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Appendix D

ON-CHIP CLUSTER STATE GENERATION

To illustrate the potential of integrated optoelectronic systems for quantum infor-
mation processing, we perform a proof-of-concept demonstration of cluster state
generation in a measurement-based approach [1, 2] using the QPA system of Chap-
ter [0] Cluster states are a class of entangled graph states that form a resource
for universal measurement-based quantum computation [3]. Continuous-variable
Gaussian cluster states can be generated by interfering squeezed states in linear
optical networks [4, 5]. Here, we generate two-mode cluster state correlations by
implementing a virtual linear optical network after optoelectronic downconversion

with an RF circuit.

Cluster states of up to eight modes have been demonstrated with bulk multipixel
homodyne detection systems by programming virtual optical networks in digital
post-processing [[1]]. The virtual networks mix different spatial regions in a beam of
light to match the detection basis to an entangled spatial mode basis. This method of
entanglement generation allows for highly compact and versatile implementations
of Gaussian quantum computation in the measurement-based model [2]], which can
be scaled to a higher number of modes by interfacing quantum PICs like the QPA
chip with special-purpose RF or microwave ICs.

D.1 Experiment

The quantum circuit architecture used in the experiment is shown in Fig. [D.Th. A
squeezed state is transmitted over free space to the QPA chip, and a phase ramp
at a modulation frequency of 0.5 Hz is applied to the LO before coupling it to the
chip. The RF outputs of the QRXs in each half of the array are sent to a 16:1 power
combiner. Beamforming is performed on all 32 channels such that the two outputs
of the power combiners are in phase. To improve the geometric efficiency, the
outermost 12 channels are disconnected from each 16:1 power combiner, for a total
of 8 pixel modes in Fig. [D.Th. The outputs of the power combiners are digitized at
a sampling rate of 100 MSa/s, and an RF beamsplitter transformation is emulated

on the digitized quadratures (see Methods).

With our architecture in Fig. [D.Th, the overall transformation on the input field can
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Figure D.1: Quantum optoelectronic processing. a) Optoelectronic circuit archi-
tecture for entanglement generation. The free space operation (U) corresponds to
the change-of-basis matrix mapping the spatial modes of the input state to the pixel
modes, where p represents the spatial coordinates in the aperture plane of the chip.
Each colored line represents a matrix element corresponding to the overlap of an
antenna and pixel mode function. A phase shifter ¢; is applied to each pixel mode,
and each half of the array is combined in a 16:1 RF power combiner (G). The
output voltages of the power combiners are digitized and followed by a beamsplitter
transformation (S5). b) Emulated optical circuit for two-mode Gaussian cluster state
generation. c) The cluster state inseparability (/) measured over time for a linear
phase ramp. The data for the squeezed vacuum and vacuum states are plotted in
blue and gray, respectively. The solid lines are the analytical expectations with a

sinusoidal fit to the squeezed data.

be summarized as,
dout = S(G & G)DUdy, (D.1)
where U is the free-space change-of-basis unitary mapping the input modes to pixel

modes, D = diag(e'?!, e'?2, ..)),

GoG = (D.2)
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111 100()?

is the gain matrix of the RF power combiners, and

S:i%%i) (D.3)
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is the beamsplitter matrix. The transformation of § is performed on the digitized
quadratures as an emulation of an RF directional coupler, where complex matrix
elements are implemented as a /2 phase shift. For a two-mode Gaussian cluster

state generated with S, the cluster state correlations are given by,

Var(Q3(0) — P4(6)) = Var(01(6)), (D.4)
Var(Q4(8) — P3(8)) = Var(02(6)), (D.5)

where Var(Q;(0)) fori = 1,2 is given by,

. -
(AQF)sq = g(e_zr cos? 6 + e sin® ) + Tn

for squeezed modes, such that the right-hand side is zero at = 0 in the limit of
large squeezing parameter and low loss. The inseparability criterion required to

show cluster state entanglement is

I = Var(P4 — Q3) + Var(P3 - Q4) < 1, (D.6)

where Q;, P; are the quadrature operators for each cluster state mode denoted by

i = 3,4 in Fig. [D.1Ib, and the variances are relative to those of the vacuum state.

The quadrature correlations [ as a function of time are shown in Fig. [D.Ib. We
observe the sinusoidal signature expected for a rotation of the measurement basis

due to the LO phase modulation.

D.2 Cluster state inseparability

The minimum and maximum inseparability levels are estimated from the histograms
of the inseparabilities with the procedure in Appendix |B| The histogram and kernel
density estimate of the data in[D.Tk is shown in Fig. The estimates for the min.
and max. inseparabilities are 0.994 + 0.002 and 1.018 £ 0.002, respectively. The
sinusoidal fit in Fig. [D.Tk. is performed with the amplitude fixed by the minimum
and maximum inseparability estimates and the angular frequency (w) and phase
(¢) taken as floating parameters. We obtain fit parameters of w = 7.99 + 0.12 and
¢ =0.703 + 0.069.

D.3 Discussion
We estimate a maximum inseparability of / = 1.0176 + 0.0004 and a minimum

inseparability of / = 0.9948 +(0.0004. The resolution of the measured entanglement
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Figure D.2: Histogram of inseparability data in Fig. for squeezed vacuum
(blue) and vacuum (orange) states. The solid blue and orange lines are the kernel
density estimates. The min. and max. inseparability estimates are indicated with

blue crosses. The vacuum standard deviations are indicated with black crosses.

is enabled by the high precision and stability offered by the chip-scale optoelec-
tronics. We note that in our experiment, the inseparability given by Eq. has a
lower bound of 0.5 since the squeezed light was generated in a single mode. This
lower bound can be overcome by transmitting multiple squeezed modes to the chip,

allowing for the generation of large cluster states up to 32 modes.

Our demonstration show the potential for optoelectronic systems on-chip for appli-
cations in quantum information processing. More broadly, integrating quantum pho-
tonics with electronics in the same package offers novel engineering opportunities
in realizing large-scale room-temperature quantum systems. Coherent processing of
downconverted quantum optical information with RF or microwave integrated cir-
cuits could enable compact and low-loss optoelectronic approaches to measurement-
based quantum information processing, where certain linear operations are offloaded

to electronics, as a generalization of classical microwave photonics [|6].
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