Both linear and nonlinear treatments of the laser mechanism in a 

free electron laser are carried out analytically. The phenomena of 

homogeneous and inhomogeneous interactions, lossy gain, space-charge 

effect, large-signal behavior, large-gain amplification, and electron 

dynamics are discussed in detail. 

The second part of this work consists of a theoretical study of 

the linear electrooptic effect. Application of a d.c. or low frequency 

electric field to a crystal can change its electric susceptibility at 

optical frequencies. This effect is known as the electrooptic or 

Pockel 's effect. The semiclassical approach used is based on a one­

energy gap model, dielectric theory, and the concept of bond-charge. A 

general expression is obtained for the electrooptic coefficient of a 

crystal and is applied to the calculation for diatomic and ternary com­

pounds. The results are generally in good agreement with the measured 

values for nearly all the crystals in which the electrooptic coeffici­

ent had been determined. 
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PART I 
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Chapter l 

GENERAL INTRODUCTION 

The mechanism of laser emission can be described by the interac­

tion of radiation and a system of electrons. The emission of radiation 

results in the transition between electron energy states. The radiation 

emitted in the process then acts back on the radiating electrons and 

further stimulates the emission process. According to the nature of the 

electron energy states, lasers are in general divided into two classes: 

bound and free electron lasers [l]. Bound electron lasers include most 

of the conventional lasers so far developed. The electrons involved in 

the stimulating process are in the atomic or molecular orbits which are 

discrete energetically. The emissive transition takes place between two 

well defined electron energy states. In a free electron laser the radia­

tion interacts with a stream of electrons with a continuous energy spec­

trum. The transition during the stimulating process is between two 

states which are part of this continuum. The frequency of the radiated 

electromagnetic wave is determined by the electron energy. The popula­

tion inversion is achieved by accelerating the electron beam such that 

the electron energy distribution function is shifted toward the high 

energies. 

Some of the advantages of free-electron lasers are: First, since 

the frequency of radiation depends on the electron energy, the output 

wavelength can be tuned over a wide range by changing the accelerating 

voltage of the electron beam. Second, the laser medium includes the 
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electron beam only, and the interaction region is essentially a vacuum. 

The problems of radiation reabsorption and material damage at high power 

levels are thus avoided. Due to these two unique properties, the free 

electron laser is a promising candidate as a high power tunable laser 

from the infrared to the soft x-ray region of the spectrum. 

Several types of free electron lasers have been proposed. In 

general, they fall into two groups. In the transverse type of free 

electron lasers, the electron beam is deflected periodically at right 

angles to the propagation direction such that electrons can interact 

coherently with the transverse field component of the radiation field. 

The deflection of the electron beam is caused by either a periodic magnet 

or electric fields. In the longitudinal type of free electron lasers the 

radiation is confined to a waveguide and electrons interact with the 

longitudinal component of the electric field. To derive the gain equa­

tion and laser mechanism of the longitudinal free electron laser, we use 

a ballistic analysis and classical electrodynamics. The results are 

compared to those which obtain in a transverse free electron laser. 

1 .2 Previous Work on Free Electron Lasers 

Schrodinger [2] was the first to discuss stimulating Compton scat­

tering. This process involves the scattering of photons from electrons. 

A possible experiment was proposed by Kapitza and Dirac [3] to observe 

the stimulating Compton scattering of electrons from standing light waves. 

Almost two decades later, Motz and Nakamura [4,5] analyzed the possibility 

of generating coherent radiation by passing a relativistic electron beam 
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through a periodic magnetic field. Then, Pantell, Soncini and Puthoff 

[6] showed how to convert a long wavelength electromagnetic wave into 

short wavelength radiation by stimulating scattering from a relativis­

tic electron beam. Using the Weizsacker-Williams approximation, Madey 

[7] was able to derive quantum mechanically the gain of a free electron 

laser in which a relativistic electron beam passes through a static 

helical magnetic field. At the same time, Palmer [8] gave a classical 

description of the energy transfer between an electron beam and electro­

magnetic waves inside a static helical magnet. The possibility of using 

such a device as a laser and a particle accelerator was discussed. 

Sukhatme and Wolff [9] analyzed the stimulating Compton scattering in a 

finite length of an interaction region. 

Based on this theoretical background, the first free electron 

laser was demonstrated at Stanford [10] in 1972. A relativistic elec­

tron beam passes through the axis of a superconducting coil which gen­

erates a static helical magnetic field. Using this device, they were 

able to demonstrate the amplification of radiation at 10µ [11] and, 

later, the laser oscillation at 3.4µ [12]. 

The first experimental demonstration of stimulating amplification 

was followed by numerous analyses. It became apparent that a classical 

treatment is more appropriate to describe the free electron laser. 

Using coupled Maxwell 1 s and Boltzmann equations, Hopf, Meystre,scully, 

and Louisell [13,14] derived the gain classically in the small and 

large signal regions. Colson [15,16] used one-body electron dynamics 

and related the equation of motion of the electrons in a FEL to that 
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of a pendulum. Kwan, Dawson, and Lin [17] demonstrated electron bunch­

ing and gain behavior by computer simulation. Gover and Yariv [18] 

gave a quantum mechanical view of the interaction between the electron 

beam and radiation in the single-electron and collective regions. Kroll 

and McMullin [19] derived the dispersion equation for the stimulated 

radiation and obtained the exponential gain in the limit of a large 

cavity. Louisell, Lam, Copeland, and Colson [20] solved the classical 

pendulum equation and showed the gain saturation and the evolution of 

the electron distribution. In a separate paper [21] they also dis-

cussed the space charge effect to a first order approximation. Baier 

and Milstein [22] pointed out the importance of the phase of the radia­

tion in the free electron laser. Bernstein and Hirshfield [23] indi­

cated that the gain depends critically on the axial momentum distribution 

of the beam. 

In parallel with the development of the Stanford experiment, some 

other types of free electron lasers have been proposed utilizing dif­

ferent interaction mechanisms. The electron cyclotron maser was 

proposed to generate enhanced high power submillimeter waves [24]. 

Stimulated Compton scattering was observed directly using the 

up-conversion of microwave radiation "colliding" head-on with an electron 

beam [25]. The stimulated Smith-Purcell effect was studied in search of 

a possible means of producing coherent radiation with an electron beam 

passing close to a grating [26]. Replacing the periodic magnet by a 

corrugated waveguide in the interaction region is found theoretically 

to achieve low-power and high-efficiency operation [27]. 
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1.3 Outline of Part I 

In Chapter 2 the propagation of electrons and radiation in a 

waveguide is discussed. The physical origin of the electron band struc­

ture is also analyzed. The spontaneous emission of an electron passing 

through a corrugated waveguide is derived using the radiation theory of 

classical electrodynamics. Finally, the limitations on the applicabil­

ity of the classical approach is discussed. 

In Chapter 3 the classical approach of the single-electron picture 

is used in the linear theory of the longitudinal free electron laser. 

The gain behavior in the homogeneous and inhomogeneous interactions is 

then discussed. The electron dynamics are investigated to find the 

electron energy and phase distribution. In this analysis the phase 

diagram is used to describe the evolution of electrons. A two-stage 

system is analyzed in the discussion of electron bunching. 

In Chapter 4 the nonlinear theory of the longitudinal free elec­

tron laser is introduced. The space-charge effect due to the high 

current density is considered. At high radiation energies it is shown 

that the equation of motion can be solved exactly by use of special 

functions in the low gain limit. 

the gain saturation explicitly. 

A result of this solution is to show 

In the large gain limit the growth of 

the field amplitude along the interaction region is described analyti­

cally. 

In Chapter 5 the theoretical work is sunnnarized and experimental 

conditions are discussed. The electron circulation and the possibility 

of electron bunching are studied. 
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Chapter 2 

ELECTRODYNAMICS IN A WAVEGUIDE 

In this chapter we study the phenomena of electrodynamics in a 

waveguide which is proposed to be used as an interaction region in a 

longitudinal free-electron laser. A wave in a corrugated waveguide 

cannot be described as a state having a definite momentum. Its spectrum 

is studied in momentum space. An electron passing through the corru­

gated waveguide generates spontaneous radiation. The method of "image 

charge" is applied to evaluate the output spontaneous power. The wave 

spectrum and the spontaneous process are studied classically. The co­

existence of radiation and electrons results in the photon-induced elec­

tron band structure. The equation of motion using relativistic quantum 

mechanics is solved exactly in terms of momentum eigenstates. The con­

tinuous spectrum of the electron beam is divided into regions of 

stability and instability. The physical process in the electron stopping 

band is investigated by the Lorentz transformation and space-time 

invariant. Finally, the applicability of the classical approach is dis­

cussed from the point of view of the uncertainty principle. The 

limitation on the wave frequency and the radiated power is calculated 

quantitative 1 y. 

2.2 Wave Propagation 

The prototypical configuration of the proposed longitudinal free 

electron laser is shown in Figure 2.la. The main part of the device is 
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Figure 2-1: (A) Shows the prototypical configuration of a 

longitudinal free-electron laser; (B) defines 

the parameters in the device. 
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a corrugated metallic waveguide v1ith the electron beam passing through 

its axis. Two mirrors at the two ends are adjusted to form an optical 

cavity. The dimensions of the waveguide are given in Figure 2.lb. 

Lis the length of the interaction region, a is the width, A is the 

period of the corrugation, and tis the depth of the corrugation. The 

corrugation is necessary for an efficient energy transfer from the elec­

tron beam to the radiation. Generally speaking, the periodic structure 

supplies the extra momentum needed when the electrons emit photons. 

Since electrons interact mostly with the longitudinal component 

of the field, we are only interested in the waveguide TM modes. From 

Maxwell's equations and the boundary conditions, the TM modes of a rec­

tangular metallic waveguide with cross section (ax b) are readily found 

[l J 

E
2 

= E
0
sin(kxx) sin(k_yY) ei(kz-wt) 

kk 
Ex= i yE cos(k x) sin(k _ _y) ei(kz-wt) 

k O X y-
e 

E = i ~ E sin ( k x) cos ( k. _y) e i ( kz - wt) 
y 70 X y-

C 

ko 
Bx = - k Ey 

By 
ko 

Ex = T 

B = z 0 

( 2. l ) 

where k = mir/a· k = nir/b· k = w/c· k =jk2+k2 is the cut-off 
X ' Y,_....,,.._.,....' 0 ' C X y 

wave vector and k = jk~ - k~ is the propagation wave number. m and n 
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are integers and denote the TM modes. The fundamental mode in a square 

waveguide has m = n = 1. The phase velocity is 

j k2 
V = w/ k = C / 1 - ➔ = 
P k 

0 

c')l - 1.22 
2a 

where A is the wavelength of the radiation in free space. 

(2.2) 

In a corrugated waveguide such as the one depicted in Figure 2.lb 

Maxwell's equations cannot be solved exactly. The wave propagating in 

this structure does not have a definite value of phase velocity and 

cannot interact, as a single wave, with an electron as in the case of 

Compton scattering. The best way to proceed is to find its spectrum in 

momentum space. Each component in the expansion has a definite value 

of momentum and can interact with electrons as a single photon. 

The fractional sinusoidal variation of the waveguide width is 

defined as 

a(z) =a+~ cos k'z 

k' = 2-rr/l'l (2.3) 

where k' is the unit of lattice momentum. For convenience, the varia­

tion is assumed to be small and slow (i.e.,~<< a and a<< l'l) and that 

the adiabatic approximation is valid. Physically, we expect the wave 

to propagate smoothly along the waveguide. The propagation constant k 

at z is determined locally by the waveguide width according to (2.2). 

With this picture the z-dependent wave equation after the separation of 

variables can be written as 

(2.4) 
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Using the second order WKB approximation, the solution to equation (2.4) 

is 

/k i fk(z) dz 
E = E --e 

0 /k1zT 

k(z) can be expanded to first order in 6 

k(z) = k + ..£.!s. 6 cos k'z aa 

(2.5) 

(2.6) 

An explicit calculation of (2.5) results in the following expression for 

E 
• [k 6 ak • k, J 

A "'k 1 z+p-~s,n z 
E = Eo[l - Ll -

0 cos k'z] e oa 2k aa (2.7) 

The wave is defined only in the interaction region which extends 

from -L/2 to L/2 with N periods of corrugation. Because both the field 

amplitude and the phase depend on position z, the wave must be decomposed 

into the states of definite momentum and constant amplitude. Due to 

the finite interaction region, the spectrum of the wave is continuous 

and can be found by Fourier transformation 

CX) 

(2.8) 

-oo 

where q is dimensionless. The Fourier coefficient a(q) is obtained by 

the inverse transform 

L/2 
- 1 f a (q) - 2n 

-L/2 

• [ k, 6 ak • k, J 
[ 1 - 6 .£! cos k'z] e-1 q z-fT aas,n z dz 

2k aa 

(2.9) 
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_ !:>. ak 
where s - k' aa 

( ) = sin NqTI ( 
Hq s N sin qTI Jq s) (2.10) 

Jq(s) is the Anger function [2], which is defined by the integral repre­

sentation: 

Jq(s) =} f cos(qx - s sin x) dx 
0 

(2.11) 

This representation is similar to the one for the Bessel function Jq(s), 

but q is not necessarily an integer. The dependence of the Auger func­

tion on its index and argument is shown in Figure 2.2 . The difference 

between the Auger function and Bessel function is apparent, especially 

whens= 0. Ats= 0, Jq(O) = 0 only when q is an integer and not equal 

to zero, while Jq(O) = 0 except when q = 0. As A>> A, only the first 

term on the right side of (2.9) dominates. In Figure 2.3 we show the 

spectrum of the wave in a waveguide having ten corrugation periods 

(i.e., N = 10). The contribution of the first hannonic to the total 

wave reaches its maximum at s = 1 .84. The spectrum amplitude is en­

hanced when q is close to an integer. The width of the enhanced peak 

is proportional to 1/N. Usually, N is very large and the spectrum 

becomes discrete, 

a(q) = Jq(s) o(q-n), n is an integer (2.12) 

In this limit the electric field becomes 

(2.13) 
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Figure 2-3: The spectrum of a propagating wave in a waveguide 
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In the longitudinal free electron laser, the stimulating interac­

tion takes place mostly between electrons and the first harmonic. The 

growth and instability of the first hannonic field distributes its 

energy among other hannonics via the interaction of the wave with the 

periodic structure. The fractional intensity of radiation involved in 

the stimulating process is thus only J~(s) of the total intensity. 

The interaction mechanism of a transverse free electron laser is 

somehow different from that of the longitudinal laser described above. 

Although the static helical magnet supplies the necessary momentum com­

pensation, the physical process is usually understood as the interaction 

between transversely deflected electrons and the transverse electric 

field of the radiation. It seems that the stimulating strength should 

be much larger because the total wave stimulates the emission process. 

But the deflection of electrons by the magnetic field is so small that 

the efficiency of the energy transfer is actually much lower than the 

efficiency in the longitudinal device. 

2.3 Spontaneous Radiation 

The spontaneous radiation is due to the classical acceleration 

or deceleration of electrons in the waveguide. The acceleration and 

deceleration are the result of interactions between the electrons and 

the corrugated metal wall. In general, the interaction is very small 

so that the velocity of the electron does not change significantly dur­

ing the flight. A section of the symmetrically corrugated waveguide is 

shown in Figure 2.4. The best and simplest way to describe the inter­

action is to use the method of "image charge." Based on the adiabatic 
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approximation, we assume that an electron at any position on the axis 

has one and only one image charge on each wall. The line connecting 

the electron and the image charge is perpendicular to the wall. This 

assumption is true only when the radius of curvature at any point on 

the wall is larger than the width of waveguide, a. Assuming a wall 

profile 

x' =a+ b cos k1 z 1 (2.14) 

The criterion is equivalent to 

which is always obeyed in a practical device. The interaction between 

an electron and the wall can be simulated by the force between the elec­

tron and the positive image charge. When the electron travels down the 

waveguide, the image charge swings along the path parallel to the axis. 

The force due to the excursive motion causes the acceleration and 

deceleration of the electron along the periodic structure. 

where 

From Figure 2.4, the force in the z-direction is 

2e2cos CL F = -........---
4r2 

r = J(z-z 1
)
2 + x• 2 

= (a+ b cos k1 z 1
) j1 + k12b2sin2k1 z 1 

k'b sin k'z 
COS CL = -------

/1 +k 12b2sin2k1 z 

(2.16) 

(2.17) 

(2.18) 
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To the first order in k1 b, the force is simplified as 

F = e2k'b sin k'z (2.19) 
2(a+n cos k'z) 2 

z in the right side of (2.19) can be replaced by v
0
t. The time-depen­

dence velocity is found to be 

V = V + 
0 

e2 1 1 
3 [a+b - a+ b cos k I v t] 2my v

0 
0 

(2.20) 

The radiation intensity generated by this interaction per unit 

solid angle dn and per unit frequency interval dw is given [l] 

OOJ iw[t - n ~] 
nx (nxv) e c dt 

2 
(2.21) 

-co 

Practically, it is impossible to observe the angular dependence of the 

radiation intensity in a waveguide. Even the frequency dependence of 

the intensity at the output does not follow (2.21). From (2.2), it can 

be seen that k and ware not independent of each other for a propagat-

ing waveguide mode. Only that part of the radiation which obeys the 

condition for the guided mode can be detected at the output. The total 

power which can be detected is less than the total power loss of elec­

trons. To estimate an upper limit on the spontaneous radiation intensity, 

we integrate (2.21) over angle and frequency to obtain the total power 

loss of electrons. 

If n is defined in the direction of (0,¢), we have 

A A-;t A A 2A 

nx (nx !j) = S[sinecos 0(cos¢x+sin¢y) - sin ez] (2.22) 
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and 

A z z t - n·- = t - - cos e 
C C 

(2.23) 

Due to the collective interference of waves, the radiation pattern con­

sists of many spectral lines. The fundamental line is the radiation 

from the electron acceleration at the fundamental frequency k'v
0

. From 

(2.21), the electron velocity can be resolved into different orders by 

expanding it in power series of b/a. Considering only the fundamental 

line, we have 

V = V -
0 

(2.24) 

The interaction region is finite, so the integral in (2.21) extends 

only from t = -NA/2v
0 

tot= NA/2v
0

. The radiation intensity is then 

found as 

where 

dI = At/sin2e[J cos k'v t ei(l -B cos e)wt dt] 2 
cillaw 0 

~~ ( 1 - 8 cos e ) + Nrr J 
Aw2 • 2 [ o 

= sin 8 (1 - s cos e) + k I v 
0 

+ 

sin[~Aw (1 - 8 cos e) - Nrr] 
VO ] 

w(l - 8 cos e) - k'v
0 

3 2 
A=l( eb ) 

c 4 2 ca2 mrry VO 

(2.25) 

(2.26) 

(2.27) 

The functional form, sin Nx/x becomes sharply peaked at x = 0 

when N is very large. Therefore, the radiation frequency of the funda­

mental line is 



-22-

V k' 
0 

w = 1 - s cos e (2-28 ) 

and the first term in (2.26) is highly suppressed. The radiation spec­

trum of the fundamental line is then obtained as 

, s i n 2 [ ~ ( 1 - B cos e ) - NTT J 
__s!_!_ = Ak 12v2 sin2e vo 2 2 
dQdw o [ ( 1 - B cos e )w - k • v 

0
] ( 1 - 8 cos e) 

(2.29) 

By integrating (2.29) over w, we obtain the angular distribution 

.91 = ANk , 2 s i n 
2 e 

dQ V 01T 3 
( 1 - s cos e) 

(2.30) 

Tht total power is found by the integration of (2.30) over Q and divided 

by the flight time T = NA/v
0

. 

When B -+ 1 , the total power approaches 
3 2 

p = A 2k,2 2 3 2 31T Ya b 3 
(2.32) 1T VO y = 4 4 2 4 me 

y A a 

In the last step, (2.27) has been used for the expression of A. 

y
0 

= e2;mc2 
= 2.82 x 10-13 cm, is the classical electron radius. In the 

transverse free electron laser, the spontaneous power is proportional 

to y2, while it is proportional to y-4 in (2.32). This dramatic drop 

in they-dependence comes from two sources: First, the dependence of 
2 -2 the radiation spectrum on sine in (2.29) introduces a factor of y in 

the result. Second, it is more difficult to accelerate electrons 
-2 longitudinally than transversely, which adds a factor of y in the ex-

pression of v. 
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From (2.32), the total power of the fundamental line emitted 

spontaneously by an electron passing through the corrugated waveguide 

• 1 1 1 -lfi 1s ca cu ated to be about O eV. For a continuous electron beam 

of 1 A, the emitted power is only about 10-16 watts which is much 

lower than the value in the transverse free electron laser. 

2.4 Electron Band Structure 

The energy spectrum of a free electron beam is continuous. 

However, in the presence of an electromagnetic field, the spectrum is 

modified and generates electron band structure. It has been known [3] 

theoretically that the presence of photons can induce band structure 

in a medium. The physical origin of this phenomenon is based on the 

fact that k 1 w/c in such a medium. This effect should be observable 

for an em wave propagating in a waveguide, even though the waveguide 

cannot be represented by a simple index of refraction, n. Therefore, 

we expect that an electron beam passing through a waveguide containing 

an electromagnetic field should display a band structure in its energy 

spectrum. The following analysis follows from the relativistic and 

quantum mechanical points of view. All physical quantities are written 

in 4-vector notation and the dimensional choice,--11' = c = 1, for con­

venience. A four-vector Aµ represents 

(2.33) 

For example, the wave-vector kµ is 

(2.34) 
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and the momentum-vector pl1 is 

µ _ ( 1 2 3) p = E,p ,p ,p (2.35) 

-+ -+ -+ 
The usual space vector is denoted as A, such ask and p. A four-vector 

Aµ transforms like a vector in four space. The scalar product of two 

vectors is defined as 

(2.36) 

1 0 0 0 

gµ\/ 
0 -1 0 0 -
0 0 -1 0 

0 0 0 -1 

and is a scalar in four space. Ao is usually known as a "time component" 

because 

Xµ =- (t 1 2 3) ,x ,x ,x (2.37) 

The band structure can be solved directly from the relativistic 

equation of motion with a "minimal coupling " to the electromagnetic 

field [4] (i.e., pµ-+ pµ - eAµ or aµ-+ aµ - ieAµ). For a spin-1/2 par­

ticle, such as an electron, the Dirac equation should be used to account 

for two spin states. However, the spin complication is not essential 

in obtaining the electron spectrum. For a simpler demonstration, the 

equation describing a scalar particle is solved . The spin-induced band 

splitting will be discussed qualitatively at the end of this section. 

Because the criterion for generating band structure is quite general, 
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we will not limit ourselves to the case of an electron in a waveguide. 

The analysis follows a general guideline . The physical interpretations 

are then given for (i) vp > c, and (ii) vp < c, separately. 

Consider a spinless particle in a given electromagnetic field. 

The wavefunction of the particle,~, is the solution of the Klein-Gordon 

equation 

2 2 [ ( P - eA) - m ]~ = 0 

In the x-representation, the equation with the Lorentz condition 

a Aµ= 0 is rewritten in a covariant form µ 

(2.38) 

(2.39) 

The vector potential in the equation is assumed to be only a function 
-+ -+ 

of the single variable <P = k·x = wt - k·x. Without the electromagnetic 

field coupling, the solution of (2.38) is that of a plane wave, 

~ = eip·x with p·p = m2. It is reasonable to write the solution for 

(2.39) as 

(2.40) 

Inserting (2.40) into the Klein-Gordon equation, we obtain 

k·kF"(<P) - 2iP·k F' (<P) + (2eP·A - e2A•A) F(<P) = 0 (2.41) 

The order of the differential equation (2.41) depends on the value of 

k·k. If k·k = 0, it is only a first order equation and the field cor­

responds to a freely propagating electromagnetic wave in vacuum as 
-+ 

w = lkl. When k•k f 0, it becomes a second order equation and two cases 
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can be distinguished 

(i) k·k > 0: 
➔ 

This case indicates w > Jkl and v > c. p This kind 

of electromagnetic field can be generated either in a plasma 

medium (n < 1) or in a hollow waveguide (k·k = w~). 
➔ 

(ii) k•k < 0: This case indicates w < JkJ and vp < c. Such elec-

tromagnetic fields can be found in an ordinary medium 

(n > 1, k·k = w2(1 - n2)). 

The vector field Aµ= (¢,A1 ,A2,A3), in general can be written as 

where fµ and gµ are space-like vectors (f·f < 0, g·g O) and orthogonal 

to each other (f•g = 0). The polarization of the field in 4-space is 

then defined by the relative magnitude offµ and gµ . If f·f = g·g, 

Aµ is circularly polarized. If fµ = 0 or g = 0, Aµ is linearly polar­

ized. Otherwise, A is a field of elliptic polarization. 

For a real photon, k·k = 0, equation (2.41) is solved to obtain 

2 f ·f - g·g F(¢) = exp _ • [-e- ( f • f + g • g sin 2¢) 1 2p • k 2 + 4 

- o-ke (p·f sin¢ - p·g cos¢)] p· (2.43) 

and 

tjJ = e ip·x F(¢) = e 
iPeff·X 

(2.44) 

Usually, Peff is a xµ-dependent quantity. Consider a special case: The 

wave is circularly polarized and propagates in the z direction. The 

electron also travels along z. Then we have f·f = g·g and p•f = p•g = 0 
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In this case the effective momentum is a constant 

(2.45) 

Now we consider the case when k·k ~ 0. 

first derivative term, we choose 

In order to eliminate the 

F(¢) = G(¢) exp[i(p·k/k·k)¢] (2 .46) 

(2.4.1) reduces to an equation for G(¢) 

2 2 
G" + [ ( p • k) + 2eA • P _ e A· A] G = O 

(k·k)2 k-k k•k (2.47) 

For a wave of circular polarization, (2.47) can be written as 

(2 .48) 

where 
1 ( -1 .P..:..9.) n = 2 ¢ - tan p•f (2.49) 

( k)
2 e2f•f] r = 4[ p· - k-k (2.50) 

(k·kl 

Equation (2.48) is a Mathieu's equation [2,5]. It has the general solu­

tion 

(2.52) 

where c1 and c2 are constants, w(n) is a periodic function with period 

TT, and v(r,q) is a characteristic root determining the stability of the 
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solution. The characteristic root, v, can be either pure imaginary or 

a complex value. If vis an imaginary value, the particle can propa­

gate freely through the electromagnetic field with an effective momentum 

{2.53) 

If v has a nonvanishing real part, the wavefunction would include a fac­

tor of e±~(Re v) which is a nonstable function in time and space. Accord­

ing to the nature of the wavefunction, the solution on the r-q plane can 

be divided into two regions, stable and unstable, separated by charac­

teristic curves. In Figure 2.5, the stability chart of Mathieu's equa­

tion is shown. The shaded area is for the region of stability. The 

features of the chart can be surrmarized as 

(i) It is symmetric upon q ~ -q; 

(ii) For q = a, stability is restricted tor~ 0, instability 

tor< O; 

(iii) For jqj >> 1, the zone of stability becomes very narrow and 

centers about 

r = -lql + 12" (2n+l) ✓lql + o(q 0) 

with the bandwidth being 3 
7 17 z+4 -IBfqf 
ln+T lgl e 

w = /2fir2 n! (2.55) 

(iv) The stable region is confined tor~ jqj. 

In any practical situation, the solution can be placed anywhere on the 

stability chart by choosing proper values of pµ, kµ, fµ, and gµ. 
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-8 

-16 

-24'-----------~-----~ 

Figure 2-5: The stability chart of the Mathieu~s function. The 
shaded areasare the regions of stable solution. 
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Next we treat the case of the waveguide. The necessary condi­

tion for the applicability of the above analysis is that we must find 

a four-vector A which can describe the field of a TM mode (2.1). The 

electric and magnetic fields are related to the vector field as: 

-+ -+ -+ 
B = v' X A (2.56) 

or in tensor form 

-+ 
We can solve¢ and A by inserting (2.1) into (2.56). The established 

-+ 
forms for¢ and A can be proven to be a four-vector by showing that 

they obey the Lorentz condition 

The vector field A is then obtained up to an arbitrary constant 

c: 

with 

A1 = kxcE
0
cos kxx sin kl e-i¢ 

A2 = kycE
0
sin kxx cos kl e-i¢ 

(2.59) 

3 ko -i¢ A = i(kc - -:-2'") E
0
sin kxx sin kl e 

kc 

¢ = i(k c - ~) E sink x sin k _ _y e-i¢ 
0 k~ 0 X y-

e 
Comparing this with the general expression for Aµ in (2.42), we find 
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fa= f3 = g1 = g2 = 0. The 4-vectors fµ and gµ are orthogonal because 

f·g = 0. The sense of polarization is then determined by c. In general, 

Aµ is a field of elliptical polarization, but it becomes linearly polar­

ized when c = 0 and circularly polarized when c = k~2;/2". The assumption 

of a circularly polarized wave is not absolutely necessary for the analy­

sis. It does, however, lead usually to a simpler result. If Aµ is a 

wave of linear polarization, the equation for G(n) becomes a Hill-type 

equation which includes both cos n and cos2n in the coefficient. 

Obtaining the solution of a Hill's equation is much more complicated. 

Qualitatively, the solutions can also be divided into regions of stabil­

ity and instability according to its parameters. The characteristic 

curves of the Hill's equation have not been well defined. So it is more 

convenient to treat the problem with a circular wave. 

Using (2.50), (2.51), and (2.59) with c = k~2;12", we have calcu-

1 a ted r and q to be 

(2.60) 

(2.61) 

Usually q is a very large number. r can be negative or positive, very 

small or very large, depending on the values of parameters. At A= 10µ, 

a= 50µ, and y ~ 5, the value of r changes sign around the field inten­

sity of E ~ 1010 V/m. 

For most cases, q is very 1 arge and r < 0, and the electron spec­

trum resides mostly in the regions of instability. A physical interpre­

tation of the "instability" is given in the following argument. For 
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simplicity, let us assume that the electron momentum does not change. 

Therefore, there is a possibility that the electron in the region of 

instability emits or absorbs photons and changes its momentum and 

energy until it enters the region of stability. This corresponds to 

the process of Compton scattering and bremstrahlung. 

If the electron stays in the same momentum state, we note that 

the factor 

-+ -+ 
±vn ±v(wt - k•x) e f\, e (2.62) 

is similar to the wave decay in time or wave attenuation in space. How­

ever, the simultaneous existence oft and 1 complicates the interpreta­

tion of (2.62). The best way to solve this problem is to find a Lorentz 

transformation such that the system in the new frame can be interpreted 

easily. We have noticed that k•x is an invariant quantity under trans­

formation. Therefore, for a time-like wave with k·k> 0, all scalars 

are kept positive. A transformation exists which can make k•x equal to 

w1 t 1 where the space part disappears. As a consequence, only the elec­

tric field is present in this frame. For a space-like wave with k·k < 0, 

the time part of a scalar product and the electric field can be elimi­

nated by a Lorentz transformation. In su1T1Tiary, 

(i) A time-like electromagnetic wave is equivalent to a time 

varying homogeneous electric field. 

(ii) A space-like electromagnetic wave is equivalent to a 

constant periodic magnetic field. 

The propagation of an electron in a time-varying electric field 

or a periodic magnetic field is demonstrated clearly in Figure 2.6. The 
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t 

(A) 

t 

( 8) 

Figure 2-6: The reflection and transmission of electrons by 
periodic structure in space (A) and in time (B). 



-34-

path of the electron is shown on a space-time diagram. On the diagram 

both the electric field and magnetic field can be represented by a 

periodic structure, but one is in time and the other in space. The 

transmission and reflection of electrons are easy to understand graphi­

cally. In Figure 2.6a, the electron is reflected by a periodic magnetic 

field and propagates in the opposite direction. The situation is very 

similar to Bragg reflection. In Figure 2.6b, the electron is reflected 

by a periodic (in time) electric field and propagates in the direction 

of "reverse time!" An electron propagating into the past can be inter­

preted as a positron propagating into the future. Therefore, the inter­

action between an electron and a time-varying electric field results in 

the creation of electron-positron pairs. From this picture, we arrive 

at a very interesting conclusion. The physical process in the unstable 

region of the electron band structure is the total reflection for a 

space-like electromagnetic wave and the creation of electron-positron 

pairs for a time-like electromagnetic wave. 

Similar phenomena have been discussed for an optical wave inter­

acting with a dielectric medium. It is well known [6] that an electromag­

netic wave has a band structure when interacting with a spatially 

periodic dielectric medium. The Bragg reflection occurs in the forbidden 

band. This case is similar to the electron passing through a periodic 

magnetic field or a space-like electromagnetic wave. When an electromag­

netic wave propagates in a time-varying dielectric medium it generates a 

time-reversal (or conjugated)wave [7]. This is similar to the creation 

of positrons when electrons pass through a time-varying electric field 
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or a time-like electromagnetic wave. 

If the electron spin is considered, the Dirac equation must be 

solved to find out the wavefunction and define the stable and unstable 

regions. The solution of the Dirac equation with minimal coupling 

(..,-- ek- m)iµ = 0 (2.63) 

is [6] 

(2.64) 

where <PP is a constant spinor satisfying (P-m)¢P = 0, F±(¢) is dif­

ferent for spin-up and spin-down, and depends only on ei<P •and e-i¢ 

which have no effect on the band structure. The effective momentum is 

The upper and lower signs refer to different spin states. 

under the square-root sign can be positive or negative. 

(2.65) 

The value 

When it is 

negative, the region corresponding to the given Pµ, Kµ, and Aµ belongs 

to the region of instability. It can be seen clearly that the band 

structures for opposite spin orientations are slightly different. This 

effect has been proposed [3] for selecting the spin states in an elec­

tron beam. 

2.5 Quantum Limitations 

In Section 2.3, we have used the classical approach to describe 

the spontaneous radiation of electrons in a periodic waveguide. In 

Section 2.4, we solved the electron band structure quantum mechanically. 
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Before we describe the stimulated process, a discussion about the qdvan­

tages and the applicability of the two approaches becomes necessary. 

Quantum mechanics usually describes physical phenomena more ac­

curately. However, it involves mathematical complications and for their 

solution only the perturbation method is available. Although we have 

found the electron band structure exactly, it is still impossible to de­

scribe the interaction in detail. 

The classical method, including mechanics and electrodynamics, is 

well developed. Its mathematics is readily understood and the results 

are easy to interpret. But the classical approach has its limitations. 

It describes an electron as a particle and a photon as a pure wave. 

Therefore, several physical quantities have to be specified precisely 

such as the momentum P and position x of an electron, as well as the amp­

litude E and phase¢ of the wave. 

Consider an electron with momentum Pat position x. Because P and 

x form a conjugate pair of operators, quantum mechanics shows that it is 

impossible to measure both quantities very accurately. The uncertainties 

in the measurement follow the uncertainty principle, 

(2.66) 

or, in terms of the dimensionless electron energy y, 

(2.67) 

For the classical approach to be valid, ~Y has to be well within the 

electron energy distribution and ~xis much smaller than an optical wave-
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length. Based on the present day electron beam technology, the energy 

resolution in an accelerator is about 0.01%. From (2.67), the classi­

cal approach is no longer valid when the device is operated in the soft 

x-ray region, i.e., A< 20~. For the present stage of experiments this 

limitation is still of no concern. 

Now we consider the electromagnetic wave. The amplitude and phase 

have to be measured very accurately at the laboratory frame. How-

ever, according to quantum mechanics, such a measurement is impossible. 

The uncertainties in the photon number and the wave phase obey the un­

certainty principle [8] 

[(6 cos ¢) 2 + (6 sin ¢) 2] ~ 1 

(<cos ¢>
2 

+<sin¢ >2) 
4 (2.68) 

where the uncertainty in¢ has been expressed in terms of the uncertain­

ties in variables cos¢ and sin¢. The quantum limitation on the photon 

number can be obtained by assuming the uncertainty of¢ to be less than 

2n. Let's say, 6 cos¢~ 6 sin¢~ 1. Then, 

6N ~ 1/2/2" (2.69) 

6N is the number of photons per mode. The radiation power of that mode 

corresponding to the uncertainty in the photon number 6N is 

P = 6N·hw·c/L 

where w is the radiation frequency, Lis the length of the cavity. Since 

6N~l/2✓2, we have 



hw 
2✓2T 
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·T=_L_ 
' C 

For A= 10µ and L = 10cm, we have 

(2.70) 

-11 ( ) P ~ 2 x 10 watts 2.72 

This power is far below the value during the laser oscillation. There­

fore, the use of a classical approach is justified. Since Pis propor­

tional to the radiation frequency, the quantum limitation of the radiation 

power might become substantial at very short wavelength. 
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Chapter 3 

LINEAR THEORY OF THE LONGITUDINAL 

FREE ELECTRON LASER 

In Section 2.5 the classical approach has been justified for the 

analysis of a free-electron laser device. Therefore the following analy­

sis will be entirely from the classical point of view. 

The linear theory formulation is the simplest method to understand 

the fundamental properties and laser mechanism of a free electron laser. 

The 11 linear 11 theory is based on three assumptions. First, the current 

density is so low that the Coulomb repulsion between electrons is com­

pletely negligible. The gain is thus proportional to the total current . 

Second, the field amplitude is sufficiently small so that it can be used 

as an expansion constant. An iterative method is then suitable for the 

analysis. The energy increase is proportional to the input intensity. 

Third, the energy transfer between the electron beam and the radiation 

is very small in the interaction region. The field amplitude and phase 

are thus assumed to be constant, which simplifies the analysis. 

Based on these three assumptions, we fonnulate the linear theory 

of the longitudinal free electron laser. Starting from the force equa­

tion, we calculate the homogeneous and inhomogeneous gain constants and 

demonstrate the tunability of the device. We will also study the electron 

dynamics on the phase diagram. Finally, we will analyze an interesting 

device--a free electron laser which utilizes a two-stage system. 
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3.2 The Single Electron Analysis 

In the simplest classical model, the stimulating process in a 

longitudinal free electron laser is described by the energy transfer 

between electrons and electromagnetic waves. The radiation field loses 

or gains energy, depending on whether work is done on or by the driven 

electron, which in turn is detennined by the relative phase between the 

electron and the wave. In the limit of low current density, every elec­

tron interacts with the electromagnetic wave independently. The total 

energy transfer is then the average of the individual energy transfer 

over the electron phase distribution. This is the single-electron model 

and the calculated gain should be proportional to the current. 

The equation of the electron motion in the presence of an electro­

magnetic field is given as 

-+ 
dP + + + 
dt = e(E + zx B) ( 3. 1 ) 

+ -+ -+ 
where P and v are the momentum and the velocity of the electron, E and 
-+ 
Bare the electric and magnetic fields. If the field corresponds to a 

wave there is a common factor of e i (wt - 82 + <P) in E and B. w and 8 are 

the frequency and the wave number of the wave. The variables t and z 

correspond to the time and position of the electron which are defined to 

be zero when the electron is at the entrance of the interaction region. 

The phase of the electron upon entering the interaction region is given 

by¢. 

In general, (3.1) can be solved for the variation of the electron 

velocity in the transverse and longitudinal direction. The energy gain 
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of an electron in transit can be obtained by calculating 

or from the work equation 
T 

6.E = eE • v dt I -+ -+ 

0 

(3.2) 

(3.3) 

To obtain a simpler analytical result, we solve equation (3.1) and evalu­

ate (3.2), (3.3) in the region of low field intensity. Every physical 

quantity in (3.1), (3.2), and (3.3) can be expanded in power series of 

the field amplitude . Practically, we are interested only in <b.e:>¢ up to 

second order, where<>¢ indicates an average over¢. If (3.2) is used, 

the velocity has to be obtained up to second order. However, in (3.3), 

we have 

T~¢) -+ -+ 

6.E = J e E • v d t 

0 T 

= eE(l) • ;(O) ~T(¢) + e f I(l) 

T 0 

+ e f E(2) (3.4) 

0 

where 

E = I(l) + I( 2) + ... 

v = v(O) + v(l) + v( 2) + ... 

T(¢) = T + ~T(¢) 

In most cases, the fractional change in the electron velocity which is 
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about A/Lis smaller than 10-4. This value is much smaller than any 

possible expansion constant in the power series . Therefore, the first 

and second terms on the right side of (3.4) are negligible compared to 

the third term. So, 
T 

b.E = e J <E( 2) (3.5) 
0 

In order to obtain E( 2), only the velocity up to first order is neces-

sary. 

In tenns of velocity components, equation (3.1) is rewritten as 

dvx 3 V 

my dt = _ my ( v . dv) vx + e[Ex + ~ B] 
c2 dt C y (3.6) 

dv my3 d vz y 
Vy+ e[Ey my at = - 2 (v • ft) - - B] 

C t C X 
(3. 7) 

dv
2 my 3 dv vx V 

my dt = - 2 (v. -) v
2 

+ e[E
2 

- - B +.1 B] 
C dt C y C X 

{3.8) 

where B
2 

= 0 in the TM mode. In general, E and B are functions x,y,z x,y 
of x and y. From (2.1 ), we know their values are comparable excepting 

factors of sine and cosine. It is also assumed that the electron has 

only a z-component of initial velocity. 

Let us examine the transverse force equations (3.6) and (3.7). It 

is obvious that vx and vy are to lowest order vi1) and v}1). According 

to equation (3.5), the contribution of Exvx and Eyvy is too small to be 

considered. But vi1) and v~l) could enter the right side of (3.8), but 

they generate tenns proportional to the square of the field amplitude 

which can be disregarded because v
2 

is only up to first order. Therefore, 
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the transverse force equations and the magnetic force in (3.8) can be 

neglected. The remaining equation is very simple 

dv eE [ J dt = - 3 cos wt - Bz + ¢ 
my 

(3.9) 

where we have deleted the subindex z without leading to ambiguity, and 

included the propagation factor in the cosine factor. 

Assuming that ~Y << y, we solve equation (3.9) for v and z in an 

iterative way. The zeroth order solution for the electron position is 

z(t) = v
0
t where v

0 
is the electron initial velocity. From (3.9) we 

obtain the velocity to first order as 

and 

v = v 
O 

+ e ~ [ s i n ( Qt - ¢) + s i n ¢] 
my Q 

z = v t + eE [cos ¢-cos(nt-¢)+ nt sin¢] 
0 my3Q2 

n = Bv - w 
0 

(3.10) 

(3.11) 

(3.12) 

Q is thus the wave frequency as "seen" by the electron. Exact synchron­

ism, i.e., wave phase velocity vp equals electron velocity v
0

, obtains 

when Q = 0. 

The electric field 11 seen 11 by an electron is no longer a perfect 

sinusoidal wave due to the variation of the electron position from v
0
t. 

Substituting z = v
0
t + ~z into the field expression, 
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E ( t ,<I>) = E cos (wt - Bz + <P) 

= E cos[wt - B(v
0
t + 6.z) + cp] 

= Leos (Stt - q,) 

2 
- Bej 2 sin(Stt-cp)[cosq,- cos(Stt-q,)+Stt sincp] 

my St 

The integrand in (3.5) can be calculated to be 

< I( 2) ·v( 0)> = v <E( 2)> 
<P O <P 

Bv 
0

eE2 

= - 3 2 {sin Qt - Stt cos Stt} 
2my St 

(3.14) 

The phase-averaged energy loss per electron is obtained by integrating 

(3.14) overt 

Bv
0
e2E2 

< 6.E >,,., = ---=---=--- { 2 - 2 cos StT - StT sin StT} 
'f' 2my3S"23 

(3.15) 

= we2E2T3 {-1 [sin2(QT/2) _ sin QT]} 
Zmy3 QT (QT/2)2 QT 

(3.16) 

The function within the curled brackets contains the dependence of the 

energy transfer on the electron and wave velocities. The dependence 

f(QT)= _l [sin
2

(QT/2) _ sin QT] (3_17) 
QT (QT/2)2 QT 

is plotted in Figure 3.1. It is a fundamental synchronism function for 

a single electron-wave interaction. The functional dependence is 
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identical to the derivative of the spontaneous radiation spectrum 

(3.18) 

which is in agreement with the quantum mechanical analysis [1] of the 

free electron laser. 

Note that f(QT)max = 0.135 at QT= 2.6. Physically, Q > O means 

the electron velocity is larger than the phase velocity of the wave. But 

it is well known that the phase velocity of a waveguide mode is always 

larger than c (see (2.2)). This why it is necessary to introduce cor­

rugations on the waveguide. The period of the corrugation is chosen so 

that the phase velocity of the first harmonic is less than c. In this 

case it becomes possible for the electron to interact with the wave in 

positive gain region. It is also noticed that there are other positive 

gain regions below QT= -2TI. The phase velocity in these regions is 

larger than the electron velocity. It is not necessary to have a 

periodic structure to generate slow waves. However, the operation in 

these regions requires extremely high electron energies and results in 

only very low gain. This method is rather impractical compared to the 

operation around ~T ~ 2.6. 

Once we obtain the average energy loss per electron, the power loss 

by the electron beam is found as 

2 3 
= wlelE TI f(QT) 

2my3 
(3.19) 
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The field amplitude appearing in (3.19) is the amplitude of the first 

hannonic, which is related to the total field by the wave spectrum dis­

cussed in Section 2.2. For a longitudinal free electron laser, N is 

about 500. The spectrum at q = l is very narrow with an amplitude 

El = EoJl (s) 

11 ak s =rraa 

(3.20) 

where E
0 

is the field amplitude of the fundamental TM mode. The expres­

sions of Sand k can be found in Section 2.2. The field E
0 

is related 

to the total electromagnetic power P by 

(3.22) 

where K
0 

is the waveguide impedance for the fundamental mode 

(3.23) 

Using (3.20), (3.22), and (3.23) in (3.19), we obtain the following 

expression for the gain per pass 

_ /1P _ wle!J~(S) T
3

I S~k0 G - p - ------ f(rff) 
my 

(3.24) 

By choosing the beam velocity v
0 

so that T = 2.6, we can write the 

maximum gain as 
0.135lel(µ/s

0
)
112 

Gmax = 2 2 
TI me (wT)3J~(S)\4(l 

X (3.25) 
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For the practical case, a>> A ands<< 1, we have 

2 2 3 3 
Gmax = 0. 78 x 10-4 A 1 ~ 0 L I 

Y a 
(3.26} 

Equation (3.25} is thus the basic result for the gain in the case of a 

perfectly monoenergetic electron beam. It applies in practice to a beam 

in which the velocity spread satisfies v /v < (wT}-1 (or, equivalently, 
0 0 

bS2 < T-l }. In terms of energy resolution, this condition reduces to 

/1y 2 t,v 
-= y -y V 

(3.27} 

This case is referred to as the homogeneous situation, in analogy with 

ordinary lasers, and requires an electron beam of high energy resolution. 

The synchronism condition determines the relation between the elec­

tron energy, radiation frequency and the corrugation period 

B B + 2TT = ~ 
1 = O A V 

0 

Using the dimensionless electron energy, y, we have 
-1/2 

y = {1-[(1 -/12a2)112 + }f2
} 

(3.28) 

(3.29) 

which gives us the tuning curve for the longitudinal free electron laser. 

With a fixed period A, the wavelength of the output radiation can be con­

tinuously tuned by only changing the electron energy. The relations 

between y and A are plotted in Figure 3.2 for different periods. For 

each period, the curve has a minimum which means that there is a lower 
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limit to the phase velocity for the first harmonic. In practice, A<< a 

and A<< A, in which case (3.29) becomes 

(3.30) 

which is identical to the result of the transverse free electron laser [1]. 

As expected, in the limit of low current intensity, Gmax is proportional 

to I. Other interesting features of G are: max 

(i) Gmax ~ L3: This implies that the gain due to a monoenergetic elec­

tron beam is not exponential. The gain can be made higher by using 

a longer interaction region if nT is kept constant so that in prac­

tice as we increase T(=L/v
0

) we need to operate closer to synchron­

ism. 

(ii) Gmax ~ A912 • The gain drops dramatically at shorter wavelengths. 

That is the reason why it is difficult to operate the free electron 

laser at very high frequencies. 

(iii) Gmax ~ a-lO This steep tenth power dependence on 11 a 11 reflects the 

importance of the waveguide dimension. A factor of a-6 is due to 

operation in the TM mode. Smaller waveguides have a larger longi­

tudinal component of the electric field and increases the stimulat­

ing strength. A decrease of one-fifth in the dimension leads to a 

gain of ten times. This advantage could be used to compensate for 

the troubling waveguide loss which is proportional to a. 

To get an appreciation of the level of gain predicted by (3.25), we 

consider the following example 



A= 10 µm 

6 = 10 µm 

L = 10 cm 

-52-

a= 50 µm; 

A= 200 µm 

I= l mA. 

From these independent values, we have y = 3.64,s=0.163, and J~(s) = 0.0065. 

The calculated gain is 

Gmax = 7% per pass (3.31) 

This gain is sufficient for laser oscillation when mirror feedback is 

present, provided the losses of the waveguide are negligible. We have to 

emphasize that the value in (3.31) depends critically on physical param­

eters, especially a. For example, if a= 40 µm, the gain will rise to 

a value of 63%. 

The gain expression (3.24) applies to the case of a perfectly 

monoenergetic electron beam and is called the homogeneous gain. However, 

when the electron velocity distribution is sufficiently broad, electrons 

with different velocities provide different value of gain. The total 

gain should be the integral of the gain weighted by the electron distribu­

tion. In Figure 3.3 the cases of narrow and broad distributions are 

shown in terms of velocity. If the distribution is smooth and its width 

exceeds 6T by a large factor, it can be expanded around the wave velocity 

(3.32) 

and 
(3.33) 

The total gain is found by multiplying (3.33) and (3.24), and then inte­

grating over n. 
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(3.34) 

where 

The result in (3.34) is called the "inhomogeneous gain." Since it is 

proportional to T, the gain is exponential. A gain which is proportional 

to the derivative of the electron distribution at the resonance is well 

known in the traveling wave tube [2]. It seems that we can get a very 

large gain if the system is operated at the sharp edge of the electron 

distribution, but this is in contradiction with the assumption made in 

expanding g(Q). Therefore, the gain in (3.35) is usually a small value. 

Physically, a broad beam leads to a reduced gain because the net gain is 

due to the small excess of electrons which lose energy to the wave over 

those which gain energy . If possible, it is best to avoid the inhomogene­

ous interaction experimentally. 

The gain we calculate in the homogeneous case is the total gain at 

the output, but not the infinitesimal gain along the interaction region. 

At the beginning of the device, the gain increases as t 4 and reaches its 

maximum at the output when QT= 2.6. For QT> 2.6, the gain at the out­

put has already passed its maximum, so that it can be increased by using 

a shorter interaction region . For QT< 2.6, the gain is still increasing 

at the output. The behavior of this gain is quite different from the 

loss mechanism of the waveguide which is an exponential function of the 
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distance. At first, the loss is proportional to t which is larger than 

the gain for small t. It is thus possible to have a situation in which 

the overall gain exceeds the loss but not be larger than the loss on an 

incremental basis everywhere. This situation merits an investigation, 

since it is not even clear a priori if such a device can oscillate. 

The analysis proceeds just as in the calculation of the homogene­

ous gain, except that the force equation (3.9) is replaced by 

dv = eE e-az cos[wt - sz + ¢] (3.36) 
dt my3 

where a is the loss constant of the waveguide . The derivation is tedious 

but straightforward. The only integral we need to calculate is 

j e-at cos(bt+c) dt = e;a\ [b sin(bt+c)-a cos(bt+c)J 
a +b 

(3.37) 

Other integrals needed in the derivation can be obtained by taking the 

derivatives of (3.37) with respect to a, b, or c. 

The result is identical to (3.24) except the sychronism function 

is replaced by f(p,q), where 

f(p,q) 
- p 

= q~ 2 2 {[2 cash p-2 cos q-(£.+ .9..P)p sin q] 
( p +q ) q 

+ a [(£.- .9..) sinh p + 2 sin q - (£. + .9..)p cos q]} 
B q P q P 

(3.38) 

p = al q = s-2T 

In general, B >> a, and the second term in (3.38) can be neglected. When 

a+ 0, (3.38) reduces to the fonn in (3.17). The total gain is then 
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G = G + (e-al - 1) T 

~ G - al (3.39) 

where G is given as in (3.14) with f(p,q). The result, (3.39), is im­

portant. It shows that for small traveling wave gain and waveguide 

loss we can calculate each one independent of the other and then sub­

tract the result to get the net gain (or loss). 

3.3 Electron Dynamics 

In a given interaction region, the electron changes its velocity 

and position from v
0 

and v
0
t, respectively, along the path due to the 

interaction with the electromagnetic wave. The change of position is on 

the order of the radiation wavelength. The variation in the longitudinal 

direction essentially changes the relative phase of the electron with 

respect to the wave. However, the variation in the transverse direction 

results in the divergence of the electron beam and can be neglected. 

The modulation of electrons in real and velocity spaces is best 

described by plotting its distribution intensity on the v-¢ phase plane. 

The evolution of the electron distribution is then clearly visualized 

by the changing of its shape and density. In order .to determine the 

evolution of the distribution, it is necessary to understand how an elec­

tron propagates in the phase plane. The path of an electron is deter­

mined uniquely by its velocity and phase at time t. Taking t as a 

parameter, we can trace the electron motion and fonn a stream line for 

that electron. The stream lines will not interact with each other unless 
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they coincide exactly all the time. The stream line of a single electron 

can be found from the force equation (3.9) 

dv = ~ cos ct> 
dt my3 (3.9) 

where ct>= Sz - wt - ct>
0 

is the phase of the electron with respect to the 

electromagnetic wave at z and t. cp
0 

is the electron phase upon entry. 

Defining a new variable, 

l def> W = V - V = --p S dt (3.40a) 

which is the relative velocity between the electron and the wave, equation 

(3.9) is rewritten as 

dw =~cos ct> 
dt my3 

Multiplying both sides of (3.40b) by 2w and integrating, 

d(w2) = 2e\ d(sin ¢) 
Silly 

(3.40b) 

(3.41) 

Assuming the electron stream line passes through a point (w
0

,¢
0

), (3.41) 

is solved to obtain the equation for the stream line 

2 2 2eE [ . w - w
0 

= Smy3 s,n ¢ - sin ¢
0

] (3.42) 

A set of stream lines based on (3.42) is plotted in Figure 3.4. This is 

a reduced phase plane which shows only the stream lines within one opti­

cal wavelength. The lines ending at¢= 2TI should reappear at¢= 0. 

The complete phase plane is obtained by placing the reduced phase planes 

side by side. The stream lines are then continuous in the complete 
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phase plane. The phase plane can be divided into two regions of stabil­

ity and instability. The stable region is shown as the shaded area in 

Figure 3.4. All the stream lines in this region are closed. Electrons 

in this area will be trapped within the same wavelength of radiation and 

keep circling around the center. The region of instability includes all 

the open stream lines. Electrons in this area will keep overtaking the 

wave of radiation. It should be noticed that the stream-line picture 

breaks down when the field amplitude is not a constant. Electrons will 

jump continuously from one line to the other due to the variation of E. 

If w
0 

= v
0 

- vp, the corresponding ¢
0 

is the entry phase. Instead 

of an electron we consider a monoenergetic electron beam distributed 

evenly in¢. It is easy to see from (3.42) that if 

2 > 4eE 
WO ~ 

Bmy 
(3.43) 

w always has a solution for arbitrary given <P and ¢
0

• If the electron 

beam is plotted on the phase plane, the entire beam is in the unstable 

region. Thus the electron will not be trapped locally inside the wave 

if the electron velocity is high enough. It is interesting to compare 

the condition (3 .43) with the gain curve. The electron velocity obey­

ing (3.43) with an equality sign will appear on the gain curve at 

QT =j! ~ BL m C y3 
(3.44) 

For the previously given example of a longitudinal free electron laser, 

the point of maximum gain operation will appear in the unstable region 
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if E < 6 x 103 V/m. The electron beam following (3.43) is plotted in 

Figure 3.5a. The shaded region is the allowed region for electrons dur­

ing propagation. 

If w2 <~,part of the electron beam enters the region of 
O smy.) 

stability and will be trapped during the interaction. In Figure 3.5b, 

we show the position of the electrons and the allowed region. The shaded 

area in Figure 3.5a and b also reveals the possible width of the electron 

distribution at the output. For a monoenergetic electron beam, the 

maximum range of the distribution in velocity is 

j w2 
+ ~ > w > jw

2 4eE for 2 > 4eE 
- Smy3 WO Smy3 o Smy o 

and (3.45) 

jw2 + 4eE > w > _ 1s~ 4eE 2 for WO < Smy3 
o Smy3 Smy3 

If the electron distribution has a finite width, it is represented 

by a strip instead of a line, and each electron still follows the stream 

line. The evolution of the distribution can be seen qualitatively on the 

phase plane. Because time t is an implicit parameter in the stream line, 

the detennination of the electron distribution at any instant is not 

straightforward. 

The electron distribution on the phase plane is Nt(v,¢). The 

conservation of electron number requires that Nt(v,¢)dvd¢ should be 

invariant. Given the initial distribution N
0

(v
0

,¢
0

), the distribution 

at time t can be found from 

(3.46) 
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0 2~ 

Pfgure 3-5: Electron dynamics in ~n-trapped (A) and partly trapped (R) 
cases. The shaded area is the allowed region for electrons. 
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The infinitesimal areas dv d¢ and dv
0

d¢
0 

are related by 

dv d¢ (3.47) 

The distribution at time tis 

(3.48) 

Generally, v and¢ are functions of v
0 

and ¢
0

. In order to evaluate (3.48) 

it is necessary to invert the functions and obtain v
0

,¢
0 

as functions of 

v and~- From the force equation, v and z can be solved iteratively, 

and¢ is equal to 

(3.49) 

Using (3.48), it is very easy to calculate the shift and spread 

of the electron distribution in velocity. The shift is calculated as 

t::.v = <v> - v
0 

=gvNt(v,cj>)dvd<j>] - v0 

= [ J v N
0

(v
0

,¢
0

)dv0d¢0 ] - v0 

(3.50) 

If v(v
0

,¢
0

) is explicitly known, then ~vis obtained by (3.50). The 

spread is defined as 

( 3. 51 ) 

<v> is given in (3.50). <v2> is also obtained in the same way. 
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A special case is one where the electrons are distributed uniform­

ly and monoenergetically. Then, due to the conservation of probability, 

we have 

(3.52) 

where we have integrated over¢ to obtain a distribution which depends 

on v only. N
0 

is the total electron number in unit length, and 

N(v) (3.53) 

In the small field approximation, dv/d¢
0 

is evaluated by solving 

(3.10) up to second order in E. Considering the shift and spread in the 

lowest order in Ewe have, in general, 

(3.54) 

whereby (3.53) gives 

_ No 1 
N(v) - 2TI --------

✓ 2 2 2 (f +g )-(v-v
0

-p) 

(3.55) 

For given v
0

, (3.55) is plotted in Figure 3.6a. The shape is symmetric 

about v
0 

+ p and the width of th.e distribution as calculated from (3.50) 

is found to be equa 1 to j (f2 + g~. The shift is on the order of E2, 

while the spread is on the order of E and is much larger than the shift. 

When the electrons have an initial spread N
0

(v) in v, (3.55) can be 

easily generalized to 

(3.56) 
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(A) 

I 
I 

-a.I 

V 

V 

Electron distribution N , N before and after the interaction 
for a monoenergetic (A) or a Gaussian (B) input beam. 
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An example where N
0

(v
0

) is a Gaussian distribution is shown in Figure 

3.6b. The splitting structure is obvious. 

In the small field limit,gain saturation is not well defined, 

since the neglect of space charge forces allows the predicted gain to 

increase indefinitely. However, we can get an estimate to the upper 

limit of energy transfer by using the phase diagram. For example, con­

sider the electron beam in the instability region. The maximum energy 

transfer for an electron is 

2 tv 
ty = y -

C 

2 
_ y [ J 2 + 4eE / 2 4eE J - c wo Bmy3 - wo - Bmy3 

If the operation is very near the condition (3.44), 

2 
ty:::: L 12" w 

C 0 

(3.57) 

( 3. 58) 

It follows that the upper limit for the efficiency of a longitudinal free 

electron laser is about 0.1 percent. 

3.4 Two-Stage System 

As practical free electron lasers were considered, it was real­

ized that the electron beam has to be recycled in order to achieve higher 

overall efficiency. Using a magnetic field, the output electrons can be 

brought back and made to re-enter the interaction region. The energy 

loss of an electron in the interaction region can be compensated by 

supplying to the electron on its return, energy equal to that lost in the 
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interaction region. However, the energy compensation mechanism is of 

necessity a homogeneous effect. Every electron in the beam is subjected 

to the same amount of energy change. The whole electron distribution is 

shifted without changing the shape. Therefore, the recycled beam 

becomes increasingly broader as it cycles. Although the average beam 

energy can be brought back to the point of maximum gain, the gain actually 

decreases due to the increasing spread of the velocity distribution. This 

broadening mechanism highly limits the efficiency of the free electron 

laser, even when the electron recirculation is considered. 

In order to show how the electron beam shift and spread affect the 

device efficiency, we study their expressions in a single stage quanti­

tatively and, later, compare them with the results obtained from the new 

proposed scheme. In the small-signal limit the electron velocity for a 

single interaction region can be found from the integration of equation 

(3.9) as 

v = v
0 

+ ~ {(l -cos Qt)sin¢+sinQt cos¢} 

• A2S 
- -3 { 1 - cos Qt 

Q 

A= eE/my3 

Qt • t} - T sin Q + ••• (3.59) 

The¢ dependent terms have been kept only up to first order in A, while 

the¢ independent terms have been kept to second order. In the case 

of an initially uniform and monoenergetic electron beam, the average 

velocity shift 6 and the r.m.s. velocity spread cr of electrons are cal­

culated by taking the proper average of v in equation (3.59) over¢. 
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A2 QT . 
t::,. = - - 3- {1 - cos QT - T s ,n QT} 

Q 

a = 12" A sin QT 
Q 2 (3.60) 

where T = L/c is the total flight time of the electron through the inter­

action region of length L. The maximum gain takes place when T = 2.6, 

where the shift and the spread are 

a= 0.525 AT (3 .61) 

It is obvious that the velocity shift is a second order effect 

(~ A2), while the spread is a first order effect(~ A). In the small 

signal region the spread actually dominates over the shift. 

If we recirculate an electron beam which initially is monoener­

getic, and initial distribution in¢ space is unifonn, then each time 

the electron beam re-enters the interaction region, we find that the 

velocity shift is proportional to the number of circulations N, while the 

velocity spreads to /N 

t::,_ = t::,.N 
N 

(3.62) 

The maximum number of circulations is thus detennined by the maximum al­

lowable velocity spread. From the theoretical expression for velocity 

dependence of the gain profile, it can be seen that the gain is reduced 

by 10% within a range of 6.QT = l around the peak gain point. We assume 

that the electron beam is no longer useful when its distribution is 
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wider than this range and define a maximum allowable spread of electrons 

crmax· The maximum number of cycles is found to be 

(3.63) 

During Nmax cycles of electron circulation, the total velocity shift be­

comes 

(3.64) 

Since the extractable energy from the electron beam is proportional 

to ¾ax' the overall efficiency of the device depends on the value of the 

factor R = (6/cr2). Consequently, an increase in the efficiency can be 

achieved by either enhancing the single-pass shift 6 or reducing the 

single-pass spread cr. 

The velocity spread is due to the different entry phases of elec­

trons which thus see different electric fields during their transit. If 

we can "invert" the interaction between wave and electrons in a second 

interaction region, then we may expect a reduction in the velocity spread. 

Such inversion can be achieved if the entry phase of each electron is 

shifted by TT radians with respect to that of the first region. When this 

happens, each electron in the second region experiences an EM force which 

is almost the same in magnitude, but opposite in direction to the force 

it has experienced in the first region. Electrons which were accelerated 

in the first region will be slowed down and slow electrons will be accel­

erated in the second region. Thus, two-stage devices have been proposed 

[3-5] which consist of two identical interaction regions, separated by a 

drift distance between them. Because of the velocity difference between 
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wave and electrons, the TI shift of the entry phase can be obtained by 

adjusting the value of L0 (Fig. 3.7). 

As a separate, but related issue, we consider the problem of max­

imizing the single pass velocity shift and thus the single-pass gain by 

using two interaction regions. The basic reasoning for this approach 

is derived from the operation of the klystron. 6 The first interaction 

region acts as a buncher giving rise to a strong velocity modulation. In 

the drift space between the two interaction regions the velocity modula­

tion gives rise to bunches (current modulation). These bunches are then 

made to enter the second interaction region at the optimum phase for de­

celeration and energy extraction. 

The proposed device consists of two identical sections which are 

separated by a drift space of length L0. The propagation distance of 

electrons Le and radiation Lr may not be equal to L0. For example, a 

bending magnetic field and an accelerating gap changes the length of the 

electron path, while a system of mirrors can delay the arrival of the 

radiation at the entrance to the second section. The length of the 

equivalent drift distance can thus be adjusted independently for the elec­

tron and radiation. 

Each interaction region is similar to a single-element device. 

From equation (3.59) we obtain the expressions for the electrons' veloc­

ity at the output of the two interaction regions. 

VI = 
2 

(3.65µ) 
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v1 = v1 + nA {(1-cos n1T) sin¢1 + sin n1T cos ¢1} 
1 

A2 8 n1r - 3 {1-cos n1T - - 2- sin n1r} n, 
(3.65b) 

where the subindices, l and 2, indicate the quantities in the first and 

second region. We express the final velocity v2 in tenns of v1 and ¢1 
which requires a knowledge of the relations between v2, q,2, and v1, ¢i· 

Since v1 ,2 is considered only up to second order in A, retention of tenns 

in these relations up to first order in E should be sufficient. In a 

general two-element system we have 

(3.66) 

where 

From (3.65) and (3.66), the electron velocity at the exit of the second 

region is expressed in terms of the input conditions (to the first region) 

as 
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v2 = v+~ {(1-cos nT)[sincp+ sin(cp-a)J 

+ sin nT[cos ¢ + cos(¢ - a)]} 

2 3 
- SA2T {f(nT)(2+ SnT) sin a+g(nT)(l +cos a)} 

a= m + QT 

f (x) = 2 l - cos x 
x2 

g(x) = 2 2 - 2 COS X - X Sin X 

x3 

{3.67) 

where we have neglected higher order terms and also the </>-dependent terms 

of second order. Using (3.67) we can obtain the electron velocity shift 

and spread in a two-element device. There are three parameters appearing 

in (3 .67): n, a, and n. The effect of changing n is obvious. It does 

not alter the electron spread, but does change the magnitude of the 

shift. Since 

(3.68) 

the velocity shift variation is significant only when the adjustment of 

the drift distance is comparable to the device length. Although a also 

depends on the drift distance, we'll show later that the adjustable dis­

tance, for which the a-dependent factor in the velocity shift reaches its 

maximum, is about the period of the magnet. Thus, a and n can be seen 

as two independent parameters. 

First we study the problem of maximizing the average velocity shift 

(the term involving A2 in equation (3.67) and temporarily neglect the 
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problem of velocity spread . Two terms with different dependencies on 

Tare involved. The maximum of g(QT) is 0.27 at QT= 2.6, while 

f(QT) = 1 at QT= 0. Near resonance (Q = 0), the first term dominates 

over the second. Furthermore, the presence of n in the first term 

makes it possible to increase the shift by using longer drift distances. 

Neglecting the second term and choosing the operation conditions: 

QT= 0 and a. = rr/2 (3.69) 

we have 

cr = AT (3.70) 

for the shift and spread of the two-elements device. We next compare 

(3.70) with the shift and spread of a single-element device of length 

2L which is the total interaction length in (3.70). The drift distance 

Le is taken to be equal to the original device length 2L. 

(J 

2-element (L - L) 

-28A2T3 

AT 

1-element (2L) 

-0.54SA2T3 

l. 05 AT 

( 3. 71 ) 

Equation (3.71) ,shows that for a given total interaction distance 

the velocity shift can be enhanced by a two-element system, especially 

when the electron drift distance is much larger than the length of each 

interaction region. Furthermore, it is also shown that the increase in 

the velocity shift is not accompanied by an increase in the spread of 

electrons. 

The parameter mis determined from the lengths of the optical and 
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electron path. From (3.66) and (3.67) we have 

a= 2,r (L -
A r 

Le ) 
1 

l -7 
y 

In the high relativistic limit (y >> 1), a becomes 

2 Le 
a= 2 (L - L - ~) 

>- r e 2Y~ 

(3.72) 

(3.73) 

In the special case where we do not use a bending magnet of mirror sys­

tem as in Figure3.7,the optical path is equal to the electron path, 

L = L = L0. e r 

a = (3.74) 

The optimum operation can be achieved within a change of 2,r in a 

which means an adjustment of the drift distance within 6L0, 

(3.75) 

>-y2 is almost a constant value for a specific device, since the factor 

of the relativistic up-conversion of the radiation frequency is 4y~ 

For an estimate of a typical value of 6L0 we consider the Stanford de­

vice and find 6L0 is about 5 cm. This value is very reasonable for a 

practical experimental setup. If Lr and Le are adjusted independently, 

the adjustment to an optimum operation is within a distance of radiation 

wavelength. This may cause power instability in the output radiation, 

especially at short wavelengths. 
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The electron energy loss in a two-stage system depends linearly 

on the electron drift distance L . With the condition, n = 0, it is 
e 

interesting to point out that the average velocity shift is zero at the 

exit of the first region. However, the velocity spread of electrons 

results in electron bunching during free flight in the drift space. To 

the lowest order approximation, the bunching effect is proportional to 

the drift distance. The adjustment of the drift distance causes the 

bunched electron beam to have an optimum entry phase with respect to the 

radiation which induces the energy loss of the electron beam in the 

second interaction region. 

Equation (3.60) shows that the spread is much larger than the 

shift in the small signal region. It is found that the first order term 

in equation (3.67), and hence the first order contribution to the spread. 

can be made zero by choosing 

n = 21T or a = 1T (3.76) 

Unfortunately, we also find that the second order (shift) tenn becomes 

zero under either of these two conditions. Qualitatively, the spread 

is now of second order and the shift is fourth order in A. The value of 

R is still on the order of A0
. 

This result follows directly from Madey's theorem [7] which can 

be written in the relativistic approximation as 

(3.77) 

where triangular parentheses represent the ensemble average over¢. To 

first order in A we can take ~v in general as 
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v = A[M(Qt) cos¢+ N(Qt) sin¢] 

2 
< 6v > = A [M aM + N ~] 

¢ T av av 

(3.78) 

(3.79) 

In order to eliminate the spread, we have to let M = 0 and N = 0, which 

leads to the vanishing of the shift<6v>¢. We conclude that, up to 

second order, it is impossible to eliminate the first order spread with­

out sacrificing the second order gain. 

We have considered the problem of increasing the shift and elim­

inating the spread separately. However, the final purpose is to improve 

the value of R. Here we will investigate the conditions for optimizing 

R. From (3.69), we have 

2 4A2 
cr = ----::7 (l - cos QT)(l + cos a) 

Q 

and 

R = .@J { ( 2 + anT) t a + ( 2 t QT) } 
4 µ an 2 QT - co 2 (3.80) 

Although the shift depends on a and Qin a complicated manner, the expres­

sion for R contains two terms which depend exclusively on a and Q. So 

the optimum value for a and Q can be found independently. Consider the 

first tenn. It becomes infinitely large when a+TT. The second tenn 

which depends only on Q approaches infinity as QT+ 2TT. 

before, at these two values the shift is actually zero. 

As we have shown 
2 However, cr ap-

preaches zero at a faster rate than 6 which results in an increasing value 

of R. 

In conclusion~ we have shown that the efficiency of a free electron 

laser in beam circulation and the gain of a single-pass device can be 
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greatly improved by using a two-element system. For the gain enhancement 

the system is operated at the resonance, and a is equal to TT/2. The gain 

is found linearly related to the drift distance. For the efficiency im­

provement we choose QT as close as possible to 2TT and a as close as 

possible to TT. However, the choice of QT and a must be such that single 

pass gain is higher than the threshold condition. 
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Chapter 4 

NONLINEAR THEORY OF LONGITUDINAL FREE ELECTRON LASER 

4.1 Introduction 

In Chapters 1-3 we fonnulated the linear theory of free electron 

lasers based on three assumptions: low current density, small field ampli­

tude, and small stimulated gain. In this chapter, the nonlinear theory 

is introduced by removing the three restrictions. In a dense electron 

beam, the space-charge fields play an important role in the electron 

dynamics and cannot be neglected. The Coulomb field is included in the 

electron modulation and the stimulated process. By incorporating Poisson 

equation with the force equation, a gain expression which is valid at 

arbitrary current densities is obtained. For an arbitrary field amplitude 

the force equation becomes a simple undamped pendulum equation. The equa­

tion can be solved in tenns of special functions. The distribution of 

electrons in velocity and real space is described. A gain map is then 

obtained to show the saturation due to the radiation intensity. The case 

of large gain is then considered. In the limit of small field, an inte­

gral equation is derived to describe the growth of the field amplitude. 

The equation is solved exactly. The solution demonstrates clearly the 

regions of bound and exponential gains. In the limit of large fields, the 

method of harmonic expansion is used. A set of coupled differential 

equations demonstrates the amplitude growth and the electron dynamics. 

4.2 Space-Charge Effect 

In the linear analysis we have neglected the Coulomb interaction 

between electrons. Each electron was assumed to interact with the 
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radiation field alone. Obviously this assumption is valid only if the 

current density is very small. In the Stanford experiment of stimulated 

amplification it was found that the gain was actually proportional to 

the current up to 70 mA. With the beam diameter of 1 mm this corresponds 

to a current density of 7 A/cm2. So the experiment concluded that there 

is no detectable saturation effect below 7 A/cm2. The following questions 

can be asked. Is there any saturation phenomenon due to high current 

density? How high is the current density at which gain saturation 

begins? It seems apparent that the gain should deviate from its linear 

relation with the current density. But it must be determined whether the 

gain increases more slowly or whether it saturates completely. 

Qualitative or quantitative answers to these questions are important 

to the design of electron beam generators for the free electron laser. 

Using the concept of plasma resonant waves in the electron beam, 

the space-charge effect has been considered to the lowest order in the 

limit of the large cavity [l]. By solving the Maxwell-Boltzmann equations 

coupled with Poisson's equation, this effect is also evaluated to the 

lowest order in the limit of the small cavity [2]. However, these solu­

tions show only how the gain is suppressed when the current density is 

slightly above the linear region. They do not provide any quantitative 

information as to the value of the saturation current density. Any esti­

mateofthe saturation current density requires an exact solution. 

Due to the repulsion between electrons, two effects will be observed 

in the interaction region. For the radiation, it generates a net Coulomb 

field superimposed upon the electromagnetic field. For the electron 
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beam, the velocity and position of electrons are modified. Because the 

divergence of the electron beam due to the repulsive force is very small, 

we neglect the dependence on the transverse variable, x and y. In the 

following analysis, we do not assume any plasma wave in the electron beam, 

i.e., no wave-wave interaction is preliminarily taken into account. The 

dynamic equation, coupled with the Poisson equation, is used to obtain 

the gain. 

In Section 3.2 we have solved the collisionless force equation to 

obtain the electron position as in (3.11) 

Z(t) = v t + eE { (1 - cos Qt)cos cf> + (Qt - sin Qt)sin ct>} (4.1) 
0 my3Q2 

Equation (4.1) describes the trajectory of an electron which is assumed 

to pass the entrance of the interaction region z = 0, when t = 0, with 

phase cf>. Such a periodic dependence on cf> results in a non-uniform beam 

which generates a space-charge field. Equation (3.9) describes only the 

situation when this field is negligible compared to the ponderomotive 

force. In general, the space-charge field Ec should be included in the 

analysis, since the total field to which an electron is subjected is the 

sum of this field as well as the external applied field . 

The space-charge field Ec is included in the equation as 

d2 E eEcz 
-:-:-7 t:iz{t) = 7 cos[Stt - f36z(t) + ct>] + ~ 
dt my my 

(4.2) 

The second term on the right side represents the contribution of the 

space-charge effect . y3 in the denominator comes from the relativistic 

consideration. 
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If the change of the transverse space-charge field is assumed to 

be very small and neglected, the longitudinal space-charge field obeys 

the Poisson equation 

(4.3) 

where N(z,t) is the electron density at position z and time t; N
0 

is the 

initial electron density. In order to follow the evolution of the elec­

tron density, we consider an infinitesimal section of the beam at z
0 

when 

t = 0. Its width is oz
0 

and density is N
0

. After time t, it propagates 

to position z and develops into a section with width oz and density 

N(z,t). According to the conservation of the electron number, the follow­

ing relation is correct provided that the electrons retain their orders 

in space during the propagation (the single-stream assumption) 

N(z,t) oz = N
0 

oz
0 

(4.4) 

or equivalently, 

N(z,t) 
a z -1 

= No(az) 
0 

(4.5) 

In general, the position z is a function oft and z
0

. it can be written 

as 

(4.6) 

Substituting (4.6) into (4.5) and assuming (a6z/az
0

) is small, we have 

N(z,t) = N
0

[1 - a! 6z(z
0
,t)] 

0 

Using (4.7) in (4.3), we obtain 

(4. 7) 
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(4.8) 

Equation (4.8) involves partial derivatives with respect to different 

variables: z and z
0

• However, they are equivalent in the case where 

only the partial differentiation is concerned, and lz is small compared 

to (z
0 

+ v
0
t). This approximation is valid even in the strong signal 

regime. The integration of (4.8) over z leads to 
0 

eN 
Ec2 (z,t) = -~ [lz(z

0
,t) + h(t)J 

0 

(4.9) 

The function h(t) does not depend on z
0

. Since Ecz becomes zero when 

lz is uniform (i.e., independent of z
0
), it is natural to identify h(t) 

as the ensemble average of the position deviation <lz(z ,t) > . It is 
0 zo 

noted that it does not make any difference if we replace z
0 

by <P to 

label electrons. We have thus found a way to relate the space-charge 

field to the dynamic variable of an electron, lz: 

Ec
2

(z,t) = 
eN

0 - -e:- [lz ( ¢, t) 
0 

-<lz(<j>,t)><j,] (4.10) 

Physically, it means that the space-charge field experienced by an elec­

tron is proportional to its 11 net 11 position deviation. 

We have shown that the space-charge term in (4.2) can be related 

to the single electron position deviation through the key equation 

(4.10). Since no assumption was made concerning the electron density, 

the analysis which follows should apply to beams with arbitrary current 

density provided other conditions are satisfied. By combining equations 

(4.2) and (4.10) we can write the force equation as 
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(4 . 11) 

wp is the relativistic plasma frequency at the electron density N
0

. To 

solve for 6z, we consider the perturbation expansion in the limit of small 

radiation field 

+ ... (4.12) 

where 6z(n) is the nth order deviation proportional to En. Substituting 

(4.12) into (4.11) and considering the self-consistency in¢, we find 

< 6z > ¢ contains only even-order terms. Therefore,< 6z > ¢ is at most a 

second order effect. The solution is 

and 

,.
2

(1) _ eE/mr3 
u - 2 2 {(cos Qt - cos wpt) cos¢ 

Ii w - ~, 
p 

+ (sin Qt - _g_ sin w t) sin ¢ } 
WP p 

3 2 
(eE/my 2 6 {(w + Q) 3 sin(wp - Q)t 

4wp ( w~ - Q2) 3 p 

- (wp - Q) 3sin(wp + Q)t - 4 wpQ(w~ - Q2)t} 

(4.13) 

(4.14) 

where, in 6z(Z), only the part independent of¢ is written explicitly . 

The modulation of the electron position results in the modulation of 

the beam density which in turn can drive the radiation field according to 

Maxwell's equations. Since we are only interested in the energy gain of 
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the radiation within the constant field approximation, it is more con­

venient and straightforward to consider directly the energy exchange 

between the electron beam and the radiation. In the case where the 

Coulomb interaction is neglected, the energy loss of electrons is con­

verted completely into the radiation energy. However, when Coulomb 

interactions are considered, the energy extracted from the beam must be 

distributed between the radiation and the space-charge field. Since only 

the increase in the radiation field is available as useful output, we 

must be able to calculate the increase in the space charge field energy 

and subtract it from the total energy lost by the beam. 

The energy change of an electron in a single pass can be calcu­

lated from (3.4) with the integrand including the longitudinal space­

charge field as well as the transverse radiation field 

(4.15) 

If the ensemble average is taken before the integration is executed, we 

find immediately <v
0

Ec
2
> disappears 

- 0 (4.16) 

We also find the energy loss due to (~vzfcz) is 
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(4.17) 

To obtain the result in (4.17), we have neglected<6z>,1,, in E 
"' CZ 

because it is at second order, which results in a third order tenn in 

the energy exchange after multiplication by 6v
2

. Physically, (4.17) 

shows that the energy loss due to 6V
2

Ecz is exactly equal to the space­

charge energy. Therefore, the energy increase of the radiation comes 

exactly from the contribution of vlEr. With the explicit expression of 

6Z(l), we estimate roughly that the energy for the build-up of the space­

charge field is only a very small part of the energy loss of the electron 

beam. Their ratio is ~n/w or ~A/£, which is only 10-4 for the Stanford 

device. 

Following a procedure similar to that used to derive the no-space­

charge gain expression (3.24), we find that when we include the space­

charge field the gain becomes 

0 02 0 
G(8,8P) = G

0
1 -----..---.....,P.......,... {2 - 2 cos 0Pcos 0 - (i8 + 8

8P)sin 0P sin 0} 
(82 _ 82)2 

p 

G1 = G /82 
0 0 p 

8 = QT 

(4 .18) 

8 = w T p p 

G
0 

is a constant independent of 8 and ep. It is interesting to note that 

the gain spectrum is almost the same in tenns of either variable, 8 or 

ep, although they have completely different physical meanings. ep indi­

cates the electron density, while e represents the velocity detuning from 

the resonance condition. The condition 8 = 8P leads to a well-known 
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phenomenon, "plasma resonance." However, it is approached for the 

first time from the single-particle pointof view. For an appreciation 

of the value of 0P, we calculate it using the example of Section 3.2, 

L = 10 cm, y = 3.64, I = l mA in a waveguide of 50 µm x 50 µm. The 

value of 0P is found to be about 0.3 

It is expected that the new gain expression (4.18) should reduce 

to (3.24) when the current density is very small. Indeed, if let 0P 

approach zero, we find 

G(l) = .G' 02 f(0) 
• 0 p (4.19) 

where the superscript (1) indicates that the gain is proportional to 

the first power of the electron density. To obtain the lowest order cor­

rection to the collisionless gain, we expand (4.18) up to the order of 

0~ and find it to be 

g(0) = (24-602)cos 0 + (180 - 03)sin 0 - 24 
605 

(4.20) 

The result in (4.20) is identical to that obtained by Louisell et al. 

[2] using the coupled Maxwell-Boltzmann equations. The fundamental 

spectrum f(0) and the correction function g{e) are shown in Figure 4.1. 

Up to the first-order correction, the gain becomes smaller for 0 < 4.6. 

The non-uniform reduction results in an up-shift of emax· The up-shift 

is proportional to the electron density and can be written as 
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= g 
1 

( 
8 max ) 

0 
2 

f 11 ( e ) p max 
(4.21) 

To demonstrate the phenomenon of gain saturation, the normalized 

gain [G(e,ep)/G~ e~J is plotted for different values of ep (Fig. 4.2). 

The reason why we normalize the gain with respect to the electron den­

sity (through 0~) is to compare it with the gain in the collisionless 

situation, where it is proportional to the electron density. Therefore, 

the normalized gain for ep = 0 as shown in Figure 4.2 corresponds to the 

case of collisionless electron beam. In general, it is observed that 

the peak (normalized) gain decreases and shifts to the right with in­

creasing electron density. Physically, the reduced gain is due to the 

repulsive force between the electrons which weaken the tendency of the 

electrons to bunch together. This reduces the beam alternating current 

which can couple to the electromagnetic field. The increase of emax 

with ep is due to increasing plasma frequency. In a practical device 

which is used as an amplifier, the radiation frequency is fixed by the 

input field. If the electron energy does not change (i.e., e is a given 

constant), the normalized gain drops very fast with the current density. 

If the electron energy is adjustable, we can choose e to correspond to 

the value which yields the maximum gain. This reduces the effect of 

saturation. If the device is used as a laser oscillator, the radiation 

frequency adjusts itself automatically until the gain is maximum. It 

thus makes sense to study the effect of gain saturation by enquiring 

what happens to the peak gain as a function of the space-charge param-
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The behavior of the maximum gain is easier to follow if we use 

an alternate expression for the gain 

(4.22) 

For given ep, the value of e can be found from the solution of the max 
equation 

(4.23) 

where f is a function identical to the fundamental spectrum appearing 

in (3.24). It is obvious that (e,ep) = (nTT,mTT) is always a solution of 

( 4. 23) whenever ( n ± m) is an even integer number. The gain becomes a 

local maximum at these positions. Among those solutions, it can be ob­

served that the solution e = ep leads to the overall maximum gain for 

given ep = mTT. The curve in Figure 4.3 shows the trace of the maximum 

gain. It crosses the plasma resonance line (e = ep) whenever ep is a mul­

tiple of TT, or, in general, is a solution of the equation f(2e ) = 0. p 

The radiation frequency is determined in terms of the detuning 

parameter 

2 (2TT 6) w = 2y C - + -9- L 
(4.24) 

Therefore, the curve reveals clearly the transition of the radiation fre­

quency from the single-particle to the plasma region. e represents the 

deviation of the frequency from the 11 lattice frequency 11 (2TTc/t). At low 

electron density (ep ➔ 0), e approaches the value of 2.6 where the 

field-interference process dominates. When ep begins to increase, e ap­

proaches the value of e very fast and starts to oscillate around the line p 
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e = ep with a decreasing oscillating amplitude 

3 sin 2ep 

02 
p 

e -+ (X) 

p 
(4.25) 

The point ep = n is then observed to serve as a critical boundary where 

the transition between two regions occurs. Above this point, the effect 

of plasma resonance dominates. The radiation frequency is then given by 

the sum of the lattice and plasma frequencies except for the small devi­

ation (4.25). 

We have shown the frequency shift due to the space-charge effect. 

The maximum gain along this curve is shown in Figure 4.4 as a function 

of e~. In the limit of small electron density, the maximum gain is pro­

portional toe~ (Gmax = 0.135 G
0
e~). When the beam density increases, 

the maximum gain begins to saturate with a smaller growth rate. However, 

there is no upper bound to the gain. In the limit of high electron den­

sity the gain is proportional to the square root of the electron density 

(Gmax -+ ep/4). 

We have performed all the quantitative analyses in terms of the 

dimensionless parameter ep. In order to get an appreciation of its value 

in a practical device, we write e~ as 

02 = 7.382 J[A/cm2] l2[m] (4.26) 
p y 

where J is the current density in the unit of amperes per centimeter 

squared. For the typical example of longitudinal free electron laser, 

we have shown in Section 3.2, e~ is found to be about 0.3. Thus it is 

still far from the space-charge saturation. 
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If the pumping is strong, such that the gain is high enough, the 

increase of the field amplitude in the interaction region can no longer 

be neglected. In this case, a self-consistent treatment of the field 

is required. However, the self-consistent method is important only when 

it is applied to a high-gain amplifier. For the analysis of a laser 

device using a resonator with high reflectivity mirrors, the field ampli­

tude increase per pass must equal the small mirror loss per pass, and the 

constant amplitude approximation is very good. 

In sunmary, we have included the space-charge effect exactly in 

the single-electron analysis of free-electron lasers. The gain is found 

in (4.18) through the key equation (4.10). In the small signal and low 

gain region, the maximum gain is found to saturate at high electron den­

sities and the radiation frequency approaches the condition of the 

plasma resonance. 

4.3 The Pendulum Analysis 

In Section 4.2 we have removed the small space charge, and in the 

process found how the gain saturates at high current densities. The sat­

uration current density is then defined quantitatively. Although the 

value of the current density is beyond the limits of current experiments, 

it deserves attention for application to future experiments at higher 

currents. We have to point out that this is the unique feature of the 

free electron laser. A similar situation, but not quite the same in the 

conventional gas laser, is the depopulation of the upper level due to 

molecular collisions. The relaxation time decreases with increasing gas 

density. Another saturation mechanism in the conventional laser is due 
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to the high radiation intensity. The gain drops as the intensity goes 

up. The same holds true in the free electron laser. 

In order to investigate the saturation due to the radiation inten­

sity, the perturbation method is no longer useful. The applicability 

of the power expansion in equation (4.11) is limited by the requirement 

that the expansion constant must be less than l. This criterion leads 

to 

or, equivalently, 

eEST
2 

< l 
my3 

(4.53) 

(4.54) 

In the given example of the longitudinal free electron laser in Section 

this corresponds to 

E < 4 x l o3 V/m (4.55) 

and the energy flux is about 

€0 2 2 S = 2 c E :::: 16 Watts/cm (4.56) 

The equivalent condition for the transverse free electron laser is 

2e
2

EBT
2 

< l 
2 2 2 m y C 

( 4. 57) 

In the stimulating amplification, y = 50 and B:::: 2.4 kG , the 

condition is equivalent to 

E < l . 7 x l 05 V /m (4 . 58) 

and the energy flux is about 



-97-

S = 2.56 x 104 Watts/cm2 (4.59) 

Therefore, the linear theory breaks down for an energy flux higher than 

(4.56) or (4 .59). In the laser oscillation experiment, the gain per 

pass is only about 1.5%. The field amplitude can be assumed to be con­

stant during the interaction. The change of y is on the order of less 

than 10-2 and is negligible. The original force equation we obtained in 

Section 3.1 is 

dv eE . ( ) dt = - 3 s1 n wt - Sz + q,
0 my 

(4.60) 

Define ¢ = q,
0 

+ wt - Sz which is the phase of the wave seen by the el ec­

tron at z and t. As d2<t>/dt2 
= S dv/dt, we have 

(4.61) 

The equation is identical to a pendulum equation with pendulum length 

£, acceleration constant g, and Sej = ! . Multiplying both sides of 
• mY 

(4.61) by 2<t> where the dot means the derivative with respect tot, 

(4 .62) 

Integration of (4.62) results in 

¢2 - ~2 = ~ [cos <I> - cos <I> ] 
0 ~ 0 my 

(4.63) 

where 
<I> = w - sv = - Q 

0 0 
(4.64) 

Equation (4.63) can be written as 
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(4.65) 

where 

(4.66) 

With the change of variable, 

n = ¢/2 ( 4. 67) 

we have 

n t 

I dn = [EI_ J dt 

J• 2 2 Jrrrv3R2 
n 1-Rsinn my o 

0 

(4.68) 

The integral on the left side is, by definition, the Jacobian elliptic 

function [3]. The exact solution of the force equation is then obtained 

as 

if (4.69) 

or 

sin n =} sn(Rul~) if (4.70) 

( 4. 71 ) 

where sn is the Jacobian elliptic function with parameter R2. Comparing 

(4.69),(4 .70) with the condition of stability (3.43), we find that R2
< 1 

and R2 >1 separate the electron stream lines into regions of instability 

and stability. 

Solution of equation (4.69) or (4.70) represents the evolution 

of the phase as a function of time. It defines the flow rate of the 
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electron on its own phase diagram stream line. The energy change of an 

electron is found from 

6s = ev0 f Ee dt 
T 

= ev0 E J sin¢ dt 
0 
T 

= 2ev
0 

E J sin n }1 - sin2n dt 
0 

(4.72) 

Substituting (4.69) into (4.72) and using the integral fonnula for the 

Jacobian elliptic function, we obtain 

T 

6s = 2ev
0
E J sn(u I R2) j1 - sn2(u I R2) dt 

0 

(4.73) 

(4.74) 

We have obtained the analytic form for 6s in tenns of the special func­

tion sn(uiR2). However, the dependence of 6s on ¢
0 

is very complicated. 

It is impossible to average 6E over the entry phase analytically. The 

final gain is calculated numerically and nonnalized to the maximum gain 

of ~T = 2.6, which obtains when E + 0. 

G(nonnalized) 
m 3 3/2 ( jl 2 2 Jl 2 ¢a"-= 30[ Y 2J :2""-sn (uiR )- ~ -sin 2 ~ 

BeET R R o 
(4.76) 
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The result is plotted in Figure 4.5. The contour indicates the level 

of constant gain. For a given field intensity, the maximum gain shifts 

to higher values of nT. However, the gain does not approach zero as 

the field intensity monotonically goes to infinity, but oscillates 

between positive and negative values. This phenomenon is quite differ­

ent from saturation in conventional lasers. The reason for the differ­

ence is that they have different energy transfer mechanisms. In the 

conventional laser, the transition of an electron is between two well­

defined energy levels, so all the electrons are subjected homogeneously 

to the same energy transfer and also the same saturation condition. In 

the free electron laser, the energy transfer of electrons is not homoge-

neous and depends on their entry phase. The net result comes from the 

ensemble average over all the electrons with different entry phases. 

Although the gain is zero at certain field levels, it does not mean that 

there is no energy transfer for individual electrons. It is only the 

average which goes to zero. Every electron is still active in interact­

ing with the radiation. Thus, when the field intensity increases fur­

ther, a nonzero gain will appear again, but with different sign. 

We are also interested in the electron dynamics in the region of 

arbitrary field intensity. With a monoenergetic and uniform input elec­

tron beam, the distribution in velocity and phase can be formulated in 

the following way. The results show the velocity spreading and phase 

bunching effects. 

As in the analysis of the electron dynamics, the velocity distribu­

tion is found by the conservation of probability 
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nT 
IQ,--,r----r---~----,------. 

8 
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GAIN 
SATURATION 

eEt,L2 

mV5Y3 
0 .._. ________ .._ ____ .,______..~ __ ...____, 

0 12 24 36 
Figure 4-5: Gain diagram of a free-electron laser. 



-102-

N(v) (4.77) 

From the definition of¢, we have 

. 
¢ = w - sv (4.78) 

So, 

(4.79) 

Combining (4.77) and (4.80), we obtain the electron distribution in veloc­

ity at the output 

3 d p 2 2 -l 
N(v) = N0 ¾eE {d¢ [ 2 -sn (u(T) IR)]} 

o R 
(4.80) 

The phase distribution is derived in the same manner 

(4.81) 

(4.82) 

Although the differentiations in (4.80) and (4.82) can be performed, the 

results have proven to be very complicated. The structures of N(v) and 

N(¢) strongly depend on the physical parameters, especially on E. For 

a monoenergetic beam, there are discontinuities in N(v) and N(¢) which 

jump from being finite to being infinite. The discontinuity should not 
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disturb us because an energy distribution of a practical beam always 

has finite width. For a very narrow beam, such a discontinuity means 

only a sharp edge in the output distribution. 

4.4 Large Gain Approximation 

In an oscillating laser the constant field approx{mation makes 

physical sense. The intensity gain per single pass must be equal in 

steady state to the transmittivity of the mirrors. The transmittivity 

is usually very small in order to reduce the oscillation pumping thresh­

old. The field amplitude is determined on the gain map (Fig. 4.5) by 

the given T and gain values. In the case of a free electron laser 

amplifier, the gain is required to be as large as possible. For example, 

in the signal amplification, the output field could be many times 

larger than the input field .. Obviously, the constant field approxima­

tion is no longer valid. In sdlving the force equation, we have to 

consider E as a function of time or position, too. 

In the following, we will consider the large gain amplification 

in the small signal region by solving the force equation directly. We 

then proceed with the analysis of the large signal regime by using the 

harmonic expansion. 

In the large gain and small signal region, the field amplitude 

at the input is so small that the power expansion of physical variabl~s 

in terms of E
0 

is still applicable. But the variation of amplitude is 

so large that we must keep it as a function of time, E(t). In general, 

E should be a function of position. Because the position perturbation 

of an electron by the field is very small, it is more convenient to 
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write E as a function of time, i.e., E[z(t)]. We have for the force 

equation 

d2z _ eE(t) 
~ - -'-=-'- cos(wt - Bz + ¢) 
dt~ my3 (4.83) 

Once the position is solved, the energy transfer of an electron is cal­

culated as 

(4.84) 

Because E(t) is the radiation field amplitude experienced by an elec­

tron at z(t), it is independent of the phases of the electrons. The 

averaged energy transfer is 

d<£> ) . at = -ew E ( t <~z s ,n ( nt - cp )> <P (4.85) 

Due to the conservation of energy, the total energy of electrons and 

radiation is a constant. So 

(4.86) 

( 4 .87) 

where all physical parameters have been defined in Section 3.2. One 

must be careful when the¢ average and time derivative are exchanged 

on the left side of (4.85). The exchange is applicable only when the 

time variation of£ is negligible within a distance of one wavelength. 

As we know, physical quantities, such as z, v, E and£ are slowly vary­

ing. So the time derivatives in (4.83) and (4.85) have the same range 

of applicability. 
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From (4.85), (4.86), and (4.87), we obtain the equation 

(4.88) 

Now z can be expanded to first order in E
0

, 

(4.89) 

where f(Qt) and g(Qt) are functions of Qt and to be determined later. 

Subsituting ~z into (4.83) and (4.88), we obtain three coupled equations 

where 

and 

f" = aE cos Qt 

g11 = aE sin Qt 

E' = b(g cos Qt - f sin Qt) 

a = e/rrr-?Q2 

b = s2wk
0
Jf(s)I/2 

~ 
E = E(t) / E

0 
is the nonnalized field amplitude. 

(4.90) 

Defining a new variable x = Qt, and letting F = f/a, G = g/a, cc 2ba/Q, 

equations (4.90) become 
X x' 

F(x) = f dx' f dx" E(x 11
) cos x11 

0 0 
X x' 

G(x) = f dx I 
J dx" E (XII) sin x11 ( 4. 91 ) 

0 0 
X 

E(x) = 1 + % f [G(x') cos x' - F(x') sin x'] dx' 

0 
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Combining the three equations in (4.91 ), we have 
x x' x" 

E ( x) = l + f J dx' f dx II f
0 

dx 111 E ( x 11
') sin ( x" 1 

- x' ) 
a a 

(4.92) 

The principle of causality, x > x' > x" > x'", is shown explicitly in 

the upper limits of the integrals. The order of integration can be re­

versed by proper change of the upper and lower limits of each integration. 

The result is 
X X X 

E(x) = l + f J dx"' f dx" 
0 X 11 I 

f dx' E(x 111
) sin(x"'- x') 

x" 

· The integrations over x' and x" can be executed easily 
X 

E(x) = l + ~ f dx'" {sin(x 1
" - x) - (x 1

" - x) cos(x 1
" - x) } E(x 1

") 

0 

Equation (4.94) is an integral equation for E(x), i.e., 
X 

E(x) = l +II M(x -y) E(y) dy 
0 

(4.93) 

(4.94) 

(4.95) 

where M(y) = (sin y -y cos y) is the kernel of the integral equation. The 

type of integral equation (4.95) is best solved by the method of Laplace 

transform. By taking the Laplace transform on both sides, we have 

E(s) = ! + f M(s) E(s) (4.96) 

where 
M(s)= 2/(s2 +l)2 ( 4. 97) 

The Laplace transform of the normalized field amplitude is found to be 
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- 1 C E(s) = s [l + 2 2 J 
(s+l) -c 

(4.98) 

The inverse Laplace transformation yields the field amplitude as a func­

tion oft 

f(t) = 1 +rc{cosJ1+rcQt 
R 2 1 + rc 

cos ✓ 1 - rc Qt} 
1 - rc 

(4.99) 

This is an exact solution in the small signal region. The constant c is 

a measure of the interaction strength. In the small gain region, i.e., 

c << 1, we find the gain as 

G = c[2 - 2 cos Qt - Qt sin Qt] ( 4 .100) 

The result in the small gain region shows that the field amplitude oscil­

lates along the interaction region with its maximum increasing. However, 

the exact solution shows the correct behavior of the field. Due to the 

saturation, when c < 1, the field is always bound between two extreme 

values 

1 1 ---> E > --- (4.101) 
1 - lc 1+rc 

Actually, the field oscillates sinusoidally with two different periods. 

When c is very small, the interference between those two terms generates 

beats. The field changes periodically as cos Qt and sin Qt, with ampli­

tude enve 1 ~pe cos le Qt/ 2 and sin le Qt/2. 

When c > 1, the expression (4.99) should be written in terms of 

a hyperbolic cosine 

E(t) = _1_ + le {cos 1 + le Qt+ cosh/lc -1 Qt} 
1 -c 2 1 + rc rc - 1 

( 4. 102) 
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and the field is seen to be a combination of oscillating and exponential 

terms . However, we note that the exponential term is always dominant 

If c is close to 1, the exponential terms are large due to the small 

denominator. If c >> 1, the term is large due to its exponential beha­

vior. As a matter of fact, the numerical plots for c > l show that it 

is hard to note the existence of the oscillating term. When c is very 

large and nt is not a very small value, we have 

l cl / 4 nt 
E(t) ~ 4 e ( 4. 103) 

The field amplitude is growing exponentially with distance, so the exact 

solution in (4.99) or (4 .102) explains the difference between oscillating 

gain [4] and exponential gain [1]. It also defines quantitatively the 

range of applicability of two different gains. In Figure 4.6, we plot 

the behavior of E(t) for different values of c. The regions of bound 

gain and unlimited gain are divided by the curve with c equal to l 

( 4. 104) 

If the field amplitude is not small enough, the power expansion 

of physical variables, like (4.89), is not appropriate due to its 

divergence . Another quantity in the force equation which could be used 

as an expansion parameter is the entry phase,¢. It must follow that 

every physical variable of the electron is a periodic function of¢. 

Therefore, the method of harmonic expansion in¢ is natural for the 

analysis. For example, the electron position z can be put in a form 
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z = v
0
t + 6.z · 

co 

= v t + l [fn(t) cos n¢ + gn(t) sin n¢] 
o n=O ( 4. 105) 

where fn(t) and gn(t) are the coefficients in the cosine and sine expan­

sions. fm represents the symmetric position modulation and gn the asym­

metric position modulation. Both coefficients contain the saturation 

information. If they can be solved exactly, then all the physical proc­

esses can be described completely. However, a complete set of differen­

tial equations cannot be obtained due to mathematical complications. For 

simplicity, we truncate the harmonic expansion in (4.100) and leave only 

terms up ton= 1. The correction from higher harmonic terms has been 

evaluated by using the computer solution of (4.100) up ton= 2. It is 

found that for most situations the discrepancy is less than 15%. So the 

harmonic expansion up ton= 1 is applied to demonstrate, at least qua­

litatively, the field evolution and electron dynamics. Defining the 

phase¢ seen by an electron at time t as 

the 

¢ = ¢ + p(t) + f(t) cos ¢0 + g(t) sin ¢0 0 

force equation becomes 

d2¢ - - ~ cos ¢ ~- my 

p11 + f 11 cos¢ + 911 sin¢ 
0 0 

= - eE; cos[¢0 +p+f cos ¢0 +g sin ¢0] 
my 

= - ~ cos[¢0 + p + h sin(¢0 + a)] 
my 

( 4. l 06) 

(4.107) 
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a = tan - l ( f / g) 

Equation (4.107) should be true for any value of¢· It can be decoupled 

into three differential equations for p, f, and g, respectively. 
TT 

p" = - eES J cos[¢
0

+p+h sin ( ¢ 
0 

+a) J d¢ 
0 2mny3 

-'JT 

eES 'Ir 
f" = 

- mny3 j cos ¢
0
cos[¢

0 
+ p + h sin(¢

0
+a)J dcpo 

( 4. l 08) -TT 

TT 

g" = eES J s:in ¢
0
cos[¢

0 
+ p + h sin(¢

0 
+ a)] d¢o -~ 

mny 
-TT 

The average energy transfer of an electron is given as 

~~£> = ev
0
E < cos ¢ > 

ev E TT 

= ¾ f cos[¢
0 

+ p + h sin(¢
0 

+ a)] d¢
0 ( 4. l 09) 

-TT 

Using the relation between the transferred energy and the field amplitude 

in (4.87) we have the differential equation for E 

Swk J 2(s)I ;r 

E' = 2TT
1 

J cos[¢
0

+p+h sin(¢
0

+a)] d¢
0 

(4.110) 
-TT 

The integrations in (4.108)-(4.110) lead to Bessel functions. The re­

sults are 

p11 = - eE~ cos(a - p) J1 (h) 
my 

(4.111) 



-112-

g11 = - eE~ {sin p J (h) + sin(2a- p) J2(h)} 
my 0 

Using the a given in (4.103), we have 

p 11 = -A E QJ l ( h) / h 

f 11 = 2A E {cos p J1 (h) +gQJ2(h)/h2} 
(4.112) 

g 11 = -2A E { s i n p J 1 ( h ) + f Q J 2 ( h ) / h 2 } 

~ 
E' = -B Q J1 (h)/h 

where A = eE
0

S/my
3~/ 

B = Swk 
O
J f ( s ) I / s-i E 

0 

Q(t) = g cos p + f sin p 

and the differentiations are given with respect to a dimensionless quan­

tity ~t. We found it impossible to solve for E from (4.112) due to 

complexity. Using a computer calculation, it is straightforward to 
~ 

obtain the behavior of p, f, g, and E along the interaction region for 

a given set of conditions. The initial conditions for p, f, g, and E 

are 

p{O) = f(O) = g(O) = f'(O) = g'(O) = 0 (4.113) 

p'(O) = -1 and E(O) = 1 

With these conditions, it is found that E ~ t4 at the beginning of 
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interaction,which result is identical to that obtained in the linear 

analysis. A typical behavior of the field amplitude is sketched in 

Figure 4. 7. -If_ we•· plot __ the_ampl itude gain-JJ-o~t ·-.::::_(i;J~-~s_ ·a function-­

of input amplitude (Ein), we obtain the curve shown in Figure 4.8. The 

output is shown in Figure 4.7 to oscillate even when Ein < Es. In an 

optical cavity the field amplitude increases every time it reenters the 

interaction region. Finally, the amplitude clamps at Es and will not 

change with further reamplification. 

Es is the saturation field amplitude. Figure 4.8 is similar to 

the curve in Figure 4.6 if we plot the gain against E with constant QT. 

It is obvious that the contour with gain equal to zero represents the 

saturation field for a given QT with the presence of electron circula­

tion. However, the gain map should differ slightly from Figure 4.6 in 

the large gain approximation, although it is similar qualitatively. 
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CHAPTER 5 

CONCLUSION 

The longitudinal free electron laser has been proposed to pro­

duce tunable, low-power coherent radiation efficiently. The device con­

sists of a medium energy electron beam and a corrugated waveguide as the 

interaction region. We have studied the phenomena of electrodynamics 

in a waveguide. We described the wave spectrum, spontaneous emission, 

and discovered the electron band structure, as well as the quantum limi­

tations. From the classical approach, we formulated the linear theory 

of the longitudinal free electron laser. Starting with the force equa­

tion, the homogeneous gain, inhomogeneous gain, and lossy gain were 

derived. Using a phase diagram, we studied the electron dynamics and 

the evolution of the electron distribution. We also analyzed a special 

device--a two-stage system. In order to understand the laser mechanism 

and phenomena in the nonlinear region, we used different approaches to 

investigate the effects of a dense beam, high radiation, and large gain. 

In the regime where space-charge effects are important, we obtained the 

dependence of the gain on the current density. The saturation current 

density was pointed out quantitatively. In the case of a large radia­

tion field, we solved the force equation exactly by using special 

functions. A gain diagram was shown to demonstrate the saturation of 

the gain due to the high radiation intensity. In the large gain ampli­

fication, we found an integral equation describing the field growth in 

the low field limit and a set of differential equations in the high 

field limit. Combining the linear and nonlinear theory of the device, 
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we have completely analyzed its laser mechanism and physical processes 

under all possible situations. However, we also considered the effects 

in special situations separately to show the influences of those given 

parameters. The complex situation, such as dense electron beam with 

high radiation field, can be understood qualitatively, while a quanti­

tative analysis is not absolutely essential. 

In a practical set-up of the longitudinal free electron laser, 

many design and engineering problems have to be considered thoroughly. 

Due to the need for a high resolution electron beam, the Van de Graaff 

accelerator and the currently developing Microtron could be the two best 

candidates for electron generators. Both these devices have electron 

beams of good resolution and energies in the desired range. The electron 

beam is then focused to within a diameter of about 30 µm or less by using 

several stages of quadrupole focusing elements. The fabrication of a 

50 µm wide waveguide, 10 cm long, is a very delicate job. The straight­

ness of the waveguide wall must be good within 0.01%. A possible way to 

obtain the waveguide is to use two separators of thickness 50 µm between 

two smoothly polished metal surfaces. The corrugation of period 200 µm 

can be done mechanically on the two separators before the assembly of 

the waveguide. The entire system should be in a vacuum. The details of 

the system design and the possible experiments are, however, beyond the 

scope of this thesis and will not be discussed here. 

An important question is how to improve the beam extraction effi­

ciency of a device. For the free electron laser, the solution is to 

recycle the electron beam. A circulation picture is shown in Figure 5.1. 

The energy loss of an electron in the interaction region can be restored 
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by an energy supply device on the return path. The overall efficiency 

of the system depends on the number of cycles. The number of cycles 

is limited by the broadening of the electron distribution during the 

interaction with the radiation. In the case of a prebunched electron 

beam, it is required that the electron pulse will not spread on the 

return path due to different velocities. This problem can be solved by 

properly choosing the length of returning path, L. In Figure 5.1 we 

note that the outer track has a longer path, but also has larger elec­

tron velocity. Two factors compensate each other. It is expected that 

there is an optimum value of L such that the first order effect due to 

the velocity difference can be eliminated. By using the relativistic 

formula, it is found that 

r 22p~ = 2 2 L = 2;rr S y 
m C 

( 5. 1 ) 

where r is the radius of magnetic bending 

r = P/Be (5.2) 

With the designed length, the pulse width can be bunched by a factor 

of 103 for a very short electron pulse. It is also pointed out that 

such space-bunching becomes unnecessary when the length of the electron 

pulse is larger than about 1 mm. 

The bunching of the electron velocity distribution is essential 

in an attempt to increase the number of cycles which result in a sig­

nificant radiation gain, thus to increase the overall efficiency. The 

ratio of the velocity shift to its spread is a measure of the effective­

ness of the electron energy extraction. We have pointed out that, by 
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the use of a two-element device, the single-pass gain or the device 

efficiency can be highly improved. 

Another possible way to increase the single-pass gain of the 

device is to introduce a variably corrugated waveguide instead of a 

constant-period one. This is due to the down-shift of the electron 

velocity distribution. In order to maintain the system at its high 

gain condition, we can decrease the phase velocity of the first har­

monic simultaneously which can be accomplished by a gradually decreas­

ing corrugation period along the interaction region . The energy 

extraction from the electron beam will be kept at its optimal condition 

and the gain can be much higher than the value in the case of constant 

period. This variable waveguide problem is a challenge for future ex­

periments. 
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PART II 

A THEORETICAL MODEL OF THE LINEAR 

ELECTROOPTIC EFFECT 
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CHAPTER l 

GENERAL INTRODUCTION 

In the weak field approximation, the induced polarization in mat­

ter is linearly related to the applied electric field as 

( 1. l ) 

where E
0 

is the electric permittivity in vacuum; Xis the susceptibility 

of the medium. P and E are vectors, so xis a tensor of rank two. Due 

to the complex interaction between the electric field and matter, the 

susceptibility xis in general field-dependent. Such a nonlinearity 

becomes obvious when the field amplitude is large enough. The polariza­

tion can be expressed as an expansion in terms of the total field in the 

medium 

P = E x E + E r EE + E R EEE + • • • 
0 0 0 

( l . 2) 

The coefficients, rand R, represent the relation between P and E in 

second and third orders. r is a tensor of rank three, and Risa tensor 

of rank four. If the medium has inversion symmetry, it follows that the 

second order coefficient is identically zero. The lowest nonlinear 

effect in such a system is in the third order. This happens in gas sys­

tems or centrosymmetric crystal, such as rock salt or cesium chloride. 

In the absence of inversion symmetry, the nonlinear phenomenon is 

due to the self-interaction of the total field. In general, the total 

field can be written as 
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( 1 . 3) 

where Ew represents the amplitude of the electric field in the electro­

magnetic wave of frequency , r' is the low frequency or static electric 

field amplitude, w >>> n. The interactions between each term result in 

several physical phenomena: 

(l) Second harmonic generation: 

(2) Parametric frequency mixing: 

w1+w2 2r 
wl w2 

p = E E 
or w * w1-w2 = 2r 

wl E 2 p E 

(3) Optical rectification: 

(4) Electrooptic effect: 

These four nonlinear effects have been discussed in detail [l]. In 

this thesis we concentrate on the last effect. In terms of the low fre­

quency field En, (l .2) is rewritten as 

Pw = E
0
[x~ + 2r ~Ew] 

= E [X + 2r En] Ew 
0 

( 1.4) 
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Physically, the applied static field En changes the optical suscepti­

bility of the medium, and consequently, changes the index of refrac­

tion. The large interest in this physical property is due in part to 

its wide application in light modulators and numerous laser devices. 

In many applications it is necessary to modulate the amplitude, 

phase, frequency, or direction of a laser beam at high speed. The 

electrooptic effect is found to be an excellent method for performing 

these tasks due to its fast response and accurate control. The modu­

lating low frequency signal En eint is applied to the crystal through 

which the laser beam passes. With a choice of specific orientations of 

the crystal, we can modulate the amplitude, phase, frequency, or direc­

tion of the incident beam. The techniques of modulation are beyond the 

scope of this dissertation. An excellent review article discussing 

these techniques in detail can be found in Ref. 2. Common to all the 

applications listed above is the need for crystals with high electro­

optic constant r such that the modulation power can be lowered. Many 

efforts have been made in this direction. These, however, were based 

on trial and error or by empirical means. It is concluded [2] that 

"Perhaps the development of a theoretical understanding of the electro­

optic effect will lead to the discovery of synthesis of the ideal sub­

stance for each application in a logical way .... " This is the moti­

vation behind the investigation reported in the second half of this 

thesis. 
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l .2 Previous Work on the Electrooptic Effect 

The electrooptic effect was discovered before the beginning of 

the twentieth century. Kerr observed the quadratic electrooptic effect 

in liquids such as carbon disulphide. The linear electrooptic effect 

was first found in quartz by Rontgen and Kundt. A systematic examina­

tion of the linear effect has been performed in the crystals, quartz, 

tourmaline, potassium chlorate, and Rochelle salt by Pockels [3]. The 

linear electrooptic effect is also called the Pockels effect. He 

showed the dependence of the linear electrooptic effect on the point sym­

metry of the crystal. 

Thirty years after Pockels 1 demonstration, Zwicker and Scherrer 

reported the electrooptic properties of KDP (KH2Po4) and KOOP (KD2Po4) 

and noted the relation to their ferroelectric behavior [4]. As KDP and 

KOOP are similar in structure, they found the electrooptic response is 

proportional to the dielectric constant. Although it is now known that 

it is not exactly proportional to the dielectric constant, but qualita­

tive, it contributed greatly to the understanding of the effect. The 

first application of the electrooptic effect was the construction of a 

high speed light shutter using KDP and ADP (NH4H2Po4) in sound recording 

by Billings and Carpenter [5,6]. 

The advent of the laser opened the era of optical conmunication. 

The guiding and switching of light beams can be achieved by electrooptic 

materials. In the course of these research projects, the electrooptic 

coefficients of many crystals with various point group symmetries have 

been measured [7]. However, the theoretical understanding of the problem 
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did not begin until the late 1960 1 s. 

Kaminow derived a simple relation between an electrooptic coef­

ficient measured at radio frequencies and the corresponding Raman­

scattering efficiencies [8]. Using the measured efficiencies, he calcu­

lated the electrooptic coefficients of LiNb03 and LiTao3, which are in 

good agreement with experiment [9]. With the macroscopic equations 

between polarization, ion displacement, and electric field, Kelly found 

an expression for the coefficient of zinc-blende crystals [10]. The re­

sult is applied to CuCl and ZnS with satisfactory agreement with measure­

ments. The electrostatic point-charge model and dielectric theory have 

been used to determine the electrooptic coefficients of III-V compounds 

[11] and II-VI crystals [12] by Flytzanis. The theoretical treatments 

are so far limited to diatomic crystals. The measurement of the electro­

optic coefficient reveals that the high response materials are actually 

complex crystals with more than two kinds of atoms. Therefore, a gen­

eralized theory to describe the electrooptic behavior of simple crystals 

as well as complex systems is badly needed. 

A complete review of the formal theory of the nonlinear optical 

effect can be found in Ref. 13. 

1.3 Outline of Thesis, Part II 

In Chapter 2, the theory of the linear electrooptic effect is 

formulated. Based on the quantum mechanical approach of the one-gap 

model, the susceptibility of a diatomic crystal is found to depend on 

the energy gap . The energy gap is then phenomenologically interpreted 

as the combination of symmetric and asyrm,etric parts. From the micro~ 
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scopic point of view, these two parts are the result of the motion of 

bond-charge in the bond region. Its harmonic and anharmonic motions 

respond to the total field in the crystal inducing the linear and non­

linear susceptibilities. In the low frequency region, the ions are 

displaced from their normal sites due to the applied electric field. 

From the derived expression for the dependence of the optical suscep­

tibility on bond-rotation and bond-stretch, we derive an expression for 

the electrooptic coefficient of crystals. Presumably, the result is 

applicable to any material with arbitrary complex structure. 

In Chapter 3, the theory is applied to the calculation of the 

coefficient of various crystals. They include zinc-blende and wurtzite 

crystals, quartz, LiNb03 and LiTao3, KDP family, chalcopyrite compounds, 

and Ag3Ass3. The characteristics of these crystals are listed in the 

following: 

(1) Zinc-blende and wurtzite: AB type, single bond, tetragonal 

coordination, point group 43m and 6 mm; 

(2) Si02: A82type, single bond, distorted tetragonal coordina­

tion, point group 32; 

(3) LiNb03 and LiTa03: ABC3 type, one kind of bonds in two dif­

ferent bond-lengths, distorted octahedral coordination, point 

group 3m; 

(4) KDP family: Single bond, tetragonal coordination, point group 

42m; 

(5) Chalcopyrite: ABC2 type, slightly distorted tetragonal coor­

dination, two different bonds, point group 42m; 

(6) Proustite: A3sc3 type, complex coordination, two different 
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bonds, point group 3m. 

In Chapter 4, the theory and calculation are summarized. A pos­

sible direction for seeking out better electrooptic materials is pointed 

out. The limitation and the possible development of the theory are dis­

cussed. 
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CHAPTER 2 

THEORY OF THE LINEAR ELECTROOPTIC EFFECT 

2.1 Introduction 

In this chapter we introduce the semiclassical model for the 

linear electrooptic effect. The starting pointsfor our analysis are 

the dielectric description of diatomic crystals in the Phillips-

Van Vechten (PV) theory [l-5] and the bond-charge calculation of the 

bond-nonlinearity in Levine's theory [6-8]. With the concept of the 

effective ionic charge and the isotropic displacement, a general ex­

pression for the electrooptic coefficient is formulated. Due to the 

large uncertainty in the measurement of coefficients, a large enough 

margin is allowed for the accuracy of the theory in order to achieve 

its generality. However, the uncertainty in the theoretical estimate 

is usually comparable to or less than that in the experiment. 

To meet the purpose of predicting properties of new materials, 

the theory is required to employ as few physical parameters as possible. 

In order to serve as a guide to the crystal grower, it is important 

that the parameters entering the theory can be measured on small crys­

tals or powder. This will obviate the need for expensive and lengthy 

growth of crystals often to find out that the coefficients are disap­

pointingly small. The dependence of the electrooptic coefficient on 

the parameters is then studied. The calculated results are compared 

with experiment in the following chapter. 
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2.2 The Dielectric Theory of Optical Susceptibility of Crystals 

The interaction between an external electric field and the elec-

trans in a solid is responsible for its index of refraction. Using the 

nearly free electron model in the semiconductor, it is found that the 

dielectric constant at long wavelengths can be calculated from [9] 

~w 2 2 
= 1 + (_e_Eg) [1 - _Ig_ + l (_Ig_) J 

~ 3 ~ 
e:( CX)) ( 2. 1 ) 

where w~ = 4TTNe2/m is the plasma frequency. EF is the Fermi energy level 

and Eg is the average energy gap of the semiconductor. Eg/4EF is usually 

about 0.1. So the susceptibility in this model is expressed in a very 

simple way 

(2.2) 

However, we still have an unknown parameter Eg which varies for different 

materials. 

In the simplest situation with diatomic crystals, the potential 

acting on the electron can be Fourier transformed into symmetric and 

antisymmetric parts with the origin chosen at the middle of the bond 

between the two atoms. If the potential is given as 

(2.3) 

where x1 and x2 arethe positions of atom 1 and 2, xis the position of 

the electron, and 2r
0 

is the bond length. The Fourier transform of 

V(x) is 
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V(x) =IV eiGx 
G G 

VG = cos Gr
0 

V~ + i sin a 
Gr0 VG 

vs - l 
(2.4) 

G - "2" (VGl + VG2) 

Va l 
- VG2) G = 2 (VGl 

and 
VGl ,2 = f- J vl ,2(x) e-iGx dx 

where£ is the length of a unit cell. This description is for the one­

dimensional situation. In the actual three-dimensional crystal, there 

are many VG's due to the coupling of different electron states in many 

directions. If we consider only the average gap between the valence and 

conduction bands, the average result of all VG is represented by one com­

plex expression 

(2.5) 

The effective band gap Eg is given by 

(2.6) 

It is clear that Eh is the symmetric part of the energy gap relating to 

the covalent bonding, while c is the asymmetric part relating to the 

ionic bonding. In diamond-like crystals, the asymmetric part vanishes 

and Eg is identically equal to Eh. Now the unknown Eg is divided into 

two quantities, Eh and c, which are to be determined empirically. The 

behavior of Eh and care best observed from the expression 
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(2.7) 

By plotting X-l versus the square of the valence difference z for crys­

tals composed of atoms in the same row, it is found [4] that 

(2.8) 

Both constants, an and bn, decrease with increasing row number n. In 

the same row, the lattice length is almost constant, so wp and Ef are 

also constant. Comparing (2.8) with (2.7), it is obvious that Eh depends 

on the row number only, and c is approximately proportional to ~z with 

the proportionality constant depending only on n. Since the lattice con­

stant increases as the row number, it is reasonable to assume a relation 

for Eh as 

(2.9) 

where d
0 

is the nearest neighbor, ands is a constant to be determined. 

Using the values E( 00 ) = 5.7 and 12.0 for diamond and silicon, one obtains 

the indicial values= 2.48 [4] and the proportionality constant (A) 

39.74 if Eh is in eV and d
0 

is in A. 

Because c has the dimension of energy, it may have the form 

between atoms a and S belonging to the same row. Physically, c is due 

to the difference in the Coulomb potentials. However, the electron 

should be somehow screened by core electrons. It follows from the 

Thomas-Fermi theory [10] that the screening wave number ks is 

(2.11) 
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where a
0 

is the Bohr radius, N is the electron density corresponding 

to eight electrons per diatomic volume. The complete c is found to be 

(2.12) 

R is half the interatomic distance, bis a dimensionless constant depend­

ing on row number. The variable c in (2.12) is not exactly the differ­

ence between two screened Coulomb potentials because of the common 
-k R 

factor e s We can find Eg from the measurement of x. Knowing Eh' we 

can obtain c from (2.6). The value of b calculated in this way is found 

to be between l and 2. Actually, most crystals have the values of b 

between 1.4 and 1.6. The assignment of b = 1.5 has an uncertainty of 

26%. The above analysis for the Eh and c is only for nontransition 

atoms. The effect of d-electrons is considered in the expression of x 

as a constant D [4] 

(2.13) 

where 

Dis found empirically to be 

(2.14) 

where the constants~= 1 .0, l .0, l .12, l ,21, l .31, and 

o = 1.0, 1.0, 1 .0025, l .005, 1 .0075 for the atoms from row l to row 5 

[4,8]. 

As c depends on ~z, it is argued [7] that a better result for b 

can be obtained by letting ra ~ r8 ~ r
0

, where r
0 

is half the bond 
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length. With this argument, bis found to be 1 .62± 14% for the zinc­

blende and wurtzite crystals. Considering different structures, Levine 

found that b follows a simple relation with the coordination number N 
C 

b = (0.089 ± 10%) N~ (2.15) 

It must be mentioned that the evaluation of the susceptibility in 

the PV theory requires only the knowledge of the atomic radius and the 

structure which detennines b. The model is applied to all diatomic 

crystals. In this theory the covalency and ionicity parameters of the 

bond are defined as 

2 2 
fc = Eh/Eg 

fi = c2/Eg2 
(2.16) 

A complete list of values of c, Eh, fc' and fi for 68 diatomic crystals 

is in Ref . 4. 

2.3 Theory of the Electrooptic Effect 

In the previous section we have reviewed briefly the PV dielec­

tric theory for diatomic crystals. The reason for the appeal of the 

theory is that it depends on only two physical quantities: atomic radius 

and coordination number. · We have avoided the complex calculation of the 

electron wave function by replacing the versatile band structure with a 

simple energy gap . The simplicity of this semi-empirical result makes 

it a suitable starting point for the theory of the nonlinear optical 

effect. However, the division of the potential into symmetric and anti­

syrrmetric parts applies only to diatomic crystals. Any extension of the 
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PV theory should be limited to diatomic crystals. In order to extend 

our theory to more complex materials, we look into the unit cell from 

the microscopic point of view. It is assumed that the bulk suscepti­

bility is due to the geometrical composition of the susceptibilities of 

individual bonds. Or equivalently, that the total dipole moment can be 

taken as the vector sum over a unit cell of individual dipoles, each 

associated with a single bond, 

(2.17) 

where ani is the direction cosine of the bond n in the ;th direction, Sn 

is the bond susceptibility along the bond direction, vis the volume of 

a unit cell, n indicates the individual bond, and the summation runs 

through the bonds in one unit cell. In the formulation of (2.17), we 

assume that the susceptibility is isotropically along the bond direction 

and we neglect the transverse contribution. Usually, the transverse sus­

ceptibility is much smaller than the longitudinal one, since it involves 

promotion of the electron into antibonding orbitals with high energies, 

so the expression (2 .17) is usually a good approximation. For diatomic 

crystals, there is only one kind of bond in several different directions. 

(2.18) 

It can be seen that the bond susceptibility is proportional to the bulk 

susceptibility in crystal of the same structure. We assume that relation 

(2.2) gives the bond susceptibility except for a proportionality constant 

depending on the crystal structure. The quantities, Eh and c, are 
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fundamental properties of the bond. With this concept, we can calcu­

late the linear and nonlinear susceptibility in an extended PV theory. 

The physical interpretation of Eh and c is based on the bond­

charge model [8]. It is thought that the overlap of the electron dis-

• tribution in two adjacent atoms generates a bond charge in the bond 

region. It represents only a small amount of charge, but it has high 

mobility. Its harmonic and anharmonic motion responding to the applied 

total field is the source of linear and nonlinear dipole moment. The 

concept of bond charge has been established theoretically and experi­

mentally. The numerical calculation of the electron density in simple 

crystals reveals the existence of the bond charge. The quantitative 

estimate of the bond charge is found empirically to be 

q = en cl+ kf) 
V E C 

(2.19) 

where n is the number of electrons per formula unit divided by the 
V 

number of bonds. k is a constant found to be 1/3. The relation has 

been tested for single-atom and diatomic crystals [8] and found to be 

within an uncertainty of 18%. Since q enters linearly into the calcu­

lation of the nonlinear susceptibility, (2.19) is good enough to 

evaluate the magnitude of the bond charge. 

Although the calculation of Eh and c is insensitive to the indi­

vidual atomic radius and depends on the bond length only, the anharmonic 

motion of the bond charge should be sensitive to the position of the 

bond charge. Therefore, the utilization of Eh and c needs a revised 

interpretation. 
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The expression for c given in (2.12) should be good for the non-

linear effect because it shows the dependence on ra and rs The calcu-

1 at ion of X is obtained by taking r ~ rs ~ r , but such an approxima-a o 

tion should be made only after the derivation of the nonlinear effect. 

The homopolar energy gap Eh given in (2.9) is only a function 

of (ra + rs). This is approximately true for the harmonic motion of the 

bond charge, but it may not be correct for the anharmonic motion, 

especially for the highly unequal atomic radii. Considering the small 

contribution of core electrons to the bond susceptibility, it is proposed 

that a generalized homopolar part of the energy gap is [8] 

(ra-rc)2s + (rS-rc)2s 

2 ( r o - r c) 2s 
(2.20) 

where (Eh2)
0 

is the homopolar gap when ra =rs= r
0

, re is the average 

core radius. With the expressions given in (2.20) and (2.12), we are 

ready to calculate the nonlinear susceptibility. 

From the assumption of the geometric composition of the suscepti­

bility, the change of the susceptibility is expressed in terms of the 

changes of the bond susceptibility and direction cosines, (Fig. 2-1), 

(2.21) 

The changes of direction cosines are due to the relative displacement 

of atoms. Assuming the electric field is applied in the k direction 

and induces the isotropic displacement of 6xk, we have 
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- l - d
0 

[oi k - a.ia.k] 6xk (2.22) 

where d
0 

is the bond length, d
0 

= 2r
0

. 

The change of the bond susceptibility is due to the displacement 
2 2 of the bond charge and the stretch of the bond. As 8 ~ (hwp) /Eg , 

where the small contribution from D and A has been neglected, we have 

Mw2) 
68 = ~ + f E2 M E-2) - 2f. 6c 
8 -Y c h . h 1 c 

WP 
(2.23) 

2 -2 The variations of wp, Eh , and c depend on d
0

, ra. and r8, so we have to 

relate these quantities to the known physical parameters. When the bond 

length changes, it is assumed that the ratio of atomic radii remains con­

stant. The two independent parameters, ra. and r8, can be transformed 

into two parameters relating directly to the macroscopic properties of 

the crysta 1 

(2.24) 

where cS is the displacement of the bond charge independent of the ionic 

motion, and cS corresponds to the optical susceptibility while 6d
0 

corre­

sponds to the low frequency dielectric constant. 

From (2.12), (2.20), (2.23), and (2.24), it is a straightforward 

procedure to obtain 
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k r 3 ~d 
~: = {[fi(l + ~ o) + sfc - 2] r: 

+ [4f. 
1 

z + z f pd2 
a 8 + s(2s-1) c o 2J _£} 

za - ZS (ro-rc) do 
(2.25) 

where p = (ra-r
8
)/(ra+r

8
) measures the importance of the unequal 

atomic radii. In the first square bracket, the term ksr
0
/2 is obtained 

because the screening wave number ks is proportional to r~112 . The 

number (-3/2) is due to the fact that wp is proportional to r;312 . The 

expression in the second square bracket is the contribution from the 

bond-charge response. It is exactly identical to the result obtained 

by Levine in his calculation of the nonlinear optical susceptibility 

[8]. Thus the expression in the first square bracket is the ionic con­

tribution of a single bond due to the bond stretching. The electronic 

contribution has been studied in detail elsewhere and will not be dis­

cussed in this thesis. Our concern here is only with the ionic contri­

bution to the linear electrooptic effect. 

Substituting (2.22) and (2.25) into (2.21), the ionic contribution 

to (~ X; j) k is 

where 

-'•ion 
t..x-•• k 1J 

1 + ~ ( a . o . k + a . o . k ) ] } ~x k 
c. n, J nJ 1 

(2.26) 
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f is the ionicity factor and cjk is the Kronecker delta function . The 

relative displacement of atoms 6xk is related to the dielectric constant 

of the crystal as 

Ne *c 6xk = e: ( e:' - e:' ) Es 
o dck 00k k 

( 2. 27) 

where N is the number of pairs of atoms per unit cell, e~ is the Callen 

effective ionic charge [11], e:dc is the relative dielectric constant, 

e:~ is the relative optical permittivity, and E~ is the low frequency 

electric field in the k direction . The effective charge e* is related 
C 

to the Szigette effective charge [11] e; as 

(2.28) 

Furthermore, the Szigette effective charge has been found empirically 

equal to (c/~wp) in diatomic crystals [12]. If we adopt this relation 

for even more complex crystals, it becomes possible to calculate the 

effective charge from the knowledge of the atomic radius and structure. 

The only physical quantity which we cannot calculate is the static 

dielectric constant e:dc· In this thesis, we use the experimental data 

of e:dc to calculate the electrooptic coefficient. 

Next we will relate the change of the susceptibility to the electro­

optic coefficient. It is convenient to define the coefficient in terms 

of the change of l/n2, i.e., 

rE = 6(1/e:') (2.29) 

The advantage of this definition can be seen from the "index ellipsoid" 
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describing the optical properties of a crystal. The general equation 

of this surface is [13] 

+ 2(~) XZ + 2(~) xy = l 
n 5 n 6 

(2 .30) 

in an arbitrary coordinate system x, y, z. If we choose the coordin­

ates to be parallel to the principal dielectric axes of the crystal, 

then with zero applied field, 

(2 .31) 

According to the definition (2.29), we have the following matrix rep­

resenting the change of constant due to an arbitrary low frequency 

electric field 

6( l ) 
~l 

rll r,2 rl3 

M 1 ) r21 r22 r23 ~2 
El 

6( l ) r31 r32 r33 ~3 

6( l ) 
E2 (2.32) 

~4 r41 r42 r43 

6(-1) 
n2 5 r51 r52 r53 E3 

6( l ) 
~6 r61 r62 r63 



-145-

Because the index of refraction of a crystal depends on the optical 

polarization relative to the crystal axes, the matrix form for r must 

reflect the crystal symmetry. Highly symmetric crystal should have 

fewer independent nonzero elements in its matrix. A complete list of 

the matrix fonn for various point groups can be found in Ref. 13. 

The coefficient rijk is related to the change in optical suscep­

tibility by 

t::,.x • • k 
S IJ 

r,.J·kEk = - e:~e:,: 
, J 

(2.33) 

Combining (2.33), (2.26), and (2.27), the final expression of the elec­

trooptic coefficient is 

l 
+~(a .o.k + a .o.k)]} 

L n, J nJ , (2.34) 

As the direction cosines appear only as a. or a.a.ak' it is apparent , , J 

that r .. k = 0 if the crystal has inversion symmetry. Usually, aiaJ.ak , J \ 

should be an order of magnitude smaller than a; if Ia; i 0. The 

ionicity factor has been calculated for many <crystals. Its value is 

about 0.1 to 0.2 for diatomic crystals and never exceeds 0.3 for most 

complex crystals. 
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CHAPTER 3 

THE CALCULATION OF THE ELECTROOPTIC 

COEFFICIENTS OF DIATOMIC AND TERNARY COMPOUNDS 

3. 1 Introduction 

We have established a theoretical model and derived an expression 

to calculate the electrooptic coefficients of crystals. In this chapter 

the theory will be applied to the crystals with two or three atoms per 

formula. At first, we calculate the coefficients of zinc-blende and 

wurtzite crystals which are the basic lattice structures of the PV diel­

ectric theory. Then, quartz with two atoms per formula, is chosen to 

carry out the extension of the theory to the range beyond the AB type. 

In some of the ternary compounds, not all the bonds have to be 

taken into account in the calculation. Lithium niobate and tantalate 

are used to demonstrate the negligible contribution of the highly ionic 

bond like Li--0. It is also shown that the distorted octahedron which 

results in two different bond lengths for Nb--0 is responsible for the 

nonlinear effect. The KH2Po4 (KDP) family is interesting in its non­

linear properties. The calculation shows the dominant role played by 

P--0 bonds. In order to investigate the materials with wider range of 

transparency in the infrared region, we calculate the coefficient of 

chalcopyrite crystals which has the unit cell structure evolved from 

the zinc-blende crystal. 

The last ternary crystal we consider is proustite whose complex 

structure contains 54 bonds per unit cell. 

We calculate the ionic part of the electrooptic coefficient. The 
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electronic contribution is taken numerically from the SHG coefficients. 

The sum of these two parts is compared with the measured value. In 

general, our calculated values are in good agreement with those ob­

tained experimentally. 

3.2 Diatomic Crystals--Zinc-Blende and Wurtzite 

The diatomic crystals can be divided into four groups according 

to their structures: zinc-blende, wurtzite, rock salt and CsCl type. 

The structures in a unit cell of these four groups are shown in Figure 

3.1. The crystals with rock salt and CsCl structures have inversion 

symmetry and, consequently, do not have a linear electrooptic effect. 

Zinc-blende crystals are cubic, while wurtzite crystals are hexagonal, 

but both are in tetragonal coordination. There is no difference between 

the two structures if one looks at only the nearest atoms. They can 

only be distinguished by comparing the position of the next nearest 

neighbors. The definition of the ionicity in terms of the symmetric 

and antisyrrmetric energy gaps shows its advantage in the classification 

of those groups with different coordination numbers. It has been 

noticed that fi = 0.785 is the dividing line between tetragonal coor-

dination and rock salt . The lowest ionicity in the rock salt 

crystals is 0.785 for CdO. The crystals, MgS (fi = 0.786) and MgSe 

(f. = 790) have an ionicity close to 0.785 and exist in both structures 
1 

of rock salt and wurtzite. For the CsCl type crystals, Nc = 8, the 

lowest ionicity is 0.929. Therefore, the concept of the average homo­

polar and heteropolar energy gaps seems appropriate in describing bond 

properties. 
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ZINC-BLENDE 

ROCKSALT 

I 
I 
I 

e: 
) 

I 

WURTZITE 

CsCI TYPE 
Figure 3-1 : Four types of diatomic crystal structures. 
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If the slight distortion from the perfect tetragonal structure 

in wurtzite [1] is neglected, the coefficients of both types of crys­

tals can be calculated in a similar way. In Table I, the parameters 

used in (2.34) are presented. For the calculation of Ea.a.ak we have 
l J 

chosen the coordinates such that one of the four bonds points in the 

direction of (111) for zinc-blende and in the +z direction for wurtzite. 

The sense of the positive polarization of the bond is defined as the 

direction from the positive ion to the negative ion. Those definitions 

are in compliance with the conventional choices used in experimental 

measurements. With the quantities in Table I, the electrooptic coeffi­

cient of diatomic crystals is found to be 

Zinc-blende: 

Wurtzite: 

2 a
0 

w f 
= 0.3689 e*/e 

C 

2 
aeff w f 

= -2~ 3 = 0.4260 e*/e 
C 

( 3. 1 ) 

(3.2) 

and other coefficients are identically zero due to the symmetric proper­

ty of the crystals. In (3.1) and (3.2), r's are in units of ,o-12 m/V 

while a
0 

and aeff are in units of~-

We have calculated the electrooptic coefficients of nine diatomic 

crystals using formulas (3.1) and (3.2). The results for the zinc-blende 

(GaAs, GaP, ZnSe, ZnS , ZnTe, CuCl) and wurtzite (ZnS , CdS, CdSe) are 

compared with experiment as shown in Table II. Values of parameters a0 , 

aeff' w, fi, f, e~ are also listed in the table and discussed in the 

following. 



-151-

Table I. Several parameters for zinc-blende and wurtzite crystals 

3 
aeff = 

2 
/3 ao Co 

zinc-blende wurtzite 

# of atoms in a unit cell 4 2 

Volume of a unit cell 3 13 a2c /2 ao 0 0 

# of atoms per unit volume 4/a; 3 4/aeff 

ra. 
l 

0 0 

ra? 
l 

16/3 16/3 

ra, C(.2C(.3 16/3/3 0 

2 2 0 -16/9 rala3 = ra2a3 

ra3 
3 0 32/9 



-152-

Table II. Parameters and results of equations (3.1 ) and (3.2 ). 

a=a
0 

or aeff" r's represent r14 (zinc-blende) and r33 
(wurtzite) and are in units of 10-12m/v. r t~ are meas­exp ., 
urements with clamped crystals. Their signs are not yet 
determined, unless so specified. 

Zinc-blende Wurtzite 

AB GaAs GaP ZnSe ZnS ZnTe Cu Cl ZnS CdS 

a a 5.65 5.45 5.67 5.41 6.09 5.41 5.39 5.85 
I 

Ede 3.2b 12.0c 9. 1 d 8.3d 10. 1 d 7.5e 8.7f 9.4d 

w 0.192 0.284 0.450 0.528 0.331 0.656 0.567 0.652 

f. g 0.310 0.370 0.630 0.623 0.546 0.749 0.623 0.683 , 
f ... o.091 -0.113 -0.163 -0.179 -0.119 -0.212 -0. 181 -0. 162 

e*/e 0.20 0.23 0.33 
C 

0.35 0.26 0.27 0.35 0.41 

rionic f+-1 . 03 +l .53 +2.64 +2.93 +2.07 -5.56 +3.63 +3.75 

relec --2.73 h -3.201 -4. 68j -4 . 77 k -6 . 41 l +2.66m -5.63k -6. 71 k 

rtheo 
sum ... 1. 7 - 1. 7 -2 .0 -1.8 -4.3 -2.9 -2.0 -3.0 

h _, _ ,n 2.rf 1. 6P 4.l -2.4p ' 1.8P 3. cf rexptl ... 1.6 

aR.W.G. Wyckoff, Crystal Structures, 2nd ed., Vol. 1 (1963). 
bs. Jones ands. Mao, J. Appl. Phys. 39, 4038 (1968). 
er. P. Kaminow and E. H. Turner, Proc. IEEE 54, 1374 (1966). 

CdSe 

6.08 

10.2d 

0.562 

0.699 

-0. 147 

0.36 

+3 .61 

-7.4~ 

-3.8 

4.:f 

do. Berlincourt, H. Jaffe, and L. R. Shiozawa, Phys. Rev. 129, 1009 (1963). 
ep_ Alomas, G. Shennan, C. Wittig, and P.O. Coleman, Appl . Optics~' 2557, 

( 1968). 

fr. B. Kobyakov, Soviet Phys.-Cryst. ll_, 369 (1966). 

gJ. A. Van Vechten, Phys. Rev. 182, 891 (1969); 187, 1007 (1969). 
hA. Mooradian and A. L. McWhorter, Light scattering spectra of solids, 

G. B. Wright, ed. (Springer, New York, 1969). 

' 
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;J_ J. Wynne and N. Bloembergen, Phys. Rev. 188, 1211 (1969). 

jR. A. Soref and H. W. Moos, J. Appl. Phys.~' 2152 (1964). 
k C.K.N. Patel, Phys. Rev. Lett.~' 613 (1966). 
1R. K. Chang, J. Oucuing, and N. Bloembergen, Phys. Rev. Lett . .l.§_, 415 

(1965). 
mo. Chemla, P. Kupecek, C. Schwartz, C. Schwab, and A. Goltzene, IEEE J . 
Quant. Electron.?_, 126 (1971). 

no. F. Nelson and E. H. Turner, J. Appl. Phys. 39, 3337 (1968). 
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pp. 453, Chemical Rubber Co., Cleveland, Ohio 1971. 



-154-

( 1) a: a represents a for zinc-blende and a ff= (/3 a2c )113 
o e o o 

for wurtzite. Because both crystals possess tetragonal structure, the 

density of atoms is expected to be almost the same. This fact is re­

flected by the values of a in ZnS of different structures. 

(2) Ede: The values of dielectric constants are taken from the 

experimental data . They show an interesting relation to the number of 

valence electrons, n . The crystals with higher n have larger Ed' . 
V V C 

This behavior is probably not related to the value of n directly, be-v 

cause it can be seen that the effective ionic charge is actually smaller 

for higher nv crystals. It should be the result of the bond flexibility. 

The crystal with lower nv is more ionic and has stronger bonds. The 

distortion of the crystal responding to the applied field becomes smal­

ler. Therefore, it has a smaller relative displacement between atoms 

which results in smaller Ede· This argument is also applied to the 

crystals with the same nv. For example, ZnTe > ZnSe > ZnS because the 

atomic radius and the covalency follow the relation Te> Se> S. So the 

relative displacement is larger for ZnTe, which means higher Ede· 

(3) w = (E' -l)(Edc-E')/E 12
: Because the higher mobility of the 

bond charge for the crystal with higher nv, EI has a similar behavior as 

Ede· The value of w also falls into three distinct groups, according 

to the values of nv. However, for nv = 2, w for wurtzite is in general 

larger than the value for zinc-blende. 

(4) fi: The value of fi is calculated from Eh and c [2]. The 

ionicity of crystals has been discussed in detail elsewhere [3]. 

(5) f: The ionicity factor is a very important parameter which 

is calculated from the screening wave number and the bond ionicity. It 
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characterizes the magnitude of the contribution from the summation of 

the triple product of direction cosines (see (2.34)). The value off 

in diatomic crystals ranges from 0.1 to about 0.2. Because it is such 

a small value, the accuracy of the estimate of s becomes very important. 

The uncertainty ins limits the uncertainty inf to be higher than 10%. 

However, f is no doubt a negative quantity. 

(6) e~/e: The effective ionic charge is calculated from the 

Szigette effective charge. It is a very small value due to the local 

field correction factor. 

(7) rionic: The ionic contribution of the electrooptic coeffi­

cient is obtained by using (3.1) and (3.2). It is obvious that the 

crystal with lower nv has higher rionic· This is due to its higher value 

of Wand f. The uncertainty of rionic is due mostly to two sources. One 

is the uncertainty in the measured values of the physical parameters. 

The other is in the assumptions and approximations of the theory. Over 

all, the uncertainty of rionic should be about 15-20%, which is usually 

also the standard deviation of the measurement. 

(8) r,elec= The purely electronic contribution is obtained from 

the coefficient of the second harmonic generation (SHG) using the rela­

tion 

r .. k = -4d .. k/ £. £ • 
lJ lJ l J 

(3.3) 

We have assumed that the coefficient dijk has no dispersion in the fre­

quency. As rijk is obtained in the limit of long wavelength, dijk 

should be the measurement at long wavelengths where the nonlinear ef­

fect and linear effect are less dispersive. The value of relec seems 
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to have no obvious relation to the number of valence electrons. 

(9) rthe0
: The predicted coefficient is the sum of the theoreti­sum 

cal calculation rionic and the experimental data relec· We intend to 

show the coefficient r, although the modulation strength depends on 
3 n r. 

( 10) r . 
exptl • The predicted value is compared with the measurement. 

rexptl is obtained with the clamped crystals where the strain induced 

effect can be neglected. 

The comparison between r theo and r shows that the prediction sum exptl 
is in good agreement with experiment including the detennination of 

signs. The worst discrepancy is in GaP, but it is interesting to note 

that the electronic contribution is about double the ionic contribution. 

This is in good agreement with the observation from Raman scattering 

[4]. Another interesting example is CuCl. It is found that relec of 

CuCl is positive and rexptl is negative, which implies that rionic must 

be negative and a large value. If we assign a negative sign to our cal­

culated result, the value of r theo is close to what we expect it should sum 
be. The question arises as to why CuCl should possess different sign for 

rionic compared to the other crystals. This novel behavior has been ex­

plained by considering the d-electron contribution [5]. Due to their 

high mobility around the molecule, the valence electrons do not contri­

bute to the molecular polarization. The polarization thus is determined 

by the charges of the nucleus and core electrons. For example, in GaAs, 

Ga has a tota 1 11 core 11 charge of +3 and As has +5. In Cu Cl , Cl has a 

total core charge of +7 while, excluding the ct-electrons, Cu has +11. 
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So it seems that the bond polarization of CuCl has the opposite sense 

from that of GaAs. This explanation is supported by the fact that CuCl 

also has a different sign for relec from other crystals. However, the 

sense of polarization cannot be known by the low frequency electric 
0 

field. The displacement is also too small (~ 0.0lA) in the case of a 

static field to be detected by crystallography. Therefore, the polari­

zation problem in CuCl is still an open question. As expected, this 

should happen also in the crystal CuI. 

Recently, the electrooptic coefficient of InP was measured for 

the first time at Hughes Research Laboratories [6]. Before knowing the 

result, we used our theory to calculate the electrooptic content. The 

measurement was performed at a wavelength of 3.39µ, but the second har­

monic generation coefficient which is used as part of our input has only 

been observed in the visible region where the material is very disper­

sive. Using the Miller rule [7], we estimated the electronic contribu­

tion at 3.39µ and predicted the total electrooptic coefficient to be 

(1 .3 ± 15%) x 1012 m/V. The experimental measurement following our 

calculation yielded a value of 1.3 to 1 .6. So, again, the predicted 

value is in good agreement with experiment. 

It should not be surprising that agreement of the theory with ex­

periment is satisfactory, since it is based on the theory describing the 

bond properties of diatomic crystals. However, the de dielectric con­

stant is not much larger than E~ and the value of Ede varies with the 

experimental conditions. A small amount of error in Ede could lead to 

a large discrepancy in the value of w. In other complex crystals with 
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very large values of Ede such critical dependence disappears. The pre­

diction becomes more reliable with the given experimental value of Ede· 

3.3 Diatomic Crystal--Quartz 

Quartz is the first crystal discovered to have the linear electro­

optic property. The interest in quartz is due mostly to its availability 

in nature and its excellent optical properties. The transparency region 

extends from UV(~ 1800~) to the infrared (~ 7 µm). 

At room temperature, quartz (Si02) has the a-structure. Its point 

group is 32. The positions of silicon and oxygen are shown in Figure 

3.2, where all the atoms have been projected onto the x-y plane and the 

number in the circle shows the position of the atom as a fraction of the 

lattice constant on the c-axis. There are three molecules in a unit cell. 

Although quartz has only two kinds of atoms, it is completely dif­

ferent from the zinc-blende and wurtzite structures. For the diatomic 

crystals of ABn type, it has been suggested that the heteropolar part of 

the energy gap is replaced by the expression [8] 

2 z nza -k R 
c = be ( ~ - _µ) e s ( 3 . 4) 

o ro 

where n is the number of a toms B per formula. The reason n is included 

is that the valence electron spends about n times more of the period 

around atom 8 than around atom a. The effective screened Coulomb poten­

tial is thus multiplied by n for atom 8. 

From the crystallographic data, we find the bond length is l.61~ 

and the vo 1 ume of a unit ce 11 is 113~3. Every s i1 icon -~~om bonds to its 

four nearest oxygen atoms, while every oxygen atom bonds to two silicon 
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@@ 67 

X 79 
----11~ 

0 

Figure 3-2 : Quartz ( Si02 ) structure. The number in the circle 
indicates the position of atom as fraction of a unit 
cel 1. 
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atoms. There are twelve bonds in a unit cell which are all identical 

except in direction. 

As in the conventional coordinates of quartz crystals, the x 

axis is chosen as in Figure 3.2, and the z axis coincides with the c 

axis. The summations of direction cosines over the twelve bonds are 

found to be 

I a1 = I a2 = 3.97 I a3 = 4.06 

3 0.967 I a~ I a~ (3 . 5) l al = = = 0 

2 l a1a2 = -0.967 

Although quartz possesses birefringence, the difference in the 

index of refraction is only about 1%. For convenience, we use the 

average value without bringing significant uncertainty into the result, 
2 I a = 4.o. 

From the surrmations of the direction cosines, the coefficient r 11 

which has been measured experimentally is derived from (2.34) 
3 l al f 

f;;z rO · (3.6) 

For demonstration and clarity, all physical quantities appearing 

in the calculation are presented in Table III. The prediction is com-
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Table III. Calculation of r 11 for quartz 

Symbol 

n 

C 

f 

e*/e s 
e*/e 

C 

N 

ro 
rion 

11 

dll 

dll 
relec 

11 

rll 
rexptl 

11 

Value 

2 

0.21~-3 

17. l eV 

1.85 ~-l 

2. l O~- l 

12.2 ev 

14.l eV 

18.6 eV 

0.57 

-0.39 

0.82 

0.50 

0.106~-3 

2.4 

4.5 
0 

0.805A 

0.61 x 10-12m;v 

0. 4 x l 0- l 2m/ V 

0 . 44 x l O - l 2m/ V 

-0.32 x 10-12m;v 

0.29 x ,o-12m;v 

0.29 x l0-12m/V 

Remarks 

bond volume 

number of valence electrons per bond 

n = nb/vb 

-flwp(eV) = 37 .16 x/n(~-3) 

k = (J/n) 1/3 
F 

ks= (4kF/naB)l/2 

homopolar energy gapa 

heteropolar energy gapa 

Eg 2 = E~ + c2 

fi = c2/Eg2 

f = ( ks r / 2 - l . 48 ) f; - 0 . 0 2 

e*/e = c/flw s p 

e* = e*(c: 1+2)/3£ 1 

C S 

number of ionic changes per unit volume 

optical permittivityb 

dielectric constantc 

half of bond length 

use (2.34) 

SHG coefficient at l .06 µmd 

assume Miller index is constant at 0.633 µm 
elec 2 r 11 = -4d11 /£ 

ion el ec 
rll = rll + rll 
rftptl at 0.633 µme 
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Table III (continued) 

aB. F. Levine, J. Chem. Phys. 59, 1463 (1973). 

bl. P. Kaminow and E. H. Turner, Handbook of Lasers, R. J. Pressley, ed., 

Chemical Rubber Co., Cleveland, Ohio, 1971. 
C V. G. Zubov, M. M. Firsova, and T. M. Molokova, Soviet Phys. Cryst. ~, 

85 (1963). 

dR. C. Miller, Appl. Phys. Lett.~, 17 ( 1964). 

eR. D. Rosner, E. H. Turner, and I. P. Kami now, Appl. Opt. ~, 779 ( 1967). 
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pared with the measurement. The excellent agreement should not be over­

emphasized. The uncertainty in rf~pt is 10% and in r~~n is even higher. 

In Table III two quantities having abnormal values should be discussed. 

The value f is much higher than the value in zinc-blende and wurtzite, 

and e~ is also much larger. The higher values off and e* are actually 
C 

the result of a lower valence electron density. In a comparable size of 

the unit cell, quartz has twelve bonds while zinc-blende crystals have 

sixteen bonds which affects the value of the plasma frequency. 

The only experimental value used in this calculation is the dielec­

tric constant Ede· This value has been measured over a wide range of 

temperatures. It is found that for a purified crystal Ede is constant 

up to about 600°C where the phase change to 8-modification takes place 

[9]. 

3.4 Lithium Niobate and Tantalate 

We have calculated the electrooptic coefficients of crystals which 

contain only two kinds of atoms and only one type of bond. However, the 

principle of the geometrical superposition of susceptibilities does not 

limit its applicability to the diatomic crystals. In the following we 

will extend this principle and the theory to complex crystals. 

The first materials we shall consider are lithium niobate (LiNb03) 

and lithium tantalate (LiTa03). These two materials are now used exten­

sively in integrated optics. Large crystals (> l cm) with good optical 

and electrical qualities are available. Due to their high transition 
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temperature, both crystals are easy to handle, for example, cut, polish, 

press, without creating additional domains. 

At room temperature, the structures of LiNb03 [10] and LiTa03 [11] 

are rhombohedral with point group 3m. Oxygen atoms form octahedral 

coordinations with the three-fold axis in the z direction. There are 

two formulas per unit cell. Two lithium ions and two niobium ions occupy 

four out of six octahedral sites in a unit cell. In Figure 3.3a we show 

the rhombohedral LiNb03-type unit cell in three dimensions. In Figure 

3.3b, the positions of oxygen layers, lithium and niobium on c-axis are 

shown quantitatively. It is obvious that the positions of the lithium 

and niobium ions are distorted from the center of octahedron due to the 

occurrence of an empty site for every three octahedral structures. The 

distortion is actually responsible for the second harmonic generation 

and linear electrooptic effect. The electrooptic tensor has the non­

vanishing components: r33 , r13 = r 23 , r22 = -r12 = -r16 , and r 42 = r 51 . 

The crystallographic data show the following results for the 

lithium niobate [10]: 

In a hexagonal unit cell (6 formula) 

aH = 5.14829~ 

CH= 13.8631~ 

In a rhombohedral unit cell (2fw) 

0 
aR = 5.4944A 

a. = 55°52' 

Volume per formula: 53.0~3 

Nb- 0 : 1 . 88 9 ~ and 2 . 11 2~ 

Li-0: 2.068~ and 2.238~ 
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and for lithium tantalate [11]: 

In a hexagonal unit cell (6fw) 

aH = 5.15359~ 

C = 13.78070g 
H 

In a rhombohedral unit cell (2fw) 

a = 5.4740~ R 

ct = 56°10.5' 

Volume per fonnula: 52.9~3 

Ta-0: 1.891g and 2.071~ 

Li -0: 2.076~ and 2.293g 

We can see that for each kind of bond there are two different bond 

lengths. Naturally, different bond lengths result in different bond 

susceptibilities. Rigorously speaking, there should be four different 

bonds in a unit cell. However, it has been found that the contribution 

of Li-0 bond to the linear and nonlinear susceptibility is so small that 

_ _!'le_c:~11 -~ll}}QSt_neg1~c_t i_t _[l_2J.- -The: "almost" means that we can neglect 

its susceptibility but cannot neglect its existence. Li-0 bonds still 

have to be taken into account when calculating the bond volume plasma 

frequency and screening factor. So we have only to be concerned with 

the structured information of the Nb-D bonds and the Ta-0 bonds. The 

results are presented in Table IV. In the table we use the subindex s 

to indicate quantities for shorter bonds and L for longer bonds. The 

structure information is only applied to obtain (f Letft~+} Ia3) and 
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Table IV. The properties of bonds, Nb-0 and Ta--0 in LiNb03 and LiTa03 

LiM03 LiNb03 LiTa03 

M-0 (Nb-O)S (Nb-O)L (Ta--O)s (Ta-0\ 

do l .889~ 2 .112~ l.891~ 2.070~ 

Eh 8.20 eV 6.22 eV 8 .18 eV 6.53 eV 

C 17.54 ev 13.75 eV 19.24 eV 15.75 eV 

Eg 19.36 eV 15.09 eV 20.91 eV 17.05 eV 

f. 
l 

0.821 0.830 0.847 0.853 

f -0.292 -0.241 -0.282 -0.238 

I a3 2.84913 -4.01420 3.0438 -3.8760 
2 l a3al 1.10334 -1 . l 0871 l. 1302 -1.1293 

l a3 0.396 -0 .195 0.410 -0.261 
3 I a.3 0.64244 -1.79678 0.7833 -1.6175 

µ/ µ 
X xavg 0.921 1 .085 0.9350 l .070 

2 l 
f l a3a1 + "2"" l a3 1. l 0236 -1 .7405 1.2032 -1 .6698 

3 fl a3 + l a3 2.66154 -3. 5821 2.8229 -3.4918 
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(f la~+ la3 ) which correspond to the coefficients r 51 and r33 , respec­

tively, since these two coefficients are large and of most interest for 

a 3 m crystal. The reason why r 51 and r33 are large becomes obvious in 

Table IV. In these two crystals, Ia3 ; 0. Furthennore, l a.3 has about 

four times the value of la~ and nearly three times the value of l a~a.3. 

As f is a small value· (f < 0.3), the term l a.3 actually dominates over 

the term containing f which involves the infonnation of the electronic 

structure. 

The results of calculations are shown in Table V. The ionic charge 

of niobium is found from the average c and ~wp. However, the ionic charge 

. of lithium is set equal to 1 due to the high ionicity of the Li-0 bond. 

If it is assumed that under the applied electric field, the displacements 

of the niobium and lithium ions have the same magnitude and are in the 

same direction, the effective ionic charge per fonnula is obtained to be 

1 .8e for LiNb03 and 2.0e for LiTao3. The low frequency dielectric con­

stants which are different in z and x or y directions are listed to cal­

culate the factor (e:dc-e:')/e:'e: 1
• The value found is the ionic contribu-

t • t th 1 t t. ff. • t d t ionic Th 1 t • 10n o e e ec roop 1c coe 1c1en an en ers as r . e e ec ron1c 

contribution is obtained from the coefficient of SHG [13]. The theoreti­

cal prediction rsum is taken as the sum of those two values and compared 

with the experimental measurement [14]. It is found that the prediction 

is in good agreement with experiment. The difference is less than 10% 

which is well within the uncertainty of the theory and the measurement. 
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Table V. Results of r15 and r33 for LiNb03 and LiTa03 

LiNb03 LiTa03 

C 15. 5 ev 17.4 eV 

™p 28.6 eV 29.3 eV 

e*/e s 3.7 4.0 

e*/e 
C 

1.8 2.0 
I 

Edc,3 28 43 

£ I 
dc,1,2 43 41 

( I I ) I I I Edcl-Eool £1£3 l . 5419 1.6393 

( I I )/ I 2 Edc3-E 3 E3 1.0245 l . 7210 

rionic + 19. 7 x 1 o-12m;v -12 
51 +16.5 x 10 m/V 

relec 
51 +0.8 x 10-12m;v +O . 2 x 1 0- l 2 m/ V 

rsum +20.5 x 10-12m/V -12 
51 +16.7 x 10 m/V 

rexptl 
51 +23 x l0-12m/V + 15 x l o-12m;v 

r ionic 
33 +19.9 x 10-12m;v +27.8x 10-12m/V 

relec +6.0 x l0-12m/V -12 
33 +3. 7 x 10 m/V 

rsum -12 -12 
33 +25. 9 x 10 m/V +31 . 5 x 10 m/V 

rexptl 
33 +28 x l0-12m/V +30 x 10-12 m/V 
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3.5 The KDP Family 

Potassium dihydrogen phosphate (KDP) and ammonium dihydrogen 

phosphate (ADP) are the best known nonlinear materials. They can be 

grown easily from a water solution with dimensions as large as several 

centimeters. The crystals are usually of good optical quality and can 

be cut or polished without difficulty. At room temperature, KDP and 

ADP are piezoelectric, and belong to the point group 42m. Although 

the SHG has been observed [15] below the Curie temperature, no electro­

optic measurements have been made at low temperatures where ADP is anti­

ferroelectric and KDP is ferroelectric. Above Tc the only nonvanishing 

electrooptic coefficients are r41 = r 52 and r63 . The transparent 

region for the crystal is from 0.2µ to about l '\., 2µ. Both the electro­

optic coefficients and the index of refraction are almost constant in 

this range. 

Without changing the crystal structure, the KDP family is obtained 

by replacing K, H, P with some atoms from the corresponding columns in 

the periodic table or with some equivalent clusters, e.g., K can be 

replaced by NH4. So far, only five members of the family have had their 

dielectric constants determined. They are KH 2Po4 (KDP), KD2Po4 (KOOP), 

KH 2As04 (KDA), RbH2As02 (RDA), and NH4H2Po4 (ADP). Therefore, we will 

apply the theory on these crystals and compare the results with experi­

ment. 

The crystal structure of KDP is shown in Figure 3.4. Both Kand 

Pare in tetragonal coordination with oxygen atoms. Hydrogen is about 

0.21 ~ from the midpoint of the line joining the oxygens. There exist 
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Figure 3-4 : KDP (KH2Po4) structure. 
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three different bonds: K-0, H-0, and P-0. Using an argument similar to 

that used when discussing the Li-0 bond in LiNb03, the contribution of the 

K-0 bond to the linear and nonlinear susceptibility can be neglected 

due to its high ionicity. The H-0 bond is covalent and contributes to 

the linear susceptibility. However, the almost random distribution of 

H-0 bonds makes the contributions to the nonlinear susceptibility cancel 

each other, so the only contribution to the electrooptic coefficient 

comes from P-0 bonds. Usually, from the principle of the geometrical 

decomposition of susceptibility, the bond polarizability can be obtained 

easily. In KDP, the participation of H-0 bonds in x prevents us from 

calculating the polarizability of P-0. In order to avoid such difficulty, 

we can assume that the polarizability of a bond is almost the same in 

two crystals if the environments of the bond are similar. In the crys­

tals without hydrogen atoms, AlP04 is the best candidate to find the 

polarizability of the P-0 bond because the P atom in KDP and AlP04 has 

the same coordination structure . The bond properties of P-0 in AlP04, 

including C, Eh, fi, have been obtained by decomposition [8]. Since all 

members in the KDP family have the same structure, the properties and 

direction cosines of P-0 bonds should not deviate much from crystal to 

crystal. With this argument, the electrooptic coefficient for any crys­

tals of the KDP type is represented by the formula 

(3. 7) 

The values of parameters appearing in the formula are given in the fol­

lowing: 
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c(P--0) = 12.7 eV 

Eh ( P--0) = 13.2 eV 

f i ( P--0) = 0.481 

hwp(P--0) = 25. 1 

e;/e(P) = 0. 506 X 5 

e*/e per formula = 5.8 s 
e*/e per formula = 3.2 

C 

N = 0.010 formula/~3 

X(P--0) = 0.85 
0 

r 
O 

( P--0) = 0.78 A 

t o.1 a2a / ta 
2 

= 0.5 [16] 

ksro :: 1. 92 

f = 0. 271 

Using these values, the coefficient is found to be 

, , 
E: - E: 

r = de 
2 

2. 4 7 x 10-12 m/ V 
E: 

(3.8) 

The electronic contribution is calculated from the SHG coefficient and 

ranges from 0.2 to 0.4. It is negligible compared with the total value 

which is about 10. Thus the electrooptic effect in KDP is essentially 

ionic: Since the coefficient r41 in most crystals has not been measured 

at high frequencies, we present only the calculation of r63 in Table VI. 

The predictions are in good agreement with experiment. In the calcula-
. , . 

t1on, E: 1s taken to be 2.3 because it is almost a constant for various 

crystals. We also assume that all positive ions, K, H, and P, are dis­

placed by the same distance under the applied electric field. Without 
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Table VI. The electrooptic coefficient r63 of KDP, KOOP, and ADP. 
The values corresponding to constant stress are noted by 
(T) and constant strain (cl amped) by (S) 

theor exptl 
sdc3 - s r63 r63 

sdc3 2 (lo- l Z m/V) (,o-12m/V) E: 

KDP (T) 21 a 3.535 8. 7 9.4 e 

(S) 21 b 3.535 8.7 8.8 f 

KOOP (T) 50 C 9.017 22.3 26.4 C 

(S) 48 d 8.639 21.3 24.0 g 

ADP (T) 15 a 2 .401 6.5 8.5 h 

(S) 14 d 2.212 5.5 5.5 h 

aD. A. Berlincourt, D. R. Curran and H. Jaffe, Physical Acoustics, Vol. 
l, pt. A, W. P. Mason, ed. (Academic Press, New York, 1964). 

b , 
I. P. Kaminow and G. 0. Harding, Phys. Rev. 129, 1562 (1963). 

CT. R. Sliker and S. R. Burlage, J. Appl. Phys. 34, 1837 (1963). 

dI. P. Kami now, Phys. Rev. 138 A, 1539 (1965). 

ea. G. Blokh, Sov. Phys.-Cryst. L, 509 ( 1962). 

f R. D. Rosner, E. H. Turner, and I. P. Kaminow, Appl. Optics§_, 778 (1967). 

9T. M. Christmas and C. G. Wildey, Electr. Lett.§_, 152 (1970). 

hR. O'B. Carpenter, J. Opt. Soc. Am. 40, 225 (1950); 25, 1145 (1953). 
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assumption, the calculation of the displacement of P atoms from the 

knowledge of sdc is impossible. 

3.6 Ternary Chalcopyrite Compounds 

Ternary compounds are interesting because of their large electro­

optic coefficients. As we have shown previously for LiNb03, LiTa03, 

and the KDP family, the coefficient is as high as 30x 10-12m/V which is 

an order of magnitude higher than the coefficient for diatomic crystals. 

However, the use of such materials is limited at long wavelengths. The 

infrared absorption of KDP begins at 1.5µ due to the vibration of H ions. 

The upper limit of the transparency range of oxides is at about 5µ. In 

order to extend the applicability of electrooptic materials to longer 

wavelengths, we have to choose compounds with heavier atoms such that 

the resonant energy of vibration is lower. For example, oxygen can be 

replaced by other atoms in the same column, such as S, Se or Te. The 

simplest compound has the structure of chalcopyrite (CuFeS2) with point 

group 42m. As shown in Figure 3.5, a unit cell of the chalcopyrite 

structure consists of two unit cells of the zinc-blende structure, such 

as GaAs. Sulfur atoms occupy the positions of As, while Cu and Fe share 

evenly the positions of Ga. With a little distortion from the perfect 

tetragonal coordination, the ratio of the lattice constants, c/a, is 

usually less than 2 [16]. 

In general, the compounds with chalcopyrite structure are written 

as ABC2 which can be the composition of II-IV-V2 or I-III-VI 2. Both 

A-C and B-C bonds are not extremely ionic and contribute comparably to 

the linear and nonlinear susceptibility. Therefore, these compounds 
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CHALCOPYRITE ABC2 
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Figure 3-5 : Chalcopyrite structure. 
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could test the theory in the case of two kinds of completely different 

bonds. 

Up to now, both the dielectric constant and linear electrooptic 

coefficient have been measured for only three crystals, i.e., AgGas2 
[17], CuGas2, and ZnGeP2 [18]. Our calculation will concentrate on 

these three compounds. The results will be compared with experimental 

measurements. 

For the chalcopyrite crystals, only the nonzero summation 

Ea1a2a3 of both bonds contributes to the electrooptic coefficient. Since 

these crystals have birefringence, we have r41 = r52 "f r63 with differ-

ent dielectric constants El - E "f and, in general , 2 2 2 
- 2 E3 Ea1 = Ea2 "f Ea3. 

However, we can assume the crystal is in perfect tetragonal coordination 

in the calculation of the su1T1Tiation of direction cosines without intro­

ducing significant error. 

will be used for both A-C and B-C bonds in all chalcopyrite crystals. 

In the calculation of the electrooptic coefficient, the way to 

obtain the values of the physical parameters in (2.34) is explained in 

the following. N, r
0

, Ea~, ks, and kF (to calculate ~wp) are obtained 

from the crystallographic data. Eh is also easy to obtain from a know­

ledge of the bond length. We then determine f 1 and e~/e using the value 

of c. Finally, the bond susceptibility has to be determined. In the 

case of only one kind of bond, there is no problem in obtaining the bond 

susceptibility if we have the value of the crystal susceptibility and 

the knowledge of its geometrical factor. However, it is impossible to 

obtain the bond susceptibility of each bond separately by way of decom-
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position 'if the crys ta 1 has two kinds of bonds . A very nave 1 method to 

obtain the bond susceptibility has been suggested to investigate the 

bond ionicity [8] . 

Let us consider the crystal ZnGeP2. It can be seen as the super­

position of two fictitious zinc-blende crystals: ZnP and GeP. The 

susceptibility is then the average of that of ZnP and GeP. We also note 

that Zn, Ga, and Ge are in the same row, and P and Sare in the same row. 

Among the crystals composed of the atoms from these two rows, GaP and 

ZnS are well known. We assume that the empirical fonnula (2.8) is also 

applicable to the crystals composed of atoms from different rows. Then, 

with 6Z(ZnS) = 4 and 6Z(GaP) = 2, we can construct a straight line on 

- l ( 2 ( the plot of x versus 6Z) . By knowing 6Z(ZnP) = 3 and 6Z GeP) = l, 

the susceptibility of ZnP and GeP can be found easily on the line. Using 

this procedure, we can find the susceptibility of both bonds without 

knowing the susceptibility of the original crystal, ZnGeP2. This is true 

only if all atoms are not bonding via the d-electrons. In the case of 

AgGaS2 and CuGas2, the definition of 6Z for Ag-Sand Cu-S becomes ambigu­

ous. Only the susceptibility of GaS can be obtained by the empirical 

formula (2.8). x(Ag-S) is then found by considering x(AgGas2) is the 

average of x(Ag-S) and x(Ga-S) . 

The values of parameters and the calculation resu l ts are shown in 

Table VII for the three crystals AgGas2, CuGas2 and ZnGeP2. The results 

are compared with experiment. The measurement of the coefficient is at 

0.633µ for AgGas2, while at 3.39µ for CuGas2 and ZnGeP2. Due to the 

dispersion of the optical pennittivity, we use the value of s3 = 6.50 
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Table VII. The calculation of electrooptic coefficients r63 and r 41 for 
the ternary chalcopyrite crystals. r's are in units of 
10-12 m/V. 

Characteristics 

X 

n 
V 

f 

fiwp 

e*/e s 

X 

f. 
l 

f 

'tiw p 

e*/e s 

0 
l. 28A 

3.68 

12.45~3 

0. l 606g-3 

2.012g-1 

3.87 eV 

9.87 eV 

0.867 

-0. 1868 

21 . 71 eV 

0. 91 

l. 14~ 

5.84 

8.8og3 

0.2557i-3 

2. l74i-l 

5.147 eV 

5.416 eV 

0.525 

-0.1465 

18.79 eV 

0. 72 

0 
l. 1945A 

4.43 

9.763~3 

o.2049g-3 

2.095g-i 

4.58 eV 

9.95 eV 

0.825 

-0.2086 

24.52 eV 

0.81 

l. l 62~ 

6.07 

8.987g3 

0 
0.2504A 

2.166~-l 

4.91 eV 

5.60 eV 

0.565 

-0.1451 

18.59 eV 

0. 75 

ZnGeP2 

0 
1.1945A 

5.84 

10.414~3 

0. l 680g-3 

2.027~-l 

4.58 eV 

4.08 eV 

0.442 

-0.1391 

15. 23 eV 

0.67 

i. 162g 

10.55 

9.586~3 

0.2347~-3 

2.143~-l 

4.91 eV 

2.60 eV 

0.219 

-0.0714 

18.00 eV 

0.51 
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Table VII (continued) 

Characteristics ZnGeP2 

e*/e 
C 

0.732 0.688 0.477 

XA f + Xs f 
rA A r8 B 

0. 6438~- l 0.7658~-l 0. 6643i-l 

Lal a2a/La 
2 0. 57735 0. 57735 0. 57735 

Eo [lO-12 m~J 
Ne V 47.0 41. 5 44 .3 

Edc3 14b l QC 12c 

E - E de 0. 192 0.096 0.037 
( 2 

rion +4.58 +2.56 +l . 32 
r63 

r elec -7.85 d - l. 55 e -4.84 f 

rsum -3. 27 + l. 01 -3.52 

rexptl 3.0 b + l. 05 C -0.97 C 

Edel lOb 9. 3c 15c 

E - E de 0.096 0.078 0.074 
( 2 

rion +2.30 +2.08 +2.64 

relec -7.58d -l .55e -4. 84 f 

r41 rsum -5.28 +0.53 -2.20 

rexptl 4. 0b +1 . 1 C ? 

a R.W.G. Wyckoff, Crystal Structures (Interscience, New York, 1964), Vol. 

2. 

b V. M. Cound, P. H. Davies, K. F. Hulme, and P. Robertson, J. Phys. C 1, 
L83 (1970). 
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Table VII (continued) 

cE. H. Turner, E. Buehler, and H. Kasper, Phys. Rev. B9, 558 (1974). 

do. A. Kleinman, Phys . Rev. 128, 1761 (1962). 
e G. D. Boyd, H. Kasper, and J. H. McFee, IEEE J. Quantum Electron. QE-7, 

563 (1971). 

fs. Bhagvantam, Crystal Symmetry and Physical Properties (Academic Press, 
New York, N.Y., 1966). 
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and El = 6. 25 at 0.633µ for AgGas 2. The values of r63 are in good 

agreement with experiment, while the results of r41 are satisfactory. 

Although the sign of the coefficient is correct for ZnGeP2, the magni­

tude is in poor agreement. Such a large discrepancy cannot be due to 

the uncertainty of the theory and the measurement. Since there is only 

one indirect measurement of Edc3 for ZnGeP2, we suggest rechecking this 

value experimentally. With respect to the theory, the assumption of 

the uniform displacement may not be suitable in the chalcopyrite com­

pound, especially for ZnGeP2. It is quite possible that the relative 

movements of Zn and Ge with respect to P have different magnitudes. 

However, we need more experimental data to check this assumption. At 

the same time, it is a challenge to find a method to account for the 

different displacements theoretically. 

3.7 Other Ternary Compounds 

The ternary compounds are of continuous interest due to the proper­

ties of simple structure, large nonlinearity, and wide range of trans-

parency. 

system. 

There are many different chemical compositions in the ternary 

II III VI I III VI However, only those of A s2 c4 and A3B c3 type have been 

investigated in some detail . 

In the AIIB~IIC~I type, A could be Zn, Cd, or Hg, B could be Al, Ga, 

or In. C could be S, Se, or Te. Most of these compounds are in the 

point group 4 or 42m (Figure 3.6), except Znin2s4, which is 3m [19]. It 

is obvious that the crystals of 4 or 42m (defect chalcopyrite) have 

similar structures to the zinc-blende or chalcopyrite compounds, except 
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that there are 25 percent vacancies of atom positions. It is shown in 

Figure 3.6 that the defect chalcopyrite has only 24 bonds per unit cell 

while chalcopyrite has 32. From the principle of the susceptibility 

composition, X of the defect chalcopyrite should be in general smaller 

than X of chalcopyrite. This fact is seen clearly by comparing the sus­

ceptibility of CdGa2S4 and AgGaS2, X[CdGa2S4] = 4.25, while X[AgGaS2J = 

4.76. A detailed crystallographic study of the defect chalcopyrite 

structure has been done more than twenty years ago [20]. Although the 

structures of 4 and 42m are different, the summations of direction cosines 

[a. ,[a .a. , and [a.a.ak are the same for both structures if considered in 
1 1 J 1 J 

perfect tetragonal coordination. 

The compound Znin2s4 has a layer structure of the point group 3m 

with three formulas per unit cell [21]. The lattice constants are 

a= 3.85 and c = 37.0~. The two indium ions have different coordination 

numbers. In
0 

occupies slightly compressed octahedral void, where InT and 

Zn occupy enlarged tetrahedral spaces. 

Although the structure information for AIIB1IIc~I crystals is com­

plete, no measurement of the dielectric constant has been carried out. 

The calculation of the ionic part of the electrooptic coefficient is 

still impossible. 

The other type of interesting ternary compound is A1BIIIc~I Three 

crystals of this type, Ag 3Ass 3, Ag 3SbS3, and Tl 3AsSe3 have been studied 

somewhat in detail for their structures, optical properties and nonline­

arities. However, only the dielectric constant and electrooptic coeffi­

cients of Ag 3Ass3 have been measured. 
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Ag 3Ass3 belongs to the point group 3m with six formulas per unit 
0 

cell. The lattice constants of its hexagonal unit cell are a= 10.80A 

and c = 8.69a. The projection of atoms on the x-y plane is shown in 

Figure 3.7. The bond distance of an As atom to the nearest three S atoms 
0 0 

is 2.293A. Every S atom is bonded to one As atom (2.293A) and two Ag 

atoms (2.44~). In all, there are 54 bonds in a unit cell, where As-S 

has 18 and Ag-S has 36. The summations of direction cosines for both 

bonds are listed in Table VIII. From the nonzero summations of Ia .a.ak' 
l J 

we know the nonzero coefficients of Ag 3AsS3 (proustite) are r33 , 

r22 = -r,2 = -r6l' rl3 = r23' and r5l = r42· 

As in the chalcopyrite compounds, we can obtain the values of most 

physical parameters for both bonds from the structural information. How­

ever, we cannot find the bond susceptibility in the same way, because 

there is no equivalent structure in 3m which has only two atoms in the 

formula. So we try to decompose the susceptibility into the individual 

bonds by using the bond-additive principle: 

2 2 
XAg-S(ra, ,2)Ag-S + XAs-s(Ia, ,2)As-S = XO 

2 2 
XAg-S(Ia3)Ag-S + XAs-S(Ia3)As-S = Xe 

(3.9) 

From the measured ordinary and extraordinary susceptibilities X
0 

and Xe, 

we can solve for the contribution of the individual bonds XAg-S and 

XAs-s· The susceptibility in Table VIII is taken as if all the bonds in 

the crystal are occupied by the same kind of bonds. The averaged sus­

ceptibility is calculated from Xavg = (2X
0 

+ Xe)/3. The values of all 

physical parameters are shown in Table VIII, including the effective 

ionic charge. 
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Table VIII. Values of physical parameters used in the calculation 
of the electrooptic coefficient of proustite (Ag 3AsS3) 

Characteristics 

Z:a.3 
2 2 

Z:a l = Z:a2 

Z:a.3 

z:a.3 
3 

3 2 
Z:a2 = - Z:a2a l 

2 2 
Z:a3a1 = Z:a3a2 

Xavg 

ro 

n 
V 

C 

f. 
l 

f 

As-S 

7.844 

7.291 

3.418 

-1 .490 

3. 190 

-3. 177 

6.9832 

2.293~ 

14.305~3 

0.2097~-3 

2.4117~-l 

5.0735 eV 

3.9107 eV 

0. 3727 

-0.1222 

17.0175 eV 

0.5745 

1. 1158 
0 

80.96 mA/V 

Ag-S 

2. 137 

11 . 589 

12.811 

-2.266 

2.005 

0.089 

5.6383 

2.440~ 

17.231~3 

0.1741~-3 

2 .4877~- l 

4.3501 eV 

5.2620 eV 

0.5940 

-0. 1603 

15. 5051 eV 

2.0362 
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The calculated values of the electrooptic coefficients are shown 

in Table IX. The sign of coefficient depends on the definition of the 

crystal polarity. Since all measurements of SHG coefficients and electro­
ion optic coefficients are in absolute value, we compare the values of r , 

elec r , and r to deduce the possible sign for each quantity. The only 

thing we know presumably about the sign is the relative sign between the 

ionic parts of the coefficients. The estimate of signs is entered in 

parentheses. The prediction is in good agreement with experiment. The 

comparison is on the smaller coefficients where both contr.ibutions are 

comparable. We also predict the value of r 33 in spite of the invalidity 

of d33 , since the ionic effect dominates in the electrooptic response. 
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Table IX . Compa r ison of the theoretical prediction for the electrooptic 
coefficients of Ag 3AsS3 with experiment. All coefficients 

are in units of 10-12m/V. For the coefficient r. "k' the 
1 J 

first two rows are calculated as / / 

l X 1 Edck - Ek 
- [fa . a .ak + -2 (a . c5 . k + a. c5 . k) J and , / r lJ lJ Jl E-E· 

l J 

r' s r22 rl3 r 51 r33 

X. [fa3 +a] r -0.2144 0. 1277 1 . 7295 2.1375 

E / - E 
/ 

de 0.1310 0. 1504 0. 1592 0.2220 E• E' 

ionic (+) 2.04 ( - ) l. 39 (-)19.98 (-)34.43 r 

relec a ( - ) 1. 10 ( -) 0.97 ( - ) 0. 97 ? 

rsum (+) 0.94 ( - ) 2.36 (-)20.95 ? 

rexptl b (+) 1.05 ( - ) 2.54 ? ? 

aK. F. Hulme, O'Jones, P. H. Davis, and M. V. Hobden, Appl. Phys. Lett. 

lQ, 133 (1967); 

0. M. Baggett and A. F. Gibson, Phys. Lett. 28A, 33 (1968). 

bJ. Warner, Brit. J. Appl. Phys. (J. Phys. D), Ser. 2, 1,949 (1968). 
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Chapter 4 

CONCLUSION 

The electrooptic effect plays an important role in light modulation 

and laser control systems. Seeking out new materials with higher elec­

trooptic response has been a major effort joined by engineers and 

scientists. The theory just given makes it possible to predict the 

electrooptic coefficient of crystals. 

Starting from the one-gap model for the semiconductor, we relate 

the optical pennittivity to the energy gap. The energy gap is then 

modeled by the decomposition of the interaction potential of electrons 

in the periodic lattice into symmetric and antisyITTTietric parts. The 

empirical expressions for the symmetric and antisymmetric contributions 

are obtained by observing the dependence of the susceptibility on the 

row number of atoms and the difference of the numbers of valence elec­

trons. Instead of an average effect over the whole crystal, the micro­

scopic interpretation of the two contributions to the energy gap is 

carried out using the principle of bond additivity. The idea of the 

geometrical composition of the bond susceptibility is the key point in 

generalizing the theory to more complex crystals. 

Assuming the ionic part of the dielectric constant is due to the 

relative displacement of positive and negative ions, we relate the 

change of the susceptibility to the distortion of the crystal lattice. 

Such relative displacement results in bond rotation and bond stretch. 

The effect due to the bond stretch is found from a knowledge of the de­

pendence of the bond susceptibility on atomic radii. The final 
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expression for the ionic part of the electrooptic coefficient is ob­

ta i ned i n ( 2. 34) . 

The theory has been applied to the calculation of the electro­

optic coefficient of many crystals with different structures. The 

crystals used in the comparison possessed tetragonal and octahedral 

coordinations, single-bond, one kind of bond with different bond lengths, 

two different kinds of bonds. In general, we find that the theoretical 

calculations are in good agreement with experiment. This proves the 

versatile applicability of the theory to various crystals. 

Referring to the key result (2.34), we point out that the struc­

tural information is more important than the detailed electronic 

information in seeking better electrooptic materials. The ionicity fac­

tor, f, is a new factor in the theory and is very small for any bond, so 

the term [a . usually dominates over the term f Za .a .ak if Za. is not 
l l J l 

equal to zero. As a consequence, the coefficient of a crystal with 

nonzero Za . should have a higher value. This is fully demonstrated by 
l 

the fact that r33 and r 51 in the 3m crystals like LiNb03, LiTa03, and 

Ag 3Ass3 is an order of magnitude larger than in most other crystals. 

However, not all 3m crystals have higher coefficients. For example, 

Znin2s4 has zero value of Zai and is not expected to have a large electro-

optic coefficient. But a distorted octahedral structure is surely a 

promising mechanism for a larger electrooptic response. Such octahedral 

structure usually occurs in the point group with 3-fold or 6-fold axis. 

Therefore, the crystals belonging to those point groups are promising 

candidates for electrooptic applications. 
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Although the theory has proved successful in predicting the 

electrooptic constants of diatomic and ternary compounds, it remains 

on somewhat shaky ground in the case of quarternary crystals, where more 

than two kinds of bonds have to be taken into account. It is very impor­

tant to point out some basic assumptions and crucial criticisms inherent 

in the theory. 

(l) The relation between the dielectric constant and the ion­

displacement depends on the bond-strength and is not completely known. 

In the theory, we accept it as a parameter and use its measured value in 

the calculation. It will be very important to know the dependence of 
~ 

Ede on the structure and atom information like the crystal susceptibil-

ity, X· 

(2) The displacement of ions is assumed to be uniform. This is 

not true in the practical situation. The understanding of the displace­

ments for different ions is still beyond the scope of the theory, but 

becomes important in more complex crystals. 

(3) The crystal susceptibility is considered as the geometrical 

composition of only the bond susceptibility along the bond direction. 

The transverse polarization has been completely neglected. This is jus­

tifiable for most crystals, but not for the highly anisotropic bond. 

(4) In the ideal situation, it is expected to calculate the bond 

susceptibility just from knowledge of the crystal structure. However, 

we obtain the bond susceptibility for chalcopyrite and 3m crystals from 

the measured crystal susceptibility. The reason is that we find the 

11 b11 value used in the calculation of c cannot be determined theoretically 

with the same accuracy as in the case of diatomic crystals. In diatomic 
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crystals, bis related to a high degree of accuracy to the coordination 

number. Qualitatively, bin the ternary compounds still follows the 

relation but deviates highly from the predicted value. So we would 

rather rely on the principle of bond-addivity to find the bond suscep­

tibility. A generalized method to obtain b becomes very important to 

the further improvement of the theory. 

In conclusion, the theory has been applied successfully to the 

understanding of the electrooptic effect in the diatomic and ternary 

compounds. However, considerable further improvement is needed to 

meet the challenge of complex crystals and the task of seeking out new 

electrooptic crystals. 




