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2.1 Sources

A defining feature of quantum networks is their ability to distribute quantum infor-
mation between distant nodes while preserving quantum coherence. Photons are
the primary carriers of quantum information between nodes in a quantum network
due to their ability to propagate over long distances in optical fiber or free space
with relatively low decoherence. Quantum networks require reliable sources of
indistinguishable photons for key network operations such as quantum interference.
A standard approach to generating photons suitable for quantum networking is to
use the strong light-matter coupling offered by solid-state bulk nonlinearities. In a
bulk nonlinearity, the optical response of the nonlinear medium to a pump field is
described by the polarization vector P = P + PN, where P& = g 3 )(l.(].l)E ; is the
linear term containing the first order susceptibility, X(l), and PN is the nonlinear
term containing contributions from higher-order susceptibilities, x” [1]. Pairs of
single photons can be probabilistically emitted from nonlinear materials via laser-
driven second-order (y®) and third-order (y®) processes such as spontaneous
parametric down-conversion and spontaneous four-wave mixing, respectively. Pho-
ton pair generation provides versatile sources of entanglement and heralded single

photons with high purity, bandwidth, and tunability.
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Figure 2.1: Spontaneous parametric down-conversion (SPDC). a) A pump photon

is spontaneously downconverted into a pair of signal and idler photons by a y(?
bulk optical nonlinearity. The pump, signal and idler photons satisfy phase match-
ing conditions, namely b) momentum conservation (kép = I_c)s + I;i) and c) energy

conservation (fiw, = hiwg + hw;).

Spontaneous Parametric Down Conversion

Spontaneous parametric down-conversion (SPDC) is a three-wave mixing process
involving the interaction of a pump, signal, and idler photon in a medium with a
leading order y® bulk nonlinearity. A single pump photon with frequency w
is spontaneously converted into a pair of lower-energy signal and idler photons
with frequency w, and w3, respectively (see Fig. [2.I). The SPDC process obeys
energy and momentum conservation rules, also referred to as the phase-matching

conditions,

h(,l)3 = ha)1 + ha)g, (21)
Ak =Fk3— ki —ky =0, (2.2)

where I_c)i represents the wave vector with magnitude k; = n(w;)w;/c and n;(w;) is

the index of refraction. The process is described by the interaction Hamiltonian,

B = ifi (855 + 1224} 2.3)

where k oc y®) L is a constant that depends on strength of the nonlinearity (y?) and
interaction length (L), and 4, a" are the bosonic ladder operators [2]. In Eq.
the first term corresponds to the creation of signal (&J{) and idler (d;) photons by the
annihilation of a pump photon (d3). The second term accounts for time reverse of
the process, sum frequency generation (SFG) or second harmonic generation (SHG)
for w; = wy, where two photons (a1, d,) are converted into a photon (d;) of higher

energy. The quantum state at the output of the SPDC process is,

1 L 1 Lo
[y (2)) = exp (E/o Him(t')dl’) |0) ~ (1 + E/o Hin(t)dt" + - ) 0),
2.4)
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where |0) is the initial vacuum state. In Eq. | (1)) corresponds to a single mode

squeezed vacuum state (SMSV) in the degenerate case (w; = w») and a two-mode
squeezed vacuum (TMSV) state in the nondegenerate case (w; # w») of signal and
idler photons. The right hand side of Eq. [2.4]is the perturbative expansion of the time
evolution operator to leading order in « in the non-depleted pump approximation,
where « is typically very small with most of the pump photons unconverted. The

leading order (two-photon) component of [y/(7)) is,

W) o & /0 /0 F (@1, @) (1) (02)dwidws [0), 10 2.5)

where L is the interaction length and f (w1, wy) is the joint spectral amplitude (JSA).

The JSA accounts for the spectral profile of the pump and phase matching condition,

flwi,w2) = yp(w1, w2) - Ypn(wi, w2), (2.6)

where ¥, (w1, w>) is the pump envelope and ypn (w1, w>) is the phase matching enve-
lope. The joint spectral intensity (JSI), | f (w1, w2)|?, is the probability distribution

of signal and idler frequencies.

Phase matching Efficient generation of photon pairs requires careful design of
SPDC sources to achieve the phase matching conditions as much as possible [1, 3].
For instance, the phase matching condition Ak = 0 demands appropriate refractive
indices n(w3) > n(wp) and n(w;), which cannot be fulfilled with centrosymmetric
materials. The phase-matching condition can be satisfied naturally in birefringent
materials, such as barium borate (BBO), potassium titanyl phosphate (KTP), and
lithium niobate (LN), with different indices of refraction depending on the polariza-
tion and direction of propagation of the electric field for a given frequency. Phase
matching can be achieved by tuning the angle of the pump field relative to the optic
axis, resulting in different phase-matching configurations depending on the geom-
etry [4]. Photon pairs can be emitted collinearly or non-collinearly depending on
the type of phase-matching configuration (see Fig[2.1). In type-I SPDC, the signal
and idler photons have the same polarization, which is orthogonal to the pump po-
larization, whereas in type-II SPDC, the signal and idler photons have orthogonal

polarizations.

In type-0O SPDC, the pump, signal, and idler photons share the same polarization
state; however, inherent material dispersion often prevents natural phase matching

due to mismatched phase velocities of the interacting waves. Quasi-phase matching
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can be achieved by periodic poling, where the sign of the nonlinear susceptibility
tensor of the nonlinear crystal is spatially modulated at regular intervals, known
as the poling period [5} 6]. A common technique is electric field poling, where a
strong electric field is applied in a controlled pattern to induce periodic ferroelectric
domain reversals. The periodic inversion compensates for the phase mismatch by
effectively resetting the relative phase between the pump and generated photons at
each poling period, thereby sustaining constructive interference over extended inter-
action lengths. The poling period is precisely engineered based on the wavelengths
of the pump, signal, and idler photons, as well as the material’s refractive indices,

to satisfy the quasi-phase matching condition,
Ak = k3 —ky — ko —2mm/A, (2.7)

where m is an integer and A is the poling period. Materials commonly subjected
to periodic poling include LN and KTP due to their robust nonlinear properties and

amenability to domain inversion.

Early demonstrations of photon-pair generation via type-I SPDC were crucial for
fundamental tests of nonlocality [7] and two-photon interference [8]. Subsequent
refinements in crystal growth, pump laser design, and alignment precision led to
the development of sources with higher brightness and narrow bandwidths for
practical implementations, with extensive investigation into type-II SPDC sources
due to their intrinsically high-contrast polarization entanglement and convenient
post-selection methods for measuring polarization correlations [4]]. These advances,
along with improvements in crystal purity, pump stability, and collection optics,
fueled applications in entanglement-based quantum communication, culminating in
demonstrations of entanglement distribution over fiber networks exceeding 10 km
[9,10] and paved the way for more complex multi-photon entanglement experiments
[11]]. In parallel, the advent of quasi-phase matching in periodically poled lithium
niobate (PPLN) and potassium titanyl phosphate (PPKTP) led to a wide adoption
of type-0 SPDC sources [ 10, |12]], enabling higher nonlinear conversion efficiencies,
flexible wavelength control, and compact waveguide implementations critical for

integrated quantum networking architectures [, |6].

Spectral Purity A typical joint spectral intensity for a type-II SPDC process is
shown in Fig. illustrating the broadband spectral correlations of photon pairs
emitted by SPDC. Type-II SPDC exhibits narrower bandwidths than type-0 or type-I

SPDC because orthogonal polarizations impose stricter phase matching constraints
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Figure 2.2: A typical joint spectral intensity for type-II SPDC for a pump photon at
775 nm, corresponding to signal and idler photons at telecom wavelengths centered
at 1550 nm. By taking the singular value decomposition, the JSI can be decomposed
into Schmidt modes (plotted) and associated eigenvalues {1,}, where A2 is the

probability of occupying the nth mode.

[4,[13]. The degree of spectral entanglement can be characterized by the Schmidt
decomposition of the two-photon state,

W) = ) N1 (2.8)
J

where [1) ; are the Schmidt coefficients with 3, ; 4; = 1and |j),, | /), are orthonormal
states of the signal and idler modes, respectively. The Schmidt decomposition can
be obtained by performing a singular value decomposition of the JSI (see Fig.
[2.T). The spectral purity of the photon pairs is quantified by the Schmidt number,
K=1/%; /15, which is the effective number of occupied eignemodes. The Schmidt
number is related to the purity P = 1/K of the source, where K = 1 corresponds to

signal and idler photons in a single spectral mode [|14].

In practical networking implementations, bright and spectrally pure sources of
photon pairs are needed for high-fidelity generation of single photons and entangled
states such as Bell states. Spectral filtering is commonly employed to effectively
isolate a single spectral mode and reduce multimode contributions. However, for
high degrees of spectral correlations, filtering will block the majority of generated
photon pairs, resulting in substantial photon loss and restricted pair production
rates [15]. Instead of filtering, spectral engineering techniques [16, 17, |18} |19, 20,
21] can be employed to engineer the joint spectrum of the source. For example,
in cavity-enhanced sources, optical cavities are used to enforce specific resonant

frequencies, thereby selectively enhancing the generation of photon pairs within a
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narrow spectral range and promoting single-mode operation [22]]. Alternatively,
multimode sources can be used for spectrally multiplexing to achieve high-rate
photon pair production and entanglement distribution. Fiber-coupled, broadband
type-0 SPDC sources at telecom wavelengths can be interfaced with commercial
division wave demultiplexers to distribute photon pairs over many channels in a
network [23]. Combining spectral engineering and multiplexing techniques can
enable high-rate sources of indistinguishable photons required for entanglement-

based protocols over long distances in advanced quantum networks.

2.2 Encoding quantum information
Photons can be used as carriers of quantum information in a number of degrees
of freedom (DOFs), in both discrete variable and continuous variable encodings of

quantum information.

Discrete variables

For discrete variable encodings of qubits, commonly used DOFs include polariza-
tion, time-energy, and orbital angular momentum, and time-of-arrival. Polarization
encoding is among the most widely used, where horizontal and vertical polarization
states define the computational basis. Polarization correlations of photon pairs, e.g.,
from type-II SPDC, are exploited to generate entangled states by taking advantage of
the orthogonally polarized photon pairs emitted into distinguishable spatial modes.
Energy-time encodings exploit the strong frequency correlations and time-energy
uncertainty intrinsic to SPDC, where the emission time of an idler photon is uncer-
tain but strongly correlated with the signal photon [24]. Orbital angular momentum
(OAM) encodings use spatial modes carrying quantized angular momentum, al-
lowing access to high-dimensional Hilbert spaces and offering greater information

capacity per photon [25].

An essential feature of quantum networks is the ability to distribute entanglement
across many distributed nodes over nominally long distances. An attractive ap-
proach is to leverage the commercial optical fiber infrastructure already developed
at telecom wavelengths for the deployment of large-scale quantum networks. For
this approach, qubits encoded in the time-of-arrival states (early |e) or late |€)) of
individual photons, or “time-bin qubits,” at telecom-band wavelengths are preferred
due to their ease of generation, low-loss propagation, and robustness to phase noise

and polarization drift in over long-distances in optical fibers [26].
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Figure 2.3: Generation of time-bin qubits at telecom wavelengths with commercially
available fiber-optic components. a) Strong pulses of coherent light from a mode-
locked laser are attenuated down to the single photon level by a variable optical
attenuator (VOA). The weak pulses are inserted into an path-length-imbalanced
interferometer, which defines early (E) and late (L) time-bins corresponding a photon
passing through the short and long path, respectively. A photon at the output of
the interferometer is in a coherent superposition of early and late time-of-arrival
states. b) Early and late pulses are carved out from a continuous wave (CW) laser
by an intensity modulator (IM), which is programmed by an arbitrary waveform
generator (AWGQG) to define the early and late time-bins. The strong pulses are
frequency-doubled by a second harmonic generator (SHG) to serve as pump light for
spontaneous parametric down-conversion (SPDC), which produces pairs of single
photons at telecom wavelength in an approximate Bell state. Quantum states are
post-selected by a single-photon detector (SPD) that measures its time-of-arrival

state.
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Time-bin qubits Time-bin qubits are generated by preparing single photons in a
coherent superposition of pulses separated by a fixed time delay, defining “early”” and
“late” temporal modes. By setting the temporal separation of the pulses much shorter
than the coherence time of the channel, the relative phase between the two time-bins
remains stable over long-distance fiber transmission, preserving quantum coherence.
The computational (Z) basis (|e), |I)) is defined by preparing a single photon in an
early (“e”) or late (“/”) time bin. A qubit in the X basis, |+) = %ﬂe} + |[)), or
Y basis, |+) = %(
path-imbalanced interferometer, where the time delay between the short and long

le) +i|l)), can be prepared by sending a single photon to a

paths inside the interferometer sets the temporal separation of the time bins (see Fig.
[2.3R). The state of a photon at one of the outputs of the interferometers is described
by (|e) + €' |I))/V2, where ¢ is controlled by the interferometric phase shifter.

Deterministic and on-demand generation of pure single photons is a ongoing ex-
perimental challenge [27]]. Due to ease of generation, a common approach is to

approximate a single photons as a weak coherent state,

_ -le?/2 N _ -lal?/2 2 2
a)=-e n)y=-e 0)+all)+0(la])), al” < 1,
@) ;:0\@') (10) +a [1) + O(lal7)), |e|
(2.9)

where the subscript e (/) denotes the early (late) temporal mode, |n) is the photon
number state of n photons, and |e|? is the mean photon number. Single photons
in confined temporal modes can be prepared by attenuating a series of laser pulses
down the single-photon level. Each pulse defines a time bin within its clock cycle,
which is set by the repetition rate of the laser. The preparation of a photon in
the early or late time-bin is performed by changing the timing of the pulse within
its clock cycle, for instance using a variable optical delay line. Since |a|> < 1
in order to suppress multiphoton events (n > 2), the weak coherent pulses are
primarily in the vacuum state. Quantum information protocols based on time-bin
qubits are typically performed using prepare-and-measure schemes conditioned on
single-photon detection, where quantum states are post-selected by single-photon

detectors that measure the time-of-arrival states of the qubits.

Single photons can also be heralded from a pair source, where a signal photon is
“heralded” by the detection of an idler photon (see Sec. [2.4). The output state of
a photon pair produced by SPDC in a single temporal mode is described by the



14

two-mode squeezed vacuum state (TMSV),

[TMSV) = 3 (-1)"\[ sy I 2.10)
n=0

~ 10); 100, + VA 1), +O(k) < 1. 2.11)

Time-bin entangled states can be generated by pumping a photon pair source with
a pair of strong pulses in early and late time bins (see Fig. [2.3p). The output state
is described by the product state of a two-mode squeezed vacuum state (TMSV) in

the early and late temporal modes,

ITMSV), ® [TMSV); ~ T = 2110) + \2u |®*) + O(n), p <1, (2.12)

where |0) is the vacuum state, u is the mean photon number, and

o+ = %(Ieh e + 100, 11%)

is a Bell state of signal (s) and idler (i) photons in the time-bin qubit basis. In
Eq. higher order terms of O(u) correspond to multiphoton states, where
1 < 1 suppresses the probability of multiphoton events (see Sec. [2.4). A Bell
state can be post-selected by conditioning on the coincident detection of signal and
idler photons in either the early or late time-bin at spatially separated single-photon
detectors. With photon pairs generated by type-II SPDC, for instance, Bell states
can be conveniently distributed to different nodes in a network using a polarizing

beamsplitter to separate signal and idler photons in orthogonal polarization states.

Continuous variables

For continuous variable protocols, quantum information is encoded in continuous
DOFs, such as the amplitude and phase of the electromagnetic field quadratures, Q
and P. The Hamiltonian density () of an electromagnetic field can be expressed

in terms of the O and P quadratures as,

1, . A L i(a-a") L (a+ah)
;l:_Pz 2 R P: , =
o) V2 ¢ V2

where d and @ are the pair of bosonic annhiliation and creation operators satisfying

(2.13)

[af, a] = 1, such that [Q, P] = i. Quantum states can be described as a function of
the quadrature observables Q and P in phase space by the Wigner quasiprobability
distribution, W(Q, P). Gaussian states of light, characterized by Gaussian Wigner

distributions, are commonly used as carriers of CV information due to their ease of
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generation. The Wigner distributions of Gaussian states such as vacuum, coherent,
and squeezed states are illustrated in Fig. [2.4] where the widths of the distributions
are constrained by the Heisenberg uncertainty principle, AQAP > 1/4. Vacuum and
coherent states are represented by symmetric Gaussian distributions in phase space
that saturate the uncertainty principle with AQ> = AP? = 1/2. Squeezed states are
represented by ellipical Gaussian distributions in phase space characterized by a
“squeezed” quadrature (Q) and “antisqueezed” quadrature (P), where the squeezed
quadrature exhibits an uncertainty below (AQ? < 1/2) and the antisqueezed quadra-
ture exhibits an uncertainty above (AP? > 1/2) the vacuum quadrature uncertainty.

Figure 2.4: Wigner quasiprobability distribution W(Q, P) for a) the vacuum state,
b) a coherent state with @ = 2.5 and 6 = /4, c¢) a squeezed vacuum state with r = 1,

where Q is the squeezed quadrature and P is the antisqueezed quadrature.

Squeezing Squeezed states form an essential resource for many CV quantum pro-
tocols, including sub-shot noise sensing, CV quantum teleportation, and measurement-
based quantum computing. Mathematically, squeezed states can be described by

the action of the squeezing operator, S 1(r), on the vacuum state, [28]],

X ra? — reat?
$1(110) = exp(#) 0). @14

where the squeezing parameter r determines the amount of squeezing and @ and 47
are the bosonic ladder operators satisfying [d", @] = 1. The action of the squeezing

operator can be modeled as the evolution of the vacuum state under the Hamiltonian,

A, = iha(ré® - r*a™)/2, (2.15)
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with time 7 = r/a such that S (r) = exp(—iI:I 12/h). In the Heisenberg picture, the

ladder operators evolve as,

da i _a
= = 2[A1.d] = ~ad’ (2.16)
daf 2N
= 2lf.a"] = e (2.17)
After evolution over a time 7 = r/a, the ladder operators are transformed as,
a(r) = a(0)coshr — dT(O) sinhr, (2.18)
dT(r) = dT(O) coshr — a(0) sinhr, (2.19)

referred to as a Bogoliubov transformation. The quadrature operators are trans-

formed as,
O(r) = @(a(r) +a'(r)) = 0(0)e™, (2.20)
P(r) = T(a(r) —a'(r)) = P(0)e", (2.21)

which corresponds to squeezing of Q by a factor of e~ and antisqueezing of P by a

factor of e”.

The state generated by S; in Eq. is a single mode squeezed vacuum (SMSV)
state,

[SMSV) = $1(r) 0) = Z( D"y /W [2n) (222)

~10) - VEI)+O0(). p<1 (2.23)

where u = (a"(r)a(r)) = sinh?(r) is the mean photon number. The two-mode
squeezed vacuum state (TMSV) is generated by the action of the squeezing operator

§2(r) on the vacuum state,

fon o watat
ITMSV) = $,(r) [0) = exp(mlaz 2r a1a2) 10) | (2.24)
Z . / )M n) |n), (2.25)

0 10) = VEIN I +0(),  p<1, (226)

which is expanded in the Fock basis in Eq. “ The squeezing operator S (r) has
the associated Hamiltonian H» = ifia(rdd, — r”‘aT T) /2, which corresponds to the
SPDC interaction Hamiltonian in Eq. 2.3]
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Squeezed states of light can be prepared experimentally by nonlinear optical pro-
cesses such as SPDC and SFWM. SMSV states can be produced by degenerate
SPDC with collinear phase matching, for instance using a type-0 SPDC source, and
TMSYV states can be produced by non-degenerate SPDC, for instance using a type-I
or type-II SPDC source. The experimental generation of single-mode squeezed
light at telecom wavelength using commerically-available, fiber-coupled compo-
nents is illustrated in Fig. [2.5p. To extract information encoded in the quadratures,
quadrature measurements are typically performed using balanced homodyne detec-
tion (BHD) [29, [30]. In homodyne detection, a weak signal field (@) is interfered
with a strong local oscillator (b) at a 50:50 beamsplitter, and the light from each

output,
s Lo
¢ = 6(61 +b), (2.27)
d= i(a - b), (2.28)

V2

is detected by a photodiode (PD). The current from each photodiode is proportional

to the mean photon number of the incident light,

0y o (&6 = (atay + (a'b) er (bTa)y + (bTb>’ (2.29)
(La) o (d'd) = (a'a) - (a'b) ; (b'a) + (bo'0) (2.30)

The photodiodes are in a balanced configuration where the photocurrents are sub-

tracted, resulting in an output current proportional to the quadrature of the signal

field,

(b'a) +(a'h)
V2

where Q(0) = (de +a%e™)/V2. The approximation is taken in the limit of a strong

~ |BIKO(0)), 2.31)

<ic - ld) x

local oscillator in a coherent state |3), using the substitution b — |B|e’® where 6 is
the relative phase of the signal and local oscillator. States of the signal field can be
probed in phase space by sweeping the phase of the local oscillator, where setting
6 =0 and 6 = 7r/2 corresponds to projections onto Q and P, respectively. The state
of the signal field can reconstructed by measuring the BHD output with a signal
analyzer and acquiring quadrature statistics over various phases from 6 = [0, 2] to
form a tomographically complete set of measurements. An simulation of quadrature

statistics for a squeezed vacuum state measured using an oscilloscope over various
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phases is shown in Fig. 2.5b. The amount of squeezing can be characterized by
comparing the measured quadrature variance of the squeezed state to that of the
vacuum state. For a squeezed vacuum state, the quadrature mean is (Qg) = 0, and

the quadrature variance is,

A 1
(AQ%) = = (e cos? 6 + % sin* 6). (2.32)
2
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|
| =
I~ = A (8)33
1550+ 775 nm 775-1550 nm | IC Id o BQ(B) ﬂggg-l
CW Laser PM ! Signal
1550 nm |
t ) Analyzer
0(t) )
Phase ramp
C (Qo) d (0%3)
k) o &
£ & g3
© 9] .©
(0] C 44
0] = ©
5 L 0 swnpe sy >
e Q Q 31
o € =3
)]
o 1
1 A" VA
0 n 2n 0 n 2n 0 n 2n
Phase (0) Phase (0) Phase (0)

Figure 2.5: Generation of single-mode squeezed vacuum light at telecom wavelength
with fiber-coupled components. a) Experimental setup. b)-d) Numerical simulation
of quadrature statistics obtained from time-domain analyzer for a linear phase ramp
applied to the LO. b) Quadrature samples as a function of time (phase) for a vacuum
state (orange) and a squeezed vacuum state with a squeezing parameter of r = 1
and measurement efficiency of n = 0.8 (blue). ¢) Sample means and d) normalized
sample variances as a function of time. The sample variances are normalized to
the mean of the vacuum sample variances. The solid lines in c) and d) are the

corresponding analytic predictions for the quadrature means and variances.

2.3 Detectors
Single-photon detectors

Quantum networks rely on high-fidelity single-photon detectors for state prepara-

tion and measurement. An optimal single-photon detector for quantum networking
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Figure 2.6: Photon-number-resolving superconducting nanowire detector. a) Opti-
cal micrograph of differential single-pixel superconducting nanowire single-photon
detector’] b) Bottom: Measurement of RF readout pulses from impedance-matched
tapered nanowire with oscilloscope in persistent mode. Photon number is encoded
in the amplitude and slew rate of RF pulses. RF pulses are readout to a time-tagger
with a constant voltage discriminator, where the variation in slew rate results in a
variation of the registered time-tag. Top: Distribution of time-tags relative to a
clock signal. Higher photon numbers correspond to higher slew rates and lower
time-delays relative to the clock. Distinct Gaussian distributions of time-tags cor-

responding to photon number events are resolved up to 5 photons.

“Reprinted figure with permission from M. Colangelo, B. Korzh, J.P. Allmaras, A.D. Beyer,
A.S. Mueller, R.M. Briggs, B. Bumble, M. Runyan, M.J. Stevens, A.N. McCaughan, and D.
Zhu, “Impedance-matched differential superconducting nanowire detectors.” Physical Review Ap-
plied, 19(4), p.044093. 2023. DOI: https://doi.org/10.1103/PhysRevApplied. 19.044093.
Copyright 2025 by the American Physical Society.
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would couple unity efficiency with gigahertz-rate operation, picosecond timing jit-
ter, negligible dark counts, and the ability to discriminate large photon numbers with
high fidelity at telecom wavelengths [31, 32]]. Transition-edge sensors [33] 34} (35,
36,[37|] and MKIDs [38},39] offer inherent photon-number-resolving (PNR) capabil-
ity with high efficiency and low dark count rates, but their kilohertz-scale speeds and
sub-Kelvin cooling conflict with the multi-gigahertz clock rates and field-deployable
cryocoolers envisioned for regional links. Superconducting nanowire single-photon
detectors (SNSPDs) are the leading detectors at telecom wavelengths, with up to
98% system efficiency [40]], ultra low dark counts in the milli- to micro-hertz
range [41], count rates > 100 MHz per nanowire [42], sub-3ps timing jitter [43]],
and nanosecond reset times [44] demonstrated in the literature (see Fig. [2.6). In
an SNSPD, a photon absorbed by a superconducting nanowire generates a time-
dependent resistive hotspot, which results in a readout pulse at RF. SNSPDs are
routinely used for quantum communication and already meet the speed, jitter, and
operating-temperature targets for quantum networking; substantial efforts are un-
derway to add PNR functionality to SNSPDs to complete the optimal detector

performance set.

Recent progress in PNR SNSPDs follows two complementary paths. Microwave-
engineered single pixel detectors use on-chip impedance-matching tapers to enhance
the detector’s signal-to-noise ratio so that the RF output pulse varies with photon
number [45]], allowing for the discrimination of up to five photons with an individ-
ual nanowire [46] while preserving picosecond-level timing and high count rates
(see Fig. 15). Photon number can be extracted from the output pulse amplitude
[47, 45, /48] or slew-rate [49] variation. The latter approach requires only a con-
stant threshold voltage discriminator [27], which suitable for real-time readout with
commercial time-taggers for scalable networking. A differential readout architec-
ture optimizes the design of impedance-matched devices by canceling geometric
delay-line contributions to the jitter, enabling low-jitter and large active area single
pixel detectors with PNR capabilities [47]. Alternatively, quasi- photon number
resolution can be achieved by spatial [50, 51, 52] or temporal [53}|54]] multiplexing
of detectors without requiring intrinsic PNR per pixel. To resolve photon number
with high fidelity, the number of spatial or temporal bins needs to be significantly
larger than the number of input photons, typically at the expense of increased com-
plexity and low detection rate. Scalable waveguide-integrated arrays of nanowires
connected in parallel [55, |56, 57| or series [58]] extend the photon-count ceiling

without sacrificing speed, enabling photon counting with high dynamic range. Re-
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cent demonstrations include 1.5 GHz aggregate rates for a 14-pixel distributed array
at 90% system efficiency [42] and a monolithic 100-pixel detector array that resolves

0-100 photons per pulse with sub-nanosecond reset time [59].

Balanced homodyne detectors

In addition to single-photon detectors, low noise and high bandwidth BHDs are
needed to measure quadrature information in CV protocols, such as Gaussian-
modulated CV quantum key distribution (QKD) [60], measurement-based quantum
computing [61} |62], sub-shot noise quantum sensing [63]]. Together, PNRD and
BHDs form a complete detector set for universal fault-tolerant quantum computing
[64) 65] as well as hybrid DV and CV protocols such as deterministic quantum
teleportation [66].

The ideal BHD combines near-unity quantum efficiency, low optical loss, low elec-
tronic noise, > 1 GHz bandwidth, high common-mode rejection, and stable phase
locking for real-time operation at telecom wavelengths. Although high quantum ef-
ficiencies ~ 99% [67]] have been demonstrated with traditional BHDs using discrete
photodiodes and bulk optics, they face challenges in scalability and phase-stability,
particularly for large-scale systems [68] and field-deployable quantum networks.
Recent progress in integrated quantum-limited BHDs addresses these limitations by
leveraging integrated photonic platforms [69,70], such as silicon photonics [71]] and
lithium niobate on insulator (LNOI) [[72]], for monolithic integration of the beam-
splitter, phase shifter, and photodiodes on a chip (see Fig. [2.7). By integrating
all on components on chip in a compact-form factor, photonic integrated circuits
(PICs) can achieve high phase stability and scalability with high bandwidth elec-
tronic readout. In particular, silicon photonics enables large scale integration at
telecom wavelengths [73, [74], with systems demonstrated with several thousands
of components on chip [[75]], as well as interfacing with silicon electronics, such
as low-noise transimpedance amplifiers (TIAs) and electronic integrated circuits

(EICs), for readout and post-processing [76].

The use of integrated BHDs is increasingly motivated by the demands of large-scale
quantum networks, where long-distance coherent communication over deployed
telecom infrastructure requires detectors with low noise, high stability, and high
bandwidths to enable high-speed quadrature measurements and phase tracking in
the presence of channel dispersion and loss [[79]. On-chip BHDs with co-integrated

transimpedance amplifiers enable the highest achievable bandwidths by minimizing
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Figure 2.7: On-chip balanced homodyne detectors. a) Packaged die photo of an on-
chip balanced homodyne detector from Gurses et al. (2023) [77]]. b) Packaged die
photo of photonic-electronic system for balanced homodyne detection from Gurses
et al. (2024) [78]]. The photonic chip contains a quantum-limited coherent receiver

and wirebonded to the electronic chip with a transimpedance amplifier for readout.

parasitic capacitance and inductance, reducing interconnect lengths, and allowing
co-design of the photodiode and amplifier circuitry. In contrast to bulk or discrete-
component BHDs, where bandwidth is typically limited to the kHz-MHz range
[80] due to long wirebonds, PCB traces, and large photodiode capacitance, inte-
grated implementations eliminate these bottlenecks, preserve the amplifier’s gain-
bandwidth product, and enable multi-GHz operation [81]]. Integration also allows
precise impedance control, reduces signal degradation, and improves thermal and
mechanical stability, making it essential for high-speed quantum optics applications
requiring GHz-scale shot-noise-limited detection. For example, in CV-QKD and
quantum random number generation (QRNG), high bandwidths directly translate
to increased secure key rates and entropy generation, respectively. In quantum
networks, integrated BHDs will be essential to meet the rate and distance require-
ments for metropolitan and backbone-level quantum repeaters, trusted-node links,

and distributed quantum sensing architectures.

2.4 Heralded single-photon sources

Heralding of single photons is a common approach to produce spectrally tunable
and indistinguishable photons with high purity and bandwidths. A bulk optical
nonlinearity is used to probabilistically emit photon pairs via a y® or y® process,
where an individual photon (in a signal mode) is “heralded” by the detection of

the other photon (in an idler mode). Typically, a threshold detector is used to
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discriminate between the presence of vacuum and at least one photon in the idler
mode, which heralds the presence of photons in the signal mode. Heralding rates
of ~ 10* — 10° pairs/s [82], system efficiencies of 20 — 30% [82, 83|, and g2(0)
~ 0.02 — 0.05 [[84, 18] have been demonstrated using bulk single pass SPDC
sources and avalanche photodiode detectors. Spatial and spectral mode engineering
can be employed to optimize the efficiency and purity, with demonstrations of up
to 60% system efficiency using waveguides [[84]] and cavity-enhanced collection
efficiency [85] as well as > 0.90 spectral factorability via pulse engineering [84]
and narrowband filtering [85]. However, the emission of multiphoton pairs that
contaminate the heralding restrict single-photon generation to low probability (e.g.,
i ~ 1073 in practice). The probability of n emitted photon pairs follows the thermal
distribution, P(n) = p/(1 + u)™!'. Therefore, there is a trade-off in the single-
photon heralding rate ~ u and single-photon fidelity due non-negligible multiphoton
pair production probability P(n > 1) for increased u [86].

Improving HSPS with PNR SNSPD

To overcome this challenge, a photon-number-resolving (PNR) detector can be used
to filter out multiphoton pair events by discriminating the presence of vacuum, one
photon, or multiple photons. By excluding multiphoton events at the idler mode,
PNR detectors enable the heralding of single photons with high fidelities. Due to
their combination of high detection efficiency, low dark counts, fast recovery time,
and low jitter, PNR SNSPDs are desirable for heralding single photons at high rates.
In Chapter 3] I report the first demonstration of heralding single photons with a PNR
SNSPD. Using an efficient and low noise photon-number-resolving superconducting
nanowire detector we herald, in real time, a single photon at telecommunication
wavelength. We perform a second-order photon correlation g (0) measurement of
the signal mode conditioned on the measured photon number of the idler mode
for various pump powers and demonstrate an improvement of a heralded single-
photon source. We develop an analytical model using a phase-space formalism
that encompasses all multiphoton effects and relevant imperfections, such as loss
and multiple Schmidt modes. We perform a maximum-likelihood fit to test the
agreement of the model to the data and extract the best-fit mean photon number u
of the pair source for each pump power. A maximum reduction of 0.118 + 0.012 in
the photon g%(0) correlation function at x4 = 0.327 + 0.007 is obtained, indicating
a strong suppression of multiphoton emissions. For a fixed g2(0) = 7 x 1073, we

increase the single pair generation probability by 25%. Our experiment, built using
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fiber-coupled and off-the-shelf components, delineates a path to engineering ideal

sources of single photons.

2.5 Entanglement distribution

High-fidelity entanglement distribution is an essential functionality of quantum net-
works. Entanglement is a key resource for a range of quantum communication pro-
tocols, including entanglement-based QKD, Bell tests and quantum teleportation.
By splitting photon pairs produced by SPDC, entangled photons can be distributed
to distant nodes over long distances in optical fiber or free space. However, experi-
mental imperfections such as multiphoton noise and loss degrade the state fidelity of
entangled photons over long distances. To evaluate the fidelity of distributed entan-
glement, the entanglement visibility is a commonly used metric. The experimental
setup for the characterization of entanglement visibility with time-bin entangled
photon pairs is illustrated in Fig. 2.8] Interferometers are used perform projective
measurements on time-qubits. By measuring counts in the first and third bins at
the output of interferometer, project on computational (Pauli Z) basis states E and
L, respectively. By measuring counts in the middle bins, project onto phase basis
state of the form (|e) + ¢’ |I))/V2, where ¢ is set tuning the the interferometric
phase. Projections onto the Pauli X basis states (|e) + |I))/V2 and Pauli Y basis
states (|e) +i|1))/V2 by setting ¢ = +7/2 and ¢ = 0, 7, respectively.

At Alice and Bob, counts measured in individual bins correspond to projections

onto the mixed state

p*® = Trga) [p], (2.33)

which is obtained by tracing out Bob’s (B) and Alice’s (A) subsystem, respectively,
from the overall state p ~ |®*) (®*|. This yields
1 1

P =~ (le) (el +11) (1)) = 5Ta. (234)
Therefore, counts measured in individual bins at Alice and Bob do not vary with
¢, reflecting that each qubit individually carries no information—only their joint
correlations are pure and maximally entangled. The phase-dependent quantum
correlations are exhibited in the coincidence counts between the middle bins at
Alice and Bot[']

1
Can(9) < Trlp @) {gla @ l9) (plp] = 5 cos® g, (2.35)

I'The coincidence counts between the first and third bins at Alice and Bob are constant (since
Tr[p le) (el ® |e) {elg] = 1/2 and Tr[p |1) {I| 4 ® |1) {I|g] = 1/2).
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where |¢) = (|e) + ¢ |I))/V2. The entanglement visibility is defined as
Ch - Ci

max min
Cig +Cyp

(2.36)

The entanglement visibility Ve, quantifies the contrast of phase-dependent quan-
tum correlations and ranges from O (no coherence) to 1 (perfect entanglement).
Assuming the shared bipartite state can be modeled as a Werner state [87]], the
entanglement visibility directly relates to the fidelity with respect to the target Bell
state as F' = A—Il(l + 3Vent). In this model, separable states satisfy the classical
bound V., < 1/3, while any visibility above this threshold certifies the presence of
quantum entanglement. However, not all entangled states exhibit nonlocal correla-
tions strong enough to violate a Bell inequality. Bell non-locality is only observed
when Ve > 1/ V2, which corresponds to violation of the CHSH inequality [88].
For applications in device-independent quantum key distribution (DI-QKD), even
higher visibility is required to ensure robustness against noise and detector inef-
ficiencies, with typical experimental thresholds around V., > 0.78 [89]. These
visibility bounds thus provide operational criteria for certifying entanglement and

nonclassical correlations directly from interference fringe measurements.
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Figure 2.8: Experimental setup for measuring the entanglement visibility of time-

bin qubits.

High-rate multiplexed entanglement source
Quantum networks require high-rate sources of entanglement that can maintain high
entanglement visibilities over long distances. High entanglement generation rates

are essential for overcoming photon losses in long-distance fiber or free-space links,
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maintaining synchronization across the network, and providing high throughput for
quantum communication protocols. In Chapter [3] I report a high-rate multiplexed
entanglement source based on time-bin qubits for advanced quantum networks. We
demonstrate a 4.09 GHz repetition rate source of photon pairs entangled across
early and late time bins separated by 80 ps. Simultaneous high rates and high
visibilities are achieved through frequency multiplexing the spontaneous parametric
down-conversion output into 8 time-bin entangled channel pairs. We demonstrate
entanglement visibilities as high as 99.4%, total entanglement rates up to 3.55x10°
coincidences/s, and predict a straightforward path towards achieving up to an order
of magnitude improvement in rates without compromising visibility. Finally, we
resolve the density matrices of the entangled states for each multiplexed channel
and express distillable entanglement rates in ebit/s, thereby quantifying the tradeoff
between visibility and coincidence rates that contributes to useful entanglement
distribution. This source is a fundamental building block for high-rate entanglement-

based QKD systems or advanced quantum networks.

2.6 On-chip squeezed light detection

On-chip BHDs have been demonstrated with shot noise clearance exceeding 14 dB,
bandwidths above 2.5 GHz, and total detection losses below 3.5 dB for Gaussian-
modulated CV-QKD [90, 91} 92, 93] and quantum random number generation [94,
95, [96]. However, most demonstrations have been limited to the measurement of
coherent or vacuum states, which have less stringent performance criteria compared
to genuinely non-classical states. In particular, the detection of squeezed states,
which are central to sub-shot-noise-limited sensing and continuous-variable cluster
state generation for measurement-based quantum computing, is highly sensitive
to both optical loss and effective loss from electronic noise [97, 98]. Moreover,
there is a trade-off between shot noise clearance and bandwidth: increasing the
transimpedance gain improves SNC by reducing input-referred noise, but narrows
the bandwidth due to larger RC time constants. Conversely, widening the bandwidth
by lowering gain increases electronic noise, thereby degrading sensitivity to quantum

correlations.

To address these challenge, we develop integrated BHDs for the detection of non-
classical light. First, we measure squeezed light with the on-chip BHD depicted
in Fig. and an off-chip TIA to measure squeezed light and demonstrate phase
locking of squeezing on-chip [[77]]. Then, we design a photonic-electronic integrated

circuit, which we refer to as a quantum-limited coherent receiver (QRX), for on-
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chip detection of squeezed light with an on-chip TIA for readout [78]. The QRX
is depicted in Fig. [2.7b. The QRX is optimized across various performance met-
rics: detection loss, common-mode rejection ratio (CMRR), shot-noise clearance
(SNC), and bandwidth [77, [78].The CMRR quantifies the ability of the detector
to suppress common-mode classical noise, particularly from the local oscillator,
due to imbalance in the directional coupler of photodiode configuration. The SNC
quantifies the ratio of quantum shot noise to electronic noise, where the LO knee
power (Pkpee) 1s the minimum LO power required for the shot noise to exceed the
electronic noise floor. The detection bandwidth is quantified by the 3dB bandwidth
(BW34p) and shot noise-limited bandwidth (BWg(), which are the frequencies at
which the optoelectronic gain drops by 3 dB from its low-frequency value and at
which the quantum signal becomes equal to the electronic noise, respectively. The
characterizations for the on-chip BHD (Gurses et al. (2023) and the QRX (Gurses
et al. (2024)) are summarized in Table [2.1]

Reference Loss CMRR SNC Pypee BW34p BWgy.  PIC/EIC
Porto et al. (2018) [99] — — 17 dB 199 uW 7 MHz — Y*/N
Tasker et al. (2021) [100] 3.3dB 61 dB 14dB 200 uW 1.7 GHz 9 GHz Y/Y

Gurses et al. (2023) [77] 5.4dB 204dB 26dB 34.6uW 3MHz 243 MHz Y/N
Gurses et al. (2024) [78] 2.7dB 923dB 14.5dB 315uW 257GHz 3.50 GHz Y'Y

Table 2.1: Comparison of quantum-limited BHDs on chip with demonstrated non-

classical light detection. *Photodetectors not integrated.

On-chip squeezed light detection with phase-locking

With the integrated coherent receiver chip, we measured squeezed light and demon-
strated an easy-to-deploy phase-locking approach to lock onto the squeezed quadra-
ture with the setup shown in Fig. [2.9a. Squeezed vacuum states were generated
with a periodically-poled lithium niobate (PPLN) waveguide and fiber-coupled to
the chip. Noise floor oscillations in the output with 4 Hz LO phase modulation
were measured with an electrical spectrum analyzer (ESA). A 100-second trace
was recorded for both squeezed vacuum states (red) and vacuum states (black). A
1-second section of this data is shown in Fig. 2.9b. Over 100 seconds, noise floors
0.226 + 0.096 dB below and 0.408 + 0.146 dB above shot noise level (SNL) were

observed.

Phase locking in quantum coherent receivers is necessary for maintaining sub-

shot-noise-limited sensitivities with squeezed light and enabling phase-determinate
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Figure 2.9: On-chip detection of squeezed light with optical phase locking. a) Setup
with the silicon photonic receiver for squeezed light measurements. b) Oscillations
between quadratures of the squeezed vacuum. Red crosses signify the squeezed
quadrature. ¢) Demonstration of phase locking to the squeezed quadrature showing

the noise floor (top) and modulator voltage (bottom)

quantum state tomography. A software-based phase-locking process can be useful
for easily deploying coherent quantum links without the need for additional hardware
in a quantum coherent transceiver system. Therefore, a phase-locking algorithm
was employed to phase-lock the squeezed vacuum detected on-chip to its squeezed
quadrature. The algorithm utilizes the phase modulator to do a 7 phase sweep and
finds the phase voltage setting for the squeezed quadrature. The voltage setting is
then applied to set the phase to the squeezed quadrature. This procedure is repeated
at 67 Hz, as shown in Fig. 2.9c. This closed-loop phase locking approach enables

sustained operation at sensitivities below the shot noise floor.

High bandwidth on-chip squeezed light detection

The QRX was used to measure squeezed vacuum to demonstrate sub-shot-noise
level operation up to 3.5 GHz with integrated electronic TIA. The experimental
setup is shown in Fig. 2.10p. Squeezed vacuum states were generated with a PPLN
waveguide and fiber-coupled to the photonic chip with a V-groove array. Noise
floor oscillations in the output with 1 Hz LO phase modulation were measured with
a spectrum analyzer at different sideband frequencies up to the shot-noise-limited
bandwidth Fig. [2.10c. Thirty-second traces were recorded for both squeezed
vacuum states (red) and vacuum states (black) at each frequency. A ten-second
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section of the data measured at 1.17 GHz is shown in Fig. [2.10d. After data

collection, a peak search algorithm was used to acquire the noise level for squeezed
and anti-squeezed quadratures normalized to the shot noise level (SNL) at each
frequency. A maximum squeezed noise of 0.156 + 0.039 dB below the SNL and a
maximum anti-squeezed noise of 0.507 + 0.052 above the SNL were observed, see
Fig. 2.10k.

While we were limited by the source and tabletop component losses in the squeezed
light measurements, on-chip loss sets the bound on how much squeezing can be
observed with the QRX. The on-chip system loss comprises the optical losses and
the optoelectronic loss determined by the shot noise clearance and PD quantum
efficiency (QE). The QRX has a total optical loss of 2.7 dB with 1.3 dB from edge
couplers, 1.4 dB from PD QE, and a negligible amount of loss from the TOPS, MZI,
and routing. As shown in Fig. [2.10k, the shot noise clearance is also greater than 10
dB up to 2.24 GHz. Therefore, the system loss is at most 3 dB over the bandwidth

of the receiver, enabling sensitivities of 3 dB below the SNL.

The packaged photonic-electronic QRX enables a path toward the deployment of
quantum-limited coherent receivers in optical communication and sensing networks.
Due to its compact size, high CMRR, highest reported 3-dB bandwidth and lowest
reported system loss in the literature, it introduces the prospect of leveraging non-
classical states of light to enhance the information capacity and sensitivity of optical
links. With the demonstration of high shot-noise-limited bandwidth and detection of
squeezed vacuum showcasing an enhancement in the SNL, this work highlights the
potential of leveraging non-classical light and deploying quantum coherent receivers
in classical optical networks in addition to preparing an infrastructure suitable for

quantum communications.

Multiplexed BHD array on-chip for squeezed light detection

Beyond single component demonstrations, the next major milestone for CV quantum
technologies is to develop large-scale quantum photonic systems on-chip, enabling
massively parallelized operations with precise control in a compact form factor.
While bulk optical experiments have demonstrated foundational protocols, they do
not scale to the system sizes required for advanced and practical implementations of
quantum technologies, such as computational quantum advantage or fault-tolerant
error correction. Silicon photonics offers a CMOS-compatible platform that al-

lows wafer-scale fabrication of stable, programmable optical circuits incorporating
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Figure 2.10: On-chip detection of squeezed light with a photonic-electronic inte-
grated circuit. a) Die photo of photonic integrated circuit (PIC) for the quantum-
limited coherent receiver (QRX) with high bandwidth photodiodes and electronic
integrated circuit (EIC) for readout with a transimpedance amplifier (TTIA). b) Setup
with the integrated photonic-electronic coherent receiver for squeezed light measure-
ments. ¢) Shot noise clearance response of the QRX with maximum LO photocur-
rent. d) Oscillations between quadratures of the squeezed vacuum measured at 1.17
GHz. Red crosses signify the squeezed quadrature. €) Quadrature noise normalized

to the shot noise level of vacuum for squeezed and anti-squeezed quadratures.

sources, circuits, and detectors on a single chip. Advanced CV quantum technolo-
gies will require quadrature measurements across many spatial or temporal modes,
critical for applications in distributed quantum sensing, measurement-based quan-
tum computing, and broadband quantum communication. Multiplexed BHD array
architectures have been proposed to boost rates in quantum random number genera-
tion (QRNG) and continuous-variable quantum key distribution (CV-QKD), enable
entanglement-enhanced distributed quantum sensing, and perform mode-selective
measurements in continuous-variable optical homodyne tomography. However, all

demonstrations of multiplexed BHD systems to date have relied on bulk optics.

In Chapter [6] I report the first array of quantum-limited BHDs capable of detecting
squeezed light on a silicon photonic chip. Scaling from a single QRX to a large-

scale system introduces several design challenges, including minimizing electrical
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parasitics to avoid RF oscillations, ensuring signal integrity across all channels,
and suppressing electronic and optical crosstalk between densely packed channels.
Using the QRX design in Fig. as a blueprint, we spatially multiplex 32 QRXs on
a silicon photonic chip. The outputs of the QRXs are wire-bonded to an interposer
on a compact PCB containing an array of 32 discrete TIAs. We mitigate these
challenges with a careful co-design between the photonic chip layout and electronic
readout circuit. As described in the next section, the QRX array is incorporated
into a larger system on the same chip, which is designed to demonstrate the basic

functionalities required for chip-based wireless quantum technologies.

2.7 Quantum phased arrays

The expansion from wired to wireless links is an exciting prospect for integrated
quantum technologies. For classical technologies, the advent of phased arrays en-
abled directional and adaptive wireless links by manipulating electromagnetic waves
over free space. In a point-to-point wireless communication link, a transmitter en-
codes a signal in a beam of electromagnetic radiation that is sent to a receiver.
The spot size of the beam spreads with distance due to diffraction, resulting in
geometric loss from the overlap of the diverging spot size and the receiver aper-
ture area. Diffraction-induced geometric loss can result in severe signal loss that
ultimately limits the range and rate of communication [101} (102, {103} [104]]. In
classical wireless communications and sensing, beam divergence is controlled by
wavefront engineering with transmitter or receiver phased arrays. A phased array
is a coherent array of antenna elements that can transmit or receive electromagnetic
fields. By controlling the amplitude and phase on each element, the wavefront of
the electromagnetic field can be engineered over free space. Wavefront engineering
allows for active manipulation of an electromagnetic field in a dynamic real-time
fashion [105, 106]. Beamforming, or angular focusing, of an electromagnetic field
is performed by coherently combining elements in a phased array such that the

signal field constructively interferes at a selected angle [107]].

Here I extend wavefront engineering to quantum fields with a concept referred
to as “quantum phased arrays.” A quantum phased array (QPA) is a quantum-
coherent array of antenna elements, each with phase and amplitude control, that
can emit or receive quantum fields. I show how beamforming with a QPA can
be used to establish reconfigurable wireless quantum links for free-space quantum
communications. More broadly, I demonstrate how to synthesize quantum states in

the far-field with a QPA and illustrate how free-space protocols can be constructed
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based on quantum state engineering with multiple QPAs.

Theory
A quantum field with annihilation operator dj, is input to a QPA transmitter. The

field is distributed to N channels with associated spatial mode functions,

an= [ dnlo)dp 237)
N

ain(p), = ), 4;8;(p), (2.38)
j=1

where d; is the annhiliation operator for the jth channel mode. In each channel,
a gain and phase shift is applied, followed by a radiation by an antenna. The
antennas have an associated set of mode functions {&;(p)}, where j = 1,..., N and
the aperture coordinates are grouped into p. The channel modes are related to the

aperture spatial modes by,

4= [ &(o)an(o)ap. (2.39)
where di, (p) is the creation operator for the field distributed to location p.

The field at the output of the aperture is,

dout = / dout(p)dp, (2.40)

dou(p) = ) 8j€'"14;8,(p), (2.41)
4

where g; is the gain and ¢; is the phase applied to each channel mode 4;.
In the small pixel and large N limit, the pixel mode functions approach,
&i(p) ~ 6%(p = pj), (2.42)

where 6%(p) is the d dimensional Delta function with d denoting the coordinate
dimensions, p; represents the coordinates of the center of the jth pixel. In this limit,
dj = ain(pj)Ap,; where Ap; is the surface area of the jth pixel, and the output field

becomes,

dou(p) = ) gjean(p))o" (p — p)Ap;, (2.43)
-

~ / g(p)e ) an(p)6%(p — p)dp;, (2.44)

= c(p)an(p), (2.45)
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where the sum in Eq. 2.43]becomes a Riemann sum over the antenna coordinates and
the applied gains {g;} and phases {¢;} approach continuous gain g(p;) and phase
#(p;) profiles, respectively. The gain and phase profiles give rise to a reconfigurable
array mode function, c(p) = g(p)e'?®), that can be used to engineer quantum states
at the focal plane of the QPA.

In the far field limit, the field at the aperture plane can be approximated in terms of
the field at focal plane by the Kirchhoff-Fresnel diffraction formula (see Methods in
Chapter [6),

dout = / c(p)ain(p)dp ~ / c(fan(f)df, (2.46)
where f = sin /A is the focal plane coordinate and the focal plane mode profile is,

c(f) o / ™ ¢(p)dp. (2.47)
a < ) e
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Figure 2.11: Quantum phased array transmitter. a) Conceptual diagram of a quan-
tum phased array transmitter. The QTX is a source of a quantum states of an
electromagnetic field dj,, which is distributed across eight antenna elements. An
amplitude g, and phase shift ¢, is applied to each element, and the field from each
antenna with a mode function &, (p) is radiated to free-space, where n € [1, 8].
b) Array factor for a uniform linear array of eight (blue), sixteen (orange), and 32
(green) elements, beamformed at broadside. c) Array factor for a uniform linear

array of 32 elements beamformed at broadside (blue), 30° (orange), and 60° (green).
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Array factor: Consider an N-element linear array with uniform amplitude and
spacing,
N .
doulp) = ) €%1d;E;(p). (248)
j=1
In the small pixel limit,

dou ~ Y €¥ain(p))Ap;, (2.49)
J
N .
= / Ze"”fﬁ(p - pj)Ap; |an(p)dp. (2.50)
j=1
In terms of focal plane coordinates,

N . ~

o [ | 420 (). @s1)

J=1

The coefficients in parentheses is the modal profile of beam in focal plane and

corresponds to the array factor (AF) of the phased array [[108],
N
AF(f,p) = ) e/0rmil), (2.52)
j=1
For an array with a progressive phase A¢ applied to the antennas that are uniformly
spaced by a distance d, corresponding to ¢; = A¢(j — 1) and p; = (j — 1)d, the
array factor is [[108]],

(N
, sin (5
AR(f,B) = o102l | S0(ZE) | (2.53)
sin(%gp)
where ¢ = A¢ + (2nd /) sin 6. In normalized form, the array factor is,
(N
sin (5 N
AFy(¢) = sin(39) sinc (—(p) , (2.54)
N sin(%gp) 2

where the approximation is taken in small ¢. The normalized array factor is plotted
in Fig. 2.11p for N = 8, 16 and 32.

Beam steering: The maximum of AFy occurs when ¢ = 0 at,
AN
2rd
The beam maximum can be steered by varying the progressive phase A¢. The array

Omax = arcsin (— ). (2.55)

factor for various beam angles Omax are shown in Fig. 2.11k.
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Beamwidth: The 3 dB point of the beam occurs for Eq. when,

A 2.782
6, = arcsin | — (—Aqﬁ + —8)] (2.56)

2rd N

The half-power beamwidth for a symmetrical pattern is ©, = 2|6max — 6, | [108].
Ford > A, ©) ~ Nid. The beamwidth scales inversely with the aperture width Nd.

For large N, dout — Ain( fmax) Where fiax = sin (Omax)/A.

Quantum state synthesis
For a target state in the focal plane, the coefficients for the aperture plane profile can

be found in terms of the desired focal plane coefficients as,

c(p) o / e 2l e(fdf. (2.57)

Superposition states can be engineered by synthesizing multimode radiation pat-
terns. For an N-element uniform linear array, a two-mode superposition state can

be realized by,

N
A 1 i i5 ipB\ ~
donlp) = ), = (¢4 + e ) 4,8, (p), (258)
=1
where qb}‘.‘ = A¢pA(j - 1) and ¢f = A¢B(j — 1). The resulting array factor is the

superpositon of the array factors,
1 .
AFy = — (AN (") + P ARy (¢P)) (2.59)
2

which in the large N limit approaches the superposition state,
1

Gout ~ \/z(ﬁm(fA) +e“ain (£5)). (2.60)

This can be extended to arbitrary superposition states in the focal plane with nonuni-
form amplitudes in and relative phases. By using multiple QPAs to synthesize
superposition states and interfering them over free space, quantum information pro-
tocols for the generation and distribution of entanglement can be constructed for
quantum sensing and communication (see Fig. [2.12)). In Appendix [A] I provide two
illustrative examples of QPA protocols for realizing a reconfigurable beamplitter

and generating NOON states.
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Alice Charlie Bob

QPA QPA

Figure 2.12: Conceptual illustration of quantum communication with multiple
QPAs, where photons transmitted to Alice and Bob can be steered by reconfig-

uring their beams.

QPA receiver system on a chip

In Chapter [6] we used the QRX array discussed in Section [2.6] to realize a phased
array system on a chip that can receive, image and manipulate non-classical light
over free space. We demonstrate an integrated photonic-electronic system with more
than 1000 functional components on-chip to detect squeezed light. By integrating an
array of 32 sub-wavelength engineered metamaterial antennas, we demonstrate the
first, to our knowledge, direct free-space-to-chip interface for reconfigurable quan-
tum links. On the same chip, we implement the first, to our knowledge, large-scale
array of quantum-limited coherent receivers that can resolve non-classical signals si-
multaneously across 32 channels. With coherent readout and manipulation of these
signals, we demonstrate 32-pixel imaging and spatially configurable reception of
squeezed light over free space. Our work advances wireless quantum technologies

that could enable practical applications in quantum communications and sensing.
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