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C h a p t e r 4

PHOTON-NUMBER-RESOLVING SUPERCONDUCTING
NANOWIRE ARRAY DETECTORS
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4.1 Introduction
Photon-number-resolving detectors (PNRDs) are indispensable for a wide range of
quantum technologies, including linear-optical quantum computing, quantum key
distribution and quantum metrology. Transition-edge sensors (TESs), microwave
kinetic-inductance detectors (MKIDs), and superconducting nanowire single-photon
detectors (SNSPDs) already deliver high efficiencies and sub-nanosecond timing,
yet their intrinsic photon number resolution eventually saturates as incident photon
flux increases, limiting dynamic range [1, 2, 3]. Pseudo-PNR schemes based on
temporal, spatial or spectral multiplexing circumvent this ceiling by distributing
photons over many modes and reading them out with threshold detectors [4, 5].
Parallel advances in nanofabrication now enable dense on-chip integration of hun-
dreds of SNSPD pixels and sophisticated fan-out architectures [6, 7, 8]. There are
therefore two types of PNR detection: (1) intrinsic PNR where a single detector is
sensitive to the energy difference between one, two, or more photons being absorbed
in a short time window, (2) pseudo-PNR, where incoming photons are distributed
over multiple spatial or temporal modes before being detected. The two types
can be combined, for example by an array of intrinsic-PNRDs, or combining one
intrinsic-PNRD with temporal multiplexing. Merging the advances in multiplexing
with single-pixel photon number resolution charts a practical route toward the ideal,
high-dynamic-range PNRD.

The quantitative behaviour of a PNRD is fully specified by its positive-operator-valued
measure (POVM). Closed-form solutions for POVM elements are known for the
case of uniform splitting probabilities across an array of click detectors [9], relevant
to spatially and temporally mulitplexed pseudo-PNRDs [4, 5]. Uniform-splitting
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assumptions, however, break down in large-scale array detectors [10, 11] where
spatial-mode weights are inherently non-uniform and pixel-to-pixel efficiencies
vary because of optical coupling and fabrication tolerances. A general treatment
requires a multinomial expansion over all detector outcomes whose term count
grows exponentially with array size, rendering brute-force evaluation intractable
for state-of-the-art devices. No analytic solution has yet been reported for this
non-uniform regime. More broadly, a model for the POVM elements of detec-
tor arrays with arbitrary POVMs is needed to support the development of scalable
architectures composed of photon-number-resolving detectors.

Here we close this gap by developing a generalized theoretical framework for POVM
modeling of realistic PNR detector arrays. First we present a model for an array
of detectors with arbitrary POVMs and splitting topologies. We find a closed-
form solution for case of click detectors and non-uniform splitting probabilities,
and present an iterative method for efficiently constructing the POVM of an array
detector from known detector POVMs and splitting probabilities. Next, we validate
the model by experimentally reconstructing the POVMs of two detector configura-
tions: (1) a pseudo-PNR array of threshold detectors with heterogeneous splitting
probabilities–an architecture exemplified by recent developments in SNSPD detector
arrays [10, 11], and (2) an array of six intrinsic-PNRDs. We perform experimen-
tal detector tomography of (1) the PEACOQ detector from Ref. [10] and (2) a
spatially-mutliplexed array of six PNR SNSPDs to demonstrate configurations 1
and 2, respectively. These two experimental demonstrations showcase our modeling
framework as a practical toolset for designing and optimizing next-generation PNR
arrays, which will advance the broader quest for detectors that approach the ideal
photon-number-resolving limit.

4.2 Generalized POVM model for array detectors
In quantum optics, the measurement statistics of a single-photon detector are fully
characterized by a set of positive operator value measure (POVM) elements {𝜋̂𝑛},
where each 𝜋̂𝑚 is a positive semi-definite operator associated with the outcome 𝑚.
For an input state 𝜌, the probability of observing outcome 𝑚 is given by,

𝑝𝑚 = Tr[𝜌𝜋̂𝑚] . (4.1)

The POVM elements can be expanded in a complete basis over any Hilbert space.
Relevant to photon-number-resolving detection, under the assumption that the de-
tector is insensitive to the phase of the input light, the POVM elements can be



85

UN

n

0
0

0
0

0

1c

2c

3c

N-2c

N-1c

Nc

(1)Π
(2)Π
(3)Π

(N-2)Π
(N-1)Π
(N)Π

a) b)

(1)Π (2)Π (3)Π (4)Π

3τ

0

0

2τ

0

1τ

n

1c 2c 3c 4c

Π

Figure 4.1: Setup for theoretical modeling. a) An n-photon number state, |𝑛⟩, is
injected into the first input port of a 2𝑁-port beamsplitter, described by the unitary
operator 𝑈𝑁 . The 𝑛 photons are distributed across a set of 𝑁 detectors, where 𝑐𝑘 is
the splitting amplitude for the 𝑘th output port and 𝚷(𝑘) is the conditional probability
matrix of the 𝑘th detector. b) Conceptual illustration of POVM construction from
an array of detectors with different photon number resolving capabilities. 𝚷(𝑛) is the
conditional probability matrix for the 𝑛th detector 𝚷 is the conditional probability
matrix for the overall array of multiplexed detectors.

expressed in the photon number basis as,

𝜋̂𝑚 =

∞∑︁
𝑛=0

𝑃(𝑚 |𝑛) |𝑛⟩ ⟨𝑛| =
∞∑︁
𝑛=0

𝚷𝑚,𝑛 |𝑛⟩ ⟨𝑛| , (4.2)

where 𝑃(𝑚 |𝑛) is the conditional probability that the detector outputs outcome 𝑚
given 𝑛 input photons and |𝑛⟩ is the photon number state of 𝑛 photons. In this
notation, the POVM of a detector can be completely summarized by the condi-
tional probability matrix Π̂, with matrix elements 𝚷𝑚,𝑛 = 𝑃(𝑚 |𝑛). For an ideal
photon-number-resolving detector, the POVM elements are {𝜋̂𝑛 = |𝑛⟩ ⟨𝑛|} and the
conditional probability matrix is the identity matrix, 𝚷𝑚𝑛 = 𝛿𝑚𝑛. In practice, the
photon number resolution of a realistic detector saturates, with photon resolution
demonstrated up to 15 photons at 1550 nm with single TES detector [12], resulting
in a truncated number of measurement outcomes. In turn, this limits the dynamic
range of a detector up to the photon number saturation.

Multiplexing is a common approach to overcoming photon number saturation,
whereby 𝑛 photons are distributed over a set of spatial [9], temporal [4, 5], or
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spectral modes such that a smaller number of photons are incident to the detector at
each mode. The splitting operation can be modeled using linear optics as a 2𝑁-port
beamsplitter with an associated unitary operator𝑈𝑁 , where 𝑁 is the number of input
and output modes (see Fig. 4.1a). A photon number state |𝑛⟩ inserted into one of
the input modes, with all others in the vacuum state. The photons are distributed to
a set of 𝑁 detectors, one at each output mode, where 𝑐𝑘 represents the probability
of a single photon arriving to output mode 𝑘 ∈ {1, ..., 𝑁} (“splitting probability“).
Each detector has a set of POVM elements {𝜋̂(𝑘)𝑛 }, where the POVM elements of the
detector at output mode 𝑘 are described by the conditional probability matrix 𝚷(𝑘) .
The measurement outcomes of the multiplexed detector are found by summing the
measurement outcomes of each detector. Let 𝚷 denote the conditional probability
matrix of the multiplexed detector. The matrix element 𝚷𝑚𝑛 corresponding to the
𝑚th measurement outcome given 𝑛 input photons is,

𝚷𝑚𝑛 =
∑︁

{∑𝑘 𝑚𝑘=𝑚}

∑︁
{∑𝑘 𝑗𝑘=𝑛}

𝑛!
𝑗1! · · · 𝑗𝑁 !

𝑐
𝑗1
1 · · · 𝑐 𝑗𝑁

𝑁
𝚷(1)
𝑚1 𝑗1

· · ·𝚷(𝑁)
𝑚𝑁 𝑗𝑁

, (4.3)

where the right hand side calculated as a multinomial expansion over the splitting
probabilities (𝑐1, ..., 𝑐𝑁 ), and individual detector matrices (𝚷1, ...,𝚷𝑁 ). In Eq. 4.3,
the inner sum accounts for all possible ways 𝑛 photons can be distributed over the
𝑁 detectors, denoted as {∑𝑘 𝑗𝑘 = 𝑛}, where 𝑗𝑘 is the number of photons incident to
the 𝑘th detector. The outer sum accounts for each set of coincident photon number
outcomes that sums to the measurement outcome 𝑚, denoted as {∑𝑘 𝑚𝑘 = 𝑚},
where 𝑚𝑘 is the measured photon number by the 𝑘th detector.

Click detector arrays
For the case of click detection at each output, in which each detector can resolve
either zero or at least one photon, the conditional probability matrix of the 𝑘th
detector is given by,

𝚷(𝑘) =

(
1 0 · · · 0
0 1 · · · 1

)
, (4.4)

where the first row corresponds to the detection of the vacuum state and the second
row corresponds to the detection of at least one photon, interpreted as the measure-
ment outcome of zero photons (𝑚𝑘 = 0) and one photon (𝑚𝑘 = 1), respectively.

In this case, Eq. 4.3 simplifies to [3],

𝚷𝑚𝑛 =

(𝑚)∑︁
{∑𝑘 𝑗𝑘=𝑛}

𝑛!
𝑗1! · · · 𝑗𝑁 !

𝑐
𝑗1
1 · · · 𝑐 𝑗𝑁

𝑁
, (4.5)
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where (𝑚) denotes the condition that exactly 𝑚 of ( 𝑗1, ..., 𝑗𝑁 ) are nonzero. The
number of terms in the sum of Eq. 4.5 scales polynomially in 𝑚 and exponentially
in 𝑛, which becomes computationally intractable for large 𝑛. To compute 𝚷𝑛𝑚, a
closed-form solution is desirable.

We obtain a closed-form expression by finding a recursion equation satisfied by the
matrix elements in Eq. 4.5. Let 𝑃(𝑛, ®𝑐(𝑚)) be the probability that 𝑛 photons arrive
to a subset of 𝑚 wires, where ®𝑐(𝑚) is the vector of probabilities for those 𝑚 wires;
there are

(𝑁
𝑚

)
such vectors, each of size 𝑚. We can rewrite 𝚷𝑚,𝑛 as

𝚷𝑚,𝑛 =
∑︁
®𝑐 (𝑚)

𝑃(𝑛, ®𝑐(𝑚)) (4.6)

where the sum is over all possible ®𝑐(𝑚) , i.e. over all possible subsets of 𝑚 wires.

For a given subset of 𝑚 wires, 𝑃(𝑛, ®𝑐(𝑚)) obeys the recursion relation,

𝑃(𝑛, ®𝑐(𝑚)) = 𝑃(𝑛 − 1, ®𝑐(𝑚))
(
𝑚∑︁
𝑘=1

®𝑐(𝑚)
𝑘

)
+

𝑚∑︁
𝑘=1

𝑃(𝑛 − 1, ®𝑐(𝑚−1) [𝑘]) ®𝑐(𝑚)
𝑘

(4.7)

where ®𝑐(𝑚)
𝑘

is the 𝑘th element of ®𝑐(𝑚)
𝑘

and ®𝑐(𝑚−1) [𝑘] is the subvector of ®𝑐(𝑚) that
excludes the element ®𝑐(𝑚)

𝑘
. The right hand side (RHS) accounts for the two cases of

the 𝑛th photon arriving to the 𝑚 wires: (1) the first term is the probability that the
𝑛th photon goes to one of the 𝑚 wires given that 𝑛 − 1 photons already arrived to
the 𝑚 wires; (2) the second term is the probability the 𝑛th photon arrives to the 𝑘th
wire given that 𝑛− 1 photons already arrived to the other 𝑚 − 1 wires, summed over
all 𝑘 = 1 to 𝑘 = 𝑚 wires.

The solution to the recursion relation yields (see Methods),

𝚷𝑚,𝑛 =

(
𝑁

𝑚

) 𝑚∑︁
𝑖=0

(−1)𝑖
(𝑚
𝑖

)( 𝑁
𝑚−𝑖

) ∑︁
®𝑐 (𝑚−𝑖)

(
𝑚−𝑖∑︁
𝑘=1

®𝑐(𝑚−𝑖)
𝑘

)𝑛
(4.8)

where ®𝑐(𝑚−𝑖) is the vector of probabilities formed by removing a subset of 𝑖 elements
from ®𝑐(𝑚); there are

( 𝑁
𝑚−𝑖

)
such vectors. The second sum in Eq. 4.8 is over all

possible choices of ®𝑐(𝑚−𝑖) . With Eq. 4.8, the number of terms is independent of 𝑛,
providing an exponential improvement for large 𝑛 in the computation of 𝚷𝑚,𝑛 over
the brute force computation using Eq. 4.5.

Without assumptions in the splitting probabilities, Eq. 4.8 is the most general closed-
form solution for calculating the POVM elements of multiplexed threshold detector
arrays. The scaling in 𝑁 and 𝑚 can be further improved leveraging symmetries in
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®𝑐. In the case of uniform splitting probabilities (𝑐 𝑗 = 1/𝑁 for 𝑗 = 1, ..., 𝑁), Eq. 4.8
simplifies to the commonly used expression [9],

𝚷𝑚𝑛 =
𝑚!
𝑁𝑛

(
𝑁

𝑚

)
𝑆(𝑛, 𝑚), 𝑁 ≥ 𝑛 ≥ 𝑚, (4.9)

where 𝑆(𝑛, 𝑚) = 1
𝑚!

∑𝑚
𝑖=0(−1)𝑖

(𝑚
𝑖

)
(𝑚 − 𝑖)𝑛 is the Stirling number of the second

kind, that is, the number of ways of partitioning a set of 𝑛 elements into exactly 𝑚
non-empty subsets.

Detector arrays with arbitrary POVMs: iterative construction
Next, we consider the general case of Eq. 4.3 for an array of detectors with
arbitrary POVMs. For the simplest case of two detectors with splitting probabilities
®𝑐 = (𝑐1, 𝑐2), which corresponds to a 2-port beamsplitter with transmittance 𝜏 where
𝑐1 = |𝜏 |2 and 𝑐2 = 1 − |𝜏 |2, the conditional probability matrix is,

𝚷𝑚𝑛 =

𝑚∑︁
𝑖=0

𝑛∑︁
𝑗=0

(
𝑛

𝑗

)
(𝑐1) 𝑗 (𝑐2)𝑛− 𝑗𝚷(1)

𝑖, 𝑗
𝚷(2)
𝑚−𝑖,𝑛− 𝑗 , (4.10)

where 𝚷(𝑘) and 𝚷(2) are the conditional probability matrices of detectors 1 and 2,
respectively.

The 𝚷 matrix of an array of 𝑁 detectors can be iteratively constructed by pairing
subsets of detectors using Eq. 4.10. The 𝑁 splitting probabilities ®𝑐 = (𝑐1, 𝑐2, ...𝑐𝑛)
can be mapped to a 2𝑁-port beamsplitter comprised of 𝑁 − 1 beamsplitters with
transmittances ®𝜏 = (𝜏1, 𝜏2, ...𝜏𝑁−1) (see Methods). The iterative construction is
illustrated in Fig. 4.1b for an array of four detectors. The heat maps for the
conditional probability matrices 𝚷(𝑘) where 𝑘 = 1, · · · , 4 of the four detectors,
which have ideal photon number resolution up to 2, 3, 4 and 5 photons for detectors
1, 2, 3, and 4, respectively. The heat map for the conditional probability matrix 𝚷

of the four-detector array is shown on the right for uniform splitting probabilities
®𝑐 = (1/4, 1/4, 1/4, 1/4), corresponding to ®𝜏 = (1/2, 1/

√
3, 1/

√
2), demonstrating

the improvement in photon number resolution with spatial multiplexing.

With this iterative method, given predetermined 𝚷 matrices of the detectors in
the array, the number of terms to compute is linear in 𝑛 and 𝑚. By leveraging
the recursive structure of arrays, this approach is significantly more efficient than
brute-force computation with Eq. 4.3 (see Methods).
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Figure 4.2: Array detector configurations for experimental detector tomography.
a) Illustration of PEACOQ detector with the experimental Gaussian spatial mode
of 1550 nm light coupled to 32 parallel nanowires. b) Illustration of splitting
configuration for the spatially multiplexed array of six PNR SNSPDs.

4.3 Experimental detector tomography
We compare the models against experimentally reconstructed POVMs of two de-
tector array configurations: (1) nonuniform spatial distribution across an array
of 32 detectors, each without intrinsic PNR capability, and (2) uniform splitting
distribution across array of six detectors, each with intrinsic PNR capability. For
configuration 1, we use the PEACOQ detector, which is an array of 32 superconduct-
ing nanowires coupled to a single-mode SMF-28 telecommunications wavelength
optical fiber [10]. The gaussian mode of the optical fiber is distributed across the
linear array of nanowires (Fig. 4.2a), which enables pseudo-PNR through multi-
plexing, as well as faster photon counting than is possible with a single nanowire.
For configuration 2, we use an array of six PNR SNSPDs, where input photons
distributed uniformly across a optical fiber beamsplitter network (Fig. 4.2b).

To reconstruct the POVMs of the two detector configurations, we perform experi-
mental detector tomography using the approach in Ref. [13]. For each configuration,
counting statistics are acquired for various mean photon numbers of input coherent
light pulses. The measured counting statistics can be related to the conditional
probability matrix by expressing Eq. 4.1 as,

P = F𝚷, (4.11)

where P is a 𝐷 × 𝑁 matrix containing the measured probabilities for 𝑁 detector
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outcomes over 𝐷 probe states, F is 𝐷 × 𝑀 matrix that contains the photon number
distributions of the 𝐷 input states, each truncated at a maximum Hilbert space
dimension 𝑀 , and 𝚷 is the 𝑀 × 𝑁 conditional probability matrix of the detector,
corresponding to the POVM elements in Eq. 4.2 with the sum truncated at 𝑀 − 1.
Each row of P corresponds to a histogram of the measurement outcome frequency
for each mean photon number. For coherent states, each row of F is the computed
Poisson distribution for each mean photon number. From known P and F, 𝚷 is
determined from matrix inversion with a CVXPY-based python module [13] using
the code from [14].

α

32 ch. readout

1550 nm
RF sync

T
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C
...
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Cryostat
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Power meter

α 2

Optical
Switch

Data acquisition 
and analysis

... ...
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20 MHz rep. rate
Pulsed laser 

0-120 dB

Figure 4.3: Experimental setup for tomography of the PEACOQ detector (pictured).

PEACOQ Detector
The experimental setup for tomography of the PEACOQ detector is shown in Fig.
4.3. The PEACOQ was measured in 0.9 K cryostat, in a modified version of Setup
A as described in Ref. [10]. Figure 4.3 shows a schematic of the experimental
setup. The ceramic ferrule of the optical fiber coupler was in direct contact with
the detector chip. Each of the 32 channels is individually biased and read out.
Three stages of amplifications, two of which were inside the cryostat at 40 K were
used to amplify the pulses corresponding to photon detections. The pulses were
then converted to time stamps using a custom 128-channel time-to-digital converter
(TDC). The source of optical coherent states was a 1550 nm pulsed laser with a
repetition rate of 20 MHz. Pulses from the laser passed through a variable attenuator,
a polarization controller, and a switch before entering the cryostat. The switch sent
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light to either the PEACOQ or a power meter, which was used to measure the mean
photon number. The sync signal of the pulsed laser was converted to a 10 MHz
signal using a phase-locked loop then sent to the TDC for synchronization.

Counting statistics are acquired at twelve attenuation settings corresponding to mean
photon numbers ranging from 𝜇 = 0.4 to 82. For each mean photon number, the
time tags from each detector are accumulated over a duration of ≤ 1s, depending on
the count rate. The time tags are binned to obtain the number of coincident clicks
out the 32 detectors per pulse. The counting probabilities are constructed from the
histogram of the number of the binned time tags, which is normalized to one and
forms a row of the P matrix. Each row of the F matrix calculated from the Poisson
distribution,

𝑝𝑛 (𝜇) =
𝜇𝑛

𝑛
𝑒−𝑛, (4.12)

where 𝑛 is truncated at 𝑛 = 124 to fully capture the statistics for all probe states.
The reconstructed 𝚷 is depicted in Fig. 4.4a up to 𝑚 = 25 and 𝑛 = 50.

We model the 𝚷 matrix using the iterative method, where each detector is assumed
to be click detector with 𝚷(𝑘) described by Eq. 4.4 for 𝑘 = 1 to 32. The splitting
probabilities (𝑐1, ..., 𝑐𝑁 ) are obtained from the normalized intensity distribution
depicted in Fig. 4.2a. To account for the detection efficiency of 𝜂 = 0.78, a
Bernoulli transformation is applied to the total 𝚷 matrix,

𝚷(𝜂)
𝑚𝑛 =

𝑛∑︁
𝑗=0

𝚷𝑚 𝑗

(
𝑛

𝑗

)
𝜂 𝑗 (1 − 𝜂)𝑛− 𝑗 . (4.13)

The theoretical 𝚷 is depicted in Fig. 4.4b. The columns of the reconstructed
and theoretical 𝚷 matrices are plotted in Fig. 4.4c and d, respectively. Despite
discrepancies likely introduced by smoothing artifacts in the matrix inversion, both
the reconstructed and modeled 𝚷 matrices reproduce the experimental counting
probabilities (Fig. 4.4e). The predicted counting probabilities, calculated as P =

F · 𝚷 for the reconstructed and theoretical 𝚷 matrices are plotted in Figs. 4.4f and
g, respectively. The solid curves are calculated from the Poisson distribution for
each mean photon number, corresponding to counting probabilities measured with
an ideal PNRD.
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Figure 4.4: Heatmaps of a) reconstructed and b) theoretical 𝚷 matrices for the
PEACOQ detector. The c) reconstructed and d) theoretical matrix elements𝚷m,n are
plotted as a function of the measurement outcome 𝑚 = 0, · · · , 32 for 𝑛 = 0, · · · , 50.
Each curve corresponds to a column of 𝚷. (e) Measured count probabilities 𝑝𝑚 (𝑚)
as a function of the mean photon number 𝜇, for the first seven measurement outcomes
𝑚 = 0 to 7. Reconstructed (f) and modeled (g) count probabilities as function of 𝜇,
calculated from the corresponding 𝚷 matrices. In (e)-(g), the detection efficiency is
absorbed into the mean photon numbers.
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Figure 4.5: Experimental setup for detector tomography of spatially multiplexed
PNR SNSPDs with uniform splitting distribution.

Spatially multiplexed PNR SNSPDs
The experimental setup for reconstruction of the POVM for an array of six PNR
SNSPDs is shown in Fig. 4.5. We employ a mode-locked laser (Calmar) oper-
ating at a wavelength of 1550 nm with a repetition rate of 10 MHz. The emitted
optical pulses have a temporal width of less than 2 ps and are directed to a high-
extinction-ratio intensity modulator (extinction ratio > 40 dB). Simultaneously, the
RF synchronization output from the laser is routed to a pulse picker module based
on the Anyclock system (Skyworks, Si5344), which generates a 500 kHz RF signal.
This output is passed through a digital delay generator (Stanford Research Systems,
DG648) for precise temporal alignment with the optical pulse train. The delayed
RF signal is amplified and used to drive the intensity modulator, selecting one
out of every twenty optical pulses and reducing the repetition rate to 500 kHz. This
downsampling avoids detector saturation and suppresses time-walk distortions in the
SNSPD outputs at high count rates [15]. The modulator is carefully tuned to maxi-
mize extinction and minimize leakage from unpicked pulses. The modulated optical
pulse train is passed through a 90:10 fiber splitter. The 90% output is used for optical
power monitoring and serves as a clock reference for the time tagger. The remaining
10% is attenuated using variable optical attenuators (Yokogawa) and distributed
to six superconducting nanowire single-photon detectors (SNSPDs) via a cascade
of fiber beam splitters. Polarization controllers are placed before each detector to
ensure optimal polarization alignment and coupling efficiency. The detectors, based
on niobium nitride (NbN) nanowires, are housed in a Photonspot cryostat operating
below 0.8 K. Detection signals are recorded using a Swabian Instruments Time Tag-
ger X operated in standard mode for high-resolution time-correlated single-photon
counting.
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Figure 4.6: Histogram of time-tags accumulated over 10s for a mean photon number
of ≈ 7 relative to the clock for the detector in channel 6. The windows for labeling
time-tags with photon number are shown.

To reconstruct the POVMs of the individual detectors and the multiplexed detector
array, time-tags are accumulated for a range of mean photon numbers of the input
coherent light pulses. When multiple photons are incident on a single nanowire,
multiple resistive hotspots are generated, which vary the amplitude and slew rate of
the resulting RF output pulse. With a constant-threshold time-tagger, variations in
slew rate translate into shifts in the registered time-tags [16]. This effect produces
temporally distinguishable time-tag distributions for different numbers of incident
photons. The histogram of time-tags accumulated over ten seconds is shown in Fig.
4.6 for one of the detectors, which can resolve up to four photons. The time-tags
are assigned a photon number depending on the arrival time. To extract the range
of arrival times associated with each photon number outcome, a Gaussian fit is
performed on the first three time tag distributions, corresponding to 𝑚 = 1, 2 and
3 photons. The arrival time windows for 𝑚 = 1, 2 and 3 are extracted from ±3𝜎
from the mean of each distribution, depicted as the shaded regions in Fig. 4.6.
Arrival times less than the −3𝜎 of the 𝑚 = 3 distribution are assigned 𝑚 = 4.
This procedure is performed for each detector in the array, with the windows for
each detector held fixed across all measurements. For the multiplexed array of
six detectors, each coincident event is assigned a total photon number equal to the
sum of the individual photon numbers assigned to the time-tags registered by each
detector.

The reconstructed𝚷(𝑘) for each detector (𝑘 = 1, · · · , 6) are plotted in Fig. 4.7a-f. To
isolate the PNR capability from the effects of optical loss, the detection efficiency
is absorbed into the mean photon number for each detector. The reconstructed
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and modeled 𝚷 for the detector array are plotted in Fig. 4.7g and h, respectively.
For the model, we construct 𝚷 with the iterative procedure of Sec. 4.2 using the
reconstructed 𝚷(𝑘) of six detectors, assuming uniform splitting probabilities. The
matrix elements for the reconstructed and modeled𝚷 are compared for 𝑛 = 0, · · · , 20
in Figs. 4.7i-j. The counting probabilities from the reconstructed (Fig. 4.7l) and
modeled (Fig. 4.7m) 𝚷 matrices reproduce the measured counting probabilities
(Fig. 4.7k) for all mean photon numbers. The solid curves are calculated from
Poisson statistics, corresponding to that measured with an ideal PNRD.

4.4 Discussion
We have developed a generalized theoretical framework for modeling POVMs of
array detectors. We presented a model for 𝚷 (Eq. 4.3) that accommodates detectors
with arbitrary POVM elements and arbitrary splitting probabilities across the array.
We analyzed the computational complexity of computing 𝚷𝑚𝑛 in various cases.
For the case of click detectors, we found a closed-form solution for 𝚷𝑚𝑛 that
provides an exponential speedup over the multinomial representation. We then
find an efficient construction of 𝚷 for a given set of detector POVMs and splitting
probabilities. We take an iterative approach where individual POVMs are fused in
pairs, taking advantage of the recursive structure of arrays. This allows us to model
the POVMs of (1) the PEACOQ detector and (2) a spatially multiplexed array of
PNR SNSPDs, corresponding to the cases of (1) 32 click detectors with Gaussian
splitting probabilities and (2) six PNRDs with distinct POVMs and uniform splitting
probabilities, respectively. We validate the models by perform experimental detector
tomography of the PEACOQ detector and the multiplexed array of PNR SNSPDs,
which demonstrate near ideal PNRD response for mean photon numbers up to 𝜇 ∼ 10
(see Methods). This work supports the development of PNRD arrays towards the
goal of practical and near-ideal photon number discrimination for diverse photon
counting applications.

4.5 Methods
Derivation of closed-form solution
Here we generalize the derivation for the 2N-port beamsplitter model of Paul et
al. [9] to find a closed-form expression for 𝚷𝑚,𝑛 for non-uniform distribution of
photons across the output ports, with probabilities ®𝑐 = (𝑐1, 𝑐2, ..., 𝑐𝑁 ). The 2𝑁-port
beamsplitter has corresponding unitary 𝑈𝑁 , which can be decomposed into 2 × 2
beamsplitters [17] for a given set of splitting probabilities. The 2𝑁-port beamsplitter
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Figure 4.7: Heatmaps of reconstructed and theoretical 𝚷 matrices for the spatially
multiplexed PNR SNSPDs configuration. (a)-(f) Heatmaps of reconstructed 𝚷

matrices for the Ch 1-6 detectors. Heatmaps of (g) reconstructed and (h) model
𝚷 matrices for the multiplexed array of Ch 1-6 detectors. Matrix elements for (i)
reconstructed and (j) model𝚷matrices for the multiplexed array of Ch 1-6 detectors,
where the curves (𝑛 = 0 · · · 20) correspond to each column of𝚷. (k) Measured count
probabilities 𝑝𝑚 (𝑚) as a function of the mean photon number 𝜇, for the first seven
measurement outcomes 𝑚 = 0 to 7. Reconstructed (l) and modeled (m) count
probabilities as function of 𝜇, calculated from the corresponding 𝚷 matrices.
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has the effect of sending a single photon at the first port into a superposition over
the 𝑁 output ports (see Fig. 4.1a),

𝑎̂
†
1
𝑈𝑁−−→

𝑁∑︁
𝑖=1

𝜆𝑖 𝑏̂
†
𝑖
, (4.14)

where 𝜆𝑖 is the amplitude for port 𝑖, |𝜆𝑖 |2 = 𝑐𝑖 is the probability that the photon is
measured at port 𝑖, and

∑𝑁
𝑖=1 𝑐𝑖 = 1. Consider 𝑛 photons incident to the first input

port of the 2𝑁-port beamsplitter,

|𝑛⟩1 |0⟩2 · · · |0⟩𝑁 =
1

√
𝑛!
(𝑎̂†1)

𝑛 |0⟩ 𝑈𝑁−−→ 1
√
𝑛!

(
𝑁∑︁
𝑖=1

𝜆𝑖 𝑏̂
†
𝑖

)𝑛
|0⟩ . (4.15)

Applying the multinomial theorem, the RHS can be expanded as,(
𝑁∑︁
𝑖=1

𝜆𝑖 𝑏̂
†
𝑖

)𝑛
|0⟩ =

∑︁
∑
𝑗𝑖=𝑛

√︄
𝑛!

𝑗1! · · · 𝑗𝑁 !
(𝜆1) 𝑗1 · · · (𝜆𝑁 ) 𝑗𝑁 | 𝑗1⟩ · · · | 𝑗𝑁⟩ , (4.16)

where the sum is over all possible ways n photons can be distributed over the 𝑁
wires.

Therefore, the probability of distributing 𝑛 photons into 𝑗1 photons at wire 1, 𝑗2
photons at wire 2, ..., 𝑗𝑁 photons at wire 𝑁 is,

𝑃𝑛 ( 𝑗1, · · · , 𝑗𝑁 ) =
𝑛!

𝑗1! . . . 𝑗𝑁 !
𝑐
𝑗1
1 . . . 𝑐

𝑗𝑁
𝑁
, (4.17)

where the probability of “on" outcomes on 𝑚 wires is the sum of 𝑃𝑛 ( 𝑗1, · · · , 𝑗𝑁 )
over 𝑚 nonzero 𝑗’s is,

𝚷𝑚,𝑛 =

(𝑚)∑︁
∑
𝑗𝑖=𝑛

𝑃𝑛 ( 𝑗1, · · · , 𝑗𝑁 ) =
(𝑚)∑︁

∑
𝑗𝑖=𝑛

𝑛!
𝑗1! 𝑗2! . . . 𝑗𝑁 !

𝑐
𝑗1
1 . . . 𝑐

𝑗𝑁
𝑁
. (4.18)

For the recursion relation in Eq. 4.7, the solution can be expressed in the more
familiar form,

𝑃(𝑛, p(𝑚)) =
𝑚∑︁
𝑖=0

(−1)𝑖
∑︁

p(𝑚,𝑖)

(∑︁
𝑘

𝑝
(𝑚)
𝑘

−
∑︁
𝑘

𝑝
(𝑚,𝑖)
𝑘

)𝑛
, (4.19)

where p(𝑚,𝑖) is the vector formed by taking a subset of 𝑖 elements in p(𝑚); there are(𝑚
𝑖

)
such vectors. The second sum in Eq. 4.19 is over all possible choices of p(𝑚,𝑖) .
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In this form, it is clear that for 𝚷𝑚,𝑛 =
∑

®𝑐 (𝑚) 𝑃(𝑛, ®𝑐(𝑚)) for the case of uniform
splitting probabilities with ®𝑐(𝑚−𝑖)

𝑘
= 1/𝑁 , Eq. 4.19 simplifies to expression from

Ref. [9],

𝚷𝑚𝑛 =
1
𝑁𝑛

(
𝑁

𝑚

) 𝑚∑︁
𝑖=0

(−1)𝑖
(
𝑚

𝑖

)
(𝑚 − 𝑖)𝑛. (4.20)

Plugging Eq. 4.19 into Eq. 4.6,

𝚷𝑚𝑛 =
∑︁
p(𝑚)

𝑃(𝑛, p(𝑚)) =
∑︁
p(𝑚)

𝑚∑︁
𝑖=0

(−1)𝑖
∑︁

p(𝑚,𝑖)

(∑︁
𝑘

𝑝
(𝑚)
𝑘

−
∑︁
𝑘

𝑝
(𝑚,𝑖)
𝑘

)𝑛
(4.21)

=

𝑚∑︁
𝑖=0

(−1)𝑖
∑︁
p(𝑚)

∑︁
p(𝑚,𝑚−𝑖)

(∑︁
𝑘

𝑝
(𝑚,𝑚−𝑖)
𝑘

)𝑛
. (4.22)

We can further simplify the solution. Two of the sums can be combined due to
redundancy,∑︁

p(𝑚)

∑︁
p(𝑚,𝑚−𝑖)

(∑︁
𝑘

𝑝
(𝑚,𝑚−𝑖)
𝑘

)𝑛
=

(𝑁
𝑚

) (𝑚
𝑖

)( 𝑁
𝑚−𝑖

) ∑︁
p(𝑚−𝑖)

(∑︁
𝑘

𝑝
(𝑚−𝑖)
𝑘

)𝑛
. (4.23)

yielding the expression in Eq. 4.8,

𝚷𝑚𝑛 =

(
𝑁

𝑚

) 𝑚∑︁
𝑖=0

(−1)𝑖
(𝑚
𝑖

)( 𝑁
𝑚−𝑖

) ∑︁
p(𝑚−𝑖)

(∑︁
𝑘

𝑝
(𝑚−𝑖)
𝑘

)𝑛
.

Iterative construction of the POVM elements
For an array of 𝑁 detectors, each with a set of POVM elements, which are described
the matrix 𝚷( 𝑗) for the 𝑗 th detector, the splitting probabilities (𝑐1, · · · , 𝑐𝑁 ) can be
mapped to transmittances of a 2𝑁-port beamsplitter (see Fig. 4.8) as,

𝑎̂in
𝑈𝑁−−→ 𝜏1𝑎̂1 + 𝑟1𝜏2𝑎̂2 + ... + (𝑟1 · · · 𝑟𝑁−1𝜏𝑁−1)𝑎̂𝑁−1 + (𝑟1 · · · 𝑟𝑁−1)𝑎̂𝑁 ,

(4.24)

where |𝑟𝑛 |2 = 1 − |𝜏𝑛 |2 for 𝑛 ∈ [1, 𝑁 − 1]. The splitting probabilities are related to
the transmittances as,

𝑐𝑛 =


|𝑟1 |2 · · · |𝑟𝑁−1 |2, for 𝑛 = 1,

|𝜏𝑛 |2( |𝑟1 |2 · · · |𝑟𝑛−1 |2), for 1 < 𝑛 < 𝑁

|𝜏1 |2, for 𝑛 = 𝑁,

, (4.25)
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Figure 4.8: Setup for the iterative construction of the POVM elements for an array
of 𝑁 detectors.

satisfying
∑𝑁
𝑗=1 𝑐 𝑗 = 1. Therefore, given a set of a splitting probabilities ®𝑐 =

(𝑐1, ..., 𝑐𝑁 ), the transmittances (neglecting phase) can be computed recursively as,

|𝜏1 |2 = 𝑐𝑁 , |𝜏𝑛 |2 =
𝑐𝑁−(𝑛−1)

(1 − |𝜏1 |2) · · · (1 − |𝜏𝑛−1 |2)
for 1 < 𝑛 < 𝑁. (4.26)

After computing the transmittances, the conditional probability matrix elements can
be computed recursively using Eq. 4.10 as,

𝚷(1,2)
𝑚,𝑛 =

𝑚∑︁
𝑖=0

𝑛∑︁
𝑗=0

(
𝑛

𝑗

)
( |𝜏𝑁 |2) 𝑗 (1 − |𝜏𝑁 |2)𝑛− 𝑗𝚷(1)

𝑖, 𝑗
𝚷(2)
𝑚−𝑖,𝑛− 𝑗 , (4.27)

𝚷(1,2,3)
𝑚,𝑛 =

𝑚∑︁
𝑖=0

𝑛∑︁
𝑗=0

(
𝑛

𝑗

)
( |𝜏𝑁−1 |2) 𝑗 (1 − |𝜏𝑁−1 |2)𝑛− 𝑗𝚷(1,2)

𝑖, 𝑗
𝚷(3)
𝑚−𝑖,𝑛− 𝑗 , (4.28)

... (4.29)

𝚷(1,··· ,𝑁)
𝑚,𝑛 =

𝑚∑︁
𝑖=0

𝑛∑︁
𝑗=0

(
𝑛

𝑗

)
( |𝜏1 |2) 𝑗 (1 − |𝜏1 |2)𝑛− 𝑗𝚷(1,··· ,𝑁−1)

𝑖, 𝑗
𝚷(𝑁)
𝑚−𝑖,𝑛− 𝑗 , (4.30)

where 𝚷(1,··· ,𝑘) is the conditional probability matrix for an array comprised of
detector 1 through 𝑘 , where 𝑘 ∈ 1, · · · , 𝑁 , and 𝚷 = 𝚷(1,··· ,𝑁) is the conditional
probability matrix of the entire array of 𝑁 detectors.
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Figure 4.9: Computational complexity as a function of conditional probability
matrix (𝚷) size. a) Number of terms to calculate and b) estimated number of
FLOP counts for the general model (Eq. 4.3), the multinomial solution for the click
detection model (Eq. 4.5), the closed-form solution for the click detection model
(Eq. 4.8), and the generalized iterative construction for computing a conditional
probability matrix 𝚷 of dimensions 𝑀 × 𝑀 .

Computational complexity
The number of terms in each expression directly affects the computational com-
plexity of evaluating 𝚷, since each term corresponds to a unique combination of
photon distributions and detector responses that must be explicitly computed. In
the computation of 𝚷𝑚𝑛, each term incurs a number of floating-point operations
(FLOPs), such as exponentiations, multiplications, and factorial evaluations, where
the total FLOP count is a proxy for runtime. The total FLOP count is a widely
used metric for estimating algorithmic efficiency, particularly in numerical linear
algebra and scientific computing, where it serves as a hardware-agnostic measure
of computational cost [18]. The number of terms and estimated FLOP count for
Eq. 4.3, Eq. 4.5, Eq. 4.8, and the iterative method are summarized in Table 4.1.
For each equation, the number of terms and estimated FLOP counts for computing
a 𝚷 matrix of size 𝑀 × 𝑀 are plotted in Fig. 4.9 as a function of 𝑀 for an array
size of 𝑁 = 32. The general model Eq. 4.3 and multinomial expression Eq. 4.5
quickly become intractable even for models values of 𝑀 ≥ 10. The closed-form
solution in Eq. 4.8 provides a improvement for the click detection case with roughly
polynomial scaling in 𝑀 , but still becomes intractable for modest values of 𝑀 . The
iterative method is the most efficient, with scaling O(𝑀2).
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Method Term count FLOPs per term Total FLOPs

General model (Eq. 4.3)
(𝑚+𝑁−1

𝑁−1
) (𝑛+𝑁−1

𝑁−1
)

O(𝑁) O
(
𝑁

(𝑚+𝑁−1
𝑁−1

) (𝑛+𝑁−1
𝑁−1

) )
Multinomial solution (Eq. 4.5)

(𝑁
𝑚

)
𝑆(𝑛, 𝑚) 𝑚! O(𝑚) O

(
𝑚

(𝑁
𝑚

)
𝑆(𝑛, 𝑚)𝑚!

)
Closed-form solution (Eq. 4.8)

∑𝑚
𝑖=0

(𝑚
𝑖

) ( 𝑁
𝑚−𝑖

)
O(𝑚) O

(
𝑚

∑𝑚
𝑖=0

(𝑚
𝑖

) ( 𝑁
𝑚−𝑖

) )
Iterative construction 𝑁 (𝑚+1) (𝑛+1) O(1) O(𝑁 (𝑚+1) (𝑛+1))

Table 4.1: Computational complexity of computing the matrix elements 𝚷𝑚𝑛 for
the different approaches and configurations. FLOPs per term estimate the number
of operations per term including binomial coefficients and multiplications.

Count fidelity
We evaluate the performance of the detector arrays for the given probe states with
the count fidelity,

𝐹 =

(∑︁
𝑛

√
𝑝𝑛𝑞𝑛

)2

, (4.31)

which quantifies how near the measured count distribution ({𝑝𝑛}) match the true
photon number distribution ({𝑞𝑛}) of the probe states. The fidelities for the PEACOQ
detector and the PNR SNSPD array detector are plotted in Fig. 4.10 as a function
of mean photon number. Both detectors exhibit ≥ 90% count fidelities for coherent
states with up to 𝜇 ∼ 10.

(a) (b)

Figure 4.10: Count fidelities for a) the PEACOQ detector and b) the array of six
PNR SNSPDs.
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