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C h a p t e r 12

ENTANGLEMENT AND SPACETIME

Entanglement is a fundamental feature of quantum mechanics, signifying a sharp
departure from classical notions of locality and realism [1]. Its experimental ver-
ification through violations of Bell inequalities [2, 3, 4, 5] has made it central to
both quantum technologies and the foundations of physics. As described in Part II
of this thesis, entanglement is essential to quantum communication protocols such
as teleportation (Chapter 8), entanglement swapping (Chapter 10), measurement-
device-independent quantum key distribution [6] and quantum repeaters [7] that can
enable secure communication, quantum-enhanced sensing, and distributed quantum
processing in a quantum network. In fundamental physics, entanglement continues
to play a central role in debates over the nature of reality, ever since the early days
of quantum theory.

12.1 Foundations of quantum mechanics
In 1935, Einstein, Podolsky, and Rosen (EPR) raised objections to the completeness
of quantum mechanics by proposing a thought experiment in which measurements
are performed on a pair of entangled particles [8]. They reasoned that if a physical
theory allows one to predict the outcome of a measurement on one particle by per-
forming a measurement on its entangled partner, with out disturbing its state, then
the outcome must correspond to a pre-existing “element of reality.” Furthermore, be-
cause the two particles could be far apart, they assumed that no influence could travel
between them faster than light. Taken together, these two assumptions—realism
(that measurement outcomes reflect pre-existing properties) and locality (that no
instantaneous influences exist between distant systems)—formed the basis for their
argument that quantum mechanics must be supplemented by hidden variables. In
the 1960s, Bell’s theorem formalized this reason, stating that any theory satisfying
both locality and realism must obey certain mathematical constraints, known as Bell
inequalities [1]. According to quantum mechanics, maximally-entangled bipartite
states, such as Bell states, violate these inequalities. In the past decade, landmark
experiments demonstrated loop-hole-free violation of Bell inequalities with entan-
gled photon pairs [9, 10], verifying the consequences of quantum mechanics and
dismissing the classical assumption of “local realism.”
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However, Bell’s theorem does not address a special case of EPR’s original argument
in which a measurement on one particle allows one to predict the state of the other
particle with 100% certainty. Confronting this case requires moving beyond Bell’s
theorem and bipartite entanglement. To this end, Greenberger, Horne, and Zeilinger
(GHZ) introduced a class of multipartite entangled states, known as GHZ states,

|GHZ⟩ = |0⟩⊗𝑁 + 𝑒𝑖𝜙 |1⟩⊗𝑁
√

2
, (12.1)

with the minimal case of 𝑁 = 3 qubits described by |GHZ⟩ = ( |000⟩+𝑒𝑖𝜙 |111⟩)/
√

2.
GHZ showed that such states allow for a contradiction with local realism at the level
of deterministic predictions, providing a stronger refutation of EPR’s assumptions.
Experimental realizations of GHZ states can be used to prove that it is impossible to
construct not only a classical, local-realistic theory of quantum mechanics in general,
but also one that makes deterministic predictions of a system in the sense of EPR.
In Chapter 13, I report our progress on the first experimental generation of tripartite
GHZ states with time-bin qubits, which is particularly suited for implementation
in a quantum network. This work not only opens a path to fundamental tests of
physics, but also advanced networking protocols based on multipartite entanglement
distribution, such as quantum secret sharing [11] and distributed quantum sensing
[12].

12.2 Quantum nature of spacetime
Beyond the foundations of quantum mechanics, entanglement has also emerged as
a key concept in understanding the quantum nature of spacetime. The interplay
between quantum entanglement and the geometry of spacetime has emerged as a
central theme in the quest to reconcile quantum mechanics with general relativity,
particularly through the lens of the anti-de Sitter/conformal field theory (AdS/CFT)
correspondence. In AdS/CFT, spacetime geometry in a (𝑑 +1)-dimensional gravita-
tional theory is encoded in the entanglement structure of a 𝑑-dimensional boundary
quantum field theory. This perspective leads to the idea that spacetime is not funda-
mental, but an emergent property arising from patterns of quantum correlations. A
particularly striking manifestation of this idea is the ER=EPR conjecture, proposed
by Maldacena and Susskind, which posits that entangled pairs (EPR) are dual to
Einstein-Rosen bridges (ER), i.e., wormholes [13]. In this view, quantum entangle-
ment generates geometric connectivity, with multipartite entanglement structures
potentially corresponding to multiboundary wormholes or topologically complex
bulk geometries [14]. These insights suggest a unifying framework where quan-
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tum information is not only a tool for studying gravity but may be the microscopic
substrate from which spacetime itself emerges.

A significant breakthrough in this line of thought came with the discovery that
certain wormhole geometries can be rendered traversable. In the context of the
AdS/CFT correspondence, wormholes can be interpreted as geometries connecting
entangled black holes, such as the eternal black hole dual to the thermofield double
state. However, in general relativity, such wormholes are non-traversable, meaning
that no causal signal or observer can pass from one mouth to the other without
encountering a singularity or violating energy conditions. This limitation arises
due to the averaged null energy condition (ANEC) [15, 16], which prohibits the
negative energy required to keep a wormhole throat open. In 2017, Gao, Jafferis,
and Wall showed that a double-trace deformation, corresponding to a weak coupling
between the two boundaries of an entangled thermofield double state, can lead to a
violation of the ANEC in the bulk, thereby allowing signals to propagate through
the wormhole without violating causality [17]. Remarkably, the resulting process
is formally equivalent to quantum teleportation between entangled systems, with
the traversable geometry offering a dual gravitational description of the underly-
ing protocol. These results suggest that certain quantum communication protocols
may admit gravitational duals, and that spacetime connectivity itself may be under-
stood as a manifestation of quantum entanglement and information flow through an
underlying quantum channel.

In 2019, Gao and Jafferis constructed a traversable wormhole teleportation protocol
within the coupled Sachdev–Ye–Kitaev (SYK) model [18], where a probe inserted
into one side of a thermofield double state reappears on the other after a double-trace
deformation [19]. The SYK model is a many-body system of randomly interacting
Majorana fermions with an emergent conformal symmetry that is holographically
dual to Jackiw–Teitelboim (JT) gravity in nearly-AdS2 spacetime [18]. In the bulk
dual, the protocol corresponds to a signal traversing a dynamically opened wormhole
[20]. In Chapter 14, we demonstrate an experimental realization of this protocol
using a sparsified SYK model on Google’s Sycamore quantum processor. This work
is the first experimental simulation of traversable wormhole dynamics on a quantum
processor, a step in the program of investigating quantum gravity in the lab.
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