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Chapter 9

ANALYTICAL MODELING OF REAL-WORLD PHOTONIC
QUANTUM TELEPORTATION

This chapter includes the work in preparation for publication:

[1] Neil Sinclair, Samantha I. Davis, Nikolai Lauk, Chang Li, Damian
R. Musk, Kelsie Taylor, Raju Valivarthi, and Maria Spiropulu. “An-
alytical Modeling of Real-World Photonic Quantum Teleportation.” In:
arXiv preprint arXiv:2503.18306. Submitted. (2025).

9.1 Introduction

Quantum teleportation [1] is a key process for distributing qubits in a quantum
network [2, 3, 4]. Optical photons are used for long-distance networking due to
their high velocities, carrier frequencies, and ease of encoding, manipulation, trans-
mission, and detection [J5, 6, 7, 8. However, achieving ideal single and entangled
photons for quantum networks and other quantum information tasks remains chal-
lenging [9, |10]. Photonic quantum states are often approximated using states that
are easier to generate, such as those produced with room-temperature off-the-shelf
equipment [11,/12]. For example, Gaussian states like weak coherent and two-mode
squeezed states can substitute single and biphoton states but introduce additional
photons that cause errors in quantum networks [13]. Additional errors arise from
the lack of control over all degrees of freedom of a photon and device imperfections.
Photon loss further hinders network deployment over distances greater than tens of
kilometers [[14]. Therefore, it is crucial to account for sources of loss and errors
to accurately model and predict the performance of quantum networking experi-
ments, particularly quantum teleportation. Predicting experimental performance
under various operating conditions, both in the lab and in real-world applications,

is also important.

We use the phase space formulation of quantum optics to analytically model post-
selected discrete-variable quantum teleportation experiments with realistic imper-
fections such as loss, photon distinguishability, and imperfect sources of single and
entangled photons. Our model is based on the time-bin qubit quantum teleportation
experiment of Chapter [§] providing expressions for key figures-of-merit includ-

ing Hong-Ou-Mandel (HOM) interference visibilities and teleportation fidelities as
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functions of these imperfections. This experiment’s use of Gaussian states allows
us to model transformations and imperfections with Gaussian operations [15} [16],
differing from the conventional “photon-by-photon” approach that becomes cum-
bersome with higher number states and experimental imperfections. We use the
characteristic function formalism from the phase space representation [15]] to derive
closed analytical expressions for these figures-of-merit. Our models show excellent
agreement with the findings in Chapter [§] Finally, we project the performance of
future quantum teleportation experiments with varying degrees of imperfections and

discuss our findings, their impact on future work, and the limitations of our model.

9.2 Characteristic function formalism
Phase space representation and characteristic function
Any quantum state of an n-mode bosonic system with the corresponding creation

and annihilation operators dz and d; that obey commutator relations

|av.af| = 5w 9.1)

can be described using the quadrature operators [ 12

n At A R I (a0 4
X =— (a +a1) and p;=— (a - al) , 9.2)
V2 ! AR

which satisfy the canonical commutator relations
(%1, Pl = id- (9.3)

Using a Weyl operator 147(5) = exp(—ig?- I%) with I% = (%1, P1»...,Xn, Pn) being a
vector of quadrature operators of individual modes, we can construct an invertible
mapping between functions over phase space and operators over the Hilbert space
of the bosonic systems. In particular we can assign a characteristic function to any

quantum state that is described by a density matrix p as follows
x@) =Te{pWd)}. ©4)

Gaussian states and unitaries

Photon number or Fock states, such as single photons or entangled two-photon
states, are essential for many quantum networking schemes, including those relying
on quantum teleportation. However, photon number states are highly non-classical
and are difficult to produce on demand and with specific properties, such as near-

unity indistinguishability. In many experiments, weak coherent states approximate
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single photons, and two-mode squeezed states, produced at the output of a bulk
nonlinear optical crystal, substitute photon pairs [9]]. Two-mode squeezed states are
also used for heralded single photon sources [17]. Besides their straightforward
preparation, coherent and two-mode squeezed states have the convenient property
of being Gaussian, meaning their characteristic function is given by a multivariate

Gaussian function
. [
x(&) = eXp(—Zé?Tyf - 167’6), 9.5)

where vy is the covariance matrix and d is the displacement vector. Examples of
Gaussian states include single-mode vacuum |0) with y = I and d = 0, coherent
states |a@) with y = I and d = V2(Re(e), Im(a))7, as well as thermal states p =
o (,,flﬁ In) (n| withy = (1 +2u)I and d = 0.

Gaussian representation of relevant operations in photonic quantum telepor-
tation

A unitary operation on the Hilbert space that transforms Gaussian states into Gaus-
sian states is called Gaussian unitary. The action of a Gaussian unitary on a Gaus-
sian state results in simply changing the covariance matrix and displacement vectors
y = v =8SyST and d — d’ = Sd, where § the symplectic matrix corresponding
to a Gaussian unitary [12, 15]. Note also that R = SI%. Below we consider some
examples of Gaussian operations that are relevant for modeling photonic quantum

teleportation.

Phase shifter operation

The first example is the addition of a constant phase ¢ to the field state. Its action
in operator space is described by the following transformation: @ — e'?d, and the

corresponding symplectic matrix is given by

. (cos(qS) - sin(¢)) ' ©9.6)

sin(¢)  cos(¢)

Beam splitter operation

Another very frequently used element in experiments are two-port beam splitters.

For a beam splitter with transmittance ¢ and reflectance r the transformation between
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the input (4, 13) modes and output (&, ci) modes is described by

é_tird ©.7)
dl \ir t]\b)’ '

and the corresponding symplectic transformation between the input and the output

modes is
t 0 0 —r
0 r O
5= 9.8)
0O —r ¢t O
r 0 0 1t

Channel loss

The overall channel transmission 7, taking into account propagation loss, ineffi-
cient couplings and detectors, can be modeled by a mixing the mode of interest
with a vacuum mode on a virtual beam splitter of transmittance /7 and tracing
out the transmitted part of this vacuum mode. This results [15] in the following

transformation of the covariance matrix and the displacement vector

y=ny+(1 -7l 9.9)
d=nd. (9.10)
Measurements

Usually, the process of detection or photon counting is not a Gaussian process.
However, in the case of so-called threshold or bucket-type photon detection, we
can represent the measurement process as a Gaussian one. These detectors indicate
either the absence of photons or the presence of at least one photon. Considering
projection onto the vacuum state, we can define positive operator-valued measures

for such detectors as a set of two operators
[Iog = [OX0| and TIIy, =1—|0XO]|. 9.11)

Since vacuum is a Gaussian state, the projection on vacuum is a Gaussian operation,
and we obtain the probability of a detection event conditioned on a given photonic

state:
Pon = Tr{pllen} = 1 = Tr{ |0XO0]}

=1- / déxp (&) xy (-6). 9.12)

(2m)N
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where N is the number of modes and )(ﬁon(—é?) is characteristic function of the
projection operator defined as in Eq. [9.4] Often we consider coincident detection
events of a multi-mode state p. The coincidence probability of m detectors recording

an event is then given by

Pcoin = Tr{'[jﬁ(()rll) ® 1,\I(()rzl) X ﬁ(():’:)
@I g ... MY, (9.13)

which can be easily evaluated for Gaussian states using the following formula for

multi-dimensional Gaussian integration

L IFTCRidlE (2m)" Lo g2
— _Z . 14
/dxe 2 det (O) exp 2d Cd (9.14)

9.3 Analytic expressions of figures-of-merit

We now apply the phase space formalism introduced in the previous section to model
quantum teleportation of a photonic time-bin qubit. We consider a post-selective
projective Bell-state measurement (BSM) of the state [¥~) = (|el)—|le))/V2, where
the late state |/) arrives after the early state |e), using a 50:50 beam splitter r = ¢ =
1/v2 [18,[19] (see Chapter|s). The time-bin qubit is in the state € |¢) + VI — €2 |1},
with 0 < € < 1. The entangled qubit used to facilitate teleportation takes the
form (|ee) + |11))/V2. Our model incorporates the photon fields used in Chapter
in which the qubit to be teleported is encoded into a weak coherent state |a) =
elal?/2 Zf;’zo(a”/\/ﬁ) |n), with mean photon number ||> when |a|?> < 1. The
two-mode squeezed vacuum state [TMSV) = m Yo V" [n) |n), neglecting
loss, is used in Chapter (8| to encode the entangled state, where the kets denote the
signal and the idler modes [20]. This state approximates a photon pair for y < 1
conditioned on measurement of a two-fold coincidence such that the |00) term is
eliminated. The mean number of pairs per signal-idler mode pair is g. The idler
mode of the two-mode squeezed vacuum is directed to the beam splitter while the

signal is encoded with the teleported state at the end of the teleportation protocol.

A high-fidelity BSM, which is necessary for faithful quantum teleportation, requires
photons with indistinguishable degrees of freedom [18,|19]]. One way to characterize
the distinguishability of the photons prior to teleportation is to perform HOM
interference between the photons used to encode the state to be teleported and the
idler mode of the entangled state [21]. For HOM interference, we consider the

photons to be encoded into the |e¢) bin only, neglecting all events in the |/) bin.
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HOM interference visibility
The HOM interference visibility is defined as

Pmax - Pmin

Wi = —, (9.15)
HOM P

where Ppnax (Pmin) correspond to the probability of coincidence events between
threshold detectors placed after each output of the beam splitter (cf. Fig. [0.1)
when the photons are rendered maximally distinguishable (indistinguishable), e.g.
by varying their relative polarization or time of arrival [17,22]]. Probabilities can be

converted to detection rates by multiplying them by the clock rate of the experiment.

In practice there are some additional distinguishing properties of the photons that
cannot be controlled or accessed in an experiment. We model this additional
distinguishability as a finite mode mismatch ¢ between the two photon fields [15]
(see Chapter [8). This mode mismatch is captured by a virtual beam splitter with
transmittance ¢ which splits each incoming photon field into indistinguishable and
distinguishable parts. Only the indistinguishable parts of both photons contribute
to the interference at the actual beam splitter, whereas the distinguishable parts are
combined with vacuum inputs and degrade the HOM interference visibility. The
indistinguishability parameter { = 1 corresponds to the case in which both incoming
photons are completely indistinguishable, whereas ¢ = 0 corresponds to the case in

which both photons are completely distinguishable.

The magnitude of VoM depends not only on the distinguishability of the photons but
also the photon-number statistics of the fields participating in the interference [23]].
It also depends on dark counts of the detector, which we neglect for our discussion,
see Sec. @ Nevertheless, if the statistics are known from the experimental
apparatus, then Vygowm is an indicator of distinguishability [24]. A schematic for a

HOM interference experiment is shown in Fig. [0.1]

There are two experimentally relevant cases to consider: the signal mode is ignored
referred to as two-fold HOM interference, and when the signal mode is detected to
herald the presence of ideally one idler photon, referred to as three-fold HOM inter-
ference. For both cases we derive the two- and three-fold coincidence probabilities
respectively using the characteristic function formalism assuming a weak coherent
state mixing with the idler mode of two-mode squeezed vacuum as depicted in Fig.
with details found in Appendix Measurement of two-fold HOM interfer-
ence is experimentally convenient, as it allows quantification of distinguishability

in much less time than three-fold HOM interference.
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ITMSV)

Figure 9.1: Model schematic for HOM interference within the context of a quantum
teleportation experiment. The qubit to be teleported is encoded into weak coherent
state |a) whereas the entangled state is encoded into the signal and idler modes
of a two-mode squeezed vacuum state [TMSV). Transmission efficiencies of the
signal and idler modes are denoted by 7, and 7;, respectively. HOM interference is
measured by correlating detection events at D and D, after a 50:50 beamsplitter
(gray line), optionally conditioned upon detection of the signal mode at D3. Distin-
guishability is modeled using virtual beamsplitters of transmittance { < 1. The 4,
b and ¢ operators refer to modes that originate from the virtual beam splitters and
are used in the derivation shown in Appendix [E.T| Blue dashed outline is discussed
in the caption of Fig. @

The two- and three-fold coincidence probabilities are

exp(—|al?)
1 +nip

Jal? [1+(1=2%) niu/2]
e 2 1+n;u/2

L+niu/2

porsoia(lal®, u, &omi) =1+

, (9.16)
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and

_lalP201+(1=2%) niuf2])
s e 1+ 1/2

-2
1 +nsu 1+nu/2
eloF (1 = n)n,u
+
(I +m:0) (1 +1;(1 = mg) pt + 15 0)

a2 201+(1-2%) (1= ns) i1/ 2+ 15 1]
e 1+(1=ns)njp/2+ns pu
+2 , (9.17)
L+ (1 =no)nip/2 +nsp

respectively, where 1, and 7; are the transmission efficiencies of the signal and idler

P3—fold(|a'|2, M, 49 Ns, 771) =

mode, respectively. The mean photon numbers and efficiencies can be independently

determined experimentally, using the methods described in Chapter [§]

We now calculate the HOM interference visibility, in which = 0 ({ < 1) corre-

sponds to Pmax (Pmin). The corresponding two-fold and three-fold HOM visibilities

are
2fola(|s i, £ m0)
Vanom(¢) = 1 - 220 2'u Sl
p2-f01d(|a/| ,/1,0,771')
2 2 (2+nip(1+4*
) 4(e|a| /z—exp(|a| Gyl >>)) (1+n:u1) o
2+ mip — 4l P2(1+ i) + eloP (14 ) (2 +mip)”
and
sford (@], 11, £, 155 11)
Vsiow(¢) = 1 — 20l 1 &y, T 9.19)

p3-fold(|l?, 1, 0,15, 1i)
respectively. We did not expand V3.yom here due to its length.

As shown in Appendix [E.2] the theoretical maximum visibilities for the two-fold and
three-fold HOM visibilities are V2 — 1 ~ 0.414 and unity, respectively. The primary
difference in maximum visibilities stems from the exclusion of |00) in [TMSV) by
detection of the signal mode, that is, a single photon is heralded in the idler mode for
u < 1. The two-fold visibility is limited by the combination of vacuum and multi-
photon events at the inputs to the beamsplitter. Even though the twofold visibility
measurement is simpler and faster, the interference fringe can be more difficult to
resolve when including photon counting statistical uncertainties and potential noise.
Note that the maximum two-fold HOM visibility from interference of two coherent
(thermal) fields is 1/2 (1/3).

Quantum teleportation fidelity
We extend the HOM interference model to that for quantum teleportation by includ-
ing the |I) time-bin in the analysis. As depicted in Fig. we model the |e) and
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Figure 9.2: Model schematic of quantum teleportation. Each time bin, |e) and
|[), is treated as a distinct spatial mode. As in HOM interference, the qubit to be
teleported is encoded into |@) whereas the entangled state is encoded into [TMSV),
with relevant transmission efficiencies 7 and n;. Distinguishability of photons at
the BSM is modeled using virtual beamsplitters. The indistinguishability parameter
{ outlined by the blue dashed lines corresponds to the elements enclosed by the blue
dashed lines in Fig. Projection on |¥™) is indicated by coincidence detection
events at D and D4 or D, and D3. Projection of the teleported qubit onto the X-
basis is modeled by a phase shift ¢, coherent mixing by a 50:50 beamsplitter (grey
line), then photon detection at Ds and Dg. Projection onto the Z-basis is modeled
by removing the beamsplitter for the signal modes, that is, setting its transmittance

to t = 1, and direct detection of the photons (not shown).

|[) bins as independent spatial modes, with interference for the BSM taking place at

the beamsplitters ascribed for the |e¢) modes and that for the |/) modes.

Distinguishability is again modeled using virtual beamsplitters like the HOM inter-
ference model. Projection on |¥™) is indicated by a specific coincidence detection
event between a photon in the |e) and |/) bins. Specifically this corresponds to a
photon being detected in |e) (|/)) in one detector and |/) (|e)) in the other [25].
Measurement of the teleported qubit in the Z-basis, that is, the |e) or |[) mode,
is modeled by detection of the photon in a distinct spatial mode. Measurement in
the X-basis, that is, in the state (|e) + ¢ |1))/V2, is modeled by combining each

spatial signal mode on a 50:50 beamsplitter after introducing a relative phase ¢, then
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detecting each photon in a distinct spatial mode. In other words, the measurement

basis is rotated, as facilitated by phase-sensitive interference.

Using the characteristic function formalism, as shown in Appendix [E.T| we derive

the teleportation fidelity for the X-basis states using

B Pp,p,ns(9)
F = ,
Pp,p,ns(®) + Pp,p,ps ()

where Pp,p,ps (Pp,p,Ds) 1s the coincidence detection probability for a |'¥~) projec-

(9.20)

tion and measurement of the teleported qubit in the intended (orthogonal) state [26].
The argument ¢ indicates that the measurement basis is oriented to the intended
state of the teleported qubit such that Pp, p,p, (Pp,p,ps) is maximized (minimized).
Note that the detection event corresponding to Pp,p, also corresponds to a projec-
tion onto |¥~). These events are treated like those corresponding to Pp,p, due to
symmetry, consistent with properties of the beamsplitters and detectors used for the
BSM in Chapter 3]

Considering teleportation of Z-basis states, the corresponding teleportation fidelity
takes the same form as Eq. [9.20] but with different and ¢-independent underlying
expressions for Pp, p,p,, and similarly Pp, p,ps, because the beamsplitter used for
measurement of X-basis states is removed. See Appendix [E.1] for details. The

maximum theoretical X- and Z-basis teleportation fidelities are one.

9.4 Fit of model with experimental results of Chapter [§]

Using the expressions for two- and three-fold HOM interference visibilities and tele-
portation fidelity, we fit our model to data from Chapter[§|to reveal the imperfections
in the experiment and validate our model. We consider only teleportation of X-basis
states in this section since they sufficiently capture the behavior of Z-basis states
and they are sensitive to £.

First, we plot the experimentally measured two- and three-fold HOM interference
visibilities as well as teleportation fidelity for varied mean photon number |a|? of the
weak coherent state used to encode the qubit. This is shown in Fig. [9.3] We choose
to probe our figures-of-merit against |@|> because of the experimental ease to vary
this parameter and, as discussed in Chapter |8} the use of |«|*> for preparing decoy
states. We consider |a|> < 1 since this is most relevant regime in teleportation
experiments. The maximum measured two- and three-fold HOM visibilities and
teleportation fidelity are 0.28 +0.01, 0.67 £ 0.03, and 0.86 + 0.04, respectively, due

to distinguishability and undesired multi-photon events from |@) and in the idler
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Figure 9.3: Two- and three-fold HOM interference visibilities (V;.fo14, green and
V3.fo1d, blue) and quantum teleportation fidelity (F, red) of X-basis states for varied
qubit mean photon number |e|?>. The model (lines) is fit to, and agrees with, the
experimental data of Chapter [§] (points). The mean photon number is shown on a

log scale to provide a simple representation of the model.

mode [27]. Note that the three-fold HOM interference visibility as predicted by the
teleportation fidelity 2F — 1 ~ 72% is consistent [28]].

The teleportation fidelity and HOM visibilities decrease to 0.5 and 0, respectively,
for very large or small values of |a|?> = 0. As |e|? increases from zero, there are
more events in which a single photon from |a@) and a single photon in the idler mode
contribute to HOM interference and the BSM, and thus the visibility rises. Since
the probability of two photons in |a) also grows, there will be two-fold detection
events that correspond to vacuum in the idler, due to idler field statistics or loss,
which reduces the visibility. Therefore, the trade-off between interference events
originating from single- or multi-photon states arriving at the beamsplitter leads to
the visibility reaching a maximum and decreasing for higher |e|?>. The specific value
of |a|? that corresponds to the maximum visibility is also conditioned on whether
a two- or three-photon detection experiment is performed, as well as the values of
u, n;, and n;. This interpretation as well as the curve shapes and positions for two-

and three-fold experiments are further discussed in Sec. [0.5]and Appendix [E.2]
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For the two-fold data, the maximum occurs at |a|? = 5.0 x 10~* while the three-fold
visibility and teleportation fidelity are maximized around |@|?> = 2.6 x 10~ and
la|? = 8.8 x 107%, respectively. The value of |a|? corresponding to maximum two-
fold HOM visibility is less than that for the maximum three-fold visibility because
three-fold events are conditioned on detecting at least one photon in the signal mode.
As a result, there are fewer vacuum events in the idler mode in the three-fold case,
and thus |e|? can be increased, i.e. the probability of 7 = 1 and n = 2 photon events
can be increased, to reach maximum visibility. The three-fold HOM visibility data
maximizes at a ||? that is a factor of two higher than the teleportation data because
|a|? is defined per qubit, which corresponds to the mean photon number in two

temporal modes.

Next, we proceed to fit Egs. [9.18] [9.19] and [9.20] to each of the relevant data sets
according to the procedure discussed in Appendix [E.3] We ascribe a different mode

mismatch parameter, {, and {3, for the two- and three-fold detection experiments,
respectively. This originates from the multi-mode |TMSV) used in Chapter
Although spectral filtering of the signal and idler modes was employed in Chapter|§]
detection of the signal can further filter the spectrum of the idler field due to residual
non-zero frequency entanglement [29] (see Chapter [3). For the same reason, we
also ascribe different idler mode efficiencies, 1, and n;3, for the two- and three-
fold detection experiments, respectively, as heralding a photon in the signal mode
effectively removes frequency modes from the idler, which manifests as additional

inefficiency in the idler mode.

The three-fold HOM and teleportation data is fit together using a shared {3, and with
the following independently measured parameters from Chapter [§] held constant:
ni3 = 1.2x 1072, py = 4.5x 1073, and u = 8.0 x 1073, Note that these parameters
were measured in Chapter [8| using coincidence detection of the filtered | TMSV)
with |e|*> = 0. The two-fold HOM data is fitted separately with only u = 8.0 x 1073
held constant. The fits reveal (&, = 0.80 = 0.04, n;» = (6.9 + 1.2) x 1072 and
{3 = 0.90 £ 0.02. The fitted curves are plotted in Fig. [0.3] and are in good
agreement with the measured data. Furthermore, {3 matches that fitted in Chapter
[8l The fits clearly reveal that heralding removes additional frequency components to
improve indistinguishability close to unity, which underpins the high teleportation

fidelity observed in Chapter[§] The fits also yield 77;2 > 73 as expected.

Notice the curves take on the form of a log-normal distribution, which owes to

the Poission distribution of number states in |@). When plotted on a linear scale,
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as shown in Chapter |8 the long tail in the distribution for |a|*> > 1073 can be
interpreted as the trade-off between interference produced by the n = 2 term in |a@)

with vacuum in the idler, and from single photons in |@) and the idler.

It is convenient to infer the value of |e|?> that will maximize Viom for a given
experimental setup. Thus, in Appendix we differentiate Eqs. [9.18 and 0.19]
finding |e|? of 7.8 x 107* and 2.2 x 1073, for two- and three-fold HOM interference
experiments, respectively, consistent with the data shown in Fig.

9.5 Prediction of figures-of-merit under varying experimental conditions

We now employ our analytical model to further interpret the experimental imper-
fections in Chapter [§] and to predict the outcomes of future experiments under
varying experimental imperfections: indistinguishability, transmission efficiencies,
and mean photon numbers of |@) and |[TMSV) states. For simplicity, from now
on we assume a [TMSV) such that heralding does not vary the indistinguishability
or the path loss for the idler mode. We also assume the idler path efficiency to be

identical for two- and three-fold detection experiments.

Indistinguishability

To determine the role of distinguishability, in Fig. [9.4] we plot two- and three-fold
HOM interference visibilities as well as X-basis teleportation fidelity as a function
of ¢ under the experimental conditions of three-fold detection from Chapter

ni=ni3=12x10"2n, =4.5%x 1073, and u = 8.0 x 1073, Our model predicts
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Figure 9.4: Model of a) two- and b) three-fold HOM interference visibilities as well
as c) teleportation fidelity of X-basis states for varied |a|? and different magnitudes
of indistinguishability  between the interfering photons. The curves assume the

transmission efficiencies and u from the three-fold detection experiments of Chapter

B

a simple vertical scaling of the curves. The maximum visibilities and fidelity

still occur at the same |a|?, but with increased maxima. It is also experimentally
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convenient that the optimum value of |a|? is independent of distinguishability. The
curves retain the log-normal behavior, supporting our interpretation that the curve
shape is due to mean photon number mismatch. Note the two-fold curve has shifted
to a lower central value of |a|?> compared to that in Fig. due to the reduction of
idler path efficiency in the model henceforth compared to that in the experimental

results.

The model predicts maximum two- and three-fold HOM visibilities as well as X-basis
teleportation fidelity to increase to V2—1, 0.85 and 0.92, respectively, for completely
indistinguishable fields. The two-photon visibility curve reaches the theoretical
maximum because idler mode inefficiency does not vary the number statistics of the
idler mode, and as discussed in Appendix |a|? = V2 maximizes the visibility in
the regime of low mean photon numbers we consider here. The maximum three-fold
HOM visibility and teleportation fidelity does not reach unity due to multi-photon
components from |@) and non-unit transmission of the idler mode. Yet, reasonably
high teleportation fidelity can be achieved even with significant path loss (~ 1%)
provided u is kept low. Note that if the 0.98 fidelity of the Z-basis states from
Chapter [§]is included, the total average fidelity will reach 0.94.

Without loss of generality, we assume complete indistinguishability ¢ = 1 for all
remaining plots in the manuscript to probe the dependence of the other experimental
imperfections. Notice that the X-basis teleportation fidelity curves follow the same
dependence as the three-fold HOM interference visibility curves. Thus, to avoid
redundancy, we move all of the relevant teleportation curves to Appendix Note
that the factor of two shift in ||> between three-fold HOM interference visibility

and fidelity is retained for all curves.

Transmission efficiencies

We compare signal and idler mode transmission efficiencies of Chapter|[§] i.e. those
plotted in Fig. with 7; = 1.2 x 1072 and 77, = 4.5 x 1073, to those of unit
efficiency. We assume u = 8.0 x 1073 as before and plot the two- and three-fold

detection curves under four different configurations:

) mi=ns=1,
(ii) 7; = 1.2 x 1072 and 7, = 4.5 x 1073 from Chapter|8]

(iii) 7; =1 and y = 4.5 x 1073,
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(v) 7 =1.2x10"2and n,; = 1.
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Figure 9.5: Model of a) two- and b) three-fold HOM interference visibilities for
varied || under conditions of varied signal and idler transmission efficiencies (i-iv)
in blue, orange, green, and red, respectively, as described in the main text, assuming
i = 8.0 x 1073 and complete indistinguishability ¢ = 1. For the two-fold HOM

curves, configurations (i) and (ii) are equivalent to (iii) and (iv), respectively.

For the two-fold HOM visibility curves in Fig. [0.5] we find a reduction of idler
transmission efficiency from unity (cases (i) and (iii)) to 7; (cases (ii) and (iv))
retains the curve profile, but shifts it to be centered around a value of |e|? that is a

factor of n; lower. As discussed in Appendix [E] the visibility is maximized when
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|a|? = V2u, that is, the mean photon numbers of |a|? and the idler mode match to a
scaling factor. Since the mean photon number of the idler scales proportional to the
idler transmission efficiency, ||> must be reduced by the same factor to maximize
visibility. The curve shape does not change with 7; because u < 1. The maximum
visibility is saturated to its theoretical maximum of V2 — 1 in the low mean photon

number regime.

For the three-fold HOM visibility curves, the unity transmission case (i) shifts the
distribution from Chapter (8] (ii) to higher |a|? to better match the effective higher
mean photon number in the idler mode. The maximum visibility increases for (i)
because detection of a photon in the signal mode is always accompanied by a photon
in the idler mode i.e. zero vacuum components in the idler mode, that is, the photon
heralding efficiency [30] is unity. However, the maximum visibility is not unity,
primarily due to multi-photon components from |@) and, to some extent, the idler

mode.

For case (iii), the added loss in the signal mode compared to (i) removes some single
pair events in the experiment. Thus, multi-photon events from |TMSV) are relatively
more likely to be detected by the threshold detectors. By way of heralding, this leads
to a relative increase in multi-pair events from |TMSV), reducing the maximum
visibility from (i) while effectively increasing the mean photon number in the idler
mode, thereby forcing an increase in |a|?>. The width of the curve is also reduced
from the lower |a|? edge, which is consistent with the increase in multi-photon
events from |[TMSV). To understand this, consider || being lowered from the
value that maximizes the visibility. In this case, the increased multi-photon events
in the idler mode reduce the visibility more strongly than the case in which non-zero
vacuum is present in the idler. This narrowing becomes even more pronounced as
w is increased. The curve narrowing effect is not observed in the two-fold visibility
curves because heralding, and hence the effect of signal path inefficiency, strongly

changes the number distribution in the idler mode.

For case (iv), the shift of the curve to lowered |a|? compared to case (ii) is similar to
that when comparing case (i) to (iii). It is due to the relative decreased contribution
of multi-photon detection events in the idler mode, which must be matched by ||
The maximum visibility is limited by the non-unit heralding efficiency; when a single
photon is detected in the signal mode, it may not be present at the beamsplitter and
multi-photon events originating from |@) have a relatively higher probability of

contributing to the visibility. This is also why maximum visibility is not as high
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as case (i), but higher than the rest of the curves which have low signal efficiency
and for which heralding cannot benefit as much. Akin to that observed when
comparing curves (i) and (iii), the width of curve (iv) increases from the lower
|a|? edge relative to case (ii). This is also consistent with the presence of more
heralded single photons, and fewer multi-photon events from heralding. The high
la|? edge of curves in cases (ii) and (iv), and (i) and (iii), converge with increased
|ar|? because the Poisson- distributed multi-photon components from |a) reduce the

visibility more strongly than the heralded components of |[TMSV) in this regime.

Mean photon number of [ TMSV)
Here we compare g = 10~!, u = 8.0 x 107> from Chapter|[8] and u = 10~3 under
cases (i)-(iv). Two-fold HOM interference visibilities with varied |a|? are plotted in

Fig. 9.6]under these scenarios.

For case (i)/(iii) and (ii)/(iv) we observe the same behavior as in Fig. [9.5h. The curve
profile shifts to lowered |a|? to ensure the mean photon number of |a|> matches that
in the idler mode when either the idler transmission efficiency or, equivalently, mean
photon number of [TMSV) is reduced. The shift in ||> matches the reduction in y,
and the overall shift of the three curves when the idler path efficiency is reduced is the
same as discussed in the previous section. Furthermore, the maximum visibility can
reach its theoretical maximum under these conditions, as discussed in the previous

sections.

The three-fold HOM interference visibility is plotted under these scenarios (i)-(iv)
in Fig. We discuss case (i) first. To give a point of reference, the curve
corresponding to x4 = 8.0 X 1073 matches the case (i) curve shown in Fig. .
Interestingly, the family of curves appear to have a similar behavior to those in Fig.
[9.5pb, except now with u varied instead of signal path efficiency. An increase of u
increases the number of multi-photon states that are heralded which both lowers the
maximum visibility and requires a higher |a|? to match, similar to that discussed
for the curves in Fig. [9.5b. The width of the curve is also reduced from the lower
|ar|? edge as u increases, which is again consistent with the increase in multi-photon
events from |[TMSV). For high y, as |a|? is lowered from the value corresponding
to maximum visibility, the curve falls more sharply than others because there are
more multi-photon terms in [TMSV) and |@), and a slight mismatch in mean photon
numbers will lead to higher order terms contributing a larger reduction in visibility.

For the case in which u is smaller, there are fewer multi-photon terms from |TMSV)
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in the idler mode, and also |a|?, which leads to a broader peak on the low |a|?
edge. A slight mismatch of single photon probabilities is not accompanied by
strong multi-photon effects in this scenario. As in Fig. , the high |e|* edge of
curves converge with increased |a|? because the Poisson-distributed multi-photon

components from |@) dominate in this regime relative to conditions for maximum

visibility.
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Figure 9.7: Model of three-fold HOM interference visibilities for varied ||? and
u < 1072, under varied signal and idler transmission efficiencies, cases (i)-(iv),
assuming complete indistinguishability ¢ = 1.

The curves for case (ii), which corresponds to the non-unit path efficiencies in
Chapter [8] have remarkably similar shapes to case (i) with a few differences. The
shift of the distributions to lowered |a|? is again due to the idler path loss. The
maximum visibilities are lowered because the signal loss reduces the number of
single photon events in the idler path that contribute to interference, and the idler
loss further decreases this number, which leads to multi-photon terms from both
ITMSV) and |a) contributing. This also explains why the curve widths are also
reduced compared to case (1) even though the curves are centered around lower values
of |@|?; the multi-photon terms quickly dominate when mean photon numbers are

not matched. Note that the narrowing of the distribution from case (i) to case (ii)
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is also slightly observed in Fig. [0.5] Observe that the ;4 = 0.1 curve edge slightly

extends over the others for high |a|? because [TMSV) contributes more terms in the

idler mode in this regime compared to the others.

The family of curves for case (iii), which corresponds to non-ideal signal path
efficiency, differs from case (i) much in the same way that these cases differ in Fig.
[0.5] That is, the curves take on a similar form as (i), but with lower maximum
visibilities, maxima that are shifted to higher ||, and narrower curve widths
compared to those in (i). The shape and offset of the curves follows reasons
previously discussed, which owe to increased multi-photon events in the idler mode.
For case (iv), corresponding to non-ideal idler path efficiency, differs from case (ii)
again much in the same way that these cases differ in Fig. [9.5] The unit signal
efficiency now increases the visibilities, shifts the curve to lower |a/|2, and broadens
the curve widths compared to those in (ii). The shape and offset again follow reasons
previously discussed. The broadening is particularly pronounced for low u, which
also requires low ||, and thus very few multi-photon events contribute, and hence

are less effected by idler path loss.

9.6 Discussion

Our analytical expressions for realistic photonic quantum teleportation experiments
with time-bin qubits are valuable for guiding the design and optimization of future
experiments. Achieving transmission efficiencies or indistinguishability beyond
99% in typical photonics experiments requires significant effort [31]. Our modeling
quantifies the improvements provided by such efforts under different experimental
configurations and indicates the effort needed to meet minimum acceptable stan-
dards for various applications, such as quantum communication. Additionally, our
analytical expressions allow for predicting experimental outcomes using indepen-
dently measured parameters, including indistinguishability, which can be estimated

through mode measurements like laser linewidth or cavity resonance profiles.

By quantifying our figures-of-merit against the log of the mean photon number |a|?
of an input weak coherent state |a), we find a simple log-normal distribution that
aids in interpreting and utilizing our analytical expressions. The curves simplify the
role of indistinguishability to a simple scaling of visibility or teleportation fidelity.
The two-fold HOM interference visibility curves are the quickest to interpret and,
along with their rapid measurement compared to three-fold HOM interference, are

valuable for prototyping setups. For teleportation, a low mean photon number of
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photon pairs u strongly mitigates path inefficiency and relaxes the precision needed
for the value of |e|? that maximizes visibility. Conversely, a relatively high u ~ 0.1
significantly reduces teleportation fidelity but not below the classical bound of 2/3
for our parameter range. Even with path efficiencies of ~ 1%, the reduction is not
severe, with signal path inefficiency impacting visibilities to a lesser extent. This is
unsurprising given the number of successful quantum networking experiments using
lossy setups or links that require extended data collection periods. However, higher
mean numbers of pairs necessitate careful calibration of |a|? to maximize visibility.
The data in Fig. shows that calibration of |@|? in Chapter [8 was challenging
for |@|> < 1073. Nonetheless, we find good agreement between our analytical
expressions and the measurement data from Chapter [§] which spans almost four

decades of |a|?.

Although our modeling captures all relevant behavior in the experiment of Chapter
[§l and can be applied to other photonic quantum teleportation experiments, future
work could include more detailed modeling of the multi-mode nature of |[TMSV).
This involves incorporating the effects of pump bandwidth and frequency filtering,
as done in Chapter [3 The Schmidt decomposition of |[TMSV) approximates the
number of modes, and the filter acts as a mode-selective beamsplitter [32]. This
would relate differences in indistinguishability and loss in the idler path for two- and
three-fold detection to specific apparatus configurations. It is also straightforward to
incorporate noise or detector dark counts into the modeling. Moreover, our methods
can be extended to non-Gaussian measurements, including photon number resolved

detection, which can improve heralding efficiencies of single photons (see Chapter
B).

Our modeling applies to different discrete-variable encodings beyond time-bin and
readily extends to more complex experiments such as entanglement swapping or
GHZ-state generation. The use of Gaussian states and transformations also extends
to other experiments using bosonic modes, such as atomic ensembles or other
parametric interactions like electro-optics or opto-mechanics, and their relevant
applications in communications, computing, and sensing. Although an analysis
based on “photon counting” in the Fock basis could have been used to analyze
the outcomes in Chapter [8, we believe that our presented analysis provides an
intuitive picture of the underlying physics with a compact, experimentally realistic,
and “universal” methodology that can be easily extended to other experimental

operating regimes, such as using squeezing [33]].
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