
Teleportation from quantum networks to traversable
wormholes: the physics and technology of entanglement

Thesis by
Samantha Isabel Davis

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2026
Defended June 9, 2025



ii

© 2026

Samantha Isabel Davis
ORCID: 0000-00001-9994-8165

All rights reserved



iii

ACKNOWLEDGEMENTS

This thesis is dedicated to my parents, Rick and Maribel,
and those I’ve lost along the way: Sony, Thorin, and Deborah.

•

My time at Caltech has been one of the most challenging and rewarding chapters
of my life. First and foremost, I must thank my advisor, Prof. Maria Spiropulu:
my gratitude is ineffable. Thank you for your mentorship, leadership, and for
providing an amazing environment for me to pursue my ambitious research goals,
take risks, and learn from experts across diverse disciplines and institutions through
the INQNET collaboration. INQNET has been a crucible for me to forge my path at
the intersection of fundamental and applied physics, and I’m excited for the future
ahead. Thank you to Dr. Raju Valivarthi, Dr. Neil Sinclair, and Dr. Nikolai Lauk
for your training, guidance, friendship, and support. A special thank you to Dr.
Raju Valivarthi and Lautaro Narváez who taught me nearly everything I know in
the lab, and Dr. Neil Sinclair who opened my eyes to the breadth of literature and
provided support and encouragement throughout challenging times of my research.
Thank you to my mentors and collaborators at NASA-JPL, Fermilab, Harvard, and
MIT, including Dr. Matt Shaw, Prof. Boris Korzh, Dr. Ioana Craiciu, Dr. Cristián
Peña, Dr. Si Xie, Dr. Joe Lykken, Dr. Panagiotis Spentzouris, and Prof. Daniel
Jafferis. Thank you to my lab mates, Dr. Andrew Mueller, Prathwiraj Umesh, Dr.
Jamie Luskin, Dr. Christina Wang, Dr. Olmo Cerri, Michael Breggar, Ray Wynne,
Ludovico Morri, Tommy Sievert, Elise Sledge, and Alex Albert who have been a
source of great company, encouragement, and support, especially towards the end
of my Ph.D. Thank you to Volkan Gurses for your partnership on quantum phased
arrays. Together we overcame challenges beyond what I imagined was possible.
Thank you Prof. Ali Hajimiri for allowing me to conduct this research in your
laboratory and for your support and mentorship. One of the pleasures of my Ph.D.
has been to travel around the world for conferences and collaborations. Thank you
to Tracy Sheffer, lab administrator extraordinaire, for managing all my complicated
conference and travel expenses!

Beyond Caltech, I’ve had the privilege of having multiple mentors throughout my
academic career. Thank you to Prof. Kathryn Moler, my first physics professor at



iv

Stanford, for allowing me to conduct research in your lab starting my first year of
undergrad. My time in your group launched my physics career and your ongoing
mentorship and guidance has been indispensable in my academic journey. Thank
you to Dr. John Kirtley for putting up with me as a pesky undergraduate research
assistant and showing me how to conduct the highest standard of experimental
physics research. Thank you to Dr. Babette Dobrich and Prof. Tien-Tien Yu for
your mentorship at CERN and introducing me to the world of fundamental physics
research. Thank you also to Prof. Mehul Malik at Herriot-Watt University and Prof.
Tim Bartley for the interesting discussions and your support of my work on photon
number resolving superconducting nanowire detectors.

Although my Ph.D. took place over five and a half years at Caltech, it was truly an
effort 28 years in the making. I’m extremely grateful to everyone in my life who has
encouraged and supported my life-long dream of becoming a physicist. Thank you
to my parents, Rick and Maribel, for instilling a love of nature, scientific curiosity
and a passion for learning from a young age. Dad: your infectious love of learning,
encouragement to ask deep questions, advice, and enthusiasm over broad range of
topics, shaped me into the person and scientist I am today. Mom: your resilience,
tenacity and unwavering support have been a source of inspiration and strength.
Thank you for always being a call away.

Thank you to my extended family in Puerto Rico, Oklahoma, and the West Coast.
A special thank you to the Smith family for hosting me during the last couple of
months leading up to my defense. Thank you Tracy and Charlie for welcoming me
to your home, and thank you Scottie for letting me use your room during dissertation
writing!

Thank you to my surrogate family from around the world. Gracias a Ana Arauco,
mi segunda madre, por su amor, su apoyo y sus bendiciones desde Perú. Gracias
a la familia Jiménez en Costa Rica. Thank you to the Rubin-So family (Conrad,
Cathy, Jeremy, and Benjamin) and the Arnoff-Fenn’s (George and Paige) for the
stimulating discussions at our yearly New Year’s gatherings, your investment in my
physics journey, and encouragement of my academic pursuits. A special thank you
to Paige for your career mentorship, advice and support.

My Ph.D. journey has been a rollercoaster of immense personal and intellectual
growth, sometimes at dizzying speeds, featuring some of the lowest lows and highest
highs I’ve yet experienced. Setbacks, obstacles, and unexpected losses were at times
sobering and hard lessons to take. Aunt Deborah, Titi Sony, and primo Thorin:



v

thank you for your indomitable spirit and teaching me how to face insurmountable
challenges with integrity and grace. Thank you for supporting and encouraging to
pursue my dreams for as long as I could remember. I miss you all dearly.

My fondest memories of graduate school include the new and rekindled friendships
I made along the way. Thank you to Riku Fukumori, Steven Bulfer, Dr. James
Williams, and Dr. Robby Gray for the fun times rallying for quantum electronics
problem sets, hanging out, and going on camping and beach trips. Thank you to
my bouldering buddy, Kyle Gulshen, and the Strassle family (Laura, Phil, Camila,
Carmen, and Nico) for supporting me and welcoming me to your home for dinners,
Thanksgiving, and social gatherings.

One of the unexpected joys of my graduate experience was digging into my roots, get-
ting back into old hobbies and discovering new ones. Thank you to Fiona Yonkman
for being my outdoor bestie and helping me get back into hiking, backpacking,
and mountaineering. Thank you to Ray, Ludo, and Juliette Whiteside for helping
me get back into skiing and mountaineering and teaching me how to surf. Thank
you to Vassilios Kaxiras for matching my adventurous energy and for keeping me
accountable training for trail running and skiing!

Last but not least, thank you to my friends from another species: Potatoes the cat,
who supported me during challenging times; Indigo Smith, the adorable golden
doodle, my second cousin and best friend during thesis writing; and Qubit Khal Van
Drogo the Jack Russell terrier, my fairy godson and an endless source of joy, shock,
and amusement.



vi

ABSTRACT

This thesis presents developments in quantum information technologies and their
applications to both quantum networks and fundamental physics. It is organized
into three parts. Part I focuses on the design and implementation of state-of-
the-art sources and detectors for quantum networks. Key contributions include
the development of photon-number-resolving superconducting nanowire detectors
and their application to heralded single-photon generation and photon-number dis-
crimination; a high-rate multiplexed entangled photon-pair source for quantum key
distribution; and on-chip balanced homodyne detectors for the detection of squeezed
light. I describe how phased arrays can facilitate wireless quantum communications
by introducing the concept of “quantum phased arrays” and present the first large-
scale optoelectronic phased array receiver on a chip capable of interfacing with
nonclassical light, with first demonstrations of coherent imaging and beamforming
of squeezed states of light. Part II details the construction of quantum network
testbeds at Caltech and Fermilab, designed to realize scalable architectures for the
quantum internet. These systems demonstrate high-fidelity quantum teleportation
over 45 km of optical fiber and entanglement swapping with time-bin qubits. The
experiments are supported by the development of theoretical models that guide
system optimization. I also present demonstrations of entanglement distribution at
Caltech and remote sites at Fermi and Argonne National Labs with picosecond-level
clock synchronization, representing milestones toward the deployment of quantum
networking infrastructure across national laboratories. Part III investigates how
quantum networks can be used to probe fundamental questions in physics. I report
the first experimental generation of GHZ states with time-bin qubits, towards the
deployment of multipartite entanglement distribution in real-word networks for tests
of quantum mechanics and distributed sensing. Finally, I present the first experi-
mental realization of a traversable wormhole teleportation protocol implemented on
a quantum processor, a step in the program of quantum gravity in the lab. I conclude
with an outlook and discuss future directions of this work.
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2.2 A typical joint spectral intensity for type-II SPDC for a pump pho-
ton at 775 nm, corresponding to signal and idler photons at telecom
wavelengths centered at 1550 nm. By taking the singular value de-
composition, the JSI can be decomposed into Schmidt modes (plot-
ted) and associated eigenvalues {𝜆𝑛}, where 𝜆2

𝑛 is the probability of
occupying the 𝑛th mode. . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Generation of time-bin qubits at telecom wavelengths with commer-
cially available fiber-optic components. a) Strong pulses of coherent
light from a mode-locked laser are attenuated down to the single pho-
ton level by a variable optical attenuator (VOA). The weak pulses are
inserted into an path-length-imbalanced interferometer, which de-
fines early (E) and late (L) time-bins corresponding a photon passing
through the short and long path, respectively. A photon at the output
of the interferometer is in a coherent superposition of early and late
time-of-arrival states. b) Early and late pulses are carved out from a
continuous wave (CW) laser by an intensity modulator (IM), which is
programmed by an arbitrary waveform generator (AWG) to define the
early and late time-bins. The strong pulses are frequency-doubled
by a second harmonic generator (SHG) to serve as pump light for
spontaneous parametric down-conversion (SPDC), which produces
pairs of single photons at telecom wavelength in an approximate Bell
state. Quantum states are post-selected by a single-photon detector
(SPD) that measures its time-of-arrival state. . . . . . . . . . . . . . 12
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2.4 Wigner quasiprobability distribution𝑊 (𝑄, 𝑃) for a) the vacuum state,
b) a coherent state with 𝛼 = 2.5 and 𝜃 = 𝜋/4, c) a squeezed vacuum
state with 𝑟 = 1, where 𝑄 is the squeezed quadrature and 𝑃 is the
antisqueezed quadrature. . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Generation of single-mode squeezed vacuum light at telecom wave-
length with fiber-coupled components. a) Experimental setup. b)-d)
Numerical simulation of quadrature statistics obtained from time-
domain analyzer for a linear phase ramp applied to the LO. b) Quadra-
ture samples as a function of time (phase) for a vacuum state (orange)
and a squeezed vacuum state with a squeezing parameter of 𝑟 = 1 and
measurement efficiency of 𝜂 = 0.8 (blue). c) Sample means and d)
normalized sample variances as a function of time. The sample vari-
ances are normalized to the mean of the vacuum sample variances.
The solid lines in c) and d) are the corresponding analytic predictions
for the quadrature means and variances. . . . . . . . . . . . . . . . 18

19figure.caption.20
2.7 On-chip balanced homodyne detectors. a) Packaged die photo of an

on-chip balanced homodyne detector from Gurses et al. (2023) [77].
b) Packaged die photo of photonic-electronic system for balanced
homodyne detection from Gurses et al. (2024) [78]. The photonic
chip contains a quantum-limited coherent receiver and wirebonded
to the electronic chip with a transimpedance amplifier for readout. . 22

2.8 Experimental setup for measuring the entanglement visibility of time-
bin qubits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.9 On-chip detection of squeezed light with optical phase locking. a)
Setup with the silicon photonic receiver for squeezed light measure-
ments. b) Oscillations between quadratures of the squeezed vacuum.
Red crosses signify the squeezed quadrature. c) Demonstration of
phase locking to the squeezed quadrature showing the noise floor
(top) and modulator voltage (bottom) . . . . . . . . . . . . . . . . . 28
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2.10 On-chip detection of squeezed light with a photonic-electronic in-
tegrated circuit. a) Die photo of photonic integrated circuit (PIC)
for the quantum-limited coherent receiver (QRX) with high band-
width photodiodes and electronic integrated circuit (EIC) for readout
with a transimpedance amplifier (TIA). b) Setup with the integrated
photonic-electronic coherent receiver for squeezed light measure-
ments. c) Shot noise clearance response of the QRX with maxi-
mum LO photocurrent. d) Oscillations between quadratures of the
squeezed vacuum measured at 1.17 GHz. Red crosses signify the
squeezed quadrature. e) Quadrature noise normalized to the shot
noise level of vacuum for squeezed and anti-squeezed quadratures. . . 30

2.11 Quantum phased array transmitter. a) Conceptual diagram of a quan-
tum phased array transmitter. The QTX is a source of a quantum
states of an electromagnetic field 𝑎̂in, which is distributed across
eight antenna elements. An amplitude 𝑔𝑛 and phase shift 𝜑𝑛 is ap-
plied to each element, and the field from each antenna with a mode
function E𝑛 (𝜌) is radiated to free-space, where 𝑛 ∈ [1, 8]. b) Array
factor for a uniform linear array of eight (blue), sixteen (orange), and
32 (green) elements, beamformed at broadside. c) Array factor for a
uniform linear array of 32 elements beamformed at broadside (blue),
30◦ (orange), and 60◦ (green). . . . . . . . . . . . . . . . . . . . . . 33

2.12 Conceptual illustration of quantum communication with multiple
QPAs, where photons transmitted to Alice and Bob can be steered by
reconfiguring their beams. . . . . . . . . . . . . . . . . . . . . . . . 36

2.13 Vision for wireless quantum chip technologies with reconfigurable
chip-to-free space quantum interconnects enabled by phased array
interfaces and their applications in quantum communications, sensing
and computing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Experimental setup. AWG - Tektronix AWG7002A, BS - Thorlabs
1550nm fiber optic 50:50 beamsplitter, CWDM - FS one-channel
coarse wave division multiplexing/optical add/drop multiplexer, EDFA
- Pritel erbium-doped fiber amplifer, Laser - General Photonics TLS-
101, PPLN - Covesion ruggedized waveguide, SHG - Pritel optical
fiber amplifier/second harmonic generator. The inset shows the esti-
mated joint spectral intensity (JSI) for the experiment including the
detector and CWDM response. . . . . . . . . . . . . . . . . . . . . 48
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3.2 Probability distribution of the arrival times of detection events by the
PNR SNSPD for 𝜇 ≈ 8 × 10−3 (blue), 𝜇 ≈ 3 (orange), 𝜇 ≈ 9 (green),
𝜇 ≈ 11 (red), and 𝜇 ≈ 16 (purple). The dashed lines define the time
bins corresponding to single- (right) and multi-photon (left) events.
The total number of events in the single- and multi-photon bins are
used when operating the SNSPD as a threshold detector, while the
number of events in the single-photon bin are used when operating
the SNSPD as a PNR detector. . . . . . . . . . . . . . . . . . . . . . 50

3.3 Custom-made Graphical User Interface (GUI) allows time-resolved
detection of photons and real-time filtering of multi-photon events.
The idler mode depicts a bimodal distribution of time tags relative to
the clock for an acquisition time of 1 s. The left bin corresponds to
the multi-photon events and the right bin corresponds to the single-
photon events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Measured and theoretically calculated joint spectral information used
to characterize the photon pair source. a) Phase-matching envelope,
b) pump spectral envelope, c) detector response, d) measured (circles)
and calculated (contour) JSI, e) filter response of CWDM, and f) JSI
for the main experiment, also shown in Fig. 3.1. . . . . . . . . . . . 53

3.5 Eigenvalue spectrum
∑
𝑠 𝜆𝑠 = 1 obtained from a Schmidt decompo-

sition of the JSI used in the main experiment. . . . . . . . . . . . . 54
3.6 Sensitivity of the Schmidt eigenvalue decomposition of the JSI for

the main experiment is probed by varying key parameters of Eq. 3.2.
Central values and variations for each relevant parameter are as fol-
lows: 𝜎𝑝 = 60±10 GHz, 𝜎CWDM = 13±1 nm, Γ = 400±400 mm−1

and 𝜎𝑑 = 53±5 nm, with maximum and minimum variations shown.
These variations are beyond typical experimental uncertainties and
are taken as a worst-case scenario. The variation of each eigenvalue
is normalized to the size of the first eigenvalue 𝜆0. . . . . . . . . . . 55
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3.7 Ratios of single and two-fold coincidence detection rates for the signal
and idler paths for varied gain of the amplifier in SHG module. The
signal 1, signal 2, and idler path efficiencies, are estimated as shown
in the insets using the data on the left (and below) of the red dashed
lines, which corresponds to 𝜇 ≪ 1. Idler efficiencies are measured
in configurations with the PNR and threshold detector. The mean
and standard deviation of the fitted efficiencies are indicated by green
lines, with numerical values in the insets. . . . . . . . . . . . . . . . 56

3.8 Schematic of the setup used for theoretical modeling. The PNR detec-
tor is modeled as a 2𝑁-port beamsplitter in a binary tree architecture
with threshold detectors at the outputs. Only 8 ports are shown in the
figure for simplicity. The SPDC source and paths depict a simplified
representation of that shown in Fig. 3.1. The efficiencies, including
all coupling and detection loss, of the signal 1, signal 2, and idler
paths, are 𝜂𝑠1 , 𝜂𝑠2 , and 𝜂𝑖, respectively. . . . . . . . . . . . . . . . . 61

3.9 Measured correlation function 𝑔2(0) as a function of mean photon-
pair number 𝜇. The experimental data using threshold (orange)
and PNR (blue) idler detector configurations are represented by the
circular markers whereas the respective fitted models are shown by
dashed lines. Uncertainties of 𝑔2(0), referred to as 𝜎𝑔2 (0) , are derived
from the statistical uncertainties of the coincidence detection events
whereas the uncertainties of 𝜇, that is, 𝜎𝜇, are extracted from the fit
to the model. The inset depicts the region where the largest reduction
in 𝑔2(0) is measured. The pull between the measured 𝑔2(0) and the
model, computed as [𝜎2

𝑔2 (0) +
��𝜕𝜇𝑔2(0)

��2 𝜎2
𝜇]1/2 and plotted in units

of standard deviations, is shown at the bottom of the canvas. . . . . . 71
3.10 Idler detection probabilities (top left), signal 1 and signal 2 detection

probabilities (top right), signal detector two-fold coincidence prob-
abilities and signal detectors with idler in threshold configuration
(bottom left), two-fold signal and idler in PNR configuration two-
fold coincidence probabilities. The prediction from the theoretical
model is shown for the best fit parameters in Tab. 3.1. . . . . . . . . 73



xix

3.11 Correlation function 𝑔2(0) as a function of mean photon number
𝜇 ≪ 1 for our experiment and improved heralded single-photon
sources. The experimental data (large dots) are represented with their
uncertainties. The models for the threshold configuration (orange
curve) and PNR configuration (blue curve) of our detector are com-
pared with the green and red curves, which correspond to model pre-
dictions using improved sources, as discussed in the main text, with
key parameters (tree depth 𝑘 , path efficiencies 𝜂 ≡ 𝜂𝑠1 = 𝜂𝑠2 = 𝜂𝑖)
shown in the inset. The grey dashed line corresponds to a 𝑔2(0)
measured in Ref. [28]. . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.1 Setup for theoretical modeling. a) An n-photon number state, |𝑛⟩, is
injected into the first input port of a 2𝑁-port beamsplitter, described
by the unitary operator 𝑈𝑁 . The 𝑛 photons are distributed across a
set of 𝑁 detectors, where 𝑐𝑘 is the splitting amplitude for the 𝑘th
output port and 𝚷(𝑘) is the conditional probability matrix of the 𝑘th
detector. b) Conceptual illustration of POVM construction from an
array of detectors with different photon number resolving capabilities.
𝚷(𝑛) is the conditional probability matrix for the 𝑛th detector 𝚷 is
the conditional probability matrix for the overall array of multiplexed
detectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2 Array detector configurations for experimental detector tomography.
a) Illustration of PEACOQ detector with the experimental Gaussian
spatial mode of 1550 nm light coupled to 32 parallel nanowires.
b) Illustration of splitting configuration for the spatially multiplexed
array of six PNR SNSPDs. . . . . . . . . . . . . . . . . . . . . . . . 89

4.3 Experimental setup for tomography of the PEACOQ detector (pic-
tured). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



xx

4.4 Heatmaps of a) reconstructed and b) theoretical 𝚷 matrices for the
PEACOQ detector. The c) reconstructed and d) theoretical matrix
elements 𝚷m,n are plotted as a function of the measurement outcome
𝑚 = 0, · · · , 32 for 𝑛 = 0, · · · , 50. Each curve corresponds to a
column of𝚷. (e) Measured count probabilities 𝑝𝑚 (𝑚) as a function of
the mean photon number 𝜇, for the first seven measurement outcomes
𝑚 = 0 to 7. Reconstructed (f) and modeled (g) count probabilities
as function of 𝜇, calculated from the corresponding 𝚷 matrices. In
(e)-(g), the detection efficiency is absorbed into the mean photon
numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5 Experimental setup for detector tomography of spatially multiplexed
PNR SNSPDs with uniform splitting distribution. . . . . . . . . . . . 93

4.6 Histogram of time-tags accumulated over 10s for a mean photon
number of ≈ 7 relative to the clock for the detector in channel 6. The
windows for labeling time-tags with photon number are shown. . . . 94

4.7 Heatmaps of reconstructed and theoretical 𝚷 matrices for the spa-
tially multiplexed PNR SNSPDs configuration. (a)-(f) Heatmaps of
reconstructed 𝚷 matrices for the Ch 1-6 detectors. Heatmaps of (g)
reconstructed and (h) model 𝚷 matrices for the multiplexed array of
Ch 1-6 detectors. Matrix elements for (i) reconstructed and (j) model
𝚷 matrices for the multiplexed array of Ch 1-6 detectors, where the
curves (𝑛 = 0 · · · 20) correspond to each column of 𝚷. (k) Measured
count probabilities 𝑝𝑚 (𝑚) as a function of the mean photon number
𝜇, for the first seven measurement outcomes 𝑚 = 0 to 7. Recon-
structed (l) and modeled (m) count probabilities as function of 𝜇,
calculated from the corresponding 𝚷 matrices. . . . . . . . . . . . . 96

4.8 Setup for the iterative construction of the POVM elements for an
array of 𝑁 detectors. . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.9 Computational complexity as a function of conditional probability
matrix (𝚷) size. a) Number of terms to calculate and b) estimated
number of FLOP counts for the general model (Eq. 4.3), the multino-
mial solution for the click detection model (Eq. 4.5), the closed-form
solution for the click detection model (Eq. 4.8), and the generalized
iterative construction for computing a conditional probability matrix
𝚷 of dimensions 𝑀 × 𝑀 . . . . . . . . . . . . . . . . . . . . . . . . . 100
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4.10 Count fidelities for a) the PEACOQ detector and b) the array of six
PNR SNSPDs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.1 Experimental setup. a) Pulses from a 1539.47 nm mode locked laser
(Pritel UOC) are split into two by an 80-ps delay-line interferom-
eter before up-conversion and amplification in a second harmonic
generation + erbium doped fiber amplifier (SHG + EDFA) module
(Pritel). A short PM fiber from the SHG module connects to a
nonlinear crystal generating photon pairs by spontaneous parametric
down-conversion (SPDC). The coarse wavelength division multiplex-
ing (CWDM) module separates the photon pair spectrum into eight
13 nm-wide bands around 1530 and 1550 nm, for the signal and
idler photon, respectively. The signal and idler are directed to the
Bob and Alice stations, respectively. The readout interferometers
introduce the same time delay as the source interferometer. Polar-
ization controllers are used to maximize the coincidence rates. 100
GHz spacing dense wavelength division multiplexer (DWDM) mod-
ules are used to direct each frequency channel into a distinct fiber.
Two superconducting nanowire single photon detectors (SNSPDs)
are used to measure a specific frequency multiplexed channel pair.
Measurements for different multiplexed channels are performed in
succession to resolve full system performance. b) ITU channels used
in the experiment. Pairs of channels highlighted with the same color
obey the phase and pump-energy matching condition for SPDC. To
assess the full 16 channels (27-42) of Alice’s DWDM multiplexer,
Bob’s 8-channel DWDM is replaced with a narrowband filter with
tunable resonance frequency (not shown in figure). . . . . . . . . . . 106
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5.2 Entanglement visibility characterization. a) Histogram of photon
arrival events with respect to the 4.09 GHz clock. Dashed black
and grey lines show the response functions for coincidence events.
Events within 10 ps guard regions centered at 80 and 160 ps (shaded
red) are discarded for analysis of coincidences between individual
bins. This is done to maximize visibility in the presence of some
minor overlap of the pulses. The coincidence histograms include
pairings from any combination of early, middle, and late time bins.
Therefore, the height of the center peak in the phase-min state is not
near zero, as non-phase-varying terms contribute. b) Coincidence
rate interference fringes for the center time bin in isolation. Based
on the good agreement between the fringe data and a cosine fit, we
make subsequent tomographic measurements assuming that phase is
linear with the electrical power applied to the interferometer phase
shifter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3 Entanglement visibility versus mean pair rate per pulse (𝜇) and SHG
pump power. Error bars are calculated by taking multiple measure-
ments of the center bin coincidence rate over some integration time.
These measurements span small ranges of interferometer phase, as
the extremum-finding algorithm jitters the interferometer voltage. 𝑉𝐶
(grey data, red line) is a construction that models how visibility would
be affected if accidental coincidences from mutually incompatible
spectral modes could be mitigated in future systems. . . . . . . . . . 110

5.4 Model for Michelson interferometers employed in the experiment.
The interferometer contains a beamsplitter with transmittance 𝑡 and
two mirrors with efficiencies 𝛼 and 𝛽. . . . . . . . . . . . . . . . . . 112

5.5 Setup for theoretical model of entanglement visibility experiment. . . 114
5.6 Entanglement visibility as function of 𝜇𝐸/𝜇𝐿 for fixed 𝜅𝐵/𝜅𝐴 = 1 and

𝜖𝐴 = 𝜖𝐵 = 90/10 (red), 75/25 (blue), 50/50 (green), 25/75 (purple). . 117
5.7 Setup for phase space modeling of entanglement visibility experiment.117
5.8 Entanglement visibility as a function of mean photon number for a)

𝜇𝐸/𝜇𝐿 ≥ 1 and b) 𝜇𝐸/𝜇𝐿 ≤ 1 with 𝜏𝐴 = 𝜏𝐵 = 1/
√

2. . . . . . . . . . 120
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6.1 Quantum phased arrays. a) Conceptual illustration of a wirelessly-
interfaced quantum integrated circuit. b) Conceptual illustration of a
wireless quantum link with phased arrays. A phased array transmitter
transmits a quantum state |Ψ⟩ to a phased array receiver over free
space. c) Conceptual illustration of beamforming on squeezed light
with an eight-element phased array receiver. An input field (𝑎̂in( 𝑓 ))
in a squeezed state is transmitted to a phased array receiver over free
space. The field incident to the aperture (𝑎̂in(𝜌)) is spread out over
the aperture with a uniform phasefront, resulting in high geometric
loss per pixel mode. After applying a phase (𝜙 𝑗 ) and amplitude
weight (𝑔 𝑗 ) to each pixel mode (𝑎̂E 𝑗

), the pixel modes are combined
to recover the original squeezed state. Squeezed states are represented
by their Wigner functions in phase space, where 𝑄 and 𝑃 represent
the field quadratures (see inset). . . . . . . . . . . . . . . . . . . . . 129

6.2 Photonic-electronic system. a) Diagram of the photonic integrated
circuit (PIC) illustrating the key building blocks, including i) the
metamaterial antenna (MMA) and ii) the quantum(-limited) coherent
receiver (QRX). An array of 32 MMAs couple non-classical light
from free space to on-chip waveguides, followed by an array of 32
QRXs that measure the light via homodyne detection. An array of
32 thermo-optic phase shifters (TOPS) applies a phase shift to the
local oscillator at each QRX. b) Image of our PIC packaged with co-
designed electronics, demonstrating the compact form factor of the
system. The PIC is wirebonded to an interposer, which is plugged into
a radio-frequency motherboard that hosts a 32-channel TIA array and
the CMRR auto-correction circuit. c) Die photo of the PIC showing
a footprint of 3 mm × 1.8 mm. . . . . . . . . . . . . . . . . . . . . . 130
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6.3 System characterization. a) Simulated far-field radiation pattern of
the antenna. The radiation pattern has no grating lobes, namely
scattering to higher diffraction orders, showing that the MMA is sub-
wavelength engineered for diffraction-limited performance. b) Noise
powers of a single-channel QRX in the 32-channel system integrated
over its 3-dB bandwidth for different LO powers, characterizing the
shot noise clearance and LO power knee. A linear regression fit is
applied to the data above the LO power knee to obtain a near-unity
gradient of 1.004±0.006, showing that the QRX noise floor is limited
by the signal shot noise. c) Output noise spectra of a single QRX
for different LO powers ranging from 0 to 13.4 mW, characterizing
the shot-noise-limited bandwidth. d) Squeezed light detection with
a single QRX using a high-speed TIA, showing squeezing and anti-
squeezing measured up to 5 GHz with a shot-noise-limited bandwidth
of 3.70 GHz. e) Shot noise clearance distribution across all channels
measured with 1.54 mW LO power at each channel. . . . . . . . . . 131

6.4 Squeezed light imaging. a) Experimental setup for the squeezed light
measurements. Squeezed light is generated off-chip and transmitted
over free space to the chip (blue, Photonics), which is interfaced with
electronics (orange, Electronics) for processing. b) Illustration of
squeezed light transmitted to the chip, showing the Wigner function
of the generated squeezed vacuum state as a function of the quadra-
ture observables (𝑄, 𝑃) and the experimental squeezing parameter
(𝑟 = 1.95). c) Sample means and variances of the channel output
voltages as a function of time. For each channel, the sample vari-
ances are normalized to the mean variance. d) Wigner functions of
the 32 pixel modes characterized simultaneously as a function of the
squeezing parameter (𝑟 = 1.95), phase, and geometric efficiency for
each channel. The dark and light blue contours correspond to the
half-maximum points of the squeezed vacuum and vacuum states,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
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6.5 Reconfigurable free-space links. a) Conceptual illustration of beam-
forming on squeezed light with the chip, where 𝑎̂in represents the
input field and 𝑄̂out is the quadrature proportional to the combined
output signal at RF. b) Squeezing and antisqueezing levels as a func-
tion of the number of combined channels relative to the vacuum
level after the chip is beamformed toward the squeezed light trans-
mitter. c) Squeezed light source characterization showing squeezing
and antisqueezing levels as a function of source pump power for 32
combined channels. d) Demonstration of reconfigurable free-space
links, illustrating the lack of squeezed light signal when the receiver is
beamformed toward empty space (blue) and the reception of the sig-
nal when the receiver is beamformed toward the transmitter (orange).
The grey trace is the vacuum signal. e) Squeezing and antisqueezing
levels characterizing the beamwidth of the link for 8 and 32 com-
bined channels. f) Squeezing and antisqueezing levels characterizing
the field of view of the receiver for 8 and 32 combined channels.
In b), c), e), and f), the orange and blue solid lines are fits of the
data to a model obtained from the classical characterization of the
corresponding measurement. . . . . . . . . . . . . . . . . . . . . . 136

7.1 Depiction of the regional quantum network architecture. Users inter-
face with the network through a web-based portal linked to quantum
software that orchestrates interactions across multiple layers. The
service layer translates user-requested services into the necessary
protocol-level controls. The control and management layer over-
sees key operational functions such as optical path routing for user
connectivity, quantum channel calibration, clock synchronization,
and channel syndrome measurement. The physical layer comprises
multiple quantum nodes (Q-Nodes) interconnected through a central
node, enabling end-to-end quantum communication. . . . . . . . . . 158
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7.2 Detailed depiction of the physical layer of a regional quantum net-
work. Quantum nodes (Q-Nodes) comprise key components of
quantum networks, including the Entangled Photon Source (EPS),
Single-Photon Detector (SPD), Channel Stabilizer (CH), Bell-State
Measurement (BSM) module, Quantum Memory (QM), and a Clas-
sical Computer (CC). These nodes are interconnected via optical fiber
and free-space links. Yellow fibers represent dark fibers dedicated
solely to quantum communication, while cyan fibers denote optical
fibers where quantum and classical communication coexist. Free-
space communication links connect Q-Nodes to quantum satellites
for long-distance quantum communication and to drones for short-
range, line-of-sight quantum communication. . . . . . . . . . . . . . 159

7.3 Quantum teleportation with time-bin qubits. Alice wants to send a
time-bin qubit (|𝜓𝐴⟩ = 𝛼 |𝐸⟩ + 𝛽 |𝐿⟩) to Bob. A Bell state mea-
surement (BSM) is performed on her qubit and one member of a
Bell pair produced by an entangled photon pair source (EPS). The
other member of the Bell pair is sent to Bob. The outcome of the
BSM is classically communicated (e.g., in a bit string) to Bob, who
applies a unitary transformation (𝑈) to his qubit conditioned on the
BSM measurement outcome. As a result, Alice’s original qubit is
“teleported” to Bob’s qubit, (|𝜓𝐵⟩ = 𝛼 |𝐸⟩ + 𝛽 |𝐿⟩), without direct
physical transmission to Bob. . . . . . . . . . . . . . . . . . . . . . 163

7.4 Entanglement swapping, i.e., “teleportation of entanglement,” with
time-bin qubits. Alice and Bob want to share a pair of entangled
qubits. Alice and Bob each locally prepare a Bell pair using entangled
photon pair source (EPS) A and B, respectively. One member of each
pair is sent to a Bell state measurement (BSM) node. The outcome
of the BSM is classically communicated to Alice and Bob. Alice
and Bob each apply a unitary (𝑈𝐴 and 𝑈𝐵, respectively) to their
remaining qubit conditioned on the BSM outcome. As a result, the
entanglement is “swapped” between the original Bell pairs, such that
the remaining qubits at Alice and Bob are entangled. . . . . . . . . . 163
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8.1 Schematic diagram of the quantum teleportation system consisting
of Alice, Bob, Charlie, and the data acquisition (DAQ) subsystems.
See the main text for descriptions of each subsystem. One cryostat is
used to house all SNSPDs, it is drawn as two for ease of explanation.
Detection signals generated by each of the SNSPDs are labelled 1-4
and collected at the TDC, with 3 and 4 being time-multiplexed. All
individual components are labeled in the legend, with single-mode
optical fibers (electronic cables) in grey (green), and with uni- and
bi-chromatic (i.e., unfiltered) optical pulses indicated. . . . . . . . . 171

8.2 Entanglement visibility. The temperature of the interferometer is
varied to reveal the expected sinusoidal variations in the rate of co-
incidence events. A fit reveals the entanglement visibility 𝑉𝑒𝑛𝑡 =

96.4 ± 0.3%, see main text for details. Uncertainties here and in all
measurements are calculated assuming Poisson statistics. . . . . . . 175

8.3 Hong-Ou-Mandel (HOM) interference. A relative difference in ar-
rival time is introduced between photons from Alice and Bob at
Charlie’s BS. HOM interference produces a reduction of the three-
fold coincidence detection rate of photons as measured with SNSPDs
after Charlie’s BS and at Bob. A fit reveals a) 𝑉𝐻𝑂𝑀 = 70.9 ± 1.9%
and b) 𝑉𝐻𝑂𝑀 = 63.4 ± 5.9% when lengths of fiber are added, see
main text for details. . . . . . . . . . . . . . . . . . . . . . . . . . . 177

8.4 Quantum teleportation of |+⟩. Teleportation is performed b) with
and a) without an additional 44 km of single-mode fiber inserted
into the system. The temperature of the inteferometer is varied to
yield a sinusoidal variation of the three-fold coincidence rate at each
output of the MZI (blue and red points). A fit of the visibilities (see
Sec. 8.3) measured at each output (𝑉+,1, 𝑉+,2) of the MZI gives an
average visibility𝑉+ = (𝑉+,1 +𝑉+,2)/2 of a) 69.7± 0.91% without the
additional fiber and b) 58.6 ± 5.7% with the additional fiber. . . . . 179
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8.5 Quantum teleportation fidelities for |𝑒⟩𝐴, |𝑙⟩𝐴, and |+⟩𝐴, including
the average fidelity. The dashed line represents the classical bound.
Fidelities using quantum state tomography (QST) are shown using
blue bars while the minimum fidelities for qubits prepared using
|𝑛 = 1⟩, 𝐹𝑑𝑒 , 𝐹𝑑

𝑙
, and 𝐹𝑑+ , including the associated average fidelity

𝐹𝑑𝑎𝑣𝑔, respectively, using a decoy state method (DSM) is shown in
grey. Panels a) and b) depicts the results without and with additional
fiber, respectively. Uncertainties are calculated using Monte-Carlo
simulations with Poissonian statistics. . . . . . . . . . . . . . . . . 180

8.6 Schematic depiction of distingushability between Alice and Bob’s
photons at Charlie’s BS. Distinguishability is modeled by means of
a virtual beam splitter with a transmittance 𝜁 . Indistinguishable
photons contribute to interference at the Charlie’s BS while distin-
guishable photons are mixed with vacuum, leading to a reduction of
HOM visibility and teleportation fidelity. See main text for further
details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

8.7 Evaluation of photon indistinguishability using an analytical model.
Panel a) depicts the quantum teleportation fidelity of |+⟩ while panel
b) shows the HOM interference visibility, each with varied mean
photon number 𝜇𝐴 of Alice’s qubits. Fits of analytical models the
data reveal 𝜁 = 90% indistinguishability between Alice and Bob’s
photons at Charlie’s BS. Bob produces 𝜇𝐵 photon pairs on average,
𝜂𝑖 and 𝜂𝑠 are the probabilities for an individual idler (signal) photon
to arrive at Charlie’s BS and be detected at Bob’s detector, respectively.184

8.8 Elements of the density matrices of teleported |𝑒⟩, |𝑙⟩, and |+⟩ states
a) with and b) without the additional 44 km of fiber in the system. The
black points are generated by our teleportation system and the blue
bars with red dashed lines are the values assuming ideal teleportation. 191
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9.1 Model schematic for HOM interference within the context of a quan-
tum teleportation experiment. The qubit to be teleported is encoded
into weak coherent state |𝛼⟩ whereas the entangled state is encoded
into the signal and idler modes of a two-mode squeezed vacuum state
|TMSV⟩. Transmission efficiencies of the signal and idler modes are
denoted by 𝜂𝑠 and 𝜂𝑖, respectively. HOM interference is measured by
correlating detection events at 𝐷1 and 𝐷2 after a 50:50 beamsplitter
(gray line), optionally conditioned upon detection of the signal mode
at 𝐷3. Distinguishability is modeled using virtual beamsplitters of
transmittance 𝜁 < 1. The 𝑎̂, 𝑏̂ and 𝑐 operators refer to modes that
originate from the virtual beam splitters and are used in the deriva-
tion shown in Appendix E.1. Blue dashed outline is discussed in the
caption of Fig. 9.2. . . . . . . . . . . . . . . . . . . . . . . . . . . 205

9.2 Model schematic of quantum teleportation. Each time bin, |𝑒⟩ and
|𝑙⟩, is treated as a distinct spatial mode. As in HOM interference, the
qubit to be teleported is encoded into |𝛼⟩ whereas the entangled state
is encoded into |TMSV⟩, with relevant transmission efficiencies 𝜂𝑠
and 𝜂𝑖. Distinguishability of photons at the BSM is modeled using
virtual beamsplitters. The indistinguishability parameter 𝜁 outlined
by the blue dashed lines corresponds to the elements enclosed by the
blue dashed lines in Fig. 9.1. Projection on |Ψ−⟩ is indicated by
coincidence detection events at 𝐷1 and 𝐷4 or 𝐷2 and 𝐷3. Projection
of the teleported qubit onto the X-basis is modeled by a phase shift
𝜙, coherent mixing by a 50:50 beamsplitter (grey line), then photon
detection at 𝐷5 and 𝐷6. Projection onto the Z-basis is modeled
by removing the beamsplitter for the signal modes, that is, setting
its transmittance to 𝑡 = 1, and direct detection of the photons (not
shown). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

9.3 Two- and three-fold HOM interference visibilities (𝑉2-fold, green and
𝑉3-fold, blue) and quantum teleportation fidelity (𝐹, red) of X-basis
states for varied qubit mean photon number |𝛼 |2. The model (lines)
is fit to, and agrees with, the experimental data of Chapter 8 (points).
The mean photon number is shown on a log scale to provide a simple
representation of the model. . . . . . . . . . . . . . . . . . . . . . . 209
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9.4 Model of a) two- and b) three-fold HOM interference visibilities as
well as c) teleportation fidelity of X-basis states for varied |𝛼 |2 and
different magnitudes of indistinguishability 𝜁 between the interfering
photons. The curves assume the transmission efficiencies and 𝜇 from
the three-fold detection experiments of Chapter 8. . . . . . . . . . . 211

9.5 Model of a) two- and b) three-fold HOM interference visibilities for
varied |𝛼 |2 under conditions of varied signal and idler transmission
efficiencies (i-iv) in blue, orange, green, and red, respectively, as
described in the main text, assuming 𝜇 = 8.0 × 10−3 and complete
indistinguishability 𝜁 = 1. For the two-fold HOM curves, configura-
tions (i) and (ii) are equivalent to (iii) and (iv), respectively. . . . . . 213

9.6 Model of two-fold HOM interference visibilities for varied |𝛼 |2 and
𝜇 < 10−2, under varied signal and idler transmission efficiencies,
cases (i) and (ii), which are equivalent to (iii) and (iv), respectively,
assuming complete indistinguishability 𝜁 = 1. . . . . . . . . . . . . 215

9.7 Model of three-fold HOM interference visibilities for varied |𝛼 |2 and
𝜇 < 10−2, under varied signal and idler transmission efficiencies,
cases (i)-(iv), assuming complete indistinguishability 𝜁 = 1. . . . . . 217

10.1 Schematic diagram of the entanglement swapping system consisting
of Alice, Bob, Charlie, and the data acquisition (DAQ) subsystems.
All components are labelled in the legend. Single mode fibers and
electronic cables are indicated in gray and green, respectively. The
detection signals generated by the SNSPDs are labeled 1-6 and sent
to the TDC, with 1-2 and 5-6 time multiplexed. The clock generated
by the AWG is labeled and sent to the start channel of the TDC. . . . 226

10.2 Entanglement visibility of photon pairs produced by Alice’s and
Bob’s entangled photon pair source (EPS). The coincidence rates
for each pairing of an output port of Alice’s MI and Bob’s MI are
shown for Alice’s EPS a)-d) and Bob’s EPS d)-h). The entangle-
ment visibilities are obtained from a sinusoidal fit (see main text for
details), with uncertainties in all measurements calculated assuming
Poisson statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
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10.3 Hong-Ou-Mandel (HOM) interference. a) Fourfold coincidence
rates, b) threefold coincidence rates conditioned on Bob’s idler pho-
ton, c) threefold coincidence rates conditioned on Alice’s idler pho-
ton, and d) twofold coincidence rates measured as a function of the
relative time-delay (Δ𝑡𝐴𝐵) between Alice and Bob’s signal photons. . 230

10.4 Entanglement swapping of |Φ+⟩. The voltage of the Alice’s MI is
varied to yield a sinusoidal variation of the fourfold coincidence rates
for each pairing of output ports of Alice’s and Bob’s MIs. This yields
four sets of fourfold coincidence rates, with two in-phase and two
out-of-phase. The in-phase sets are combined (red) and the out-of-
phase sets are combined (blue) to obtain two curves. A sinusoidal
fit is performed for each combined data set to extract the swapping
visibilities of 𝑉swap = 85.0 ± 6.5% (red) and 𝑉swap = 81.2 ± 8.9%
(blue). The average of the two visibilities is ⟨𝑉swap⟩ = 83.1 ± 5.5%. . 233

10.5 Entanglement swapping visibility as a function of a) Alice’s mean
photon number (𝜇𝐴) and b) Bob’s mean photon number (𝜇𝐵). The
data (blue) are fit to the theoretical model (red) for fixed mean photon
numbers of a) 𝜇𝐵 = 4.6 × 10−3 and b) 𝜇𝐴 = 3.9 × 10−3, with the
indistinguishability parameter 𝜁 as a free parameter. The extracted
parameters correspond to indistinguishabilities of a) 𝜁2 = 0.69±0.02
and b) 𝜁2 = 0.64 ± 0.02. The black lines are the classical bound of
1/3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

10.6 Graphical User Interface (GUI) used to perform real-time data ac-
quisition and analysis. The top (bottom) plot corresponds to the
electronically-combined outputs of the detectors at Alice (Bob) and
the middle plots correspond to the outputs of each detector at Char-
lie. Each coincidence window is indicated by a pair of colored bars,
which are user-defined and enable tunable temporal filtering. . . . . 239
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10.7 Theoretical model setups for a) Hong-Ou-Mandel interference and b)
entanglement swapping. In the setups, 𝐸 and 𝐿 denote the early and
late modes, respectively. 𝜂𝐴𝑖 is Alice’s idler path efficiency, 𝜂𝐴𝑠 is
Alice’s signal path efficiency, 𝜂𝐵𝑠 is Bob’s signal path efficiency, and
𝜂𝐵𝑖 is Bob’s idler path efficiency. 𝜏𝐴(𝐵) is a transmittance accounting
for imperfect interferometric visibility of Alice’s (Bob’s) MI, with
𝜏𝐴(𝐵) = 1/

√
2 corresponding to ideal interferometric interference.

𝜃𝐴(𝐵) is the phase setting of Alice’s (Bob’s) MI. 𝜏𝐶 is the transmittance
of the beamsplitter at Charlie and 𝜁 is the photon indistinguishability
parameter, where 𝜁2 represents the fraction of modal overlap of the
photons interfering at Charlie’s beamsplitter. . . . . . . . . . . . . . 241

10.8 Hong-Ou-Mandel (HOM) visibilities as a function of mean photon
number. The solid lines are the theoretical models for the fourfold
HOM visibility (green), threefold HOM visibilities (yellow), and
twofold HOM visibility (blue) with identical mean photon numbers
(𝜇 = 𝜇𝐴 = 𝜇𝐵), unit path efficiencies, and unity indistinguishability. . 247

10.9 Hong-Ou-Mandel (HOM) visibilities as a function of indistinguisha-
bility. The solid lines are the models for the fourfold HOM visibility
(red), threefold HOM visibility conditioned on Bob (green), threefold
HOM visibility conditioned on Alice (green), and twofold HOM visi-
bility (blue) for the experimentally characterized path efficiencies and
mean photon numbers. The data are indicated with circular markers. 248
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10.10 HOM interference visibilities plotted as a function of Alice and Bob’s
mean photon numbers for ideal path efficiencies (𝜂𝑖, 𝜂𝑠 = 1) and
photon indistinguishability (𝜁 = 1). The red dashed lines correspond
to 𝜇𝐴 = 𝜇𝐵, and we include in all plots to facilitate comparison to the
two-fold HOM visibility plot. a) Twofold HOM interference visibility
of Alice and Bob’s signal modes, corresponding to the interference
of two thermal states. b) Threefold HOM interference visibility
of Alice and Bob’s signal modes conditioned on Alice’s idler mode,
corresponding to the interference of a heralded single photon state and
thermal state. c) Threefold HOM interference visibility of Alice and
Bob’s signal modes conditioned on Bob’s idler mode, corresponding
to the interference of a thermal state and heralded single photon state.
d) Fourfold HOM interference visibility of Alice and Bob’s signal
modes conditioned on Alice and Bob’s idler modes, corresponding
to the interference of two heralded single photon states. . . . . . . . . 251

10.11 Theoretical models for teleportation of entanglement. a) Entangle-
ment swapping visibility as a function of mean photon number for
identical source mean photon numbers (𝜇 = 𝜇𝐴 = 𝜇𝐵), unit path ef-
ficiencies, and unity indistinguishability. b) Entanglement swapping
visibility as a function of indistinguishability for the experimentally
characterized mean photon numbers and path efficiencies of the en-
tanglement swapping measurements in Fig. 10.4. The experimental
swapping visibility is indicated with the circular marker. c) Secret
key rate as a function of indistinguishability for the experimentally
characterized mean photon numbers and path efficiencies of the QKD
measurements in Table 10.1. The experimental secret key rate is in-
dicated with the circular marker. . . . . . . . . . . . . . . . . . . . . 252
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11.1 Concept of a clock distribution system for a three-node quantum
network. A clock is used to generate pulses (top hats) at a central
node (node 1) that are distributed to end nodes (nodes 2 and 3) by
fiber channels (grey lines) where they are detected (DET) and used
to lock the phase of clocks at the end nodes. Simultaneously, light
(Gaussians) from a photon pair source (PPS) at the central node is
directed into the same fiber towards single photon detectors (SPDs)
at the end nodes. Data acqusition (DAQ) systems record the arrival
times of the photons with respect to the phase of the clocks at the end
nodes, thereby ensuring the clocks are synchronized with the photons. 258

11.2 Schematic of fiber-based three-node quantum network and synchro-
nization system at Caltech. See main text for description. Clock
pulses are indicated by top hats whereas grey and red Gaussian-
shaped pulses indicate light of 1536 nm and 768 nm wavelength,
respectively. The loss contributions from each fiber spool is 2.26 dB
and 2.8 dB, respectively, whereas each WDM and FBG adds 2 dB
and 6 dB of loss, respectively. . . . . . . . . . . . . . . . . . . . . . 260

11.3 Coincidence histogram with the clock distribution enabled and dis-
abled. The small time delay between the two histograms is due a
small difference in trigger voltage threshold. Inset: Coincidence his-
togram with a log vertical scale reveals the Raman noise from the
clock pulses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

11.4 Variation of the time difference between the arrival of clock pulses
at Rx1 and Rx2 over 7 h. The maximum time difference is 5 ps
due to fiber length variations. Inset (left): histogram of photon
pair correlations without the clock system enabled. Inset (right):
histogram of the time difference over a 900 s time scale indicates a
timing jitter of 2 ps. . . . . . . . . . . . . . . . . . . . . . . . . . . 263

11.5 This image depicts the separation of the nodes in our real-world
network. FNAL-FCC and FNAL-DAB are connected with 2 km of
dark fiber and FNAL-FCC and ANL are connected with 57 km of
dark fiber. We keep our master clock at FNAL-FCC, and distribute
the signal to FNAL-DAB and ANL, choosing the path via an optical
switch located at FNAL-FCC. The FNAL nodes are depicted by the
blue rectangles and the ANL node is depicted by the red rectangle. . 266
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11.6 Schematic for the FQNET picosecond clock synchronization system.
The square pulses represent the clock signal while the grey and red
Gaussian-shaped pulses represent the quantum light and its second
harmonic (768 nm), respectively. The photon pairs are produced at
FNAL-FCC and routed either 2 km away to FNAL-DAB or 57 km
away to ANL through software provided with the optical switch [20]. 267

11.7 Variation of the time difference between the arrival of the reference
and derived clock at ANL over 14 hours. The blue line is the average
of the time difference every 100 seconds, showing the drift in the
time difference of the two clocks. We observe a long term drift of
about 3 ps over more than 14 hours, mainly caused by fiber length
fluctuations in the link. The blue shaded region is the RMS of the
time difference during each of those 100 second intervals. Inset:
histogram of the time difference indicates a timing jitter of 2.2 ps. . . 269

11.8 Coincidence histogram for the photon pairs sent to ANL from FNAL-
FCC with the clock distribution disabled. . . . . . . . . . . . . . . . 270

11.9 Coincidence histograms for the photon pairs sent to FNAL-DAB from
FNAL-FCC with the a) 1310 nm and b) 1610 nm clock distribution
enabled, and coincidence histograms for the photon pairs sent to
ANL from FNAL-FCC with the c) 1310 nm and d) 1610 nm clock
distribution enabled. . . . . . . . . . . . . . . . . . . . . . . . . . . 271

13.1 Setup for generating GHZ states with time-bin qubits. One member
of a Bell pair produced by a entangled pair source (EPS) is interfered
with another time-bin qubit using a 2x2 optical switch. A GHZ state
is post-selected using single-photon detectors (SPDs) after the switch. 282
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13.2 Experimental generation of time-bin GHZ states. a) Experimental
setup. AWG, Tektronix AWG7002A; BS, Thorlabs 1550-nm fiber
optic 50:50 beam splitter; DL, fiber optic delay line, EDFA, Pritel
erbium-doped fiber amplifier; FIL, bandpass filter; Laser, MOGlabs
Tunable Cateye Laser; PBS, Thorlabs 1550-nm fiber optic polar-
izing beam splitter; PPLN, HC Photonics waveguide; PS, power
supply, SHG, Pritel optical fiber amplifier and second-harmonic gen-
erator; SNSPD, superconducting nanowire single-photon detector;
TDC, quTAG time-to-digital converter; VOA, EXFO variable optical
attenuator. b) Screenshot of custom Graphical User Interface (GUI)
used for data acquisition and analysis. In the switch output channels,
the larger peak corresponds to the weak coherent state and the smaller
peak corresponds to one member of the TMSV state from SPDC. The
discrepancy in peak heights is due to the different photon statistics
and mean photon numbers of the coherent and TMSV states. . . . . 284

13.3 Setup for theoretical modeling. The top and bottom boxes represent a
two-mode squeezed vacuum state (TMSV) and coherent state, respec-
tively, in the product state of early and late temporal modes. Early
and late temporal modes are represented as different spatial modes
in the setup. The switch is modeled as an MZI acting on the early
(late) modes of the coherent state and one half TMSV with phase
shift 𝜃𝐸 (𝐿) . Measurement loss is modeled as mixing with a virtual
vacuum mode with a beamsplitter (not depicted) with transmittances
𝜂1, 𝜂2, and 𝜂3 for detectors 𝐷1, 𝐷2, and 𝐷3, respectively. . . . . . . 285

13.4 Characterization of time-bin GHZ states in the Z-basis. a) Three-
fold coincidence probabilities for varied mean photon number of the
coherent state. The probabilities are found from dividing the coinci-
dence rates in Hz by the repetition rate of the experiment (100 MHz).
b) Theoretical model for the data in a). c) Z-basis fidelity for varied
mean photon number of the coherent state. The error bars in a) and
c) are calculated from Poisson statistics. . . . . . . . . . . . . . . . . 286

13.5 Density matrix model. a) Density matrix (𝜌𝐺𝐻𝑍 ) elements for an
ideal GHZ state. b) Real and imaginary components of the density
matrix model (𝜌𝑒𝑠𝑡) for 𝜇𝐶 = 0.19, 𝜇TMSV = 0.009, 𝜂1 = 0.2, 𝜂2 =

0.17, 𝜂3 = 0.19, and an extinction ratio of 18 dB corresponding to
𝜃𝐸 = 0.25, and 𝜃𝐿 = 0.25 + 𝜋. . . . . . . . . . . . . . . . . . . . . . 288
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14.1 Traversable wormhole in spacetime and in the holographic dual. a)
Diagram of a traversable wormhole in anti-de Sitter space. A qubit
injected at 𝑡 = −𝑡0 enters through the left side of the wormhole; at
𝑡 = 0 a coupling (dashed line) is applied between the two sides of the
wormhole, causing a negative energy shockwave (blue); the qubit ex-
periences a time advance upon contact with the shockwave, causing
it to emerge from the right side at 𝑡 = 𝑡1. b) Illustration of time-
ordering (wormhole) and time-inversion (scrambling) of teleporta-
tion signals. The smooth semiclassical geometry of a traversable
wormhole produces a regime of teleportation that obeys causality;
non-gravitational teleportation causes the signals to arrive in reverse
order. c) The traversable wormhole expressed as a quantum circuit,
equivalent to the gravitational picture in the semiclassical limit of an
infinite number of qubits. The unitary 𝑈̂ (𝑡) denotes time evolution
𝑒−𝑖(𝐻̂𝐿+𝐻̂𝑅)𝑡 under the left and right SYK models. The thermofield
double state (|TFD⟩) initializes the wormhole at 𝑡 = 0. The time evo-
lution and Majorana fermion SWAP gates achieve qubit injection and
arrival readout at the appropriate times. When 𝜇 < 0, the coupling
𝑒𝑖𝜇𝑉̂ generates a negative energy shockwave, allowing traversability;
when 𝜇 > 0, the coupling generates a positive energy shockwave and
the qubit falls into the singularity. . . . . . . . . . . . . . . . . . . . 291

14.2 Majorana SWAP gates. a) 𝑍𝑋 + 𝑖𝑍𝑌 Majorana SWAP gate decompo-
sition for inserting a qubit (Q) into the wormhole. 𝐿1, 𝐿2 are qubits
in the left subsystem. b) 𝑋 + 𝑖𝑌 Majorana SWAP gate for extracting
the qubit from the wormhole, which coincidences with the regular
SWAP gate. R is a qubit in the right subsystem and T is the register. . 293
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14.3 Learning a traversable wormhole Hamiltonian from the SYK model.
a) Mutual information of multiple 𝑁 = 10 SYK models (black and
purple, 𝛽 = 4) and corresponding learned Hamiltonians (orange
and green) showing asymmetry in coupling with 𝜇 < 0 (wormhole
teleportation) and 𝜇 > 0 (scrambling teleportation). Thick lines
show a specific instantiation of an SYK model and its corresponding
learned sparsification with 5 nonzero coefficients (Eq. 14.7); light
lines indicate a population of SYK models and learned sparsifications
with 5 to 10 nonzero coefficients, demonstrating the reliability of the
learning procedure. The learned Hamiltonian is trained only on the
mutual information 𝐼𝑃𝑇 (𝑡) for 𝑡 ≡ 𝑡0 = 𝑡1 (left), and its behavior
is consistent with the a wormhole after a qubit is injected at fixed
−𝑡0 (right). b) Sparsification of the original SYK model with 210
nonzero coefficients (top) to the learned Hamiltonian with 5 nonzero
coefficients (bottom, Eq. 14.7). Groups of four Majorana fermions
(blue dots) are coupled with coefficients. Line thickness indicates
coefficient magnitude, and color distinguishes individual coefficients
(bottom only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
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14.4 Observation of traversable wormhole dynamics. a) Thermalization
protocol (109 CZ gates), measuring the mutual information between
a qubit injected into a sparse SYK model at time −𝑡 and at 𝑡. Error
bars show three standard deviations over 20 runs. b) Traversable
wormhole with fixed injection time (164 CZ gates), showing the
difference in mutual information between 𝜇 = −12 and 𝜇 = +12.
Error bars show one standard deviation over 28 runs. c) Traversable
wormhole with symmetric injection and readout time (164 CZ gates),
showing the difference in mutual information between 𝜇 = −12 and
𝜇 = +12. Error bars show one standard deviation over 20 runs. Insets
show noisy simulations with gate errors increased by a factor of 1.5,
plotted with y-axis mutual information range [−3 × 10−3, 3 × 10−3];
the peak is not visible. The measurements in b) and c) agree with
noisy simulation and reproduce the sign asymmetry of the mutual in-
formation consistent with through-the-wormhole teleportation. The
scrambling-unscrambling dynamics of wormhole teleportation cause
the mutual information to be significantly attenuated by noise. In
noisy simulations, each gate is subjected to depolarization error de-
termined by calibration data (median CZ error: 0.3%). Each run
consists of 90,000 measurements. . . . . . . . . . . . . . . . . . . . 297

15.1 Future quantum networking between labs on the a) Fermi National
Accelerator Laboratory (Fermilab) campus and b) in the Chicago
metropolitan region with upgrades to the entanglement swapping
system from Chapter 10. . . . . . . . . . . . . . . . . . . . . . . . . 304

15.2 Conceptual diagram of distributed quantum simulation of wormholes
in a quantum network. Image credits to NASA’s Conceptual Image
Lab and FlatIcon.com. . . . . . . . . . . . . . . . . . . . . . . . . . 305

15.3 Signal regenesis in a many-body quantum-chaotic system. Two sub-
systems (𝐿 and 𝐿) are prepared in a thermofield double state

��Ψ𝛽

〉
at

𝑡 = 0. A source 𝜑𝐿 is turned on in the left subsystem for a few-body
operator 𝐽𝐿 at some time 𝑡 = −𝑡𝑠 < 0. In the left subsystem, there is
a response induced by the source, which dissipates after the source
is turned off. At 𝑡 = 0, a coupling is introduced, where 𝑉̂ is an
operator acting on both subsystems. At a later time 𝑡 = 𝑡𝑠, a signal
will reappear on the right subsystem if 𝑡𝑠 ∼ 𝑡∗ is on the order of the
scrambling time (𝑡∗) of the system. . . . . . . . . . . . . . . . . . . . 308
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B.1 Measurement of squeezed light with balanced homodyne detection.
Squeezed light (signal) is interfered with strong local oscillator (LO)
in a coherent state by a 50:50 beamsplitter (BS). A phase shifter on
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C h a p t e r 1

INTRODUCTION

Over the past several decades, advances in information processing have driven un-
precedented developments in science and technology. Information technologies,
such as personal computers, mobile phones, and precision sensors, continue to
transform the modern world. The recent rise of large-data processing and arti-
ficial intelligence is further accelerating global demand for computational power,
communication bandwidth, and sensing capabilities. In response, new technolog-
ical paradigms are being explored to overcome current limitations in information
processing capabilities. One of the most exciting directions emerging from this
challenge is the development of quantum information technologies, which leverage
the consequences of quantum physics to unlock new ways of sensing, processing,
and transmitting information.

Quantum technologies are often grouped into three pillars: quantum sensing, quan-
tum computing, and quantum communication. Of the three pillars, quantum sensing
is the most mature and widely adopted. Quantum sensors exploit features of quan-
tum mechanical systems such as coherence, entanglement, and quantum interference
to surpass precision limits of conventional sensors. Established examples include
atomic clocks, which define the international time standard, and superconducting
quantum interference devices, used for ultra-sensitive magnetic field detection in
both research and medical imaging. More recent developments include squeezed-
light interferometry, matter-wave interferometry, quantum gas microscopes, and
molecular spin qubits, offering paths toward Heisenberg-limited sensitivity in ap-
plications ranging from biological imaging to gravitational wave detection.

Quantum computing represents a new paradigm for computation based on manip-
ulating quantum bits of information. Unlike classical computers, which operate
on bits that are either 0 or 1, quantum computers operate on qubits, or states of a
two-level quantum system, which can exist in a superposition of both states. This al-
lows quantum algorithms to explore exponentially large solution spaces in ways that
are inaccessible to classical computers, promising exponential speedups for specific
classes of problems. A notable example is Shor’s algorithm, which can factor large
numbers exponentially faster than classical algorithms, posing a threat to modern
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encryption systems. The discovery of Shor’s algorithm catalyzed widespread inter-
est in quantum computing and launched a global effort to build quantum processors
capable of efficiently performing tasks that could are intractable in classical super-
computers. Recent milestones in quantum hardware have sparked a global race to
build large-scale, fault-tolerant quantum computers that have transformative poten-
tial for simulating complex quantum systems, solving hard optimization problems,
and advancing fields from biochemistry to artifical intelligence.

The threat posed by quantum computers to current cryptographic systems has also
driven progress in quantum cryptography. Unlike classical cryptographic schemes,
whose security depends on computational hardness assumptions, quantum cryp-
tographic protocols such as quantum key distribution (QKD) offer information-
theoretic security guaranteed by the no-cloning theorem and the irreversible nature
of quantum measurement. Quantum communication systems enable these protocols
by transmitting and interfering quantum states between distant locations, allow-
ing for secure key exchange, teleportation of quantum states, and coordination of
spatially separated quantum systems. By interconnecting quantum devices, such
as quantum sensors and computers, at remote locations, quantum communication
channels form the basis of distributed quantum networks. These quantum networks
enable functionalities beyond the reach of any isolated system, including secure
multiparty communication, distributed quantum sensing, and teleportation-based
quantum state transfer. The long-term vision is the development of a quantum in-
ternet: a world-wide network of quantum technologies that are interconnected by
quantum communication channels across the globe. Just as the classical internet
revolutionized the sharing of digital information, the quantum internet will allow for
the distribution of entanglement and quantum states over vast distances and unlock
the full potential of quantum technologies.

Alongside the accelerating development of quantum networks, distribution of entan-
glement has emerged as a key thread connecting information science to the deepest
questions in fundamental physics. Quantum networks capable of high-fidelity en-
tanglement distribution have served as a platform for experimental tests of the
foundations of quantum mechanics, including Bell tests that probe the validity of
locality and realism. These experiments, which culminated in the 2022 Nobel Prize
in Physics, confirmed that quantum correlations cannot be explained by any local
hidden variable theory. More recently, connections between quantum information
and gravity have sparked a new line of inquiry. Quantum teleportation protocols, for



3

instance, have been shown to admit a dual interpretation in gravitational theories as
the transmission of information through traversable wormholes. This insight is part
of a broader effort to understand the emergence of spacetime from entanglement,
exemplified by the ER=EPR conjecture, which posits a deep equivalence between
entangled quantum states and gravitational wormholes. Such developments sug-
gest that quantum communication may not only be a technological tool, but also a
powerful probe of the causal and geometric structure of spacetime itself.

•

In this thesis, I present some of the latest advances in quantum communication
devices, channels, and networks, both at a technological and fundamental level. The
thesis is divided into three parts. Part I focuses on quantum sources and detec-
tors, which form the foundational building blocks of quantum networks. I begin
by introducing the principles behind photon-pair sources and single-photon detec-
tors (Chapter 2) and highlight key challenges in the current state-of-the-art. I then
present progress in cutting-edge sources and detectors: photon-number-resolving
superconducting nanowire detectors and their first application to improving her-
alded single-photon sources (Chapter 3) and high-rate photon-number discrimina-
tion (Chapter 4); a high-rate entangled photon-pair source for quantum key dis-
tribution (Chapter 5); and high-bandwidth on-chip balanced homodyne detectors
(BHDs), enabling continuous-variable quantum key distribution and squeezed-light
detection (Chapters 2 and 6). I also introduce the concept of a novel quantum
sensor, which we call the “quantum phased array” (QPA), and present a proof-
of-concept demonstration of a QPA receiver implemented in a large-scale silicon
photonic-electronic platform (Chapter 6). This system integrates a directional free-
space-to-chip interface for quantum light and features the first on-chip detection
of squeezed light using a quantum-limited BHD array. Using this architecture,
we demonstrate coherent multipixel imaging and beamforming of squeezed light,
illustrating key functionalities envisioned for future wireless quantum sensors and
communication systems.

Part II of this thesis describes the development of quantum network testbeds at
Caltech and Fermi National Accelerator Laboratory, with a focus on designing scal-
able architectures for quantum networks toward the quantum internet (Chapter 7).
A defining feature of quantum networks is the ability to distribute entanglement
between remote nodes, which is essential for numerous quantum communication
protocols including teleportation, entanglement swapping, and quantum repeaters.
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We construct systems capable of high-fidelity quantum teleportation (Chapter 8) and
entanglement swapping (Chapter 10) over long distances. We achieve state-of-the-
art teleportation fidelities over 45 km of optical fiber and entanglement swapping
visibilities with time-bin qubits. To support the development of these systems, I
describe theoretical models for the experiments (Chapter 9) that guide system de-
sign and optimization. Finally, I detail our efforts to extend these capabilities to
real-world metropolitan environments, and present experimental demonstrations of
entanglement distribution to remote nodes at FNAL and Argonne National Labora-
tory with picosecond-level clock synchronization (Chapter 11). These systems are
envisioned to form the backbone of a prototype quantum internet connecting the
seventeen national labs of the United States.

Part III of this thesis explores the intersection of quantum communication and
fundamental physics (Chapter 12). I begin by describing the experimental generation
of multipartite entanglement, specifically GHZ states, in our quantum network
testbeds (Chapter 13). GHZ states serve as valuable resources for foundational tests
of quantum mechanics, including more stringent Bell inequalities and nonlocality
tests, as well as for distributed quantum sensing protocols. Our demonstration is a
first step towards establishing a field-deployed quantum sensing network at Fermilab
designed to perform precision measurements for high energy physics. I then present
the first experimental realization of a traversable wormhole teleportation protocol
implemented on quantum computer (Chapter 14). We observe characteristic features
of traversable wormhole dynamics, such as time-ordered signal propagation, the
preservation of input information, and sensitivity to coupling strength, consistent
with expectations from semiclassical gravity.

Finally, I conclude with an outlook on future directions and opportunities for the
devices, networks, and experiments presented in this thesis (Chapter 15). I propose a
new line of inquiry at the intersection of all these research domains: Bell inequalities
for quantum gravity. Specifically, I formulate a concrete Bell inequality tailored for
holographic systems with a wormhole dual.



Part I

Building blocks of quantum
communication networks

5
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C h a p t e r 2

SOURCES AND DETECTORS

This chapter includes the work published as:

[1] Volkan Gurses, Samantha I. Davis, Esme Knabe, Raju Valivarthi, Maria Spirop-
ulu, and Ali Hajimiri. “A compact silicon photonic quantum coherent receiver with
deterministic phase control.” In: CLEO: Applications and Technology. Optica Pub-
lishing Group. 2023, AM4N–4.

[1] Volkan Gurses, Debjit Sarkar, Samantha Davis, and Ali Hajimiri. “An integrated
photonic-electronic quantum coherent receiver for sub-shot-noise-limited optical
links.” In: Optical Fiber Communication Conference. Optica Publishing Group.
2024, Tu2C–1.

2.1 Sources
A defining feature of quantum networks is their ability to distribute quantum infor-
mation between distant nodes while preserving quantum coherence. Photons are
the primary carriers of quantum information between nodes in a quantum network
due to their ability to propagate over long distances in optical fiber or free space
with relatively low decoherence. Quantum networks require reliable sources of
indistinguishable photons for key network operations such as quantum interference.
A standard approach to generating photons suitable for quantum networking is to
use the strong light-matter coupling offered by solid-state bulk nonlinearities. In a
bulk nonlinearity, the optical response of the nonlinear medium to a pump field is
described by the polarization vector ®𝑃 = ®𝑃L + ®𝑃NL, where 𝑃L

𝑖
= 𝜀0

∑
𝜒
(1)
𝑖 𝑗
𝐸 𝑗 is the

linear term containing the first order susceptibility, 𝜒(1) , and ®𝑃NL is the nonlinear
term containing contributions from higher-order susceptibilities, 𝜒(𝑛) [1]. Pairs of
single photons can be probabilistically emitted from nonlinear materials via laser-
driven second-order (𝜒(2)) and third-order (𝜒(3)) processes such as spontaneous
parametric down-conversion and spontaneous four-wave mixing, respectively. Pho-
ton pair generation provides versatile sources of entanglement and heralded single
photons with high purity, bandwidth, and tunability.
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Figure 2.1: Spontaneous parametric down-conversion (SPDC). a) A pump photon
is spontaneously downconverted into a pair of signal and idler photons by a 𝜒(2)

bulk optical nonlinearity. The pump, signal and idler photons satisfy phase match-
ing conditions, namely b) momentum conservation ( ®𝑘 𝑝 = ®𝑘𝑠 + ®𝑘𝑖) and c) energy
conservation (ℏ𝜔𝑝 = ℏ𝜔𝑠 + ℏ𝜔𝑖).

Spontaneous Parametric Down Conversion

Spontaneous parametric down-conversion (SPDC) is a three-wave mixing process
involving the interaction of a pump, signal, and idler photon in a medium with a
leading order 𝜒(2) bulk nonlinearity. A single pump photon with frequency 𝜔1

is spontaneously converted into a pair of lower-energy signal and idler photons
with frequency 𝜔2 and 𝜔3, respectively (see Fig. 2.1). The SPDC process obeys
energy and momentum conservation rules, also referred to as the phase-matching
conditions,

ℏ𝜔3 = ℏ𝜔1 + ℏ𝜔2, (2.1)

Δ®𝑘 = ®𝑘3 − ®𝑘1 − ®𝑘2 = 0, (2.2)

where ®𝑘𝑖 represents the wave vector with magnitude 𝑘𝑖 = 𝑛(𝜔𝑖)𝜔𝑖/𝑐 and 𝑛𝑖 (𝜔𝑖) is
the index of refraction. The process is described by the interaction Hamiltonian,

𝐻̂int = 𝑖ℏ𝜅
(
𝑎̂
†
1𝑎̂

†
2𝑎̂3 + 𝑎̂1𝑎̂2𝑎̂

†
3

)
(2.3)

where 𝜅 ∝ 𝜒(2)𝐿 is a constant that depends on strength of the nonlinearity (𝜒(2)) and
interaction length (𝐿), and 𝑎̂, 𝑎̂† are the bosonic ladder operators [2]. In Eq. 2.3,
the first term corresponds to the creation of signal (𝑎̂†1) and idler (𝑎̂†2) photons by the
annihilation of a pump photon (𝑎̂3). The second term accounts for time reverse of
the process, sum frequency generation (SFG) or second harmonic generation (SHG)
for 𝜔1 = 𝜔2, where two photons (𝑎̂1, 𝑎̂2) are converted into a photon (𝑎̂†3) of higher
energy. The quantum state at the output of the SPDC process is,

|𝜓(𝑡)⟩ = exp
(

1
𝑖ℏ

∫ 𝑡

0
𝐻̂int(𝑡′)𝑑𝑡′

)
|0⟩ ≈

(
1 + 1

𝑖ℏ

∫ 𝑡

0
𝐻̂int(𝑡′)𝑑𝑡′ + · · ·

)
|0⟩ ,

(2.4)
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where |0⟩ is the initial vacuum state. In Eq. 2.4, |𝜓(𝑡)⟩ corresponds to a single mode
squeezed vacuum state (SMSV) in the degenerate case (𝜔1 = 𝜔2) and a two-mode
squeezed vacuum (TMSV) state in the nondegenerate case (𝜔1 ≠ 𝜔2) of signal and
idler photons. The right hand side of Eq. 2.4 is the perturbative expansion of the time
evolution operator to leading order in 𝜅 in the non-depleted pump approximation,
where 𝜅 is typically very small with most of the pump photons unconverted. The
leading order (two-photon) component of |𝜓(𝑡)⟩ is,

|𝜓⟩ ∝ 𝜅
∫ ∞

0

∫ ∞

0
𝑓 (𝜔1, 𝜔2)𝑎̂†1(𝜔1)𝑎̂†2(𝜔2)𝑑𝜔1𝑑𝜔2 |0⟩1 |0⟩2 (2.5)

where 𝐿 is the interaction length and 𝑓 (𝜔1, 𝜔2) is the joint spectral amplitude (JSA).
The JSA accounts for the spectral profile of the pump and phase matching condition,

𝑓 (𝜔1, 𝜔2) = 𝜓p(𝜔1, 𝜔2) · 𝜓ph(𝜔1, 𝜔2), (2.6)

where𝜓p(𝜔1, 𝜔2) is the pump envelope and𝜓ph(𝜔1, 𝜔2) is the phase matching enve-
lope. The joint spectral intensity (JSI), | 𝑓 (𝜔1, 𝜔2) |2, is the probability distribution
of signal and idler frequencies.

Phase matching Efficient generation of photon pairs requires careful design of
SPDC sources to achieve the phase matching conditions as much as possible [1, 3].
For instance, the phase matching condition Δ𝑘 = 0 demands appropriate refractive
indices 𝑛(𝜔3) > 𝑛(𝜔1) and 𝑛(𝜔2), which cannot be fulfilled with centrosymmetric
materials. The phase-matching condition can be satisfied naturally in birefringent
materials, such as barium borate (BBO), potassium titanyl phosphate (KTP), and
lithium niobate (LN), with different indices of refraction depending on the polariza-
tion and direction of propagation of the electric field for a given frequency. Phase
matching can be achieved by tuning the angle of the pump field relative to the optic
axis, resulting in different phase-matching configurations depending on the geom-
etry [4]. Photon pairs can be emitted collinearly or non-collinearly depending on
the type of phase-matching configuration (see Fig 2.1). In type-I SPDC, the signal
and idler photons have the same polarization, which is orthogonal to the pump po-
larization, whereas in type-II SPDC, the signal and idler photons have orthogonal
polarizations.

In type-0 SPDC, the pump, signal, and idler photons share the same polarization
state; however, inherent material dispersion often prevents natural phase matching
due to mismatched phase velocities of the interacting waves. Quasi-phase matching
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can be achieved by periodic poling, where the sign of the nonlinear susceptibility
tensor of the nonlinear crystal is spatially modulated at regular intervals, known
as the poling period [5, 6]. A common technique is electric field poling, where a
strong electric field is applied in a controlled pattern to induce periodic ferroelectric
domain reversals. The periodic inversion compensates for the phase mismatch by
effectively resetting the relative phase between the pump and generated photons at
each poling period, thereby sustaining constructive interference over extended inter-
action lengths. The poling period is precisely engineered based on the wavelengths
of the pump, signal, and idler photons, as well as the material’s refractive indices,
to satisfy the quasi-phase matching condition,

Δ𝑘 = 𝑘3 − 𝑘1 − 𝑘2 − 2𝜋𝑚/Λ, (2.7)

where 𝑚 is an integer and Λ is the poling period. Materials commonly subjected
to periodic poling include LN and KTP due to their robust nonlinear properties and
amenability to domain inversion.

Early demonstrations of photon-pair generation via type-I SPDC were crucial for
fundamental tests of nonlocality [7] and two-photon interference [8]. Subsequent
refinements in crystal growth, pump laser design, and alignment precision led to
the development of sources with higher brightness and narrow bandwidths for
practical implementations, with extensive investigation into type-II SPDC sources
due to their intrinsically high-contrast polarization entanglement and convenient
post-selection methods for measuring polarization correlations [4]. These advances,
along with improvements in crystal purity, pump stability, and collection optics,
fueled applications in entanglement-based quantum communication, culminating in
demonstrations of entanglement distribution over fiber networks exceeding 10 km
[9, 10] and paved the way for more complex multi-photon entanglement experiments
[11]. In parallel, the advent of quasi-phase matching in periodically poled lithium
niobate (PPLN) and potassium titanyl phosphate (PPKTP) led to a wide adoption
of type-0 SPDC sources [10, 12], enabling higher nonlinear conversion efficiencies,
flexible wavelength control, and compact waveguide implementations critical for
integrated quantum networking architectures [5, 6].

Spectral Purity A typical joint spectral intensity for a type-II SPDC process is
shown in Fig. 2.2, illustrating the broadband spectral correlations of photon pairs
emitted by SPDC. Type-II SPDC exhibits narrower bandwidths than type-0 or type-I
SPDC because orthogonal polarizations impose stricter phase matching constraints
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Figure 2.2: A typical joint spectral intensity for type-II SPDC for a pump photon at
775 nm, corresponding to signal and idler photons at telecom wavelengths centered
at 1550 nm. By taking the singular value decomposition, the JSI can be decomposed
into Schmidt modes (plotted) and associated eigenvalues {𝜆𝑛}, where 𝜆2

𝑛 is the
probability of occupying the 𝑛th mode.

[4, 13]. The degree of spectral entanglement can be characterized by the Schmidt
decomposition of the two-photon state,

|𝜓⟩ =
∑︁
𝑗

√︁
𝜆 𝑗 | 𝑗⟩1 | 𝑗⟩2 (2.8)

where |𝜆⟩ 𝑗 are the Schmidt coefficients with
∑
𝑗 𝜆 𝑗 = 1 and | 𝑗⟩1, | 𝑗⟩2 are orthonormal

states of the signal and idler modes, respectively. The Schmidt decomposition can
be obtained by performing a singular value decomposition of the JSI (see Fig.
2.1e). The spectral purity of the photon pairs is quantified by the Schmidt number,
𝐾 = 1/∑ 𝑗 𝜆

2
𝑗
, which is the effective number of occupied eignemodes. The Schmidt

number is related to the purity 𝑃 = 1/𝐾 of the source, where 𝐾 = 1 corresponds to
signal and idler photons in a single spectral mode [14].

In practical networking implementations, bright and spectrally pure sources of
photon pairs are needed for high-fidelity generation of single photons and entangled
states such as Bell states. Spectral filtering is commonly employed to effectively
isolate a single spectral mode and reduce multimode contributions. However, for
high degrees of spectral correlations, filtering will block the majority of generated
photon pairs, resulting in substantial photon loss and restricted pair production
rates [15]. Instead of filtering, spectral engineering techniques [16, 17, 18, 19, 20,
21] can be employed to engineer the joint spectrum of the source. For example,
in cavity-enhanced sources, optical cavities are used to enforce specific resonant
frequencies, thereby selectively enhancing the generation of photon pairs within a
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narrow spectral range and promoting single-mode operation [22]. Alternatively,
multimode sources can be used for spectrally multiplexing to achieve high-rate
photon pair production and entanglement distribution. Fiber-coupled, broadband
type-0 SPDC sources at telecom wavelengths can be interfaced with commercial
division wave demultiplexers to distribute photon pairs over many channels in a
network [23]. Combining spectral engineering and multiplexing techniques can
enable high-rate sources of indistinguishable photons required for entanglement-
based protocols over long distances in advanced quantum networks.

2.2 Encoding quantum information
Photons can be used as carriers of quantum information in a number of degrees
of freedom (DOFs), in both discrete variable and continuous variable encodings of
quantum information.

Discrete variables
For discrete variable encodings of qubits, commonly used DOFs include polariza-
tion, time-energy, and orbital angular momentum, and time-of-arrival. Polarization
encoding is among the most widely used, where horizontal and vertical polarization
states define the computational basis. Polarization correlations of photon pairs, e.g.,
from type-II SPDC, are exploited to generate entangled states by taking advantage of
the orthogonally polarized photon pairs emitted into distinguishable spatial modes.
Energy-time encodings exploit the strong frequency correlations and time-energy
uncertainty intrinsic to SPDC, where the emission time of an idler photon is uncer-
tain but strongly correlated with the signal photon [24]. Orbital angular momentum
(OAM) encodings use spatial modes carrying quantized angular momentum, al-
lowing access to high-dimensional Hilbert spaces and offering greater information
capacity per photon [25].

An essential feature of quantum networks is the ability to distribute entanglement
across many distributed nodes over nominally long distances. An attractive ap-
proach is to leverage the commercial optical fiber infrastructure already developed
at telecom wavelengths for the deployment of large-scale quantum networks. For
this approach, qubits encoded in the time-of-arrival states (early |𝑒⟩ or late |ℓ⟩) of
individual photons, or “time-bin qubits,” at telecom-band wavelengths are preferred
due to their ease of generation, low-loss propagation, and robustness to phase noise
and polarization drift in over long-distances in optical fibers [26].
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Figure 2.3: Generation of time-bin qubits at telecom wavelengths with commercially
available fiber-optic components. a) Strong pulses of coherent light from a mode-
locked laser are attenuated down to the single photon level by a variable optical
attenuator (VOA). The weak pulses are inserted into an path-length-imbalanced
interferometer, which defines early (E) and late (L) time-bins corresponding a photon
passing through the short and long path, respectively. A photon at the output of
the interferometer is in a coherent superposition of early and late time-of-arrival
states. b) Early and late pulses are carved out from a continuous wave (CW) laser
by an intensity modulator (IM), which is programmed by an arbitrary waveform
generator (AWG) to define the early and late time-bins. The strong pulses are
frequency-doubled by a second harmonic generator (SHG) to serve as pump light for
spontaneous parametric down-conversion (SPDC), which produces pairs of single
photons at telecom wavelength in an approximate Bell state. Quantum states are
post-selected by a single-photon detector (SPD) that measures its time-of-arrival
state.
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Time-bin qubits Time-bin qubits are generated by preparing single photons in a
coherent superposition of pulses separated by a fixed time delay, defining “early” and
“late” temporal modes. By setting the temporal separation of the pulses much shorter
than the coherence time of the channel, the relative phase between the two time-bins
remains stable over long-distance fiber transmission, preserving quantum coherence.
The computational (Z) basis (|𝑒⟩, |𝑙⟩) is defined by preparing a single photon in an
early (“𝑒”) or late (“𝑙”) time bin. A qubit in the X basis, |±⟩ = 1√

2
( |𝑒⟩ ± |𝑙⟩), or

Y basis, |±⟩ = 1√
2
( |𝑒⟩ ± 𝑖 |𝑙⟩), can be prepared by sending a single photon to a

path-imbalanced interferometer, where the time delay between the short and long
paths inside the interferometer sets the temporal separation of the time bins (see Fig.
2.3a). The state of a photon at one of the outputs of the interferometers is described
by ( |𝑒⟩ + 𝑒𝑖𝜙 |𝑙⟩)/

√
2, where 𝜙 is controlled by the interferometric phase shifter.

Deterministic and on-demand generation of pure single photons is a ongoing ex-
perimental challenge [27]. Due to ease of generation, a common approach is to
approximate a single photons as a weak coherent state,

|𝛼⟩ = 𝑒−|𝛼 |2/2
∞∑︁
𝑛=0

𝛼𝑛
√
𝑛!

|𝑛⟩ = 𝑒−|𝛼 |2/2( |0⟩ + 𝛼 |1⟩ + O(|𝛼 |2)), |𝛼 |2 ≪ 1,

(2.9)

where the subscript 𝑒 (𝑙) denotes the early (late) temporal mode, |𝑛⟩ is the photon
number state of 𝑛 photons, and |𝛼 |2 is the mean photon number. Single photons
in confined temporal modes can be prepared by attenuating a series of laser pulses
down the single-photon level. Each pulse defines a time bin within its clock cycle,
which is set by the repetition rate of the laser. The preparation of a photon in
the early or late time-bin is performed by changing the timing of the pulse within
its clock cycle, for instance using a variable optical delay line. Since |𝛼 |2 ≪ 1
in order to suppress multiphoton events (𝑛 ≥ 2), the weak coherent pulses are
primarily in the vacuum state. Quantum information protocols based on time-bin
qubits are typically performed using prepare-and-measure schemes conditioned on
single-photon detection, where quantum states are post-selected by single-photon
detectors that measure the time-of-arrival states of the qubits.

Single photons can also be heralded from a pair source, where a signal photon is
“heralded” by the detection of an idler photon (see Sec. 2.4). The output state of
a photon pair produced by SPDC in a single temporal mode is described by the
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two-mode squeezed vacuum state (TMSV),

|TMSV⟩ =
∞∑︁
𝑛=0

(−1)𝑛
√︄

𝜇𝑛

(1 + 𝜇)𝑛+1 |𝑛⟩𝑠 |𝑛⟩𝑖 (2.10)

≈ |0⟩𝑖 |0⟩𝑠 +
√
𝜇 |1⟩𝑖 |1⟩𝑠 + O(𝜇) 𝜇 ≪ 1. (2.11)

Time-bin entangled states can be generated by pumping a photon pair source with
a pair of strong pulses in early and late time bins (see Fig. 2.3b). The output state
is described by the product state of a two-mode squeezed vacuum state (TMSV) in
the early and late temporal modes,

|TMSV⟩𝑒 ⊗ |TMSV⟩𝑙 ≈
√︁

1 − 2𝜇 |0⟩ +
√︁

2𝜇
��Φ+〉 + O(𝜇), 𝜇 ≪ 1, (2.12)

where |0⟩ is the vacuum state, 𝜇 is the mean photon number, and��Φ+〉 = 1
√

2
( |𝑒⟩𝑠 |𝑒⟩𝑖 + |𝑙⟩𝑠 |𝑙⟩𝑖)

is a Bell state of signal (𝑠) and idler (𝑖) photons in the time-bin qubit basis. In
Eq. 2.12, higher order terms of O(𝜇) correspond to multiphoton states, where
𝜇 ≪ 1 suppresses the probability of multiphoton events (see Sec. 2.4). A Bell
state can be post-selected by conditioning on the coincident detection of signal and
idler photons in either the early or late time-bin at spatially separated single-photon
detectors. With photon pairs generated by type-II SPDC, for instance, Bell states
can be conveniently distributed to different nodes in a network using a polarizing
beamsplitter to separate signal and idler photons in orthogonal polarization states.

Continuous variables
For continuous variable protocols, quantum information is encoded in continuous
DOFs, such as the amplitude and phase of the electromagnetic field quadratures, 𝑄̂
and 𝑃̂. The Hamiltonian density (H ) of an electromagnetic field can be expressed
in terms of the 𝑄̂ and 𝑃̂ quadratures as,

H =
1
2
(𝑃̂2 + 𝜔2𝑄̂), 𝑃̂ =

𝑖(𝑎̂ − 𝑎̂†)
√

2
, 𝑄̂ =

(𝑎̂ + 𝑎̂†)
√

2
(2.13)

where 𝑎̂ and 𝑎̂† are the pair of bosonic annhiliation and creation operators satisfying
[𝑎̂†, 𝑎̂] = 1, such that [𝑄̂, 𝑃̂] = 𝑖. Quantum states can be described as a function of
the quadrature observables 𝑄 and 𝑃 in phase space by the Wigner quasiprobability
distribution, 𝑊 (𝑄, 𝑃). Gaussian states of light, characterized by Gaussian Wigner
distributions, are commonly used as carriers of CV information due to their ease of
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generation. The Wigner distributions of Gaussian states such as vacuum, coherent,
and squeezed states are illustrated in Fig. 2.4, where the widths of the distributions
are constrained by the Heisenberg uncertainty principle, Δ𝑄Δ𝑃 ≥ 1/4. Vacuum and
coherent states are represented by symmetric Gaussian distributions in phase space
that saturate the uncertainty principle with Δ𝑄2 = Δ𝑃2 = 1/2. Squeezed states are
represented by ellipical Gaussian distributions in phase space characterized by a
“squeezed” quadrature (𝑄) and “antisqueezed” quadrature (𝑃), where the squeezed
quadrature exhibits an uncertainty below (Δ𝑄2 < 1/2) and the antisqueezed quadra-
ture exhibits an uncertainty above (Δ𝑃2 > 1/2) the vacuum quadrature uncertainty.
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Figure 2.4: Wigner quasiprobability distribution 𝑊 (𝑄, 𝑃) for a) the vacuum state,
b) a coherent state with 𝛼 = 2.5 and 𝜃 = 𝜋/4, c) a squeezed vacuum state with 𝑟 = 1,
where 𝑄 is the squeezed quadrature and 𝑃 is the antisqueezed quadrature.

Squeezing Squeezed states form an essential resource for many CV quantum pro-
tocols, including sub-shot noise sensing, CV quantum teleportation, and measurement-
based quantum computing. Mathematically, squeezed states can be described by
the action of the squeezing operator, 𝑆1(𝑟), on the vacuum state, [28],

𝑆1(𝑟) |0⟩ = exp
(
𝑟𝑎̂2 − 𝑟∗𝑎̂†2

2

)
|0⟩ , (2.14)

where the squeezing parameter 𝑟 determines the amount of squeezing and 𝑎̂ and 𝑎̂†

are the bosonic ladder operators satisfying [𝑎̂†, 𝑎̂] = 1. The action of the squeezing
operator can be modeled as the evolution of the vacuum state under the Hamiltonian,

𝐻̂1 = 𝑖ℏ𝛼(𝑟𝑎̂2 − 𝑟∗𝑎̂†2)/2, (2.15)
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with time 𝑡 = 𝑟/𝛼 such that 𝑆1(𝑟) = exp
(
−𝑖𝐻̂1𝑡/ℏ

)
. In the Heisenberg picture, the

ladder operators evolve as,
𝑑𝑎̂

𝑑𝑡
=
𝑖

ℏ
[𝐻̂1, 𝑎̂] = −𝛼𝑎̂† (2.16)

𝑑𝑎̂†

𝑑𝑡
=
𝑖

ℏ
[𝐻̂1, 𝑎̂

†] = −𝛼𝑎̂. (2.17)

After evolution over a time 𝑡 = 𝑟/𝛼, the ladder operators are transformed as,

𝑎̂(𝑟) = 𝑎̂(0) cosh 𝑟 − 𝑎̂†(0) sinh 𝑟, (2.18)

𝑎̂†(𝑟) = 𝑎̂†(0) cosh 𝑟 − 𝑎̂(0) sinh 𝑟, (2.19)

referred to as a Bogoliubov transformation. The quadrature operators are trans-
formed as,

𝑄̂(𝑟) = 1
√

2
(𝑎̂(𝑟) + 𝑎̂†(𝑟)) = 𝑄̂(0)𝑒−𝑟 , (2.20)

𝑃̂(𝑟) = 1
𝑖
√

2
(𝑎̂(𝑟) − 𝑎̂†(𝑟)) = 𝑃̂(0)𝑒𝑟 , (2.21)

which corresponds to squeezing of 𝑄̂ by a factor of 𝑒−𝑟 and antisqueezing of 𝑃̂ by a
factor of 𝑒𝑟 .

The state generated by 𝑆1 in Eq. 2.14 is a single mode squeezed vacuum (SMSV)
state,

|SMSV⟩ = 𝑆1(𝑟) |0⟩ =
∞∑︁
𝑛=0

(−1)𝑛
√︄

𝜇𝑛

(1 + 𝜇)𝑛+1 |2𝑛⟩ (2.22)

≈ |0⟩ − √
𝜇 |2⟩ + O(𝜇), 𝜇 ≪ 1 (2.23)

where 𝜇 = ⟨𝑎̂†(𝑟)𝑎̂(𝑟)⟩ = sinh2(𝑟) is the mean photon number. The two-mode
squeezed vacuum state (TMSV) is generated by the action of the squeezing operator
𝑆2(𝑟) on the vacuum state,

|TMSV⟩ = 𝑆2(𝑟) |0⟩ = exp

(
𝑟𝑎̂1𝑎̂2 − 𝑟∗𝑎̂†1𝑎̂

†
2

2

)
|0⟩ , (2.24)

=

∞∑︁
𝑛=0

(−1)𝑛
√︄

𝜇𝑛

(1 + 𝜇)𝑛+1 |𝑛⟩ |𝑛⟩ , (2.25)

≈ |0⟩ |0⟩ − √
𝜇 |1⟩ |1⟩ + O(𝜇), 𝜇 ≪ 1, (2.26)

which is expanded in the Fock basis in Eq. 2.25. The squeezing operator 𝑆2(𝑟) has
the associated Hamiltonian 𝐻̂2 = 𝑖ℏ𝛼(𝑟𝑎̂1𝑎̂2 − 𝑟∗𝑎̂†1𝑎̂

†
2)/2, which corresponds to the

SPDC interaction Hamiltonian in Eq. 2.3.
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Squeezed states of light can be prepared experimentally by nonlinear optical pro-
cesses such as SPDC and SFWM. SMSV states can be produced by degenerate
SPDC with collinear phase matching, for instance using a type-0 SPDC source, and
TMSV states can be produced by non-degenerate SPDC, for instance using a type-I
or type-II SPDC source. The experimental generation of single-mode squeezed
light at telecom wavelength using commerically-available, fiber-coupled compo-
nents is illustrated in Fig. 2.5a. To extract information encoded in the quadratures,
quadrature measurements are typically performed using balanced homodyne detec-
tion (BHD) [29, 30]. In homodyne detection, a weak signal field (𝑎̂) is interfered
with a strong local oscillator (𝑏̂) at a 50:50 beamsplitter, and the light from each
output,

𝑐 =
1
√

2
(𝑎̂ + 𝑏̂), (2.27)

𝑑 =
1
√

2
(𝑎̂ − 𝑏̂), (2.28)

is detected by a photodiode (PD). The current from each photodiode is proportional
to the mean photon number of the incident light,

⟨𝑖𝑐⟩ ∝ ⟨𝑐†𝑐⟩ = ⟨𝑎̂†𝑎̂⟩ + ⟨𝑎̂†𝑏̂⟩ + ⟨𝑏̂†𝑎̂⟩ + ⟨𝑏̂†𝑏̂⟩
2

, (2.29)

⟨𝑖𝑑⟩ ∝ ⟨𝑑†𝑑⟩ = ⟨𝑎̂†𝑎̂⟩ − ⟨𝑎̂†𝑏̂⟩ − ⟨𝑏̂†𝑎̂⟩ + ⟨𝑏̂†𝑏̂⟩
2

. (2.30)

The photodiodes are in a balanced configuration where the photocurrents are sub-
tracted, resulting in an output current proportional to the quadrature of the signal
field,

⟨𝑖𝑐 − 𝑖𝑑⟩ ∝
⟨𝑏̂†𝑎̂⟩ + ⟨𝑎̂†𝑏̂⟩

√
2

≈ |𝛽 |⟨𝑄̂(𝜃)⟩, (2.31)

where 𝑄̂(𝜃) = (𝑎̂𝑒−𝑖𝜃+𝑎̂†𝑒𝑖𝜃)/
√

2. The approximation is taken in the limit of a strong
local oscillator in a coherent state |𝛽⟩, using the substitution 𝑏̂ → |𝛽 |𝑒𝑖𝜃 where 𝜃 is
the relative phase of the signal and local oscillator. States of the signal field can be
probed in phase space by sweeping the phase of the local oscillator, where setting
𝜃 = 0 and 𝜃 = 𝜋/2 corresponds to projections onto 𝑄̂ and 𝑃̂, respectively. The state
of the signal field can reconstructed by measuring the BHD output with a signal
analyzer and acquiring quadrature statistics over various phases from 𝜃 = [0, 2𝜋] to
form a tomographically complete set of measurements. An simulation of quadrature
statistics for a squeezed vacuum state measured using an oscilloscope over various
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phases is shown in Fig. 2.5b. The amount of squeezing can be characterized by
comparing the measured quadrature variance of the squeezed state to that of the
vacuum state. For a squeezed vacuum state, the quadrature mean is ⟨𝑄̂𝜃⟩ = 0, and
the quadrature variance is,

⟨Δ𝑄̂2
𝜃⟩ =

1
2
(𝑒−2𝑟 cos2 𝜃 + 𝑒2𝑟 sin2 𝜃). (2.32)
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Figure 2.5: Generation of single-mode squeezed vacuum light at telecom wavelength
with fiber-coupled components. a) Experimental setup. b)-d) Numerical simulation
of quadrature statistics obtained from time-domain analyzer for a linear phase ramp
applied to the LO. b) Quadrature samples as a function of time (phase) for a vacuum
state (orange) and a squeezed vacuum state with a squeezing parameter of 𝑟 = 1
and measurement efficiency of 𝜂 = 0.8 (blue). c) Sample means and d) normalized
sample variances as a function of time. The sample variances are normalized to
the mean of the vacuum sample variances. The solid lines in c) and d) are the
corresponding analytic predictions for the quadrature means and variances.

2.3 Detectors
Single-photon detectors

Quantum networks rely on high-fidelity single-photon detectors for state prepara-
tion and measurement. An optimal single-photon detector for quantum networking
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Figure 2.6: Photon-number-resolving superconducting nanowire detector. a) Opti-
cal micrograph of differential single-pixel superconducting nanowire single-photon
detector.a b) Bottom: Measurement of RF readout pulses from impedance-matched
tapered nanowire with oscilloscope in persistent mode. Photon number is encoded
in the amplitude and slew rate of RF pulses. RF pulses are readout to a time-tagger
with a constant voltage discriminator, where the variation in slew rate results in a
variation of the registered time-tag. Top: Distribution of time-tags relative to a
clock signal. Higher photon numbers correspond to higher slew rates and lower
time-delays relative to the clock. Distinct Gaussian distributions of time-tags cor-
responding to photon number events are resolved up to 5 photons.

aReprinted figure with permission from M. Colangelo, B. Korzh, J.P. Allmaras, A.D. Beyer,
A.S. Mueller, R.M. Briggs, B. Bumble, M. Runyan, M.J. Stevens, A.N. McCaughan, and D.
Zhu, “Impedance-matched differential superconducting nanowire detectors.” Physical Review Ap-
plied, 19(4), p.044093. 2023. DOI: https://doi.org/10.1103/PhysRevApplied.19.044093.
Copyright 2025 by the American Physical Society.

https://doi.org/10.1103/PhysRevApplied.19.044093
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would couple unity efficiency with gigahertz-rate operation, picosecond timing jit-
ter, negligible dark counts, and the ability to discriminate large photon numbers with
high fidelity at telecom wavelengths [31, 32]. Transition-edge sensors [33, 34, 35,
36, 37] and MKIDs [38, 39] offer inherent photon-number-resolving (PNR) capabil-
ity with high efficiency and low dark count rates, but their kilohertz-scale speeds and
sub-Kelvin cooling conflict with the multi-gigahertz clock rates and field-deployable
cryocoolers envisioned for regional links. Superconducting nanowire single-photon
detectors (SNSPDs) are the leading detectors at telecom wavelengths, with up to
98% system efficiency [40], ultra low dark counts in the milli- to micro-hertz
range [41], count rates > 100 MHz per nanowire [42], sub-3ps timing jitter [43],
and nanosecond reset times [44] demonstrated in the literature (see Fig. 2.6). In
an SNSPD, a photon absorbed by a superconducting nanowire generates a time-
dependent resistive hotspot, which results in a readout pulse at RF. SNSPDs are
routinely used for quantum communication and already meet the speed, jitter, and
operating-temperature targets for quantum networking; substantial efforts are un-
derway to add PNR functionality to SNSPDs to complete the optimal detector
performance set.

Recent progress in PNR SNSPDs follows two complementary paths. Microwave-
engineered single pixel detectors use on-chip impedance-matching tapers to enhance
the detector’s signal-to-noise ratio so that the RF output pulse varies with photon
number [45], allowing for the discrimination of up to five photons with an individ-
ual nanowire [46] while preserving picosecond-level timing and high count rates
(see Fig. 15). Photon number can be extracted from the output pulse amplitude
[47, 45, 48] or slew-rate [49] variation. The latter approach requires only a con-
stant threshold voltage discriminator [27], which suitable for real-time readout with
commercial time-taggers for scalable networking. A differential readout architec-
ture optimizes the design of impedance-matched devices by canceling geometric
delay-line contributions to the jitter, enabling low-jitter and large active area single
pixel detectors with PNR capabilities [47]. Alternatively, quasi- photon number
resolution can be achieved by spatial [50, 51, 52] or temporal [53, 54] multiplexing
of detectors without requiring intrinsic PNR per pixel. To resolve photon number
with high fidelity, the number of spatial or temporal bins needs to be significantly
larger than the number of input photons, typically at the expense of increased com-
plexity and low detection rate. Scalable waveguide-integrated arrays of nanowires
connected in parallel [55, 56, 57] or series [58] extend the photon-count ceiling
without sacrificing speed, enabling photon counting with high dynamic range. Re-
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cent demonstrations include 1.5 GHz aggregate rates for a 14-pixel distributed array
at 90% system efficiency [42] and a monolithic 100-pixel detector array that resolves
0–100 photons per pulse with sub-nanosecond reset time [59].

Balanced homodyne detectors
In addition to single-photon detectors, low noise and high bandwidth BHDs are
needed to measure quadrature information in CV protocols, such as Gaussian-
modulated CV quantum key distribution (QKD) [60], measurement-based quantum
computing [61, 62], sub-shot noise quantum sensing [63]. Together, PNRD and
BHDs form a complete detector set for universal fault-tolerant quantum computing
[64, 65] as well as hybrid DV and CV protocols such as deterministic quantum
teleportation [66].

The ideal BHD combines near-unity quantum efficiency, low optical loss, low elec-
tronic noise, > 1 GHz bandwidth, high common-mode rejection, and stable phase
locking for real-time operation at telecom wavelengths.Although high quantum ef-
ficiencies ∼ 99% [67] have been demonstrated with traditional BHDs using discrete
photodiodes and bulk optics, they face challenges in scalability and phase-stability,
particularly for large-scale systems [68] and field-deployable quantum networks.
Recent progress in integrated quantum-limited BHDs addresses these limitations by
leveraging integrated photonic platforms [69, 70], such as silicon photonics [71] and
lithium niobate on insulator (LNOI) [72], for monolithic integration of the beam-
splitter, phase shifter, and photodiodes on a chip (see Fig. 2.7). By integrating
all on components on chip in a compact-form factor, photonic integrated circuits
(PICs) can achieve high phase stability and scalability with high bandwidth elec-
tronic readout. In particular, silicon photonics enables large scale integration at
telecom wavelengths [73, 74], with systems demonstrated with several thousands
of components on chip [75], as well as interfacing with silicon electronics, such
as low-noise transimpedance amplifiers (TIAs) and electronic integrated circuits
(EICs), for readout and post-processing [76].

The use of integrated BHDs is increasingly motivated by the demands of large-scale
quantum networks, where long-distance coherent communication over deployed
telecom infrastructure requires detectors with low noise, high stability, and high
bandwidths to enable high-speed quadrature measurements and phase tracking in
the presence of channel dispersion and loss [79]. On-chip BHDs with co-integrated
transimpedance amplifiers enable the highest achievable bandwidths by minimizing
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Figure 2.7: On-chip balanced homodyne detectors. a) Packaged die photo of an on-
chip balanced homodyne detector from Gurses et al. (2023) [77]. b) Packaged die
photo of photonic-electronic system for balanced homodyne detection from Gurses
et al. (2024) [78]. The photonic chip contains a quantum-limited coherent receiver
and wirebonded to the electronic chip with a transimpedance amplifier for readout.

parasitic capacitance and inductance, reducing interconnect lengths, and allowing
co-design of the photodiode and amplifier circuitry. In contrast to bulk or discrete-
component BHDs, where bandwidth is typically limited to the kHz-MHz range
[80] due to long wirebonds, PCB traces, and large photodiode capacitance, inte-
grated implementations eliminate these bottlenecks, preserve the amplifier’s gain-
bandwidth product, and enable multi-GHz operation [81]. Integration also allows
precise impedance control, reduces signal degradation, and improves thermal and
mechanical stability, making it essential for high-speed quantum optics applications
requiring GHz-scale shot-noise-limited detection. For example, in CV-QKD and
quantum random number generation (QRNG), high bandwidths directly translate
to increased secure key rates and entropy generation, respectively. In quantum
networks, integrated BHDs will be essential to meet the rate and distance require-
ments for metropolitan and backbone-level quantum repeaters, trusted-node links,
and distributed quantum sensing architectures.

2.4 Heralded single-photon sources
Heralding of single photons is a common approach to produce spectrally tunable
and indistinguishable photons with high purity and bandwidths. A bulk optical
nonlinearity is used to probabilistically emit photon pairs via a 𝜒(2) or 𝜒(3) process,
where an individual photon (in a signal mode) is “heralded” by the detection of
the other photon (in an idler mode). Typically, a threshold detector is used to
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discriminate between the presence of vacuum and at least one photon in the idler
mode, which heralds the presence of photons in the signal mode. Heralding rates
of ∼ 104 − 105 pairs/s [82], system efficiencies of 20 − 30% [82, 83], and 𝑔2(0)
∼ 0.02 − 0.05 [84, 18] have been demonstrated using bulk single pass SPDC
sources and avalanche photodiode detectors. Spatial and spectral mode engineering
can be employed to optimize the efficiency and purity, with demonstrations of up
to 60% system efficiency using waveguides [84] and cavity-enhanced collection
efficiency [85] as well as > 0.90 spectral factorability via pulse engineering [84]
and narrowband filtering [85]. However, the emission of multiphoton pairs that
contaminate the heralding restrict single-photon generation to low probability (e.g.,
𝜇 ∼ 10−3 in practice). The probability of 𝑛 emitted photon pairs follows the thermal
distribution, 𝑃(𝑛) = 𝜇𝑛/(1 + 𝜇)𝑛+1. Therefore, there is a trade-off in the single-
photon heralding rate∼ 𝜇 and single-photon fidelity due non-negligible multiphoton
pair production probability 𝑃(𝑛 > 1) for increased 𝜇 [86].

Improving HSPS with PNR SNSPD
To overcome this challenge, a photon-number-resolving (PNR) detector can be used
to filter out multiphoton pair events by discriminating the presence of vacuum, one
photon, or multiple photons. By excluding multiphoton events at the idler mode,
PNR detectors enable the heralding of single photons with high fidelities. Due to
their combination of high detection efficiency, low dark counts, fast recovery time,
and low jitter, PNR SNSPDs are desirable for heralding single photons at high rates.
In Chapter 3, I report the first demonstration of heralding single photons with a PNR
SNSPD. Using an efficient and low noise photon-number-resolving superconducting
nanowire detector we herald, in real time, a single photon at telecommunication
wavelength. We perform a second-order photon correlation 𝑔2(0) measurement of
the signal mode conditioned on the measured photon number of the idler mode
for various pump powers and demonstrate an improvement of a heralded single-
photon source. We develop an analytical model using a phase-space formalism
that encompasses all multiphoton effects and relevant imperfections, such as loss
and multiple Schmidt modes. We perform a maximum-likelihood fit to test the
agreement of the model to the data and extract the best-fit mean photon number 𝜇
of the pair source for each pump power. A maximum reduction of 0.118 ± 0.012 in
the photon 𝑔2(0) correlation function at 𝜇 = 0.327 ± 0.007 is obtained, indicating
a strong suppression of multiphoton emissions. For a fixed 𝑔2(0) = 7 × 10−3, we
increase the single pair generation probability by 25%. Our experiment, built using
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fiber-coupled and off-the-shelf components, delineates a path to engineering ideal
sources of single photons.

2.5 Entanglement distribution
High-fidelity entanglement distribution is an essential functionality of quantum net-
works. Entanglement is a key resource for a range of quantum communication pro-
tocols, including entanglement-based QKD, Bell tests and quantum teleportation.
By splitting photon pairs produced by SPDC, entangled photons can be distributed
to distant nodes over long distances in optical fiber or free space. However, experi-
mental imperfections such as multiphoton noise and loss degrade the state fidelity of
entangled photons over long distances. To evaluate the fidelity of distributed entan-
glement, the entanglement visibility is a commonly used metric. The experimental
setup for the characterization of entanglement visibility with time-bin entangled
photon pairs is illustrated in Fig. 2.8. Interferometers are used perform projective
measurements on time-qubits. By measuring counts in the first and third bins at
the output of interferometer, project on computational (Pauli Z) basis states E and
L, respectively. By measuring counts in the middle bins, project onto phase basis
state of the form ( |𝑒⟩ + 𝑒𝑖𝜑 |𝑙⟩)/

√
2, where 𝜑 is set tuning the the interferometric

phase. Projections onto the Pauli X basis states ( |𝑒⟩ ± |𝑙⟩)/
√

2 and Pauli Y basis
states ( |𝑒⟩ ± 𝑖 |𝑙⟩)/

√
2 by setting 𝜑 = ±𝜋/2 and 𝜑 = 0, 𝜋, respectively.

At Alice and Bob, counts measured in individual bins correspond to projections
onto the mixed state

𝜌𝐴(𝐵) = Tr𝐵(𝐴) [𝜌], (2.33)

which is obtained by tracing out Bob’s (B) and Alice’s (A) subsystem, respectively,
from the overall state 𝜌 ≈ |Φ+⟩ ⟨Φ+ |. This yields

𝜌𝐴(𝐵) =
1
2
( |𝑒⟩ ⟨𝑒 | + |𝑙⟩ ⟨𝑙 |) = 1

2
I2. (2.34)

Therefore, counts measured in individual bins at Alice and Bob do not vary with
𝜑, reflecting that each qubit individually carries no information—only their joint
correlations are pure and maximally entangled. The phase-dependent quantum
correlations are exhibited in the coincidence counts between the middle bins at
Alice and Bob1,

𝐶𝐴𝐵 (𝜑) ∝ Tr[𝜌 |𝜑⟩ ⟨𝜑 |𝐴 ⊗ |𝜑⟩ ⟨𝜑 |𝐵] =
1
2

cos2 𝜑, (2.35)

1The coincidence counts between the first and third bins at Alice and Bob are constant (since
Tr[𝜌 |𝑒⟩ ⟨𝑒 |𝐴 ⊗ |𝑒⟩ ⟨𝑒 |𝐵] = 1/2 and Tr[𝜌 |𝑙⟩ ⟨𝑙 |𝐴 ⊗ |𝑙⟩ ⟨𝑙 |𝐵] = 1/2).
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where |𝜑⟩ = ( |𝑒⟩ + 𝑒𝑖𝜑 |𝑙⟩)/
√

2. The entanglement visibility is defined as

𝑉ent =
𝐶max
𝐴𝐵

− 𝐶min
𝐴𝐵

𝐶max
𝐴𝐵

+ 𝐶min
𝐴𝐵

. (2.36)

The entanglement visibility 𝑉ent quantifies the contrast of phase-dependent quan-
tum correlations and ranges from 0 (no coherence) to 1 (perfect entanglement).
Assuming the shared bipartite state can be modeled as a Werner state [87], the
entanglement visibility directly relates to the fidelity with respect to the target Bell
state as 𝐹 = 1

4 (1 + 3𝑉ent). In this model, separable states satisfy the classical
bound 𝑉ent ≤ 1/3 , while any visibility above this threshold certifies the presence of
quantum entanglement. However, not all entangled states exhibit nonlocal correla-
tions strong enough to violate a Bell inequality. Bell non-locality is only observed
when 𝑉ent > 1/

√
2, which corresponds to violation of the CHSH inequality [88].

For applications in device-independent quantum key distribution (DI-QKD), even
higher visibility is required to ensure robustness against noise and detector inef-
ficiencies, with typical experimental thresholds around 𝑉ent ≳ 0.78 [89]. These
visibility bounds thus provide operational criteria for certifying entanglement and
nonclassical correlations directly from interference fringe measurements.
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Figure 2.8: Experimental setup for measuring the entanglement visibility of time-
bin qubits.

High-rate multiplexed entanglement source
Quantum networks require high-rate sources of entanglement that can maintain high
entanglement visibilities over long distances. High entanglement generation rates
are essential for overcoming photon losses in long-distance fiber or free-space links,
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maintaining synchronization across the network, and providing high throughput for
quantum communication protocols. In Chapter 5, I report a high-rate multiplexed
entanglement source based on time-bin qubits for advanced quantum networks. We
demonstrate a 4.09 GHz repetition rate source of photon pairs entangled across
early and late time bins separated by 80 ps. Simultaneous high rates and high
visibilities are achieved through frequency multiplexing the spontaneous parametric
down-conversion output into 8 time-bin entangled channel pairs. We demonstrate
entanglement visibilities as high as 99.4%, total entanglement rates up to 3.55×106

coincidences/s, and predict a straightforward path towards achieving up to an order
of magnitude improvement in rates without compromising visibility. Finally, we
resolve the density matrices of the entangled states for each multiplexed channel
and express distillable entanglement rates in ebit/s, thereby quantifying the tradeoff
between visibility and coincidence rates that contributes to useful entanglement
distribution. This source is a fundamental building block for high-rate entanglement-
based QKD systems or advanced quantum networks.

2.6 On-chip squeezed light detection
On-chip BHDs have been demonstrated with shot noise clearance exceeding 14 dB,
bandwidths above 2.5 GHz, and total detection losses below 3.5 dB for Gaussian-
modulated CV-QKD [90, 91, 92, 93] and quantum random number generation [94,
95, 96]. However, most demonstrations have been limited to the measurement of
coherent or vacuum states, which have less stringent performance criteria compared
to genuinely non-classical states. In particular, the detection of squeezed states,
which are central to sub-shot-noise-limited sensing and continuous-variable cluster
state generation for measurement-based quantum computing, is highly sensitive
to both optical loss and effective loss from electronic noise [97, 98]. Moreover,
there is a trade-off between shot noise clearance and bandwidth: increasing the
transimpedance gain improves SNC by reducing input-referred noise, but narrows
the bandwidth due to larger RC time constants. Conversely, widening the bandwidth
by lowering gain increases electronic noise, thereby degrading sensitivity to quantum
correlations.

To address these challenge, we develop integrated BHDs for the detection of non-
classical light. First, we measure squeezed light with the on-chip BHD depicted
in Fig. 2.7a and an off-chip TIA to measure squeezed light and demonstrate phase
locking of squeezing on-chip [77]. Then, we design a photonic-electronic integrated
circuit, which we refer to as a quantum-limited coherent receiver (QRX), for on-
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chip detection of squeezed light with an on-chip TIA for readout [78]. The QRX
is depicted in Fig. 2.7b. The QRX is optimized across various performance met-
rics: detection loss, common-mode rejection ratio (CMRR), shot-noise clearance
(SNC), and bandwidth [77, 78].The CMRR quantifies the ability of the detector
to suppress common-mode classical noise, particularly from the local oscillator,
due to imbalance in the directional coupler of photodiode configuration. The SNC
quantifies the ratio of quantum shot noise to electronic noise, where the LO knee
power (𝑃knee) is the minimum LO power required for the shot noise to exceed the
electronic noise floor. The detection bandwidth is quantified by the 3dB bandwidth
(BW3dB) and shot noise-limited bandwidth (BWshot), which are the frequencies at
which the optoelectronic gain drops by 3 dB from its low-frequency value and at
which the quantum signal becomes equal to the electronic noise, respectively. The
characterizations for the on-chip BHD (Gurses et al. (2023) and the QRX (Gurses
et al. (2024)) are summarized in Table 2.1.

Reference Loss CMRR SNC 𝑷knee 𝑩𝑾3dB 𝑩𝑾shot PIC/EIC

Porto et al. (2018) [99] — — 17 dB 199 𝜇W 7 MHz — Y*/N
Tasker et al. (2021) [100] 3.3 dB 61 dB 14 dB 200 𝜇W 1.7 GHz 9 GHz Y/Y
Gurses et al. (2023) [77] 5.4 dB 20.4 dB 26 dB 34.6 𝜇W 3 MHz 24.3 MHz Y/N
Gurses et al. (2024) [78] 2.7 dB 92.3 dB 14.5 dB 315 𝜇W 2.57 GHz 3.50 GHz Y/Y

Table 2.1: Comparison of quantum-limited BHDs on chip with demonstrated non-
classical light detection. *Photodetectors not integrated.

On-chip squeezed light detection with phase-locking
With the integrated coherent receiver chip, we measured squeezed light and demon-
strated an easy-to-deploy phase-locking approach to lock onto the squeezed quadra-
ture with the setup shown in Fig. 2.9a. Squeezed vacuum states were generated
with a periodically-poled lithium niobate (PPLN) waveguide and fiber-coupled to
the chip. Noise floor oscillations in the output with 4 Hz LO phase modulation
were measured with an electrical spectrum analyzer (ESA). A 100-second trace
was recorded for both squeezed vacuum states (red) and vacuum states (black). A
1-second section of this data is shown in Fig. 2.9b. Over 100 seconds, noise floors
0.226 ± 0.096 dB below and 0.408 ± 0.146 dB above shot noise level (SNL) were
observed.

Phase locking in quantum coherent receivers is necessary for maintaining sub-
shot-noise-limited sensitivities with squeezed light and enabling phase-determinate
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Figure 2.9: On-chip detection of squeezed light with optical phase locking. a) Setup
with the silicon photonic receiver for squeezed light measurements. b) Oscillations
between quadratures of the squeezed vacuum. Red crosses signify the squeezed
quadrature. c) Demonstration of phase locking to the squeezed quadrature showing
the noise floor (top) and modulator voltage (bottom)

quantum state tomography. A software-based phase-locking process can be useful
for easily deploying coherent quantum links without the need for additional hardware
in a quantum coherent transceiver system. Therefore, a phase-locking algorithm
was employed to phase-lock the squeezed vacuum detected on-chip to its squeezed
quadrature. The algorithm utilizes the phase modulator to do a 𝜋 phase sweep and
finds the phase voltage setting for the squeezed quadrature. The voltage setting is
then applied to set the phase to the squeezed quadrature. This procedure is repeated
at 67 Hz, as shown in Fig. 2.9c. This closed-loop phase locking approach enables
sustained operation at sensitivities below the shot noise floor.

High bandwidth on-chip squeezed light detection
The QRX was used to measure squeezed vacuum to demonstrate sub-shot-noise
level operation up to 3.5 GHz with integrated electronic TIA. The experimental
setup is shown in Fig. 2.10b. Squeezed vacuum states were generated with a PPLN
waveguide and fiber-coupled to the photonic chip with a V-groove array. Noise
floor oscillations in the output with 1 Hz LO phase modulation were measured with
a spectrum analyzer at different sideband frequencies up to the shot-noise-limited
bandwidth Fig. 2.10c. Thirty-second traces were recorded for both squeezed
vacuum states (red) and vacuum states (black) at each frequency. A ten-second
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section of the data measured at 1.17 GHz is shown in Fig. 2.10d. After data
collection, a peak search algorithm was used to acquire the noise level for squeezed
and anti-squeezed quadratures normalized to the shot noise level (SNL) at each
frequency. A maximum squeezed noise of 0.156 ± 0.039 dB below the SNL and a
maximum anti-squeezed noise of 0.507 ± 0.052 above the SNL were observed, see
Fig. 2.10e.

While we were limited by the source and tabletop component losses in the squeezed
light measurements, on-chip loss sets the bound on how much squeezing can be
observed with the QRX. The on-chip system loss comprises the optical losses and
the optoelectronic loss determined by the shot noise clearance and PD quantum
efficiency (QE). The QRX has a total optical loss of 2.7 dB with 1.3 dB from edge
couplers, 1.4 dB from PD QE, and a negligible amount of loss from the TOPS, MZI,
and routing. As shown in Fig. 2.10c, the shot noise clearance is also greater than 10
dB up to 2.24 GHz. Therefore, the system loss is at most 3 dB over the bandwidth
of the receiver, enabling sensitivities of 3 dB below the SNL.

The packaged photonic-electronic QRX enables a path toward the deployment of
quantum-limited coherent receivers in optical communication and sensing networks.
Due to its compact size, high CMRR, highest reported 3-dB bandwidth and lowest
reported system loss in the literature, it introduces the prospect of leveraging non-
classical states of light to enhance the information capacity and sensitivity of optical
links. With the demonstration of high shot-noise-limited bandwidth and detection of
squeezed vacuum showcasing an enhancement in the SNL, this work highlights the
potential of leveraging non-classical light and deploying quantum coherent receivers
in classical optical networks in addition to preparing an infrastructure suitable for
quantum communications.

Multiplexed BHD array on-chip for squeezed light detection
Beyond single component demonstrations, the next major milestone for CV quantum
technologies is to develop large-scale quantum photonic systems on-chip, enabling
massively parallelized operations with precise control in a compact form factor.
While bulk optical experiments have demonstrated foundational protocols, they do
not scale to the system sizes required for advanced and practical implementations of
quantum technologies, such as computational quantum advantage or fault-tolerant
error correction. Silicon photonics offers a CMOS-compatible platform that al-
lows wafer-scale fabrication of stable, programmable optical circuits incorporating
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Figure 2.10: On-chip detection of squeezed light with a photonic-electronic inte-
grated circuit. a) Die photo of photonic integrated circuit (PIC) for the quantum-
limited coherent receiver (QRX) with high bandwidth photodiodes and electronic
integrated circuit (EIC) for readout with a transimpedance amplifier (TIA). b) Setup
with the integrated photonic-electronic coherent receiver for squeezed light measure-
ments. c) Shot noise clearance response of the QRX with maximum LO photocur-
rent. d) Oscillations between quadratures of the squeezed vacuum measured at 1.17
GHz. Red crosses signify the squeezed quadrature. e) Quadrature noise normalized
to the shot noise level of vacuum for squeezed and anti-squeezed quadratures.

sources, circuits, and detectors on a single chip. Advanced CV quantum technolo-
gies will require quadrature measurements across many spatial or temporal modes,
critical for applications in distributed quantum sensing, measurement-based quan-
tum computing, and broadband quantum communication. Multiplexed BHD array
architectures have been proposed to boost rates in quantum random number genera-
tion (QRNG) and continuous-variable quantum key distribution (CV-QKD), enable
entanglement-enhanced distributed quantum sensing, and perform mode-selective
measurements in continuous-variable optical homodyne tomography. However, all
demonstrations of multiplexed BHD systems to date have relied on bulk optics.

In Chapter 6, I report the first array of quantum-limited BHDs capable of detecting
squeezed light on a silicon photonic chip. Scaling from a single QRX to a large-
scale system introduces several design challenges, including minimizing electrical
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parasitics to avoid RF oscillations, ensuring signal integrity across all channels,
and suppressing electronic and optical crosstalk between densely packed channels.
Using the QRX design in Fig. 2.7b as a blueprint, we spatially multiplex 32 QRXs on
a silicon photonic chip. The outputs of the QRXs are wire-bonded to an interposer
on a compact PCB containing an array of 32 discrete TIAs. We mitigate these
challenges with a careful co-design between the photonic chip layout and electronic
readout circuit. As described in the next section, the QRX array is incorporated
into a larger system on the same chip, which is designed to demonstrate the basic
functionalities required for chip-based wireless quantum technologies.

2.7 Quantum phased arrays
The expansion from wired to wireless links is an exciting prospect for integrated
quantum technologies. For classical technologies, the advent of phased arrays en-
abled directional and adaptive wireless links by manipulating electromagnetic waves
over free space. In a point-to-point wireless communication link, a transmitter en-
codes a signal in a beam of electromagnetic radiation that is sent to a receiver.
The spot size of the beam spreads with distance due to diffraction, resulting in
geometric loss from the overlap of the diverging spot size and the receiver aper-
ture area. Diffraction-induced geometric loss can result in severe signal loss that
ultimately limits the range and rate of communication [101, 102, 103, 104]. In
classical wireless communications and sensing, beam divergence is controlled by
wavefront engineering with transmitter or receiver phased arrays. A phased array
is a coherent array of antenna elements that can transmit or receive electromagnetic
fields. By controlling the amplitude and phase on each element, the wavefront of
the electromagnetic field can be engineered over free space. Wavefront engineering
allows for active manipulation of an electromagnetic field in a dynamic real-time
fashion [105, 106]. Beamforming, or angular focusing, of an electromagnetic field
is performed by coherently combining elements in a phased array such that the
signal field constructively interferes at a selected angle [107].

Here I extend wavefront engineering to quantum fields with a concept referred
to as “quantum phased arrays.” A quantum phased array (QPA) is a quantum-
coherent array of antenna elements, each with phase and amplitude control, that
can emit or receive quantum fields. I show how beamforming with a QPA can
be used to establish reconfigurable wireless quantum links for free-space quantum
communications. More broadly, I demonstrate how to synthesize quantum states in
the far-field with a QPA and illustrate how free-space protocols can be constructed
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based on quantum state engineering with multiple QPAs.

Theory
A quantum field with annihilation operator 𝑎̂in is input to a QPA transmitter. The
field is distributed to 𝑁 channels with associated spatial mode functions,

𝑎̂in =

∫
𝑎̂in(𝜌)𝑑𝜌 (2.37)

𝑎̂in(𝜌), =
𝑁∑︁
𝑗=1
𝑎̂ 𝑗E 𝑗 (𝜌), (2.38)

where 𝑎̂ 𝑗 is the annhiliation operator for the 𝑗 th channel mode. In each channel,
a gain and phase shift is applied, followed by a radiation by an antenna. The
antennas have an associated set of mode functions {E 𝑗 (𝜌)}, where 𝑗 = 1, ..., 𝑁 and
the aperture coordinates are grouped into 𝜌. The channel modes are related to the
aperture spatial modes by,

𝑎̂ 𝑗 =

∫
E 𝑗 (𝜌)𝑎̂in(𝜌)𝑑𝜌, (2.39)

where 𝑎̂in(𝜌) is the creation operator for the field distributed to location 𝜌.

The field at the output of the aperture is,

𝑎̂out =

∫
𝑎̂out(𝜌)𝑑𝜌, (2.40)

𝑎̂out(𝜌) =
∑︁
𝑗

𝑔 𝑗𝑒
𝑖𝜙 𝑗 𝑎̂ 𝑗E 𝑗 (𝜌), (2.41)

where 𝑔 𝑗 is the gain and 𝜙 𝑗 is the phase applied to each channel mode 𝑎̂ 𝑗 .

In the small pixel and large 𝑁 limit, the pixel mode functions approach,

E 𝑗 (𝜌) ≈ 𝛿𝑑 (𝜌 − 𝜌 𝑗 ), (2.42)

where 𝛿𝑑 (𝜌) is the 𝑑 dimensional Delta function with 𝑑 denoting the coordinate
dimensions, 𝜌 𝑗 represents the coordinates of the center of the 𝑗 th pixel. In this limit,
𝑎̂ 𝑗 ≈ 𝑎̂in(𝜌 𝑗 )Δ𝜌 𝑗 where Δ𝜌 𝑗 is the surface area of the 𝑗 th pixel, and the output field
becomes,

𝑎̂out(𝜌) =
∑︁
𝑗

𝑔 𝑗𝑒
𝑖𝜙 𝑗 𝑎̂in(𝜌 𝑗 )𝛿𝑑 (𝜌 − 𝜌 𝑗 )Δ𝜌 𝑗 , (2.43)

≈
∫

𝑔(𝜌 𝑗 )𝑒𝑖𝜙(𝜌 𝑗 ) 𝑎̂in(𝜌 𝑗 )𝛿𝑑 (𝜌 − 𝜌 𝑗 )𝑑𝜌 𝑗 , (2.44)

= 𝑐(𝜌)𝑎̂in(𝜌), (2.45)
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where the sum in Eq. 2.43 becomes a Riemann sum over the antenna coordinates and
the applied gains {𝑔 𝑗 } and phases {𝜙 𝑗 } approach continuous gain 𝑔(𝜌 𝑗 ) and phase
𝜙(𝜌 𝑗 ) profiles, respectively. The gain and phase profiles give rise to a reconfigurable
array mode function, 𝑐(𝜌) = 𝑔(𝜌)𝑒𝑖𝜙(𝜌) , that can be used to engineer quantum states
at the focal plane of the QPA.

In the far field limit, the field at the aperture plane can be approximated in terms of
the field at focal plane by the Kirchhoff-Fresnel diffraction formula (see Methods in
Chapter 6),

𝑎̂out =

∫
𝑐(𝜌)𝑎̂in(𝜌)𝑑𝜌 ≈

∫
𝑐( 𝑓 )𝑎̂in( 𝑓 )𝑑𝑓 , (2.46)

where 𝑓 = sin 𝜃/𝜆 is the focal plane coordinate and the focal plane mode profile is,

𝑐( 𝑓 ) ∝
∫

𝑒𝑖2𝜋𝜌 𝑓 𝑐(𝜌)𝑑𝜌. (2.47)
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Figure 2.11: Quantum phased array transmitter. a) Conceptual diagram of a quan-
tum phased array transmitter. The QTX is a source of a quantum states of an
electromagnetic field 𝑎̂in, which is distributed across eight antenna elements. An
amplitude 𝑔𝑛 and phase shift 𝜑𝑛 is applied to each element, and the field from each
antenna with a mode function E𝑛 (𝜌) is radiated to free-space, where 𝑛 ∈ [1, 8].
b) Array factor for a uniform linear array of eight (blue), sixteen (orange), and 32
(green) elements, beamformed at broadside. c) Array factor for a uniform linear
array of 32 elements beamformed at broadside (blue), 30◦ (orange), and 60◦ (green).
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Array factor: Consider an 𝑁-element linear array with uniform amplitude and
spacing,

𝑎̂out(𝜌) =
𝑁∑︁
𝑗=1
𝑒𝑖𝜙 𝑗 𝑎̂ 𝑗E 𝑗 (𝜌). (2.48)

In the small pixel limit,

𝑎̂out ≈
∑︁
𝑗

𝑒𝑖𝜙 𝑗 𝑎̂in(𝜌 𝑗 )Δ𝜌 𝑗 , (2.49)

=

∫ ©­«
𝑁∑︁
𝑗=1
𝑒𝑖𝜙 𝑗𝛿(𝜌 − 𝜌 𝑗 )Δ𝜌 𝑗

ª®¬ 𝑎̂in(𝜌)𝑑𝜌. (2.50)

In terms of focal plane coordinates,

𝑎̂out ∝
∫ ©­«

𝑁∑︁
𝑗=1
𝑒𝑖(𝜙 𝑗+2𝜋𝜌 𝑗 𝑓 )ª®¬ 𝑎̂in( 𝑓 )𝑑𝑓 . (2.51)

The coefficients in parentheses is the modal profile of beam in focal plane and
corresponds to the array factor (AF) of the phased array [108],

AF( 𝑓 , 𝛽) =
𝑁∑︁
𝑗=1
𝑒𝑖(𝜙 𝑗+2𝜋𝜌 𝑗 𝑓 ) . (2.52)

For an array with a progressive phase Δ𝜙 applied to the antennas that are uniformly
spaced by a distance 𝑑, corresponding to 𝜙 𝑗 = Δ𝜙( 𝑗 − 1) and 𝜌 𝑗 = ( 𝑗 − 1)𝑑, the
array factor is [108],

AF( 𝑓 , 𝛽) = 𝑒𝑖[(𝑁−1)/2]𝜑


sin ( 𝑁2 𝜑)

sin
(

1
2𝜑

)  , (2.53)

where 𝜑 = Δ𝜙 + (2𝜋𝑑/𝜆) sin 𝜃. In normalized form, the array factor is,

AF𝑁 (𝜑) =
sin ( 𝑁2 𝜑)

𝑁 sin
(

1
2𝜑

) ≈ sinc
(
𝑁

2
𝜑

)
, (2.54)

where the approximation is taken in small 𝜑. The normalized array factor is plotted
in Fig. 2.11b for 𝑁 = 8, 16 and 32.

Beam steering: The maximum of AF𝑁 occurs when 𝜑 = 0 at,

𝜃max = arcsin (−𝜆Δ𝜙
2𝜋𝑑

). (2.55)

The beam maximum can be steered by varying the progressive phase Δ𝜙. The array
factor for various beam angles 𝜃max are shown in Fig. 2.11c.
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Beamwidth: The 3 dB point of the beam occurs for Eq. 2.54 when,

𝜃±ℎ = arcsin
[
𝜆

2𝜋𝑑

(
−Δ𝜙 ± 2.782

𝑁

)]
. (2.56)

The half-power beamwidth for a symmetrical pattern is Θℎ = 2|𝜃max − 𝜃−ℎ | [108].
For 𝑑 ≫ 𝜆, Θℎ ∼ 𝜆

𝑁𝑑
. The beamwidth scales inversely with the aperture width 𝑁𝑑.

For large 𝑁 , 𝑎̂out → 𝑎̂in( 𝑓max) where 𝑓max = sin (𝜃max)/𝜆.

Quantum state synthesis
For a target state in the focal plane, the coefficients for the aperture plane profile can
be found in terms of the desired focal plane coefficients as,

𝑐(𝜌) ∝
∫

𝑒−𝑖2𝜋𝜌 𝑓 𝑐( 𝑓 )𝑑𝑓 . (2.57)

Superposition states can be engineered by synthesizing multimode radiation pat-
terns. For an 𝑁-element uniform linear array, a two-mode superposition state can
be realized by,

𝑎̂out(𝜌) =
𝑁∑︁
𝑗=1

1
√

2

(
𝑒
𝑖𝜙𝐴

𝑗 + 𝑒𝑖𝛿𝑒𝑖𝜙
𝐵
𝑗

)
𝑎̂ 𝑗E 𝑗 (𝜌), (2.58)

where 𝜙𝐴
𝑗
= Δ𝜙𝐴 ( 𝑗 − 1) and 𝜙𝐵

𝑗
= Δ𝜙𝐵 ( 𝑗 − 1). The resulting array factor is the

superpositon of the array factors,

AF𝑁 =
1
√

2

(
AF𝑁 (𝜑𝐴) + 𝑒𝑖𝛿AF𝑁 (𝜑𝐵)

)
, (2.59)

which in the large 𝑁 limit approaches the superposition state,

𝑎̂out ≈
1
√

2
(𝑎̂in( 𝑓 𝐴) + 𝑒𝑖𝛿 𝑎̂in( 𝑓 𝐵)). (2.60)

This can be extended to arbitrary superposition states in the focal plane with nonuni-
form amplitudes in and relative phases. By using multiple QPAs to synthesize
superposition states and interfering them over free space, quantum information pro-
tocols for the generation and distribution of entanglement can be constructed for
quantum sensing and communication (see Fig. 2.12). In Appendix A, I provide two
illustrative examples of QPA protocols for realizing a reconfigurable beamplitter
and generating N00N states.
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Figure 2.12: Conceptual illustration of quantum communication with multiple
QPAs, where photons transmitted to Alice and Bob can be steered by reconfig-
uring their beams.

QPA receiver system on a chip
In Chapter 6, we used the QRX array discussed in Section 2.6 to realize a phased
array system on a chip that can receive, image and manipulate non-classical light
over free space. We demonstrate an integrated photonic-electronic system with more
than 1000 functional components on-chip to detect squeezed light. By integrating an
array of 32 sub-wavelength engineered metamaterial antennas, we demonstrate the
first, to our knowledge, direct free-space-to-chip interface for reconfigurable quan-
tum links. On the same chip, we implement the first, to our knowledge, large-scale
array of quantum-limited coherent receivers that can resolve non-classical signals si-
multaneously across 32 channels. With coherent readout and manipulation of these
signals, we demonstrate 32-pixel imaging and spatially configurable reception of
squeezed light over free space. Our work advances wireless quantum technologies
that could enable practical applications in quantum communications and sensing.
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C h a p t e r 3

IMPROVING A HERALDED SINGLE-PHOTON SOURCE WITH
A PHOTON-NUMBER-RESOLVING SUPERCONDUCTING

NANOWIRE DETECTOR

This chapter includes the work published as:

[1] Samantha I. Davis, Andrew Mueller, Raju Valivarthi, Nikolai Lauk, Lautaro
Narváez, Boris Korzh, Andrew D. Beyer, Olmo Cerri, Marco Colangelo, Karl K.
Berggren, et al. “Improved heralded single-photon source with a photon-number-
resolving superconducting nanowire detector.” In: Physical Review Applied 18.6
(2022), p. 064007.

3.1 Introduction
A challenge in quantum optical science and technology is the realization of an ideal,
i.e., deterministic, high-fidelity, tunable, and high-rate, source of indistinguishable
single-photons [1, 2]. One intuitive approach to develop a single-photon source
requires coupling an individual quantum emitter to light using a cavity. Significant
progress in this regard [3] has been achieved using, e.g., quantum dots [4, 5, 6],
crystal defects [7], or trapped ions [8] and atoms [9], albeit mired with challenges,
including fabrication complexity [10, 11] or differing emitter spectra [12, 13, 14].
Instead, the strong light-matter coupling offered by solid-state bulk nonlinearities
can be used to probabilistically emit photon pairs via laser-driven 𝜒(2) and 𝜒(3)

processes [15], such as spontaneous parametric down-conversion (SPDC) and four-
wave mixing (SFWM), respectively. Thermal statistics of the emission restrict a
single photon pair to be emitted with low probability (e.g., 10−3 in practice [16]).
An individual photon (in a signal mode) can be heralded by the detection of the
other photon (in an idler mode) [1]. Typically this is performed using a threshold
detector that discriminates zero from one or more photons. Heralding of photons
from optical nonlinearities is scalable, and has enabled tunable and indistinguishable
photons with high fidelities and bandwidths [17, 1, 18]. However, there is a non-zero
probability to produce multiple pairs. To overcome this obstacle, a photon-number-
resolving (PNR) detector at the idler mode can be used to exclude multi-photon
events. Notable demonstrations of PNR detection have used, e.g., transition edge
sensors and pseudo-PNR detectors constructed from time-multiplexed or arrays of
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threshold detectors [19, 20, 21]. Optimized heralded single-photon sources require
scalable, efficient, and low-noise PNR detectors with high timing resolution, that is,
low jitter. Here we detect the idler mode from an SPDC process in real time using
a PNR niobium nitride (NbN) superconducting nanowire single-photon detector
(SNSPD) [22]. The detector is optimized across several performance metrics [23].
Specifically, the detection efficiency, which includes coupling loss in the cryostat,
is > 0.7, the dark count rate is 10 Hz, and the jitter is < 14 ps.

To quantify the improvement of our heralded single-photon source, we perform
a second-order correlation function 𝑔2(0) measurement [24] of the signal mode
conditioned on the measured photon number of the idler mode using the number-
resolving detector. This measurement is performed as a function of mean photon-
pair number 𝜇 of the source.

We operate the detector in two configurations: (i) as a PNR SNSPD, discriminating
zero-, one- and multi-photon events, and (ii) as a threshold SNSPD, discriminating
zero-photon events from all other events. A 𝑔2(0) of zero is expected when a single
photon pair is detected. Accounting for loss and multi-photon events, a reduction in
𝑔2(0) is expected when the detector is operated in configuration (i) versus (ii) for a
fixed 𝜇.

Since the measurements extend to large 𝜇, we develop an analytical model for the
detection rates, coincidence rates, and 𝑔2(0) using a phase-space formalism that
encompasses full multi-photon contributions and all relevant imperfections, such as
loss and multiple Schmidt modes [25, 26, 27]. We model the PNR detector in phase
space as a 2𝑁-port beamsplitter followed by threshold detection at each output,
which allows us to employ Gaussian characteristic function techniques. To evaluate
the single-photon discrimination capability of the detector, we define the single-
photon discrimination efficiency 𝜂1

𝑃𝑁𝑅
metric, ranging from zero, for a threshold

detector, to one for an ideal PNR detector. We obtain 𝜂1
𝑃𝑁𝑅

= 0.46 corresponding
to a pseudo-PNR detector comprised of no more than 18 threshold detectors, each
with efficiency 𝜂𝑑 = 0.71. We perform a simultaneous maximum likelihood fit
of the model to the measured values of 𝑔2(0) and extract 𝜇 for each pump power.
We measure a maximum reduction of 𝑔2(0) from 0.430 ± 0.009 to 0.312 ± 0.008
when using configuration (ii) versus (i) at 𝜇 = 0.327± 0.007, thereby improving the
fidelity of the single-photon source. For a fixed 𝑔2(0) = 7 × 10−3 [28], we increase
the probability to generate a single pair by 25%, from 4 × 10−3 to 5 × 10−3.



48

3.2 Experimental methods
The experimental setup is shown in Fig. 3.1. Light pulses of ∼ 600 ps duration
are created by injecting 1540 nm wavelength light from a continuous-wave laser
into an intensity modulator (IM). The modulator is driven by an arbitrary waveform
generator (AWG) at a rate 𝑅 = 1 MHz, which is the clock rate of the experiment. The
pulses are amplified by an erbium doped fiber amplifier and then directed to a second
harmonic generation module with a gain-adjusted amplification stage (SHG), which
amplifies the pulses then up-converts them to 770 nm wavelength. The pulses are
then directed to a fiber-coupled type-0 periodically poled lithium niobate (PPLN)
waveguide, which produces photon pairs centered at 1540 nm wavelength via SPDC.
A coarse wavelength division multiplexer (CWDM) splits the photon pairs into the
signal and idler modes, centered at 1530 nm and 1550 nm, respectively, each with
a 13 nm bandwidth. Light in the signal path is split by a 50:50 beamsplitter (BS)
into two paths, labelled as signal 1 and 2. Filters with a total of 60 dB extinction
on the idler path and 120 dB extinction on the signal path are used to suppress the
unconverted 770 nm pump light. The photons from the signal and idler paths are
detected using conventional and PNR SNSPDs, respectively.
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Figure 3.1: Experimental setup. AWG - Tektronix AWG7002A, BS - Thorlabs
1550nm fiber optic 50:50 beamsplitter, CWDM - FS one-channel coarse wave
division multiplexing/optical add/drop multiplexer, EDFA - Pritel erbium-doped
fiber amplifer, Laser - General Photonics TLS-101, PPLN - Covesion ruggedized
waveguide, SHG - Pritel optical fiber amplifier/second harmonic generator. The
inset shows the estimated joint spectral intensity (JSI) for the experiment including
the detector and CWDM response.
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Detectors
The detectors are held at 0.8 K in a Gifford-McMahon cryostat with a 4He sorption
stage. To measure the signal modes, we use two single-pixel tungsten silicide (WSi)
SNSPDs, which have timing jitters of ∼ 50 ps, detection efficiencies of ∼ 0.8, and
dark count rates below 5 Hz [16]. To measure the idler mode, we use a PNR SNSPD
with a timing jitter of < 14 ps, detection efficiency of 𝜂𝑑 = 0.71 and dark counts
< 10 Hz. The detector efficiency was determined in an independent measurement
similar to that performed in Ref. [29]. The detector has an active area of 22×15 𝜇m2,
formed by a meander of 100 nm-wide and 5 nm-thick NbN nanowires with a 500 nm
pitch. The detector employs a differential architecture to cancel the contribution
of the signal propagation delays to the timing jitter [22]. An impedance-matching
taper enables photon-number resolution, increases the signal-to-noise ratio, and
minimizes reflections as well as distortion [22, 30]. The number of incident photons
is encoded into the amplitude of the output pulse [22, 31]. A single incident photon
that is absorbed by the nanowire induces a single time-dependent resistive hotspot,
which results in a radio-frequency pulse [23]. Multiple incident photons absorbed
by the nanowire at the same time induce multiple time-dependent resistive hotspots.
This increases the total resistance of the nanowire, producing a radio-frequency
pulse with an amplitude and slew rate that depends on the number of hotspots. In
our experiments, rather than measuring the pulse amplitude variation [31, 22], we
measure its slew rate variation [32]. This only requires a constant-threshold time
tagger, i.e., time-to-digital converter, and enables real-time readout. With a fixed
voltage threshold, the variation in slew rate results in a variation of the time of the
detection event, i.e., time tag. Earlier (later) time-tags, plotted in a histogram in the
left (right) bin of Fig. 3.2, correspond to multi-photon (single-photon) pulses with
higher (lower) slew rate.

Data acquisition and analysis
The readout pulses from the detectors and the clock signal from the AWG are sent to
a time tagger that is interfaced with custom-made graphical user interface (GUI) for
real-time analysis and multi-photon event discrimination. The GUI is depicted in
Fig. 3.3. The recorded detection events in a time bin, that is, the time-tags arriving
in a temporal interval defined by the red and yellow markers, are collected over a set
acquisition time interval. A range of potential arrival times of photons in the signal
paths are shown in the top two channels of the GUI, and the single and multi-photon
events at the idler PNR detector are shown in the bottom channel of the GUI. The
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Figure 3.2: Probability distribution of the arrival times of detection events by the
PNR SNSPD for 𝜇 ≈ 8 × 10−3 (blue), 𝜇 ≈ 3 (orange), 𝜇 ≈ 9 (green), 𝜇 ≈ 11 (red),
and 𝜇 ≈ 16 (purple). The dashed lines define the time bins corresponding to single-
(right) and multi-photon (left) events. The total number of events in the single-
and multi-photon bins are used when operating the SNSPD as a threshold detector,
while the number of events in the single-photon bin are used when operating the
SNSPD as a PNR detector.

GUI is used to collect single detection events, two-fold coincidence events, and
three-fold coincidence events conditioned on the single- and multi-photon detection
events at the idler detector. In other words, the GUI allows collecting all events for
analyzing heralding of photons in the signal path conditioned on threshold and PNR
detection of photons in the idler path.

Characterization
We characterize the setup in two ways: by (1) theoretical calculation and measure-
ment of the joint spectral properties of the photon pair source and (2) by measuring
the signal 1, signal 2, and idler path efficiencies from detection rates with low 𝜇, as
described below.

Joint spectral intensity

The two photon component of the quantum state describing SPDC at the output of
the PPLN waveguide is

|Ψ⟩ = 𝐴
∫ ∞

0

∫ ∞

0
𝑓 (𝜔1, 𝜔2)𝑎̂†(𝜔1)𝑎̂†(𝜔2)𝑑𝜔1𝑑𝜔2 |0⟩ ,

where 𝐴 is a constant prefactor that depends on the effective nonlinearity and
interaction length, 𝑎̂(𝜔1) and 𝑎̂(𝜔2) are the signal and idler modes with frequencies
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Figure 3.3: Custom-made Graphical User Interface (GUI) allows time-resolved
detection of photons and real-time filtering of multi-photon events. The idler mode
depicts a bimodal distribution of time tags relative to the clock for an acquisition
time of 1 s. The left bin corresponds to the multi-photon events and the right bin
corresponds to the single-photon events.

𝜔1 and 𝜔2, respectively. The joint spectral amplitude (JSA) is

𝑓 (𝜔1, 𝜔2) = 𝜓𝑝ℎ (𝜔1, 𝜔2) · 𝜓𝑝 (𝜔1, 𝜔2),

comprised of the phase-matching and pump envelope amplitudes 𝜓𝑝ℎ (𝜔1, 𝜔2) and
𝜓𝑝 (𝜔1, 𝜔2), respectively. The joint spectral intensity (JSI) is | 𝑓 (𝜔1, 𝜔2) |2. We
model the phase-matching envelope intensity as

|𝜓𝑝ℎ (𝜔1, 𝜔2) |2 = sinc2
(
Δ𝑘𝐿

2

)
,

where 𝐿 = 1 cm is the length of the waveguide and Δ𝑘 is the phase-mismatch. The
calculated phase-matching envelope intensity is depicted in Fig. 3.4a. The phase
mismatch for co-linear quasi-phase-matching is

Δ𝑘 = 2𝜋
(
𝑛(𝜆𝑝)
𝜆𝑝

− 𝑛(𝜆1)
𝜆1

− 𝑛(𝜆2)
𝜆2

− Γ

)
,

where 𝑛𝑝(1) (2) is the pump (signal) (idler) index of refraction, 𝜆𝑝(1) (2) = 2𝜋𝑐
𝜔𝑝 (1) (2)

is the pump (signal) (idler) wavelength, 𝑚 is an integer, Λ is the poling period of
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the crystal, and Γ = 𝑚/Λ = 400 mm−1 [33]. The index of refraction for light of
wavelength 𝜆 in our PPLN waveguide is approximately

𝑛(𝜆) =

√︄
1 + 2.6734𝜆2

𝜆2 − 0.01764
+ 1.2290𝜆2

𝜆2 − 0.05914
+ 12.614𝜆2

𝜆2 − 474.60
,

where 𝑛(1540 nm) = 2.21 and 𝑛(770 nm) = 2.26 [34]. We model the pump
envelope intensity as

|𝜓𝑝 (𝜔1, 𝜔2) |2 = exp

(
−
(𝜔𝑝 − 𝜔1 − 𝜔2)2

𝜎2
𝑝

)
,

where 𝜔𝑝 = 2𝜋𝑐
770 nm and 𝜎𝑝 ∼ 2𝜋

100 ps = 60 GHz, as estimated from independent
measurements, which is subject to energy conservation 𝜔𝑝 = 𝜔1 + 𝜔2. Fig. 3.4b
shows the calculated pump envelope intensity.

To characterize the photon pair source, its JSI is determined by performing coin-
cidence measurements of the signal and idler modes after they pass tunable filters
with 0.22 nm bandwidths (setup not shown in Fig. 3.1). The measured JSI accounts
for the detector response:

| 𝑓𝑚 (𝜔1, 𝜔2) |2 = |𝜓𝑝ℎ (𝜔1, 𝜔2) |2 · |𝜓𝑝 (𝜔1, 𝜔2) |2 · |𝜓𝑑 (𝜔1, 𝜔2) |2, (3.1)

where the third factor is the detector efficiency distribution

|𝜓𝑑 (𝜔1, 𝜔2) |2 = exp

(
− (𝜆1 − 𝜆𝑑)2 + (𝜆2 − 𝜆𝑑)2

𝜎2
𝑑

)
,

which we model as a Gaussian centered at the optimal detection wavelength of 𝜆𝑑 =
1550 nm with a spread of 𝜎𝑑 = 53 nm found from independently performed detector
reflectivity measurements. See Fig. 3.4c for the calculated detector response.
The measured JSI including detector response is shown in Fig. 3.4d using circular
markers, with brighter color proportional to the rate of coincidence detection events.
The contour depicts the theoretical prediction from Eq. 3.1.

The most relevant JSI is that used for the main experiment in configurations (i) with
the PNR detector and (ii) with the threshold detector depicted in Fig. 3.1. This
JSI includes the detector response as well as the response of the CWDM. The two
output modes of the CWDM are centered at 1550 nm, the idler, and 1530 nm, the
signal, with 𝜎CWDM = 13 nm bandwidths. Thus, the JSI for the main experiment is
modeled as

| 𝑓𝑒𝑥𝑝 (𝜔1, 𝜔2) |2 = | 𝑓𝑚 (𝜔1, 𝜔2) |2 · |𝜓 𝑓 (𝜔1, 𝜔2) |2, (3.2)
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Figure 3.4: Measured and theoretically calculated joint spectral information used to
characterize the photon pair source. a) Phase-matching envelope, b) pump spectral
envelope, c) detector response, d) measured (circles) and calculated (contour) JSI,
e) filter response of CWDM, and f) JSI for the main experiment, also shown in
Fig. 3.1.

with the filter response being

|𝜓 𝑓 (𝜔1, 𝜔2) |2 = exp

(
− (𝜆1 − 𝜆f,1)2 + (𝜆2 − 𝜆f,2)2

𝜎2
𝑓

)
+ exp

(
− (𝜆1 − 𝜆f,2)2 + (𝜆2 − 𝜆f,1)2

𝜎2
𝑓

)
,
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where 𝜆f,1 = 1550 nm and 𝜆f,2 = 1530 nm. The theoretical response of the CWDM
is shown in Fig. 3.4e whereas Fig. 3.4f depicts the JSI for the main experiment as
calculated from Eq. 3.2.

We perform a Schmidt decomposition of the JSI shown in Fig. 3.4f by calculating
the singular value decomposition of Eq. 3.2 [35]. This is relevant for modeling our
𝑔2(0) results, as discussed in Sec. 3.3, and for determining the fidelity of a heralded
single photon, see Sec. 3.5. The obtained eigenvalues 𝜆𝑠 from the decomposition,
normalized by their sum over index 𝑠, are shown in Fig. 3.5, corresponding to a
Schmidt number of 𝐾 = 1/∑𝑠 𝜆

2
𝑠 ≈ 772.

0 200 400 600 800 1000
Index (s)

0.000

0.001

0.002

0.003

Ei
ge

nv
al

ue
s 

s

Schmidt Decomposition
: 400 mm 1

d: 53 nm
p: 60 GHz
cwdm: 13 nm

K cwdm: 772.4

Figure 3.5: Eigenvalue spectrum
∑
𝑠 𝜆𝑠 = 1 obtained from a Schmidt decomposition

of the JSI used in the main experiment.

Finally, we determine the sensitivity of the Schmidt decomposition to any potential
uncertainty in its key underlying parameters. We independently vary 𝜎𝑝, 𝜎CWDM,
Γ and 𝜎𝑑 , see Eq. 3.2, and re-calculate Schmidt decomposition, with results shown
in Fig. 3.6 and its caption. We find that, unsurprisingly, the variations of the
pump 𝜎𝑝 and filter 𝜎CWDM bandwidths have a significant impact on the Schmidt
decomposition [36]. Indeed a single spectral mode can be approximated if 𝜎𝑝 ≫
𝜎CWDM [37]. Consequently, the variations of 𝜎𝑝 and 𝜎CWDM have the largest impact
on our theoretical model introduced in Sec. 3.3, and are hence propagated in the fit
of the model to the data, see Sec. 3.4.
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Figure 3.6: Sensitivity of the Schmidt eigenvalue decomposition of the JSI for the
main experiment is probed by varying key parameters of Eq. 3.2. Central values
and variations for each relevant parameter are as follows: 𝜎𝑝 = 60 ± 10 GHz,
𝜎CWDM = 13 ± 1 nm, Γ = 400 ± 400 mm−1 and 𝜎𝑑 = 53 ± 5 nm, with maximum
and minimum variations shown. These variations are beyond typical experimental
uncertainties and are taken as a worst-case scenario. The variation of each eigenvalue
is normalized to the size of the first eigenvalue 𝜆0.

Path efficiencies

We determine the efficiencies of the signal and idler paths, that is, from PPLN to
detection as shown in Fig. 3.1, by calculating the ratio of coincidence to single-
photon detection rates using our photon pair source [38]. The output of our photon-
pair source can be approximated as

|𝜓⟩TMSV ≈
√︁

1 − 𝜇 |0𝑖0𝑠⟩ +
√
𝜇 |1𝑖1𝑠⟩ ,

if 𝜇 ≪ 1, neglecting loss. In this limit, the probability of generating one pair
of photons is given by 𝜇, and can be determined by measuring the coincidence-
to-accidental ratio [39]. Correspondingly, the relevant detection rates in our main
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Figure 3.7: Ratios of single and two-fold coincidence detection rates for the signal
and idler paths for varied gain of the amplifier in SHG module. The signal 1, signal
2, and idler path efficiencies, are estimated as shown in the insets using the data on
the left (and below) of the red dashed lines, which corresponds to 𝜇 ≪ 1. Idler
efficiencies are measured in configurations with the PNR and threshold detector.
The mean and standard deviation of the fitted efficiencies are indicated by green
lines, with numerical values in the insets.
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experiment can be approximated to lowest order in 𝜇:

𝐶𝑖 ≈ 𝑅𝜂𝑖𝜇, (3.3)

𝐶𝑠 𝑗 ≈
1
2
𝑅𝜂𝑠 𝑗 𝜇, (3.4)

𝐶𝑖𝑠 𝑗 ≈
1
2
𝑅𝜂𝑖𝜂𝑠 𝑗 𝜇, (3.5)

𝐶𝑠1𝑠2 ≈
1
2
𝑅𝜂𝑠1𝜂𝑠2𝜇

2, (3.6)

𝐶𝑖𝑠1𝑠2 ≈ 𝑅𝜂𝑠1𝜂𝑠2𝜂𝑖𝜇
2, (3.7)

where 𝐶𝑖 is the detection rate of the idler photons, whereas 𝐶𝑠 𝑗 and 𝐶𝑖𝑠 𝑗 are the
detection rates of signal 𝑗 and idler-signal 𝑗 two-fold coincidence events, 𝑗 = 1, 2.
The two-fold coincidence detection rates for photons in the signal 1 and 2 paths is
𝐶𝑠1𝑠2 and 𝐶𝑖𝑠1𝑠2 is the rate of three-fold coincidence detection events for photons in
the idler and the two signal paths. The transmission efficiencies of the idler and two
signal paths are 𝜂𝑖 and 𝜂𝑠 𝑗 , respectively, and include detector the efficiencies.

To estimate the path efficiencies, we calculate the ratios of two-fold coincidences to
single detection rates the signal 1, signal 2, and idler paths, plotting them in Fig. 3.7
for varied 𝜇. The amplification in the SHG module is adjusted as a proxy for 𝜇
and a linear fit to the data (green line) is used to obtain the average efficiencies and
associated uncertainties at 𝜇 ≪ 1, bounded by the red vertical dashed lines. The
mean efficiencies and associated uncertainties (standard deviations) for the signal 1
and 2 paths are 𝜂𝑠1 = 2𝐶𝑖𝑠1/𝐶𝑖 = 0.367± 0.009 and 𝜂𝑠2 = 2𝐶𝑖𝑠2/𝐶𝑖 = 0.435± 0.005,
respectively. The idler path efficiency 𝜂𝑖 = 𝐶𝑖𝑠1/𝐶𝑠1 = 0.319 ± 0.007 is estimated
from both the PNR and threshold detector configurations. The mean and uncertainty
of each path efficiency is used to constrain the fit shown in Fig. 3.9 of Sec. 3.4.

3.3 Theoretical model
Photon pair sources from bulk optical nonlinearities are typically operated at 𝜇 ≪ 1
to suppress multi-photon events. The 𝑔2(0) measurement performed in our work
extends to large 𝜇, where multi-photon contributions are non-negligible and become
significantly suppressed in the (i) PNR detection configuration compared to that
using (ii) threshold detection. To incorporate full multi-photon effects without
approximation, we use methods from the phase space formulation of quantum
optics to derive an expression for 𝑔2(0) as a function of 𝜇. We take into account
all major imperfections, including coupling and detector inefficiencies. We note
that our model can be extended to include dark counts, which are negligible for our
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experiment.

Characteristic function-based approach
The second order correlation function of photons in the signal 1 and 2 paths condi-
tioned on the detection of photons in the idler path for both detector configurations
(i) and (ii) is

𝑔2(0) =
𝐶𝑖𝑠1𝑠2𝐶𝑖

𝐶𝑖𝑠1𝐶𝑖𝑠2

,

where 𝐶𝑖𝑠1𝑠2 is the rate of three-fold coincidence detection events of photons in
the idler and signal 1 and 2 paths, 𝐶𝑖 is the rate of idler detection events, and
𝐶𝑖𝑠 𝑗 is the two-fold coincidence detection rate of idler and signal 𝑗 events, where
𝑗 = 1, 2. Since we are interested in large 𝜇, we cannot utilize Eqs. 3.3-3.7. Hence,
to find an expression for 𝑔2(0), we derive analytical expressions for the single path
detection rates, two-fold coincidence rates, and three-fold coincidence rates using a
characteristic function-based approach [25].

A characteristic function for an 𝑁−mode bosonic system is defined as

𝜒(𝜉) = Tr { 𝜌̂ exp(−𝑖(𝑥1, 𝑝1, 𝑥2, 𝑝2, . . . 𝑥𝑁 , 𝑝𝑁 ) · 𝜉)} , (3.8)

where 𝜌̂ is the density matrix describing the state of the system, 𝑥𝑖 and 𝑝𝑖 are the
conjugate quadrature operators for mode 𝑖, and 𝜉 ∈ R2𝑁 . The quadrature operators
can be expressed in term of the bosonic creation and annihilation operators as

𝑥𝑖 =
1
√

2

(
𝑎̂
†
𝑖
+ 𝑎̂𝑖

)
, 𝑝𝑖 =

𝑖
√

2

(
𝑎̂
†
𝑖
− 𝑎̂𝑖

)
.

Eq. 3.8 defines a unique mapping from the space of all possible quantum states to
a space of functions over R2𝑁 , i.e., a quantum system is completely characterized
by its characteristic function 𝜒(𝜉) [40].

An important subclass of quantum states is defined by the states whose characteristic
function is given by a multivariate Gaussian function:

𝜒(𝜉) = exp
(
−𝜉𝑇𝛾𝜉 − 𝑖𝑑𝑇𝜉

)
,

i.e., they are completely characterized by the displacement vector 𝑑 and covariance
matrix 𝛾, corresponding to the first and second moments. Representatives of this
subclass include vacuum, coherent, and thermal states as well as single- and two-
mode squeezed states.
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Relevant for our experiment is the non-degenerate output of an SPDC process, which
can be described as a two-mode squeezed vacuum state whose covariance matrix is
given by

𝛾SPDC(𝜇) =
(
A B
B A

)
,

A =

(
1 + 2𝜇 0

0 1 + 2𝜇

)
,

B =

(
2
√︁
𝜇(𝜇 + 1) 0

0 −2
√︁
𝜇(𝜇 + 1)

)
,

in block matrix form, where 𝜇 is the mean photon pair number. This description is
only valid for an SPDC source where only one signal and one idler mode are present.
If the source allows for multiple signal and idler modes, like in the broadband source
we use in our experiment, then the initial state must be modified to include all relevant
Schmidt modes, determined through the singular value decomposition of the JSI
[35], as calculated in Sec. 3.2. In this case, the initial state is a product state of
the two-mode squeezed vacuum states in the corresponding Schmidt modes. The
covariance matrix of the system is then given by a direct sum of the covariance
matrices of the respective modes

𝛾 = 𝛾SPDC(𝜆1𝜇) ⊕ 𝛾SPDC(𝜆2𝜇) ⊕ . . . ,

for an SPDC source that supports 𝑁 modes with Schmidt coefficients 𝜆1, 𝜆2, · · · 𝜆𝑁 ,
where the sum runs over all relevant modes, 𝜆1 ≥ 𝜆2 ≥ . . . 𝜆𝑁 , and

∑𝑁
𝑠=1 𝜆𝑠 = 1, as

before.

Since linear optics preserves the Gaussian nature of states [40], i.e., it maps Gaussian
states onto Gaussian states, linear optical operations can be described by a symplectic
transformation 𝑆 of the displacement vector and covariance matrix:

𝑑′ = 𝑆𝑇𝑑, 𝛾′ = 𝑆𝑇𝛾𝑆.

For example, the transformation between the input modes 𝑎̂, 𝑏̂ and the output modes
𝑎̂′, 𝑏̂′ of a beamsplitter with transmittivity 𝑡 is given by

𝑎̂′ = 𝑡𝑎̂ + 𝑖
√︁

1 − 𝑡2𝑏̂,

𝑏̂′ = 𝑡 𝑏̂ + 𝑖
√︁

1 − 𝑡2𝑎̂.
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We can now find the symplectic transformation 𝑆 of the beamsplitter that transforms
the quadrature operators:(

x𝑎′
x𝑏′

)
= 𝑆𝑇

(
x𝑎
x𝑏

)
=

(
T R
R T

) (
x𝑎
x𝑏

)
,

x𝑖 = (𝑥𝑖, 𝑝𝑖)𝑇 ,

T =

(
𝑡 0
0 𝑡

)
, R =

(
0 −

√
1 − 𝑡2√

1 − 𝑡2 0

)
,

in block matrix form, where (x𝑖, x 𝑗 )𝑇 = (𝑥𝑖, 𝑝𝑖, 𝑥 𝑗 , 𝑝 𝑗 )𝑇 . The beamsplitter transfor-
mation is particularly important because it is used to model path efficiency 𝜂path,
which is reduced from unity by propagation and coupling loss as well as detector
inefficiency. This is accomplished by combining the mode of interest and vacuum
on a beamsplitter of transmittivity 𝜂ch and tracing out the reflected mode.

Given that our setup consists of linear optics, and that loss is modeled as a linear
optic transformation, we are able to derive a symplectic transformation 𝑆system, with
which we calculate the characteristic function of the system up to detection

𝛾out = 𝑆
𝑇
system𝛾in𝑆system.

From the covariance matrix of the final Gaussian state, we can calculate several
relevant experimental values such as detection probabilities or rates, which can be
used to predict key figures of merit such as fringe visibilities or state fidelities of
qubits [16].

Concerning the photon detection step, consider a measurement operator Π̂. The
probability of detecting the measurement outcome for a given state 𝜌̂ is

𝑇𝑟 [ 𝜌̂Π̂] =
(

1
2𝜋

)𝑁 ∫
𝑑𝑥2𝑁 𝜒𝜌 (𝑥)𝜒Π (−𝑥), (3.9)

where 𝜒Π (−𝑥) is the characteristic function of the measurement operator and is
defined in the same way as Eq. 3.8 but with Π̂ instead of 𝜌̂. For threshold detectors,
which destructively discriminate between non-zero and zero photons, that is, a
detection event and non-event, their measurement operators are

Π̂no-event = |0⟩ ⟨0| ,
Π̂event = 𝐼 − |0⟩ ⟨0| ,
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i.e., we can model the threshold detectors by projections onto the vacuum state.
Since the vacuum state is a Gaussian state, the integrand in Eq. 3.9 is a multi-variant
Gaussian function yielding

𝑇𝑟 [ 𝜌̂Π̂no-event] =
2√︁

det(𝛾red + 𝐼)
𝑒−𝑑

𝑇
red (𝛾red+𝐼red)−1𝑑red , (3.10)

where 𝛾red is the reduced covariance matrix and 𝑑red is the reduced displacement
vector obtained from 𝛾 and 𝑑 by tracing out all modes but those measured.

Photon-number-resolving detector
Since the measurement operators describing PNR detectors are not Gaussian op-
erators [41], we cannot evaluate Eq. 3.10 to find the probability of detecting one
or more photons for the PNR detector. Instead, we model the PNR detector as an
effective 2𝑁-port beamsplitter with threshold detectors at each output port [21, 42,
26, 27]. We implement the 2𝑁-port beamsplitter as a network of beamsplitters
forming a so-called “binary tree” architecture, which has 𝑁 input and output ports,
as depicted in Fig. 3.8 for the case 𝑁 = 8.
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Figure 3.8: Schematic of the setup used for theoretical modeling. The PNR detector
is modeled as a 2𝑁-port beamsplitter in a binary tree architecture with threshold
detectors at the outputs. Only 8 ports are shown in the figure for simplicity. The
SPDC source and paths depict a simplified representation of that shown in Fig. 3.1.
The efficiencies, including all coupling and detection loss, of the signal 1, signal 2,
and idler paths, are 𝜂𝑠1 , 𝜂𝑠2 , and 𝜂𝑖, respectively.

To model a PNR detector, photons are injected to an input of the “top-most” beam-
splitter of the tree, e.g. input 6 in Fig. 3.8. The detection of photons with the
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PNR SNSPD is modeled as detection events from any combination of threshold
detectors at the output ports of the tree. For an input Fock state |𝑛⟩, the probability
that multiple photons arrive to the same output port is negligible when 𝑁 ≫ 𝑛,
corresponding to ideal photon number discrimination. In this case, the number of
detection events equals the number of input photons. For 𝑁 ∼ 𝑛, the probability of
multiple photons arriving to the same output port is non-negligible, corresponding
to non-ideal photon number discrimination. In this case, the number of detection
events does not equal the number of input photons. Therefore, the depth of the tree
𝑘 = log2(𝑁), is a figure of merit for photon number discrimination.

With our beamsplitter tree and threshold detector model, we are able to employ
Gaussian characteristic function techniques to find photon detection probabilities,
which we later employ to calculate coincidence detection probabilities, and hence
detection rates. We append 𝑁 − 1 vacuum modes to the state at idler mode and find
the symplectic matrix that transforms the characteristic function of the input state
to the tree to that of the output state. The symplectic matrix 𝑆k of a beamsplitter
tree with depth 𝑘 can be constructed using the recursive symmetry of the binary tree
architecture

𝑆𝑘 = (𝑆𝑘−1 ⊕ 𝑆𝑘−1)𝑆𝑘,𝑡 ,

where 𝑆𝑘,𝑡 is the symplectic matrix corresponding to the top-most beamsplitter for
a tree with depth 𝑘 . The covariance matrix 𝛾𝑁 and displacement vector 𝑑𝑁 of the
𝑁-mode input state to the tree then transform as

𝑑′𝑁 = 𝑆𝑇𝑘 𝑑𝑁 , 𝛾′𝑁 = 𝑆𝑇𝑘 𝛾𝑁𝑆𝑘 ,

which is followed by threshold detection at each of the 𝑁 outputs.

The probability of detecting non-zero photons at 𝑚 of the modes, i.e., having a
m-fold coincidence event, for an 𝑁-mode Gaussian state with covariance matrix 𝛾𝑁
is ∑︁

{𝑚}
𝑇𝑟 [ 𝜌̂𝛾𝑁 (Π̂⊗𝑚

event ⊗ Π̂
⊗(𝑁−𝑚)
no-event )]

=
∑︁
{𝑚}

𝑇𝑟 [ 𝜌̂𝛾𝑁 ((𝐼 − |0⟩ ⟨0|)⊗𝑚 ⊗ |0⟩ ⟨0|⊗(𝑁−𝑚))],

where
∑

{𝑚} indicates a sum over the all possible choices of 𝑚 output modes. This
results in a linear combination of

(𝑁
𝑚

)
terms of the form

𝑇𝑟 [ 𝜌̂𝛾𝑁 (𝐼⊗ 𝑗 ⊗ |0⟩ ⟨0|⊗(𝑁− 𝑗))] = 𝑇𝑟 [ 𝜌̂𝛾𝑁red |0⟩ ⟨0|
⊗(𝑁− 𝑗)], (3.11)
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where 𝜌̂𝛾𝑁red is the reduced density matrix of the system obtained by taking a partial
trace over 𝑁 − 𝑗 modes with 0 ≤ 𝑗 ≤ 𝑁 . One useful property of Gaussian states is
that the covariance matrix of the reduced state after a partial trace is simply the sub-
matrix corresponding to the remaining system. It can be shown that for an 𝑁-mode
system with covariance matrix 𝛾𝑁 and displacement vector 𝑑𝑁 , the probability of
measuring zero photons across the 𝑁 modes is

𝑇𝑟 [ 𝜌̂Π̂⊗𝑁
no-event] = 𝑇𝑟 [ 𝜌̂ |0⟩ ⟨0|⊗𝑁 ]

=
2𝑁√︁

det(𝛾𝑁 + 𝐼𝑁 )
𝑒−𝑑

𝑇
𝑁
(𝛾𝑁+𝐼𝑁 )−1𝑑𝑁 .

Eq. 3.11 then simplifies to

𝑇𝑟 [ 𝜌̂𝛾𝑁red |0⟩ ⟨0|
⊗(𝑁− 𝑗)] = 2𝑁− 𝑗√︁

det(𝛾𝑁− 𝑗 + 𝐼𝑁− 𝑗 )
𝑒
−𝑑𝑇

𝑁− 𝑗
(𝛾𝑁− 𝑗+𝐼𝑁− 𝑗 )−1𝑑𝑁− 𝑗 ,

where 𝐼𝑚 is the 𝑚 by 𝑚 identity matrix, 𝛾𝑁− 𝑗 is the sub-matrix of 𝛾𝑁 and 𝑑𝑁− 𝑗 is
the sub-vector of 𝑑𝑁 corresponding to the remaining subsystem of 𝑁 − 𝑗 modes. By
knowing 𝛾𝑁 and 𝑑𝑁 of the full 𝑁-mode system, we can find the m-fold coincidence
event probability for arbitrary 𝑚, where 0 ≤ 𝑚 ≤ 𝑁 .

For our experiment, we are interested in the single-photon detection probability 𝑃𝑁1
of the PNR detector. We model this as the probability that a single output mode of
the beamsplitter tree contains a photonic excitation:

𝑃𝑁1 = 𝑁𝑇𝑟 [ 𝜌̂𝛾′𝑁 (Π̂event ⊗ Π̂
⊗(𝑁−1)
no-event)]

=
𝑁2𝑁−1√︁

det(𝛾′
𝑁−1 + 𝐼𝑁−1)

𝑒−𝑑
′
𝑁−1

𝑇 (𝛾′
𝑁−1+𝐼𝑁−1)−1𝑑′

𝑁−1

− 𝑁2𝑁√︁
det(𝛾′

𝑁
+ 𝐼𝑁 )

𝑒−𝑑
′
𝑁
𝑇 (𝛾′

𝑁
+𝐼𝑁 )−1𝑑′

𝑁 . (3.12)

We can also use the 2𝑁-port beamsplitter model to describe the photon number
discrimination capability of the detector, as discussed in the following sections.

Photon-number detection

When a single-photon is sent to an input of the 2𝑁-port beamsplitter, the action
of the beamsplitter corresponding to unitary 𝑈𝑁 splits the photon into an equal
superposition of the 𝑁 output modes. An arbitrary Fock state |𝑛⟩ directed to a single
input port transforms as

𝑈𝑁 |𝑛⟩ = 1
(
√
𝑁)𝑛

∑︁
𝑗1+···+ 𝑗𝑁=𝑛

√︄
𝑛!

𝑗1! · · · 𝑗𝑁 !
| 𝑗1⟩ · · · | 𝑗𝑁⟩ .
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Thus, the joint probability of finding 𝑗1 photons at output 1, 𝑗2 photons at output 2,
..., and 𝑗𝑁 photons at output 𝑁 is

𝑃𝑛 ( 𝑗1, · · · , 𝑗𝑁 ) =
1
𝑁𝑛

𝑛!
𝑗1! · · · 𝑗𝑁 !

, where
𝑁∑︁
𝑖=1

𝑗𝑖 = 𝑛.

The probability that 𝑛 photons at a single input port trigger an 𝑚-fold coincidence
event, i.e., a detection at each of the 𝑚 output ports, is

𝑃𝑁𝑚,𝑛 =
𝑛!
𝑁𝑛

(𝑚)∑︁
𝑗1+···+ 𝑗𝑁=𝑛

1
𝑗1! · · · 𝑗𝑁 !

=
𝑚!
𝑁𝑛

(
𝑁

𝑚

)
𝑆2(𝑛, 𝑚), (3.13)

where 1 ≤ 𝑚 ≤ 𝑛, the notation (𝑚) refers to the condition that 𝑚 of { 𝑗𝑖} are
non-zero, and 𝑆2(𝑛, 𝑚) is the Stirling number of the second kind. The Stirling
number corresponds to the number of ways of partitioning a set of 𝑛 elements into
𝑚 non-empty sets [43].

As 𝑁 → ∞, the 2𝑁-port model approaches a PNR detector with perfect dis-
crimination efficiency, such that the single-photon detection probability equals the
single-photon probability of a general input state,

lim
𝑁→∞

𝑃𝑁1 = ⟨1| 𝜌𝛾′𝑁 |1⟩ .

For example, from Eq. 3.12, we can find the probability of a detection event at one
output of a tree with depth 𝑘 for an input thermal state with mean photon number 𝜇
as

𝑃𝑘1 =
2𝑘𝜇

(1 + 𝜇)
(
2𝑘 +

(
2𝑘 − 1

)
𝜇
) .

Similarly, for a coherent state with mean photon number |𝛼 |2 as

𝑃(1)𝑘 = 2𝑘𝑒−|𝛼 |
2
(
𝑒 |𝛼 |

2/2𝑘 − 1
)
.

By taking the limit 𝑘 → ∞, we recover the single photon probabilities for a thermal
state and coherent state, respectively, as

lim
𝑘→∞

2𝑘𝜇
(1 + 𝜇)

(
2𝑘 +

(
2𝑘 − 1

)
𝜇
) =

𝜇

(1 + 𝜇)2 ,

lim
𝑘→∞

2𝑘𝑒−|𝛼 |
2
(
𝑒 |𝛼 |

2/2𝑘 − 1
)
= 𝑒−|𝛼 |

2 |𝛼 |2.
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POVM elements and counting statistics

The values of 𝑃𝑁𝑚,𝑛, from Eq. 3.13, correspond to the matrix elements of a condi-
tional probability matrix C, following the definition used in Ref. [27]. The rows
correspond to the positive-operator value measure (POVM) elements of the mea-
surement outcomes and the columns correspond to the Fock projection operators.
The matrix for a threshold detector, in other words, a tree with 𝑘 = 0 is

|0⟩ ⟨0| |1⟩ ⟨1| |2⟩ ⟨2| |3⟩ ⟨3| |4⟩ ⟨4| |5⟩ ⟨5| |6⟩ ⟨6| · · ·( )
Π̂no-event 1 0 0 0 0 0 0 · · ·
Π̂event 0 1 1 1 1 1 1 · · ·

,

with measurement outcomes (rows) and projections (columns) indicated. The matrix
for an ideal PNR detector is the identity matrix,

|0⟩ ⟨0| |1⟩ ⟨1| |2⟩ ⟨2| |3⟩ ⟨3| |4⟩ ⟨4| |5⟩ ⟨5| |6⟩ ⟨6| · · ·©­­­­­­­­­­­­­­­«

ª®®®®®®®®®®®®®®®¬

Π̂0 1 0 0 0 0 0 0 · · ·
Π̂1 0 1 0 0 0 0 0 · · ·
Π̂2 0 0 1 0 0 0 0 · · ·
Π̂3 0 0 0 1 0 0 0 · · ·
Π̂4 0 0 0 0 1 0 0 · · ·
Π̂5 0 0 0 0 0 1 0 · · ·
Π̂6 0 0 0 0 0 0 1 · · ·
...

...
...

...
...

...
...

...
. . .

.

For a detector with efficiency 𝜂𝑑 , i.e., modeled as path loss of transmittivity 𝜂𝑑
before an ideal detector, the probability that 𝑛 photons trigger an𝑚-fold coincidence
detection event is

𝑃𝑁𝑚,𝑛 (𝜂𝑑) =
𝑛∑︁
𝑗=0

𝑃𝑁𝑚, 𝑗

(
𝑛

𝑗

)
𝜂𝑑

𝑗 (1 − 𝜂𝑑)𝑛− 𝑗

=

𝑛∑︁
𝑗=0
𝐶𝑚, 𝑗𝐿 𝑗 ,𝑛

= (C · L)𝑚,𝑛 ,

where L is the loss matrix with matrix elements,

𝐿 𝑗 ,𝑛 =

(
𝑛

𝑗

)
𝜂𝑑

𝑗 (1 − 𝜂𝑑)𝑛− 𝑗 .
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The matrix corresponding to C · L for a tree with 𝑘 = 3 and 𝜂𝑑 = 0.71 is,

|0⟩ ⟨0| |1⟩ ⟨1| |2⟩ ⟨2| |3⟩ ⟨3| |4⟩ ⟨4| |5⟩ ⟨5| |6⟩ ⟨6| · · ·©­­­­­­­­­­­­­­­«

ª®®®®®®®®®®®®®®®¬

Π̂0 1 0.29 0.084 0.024 0.007 0.002 0.001 · · ·
Π̂1 0 0.71 0.475 0.240 0.108 0.046 0.019 · · ·
Π̂2 0 0 0.441 0.501 0.383 0.246 0.144 · · ·
Π̂3 0 0 0 0.235 0.398 0.425 0.368 · · ·
Π̂4 0 0 0 0 0.104 0.244 0.346 · · ·
Π̂5 0 0 0 0 0 0.037 0.114 · · ·
Π̂6 0 0 0 0 0 0 0.010 · · ·
...

...
...

...
...

...
...

...
. . .

.

As we will show in detail in Sec. 3.4, this matrix corresponds to our experimental
PNR configuration.

The counting statistics 𝑝(𝑛) can be related to the input photon number distribution
𝜚(𝑛) by

𝑝𝑚 =
∑︁
𝑛

𝑛∑︁
𝑗=0
𝐶𝑚, 𝑗𝐿 𝑗 ,𝑛𝜚𝑛,

where 𝑝𝑚 = 𝑝(𝑚) and 𝜚𝑛 = 𝜚(𝑛), following the notation of Eq. 9 from Ref. [27].
In matrix notation this is ®𝑝 = C ·L ®𝜚. The transpose of the matrix (C ·L)𝑇 is matrix
B from Ref. [26], which relates probabilities and density matrices as ®𝑝 = B𝜌̂.

Photon-number discrimination efficiency

A key figure of merit of our detector PNR configuration is its ability to discriminate
single-photon events from others. To quantify this, we define the “𝑚−photon
discrimination efficiency” and use it to calculate the “single-photon discrimination
efficiency” as follows.

A POVM element corresponding to the 𝑚-photon outcome for a non-ideal PNR
detector can be described by

Π̂𝑚 =

∞∑︁
𝑛=0

𝑐𝑚𝑛 |𝑛⟩ ⟨𝑛| , (3.14)

where 𝑐𝑚𝑛 are the matrix elements corresponding to the representation of the operator
in the photon number basis, and are each equal to the probability of registering 𝑚
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photons given 𝑛 incident photons. The𝑚-photon outcome for an ideal PNR detector
is

Π̂𝑖𝑑𝑒𝑎𝑙
𝑚 = |𝑚⟩ ⟨𝑚 | . (3.15)

Note that for a threshold detector, the 𝑚-photon outcome for 𝑚 > 0 is the “event”
outcome Π̂event =

∑∞
𝑛=1 |𝑛⟩ ⟨𝑛|, and 𝑚 = 0 outcome corresponds to “no-event”

Π̂no-event = |0⟩ ⟨0|. We define the 𝑚-photon discrimination efficiency as

𝜂𝑚𝑃𝑁𝑅 = 1 − 1
2

Tr

√√(

Π̂𝑚

Tr[Π̂𝑚]
− Π̂ideal

𝑚

Tr[Π̂ideal
𝑚 ]

)2 , (3.16)

where the second term is the trace distance between elements Π̂𝑚 and Π̂𝑖𝑑𝑒𝑎𝑙
𝑚 , nor-

malized by their trace, corresponding to the 𝑚-photon measurement outcome of the
PNR detector. Using Eqs. 3.14 and 3.15, we simplify Eq. 3.16 to

𝜂𝑚𝑃𝑁𝑅 =
𝑐𝑚𝑚∑∞
𝑛=0 𝑐

𝑚
𝑛

=
𝑃(𝑚 |𝑚)∑∞
𝑛=0 𝑃(𝑚 |𝑛) , (3.17)

where 𝑐𝑚𝑛 = 𝑃(𝑚 |𝑛) is the probability that the detector registers 𝑚 photons given
that 𝑛 photons were incident on the detector. Relevant to our experiment is the
single-photon discrimination efficiency (𝑚 = 1). As defined in Eq. 3.17, 𝜂1

𝑃𝑁𝑅
is

zero for a threshold detector and unity for an ideal PNR detector.

Analytical expressions of detection probabilities
For a 2N-port beamsplitter realized as a finite-depth binary tree, we derive the
following expressions for detection probabilities of the signal and idler paths, as
well as two-fold and three-fold coincidence event probabilities as a function of the
efficiencies and tree depth 𝑘 , where 𝑁 = 2𝑘 . The equations reduce to the threshold
detection case for 𝑘 = 0.

We use Π̂no-event,𝑚 and Π̂event,𝑚 to denote the measurement operators for a threshold
detector at the 𝑚th tree output:

Π̂no-event,𝑚 = |0⟩ ⟨0|𝑚 ,
Π̂event,𝑚 = 𝐼𝑚 − |0⟩ ⟨0|𝑚 .

For the PNR detector, we use Π̂event,𝑚 ⊗ Π̂⊗𝑁−1
no-event to denote an “event” measurement

outcome for a detector at the 𝑚th output and “no-event” measurement outcomes for
the detectors at the remaining 𝑁 − 1 outputs of the tree.
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Detection probabilities for signal and idler detectors

The probabilities 𝑃𝑠1 and 𝑃𝑠2 of a detection event for the signal 1 and 2 detectors,
respectively, are

𝑃𝑠1 = Tr
[
𝜌

(
Π̂𝑠1,event ⊗ 𝐼𝑠2 ⊗ 𝐼⊗𝑁

)]
,

𝑃𝑠2 = Tr
[
𝜌

(
𝐼𝑠1 ⊗ Π̂𝑠2,event ⊗ 𝐼⊗𝑁

)]
,

and evaluate to

𝑃𝑠 𝑗 = 1 −
∏
𝑠

2
2 + 𝜂𝑠 𝑗𝜆𝑠𝜇

,

where 𝑗 = 1, 2 and 𝜆𝑠 are the Schmidt coefficients obtained from the singular value
decomposition of the JSI as discussed in Sec. 3.2. The products in the expressions
run over all Schmidt coefficients. The mean number of pairs 𝜇 as well as path
efficiencies 𝜂𝑖 and 𝜂𝑠 𝑗 , where 𝑗 = 1, 2, as depicted in Fig. 3.8 and used here and in
the following, are as defined earlier.

The probability 𝑃𝑖 of a detection event for the idler detector is then

𝑃𝑖 = 𝑁Tr
[
𝜌

(
𝐼𝑠1 ⊗ 𝐼𝑠2 ⊗ Π̂event,𝑚 ⊗ Π̂⊗𝑁−1

no-event

)]
,

and evaluates to

𝑃𝑖 = 2𝑘
(∏

𝑠

2𝑘

2𝑘 + (2𝑘 − 1)𝜆𝑠𝜇𝜂𝑖
−

∏
𝑠

1
1 + 𝜆𝑠𝜇𝜂𝑖

)
. (3.18)

Two-fold coincidence detection probabilities

The probabilities of a two-fold coincidence detection event at the idler and one of
the signal detectors, 𝑃𝑖𝑠1 and 𝑃𝑖𝑠2 , are

𝑃𝑖𝑠1 = 𝑁Tr
[
𝜌

(
Π̂event,𝑠1 ⊗ 𝐼𝑠2 ⊗ Π̂event,𝑚 ⊗ Π̂⊗𝑁−1

no-event

)]
,

𝑃𝑖𝑠2 = 𝑁Tr
[
𝜌

(
𝐼𝑠1 ⊗ Π̂event,𝑠2 ⊗ Π̂event,𝑚 ⊗ Π̂⊗𝑁−1

no-event

)]
,

and evaluate to

𝑃𝑖𝑠 𝑗 = 2𝑘
(∏

𝑠

2𝑘

2𝑘 + (2𝑘 − 1)𝜆𝑠𝜇𝜂𝑖

−
∏
𝑠

2𝑘+1

𝜆𝑠𝜇𝜂𝑠 𝑗 (2𝑘 − (2𝑘 − 1)𝜂𝑖) + 2(2𝑘 + (2𝑘 − 1)𝜆𝑠𝜇𝜂𝑖)

−
∏
𝑠

1
1 + 𝜆𝑠𝜇𝜂𝑖

+
∏
𝑠

2
2 + 2𝜆𝑠𝜇𝜂𝑖 + 𝜂𝑠 𝑗𝜆𝑠𝜇(1 − 𝜂𝑖)

)
, (3.19)
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where 𝑗 = 1, 2.

The probability of a two-fold coincidence detection event at the signal 1 and 2
detectors is

𝑃𝑠1𝑠2 = Tr
[
𝜌

(
Π̂event,𝑠1 ⊗ Π̂event,𝑠2 ⊗ 𝐼⊗𝑁𝑚

)]
,

and evaluates to

𝑃𝑠1𝑠2 = 1 −
∏
𝑠

2
2 + 𝜂𝑠1𝜆𝑠𝜇

−
∏
𝑠

2
2 + 𝜂𝑠2𝜆𝑠𝜇

+
∏
𝑠

2
2 + (𝜂𝑠1 + 𝜂𝑠2)𝜆𝑠𝜇

.

Three-fold coincidence detection probabilities

The probability of a three-fold coincidence detection event at the idler, signal 1, and
signal 2 detectors, 𝑃𝑖,𝑠1,𝑠2 (𝜇, 𝜂𝑠1 , 𝜂𝑠2 , 𝜂𝑖, 𝑘), is

𝑃𝑖,𝑠1,𝑠2 = 𝑁Tr
[
𝜌

(
Π̂event,𝑠1 ⊗ Π̂event,𝑠1 ⊗ Π̂event,𝑚 ⊗ Π̂⊗𝑁−1

no-event

)]
,

and evaluates to

𝑃𝑖,𝑠1,𝑠2 = 2𝑘
(∏

𝑠

2𝑘

2𝑘 + (2𝑘 − 1)𝜆𝑠𝜇𝜂𝑖

−
∏
𝑠

2𝑘+1

𝜆𝑠𝜇𝜂𝑠1 (2𝑘 − (2𝑘 − 1)𝜂𝑖) + 2(2𝑘 + (2𝑘 − 1)𝜆𝑠𝜇𝜂𝑖)

−
∏
𝑠

2𝑘+1

𝜆𝑠𝜇𝜂𝑠2 (2𝑘 − (2𝑘 − 1)𝜂𝑖) + 2(2𝑘 + (2𝑘 − 1)𝜆𝑠𝜇𝜂𝑖)

+
∏
𝑠

2𝑘+1

𝜆𝑠𝜇(𝜂𝑠1 + 𝜂𝑠2) (2𝑘 − (2𝑘 − 1)𝜂𝑖) + 2(2𝑘 + (2𝑘 − 1)𝜆𝑠𝜇𝜂𝑖)

−
∏
𝑠

1
1 + 𝜆𝑠𝜇𝜂𝑖

+
∏
𝑠

2
2 + 2𝜆𝑠𝜇𝜂𝑖 + 𝜂𝑠1𝜆𝑠𝜇(1 − 𝜂𝑖)

+
∏
𝑠

2
2 + 2𝜆𝑠𝜇𝜂𝑖 + 𝜂𝑠2𝜆𝑠𝜇(1 − 𝜂𝑖)

−
∏
𝑠

2
2 + 2𝜇𝜆𝑠𝜂𝑖 + (𝜂𝑠1 + 𝜂𝑠2)𝜇𝜆𝑠 (1 − 𝜂𝑖)

)
. (3.20)

Second-order correlation function g(2) (0)

Finally, we readily derive the analytical expression for 𝑔(2) (0) by substituting
Eqs. 3.18, 3.19, and 3.20 and into

𝑔(2) (0) =
𝑃𝑖,𝑠1,𝑠2𝑃𝑖

𝑃𝑖,𝑠1𝑃𝑖,𝑠2

=
𝐶𝑖,𝑠1,𝑠2𝐶𝑖

𝐶𝑖,𝑠1𝐶𝑖,𝑠2

, (3.21)

where the respective probabilities 𝑃 can be used to calculate detection rates 𝐶 using
𝐶 = 𝑅𝑃.
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3.4 Results
We vary the gain of the amplifier in the SHG module and measure single detector,
i.e., signal 1 and 2 and idler, events as well as two- and three-fold coincidence
detection events for (i) the PNR configuration and (ii) the threshold configuration
for the idler detector. We then perform a maximum-likelihood fit of our theoretical
model for 𝑔2(0), i.e., Eq. 3.21, to the measured 𝑔2(0) for configurations (i) with
PNR and (ii) with threshold detection. The likelihood is optimized using the
MINUIT [44] implementation in iminuit [45]. The experimental 𝑔2(0) data and
curve corresponding to the best-fitted model are shown in Fig. 3.9.

Maximum-likelihood fit
The theoretical model for 𝑔2(0) includes several parameters, as introduced in
Secs. 3.2 and 3.3. Our fit extracts the following key experimental values: mean
photon-pair number 𝜇, tree depth 𝑘 , path efficiencies 𝜂𝑖, 𝜂𝑠1 and 𝜂𝑠2 , as well as the
filter and pump bandwidths, 𝜎CWDM and 𝜎𝑝, which strongly influence the eigen-
value spectrum of JSI. The best-fit values and uncertainties of the mean photon
number for each amplifier setting is shown in Fig. 3.9. We also calculate the pull
for 𝑔2(0), which is the distance of the best fit value from the Gaussian constraint
measured in values of the constraint width. The best-fit, uncertainties and pull of
the other values are shown in Tab. 3.1. We find the best-fit path efficiencies and the
filter bandwidth are identical, within uncertainty, to that evaluated by independent
measurements in Sec. 3.2. The predicted pump bandwidth (88 GHz) is larger than
that measured in Sec. 3.2 (60 GHz) likely because it was inferred by measurements
at telecommunication wavelength.

In the fit, the path efficiencies are free parameters, while the mean and uncertainties
thereof, measured in Sec. 3.2, are used to place Gaussian constraints on the fit. Each
measured 𝑔2(0) is ascribed an independent value of 𝜇, and given the path efficiencies,
is determined by fitting the single detector and two-fold coincidence detection
probabilities, i.e., those shown in Fig. 3.10, collected during the measurements. The
mean and statistical uncertainties of these detection rates is used to place a Gaussian
constraint on the value of 𝜇 for each data point. The eigenvalue spectrum of the JSI
is computed by varying 𝜎CWDM = 13± 1 nm and 𝜎𝑝 = 60± 10 GHz as discussed in
Sec. 3.2, and a linear approximation is used to allow the fit for a continuous variation.
Additional fit details are discussed in the captions of Fig. 3.9 and Tab. 3.1.
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Figure 3.9: Measured correlation function 𝑔2(0) as a function of mean photon-
pair number 𝜇. The experimental data using threshold (orange) and PNR (blue)
idler detector configurations are represented by the circular markers whereas the
respective fitted models are shown by dashed lines. Uncertainties of 𝑔2(0), referred
to as𝜎𝑔2 (0) , are derived from the statistical uncertainties of the coincidence detection
events whereas the uncertainties of 𝜇, that is, 𝜎𝜇, are extracted from the fit to
the model. The inset depicts the region where the largest reduction in 𝑔2(0) is
measured. The pull between the measured 𝑔2(0) and the model, computed as
[𝜎2

𝑔2 (0) +
��𝜕𝜇𝑔2(0)

��2 𝜎2
𝜇]1/2 and plotted in units of standard deviations, is shown at

the bottom of the canvas.

Single-photon discrimination efficiency
With 𝑘 = 3.45+0.71

−0.50 extracted from the fit, the single-photon discrimination efficiency
of our PNR detector is comparable to that of a pseudo-PNR detector comprised of
approximately 11+7

−3 threshold detectors, each with efficiency 𝜂𝑑 = 0.71. Therefore,
following the model developed in Sec. 3.3, the experimental POVM is

Π̂
𝑒𝑥𝑝

1 ≈ 0.710 |1⟩ ⟨1| + 0.458 |2⟩ ⟨2| + 0.222 |3⟩ ⟨3| (3.22)

+ 0.096 |4⟩ ⟨4| + 0.039 |5⟩ ⟨5| + 0.015 |6⟩ ⟨6| ,
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Parameter Best fit Pull (𝜎)

𝜂𝑖 0.319 ± 0.026 -0.1 (3.9)
𝜂𝑠1 0.370 ± 0.024 0.3 (2.5)
𝜂𝑠2 0.436 ± 0.017 0.2 (3.3)

𝜎CWDM (nm) 11.97 ± 0.95 -1.0 (0.9)
𝜎𝑝 (GHz) 87.7 ± 14.0 2.8 (1.4)

𝑘 3.45+0.71
−0.50 -

Table 3.1: Maximum-likelihood best-fit results for key experimental parameters.
Uncertainties are computed by inverting the Hessian, except for 𝑘 , where a likelihood
scan has been performed. There is no value of pull for 𝑘 as it is extracted from a fit
without a constraint.

corresponding, according to the arguments in Sec. 3.3, to a single-photon discrimi-
nation efficiency of 𝜂1

𝑃𝑁𝑅
≈ 0.46, limited mainly by 𝜂𝑑 .

Improvement with a PNR SNSPD
The reduction of 𝑔2(0) shown in Fig. 3.9 demonstrates a suppression of multi-photon
events. A maximum reduction of 0.118 ± 0.012 at 𝜇 = 0.327 ± 0.007 is observed;
it is more clearly indicated in the inset of Fig. 3.9.

The data and fit for 𝜇 ≪ 1 is presented in Fig. 3.11. Configurations (ii) and (i) are
denoted by orange and blue colors, respectively, with the data indicated by large dots
and the fit by solid curves. To give context, orange and blue dotted lines indicate the
𝜇 corresponding to a 𝑔2(0) of 7 × 10−3 (gray dashed line) measured in Ref. [28],
Specifically, we observe a 25% improvement in 𝜇, from 4 × 10−3 (orange dotted
line) with configuration (ii), to 5 × 10−3 (blue dotted line) with configuration (i).

To estimate the performance of our experiment with future improvements, we cal-
culate 𝑔2(0) using the properties of our PNR detector (𝑘 = 3.45, green curve) and
those of a PNR detector with a higher tree depth (𝑘 = 10, red curve). We also
assume higher path efficiencies of 𝜂𝑠1 = 𝜂𝑠2 = 𝜂𝑖 = 0.87, which are the product
of the coupling (0.91) and detector (0.96) efficiencies from Refs. [46] and [47],
respectively, and are among the best-achieved to date. With these upgrades, for a
𝑔2(0) of 7×10−3 (gray dashed line), we predict an improved 𝜇 = 20.5×10−3 (green
curve) and 𝜇 = 26.7 × 10−3 (red curve) using our PNR SNSPD and a nearly ideal
PNR detector, respectively.
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Figure 3.10: Idler detection probabilities (top left), signal 1 and signal 2 detection
probabilities (top right), signal detector two-fold coincidence probabilities and signal
detectors with idler in threshold configuration (bottom left), two-fold signal and idler
in PNR configuration two-fold coincidence probabilities. The prediction from the
theoretical model is shown for the best fit parameters in Tab. 3.1.

3.5 Discussion
By measuring the idler mode of a spontaneous parametric down-conversion source
using a photon-number-resolving nanowire detector, we reduce the 𝑔2(0) of the
signal mode or, on the other hand, increase the probability to generate a photon.
The results and key performance metrics of our experiment are supported by a
detailed analytical model which captures multi-photon effects, imperfections, and
multiple spectral modes. Using a setup consisting of fiber-coupled and off-the-shelf
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Figure 3.11: Correlation function 𝑔2(0) as a function of mean photon number
𝜇 ≪ 1 for our experiment and improved heralded single-photon sources. The
experimental data (large dots) are represented with their uncertainties. The models
for the threshold configuration (orange curve) and PNR configuration (blue curve)
of our detector are compared with the green and red curves, which correspond to
model predictions using improved sources, as discussed in the main text, with key
parameters (tree depth 𝑘 , path efficiencies 𝜂 ≡ 𝜂𝑠1 = 𝜂𝑠2 = 𝜂𝑖) shown in the inset.
The grey dashed line corresponds to a 𝑔2(0) measured in Ref. [28].

devices, we generate photons that can be used in quantum information applications,
in particular quantum communications [48, 49].

To realize an ideal single-photon source [1], a number of improvements to our
experiment must be implemented [36]. First, the Schmidt number of our SPDC
source must be decreased from its current value of 𝐾 ≈ 772 to 𝐾 = 1. This
can be accomplished by either narrower spectral filtering of the pairs or increasing
the pump pulse bandwidth [50], the use of cavity-enhanced SPDC [51], or by
engineering the phase matching function of the nonlinear crystal [52, 53]. A
near-unity Schmidt number renders the photons suitable for interference with other
independently generated photons in a quantum circuit or network.

Next, the system efficiency should be increased to near unity. Coupling between
fibers and devices can be improved with enhanced modal engineering [54] or using
anti-reflection-coated free-space components [55]. Alternatively, components could
be integrated onto the same chip, for instance using Si- or SiN-on-insulator with
SFWM sources [56, 17], or using thin-film lithium niobate [57]. Furthermore,
multiplexing strategies must be employed to increase the probability of generating a
single pair beyond the theoretical maximum of 25% per mode. Such multiplexing,
using, for instance, spatial [58, 59], temporal [60, 46], or frequency modes [61, 62],
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could also be employed to circumvent loss in the signal mode [63]. This requires on-
demand feed-forward mode mapping using switches [64], quantum memories [65],
or frequency shifters [66], respectively. Feed-forward requires the real-time readout
that our PNR SNSPD allows. Note that feed-forward also allows for temporal
filtering of the signal mode, a method that yields a significant reduction in 𝑔2(0)
[67, 68, 69]. We also point out that our improvement in 𝑔2(0) significantly reduces
the number of spatially multiplexed sources (∼ 1/𝜇 for 𝜇 ≪ 1) that are required
to render our heralded photon source to be quasi-deterministic. For instance, for
𝑔2(0) = 7 × 10−3, in which we observe a 25% improvement in 𝜇 from 4 × 10−3 to
5 × 10−3, see Fig. 3.11, corresponds to a reduction of the number of multiplexed
spatial modes from 250 to 200. Further, with an improved detector efficiency of 0.87
[46, 47], only ∼ 49 multiplexed modes will be required to quasi-deterministically
generate a heralded single photon.

Multiplexing with feed-forward also allows a multi-mode source to be rendered as
single mode, i.e., it effectively decreases its Schmidt number to unity [62]. Our
broadband SPDC source is naturally suited for frequency multiplexing, as indicated
by the strong frequency correlations in our JSI [70]. This suggests our measured
𝜇 = 5 × 10−3 for 𝑔2(0) = 7 × 10−3 exceeds state-of-the-art SPDC sources using
threshold detection, as well as quantum dots [28], accounting for such frequency
multiplexing.

Additional gains can be offered by improvements to the PNR SNSPD. A higher
detector efficiency, i.e., ideally increasing 𝜂𝑑 to one, would increase the single-
photon discrimination efficiency and improve the fidelity of the heralded single
photon. This may be achieved through improvements to the optical stack around the
nanowire by replacing the gold mirror with a distributed Bragg reflector mirror [71].
Also, the detector reset time of nearly 100 ns restricts the maximum repetition rate
of the source to be ∼ 10 MHz. An SNSPD with a reduced reset time based on a
lower kinetic inductance nanowire material, or integrated with an active quenching
circuit [72], would allow for high single-photon generation rates. A multiplexing
method based on multiple PNR SNSPDs would also support a high repetition rate
in addition to a substantial increase in detection efficiency [73].

Beyond single-photon sources, extensions of our setup allow efficient generation
of qubits or qudits, as well as entanglement swapping using PNR SNSPDs [49].
Further uses encompass preparation of heralded photon-number states [74] and
non-Gaussian continuous-variable states [75], vital resources to realize fault-tolerant
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photonic quantum computers [76]. Lastly, and of note, by using PNRs to improve
teleportation rates [16], novel applications can benefit including microwave to optical
transduction [77]. During the preparation of our manuscript we became aware of
relevant results achieved independently of this work [78].
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C h a p t e r 4

PHOTON-NUMBER-RESOLVING SUPERCONDUCTING
NANOWIRE ARRAY DETECTORS

This chapter includes the work in preparation for publication:

[1] Samantha I. Davis, Prathwiraj Umesh, Ioana Craiciu, Raju Valivarthi, Boris Korzh,
Matthew Shaw, and Maria Spiropulu. “Photon number resolution with supercon-
ducting nanowire arrays.” In: Manuscript in preparation. (2025).

4.1 Introduction
Photon-number-resolving detectors (PNRDs) are indispensable for a wide range of
quantum technologies, including linear-optical quantum computing, quantum key
distribution and quantum metrology. Transition-edge sensors (TESs), microwave
kinetic-inductance detectors (MKIDs), and superconducting nanowire single-photon
detectors (SNSPDs) already deliver high efficiencies and sub-nanosecond timing,
yet their intrinsic photon number resolution eventually saturates as incident photon
flux increases, limiting dynamic range [1, 2, 3]. Pseudo-PNR schemes based on
temporal, spatial or spectral multiplexing circumvent this ceiling by distributing
photons over many modes and reading them out with threshold detectors [4, 5].
Parallel advances in nanofabrication now enable dense on-chip integration of hun-
dreds of SNSPD pixels and sophisticated fan-out architectures [6, 7, 8]. There are
therefore two types of PNR detection: (1) intrinsic PNR where a single detector is
sensitive to the energy difference between one, two, or more photons being absorbed
in a short time window, (2) pseudo-PNR, where incoming photons are distributed
over multiple spatial or temporal modes before being detected. The two types
can be combined, for example by an array of intrinsic-PNRDs, or combining one
intrinsic-PNRD with temporal multiplexing. Merging the advances in multiplexing
with single-pixel photon number resolution charts a practical route toward the ideal,
high-dynamic-range PNRD.

The quantitative behaviour of a PNRD is fully specified by its positive-operator-valued
measure (POVM). Closed-form solutions for POVM elements are known for the
case of uniform splitting probabilities across an array of click detectors [9], relevant
to spatially and temporally mulitplexed pseudo-PNRDs [4, 5]. Uniform-splitting
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assumptions, however, break down in large-scale array detectors [10, 11] where
spatial-mode weights are inherently non-uniform and pixel-to-pixel efficiencies
vary because of optical coupling and fabrication tolerances. A general treatment
requires a multinomial expansion over all detector outcomes whose term count
grows exponentially with array size, rendering brute-force evaluation intractable
for state-of-the-art devices. No analytic solution has yet been reported for this
non-uniform regime. More broadly, a model for the POVM elements of detec-
tor arrays with arbitrary POVMs is needed to support the development of scalable
architectures composed of photon-number-resolving detectors.

Here we close this gap by developing a generalized theoretical framework for POVM
modeling of realistic PNR detector arrays. First we present a model for an array
of detectors with arbitrary POVMs and splitting topologies. We find a closed-
form solution for case of click detectors and non-uniform splitting probabilities,
and present an iterative method for efficiently constructing the POVM of an array
detector from known detector POVMs and splitting probabilities. Next, we validate
the model by experimentally reconstructing the POVMs of two detector configura-
tions: (1) a pseudo-PNR array of threshold detectors with heterogeneous splitting
probabilities–an architecture exemplified by recent developments in SNSPD detector
arrays [10, 11], and (2) an array of six intrinsic-PNRDs. We perform experimen-
tal detector tomography of (1) the PEACOQ detector from Ref. [10] and (2) a
spatially-mutliplexed array of six PNR SNSPDs to demonstrate configurations 1
and 2, respectively. These two experimental demonstrations showcase our modeling
framework as a practical toolset for designing and optimizing next-generation PNR
arrays, which will advance the broader quest for detectors that approach the ideal
photon-number-resolving limit.

4.2 Generalized POVM model for array detectors
In quantum optics, the measurement statistics of a single-photon detector are fully
characterized by a set of positive operator value measure (POVM) elements {𝜋̂𝑛},
where each 𝜋̂𝑚 is a positive semi-definite operator associated with the outcome 𝑚.
For an input state 𝜌, the probability of observing outcome 𝑚 is given by,

𝑝𝑚 = Tr[𝜌𝜋̂𝑚] . (4.1)

The POVM elements can be expanded in a complete basis over any Hilbert space.
Relevant to photon-number-resolving detection, under the assumption that the de-
tector is insensitive to the phase of the input light, the POVM elements can be
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Figure 4.1: Setup for theoretical modeling. a) An n-photon number state, |𝑛⟩, is
injected into the first input port of a 2𝑁-port beamsplitter, described by the unitary
operator 𝑈𝑁 . The 𝑛 photons are distributed across a set of 𝑁 detectors, where 𝑐𝑘 is
the splitting amplitude for the 𝑘th output port and 𝚷(𝑘) is the conditional probability
matrix of the 𝑘th detector. b) Conceptual illustration of POVM construction from
an array of detectors with different photon number resolving capabilities. 𝚷(𝑛) is the
conditional probability matrix for the 𝑛th detector 𝚷 is the conditional probability
matrix for the overall array of multiplexed detectors.

expressed in the photon number basis as,

𝜋̂𝑚 =

∞∑︁
𝑛=0

𝑃(𝑚 |𝑛) |𝑛⟩ ⟨𝑛| =
∞∑︁
𝑛=0

𝚷𝑚,𝑛 |𝑛⟩ ⟨𝑛| , (4.2)

where 𝑃(𝑚 |𝑛) is the conditional probability that the detector outputs outcome 𝑚
given 𝑛 input photons and |𝑛⟩ is the photon number state of 𝑛 photons. In this
notation, the POVM of a detector can be completely summarized by the condi-
tional probability matrix Π̂, with matrix elements 𝚷𝑚,𝑛 = 𝑃(𝑚 |𝑛). For an ideal
photon-number-resolving detector, the POVM elements are {𝜋̂𝑛 = |𝑛⟩ ⟨𝑛|} and the
conditional probability matrix is the identity matrix, 𝚷𝑚𝑛 = 𝛿𝑚𝑛. In practice, the
photon number resolution of a realistic detector saturates, with photon resolution
demonstrated up to 15 photons at 1550 nm with single TES detector [12], resulting
in a truncated number of measurement outcomes. In turn, this limits the dynamic
range of a detector up to the photon number saturation.

Multiplexing is a common approach to overcoming photon number saturation,
whereby 𝑛 photons are distributed over a set of spatial [9], temporal [4, 5], or
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spectral modes such that a smaller number of photons are incident to the detector at
each mode. The splitting operation can be modeled using linear optics as a 2𝑁-port
beamsplitter with an associated unitary operator𝑈𝑁 , where 𝑁 is the number of input
and output modes (see Fig. 4.1a). A photon number state |𝑛⟩ inserted into one of
the input modes, with all others in the vacuum state. The photons are distributed to
a set of 𝑁 detectors, one at each output mode, where 𝑐𝑘 represents the probability
of a single photon arriving to output mode 𝑘 ∈ {1, ..., 𝑁} (“splitting probability“).
Each detector has a set of POVM elements {𝜋̂(𝑘)𝑛 }, where the POVM elements of the
detector at output mode 𝑘 are described by the conditional probability matrix 𝚷(𝑘) .
The measurement outcomes of the multiplexed detector are found by summing the
measurement outcomes of each detector. Let 𝚷 denote the conditional probability
matrix of the multiplexed detector. The matrix element 𝚷𝑚𝑛 corresponding to the
𝑚th measurement outcome given 𝑛 input photons is,

𝚷𝑚𝑛 =
∑︁

{∑𝑘 𝑚𝑘=𝑚}

∑︁
{∑𝑘 𝑗𝑘=𝑛}

𝑛!
𝑗1! · · · 𝑗𝑁 !

𝑐
𝑗1
1 · · · 𝑐 𝑗𝑁

𝑁
𝚷(1)
𝑚1 𝑗1

· · ·𝚷(𝑁)
𝑚𝑁 𝑗𝑁

, (4.3)

where the right hand side calculated as a multinomial expansion over the splitting
probabilities (𝑐1, ..., 𝑐𝑁 ), and individual detector matrices (𝚷1, ...,𝚷𝑁 ). In Eq. 4.3,
the inner sum accounts for all possible ways 𝑛 photons can be distributed over the
𝑁 detectors, denoted as {∑𝑘 𝑗𝑘 = 𝑛}, where 𝑗𝑘 is the number of photons incident to
the 𝑘th detector. The outer sum accounts for each set of coincident photon number
outcomes that sums to the measurement outcome 𝑚, denoted as {∑𝑘 𝑚𝑘 = 𝑚},
where 𝑚𝑘 is the measured photon number by the 𝑘th detector.

Click detector arrays
For the case of click detection at each output, in which each detector can resolve
either zero or at least one photon, the conditional probability matrix of the 𝑘th
detector is given by,

𝚷(𝑘) =

(
1 0 · · · 0
0 1 · · · 1

)
, (4.4)

where the first row corresponds to the detection of the vacuum state and the second
row corresponds to the detection of at least one photon, interpreted as the measure-
ment outcome of zero photons (𝑚𝑘 = 0) and one photon (𝑚𝑘 = 1), respectively.

In this case, Eq. 4.3 simplifies to [3],

𝚷𝑚𝑛 =

(𝑚)∑︁
{∑𝑘 𝑗𝑘=𝑛}

𝑛!
𝑗1! · · · 𝑗𝑁 !

𝑐
𝑗1
1 · · · 𝑐 𝑗𝑁

𝑁
, (4.5)
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where (𝑚) denotes the condition that exactly 𝑚 of ( 𝑗1, ..., 𝑗𝑁 ) are nonzero. The
number of terms in the sum of Eq. 4.5 scales polynomially in 𝑚 and exponentially
in 𝑛, which becomes computationally intractable for large 𝑛. To compute 𝚷𝑛𝑚, a
closed-form solution is desirable.

We obtain a closed-form expression by finding a recursion equation satisfied by the
matrix elements in Eq. 4.5. Let 𝑃(𝑛, ®𝑐(𝑚)) be the probability that 𝑛 photons arrive
to a subset of 𝑚 wires, where ®𝑐(𝑚) is the vector of probabilities for those 𝑚 wires;
there are

(𝑁
𝑚

)
such vectors, each of size 𝑚. We can rewrite 𝚷𝑚,𝑛 as

𝚷𝑚,𝑛 =
∑︁
®𝑐 (𝑚)

𝑃(𝑛, ®𝑐(𝑚)) (4.6)

where the sum is over all possible ®𝑐(𝑚) , i.e. over all possible subsets of 𝑚 wires.

For a given subset of 𝑚 wires, 𝑃(𝑛, ®𝑐(𝑚)) obeys the recursion relation,

𝑃(𝑛, ®𝑐(𝑚)) = 𝑃(𝑛 − 1, ®𝑐(𝑚))
(
𝑚∑︁
𝑘=1

®𝑐(𝑚)
𝑘

)
+

𝑚∑︁
𝑘=1

𝑃(𝑛 − 1, ®𝑐(𝑚−1) [𝑘]) ®𝑐(𝑚)
𝑘

(4.7)

where ®𝑐(𝑚)
𝑘

is the 𝑘th element of ®𝑐(𝑚)
𝑘

and ®𝑐(𝑚−1) [𝑘] is the subvector of ®𝑐(𝑚) that
excludes the element ®𝑐(𝑚)

𝑘
. The right hand side (RHS) accounts for the two cases of

the 𝑛th photon arriving to the 𝑚 wires: (1) the first term is the probability that the
𝑛th photon goes to one of the 𝑚 wires given that 𝑛 − 1 photons already arrived to
the 𝑚 wires; (2) the second term is the probability the 𝑛th photon arrives to the 𝑘th
wire given that 𝑛− 1 photons already arrived to the other 𝑚 − 1 wires, summed over
all 𝑘 = 1 to 𝑘 = 𝑚 wires.

The solution to the recursion relation yields (see Methods),

𝚷𝑚,𝑛 =

(
𝑁

𝑚

) 𝑚∑︁
𝑖=0

(−1)𝑖
(𝑚
𝑖

)( 𝑁
𝑚−𝑖

) ∑︁
®𝑐 (𝑚−𝑖)

(
𝑚−𝑖∑︁
𝑘=1

®𝑐(𝑚−𝑖)
𝑘

)𝑛
(4.8)

where ®𝑐(𝑚−𝑖) is the vector of probabilities formed by removing a subset of 𝑖 elements
from ®𝑐(𝑚); there are

( 𝑁
𝑚−𝑖

)
such vectors. The second sum in Eq. 4.8 is over all

possible choices of ®𝑐(𝑚−𝑖) . With Eq. 4.8, the number of terms is independent of 𝑛,
providing an exponential improvement for large 𝑛 in the computation of 𝚷𝑚,𝑛 over
the brute force computation using Eq. 4.5.

Without assumptions in the splitting probabilities, Eq. 4.8 is the most general closed-
form solution for calculating the POVM elements of multiplexed threshold detector
arrays. The scaling in 𝑁 and 𝑚 can be further improved leveraging symmetries in
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®𝑐. In the case of uniform splitting probabilities (𝑐 𝑗 = 1/𝑁 for 𝑗 = 1, ..., 𝑁), Eq. 4.8
simplifies to the commonly used expression [9],

𝚷𝑚𝑛 =
𝑚!
𝑁𝑛

(
𝑁

𝑚

)
𝑆(𝑛, 𝑚), 𝑁 ≥ 𝑛 ≥ 𝑚, (4.9)

where 𝑆(𝑛, 𝑚) = 1
𝑚!

∑𝑚
𝑖=0(−1)𝑖

(𝑚
𝑖

)
(𝑚 − 𝑖)𝑛 is the Stirling number of the second

kind, that is, the number of ways of partitioning a set of 𝑛 elements into exactly 𝑚
non-empty subsets.

Detector arrays with arbitrary POVMs: iterative construction
Next, we consider the general case of Eq. 4.3 for an array of detectors with
arbitrary POVMs. For the simplest case of two detectors with splitting probabilities
®𝑐 = (𝑐1, 𝑐2), which corresponds to a 2-port beamsplitter with transmittance 𝜏 where
𝑐1 = |𝜏 |2 and 𝑐2 = 1 − |𝜏 |2, the conditional probability matrix is,

𝚷𝑚𝑛 =

𝑚∑︁
𝑖=0

𝑛∑︁
𝑗=0

(
𝑛

𝑗

)
(𝑐1) 𝑗 (𝑐2)𝑛− 𝑗𝚷(1)

𝑖, 𝑗
𝚷(2)
𝑚−𝑖,𝑛− 𝑗 , (4.10)

where 𝚷(𝑘) and 𝚷(2) are the conditional probability matrices of detectors 1 and 2,
respectively.

The 𝚷 matrix of an array of 𝑁 detectors can be iteratively constructed by pairing
subsets of detectors using Eq. 4.10. The 𝑁 splitting probabilities ®𝑐 = (𝑐1, 𝑐2, ...𝑐𝑛)
can be mapped to a 2𝑁-port beamsplitter comprised of 𝑁 − 1 beamsplitters with
transmittances ®𝜏 = (𝜏1, 𝜏2, ...𝜏𝑁−1) (see Methods). The iterative construction is
illustrated in Fig. 4.1b for an array of four detectors. The heat maps for the
conditional probability matrices 𝚷(𝑘) where 𝑘 = 1, · · · , 4 of the four detectors,
which have ideal photon number resolution up to 2, 3, 4 and 5 photons for detectors
1, 2, 3, and 4, respectively. The heat map for the conditional probability matrix 𝚷

of the four-detector array is shown on the right for uniform splitting probabilities
®𝑐 = (1/4, 1/4, 1/4, 1/4), corresponding to ®𝜏 = (1/2, 1/

√
3, 1/

√
2), demonstrating

the improvement in photon number resolution with spatial multiplexing.

With this iterative method, given predetermined 𝚷 matrices of the detectors in
the array, the number of terms to compute is linear in 𝑛 and 𝑚. By leveraging
the recursive structure of arrays, this approach is significantly more efficient than
brute-force computation with Eq. 4.3 (see Methods).
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Figure 4.2: Array detector configurations for experimental detector tomography.
a) Illustration of PEACOQ detector with the experimental Gaussian spatial mode
of 1550 nm light coupled to 32 parallel nanowires. b) Illustration of splitting
configuration for the spatially multiplexed array of six PNR SNSPDs.

4.3 Experimental detector tomography
We compare the models against experimentally reconstructed POVMs of two de-
tector array configurations: (1) nonuniform spatial distribution across an array
of 32 detectors, each without intrinsic PNR capability, and (2) uniform splitting
distribution across array of six detectors, each with intrinsic PNR capability. For
configuration 1, we use the PEACOQ detector, which is an array of 32 superconduct-
ing nanowires coupled to a single-mode SMF-28 telecommunications wavelength
optical fiber [10]. The gaussian mode of the optical fiber is distributed across the
linear array of nanowires (Fig. 4.2a), which enables pseudo-PNR through multi-
plexing, as well as faster photon counting than is possible with a single nanowire.
For configuration 2, we use an array of six PNR SNSPDs, where input photons
distributed uniformly across a optical fiber beamsplitter network (Fig. 4.2b).

To reconstruct the POVMs of the two detector configurations, we perform experi-
mental detector tomography using the approach in Ref. [13]. For each configuration,
counting statistics are acquired for various mean photon numbers of input coherent
light pulses. The measured counting statistics can be related to the conditional
probability matrix by expressing Eq. 4.1 as,

P = F𝚷, (4.11)

where P is a 𝐷 × 𝑁 matrix containing the measured probabilities for 𝑁 detector
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outcomes over 𝐷 probe states, F is 𝐷 × 𝑀 matrix that contains the photon number
distributions of the 𝐷 input states, each truncated at a maximum Hilbert space
dimension 𝑀 , and 𝚷 is the 𝑀 × 𝑁 conditional probability matrix of the detector,
corresponding to the POVM elements in Eq. 4.2 with the sum truncated at 𝑀 − 1.
Each row of P corresponds to a histogram of the measurement outcome frequency
for each mean photon number. For coherent states, each row of F is the computed
Poisson distribution for each mean photon number. From known P and F, 𝚷 is
determined from matrix inversion with a CVXPY-based python module [13] using
the code from [14].

α

32 ch. readout

1550 nm
RF sync

T
D

C
...

PEACOQ

Cryostat
...

Power meter

α 2

Optical
Switch

Data acquisition 
and analysis

... ...
Phase Lock Loop

10 MHz
Variable attn.

20 MHz rep. rate
Pulsed laser 

0-120 dB

Figure 4.3: Experimental setup for tomography of the PEACOQ detector (pictured).

PEACOQ Detector
The experimental setup for tomography of the PEACOQ detector is shown in Fig.
4.3. The PEACOQ was measured in 0.9 K cryostat, in a modified version of Setup
A as described in Ref. [10]. Figure 4.3 shows a schematic of the experimental
setup. The ceramic ferrule of the optical fiber coupler was in direct contact with
the detector chip. Each of the 32 channels is individually biased and read out.
Three stages of amplifications, two of which were inside the cryostat at 40 K were
used to amplify the pulses corresponding to photon detections. The pulses were
then converted to time stamps using a custom 128-channel time-to-digital converter
(TDC). The source of optical coherent states was a 1550 nm pulsed laser with a
repetition rate of 20 MHz. Pulses from the laser passed through a variable attenuator,
a polarization controller, and a switch before entering the cryostat. The switch sent
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light to either the PEACOQ or a power meter, which was used to measure the mean
photon number. The sync signal of the pulsed laser was converted to a 10 MHz
signal using a phase-locked loop then sent to the TDC for synchronization.

Counting statistics are acquired at twelve attenuation settings corresponding to mean
photon numbers ranging from 𝜇 = 0.4 to 82. For each mean photon number, the
time tags from each detector are accumulated over a duration of ≤ 1s, depending on
the count rate. The time tags are binned to obtain the number of coincident clicks
out the 32 detectors per pulse. The counting probabilities are constructed from the
histogram of the number of the binned time tags, which is normalized to one and
forms a row of the P matrix. Each row of the F matrix calculated from the Poisson
distribution,

𝑝𝑛 (𝜇) =
𝜇𝑛

𝑛
𝑒−𝑛, (4.12)

where 𝑛 is truncated at 𝑛 = 124 to fully capture the statistics for all probe states.
The reconstructed 𝚷 is depicted in Fig. 4.4a up to 𝑚 = 25 and 𝑛 = 50.

We model the 𝚷 matrix using the iterative method, where each detector is assumed
to be click detector with 𝚷(𝑘) described by Eq. 4.4 for 𝑘 = 1 to 32. The splitting
probabilities (𝑐1, ..., 𝑐𝑁 ) are obtained from the normalized intensity distribution
depicted in Fig. 4.2a. To account for the detection efficiency of 𝜂 = 0.78, a
Bernoulli transformation is applied to the total 𝚷 matrix,

𝚷(𝜂)
𝑚𝑛 =

𝑛∑︁
𝑗=0

𝚷𝑚 𝑗

(
𝑛

𝑗

)
𝜂 𝑗 (1 − 𝜂)𝑛− 𝑗 . (4.13)

The theoretical 𝚷 is depicted in Fig. 4.4b. The columns of the reconstructed
and theoretical 𝚷 matrices are plotted in Fig. 4.4c and d, respectively. Despite
discrepancies likely introduced by smoothing artifacts in the matrix inversion, both
the reconstructed and modeled 𝚷 matrices reproduce the experimental counting
probabilities (Fig. 4.4e). The predicted counting probabilities, calculated as P =

F · 𝚷 for the reconstructed and theoretical 𝚷 matrices are plotted in Figs. 4.4f and
g, respectively. The solid curves are calculated from the Poisson distribution for
each mean photon number, corresponding to counting probabilities measured with
an ideal PNRD.
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Figure 4.4: Heatmaps of a) reconstructed and b) theoretical 𝚷 matrices for the
PEACOQ detector. The c) reconstructed and d) theoretical matrix elements𝚷m,n are
plotted as a function of the measurement outcome 𝑚 = 0, · · · , 32 for 𝑛 = 0, · · · , 50.
Each curve corresponds to a column of 𝚷. (e) Measured count probabilities 𝑝𝑚 (𝑚)
as a function of the mean photon number 𝜇, for the first seven measurement outcomes
𝑚 = 0 to 7. Reconstructed (f) and modeled (g) count probabilities as function of 𝜇,
calculated from the corresponding 𝚷 matrices. In (e)-(g), the detection efficiency is
absorbed into the mean photon numbers.
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Figure 4.5: Experimental setup for detector tomography of spatially multiplexed
PNR SNSPDs with uniform splitting distribution.

Spatially multiplexed PNR SNSPDs
The experimental setup for reconstruction of the POVM for an array of six PNR
SNSPDs is shown in Fig. 4.5. We employ a mode-locked laser (Calmar) oper-
ating at a wavelength of 1550 nm with a repetition rate of 10 MHz. The emitted
optical pulses have a temporal width of less than 2 ps and are directed to a high-
extinction-ratio intensity modulator (extinction ratio > 40 dB). Simultaneously, the
RF synchronization output from the laser is routed to a pulse picker module based
on the Anyclock system (Skyworks, Si5344), which generates a 500 kHz RF signal.
This output is passed through a digital delay generator (Stanford Research Systems,
DG648) for precise temporal alignment with the optical pulse train. The delayed
RF signal is amplified and used to drive the intensity modulator, selecting one
out of every twenty optical pulses and reducing the repetition rate to 500 kHz. This
downsampling avoids detector saturation and suppresses time-walk distortions in the
SNSPD outputs at high count rates [15]. The modulator is carefully tuned to maxi-
mize extinction and minimize leakage from unpicked pulses. The modulated optical
pulse train is passed through a 90:10 fiber splitter. The 90% output is used for optical
power monitoring and serves as a clock reference for the time tagger. The remaining
10% is attenuated using variable optical attenuators (Yokogawa) and distributed
to six superconducting nanowire single-photon detectors (SNSPDs) via a cascade
of fiber beam splitters. Polarization controllers are placed before each detector to
ensure optimal polarization alignment and coupling efficiency. The detectors, based
on niobium nitride (NbN) nanowires, are housed in a Photonspot cryostat operating
below 0.8 K. Detection signals are recorded using a Swabian Instruments Time Tag-
ger X operated in standard mode for high-resolution time-correlated single-photon
counting.
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Figure 4.6: Histogram of time-tags accumulated over 10s for a mean photon number
of ≈ 7 relative to the clock for the detector in channel 6. The windows for labeling
time-tags with photon number are shown.

To reconstruct the POVMs of the individual detectors and the multiplexed detector
array, time-tags are accumulated for a range of mean photon numbers of the input
coherent light pulses. When multiple photons are incident on a single nanowire,
multiple resistive hotspots are generated, which vary the amplitude and slew rate of
the resulting RF output pulse. With a constant-threshold time-tagger, variations in
slew rate translate into shifts in the registered time-tags [16]. This effect produces
temporally distinguishable time-tag distributions for different numbers of incident
photons. The histogram of time-tags accumulated over ten seconds is shown in Fig.
4.6 for one of the detectors, which can resolve up to four photons. The time-tags
are assigned a photon number depending on the arrival time. To extract the range
of arrival times associated with each photon number outcome, a Gaussian fit is
performed on the first three time tag distributions, corresponding to 𝑚 = 1, 2 and
3 photons. The arrival time windows for 𝑚 = 1, 2 and 3 are extracted from ±3𝜎
from the mean of each distribution, depicted as the shaded regions in Fig. 4.6.
Arrival times less than the −3𝜎 of the 𝑚 = 3 distribution are assigned 𝑚 = 4.
This procedure is performed for each detector in the array, with the windows for
each detector held fixed across all measurements. For the multiplexed array of
six detectors, each coincident event is assigned a total photon number equal to the
sum of the individual photon numbers assigned to the time-tags registered by each
detector.

The reconstructed𝚷(𝑘) for each detector (𝑘 = 1, · · · , 6) are plotted in Fig. 4.7a-f. To
isolate the PNR capability from the effects of optical loss, the detection efficiency
is absorbed into the mean photon number for each detector. The reconstructed
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and modeled 𝚷 for the detector array are plotted in Fig. 4.7g and h, respectively.
For the model, we construct 𝚷 with the iterative procedure of Sec. 4.2 using the
reconstructed 𝚷(𝑘) of six detectors, assuming uniform splitting probabilities. The
matrix elements for the reconstructed and modeled𝚷 are compared for 𝑛 = 0, · · · , 20
in Figs. 4.7i-j. The counting probabilities from the reconstructed (Fig. 4.7l) and
modeled (Fig. 4.7m) 𝚷 matrices reproduce the measured counting probabilities
(Fig. 4.7k) for all mean photon numbers. The solid curves are calculated from
Poisson statistics, corresponding to that measured with an ideal PNRD.

4.4 Discussion
We have developed a generalized theoretical framework for modeling POVMs of
array detectors. We presented a model for 𝚷 (Eq. 4.3) that accommodates detectors
with arbitrary POVM elements and arbitrary splitting probabilities across the array.
We analyzed the computational complexity of computing 𝚷𝑚𝑛 in various cases.
For the case of click detectors, we found a closed-form solution for 𝚷𝑚𝑛 that
provides an exponential speedup over the multinomial representation. We then
find an efficient construction of 𝚷 for a given set of detector POVMs and splitting
probabilities. We take an iterative approach where individual POVMs are fused in
pairs, taking advantage of the recursive structure of arrays. This allows us to model
the POVMs of (1) the PEACOQ detector and (2) a spatially multiplexed array of
PNR SNSPDs, corresponding to the cases of (1) 32 click detectors with Gaussian
splitting probabilities and (2) six PNRDs with distinct POVMs and uniform splitting
probabilities, respectively. We validate the models by perform experimental detector
tomography of the PEACOQ detector and the multiplexed array of PNR SNSPDs,
which demonstrate near ideal PNRD response for mean photon numbers up to 𝜇 ∼ 10
(see Methods). This work supports the development of PNRD arrays towards the
goal of practical and near-ideal photon number discrimination for diverse photon
counting applications.

4.5 Methods
Derivation of closed-form solution
Here we generalize the derivation for the 2N-port beamsplitter model of Paul et
al. [9] to find a closed-form expression for 𝚷𝑚,𝑛 for non-uniform distribution of
photons across the output ports, with probabilities ®𝑐 = (𝑐1, 𝑐2, ..., 𝑐𝑁 ). The 2𝑁-port
beamsplitter has corresponding unitary 𝑈𝑁 , which can be decomposed into 2 × 2
beamsplitters [17] for a given set of splitting probabilities. The 2𝑁-port beamsplitter
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Figure 4.7: Heatmaps of reconstructed and theoretical 𝚷 matrices for the spatially
multiplexed PNR SNSPDs configuration. (a)-(f) Heatmaps of reconstructed 𝚷

matrices for the Ch 1-6 detectors. Heatmaps of (g) reconstructed and (h) model
𝚷 matrices for the multiplexed array of Ch 1-6 detectors. Matrix elements for (i)
reconstructed and (j) model𝚷matrices for the multiplexed array of Ch 1-6 detectors,
where the curves (𝑛 = 0 · · · 20) correspond to each column of𝚷. (k) Measured count
probabilities 𝑝𝑚 (𝑚) as a function of the mean photon number 𝜇, for the first seven
measurement outcomes 𝑚 = 0 to 7. Reconstructed (l) and modeled (m) count
probabilities as function of 𝜇, calculated from the corresponding 𝚷 matrices.
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has the effect of sending a single photon at the first port into a superposition over
the 𝑁 output ports (see Fig. 4.1a),

𝑎̂
†
1
𝑈𝑁−−→

𝑁∑︁
𝑖=1

𝜆𝑖 𝑏̂
†
𝑖
, (4.14)

where 𝜆𝑖 is the amplitude for port 𝑖, |𝜆𝑖 |2 = 𝑐𝑖 is the probability that the photon is
measured at port 𝑖, and

∑𝑁
𝑖=1 𝑐𝑖 = 1. Consider 𝑛 photons incident to the first input

port of the 2𝑁-port beamsplitter,

|𝑛⟩1 |0⟩2 · · · |0⟩𝑁 =
1

√
𝑛!
(𝑎̂†1)

𝑛 |0⟩ 𝑈𝑁−−→ 1
√
𝑛!

(
𝑁∑︁
𝑖=1

𝜆𝑖 𝑏̂
†
𝑖

)𝑛
|0⟩ . (4.15)

Applying the multinomial theorem, the RHS can be expanded as,(
𝑁∑︁
𝑖=1

𝜆𝑖 𝑏̂
†
𝑖

)𝑛
|0⟩ =

∑︁
∑
𝑗𝑖=𝑛

√︄
𝑛!

𝑗1! · · · 𝑗𝑁 !
(𝜆1) 𝑗1 · · · (𝜆𝑁 ) 𝑗𝑁 | 𝑗1⟩ · · · | 𝑗𝑁⟩ , (4.16)

where the sum is over all possible ways n photons can be distributed over the 𝑁
wires.

Therefore, the probability of distributing 𝑛 photons into 𝑗1 photons at wire 1, 𝑗2
photons at wire 2, ..., 𝑗𝑁 photons at wire 𝑁 is,

𝑃𝑛 ( 𝑗1, · · · , 𝑗𝑁 ) =
𝑛!

𝑗1! . . . 𝑗𝑁 !
𝑐
𝑗1
1 . . . 𝑐

𝑗𝑁
𝑁
, (4.17)

where the probability of “on" outcomes on 𝑚 wires is the sum of 𝑃𝑛 ( 𝑗1, · · · , 𝑗𝑁 )
over 𝑚 nonzero 𝑗’s is,

𝚷𝑚,𝑛 =

(𝑚)∑︁
∑
𝑗𝑖=𝑛

𝑃𝑛 ( 𝑗1, · · · , 𝑗𝑁 ) =
(𝑚)∑︁

∑
𝑗𝑖=𝑛

𝑛!
𝑗1! 𝑗2! . . . 𝑗𝑁 !

𝑐
𝑗1
1 . . . 𝑐

𝑗𝑁
𝑁
. (4.18)

For the recursion relation in Eq. 4.7, the solution can be expressed in the more
familiar form,

𝑃(𝑛, p(𝑚)) =
𝑚∑︁
𝑖=0

(−1)𝑖
∑︁

p(𝑚,𝑖)

(∑︁
𝑘

𝑝
(𝑚)
𝑘

−
∑︁
𝑘

𝑝
(𝑚,𝑖)
𝑘

)𝑛
, (4.19)

where p(𝑚,𝑖) is the vector formed by taking a subset of 𝑖 elements in p(𝑚); there are(𝑚
𝑖

)
such vectors. The second sum in Eq. 4.19 is over all possible choices of p(𝑚,𝑖) .
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In this form, it is clear that for 𝚷𝑚,𝑛 =
∑

®𝑐 (𝑚) 𝑃(𝑛, ®𝑐(𝑚)) for the case of uniform
splitting probabilities with ®𝑐(𝑚−𝑖)

𝑘
= 1/𝑁 , Eq. 4.19 simplifies to expression from

Ref. [9],

𝚷𝑚𝑛 =
1
𝑁𝑛

(
𝑁

𝑚

) 𝑚∑︁
𝑖=0

(−1)𝑖
(
𝑚

𝑖

)
(𝑚 − 𝑖)𝑛. (4.20)

Plugging Eq. 4.19 into Eq. 4.6,

𝚷𝑚𝑛 =
∑︁
p(𝑚)

𝑃(𝑛, p(𝑚)) =
∑︁
p(𝑚)

𝑚∑︁
𝑖=0

(−1)𝑖
∑︁

p(𝑚,𝑖)

(∑︁
𝑘

𝑝
(𝑚)
𝑘

−
∑︁
𝑘

𝑝
(𝑚,𝑖)
𝑘

)𝑛
(4.21)

=

𝑚∑︁
𝑖=0

(−1)𝑖
∑︁
p(𝑚)

∑︁
p(𝑚,𝑚−𝑖)

(∑︁
𝑘

𝑝
(𝑚,𝑚−𝑖)
𝑘

)𝑛
. (4.22)

We can further simplify the solution. Two of the sums can be combined due to
redundancy,∑︁

p(𝑚)

∑︁
p(𝑚,𝑚−𝑖)

(∑︁
𝑘

𝑝
(𝑚,𝑚−𝑖)
𝑘

)𝑛
=

(𝑁
𝑚

) (𝑚
𝑖

)( 𝑁
𝑚−𝑖

) ∑︁
p(𝑚−𝑖)

(∑︁
𝑘

𝑝
(𝑚−𝑖)
𝑘

)𝑛
. (4.23)

yielding the expression in Eq. 4.8,

𝚷𝑚𝑛 =

(
𝑁

𝑚

) 𝑚∑︁
𝑖=0

(−1)𝑖
(𝑚
𝑖

)( 𝑁
𝑚−𝑖

) ∑︁
p(𝑚−𝑖)

(∑︁
𝑘

𝑝
(𝑚−𝑖)
𝑘

)𝑛
.

Iterative construction of the POVM elements
For an array of 𝑁 detectors, each with a set of POVM elements, which are described
the matrix 𝚷( 𝑗) for the 𝑗 th detector, the splitting probabilities (𝑐1, · · · , 𝑐𝑁 ) can be
mapped to transmittances of a 2𝑁-port beamsplitter (see Fig. 4.8) as,

𝑎̂in
𝑈𝑁−−→ 𝜏1𝑎̂1 + 𝑟1𝜏2𝑎̂2 + ... + (𝑟1 · · · 𝑟𝑁−1𝜏𝑁−1)𝑎̂𝑁−1 + (𝑟1 · · · 𝑟𝑁−1)𝑎̂𝑁 ,

(4.24)

where |𝑟𝑛 |2 = 1 − |𝜏𝑛 |2 for 𝑛 ∈ [1, 𝑁 − 1]. The splitting probabilities are related to
the transmittances as,

𝑐𝑛 =


|𝑟1 |2 · · · |𝑟𝑁−1 |2, for 𝑛 = 1,

|𝜏𝑛 |2( |𝑟1 |2 · · · |𝑟𝑛−1 |2), for 1 < 𝑛 < 𝑁

|𝜏1 |2, for 𝑛 = 𝑁,

, (4.25)
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Figure 4.8: Setup for the iterative construction of the POVM elements for an array
of 𝑁 detectors.

satisfying
∑𝑁
𝑗=1 𝑐 𝑗 = 1. Therefore, given a set of a splitting probabilities ®𝑐 =

(𝑐1, ..., 𝑐𝑁 ), the transmittances (neglecting phase) can be computed recursively as,

|𝜏1 |2 = 𝑐𝑁 , |𝜏𝑛 |2 =
𝑐𝑁−(𝑛−1)

(1 − |𝜏1 |2) · · · (1 − |𝜏𝑛−1 |2)
for 1 < 𝑛 < 𝑁. (4.26)

After computing the transmittances, the conditional probability matrix elements can
be computed recursively using Eq. 4.10 as,

𝚷(1,2)
𝑚,𝑛 =

𝑚∑︁
𝑖=0

𝑛∑︁
𝑗=0

(
𝑛

𝑗

)
( |𝜏𝑁 |2) 𝑗 (1 − |𝜏𝑁 |2)𝑛− 𝑗𝚷(1)

𝑖, 𝑗
𝚷(2)
𝑚−𝑖,𝑛− 𝑗 , (4.27)

𝚷(1,2,3)
𝑚,𝑛 =

𝑚∑︁
𝑖=0

𝑛∑︁
𝑗=0

(
𝑛

𝑗

)
( |𝜏𝑁−1 |2) 𝑗 (1 − |𝜏𝑁−1 |2)𝑛− 𝑗𝚷(1,2)

𝑖, 𝑗
𝚷(3)
𝑚−𝑖,𝑛− 𝑗 , (4.28)

... (4.29)

𝚷(1,··· ,𝑁)
𝑚,𝑛 =

𝑚∑︁
𝑖=0

𝑛∑︁
𝑗=0

(
𝑛

𝑗

)
( |𝜏1 |2) 𝑗 (1 − |𝜏1 |2)𝑛− 𝑗𝚷(1,··· ,𝑁−1)

𝑖, 𝑗
𝚷(𝑁)
𝑚−𝑖,𝑛− 𝑗 , (4.30)

where 𝚷(1,··· ,𝑘) is the conditional probability matrix for an array comprised of
detector 1 through 𝑘 , where 𝑘 ∈ 1, · · · , 𝑁 , and 𝚷 = 𝚷(1,··· ,𝑁) is the conditional
probability matrix of the entire array of 𝑁 detectors.
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Figure 4.9: Computational complexity as a function of conditional probability
matrix (𝚷) size. a) Number of terms to calculate and b) estimated number of
FLOP counts for the general model (Eq. 4.3), the multinomial solution for the click
detection model (Eq. 4.5), the closed-form solution for the click detection model
(Eq. 4.8), and the generalized iterative construction for computing a conditional
probability matrix 𝚷 of dimensions 𝑀 × 𝑀 .

Computational complexity
The number of terms in each expression directly affects the computational com-
plexity of evaluating 𝚷, since each term corresponds to a unique combination of
photon distributions and detector responses that must be explicitly computed. In
the computation of 𝚷𝑚𝑛, each term incurs a number of floating-point operations
(FLOPs), such as exponentiations, multiplications, and factorial evaluations, where
the total FLOP count is a proxy for runtime. The total FLOP count is a widely
used metric for estimating algorithmic efficiency, particularly in numerical linear
algebra and scientific computing, where it serves as a hardware-agnostic measure
of computational cost [18]. The number of terms and estimated FLOP count for
Eq. 4.3, Eq. 4.5, Eq. 4.8, and the iterative method are summarized in Table 4.1.
For each equation, the number of terms and estimated FLOP counts for computing
a 𝚷 matrix of size 𝑀 × 𝑀 are plotted in Fig. 4.9 as a function of 𝑀 for an array
size of 𝑁 = 32. The general model Eq. 4.3 and multinomial expression Eq. 4.5
quickly become intractable even for models values of 𝑀 ≥ 10. The closed-form
solution in Eq. 4.8 provides a improvement for the click detection case with roughly
polynomial scaling in 𝑀 , but still becomes intractable for modest values of 𝑀 . The
iterative method is the most efficient, with scaling O(𝑀2).
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Method Term count FLOPs per term Total FLOPs

General model (Eq. 4.3)
(𝑚+𝑁−1

𝑁−1
) (𝑛+𝑁−1

𝑁−1
)

O(𝑁) O
(
𝑁

(𝑚+𝑁−1
𝑁−1

) (𝑛+𝑁−1
𝑁−1

) )
Multinomial solution (Eq. 4.5)

(𝑁
𝑚

)
𝑆(𝑛, 𝑚) 𝑚! O(𝑚) O

(
𝑚

(𝑁
𝑚

)
𝑆(𝑛, 𝑚)𝑚!

)
Closed-form solution (Eq. 4.8)

∑𝑚
𝑖=0

(𝑚
𝑖

) ( 𝑁
𝑚−𝑖

)
O(𝑚) O

(
𝑚

∑𝑚
𝑖=0

(𝑚
𝑖

) ( 𝑁
𝑚−𝑖

) )
Iterative construction 𝑁 (𝑚+1) (𝑛+1) O(1) O(𝑁 (𝑚+1) (𝑛+1))

Table 4.1: Computational complexity of computing the matrix elements 𝚷𝑚𝑛 for
the different approaches and configurations. FLOPs per term estimate the number
of operations per term including binomial coefficients and multiplications.

Count fidelity
We evaluate the performance of the detector arrays for the given probe states with
the count fidelity,

𝐹 =

(∑︁
𝑛

√
𝑝𝑛𝑞𝑛

)2

, (4.31)

which quantifies how near the measured count distribution ({𝑝𝑛}) match the true
photon number distribution ({𝑞𝑛}) of the probe states. The fidelities for the PEACOQ
detector and the PNR SNSPD array detector are plotted in Fig. 4.10 as a function
of mean photon number. Both detectors exhibit ≥ 90% count fidelities for coherent
states with up to 𝜇 ∼ 10.

(a) (b)

Figure 4.10: Count fidelities for a) the PEACOQ detector and b) the array of six
PNR SNSPDs.
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C h a p t e r 5

HIGH-RATE MULTIPLEXED ENTANGLEMENT SOURCE
BASED ON TIME-BIN QUBITS FOR ADVANCED QUANTUM

NETWORKS

This chapter includes the work published as:

[1] Andrew Mueller, Samantha I. Davis, Boris Korzh, Raju Valivarthi, Andrew D.
Beyer, Rahaf Youssef, Neil Sinclair, Cristián Peña, Matthew D Shaw, and Maria
Spiropulu. “High-rate multiplexed entanglement source based on time-bin qubits
for advanced quantum networks.” In: Optica Quantum 2.2 (2024), pp. 64–71.

5.1 Introduction
Quantum computing represents an upcoming threat to public-key cryptography [1,
2]. Quantum Key Distribution (QKD) is a method for overcoming this threat by
sharing secret cryptographic keys between parties in a manner that is sufficiently
secure against potential eavesdroppers and the decryption capabilities of quantum
computers. Point-to-point QKD networks are a precursor to more advanced quan-
tum networks which enable the transfer of quantum states for multiple applications
including distributed quantum computing, sensing, or secure communication. We
characterize any quantum network as ‘advanced’ if it enables protocols and capa-
bilities that go beyond point-to-point QKD [3]. These include teleportation [4, 5],
entanglement swapping [6], memory-assisted networks [7], and others. Entangled
photons are a fundamental resource for such demonstrations, and entanglement
distribution is therefore a key component of premier quantum network initiatives
including the European Quantum Communication Infrastructure (EuroQCI) project,
the Illinois Express Quantum Network (IEQNET), the Chinese Quantum Experi-
ments at Space Scale (QUESS) initiative, the United Kingdom UKQNTel network,
and the Washington DC-QNet Research Consortium. Future quantum networks
should enable high-fidelity and high-rate transfer of individual quantum states across
multiple quantum nodes, mediated by distribution of entangled photons, quantum
memories, and entanglement swapping measurements.

High-rate entanglement distribution enables high-rate entanglement-based QKD,
as well as more general operations that characterize advanced quantum networks.
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Entanglement distribution and entanglement-based QKD have been demonstrated
with impressive performance across a number of metrics. These include 40 kbps
data rates in a QKD system deployed over 50 km of fiber [8] as well as multiple
polarization entangled sources that leverage spectral multiplexing. These polariza-
tion sources include a demonstration of 181 kebits/s across 150 ITU channel pairs
and a high-throughput source potentially capable of gigabit rates with many added
channels and detectors [9, 10]. Multiple works have highlighted the need to lever-
age high total brightness, spectral brightness, collection efficiency, and visibility
from pair-generating non-linear crystals to realize practical high-rate entanglement
distribution [10, 11, 12, 13, 14, 15, 16].

A time-bin entangled photon source has certain advantages over a polarization-based
system [17]. Time-bin entanglement can be measured with no moving hardware
and does not require precise polarization tracking to maximize visibility [18, 19].
Also, with suitable equipment, robust time-bin modulation is possible over free
space links with turbulence [20]. Therefore, the possibility of simplified fiber-to-
free-space interconnects and larger quantum networks based on a shared time-bin
protocol motivates development of improved time-bin sources. Furthermore, time-
bin encoding is suited for single-polarization light-matter interfaces [21].

We direct 4.09 GHz mode locked laser light into a nonlinear crystal via 80-ps delay-
line interferometers (12.5 GHz free-spectral range) to realize a high-rate entangle-
ment source. The ability to resolve time-bin qubits into 80 ps wide bins is enabled
by newly developed low-jitter differential superconducting nanowire single-photon
detectors (SNSPDs) [22]. Wavelength multiplexing is used to realize multiple high
visibility channel pairings which together sum to a high coincidence rate. Each
of the pairings can be considered an independent carrier of photonic entanglement
[23, 24] and therefore the system as a whole is applicable to flex-grid architectures
through the use of wavelength selective switching [25, 26]. However, we focus on
maximizing the rate between two receiving stations, Alice and Bob (Fig. 5.1a).
Each station is equipped with a DWDM that separates the frequency multiplexed
channel into multiple fibers for detection. The SNSPDs are used with a real-time
pulse pileup and time-walk correction technique [27] to keep jitter low even at high
count rates.

We quantify per-channel brightness and visibility as a function of pump power, as
well as collection efficiencies, coincidence rates across 8 channel pairs. We show
that the 8-channel system achieves visibilities that average to 99.3% at low mean
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Figure 5.1: Experimental setup. a) Pulses from a 1539.47 nm mode locked laser
(Pritel UOC) are split into two by an 80-ps delay-line interferometer before up-
conversion and amplification in a second harmonic generation + erbium doped fiber
amplifier (SHG + EDFA) module (Pritel). A short PM fiber from the SHG module
connects to a nonlinear crystal generating photon pairs by spontaneous parametric
down-conversion (SPDC). The coarse wavelength division multiplexing (CWDM)
module separates the photon pair spectrum into eight 13 nm-wide bands around 1530
and 1550 nm, for the signal and idler photon, respectively. The signal and idler are
directed to the Bob and Alice stations, respectively. The readout interferometers
introduce the same time delay as the source interferometer. Polarization controllers
are used to maximize the coincidence rates. 100 GHz spacing dense wavelength di-
vision multiplexer (DWDM) modules are used to direct each frequency channel into
a distinct fiber. Two superconducting nanowire single photon detectors (SNSPDs)
are used to measure a specific frequency multiplexed channel pair. Measurements
for different multiplexed channels are performed in succession to resolve full system
performance. b) ITU channels used in the experiment. Pairs of channels high-
lighted with the same color obey the phase and pump-energy matching condition
for SPDC. To assess the full 16 channels (27-42) of Alice’s DWDM multiplexer,
Bob’s 8-channel DWDM is replaced with a narrowband filter with tunable resonance
frequency (not shown in figure).
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photon number 𝜇𝐿 = 5.6×105 ± 9×106. At a higher power (𝜇𝐻 = 5.0×103 ± 3×104),
we demonstrate a total coincidence rate of 3.55 MHz with visibilities that average to
96.6%. Through quantum state tomography we bound the distillable entanglement
rate of the system to between 69% and 91% of the 𝜇𝐻 coincidence rate (2.46 - 3.25
Mebits/s).

Quantifying a source’s spectral mode purity is important for gauging its utility in ad-
vanced quantum networks that rely on interferometric measurements like two-photon
interference which enables Bell-state measurements (BSM) [5]. With Schmidt de-
composition we quantify the modal purity of single DWDM channel pairs and derive
the inverse Schmidt number which serves as an estimate for two-photon interference
visibility between two such sources. Ultimately, we demonstrate that an entangle-
ment generation source of this design makes for a robust and powerful building
block for future high-rate quantum networks.

5.2 System
Figure 5.1 shows the experimental setup. Pulses from the 4.09 GHz mode-locked
laser, with a center wavelength at 1539.47 nm, are sent through an 80 ps delay-line
interferometer (Optoplex DPSK Phase Demodulator). All interferometers used are
the same type; they have insertion loss of 1.37 ± 0.29 dB, are polarization inde-
pendent, and have extinction ratios greater than 18 dB. The source interferometer
produces two pulses each clock cycle used to encode early/late basis states (|𝑒⟩, |𝑙⟩),
which are subsequently up-converted by a second harmonic generation (SHG) mod-
ule (Pritel) and down-converted into entangled photon pairs by a type-0 spontaneous
parametric down conversion (SPDC) crystal (Covesion) [17]. The SPDC module
uses a 1 cm long waveguide-coupled MgO-doped lithium niobate crystal with an
18.3 µ polling period. The up-converted pulses at 769 nm have a FWHM bandwidth
of 243 GHz (0.48 nm), which along with the phase matching condition of the SPDC
waveguide, defines a wide joint spectral intensity (JSI) function [28].

The photon pairs are separated by a coarse wavelength division multiplexer (CWDM)
which serves to split the SPDC spectrum into two wide-bandwidth halves. For a
system using more than 16 DWDM channels at Alice and Bob, the CWDM would
be replaced with a splitter that efficiently sends the full SPDC spectrum shorter
than 1540 nm to Bob, and the spectrum longer than 1540 nm to Alice. A dichroic
splitter with a sharp transition at 1540 nm would also enable the use of DWDM
channels 43-46 and 48-51. The pairs are of the form |𝜓⟩ = 1√

2

(
|𝑒⟩𝑠 |𝑒⟩𝑖 + 𝑒𝑖𝜙 |𝑙⟩𝑠 |𝑙⟩𝑖

)
.
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Entangled idler and signal photons are sent to the receiving stations labeled Alice and
Bob, respectively. One readout interferometer at each station projects all spectral
bands into a composite time-phase basis. From here, dense wavelength division
multiplexers (DWDM) divide up the energy-time entangled photon pairs into spectral
channels.

The DWDM outputs are sent to differential niobium nitride (NbN) single pixel
SNSPDs [22] with 22 × 15 µm active areas formed by meanders of 100-nm-wide
and 5-nm-thick niobium nitride (NbN) nanowires on a 500 nm pitch. These measure
the arrival time of photons with respect to a clock signal derived from the mode
locked laser. Use of the high system repetition rate and compact 80 ps delay
interferometers is only possible due to the high timing resolution of these detectors.
Low jitter performance is achieved by incorporating impedance matching tapers
for efficient RF coupling, resulting in higher slew rate pulses, and by enabling RF
pulse readout from both ends of the nanowire. The dual-ended readout allows for
the cancellation of jitter caused by the variable location of photon arrival along the
meander when the differential signals are recombined with a balun. SNSPDs of this
type reach system jitters down to 13.0 ps FWHM, and 47.6 ps FW(1/100)M [22].
We use two SNSPDs for this demonstration with efficiencies at 1550 nm of 66%
and 74%. They exhibit 3 dB maximum count rates of 15.1 and 16.0 MHz. A full
8-channel implementation of this system would require 16 detectors operating in
parallel at both Alice and Bob. To read out both outputs of both interferometers, 4
detectors per channel are required, resulting in 32 detectors total.

In the following, rigorous tests of entanglement are primarily done with the 8 ITU
100 GHz channel pairings: Ch. 35-42 at Alice and Ch. 52-59 at Bob. However, the
source brightness measurements were conducted on a partially realized 16-channel
configuration which makes use of all 16 channels available on Alice’s DWDM.

Signals from the SNSPDs are directed to a free-running time tagger (Swabian) and
processed with custom software. The resulting histograms, referenced from a shared
clock (Fig 5.2a), depict three peaks, which are caused by the sequential delays of
the source and readout interferometers. Some intensity imbalance between long
and short paths is present in these interferometers, which explains the asymmetry
between early and late peaks in Fig. 5.2a. Such imbalances are present in both the
source and readout interferometers to varying degrees. The interferometer used for
the source exhibits an early/late intensity balance ratio of 1.13. Alice and Bob’s
interferometers exhibit early/late imbalances of 1.24 and 1.15, respectively. These
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Figure 5.2: Entanglement visibility characterization. a) Histogram of photon arrival
events with respect to the 4.09 GHz clock. Dashed black and grey lines show the
response functions for coincidence events. Events within 10 ps guard regions
centered at 80 and 160 ps (shaded red) are discarded for analysis of coincidences
between individual bins. This is done to maximize visibility in the presence of some
minor overlap of the pulses. The coincidence histograms include pairings from any
combination of early, middle, and late time bins. Therefore, the height of the center
peak in the phase-min state is not near zero, as non-phase-varying terms contribute.
b) Coincidence rate interference fringes for the center time bin in isolation. Based
on the good agreement between the fringe data and a cosine fit, we make subsequent
tomographic measurements assuming that phase is linear with the electrical power
applied to the interferometer phase shifter.
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Figure 5.3: Entanglement visibility versus mean pair rate per pulse (𝜇) and SHG
pump power. Error bars are calculated by taking multiple measurements of the
center bin coincidence rate over some integration time. These measurements span
small ranges of interferometer phase, as the extremum-finding algorithm jitters the
interferometer voltage. 𝑉𝐶 (grey data, red line) is a construction that models how
visibility would be affected if accidental coincidences from mutually incompatible
spectral modes could be mitigated in future systems.

induce imperfect overlap of certain time-bin modes of differing amplitudes. This
mismatch lowers interference visibilities, see Section 5.4.

5.3 Results
The coincidence rate across Alice and Bob’s middle bins varies sinusoidally with
respect to the combined phase relationship of the source and readout interferometers
[29, 17] (see Fig. 5.2b). In Fig. 5.2a the coincidences shown are for any combi-
nation of early, middle, or late bins. For tomography and visibility measurements,
coincidence detections across specific bin pairings are considered.

Due to the small size (3 × 3 cm) and temperature insensitivity of the interferometers,
minimal temporal phase drift is observed. Without active temperature control or
phase feedback, we observe minimized coincidence rates of the center time bin
stay within 6% of their original values after 50 minutes. Nevertheless, software
is used to lock the voltage-controlled phase at a minimum or maximum with a
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simple hill-climbing algorithm. This varies the phase by small amounts over several
minutes to search for or maintain an extremum. This is simpler to implement than
the techniques needed to stabilize interferometers of longer path length difference,
including the use of precise temperature control [5] or co-propagating stabilization
lasers [30].

Channels 35 and 59 are chosen for an analysis of entanglement visibility and rates
versus pump power. Visibility with respect to pump power or mean entangled
pair rate is shown in Fig. 5.3a. We define the entanglement visibility as 𝑉 =

100% ∗ (𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑖𝑛)/(𝐶𝑚𝑎𝑥 + 𝐶𝑚𝑖𝑛) where 𝐶𝑚𝑖𝑛 and 𝐶𝑚𝑎𝑥 are the minimum and
maximum coincidence rates in the middle bin for varied phase. As this coincidence
rate depends on the total phase across the source and readout interferometers, only
Bob’s interferometer is actively controlled to scan the full state space.

The raw visibility versus 𝜇 is shown in blue in Fig. 5.3a. Relative to similar
measurements [31], this drops quickly with increasing 𝜇, and one reason is the
presence of accidental coincidences across mutually incompatible spectral modes.
The presence of these unwanted coincidences is a consequence of the narrowband
filtering regime, and depends on factors included the singles rates 𝑆𝐴 and 𝑆𝐵, and
the geometric compensation factor 𝛿. We model this type of accidental coincidence
rate𝐶𝐴𝑐𝑐 versus 𝜇, and subtract it off from coincidence measurements to produce the
grey data in Fig. 5.3a. This simulated visibility’s more gradual drop with increasing
𝜇 highlights the detrimental effect of our high single-to-coincidence rates 𝑆𝐴/𝐶𝐴𝐵,
𝑆𝐵/𝐶𝐴𝐵. As detailed in the Discussion section below, this motivates special source
engineering techniques for future systems.

5.4 Impact of experimental imperfections
The experiment employs three Michelson interferometers with a path-length delay
of 80 ps: one at the source to generate the early and late time-bins, and one prior to
each detector to control the measurement basis. To determine the effect of interfer-
ometric imperfections on the entanglement visibility, we model the interferometers
as equivalent Mach-Zehnder interferometers as shown in Fig. 5.4. Imperfections
in the interferometer are captured by the transmittance 𝑡 of the beamsplitter and
internal path (mirror) efficiencies |𝛼 |2 and |𝛽 |2. An ideal Michelson interferometer
has 𝑡 = 1/

√
2 and |𝛼 |2 = |𝛽 |2 = 1.
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Figure 5.4: Model for Michelson interferometers employed in the experiment. The
interferometer contains a beamsplitter with transmittance 𝑡 and two mirrors with
efficiencies 𝛼 and 𝛽.

Source interferometer imperfections
In the experiment, pulses of coherent light from a mode-locked laser (MLL) are
injected into the input of the source interferometer. A field 𝐸̂ at the input of the
source interferometer transforms as

𝐸̂in → 𝑟𝑡𝛼𝑒𝑖𝜑𝐸̂𝐸,1 + 𝑟2𝛼𝑒𝑖𝜑𝐸̂𝐸,2 + 𝑟𝑡𝛽𝐸̂𝐿,1 + 𝑡2𝛽𝐸̂𝐿,2 (5.1)

+ 𝑖𝑟
√︁

1 − |𝛼 |2𝐸̂vac1 + 𝑖𝑡
√︁

1 − |𝛽 |2𝐸̂vac2 (5.2)

where the early and late temporal modes are denoted by subscripts "E" and "L",
the input and output modes are denoted by subscripts "in", "1" and "2", and 𝑟 =

𝑖
√︁

1 − |𝑡 |2. Due to imperfect path efficiencies, part of the light leaks into the vacuum
field mode 𝐸̂vac, which corresponds to the last term in Eq. 5.2. It follows that the
power of the early and late output pulses in terms of the power of the input pulse are

𝑃𝐸,1 = |𝑟 |2 |𝑡 |2 |𝛼 |2𝑃𝑖𝑛, 𝑃𝐸,2 = |𝑟 |4 |𝛼 |2𝑃𝑖𝑛 (5.3)

𝑃𝐿,1 = |𝑟 |2 |𝑡 |2 |𝛽 |2𝑃𝑖𝑛, 𝑃𝐿,2 = |𝑡 |4 |𝛽 |2𝑃𝑖𝑛.

To generate the entangled photon pairs, one of the output ports of the source in-
terferometer is up-converted by second harmonic generation (SHG) then down-
converted via spontaneous parametric down conversion (SPDC), resulting in two-
mode squeezed vacuum states (TMSVs) in early and late temporal modes with mean
photon numbers 𝜇𝐸 and 𝜇𝐿 , respectively. The ratio of 𝜇𝐸 to 𝜇𝐿 depends on which
output port of the source interferometer is used. Note that the definition of 𝜇 used
in the main text is per source laser period or per experiment cycle (4.09 GHz).
Therefore 𝜇 from the main text is equal to 𝜇𝐸 + 𝜇𝐿 . The output power of SHG
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(𝑃𝑆𝐻𝐺) as a function of the SHG pump power (𝑃𝑝) is [32],

𝑃𝑆𝐻𝐺 = 𝑃𝑝 tanh2 √︁
𝜂𝑆𝐻𝐺𝑃𝑝 ≈ 𝜂𝑆𝐻𝐺𝑃2

𝑝, (5.4)

where 𝜂𝑆𝐻𝐺 is the conversion efficiency of the SHG crystal. After SPDC, the
squeezing parameter (𝜉) of the TMSVs in terms of the SPDC pump power (𝑃𝑆𝐻𝐺)
is 𝜉 = 𝜆

√
𝑃𝑆𝐻𝐺 ≈ 𝜆√𝜂𝑆𝐻𝐺𝑃𝑝, where 𝜆 is proportional to the SPDC crystal length

and nonlinear interaction strength [33]. The mean photon number in terms of the
squeezing parameter is 𝜇 = sinh2 𝜉 ≈ 𝜉2. Therefore, the mean photon numbers of
the TMSVs as a function of the output pulses of the source interferometer are,

𝜇𝐸 ≈ 𝜆2𝜂𝑆𝐻𝐺𝑃
,

𝐸,𝑖
𝜇𝐿 ≈ 𝜆2𝜂𝑆𝐻𝐺𝑃

2
𝐿,𝑖, (5.5)

where 𝑖 = 1(2) corresponds to output port 1(2) of the source interferometer.

If output port 1 is used,

𝜇𝐸/𝜇𝐿 ≈ 𝑃2
𝐸,1/𝑃

2
𝐿,1 = |𝛼 |4/|𝛽 |4,

whereas if output port 2 is used,

𝜇𝐸/𝜇𝐿 ≈ 𝑃2
𝐸,2/𝑃

2
𝐿,2 = |𝑟 |8 |𝛼 |4/|𝑡 |8 |𝛽 |4.

When output port 1 of the source interferometer is used, if the internal path efficien-
cies of the source interferometer are different, there is an imbalance in the early and
late mean photon numbers. When output port 2 is used, the effect of the imbalance in
the internal path efficiencies on the ratio of early and late mean photon numbers can
be compensated by imperfect transmittance: 𝜇𝐸/𝜇𝐿 = 1 when |𝑡 |2/|𝑟 |2 = |𝛼 |/|𝛽 |.

Measurement interferometer imperfections
Imperfections in the measurement interferometers limit the entanglement visibility
of the experiment. As described in the previous section, early and late TMSVs
are generated by pumping the SPDC with early and late pulses. Each half of each
TMSV is sent to a measurement interferometer (see Fig. 5.5). Let |𝜉⟩ denote the
TMSV state,

|𝜉⟩ =
∞∑︁
𝑛=0

(−1)𝑛
√︄

𝜇𝑛

(1 + 𝜇)𝑛+1 |𝑛𝐴, 𝑛𝐵⟩ , (5.6)

where |𝑛𝐴, 𝑛𝐵⟩ denotes the state with 𝑛𝐴 photons at the input of interferometer A
and 𝑛𝐵 photons at the input port of interferometer B. We model the input state to the
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Figure 5.5: Setup for theoretical model of entanglement visibility experiment.

measurement interferometers as a product state of TMSV in early and late temporal
modes, to lowest order in 𝜇𝐸 and 𝜇𝐿:

|Ψ𝑖𝑛⟩ = |𝜉⟩𝐸 ⊗ |𝜉⟩𝐿
≈
√︁

1 − (𝜇𝐸 + 𝜇𝐿) |0, 0⟩𝐸 |0, 0⟩𝐿
− √

𝜇𝐸 |1, 1⟩𝐸 |0, 0⟩𝐿 −
√
𝜇𝐿 |0, 0⟩𝐸 |1, 1⟩𝐿 . (5.7)

We can express Eq. 5.7 in terms of the creation operators 𝑎̂† and 𝑏̂† of the field
modes at the inputs of interferometers A and B, respectively:

|Ψ𝑖𝑛⟩ =
(√︁

1 − (𝜇𝐸 + 𝜇𝐿) −
√
𝜇𝐸 𝑎̂

†
𝐸
𝑏̂
†
𝐸
− √

𝜇𝐿 𝑎̂
†
𝐿
𝑏̂
†
𝐿

)
|0, 0⟩𝐸 |0, 0⟩𝐿 . (5.8)

Since the measurement interferometers are also Michelson interferometers, the
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transformation relations are,

𝑎̂𝐸 ↦→ 𝑟𝐴𝑡𝐴𝛼𝑒
𝑖𝜑𝑎̂𝐸,1 + 𝑟2

𝐴𝛼𝑒
𝑖𝜑𝑎̂𝐸,2 (5.9)

+ 𝑟𝐴𝑡𝐴𝛽𝑎̂𝐿,1 + 𝑡2𝐴𝛽𝑎̂𝐿,2 + 𝑐𝐴𝑎̂vac1 + 𝑑𝐴𝑎̂vac2 ,

𝑏̂𝐸 ↦→ 𝑟𝐵𝑡𝐵𝛾𝑒
𝑖𝜑 𝑏̂𝐸,1 + 𝑟2

𝐵𝛾𝑒
𝑖𝜑 𝑏̂𝐸,2 (5.10)

+ 𝑟𝐵𝑡𝐵𝛿𝑏̂𝐿,1 + 𝑡2𝐵𝛿𝑏̂𝐿,2 + 𝑐𝐵 𝑏̂vac1 + 𝑑𝐵 𝑏̂vac2 ,

𝑎̂𝐿 ↦→ 𝑟𝐴𝑡𝐴𝛼𝑒
𝑖𝜑𝑎̂𝐿,1 + 𝑟2

𝐴𝛼𝑒
𝑖𝜑𝑎̂𝐿,2 (5.11)

+ 𝑟𝐴𝑡𝐴𝛽𝑎̂𝐿′,1 + 𝑡2𝐴𝛽𝑎̂𝐿′,2 + 𝑐𝐴𝑎̂vac1 + 𝑑𝐴𝑎̂vac2 ,

𝑏̂𝐿 ↦→ 𝑟𝐵𝑡𝐵𝛾𝑒
𝑖𝜑 𝑏̂𝐿,1 + 𝑟2

𝐵𝛾𝑒
𝑖𝜑 𝑏̂𝐿,2 (5.12)

+ 𝑟𝐵𝑡𝐵𝛿𝑏̂𝐿′,1 + 𝑡2𝐵𝛿𝑏̂𝐿′,2 + 𝑐𝐵 𝑏̂vac1 + 𝑑𝐵 𝑏̂vac2 ,

𝑐𝐴 = 𝑖𝑟𝐴

√︁
1 − |𝛼 |2, 𝑑𝐴 = 𝑖𝑡𝐴

√︁
1 − |𝛽 |2,

𝑐𝐵 = 𝑖𝑟𝐵

√︁
1 − |𝛿 |2, 𝑑𝐵 = 𝑖𝑡𝐵

√︁
1 − |𝛾 |2,

where 𝐿′ denotes the temporal mode obtained by sending a photon in the late (𝐿)
mode through the long arm of an interferometer, and 𝑎̂vac𝑖 , 𝑏̂vac𝑖 correspond to
vacuum modes. To find the state at the output of the interferometers, we combine
Eq. 5.8 with Eq. 5.9-5.12, and consider only terms relevant to post-selection on
coincidences of the middle bins (L) of different interferometer outputs, to lowest
order in 𝜇𝐸 and 𝜇𝐿 ,

|Ψout⟩ = 𝑟∗𝐴𝑡𝐴𝑟
∗
𝐵𝑡𝐵

(
𝛽𝛿

√
𝜇𝐸 + 𝛼𝛾√𝜇𝐿𝑒−2𝑖𝜑

)
|0, 0; 0, 0⟩𝐸 |1, 0; 1, 0⟩𝐿 |0, 0; 0, 0⟩𝐿′

+ 𝑟∗𝐴𝑡𝐴
(
𝑡2𝐵𝛽𝛿

√
𝜇𝐸 + (𝑟∗𝐵)2𝛼𝛾

√
𝜇𝐿𝑒

−2𝑖𝜑
)
|0, 0; 0, 0⟩𝐸 |1, 0; 0, 1⟩𝐿 |0, 0; 0, 0⟩𝐿′

+ 𝑟∗𝐵𝑡𝐵
(
𝑡2𝐴𝛽𝛿

√
𝜇𝐸 + (𝑟∗𝐴)

2𝛼𝛾
√
𝜇𝐿𝑒

−2𝑖𝜑
)
|0, 0; 0, 0⟩𝐸 |0, 1; 1, 0⟩𝐿 |0, 0; 0, 0⟩𝐿′

+
(
𝑡2𝐴𝑡

2
𝐵𝛽𝛿

√
𝜇𝐸 + (𝑟∗𝐴)

2(𝑟∗𝐵)2𝛼𝛾
√
𝜇𝐿𝑒

−2𝑖𝜑
)
|0, 0; 0, 0⟩𝐸 |0, 1; 0, 1⟩𝐿 |0, 0; 0, 0⟩𝐿′

+ · · · (5.13)

where
��𝑛𝐴,1, 𝑛𝐴2; 𝑛𝐵1 , 𝑛𝐵,2

〉
denotes the state with 𝑛𝐴,1 photons at output 1 of inter-

ferometer A, 𝑛𝐴,2 photons at output 2 of interferometer A, 𝑛𝐵,1 photons at output 1
of interferometer B, and 𝑛𝐵,2 photons at output 2 of interferometer B. We define the
following parameters to simplify notation:

𝑥 ≡ 𝜇𝐸

𝜇𝐿
, 𝜅𝐴 ≡ |𝛽 |2

|𝛼 |2
, 𝜅𝐵 ≡ |𝛾 |2

|𝛿 |2
, (5.14)

𝜖𝐴 =
|𝑡𝐴 |2
|𝑟𝐴 |2

, 𝜖𝐵 ≡ |𝑡𝐵 |2
|𝑟𝐵 |2

. (5.15)
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From Eq. 5.13, it follows that the coincidence probabilities for each combination of
output ports are proportional to,

𝐶𝐴1,𝐵1 (𝜑) ∝
√︂
𝜅𝐵

𝜅𝐴
+

√︂
𝜅𝐴

𝜅𝐵
𝑥 + 2

√
𝑥 cos 2𝜑, (5.16)

𝐶𝐴1,𝐵2 (𝜑) ∝
1
𝜖𝐵

√︂
𝜅𝐵

𝜅𝐴
+ 𝜖𝐵

√︂
𝜅𝐴

𝜅𝐵
𝑥 + 2

√
𝑥 cos 2𝜑, (5.17)

𝐶𝐴2,𝐵1 (𝜑) ∝
1
𝜖𝐴

√︂
𝜅𝐵

𝜅𝐴
+ 𝜖𝐴

√︂
𝜅𝐴

𝜅𝐵
𝑥 + 2

√
𝑥 cos 2𝜑, (5.18)

𝐶𝐴2,𝐵2 (𝜑) ∝
1

𝜖𝐴𝜖𝐵

√︂
𝜅𝐵

𝜅𝐴
+ 𝜖𝐴𝜖𝐵

√︂
𝜅𝐴

𝜅𝐵
𝑥 + 2

√
𝑥 cos 2𝜑, (5.19)

where the phase factors in the reflectivities 𝑟𝐴, 𝑟𝐵 are absorbed into the definition
of 𝜑. Therefore, the entanglement visibilities, 𝑉 =

max(𝐶 (𝜑))−min(𝐶 (𝜑))
max(𝐶 (𝜑))+min(𝐶 (𝜑)) , for each

combination of output ports are:

𝑉𝐴1,𝐵1 =
2
√
𝑥√︃

𝜅𝐵
𝜅𝐴

+
√︃
𝜅𝐴
𝜅𝐵
𝑥

, (5.20)

𝑉𝐴1,𝐵2 =
2
√
𝑥

1
𝜖𝐵

√︃
𝜅𝐵
𝜅𝐴

+ 𝜖𝐵
√︃
𝜅𝐴
𝜅𝐵
𝑥

, (5.21)

𝑉𝐴2,𝐵1 =
2
√
𝑥

1
𝜖𝐴

√︃
𝜅𝐵
𝜅𝐴

+ 𝜖𝐴
√︃
𝜅𝐴
𝜅𝐵
𝑥

, (5.22)

𝑉𝐴2,𝐵2 =
2
√
𝑥

1
𝜖𝐴𝜖𝐵

√︃
𝜅𝐵
𝜅𝐴

+ 𝜖𝐴𝜖𝐵
√︃
𝜅𝐴
𝜅𝐵
𝑥

. (5.23)

Unity visibility is achievable for each combination of output ports: 𝑉𝐴1,𝐵1 = 1 when
𝑥 = 𝜅𝐵/𝜅𝐴, 𝑉𝐴1,𝐵2 = 1 when 𝑥 = 𝜅𝐵/(𝜅𝐴𝜖2

𝐵
), 𝑉𝐴2,𝐵1 = 1 when 𝑥 = 𝜅𝐵/(𝜅𝐴𝜖2

𝐴
),

and 𝑉𝐴2,𝐵2 = 1 when 𝑥 = 𝜅𝐵/(𝜅𝐴𝜖2
𝐴
𝜖2
𝐵
). Therefore, the effect of imbalances in

the source and measurement interferometers is to shift the optimal ratio of early
to late mean photon numbers. Imbalances in the measurement interferometers
can be compensated by imbalances in the source interferometer in order to obtain
unity visibility. Moreover, in the single photon limit, the visibility is insensitive
to the absolute path efficiencies in the experiment. The visibility depends only
on the ratio of path efficiencies between the measurement interferometers (𝜅𝐴/𝜅𝐵).
The entanglement visibilities for each combination of output ports as a function of
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𝑥 = 𝜇𝐸/𝜇𝐿 for various ratios of interferometric path efficiencies are shown in Fig.
5.6.
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Figure 5.6: Entanglement visibility as function of 𝜇𝐸/𝜇𝐿 for fixed 𝜅𝐵/𝜅𝐴 = 1 and
𝜖𝐴 = 𝜖𝐵 = 90/10 (red), 75/25 (blue), 50/50 (green), 25/75 (purple).
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Figure 5.7: Setup for phase space modeling of entanglement visibility experiment.

Calculating the entanglement visibility to higher order photon number contributions
quickly becomes intractable with the Fock space approach in the previous section. To
study the effect of multiphoton events on the entanglement visibility, we model the
experiment using phase space methods based on a characteristic function formalism
[34, 35]. The model setup is shown in Fig 5.7. As in the Fock space approach, the
input state is modeled as a product state of TMSV in early and late temporal modes,
with mean photon numbers 𝜇𝐸 and 𝜇𝐿 , respectively. The measurement interferome-
ters are modeled as beamsplitters in the temporal domain that mix the early and late
input modes with transmittances 𝜏𝐴 and 𝜏𝐵, which absorb the interferometric path
efficiencies and spatial beamsplitter transmittances. Since the input state is modeled
as a Gaussian state, and the measurement interferometers are modeled as Gaussian
operations, we can find the symplectic transformation that maps the characteristic
function of the input state to that of the state prior to detection.
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Following Ref. [36], the characteristic function for an 𝑁-mode bosonic state is

𝜒(𝜉) = Tr [ 𝜌̂ exp(−𝑖(𝑥1, 𝑝1, 𝑥2, 𝑝2, · · · 𝑥𝑁 , 𝑝𝑁 )𝜉)] (5.24)

where 𝜉 ∈ R2𝑁 , 𝜌 is the density matrix, and 𝑥𝑖 = 1√
2
(𝑎̂†
𝑖
+ 𝑎̂𝑖) and 𝑝𝑖 = 1√

2
(𝑎̂†
𝑖
+ 𝑎̂𝑖)

are the quadrature operators for mode 𝑖 with annihilation operator 𝑎̂𝑖. A Gaussian
state is a state whose characteristic function that takes a Gaussian form,

𝜒(𝜉) = exp
(
−1

4
𝜉𝑇𝛾𝜉 − 𝑖𝑑𝑇𝜉

)
, (5.25)

which is fully characterized by the displacement vector 𝑑 and covariance matrix 𝛾,
i.e., the first and second moments. For the TMSV state, the displacement vector is
the null vector 𝑑 = (0, 0, 0, 0) and the covariance matrix is given by,

𝛾𝑇𝑀𝑆𝑉 (𝜇) =
(
A B
B A

)
, A =

(
1 + 2𝜇 0

0 1 + 2𝜇

)
, (5.26)

B =

(
2
√︁
𝜇(𝜇 + 1) 0

0 −2
√︁
𝜇(𝜇 + 1)

)
, (5.27)

where 𝛾𝑇𝑀𝑆𝑉 (𝜇) is written in block matrix form. Therefore, the covariance matrix
for the input state of our experiment is,

𝛾𝑖𝑛 (𝜇𝐸 , 𝜇𝐿) = 𝛾𝑇𝑀𝑆𝑉 (𝜇𝐸 ) ⊕ 𝛾𝑇𝑀𝑆𝑉 (𝜇𝐿). (5.28)

The characteristic function of the input state is mapped to the characteristic function
of the state prior to detection by a symplectic transformation,

𝜒𝑖𝑛 (𝜉) = exp
(
−1

4
𝜉𝑇𝛾𝑖𝑛𝜉

)
↦→ 𝜒𝑜𝑢𝑡 (𝜉) = exp

(
−1

4
𝜉𝑇𝑆𝑇𝛾𝑖𝑛𝑆𝜉

)
, (5.29)

where 𝑆 is the Symplectic matrix of the interferometers. We construct 𝑆 from the
Symplectic matrices of the phase shifter (𝑆𝑃𝑆) and beamsplitter (𝑆𝐵𝑆) [35],

𝑆𝑃𝑆 (𝜑) =
(

cos 𝜑 sin 𝜑
− sin 𝜑 cos 𝜑

)
, (5.30)

𝑆𝐵𝑆 (𝜏) =
(
T R
R T

)
, T =

(
𝜏 0
0 𝜏

)
, R =

(
0 −

√
1 − 𝜏2

√
1 − 𝜏2 0

)
. (5.31)

From the output characteristic function 𝜒out, we obtain the coincidence probabilities
using Eq. 9 of Ref. [36],

Tr
[
𝜌̂outΠ̂

]
=

(
1

2𝜋

)𝑁 ∫
𝑑𝑥2𝑁 𝜒out(𝑥)𝜒Π (−𝑥), (5.32)
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where 𝜌̂out is the state prior to detection with characteristic function 𝜒out, and Π̂ is
the measurement operator corresponding to coincidences between detectors from
different interferometers. The measurement operators for a threshold detector, which
distinguishes between a detection event (at least one photon) and no detection event
(zero photons), are,

Π̂event = 𝐼 − |0⟩ ⟨0| , Π̂no event = |0⟩ ⟨0| , (5.33)

where 𝐼 is the 2 by 2 identity matrix. The measurement operator for coincidences
between, e.g., detectors 1 and 4 are,

Π̂1,4 = Π̂event,1 ⊗ 𝐼2 ⊗ 𝐼3 ⊗ Π̂event,4, (5.34)

where the subscripts denote the output modes labeled in Fig. 5.7. We derive an
analytical expression for the coincidence probability, 𝐶 (𝜑) = Tr

[
𝜌̂outΠ̂1,4

]
, that

encompasses all multiphoton contributions,

𝐶 (𝜑) = 1 − 1
| 𝑓 (𝜇𝐸 , 𝜇𝐿 , 𝜏𝐴) |

− 1
|𝑔(𝜇𝐸 , 𝜇𝐿 , 𝜏𝐵) |

+ 1
|ℎ(𝜇𝐸 , 𝜇𝐿 , 𝜏𝐴, 𝜏𝐵, 𝜑) |

,

(5.35)

𝑓 (𝜇𝐸 , 𝜇𝐿 , 𝜏𝐴) = 1 + 𝜇𝐿 + 𝜏𝐴 (𝜇𝐸 − 𝜇𝐿), (5.36)

𝑔(𝜇𝐸 , 𝜇𝐿 , 𝜏𝐵) = 1 + 𝜇𝐸 + 𝜏𝐵 (𝜇𝐿 − 𝜇𝐸 ), (5.37)

ℎ(𝜇𝐸 , 𝜇𝐿 , 𝜏𝐴, 𝜏𝐵) = 1 + 𝜇𝐸 + 𝜇𝐿 (1 + 𝜇𝐸 ) (1 − 𝜏𝐴) (5.38)

− 𝜇𝐸𝜏𝐵 (1 + 𝜇𝐿) + 𝜏𝐴𝜏𝐵 (𝜇𝐸 + 𝜇𝐿 + 2𝜇𝐸𝜇𝐿)
− 2

√︁
𝜇𝐸𝜇𝐿𝜏𝐴 (1 + 𝜇𝐸 ) (1 + 𝜇𝐿) (1 − 𝜏𝐴)

√︁
𝜏𝐵 (1 − 𝜏𝐵) cos 𝜑,

where 𝜑 = 𝜑𝐴 − 𝜑𝐵 is the relative phase between interferometers A and B. The
different visibilities in each output port combination as a result of interferometric
imbalances can be obtained by adjusting 𝜏 accordingly. To isolate the impact of
multiphoton contributions to the visibility, we set 𝜏𝐴 = 𝜏𝐵 = 1√

2
, and obtain the

following expression for the entanglement visibility, 𝑉 (𝜇𝐸 , 𝜇𝐿) = 𝐶 (0)−𝐶 (𝜋)
𝐶 (0)+𝐶 (𝜋) :

𝑉 (𝜇𝐸 , 𝜇𝐿) =
2/

√︁
𝐺−(𝜇𝐸 , 𝜇𝐿) − 2/

√︁
𝐺+(𝜇𝐸 , 𝜇𝐿)

1 − 4/(2 + 𝜇𝐸 + 𝜇𝐿) + 2/
√︁
𝐺−(𝜇𝐸 , 𝜇𝐿) + 2/

√︁
𝐺+(𝜇𝐸 , 𝜇𝐿)

,

(5.39)
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𝐺±(𝜇𝐸 , 𝜇𝐿) = 𝜇2
𝐸 (9 + 8𝜇𝐿 (2 + 𝜇𝐿)) (5.40)

± (4 + 3𝜇𝐿)
(
± 4 ± 3𝜇𝐿 + 4

√︁
𝜇𝐸𝜇𝐿 (1 + 𝜇𝐸 ) (1 + 𝜇𝐿)

)
+ 2𝜇𝐸

(
12 ± 6

√︁
𝜇𝐸𝜇𝐿 (1 + 𝜇𝐸 ) (1 + 𝜇𝐿)

)
+ 2𝜇𝐸𝜇𝐿

(
19 + 8𝜇𝐿 ± 4

√︁
𝜇𝐸𝜇𝐿 (1 + 𝜇𝐸 ) (1 + 𝜇𝐿)

)
.

By expanding Eq. 5.39 to first order in 𝜇𝐸 and 𝜇𝐿 ,

𝑉 (𝜇𝐸 , 𝜇𝐿) =
2
√︃
𝜇𝐸
𝜇𝐿

1 + 𝜇𝐸
𝜇𝐿

− 𝜇𝐸

𝜇𝐿

(
5( 𝜇𝐸

𝜇𝐿
+ 𝜇𝐿
𝜇𝐸
) + 6

)
2(1 + 𝜇𝐸

𝜇𝐿
)2

√
𝜇𝐸𝜇𝐿 + · · · (5.41)

we see that the first term matches Eq. 5.20-5.23 for 𝑡𝐴 = 𝑡𝐵 = 1√
2
, 𝛽/𝛼 = 𝛾/𝛿 = 1.

Moreover, for 𝜇𝑒𝑞 ≡ 𝜇𝐸 = 𝜇𝐿 , Eq. 5.41 reduces to 𝑉 (𝜇𝑒𝑞) = 1 − 2𝜇𝑒𝑞. Thus, the
upper bound on the visibility is set by the mean photon number, i.e., multiphoton
effects. Entanglement visibilities of more than 90% are possible when 0.39 <

𝜇𝐸/𝜇𝐿 < 2.55 and 𝜇𝐿 < 0.0.056. The entanglement visibility 𝑉 (𝜇𝐸 , 𝜇𝐿) in Eq.
5.39 is plotted for various mean photon numbers in Fig. 5.8.

a) b)

Figure 5.8: Entanglement visibility as a function of mean photon number for a)
𝜇𝐸/𝜇𝐿 ≥ 1 and b) 𝜇𝐸/𝜇𝐿 ≤ 1 with 𝜏𝐴 = 𝜏𝐵 = 1/

√
2.

5.5 Discussion
We have demonstrated that a time-bin entanglement source based on a mode-locked
laser, spectral multiplexing and low-jitter detectors produces high entangled photon
rates suitable for QKD or advanced quantum networks. The distillable entanglement
rate, achievable secret key rate, and visiblilities of this source are highly competitive
relative to other multiplexed entanglement distribution systems [10, 9, 31, 24, 23].
Still, there is potential to increase rates beyond those measured here with some
straightforward changes to the setup. First, a higher power EDFA-amplified SHG
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rate metric (𝜇 at max) 1 Channel 8 Channels 16 Channels 60 Channels

coincidence rate, 𝐶𝐴𝐵 (0.014) 0.755 5.41 11.6 34.9
log negativity, 𝐶𝑁 (0.010) 0.600 4.30 9.19 27.7
coherent info., 𝐶𝐼 (0.006) 0.345 2.47 5.28 15.9

secret key rate, 𝑆𝐾𝑅 (0.007) 0.309 2.21 4.73 14.3

Table 5.1: Per-channel predicted maximum values for the 4 rate metrics are shown
in the ‘1 Channel’ column. Depending on the metric, the maxima are achieved
for different pump powers 𝜇. The 𝜇 value that maximizes each metric is shown in
parenthesis on the left.

module or tapered amplifier may be used. With this, we predict a single channel
pair could sustain rates up to those specified in the first column of Table 5.1. These
metrics all depend on both entanglement quality and coincidence rate 𝐶𝐴𝐵. Due
to the trade-off between 𝐶𝐴𝐵 and entanglement quality or visibility, they all reach
maximum values for particular pump powers. Our measurements of 8 channel
and 16 channel configurations imply the approximately multiplicative scalings in
columns 2 and 3 of Table 5.1, as coincidence rates of these channels pairs are all
withing 27% of each other. From measurements of the SPDC spectrum, it is also
possible to extrapolate rates to a 60-channel 100 GHz DWDM configuration that
includes channels spanning the L, C, and S ITU bands. This configuration could
sustain 34.9 MHz total coincidence rate, and a distillable entanglement rate between
27.7 (𝐶𝑁 ) and 15.9 Mebits/s (𝐶𝐼). These rates are impressive considering they are
achievable with existing SNSPDs and other technology.

The ratio of singles rates 𝑆𝐴, 𝑆𝐵 to coincidence rates 𝐶𝐴𝐵 are high in this system
due to the relatively wide-band JSI and narrow filters. Each DWDM channel at
Alice picks up a large fraction of photons that can’t be matched with pairs passing
though the corresponding channel passband at Bob, a feature quantified by the
𝛿 factor. The high singles rates lead to accidental coincidences from mutually
incompatible spectral modes that lower visibility and load the detectors with useless
counts. However, there is potential to mitigate these extra counts by embedding
the nonlinear crystal undergoing SPDC in a cavity that enhances emission at the
center frequencies of multiple DWDM channels [37, 38, 39]. Also, there are other
approaches to achieving such intensity islands that require dispersion engineering
[40, 41]. With such periodically enhanced emission, the resulting JSI would exhibit
a series of intensity islands lying along the energy-matching anti-diagonal, easily
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separable with DWDMs at Alice and Bob. The photon flux for each each channel
would originate primarily from these islands covered by both signal and idler DWDM
passbands, resulting in a higher ratio of coincidences to singles. The probability
of accidental coincidences 𝐶𝐴𝑐𝑐 would be lower, and therefore bring the decrease
of visibility with 𝜇 more in line with the modeled 𝑉𝐶 data in Fig. 5.3. We intend
for the 𝑉𝐶 construction to represent how visibility would degrade primarily due
to multi-pair effects, assuming accidental coincidences from incompatible spectral
modes could be mitigated. The more gradual decrease in visibility with 𝜇 would
enable substantially higher maximum rate metrics than those in Table 5.1.

This source is a fundamental building block for future space-to-ground and ground-
based quantum networks. It leverages the strengths of the latest SNSPD developments–
namely simultaneous high count rates, low jitter and high efficiency–and in doing so
adopts interferometers and DWDM systems that are compact, stable and accessible.
By elevating the system clock rate to 4.09 GHz and shrinking the time bin size to
80 ps, we have demonstrated a new state of the art in quantum communication that
enables adoption of mature and extensively developed technologies from classical
optical networks. Also, the spectral multiplexing methods used here are poten-
tially compatible with those demonstrated in broadband quantum memories [42]
and optical quantum computing [43].
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C h a p t e r 6

ON-CHIP PHASED ARRAY SYSTEM FOR NON-CLASSICAL
LIGHT

This chapter includes the work published as:

[1] Volkan Gurses, Samantha I. Davis, Raju Valivarthi, Neil Sinclair, Maria Spirop-
ulu, and Ali Hajimiri. “An on-chip phased array for non-classical light.” In:
Nature Communications 16.1 (2025), p. 6849.

[1] Volkan Gurses, Samantha I. Davis, Ali Hajimiri, and Maria Spiropulu. “Quantum
Phased Arrays.” Patent Application Filed: 2023-06-2023. 2023.

6.1 Introduction
The science and engineering of quantum systems have expanded in the last two
decades to realize technologies that can manipulate quantum information [1, 2,
3]. Miniaturization and scaling of quantum systems with on-chip integration are
crucial to accelerate their use cases toward practical applications [4, 5]. Free-
space-interfaced integrated systems enable wireless technologies including free-
space sensors [6, 7], imagers [8, 9], and communication transceivers [10, 11]. The
expansion from wired to wireless links for classical information technologies led
to numerous advancements from mobile devices [12] to the Internet-of-Things [13]
and facilitated the proliferation of information technologies [14]. For a similar
transformation to happen for quantum information technologies, the networking of
integrated quantum systems needs to move beyond wired links [15, 16, 17, 18].

In most wireless links, phased arrays are used to enable spatiotemporally config-
urable signal reception or transmission with high signal gain [19, 20]. A phased
array is a coherent array of antenna elements capable of transmitting or receiv-
ing electromagnetic waves. Through the interference of the electromagnetic waves
transmitted or received by each element, arbitrary wavefronts can be engineered [19,
20]. The first phased arrays were implemented to control electromagnetic waves
at radio frequencies [21], facilitating RADAR [7], wireless communications [11],
remote sensing [22] and radio astronomy [23]. In the last decade, advancements in
nanophotonics enabled large-scale phased arrays at optical frequencies [24], opening
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up applications including LiDAR [25, 26], 3D imaging [8], and free-space optical
communications [10].

All previous developments in reconfigurable antenna arrays have been achieved only
with classical states of light. Extending phased arrays to the non-classical domain
[27, 28] could enable potentially interesting use cases for quantum information
technologies, such as wirelessly-interfaced quantum systems (Fig. 6.1a) and recon-
figurable wireless quantum links (Fig. 6.1b). However, due to the high coupling
loss and noise in conventional transceivers, there has not been a phased array system
capable of interfacing with non-classical light.

In this work, we realize a phased array system-on-chip with quantum-limited per-
formance that can receive and control non-classical light. The 32-channel silicon
photonic-electronic system provides a low-loss, low-noise and scalable free-space-
to-chip interface for non-classical light. Simultaneous readout of the signals across
all 32 channels enables 32-pixel imaging of squeezed light transmitted over free
space. Coherent manipulation of these signals allows us to establish reconfigurable
free-space links for squeezed light. In Appendix D, we also report a proof-of-
concept demonstration of cluster state generation with our system to illustrate the
potential of large-scale, quantum-limited photonic-electronic systems-on-chip for
information processing.

6.2 Quantum phased array theory
A phased array receiving non-classical light is illustrated in Fig. 6.1c. A quan-
tized electromagnetic field is transmitted over free space to a phased array receiver
with 𝑁 elements. The field incident to the aperture is represented by the local
bosonic operator 𝑎̂in(𝜌), where 𝜌 represents the spatial aperture coordinates. Due
to diffraction over free space, the incident field is spread out over the aperture and
a portion of the field is coupled onto each antenna element. The antenna elements
define a set of 𝑁 pixel modes, {E 𝑗 (𝜌)}, each with an associated bosonic operator
𝑎̂E 𝑗

=
∫
E∗
𝑗
(𝜌)𝑎̂in(𝜌)𝑑𝜌. The pixel modes are combined after applying a phase, 𝜙 𝑗 ,

and amplitude weight, 𝑔 𝑗 , to each mode. The combined output field is described by,

𝑎̂out =
∑︁
𝑗

𝑔 𝑗𝑒
𝑖𝜙 𝑗 𝑎̂E 𝑗

=

∫
A∗(𝜌)𝑎̂in(𝜌)𝑑𝜌, (6.1)

where A(𝜌) = ∑
𝑗 𝑔 𝑗𝑒

−𝑖𝜙 𝑗E 𝑗 (𝜌). The set of applied phases, amplitude weights, and
pixel modes gives rise to a reconfigurable array mode function A(𝜌) that can be
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Figure 6.1: Quantum phased arrays. a) Conceptual illustration of a wirelessly-
interfaced quantum integrated circuit. b) Conceptual illustration of a wireless
quantum link with phased arrays. A phased array transmitter transmits a quantum
state |Ψ⟩ to a phased array receiver over free space. c) Conceptual illustration of
beamforming on squeezed light with an eight-element phased array receiver. An
input field (𝑎̂in( 𝑓 )) in a squeezed state is transmitted to a phased array receiver over
free space. The field incident to the aperture (𝑎̂in(𝜌)) is spread out over the aperture
with a uniform phasefront, resulting in high geometric loss per pixel mode. After
applying a phase (𝜙 𝑗 ) and amplitude weight (𝑔 𝑗 ) to each pixel mode (𝑎̂E 𝑗

), the pixel
modes are combined to recover the original squeezed state. Squeezed states are
represented by their Wigner functions in phase space, where 𝑄 and 𝑃 represent the
field quadratures (see inset).

used to engineer the wavefunction of the incident field (see theory in Methods) [29,
30].

The output field can be expressed in terms of the angle 𝜃 from normal incidence to
the aperture,

𝑎̂out ∝
∫

SF( 𝑓 )𝑎̂in( 𝑓 )𝑑𝑓 , (6.2)

where 𝑓 = sin 𝜃/𝜆, SF( 𝑓 ) =
∫

exp(−𝑖2𝜋𝜌 · 𝑓 )A(𝜌)𝑑𝜌, and 𝑎̂in( 𝑓 ) represents the
input field in the far-field limit. In Eq. 6.2, SF( 𝑓 ) corresponds to the space factor,
or array factor for discrete antenna elements, in classical antenna theory [19, 20].
Beamforming refers to the calibration of the phase settings to form a main lobe,
or beam, in the radiation pattern at a desired angle [31]. After beamforming, the
beam can be steered to a different angle by applying a progressive phase shift to the
elements [19, 20] (see theory in Methods).
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antenna (MMA) and ii) the quantum(-limited) coherent receiver (QRX). An array
of 32 MMAs couple non-classical light from free space to on-chip waveguides,
followed by an array of 32 QRXs that measure the light via homodyne detection.
An array of 32 thermo-optic phase shifters (TOPS) applies a phase shift to the local
oscillator at each QRX. b) Image of our PIC packaged with co-designed electronics,
demonstrating the compact form factor of the system. The PIC is wirebonded to
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32-channel TIA array and the CMRR auto-correction circuit. c) Die photo of the
PIC showing a footprint of 3 mm × 1.8 mm.
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Figure 6.3: System characterization. a) Simulated far-field radiation pattern of
the antenna. The radiation pattern has no grating lobes, namely scattering to
higher diffraction orders, showing that the MMA is sub-wavelength engineered for
diffraction-limited performance. b) Noise powers of a single-channel QRX in the
32-channel system integrated over its 3-dB bandwidth for different LO powers,
characterizing the shot noise clearance and LO power knee. A linear regression
fit is applied to the data above the LO power knee to obtain a near-unity gradient
of 1.004±0.006, showing that the QRX noise floor is limited by the signal shot
noise. c) Output noise spectra of a single QRX for different LO powers ranging
from 0 to 13.4 mW, characterizing the shot-noise-limited bandwidth. d) Squeezed
light detection with a single QRX using a high-speed TIA, showing squeezing and
antisqueezing measured up to 5 GHz with a shot-noise-limited bandwidth of 3.70
GHz. e) Shot noise clearance distribution across all channels measured with 1.54
mW LO power at each channel.

6.3 Photonic-electronic system
We realize a proof-of-concept phased array system-on-chip that operates at the
quantum-limited sensitivity and interfaces with non-classical light to demonstrate
different functionalities of our concept. The system is implemented using a com-
mercial silicon photonics process packaged with silicon electronics, as shown in Fig.
6.2. The system is designed to realize as many functions on chip as possible, with
more than 1000 functional components integrated on a 3 mm × 1.8 mm footprint.

Compared to conventional phased arrays, our phased array system needs to be
designed to introduce as little loss and noise as possible to minimize quantum de-
coherence. The most significant loss for free-space-interfaced systems is geometric
loss due to the mode mismatch between an incident beam and the receiving aperture
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[19, 32]. In the case of a collimated beam, the mode mismatch is caused by beam
divergence. To mitigate this, the aperture needs to be large enough to be able to
match the amplitude and phase profile of the incident beam. Phased arrays enable
arbitrarily large apertures that can be mode matched by arraying multiple antennas
and coherently combining the received signals [19, 20]. Our system demonstrates
this for squeezed light by arraying 32 nanophotonic antennas. To minimize the loss,
the aperture also needs to be fully filled without any gaps in the active area. We
achieve this by demonstrating a metamaterial antenna (MMA) design that acts as a
rectangular building block and can be sized to fill the aperture (see chip design in
Methods).

An array of 32 MMAs fill an aperture with a 550 × 550 𝜇m2 footprint and more than
500,000 sub-wavelength-engineered grating elements, each of which scatter light to
interface with free space. This active area is large enough for low-loss free-space
coupling to the chip over meter-scale distances with off-the-shelf fiber collimators.

The simulated 3D radiation pattern for the MMA design is shown in Fig. 6.3a. The
aperture can be characterized by its geometric loss given an incident beam and its
insertion loss, which includes the propagation loss in the MMA and loss due to
downward scattering. The MMA has a measured (simulated) insertion loss of 3.82
dB (3.78 dB). The 32-antenna aperture mode matched to a collimated beam with
a beam diameter of 200 𝜇m, which is the beam diameter used in the experiments,
has a measured (simulated) geometric loss of 1.14 dB (1.35 dB). This is at least
an order of magnitude lower than those of the previously reported on-chip aperture
designs [33, 34], which affords interfacing free-space quantum optics with photonic
integrated circuits (PICs).

The waveguides after the antennas are path-length matched and are connected to 32
quantum(-limited) coherent receivers (QRXs). Each QRX comprises a push-pull
tunable Mach-Zehnder interferometer (MZI), a pair of balanced Ge photodiodes, a
transimpedance amplifier (TIA), and a common-mode rejection ratio (CMRR) auto-
correction circuit, whose output is fed back to the MZIs to automatically correct
the imperfect CMRR of each QRX caused by the fabrication variations on the PIC
(see chip design in Methods). The MZI interferes a signal field with a strong local
oscillator (LO) for homodyne detection. The LO is coupled to the chip with a
grating coupler and is split into 32 channels with a 1-to-32 splitter tree. The LO
input to each channel hosts a thermo-optic phase shifter (TOPS) for phase tuning.
Each output of the MZI is sent to a photodiode, and the currents at the outputs of
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the photodiodes are subtracted and amplified by the TIA.

The performance of a QRX is quantified by its insertion loss, common-mode re-
jection ratio (CMRR), shot noise clearance (SNC), LO power knee (Pknee), 3-dB
bandwidth (BW3dB) and shot-noise-limited bandwidth (BWshot) [35, 36, 37, 15].
We first measure a single channel of the 32-channel QRX array used in the experi-
ments to characterize these specifications, as shown in Fig. 6.3b,c. The measured
insertion loss is 1.58 dB, limited by the quantum efficiency of the photodiodes. A
time-averaged CMRR over 10 seconds is measured to be 90.2 dB at 1.1 MHz. The
measured SNC is 30.3 dB, Pknee is 12.6 𝜇W, BW3dB is 10.4 MHz and BWshot is 381
MHz.

While this gives one of the highest SNCs demonstrated with an integrated coherent
receiver in the literature [35, 15], the measured bandwidth is relatively low due to
the intrinsic trade-off between noise floor and bandwidth in the TIA design. To show
the high-speed detection capability of our PIC with on-chip photodiodes, a single
channel of the PIC is packaged with a bare die TIA, and the same characterization
sweeps are performed [38]. In this high-bandwidth configuration, squeezed vacuum
is injected as signal, and noise power fluctuations below and above the shot noise
floor are measured up to 5 GHz with a BWshot of 3.70 GHz, as shown in Fig. 6.3d.

Furthermore, we characterize all 32 channels while they work simultaneously. With
1.54 mW of LO power, the SNCs across all of the channels are measured, and
the SNC distribution is plotted in a histogram as seen in Fig. 6.3e. The SNC
variation is low, with a median SNC of 26.6 dB, a minimum SNC of 25.3 dB, and
a maximum SNC of 27.7 dB. All channels operate well into the shot noise limited
regime, showing that the quantum-limited performance of the QRX is achieved at
scale.

6.4 Squeezed light imaging
We first operate the system as a 32-pixel quantum-limited coherent imager. Broad-
band squeezed vacuum is generated off-chip using a fiber-coupled periodically poled
lithium niobate (PPLN) waveguide at a central wavelength of 1550 nm, as shown in
Fig. 6.4a (see squeezed light generation in Methods). The squeezed light is sent to a
fiber collimator with a 200 𝜇m beam diameter and is transmitted to the chip over free
space. At the chip aperture, the squeezed light is spatially distributed across the 32
antennas with a Gaussian amplitude profile, 𝑢0(𝜌). A portion of the squeezed light
is coupled into each MMA, which has the associated pixel mode E 𝑗 (𝜌) and bosonic
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Figure 6.4: Squeezed light imaging. a) Experimental setup for the squeezed light
measurements. Squeezed light is generated off-chip and transmitted over free space
to the chip (blue, Photonics), which is interfaced with electronics (orange, Electron-
ics) for processing. b) Illustration of squeezed light transmitted to the chip, showing
the Wigner function of the generated squeezed vacuum state as a function of the
quadrature observables (𝑄, 𝑃) and the experimental squeezing parameter (𝑟 = 1.95).
c) Sample means and variances of the channel output voltages as a function of time.
For each channel, the sample variances are normalized to the mean variance. d)
Wigner functions of the 32 pixel modes characterized simultaneously as a function
of the squeezing parameter (𝑟 = 1.95), phase, and geometric efficiency for each
channel. The dark and light blue contours correspond to the half-maximum points
of the squeezed vacuum and vacuum states, respectively.
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operator 𝑎̂E 𝑗
, where 𝑗 ∈ {1, · · · , 32}. The pixel mode is interfered with an LO in

a QRX, which outputs a voltage proportional to the phase-dependent quadrature of
the pixel mode,

𝑄̂ 𝑗 (𝜙 𝑗 ) =
1
2
(𝑎̂E 𝑗

𝑒−𝑖𝜙 𝑗 + 𝑎̂†E 𝑗
𝑒𝑖𝜙 𝑗 ), (6.3)

where 𝜙 𝑗 is the phase of the 𝑗 th pixel mode relative to the LO. For an input squeezed
vacuum state, the quadrature mean is ⟨𝑄̂ 𝑗 (𝜙 𝑗 )⟩ = 0, and the quadrature variance is,

Var
(
𝑄̂ 𝑗 (𝜙 𝑗 )

)
=
𝜂 𝑗

4
(𝑒−2𝑟 cos2 𝜙 𝑗 + 𝑒2𝑟 sin2 𝜙 𝑗 ) +

1 − 𝜂 𝑗
4

, (6.4)

where 𝑟 is the squeezing parameter and 𝜂 𝑗 is the effective efficiency of channel 𝑗 ,
which includes the effects of source loss, free-space loss dominated by geometric
loss, on-chip loss, and radio-frequency (RF) loss. Here, 𝜙 𝑗 = 0 and 𝜙 𝑗 = 𝜋/2
correspond to the squeezed and the antisqueezed quadratures, respectively.

To image the squeezed light, the output voltages are read out to a 32-channel digitizer
(see data acquisition in Methods). A 0.5 Hz phase ramp is applied to the LO off-chip
to acquire voltage samples over various phases, and sample means and variances
are calculated over sets of 260,000 voltage samples. The time evolution of the
sample means and variances for all 32 pixel modes are shown in Fig. 6.4c. Without
phase locking, thermal drifts in the fiber-optic setup give rise to nonuniform phase
fluctuations on top of the phase ramp, which are coherent across all channels. The
corresponding Wigner functions for the source and the pixel modes are shown in
Fig. 6.4b and Fig. 6.4d, respectively (see Wigner function calculation in Methods).

6.5 Reconfigurable free-space links
Next, we operate the system as a reconfigurable quantum receiver. A QRX is used
to apply a phase shift and amplitude weight to the quadrature of each pixel mode by
varying the phase of the LO and the amplitude of the RF output. After coherently
combining the QRX outputs, the combined RF output is a voltage proportional to the
quadrature of the engineered output field, 𝑎̂out in Eq. 6.1-6.2 (see implementation
in Methods),

𝑄̂out =
∑︁
𝑗

𝑔 𝑗𝑄̂ 𝑗 (𝜙 𝑗 ) =
1
2
(𝑎̂out + 𝑎̂†out). (6.5)

Beamforming on squeezed light with the system is illustrated in Fig. 6.5a. After
calibrating the LO phases for all 32 channels, squeezed light with 𝑟 = 0.76 (6.61 dB



136
a
Wigner Function

Q

P

Optical
RF

Collect light

ina

Antenna

...

Downconvert

Combine

Q

Q

...

...

LO

φ
LO LO LO

outQ

θ

0 2 4 6 8 10
Time (s)

−0.1

0.0

0.1

0.2

0.3

N
oi

se
 p

ow
er

 (d
B

-r
el

.)

Beamforming off Beamforming on

0 4 8 12 16 20 24 28 32
Number of channels combined

−0.10
−0.05

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

N
oi

se
 p

ow
er

 le
ve

l (
dB

-r
el

.) Squeezing
Antisqueezing
Vacuum

0 100 200 300
Pump Power (mW)

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30
32 Channels Squeezing

Antisqueezing
Vacuum

−0.50 −0.25 0.00 0.25 0.50
−0.05

0.00

0.05

0.10

0.15

0.20

No
ise

 p
ow

er
 le

ve
l (

dB
-re

l.)
BW8

8 ChannelsSqueezing
Antisqueezing
Vacuum

−4 −2 0 2 4
−0.05

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

FOV8

8 ChannelsSqueezing
Antisqueezing
Vacuum

−0.50 −0.25 0.00 0.25 0.50
θ (degrees)

−0.05

0.00

0.05

0.10

0.15

No
ise

 p
ow

er
 le

ve
l (

dB
-re

l.)

BW32

32 ChannelsSqueezing
Antisqueezing
Vacuum

−4 −2 0 2 4
θ (degrees)

−0.05
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

FOV32

32 ChannelsSqueezing
Antisqueezing
Vacuum

e f

b c

φ φ φ

d

Figure 6.5: Reconfigurable free-space links. a) Conceptual illustration of beam-
forming on squeezed light with the chip, where 𝑎̂in represents the input field and 𝑄̂out

is the quadrature proportional to the combined output signal at RF. b) Squeezing and
antisqueezing levels as a function of the number of combined channels relative to the
vacuum level after the chip is beamformed toward the squeezed light transmitter. c)
Squeezed light source characterization showing squeezing and antisqueezing levels
as a function of source pump power for 32 combined channels. d) Demonstration of
reconfigurable free-space links, illustrating the lack of squeezed light signal when
the receiver is beamformed toward empty space (blue) and the reception of the
signal when the receiver is beamformed toward the transmitter (orange). The grey
trace is the vacuum signal. e) Squeezing and antisqueezing levels characterizing
the beamwidth of the link for 8 and 32 combined channels. f) Squeezing and
antisqueezing levels characterizing the field of view of the receiver for 8 and 32
combined channels. In b), c), e), and f), the orange and blue solid lines are fits of the
data to a model obtained from the classical characterization of the corresponding
measurement.
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generated squeezing) is transmitted to the chip through the fiber collimator. A 1 Hz
phase ramp is applied to the LO before coupling to the chip, and the outputs of the
channels are coherently combined with a 32:1 RF power combiner. The combined
output signal is sent to an RF signal analyzer, which measures the noise power
proportional to the variance of Eq. 6.5 (see beamforming and data acquisition in
Methods).

Noise powers for squeezed vacuum and vacuum states are measured for various
numbers of combined channels. Disconnected channels have zero amplitude weight
and connected channels have approximately uniform amplitude weights. For a given
set of amplitude weights, the phase calibration step in beamforming maximizes the
modal overlap of the array mode function A(𝜌) and the squeezed input mode 𝑢0(𝜌),
corresponding to the geometric efficiency 𝜂𝑔 =

��∫ A∗(𝜌)𝑢0(𝜌)𝑑𝜌
��2. Therefore,

by configuring the amplitude weights in the array mode function, the number of
combined channels sets the geometric efficiency. The squeezing and antisqueezing
levels relative to the shot noise level for each channel combination are shown in
Fig. 6.5b. The squeezing (antisqueezing) improves from −0.017(+0.077) ± 0.012
dB-rel for a single channel to −0.064(+0.312) ± 0.012 dB-rel for eight combined
channels, corresponding to an increase in the geometric efficiency by a factor of 4.5.
For more than eight combined channels, the observed squeezing and antisqueezing
decreases due to reduced modal overlap. The squeezing and antisqueezing increase
again for more than 24 combined channels, most likely due to parasitic effects at RF
(see channel combination and measurement characterization Methods).

After beamforming on 32 channels, we perform a source characterization to confirm
that the combined RF signals correspond to the measurement of the squeezed light
source. For all 32 channels combined, the squeezing and antisqueezing levels for
various source pump powers (𝑃) are shown in Fig 6.5c. The solid lines correspond to
a least-squares fit of the data to a model, where the effective efficiency of the system,
𝜂, and the spontaneous parametric downconversion (SPDC) efficiency, 𝜇 = 𝑟/

√
𝑃,

are taken as floating parameters. We obtain 𝜂 = 0.016 and 𝜇 = 0.038 [mW]−1/2,
which is consistent with the independently characterized SPDC efficiency of the
source (see theoretical modeling in Methods).

Establishing directional free-space links for squeezed light with our system is il-
lustrated in Fig. 6.5d. Squeezed light is transmitted to the system over free space.
First, the phased array forms a reception beam directed away from the transmitter
and no light is detected (blue). The phase settings are then reconfigured by apply-
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ing a linear phase mask to the LO phase shifters, which steers the reception beam
toward the transmitter and forms a free-space link (orange). In the first five seconds,
no squeezed light signal is observed, demonstrating successful spatial filtering. In
the next five seconds, after the reception beam is electronically steered toward the
transmitter, the noise power modulations of the squeezed light are observed.

The spatial selectivity, namely beamwidth, of a link is characterized in Fig. 6.5e.
Phase calibration is performed for squeezed light with 𝑟 = 0.61 (5.31 dB generated
squeezing) transmitted to the chip at a normal angle of incidence. The angle of
incidence (𝜃) of the squeezed light is swept while the chip is kept beamformed to
normal incidence (𝜃 = 0). The squeezing and antisqueezing levels as a function
of 𝜃 are shown in Fig. 6.5e for 8 and 32 combined channels. The beamwidths
(BWn) corresponding to 50% efficiency (3 dB loss) are 0.41±0.02 degrees and
0.20±0.02 degrees with 𝑛 = 8 channels and 𝑛 = 32 combined channels, respectively.
The beamwidth decreases with the number of combined channels, demonstrating
the expected increase in spatial selectivity as the array is scaled up [19, 20] (see
measurement characterization in Methods).

The reconfigurability of the links over the field of view (FoV) of the system is
demonstrated in Fig. 6.5f. At each of the nine different angles of incidence
(𝜃), phase calibration is performed and the optimal phase settings are recorded.
Squeezed light with 𝑟 = 0.91 (7.89 dB generated squeezing) is then transmitted to
the chip at each angle, and a link is programmed by applying the LO phase shifter
settings that form a reception beam at the corresponding angle. The squeezing and
antisqueezing levels for each angle are shown in Fig. 6.5f for 8 and 32 combined
channels. The FoV for squeezed light corresponding to 50% efficiency (3 dB loss)
is 2.32±0.12 degrees and 2.66±0.25 degrees with 8 channels and 32 combined
channels, respectively. The FoV stays the same as the array is scaled up, matching
the single antenna radiation pattern [19, 20] (see measurement characterization in
Methods).

6.6 Discussion and outlook
We have demonstrated an on-chip phased array with quantum-limited performance
for receiving and manipulating non-classical light in a large-scale silicon photonic-
electronic system. With our system, we have demonstrated, for the first time,
32-pixel imaging of squeezed light and reconfigurable free-space-to-chip links for
squeezed light. We also performed a proof-of-concept demonstration of cluster
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state generation to illustrated the potential for integrated optoelectronic systems for
quantum information processing. These functionalities are enabled by a fully-filled
and low-loss metamaterial aperture and the first large-scale coherent receiver array
capable of resolving non-classical signals, with up to 30.3 dB SNC, 90.2 dB CMRR
and 3.70 GHz bandwidth.

In our work, the amount of measured squeezing was limited by ∼15 dB system loss,
dominated by ∼8 dB off-chip source loss. Based on the improvements in component
losses already demonstrated in the literature [39, 40], there is a clear path toward
sub-dB (down to 0.626 dB) loss for our system.Thanks to the modular architecture of
our system, the aperture can be scaled by duplicating individual channels to achieve
longer-distance free-space links. Additionally, phase locking can be implemented
[41], or the signal and LO can be transmitted over the same free-space channel, to
remove phase fluctuations.

Together with a transmitter counterpart to our system, our approach could en-
able wireless quantum technologies based on phased array transceivers. Quantum-
enhanced sensors could be built with phased arrays by placing a highly transmissive
or reflective sample in a free-space link and imaging the sample with non-classical
light [42, 43]. With the current chip, up to 18% improvement below the shot noise
floor in sensitivity is possible. With 0.626 dB system loss, the sensitivity improve-
ment could reach 87%, corresponding to 8.75 dB measured squeezing, potentially
enabling practical quantum enhancement in imaging [42, 43], LiDAR [44, 45] and
microscopy [46].

Wireless quantum communication networks [47] could also be built with phased ar-
ray transceivers forming the nodes of a network. With our current chip, continuous-
variable quantum key distribution [48] is possible with up to 3.81 Mbps secure
key rate and a non-zero key rate distance of 56.3 cm. This distance could be fur-
ther extended to 1.69 km and 39.2 km, limited by the atmospheric attenuation,
with reticle-scale (30 × 30 mm2) and wafer-scale (300 × 300 mm2) apertures, re-
spectively, putting long-distance quantum communications with chip-scale devices
within reach.

6.7 Methods
Theory
Consider a quantized electromagnetic field 𝐸̂ transmitted over free space to a phased
array receiver. The field can be decomposed into positive and negative frequency
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components, 𝐸̂ = 𝐸̂++ 𝐸̂−, where 𝐸̂+ and 𝐸̂− are Hermitian conjugates. The positive
frequency component of the field at the aperture can be expressed as,

𝐸̂+(𝜌, 𝑡) =

√︄
ℏ𝜔

2𝜖0𝑉

∑︁
𝑛

𝑢𝑛 (𝜌)𝑒−𝑖𝜔𝑡 𝑎̂𝑢𝑛 , (6.6)

where 𝜌 = (𝑥, 𝑦) are the transverse spatial coordinates in the aperture plane (see
Fig. 6.1a), 𝜔 is the frequency, and 𝑉 is the quantization volume [49, 28]. The field
is expanded over a complete set of orthonormal modes {𝑢𝑛 (𝜌)}, such as Hermite-
Gaussian modes, that correspond to photon-wavefunctions in second quantization
[50]. Each mode has an associated pair of bosonic operators 𝑎̂𝑢𝑛 and 𝑎̂†𝑢𝑛 satisfying
[𝑎̂𝑢𝑛 , 𝑎̂

†
𝑢𝑚] = 𝛿𝑛,𝑚. In Eq. 6.6, we assume a monochromatic treatment of the field.

We note that the squeezed light generated in the experiments is broadband and that
our analysis can be extended to multiple spectral modes.

The field incident to the aperture can be represented by the local bosonic operator,
𝑎̂in(𝜌) =

∑
𝑛 𝑢𝑛 (𝜌)𝑎̂𝑢𝑛 . The aperture is divided into 𝑁 antenna elements, which

define a set of 𝑁 pixel modes {E 𝑗 (𝜌)} each with an associated pair of bosonic
operators 𝑎̂E 𝑗

and 𝑎̂†E 𝑗
. The pixel modes are combined after applying a phase shift,

𝜙 𝑗 and an amplitude weight, 𝑔 𝑗 , to each pixel mode, where
∑
𝑔2
𝑗
= 1. The combined

output field is described by Eq. 6.1,

𝑎̂out =
∑︁
𝑗

𝑔 𝑗𝑒
𝑖𝜙 𝑗 𝑎̂E 𝑗

=

∫
A∗(𝜌)𝑎̂in(𝜌)𝑑𝜌,

where 𝑎̂E 𝑗
=

∫
E∗
𝑗
(𝜌)𝑎̂in(𝜌)𝑑𝜌 is substituted to obtain the array mode function,

A(𝜌),

A(𝜌) =
∑︁
𝑗

𝑔 𝑗𝑒
−𝑖𝜙 𝑗E 𝑗 (𝜌) ≈ 𝑔(𝜌)𝑒−𝑖𝜙(𝜌) . (6.7)

The approximation in Eq. 6.7 is taken in the small pixel limit. In this limit, the
pixel modes approach E 𝑗 (𝜌) ≈ 𝛿(𝜌 − 𝜌 𝑗 ), where 𝜌 𝑗 represents the coordinates at
the center of the 𝑗 th pixel, the set of amplitude weights and phase shifts approach
continuous phase, 𝜙(𝜌 𝑗 ), and amplitude, 𝑔(𝜌 𝑗 ), distributions, and the sum becomes
an integral over 𝜌 𝑗 . The reconfigurable array mode function can be used to engineer
the state of the incident field to enable functionalities such as mode matching,
beamforming and beamsteering, and more generally quantum state engineering [29,
30].
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Mode matching and discrimination

Consider a quantum state transmitted over free space to a phased array receiver in
mode 𝑢𝑛 (𝜌), with all other modes in the vacuum state. In our experiments, we
transmit a squeezed vacuum state in the Gaussian mode 𝑢0(𝜌). Due to diffraction,
the incident field is spread out across the aperture, with multiple vacuum modes
𝑢𝑚≠𝑛 (𝜌) coupling into each antenna element. This results in a low geometric

efficiency for each pixel mode, 𝜂𝑔, 𝑗 =
���∫ E∗

𝑗
(𝜌)𝑢𝑛 (𝜌)𝑑𝜌

���2. The array can mode
match to 𝑢𝑛 (𝜌) by configuring the array mode function, A(𝜌), through weighted
combination of the pixels such that the vacuum modes destructively interfere. The
geometric efficiency of the array is described by 𝜂𝑔 =

��∫ A∗(𝜌)𝑢𝑛 (𝜌)𝑑𝜌
��2. Due to

the orthonormality of the input basis, unity geometric efficiency can be achieved
by setting A(𝜌) = 𝑢𝑛 (𝜌), resulting in 𝑎̂out = 𝑎̂𝑛. For multimode fields, the signal
in a particular mode can be uniquely selected by setting A(𝜌) to the desired mode
function. In general, the reconfigurability of A(𝜌) enables mode matching to
quantum states in arbitrary modal profiles, such as multimode quantum states, to
achieve unity geometric efficiency.

Beamforming and beamsteering

The field at the aperture can be expressed in terms of the input field in the far-
field limit, 𝑎̂in( 𝑓 ), using the generalized Huygen’s principle [51], which can be
approximated as,

𝑎̂in(𝜌) ∝
∫

𝑒−𝑖2𝜋𝜌 𝑓 𝑎̂in( 𝑓 )𝑑𝑓 , (6.8)

where 𝑓 = sin 𝜃/𝜆 is in terms of the angle from normal incidence (𝜃) and the
wavelength (𝜆). We assume a one dimensional linear array of antennas. The output
field of the phased array in terms of the input field is given by Eq. 6.2,

𝑎̂out ∝
∫

SF( 𝑓 )𝑎̂in( 𝑓 )𝑑𝑓 ,

where SF( 𝑓 ) =
∫
𝑒−𝑖2𝜋𝜌 𝑓A∗(𝜌)𝑑𝜌 corresponds to the space factor of the array [19,

20]. In antenna theory, the total far-field radiation pattern is formed by pattern
multiplication of the space factor and the element factor [19]. For our system, the
element factor corresponds to the radiation pattern of a single antenna.

For a discrete linear array with spacing 𝑑 and a progressive phase shift Δ𝜙 applied
to the antenna elements, the radiation pattern features a primary lobe, or a beam,



142

at 𝜃max = arcsin [−(𝜆/2𝜋𝑑)Δ𝜙] [19]. The phased array transmitter is the reciprocal
counterpart to a phased array receiver, and for a phased array receiver (transmitter),
the beam corresponds to the range of reception (transmission) angles over which
the pixel modes constructively interfere for a given set of phases and amplitude
weights applied to the pixels. Beamforming refers to the optimization of the phase
and amplitude settings of a phased array receiver (transmitter) in order to form a
reception (transmission) beam at a given angle. In the receiver case, beamforming
is equivalent to maximizing the geometric efficiency of the array, 𝜂𝑔. By varying the
progressive phase to shift 𝜃max, the reception or transmission beam can be steered
toward a different location [19, 20].

Implementation

Quantum phased arrays could be implemented in various platforms for discrete-
variable or continuous-variable quantum information. In integrated photonics,
phase control in Eq. 6.2 can be implemented with phase shifters using, for in-
stance, the thermo-optic effect. Amplitude control in weighted combination can
be implemented with meshes of interferometers [52] or homodyne detection [53].
In the case of homodyne detection, the amplitude weights are applied by tuning
the amplitude of the LOs or the gains of the electronic amplifiers. Each coherent
receiver outputs an RF field that generates a voltage or current proportional to the
phase-dependent quadrature of its pixel mode defined in Eq. 6.3. Leveraging the
coherence of the receiver outputs across the array, the output signals are combined at
RF, yielding a combined signal proportional to the quadrature 𝑄̂out = (𝑎̂out + 𝑎̂†out)/2
of an effective output field [49], 𝑎̂out, described by Eq. 6.1. For our system, since
phase control is performed with the thermo-optic phase shifters on the LO side and
amplitude control is performed with electronic gains, the reconfigurability of the
system adds no loss to the received non-classical light. In our implementation, con-
figuringA(𝜌) is equivalent to shaping the spatial-mode profile of the LO throughout
the array. Therefore, our system acts as a reconfigurable, coherent spatial filter, in
addition to spectral filtering enabled by the choice of the LO spectral mode for each
pixel.
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Chip fabrication and design
Chip fabrication

The PIC was fabricated with Advanced Micro Foundry using a 193 nm silicon-
on-insulator (SOI) process. The process has two metal layers (2000 nm thick and
750 nm thick) for electronic routing, a titanium nitride heater layer, a 220 nm thick
silicon layer, a 400 nm thick silicon nitride layer, germanium epitaxy, and various
implantations for active devices. A process design kit (PDK) from the foundry
was provided. The PIC was laid out using KLayout and Cadence Virtoso and was
simulated using Lumerical for design verification.

Chip design

To interface with non-classical light, the aperture requires an antenna design that can
be sized to fill the aperture without any gaps. This requires a design methodology that
can increase the active area of the antenna arbitrarily in both lateral and longitudinal
dimensions. Increasing the active area requires minimizing the scattering strength
per unit area while abiding by the design rules to be foundry compatible with the
silicon photonics process.

To increase longitudinal area, grating elements are placed around the antenna waveg-
uide with apodized scattering strength. To increase lateral area, sixteen of these
waveguide grating antennas are connected and parallelized. The 0.82 𝜇m wide
waveguides keep a single mode confined throughout the length of the antenna so
that the phasefront of the coupled light across the cross-section of the antenna is flat.
At one end of the antenna active area, a mode converter comprising a taper couples
the light from 0.82 𝜇m waveguides to 0.5 𝜇m waveguides. A Y-junction-based
16-to-1 combiner tree combines all the outputs from a single antenna into a single
mode propagating in the 0.5 𝜇m wide waveguide that is used to route the signal on
the PIC.

Three grating regions with apodized coupling strengths are designed, as seen in
Fig. 6.2. The physical footprint of the antenna is 597 × 16.7 𝜇m2. Across the
length of the antenna, the splitter tree region is from 0 𝜇m to 47 𝜇m, the apodized
grating duty cycle region is from 47 𝜇m to 347 𝜇m, the apodized grating width
region is from 347 𝜇m to 547 𝜇m, and the full width region is from 547 𝜇m to 597
𝜇m. The aperture of the chip comprises 32 of these antennas with 17.5 𝜇m pitch
to ensure sufficiently low optical crosstalk between the antennas. Two antennas are
added on each side of the aperture, resulting in 36 total antennas. On each side,
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one antenna is connected to a standard grating coupler and the other is connected
to a photodiode to aid free-space alignment with an optical measurement and an
electronic measurement, respectively. By measuring the power at these antennas,
the PIC aperture can be aligned more easily to the incident beam. Furthermore,
these extra antennas ensure that the edge antennas of the aperture have the same
response as the middle antennas.

The QRX design comprises a tunable Mach-Zehnder interferometer (MZI) made
out of two 50:50 directional couplers and two diode phase shifters. Each phase
shifter is 100 𝜇m long, comprising a resistive heater made out of doped silicon with
1 kΩ resistance and a diode in series with 1 V forward voltage. Doped Si is placed
0.9 𝜇m away from the waveguides to minimize loss from free carriers. The MZI is
configured in a push-pull configuration to extend the tuning range of the coupling
coefficients and is designed to provide sufficient tuning with ±5 V drivers. One
branch of the MZI includes an optical delay with 90◦ phase shift to set the nominal
coupling of the MZI to 50:50. Fabrication imperfections such as changes in the gap
of the coupling region and surface roughness on the waveguides shift the ideal 50:50
coupling randomly across different channels. The tunability of the MZIs allows for
the correction of these imperfections to set 50:50 coupling. The MZIs are also
designed to be symmetric to ensure a high extinction ratio.

After the MZI, the waveguides are adiabatically tapered to connect to a balanced
Ge photodiode pair with >20 GHz bandwidth at 3 V reverse bias, >70% quantum
efficiency, and <100 nA dark current. The QRX is surrounded by a Ge shield to
absorb stray light propagating in the chip substrate and prevent it from coupling
to the photodiodes. Each QRX output is connected to a separate on-chip pad to
be interfaced with a transimpedance amplifier and subsequent electronics for RF
processing.

The LO is coupled to the chip with a standard grating coupler and is sent to each
QRX through a 1-to-32 splitter tree. Each Y-junction in the splitter tree has 0.28 dB
loss, and the grating coupler has 3.30 dB loss. Before the splitter tree, a directional
coupler on the LO waveguide couples 1% of the LO power to a monitor photodiode
for LO power monitoring. After the splitter tree, a TOPS is included in each branch
to tune the LO phase of each channel for phase calibration. Each TOPS for phase
tuning is 315 𝜇m long, comprising a resistive heater made out of titanium nitride
above the waveguide with 630 Ω resistance.
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Chip losses
Expected on-chip losses consist of 3.78 dB from simulated antenna insertion loss,
0.321 dB from waveguide propagation loss, and 1.52 dB from photodiode quantum
efficiency. This results in a total expected on-chip loss of 5.62 dB. The on-chip
losses are verified experimentally by sending 200 𝜇m collimated beam to the chip
aperture after setting all QRXs to the unbalanced (100:0) configuration and summing
all QRX currents. For 0.452 mW input power, the output current is 0.0615 𝜇A,
resulting in an insertion loss of 8.66 dB. In this measurement, in addition to on-
chip losses, there is also the geometric loss due to the mode mismatch between the
aperture and the collimated beam as well as the insertion loss of the collimator. For
a 200 𝜇m collimated beam, the geometric loss is 1.14 dB, the insertion loss of the
collimator is 0.8 dB, and the insertion loss of the connectors is expected to be <1 dB.
De-embedding these losses from the measurement, the on-chip losses are measured
to be 5.72 dB, which agrees well with the 5.62 dB expected loss. Other losses for
all of the measurement setups are outlined in Section C.4 of Appendix C.

Squeezed light generation
To generate squeezed light, continuous wave light from a fiber-coupled 1550 nm
laser is split into a signal path and an LO path. The light in each path is amplified
by an erbium-doped fiber amplifier. After amplification in the signal path, the
1550 nm coherent light is upconverted to 775 nm by a PPLN waveguide via second
harmonic generation (SHG). The upconverted light is used as a continuous-wave
pump for Type 0 spontaneous parametric downconversion (SPDC) with another
PPLN waveguide, which generates broadband light in a squeezed vacuum state at a
central wavelength of 1550 nm. The characterization of the PPLN waveguide used
for SPDC in each experiment is in Section C.2 of Appendix C. The squeezed light
is sent to a fiber-optic collimator, which transmits the light over free space with a
uniform phase front to the chip aperture. After amplification in the LO path, the
1550 nm coherent light is sent to a bulk lithium niobate electro-optic modulator for
phase control. The phase-modulated LO is sent to a cleaved fiber, which is coupled
to the LO input of the chip. Polarization controllers before the collimator and on
the LO fiber are used to optimize the coupling efficiency to the chip.

System electronics
The PIC is packaged with an interposer board for fanning the 104 electronic in-
put/output (IO) to/from the chip. The interposer board is designed with a laser-
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milled cavity in the middle to place the PIC surrounded by pads with blind vias
for high-density routing. The chip and the interposer are assembled so that the
on-chip pads are level and parallel with the on-board pads to shorten the bond wire
length. The traces from the interposer pads to the TIA inputs on the motherboard are
minimized and spaced apart sufficiently to minimize electronic crosstalk with 50 Ω

coplanar waveguide (CPW) transmission lines. The TIA circuit on the motherboard
utilizes a FET-input operational amplifier (op-amp) with resistive feedback. The
op-amp IC (LTC6269-10) has a 4 GHz gain-bandwidth product and is used with a
50 kΩ feedback resistor. The capacitance of the feedback trace is used to ensure
sufficient phase margin while keeping the closed-loop gain greater than 10 since
the op-amp is decompensated. A 50 Ω resistor is placed in series with the output
of the TIA for impedance matching and to dampen any oscillations from capacitive
loading at the output. The TIA outputs are routed with 50 Ω CPW transmission
lines to a high-speed, high-density connector to route the signals to data acquisition.

The DC voltage across the TIA feedback resistor is used as the error signal for the
CMRR correction and drives an integrator circuit with a chopper-stabilized op-amp
IC (OPA2187) for low voltage offset, flicker noise, and offset drift. The integrator’s
unity-gain bandwidth is set close to DC (23 Hz) to dampen any oscillations in the
CMRR auto-correction feedback. The integrator’s output is fed back to the MZI
on the PIC to correct the CMRR continuously. The polarity of the integrator is
designed to match the polarity of the push-pull MZI so that the correction circuit
always maximizes the CMRR, whether the error signal is a negative or a positive
DC signal. The correction is limited by the dark current of each QRX and the offset
voltage at the input of each integrator, but offset correction can be applied to each
integrator to further maximize the CMRR. A high-speed coaxial cable assembly is
used to connect to the motherboard. The cable coming out of the motherboard first
connects to a power board, which powers the active electronics on the motherboard.
This board also routes the output from two photodiodes, which are connected to
the two edge antennas of the aperture, and the output from the monitor photodiode,
which is connected to the LO coupler, to current meters for continuous monitoring of
the signal and LO alignment on the chip. Another cable then connects the remaining
IO to a splitter board that splits the 32 QRX outputs for simultaneous imaging and
RF data acquisition. The remaining control lines for tuning the on-chip TOPS are
connected to 32 digital-to-analog converters (DACs) for independent phase tuning
of each QRX.
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Data acquisition
The 32 QRX outputs after the splitter is connected to boards that host SMA connec-
tors to interface with data acquisition equipment. One board, used for parallelized
32-channel readout, connects to 32 channels of digitizers with 100 MHz bandwidth,
100 MSa/s adjustable sampling rate, and 14-bit resolution. The digitizers are used
in high-impedance mode to read out the voltage of each QRX output for squeezed
light imaging and during RF measurements. For squeezed light imaging in Fig.
6.4c, the digitizers are configured to have a sampling rate of 20 MSa/s. The other
board, used for RF single channel readout, connects to a 32-to-1 RF power combiner
assembly with an operating frequency range of 0.1-200 MHz. The output from the
power combiner is connected to the RF signal analyzer (ESA). For squeezed light
measurements in Fig. 6.5b,c,e, and f, the ESA is configured to be used in the
zero-span mode at a center frequency of 5.5 MHz, with a resolution bandwidth of
2 MHz and a video bandwidth of 5 Hz. Center frequency and resolution bandwidth
are selected to maximize the shot noise clearance after a parameter sweep.

Beamforming
Phase calibration

For each angle of incidence, we calibrate the settings for the 32 LO TOPS such that
the quadratures for all pixel modes are aligned to the same phase. Precise phase
calibration is crucial to prevent additional loss due to vacuum noise leaking into
the combined output. Phase calibration is performed with a 1550 nm coherent state
transmitted by the collimator, and a 5 MHz phase ramp is applied to the LO before
coupling to the chip. The 5 MHz downconverted RF signal after channel combi-
nation is used as feedback to the computer to tune the on-chip TOPS iteratively.
Various signal processing schemes and algorithms have been developed for beam-
forming in classical phased arrays, such as random search, gradient search, direct
matrix inversion, and recursive algorithms [54]. We employ a modified gradient
search algorithm by sweeping phase settings of on-chip TOPS with an orthogonal
mask set.
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Channel combination

For the beamforming measurements in Fig. 6.5, the array mode function for 𝑁
channels connected to the power combiner is,

A𝑁 (𝜌) ≈
∑︁
𝑗∈𝑆𝑁

1
√
𝑁
𝑒−𝑖𝜙 𝑗E 𝑗 (𝜌), (6.9)

where 𝑗 is summed over the set of connected channels (𝑆𝑁 ). For beamforming, the
phase calibration algorithm optimizes the phases, {𝜙 𝑗 }, such that all channels are in
phase. Starting with only channel 16 connected to the power combiner, the number
of connected channels (𝑁) is increased by adding channels to the power combiner
symmetrically about the center of the array (i.e., one channel (𝑁 = 1): 𝑆1 = {16};
two channels (𝑁 = 2): 𝑆2 = {16, 17}; three channels (𝑁 = 4): 𝑆3 = {15, 16, 17};
etc.). Fig. 6.5b shows the noise power levels as a function of the number of
connected channels, 𝑁 = 1, · · · , 32. In practice, imperfections or parasitic effects
such as impedance mismatch or crosstalk affect the array mode function in Eq.
6.9, which could result in different amplitude weights for different combinations
of channels. To fully account for these effects, the mode matching is classically
characterized by measuring the signal-to-noise ratio (SNR) of coherent light (see
Section C.3 in the Appendix C), which is proportional to the array geometric
efficiency, 𝜂𝑔 ≈ |

∫
A𝑁 (𝜌)𝑎̂in(𝜌)𝑑𝜌 |2, for each channel combination.

Squeezing level estimation
The squeezing and antisqueezing levels relative to the shot noise level are estimated
from a statistical analysis of the quadrature sample variances or noise powers. For the
squeezed light experiments in Fig. 6.4 (6.3,6.5), quadrature sample variances (noise
powers) are acquired for squeezed vacuum and vacuum states over an approximately
uniform distribution of phases, and histograms are constructed for the acquired
data. The squeezing and antisqueezing levels are estimated from the inflection
points of the probability density functions (PDFs) of quadrature variances, which are
obtained from the Gaussian kernel density estimates (KDEs) of the histograms. The
squeezing and antisqueezing level estimates correspond to the locations of the peak
slopes at the left (right) edges of the PDF, respectively. In particular, the quadrature
variances for the squeezing and antisqueezing levels are identified from the peaks
in the derivative of the KDEs, which provide a well-defined measure of the edges
of the quadrature variance distribution. The same estimation procedure applied to
the vacuum data yields the standard deviation in the vacuum sample variance (shot
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noise level). Error bars are obtained from the propagation of the vacuum standard
deviation on the squeezing and antisqueezing level estimates. Further information
on the estimation procedure is presented in Appendix B.

Wigner function calculation
For the calculations of the Wigner functions in Fig. 6.4b, the experimental squeezing
parameter 𝑟 = 1.95, which corresponds to 16.9 dB generated squeezing, is plugged
into the Wigner function𝑊 (𝑄, 𝑃, 𝑟, 𝜙, 𝜂) of a squeezed vacuum state, setting 𝜙 = 0
and 𝜂 = 1 to obtain the Wigner function at the source. The Wigner function for
each pixel mode is obtained by plugging its squeezing parameter (𝑟 = 1.95), phase
and geometric efficiency into the Wigner function. The phases are estimated from
a sinusoidal fit to the quadrature sample variances of each channel over data with
approximately uniform phase variation. From the squeezing parameter, the effective
efficiency of each channel is estimated using,

𝜂 𝑗 =
(𝐴 𝑗 − 1) exp(2𝑟)

(exp(2𝑟) − 1) (𝐴 𝑗 + exp(2𝑟)) , (6.10)

where 𝐴 𝑗 = Δ𝑄2
𝑗 ,+/Δ𝑄2

𝑗 ,− is the ratio of the antisqueezing level (Δ𝑄2
𝑗 ,+) to the

squeezing level (Δ𝑄2
𝑗 ,−) of the 𝑗 th pixel. The geometric efficiencies of the channels

are calculated from the effective efficiencies of the channels divided by their total
sum. The characterization of the squeezing parameter, phases, and geometric
efficiencies are in Section C.3 of Appendix C.

Measurement characterization
For each non-classical measurement in the reported experiments, a classical mea-
surement is also taken to characterize the system. The classical measurements are
taken using the same photonic and electronic hardware chain as the non-classical
measurements to ensure consistency. For the squeezed light imaging experiment in
Fig. 6.4b,c,d, a classical multi-pixel image is taken by sending a coherent state as
signal while the LO phase is ramped at 5 MHz. The 5 MHz tone from each channel
is digitized by the imaging readout, and its corresponding amplitude is measured.
For the experiments in Fig. 6.5b,e,f, a coherent state is sent as the signal while the
LO phase is ramped at 5 MHz. The 5 MHz tone at the output of the power combiner
is measured on the ESA for each measurement setting. For each channel combina-
tion in Fig. 6.5b, an SNR is calculated by taking the ratio of the signal power to the
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corresponding shot noise acquired from the squeezed light measurement. Classical
data and more detailed analysis are presented in Section C.3 of Appendix C.

Theoretical modeling

The theoretical models in Fig. 6.5 are constructed from classical characterizations
of the effective efficiency for each experimental configuration using,

Δ𝑄2
± = 𝜂𝑒±2𝑟 + 1 − 𝜂, (6.11)

where Δ𝑄2
± are the squeezing (−) and antisqueezing (+) levels relative to the shot

noise level, 𝑟 is the squeezing parameter, and 𝜂 is the effective efficiency of the
system.

For Fig. 6.5b, the model is obtained from Eq. 6.11 with 𝜂 ∝ SNR for each com-
bination of channels. A least-squares fit is performed by taking the proportionality
constant (𝜂𝑐) to the classical SNR data as the only free parameter, with the squeezing
parameter bounded in the range 𝑟 = 0.748 ± 0.019 (see Section C.3 of Appendix
C). Using SNR data normalized to its peak value, we obtain optimal parameters of
𝜂𝑐 = 0.021 and 𝑟 = 0.761 (6.61 dB generated squeezing).

For Fig. 6.5c, the model is obtained from Eq. 6.11 with 𝑟 = 𝜇
√
𝑃, where 𝑃 is the

SPDC pump power and 𝜇 is the SPDC efficiency, and a least-squares fit is performed
taking the 𝜇 and 𝜂 as free parameters. The optimal parameters are reported in the
main text, 𝜂 = 0.016 and 𝜇 = 0.038 [mW]−1/2, which matches the the SPDC
efficiency of the PPLN waveguide characterized in Section C.2 and reported in
Table C.2 of Appendix C.

For Fig. 6.5e, the models are obtained from Eq. 6.11 and 𝜂 proportional to
classical beamwidth data for 8 and 32 channels combined. For each data set,
a least-squares fit is performed taking the proportionality constant (𝜂(𝑁)𝑐 ) to the
classical beamwidth data as the only free parameter, with the squeezing parameter
bounded in the range 𝑟 = 0.607 ± 0.015 (see Section C.3 of Appendix C). Using
beamwidth data normalized to their peak powers, we obtain optimal parameters of
𝜂
(8)
𝑐 = 0.019, 𝜂(32)

𝑐 = 0.014, and 𝑟 = 0.611 (5.31 dB generated squeezing). Using
this estimated 𝑟 , the 8 and 32 channel beamwidths are characterized directly from
the squeezed light data by extracting the effective efficiencies using Eq. 6.10. With
linear interpolation, angles corresponding to 0.5 effective efficiency are found to
calculate the beamwidths.
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For Fig. 6.5f, the models are obtained from Eq. 6.11 and 𝜂 proportional to the
classical radiation pattern of a single antenna. For each data set, a least-squares
fit is performed taking the proportionality constant (𝜂(𝑁)𝑐 ) to the classical radiation
pattern as the only free parameter, with the squeezing parameter bounded in the range
𝑟 = 0.865±0.043 (see Section C.3 in the of Appendix C). Using the radiation pattern
data normalized to its peak power, we find optimal parameters of 𝜂(8)𝑐 = 0.017,
𝜂
(32)
𝑐 = 0.015, and 𝑟 = 0.908 (7.89 dB generated squeezing). Using this estimated
𝑟, the 8 and 32 channel FoVs are characterized directly from the squeezed light data
in the same way as beamwidth characterization using Eq. 6.10.

The squeezing parameters for the models are obtained from independent charac-
terizations of the sources (see Section C.2 of of Appendix C). We note that for
the measurements in Fig. 6.5b,c,e, phase calibration was performed once before
acquisition of all the data, whereas for the FoV data in Fig. 6.5f, separate phase
calibration was performed for each data point. Imperfect phase calibration con-
tributes to RF loss due to imperfect destructive interference of vacuum terms in the
pixel quadratures. Therefore, depending on the phase calibration, different angles
exhibited different amounts of RF loss, specifically 𝜃 = −1◦, which affected the fit
in 6.5f. Loss due to phase calibration can be further minimized with more sophisti-
cated phase calibration algorithms [54]. Further details of the theoretical modeling
are in Section C.3 of Appendix C.
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C h a p t e r 7

THE QUANTUM INTERNET

This chapter includes the work in preparation for publication:

[1] Prathwiraj Umesh, Samantha I. Davis, Jordan Smith, Sophie Her-
mans, Joaquin Chung, Prem Kumar, Boris Korzh, and Raju Vali-
varthi. “Regional quantum networks: recent progress and outlook.” In:
Manuscript in preparation for Optica Quantum. (2025).

The long-term vision of quantum networks is to connect globally-distributed users in
a quantum internet [1, 2]. An emerging blueprint for the quantum internet consists of
regional quantum networks deployed in optical fiber infrastructure interconnected by
free-space and satellite links for long-distance communications [3, 4, 5]. Regional
networks, spanning metropolitan and national regions, need to be able to distribute
quantum resources, such as qubits and entanglement, on the order of hundreds of
kilometers. An architecture for a regional quantum network is shown in Fig. 7.1,
consisting of (1) a physical layer comprised of quantum nodes (Q-Nodes) with
hardware primitives such as entangled photon pair sources, single photon detectors,
and quantum memories (see Fig. 7.2); (2) a control and management layer that
oversees routing for user connectivity, channel calibration and synchronization; (3)
a service layer that translates user-requested services to physical protocols; and (4)
a software layer for user interfacing.

Over the past few decades, there has been substantial progress in developing regional
quantum network testbeds [6], although the majority of field trials have focused on
prepare-and-measure quantum key distribution (QKD), which typically requires
only the transmission and detection of single qubits. The next generation of testbeds
demand functionalities such as entanglement distribution, multiphoton interference,
and transduction to achieve advanced networking protocols such as measurement-
device-independent (MDI) QKD [7], distributed sensing, and ultimately networked
quantum computation. Because direct qubit transmission is limited by exponen-
tial loss and decoherence, long-haul communications require entanglement-based
techniques, such as quantum teleportation [8] and entanglement swapping [9], that
transfer quantum information without physically propagating the qubit. These oper-
ations form the basis of quantum repeaters [10, 11], which are expected to be crucial
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Figure 7.1: Depiction of the regional quantum network architecture. Users interface
with the network through a web-based portal linked to quantum software that orches-
trates interactions across multiple layers. The service layer translates user-requested
services into the necessary protocol-level controls. The control and management
layer oversees key operational functions such as optical path routing for user connec-
tivity, quantum channel calibration, clock synchronization, and channel syndrome
measurement. The physical layer comprises multiple quantum nodes (Q-Nodes) in-
terconnected through a central node, enabling end-to-end quantum communication.
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Figure 7.2: Detailed depiction of the physical layer of a regional quantum network.
Quantum nodes (Q-Nodes) comprise key components of quantum networks, includ-
ing the Entangled Photon Source (EPS), Single-Photon Detector (SPD), Channel
Stabilizer (CH), Bell-State Measurement (BSM) module, Quantum Memory (QM),
and a Classical Computer (CC). These nodes are interconnected via optical fiber and
free-space links. Yellow fibers represent dark fibers dedicated solely to quantum
communication, while cyan fibers denote optical fibers where quantum and clas-
sical communication coexist. Free-space communication links connect Q-Nodes
to quantum satellites for long-distance quantum communication and to drones for
short-range, line-of-sight quantum communication.

for fault-tolerant long-distance quantum communications in the quantum internet
[12].

7.1 Regional quantum networks
Quantum network testbeds have evolved to support a wide array of protocols and
applications, transitioning from early demonstrations of QKD to implementations
of entanglement-based protocols such as quantum teleportation and entanglement
swapping. Deployed in 2004, the DARPA quantum network [13] demonstrated
the first 10-node multi-protocol QKD network between Boston and Cambridge,
implementing both weak-coherent-state and entanglement-based QKD protocols
over fiber and free-space links. In 2008, the SECOQC project [14] in Vienna
demonstrated a city-wide QKD network integrating BB84 [15], SARG [16], and
continuous variable QKD protocols. SECOQC implemented a modular, multi-layer
architecture that separated the quantum, key management, and application layers,
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enabling compatibility with classical telecommunication infrastructure. The Swiss
Quantum Network [17] later validated the long-term stability of QKD, maintaining
continuous operation over months and establishing QKD as a reliable protocol for
secure communication in operational environments. In 2011, the Tokyo Quantum
Network [18] demonstrated a metropolitan QKD network integrating six different
systems that supported GHz-clocked links for secure TV conferencing over 45
km and showcased features such as secure mobile phone interfaces, eavesdropper
detection, path rerouting, and key relay via trusted nodes.

In the past five years, quantum network testbeds have expanded to larger scales
and advanced architectures. In 2020, the Bristol Quantum Network [19] demon-
strated an eight-user metropolitan network in a fully-connected mesh topology with
reconfigurable wave division multiplexing (WDM) over deployed fiber. In 2021,
the Beijing-Shanghai [3] quantum network reported a fiber backbone spanning over
2,000 km with more than 700 QKD links in a trusted relay structure. The network
interfaces with two satellites for space-to-ground quantum communication, enabling
high-speed QKD with total network connectivity over 4,600 km. In parallel, the
emergence of twin-field QKD (TF-QKD) [20] has drawn attention due to its ability
to surpass the repeater-less PLOB bound [21] without trusted relays. In 2021, the
Jinan-Qingdao QKD Network [22] reported a TF-QKD demonstration over 511 km
using a 12-fiber bundle, the sending-or-not-sending protocol, and active odd-parity
pairing. Recently, field trials have generated secure keys over 830 km of deployed
fiber [23] and 1,002 km of ultra-low-loss fiber spool using a sending-or-not-sending
protocol [24], illustrating TF-QKD’s potential for ultra-long-distance secure links.

Going beyond QKD, testbeds are increasingly exploring the implementation of
quantum teleportation and entanglement distribution. In 2022, the Munich Quantum
Network [25] demonstrated heralded entanglement between two Rubidium (Rb)
atoms (400 m apart) via a Bell state measurement node with fiber links up to 33
km. The demonstration leveraged quantum frequency conversion (QFC) to convert
a photon emitted by a Rb atom at 780 nm to the telecom band (1570 nm). Two years
later (2024), the Delft-Hague Quantum Network [26] reported the development of
a three-node midpoint network over 25 km of deployed fiber for the demonstration
of heralded entanglement of diamond nitrogen vacancy spin qubits using a single-
click protocol. In the same year, the Hefei Quantum Entanglement Network [27]
reported a four-node star network with Rb atomic ensemble memories and QFC to
the telecom O-band (1342 nm) for the demonstration of three-qubit matter-photon
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entanglement via the DLCZ protocol [28].

Literature Description Sources Detectors
Joshi et al. (2020) [19] Eight-user metropolitan network

with reconfigurable DWDM over
deployed fiber (10 m–16.6 km).
Fully connected graph topology
without trusted nodes. BBM92 pro-
tocol with polarization-entangled
photon pairs distributed via in-
fiber beam splitters and 100 GHz
DWDM. Each user has PAM hard-
ware and two detectors.

One MgO:PPLN Type-0 source
in Sagnac loop (1550.217 nm),
producing 8 frequency-multiplexed
polarization-entangled pairs.

SNSPDs,
SPADs

Chen et al. (2021) [22] TF-QKD over 511 km with 12-
fiber bundle, using sending-or-not-
sending protocol and active odd-
parity pairing. Three weak coherent
sources in X basis, random Z-basis
pulses, decoy-state analysis.

Continuous wave fiber lasers locked
to ultra-low-expansion cavity (Al-
ice: 1550.12460 nm).

SNSPDs

van Leent et al. (2022) [25] Three-node network with midpoint;
fiber links up to 33 km. Her-
alded entanglement between two
Rb atoms 400 m apart, with tele-
com QFC. BSM for entanglement
heralding.

Rb atoms emit 780 nm photons, con-
verted to 1517 nm via PPLN QFC.
Spin-photon entanglement in Zee-
man substates.

SNSPDs

Stolk et al. (2024) [26] Three-node midpoint network over
25 km deployed fiber. Heralded en-
tanglement of diamond nitrogen va-
cancy (NV) spin qubits using single-
click protocol.

NV center spin qubits; 637 nm pho-
tons converted to 1588 nm (L-band)
via NORA/PPLN QFC.

SNSPDs

Liu et al. (2024) [27] Four-node star network with Rb
atomic ensemble memories and
QFC to 1342 nm (O-band). Links
of 9.6–11.5 km to central server.
Three-qubit matter-photon entan-
glement via DLCZ protocol.

Rb atomic ensembles in ring cav-
ities; photons converted via PPLN
QFC.

SNSPDs

Table 7.1: Summary of regional quantum network testbeds, highlighting key tech-
nologies, protocols, and architectures. BSM: Bell state measurement; DWDM:
dense wavelength division multiplexing; NV: nitrogen vacancy; PAM: phase am-
plitude modulation; PPLN: periodically poled lithium niobate; QFC: quantum fre-
quency conversion; SNSPDs: superconducting nanowire single photon detectors;
SPADs: single-photon avalanche detectors; TF-QKD: twin-field QKD.

Table 7.1 summarizes recent developments in regional quantum network testbeds.
Open challenges include co-designing a scalable, multipurpose quantum network
capable of supporting multipartite entanglement-based protocols, with quantum
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information sent through fiber or free-space links at varying wavelengths or encod-
ings, while ensuring that entanglement distribution operates seamlessly alongside
coexisting classical control channels required for real-world deployment. To this
end, I report the development of regional quantum network testbeds at Caltech and
Fermi National Accelerator Laboratory (referred to as FNAL or Fermilab). The
Caltech Quantum Network (CQNET) is designed to eventually interface with free-
space quantum communication links at NASA Jet Propulsion Laboratory (JPL),
while the Fermilab Quantum Network (FQNET) is designed to eventually interface
with adjacent laboratories and universities as part of the U.S. Department of En-
ergy’s roadmap for a quantum internet prototype connecting the seventeen national
laboratories [29].

7.2 Caltech and Fermilab quantum network testbeds
Our dual-site approach involves first prototyping networking systems at Caltech
in parallel with detector R&D at the NASA-JPL Microdevices Laboratory, lever-
aging access to state-of-the-art superconducting nanowire single-photon detectors
(SNSPDs). These detectors ultimately set the performance limit of quantum com-
munication protocols, and developing systems in close coordination with detector
development allows for co-design and optimization. Next, we commission these
systems at Fermilab, which offers robust facilities and access to deployed fiber in-
frastructure interconnecting various on-campus labs, Argonne National Laboratory,
and nearby research institutions such as Northwestern University and the University
of Illinois, which host advanced quantum technologies including atomic memories
and superconducting qubits.

Our testbeds focus on entanglement-based protocols, particularly quantum telepor-
tation and entanglement swapping, with time-bin qubits for robust, long-distance
communications over optical fiber (see Figs. 7.3 and 7.4). We first constructed
teleportation systems at CQNET and FQNET using optical fiber-coupled devices at
telecom-band wavelengths, achieving record teleportation fidelities of ≥ 90% for
time-bin qubits transmitted over 44 km of fiber (Chapter 8). To complement these
experiments, we developed theoretical models based on a phase-space formalism to
account for realistic imperfections, yielding analytical predictions for performance
metrics including Hong–Ou–Mandel interference visibility, entanglement visibility,
and teleportation fidelity, that guide system design and optimization (Chapter 9).

We then upgraded the FQNET system to support entanglement swapping, demon-
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Figure 7.3: Quantum teleportation with time-bin qubits. Alice wants to send a
time-bin qubit (|𝜓𝐴⟩ = 𝛼 |𝐸⟩ + 𝛽 |𝐿⟩) to Bob. A Bell state measurement (BSM) is
performed on her qubit and one member of a Bell pair produced by an entangled
photon pair source (EPS). The other member of the Bell pair is sent to Bob. The
outcome of the BSM is classically communicated (e.g., in a bit string) to Bob,
who applies a unitary transformation (𝑈) to his qubit conditioned on the BSM
measurement outcome. As a result, Alice’s original qubit is “teleported” to Bob’s
qubit, (|𝜓𝐵⟩ = 𝛼 |𝐸⟩ + 𝛽 |𝐿⟩), without direct physical transmission to Bob.

Figure 7.4: Entanglement swapping, i.e., “teleportation of entanglement,” with
time-bin qubits. Alice and Bob want to share a pair of entangled qubits. Alice and
Bob each locally prepare a Bell pair using entangled photon pair source (EPS) A and
B, respectively. One member of each pair is sent to a Bell state measurement (BSM)
node. The outcome of the BSM is classically communicated to Alice and Bob.
Alice and Bob each apply a unitary (𝑈𝐴 and 𝑈𝐵, respectively) to their remaining
qubit conditioned on the BSM outcome. As a result, the entanglement is “swapped”
between the original Bell pairs, such that the remaining qubits at Alice and Bob are
entangled.
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strating high-fidelity swapping of time-bin qubits with visibilities up to 92 ± 3.8%,
corresponding to a Bell violation exceeding five standard deviations (Chapter 10). To
support field deployment and physically separated nodes, precise synchronization of
a universal clock reference is required across all network nodes. To this end, we de-
veloped a clock synchronization system capable of co-distributing entangled qubits
and classical optical clock signals over the same fiber, achieving picosecond-level
synchronization using SNSPDs. Following successful demonstrations at Caltech,
we deployed the system over a metropolitan-scale fiber network and demonstrated
entanglement distribution between nodes at Fermilab and Argonne National Labora-
tory with 2 ps synchronization precision (Chapter 11). This body of work provides
a scalable blueprint for constructing regional quantum networks for the quantum
internet.
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C h a p t e r 8

TELEPORTATION SYSTEMS TOWARDS A QUANTUM
INTERNET

This chapter includes the work published as:

[1] Raju Valivarthi, Samantha I. Davis, Cristián Peña, Si Xie, Nikolai Lauk, Lautaro
Narváez, Jason P. Allmaras, Andrew D. Beyer, Yewon Gim, Meraj Hussein, et al.
“Teleportation systems toward a quantum internet.” In: PRX Quantum 1.2 (2020),
p. 020317.

8.1 Introduction
Quantum teleportation [1], one of the most captivating predictions of quantum
theory, has been widely investigated since its seminal demonstrations over 20 years
ago [2, 3, 4]. This is due to its connections to fundamental physics [5, 6, 7, 8, 9,
10, 11, 12, 13, 14], and its central role in the realization of quantum information
technology such as quantum computers and networks [15, 16, 17, 18, 19]. The
goal of a quantum network is to distribute qubits between different locations, a key
task for quantum cryptography, distributed quantum computing and sensing. A
quantum network is expected to form part of a future quantum internet [20, 21, 22]:
a globally distributed set of quantum processors, sensors, or users there-of that are
mutually connected over a network capable of allocating quantum resources (e.g.,
qubits and entangled states) between locations. Many architectures for quantum
networks require quantum teleportation, such as star-type networks that distribute
entanglement from a central location or quantum repeaters that overcome the rate-
loss trade-off of direct transmission of qubits [19, 23, 24, 25, 26].

Quantum teleportation of a qubit can be achieved by performing a Bell-state mea-
surement (BSM) between the qubit and another that forms one member of an en-
tangled Bell state [1, 18, 27]. The quality of the teleportation is often characterized
by the fidelity 𝐹 = ⟨𝜓 | 𝜌 |𝜓⟩ of the teleported state 𝜌 with respect to the state |𝜓⟩
accomplished by ideal generation and teleportation [15]. This metric is becoming
increasingly important as quantum networks move beyond specific applications,
such as quantum key distribution, and towards the quantum internet.
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Qubits encoded by the time-of-arrival of individual photons, i.e., time-bin qubits [28],
are useful for networks due to their simplicity of generation, interfacing with quan-
tum devices, as well as independence of dynamic transformations of real-world
fibers. Individual telecom-band photons (around 1.5 𝜇m wavelength) are ideal
carriers of qubits in networks due to their ability to rapidly travel over long dis-
tances in deployed optical fibers [17, 29, 30, 31] or atmospheric channels [32],
among other properties. Moreover, the improvement and growing availability of
sources and detectors of individual telecom-band photons has accelerated progress
towards workable quantum networks and associated technologies, such as quan-
tum memories [33], transducers [34, 35], or quantum non-destructive measurement
devices [36].

Teleportation of telecom-band photonic time-bin qubits has been performed inside
and outside the laboratory with impressive results [37, 38, 39, 40, 41, 30, 29, 42,
31]. Despite this, there has been little work to increase 𝐹 beyond ∼ 90% for these
qubits, in particular using practical devices that allow straightforward replication
and deployment of quantum networks (e.g., using fiber-coupled and commercially
available devices). Moreover, it is desirable to develop teleportation systems that
are forward-compatible with emerging quantum devices for the quantum internet.

In the context of Caltech’s multi-disciplinary multi-institutional collaborative public-
private research program on Intelligent Quantum Networks and Technologies (IN-
Q-NET) founded with AT&T as well as Fermi National Accelerator Laboratory
(Fermilab) and Jet Propulsion Laboratory in 2017, we designed, built, commissioned
and deployed two quantum teleportation systems: one at Fermilab, the Fermilab
Quantum Network (FQNET), and one at Caltech’s Lauritsen Laboratory for High
Energy Physics, the Caltech Quantum Network (CQNET). The CQNET system
serves as an R&D, prototyping, and commissioning system, while FQNET serves
as an expandable system, for scaling up to long distances and is used in multiple
projects funded currently by DOE’s Office of High Energy Physics (HEP) and
Advanced Scientific Research Computing (ASCR). Material and devices level R&D
in both systems is facilitated and funded by the Office of Basic Energy Sciences.
Both systems are accessible to quantum researchers for R&D purposes as well
as testing and integration of various novel devices, such as for example on-chip
integrated nanophotonic devices and quantum memories, needed to upgrade such
systems towards a realistic quantum internet. Importantly both systems are also
used for improvements of the entanglement quality and distribution with emphasis
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on implementation of protocols with complex entangled states towards advanced and
complex quantum communications channels. These will assist in studies of systems
that implement new teleportation protocols whose gravitational duals correspond
to wormholes [43], error correlation properties of wormhole teleportation, on-
chip codes as well as possible implementation of protocols on quantum optics
communication platforms. Hence the systems serve both fundamental quantum
information science as well as quantum technologies.

Here we perform quantum teleportation of time-bin qubits at a wavelength of 1536.5
nm with an average 𝐹 ≥ 90%. This is accomplished using a compact setup of fiber-
coupled devices, including low-dark-count single photon detectors and off-the-shelf
optics, allowing straight-forward reproduction for multi-node networks. To illustrate
network compatibility, teleportation is performed with up to 44 km of single-mode
fiber between the qubit generation and the measurement of the teleported qubit,
and is facilitated using semi-autonomous control, monitoring, and synchronization
systems, with results collected using scalable acquisition hardware. Our systems,
which operates at a clock rate of 90 MHz, can be run remotely for several days without
interruption and yield teleportation rates of a few Hz using the full length of fiber.
Our qubits are also compatible with erbium-doped crystals, e.g., Er:Y2SiO5, that are
used to develop quantum network devices like memories and transducers [44, 45, 46].
Finally, we develop an analytical model of our system, which includes experimental
imperfections, predicting that the fidelity can be improved further towards unity by
well-understood methods (such as improvement in photon indistinguishability). Our
demonstrations provide a step towards a workable quantum network with practical
and replicable nodes, such as the ambitious U.S. Department of Energy quantum
research network envisioned to link the U.S. National Laboratories.

In the following we describe the components of our systems as well as character-
ization measurements that support our teleportation results, including the fidelity
of our entangled Bell state and Hong-Ou-Mandel (HOM) interference [47] that
underpins the success of the BSM. We then present our teleportation results using
both quantum state tomography (QST) [48] and projection measurements based on
a decoy state method [49], followed by a discussion of our model. We conclude
by considering improvements towards near-unit fidelity and GHz level teleportation
rates.
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8.2 Setup
Our fiber-based experimental system is summarized in the diagram of Fig. 8.1.
It allow us to demonstrate a quantum teleportation protocol in which a photonic
qubit (provided by Alice) is interfered with one member of an entangled photon-
pair (from Bob) and projected (by Charlie) onto a Bell-state whereby the state of
Alice’s qubit can be transferred to the remaining member of Bob’s entangled photon
pair. Up to 22 (11) km of single mode fiber is introduced between Alice and
Charlie (Bob and Charlie), as well as up to another 11 km at Bob, depending on the
experiment (see Sec. 8.3). All qubits are generated at the clock rate, with all of their
measurements collected using a data acquisition (DAQ) system. Each of the Alice,
Bob, Charlie subsystems are further detailed in the following subsections, with the
DAQ subsystem described in Section 8.6.

Alice: single-qubit generation
To generate the time-bin qubit that Alice will teleport to Bob, light from a fiber-
coupled 1536.5 nm continuous wave (CW) laser is input into a lithium niobate
intensity modulator (IM). We drive the IM with one pulse, or two pulses separated
by 2 ns. Each pulse is of ∼65 ps full width at half maximum (FWHM) duration.
The pulses are produced by an arbitrary waveform generator (AWG) and amplified
by a 27 dB-gain high-bandwidth amplifier to generate optical pulses that have an
extinction ratio of up to 22 dB. We note that this method of creating time-bin qubits
offers us flexibility not only in terms of choosing a suitable time-bin separation,
but also for synchronizing qubits originating from different nodes in a network. A
90/10 polarization-maintaining fiber beam splitter combined with a power monitor
(PWM) is used to apply feedback to the DC-bias port of the IM so as to maintain a
constant 22 dB extinction ratio [50]. In order to successfully execute the quantum
teleportation protocol, photons from Alice and Bob must be indistinguishable in all
degrees of freedom (see Sec. 8.3). Hence, the optical pulses at the output of the IM
are band-pass filtered using a 2 GHz-bandwidth (FWHM) fiber Bragg grating (FBG)
centered at 1536.5 nm to match the spectrum of the photons from the entangled pair-
source (described in Sec. 8.2). Furthermore, the polarization of Alice’s photons
is determined by a manual polarization controller (POC) in conjunction with a
polarizing beam splitter (PBS) at Charlie. Finally, the optical pulses from Alice
are attenuated to the single photon level by a variable optical attenuator (VOA),
to approximate photonic time-bin qubits of the form |𝐴⟩ = 𝛾 |𝑒⟩𝐴 +

√︁
1 − 𝛾2 |𝑙⟩𝐴,

where the late state |𝑙⟩𝐴 arrives 2 ns after the early state |𝑒⟩𝐴, 𝛾 is real and set to be
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Figure 8.1: Schematic diagram of the quantum teleportation system consisting of
Alice, Bob, Charlie, and the data acquisition (DAQ) subsystems. See the main text
for descriptions of each subsystem. One cryostat is used to house all SNSPDs, it
is drawn as two for ease of explanation. Detection signals generated by each of
the SNSPDs are labelled 1-4 and collected at the TDC, with 3 and 4 being time-
multiplexed. All individual components are labeled in the legend, with single-mode
optical fibers (electronic cables) in grey (green), and with uni- and bi-chromatic
(i.e., unfiltered) optical pulses indicated.
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either 1, 0, or 1/
√

2 to generate |𝑒⟩𝐴, |𝑙⟩𝐴, or |+⟩𝐴 = ( |𝑒⟩𝐴 + |𝑙⟩𝐴)/
√

2, respectively,
depending on the experiment. The complex relative phase is absorbed into the
definition of |𝑙⟩𝐴. The duration of each time bin is 800 ps.

Bob: entangled qubit generation and teleported-qubit measurement
Similar to Alice, one (two) optical pulse(s) with a FWHM of ∼ 65 ps is (and
separated by 2 ns are) created using a 1536.5 nm CW laser in conjunction with a
lithium niobate IM driven by an AWG, while the 90/10 beam splitter and PWM
are used to maintain an extinction ratio of at least 20 dB. An Erbium-Doped Fiber
Amplifier (EDFA) is used after the IM to boost the pulse power and thus maintain a
high output rate of photon pairs.

The output of the EDFA is sent to a Type-0 periodically poled lithium niobate
(PPLN) waveguide for second harmonic generation (SHG), upconverting the pulses
to 768.25 nm. The residual light at 1536.5 nm is removed by a 768 nm band-
pass filter with an extinction ratio ≥ 80 dB. These pulses undergo spontaneous
parametric down-conversion (SPDC) using a Type-II PPLN waveguide coupled to
a polarization-maintaining fiber (PMF), approximately producing either a photon
pair |𝑝𝑎𝑖𝑟⟩𝐵 = |𝑒𝑒⟩𝐵, or the time-bin entangled state |𝜙+⟩𝐵 = ( |𝑒𝑒⟩𝐵 + |𝑙𝑙⟩𝐵)/

√
2,

if one or two pulses, respectively, are used to drive the IM. The ordering of the
states refers to so-called signal and idler modes of the pair of which the former
has parallel, and the latter orthogonal, polarization with respect to the axis of the
PMF. As before, the relative phase is absorbed into the definition of |𝑙𝑙⟩𝐵. Each
photon is separated into different fibers using a PBS and spectrally filtered with
FBGs akin to that at Alice. Note the bandwidth of the FBG is chosen as a trade-off
between spectral purity and generation rate of Bob’s photons [51]. The photon in
the idler mode is sent to Charlie for teleportation or HOM measurements (see Sec.
8.3), or to the MZI (see below) for characterizations of the entangled state (see
Sec. 8.3), with its polarization determined using a POC. The photon in the signal
mode is sent to a Mach Zehnder interferometer (MZI) by way of a POC (and an
additional 11 km of single-mode fiber for some measurements), and is detected by
superconducting nanowire single photon detectors (SNSPDs) [52] after high-pass
filtering (HPF) to reject any remaining 768.25 nm light. The MZI and detectors
are used for projection measurements of the teleported state, characterization of the
time-bin entangled state, or measuring HOM interference at Charlie. The time-of-
arrival of the photons is recorded by the DAQ subsystem using a time-to-digital
converter (TDC) referenced to the clock signal from the AWG.
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All SNSPDs are installed in a compact sorption fridge cryostat [53], which operates
at a temperature of 0.8 K for typically 24 h before a required 2 h downtime. Our
SNSPDs are developed at the Jet Propulsion Laboratory and have detection effi-
ciencies between 76 and 85%, with low dark count rates of 2-3 Hz. The FWHM
temporal resolution of all detectors is between 60 and 90 ps while their recovery time
is ∼50 ns. A detailed description of the SNSPDs and associated setup is provided
in Section 8.6.

The MZI has a path length difference of 2 ns and is used to perform projection
measurements of |𝑒⟩𝐵, |𝑙⟩𝐵, and ( |𝑒⟩𝐵 + 𝑒𝑖𝜑 |𝑙⟩𝐵)/

√
2, by detecting photons at three

distinct arrival times in one of the outputs, and varying the relative phase 𝜑 [28].
Detection at the other output yields the same measurements except with a relative
phase of 𝜑 + 𝜋. Using a custom temperature-feedback system, we slowly vary 𝜑 for
up to 15 hour time intervals to collect all measurements, which is within the cryostat
hold time. Further details of the MZI setup is described in Section 8.6.

Charlie: Bell-state measurement
Charlie consists of a 50/50 polarization-maintaining fiber beam splitter (BS), with
relevant photons from the Alice and Bob subsystems directed to each of its inputs via
a PBSs and optical fiber. The photons are detected at each output with an SNSPD
after HPFs, with their arrival times recorded using the DAQ as was done at Bob.
Teleportation is facilitated by measurement of the |Ψ−⟩𝐴𝐵 = ( |𝑒𝑙⟩𝐴𝐵 − |𝑙𝑒⟩𝐴𝐵)/

√
2

Bell state, which corresponds to the detection of a photon in |𝑒⟩ at one detector
followed by the detection of a photon in |𝑙⟩ at the other detector after Alice and
Bob’s (indistinguishable) qubits arrive at the BS [54]. Projection on the |Ψ−⟩𝐴𝐵
state corresponds to teleportation of |𝐴⟩ up to a known local unitary transformation,
i.e., our system produces −𝑖𝜎𝑦 |𝐴⟩, with 𝜎𝑦 being the Pauli 𝑦-matrix.

8.3 Experimental results
Prior to performing quantum teleportation, we measure some key parameters of
our system that underpin the teleportation fidelity. Specifically, we determine the
fidelity of the entangled state produced by Bob by measuring the entanglement
visibility 𝑉𝑒𝑛𝑡 [55], and also determine to what extent Alice and Bob’s photons are
indistinguishable at Charlie’s BS using the HOM effect [47].
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Entanglement visibility
The state |𝑝𝑎𝑖𝑟⟩𝐵 (and hence the entangled state |𝜙+⟩𝐵) described in Sec. 8.2 is
idealized. In reality, the state produced by Bob is better approximated by a two-
mode squeezed vacuum state |TMSV⟩𝐵 =

√︁
1 − 𝑝∑∞

𝑛=0
√
𝑝
𝑛 |𝑛𝑛⟩𝐵 after the FBG

filter and neglecting loss [56]. Here, 𝑛 is the number of photons per temporal mode
(or qubit), 𝑝 is the emission probability of a single pair per mode (or qubit), with
state ordering referring to signal and idler modes. However, |TMSV⟩𝐵 approximates
a photon pair for 𝑝 ≪ 1, with 𝑝 ≈ 𝜇𝐵 mean number of pairs per mode (or qubit),
conditioned on measurement of a pair such that the 𝑛 = 0 term is eliminated. As
a compromise between the pair-creation rate ∝ 𝑝 and the quality of entanglement,
here and henceforth we set the mean photon number of our pair source to be
𝜇𝐵 = (8.0± 0.4) × 10−3 per time bin, which is feasible because of the exceptionally
low dark counts of our SNSPDs. The measurement of 𝜇𝐵 is outlined in Section 8.6.

We generate |𝜙+⟩𝐵 and measure𝑉𝑒𝑛𝑡 by directing the idler photon to the second input
port of the MZI, slightly modifying the setup of Fig. 8.1. The idler photon is delayed
compared to the signal, allowing unambiguous measurement of each qubit. We vary
𝜑 and project each qubit of the entangled state onto phase-varied superpositions of
|𝑒⟩ and |𝑙⟩ by accumulating coincidence events of photons at both the outputs of the
interferometer [55].

The results shown in Fig. 8.2 are fit proportional to 1 + 𝑉𝑒𝑛𝑡 sin (𝜔𝑇 +Φ), where
𝑉𝑒𝑛𝑡 = (𝑅𝑥 − 𝑅𝑛)/(𝑅𝑥 + 𝑅𝑛), with 𝑅𝑥(𝑛) denoting the maximum (minimum) rate
of coincidence events [55], 𝜔 and Φ are unconstrained constants, and 𝑇 is the
temperature of the MZI, finding 𝑉𝑒𝑛𝑡 = 96.4 ± 0.3%.

The deviation from unit visibility is mainly due to non-zero multi photon emis-
sions [57], which is supported by an analytical model that includes experimental
imperfections (see Chapter 9). Nonetheless, this visibility is far beyond the 1/3
required for non-separability of a Werner state [58] and the locality bound of 1/

√
2

[59, 55]. Furthermore, it predicts a fidelity 𝐹𝑒𝑛𝑡 = (3𝑉𝑒𝑛𝑡 + 1)/4 = 97.3 ± .2% with
respect to |𝜙+⟩ [58], and hence is sufficient for quantum teleportation.

HOM interference visibility
The BSM relies on quantum interference of photons from Alice and Bob. This is
ensured by the BS at Charlie, precise control of the arrival time of photons with
IMs, identical FBG filters, and POCs (with PBSs) to provide the required indistin-
guishabiliy. The degree of interference is quantified by way of the HOM interference
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Figure 8.2: Entanglement visibility. The temperature of the interferometer is varied
to reveal the expected sinusoidal variations in the rate of coincidence events. A fit
reveals the entanglement visibility𝑉𝑒𝑛𝑡 = 96.4±0.3%, see main text for details. Un-
certainties here and in all measurements are calculated assuming Poisson statistics.

visibility𝑉𝐻𝑂𝑀 = (𝑅𝑑−𝑅𝑖)/𝑅𝑑 , with 𝑅𝑑 (𝑖) denoting the rate of coincident detections
of photons after the BS when the photons are rendered as distinguishable (indis-
tinguishable) as possible [47]. Completely indistinguishable single photons from
Alice and Bob may yield 𝑉𝐻𝑂𝑀 = 1. However in our system, Alice’s qubit is ap-
proximated from a coherent state |𝛼⟩𝐴 = e−|𝛼 |2/2 ∑∞

𝑛=0
𝛼𝑛√
𝑛!
|𝑛⟩𝐴 with 𝛼 ≪ 1, akin to

how Bob’s pair is approximated from |TMSV⟩𝐵 (see Sec. 8.3), with 𝜇𝐴 = |𝛼 |2 being
Alice’s mean photon number per mode (or qubit) [56]. Therefore, the contribution
of undesired photons from Alice and Bob lowers the maximum achievable 𝑉𝐻𝑂𝑀
below unity, with a further reduction if the interfering photons are not completely
indistinguishable. The dependence of 𝑉𝐻𝑂𝑀 with varied 𝜇𝐴 and 𝜇𝐵, including ef-
fects of losses or distinguishable photons in our system is analytically modeled in
Chapter 9, and briefly discussed in Sec. 8.4.

We measure 𝑉𝐻𝑂𝑀 by slightly modifying the setup of Fig. 8.1: We prepare |𝐴⟩ =
|𝑒⟩𝐴 with 𝜇𝐴 = 2.6 × 10−3 and Bob as |𝑝𝑎𝑖𝑟⟩𝐵 and direct Alice’s photon and Bob’s
idler to Charlie, with Bob’s signal bypassing the MZI to be directly measured by
an SNSPD. Alice’s IM is used to introduce distinguishability by way of a relative
difference in arrival time Δ𝑡𝐴𝐵 of Alice and Bob’s photons at Charlie’s BS. Using
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Charlie’s SNSPDs and the third detector at Bob, a three-fold coincidence detection
rate is measured for varying Δ𝑡𝐴𝐵, with results shown in Fig. 8.3a. Since the
temporal profiles of our photons are approximately Gaussian, we fit our results to
𝐴[1 − 𝑉𝐻𝑂𝑀 exp

(
−Δ𝑡2

𝐴𝐵

2𝜎2

)
], where A is the maximum coincidence rate when the

photons are completely distinguishable and 𝜎 = 300 ps is the 1/𝑒 temporal duration
of the optical pulses [47, 60], finding 𝑉𝐻𝑂𝑀 = 70.9 ± 1.9%. The maximum 𝑉𝐻𝑂𝑀

for this experiment is 83.5% if the photons were completely indistinguishable (see
Chapter 9), with the difference ascribed to slight distinguishability between our
photons as supported by the further measurements and analytical modeling in Sec.
8.4. Improvements to our system to remove this distinguishability is discussed in
Sec. 8.5.

To test our system for quantum teleportation over long distances, we introduce the
aforementioned 22, 11, and 11 km lengths of single-mode fiber between Alice and
Charlie, Bob and Charlie, and in the path of Bob’s signal photon, respectively, repeat
our measurement of 𝑉𝐻𝑂𝑀 and fit the results as before (see Fig. 8.3b). We find
𝑉𝐻𝑂𝑀 = 63.4 ± 5.9%, which is consistent with the maximum 𝑉𝐻𝑂𝑀 we expect
when including the impact of the additional 5.92 (2.56) dB loss between Charlie and
Alice (Bob) as well as the effect of photon distinguishability (analyzed in Sec. 8.4).
This suggests that the additional fiber importantly does not introduce any further
distinguishability (that we cannot account for), thereby supporting our system’s
use in quantum networking. Overall, the presence of clear HOM interference
suggests our system (with or without the additional fiber) introduces relatively little
imperfections that can negatively impact the BSM and hence the fidelity of quantum
teleportation.

Quantum teleportation
We now perform quantum teleportation of the time-bin qubit basis states |𝑒⟩, |𝑙⟩
and |+⟩, so as to measure the teleportation fidelities, 𝐹𝑒, 𝐹𝑙 , an 𝐹+, respectively,
of the teleported states with respect to their ideal counterparts, up to the local
unitary introduced by the BSM (see Sec. 8.2). Since measurement of |+⟩ in our
setup by symmetry is equivalent to any state of the form ( |𝑒⟩ + 𝑒𝑖𝜑 |𝑙⟩)/

√
2 (and in

particular the remaining three basis states ( |𝑒⟩ − |𝑙⟩)/
√

2 and ( |𝑒⟩ ± 𝑖 |𝑙⟩)/
√

2), we
may determine the average teleportation fidelity 𝐹𝑎𝑣𝑔 = (𝐹𝑒 + 𝐹𝑙 + 4𝐹+)/6 of any
time-bin qubit.

First, we prepare |𝑒⟩𝐴 and |𝑙⟩𝐴 with 𝜇𝐴 = 3.53×10−2, with Bob’s idler bypassing the
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Figure 8.3: Hong-Ou-Mandel (HOM) interference. A relative difference in arrival
time is introduced between photons from Alice and Bob at Charlie’s BS. HOM
interference produces a reduction of the three-fold coincidence detection rate of
photons as measured with SNSPDs after Charlie’s BS and at Bob. A fit reveals a)
𝑉𝐻𝑂𝑀 = 70.9 ± 1.9% and b) 𝑉𝐻𝑂𝑀 = 63.4 ± 5.9% when lengths of fiber are added,
see main text for details.

MZI to be detected by a single SNSPD. We measure 𝐹𝑒 = 95±1% and 𝐹𝑙 = 96±1%,
conditioned on a successful measurement of |Ψ−⟩𝐴𝐵 at Charlie, with fidelity limited
by multiphoton events in Alice and Bob’s qubits and dark counts of the SNSPDs (see
Chapter 9). We then repeat the measurement with 𝜇𝐴 = 9.5 × 10−3 after inserting
the aforementioned 44 km length of fiber as before to emulate Alice, Charlie and
parts of Bob being separated by long distances. This gives 𝐹𝑒 = 98 ± 1% and
𝐹𝑙 = 98 ± 2%, with no reduction from the additional fiber loss owing to our low
noise SNSPDs.

Next, we prepare |+⟩𝐴 with 𝜇𝐴 = 9.38 × 10−3, insert the MZI and, conditioned
on the BSM, we measure 𝐹+ = (1 + 𝑉+)/2 = 84.9 ± 0.5% by varying 𝜑. Here,
𝑉+ = 69.7±0.9% is the average visibility obtained by fits to the resultant interference
measured at each output of the MZI, as shown in Fig. 8.4a. The reduction in fidelity
from unity is due to multiphoton events and distinguishability, consistent with
that inferred from HOM interference, as supported by further measurements and
analytical modeling in Sec. 8.4.

The measurement is repeated with the additional long fiber, giving𝑉+ = 58.6±5.7%
and 𝐹+ = 79.3 ± 2.9% with results and corresponding fit shown in Fig. 8.4b. The
reduced fidelity is likely due to aforementioned polarization variations over the long
fibers, consistent with the reduction in HOM interference visibility, and exacerbated
here owing to the less than ideal visibility of the MZI over long measurement times
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(see Sec. 8.6).

The results yield 𝐹𝑎𝑣𝑔 = 89 ± 1% (86 ± 3%) without (with) the additional fiber,
which is significantly above the classical bound of 2/3, implying strong evidence
of quantum teleportation [61], and limited from unity by multiphotons events,
distinguishability, and polarization variations, as mentioned in Chapter 9.

To glean more information about our teleportation system beyond the fidelity, we
reconstruct the density matrices of the teleported states using a maximum-likelihood
QST [48] described in Section 8.6. The results of the QST with and without the
additional fiber lengths are summarized in Figs. 8.8a and b, respectively. As can be
seen, the diagonal elements for |+⟩ are very close to the expected value indicating
the preservation of probabilities for the basis states of |𝑒⟩ and |𝑙⟩ after teleporta-
tion, while the deviation of the off-diagonal elements indicate the deterioration of
coherence between the basis states. The decoherence is attributed to multiphoton
emissions from our entangled pair source and distinguishability, consistent with the
aforementioned teleportation fidelities of |+⟩𝐴, and further discussed in Sec. 8.4.
Finally, we do also extract the teleportation fidelity from these density matrices,
finding the results shown in Fig. 8.5, and 𝐹𝑎𝑣𝑔 = 89± 1% (88± 3%) without (with)
the fiber spools, which are consistent with previous measurements given the similar
𝜇𝐴 used for QST.

We point out that the 2/3 classical bound may only be applied if Alice prepares her
qubits using genuine single photons, i.e., |𝑛 = 1⟩, rather than using |𝛼 ≪ 1⟩ as we
do in this work [62]. As a way to account for the photon statistics of Alice’s qubits
we turn to an analysis using decoy states.

Teleportation fidelity using decoy states

To determine the minimum teleportation fidelity of qubits prepared using single
photons, we use a decoy state method [49] and follow the approach of Refs. [63,
29]. Decoy states, which are traditionally used in quantum key distribution to defend
against photon-number splitting attacks, are qubits encoded into coherent states |𝛼⟩
with varying mean photon number 𝜇𝐴 = |𝛼 |2. Measuring fidelities of the teleported
qubits for different 𝜇𝐴, the decoy-state method allows us to calculate a lower bound
𝐹𝑑
𝐴

on the teleportation fidelity if Alice had encoded her qubits using |𝑛 = 1⟩.

We prepare decoy states |𝑒⟩𝐴, |𝑙⟩𝐴, and |+⟩𝐴 with varying 𝜇𝐴, as listed in Table 8.1,
and perform quantum teleportation both with and without the added fiber, with
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Figure 8.4: Quantum teleportation of |+⟩. Teleportation is performed b) with and
a) without an additional 44 km of single-mode fiber inserted into the system. The
temperature of the inteferometer is varied to yield a sinusoidal variation of the three-
fold coincidence rate at each output of the MZI (blue and red points). A fit of the
visibilities (see Sec. 8.3) measured at each output (𝑉+,1, 𝑉+,2) of the MZI gives an
average visibility 𝑉+ = (𝑉+,1 + 𝑉+,2)/2 of a) 69.7 ± 0.91% without the additional
fiber and b) 58.6 ± 5.7% with the additional fiber.
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Figure 8.5: Quantum teleportation fidelities for |𝑒⟩𝐴, |𝑙⟩𝐴, and |+⟩𝐴, including the
average fidelity. The dashed line represents the classical bound. Fidelities using
quantum state tomography (QST) are shown using blue bars while the minimum
fidelities for qubits prepared using |𝑛 = 1⟩, 𝐹𝑑𝑒 , 𝐹𝑑

𝑙
, and 𝐹𝑑+ , including the associated

average fidelity 𝐹𝑑𝑎𝑣𝑔, respectively, using a decoy state method (DSM) is shown in
grey. Panels a) and b) depicts the results without and with additional fiber, respec-
tively. Uncertainties are calculated using Monte-Carlo simulations with Poissonian
statistics.
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teleportation fidelities shown in Table 8.1. From these results we calculate 𝐹𝑑
𝐴

as
shown in Fig. 8.5, with 𝐹𝑑𝑎𝑣𝑔 ≥ 93 ± 4% (𝐹𝑑𝑎𝑣𝑔 ≥ 89 ± 2%) without (with) the
added fiber, which significantly violate the classical bound and the bound of 5/6
given by an optimal symmetric universal cloner [64, 65], clearly demonstrating the
capability of our system for high-fidelity teleportation. As depicted in Fig. 8.5 these
fidelities nearly match the results we obtained without decoy states within statistical
uncertainty. This is due to the suitable 𝜇𝐴, as well as low 𝜇𝐵 and SNSPD dark
counts in our previous measurements (see Chapter 9).

qubit without long fiber with long fiber
𝜇𝐴 (×10−3) 𝐹𝑑

𝐴
(%) 𝜇𝐴 (×10−3) 𝐹𝑑

𝐴
(%)

|𝑒⟩𝐴 3.53 95.2 ± 1 26.6 95.7 ± 1.5
1.24 86.7 ± 2 9.01 98.4 ± 1.1

0 52.8 ± 3.4 - -
|𝑙⟩𝐴 3.53 95.9 ± 1 32.9 98.6 ± 0.7

1.24 90.5 ± 2 9.49 98.4 ± 1.6
0 52.8 ± 3.4 - -

|+⟩𝐴 9.38 84.7 ± 1.1 29.7 73.6 ± 3.0
2.01 83.2 ± 3.6 10.6 82.21 ± 3.9

0 52.8 ± 3.4 - -

Table 8.1: Teleportation fidelities with (right column) and without (center column)
the 44 km-length of fiber for Alice’s qubit states prepared with varying 𝜇𝐴. Mean
photon numbers and fidelities for vacuum states with fiber are assumed to be zero
and 50%, respectively.

8.4 Analytical model and simulation
As our measurements have suggested, multi-photon components in, and distin-
guishability between, Alice and Bob’s qubits reduce the values of key metrics includ-
ing HOM interference visibility and, consequently, quantum teleportation fidelity.
To capture these effects in our model, we employ a Gaussian-state characteristic-
function method developed in Chapter 9, which was enabled by work in Ref. [66].
This approach is well-suited to analyze our system because the quantum states, op-
erations, and imperfections (including losses, dark counts, etc.) of the experiment
can be fully described using Gaussian operators, see e.g., Ref. [67]. We now
briefly outline the model of Chapter 9, and employ it to estimate the amount of in-
distinguishability 𝜁 between Alice and Bob’s qubits in our measurements of HOM
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interference and quantum teleportation.

The distinguishability in any degree-of-freedom may be modeled by introducing
a virtual beam splitter of transmittance 𝜁 into the paths of Alice and Bob’s rele-
vant photons. As shown in Fig. 8.6, indistinguishable components of incoming
photon modes are directed towards Charlie’s BS where they interfere, whereas dis-
tinguishable components are mixed with vacuum at the BS and do not contribute
to interference. Here 𝜁 = 1 (𝜁 = 0) corresponds to the case when both incoming
photons are perfectly indistinguishable (distinguishable). Now we may calculate
the probability of a three-fold coincidence detection event 𝑃3 𝑓 between 𝐷1, 𝐷2

(Charlies’ detectors), and 𝐷3 (detects Bob’s signal photon) for a given qubit state
𝜌𝐴𝐵 from Alice and Bob:

𝑃3 𝑓 = Tr{𝜌𝐴𝐵 (I − (|0⟩ ⟨0|)⊗3

𝑎̂1,𝑎̂2,𝑎̂3
)

⊗ (I − (|0⟩ ⟨0|)⊗3

𝑏̂1,𝑏̂2,𝑏̂3
) ⊗ (I − (|0⟩ ⟨0|)𝑐)}, (8.1)

where the 𝑎̂ and 𝑏̂ operators refer to modes, which originate from Alice and Bob’s
virtual beam splitters and are directed to 𝐷1 and 𝐷2, respectively, and 𝑐 corresponds
to Bob’s idler mode, which is directed to 𝐷3, see Fig. 8.6. This allows the derivation

Figure 8.6: Schematic depiction of distingushability between Alice and Bob’s pho-
tons at Charlie’s BS. Distinguishability is modeled by means of a virtual beam
splitter with a transmittance 𝜁 . Indistinguishable photons contribute to interference
at the Charlie’s BS while distinguishable photons are mixed with vacuum, leading
to a reduction of HOM visibility and teleportation fidelity. See main text for further
details.
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of an expression for the HOM interference visibility

𝑉𝐻𝑂𝑀 (𝜁) = [𝑃3 𝑓 (0) − 𝑃3 𝑓 (𝜁)]/𝑃3 𝑓 (0), (8.2)

consistent with that introduced in Sec. 8.3. Since Alice and Bob ideally produce
𝜌𝐴𝐵 = ( |𝛼⟩ ⟨𝛼 |) ⊗ (|TMSV⟩ ⟨TMSV|), and recognizing that all operators in 𝑃3 𝑓 are
Gaussian, we analytically derive

𝑃3 𝑓 (𝜁) = 1 − 2
exp

(
− 𝜇𝐴/2[1+(1−𝜁2)𝜂𝑖𝜇𝐵/2]

1+𝜂𝑖𝜇𝐵/2

)
1 + 𝜂𝑖𝜇𝐵/2

− 1
1 + 𝜂𝑠𝜇𝐵

+ exp(−𝜇𝐴)
1 + 𝜂𝑖𝜇𝐵

− exp(−𝜇𝐴)
1 + (1 − 𝜂𝑠)𝜂𝑖𝜇𝐵 + 𝜂𝑠𝜇𝐵

+ 2
exp

(
− 𝜇𝐴/2[1+(1−𝜁2) (1−𝜂𝑠)𝜂𝑖𝜇𝐵/2+𝜂𝑠𝜇𝐵]

1+(1−𝜂𝑠)𝜂𝑖𝜇𝐵/2+𝜂𝑠𝜇𝐵

)
1 + (1 − 𝜂𝑠)𝜂𝑖𝜇𝐵/2 + 𝜂𝑠𝜇𝐵

, (8.3)

for varied 𝜁 , where 𝜂𝑖 and 𝜂𝑠 are the transmission efficiencies of the signal and
idler photons, including detector efficiencies. We similarly calculate the impact of
distinguishability on the teleportation fidelity of |+⟩:

𝐹 (𝜁) = 𝑃3 𝑓 (𝜁, 𝜑𝑚𝑎𝑥)/[𝑃3 𝑓 (𝜁, 𝜑𝑚𝑎𝑥) + 𝑃3 𝑓 (𝜁, 𝜑𝑚𝑖𝑛)], (8.4)

where 𝜑𝑚𝑎𝑥 (𝜑𝑚𝑖𝑛) is the phase of the MZI added into the path of the signal photon,
corresponding to maximum (minimum) three-fold detection rates.

To compare the model to our measurements, we use the experimental mean photon
numbers for the photon-pair source 𝜂𝑖 = 1.2 × 10−2 and 𝜂𝑠 = 4.5 × 10−3 as deter-
mined by the method described in Section 8.6. We then measure the teleportation
fidelity of |+⟩ and HOM interference visibility (keeping the MZI in the system to
ensure 𝜂𝑠 remains unchanged) for different values 𝜇𝐴. The results are plotted in
Fig. 8.7. The data is then fitted to the expressions 𝑉𝐻𝑂𝑀 (𝜁) and 𝐹 (𝜁) derived in
our model and graphed in Fig. 8.7. The fitted curves are in very good agreement
with our experimental values and consistently yield a value of 𝜁 = 90% for both
measurements types. This implies that we have only a small amount of residual
distinguishability between Alice and Bob’s photons. Potential effects leading to this
distinguishability are discussed in Sec. 8.5.

Overall, our analytic model is consistent with our experimental data (see Chapter 9)
in the regime of 𝜇𝐴 ≪ 1, which is the parameter space most often used in quantum
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Figure 8.7: Evaluation of photon indistinguishability using an analytical model.
Panel a) depicts the quantum teleportation fidelity of |+⟩ while panel b) shows the
HOM interference visibility, each with varied mean photon number 𝜇𝐴 of Alice’s
qubits. Fits of analytical models the data reveal 𝜁 = 90% indistinguishability
between Alice and Bob’s photons at Charlie’s BS. Bob produces 𝜇𝐵 photon pairs
on average, 𝜂𝑖 and 𝜂𝑠 are the probabilities for an individual idler (signal) photon to
arrive at Charlie’s BS and be detected at Bob’s detector, respectively.

networking protocols (e.g., key distribution). Our model, thus, offers a practical way
to determine any underlying distinguishability in a deployed network where a full
characterization of the properties of Alice and Bob’s photons may not be possible.

8.5 Discussion
We have demonstrated quantum teleportation systems for photonic time-bin qubits
at a quantum channel- and device-compatible wavelength of 1536.5 nm using a fiber-
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based setup comprising off-the-shelf components and state-of-the-art SNSPDs. We
measure an average fidelity above 90% using QST and a decoy state analysis with
up to 44 km of single mode fiber in our setup. Our results are further supported
by an analytical model in conjunction with measurements of the entanglement and
HOM interference visibilities.

The decoy state analysis indicates that the maximum teleportation fidelity is cur-
rently restricted by that of the teleported qubits prepared in superposition states,
for which a 10% distinguishability between the qubits undergoing BSM and the
contribution of multiple photon pairs play the largest role. Our model predicts that
the average fidelity will increase to 95% with completely indistinguishable photons,
while fidelities close to unity can be achieved with lowered mean number of photon
pairs. Alternatively, we may replace our SNSPDs with efficient photon-number
resolving (PNR) SNSPDs [68] to allow postselection of multiphoton events at the
MZI or BSM [69]. Nonetheless, both approaches must be accompanied by increased
coupling efficiencies of the pair source beyond the current ∼ 1% either to maintain
realistic teleportation rates (above the system noise and current rate of phase drift
of the MZI), or to derive any advantage from PNR capability.

As suggested by the width of our HOM interference fringe – which predicts an
average photon bandwidth of 0.44/𝜎 ∼1.5 GHz (see Sec. 8.3), i.e., less than the
2 GHz bandwidth of our FBGs – the indistinguishability in our system could be
limited by the large difference in the bandwidth between the photons originating
from the SPDC (>100 GHz) and those generated at Alice by the IM (15 GHz),
leading to nonidentical filtering by the FBG. This can be improved by narrower
FBGs or by using a more broadband pump at Alice (e.g., using a mode locked
laser or a higher bandwidth IM, e.g., > 50 GHz, which is commercially available).
Alternatively, pure photon pairs may be generated by engineered phase matching,
see, e.g., Ref. [70]. Distinguishability owing to nonlinear modulation during the
SHG process could also play a role [71]. The origin of distinguishability in our
system, whether due to imperfect filtering or other device imperfections (e.g., PBS
or BS) will be studied in future work. Coupling loss can be minimized to less than
a few dB overall by improved fiber-to-chip coupling, lower-loss components of the
FBGs (e.g., the required isolator), spliced fiber connections, and reduced losses
within our MZI. Note that our current coupling efficiency is equivalent to ∼50 km
of single mode fiber, suggesting that our system is well-suited for quantum networks
provided loss is reduced.
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While the fidelities we demonstrate are sufficient for several applications, the current
∼Hz teleportation rates with the 44 km length of fiber are still low. Higher repetition
rates (e.g., using high-bandwidth modulators with wide-band wavelength division
multiplexed filters and low-jitter SNSPDs [72]), improvements to coupling and de-
tector efficiencies, enhanced BSM efficiency with fast-recovery SNSPDs [73], or
multiplexing in frequency [63] will all yield substantial increases in teleportation
rate. Note that increased repetition rates permits a reduction in time bin separation
which will allow constructing the MZI on chip, providing exceptional phase sta-
bility and hence, achievable fidelity. Importantly, the aforementioned increases in
repetition rate and efficiency are afforded by improvements in SNSPD technology
that are currently being pursued with our JPL, NIST and other academic partners.

Upcoming system-level improvements we plan to investigate and implement include
further automation by the implementation of free-running temporal and polarization
feedback schemes to render the photons indistinguishable at the BSM [29, 30].
Furthermore, several electrical components can be miniaturized, scaled, and made
more cost effective (e.g., field-programmable gate arrays can replace the AWG).We
note that our setup prototype will be easily extended to independent lasers at different
locations, also with appropriate feedback mechanisms for spectral overlap [74, 75].
These planned improvements are compatible with the data acquisition and control
systems that were built for the systems and experiments at FQNET and CQNET
presented in this work.

Overall, our systems for achieving high-fidelity teleportation will serve as a blueprint
for the construction of quantum network test-beds and eventually wide-spread quan-
tum networks towards the quantum internet. In this vein, our Fermilab and Caltech
Quantum Networks serve as R& D laboratories and prototypes towards real-world
quantum networks. The high fidelities achieved in our experiments using practical
and replicable devices are essential when expanding a quantum network to many
nodes, and enable the realization of more advanced protocols, e.g., Refs. [18, 76,
77].

8.6 Methods
Detailed description of experimental components
Control systems and data acquisition Our system is built with a vision towards
future replicability, with particular emphasis on systems integration. Each of the
Alice, Bob and Charlie subsystems is equipped with monitoring and active feedback
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stabilization systems (e.g., for IM extinction ratio), or has capability for remote con-
trol of critical network parameters (e.g., varying the qubit generation time). Each
subsystem has a central classical processing unit with the following functions: over-
sight of automated functions and workflows within the subsystem, data acquisition
and management, and handling of input and output synchronization streams. As
the quantum information is encoded in the time domain the correct operation of
the classical processing unit depends critically on the recorded time-of-arrival of
the photons at the SNSPDs. Thus significant effort was dedicated to build a robust
DAQ subsystem capable of recording and processing large volumes of time-tagged
signals from the SNSPDs and recorded by our TDCs at a high rate. The DAQ is
designed to enable both real-time data analysis for prompt data quality monitoring
as well as post-processing data analysis that allows to achieve the best understanding
of the data.

The DAQ system is built on top of the standalone Linux library of our commercial
TDC. It records time tags whenever a signal is detected in any channel in coincidence
with the reference 90 MHz clock. Time tags are streamed to a PC where they are
processed in real-time and stored to disk for future analysis. A graphical user
interface has been developed, capable of real-time visualization and monitoring
of photons detected while executing teleportation. It also allows for easy control
of the time-intervals used for each channel and to configure relevant coincidences
between different photon detection events across all TDC channels. We expect our
DAQ subsystem to serve as the foundation for future real-world time-bin quantum
networking experiments (see Sec. 8.5).

Superconducting nanowire single photon detectors We employ amorphous
tungsten silicide SNSPDs manufactured in the JPL Microdevices Laboratory for
all measurements at the single photon level (see Sec. 8.2) [52]. The entire detection
system is customized for optimum autonomous operation in a quantum network.
The SNSPDs are operated at 0.8 K in a closed-cycle sorption fridge [53]. The
detectors have nanowire widths between 140 to 160 nm and are biased at a current
current of 8 to 9 𝜇A. The full-width at half maximum (FWHM) timing jitter (i.e.,
temporal resolution) for all detectors is between 60 and 90 ps (measured using a
Becker & Hickl SPC-150NXX time-tagging module). The system detection effi-
ciencies (as measured from the fiber bulkhead of the cryostat) are between 76 and
85 %. The SNSPDs feature low dark count rates between 2 and 3 Hz, achieved by
short-pass filtering of background black-body radiation through coiling of optical
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fiber to a 3 cm diameter within the 40 K cryogenic environment, and an additional
band-pass filter coating deposited on the detector fiber pigtails (by Andover Corpo-
ration). Biasing of the SNSPDs is facilitated by cryogenic bias-Ts with inductive
shunts to prevent latching, thus enabling uninterrupted operation. The detection
signals are amplified using Mini-Circuits ZX60-P103LN+ and ZFL-1000LN+ am-
plifiers at room temperature, achieving a total noise figure of 0.61 dB and gain of
39 dB at 1 GHz, which enables the low system jitter. Note that FWHM jitter as low
as 45 ps is achievable with the system, by biasing the detectors at approximately
10 𝜇A, at the cost of an elevated DCR on the order of 30 cps. Using commercially
available components, the system is readily scalable to as many as 64 channels per
cryostat, ideal for star-type quantum networks, with uninterrupted 24/7 operation.
The bulkiest component of the current system is an external helium compressor,
however, compact rack-mountable versions are readily available [53].

Interferometer and phase stabilization We use a commercial Kylia 04906-MINT
MZI, which is constructed of free-space devices (e.g., mirrors, beam splitters) with
small form-factor that fits into a hand-held box. Light is coupled into and out of the
MZI using polarization maintaining fiber with loss of ∼2.5 dB. The interferometer
features an average visibility of 98.5% that was determined by directing |+⟩ with
𝜇𝐴 = 0.07 into one of the input ports, measuring the fringe visibility on each of
the outputs using an SNSPD. The relative phase 𝜑 is controlled by a voltage-driven
heater that introduces a small change in refractive index in one arm of the MZI.
However, this built-in heater did not permit phase stability sufficient to measure
high-fidelity teleportation, with the relative phase following the slowly-varying
ambient temperature of the room. To mitigate this instability, we built another
casing, thermally isolating the MZI enclosure from the laboratory environment and
controlled the temperature via a closed-loop feedback control system based on a
commercial thermoelectric cooler and a LTC1923 PID-controller. The temperature
feedback is provided by a 10 kΩ NTC thermistor while the set-point is applied with
a programmable power supply. This control system permits us to measure visbilities
by slowly varying 𝜑 over up to 15 hour timescales. We remark that no additional
methods of phase control were used beyond that of temperature.
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Estimation of mean number of photon pairs and transmission efficiencies of
signal and idler photons
Using a method described in Ref. [55], we measure the mean number of photon
pairs produced by Bob 𝜇𝐵 as a function of laser excitation power before the PPLN
waveguide used for SHG. To this end, we modify the setup of Fig. 8.1 and direct
each of Bob’s signal and idler photons to a SNSPD. We then measure detection
events while varying the amplification of our EDFA by way of an applied current.
We extract events when photon pairs which originated from the same clock cycle are
measured in coincidence, and when one photon originating from a cycle is measured
in coincidence with a photons originated from a preceding or following clock cycle,
in other words we measure the so-called coincidence and accidental rates. The ratio
of accidentals to coincidences approximates 𝜇𝐵 ≪ 1, with all results shown in Table
8.2. For all measurements we use 𝜇𝐵 = (8.0 ± 0.4) × 10−3 per time bin, which
corresponds to an EDFA current of 600 mA.

The transmission efficiencies of the signal and idler photons, 𝜂𝑠 and 𝜂𝑖, respectively,
mentioned in Sec. 8.4 are determined by calculating the ratio of the independent
rates of detection of the idler and signal photons, respectively, with the coincidence
rate of the photons pairs (in the same clock cycle) [55]. We repeat the measurements
using the setup shown in Fig. 8.1, which is that used to generate the results of Fig.
8.7 (i.e., we direct the signal and idler photons through the setup as if we are to
perform teleportation). We find 𝜂𝑠 = 4.5×10−3 and 𝜂𝑖 = 1.2×10−2, which take into
account losses between when the photons are produced to when they are detected
by their respective SNSPDs.

EDFA current Coincidences Accidentals 𝜇𝐵

(mA) (per 10 s) (per 10 s) (×10−3)
400 469.2 ± 3.6 1.8 ± 0.3 3.9 ± 0.7
450 1156.3 ± 4.9 6.1 ± 0.5 5.3 ± 0.4
500 1653.9 ± 5.9 9.5 ± 0.6 5.8 ± 0.4
550 2095.8 ± 6.6 13.7 ± 0.8 6.5 ± 0.4
575 2343.2 ± 7.0 17.7 ± 0.9 7.5 ± 0.4
600 2548.7 ± 7.3 18.5 ± 0.9 8.0 ± 0.4

Table 8.2: Bob’s photon pair source is characterized by the measured mean photon
number per time bin 𝜇𝐵, and the rate of accidental and true coincidence detections
with varied EDFA current.
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Quantum state tomography
We perform projection measurements on the teleported states |𝑒⟩𝐴, |𝑙⟩𝐵, and |+⟩𝐴,
in all three of the qubit bases formed by the Pauli matrices 𝜎𝑥 , 𝜎𝑦, and 𝜎𝑧, i.e.,
measuring photons at each of the arrival times after the MZI and varying 𝜑. These
results allow reconstructing the density matrix of each teleported state, both with and
without the additional 44 km fiber, using maximum likelihood estimation [48]. Our
resultant matrices clearly match the expected teleported state, with the calculated
high teleportation fidelities in Sec. 8.3, up to the aforementioned effects due to
multiple photons and distinguishability.
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a b

Figure 8.8: Elements of the density matrices of teleported |𝑒⟩, |𝑙⟩, and |+⟩ states a)
with and b) without the additional 44 km of fiber in the system. The black points
are generated by our teleportation system and the blue bars with red dashed lines
are the values assuming ideal teleportation.
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C h a p t e r 9

ANALYTICAL MODELING OF REAL-WORLD PHOTONIC
QUANTUM TELEPORTATION

This chapter includes the work in preparation for publication:

[1] Neil Sinclair, Samantha I. Davis, Nikolai Lauk, Chang Li, Damian
R. Musk, Kelsie Taylor, Raju Valivarthi, and Maria Spiropulu. “An-
alytical Modeling of Real-World Photonic Quantum Teleportation.” In:
arXiv preprint arXiv:2503.18306. Submitted. (2025).

9.1 Introduction
Quantum teleportation [1] is a key process for distributing qubits in a quantum
network [2, 3, 4]. Optical photons are used for long-distance networking due to
their high velocities, carrier frequencies, and ease of encoding, manipulation, trans-
mission, and detection [5, 6, 7, 8]. However, achieving ideal single and entangled
photons for quantum networks and other quantum information tasks remains chal-
lenging [9, 10]. Photonic quantum states are often approximated using states that
are easier to generate, such as those produced with room-temperature off-the-shelf
equipment [11, 12]. For example, Gaussian states like weak coherent and two-mode
squeezed states can substitute single and biphoton states but introduce additional
photons that cause errors in quantum networks [13]. Additional errors arise from
the lack of control over all degrees of freedom of a photon and device imperfections.
Photon loss further hinders network deployment over distances greater than tens of
kilometers [14]. Therefore, it is crucial to account for sources of loss and errors
to accurately model and predict the performance of quantum networking experi-
ments, particularly quantum teleportation. Predicting experimental performance
under various operating conditions, both in the lab and in real-world applications,
is also important.

We use the phase space formulation of quantum optics to analytically model post-
selected discrete-variable quantum teleportation experiments with realistic imper-
fections such as loss, photon distinguishability, and imperfect sources of single and
entangled photons. Our model is based on the time-bin qubit quantum teleportation
experiment of Chapter 8, providing expressions for key figures-of-merit includ-
ing Hong-Ou-Mandel (HOM) interference visibilities and teleportation fidelities as
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functions of these imperfections. This experiment’s use of Gaussian states allows
us to model transformations and imperfections with Gaussian operations [15, 16],
differing from the conventional “photon-by-photon” approach that becomes cum-
bersome with higher number states and experimental imperfections. We use the
characteristic function formalism from the phase space representation [15] to derive
closed analytical expressions for these figures-of-merit. Our models show excellent
agreement with the findings in Chapter 8. Finally, we project the performance of
future quantum teleportation experiments with varying degrees of imperfections and
discuss our findings, their impact on future work, and the limitations of our model.

9.2 Characteristic function formalism
Phase space representation and characteristic function
Any quantum state of an 𝑛-mode bosonic system with the corresponding creation
and annihilation operators 𝑎̂†

𝑘
and 𝑎̂𝑘 that obey commutator relations[

𝑎̂𝑘 , 𝑎̂
†
𝑙

]
= 𝛿𝑘𝑙 , (9.1)

can be described using the quadrature operators [12]

𝑥𝑙 =
1
√

2

(
𝑎̂
†
𝑙
+ 𝑎̂𝑙

)
and 𝑝𝑙 =

𝑖
√

2

(
𝑎̂
†
𝑙
− 𝑎̂𝑙

)
, (9.2)

which satisfy the canonical commutator relations

[𝑥𝑙 , 𝑝𝑘 ] = 𝑖𝛿𝑘𝑙 . (9.3)

Using a Weyl operator Ŵ( ®𝜉) = exp
(
−𝑖 ®𝜉 · ®̂𝑅

)
with ®̂𝑅 = (𝑥1, 𝑝1, . . . , 𝑥𝑛, 𝑝𝑛) being a

vector of quadrature operators of individual modes, we can construct an invertible
mapping between functions over phase space and operators over the Hilbert space
of the bosonic systems. In particular we can assign a characteristic function to any
quantum state that is described by a density matrix 𝜌̂ as follows

𝜒( ®𝜉) = Tr
{
𝜌̂Ŵ( ®𝜉)

}
. (9.4)

Gaussian states and unitaries
Photon number or Fock states, such as single photons or entangled two-photon
states, are essential for many quantum networking schemes, including those relying
on quantum teleportation. However, photon number states are highly non-classical
and are difficult to produce on demand and with specific properties, such as near-
unity indistinguishability. In many experiments, weak coherent states approximate
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single photons, and two-mode squeezed states, produced at the output of a bulk
nonlinear optical crystal, substitute photon pairs [9]. Two-mode squeezed states are
also used for heralded single photon sources [17]. Besides their straightforward
preparation, coherent and two-mode squeezed states have the convenient property
of being Gaussian, meaning their characteristic function is given by a multivariate
Gaussian function

𝜒( ®𝜉) = exp
(
−1

4
®𝜉𝑇𝛾 ®𝜉 − 𝑖 ®𝑑𝑇 ®𝜉

)
, (9.5)

where 𝛾 is the covariance matrix and ®𝑑 is the displacement vector. Examples of
Gaussian states include single-mode vacuum |0⟩ with 𝛾 = I and ®𝑑 = 0, coherent
states |𝛼⟩ with 𝛾 = I and ®𝑑 =

√
2(Re(𝛼), Im(𝛼))𝑇 , as well as thermal states 𝜌̂ =∑

𝑛
𝜇𝑛

(𝜇+1)𝑛+1 |𝑛⟩ ⟨𝑛| with 𝛾 = (1 + 2𝜇)I and ®𝑑 = 0.

Gaussian representation of relevant operations in photonic quantum telepor-
tation
A unitary operation on the Hilbert space that transforms Gaussian states into Gaus-
sian states is called Gaussian unitary. The action of a Gaussian unitary on a Gaus-
sian state results in simply changing the covariance matrix and displacement vectors
𝛾 → 𝛾′ = 𝑆𝛾𝑆𝑇 and 𝑑 → 𝑑′ = 𝑆𝑑, where 𝑆 the symplectic matrix corresponding
to a Gaussian unitary [12, 15]. Note also that ®̂𝑅′ = 𝑆 ®̂𝑅. Below we consider some
examples of Gaussian operations that are relevant for modeling photonic quantum
teleportation.

Phase shifter operation

The first example is the addition of a constant phase 𝜙 to the field state. Its action
in operator space is described by the following transformation: 𝑎̂ → e𝑖𝜙𝑎̂, and the
corresponding symplectic matrix is given by

𝑆 =

(
cos(𝜙) − sin(𝜙)
sin(𝜙) cos(𝜙)

)
. (9.6)

Beam splitter operation

Another very frequently used element in experiments are two-port beam splitters.
For a beam splitter with transmittance 𝑡 and reflectance 𝑟 the transformation between
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the input (𝑎̂, 𝑏̂) modes and output (𝑐, 𝑑) modes is described by(
𝑐

𝑑

)
=

(
𝑡 𝑖𝑟

𝑖𝑟 𝑡

) (
𝑎̂

𝑏̂

)
, (9.7)

and the corresponding symplectic transformation between the input and the output
modes is

𝑆 =

©­­­­­«
𝑡 0 0 −𝑟
0 𝑡 𝑟 0
0 −𝑟 𝑡 0
𝑟 0 0 𝑡

ª®®®®®¬
. (9.8)

Channel loss

The overall channel transmission 𝜂, taking into account propagation loss, ineffi-
cient couplings and detectors, can be modeled by a mixing the mode of interest
with a vacuum mode on a virtual beam splitter of transmittance √

𝜂 and tracing
out the transmitted part of this vacuum mode. This results [15] in the following
transformation of the covariance matrix and the displacement vector

𝛾̃ = 𝜂𝛾 + (1 − 𝜂)I, (9.9)
®̃𝑑 =

√
𝜂 ®𝑑. (9.10)

Measurements

Usually, the process of detection or photon counting is not a Gaussian process.
However, in the case of so-called threshold or bucket-type photon detection, we
can represent the measurement process as a Gaussian one. These detectors indicate
either the absence of photons or the presence of at least one photon. Considering
projection onto the vacuum state, we can define positive operator-valued measures
for such detectors as a set of two operators

Π̂off = |0⟩⟨0| and Π̂on = I − |0⟩⟨0| . (9.11)

Since vacuum is a Gaussian state, the projection on vacuum is a Gaussian operation,
and we obtain the probability of a detection event conditioned on a given photonic
state:

𝑝on = Tr{ 𝜌̂Π̂on} = 1 − Tr{ 𝜌̂ |0⟩⟨0|}

= 1 − 1
(2𝜋)𝑁

∫
𝑑 ®𝜉𝜒𝜌̂ ( ®𝜉)𝜒Π̂on

(−®𝜉). (9.12)
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where 𝑁 is the number of modes and 𝜒Π̂on
(−®𝜉) is characteristic function of the

projection operator defined as in Eq. 9.4. Often we consider coincident detection
events of a multi-mode state 𝜌̂. The coincidence probability of𝑚 detectors recording
an event is then given by

𝑝coin = Tr{ 𝜌̂Π̂ (1)
on ⊗ Π̂

(2)
on ⊗ · · · ⊗ Π̂

(𝑚)
on

⊗ I(𝑚+1) ⊗ · · · ⊗ I(𝑁)}, (9.13)

which can be easily evaluated for Gaussian states using the following formula for
multi-dimensional Gaussian integration∫

𝑑®𝑥𝑒− 1
2 ®𝑥

𝑇𝐶®𝑥−𝑖 ®𝑑𝑇 ®𝑥 =

√︄
(2𝜋)𝑛

det (𝐶) exp
(
−1

2
®𝑑𝑇𝐶−1 ®𝑑

)
. (9.14)

9.3 Analytic expressions of figures-of-merit
We now apply the phase space formalism introduced in the previous section to model
quantum teleportation of a photonic time-bin qubit. We consider a post-selective
projective Bell-state measurement (BSM) of the state |Ψ−⟩ = ( |𝑒𝑙⟩−|𝑙𝑒⟩)/

√
2, where

the late state |𝑙⟩ arrives after the early state |𝑒⟩, using a 50:50 beam splitter 𝑟 = 𝑡 =
1/
√

2 [18, 19] (see Chapter 8). The time-bin qubit is in the state 𝜖 |𝑒⟩ +
√

1 − 𝜖2 |𝑙⟩,
with 0 ≤ 𝜖 ≤ 1. The entangled qubit used to facilitate teleportation takes the
form ( |𝑒𝑒⟩ + |𝑙𝑙⟩)/

√
2. Our model incorporates the photon fields used in Chapter

8, in which the qubit to be teleported is encoded into a weak coherent state |𝛼⟩ =

e−|𝛼 |2/2 ∑∞
𝑛=0(𝛼𝑛/

√
𝑛!) |𝑛⟩, with mean photon number |𝛼 |2 when |𝛼 |2 ≪ 1. The

two-mode squeezed vacuum state |TMSV⟩ =
√︁

1 − 𝜇∑∞
𝑛=0

√
𝜇
𝑛 |𝑛⟩ |𝑛⟩, neglecting

loss, is used in Chapter 8 to encode the entangled state, where the kets denote the
signal and the idler modes [20]. This state approximates a photon pair for 𝜇 ≪ 1
conditioned on measurement of a two-fold coincidence such that the |00⟩ term is
eliminated. The mean number of pairs per signal-idler mode pair is 𝜇. The idler
mode of the two-mode squeezed vacuum is directed to the beam splitter while the
signal is encoded with the teleported state at the end of the teleportation protocol.

A high-fidelity BSM, which is necessary for faithful quantum teleportation, requires
photons with indistinguishable degrees of freedom [18, 19]. One way to characterize
the distinguishability of the photons prior to teleportation is to perform HOM
interference between the photons used to encode the state to be teleported and the
idler mode of the entangled state [21]. For HOM interference, we consider the
photons to be encoded into the |𝑒⟩ bin only, neglecting all events in the |𝑙⟩ bin.
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HOM interference visibility
The HOM interference visibility is defined as

𝑉HOM =
𝑃max − 𝑃min

𝑃max
, (9.15)

where 𝑃max (𝑃min) correspond to the probability of coincidence events between
threshold detectors placed after each output of the beam splitter (cf. Fig. 9.1)
when the photons are rendered maximally distinguishable (indistinguishable), e.g.
by varying their relative polarization or time of arrival [17, 22]. Probabilities can be
converted to detection rates by multiplying them by the clock rate of the experiment.

In practice there are some additional distinguishing properties of the photons that
cannot be controlled or accessed in an experiment. We model this additional
distinguishability as a finite mode mismatch 𝜁 between the two photon fields [15]
(see Chapter 8). This mode mismatch is captured by a virtual beam splitter with
transmittance 𝜁 which splits each incoming photon field into indistinguishable and
distinguishable parts. Only the indistinguishable parts of both photons contribute
to the interference at the actual beam splitter, whereas the distinguishable parts are
combined with vacuum inputs and degrade the HOM interference visibility. The
indistinguishability parameter 𝜁 = 1 corresponds to the case in which both incoming
photons are completely indistinguishable, whereas 𝜁 = 0 corresponds to the case in
which both photons are completely distinguishable.

The magnitude of𝑉HOM depends not only on the distinguishability of the photons but
also the photon-number statistics of the fields participating in the interference [23].
It also depends on dark counts of the detector, which we neglect for our discussion,
see Sec. 9.6. Nevertheless, if the statistics are known from the experimental
apparatus, then 𝑉HOM is an indicator of distinguishability [24]. A schematic for a
HOM interference experiment is shown in Fig. 9.1.

There are two experimentally relevant cases to consider: the signal mode is ignored
referred to as two-fold HOM interference, and when the signal mode is detected to
herald the presence of ideally one idler photon, referred to as three-fold HOM inter-
ference. For both cases we derive the two- and three-fold coincidence probabilities
respectively using the characteristic function formalism assuming a weak coherent
state mixing with the idler mode of two-mode squeezed vacuum as depicted in Fig.
9.1, with details found in Appendix E.1. Measurement of two-fold HOM interfer-
ence is experimentally convenient, as it allows quantification of distinguishability
in much less time than three-fold HOM interference.



205

Figure 9.1: Model schematic for HOM interference within the context of a quantum
teleportation experiment. The qubit to be teleported is encoded into weak coherent
state |𝛼⟩ whereas the entangled state is encoded into the signal and idler modes
of a two-mode squeezed vacuum state |TMSV⟩. Transmission efficiencies of the
signal and idler modes are denoted by 𝜂𝑠 and 𝜂𝑖, respectively. HOM interference is
measured by correlating detection events at 𝐷1 and 𝐷2 after a 50:50 beamsplitter
(gray line), optionally conditioned upon detection of the signal mode at 𝐷3. Distin-
guishability is modeled using virtual beamsplitters of transmittance 𝜁 < 1. The 𝑎̂,
𝑏̂ and 𝑐 operators refer to modes that originate from the virtual beam splitters and
are used in the derivation shown in Appendix E.1. Blue dashed outline is discussed
in the caption of Fig. 9.2.

The two- and three-fold coincidence probabilities are

𝑝2-fold( |𝛼 |2, 𝜇, 𝜁 , 𝜂𝑖) =1 +
exp

(
−|𝛼 |2

)
1 + 𝜂𝑖𝜇

− 2
e−

|𝛼 |2
2

[1+(1−𝜁 2 )𝜂𝑖 𝜇/2]
1+𝜂𝑖 𝜇/2

1 + 𝜂𝑖𝜇/2
, (9.16)
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and

𝑝3-fold( |𝛼 |2, 𝜇, 𝜁 , 𝜂𝑠, 𝜂𝑖) =
𝜂𝑠𝜇

1 + 𝜂𝑠𝜇
− 2

e−
|𝛼 |2/2[1+(1−𝜁 2 )𝜂𝑖 𝜇/2]

1+𝜂𝑖 𝜇/2

1 + 𝜂𝑖𝜇/2

+ e−|𝛼 |2 (1 − 𝜂𝑖)𝜂𝑠𝜇
(1 + 𝜂𝑖𝜇) (1 + 𝜂𝑖 (1 − 𝜂𝑠)𝜇 + 𝜂𝑠𝜇)

+ 2
e−

|𝛼 |2/2[1+(1−𝜁 2 ) (1−𝜂𝑠 )𝜂𝑖 𝜇/2+𝜂𝑠 𝜇]
1+(1−𝜂𝑠 )𝜂𝑖 𝜇/2+𝜂𝑠 𝜇

1 + (1 − 𝜂𝑠)𝜂𝑖𝜇/2 + 𝜂𝑠𝜇
, (9.17)

respectively, where 𝜂𝑠 and 𝜂𝑖 are the transmission efficiencies of the signal and idler
mode, respectively. The mean photon numbers and efficiencies can be independently
determined experimentally, using the methods described in Chapter 8.

We now calculate the HOM interference visibility, in which 𝜁 = 0 (𝜁 ≤ 1) corre-
sponds to 𝑃max (𝑃min). The corresponding two-fold and three-fold HOM visibilities
are

𝑉2-HOM(𝜁) = 1 − 𝑝2-fold( |𝛼 |2, 𝜇, 𝜁 , 𝜂𝑖)
𝑝2-fold( |𝛼 |2, 𝜇, 0, 𝜂𝑖)

= −
4
(
𝑒 |𝛼 |

2/2 − exp
(
|𝛼 |2 (2+𝜂𝑖𝜇(1+𝜁2))

2(2+𝜂𝑖𝜇)

))
(1 + 𝜂𝑖𝜇)

2 + 𝜂𝑖𝜇 − 4𝑒 |𝛼 |2/2(1 + 𝜂𝑖𝜇) + 𝑒 |𝛼 |2 (1 + 𝜂𝑖𝜇) (2 + 𝜂𝑖𝜇)
, (9.18)

and

𝑉3-HOM(𝜁) = 1 − 𝑝3-fold( |𝛼 |2, 𝜇, 𝜁 , 𝜂𝑠, 𝜂𝑖)
𝑝3-fold( |𝛼 |2, 𝜇, 0, 𝜂𝑠, 𝜂𝑖)

, (9.19)

respectively. We did not expand 𝑉3-HOM here due to its length.

As shown in Appendix E.2, the theoretical maximum visibilities for the two-fold and
three-fold HOM visibilities are

√
2−1 ≈ 0.414 and unity, respectively. The primary

difference in maximum visibilities stems from the exclusion of |00⟩ in |TMSV⟩ by
detection of the signal mode, that is, a single photon is heralded in the idler mode for
𝜇 ≪ 1. The two-fold visibility is limited by the combination of vacuum and multi-
photon events at the inputs to the beamsplitter. Even though the twofold visibility
measurement is simpler and faster, the interference fringe can be more difficult to
resolve when including photon counting statistical uncertainties and potential noise.
Note that the maximum two-fold HOM visibility from interference of two coherent
(thermal) fields is 1/2 (1/3).

Quantum teleportation fidelity
We extend the HOM interference model to that for quantum teleportation by includ-
ing the |𝑙⟩ time-bin in the analysis. As depicted in Fig. 9.2, we model the |𝑒⟩ and
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Figure 9.2: Model schematic of quantum teleportation. Each time bin, |𝑒⟩ and
|𝑙⟩, is treated as a distinct spatial mode. As in HOM interference, the qubit to be
teleported is encoded into |𝛼⟩ whereas the entangled state is encoded into |TMSV⟩,
with relevant transmission efficiencies 𝜂𝑠 and 𝜂𝑖. Distinguishability of photons at
the BSM is modeled using virtual beamsplitters. The indistinguishability parameter
𝜁 outlined by the blue dashed lines corresponds to the elements enclosed by the blue
dashed lines in Fig. 9.1. Projection on |Ψ−⟩ is indicated by coincidence detection
events at 𝐷1 and 𝐷4 or 𝐷2 and 𝐷3. Projection of the teleported qubit onto the X-
basis is modeled by a phase shift 𝜙, coherent mixing by a 50:50 beamsplitter (grey
line), then photon detection at 𝐷5 and 𝐷6. Projection onto the Z-basis is modeled
by removing the beamsplitter for the signal modes, that is, setting its transmittance
to 𝑡 = 1, and direct detection of the photons (not shown).

|𝑙⟩ bins as independent spatial modes, with interference for the BSM taking place at
the beamsplitters ascribed for the |𝑒⟩ modes and that for the |𝑙⟩ modes.

Distinguishability is again modeled using virtual beamsplitters like the HOM inter-
ference model. Projection on |Ψ−⟩ is indicated by a specific coincidence detection
event between a photon in the |𝑒⟩ and |𝑙⟩ bins. Specifically this corresponds to a
photon being detected in |𝑒⟩ (|𝑙⟩) in one detector and |𝑙⟩ (|𝑒⟩) in the other [25].
Measurement of the teleported qubit in the Z-basis, that is, the |𝑒⟩ or |𝑙⟩ mode,
is modeled by detection of the photon in a distinct spatial mode. Measurement in
the X-basis, that is, in the state ( |𝑒⟩ + 𝑒𝑖𝜙 |𝑙⟩)/

√
2, is modeled by combining each

spatial signal mode on a 50:50 beamsplitter after introducing a relative phase 𝜙, then
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detecting each photon in a distinct spatial mode. In other words, the measurement
basis is rotated, as facilitated by phase-sensitive interference.

Using the characteristic function formalism, as shown in Appendix E.1, we derive
the teleportation fidelity for the X-basis states using

𝐹 =
𝑃𝐷1𝐷4𝐷6 (𝜙)

𝑃𝐷1𝐷4𝐷6 (𝜙) + 𝑃𝐷1𝐷4𝐷5 (𝜙)
, (9.20)

where 𝑃𝐷1𝐷4𝐷6 (𝑃𝐷1𝐷4𝐷5) is the coincidence detection probability for a |Ψ−⟩ projec-
tion and measurement of the teleported qubit in the intended (orthogonal) state [26].
The argument 𝜙 indicates that the measurement basis is oriented to the intended
state of the teleported qubit such that 𝑃𝐷1𝐷4𝐷6 (𝑃𝐷1𝐷4𝐷5) is maximized (minimized).
Note that the detection event corresponding to 𝑃𝐷2𝐷3 also corresponds to a projec-
tion onto |Ψ−⟩. These events are treated like those corresponding to 𝑃𝐷1𝐷4 due to
symmetry, consistent with properties of the beamsplitters and detectors used for the
BSM in Chapter 8.

Considering teleportation of Z-basis states, the corresponding teleportation fidelity
takes the same form as Eq. 9.20, but with different and 𝜙-independent underlying
expressions for 𝑃𝐷1𝐷4𝐷6 , and similarly 𝑃𝐷1𝐷4𝐷5 , because the beamsplitter used for
measurement of X-basis states is removed. See Appendix E.1 for details. The
maximum theoretical X- and Z-basis teleportation fidelities are one.

9.4 Fit of model with experimental results of Chapter 8
Using the expressions for two- and three-fold HOM interference visibilities and tele-
portation fidelity, we fit our model to data from Chapter 8 to reveal the imperfections
in the experiment and validate our model. We consider only teleportation of X-basis
states in this section since they sufficiently capture the behavior of Z-basis states
and they are sensitive to 𝜁 .

First, we plot the experimentally measured two- and three-fold HOM interference
visibilities as well as teleportation fidelity for varied mean photon number |𝛼 |2 of the
weak coherent state used to encode the qubit. This is shown in Fig. 9.3. We choose
to probe our figures-of-merit against |𝛼 |2 because of the experimental ease to vary
this parameter and, as discussed in Chapter 8, the use of |𝛼 |2 for preparing decoy
states. We consider |𝛼 |2 < 1 since this is most relevant regime in teleportation
experiments. The maximum measured two- and three-fold HOM visibilities and
teleportation fidelity are 0.28± 0.01, 0.67± 0.03, and 0.86± 0.04, respectively, due
to distinguishability and undesired multi-photon events from |𝛼⟩ and in the idler
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Figure 9.3: Two- and three-fold HOM interference visibilities (𝑉2-fold, green and
𝑉3-fold, blue) and quantum teleportation fidelity (𝐹, red) of X-basis states for varied
qubit mean photon number |𝛼 |2. The model (lines) is fit to, and agrees with, the
experimental data of Chapter 8 (points). The mean photon number is shown on a
log scale to provide a simple representation of the model.

mode [27]. Note that the three-fold HOM interference visibility as predicted by the
teleportation fidelity 2𝐹 − 1 ∼ 72% is consistent [28].

The teleportation fidelity and HOM visibilities decrease to 0.5 and 0, respectively,
for very large or small values of |𝛼 |2 = 0. As |𝛼 |2 increases from zero, there are
more events in which a single photon from |𝛼⟩ and a single photon in the idler mode
contribute to HOM interference and the BSM, and thus the visibility rises. Since
the probability of two photons in |𝛼⟩ also grows, there will be two-fold detection
events that correspond to vacuum in the idler, due to idler field statistics or loss,
which reduces the visibility. Therefore, the trade-off between interference events
originating from single- or multi-photon states arriving at the beamsplitter leads to
the visibility reaching a maximum and decreasing for higher |𝛼 |2. The specific value
of |𝛼 |2 that corresponds to the maximum visibility is also conditioned on whether
a two- or three-photon detection experiment is performed, as well as the values of
𝜇, 𝜂𝑖, and 𝜂𝑠. This interpretation as well as the curve shapes and positions for two-
and three-fold experiments are further discussed in Sec. 9.5 and Appendix E.2.
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For the two-fold data, the maximum occurs at |𝛼 |2 = 5.0× 10−4 while the three-fold
visibility and teleportation fidelity are maximized around |𝛼 |2 = 2.6 × 10−3 and
|𝛼 |2 = 8.8 × 10−4, respectively. The value of |𝛼 |2 corresponding to maximum two-
fold HOM visibility is less than that for the maximum three-fold visibility because
three-fold events are conditioned on detecting at least one photon in the signal mode.
As a result, there are fewer vacuum events in the idler mode in the three-fold case,
and thus |𝛼 |2 can be increased, i.e. the probability of 𝑛 = 1 and 𝑛 = 2 photon events
can be increased, to reach maximum visibility. The three-fold HOM visibility data
maximizes at a |𝛼 |2 that is a factor of two higher than the teleportation data because
|𝛼 |2 is defined per qubit, which corresponds to the mean photon number in two
temporal modes.

Next, we proceed to fit Eqs. 9.18, 9.19, and 9.20 to each of the relevant data sets
according to the procedure discussed in Appendix E.3. We ascribe a different mode
mismatch parameter, 𝜁2 and 𝜁3, for the two- and three-fold detection experiments,
respectively. This originates from the multi-mode |TMSV⟩ used in Chapter 8.
Although spectral filtering of the signal and idler modes was employed in Chapter 8,
detection of the signal can further filter the spectrum of the idler field due to residual
non-zero frequency entanglement [29] (see Chapter 3). For the same reason, we
also ascribe different idler mode efficiencies, 𝜂𝑖2 and 𝜂𝑖3, for the two- and three-
fold detection experiments, respectively, as heralding a photon in the signal mode
effectively removes frequency modes from the idler, which manifests as additional
inefficiency in the idler mode.

The three-fold HOM and teleportation data is fit together using a shared 𝜁3, and with
the following independently measured parameters from Chapter 8 held constant:
𝜂𝑖3 = 1.2 × 10−2, 𝜂𝑠 = 4.5 × 10−3, and 𝜇 = 8.0 × 10−3. Note that these parameters
were measured in Chapter 8 using coincidence detection of the filtered |TMSV⟩
with |𝛼 |2 = 0. The two-fold HOM data is fitted separately with only 𝜇 = 8.0 × 10−3

held constant. The fits reveal 𝜁2 = 0.80 ± 0.04, 𝜂𝑖2 = (6.9 ± 1.2) × 10−2 and
𝜁3 = 0.90 ± 0.02. The fitted curves are plotted in Fig. 9.3, and are in good
agreement with the measured data. Furthermore, 𝜁3 matches that fitted in Chapter
8. The fits clearly reveal that heralding removes additional frequency components to
improve indistinguishability close to unity, which underpins the high teleportation
fidelity observed in Chapter 8. The fits also yield 𝜂𝑖2 > 𝜂𝑖3 as expected.

Notice the curves take on the form of a log-normal distribution, which owes to
the Poission distribution of number states in |𝛼⟩. When plotted on a linear scale,
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as shown in Chapter 8, the long tail in the distribution for |𝛼 |2 ≫ 10−3 can be
interpreted as the trade-off between interference produced by the 𝑛 = 2 term in |𝛼⟩
with vacuum in the idler, and from single photons in |𝛼⟩ and the idler.

It is convenient to infer the value of |𝛼 |2 that will maximize 𝑉HOM for a given
experimental setup. Thus, in Appendix E.4 we differentiate Eqs. 9.18 and 9.19,
finding |𝛼 |2 of 7.8× 10−4 and 2.2× 10−3, for two- and three-fold HOM interference
experiments, respectively, consistent with the data shown in Fig. 9.3.

9.5 Prediction of figures-of-merit under varying experimental conditions
We now employ our analytical model to further interpret the experimental imper-
fections in Chapter 8 and to predict the outcomes of future experiments under
varying experimental imperfections: indistinguishability, transmission efficiencies,
and mean photon numbers of |𝛼⟩ and |TMSV⟩ states. For simplicity, from now
on we assume a |TMSV⟩ such that heralding does not vary the indistinguishability
or the path loss for the idler mode. We also assume the idler path efficiency to be
identical for two- and three-fold detection experiments.

Indistinguishability
To determine the role of distinguishability, in Fig. 9.4 we plot two- and three-fold
HOM interference visibilities as well as X-basis teleportation fidelity as a function
of 𝜁 under the experimental conditions of three-fold detection from Chapter 8:
𝜂𝑖 = 𝜂𝑖3 = 1.2 × 10−2, 𝜂𝑠 = 4.5 × 10−3, and 𝜇 = 8.0 × 10−3. Our model predicts

b)a) c)

Figure 9.4: Model of a) two- and b) three-fold HOM interference visibilities as well
as c) teleportation fidelity of X-basis states for varied |𝛼 |2 and different magnitudes
of indistinguishability 𝜁 between the interfering photons. The curves assume the
transmission efficiencies and 𝜇 from the three-fold detection experiments of Chapter
8.

a simple vertical scaling of the curves. The maximum visibilities and fidelity
still occur at the same |𝛼 |2, but with increased maxima. It is also experimentally
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convenient that the optimum value of |𝛼 |2 is independent of distinguishability. The
curves retain the log-normal behavior, supporting our interpretation that the curve
shape is due to mean photon number mismatch. Note the two-fold curve has shifted
to a lower central value of |𝛼 |2 compared to that in Fig. 9.3 due to the reduction of
idler path efficiency in the model henceforth compared to that in the experimental
results.

The model predicts maximum two- and three-fold HOM visibilities as well as X-basis
teleportation fidelity to increase to

√
2−1, 0.85 and 0.92, respectively, for completely

indistinguishable fields. The two-photon visibility curve reaches the theoretical
maximum because idler mode inefficiency does not vary the number statistics of the
idler mode, and as discussed in Appendix E.2, |𝛼 |2 =

√
2𝜇maximizes the visibility in

the regime of low mean photon numbers we consider here. The maximum three-fold
HOM visibility and teleportation fidelity does not reach unity due to multi-photon
components from |𝛼⟩ and non-unit transmission of the idler mode. Yet, reasonably
high teleportation fidelity can be achieved even with significant path loss (∼ 1%)
provided 𝜇 is kept low. Note that if the 0.98 fidelity of the Z-basis states from
Chapter 8 is included, the total average fidelity will reach 0.94.

Without loss of generality, we assume complete indistinguishability 𝜁 = 1 for all
remaining plots in the manuscript to probe the dependence of the other experimental
imperfections. Notice that the X-basis teleportation fidelity curves follow the same
dependence as the three-fold HOM interference visibility curves. Thus, to avoid
redundancy, we move all of the relevant teleportation curves to Appendix E.5. Note
that the factor of two shift in |𝛼 |2 between three-fold HOM interference visibility
and fidelity is retained for all curves.

Transmission efficiencies
We compare signal and idler mode transmission efficiencies of Chapter 8, i.e. those
plotted in Fig. 9.3 with 𝜂𝑖 = 1.2 × 10−2 and 𝜂𝑠 = 4.5 × 10−3, to those of unit
efficiency. We assume 𝜇 = 8.0 × 10−3 as before and plot the two- and three-fold
detection curves under four different configurations:

(i) 𝜂𝑖 = 𝜂𝑠 = 1,

(ii) 𝜂𝑖 = 1.2 × 10−2 and 𝜂𝑠 = 4.5 × 10−3 from Chapter 8,

(iii) 𝜂𝑖 = 1 and 𝜂𝑠 = 4.5 × 10−3,
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(iv) 𝜂𝑖 = 1.2 × 10−2 and 𝜂𝑠 = 1.

a)

b)

Figure 9.5: Model of a) two- and b) three-fold HOM interference visibilities for
varied |𝛼 |2 under conditions of varied signal and idler transmission efficiencies (i-iv)
in blue, orange, green, and red, respectively, as described in the main text, assuming
𝜇 = 8.0 × 10−3 and complete indistinguishability 𝜁 = 1. For the two-fold HOM
curves, configurations (i) and (ii) are equivalent to (iii) and (iv), respectively.

For the two-fold HOM visibility curves in Fig. 9.5, we find a reduction of idler
transmission efficiency from unity (cases (i) and (iii)) to 𝜂𝑖 (cases (ii) and (iv))
retains the curve profile, but shifts it to be centered around a value of |𝛼 |2 that is a
factor of 𝜂𝑖 lower. As discussed in Appendix E, the visibility is maximized when
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|𝛼 |2 =
√

2𝜇, that is, the mean photon numbers of |𝛼 |2 and the idler mode match to a
scaling factor. Since the mean photon number of the idler scales proportional to the
idler transmission efficiency, |𝛼 |2 must be reduced by the same factor to maximize
visibility. The curve shape does not change with 𝜂𝑖 because 𝜇 ≪ 1. The maximum
visibility is saturated to its theoretical maximum of

√
2 − 1 in the low mean photon

number regime.

For the three-fold HOM visibility curves, the unity transmission case (i) shifts the
distribution from Chapter 8 (ii) to higher |𝛼 |2 to better match the effective higher
mean photon number in the idler mode. The maximum visibility increases for (i)
because detection of a photon in the signal mode is always accompanied by a photon
in the idler mode i.e. zero vacuum components in the idler mode, that is, the photon
heralding efficiency [30] is unity. However, the maximum visibility is not unity,
primarily due to multi-photon components from |𝛼⟩ and, to some extent, the idler
mode.

For case (iii), the added loss in the signal mode compared to (i) removes some single
pair events in the experiment. Thus, multi-photon events from |TMSV⟩ are relatively
more likely to be detected by the threshold detectors. By way of heralding, this leads
to a relative increase in multi-pair events from |TMSV⟩, reducing the maximum
visibility from (i) while effectively increasing the mean photon number in the idler
mode, thereby forcing an increase in |𝛼 |2. The width of the curve is also reduced
from the lower |𝛼 |2 edge, which is consistent with the increase in multi-photon
events from |TMSV⟩. To understand this, consider |𝛼 |2 being lowered from the
value that maximizes the visibility. In this case, the increased multi-photon events
in the idler mode reduce the visibility more strongly than the case in which non-zero
vacuum is present in the idler. This narrowing becomes even more pronounced as
𝜇 is increased. The curve narrowing effect is not observed in the two-fold visibility
curves because heralding, and hence the effect of signal path inefficiency, strongly
changes the number distribution in the idler mode.

For case (iv), the shift of the curve to lowered |𝛼 |2 compared to case (ii) is similar to
that when comparing case (i) to (iii). It is due to the relative decreased contribution
of multi-photon detection events in the idler mode, which must be matched by |𝛼 |2.
The maximum visibility is limited by the non-unit heralding efficiency; when a single
photon is detected in the signal mode, it may not be present at the beamsplitter and
multi-photon events originating from |𝛼⟩ have a relatively higher probability of
contributing to the visibility. This is also why maximum visibility is not as high
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(i)

(ii)

Figure 9.6: Model of two-fold HOM interference visibilities for varied |𝛼 |2 and 𝜇 <
10−2, under varied signal and idler transmission efficiencies, cases (i) and (ii), which
are equivalent to (iii) and (iv), respectively, assuming complete indistinguishability
𝜁 = 1.
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as case (i), but higher than the rest of the curves which have low signal efficiency
and for which heralding cannot benefit as much. Akin to that observed when
comparing curves (i) and (iii), the width of curve (iv) increases from the lower
|𝛼 |2 edge relative to case (ii). This is also consistent with the presence of more
heralded single photons, and fewer multi-photon events from heralding. The high
|𝛼 |2 edge of curves in cases (ii) and (iv), and (i) and (iii), converge with increased
|𝛼 |2 because the Poisson- distributed multi-photon components from |𝛼⟩ reduce the
visibility more strongly than the heralded components of |TMSV⟩ in this regime.

Mean photon number of |TMSV⟩
Here we compare 𝜇 = 10−1, 𝜇 = 8.0 × 10−3 from Chapter 8, and 𝜇 = 10−3 under
cases (i)-(iv). Two-fold HOM interference visibilities with varied |𝛼 |2 are plotted in
Fig. 9.6 under these scenarios.

For case (i)/(iii) and (ii)/(iv) we observe the same behavior as in Fig. 9.5a. The curve
profile shifts to lowered |𝛼 |2 to ensure the mean photon number of |𝛼 |2 matches that
in the idler mode when either the idler transmission efficiency or, equivalently, mean
photon number of |TMSV⟩ is reduced. The shift in |𝛼 |2 matches the reduction in 𝜇,
and the overall shift of the three curves when the idler path efficiency is reduced is the
same as discussed in the previous section. Furthermore, the maximum visibility can
reach its theoretical maximum under these conditions, as discussed in the previous
sections.

The three-fold HOM interference visibility is plotted under these scenarios (i)-(iv)
in Fig. 9.7. We discuss case (i) first. To give a point of reference, the curve
corresponding to 𝜇 = 8.0 × 10−3 matches the case (i) curve shown in Fig. 9.5b.
Interestingly, the family of curves appear to have a similar behavior to those in Fig.
9.5b, except now with 𝜇 varied instead of signal path efficiency. An increase of 𝜇
increases the number of multi-photon states that are heralded which both lowers the
maximum visibility and requires a higher |𝛼 |2 to match, similar to that discussed
for the curves in Fig. 9.5b. The width of the curve is also reduced from the lower
|𝛼 |2 edge as 𝜇 increases, which is again consistent with the increase in multi-photon
events from |TMSV⟩. For high 𝜇, as |𝛼 |2 is lowered from the value corresponding
to maximum visibility, the curve falls more sharply than others because there are
more multi-photon terms in |TMSV⟩ and |𝛼⟩, and a slight mismatch in mean photon
numbers will lead to higher order terms contributing a larger reduction in visibility.
For the case in which 𝜇 is smaller, there are fewer multi-photon terms from |TMSV⟩
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in the idler mode, and also |𝛼 |2, which leads to a broader peak on the low |𝛼 |2

edge. A slight mismatch of single photon probabilities is not accompanied by
strong multi-photon effects in this scenario. As in Fig. 9.5b, the high |𝛼 |2 edge of
curves converge with increased |𝛼 |2 because the Poisson-distributed multi-photon
components from |𝛼⟩ dominate in this regime relative to conditions for maximum
visibility.

(i) (iii)

(iv)(ii)

Figure 9.7: Model of three-fold HOM interference visibilities for varied |𝛼 |2 and
𝜇 < 10−2, under varied signal and idler transmission efficiencies, cases (i)-(iv),
assuming complete indistinguishability 𝜁 = 1.

The curves for case (ii), which corresponds to the non-unit path efficiencies in
Chapter 8, have remarkably similar shapes to case (i) with a few differences. The
shift of the distributions to lowered |𝛼 |2 is again due to the idler path loss. The
maximum visibilities are lowered because the signal loss reduces the number of
single photon events in the idler path that contribute to interference, and the idler
loss further decreases this number, which leads to multi-photon terms from both
|TMSV⟩ and |𝛼⟩ contributing. This also explains why the curve widths are also
reduced compared to case (i) even though the curves are centered around lower values
of |𝛼 |2; the multi-photon terms quickly dominate when mean photon numbers are
not matched. Note that the narrowing of the distribution from case (i) to case (ii)
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is also slightly observed in Fig. 9.5. Observe that the 𝜇 = 0.1 curve edge slightly
extends over the others for high |𝛼 |2 because |TMSV⟩ contributes more terms in the
idler mode in this regime compared to the others.

The family of curves for case (iii), which corresponds to non-ideal signal path
efficiency, differs from case (i) much in the same way that these cases differ in Fig.
9.5. That is, the curves take on a similar form as (i), but with lower maximum
visibilities, maxima that are shifted to higher |𝛼 |2, and narrower curve widths
compared to those in (i). The shape and offset of the curves follows reasons
previously discussed, which owe to increased multi-photon events in the idler mode.
For case (iv), corresponding to non-ideal idler path efficiency, differs from case (ii)
again much in the same way that these cases differ in Fig. 9.5. The unit signal
efficiency now increases the visibilities, shifts the curve to lower |𝛼 |2, and broadens
the curve widths compared to those in (ii). The shape and offset again follow reasons
previously discussed. The broadening is particularly pronounced for low 𝜇, which
also requires low |𝛼 |2, and thus very few multi-photon events contribute, and hence
are less effected by idler path loss.

9.6 Discussion
Our analytical expressions for realistic photonic quantum teleportation experiments
with time-bin qubits are valuable for guiding the design and optimization of future
experiments. Achieving transmission efficiencies or indistinguishability beyond
99% in typical photonics experiments requires significant effort [31]. Our modeling
quantifies the improvements provided by such efforts under different experimental
configurations and indicates the effort needed to meet minimum acceptable stan-
dards for various applications, such as quantum communication. Additionally, our
analytical expressions allow for predicting experimental outcomes using indepen-
dently measured parameters, including indistinguishability, which can be estimated
through mode measurements like laser linewidth or cavity resonance profiles.

By quantifying our figures-of-merit against the log of the mean photon number |𝛼 |2

of an input weak coherent state |𝛼⟩, we find a simple log-normal distribution that
aids in interpreting and utilizing our analytical expressions. The curves simplify the
role of indistinguishability to a simple scaling of visibility or teleportation fidelity.
The two-fold HOM interference visibility curves are the quickest to interpret and,
along with their rapid measurement compared to three-fold HOM interference, are
valuable for prototyping setups. For teleportation, a low mean photon number of
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photon pairs 𝜇 strongly mitigates path inefficiency and relaxes the precision needed
for the value of |𝛼 |2 that maximizes visibility. Conversely, a relatively high 𝜇 ∼ 0.1
significantly reduces teleportation fidelity but not below the classical bound of 2/3
for our parameter range. Even with path efficiencies of ∼ 1%, the reduction is not
severe, with signal path inefficiency impacting visibilities to a lesser extent. This is
unsurprising given the number of successful quantum networking experiments using
lossy setups or links that require extended data collection periods. However, higher
mean numbers of pairs necessitate careful calibration of |𝛼 |2 to maximize visibility.
The data in Fig. 9.3 shows that calibration of |𝛼 |2 in Chapter 8 was challenging
for |𝛼 |2 ≪ 10−3. Nonetheless, we find good agreement between our analytical
expressions and the measurement data from Chapter 8, which spans almost four
decades of |𝛼 |2.

Although our modeling captures all relevant behavior in the experiment of Chapter
8 and can be applied to other photonic quantum teleportation experiments, future
work could include more detailed modeling of the multi-mode nature of |TMSV⟩.
This involves incorporating the effects of pump bandwidth and frequency filtering,
as done in Chapter 3. The Schmidt decomposition of |TMSV⟩ approximates the
number of modes, and the filter acts as a mode-selective beamsplitter [32]. This
would relate differences in indistinguishability and loss in the idler path for two- and
three-fold detection to specific apparatus configurations. It is also straightforward to
incorporate noise or detector dark counts into the modeling. Moreover, our methods
can be extended to non-Gaussian measurements, including photon number resolved
detection, which can improve heralding efficiencies of single photons (see Chapter
3).

Our modeling applies to different discrete-variable encodings beyond time-bin and
readily extends to more complex experiments such as entanglement swapping or
GHZ-state generation. The use of Gaussian states and transformations also extends
to other experiments using bosonic modes, such as atomic ensembles or other
parametric interactions like electro-optics or opto-mechanics, and their relevant
applications in communications, computing, and sensing. Although an analysis
based on “photon counting” in the Fock basis could have been used to analyze
the outcomes in Chapter 8, we believe that our presented analysis provides an
intuitive picture of the underlying physics with a compact, experimentally realistic,
and “universal” methodology that can be easily extended to other experimental
operating regimes, such as using squeezing [33].
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C h a p t e r 10

ENTANGLEMENT SWAPPING SYSTEM TOWARD THE
QUANTUM INTERNET

This chapter includes the work in preparation for publication:

[1] Samantha I. Davis, Raju Valivarthi, Andrew Cameron, Cristian Pena, Si Xie,
Lautaro Narváez, Nikolai Lauk, Chang Li, Kelsie Taylor, Rahaf Youssef,
et al. “Entanglement swapping systems toward a quantum internet.” In:
arXiv preprint arXiv:2503.18906. Submitted. (2025).

10.1 Introduction
A quantum internet, a large-scale quantum network, aims to distribute entangled
qubits over long distances and between disparate quantum hardware [1, 2, 3]. For
metropolitan-distance networks, qubits are encoded into photons, with fiber optics
as the preferred medium for transfer [4, 5, 6, 7]. To mitigate loss, photons at
telecommunication wavelengths, such as the 1550 nm C-band, are used [8, 9, 10, 11].
Since loss scales exponentially with fiber length, multiplexing, quantum repeaters,
or a combination of both can ensure qubits traverse a channel. These techniques
also improve the generation rate of single and entangled photons created using
probabilistic processes like spontaneous parametric down conversion (SPDC) [12,
13, 14].

Entanglement swapping, where a Bell-state measurement (BSM) entangles qubits
that have never interacted, is crucial for entangling remote qubits and enabling quan-
tum repeaters [15]. Since the first demonstration of post-selective and conditional
entanglement swapping of photons [16], numerous follow-up experiments have fo-
cused on quantum communications [17, 18, 19, 20]. Entanglement swapping also
has applications in quantum computing [21], quantum sensing [22], and fundamen-
tal tests of quantum mechanics [23]. Various renditions of photonic entanglement
swapping have been demonstrated, including using qubits encoded into different
degrees of freedom [24] or derived from different sources [25].

Time-bin encoding is advantageous for quantum networks because each logical state
is encoded into the same degrees of freedom except time. This avoids unintended
mode-dependent transformations and phase shifts. It also allows simple interfacing
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of quantum hardware, such as atomic memories or optical frequency converters,
which are generally not compatible with multiple modes. Time-bin encoding pro-
vides access to high-dimensional states, i.e., qudits, that encode more information
than qubits, benefiting quantum communications [26, 27] and computing [28].

Thus far, entanglement swapping of photonic time-bin qubits has yielded states with
an average fidelity up to 83% [29, 17, 18]. Fidelity 𝐹 = ⟨𝜓 | 𝜌 |𝜓⟩ of the swapped
state 𝜌 with respect to the state |𝜓⟩ [30] is an important figure of merit to optimize
for in quantum networks and information applications in general. Non-classical
states manifest at a fidelity greater than 50% with respect to a target Bell state.
Clauser-Horne-Shimony-Holt inequality violations, which are signatures of non-
locality and benefit fundamental tests [31, 32, 33], occur for a fidelity greater than
78% [34]. The Ekert protocol for entanglement-based quantum key distribution and
source-independent quantum key distribution based on swapping require a fidelity
greater than 89% [35, 36]. Distributed quantum computing likely requires fidelity
greater than 99.999% [30, 37, 38, 39, 40, 41]. The unavoidable presence of loss in
networks further supports the pursuit of high fidelity to reduce the impact of photon
counting statistics.

In this work, we demonstrate conditional entanglement swapping between two de-
generate time-bin entangled photonic qubits at the telecommunication wavelength
of 1536.4 nm with an average fidelity greater than 87%. This fidelity allows demon-
stration of source-independent quantum key distribution, a scheme that assumes
qubits may be generated by an adversary, with an estimated secret key rate of ap-
proximately 0.5 bits per sifted bit. The qubits are created with modular, off-the-shelf,
fiber-coupled, and electrically controlled components, facilitating setup reproduc-
tion and deployment in networks. Specifically, we generate an entangled state using
SPDC in nonlinear waveguides pumped with two visible-wavelength pulses sepa-
rated by 346 ps. Electro-optic modulators carve two pulses from continuous-wave
laser light at 1536.4 nm, which are upconverted using another nonlinear waveguide.

Projection onto the Bell state |Ψ−⟩ and subsequent measurement of the swapped
state |Φ+⟩ (up to a known phase) with Michaelson interferometers is facilitated by
superconducting nanowire single photon detectors (SNSPDs) that resolve the 346
ps bin separation. Our experiment is facilitated with semi-autonomous control,
monitoring, and synchronization, with all data collected using scalable software and
hardware. The system yielded swapping rates of 0.01 Hz at a clock rate of 200
MHz and was run remotely over several days. The experiment was interpreted and
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guided using characteristic function-based analytical modeling based on realistic
imperfections. Based on our modeling, we identify straightforward improvements,
such as improved packaging and integration to reduce loss, and reduction of the
bin separation to the ps-scales, which is compatible with state-of-the-art modulators
[42, 43] and SNSPDs [44] (see Chapters 3, 4, 5), to improve the swapping rates
to approximately Hz without compromising fidelity. Finally, our specific choice
of wavelength is compatible with quantum emitters, memories, and transducers
using erbium-doped crystals [45]. The demonstration extends our previous work in
Chapter 8 using quantum teleportation systems toward a workable quantum internet
envisioned by the U.S. Department of Energy to link the U.S. National Laboratories.

10.2 Setup
The setup for entanglement swapping is shown in Fig. 10.1. We demonstrate
a swapping protocol in which a qubit of an entangled photon pair (from Alice)
is interfered with a qubit of another entangled photon pair (from Bob) and then
measured in the Bell state |Ψ−⟩ (at Charlie). As a result, the remaining photons at
Alice and Bob are projected onto a Bell state |Φ+⟩, which is defined with respect
to a pre-determined phase offset. All qubit measurements are performed with a
custom developed data acquisition (DAQ) system. The Alice, Bob, Charlie, and
DAQ subsystems are detailed in the following subsections.

Alice and Bob: entangled photon pair generation
To generate the entangled photon pairs, light from a fiber-coupled continuous wave
(CW) laser at a telecom wavelength of 1536.4 nm is split into two paths by a 50:50
polarization-maintaining beamsplitter (BS). In each path, the light is coupled into a
lithium niobate intensity modulator (IM) driven by an arbitrary waveform generator
(AWG). The AWG generates a pair of pulses separated by 346 ps at a repetition rate of
200 MHz. Each pulse has a full-width-at-half-maximum (FWHM) of approximately
65 ps. The pulses from the AWG are amplified by a 30 dB high-bandwidth amplifier
and are injected into the radio-frequency (RF) input of the IM, resulting in optical
pulses with an extinction ratio of at least 20 dB. A 90:10 BS at the output of the IM
is used to perform feedback on the DC-bias port of the IM, which ensures a constant
extinction ratio throughout the experiment. The optical pulses from the 90% ports
of the BS in each path are sent to the Alice and Bob nodes.

At each node, the optical pulses are amplified with an erbium-doped fiber amplifier
(EDFA) and up-converted to 768.2 nm by second harmonic generation (SHG) with
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Figure 10.1: Schematic diagram of the entanglement swapping system consisting
of Alice, Bob, Charlie, and the data acquisition (DAQ) subsystems. All components
are labelled in the legend. Single mode fibers and electronic cables are indicated
in gray and green, respectively. The detection signals generated by the SNSPDs
are labeled 1-6 and sent to the TDC, with 1-2 and 5-6 time multiplexed. The clock
generated by the AWG is labeled and sent to the start channel of the TDC.

a periodically poled lithium niobate (PPLN) waveguide. Residual pump light at
1536.4 nm is removed by a 768 nm bandpass filter with an extinction ratio of ≥ 80
dB. The up-converted pulse pair is used to pump a type-II SPDC with a second
PPLN waveguide, which produces a pair of photons at 1536.4 nm in a Bell-state
state, |Φ+⟩ = ( |𝑒𝑒⟩ + |𝑙𝑙⟩)/

√
2. The members of the entangled photon pair are

produced in “signal” and “idler” modes with orthogonal polarizations |𝐻⟩ and |𝑉⟩
and are hereafter referred to as “signal” and “idler” photons, respectively. The
signal and idler photons are separated with a polarizing beam splitter (PBS) and
spectrally filtered with tunable narrowband optical filters. We select a bandwidth
of 12.7 GHz to optimize for the trade-off in spectral purity and Bell pair generation
rates. The signal photon is distributed to Charlie for the Hong-Ou-Mandel or
Bell State measurements, and the idler photon is sent to an unbalanced Michelson
interferometer (MI) with a delay of 346 ps between the long path and the short path.
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The path difference matches the time between early and late time-bins and enables
pulse overlap required for characterizing entanglement. When two time-bins enter
an MI, three time-bins emerge corresponding to all combinations of short and long
path trajectories of each input time-bin.

All single photon detections are performed with SNSPDs. A total of six SNSPDs,
two each for Alice, Bob, and Charlie, are installed in a rack-mount cryogenic system
with continuous operation at a temperature of 2.5 K. The SNSPDs have detection
efficiencies of 89-93%, dark count rates of 60-135 Hz, timing resolution (jitter) of
38-59 ps, and dead times ≤ 30 ns. A photon detection at the SNSPD produces an
RF pulse, which is sent to the DAQ subsystem described below. At the input of
each detector, a high pass filter is used to remove any residual 768 nm light from
the second harmonic generation process.

The MI and SNSPDs are used to project a photon onto the |𝑒⟩, ( |𝑒⟩ + 𝑒𝑖𝜃 |𝑙⟩)/
√

2, or
|𝑙⟩ states by detection in the first, second, or third time-bins, respectively, at one of
the outputs (see Fig 10.1). Detection at the other output corresponds to projections
onto the same states but with 𝜃 + 𝜋. The phase 𝜃 of a MI is set by the voltage
applied to its phase shifter. For the entanglement visibility measurements, which
include the characterization of entangled photon pair sources and teleportation of
entanglement, the phase of Alice’s MI is swept and the coincidence events of
photons in the outputs of Alice’s and Bob’s MI are accumulated. We measure
the coincidences in all four pairings of Alice and Bob’s outputs to maximize the
coincidence rates in the experiment.

Charlie: Bell-state measurement
At Charlie, the signal photons from Alice and Bob are interfered in a 50:50 po-
larization maintaining beamsplitter (BS) after spectral filtering. A variable optical
delay line (VDL) at one input of the BS is used to optimize the temporal indistin-
guishability of the interfering photons, such that the photons arrive to the inputs of
the BS at the same time. Alice and Bob’s signal photons are projected onto the
|Ψ−⟩ = ( |𝑒𝑙⟩ − |𝑙𝑒⟩)/

√
2 Bell state by detection of coincidence events in the first

time-bin of one BS output and the second time-bin of the other BS output. Con-
ditioned on a successful Bell-state measurement outcome, Alice and Bob’s idler
photons are projected onto the |Ψ−⟩ state.
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DAQ: Data acquisition and analysis
Our DAQ subsystem is an extension of the control and data acquisition systems
detailed in Chapter 8. The RF pulses from the SNSPDs are sent to a time-to-digital
converter (TDC) with a fixed voltage threshold, i.e., “time-tagger”, to obtain a time-
tag for the time-of-arrival of each pulse relative to a clock signal. The time-tagger
has five input channels, one of which is used for a 10 MHz clock signal reference
from the AWG. Of the remaining four channels, two are used for the outputs of
Charlie’s SNSPDs, one is used for the outputs of Alice’s SNSPDs, and one is used
for the outputs of Bob’s SNSPDs. The outputs for each pair of detectors at Alice
and Bob are electronically combined with a relative time delay introduced by an
RF delay line to enable signals from the pair to be read out with a single time-
tagger channel. The time-tagger is interfaced with a custom graphical user interface
(GUI) to process the time-tags, perform the coincidence logic, store measurement
outcomes in a customized database, and visualize photon statistics in real-time (see
Sec. 10.6). The database forms the backbone of a centralized classical processing
unit that is responsible for the monitoring of critical network parameters, remote
control, active-feedback and stabilization of experimental components, acquisition
and management of large volumes of time-tagged signals, and global synchroniza-
tion across multiple nodes. The DAQ subsystem has been upgraded to support GHz
teleportation rates, multinode entanglement distribution, and picosecond synchro-
nization for metropolitan-scale quantum network testbeds (see Chapter 11).

10.3 Experimental results
Entanglement visibility
The entanglement swapping protocol requires high-fidelity entanglement sources,
which we realize with an SPDC process using a bulk optical nonlinearity. The
output state of an SPDC process can be described by the two-mode squeezed state
(TMSV),

|TMSV⟩ =
∞∑︁
𝑛=0

(−1)𝑛
√︄

𝜇𝑛

(1 + 𝜇)𝑛+1 |𝑛, 𝑛⟩ , (10.1)

where 𝜇 is the mean number of photon pairs, and |𝑛, 𝑚⟩ ≡ |𝑛⟩ ⊗ |𝑚⟩ is the product
state of 𝑛 photons in the signal mode and 𝑚 photons in the idler mode. After
the narrowband filters, the output state of the pair source is described by |pair⟩ =

|TMSV⟩𝑒 ⊗ |TMSV⟩𝑙 , where |TMSV⟩𝑒(𝑙) is a TMSV in the early (late) time-bin.
For low mean photon numbers, |pair⟩ approximates a Bell state conditioned on the
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Figure 10.2: Entanglement visibility of photon pairs produced by Alice’s and Bob’s
entangled photon pair source (EPS). The coincidence rates for each pairing of an
output port of Alice’s MI and Bob’s MI are shown for Alice’s EPS a)-d) and Bob’s
EPS d)-h). The entanglement visibilities are obtained from a sinusoidal fit (see main
text for details), with uncertainties in all measurements calculated assuming Poisson
statistics.

presence of at least one photon,

|pair⟩ ≈
√︁

1 − 2𝜇 |0⟩ +
√︁

2𝜇
��Φ+〉 + O(𝜇2), 𝜇 ≪ 1, (10.2)

neglecting loss. Due to multiphoton effects arising from O(𝜇2) contributions, there
is a trade-off in the quality of entanglement and the pair production rate ∝ 𝜇. We
optimize for this trade-off by operating the sources at Alice and Bob with a mean
photon number per time-bin of 𝜇𝐴 = 2.5 × 10−3 and 𝜇𝐵 = 2.0 × 10−3, respectively,
at a repetition rate of 200 MHz.

To evaluate the entanglement sources, we measure the entanglement visibilities of
the photon pairs produced by each pair source with a modification of the setup in Fig.
10.1. After the narrowband filters, the signal and idler modes of a pair source are di-
rected to Alice’s MI and Bob’s MI, respectively. We vary the phase of Alice’s MI and
measure the coincidences of the signal and idler modes in a phase basis by accumu-
lating coincidence events in the central time-bin of both Alice and Bob’s MI. We ac-
quire data for all four combinations of Alice and Bob MI output ports, which are used
in the entanglement swapping visibility measurements. The results are shown in Fig.
10.2. The coincidence rates are fitted proportional to 1+𝑉ent cos (2𝜔𝑣 + 𝜙0), where
the entanglement visibility is 𝑉ent = (𝐶max − 𝐶min)/(𝐶max + 𝐶min), with 𝐶max(min)
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denoting the maximimum (minimum) rate of coincidence events, 𝜔 and 𝜙0 are un-
constrained constants, and 𝑣 is the voltage applied to Alice’s MI. We obtain average
entanglement visibilities across all output port combinations of ⟨𝑉ent⟩ = 94.7±1.6%
for Alice’s source and ⟨𝑉ent⟩ = 95.1 ± 1.6% for Bob’s source. The deviations from
unity are attributed to mulitphoton effects and interferometric imperfections. Im-
balances in the MIs due to imperfect transmittances and internal path efficiencies
can give rise to a dependence of the entanglement visibility on the combination of
output ports that is used (see Chapter 5). Nevertheless, these visibilities exceed the
locality bound of 1/

√
2, and correspond to average state fidelities with respect to

|Φ+⟩ of ⟨𝐹ent⟩ = 96.0 ± 1.2% for Alice and ⟨𝐹ent⟩ = 96.3 ± 1.2% for Bob, where
𝐹ent = (3𝑉ent + 1)/4.
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Figure 10.3: Hong-Ou-Mandel (HOM) interference. a) Fourfold coincidence rates,
b) threefold coincidence rates conditioned on Bob’s idler photon, c) threefold coin-
cidence rates conditioned on Alice’s idler photon, and d) twofold coincidence rates
measured as a function of the relative time-delay (Δ𝑡𝐴𝐵) between Alice and Bob’s
signal photons.

Hong-Ou-Mandel interference
Entanglement swapping is facilitated by a BSM at Charlie, which relies on the
interference of indistinguishable photons in the standard optical implementation
[46]. To evaluate the indistinguishability of the photons from Alice and Bob, we
perform HOM interference at Charlie’s BS. We use the same setup as Fig. 10.1
except for the removal of the MI’s from Alice and Bob, such that each idler mode is
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measured by a single detector. Photon pairs are prepared in the state |TMSV⟩𝑒 by
injecting a single RF pulse into each IM at a repetition rate of 200 MHz. For low
mean photon numbers,

|TMSV⟩𝑒 ≈
√︁

1 − 𝜇 |0⟩ + √
𝜇 |1, 1⟩𝑒 + O(𝜇2), 𝜇 ≪ 1, (10.3)

neglecting loss. With mean photon numbers per time-bin of 𝜇𝐴 = 0.019 and
𝜇𝐵 = 0.015 ≪ 1 for this measurement, each signal mode is approximately in a
single photon state conditioned on the detection of its idler mode.

We interfere the signal photons and measure the coincidence events at the output
of Charlie’s BS. The variable delay line at Bob’s input to the BS is used to sweep
the relative time-delay, i.e. temporal distinguishability, of Alice and Bob’s signal
photons (Δ𝑡𝐴𝐵). By heralding the signal photons with the detection of the idler
photons at Alice and Bob, we measure fourfold coincidence rates for various Δ𝑡𝐴𝐵
over a range of 560 ps. The results are shown in Fig. 10.3a. Assuming Gaussian
temporal profiles of the optical pulses with 1/e temporal duration of 𝜎 = 25 ps,
the coincidence rates are fitted proportional to 1 − 𝑉HOM exp

(
−Δ𝑡2

𝐴𝐵
/2𝜎2) , where

the HOM visibility is 𝑉HOM = (𝐶𝑑 − 𝐶𝑖)/𝐶𝑑 , with 𝐶𝑑 (𝑖) denoting the coincidence
rates when the photons are made as distinguishable (indistinguishable) as possible.
Single photons that are indistinguishable in all degrees of freedom (e.g., temporal,
spectral, spatial) would result in a HOM visibility of 100%. We obtain a HOM
visibility of 𝑉 (4)

HOM = 86.7 ± 1.8%, indicating high indistinguishability of photons
from Alice and Bob. The deviation from unity visibility is expected from experi-
mental imperfections including multiphoton contributions and distinguishability in
the temporal mode profiles of the photons from Alice and Bob introduced during
optical pulse generation.

To glean further information about the quantum interference at Charlie, we also
measure threefold and twofold coincidence rates for various Δ𝑡𝐴𝐵. The HOM
visibility depends on the photon statistics of the interfering fields. Without heralding
a signal photon by the detection of an idler photon, the state of the signal mode is
described by a thermal state,

𝜌th = Tr𝑖 |TMSV⟩ ⟨TMSV| =
∑︁
𝑛=0

𝜇𝑛

(1 + 𝜇)𝑛+1 |𝑛⟩ ⟨𝑛| (10.4)

where Tr𝑖 denotes the partial trace over the idler mode of the TMSV. By heralding
only one of the signal photons by the detection of an idler photon at Alice or
Bob, we measure threefold coincidence rates corresponding to the interference of a
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single photon state and thermal state. The twofold coincidence rates at the output
of Charlie’s BS correspond to the interference of two thermal states. We obtain
HOM visibilities of 𝑉 (3𝐵)

HOM = 28.4± 1.2% and 𝑉 (3𝐴)
HOM = 22.3± 1.2% for the threefold

coincidence rates conditioned on the idler mode at Bob (Fig. 10.3b) and Alice (Fig.
10.3c), respectively. The asymmetry in the threefold HOM visibilities is expected
due to the difference in the mean photon numbers of Alice and Bob’s sources and
heralding path efficiencies. For the twofold coincidence rates, we obtain a HOM
visibility of 𝑉 (2)

HOM = 7.3% ± 0.2% (Fig. 10.3d).

We support our measurements with modeling as described in Section 10.4. For
the twofold HOM visibility, we obtain an upper bound of 33% corresponding to
the interference of ideal thermal states. We obtain an upper bound of 50% for the
threefold HOM visibility corresponding to the interference of ideal single photon
and thermal states with identical mean photon numbers. Threefold HOM visibilities
of up to 100% could be achieved with unequal mean photon numbers (see Sec. 10.6).
Relevant to the entanglement swapping configuration, we find that our fourfold HOM
visibility corresponds to a photon indistinguishability of 0.92±0.02 (see Sec. 10.6).
The presence of clear HOM dips and estimation of high photon indistinguishability
indicate that our system can perform BSMs suitable for entanglement swapping.

Entanglement swapping
After characterization of our system, we perform the entanglement swapping pro-
tocol with the setup in Fig. 10.1. We measure the entanglement visibility of idler
photons at Alice and Bob conditioned on the BSM at Charlie, resulting in fourfold
coincidence rates for each pairing of Alice and Bob’s MI output ports. The phase
of Alice’s MI is varied, and for each interferometric voltage setting the fourfold
coincidences are acquired for three hours.

The results are shown in Fig. 10.4. We obtain two curves by combining fourfold
coincidence rates for in-phase pairings of MI outputs (see Fig. 10.2) and observe
visibilities of 𝑉swap = 85.0 ± 6.5% and 𝑉swap = 81.2 ± 8.9%, which surpass the
classical bound of 1/3 required to demonstrate entanglement [47]. The average
visibility of ⟨𝑉swap⟩ = 83.1 ± 5.5% corresponds to a teleported state fidelity of
⟨𝐹swap⟩ = 87.3 ± 4.1% with respect to |Φ+⟩ and a violation of the CHSH Bell
inequality by 2.25 standard deviations.
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Figure 10.4: Entanglement swapping of |Φ+⟩. The voltage of the Alice’s MI is varied
to yield a sinusoidal variation of the fourfold coincidence rates for each pairing of
output ports of Alice’s and Bob’s MIs. This yields four sets of fourfold coincidence
rates, with two in-phase and two out-of-phase. The in-phase sets are combined (red)
and the out-of-phase sets are combined (blue) to obtain two curves. A sinusoidal
fit is performed for each combined data set to extract the swapping visibilities of
𝑉swap = 85.0 ± 6.5% (red) and 𝑉swap = 81.2 ± 8.9% (blue). The average of the two
visibilities is ⟨𝑉swap⟩ = 83.1 ± 5.5%.

Source-independent quantum key distribution
Alice and Bob can obtain a secure key by measuring the idler photons in the time
basis {|𝑒⟩ , |𝑙⟩} and phase basis {(|𝑒⟩ ± |𝑙⟩)/

√
2} conditioned on the BSM. From

the security proof of Koashi and Preskill [48], the secret key rate for quantum key
distribution (QKD) [49] with a basis-independent source [36] is,

𝑅 ≥ 𝑅𝑆 [1 − 𝜅𝐻2(𝑒𝑡) − 𝐻2(𝑒𝑝)] (10.5)

where 𝑅𝑠 is the sifted key rate, 𝜅 is the error correction efficiency, 𝑒𝑡 is the bit error
rate in the time basis, 𝑒𝑝 is the bit error rate in the phase basis, and 𝐻2 is the binary
entropy function,

𝐻2(𝑥) = −𝑥 log2(𝑥) − (1 − 𝑥) log2(1 − 𝑥).
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Time basis (𝑒𝑡) Phase basis (𝑒𝑝) Secret key rate (𝑅/𝑅𝑠)
0.011 ± 0.011 0.079 ± 0.020 0.50+0.18

−0.14

Table 10.1: Source-independent quantum key distribution error rates. The secret
key rate (𝑅/𝑅𝑠) is calculated from the measured error rates in the time (𝑒𝑡) and phase
(𝑒𝑝) bases for an error correction efficiency of 𝜅 = 1.22. Error bars on the rates are
calculated from the propagation of Poisson statistics.

With the setup in Fig. 10.1, we measure the error rates for QKD. For the phase-basis
error rate, we measure Alice and Bob’s idler photons in the phase basis conditioned
on the BSM and accumulate fourfold coincidences for a total of twelve hours. For
the time-basis error rate, we remove the MI’s to measure Alice and Bob’s idler
photons in the time basis and accumulate fourfold coincidences for the same period.
The results are summarized in Table I. For identical time-basis and phase-basis error
rates (𝑒𝑡 = 𝑒𝑝), an error rate of less than 11% is required for a non-zero secret key
rate. In practice, the phase-basis error rate is higher than the time-basis error rate due
to experimental challenges associated with the quantum interference requirements of
the phase basis. We obtain < 10% error rates in both the phase and time bases. The
error rate in the phase basis is consistent with the average entanglement swapping
visibility of Fig. 10.4, which estimates 𝑒𝑝 = (1 − ⟨𝑉swap⟩)/2 = 0.085 ± 0.028. The
secret key rate per sifted key is obtained from Eq. 10.5 with 𝜅 = 1.22. The nonzero
secret key rate of 0.50+0.18

−0.14 bits per gate illustrates the suitability of our system for
metropolitan-scale quantum key distribution.

10.4 Analytical modeling
As discussed in Sec. 10.3, experimental implementations of quantum networks
introduce nonidealities, such as multiphoton effects, multiple modes, and dark
counts, that can degrade the performance of quantum communication protocols in
the real world.

Modeling of quantum networks that can account for all experimental imperfections
will elucidate the performance criteria for quantum network components and provide
valuable insight for the scale-up of quantum network testbeds towards the quantum
internet [50]. Typically, SPDC-based experiments are modeled in the photon number
basis, where the analytical calculations for multimode coincidence probabilities
quickly become intractable without low mean photon number approximations.

In this work, we extend our phase-space-based Gaussian model for quantum tele-
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portation from Chapter 9 to entanglement swapping [51]. Since the TMSV states
produced by SPDC have a Gaussian characteristic function, and all subsequent ex-
perimental operations up to detection are described by linear optics, we construct
the symplectic matrix that maps the characteristic function of the input state to
that of the output state prior to detection [52]. By modeling each SNSPD as a
threshold detector, whose POVM can be written in terms of Gaussian states, i.e.,
states with Gaussian characteristic functions, we derive expressions for all detection
probabilities in the experiment. In this approach, all multiphoton contributions are
captured by the characteristic function of the input state, and imperfections such
as loss, photon distinguishability, and dark counts can be modeled with symplectic
matrices. Therefore, we can efficiently compute the output state accounting for
all relevant experimental imperfections and obtain exact analytical expressions for
the entanglement and HOM visibilities. The derivations for HOM and entangle-
ment swapping visibilities as a function of Alice and Bob’s mean photon numbers,
photon indistinguishability, path efficiencies, imperfect beamsplitter transmittances,
and dark count rates are outlined in Sec. 10.6. Theoretical investigations of the
HOM and entanglement swapping visibilities as a function of mean photon numbers
and photon indistinguishibilities, with comparison to the data, are presented in Sec.
10.6.

We experimentally investigate the swapping visibility for asymmetric mean photon
numbers of Alice and Bob’s sources by fixing Bob’s (Alice’s) mean photon number
and sweeping Alice’s (Bob’s) mean photon number. The swapping visibility as a
function of Alice’s and Bob’s mean photon numbers are shown in Fig. 10.5. The
mean photon number is varied by sweeping the gain of the EDFA at Alice or Bob.
The EDFAs are remotely controlled by the DAQ subystem to perform automated gain
sweeps, enabling long duration data collection and optimization of the system over
a range of mean photon numbers. For our repetition rate of 200 MHz, the maximum
accessible mean photon number was 0.05. We fit the data to the swapping model to
determine the indistinguishability and obtain 𝜁2 = 0.69± 0.02 (0.64± 0.02) for the
sweep over Alice’s (Bob’s) mean photon number. The swapping visibility exceeds
the classical bound up to 𝜇𝐴 = 0.28 and 𝜇𝐵 = 0.23 for Alice’s and Bob’s sweeps,
respectively.

10.5 Discussion
We demonstrate entanglement swapping between entangled time-bin qubits encoded
into 1536.4 nm-wavelength photon pairs with an average fidelity of 87%, which
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Figure 10.5: Entanglement swapping visibility as a function of a) Alice’s mean
photon number (𝜇𝐴) and b) Bob’s mean photon number (𝜇𝐵). The data (blue) are fit
to the theoretical model (red) for fixed mean photon numbers of a) 𝜇𝐵 = 4.6 × 10−3

and b) 𝜇𝐴 = 3.9×10−3, with the indistinguishability parameter 𝜁 as a free parameter.
The extracted parameters correspond to indistinguishabilities of a) 𝜁2 = 0.69± 0.02
and b) 𝜁2 = 0.64 ± 0.02. The black lines are the classical bound of 1/3.
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permits source-independent quantum key distribution with a key rate of 0.5 bits per
sifted bit. Our system is interpreted using characteristic function-based analytical
modeling that accounts for realistic imperfections such as loss, indistinguishability,
and undesired photon-number components. The system is semi-autonomous and
uses modular, fiber-coupled, off-the-shelf, and electrically interfaced components,
such as modulators and SNSPD systems, that can be straightforwardly replicated
for multi-node networks. Nonetheless, our current fidelities and swapping rates of
0.01 Hz are still limited.

Concerning fidelity, our modeling predicts that completely indistinguishable pho-
tons will yield a swapping fidelity of 97% (see Sec. 10.6). As suggested by the
increased indistinguishability with heralding, reducing the multi-mode nature of
the pairs by improved control of the photon pair spectra will also reduce 𝜁 . Fur-
ther improved indistinguishability could be achieved by broader pump bandwidths,
e.g., using a mode-locked laser, narrower filtering (at the expense of rates), cavity-
enhanced SPDC, or dispersion-engineered sources, in addition to improved setup
stability, such as better temperature and polarization control. Even with complete
indistinguishability, multi-photon events must be suppressed. Given the mean pho-
ton number is quite low at ∼ 10−3, options include replacing the SNSPDs at the
BSM with photon-number-resolving (PNR) SNSPDs if allowed by the networking
scheme, or using sources of near-deterministic entangled photon pairs based on
single emitters, e.g., quantum dots, or multiplexed probabilistic sources, e.g., using
SPDC. These approaches could lead to increased effective mean photon number
and thereby improve swapping rates, but heralding of multi-photon events must be
considered (see Chapters 3 and 9). Fourfold coincidence detection renders the effect
of dark counts negligible.

The current coupling efficiency of ∼ 5% per signal or idler channel indeed restricts
swapping rates. The loss can be minimized to less than a few dB per signal or idler
channel by improved device packaging, using lower-loss components, and splicing.
For example, the spectral filters used in this work have a tunable passband which
is accompanied by up to 10 dB loss and should be replaced with an alternative,
such as a wavelength-division multiplexing (WDM) filter. Alternatively, we could
integrate our system onto a chip, for instance using thin-film lithium niobate [43]. A
factor of two in Bell-state measurement efficiency can be gained by projecting onto
|Ψ+⟩ using faster-recovery SNSPDs [53]. The ∼ 5% system coupling efficiency is
equivalent to ∼ 70 km of single-mode fiber, which suggests our system is already
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suited for deployment.

An increase in the clock rate will also benefit swapping. Without spatial multiplex-
ing, this can be achieved by accessing the available time-frequency space. A ∼100
GHz clock rate is realistic given the demonstration of SNSPDs with ps-level timing
resolution and the high bandwidths of electro-optic modulators [42]. This would
allow constructing the interferometer on chip, providing superior phase stability, and
hence, fidelity. Another approach is to use mode-locked lasers for pumping of the
SPDC. This is particularly attractive as the broadband pump will allow extending
the multiplexing to the frequency domain, and the use of WDMs can access multiple
distinct frequency channels, an approach that was demonstrated previously in Chap-
ter 5. Frequency multiplexing techniques are compatible with the aforementioned
sources that we suggest to increase fidelities and can be extended to repeaters with
frequency shifting [13].

With some of the aforementioned improvements, we expect that our system can
be deployed for metro-scale networking, demonstrations of quantum hardware in-
terfacing, e.g., with erbium ions, or configured toward sensing protocols, e.g.,
long-baseline telescopes [22]. Our setup is straightforwardly extended to using in-
dependent lasers at different locations provided appropriate feedback mechanisms
are employed [54]. Furthermore, our approach can be rendered more cost-effective
(e.g., with field-programmable gate arrays replacing the AWG) to realize scaled
quantum internet nodes.

10.6 Methods
Graphical User Interface (GUI)
We developed a Graphical User Interface (GUI) for the analysis of photon time-
of-arrival statistics in quantum networks, see Fig. 10.6. The GUI contains four
plots corresponding to the time-tags from each channel of the time tagger (TDC).
Each plot depicts a histogram of the time-tags relative to the clock signal for a
given acquisition time that is set by the user. The histograms update after each
acquisition time for live visualization of photon time-of-arrival statistics. The GUI
supports tunable coincidence windows for up to 10 qubits per clock cycle, enabling
reconfigurable coincidence logic. Coincidences can be accumulated over selected
coincidence windows for an acquisition time set by the user. All detection events are
recorded to a MySQL database after each acquisition time, allowing for automated
data collection, real-time monitoring, and big data storage accessible throughout the
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network over long-term experimental operation.
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Figure 10.6: Graphical User Interface (GUI) used to perform real-time data acquisi-
tion and analysis. The top (bottom) plot corresponds to the electronically-combined
outputs of the detectors at Alice (Bob) and the middle plots correspond to the out-
puts of each detector at Charlie. Each coincidence window is indicated by a pair of
colored bars, which are user-defined and enable tunable temporal filtering.

𝜇𝐴 𝜇𝐵 𝜂𝐴𝑖 𝜂𝐴𝑠 𝜂𝐵𝑠 𝜂𝐵𝑖

(a) 0.019 0.015 0.067 0.10 0.11 0.072
(b) 0.0047 0.0042 0.017 0.048 0.066 0.020
(c) – 0.0046 0.026 0.072 0.076 0.022
(d) 0.0039 – 0.031 0.078 0.076 0.022

Table 10.2: Experimental parameters for the Hong-Ou-Mandel (HOM) and swap-
ping configurations. 𝜇𝐴(𝐵) is the mean photon number of Alice’s (Bob’s) photon
pair source, 𝜂𝐴𝑖 is Alice’s idler path efficiency, 𝜂𝐴𝑠 is Alice’s signal path efficiency,
𝜂𝐵𝑠 is Bob’s signal path efficiency, and 𝜂𝐵𝑖 is Bob’s idler path efficiency. (a) HOM
interference measurements in Sec. 10.3, (b) entanglement swapping measurements
in Sec. 10.3, and entanglement swapping measurements used to test the model in
Sec. 10.4 with (c) 𝜇𝐴 varied while 𝜇𝐵 is fixed and (d) 𝜇𝐵 varied while 𝜇𝐴 fixed.

Experimental characterization
The mean photon numbers of Alice and Bob’s photon pair sources and the path
efficiencies of Alice and Bob’s signal and idler paths for various experimental con-
figurations are reported in Table 10.2. These parameters are substituted into the
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analytical expressions for the HOM and swapping visibilities that are derived in
the next section to generate the theoretical models in Sec. 10.4 and estimate the
photon indistinguishabilities for the HOM and swapping experiments. The mean
photon numbers are determined from the coincidence-to-accidental ratio, and the
path efficiencies (see Fig. 10.1) are determined from the ratio of coincidence to
single-photon detection rates [55]. The path efficiencies include the effects of com-
ponent insertion loss, detection efficiency, and additional loss due to frequency
entanglement and heralding (see Chapter 9). For the entanglement swapping mea-
surements (b-d), the idler path efficiencies are obtained by summing the efficiencies
calculated for each output of the interferometers.

Characteristic function approach
The models for the HOM and entanglement swapping experiments are summarized
in Fig. 10.7a and b, respectively. We follow the approach proposed in Ref. [52],
which has been applied to quantum teleportation in Chapters 8 and 9 and heralded
single photon source experiments in Chapter 3. Using the notation of Chapter 3, the
characteristic function for a Gaussian state of an 𝑁-mode bosonic system is

𝜒(𝜉) = exp
(
−1

4
𝜉𝑇𝛾𝜉 − 𝑖𝑑𝑇𝜉

)
, (10.6)

where 𝜉 ∈ 𝑅2𝑁 , 𝑑 is the displacement vector, and 𝛾 is the covariance matrix. States
that can be described by Eq. 10.6, including the vacuum, coherent, thermal, single-
and two-mode squeezed states, are fully characterized by their displacement vector
and covariance matrix. For a TMSV, the displacement vector is the null vector and
the covariance matrix is given by

𝛾TMSV(𝜇) =
[
A B
B A

]
, (10.7)

A =

[
1 + 2𝜇 0

0 1 + 2𝜇

]
,

B =

[
2
√︁
𝜇(𝜇 + 1) 0

0 −2
√︁
𝜇(𝜇 + 1)

]
,

in block matrix form, where 𝜇 is the mean photon number. For the HOM measure-
ments, the input state is modeled as a tensor product of TMSV states from Alice and
Bob’s sources in the early (e) temporal modes,

|Ψ𝑖𝑛⟩ = |TMSV⟩𝐴,𝑒 |TMSV⟩𝐵,𝑒 ,
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Figure 10.7: Theoretical model setups for a) Hong-Ou-Mandel interference and b)
entanglement swapping. In the setups, 𝐸 and 𝐿 denote the early and late modes,
respectively. 𝜂𝐴𝑖 is Alice’s idler path efficiency, 𝜂𝐴𝑠 is Alice’s signal path efficiency,
𝜂𝐵𝑠 is Bob’s signal path efficiency, and 𝜂𝐵𝑖 is Bob’s idler path efficiency. 𝜏𝐴(𝐵) is a
transmittance accounting for imperfect interferometric visibility of Alice’s (Bob’s)
MI, with 𝜏𝐴(𝐵) = 1/

√
2 corresponding to ideal interferometric interference. 𝜃𝐴(𝐵) is

the phase setting of Alice’s (Bob’s) MI. 𝜏𝐶 is the transmittance of the beamsplitter
at Charlie and 𝜁 is the photon indistinguishability parameter, where 𝜁2 represents
the fraction of modal overlap of the photons interfering at Charlie’s beamsplitter.
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which has the characteristic function,

𝜒𝑖𝑛 (𝜉) = exp
(
−1

4
𝜉𝑇𝛾𝑖𝑛 (𝜇𝐴, 𝜇𝐵)𝜉

)
, (10.8)

𝛾𝑖𝑛 (𝜇𝐴, 𝜇𝐵) = 𝛾TMSV(𝜇𝐴,𝑒) ⊕ 𝛾TMSV(𝜇𝐵,𝑒),

where 𝛾𝑖𝑛 (𝜇𝐴, 𝜇𝐵) is the input covariance matrix and 𝜇𝐴 = 𝜇𝐴,𝑒, 𝜇𝐵 = 𝜇𝐵,𝑒 are
the mean photon numbers for Alice and Bob’s pair sources, respectively. For the
entanglement swapping experiment, the input is modeled as a tensor product of
TMSV states from Alice and Bob’s sources in the early (𝑒) and late (𝑙) temporal
modes,

|Ψ𝑖𝑛⟩ = |TMSV⟩𝐴,𝑒 |TMSV⟩𝐴,𝑙 |TMSV⟩𝐵,𝑒 |TMSV⟩𝐵,𝑙 ,

which has the characteristic function of Eq. 10.8 with input covariance matrix

𝛾𝑖𝑛 (𝜇𝐴, 𝜇𝐵) =𝛾TMSV(𝜇𝐴,𝑒) ⊕ 𝛾TMSV(𝜇𝐴,𝑙) (10.9)

⊕ 𝛾TMSV(𝜇𝐵,𝑒) ⊕ 𝛾TMSV(𝜇𝐵,𝑙),

where we take 𝜇𝐴 = 𝜇𝐴,𝑒 = 𝜇𝐴,𝑙 and 𝜇𝐵 = 𝜇𝐵,𝑒 = 𝜇𝐵,𝑙 . We note that spectral
impurities can be accounted for by modeling the input state with TMSV states in
multiple Schmidt modes (see Chapter 3).

As mentioned in Sec. 10.4, the operations of the experiment up to detection can
be modeled with linear optical transformations on the spatiotemporal input modes.
Linear optics preserve the form of Gaussian characteristic functions, i.e., they map
a Gaussian state onto another Gaussian state, by a symplectic transformation of the
displacement vector and covariance matrix,

𝑑′ = 𝑆𝑇𝑑 (10.10)

𝛾′ = 𝑆𝑇𝛾𝑆, (10.11)

where 𝑆 is a symplectic matrix. In the experiment, all transformations on the
input state, such as Charlie’s BS and the interferometers, can be constructed from
beamsplitter and phase shifter transformations. The symplectic matrix 𝑆BS for a
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beamsplitter is,

𝑆BS(𝑡) =
[
T R
R T

]
, (10.12)

T =

[
𝑡 0
0 𝑡

]
,

R =

[
0 −

√
1 − 𝑡2√

1 − 𝑡2 0

]
,

and the symplectic matrix 𝑆P for a phase shifter is the rotation matrix,

𝑆P(𝜃) =
[
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

]
. (10.13)

Each interferometer is modeled as a phase shifter followed by a beamsplitter that
interferes the early and late idler modes of an EPS. Optical loss is implemented
by mixing an input mode with a virtual vacuum mode through a beamsplitter
transformation with transmittance√𝜂, where 𝜂 is the transmission efficiency. Photon
indistinguishability is also modeled with a beamsplitter transformation as detailed in
Chapter 8, where the indistinguishability parameter 𝜁 is the transmittance of a virtual
beamsplitter that mediates the modal interference of input fields to Charlie’s BS.
The indistinguishability 𝜁2 characterizes the amount of modal overlap of incoming
photons, with 𝜁2 = 1 for photons that are indistinguishable and 𝜁2 = 0 for photons
that are distinguishable in all degrees of freedom.

After constructing the overall symplectic matrix for the experiment 𝑆exp, the co-
incidence probabilities are found in terms of the output covariance matrix 𝛾out =

𝑆𝑇exp𝛾in𝑆exp for the output state 𝜌̂out. Given the output state, the probability for a
measurement outcome with a measurement operator Π̂ is,

Tr[ 𝜌̂outΠ̂] =
(

1
2𝜋

)𝑁 ∫
𝑑𝑥2𝑁 𝜒out(𝑥)𝜒Π (−𝑥), (10.14)

where 𝜒Π (𝑥) is the characteristic function of the measurement operator. For a
threshold detector, the measurement operators are,

Π̂no event = |0⟩ ⟨0| , (10.15)

Π̂event = 𝐼 − Π̂no event, (10.16)

where 𝐼 is the identity matrix. Dark counts can be accounted for by taking |0⟩ ⟨0| →
(1 − 𝜈) |0⟩ ⟨0|, where 𝜈 is the dark count probability of a detector. All coincidence
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probabilities in the experiments can be calculated from Eqs. 10.14-10.16. For
example, the fourfold coincidence probabilities for the fourfold HOM visibility (see
Fig. 10.7a) are calculated as

𝑃5217 = Tr[ 𝜌̂outΠ̂
(4)
HOM], (10.17)

where the measurement operator Π̂ (4)
HOM is,

Π̂
(4)
HOM = (𝐼 (2) − |0⟩ ⟨0|D5) ⊗ (𝐼 (2) − |0⟩ ⟨0|D2)
⊗ (𝐼 (2) − |0⟩ ⟨0|D1) ⊗ (𝐼 (2) − |0⟩ ⟨0|D7). (10.18)

Since the vacuum state has a Gaussian characteristic function, Eq. 10.14 reduces to
linear combinations of Gaussian integrals that simplify using,

𝑇𝑟 [ 𝜌̂out |0⟩ ⟨0|⊗𝑁 ] =
2𝑁√︃

det(𝐼 (𝑁) + 𝛾 (𝑁)out )
, (10.19)

where 𝑁 is the number of modes being measured, |0⟩ ⟨0|⊗𝑁 = |0⟩ ⟨0| ⊗ · · · ⊗ |0⟩ ⟨0|
denotes the tensor product of the vacuum operator over the 𝑁 modes, 𝐼 (𝑁) is the 𝑁
by 𝑁 identity matrix, and 𝛾 (𝑁)out is the reduced output covariance matrix obtained by
tracing all modes but those that are measured.

The coincidence probabilities used to compute the HOM and entanglement swapping
visibilities are found from Eqs. 10.14 and 10.19 in terms of determinants of the
covariance matrix of output state prior to detection. We obtain a 16 by 16 and
32 by 32 covariance matrix for the output states of the HOM and entanglement
swapping models, respectively, yielding analytical expressions with a large number
of terms. For simplification, we set the dark count rates, which had a negligible
effect in the experiments, to zero and focus on the impact of multiphoton events
and photon indistinguishability. We also set ideal transmittances of 1/

√
2 for the

beamsplitters at Charlie and inside the interferometers. The impact of imperfect
beamsplitter transmittances on entanglement visibility is analyzed in Chapter 5 in
this formalism.
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Hong-Ou-Mandel interference model

For the HOM model, the twofold (𝑉 (2)
HOM), threefold (𝑉 (3𝐴)

HOM, 𝑉 (3𝐵)
HOM), and fourfold

(𝑉 (4)
HOM) HOM visibilities are calculated as,

𝑉
(2)
HOM =

𝑃21(𝜁 = 0) − 𝑃21(𝜁 = 𝜁max)
𝑃21(𝜁 = 0) , (10.20)

𝑉
(3𝐴)
HOM =

𝑃521(𝜁 = 0) − 𝑃521(𝜁 = 𝜁max)
𝑃521(𝜁 = 0) , (10.21)

𝑉
(3𝐵)
HOM =

𝑃217(𝜁 = 0) − 𝑃217(𝜁 = 𝜁max)
𝑃217(𝜁 = 0) , (10.22)

𝑉
(4)
HOM =

𝑃5217(𝜁 = 0) − 𝑃5217(𝜁 = 𝜁max)
𝑃5217(𝜁 = 0) , (10.23)

where 𝑃21(𝜁) is the twofold coincidence probability, 𝑃521(𝜁) and 𝑃217(𝜁) are the
threefold coincidence probabilities, and 𝑃5217(𝜁) is the fourfold coincidence prob-
ability. In Eqs. 10.20-10.23, 𝜁 = 0 and 𝜁 = 𝜁max correspond to maximum photon
distinguishability and indistinguishability, respectively. For identical mean photon
numbers 𝜇 = 𝜇𝐴 = 𝜇𝐵 and identical path efficiencies 𝜂, the analytical expressions
for the HOM visibilities are,

𝑉
(2)
𝐻𝑂𝑀

=
8𝜁2

max(1 + 𝜂𝜇)2(
6 + 6𝜂𝜇 + 𝜂2𝜇2) (

4 + 4𝜂𝜇 +
(
1 − 𝜁2

max
)
𝜂2𝜇2) , (10.24)

𝑉
(3𝐴)
HOM = 1 −

[
1 + 𝜂𝜇 + 𝜂2𝜇2

(1 + 𝜂𝜇)2 + 1
(1 + 𝜂𝜇)

(
−1 − 2𝜂𝜇 + 𝜂2𝜇

) (10.25)

+ 8
−4 − 4𝜂𝜇 +

(
−1 + 𝜁2

max
)
𝜂2𝜇2

+ 8
2(1 + 𝜂𝜇)

(
2 + 𝜂𝜇 + (−1 + 𝜂)𝜂𝜇

(
−2 +

(
−1 + 𝜁2

max
)
𝜂𝜇

) ) ]/[
1 + 𝜂𝜇 + 𝜂2𝜇2

(1 + 𝜂𝜇)2 − 8
(2 + 𝜂𝜇)2 + 8

(2 + 𝜂𝜇)
(
2 + 3𝜂𝜇 − 𝜂2𝜇

)
+ 1
(1 + 𝜂𝜇)

(
−1 − 2𝜂𝜇 + 𝜂2𝜇

) ] ,
𝑉

(3𝐵)
𝐻𝑂𝑀

= 𝑉
(3𝐴)
𝐻𝑂𝑀

, (10.26)
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𝑉
(4)
𝐻𝑂𝑀

= 1 −
[
1 + 2

(1 + 𝜂𝜇)2 − 2
1 + 𝜂𝜇 + −1 + 𝜂(−3 + 2𝜂)𝜇

(1 + 𝜂𝜇) (−1 + (−2 + 𝜂)𝜂𝜇)2

+ 8
−4 + 𝜂𝜇(−4 + (1 + 𝜁2

max)𝜂𝜇)
+ 16

4 + 𝜂𝜇(8 − 2𝜂 + (3 + 𝜁2
max(−1 + 𝜂) − 𝜂)𝜂𝜇)

+ 8
(2 + 𝜂𝜇(3 − 𝜁max) + 𝜂2𝜇(𝜁max − 1)) (−2 − 𝜂𝜇(3 + 𝜁max) + 𝜂2𝜇(𝜁max + 1))

]/
[

1 + 𝜂2𝜇2

(1 + 𝜂𝜇)2 − 8
(2 + 𝜂𝜇)2 − 8

(−2 + (−3 + 𝜂)𝜂𝜇)2 − 16
(2 + 𝜂𝜇) (−2 + (−3 + 𝜂)𝜂𝜇) +

1
(−1 + (−2 + 𝜂)𝜂𝜇)2 + 2

(1 + 𝜂𝜇) (−1 + (−2 + 𝜂)𝜂𝜇)

]
. (10.27)

Entanglement swapping model

For the entanglement swapping model, the entanglement swapping visibility is
calculated as,

𝑉SWAP =
𝑃1467(𝜃𝐴 = 0, 𝜃𝐵 = 0) − 𝑃1467(𝜃𝐴 = 𝜋, 𝜃𝐵 = 0)
𝑃1467(𝜃𝐴 = 0, 𝜃𝐵 = 0) + 𝑃1467(𝜃𝐴 = 𝜋, 𝜃𝐵 = 0) , (10.28)

where 𝑃1467(𝜃𝐴, 𝜃𝐵) is the fourfold coincidence probability, corresponding to the
coincidence rate of Alice and Bob conditioned on the BSM, and 𝜃𝐴(𝐵) is the phase
setting for the interferometer at Alice (Bob). For identical mean photon numbers
𝜇 = 𝜇𝐴 = 𝜇𝐵, unit path efficiencies, and perfect indistinguishability 𝜁 = 1, the
analytical expression for the entanglement swapping visibility is,

𝑉SWAP =

[
− 4

4 + 12𝜇 + 13𝜇2 + 6𝜇3 + 𝜇4 + 16
16 + 48𝜇 + 48𝜇2 + 16𝜇3

]/
[
2 + 4

(1 + 𝜇)2 − 8
1 + 𝜇 − 16

2 + 5𝜇 + 4𝜇2 + 𝜇3 + 4
4 + 12𝜇 + 13𝜇2 + 6𝜇3 + 𝜇4

+ 32√︁
16 + 56𝜇 + 73𝜇2 + 42𝜇3 + 9𝜇4

+ 16
16 + 48𝜇 + 48𝜇2 + 16𝜇3

]
. (10.29)

HOM interference visibility
The HOM visibilities as a function of mean photon number (𝜇 = 𝜇𝐴 = 𝜇𝐵) and
photon indistinguishability (𝜁2) are shown in Fig. 10.8 and is shown in Fig. 10.9,
respectively. From comparison of the experimental HOM visibilities of Fig. 10.3
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with the models in Fig. 10.9, we find indistinguishabilities of 𝜁2 = 0.22 ± 0.01
for the twofold HOM visibility, 𝜁2 = 0.55 ± 0.03 for the threefold HOM visibility
conditioned on Alice’s idler photon, 𝜁2 = 0.59 ± 0.03 for the threefold HOM
visibility conditioned on Bob’s idler photon, and 𝜁2 = 0.92 ± 0.02 for the fourfold
HOM visibility measurements. Notice that the indistinguishability increases with
the number of coincidentally detected photons. As discussed in previous analyses
of quantum teleportation (see Chapter 9), this is due to frequency entanglement of
the photon pairs and spectral filtering. Filtering and detection of the idler photon
reduces the number of spectral modes that are correlated with the signal, hence
fourfold detection better approximates single mode behavior.

CQNET/FQNET 2023

CQNET/FQNET 2023

CQNET/FQNET 2023

Figure 10.8: Hong-Ou-Mandel (HOM) visibilities as a function of mean photon
number. The solid lines are the theoretical models for the fourfold HOM visibility
(green), threefold HOM visibilities (yellow), and twofold HOM visibility (blue)
with identical mean photon numbers (𝜇 = 𝜇𝐴 = 𝜇𝐵), unit path efficiencies, and
unity indistinguishability.



248

CQNET/FQNET 2023

CQNET/FQNET 2023

CQNET/FQNET 2023a) b) c)

Figure 10.9: Hong-Ou-Mandel (HOM) visibilities as a function of indistinguisha-
bility. The solid lines are the models for the fourfold HOM visibility (red), threefold
HOM visibility conditioned on Bob (green), threefold HOM visibility conditioned
on Alice (green), and twofold HOM visibility (blue) for the experimentally char-
acterized path efficiencies and mean photon numbers. The data are indicated with
circular markers.

Taylor expansion

The HOM visibility expressions to lowest order of the multivariate Taylor expansion
in 𝜇𝐴, 𝜇𝐵 are,

𝑉
(2)
HOM ≈ 𝜂𝑠,𝐵𝜇𝐵/𝜂𝑠,𝐴𝜇𝐴

1 + 𝜇𝐵𝜂𝑠,𝐵/𝜇𝐴𝜂𝑠,𝐴 + (𝜇𝐵𝜂𝑠,𝐵/𝜇𝐴𝜂𝑠,𝐴)2 𝜁
2, (10.30)

𝑉
(3𝐴)
HOM ≈ (𝜂𝑠,𝐵𝜇𝐵/𝜂𝑖,𝐴𝜇𝐴)

(2 − 𝜂𝑠,𝐴) + (𝜂𝑠,𝐵𝜇𝐵/𝜂𝑖,𝐴𝜇𝐴)
𝜁2, (10.31)

𝑉
(3𝐵)
HOM ≈ 1

1 + (2 − 𝜂𝑠,𝐵) (𝜂𝑖,𝐵𝜇𝐵/𝜂𝑠,𝐴𝜇𝐴)
𝜁2, (10.32)

𝑉
(4)
HOM ≈ 𝜁2. (10.33)

Consider the upper bounds of Eqs. 10.30-10.33 for ideal photon indistinguishability,
𝜁2 = 1. The maximum twofold HOM visibility is 1/3 at 𝜂𝑠,𝐵𝜇𝐵 = 𝜂𝑠,𝐴𝜇𝐴, as
expected for the interference of two thermal states. The threefold visibility 𝑉 (3𝐴)

HOM
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heralded on Alice approaches unity for 𝜂𝑠,𝐵𝜇𝐵 ≫ 𝜂𝑖,𝐴𝜇𝐴, and the threefold visibility
𝑉

(3𝐵)
HOM heralded on Bob approaches unity for 𝜂𝑠,𝐴𝜇𝐴 ≫ 𝜂𝑖,𝐵𝜇𝐵. The maximum

fourfold visibility is unity.

Optimization of HOM visibility

The complete HOM visibility expressions, without approximation, are plotted for
identical 𝜇 = 𝜇𝐴 = 𝜇𝐵 in Fig. 10.8 and various 𝜇𝐴 and 𝜇𝐵 in Fig. 10.10 for unit
photon indistinguishability and path efficiencies. The behaviors of the plots extend
those produced in the previous analysis of quantum teleportation in Chapter 9.

For the case of two-fold HOM interference, the visibility is maximized for the case
in which mean photon numbers of the two input thermal fields match. For low mean
photon number, the maximum visibility is 1/3, which corresponds to 𝜇𝐴 = 𝜇𝐵, and
is the global maximum. This is consistent with the linear and symmetric ridge-
like topography in Fig. 10.10a. The maximum value is not unity due to 𝑛 = 2
photon states and vacuum input into the beamsplitter for 𝜇𝐴, 𝜇𝐵 ≪ 1. For mean
photon numbers approaching one and beyond, the maximum visibility is reduced
and the range of mean photon numbers to maximize the visibility increases due to
interference from of higher photon number terms.

Due to heralding, the three-fold HOM visibility plots in Fig. 10.10b and c have a
plateau-like topography which extend the range of mean photon numbers that allow
reaching maximum interference visibility. The theoretical maximum visibility is
unity also due to heralding. In the case of conditional detection of photons in Alice
idler mode (Fig. 10.10b), the threshold at 𝜇𝐵 ∼ 1 is due to 𝑛 = 2 events from
𝜇𝐵 interfering with heralded single photons and reducing the maximum visibility.
Provided 𝜇𝐵, 𝜇𝐴 ≪ 1, the visibility is maximized independent of the probability
of generating a photon in Bob’s signal mode because a single photon is always
in Alice’s signal mode and three-fold detection is performed. In the case 𝜇𝐴 is
increased and starts to approach 𝜇𝐵, the relative probability of heralding a multi-
photon term in Alice’s signal mode increases, which decreases the visibility, and
leads to the threshold topography along the diagonal. The visibility is not maximized
for 𝜇𝐴 = 𝜇𝐵, in this case reaching up to 1/2 (see Fig. 10.8), because heralding
increases the effective mean photon number of Alice’s signal mode. In this case,
a lower value of 𝜇𝐴 is required to reach maximum visibility compared to two-fold
HOM interference, effectively shifting the ridge to the left in Fig. 10.10b compared
to that in Fig. 10.10a. Note that the gradient is smaller at 𝜇𝐵 ∼ 1 due to the presence
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of a single photon in Alice’s signal mode. This renders the contributions of higher
order terms to be less detrimental to the visibility than along the diagonal where
effective mean photon numbers are balanced, and higher order terms contribute
in both Alice and Bob’s signal mode. The same arguments apply to explain the
topography in Fig. 10.10c in which Bob’s idler is detected. Overall, the difference
in number distributions explains the symmetry breaking around the diagonal.

In the case of four-fold detection, the range of mean photon numbers that yield
maximum visibility is extended further since both Alice and Bob herald single
photons at the beamsplitter. Since both Alice and Bob detect their idlers, the plot in
Fig. 10.10d is symmetric about the diagonal and has a topography akin to combining
both three-fold plots together. The small-gradient thresholds remain because the
effective number distributions that are heralded are the same as the three-fold case.
In the case of high mean photon numbers, matching of the effective mean photon
number is required to maximize until higher number terms dominate at beyond
𝜇𝐴 = 𝜇𝐵 = 1.

Entanglement swapping visibility
The entanglement swapping visibilities as a function of mean photon number and
indistinguishability are shown in Fig. 10.11 a) and b), respectively. For the
entanglement swapping measurement in Fig. 10.4, the average swapping visi-
bility of ⟨𝑉swap⟩ = 83.1 ± 5.5% corresponds to a photon indistinguishability of
𝜁2 = 0.86 ± 0.06. In Fig. 10.11c, we plot the lower bound of Eq. 10.5 per
sifted key rate as a function of indistinguishability for 𝜅 = 1.22, 𝑒𝑡 = 0.011,
and 𝑒𝑝 = (1 − 𝑉swap)/2, where 𝑉swap is the swapping visibility model for the
QKD error rate measurement reported in Table 10.1. The experimental secret key
rate 𝑅/𝑅𝑠 = 0.50+0.18

−0.14 bits per sifted bit corresponds to an indistinguishability of
𝜁2 = 0.87+0.09

−0.10. For completely indistinguishable photons and the same experi-
mental parameters as the measurement in Fig. 10.4 (see Table. 10.2b), the model
predicts an swapping visibility of 96.5%, corresponding to a swapping fidelity of
97.4% and secret key rate of 0.87 bits per sifted bit.
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C h a p t e r 11

PICOSECOND SYNCHRONIZATION SYSTEMS FOR
QUANTUM NETWORKS

This chapter includes the work published as:

[1] Raju Valivarthi, Lautaro Narváez, Samantha I. Davis, Nikolai Lauk, Cristián
Peña, Si Xie, Jason P. Allmaras, Andrew D. Beyer, Boris Korzh, Andrew
Mueller, et al. “Picosecond synchronization system for quantum networks.” In:
Journal of Lightwave Technology 40.23 (2022), pp. 7668–7675.

[1] Keshav Kapoor, Si Xie, Joaquin Chung, Raju Valivarthi, Cristián Peña, Lautaro
Narváez, Neil Sinclair, Jason P. Allmaras, Andrew D. Beyer, Samantha I. Davis,
et al. “Picosecond synchronization system for the distribution of photon pairs
through a fiber link between Fermilab and Argonne National Laboratories.” In:
IEEE Journal of Quantum Electronics 59.4 (2023), pp. 1–7.

11.1 Introduction
Long-distance quantum networks require distribution of qubits encoded into indi-
vidual photons. For deployed networks, photons must be transmitted using low-loss,
high-bandwidth, and practical channels, such as fiber optics cables. Ideally, photons
must also be generated and detected at high rates, for instance using modulated lasers
and high-timing resolution (low-timing jitter) nanowire detectors, respectively. The
realization of such networks is at odds with environment-induced variations in the
length of fiber optics cables. Since photons are identified by recording their times
of generation and detection, each with respect to a local (node-based) clock, such
variations can lead to misidentification of photons. To avoid this, the variations can
be accounted for by adjusting the phases of each local clock based on a centrally
located primary clock. This is accomplished by distributing strong optical pulses
to the nodes, as conceptualized by the diagram in Fig. 11.1. These pulses can be
distributed either separately in parallel fibers or jointly through the same fiber that
is carrying the single-photon level quantum signal. This type of clock distribution
method, which has been exploited in previous quantum networking demonstrations
[1, 2, 3, 4, 5, 6], allows synchronization between all local clocks, and hence identi-
fication of photons throughout the network. Importantly, this method enables oper-
ation of the network at a high clock-rate and the possibility to perform linear-optic
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Figure 11.1: Concept of a clock distribution system for a three-node quantum
network. A clock is used to generate pulses (top hats) at a central node (node 1) that
are distributed to end nodes (nodes 2 and 3) by fiber channels (grey lines) where
they are detected (DET) and used to lock the phase of clocks at the end nodes.
Simultaneously, light (Gaussians) from a photon pair source (PPS) at the central
node is directed into the same fiber towards single photon detectors (SPDs) at the
end nodes. Data acqusition (DAQ) systems record the arrival times of the photons
with respect to the phase of the clocks at the end nodes, thereby ensuring the clocks
are synchronized with the photons.

Bell-state measurements based on two-photon interference, which requires precise
synchronization of photons. Using a single fiber for both the clock synchronization
and quantum signals makes better use of the limited optical fiber infrastructure that
can be employed for quantum communication.

The challenge with this setting is ensuring that the strong optical pulses used for
synchronization do not introduce noise that reduces the fidelity of the transmitted
qubits. The leading source of noise in optical fiber channels is due to off-resonant
Raman scattering of the clock pulses, which produces significantly more red-shifted
than blue-shifted light [7]. Typical methods to mitigate this involve strong temporal
and spectral filtering [8] or using photons that are significantly blue shifted from
the clock pulses [1]. Accordingly, there is little work to investigate the role of the
Raman noise when photons are red-shifted from the clock pulses and both are in
the same fiber, in particular if the photons and the clock pulses are at wavelengths
within the standard fiber telecommunication windows, and if such noise prohibits
reaching ps-scale timing resolution of the clock distribution system.

In Section 11.2, we develop a picosecond-level clock synchronization system at
Caltech and demonstrate entanglement distribution over optical fiber alongside a
coexisting classical channel for optical clock distribution. We characterize the ef-
fect of noise sources, such as Raman scattering and dark counts, on the fidelity of
transmitted entangled qubits over the network. In Section 11.3, we deploy the system
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in a real-world fiber network with remote nodes at Fermi National Accelerator Lab-
oratory (FNAL) and Argonne National Laboratory (ANL). We demonstrate, for the
first time, picosecond-scale clock synchronization between national laboratories over
metropolitan distances, achieving 2 ps synchronization of remote nodes at FNAL
and ANL. This work is a crucial step for implementing advanced entanglement-
based protocols, such as MDI-QKD and quantum repeaters, across metropolitan
regions for the proposed quantum internet connecting DOE laboratories [9].

11.2 Picosecond synchronization system
First, we demonstrate a three-node, all-fiber, quantum network at the CQNET site
(see Sec. 7.2 in Chapter 7) that is supported by a low-noise, scalable, and auto-
mated clock distribution system. This is realized by distributing photon pairs in
the telecommunication C-band (1.5 𝜇m) simultaneously with strong optical “clock”
pulses in the telecommunication O-band (1.3 𝜇m) in the same fiber. Specifically,
light is distributed from a central node over two 11 km-length fibers to two end
nodes. The pulses used for clock distribution are created by bias switching a laser
diode whereas the pulses generating the photon pairs through spontaneous para-
metric down-conversion (SPDC) are carved from a continuous-wave laser by a
Mach-Zehnder modulator. Our setup uses in-house, high-bandwidth, and scalable
electronics to generate 3.7 V (peak-to-peak) pulses having near-Gaussian distribu-
tions with durations as low as 47 ps and sub-ps timing jitter. We quantify the effect
of Raman scattering by measuring the coincidence-to-accidental ratio (𝐶𝐴𝑅) of the
distributed photon pairs using a free-running data acquisition and control system.
We find that the clock distribution system reduces the 𝐶𝐴𝑅 from 77 ± 14 to 42 ± 2,
which is still sufficient for high-fidelity qubit distribution. Furthermore, we observe
only 2 ps of timing jitter (over 1 minute of integration) between clocks at the central
and end nodes, suggesting our method can be used for high-rate networks.

Experimental setup
Our three-node quantum network and corresponding synchronization system is
schematized in Fig. 11.2 and, other than the custom electronics and single-photon
detectors, consists of fiber-based and off-the-shelf components. The central node
consists of a photon pair source (PPS) operating at the telecommunication C-band
wavelength of 1536 nm and two transmitters (Tx1, Tx2) generating clock pulses
at the telecommunication O-band wavelength of 1310 nm. By way of wavelength
division multiplexer/demultiplexers (MUX/DEMUXs), the clock pulses and single
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Figure 11.2: Schematic of fiber-based three-node quantum network and synchro-
nization system at Caltech. See main text for description. Clock pulses are indicated
by top hats whereas grey and red Gaussian-shaped pulses indicate light of 1536 nm
and 768 nm wavelength, respectively. The loss contributions from each fiber spool
is 2.26 dB and 2.8 dB, respectively, whereas each WDM and FBG adds 2 dB and 6
dB of loss, respectively.

photons are directed into fibers and distributed to end nodes via 11 km-length
spools of single-mode fiber. At the end nodes, the clock pulses and photon pairs
are separated using DEMUXs and subsequently detected (Rx1, Rx2). As described
in detail below, we ensure the photon pair generation and detection events are
synchronized by (i) generating a photon pair synchronously with a clock pulse and
(ii) recording the time between the detection of the clock pulse and the individual
photon at each end node.

Clock distribution is seeded by a 200 MHz voltage oscillator (AnyClockTx) at
the central node. It generates 2.5 ns-duration pulses that are used to bias switch
two O-band laser diodes (O-LASs), generating optical clock pulses of similar du-
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ration which are subsequently attenuated to an average power of 0.25 mW. This
setup is indicated by Tx1 and Tx2 in Fig. 11.2. Synchronous with the optical
clock pulse generation, AnyClockTx creates a third pulse which is shortened to
a duration as low as 47 ps (PUSH) and power-amplified by up to 28 dB (AMP)
using customized electronics, then directed to a 20 GHz-bandwidth fiber-coupled
Mach-Zehnder modulator (MZM) within the PPS setup. The pulse amplitudes
approximately correspond to the 𝜋-voltage of the MZM. The PPS setup contains a
C-band laser (C-LAS) emitting continuous-wave light of 1536 nm wavelength that is
modulated using the MZM to create 74 ps-duration optical pulses with an extinction
ratio of 28 dB at a (clock-synchronized) repetition rate of 200 MHz. After passing
a 90:10 beam splitter used for monitoring (POM) the stability of the MZM, these
pulses are amplified by an erbium-doped fiber amplifier (EDFA), producing pulses
with average power of 100 mW, and then directed to a fiber-packaged periodically
poled lithium niobate (PPLN) waveguide which up-converts the light to 768 nm
wavelength. Next, residual 1536 nm light is removed using a band-pass filter (BPS)
and the pulses are directed to a second PPLN waveguide configured to produce
1536 nm-wavelength photon pairs by Type-II SPDC. A fiber-based polarizing beam
splitter (PBS) separates each photon from the pair into different fibers, where they
are each directed to the MUXs, and combined with the optical clock pulses in the
fiber spools.

At the end nodes, after passing the DEMUXs, the individual photons are filtered
by fiber Bragg gratings (FBGs), by way of circulators (CIRC), to a bandwidth of
2.5 GHz and detected using cryogenically cooled superconducting nanowire single
photon detectors (SNSPDs) with 50 ps timing jitter (PD1 and PD2). The electrical
pulses generated by the SNSPDs are directed to time-to-digital converters (TDC1,
TDC2). The optical clock pulses are received by 200 MHz-bandwidth amplified
photodiodes (REC) which generate electrical pulses that are amplified (AMP) by
15 dB using scalable custom electronics. These pulses adjust the phase of 200 MHz
voltage oscillators (AnyClockRx1, AnyClockRx2) at the end nodes which produce
pulses that are detected by the TDCs. The TDCs then record the time difference
between the electrical pulses generated by the SNSPDs and the oscillators to verify
the synchronization. This time difference is logged using a scalable data acquisition
and monitoring system (indicated in Fig. 11.2) that enables uninterrupted quantum
networking for an extended time duration (>days).
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Scalable and high-bandwidth custom electronics
Pulsed quantum networking experiments typically use either mode-locked lasers
[3] or laser diodes and modulators, such as MZMs, driven by electrical pulses
generated from arbitrary waveform generators [10] and off-the-shelf multi-purpose
amplifiers [11] (see Chapters 8 and 10). These approaches are expensive, bulky,
and not scalable to multi-node quantum networks. We address this shortcoming by
in-house developing custom pulse (duration) shorteners and amplifiers, referred to
as Picoshort and Picoamp modules, respectively, that shape electrical pulses from
the AnyClockTx oscillator. The resulting pulses are used to drive the MZM to its
𝜋-voltage, producing high-extinction pulses (>20 dB) for the PPS. Short-duration
(<100 ps) pulses allow the possibility of measuring high signal-to-noise ratios, the
ability to create time-bin qubits in a single clock event (by splitting the pulse into
two), and the realization of photon pairs with high spectral purity. We also use a
Picoamp to increase the output voltage of the REC photodiodes for compatibility
with the AnyClockRx oscillators.

CQNET/FQNET 2021

Figure 11.3: Coincidence histogram with the clock distribution enabled and dis-
abled. The small time delay between the two histograms is due a small difference
in trigger voltage threshold. Inset: Coincidence histogram with a log vertical scale
reveals the Raman noise from the clock pulses.
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Figure 11.4: Variation of the time difference between the arrival of clock pulses at
Rx1 and Rx2 over 7 h. The maximum time difference is 5 ps due to fiber length
variations. Inset (left): histogram of photon pair correlations without the clock
system enabled. Inset (right): histogram of the time difference over a 900 s time
scale indicates a timing jitter of 2 ps.

Results
We characterize our quantum network setup by distributing photon pairs both with
and without the clock distribution enabled, and measure the effect of the Raman
noise from the clock pulses. The role of noise is captured by the 𝐶𝐴𝑅 of the photon
pairs,𝐶𝐴𝑅 = 𝐶/𝐴, where, in the absence of noise,𝐶 corresponds to the coincidence
detection rate of photons originating from the same event, whereas 𝐴 corresponds
to the coincidence detection rate of photons originating from different events. Note
that in this context, the𝐶𝐴𝑅 is equivalent to the cross-correlation function 𝑔(2) [12].
Dark counts and Raman scattering can reduce 𝐶𝐴𝑅 as a noise detection event may
be recorded instead of a photon. Our method is well-suited for quantum networks
as channel loss ensures accidental coincidences. Our PPS produces a pair with a
probability of 1% (∼ 1/𝐶𝐴𝑅 as measured at the output of the PPS) per pulse [13].
Channel loss, calculated by taking the ratio of the coincidence rates to the single
photon detection rates [13], from PPLN waveguide to the SNSPDs are 24 dB and
26 dB, which are equivalent to ∼120 km and ∼130 km lengths of single-mode fiber,
respectively. We measure the arrival time difference of SNSPD detection events at
Rx1 and Rx2 over 5 minutes, both with and without the clock pulses, compiling all
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events into histograms, see Fig. 11.3. We sum the detection events over a 200 ps
interval around the peak at zero time delay to calculate coincidences (𝐶), whereas
the average number of detection events in a 200 ps interval around each of the
accidental peaks is used to determine the accidentals (𝐴). The measurements yield
a𝐶𝐴𝑅 of 77±12 without, and a𝐶𝐴𝑅 of 42±2 with, the clock distribution enabled,
respectively, which are both well above the classical limit of𝐶𝐴𝑅 = 2. To place our
results into context for qubit distribution, if these photon pairs were to be time-bin
entangled, e.g. using the approach demonstrated in Chapters 8 and 10, and if no
other imperfections play a role, the measured reduction of 𝐶𝐴𝑅 from the Raman
noise suggests a reduction of fidelity 𝐶𝐴𝑅/(𝐶𝐴𝑅 + 1) [14] from 99% to 98% or
the same reduction in the entanglement visibility (𝐶𝐴𝑅 − 1)/(𝐶𝐴𝑅 + 1) [15]. This
visibility is well-above the 1/3 required for non-separability of a Werner state [16]
and the non-locality bound of 1/

√
2 [17]. Thus, the noise introduced by our clock

distribution system plays a minimal role in our quantum network.

Importantly, we also determine the timing jitter of our clock distribution method,
which sets an upper-bound on the rate of the quantum network. To compare the
arrival time of the clock pulses at Rx1 and Rx2 (after the AnyClockRx1 and Any-
ClockRx2 oscillators), we use an oscilloscope to measure a timing jitter of 2 ps over
a timescale of 60 s, and a time difference that slowly drifts by 5 ps over 7 h owing to
fiber length variations, see Fig. 11.4. Note that we use an oscilloscope because the
current configuration of the TDC adds up to 7 ps timing jitter, but with a standard
upgrade this can be as low as 3 ps [18]. Since the clock pulses are attenuated to
ensure a minimal reduction in 𝐶𝐴𝑅, our measurement is limited by the noise floor
of detectors only. Nevertheless, the timing jitter of our clock distribution currently
sets an upper-bound on our distribution rate of ∼ 300 MHz, which is sufficient
for quantum networks spanning a few hundred kilometers, that is, metro-scale or
inter-city networks. Note that we have also measured the coincidence histogram of
the photon pairs without the synchronization system enabled, finding only classi-
cally correlated noise (see inset of Fig. 11.4), further showing the necessity of our
synchronization system.

11.3 Deployment in a real-world network
Next, we present a demonstration of picosecond-scale synchronization of C-band
photon pairs over deployed fiber optic cables connecting three remote nodes by
distributing the clock pulses in either the telecommunication standard O- or L-
bands. A map of the three-node quantum network is shown in Fig. 11.5 along with
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the approximate paths of the optical fiber links between the nodes. Two of the nodes
are located in the Fermi National Accelerator Laboratory (FNAL) FQNET/IEQNET
site (see Sec. 7.2 in Chapter 7). These include the central node at the Feynman
Computing Center (FNAL-FCC) and one of the end nodes at the D0 Assembly
Building (FNAL-DAB), and are stationed 2 km apart. The third node is located
at the Argonne National Laboratory (ANL) IEQNET site, and is 57 km away from
FNAL-FCC. Each of these nodes are connected with pairs of fibers. The central
node at FNAL-FCC contains a photon pair source as well as a commercial all-optical
telecom switch from Polatis and the end nodes at FNAL-DAB and ANL contain
the superconducting nanowire single photon detectors (SNSPDs). The quantum-
correlated photon pairs are split, and each photon in the pair is sent into one of these
2 km-2 km and 57 km-57 km fiber pairs linking the nodes, corresponding to total
transmission distances of the quantum states of 4 km and 114 km, with 2 km and
57 km of shared quantum-classical coexistence with a clock signal.

Finally, we measure the noise introduced to the quantum information due to quantum-
classical coexistence signals distributed between nodes in our network and find that
in the FNAL-FCC to ANL link, the O- and L-band clocks reduce the coincidence-
to-accidental ratios (𝐶𝐴𝑅) from 51±2 to 5.3±0.4 and 2.6±0.3, respectively. These
measurements demonstrate that our research prototype network is suitable for point-
to-point schemes and for two-photon interference-based teleportation protocols,
representing a notable milestone towards establishing a national research quantum
internet between the U.S. Department of Energy laboratories as envisioned in DOE’s
blueprint for the quantum internet [9].

Experimental setup
Our photon pair source is situated at FNAL-FCC. Using a commercial arbitrary
waveform generator (AWG), short radio-frequency (RF) pulses with widths of 80 ps
and separated by 5 ns are generated, amplified, and used as the input to a fiber-coupled
Mach-Zehnder Modulator (MZM) [10, 19]. Light at 1536 nm wavelength produced
by a continuous wave fiber-coupled laser is directed into the MZM to produce pulsed
light. The pulsed light is directed into an erbium-doped fiber amplifier (EDFA)
and then sent through a periodically poled lithium niobate (PPLN) waveguide to
upconvert the 1536 nm light to 768 nm. A band-pass filter is used to remove any
residual 1536 nm light. A second PPLN waveguide takes the 768 nm light as
input to produce time-correlated photon pairs at the original wavelength of 1536 nm
through Type-II spontaneous parametric down conversion process (SPDC). A fiber-
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Figure 11.5: This image depicts the separation of the nodes in our real-world
network. FNAL-FCC and FNAL-DAB are connected with 2 km of dark fiber and
FNAL-FCC and ANL are connected with 57 km of dark fiber. We keep our master
clock at FNAL-FCC, and distribute the signal to FNAL-DAB and ANL, choosing
the path via an optical switch located at FNAL-FCC. The FNAL nodes are depicted
by the blue rectangles and the ANL node is depicted by the red rectangle.

based polarizing beam splitter separates the photon pair into individual photons,
one of which is directed to a dense wavelength division multiplexer (DWDM) and
multiplexed with the clock signals described in the next subsection. The multiplexed
quantum and classical channels are sent to the optical switch located at FNAL-FCC,
which routes their path to FNAL-DAB or ANL. The other photon of the pair is sent
directly, using a dedicated fiber, to the optical switch and routed to the same node.

At the FNAL-DAB and ANL nodes, the combined quantum and clock channels are
sent through a DWDM de-multiplexer (DEMUX) to separate them. The quantum
channel is filtered by two or three additional DEMUX’s and then a 4 GHz bandwidth
fiber Bragg grating (FBG) filter to isolate the 1536 nm quantum frequency channel
to within a wavelength of 0.03 nm. These filters reduce the effects of dispersion and
improves the indistinguishability of the photons. The FNAL-DAB and ANL nodes
are equipped with two superconducting nanowire single photon detectors (SNSPD)
to detect the incoming photons with timing jitter (resolution) of less than 50 ps. The
SNSPD signals are digitized by commercial time-taggers with timing jitter below
10 ps. A schematic of our network is shown in Fig 11.6.
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Figure 11.6: Schematic for the FQNET picosecond clock synchronization system.
The square pulses represent the clock signal while the grey and red Gaussian-shaped
pulses represent the quantum light and its second harmonic (768 nm), respectively.
The photon pairs are produced at FNAL-FCC and routed either 2 km away to FNAL-
DAB or 57 km away to ANL through software provided with the optical switch [20].

To synchronize the clocks at the FNAL-DAB and ANL nodes with the clock of
the central FNAL-FCC node, we implement the system developed in Section 11.2.
The transmitter (Tx) module consists of an O- (1310 nm) or L-band (1610 nm)
laser diode that is bias switched via 2.5 ns-duration pulses generated by a 200
MHz voltage oscillator. This Tx is used to distribute clock signals from the central
FNAL-FCC node to the FNAL-DAB and ANL nodes on the same fiber that is used
to transmit the single photons. At the FNAL-DAB and ANL nodes, the receiver
(Rx) consists of a 200 MHz-bandwidth photodetector that generates electrical pulses
amplified by a custom-designed 15 dB amplifier.These pulses adjust the phase of
200 MHz voltage oscillator clocks at the FNAL-DAB and ANL nodes which are
used as time references. The time taggers record the time difference between the
electrical signal pulses generated by the SNSPDs and the reference clock signal.
The time differences are logged using a scalable data acquisition and monitoring
system, enabling uninterrupted quantum network operations.
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Results
We characterize the three-node quantum network by measuring the Raman scatter-
ing coefficient (see Ref. [21]), timing jitter of the clock distribution system, and
coincidence-to-accidental ratio (𝐶𝐴𝑅) of photon pairs distributed from FNAL-FCC
to FNAL-DAB and FNAL-FCC to ANL.

We evaluate the drift and timing jitter of the clock synchronization system by
monitoring the time difference between the synchronized local clock and a reference
signal pulse produced by the same 1536 nm laser that is used for the entangled pair
source. The reference signal pulse is modulated by the MZM that is driven by
an AWG synchronized with the master clock at the FNAL-FCC central node, and
subsequently amplified by the EDFA. This reference signal is transmitted along a
fiber parallel to the fiber used to distribute the master clock to the FNAL-DAB and
ANL end nodes. At the end nodes, the reference signal is detected by a fast 20
GHz photodetector and digitized by the time tagger. The time difference between
the synchronized local clock and the reference signal is collected over each second
then plotted in a histogram and long term time drift is monitored through the mean
difference, this drift as well as the representative time difference over a period of
more than 14 hours can be seen in Figure 11.7.

We observe a drift in the mean of about 3 ps over more than 14 hours and a total
jitter of 2.2 ps. This is much less than the 250 ps duration of our photons, which
renders our system applicable for quantum networks including those that rely on
two-photon interference (e.g., Chapters 8 and 10).

We measure the noise introduced by the clock pulses by measuring the reduction
of 𝐶𝐴𝑅 of our time-correlated photon pairs when they are measured locally at the
central FNAL-FCC node compared to when they are distributed over fiber with the
clock pulses. From the central FNAL-FCC node, we send to the FNAL-DAB and
ANL end nodes the O- and L-band clocks multiplexed along the same fiber that
is used to send one of the photons from the correlated pair carrying the quantum
signal as described in the previous sections. On a separate fiber parallel to the
fiber carrying the multiplexed channel, we send the second photon of the correlated
pair. We send clock signals at 0.3 mW power for both the O- and L-bands to the
FNAL-DAB end node, while for the ANL end node we send the O-band clock signal
at 1.8 mW power and the L-band at 0.3 mW power.

In the absence of Raman scattered photons and dark counts, the 𝐶𝐴𝑅 is equivalent
to the cross-correlation 𝑔(2) (0) function, which quantifies the ratio of the detection
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Figure 11.7: Variation of the time difference between the arrival of the reference
and derived clock at ANL over 14 hours. The blue line is the average of the time
difference every 100 seconds, showing the drift in the time difference of the two
clocks. We observe a long term drift of about 3 ps over more than 14 hours, mainly
caused by fiber length fluctuations in the link. The blue shaded region is the RMS
of the time difference during each of those 100 second intervals. Inset: histogram
of the time difference indicates a timing jitter of 2.2 ps.

of correlated photon pairs to non-correlated photon pairs resulting from more than
one photon pair being produced at the pair source [12]. We count all photon pair
detection events within a 450 ps interval around the main coincidence peak to obtain
C, and take the average of the photon pair detection events within a 450 ps interval
around each of the accidental peaks to determine A. The measurement is made over
a period of 5 minutes for the FNAL-DAB end node. Due to higher losses from the
longer distance resulting in lower coincidence rates, it takes 12 hours to make the
analogous measurement for the ANL end node.

In Figure 11.8, we show the time difference distribution for the two detected photons
in a background-free scenario with the photon pairs sent from the central FNAL-
FCC node to the ANL end node and no synchronization clock signal being sent along
the same fiber. The main coincidence peak is clearly visible at the center (Δ𝑡 = 0),
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Figure 11.8: Coincidence histogram for the photon pairs sent to ANL from FNAL-
FCC with the clock distribution disabled.

and the smaller peaks separated by 5 ns are the “accidental” events corresponding
to a detection of one photon from one pair and another photon from preceding or
subsequent pairs. We measure a 𝐶𝐴𝑅 of 51 ± 2 in the background-free scenario.

Next, we sent the photon pairs to the FNAL-DAB and ANL end nodes with the O-
and L-band clock synchronization enabled and multiplexed along the same fiber as
one of the pairs. The time difference distributions of the two detected photons are
shown in Figure 11.9 for the FNAL-DAB and ANL nodes. At the FNAL-DAB end
node we measured a 𝐶𝐴𝑅 of 35 ± 1 with the O-band clock, and 32 ± 1 with the
L-band clock. At the ANL end node we measured a 𝐶𝐴𝑅 of 5.3 ± 0.4 with the
O-band clock, and 2.6 ± 0.3 with the L-band clock. The width of the peaks in our
measurements are limited by timing jitter in our detectors and readout electronics.
We see a reduction in 𝐶𝐴𝑅 as we increase the length of the fiber, but we stay in the
regime where the L-band clock introduces more noise than the O-band clock.

11.4 Discussion and outlook
We have demonstrated a clock-distribution system at the CQNET site for synchro-
nizing remote nodes in metropolitan-scale quantum networks with picosecond-scale
resolution. Despite not constituting the optimal choice of wavelength, our telecom-
munication O-band synchronization system introduces little noise into our telecom-
munication C-band quantum network. The low noise is partially due to the strong
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Figure 11.9: Coincidence histograms for the photon pairs sent to FNAL-DAB from
FNAL-FCC with the a) 1310 nm and b) 1610 nm clock distribution enabled, and
coincidence histograms for the photon pairs sent to ANL from FNAL-FCC with the
c) 1310 nm and d) 1610 nm clock distribution enabled.

spectral filtering of the photons at the FBGs – a required step to ensure the pho-
tons are purified, i.e., spectral correlations are removed. This renders the photons
suitable for two-photon interference, as required for implementations of advanced
network protocols, e.g., based on quantum teleportation (Chapters 8 and 10). Note
that the 768 nm light remaining after the SPDC step is far off-resonant from the
1536 nm photons, and is partially filtered by the long fiber spools, MUX/DEMUX
filters, fiber Bragg gratings, and SNSPD devices, thus it does not contribute any
measurable noise to the network. Further reduction of noise in our system can
be afforded by detecting the clock pulses with more sensitive REC detectors, thus
allowing a reduction of the clock pulse intensity. To this end, SNSPDs operating
in the O-band could be used, and would constitute minimal system overhead given
that C-band SNSPDs are already deployed. This would also result in improvements
to the system clock rate as SNSPDs feature timing jitters as low as a few ps [22],
which constitutes an upper-bound of a few hundred GHz to the clock rate (note that
the impact of the dead time of the SNSPDs is negligible due to channel loss).
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Additionally, we deployed our system over a metropolitan-scale optical fiber network
at the FQNET site, demonstrating entanglement distribution with picosecond-level
synchronization of remote nodes at FNAL and ANL connected with up to 57 km of
optical fiber with timing resolution better than 10 ps. The obtained timing resolu-
tion enables quantum sources capable of achieving a repetition rate of the order of
10 GHz, significantly improving the detection rates reported in this study. Further-
more, the clock distribution system can be easily scaled to tens of nodes using very
minimal modifications to the current design. We observe that a 𝐶𝐴𝑅 > 2.0, which
is above the classical limit, is maintained in all the configurations we tested includ-
ing using the 57 km installed fiber link between FNAL-FCC and ANL, which has
increased losses due to fiber splicing and connectors along the real world fiber con-
nection. Comparing the idealized fiber attenuation loss coefficients in the C-band,
our total losses correspond to a transmission of the quantum states over 105 km.
Overall, our three-node quantum network and accompanying synchronization sys-
tem sheds light on the role of noise in quantum networking and constitutes a step
towards practical, as well as high-rate, classical-quantum co-existing networks.

References

[1] Akihiro Tanaka, Mikio Fujiwara, Sae Woo Nam, et al. “Ultra fast quantum key dis-
tribution over a 97 km installed telecom fiber with wavelength division multiplexing
clock synchronization.” In: Opt. Express 16.15 (July 2008), pp. 11354–11360. doi:
10.1364/OE.16.011354.

[2] Yan-Lin Tang, Hua-Lei Yin, Si-Jing Chen, et al. “Field Test of
Measurement-Device-Independent Quantum Key Distribution.” In:
IEEE Journal of Selected Topics in Quantum Electronics 21.3 (2015), pp. 116–
122. doi: 10.1109/JSTQE.2014.2361796.

[3] Raju Valivarthi, Marcelli Grimau Puigibert, Qiang Zhou, Gabriel H Aguilar, Varun
B Verma, Francesco Marsili, Matthew D Shaw, Sae Woo Nam, Daniel Oblak, and
Wolfgang Tittel. “Quantum teleportation across a metropolitan fibre network.” In:
Nature Photonics 10.10 (2016), pp. 676–680.

[4] Qi-Chao Sun, Ya-Li Mao, Si-Jing Chen, Wei Zhang, Yang-Fan Jiang, Yan-Bao
Zhang, Wei-Jun Zhang, Shigehito Miki, Taro Yamashita, Hirotaka Terai, et al.
“Quantum teleportation with independent sources and prior entanglement distribu-
tion over a network.” In: Nature Photonics 10.10 (2016), pp. 671–675.

[5] Raju Valivarthi, Prathwiraj Umesh, Caleb John, Kimberley A Owen, Varun
B Verma, Sae Woo Nam, Daniel Oblak, Qiang Zhou, and Wolfgang Tittel.
“Measurement-device-independent quantum key distribution coexisting with clas-
sical communication.” In: Quantum Science and Technology 4.4 (2019), p. 045002.

https://doi.org/10.1364/OE.16.011354
https://doi.org/10.1109/JSTQE.2014.2361796


273

[6] James Williams, Martin Suchara, Tian Zhong, Hong Qiao, Rajkumar Ket-
timuthu, and Rikuto Fukumori. “Implementation of quantum key distri-
bution and quantum clock synchronization via time bin encoding.” In:
Quantum Computing, Communication, and Simulation. Ed. by Philip R. Hemmer
and Alan L. Migdall. Vol. 11699. International Society for Optics and Photonics.
SPIE, 2021, pp. 16–25. doi: 10.1117/12.2581862.

[7] Iris Choi, Robert J. Young, and Paul D. Townsend. “Quantum key distribution on
a 10Gb/s WDM-PON.” In: Opt. Express 18.9 (Apr. 2010), pp. 9600–9612. doi:
10.1364/OE.18.009600.

[8] KA Patel, JF Dynes, I Choi, AW Sharpe, AR Dixon, ZL Yuan, RV Penty, and AJ
Shields. “Coexistence of high-bit-rate quantum key distribution and data on optical
fiber.” In: Physical Review X 2.4 (2012), p. 041010.

[9] DOE’s Quantum Internet Blueprint. https://www.energy.gov/sites/prod/
files/2020/07/f76/QuantumWkshpRpt20FINAL_Nav_0.pdf.

[10] Tektronix. https://www.tek.com/en/products/arbitrary-waveform-
generators/. Accessed: 2022-03-09.

[11] Shf. https://www.shf-communication.com/products/rf-broadband-
amplifiers/. Accessed: 2022-03-09.

[12] Rodney Loudon. The quantum theory of light. Oxford, 2000.

[13] I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin.
“Time-bin entangled qubits for quantum communication created by femtosecond
pulses.” In: Phys. Rev. A 66 (6 Dec. 2002), p. 062308. doi: 10.1103/PhysRevA.
66.062308.

[14] Hiroki Takesue and Kyo Inoue. “1.5-𝜇m band quantum-correlated photon pair
generation in dispersion-shifted fiber: suppression of noise photons by cooling
fiber.” In: Opt. Express 13.20 (Oct. 2005), pp. 7832–7839. doi: 10.1364/OPEX.
13.007832.

[15] Hiroki Takesue and Kyo Inoue. “Generation of 1.5−𝜇m band time-bin entanglement
using spontaneous fiber four-wave mixing and planar light-wave circuit interferom-
eters.” In: Phys. Rev. A 72 (4 Oct. 2005), p. 041804. doi: 10.1103/PhysRevA.
72.041804.

[16] Reinhard F. Werner. “Quantum states with Einstein-Podolsky-Rosen correlations
admitting a hidden-variable model.” In: Phys. Rev. A 40 (8 Oct. 1989), pp. 4277–
4281. doi: 10.1103/PhysRevA.40.4277. url: https://link.aps.org/doi/
10.1103/PhysRevA.40.4277.

[17] John F. Clauser, Michael A. Horne, Abner Shimony, and Richard A. Holt. “Proposed
Experiment to Test Local Hidden-Variable Theories.” In: Phys. Rev. Lett. 23 (15
Oct. 1969), pp. 880–884. doi: 10.1103/PhysRevLett.23.880.

[18] Home: QuTag. https://www.qutools.com/qutag/. url: https://www.
qutools.com/qutag/.

[19] IxBlue. https://www.ixblue.com/north-america/store/dr-ve-10-mo/.

https://doi.org/10.1117/12.2581862
https://doi.org/10.1364/OE.18.009600
https://www.energy.gov/sites/prod/files/2020/07/f76/QuantumWkshpRpt20FINAL_Nav_0.pdf
https://www.energy.gov/sites/prod/files/2020/07/f76/QuantumWkshpRpt20FINAL_Nav_0.pdf
https://www.tek.com/en/products/arbitrary-waveform-generators/
https://www.tek.com/en/products/arbitrary-waveform-generators/
https://www.shf-communication.com/products/rf-broadband-amplifiers/
https://www.shf-communication.com/products/rf-broadband-amplifiers/
https://doi.org/10.1103/PhysRevA.66.062308
https://doi.org/10.1103/PhysRevA.66.062308
https://doi.org/10.1364/OPEX.13.007832
https://doi.org/10.1364/OPEX.13.007832
https://doi.org/10.1103/PhysRevA.72.041804
https://doi.org/10.1103/PhysRevA.72.041804
https://doi.org/10.1103/PhysRevA.40.4277
https://link.aps.org/doi/10.1103/PhysRevA.40.4277
https://link.aps.org/doi/10.1103/PhysRevA.40.4277
https://doi.org/10.1103/PhysRevLett.23.880
https://www.qutools.com/qutag/
https://www.qutools.com/qutag/
https://www.qutools.com/qutag/
https://www.ixblue.com/north-america/store/dr-ve-10-mo/


274

[20] Polatis. https://www.polatis.com/series_6000_multimode_switch_
all-optical_switching.asp.

[21] Keshav Kapoor, Si Xie, Joaquin Chung, Raju Valivarthi, Cristián Peña, Lautaro
Narváez, Neil Sinclair, Jason P. Allmaras, Andrew D. Beyer, Samantha I. Davis,
et al. “Picosecond synchronization system for the distribution of photon pairs
through a fiber link between Fermilab and Argonne National Laboratories.” In:
IEEE Journal of Quantum Electronics 59.4 (2023), pp. 1–7.

[22] Boris Korzh, Qing-Yuan Zhao, Jason P. Allmaras, et al. “Demonstration of sub-3 ps
temporal resolution with a superconducting nanowire single-photon detector.” In:
Nature Photonics 14.4 (Apr. 2020), pp. 250–255. issn: 1749-4893. doi: 10.1038/
s41566-020-0589-x.

https://www.polatis.com/series_6000_multimode_switch_all-optical_switching.asp
https://www.polatis.com/series_6000_multimode_switch_all-optical_switching.asp
https://doi.org/10.1038/s41566-020-0589-x
https://doi.org/10.1038/s41566-020-0589-x


Part III

Quantum channels for fundamental
physics

275



276

C h a p t e r 12

ENTANGLEMENT AND SPACETIME

Entanglement is a fundamental feature of quantum mechanics, signifying a sharp
departure from classical notions of locality and realism [1]. Its experimental ver-
ification through violations of Bell inequalities [2, 3, 4, 5] has made it central to
both quantum technologies and the foundations of physics. As described in Part II
of this thesis, entanglement is essential to quantum communication protocols such
as teleportation (Chapter 8), entanglement swapping (Chapter 10), measurement-
device-independent quantum key distribution [6] and quantum repeaters [7] that can
enable secure communication, quantum-enhanced sensing, and distributed quantum
processing in a quantum network. In fundamental physics, entanglement continues
to play a central role in debates over the nature of reality, ever since the early days
of quantum theory.

12.1 Foundations of quantum mechanics
In 1935, Einstein, Podolsky, and Rosen (EPR) raised objections to the completeness
of quantum mechanics by proposing a thought experiment in which measurements
are performed on a pair of entangled particles [8]. They reasoned that if a physical
theory allows one to predict the outcome of a measurement on one particle by per-
forming a measurement on its entangled partner, with out disturbing its state, then
the outcome must correspond to a pre-existing “element of reality.” Furthermore, be-
cause the two particles could be far apart, they assumed that no influence could travel
between them faster than light. Taken together, these two assumptions—realism
(that measurement outcomes reflect pre-existing properties) and locality (that no
instantaneous influences exist between distant systems)—formed the basis for their
argument that quantum mechanics must be supplemented by hidden variables. In
the 1960s, Bell’s theorem formalized this reason, stating that any theory satisfying
both locality and realism must obey certain mathematical constraints, known as Bell
inequalities [1]. According to quantum mechanics, maximally-entangled bipartite
states, such as Bell states, violate these inequalities. In the past decade, landmark
experiments demonstrated loop-hole-free violation of Bell inequalities with entan-
gled photon pairs [9, 10], verifying the consequences of quantum mechanics and
dismissing the classical assumption of “local realism.”



277

However, Bell’s theorem does not address a special case of EPR’s original argument
in which a measurement on one particle allows one to predict the state of the other
particle with 100% certainty. Confronting this case requires moving beyond Bell’s
theorem and bipartite entanglement. To this end, Greenberger, Horne, and Zeilinger
(GHZ) introduced a class of multipartite entangled states, known as GHZ states,

|GHZ⟩ = |0⟩⊗𝑁 + 𝑒𝑖𝜙 |1⟩⊗𝑁
√

2
, (12.1)

with the minimal case of 𝑁 = 3 qubits described by |GHZ⟩ = ( |000⟩+𝑒𝑖𝜙 |111⟩)/
√

2.
GHZ showed that such states allow for a contradiction with local realism at the level
of deterministic predictions, providing a stronger refutation of EPR’s assumptions.
Experimental realizations of GHZ states can be used to prove that it is impossible to
construct not only a classical, local-realistic theory of quantum mechanics in general,
but also one that makes deterministic predictions of a system in the sense of EPR.
In Chapter 13, I report our progress on the first experimental generation of tripartite
GHZ states with time-bin qubits, which is particularly suited for implementation
in a quantum network. This work not only opens a path to fundamental tests of
physics, but also advanced networking protocols based on multipartite entanglement
distribution, such as quantum secret sharing [11] and distributed quantum sensing
[12].

12.2 Quantum nature of spacetime
Beyond the foundations of quantum mechanics, entanglement has also emerged as
a key concept in understanding the quantum nature of spacetime. The interplay
between quantum entanglement and the geometry of spacetime has emerged as a
central theme in the quest to reconcile quantum mechanics with general relativity,
particularly through the lens of the anti-de Sitter/conformal field theory (AdS/CFT)
correspondence. In AdS/CFT, spacetime geometry in a (𝑑 +1)-dimensional gravita-
tional theory is encoded in the entanglement structure of a 𝑑-dimensional boundary
quantum field theory. This perspective leads to the idea that spacetime is not funda-
mental, but an emergent property arising from patterns of quantum correlations. A
particularly striking manifestation of this idea is the ER=EPR conjecture, proposed
by Maldacena and Susskind, which posits that entangled pairs (EPR) are dual to
Einstein-Rosen bridges (ER), i.e., wormholes [13]. In this view, quantum entangle-
ment generates geometric connectivity, with multipartite entanglement structures
potentially corresponding to multiboundary wormholes or topologically complex
bulk geometries [14]. These insights suggest a unifying framework where quan-
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tum information is not only a tool for studying gravity but may be the microscopic
substrate from which spacetime itself emerges.

A significant breakthrough in this line of thought came with the discovery that
certain wormhole geometries can be rendered traversable. In the context of the
AdS/CFT correspondence, wormholes can be interpreted as geometries connecting
entangled black holes, such as the eternal black hole dual to the thermofield double
state. However, in general relativity, such wormholes are non-traversable, meaning
that no causal signal or observer can pass from one mouth to the other without
encountering a singularity or violating energy conditions. This limitation arises
due to the averaged null energy condition (ANEC) [15, 16], which prohibits the
negative energy required to keep a wormhole throat open. In 2017, Gao, Jafferis,
and Wall showed that a double-trace deformation, corresponding to a weak coupling
between the two boundaries of an entangled thermofield double state, can lead to a
violation of the ANEC in the bulk, thereby allowing signals to propagate through
the wormhole without violating causality [17]. Remarkably, the resulting process
is formally equivalent to quantum teleportation between entangled systems, with
the traversable geometry offering a dual gravitational description of the underly-
ing protocol. These results suggest that certain quantum communication protocols
may admit gravitational duals, and that spacetime connectivity itself may be under-
stood as a manifestation of quantum entanglement and information flow through an
underlying quantum channel.

In 2019, Gao and Jafferis constructed a traversable wormhole teleportation protocol
within the coupled Sachdev–Ye–Kitaev (SYK) model [18], where a probe inserted
into one side of a thermofield double state reappears on the other after a double-trace
deformation [19]. The SYK model is a many-body system of randomly interacting
Majorana fermions with an emergent conformal symmetry that is holographically
dual to Jackiw–Teitelboim (JT) gravity in nearly-AdS2 spacetime [18]. In the bulk
dual, the protocol corresponds to a signal traversing a dynamically opened wormhole
[20]. In Chapter 14, we demonstrate an experimental realization of this protocol
using a sparsified SYK model on Google’s Sycamore quantum processor. This work
is the first experimental simulation of traversable wormhole dynamics on a quantum
processor, a step in the program of investigating quantum gravity in the lab.
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C h a p t e r 13

GHZ STATES WITH TIME-BIN QUBITS

This chapter includes the work published as:

[1] Samantha I. Davis, Chang Li, Rahaf Youssef, Neil Sinclair, Raju Vali-
varthi, and Maria Spiropulu. “Generation of Time-bin GHZ States.” In:
Optica Quantum 2.0 Conference and Exhibition. Optica Publishing Group, 2023,
QTh4A.7. doi: 10.1364/QUANTUM.2023.QTh4A.7. url: https://opg.
optica.org/abstract.cfm?URI=QUANTUM-2023-QTh4A.7.

13.1 Introduction
Quantum entanglement, one of the unique features of quantum mechanics, is a
key ingredient for several quantum information processing fields including quan-
tum communication, quantum computing, and quantum metrology. Maximally
entangled bipartite states have not only been used for the above mentioned fields
but were also crucial for fundamental tests of physics such as loophole-free tests
of Bell inequalities [1, 2]. Analogous tripartite maximally entangled states have
been proposed, known as Greenberger-Horne-Zeilinger (GHZ) states [3], which are
shown to reject local realism theories without the need to acquire statistics on the
measurements, and have known applications in distributed quantum computing [4]
and multiparty quantum communication [5], such as superdense coding, quantum
secret sharing, and quantum Byzantine agreements. Previous experimental propos-
als have been mostly limited to the polarization degree of freedom [6], until a recent
experimental realization with energy-time entanglement [7]. Here we report our
progress toward the first experimental demonstration of GHZ states with time-bin
qubits1, which are particularly well-suited for practical implementations in quan-
tum networks for long-distance quantum communication and tests of nonlocality.
Moreover, we develop a theoretical model to support the experimental results.

13.2 Entangling time-bin qubits with a switch
As described in Part I of this thesis, Bell pairs of time-bin qubits can be generated
with high-fidelity using nonlinear optical processes such as SPDC. To generate

1At the time this work was conducted, we became aware of concurrent work published indepen-
dently [8].

https://doi.org/10.1364/QUANTUM.2023.QTh4A.7
https://opg.optica.org/abstract.cfm?URI=QUANTUM-2023-QTh4A.7
https://opg.optica.org/abstract.cfm?URI=QUANTUM-2023-QTh4A.7
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Figure 13.1: Setup for generating GHZ states with time-bin qubits. One member
of a Bell pair produced by a entangled pair source (EPS) is interfered with another
time-bin qubit using a 2x2 optical switch. A GHZ state is post-selected using single-
photon detectors (SPDs) after the switch.

higher-order entangled states, we use the scheme proposed in Ref. [9] for entangling
time-bin qubits. We generate a GHZ states by interfering one member of Bell pair
with a third qubit in a 2-by-2 optical switch comprised of a balanced Mach-Zehnder
interferometer (MZI) with a time-varying phase shift. The setup for the protocol is
illustrated in Fig. 13.1.

Consider three qubits initialized in the state,

|Ψ⟩ = |𝜓⟩𝐴 ⊗ |𝜙⟩𝐵𝐶 , (13.1)

|𝜓⟩𝐴 =
1
√

2
( |𝑡1⟩𝐴 + 𝑒𝑖𝜙𝐴 |𝑡2⟩𝐴), (13.2)

|𝜙⟩𝐵𝐶 =
1
√

2
( |𝑡1⟩𝐵 |𝑡1⟩𝐶 + 𝑒𝑖𝜙𝐵𝐶 |𝑡2⟩𝐵 |𝑡2⟩𝐶), (13.3)

where 𝑡1 and 𝑡2 denote the early and late time bins, respectively, and the subscripts
on the states denote the spatial modes. Qubits at spatial modes 𝐴 and 𝐵 are inserted
into the input ports the switch. The transformations of |𝑡𝑘⟩𝐴 and |𝑡𝑘⟩𝐵 through the
switch are described by,

|𝑡𝑘⟩𝐴 → cos
(
𝜃 (𝑡𝑘 )

2

)
|𝑡𝑘⟩𝐷 − sin

(
𝜃 (𝑡𝑘 )

2

)
|𝑡𝑘⟩𝐸 ,

|𝑡𝑘⟩𝐵 → sin
(
𝜃 (𝑡𝑘 )

2

)
|𝑡𝑘⟩𝐷 + cos

(
𝜃 (𝑡𝑘 )

2

)
|𝑡𝑘⟩𝐸 ,

(13.4)
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where 𝑘 = 1, 2 and 𝜃 (𝑡𝑘 ) is the phase difference between the two arms of the MZI at
time 𝑡𝑘 . By setting 𝜃 (𝑡1) = 0 and 𝜃 (𝑡2) = 𝜋, the spatial modes of the input photons
are unchanged in the early time bin and exchanged in the late time bin. The state of
the system after the switch is,

|𝜓⟩𝐴 ⊗ |𝜙⟩BC → 1
2
( |𝑡1⟩𝐷 |𝑡1⟩𝐸 |𝑡1⟩𝐹 + 𝑒𝑖𝜙𝐵𝐶 |𝑡1⟩𝐷 |𝑡2⟩𝐷 |𝑡2⟩𝐹 (13.5)

− 𝑒𝑖𝜙𝐴 |𝑡2⟩𝐸 |𝑡1⟩𝐸 |𝑡1⟩𝐹 − 𝑒𝑖(𝜙𝐴+𝜙𝐵𝐶 ) |𝑡2⟩𝐷 |𝑡2⟩𝐸 |𝑡2⟩𝐹). (13.6)

By measuring the three-fold coincidences at distinct spatial modes (𝐷, 𝐸, 𝐹), we
can post-select the time-bin GHZ state,

|Ψ𝐺𝐻𝑍⟩ =
1
√

2
( |𝑡1⟩𝐷 |𝑡1⟩𝐸 |𝑡1⟩𝐹 + 𝑒𝑖𝜙 |𝑡2⟩𝐷 |𝑡2⟩𝐸 |𝑡2⟩𝐹). (13.7)

13.3 Experiment
The experimental setup for generating time-bin GHZ states is shown in Fig. 13.2a.
Time-bin qubits separated by 346 ps are created by injecting 1536 nm wavelength
light from a continuous-wave laser into an intensity modulator (IM). The light is
split into two paths by a 50:50 beamsplitter. In one path, the pulses are sent to
a second harmonic generation (SHG) module containing an erbium doped fiber
amplifer (EDFA) and PPLN waveguide, which up-converts the pulses to 768 nm.
These pulses are used as a pump for type-II SPDC to create entangled photon
pairs at 1536 nm. In the second path, the third qubit is prepared by attenuating
the laser pulses. One member of the entangled state is interfered with the third
qubit in a optical switch with a 20 GHz phase modulation bandwidth. Given two
indistinguishable photons incident to the switch, the joint state of the three photons
is described by a GHZ state after post-selection of the photons exiting the two output
ports of the switch. The final output state is analyzed via measurements of the three
photons (qubits) with superconducting nanowire single-photon detectors (SNSPDs)
using a custom graphical user interface (see Fig. 13.2b).

13.4 Theory
We develop a theoretical model using the characteristic function-based formalism
detailed in Chapter 9. The early and late time bins are modeled as independent
modes, and the switch is modeled as a Mach-Zehnder interferometer with 𝜃𝐸 = 0 for
the early mode and 𝜃𝐿 = 𝜋 for the late mode. Since the two-mode squeezed vacuum
state and coherent state have Gaussian characteristic functions, and all subsequent
operations up to detection are Gaussian, we construct the Symplectic matrix that
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Figure 13.2: Experimental generation of time-bin GHZ states. a) Experimental
setup. AWG, Tektronix AWG7002A; BS, Thorlabs 1550-nm fiber optic 50:50 beam
splitter; DL, fiber optic delay line, EDFA, Pritel erbium-doped fiber amplifier; FIL,
bandpass filter; Laser, MOGlabs Tunable Cateye Laser; PBS, Thorlabs 1550-nm
fiber optic polarizing beam splitter; PPLN, HC Photonics waveguide; PS, power
supply, SHG, Pritel optical fiber amplifier and second-harmonic generator; SNSPD,
superconducting nanowire single-photon detector; TDC, quTAG time-to-digital con-
verter; VOA, EXFO variable optical attenuator. b) Screenshot of custom Graphical
User Interface (GUI) used for data acquisition and analysis. In the switch output
channels, the larger peak corresponds to the weak coherent state and the smaller
peak corresponds to one member of the TMSV state from SPDC. The discrepancy
in peak heights is due to the different photon statistics and mean photon numbers of
the coherent and TMSV states.
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Figure 13.3: Setup for theoretical modeling. The top and bottom boxes represent a
two-mode squeezed vacuum state (TMSV) and coherent state, respectively, in the
product state of early and late temporal modes. Early and late temporal modes are
represented as different spatial modes in the setup. The switch is modeled as an MZI
acting on the early (late) modes of the coherent state and one half TMSV with phase
shift 𝜃𝐸 (𝐿) . Measurement loss is modeled as mixing with a virtual vacuum mode
with a beamsplitter (not depicted) with transmittances 𝜂1, 𝜂2, and 𝜂3 for detectors
𝐷1, 𝐷2, and 𝐷3, respectively.

maps the characteristic function of input state to that of the output state. The
output characteristic function is found by substituting the displacement vector ®𝑑 and
covariance matrix 𝛾 with ®𝑑 → 𝑆𝑇 ®𝑑 and 𝛾 → 𝑆𝑇𝛾𝑆. From the output displacement
vector and covariance matrix, the density matrix states produced in the experiment
can be calculated as a function of relevant experimental parameters, such as the mean
photon number of the coherent state 𝜇𝐶 , the mean photon number of the TMSV state
(𝜇𝑠), measurement loss, and the extinction ratio of the switch. The extinction ratio
of the switch is measured by setting the phase to 𝜃 = 0 or 𝜋, sending strong coherent
light into one input of the switch, and calculating the ratio of the powers measured
from the output ports (𝑃𝐷/𝑃𝐸 ). Ideally, light is measured only in one output port or
the other (𝑃𝐷 or 𝑃𝐸 = 0). We measure extinction ratios of |10 log10(𝑃𝐷/𝑃𝐸 ) | ∼ 18
dB. Switch extinction ratios are modeled as 𝑃𝐷/𝑃𝐸 = cot2 (𝜃𝐸 (𝐿)/2), where the
phases 𝜃𝐸 ∼ 0 and 𝜃𝐿 ∼ 𝜋 are set to match the experimental extinction ratios.

From the output covariance matrix 𝛾′ and displacement vector ®𝑑′, we obtain a
model for the density matrix of the experimental output state as a function of the
mean photon numbers, losses and extinction ratio. The Fock basis density matrix
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elements for an ℓ-mode Gaussian state 𝜌 are in terms of its covariance matrix 𝛾 and
displacement vector ®𝑑 are,

⟨ ®𝑚 | 𝜌 | ®𝑛⟩ = 𝑇 × lhaf(vid(A, ®𝛽)), (13.8)

𝑇 =

exp
(
−1

2
®𝑑𝑇𝛾−1 ®𝑑

)
√︃

det (𝛾)∏ℓ
𝑠=1 𝑛𝑠!𝑚𝑠!

, (13.9)

A = X
(
I2ℓ − 𝛾−1

)
, X =

[
0 Iℓ
Iℓ 0

]
, ®𝛽𝑇 = ®𝑑𝑇𝛾−1, (13.10)

where | ®𝑛⟩ = |𝑛1⟩ · · · |𝑛ℓ⟩ is the ℓ-mode photon number state of 𝑛1 photons in the
first mode, 𝑛2 photons in the second mode, etc., lhaf(· · · ) is the loop Hafnian, and
vid(A, ®𝛽) = A − diag(diag(A)) + diag( ®𝛽) [10].
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Figure 13.4: Characterization of time-bin GHZ states in the Z-basis. a) Threefold
coincidence probabilities for varied mean photon number of the coherent state. The
probabilities are found from dividing the coincidence rates in Hz by the repetition
rate of the experiment (100 MHz). b) Theoretical model for the data in a). c) Z-basis
fidelity for varied mean photon number of the coherent state. The error bars in a)
and c) are calculated from Poisson statistics.
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13.5 Results
With the measurement configuration in Fig. 13.2, we are able to perform projective
measurements in the Z basis described by the measurement operators,

Π̂𝑖, 𝑗 ,𝑘 = |𝑡𝑖⟩ ⟨𝑡𝑖 | ⊗
��𝑡 𝑗 〉 〈

𝑡 𝑗
�� ⊗ |𝑡𝑘⟩ ⟨𝑡𝑘 | , (13.11)

where 𝑖, 𝑗 , 𝑘 ∈ [1, 2]. We measure the threefold coincidence rates,

𝐶𝑖, 𝑗 ,𝑘 ∝ Tr[ 𝜌̂expΠ̂𝑖, 𝑗 ,𝑘 ],

for varied mean photon number of the coherent light (𝜇𝐶). The experimental and
theoretical coincidence probabilities for each of the eight possible outcomes are
shown in Fig. 13.4a and b, respectively. The coincidence probabilities are obtained
by dividing the coincidence rates by the 100 MHz repetition rate of the experiment.
The theoretical coincidence probabilities are calculated from the model using,

Tr[ 𝜌̂Π̂] =
(

1
2𝜋

)𝑁 ∫
𝑑𝑥2𝑁 𝜒𝜌 (𝑥)𝜒Π (−𝑥), (13.12)

where 𝑁 is the number of modes, 𝜒(𝑥) is the characteristic function of the output
state and 𝜒Π (−𝑥) is the characteristic function of the measurement operator of the
detectors [11]. We define a “Z-basis fidelity” for the GHZ state as,

𝐹𝑍 =
𝑃(𝑡1, 𝑡1, 𝑡1) + 𝑃(𝑡2, 𝑡2, 𝑡2)∑

𝑖, 𝑗 ,𝑘 𝑃(𝑡𝑖, 𝑡 𝑗 , 𝑡𝑘 )
. (13.13)

The Z-basis fidelity is plotted as function of the 𝜇𝐶 in Fig. 13.4c for the data in Fig
13.4a. The blue curve is the model using the average 𝜇SPDC of 0.009. The fidelity
increases with 𝜇𝐶 for fixed 𝜇SPDC due to the mismatch in photon statistics for the
coherent state and TMSV. We observe a maximum 𝐹𝑍 = 82.0±4.1% for 𝜇𝐶 = 0.19.

In order to fully reconstruct the experimental states, a complete tomographic set
of measurements need to be performed. This requires using interferometers before
detection to project onto the X and Y bases. To estimate the overall state fidelity
produced by our setup, we calculate the density matrix for 𝜇𝐶 = 0.19 using Eq.
13.8. The density matrix elements are plotted in Fig. 13.5 for the ideal GHZ state,
𝜌GHZ, and the model, 𝜌est. The state fidelity is calculated as,

𝐹 (𝜌est, 𝜌GHZ) =
(
Tr

√︃√
𝜌est𝜌GHZ

√
𝜌est

)2
. (13.14)

The model estimates a state fidelity of 80.6% for 𝜇𝐶 = 0.19, 𝜇TMSV = 0.009,
𝜂1 = 0.2, 𝜂2 = 0.17, 𝜂3 = 0.19, and an extinction ratio of 18 dB corresponding to
𝜃𝐸 = 0.25, and 𝜃𝐿 = 0.25 + 𝜋. By decreasing 𝜇SPDC to ∼ 0.001, our model predicts
> 90% fidelity can be achieved.
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Figure 13.5: Density matrix model. a) Density matrix (𝜌𝐺𝐻𝑍 ) elements for an ideal
GHZ state. b) Real and imaginary components of the density matrix model (𝜌𝑒𝑠𝑡)
for 𝜇𝐶 = 0.19, 𝜇TMSV = 0.009, 𝜂1 = 0.2, 𝜂2 = 0.17, 𝜂3 = 0.19, and an extinction
ratio of 18 dB corresponding to 𝜃𝐸 = 0.25, and 𝜃𝐿 = 0.25 + 𝜋.
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C h a p t e r 14

TELEPORTATION THROUGH THE WORMHOLE

This chapter includes the work published as:

[1] Daniel Jafferis, Alexander Zlokapa, Joseph D. Lykken, David K. Kolchmeyer,
Samantha I. Davis, Nikolai Lauk, Hartmut Neven, and Maria Spiropulu.
“Traversable wormhole dynamics on a quantum processor.” In: Nature 612.7938
(2022), pp. 51–55.

14.1 Introduction
Traversable wormholes [1, 2] provide a mechanism to probe the conjectured ER=EPR
relation between entanglement and spacetime geometry [3, 4] via the holographic
correspondence of quantum many-body systems and gravitational physics [5]. In
this construction, a pair of black holes in a thermofield double state have their inte-
riors connected via an Einstein-Rosen bridge. Classically, the null energy condition
prevents such wormholes from being traversable [6, 7, 8, 9]. The basic mechanism
found in Ref. [1] is that the gravitational backreaction to quantum effects induced
by couplings between the exterior regions of the pair of black holes can render
the wormhole traversable [10]. It was demonstrated by Refs. [1, 2] that sending
quantum information through such a wormhole is the gravitational description of
quantum teleportation in the dual many-body system: the physical picture behind
this teleportation is that the qubit traverses the emergent wormhole.

Considering gravity with nearly AdS2 boundary conditions [11], the thermofield
double (TFD) state corresponds to an AdS-Schwarzschild wormhole [12]. Two
quantum systems — denoted 𝐿 and 𝑅 for the two black holes — are entangled in
the TFD state at temperature 1/𝛽. In the gravitational picture, a qubit is injected
into 𝐿 at time −𝑡0 and arrives at 𝑅 at 𝑡1 due to a coupling interaction at 𝑡 = 0. This
coupling induces a negative null energy in the bulk that shifts the qubit away from
the singularity (Fig. 14.1a), consistent with a quantum computation that recovers
the infalling qubit under unitary black hole dynamics [13]. Interpreted in terms of
recovering information from unitary black hole evaporation [13], the negative energy
shockwave produces a quantum computation that causes the scrambled infalling
qubit to reappear in the auxiliary entangled system, i.e., emerging at 𝑅 after a
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Figure 14.1: Traversable wormhole in spacetime and in the holographic dual. a)
Diagram of a traversable wormhole in anti-de Sitter space. A qubit injected at
𝑡 = −𝑡0 enters through the left side of the wormhole; at 𝑡 = 0 a coupling (dashed
line) is applied between the two sides of the wormhole, causing a negative energy
shockwave (blue); the qubit experiences a time advance upon contact with the
shockwave, causing it to emerge from the right side at 𝑡 = 𝑡1. b) Illustration of
time-ordering (wormhole) and time-inversion (scrambling) of teleportation signals.
The smooth semiclassical geometry of a traversable wormhole produces a regime of
teleportation that obeys causality; non-gravitational teleportation causes the signals
to arrive in reverse order. c) The traversable wormhole expressed as a quantum
circuit, equivalent to the gravitational picture in the semiclassical limit of an infinite
number of qubits. The unitary 𝑈̂ (𝑡) denotes time evolution 𝑒−𝑖(𝐻̂𝐿+𝐻̂𝑅)𝑡 under the
left and right SYK models. The thermofield double state (|TFD⟩) initializes the
wormhole at 𝑡 = 0. The time evolution and Majorana fermion SWAP gates achieve
qubit injection and arrival readout at the appropriate times. When 𝜇 < 0, the
coupling 𝑒𝑖𝜇𝑉̂ generates a negative energy shockwave, allowing traversability; when
𝜇 > 0, the coupling generates a positive energy shockwave and the qubit falls into
the singularity.
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time of order the scrambling time. If the sign of the interaction is reversed, the
qubit irretrievably falls into the singularity. Wormhole teleportation corresponds
to on-shell propagation through the bulk from the left to the right boundary. The
time-ordering of the transmitted quantum information is then preserved through the
wormhole (Fig. 14.1b), unlike teleportation by random unitary dynamics [14, 15,
16, 17, 18].

In the semiclassical limit of an infinite number of qubits, it is known that the
SYK model [19, 20] may be used to experimentally realize traversable wormhole
dynamics [21]. In this work, we study the dynamics of traversable wormholes
via many-body simulation of an SYK-like system of 𝑁 fermions [19, 20], where
traversable wormhole protocol is equivalent to a quantum teleportation protocol in
the large-𝑁 semiclassical limit (Fig. 14.1c).

14.2 Traversable wormhole teleportation protocol
To implement the quantum teleportation protocol, we initialize the thermofield
double state |TFD⟩ = 1√

𝑍

∑
𝑛 𝑒

−𝛽𝐸𝑛/2 |𝑛⟩𝐿 ⊗ |𝑛⟩𝑅, where |𝑛⟩𝐿,𝑅 are the energy
eigenstates of the left and right SYK systems. Explicitly, given left and right
Hamiltonians 𝐻̂𝐿 and 𝐻̂𝑅 with 𝑁 Majorana fermions 𝜓̂ on each side, the SYK
model with 𝑞 couplings is given by

𝐻̂𝐿,𝑅 =
∑︁

1≤ 𝑗1<···< 𝑗𝑞≤𝑁
𝐽 𝑗1... 𝑗𝑞 𝜓̂

𝑗1
𝐿,𝑅

. . . 𝜓̂
𝑗𝑞

𝐿,𝑅
, (14.1)

where the couplings are chosen from a Gaussian distribution with mean zero and
variance 𝐽2(𝑞 − 1)!/𝑁𝑞−1. To swap in a qubit at 𝑡 = −𝑡0, the system is time-evolved
by 𝑒−𝑖𝐻̂𝑡 for 𝐻̂ ≡ 𝐻̂𝐿 + 𝐻̂𝑅. At 𝑡 = 0, the interaction 𝑒𝑖𝜇𝑉̂ is applied across both the
left and right subsystems with coupling operator 𝑉̂ = 1

𝑞𝑁

∑
𝑗 𝜓̂

𝑗

𝐿
𝜓̂
𝑗

𝑅
. The sign of 𝜇

must be negative to produce a negative energy shockwave that allows the qubit to
travel through the wormhole. We measure the mutual information 𝐼𝑃𝑇 given by

𝐼𝑃𝑇 (𝑡) = 𝑆𝑃 (𝑡) + 𝑆𝑇 (𝑡) − 𝑆𝑃𝑇 (𝑡), (14.2)

where 𝑆 is a measure of entropy. If a quantum system were to teleport via scrambling
rather than traversing a wormhole, the mutual information would be symmetric in 𝜇.
Perfect teleportation is achieved when 𝐼𝑃𝑇 is maximal. No information is transmitted
when 𝐼𝑃𝑇 is zero.
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Figure 14.2: Majorana SWAP gates. a) 𝑍𝑋 + 𝑖𝑍𝑌 Majorana SWAP gate decom-
position for inserting a qubit (Q) into the wormhole. 𝐿1, 𝐿2 are qubits in the left
subsystem. b) 𝑋 + 𝑖𝑌 Majorana SWAP gate for extracting the qubit from the worm-
hole, which coincidences with the regular SWAP gate. R is a qubit in the right
subsystem and T is the register.

14.3 Experimental implementation
To implement the wormhole protocol experimentally, the protocol needs to be
decomposed into a quantum circuit that can be realized on near-term quantum hard-
ware. We consider a system of 2𝑁 Majorana fermions, with 𝑁 Majorana fermions
on each of the left and right subsystems, corresponding to a total of 𝑁 qubits. Each
Majorana fermion in the Hamiltonian is encoded in a digital quantum processor via
the standard Jordan-Wigner transformation to Pauli strings. Specifically, Majorana
fermions are transformed to the form 1√

2
𝑍⊗𝑘𝑋 or 1√

2
𝑍⊗𝑘𝑌 for 𝑘 ∈ [1, 𝑁]. The

choice of the mapping between each 𝜓̂𝑖
𝐿,𝑅

and each Pauli string is optimized to
minimize the required number of two-qubit gates to perform the wormhole telepor-
tation protocol. We choose the Jordan-Wigner transformation as follows, where 𝑍 𝑖

indicates 𝑍 ⊗ · · · ⊗ 𝑍 ,

𝜓̂1
𝐿
= 1√

2
𝑍𝑋, 𝜓̂1

𝑅
= 1√

2
𝑋,

𝜓̂2
𝐿
= 1√

2
𝑍𝑌, 𝜓̂2

𝑅
= 1√

2
𝑌,

𝜓̂3
𝐿
= 1√

2
𝑍5𝑋, 𝜓̂3

𝑅
= 1√

2
𝑍5𝑌,

𝜓̂4
𝐿
= 1√

2
𝑍2𝑋, 𝜓̂4

𝑅
= 1√

2
𝑍2𝑌,

𝜓̂5
𝐿
= 1√

2
𝑍4𝑋, 𝜓̂5

𝑅
= 1√

2
𝑍4𝑌,

𝜓̂6
𝐿
= 1√

2
𝑍3𝑋, 𝜓̂6

𝑅
= 1√

2
𝑍3𝑌,

𝜓̂7
𝐿
= 1√

2
𝑍6𝑋, 𝜓̂7

𝑅
= 1√

2
𝑍6𝑌 .

(14.3)

The particular choice of 𝜓̂1
𝑅
= 1√

2
𝑋 , 𝜓̂2

𝑅
= 1√

2
𝑌 , 𝜓̂1

𝐿
= 1√

2
𝑍𝑋 , 𝜓̂2

𝐿
= 1√

2
𝑍𝑌 ensures

that the decomposition of Majorana SWAP gates into two-qubit gates is efficient.
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To swap a qubit into or out of the wormhole, we pair up Majorana fermions on a
single qubit into a Dirac fermion 𝜒̂ = 1

2 (𝑍
⊗𝑘𝑋 + 𝑖𝑍⊗𝑘𝑌 ). The appropriate SWAP

operator is given by,

SWAP =

[
𝜒̂ 𝜒̂† 𝜒̂†

𝜒̂ 𝜒̂† 𝜒̂

]
. (14.4)

To reduce the number of two-qubit gates, we restrict our attention to Jordan-Wigner
transforms that only swap into or out of 𝑋 + 𝑖𝑌 and 𝑍𝑋 + 𝑖𝑍𝑌 . Explicitly, the
SWAP operators for extracting a qubit from and inserting a qubit into the system,
respectively, are given by,

SWAP𝑋+𝑖𝑌 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


, (14.5)

SWAP𝑍𝑋+𝑖𝑍𝑌 =



1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 1



. (14.6)

The gate decomposition of the swap operators is shown in Fig. 14.2. Since the 𝑋+𝑖𝑌
Majorana SWAP coincides with the standard SWAP given by Eq. 14.5, the final
SWAP in the protocol from R to T (Fig. 14.1c) is replaced by direct measurement
of the rightmost qubit of R to further reduce gate count. The 𝑍𝑋 + 𝑖𝑍𝑌 SWAP
operator for the initial SWAP of the protocol is decomposed into gates using the
prescription in Ref. [22], which recursively decomposes an arbitrary unitary matrix
into a product of fully-controlled quantum gates.

We proceed to the decomposition of the time evolution operator, 𝑈̂ (𝑡) = 𝑒−𝑖(𝐻̂𝐿+𝐻̂𝑅)𝑡 ,
for the SYK model. We choose 𝑞 = 4 and perform numerical simulations to identify
sufficiently small 𝑁 that could be experimentally implemented while preserving
features of the gravitational physics. Our numerical simulation shows that 𝑁 = 10 is
sufficient to produce such traversable wormhole behavior (Fig. 14.3). When 𝜇 < 0,
mutual information is expected to peak around the scrambling time in the limit of
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a b

learned (sparse) model

SYK model

Figure 14.3: Learning a traversable wormhole Hamiltonian from the SYK model.
a) Mutual information of multiple 𝑁 = 10 SYK models (black and purple, 𝛽 = 4)
and corresponding learned Hamiltonians (orange and green) showing asymmetry in
coupling with 𝜇 < 0 (wormhole teleportation) and 𝜇 > 0 (scrambling teleportation).
Thick lines show a specific instantiation of an SYK model and its corresponding
learned sparsification with 5 nonzero coefficients (Eq. 14.7); light lines indicate a
population of SYK models and learned sparsifications with 5 to 10 nonzero co-
efficients, demonstrating the reliability of the learning procedure. The learned
Hamiltonian is trained only on the mutual information 𝐼𝑃𝑇 (𝑡) for 𝑡 ≡ 𝑡0 = 𝑡1 (left),
and its behavior is consistent with the a wormhole after a qubit is injected at fixed−𝑡0
(right). b) Sparsification of the original SYK model with 210 nonzero coefficients
(top) to the learned Hamiltonian with 5 nonzero coefficients (bottom, Eq. 14.7).
Groups of four Majorana fermions (blue dots) are coupled with coefficients. Line
thickness indicates coefficient magnitude, and color distinguishes individual coeffi-
cients (bottom only).

large 𝑁 . The peaking behavior of 𝐼𝑃𝑇 (𝑡) may be observed in two ways: either
by setting the injection and readout times to be symmetric (𝑡 ≡ 𝑡0 = 𝑡1), or by
fixing the time of injection (fixed 𝑡0) and measuring different readout times (𝑡 ≡ 𝑡1).
In the semiclassical gravity description, a pole in the causal left-right propagator
corresponds to timelike geodesics connecting the left and right systems — i.e., a
traversable wormhole in the bulk geometry [2]. Hence, we expect the teleportation
signal to be maximized when 𝑡0 ≈ 𝑡1 ≈ 𝑡∗ for scrambling time 𝑡∗. We measure the
corresponding peak signature in 𝐼𝑃𝑇 (𝑡) for both 𝑡 ≡ 𝑡0 = 𝑡1 and 𝑡 ≡ 𝑡1 (fixed 𝑡0). This
result is reinforced by a theoretical analysis of chord diagrams in the double-scaled
limit [23] and comparison to prior numerical results [24, 25, 26] (see Supplementary
Information of Ref. [27]).
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Nevertheless, the circuit depth ∼ O(𝑁4) to experimentally implement an 𝑁 = 10
SYK system remains prohibitive on current hardware. We turn to sparsification
of the SYK system and produce evidence of gravitational physics in the sparsified
system. Sparsification of the SYK system (i.e., setting many 𝐽 𝑗1... 𝑗4 to zero) is shown
to preserve gravitational physics even when the number of terms in the Hamiltonian
is randomly reduced from𝑂 (𝑁4) to 𝑘𝑁 with 𝑘 of order unity [28, 29, 30]. Here, we
apply techniques from machine learning to optimize the sparsification procedure.
The result reduces an 𝑁 = 10 SYK model with 210 terms to an 𝑁 = 7 model
with 5 terms, yielding a 9-qubit circuit for the wormhole teleportation protocol.
While larger Hamiltonians may provide a stronger teleportation signal, additional
gates at current hardware fidelity further attenuate the signal (see Supplementary
Information of Ref. [27]); hence, we restrict our attention to the smallest sparsified
model with gravitational properties and do not enter the beyond-classical regime.

We construct an analogue of training a neural network. Due to unitarity and differen-
tiability of the quantum circuit, backpropagation across the wormhole teleportation
protocol allows gradient descent to optimize the 𝐽 𝑗1... 𝑗4 coefficients with regular-
ization, interpreting the Hamiltonian coefficients as neural network weights. The
dataset consists of 𝐼𝑃𝑇 (𝑡) with 𝑡 ≡ 𝑡0 = 𝑡1 for a standard wormhole constructed by
the SYK model with Gaussian-distributed coefficients. The loss function is chosen
to be the total mean squared error of 𝐼𝑃𝑇 (𝑡) for both positive and negative values of a
fixed interaction coupling 𝜇, where 𝜇 is chosen to maximize the mutual information.
Training with weight regularization and truncation sparsifies the Hamiltonian while
preserving mutual information dynamics.

Applying the learning process, we produce a large population of sparse Hamiltonians
exhibiting the appropriate interaction sign dependence (Fig. 14.3a). We select the
Hamiltonian,

𝐻̂𝐿,𝑅 = − 0.36𝜓̂1𝜓̂2𝜓̂4𝜓̂5 + 0.19𝜓̂1𝜓̂3𝜓̂4𝜓̂7

− 0.71𝜓̂1𝜓̂3𝜓̂5𝜓̂6 + 0.22𝜓̂2𝜓̂3𝜓̂4𝜓̂6

+ 0.49𝜓̂2𝜓̂3𝜓̂5𝜓̂7,

(14.7)

which requires 7 of the original 𝑁 = 10 SYK model fermions, where 𝜓̂ 𝑗 denotes the
Majorana fermions of either the left or the right systems. Investigation of the sparse
learned Hamiltonian in Eq. 14.7 and its description of gravitational physics are in
Appendix F. We find that the Hamiltonian is consistent with gravitational dynamics
of the dense SYK Hamiltonian beyond its training data and satisfies necessary
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a b cThermalization Fixed injection time Symmetric injection/readout

Figure 14.4: Observation of traversable wormhole dynamics. a) Thermalization
protocol (109 CZ gates), measuring the mutual information between a qubit injected
into a sparse SYK model at time −𝑡 and at 𝑡. Error bars show three standard
deviations over 20 runs. b) Traversable wormhole with fixed injection time (164
CZ gates), showing the difference in mutual information between 𝜇 = −12 and
𝜇 = +12. Error bars show one standard deviation over 28 runs. c) Traversable
wormhole with symmetric injection and readout time (164 CZ gates), showing
the difference in mutual information between 𝜇 = −12 and 𝜇 = +12. Error bars
show one standard deviation over 20 runs. Insets show noisy simulations with gate
errors increased by a factor of 1.5, plotted with y-axis mutual information range
[−3× 10−3, 3× 10−3]; the peak is not visible. The measurements in b) and c) agree
with noisy simulation and reproduce the sign asymmetry of the mutual information
consistent with through-the-wormhole teleportation. The scrambling-unscrambling
dynamics of wormhole teleportation cause the mutual information to be significantly
attenuated by noise. In noisy simulations, each gate is subjected to depolarization
error determined by calibration data (median CZ error: 0.3%). Each run consists of
90,000 measurements.

criteria of general holographic systems: perfect size winding, Shapiro time delay,
and causally time-ordered teleportation [31, 32, 18].

We initialize the protocol of Fig. 14.1c by preparing the TFD state using a hardware-
efficient variational quantum eigensolver [33] as the ground state of the Hamiltonian
𝐻̂TFD = 𝐻̂𝐿 + 𝐻̂𝑅 + 𝑖𝜈𝑉̂ where 𝑉̂ is the usual coupling operator. The ground state of
𝐻̂TFD is approximately the thermofield double state with inverse temperature𝑂 (1/𝜈)
[34, 35]. Time evolution and the interaction 𝑒𝑖𝜇𝑉̂ are applied with a single Trotter
step. This is sufficient to achieve a close approximation for the relevant range of 𝑡,
i.e., the number of gates remains constant for all times.
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14.4 Traversable wormhole dynamics on a quantum processor
Here, we proceed with a quantum experiment. Namely, we realize the entangled sys-
tem on the Google Sycamore superconducting qubit array [36] with a 9-qubit circuit
of 164 controlled-Z gates and 295 single-qubit gates. A noisy simulation assuming
all gate errors are depolarizing noise agrees with the experimental measurement
of the quantum system as shown in Fig. 14.4. A simpler protocol measuring ther-
malization with 109 CZ gates (Fig. 14.4a) demonstrates the high fidelity of the
experiment; additional experiments with 𝜇 = 0 confirm that coherent errors are
dominated by the true teleportation signal (see Supplementary Information of Ref.
[27]). Measuring the traversable wormhole protocol (Fig. 14.4b, c), we observe in-
creased teleportation when the interaction introduces a negative energy shockwave
rather than a positive one. The asymmetric signature is consistent with the physical
interpretation that the qubit underwent teleportation through the wormhole. The
scrambling-unscrambling dynamics of wormhole teleportation is sensitive to er-
rors: at gate error rates larger than our experiment by a factor of 1.5, the asymmetric
wormhole peak-like signal cannot be resolved (see Fig. 14.4 insets).

We find that the protocol is efficiently scalable to larger system sizes. To satisfy
limitations of current quantum hardware, we adopted techniques from machine
learning to construct a small-𝑁 sparse Hamiltonian that preserves gravitational
physics. For systems with 𝑁 = 𝑂 (50) fermions, random sparsification is as effective
as optimal sparsification up to an order unity constant [28, 29, 30]. This removes the
need for classical simulation without introducing significant overhead, successfully
extending to the beyond-classical regime.

This work is the first successful attempt to investigate traversable wormhole dy-
namics in an experimental setting. Looking forward, we anticipate that near-term
quantum computers that extend beyond the capabilities of classical simulation will
coincide with system sizes that provide novel gravitational insight. At too large 𝑁 ,
semiclassical gravity describes system dynamics; at too small 𝑁 , relevant features
may not be resolvable. In the regime of 𝑁 = 𝑂 (100) fermions, measurement of
inelastic effects in the bulk may provide quantitative insights into aspects of quantum
gravity that are poorly understood from a theoretical perspective, such as string pro-
duction and finite-𝑁 corrections to scattering. We conclude that the demonstrated
approach of on-chip quantum experimentation of gravity promises future insights
into the holographic correspondence.
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C h a p t e r 15

OUTLOOK

This chapter includes the work in preparation for publication:

[1] Samantha I. Davis, Joseph Lykken, Damian Musk, Neil Sinclair, and Maria Spirop-
ulu. “Wormhole regenesis and Bell violations.” In: Manuscript in preparation.
(2025).

15.1 Future directions
Metropolitan quantum networks
For metropolitan-scale deployment of our quantum networking systems described in
Part II, increasing entanglement distribution rates and minimizing noise will be cru-
cial to maintain high fidelities and mitigate losses over extended fiber links. To this
end, the entangled photon pair sources at CQNET and FQNET will be upgraded
to the high-rate source described in Chapter 5, enabling long-distance quantum
teleportation and entanglement swapping with GHz repetition rates. Additionally,
the single-photon detectors can be upgraded with the low-jitter superconducting
nanowire detectors from Chapters 3-5 to reduce multiphoton noise, which was iden-
tified our theoretical models in Chapter 9 as one of the main limitations for increasing
the teleportation fidelities. Another experimental limitation was the phase stability
of the interferometers used to implement projective measurements for X-basis tele-
portation and entanglement swapping. Incorporating low-jitter detectors enables
the use of shorter time-bin separations, allowing time-bin qubits to be generated and
measured using the compact, commercially available interferometers described in
Chapter 5. These shorter interferometers offer improved mechanical and thermal
stability, which translates into greater phase stability across measurement intervals.
Furthermore, reducing the time-bin separation will enable higher repetition rates
and lower mean photon numbers per pulse, which in turn improves the fidelity of
both teleportation and swapping protocols by reducing multiphoton contributions
and dark count error rates. By integrating the teleportation systems (Chapters 8
and 10) with the picosecond clock synchronization system described in Chapter 11,
these upgrades will enable teleportation and entanglement swapping across multiple
remote nodes in the Los Angeles and Chicago metropolitan regions.
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Multipartite entanglement distribution
While many quantum network testbeds have demonstrated entanglement and quan-
tum key distribution, few have reached the regime of multipartite entanglement
protocols, particularly in a deployed metropolitan setting. The entanglement swap-
ping system at FQNET can be upgraded to generate multipartite entanglement by
replacing the beamsplitter used for the Bell state measurement with the two-by-
two optical switch described in Chapter 13. By programming this switch and
using the GUI from Chapter 10 for real-time post-selection and analysis, the sys-
tem can dynamically toggle between configurations for entanglement swapping and
multipartite entanglement generation. Using the time-bin entanglement approach
described in Chapter 13, four-photon GHZ states can be generated by producing
Bell pairs from Alice and Bob’s sources and interfering one photon from each pair
at the switch. Other multipartite entangled states, such as cluster states, can be
generated by adjusting the phase settings on the switch. While cluster states are not
maximally entangled, they have been shown to exhibit greater robustness to loss and
noise compared to traditional maximally entangled states such as Bell or GHZ states
[1]. Combined with the aforementioned upgrades for metropolitan teleportation and
swapping, these upgrades will enable the first demonstrations of four-photon GHZ
states using time-bin qubits and long-distance multiphoton entanglement distribu-
tion, allowing for advanced multi-party quantum communication protocols across
the Chicago metropolitan region (see Fig. 15.1).

Distributed quantum sensing
Moreover, long-baseline quantum networks distributing multipartite entanglement
could enable precision measurements for fundamental physics, including astronom-
ical interferometry, gravitational wave detection, and atomic clock networks for
dark matter searches [2]. With the aforementioned upgrades to FQNET, GHZ or
cluster states can be distributed across multiple nodes at Fermilab for correlated
measurements with precision sensors to achieve Heisenberg-limited sensitivities.
Such entangled states are particularly powerful when all nodes are subject to a
nearly uniform field, as expected in scenarios involving ultralight dark matter or
spacetime fluctuations, enabling common-mode noise suppression and enhanced
detection capability. This system can be integrated with quantum sensors under
development at Fermilab, such as the atom interferometers of the MAGIS experi-
ment [3] and the dark matter haloscopes of the BREAD experiment [4], to search
for transient variations in fundamental constants and gravitational wave signatures,
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Figure 15.1: Future quantum networking between labs on the a) Fermi National
Accelerator Laboratory (Fermilab) campus and b) in the Chicago metropolitan
region with upgrades to the entanglement swapping system from Chapter 10.

which could reveal new physics beyond the Standard Model.

Scaling up the wormhole
In the large-N and low-temperature limit, the traversable wormhole protocol in
the SYK model can approach near-unity teleportation fidelities [5]. To access
higher-fidelity regimes and probe dynamics beyond the reach of classical simulation,
it is necessary to scale up the system size while maintaining low circuit error
rates. This requires the design of protocols tailored for larger, more complex
instances that can be embedded in next-generation quantum processors. The primary
technical challenge remains the high circuit depth, which introduces noise that
degrades teleportation fidelity. To address this, the noise model in Chapter 14 can be
used to guide circuit design, enabling simulation-driven refinements that minimize
noise impact. Other directions include extending the original wormhole protocol
to alternative models, such as bosonic versions of SYK, which may support larger
system embeddings or implementation on different quantum platforms. For example,
our recent development of a long-range wormhole teleportation protocol [6] based
on a bosonic SYK model could be adapted to photonic implementations, for instance
using squeezing, photon-number-resolving detectors, and programmable photonic
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circuits. This could open avenues to distributed simulation over quantum networks
(see Fig. 15.2) and tests of ER=EPR, as described in the next section.

image: Flaticon.com

Image credits to NASA's Conceptual 
Image Laboratory and Flaticon.com

Figure 15.2: Conceptual diagram of distributed quantum simulation of wormholes
in a quantum network. Image credits to NASA’s Conceptual Image Lab and FlatI-
con.com.

Bell tests for quantum gravity
The quest for a theory of quantum gravity remains one of the most profound and
unresolved challenges in fundamental physics. In quantum mechanics, Bell inequal-
ity violations characterize nonlocal quantum correlations and provide a powerful
diagnostic tool for distinguishing classical from quantum theories. One can envision
developing Bell tests that probe the quantum or classical nature of gravity itself. The
AdS/CFT correspondence offers a compelling setting to explore this concept, due
to its tractable models and the connection between wormholes and entanglement in
the context of the ER=EPR conjecture.

In the traversable wormhole setup, the gravitational dual of quantum teleportation
is understood as a real-time, dynamical process in which a qubit appears to pass
through the ER=EPR wormhole connecting the two entangled boundary CFTs, 𝐿 and
𝑅. The wormhole becomes traversable through a specific interaction between the two
boundaries, allowing this passage to occur. A striking aspect of this process is that the
qubit seems to sent via the entanglement itself, rather than being transmitted directly
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by the inter-boundary coupling. This differs from the standard quantum teleportation
protocol, where a classical channel is used to complete the transmission. In the
traversable wormhole case, it is crucial the channel between 𝐿 and 𝑅 is a quantum
one. In the standard picture of quantum teleportation, Alice performs a measurement
that projects the system onto an eigenstate, which immediately imprints Alice’s
qubit into Bob’s system and supports transmission via classical communication. In
contrast, for the traversable wormhole setup, the qubit is not projected out of the
system but instead undergoes continuous, unitary dynamics, making it possible to
interpret the process as the qubit traversing the bulk [7].

In Section 15.2, I propose a Bell inequality tailored for traversable wormholes
that probes the non-classicality of the quantum channel activated through the Ein-
stein–Rosen bridge. Specifically, I formulate a CHSH-type Bell inequality for
correlated signals emerging at the left and right boundaries of the traversable worm-
hole channel, where the measurement settings correspond to spacetime translations
and the expectation values map onto out-of-time-order correlators (OTOCs).

15.2 A Bell inequality for traversable wormholes
In the canonical Bell test, often formulated via the Clauser-Horne-Shimony-Holt
(CHSH), [8], two distant observers (Alice and Bob) perform measurements of
dichotomic variables on spatially separated subsystems (𝐴 and 𝐵) and evaluate the
correlator 𝐸 (𝑎, 𝑏) = ⟨𝐽𝐴 (𝑎)𝐽𝐵 (𝑏)⟩, where 𝐽 (𝑎) represents a dichotomic observable1

(e.g., spin) with 𝑎 labeling the measurement apparatus setting (e.g., polarizer angle).
Under the assumptions of realism and locality, the CHSH inequality,

𝑆 = 𝐸 (𝑎, 𝑏) + 𝐸 (𝑎, 𝑏′) + 𝐸 (𝑎′, 𝑏) − 𝐸 (𝑎′, 𝑏′) ≤ 2, (15.1)

must be satisfied. Quantum entanglement, however, can violate this bound, with a
maximum quantum value of 𝑆 = 2

√
2 for maximally entangled subsystems. Mea-

surement settings are varied independently and the resulting correlations are com-
pared against classical bounds. This class of inequality assumes realism—the
idea that outcomes reflect pre-existing properties—and locality—the prohibition of
faster-than-light influence between space-like separated events.

A more general class of Bell tests, referred to as bipartite temporal Bell tests, was
first envisioned by Bell himself [9]. These tests involve both spatial and temporal
separation, where a pair of entangled systems are measured at different locations and

1A dichotomic observable (𝐽) is an operator with two eigenvalues, i.e., measurement outcomes,
and satisfies 𝐽2 = Î.
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at different times. For example, Alice may measure subsystem 𝐿 at times 𝑡𝑎 and 𝑡′𝑎,
while Bob measures subsystem 𝑅 at 𝑡𝑏 and 𝑡′

𝑏
, with the two measurement sequences

causally disconnected. This type of Bell test is particularly well-suited for probing
the quantum channel that is opened in the traversable wormhole configuration, where
the two subsystems are causally disconnected on opposite ends of the wormhole,
and a qubit appears at different times on the left and right boundaries. The presence
of a qubit, or more generally, a “signal” corresponding to the source of an operator
𝐽, is characterized by expectation values on the left and right boundaries.

Regenesis
The traversable wormhole mechanism can be understood in the holographic descrip-
tion as a “regenesis” phenomenon universal to quantum chaotic many-body systems
[10]. We consider the setup of Ref. [10], where two identical subsystems 𝐿 and
𝑅 with Hamiltonians 𝐻̂𝐿 and 𝐻̂𝑅, which have the same set of eigenvalues 𝐸𝑛 and
energy eigenstates |𝑛⟩𝐿 and |𝑛⟩𝑅, are prepared in a thermofield double state (TFD)
at time 𝑡 = 0,��Ψ𝛽

〉
=

1
𝑍𝛽

∑︁
𝑛

𝑒−
𝛽𝐸𝑛

2 |𝑛̄⟩𝐿 |𝑛⟩𝑅 , 𝑍𝛽 =
∑︁
𝑛

𝑒−𝛽𝐸𝑛 , (15.2)

where |𝑛̄⟩ is the time reversal of the energy eigenstate |𝑛⟩. The TFD has the property,(
𝐻̂𝐿 − 𝐻̂𝑅

) ��Ψ𝛽

〉
= 0, → 𝑒−𝑖𝐻̂

𝐿 𝑡
��Ψ𝛽

〉
= 𝑒−𝑖𝐻̂

𝑅𝑡
��Ψ𝛽

〉
; (15.3)

if one of the subsystems is traced out, the remaining subsystem is described by the
thermal state at inverse temperature 𝛽. A source 𝜑𝐿 is turned on in the left subsystem
for a few-body operator 𝐽𝐿 at some time 𝑡 = −𝑡𝑠 < 0. Operating the Heisenberg
picture, 𝐽𝐿 (𝑡) = 𝑈̂ (𝑡)†𝐽𝐿𝑈̂ (𝑡), where 𝑈̂ (𝑡) = 𝑒−𝑖(𝐻̂𝐿+𝐻̂𝑅)𝑡 is the time evolution
operator. In the left subsystem, there is a response ⟨𝐽𝐿 (𝑡)⟩ ≡

〈
Ψ𝛽

�� 𝐽𝐿 (𝑡) ��Ψ𝛽

〉
induced by the source, which quickly dissipates after the source is turned off, and in
the right subsystem there is no response

〈
Ψ𝛽

�� 𝐽𝑅 (𝑡) ��Ψ𝛽

〉
= 0, since [𝐽𝐿 , 𝐽𝑅] = 0.

Next, we consider coupling the subsystems at time 𝑡 = 0. The total Hamiltonian is,

𝐻̂𝜇 = 𝐻̂ − 𝜇𝑉̂𝛿(𝑡 = 0), (15.4)

where 𝐻̂ = 𝐻̂𝐿 + 𝐻̂𝑅, 𝜇 is the coupling, and 𝑉̂ is an operator acting on both
subsystems,

𝑉̂ =
1
𝑘

𝑘∑︁
𝑗=1

Ô𝐿
𝑗 (0)Ô𝑅

𝑗 (0), (15.5)
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෠𝑉

Figure 15.3: Signal regenesis in a many-body quantum-chaotic system. Two sub-
systems (𝐿 and 𝐿) are prepared in a thermofield double state

��Ψ𝛽

〉
at 𝑡 = 0. A

source 𝜑𝐿 is turned on in the left subsystem for a few-body operator 𝐽𝐿 at some
time 𝑡 = −𝑡𝑠 < 0. In the left subsystem, there is a response induced by the source,
which dissipates after the source is turned off. At 𝑡 = 0, a coupling is introduced,
where 𝑉̂ is an operator acting on both subsystems. At a later time 𝑡 = 𝑡𝑠, a signal
will reappear on the right subsystem if 𝑡𝑠 ∼ 𝑡∗ is on the order of the scrambling time
(𝑡∗) of the system.

where 𝑗 denotes different operator species and 𝑂̂ (𝑥) is some few-body operator.
The result is that a signal will reappear in the right system at times on the order of
the scrambling time, 𝑡∗, if 𝑡𝑠 > 𝑡∗, see Fig. 15.3.

Bipartite temporal Bell inequality
In the regenesis setup, we consider operators 𝐽𝐿 (𝑡𝐿) and 𝐽𝑅 (𝑡𝑅) acting at fixed spatial
coordinates ®𝑥𝐿 = 0 and ®𝑥𝑅 = 0 and times 𝑡𝐿 and 𝑡𝑅 on the 𝐿 and 𝑅 subsystems,
respectively. Working in the Heisenberg picture,

𝐽𝐿 (𝑡𝐿) = 𝑈̂†(𝑡𝐿)𝐽𝐿𝑈̂ (𝑡𝐿), 𝐽𝑅 (𝑡𝑅) = 𝑈̂†(𝑡𝑅)𝐽𝑅𝑈̂ (𝑡𝑅), (15.6)

where 𝐽𝐿 and 𝐽𝑅 are the same operators but acting on the 𝐿 and 𝑅 subystem,
respectively, and 𝑈̂ (𝑡) = 𝑒−𝑖𝐻̂𝜇𝑡 is the time evolution operator in terms of the total
Hamiltonian 𝐻̂𝜇 in Eq. 15.4,

𝑈̂ (𝑡) =

𝑒−𝑖𝐻̂𝑡 𝑡 < 0

𝑒−𝑖𝐻̂𝑡𝑒𝑖𝜇𝑉̂ 𝑡 > 0.
(15.7)
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Although 𝐽𝐿 and 𝐽𝑅 commute, 𝐽𝐿 (𝑡𝐿) and 𝐽𝑅 (𝑡𝑅) need not commute; therefore,
𝐽𝐿 (𝑡𝐿)𝐽𝑅 (𝑡𝑅) is not generally Hermitian and its expectation value can yield imag-
inary values. Instead, expectation values must be defined in terms of projective
measurements of a dichotomic observable. For the dichotomic observable 𝐽 (𝑡) with
±1 measurement outcomes, the projection operator onto the +1 and −1 eigenspaces
are given by,

𝑃̂+ =
1
2
(1 + 𝐽 (𝑡)), 𝑃̂− =

1
2
(1 − 𝐽 (𝑡)). (15.8)

From the Born rule, the joint probability for Alice to measure outcome 𝑙 = ±1 on
the 𝐿 subsystem and Bob to measure outcome 𝑟 = ±1 on the 𝑅 subsystem is,

𝑃(𝑙, 𝑟) =
〈
Ψ𝛽

�� 𝑃̂𝐿𝑙 𝑃̂𝑅𝑟 𝑃̂𝐿𝑙 ��Ψ𝛽

〉
. (15.9)

The expectation value for the joint projective measurement is,

𝐸 (𝑡𝐿 , 𝑡𝑅) =
∑︁
𝑙,𝑟

𝑙𝑟𝑃(𝑙, 𝑟) = 1
2

〈
Ψ𝛽

�� {𝐽𝐿 (𝑡𝐿), 𝐽𝑅 (𝑡𝑅)} ��Ψ𝛽

〉
, (15.10)

where {𝐽𝐿 (𝑡𝐿), 𝐽𝑅 (𝑡𝑅)} is the anticommutator of 𝐽𝐿 (𝑡𝐿) and 𝐽𝑅 (𝑡𝑅). Thus, the
expectation values can be computed in terms of the out-of-time correlators of the
many-body system.

Plugging into the CHSH inequality under the assumptions of realism and locality,

𝑆 =
1
2

〈
Ψ𝛽

�� {𝐽𝐿 (𝑡𝐿), 𝐽𝑅 (𝑡𝑅)} ��Ψ𝛽

〉
+ 1

2
〈
Ψ𝛽

�� {𝐽𝐿 (𝑡𝐿), 𝐽𝑅 (𝑡′𝑅)} ��Ψ𝛽

〉
+ 1

2
〈
Ψ𝛽

�� {𝐽𝐿 (𝑡′𝐿), 𝐽𝑅 (𝑡𝑅)} ��Ψ𝛽

〉
− 1

2
〈
Ψ𝛽

�� {𝐽𝐿 (𝑡′𝐿), 𝐽𝑅 (𝑡′𝑅)} ��Ψ𝛽

〉
≤ 2.

(15.11)

For the traversable wormhole setup in the SYK model, the Majorana operators
𝜓̂𝐿 , 𝜓̂𝑅 are dichotomic operators with expectation values ±1/

√
2 (see Chapter 14).

Choosing a Majorana from each subystem, we construct the dichotomic operators
𝐽𝐿 =

√
2𝜓̂𝐿 and 𝐽𝑅 =

√
2𝜓̂𝑅 with eigenvalues ±1. For the Bell test, the relevant

times for probing the traversable wormhole dynamics are −𝑡𝐿 ∼ −𝑡∗ and 𝑡𝑅 ∼ 𝑡∗.
The expectation value becomes,

𝐸 (−𝑡𝐿 , 𝑡𝑅) =
〈
Ψ𝛽

�� {𝜓̂𝐿 (−𝑡𝐿), 𝜓̂𝑅 (𝑡𝑅)} ��Ψ𝛽

〉
= −K(−𝑡𝐿 , 𝑡𝑅), (15.12)

where K(−𝑡𝐿 , 𝑡𝑅) is the OTOC investigated in Ref. [5]. Since K(−𝑡𝐿 , 𝑡𝑅) = 0
for 𝜇 = 0, 𝑆 = 0, so the non-traversable wormhole configuration does not violate
the Bell inequality in Eq. 15.11. For nonzero 𝜇, 𝑆 can violate Eq. 15.11, where
𝑆approaches 2

√
2 when K ≈ 1, corresponding to maximal teleportation fidelity [5].
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Discussion
In the Bell test I described above, projective measurements of dichotomic observ-
ables are performed on the CFTs to test the nonclassicality of the traversable worm-
hole channel. I anticipate that such Bell tests could be used to operationally verify
the existence and make statements about the local-realistic nature of the wormhole.
It would be interesting to identify the corresponding hidden-variable theory that
is violated for high teleportation fidelities and understand the implications of Bell
violations in the gravitational picture.

References

[1] Xiao-Qi Zhou, Chao-Yang Lu, Wei-Bo Gao, Jin Zhang, Zeng-Bing Chen, Tao Yang,
and Jian-Wei Pan. “Greenberger-Horne-Zeilinger-type violation of local realism by
mixed states.” In: Physical Review A 78.1 (2008), p. 012112.

[2] Andrei Derevianko, Eden Figueroa, Inder Monga, Andrei Nomerotski, Nicholas
Peters, Raphael Pooser, Nageswara Rao, Anze Slosar, Panagiotis Spentzouris,
Maria Spiropulu, et al. Quantum Networks for High Energy Physics (HEP). Tech.
rep. Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States), 2022.

[3] Mahiro Abe, Philip Adamson, Marcel Borcean, Daniela Bortoletto, Kieran Bridges,
Samuel P Carman, Swapan Chattopadhyay, Jonathon Coleman, Noah M Curfman,
Kenneth DeRose, et al. “Matter-wave atomic gradiometer interferometric sensor
(MAGIS-100).” In: Quantum Science and Technology 6.4 (2021), p. 044003.

[4] Stefan Knirck, Gabe Hoshino, Mohamed H. Awida, Gustavo I. Cancelo, Martin
Di Federico, Benjamin Knepper, Alex Lapuente, Mira Littmann, David W. Miller,
Donald V. Mitchell, et al. “First results from a broadband search for dark pho-
ton dark matter in the 44 to 52 𝜇 eV range with a coaxial dish antenna.” In:
Physical Review Letters 132.13 (2024), p. 131004.

[5] Ping Gao and Daniel Louis Jafferis. “A traversable wormhole teleportation protocol
in the SYK model.” In: Journal of High Energy Physics 2021.7 (2021), pp. 1–44.

[6] Joseph D. Lykken, Daniel Jafferis, Alexander Zlokapa, David K. Kolchmeyer,
Samantha I. Davis, Hartmut Neven, and Maria Spiropulu. “Long-range wormhole
teleportation.” In: arXiv preprint arXiv:2405.07876 (2024).

[7] Ping Gao, Daniel Louis Jafferis, and Aron C Wall. “Traversable wormholes via
a double trace deformation.” In: Journal of High Energy Physics 2017.12 (2017),
p. 151.

[8] John F. Clauser, Michael A. Horne, Abner Shimony, and Richard A. Holt. “Proposed
Experiment to Test Local Hidden-Variable Theories.” In: Phys. Rev. Lett. 23 (15
Oct. 1969), pp. 880–884. doi: 10.1103/PhysRevLett.23.880.

[9] John S. Bell. “EPR correlations and EPW distributions.” In: Ann. NY Acad. Sci
480.1 (1986), pp. 263–266.

https://doi.org/10.1103/PhysRevLett.23.880


311

[10] Ping Gao and Hong Liu. “Regenesis and quantum traversable wormholes.” In:
Journal of High Energy Physics 2019.10 (2019), pp. 1–60.



Part IV

Appendices

312



313

A p p e n d i x A

QUANTUM PHASED ARRAY PROTOCOLS

Here I describe two illustrative examples of quantum state synthesis with QPAs.

A.1 Reconfigurable beamsplitter
With two QPAs engineered to have the input and output relations of a beamsplit-
ter unitary, a reconfigurable beamsplitter can realized for applications requiring
quantum interference. The QPAs are configured to have array factors,

AF±
𝑁 =

1
√

2

(
AF𝑁 (𝜑𝐴) + 𝑒𝑖(𝛿±𝜋)AF𝑁 (𝜑𝐵)

)
, (A.1)

one with (+) and the other with (−). The fields interfere in free space to realize
quantum interference with the beamsplitter unitary. A hallmark quantum interfer-
ence effect is Hong-Ou-Mandel effect [1]. The Hong-Ou-Mandel effect arises from
the interference of indistinguishable single photons incident to a beamsplitter.

|1⟩in1 |1⟩in2 = 𝑎̂
†
in1
𝑎̂
†
in2

|0⟩in1 |0⟩in2

→ 1
2
(𝑎̂†out1 + 𝑖𝑎̂

†
out2) (𝑖𝑎̂

†
out1 + 𝑎̂

†
out2) |0⟩out1 |0⟩out2

=
𝑖
√

2
(
|2⟩out1 |0⟩out2 + |0⟩out1 |2⟩out2

)
.

(A.2)

A.2 N00N state generation
HOM interference can be generalized to create N00N states for any 𝑁 = 2𝑘 . N00N
states are path entangled states of the form ( |𝑁⟩ |0⟩ + |0⟩ |𝑁⟩)/

√
2 that enable

quantum-enhanced phase measurements at the Heisenberg limit, with applications
in quantum metrology, imaging, and lithography [2, 3, 4]. The creation operator
representation of a N00N state can be factorized as,

1
√

2
(𝑎̂†1)

𝑁 + 𝑒𝑖𝜃 (𝑎̂†2)
𝑁 =

1
2

∏
±
(𝑎̂†1)

𝑁/2 + 𝑒𝑖( 𝜃
2 +𝜋±

𝜋
2 ) (𝑎̂†2)

𝑁/2. (A.3)

The goal is to factorize the N00N creation operator representation into products of
𝑁 single creation operator superpositions,

1
√

2

(
(𝑎̂†1)

𝑁 + 𝑒𝑖𝜃 (𝑎̂†2)
𝑁
)
=

1
2𝑁/2

∏
𝜑

(𝑎̂†1 + 𝑒
𝑖𝜑𝑎̂

†
2). (A.4)



314

We can determine what the set of 𝜑 are from recursively applying Eq. A.3. For
𝑁 = 2𝑘 , we find:

𝜑 =
𝜃

2𝑘
+

𝑘∑︁
𝑗=1

𝜋

2𝑘− 𝑗
± 𝜋

2
± 𝜋

4
± ... ± 𝜋

2𝑘
(A.5)

=

(
𝜃

2𝑘
+ 2𝜋 − 𝜋

2𝑘−1

)
± 𝜋

2
± 𝜋

4
± ... ± 𝜋

2𝑘
. (A.6)

Let Φ be the set of 𝜑. Note that the 𝑘 terms with ± mean that there are a total of
2𝑘 𝜑’s (i.e. |Φ| = 2𝑘 ) as expected. Therefore, a N00N state can be created using a
multimode interferometer with 𝑁 inputs and 2 outputs, where the each input sends
a single photon into 1√

2
(𝑎†out1 + 𝑒

𝑖𝜙𝑎̂
†
out2) for each 𝜙 ∈ Φ.

This protocol can be flexibly performed this protocol1 using 𝑁 QPA’s, where each
QPA sends a single photon into 1√

2
(𝑎̂†
𝜃1
+ 𝑒𝑖𝜙𝑎̂†

𝜃2
), and then align the 𝜃1, 𝜃2’s of all

the QPA’s on the detector plane.
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A p p e n d i x B

STATISTICAL ANALYSIS OF SQUEEZING

Here I describe the analytical methods we used to estimate the amount of squeezing
measured with the on-chip balanced homodyne detectors in Chapters 2 and 6. First, I
summarize common techniques for the measurement and analysis of squeezed light.
I then motivate a statistical approach to the analysis of squeezed light. I introduce a
statistical estimator for squeezing and antisqueezing levels that is robust to noise. I
validate this estimator by developing a theoretical model, conducting experimental
tests with a fiber-optic setup, and performing numerical simulations over the range
of efficiency and squeezing parameters used in the on-chip squeezing experiments.

B.1 Background
Balanced homodyne detection is a standard measurement technique for the character-
ization of squeezed light [1]. A typical setup for the measurement of squeezed light
is shown in Fig. B.1, where the signal at the output of balanced homodyne detector
is proportional to the quadrature of the input optical field. There are two common
approaches to the analysis of squeezing with balanced homodyne detection [1]. In
the time-domain approach, output current or voltage statistics are accumulated over
time with a time-resolving device, such as an oscilloscope, and quadrature statistics
of the optical field are calculated in post-processing. In the frequency-domain ap-
proach, the output noise power spectrum is measured with an electronic spectrum
analyzer, providing a direct measurement of a signal proportional to the quadrature
variance of the optical field.

Squeezing can be characterized in the time-domain approach by acquiring quadra-
ture samples for known phases over many rotations and performing quantum state
tomography [2]. With optical homodyne tomography [3], the Wigner function of
the squeezed state can be estimated by applying a reconstruction algorithm such as
an inverse Radon transformation, maximum-entropy reconstruction, or maximum-
likelihood estimation to time-domain data [4]. The squeezing and antisqueezing
levels can be estimated by comparing the reconstructed Wigner function of the
squeezed state to that of the vacuum state. In particular, the squeezing parameter
and efficiency can be found from a fit to the Wigner function of the squeezed state [5].
However, these approaches are computationally intensive and depend on assump-
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Figure B.1: Measurement of squeezed light with balanced homodyne detection.
Squeezed light (signal) is interfered with strong local oscillator (LO) in a coherent
state by a 50:50 beamsplitter (BS). A phase shifter on the LO controls the relative
phase (𝜃) of the signal and LO. The mixed fields are detected with a balanced
homodyne detector (BHD). The output current is amplified by a transimpedance
amplifier (TIA), and the output voltage is sent to a signal analyzer, such as an
oscilloscope or electronic spectrum analyzer.

tions in the reconstruction algorithm. While detection efficiency can be corrected
for by means of an inverse Bernoulli transform [6], performance of such algorithms
suffer for high detection loss. Moreover, numerical artifacts such as ripples in the
reconstructed Wigner functions can obscure the squeezing level estimation [7].

With data measured in the time or spectral domain, squeezing and antisqueezing
levels can be estimated from the minima and maxima of the normalized quadrature
variances relative to the shot noise level. By fixing the relative phase between
the LO and signal, sample quadrature variances in the time-domain approach or
noise powers in the frequency-domain approach can be averaged over time to obtain
squeezing or antisqueezing level estimates [1, 8]. Phase noise from stochastic phase
fluctuations introduced in the measurement setup or imperfect phase-locking can
result in averaging over various quadrature phases over the measurement time, which
degrades the accuracy of squeezing estimation [9]. Alternatively, by modulating
the phase of the LO, peak search methods may be applied to extract the squeezing
levels [10, 5]. However, peak-searching methods are known to introduce statistical
bias in the presence of noise, which can can skew the estimation of squeezing and
antisqueezing levels in the presence of experimental noise sources [11, 12].

Here I introduce a method for the estimation of squeezing based on the probability
density function of the quadrature sample variances. In Section B.2, I review
balanced homodyne detection of squeezed light. I illustrate the observation of
squeezing in both approaches by performing numerical simulations of squeezing in
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the time-domain approach and experimental detection of squeezing in the frequency
domain approach. In Section B.3, I develop a theoretical model for the probability
density function of squeezed quadrature variances over a uniform phase distribution
that accounts for sampling noise. In Section B.4, I demonstrate how the inflection
points of the probability distribution of quadrature sample variances can be used as
estimators of squeezing and antisqueezing. This approach allows for the estimation
of squeezing without phase locking, in the presence of experimental noise sources
such as phase and sampling noise. I then illustrate this method with numerical
simulations and experimental measurements of squeezed light. This method is
suitable for estimating squeezing levels comparable to the distribution of shot noise
powers, relevant in the limit of low squeezing strength and high measurement loss.

B.2 Measurement of squeezing
Balanced homodyne detection
In balanced homodyne detection, squeezed light is mixed with a strong local oscilla-
tor and sent to a balanced homodyne detector (BHD). The output signal is a current
or voltage proportional to the phase-dependent quadrature, 𝑄̂𝜃 , of the signal field,

𝑣̂(𝜃) ∝ 𝛽𝑄̂𝜃 , (B.1)

where the quadrature angle, 𝜃, is the relative phase of the LO and the signal, 𝛽 is
the LO amplitude, and

𝑄̂𝜃 =
1
√

2
(𝑎̂𝑒−𝑖𝜃 + 𝑎̂†𝑒𝑖𝜃) = 𝑄̂ cos 𝜃 + 𝑃̂ sin 𝜃, (B.2)

where 𝑎̂ is the signal field and 𝑄̂ and 𝑃̂ are the canonical quadrature observables
satisfying [𝑄̂, 𝑃̂] = 𝑖 [1, 13].

The output signal is sent to a signal analyzer that measures the time or frequency
response of the voltages. Each voltage corresponds to a quadrature observable 𝑄𝜃 ,
the eigenvalue of 𝑄̂𝜃 with eigenstate |𝑄𝜃⟩. For a signal field in a Gaussian state |𝜓⟩,
such as a vacuum, thermal, or squeezed state [14, 13], the quadrature observables
are normally distributed according to,

|𝜓(𝑄𝜃) |2 =
1

√
2𝜋⟨Δ𝑄̂2

𝜃
⟩

exp
©­­«−

(
𝑄𝜃 − ⟨𝑄̂𝜃⟩

)2

2⟨Δ𝑄̂2
𝜃
⟩

ª®®¬ (B.3)

where 𝜓(𝑄𝜃) = ⟨𝑄𝜃 |𝜓⟩ is the wavefunction in the phase quadrature basis, ⟨𝑄̂𝜃⟩ =
⟨𝜓 |𝑄̂𝜃 |𝜓⟩ is the quadrature mean and ⟨Δ𝑄̂2

𝜃
⟩ = ⟨𝜓 |Δ𝑄̂2

𝜃
|𝜓⟩ is the quadrature vari-

ance.
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For a field in a vacuum state, ⟨𝑄̂𝜃⟩ = 0 and ⟨Δ𝑄̂2
𝜃
⟩ = 1/2. For a field in a squeezed

state, the quadrature variance is given by,

⟨Δ𝑄̂2
𝜃⟩sq =

1
2
(𝑒−2𝑟 cos2 𝜃 + 𝑒2𝑟 sin2 𝜃), (B.4)

where 𝑟 is the squeezing parameter. Decoherence is modeled as a virtual beamsplit-
ter transformation that mixes the signal field with a vacuum mode,

𝑎̂ ↦→ √
𝜂𝑎̂ +

√︁
1 − 𝜂𝑎̂vac, (B.5)

where 𝜂 is the transmittance of the virtual beamsplitter. In the presence of decoher-
ence, the quadrature variance of a squeezed vacuum state becomes,

⟨Δ𝑄̂2
𝜃⟩sq =

𝜂

2
(𝑒−2𝑟 cos2 𝜃 + 𝑒2𝑟 sin2 𝜃) + 1 − 𝜂

2
, (B.6)

where 𝜂 represents the total measurement efficiency include effects of optical loss
and electronic noise [15].

The amount of squeezing can be characterized experimentally by comparing the
variance of the quadratures measured with a squeezed state input to that measured
with a vacuum state input,

⟨Δ𝑄̂2
𝜃
⟩sq

⟨Δ𝑄̂2
𝜃
⟩vac

= 𝜂(𝑒−2𝑟 cos2 𝜃 + 𝑒2𝑟 sin2 𝜃) + 1 − 𝜂, (B.7)

where the squeezing and antisqueezing levels relative to the shot noise level, 𝜂𝑒±2𝑟 +
1 − 𝜂, occur at 𝜃 = 0 and 𝜃 = 𝜋/2, respectively.

Time-domain approach
Using a time-domain analyzer in the setup in Fig. B.1, squeezing can be charac-
terized by sweeping the LO phase and accumulating voltage statistics for various
phases. A numerical simulation of quadrature samples accumulated over time for a
linear phase ramp applied to the LO is shown in Fig. B.2. An array of 105 phases
is generated from 0 to 4𝜋. For each phase, a quadrature observable is sampled from
a Gaussian distribution described by Eq. B.3 to obtain a total set of 105 quadrature
samples. The samples for a vacuum state (orange) and a squeezed vacuum state
(blue) with 𝑟 = 1 and 𝜂 = 0.8 are shown in Fig. B.2a. To obtain sample mean
and variances, the total sample set is divided into subsets of 1000 samples, and the
mean and variance is calculated for each subset. The sample mean and variance as
function of time (phase) are shown in Fig. B.2b and c, respectively.
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Q
θ

Figure B.2: Numerical simulation of quadrature statistics obtained from time-
domain analyzer for a linear phase ramp applied to the LO. a) Quadrature samples
as a function of time (phase) for a vacuum state (orange) and a squeezed vacuum
state with 𝑟 = 1 and 𝜂 = 0.8 (blue). b) Sample means and c) normalized sample
variances as a function of time. The sample variances are normalized to the mean
of the vacuum sample variances. The solid lines in b) and c) are the corresponding
analytic predictions for the quadrature means and variances.
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Frequency domain approach
Alternatively, by using an electronic spectrum analyzer in the setup of Fig. B.1, noise
power levels can be measured directly in real-time. Squeezed vacuum states of light
are experimentally generated and the noise powers are measured over time using a
fiber-coupled BHD. The experimental setup is shown in Fig. B.3a. Laser light at
telecom wavelength of 1550 nm is split into signal path and local oscillator (LO) path.
In the signal path, the light amplified by an erbium doped fiber amplifier (EDFA)
and upconverted to 775 nm by second harmonic generation (SHG) by a periodically
poled lithium niobate (PPLN) waveguide. The 775 nm light is used as a pump for
spontaneous parametric down conversion (SPDC) by another PPLN waveguide to
generate squeezed vacuum light. The pump power is controlled by tuning the gain
of EDFA to vary the amount of squeezing. The squeezing parameter 𝑟 = 𝜇

√
𝑃 is

related to the square root of the pump power (P) by the proportionality constant 𝜇,
which depends on the strength of the nonlinearity of the PPLN waveguide. A PPLN
waveguide with 𝜇 = 0.038 [mW]−1/2 is used for SPDC. The squeezed light is sent
through an isolator, which acts as a filter for residual 775 nm pump light and rejects
backreflected light, followed by interference with the LO at a 50:50 beamsplitter for
balanced homodyne detection. In the LO path, laser light is phase modulated by a
lithium niobate electro-optic modulator to vary the relative phase between the signal
and LO. The outputs of BS are sent to fiber-coupled balanced photodiodes, and the
RF output of the BHD is sent to a RF spectrum analyzer.

Examples of noise power traces measured with the RF spectrum analyzer are shown
in Fig. B.3 for various squeezing parameters and video bandwidths (VBWs). The
blue traces correspond to squeezed vacuum states and the orange traces correspond to
the vacuum state. Squeezed vacuum states are generated with squeezing parameters
of 𝑟 = 0.35 in Fig. B.3b,c and 𝑟 = 0.06 in Fig. B.3d,e, corresponding to 3.04 dB
and 0.52 dB generated squeezing, respectively, with a net measurement efficiency is
𝜂 = 0.326. A 0−2𝜋 phase ramp at a 1 Hz modulation frequency is applied to the LO.
The non-uniform phase fluctuations are due to thermal and mechanical drifts in the
fiber optics, which introduce relative phase shifts between the LO and signal paths.
A peak search algorithm is applied to extract minima and maxima in the squeezing
data relative to the mean shot noise level. The squeezing and antisqueezing levels
are obtained from the arithmetic mean of the minima and maxima, respectively
(red dashed lines). The mean squeezing (antisqueezing) levels are b) −0.75 ± 0.02
(1.16 ± 0.01) dB, c) −0.78 ± 0.03 (1.20 ± 0.02) dB, d) −0.17 ± 0.01 (0.18 ± 0.01)
dB, and e) −0.21 ± 0.01 (0.21 ± 0.01) dB relative to the mean shot noise level.
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Figure B.3: Generation and measurement of squeezed light. a) Experimental
setup. EDFA: erbium doped fiber amplifier, SHG: second harmonic generation,
SPDC: spontaneous parametric downconversion, PBS: polarizing beamsplitter, BS:
polarization maintaining beamsplitter, BHD: balanced homodyne detection, TIA:
transimpedance amplifier. b-e) Experimental noise power traces of squeezed light
measured with an RF spectrum analyzer. The traces are measured on zero span
mode with a central frequency of 8 MHz, a resolution bandwidth (RBW) of 2 MHz,
and sampling rate of 10 kHz over 10 seconds. The traces in b) and d) are measured
with a video bandwidth (VBW) of 30 Hz and the traces in c) and e) are measured
with a VBW of 100 Hz. The squeezing parameters are 𝑟 = 0.35 for b) and c) and
𝑟 = 0.06 for d) and e), with a net measurement efficiency of 𝜂 = 0.326. Peaks in the
squeezed light data extracted using a peak search algorithm are indicated with red
markers, and the mean of the markers are indicated with dashed red lines. The same
peak search algorithm is applied to the vacuum data, where the mean peak power
levels are indicated by dashed black lines. The solid black lines are the mean power
levels of the vacuum data.
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The uncertainties on the squeezing and antisqueezing estimates are obtained from
the standard deviation of minima and maxima, respectively. The same algorithm
is applied to the vacuum data to obtain lower and upper bounds on the shot noise
power distribution (black dashed lines). The peak search algorithm estimates upper
and lower bounds of ±0.04 dB and ±0.07 dB for vacuum data taken with 30Hz and
100Hz VBW, respectively.

Shot noise power distribution
In the aforementioned methods, stable measurement of the vacuum state, that is,
the shot noise level, is required for accurate estimation of squeezing. While the
quadrature variance of the vacuum state is theoretically a constant (1/2), in practice,
the measured variances are distributed as seen in Fig. B.3. The variance of the shot
noise power distribution sets the limit on the minimum amount of squeezing that
can be resolved. One possible cause for the distribution in the vacuum quadrature
variances observed experimentally is optical gain instability, for example from im-
perfect cancellation of classical noise such as LO power fluctuations. This could
be due to unbalanced detectors or imperfect LO and signal interference. Prominent
in the low squeezing and high measurement loss regime, LO power fluctuations
can cause significant variations in the shot noise level even for high squeezing and
low measurement loss [16]. Such instabilities can be mitigated by optimizing the
common mode rejection ratio (CMRR) [8], with up to 90 dB CMRR (Chapter 6)
demonstrated by us in the literature.

Another cause for shot noise level uncertainty is sampling noise. Sampling noise
bounds the width of the shot noise power distribution and sets the minimum amount
of squeezing that can be resolved experimentally. For the time-domain approach, the
quadrature sample sizes are determined by the sampling rate of the measurement.
The sampling rate should be much higher than the LO phase modulations in order
to obtain sufficiently high sample sizes for the calculation of the sample variances
over multiple phases. In the frequency-domain approach, the sampling bandwidth is
controlled with the amount of spectral and temporal filtering performed by the IF and
video filters inside the spectrum analyzer [17]. Filtering can also be implemented
in the time-domain approach with digital signal processing.

The effect of the shot noise power distribution on the estimation of squeezing levels
is illustrated by the frequency-domain data in Fig. B.3. Since the measurements
are performed with ≥ 30 dB CMRR, corresponding to shot noise power levels
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with ≤ 0.1% power fluctuations, optical gain instability is negligible relative to
the sampling bandwidth. Peak searching can provide reasonable estimates for the
squeezing and antisqueezing levels when the widths of the distributions are small
relative to the squeezing and antisqueezing levels. However, for non-negligible
widths, peak search methods overestimate the squeezing and antisqueezing levels.
The overestimation in the squeezing and antisqueezing levels becomes clear for low
squeezing parameters in Fig. B.3 d and e. The estimated squeezing levels depend
on the width of the shot noise power distribution and are capped at the upper and
lower bounds of the vacuum data, set by the sampling bandwidths.

B.3 Theoretical model
Sampling noise
To account for the effect of sampling uncertainty on the estimation of squeezing, I
develop a theoretical model for the distribution of squeezed quadrature variance in
the presence of sampling noise. Since the quadrature observables of Gaussian states
are normally distributed, Cochran’s theorem can be applied to find the probability
density functions (PDFs) of the sample quadrature variance distributions for the
vacuum state and squeezed state at a fixed phase. Following Cochran’s theorem
[18], the sample variance of 𝑛 samples of a normal distribution with standard
deviation 𝜎 is a random variable (𝑆2) that is chi-squared distributed,

𝑆2 ∼ Δ𝑄2 𝜒
2
𝑛−1

𝑛 − 1
, (B.8)

where 𝜒2
𝑛−1 is the chi-squared distribution with 𝑛 − 1 degrees of freedom. The

sample variance distribution has mean 𝑄2 and approaches a normal distribution for
large 𝑛.

In the frequency-domain approach, the noise powers are distributed as Eq. B.8,
where the width of the distribution is set by sampling bandwidths, e.g. RBW and
VBW. The powers acquired by spectrum analyzers are commonly reported in decibel
(dB) scale. A statistical feature of this is that the distribution of noise powers in
logarithmic scale converges faster to a normal distribution than in linear scale, and
the width of the distribution is independent of the power level, see Fig. B.4e and f.
This follows from Eq. B.8, as ln

(
𝜒2) converges to normality much faster than 𝜒2,

and ln 𝑆2 − ln𝜎2 is independent of 𝜎2 [19].

In Fig. B.4a-d, I compare the PDFs obtained by from Eq. B.8 with a numerical
simulation in the time-domain approach. With a sample size of 𝑛 = 100, the
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Figure B.4: Sample quadrature variance statistics in linear and logarithmic scales.
a) Same simulation as in Fig. B.2 but with a 5𝑒6 quadrature samples of the vacuum
state (orange) and squeezed vacuum state with 𝑟 = 1 and 𝜂 = 0.8 (blue) over
a period. Sample variances are reported relative to the mean shot noise level.
Sample variances are calculated over subsets of 𝑛 = 100 samples. Histograms of
the sample variances for b) the squeezed state at 𝜃 = 𝜋/2, c) the vacuum state, and
d) the squeezed state at 𝜃 = 𝜋. The black lines are the corresponding theoretical
predictions from obtained from Cochran’s theorem in Eq. B.8. e) Simulation in a)
plotted in logarithmic scale, relative to the mean shot noise level. f) Histograms
of the log-scale sample variances for (left) the squeezed state at 𝜃 = 𝜋/2, (middle)
the vacuum state, and (right) the squeezed state at 𝜃 = 𝜋. The histograms are fitted
to Gaussian distributions, each with standard deviation 𝜎 = 0.62 dB. The log-scale
histograms approach normality faster than the linear-scale histograms and have the
same standard deviation for each phase, unlike in linear scale.

sample variances of the vacuum state are approximately normally distributed. For
the squeezed state, the sample variances are approximately normally distributed for
each phase, where the width scales with 𝑄2 = ⟨𝑄̂2

𝜃
⟩sq/⟨𝑄̂2

𝜃
⟩vac.

Probability density function
Let 𝑋 ≡ 𝑆2

𝜃
/⟨Δ𝑄̂2

𝜃
⟩vac denote the quadrature sample variance, 𝑆2

𝜃
, normalized by the

quadrature variance of the vacuum state, ⟨Δ𝑄̂2
𝜃
⟩vac = 1/4. 𝑋 is a random variable

whose probability distribution (PDF), 𝑓 (𝑋), is given by 𝑓 (𝑋) = 𝛿(𝑋 − 1) for the
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Figure B.5: Theoretical modeling for PDFs of logarithmic-scale quadrature vari-
ances sampled from a uniform phase distribution. a) PDF model for 𝑟 = 1, 𝜂 = 0.8,
and a shot noise power distribution with a standard deviation of 𝜎 = 0.62 dB. The
measured PDF, 𝑝(𝑥meas), is modeled as the convolution of the analytical squeezed
vacuum PDF for uniform phase distribution, ℎ(𝑥), with a Gaussian noise distribu-
tion, 𝑔(𝑥noise). The models for 𝑔(𝑥noise) and 𝑝(𝑥meas) are compared with histograms
from a time-domain simulation of squeezed vacuum quadrature statistics for 𝑟 = 1,
𝜂 = 0.8, and 𝜎 = 0.62 dB. The inflection points of 𝑔(𝑥noise) and 𝑝(𝑥meas) are
indicated with black and blue crosses, respectively. b) Derivatives of the PDFs for
𝑔(𝑥noise) and 𝑝(𝑥meas). The inflection points are identified from the left-most maxi-
mum and right-most minimum in the PDF derivatives, are indicated with black and
blue crosses for 𝑔(𝑥noise) and 𝑝(𝑥meas), respectively. c) Measured squeezed vacuum
PDF, 𝑝(𝑥meas), for various squeezing parameters, unit efficiency, and 𝜎 = 0.62 dB.
d) Measured squeezed vacuum PDF, 𝑝(𝑥meas), for 𝑟 = 1, various efficiencies, and
𝜎 = 0.62 dB.
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vacuum state and

𝑓 (𝑋) = 1
𝜋
√︁
(𝜂 sinh 2𝑟)2 − (𝜂 cosh 2𝑟 + 1 − 𝜂 − 𝑋)2

(B.9)

for the squeezed vacuum state. Eq. B.9 assumes that the quadratures are sampled
over a uniform phase distribution.

To account for measurement noise, I model the measured quadrature sample variance
as the random variable 𝑥meas = 𝑥 + 𝑥noise, where 𝑥 ≡ 10 log10(𝑋) is the random
variable for the quadrature sample variance in logarithmic scale, whose PDF is
denoted by ℎ(𝑥), and 𝑥noise is the random variable that models the measurement
noise, whose PDF is a Gaussian distribution with standard deviation 𝜎,

𝑔(𝑥noise) =
1

√
2𝜋𝜎

exp

(
−𝑥2

noise
2𝜎2

)
. (B.10)

Since 𝑥 and 𝑥noise are assumed to be mutually independent, the PDF of 𝑥meas,
𝑝(𝑥meas), is the convolution of ℎ(𝑥) and 𝑔(𝑥noise),

𝑝(𝑥meas) = (ℎ ∗ 𝑔) (𝑥meas) =
∫ ∞

−∞
ℎ(𝑥)𝑔(𝑥meas − 𝑥)𝑑𝑥. (B.11)

For the vacuum state, ℎ(𝑥) = 𝛿(𝑥). Therefore, the measured PDF of the vacuum
state is 𝑝(𝑥meas) = 𝑔(𝑥meas), which corresponds to the shot noise power distribution.
For the squeezed vacuum state, ℎ(𝑥) = 𝑓 (𝑋 (𝑥)) |𝑋′(𝑥) |, where 𝑓 (𝑋) is given by Eq.
B.9 and 𝑋 (𝑥) = 10𝑥/10.

The convolved PDFs of the logarithmic sample variance for the vacuum state,
𝑔(𝑥noise), and squeezed vacuum state, 𝑝(𝑥meas), for 𝑟 = 1 and 𝜂 = 0.8 are shown
in Fig. B.5a. The convolved PDFs are compared with the noiseless PDF, ℎ(𝑥),
for the squeezed vacuum state. In ℎ(𝑥), the squeezing and antisqueezing levels
are well-defined by the sharp edges of the distribution, due to the finite domain of
Eq. B.9. The convolution of ℎ(𝑥) with 𝑔(𝑥noise) smears out the PDF, causing the
squeezing and antisqueezing levels to be poorly defined by the blurred edges. The
convolved PDFs are plotted in Fig. B.5c for various squeezing parameters with unit
efficiency and B.5d various efficiencies with squeezing parameter 𝑟 = 1.

B.4 Estimation of squeezing
Estimation procedure
The left and right boundaries of the quadrature sample variance PDF are a natural
choice of estimator for the squeezing and antisqueezing levels in the noiseless limit,
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since the arcsine distribution of squeezed quadrature variances is sharply bounded
(see Fig. B.5a). Here I use the inflection points of the quadrature sample variance
PDF as estimators for the squeezing and antisqueezing levels in the presence of
noise. These estimators provide a well-defined measure of the width of PDFs in
the presence of unknown noise sources, motivated by the definition of the standard
deviation for normal distributions. The standard deviation can be defined from
the inflection points of a normal distribution, which are a standard deviation away
from the mean of the distribution. Using the inflection points at the left and right
boundaries extends the notion of standard deviation for non-Gaussian distributions
such as 𝑝(𝑥meas). The estimation procedure is illustrated with 𝑝(𝑥meas) in Fig. B.5a,
where the inflection points used as estimates for the squeezing and antisqueezing
levels are indicated with blue dashed lines. The squeezing (antisqueezing) level
estimates are found by identifying the location of left-most maximum (right-most
minimum) in the derivative of 𝑝(𝑥meas) in Fig. B.5b.

Bias of estimators
Let 𝑥− and 𝑥+ represent the estimators of the squeezing (𝑥−) and antisqueezing (𝑥+)
levels, where 𝑥± correspond to the inflection points of 𝑝(𝑥meas). For finite 𝜎, the
Gaussian blurring shifts the inflection points from 𝑥− and 𝑥+ by an amount that
scales with 𝜎. The biases of the estimators are 𝐸 (𝑥±) − 𝑥± = ±𝑐±𝜎, where 𝑐− and
𝑐+ are constants. For distributions that are Gaussian convolutions, 𝑐± are typically
less than one, depending on the behavior of distribution near the inflection points
[20]. In Fig. B.6a, the analytical squeezing and antisqueezing levels for squeezed
states (purple) are compared with the estimates obtained from the inflection points
of the logarithmic squeezed quadrature variance PDFs convolved with a Gaussian
distribution with 𝜎 = 0.62 dB (blue). The bias of the estimates are less than 𝜎.
In Fig. B.6b, the bias, or the percent difference of the (anti)squeezing estimates
from the analytical (anti)squeezing levels, are plotted as a function of squeezing
parameter for various efficiencies. The dashed lines correspond to ±𝜎 from the
analytical values. For high squeezing parameters, the biases approach a constant,
approximately ±𝜎/2. For squeezing parameters and efficiencies corresponding to
squeezing and antisqueezing levels on the order of 𝜎, the biases reach minima of
approximately ±𝜎/3. For low squeezing parameters, the biases approach ±𝜎. This
behavior is physically meaningful as the width of 𝑔(𝑥noise) represents a statistical
noise floor. In the large sample size limit with 𝜎 → 0, the biases approach zero
and the inflection points coincide with the true squeezing and antisqueezing levels
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Figure B.6: Simulation of squeezing estimator bias. a) Noise power levels nor-
malized to the mean shot noise level (black) as a function of squeezing parameter.
The uncertainty in the shot noise level is depicted by the gray shaded region cor-
responding to ±𝜎, where 𝜎 = 0.62 dB is the standard deviation of the shot noise
power distribution. The squeezing (𝑥−) and antisqueezing (𝑥+) levels of a squeezed
vacuum state are plotted in purple for unit measurement efficiency. The blue curves
are the squeezing and antisqueezing level estimates for the observed squeezed vac-
uum state obtained from the inflection points of measured power distribution. The
squeezing and antisqueezing estimates are within +𝜎 of the antisqueezing level and
−𝜎 of the squeezing level, depicted by the blue shaded regions. b) The percent bias
of the squeezing (𝑥−) and antisqueezing (𝑥+) estimates as a function of squeezing
parameter, calculated as 100 × (𝐸 (𝑥±) − 𝑥±)/𝑥±.

as 𝑝(𝑥meas) → ℎ(𝑥meas).

Experimental results
The estimation procedure is applied to the experimental data from Fig. B.3b-e in Fig.
B.7. The data are plotted again for reference in the first row. The histograms for the
squeezed states (light blue) and vacuum states (orange) are shown in the second row.
The kernal density estimates (KDEs) for the PDFs of the squeezed and vacuum states
are plotted as the blue and black solid lines, respectively. The theoretical models
for the squeezed state PDFs assuming a uniform phase distribution are plotted in
purple. The theoretical models are calculated from Eq. B.11, where the integration
is performed numerically.

To find the estimates for the squeezing and antisqueezing levels, the derivatives of
the KDEs are calculated numerically. The derivatives of the KDEs of the squeezed
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Figure B.7: Squeezing estimation with the frequency-domain measurements of
squeezed light from Fig. B.3 for a) 𝑟 = 0.35, VBW = 30 Hz, b) 𝑟 = 0.35, VBW
= 100 Hz, c) 𝑟 = 0.06, VBW = 30 Hz, and d) 𝑟 = 0.06, VBW = 100 Hz. First
row: Noise power level traces of squeezed vacuum (light blue) and vacuum (orange)
states relative to the mean shot noise level. The red dashed lines correspond to
estimates of squeezing and antisqueezing levels from peak searching. The dark
blue dashed lines correspond to the estimates of squeezing and antisqueezing levels
from the inflection points of the noise power PDF of the squeezed vacuum data.
The black dashed lines correspond to the inflection points of the shot noise power
distribution. Second row: Histograms of the squeezed vacuum noise powers (light
blue) and shot noise powers (orange). The Gaussian kernal density estimates (KDE)
for PDFs of the squeezed vacuum and vacuum noise powers are shown in dark blue
and black, respectively. The theoretical model for the squeezed vacuum PDF with
the experimental squeezing parameter and system efficiency for a uniform phased
distribution is shown in red. The inflection points of the squeezed vacuum KDE,
vacuum KDE, and model are indicated with dark blue, black, and purple crosses,
respectively. The squeezing and antisqueezing estimates from peak searching are
indicated with red crosses. The histograms, KDEs, and model are rescaled to the
maximum of the squeezed vacuum KDE. Third row: Derivatives of the squeezed
vacuum KDE (blue), vacuum KDE (black), and theoretical model (purple), rescaled
to the maximum of the vacuum KDE derivative, with the inflection points indicated
with crosses.
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states (blue) and vacuum states (black) are shown in the third row. The theoretical
models for the squeezed state PDFs with uniform phase distribution are shown in
purple. The theoretical models are calculated using the differentiation of convolution
property,

𝑑𝑝(𝑥meas)
𝑑𝑥meas

=

∫ ∞

−∞

𝑥 − 𝑥meas

𝜎2 ℎ(𝑥)𝑔(𝑥meas − 𝑥)𝑑𝑥, (B.12)

where the integration is performed numerically. For the squeezed state, the squeez-
ing (antisqueezing) level is estimated as the noise power of the left-most maximum
(right-most minimum). The same procedure is applied to the vacuum state KDE
in order to obtain the noise floor. The procedure is also applied to the theoretical
model to obtain the estimates for a uniform phase distribution.

In the first and second row, I compare the results of this procedure with those
of the peak search algorithm from Fig. B.3. The squeezing and antisqueezing
level estimates from the procedure and the peak search method are indicated with
blue and red dashed lines, respectively. The shot noise floors are indicated with
black dashed lines. The improvement over the peak search method is apparent
for the low squeezing parameters, when the shot noise floor becomes significant.
The peak search clearly overestimates the squeezing and antisqueezing levels, with
estimates corresponding to the extrema of the noise powers as seen in the second
row. Moreover, for the same squeezing parameter and effective efficiency, the peak
search estimates change with the VBW setting, i.e. the standard deviation of the
vacuum PDF, whereas the estimates from the procedure remain the same. This
is because the peak search method relies on the tails of the PDF, and is therefore
strongly influenced by the shape of the distribution. To demonstrate the robustness
of this approach to experimental noise, I compare the estimates of this method to
those of the theoretical model, indicated with purple dashed lines in the second
row. Despite the non-uniformities in the KDEs, the estimates match closely with
the theoretical model.

B.5 Discussion
I have demonstrated a method for estimating the squeezing and antisqueezing levels
from the probability distribution of squeezed quadrature sample variances. The
left and rightmost inflection points of the distribution are used as estimators of
squeezing and antisqueezing. The squeezing parameter and system efficiency can
estimated from the squeezing and antisqueezing levels from Eq. B.7. This method
enables the estimation of squeezing in the the presence of high degrees of sampling
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and phase noise and for low efficiencies, where the performance of characterization
methods such as peak searching and optical homodyne tomography suffer. These
estimators provide a well-defined measure for the left and right edges of the squeezed
quadrature distribution in the presence of experimental noise sources such as phase
and sampling noise, which blur the edges of the distribution. The bias of the
estimators is typically within a standard deviation of the shot noise distribution and
approaches zero for small shot noise distributions, in this case in the large sample
size limit. This method is supported by theoretical modeling and experimental
results.
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A p p e n d i x C

SUPPLEMENTARY INFORMATION FOR “AN ON-PHASED
ARRAY SYSTEM FOR NON-CLASSICAL LIGHT”

Our photonic integrated circuit (PIC) is one of the largest-scale PICs demonstrated
in the literature with more than 1,000 functional components, as shown in Fig. C.1.
Photos of the chip on top of a penny are shown in Fig. C.1a, and the packaged
photonic-electronic system is shown in Fig. C.1b. Here, we provide a description
of the PIC components and their characterization.

1 mm

Figure C.1: Photo of the PIC on top of a penny (left). Photos of the packaged
photonic-electronic system comprising the chip wirebonded to an interposer inter-
faced with an RF motherboard (right). The system can be packaged as a handheld
device enabled by the integration and packaging of photonics and electronics.

C.1 On-chip squeezing analysis
Here we demonstrate how we extract the squeezing and antisqueezing levels for
the experiments in Chapter 6 using the estimation procedure from Appendix B. We
walk through the analysis of a chip data set using our estimation procedure and
demonstrate how we extract the squeezing and antisqueezing levels for the experi-
ments in Fig. 6.5 of Chapter 6. The complete analysis for the 32-channel source
characterization data of Fig. 6.5c is shown in Figs. C.2-C.5 and the histograms for
the remaining data of Fig. 6.5 are shown in Figs. C.6-C.9.

32-channel source characterization

For each pump power (𝑃) of the 32-channel sweep in Fig. 6.5c, we measure noise
power traces for the squeezed vacuum and vacuum states using an RF spectrum
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analyzer with a 2 MHz RBW, 5 Hz VBW, and 1.25 kHz sampling rate. Each vacuum
trace is taken immediately before or after a squeezed vacuum trace. For a pair of
vacuum and squeezed vacuum traces, each trace is acquired over the same amount
of time, typically over 5-10s. Due to random phase drifts, we acquire multiple pairs
of vacuum and squeezed vacuum traces until an approximately uniform sampling
of phases is achieved. To correct long-term drifts in the LO power, each pair is
normalized by the mean of the vacuum trace. The normalized traces are concatenated
to obtain squeezed vacuum and vacuum traces corresponding to an approximately
uniform phase distribution (Fig. C.2). To perform the estimation procedure on the
same number of points for all pump powers, 104 points are randomly sampled from
each concatenated trace (Fig. C.3). The histograms are constructed for the sampled
noise powers, and the PDFs are approximated by kernel density estimation (Fig.
C.4). The squeezing and antisqueezed level estimates are obtained from the peaks in
the derivative of the KDEs (Fig. C.5). The KDEs and their derivatives are compared
with a theoretical model for a uniform phase distribution. The theoretical models
are calculated from Eq. B.11 with 𝜎 = 0.012 dB, 𝜂 = 0.0157, and 𝑟 = 𝜇

√
𝑃, where

𝜇 = 0.038 [mW]−1/2 (see Sec. C.2). The experimental estimates (blue), theoretical
estimates (purple), and the noise floor (black) are indicated with dashed lines in
Fig. C.3, Fig. C.4, and Fig. C.5. The experimental and theoretical estimates are
in near agreement despite the phase noise in the measurements. We note that some
discrepancies in the theoretical and experimental estimates are expected because the
model fit was performed on the experimental estimates with only one free parameter
across the entire data set rather than an individual fit to each histogram.

Beamforming
For each channel combination in Fig. 6.5b, we measure noise power traces for the
squeezed vacuum and vacuum states using an RF spectrum analyzer with a 2 MHz
RBW, 5 Hz VBW, and 1.25 kHz sampling rate. For each trace, 104 noise powers
are sampled at random. The histograms and KDEs of the noise power samples for
all channel combinations are shown in Fig. C.6.

Beamwidth
For each channel combination in Fig. 6.5e, we measure noise power traces for the
squeezed vacuum and vacuum states using an RF spectrum analyzer with a 2 MHz
RBW, 5 Hz VBW, and 625 Hz sampling rate. For each trace, 104 noise powers are
sampled at random. The histograms and KDEs of the noise power samples for all
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channel combinations are shown in Fig. C.7 for 8 channels combined and Fig. C.8
for 32 channels combined.

Field of view
For each channel combination in 6.5f, we measure noise power traces for the
squeezed vacuum and vacuum states using an RF spectrum analyzer with a 2 MHz
RBW, 5 Hz VBW, and 1 kHz sampling rate. For each trace, 104 noise powers are
sampled at random. The histograms and KDEs of the noise power samples for all
channel combinations are shown in Fig. C.9a for 8 channels combined and Fig.
C.9b for 32 channels combined.
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Figure C.2: Data analysis for the 32-channel source characterization in Fig. 6.5c:
noise power traces for the squeezed vacuum (blue) and vacuum (orange) states.
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Figure C.3: Data analysis for the 32-channel source characterization in Fig. 6.5c:
noise power samples for the squeezed vacuum (blue) and vacuum (orange) states are
collected for various pump powers. The squeezing and antisqueezing level estimates
are indicated with dashed blue lines, the theoretical model estimates are indicated
with dashed purple lines, and the the shot noise floor is indicated with dashed black
lines.
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Figure C.4: Data analysis for the 32-channel source characterization in Fig. 6.5c:
histograms of the sampled noise powers in Fig. C.3 for the squeezed vacuum
(blue) and vacuum (orange) states. The KDE for the squeezed vacuum histogram is
plotted in blue, the theoretical model of the PDF for the squeezed vacuum histogram
is plotted in purple, and a Gaussian fit to the vacuum histogram is plotted in
black. The locations of the maximum slopes for the squeezed state KDE, vacuum
state Gaussian, and theoretical model are indicated with crosses and dashed lines,
obtained from Fig. C.5.
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Figure C.5: Data analysis for the 32-channel source characterization in Fig. 6.5c: for
each pump power in Fig. C.4, the derivative of the KDE for the squeezed vacuum
histogram is plotted in blue, the derivative of the squeezed vacuum histogram is
plotted in purple, and the derivative of the Gaussian fit to the vacuum histogram
is plotted in black. The locations of the maxima and minima used to estimate the
squeezing and antisqueezing levels are indicated with crosses and dashed lines.
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Figure C.6: Data analysis for beamforming in Fig. 6.5b: histograms of the sampled
noise powers for the squeezed vacuum (blue) and vacuum (orange) states. The
KDE for the squeezed vacuum histogram is plotted in blue and a Gaussian fit to
the vacuum histogram is plotted in black. The locations of the peak slopes for the
squeezed state KDE (blue) and vacuum state Gaussian (black) are indicated with
crosses and dashed lines, which yield the squeezing/antisqueezing level estimates
and the noise floor.
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Figure C.7: Data analysis for the beamwidth characterization in Fig. 6.5e for 8
channels combined: histograms of the sampled noise powers for the squeezed vac-
uum (blue) and vacuum (orange) states are collected for various angles of incidence
for a fixed beamforming angle (0◦). The KDE for the squeezed vacuum histogram
is plotted in blue and a Gaussian fit to the vacuum histogram is plotted in black.
The locations of the peak slopes for the squeezed state KDE (blue) and vacuum
state Gaussian (black) are indicated with crosses and dashed lines, which yield the
squeezing/antisqueezing level estimates and the noise floor.
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Figure C.8: Data analysis for the beamwidth characterization in Fig. 6.5e for 32
channels combined: histograms of the sampled noise powers for the squeezed vac-
uum (blue) and vacuum (orange) states are collected for various angles of incidence
for a fixed beamforming angle (0◦). The KDE for the squeezed vacuum histogram
is plotted in blue and a Gaussian fit to the vacuum histogram is plotted in black.
The locations of the peak slopes for the squeezed state KDE (blue) and vacuum
state Gaussian (black) are indicated with crosses and dashed lines, which yield the
squeezing/antisqueezing level estimates and the noise floor.
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Figure C.9: Data analysis for the field-of-view characterization in Fig. 6.5f for a) 8
channels combined and b) 32 channels combined. Histograms of the sampled noise
powers for the squeezed vacuum (blue) and vacuum (orange) states are collected
for various angles of incidence, with beamforming performed at each angle. The
KDE for the squeezed vacuum histogram is plotted in blue and a Gaussian fit to
the vacuum histogram is plotted in black. The locations of the peak slopes for the
squeezed state KDE (blue) and vacuum state Gaussian (black) are indicated with
crosses and dashed lines, which yield the squeezing/antisqueezing level estimates
and the noise floor.
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C.2 Squeezed light source characterization
The squeezed light sources are characterized with a modified version of the trans-
mitter setup from Chapter 6 as shown in Fig. C.10a. Continuous wave light from
a fiber-coupled 1550 nm laser (OEWaves) is split into a signal path and a local
oscillator (LO) path. The light in the signal path is sent to an erbium-doped fiber
amplifier (PriTel EDFA) with a tunable gain. The amplified light is upconverted to
775 nm by second harmonic generation (SHG) with a periodically poled lithium nio-
bate (PPLN) waveguide. The upconverted light is sent to another PPLN waveguide
for Type 0 spontaneous parametric downconversion (SPDC) to generate squeezed
light centered at 1550 nm. The squeezed light is sent to an isolator (Thorlabs),
which rejects back-reflected light and serves as a filter for any residual 775 nm
pump light. After the isolator, an optical switch is used to switch between the
vacuum and squeezed vacuum state measurements. The squeezed light is sent to a
polarization-maintaining 50:50 beamsplitter (BS) for interference with the LO.

In the LO path, the 1550 nm laser light is sent to an electro-optic phase modulator
(EOSpace) to apply a phase ramp to the LO. The phase ramp is generated by sending
a modulated signal from a function generator to the RF input of the modulator. After
the modulator, a polarizing beamsplitter (PBS) removes light polarized along the
fast axis to ensure interference in a single polarization mode at the beamsplitter.
The outputs of the beamsplitter are sent to a fiber-coupled balanced homodyne
detector (BHD). The BHD (Thorlabs PDB425C) has a 75 MHz bandwidth, 35 dB
CMRR, and 1 A/W responsivity. The RF output of the BHD is sent to an RF
spectrum analyzer (Keysight N9030b) operated in zero-span mode to measure the
noise power levels in real time.

A total of four PPLN waveguides were used for SPDC in the experiments of the
main text. The four experimental configurations are summarized in Table C.1. For
each configuration, a pump power sweep was performed to characterize the SPDC
waveguide and the effective efficiency of the setup [1]. For SPDC, the waveguide-
coupled 775 nm pump power (𝑃) can be related to the squeezing parameter (𝑟)
by 𝑟 ≈ 𝜇

√
𝑃 [2], where 𝜇 is the SPDC efficiency [3]. The amount of squeezing

can be characterized experimentally by comparing the variance of the quadratures
measured with a squeezed state input to that measured with a vacuum state input in
homodyne detection,

⟨Δ𝑄̂(𝜙)2⟩sq
⟨Δ𝑄̂(𝜙)2⟩vac

= 𝜂(𝑒−2𝑟 cos2 𝜙 + 𝑒2𝑟 sin2 𝜙) + 1 − 𝜂. (C.1)
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From Eq. C.1, the squeezing (Δ𝑄2
−) and antisqueezing (Δ𝑄2

+) levels relative to the
shot noise level in terms of the pump power are,

Δ𝑄2
± = 𝜂 exp

(
±2𝜇

√
𝑃

)
+ 1 − 𝜂, (C.2)

where 𝜂 is the effective efficiency, including the effects of source loss, fiber-optic
loss, detector loss, and shot noise clearance. For each pump power, the noise
levels for the squeezing vacuum and vacuum states were measured over multiple LO
phases. The pump power was varied by tuning the gain of the EDFA. To characterize
the SPDC waveguide in configuration 1, an EDFA with up to 27 dBm output power
was used, and to characterize the SPDC waveguides in configurations 2-4, an EDFA
with up to 37 dBm output power was used. A phase ramp was applied to the LO
to ensure that noise power levels were accumulated over multiple periods. The
squeezing and antisqueezing levels for all configurations were estimated from the
noise power distribution using the procedure described in Appendix B.

The characterizations for the four sources are shown in Fig. C.10b-e. The squeezing
and antisqueezing estimates are plotted as a function of the waveguide-coupled
power, which is calculated from,

𝑃 = 𝜂𝑖𝑛𝑃SHG, (C.3)

where 𝜂in is the 775 nm input coupling efficiency and 𝑃SHG is the power measured
at the output of the SHG. The red curves are the theoretical model for the squeezing
and antisqueezing levels from Eq. C.2. The best-fit parameters 𝜂 and 𝜇 are obtained
from a simultaneous least squares fit to the squeezing and antisqueezing levels.
The errorbars are calculated from the Jacobian, and the residuals are evaluated at
the optimal parameters. The key specifications for the four SPDC waveguides are
summarized in Table C.2. The fitted effective efficiencies 𝜂 of Fig. C.10b-e include
the waveguide output coupling efficiencies 𝜂out reported in Table C.2 as well as all
other system losses (see Sec. C.4).

C.3 Measurement characterization
Squeezed light imaging
Data acquisition and analysis To image the squeezed light incident on the chip,
we collect quadrature statistics of each antenna field mode over various phases by
applying a 2𝜋 phase ramp on the LO at 0.5 Hz. The RF outputs from each QRX



346

Config. SHG waveguide SPDC waveguide Experiments

1 Covesion H-spec. HCP SC18068 Fig. 6.4c
2 HCP SC23399 Covesion H-spec. Fig. 6.5b,c
3 HCP SC23399 HCP SC19075 Fig. 6.5f
4 HCP SC23399 Covesion M-spec. Fig. 6.5e

Table C.1: Waveguide configurations used in experiments of Chapter 6. Con-
figuration 1 was used for squeezed light imaging (Fig. 6.4c). Configuration 2 was
used for beamforming channel sweep (Fig. 6.5b) and 32-channel pump power sweep
(Fig. 6.5c). Configuration 3 was used for the field-of-view data (Fig. 6.5f). Config-
uration 4 was used for the beamwidth data (Fig. 6.5e).

SPDC waveguide 𝜂in 𝜂out 𝐿 (cm) 𝜇 [mW−1/2]

HCP SC18068 0.4 0.4 3 0.119
Covesion H-spec. 0.7 0.8 4 0.038
HCP SC19075 0.4 0.4 3 0.070
Covesion M-spec. 0.7 0.8 4 0.031

Table C.2: PPLN waveguides used as sources of squeezed light. 𝜂in is the 775 nm
input coupling efficiency, 𝜂out is the 1550 nm output coupling efficiency, and 𝜇 is
the SPDC efficiency obtained from a least-squares fit to the pump power sweep data
in Fig. C.10.

are digitized and stored at a sampling rate of 20 MSa/s over 4 seconds. A digital
bandpass filter with a 2 MHz bandwidth is applied to the digital data. The data is
then passed through a moving mean and variance filter with a bin size of 260,000
and is downsampled by a factor of 16,000 to obtain the sample means and variances.

Squeezing parameter estimation The squeezing parameter was estimated with
the source characterization setup of Fig. C.10 in Configuration 1. Five-second
traces of the squeezed vacuum and vacuum noise power levels immediately before
transmission to the chip are shown in Fig. C.11a. The corresponding histograms,
kernel density estimates (KDEs), and derivatives of the KDEs are in C.11b-c.
The estimates for the squeezed state are indicated with the blue crosses. From the
squeezing estimate of−0.695∓0.029 dB and antisqueezing estimate of 9.158±0.029
dB, we obtain 𝑟 = 1.945−0.006

+0.015 and 𝜂 = 0.151+0.003
−0.006.
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Figure C.10: Squeezed light source characterization. a) Experimental setup for
source characterization. b) Configuration 1. Each noise power trace was measured
over 10s with a sampling rate of 10 kHz, center frequency of 6 MHz, 1 MHz RBW,
and 20 Hz VBW. c) Configuration 2. Each noise power trace was measured over 10s
at 1 Hz phase modulation with a sampling rate of 5 kHz, 40 MHz CF, 8 MHz RBW,
and 100 Hz VBW. d) Configuration 3. Each noise power trace was measured over
5s at 1 Hz phase modulation with a sampling rate of 20 kHz, 4 MHz CF, 20 MHz
RBW, and 10 Hz VBW. e) Configuration 4. Each noise power trace was measured
over 10s at 1 Hz phase modulation with a sampling rate of 10 kHz, 20 MHz CF, 8
MHz RBW, and 30 Hz VBW.

These numbers are within the error bars of the prediction from the source charac-
terization of the SPDC waveguide (HCP SC18068). From the least-squares fit to
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Figure C.11: Characterization of squeezing for squeezed light imaging. a) A
five-second snippet of noise power levels for squeezed vacuum (blue) and vacuum
(orange) measured at the source immediately before imaging. The noise powers
were measured with a sampling rate of 20 kHz, center frequency of 6 MHz, 8
MHz RBW, and 100 Hz VBW. b) Histograms for the squeezed vacuum (light blue)
and vacuum (orange) for the noise powers accumulated in a). The kernel density
estimates (KDEs) for the squeezed vacuum (blue) and vacuum (black) histograms
are plotted as solid lines. c) Derivative of KDEs for squeezed vacuum (blue) and
vacuum (black).

the data in Fig. C.10a, 𝜂 = 0.146 and 𝜇 = 0.119 [mW]−1/2. For the waveguide-
coupled pump power of 𝑃 = 315.6 ± 47.3 mW, the estimated squeezing parameter
is 𝑟 = 2.114 ± 0.159.

Phase estimation The phases for the Wigner functions of the 32 antenna modes
are found by performing a sinusoidal fit to a portion of the data with an approximately
uniform phase ramp. The data and fits are shown in Fig. C.12.

Channel effective efficiency estimation The channel effective efficiencies are
calculated from

𝜂 =
(𝐴 − 1) exp(2𝑟)

(exp(2𝑟) − 1) (𝐴 + exp(2𝑟)) , (C.4)

where 𝐴 = Δ𝑄2
+/Δ𝑄2

− is the ratio of the antisqueezing (Δ𝑄2
+) to squeezing (Δ𝑄2

−)
levels and 𝑟 = 1.945. The ratio of antisqueezing to squeezing is obtained from the
amplitudes of the sinusoidal fits in Fig. C.12. The channel effective efficiencies are
plotted in Fig. C.13. For the Wigner functions, the geometric efficiency (𝜂(𝑔)

𝑗
) for

channel 𝑗 is calculated as 𝜂(𝑔)
𝑗

= 𝜂 𝑗/
∑
𝑗 𝜂 𝑗 , where

∑
𝑗 𝜂 𝑗 = 0.017. A Gaussian fit

to the data yields a standard deviation of 𝜎 = 48.8 ± 2.5 𝜇m. This corresponds to
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Figure C.12: Quadrature sample means and variances over time for all 32 channels.
The sample means are approximately zero, while sinusoidal variations are observed
in the sample variances. The fits to the variances are plotted as transparent solid
lines.
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a Gaussian beam diameter of 4𝜎 = 195.2 ± 10 𝜇m, consistent with the collimator
beam diameter of 200 𝜇m.

1 8 16 24 32
Channel number (j)

0.0

0.2

0.4

ηj

1e−3
σ = 48.8±2.5 μm

Figure C.13: Channel effective efficiencies versus channel number. The solid line
is a Gaussian fit to the data.

Classical imaging

Replacing the transmitted squeezed vacuum state with a coherent state allows us to
operate the chip in a classical mode, compatible with previously demonstrated clas-
sical imaging schemes [4]. This enables hybrid quantum-classical operation of the
chip and comparisons of squeezed light measurements with classical measurements.
In the case of imaging, we send a 1550 nm coherent state to the aperture through
the collimator and apply 5 MHz phase modulation to the LO. The classical SNR is
the same as effective efficiency (𝜂), characterizing the decoherence of the quantum
state in the receiver chain. Therefore, we approximate the classical SNR of this 5
MHz downconverted signal as a classical comparison to the squeezed light data.
32-channel RF outputs are digitized by a 32-channel digitizer with a sampling rate
of 100 MSa/s. 10 ms of data are collected for each channel simultaneously using the
same electronic readout as the squeezed light imaging measurement. By recording
the outputs with and without sending light to the aperture, signal, and noise traces
are collected for all 32 channels, as seen in Fig. C.14a. The raw traces are filtered
with a digital bandpass filter with a center frequency of 5 MHz and a bandwidth
of 100 kHz. We take the Hilbert transform of the filtered signal data to extract the
analytical signal and the amplitude for each signal trace is determined, as seen in
Fig. C.14b. Similarly, variances of the filtered noise data are measured and plotted
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Figure C.14: Classical imaging characterization with coherent light. a) An example
of signal (blue) and noise (orange) time-domain traces recorded for 32 channels. b)
Extracted signal and noise powers across 32 channels in the frequency range of the
downconverted tone and the corresponding SNR.

in Fig. C.14b. The ratio between these amplitudes gives the SNR, which is plotted
in Fig. C.14c. A Gaussian fit is applied to the SNR data, which extracts a standard
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Figure C.15: Beamforming on-chip with the HCP SC18068 waveguide used for
SPDC.

deviation of 𝜎 = 45.4 ± 2.5 𝜇m.

Beamforming and pump power sweep
The beamforming (Fig. 6.5b) and 32-channel source characterization (Fig. 6.5c)
data of the main text were performed with the source in Configuration 2, using the
Covesion H-spec waveguide for SPDC. The beamforming sweep was performed at
a waveguide-coupled pump power of 𝑃 = 383.3 ± 19.2 mW. From the Covesion
H-spec characterization in Sec. C.2, this corresponds to a squeezing parameter of
𝑟 = 0.748 ± 0.019.

Before performing the full 32-channel sweep, we first performed beamforming up
to four channels using the HCP SC18068 waveguide for SPDC. A pump power of
226.8 ± 22.7 mW was coupled onto the waveguide, corresponding to a squeezing
parameter of 𝑟 = 1.792 ± 0.090. The data are shown in Fig. C.15.

Classical channel sweep

The classical SNR data to extract the estimated efficiencies for the channel sweep
(Fig. 6.5b) of the main text is done by using the same electronic readout with the
ESA. We send a 1550 nm coherent state to the aperture through the collimator and
apply 5 MHz phase modulation to the LO. We measure the downconverted 5 MHz
signal in the ESA for each channel combination ([1, 2, 4, · · · , 30, 32] channels) as
seen in Fig. C.16a (left). The video bandwidth for the signal measurements is 1 Hz,
and the resolution bandwidth is 100 Hz. We also measure the noise powers for each
channel combination using the ESA in zero-span mode at a center frequency of 5
MHz, with a resolution bandwidth of 2 MHz and a video bandwidth of 5 Hz as seen
in Fig. C.16a (right). After collecting these traces, we measure the signal and noise
amplitudes as seen in Fig. C.16b (left). For the signal amplitudes, we measure the
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Figure C.16: Classical channel sweep characterization with coherent light. a) Signal
(left) and noise (right) data recorded in the frequency domain for [1, 2, 4, · · · , 30, 32]
channel combinations for the measurement in Fig. 6.5b. b) Extracted signal and
noise powers (left) in the frequency range of the downconverted tone and the corre-
sponding SNR (right).

total power in the frequency range between 4.95 MHz to 5.05 MHz in the collected
data. For the noise amplitudes, we measure the mean power in the noise floor.
We then extract the normalized SNR by taking the ratio of these amplitudes and
normalizing the values as seen in Fig. C.16b (right). The resulting values are used
to plot the expected squeezing and antisqueezing using Eq. C.1 with the squeezing
parameter extracted from source characterization. For the proportionality constant,
we apply a least-squares fit with 𝜂 as the floating parameter with the squeezing
parameter bounded as 𝑟 = 0.748± 0.019 to fit the resulting plot to the data, yielding
a proportionality constant of 𝜂𝑐 = 0.021.

Beamwidth
The beamwidth measurement (Fig. 6.5e) of the main text was performed with the
source in Configuration 4, using the Covesion M-spec waveguide for SPDC. The
beamwidth data were taken at a waveguide-coupled pump power of 𝑃 = 383.6±19.7
mW. From the Covesion M-spec characterization in Sec. C.2, this corresponds to a
squeezing parameter of 𝑟 = 0.607 ± 0.015.

Classical beamwidth

The classical SNR data to extract the estimated efficiencies for the beamwidth
measurements (Fig. 6.5e) of the main text is done by using the same electronic
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Figure C.17: Classical beamwidth characterization with coherent light. a) Signal
data recorded in the frequency domain for different angles of incidence for 8 (left)
and 32 (right) channels combined for the measurement in Fig. 6.5e. b) Extracted
signal powers corresponding to normalized SNR in the frequency range of the
downconverted tone for 8 (left) and 32 (right) channels combined.

readout with the ESA. We send a 1550 nm coherent state to the aperture through
the collimator and apply 1 MHz phase modulation to the LO. We measure the
downconverted 1 MHz signal in the ESA for each incidence angle for both 8 channels
and 32 channels combined, as seen in Fig. C.17a. The video bandwidth for the signal
measurements is 1 Hz, and the resolution bandwidth is 100 Hz. Since the electronic
configuration for these measurements stays the same, the noise floor doesn’t change,
making signal directly proportional to SNR. Using the measured spectra in Fig.
C.17a, we measure the total power in the frequency range between 0.95 MHz to
1.05 MHz to acquire the signal amplitudes proportional to SNR for both 8 channels
and 32 channels combined, as seen in Fig. C.17b. The resulting values are used
to plot the expected squeezing and antisqueezing using Eq. C.1 with the squeezing
parameter extracted from source characterization. For the proportionality constant,
we apply a least-squares fit with 𝜂 as the floating parameter and the squeezing
parameter bounded as 𝑟 = 0.607 ± 0.0152 to fit the resulting plot to the data,
yielding an optimal squeezing parameter of 𝑟 = 0.611 and proportionality constants
of 𝜂(8)𝑐 = 0.0191 and 𝜂(32)

𝑐 = 0.0141 for 8 and 32 channels combined, respectively.
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Figure C.18: Classical field-of-view characterization with coherent light. a) Signal
data recorded in the frequency domain for different angles of incidence for 8 (left)
and 32 (right) channels combined for the measurement in Fig. 6.5f. b) Extracted
signal powers corresponding to normalized SNR in the frequency range of the
downconverted tone for 8 (left) and 32 (right) channels combined. A Gaussian
fit is applied to the data, yielding 𝜎 =0.95±0.05◦ and 𝜎 =0.84±0.04◦ for 8 and
32 channels combined, respectively. c) Comparison of the classical data to the
squeezed light data for 8 (left) and 32 (right) channels combined. d) Comparison
of the Gaussian fit of the classical data to the squeezed light data for 8 (left) and
32 (right) channels combined. e) Comparison of single antenna radiation pattern to
the squeezed light data for 8 (left) and 32 (right) channels combined, repeated from
Fig. 6.5f.



356

Field of view
The field-of-view (FoV) experiment (Fig. 6.5f) of the main text was performed
with the source in Configuration 3, using the HCP SC19075 waveguide for SPDC.
The FoV data were taken at a waveguide-coupled pump power of 𝑃 = 153.4 ± 15.3
mW. From the HCP SC19075 characterization in Sec. C.2, this corresponds to a
squeezing parameter of 𝑟 = 0.865 ± 0.043.

Classical field of view

Multiple approaches were taken to acquire the classical comparison for the FoV
measurement (Fig. 6.5f) of the main text. The single antenna radiation pattern is
an accurate classical estimate of the full array pattern since the aperture is fully
filled, and the electronic configuration stays the same for each angle of incidence.
Therefore, the classical comparison in Fig. 6.5f uses the measured far-field single
antenna radiation pattern. We normalize this pattern and set it to be proportional to
SNR. The resulting values are used to plot the expected squeezing and antisqueezing
using Eq. C.1 with the squeezing parameter extracted from source characterization,
as shown in Fig. 6.5f and also in Fig. C.18e. For the proportionality constant,
we apply a least-squares fit with 𝜂 as the floating parameter and with the squeezing
parameter bounded as 𝑟 = 0.865± 0.043 to fit the resulting plot to the data, yielding
an optimal squeezing parameter of 𝑟 = 0.908 and proportionality constants of
𝜂
(8)
𝑐 = 0.0167 and 𝜂(32)

𝑐 = 0.0152 for 8 and 32 channels combined, respectively.

A beamformed classical measurement is also taken for each of the 9 angles in the
FoV measurement. For classical FoV measurement, we send a 1550 nm coherent
state to the aperture through the collimator and apply 1 MHz phase modulation to
the LO. We measure the downconverted 1 MHz signal in the ESA for each angle of
incidence for both 8 channels and 32 channels combined, as seen in Fig. C.18a. The
video bandwidth for the signal measurements is 1 Hz, and the resolution bandwidth
is 100 Hz. Since the electronic configuration for these measurements stays the same,
the noise floor doesn’t change, making signal directly proportional to SNR. Using
the measured spectra in Fig. C.18a, we measure the total power in the frequency
range between 0.95 MHz to 1.05 MHz to acquire the signal amplitudes proportional
to SNR for both 8 channels and 32 channels combined as seen in Fig. C.18b.
The resulting values are used to plot the expected squeezing and antisqueezing
using Eq. C.1 with the squeezing parameter extracted from source characterization.
For the proportionality constant, we apply a least-squares fit with 𝜂 as the floating
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parameter and with the squeezing parameter bounded as 𝑟 = 0.865± 0.043 to fit the
resulting plot to the data, yielding an optimal squeezing parameter of 𝑟 = 0.908 and
a proportionality constant of 𝜂(8)𝑐 = 0.0181 and 𝜂(32)

𝑐 = 0.0145 for 8 and 32 channels
combined, respectively. The comparison of the classical data to the squeezed light
data in Fig. 6.5f of main text is shown in Fig. C.18c. We also fit the classical
data to a Gaussian function, yielding a standard deviation of 0.95±0.05 degrees and
0.84±0.04 degrees for 8 and 32 channels combined, respectively. The comparison
of the Gaussian fit to the squeezed light data is shown in Fig. C.18d.

A linear interpolation is used to extract the classical FoV to directly compare with the
FoV extracted from squeezed light data in the main text. With linear interpolation
on the classical data, we extract an FoV of 2.5 degrees and 2.3 degrees for 8 and
32 channels combined, respectively. These classical estimates match well with the
squeezed light FoV of 2.3 degrees and 2.7 degrees for 8 and 32 channels combined,
respectively, in the main text. The discrepancy between classical and squeezed light
data is due to the measurements being taken sequentially. Future schemes in which
classical and non-classical light are multiplexed in the same link [5] would minimize
this discrepancy.
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C.4 Loss budget
We characterize the measurement setup losses for each experiment (see Supplemen-
tary Information of Ref. [6]) and report them here. A summary of the system losses
for each measurement setup is in Table C.3.

Experiment
Source

loss (dB)
Free-space
loss (dB)

On-chip
loss (dB)

RF
loss (dB)

Total
loss (dB)

Imaging 8.17 1.14 5.72 0.137 15.2
Channel sweep 6.97 2.18 5.72 0.660 15.5
Power sweep 6.97 4.85 5.72 2.16 19.7
BW (8CH) 6.97 2.18 5.72 0.306 15.2
BW (32CH) 6.97 4.85 5.72 1.43 19.0
FoV (8CH) 6.90 2.18 5.72 1.21 16.1
FoV (32CH) 6.90 4.85 5.72 2.13 19.6

Table C.3: Measurement system losses for each experiment. The table breaks down
loss contributions from the source, free-space link, on-chip photonic circuit, and RF
readout electronics.
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A p p e n d i x D

ON-CHIP CLUSTER STATE GENERATION

To illustrate the potential of integrated optoelectronic systems for quantum infor-
mation processing, we perform a proof-of-concept demonstration of cluster state
generation in a measurement-based approach [1, 2] using the QPA system of Chap-
ter 6. Cluster states are a class of entangled graph states that form a resource
for universal measurement-based quantum computation [3]. Continuous-variable
Gaussian cluster states can be generated by interfering squeezed states in linear
optical networks [4, 5]. Here, we generate two-mode cluster state correlations by
implementing a virtual linear optical network after optoelectronic downconversion
with an RF circuit.

Cluster states of up to eight modes have been demonstrated with bulk multipixel
homodyne detection systems by programming virtual optical networks in digital
post-processing [1]. The virtual networks mix different spatial regions in a beam of
light to match the detection basis to an entangled spatial mode basis. This method of
entanglement generation allows for highly compact and versatile implementations
of Gaussian quantum computation in the measurement-based model [2], which can
be scaled to a higher number of modes by interfacing quantum PICs like the QPA
chip with special-purpose RF or microwave ICs.

D.1 Experiment
The quantum circuit architecture used in the experiment is shown in Fig. D.1a. A
squeezed state is transmitted over free space to the QPA chip, and a phase ramp
at a modulation frequency of 0.5 Hz is applied to the LO before coupling it to the
chip. The RF outputs of the QRXs in each half of the array are sent to a 16:1 power
combiner. Beamforming is performed on all 32 channels such that the two outputs
of the power combiners are in phase. To improve the geometric efficiency, the
outermost 12 channels are disconnected from each 16:1 power combiner, for a total
of 8 pixel modes in Fig. D.1a. The outputs of the power combiners are digitized at
a sampling rate of 100 MSa/s, and an RF beamsplitter transformation is emulated
on the digitized quadratures (see Methods).

With our architecture in Fig. D.1a, the overall transformation on the input field can
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Figure D.1: Quantum optoelectronic processing. a) Optoelectronic circuit archi-
tecture for entanglement generation. The free space operation (U) corresponds to
the change-of-basis matrix mapping the spatial modes of the input state to the pixel
modes, where 𝜌 represents the spatial coordinates in the aperture plane of the chip.
Each colored line represents a matrix element corresponding to the overlap of an
antenna and pixel mode function. A phase shifter 𝜑 𝑗 is applied to each pixel mode,
and each half of the array is combined in a 16:1 RF power combiner (G). The
output voltages of the power combiners are digitized and followed by a beamsplitter
transformation (𝑆). b) Emulated optical circuit for two-mode Gaussian cluster state
generation. c) The cluster state inseparability (𝐼) measured over time for a linear
phase ramp. The data for the squeezed vacuum and vacuum states are plotted in
blue and gray, respectively. The solid lines are the analytical expectations with a
sinusoidal fit to the squeezed data.

be summarized as,

®𝑎out = 𝑆(𝐺 ⊕ 𝐺)𝐷𝑈 ®𝑎in, (D.1)

where𝑈 is the free-space change-of-basis unitary mapping the input modes to pixel
modes, 𝐷 = diag(𝑒𝑖𝜙1 , 𝑒𝑖𝜙2 , ...),

𝐺 ⊕ 𝐺 =

(
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1

)
(D.2)

is the gain matrix of the RF power combiners, and

𝑆 =
1
√

2

(
1 𝑖

𝑖 1

)
(D.3)
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is the beamsplitter matrix. The transformation of 𝑆 is performed on the digitized
quadratures as an emulation of an RF directional coupler, where complex matrix
elements are implemented as a 𝜋/2 phase shift. For a two-mode Gaussian cluster
state generated with 𝑆, the cluster state correlations are given by,

Var(𝑄̂3(𝜃) − 𝑃̂4(𝜃)) = Var(𝑄̂1(𝜃)), (D.4)

Var(𝑄̂4(𝜃) − 𝑃̂3(𝜃)) = Var(𝑄̂2(𝜃)), (D.5)

where Var(𝑄̂𝑖 (𝜃)) for 𝑖 = 1, 2 is given by,

⟨Δ𝑄̂2
𝜃⟩sq =

𝜂

2
(𝑒−2𝑟 cos2 𝜃 + 𝑒2𝑟 sin2 𝜃) + 1 − 𝜂

2
,

for squeezed modes, such that the right-hand side is zero at 𝜃 = 0 in the limit of
large squeezing parameter and low loss. The inseparability criterion required to
show cluster state entanglement is

𝐼 = Var(𝑃̂4 − 𝑄̂3) + Var(𝑃̂3 − 𝑄̂4) < 1, (D.6)

where 𝑄̂𝑖, 𝑃̂𝑖 are the quadrature operators for each cluster state mode denoted by
𝑖 = 3, 4 in Fig. D.1b, and the variances are relative to those of the vacuum state.

The quadrature correlations 𝐼 as a function of time are shown in Fig. D.1b. We
observe the sinusoidal signature expected for a rotation of the measurement basis
due to the LO phase modulation.

D.2 Cluster state inseparability
The minimum and maximum inseparability levels are estimated from the histograms
of the inseparabilities with the procedure in Appendix B. The histogram and kernel
density estimate of the data in D.1c is shown in Fig. D.2. The estimates for the min.
and max. inseparabilities are 0.994 ± 0.002 and 1.018 ± 0.002, respectively. The
sinusoidal fit in Fig. D.1c. is performed with the amplitude fixed by the minimum
and maximum inseparability estimates and the angular frequency (𝜔) and phase
(𝜙) taken as floating parameters. We obtain fit parameters of 𝜔 = 7.99 ± 0.12 and
𝜙 = 0.703 ± 0.069.

D.3 Discussion
We estimate a maximum inseparability of 𝐼 = 1.0176 ± 0.0004 and a minimum
inseparability of 𝐼 = 0.9948±0.0004. The resolution of the measured entanglement



362

Figure D.2: Histogram of inseparability data in Fig. D.1c for squeezed vacuum
(blue) and vacuum (orange) states. The solid blue and orange lines are the kernel
density estimates. The min. and max. inseparability estimates are indicated with
blue crosses. The vacuum standard deviations are indicated with black crosses.

is enabled by the high precision and stability offered by the chip-scale optoelec-
tronics. We note that in our experiment, the inseparability given by Eq. D.6 has a
lower bound of 0.5 since the squeezed light was generated in a single mode. This
lower bound can be overcome by transmitting multiple squeezed modes to the chip,
allowing for the generation of large cluster states up to 32 modes.

Our demonstration show the potential for optoelectronic systems on-chip for appli-
cations in quantum information processing. More broadly, integrating quantum pho-
tonics with electronics in the same package offers novel engineering opportunities
in realizing large-scale room-temperature quantum systems. Coherent processing of
downconverted quantum optical information with RF or microwave integrated cir-
cuits could enable compact and low-loss optoelectronic approaches to measurement-
based quantum information processing, where certain linear operations are offloaded
to electronics, as a generalization of classical microwave photonics [6].
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A p p e n d i x E

ANALYTICAL METHODS FOR MODELING REAL-WORLD
PHOTONIC QUANTUM TELEPORTATION

E.1 Analytical derivations of expressions
HOM interference visibility
We employ the characteristic function formalism described in Chapter 9 considering
the setup shown in Fig. 9.2. For this derivation, we use 7×7 block matrices with
2×2 sub-matrices, with each sub-matrix representing correlations between different
optical modes. The first column of the block matrix represents the coherent state
mode; the third and fifth columns represent vacuum inputs at the virtual beamsplitters
with transmission 𝜁2 to account for the mode indistiguishability, the second and sixth
columns represent the vacuum inputs at the 50:50 beamsplitter that are mixed with
the distinguishable parts of the modes; and the fourth and the seventh columns
represent the idler and signal modes of the TMSV state. We first describe the overall
state of the system after transmission losses, given by the block covariance matrix,

γ =

©­­­­­­­­­­­­«

I2x2 0 0 0 0 0 0
0 I2x2 0 0 0 0 0
0 0 I2x2 0 0 0 0
0 0 0 (1 + 2𝜂𝑖𝜇)I2x2 0 0 2

√︁
𝜂𝑖𝜂𝑠𝜇(1 + 𝜇)𝜎3

0 0 0 0 I2x2 0 0
0 0 0 0 0 I2x2 0
0 0 0 2

√︁
𝜂𝑖𝜂𝑠𝜇(1 + 𝜇)𝜎3 0 0 (1 + 2𝜂𝑠𝜇)I2x2

ª®®®®®®®®®®®®¬
,

where𝜎3 =

(
1 0
0 −1

)
. The displacement vector is ®𝑑 =

√
2
(
Re(𝛼) Im(𝛼) 0 ... 0

)𝑇
,

with 𝛼 already accounting for loss in the coherent state channel. From here, we
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apply the mismatch matrix,

©­­­­­­­­­­­­«

√
𝜁 I2x2 0

√︁
1 − 𝜁 Z 0 0 0 0

0 I2x2 0 0 0 0 0√︁
1 − 𝜁 Z 0

√
𝜁 I2x2 0 0 0 0

0 0 0
√
𝜁 I2x2

√︁
1 − 𝜁 Z 0 0

0 0 0
√︁

1 − 𝜁 Z
√
𝜁 I2x2 0 0

0 0 0 0 0 I2x2 0
0 0 0 0 0 0 I2x2

ª®®®®®®®®®®®®¬
,

and the beam splitting matrix,

1
√

2

©­­­­­­­­­­­­«

I2x2 0 0 Z 0 0 0
0 I2x2 0 0 Z 0 0
0 0 I2x2 0 0 Z 0
Z 0 0 I2x2 0 0 0
0 Z 0 0 I2x2 0 0
0 0 Z 0 0 I2x2 0
0 0 0 0 0 0

√
2 I2x2

ª®®®®®®®®®®®®¬
,

where Z =

(
0 −1
1 0

)
. This now allows calculation of the twofold coincidence

probability,

𝑝2-fold = Tr
{
𝜌̂′

(
1 − I𝑏1,𝑏2,𝑏3,𝑐 ⊗ |0⟩⟨0|⊗3

𝑎1,𝑎2,𝑎3

− I𝑎1,𝑎2,𝑎3,𝑐 ⊗ |0⟩⟨0|⊗3
𝑏1,𝑏2,𝑏3

+ I𝑐 ⊗ |0⟩⟨0|⊗6
𝑎1,𝑎2,𝑎3,𝑏1,𝑏2,𝑏3

)}
, (E.1)

and the threefold coincidence probability,

𝑝3-fold = Tr
{
𝜌̂′

(
1 − I𝑎1,𝑎2,𝑎3,𝑏1,𝑏2,𝑏3 ⊗ |0⟩⟨0|𝑐
− I𝑏1,𝑏2,𝑏3,𝑐 ⊗ |0⟩⟨0|⊗3

𝑎1,𝑎2,𝑎3

− I𝑎1,𝑎2,𝑎3,𝑐 ⊗ |0⟩⟨0|⊗3
𝑏1,𝑏2,𝑏3

+ I𝑏1,𝑏2,𝑏3 ⊗ |0⟩⟨0|⊗4
𝑎1,𝑎2,𝑎3,𝑐

+ I𝑎1,𝑎2,𝑎3 ⊗ |0⟩⟨0|⊗4
𝑏1,𝑏2,𝑏3,𝑐

+ I𝑐 ⊗ |0⟩⟨0|⊗6
𝑎1,𝑎2,𝑎3,𝑏1,𝑏2,𝑏3

− |0⟩⟨0|⊗7
𝑎1,𝑎2,𝑎3,𝑏1,𝑏2,𝑏3,𝑐

)}
, (E.2)

where the subscripts 𝑎𝑖, 𝑏𝑖, and 𝑐, with 𝑖 ∈ {1, 2, 3}, represent the coherent state,
idler, and signal modes respectively. Note that the subscripts of the identity matrices
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indicate which modes are traced out for a given calculation. Using Eq. 9.14, we
calculate

Tr{ 𝜌̂(I𝑥1,...,𝑥𝑚⊗|0⟩⟨0|⊗𝑛𝑦1,...,𝑦𝑛} =
2𝑛√︃

det
(
γ𝑦1,...,𝑦𝑛 + I

) exp
(
− ®𝑑𝑇𝑦1,...,𝑦𝑛 (γ𝑦1,...,𝑦𝑛 + I)−1 ®𝑑𝑦1,...,𝑦𝑛

)
,

where 𝑥𝑖 represents the modes traced out and 𝑦𝑖 represents the remaining modes.
We now use this expression to calculate each of the terms in Eqs. E.1 and E.2,
yielding

𝑝2-fold( |𝛼 |2, 𝜇, 𝜁 , 𝜂𝑖) =1 +
exp

(
−|𝛼 |2

)
1 + 𝜂𝑖𝜇

− 4
exp

(
−|𝛼 |2 + |𝛼 |2 (2+(1+𝜁2)𝜂𝑖𝜇)

4+2𝜂𝑖𝜇

)
2 + 𝜂𝑖𝜇

,

and

𝑝3-fold( |𝛼 |2, 𝜇, 𝜁 , 𝜂𝑠, 𝜂𝑖) =
𝜂𝑠𝜇

1 + 𝜂𝑠𝜇
− 2

e−
|𝛼 |2/2[1+(1−𝜁 2 )𝜂𝑖 𝜇/2]

1+𝜂𝑖 𝜇/2

1 + 𝜂𝑖𝜇/2

+ e−|𝛼 |2 (1 − 𝜂𝑖)𝜂𝑠𝜇
(1 + 𝜂𝑖𝜇) (1 + 𝜂𝑠 (1 − 𝜂𝑠)𝜇 + 𝜂𝑠𝜇)

+ 2
e−

|𝛼 |2/2[1+(1−𝜁 2 ) (1−𝜂𝑠 )𝜂𝑖 𝜇/2+𝜂𝑠 𝜇]
1+(1−𝜂𝑠 )𝜂𝑖 𝜇/2+𝜂𝑠 𝜇

1 + (1 − 𝜂𝑠)𝜂𝑖𝜇/2 + 𝜂𝑠𝜇
.

Teleportation fidelity
We now consider the setup of Fig. 9.2. Similar to the HOM visibility derivation, we
use 14×14 block matrices with 2×2 sub-matrices, with each sub-matrix representing
correlations between different optical modes. The first and the eight columns of
the block matrices represent the early and late coherent state modes; the fourth,
and eleventh columns represent the early and late idler modes; the seventh and
fourteenth columns represents the early and late signal mode; and the rest represents
the vacuum inputs at the virtual and the 50:50 beamsplitters. Again, the block
covariance matrix, I6x6 ⊕ M, denotes the state of the system after losses, where

M = I11x11 ⊗ I2x2 + 2𝜇
(
𝜂𝑠Ps + 𝜂𝑖Pi

)
⊗ I2x2 + 2

√︁
𝜂𝑠𝜂𝑖 𝜇(1 + 𝜇) A ⊗ 𝜎3,

Ps = diag(1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0), Pi = diag(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1),

A = E1,10 + E10,1 + E7,11 + E11,7, 𝜎3 =

(
1 0
0 −1

)
,
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and E 𝑗 ,𝑘 is an 11 × 11 matrix unit at (j,k) and 0 elsewhere.

The displacement vector is,

®𝑑 =
√

2

(
Re(𝛼) Im(𝛼) 0 0 0 0 0 0 0 0

0 0 Re(𝛼) Im(𝛼) 0 0 ... 0

)𝑇
,

and 𝛼 again already takes into account loss. The mismatch matrix,

I2x2 ⊗

©­­­­­­­­­­«

√
𝜁 I2x2 0

√︁
1 − 𝜁 Z 0 0 0

0 I2x2 0 0 0 0√︁
1 − 𝜁 Z 0

√
𝜁 I2x2 0 0 0

0 0 0
√
𝜁 I2x2

√︁
1 − 𝜁 Z 0

0 0 0
√︁

1 − 𝜁 Z
√
𝜁 I2x2 0

0 0 0 0 0 I2x2

ª®®®®®®®®®®¬
⊕ I4x4,

is applied, and so is the beam splitting matrix,

1
√

2
I2x2 ⊗

©­­­­­­­­­­«

I2x2 0 0 Z 0 0
0 I2x2 0 0 Z 0
0 0 I2x2 0 0 Z
Z 0 0 I2x2 0 0
0 Z 0 0 I2x2 0
0 0 Z 0 0 I2x2

ª®®®®®®®®®®¬
⊕ I4x4.

The above result is in the Z-basis. For the X-basis, we apply the phase shift matrix
to the early signal mode,

I12x12 ⊕
(

cos(𝜙) sin(𝜙)
− sin(𝜙) cos(𝜙)

)
⊕ I14x14,

and then interfere the early and late signal mode at a 50:50 beamsplitter, described
by the matrix,

I12x12 ⊕

©­­­­­­­­­­­­­­­«

1√
2
I2x2 0 0 0 0 0 0 1√

2
Z

0 I2x2 0 0 0 0 0 0
0 0 I2x2 0 0 0 0 0
0 0 0 I2x2 0 0 0 0
0 0 0 0 I2x2 0 0 0
0 0 0 0 0 I2x2 0 0
0 0 0 0 0 0 I2x2 0

1√
2
Z 0 0 0 0 0 0 1√

2
I2x2

ª®®®®®®®®®®®®®®®¬

,
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before the detection. In both the X- and Z-basis, we calculate the relevant threefold
detection probabilities as follows:

𝑃𝐷1𝐷4𝐷6 = Tr
{
𝜌̂′

(
1 − I𝑎𝑙 ,𝑏𝑒,𝑏𝑙 ,𝑐𝑒,𝑐𝑙 ⊗ |0⟩⟨0|⊗3

𝑎𝑒
− I𝑎𝑒,𝑎𝑙 ,𝑏𝑒,𝑐𝑒,𝑐𝑙 ⊗ |0⟩⟨0|⊗3

𝑏𝑙

− I𝑎𝑒,𝑎𝑙 ,𝑏𝑒,𝑏𝑙 ,𝑐𝑒 ⊗ |0⟩⟨0|𝑐𝑙 + I𝑎𝑙 ,𝑏𝑒,𝑏𝑙 ,𝑐𝑒 ⊗ |0⟩⟨0|⊗4
𝑎𝑒,𝑐𝑙

+ I𝑎𝑒,𝑎𝑙 ,𝑏𝑒,𝑐𝑒 ⊗ |0⟩⟨0|⊗4
𝑏𝑙 ,𝑐𝑙

+ I𝑎𝑙 ,𝑏𝑒,𝑐𝑒,𝑐𝑙 ⊗ |0⟩⟨0|⊗6
𝑎𝑒,𝑏𝑙

− I𝑎𝑙 ,𝑏𝑒,𝑐𝑒 ⊗ |0⟩⟨0|⊗7
𝑎𝑒,𝑏𝑙 ,𝑐𝑙

)}
, (E.3)

where the subscripts 𝑎, 𝑏, and 𝑐 represent the coherent state, idler, and signal modes
respectively, and the subscripts 𝑒 and 𝑙 represent the early or late bin, respectively.
Again, the subscripts of the identity matrix indicate which modes are traced out for
a given calculation. Similarly as before, we use Eq. 9.14 to calculate each of the
terms in Eq. E.3 to yield analytical expressions of the probabilities.

E.2 Maximum theoretical HOM interference visibilities
We plot the maximum two- and three-fold interference HOM interference visibilities
using Eqs. 9.18 and 9.19. Complete indistinguishability 𝜁 = 1 as well as perfect
transmission 𝜂𝑠 = 𝜂𝑖 = 1 is assumed. The visibilities with varied |𝛼 |2 and 𝜇 are
shown in Fig. E.1, finding maximum two- and three-fold visibilities of

√
2 − 1 and

unity, respectively.

Figure E.1: Dependence of a) two-fold and b) three-fold HOM interference visi-
bilities for varied mean photon numbers of the coherent state (|𝛼 |2) and TMSV (𝜇)
assuming unity path efficiencies (𝜂𝑖, 𝜂𝑠 = 1) and photon indistinguishability (𝜁 = 1).
The red dashed line in a) corresponds to |𝛼 |2 =

√
2𝜇, which maximizes the visibility

for |𝛼 |2, 𝜇 ≪ 1.
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The two-fold plot features a maximum along a symmetric diagonal for all |𝛼 |2 ≪ 1
and 𝜇 ≪ 1. The maximum corresponds to the condition |𝛼 |2/𝜇 =

√
2, which is

not equal to one due to the differences in number distributions. This condition
effectively corresponds to matching of the mean photon numbers of the Poisson
and thermal distributions, ‘striking a balance" between the contributions of single
photons interfering compared to 𝑛 = 2 terms interfering with vacuum. Thus, the

√
2

acts to ensure that the balance is struck between the different field statistics. This is
different than the case of identical field statistics, in which the maximum corresponds
to an exact matching of mean photon numbers. Note the slight deviation in diagonal
symmetry as |𝛼 | and 𝜇 approach 1; the balancing offered by

√
2 cannot hold because

interference between single and 𝑛 = 2 states begin to contribute to interference.
Indeed the maximum visibility is not unity due to the non-zero contribution of 𝑛 = 2
terms interfering with vacuum.

Owing to heralding, the three-fold plot has a plateau-like topography that extends
the range of optimized visibility. A range of |𝛼 |2 ≪ 1 will maximize the visibility
to approach unity because the measurement is conditioned on three-fold detection
and heralding will always guarantee a single photon in the idler mode when 𝜇 ≪ 1.
Effectively, this regime renders the visibility independent of the probability of
generating a photon in |𝛼⟩. The threshold at |𝛼 |2 ∼ 1 is predominantly due to 𝑛 = 2
events from |𝛼⟩ interfering with heralded single photons in the idler path, thereby
reducing the maximum visibility. A steep diagonal threshold to the plateau is also
present under conditions of |𝛼 |2 ≪ 1, similar to that of the ridge in the two-fold
plot. In this region, as 𝜇 is increased and approaches |𝛼 |2, the relative probability
of heralding a multi-photon term increases, which decreases the visibility, and leads
to the threshold topography along the diagonal. The condition |𝛼 |2/𝜇 =

√
2 does

not maximize the visibility because heralding increases the effective mean photon
number of the signal mode, and thus a lower value of 𝜇 is required to reach maximum
visibility compared to two-fold HOM interference. This effect shifts the diagonal
threshold to the left in Fig. E.1b.

E.3 Procedure for fitting HOM interference and teleportation fidelity datasets
We fit three data sets, two- and three-fold HOM interference visibilities as well as
X-basis teleportation fidelity, using a piecewise model function based on our theory.
Our code performs a nonlinear regression with Mathematica’sNonlinearModelFit
function with Differential Evolution as the fitting method. This global optimization
approach is well-suited for fitting nonlinear models. As discussed in Sec. 9.4, we
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utilize six physical parameters: 𝜂𝑠, 𝜂𝑖2, 𝜂𝑖3, 𝜇, 𝜁2, and 𝜁3, as fitting parameters,
subject to relevant physical constraints. Different mode mismatch and signal mode
efficiency parameters, 𝜁2 and 𝜁3, as well as 𝜂𝑖2 and 𝜂𝑖3, respectively, are ascribed
to the two- and three-fold detection experiments. For the three-fold HOM and
teleportation data, a shared 𝜁3 is used, with independently determined parameters
𝜂𝑖3 = 1.2 × 10−2, 𝜂𝑠 = 4.5 × 10−3, and 𝜇 = 8.0 × 10−3 from Ref. [1] remaining
constant. The two-fold HOM data is fitted independently, retaining 𝜇 = 8.0 × 10−3

as constant.

The fitting protocol is outlined as follows:

1. Use the Map and Max functions to ensure uncertainties in the data are bounded
to be no less than the square root of the respective y-values.

2. Combine the three-fold HOM interference and X-basis visibility data, distin-
guishing them with unique markers. This is achieved using the Join and Map
functions.

3. Formulate a modular fitting function, which can differentiate between X-basis
visibility and three-fold HOM interference based on their respective markers.
For two-fold HOM data, introduce a separate fitting function that considers
the unique constraints of the two-fold detection experiment.

4. Establish the fitting framework, setting the fitting parameters such as 𝜂𝑖2, 𝜁2,
and 𝜁3 accordingly, while holding the known parameters constant.

5. Engage in a simultaneous fitting procedure using NonlinearModelFit. This
process will take into account the defined model function constraints, weigh
the data points based on their squared uncertainties, and adopt the "Differ-
entialEvolution" fitting technique. The physical constraints on the fitting
parameters will ensure that path efficiencies and indistinguishabilities are
positive and no larger than unity.

The outcomes of the fits yield 𝜁2 = 0.80 ± 0.04, 𝜂𝑖2 = (6.9 ± 1.2) × 10−2, and
𝜁3 = 0.90 ± 0.02 as optimal parameter estimations.

E.4 Calculus of HOM interference visibility expressions
We differentiate the HOM visibility expressions of Eqs. 9.18 and 9.19 to determine
the optimal choice of |𝛼 |2. The expression for the two-fold case (Eq. 9.18), when
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differentiated with respect to |𝛼 |2 and evaluated for the relevant experimental and
extracted parameters 𝜁2 = 0.80, 𝜂𝑖 = 6.9 × 10−2 and 𝜇 = 8.0 × 10−3, yields,

𝑉 ′
2-HOM( |𝛼 |2) = −1.98781𝑒 |𝛼 |2/2 − 55552.9𝑒0.500019|𝛼 |2 + 55554.9𝑒0.500019|𝛼 |2

0.987811 − 1.98781𝑒 |𝛼 |2/2 + 𝑒 |𝛼 |2
.

(E.4)

The three-fold case (Eq. 9.19), given a similar treatment with 𝜁3 = 0.90, 𝜂𝑖 =
1.2 × 10−2, 𝜂𝑠 = 4.5 × 10−3 and 𝜇 = 8.0 × 10−3, yields

𝑉 ′
3-HOM( |𝛼 |2) = 1(

0.987811 − 1.98781𝑒 |𝛼 |2/2 + 𝑒 |𝛼 |2
)2

[
−0.98179𝑒 |𝛼 |

2/2

− 27439.2𝑒0.500024|𝛼 |2 + 27440.2𝑒0.500024|𝛼 |2

+ 2.22045 × 10−16𝑒 |𝛼 |
2 + 2.63814𝑒1.00002|𝛼 |2

− 2.65025𝑒1.00002|𝛼 |2 + 0.993905𝑒3|𝛼 |2/2

+ 27775.1𝑒1.50002|𝛼 |2 − 27776.1𝑒1.50002|𝛼 |2
]

(E.5)

Setting Eqs. E.4 and E.5 equal to zero and evaluating |𝛼 |2 results in 7.8 × 10−4 and
2.2 × 10−3, respectively, which is consistent with the curves shown in Fig. 9.3.
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Figure E.2: Model of teleportation fidelity of X-basis states for varied |𝛼 |2 under
conditions of varied signal and idler transmission efficiencies in blue, red, green,
and orange, respectively, as described in Sec. 9.5 the main text, assuming complete
indistinguishability 𝜁 = 1.
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E.5 X-basis teleportation curves for varying transmission efficiencies and
mean photon numbers

(i)

(ii)

(iii)

(iv)

Figure E.3: Model of X-basis quantum teleportation fidelity for varied |𝛼 |2 and
𝜇 < 10−2, under varied signal and idler transmission efficiencies cases (i)-(iv), as
discussed in Sec. 9.5, assuming complete indistinguishability 𝜁 = 1.
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A p p e n d i x F

TRAVERSABLE WORMHOLE SIGNATURES

To determine if the sparse learned Hamiltonian describes gravitational physics, we
examine the Hamiltonian in Eq. 14.7,

𝐻̂𝐿,𝑅 = − 0.36𝜓̂1𝜓̂2𝜓̂4𝜓̂5 + 0.19𝜓̂1𝜓̂3𝜓̂4𝜓̂7

− 0.71𝜓̂1𝜓̂3𝜓̂5𝜓̂6 + 0.22𝜓̂2𝜓̂3𝜓̂4𝜓̂6

+ 0.49𝜓̂2𝜓̂3𝜓̂5𝜓̂7,

(F.1)

via two orthogonal approaches: first, we verify that it replicates relevant dynamics
of the dense SYK Hamiltonian; and secondly, we evaluate if it satisfies necessary
criteria of general holographic systems. These criteria are stricter than the similarity
of dynamical observables: they include perfect size winding — the strongest form
of size winding, which is sufficient to provide a geometric interpretation [1, 2, 3] —
the causal time-ordering of teleported signals, which shows that the teleportation is
not occurring due to random scrambling, and a time delay predicted by scattering
in the bulk.

The learned Hamiltonian is consistent with gravitational dynamics of the dense SYK
Hamiltonian beyond its training data. The mutual information 𝐼𝑃𝑇 (𝑡1) for fixed 𝑡0
shows behavior compatible with a qubit emerging from a traversable wormhole
(Fig. 14.3a). The mutual information peak height and position strongly resemble
the large-𝑁 SYK model computation in the double-scaled limit (Fig. F.1a). In the
high-temperature limit, the mutual information asymmetry between couplings with
𝜇 < 0 and 𝜇 > 0 diminishes, corresponding to teleportation occurring via scram-
bling instead of through the wormhole, consistent with theoretical expectations [4].
Additionally, the learned Hamiltonian scrambles and thermalizes similarly to the
original SYK model as characterized by the four-point and two-point correlators
−⟨[𝜓̂(0), 𝜓̂(𝑡)]2⟩ and ⟨𝜓̂(0)𝜓̂(𝑡)⟩ (Fig. F.1b). Since the scrambling time is approxi-
mately equal to the thermalization time, the gravitational interpretation suggests the
boundary lies near the horizon.

Beyond comparison to the dense SYK model, we proceed to evaluate more general
behavior predicted from gravity. The property of “perfect” size winding provides
a necessary and sufficient “litmus test” to identify traversable wormhole behavior,
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Figure F.1: Signatures of traversable wormhole dynamics for the learned sparse
SYK Hamiltonian (Eq. F.1). a) Mutual information asymmetry 𝐼𝜇<0(𝑡) − 𝐼𝜇>0(𝑡)
for the learned (green) and SYK Hamiltonians (orange) at the low-temperature
gravitational limit (solid) and high-temperature scrambling limit (dashed). An
analytic computation in the large-𝑁 limit of the SYK model using chord diagrams
(black) is shown for low temperatures, showing agreement with the peak position and
height. b) Two-point function (solid) and four-point function (dashed), indicating
thermalization time and scrambling time, respectively, of the SYK (orange) and
learned (green) Hamiltonians. c) Bulk location of the infalling particle before and
after the interaction with respect to the black hole horizon, as given by the Fourier
transform |𝑞 | of the winding size distribution. d) Perfect size winding before
(green) and after (brown) the interaction; data at each operator size is horizontally
staggered to make the different values visually distinct. The black dashed lines
show a linear fit (𝑅2 = 0.999) with equal but opposite slopes, corresponding to
the reversal of winding direction after the interaction. e) Shapiro time delay in the
eternal traversable wormhole protocol caused by scattering in the bulk. The peak
shifts right when an additional qubit is sent through the wormhole in the opposite
direction (dashed) compared to sending a single qubit from left to right (solid). f)
Causally time-ordered teleportation. The position of the mutual information peak is
shown for an instantaneous at 𝑡 = 0 (blue) and prolonged (orange) interaction over
𝑡 ∈ [−1.6, 1.6].
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holding for quantum systems with a nearly AdS2 bulk [1, 2, 3]. Perfect size
winding is equivalent to a maximal Lyapunov exponent at large 𝑁 , but unlike the
Lyapunov exponent, size winding remains a meaningful quantity at small 𝑁 . Non-
gravitational systems, such as random non-local Hamiltonians, may teleport in the
low-temperature limit with a weak asymmetry in 𝜇; unlike gravitational systems,
these have “imperfect” size winding. Systems that teleport in the high-temperature
fully scrambled regime, such as random circuits [5] or chaotic spin chains, do not
exhibit any size winding.

Given the thermal state 𝜌𝛽 ∝ 𝑒−𝛽𝐻̂𝐿 , size winding describes the decomposition
𝜌

1/2
𝛽
𝜓̂1
𝐿
(𝑡) = ∑

𝑃 𝑐𝑃 (𝑡)𝜓̂𝑃𝐿 over strings of |𝑃 | fermions. The system exhibits perfect
size winding at time 𝑡 if the 𝑐2

𝑃
coefficients have a phase that linearly depends on

|𝑃 |. For the Hamiltonian in Eq. F.1, an injected fermion is supported by operators of
three sizes. We find that the learned Hamiltonian exemplifies perfect size winding
(Fig. F.1c, d) at the time of teleportation, with the phases of the eight nonzero
coefficients forming a line with 𝑅2 = 0.999. This analysis shows that teleportation
under the learned Hamiltonian is caused by the “teleportation by size” mechanism,
not by scrambling or other non-gravitational dynamics. We visualize the resulting
geometric interpretation of the learned Hamiltonian by taking the Fourier transform
to obtain the bulk location of the infalling particle relative to the horizon.

The Hamiltonian is shown to adhere to the microscopic mechanism of wormhole tele-
portation via its perfect size winding description. To observe this at a macroscopic
scale, we examine two phenomena: a Shapiro time delay and causal time-ordering of
signals. For the time delay, we interrogate the learned Hamiltonian within the eter-
nal traversable wormhole framework [6]. Besides sending a single qubit from left
to right, we insert an additional qubit across the wormhole from right to left. From
a gravitational perspective, this should cause the left-to-right signal to arrive later
due to scattering in the bulk. We observe this in the learned Hamiltonian (Fig. F.1e).
For causal time-ordering, we inspect the order in which infalling particles emerge
from the wormhole. If a geometric interpretation is valid, infalling particles should
arrive in a causally consistent order (Fig. 14.1b): signals must emerge in the same
order they enter (time-ordered teleportation). In contrast, teleportation in the fully
scrambled regime produces a time-inverted ordering of signals. Our learned Hamil-
tonian generates time-ordered teleportation (Fig. F.1f). The position of the mutual
information peak is shown for an instantaneous at 𝑡 = 0 (blue) and prolonged (or-
ange) interaction over 𝑡 ∈ [−1.6, 1.6]. A positive slope indicates time-inverted
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teleportation and a negative slope indicates time-ordered teleportation. When the
coupling is applied over a window of time, the time-ordering of signals confirms
through-the-wormhole behavior. When the coupling is instantaneous, the decreased
slope suggests a combination of teleportation by scrambling and by traversing the
wormhole.

The above analyses demonstrate gravitational teleportation by the learned Hamil-
tonian via an emergent wormhole; additional analyses examining spectral charac-
teristics, dynamics at different temperatures and interaction strengths, and further
properties of size winding are provided in the Supplementary Information of Ref.
[7].
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