

Part IV

Appendices

QUANTUM PHASED ARRAY PROTOCOLS

Here I describe two illustrative examples of quantum state synthesis with QPAs.

A.1 Reconfigurable beamsplitter

With two QPAs engineered to have the input and output relations of a beamsplitter unitary, a reconfigurable beamsplitter can be realized for applications requiring quantum interference. The QPAs are configured to have array factors,

$$\text{AF}_N^{\pm} = \frac{1}{\sqrt{2}} \left(\text{AF}_N(\varphi^A) + e^{i(\delta \pm \pi)} \text{AF}_N(\varphi^B) \right), \quad (\text{A.1})$$

one with (+) and the other with (-). The fields interfere in free space to realize quantum interference with the beamsplitter unitary. A hallmark quantum interference effect is Hong-Ou-Mandel effect [1]. The Hong-Ou-Mandel effect arises from the interference of indistinguishable single photons incident to a beamsplitter.

$$\begin{aligned} |1\rangle_{\text{in}_1} |1\rangle_{\text{in}_2} &= \hat{a}_{\text{in}_1}^\dagger \hat{a}_{\text{in}_2}^\dagger |0\rangle_{\text{in}_1} |0\rangle_{\text{in}_2} \\ &\rightarrow \frac{1}{2} (\hat{a}_{\text{out}_1}^\dagger + i\hat{a}_{\text{out}_2}^\dagger)(i\hat{a}_{\text{out}_1}^\dagger + \hat{a}_{\text{out}_2}^\dagger) |0\rangle_{\text{out}_1} |0\rangle_{\text{out}_2} \\ &= \frac{i}{\sqrt{2}} (|2\rangle_{\text{out}_1} |0\rangle_{\text{out}_2} + |0\rangle_{\text{out}_1} |2\rangle_{\text{out}_2}). \end{aligned} \quad (\text{A.2})$$

A.2 N00N state generation

HOM interference can be generalized to create N00N states for any $N = 2^k$. N00N states are path entangled states of the form $(|N\rangle|0\rangle + |0\rangle|N\rangle)/\sqrt{2}$ that enable quantum-enhanced phase measurements at the Heisenberg limit, with applications in quantum metrology, imaging, and lithography [2, 3, 4]. The creation operator representation of a N00N state can be factorized as,

$$\frac{1}{\sqrt{2}} (\hat{a}_1^\dagger)^N + e^{i\theta} (\hat{a}_2^\dagger)^N = \frac{1}{2} \prod_{\pm} (\hat{a}_1^\dagger)^{N/2} + e^{i(\frac{\theta}{2} + \pi \pm \frac{\pi}{2})} (\hat{a}_2^\dagger)^{N/2}. \quad (\text{A.3})$$

The goal is to factorize the N00N creation operator representation into products of N single creation operator superpositions,

$$\frac{1}{\sqrt{2}} \left((\hat{a}_1^\dagger)^N + e^{i\theta} (\hat{a}_2^\dagger)^N \right) = \frac{1}{2^{N/2}} \prod_{\varphi} (\hat{a}_1^\dagger + e^{i\varphi} \hat{a}_2^\dagger). \quad (\text{A.4})$$

We can determine what the set of φ are from recursively applying Eq. A.3. For $N = 2^k$, we find:

$$\varphi = \frac{\theta}{2^k} + \sum_{j=1}^k \frac{\pi}{2^{k-j}} \pm \frac{\pi}{2} \pm \frac{\pi}{4} \pm \dots \pm \frac{\pi}{2^k} \quad (\text{A.5})$$

$$= \left(\frac{\theta}{2^k} + 2\pi - \frac{\pi}{2^{k-1}} \right) \pm \frac{\pi}{2} \pm \frac{\pi}{4} \pm \dots \pm \frac{\pi}{2^k}. \quad (\text{A.6})$$

Let Φ be the set of φ . Note that the k terms with \pm mean that there are a total of 2^k φ 's (i.e. $|\Phi| = 2^k$) as expected. Therefore, a N00N state can be created using a multimode interferometer with N inputs and 2 outputs, where the each input sends a single photon into $\frac{1}{\sqrt{2}}(\hat{a}_{\text{out}_1}^\dagger + e^{i\phi}\hat{a}_{\text{out}_2}^\dagger)$ for each $\phi \in \Phi$.

This protocol can be flexibly performed this protocol¹ using N QPA's, where each QPA sends a single photon into $\frac{1}{\sqrt{2}}(\hat{a}_{\theta_1}^\dagger + e^{i\phi}\hat{a}_{\theta_2}^\dagger)$, and then align the θ_1, θ_2 's of all the QPA's on the detector plane.

References

- [1] C. K. Hong, Z. Y. Ou, and L. Mandel. “Measurement of Subpicosecond Time Intervals between Two Photons by Interference.” In: *Physical Review Letters* 59.18 (1987), pp. 2044–2046. doi: [10.1103/PhysRevLett.59.2044](https://doi.org/10.1103/PhysRevLett.59.2044).
- [2] Jonathan P. Dowling. “Quantum optical metrology – the lowdown on high-N00N states.” In: *Contemporary Physics* 49.2 (2008), pp. 125–143. doi: [10.1080/00107510802091298](https://doi.org/10.1080/00107510802091298).
- [3] V. Giovannetti, S. Lloyd, and L. Maccone. “Quantum-Enhanced Measurements: Beating the Standard Quantum Limit.” In: *Science* 306.5700 (2004), pp. 1330–1336. doi: [10.1126/science.1104149](https://doi.org/10.1126/science.1104149).
- [4] M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg. “Super-resolving phase measurements with a multiphoton entangled state.” In: *Nature* 429 (2004), pp. 161–164. doi: [10.1038/nature02493](https://doi.org/10.1038/nature02493).
- [5] Pieter Kok, Hwang Lee, and Jonathan P. Dowling. “Creation of large-photon-number path entanglement conditioned on photodetection.” In: *Phys. Rev. A* 65 (5 Apr. 2002), p. 052104. doi: [10.1103/PhysRevA.65.052104](https://doi.org/10.1103/PhysRevA.65.052104). URL: <https://link.aps.org/doi/10.1103/PhysRevA.65.052104>.

¹This protocol was independently derived by Ref. [5]. Here I considered the even case of $N = 2^k$.