

LIST OF TABLES

<i>Number</i>	<i>Page</i>
2.1 Comparison of quantum-limited BHDs on chip with demonstrated non-classical light detection. *Photodetectors not integrated.	27
3.1 Maximum-likelihood best-fit results for key experimental parameters. Uncertainties are computed by inverting the Hessian, except for k , where a likelihood scan has been performed. There is no value of pull for k as it is extracted from a fit without a constraint.	72
4.1 Computational complexity of computing the matrix elements $\mathbf{\Pi}_{mn}$ for the different approaches and configurations. FLOPs per term estimate the number of operations per term including binomial coefficients and multiplications.	101
5.1 Per-channel predicted maximum values for the 4 rate metrics are shown in the ‘1 Channel’ column. Depending on the metric, the maxima are achieved for different pump powers μ . The μ value that maximizes each metric is shown in parenthesis on the left.	121
7.1 Summary of regional quantum network testbeds, highlighting key technologies, protocols, and architectures. BSM: Bell state measurement; DWDM: dense wavelength division multiplexing; NV: nitrogen vacancy; PAM: phase amplitude modulation; PPLN: periodically poled lithium niobate; QFC: quantum frequency conversion; SNSPDs: superconducting nanowire single photon detectors; SPADs: single-photon avalanche detectors; TF-QKD: twin-field QKD.	161
8.1 Teleportation fidelities with (right column) and without (center column) the 44 km-length of fiber for Alice’s qubit states prepared with varying μ_A . Mean photon numbers and fidelities for vacuum states with fiber are assumed to be zero and 50%, respectively.	181
8.2 Bob’s photon pair source is characterized by the measured mean photon number per time bin μ_B , and the rate of accidental and true coincidence detections with varied EDFA current.	189

10.1	Source-independent quantum key distribution error rates. The secret key rate (R/R_s) is calculated from the measured error rates in the time (e_t) and phase (e_p) bases for an error correction efficiency of $\kappa = 1.22$. Error bars on the rates are calculated from the propagation of Poisson statistics.	234
10.2	Experimental parameters for the Hong-Ou-Mandel (HOM) and swapping configurations. $\mu_{A(B)}$ is the mean photon number of Alice's (Bob's) photon pair source, η_{Ai} is Alice's idler path efficiency, η_{As} is Alice's signal path efficiency, η_{Bs} is Bob's signal path efficiency, and η_{Bi} is Bob's idler path efficiency. (a) HOM interference measurements in Sec. 10.3, (b) entanglement swapping measurements in Sec. 10.3, and entanglement swapping measurements used to test the model in Sec. 10.4 with (c) μ_A varied while μ_B is fixed and (d) μ_B varied while μ_A fixed.	239
C.1	Waveguide configurations used in experiments of Chapter 6. Configuration 1 was used for squeezed light imaging (Fig. 6.4c). Configuration 2 was used for beamforming channel sweep (Fig. 6.5b) and 32-channel pump power sweep (Fig. 6.5c). Configuration 3 was used for the field-of-view data (Fig. 6.5f). Configuration 4 was used for the beamwidth data (Fig. 6.5e).	346
C.2	PPLN waveguides used as sources of squeezed light. η_{in} is the 775 nm input coupling efficiency, η_{out} is the 1550 nm output coupling efficiency, and μ is the SPDC efficiency obtained from a least-squares fit to the pump power sweep data in Fig. C.10.	346
C.3	Measurement system losses for each experiment. The table breaks down loss contributions from the source, free-space link, on-chip photonic circuit, and RF readout electronics.	358