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Appendix F

TRAVERSABLE WORMHOLE SIGNATURES

To determine if the sparse learned Hamiltonian describes gravitational physics, we
examine the Hamiltonian in Eq.[14.7]

Hy g =- 0364 020" +0.190" 2ty

—0.719 02070 + 0.224 %0354 ° (E.1)
+0.49020° g,

via two orthogonal approaches: first, we verify that it replicates relevant dynamics
of the dense SYK Hamiltonian; and secondly, we evaluate if it satisfies necessary
criteria of general holographic systems. These criteria are stricter than the similarity
of dynamical observables: they include perfect size winding — the strongest form
of size winding, which is sufficient to provide a geometric interpretation [1, 2, 3|]] —
the causal time-ordering of teleported signals, which shows that the teleportation is
not occurring due to random scrambling, and a time delay predicted by scattering
in the bulk.

The learned Hamiltonian is consistent with gravitational dynamics of the dense SYK
Hamiltonian beyond its training data. The mutual information /pr(t;) for fixed ¢
shows behavior compatible with a qubit emerging from a traversable wormhole
(Fig. [I4.3p). The mutual information peak height and position strongly resemble
the large-N SYK model computation in the double-scaled limit (Fig. [F.Th). In the
high-temperature limit, the mutual information asymmetry between couplings with
# < 0 and g > 0 diminishes, corresponding to teleportation occurring via scram-
bling instead of through the wormhole, consistent with theoretical expectations [4]].
Additionally, the learned Hamiltonian scrambles and thermalizes similarly to the
original SYK model as characterized by the four-point and two-point correlators
—([(0), ¥ (¢)]?) and (4 (0)r(¢)) (Fig. ). Since the scrambling time is approxi-
mately equal to the thermalization time, the gravitational interpretation suggests the

boundary lies near the horizon.

Beyond comparison to the dense SYK model, we proceed to evaluate more general
behavior predicted from gravity. The property of “perfect” size winding provides

a necessary and sufficient “litmus test” to identify traversable wormhole behavior,
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Figure F.1: Signatures of traversable wormhole dynamics for the learned sparse
SYK Hamiltonian (Eq. . a) Mutual information asymmetry /,,<o(¢) — I,>0(t)
for the learned (green) and SYK Hamiltonians (orange) at the low-temperature
gravitational limit (solid) and high-temperature scrambling limit (dashed). An
analytic computation in the large-N limit of the SYK model using chord diagrams
(black) is shown for low temperatures, showing agreement with the peak position and
height. b) Two-point function (solid) and four-point function (dashed), indicating
thermalization time and scrambling time, respectively, of the SYK (orange) and
learned (green) Hamiltonians. c¢) Bulk location of the infalling particle before and
after the interaction with respect to the black hole horizon, as given by the Fourier
transform |G| of the winding size distribution. d) Perfect size winding before
(green) and after (brown) the interaction; data at each operator size is horizontally
staggered to make the different values visually distinct. The black dashed lines
show a linear fit (R?> = 0.999) with equal but opposite slopes, corresponding to
the reversal of winding direction after the interaction. e) Shapiro time delay in the
eternal traversable wormhole protocol caused by scattering in the bulk. The peak
shifts right when an additional qubit is sent through the wormhole in the opposite
direction (dashed) compared to sending a single qubit from left to right (solid). f)
Causally time-ordered teleportation. The position of the mutual information peak is
shown for an instantaneous at ¢ = 0 (blue) and prolonged (orange) interaction over
te[-1.6,1.6].
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holding for quantum systems with a nearly AdS, bulk [1, 2, [3]. Perfect size
winding is equivalent to a maximal Lyapunov exponent at large N, but unlike the
Lyapunov exponent, size winding remains a meaningful quantity at small N. Non-
gravitational systems, such as random non-local Hamiltonians, may teleport in the
low-temperature limit with a weak asymmetry in u; unlike gravitational systems,
these have “imperfect” size winding. Systems that teleport in the high-temperature
fully scrambled regime, such as random circuits [5] or chaotic spin chains, do not
exhibit any size winding.

Given the thermal state pg o e PHL size winding describes the decomposition

pllg/ ztﬁi(z‘) =)pcC p(t)tﬁf over strings of |P| fermions. The system exhibits perfect

2
P

| P|. For the Hamiltonian in Eq. an injected fermion is supported by operators of

size winding at time 7 if the ¢, coefficients have a phase that linearly depends on
three sizes. We find that the learned Hamiltonian exemplifies perfect size winding
(Fig. [F.Ik, d) at the time of teleportation, with the phases of the eight nonzero
coefficients forming a line with R? = 0.999. This analysis shows that teleportation
under the learned Hamiltonian is caused by the “teleportation by size” mechanism,
not by scrambling or other non-gravitational dynamics. We visualize the resulting
geometric interpretation of the learned Hamiltonian by taking the Fourier transform

to obtain the bulk location of the infalling particle relative to the horizon.

The Hamiltonian is shown to adhere to the microscopic mechanism of wormhole tele-
portation via its perfect size winding description. To observe this at a macroscopic
scale, we examine two phenomena: a Shapiro time delay and causal time-ordering of
signals. For the time delay, we interrogate the learned Hamiltonian within the eter-
nal traversable wormhole framework [6]. Besides sending a single qubit from left
to right, we insert an additional qubit across the wormhole from right to left. From
a gravitational perspective, this should cause the left-to-right signal to arrive later
due to scattering in the bulk. We observe this in the learned Hamiltonian (Fig.[F.If).
For causal time-ordering, we inspect the order in which infalling particles emerge
from the wormhole. If a geometric interpretation is valid, infalling particles should
arrive in a causally consistent order (Fig. [I4.1b): signals must emerge in the same
order they enter (time-ordered teleportation). In contrast, teleportation in the fully
scrambled regime produces a time-inverted ordering of signals. Our learned Hamil-
tonian generates time-ordered teleportation (Fig. [F.Tff). The position of the mutual
information peak is shown for an instantaneous at ¢ = 0 (blue) and prolonged (or-

ange) interaction over t € [—1.6,1.6]. A positive slope indicates time-inverted
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teleportation and a negative slope indicates time-ordered teleportation. When the
coupling is applied over a window of time, the time-ordering of signals confirms
through-the-wormhole behavior. When the coupling is instantaneous, the decreased
slope suggests a combination of teleportation by scrambling and by traversing the

wormbhole.

The above analyses demonstrate gravitational teleportation by the learned Hamil-
tonian via an emergent wormhole; additional analyses examining spectral charac-
teristics, dynamics at different temperatures and interaction strengths, and further

properties of size winding are provided in the Supplementary Information of Ref.

[7].
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