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C h a p t e r 3

IMPROVING A HERALDED SINGLE-PHOTON SOURCE WITH
A PHOTON-NUMBER-RESOLVING SUPERCONDUCTING

NANOWIRE DETECTOR

This chapter includes the work published as:
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Narváez, Boris Korzh, Andrew D. Beyer, Olmo Cerri, Marco Colangelo, Karl K.
Berggren, et al. “Improved heralded single-photon source with a photon-number-
resolving superconducting nanowire detector.” In: Physical Review Applied 18.6
(2022), p. 064007.

3.1 Introduction
A challenge in quantum optical science and technology is the realization of an ideal,
i.e., deterministic, high-fidelity, tunable, and high-rate, source of indistinguishable
single-photons [1, 2]. One intuitive approach to develop a single-photon source
requires coupling an individual quantum emitter to light using a cavity. Significant
progress in this regard [3] has been achieved using, e.g., quantum dots [4, 5, 6],
crystal defects [7], or trapped ions [8] and atoms [9], albeit mired with challenges,
including fabrication complexity [10, 11] or differing emitter spectra [12, 13, 14].
Instead, the strong light-matter coupling offered by solid-state bulk nonlinearities
can be used to probabilistically emit photon pairs via laser-driven 𝜒(2) and 𝜒(3)

processes [15], such as spontaneous parametric down-conversion (SPDC) and four-
wave mixing (SFWM), respectively. Thermal statistics of the emission restrict a
single photon pair to be emitted with low probability (e.g., 10−3 in practice [16]).
An individual photon (in a signal mode) can be heralded by the detection of the
other photon (in an idler mode) [1]. Typically this is performed using a threshold
detector that discriminates zero from one or more photons. Heralding of photons
from optical nonlinearities is scalable, and has enabled tunable and indistinguishable
photons with high fidelities and bandwidths [17, 1, 18]. However, there is a non-zero
probability to produce multiple pairs. To overcome this obstacle, a photon-number-
resolving (PNR) detector at the idler mode can be used to exclude multi-photon
events. Notable demonstrations of PNR detection have used, e.g., transition edge
sensors and pseudo-PNR detectors constructed from time-multiplexed or arrays of
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threshold detectors [19, 20, 21]. Optimized heralded single-photon sources require
scalable, efficient, and low-noise PNR detectors with high timing resolution, that is,
low jitter. Here we detect the idler mode from an SPDC process in real time using
a PNR niobium nitride (NbN) superconducting nanowire single-photon detector
(SNSPD) [22]. The detector is optimized across several performance metrics [23].
Specifically, the detection efficiency, which includes coupling loss in the cryostat,
is > 0.7, the dark count rate is 10 Hz, and the jitter is < 14 ps.

To quantify the improvement of our heralded single-photon source, we perform
a second-order correlation function 𝑔2(0) measurement [24] of the signal mode
conditioned on the measured photon number of the idler mode using the number-
resolving detector. This measurement is performed as a function of mean photon-
pair number 𝜇 of the source.

We operate the detector in two configurations: (i) as a PNR SNSPD, discriminating
zero-, one- and multi-photon events, and (ii) as a threshold SNSPD, discriminating
zero-photon events from all other events. A 𝑔2(0) of zero is expected when a single
photon pair is detected. Accounting for loss and multi-photon events, a reduction in
𝑔2(0) is expected when the detector is operated in configuration (i) versus (ii) for a
fixed 𝜇.

Since the measurements extend to large 𝜇, we develop an analytical model for the
detection rates, coincidence rates, and 𝑔2(0) using a phase-space formalism that
encompasses full multi-photon contributions and all relevant imperfections, such as
loss and multiple Schmidt modes [25, 26, 27]. We model the PNR detector in phase
space as a 2𝑁-port beamsplitter followed by threshold detection at each output,
which allows us to employ Gaussian characteristic function techniques. To evaluate
the single-photon discrimination capability of the detector, we define the single-
photon discrimination efficiency 𝜂1

𝑃𝑁𝑅
metric, ranging from zero, for a threshold

detector, to one for an ideal PNR detector. We obtain 𝜂1
𝑃𝑁𝑅

= 0.46 corresponding
to a pseudo-PNR detector comprised of no more than 18 threshold detectors, each
with efficiency 𝜂𝑑 = 0.71. We perform a simultaneous maximum likelihood fit
of the model to the measured values of 𝑔2(0) and extract 𝜇 for each pump power.
We measure a maximum reduction of 𝑔2(0) from 0.430 ± 0.009 to 0.312 ± 0.008
when using configuration (ii) versus (i) at 𝜇 = 0.327± 0.007, thereby improving the
fidelity of the single-photon source. For a fixed 𝑔2(0) = 7 × 10−3 [28], we increase
the probability to generate a single pair by 25%, from 4 × 10−3 to 5 × 10−3.
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3.2 Experimental methods
The experimental setup is shown in Fig. 3.1. Light pulses of ∼ 600 ps duration
are created by injecting 1540 nm wavelength light from a continuous-wave laser
into an intensity modulator (IM). The modulator is driven by an arbitrary waveform
generator (AWG) at a rate 𝑅 = 1 MHz, which is the clock rate of the experiment. The
pulses are amplified by an erbium doped fiber amplifier and then directed to a second
harmonic generation module with a gain-adjusted amplification stage (SHG), which
amplifies the pulses then up-converts them to 770 nm wavelength. The pulses are
then directed to a fiber-coupled type-0 periodically poled lithium niobate (PPLN)
waveguide, which produces photon pairs centered at 1540 nm wavelength via SPDC.
A coarse wavelength division multiplexer (CWDM) splits the photon pairs into the
signal and idler modes, centered at 1530 nm and 1550 nm, respectively, each with
a 13 nm bandwidth. Light in the signal path is split by a 50:50 beamsplitter (BS)
into two paths, labelled as signal 1 and 2. Filters with a total of 60 dB extinction
on the idler path and 120 dB extinction on the signal path are used to suppress the
unconverted 770 nm pump light. The photons from the signal and idler paths are
detected using conventional and PNR SNSPDs, respectively.
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Figure 3.1: Experimental setup. AWG - Tektronix AWG7002A, BS - Thorlabs
1550nm fiber optic 50:50 beamsplitter, CWDM - FS one-channel coarse wave
division multiplexing/optical add/drop multiplexer, EDFA - Pritel erbium-doped
fiber amplifer, Laser - General Photonics TLS-101, PPLN - Covesion ruggedized
waveguide, SHG - Pritel optical fiber amplifier/second harmonic generator. The
inset shows the estimated joint spectral intensity (JSI) for the experiment including
the detector and CWDM response.
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Detectors
The detectors are held at 0.8 K in a Gifford-McMahon cryostat with a 4He sorption
stage. To measure the signal modes, we use two single-pixel tungsten silicide (WSi)
SNSPDs, which have timing jitters of ∼ 50 ps, detection efficiencies of ∼ 0.8, and
dark count rates below 5 Hz [16]. To measure the idler mode, we use a PNR SNSPD
with a timing jitter of < 14 ps, detection efficiency of 𝜂𝑑 = 0.71 and dark counts
< 10 Hz. The detector efficiency was determined in an independent measurement
similar to that performed in Ref. [29]. The detector has an active area of 22×15 𝜇m2,
formed by a meander of 100 nm-wide and 5 nm-thick NbN nanowires with a 500 nm
pitch. The detector employs a differential architecture to cancel the contribution
of the signal propagation delays to the timing jitter [22]. An impedance-matching
taper enables photon-number resolution, increases the signal-to-noise ratio, and
minimizes reflections as well as distortion [22, 30]. The number of incident photons
is encoded into the amplitude of the output pulse [22, 31]. A single incident photon
that is absorbed by the nanowire induces a single time-dependent resistive hotspot,
which results in a radio-frequency pulse [23]. Multiple incident photons absorbed
by the nanowire at the same time induce multiple time-dependent resistive hotspots.
This increases the total resistance of the nanowire, producing a radio-frequency
pulse with an amplitude and slew rate that depends on the number of hotspots. In
our experiments, rather than measuring the pulse amplitude variation [31, 22], we
measure its slew rate variation [32]. This only requires a constant-threshold time
tagger, i.e., time-to-digital converter, and enables real-time readout. With a fixed
voltage threshold, the variation in slew rate results in a variation of the time of the
detection event, i.e., time tag. Earlier (later) time-tags, plotted in a histogram in the
left (right) bin of Fig. 3.2, correspond to multi-photon (single-photon) pulses with
higher (lower) slew rate.

Data acquisition and analysis
The readout pulses from the detectors and the clock signal from the AWG are sent to
a time tagger that is interfaced with custom-made graphical user interface (GUI) for
real-time analysis and multi-photon event discrimination. The GUI is depicted in
Fig. 3.3. The recorded detection events in a time bin, that is, the time-tags arriving
in a temporal interval defined by the red and yellow markers, are collected over a set
acquisition time interval. A range of potential arrival times of photons in the signal
paths are shown in the top two channels of the GUI, and the single and multi-photon
events at the idler PNR detector are shown in the bottom channel of the GUI. The
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Figure 3.2: Probability distribution of the arrival times of detection events by the
PNR SNSPD for 𝜇 ≈ 8 × 10−3 (blue), 𝜇 ≈ 3 (orange), 𝜇 ≈ 9 (green), 𝜇 ≈ 11 (red),
and 𝜇 ≈ 16 (purple). The dashed lines define the time bins corresponding to single-
(right) and multi-photon (left) events. The total number of events in the single-
and multi-photon bins are used when operating the SNSPD as a threshold detector,
while the number of events in the single-photon bin are used when operating the
SNSPD as a PNR detector.

GUI is used to collect single detection events, two-fold coincidence events, and
three-fold coincidence events conditioned on the single- and multi-photon detection
events at the idler detector. In other words, the GUI allows collecting all events for
analyzing heralding of photons in the signal path conditioned on threshold and PNR
detection of photons in the idler path.

Characterization
We characterize the setup in two ways: by (1) theoretical calculation and measure-
ment of the joint spectral properties of the photon pair source and (2) by measuring
the signal 1, signal 2, and idler path efficiencies from detection rates with low 𝜇, as
described below.

Joint spectral intensity

The two photon component of the quantum state describing SPDC at the output of
the PPLN waveguide is

|Ψ⟩ = 𝐴
∫ ∞

0

∫ ∞

0
𝑓 (𝜔1, 𝜔2)𝑎̂†(𝜔1)𝑎̂†(𝜔2)𝑑𝜔1𝑑𝜔2 |0⟩ ,

where 𝐴 is a constant prefactor that depends on the effective nonlinearity and
interaction length, 𝑎̂(𝜔1) and 𝑎̂(𝜔2) are the signal and idler modes with frequencies
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Figure 3.3: Custom-made Graphical User Interface (GUI) allows time-resolved
detection of photons and real-time filtering of multi-photon events. The idler mode
depicts a bimodal distribution of time tags relative to the clock for an acquisition
time of 1 s. The left bin corresponds to the multi-photon events and the right bin
corresponds to the single-photon events.

𝜔1 and 𝜔2, respectively. The joint spectral amplitude (JSA) is

𝑓 (𝜔1, 𝜔2) = 𝜓𝑝ℎ (𝜔1, 𝜔2) · 𝜓𝑝 (𝜔1, 𝜔2),

comprised of the phase-matching and pump envelope amplitudes 𝜓𝑝ℎ (𝜔1, 𝜔2) and
𝜓𝑝 (𝜔1, 𝜔2), respectively. The joint spectral intensity (JSI) is | 𝑓 (𝜔1, 𝜔2) |2. We
model the phase-matching envelope intensity as

|𝜓𝑝ℎ (𝜔1, 𝜔2) |2 = sinc2
(
Δ𝑘𝐿

2

)
,

where 𝐿 = 1 cm is the length of the waveguide and Δ𝑘 is the phase-mismatch. The
calculated phase-matching envelope intensity is depicted in Fig. 3.4a. The phase
mismatch for co-linear quasi-phase-matching is

Δ𝑘 = 2𝜋
(
𝑛(𝜆𝑝)
𝜆𝑝

− 𝑛(𝜆1)
𝜆1

− 𝑛(𝜆2)
𝜆2

− Γ

)
,

where 𝑛𝑝(1) (2) is the pump (signal) (idler) index of refraction, 𝜆𝑝(1) (2) = 2𝜋𝑐
𝜔𝑝 (1) (2)

is the pump (signal) (idler) wavelength, 𝑚 is an integer, Λ is the poling period of
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the crystal, and Γ = 𝑚/Λ = 400 mm−1 [33]. The index of refraction for light of
wavelength 𝜆 in our PPLN waveguide is approximately

𝑛(𝜆) =

√︄
1 + 2.6734𝜆2

𝜆2 − 0.01764
+ 1.2290𝜆2

𝜆2 − 0.05914
+ 12.614𝜆2

𝜆2 − 474.60
,

where 𝑛(1540 nm) = 2.21 and 𝑛(770 nm) = 2.26 [34]. We model the pump
envelope intensity as

|𝜓𝑝 (𝜔1, 𝜔2) |2 = exp

(
−
(𝜔𝑝 − 𝜔1 − 𝜔2)2

𝜎2
𝑝

)
,

where 𝜔𝑝 = 2𝜋𝑐
770 nm and 𝜎𝑝 ∼ 2𝜋

100 ps = 60 GHz, as estimated from independent
measurements, which is subject to energy conservation 𝜔𝑝 = 𝜔1 + 𝜔2. Fig. 3.4b
shows the calculated pump envelope intensity.

To characterize the photon pair source, its JSI is determined by performing coin-
cidence measurements of the signal and idler modes after they pass tunable filters
with 0.22 nm bandwidths (setup not shown in Fig. 3.1). The measured JSI accounts
for the detector response:

| 𝑓𝑚 (𝜔1, 𝜔2) |2 = |𝜓𝑝ℎ (𝜔1, 𝜔2) |2 · |𝜓𝑝 (𝜔1, 𝜔2) |2 · |𝜓𝑑 (𝜔1, 𝜔2) |2, (3.1)

where the third factor is the detector efficiency distribution

|𝜓𝑑 (𝜔1, 𝜔2) |2 = exp

(
− (𝜆1 − 𝜆𝑑)2 + (𝜆2 − 𝜆𝑑)2

𝜎2
𝑑

)
,

which we model as a Gaussian centered at the optimal detection wavelength of 𝜆𝑑 =
1550 nm with a spread of 𝜎𝑑 = 53 nm found from independently performed detector
reflectivity measurements. See Fig. 3.4c for the calculated detector response.
The measured JSI including detector response is shown in Fig. 3.4d using circular
markers, with brighter color proportional to the rate of coincidence detection events.
The contour depicts the theoretical prediction from Eq. 3.1.

The most relevant JSI is that used for the main experiment in configurations (i) with
the PNR detector and (ii) with the threshold detector depicted in Fig. 3.1. This
JSI includes the detector response as well as the response of the CWDM. The two
output modes of the CWDM are centered at 1550 nm, the idler, and 1530 nm, the
signal, with 𝜎CWDM = 13 nm bandwidths. Thus, the JSI for the main experiment is
modeled as

| 𝑓𝑒𝑥𝑝 (𝜔1, 𝜔2) |2 = | 𝑓𝑚 (𝜔1, 𝜔2) |2 · |𝜓 𝑓 (𝜔1, 𝜔2) |2, (3.2)
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Figure 3.4: Measured and theoretically calculated joint spectral information used to
characterize the photon pair source. a) Phase-matching envelope, b) pump spectral
envelope, c) detector response, d) measured (circles) and calculated (contour) JSI,
e) filter response of CWDM, and f) JSI for the main experiment, also shown in
Fig. 3.1.

with the filter response being

|𝜓 𝑓 (𝜔1, 𝜔2) |2 = exp

(
− (𝜆1 − 𝜆f,1)2 + (𝜆2 − 𝜆f,2)2

𝜎2
𝑓

)
+ exp

(
− (𝜆1 − 𝜆f,2)2 + (𝜆2 − 𝜆f,1)2

𝜎2
𝑓

)
,
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where 𝜆f,1 = 1550 nm and 𝜆f,2 = 1530 nm. The theoretical response of the CWDM
is shown in Fig. 3.4e whereas Fig. 3.4f depicts the JSI for the main experiment as
calculated from Eq. 3.2.

We perform a Schmidt decomposition of the JSI shown in Fig. 3.4f by calculating
the singular value decomposition of Eq. 3.2 [35]. This is relevant for modeling our
𝑔2(0) results, as discussed in Sec. 3.3, and for determining the fidelity of a heralded
single photon, see Sec. 3.5. The obtained eigenvalues 𝜆𝑠 from the decomposition,
normalized by their sum over index 𝑠, are shown in Fig. 3.5, corresponding to a
Schmidt number of 𝐾 = 1/∑𝑠 𝜆

2
𝑠 ≈ 772.
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Figure 3.5: Eigenvalue spectrum
∑
𝑠 𝜆𝑠 = 1 obtained from a Schmidt decomposition

of the JSI used in the main experiment.

Finally, we determine the sensitivity of the Schmidt decomposition to any potential
uncertainty in its key underlying parameters. We independently vary 𝜎𝑝, 𝜎CWDM,
Γ and 𝜎𝑑 , see Eq. 3.2, and re-calculate Schmidt decomposition, with results shown
in Fig. 3.6 and its caption. We find that, unsurprisingly, the variations of the
pump 𝜎𝑝 and filter 𝜎CWDM bandwidths have a significant impact on the Schmidt
decomposition [36]. Indeed a single spectral mode can be approximated if 𝜎𝑝 ≫
𝜎CWDM [37]. Consequently, the variations of 𝜎𝑝 and 𝜎CWDM have the largest impact
on our theoretical model introduced in Sec. 3.3, and are hence propagated in the fit
of the model to the data, see Sec. 3.4.
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Figure 3.6: Sensitivity of the Schmidt eigenvalue decomposition of the JSI for the
main experiment is probed by varying key parameters of Eq. 3.2. Central values
and variations for each relevant parameter are as follows: 𝜎𝑝 = 60 ± 10 GHz,
𝜎CWDM = 13 ± 1 nm, Γ = 400 ± 400 mm−1 and 𝜎𝑑 = 53 ± 5 nm, with maximum
and minimum variations shown. These variations are beyond typical experimental
uncertainties and are taken as a worst-case scenario. The variation of each eigenvalue
is normalized to the size of the first eigenvalue 𝜆0.

Path efficiencies

We determine the efficiencies of the signal and idler paths, that is, from PPLN to
detection as shown in Fig. 3.1, by calculating the ratio of coincidence to single-
photon detection rates using our photon pair source [38]. The output of our photon-
pair source can be approximated as

|𝜓⟩TMSV ≈
√︁

1 − 𝜇 |0𝑖0𝑠⟩ +
√
𝜇 |1𝑖1𝑠⟩ ,

if 𝜇 ≪ 1, neglecting loss. In this limit, the probability of generating one pair
of photons is given by 𝜇, and can be determined by measuring the coincidence-
to-accidental ratio [39]. Correspondingly, the relevant detection rates in our main
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Figure 3.7: Ratios of single and two-fold coincidence detection rates for the signal
and idler paths for varied gain of the amplifier in SHG module. The signal 1, signal
2, and idler path efficiencies, are estimated as shown in the insets using the data on
the left (and below) of the red dashed lines, which corresponds to 𝜇 ≪ 1. Idler
efficiencies are measured in configurations with the PNR and threshold detector.
The mean and standard deviation of the fitted efficiencies are indicated by green
lines, with numerical values in the insets.
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experiment can be approximated to lowest order in 𝜇:

𝐶𝑖 ≈ 𝑅𝜂𝑖𝜇, (3.3)

𝐶𝑠 𝑗 ≈
1
2
𝑅𝜂𝑠 𝑗 𝜇, (3.4)

𝐶𝑖𝑠 𝑗 ≈
1
2
𝑅𝜂𝑖𝜂𝑠 𝑗 𝜇, (3.5)

𝐶𝑠1𝑠2 ≈
1
2
𝑅𝜂𝑠1𝜂𝑠2𝜇

2, (3.6)

𝐶𝑖𝑠1𝑠2 ≈ 𝑅𝜂𝑠1𝜂𝑠2𝜂𝑖𝜇
2, (3.7)

where 𝐶𝑖 is the detection rate of the idler photons, whereas 𝐶𝑠 𝑗 and 𝐶𝑖𝑠 𝑗 are the
detection rates of signal 𝑗 and idler-signal 𝑗 two-fold coincidence events, 𝑗 = 1, 2.
The two-fold coincidence detection rates for photons in the signal 1 and 2 paths is
𝐶𝑠1𝑠2 and 𝐶𝑖𝑠1𝑠2 is the rate of three-fold coincidence detection events for photons in
the idler and the two signal paths. The transmission efficiencies of the idler and two
signal paths are 𝜂𝑖 and 𝜂𝑠 𝑗 , respectively, and include detector the efficiencies.

To estimate the path efficiencies, we calculate the ratios of two-fold coincidences to
single detection rates the signal 1, signal 2, and idler paths, plotting them in Fig. 3.7
for varied 𝜇. The amplification in the SHG module is adjusted as a proxy for 𝜇
and a linear fit to the data (green line) is used to obtain the average efficiencies and
associated uncertainties at 𝜇 ≪ 1, bounded by the red vertical dashed lines. The
mean efficiencies and associated uncertainties (standard deviations) for the signal 1
and 2 paths are 𝜂𝑠1 = 2𝐶𝑖𝑠1/𝐶𝑖 = 0.367± 0.009 and 𝜂𝑠2 = 2𝐶𝑖𝑠2/𝐶𝑖 = 0.435± 0.005,
respectively. The idler path efficiency 𝜂𝑖 = 𝐶𝑖𝑠1/𝐶𝑠1 = 0.319 ± 0.007 is estimated
from both the PNR and threshold detector configurations. The mean and uncertainty
of each path efficiency is used to constrain the fit shown in Fig. 3.9 of Sec. 3.4.

3.3 Theoretical model
Photon pair sources from bulk optical nonlinearities are typically operated at 𝜇 ≪ 1
to suppress multi-photon events. The 𝑔2(0) measurement performed in our work
extends to large 𝜇, where multi-photon contributions are non-negligible and become
significantly suppressed in the (i) PNR detection configuration compared to that
using (ii) threshold detection. To incorporate full multi-photon effects without
approximation, we use methods from the phase space formulation of quantum
optics to derive an expression for 𝑔2(0) as a function of 𝜇. We take into account
all major imperfections, including coupling and detector inefficiencies. We note
that our model can be extended to include dark counts, which are negligible for our
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experiment.

Characteristic function-based approach
The second order correlation function of photons in the signal 1 and 2 paths condi-
tioned on the detection of photons in the idler path for both detector configurations
(i) and (ii) is

𝑔2(0) =
𝐶𝑖𝑠1𝑠2𝐶𝑖

𝐶𝑖𝑠1𝐶𝑖𝑠2

,

where 𝐶𝑖𝑠1𝑠2 is the rate of three-fold coincidence detection events of photons in
the idler and signal 1 and 2 paths, 𝐶𝑖 is the rate of idler detection events, and
𝐶𝑖𝑠 𝑗 is the two-fold coincidence detection rate of idler and signal 𝑗 events, where
𝑗 = 1, 2. Since we are interested in large 𝜇, we cannot utilize Eqs. 3.3-3.7. Hence,
to find an expression for 𝑔2(0), we derive analytical expressions for the single path
detection rates, two-fold coincidence rates, and three-fold coincidence rates using a
characteristic function-based approach [25].

A characteristic function for an 𝑁−mode bosonic system is defined as

𝜒(𝜉) = Tr { 𝜌̂ exp(−𝑖(𝑥1, 𝑝1, 𝑥2, 𝑝2, . . . 𝑥𝑁 , 𝑝𝑁 ) · 𝜉)} , (3.8)

where 𝜌̂ is the density matrix describing the state of the system, 𝑥𝑖 and 𝑝𝑖 are the
conjugate quadrature operators for mode 𝑖, and 𝜉 ∈ R2𝑁 . The quadrature operators
can be expressed in term of the bosonic creation and annihilation operators as

𝑥𝑖 =
1
√

2

(
𝑎̂
†
𝑖
+ 𝑎̂𝑖

)
, 𝑝𝑖 =

𝑖
√

2

(
𝑎̂
†
𝑖
− 𝑎̂𝑖

)
.

Eq. 3.8 defines a unique mapping from the space of all possible quantum states to
a space of functions over R2𝑁 , i.e., a quantum system is completely characterized
by its characteristic function 𝜒(𝜉) [40].

An important subclass of quantum states is defined by the states whose characteristic
function is given by a multivariate Gaussian function:

𝜒(𝜉) = exp
(
−𝜉𝑇𝛾𝜉 − 𝑖𝑑𝑇𝜉

)
,

i.e., they are completely characterized by the displacement vector 𝑑 and covariance
matrix 𝛾, corresponding to the first and second moments. Representatives of this
subclass include vacuum, coherent, and thermal states as well as single- and two-
mode squeezed states.
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Relevant for our experiment is the non-degenerate output of an SPDC process, which
can be described as a two-mode squeezed vacuum state whose covariance matrix is
given by

𝛾SPDC(𝜇) =
(
A B
B A

)
,

A =

(
1 + 2𝜇 0

0 1 + 2𝜇

)
,

B =

(
2
√︁
𝜇(𝜇 + 1) 0

0 −2
√︁
𝜇(𝜇 + 1)

)
,

in block matrix form, where 𝜇 is the mean photon pair number. This description is
only valid for an SPDC source where only one signal and one idler mode are present.
If the source allows for multiple signal and idler modes, like in the broadband source
we use in our experiment, then the initial state must be modified to include all relevant
Schmidt modes, determined through the singular value decomposition of the JSI
[35], as calculated in Sec. 3.2. In this case, the initial state is a product state of
the two-mode squeezed vacuum states in the corresponding Schmidt modes. The
covariance matrix of the system is then given by a direct sum of the covariance
matrices of the respective modes

𝛾 = 𝛾SPDC(𝜆1𝜇) ⊕ 𝛾SPDC(𝜆2𝜇) ⊕ . . . ,

for an SPDC source that supports 𝑁 modes with Schmidt coefficients 𝜆1, 𝜆2, · · · 𝜆𝑁 ,
where the sum runs over all relevant modes, 𝜆1 ≥ 𝜆2 ≥ . . . 𝜆𝑁 , and

∑𝑁
𝑠=1 𝜆𝑠 = 1, as

before.

Since linear optics preserves the Gaussian nature of states [40], i.e., it maps Gaussian
states onto Gaussian states, linear optical operations can be described by a symplectic
transformation 𝑆 of the displacement vector and covariance matrix:

𝑑′ = 𝑆𝑇𝑑, 𝛾′ = 𝑆𝑇𝛾𝑆.

For example, the transformation between the input modes 𝑎̂, 𝑏̂ and the output modes
𝑎̂′, 𝑏̂′ of a beamsplitter with transmittivity 𝑡 is given by

𝑎̂′ = 𝑡𝑎̂ + 𝑖
√︁

1 − 𝑡2𝑏̂,

𝑏̂′ = 𝑡 𝑏̂ + 𝑖
√︁

1 − 𝑡2𝑎̂.
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We can now find the symplectic transformation 𝑆 of the beamsplitter that transforms
the quadrature operators:(

x𝑎′
x𝑏′

)
= 𝑆𝑇

(
x𝑎
x𝑏

)
=

(
T R
R T

) (
x𝑎
x𝑏

)
,

x𝑖 = (𝑥𝑖, 𝑝𝑖)𝑇 ,

T =

(
𝑡 0
0 𝑡

)
, R =

(
0 −

√
1 − 𝑡2√

1 − 𝑡2 0

)
,

in block matrix form, where (x𝑖, x 𝑗 )𝑇 = (𝑥𝑖, 𝑝𝑖, 𝑥 𝑗 , 𝑝 𝑗 )𝑇 . The beamsplitter transfor-
mation is particularly important because it is used to model path efficiency 𝜂path,
which is reduced from unity by propagation and coupling loss as well as detector
inefficiency. This is accomplished by combining the mode of interest and vacuum
on a beamsplitter of transmittivity 𝜂ch and tracing out the reflected mode.

Given that our setup consists of linear optics, and that loss is modeled as a linear
optic transformation, we are able to derive a symplectic transformation 𝑆system, with
which we calculate the characteristic function of the system up to detection

𝛾out = 𝑆
𝑇
system𝛾in𝑆system.

From the covariance matrix of the final Gaussian state, we can calculate several
relevant experimental values such as detection probabilities or rates, which can be
used to predict key figures of merit such as fringe visibilities or state fidelities of
qubits [16].

Concerning the photon detection step, consider a measurement operator Π̂. The
probability of detecting the measurement outcome for a given state 𝜌̂ is

𝑇𝑟 [ 𝜌̂Π̂] =
(

1
2𝜋

)𝑁 ∫
𝑑𝑥2𝑁 𝜒𝜌 (𝑥)𝜒Π (−𝑥), (3.9)

where 𝜒Π (−𝑥) is the characteristic function of the measurement operator and is
defined in the same way as Eq. 3.8 but with Π̂ instead of 𝜌̂. For threshold detectors,
which destructively discriminate between non-zero and zero photons, that is, a
detection event and non-event, their measurement operators are

Π̂no-event = |0⟩ ⟨0| ,
Π̂event = 𝐼 − |0⟩ ⟨0| ,
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i.e., we can model the threshold detectors by projections onto the vacuum state.
Since the vacuum state is a Gaussian state, the integrand in Eq. 3.9 is a multi-variant
Gaussian function yielding

𝑇𝑟 [ 𝜌̂Π̂no-event] =
2√︁

det(𝛾red + 𝐼)
𝑒−𝑑

𝑇
red (𝛾red+𝐼red)−1𝑑red , (3.10)

where 𝛾red is the reduced covariance matrix and 𝑑red is the reduced displacement
vector obtained from 𝛾 and 𝑑 by tracing out all modes but those measured.

Photon-number-resolving detector
Since the measurement operators describing PNR detectors are not Gaussian op-
erators [41], we cannot evaluate Eq. 3.10 to find the probability of detecting one
or more photons for the PNR detector. Instead, we model the PNR detector as an
effective 2𝑁-port beamsplitter with threshold detectors at each output port [21, 42,
26, 27]. We implement the 2𝑁-port beamsplitter as a network of beamsplitters
forming a so-called “binary tree” architecture, which has 𝑁 input and output ports,
as depicted in Fig. 3.8 for the case 𝑁 = 8.
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Figure 3.8: Schematic of the setup used for theoretical modeling. The PNR detector
is modeled as a 2𝑁-port beamsplitter in a binary tree architecture with threshold
detectors at the outputs. Only 8 ports are shown in the figure for simplicity. The
SPDC source and paths depict a simplified representation of that shown in Fig. 3.1.
The efficiencies, including all coupling and detection loss, of the signal 1, signal 2,
and idler paths, are 𝜂𝑠1 , 𝜂𝑠2 , and 𝜂𝑖, respectively.

To model a PNR detector, photons are injected to an input of the “top-most” beam-
splitter of the tree, e.g. input 6 in Fig. 3.8. The detection of photons with the
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PNR SNSPD is modeled as detection events from any combination of threshold
detectors at the output ports of the tree. For an input Fock state |𝑛⟩, the probability
that multiple photons arrive to the same output port is negligible when 𝑁 ≫ 𝑛,
corresponding to ideal photon number discrimination. In this case, the number of
detection events equals the number of input photons. For 𝑁 ∼ 𝑛, the probability of
multiple photons arriving to the same output port is non-negligible, corresponding
to non-ideal photon number discrimination. In this case, the number of detection
events does not equal the number of input photons. Therefore, the depth of the tree
𝑘 = log2(𝑁), is a figure of merit for photon number discrimination.

With our beamsplitter tree and threshold detector model, we are able to employ
Gaussian characteristic function techniques to find photon detection probabilities,
which we later employ to calculate coincidence detection probabilities, and hence
detection rates. We append 𝑁 − 1 vacuum modes to the state at idler mode and find
the symplectic matrix that transforms the characteristic function of the input state
to the tree to that of the output state. The symplectic matrix 𝑆k of a beamsplitter
tree with depth 𝑘 can be constructed using the recursive symmetry of the binary tree
architecture

𝑆𝑘 = (𝑆𝑘−1 ⊕ 𝑆𝑘−1)𝑆𝑘,𝑡 ,

where 𝑆𝑘,𝑡 is the symplectic matrix corresponding to the top-most beamsplitter for
a tree with depth 𝑘 . The covariance matrix 𝛾𝑁 and displacement vector 𝑑𝑁 of the
𝑁-mode input state to the tree then transform as

𝑑′𝑁 = 𝑆𝑇𝑘 𝑑𝑁 , 𝛾′𝑁 = 𝑆𝑇𝑘 𝛾𝑁𝑆𝑘 ,

which is followed by threshold detection at each of the 𝑁 outputs.

The probability of detecting non-zero photons at 𝑚 of the modes, i.e., having a
m-fold coincidence event, for an 𝑁-mode Gaussian state with covariance matrix 𝛾𝑁
is ∑︁

{𝑚}
𝑇𝑟 [ 𝜌̂𝛾𝑁 (Π̂⊗𝑚

event ⊗ Π̂
⊗(𝑁−𝑚)
no-event )]

=
∑︁
{𝑚}

𝑇𝑟 [ 𝜌̂𝛾𝑁 ((𝐼 − |0⟩ ⟨0|)⊗𝑚 ⊗ |0⟩ ⟨0|⊗(𝑁−𝑚))],

where
∑

{𝑚} indicates a sum over the all possible choices of 𝑚 output modes. This
results in a linear combination of

(𝑁
𝑚

)
terms of the form

𝑇𝑟 [ 𝜌̂𝛾𝑁 (𝐼⊗ 𝑗 ⊗ |0⟩ ⟨0|⊗(𝑁− 𝑗))] = 𝑇𝑟 [ 𝜌̂𝛾𝑁red |0⟩ ⟨0|
⊗(𝑁− 𝑗)], (3.11)
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where 𝜌̂𝛾𝑁red is the reduced density matrix of the system obtained by taking a partial
trace over 𝑁 − 𝑗 modes with 0 ≤ 𝑗 ≤ 𝑁 . One useful property of Gaussian states is
that the covariance matrix of the reduced state after a partial trace is simply the sub-
matrix corresponding to the remaining system. It can be shown that for an 𝑁-mode
system with covariance matrix 𝛾𝑁 and displacement vector 𝑑𝑁 , the probability of
measuring zero photons across the 𝑁 modes is

𝑇𝑟 [ 𝜌̂Π̂⊗𝑁
no-event] = 𝑇𝑟 [ 𝜌̂ |0⟩ ⟨0|⊗𝑁 ]

=
2𝑁√︁

det(𝛾𝑁 + 𝐼𝑁 )
𝑒−𝑑

𝑇
𝑁
(𝛾𝑁+𝐼𝑁 )−1𝑑𝑁 .

Eq. 3.11 then simplifies to

𝑇𝑟 [ 𝜌̂𝛾𝑁red |0⟩ ⟨0|
⊗(𝑁− 𝑗)] = 2𝑁− 𝑗√︁

det(𝛾𝑁− 𝑗 + 𝐼𝑁− 𝑗 )
𝑒
−𝑑𝑇

𝑁− 𝑗
(𝛾𝑁− 𝑗+𝐼𝑁− 𝑗 )−1𝑑𝑁− 𝑗 ,

where 𝐼𝑚 is the 𝑚 by 𝑚 identity matrix, 𝛾𝑁− 𝑗 is the sub-matrix of 𝛾𝑁 and 𝑑𝑁− 𝑗 is
the sub-vector of 𝑑𝑁 corresponding to the remaining subsystem of 𝑁 − 𝑗 modes. By
knowing 𝛾𝑁 and 𝑑𝑁 of the full 𝑁-mode system, we can find the m-fold coincidence
event probability for arbitrary 𝑚, where 0 ≤ 𝑚 ≤ 𝑁 .

For our experiment, we are interested in the single-photon detection probability 𝑃𝑁1
of the PNR detector. We model this as the probability that a single output mode of
the beamsplitter tree contains a photonic excitation:

𝑃𝑁1 = 𝑁𝑇𝑟 [ 𝜌̂𝛾′𝑁 (Π̂event ⊗ Π̂
⊗(𝑁−1)
no-event)]

=
𝑁2𝑁−1√︁

det(𝛾′
𝑁−1 + 𝐼𝑁−1)

𝑒−𝑑
′
𝑁−1

𝑇 (𝛾′
𝑁−1+𝐼𝑁−1)−1𝑑′

𝑁−1

− 𝑁2𝑁√︁
det(𝛾′

𝑁
+ 𝐼𝑁 )

𝑒−𝑑
′
𝑁
𝑇 (𝛾′

𝑁
+𝐼𝑁 )−1𝑑′

𝑁 . (3.12)

We can also use the 2𝑁-port beamsplitter model to describe the photon number
discrimination capability of the detector, as discussed in the following sections.

Photon-number detection

When a single-photon is sent to an input of the 2𝑁-port beamsplitter, the action
of the beamsplitter corresponding to unitary 𝑈𝑁 splits the photon into an equal
superposition of the 𝑁 output modes. An arbitrary Fock state |𝑛⟩ directed to a single
input port transforms as

𝑈𝑁 |𝑛⟩ = 1
(
√
𝑁)𝑛

∑︁
𝑗1+···+ 𝑗𝑁=𝑛

√︄
𝑛!

𝑗1! · · · 𝑗𝑁 !
| 𝑗1⟩ · · · | 𝑗𝑁⟩ .
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Thus, the joint probability of finding 𝑗1 photons at output 1, 𝑗2 photons at output 2,
..., and 𝑗𝑁 photons at output 𝑁 is

𝑃𝑛 ( 𝑗1, · · · , 𝑗𝑁 ) =
1
𝑁𝑛

𝑛!
𝑗1! · · · 𝑗𝑁 !

, where
𝑁∑︁
𝑖=1

𝑗𝑖 = 𝑛.

The probability that 𝑛 photons at a single input port trigger an 𝑚-fold coincidence
event, i.e., a detection at each of the 𝑚 output ports, is

𝑃𝑁𝑚,𝑛 =
𝑛!
𝑁𝑛

(𝑚)∑︁
𝑗1+···+ 𝑗𝑁=𝑛

1
𝑗1! · · · 𝑗𝑁 !

=
𝑚!
𝑁𝑛

(
𝑁

𝑚

)
𝑆2(𝑛, 𝑚), (3.13)

where 1 ≤ 𝑚 ≤ 𝑛, the notation (𝑚) refers to the condition that 𝑚 of { 𝑗𝑖} are
non-zero, and 𝑆2(𝑛, 𝑚) is the Stirling number of the second kind. The Stirling
number corresponds to the number of ways of partitioning a set of 𝑛 elements into
𝑚 non-empty sets [43].

As 𝑁 → ∞, the 2𝑁-port model approaches a PNR detector with perfect dis-
crimination efficiency, such that the single-photon detection probability equals the
single-photon probability of a general input state,

lim
𝑁→∞

𝑃𝑁1 = ⟨1| 𝜌𝛾′𝑁 |1⟩ .

For example, from Eq. 3.12, we can find the probability of a detection event at one
output of a tree with depth 𝑘 for an input thermal state with mean photon number 𝜇
as

𝑃𝑘1 =
2𝑘𝜇

(1 + 𝜇)
(
2𝑘 +

(
2𝑘 − 1

)
𝜇
) .

Similarly, for a coherent state with mean photon number |𝛼 |2 as

𝑃(1)𝑘 = 2𝑘𝑒−|𝛼 |
2
(
𝑒 |𝛼 |

2/2𝑘 − 1
)
.

By taking the limit 𝑘 → ∞, we recover the single photon probabilities for a thermal
state and coherent state, respectively, as

lim
𝑘→∞

2𝑘𝜇
(1 + 𝜇)

(
2𝑘 +

(
2𝑘 − 1

)
𝜇
) =

𝜇

(1 + 𝜇)2 ,

lim
𝑘→∞

2𝑘𝑒−|𝛼 |
2
(
𝑒 |𝛼 |

2/2𝑘 − 1
)
= 𝑒−|𝛼 |

2 |𝛼 |2.
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POVM elements and counting statistics

The values of 𝑃𝑁𝑚,𝑛, from Eq. 3.13, correspond to the matrix elements of a condi-
tional probability matrix C, following the definition used in Ref. [27]. The rows
correspond to the positive-operator value measure (POVM) elements of the mea-
surement outcomes and the columns correspond to the Fock projection operators.
The matrix for a threshold detector, in other words, a tree with 𝑘 = 0 is

|0⟩ ⟨0| |1⟩ ⟨1| |2⟩ ⟨2| |3⟩ ⟨3| |4⟩ ⟨4| |5⟩ ⟨5| |6⟩ ⟨6| · · ·( )
Π̂no-event 1 0 0 0 0 0 0 · · ·
Π̂event 0 1 1 1 1 1 1 · · ·

,

with measurement outcomes (rows) and projections (columns) indicated. The matrix
for an ideal PNR detector is the identity matrix,

|0⟩ ⟨0| |1⟩ ⟨1| |2⟩ ⟨2| |3⟩ ⟨3| |4⟩ ⟨4| |5⟩ ⟨5| |6⟩ ⟨6| · · ·©­­­­­­­­­­­­­­­«

ª®®®®®®®®®®®®®®®¬

Π̂0 1 0 0 0 0 0 0 · · ·
Π̂1 0 1 0 0 0 0 0 · · ·
Π̂2 0 0 1 0 0 0 0 · · ·
Π̂3 0 0 0 1 0 0 0 · · ·
Π̂4 0 0 0 0 1 0 0 · · ·
Π̂5 0 0 0 0 0 1 0 · · ·
Π̂6 0 0 0 0 0 0 1 · · ·
...

...
...

...
...

...
...

...
. . .

.

For a detector with efficiency 𝜂𝑑 , i.e., modeled as path loss of transmittivity 𝜂𝑑
before an ideal detector, the probability that 𝑛 photons trigger an𝑚-fold coincidence
detection event is

𝑃𝑁𝑚,𝑛 (𝜂𝑑) =
𝑛∑︁
𝑗=0

𝑃𝑁𝑚, 𝑗

(
𝑛

𝑗

)
𝜂𝑑

𝑗 (1 − 𝜂𝑑)𝑛− 𝑗

=

𝑛∑︁
𝑗=0
𝐶𝑚, 𝑗𝐿 𝑗 ,𝑛

= (C · L)𝑚,𝑛 ,

where L is the loss matrix with matrix elements,

𝐿 𝑗 ,𝑛 =

(
𝑛

𝑗

)
𝜂𝑑

𝑗 (1 − 𝜂𝑑)𝑛− 𝑗 .
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The matrix corresponding to C · L for a tree with 𝑘 = 3 and 𝜂𝑑 = 0.71 is,

|0⟩ ⟨0| |1⟩ ⟨1| |2⟩ ⟨2| |3⟩ ⟨3| |4⟩ ⟨4| |5⟩ ⟨5| |6⟩ ⟨6| · · ·©­­­­­­­­­­­­­­­«

ª®®®®®®®®®®®®®®®¬

Π̂0 1 0.29 0.084 0.024 0.007 0.002 0.001 · · ·
Π̂1 0 0.71 0.475 0.240 0.108 0.046 0.019 · · ·
Π̂2 0 0 0.441 0.501 0.383 0.246 0.144 · · ·
Π̂3 0 0 0 0.235 0.398 0.425 0.368 · · ·
Π̂4 0 0 0 0 0.104 0.244 0.346 · · ·
Π̂5 0 0 0 0 0 0.037 0.114 · · ·
Π̂6 0 0 0 0 0 0 0.010 · · ·
...

...
...

...
...

...
...

...
. . .

.

As we will show in detail in Sec. 3.4, this matrix corresponds to our experimental
PNR configuration.

The counting statistics 𝑝(𝑛) can be related to the input photon number distribution
𝜚(𝑛) by

𝑝𝑚 =
∑︁
𝑛

𝑛∑︁
𝑗=0
𝐶𝑚, 𝑗𝐿 𝑗 ,𝑛𝜚𝑛,

where 𝑝𝑚 = 𝑝(𝑚) and 𝜚𝑛 = 𝜚(𝑛), following the notation of Eq. 9 from Ref. [27].
In matrix notation this is ®𝑝 = C ·L ®𝜚. The transpose of the matrix (C ·L)𝑇 is matrix
B from Ref. [26], which relates probabilities and density matrices as ®𝑝 = B𝜌̂.

Photon-number discrimination efficiency

A key figure of merit of our detector PNR configuration is its ability to discriminate
single-photon events from others. To quantify this, we define the “𝑚−photon
discrimination efficiency” and use it to calculate the “single-photon discrimination
efficiency” as follows.

A POVM element corresponding to the 𝑚-photon outcome for a non-ideal PNR
detector can be described by

Π̂𝑚 =

∞∑︁
𝑛=0

𝑐𝑚𝑛 |𝑛⟩ ⟨𝑛| , (3.14)

where 𝑐𝑚𝑛 are the matrix elements corresponding to the representation of the operator
in the photon number basis, and are each equal to the probability of registering 𝑚
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photons given 𝑛 incident photons. The𝑚-photon outcome for an ideal PNR detector
is

Π̂𝑖𝑑𝑒𝑎𝑙
𝑚 = |𝑚⟩ ⟨𝑚 | . (3.15)

Note that for a threshold detector, the 𝑚-photon outcome for 𝑚 > 0 is the “event”
outcome Π̂event =

∑∞
𝑛=1 |𝑛⟩ ⟨𝑛|, and 𝑚 = 0 outcome corresponds to “no-event”

Π̂no-event = |0⟩ ⟨0|. We define the 𝑚-photon discrimination efficiency as

𝜂𝑚𝑃𝑁𝑅 = 1 − 1
2

Tr

√√(

Π̂𝑚

Tr[Π̂𝑚]
− Π̂ideal

𝑚

Tr[Π̂ideal
𝑚 ]

)2 , (3.16)

where the second term is the trace distance between elements Π̂𝑚 and Π̂𝑖𝑑𝑒𝑎𝑙
𝑚 , nor-

malized by their trace, corresponding to the 𝑚-photon measurement outcome of the
PNR detector. Using Eqs. 3.14 and 3.15, we simplify Eq. 3.16 to

𝜂𝑚𝑃𝑁𝑅 =
𝑐𝑚𝑚∑∞
𝑛=0 𝑐

𝑚
𝑛

=
𝑃(𝑚 |𝑚)∑∞
𝑛=0 𝑃(𝑚 |𝑛) , (3.17)

where 𝑐𝑚𝑛 = 𝑃(𝑚 |𝑛) is the probability that the detector registers 𝑚 photons given
that 𝑛 photons were incident on the detector. Relevant to our experiment is the
single-photon discrimination efficiency (𝑚 = 1). As defined in Eq. 3.17, 𝜂1

𝑃𝑁𝑅
is

zero for a threshold detector and unity for an ideal PNR detector.

Analytical expressions of detection probabilities
For a 2N-port beamsplitter realized as a finite-depth binary tree, we derive the
following expressions for detection probabilities of the signal and idler paths, as
well as two-fold and three-fold coincidence event probabilities as a function of the
efficiencies and tree depth 𝑘 , where 𝑁 = 2𝑘 . The equations reduce to the threshold
detection case for 𝑘 = 0.

We use Π̂no-event,𝑚 and Π̂event,𝑚 to denote the measurement operators for a threshold
detector at the 𝑚th tree output:

Π̂no-event,𝑚 = |0⟩ ⟨0|𝑚 ,
Π̂event,𝑚 = 𝐼𝑚 − |0⟩ ⟨0|𝑚 .

For the PNR detector, we use Π̂event,𝑚 ⊗ Π̂⊗𝑁−1
no-event to denote an “event” measurement

outcome for a detector at the 𝑚th output and “no-event” measurement outcomes for
the detectors at the remaining 𝑁 − 1 outputs of the tree.
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Detection probabilities for signal and idler detectors

The probabilities 𝑃𝑠1 and 𝑃𝑠2 of a detection event for the signal 1 and 2 detectors,
respectively, are

𝑃𝑠1 = Tr
[
𝜌

(
Π̂𝑠1,event ⊗ 𝐼𝑠2 ⊗ 𝐼⊗𝑁

)]
,

𝑃𝑠2 = Tr
[
𝜌

(
𝐼𝑠1 ⊗ Π̂𝑠2,event ⊗ 𝐼⊗𝑁

)]
,

and evaluate to

𝑃𝑠 𝑗 = 1 −
∏
𝑠

2
2 + 𝜂𝑠 𝑗𝜆𝑠𝜇

,

where 𝑗 = 1, 2 and 𝜆𝑠 are the Schmidt coefficients obtained from the singular value
decomposition of the JSI as discussed in Sec. 3.2. The products in the expressions
run over all Schmidt coefficients. The mean number of pairs 𝜇 as well as path
efficiencies 𝜂𝑖 and 𝜂𝑠 𝑗 , where 𝑗 = 1, 2, as depicted in Fig. 3.8 and used here and in
the following, are as defined earlier.

The probability 𝑃𝑖 of a detection event for the idler detector is then

𝑃𝑖 = 𝑁Tr
[
𝜌

(
𝐼𝑠1 ⊗ 𝐼𝑠2 ⊗ Π̂event,𝑚 ⊗ Π̂⊗𝑁−1

no-event

)]
,

and evaluates to

𝑃𝑖 = 2𝑘
(∏

𝑠

2𝑘

2𝑘 + (2𝑘 − 1)𝜆𝑠𝜇𝜂𝑖
−

∏
𝑠

1
1 + 𝜆𝑠𝜇𝜂𝑖

)
. (3.18)

Two-fold coincidence detection probabilities

The probabilities of a two-fold coincidence detection event at the idler and one of
the signal detectors, 𝑃𝑖𝑠1 and 𝑃𝑖𝑠2 , are

𝑃𝑖𝑠1 = 𝑁Tr
[
𝜌

(
Π̂event,𝑠1 ⊗ 𝐼𝑠2 ⊗ Π̂event,𝑚 ⊗ Π̂⊗𝑁−1

no-event

)]
,

𝑃𝑖𝑠2 = 𝑁Tr
[
𝜌

(
𝐼𝑠1 ⊗ Π̂event,𝑠2 ⊗ Π̂event,𝑚 ⊗ Π̂⊗𝑁−1

no-event

)]
,

and evaluate to

𝑃𝑖𝑠 𝑗 = 2𝑘
(∏

𝑠

2𝑘

2𝑘 + (2𝑘 − 1)𝜆𝑠𝜇𝜂𝑖

−
∏
𝑠

2𝑘+1

𝜆𝑠𝜇𝜂𝑠 𝑗 (2𝑘 − (2𝑘 − 1)𝜂𝑖) + 2(2𝑘 + (2𝑘 − 1)𝜆𝑠𝜇𝜂𝑖)

−
∏
𝑠

1
1 + 𝜆𝑠𝜇𝜂𝑖

+
∏
𝑠

2
2 + 2𝜆𝑠𝜇𝜂𝑖 + 𝜂𝑠 𝑗𝜆𝑠𝜇(1 − 𝜂𝑖)

)
, (3.19)
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where 𝑗 = 1, 2.

The probability of a two-fold coincidence detection event at the signal 1 and 2
detectors is

𝑃𝑠1𝑠2 = Tr
[
𝜌

(
Π̂event,𝑠1 ⊗ Π̂event,𝑠2 ⊗ 𝐼⊗𝑁𝑚

)]
,

and evaluates to

𝑃𝑠1𝑠2 = 1 −
∏
𝑠

2
2 + 𝜂𝑠1𝜆𝑠𝜇

−
∏
𝑠

2
2 + 𝜂𝑠2𝜆𝑠𝜇

+
∏
𝑠

2
2 + (𝜂𝑠1 + 𝜂𝑠2)𝜆𝑠𝜇

.

Three-fold coincidence detection probabilities

The probability of a three-fold coincidence detection event at the idler, signal 1, and
signal 2 detectors, 𝑃𝑖,𝑠1,𝑠2 (𝜇, 𝜂𝑠1 , 𝜂𝑠2 , 𝜂𝑖, 𝑘), is

𝑃𝑖,𝑠1,𝑠2 = 𝑁Tr
[
𝜌

(
Π̂event,𝑠1 ⊗ Π̂event,𝑠1 ⊗ Π̂event,𝑚 ⊗ Π̂⊗𝑁−1

no-event

)]
,

and evaluates to

𝑃𝑖,𝑠1,𝑠2 = 2𝑘
(∏

𝑠

2𝑘

2𝑘 + (2𝑘 − 1)𝜆𝑠𝜇𝜂𝑖

−
∏
𝑠

2𝑘+1

𝜆𝑠𝜇𝜂𝑠1 (2𝑘 − (2𝑘 − 1)𝜂𝑖) + 2(2𝑘 + (2𝑘 − 1)𝜆𝑠𝜇𝜂𝑖)

−
∏
𝑠

2𝑘+1

𝜆𝑠𝜇𝜂𝑠2 (2𝑘 − (2𝑘 − 1)𝜂𝑖) + 2(2𝑘 + (2𝑘 − 1)𝜆𝑠𝜇𝜂𝑖)

+
∏
𝑠

2𝑘+1

𝜆𝑠𝜇(𝜂𝑠1 + 𝜂𝑠2) (2𝑘 − (2𝑘 − 1)𝜂𝑖) + 2(2𝑘 + (2𝑘 − 1)𝜆𝑠𝜇𝜂𝑖)

−
∏
𝑠

1
1 + 𝜆𝑠𝜇𝜂𝑖

+
∏
𝑠

2
2 + 2𝜆𝑠𝜇𝜂𝑖 + 𝜂𝑠1𝜆𝑠𝜇(1 − 𝜂𝑖)

+
∏
𝑠

2
2 + 2𝜆𝑠𝜇𝜂𝑖 + 𝜂𝑠2𝜆𝑠𝜇(1 − 𝜂𝑖)

−
∏
𝑠

2
2 + 2𝜇𝜆𝑠𝜂𝑖 + (𝜂𝑠1 + 𝜂𝑠2)𝜇𝜆𝑠 (1 − 𝜂𝑖)

)
. (3.20)

Second-order correlation function g(2) (0)

Finally, we readily derive the analytical expression for 𝑔(2) (0) by substituting
Eqs. 3.18, 3.19, and 3.20 and into

𝑔(2) (0) =
𝑃𝑖,𝑠1,𝑠2𝑃𝑖

𝑃𝑖,𝑠1𝑃𝑖,𝑠2

=
𝐶𝑖,𝑠1,𝑠2𝐶𝑖

𝐶𝑖,𝑠1𝐶𝑖,𝑠2

, (3.21)

where the respective probabilities 𝑃 can be used to calculate detection rates 𝐶 using
𝐶 = 𝑅𝑃.
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3.4 Results
We vary the gain of the amplifier in the SHG module and measure single detector,
i.e., signal 1 and 2 and idler, events as well as two- and three-fold coincidence
detection events for (i) the PNR configuration and (ii) the threshold configuration
for the idler detector. We then perform a maximum-likelihood fit of our theoretical
model for 𝑔2(0), i.e., Eq. 3.21, to the measured 𝑔2(0) for configurations (i) with
PNR and (ii) with threshold detection. The likelihood is optimized using the
MINUIT [44] implementation in iminuit [45]. The experimental 𝑔2(0) data and
curve corresponding to the best-fitted model are shown in Fig. 3.9.

Maximum-likelihood fit
The theoretical model for 𝑔2(0) includes several parameters, as introduced in
Secs. 3.2 and 3.3. Our fit extracts the following key experimental values: mean
photon-pair number 𝜇, tree depth 𝑘 , path efficiencies 𝜂𝑖, 𝜂𝑠1 and 𝜂𝑠2 , as well as the
filter and pump bandwidths, 𝜎CWDM and 𝜎𝑝, which strongly influence the eigen-
value spectrum of JSI. The best-fit values and uncertainties of the mean photon
number for each amplifier setting is shown in Fig. 3.9. We also calculate the pull
for 𝑔2(0), which is the distance of the best fit value from the Gaussian constraint
measured in values of the constraint width. The best-fit, uncertainties and pull of
the other values are shown in Tab. 3.1. We find the best-fit path efficiencies and the
filter bandwidth are identical, within uncertainty, to that evaluated by independent
measurements in Sec. 3.2. The predicted pump bandwidth (88 GHz) is larger than
that measured in Sec. 3.2 (60 GHz) likely because it was inferred by measurements
at telecommunication wavelength.

In the fit, the path efficiencies are free parameters, while the mean and uncertainties
thereof, measured in Sec. 3.2, are used to place Gaussian constraints on the fit. Each
measured 𝑔2(0) is ascribed an independent value of 𝜇, and given the path efficiencies,
is determined by fitting the single detector and two-fold coincidence detection
probabilities, i.e., those shown in Fig. 3.10, collected during the measurements. The
mean and statistical uncertainties of these detection rates is used to place a Gaussian
constraint on the value of 𝜇 for each data point. The eigenvalue spectrum of the JSI
is computed by varying 𝜎CWDM = 13± 1 nm and 𝜎𝑝 = 60± 10 GHz as discussed in
Sec. 3.2, and a linear approximation is used to allow the fit for a continuous variation.
Additional fit details are discussed in the captions of Fig. 3.9 and Tab. 3.1.
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Figure 3.9: Measured correlation function 𝑔2(0) as a function of mean photon-
pair number 𝜇. The experimental data using threshold (orange) and PNR (blue)
idler detector configurations are represented by the circular markers whereas the
respective fitted models are shown by dashed lines. Uncertainties of 𝑔2(0), referred
to as𝜎𝑔2 (0) , are derived from the statistical uncertainties of the coincidence detection
events whereas the uncertainties of 𝜇, that is, 𝜎𝜇, are extracted from the fit to
the model. The inset depicts the region where the largest reduction in 𝑔2(0) is
measured. The pull between the measured 𝑔2(0) and the model, computed as
[𝜎2

𝑔2 (0) +
��𝜕𝜇𝑔2(0)

��2 𝜎2
𝜇]1/2 and plotted in units of standard deviations, is shown at

the bottom of the canvas.

Single-photon discrimination efficiency
With 𝑘 = 3.45+0.71

−0.50 extracted from the fit, the single-photon discrimination efficiency
of our PNR detector is comparable to that of a pseudo-PNR detector comprised of
approximately 11+7

−3 threshold detectors, each with efficiency 𝜂𝑑 = 0.71. Therefore,
following the model developed in Sec. 3.3, the experimental POVM is

Π̂
𝑒𝑥𝑝

1 ≈ 0.710 |1⟩ ⟨1| + 0.458 |2⟩ ⟨2| + 0.222 |3⟩ ⟨3| (3.22)

+ 0.096 |4⟩ ⟨4| + 0.039 |5⟩ ⟨5| + 0.015 |6⟩ ⟨6| ,
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Parameter Best fit Pull (𝜎)

𝜂𝑖 0.319 ± 0.026 -0.1 (3.9)
𝜂𝑠1 0.370 ± 0.024 0.3 (2.5)
𝜂𝑠2 0.436 ± 0.017 0.2 (3.3)

𝜎CWDM (nm) 11.97 ± 0.95 -1.0 (0.9)
𝜎𝑝 (GHz) 87.7 ± 14.0 2.8 (1.4)

𝑘 3.45+0.71
−0.50 -

Table 3.1: Maximum-likelihood best-fit results for key experimental parameters.
Uncertainties are computed by inverting the Hessian, except for 𝑘 , where a likelihood
scan has been performed. There is no value of pull for 𝑘 as it is extracted from a fit
without a constraint.

corresponding, according to the arguments in Sec. 3.3, to a single-photon discrimi-
nation efficiency of 𝜂1

𝑃𝑁𝑅
≈ 0.46, limited mainly by 𝜂𝑑 .

Improvement with a PNR SNSPD
The reduction of 𝑔2(0) shown in Fig. 3.9 demonstrates a suppression of multi-photon
events. A maximum reduction of 0.118 ± 0.012 at 𝜇 = 0.327 ± 0.007 is observed;
it is more clearly indicated in the inset of Fig. 3.9.

The data and fit for 𝜇 ≪ 1 is presented in Fig. 3.11. Configurations (ii) and (i) are
denoted by orange and blue colors, respectively, with the data indicated by large dots
and the fit by solid curves. To give context, orange and blue dotted lines indicate the
𝜇 corresponding to a 𝑔2(0) of 7 × 10−3 (gray dashed line) measured in Ref. [28],
Specifically, we observe a 25% improvement in 𝜇, from 4 × 10−3 (orange dotted
line) with configuration (ii), to 5 × 10−3 (blue dotted line) with configuration (i).

To estimate the performance of our experiment with future improvements, we cal-
culate 𝑔2(0) using the properties of our PNR detector (𝑘 = 3.45, green curve) and
those of a PNR detector with a higher tree depth (𝑘 = 10, red curve). We also
assume higher path efficiencies of 𝜂𝑠1 = 𝜂𝑠2 = 𝜂𝑖 = 0.87, which are the product
of the coupling (0.91) and detector (0.96) efficiencies from Refs. [46] and [47],
respectively, and are among the best-achieved to date. With these upgrades, for a
𝑔2(0) of 7×10−3 (gray dashed line), we predict an improved 𝜇 = 20.5×10−3 (green
curve) and 𝜇 = 26.7 × 10−3 (red curve) using our PNR SNSPD and a nearly ideal
PNR detector, respectively.
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Figure 3.10: Idler detection probabilities (top left), signal 1 and signal 2 detection
probabilities (top right), signal detector two-fold coincidence probabilities and signal
detectors with idler in threshold configuration (bottom left), two-fold signal and idler
in PNR configuration two-fold coincidence probabilities. The prediction from the
theoretical model is shown for the best fit parameters in Tab. 3.1.

3.5 Discussion
By measuring the idler mode of a spontaneous parametric down-conversion source
using a photon-number-resolving nanowire detector, we reduce the 𝑔2(0) of the
signal mode or, on the other hand, increase the probability to generate a photon.
The results and key performance metrics of our experiment are supported by a
detailed analytical model which captures multi-photon effects, imperfections, and
multiple spectral modes. Using a setup consisting of fiber-coupled and off-the-shelf
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Figure 3.11: Correlation function 𝑔2(0) as a function of mean photon number
𝜇 ≪ 1 for our experiment and improved heralded single-photon sources. The
experimental data (large dots) are represented with their uncertainties. The models
for the threshold configuration (orange curve) and PNR configuration (blue curve)
of our detector are compared with the green and red curves, which correspond to
model predictions using improved sources, as discussed in the main text, with key
parameters (tree depth 𝑘 , path efficiencies 𝜂 ≡ 𝜂𝑠1 = 𝜂𝑠2 = 𝜂𝑖) shown in the inset.
The grey dashed line corresponds to a 𝑔2(0) measured in Ref. [28].

devices, we generate photons that can be used in quantum information applications,
in particular quantum communications [48, 49].

To realize an ideal single-photon source [1], a number of improvements to our
experiment must be implemented [36]. First, the Schmidt number of our SPDC
source must be decreased from its current value of 𝐾 ≈ 772 to 𝐾 = 1. This
can be accomplished by either narrower spectral filtering of the pairs or increasing
the pump pulse bandwidth [50], the use of cavity-enhanced SPDC [51], or by
engineering the phase matching function of the nonlinear crystal [52, 53]. A
near-unity Schmidt number renders the photons suitable for interference with other
independently generated photons in a quantum circuit or network.

Next, the system efficiency should be increased to near unity. Coupling between
fibers and devices can be improved with enhanced modal engineering [54] or using
anti-reflection-coated free-space components [55]. Alternatively, components could
be integrated onto the same chip, for instance using Si- or SiN-on-insulator with
SFWM sources [56, 17], or using thin-film lithium niobate [57]. Furthermore,
multiplexing strategies must be employed to increase the probability of generating a
single pair beyond the theoretical maximum of 25% per mode. Such multiplexing,
using, for instance, spatial [58, 59], temporal [60, 46], or frequency modes [61, 62],
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could also be employed to circumvent loss in the signal mode [63]. This requires on-
demand feed-forward mode mapping using switches [64], quantum memories [65],
or frequency shifters [66], respectively. Feed-forward requires the real-time readout
that our PNR SNSPD allows. Note that feed-forward also allows for temporal
filtering of the signal mode, a method that yields a significant reduction in 𝑔2(0)
[67, 68, 69]. We also point out that our improvement in 𝑔2(0) significantly reduces
the number of spatially multiplexed sources (∼ 1/𝜇 for 𝜇 ≪ 1) that are required
to render our heralded photon source to be quasi-deterministic. For instance, for
𝑔2(0) = 7 × 10−3, in which we observe a 25% improvement in 𝜇 from 4 × 10−3 to
5 × 10−3, see Fig. 3.11, corresponds to a reduction of the number of multiplexed
spatial modes from 250 to 200. Further, with an improved detector efficiency of 0.87
[46, 47], only ∼ 49 multiplexed modes will be required to quasi-deterministically
generate a heralded single photon.

Multiplexing with feed-forward also allows a multi-mode source to be rendered as
single mode, i.e., it effectively decreases its Schmidt number to unity [62]. Our
broadband SPDC source is naturally suited for frequency multiplexing, as indicated
by the strong frequency correlations in our JSI [70]. This suggests our measured
𝜇 = 5 × 10−3 for 𝑔2(0) = 7 × 10−3 exceeds state-of-the-art SPDC sources using
threshold detection, as well as quantum dots [28], accounting for such frequency
multiplexing.

Additional gains can be offered by improvements to the PNR SNSPD. A higher
detector efficiency, i.e., ideally increasing 𝜂𝑑 to one, would increase the single-
photon discrimination efficiency and improve the fidelity of the heralded single
photon. This may be achieved through improvements to the optical stack around the
nanowire by replacing the gold mirror with a distributed Bragg reflector mirror [71].
Also, the detector reset time of nearly 100 ns restricts the maximum repetition rate
of the source to be ∼ 10 MHz. An SNSPD with a reduced reset time based on a
lower kinetic inductance nanowire material, or integrated with an active quenching
circuit [72], would allow for high single-photon generation rates. A multiplexing
method based on multiple PNR SNSPDs would also support a high repetition rate
in addition to a substantial increase in detection efficiency [73].

Beyond single-photon sources, extensions of our setup allow efficient generation
of qubits or qudits, as well as entanglement swapping using PNR SNSPDs [49].
Further uses encompass preparation of heralded photon-number states [74] and
non-Gaussian continuous-variable states [75], vital resources to realize fault-tolerant
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photonic quantum computers [76]. Lastly, and of note, by using PNRs to improve
teleportation rates [16], novel applications can benefit including microwave to optical
transduction [77]. During the preparation of our manuscript we became aware of
relevant results achieved independently of this work [78].
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