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ABSTRACT 

We study the production of energetic protons from relativistic 

nuclear collisions using two approaches, the hard-scattering model and 

an intranuclear cascade model. The hard-scattering model combines 

the simplified kinematics of single scatterings and the effects of 

the momentum distribution for nucleons in the nucleus to provide a 

parameter-free description of a nucleus-nucleus collision. We use 

free nucleon-nucleon cross sections to describe the individual NN 

interactions. Good agreement with experiment is obtained in this model 

for the high-momentum regions of the inclusive proton spectra from 

collisions at 800 MeV/nucleon. Crucial to this success is the 

inclusion of a high-momentum tail in the momentum distribution. 

This model is also applied to explain the observed two-proton 

azimuthal correlations from these systems and, with simple assumptions, 

to estimate the single-scattering component of the inclusive proton 

spectra. This latter is at least 37% in the lower momentum regions 

of the spectra analyzed. We also present calculations of the one- and 

two-particle inclusive spectra using forms for the momentum distri­

bution obtained both from the an2lysis of proton-nucleus backscattering 

data and from theory. Finally, we use a simple cascade model to 

calculate the inclusive proton spectra at 180° from 600 MeV proton­

nucleus collisions, The nucleus is assumed to be a Fermi gas of 

uniform density, and we neglect the excitation of resonances in the 
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intermediate state and the reflection and refraction of cascade 

nucleons due to variations in the mean nuclear potential, The cal­

culated results are below the experimental values and imply the pres­

ence of other reaction mechanisms. 
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l. INTRODUCTION 

In recent years there has been considerable experimental and 

theoretical activity in the field of high-energy (0. 2 - 2. 0 GeV /nucleon) 

nuclear collisions. A wealth of data has been accumulated at these 

energies for projectiles varying in size from p to Ar (Saudinos 1974, 

Papp 1975, Frankel 1976, Westfall 1976, Brody 1977, Gosset 1977, 

Nagamiya 1977). In this chapter we shall describe some of the prominent 

features of the inclusive proton and pion spectra and also many of the 

theoretical models proposed to explain them. Then we will point out the 

need for the present study and its relation to earlier work. 

1.1 Nucleus-Nucleus Collisions, Experiment 

There are several reasons f or the high interest in relativistic 

heavy-ion collisions. Because of the energetic reactions between large 

numbers of nucleons, it is possible that substantial build-ups of density 

and temperature occur in the nuclear matter,and under the assumption of 

many randomizing collisions between participating nucleons, that local 

equilibrium is reached during a collision. Thus, a major reason for the 

excitement in the field is the hope that these collisions will tell us 

about the nuclear equation-of-state E(p,T), the energy per nucleon as a 

function of density and pressure, for values far from the normal nuclear 

density p . At present,the experimental knowledge of Eis limited to the 
0 

region at p for T = 0. Another point of interest, which will become 
0 

clear in this paper, is that high-energy nuclear collisions may yield 

infodnation about the momentum distribution of nucleons in the ground 

state nucleus, and something that is related to this, the correlations 
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between nucleons. 

In discussing a collision involving two heavy ions, it is conveni­

ent to divide up the momentum space of the fragments into three distinct 

regions. The fragmentation regions near the momenta of the target and 

projectile which are dominantly populated by their breakup after the 

collision, and the central region intermediate between the target and 

projectile momenta and at large transverse momentum. It is this central 

region, populated by violent processes in the collision, which we con­

sider here. 

As an example of some of the fine data available (taken by 

Nagamiya et al. (1977)) we refer the reader ahead to Figs. 1, 10 and 11, 

which show the inclusive proton and pion spectra for various targets and 

projectiles at 800 MeV/nucleon. Particularly instructive is the global 

plot for Ne+Pb in Fig. 1, where contours of constant invariant cross 

section are plotted in rapidity space.* Among the salient features of 

these data are the large numbers of protons at very high PT, far past the 

kinernatically allowed region for a free nucleon-nucleon scattering, the 

tendency toward symmetry about half the beam rapidity at large PT, and, 

though not evident here, the independence of the decay of the cross sections 

at large PT on the size of the target and projectile (Nagamiya 1977). 

These points will be discussed further in relation to the various 

theoretical models. 

1.2 Theoretical Methods for Nucleus-Nucleus Collisions 

A great variety of models have been proposed to explain the spectra 

from relativistic heavy-ion collisions. Many of these differ greatly in 

* For a definition and discussion of rapidity, see Section 3.5. 
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their underlying assumptions. At one extreme are the equilibrium 

models (Westfall 1976, Gosset 1977, Myers 1977, Amsden 1977, 1977a) 

which assume that local equilibrium is attained due to the many 

collisions between large numbers of nucleons. At the other 

extreme are the hard-scattering or single-collision models (Koonin 

1977 and Schmidt 1977) which assume that a major contribution to the 

spectra results from nucleons which are emitted after undergoing only 

one collfsion. Between these two extremes are the multiple-collision 

or cascade models (Bendorf 1976, Amsden 1977, Hiifner 1977, Smith 1977, 

Randrup 1978). 

Of the equilibrium models, the first and probably the simplest 

model proposed is the fireball model (Westfall 1976 and Gosset 1977). 

It combines geometry and thermodynamics in~ simple, parameter-free way. 

At each impact parameter, the nuclei make straight-line, cylindrical 

cuts through each other, thus dividing the nucleons into two groups: 

the "participants" in the interaction region between the cuts, and the 

"spectators" in the residual nuclei. All of the available kinetic energy 

of the participants in their c.m. system is assumed to be turned into 

heat, and this "fireball" then decays according to a Boltzmann 

momentum distribution. With the further assumption of chemical equilib­

rium, this can be extended to include the production of pions and com­

posites. The fireball and related firestreak (Meyers 1977) models have 

enjoyed remarkable success in describing the inclusive spectra of 

protons, pions, and composites for a variety of energies and system 

sizes. 
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Other equilibrium models (Amsden 1977, 1977a) solve the continuity 

equations for the nucleon number, momentum, and energy densities of 

relativistic hydrodynamics. Input of the equation-of-state E(p,T) allows 

the direct study of its effects. These models have also had a degree of 

success explaining the inclusive proton spectra. 

The underlying assumptions of the equilibrium models exclude any 

effects due to the individual two-body reactions. In a discussion of 

experimental two-proton correlations in Chapter 4, it will be shown that 

a serious limitation of these models in their present form is their 

inability to describe a large contribution to the spectra due to single 

scatterings. 

Under the assumption that nucleus-nucleus collisions can be 

described microscopically by a succession of independent single-particle 

collisions, the multiple-collision models present an attractive approach 

(Bendorf 1976, Amsden 1977, Hufner 1977, Smith 1977, Randrup 1978). 

Although the cascade models are generally more complex than the equilib­

rium models, they can be used to study the assumptions of thermalization 

by taking "snapshots" of the momentum distribution of the interacting 

nucleons at different times during a simulated collision. Also included 

is the single-scattering component of the spectra. While there are far 

too many approaches to discuss here in detail, the more successful cas-

cade models include the following ingredients: simulation of the cascade 

by Monte Carlo techniques, prod~ction of pions through the ~(1232) resonance, 

choice of the scattering angle of individual NN scatterings by the experi­

mental NN cross sections, and the use of a sharp Fermi momentum distribu­

tion for nucleons in the nucleus. These models have been successful in 
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reproducing much of the inclusive proton and pion spectra. However, 

besides possible disadvantages due to complexity or cost of implementa­

tion, these models do not include effects due to the high momentum 

components in the momentum distribution for nucleons in the nucleus 

(see Zabolitzky 1978). 

The equilibrium and cascade models are able to produce protons 

with large transverse momentum through the many individual collisions 

that occur among the nucleons. Each successive collision is able to 

populate larger regions of momentum space. However, the independence of 

the decay of the spectra at large PT on the target and projectile, and 

the symmetry of the spectrum about half the beam rapidity at large PT 

(as seen in Fig. 1) suggest. that a simpler mechanism, one independent 

of the number of nucleons in the nuclei, may be important here. These 

features can be explained easily if the dominant mechanism contributing 

to this region is the single, hard collision of two nucleons. This ques­

tion, which is addressed in the present work, is of fundamental impor­

tance in our understanding of these processes. Indeed, if the hard 

scattering mechanism is dominant at large PT, then it is useless to 

attempt to study the properties of equilibrium here. 

In order for the hard-scattering mechanism to populate regions 

at large PT, it is necessary to include high-momentum components in the 

momentum distribution for nucleons in the nucleus. Experimentally, 

the form of this distribution is not known. Quasi-elastic electron 

scattering is not sensitive to this high-momentum tail (Moniz 1971). 

However, when interpreted in terns of a single scattering model (Amado 
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1976), recent back-angle proton-nucleus data provide a sensitive test 

of the high-momentum behavior of the distribution and are consistent 

with an exponential falloff up to 1.3 GeV/c (Brody 1977, Frankel 1977). 

We use a form for the distribution (Eq. 3-6) which is consistent with 

the proton-nucleus data (Amado 1976) and which has been motivated by an 

exact, though unphysical calculation involving a one-dimensional system 

of bosons interacting via a delta potential . At the time we undertook 

our study this was the only available form, but since then theoretical 

calculations for the momentum distribution have been made using 

many-body theory for finite nuclei with realistic nuclear potentials 

(Zabolitzky 1978). These also have an approximate exponential falloff 

with about the same slope (see Section 3.5 and Fig. 12 for more details). 

For comparison, we use both forms in the calculations presented here. 

There have been earlier efforts to calculate the proton and pion 

spectra with the single-scattering mechanism. The calculation of Koonin 

(1977) uses a sharp Fermi momentum distribution, and, though able to 

describe many features of the inclusive proton spectra, eventually it 

fails for regions at large PT. Pion production is not included, and 

the kinematics governing energy and momentum conservation differs from 

the present treatment. Calculations of two-nucleon correlations due to 

the two-body kinematics are also first presented here. The approach of 

Schmidt and Blankenbecler (1977) differs from ours essentially in the 

evaluation of Eq. (2-7). Their field theoretical analysis of the momentum 

distribution is applicable only in the extreme asymptotic region far from 

the data considered here. Equation (2-7) is also approximated in the 
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asymptotic limit. Finally, very simple parametrizations are used to de­

scribe the N+N ➔ N+X and N+N ➔ TT+X processes. 

1.3 Proton-Nucleus Collisions 

Proton-nucleus collisions provide an important testing ground 

for our ideas on nucleus-nucleus collisions. If a model can be ex­

tended successfully from the regime of proton-nucleus to nucleus-

nucleus collisions without additional assumptions or parameters, then 

this places much more validity on the results. Both the cascade and 

hard-scattering models appear to meet this requirement for the regions 

tested thus far. Multiple-collision models in the Glauber approximation 

(Glauber 1959, Saudinos 1974) for small angle scattering and in the full 

Monte Carlo cascade treatment (Chen 1968) have long been used success­

fully for proton-nucleus collisions. Hard-collision models with an 

exponential tail in the momentum distribution have more recently proven 

to be a viable approach (Amado 19 76, Brody 1977, Frankel 1977). 

There is one regime in proton-nucleus collisions which provides a 

severe test for any model. In recent years data have been taken on the 

production of large-momentum protons at backward angles (Frankel 1976, 

Brody 1977; see Fig. 16), far into the kinematically forbidden region 

for the scattering of a proton on a free nucleon with momentum up to 

the Fermi momentum, PF 'v 270 HeV/c. Among the mechanisms proposed to 

produce these energetic protons are the coherent scattering from clus­

ters (Fujita 1977), multiple ~TN collisions, and, as pointed out earlier, 

the hard-collision model (Amado 1976, Brody 1977, Frankel 1977). The 

cluster and hard-collision models give quantitative agreement with 
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experiment. The results for the multiple-collision model are not as 

yet known, due to the difficulty of producing these rare events in a 

Monte Carlo calculation, although estimates have been made (Kopeliovich 

1977). The solution of this problem will occupy the final part of 

this thesis. 

The outline for this thesis proceeds as follows. In Chapter 2 

we explain the theory behind the hard-scattering model and derive the 

basic equations. A description of the calculation of the inclusive 

proton and pion spectra for nucleus-nucleus collisions and the compari­

son of these with experiment is made in Chapter 3. The experimental 

results for two-proton correlations and the predictions of the hard­

scattering model are presented in Chapter 4. We depart from the hard­

scattering model in Chapter 5 to calculate the back-angle proton 

spectra from proton-nucleus collisions in a multiple-collision model. 

Finally, we stm1marize the results and present our conclusions in 

Chapter 6. 
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2. GENERAL THEORY OF THE HODEL 

2.1 The Bethe-Salpeter Equation 

A relativistic bound-state system may be conveniently described by 

the Bethe-Salpeter wave function (Salpeter 1951). We give here a 

heuristic derivation of the Bethe-Salpeter equation for a two-particle 

bound state, and in so doing the rules for its implementation will be 

apparent. A rigorous derivation may be found in Gell-Mann (1951). The 

derivation will be for quantum-electrodynamics (QED), although the gen­

eralization to other systems is straightforward. We adopt the notation 

and rules for evaluating Feynman diagrams from Bjorken (1964). With 

these rules one can easily write down the matrix element of an arbitrary 

d • h F • 2 w d f • h f . Ill ( C) d 111 (B) b iagram sue as ig. . e e ine t ewave unctions r an r to e 

the contribution of the graph up to the dotted lines (including the par­

ticle propagators). These wave functions then have 16 spinor components 

(for QED) and can be used to write the matrix element of the graph as 

M = I 
where the above integrals are over each momentum not fixed by momentum 

conservation. It is also clear that ~(B) can be written in terms of 

Y(A) in Fig. 2 as 

(2-2) 



where 
i(p +m) 

2 2+. p - m u: 
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is the int e rnal Fermion propagator. Now we 

define an irreducible graph as one which cannot be split into two simp­

ler graphs by drawing a line which cuts no photon line and both of 

the particle lines once . Thus, a diagram of any complexity can be con­

structed from sequences of irreducible graphs. We show several of the 

lowest order irreducible graphs in Fig. 3. (Diagr&~s (d) and (e) are 

considered irreducible, since they must be included with diagram (c) in 

renormalization (Bjerken 1964a).) Let G(n) denote the contribution of the 

the external propagators (i.e., G(a)(p
3

,p
1

) 

tion which has diagrams (m
1

,m
2

,· •• ,mi) as its only contribution. Then 

(2-3) 

The bound state wave function If/ (p
1 

,P - p
1

) can be considered to be made 

up of an infinite sequence of all possible combinations of irreducible 

diagrams, since it is bound for an infinitely long time and can have any 

combination of exchanged quanta. We then formally sum Eq. (2-3) over 

all n,m
1

,m
2
,···,mi and let i ➔ 00 to obtain the integral equation 

where 

'¥(pl ,P - pl)' 

(2-4) 

This is the Bethe-Salpeter equation 
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in momentum space. It is also convenient to define the vertex function 

<P by 

(2-5) 

If the coupling constants are small, such as in QED, then one can cut 

off the sum in Eq. (2-4) at lower orders. The physical idea is that, 

for a weak coupling constant,the probability to have a single exchanged 

quantum at a given time is small but very much smaller still to have two 

virtual quanta in the field at the same time. The use of G(l) alone is 

called the ladder approximation. 

2.2 Derivation of the Basic Hard-Scattering Formula 

We now derive an expression for the inclusive nucleon cross section 

for a nucleus-nucleus collision, using the knockout diagram of Fig. 4. 

For simplicity we neglect all spin effects as well as the isotopic dis­

tinction of the nucleons. The colliding nuclei are designated by four­

momenta P and P', the interacting nucleons by p and p', and the residual 

nuclei will be considered to be in a definite state and have four momenta 

P-p and P'-p'. Using the Bethe-Salpeter vertex functions one can write 

the matrix element for this process as 

M(P,P' ➔ P-p,P'-p' ,k,k') = m(p,p' ➔ k,k') 

x iS(p') <P'(p',P'-p) iS(p) ~(p,P-p) (2-6) 

i 
where iS(p) = - 2--2 

is the internal propagator for spinless "nucleons" 
p - m 

and m(p ,p' "T k,k') is the matrix element for the nucleon-nucleon interac-

tion. Notice that only one propagator accompanies each vertex function, 
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since the residual nucleus is on shell. The inclusive cross section 

is (Schmidt 1977) 

where 

and 

X d3(P-p) d3(P'-p') d3k 1 

2(2TT) 3 E(P-p) 2(2TT) 3 E(P'-p') 2(2TT) 3 E(k') 

-+ 
f (p) 

l<P(p,P-p)l
2

(p·P) 
= 3 2 2 2 2 (po = E (f) _. E (P-:-P)) 

2(2TT) E(P-p) P (p - m ) 

p 
2 2 2 A. ( ( p+p I ) 'p > p I ) 

(p • I') (p' • P ') 2 2 2 A. ( (P+P I) 'p 'p I ) 

_ 2 2 2 1/2 
11.(x,y,z) = (x +y +z - 2xy - 2xz - 2yz) 

dcr E(k) (p+p' ➔ k+k') 

d
3

k 

_ J lm(p+p' ➔ k+k')l 2 
TTo

4
(p+p' - k-k') 

2 2 2 
211.((p+p') ,p ,p') 

X 

(2-7) 

2 2 2 Here, 11.((p+p') ,p ,p' ) is an off shell generalizatio~ of the flux fac-

tor; its value is 2E(p) E(p')I;_;,, for on-shell, colinear particles. 

➔ 

This equation has a simple probabilistic meaning if one associates f(p) 

+ 
with the probability distribution for finding a nucleon of momentum p 
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E (k)· da (p+p' ➔ k+k') is related to the probability 
d3k 

for the two nucleons to scatter into the final states k and k', and 

Pis related to the fluxes of the colliding particles. 

The knockout diagram of Fig. 5 for proton-nucleus scattering 

➔ 
is also evaluated easily and is given by Eq. (2-7) with f' (p') = 

3 ➔ ➔ o (P' - p') , as expected. 

2.3 The Electromagnetic Form Factor (Sivers 1976) 

➔ 
We will now show that the definition of f(p) in Eq. (2-7) is 

consistent with its interpretation as the probability for finding a 

particle with momentum pin the nucleus. This is done by demonstrating 

that the electromagnetic fonn factor at zero momentum transfer is 

A= F(/=O) = f 3➔ ➔ 
d p f(p) (2-8) 

where A is the number of nucleons in the nucleus. We evaluate the form 

factor in the impulse approximation of Fig. 6, where we are restricting 

ourselves to the Breit frame defined therein. The fonn factor is 

written as 

=-if d
4

(P-k) (k+k+g)u ~+(k+g,P-k) ~(k,P-k) <2
-

9
) 

(2;r) 4 [(k+q) 2-m2+ie:] [(P-k) 2-,_,/+ie:] [i-m2+ie:] , 

where mis the nucleon mass and His the mass of the residual nucleus, 

It is now clear why F(O) = A --at zero momentum transfer the structure 

of the nucleus is not probed, but behaves as a single particle of ''charge'' 

A. Since M >> m, we expect that the dominant contribution to the inte-

2 2 
gral occurs for (P-k) = M. The P -k integration is perfonned by 

0 0 
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completing the contour in the lower half complex plane and picking up 

✓ ++2 2 the dominant pole at P -k = · (P-k) + M - iE: . Since the ingoing and 
0 0 

outgoing mass is identical, we have the relation P2 = P' 2 = (P+q) 2 

2 P•q = q /2. Contracting each side of Eq. (2-9) with P yields µ 

2P·k + <l/2) 

2P
2 

+ <l/2) 

+ ¢ (k+q,P-k) ¢(k,P-k) 
2 2 2 2 [ (k+q) - m ] [k - m ] 

or 

(2-10) 

2 ➔ 
Now in the Breit frame, q = 0 implies that q = (O,q) = (O,O). Therefore, 

F(O) 

(k
0 

= E(P) - E(P-k)) (2-11) 

Since this is a relativistically invariant form, it holds true in any 

frame. 

2.4 Modification Due to the Scattering of Multiple Pairs of Nucleons 

Because of the spatial density of the colliding nuclei, it is 

clear that even in the knockout picture (neglecting final-state interac­

tions), the process shown in Fig. 4 will not give the only major con­

tribution, but must be modified to allow multiple pairs of nucleons to 

scatter in each nucleus-nucleus collision. We now show how this modifi­

cation is made by evaluating the diagram in Fig. 7, which represents two 

pairs of nucleons scattering with no final state interactions. 

Using the rules described above, the matrix element for this proc­

ess can be written as 



G(b
2

) (2-12) 

where 

X 

al = k
1

+k
2 

+ b2+8-B 

a2 = k3+k4-b2 

and 
bl B-8-b = 

2 

The invariant differential cross section is then 

4 
x TTO (A+B - a - B - k - k - k - k ) (2 13) · 1 2 3 4 ' • 

We now assume that the vertex function can be written in the separable 

form 

(2-14) 

This is a reasonable assumption for large nuclei, where a given nucleon 
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is on the average affected little by any other nucleon. Then G(b
2

) 

can be written as 

(2-15) 

where 

g(x,k,k') -
<PA(k+k'-x, A+x-k-k') 

2 2 [(k+k'-x) - m] 
m (k+k' -x. x -+ k, k' ) 

<PB(x,B-x) 
X-----

2 2 
[x - m ] 

By defining the variables 

and 
p :-: B-B-b 

2 

a change of variables allows Eq. (2-13) to be written as 

g(p,k
1

,k
2

)g(b
2

,k
3

,k
4

) Tio(a2+p'+p+b 2-k1-k2-k3-k4) 
x---=---.c---~'--------------'--- (2-16) 

E(A-p'-a') E(B-p-b) 2 2 

We next assume that the functions g(x,k3 ,k4) are sharply peaked in x so 
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that we may take the slowly varying functions of x out of the integral. 

This assumption is made plausible by the relation of the vertex func­

tions to a momentum distribution. We replace a.
0 

= E(A-p'-a
2

) by E(A-p) 

➔ 

since we can neglect any reasonable value ·of a2 compared to Ma 

for moderately sized nuclei. Also, p' depends on a2 only through 

p' = A -a -a' . 
o o o 2o 

with a
20 

replaced by an average a
0

• The same arguments also hold for 

S
0 

= E(B-p-b
2

) and g(p,k
1

,k
2
). By observing that the peak in the b

2 
and 

a2 integrals occurs at b2 = k
3
+k

4
-a2 for each k

3 
and k

4
, we re_place the 

delta function by o4(p'+p-k1-k2). Our final result may be written as 

E(k )~ ~ 
2:(B) IVA-VB1 J 

d3 d 3 I 

E E 
1 d3k 2E(A) 3 

2 ( 2TI) 3E (A-p') 
1 

2 ( 2TI) E (B -p) 

d3k I cp A ( p I ,A-p I) I 2 l<PB(p,B-p)l
2 

X 
· 2 

lm(p,p'+\,k2)12 
2(2n) 3E(k

2
) [ ,2 2)2 [ 2 2] 2 p -m p -m 

(2-17) 

¢A(k3+k4-b, A-k3-k4+b) 

2 2 
[(k

3
+k

4
-b) - m] 

2 
X 

p1 = E(A) - E(A-p) - a 
0 0 

and p
0 

= E(B) - E(B-p) - b
0 

We see that this differs from Eq. (2- 7) only in the overall normalization 
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and the energy available to scatter in p and p'. One expects this in-o 0 

tuitively, since the scattering of an extra pair of nucleons should 

affect the energy available to the other two as well as the total proba­

bility to occur, although this average energy shift is not expected to 

be great when the nuclei are large and each nucleon affects any other 

nucleon very little. However, because the average multiplicity of scat­

tered nucleons in most nucleus-nucleus collisions is greater than two 

(an experimental estimate is 7 for C+C, and 19 for Ar+ KCl (Tanihata 

1979)1 a modification of the normalization of the basic knockout equa­

tion (Eq. 2-7) due to the contribution of the scattering of multiple 

pairs of nucleons (as in Fig. 7) appears necessary in a correct treat­

ment. In Section 3 .4 in the next chapter, we discuss our approach to 

the normalization. 

2.5 Effects of Final-State Interactions 

It might be expected that at large bombarding energies the effect 

of final-state interactions on the knockout pro-cess is small. However, 

it has been shown that this may not be the case but that final-state 

interactions might have to be included on an equal footing (Amado 1977). 

Using general arguments of the orthogonality of the discrete and con~ 

tinuum states of the target nucleus, what was actually shown is this: 

If in the knockout picture a probe imparts a momentum transfer q to a 

constituent particle in the target with momentum p (resulting in a 

final momentum k=p+q), then the leading term for large k is exactly can­

celed by the contribution from final-state interactions. 

The diagram in Fig. 8 includes the effects of final-state inter­

actions. Because of the complexity of the matrix element M
2

, the exact 
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inclusion of this contribution in the cross section is not possible 

at this time. However, we can include possible effects of final-state 

+ 
interactions in our treatment by replacing f(p) in Eq. (2-7) with a 

+ 
modified or "effective" momentum distribution f (p). That most of the 

e 

effects can be included in this way is justified to some degree by the 

following argwnents: The inclusive cross section calculated from Eq. 

(2-7) is not affected a great deal by variations in!~ (N+N + N+N) 

(even an isotropic distribution does not change the results substanti­

ally for most regions of the spectrum, the region at 90° in the center­

of-mass being affected most), but depends most strongly on the kinemati­

cal constraints (available energy, etc.) ·and the form for the distribu-

+ 
tion f(p). The kinematics of the final states are the same for both 

pictures (as seen in Figs. 4 and 8) and in. swnming over the phase space 

for unobserved particles it is easy to see that the result can be 

written in the form of Eq. (2-7), but without the factorization of the 

matrix element for NN scattering. Assuming that the interaction M
2 

does 

not have a strong focusing effect into a particular direction away from 

the results of M
1

, then Eq. (2-7) gives a good approximation to the 

singl~ particle inclusive cross section with an effective momentum dis­

tribution f (p) replacing f(p). This argument does not, of course, hold 
e 

for two-particle coincidence measurements, since the simple two-body 

kinematics is lost in the final-state interactions. 



20 

3. CALCULATION OF THE SINGLE-PARTICLE INCLUSIVE PROTON AND 

PION SPECTRA 

3.1 General Procedure 

In this section we describe a calculation using the hard-scatter­

ing mechanism of Fig. 4. We evaluate Eq. (2-7) using the Monte-Carlo 

methods described in Appendix A. Because of the simple probabilistic 

meaning of Eq. (2-7), it is easy to use Monte Carlo simulation, and the 

advantages of this approach are several: The entire spectrum is calcu­

lated in a single run; pion production can be easily included through 

simulation of delta production and decay; two particle correlations are 

also analyzed simply. A possible disadvantage is the increase in sta­

tistical errors for events with small cross section (which is also 

inherent in the experimental situation). These points will become clear 

when the actual computation is described in detail below. To help guide 

the reader, the arrangement in the computer code of the following 

description of the cAlculation is shown diagrannnatically as a flow chart 

in Fig. 9. 

3.2 Description of the Calculation 

The momenta of the colliding nucleons are chosen in the center of 

mass of each of the target and projectile nuclei according to the momentum 

➔ ➔ 
distribution f(p). The residual nucleus recoils with momentum -p, thus 

specifying the off-shell energy of the interacting nucleons of mass mas 

(3-1) 

where£ is an average separation energy determined by the specific state 
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of the residual nucleus and Am is the initial mass of the nucleus. We 

approximate the nucleon-nucleon off-shell scattering matrix by the ex­

perimental N-N cross sections as follows: The four-momenta p and p' 

are transformed to their center-of-momentum frame, where the angle of 

scattering is chosen at random from the experimental angular distribu-

. 1 dcrel 
tion for elastic scattering -- -d---8-. The input is the total avail-a OOS el cm 112 able center-of-mass energy Is= [(p+p') 2 ] . The polynomial fits to 

1 doel 
d e and oel are presented in Appendix B. The final nucleons 

oel cos cm 

with momenta k and k' contribute a weighting factor Poe
1

(s) (which is 

related to the probability to scatter) to a bin of angular and momentum 

width 68 and 6k, where Pis the flux factor of Eq. (2-7). Two cases in 

which the nucleons do not scatter into final states k and k' are for 

2 s < 4m , and when the final states are not compatible with the exclusion 

principle. For a nucleus ,with a momentum distribution f(p) (with nor­

malization f(O) = 1), the probability that a final state pis occupied 

is just f(p). This is equivalent to placing factors of 1 - f(p) in the 

integral of Eq. (2-7). 

3.3 The Inclusion of Pion Production 

To include pion production, we assume that all inelastic events 

proceed through the formation of the 6(1232) resonance. In the spirit 

of the single-collision model, once the delta is produced it decays 

without further interactions into the pion and nucleon. The weighting 

factor for this event is a. P where a. = a -a 
1 

is the inelastic cross in in tot e 

section and a is the average of the proton-proton and proton-neutron 
tot 
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total cross sections calculated from Appendix B. The angular distribu­

tion for N+N + N+6 in the N+N center-of-momentum frame is taken to be 

that for elastic scattering. The mass width of the 6 resonance is in­

cluded by assuming the probability distribution for formation at a mass 

M has a Lorentzian shape 

P(M) 
r =---------

(M -1232/ + r2 (3-2) 

with half width r = 60 MeV (Barish-Schmidt 1973). 

One must also take into account in a proper way the effects of 

polarization on the decay of the 6. We have investigated this effect 

by adopting two extreme assumptions for the delta decay: (1) no polari­

zation for an isotropic decay, and (2) maximum polarization with a 

1/sin 8 distribution (where 8 is measured from the beam axis). The 

results presented in this paper have used the isotropic decay. The 

effect of polarization in each case was negligible for the inclusive 

proton spectrum and small for pion production, although there was a 

slight forward-backward enhancement with corresponding decrease at large 

transverse momentum for pions. The results shown in Fig. 10 are essenti­

ally unchanged with the inclusion of polarization effects. 

3.4 Normalization 

As explained in Section 2.4, it is necessary to modify the normali­

zation from that given by Eq. (2-7) because of the spatial compactness 

of nucleons in the nucleus. We propose an intuitive normalization based 

on geometry and the single scattering assumption, very similar to the 

participant-spectator concept of the fireball model (Westfall 1976). The 
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basic assumption is that at each impact parameter b the number of 

nucleons which scatter N(b) is twice the smaller number of target or 

projectile nucleons in the straight line trajectory of the overlap 

region. Thus the entire overlap region is not swept out in a collision 

since this would require multiple scatterings. Below we derive an 

analytical expression for the total cross section for spherical nuclei 

with a uniform nuclear density. 

(3-3) 

where 

➔ 

N(b) 

a
1 

2 2 2 (-) = Rl- sl 2 

a
2 

2 2 2 (-) = R2 -s2 2 

and 
-+ 
sl and 

-+ 
s2 are centered at nuclei one and two, respectively, i.n a 

plane perpendicular to the beam direction, and the integral extends over 

the total cross-sectional area of each nucleus. R
1 

and R
2 

are the nuclear 

radii, and pis the particle density with 

min(a
1

,a
2

) denotes the smaller of a
1 

and a
2

. Note that the fireball 

cross section is obtained if a 1+a
2 

is exchanged for 2 min(a
1

,a2) above. 

➔ 
The integral over impact parameter bis carried out first to obtain 
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I 2+ 2+ 
2 min(a

1
,a

2
) a = p d s 1 d s

2 

2 
2R

1 
2R

2 
= 

PTT I dal I da
2 

a
1

a
2 

min(a
1

,a
2

) 2 
0 0 

2 
R2 

2 
A2] for (3-4) = 2TT[R

1 
A

2 - . Rl > R2 5 

The total proton cross section is then 

a = 
p (3-5) 

where z
1 

and z
2 

are the charges of nuclei one and two, respectively. This 

simple picture should not be taken to be a serious prediction of the 

single scattering assumption, since it clearly lacks many physical prop­

erties such as a diffuse surface, multiple scatterings, contributions 

from composites, transparency, etc. In other words, one should not 

accept or reject the single scattering hypothesis by how closely the 

normalization resembles experiment in each case. However, in the systems 

we have looked at, the above normalization works pretty well. 

3.5 Description of Results and Comparison with Experiment 

The choice of the momentum distribution f(p) is a crucial part of 

the calculation. As was discussed in Section 2.5 it appears that final 

state interactions destroy the simple dependence of Eq. (2-7) on the 

ground state momentum distribution. We have investigated this possibility 

by comparing results of nuclear collisions using an "effective" momentum 

distribution obtained from experiment with results using the ground state 

momentum distribution. 
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We use an effective momentum distribution 

f ( ) YP 
e p '\., sinh YP y-l = 90 HeV/c (3-6) 

and an average separation energy E = 40 MeV. This was found to provide 

a good fit to proton-nucleus backscattering data in the single-scatter­

ing model of Fig. 5 (Amado 1976), and therefore may include contributions 

from final-state interactions. It is also consistent with quasi-elastic 

electron scattering results. Our results for the inclusive proton and 

pion spectra at 800 MeV / A bombarding energy using this distribution are 

compared with experiment (Nagamiya 1977) in Fig. 10. As expected, the 

best agreement is found in the large momentum regions for the lighter 

systems. In particular, both the magnitude and shape of the proton spec­

tra for C+C and Ne+NaF are remarkably well reproduced. The proton 

spectra at back angles in the heavier C+Pb system, and most low-momentum 

regions of all spectra, are not well reproduced by the model, indicating 

the presence of multistep, but not necessarily equilibrium, processes. 

The pion spectra are generally reproduced only roughly by the knockout 

calculations, although the agreement for the lightest (C+C) system is 

good. The better success of the knockout model for protons is to be ex­

pected, since single hard nucleon-nucleon collisions preferentially 

populate distinctive kinematic regions of the proton spectrum. In con­

trast, because the 6. resona.nce is produced nearly at rest in NN collisions 

at 800 MeV, the kinematics of knockout pion production cannot serve as 

a unique signature of this mechanism,and the knockout pions overlap with 

those produced by multiple collisions. Pion spectra taken at higher 
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bombarding energies might therefore serve to verify this picture. 

It is evident in Fig. 10 that the shape of the calculated spectra 

is independent of the target or projectile. This is because the size of 

the system affects the knockout calculations only in the amount of re­

coil energy carried away by the residual nucleus, so that for nuclei with 

more than a few nucleons, the effect is small. However, this serves as a 

definite prediction of the knockout model and is clearly seen in the large 

PT decay of the experimental proton spectra (Nagarniya 1979) and in the 

tendency toward symmetry about half the beam rapidity at large PT for 

Ne+Pb in Fig. 1. 

It is also instructive to look at the inclusive proton spectra in 

a global picture. This is conveniently done by plotting contours of 

constant invariant cross section in rapidity space (PT vs. y),where the 

rapidity y is defined by 

(3-7) 

and pll is the momentum of the particle parallel to the beam axis. 

Rapidity has the convenient property of being additive under a Lorentz 

transformation in the beam direction. That is, if we transform to a 

frame which has a rapidity yL with respect to the original frame, the 

the rapidity y' of an object in this frame with respect to its rapidity 

y in the original frame is given by 

y' = y - y 
L 

Therefore, contours of constant invariant cross section plotted in 

rapidity space look identical in any frame moving parallel to the beam 

axis. 
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In Fig. 11 we compare our calculation with experiment in a rapidity 

plot for the symmetric system Ne+NaF (Nagamiya 1977). It is apparent that 

the hard-scattering calculation using f 
e 

-1 (Eq. 3-6) with y . = 90 MeV/c 

decays more rapidly than the data in the central rapidity region at large 

PT (the spectra at 70° for C+C in Fig. 10 suggests this also). However, 

the same calculation with y-l = 110 MeV/c provides a much better fit to 

the data. This raises the important question of whether f with 
e 

-1 1 
y = 110 MeV/c instead of y- = 90 MeV/c still fits the proton-nucleus 

backscattering data, in keeping with a consistent parameter-free model. 

In making the same comparison for a heavy asym.~etric system (such 

as Ne+Pb of Fig. 1) it is clear that the symmetry about half the beam 

rapidity of the knockout results does not reproduce the observed asym­

metry at low momenta. Therefore, the asymmetry at low momenta for large 

mass-asymmetric systems appears to be due to effects of the multiple 

scattering component. Indeed, multiple-scattering calculations do have 

the correct form (Randrup 1978). However, as previously discussed, the 

symmetry at large transverse momenta suggests that this region might be 

dominated by the single-scattering component even for large systems. 

We have compared the calculation using the effective momentum dis­

tribution f (p) described above with two theoretical ground-state momentum 
e 

distributions derived under differing assumptions. One is the sharp Fermi 

momentum distribution which is derived for non-interacting Fermions at 

zero temperature: 

{: p < 267 MeV/c 
fF(p) '\, (3-8) 

p > 267 MeV/c 
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The other is a momentum distribution obtained from many-body exp(S) theory 

which includes fully two-particle correlations and partially three- and 

four-particle correlations (Zabolitzky 1978). 16 For O the results have 

been calculated using several different NN interactions. As a rough 

parametrization of the results for the Reid soft core potential, we use 

the form 

f (p) 
C 

:.....L 2 

{ 

-(150) 

"' e -(p+203.5/ 

0.0204 e 468 •5 

0 ~ p < 344 MeV/c 

344 MeV/c < p 

(3-9) 

In Fig. 12 we compare the three distributions and the fit of Eq. (3-9) 

for the normalization J f(p)p
2

dp = 16. It is seen that the theoretical 

exp(S) result, f (p), has about the same exponential falloff at large 
C 

momentum as the effective distribution f (p), but differs significantly 
e 

in shape at lower momentum. The normalization of the high-momentum tail 

is also appreciably lower. However, variations of greater magnitude in 

the normalization of the high-momentum tail res ult with differing NN 

potentials suggest that this is not a well determined quantity. 

In Fig. 13 we compare the results of these three momentum distri­

butions for 800 MeV/A bombarding energy. The normalization is for the 

C+C system but the relative results are,of course, independent of the 

system size for moderately sized nuclei. As expected, the lower normal­

ization in the high-momentum tail for f shows up in a corresponding 
C 

lowering of the spectra in the high momentum regions (but with the same 

slope). However, because of the variations in the normalization of the 

large momentum regions off resulting from the use of different forms for 
C 
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the NN interactions, a definite conclusion cannot be reached as to the 

quantitative agreement of the theoretical momentum distribution with 

experiment. It does seem remarkable, though, that apart from this un­

certain shift in the normalization of the spectra in the high momentum 

regions, the theoretical distribution in the hard-scattering model (with 

no free parameters) reproduces so many features of the spectra. It is 

also clear in Fig. 13 that the sharp Fermi distribution grossly underes­

timates the high momentum regions of the data. 

3.6 Summary 

In this chapter we have seen that a hard scattering approach can 

quantitatively describe the high-nomentum regions of the inclusive proton 

spectra. The best agreement with experiment is obtained with an "effec­

tive" momentum distribution of the form of Eq. (3-6) which was used to 

describe proton-nucleus backscattering data (Amado 1976). To within the 

uncertainties of its calculation, a theoretical momentum distribution 

(Zabolitzky 1978) derived from many-body theory for finite nuclei also 

appears capable of reproducing the observed data. This leaves unresolved 

the question of the appropriateness of using the actual momentum distribu­

tion in the basic hard-scattering formula (Eq. 2-7) without including 

effects of final state interactions (Amado 1977). 

The agreement with experiment of the hard-scattering calculation 

is also not unambiguous verification of the single-scattering assumption, 

since other models with differing assumptions can also reproduce the 

inclusive proton spectra. The failure of the inclusive single-particle 

spectra to make a determination here may be due to the averaging effect 

of these measurements. What is clearly needed are more exclusive 
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measurements, such as two_-particle correlations, to help to distinguish 

between the various mechanisms. 
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4. TWO-PROTO~l CORRELATIONS 

4.1 Expected Results 

Because of the two-body nature of the single scattering mechanism, 

correlations are expected between each pair of scattered nucleons. For 

free nucleon-nucleon scatterings the measurement of the momentum of one 

nucleon specifies uniquely the final momentum of the other nucleon by 

momentum conservation. For nucleus-nucleus collisions this correlation 

is obscured to some degree, even in the framework of the single scat­

tering model, by three effects: the momentum distribution for nucleons 

in the nucleus, the scattering of other pairs of nucleons in the same 

collision, and the inelasticity due to pion production. Inclusion of 

multiple scatterings obscures this effect even more, and finally, the 

equilibrium models predict no two-nucleon correlations due to the two­

body kinematics discussed above. Recently, the experimentalists have 

made two-proton inclusive measurements and their results are discussed 

in the next section, Then in Section 4.3 we compare these with the pre­

diction of the hard-scattering model. 

4.2 Experimental Results 

Two-proton correlation measurcr..f'nte have recently been made for 

high-energy heavy-ion collisions by Tanihata et al. (1979). Because of 

the existence of only one spectrometer they were not able to measure 

-+ -+ 3 3 
directly the two-proton inclusive cross section [da(p

1
,p

2
)]/(d p

1
d p

2
), 

but with the use of the spectrometer in coincidence with tag counters 

which triggered on charged particles with energy above a certain cutoff 

energy, they were able to determine 
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f (4-1) 

R(p ,0,¢) 
C 

where the region R(p ,0,¢) of integration extends over the solid angle 
C 

centered at 0 and¢ and momentum p2 > pc accepted by the counter. They 

have measured the ratio 

+ + 

f 
dcr(p

1
,p

2
) 

3 
3 3 d P2 

R(pc,40°,¢1+180°) 
d pld P2 

+ 
R(pl) = 

+ + 

I dcr(pl,p2) 3 
3 3 d P2 

R(pc,40°,¢1+90°) d pld P2 

(4-2) 

corresponding to the ratio of events triggered by counters placed at azi-

th 1 1 90 ° and 180° f th t t ~ d 1 mu a ang es rom e spec rome er at ~l an at an ang e 

40° from the beam direction. 
+ 

In Fig. 14 contours of equal R(p
1

) are 

plotted in the nucleon-nucleon center-of-mass system for C+C at 800 MeV/ 

nucleon with p = 645 MeV/c. The shaded area represents the region of 
C 

momentum space accepted by the tag counter, the points at P and T specify 

the projectile and target momentum respectively, and the dashed circle 

through P and T denotes the shell populated by free N-N elastic scatter­

ings. The expected quasi-elastic peak is readily seen in the plot. These 

features are present even for systems as large as Ar+KCl, although for 

C+Pb no such correlation is seen (see Fig. 14), not necessarily indicat­

ing a smaller contribution from single scatterings for this system, since 

-1 
the effect is expected to go as m , where mis the mean proton multipli-

city for a nucleus-nucleus collision. This will be shown in the next 

section. 
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4.3 Correlations from the Hard-Scattering Model 

In this section we describe a calculation of the two-proton corre­

lations in the hard-scattering model. A comparison to the experimental 

results allows an estimate of the single-scattering component of the in­

clusive proton spectrum. This analysis is similar to the treatment of 

Tanihata et al. (1979). 

We write the proton inclusive cross section as a sum of three terms 

(4-3) 

do do 
where ----EE.

3 
and __!!E_ are the contributions due to a single proton-proton 

d p d
3

p 

and proton-neutron scattering, respectively, for which both partners 
doh 

undergo no further scatterings. - 3- includes everything else--protons 
d p 

which have undergone more than one collision and protons which have under-

gone only one collision, but whose partners have suffered multiple colli­

sions. We now assume that only the single proton-proton scatterings 

contribute to the azimuthal correlations; everything else is only a back-

ground to this. Then, given that a proton is detected at p1 with proba­

l do 
bility _ __H (its partner is a proton which does not rescatter), the 

o d3 
P1 

-+ 
probability that another proton is detected at p2 is proportional to 

-+ -+ 1 do 
C(p

1
,p

2
) + (m-2) 0 -

3
-, where mis the mean multiplicity of scattered pro-

d p 
tons from a nucleus-nucleus collision and C(p

1
,p

2
) is the probability that 

-+ -+ 
the partner to the detected proton at p1 scatters to p

2 
with normalization 

➔ • Similarly, if a proton is detected at p1 with 
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l do l dab 

probability - ________!!£ or --- then the probability that another proton a d3 a d3 , 
P1 P1 

• d t t d t ➔ • • 1 ( 1) 1 do is e ec e . a Pz is proportiona to m- - -- . It is clear under 
a d3 

Pz 
these assumptions that the two-proton inclusive cross section obeys the 

relation 

(m-1) 

For the case 

➔ 
when p

1 
and 

written as 

(m-2) 

+ (m-1) 
do 

! ___!!£_ ~ + 
a 3 3 

d pl d Pz 
(m-1) (4-4) 

dO dO 
___!!£_=____EE_ and using the fact that C(p

1
,p

2
) is negligible 

d3 d3 
➔ p p 0 

Pz differ by an azimuthal angle of 90 , Eq. (4-2) can be 

J 
~d3 

3 Pz 
R( ·40° <I> +90°) d Pz p C' , 1 

➔ 

[(2m-3) + (m-l)F(p
1

)] 

(4-5) 

where F(p) 
-1 

Here them dependence is shown explicitly. 

With simple assumptions F can be used to estimate the single­

scattering component K, the fraction of protons from a nucleus-nucleus 

collision which are produced from a single NN scattering. We first 

assume that both F and Kare approximately constant in the range of 

momentum analyzed. For a given nucleus-nucleus collision, let N./2 
i 

denote the number of initial pairs of nucleons which scatter, let Nf 



35 

denote the total number of emitted nucleons (differing from N. by the 
l. 

rescattering of the initial N. nucleons with other nucleons in the 
l. 

nuclei), and let P be the probability that a given nucleon from the 

initial N. nucleons is emitted with no further scatterings. The ratio 
l. 

K2 of nucleons from Ni for which both partners of a scattered pair are 

emitted without rescattering to the total number of emitted nucleons Nf 

is 

(do /d
3
p) + (do /d 3p) iN 

K2 
pp np l. 

= = 
3 Nf do/d p 

1 do do 
= for __E.E_ = _EE. 

1 +lF d3p d3p 
2 

(4-6) 

Similarly, the knockout fraction K may be written as 

K = (4-7) 

Therefore, 

(4-8) 

We can make only a rough estimate of the ratio Ni/Nf, but fortunately 

the uncertainty in K due to the uncertainty in Ni/Nf is diminished due 

to the relationship as a square root. We assume that the nucleons in 

Ni which rescatter, (1-P)Ni of them, do so only once, and that they do 

not rescatter among themselves. Thus, 

Nf = PN. +2(1-P)N . 
l. l. 

= (2-P) N. 
l. 

(4-9) 
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Tnis value is increased by including further scatterings, but decreased 

by taking into account that some of the nucleons may rescatter among 

themselves in the second scattering. This estimate of Nf should be suf­

ficiently accurate for our purposes; a gross inaccuracy is not likely, 

since the size of Nf is ultimately limited by geometry and the finiteness 

of the nuclei (an average experimental value of Nf for C+C at 800 MeV/A 

is 7 (Tanihata 1979)). Equations (4-6), (4-7), and (4-9) yield the fol-

lowing relationship for the knockout fraction: 

where 
1 

l+!F 
2 

(4-10) 

An estimate of the knockout fraction for a given system is obtained by 

evaluating Eq. (4-5) in the hard-scattering model and normalizing to the 

data to determine F. 

The correlation function C(p1 ,p2) in Eq. (4-5) may be evaluated 

easily using the Monte Carlo simulation described in the previous chap­

ter, since one keeps track of both nucleons in each NN scattering. In 

Fig. 15 we compare with experiment the results of our evaluation of Eq. 

(4-5) using the momentum distributions f and f [Eqs. (3-6) and (3-9)] e C 

for C+C at 800 MeV/A. For this case, the mean proton multiplicity 

m = 3.5 is an experimental estimate by Tanihata et al. (1979). In this 

plot the spectrometer is fixed at 40°, corresponding to a slice through 

the peak of the contour plot in Fig. 4, and is situated to detect a 
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proton emitted at 90° in the nucleon-nucleon c.m. system for the case 

of no Fermi motion. The resulting knockout fraction K for the two 

distributions is .36 for f and .73 for f . It is evident that the two 
C e 

forms provide substantially different results in both normalization and 

shape. This is expected, since the distributions differ so much at 

lower momenta, where the correlations in Figs. 14 and 15 are most sen­

sitive. A sharp peak in the momentum distribution at p = 0 results in 

a sharp quasi-elastic peak in the correlations, as seen in Fig. 15 for 

f In fact, the results for f are substantially narrower than experi-
c C 

ment. However, a wider Gaussian momentum distribution (mean value <p> = 

260 MeV/c) can fit the width of the experimental peak as shown in the 

calculation of Tanihata et al. (1979). The form of the distribution f 
e 

is such that the structure of the quasi-elastic peak appears obscured in 

Fig. 15, suggesting a deficiency in the shape off at lower momenta, 
e 

but is nevertheless probably not a reflection of the very large momentum 

behavior. An analysis of the knockout fraction for f is most likely un­e 

reliable. 

Considering the narrowness of the distribution f (our parametriza-c 

tion is even slightly narrower than the actual distribution as seen in 

Fig. 12) and of the resulting peak in the correlations, the estimate of 

the single-scattering component of 36% for C+C at 800 MeV/A is probably 

low. Furthermore, the analysis of the spectra is at 90° in the c.m. sys­

tem, where the individual NN cross sections are smallest and the contri­

bution from single scatterings is expected to be least. Similar calcu­

lations by Tanihata et al. (1979) provide estimates of 30-70% (here the 
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uncertainty is a result of taking the experimental uncertainties into 

account) for each of the systems C+C, Ne+NaF, and Ar+KCl at 800 MeV/A 

--certainly a sizable contribution to the inclusive proton spectrum. 

These findings have important implications. First, they tend 

to substantiate or at least support the basic assumption of the hard­

scattering model, that the f~rst single scatterings provide a major 

contribution to the inclusive proton spectra. Moreover, they point to 

a serious limitation of the equilibrium models which do not include 

the single-scattering component nor predict the correlations seen in 

Figs. 14 and 15. However, this analysis is not sensitive to the very 

large PT regions of the spectra and does not determine the single­

scattering component in this interesting region. 
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5. PROTON-NUCLEUS BACKSCATTERING 

IN A MULTIPLE-COLLISION MODEL 

5.1 The Theoretical Models 

Recent experimental data (Frankel 1976, Brody 1977) of the 180° 

scattering of protons from nuclei have stirred up considerable interest 

among theorists. At stake is the basic understanding of the mechanism 

for the production of protons in the kinematically forbidden region 

for the interaction of a proton with a free nucleon. This knowledge 

may be useful in explaining other systems and regimes such as the 

large PT region in nucleus-nucleus collisions, as well as providing 

information on the internal structure of the nucleus. 

Several completely different mechanisms have been proposed. 

Fujita (1977) has found quantitative agreement with experiment by 

assuming that the incident proton scatters from a 1-, 2-, ... , n­

nucleon cluster which does not break up in the collision. The 

probability P for this to occur is a free parameter in the model. 
n 

The proton-backscattering data can also be explained in a single- or 

hard-collision model (Amado 1976, Brody 1977, Frankel 1977), if it is 

assumed that there are high~momentum components in the momentum 

distribution for nucleons in the nucleus. This form for the momentum 

distribution has also gained theoretical support from a many-body 

calculation by Zabolitzky and Ey (1978). As demonstrated in Sec. 

3.5, the hard-scattering model can also be extended successfully 

to the regime of nucleus-nucleus collisions. 
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Because of the success of the cascade models in describing 

much of the data from proton-nucleus and nucleus-nucleus collisions, 

it is natural to investigate the possibility that these energetic 

backward protons are produced frow multiple collisions of the projectile 

proton with nucleons in the nucleus. The calculation of this quantity 

has not been made with the standard Monte Carlo cascade approach 

because of the difficulty of producing these events with such small 

cross-sections. Kopeliovich (1977) attempts to approximate the 

equations governing the multiple-collision process analytically, but 

must invoke numerous approximations, including the restriction to 

bombarding energies much greater than the nucleon rest mass (E>>m)--

of marginal validity for much of the data. 

In this chapter we describe our approach to calculate the 

multiple-scattering component of the inclusive proton spectra at 180°. 

5.2 Simple Considerations 

In order to understand better the kinematics involved in the 

large-angle production of protons from multiple scatterings, we look 

at the kinematical boundaries for a nucleon incident on a nucleus 

with no Fermi motion. We denote the lab energy and momentum of the 

➔ 

particle after the ith interaction as E. and k . . The conservation of 
l. l. 

four-momentum yields 

or 

(E
1
. _ _ 

1 
+ m - E. ) 

2 
- (k - k. ) 

2 = 
1 i-1 1 

k. 
l. 

--= 
m+E. 

l. 

cos8. 
m+E. 1 l. 

1.-

2 
m 

(5-1) 
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where mis the nucleon mass and 0 . is the scattering angle. The 
l. 

momentum after n scatterings may be written as 

k 
n 

m+E 
n 

k n 
0 

II cos8. 
m+Eo i=l 1 

(5-2) 

Given that the particle scatters through a total angle 0 from its 

initial direction, one can find the 0. such that k is a maximum. 
l. n 

This may be done by the method of Lagrange multipliers for the con-­
n 

straint 0 = t 
i=l 

e . . 
l. 

Therefore we solve the system of equations 

m=l,n a [ n - II 
aero i=l 

cose. 
l. 

+ " c 0- ; e . )l = o 
i=l 

1 J 

where 

(5-3) 

It is easily seen that a solution is given bye . = 0/n. That is, each 
l. 

scattering occurs through the same angle. 

5-2 yields (Kopeliovich 1977) 

k 

kmax = 
n 

o n 
2mm+E cos (0/n) 

0 

I k )2 2 
1 - lm+~o cos n(0/n) 

Solving for kmax from Eq. 
n 

(5-4) 

As an example of the application of Eq. 5-4, the maximum possible 

momentum for a proton with initial energy of 600 MeV undergoing 6 

collisions through an angle of 180° is 407 MeV/c. Fermi motion must 

b d • 61· · 1 therefore play an important role since protons born ar 1.ng 1 easi y 
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produce protons at 180° with momentum larger than 407 MeV/c (~ee 

Fig. 16). 

the elastic 

Note also that for the limit n--+<x> kmax = k , the same as 
0 

scattering from a large nucleus. 

5.3 Derivation of the Basic Equations 

Several basic assumptions are made in the intranuclear cascade 

model. First, it is assumed that there is sufficient distance between 

nucleons that the microscopic description of the scattering from a 

nucleus is that of a succession of independent, single-particle 

collisions. We are encouraged here by the cumulative successes of 

this picture for many years in the Glauber approximation (Glauber 1959, 

Saudinos 1974) and in the Monte Carlo cascade calculations (Ghen 1968, 

Smith 1977, Randrup 1978). This is not to imply that other mechanisms 

are not more important in certain regimes. Another assumption generally 

adopted in the various approaches is that off-shell effects are unim­

portant, and, related to this, is the historical use of the Fermi 

(or similar) momentum distribution for nucleons in the ground-state 

nucleus. Certainly, if one includes the high-momentum components in 

the ground-state momentum distribution, off-shell kinematics are 

required for energy conservation. 

The picture that emerges for a proton-nucleus collision, then, 

is that of a proton colliding with a sufficiently dilute Fermi gas 

made up of on-shell, independent particles confined to some spatial 

dimension. In addition to this, one may include effects of a non­

uniform density of particles and of spatial variations in a mean 
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nuclear potential. We are now in a position to express these ideas 

quantitatively. 

We consider a beam of particles with momentum p
1 

and particle 

➔ 

density P1 interacting with a beam of momentum p
2 

and density p
2

, The 

Lorentz-invariant interaction probability per unit 4-space is given by 

(Chen 1968) 

p = (5-5) 

where v12 is the relative velocity of the beams and 0
12 

is the total 

single-particle interaction cross-section. If, now, there are several 

➔ 
beams with momentum p., then the interaction probability with beam 1 

l. 

is 

➔ 
or for a continuous distribution f(p) 

(5-6) 

where p
0 

is the total particle density of the beam and Jf(p) d
3
p = 1. 

In a time tt and volume tv, the average number of interactions per 

particle of beam 1 per path length (v1~t) traversed is 

(5-7) 

where A is the mean-free-path. For scattering in a Fermi sea, the 

mean-free-path is effectively increased due to the Pauli blocking of 

final states. If the angular distribution for scattering is 
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1 do12 
-- --- , then the effective mean-free-path may be written as 
012 drlk 

-1 
>..e 

1 (5-8) 

where k and k' are the final momenta of the scattered nucleons, and 

Q(k,k') limits the final states to those consistent with the exclusion 

principle. For a sharp Fermi momentum distribution with Fermi momentum 

1 

Q(k,k') = (5-9) 

0 otherwise 

The probability dP for a scattering to occur in the path betweens and 

s+ds is 

e 
dP = 1 e-s/>.. ds 

Ae 
(5-10) 

if it is assumed that a collision occurs at any time with equal 

probability, independent of the past history. This is of course not 

strictly true if one takes into account spatial correlations between 

nucleons in the nucleus, but, again, we are assuming adequate distances 

between nucleons that collisions occur sequentially, independent of one 

another. 

➔ 

We now consider a projectile proton of momentum k striking a 
0 

➔ 
nucleus with uniform density pat an impact parameter b. The number 



45 

of nucleons emitted from the nucleus with momentum k after n 
n 

collisions can be written as 

x [vpo f (p1) v Q (k k') p1k
0 

l' 1 s ] [ do p 
2 -3- ... x -- f(p) 

d k vn-1 n 
1 

v k Q(k ,k 1) 
pn n-1 n n 

00 e 
-s r>.. 

0 0 

e 
-s />.. n-1 n-1 1 

e 
-s />.. 

n n I ds e e - e 
➔ n 

.R, (r 
1

,k ) 
n- n 

>..e 
n 

(5-11) 

Here, the notation is as previously described. The spatial integrals 

s. run over the path length .R-(r. 1 ,k.) from the position in the 
1 1- 1 

➔ ➔ 
nucleus at r. 1 in the direction of k. 10 the 

1- 1 ~ 

+ + ki 
The next r. is then given by r . 1 + s . -- . 

1 1- 1 lk. I 
integral 

00 

I dsn 
➔ ➔ 

.R, (r 
1
,k ) 

n- n 

e 
-s />.. n n 

1 

boundary of the nucleus. 

The final spatial 

(5-12) 

is the probability that the particle escapes the nucleus from the 

➔ ➔ 

position r 
1 

in the direction of k without rescattering. The 
n- n 
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factor of 2 in front of each NN cross-section is needed because two 

particles are produced at each collision~ and the label Son the cross­

sections signifies that the angular distributions are symmetric in 

cos 0 since we may keep track of either particle in the colli.sion. 
C .m. 

Without the factor of 2 and the symmetrized cross-sections, Eq. 

+ 
5-11 is the probability for a projectile of momentum k striking a 

0 

➔ 
nucleus at impact parameter b to undergo n collisions and emerge 

➔ 

with momentum k. To see this we form the sum 
n 

➔ 
P(b) 

➔ 

dN. (b) 
1. (5-13) 

We cut off the sum at some large value of n and let the final spatial 

➔ ➔ 
integrals extend to 0, (i.e., 1(r 1 ,k) = 0 in Eq. 5-11), This 

n n-

may be an arbitrarily small correction for sufficiently large n. This 

allows the integration over d3k and d
3
p 

-1 n 
A:_1 from Eq. (5-8). This term added to 

to be carried out to yield 
➔ 

dNn_1 (b) 
the 

3 
term extends the 

d k 
integral overs from Oto 00 • Proceeding in this manner through all 

n-1 

n steps we find 

➔ 

P(b) = 1 - e 

+ 
-1 (b) (5-14) 

which is simply the probability for an interaction to occur as the 

➔ 
projectile transverses the nucleus at impact parameter b. 

The equation for the proton inclusive cross-section may be written 

as 
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00 

dcr Z J d2b L 
d3k = A i=l 

➔ 
dN. (b) 

1 
(5-15) 

where the factor Z/A is included because only protons are detected. 

For this form to be useful, the contributions from higher orders must 

be negligible so that only the first few terms need be evaluated. 

Eq. 5-11 was derived for a uniform nuclear density p. One 

may easily take into account a spatial variation in p by allowing the 

~~ to depend on 1. and by adding multiplicative factors to Eq. 5~11 to 
1 1 

insure the proper normalization. This equation also does not include 

effects of reflection or refraction due to variations in the nuclear 

potential. These are of decreasing importance (but not necessarily 

negligible) as one extends to the higher momentum regions. 

5. 4 Description o~ the Calculation 

The integral of Eq. 5-11 is not at all trivial to evaluate, 

For six collisions this involves an 18-dimensional integral (after 

the energy conserving delta functions and the last spatial variable 

are integrated over). This may reflect the fact that there are many 

"paths" or "histories" leading to the final state, and~ in fact, 
➔ 

this is actually the case for most values of the final momentum kn. 

A Monte Carlo evaluation of Eq. 5-11 then requires the sampling of 
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a sufficient number of paths in order to obtain an unbiased estimate 

of the integral, However, for the exclusive events of proton back­

scattering at large momentum, one might expect that there is a 

rather restricted set of paths to this final state. This is actually 

demonstrated for no Fermi momentum in Sec. 5,2. Here it is shown 

that for scattering through an angle 8, all nucleons produced near 

the kinematic boundary must be deflected near the angle 8/n for each 

of then collisions in the nucleus. We extend this idea to the 

realistic case with Fermi motion and use the method of "importance 

sampling" described in Appendix A to concentrate the sampling of 

paths of Eq. 5-11 to those with large momentum transfers and with 

deflections near 8/n. Because of the restricted set of paths to 

the final state, a modest Monte Carlo sampling may be adequate for 

a good approximation to the integral, even for large n. 

In the evaluation of Eq. 5-11, we neglect inelasticity due to 

pion production. This is not negligible for a bombarding energy of 

600 MeV, where the inelastic to total cross-section is approximately 

1/4. The net effect of the energy loss from pion formation is 

expected to reduce the calculated cross-sections. 

Several integrations in Eq. 5-11 may be done immediately. 

do 
For elastic scattering, the differential cross-sections -- in Eq. 

d
3
k. 

1 

5-11 include an energy-conserving delta function. We thus are left 
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angular integral d¢k. dcos0k. (the polar coordinates 
+ l. . 1 

frame and k. 1 is in the z direction) for each i<n, 
1-

+ 

are in 

For 

i=n, the final momentum k is fixed, and we absorb the delta func­
n 

tion in the integration over the final internal momentum p , leaving 
n 

an angular integral d¢ 
pn 

In the actual computation of Eq. dcos0 
pn 

+ ➔ 

5-11, one must solve for ki in terms of ki-l'Pi,cos0k, and ¢p_ for 
i 1 + + 

each i<n and for p in terms of k 1 ,k, cos0 , and¢ at the last 
n n- n pn pn 

collision. General equations which do this are derived in Appendix C. 

The final spatial integral may also be done beforehand yielding 

Eq. 5-12. 

One could now attempt to evaluate Eqs. 5-11 and 5-15 using 

ordinary Monte Carlo techniques of sampling evenly in each variable 

of integration and then weighing each event or path by the integrand 

(see Eqs. A-1 and A-2 in Appendix A). For a sufficiently large 

sampling, this yields the correct value. However, in most cases 

this is much too inefficient. We alternatively use the method of 

11 importance sampling11
, motivated above, to choose the integration 

variables to maximize the yield in the backward direction. For 

each variable cos0 we multiply and divide the integrand 
k. . 

by the 
1 

function g(cos0k_) which is peaked near 
1 

variables to G(cosek_), where G(cos0) = 
1 

cos e/n and make a change of 

J
cos0 

g(x)dx (see Eq. A-7). 

-1 
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Similarly, we choose <pk peaked near 180°, where the beam direct.ion 
i 

is at qi= o0
• We use a form of g which allows flexibility in widths 

and peak heights. Such a form is 

g (x)"' 

-B-(a -b -x) 
0 0 

e x<a -b 

1 

+ -B (x-a -b) e o o 

0 0 

a -b <x<a +b 
0 o--o 0 

a +b <x 
0 0 

(5-16) 

At the end of this section are presented typical values for the param­

b , B-, and B+ for the case and¢ variables. 
0 

eters 

The integration over the internal momentum p. is done by sampling 
1. 

evenly in each of the variables¢ , case , and p. 3 Alternatively, 
pi pi 1. 

for a large final momentum, we sometimes choose ¢ fro~ a distribution 
pi 

peaked near <pk and case peaked for negative values. This increases 
i pi 

the yield in the backward direction because of the increased number 

of collisions able to provide large momentum transfers. Similarly, 

the p. integral may be weighted for more events close to the Fermi 
]. 

momentum PF (we are, of course, using the sharp Fermi momentum dis-

tribution of Eq. 3-8). 

Th~ calculation of the mdmenta proceeds as follows. 

➔ 

p1 . cos8k, and <pk are chosen as described above, with this 
1 1 
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specifying k
1

. If two solutions of k
1 

exist, we choose either 

solution at random and multiply its weight by two (_see Eqs, c.,....z and 

C-5 in Appendix C). We then choose 

➔ ➔ ➔ 

and ¢k and so on 
2 

until we have specified all k1 ,k2,.,.,kn-l' the final step we 

choose cos0 and¢ and add together the weights for each of the 
pn n 

solutions p (see Eqs.C-1O and C-11 in Appendix C). If p is greater 
n n 

than the Fermi momentum PF, then the event does not contribute, We 

generate a set of histories in this manner. Of course, there are 

many paths which do not contribute and may be thrown out immediately 

at any step. This occurs if either of the states k. and k! are 
l. l.. 

below the Fermi momentum PF (a result of the Q factors in Eq. 5-11), 

if no positive solution ki exists for a given cos0k. 
l. 

the momentum k. is less than the final momentum k. 
l. n 

and ¢k , or if 
-· i 

This last 

condition follows from the restriction that a particle colliding 

with a Fermi gas cannot have its energy raised, since this would 

require a reduction in energy of the target particle, violating the 

exclusion principle. At the last step the event is thrown out if 

k~ is below the Fermi momentum PF or if the solution pn for cos0 
pn 

and¢ is greater than PF. Once we have arrived as far as the last 
pn 

➔ ➔ ➔ 

step, having generated k
1

,k2 , ... ,kn, we sample the cos0 and¢ 
pn pn 

variables several times to make the procedure more efficient. Per-

haps only one percent of the total number of trials will result in 

➔ ➔ ➔ 
a complete history k

1
,k2 , ... kn. This percentage may vary greatly 

depending on how restricted the paths are to the final momentum k 
n 

and on how peaked the weighting factors are. 
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Since only a fraction of the trials results in a complete history, 

we calculate the weighting factors and spatial integrals only after 

a complete history of momenta has been generated. For each collision 

• h • h h 1 d ' 'b • l da we weig twit t e angu ar istri ution 0 ~. 
k. 

Since we make no 

i 

distinction between protons and neutrons, we choose either of the 

pp or np angular distributions and total cross-sections at random, 

I A d . C d . • f 1 da . f n ppen ix we erive equations or 0 d~ in terms o its dis--

i lab 

tribution in the c .m. system. The c. m. angular distributions are cal.,... 

culated using the fits in Appendix B. 

➔ ➔ ➔ 

For each complete trajectory k1 ,k2 , ... kn ' we evaluate the spatial 

integral in Eq. 5-11 by sampling the integral for between 40 to 150 

impact parameters, Consequently, thisfinal computation is accurate 

enough that no appreciable uncertainties are added to the results. 

The size of the nucleus plays a role only in the spatial integral, 

and this allows us to calculate the results for various systems 

using the same set of kinematic histories. Instead of sampling 

evenly in the variables s ,s
1

, . ... s 
1

, we first absorb each of the 
e o • n-

-s.f'>.... 
factors e 1 i into the s. integrals of Eq. 5-11 to obtain 

i 

e e e = A A1 ... A 1 o n-

(5-17) 
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➔ ➔ 
where the t (r. 

1
,k.) are, as before, the distance from the point 

1- 1 

;_ 
1 

to the boundary of the nucleus (with radius 1,2 Al/J fm) in 
1-

➔ ➔ 

the direction of k., and r. is given by 
1 1 

➔ 
k. 

1 
(5-18) 

We evaluate this using Monte Carlo integration by sampling evenly 

in the variable~-• 
1 

e 
The A. are calculated beforehand from Eq. 5-8 

1 

for discrete steps in the incident momentum, and a linear inter-

polation is used between points. e 
The A. are presented in Table 1. 

1 

check of the accuracy of this procedure was made by calculating Ae 

midway between the momenta in Table 1 and comparing these values 

with the interpolated values. They were always within 4% of each 

other. 

Having described the method for evaluating Eqs. 5-11 and 5-15, 

the advantages of this approach over the traditional Monte Carlo 

simulation calculations are apparent. First, by isolating the con­

tributions from the various number of collisions, we may anticipate 

A 

the path required by a particle in its deflection into the backward 

direction with large momentum. This allows us to weight the integral 

to maximize this occurrence. In contrast to this, in Monte Carlo 

simulation the scattering angles at each collision are chosen from the 

forward-peaked NN angular distributions, and this maximizes the 

yield in the forward direction. Another advantage in our approach 
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is the separation of the kinematics from the geometry. The results 

for many targets may be evaluated from only one set of kinematic 

histories, thus reducing the computational effort. 

This approach is not without its disadvantages. We neglect some 

processes which may be simulated simply. These include the inelasticity 

due to pion production, and reflection and refraction of the particles 

due to variations in a mean nuclear potential. Also, correlations 

cannot be calculated in our approach. Finally, there are dangers 

associated with the weighting of Eq. 5-11. If the int_egrals are 

weighted with distributions that are too narrow, this may hinder a 

good sampling of important contributions from other paths. Of course, 

for a large enough sample, the result remains unchanged, but for 

several small samples most of the results would be below the true 

value with an occasional result very much greater, This can 

fortunately be checked to some degree by taking several samples to 

determine their smoothness. Because of this danger, we generally 

used the widest distributions consistent with good statistics, As 

a typical example, for the case of six collisions, adequate results 

are obtained in the lower momentum range using the following para­

meters for the weighting function of Eq. 5-16: a = ,883, b = .117~ 
0 • 0 

+ 3., and B = 1. for the cosek. 

b 
0 

+ l. 
= .7, B- = 1.5, and S = 1.5 for 

variable, and a 
0 

the ¢k. variable, One may also 
l. 

check for consistency by varying these parameters. Because of the 

statistical nature of this analysis, these are not foolproof checks, 
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and a small danger still remains. By comparing results from dif­

ferent runs, we estimate that there may be up to half an order of 

magnitude uncertainty in cases where it is difficult to get good 

statistics. 

We made several checks of our evaluation of Eq. 5-11. We 

naturally checked numerically the equations governing the kinematics 

which are presented in Appendix C. We also made tests of the 

normalization conditions of Eq. 5-11 by integrating over d3k 
n 

without the spatial part of the integral. 

5.5 Comparison of the Results with Experiment 

He used the methods described above to calculate the inclusive 

0 proton spectra at 180 for 600 MeV protons incident on Li, C, Cu, 

and Ta. The results are compared with experiment (Frankel 1976, 

Brody 1977) in Figs. 16-19, We evaluated Eqs. 5-11 and 5-15 for final 

nomenta 500., 570., 640., 710., and 780 MeV/C and plotted the con­

tribution for each value n of the number of collisions. Straight 

lines are drawn between the points to guide the eye. It is seen 

that the absolute magnitude of the calculated cross-sections is below 

the experimental values, and that they decay more rapidly than 

experiment. 

There are several reasons to believe that the calculated values 

are actually an upper bound to a more complete calculation. First, 

we neglect the energy losses due to pion production. We also assume 

a uniform particle density in the nucleus. The inclusion of a 
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diffuse surface should decrease the results presented here because 

of the increase in the single-scatterings occurring in the surface 

which is weighted more heavily (as the impact parameter) in the 

evaluation of the cross-section. Furthermore, the effect of the 

protons escaping from a mean nuclear potential should decrease 

their final energies,shifting the calculated points to the left a 

slight amount. Finally, the assumption of a constant density for 

all times during a collision may not be valid for small sistems, 

After several scatterings there is a depletion of nucleons in the 

nuclear matter. Taking into account these points, it appears that 

the multiple-scattering model is unable to explain the large-momentum 

0 data at 180 from proton-nucleus collisions. 

There are some interesting systematics which are apparent in 

Figs. 16-19. First, the contributions from the low-n results drop 

off more quickly at large momentum than the large-n values. This 

is expected because the kinematic boundaries occur at lower momenta 

for the low-n results. Secondly, the large-n contribution is 

relatively greater for the larger systems. This is a direct con­

sequence of the fact that after several steps in the cascade, fewer 

of the nucleons have escaped from a large nucleus than from a small 

one. 

The calculated results do explain some of the qualitative 

features of the data, They yield the correct ratio of normalization 

for the various targets, and they reproduce the tendency for the 
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cross-sections to decay slightly less rapidly for the larger systems, 

This last point is a consequence of the greater large-n contribution 

for the heavier systems. 

In conclusion, it appears that the main features of the inclusive 

0 
proton spectra at 180 cannot be explained in an intranuclear cascade 

model with a sharp Fermi momentum distribution. These calculations 

do not tell us which reaction mechanism is dominant for the backward 

production of energetic protons nor do they tell us that multiple 

processes play no role (It may be a combination of multiple scat­

terings with other mechanisms). However, they do imply the existence 

of other mechanisms (possibilities are, of course, high-momentum 

components in the momentum distribution, scattering from clusters, 

etc.), and these must be investigated thoroughly in future work. 

These results also suggest that the multiple-scattering mechanism may 

not be dominant in other kinematically forbidden regions, such as 

the large PT regions from nuclear collisions. 
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6. SUMMARY AND CONCLUSION 

The main direction of this thesis is the study of the mechanism 

in an energetic nuclear collision for producing protons in the region 

kinematically forbidden for an interaction of a proton with a free 

target nucleon. We first investigate the possibility that these 

energetic protons are a direct result of the high-momentum tail in 

the momentum distribution for nucleons in the nucleus. In Chapter 

3 we show that agreement with the inclusive proton spectra is ob­

tained in the hard-collision model for such a distribution, 

Reasonably good results are obtained with a form for the momentum 

-1 
distribution (f. of Eq. 3-6 with y = 90 MeV / c-) with an exponential 

e 

decay at large momentum which was previously used to explain proton-

nucleus backscattering data (Amado 1976). These results are improved 

using a decreased decay rate for the distribution at large momentum 

-1 (y = 110 MeV/C), so that results consistent with the experimental 

data are obtained over four orders of magnitude in a global plot in 

rapidity space (Fig. 11). This raises some questions for future 

investigations, Namely, is this form with y-l = 110 MeV/C consistent: 

~dth the proton-nucleus data 1 and, if not (implying that the momentum 

distribution of the target nucleus depends on the projectile), what 

are the underlying reasons for the success of the model? Pos-

sibilities are that fin~l state interactions destroy the simple 

dependence of the calculations on the ground-state momentum distri-
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bution (Amado 1977 and Sec. 2.5), or that such a distribution is 

generated through other processes in the collision itself. 

The idea of high-momentum components in the momentum distri­

bution of the ground-state nucleus has strong theoretical support. 

Zabolitzky and Ey (1978) use the exp (S) form of many body theory to 

calculate the ground-state momentum distribution f . The decay at 
C 

large momentum is similar to the distribution f described above 
e 

(see Sec, 3.5 and Fig. 12). We also use this form to calculate the 

inclusive proton spectra from nucleus-nucleus collisions. The 

spectra at high-,-momentum are below the experimental data, but decay 

with about the correct slope. However, there are uncertainties in 

the calculation of the distribution f at large momentum. Variations 
C 

of comparable magnitude to the discrepancy with experiment occur 

with differing forms for the nucleon-nucleon potentials, and the 

non-relativistic treatment may not be adequate in this regime. These 

considerations leave unresolved the question of using the ground-state 

momentum distribution directly in Eq. 2-7 without including the effects 

of final state interactions. 

The analysis in Sec. 3.5 with various forms for the momentum 

distribution demonstrate the value of the hard-scattering model in 

studying their properties; the calculation is sensitive to both the 

relative normalization of the high-momentum tail and its decay rate. 

However, as just pointed out, this may not be a direct measure of 

the ground-state momentum distribution due to the effects of final 
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state interactions. 

All of the comparisons with the hard-scattering model have 

assumed that there are no large uncertainties in the evaluation of 

Eq. 2-7. Nevertheless, a possible source of error is the use of 

the on-shell experimental cross-sections to approximate the off­

shell scattering matrix. An off-shell treatment may be valuable in 

making detailed comparisons and is worthy of further study, 

In Chapter 4 we compare the results of the hard-scattering model 

to two-proton inclusive measurements. With simple assumptions, this 

provides an estimate of the single scattering component. This 

analysis is sensitive to the low-momentum behavior of the momentum 

distribution and reveals a deficiency in the form of the effective 

momentum distribution f . This distribution is so broad at low e 

momenta that the quasi- elastic peak in the azimuthal correlations 

does not appear. In contrast to this, the sharply peaked f dis­
c 

tribution reproduces the expected quasi-elastic peak and results in 

an estimate for the single-scattering component of 36% for C+C at 800 

MeV/A. A similar treatment by Tanihata ~ al (1979) provides an 

estimate of 30-70% for each of the systems C+C~ Ne+ NaF, and Ar +KCl 

at 800 MeV/A. Since these measurements are made at 90° in the c.m. 

system where the NN angular distributions are smallest~ these estimates 

for the single-scattering component are expected to be low, Un­

fortunately, this analysis is not sensitive to the very high-

momentum regions of the spectra and provides no information on the 
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single-scattering component there. 

The fact that the equilibrium models do not include effects 

from single-scatterings represents a serious deficiency in their 

makeup, and the application of these models to many systems must be 

questionable. However, the equilibrium approach may still have its 

uses in describing systems for which its assumptions have stronger 

justification. One possibility is the restriction to events 

characterized by a large multiplicity, suggesting a low impact­

parameter collision involving many nucleons. Also, from the analysis 

of the correlations, it is not clear which mechanism is responsible 

for producing protons in the kinematically forbidden region. If it is 

mainly a result of multiple collisions, then the equilibrium approach 

may still be useful here. 

In the last chapter we continue our investigation of the kinema-

tically forbidden region by calculating the multiple-scattering 

component of the inclusive proton spectra at 180° from proton­

nucleus collisions. The cross section is written as a sum of the 

contributions from protons emitted after the nth step in the cas­

cade. This allows us to anticipate the path that a nucleon follows 

in scattering 180° and to weight the integral to increase the Monte 

Carlo sampling along this path. The nucleus is assumed to be a 

Fermi gas confined to a sphere of uniform density. We neglect 

effects due to the inelasticity of pion production and to the 

reflection and refraction of the nucleon from variations in the 



nuclear potential . Including these effects and a diffuse density 

at the surface of the nucleus is expected to decrease the calculated 

cross-sections. However, the results are already below the experi­

mental values and also decay more rapidly than experiment. This 

suggests that other reaction mechanisms are present. 

In summary, the hard-scattering model is able to reproduce the 

high-momentum behavior of the inclusive proton spectra from relativistic 

nuclear collisions if one assumes high-momentum components in the 

momentum distribution for nucleons in the nucleus. Support of this 

picture is given by two-proton correlations which exhibit pronounced 

features due to the kinematics of the single proton-proton inter­

actions and by theoretical c3lculations of the high momentum form 

of the ground-state momentum distribution. Though these reactions 

are certainly often very complex, the hard-scattering model appears 

to be an important first step in their understanding, and must be 

investigated thoroughly in future studies of relativistic nuclear 

collisions. This approach may also prove valuable in the study of 

the momentum distribution for the nucleons in the nucleus. Finally, 

the results of the calculation of proton-nucleus backscattering in a 

multiple collision model with a sharp Fermi momentum distribution fall 

short of the experimental cross-sections, implying the presence of 

other reaction mechanisms in this region, 
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Appendix A 

MONTE CARLO METHODS 

Nonte Carlo methods (Hammersley 1964, Stroud 1971) can be used 

to approximate multiple integrals when the number of di:::ensions involved 

makes them intractable with ordinary numerical integration. A rough rule 

of thumb is that Monte Carlo techniques are better than the trapezoidal 

rule in three dimensions and better than second order rules (e.g., 

Simpson's rule) in five dimensions (Hammersley 1964a). However, 

advanced techniques are available to make the Nonte Carlo Bethod even 

more efficient. In this section we explain so2e of the basics of Monte 

Carlo integration. 

Suppose we are interested in evaluating the integral 

8 (f) J f(;) dx1dx2 •••dxn 

R 

(A-1) 

where Risa region in then-dimensional space. This can be thought of 

➔ ➔ 

as the average of the function f(x) over R if xis considered to be a 

random variable distributed evenly in R. Therefore, an estii:;-iate of 0 

is given by 

V N ➔ 
l f(C) 

N i=l l 
(A-2) 

➔ 

where Vis then-dimensional volume of Rand the~- are random numbers 
l 

chosen evenly in R. If we now think of fN as a function of N random 
➔ 

variables (
1
., then its mean fN and standard deviation o_ are 

I~ 
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fN I 1 n➔ n➔ e co = f - d ' • • ·d ~ = 
N VN 1 N 

(A-3) 

and 
2 

2 I CfN - el 1 n➔ n➔ 0f 
0f = -d~···d, = 

N VN 1 N N 
(A-4) 

where 

2 ve Cf2) - e2 co 0f = (A-5) 

Therefore, as expected, fN approximates 0(f) with a measure of error 

given by the standard deviation cf//N. 

That the error falls off so slowly with N is one of the major draw­

backs of Monte Carlo integration. To get a factor of 10 improvement in 

accuracy, there must be an increase by a factor of 100 in computation 

time. However, with a little insight one can often significantly im­

prove the accuracy by choosing the function f so as to reduce the stand­

ard deviation crf . To see what is necessary we rewrite Eq. (A-5) as 

2 1 
[(b-a)f(x) - 0] (b-a) dx (A-6) 

where we are ~estricting ourselves to one dimension for clarity. We 

therefore want ~ 0(f) 
f(x) - (b-a)' or equivalently, f(x) ~ constant. 

tion (A-1) can be written as 

where 

b 

e = I f(x) (x) dx = 
g(x) g 

a 

X 

G(x) = J g(y) dy. 

a 

G(b) 

I 
0 

f(x) dG(x) 
g(x) 

Equa-

(A-7) 
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Therefore, if we can find a function g(x) such that f(x) is approxi-
g(x) 

mately constant over the range (a,b) and which can be integrated analyti-

cally, then the error can be greatly reduced. This method is known as 

"importance sampling" and detailed examples of its use are given in 

Hammersley (1964). What we are in fact doing is concentrating the 

sampling to regions that are most important and then compensating for 

this by weighting with the factor f/g instead off. There are also many 

other methods available for reducing the error which will not be included 

here but are discussed in the literature (Hammersley 1964, Stroud 1971). 

A.2 Direct Simulation 

Another Monte Carlo method is the direct simulation of a probabil­

istic problem. Many times a physical situation is so complex that it is 

difficult to describe in a quantitative or analytical form, but can 

still be mimicked simply. This may also have the advantage of intuitive 

clarity without being obscured by mathematical formalism. In the main 

text we use this technique for a calculation because of these advantages 

and the ease with which the results can be compared to the experimental 

results which it directly simulates. 

In direct simulation we must choose an event x at random according 

to a probability distribution P(x), where 1 = fb P(x) dx. The random 
a 

* numbers r that we generally have available are distributed evenly in 

* These are generally referred to as pseudo-random numbers because , al-

though they satisfy the statistical properties of random numbers, they 

are usually generated by a deterministic method. Calculations employ­

ing sequences of pseudo-random numbers have the advantage of being 

exactly repeatable. 
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X 

-1 I the interval (0,1). If x is chosen by x = G • (r), where G(x) = P(c;)dc; 

a 
and r is chosen at random uniformly in the interval (0,1), then x has 

the desired statistical properties. A problem arises when G(x) cannot 

be determined analytically. In this case for bounded P(x) a technique 

known as "von Neumann rejection" is often useful (Hammersley 1964a). One 

chooses pairs of random numbers r 1 ,r2 independently in (0,1) until the 

following relation is satisfied: 

< P(a + (b-a)r
2
)/ P max 

(A-8) 

where P is the maximum value of P(x) in the interval (a,b). We then max 

use x = a +(b-a)r
2

, all previous pairs being rejected. • Again, x chosen 

in this way has the correct properties. It is easy to see that 

van Neumann rejection can be an efficient process for flat distributions. 

Of course, one can also use ordinary numerical methods to calculate 

G(x) and its inverse G-1 (r), and then store the discrete results in an 

array for fine steps in r. Caution must, however, be exercised to 

insure that this is done with sufficient accuracy to result in an un-

biased sampling of x. 
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Appendix B 

NUCLEON-NUCLEON CROSS SECTIONS 

B.1 Angular Distributions for Proton-Proton Collisions 

We present below the parametrizations for the elastic differential 

cross sections for proton-proton collisions in the c. m. system. E 

is the laboratory kinetic energy in units of 939 MeV. 0 is the c. m. 

scattering angle. 

1 doel 

Energy range (units of 939 MeV) dcos0 

0 < E < 0.135 

0.135 < E < 0.6 

0.6 < E < 1.065 

1.065 < E < 6.55 

0.5 (Isotropic) 

4 (a+bcos 0)/2 (a+b/5) 

where a= 1.949 - 0.327 E 

b = 9.1 E5 

(a+bcos40)/2(a+b/5) 

where a=-20.97+90.52E-117.25E2+48.02E3 

b=150.03-578.33E+734.67E2-299.46E3 

o < e ~ 30°, 

1sd' < e < 1so0 

N o 
A cos (30) f(e) 

f(30°) 
30° < e < 1so0 

where N=-9.68+16.89E-4.348E
2
+0.4469E

3 

f(0)=p 2 exp{-(2.85 p sin0) 2} 

+ 3o.o exp{-5.94 p sin8} 
s 

and p ands are the c. m. momentum and total c. m. energy squared in 

units of 939 MeV. A is determined by the normalization. 
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B,2 Angular Distributions for Proton-Neutron Collisions 

The parametrizations for the elastic differential cross sections 

for proton-neutron collisions in the c. m. system are presented here. 

Eis the kinetic energy in units of 939 MeV of a neutron striking a 

stationary proton. 0 is the scattering angle in the c. m. system. 

1 dael 
Energy range (units of 939 MeV) aei · dcos0 

0 < E. < 0.015 ,5 (Isotropic) 

0.015 < E < 0.2 A(d+ecos40) 0<0<90° 

and 

b = 

2 14 0 0 A(a+bcos 0+ccos 0) 90 <0<180 

where a=2.l-0.1624/E+0.04011/E2-o.0004E3 

l.57+251.7E-502l.E2+41192E3-l.162xl05E4 

0.015<E<0.1879 

0 0.1879<E<0.2 

c = { -41.0E+2978.E
2
-33953.E

3
+108909.E

4
0.0168<E<0.2 

0 0.015<E<0.0168 

d = -0. 9+. 377 /E+O. 0184/E2 
-1. 77xl0-4 /E

3 

e = 182.9E-1408.8E
2
+3066.2E

3 

A-l = a+b/3.+c/15.+d+e/5. 

0.2 < E < 0.62 A(e+fcos20) ·0<0<90° 

A(a+bcos 4 0k cos14e+d cosl000) 

90° <0< .• 180° 



where a = 

69 

-0.5+18~26E-41.64E 2+25.08E3 

b = 37,42~227.38E+512,62E
2
-380.37E

3 

c = -4.42+35.43E-78.62E
2
+59.52E

3 

d = 4.0 

1.32+3.95E-6.71E
2 

e = 

f = 4.19+3.34E-44.86E
2
+62.18E3 

and A-l = a+b/5.+c/15.+d/101.+e+f/3. 

0.62 < E < 1.065 4 (a+bcos 0)/2(a+b/5) 

where a= -20,84+88.88E-114.82E
2
+47.08E3 

b = 149.74-562.82E+704.13E2-285.13E3 

1.065 < E < 6.55 Same as proton-proton 

distribution 

B.3 Total Interaction Cross Sections for Proton-Proton Collisions 

The total interaction cross sections for proton-proton collisions 

are presented here as a function of E, the lab kinetic energy in MeV. 

Energy Range otot (mb) 

0 < E < 40. MeV 5.3107+3088.5/E-1174.8/E2 

40. < E < 310. 22.429-11.148/E+93074./E
2 

310. < E < 450. 3.5475+0.05331E+887.37/E 

450. < E < 656. -0.42718+0.066505E 

656. < E < 754. 21. llo+0.033673E 

754. < E < 923. 42.038+0.0059172E 



923 < E < 1217 

1217 < E < 2200. 
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47.814-0,00034014E 

50.994-0.0029532£ 

B.4 Total Interaction Cross Sections for Neutron-Proton Collisions 

The total interaction cross sections for neutron-proton collisions 

are given below as a function of E~ the lab kinetic energy in MeV. 

Energy Ra_nge 

0 < E < 40. MeV 

40 < E < 400 

400. < E < 656 

656 < E < 754 

754 < E < 1074 

1074 < E < 1343 

1343 < E < 1685 

1685 < E < 2200. 

atot (mb) 

6,9466+9069.2/E-5057.4/£2 

27.147+1802.0/E+239380./E2 

24.506+0.021484E 

33.245+0.0081633E 

36.573+0.00375E 

35.4lo+0.0048327E 

38.758+o.0023392E 

41.389+0.00077821E 

B.5 Total Elastic Cross Sections for Nucleon-Nucleon Collisions 

We give below the average of the total elastic proton-proton 

and proton-neutron cross sections. Eis the lab kinetic energy in 

MeV. 

Energy Range 

0 < E < 300. MeV 

oel (mb) 

The average of the proton-proton 
and proton-neutron total inter­
action cross sections. See Secs. 
B.3 and B.4. 



300 < E < 630. 

630 < E < 1040 

1040 < E < 1380 

1380 < E < 2040 

2040 < E < 2800 

71 

34.5454- 0.015152E 

29,6098-0,00731707E 

28.1177-0.0058824E 

22.0909-0.00151515E 

28.3947-0.00460526E 
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Appendix C 

KINEMATICS OF THE CASCADE CALCULATION 

➔ 
Given a nucleon with momentum p

1 
(in the z direction) scattering 

➔ ➔ 
from a nucleon with momentum p

2 
(specified by polar coordinates p

2
, 

8
2

, and ¢
2

) through an angle 8 from its initial direction and at an 

azimuthal angle¢, we derive an expression for the resulting momen-

➔ 

tum k
1

. The other final state is k
2

. We transform the final energy 

E(k
1

) to the c.m. system (denoted by the primed variables), so that 

(C-1) 

and solve Eq. C-1 for the momentum k
1

. 

Thus, 

• 1 

k± = -E'Bcosl/J±{(E'B cosl/!)
2 

- ((3
2 

cos
21/J- l)(E'

2
- ·,/m

2
)}'"2 

1 2 2 
y(B cos 1/J - 1) 

(C-2) 

where cosl/J = (p
1 

cos8 + p
2

(cos82 cos8 + sin8 2 sin8 

and mis the nucleon mass. There may be up to two solutions of k
1

, 

for a given 8 and¢. No solution exists when the quantity in the 
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square roots is negative. Also, since k is taken to be positive, 
1 

only positive solutions of Eq. C-2 are used. 

1 do 
We now show how to write - -- in terms of the angular 

o dQk 
1 lab 

distribution f(cos0 ) in the c.m. system, where 
c.m. 

<lease 
c.m. 

= 1 (C-3) 

It is convenient to rewrite this in terms of Lorentz invariants as 

1 = c.m. 1 2 1 fE'f(cos0 ) o
4

(p' + p' - k' -

7T k I 
(C-4) 

where, as before, the primed variables denote the c.m. system. 

Transforming to the lab system and carrying out the d
3

k
2 

integral, 

we obtain 

➔ ➔ ➔ ➔ ➔ ➔ 

l= JE'f(cosec.m.) o(E(p
1

) + E~p
2

) - E(k
1

) - E(p
1 

+ p
2 

- k
1

)) 

TI k' E(k
2

) 

1 do 
where 

o dQk 
1 lab 

1 do 
o dQk 

(C-5) 

1 lab 

2 

and the sum is over the positive solutions of Eq. C-2. 8, Y, 

and cos~ are as previously defined, and k' is the c.m. momentum. 
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In the final step of the cascade calculation, it is required 

to solve for the momentum p2 given p
1

, k1 • cose 2 , and ¢z· The 

notation is the same as that given above. We form the invariant 

where the superscript B denotes the Breit frame defined by p! + k! = 0. 

Therefore, 

and (C-7) 

by momentum and energy conservation. These vector relations yield 

the result 

(C-8) 

B E(p
2

) can be given by the Lorentz transformation to the Breit frame 

as 

(C-9) 
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2 !--: 
y=(l-6)2. 

We plug Eqs. C-8 and C-9 into Eq. C-6 and solve for p
2 

to obtain 

(C-,-10) 

where 

p2 is a solution to Eq. C-6 only if a
2 

- b
2 

> 0 and a< 0. There is 

no solution if a
2 

- b2 and a> 0, or if the term in the square root 

is negative. 

We also present here an equation for Jdpn d~ 
d kn lab 

which is 

required in the final step of the cascade calculation. Referring to 

Eq. C-5 we write 

➔ ➔ ➔ • ➔ ➔ ➔ 
E' f(cos0c.m.) o(E(p1 )+E(p2)-E(k1)-E(p1+p2-k1)) 

➔ ➔ 

E(k
2

) E(k
1

) 

" E' f (cos0 ) 
L, c.m. (C-11) 



76 

where, again, E' and k' are the c.m. energy and momentum, bis 

defined in Eq. C-10, and the sum is over all positive solutions of 

Eq. C-10, 
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TA.BLE 1 

The mean-free-path A and the effective mean-free-path Ae 

taking into account Pauli blocking of final states for a nucleon with 

momentum p (in MeV/c) traversing a Fermi gas with Fermi momentum 

PF= 267 MeV/c and density p = 0,138 particles/fm3 . These values are 

calculated from Eqs. 5-7 and 5-8. 

_£__ " Ae 

390. MeV/c 1.04 fro 3.53 fro 

430. 1.24 3.10 

470 1.40 2.85 

510. 1.62 3.01 

550. 1. 73 2.93 

590. 1.91 3.10 

630. 2.03 3,10 

670. 2.09 3.05 

710. 2.17 3 . 07 

750. 2.21 3.02 

790. 2.23 2.97 

830. 2.20 2.86 

870. 2.20 2.82 

910 . 2.16 2.74 

950. 2.11 2,65 

990. 2.05 2.55 

1030. 2.01 2.48 

1070. 1.97 2.43 

1110. 1.91 2.33 

1150. 1. 89 2.31 

1190. 1.85 2.26 

1230. 1.78 2,22 

1270. 1. 78 2.18 
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Fig. 1. Contours of constant invariant cross section in rapidity 

space for the inclusive proton spectra from Ne+Pb at 800 MeV/nucleon 

(reprinted with permission from (Nagamiya 1977)). Yp and yT are the 

projectile and target rapidities, respectively. An interesting 

feature of this data is the tendency toward symmetry about half 

the beam rapidity at large PT. A definition and discussion of rapidity 

is found in Sec. 3.5. Refer also to Sec. 1.1. 
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Fig. 2. A typical Feynman diagram in quantum electrodynamics. The 

contribution of the diagram to the wave functions ~(A), ~{B), and 

-(c) 
~ extends from the dashed lines to the ends of the arrows and 

includes the Fermion propagator at the dashed line. Refer to Sec. 

2, 1. 
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Fig. 3. Several of the lowest order irreducible diagrams in QED. 

Refer to Sec. 2.1. 
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Fig. 4. Diagrammatic representation of the hard-scattering mechanism 

for a nucleus-nucleus collision. Refer to Sec. 2.2. 
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Fig. 5. The hard-scattering diagram for a proton-nucleus collision. 

Refer to Sec. 2.2. 
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Fig. 6. The electromagnetic form factor in the impulse approximation 

showing the kinematics of the Breit frame. Refer to Sec, 2.3. 
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Fig. 7. The dj_agrammatic representation of the scattering of two 

pairs of nucleons from a nucleus-nucleus collision. The inclusion 

of th~s diagram results essentially in a change in normalization of 

the results of Fig. 4 and Eq. 2-7. Refer to Sec. 2.4 for a detailed 

discussion. 
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Fig. 8. A diagram which includes final state interactions, These 

may play an important role in the scattering process. Refer to 

Sec. 2.5. 
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Fig. 9. A flow chart of the computer code for the evaluation of 

Eq. 2-7 with pion production using techniques of Monte Carlo simulation. 

See Secs. 3.2 and 3.3 for a more complete description. 
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Fig. 10. Comparison of the results of the hard-scattering model 

using the effective momentum distribution f of Eq. 3-6 with experiment 
e 

for the inclusive proton and pion spectra from collisions at 800 MeV/ 

nucleon. The data of Nagamiya et al (1977) are plotted as functions 

of the laboratory momentum at various lab angles. Shaded portions 

of the curves indicate statistical errors in the Monte Carlo evalua-

tion of Eq. 2-7 and arrows indicate the momenta resulting from elastic 

nucleon-nucleon scattering at 800 MeV. Refer to Sec. 3.5 for a 

detailed discussion. 
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Fig. 11. A compa:i:ison with experiment (Nagamiya 1977) of the hard­

scattering model in a rapidity plot of the inclusive proton spectra 

from Ne+NaF at 800 MeV/nucleon. The results are for the effective 

momentum distribution f (Eq. 3-6) with two values of the slope 
e 

parameter y. Yp and yT are the projectile and target rapidities, 

respectively. The values labeling the curves are the invariant 

cross sections in (mb/sr/GeV
2 

c3). Refer to Sec. 3.5. 



I 

/ 
/ 

. ,.. 

l( l f/ 
N / / I· 

.:::::. 't· ' -1 ;!;-.1 I 
+ I t 

Q. \ ,\ 

~ \\ l 
\. 

102 

\ '\. 

>< 
+ 
a. 

~ l 
<D LL 

~ ~ 
0 + 
0 (1) 

co z 

\ \ 

~ -~ 
• \: 

. \: 

l (~//\8LAJ) d 

Q - - - ,(\J 

~ 

--­~ 

~ 0 ::::,.. 
N 

0o -0 . 

C\J 

0 

~ 
0 

I 

..... 



103 

Fig. 12. A plot of the effective momentum distribution f (Eq. 3-,-6), 
e 

the sharp Fermi distribution fF (Eq . 3.,...8), and the momentum distribu-

tion f of many-body 
C 

off f(p)p
2 

dp ~ 16. 

Refer to Sec. 3.5. 

exp(S) theory (Zabolitzky 1978) for a normalization 

The dashed curve is the fit of Eq. 3-9 to f . 
C 
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Fig. 13. A comparison of the inclusive proton and pion spectra for 

the three momentum distributions of Fig. 12 in the hard scattering 

model for C+C at 800 MeV/nucleon. 

pared with experiment in Fig. 10. 

The results for f are also com­
e 

Refer to Sec. 3.5. 
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Fig. 14. Proton~proton azimuthal correlations by Tanihata et al (1979) 

for C+C and C+Pb at 800 MeV/nucleon in the c. m. system. The values 

➔ 

R(p) (Eq. 4-2) which label the curves are the ratios of the number of 

protons detected in coincidence with the trigger at azimuthal angle 

¢=180° to those at ¢=90°. The shaded area represents the region of 

momentum space accepted by the trigger, P and T label the projectile 

and target momenta, respectively, and the dashed circle through P 

and T denotes the shell populated by free NN elastic scatterings. A 

strong quasi-elastic peak is seen for C+C but does not appear in the 

heavier C+Pb system. See Sec. 4.2 for further discussion. 
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Fig. 15. Comparison of the hard-scattering model to the experimental 

results (Tanihata 1979) for the proton-proton azimuthal correlations of 

C+C at 800 MeV/A. For this plot the spectrometer is fixed at 40° 

corresponding to a slice through the peak in the contour curves of 

Fig. 14, and the momentum is in the lab. The theoretical curves 

are calculated from Eq. 4-5 for the momentum distributions f (Eq. 3-6) 
e 

and f (Eq. 3-9). Normalization of these curves to the data allows 
C 

an estimate of the single-scattering component. Refer to Sec. 4.3 for 

a discussion of the analysis. 
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Fig. 16. Comparison with experiraent of .the results of the multiple 

0 
collision model for inclusive proton spectra at 180 from p + Li at 

600 MeV. The various curves are the contribution to the cross-section 

from protons emitted after the nth step in the cascade. Straight 

lines are drawn between the calculated points to guide the eye. The 

key is: n=3 • • • • ·; 4 -- • --; 5 -- --; 6 -- • • --; 7 ----; 

and the total --- Refer to Sec. 5.5 for a discussion of the 

results. 
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Fig. 17. The same as Fig, 16 for p + C, Refer to Sec, 5!5, 
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Fig. 18. The same as Fig. 16 for p + Cu. Here the experimental 

points are taken from Frankel~ al (1976). Refer to Sec. 5.5. 
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Fig. 19. The same as Fig. 16 for p + Ta. The experimental values 

are taken from Frankel~ al (1976) and Brody (1977). Refer to 

Sec. S.S. 
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