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A p p e n d i x B

STATISTICAL ANALYSIS OF SQUEEZING

Here I describe the analytical methods we used to estimate the amount of squeezing
measured with the on-chip balanced homodyne detectors in Chapters 2 and 6. First, I
summarize common techniques for the measurement and analysis of squeezed light.
I then motivate a statistical approach to the analysis of squeezed light. I introduce a
statistical estimator for squeezing and antisqueezing levels that is robust to noise. I
validate this estimator by developing a theoretical model, conducting experimental
tests with a fiber-optic setup, and performing numerical simulations over the range
of efficiency and squeezing parameters used in the on-chip squeezing experiments.

B.1 Background
Balanced homodyne detection is a standard measurement technique for the character-
ization of squeezed light [1]. A typical setup for the measurement of squeezed light
is shown in Fig. B.1, where the signal at the output of balanced homodyne detector
is proportional to the quadrature of the input optical field. There are two common
approaches to the analysis of squeezing with balanced homodyne detection [1]. In
the time-domain approach, output current or voltage statistics are accumulated over
time with a time-resolving device, such as an oscilloscope, and quadrature statistics
of the optical field are calculated in post-processing. In the frequency-domain ap-
proach, the output noise power spectrum is measured with an electronic spectrum
analyzer, providing a direct measurement of a signal proportional to the quadrature
variance of the optical field.

Squeezing can be characterized in the time-domain approach by acquiring quadra-
ture samples for known phases over many rotations and performing quantum state
tomography [2]. With optical homodyne tomography [3], the Wigner function of
the squeezed state can be estimated by applying a reconstruction algorithm such as
an inverse Radon transformation, maximum-entropy reconstruction, or maximum-
likelihood estimation to time-domain data [4]. The squeezing and antisqueezing
levels can be estimated by comparing the reconstructed Wigner function of the
squeezed state to that of the vacuum state. In particular, the squeezing parameter
and efficiency can be found from a fit to the Wigner function of the squeezed state [5].
However, these approaches are computationally intensive and depend on assump-
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Figure B.1: Measurement of squeezed light with balanced homodyne detection.
Squeezed light (signal) is interfered with strong local oscillator (LO) in a coherent
state by a 50:50 beamsplitter (BS). A phase shifter on the LO controls the relative
phase (𝜃) of the signal and LO. The mixed fields are detected with a balanced
homodyne detector (BHD). The output current is amplified by a transimpedance
amplifier (TIA), and the output voltage is sent to a signal analyzer, such as an
oscilloscope or electronic spectrum analyzer.

tions in the reconstruction algorithm. While detection efficiency can be corrected
for by means of an inverse Bernoulli transform [6], performance of such algorithms
suffer for high detection loss. Moreover, numerical artifacts such as ripples in the
reconstructed Wigner functions can obscure the squeezing level estimation [7].

With data measured in the time or spectral domain, squeezing and antisqueezing
levels can be estimated from the minima and maxima of the normalized quadrature
variances relative to the shot noise level. By fixing the relative phase between
the LO and signal, sample quadrature variances in the time-domain approach or
noise powers in the frequency-domain approach can be averaged over time to obtain
squeezing or antisqueezing level estimates [1, 8]. Phase noise from stochastic phase
fluctuations introduced in the measurement setup or imperfect phase-locking can
result in averaging over various quadrature phases over the measurement time, which
degrades the accuracy of squeezing estimation [9]. Alternatively, by modulating
the phase of the LO, peak search methods may be applied to extract the squeezing
levels [10, 5]. However, peak-searching methods are known to introduce statistical
bias in the presence of noise, which can can skew the estimation of squeezing and
antisqueezing levels in the presence of experimental noise sources [11, 12].

Here I introduce a method for the estimation of squeezing based on the probability
density function of the quadrature sample variances. In Section B.2, I review
balanced homodyne detection of squeezed light. I illustrate the observation of
squeezing in both approaches by performing numerical simulations of squeezing in
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the time-domain approach and experimental detection of squeezing in the frequency
domain approach. In Section B.3, I develop a theoretical model for the probability
density function of squeezed quadrature variances over a uniform phase distribution
that accounts for sampling noise. In Section B.4, I demonstrate how the inflection
points of the probability distribution of quadrature sample variances can be used as
estimators of squeezing and antisqueezing. This approach allows for the estimation
of squeezing without phase locking, in the presence of experimental noise sources
such as phase and sampling noise. I then illustrate this method with numerical
simulations and experimental measurements of squeezed light. This method is
suitable for estimating squeezing levels comparable to the distribution of shot noise
powers, relevant in the limit of low squeezing strength and high measurement loss.

B.2 Measurement of squeezing
Balanced homodyne detection
In balanced homodyne detection, squeezed light is mixed with a strong local oscilla-
tor and sent to a balanced homodyne detector (BHD). The output signal is a current
or voltage proportional to the phase-dependent quadrature, 𝑄̂𝜃 , of the signal field,

𝑣̂(𝜃) ∝ 𝛽𝑄̂𝜃 , (B.1)

where the quadrature angle, 𝜃, is the relative phase of the LO and the signal, 𝛽 is
the LO amplitude, and

𝑄̂𝜃 =
1
√

2
(𝑎̂𝑒−𝑖𝜃 + 𝑎̂†𝑒𝑖𝜃) = 𝑄̂ cos 𝜃 + 𝑃̂ sin 𝜃, (B.2)

where 𝑎̂ is the signal field and 𝑄̂ and 𝑃̂ are the canonical quadrature observables
satisfying [𝑄̂, 𝑃̂] = 𝑖 [1, 13].

The output signal is sent to a signal analyzer that measures the time or frequency
response of the voltages. Each voltage corresponds to a quadrature observable 𝑄𝜃 ,
the eigenvalue of 𝑄̂𝜃 with eigenstate |𝑄𝜃⟩. For a signal field in a Gaussian state |𝜓⟩,
such as a vacuum, thermal, or squeezed state [14, 13], the quadrature observables
are normally distributed according to,

|𝜓(𝑄𝜃) |2 =
1

√
2𝜋⟨Δ𝑄̂2

𝜃
⟩

exp
©­­«−

(
𝑄𝜃 − ⟨𝑄̂𝜃⟩
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2⟨Δ𝑄̂2
𝜃
⟩

ª®®¬ (B.3)

where 𝜓(𝑄𝜃) = ⟨𝑄𝜃 |𝜓⟩ is the wavefunction in the phase quadrature basis, ⟨𝑄̂𝜃⟩ =
⟨𝜓 |𝑄̂𝜃 |𝜓⟩ is the quadrature mean and ⟨Δ𝑄̂2

𝜃
⟩ = ⟨𝜓 |Δ𝑄̂2

𝜃
|𝜓⟩ is the quadrature vari-

ance.
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For a field in a vacuum state, ⟨𝑄̂𝜃⟩ = 0 and ⟨Δ𝑄̂2
𝜃
⟩ = 1/2. For a field in a squeezed

state, the quadrature variance is given by,

⟨Δ𝑄̂2
𝜃⟩sq =

1
2
(𝑒−2𝑟 cos2 𝜃 + 𝑒2𝑟 sin2 𝜃), (B.4)

where 𝑟 is the squeezing parameter. Decoherence is modeled as a virtual beamsplit-
ter transformation that mixes the signal field with a vacuum mode,

𝑎̂ ↦→ √
𝜂𝑎̂ +

√︁
1 − 𝜂𝑎̂vac, (B.5)

where 𝜂 is the transmittance of the virtual beamsplitter. In the presence of decoher-
ence, the quadrature variance of a squeezed vacuum state becomes,

⟨Δ𝑄̂2
𝜃⟩sq =

𝜂

2
(𝑒−2𝑟 cos2 𝜃 + 𝑒2𝑟 sin2 𝜃) + 1 − 𝜂

2
, (B.6)

where 𝜂 represents the total measurement efficiency include effects of optical loss
and electronic noise [15].

The amount of squeezing can be characterized experimentally by comparing the
variance of the quadratures measured with a squeezed state input to that measured
with a vacuum state input,

⟨Δ𝑄̂2
𝜃
⟩sq

⟨Δ𝑄̂2
𝜃
⟩vac

= 𝜂(𝑒−2𝑟 cos2 𝜃 + 𝑒2𝑟 sin2 𝜃) + 1 − 𝜂, (B.7)

where the squeezing and antisqueezing levels relative to the shot noise level, 𝜂𝑒±2𝑟 +
1 − 𝜂, occur at 𝜃 = 0 and 𝜃 = 𝜋/2, respectively.

Time-domain approach
Using a time-domain analyzer in the setup in Fig. B.1, squeezing can be charac-
terized by sweeping the LO phase and accumulating voltage statistics for various
phases. A numerical simulation of quadrature samples accumulated over time for a
linear phase ramp applied to the LO is shown in Fig. B.2. An array of 105 phases
is generated from 0 to 4𝜋. For each phase, a quadrature observable is sampled from
a Gaussian distribution described by Eq. B.3 to obtain a total set of 105 quadrature
samples. The samples for a vacuum state (orange) and a squeezed vacuum state
(blue) with 𝑟 = 1 and 𝜂 = 0.8 are shown in Fig. B.2a. To obtain sample mean
and variances, the total sample set is divided into subsets of 1000 samples, and the
mean and variance is calculated for each subset. The sample mean and variance as
function of time (phase) are shown in Fig. B.2b and c, respectively.
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Figure B.2: Numerical simulation of quadrature statistics obtained from time-
domain analyzer for a linear phase ramp applied to the LO. a) Quadrature samples
as a function of time (phase) for a vacuum state (orange) and a squeezed vacuum
state with 𝑟 = 1 and 𝜂 = 0.8 (blue). b) Sample means and c) normalized sample
variances as a function of time. The sample variances are normalized to the mean
of the vacuum sample variances. The solid lines in b) and c) are the corresponding
analytic predictions for the quadrature means and variances.
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Frequency domain approach
Alternatively, by using an electronic spectrum analyzer in the setup of Fig. B.1, noise
power levels can be measured directly in real-time. Squeezed vacuum states of light
are experimentally generated and the noise powers are measured over time using a
fiber-coupled BHD. The experimental setup is shown in Fig. B.3a. Laser light at
telecom wavelength of 1550 nm is split into signal path and local oscillator (LO) path.
In the signal path, the light amplified by an erbium doped fiber amplifier (EDFA)
and upconverted to 775 nm by second harmonic generation (SHG) by a periodically
poled lithium niobate (PPLN) waveguide. The 775 nm light is used as a pump for
spontaneous parametric down conversion (SPDC) by another PPLN waveguide to
generate squeezed vacuum light. The pump power is controlled by tuning the gain
of EDFA to vary the amount of squeezing. The squeezing parameter 𝑟 = 𝜇

√
𝑃 is

related to the square root of the pump power (P) by the proportionality constant 𝜇,
which depends on the strength of the nonlinearity of the PPLN waveguide. A PPLN
waveguide with 𝜇 = 0.038 [mW]−1/2 is used for SPDC. The squeezed light is sent
through an isolator, which acts as a filter for residual 775 nm pump light and rejects
backreflected light, followed by interference with the LO at a 50:50 beamsplitter for
balanced homodyne detection. In the LO path, laser light is phase modulated by a
lithium niobate electro-optic modulator to vary the relative phase between the signal
and LO. The outputs of BS are sent to fiber-coupled balanced photodiodes, and the
RF output of the BHD is sent to a RF spectrum analyzer.

Examples of noise power traces measured with the RF spectrum analyzer are shown
in Fig. B.3 for various squeezing parameters and video bandwidths (VBWs). The
blue traces correspond to squeezed vacuum states and the orange traces correspond to
the vacuum state. Squeezed vacuum states are generated with squeezing parameters
of 𝑟 = 0.35 in Fig. B.3b,c and 𝑟 = 0.06 in Fig. B.3d,e, corresponding to 3.04 dB
and 0.52 dB generated squeezing, respectively, with a net measurement efficiency is
𝜂 = 0.326. A 0−2𝜋 phase ramp at a 1 Hz modulation frequency is applied to the LO.
The non-uniform phase fluctuations are due to thermal and mechanical drifts in the
fiber optics, which introduce relative phase shifts between the LO and signal paths.
A peak search algorithm is applied to extract minima and maxima in the squeezing
data relative to the mean shot noise level. The squeezing and antisqueezing levels
are obtained from the arithmetic mean of the minima and maxima, respectively
(red dashed lines). The mean squeezing (antisqueezing) levels are b) −0.75 ± 0.02
(1.16 ± 0.01) dB, c) −0.78 ± 0.03 (1.20 ± 0.02) dB, d) −0.17 ± 0.01 (0.18 ± 0.01)
dB, and e) −0.21 ± 0.01 (0.21 ± 0.01) dB relative to the mean shot noise level.
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Figure B.3: Generation and measurement of squeezed light. a) Experimental
setup. EDFA: erbium doped fiber amplifier, SHG: second harmonic generation,
SPDC: spontaneous parametric downconversion, PBS: polarizing beamsplitter, BS:
polarization maintaining beamsplitter, BHD: balanced homodyne detection, TIA:
transimpedance amplifier. b-e) Experimental noise power traces of squeezed light
measured with an RF spectrum analyzer. The traces are measured on zero span
mode with a central frequency of 8 MHz, a resolution bandwidth (RBW) of 2 MHz,
and sampling rate of 10 kHz over 10 seconds. The traces in b) and d) are measured
with a video bandwidth (VBW) of 30 Hz and the traces in c) and e) are measured
with a VBW of 100 Hz. The squeezing parameters are 𝑟 = 0.35 for b) and c) and
𝑟 = 0.06 for d) and e), with a net measurement efficiency of 𝜂 = 0.326. Peaks in the
squeezed light data extracted using a peak search algorithm are indicated with red
markers, and the mean of the markers are indicated with dashed red lines. The same
peak search algorithm is applied to the vacuum data, where the mean peak power
levels are indicated by dashed black lines. The solid black lines are the mean power
levels of the vacuum data.
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The uncertainties on the squeezing and antisqueezing estimates are obtained from
the standard deviation of minima and maxima, respectively. The same algorithm
is applied to the vacuum data to obtain lower and upper bounds on the shot noise
power distribution (black dashed lines). The peak search algorithm estimates upper
and lower bounds of ±0.04 dB and ±0.07 dB for vacuum data taken with 30Hz and
100Hz VBW, respectively.

Shot noise power distribution
In the aforementioned methods, stable measurement of the vacuum state, that is,
the shot noise level, is required for accurate estimation of squeezing. While the
quadrature variance of the vacuum state is theoretically a constant (1/2), in practice,
the measured variances are distributed as seen in Fig. B.3. The variance of the shot
noise power distribution sets the limit on the minimum amount of squeezing that
can be resolved. One possible cause for the distribution in the vacuum quadrature
variances observed experimentally is optical gain instability, for example from im-
perfect cancellation of classical noise such as LO power fluctuations. This could
be due to unbalanced detectors or imperfect LO and signal interference. Prominent
in the low squeezing and high measurement loss regime, LO power fluctuations
can cause significant variations in the shot noise level even for high squeezing and
low measurement loss [16]. Such instabilities can be mitigated by optimizing the
common mode rejection ratio (CMRR) [8], with up to 90 dB CMRR (Chapter 6)
demonstrated by us in the literature.

Another cause for shot noise level uncertainty is sampling noise. Sampling noise
bounds the width of the shot noise power distribution and sets the minimum amount
of squeezing that can be resolved experimentally. For the time-domain approach, the
quadrature sample sizes are determined by the sampling rate of the measurement.
The sampling rate should be much higher than the LO phase modulations in order
to obtain sufficiently high sample sizes for the calculation of the sample variances
over multiple phases. In the frequency-domain approach, the sampling bandwidth is
controlled with the amount of spectral and temporal filtering performed by the IF and
video filters inside the spectrum analyzer [17]. Filtering can also be implemented
in the time-domain approach with digital signal processing.

The effect of the shot noise power distribution on the estimation of squeezing levels
is illustrated by the frequency-domain data in Fig. B.3. Since the measurements
are performed with ≥ 30 dB CMRR, corresponding to shot noise power levels
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with ≤ 0.1% power fluctuations, optical gain instability is negligible relative to
the sampling bandwidth. Peak searching can provide reasonable estimates for the
squeezing and antisqueezing levels when the widths of the distributions are small
relative to the squeezing and antisqueezing levels. However, for non-negligible
widths, peak search methods overestimate the squeezing and antisqueezing levels.
The overestimation in the squeezing and antisqueezing levels becomes clear for low
squeezing parameters in Fig. B.3 d and e. The estimated squeezing levels depend
on the width of the shot noise power distribution and are capped at the upper and
lower bounds of the vacuum data, set by the sampling bandwidths.

B.3 Theoretical model
Sampling noise
To account for the effect of sampling uncertainty on the estimation of squeezing, I
develop a theoretical model for the distribution of squeezed quadrature variance in
the presence of sampling noise. Since the quadrature observables of Gaussian states
are normally distributed, Cochran’s theorem can be applied to find the probability
density functions (PDFs) of the sample quadrature variance distributions for the
vacuum state and squeezed state at a fixed phase. Following Cochran’s theorem
[18], the sample variance of 𝑛 samples of a normal distribution with standard
deviation 𝜎 is a random variable (𝑆2) that is chi-squared distributed,

𝑆2 ∼ Δ𝑄2 𝜒
2
𝑛−1

𝑛 − 1
, (B.8)

where 𝜒2
𝑛−1 is the chi-squared distribution with 𝑛 − 1 degrees of freedom. The

sample variance distribution has mean 𝑄2 and approaches a normal distribution for
large 𝑛.

In the frequency-domain approach, the noise powers are distributed as Eq. B.8,
where the width of the distribution is set by sampling bandwidths, e.g. RBW and
VBW. The powers acquired by spectrum analyzers are commonly reported in decibel
(dB) scale. A statistical feature of this is that the distribution of noise powers in
logarithmic scale converges faster to a normal distribution than in linear scale, and
the width of the distribution is independent of the power level, see Fig. B.4e and f.
This follows from Eq. B.8, as ln

(
𝜒2) converges to normality much faster than 𝜒2,

and ln 𝑆2 − ln𝜎2 is independent of 𝜎2 [19].

In Fig. B.4a-d, I compare the PDFs obtained by from Eq. B.8 with a numerical
simulation in the time-domain approach. With a sample size of 𝑛 = 100, the
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Figure B.4: Sample quadrature variance statistics in linear and logarithmic scales.
a) Same simulation as in Fig. B.2 but with a 5𝑒6 quadrature samples of the vacuum
state (orange) and squeezed vacuum state with 𝑟 = 1 and 𝜂 = 0.8 (blue) over
a period. Sample variances are reported relative to the mean shot noise level.
Sample variances are calculated over subsets of 𝑛 = 100 samples. Histograms of
the sample variances for b) the squeezed state at 𝜃 = 𝜋/2, c) the vacuum state, and
d) the squeezed state at 𝜃 = 𝜋. The black lines are the corresponding theoretical
predictions from obtained from Cochran’s theorem in Eq. B.8. e) Simulation in a)
plotted in logarithmic scale, relative to the mean shot noise level. f) Histograms
of the log-scale sample variances for (left) the squeezed state at 𝜃 = 𝜋/2, (middle)
the vacuum state, and (right) the squeezed state at 𝜃 = 𝜋. The histograms are fitted
to Gaussian distributions, each with standard deviation 𝜎 = 0.62 dB. The log-scale
histograms approach normality faster than the linear-scale histograms and have the
same standard deviation for each phase, unlike in linear scale.

sample variances of the vacuum state are approximately normally distributed. For
the squeezed state, the sample variances are approximately normally distributed for
each phase, where the width scales with 𝑄2 = ⟨𝑄̂2

𝜃
⟩sq/⟨𝑄̂2

𝜃
⟩vac.

Probability density function
Let 𝑋 ≡ 𝑆2

𝜃
/⟨Δ𝑄̂2

𝜃
⟩vac denote the quadrature sample variance, 𝑆2

𝜃
, normalized by the

quadrature variance of the vacuum state, ⟨Δ𝑄̂2
𝜃
⟩vac = 1/4. 𝑋 is a random variable

whose probability distribution (PDF), 𝑓 (𝑋), is given by 𝑓 (𝑋) = 𝛿(𝑋 − 1) for the
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Figure B.5: Theoretical modeling for PDFs of logarithmic-scale quadrature vari-
ances sampled from a uniform phase distribution. a) PDF model for 𝑟 = 1, 𝜂 = 0.8,
and a shot noise power distribution with a standard deviation of 𝜎 = 0.62 dB. The
measured PDF, 𝑝(𝑥meas), is modeled as the convolution of the analytical squeezed
vacuum PDF for uniform phase distribution, ℎ(𝑥), with a Gaussian noise distribu-
tion, 𝑔(𝑥noise). The models for 𝑔(𝑥noise) and 𝑝(𝑥meas) are compared with histograms
from a time-domain simulation of squeezed vacuum quadrature statistics for 𝑟 = 1,
𝜂 = 0.8, and 𝜎 = 0.62 dB. The inflection points of 𝑔(𝑥noise) and 𝑝(𝑥meas) are
indicated with black and blue crosses, respectively. b) Derivatives of the PDFs for
𝑔(𝑥noise) and 𝑝(𝑥meas). The inflection points are identified from the left-most maxi-
mum and right-most minimum in the PDF derivatives, are indicated with black and
blue crosses for 𝑔(𝑥noise) and 𝑝(𝑥meas), respectively. c) Measured squeezed vacuum
PDF, 𝑝(𝑥meas), for various squeezing parameters, unit efficiency, and 𝜎 = 0.62 dB.
d) Measured squeezed vacuum PDF, 𝑝(𝑥meas), for 𝑟 = 1, various efficiencies, and
𝜎 = 0.62 dB.
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vacuum state and

𝑓 (𝑋) = 1
𝜋
√︁
(𝜂 sinh 2𝑟)2 − (𝜂 cosh 2𝑟 + 1 − 𝜂 − 𝑋)2

(B.9)

for the squeezed vacuum state. Eq. B.9 assumes that the quadratures are sampled
over a uniform phase distribution.

To account for measurement noise, I model the measured quadrature sample variance
as the random variable 𝑥meas = 𝑥 + 𝑥noise, where 𝑥 ≡ 10 log10(𝑋) is the random
variable for the quadrature sample variance in logarithmic scale, whose PDF is
denoted by ℎ(𝑥), and 𝑥noise is the random variable that models the measurement
noise, whose PDF is a Gaussian distribution with standard deviation 𝜎,

𝑔(𝑥noise) =
1

√
2𝜋𝜎

exp

(
−𝑥2

noise
2𝜎2

)
. (B.10)

Since 𝑥 and 𝑥noise are assumed to be mutually independent, the PDF of 𝑥meas,
𝑝(𝑥meas), is the convolution of ℎ(𝑥) and 𝑔(𝑥noise),

𝑝(𝑥meas) = (ℎ ∗ 𝑔) (𝑥meas) =
∫ ∞

−∞
ℎ(𝑥)𝑔(𝑥meas − 𝑥)𝑑𝑥. (B.11)

For the vacuum state, ℎ(𝑥) = 𝛿(𝑥). Therefore, the measured PDF of the vacuum
state is 𝑝(𝑥meas) = 𝑔(𝑥meas), which corresponds to the shot noise power distribution.
For the squeezed vacuum state, ℎ(𝑥) = 𝑓 (𝑋 (𝑥)) |𝑋′(𝑥) |, where 𝑓 (𝑋) is given by Eq.
B.9 and 𝑋 (𝑥) = 10𝑥/10.

The convolved PDFs of the logarithmic sample variance for the vacuum state,
𝑔(𝑥noise), and squeezed vacuum state, 𝑝(𝑥meas), for 𝑟 = 1 and 𝜂 = 0.8 are shown
in Fig. B.5a. The convolved PDFs are compared with the noiseless PDF, ℎ(𝑥),
for the squeezed vacuum state. In ℎ(𝑥), the squeezing and antisqueezing levels
are well-defined by the sharp edges of the distribution, due to the finite domain of
Eq. B.9. The convolution of ℎ(𝑥) with 𝑔(𝑥noise) smears out the PDF, causing the
squeezing and antisqueezing levels to be poorly defined by the blurred edges. The
convolved PDFs are plotted in Fig. B.5c for various squeezing parameters with unit
efficiency and B.5d various efficiencies with squeezing parameter 𝑟 = 1.

B.4 Estimation of squeezing
Estimation procedure
The left and right boundaries of the quadrature sample variance PDF are a natural
choice of estimator for the squeezing and antisqueezing levels in the noiseless limit,
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since the arcsine distribution of squeezed quadrature variances is sharply bounded
(see Fig. B.5a). Here I use the inflection points of the quadrature sample variance
PDF as estimators for the squeezing and antisqueezing levels in the presence of
noise. These estimators provide a well-defined measure of the width of PDFs in
the presence of unknown noise sources, motivated by the definition of the standard
deviation for normal distributions. The standard deviation can be defined from
the inflection points of a normal distribution, which are a standard deviation away
from the mean of the distribution. Using the inflection points at the left and right
boundaries extends the notion of standard deviation for non-Gaussian distributions
such as 𝑝(𝑥meas). The estimation procedure is illustrated with 𝑝(𝑥meas) in Fig. B.5a,
where the inflection points used as estimates for the squeezing and antisqueezing
levels are indicated with blue dashed lines. The squeezing (antisqueezing) level
estimates are found by identifying the location of left-most maximum (right-most
minimum) in the derivative of 𝑝(𝑥meas) in Fig. B.5b.

Bias of estimators
Let 𝑥− and 𝑥+ represent the estimators of the squeezing (𝑥−) and antisqueezing (𝑥+)
levels, where 𝑥± correspond to the inflection points of 𝑝(𝑥meas). For finite 𝜎, the
Gaussian blurring shifts the inflection points from 𝑥− and 𝑥+ by an amount that
scales with 𝜎. The biases of the estimators are 𝐸 (𝑥±) − 𝑥± = ±𝑐±𝜎, where 𝑐− and
𝑐+ are constants. For distributions that are Gaussian convolutions, 𝑐± are typically
less than one, depending on the behavior of distribution near the inflection points
[20]. In Fig. B.6a, the analytical squeezing and antisqueezing levels for squeezed
states (purple) are compared with the estimates obtained from the inflection points
of the logarithmic squeezed quadrature variance PDFs convolved with a Gaussian
distribution with 𝜎 = 0.62 dB (blue). The bias of the estimates are less than 𝜎.
In Fig. B.6b, the bias, or the percent difference of the (anti)squeezing estimates
from the analytical (anti)squeezing levels, are plotted as a function of squeezing
parameter for various efficiencies. The dashed lines correspond to ±𝜎 from the
analytical values. For high squeezing parameters, the biases approach a constant,
approximately ±𝜎/2. For squeezing parameters and efficiencies corresponding to
squeezing and antisqueezing levels on the order of 𝜎, the biases reach minima of
approximately ±𝜎/3. For low squeezing parameters, the biases approach ±𝜎. This
behavior is physically meaningful as the width of 𝑔(𝑥noise) represents a statistical
noise floor. In the large sample size limit with 𝜎 → 0, the biases approach zero
and the inflection points coincide with the true squeezing and antisqueezing levels
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Figure B.6: Simulation of squeezing estimator bias. a) Noise power levels nor-
malized to the mean shot noise level (black) as a function of squeezing parameter.
The uncertainty in the shot noise level is depicted by the gray shaded region cor-
responding to ±𝜎, where 𝜎 = 0.62 dB is the standard deviation of the shot noise
power distribution. The squeezing (𝑥−) and antisqueezing (𝑥+) levels of a squeezed
vacuum state are plotted in purple for unit measurement efficiency. The blue curves
are the squeezing and antisqueezing level estimates for the observed squeezed vac-
uum state obtained from the inflection points of measured power distribution. The
squeezing and antisqueezing estimates are within +𝜎 of the antisqueezing level and
−𝜎 of the squeezing level, depicted by the blue shaded regions. b) The percent bias
of the squeezing (𝑥−) and antisqueezing (𝑥+) estimates as a function of squeezing
parameter, calculated as 100 × (𝐸 (𝑥±) − 𝑥±)/𝑥±.

as 𝑝(𝑥meas) → ℎ(𝑥meas).

Experimental results
The estimation procedure is applied to the experimental data from Fig. B.3b-e in Fig.
B.7. The data are plotted again for reference in the first row. The histograms for the
squeezed states (light blue) and vacuum states (orange) are shown in the second row.
The kernal density estimates (KDEs) for the PDFs of the squeezed and vacuum states
are plotted as the blue and black solid lines, respectively. The theoretical models
for the squeezed state PDFs assuming a uniform phase distribution are plotted in
purple. The theoretical models are calculated from Eq. B.11, where the integration
is performed numerically.

To find the estimates for the squeezing and antisqueezing levels, the derivatives of
the KDEs are calculated numerically. The derivatives of the KDEs of the squeezed
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Figure B.7: Squeezing estimation with the frequency-domain measurements of
squeezed light from Fig. B.3 for a) 𝑟 = 0.35, VBW = 30 Hz, b) 𝑟 = 0.35, VBW
= 100 Hz, c) 𝑟 = 0.06, VBW = 30 Hz, and d) 𝑟 = 0.06, VBW = 100 Hz. First
row: Noise power level traces of squeezed vacuum (light blue) and vacuum (orange)
states relative to the mean shot noise level. The red dashed lines correspond to
estimates of squeezing and antisqueezing levels from peak searching. The dark
blue dashed lines correspond to the estimates of squeezing and antisqueezing levels
from the inflection points of the noise power PDF of the squeezed vacuum data.
The black dashed lines correspond to the inflection points of the shot noise power
distribution. Second row: Histograms of the squeezed vacuum noise powers (light
blue) and shot noise powers (orange). The Gaussian kernal density estimates (KDE)
for PDFs of the squeezed vacuum and vacuum noise powers are shown in dark blue
and black, respectively. The theoretical model for the squeezed vacuum PDF with
the experimental squeezing parameter and system efficiency for a uniform phased
distribution is shown in red. The inflection points of the squeezed vacuum KDE,
vacuum KDE, and model are indicated with dark blue, black, and purple crosses,
respectively. The squeezing and antisqueezing estimates from peak searching are
indicated with red crosses. The histograms, KDEs, and model are rescaled to the
maximum of the squeezed vacuum KDE. Third row: Derivatives of the squeezed
vacuum KDE (blue), vacuum KDE (black), and theoretical model (purple), rescaled
to the maximum of the vacuum KDE derivative, with the inflection points indicated
with crosses.
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states (blue) and vacuum states (black) are shown in the third row. The theoretical
models for the squeezed state PDFs with uniform phase distribution are shown in
purple. The theoretical models are calculated using the differentiation of convolution
property,

𝑑𝑝(𝑥meas)
𝑑𝑥meas

=

∫ ∞

−∞

𝑥 − 𝑥meas

𝜎2 ℎ(𝑥)𝑔(𝑥meas − 𝑥)𝑑𝑥, (B.12)

where the integration is performed numerically. For the squeezed state, the squeez-
ing (antisqueezing) level is estimated as the noise power of the left-most maximum
(right-most minimum). The same procedure is applied to the vacuum state KDE
in order to obtain the noise floor. The procedure is also applied to the theoretical
model to obtain the estimates for a uniform phase distribution.

In the first and second row, I compare the results of this procedure with those
of the peak search algorithm from Fig. B.3. The squeezing and antisqueezing
level estimates from the procedure and the peak search method are indicated with
blue and red dashed lines, respectively. The shot noise floors are indicated with
black dashed lines. The improvement over the peak search method is apparent
for the low squeezing parameters, when the shot noise floor becomes significant.
The peak search clearly overestimates the squeezing and antisqueezing levels, with
estimates corresponding to the extrema of the noise powers as seen in the second
row. Moreover, for the same squeezing parameter and effective efficiency, the peak
search estimates change with the VBW setting, i.e. the standard deviation of the
vacuum PDF, whereas the estimates from the procedure remain the same. This
is because the peak search method relies on the tails of the PDF, and is therefore
strongly influenced by the shape of the distribution. To demonstrate the robustness
of this approach to experimental noise, I compare the estimates of this method to
those of the theoretical model, indicated with purple dashed lines in the second
row. Despite the non-uniformities in the KDEs, the estimates match closely with
the theoretical model.

B.5 Discussion
I have demonstrated a method for estimating the squeezing and antisqueezing levels
from the probability distribution of squeezed quadrature sample variances. The
left and rightmost inflection points of the distribution are used as estimators of
squeezing and antisqueezing. The squeezing parameter and system efficiency can
estimated from the squeezing and antisqueezing levels from Eq. B.7. This method
enables the estimation of squeezing in the the presence of high degrees of sampling
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and phase noise and for low efficiencies, where the performance of characterization
methods such as peak searching and optical homodyne tomography suffer. These
estimators provide a well-defined measure for the left and right edges of the squeezed
quadrature distribution in the presence of experimental noise sources such as phase
and sampling noise, which blur the edges of the distribution. The bias of the
estimators is typically within a standard deviation of the shot noise distribution and
approaches zero for small shot noise distributions, in this case in the large sample
size limit. This method is supported by theoretical modeling and experimental
results.
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