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ABSTRACT

We have used the heat pulse technique to study phonon reflection
from sapphire-vacuum and sapphire-1iquid helium interfaces. The high
resolution data presented here show more structure than has been observed
in previous experiments of this type.

In order to interpret the complex time-of-flight spectra, the
problem of the reflection of elastic waves in an anisotropic medium
is analyzed in detail. The analysis shows that there are, in general,
nine phonon reflection processes, each with a different time of flight,
which transfer energy from heater to detector via a single reflection.
Iterative computer calculations are necessary to establish the trajectory
of energy flow and the arrival time for each channel. The agreement
between calculated and experimentally observed times of flight is very
good.

Although the sharp features in the reflection signal due to
specular (kH conserved) processes can be explained using anisotropic
elastic theory, approximately half the energy which reaches the detector
arrives via non-specular channels. The non-specular scattering, which
may be due to surface roughness, gives rise to broad features in the
signal. The main difference between crystal-vacuum and crystal-helium
reflection signals is that the non-specular signal is much smaller for
the helium covered surface. In contrast to previous works, we find that
the specular signal is not affected by helium. Apparently, the non-

specular processes are involved in the anomalous Kapitza conductance.



In some crystallographic orientations of heater and bolometer,
the non-specular signal is particularly large. The orientational
dependence of the diffuse scattering is due to the extreme anisotropy
of energy flow in crystals, an effect which is known as phonon focusing.
We develop a new method of analyzing phonon focusing based on an asymptotic
analysis of the phonon Green's function. Geometric arguments are used to
show that certain singularities in the acoustic field called caustics
can be expected in most crystals. The general features of caustics can
be predicted using results from mathematical catastrophe theory. The
caustics in sapphire were located by numerical calculation, and used to

explain the results of several experiments.
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CHAPTER ONE: INTRODUCTION

It has been known for more than thirty years that heat transport
across a solid-liquid helium boundary is ten to one-hundred times more
efficient than predicted by theory. Experimentally, one observes that
a solid immersed in liquid helium cools off orders of magnitude faster
than expected. This large discrepancy between theory and experiment is
a classical problem of Tow temperature physics known as the Kapitza
problem, and is the primary motivation for the work of this thesis.

This puzzle is particularly intriguing because the physics of
heat transport in ofher situations is well understood. The theory of
Tiquid helium is highly developed and the thermal properties of 1liquid
helium are perhaps the best characterized of any substance. Similarly,
thermal conduction in solids, particularly at low temperatures, is well
described by standard theories. Nevertheless, hundreds of experimental
and theoretical 1'nvest1’gat1’ons1’2’3 have failed to elucidate the physics
of the processes which contribute to the anomalously high conductance at
a solid-helium interface.

The history of this subject began in 1971 when Kapitza4 noticed
a peculiar effect while investigating the thermal conductivity of super-
fluid helium. Careful measurements revealed that there appeared to be a
temperature discontinuity at the interface of a heated solid in contact
with a helium bath. This was a remarkable result since the boundary
conditions for the equations‘of diffusive heat flow require a continuous

temperature distribution even across an interface where the thermal



conductivity changes discontinuously. This effect was phenomenologically
described by introducing a thermal boundary resistance Rk’ the Kapitza
resistance.

The physical mechanism of the Kapitza resistance remained obscure
for several years after the initial exveriments, although it was thought
to be related to the peculiar thermal properties of superfluid helium.

It was eventually realized, however, that the equations of diffuse heat
flow were not strictly valid very close to an interface. In particular,
conservation of energy and momentum of the thermal carriers cannot be
accounted for in a theory which characterizes a medium only by a mean free
path and an average velocity. As pointed out by Kha]atnikov,5 energy is
transported by phonons which impinge on an interface and are either
reflected or transmitted with probabilities that can be calculated using
classical continuum mechanics. Because the acoustical properties of 1iquid
helium and any solid are very different, most of the phonons which reach

a helium interface are reflected; it is the discontinuity of the acoustical
properties which gives rise.to the temperature discontinuity. The same
reasoning shows that this thermal boundary resistance is not peculiar to
helium, but can be expected at any interface between dissimilar materials.

The phonon picture clarifies the origin of the temperature -
discontinuity and thus resolves the original "Kapitza problem." Despite
this progress, the detailed quantitative calculations by Kha1atm’kov5 in
1952 introduced a new difficulty because the theoretical values of the
thermal boundary resistance for solid-1iquid helium interfaces were at

least an order of magnitude larger than values obtained from experiment.



Thus the Kapitza problem, in its modern formulation, is not concerned
with the existence of the thermal boundary resistance, but rather with
the explanation of why it is not much larger than it is.

Since the theory developed by Khalatnikov, known as the acoustic
mismatch model, is the basis of our (admittedly inadequate) understanding
of heat transport across an interface and since most modern efforts have
been directed at reconciling experimental results with versions of this

model, it is worth discussing in more detail.

The Acoustic Mismatch Model

The theory of Khalatnikov assumes that the essential physics of
the transport process can be understood by using continuum mechanics to
analyze the reflection of an elastic wave at the interface separating an
isotropic solid and an ideal fluid. The use of continuum mechanics is
justifiable because the wavelength of thermal phonons at 1 K in a solid
is typically 300 nm while in the helium it is 15 nm. In both cases the
phonon wavelength is much longer than the interatomic spacing.

The system of incident, reflected and transmitted waves at a
solid-1iquid interface must satisfy not only the appropriate wave equations
of elastic theory and fluid meéhanics, but also certain boundary conditions.
If the displacement field in the fluid and the solid are denoted by Uf
and ﬁs, respectively, then the condition that solid and fluid remain in

contact is that
«fy = U = n {1:1}

at the interface where ﬂ is a unit vector normal to the boundary.



Only the normal component of the displacement must be continuous, since
a fluid with zero viscosity can slip across a solid moving parallel to
itself. The condition that the stress be continuous across the boundary

is given by

(1.2)

where G?k and O?k are the stress tensors in the solid and fluid, respec-
tively. The displacement and stress can be expressed in terms of the
various wave amplitudes. Equation (1.1) represents one constraint on
these amplitudes while equation (1.2) represents three conditions. For a
given incident wave from the solid, these four equations determine the
amplitude of the Tongitudinal wave transmitted into the liquid and the
amplitudes of three waves reflected back into the solid, of which two are
transverse and one is longitudinal.

Although the computation of the reflection coefficients from these
equations is algebraically complicated, the fact that most of the phonons
incident on a solid-helium boundary will be reflected can be explained
using a few qualitative arguments. As in the more familiar case of the
reflection of electromagnetic waves, the translational invariance of a
planar interface implies that the parallel component of the k vector of
all the waves which take part in the reflection process must be equal to
the parallel component of the incident wave k vector, khn. This is simply
a statement of Snell's Taw, but in the acoustic case the effects can be
quite spectacular. For the same phonon frequency w, the magnitude of

the k vector |k| = w/c is approximately 20 times larger in helium than



in a solid because of the large difference in c, the speed of sound.
This means that there is a critical angle in the helium of approximately
3°; i.e., phonons from the helium with angle of incidence greater than 3°
suffer total internal reflection so no energy transport across the inter-
face results from these processes. Conversely, phonons incident from the
solid side can only radiate phonons into a cone in the helium with a half-
angle of 3°. Conservation of parallel momentum severely restricts the
phase space available for transport processes.

A complication which is not present in the electromagnetic case
is that the solid supports both longitudinal and transverse waves which
for many solids have sound speeds which are approximately related by c, =

t

- ct). Since the density

of states goes as 1/c3 and there are two transverse modes, there are ten

(cg//§) (stability of the solid requires c

times as many transverse phonons in the solid as longitudinal, and 85%

of the energy flux which reaches the interface is in the form of transverse
phonons. Because the Tiquid is assumed to have zero viscosity, however,
the coupling of the transve}se modes is very poor. At normal incidence,

a transverse phonon from the solid is totally reflected.

These qualitative considerations suggest that the mechanical
coupling between a solid and aﬁ ideal fluid is rather weak, and detailed
calculations show that this is particularly true for helium. Using
equations (1.1) and (1.2), the energy reflection coefficients for the
various phonon polarizations incident from the solid may be computed, as
outlined in reference 6. The polarizations may be conveniently described
using notation from the seismological literature as longitudinal (L),

transverse with polarization in the plane of incidence, or shear vertical



(SV), and transverse with polarization perpendicular to the plane of
incidence, or shear horizontal (SH). If the material properties can be
described by the density, Pys and speed of sound in the liquid, c, and the

density P> transverse speed of sound c, and longitudinal speed of sound

t

¢, in the solid, the reflection coefficients labeled by the incident

polarizations are6

o cose2 ZZ]
Ry, = (1.3)
L c2 cose Z + Zt s1‘n2 ZGSV + Z] cos2 Zesv
2
tano
R = (104)
SV 2(Z + Zt sin2 ZGSV + Z] cos2 ZSSV)
RSH = 1.0 (1.5)

where the acoustic impedance are given by

c c C
P p Y t

S
L COSG2 t COS@SV

6, is the angle from the normal of the k vector of the phonon in the

2 and eSV are incidence angles of the longitudinal and

1iquid, while ©
shear vertical phonons in the solid. If we consider the most efficient
transport process, a longitudinal phonon at normal incidence, and substi-
tute the typical values P =‘4.0 gm/cm3, Cy = 5000 m/sec, C, = 9000 m/sec,
into equation (1.3), the reflection coefficient is RL = (0.995. Note

also that the SH phonons have reflection coefficients of unity at all



angles of incidence, and that none of the reflection coefficients depend
in any way on phonon frequency.

Khalatnikov used the phonon reflection model to calculate the
Kapitza resistance explicitly in terms of material parameters. The basic
idea of the calculation is to compute the net heat flux per unit area Q
in terms of the temperature difference AT between solid and liquid and

then to use the relationship

= (1.6)

to define the Kapitza resistance Rk' If the solid has temperature TS,
the number of phonons with polarization o which hit the surface from the

solid per unit time and per unit area is

4
. (1.7)
120 #3 2 ‘

where kB is Boltzman's constant. The heat flux out of the solid QS+2

is a product of an angular average phonon energy transmission coefficient

and the rate that phonons reach the wall:

TT2 k2 T4 .
; B 's
- — a5 - R (6 6 d 6
Q. ;; mp— -/ﬁ[1 0L( )] cose d(coss)
2 .4 _4
_ i kB TS Z ‘Aa (] 8)
B 3 7 )
120 # c
o (03

where o ranges over L and SV. A similar expression holds for the heat



flux from the liquid into the solid Q2+s:

Q - D (1.9)
8s 120 #3 i

where T2 is the temperature of the Tliquid,

B = -/-[1 - R(8)] coso d(coss) (1.10)

and R(s) is the reflection coefficient of longitudinal phonons from the

1iquid side. When TQ = Ts, the net heat flux Qz+s - Qs+z is zero, so

S - =5 (1.11)
Cc c
a

This is an algebraic relationship which expresses the microscaopic reversi-
bility of the phonon reflection process and is valid at all temperatures.

1% TS - T2 = AT is small, one can make the approximation

4 4 .3
T - T, = 370 aT (1.12)

The net heat flux Q can then be written

. wz kg T§ A
§ = —252 4T ji — (1.13)
40 # &
N a
The integrals which define the angular-average reflection coefficients Aa
are rather tedious, but were carried out by Khalatnikov. The final result

is



4.3
. b5 p € kX T
g = Lr 2 S FaT (1.14)
pS (2nhct)
or
15 b° p_ &
- s 't 1
Re = —337 =3 (1.15)
167 kB p!LCF T

where F is a number of order unity.

The most direct method of measuring the Kapitza resistance is to
produce a known steady heat flux across a solid-liquid heljum interface
and simply measure the temperature discontinuity AT. This has been done
for many materials, but the available data are not self-consistent in the
sense that values obtained on different samples or in different laboratories
often differ by a factor of two. The experimental difficulty of measuring
the temperature at the interface from the solid side and estimating
the effective surface area of a sample are probably the main cause of
the discrepancies. Nevertheless, the results of many steady heat flux
experiments can be summarized by saying that although the T'3 behavior
expected on grounds of simple kinetic theory is approximately obeyed,
the experimentally measured nu&erica] value of the Kapitza resistance is
consistently lower than predicted by equation (1.15), usually by more than
a factor of ten. For example, sapphire, the solid used in all the experi-

ments reported in this thesis, the measured Kapitza resistance is REeas =

44/T3 (cm2 K/W) while the acoustic mismatch value is RQM = 9800/T3

(cm2 K/w).] Acoustic mismatch fails equally for metals, insulators and



superconductors. Perhaps the only real success of the theory is the T

10

3

dependence which is found in most experiments. The strong temperature

dependence means that the acoustic mismatch mechanism becomes negligible

at high temperatures, but conversely, it is very effective in the milli-

kelvin range. Overcoming the Kapitza resistance is one of the main

problems of very low temperature technology.

The clear conflict between the acoustic mismatch theory and the

experimental results stimulated considerable work in the field which

eventually led to an understanding of some additional subtletiesof the

anomalous Kapitza resistance. Although some progress has been made, the

basic mechanism which overcomes the restrictions on heat flow imposed by

acoustic mismatch is still not known. Some of the additional findings are:

14

the acoustic mismatch theory seems to work for interfaces
between classical so]ids;7’8’9

superfluidity does not play a role; the Kapitza resistance

10

is continuous through TA. This is rather surprising since

all other thermal proverties of liquid helium change drastically
at the lambda transition;

quantum systems such as solid or liquid 4He, solid or Tiquid

3He, solid H2 and D2 all exhibit anomalous Kapitza

resistance; ? 11212213

above 1 K the Kapitza resistance of a solid interface with

4 12

either solid or liquid 3He or 'He is identical;

phonons of frequency below 10 GHz seem to obey acoustic mis-

match theory.]4
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These results confirm that the acoustic mismatch analysis is deficient in
some serious way, and suggest that the error may lie in the calculation
of the reflection coefficients Ra(e). Unfortunately, only an angular and
polarization average of the Ra(e) is determined by measuring the Kapitza
resistance in steady state heat flux experiments so it is impossible to
find out which phonon processes are responsible for the efficient energy

transport using this method.

Ballistic Phonon Reflection

In the early 1970's a new experimental technique was deve]oped]S’]6

which was designed to measure directly the reflection coefficient of

phonon pulses which propagated ballistically though a crystal. This

method was adopted for the studies reported in this thesis; a schematic
form of the apparatus is shown in Figure 1.1. A pure, low defect density,
single crystal of an insulator such as silicon, LiF or sapphire is equipped

on one side with a phonon generator and detector made from evaporated

vacuum
or
liquid helium

heater . bolometer

Figure 1.1. Schematic diagram of ballistic phonon reflection experiment.
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metallic films. The opposite crystal surface is initially a vacuum
interface, but helium can be introduced to form a liquid film of thickness
varying between a sub-monolayer to bulk liquid. Because the mean free
path of phonons in a dielectric crystal at helium temperatures is many
centimeters, a phonon pulse produced at the generator travels ballistically
at the speed of sound to the interface, where some fraction is reflected
back to the detector. By comparing the reflection signaﬁ from a crystal-
vacuum interface to the signal from a crystal-helium interface, the
reflection coefficient at the crystal-helium interface can be deduced.
Moreover, since the position of the generator and detector determine the
angle of incidence of the detected phonons, and the flight time of the
longitudinal and transverse polarizations are different, the method can

be used to measure Ra(e) for a known phonon polarization and angle 6.

A reflection signal which was obtained in the earlier versions of
our experiment, which is typical of the data reported by previous investi-
gators, is shown in Figure 1.2. The detector signal as a function of time
after the phonons have been emitted from the heater shows three prominent
peaks. The first peak is due to the arrival of the fastest phonons; i.e.,
the Tongitudinal phonons. The third peak, due to the transverse phonons,
is considerably larger because'of the larger density of states for trans-
verse modes. The middle peak is due to processes which involve one
longitudinal and one transverse phonon, and thus have an intermediate
time-of-flight. The upper curve represents the signal from a crystal-
vacuum interface, the lower curve is the signal from a crystal-helium

interface. The reflection coefficients deduced from such measurements
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Figure 1.2. Typical phonon reflection signal, showing peaks corresponding
to longitudinal, transverse and mode conversion processes.
Upper curve is the reflection signal from a vacuum interface,
while Tower curve is the signal from a crystal-liquid helium
interface.
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by previous workers lie in the range 0.8-0.3 rather than 0.995 expected
on the basis of acoustic mismatch theory, demonstrating once again that
the theory is inadequate. The substantial absorption of the transverse
mode was particularly paradoxical since elastic theory predicts no coupling
to a fluid. An additional puzzling fact discovered in these experiments
is that the absorption into helium is as effective for a film only three
statistical atomic layers thick as for bulk liquid. >»1

These findings and the acoustic mismatch theory worked out by
Khalantnikov and others forms the historical background for this thesis.
After repeating the experiments of Guo and Maris,]o several scientific
questions presented themselves: Why is the absorption of transverse
phonons so effective? Do SH and SV couple equally? Although elastic
theory fails to give accurate reflection coefficients, does Ra(e) vary in
a reasonable way as a function of 6? More particularly, can elastic theory
at lTeast describe the reflection processes from the crystal-vacuum inter-
face, including mode conversion processes? How does the reflection
coefficient depend on the pérameters of film thickness, ambient temperature
and gas pressure? (The interpretations offered by previous investi-

10,16 are in direct conflict.)

gators

The attempt to answer éhese questions led to an improvement in
experimental technique as well as a more precise theoretical understanding
of the phonon reflection process. The main contributions are outlined
below.

1. The apparatus of Guo and Marislo was made more flexible by

using a superconducting bolometer biased in a magnetic field.
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This enlarged the useful range of the bolometer to include

the entire temperature range from the TC of tin to the Towest
temperatures obtainable in the apparatus, which was approxi-
mentely 1.4 K. A technique was developed to control the
helium film thickness of the reflection sur'face.]7 The method
utilizes previous work on the helium-Grafoil system and

enables pressures as low as 10_]5 torr to be measured in situ.

By using shorter phonon pulses and much smaller phonon gener-
ators and detectors, the time-of-flight resolution was
increased by a factor of twenty over previous experiments.

The details of the experimental apparatus are described in
Chapter Two.

Reflection experiments performed with higher resolution
revealed a considerably more complex structure than the three
peak signal of Figure 1.2. Isotropic elastic theory was
inadequate to explain even the crystal-vacuum interface data.
An analysis of fhe phonon reflection process which included

the effects of crystal elastic anisotropy revealed complexities
of the problem which had not been previously appreciated.
Iterative computer'calculations were used to predict phonon
trajectories and times-of-flight in various crystallographic
directions. The results of these calculations and the compari-
son to experimental data are presented in Chapter Three.
Although anisotropic elastic theory successfully predicts

the time-of-flight for the various phonon reflection processes,
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the observed pulse shapes of the reflection signal cannot be
accounted for assuming only specular reflection (kH conserved)
from a flat surface. Nonspecular processes appear in the

data as "tails" which follow the sharp pulse due to specular
processes. The high resolution data show that the nonspecular
processes account for most of the anomalous coupling to helium.
In an attempt to estimate the magnitude of the nonspecular
scattering, it was necessary to compute the acoustic intensity
along a given direction in the crystal; this involves the

theory of phonon focusing developed by Maris.18’]9

This theory
was found to predict unphysical infinities in acoustic intensity
in certain special directions, known as caustics. Accurate
formulas for the intensity along caustics were found and
classified in terms of formal catastrophe theory. The computed
position of the caustics was used to explain the spatial
dependence of npnspecu]ar scattering. The analysis required

to classify and locate caustics, as well as the comparison

with experimental data arepresented in Chapter Four.

The experimental results are briefly summarized in Chapter
Five. The main aréa of disagreement between theory and experi-
ment is the behavior of nonspecular scattering. Several areas

for future work are suggested which may help to reconcile

the difference.
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CHAPTER TWO: APPARATUS AND EXPERIMENTAL METHODS

Phonon Generation and Detection

Previous investigators]5’16

have used both tunnel junctions and
superconducting bolometers as efficient detectors of phonons in the
100-1000 GHz frequency range. Although tunnel junctions have been used
as frequency tunable phonon generators, this advantage is partially offset
by uncertainties in the elaborate theory of nonequilibrium superconductivity
which is required to deduce the emitted phonon spectrum. My original
intention was to use a generation and detection system based on junctions,
and after considerable effort, I finally succeeded in fabricating tin
and lead junctions of acceptable quality. It was soon decided, however,
that the difficulty of fabrication and the fragility of these devices
outweighed the potential advantages of frequency resolution, and all of
the experiments reported in this thesis used broad-band superconducting
bolometer detectors, and resistive heater generators which are thought
to produce a black-body phonon frequency spectrum.

The principle of operation of the superconducting bolometer is
very simple. Above its transition temperature Tc’ a superconducting
strip has an electrical resisténce RN characteristic of a normal metal;
below TC the electrical resistance is zero. Because of impurities and
internal strains, the transition to the superconducting state is not
infinitely sharp, but typically has a width of a few milli-degrees, as
shown in Figure 2.1. If the ambient temperature is in the middle of the

transition region, a very small change in the local temperature AT
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v AV

AT
—ye :
Te

Figure 2.1. Schematic plot of the voltage as a function of temperature
for a fixed bias current I, for a superconducting bolometer.
A phonon pulse increases tRe temperature by AT and causes
a voltage change AV.

produces a large change in the voltage AV. By carefully measuring the
changes in voltage, the superconducting strip serves as a thermometer

with a sensitivity of micro-degrees. The useful range is only a few milli-
degrees around the thermodynamic critical temperature TC, but the device

can be operated at any lower temperature by suppressing the transition
temperature in a magnetic field. The characteristics of a typical bolometer
are presented as a plot of voltage drop for a bias current of 3 ma as a
function of temperature for several values of the magnetic field in

Figure 2.2. The sensitivity of the bolometer is measured by the value of
(av/aT)Ib.
The requirements of a bolometer in a phonon reflection experi-
ment are that the active element be well localized spatially, the thermal
response time pe small compafed to the duration of a phonon pnulse, and

that the voltage signal due to a phonon pulse be comparable to the rms

noise voltage of the amplification electronics, which is approximately



]

san|ep\

Ot

ew ¢ =

q

(

mmm”

M) @4njpiadws ]

mhm

O'¢

*ssneb uL usaALb sue g ploL} OdLjaubew |eudaixe ayjz Jo
*4938W010q uLl} |eoLdA} ® 404 SOLFSLUDIORARYD Bunjedadwsdl °SA abel [0\

Gl

8¢

— 06

—00

"2°¢ @4nbLy

<— (AW) aboyjoA



20

50 wV. The thermal response time is governed by the total mass of super-
conductor, so it is advantageous to make the device as small as possible.
This is accomplished by using evaporated films of thickness 2000 R. A
thin conducting path in a serpentine shape is cut into the film with a
razor blade under a microscope. The total area of the active part of
the bolometer can be made as small as 0.4 x 0.4 mm2 using this technique.
Electrical connections were made using pressed indium contacts.

In principle, the sensitivity of the bolometer is optimized by
making (av/aT) and therefore the normal state resistance RN as large as
possible. RN can be increased by decre;sing the film thickness or by
making the conducting path Tonger. In practice it was found that increased
sensitivity could only be obtained at a sacrifice in thermal stability
and reliability of performance; bolometers with room temperature resistance
R300 = 200 @ and 1liquid helium temperature resistance R4 = 20 Q seem to
represent a suitable compromise. Although the operating temperature could
be adjusted with the magnetic field, all the experiments reported here
were conducted at T = 2.05 K with a field of approximately 150 gauss. It
was found that stability of the bolometers was greatly improved if they
were run in a superfluid bath. In a normal bath, the bolometer signal
was affected by bubbles and coﬁvection in the fluid and was very sensitive
to mechanical vibrations of the dewar.

The heaters were made from 1000 R thick films of aluminum from
which a serpentine conducting path was cut. The heaters used in the
experiments were designed to have a resistance at helium temperatures of

approximately 50 @ to match the impedance of the pulse generator and

coaxial cables.
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Crystals

A1l of the crystals used in this investigation were synthetically
grown crystals of A1203, or sapphire, which were bought from the Union
Carbide Company. Sapphire was originally chosen for these experiments
because large, relatively inexpensive, high quality single crystals were
readily available and because sapphire is chemically inert, mechanically
strong and is considered to be one of the most nearly elastically isotropic
cyrsta]s.zo Because of the supposed near isotropy, the initial phonon
reflection experiments were performed with unoriented crystals. The
corresponding calculations using isotropic elastic theory were performed
using the average sound speeds Cy = 1.1 % 106 cm/sec and Cy = 0.65 x 106
cm/sec. It soon became apparent, however, that elastic anisotropy was an
important effect and the elastic properties could only be described using
the fourth rank elastic tensor, Ciike"

Sapphire is a trigonal crystal, so the elastic tensor c.

i5ke Nas

six independent elements (see references 21 and 22 and Chanter Three for
more details). Rather than specifying the 81 components of the elastic
tensor, elastic constants are usually presented in the form of a symmetric
6 x 6 matrix c_. (which is not a tensor). The independent elements of the
matrix of elastic constants for synthetic sapphire are shown in Table

2.1.%3
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Table 2.1. Elastic constants of sapphire (in 1011 newtons/mz).
11 €33 “a4 “12 13 14
4.968 4.981 1.474 1.636 1.109 -0.235

The remaining elements of the S dictated by the crystal symmetry.

For a trigonal crystal, the elements are:

tsz = €23 T 12 €55 = Ca4
g = C14 T "Cp cge = /2 (cgq - cpp)
with Cij = Cji' A11 other elements are equal to zero. The elastic tensor

Cijkz may be constructed from these elements by associating each subscript

of the matrix Con with a pair of subscripts of the tensor c.., , with

ijke
m-i,j, n > k,%, according to the following scheme:

1 % 1,1 4 +~2,3 = 3,2
2 > 2,2 ’ 5+1,3 = 3,1
3+ 3,3 6 ~2,1 = 1,2

The reason for these peculiar rules is mainly historical; the terminology
for the elastic properties of crystals was developed before the invention
of tensor notation.

The elements of the B and the Cijkz depend on the coordinate

system used to express them, and a specific choice of coordinates has been
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made which corresponds to the values given in Table 2.1. The coordinate
system is specified in terms of the crystal symmetry axes which are shown
in Figure 2.3. The point group of sapphire is 3m. The crystal has one
three-fold rotation axis, which is designated the C axis, and three two-
fold rotation axes which are in the plane perpendicular to the C axis and
separated by 120°. The canonical rectangular coordinate system with unit
vectors (;, &, 2) is constructed with z along the C axis, X along a two-
fold axis, and 9 =7 x x to form a right-handed orthonormal basis. This
prescription does not define a unique basis, however, because opposite
ends of a two-fold axis can be distinguished even though the point group
3 m has a center of symmetry. The arbitrary choice of aligning X along
the (+) or (-) direction of a two-fold axis changes the sign of some of
the elastic constants. Moreover, there is no established convention for
making this choice. This confusing and subtle point was not appreciated
by the early investigators who measured the elastic constants of sapphire,
and conflicting values appear in the 1iterature.24’25’26
Reference 23 speciffes the choice of orientation of x in terms of
the X-ray diffraction pattern. Unfortunately, the choice does not affect
elements of second rank tensors like the dielectric tensor, so the crystals
cannot be oriented by optical ﬁeasurements. The X-ray analysis required
to orient x in the same direction as was done in reference 23 is quite
difficult, and I could not find a crystallographer who was willing to try.
Because exact orientation was difficult and because the choice of direction
of ; did not alter the computed arrival times of reflected phonons (only

the intensities are changed) an arbitrary choice was made for the crystals

used in the experiment.
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Figure 2.3. Crystallographic axes in sapphire.

Although the condition of the crystal surface is probably very
important in phonon ref]ection.experiments,27 it is also very difficult
to evaluate quantitatively. A1l of the crystals used in the experiments
were ordered with the best surface polish provided by the manufacturer
which yields a claimed surface roughness of +1 micro-inch = 25 nm. In
some experiments the crystals were cut with a diamond saw and repolished.
The process required two days of mechanical polishing with successively
finer diamond paste. A final polish with 250 nm grit produced a finish

with no scratches observable under a microscope.
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Electronics

A schematic diagram of the electronics used in the phonon reflection
experiments is shown in Figure 2.4. The heating pulses were typically
35 nsec wide and 5.0 to 10.0 volts in amplitude with a repetition rate of
100 usec. A few hundred nanoseconds before each heating pulse, an
oscilloscope and the boxcar integrator were triggered. A few microseconds
after the heating pulse, the reflected phonons reach the bolometer and
cause a change in the voltage. The voltage pulse (typical magnitude =
20 uV) 1is amplified first with a PAR 115 wide band preamplifier and then
an HP 461A pulse amplifier for a total gain of 1000. Although the signal
can be seen on an oscilloscope, it is deeply buried in noise and the boxcar
integrator is necessary to obtain a clean signal. The boxcar is a PAR 160
mainframe with a 162 processor module. For a given integration time and
desired resolution, the various boxcar time constants can be chosen to
optimize the so-called "signal-to-noise improvement ratio," SNIR. A
calculator program was written to do this; typical settings are:

integration time = 5 min

aperture duration = 25 nsec

aperture delay = 5 usec

mainframe time constant = 0.5 sec

processor module time constant = 10'4 sec

SNIR = 2000
The boxcar output could be d{sp1ayed using an X-Y recorder.

The electrical connections to the heater and bolometer were made

using miniature 50 o coaxial cable. For the experiments reported in
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Figure 2.4. Schematic diagram of electronics used in phonon reflection
experiments.
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Chapter Three which used five heaters, it was necessary to have nine
cables which went from room temperature into the helium bath. The heat
Teak using coax made of copper was too great, so the apparatus was rewired
with Uniform Tubes 1/8" stainless steel coax, which worked very well.

A serious problem in the early stages of this experiment was
electromagnetic cross-talk between the heater and bolometer circuits.
Ideally, the output signal is due only to heating caused by reflected
phonons, but in fact a large (50 mV) spike at zero time delay is always
observed which is caused by direct coupling of the antennas formed by the
heater and bolometer coax. Unless precautions are taken, the circuit may
ring for many microseconds and completely swamp the phonon signal. The
electromagnetic ringing is strongly affected by the position of all nearby
conductors, and their relative potential with respect to ground. After
much trial and error, it was found that by floating the heater and bolometer
ground shields and connecting them to ground via variable resistors, the
ringing time could be reduced to less than 0.5 usec. One possible expla-
nation of this effect is that the outside conductors of the coax and other
metallic components of the apparatus form unterminated transmission lines.
These transmission lines are excited by the electromagnetic radiation
from the heater pulse. By adj&sting the variable resistors for a minimum
ringing time, one is presumably finding the characteristic impedence of
the transmission lines formed by the coax shields and other conductors in

the apparatus.
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Vacuum System

In order to measure the effect of helium on the phonon reflection
coefficients, it is necessary to calibrate the signal by measuring the
vacuum interface reflection coefficients. The vacuum system shown in
Figure 2.5 is designed to isolate one side of the crystal from the sur-
rounding helium bath and allow the helium gas pressure on the reflection

-15 torr to the saturation

surface to be controlled in a range from 10
vapor pressure.

The vacuum seal between the stainless steel vacuum can and the
crystal is made using an indium O-ring, which provides a super leak-tight
seal. The only difficulty experienced in using these seals was a tendency
for the crystals to chip along the edges as the seal was being tightened.
This problem was solved by first using a metal plug the same shape as the
crystal to flatten the indium wire and form a smooth indium surface; also,
crystals with slightly beveled edges did not chip as readily as crystals
with sharp edges. The resulting seals could be reliably cycled many times.
The indium adhered to the polished sapphire surface so well that the O-ring
usually had to be melted to remove the crystal.

The vacuum can to which the crystal was attached contains approxi-
mately 6 grams of Grafoil, a form of exfoliated graphite with a large
specific area. The large adsorbtion area of the Grafoil serves as a
ballast which allows one to control the helium gas pressure, and therefore
the thickness of the Tiquid helium film which covers the crystal, even for

15

pressures as low as 100 '~ torr. The calibration of the Grafoil manometer

was accomplished by combining the extensive thermodynamic data of previous
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investigator528’29’30

with vapor pressure data obtained using this apparatus.
The combined data were sufficient to characterize completely the thermo-
dynamics of the Grafoil-helium system in a certain region of the N-T

plane. Once u(N,T), the chemical potential of the helium gas as a function

of the amount of helium adsorbed N, and temperature T, is known, the

pressure in torr is given by

2:5

P = 155.79 T exp(n/T)

where p is measured in degrees. The technique takes advantage of the

fact that even in the region where the pressure is very small and exper-
imentally inaccessible, the heat capacity may be easily measured. Further
details are given in a published paper "Control of Ultralow Pressures:

An Absolute Thermodynamic Manometer."]7

The Grafoil manometer project
was pursued with the intention of carefully studying the phonon reflection
coefficients as a function of film thickness, temperature and pressure,
but it soon became apparent that the effects of crystal anisotropy had to

be understood first; the analysis of this problem is presented in the

following chapter.
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CHAPTER THREE: ANALYSIS OF PHONON REFLECTION
EXPERIMENTS - SPECULAR SCATTERING

The use of the phonon reflection technique to study the Kapitza
resistance is based on observing the difference between the reflection
signals obtained with crystal-vacuum and crystal-helium interfaces.

There has been, however, considerable confusion about how to measure this
difference quantitatively. For example, Guo and Mam‘s]5 implicitly use

a ratio of peak heights to obtain a reflection coefficient, while Kinder3]
uses a ratio of integrals of the reflection signal with a subtracted
background. These definitions are not equivalent and, as illustrated by
data presented below, depend on such unlikely parameters as the shape of
the crystal. Examination of our early data convinced us that whatever
measure of reflection coefficient was to be used, it was essential to
understand the background signal; i.e., reflection from a crystal-vacuum
interface, before any progress on the problem of coupling to helium and
the Kapitza resistance could be made. For this reason, this chapter
presents an analysis of elastic, specular (k” conserved) phonon reflection
processes from a perfectly smooth crystal-vacuum interface. Since elastic
isotropy has been used to analyze previous phonon reflection experi-

15.32 and is used in the acoustic mismatch theory, we first present

ments
an analysis based on isotropic elastic theory. Although this analysis

can explain some simple features of the experimental results, the details
can only be understood in tefms of anisotropic elastic theory. Once the

vacuum interface reflection processes are properly analyzed, the reflection

experiments from a crystal-helium interface can be interpreted much more
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intelligently. Much of this chapter is adapted from a published paper

"Phonon Reflection at a Sapphire-Vacuum Inter‘face.“33

Phonon Reflection in an Isotropic Solid

Some of the implications of isotropic elastic theory for transport
across an interface were outlined in Chapter One. Here, we wish to apply
a detailed analysis of the phonon reflection process, including the
dependence on incidence angle and polarization, to the prediction of
the experimentally observed reflection signal. We assume that the heater
emits phonons with isotropically distributed k vectors and the phonon
modes are populated according to their density of states. The isotropic
solid is characterized by the longitudinal and transverse sound velocity,
<, and Cy- The polarizations are denoted L, SV and SH, as described in
Chapter One.

The Tlaws which govern reflection at a vacuum interface34 are that

the normal stress must vanish

where m is the normal vector and
kh”c - kﬂef (3.2)

the parallel component of incident and reflected waves must be equal,
which is equivalent to Snell's Law. Equation (3.2) is also equivalent
to Fermat's principle of least time. In an isotropic solid there are

precisely three different types of phonon reflection processes which can
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be labeled by the polarization of the incident phonon. These processes
are shown in the upper inset of Figure 3.1. Note that SV and L phonons
are coupled; a single incident phonon requires two reflected phonons to
relieve the stress. Reflection processes which involve a change in phonon
polarization are known as mode conversion processes. At normal incidence
there is no mode conversion, but as the angle of incidence increases, the
amplitude of the mode conversion wave also increases. For example, for
a SV wave incident at angle 0, with amplitude ASV’ the reflected L wave

has amplitude AL:

2 cc, sin 26_ cos 26
0 0

N o= Ay 7 (3.3)
ct™ sin 262 sin 260 + c2 cos 260
where
_ -1 G
6, = sin [E;-s1n e;] (3.4)

and Co and Cy are, respectiVe]y, the Tongitudinal and transverse sound
speeds. Note that as 60 increases, 62 will eventually become complex,
since Co > Cy- Physically, this means that the reflected longitudinal
wave is exponentially damped. ‘Since SH waves do not induce a stress
normal to the wall, they always reflect without mode conversion.

In order to calculate the arrival time of a phonon pulse at the
detector, it is necessary to know the trajectory of the incident and
reflected phonons which transfer energy from the heater to the detector.

If Fermat's principle is applied to this problem, one obtains a quartic
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Schematic diagram of bolometer signal assuming an isotropic
solid similar to sapphire. The calculation is done for a
sample thickness of 6.5 mm and a heater-bolometer separation
of 6.7 mm. The experimental signal for the same geometry in
real (anisotropic) sapphire is shown in Figure 3.4.
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equation, which can be easily solved numerically. Two of the four
solutions are simply trajectories with equal angle of incidence and
reflection that do not involve mode conversion. In addition, there are
two trajectories which do involve mode conversion, as shown in Figure 3.1.
Although the time-of-flight for both of these trajectories is the same in
the isotropic case, they are not entirely equivalent. The SV = L channel
dominates because the density of states of SV phonons is larger.

Qualitatively, isotropic elastic theory predicts the following
results for phonon reflection experiments:

1. if heater and bolometer are very close together, the incidence
angle of all the specular channels is close to zero, and there
is no mode conversion. One should observe only two peaks due
to Tongitudinal and transverse phonons;

2. at finite separation between heater and bolometer, one expects
three peaks. The middle mode conversion peak increases
monotonically with increasing generator-detector separation
at the expense of the longitudinal and transverse peaks;

3. the effect of helium should be utterly negligible. The
difference between the crystal-vacuum reflection signal and
the crystal-helium gigna1 is smaller than the thickness of
the Tine used to draw the pulses in Figure 3.1.

The results of detailed calculations of signal intensity as a
function of time of arrival for a given geometry including Fermat's
principle, exact reflection coefficients, a Debye phonon density of states
and solid angle effects are shown in Figure 3.1. Note that the signals

corresponding to three different angles of incidence arrive at the detector.
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Our first phonon reflection experiments,which were designed to
test these predictions, were performed with time resolution of approxi-
mately 300 nsec using sapphire of unknown orientation. Since the importance
of high time-of-flight resolution was not yet appreciated, the experimental

parameters were similar to those used by previous workers;]5

i.e., heater
and bolometers were made of a single strip 1 mm x 5 mm and 100 nsec heater
pulses were used. A typical result of the earliest experiments is shown

in Figure 3.2. In addition to three peaks expected on the basis of the
above analysis there are several smaller peaks which follow the large
transverse peak. These can be explained using isotropic elastic theory

by taking multiple reflections into account. ATl the peaks 1ie on a smooth
background signal that begins at t = 0. This background is presumably

due to phonons that have not been reflected from the back wall, but rather
have been scattered by impurities or defects in the crystal, and thus

have a continuous distribution of arrival times; a simple argument shows
that the background due to bulk scattering should be proportional to t'2
if the generator and detectér are small and close together. Side wall
scattering also contributes to the background signal which is not affected
by helium on the reflection surface.

The peaks in Figure 3.é are not well resolved, and it is difficult
to appraise the effects of helium on a single peak since the shape of the
signal seems to change when helium is added. In order to study each peak
separately, crystals which were considerably larger than any previously
used for ballistic phonon propagation experiments were purchased. Large

crystals provide long flight times, so the interval between arrivals is

also longer and the individual peaks can be more easily resolved.
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Figure 3.2. Low resolution phonon reflection signa]; The shape of the

crystal, which is 6 mm x 15 mm dia, is shown in the inset.
The computed arrival time of various phonon processes for
both two and four traversals of the crystal are also indicated.
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Data from a crystal 42 mm x 22 mm diameter are shown in Figure 3.3.
This long crystal has the additional advantage that for a heater-bolometer
pair fabricated as close together as possible, the incidence angle for
specularly reflected phonons is less than 1°; the finite separation of
the heater and bolometer 1imit the smallest incidence angle that can be
achieved using 1 cm thick crystals to about 5°. Note that there is no
observable mode conversion signal, consistent with the small incidence
angle. The arrival times of the two almost degenerate transverse modes
can also be resolved, as can the signals due to multiple reflections of
the transverse waves. The transverse phonons which have been reflected
three times at the far wall have propagated through more than 25 cm of
sapphire which probably represents a world's distance record for thermal
phonons.

The effect of helium on the reflection spectrum in these experi-
ments was surprisingly small. The reflection coefficient of the transverse
phonons as measured by the ratio of the height of the bulk Tiquid reflec-
tion peak to the vacuum interface peak is R = 0.96, which is much larger
than the reflection coefficient obtained in our previous experiments on
shorter crystals, and much larger than any reflection coefficients reported
in the literature (see, howeve%, reference 27). This result remained
paradoxical until the effects of nonspecular scattering were more clearly
understood (see Chapter Four).

Since the anomalous coupling to helium seemed to depend strongly
on angle, it was important to investigate phonon reflection at large

incidence angles. An unoriented sapphire crystal 6 mm x 57 mm diameter
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Phonon reflection signal in a 42 mm x 22 mm dia unoriented
sapphire crystal. The horizontal arrows indicate the trans-
verse peak heights for reflection from a helium interface.
Note that the effect of helium is much smaller than in Figure
3.2. Peaks are labeled by the number of traversals of the
crystal and the polarization. Although multiple reflections
of the transverse peaks can be seen, there is no mode
conversion peak.
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was used for this purpose. Since calculations and previous experience
showed that the phonon pulses could not be clearly resolved with a crystal
of this thickness, an effort was made to increase the time resolution of
the experiment by making smaller heaters and bolometers and by using
shorter heating pulses.

The higher resolution reflection data at larger angles did not
reveal a gradually increasing mode conversion peak, as expected on the
basis of isotropic elastic theory, but rather a complicated signal with
as many as seven peaks (see Figure 3.4). The fact that this pattern of
peaks changed when the heater and bolometer were remade in a different
position on the crystal confirmed the suspicion that the crystal anisotropy
was responsible. This was somewhat surprising since the usual measures
of crystal anisotropy are small for sapphire, and it was expected that
the effects of anisotropy on the reflection signal would also be small.
The effect of helium was also rather peculiar, with some peaks affected
much more than others while some peaks seemed to appear only with helium
on the reflection surface. .This experimental result suggested that
complicated effects which were crucial to the understanding of phonon
reflection were being obscured by the Tow resolution spectra such as

Figure 3.2.

Phonon Reflection in an Anisotropic Solid

In order to understand data like those shown in Figure 3.4, it
was necessary to analyze the reflection of elastic waves in an anisotropic

medium. The starting point for this analysis is Newton's Law in the form
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Figure 3.4. Phonon reflection signal for an unoriented sapphire crystal

6 mm x 57 mm dia.. The signal is due to firing the middle

of the five heaters shown in the inset. The heater-bolometer
separation is 6.7 mm; isotropic elastic theory predicts a
signal like that shown in Figure 3.7.
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p 2 = ax (3.])

where p is the density, us the displacement and components X, are any

21,22,34

convenient basis of three orthogonal vectors. The repeated index

convention is observed throughout. The stress tensor, oik,is in general

related to the strain tensor, Uom by

ik Cikem Yem (3.2)

The elastic tensor Cik has 34

i = 81 elements, but crystal symmetries and

stability criteria reduce the number of independent ones. For sapphire,
there are six independent elastic constants, listed in Table 2.1. In

terms of the elastic tensor, Newton's law takes the form

82u. 82 u

i m
2 7 %imm oX, 3X (3.3)

which is the equation obeyed by elastic waves in an anisotropic medium.

In contrast to the isotropic case, the polarization of a wave is not simply
parallel or transverse to the k vector; the crystal selects preferred
directions of oscillation. Substitution of plane wave displacements

1(k'X-wt)

5 = . €
U_I e1

into equation (3.3) where e is a unit polarization vector, k and w the
wave-vector and frequency, yields an eigenvalue condition on the polari-

zation:



(A n. n. - v2 § e =0 (3.4)

Here A, = (1/p) and X = (w/v) n where n is a unit vector. The

ijam Cijlm
solutions of equation (3.4) determine the three allowed orthogonal polari-
zation vectors and associated phase velocities v for any given direction n.
The polarizations have no particular orientation with respect to n or the
surface of the crystal, so they can only be described as quasi-longitudinal
or quasi-transverse.

Another important effect of anisotropy is that the energy of a
wave does not move in the same direction as the k vector, but rather is
transmitted in a direction given by the power flow vector B,

auk
Py = %5k 3t (3.5)

i
The time average power flow may be written in terms of the elastic tensor

as

5; = '%0) Cijzm k2 ej em (3.6)
This vector is similar to the Poynting vector of electromagnetic theory,
and is sometimes called the elastic Poynting vector. Thus, an elastic
wave in an anisotropic medium is described by three vectors, K, e and 5
whose mutual orientation is a complicated function of direction.
As in an isotropic sd]id, translation invariance along the surface
requires that on reflection the component of i parallel to the surface

must be conserved. However, this law cannot be expressed in simple
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form because the magnitude of K for each polarization depends on direction
in the crystal. The values of the reflected wavevectors for any given
incident geometry must generally be found by solving a sixth order
polynomial equation, the solutions of which may be represented graphically
as shown in Figure 3.5. Here, in a polar plot, curves of constant w for
each- mode in the plane of incidence are drawn. The intersections of those
curves with the 1ine given by kﬂ6f = khn (the symbols represent the
parallel components of the reflected and incident wavevectors, respectively)
give the permitted solutions for outgoing waves. The line may intersect
all three polarizations, giving rise to three outgoing waves, or there
may be evanescent solutions as occur in the isotropic case when the critical
angle is exceeded.

The curves shown in Figure 3.5 represent a planar cross section
of the constant w surface, which is also known as the slowness surface,
since the points on the surface given by k = (w/v)ﬁ are inversely propor-
tional to the phase velocity v. For every direction ﬁ, there are three
possible phase velocities, §o the slowness surface is composed of three

sheets in k space which may intersect. The surface is described algebra-

ically by the condition

det (Aijzm ki kj - GQm) = 0 (3.7)
which yields a very complicated polynomial in the components of K. The

equations for the curves in Figure 3.5 are obtained by restricting the ki

in equation (3.7) to lie in the plane of incidence determined by kIF and

the surface normal mk. It is easier to evaluate the coefficients of the
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Figure 3.5. Schematic polar plot of curves of constant w in k space for
the crystallographic plane defined by £1n and the surface
normal m. The inner curve represents the quasi-longitudinal
mode, which always has the larger phase velocity. The
larger curves correspond to the two quasi-transverse modes.

If the solid were isotropic, these curves would be circles.
The k vectors of the three reflected waves, which are related

ref
, are deter-

to the incident wave by the relation ki' = k
mined by the geometrical construction illustrated in the

Figure.
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resulting polynomial in a rotated frame in which k;n = 0. In this frame

("= (% 0, k") and K7 = (G 0, k[T since k] and k] are

N

known, equation (3.7) reduces to a sixth order polynomial equation in

ref

the single variable k| rety

Three of the solutions (those with Re(KL
> 0) correspond to refracted modes which are not allowed at a vacuum

interface. Solutions with Re(kiéf

) < 0 correspond to possible reflection
processes, although if kiéf has a complex part the reflected wave will
be exponentially damped.

Once the permitted solutions have been determined, the amplitude

of each is obtained using (as in the isotropic case) the stress-free

boundary condition at the surface

If we imagine an orthogonal coordinate frame defined by the
polarization vectors for each E, then the coupling upon reflection between
the various modes is proportional to the projection of a given incident
polarization on each of the three reflected polarizations. In other
words, the coupling is governed by how much the coordinate frame twists
when the waves change direction due to reflection. The important point
here is that the twisting of the polarization frame is not simply related
to the anisotropy of the phase velocity. That is why, even in the nearly
isotropic case of sapphire, mode mixing in an arbitrary orientation may
be strong, giving rise to coﬁplicated results like those shown in

Figure 3.4.
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Computation of the trajectories that transport energy from the
heater to the detector is also more difficult than in the isotropic
case because energy flows along the p vector, but reflection is governed
by the k vector which is not collinear with it. Moreover, the vector
£in of an emitted beam that will result in a signal at the detector
need not be in the plane containing the heater, detector and surface
normal. It is not uncommon to find the necessary 51n more than 30° out
of that plane. Thus the process of finding the right path for a given
combination of modes is similar to artillery ranging. A beam is sent in
some direction from the heater, and the point where energy in the desired
reflected mode arrives back at the same surface is computed. The aiming
direction is then adjusted and the computation repeated until a hit is
scored on the bolometer. To further complicate matters, the time-of-flight
of (say) the SV > L path is no longer equal to that of the L » SV path
because, unlike the isotropic case, each of the velocities now depends on
direction. Instead of the three processes shown in the inset of Figure
3.1, an anisotropic solid hés nine distinct channels connecting heater
and bolometer, and the above artillery practice must be repeated nine
separate times for each configuration of heater and bolometer to predict
a complete spectrum.

If the incident (i.e., emitted) and reflected p vectors are,

.f.‘

respectively, £1n and Bre , the mathematical criterion for scoring a hit

on the bolometer is
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Rref

Hoin + = X (3.9)

where H is the thickness of the crystal and X the vector separation of
heater and bolometer. A computer is programmed to guess §1n’ calculate
5rEf by imposing the condition k;F = kﬂ8f and solve equation (3.7)
numerically for the intersections shown in Figure 3.5. The initial gquess
for kin is obtained by first solving the problem by assuming that the
crystal is isotropic. Equations (3.4) and (3.6) are then used to find
the associated p vectors for each combination of polarizations. If

Rin and Qref do not satisfy equation (3.9) to within a tolerance set by
the size of the generator and detector, §in is corrected and the calcu-
lation repeated until the error is satisfactorily small. Moreover, the
calculation must be repeated until all nine channels have been found.

In order to describe systematically all the specular reflection
channels, a convenient Tabeling scheme is required. In an isotropic
solid, every phonon reflection process can be labeled by its polarization
as, for example an SV > L process, but this obviously does not work for
anisotropic media. In most crystals the quasi-longitudinal mode has the
largest phase velocity in all &irections, so it can usually be distinguished
from the two quasi-transverse modes. Using the same idea, previous

15,16,35 have divided the transverse modes into fast transverse

authors
(FT) and slow transverse (ST} according to the magnitude of the phase
velocity. This scheme is not suitable for classifying reflection
processes because the polarization and energy flow vector are not contin-

uous functions of k as k varies over the ST or FT phase velocity surfaces.
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Figure 3.6. Polar plot of the phase velocity of the two transverse modes
in the CY plane of sapphire. The upper plot shows the fast
and slow transverse branches; note the sharp corners in both
curves. The lower plot illustrates the number Tabeling
scheme discussed in the text.
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The discontinuities arise at points where the two sheets of the phase
velocity surface intersect, as shown in Figure 3.6. Because of these
discontinuities there may be several possible reflection channels which
would be labeled FT + FT while no FT - ST channel may exist. The lack
of a one-to-one correspondence between reflection channels and phase
velocity labels, and the possible discontinuities of the polarization
and power flow vectors are very inconvenient for computer searches, so a
different labeling scheme was developed.

The phonons with k vectors in the surface normal direction are
labeled 1, 2 or 3 according to the magnitude of the phase velocity with
1 = longitudinal. A phonon with k vector in any other direction n can
be associated with one in the surface normal direction & by finding a
smooth curve on the phase velocity surface which connects the two directions
and on which the polarization is continuous. In practice, this means that
at intersections of the phase velocity surface the transverse sheets are
patched together to make a smooth surface without corners. The two
methods of labeling transverée phonons are illustrated in Figure 3.6.
Although the number labeling method yields continuous dependence of Py
and e, on kK, it is not a local characterization of the polarization and
is much more difficult to app]y'than simply distinguishing between fast

and slow transverse modes.

Experimental Results

To test the calculations outlined in the previous section, we

have performed experiments using a crystal whose orientation was chosen
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to simplify the spectrum and facilitate the computations in at least

one plane of incidence. The crystal is a cylinder, 9.53 mm thick whose
two faces (which are optically polished) 1ie in the C-X plane of the
sapphire lattice (the X, Y and C axes in the sapphire lattice are shown

in Figure 2.3). The ambiquity in the exact crystal orientation which is
discussed in Chapter Two means that one face of the disk is a (0110) plane
while the other is a (0110) plane, but we do not know which is which.

The difference is not crucial to the experimental results, and for purposes
of calculation we have assumed that the reflection surface is a (O]TO)
plane corresponding to the Y-axis in Figure 2.3. The diameter of the
cylinder, 57.2 mm, is large enough to assure that sidewall reflections do
not interfere with the spectrum.

The C-Y plane is a particularly simple one for phonon propagation
in sapphire because one of the transverse modes has polarization perpendi-
cular to the plane and the other two polarizations are contained in it.
Moreover, for waves propagaﬁing in the C-Y plane, the k vectors and p
vectors, while still not collinear, are at least all in the plane, greatly
reducing the number of iterations needed for the calculations. The
coplanar feature is especially economical since each change in the 51n
surface normal plane requires ;ewriting the elastic tensor in a new
basis, a procedure which requires over 104 computer operations. As in
an isotropic solid, the mode with polarization perpendicular to the C-Y
plane is decoupled from the other two, so there are only five reflection
channels (rather than nine) in this plane. Because of the high symmetry
of this plane and the simple orientation of the polarization vectors, each

mode can be uniquely labeled by its polarization as L, SV or SH.
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Experiments were thus conducted in which the heater, bolometer
and surface normal lay in the C-Y plane. For contrast, we also present
results with the heater-bolometer-surface normal in the X-Y plane which
is a more typical Tow symmetry plane, where none of the above simplifi-
cations are valid. In the first case, one bolometer and five heaters
are laid out at intervals along the C axis. In the second case a bolometer
and five heaters are laid out along the X axis. The heaters are numbered,
with heater no. 1 closest to the bolometer. In addition to testing our
calculations, the data presented here constitute, to our knowledge, the
first systematic study of phonon reflection as a function of angle of
incidence (see, however, reference 32).

A typical example of a spectrum on the C-Y plane is shown in
Figure 3.7. Here the heater (heater no. 3) and bolometer are separated
by 6.7 mm along the C axis. One sees five peaks, just as expected. The
reflection signal of Figure 3.8 was taken in the same crystal with heater
and bolometer separated by 9.0 mm along the X axis. Both figures also
show the predicted arrival time of the various specular reflection
processes.

Because the purpose of these experiments was to measure times-
of-flight for as many channels és possible in each orientation, all
experimental parameters were chosen so as to optimize the resolution of
peaks such as those seen in Figure 3.7 and 3.8. The width of a peak is
a time which is a consequence.of some six separate phenomena, each of
which may in turn be characterized by a time; the width of the initial

heater pulse, the thermal relaxation times of the heater and the bolometer,
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time (psec)

Figure 3.7. Reflection signal for heater no. 3 in the C-Y plane.
The predicted arrival times for processes with non-zero
coupling are marked by the vertical lines.
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Figure 3.8. Reflection signal for heater no. 4 in X-Y plane. The

predicted arrival times for processes with non-zero coupling
are marked by the vertical lines.
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effective times due to solid angle effects at heater and bolometer, and
the aperture of the boxcar integrator used to read out the data.

Heater pulses of 35 nsec width were used. Heater and bolometer
relaxation times are not well known, but were minimized by being at an
interface between sapphire and superfluid helium. They are believed to
be less than 20 nsec. Broadening due to the solid angle subtended by
heater and bolometer may be estimated by (w/v) sine where w is a
dimension of the device, v is a speed of sound, and & is the angle of
incidence or reflection. The heaters were of serpentine form localized
to 0.4 mm square, the bolometer slightly larger. Since for sapphire
vV o= 107 mm/sec, we estimate a characteristic time of up to 50 nsec for
these geometric effects. Finally, the boxcar aperature was set at 25 nsec.
Thus, all of these times were of the same order of magnitude, around
50 nsec. A1l of these times interact in a complicated way, but the
resulting peaks may be observed to have widths of roughly 50 nsec. It is
probably possible to resoTve.peaks if they are more than 25 nsec apart.
The absolute time-of-flight of each mode, measured from the beginning of
the heater pulse (detected on the bolometer signal by electronic cross-
talk) and the beginning of the rise of the peak is probably determined
to better than 50 nsec, but theée is a geometric uncertainty of that
order inherent in the finite size of the heater and detector.

The results of calculation and experiment for heater-bolometer-
surface normal in the C-Y plane are summarized in Table 3.1. The spectra
themselves are shown in Figure 3.9. Data and calculations for the X-Y

plane are given in Table 3.2 and Figure 3.10.
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Table 3.1. Heater-bolometer-surface normal in C-Y plane.

~

Channel € Craf 0. t (Predicted) t (Observed)
(degrees) (usec) (usec)

Heater no. 1: heater-bolometer separation = 1.5 mm; By = 4.57°
1->1 L->1L 0.987 7.45 1.714 1.71
3->1 SV > L 0.0205 0.57 2.428 2 43
1->3 L > SV 0.206 10.3 2.455

2 > 2 SH » SH 1.0 4.57 2.956 2.93
3>3 SV » SV 0.998 2.29 3.156 3.10
Heater no. 2: heater-bolometer separation = 4.3 mm; By ™ 12.8°
1->1 L~>L 0.89 17.18 1.765 1.74
31 SV »> L 0.147 4.18 2.442 2.42
1->3 L > SV 0.385 18.5 2.523 2.49
2 » 2 SH - SH 1.0 16.0 3.044 2.98
3+3 SV » SV 0.987 6.3 3.191 3.14
Heater no. 3: heater-bolometer separation = 6.7 mm; 6, = 19, 6°
1->1 L-1L 0.748 24.6 1.851 1.84
3->1 SV - L 0.302 8.59 2.484 2.48
1->3 L - SV 0.516 23.5 2.502 2.58
2 5 2 SH - SH 1.8 24.1 3.165 311
33 SV » SV 0.97 9.62 3.241 3.20
Heater no. 4: heater-bolometer separation = 9.3 mm; 6, = 25.9°
11 L-1L 0.57 30.4 1.967 1.94
3->1 SV > L 0.479 13.6 2.566 2.53
1-+3 L -~ SV 0.65 29.6 2.718 2.68
2 + 2 SH - SH 11 31.0 3.318 3.26
33 SV » SV 0.942 ~ 13.4 3.320



Table 3.1. continued

Channel 8inCrat 0. t (Predicted) t (Observed)

(dearees) (usec) (usec)

Heater no. 5: heater-bolometer separation = 12.6 mm; B, = 33.4°

1= 1 L=l 0.36 35.6 2.134 2.2
3->1 SV + L 0.702 20.0 2.710 2.68
1->3 L > SV 0.788 35.5 2.896 2.8
3+ 3 SV - SV 0.87 19,2 3.471 3.45
2+ 2 SH -~ SH 1.0 40.4 3.612 3.5b
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Table 3.2. Heater-bolometer-surface normal in X-Y nlane.

Channel e, -6 “in Pin t (Predicted) t (Observed)

in “ref  (degrees) (degrees) (usec) (usec)

Heater no. 1: heater-bolometer separation 1.5 mm; By = 4.50°

1->1 0.987 4.50 0.0 1.710 1. 72
1->2 .069 10.6 71.6 2.347

2 > 1 .069 6.59 -72.2 2.350

1-+3 0.177 10.89 31.5 2.448 2 45
31 0.178 6.02 -29.22 2.448

2 > 2 0.975 1.89 0.0 2.952 2.92
Z2+3 0.475 4.87 0.0 3.060 3.02
3>2 0.475 4.58 0.0 3.060

3+3 0.606 12.9 0.0 3.204 3.17
Heater no. 2: heater-bolometer separation 4.2 mm; 0, = 12.4°

1->1 0.910 12.4 0.0 1.744 1.75
1->2 0.212 14.0 42.4 2.378 0 37
2 > 1 0.209 8.25 -43.5 2.379

1->3 0.318 21.2 12.0 2.513 2 49
3->1 0.329 11.2 -13.2 2.516

2 % 2 0.819 5.73 0.0 2.978 2.95
2 >3 0.766 13.2 0.0 3.121 3.08
32 0.769 12.0 0.0 3.124

33 0.525 18.9 0.0 3.331 3.26
Heater no. 3: heater bolometer separation 6.6 mm; By = 19.3°

1->1 0.788 19.3 0.0 1.803 1.80
12 0.359 18.9 22.9 2.425 2 38
2 »1 0.361 11,2 -23.6 2.429

31 0.406 14.8 -5.15 2.602 o 58
1-+3 0.417 29.2 6.30 2.606

2 > 2 0.563 11.5 0.0 3.034 3.02
2 >3 0.787 21.2 0.0 3.227 3.20
32 0.786 18.0 0.0 3.229

33 0.510 23.5 0.0 3.489 3.45
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Table 3.2. continued

®in %in t (Predicted) t (Observed)

Channel  €: °€o¢  (deqrees) (degrees) (usec) (usec)

Heater no. 4: heater bolometer separation 9.0 mm; eo = 25.3°

1->1 0.636 25.3 0.0 1.836 1.903
2 > 1 0.512 15.4 -12.0 2.507 2 51
1>2 0.520 26.9 11.5 2,513

1-3 0.482 36.3 2.64 2.721 2 70
31 0.480 18.0 -2.29 2.721

2 > 2 0.286 20.0 0.0 3.129 3. 14
32 0.723 24.4 -1.26 3.381 3.35
2 >3 0.721 29.2 1.14 3.388

3->3 0.510 27.2 0.0 3.665 3.57
Heater no. 5: heater bolometer separation 12.7 mm; B, © 33.7°
1->1 0.383 33,7 0.0 2.054 2.05
12 0.717 39.5 0.0 2.689 2 67
2 > 1 0.718 22.6 0.0 2.691

1-3 0.542 45.8 -0.86 2.939 2 90
31 0.543 21.9 0.92 2.944

2 > 2 0.145 37.8 0.0 3.391 3.37
2 >3 0.595 38.3 1.15 3.684 3.63
3->2 0.593 32.1 -1.15 3.688

3-+3 0.549 32.1 0.0 3.974 3.91
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Each of these tables has a separate section for each heater,
headed by the heater-bolometer separation, and eo, the angle of incidence
for which an equal angle of reflection would connect heater and bolometer.
The first two columns in Table 3.1 give the channel connecting heater
and bolometer. The channels for each heater are listed in order of
their predicted arrival time. The modes within each channel are identified
first by number, 1, 2 and 3, then by name, L, SH and SV, respectively.
Identification by name is possible only in the C-Y plane; even here it
would be more proper to say quasi-L and quasi-SV. It is also interesting
to note that although mode 2 (SH) is the fast transverse mode along the
surface normal, the SH-SH channel is the last to arrive when fired from
heater no. 5.

The third column of Table 3.1 gives the projection of the incident
polarization vector on the reflected polarization vector for each channel.
This quantity measures the strength of the coupling on reflection from
one mode to the other. The channels not Tisted (i.e., L » SH) would
have zeros in this column, hence are not expected to arrive.

The fourth column of Table 3.1 gives the angle of incidence in
the path used by that channel to connect heater and bolometer. For
orientation it may be compared)to 60 which would be the angle of incidence
of an L -~ L or T = T channel of the crystal were isotropic.

Finally, columns 5 and 6 show the predicted and observed times-
of-flight. The observed times are listed on the same level with the
predicted times they are believed to correspond to.

Table 3.2 differs from Table 3.1 in that the modes can be

jdentified by number only. In addition, since the required incident
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k vector does not stay in the X-Y plane, an aximuthal angle, in for
the incident (i.e., emitted) ray is also given. The coordinate system
identifying 6 and ¢ is shown in Figure 3.11. In Table 3.2 there are
nine channels with nonzero coupling for each heater, all of them listed.
A11 told, for the ten heaters in both planes, 54 peaks are
predicted to occur with nonzero coupling and at least 25 nsec separation.
Every one is observed experimentally with an arrival time agreeing with
prediction within the estimated expected error. We thus believe the
calculations and procedures we have described have been fully validated.
These results have a number of interesting features which deserve
to be pointed out. For fourout of the five heaters in the C-Y plane,
the SV > L and L > SV channels are clearly resolved. One result is that
in three of the cases, five peaks, which is the maximum number possible,
are clearly seen. By contrast, in the X-Y plane, all of the mode con-
version peaks arrive within 10 nsec of their inverse channels. For
example, in heater no. 2 of the X-Y plane, the 1 > 3 and 3 > 1 channels
are expected at 2.513 and 2.516 usec, respectively, although they nec-
essarily follow quite different paths through the crystal. The experi-
mental consequence is that one never resolves more than six separate
peaks in this plane (as seen, e.g., in Figure 3.8). This behavior is
apparently a geometrical accident peculiar to the X-Y plane. Calculations
for propagation in arbitrarily chosen crystal orientations indicate
seven or eight peaks should often be resolved by 20 nsec or more. On

the other hand, the X-Y plane reflection spectra usually have a prominent

peak due to mode conversion of transverse phonons, i.e., processes like
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Surface normal

Heater

Heater-Bolometer
Axis

Figure 3.11. Coordinate system used to define 6 and ¢, as used in
Tables 3.1 and 3.2.
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3 ~ 2. These processes are, of course, completely unexpected on the
basis of isotropic elastic theory. They are, nevertheless, quite typical
in real crystals. The fact that no 3 - 2 process is observed in the

Y-C plane is due to symmetry; in other experiments where the heaters and
bolometer were misaligned from the C axis by only 3°, the transverse -
transverse mode conversion process was easily detected.

The equations of elastic theory also in principle predict the
relative heights of the peaks in the various channels. Only limited
progress can be made on this point without additional elaborate calculations,
but a brief discussion may be useful in order at least to bring out where
the complexities lie.

Let us leave aside for the present the difficult question of
what distribution of phonons actually emerges from the heater into the
crystal. Some progress can still be made by the following argument. The
L-L peak height (for example) is proportional to the intensity of the L
beam incident at the surface, multiplied by the L-L reflection efficiency

at the interface, given by e. - e The L - SV peak height should be

in ref’
given by the incident L intensity at the surface multiplied by the L-SV
conversion efficiency. Thus, calling the peak heights in each channel

Si-j and the conversion efficiencies Ri—j’ one might expect

The same would be true of course, for any other combination of converted

and unconverted channels.



66

Consider, for example, heater no. 1 of the C-Y plane. The
SV > L channel and the L -~ SV channel are expected to arrive 27 nsec
apart, at the edge of resolvability. However, the L > SV coupling is
0.2 while the SV -~ L coupling is only 0.02. Observed at the expected
arrival point is one small peak, which on careful inspection proves
noticeably broader than the other specular peaks of the same spectrum.
Can we assign it to one channel, or is it an unresolved combination of
both?

Application of the above argument indicates it probably belongs
to both. The reason is because although RL-SV = 10 RSV-L’ we observe
SSV-SV = 10 SL-L (see Figure 3.9. The L-L and SV-SV peaks are, respec-
tively, the first and last for heater no. 1.) Thus we expect SL-SV =
SSV-L' Quantitatively the argument predicts that each channel will
contribute a peak of height about 3/4 the maximum of the observed peak.
Thus the argument agrees very well with observation if the peak is an
unresolved doublet. If the channels had greater intensity we could
probably resolve the two.

Systematically applying the same analysis to all other relevant
combinations of peaks, we find reasonable agreement in about half the

cases, but serious disagreement in at least some instances. For example,

for C-Y heater no. 3 (Figure 3.9), 0.3. We thus expect

Rov-1/Rsy_sy =
the SV-L peak (the second to arrive) to be about 1/3 the height of the
SV-SV peak (the last one). After subtracting background, however, we
find it is only about 1/10 the height of that peak, or about 3 times

smaller than expected.
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Such discrepancies are probably due to the phenomenon of phonon
focusing in the incident mode. In the example cited, the SV beam that
reflects into the SV-SV channel does not follow the same path as the SV
beam that reflects into the SV - L channel. Even if the heater emits an
isotropic distribution of SV phonons, the two beams will not generally
have the same intensity. Thus the argument we have presented needs
to be corrected for the effects of phonon focusing in the incident mode.
This phenomenon will be discussed in more detail in Chapter Four. A more
accurate analysis would also require exact reflection coefficients computed

from equation (3.8).

Implications for the Kapitza Resistance Measurements

In most previous experiments reporting phonon reflection spectra,
the focus of attention has generally been on changes in the spectra that
occur when helium is brought into contact with the reflecting surface.

It is clear that the interpretation of those experiments will remain
contradictory and confusing until details such as those described above
are fully understood. For example, our analysis and high resolution data
show that the single "transverse peak" observed in earlier data is usually
the result of four different reflection processes (2 ~ 2, 2 ~ 3, 3 > 2,
and 3 > 3). The data presented here also show that the signal is composed
of two separate parts: sharp specular peaks and broader features which
must be due to nonspecular scattering. Phonons which are scattered non-
specularly (kH not conserved) arrive at the detector after the specular

phonons and sometimes produce a significant "tail" following the sharp
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specular peak. This is shown clearly for the last specular peak in the
Y-C plane data of Figure 3.7.

In previous low resolution experiments, the signal due to the
various specular processes involving transverse phonons as well as the
diffuse tail were treated as a single peak. The fact that the transverse
peak was strongly affected by helium was generally interpreted as evi-
dence of non-elastic coupling of the transverse modes to the he11um.]5’]6
The high resolution data suggest a different interpretation.

A comparison of the crystal-vacuum and crystal-helium interface
reflection signal for two heaters in the Y-C plane are shown in Figure
3.12. The figure shows that the effect of helium is largest on the
diffuse tail. The last sharp peak is also affected, but the earlier
arriving sharp peaks are affected very little if at all. It seems that
the anomalous coupling to the helium is predominantly due to diffusely
scattered phonons. In retrospect, our early low resolution results as

15,16,36 confirm this interpretation, since

well as other published data
the shape of the "transverse peak" changes substantially when helium is
introduced; the trailing edge of the peak (in fact due to diffuse scatter-
ing) always is more strongly affected than the leading edge.

In some crysta1lograph{c directions, the diffuse signal is not
merely an appendage to the specular peak, but the most prominent feature
in the reflection spectrum. Figure 3.13 shows the effect of helium on
the reflection signal for heater no. 1 in the X-Y plane. The sharp peaks

are due to specular processes as listed in Table 3.2, but the large bump

which is strongly absorbed by the helium is not attributable to any
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Figure 3.12.

Reflection signals for heater no. 5 in C-Y plane. Solid
curve is the crystal-vacuum interface spectrum, while the
dotted curve is the signal from a crystal-liquid helium
interface. Note,that most of the effect seems to be in
the "tail" which follows the transverse peaks. The mode
conversion peak at 2.8 usec which is well separated from
the diffuse scattering signal is not affected at all.
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Reflection signal for heater no. 1 in X-Y plane. Upper
curve is reflection from a vacuum interface, while the
Tower curve is reflection from a crystal/liquid helium
interface. The large diffuse bump, which is not due to
any specular reflection process, is almost completely
absorbed by the helium.
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specular channel. Although the specular peaks are also diminished, it is
difficult to quantitatively separate the specular signal from the diffuse
signal and the bulk scattering background. Despite this difficulty,

the examination of many reflection spectra such as those shown in Figures
3.12 and 3.13 has Tead to the following tentative explanation of the
experimental results: the diffusely scattered phonons are entirely
responsible for the anomalous coupling to helium. Any apparent decrease
in the specular peaks is due to a decrease in the underlying diffuse
scattering signal. The specularly reflected phonons whose trajectories
can be predicted using elastic theory also couple to the helium in
accordance with elastic theory; i.e., extremely weakly.

This hypothesis is radically different from the traditional
interpretation of phonon reflection spectra. It suggests that the behavior
of specularly reflected phonons, which was supposedly being studied in
previous experiments, is actually quite simple and can be predicted in
detail with tedious but straightforward calculation. The fact that
theories which only inc]udevspecu1ar processes do not explain the experi-
mental results is due to the large effects of diffuse scattering. It
is also significant that the diffuse reflection processes are important
even at the vacuum interface. )This suggests that whatever anomalous
coupling mechanism may exist, it is probably intrinsic to the solid and
not some peculiar property of quantum systems. If specular processes
obey elastic theory, the impartant scientific questions then become:

What causes diffuse scattering? Is there some non-elastic coupling

mechanism associated with diffuse scattering? Can the coupling of the
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diffuse signal also be explained in terms of classical elastic theory?
Before these difficult questions can be answered, it is essential to gain
as much information as possible about nonspecular processes from the

experimental data. The following chapter addresses this problem.
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CHAPTER FOUR: ANALYSIS OF PHONON REFLECTION
EXPERIMENTS - NONSPECULAR SCATTERING

As explained in the last chapter, even anisotropic elastic theory
does not describe all the features of the vacuum interface reflection
spectrum. Moreover, both the "tails" after specular peaks and the large
diffuse bumps which appear in the data are strongly affected by introducing
helium to the reflection surface; the cause of these effects must therefore
be associated with the surface and cannot be explained by bulk scattering
processes. In this chapter, we first suggest a possible mechanism for
nonspecular scattering and then explore some simple experimental conse-
quences of reflection from a diffusely scattering surface. As in Chanter
Three, some of the effects can be described qualitatively using isotronic
elastic theory, while others require a more careful analysis which acknowl-
edges elastic anisotropy. The principle goal is to understand the diffuse
signal pulse shape and how it depends on crystallographic orientation of

heater and bolometer.

Mechanisms of Diffuse Scattering

The eondition k‘l'ln . k‘l”lef

which defines specular scattering and
was used in all the calculations in the previous chapter is a consequence
of the exact translational invariance of a smooth planar surface. Since
a significant fraction of the incident phonons do not obey this condition,

it is natural to consider sur?ace roughness which breaks this symmetry

as a likely cause of nonspecular scattering.
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A useful model of a nonplanar interface which provides a source
of nonspecular scattering is the sinusoidally corrugated surface. A
sinusoidal surface with wavevector a, shown in Figure 4.1, can be thought
of as the Fourier component of a more realistic statistically rough surface.
The symmetry of this surface is not the group of arbitrary translations,
but only translations by integral numbers of corrugation wavelengths.
Reflection of phonons from such a surface is similar to the reflection
of Tight from diffraction grating; in addition to specular reflection,
waves with kﬂef = khn B na, n=4=+1, 2, +3, +«-- are also allowed by the
symmetry of the problem, as shown in Figure 4.1. Infinite sets of linear
equations can be constructed which represent the boundary conditions of
equation (3.2) in terms of the reflected wave amplitudes, and I have devoted
some effort to solving these equations numerically. Although this problem
has many subtleties and is a very amusing problem in applied mathematics,
it is not well adapted to detailed interpretation of experimental data
because of its complexity. A real crystal surface is rough on a broad
range of length scales. As'mentioned in Chapter Two, it is difficult to
describe quantitatively the surface condition of the crystals used in the
experiments, or even to alter the surface roughness systematically. The
surface roughness quoted by thélnanufacturer of +25 nmis, however, comparable
to the phonon wavelength in the crystal and considerably larger than the
phonon wavelength in the helium. To provide a simple mathematical model
of real crystal surfaces, it .is useful to think of an "infinitely rough"
surface which scatters incident radiation uniformly in all directions. An
"infinitely rough" surface is thus similar to the black bodies of thermo-

dynamics, except the randomization is in k space rather than in frequency.
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£ = sin(qgx)

Figure 4.1. Scattering from a sinusoidally corrugated interface, showing
the specular channel and the first two diffraction channels.
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(The surface is assumed to be static, so the frequency of the incident

and scattered waves is the same.) Another mechanism for destroying
translational invariance is random stresses on the surface. These stresses
could be provided by dislocation lines which terminate on the surface,

or patches of adatoms.

Diffuse Scattering in an Isotropic Solid

A simple calculation using this model shows how crystal surface
roughness can lead to the "tails" observed in many phonon reflection
spectra. We will calculate the response of a bolometer to the nonspecular
backscattering from a rough surface. For simplicity, we assume that a
constant fraction a of the incident radiation is reradiated uniformly
into all solid angles (fraction (1 - o) reflects specularly as if the
surface was perfectly flat) and that the heater and bolometer are coinci-
dent points. h is the thickness of the crystal, c is the velocity of
sound, r and ¢ are the polar coordinates on the reflection surface, and
® is defined in Figure 4.2.‘ t is the time after the heater pulse, and
Q(t) is the heat flux (j/sec) emitted by the heater as a function of time.

Each element of area dA = rdrd¢ on the top surface is irradiated
by phonons from the heater whiéh arrive at t = /rz + h /c. If each
element absorbs the fraction o of the incident energy and reradiates it,

each area element can be considered as a new source of strength deif

= c
dQy; ¢(t) = E— rdrds (4.7)
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The diffuse signal S(t) observed at the bolometer is due to the sum of

all these elementary sources, and is given by

¢r2+h2

dQ .. (t - m—)
8lE) = / dif 5 5 g cos® (4.2)
all r-+h
sources

Substituting cos6 = h//r2 $ h2 , and performing the integral gives

2/r2 4 p2

_ 2 Q(t - C )
S(t) = 2ranh ~/~ (r2 - h2)3 r dr (4.3)

oo

If we assume a delta function heater pulse Q(t) = Qod(t), the integral can

be done explicitly to yield

0 t < 2h/c

1
t5

2 2
2m h QO (EJ t s 2h/c

The diffuse signal rises abruptly to its maximum value of Qo1nxc/h3 at

t = 2h/c, the arrival time of the specularly reflected pulse, and then
decays as t_5 as shown in Figure 4.2. In view of the simple model used,
this pulse shape seems to be in reasonable agreement with the experimentally
observed diffuse scattering signal. This calculation also indicates that
the "tail" due to nonspecular scattering from surface roughness has a

rather sharp maximum at the same arrival time as the specular pulse, so

it is intrinsically difficult to distinguish between them experimentally.
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a) The geometry -for the diffuse signal calculation. b) The
contribution to the diffuse signal at a time t comes from a
circular annulus on the reflection surface. c) A plot of
the signal expected from an infinitely rough surface. The
signal has a sharp onset at the time that a specular signal
would arrive t = 2h/c.
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It is important to estimate the magnitude of a, i.e., the prob-
ability of nonspecular scattering. o can be extracted from the experi-
mental data by comparing the total energy which is scattered back to the
detector in the specular and nonspecular channels. The total energy in
the specular channel is the area under the specular peak. For a delta

function heat pulse Q(t) = Qos(t), the integral of the specular signal is

Q. (1-0)

- _ 0
o ]sspec(t) dt = 2 (4.5)

The total energy Edif which arrives at the detector via nonspecular

channels is

4 r aQ m

_ _ 2 42 dat  _ 0
Egiae = [Sdif(t) dt = o 2r Q h (C)f o > (4.6)
2h/c

The ratio of the specular to diffuse energy depends only on the

fraction of diffuse scattering:

Espec . (0 -0a) 1
’ 2m

(4.7)
Eqif .

This ratio can also be obtained from the experimental data. The only
difficulty is in clearly separating the specular and diffuse signal close
to the specular arrival time. If the pulse shape of the diffuse signal
is extrapolated back to the onset of the specular pulse, the area under

the respective curves can be obtained by counting squares. When this
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procedure is applied to the last arriving transverse pulse in the Y-C
plane data (Figure 3.9), and compared to equation (4.7), the computed
values of a are approximately o = 0.5.

Another relationship which can be derived from these arguments
is the behavior of the specular and diffuse signals as a function of the

crystal thickness. The time integral of both signals scales as h'z, as

one would expect, but the maximum of the nonspecular signal scales as h'3.
The ratio of the specular to the diffuse scattering signal at t = 2h/c,
the specular pulse arrival time,
S (2h/c)
S ney < (4.8)
dif

increases linearly with h. Thus experiments with long crystals allow a
better separation of specular and diffuse scattering than short ones.
Although these calculations are only qualitative, they nevertheless
clarify several issues which have gone unrecognized by previous workers:
1. approximately half of the phonons incident on the surface
of a polished crystal are diffusely scattered. Reflection
from a flat surface is not a realistic model for these
experiments; )
2. the signals due to specular and diffuse scattering overlap
and have coincident maxima;
3. 1in order to measure the reflection coefficient for a well

defined reflection process, the diffuse scattering signal

should be subtracted out;
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4. the reflection signal and pulse shape depends on the thick-
next of the crystal. For longer crystals, the specular
scattering signal becomes predominant at the position of the
peak, and;

5. when the diffusely scattered signal is properly accounted
for, the data appear to be consistent with acoustic mismatch
theory; i.e., the specular part of the signal does not change
when helium is introduced. Diffuse scattering seems to be
responsible for the anomalous Kapitza conductance. This
interpretation is justified by the change in pulse shape when
helium is added and the differences between results in long
and short crystals.

Although this simple model adequately describes the diffuse
scattering signal observed in the C-Y plane data of Figure 3.9, it cannot
explain the sharp diffuse peaks of the X-Y plane data, nor can it explain
why the diffuse signal should be so sensitive to crystallographic

orientation.

Effects of Anisotropy

The elementary consideéations discussed above suggest that diffuse
scattering is important for understanding both phonon reflection experi-
ments and the Kapitza resistance. In view of the complicated effects of
anisotropy on the reflection process, and the strong dependence of the
diffuse scattering signal on crystallographic ofientation, it seemed
important to include crystal anisotropy in the analysis. Elastic aniso-
tropy introduces two major changes in the diffuse signal calculation

of the previous section:
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1. because the k vector and the energy flux or Poynting vector
E of a phonon in a crystal are not collinear, the energy flux
emitted from the heater is not uniform even if, as we assume,
the k vectors of the emitted phonons are uniformly distributed.
This effect, known as phonon focusing, was first investigated
by Taylor g;_gl,]g Phonon focusing influences the amount of
energy which reaches a given point on the surface from the
heater, as well as the intensity of scattering from this
point in the direction of the detector.

2. in the isotropic case, the contribution to the diffuse signal
between t and t + At comes from a circular or elliptical ring
on the reflection surface (see Figure 4.2). 1In a real crystal,
however, the set of points on the reflection surface which
have total flight time t from heater to detector via the
surface is some irregular curve that has no convenient analytic
expression.

In order to take thése effects into account and to identify the
position on the reflection surface which was responsible for the diffuse
peaks observed in the X-axis experiments, I set out to make contour plots
of the energy distribution on £he reflection surface and the flight time
for each mode. By superimposing these contour plots, I hoped to be able
to examine the intensity on the reflection surface at points which had
flight times which corresponded to the mysterious diffuse peaks.

The ostensibly straightforward project of constructing the contour
plots was much more difficult to carry out than I had originally anti-

cipated. Due to some subtleties of the problem outlined below, the
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program as originally envisioned cannot be completed. Despite these
complications, the analysis required for the construction of the contour
plots eventually yielded a very useful picture of the energy flow in a
crystal. In particular, it was found that a point source in a crystal
emits energy in a spectacularly anisotropic way. Associated with a
point source are several topologically conical surfaces on which the
energy flux density formally becomes infinite. These singular surfaces,
which are known as caustics, are very important for the interpretation
of the diffuse scattering signal. Before discussing the analysis of
caustics, it is important to describe the procedure used to construct the
contour plots of time-of-flight and intensity, and some of the difficulties
which were encountered.

The contour plots were constructed by interpolating values of
the intensity and time-of-flight from a 20 x 20 table of computed values.
This grid of 400 points represented a 4 cm2 area on the reflection surface
centered above the heater. Both the intensity and the time-of-fliaght
depend on the Poyntings vector 3, which in turn depends in a complicated
way on the k vector and polarization, as given by equation 3.5. For
each point in the grid, it was first necessary to find the k vectors
which corresponded to Poyntingé vectors which cause energy to flow from
the heater to the grid point and then back to the detector. This involved
jterative calculations similar in principle to those described in Chapter
Three. Since the k vector calculation had to be performed hundreds of
times per contour plot, it was necessary to write an efficient algorithm

to find k given the direction of 3 in order to keep the computing time

within reasonable Timits.
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By analogy to the specular reflection analysis, one might expect
that there are nine processes which connect heater and detector via an
arbitrary grid point. Since each of the nine scattering processes has
a distinct arrival time, one would expect to require nine separate arrival
time contours for a complete description. In order to simplify the
problem, we confined attention to the non-mode conversion transverse -
transverse scattering processes, which the experiments indicated were
most important.

The difficulties in labeling the transverse modes in an anisotropic
solid were discussed in Chapter Three. The solution to the problem
described there of continuing the polarization in a continuous way from
some fiducial point was also used in constructing contour plots for
processes which could be labeled, e.g., 3 = 3. Unfortunately, this
labeling scheme did not give unique answers when applied to a general
grid point. More precisely, the polarization can be continuously trans-
ported along a closed path on the slowness surface, and the initial and
final polarizations may nof be equal. The reason for this behavior seems
to be that there exist points where the curves of constant w (sections
of the slowness surface) for the two transverse modes osculate, as shown
in Figure 4.3. In a sense, thé surfaces touch without crossing. Starting
from one curve on one side of the point A, one can continue the polari-
zation continuously to either curve on the other side of the point.

This seems to mean that there is no way, even in principle, to divide
the transverse reflection processes into globally distinct classes which

have a continuous variation of some vectorial characteristic of the
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Figure 4.3. Curves of constant w in k space for transverse modes. Point
A is an osculation point where the curves are tangent to
each other.

phonon. The previous success of the method for the analysis of the
specular processes is due to the fortunate circumstance that no osculation
point was in the vicinity of the connecting paths.

Because of the phonon Tabeling problem, it is impossible to
associate with each grid point the flight time of a given transverse
phonon scattering process; the best that can be hoped for is to associate
with each grid point four k vectors and four times which correspond to
two outgoing (from the heater) and two ingoing transverse phonons. Even
this is optimistic, since in fact there may be more than two transverse
phonons which cause energy flow between the heater and a given point on
the reflection surface. ‘

To see how this can happen, it is useful to remember that the

group velocity of a wave packet, which is in the direction of energy flow,
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is given by vkw. Thus, the normal vectors to the w = constant surface,

or slowness surface, are parallel to the energy flux vectors. The problem
of finding all phonons that transport energy from the origin to a given
point X can be interpreted geometrically as finding all points on the
slowness surface with normal vector parallel to X. If the slowness
surface is convex like a sphere or ellipsoid, there is only one solution
to the problem. If, however, the surface is more complicated, multiple
solutions arise as shown in Figure 4.4. The figure shows three distinct

k vectors which yield surface normals and energy flow in precisely the
same direction, although the magnitude of the three group velocities is

not obliged to be equal. The far field due to an instantaneous point

Figure 4.4. Schematic diagram of a non-convex cross section of one
sheet of the slowness surface. A1l three k vectors corre-
spond to energy flow in the same direction.
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source may be quite complicated in an anisotropic medium; instead of
observing three pulses corresponding to longitudinal, fast transverse

and slow transverse, in some directions one may observe several pulses
from each polarization. It seems that in sapphire the longitudinal sheet
of the slowness surface is actually convex, so multiple solutions occur
only for the transverse modes. It is easy to convince oneself that
multiple solutions for the transverse branches are not confined to special
high symmetry points, but occur in general directions as well. Detailed
numerical calculation shows that there are many regions in sapphire in
which five or six transverse pulses can be observed.

Before it was fully realized that many k vectors might lead to
energy propagation in the same direction, the computational procedure for
finding the k vector which sent energy in the X direction was based on
using K I X as a first guess, and then improving the guess until a
solution was found. As can be seen from Figure 4.4, this technique would
only yield the solution Ez; E] and E3 cannot be reached by improving a
guess which is close to EZ; Moreover, there is no way to generate a guess
a priori which is close to E1 or ?3. Mathematically, the problem is to
find the global solutions to a coupled set of non-linear vector equations
in vector unknowns. Since the)on1y pDractical way to solve non-Tlinear
equations is to improve a sufficiently good guess, it was necessary to
compute the Poynting vectors for a dense grid of k vectors on the entire
slowness surface to find good initial guesses for cases like E] and K3 of
Figure 4.4. With these added complications, one must be prepared to

associate more than two ingoing and/or outgoing transverse phonon k vectors



88

with each grid point. Once all the k vectors have been found, the time-

of-flight can be computed for each process in a straight forward manner.

Phonon Focusing

The computation of the intensity of the wave packet corresponding

to each k vector involves the theory of "phonon focusing."]8’19

The way
elastic anisotropy may focus or defocus energy is illustrated in Figure 4.5.
A wave packet with k vectors contained in a solid angle given by ko =

dk] x dk2 sends energy into a solid angle de = dp] X dpz. In an isotropic
solid, the k and p vectors are parallel, so ko = de, and there is no
focusing. In an anisotropic solid, however, the k vector pyramid and the
corresponding Poynting vector pyramid may have considerably different

shape. If ko > de, the energy is focused, while if ko < de, the energy

is spread over a larger area and the intensity is low. The ratio ko/de,

dk

Figure 4.5. Differential volume element in k space with the corresponding
volume element in real space spanned by the energy flux
vectors P.
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which is called the focusing factor, can be used to measure the intensity
of the energy flux which travels along E. In order to calculate the
differential area de, one must know the change dp caused by a change

dk. This is given by the formula
dn. = =i dk, (4.9)
Because of the dependence of b, on the polarization which in turn depends

on k, the derivative api/aki is rather complicated. First, the k derivative

of the polarization must be computed. The result is

seY(k.) e ef &% k

. S A S Te.. +¢, . ) L m7k (4.10)
aki ) ijam igjm VZ _ V2
@fY Y o

where e?(kj) denotes the ith component of the unit polarization vector
of the « mode (o = 1, 2, 3) with k vector kj and v, is the corresponding
phase velocity. Substituting into this expression the formula

se?

i oo 1 o Lo _nh o, o_TMm 411
ok. Py pj * 0 anmi €0 Cm * nomi kz [akj m T ©n 3K ] (4.11)
yields the required derivative which can be used to compute the focusing
factor. A computer program was written to compute the various derivatives
and the intensity for each k vector associated with a grid point. This

is apparently the first time these formulas have been used to calculate

the intensities in arbitrary directions; previous applications have only
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considered high symmetry directions in cubic crystals where the derijva-
tives can be computed ana]ytica11y.18

Once the analysis outlined above has been completed (a complete
run requires about 1 CPU hour on the PDP-10), each grid point has associ-
ated with it a Tist of incoming and outgoing intensities and arrival
times. In order to construct a contour plot, one phonon process must
be selected at each grid point with its corresponding flight time and
intensity. Because of the phonon labeling complications discussed above,
there may not be a unique way to make the choice. This is not an
insurmountable problem, since the contours will contain information of
interest as long as they are reasonably continuous and smooth. It was
found that smooth contours could be obtained by choosing the two processes
with highest intensity and labeling them according to the magnitude of
the group velocity as fast transverse and slow transverse.

A typical set of contour plots which results from this analysis
is  shown in Figures 4.6 and 4.7. Figure 4.6 shows the intensity distri-
bution of the fast transverge mode on the upper surface of the sapphire
crystal, and the rather dramatic effects of elastic anisotropy on
energy flow in the crystal can be clearly seen. Figure 4.7 shows the
contours of constant arrival t{me for all scattering processes that
involve ingoing and outgoing fast transverse phonons for the experimental
geometry corresponding to the reflection signal shown in Figure 3.13;
i.e., heater and bolometer displaced by 2 mm along the X axis. The
arrival time of the sharp nonspecular peak of 3.5 usec is marked by the
heavy contour. When the arrival time and intensity contour maps are

superimposed, the heavy contour overlaps several regions of high intensity,
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Figure 4.6. Contour plots of the intensity of the fast transverse mode
on the reflection surface in sapphire. The circled cross
marks the position of the heater on the lower surface
of the crystal.



2 ¥

Figure 4. 7.

Contours of arrival time for fast transverse - fast transverse
scattering processes. The circled cross marks the position

of the heater on the lower crystal surface, while the

squared cross marks the position of the bolometer.
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but many other time contours overlap equally intense regions. The large
diffuse feature seen in Figure 3.13 is apparently not simply due to the

fact that the heater emits energy in a highly non-uniform way.

Phonon Focusing Catastrophes

During the course of further analysis of intensity contours like
Figure 4.6, it was discovered that the numerical routines were unstable
in some regions of high intensity, and the computer would sometimes
converge on isolated points where the focusing factor was very large.
Because the equations (4.10) and (4.11) for the focusing factor are
rather complex, it is difficult to get a physical understanding of why the
intensity is much higher in some regions than in others. In an attempt
to gain some insight into this problem, I developed a different method
of analyzing phonon focusing based on an analysis of the asymptotic
field from a point acoustic source. The integrals which arise in the
problem are of the type dealt with in formal catastrophe theory, and this
theory can be used to make very general statements about the form of
regions of high focusing using some simple geometric arguments.

A general expression of the acoustic field at x from a point
source at x' is obtained by constructing the Green tensor gkm(xlx')

which satisfies the anisotropic wave equation with a periodic point

source:

(x|x') = 6. &(x-x") (4.12)

Lik gkm im

where, if c. is the elastic tensor, then

ijek
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and its Fourier transform is
v 2
Lik = Ci30k K5 K5 = 95 85y

A similar equation for the far field from a point source in an aniso-
tropic medium is analyzed in references 37 and 38; the treatment here is
adapted from these references.

To examine the field at a point P due to a source at the origin,

we transform to a frame in which P has coordinates (0,0,z). The solution

9, (P10) = ‘/ﬁ-——Jﬂﬂﬂ—— etkz(kasky) 2 gy dk,, (4.13)
(8G/3k,)

where Bkm is the matrix of cofactors of tkm’ G = det L and the integral

is over the slowness surface defined by G = 0 (surface of constant w in

k space). Equation (4.13) represents the field at P in terms of a weighted

sum of plane waves which have k vectors on the slowness surface. The

integral cannot be carried out‘exactly, but for large z it can be approx-

imated using the principle of stationary phase. The phase is stationary

at points where (akz/akx) and (akz/aky) are zero; geometrically this

represents points on the slowness surface with the normal vector in the

2 direction. Waves with k vector in the vicinity of the stationary point

>

kO = (kg, k§, kg) contribute to the integral in equation (4.13), but waves

with other k vectors tend to be out of phase and cancel each other. The
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exponent in equation (4.13) can be expanded to second order around the
stationary point, which, in an appropriately chosen coordinate system,

yields:

- 0 042
k. = kZ + u(kx - kx) +

] (k- k)? (4.14)

¥

When this is substituted into equation (4.13) and the Timits are

extended to + «, the Teading order behavior of the field is obtained:

ik‘z’z
g, (P]0) « B, (k%) &— (4.15)
km km Z Z‘/&—B—

The product oB is the Gaussian curvature of the slowness surface at the
point of stationary phase ?O, and in this approximation, the field
decreases as z—1 and the intensity is inversely proportional to the
Gaussian curvature ag. We have thus constructed a geometric representation
of phonon focusing. In retrospect it is evident that the ratio of solid
angles shown in Figure 4.5 is formally identical to the curvature of

the slowness surface as defined by Gauss.

The geometric measure of focusing has considerable advantages
over the traditional approach for making qualitative predictions. For
instance it is clear that directions of high focusing are associated with
regions of small curvature on the slowness surface and that points of
zero curvature yield an infinity in the field amplitude. An infinite
or even very large displacement is of course incompatible with Tinear
elastic theory. This result is due to a breakdown of the geometrical

optics approximation that has been made in deriving equation (4.15).
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The possible form of regions of zero curvature can be investigated
by considering perturbations of the slowness surface for an isotropic
solid, which are spheres in k space. The effect of elastic anisotropy
is to slightly deform the spheres; this generally (but not inevitably)
leads to regions of negative curvature. Regions of positive and nega-
tive curvature are separated by smooth curves along which the curvature
vanishes.

Vectors normal to the slowness surface along such a closed curve
sweep out a (topologically) conical surface emanating from the point
source on which the field is intense but cannot be computed using
geometrical optics. Such surfaces are known as caustics in classical
wave theory, and higher order approximations to the wave equation must
be used to analyze the field in their vicinity.

If, for example o in equation (4.14) is close to zero, the

expansion is not sufficiently accurate and another term must be included:

k. o= Ko+ a(k - k%2

0,3 0,2
z z X x! v(k, - k)7 + 8(k, - ky) (4.16)

X X y

The retention of the third order term is necessary because there are

two nearby points where the phase is stationary, corresponding to two
parallel rays, as shown in Figdre 4.8, On the caustic, o = 0, the rays
merge, and the geometrical optics approximation goes to infinity, but the

actual field is finite and is given by

.07
1kz—

0y & 1 1

Z



Figure 4.8.

Section of a slowness surface which contains a point A of
zero curvature.  On either side of A, there are two k
vectors which yield energy flow in the same direction. As
the k vectors approach A, the two rays merge. Note that
in the vicinity of A, the slowness surface can be approxi-
mated by a cubic polynomial 1ike equation (4.16).



98

The intensity is not uniform along the caustic as suggested by the
geometrical optics approximation, but rather depends on the third

derivative term vy; remarkably, the field also has a oS8

spatial depen-
dence, rather than the z'] dependence normally expected from a point
source.

The breakdown of geometrical optics that occurs on a caustic is
an example of a catastrophe in the sense of formal catastrophe theory.
Many of the implications of catastrophe theory for optical and atomic
beam caustics are explored in references 39 and 40. For elastic waves in
a solid, catastrophe theory allows only two types of structurally stable
caustic behavior. The simplest, known as a fold catastrophe, corresponds
to the coalescence of two rays, and is associated with a third order
expansion such as equation (4.16). Figure 4.8 shows how the rays merge
at a simple inflection point. Along the caustic, y may occasionally
vanish at isolated points, where a fourth order expansion is required.
These points are known as cusp catastrophes (because of the characteristic
shape of the caustic) and cbrrespond to the coalescence of three rays.

A simple analysis shows that the field at a cusp has spatial dependence
2—3/4. No catastrophes of yet higher order can exist at a typical point.
A summary of the catastrophe tﬁeory analysis of caustics in anisotropic
media is shown in Figure 4.9.

Associated with each elementary catastrophe is a diffraction
function which describes the far field in the vicinity of the caustic.
For the fold catastrophe, the diffraction function is the Airy function,
while the field in the neighborhood of a cusp is described in terms of the

41

less well known Pearcey integral. Using the diffraction functions,



Figure 4.9.
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k-space real space

The k vectors which correspond to points of zero curvature
on the slowness surface define a topologically conical
surface in k space which has a smooth boundary, without
sharp corners. The Poynting vectors which are associated
with the k vectors also sweep out a topologically conical
surface, but it generally has sharp cusp-like edges.
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uniform asymptotic expansions can be constructed which vary continuously
between the Z'] dependence at an ordinary point and the higher power

of Z dependence which holds on the caustic. Thus, catastrophe theory

not only classifies the singularities but also describes the field in
their vicinity. In addition, we see that the singular surface is
associated with an anomalous region which may be responsible for a signi-
ficant part of the energy in the entire field.

Once it was realized that the intensity distribution on the top
surface of the crystal would be dominated by the caustic curves where the
focusing factor was infinite, the computer programs used to construct
the contour plot of Figure 4.6 were rewritten so that the caustics could
be Tocated and plotted, as shown in Figure 4.10. As expected on the basis
of catastrophe theory, cusps where the field is particularly high are a
prominent feature in the figure. A comparison of Figure 4.6, which was
constructed from a table of intensities on a finite grid and Figure 4.10
which locates the caustics, shows that the intensity distribution inter-
polated from the finite grid can be quite misleading; only some of the
high intensity regions visible in Figure 4.6 are associated with an under-

lying caustic, but these are the most important.

Application to Experimental Results

The caustic structure of the point source can be used to under-
stand the sharp nonspecular features which are observed in some reflection
geometries but not in others (compare Figures 4.11 and 4.12). It must

be kept in mind, however, that in a reflection experiment diffusely
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Figure 4.10. Location of caustics for both transverse modes in sapphire.
The curves are the intersection of the topologically conical
caustic surface which emanates from the heater with the
upper surface of the crystal. The position of the heater
is marked by the circled cross. Compare with Figure 4.5.
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scattered phonons can be refocused by the crystal anisotropy. Thus there
are two sets of caustics which are important to describe a reflection
experiment: the heater caustics intersect the reflection surface in

curves of high incident intensity, while similar caustics are associated
with the detector and can be interpreted as a set of points where a source
would focus strongly back to the detector. The insets of Figures 4.11

and 4.12 schematically show the orientation of the heater and detector
caustics (detector caustic is dotted) for the two representative experiments.
Although the caustics are drawn as lines, they have a width given by the
size of the source and detector.

If the heater and detector are displaced along the X axis, as in
Figure 4.11, the caustics overlap and there is a spatially localized
high intensity nonspecular scattering channel. The time-of-flight of this
process agrees precisely with the arrival time of the large diffuse peak.

If the heater and bolometer are placed along the C axis, the
caustics do not overlap and there is no prominent peak in the diffuse
scattering signal, as shown in Figure 4.12. When helium is introduced
to the reflecting surface, the nonspecular part of the signal is greatly
reduced. Thus, just as one would expect, the effect on the bump in
Figure 4.11 is dramatic, whi]eAthe signal in Figure 4.12 is much less
affected.

In another experiment which was designed to test the intersecting
caustics interpretation of the large nonspecular peak, the heater and
bolometer were placed along the X axis as in Figure 4.11, but on a longer
crystal (24 mm x 22 mm diameter). In this configuration, the caustics

do not intersect on the reflection surface, but rather hit the side wall,



Signal (arbitrary units)

Figure 4.11.
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Time (usecs) —

Reflection signal for heater and bolometer displaced along
the X axis (Y axis is the reflection surface normal). The
inset shows the intersection of the heater and bolometer
(dotted curve) caustic surfaces with the crystal reflection
surface. The intersection of the two caustics provides a
high focusing channel for nonspecular scattering which
gives rise to the large bump in the reflection signal.
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Figure 4.12.

Time (usecs)

Reflection signal for heater and bolometer displaced along
C axis. The inset shows that for this geometry, the
heater and detector caustics do not intersect. The ratio
of specular to diffuse scattering is much higher in this
geometry than in X-Y plane reflection shown in Figure
4.11.
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as illustrated in the inset of Figure 4.13; note that there is no large
diffuse peak which follows the specular transverse peaks. Since the
high focusing channels for diffuse scattering intersect the side wall,
the diffusely scattered phonons arrive at a much earlier time than the
specular phonons, which have made two traversals of the full length of
the crystal. When the same crystal was cut and repolished, the diffuse
scattering channel intersects the back reflection surface again, and the
familiar diffuse bump following the specular channels is recovered, as
shown in Figure 4.14. Note that the specular peaks, although shifted to
different arrival times, are essentially similar in the two experiments;
only the diffuse scattering is strongly affected by the shape of the
crystal.

The analysis of caustics and the experimental results presented
above have several imnortant implications for the proper interpretation
of phonon reflection experiments. Perhapns the most important conclusion
is that the diffuse scattering signal behaves in two essentially different
ways depending on whether the heater and bolometer caustics intersect or
not. If the caustics do not intersect, the anisotropic emission of
phonons from the heater is washed out by diffuse reflection, and the
signal can be adequately descr{bed using an isotropic model. If the
caustics intersect, the diffuse scattering produces rather sharp features
which in the past have often been confused with specular peaks. The
intersection or non-intersection of the caustics depends critically on
the relative orientation of the heater and detector and the shape of the

crystal. These parameters have been given insufficient attention by
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Figure 4.13. Reflection signal for heater and bolometer displaced along

X axis (as in Figure 4.11) but in a crystal 24 mm x 22 mm
dia. The heater and bolometer caustics intersect in several
places on the side wall of the crystal, giving rise to

the diffuse peaks D1, D2, D3 and D4. The three sharp peaks
at 7.5 usec are due to specular transverse processes; no
large diffuse bump follows these peaks.
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Reflection signal for precisely the same geometry as in
Figure 4.13, except the crystal has been cut to a length
of 6.9 mm. The caustics intersect on the reflection
surface and cause the diffuse bump DI.
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previous investigators. Many experiments have been reported in which
the crystallographic plane of the reflection surface is specified, but
the plane which contains the heater-detector surface normal is not. Even
if the heater-detector separation is kept constant, changes in the relative
orientation with respect to the crystal axes can completely change the
received signal, and the apparent effect of helium.

It is interesting to note that the time-of-flight of the diffuse
peaks can be predicted from the caustic structure of a point source
alone; regions where the focusing factor is finite do not seem to contri-
bute significantly to the diffuse signal. The published tables and

p]ots]g’42

of average phonon intensities computed on a grid are misleading
in the sense that they do not reveal the existence of the caustics.
Instead, there are regions of elevated intensity, some of which conceal
underlying caustics and contribute heavily to the experimental signal,
and others which do neither. Thus, while the old phonon focusing calcu-
lations can be helpful in interpreting certain simple cases,43 they cannot
explain the details of the experiments described above.

In addition to its utility in predicting experimental results,
the geometric theory of focusing developed here also provides an appealing
theoretical framework for the aiscussion of phonon propagation in crystals.
Although the detailed calculations are themselves rather involved,
catastrophe theory provides a means of extracting a simple and general
picture: from a point acoustic source in a crystal there emanate topo-
Togically conical caustic surfaces (fold catastrophes) with occasional
higher order line singularities in those surfaces (cusp catastrophes).

On the caustics the field falls off more slowly than (distance)_1, and
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on the cusps more slowly still, but it always remains finite and calculable,

as it must.
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CHAPTER FIVE: SUMMARY AND SUGGESTIONS FOR FURTHER RESEARCH

As explained in the Introduction, the principle motivation for
this work was to try to understand why heat transport across a solid/
helium interface is so much more efficient than elastic theory suggests
it should be. Unfortunately, the experimental results and analysis
presented here do not provide an unequivocal answer to this question.
What has been accomplished, however, is a greater understanding of what
the predictions of elastic theory really are and how they should be applied
to realistic experimental situations. The work of Chapter Three shows
that phonon reflection spectra contain much more structure than had
previously been supposed. Some of this structure can be understood by
carefully applying an analysis based on anisotropic elastic theory to the
reflection of phonons at a perfectly smooth interface. A considerable
fraction of the received signal cannot be accounted for in this way,
however, and must therefore be due to nonspecular scattering. Moreover,
the nonspecular scattering signal seems to account for most, if not all,
of the anomalous coupling to liquid helium. The intensity and pulse
shape of the diffuse scattering is a sensitive function of the heater-
bolometer orientation. This can be explained by introducing the concept
of caustics, which are surfaces of high intensity associated with a point
source.

The commonly accepted interpretation of phonon reflection experi-
ments has been that elastic fheory does not adequately describe the

mechanical coupling between a solid and 1iquid helium. The implication



111

is that an additional (non-elastic) interaction mechanism exists between
classical solids and quantum systems. It is our opinion that low time-
of-flight resolution data and an unwarranted faith in isotropic elastic
theory are at Teast partially responsible for these conclusions of previous
researchers. We have found that the specular portion of the reflection
signal seems to obey elastic theory exactly. Although the strong coupling
of the diffuse scattering signal to liquid helium is still unexplained,
we would like to suggest that it is premature to dismiss the possibility
that elastic theory will eventually supply a complete explanation of the
anomalous Kapitza conductance.

In our view, the problem of phonon reflection from a crystal/
1iquid helium interface is a difficult problem in classical mechanics
which has not yet been thoroughly analyzed. Although the analysis of the
effects of elastic anisotropy is an important step toward a more realistic
theory, our results on the importance of nonspecular scattering suggest
that surface roughness must also be taken into account. Several attempts
have been made to 1ncorporéte the effects of surface roughness into
Kapitza resistance calculations, but the results have been somewhat
confusing. On the basis of a simplified (and unphysical) model, Litt]e44
concluded that the effect of s&rface roughness on the transmission of
phonons was very small, and that this small effect tended to make heat
transport less efficient than a flat interface. The complexity of the
calculation and the negative nature of the result made surface roughness
an unpopular explanation of the anomalous Kapitza resistance for many
years. Recently several more sophisticated calculations have been published

which conflict with Little's result. Adamenko and Fuks45 ignore the
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transverse phonons in the solid, but find that surface roughness may
enhance heat transport by a factor of two. Castelan and Maradudin46
compute the Kapitza resistance including the transverse phonons and find
a factor of four increase in the heat transport efficiency. An unpublished
calculation by N. Shiren47 indicates that including the effect of
surface roughness on surface wave scattering may decrease the theoretical
Kapitza resistance to about one-tenth of the Khalatnikov value.

The mutual disagreement of these calculations suggests that the
physics of the surface roughness problem is not completely understood,
and much work must be done before these calculations can be meaningfully
applied to realistic experimental situations. The calculations are all
done from the liquid's point of view; i.e., the quantity which is
actually calculated is the reflection coefficient for phonons incident
from the Tiquid. Although the algebra is easier for this case, only
the behavior of phonons incident from the solid are conveniently observ-
able. Thus, the calculations mentioned above cannot be used to interpret
phonon reflection experiments from a crystal/vacuum interface. Our
philosophy throughout this work has been that a complete understanding
of crystal/vacuum reflection spectra is essential to the further develop-
ment of the phonon reflection technique. A detailed calculation describing
the reflection of phonons in the solid from a rough interface would be
a valuable aid in interpreting data.

Another difficulty in comparing theory with experiment is the
fact that the condition of the surfaces used in the experiments is not

well characterized. The predicted effect of surface roughness depends
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sensitively on the parameters which describe the roughness, such as the
mean square height and slope. Although these parameters are hard to
measure accurately for a mechanically polished dielectric crystal, more
effort should be devoted to careful surface characterization in future
work. Measuring surface topography on Angstrom length scales may be
difficult, but controlably altering it is even more difficut. Even
cleaved or chemically etched crystal surfaces are atomically rough. The
fact that surface roughness is not an experimentally adjustable parameter
is another reason for trying to describe the effects with a realistic
calculation. If a reliable theory were available, it would presumably
predict the amount of diffuse scattering as a function of incident phonon
wavelength. Even if the crystal roughness cannot be varied, tunable
monochromatic phonon sources could be used to test the theory. It would
be an important finding if the diffuse scattering peaks we have observed
could be shown to be predominantly due to short wavelength phonons.

An important dimensionless number which characterizes the surface
roughness scattering problem is the ratio of the rms roughness height
to the wavelength. Scattering calculations are usually perturbation
expansions in this supposedly small parameter. In most technologically
important problems such as radér or sonar ranging, the small surface
roughness 1limit is valid, but it is almost certainly not a good approxi-
mation for thermal phonons impinging on a polished crystal surface.
Exact solutions of the wave equation for reflection from rough surfaces
indicates that the perturbative solution breaks down for roughness heights
larger than one-tenth of the wavelength. In typical phonon reflection

experiments, the phonon wavelength in 1liquid helium is approximately 10 A.
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Since the rms roughness is probably Targer than this, there is no reason
to believe that perturbation calculations will work. At the conclusion

of his discussion on the scattering of sound from rough surfaces,

Rayliegh conjectures that "if we suppose the corrugations of a given
period to become very deep and involved, it would seem that the condition
of things would at last approach that of a very dradual transition between
the media, in which case the reflection tends to vam’sh.“48 The high
transmissibn coefficient one expects at a very rough interface cannot be
predicted using perturbation theory. An exact calculation may be feasible,
however. Numerical techniques have been developed to solve the similar
problems which arise in atomic beam scattering expem‘ments.49 Such a
realistic calculation is essential before we can determine whether phonon
reflection experiments from crystal/helium interfaces can be explained

in terms of classical mechanics, or if the anomalous Kapitza resistance

is really due to some additional non-mechanical coupling.
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