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ABSTRACT 

We have used the heat pulse technique to study phonon reflection 

from sapphire-vacuum and sapphire-liquid helium interfaces. The high 

resolution data presented here show more structure than has been observed 

in previous experiments of this type. 

In order to interpret the complex time-of-flight spectra, the 

problem of the reflection of elastic waves in an anisotropic medium 

is analyzed in detail. The analysis shows that there are, in general, 

nine phonon reflection processes, each with a different time of flight, 

which transfer energy from heater to detector via a single reflection. 

Iterative computer calculations are necessary to establish the trajectory 

of energy flow and the arrival time for each channel. The agreement 

between calculated and experimentally observed times of flight is very 

good. 

Although the sharp features in the reflection signal due to 

specular (kl! conserved) processes can be explained using anisotroric 

elastic theory, approximately half the energy which reaches the detector 

arrives via non-specular channels. The non-specular scattering, which 

may be due to surface roughnes~, gives rise to broad features in the 

signal. The main difference between crystal-vacuum and crystal-helium 

reflection signals is that the non-specular signal is much smaller for 

the helium covered surface. In contrast to previous works, we find that 

the specular signal is not affected by helium. Apparently, the non­

specular processes are involved in the anomalous Kapitza conductance. 
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In some crystallographic orientations of heater and bolometer, 

the non-specular signal is particularly large. The orientational 

dependence of the diffuse scattering is due to the extreme anisotropy 

of energy flow in crystals, an effect which is known as phonon focusing. 

We develop a new method of analyzing phonon focusing based on an asymptotic 

analysis of the phonon Green's function. Geometric arguments are used to 

show that certain singularities in the acoustic field called caustics 

can be expected in most crystals. The general features of caustics can 

be predicted using results from mathematical catastrophe theory. The 

caustics in sapphire were located by numerical calculation, and used to 

explain the results of several experiments. 
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CHAPTER ONE: INTRODUCTION 

It has been known for more than thirty years that heat transport 

across a solid-liquid helium boundary is ten to one-hundred times more 

efficient than predicted by theory. Experimentally, one observes that 

a solid immersed in liquid helium cools off orders of magnitude faster 

than expected. This large discrepancy between theory and experiment is 

a classical problem of low temperature physics known as the Kapitza 

problem, and is the primary motivation for the work of this thesis. 

This puzzle is particularly intriguing because the physics of 

heat transport in other situations is well understood. The theory of 

liquid helium is highly developed and the thermal properties of liquid 

helium are perhaps the best characterized of any substance. Similarly, 

thermal conduction in solids, particularly at low temperatures, is well 

described by standard theories. Nevertheless, hundreds of experimental 

and theoretical investigations 1•2•3 have failed to elucidate the physics 

of the processes which contribute to the anomalously high conductance at 

a solid-helium interface . 

The history of this subject began in 1971 when Kapitza4 noticed 

a peculiar effect while investigating the thermal conductivity of super­

fluid helium. Careful measurements revealed that there appeared to be a 

temperature discontinuity at the interface of a heated solid in contact 

with a helium bath. This was a remarkable result since the boundary 
-

conditions for the equations of diffusive heat flow require a continuous 

temperature distribution even across an interface where the thermal 
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conducti vit_y changes discontinuously. This effect was phenomena 1 ogi ca lly 

described by introducing a thermal boundary resistance Rk, the Kapitza 

resistance. 

The physical mechanism of the Kapitza resistance remained obscure 

for several years after the initial experiments, although it was thought 

to be related to the peculiar thermal properties of superfluid helium. 

It was eventually realized, however, that the equations of diffuse heat 

flow were not strictly valid very close to an interface. In particular, 

conservation of energy and momentum of the thermal carriers cannot be 

accounted for in a theory which characterizes a medium only by a mean free 

path and an average velocity. As pointed out by Khalatnikov, 5 energy is 

transported by phonons which impinge on an interface and are either 

reflected or transmitted with probabilities that can be calculated using 

classical continuum mechanics. Because the acoustical properties of liquid 

helium and any solid are very different, most of the ohonons which reach 

a helium interface are reflected; it is the discontinuity of the acoustical 

properties which gives rise to the temperature discontinuity. The same 

reasoning shows that this thermal boundary resistance is not peculiar to 

helium, but can be expected at any interface between dissimilar materials. 
-The phonon picture clarifies the origin of the temperature _ 

discontinuity and thus resolves the original "Kapitza problem." Despite 

this progress, the detailed quantitative calculations by Khalatnikov5 in 

1952 introduced a new di ffi cu_l ty because the theoretical va 1 ues of the 

thermal boundary resistance for solid-liquid helium interfaces were at 

least an order of magnitude larger than values obtained from experiment. 
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Thus the Kapitza problem, in its modern formulation, is not concerned 

with the existence of the thermal boundary resistance, but rather with 

the explanation of why it is not much larger than it is. 

Since the theory developed by Khalatnikov, known as the acoustic 

mismatch model, is the basis of our (admittedly inadequate) understanding 

of heat transport across an interface and since most modern efforts have 

been directed at reconciling experimental results with versions of this 

model, it is worth discussing in more detail. 

The Acoustic Mismatch Model 

The theory of Khalatnikov assumes that the essential physics of 

the transport process can be understood by using continuum mechanics to 

analyze the reflection of an elastic wave at the interface separating an 

isotropic solid and an ideal fluid. The use of continuum mechanics is 

justifiable because the wavelength of thermal phonons at l Kin a solid 

is typically 300 nm while in the helium it is 15 nm. In both cases the 

phonon wavelength is much longer than the interatomic spacing. 

The system of incident, reflected and transmitted waves at a 

solid-liquid interface must satisfy not only the appropriate wave equations 

of elastic theory and fluid mechanics, but also certain boundary conditions. 
➔ 

If the displacement field in the fluid and the solid are denoted by uf 

and us, respectively, then the condition that solid and fluid remain in 

contact is that 

= ( l. l ) 

at the interface where n is a unit vector normal to the boundary. 
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Only the normal component of the displacement must be continuous, since 

a fluid with zero viscosity can slip across a solid moving parallel to 

itself. The condition that the stress be continuous across the boundary 

is given by 

= (l .2) 

s f 
where crik and crik are the stress tensors in the solid and fluid, respec-

tively. The displacement and stress can be expressed in terms of the 

various wave amplitudes. Equation (l.l) represents one constraint on 

these amplitudes while equation (1.2) represents three conditions. For a 

given incident wave from the solid, these four equations determine the 

amplitude of the longitudinal wave transmitted into the liquid and the 

amplitudes of three waves reflected back into the solid, of which two are 

transverse and one is longitudinal. 

Although the computation of the reflection coefficients from these 

equations is algebraically complicated, the fact that most of the phonons 

incident on a solid-helium boundary will be reflected can be explained 

using a few qualitative arguments. As in the more familiar case of the 

reflection of electromagnetic ~aves, the translational invariance of a 

planar interface implies that the parallel component of the k vector of 

all the waves which take part in the reflection process must be equal to 

the parallel component of the incident wave k vector, k1(· This is simply 

a statement of Snell's law, but in the acoustic case the effects can be 

quite spectacular. For the same phonon frequency w, the magnitude of 

the k vector lkl = w/c is approximately 20 times larger in helium than 
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in a solid because of the large difference inc, the speed of sound. 

This means that there is a critical angle in the helium of approximately 

3°; i.e., phonons from the helium with angle of incidence greater than 3° 

suffer total internal reflection so no energy transport across the inter­

face results from these processes. Conversely, phonons incident from the 

solid side can only radiate phonons into a cone in the helium with a half­

angle of 3°. Conservation of parallel momentum severely restricts the 

phase space available for transport processes. 

A complication which is not present in the electromagnetic case 

is that the solid supports both longitudinal and transverse waves which 

for many solids have sound speeds which are approximately related by ct= 

(c £//3) (stability of the solid requires c£ > ct). Since the density 

of states goes as l/c3 and there are two transverse modes, there are ten 

times as many transverse phonons in the solid as longitudinal, and 85% 

of the energy flux which reaches the interface is in the form of transverse 

phonons. -Because the liquid is assumed to have zero viscosity, however, 

the coupling of the transverse modes is very ooor. At normal incidence, 

a transverse phonon from the solid is totally reflected. 

These qualitative considerations suggest that the mechanical 
' ;, 

coupling between a solid and an ideal fluid is rather weak, and detailed 

calculations show that this is particularly true for helium. Using 

equations (l .l) and (l .2), the energy reflection coefficients for the 

various phonon polarizations Jncident from the solid may be computed, as 

outlined in reference 6. The polarizations may be conveniently described 

using notation from the seismological literature as longitudinal (L), 

transverse with polarization in the plane of incidence, or shear vertical 
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(SV), and transverse with polarization perpendicular to the plane of 

incidence, or shear horizontal (SH). If the material properties can be 

described by the density, p£, and speed of sound in the liquid, c, and the 

density ps' transverse speed of sound ct and longitudinal speed of sound 

c£ in the solid, the reflection coefficients labeled by the incident 

1 . t. 6 po ar,za ions are 

RSH = 

where the acoustic 

z = 
p£C 

COSS 

C Cose 2 2Zl 

Z Z . 2 
c£ COSS + t s,n 

tane 2 

1.0 

impedance are given 

z, = 
pSC£ 

2 COSS 

2esv + z cos 2 2esv 
l 

by 

zt = 
pSCt 

COSS sv 

( l . 3) 

( l . 4) 

( 1 . 5) 

e, is the angle from the normal of the k vector of the phonon in the 

liquid, while e2 and eSV are incidence angles of the longitudinal and 

shear vertical phonons in the solid. If we consider the most efficient 

transport process, a longitudinal phonon at normal incidence, and substi-
• 3 

tute the typical values ps = 4.0 gm/cm , ct= 5000 m/sec, c£ = 9000 m/sec, 

into equation (1 .3), the reflection coefficient is RL = 0.995. Note 

also that the SH phonons have reflection coefficients of unity at all 
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angles of incidence, and that none of the reflection coefficients depend 

in any way on phonon frequency. 

Khalatnikov used the phonon reflection model to calculate the 

Kapitza resistance explicitly in terms of material parameters. The basic 

idea of the calculation is to compute the net heat flux per unit area Q 

in terms of the temperature difference ~T between solid and liquid and 

then to use the relationship 

Q ( l . 6) 

to define the Kapitza resistance Rk. If the solid has temperature Ts, 

the number of phonons with polarization a which hit the surface from the 

solid per unit time and per unit area is 

2 k4 T4 
TT B s 

120 fz
3 c2 

( l. 7) 

a 

where k8 is Boltzman's constant. The heat flux out of the solid q· 
S➔Q, 

is a product of an angular average phonon energy transmission coefficient 

and the rate that phonons reach the wall: 

n2 k~ T: 
= ~ -----=-----=- J [ l - Ra ( e) J cos e d ( cos e) 

L 120 fz
3 c2 

a 

2 k4 T4 
TT B s A ·a 

= 
120 fz

3 c2 
a a 

( l . 8) 

where a ranges over Land SV. A similar expression holds for the heat 
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flux from the liquid into the solid Q
0 

• 

£➔S • 

where T£ is the temperature of the liquid, 

B 
2 
C 

B = J [ l - R ( e) J cos e d ( cos e) 

( 1. 9) 

(1.10) 

and R(e) is the reflection coefficient of longitudinal phonons from the 

liquid side. When T£ = Ts' the net heat flux Q £➔S - QS➔£ is zero, so 

(1.11) 
Aa B 
2=2 
C C 

a a 

This is an algebraic relationship which expresses the microscopic reversi­

bility of the phonon reflection process and is valid at all temperatures. 

If T - T = 6T is small, one can make the approximation s £ 

T4 - T4 = 3Ts3 6T s £ 
(1.12) 

The net heat flux Q can then be written 

A 
Q = 

a 
2 (1.13) 
C 

a 

The integrals which define the angular-average reflection coefficients A 
a 

are rather tedious, but were carried out by Khalatnikov. The final result 

is 
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l61T 5 p Q, C k4 T3 
Q = B FLIT 15 3 PS (2 1T hCt) 

(1.14) 

or 

15 h3 3 
PS ct l 

Rk = 

l 61T 3 k4 c F T3 
B PQ, 

(1.15) 

where Fis a number of order unity. 

The most direct method of measuring the Kapitza resistance is to 

produce a known steady heat flux across a solid-liquid helium interface 

and simply measure the temperature discontinuity LIT. This has been done 

for many materials, but the available data are not self-consistent in the 

sense that values obtained on different samples or in different laboratories 

often di ffer by a factor of two. The experimental difficulty of measuring 

the temperature at the interface from the solid side and estimating 

the effective surface area of a sample are probably the main cause of 

the discrepancies. Nevertheless, the results of many steady heat flux 

experiments can be summarized by saying that although the T- 3 behavior 

expected on grounds of simple kinetic theory is approximately obeyed, 

the experimentally measured numerical value of the Kapitza resistance is 

consistently lower than predicted by equation (1.15), usually by more than 

a factor of ten. For example, sapphire, the solid used in all the experi-

d • h. h • h d K • t • t • Rmeas ments reporte 1n t 1st es1s, t e measure ap, za res,s ance ,s k = 

44/T3 (cm2 K/W) while the acoustic mismatch value is R~M = 9800/T3 

(cm2 K/W). 1 Acoustic mismatch fails equally for metals, insulators and 
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superconductors. Perhaps the only real success of the theory is the T- 3 

dependence which is found in most experiments. The strong temperature 

dependence means that the acoustic mismatch mechanism becomes negligible 

at high temperatures, but conversely, it is very effective in the milli­

kelvin range. Overcoming the Kapitza resistance is one of the main 

problems of very low temperature technology. 

The clear conflict between the acoustic mismatch theory and the 

experimental results stimulated considerable work in the field which 

eventually led to an understanding of some additional subtletie_s of the 

anomalous Kapitza resistance. Although some progress has been made, the 

basic mechanism which overcomes the restrictions on heat flow imoosed by 

acoustic mismatch is still not known. Some of the additional findings are: 

l. the acoustic mismatch theory seems to work for interfaces 

between classical solids; 7•8•9 

2. superfluidity does not play a role; the Kapitza resistance 

is continuous through TA.lo This is rather surprising since 

all other thermal properties of liquid helium change drastically 

at the lambda transition; 

3. quantum systems such as solid or liquid 4He, solid or liquid 
3 ' 

He, solid H2 and o2 all exhibit anomalous Kapitza 

resistance; 9 ' 11 
'
12 

'
13 

4. above l K the Kapitza resistance of a solid interface with 

d . • d 3 4H • • d t • l l 2 either soli or l1qu1 He or e ,s 1 en ,ca ; 

5. phonons of frequency below 10 GHz seem to obey acoustic mis-

14 match theory. 
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These results confirm that the acoustic mismatch analysis is deficient in 

some serious way, and suggest that the error may lie in the calculation 

of the reflection coefficients R (e). Unfortunately, only an angular and 
a 

polarization average of the R (e) is determined by measuring the Kapitza 
a 

resistance in steady state heat flux experiments so it is impossible to 

find out which phonon processes are responsible for the efficient energy 

transport using this method. 

Ballistic Phonon Reflection 

. 15 16 In the early 1970 1 s a new experimental technique was developed ' 

which was designed to measure directly the reflection coefficient of 

phonon pulses which propagated ballistically though a crystal. This 

method was adopted for the studies reported in this thesis; a schematic 

form of the apparatus is shown in Figure l .l. A pure, low defect density, 

single crystal of an insulator such as silicon, LiF or sapphire is equipped 

on one side with a phonon generator and detector made from evaporated 

vacuum 

or 

liquid helium 

ZS 
heater _ bolometer 

Figure 1.1. Schematic diagram of ballistic phonon reflection experiment. 
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metallic films. The opposite crystal surface is initially a vacuum 

interface, but helium can be introduced to form a liquid film of thickness 

varying between a sub-monolayer to bulk liquid. Because the mean free 

path of phonons in a dielectric crystal at helium temperatures is many 

centimeters, a phonon pulse produced at the generator travels ballistically 

at the speed of sound to the interface, where some fraction is reflected 

back to the detector. By comparing the reflection signal from a crystal­

vacuum interface to the signal from a crystal-helium interface, the 

reflection coefficient at the crystal-helium interface can be deduced. 

Moreover, since the position of the generator and detector determine the 

angle of incidence of the detected phonons, and the flight time of the 

longitudinal and transverse polarizations are different, the method can 

be used to measure R (e) for a known phonon polarization and angle e. 
a 

A reflection signal which was obtained in the earlier versions of 

our experiment, which is typical of the data reported by previous investi­

gators, is shown in Figure 1.2. The detector signal as a function of time 

after the phonons have been emitted from the heater shows three prominent 

peaks. The first peak is due to the arrival of the fastest phonons; i.e., 

the longitudinal phonons. The third peak, due to the transverse phonons, 

is considerably larger because of the larger density of states for trans­

verse modes. The middle peak is due to processes which involve one 

longitudinal and one transverse phonon, and thus have an intermediate 

time-of-flight. The upper curve represents the signal from a crystal­

vacuum interface, the lower curve is the signal from a crystal-helium 

interface. The reflection coefficients deduced from such measurements 



13 

T 

----(/) 
+-

C 
::l 

>-. 
~ 

0 
~ 

+-

....0 
~ 

0 

-----
0 
C 
CT> 

· -
en MC 

0 - Time (µsec) 5 

Figure 1. 2. Typical phonon reflection signal, showing peaks corresponding 
to longitudinal; transverse and mode conversion processes. 
Upper curve is the reflection signal from a vacuum interface, 
while lower curve is the signal from a crystal-liquid helium 
interface. 
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by previous workers lie in the range 0.8-0.3 rather than 0.995 expected 

on the basis of acoustic mismatch theory, demonstrating once again that 

the theory is inadequate. The substantial absorption of the transverse 

mode was particularly paradoxical since elastic theory predicts no coupling 

to a fluid. An additional puzzling fact discovered in these experiments 

is that the absorption into helium is as effective for a film only three 

statistical atomic layers thick as for bulk liquid. 15 , 16 

These findings and the acoustic mismatch theory worked out by 

Khalantnikov and others forms the historical background for this thesis. 

After repeating the experiments of Guo and Maris, 10 several scientific 

questions presented themselves: Why is the absorption of transverse 

phonons so effective? Do SH and SV couple equally? Although elastic 

theory fails to give accurate reflection coefficients, does R (e) vary in 
a 

a reasonable way as a function of e? More particularly, can elastic theory 

at least describe the reflection processes from the crystal-vacuum inter­

face, including mode conversion processes? How does the reflection 

coefficient depend on the parameters of film thickness, ambient temperature 

and gas pressure? (The interpretations offered by previous investi-

l 0 16 • d. t fl • t ) gators ' are ,n ,rec con 1c . 

The attempt to answer these questions led to an improvement in 

experimental technique as well as a more precise theoretical understanding 

of the phonon reflection process. The main contributions are outlined 

below. 

l. The apparatus of Guo and Maris 10 was made more flexible by 

using a superconducting bolometer biased in a magnetic field. 
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This enlarged the useful range of the bolometer to include 

the entire temperature range from the T of tin to the lowest 
C 

temperatures obtainable in the apparatus, which was approxi-

mentely 1.4 K. A technique was developed to control the 

helium film thickness of the reflection surface. 17 The method 

utilizes previous work on the helium-Grafoil system and 

enables pressures as low as ,o- 15 torr to be measured.'!.!!_ situ. 

By using shorter phonon pulses and much smaller phonon gener­

ators and detectors, the time-of-flight resolution was 

increased by a factor of twenty over previous experiments. 

The details of the experimental apparatus are described in 

Chapter Two. 

2. Reflection experiments performed with higher resolution 

revealed a considerably more complex structure than the three 

peak signal of Figure 1.2. Isotropic elastic theory was 

inadequate to explain even the crystal-vacuum interface data. 

An analysis of the phonon reflection process which included 

the effects of crystal elastic anisotropy revealed complexities 

of the problem which had not been previously appreciated. 

Iterative computer calculations were used to predict phonon 

trajectories and times-of-flight in various crystallographic 

directions. The results of these calculations and the compari­

son to experimental data are presented in Chapter Three. 

3. Although anisotropic elastic theory successfully predicts 

the time-of-flight for the various phonon reflection processes, 
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the observed pulse shapes of the reflection signal cannot be 

accounted for assuming only specular reflection ( k II conserved) 

from a flat surface. Nonspecular processes appear in the 

data as "tails II which fo 11 ow the sharp pulse due to specular 

processes. The hiqh resolution data show that the nonspecular 

processes account for most of the anomalous coupling to helium. 

In an attempt to estimate the magnitude of the nonspecular 

scattering, it was necessary to compute the acoustic intensity 

along a given direction in the crystal; this involves the 

theory of phonon focusing developed by Maris. 18 , 19 This theory 

was found to predict unphysical infinities in acoustic intensity 

in certain special directions, known as caustics. Accurate 

formulas for the intensity along caustics were found and 

classified in terms of formal catastrophe theory. The computed 

position of the caustics was used to explain the spatial 

dependence of nonspecular scattering. The analysis required 

to classify and locate caustics, as well as the comparison 

with experimental data are presented in Chapter Four. 

7. The experimental results are briefly summarized in Chapter 

Five. The main area of disagreement between theory and experi­

ment is the behavior of nonspecular scattering. Several areas 

for future work are suggested which may help to reconcile 

the difference. 



17 

CHAPTER TWO: APPARATUS AND EXPERIMENTAL METHODS 

Phonon Generation and Detection 

P •• t· lS,l 6 h db h rev,ous 1nves ,gators ave use ot tunnel junctions and 

superconducting bolometers as efficient detectors of phonons in the 

100-1000 GHz frequency range. Although tunnel junctions have been used 

as frequency tun ab 1 e phonon genera tors, this advantage is partially offset 

by uncertainties in the elaborate theory of nonequilibrium superconductivity 

which is required to deduce the emitted phonon spectrum. My original 

intention was to use a generation and detection system based on junctions, 

and after considerable effort, I finally succeeded in fabricating tin 

and lead junctions of acceptable quality. It was soon decided, however, 

that the difficulty of fabrication and the fragility of these devices 

outweighed the potential advantages of frequency resolution, and all of 

the experiments reported in this thesis used broad-band superconducting 

bolometer detectors, and resistive heater generators which are thought 

to produce a black-body phonon frequency spectrum. 

The principle of operation of the superconducting bolometer is 

very simple. Above its transition temperature Tc, a superconducting 

strip has an electrical resistance RN characteristic of a normal metal; 

below Tc the electrical resistance is zero. Because of impurities and 

internal strains, the transition to the superconducting state is not 

infinitely sharp, but typically has a width of a few milli-degrees, as 

shown in Figure 2.1. If the ambient temperature is in the middle of the 

transition region, a very small change in the local temperature ~T 
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V 

Figure 2.1. Schematic plot of the voltage as a function of temperature 
for a fixed bias current Ib for a superconducting bolometer. 
A phonon pulse increases tne temperature by ~T and causes 
a voltage change ~V. 

produces a large change in the voltage ~V. By carefully measuring the 

changes in voltage, the superconducting strip serves as a thermometer 

with a sensitivity of micro-degrees. The useful range is only a few milli­

degrees around the thermodynamic critical temperature Tc, but the device 

can be operated at any lower temperature by suppressing the transition 

temperature in a magnetic field. The characteristics of a typical bolometer 

are presented as a plot of voltage drop for a bias current of 3 ma as a 

function of temperature for several values of the magnetic field in 

Figure 2.2. The sensitivity of the bolometer is measured by the value of 

(av/3T) 1 . 
b 
The requirements of a bolometer in a phonon reflection experi-

ment are that the active element be well localized spatially, the thermal 

response time be small compared to the duration of a phonon pulse, and 

that the voltage signal due to a phonon pulse be comparable to therms 

noise voltage of the amplification electronics, which is approximately 
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50 µV. The thermal response time is governed by the total mass of super­

conductor, so it is advantageous to make the device as small as possible. 
0 

This is accomplished by using evaporated films of thickness 2000 A. A 

thin conducting path in a serpentine shape is cut into the film with a 

razor blade under a microscope. The total area of the active part of 

the bolometer can be made as small as 0.4 x 0.4 mm2 using this technique. 

Electrical connections were made using pressed indium contacts. 

In principle, the sensitivity of the bolometer is optimized by 

making (av/aT) and therefore the normal state resistance RN as large as 
, 

possible. RN can be increased by decreasing the film thickness or by 

making the conducting path longer. In practice it was found that increased 

sensitivity could only be obtained at a sacrifice in thermal stability 

and reliability of performance; bolometers with room temperature resistance 

R300 ~ 200 Q and liquid helium temperature resistance R4 ~ 20 Q seem to 

represent a suitable compromise. Although the operating temperature could 

be adjusted with the magnetic field, all the experiments reported here 

were conducted at T = 2.05 K with a field of approximately 150 gauss. It 

was found that stability of the bolometers was greatly improved if they 

were run in a superfluid bath. In a normal bath, the bolometer signal 

was affected by bubbles and convection in the fluid and was very sensitive 

to mechanical vibrations of the dewar. 
0 

The heaters were made from 1000 A thick films of aluminum from 

which a serpentine conducting path was cut. The heaters used in the 

experiments were designed to have a resistance at helium temperatures of 

approximately 50 Q to match the impedance of the pulse generator and 

coaxial cables. 
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Crystals 

All of the crystals used in this investigation were synthetically 

grown crystals of Al 203, or sapphire, which were bought from the Union 

Carbide Company. Sapphire was originally chosen for these experiments 

because large, relatively inexpensive, high quality single crystals were 

readily available and because sapphire is chemically inert, mechanically 

strong and is considered to be one of the most nearly elastically isotropic 

cyrstals. 20 Because of the supposed near isotropy, the initial phonon 

reflection experiments were performed with unoriented crystals. The 

corresponding calculations using isotropic elastic theory were performed 

using the average sound speeds ct= l .l x 106 cm/sec and ct= 0.65 x 106 

cm/sec. It soon became apparent, however, that elastic anisotropy was an 

important effect and the elastic properties could only be described using 

the fourth rank elastic tensor, cijkt' 

Sapphire is a trigonal crystal, so the elastic tensor cijkt has 

six independent elements (see references 21 and 22 and Chapter Three for 

more details). Rather than specifying the 81 components of the elastic 

tensor, elastic constants are usually presented in the form of a symmetric 

6 x 6 matrix c (which is not a tensor). The independent elements of the mn - 0 

matrix of elastic constants for synthetic sapphire are shown in Table 

2. l. 23 
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Table 2.1. Elastic constants of sapphire (in 1011 newtons/m2). 

4.968 4.981 1 .474 l. 636 l. 109 -0.235 

The remaining elements of the cmn are dictated by the crystal symmetry. 

For a trigonal crystal, the elements are: 

with c .. = c ... 
lJ Jl 

All other elements are equal to zero. The elastic tensor 

cijk£ may be constructed from these elements by associating each subscript 

of the matrix cmn with a pair of subscripts of the tensor cijk£ with 

m ➔ i ,j, n ➔ k,£, according to the following scheme: 

l ➔ l , l 

2 ➔ 2,2 

3 ➔ 3,3 

4 ➔ 2,3 = 3,2 
5 ➔ 1,3 = 3,1 

6 ➔ 2,1 = 1,2 

The reason for these peculiar rules is mainly historical; the terminology 

for the elastic properties of crystals was developed before the invention 

of tensor notation. 

The elements of the c and the c. 'k depend on the coordinate mn lJ £ 

system used to express them, and a specific choice of coordinates has been 
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made which corresponds to the values given in Table 2.1. The coordinate 

system is specified in terms of the crystal symmetry axes which are shown 

in Figure 2.3. The point group of sapphire is 3 m. The crystal has one 

three-fold rotation axis, which is designated the C axis, and three two­

fold rotation axes which are in the plane perpendicular to the C axis and 

separated by 120°. The canonical rectangular coordinate system with unit 
A A A A A 

vectors (x, y, z) is constructed with z along the C axis, x along a two-
A A A 

fold axis, and y = z xx to form a right-handed orthonormal basis. This 

prescription does not define a unique basis, however , because opposite 

ends of a two-fold axis can be distinguished even though the point group 
- A 

3 m has a center of symmetry. The arbitrary choice of aligning x along 

the (+) or (-) direction of a two-fold axis changes the sign of some of 

the elastic constants. Moreover, there is no established convention for 

making this choice. This confusing and subtle point was not appreciated 

by the early investigators who measured the elastic constants of sapphire, 

d fl • t· l • th l't t 24 ,25 •26 an con 1c 1ng va ues appear 1n e 1 era ure. 

Reference 23 specifies the choice of orientation of x in terms of 

the X-ray diffraction pattern. Unfortunately, the choice does not affect 

elements of second rank tensors like the dielectric tensor, so the crystals 
, 

cannot be oriented by optical measurements. The X-ray analysis required 

to orient x in the same direction as was done in reference 23 is quite 

difficult, and I could not find a crystallographer who was willing to try. 

Because exact orientation was_ difficult and because the choice of direction 
A 

of x did not alter the computed arrival times of reflected phonons (only 

the intensities are changed) an arbitrary choice was made for the crystals 

used in the experiment . 
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Figure 2.3. Crystallograph.ic axes in sapphire. 

Although the condition of the crystal surface is probably very 

important in phonon reflection experiments, 27 it is also very difficult 

to evaluate quantitatively . All of the crystals used in the experiments 

were ordered with the best surface polish provided by the manufacturer 

which yields a claimed surface roughness of ±1 micro-inch= 25 nm. In 

some experiments the crystals were cut with a diamond saw and repolished. 

The process required two days of mechanical polishing with successively 

finer diamond paste . A final polish with 250 nm grit produced a finish 

with no scratches observable under a microscope. 
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Electronics 

A schematic diagram of the electronics used in the phonon reflection 

experiments is shown in Figure 2.4. The heating pulses were typically 

35 nsec wide and 5.0 to 10.0 volts in amplitude with a repetition rate of 

100 µsec. A few hundred nanoseconds before each heating pulse, an 

oscilloscope and the boxcar integrator were triggered. A few microseconds 

after the heating pulse, the reflected phonons reach the bolometer and 

cause a change in the voltage. The voltage pulse (typical magnitude= 

20 µV) is amplified first with a PAR 115 wide band preamplifier and then 

an HP 461A pulse amplifier for a total gain of 1000. Although the signal 

can be seen on an oscilloscope, it is deeply buried in noise and the boxcar 

integrator is necessary to obtain a clean signal. The boxcar is a PAR 160 

mainframe with a 162 processor module. For a given integration time and 

desired resolution, the various boxcar time constants can be chosen to 

optimize the so-called 11 signal-to-noise improvement ratio, 11 SNIR. A 

calculator program was written to do this; typical settings are: 

integration time= 5 min 

aperture duration= 25 nsec 

aperture delay= 5 µsec 

mainframe time constant= 0. 5 sec 
-4 processor module time constant= 10 sec 

SNIR = 2000 

The boxcar output could be displayed using an X-Y recorder. 

The electrical connections to the heater and bolometer were made 

using miniature 50 ~ coaxial cable. For the experiments reported in 



26_ 

Boxcar 

scope 

HP 
amp 

PAR 
preamp 

X-Y recorder 

trigger 

pulse 
generator 

heater 

Figure 2.4. Schematic diagram of electronics used in phonon reflection 
experiments. 
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Chapter Three which used five heaters, it was necessary to have nine 

cables which went from room temperature into the helium bath. The heat 

leak using coax made of copper was too great, so the apparatus was rewired 

with Uniform Tubes l/8 11 stainless steel coax, which worked very well. 

A serious problem in the early stages of this experiment was 

electromagnetic cross-talk between the heater and bolometer circuits. 

Ideally, the output signal is due only to heating caused by reflected 

phonons, but in fact a large (50 mV) spike at zero time delay is always 

observed which is caused by direct coupling of the antennas formed by the 

heater and bolometer coax. Unless precautions are taken, the circuit may 

ring for many microseconds and completely swamp the phonon signal. The 

electromagnetic ringing is strongly affected by the position of all nearby 

conductors, and their relative potential with respect to ground. After 

much trial and error, it was found that by floating the heater and bolometer 

ground shields and connecting them to ground via variable resistors, the 

ringing time could be reduced to less than 0.5 µsec. One possible expla­

nation of this effect is that the outside conductors of the coax and other 

metallic components of the apparatus form unterminated transmission lines. 

These transmission lines are excited by the electromagnetic radiation 

from the heater pulse. By adjusting the variable resistors for a minimum 

ringing time, one is presumably finding the characteristic impedence of 

the transmission lines formed by the coax shields and other conductors in 

the apparatus. 
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Vacuum System 

In order to measure the effect of helium on the phonon reflection 

coefficients, it is necessary to calibrate the signal by measuring the 

vacuum interface reflection coefficients. The vacuum system shown in 

Figure 2.5 is designed to isolate one side of the crystal from the sur­

rounding helium bath and allow the helium gas pressure on the reflection 

surface to be controlled in a range from 10-15 torr to the saturation 

vapor pressure. 

The vacuum seal between the stainless steel vacuum can and the 

crystal is made using an indium 0-ring, which provides a super leak-tight 

seal. The only difficulty experienced in using these seals was a tendency 

for the crystals to chip along the edges as the seal was being tightened. 

This problem was solved by first using a metal plug the same shape as the 

crystal to flatten the indium wire and form a smooth indium surface; also, 

crystals with slightly beveled edges did not chip as readily as crystals 

with sharp edges. The resulting seals could be reliably cycled many times. 

The indium adhered to the polished sapphire surface so well that the 0-ring 

usually had to be melted to remove the crystal. 

The vacuum can to which the crystal was attached contains approxi­

mately 6 grams of Grafoil, a form of exfoliated graphite with a large 

specific area. The large adsorbtion area of the Grafoil serves as a 

ballast which allows one to control the helium gas pressure, and therefore 

the thickness of the liquid helium film which covers the crystal, even for 

- 15 • 1 pressures as low as 10 torr. The calibration of the Grafo1 manometer 

was accomplished by combining the extensive thermodynamic data of previous 
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Figure 2.5. Schematic diagram of vacuum system. 
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. t. t 28, 29, 30 . h d b . . . inves iga ors wit vapor pressure ata o tained using this apparatus. 

The combined data were sufficient to characterize completely the thermo­

dynamics of the Grafoil-helium system in a certain region of the N-T 

plane. Once µ(N,T), the chemical potential of the helium gas as a function 

of the amount of helium adsorbed N, and temperature T, is known, the 

pressure in torr is given by 

P = 155.79 T2•5 exp(µ/T) 

whereµ is measured in degrees. The technique takes advantage of the 

fact that even in the region where the pressure is very small and exper­

imentally inaccessible, the heat capacity may be easily measured. Further 

details are given in a published paper "Control of Ultralow Pressures: 

An Absolute Thermodynamic Manometer. 1117 The Grafoil manometer project 

was pursued with the intention of carefully studying the phonon reflection 

coefficients as a function of film thickness, temperature and pressure, 

but it soon became apparent that the effects of crystal anisotropy had to 

be understood first; the analysis of this problem is presented in the 

following chapter. 
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CHAPTER THREE: ANALYSIS OF PHONON REFLECTION 

EXPERIMENTS - SPECULAR SCATTERING 

The use of the phonon reflection technique to study the Kapitza 

resistance is based on observing the difference between the reflection 

signals obtained with crystal-vacuum and crystal-helium interfaces. 

There has been, however, considerable confusion about how to measure this 

difference quantitatively. For example, Guo and Maris 15 implicitly use 

a ratio of peak heights to obtain a reflection coefficient, while Kinder31 

uses a ratio of integrals of the reflection signal with a subtracted 

background. These definitions are not equivalent and, as illustrated by 

data presented below, depend on such unlikely parameters as the shape of 

the crystal. Examination of our early data convinced us that whatever 

measure of reflection coefficient was to be used, it was essential to 

understand the background signal; i.e., reflection from a crystal-vacuum 

interface, before any progress on the problem of coupling to helium and 

the Kapitza resistance could be made. For this reason, this chapter 

presents an analysis of elastic, specular (kl! conserved) phonon reflection 

processes from a perfectly smooth crystal-vacuum interface. Since elastic 

isotropy has been used to analyze previous phonon reflection experi­

ments 15 ,32 and is used in the acoustic mismatch theory, we first present 

an analysis based on isotropic elastic theory. Although this analysis 

can explain some simple features of the experimental results, the details 

can only be understood in terms of anisotropic elastic theory. Once the 

vacuum interface reflection processes are properly analyzed, the reflection 

experiments from a crystal-helium interface can be interpreted much more 
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intelligently . Much of this chapter is adapted from a published paper 

11 Phonon Reflection at a Sapphire-Vacuum Interface . 1133 

Phonon Reflection in an Isotropic Solid 

Some of the implications of isotropic elastic theory for transport 

across an interface were outlined in Chapter One. Here, we wish to apply 

a detailed analysis of the phonon reflection process, including the 

dependence on incidence angle and polarization, to the prediction of 

the experimentally observed reflection signal . We assume that the heater 

emits phonons with isotropically distributed k vectors and the phonon 

modes are populated according to their density of states. The isotropic 

solid is characterized by the longitudinal and transverse sound velocity, 

ct and ct. The polarizations are denoted L, SV and SH, as described in 

Chapter One. 

The laws which govern reflection at a vacuum interface34 are that 

the normal stress must vanish 

0 ( 3. 1 ) 

where mk is the normal vector and 

= kref 
II 

(3 . 2) 

the parallel component of incident and reflected waves must be equal, 

which is equivalent to Snell ts Law. Equation (3.2) is also equivalent 

to Fermat's principle of least time. In an isotropic solid there are 

precisely three different types of phonon reflection processes which can 
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be labeled by the polarization of the incident phonon. These processes 

are shown in the upper inset of Figure 3.1. Note that SV and L phonons 

are coupled; a single incident phonon requires two reflected phonons to 

relieve the stress. Reflection processes which involve a change in phonon 

polarization are known as mode conversion processes. At normal incidence 

there is no mode conversion, but as the angle of incidence increases, the 

amplitude of the mode conversion wave also increases. For example, for 

a SV wave incident at angle 0
0 

with amplitude ASV' the reflected L wave 

has amplitude AL: 

= (3.3) 

where 

• -l[ci. J sin - sin 8 
ct o_ 

(3.4) 

and ct and ct are, respectively, the longitudinal and transverse sound 

speeds. Note that as 8
0 

increases, 8t will eventually become complex, 

since ct> ct. Physically, this means that the reflected longitudinal 

wave is exponentially damped. Since SH waves do not induce a stress 

normal to the wall, they always reflect without mode conversion. 

In order to calculate the arrival time of a phonon pulse at the 

detector, it is necessary to _know the trajectory of the incident and 

reflected phonons which transfer energy from the heater to the detector. 

If Fermat's principle is applied to this problem, one obtains a quartic 
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Figure 3.1. Schematic diagram of bolometer signal assuming an isotropic 
solid similar to sapphire. The calculation is done for a 
sample thickness of 6.5 mm and a heater-bolometer separation 
of 6.7 mm. The experimental signal for the same geometry in 
real (anisotropic) sapphire is shown in Figure 3.4. 
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equation, which can be easily solved numerically. Two of the four 

solutions are simply trajectories with equal angle of incidence and 

reflection that do not involve mode conversion. In addition, there are 

two trajectories which do involve mode conversion, as shown in Figure 3.1. 

Although the time-of-flight for both of these trajectories is the same in 

the isotropic case, they are not entirely equivalent. The SV + L channel 

dominates because the density of states of SV phonons is larger. 

Qualitatively, isotropic elastic theory predicts the following 

results for phonon reflection experiments: 

l. if heater and bolometer are very close together, the incidence 

angle of all the specular channels is close to zero. and there 

is no mode conversion. One should observe only two peaks due 

to longitudinal and transverse phonons; 

2. at finite separation between heater and bolometer, one expects 

three peaks. The middle mode conversion peak increases 

monotonically with increasing generator-detector separation 

at the expense of the longitudinal and transverse peaks; 

3. the effect of helium should be utterly negligible. The 

difference between the crystal-vacuum reflection signal and 

the crystal-helium signal is smaller than the thickness of 

the line used to draw the pulses in Figure 3.1. 

The results of detailed calculations of signal intensity as a 

function of time of arrival for a given geometry including Fermat's 

principle, exact reflection coefficients, a Debye phonon density of states 

and solid angle effects are shown in Figure 3.1. Note that the signals 

corresponding to three different angles of incidence arrive at the detector. 
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Our first phonon reflection experiments,which were designed to 

test these predictions, were performed with time resolution of approxi­

mately 300 nsec using sapphire of unknown orientation. Since the importance 

of high time-of-flight resolution was not yet appreciated, the experimental 

parameters were similar to those used by previous workers; 15 i.e., heater 

and bolometers were made of a single strip l mm x 5 mm and 100 nsec heater 

pulses were used. A typical result of the earliest experiments is shown 

in Figure 3.2. In addition to three peaks expected on the basis of the 

above analysis there are several smaller peaks which follow the large 

transverse peak. These can be explained using isotropic elastic theory 

by taking multiple reflections into account. All the peaks lie on a smooth 

background signal that begins at t = 0. This background is presumably 

due to phonons that have not been reflected from the back wall, but rather 

have been scattered by impurities or defects in the crystal, and thus 

have a continuous distribution of arrival times; a simple argument shows 

that the background due to bulk scattering should be proportional to t- 2 

if the generator and detector are small and close together. Side wall 

scattering also contributes to the background signal which is not affected 

by helium on the reflection surface. 

The peaks in Figure 3.2 are not well resolved, and it is difficult 

to appraise the effects of helium on a single peak since the shape of the 

signal seems to change when helium is added. In order to study each peak 

separately, crystals which were considerably larger than any previously 

used for ballistic phonon propagation experiments were purchased. Large 

crystals provide long flight times, so the interval between arrivals is 

also longer and the individual peaks can be more easily resolved. 



(/) 

-+-

...0 
I,_ 

0 

_j 

<I: 
z 
(.9 

Cf) 

0 

I 
2L 

I . I 
IL 2T 
IT 

37 

P = 0.0 

I I 
4L 3L 

IT 

I I I 
2L 3T 4T 
2T IL 

TI ME (µ.sec)_. 

Figure 3.2. Low resolution phonon reflection signal. The shaoe of the 
crystal, which is 6 mm x 15 mm dia, is shown in the inset. 
The computed arrival time of various phonon processes for 
both two and four traversals of the crystal are also indicated. 
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Data from a crystal 42 mm x 22 mm diameter are shown in Figure 3.3. 

This long crystal has the additional advantage that for a heater-bolometer 

pair fabricated as close together as possible, the incidence angle for 

specularly reflected phonons is less than 1°; the finite separation of 

the heater and bolometer limit the smallest incidence angle that can be 

achieved using l cm thick crystals to about 5°. Note that there is no 

observable mode conversion signal, consistent with the small incidence 

angle. The arrival times of the two almost degenerate transverse modes 

can also be resolved, as can the signals due to multiple reflections of 

the transverse waves. The transverse phonons which have been reflected 

three times at the far wall have propagated through more than 25 cm of 

sapphire which probably represents a world's distance record for thermal 

phonons. 

The effect of helium on the reflection spectrum in these experi­

ments was surprisingly small. The reflection coefficient of the transverse 

phonons as measured by the ratio of the height of the bulk liquid reflec­

tion peak to the vacuum interface peak is R = 0.96, which is much larger 

than the reflection coefficient obtained in our previous experiments on 

shorter crystals, and much larger than any reflection coefficients reported 
. 

in the literature (see, however, reference 27). This result remained 

paradoxical until the effects of nonspecular scattering were more clearly 

understood (see Chapter Four). 

Since the anomalous coupling to helium seemed to depend strongly 

on angle, it was important to investigate phonon reflection at large 

incidence angles. An unoriented sapphire crystal 6 mm x 57 mm diameter 
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verse peak heights for reflection from a helium interface. 
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crystal and the polarization. Although multiple reflections 
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was used for this purpose. Since calculations and previous experience 

showed that the phonon pulses could not be clearly resolved with a crystal 

of this thickness, an effort was made to increase the time resolution of 

the experiment by making smaller heaters and bolometers and by using 

shorter heating pulses. 

The higher resolution reflection data at larger angles did not 

reveal a gradually increasing mode conversion peak, as expected on the 

basis of isotropic elastic theory, but rather a complicated signal with 

as many as seven peaks (see Figure 3.4). The fact that this pattern of 

peaks changed when the heater and bolometer were remade in a different 

position on the crystal confirmed the suspicion that the crystal anisotropy 

was responsible. This was somewhat surprising since the usual measures 

of crystal anisotropy are small for sapphire, and it was expected that 

the effects of anisotropy on the reflection signal would also be small. 

The effect of helium was also rather peculiar, with some peaks affected 

much more than others while some peaks seemed to appear only with helium 

on the reflection surface. This experimental result suggested that 

complicated effects which were crucial to the understanding of phonon 

reflection were being obscured by the low resolution spectra such as 

Figure 3.2. 

Phonon Reflection in an Anisotropic Solid 

In order to understand data like those shown in Figure 3.4, it 

was necessary to analyze the reflection of elastic waves in an anisotropic 

medium. The starting point for this analysis is Newton's Law in the form 
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2 
a u. 3 0 ik l = ( 3. l ) p--
at2 axk 

where pis the density, ui the displacement and components xk are any 

convenient basis of three orthogonal vectors. 21 , 22 , 34 The repeated index 

convention is observed throughout. The stress tensor, cr ik' is in general 

related to the strain tensor, uim by 

= c.k u , im im (3.2) 

The elastic tensor cik tm has 34 
= 81 elements, but crystal symmetries and 

stability criteria reduce the number of independent ones. For saophire, 

there are six independent elastic constants, listed in Table 2.1. In 

terms of the elastic tensor, Newton's law takes the form 

2 a u. 
l 

p -- = 
at2 cij tm (3.3) 

which is the equation obeyed by elastic waves in an anisotropic medium . 

In contrast to the isotropic case, the polarization of a wave is not simply 

parallel or transverse to the k vector; the crystal selects preferred 

directions of oscillation. Substitution of plane wave displacements 

u. 
l 

= 
. (k·x-wt) 

e. e 1 

l 

into equation (3.3) where e is a unit polarization vector, k and w the 

wave-vector and frequency, yields an eigenvalue condition on the polari­

zation: 
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(3.4) 

~ A A 

Here ).. . . = (l/p) c. ·n and k = (w/v) n where n is a unit vector. The 
1 J i m 1 J "'m 

solutions of equation (3.4) determine the three allowed orthogonal polari-
A 

zation vectors and associated phase velocities v for any given direction n. 
A 

The polarizations have no particular orientation with respect ton or the 

surface of the crystal, so they can only be described as quasi-longitudinal 

or quasi-transverse. 

Another important effect of anisotropy is that the energy of a 

wave does not move in the same direction as the k vector, but rather is 

transmitted in a direction given by the power flow vector p, 

p. 
l 

= ( 3. 5) 

The time average power flow may be written in terms of the elastic tensor 

as 

p. 
l 

e . e 
J m 

(3.6) 

This vector is similar to the P.oynting vector of electromagnetic theory, 

and is sometimes called the elastic Poynting vector. Thus, an elastic 

wave in an anisotropic medium is described by three vectors, k, ~ and p 
whose mutual orientation is a complicated function of direction. 

As in an isotropic solid, translation invariance along the surface 
➔ 

requires that on reflection the component of k parallel to the surface 

must be conserved. However, this law cannot be expressed in simple 
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form because the magnitude oft for each polarization depends on direction 

in the crystal. The values of the reflected wavevectors for any given 

incident geometry must generally be found by solving a sixth order 

polynomial equation, the solutions of which may be represented graphically 

as shown in Figure 3.5. Here, in a polar plot, curves of constant w for 

each mode in the plane of incidence are drawn. The intersections of those 
ref in curves with the line given by kll = kll (the symbols represent the 

parallel components of the reflected and incident wavevectors, respectively) 

give the permitted solutions for outgoing waves. The line may intersect 

all three polarizations, giving rise to three outgoing waves, or there 

may be evanescent solutions as occur in the isotropic case when the critical 

angle is exceeded . 

The curves shown in Figure 3.5 represent a planar cross section 

of the constant w surface, which is also known as the slowness surface, 

since the points on the surface given by k = (w/v)~ are inversely propor-
A 

tional to the phase velocity v. For every direction n, there are three 

possible phase velocities, so the slowness surface is composed of three 

sheets ink space which may intersect . The surface is described algebra­

ically by the condition 

det (A. . k. k. - o ) = 0 
, J 9,m 1 J £m 

(3. 7) 

➔ 

which yields a very complicated polynomial in the components of k. The 

equations for the curves in ~igure 3.5 are obtained by restricting the ki 

in equation (3.7) to lie in the plane of incidence determined by kit and 

the surface normal mk. It is easier to evaluate the coefficients of the 
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Figure 3.5. Schematic polar plot of curves of constant wink space for 
the crystallographic plane defined by ~in and the surface 

A 

normal m. The inner curve represents the quasi-longitudinal 

mode, which always has the larger phase velocity. The 
larger curves correspond to the two quasi-transverse modes . 
If the solid were isotropic, these curves would be circles. 

The k vectors of the three reflected waves, which are related 

to the incident wave by the relation k1r = k~ef, are deter­
mined by the geometrical construction illustrated in the 

Figure. 
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resulting polynomial in a rotated frame 

kin= (kin O kin) d kref = (kin 0 "' II ' ' 1 an "' II ' ' 

In this frame 
in and kl are 

known, equation (3.7) reduces to a sixth order polynomial equation in 

the single variable klef Three of the solutions (those with Re(k1ef) 

> 0) correspond to refracted modes which are not allowed at a vacuum 

interface. Solutions with Re(kI_ef) < 0 correspond to possible reflection 

processes, although if kief has a complex part the reflected wave will 

be exponentially damped. 

Once the permitted solutions have been determined, the amplitude 

of each is obtained using (as in the isotropic case) the stress-free 

boundary condition at the surface 

= 0 (3.8) 

If we imagine an orthogonal coordinate frame defined by the 
-+ 

polarization vectors for each k, then the coupling upon reflection between 

the various modes is proportional to the projection of a given incident 

polarization on each of the three reflected polarizations. In other 

words, the coupling is governed by how much the coordinate frame twists 

when the waves change direction due to reflection. The important point 

here is that the twisting of the polarization frame is not simply related 

to the anisotropy of the phase velocity. That is why, even in the nearly 

isotropic case of sapphire, mode mixing in an arbitrary orientation may 

be strong, giving rise to complicated results like those shown in 

Figure 3.4. 
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Computation of the trajectories that transport energy from the 

heater to the detector is also more difficult than in the isotropic 

case because energy flows along the p vector, but reflection is governed 

by the k vector which is not collinear with it. Moreover, the vector 

kin of an emitted beam that will result in a signal at the detector 
~ 

need not be in the plane containing the heater, detector and surface 

normal. in It is not uncommon to find the necessary k more than 30° out 
~ 

of that plane. Thus the process of finding the right path for a given 

combination of modes is similar to artillery ranging. A beam is sent in 

some direction from the heater, and the point where energy in the desired 

reflected mode arrives back at the same surface is computed. The aiming 

direction is then adjusted and the computation repeated until a hit is 

scored on the bolometer. To further complicate matters, the time-of-flight 

of (say) the SV ➔ L path is no longer equal to that of the L ➔ SV path 

because, unlike the isotropic case, each of the velocities now depends on 

direction. Instead of the three processes shown in the inset of Figure 

3.1, an anisotropic solid has nine distinct channels connecting heater 

and bolometer, and the above artillery practice must be repeated nine 

separate times for each configuration of heater and bolometer to predict 

a complete spectrum. 

If the incident (i.e., emitted) and reflected p vectors are, 

respectively, pin and pref, the mathematical criterion for scoring a hit 
' ~ ~ 

on the bolometer is 



48 

H + 
➔ 

= X (3.9) 

➔ where His the thickness of the crystal and x the vector separation of 

heater and bolometer. A computer is 

k-refb •• th d·t· kin ,c y 1mpos ,ng e con 1 ,on II = 

in programmed to guess k , calculate 
'\, 

k~ef and solve equation (3.7) 

numerically for the intersections shown in Figure 3.5. The initial guess 

for kin is obtained by first solving the problem by assuming that the 

crystal is isotropic. Equations (3.4) and (3.6) are then used to find 

the associated p vectors for each combination of polarizations. If 
in ref R and~ do not satisfy equation (3.9) to within a tolerance set by 

the size of the generator and detector, kin is corrected and the calcu­
'\, 

lation repeated until the error is satisfactorily small. Moreover, the 

calculation must be repeated until all nine channels have been found. 

In order to describe systematically all the specular reflection 

channels, a convenient labeling scheme is required. In an isotropic 

solid, every phonon reflection process can be labeled by its polarization 

as, for example an SV ➔ L process, but this obviously does not work for 

anisotropic media. In most crystals the quasi-longitudinal mode has the 

largest phase velocity in all directions, so it can usually be distinguished 

from the two quasi-transverse modes. Using the same idea, previous 

authors15 ,16 , 35 have divided the transverse modes into fast transverse 

(FT) and slow transverse (ST} according to the magnitude of the phase 

velocity. This scheme is not suitable for classifying reflection 

processes because the polarization and energy flow vector are not contin­

uous functions of k ask varies over the ST or FT phase velocity surfaces. 
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C 

y 

Figure 3.6. Polar plot of the phase velocity of the two transverse modes 
in the CY plane 'of sapphire . The upper plot shows the fast 
and slow transverse branches; note the sharp corners in both 
curves. The lower plot illustrates the number labeling 
scheme discussed in the text. 
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The discontinuities arise at points where the two sheets of the phase 

velocity surface intersect, as shown in Figure 3.6. Because of these 

discontinuities there may be several possible reflection channels which 

would be labeled FT+ FT while no FT+ ST channel may exist. The lack 

of a one-to-one correspondence between reflection channels and phase 

velocity labels, and the possible discontinuities of the polarization 

and power flow vectors are very inconvenient for computer searches, so a 

different labeling scheme was developed. 

The phonons with k vectors in the surface normal direction are 

labeled l, 2 or 3 according to the magnitude of the phase velocity with 
A 

l = longitudinal. A phonon with k vector in any other direction n can 
A 

be associated with one in the surface normal direction m by finding a 

smooth curve on the phase velocity surface which connects the two directions 

and on which the polarization is continuous. In practice, this means that 

at intersections of the phase velocity surface the transverse sheets are 

patched together to make a smooth surface without corners. The two 

methods of labeling transverse phonons are illustrated in Figure 3.6. 

Although the number labeling method yields continuous dependence of p. 
l 

➔ and ei on k, it is not a local characterization of the polarization and 

is much more difficult to apply than simply distinguishing between fast 

and slow transverse modes. 

Experimental Results 

To test the calculations outlined in the previous section, we 

have performed experiments using a crystal whose orientation was chosen 
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to simplify the spectrum and facilitate the computations in at least 

one plane of incidence. The crystal is a cylinder, 9.53 mm thick whose 

two faces (which are optically polished) lie in the C-X plane of the 

sapphire lattice (the X, Y and C axes in the sapphire lattice are shown 

in Figure 2.3). The ambiguity in the exact crystal orientation which is 

discussed in Chapter Two means that one face of the disk is a (0110) plane 
-

while the other is a (0110) plane, but we do not know which is which. 

The difference is not crucial to the experimental results, and for purposes 

of calculation we have assumed that the reflection surface is a (0110) 

plane corresponding to the Y-axis in Figure 2.3. The diameter of the 

cylinder, 57.2 mm, is large enough to assure that sidewall reflections do 

not interfere with the spectrum. 

The C-Y plane is a particularly simple one for phonon propagation 

in sapphire because one of the transverse modes has polarization perpendi­

cular to the plane and the other two polarizations are contained in it. 

Moreover, for waves propagating in the C-Y plane, the k vectors and p 

vectors, while still not collinear, are at least all in the plane, greatly 

reducing the number of iterations needed for the calculations. The 

coplanar feature is especially economical since each change in the ~in 

surface normal plane requires rewriting the elastic tensor in a new 

basis, a procedure which requires over 104 computer operations. As in 

an isotropic solid, the mode with polarization perpendicular to the C-Y 

plane is decoupled from the other two, so there are only five reflection 

channels (rather than nine) in this plane. Because of the high symmetry 

of this plane and the simple orientation of the polarization vectors, each 

mode can be uniquely labeled by its polarization as L, SV or SH. 
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Experiments were thus conducted in which the heater, bolometer 

and surface normal lay in the C-Y plane. For contrast, we also present 

results with the heater-bolometer-surface normal in the X-Y plane which 

is a more typical low symmetry plane, where none of the above simplifi­

cations are valid. In the first case, one bolometer and five heaters 

are laid out at intervals along the C axis. In the second case a bolometer 

and five heaters are laid out along the X axis. The heaters are numbered, 

with heater no. 1 closest to the bolometer. In addition to testing our 

calculations, the data presented here constitute, to our knowledge, the 

first systematic study of phonon reflection as a function of angle of 

incidence (see, however, reference 32). 

A typical example of a spectrum on the C-Y plane is shown in 

Figure 3.7. Here the heater (heater no. 3) and bolometer are separated 

by 6.7 mm along the C axis. One sees five peaks, just as expected. The 

reflection signal of Figure 3.8 was taken in the same crystal with heater 

and bolometer separated by 9.0 mm along the X axis. Both figures also 

show the predicted arrival time of the various specular reflection 

processes. 

Because the purpose of these experiments was to measure times­

of-flight for as many channels as possible in each orientation, all 

experimental parameters were chosen so as to optimize the resolution of 

peaks such as those seen in Figure 3.7 and 3.8. The width of a peak is 

a time which is a consequence .of some six separate phenomena, each of 

which may in turn be characterized by a time; the width of the initial 

heater pulse, the thermal relaxation times of the heater and the bolometer, 
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Reflection siqnal for heater no. 3 in the C-Y plane. 
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Figure 3.8. Reflection signal for heater no. 4 in X-Y plane. The 
predicted arrival times for processes with non-zero coupling 
are marked by the vertical lines. 



55 

effective times due to solid angle effects at heater and bolometer, and 

the aperture of the boxcar integrator used to read out the data. 

Heater pulses of 35 nsec width were used. Heater and bolometer 

relaxation times are not well known, but were minimized by being at an 

interface between sapphire and superfluid helium. They are believed to 

be less than 20 nsec. Broadening due to the solid angle subtended by 

heater and bolometer may be estimated by (w/v) sine where w is a 

dimension of the device, vis a speed of sound, and e is the angle of 

incidence or reflection. The heaters were of serpentine form localized 

to 0.4 mm square, the bolometer slightly larger. Since for sapphire 

v ~ 107 mm/sec, we estimate a characteristic time of up to 50 nsec for 

these geometric effects. Finally, the boxcar aperature was set at 25 nsec. 

Thus, all of these times were of the same order of magnitude, around 

50 nsec. All of these times interact in a complicated way, but the 

resulting peaks may be observed to have widths of roughly 50 nsec. It is 

probably possible to resolve peaks if they are more than 25 nsec apart. 

The absolute time-of-flight of each mode, measured from the beginning of 

the heater pulse (detected on the bolometer signal by electronic cross­

talk) and the beginning of the rise of the peak is probably determined 

to better than 50 nsec, but there is a geometric uncertainty of that 

order inherent in the finite size of the heater and detector. 

The results of calculation and experiment for heater-bolometer­

surface normal in the C-Y plaRe are summarized in Table 3.1. The spectra 

themselves are shown in Figure 3.9. Data and calculations for the X-Y 

plane are given in Table 3.2 and Figure 3.10. 
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Table 3.1. Heater-bolometer-surface normal in C-Y plane. 

Channel e. ·e 
·,n ref e. 

,n 
t (Predicted) t (Observed) 

(degrees) (µsec) (µsec) 

Heater no. 1: heater-bolometer separation = 1.5 mm; eo = 4.57° 

1 ➔ 1 L ➔ L 0.987 7.45 1. 714 1. 71 
3 ➔ 1 SV ➔ L 0.0205 0.57 2.428 2.43 
1 ➔ 3 L ➔ SV 0.206 10.3 2.455 
2 ➔ 2 SH ➔ SH 1.0 4.57 2.956 2.93 
3 ➔ 3 sv ➔ sv 0.998 2.29 3.156 3.10 

Heater no. 2: heater-bolometer separation = 4.3 rrnn; eo = 12.8° 

1 ➔ 1 L ➔ L 0.89 17 .18 1. 765 1. 74 
3 ➔ 1 SV ➔ L 0.147 4.18 2.442 2.42 
1 ➔ 3 L ➔ SV 0.385 18.5 2.523 2.49 
2 ➔ 2 SH ➔ SH 1.0 16.0 3.044 2.98 

3 ➔ 3 sv ➔ sv 0.987 6.3 3.191 3.14 

Heater no. 3: heater-bolometer separation = 6.7 mm; eo = 19.5° 

1 ➔ 1 L ➔ L 0.748 24.6 1.851 1.84 

3 ➔ 1 SV ➔ L 0.302 8.59 2.484 2.48 

1 ➔ 3 L ➔ SV 0.516 23.5 2.602 2.58 

2 ➔ 2 SH ➔ SH 1.0 24.1 3.165 3.11 

3 ➔ 3 sv ➔ sv 0.97 9.62 3.241 3.20 

Heater no. 4: heater-bolometer separation = 9.3 mm; e = 
0 

25 . 9° 

1 ➔ 1 L ➔ L 0.57 30.4 1. 967 1. 94 

3 ➔ 1 SV ➔ L 0.479 13.6 2.566 2.53 

1 ➔ 3 L ➔ SV 0.65 29 .6 2. 718 2.68 

2 ➔ 2 SH ➔ SH 1.0 31.0 3.318 3.26 
3 ➔ 3 sv ➔ sv 0.942 13.4 3.320 



Table 3.1. continued 

Channel e -e in ref 
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8. 
,n 

(degrees) 

t (Predicted) 
(µsec) 

t (Observed) 

(µsec) 

Heater no. 5: heater-bolometer separation= 12.6 mm; s
0 

= 33.4° 

1 ➔ 1 L ➔ L 0.36 35.6 2.134 2.12 
3 ➔ 1 SV ➔ L 0.702 20.0 2. 710 2.69 
1 ➔ 3 L ➔ SV 0.788 35.5 2.896 2.87 
3 ➔ 3 sv ➔ sv 0.87 19.2 3.471 3.45 
2 ➔ 2 SH ➔ SH 1.0 40.4 3.612 3.55 
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Table 3.2. Heater-bolometer-surface normal in X-Y plane. 

e. <pin t (Predicted) t (Observed) Channel 
A A ,n 
e ·e (degrees) (degrees) (µsec) (µsec) in ref 

Heater no. 1: heater-bolometer separation 1.5 mm; e
0 

= 4.50° 

1 ➔ 1 0.987 4.50 0.0 1. 710 1. 72 
1 ➔ 2 .069 10.6 71. 6 2.347 
2 ➔ 1 .069 6.59 -72.2 2.350 
1 ➔ 3 0.177 10.89 31.5 2.448 2.45 
3 ➔ 1 0.178 6.02 -29.22 2.448 
2 ➔ 2 0.975 1.89 0.0 2.952 2.92 

2 ➔ 3 0.475 4.87 0.0 3.060 3.02 
3 ➔ 2 0.475 4.58 0.0 3.060 

3 ➔ 3 0.606 12.9 0.0 3.204 3.17 

Heater no. 2: heater-bolometer separation 4.2 mm; e
0 

= 12.4° 

1 ➔ 1 0.910 12.4 0.0 1.744 1. 75 

1 ➔ 2 0.212 14.0 42.4 2.378 2.37 
2 ➔ 1 0.209 8.25 -43.5 2.379 

1 ➔ 3 0. 318 21. 2 12.0 2. 513 2.49 
3 ➔ 1 0.329 11. 2 -13.2 2.516 

2 ➔ 2 0. 819 5.73 0.0 2.978 2.95 

2 ➔ 3 0.766 13.2 0.0 3.121 3.08 
3 ➔ 2 0.769 12.0 0.0 3.124 

3 ➔ 3 0.525 18. 9 0.0 3.331 3.26 

Heater no. 3: heater bolometer separation 6.6 mm; e
0 

= 19.3° 

1 ➔ 1 0.788 19.3 0.0 1.803 1.80 

1 ➔ 2 0.359 18.9 22.9 2.425 2.38 
2 ➔ 1 0.361 11. 2 -23.6 2.429 

3 ➔ 1 0.406 14:8 -5.15 2.602 2. 58 
1 ➔ 3 0.417 29.2 6.30 2.606 

2 ➔ 2 0.563 11. 5 0.0 3.034 3.02 

2 ➔ 3 0.787 21. 2 0.0 3.227 3.20 
3 ➔ 2 0.786 18.0 0.0 3.229 

3 ➔ 3 0.510 23.5 0.0 3.489 3.45 
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Table 3.2. continued 

e. <Pin t (Predicted) t (Observed) Channel e. •e ,n 
,n ref (degrees) (degrees) (µsec) (µsec) 

Heater no. 4: heater bolometer separation 9.0 mm; e
0 

= 25.3° 

1 + 1 0.636 25.3 0.0 1.886 1.903 
2 + 1 0.512 15.4 -12.0 2.507 2.51 
1 + 2 0.520 26 .9 11. 5 2. 513 
1 + 3 0.482 36.3 2.64 2. 721 2. 70 
3 + 1 0.480 18.0 -2.29 2. 721 
2 + 2 0.286 20.0 0.0 3.129 3.14 
3 + 2 0. 723 24.4 -1.26 3.381 3.35 
2 + 3 0. 721 29.2 1.14 3.388 
3 + 3 0.510 27.2 0.0 3.665 3.57 

Heater no. 5: heater bolometer separation 12 7 mm · e = • , 0 33.7° 

1 + 1 0.383 33.7 0.0 2.054 2.05 
1 + 2 0. 717 39.5 0.0 2.689 2.67 
2 + 1 0. 718 22.6 0.0 2.691 
1 + 3 0.542 45.8 -0.86 2.939 2.90 
3 + 1 0.543 21. 9 0.92 2.944 
2 + 2 0.145 37.8 0.0 3.391 3.37 

2 + 3 0.595 38.3 1.15 3.684 3.63 
3 + 2 0.593 32.1 -1. 15 3.688 
3 + 3 0.549 32.1 0.0 3.974 3.91 
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Each of these tables has a separate section for each heater, 

headed by the heater-bolometer separation, and e
0

, the angle of incidence 

for which an equal angle of reflection would connect heater and bolometer. 

The first two columns in Table 3.1 give the channel connecting heater 

and bolometer. The channels for each heater are listed in order of 

their predicted arrival time. The modes within each channel are identified 

first by number, 1, 2 and 3, then by name, L, SH and SV, respectively. 

Identification by name is possible only in the C-Y plane; even here it 

would be more proper to say quasi-Land quasi-SV. It is also interesting 

to note that although mode 2 (SH) is the fast transverse mode along the 

surface normal, the SH-SH channel is the last to arrive when fired from 

heater no. 5. 

The third column of Table 3.1 gives the projection of the incident 

polarization vector on the reflected polarization vector for each channel. 

This quantity measures the strength of the coupling on reflection from 

one mode to the other. The channels not listed (i.e . , L ➔ SH) would 

have zeros in this column, hence are not expected to arrive. 

The fourth column of Table 3.1 gives the angle of incidence in 

the path used by that channel to connect heater and bolometer. For 

orientation it may be compared to e
0 

which would be the angle of incidence 

of an L ➔ Lor T ➔ T channel of the crystal were isotropic. 

Finally, columns 5 and 6 show the predicted and observed times­

of-flight. The observed tim~s are listed on the same level with the 

predicted times they are believed to correspond to. 

Table 3.2 differs from Table 3.1 in that the modes can be 

identified by number only. In addition, since the required incident 
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k vector does not stay in the X-Y plane, an aximuthal angle,¢. for ,n 
the incident (i.e., emitted) ray is also given. The coordinate system 

identifying e and¢ is shown in Figure 3.11. In Table 3.2 there are 

nine channels with nonzero coupling for each heater, all of them listed. 

All told, for the ten heaters in both planes, 54 peaks are 

predicted to occur with nonzero coupling and at least 25 nsec separation. 

Every one is observed experimentally with an arrival time agreeing with 

prediction within the estimated expected error. We thus believe the 

calculations and procedures we have described have been fully validated. 

These results have a number of interesting features which deserve 

to be pointed out. For four out of the five heaters in the C-Y plane, 

the SV ➔ Land L ➔ SV channels are clearly resolved. One result is that 

in three of the cases, five peaks, which is the maximum number possible, 

are clearly seen. By contrast, in the X-Y plane, all of the mode con­

version peaks arrive within 10 nsec of their inverse channels. For 

example, in heater no. 2 of the X-Y plane, the l ➔ 3 and 3 ➔ l channels 

are expected at 2.513 and 2.516 µsec, respectively, although they nec­

essarily follow quite different paths through the crystal. The experi­

mental consequence is that one never resolves more than six separate 

peaks in this plane (as seen, e.g., in Figure 3.8). This behavior is 

apparently a geometrical accident peculiar to the X-Y plane. Calculations 

for propagation in arbitrarily chosen crystal orientations indicate 

seven or eight peaks should often be resolved by 20 nsec or more. On 

the other hand, the X-Y plane reflection spectra usually have a prominent 

peak due to mode conversion of transverse phonons, i.e., processes like 



64 

Surface normal 

Figure 3.11 . Coordinate system used to define e and~, as used in 
Tables 3.1 and 3.2. 
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3 + 2. These processes are, of course, completely unexpected on the 

basis of isotropic elastic theory. They are, nevertheless, quite typical 

in real crystals. The fact that no 3 + 2 process is observed in the 

Y-C plane is due to symmetry; in other experiments where the heaters and 

bolometer were misaligned from the C axis by only 3°, the transverse+ 

transverse mode conversion process was easily detected. 

The equations of elastic theory also in principle predict the 

relative heights of the peaks in the various channels. Only limited 

progress can be made on this point without additional elaborate calculations, 

but a brief discussion may be useful in order at least to bring out where 

the complexities lie. 

Let us leave aside for the present the difficult question of 

what distribution of phonons actually emerges from the heater into the 

crystal. Some progress can still be made by the following argument. The 

L-L peak height (for example) is proportional to the intensity of the L 

beam incident at the surface, multiplied by the L-L reflection efficiency 

at the interface, given bye. • e f' The L + SV peak height should be 
,n re 

given by the incident L intensity at the surface multiplied by the L-SV 

conversion efficiency. Thus, calling the peak heights in each channel 

' S .. and the conversion efficiencies R .. , one might expect 
1-J 1-J 

= 

The same would be true of course, for any other combination of converted 

and unconverted channels. 
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Consider, for example, heater no. 1 of the C-Y plane. The 

SV + L channel and the L + SV channel are expected to arrive 27 nsec 

apart, at the edge of resolvability. However, the L + SV coupling is 

0.2 while the SV + L coupling is only 0.02. Observed at the expected 

arrival point is one small peak, which on careful inspection proves 

noticeably broader than the other specular peaks of the same spectrum. 

Can we assign it to one channel, or is it an unresolved combination of 

both? 

Application of the above argument indicates it probably belongs 

to both. The reason is because although RL-SV ~ 10 RSV-L' we observe 

SSV-SV ~ 10 SL-L (see Figure 3.9. The L-L and SV-SV peaks are, respec­

tively, the first and last for heater no. 1 .) Thus we expect SL-SV ~ 

SSV-L" Quantitatively the argument predicts that each channel will 

contribute a peak of height about 3/4 the maximum of the observed peak. 

Thus the argument agrees very well with observation if the peak is an 

unresolved doublet. If the channels had greater intensity we could 

probably resolve the two. 

Systematically applyinq the same analysis to all other relevant 

combinations of peaks, we find reasonable agreement in about half the 

cases, but serious disagreement in at least some instances. For example, 

for C-Y heater no. 3 (Figure 3.9), Rsv-LIRsv-sv ~ 0.3. We thus expect 

the SV-L peak (the second to arrive) to be about 1/3 the height of the 

SV-SV peak (the last one). After subtracting background, however, we 

find it is only about 1/10 the height of that peak, or about 3 times 

smaller than expected. 
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Such discrepancies are probably due to the phenomenon of phonon 

focusing in the incident mode. In the example cited, the SV beam that 

reflects into the SV-SV channel does not follow the same path as the SV 

beam that reflects into the SV ➔ L channel. Even if the heater emits an 

isotropic distribution of SV phonons, the two beams will not generally 

have the same intensity. Thus the argument we have presented needs 

to be corrected for the effects of phonon focusing in the incident mode. 

This phenomenon will be discussed in more detail in Chapter Four. A more 

accurate analysis would also require exact reflection coefficients computed 

from equation (3.8). 

Implications for the Kapitza Resistance Measurements 

In most previous experiments reporting phonon reflection spectra, 

the focus of attention has generally been on changes in the spectra that 

occur when helium is brought into contact with the reflecting surface. 

It is clear that the interpretation of those experiments will remain 

contradictory and confusing until details such as those described above 

are fully understood. For example, our analysis and high resolution data 

show that the single "transverse peak" observed in earlier data is usually 

the result of four different reflection processes (2 ➔ 2, 2 ➔ 3, 3 ➔ 2, 

and 3 ➔ 3). The data presented here also show that the signal is composed 

of two separate parts: sharp specular peaks and broader features which 

must be due to nonspecular scattering. Phonons which are scattered non­

specularly (kl! not conserved) arrive at the detector after the specular 

phonons and sometimes produce a significant 11 tail 11 following the sharp 
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specular peak. This is shown clearly for the last specular peak in the 

Y-C plane data of Figure 3.7. 

In previous low resolution experiments, the signal due to the 

various specular processes involving transverse phonons as well as the 

diffuse tail were treated as a single peak. The fact that the transverse 

peak was strongly affected by helium was generally interpreted as evi­

dence of non-elastic couplin~ of the transverse modes to the heliurn. 15 •16 

The high resolution data suggest a different interpretation. 

A comparison of the crystal-vacuum and crystal-helium interface 

reflection signal for two heaters in the Y-C plane are shown in Figure 

3.12. The figure shows that the effect of helium is largest on the 

diffuse tail. The last sharp peak is also affected, but the earlier 

arriving sharp peaks are affected very little if at all. It seems that 

the anomalous coupling to the helium is predominantly due to diffusely 

scattered phonons. In retrospect, our early low resolution results as 

well as other published data15 •16 •36 confirm this interpretation, since 

the shape of the "transverse peak" changes substantially when helium is 

introduced; the trailing edge of the peak (in fact due to diffuse scatter­

ing) always is more strongly affected than the leading edge. 

In some crystallographic directions, the diffuse signal is not 

merely an appendage to the specular peak, but the most prominent feature 

in the reflection spectrum. Figure 3. 13 shows the effect of helium on 

the reflection signal for heater no. l in the X-Y plane. The sharp peaks 

are due to specular processes as listed in Table 3.2, but the large bump 

which is strongly absorbed by the helium is not attributable to any 
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Figure 3.12. Reflection signals for heater no. 5 in C-Y plane. Solid 
curve is the crystal-vacuum interface spectrum, while the 
dotted curve is the signal from a crystal-liquid helium 
interface. Note,that most of the effect seems to be in 
the "tail" which follows the transverse peaks. The mode 
conversion peak at 2.8 µsec which is well separated from 
the diffuse scattering signal is not affected at all. 
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Figure 3.13. Reflection signal for heater no. l in X-Y plane. Upper 
curve is reflection from a vacuum interface, while the 
lower curve is reflection from a crystal/liquid helium 
interface. The large diffuse bump, which is not due to 
any specular reflection process, is almost completely 
absorbed by the helium. 



71 

specular channel. Although the specular peaks are also diminished, it is 

difficult to quantitatively separate the specular signal from the diffuse 

signal and the bulk scattering background. Despite this difficulty, 

the examination of many reflection spectra such as those shown in Figures 

3.12 and 3.13 has lead to the following tentative explanation of the 

experimental results: the diffusely scattered phonons are entirely 

responsible for the anomalous coupling to helium. Any apparent decrease 

in the specular peaks is due to a decrease in the underlying diffuse 

scattering signal . The specularly reflected phonons whose trajectories 

can be predicted using elastic theory also couple to the helium in 

accordance with elastic theory; i.e., extremely weakly. 

This hypothesis is radically different from the traditional 

interpretation of phonon reflection spectra. It suggests that the behavior 

of specularly reflected phonons, which was supposedly being studied in 

previous experiments, is actually quite simple and can be predicted in 

detail with tedious but straightforward calculation. The fact that 

theories which only include specular processes do not explain the experi­

mental results is due to the large effects of diffuse scattering. It 

is also significant that the diffuse reflection processes are important 

even at the vacuum interface. This suggests that whatever anomalous 

coupling mechanism may exist, it is probably intrinsic to the solid and 

not some peculiar property of quantum systems. If specular processes 

obey elastic theory, the important scientific questions then become: 

What causes diffuse scattering? Is there some non-elastic coupling 

mechanism associated with diffuse scattering? Can the coupling of the 
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diffuse signal also be explained in terms of classical elastic theory? 

Before these difficult questions can be answered, it is essential to gain 

as much information as possible about nonspecular processes from the 

experimental data. The following chapter addresses this problem. 
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CHAPTER FOUR: ANALYSIS OF PHONON REFLECTION 

EXPERIMENTS - NONSPECULAR SCATTERING 

As explained in the last chapter, even anisotropic elastic theory 

does not describe all the features of the vacuum interface reflection 

spectrum. Moreover, both the 11 tails 11 after specular peaks and the large 

diffuse bumps which appear in the data are strongly affected by introducing 

helium to the reflection surface; the cause of these effects must therefore 

be associated with the surface and cannot be explained by bulk scattering 

processes. In this chapter, we first suggest a possible mechanism for 

nonspecular scattering and then explore some simple experimental conse­

quences of reflection from a diffusely scattering surface. As in Chaoter 

Three, some of the effects can be described qualitatively using isotrooic 

elastic theory, while others require a more careful analysis which acknov,11-

edges elastic anisotropy. The principle goal is to understand the diffuse 

signal pulse shape and how it depends on crystallographic orientation of 

heater and bolometer. 

Mechanisms of Diffuse Scattering 

in ref . The condition kl! = kl!. which defines specular scattering and 

was used in all the calculations in the previous chapter is a consequence 

of the exact translational invariance of a smooth planar surface. Since 

a significant fraction of the incident phonons do not obey this condition, 

it is natural to consider surface roughness which breaks this symmetry 

as a likely cause of nonspecular scattering. 



74 

A useful model of a nonplanar interface which provides a source 

of nonspecular scattering is the sinusoidally corrugated surface. A 

sinusoidal surface with wavevector q, shown in Figure 4.1, can be thought 

of as the Fourier component of a more realistic statistically rough surface. 

The symmetry of this surface is not the group of arbitrary translations, 

but only translations by integral numbers of corrugation wavelengths. 

Reflection of phonons from such a surface is similar to the reflection 

of light from diffraction grating; in addition to specular reflection, 
. ref in ➔ waves with kll = kll + nq, n = ±1, ±2, ±3, • • • are also allowed by the 

symmetry of the problem, as shown in Figure 4.1. Infinite sets of linear 

equations can be constructed which represent the boundary conditions of 

equation (3.2) in terms of the reflected wave amplitudes, and I have devoted 

some effort to solving these equations numerically. Although this problem 

has many subtleties and is a very amusing problem in applied mathematics, 

it is not well adapted to detailed interpretation of experimental data 

because of its complexity. A real crystal surface is rough on a broad 

range of length scales . As mentioned in Chapter Two, it is difficult to 

describe quantitatively the surface condition of the crystals used in the 

experiments, or even to alter the surface roughness syste~atically. The 

surface roughness quoted by the manufacturer of ±25 nm is, hmr.Jever, comparable 

to the phonon wavelength in the crystal and considerably larger than the 

phonon wavelength in the helium. To provide a simple mathematical model 

of real crystal surfaces, it .is useful to think of an 11 infinitely rough' ' 

surface which scatters incident radiation uniformly in all directions. An 

"infinitely rough" surface is thus similar to the black bodies of thermo­

dynamics, except the randomization is ink space rather than in frequency. 
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C - sin (qx) 

Figure 4. l. Scattering from a sinusoidally corrugated interface, showing 
the specular channel and the first two diffraction channels. 
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(The surface is assumed to be static, so the frequency of the incident 

and scattered waves is the same.) Another mechanism for destroying 

translational invariance is random stresses on the surface. These stresses 

could be provided by dislocation lines which terminate on the surface, 

or patches of adatoms. 

Diffuse Scattering in an Isotropic Solid 

A simple calculation using this model shows how crystal surface 

roughness can lead to the 11 tails 11 observed in many phonon reflection 

spectra. We will calculate the response of a bolometer to the nonspecular 

backscattering from a rough surface. For simplicity, we assume that a 

constant fraction a of the incident radiation is reradiated uniformly 

into all solid angles (fraction (l - a) reflects specularly as if the 

surface was perfectly flat) and that the heater and bolometer are coinci­

dent points. his the thickness of the crystal, c is the velocity of 

sound, rand¢ are the oolar coordinates on the reflection surface, and 

e is defined in Figure 4.2. tis the time after the heater pulse, and 

Q(t) is the heat flux (j/sec) emitted by the heater as a function of time. 

Each element of area dA = rdrd¢ on the top surface is irradiated 

by phonons from the heater which arrive at t = ir2 
+ h

2
/c. If each 

element absorbs the fraction a of the incident energy and reradiates it, 

each area element can be considered as a new source of strength dQdif 

= rdrd¢ ( 4. l ) 
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The diffuse signal S(t) observed at the bolometer is due to the sum of 

all these elementary sources, and is given by 

S(t) = J 
all 

sources 

dQdif ( t -

Substituting cos e = h/h2 + h2 , and performing the integral gives 

S(t) 2 
= 2n a h 

00 

J 
0 

Q(t _ 2/r~ + h
2

) 

(r2 + h2)3 
r dr 

(4.2) 

(4.3) 

If we assume a delta function heater pulse Q(t) = Q
0

o( t), the integral can 

be done explicitly to yield 

0 t < 2h/c 
s ( t) = (4.4) 

t > 2h/c 

3 The diffuse signal rises abruptly to its maximum value of Q
0 

na c/h at 

t = 2h/c, the arrival time of the specularly reflected pulse, and then 

decays as t- 5 as shown in Figure 4.2. In view of the simple model used, 

this pulse shape seems to be in reasonable agreement with the experimentally 

observed diffuse scattering signal. This calculation also indicates that 

the "tail" due to nonspecular scattering from surface roughness has a 

rather sharp maximum at the same arrival time as the specular pulse, so 

it is intrinsically difficult to distinguish between them experimentally. 
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s (t) 

2h/c 

Figure ~.2. a) The geometry -for the diffuse signal calculation. b) The 
contribution to the diffuse signal at a time t comes from a 
circular annulus on the reflection ~urface. c) A olot of 
the signal expected from an infinitely rough surface. The 
signal has a sharp onset at the time that a specular signal 
would arrive t = 2h/c. 
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It is important to estimate the magnitude of a, i.e., the prob­

ability of nonspecular scattering. a can be extracted from the experi­

mental data by comparing the total energy which is scattered back to the 

detector in the specular and nonspecular channels. The total energy in 

the specular channel is the area under the specular peak. For a delta 

function heat pulse Q(t) = Q
0
o(t), the integral of the specular signal is 

E spec 
= JS (t) dt spec 

The total energy Edif which arrives at the detector via nonspecular 

channels is 

Ll.100 (£) • dt 
C 5 

2h/c t 
= 

aQ TT 
0 

2h2 

(4.5) 

(4.6) 

The ratio of the specular to diffuse energy depends only on the 

fraction of diffuse scattering: 

E 
spec = 
Edif 

( l - a) 
a 

(4. 7) 

This ratio can also be obtained from the experimental data. The only 

difficulty is in clearly separatin~ the specular and diffuse signal close 

to the specular arrival time. If the pulse shape of the diffuse signal 

is extrapolated back to the onset of the specular pulse, the area under 

the respective curves can be obtained by counting squares. When this 
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procedure is applied to the last arriving transverse pulse in the Y-C 

plane data (Figure 3.9), and compared to equation (4.7), the computed 

values of a are approximately a~ 0.5. 

Another relationship which can be derived from these arguments 

is the behavior of the specular and diffuse signals as a function of the 

-2 crystal thickness. The time integral of both signals scales as h , as 
-3 one would expect, but the maximum of the nonspecular signal scales ash 

The ratio of the specular to the diffuse scattering signal at t = 2h/c, 

the specular pulse arrival time, 

\pee (2h/c) 
sdif (2h/c) 

ex: h (4.8) 

increases linearly with h. Thus experiments with long crystals allow a 

better separation of specular and diffuse scattering than short ones. 

Although these calculations are only qualitative, they nevertheless 

clarify several issues which have gone unrecognized by previous workers: 

l. approximately half of the phonons incident on the surface 

of a polished crystal are diffusely scattered. Reflection 

from a flat surface is not a realistic model for these 

experiments; 

2. the signals due to specular and diffuse scattering overlap 

and have coincident maxima; 

3. in order to measure the reflection coefficient for a well 

defined reflection process, the diffuse scattering signal 

should be subtracted out; 
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4. the reflection signal and pulse shape depends on the thick­

next of the crystal. For longer crystals, the specular 

scattering signal becomes predominant at the position of the 

peak, and; 

5. when the diffusely scattered signal is properly accounted 

for, the data appear to be consistent with acoustic mismatch 

theory; i.e., the specular part of the signal does not change 

when helium is introduced. Diffuse scattering seems to be 

responsible for the anomalous Kaoitza conductance. This 

interpretation is justified by the change in pulse shape when 

helium is added and the differences between results in long 

and short crystals. 

Although this simple model adequately describes the diffuse 

scattering signal observed in the C-Y plane data of Figure 3.9, it cannot 

explain the sharp diffuse peaks of the X-Y plane data, nor can it explain 

why the diffuse signal should be so sensitive to crystallographic 

orientation. 

Effects of Anisotropy 

> 

The elementary considerations discussed above suggest that diffuse 

scattering is important for understanding both phonon reflection experi­

ments and the Kapitza resistance. In view of the complicated effects of 

anisotropy on the reflection .process, and the strong dependence of the 

diffuse scattering signal on crystallographic orientation, it seemed 

important to include crystal anisotropy in the analysis. Elastic aniso­

tropy introduces two major changes in the diffuse signal calculation 

of the previous section: 
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1. because the k vector and the energy flux or Poynting vector 
➔ 

p of a phonon in a crystal are not collinear, the energy flux 

emitted from the heater is not uniform even if, as we assume, 

the k vectors of the emitted phonons are uniformly distributed. 

This effect, known as phonon focusing, was first investigated 
19 by Taylor et~- Phonon focusing influences the amount of 

energy which reaches a given point on the surface from the 

heater, as well as the intensity of scattering from this 

point in the direction of the detector. 

2. in the isotropic case, the contribution to the diffuse signal 

between t and t + tt comes from a circular or elliptical ring 

on the reflection surface (see Figure 4.2). In a real crystal, 

however, the set of points on the reflection surface which 

have total flight time t from heater to detector via the 

surface is some irregular curve that has no convenient analytic 

expression. 

In order to take these effects into account and to identify the 

position on the reflection surface which was responsible for the diffuse 

peaks observed in the X-axis experiments, I set out to make contour plots 

of the energy distribution on the reflection surface and the flight time 

for each mode. By superimposing these contour plots, I hoped to be able 

to examine the intensity on the reflection surface at points which had 

flight times which corresponded to the mysterious diffuse peaks. 

The ostensibly straightforward project of constructing the contour 

plots was much more difficult to carry out than I had originally anti­

cipated. Due to some subtleties of the problem outlined below, the 
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program as originally envisioned cannot be completed. Despite these 

complications, the analysis required for the construction of the contour 

plots eventually yielded a very useful picture of the energy flow in a 

crystal. In particular, it was found that a point source in a crystal 

emits energy in a spectacularly anisotropic way. Associated with a 

point source are several topologically conical surfaces on which the 

energy flux density formally becomes infinite. These singular surfaces, 

which are known as caustics, are very important for the interpretation 

of the diffuse scattering signal. Before discussing the analysis of 

caustics, it is important to describe the procedure used to construct the 

contour plots of time-of-flight and intensity, and some of the difficulties 

which were encountered. 

The contour plots were constructed by interpolating values of 

the intensity and time-of-flight from a 20 x 20 table of computed values. 

This grid of 400 points represented a 4 cm2 area on the reflection surface 

centered above the heater. Both the intensity and the time-of-flight 

depend on the Poyntings vector p, which in turn depends in a comolicated 

way on the k vector and polarization, as given by equation 3.5. For 

each point in the grid, it was first necessary to find the k vectors 

which corresponded to Poyntings vectors which cause energy to flow from 

the heater to the grid point and then back to the detector . This involved 

iterative calculations similar in principle to those described in Chapter 

Three. Since the k vector calculation had to be performed hundreds of 

times per contour plot, it was necessary to write an efficient algorithm 

to find k given the direction of pin order to keep the computing time 

within reasonable limits. 
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By analogy to the soecular reflection analysis, one might expect 

that there are nine processes which connect heater and detector via an 

arbitrary grid point. Since each of the nine scattering processes has 

a distinct arrival time, one would expect to require nine separate arrival 

time contours for a complete description. In order to simplify the 

problem, we confined attention to the non-mode conversion transverse+ 

transverse scattering processes, which the experiments indicated were 

most important. 

The difficulties in labeling the transverse modes in an anisotropic 

solid were discussed in Chapter Three. The solution to the problem 

described there of continuing the polarization in a continuous way from 

some fiducial point was also used in constructing contour plots for 

processes which could be labeled, e.g., 3 + 3. Unfortunately, this 

labeling scheme did not give unique answers when applied to a general 

grid point. More precisely, the polarization can be continuously trans­

ported along a closed path on the slowness surface, and the initial and 

final polarizations may not be equal. The reason for this behavior seems 

to be that there exist points where the curves of constant w (sections 

of the slowness surface) for the two transverse modes osculate, as shown 
> 

in Figure 4.3. In a sense, the surfaces touch without crossing. Starting 

from one curve on one side of the point A, one can continue the polari­

zation continuously to either curve on the other side of the point. 

This seems to mean that ther~ is no way, even in principle, to divide 

the transverse reflection processes into globally distinct classes which 

have a continuous variation of some vectorial characteristic of the 
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A 

Figure 4.3. Curves of constant wink space for transverse modes. Point 
A is an osculation point where the curves are tangent to 
each other. 

phonon. The previous success of the method for the analysis of the 

specular processes is due to the fortunate circumstance that no osculation 

point was in the vicinity of the connecting paths. 

Because of the phonon labeling problem, it is impossible to 

associate with each grid point the flight time of a given transverse 

phonon scattering process; the best that can be hoped for is to associate 

with each grid point four k vectors and four times which correspond to 

two outgoing (from the heater) and two ingoing transverse phonons. Even 

this is optimistic, since in fact there may be more than two transverse 

phonons which cause energy flow between the heater and a given point on 

the reflection surface. 

To see how this can happen, it is useful to remember that the 

group velocity of a wave packet, which is in the direction of energy flow, 
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is given by vkw. Thus, the normal vectors to thew= constant surface, 

or slowness surface, are parallel to the energy flux vectors. The problem 

of finding all phonons that transport energy from the origin to a given 

point x can be interpreted geometrically as finding all points on the 

slowness surface with normal vector parallel to x. If the slowness 

surface is convex like a sphere or ellipsoid, there is only one solution 

to the problem . If, however, the surface is more complicated, multiple 

solutions arise as shown in Figure 4.4. The figure shows three distinct 

k vectors which yield surface normals and energy flow in precisely the 

same direction, although the magnitude of the three group velocities is 

not obliged to be equal. The far field due to an instantaneous ooint 

Figure 4.4. Schematic diagram of a non-convex cross section of one 
sheet of the slowness surface. All three k vectors corre­
spond to energy flow in the same direction. 
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source may be quite complicated in an anisotropic medium; instead of 

observing three pulses corresponding to longitudinal, fast transverse 

and slow transverse, in some directions one may observe several pulses 

from each polarization. It seems that in sapphire the longitudinal sheet 

of the slowness surface is actually convex, so multiple solutions occur 

only for the transverse modes. It is easy to convince oneself that 

multiple solutions for the transverse branches are not confined to special 

high symmetry points, but occur in general directions as well. Detailed 

numerical calculation shows that there are many regions in sapphire in 

which five or six transverse pulses can be observed. 

Before it was fully realized that many k vectors might lead to 

energy propagation in the same direction, the computational procedure for 

finding the k vector which sent energy in the x direction was based on 

using k II x as a first guess, and then improving the guess until a 

solution was found. As can be seen from Figure 4.4, this technique would 
➔ ➔ ➔ 

only yield the solution k2; kl and k3 cannot be reached by improving a 
➔ 

guess which is close to k2. Moreover, there is no way to generate a guess 
➔ ➔ 

~ priori which is close to k1 or k3. Mathematically, the problem is to 

find the global solutions to a coupled set of non-linear vector equations . 
in vector unknowns. Since the only practical way to solve non-linear 

equations is to improve a sufficiently good guess, it was necessary to 

compute the Poynting vectors for a dense grid of k vectors on the entire 
➔ ➔ 

slowness surface to find good initial guesses for cases like k1 and k3 of 

Figure 4.4. With these added complications, one must be prepared to 

associate more than two ingoing and/or outgoing transverse phonon k vectors 
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with each grid point. Once all the k vectors have been found, the time­

of-flight can be computed for each process in a straight forward manner. 

Phonon Focusing 

The computation of the intensity of the wave packet corresponding 

to each k vector involves the theory of "phonon focusing. 1118 •19 The way 

elastic anisotropy may focus or defocus energy is illustrated in Figure 4.5. 

A wave packet with k vectors contained in a solid angle given by dnk = 

dk1 x dk2 sends energy into a solid angle dnp = dp 1 x dp 2. In an isotropic 

solid, the k and p vectors are parallel, so dnk = dnp, and there is no 

focusing. In an anisotropic solid, however, the k vector pyramid and the 

corresponding Poynting vector pyramid may have considerably different 

shape. If dnk > dnp, the energy is focused, while if dnk < dnp, the energy 

is spread over a larger area and the intensity is low. The ratio dnk/dnp, 

Figure 4.5. Differential volume element ink space with the corresponding 
volume element in real space spanned by the energy flux 
vectors p. 
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which is called the focusing factor, can be used to measure the intensity 

of the energy flux which travels along p. In order to calculate the 

differential area d~p' one must know the change do caused by a change 

dk. This is given by the formula 

do . 
' 1 

api 
= -k- dk . cl . 1 

1 
(4.9) 

Because of the dependence of D; on the polarization which in turn depends 

on k, the derivative ap./ ak. is rather complicated. First, the k derivative 
1 1 

of the polarization must be computed . The result is 

= I l (c .. n + c. n.) 
p 1J x-m ix-Jm 

ah 

a y a k e . e ek 1 m 
2 2 

V - V 
Y a 

(4.10) 

where e~(k.) denotes the ; th component of the unit polarizat i on vector 
1 J 

of the a mode (a = l, 2, 3) with k vector kj and va is the corresponding 

phase velocity . Substituting into this expression the formula 

= (4.11) 

yields the required derivative which can be used to compute the focusing 

factor. A computer program was written to compute the various derivatives 

and the intensity for each k vector associated with a grid point. This 

is apparently the first time these formulas have been used to calculate 

the intensities in arbitrary directions; previous applications have only 



90 

considered high symmetry directions in cubic crystals where the deriva­

tives can be computed analytically. 18 

Once the analysis outlined above has been completed (a complete 

run requires about l CPU hour on the PDP-10), each grid point has associ­

ated with it a list of incoming and outgoing intensities and arrival 

times. In order to construct a contour plot, one phonon process must 

be selected at each grid point with its corresponding flight time and 

intensity. Because of the phonon labeling complications discussed above, 

there may not be a unique way to make the choice. This is not an 

insurmountable problem, since the contours will contain information of 

interest as long as they are reasonably continuous and smooth. It was 

found that smooth contours could be obtained by choosing the two processes 

with highest intensity and labeling them according to the magnitude of 

the group velocity as fast transverse and slow transverse. 

A typical set of contour olots which results from this analysis 

is shown in Figures 4.6 and 4.7. Figure 4.6 shows the intensity distri­

bution of the fast transverse mode on the upper surface of the sapphire 

crystal, and the rather dramatic effects of elastic anisotropy on 

energy flow in the crystal can be clearly seen. Figure 4.7 shows the 

contours of constant arrival time for all scattering processes that 

involve ingoing and outgoing fast transverse phonons for the experimental 

geometry corresponding to the reflection signal shown in Figure 3.13; 

i.e., heater and bolometer displaced by 2 mm along the X axis. The 

arrival time of the sharp nonspecular peak of 3.5 µsec is marked by the 

heavy contour. When the arrival time and intensity contour maps are 

superimposed, the heavy contour overlaps several regions of high intensity, 
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. 
Figure 4.6. Contour plots of the intensity of the fast transverse mode 

on the reflection surface in sapphire. The circled cross 
marks the position of the heater on the lower surface 
of the crystal. 
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5.0 
µse c 

Figure 4. 7. Contours of arrival time for fast transverse+ fast transverse 
scattering processes . The circled cross marks the position 
of the heater on the lower crystal surface, while the 
squared cross marks the position of the bolometer. 
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but many other time contours overlao equally intense regions. The large 

diffuse feature seen in Figure 3. 13 is apparently not simply due to the 

fact that the heater emits energy in a highly non-uniform way. 

Phonon Focusing Catastrophes 

During the course of further analysis of intensity contours like 

Figure 4.6, it was discovered that the numerical routines were unstable 

in some regions of high intensity, and the computer would sometimes 

converge on isolated points where the focusing factor was very large. 

Because the equations (4.10) and (4.11) for the focusing factor are 

rather complex, it is difficult to get a physical understanding of why the 

intensity is much higher in some regions than in others. In an attempt 

to gain some insight into this problem, I developed a different method 

of analyzing phonon focusing based on an analysis of the asymptotic 

field from a point acoustic source. The integrals which arise in the 

problem are of the type dealt with in formal catastrophe theory, and this 

theory can be used to make very general statements about the form of 

regions of high focusing using some simple geometric arguments. 

A general expression of the acoustic field at x from a point 

source at x' is obtained by constructing the Green tensor gkm(x Ix') 

which satisfies the anisotropic wave equation with a periodic point 

source: 

= cS. cS (x-x') ,m 

where, if cij t k is the elastic tensor, then 

(4.12) 
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and its Fourier transform is 

= 

A similar e~uation for the far field from a point source in an aniso­

tropic medium is analyzed in references 37 and 38; the treatment here is 

adapted from these references. 

To examine the field at a point P due to a source at the origin, 

we transform to a frame in which P has coordinates (0,0,z). The solution 

(4.13) 

'\, '\, 

where Bkm is the matrix of cofactors of Lkm' G = det Land the integral 

is over the slowness surface defined by G = 0 (surface of constant win 

k space). Equation (4.13) represents the field at Pin terms of a weighted 

sum of plane waves which have k vectors on the slowness surface. The 

integral cannot be carried out exactly, but for large zit can be approx­

imated using the principle of stationary phase. The phase is stationary 

at points where (ak /ak) and (ak /ak ) are zero; geometrically this 
Z X Z y 

represents points on the slowness surface with the normal vector in the 
A 

z direction. Waves with k vector in the vicinity of the stationary point 

f = (k0 ko k0
) contribute to the integral in equation (4.13), but waves 

o x' y' z 

with other k vectors tend to be out of phase and cancel each other. The 
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exponent in equation (4.13) can be expanded to second order around the 

stationary point, which, in an appropriately chosen coordinate system, 

yields: 

= (4.14) 

When this is substituted into equation (4.13) and the limits are 

extended to± 00 , the leading order behavior of the field is obtained: 

ik0 z z 
gkm(P JO) oc B (k0

) _e -
km z zilaB 

(4.15) 

The product aB is the Gaussian curvature of the slowness surface at the 

point of stationary phase k0
, and in this approximation, the field 

decreases as z-l and the intensity is inversely proportional to the 

Gaussian curvature aB . We have thus constructed a geometric representation 

of phonon focusing . In retrospect it is evident that the ratio of solid 

angles shown in Figure 4.5 is formally identical to the curvature of 

the slowness surface as defined by Gauss. 

The geometric measure of focusing has considerable advantages 

over the traditional approach for making qualitative predictions. For 

instance it is clear that directions of high focusing are associated with 

regions of small curvature on the slowness surface and that points of 

zero curvature yield an infinity in the field amplitude. An infinite 

or even very large displacement is of course incompatible with linear 

elastic theory. This result is due to a breakdown of the geometrical 

optics approximation that has been made in deriving equat i on (4.15). 
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The possible form of regions of zero curvature can be investigated 

by considering perturbations of the slowness surface for an isotropic 

solid, which are spheres ink space. The effect of elastic anisotropy 

is to slightly deform the spheres; this generally (but not inevitably) 

leads to regions of negative curvature. Regions of positive and nega-

tive curvature are separated by smooth curves along which the curvature 

vanishes . 

Vectors normal to the slowness surface along such a closed curve 

sweep out a (topologically) conical surface emanating from the point 

source on which the field is intense but cannot be computed using 

geometrical optics. Such surfaces are known as caustics in classical 

wave theory, and higher order approximations to the wave equation must 

be used to analyze the field in their vicinity. 

If, for example a in equation (4.14) is close to zero, the 

expansion is not sufficiently accurate and another term must be included: 

(4.16) 

The retention of the third order term is necessary because there are 

two nearby points where the phase is stationary, corresponding to two 

parallel rays, as shown in Figure 4.8 . On the caustic, a= 0, the rays 

merge, and the geometrical optics approximation goes to infinity, but the 

actual field is finite and is given by 

25/6 
(4.17) 



97 

Figure 4.8. Section of a slowness surface which contains a point A of 
zero curvature . . On either side of A, there are two k 
vectors which yield energy flow in the same direction. As 
the k vectors approach A, the two rays merge. Note that 
in the vicinity of A, the slowness surface can be approxi­
mated by a cubic polynomial like equation (4. 16). 
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The intensity is not uniform along the caustic as suggested by the 

geometrical optics approximation, but rather depends on the third 

derivative term y; remarkably, the field also has a z- 516 spatial depen-
-1 dence, rather than the z dependence normally expected from a point 

source. 

The breakdown of geometrical optics that occurs on a caustic is 

an example of a catastrophe in the sense of formal catastrophe theory. 

Many of the implications of catastrophe theory for optical and atomic 

beam caustics are explored in references 39 and 40. For elastic waves in 

a solid, catastrophe theory allows only two types of structurally stable 

caustic behavior. The simplest, known as a fold catastrophe, corresponds 

to the coalescence of two rays, and is associated with a third order 

expansion such as equation (4.16). Figure 4.8 shows how the rays merge 

at a simple inflection point. Along the caustic, y may occasionally 

vanish at isolated points, where a fourth order expansion is required. 

These points are known as cusp catastrophes (because of the characteristic 

shape of the caustic) and correspond to the coalescence of three rays. 

A simple analysis shows that the field at a cusp has spatial dependence 

z- 314 . No catastroohes of yet higher order can exist at a typical point. 

A summary of the catastrophe theory analysis of caustics in anisotropic 

media is shown in Figure 4.9. 

Associated with each elementary catastrophe is a diffraction 

function which describes the .far field in the vicinity of the caustic. 

For the fold catastrophe, the diffraction function is the Airy function, 

while the field in the neighborhood of a cusp is described in terms of the 

less well known Pearcey integral .41 Using the diffraction functions, 
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k-space real space 

0 0 

Figure 4.9. The k vectors which correspond to points of zero curvature 
on the slowness surface define a topologically conical 
surface ink space which has a smooth boundary, without 
sharp corners. The Poynting vectors which are associated 
with the k vectors also sweep out a topologically conical 
surface, but it generally has sharp cusp-like edges. 
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uniform asymptotic expansions can be constructed which vary continuously 

between the z-l dependence at an ordinary point and the higher power 

of z dependence which holds on the caust i c. Thus, catastrophe theory 

not only classifies the singularities but also describes the field in 

their vicinity. In addition, we see that the singular surface is 

associated with an anomalous region which may be responsible for a signi­

ficant part of the energy in the entire field. 

Once it was realized that the intensity distribution on the top 

surface of the crystal would be dominated by the caustic curves where the 

focusing factor was infinite , the computer programs used to construct 

the contour plot of Figure 4.6 were rewritten so that the caustics could 

be located and plotted, as shown in Figure 4.10. As expected on the basis 

of catastrophe theory, cusps where the field is particularly high are a 

prominent feature in the figure. A comparison of Figure 4.6, which was 

constructed from a table of intensities on a finite grid and Figure 4.10 

which locates the caustics, _shows that the intensity distribution inter­

polated from the finite grid can be quite misleading; only some of the 

high intensity regions visible in Figure 4.6 are associated with an under­

lying caustic, but these are the most important. 
I 

Aoplication to Experimental Results 

The caustic structure of the point source can be used to under­

stand the sharp nonspecular features which are observed in some reflection 

geometries but not in others (compare Figures 4.11 and 4.12). It must 

be kept in mind, however, that in a reflection experiment diffusely 
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Figure 4.10. Location of caustics for both transverse modes in sapphire. 
The curves are the intersection of the topologically conical 
caustic surface which emanates from the heater with the 
upper surface of the crystal. The position of the heater 
is marked by the circled cross. Compare with Figure 4.5. 
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scattered phonons can be refocused by the crystal anisotropy. Thus there 

are two sets of caustics which are important to describe a reflection 

experiment: the heater caustics intersect the reflection surface in 

curves of high incident intensity, while similar caustics are associated 

with the detector and can be interpreted as a set of points where a source 

would focus strongly back to the detector. The insets of Figures 4.11 

and 4.12 schematically show the orientation of the heater and detector 

caustics (detector caustic is dotted) for the two representative experiments. 

Although the caustics are drawn as lines, they have a width given by the 

size of the source and detector. 

If the heater and detector are displaced along the X axis, as in 

Figure 4.11, the caustics overlap and there is a spatially localized 

high intensity nonspecular scattering channel. The time-of-flight of this 

process agrees precisely with the arrival time of the large diffuse peak. 

If the heater and bolometer are placed along the C axis, the 

caustics do not overlap and there is no orominent peak in the diffuse 

scattering signal, as shown in Figure 4.12. When helium is introduced 

to the reflecting surface, the nonspecular part of the signal is greatly 

reduced. Thus, just as one would expect, the effect on the bump in 

Figure 4.11 is dramatic, while the signal in Figure 4.12 is much less 

affected. 

In another experiment which was designed to test the intersecting 

caustics interpretation of the large nonspecular peak, the heater and 

bolometer were placed along the X axis as in Figure 4.11, but on a longer 

crystal (24 mm x 22 mm diameter). In this configuration, the caustics 

do not intersect on the reflection surface, but rather hit the side wall, 
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Figure 4.11. Reflection signal for heater and bolometer displaced along 
the X axis (Y axis is the reflection surface normal). The 
inset shows the intersection of the heater and bolometer 
(dotted curve) caustic surfaces with the crystal reflection 
surface. The iTitersection of the two caustics provides a 
high focusing channel for nonspecular scattering which 
gives rise to the large bump in the reflection signal. 
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Figure 4.12. Reflection signal for heater and bolometer displaced along 
C axis. The inset shows that for this geometry, the 
heater and detector caustics do not intersect. The ratio 
of specular to diffuse scattering is much higher in this 
geometry than in X-Y plane reflection shown in Figure 
4.11. 
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as illustrated in the inset of Figure 4.13; note that there is no large 

diffuse peak which follows the specular transverse peaks. Since the 

high focusing channels for diffuse scattering intersect the side wall, 

the diffusely scattered phonons arrive at a much earlier time than the 

specular phonons, which have made two traversals of the full length of 

the crystal. When the same crystal was cut and repolished, the diffuse 

scattering channel intersects the back reflection surface again, and the 

familiar diffuse bump following the specular channels is recovered, as 

shown in Figure 4.14. Note that the specular peaks, although shifted to 

different arrival times, are essentially similar in the two experiments; 

only the diffuse scattering is strongly affected by the shape of the 

crystal. 

The analysis of caustics and the experimental results presented 

above have several important implications for the proper interpretation 

of phonon reflection experiments. Perhaos the most important conclusion 

is that the diffuse scattering signal behaves in two essentially different 

ways depending on whether the heater and bolometer caustics intersect or 

not. If the caustics do not intersect, the anisotropic emission of 

phonons from the heater is washed out by diffuse reflection, and the 

signal can be adequately described using an isotropic model. If the 

caustics intersect, the diffuse scattering produces rather sharp features 

which in the past have often been confused with specular peaks. The 

intersection or non-intersection of the caustics depends critically on 

the relative orientation of the heater and detector and the shape of the 

crystal. These parameters have been given insufficient attention by 
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Figure 4.13. Reflection signal for heater and bolometer displaced along 
X axis (as in ~igure 4.11) but in a crystal 24 mm x 22 mm 
dia. The heater and bolometer caustics intersect in several 
places on the side wall of the crystal, giving rise to 
the diffuse peaks 01, 02, 03 and 04. The three sharp peaks 
at 7.5 µsec are due to specular transverse processes; no 
large diffuse bump follows these peaks. 
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Figure 4. 14. Reflection signal for precisely the same geometry as in 
Figure 4.13, except the crystal has been cut to a length 
of 6.9 mm. The caustics intersect on the reflection 
surface and cause the diffuse bump 01. 
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previous investigators. Many experiments have been reported in which 

the crystallographic plane of the reflection surface is specified, but 

the plane which contains the heater-detector surface normal is not. Even 

if the heater-detector separation is kept constant, changes in the relative 

orientation with respect to the crystal axes can completely change the 

received signal, and the apparent effect of helium. 

It is interesting to note that the time-of-flight of the diffuse 

peaks can be predicted from the caustic structure of a point source 

alone; regions where the focusing factor is finite do not seem to contri­

bute significantly to the diffuse signal. The published tables and 

plots 19 •42 of average phonon intensities computed on a grid are misleading 

in the sense that they do not reveal the existence of the caustics. 

Instead, there are regions of elevated intensity, some of which conceal 

underlying caustics and contribute heavily to the experimental signal, 

and others which do neither. Thus, while the old phonon focusing calcu-

1 t • b h l f l • • t t. t • • l 43 th t a ions can e e p u ,n ,n erpre 1ng cer a,n s1mp e cases, ey canno 

explain the details of the experiments described above. 

In addition to its utility in predicting experimental results, 

the geometric theory of focusing developed here also provides an appealing 

theoretical framework for the discussion of phonon propagation in crystals. 

Although the detailed calculations are themselves rather involved, 

catastrophe theory provides a means of extracting a simple and general 

picture: from a point acoustic source in a crystal there emanate topo­

logically conical caustic surfaces (fold catastrophes) with occasional 

higher order line singularities in those surfaces (cuso catastrophes). 

On the caustics the field falls off more slowly than (distance)-l, and 
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on the cusps more slowly still, but it always remains finite and calculable, 

as it must. 
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CHAPTER FIVE: SUMMARY AND SUGGESTIONS FOR FURTHER RESEARCH 

As explained in the Introduction, the principle motivation for 

this work was to try to understand why heat transport across a solid/ 

helium interface is so much more efficient than elastic theory suggests 

it should be. Unfortunately, the experimental results and analysis 

presented here do not provide an unequivocal answer to this question. 

What has been accomplished, however, is a greater understanding of what 

the predictions of elastic theory really are and how they should be applied 

to realistic experimental situations. The work of Chapter Three shows 

that phonon reflection spectra contain much more structure than had 

previously been supposed. Some of this structure can be understood by 

carefully applying an analysis based on anisotropic elastic theory to the 

reflection of phonons at a perfectly smooth interface. A considerable 

fraction of the received signal cannot be accounted for in this way, 

however, and must therefore be due to nonspecular scattering. Moreover, 

the nonspecular scattering •signal seems to account for most, if not all, 

of the anomalous coupling to liquid helium. The intensity and pulse 

shape of the diffuse scattering is a sensitive function of the heater­

bolometer orientation. This can be explained by introducing the concept 

of caustics, which are surfaces of high intensity associated with a point 

source. 

The commonly accepted interpretation of phonon reflection experi­

ments has been that elastic theory does not adequately describe the 

mechanical coupling between a solid and liquid helium. The implication 
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is that an additional (non-elastic) interaction mechanism exists between 

classical solids and quantum systems. It is our opinion that low time­

of-flight resolution data and an unwarranted faith in isotropic elastic 

theory are at least partially responsible for these conclusions of previous 

researchers. We have found that the specular portion of the reflection 

signal seems to obey elastic theory exactly. Although the strong coupling 

of the diffuse scattering signal to liquid helium is still unexplained, 

we would like to suggest that it is premature to dismiss the possibility 

that elastic theory will eventually supply a complete explanation of the 

anomalous Kapitza conductance. 

In our view, the problem of phonon reflection from a crystal/ 

liquid helium interface is a difficult problem in classical mechanics 

which has not yet been thoroughly analyzed. Although the analysis of the 

effects of elastic anisotropy is an important step toward a more realistic 

theory, our results on the importance of nonspecular scattering suggest 

that surface roughness must also be taken into account. Several attempts 

have been made to incorporate the effects of surface roughness into 

Kapitza resistance calculations, but the results have been somewhat 

confusing. On the basis of a simplified (and unphysical) model, Little44 

' 
concluded that the effect of surface roughness on the transmission of 

phonons was very small, and that this small effect tended to make heat 

transport less efficient than a flat interface. The complexity of the 

calculation and the negative .nature of the result made surface roughness 

an unpopular explanation of the anomalous Kapitza resistance for many 

years. Recently several more sophisticated calculations have been published 

which conflict with Little's result. Adamenko and Fuks 45 ignore the 
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transverse phonons in the solid, but find that surface roughness may 

enhance heat transport by a factor of two. Castelan and Maradudin46 

compute the Kapitza resistance including the transverse phonons and find 

a factor of four increase in the heat transport efficiency. An unpublished 

calculation by N. Shiren47 indicates that including the effect of 

surface roughness on surface wave scattering may decrease the theoretical 

Kapitza resi.stance to about one-tenth of the Khalatnikov value. 

The mutual disagreement of these calculations suggests that the 

physics of the surface roughness problem is not completely understood, 

and much work must be done before these calculations can be meaningfully 

applied to realistic experimental situations. The calculations are all 

done from the liquid's point of view; i.e., the quantity which is 

actually calculated is the reflection coefficient for phonons incident 

from the liquid. Although the algebra is easier for this case, only 

the behavior of phonons incident from the solid are conveniently observ­

able. Thus, the calculations mentioned above cannot be used to interpret 

phonon reflection experiments from a crystal/vacuum interface. Our 

philosophy throughout this work has been that a complete understanding 

of crystal/vacuum reflection sp~ctra is essential to the further develop­

ment of the phonon reflection technique. A detailed calculation describing 

the reflection of phonons in the solid from a rough interface would be 

a valuable aid in interpreting data. 

Another difficulty in· comparing theory with experiment is the 

fact that the condition of the surfaces used in the experiments is not 

well characterized. The predicted effect of surface roughness depends 
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sensitively on the parameters which describe the roughness, such as the 

mean square height and slope. Although these parameters are hard to 

measure accurately for a mechanically polished dielectric crystal, more 

effort should be devoted to careful surface characterization in future 

work. Measuring surface topography on Angstrom length scales may be 

difficult, but controlably altering it is even more difficut. Even 

cleaved or chemically etched crystal surfaces are ato~ically rough. The 

fact that surface roughness is not an experimentally adjustable parameter 

is another reason for trying to describe the effects with a realistic 

calculation. If a reliable theory were available, it would presumably 

predict the amount of diffuse scattering as a function of incident phonon 

wavelength. Even if the crystal roughness cannot be varied, tunable 

monochromatic phonon sources could be used to test the theory. It would 

be an important finding if the diffuse scattering peaks we have observed 

could be shown to be predominantly due to short wavelength phonons. 

An important dimensionless number which characterizes the surface 

roughness scattering problem is the ratio of therms roughness height 

to the wavelength. Scattering calculations are usually perturbation 

expansions in this supposedly small parameter. In most technologically 

important problems such as radar or sonar ranging, the small surface 

roughness limit is valid, but it is almost certainly not a good approxi­

mation for thermal phonons impinging on a polished crystal surface. 

Exact solutions of the wave equation for reflection from rough surfaces 

indicates that the perturbative solution breaks down for roughness heights 

larger than one-tenth of the wavelength. In typical phonon reflection 
0 

experiments, the phonon wavelength in liquid helium is approximately 10 A. 
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Since therms roughness is probably larger than this, there is no reason 

to believe that perturbation calculations will work. At the conclusion 

of his discussion on the scattering of sound from rough surfaces, 

Rayliegh conjectures that 11 if we suopose the corrugations of a given 

period to become very deep and involved, it would seem that the condition 

of things would at last approach that of a very gradual transition between 

the media, in which case the reflection tends to vanish. 1148 The high 

transmission coefficient one expects at a very rough interface cannot be 

predicted using perturbation theory. An exact calculation may be feasible, 

however. Numerical techniques have been developed to solve the similar 

problems which arise in atomic beam scattering experiments. 49 Such a 

realistic calculation is essential before we can determine whether phonon 

reflection experiments from crystal/helium interfaces can be explained 

in terms of classical mechanics, or if the anomalous Kapitza resistance 

is really due to some additional non-mechanical coupling. 
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