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C h a p t e r 13

GHZ STATES WITH TIME-BIN QUBITS

This chapter includes the work published as:

[1] Samantha I. Davis, Chang Li, Rahaf Youssef, Neil Sinclair, Raju Vali-
varthi, and Maria Spiropulu. “Generation of Time-bin GHZ States.” In:
Optica Quantum 2.0 Conference and Exhibition. Optica Publishing Group, 2023,
QTh4A.7. doi: 10.1364/QUANTUM.2023.QTh4A.7. url: https://opg.
optica.org/abstract.cfm?URI=QUANTUM-2023-QTh4A.7.

13.1 Introduction
Quantum entanglement, one of the unique features of quantum mechanics, is a
key ingredient for several quantum information processing fields including quan-
tum communication, quantum computing, and quantum metrology. Maximally
entangled bipartite states have not only been used for the above mentioned fields
but were also crucial for fundamental tests of physics such as loophole-free tests
of Bell inequalities [1, 2]. Analogous tripartite maximally entangled states have
been proposed, known as Greenberger-Horne-Zeilinger (GHZ) states [3], which are
shown to reject local realism theories without the need to acquire statistics on the
measurements, and have known applications in distributed quantum computing [4]
and multiparty quantum communication [5], such as superdense coding, quantum
secret sharing, and quantum Byzantine agreements. Previous experimental propos-
als have been mostly limited to the polarization degree of freedom [6], until a recent
experimental realization with energy-time entanglement [7]. Here we report our
progress toward the first experimental demonstration of GHZ states with time-bin
qubits1, which are particularly well-suited for practical implementations in quan-
tum networks for long-distance quantum communication and tests of nonlocality.
Moreover, we develop a theoretical model to support the experimental results.

13.2 Entangling time-bin qubits with a switch
As described in Part I of this thesis, Bell pairs of time-bin qubits can be generated
with high-fidelity using nonlinear optical processes such as SPDC. To generate

1At the time this work was conducted, we became aware of concurrent work published indepen-
dently [8].
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Figure 13.1: Setup for generating GHZ states with time-bin qubits. One member
of a Bell pair produced by a entangled pair source (EPS) is interfered with another
time-bin qubit using a 2x2 optical switch. A GHZ state is post-selected using single-
photon detectors (SPDs) after the switch.

higher-order entangled states, we use the scheme proposed in Ref. [9] for entangling
time-bin qubits. We generate a GHZ states by interfering one member of Bell pair
with a third qubit in a 2-by-2 optical switch comprised of a balanced Mach-Zehnder
interferometer (MZI) with a time-varying phase shift. The setup for the protocol is
illustrated in Fig. 13.1.

Consider three qubits initialized in the state,

|Ψ⟩ = |𝜓⟩𝐴 ⊗ |𝜙⟩𝐵𝐶 , (13.1)

|𝜓⟩𝐴 =
1
√

2
( |𝑡1⟩𝐴 + 𝑒𝑖𝜙𝐴 |𝑡2⟩𝐴), (13.2)

|𝜙⟩𝐵𝐶 =
1
√

2
( |𝑡1⟩𝐵 |𝑡1⟩𝐶 + 𝑒𝑖𝜙𝐵𝐶 |𝑡2⟩𝐵 |𝑡2⟩𝐶), (13.3)

where 𝑡1 and 𝑡2 denote the early and late time bins, respectively, and the subscripts
on the states denote the spatial modes. Qubits at spatial modes 𝐴 and 𝐵 are inserted
into the input ports the switch. The transformations of |𝑡𝑘⟩𝐴 and |𝑡𝑘⟩𝐵 through the
switch are described by,

|𝑡𝑘⟩𝐴 → cos
(
𝜃 (𝑡𝑘 )

2

)
|𝑡𝑘⟩𝐷 − sin

(
𝜃 (𝑡𝑘 )

2

)
|𝑡𝑘⟩𝐸 ,

|𝑡𝑘⟩𝐵 → sin
(
𝜃 (𝑡𝑘 )

2

)
|𝑡𝑘⟩𝐷 + cos

(
𝜃 (𝑡𝑘 )

2

)
|𝑡𝑘⟩𝐸 ,

(13.4)
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where 𝑘 = 1, 2 and 𝜃 (𝑡𝑘 ) is the phase difference between the two arms of the MZI at
time 𝑡𝑘 . By setting 𝜃 (𝑡1) = 0 and 𝜃 (𝑡2) = 𝜋, the spatial modes of the input photons
are unchanged in the early time bin and exchanged in the late time bin. The state of
the system after the switch is,

|𝜓⟩𝐴 ⊗ |𝜙⟩BC → 1
2
( |𝑡1⟩𝐷 |𝑡1⟩𝐸 |𝑡1⟩𝐹 + 𝑒𝑖𝜙𝐵𝐶 |𝑡1⟩𝐷 |𝑡2⟩𝐷 |𝑡2⟩𝐹 (13.5)

− 𝑒𝑖𝜙𝐴 |𝑡2⟩𝐸 |𝑡1⟩𝐸 |𝑡1⟩𝐹 − 𝑒𝑖(𝜙𝐴+𝜙𝐵𝐶 ) |𝑡2⟩𝐷 |𝑡2⟩𝐸 |𝑡2⟩𝐹). (13.6)

By measuring the three-fold coincidences at distinct spatial modes (𝐷, 𝐸, 𝐹), we
can post-select the time-bin GHZ state,

|Ψ𝐺𝐻𝑍⟩ =
1
√

2
( |𝑡1⟩𝐷 |𝑡1⟩𝐸 |𝑡1⟩𝐹 + 𝑒𝑖𝜙 |𝑡2⟩𝐷 |𝑡2⟩𝐸 |𝑡2⟩𝐹). (13.7)

13.3 Experiment
The experimental setup for generating time-bin GHZ states is shown in Fig. 13.2a.
Time-bin qubits separated by 346 ps are created by injecting 1536 nm wavelength
light from a continuous-wave laser into an intensity modulator (IM). The light is
split into two paths by a 50:50 beamsplitter. In one path, the pulses are sent to
a second harmonic generation (SHG) module containing an erbium doped fiber
amplifer (EDFA) and PPLN waveguide, which up-converts the pulses to 768 nm.
These pulses are used as a pump for type-II SPDC to create entangled photon
pairs at 1536 nm. In the second path, the third qubit is prepared by attenuating
the laser pulses. One member of the entangled state is interfered with the third
qubit in a optical switch with a 20 GHz phase modulation bandwidth. Given two
indistinguishable photons incident to the switch, the joint state of the three photons
is described by a GHZ state after post-selection of the photons exiting the two output
ports of the switch. The final output state is analyzed via measurements of the three
photons (qubits) with superconducting nanowire single-photon detectors (SNSPDs)
using a custom graphical user interface (see Fig. 13.2b).

13.4 Theory
We develop a theoretical model using the characteristic function-based formalism
detailed in Chapter 9. The early and late time bins are modeled as independent
modes, and the switch is modeled as a Mach-Zehnder interferometer with 𝜃𝐸 = 0 for
the early mode and 𝜃𝐿 = 𝜋 for the late mode. Since the two-mode squeezed vacuum
state and coherent state have Gaussian characteristic functions, and all subsequent
operations up to detection are Gaussian, we construct the Symplectic matrix that
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Figure 13.2: Experimental generation of time-bin GHZ states. a) Experimental
setup. AWG, Tektronix AWG7002A; BS, Thorlabs 1550-nm fiber optic 50:50 beam
splitter; DL, fiber optic delay line, EDFA, Pritel erbium-doped fiber amplifier; FIL,
bandpass filter; Laser, MOGlabs Tunable Cateye Laser; PBS, Thorlabs 1550-nm
fiber optic polarizing beam splitter; PPLN, HC Photonics waveguide; PS, power
supply, SHG, Pritel optical fiber amplifier and second-harmonic generator; SNSPD,
superconducting nanowire single-photon detector; TDC, quTAG time-to-digital con-
verter; VOA, EXFO variable optical attenuator. b) Screenshot of custom Graphical
User Interface (GUI) used for data acquisition and analysis. In the switch output
channels, the larger peak corresponds to the weak coherent state and the smaller
peak corresponds to one member of the TMSV state from SPDC. The discrepancy
in peak heights is due to the different photon statistics and mean photon numbers of
the coherent and TMSV states.
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Figure 13.3: Setup for theoretical modeling. The top and bottom boxes represent a
two-mode squeezed vacuum state (TMSV) and coherent state, respectively, in the
product state of early and late temporal modes. Early and late temporal modes are
represented as different spatial modes in the setup. The switch is modeled as an MZI
acting on the early (late) modes of the coherent state and one half TMSV with phase
shift 𝜃𝐸 (𝐿) . Measurement loss is modeled as mixing with a virtual vacuum mode
with a beamsplitter (not depicted) with transmittances 𝜂1, 𝜂2, and 𝜂3 for detectors
𝐷1, 𝐷2, and 𝐷3, respectively.

maps the characteristic function of input state to that of the output state. The
output characteristic function is found by substituting the displacement vector ®𝑑 and
covariance matrix 𝛾 with ®𝑑 → 𝑆𝑇 ®𝑑 and 𝛾 → 𝑆𝑇𝛾𝑆. From the output displacement
vector and covariance matrix, the density matrix states produced in the experiment
can be calculated as a function of relevant experimental parameters, such as the mean
photon number of the coherent state 𝜇𝐶 , the mean photon number of the TMSV state
(𝜇𝑠), measurement loss, and the extinction ratio of the switch. The extinction ratio
of the switch is measured by setting the phase to 𝜃 = 0 or 𝜋, sending strong coherent
light into one input of the switch, and calculating the ratio of the powers measured
from the output ports (𝑃𝐷/𝑃𝐸 ). Ideally, light is measured only in one output port or
the other (𝑃𝐷 or 𝑃𝐸 = 0). We measure extinction ratios of |10 log10(𝑃𝐷/𝑃𝐸 ) | ∼ 18
dB. Switch extinction ratios are modeled as 𝑃𝐷/𝑃𝐸 = cot2 (𝜃𝐸 (𝐿)/2), where the
phases 𝜃𝐸 ∼ 0 and 𝜃𝐿 ∼ 𝜋 are set to match the experimental extinction ratios.

From the output covariance matrix 𝛾′ and displacement vector ®𝑑′, we obtain a
model for the density matrix of the experimental output state as a function of the
mean photon numbers, losses and extinction ratio. The Fock basis density matrix



286

elements for an ℓ-mode Gaussian state 𝜌 are in terms of its covariance matrix 𝛾 and
displacement vector ®𝑑 are,

⟨ ®𝑚 | 𝜌 | ®𝑛⟩ = 𝑇 × lhaf(vid(A, ®𝛽)), (13.8)

𝑇 =

exp
(
−1

2
®𝑑𝑇𝛾−1 ®𝑑

)
√︃

det (𝛾)∏ℓ
𝑠=1 𝑛𝑠!𝑚𝑠!

, (13.9)

A = X
(
I2ℓ − 𝛾−1

)
, X =

[
0 Iℓ
Iℓ 0

]
, ®𝛽𝑇 = ®𝑑𝑇𝛾−1, (13.10)

where | ®𝑛⟩ = |𝑛1⟩ · · · |𝑛ℓ⟩ is the ℓ-mode photon number state of 𝑛1 photons in the
first mode, 𝑛2 photons in the second mode, etc., lhaf(· · · ) is the loop Hafnian, and
vid(A, ®𝛽) = A − diag(diag(A)) + diag( ®𝛽) [10].
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Figure 13.4: Characterization of time-bin GHZ states in the Z-basis. a) Threefold
coincidence probabilities for varied mean photon number of the coherent state. The
probabilities are found from dividing the coincidence rates in Hz by the repetition
rate of the experiment (100 MHz). b) Theoretical model for the data in a). c) Z-basis
fidelity for varied mean photon number of the coherent state. The error bars in a)
and c) are calculated from Poisson statistics.
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13.5 Results
With the measurement configuration in Fig. 13.2, we are able to perform projective
measurements in the Z basis described by the measurement operators,

Π̂𝑖, 𝑗 ,𝑘 = |𝑡𝑖⟩ ⟨𝑡𝑖 | ⊗
��𝑡 𝑗 〉 〈

𝑡 𝑗
�� ⊗ |𝑡𝑘⟩ ⟨𝑡𝑘 | , (13.11)

where 𝑖, 𝑗 , 𝑘 ∈ [1, 2]. We measure the threefold coincidence rates,

𝐶𝑖, 𝑗 ,𝑘 ∝ Tr[ 𝜌̂expΠ̂𝑖, 𝑗 ,𝑘 ],

for varied mean photon number of the coherent light (𝜇𝐶). The experimental and
theoretical coincidence probabilities for each of the eight possible outcomes are
shown in Fig. 13.4a and b, respectively. The coincidence probabilities are obtained
by dividing the coincidence rates by the 100 MHz repetition rate of the experiment.
The theoretical coincidence probabilities are calculated from the model using,

Tr[ 𝜌̂Π̂] =
(

1
2𝜋

)𝑁 ∫
𝑑𝑥2𝑁 𝜒𝜌 (𝑥)𝜒Π (−𝑥), (13.12)

where 𝑁 is the number of modes, 𝜒(𝑥) is the characteristic function of the output
state and 𝜒Π (−𝑥) is the characteristic function of the measurement operator of the
detectors [11]. We define a “Z-basis fidelity” for the GHZ state as,

𝐹𝑍 =
𝑃(𝑡1, 𝑡1, 𝑡1) + 𝑃(𝑡2, 𝑡2, 𝑡2)∑

𝑖, 𝑗 ,𝑘 𝑃(𝑡𝑖, 𝑡 𝑗 , 𝑡𝑘 )
. (13.13)

The Z-basis fidelity is plotted as function of the 𝜇𝐶 in Fig. 13.4c for the data in Fig
13.4a. The blue curve is the model using the average 𝜇SPDC of 0.009. The fidelity
increases with 𝜇𝐶 for fixed 𝜇SPDC due to the mismatch in photon statistics for the
coherent state and TMSV. We observe a maximum 𝐹𝑍 = 82.0±4.1% for 𝜇𝐶 = 0.19.

In order to fully reconstruct the experimental states, a complete tomographic set
of measurements need to be performed. This requires using interferometers before
detection to project onto the X and Y bases. To estimate the overall state fidelity
produced by our setup, we calculate the density matrix for 𝜇𝐶 = 0.19 using Eq.
13.8. The density matrix elements are plotted in Fig. 13.5 for the ideal GHZ state,
𝜌GHZ, and the model, 𝜌est. The state fidelity is calculated as,

𝐹 (𝜌est, 𝜌GHZ) =
(
Tr

√︃√
𝜌est𝜌GHZ

√
𝜌est

)2
. (13.14)

The model estimates a state fidelity of 80.6% for 𝜇𝐶 = 0.19, 𝜇TMSV = 0.009,
𝜂1 = 0.2, 𝜂2 = 0.17, 𝜂3 = 0.19, and an extinction ratio of 18 dB corresponding to
𝜃𝐸 = 0.25, and 𝜃𝐿 = 0.25 + 𝜋. By decreasing 𝜇SPDC to ∼ 0.001, our model predicts
> 90% fidelity can be achieved.
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Figure 13.5: Density matrix model. a) Density matrix (𝜌𝐺𝐻𝑍 ) elements for an ideal
GHZ state. b) Real and imaginary components of the density matrix model (𝜌𝑒𝑠𝑡)
for 𝜇𝐶 = 0.19, 𝜇TMSV = 0.009, 𝜂1 = 0.2, 𝜂2 = 0.17, 𝜂3 = 0.19, and an extinction
ratio of 18 dB corresponding to 𝜃𝐸 = 0.25, and 𝜃𝐿 = 0.25 + 𝜋.
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