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Appendix E

ANALYTICAL METHODS FOR MODELING REAL-WORLD
PHOTONIC QUANTUM TELEPORTATION

E.1 Analytical derivations of expressions

HOM interference visibility

We employ the characteristic function formalism described in Chapter[9|considering
the setup shown in Fig. [0.2] For this derivation, we use 7x7 block matrices with
2x?2 sub-matrices, with each sub-matrix representing correlations between different
optical modes. The first column of the block matrix represents the coherent state
mode; the third and fifth columns represent vacuum inputs at the virtual beamsplitters
with transmission ¢ to account for the mode indistiguishability, the second and sixth
columns represent the vacuum inputs at the 50:50 beamsplitter that are mixed with
the distinguishable parts of the modes; and the fourth and the seventh columns
represent the idler and signal modes of the TMSV state. We first describe the overall

state of the system after transmission losses, given by the block covariance matrix,

I 0 O 0 0 O 0
0 Ixo O 0 0 0 0
0 0 I 0 0 0 0
Yy=({0 0 0 (1+2n;p)Iaxa 0 0 2ypmsu(l+pos]|,
0 0 0 0 Lo 0 0
0 0 0 0 0 I 0
0 0 0 2yppu(l+wos 0 O (1+2n,1)
1 0 . s T
where 03 = 0 _1 . The displacement vectoris d = V2 (Re(a) Im(a) 0 ... 0) ,

with @ already accounting for loss in the coherent state channel. From here, we
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apply the mismatch matrix,

Vihye 0 1-¢Z 0 0 0 0
0 Ixx2 0 0 0 0 0
1-¢Z 0 iy 0 0 0 0
0 0 0 V Inxa 1-¢Z O 0 |,
0 0 0 NI=CZ I 0 0
0 0 0 0 0 Ixx O
0 0 0 0 0 0 I
and the beam splitting matrix,
Ix, O 0 Z O 0 0
0 Ik O 0 Z 0 0
| 0 0 Iy O 0 V4 0
— | Z 0 0 Ly O 0 0 ,
\/E X
0 Z 0 0 Ly O 0
0 0 Z 0 0 DI 0
0 0 0 0 0 0 V2L
0 -1 . ) .
where Z = L0 ) This now allows calculation of the twofold coincidence
probability,
Potold = Tr{p (1 = Iy y.c ® |0><0|a1 .3
]Ia] ,ap,ds,c ® |0><O|b| b2 b;
+I.® |0><0|a1,a2’a%b1,b2’b3 )}, (E.1)

and the threefold coincidence probability,

Pa-told = Tr{ " (1 = Luy ar.as.61,50,55 ® [0XO.

—Tpy by ® 1OX0IE,

~Luyayaze ® [OXO[5, .

+1p1 byby ® |O><0|a1 d2,a3.c

+Tay.azas ® [0XO15", .

+I.® |0><0|a1,a2,a3,b1,b2,b3
|O><O|a1,ag,az,bl,bg,bg,c )} (E-2)

where the subscripts a;, b;, and ¢, with i € {1,2,3}, represent the coherent state,

idler, and signal modes respectively. Note that the subscripts of the identity matrices
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indicate which modes are traced out for a given calculation. Using Eq. 0.14] we
calculate
2}’1

=
\/det (Vyrooya +1)

where x; represents the modes traced out and y; represents the remaining modes.
We now use this expression to calculate each of the terms in Egs. and
yielding

.....

exp(—|al?)
L +nip
exp (—|a|2 +

prsola(lal®, u, &omi) =1+

a2 +(1+42)nip) )
4 4+2n;p

9

2+nip
and

_lel?20+(1-2%) nin/2]
s e T+nju/2

2
- b b b ' 9 j = _2
pa-fold (||, i, £,m5.mi) 1+ 5 1+miu/2

e (1 = )i
+
(T +ni0) (1 +n5(1 = mg) pt + m5t)

el 201+(1-2%) (=ns) /2415 1]
e 1+(1=ns)n7;u/2+ns

L+ (1 —no)nin/2 +nep

+2

Teleportation fidelity

We now consider the setup of Fig. [0.2] Similar to the HOM visibility derivation, we
use 14x14 block matrices with 2X2 sub-matrices, with each sub-matrix representing
correlations between different optical modes. The first and the eight columns of
the block matrices represent the early and late coherent state modes; the fourth,
and eleventh columns represent the early and late idler modes; the seventh and
fourteenth columns represents the early and late signal mode; and the rest represents
the vacuum inputs at the virtual and the 50:50 beamsplitters. Again, the block

covariance matrix, Igx¢ ® M, denotes the state of the system after losses, where

M = Liixun ® Do + 2u(nPs + 7iPi) ® Inxa + 240 (1 + 1) A ® 03,

P = diag(1,0,0,0,0,0,1,0,0,0,0), P;=diag(0,0,0,0,0,0,0,0,0,1,1),

1 0
A=E|j0+Ei01+E7;11+E117, 73 = (0 —1)’
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and E; ; is an 11 X 11 matrix unit at (j,k) and O elsewhere.

The displacement vector is,

T
FE Re(a) Im(a) 0 0O 00 0 O0O00O0
0 0 Re(w) Im(a) O O ... O

b

and « again already takes into account loss. The mismatch matrix,

Vil 0 W1-¢Z 0 0 0
0 Ixx2 0 0 0 0
1-¢7Z O V Tngs 0 0 0
Iy ® ¢ ¢ Lax © Luxd,
0 0 0 V Ingy 1-¢Z O
0 0 0 VI-CZ iy O
0 0 0 0 0 I>x>
is applied, and so is the beam splitting matrix,
Lx O 0O Z O 0
0 Ly O 0 Z 0
1 0 0 Ixp O 0 Z
—DbLo® @ Iyxa.
V2%lZ 0 0 L o0 of ™
0 Z 0 0 Iy O
0

0 Z 0 0 I

The above result is in the Z-basis. For the X-basis, we apply the phase shift matrix

to the early signal mode,

Li2x12 © ( cos(9) Sin(¢)) @ I14x14,

—sin(¢) cos(¢)

and then interfere the early and late signal mode at a 50:50 beamsplitter, described

by the matrix,

1 1
Fle 0 0 0 0 0 0 $Z

0 Ixo O 0 0 0 0 0

0 0 Ibxzy O O O O 0

0 0 0 Ly 0 0 0 0

Lix12 @ ,

0 0 0 0 Lk 0 0 0

0 0 0 0 0 I O 0

0 0 0 0 0 0 Lg 0
LZZ O 0 0O 0 0 o0 %Im
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before the detection. In both the X- and Z-basis, we calculate the relevant threefold

detection probabilities as follows:

Pp,p.ps = Tr{p' (1 = Lapbercec: ® 10X01E = Luparbecec: ® 10XOLF
~Tlap.arbebrce ® [OXOl,, + 1oy 6,670 ® |0)(0|a .
+Taparbece ® IOXOIE . +1ay b0 ® [OXOE,

~Lapbec. ® 10XOIS )} (E.3)

where the subscripts a, b, and ¢ represent the coherent state, idler, and signal modes
respectively, and the subscripts e and [ represent the early or late bin, respectively.
Again, the subscripts of the identity matrix indicate which modes are traced out for
a given calculation. Similarly as before, we use Eq.[9.14] to calculate each of the

terms in Eq. [E.3]to yield analytical expressions of the probabilities.

E.2 Maximum theoretical HOM interference visibilities

We plot the maximum two- and three-fold interference HOM interference visibilities
using Eqgs. 0.18 and[0.19] Complete indistinguishability ¢ = 1 as well as perfect
transmission 77, = 7; = 1 is assumed. The visibilities with varied |e|*> and y are
shown in Fig. finding maximum two- and three-fold visibilities of V2 — 1 and

unity, respectively.
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Figure E.1: Dependence of a) two-fold and b) three-fold HOM interference visi-
bilities for varied mean photon numbers of the coherent state (Ja|?) and TMSV (u)
assuming unity path efficiencies (1;, 7y = 1) and photon indistinguishability ({ = 1).
The red dashed line in a) corresponds to |a|> = V2, which maximizes the visibility
for ||, u < 1.
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The two-fold plot features a maximum along a symmetric diagonal for all ||> < 1
and ¢ < 1. The maximum corresponds to the condition |@|*/u = V2, which is
not equal to one due to the differences in number distributions. This condition
effectively corresponds to matching of the mean photon numbers of the Poisson
and thermal distributions, ‘striking a balance" between the contributions of single
photons interfering compared to n = 2 terms interfering with vacuum. Thus, the V2
acts to ensure that the balance is struck between the different field statistics. This is
different than the case of identical field statistics, in which the maximum corresponds
to an exact matching of mean photon numbers. Note the slight deviation in diagonal
symmetry as || and u approach 1; the balancing offered by V2 cannot hold because
interference between single and n = 2 states begin to contribute to interference.
Indeed the maximum visibility is not unity due to the non-zero contribution of n = 2

terms interfering with vacuum.

Owing to heralding, the three-fold plot has a plateau-like topography that extends
the range of optimized visibility. A range of ||> < 1 will maximize the visibility
to approach unity because the measurement is conditioned on three-fold detection
and heralding will always guarantee a single photon in the idler mode when u < 1.
Effectively, this regime renders the visibility independent of the probability of
generating a photon in |a). The threshold at ||> ~ 1 is predominantly due to n = 2
events from |a) interfering with heralded single photons in the idler path, thereby
reducing the maximum visibility. A steep diagonal threshold to the plateau is also
present under conditions of |a|?> < 1, similar to that of the ridge in the two-fold
plot. In this region, as u is increased and approaches ||, the relative probability
of heralding a multi-photon term increases, which decreases the visibility, and leads
to the threshold topography along the diagonal. The condition |a|?/u = V2 does
not maximize the visibility because heralding increases the effective mean photon
number of the signal mode, and thus a lower value of u is required to reach maximum
visibility compared to two-fold HOM interference. This effect shifts the diagonal
threshold to the left in Fig. [E.Ib.

E.3 Procedure for fitting HOM interference and teleportation fidelity datasets
We fit three data sets, two- and three-fold HOM interference visibilities as well as
X-basis teleportation fidelity, using a piecewise model function based on our theory.
Our code performs a nonlinear regression with Mathematica’s NonlinearModelFit
function with Differential Evolution as the fitting method. This global optimization

approach is well-suited for fitting nonlinear models. As discussed in Sec. 9.4 we
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utilize six physical parameters: 7, 12, 173, 4, {2, and {3, as fitting parameters,
subject to relevant physical constraints. Different mode mismatch and signal mode
efficiency parameters, {» and {3, as well as 1, and 7;3, respectively, are ascribed
to the two- and three-fold detection experiments. For the three-fold HOM and
teleportation data, a shared {3 is used, with independently determined parameters
3 =12x1072, 5, =4.5x 1073, and u = 8.0 x 1073 from Ref. [1] remaining
constant. The two-fold HOM data is fitted independently, retaining u = 8.0 x 1073

as constant.

The fitting protocol is outlined as follows:

1. Use the Map and Max functions to ensure uncertainties in the data are bounded

to be no less than the square root of the respective y-values.

2. Combine the three-fold HOM interference and X-basis visibility data, distin-
guishing them with unique markers. This is achieved using the Join and Map

functions.

3. Formulate a modular fitting function, which can differentiate between X-basis
visibility and three-fold HOM interference based on their respective markers.
For two-fold HOM data, introduce a separate fitting function that considers

the unique constraints of the two-fold detection experiment.

4. Establish the fitting framework, setting the fitting parameters such as 7,2, {2,
and {3 accordingly, while holding the known parameters constant.

5. Engage in a simultaneous fitting procedure using NonlinearModelFit. This
process will take into account the defined model function constraints, weigh
the data points based on their squared uncertainties, and adopt the "Differ-
entialEvolution" fitting technique. The physical constraints on the fitting
parameters will ensure that path efficiencies and indistinguishabilities are

positive and no larger than unity.

The outcomes of the fits yield ¢, = 0.80 + 0.04, 7, = (6.9 + 1.2) x 1072, and

{3 =0.90 £ 0.02 as optimal parameter estimations.

E.4 Calculus of HOM interference visibility expressions
We differentiate the HOM visibility expressions of Egs. [9.18 and[0.19|to determine
the optimal choice of |a|>. The expression for the two-fold case (Eq. [9.18), when
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differentiated with respect to |a|> and evaluated for the relevant experimental and

extracted parameters (> = 0.80, 7, = 6.9 x 1072 and y = 8.0 x 1073, yields,

~1.98781el7/2 - 55552.9¢0-500019laf” 4 55554 90-50001la*

y) 2\
Vanom(lel) = 0.987811 — 1.98781¢lal?/2 4 ¢l

(E4)

The three-fold case (Eq. [0.19), given a similar treatment with {3 = 0.90, n; =
1.2x 1072, ny=4.5%x 1073 and u = 8.0 x 1073, yields

1
(0.987811 — 1.98781eloP/2 4 ela)?
— 27439.203000240al” | 97440 2050002410
+2.22045 x 1070197 + 2,63814¢!-00002leF
— 2.65025¢!-000021a* 4 ) 993905,31a1*/2

Vi nom(lal?) = [—0.98179(;'“'2/2

+27775.1¢!30002laf _ 27776.1e1'50002|“|2] (E.5)

Setting Egs. andequal to zero and evaluating |a|? results in 7.8 x 10™* and
2.2 x 1073, respectively, which is consistent with the curves shown in Fig.
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Figure E.2: Model of teleportation fidelity of X-basis states for varied |a|> under
conditions of varied signal and idler transmission efficiencies in blue, red, green,
and orange, respectively, as described in Sec. [0.5|the main text, assuming complete

indistinguishability £ = 1.
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E.5 X-basis teleportation curves for varying transmission efficiencies and
mean photon numbers
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Figure E.3: Model of X-basis quantum teleportation fidelity for varied |a|?> and
u < 1072, under varied signal and idler transmission efficiencies cases (i)-(iv), as
discussed in Sec. E‘, assuming complete indistinguishability { = 1.
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