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ABSTRACT

We study the production of energetic protons from relativistic
nuclear collisions using two approaches, the hard-scattering model and
an intranuclear cascade model. The hard-scattering model combines
the simplified kinematics of single scatterings and the effects of
the momentum distribution for nucleons in the nucleus to provide a
parameter—free description of a nucleus-nucleus collision. We use
free nucleon-nucleon cross sections to describe the individual NN
interactions. Good agreement with experiment is obtained in this model
for the high-momentum regions of the inclusive proton spectra from
collisions at 800 MeV/nucleon. Crucial to this success is the
inclusion of a high-momentum tail in the momentum distribution.

This model is also applied to explain the observed two-proton

azimuthal correlations from these systems and, with simple assumptions,
to estimate the single-scattering component of the inclusive proton
spectra. This latter is at least 377 in the lower momentum regions

of the spectra analyzed. We also present calculations of the one- and
two-particle inclusive spectra using forms for the momentum distri-
bution obtained both from the analysis of proton-nucleus backscattering
data and from theory. Finally, we use a simple cascade model to
calculate the inclusive proton spectra at 180° from 600 MeV proton-
nucleus collisions. The nucleus is assumed to be a Fermi gas of

uniform density, and we neglect the excitation of resonances in the
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intermediate state and the reflection and refraction of cascade
nucleons due to variations in the mean nuclear potential, The cal-
culated resultsrare below the experimental values and imply the pres-—

ence of other reaction mechanisms.
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1.  INTRODUCTION

In recent years there has been considerable experimental and
theoretical activity in the field of high-energy (0.2 -2.0 GeV/nucleon)
nuclear collisions. A wealth of data has been accumulated at these .
energies for projectiles varying in size from p to Ar (Saudinos 1974,
Papp 1975, Frankel 1976, Westfall 1976, Brody 1977, Gosset 1977,
Nagamiya 1977). 1In this chapter we shall describe some of the prominent
features of the inclusive proton and pion spectra and also many of the
theoretical models proposed to explain them. Then we will point out the

need for the present study and its relation to earlier work.

1.1 Nucleus-Nucleus Collisions, Experiment

There are several reasons for the high interest in relativistic
heavy-ion collisions. Because of the energetic reactions between large
numbers of nucleons, it is possible that substantial build-ups of density
and temperature occur in the nuclear matter, and under the assumption of
many randomizing collisions between participating nucleons, that local
equilibrium is reached during a collisioﬁ. Thus, a major reason for the
excitement in the field is the hope that these collisions will tell us
about the nuclear equation-of-state E(p,T), the energy per nucleon as a
function of density and pressure, for values far from the normal nuclear
density Pye At present, the expefimental kﬂowledge of E is limited to the
region at po for T = 0. Another point of interest, which will become
clear in this paper, is that high-energy nuclear collisions may yield
information about the momentum distribution ©Of nucleons in the ground

state nucleus, and something that is related to this, the correlations



between nucleons.

In discussing a collision involving two heavy ions, it is conveni-
ent to divide up the momentum space of the fragments into three distinct
regions. The fragmentation regions near the momenta of.the target and
projectile which are dominantly populated by their breakup after the
collision, and the central region intermediate between the target and
projectile momenta and at large transverse momentum. It is this central
region, populated by violent processes in the collision, which we con-
sider here.

As an example of some of the fine data available (taken by
Nagamiya et al. (1977)) we refer the reader ahead to Figs. 1, 10 and 11,
which show the inclusive proton and pion spectra for various targets and
projectiles at 800 MeV/nucleon. Particularly instructive is the global
plot for Ne+Pb in Fig. 1, where contours of constant invariant cross
section are plotted in.rapidity space.* Among the salient features of
these data are the large numbers of protons at very high PT; far past the
kinematically allowed region for a free nucleon-nucleon scattering, fhe
tendency toward symmetry about half the beam rapidity at large PT’ and,.

though not evident here, the independence of the decay of the cross sections

at large P, on the size of the target and projectile (Nagamiya 1977).

T
These points will be discussed further in relation to the wvarious

theoretical models.

1.2 Theoretical Methods for Nucleus—-Nucleus Collisions

A great variety of models have been proposed to explain the spectra

from relativistic heavy-ion collisions. Many of these differ greatly in

*
For a definition and discussion of rapidity, see Section 3.5.



their underlying assumptions. At one extreme are the equilibrium
models (Westfall 1976, Gosset 1977, Myers 1977, Amsden 1977, 1977a)

which assume that local equilibrium is attained due to the many
collisions between large numbers of nucleons. At the other
extreme are the hard-scattering or single-collision models (Koonin
1977 and Schmidt 1977) which assume that a major contribution to the
spectra results from nucleons which are emitted after undergoing only
one collision. Between these twc extremes are the multiple-collision
or cascade models (Bondorf 1976, Amsden 1977, Hufner 1977, Smith 1977,
Randrup 1978).

Of the equilibrium models, the first and probably the simplest
model proposed is the fireball model (Westfall 1976 and Gosset 1977).
It combines geometry and thermodynamics in a simple, parameter-free way.
At each impact parameter, the nuclei make straight-line, cylindrical
cuts through each other, fhus dividing the nucleons into two groups:
the "participants" in the interaction region between the cuts, and the
"spectators" in the residual nuclei. All of the available kinetic energy
of the participants in their c.m. system is assumed to be turned into
heat, and this "fireball" then decays according to a Boltzmann
momentum distribution. With the further assumption of chemical equilib-
rium, this can be extended to include the production of pions and com-
posites. The fireball and related firestreak (Meyers 1977) models have
enjoyed remarkable success in describing the inclusive spectra of
protons, pions, and composites for a variety of energies and system

sizes.
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Other equilibrium models (Amsden 1977, 1977a) solve the continuity

equations for the nucleon number, momentum, and energy densities of
relativistic hydrodynamics. Input of the equation-of-state E(p,T) allows
the direct study of its effects. These models have also had a degree of
success explaining the inclusive proton spectra.

The underlying assumptions of the equilibrium models exclude any
effects due to the individual two-body reactions. In a discussion of
experimental two-proton correlations in Chapter 4, it will be shown that
a serious limitation of these models in their present form is their
inability to describe a large contribution to the spectra due to single
scatterings.

Under the assumption that nucleus-nucleus collisions can be
described microscopically by a succession of independent single-particle
collisions, the multiple-collision models present an attractive approach
(Bondorf 1976, Amsden 1977, Hufner 1977, Smith 1977, Randrup 1978).
Although the cascade models are generally more complex than the equilib-
rium models, they can be used to study the assumptions of thermalization
by taking "snapshots" of the momentum distribution of the interacting
nucleons at different times during a simulated collision. Also included
is the single-scattering component of the spectra. While there are far
too many approachés to discuss here in detail, the more successful cas-
cade models include the following ingredients: simulation of the cascade
by Monte Carlo techniques, production of pions through the A(1232) resonance,
choice of the scattering angle of individual NN scatterings by the experi-~
mental NN cross sections, and the use of a sharp Fermi momentum distribu-

tion for nucleons in the nucleus. These models have been successful inp



reproducing much of the inclusive proten and pion spectra. However,
besideé possible disadvantages due to complexity or cost of implementa-
tion, these models do not include effects due to the high momentum
components in the momentum distribution for nucleons in the nucleus
(see Zabolitzky 1978).

The equilibrium and cascade models are able to produce protons
with large transverse momentum through the many individual collisions
that occur among the nucleons. Each successive collision is able to
populate larger regions of momentum space. However, the independence of

the decay of the spectra at large P_ on the target and projectile, and

T
the symmetry of the spectrum about half the beam rapidity at large PT
(as seen in Fig. 1) suggest. that a simpler mechanism, one independent
of the number of nucleons in the nuclei, may be important here. These
features can be explained easily if the dominant mechanism contributing
to this region is the single, hard collision of two nucleons. This ques-—
tion, which is addressed in the present work, is of fundamental impor-
tance in our understanding of these processes. Indeed, if the hard

scattering mechanism is dominant at large P_, then it is useless to

T?
attempt to study the properties of equilibrium here.

In order for the hard-scattering mechanism to populate regions
at large PT’ it is necessary to include high-momentum components in the
momentum distribution for nucleons in the nucleus. Experimentally,
the form of this distribution is not known. Quasi-elastic electron

scattering is not sensitive to this high-momentum tail (Moniz 1971).

However, when interpreted in terms of a single scattering model (Amado
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1976), recent back-angle proton-nucleus data provide a sensitive test
of the high-momentum behavior of the distribution and are consistent
with an exponential falloff up to 1.3 GeV/c (Brody 1977, Frankel 1977).
We use a form for the distribution (Eq. 3-6) which is consistent with
the proton-nucleus data (Amado 1976) and which has been motivated by an
exact, though unphysical calculation involving a one-dimensional system
of bosons interacting via a delta potential. At the time we undertook
our study this was the only available form, but since then theoretical
calculations for the momentum distribution have been made using
many-body theory for finite nuclei with realistic nuclear potentials
(Zabolitzky 1978). These also have an approximate exponential falloff
with about the same slope (see Section 3.5 and Fig. 12 for more detaiis).
For comparison, we use both forms in the calculations presented here.

There have been earlier efforts to calculate the proton and pion
spectra withvthe single-scattering mechanism. The calculation of Koonin
(1977) uses a sharp Fermi momentum distribuéion, and, though able to
describe many features of the inclusive proton spectra, eventually it

fails for regions at large P Pion production is not included, and

T
the kinematics governing energy and momentum conservation differs from
the present treatment., Calculations of two-nucleon correlations due to
the two-body kinematics are also first presented here. The approach of
Schmidt and Blankenbecler (1977) differs from ours essentially in the
evaluation of Eq. (2-7). Their field theoretical analysis of the momentum

distribution is applicable only in the extreme asymptotic region far from

the data considered here. Equation (2-7) is also approximated in the



asymptotic limit. Finally, very simple parametrizations are used to de-

scribe the N+N - N+X and N+N - 7+X processes,

1.3 Proton—-Nucleus Collisions

Proton-nucleus collisions provide an important testing ground
for our ideas on nucleus-nucleus collisions. If a model can be ex-
tended successfully from the regime of proton-nucleus to nucleus-
nucleus collisions without additional assumptions or parameters, then
this places much more validity on the results. Both the cascade and
hard-scattering models appear to meet this requirement for the regions
tested thus far, Multiple-collision models in the Glauber approximation
(Glauber 1959, Saudinos 1974) for small angle scattering and in the full
Monte Carlo cascade treatment (Chen 1968) have long been used success-
fully for proton-nucleus collisions. Hard-collision models with an
exponential tail in the momentum distribution have more recently proven
to be a viable approach (Amado 1976, Brody 1977, Frankel 1977).

There is one regime in proton-nucleus collisions which provides a
severe test for any model. 1In recent years data have been taken on the
production of large-momentum protons at backward angles (Frankel 1976,
Brody 1977 ; see Fig. 16), far into the kinematically forbidden region
for the scattering of a proton on a free nucleon wiﬁh momentum up to
the Fermi momentum, PF N 270 MeV/c. Among the mechanisms proposed to
produce these energetic protons are the coherent scattering from clus-
ters (Fujita 1977), multiple NN collisions, and, as pointed out earlier,
the hard-collision model (Amado 1976, Brody 1977, Frankel 1977). The

cluster and hard-collision models give quantitative agreement with
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experiment. The results for the multiple-collision model are not as
yet known, due to the difficulty of producing these rare events in a
Monte Carlo calculation, although estimates have been made (Kopeliovich
1977). The solution of this problem will occupy the final part of
this thesis.

The outline for this thesis proceeds as follows. In Chapter 2
we explain the theory behind the hard-scattering model and derive the
basic equations. A description of the calculation of the inclusive
proton and pion spectra for nucleus-nucleus collisions and the compari-
son of these with experiment is made in Chapter 3. The experimental
results for two-proton correlations and the predictions of the hard-
scattering model are presented in Chapter 4. We depart from the hard-
scattering model in Chapter 5 to calculate the back-angle proton
spectra from proton-nucleus collisions in a multiple-collision model.
Finally, we summarize the results and present our conclusions in

Chapter 6.



2. GENERAL THEORY OF THE MODEL

2.1 The Bethe-Salpeter Equation

A relativistic bound-state system may be conveniently described by
the Bethe-Salpeter wave function (Salpeter 1951). We give here a
heuristic derivation of the Bethe-Salpeter equation for a two-particle
bound state, and in so doing the rules for its implementation will be
apparent. A rigorous derivation may be found in Gell-Mann (1951). The
derivation will be for quantum-electrodynamics (QED), although the gen-
eralization to other systems is straightforward. We adopt the notation
and rules for evaluating Feynman diagrams from Bjorken (1964). With
these rules one can easily write down the matrix element of an arbitrary

diagram such as Fig. 2. We define thewave functionsixc) and W(B)

to be
the contribution of the graph up to the dotted lines (including the par-
ticle propagators). These wave functions then have 16 spinor components

(for QED) and can be used to write the matrix element of the graph as
d4p d4p 4y ezyu

_ 3 5 w(C) u

h 5 i ¥ (pgePpg) 2

(2m) (2m) (P3=pg) +ie

v B mpy), 2o1)

where the above integrals are over each momentum not fixed by momentum

conservation. It is also clear that W(B) can be written in terms of
?(A) in Fig. 2 as
(8) d4p1 Yy e’y
Y (p3,P—p3) = 1SF(p3)1SF(P-p3) J

A 2. .
(2m) (pl~p3) + 1e

x vWe - (2-2)
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; _i@+m)
where 1iS_(p) = 1 +m)
F :

p - m+ i€

define an irreducible graph as one which cannot be split into two simp-

is the internal Fermion propagator. Now we

ler graphs by drawing a line which cuts no photon line and both of

the particle lines once. Thus, a diagram of any complexity can be con-
structed from sequences of irreducible graphs. We show several of the
lowest order irreducible graphs in Fig. 3. (Diagrams (d) and (e) are
considered irreducible, since they mﬁst be included with diagram (c) in
renormalization (Bjorken 1964a).) Let G(n) denote the contribution of the
nth diagram without the external propagators (i.e., G(a)(p3,pl)

iYH ezyu

—————). Also, let ¥
(p,=p,) HiE
1 +¥3

(ml ,mz s ’mi)
(pl,P-pl) denote the wave func-

tion which has diagrams (ml,mz,--',mi) as its only contribution. Then

y (0, Jm, 950 m,) _ - = . _

4

dp
x f L (o)) ¥
(2m)

61 T T L
1°2
* (Pl,P "Pl) . (2_3)

The bound state wave function W(pl,P-pl) can be considered to be made
up of an infinite sequence of all possible combinations of irreducible
diagrams, since it is bound for an infinitely long time and can have any
combination of exchanged quanta. We then formally sum Eq. (2-3) over

all n,my My, ° 0 my and let i > « to obtain the integral equation

4
d'p
Y(pgsP = Py) = iSp(pg) iSL(P-p,) J ————1—4- G(py>pq) Y(pysP-py),
tam) (2-4)

o0
where G(p3,pl) = G(n)(p3,pl). This is the Bethe-Salpeter equation
n=1
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in momentum space. It is also convenient to define the vertex function

¢ by
¥(py,P - p3) = iSF(p3)iSF(P - p3) <I>(p3 P - p3) . (2-5)

If the coupling constants are small, such as in QED, then one can cut
off the sum in Eq. (2-4) at lower orders. The physical idea is that,
for a weak coupling constant, the probability to have a single exchanged
quantum at a given time is small but very much smaller still to have two

(1)

virtual quanta in the field at the same time. The use of G alone is

called the ladder approximation.

2.2 Derivation of the Basic Hard-Scattering Formula

We now derive an expression for the inclusive nucleon cross section
for a nucleus-nucleus collision, using the knockout diagram of Fig. 4.
For simplicity we neglect all spin effects as well as the isotopic dis-
tinction of the nucleons. The colliding nuclei are designated by four-
momenta P and P', the interacting nucleons by p and p', and the residual
nuclei will be considered to be in a definite state and have four momenta
P-p and P'-p'. Using the Bethe-Salpeter vertex functions one can write

the matrix element for this process as

M(P,P' >P-p,P'-p' ,k,k") = m(p,p' > k,k'")

x is(p') ' (p',P'-p) iS(p) @(p,P-p) (2-6)

where iS(p) = —§4L—§ is the internal propagator for spinless ''mucleons"
p-m

and m(p,p' > k,k') is the matrix element for the nucleon-nucleon interac-

tion. Notice that only one propagator accompanies each vertex function,
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since the residual nucleus is on shell. The inclusive cross section

is (Schmidt 1977)

E(k) 95— = e ( 1] 2 164 pip ~ Kk
Ak 2E(P) 2E(P')|V-V']
L d@-p) S@-p') Ly

3 3 3 (2~7)
2(2m)~ E(P-p) 2(2m)~ E(P'-p') 2(2m)” E(k'")

- >
- J &p p' £3) £'GN) P B -
d’k

(ptp' > k+k'") ,

% |2(p,2-p)| *(p-P)
where f(p) =

(p_. = E(F) ~E(@-p)) ,
2(2’”)3 E(P-p) Pz(pz--mz)2 .

2. 9 5 9 .9
p = PP A((prp") " ,p ,p' )

(P'B(P"P') >\((P+P')2,P2,P'2)

2, 2

A(x,y,2) E(x2+y +z --2xy-—2xz-—2yz)l/2

and

o lm(p+p"*k+k')|2 ﬂ64(p+p'-k—k')
E(k) —3—-(p+p'-+k+k') = J T
d k 22 ((p+p") ", 5P ')
d3k'

202m 3 E(k")

Here, A((p+p')2,p2,p'2) is an off shell generalization of the flux fac-
tor; its value is 2E(p) E(p')lg-;'l for on-shell, colinear particles.

-
This equation has a simple probabilistic meaning if one associates f(p)

—>-
with the probability distribution for finding a nucleon of momentum p
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in the nucleus. E(k)~g%— (ptp' > ktk') is related to the probability
d'k

for.the two nucleons to scatter into the final states k and k', and
P is related to the fluxes of the colliding particles.

The knockout diagram of Fig. 5 for proton-nucleus scattering
is also evaluated easily and is given by Eq. (2-7) with f'(;') =

63(3'-;'), as expected.

2.3 The Electromagnetic Form Factor (Sivers 1976)

>

We will now show that the definition of f(p) in Eq. (2-7) is
consistent with its interpretation as the probability for finding a
particle with momentum p in the nucleus. This is done by demonstrating

that the electromagnetic form factor at zero momentum transfer is

2 3> ~
A=F(q=0) =] dp f(p) , (2-8)
where A is the number of nucleons in the nucleus. We evaluate the form
factor in the impulse approximation of Fig. 6, where we are restricting
ourselves to the Breit frame defined therein. The form factor is

written as

dA(P-k) (k+k+q)u ¢+(k+q,P—k) ®(k,P-k) (=)

on".  [Oekq) SentHie] [P-K) 2 ie] [=noHie]

@+p+q) PF(q?) = -1 J

b

where m is the nucleon mass and M is the mass of the residual nucleus.

It is now clear why F(0) = A --at zero momentum transfer the structure
of the nucleus is not probed, but behaves as a single particle of'charge"
A. Since M >> m, we expect that tﬁe dominant contribution to the inte-

gral occurs for (P—k)2 = Mz. The Po—ko integration is performed by
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completing the contour in the lower half complex ﬁlane and picking up

the dominant pole at Po—ko =\/(§—K)2 + M2 - ie . Since the ingoing and

2

outgoing mass is identical, we have the relation P2 =P'" = (P+q)2 or

Peq = q2/2. Contracting each side of Eq. (2-9) with P“ yields

3 2 +
F(qz) _ I d’k 2Pk + (q°/2) & (k+q,P-k) @(k,P-k)

22m3E@-K) 227 + (¢¥/2)  [Ger) - n?10K% - n?]

(2-10)

Now in the Breit frame, q2 = 0 implies that q = (O,a) = (0,0). Therefore,

3 2
_ d’k P-k |®(k,P-k)|°
BLly = I B, e 3 3 2.2
(2m) E(P-k) P [k°-m’]
= J Pk £ (k= E(P) - E(®-K)) - (2-11)

Since this is a relativistically invariant form, it holds true in any

frame.

2.4 Modification Due to the Scattering of Multiple Pairs of Nucleons

Because of the spatial density of the colliding nuclei, it is
clear that even in the knockout picture (neglecting final-state interac-
tions), the process shown in Fig. 4 will not give the only major con-
tribution, but must be modified to allow multiple pairs of nucleons to
scatter in each nucleus—-nucleus collision. We now show how this modifi-
cation is made by evaluating the diagram in Fig. 7, which represents two
pairs of nucleons scattering with no final state interactions.

Using the rules described above, the matrix element for this proc-

ess can be written as
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( d b2
M(A,B > 0,8,k ,ky,kqe0k,) - —3 6, (2-12)
(2m)
where
® (a,,a,, A-a_ -a,.)
Y N e A
Gby) = =55 55 ™M@y, > kyok) m(a by > kg Lky)
(a - m")(a, -~ m")
1 2
) 9, (b;5b,, B=b,-b,)
2 2 2 2 ?
(bl-m)(bz—m)
a) = kyj+k, + b#8-B
a2 = k3+k4—b2 .
and
bl = B—B-b2
The invariant differential cross section is then
3 3 d3k
(k) —39_ _ 1 f d’o, a’s 2
L d3kl 2E(M2EB) V=Vl ) 5 om3y  2(2m)3E(8) 2(27r)3E(k2)
&k &% a%! 2
3 4 2 e 2
b 3 3 4 G”(bz 4 G(bz)
2(2m) E(k3) 2(2m) E(k4) (2m) (2m)
4 .
x 76 (A+B~cx—8—kl—k2—k3—k4),(2.13)

We now assume that the vertex function can be written in the separable

form

@(al,az, A—al—a2> = @(al, A-al) @(az, A—az) . (2-14)

This is a reasonable assumption for large nuclei, where a given nucleon
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is on the average affected little by any other nucleon. Then G(bz)

can be written as

where
<I>A(k+k'-x, Atx-k-k')
g(x,k,k') = 5 5 mk+k'-x, x+k,k')
[(k+k'-x)" - m™]
o (x,B-x)
* ’Lz'“"“z" '
[x7 = m"]

By defining the variables

a) = ktk,-b!

2 374 72

p = B-B-b "
and 2

p' = A—a—aé s

a change of variables allows Eq. (2-13) to be written as

3

cey 9 L J I R
Yadk, 2EW2E®) V)Vl | 50m3 202m)3 2(2m) E (1)
&k, &k, a*a', a',
o« R |
x 7 8 (kl+k2 P ’kl’kZ)

2(2ﬂ)3E(k3) 2(2ﬂ)3E(k4) en®. (2

J -al )
X ¥ (kg Hkymay,kyaky)

1 1 i . o -
g(p,kl,kz)g(bz,k3,k4) Wé(a2+p +ptb, kl k2 k3 ka)
& . (2-16)
E(A—p'—aé) E(B—p—bz)

We next assume that the functions g(x,k3,k4) are sharply peaked in x so
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that we may take the slowly varying functions of x out of the integral.
This assumption is made plausible by the relation of the vertex func-

tions to a momentum distribution. We replace al = E(A—p'—aé) by E(A-pP)

-
since we can neglect any reasonable value of 2,

compared to Ma

for moderately sized nuclei. Also, p' depends on aé only through

|l

P 2

LI —0 —a! & T |
. A.o Gb a5, We thus take g (kl+k2 p',k

1’k2) out of the integral a

with aéo replaced by an average ;;. The same arguments also hold for

SO = E(B—p—bz) and g(p,kl,kz). By observing that the peak in the b2 and
L | S —al

a, integrals occurs at b2 = k3+k4 a, for each k3 and k4’ we replace the

delta function by Gé(p'+p—kl—k2). Our final result may be written as

. do N d3p d3p'
Bl yg— = T = 3 3
dk,  2E(A) 2E(B)|VA—VB| 2(2m) E@B-p) 2(2m) E@-p")
3 )2
ek, 1o, et | o (p5-p)| ,
X m( '> k.
3 2 2.2 755 Impp 1’k2)|
202m E(ky)  [p' ') [p"-m")
X rﬁa(p+p' —kl—kz) , (2-17)
where
3 3 4
0] - .
kg d’k, d'b. @, (kytk,-b, A-ky-k, +b)
R = 3 3 4 7 2
2(2m) E(k3) 2(2m) E(ké) (2m) [(k3+k4—b) - m“]
¢, (b ,B-b ) |2
X m(kgtl,=b,b > ky,k,) —H——o— ;
[b” - m"]
v - - N - a5
p! = E(&) - E(A-P) - a, ,
and P, = E(B) - E(B-p ) - bO

We see that this differs from Eq. (2-7) only in the overall normalization
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and the energy available to scatter in P, and pé. One expects this in-
tuitively, since the scattering of an extra pair of nucleons should
affect the energy available to the other two as well as the total proba-
bility to occur, although this average energy shift is not expected to
be great when the nuclei are large and each nucleon affects any other
nucleon very little. However, because the average multiplicity of scat-
tered nucleons in most nucleus—nucleus collisions is greater than two
(an experimental estimate is 7 for C+C and 19 for Ar+KCl (Tanihata
1979)), a modification of the normalization of the basic knockout equa-
tion (Eq. 2-7) due to the contribution of the scattering of multiple
pairs of nucleons (as in Fig. 7) appears necessary in a correct treat-
ment. In Section 3.4 in the next chapter, we discuss our approach to

the normalization.

2.5 Effects of Final-State Interactions

It might be expected that at large bombarding energies the effeét
of final-state interactions on the knockout process is small. However,
it has been shown that this may not be the case but that final-state
interactions might have to be included on an equal footing (Amado 1977).
Using general arguments of the orthogonality of the discrete and con--
tinuum states of the target nucleus, what was actually shown is this:

If in the knockout picture a probe imparts a momentum transfer q to a
constituent particle in the target with momentum p (resulting in a
final momentum k=p+q), then the leading term for large k is exactly can-

celed by the contribution from final-state interactions.

The diagram in Fig. 8 includes the effects of final-state inter-

actions. Because of the complexity of the matrix element MZ’ the exact
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inclusion of this contribution in the cross section is not possible

at this.time. However, we can include possible effects of final-state
interactions in our treatment by replacing f(;) in Eq. (2-7) with a
modified or "effective'" momentum distribution fe(;)' That most of the
effects can be included in this way is justified to some degree by the
following arguments: The inclusive cross section calculated from Eq.
(2-7) is not affected a great deal by variations in-g% (N+N - N+N)

(even an isotropic distribution does not change the results substanti-
ally for most regions of the spectrum, the region at 90° in the center-
of-mass being affected most), but depends most strongly on the kinemati-
cal constraints (available energy, etc.) and the form for the distribu-
tion f(g). The kinematics of the final states are the same for both
pictures (as seen in Figs. 4 and 8) and in summing over the phase space
for unobserved particles it is easy to see that the result can be
written in the form of Eq. (2-7), but without the factorization of the
matrix element for NN scattering. Assuming that the interaction M2 does
not have a strong focusing effect into a particular direction away from
the results of M., then Eq. (2-7) gives a good approximation to the
single particle inclusive cross section with an effective momentum dis-
tribution fe(p) replacing f(p). This argument does not, of course, hold
for two-particle coincidence measurements, since the simple two-body

kinematics is lost in the final-state interactions.
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3. CALCULATION OF THE SINGLE-PARTICLE INCLUSIVE PROTON AND
PION SPECTRA

3.1 General Procedure

In this section we describe a calculation using the hard-scatter-
ing mechanism of Fig. 4. We evaluate Eq. (2-7) using the Monte-Carlo
methods described in Appendix A. Because of the simple probabilistic
meaning of Eq. (2-7), it is easy to use Monte Carlo simulation, and the
advantages of this approach are several: The entire spectrum is calcu-
lated in a single run; pion production can be easily included through
simulation of delta production and decay; two particle correlations are
also analyzed simply. A possible disadvantage is the increase in sta-
tistical errors for events with small cross section (which is also
inherent in the experimental situation). These points will become clear
when the actual computation is described in detail below. To help guide
the reader, the arrangement in the computer code of the followiné

description of the calculation is shown diagrammatically as a flow chart

in Fig. 9.

3.2 Description of the Calculation

The momenta of the colliding nucleons are chosen in the center of
mass of each of the target and projectile nuclei according to the momentum
‘+ 3 3 '3 .+
distribution f£(p). The residual nucleus recoils with momentum -p, thus

specifying the off-shell energy of the interacting nucleons of mass m as

» 1/2
P, = Am.-{[(A-l)m + ejz 0 / , {313

where ¢ is an average separation energy determined by the specific state
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of the residual nucleus and Am is the initial mass of the nucleus. We
approximate the nucleon-nucleon off-shell scattering matrix by the ex-—
perimental N-N cross sections as follows:. The four-momenta p and p'
are transformed to their center-of-momentum frame, where the angle of

scattering is chosen at random from the experimental angular distribu-
do :

tion for elastic scattering d_:§§8 . The input is the total avail-
el .
able center-of-mass energy s = [(p+p')2]l/2. The polynomial fits to

1y g

= 1 cas D and Oel are presented in Appendix B. The final nucleons
el c

with momenta k and k' contribute a weighting factor Pcel(s) (which is
related to the probability to scatter) to a bin of angular and momentum
width AO® and Ak, where P is the flux factér of Eq; (2-7). Two cases in
which the nucleons do not scatter into final states k and k' are for

s < 4m2, and when the final states are not compatible with the exclusion
principle. For a nucleus.with a momentum distribution f(p) (with nor-
malization £(0) = 1), the'prbbability that a final state p is occupied
is just f(p). This is equivalent to placing factors of 1 - f£(p) in the

integral of Eq. (2-7).

3.3 The Inclusion of Pion Production

To include pion production, we assume that all inelastic events
proceed through the formation of the A(1232) resonance. In the spirit
of the single-collision model, once the delta is produced it decays
without further interactions into the pion and nucleon. The weighting
factor for this event is OinP where Gin =0 -0 . is the inelastic cross

tot el

section and Otot is the average of the proton-proton and proton-neutron
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total cross sections calculated from Appendix B. The angular distribu-
tion for N+N -+ N+A in the N+N center-of-momentum frame is taken to be
that for elastic scattering. The mass width of the A resonance is in-
cluded by assuming the probability distribution for formation at a mass

M has a Lorentzian shape

P(M) = L (3-2)

M -1232)% + 12

with half width I' = 60 MeV (Barish-Schmidt 1973).

One must also take into account in a proper way the effects of
polarization on the decay of the A. We have investigated this effect
by adopting two extreme assumptions for the delta decay: (1) no polari-
zation for an isotropic decay, and (2) maximum polariZation with a
1/sin 6 distribution (where 0 is measured from the beam axis). The
results presented in this paper have used the isotropic decay. The
effect of polarization in each case was negligible for the inclusive
proton spectrum and small for pion production, although there was a
slight forward-backward enhancement with corresponding decrease at large
transverse momentum for pions. The results shown in Fig. 10 are essenti-

ally unchanged with the inclusion of polarization effects.

3.4 Normalization

As explained in Section 2.4, it is necessary to modify the normali-
zation from that given by Eq. (2-7) because of the spatial compactness
of nucleons in the nucleus. We propose an intuitive normalization based
on geometry and the single scattering assumption, very similar to the

participant-spectator concept of the fireball model (Westfall 1976). The
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basic assumption is that at each impact parameter b the number of
nucleons which scatter N(b) is twice the smaller number of target or
projectile nucleons in the straight line trajectory of the overlap
region. Thus the entire overlap region is not swept out in-a collision
since this would require multiple scatterings. Below we derive an
analytical expression for the total cross section for spherical nuclei

with a uniform nuclear density.

g = J N() &5 - (3-3)
where

> 2% 2> 2 > > > . '
N(b) = p J d%s; d"s, 87 (s -s,-b) 2 min(a ,a,)
a, 2

1. _ 2 2
( 2) S Rl Sl s
a, 2

2 2

(_°2_ = R2 “S2 s

> ->

and $1 and s, are centered at nuclei one and two, respectively, in a

plane perpendicular to the beam direction, and the integral extends over
the total cross—sectional area of each nucleus. R, and R, are the nuclear

1 2

radii, and p is the particle density with

4ﬁR3 0
A = p a ds, = S
1 1 1 3
min(al,az) denotes the smaller of al and a2. Note that the fireball

cross section is obtained if al+a2 is exchanged for 2 min(al,az) above.

>
The integral over impact parameter b is carried out first to obtain
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2~ 2 .
o =9p J d Sy d s, 2 mln(al,az)
2 2R1 2R2
= B da da, a,a, min(a, ,a,)
2 1 2 12 1*72
0 0
2 Rg ‘
= ZTT[R1 A2 - 5 AZ] . for Rl > R2 (3-4)
The total proton cross section is then
- i ®)
op = (A—]_ + K‘z')TT [Rl A2 -5 A2] for Rl > R2 . . (3-5)

where Zl and 22 are the charges of nuclei one and two, respectively. This
simple picture should not be taken to be a serious prediction of the
single scattering assumption, since it clearly lacks many physical prop-
erties such as a diffuse surface, multiple scatterings, contributions
from composites, transparency, etc. In other words, one should not
accept or reject the single scattering hypothesis by how closely the
normalization resembles experiment in each case. However, in the systems

we have looked at, the above normalization works pretty well.

3.5 Description of Results and Comparison with Experiment

The choice of the momentum distribution f£(p) is a crucial part of
the calculation. As was discussed in Section 2.5 it appears that final
state interactions destroy the simple dependence of Eq. (2-7) on the
ground state momentum distribution. We have investigated this possibility
by comparing results of nuclear collisions using an "effective' momentum
distribution obtained from experiment with results using the ground state

momentum distribution.
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We use an effective momentum distribution

. ot o
fe(p) v — o Y 90 MeV/c (3-6)

and an average separation energy € = 40 MeV. This was found to provide

a good fit to proton-nucleus backscattering data in the single-scatter-
ing model of Fig. 5 (Amado 1976), and therefore may include contributions
from final-state interactions. It is also consistent with quasi-elastic
electron scattering results. Our results for the inclusive proton and
pion spectra at 800 MeV/A bombarding energy using this distribution are
compared with experiment (Nagamiya 1977) in Fig. 10. As expected, the
best agreement is found in the large momentum regions for the lighter
systems. In particular, both the magnitude and shape of the proton spec-
tra for C+C and NetNaF are remarkably well reproduced. The proton
spectra at back angles in the heavier C+Pb system, and most low-momentum
regions of all spectra, are not well reproduced by the model, indicating
the presence of multistep, but not necessarily equilibrium, processes.
The pion spectra are generally reproduced only roughly by the knockout
calculations, although the agreement for the lightest (C+C) system is
good. The better success of the knockout model for protons is to be ex-
pected, since single hard nucleon-nucleon collisions preferentially
populate distinctive kinematic regions of the proton spectrum. In con-
trast, because the A resonance is produced nearly at rest in NN collisions
at 800 MeV, the kinematics of knockout pion production cannot serve as

a unique signature of this mechanism, and the knockout pions overlap with

those produced by multiple collisions. Pion spectra taken at higher



26
bombarding energies might therefore serve to verify this ﬁicture.

It is evident in Fig. 10 that the shape of the calculated spectra
is independent of the target or projectile. This is because the size of
the system affects the knockout calculations only in the amount of re-
coil energy carried away by the residual nucleus, so that for nuclei with
more than a few nucleons, the effect is small. However, this serves as a
definite prediction of the knockout model and is clearly seen in the large
PT decay of the experimental proton spectra (Nagamiya 1979) and in the
tendency toward symmetry about half the beam rapidity at large PT for
Ne+Pb in Fig. 1.

It is also instructive to look at the inclusive proton spectra in
a global picture.. This is conveniently done by plotting contours of
constant invariant cross section in rapidity space (PT vs. V), where the
rapidity y is defined by

E+p
y=%—ln(——J-|-)

E - P” ) (3-7)
and pll is the momentum of the particle parallel to the beam axis.
Rapidity has the convenient property of being additive under a Lorentz
transformation in the beam direction. That is, if we transform to a
frame which has a rapidity i, with respect to the original frame, the

the rapidity y' of an object in this frame with respect to its rapidity

y in the original frame is given by

|

y =¥y ¢
Therefore, contours of constant invariant cross section plotted in

rapidity space look identical in any frame moving parallel to the beam

axis.
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.In Fig. 11 we compare our calculation with experiment in a rapidity
plot for the symmetric system Ne+NaF (Nagamiya 1977). It is apparent that
the hard-scattering calculation using fe (Eq. 3-6) With Y_l_= 90 MeV/c
decays more rapidly than the data in the central rapidity region at large
PT (the spectra at 70° for C+C in Fig. 10 suggests this also). However,
the same calculation with Y—l = 110 MeV/c provides a much better fit to
the data. This raises the important question of whether fe with
Y—l = 110 MeV/c instead of Y_l = 90 MeV/c still fits the proton-nucleus
backscattering data, in keeping with a consistent parameter-free model.

In making the same comparison for a heavy asymmetric system (such
as NetPb of Fig. 1) it is clear that the symmetry about half the beam
rapidity of the knockout results does not reproduce the observed asym-
metry at low momenta. Therefore, the asymmetry at low momenta for large
mass-asymmetric systems appears to be due to effects of the multiple
scattering component. Indeed, multiple-scattering calculations do have
the correct form (Randrup 1978). However, as previously discussed, the
symmetry at large transverse momenta suggests that this region might be
dominated by the single-scattering component even for large systems.

We have compared the calculation using the effective momentum dis-
tribution fe(p) described above with two theoretical ground-state momentum
distributions derived under differing assumptions. One is the sharp Fermi
momentum distribution which is derived for non-interacting Fermions at

zero temperature:

1 P < 267 MeV/c
fF(P) N (3-8)
0 p > 267 MeV/ec .
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The other is a momentum distribution obtained from many-body exp(S) theory
which includes fully two-particle correlations and partially three- and
four-particle correlations (Zabolitzky 1978). For 160 the results have
been calculated using several different NN interactions. As a rough

parametrization of the results for the Reid soft core potential, we use

the form
- _2_92
150
0 < p < 344 MeV/c

£ v _ +203.5)2 (3-9)
0.0204 ¢ 168:3 344 MeV/c < p .

In Fig. 12 we compare the three distributions and the fit of Eq. (3-9)
for the normalization J f(p)pzdp = 16. It is seen that the theoretical
exp(S) result, fc(p), has about the same exponential falloff at large
momentum as the effective distribution fe(p), but differs significantly
in shape at lower momentum. The normalization of the high-momentum tail
is also appreciably lower. However, variations of greater magnitude in
the normalization of the high-momentum tail result with differing NN
potentials suggest that this is not a well determined quantity.

In Fig. 13 we compare the results of these three momentum distri-
butions for 800 MeV/A bombarding energy. The normalization is for the
C+C system but the relative results are,of course, independent of the
system size for moderately sized nuclei. As expected, the lower normal-
ization in the high-momentum tail for fc shows up in a corresponding
lowering of the spectra in the high momentum regions (but with the same
slope). However, because of the variations in the normalization of the

large momentum regions of fC resulting from the use of different forms for
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the NN interactions, a definite conclusion cannot be reached as to the
quantitative agreement of the theoretical momentum distribution with
experiment. It does seem remarkable, though, that apart from this un-
certain shift in the normalization of the spectra in the high momentum
regions, the theoretical distribution in the hard-scattering model (with
no free parameters) reproduces so many features of the spectra. It is
also clear in Fig. 13 that the sharp Fermi distribution grossly underes-

timates the high momentum regions of the data.

3.6 Summary

In this chapter we have seen that a hard scattering approach can
quantitatively describe the high-momentum regions of the inclusive proton
spectra. The best agreement with experiment is obtained with an "effec-
tive" momentum distribution of the fofm of Eq. (3-6) which was used to
describe proton-nucleus backscattering data (Amado 1976). To within the
uncertainties of its calculation, a theoretical momentum distribution
(Zabolitzky 1978) derived from many-body theory for finite nuclei also
appears capable of reproducing the observed data. This leaves unresolved
the question of the appropriateness of using the actual momentum distribu—
tion in the basic hard-scattering formula (Eq. 2-7) without including
effects of final state interactions (Amado 1977).

The agreement with experiment of the hard-scattering calculation
is also not unambiguous verification of the single-scattering assumption,
since other models with differing assumptions can also reproduce the
inclusive proton spectra. The failure of the inclusive single-particle
spectra to make a determination here may be due to the averaging effect

of these measurements. What is clearly needed are more exclusive
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measurements, such as two-particle correlations, to help to distinguish

between the various mechanisms.
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4, TWO-PROTON CORRELATIONS

4.1 Expected Results

Because of the two-body nature of the single scattering mechanism,
correlations are expected between each pair of scattered nucleons. For
free nucleon-nucleon scatterings the measurement of the momentum of one
nucleon specifies uniquely the final momentum of the other nucleon by
momentum conservation. For nucleus-nucleus collisions this correlation
is obscured to some degree, even in the framework of the single scat-
tering model, by three effects: the momentum distribution for nucleons
in the nucleus, the scattering of other pairs of nucleons in the same
collision, and the inelasticity due to pion production. Inclusion of
multiple scatterings obscures this effect even more, and finally, the
equilibrium models predict no two-nucleon correlations due to the two-
body kinematics discussed above. Recently, the experimentalists have
made‘two—proton inclusive measurements and their results are discussed
in the next section., Then in Section 4.3 we compare these ﬁith the pre-

diction of the hard-scattering model.

4.2 Experimental Results

Two-proton corrclation measurements have recently been made for
high-energy heavy-ion collisions by Tanihata et al. (1979). Because of
the existence of only one spectrometer they were not able to measure

y : . . > > 3.3
directly the two-proton inclusive cross section [dG(pl,pz)]/(d pld pz),
but with the use of the spectrometer in coincidence with tag counters

which triggered on charged particles with energy above a certain cutoff

energy, they were able to determine
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> >
dO(PlsPZ) 3
3 3 d p2 ) (4"1)
dp,d’p
R(p_,9,9) 1~ ¥2

where the region R(pc,9,¢) of integration extends over the solid angle
centered at 6 and ¢ and momentum P, > P. accepted by the counter. They

have measured the ratio

> >
J 3.3 9P
d pld p2
R(pc,40°,¢1+180°)

R(p,) = , (4-2)

d > >
O(plﬁpz) d3
3 3 Py
R(p ,40°,4.+90°) 9 P1d7Py
pc’ 3 l

corresponding to the ratio of events triggered by counters placed at azi-
muthal angles 90° and 180° from the spectrometer at ¢l and at an angle |
40° from the beam direction. In Fig. 14 contours of equal R(;l) are
plotted in the nucleon-nucleon center-of-mass system for C+C at 800 MeV/
nucleon with P, = 645 MeV/c. The shaded area represents the region of
momentum space accepted by the tag counter, the points at P and T specify
the projectile and target momentum respectively, and the dashed circle
through P and T denotes the shell populated by free N-N elastic scatter-
ings. The expected quasi-elastic peak is readily seen in the plot. These
features are present even for systems as large as Ar+KCl, although for
C+Pb no such correlation is seen (see Fig. 14), not necessarily indicat-
ing a smaller contribution from single scatterings for this system, since
the effect is expected to go as m—l, where m is the mean proton multipli-
city for a nucleus-nucleus collision. This will be shown in the next

section.
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4.3 Correlations from the Hard-Scattering Model

In this section we describe a calculation of the two-proton corre-
lations in the hard-scattering model. A comparison to the experimental
results allows an estimate of the single-scattering component of the in-
clusive proton spectrum. This analysis is similar to the treatment of

Tanihata et al. (1979).

We write the proton inclusive cross section as a sum of three terms

s dcPP dcnp dOb
5. -3 T3 T3 ’ (e=5)
d’p dp d’p d’p
do do :
where 3pp and 3np are the contributions due to a single proton-proton
d’p d’p
and proton-neutron scattering, respectively, for which both partners
do
undergo no further scatterings. 3 includes everything else--protons
d’p

which have undergone more than one collision and protons which have under-
gone only one collision, but whose partners have suffered multiple colli-
sions. We now assume that only the single proton-proton scatterings

contribute to the azimuthal correlations; everything else is only a back-

ground to this. Then, given that a proton is detected at Py with proba-
1 do
bility-g-—gzz (its partner is a proton which does not rescatter), the
d Py

>
probability that another proton is detected at P, is proportional to

0(31,32) + (m-2) %~§%—, where m is the mean multiplicity of scattered pro-
d

tons from a nucleus-nucleus collision and C(;l,;z) is the probability that

- >
the partner to the detected proton at Py scatters to P, with normalization

J C(;l,;z)d3p2 = 1. Similarly, if a proton is detected at ;1 with
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do do

o 1 1
probability = 3np or & 3 then the probability that another proton
d’p d”p
! 1 14
is detected at P, is proportional to (m-1) =1 g . It is clear under
d’p
2

these assumptions that the two-proton inclusive cross section obeys the

relation
do do
dO > ->
(m-1) 55— = ¢(®y,p,) 22 + (m-2) ¢ —22 9T
d3 d3 1252 d3 o] d3 d3
P~ ¥ L F1 = By
do do
b Gy = DR E0 gyt R 48 (4-4)
o d3 d3 o d3 d3
Bq p2 Pl P2
dUn do PR
For the case 3 P —EEE-and using the fact that C(pl’pZ) is negligible
dp d’p

when Bi and ;é differ by an azimuthal angle of 900, Eq. (4-2) can be

written as

| > > 3
Y J C(py5>py)d7p,
R(pc,400,®l+1800)
R(pl)—l = ' s

49 4%, [@n-3)+ m-1FG)]

. 3
A0 o, d7p
R(pc,AO ,®l+90 ) 2 (4-5)
% doy do -1
where F(p) = =3 —EEB-. Here the m = dependence is shown explicitly.
dp dp

With simple assumptions F can be used to estimate the single-
scattering component K, the fraction of protons from a nucleus-nucleus
collision which are produced from a single NN scattering. We first
assume that both F and K are approximately constant in thevrange of
momentum analyzed. For a given nucleus-nucleus collision, let Ni/2

denote the number of initial pairs of nucleons which scatter, let Nf
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denote the total number of emitted nucleons (differing from Ni by the
rescattering of the initial Ni nucleons with other nucleons in the
nuclei), and let P be the probability that a given nucleon from the
initial Ni nucleons is emitted with no further scatterings. The ratio
K2 of nucleons from Ni for which both partners of a scattered pair are

emitted without rescattering to the total number of emitted nucleons N

£
is
3 3 2
do__/d7p)+ (do__/d7p) PN,
K=(ppp)(npp=1
2 dO/d3p Nf
1 do do
=—g-  for —E=E (4-6)
1 +-§ F d’p d'p
Similarly, the knockout fraction K may be written as
PNi
K ::—N (4—7)
f
Therefore,
N,
et 1 4-8)
fl+§F

We can make only a rough estimate of the ratio Ni/N but fortunately

f)
the uncertainty in K due to the uncertainty in Ni/Nf is diminished due
to the relationship as a square root. We assume that the nucleons in

Ni which rescatter, (l-—P)Ni of them, do so only once, and that they do

not rescatter among themselves. Thus,

N, = PNi+2(1—P)Ni = (@2-P) N, - (4-9)
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This value is increased by including further scatterings, but decreased
by taking into account that some qf the nucleons may rescatter among
themselves in the second scattering. This estimate of Nf should be suf-
ficiently accurate for our purposes; a gross inaccuracyvis_ngt likely,
since the size of Nf is ultimately limited by geometry and the finiteness

of the nuclei (an average experimental value of N_ for C+C at 800 MeV/A

f
is 7 (Tanihata 1979)). Equations (4-6), (4-7), and (4-9) yield the fol-

lowing relationship for the knockout fraction:

~
I

K
2+ a+t

s (4"'10)
K

where
1
2 1
1+ > F

An estimate of the knockout fraction for a given system is obtained by
evaluating Eq. (4-5) in the hard-scattering model and normalizing to the
data to determine F.

The correlation function C(pl’PZ) in Eq. (4-5) may be evaluated
easily using the Monte Carlo simulation described in the previous chap-
ter, since one keeps track of both nucleons in each NN scattering. In
Fig. 15 we compare with experimént the results of our evaluation ofIEq.
(4-5) using the momentum distributions fe and fc [Eqs. (3-6) and (3-9)]
for C+C at 800 MeV/A. For this case, the mean proton multiplicity
m = 3.5 is an experimental estimate by Tanihata et al. (1979). In this
plot the spectrometer is fixed at 400, corresponding to a slice through

the peak of the contour plot in Fig. 4, and is situated to detect a
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proton emitted at 90° in the nucleon-nucleon c.m. system for the case

of no Fermi motion. The resulting knockout fraction K for the two
distributions is .36 for fC and .73 for fe. It is evident that the two
forms provide substantially different results in both normalization and
shape. This is expected, since the distributions differ so much at
lower momenta, where the correlations in Figs. 14 and 15 are most sen-—
sitive. A sharp peak in the momentum distribution at p = 0 results in

a sharp quasi-elastic peak in the correlations, as seen in Fig. 15 for
fc. In fact, the results for fc are substantially narrower than experi-
ment. However, a wider Gaussian momentum distribution (mean value <p> =
260 MeV/c) can fit the width of the experimental peak as shown in the
calculation of Tanihata et al. (1979). The form of the distribution fe
is such that the structure of the quasi-elastic peak appears obscured in
Fig. 15, suggesting a deficiency in the shape of fe at lower momenta,
but is nevertheless probably not a reflection of the very large momentum
behavior. An analysis of the knockout fraction for fe is most likely un-
reliable.

Considering the narrowness of the distribution fC (our parametriza-
tion is even slightly narrower than the actual distribution as seen in
Fig. 12) and of the resulting peak in the correlations, the estimate of
the single-scattering component of 367 for C+C at 800 MeV/A is probably
low. Furthermore, the analysis of the spectra is at 90° in the c.m. sys-—
tem, where the individual NN cross sections are smallest and the contri-
bution from single scatterings is expected to be least. Similar calcu-

lations by Tanihata et al. (1979) provide estimates of 30-70% (here the
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uncertainty is a result of taking the experimental uncertainties into
account) for each of the systems C+C, Ne+NaF, and Ar+KCl at 800 MeV/A
-—-certainly a sizable contribution to the inclusive proton spectrum.
These findings have important implications. First, they tend
to substantiate or at least support the basic assumption of the hard-
scattering model, that the first single scagterings provide a major
contribution to the inclusive proton spectra. Moreover, they point to
a serious limitation of the equilibrium models which do not include
the single-scattering component nor predict the correlations seen in
Figs. 14 and 15. However, this analysis is not sensitiﬁe to the very
large PT regions of the spectra and does not determine the single-

scattering component in this interesting region.
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5. PROTON-NUCLEUS BACKSCATTERING

IN A MULTIPLE-COLLISION MODEL

5.1 The Theoretical Models

Recent experimental data (Frankel 1976, Brody 1977) of the 180°
scattering of protons from nuclei have stirred up considerable interest
among theorists. At stake is the basic understanding of the mechanism
for the production of protons in the kinematically forbidden region
for the interaction of a proton with a free nucleon. This knowledge
may be useful in explaining other systems and regimes such as the

large P, region in nucleus-nucleus collisions, as well as providing

T
information on the internal structure of the nucleus.

Several completely different mechanisms have been proposed.
Fujita (1977) has found quantitative agreement with experiment by
assuming that the incident proton scatters from a 1-, 2-,..., n-
nucleon cluster which does not break up in the collision. The
probability Pn for this to occur is a free parameter in the model.

The proton-backscattering data can also be explained in a single-. or
hard-collision model (Amado 1976, Brody 1977, Frankel 1977), if it is
assumed that there are high-momentum components in the momentum
distribution for nucleons in the nucleus. This form for the momentum.
distribution has also gained theoretical support from a many-body
calculation by Zabolitzky and Ey (1978). As demonstrated in Sec.

3.5, the hard-scattering model can also be extended successfully

to the regime of nucleus-nucleus collisions.
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Because of the success of the cascade models in describing
much of the data from proton-nucleus and nucleus-nucleus collisions,
it is natural to investigate the possibility that these energetic
backward protons are produced from multiple collisions of the projectile
proton with nucleons in the nucleus. The calculation of this quantity
has not been made with the standard Monte Carlo cascade approach
because of the difficulty of producing these events with such small
cross—-sections. Kopeliovich (1977) attempts to approximate the
equations governing the multiple-collision process analytically, but
must invoke numerous approximations, including the restriction to
bombarding energies much greater than the nucleon rest mass (E>>m)--
of marginal validity for much of the data.

In this chapter we describe our approach to calculate the

: « . . o
multiple-scattering component of the inclusive proton spectra at 180 .

5.2 Simple Considerations

In order to understand better the kinematics involved in the
large-angle production of protons from multiple scatterings, we look
at the kinematical boundaries for a nucleon incident on a nucleus
with no Fermi motion. We denote the lab energy and momentum of the

. o . + 3
particle after the ith interaction as Ei and ki, The conservation of

four-momentum yields

2 > x 2 2
(B, , +m- E) = (ky ;- k) =m 5
or
ey ki1
R, mhE, . 995%y o (5-1)
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where m is the nucleon mass and 6i is the scattering angle. The

momentum after n scatterings may be written as

kn ko n
=E  miE .H cosei . (5-2)
n o i=1

Given that the particle scatters through a total angle O from its
initial direction, one can find the Gi such that kn is a maximum.

This may be done by the method of Lagrange multipliers for the con-

n
straint O = % Gi. Therefore we solve the system of equations
i=1
5 n n
m=l,n =;— | I cosB, + A(0- £ 6,)] =0 5
a6 . i . i
m |i=1 i=1
(5-3)
n
where 9= ¥ 6,
. i
i=1

It is easily seen that a solution is given by ei = O/n. That is, each
; ; max
scattering occurs through the same angle. Solving for kn from Eq.

5-2 yields (Kopeliovich 1977)

(o] n
o szE_O- cos (@/n)
kn = I ko 5 - . : (5-4)
1 = m+Eo cos (0/n)

As an example of the application of Eq. 5-4, the maximum possible
momentum for a proton with initial energy of 600 MeV undergoing 6
collisions through an angle of 180° is 407 MeV/c. Fermi motion must

. 6. .
therefore play an important role since protons bombarding Li easily
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produce protons at 180o with momentum larger than 407 MeV/c (see
i _— max
Fig. 16). Note also that for the limit n>® k = ko’ the same as

the elastic scattering from a large nucleus,

5.3 Derivation of the Basic Equations

Several basic assumptions are made in the intranuclear cascade
model. First, it is assumed that there is sufficient distance between
nucleons that the microscopic description of the scattering from a
nucleus is that of a succession of independent, single-particle
collisions. We are encouraged here by the cumulative successes of
this picture for many years in the Glauber approximation (Glauber 1959,
Saudinos 1974) and in the Monte Carlo cascade calculations (Chen 1968,
Smith 1977, Randrup 1978). This is not to imply that other mechanisms
are not more important in certain regimes. Another assumption generally
adopted in the various approaches is that off-shell effects are unim-
portant, and, related to this, is the historical use of the Fermi
(or similar) momentum distribution for nucleons in the ground-state
nucleus. Certainly, if one includes the high-momentum components in
the ground-state momentum distribution, off-shell kinematics are
required for energy conservation.

The picture that emerges for a proton-nucleus collision, then,
is that of a proton colliding with a sufficiently dilute Fermi gas
made up of on-shell, independent particles confined to some spatial
dimension. In addition to this, one may include effects of a non-

uniform density of particles and of spatial variations in a mean
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nuclear potential., We are now in a position to express these ideas
quantitatively.
We consider a beam of particles with momentum ;l and particle
density pl interacting with a beam of momentum ;2 and density Py The

Lorentz-invariant interaction probability per unit 4b-space is given by

(Chen 1968)

P =0y Py V95019 s 53]

where V1o is the relative velocity of the beams and 012 is the total
single-particle interaction cross-section. If, now, there are several
>
beams with momentum Pys then the interaction probability with beam 1
is
P = L P Vi g
Py i Pi V14 011 :

_)
or for a continuous distribution £f(p)

> 3
F=p 0 f £(y) vip 935 4P, (363

where 0 is the total particle density of the beam and jf(;) d3p = 1.
In a time At and volume Av, the average number of interactions per

particle of beam 1 per path length (let) traversed is

l—l = PAvAt =_89
1 (plAv)(let) vy

> 3
f £)vy991,47p, -7)

where A is the mean-free-path. For scattering in a Fermi sea, the
mean-free-path is effectively increased due to the Pauli blocking of

final states. If the angular distribution for scattering is
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1 999,

5 - 40 , then the effective mean-free-path may be written as
12

xe—l—i‘l £(p.) 412 (i, k')d0 a (5-8
1 Py VlZko Q(k, 2 47, 5-8)

1
where k and k' are the final momenta of the scattered nucleons, and
Q(k,k') limits the final states to those consistent with the exclusion

principle. For a sharp Fermi momentum distribution with Fermi momentum

Pr

1 k > PF and k' > PF
Q(k,k'") = ' (5-9)

0 otherwise
The probability dP for a scattering to occur in the path between s and
stds is

e
1E>e_slx ds
A

dp = 5 (5-10)

if it is assumed that a collision occurs af any time with equal
probability, independent of the past history. This is of course not
strictly true if one takes into account spatial correlations between
nucleons in the nucleus, but, again, we are assuming a@equate distances
between nucleons that collisions occur sequentially, independent of omne
another.

We now consider a projectile proton of momentum striking a

—)
k
o

>
nucleus with uniform density p at an impact parameter b. The number
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of nucleons emitted from the nucleus with momentum k after n
n

collisions can be written as

an_(®)
a2 | 3 3 3 3 3
3 d pl d kl swe d pn—l d kn—l d pn
d’k
n
o dcs P
x| — £(p.) % Q(k,,k!) 2 —— }...% £(p)
v 1 plko 1°71 d3kl Vo1 n
o % () z(?o,i’l)
. do
Vpnkn_l Q(kn,kn) 2 ;;%: ds0 dsl
0 0
> >
L(x_ ,,k ) @ e e e e
J n-2° n-1 J so/Ko sl/hl Sn—l/xn-l 1 —sn/Xn
ds ds e e < om0 — e .
n-1 g ! )\e
0 LG k) n

(5-11)
Here, the notation is as previously described. The spatial integrals
s; run over the path length Z(ri_l,ki) from the position in the

> ->
nucleus at r, in the direction of ki to the boundary of the nucleus.

i-1 ®
The next %. is then given by ?. + s, — The final spatial
1 i-1 1 li(" l
integral =
© e > = e
-s /A - (r L,k )/
J ds e B B g AL TR (5-12)
n e
L (xr K ) >\n
n-1’"n

is the probability that the particle escapes the nucleus from the

-> >
position r1 in the direction of kn without rescattering. The
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factor of 2 in front of each NN cross-section is needed because two
particles are produced at each collision, and the label S on the cross-
sections signifies that the angular distributions are symmetric in
cos ec.m. since we may keep track of either particle in the collision.
Without the factor of 2 and the symmetrized cross-sections, Eq.
5-11 is the probability for a projectile of momentum Ko striking a
nucleus at impact parameter g to undergo n collisions and emerge
with momentum ﬁh. To see this we form the sum

->
dNi(b)

&’k I (%)1——3— . (5-13)
=1 a’k

P(b) =

n->o

We cut off the sum at some large value of n and let the final spatial
- >

- integral s extend to 0, (i.e., Q(rn_l,k) = 0 in Eq. 5-11). This

may be an arbitrarily small correction for sufficiently large n. This

allows the integration over d3k and d3p to be carried out to yield

1 T ®)

A from Eq. (5-8). This term added to the —F——— term extends the
n-1 d3k

integral over S -1 from O to ®. Proceeding in this manner through all

n steps we find

P@) =1-ex® (5-14)

which is simply the probability for an interaction to occur as the
. - _)
projectile transverses the nucleus at impact parameter b.
The equation for the proton inclusive cross-section may be written

as
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: | (5-15)

where the factor Z/A is included because only protons are detected.
For this form to be useful, the contributioné from higher orders must
be negligible so that only the first few terms need be evaluated.

Eq. 5-11 was derived for a uniform nuclear density p. One
may easily take into account a spatial variation in p by allowing the
k: to depend on ?i and by adding multiplicative factors to Eq. 5=11 to
insure the proper normalization. This equation also does not include
effects of reflection or refraction due to variations in the nuclear
potential. These are of decreasing importance (but not necessarily

negligible) as one extends to the higher momentum regions.

5.4 Description of the Calculation

The integral of Eq, 5-11 is not at all trivial to evaluate,
For six collisions this involves an 18-dimensional integral (after
the energy conserving delta functions and the last spatial variable
are integrated over). This may reflect the fact that there are many
"paths" or "histories" leading to the final state, and, in fact,
this is actually the case for most values of the final momentum‘ﬁn.

A Monte Carlo evaluation of Eq., 5-11 then requires the sampling of
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a sufficient number of paths in order to obtain an unbiased estimate
of the integral, However, for the exclusive events of proton back-
scattering at large momentum, one might expect that there is a
rather restricted set of paths to this final state. This is actually
demonstrated for no Fermi momentum in Sec. 5.2. Here it is shown
that for scattering through an angle 6, all nucleons produced near
the kinematic boundary must be deflected near the angle 6/n for each
of the n collisions in the nucleus. We extend this idea to the
realistic case with Fermi motion and use the method of "importaﬁce
sampling' described in Appendix A to concentrate the sampling of
paths of Eq. 5-11 to those with large momentum transfers and with
deflections near 6/n. Because of the restricted set of paths to
the final state, a modest Monte Carlo sampling may be adequate for
a good approximation to the integral, even for large n.

In the evaluation of Eq. 5-11, we ﬁeglect inelasticity due to

pion production. This is not negligible for a bombarding energy of

600 MeV, where the inelastic to total cross-section is approximately
1/4. The net effect of the energy loss from pion formation is
expected to reduce the calculated cross-sections.

Several integrations in Eq. 5-11 may be done immediately.

. do .
For elastic scattering, the differential cross-sections 3 in Eq.
d’k,
i

5-11 include an energy-conserving delta function. We thus are left
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with an angular integral d¢k dcosek (the polar coordinates are in
N .

1

-> .
the lab frame and ki_ is in the z direction) for each i<n. For

1

>
i=n, the final momentum kn is fixed, and we absorb the delta func-
tion in the integration over the final internal momentum P> leaving

an angular integral d¢ dcos®_ . 1In the actual computation of Eq.
n n
5-11, one must solve for k. in terms of K. ,g.,cose , and ¢ for
i i-1°%1 ki P

each i<n and for P, in terms of Kn-l’Kn’ cosepn, and ¢pn at thz last
collision. General equations which do this are derived in Appendix C.
The final spatial integral may also be done beforehand yielding

Eq. 5-12.

One could now attempt to evaluate Egs. 5-11 and 5-15 using
ordinary Monte Cérlo techniques of sampling evenly in each variable
of integration and then weighing each event or path by the integrand
(see Eqs. A-1 and A-2 in Appendix A). For a sufficiently large
sampling, this yields the correct value. However, in most cases
this is much too inefficient. We alternatively use the method of
"importance sampling', motivated above, to choose the integration
variables to maximize the yield in the backward direction. For
each variable cosek we multiply and divide the integrand by the

i

function g(cosB, ) which is peaked near cos &n and make a change of

k.
i cosf _
variables to G(cosek ), where G(cosb) = J g(x)dx (see Eq. A-7).

* ' -1
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Similarly, we choose ¢k peaked near 1800, where the beam direction
i
is at ¢ = 0°. We use a form of g which allows flexibility in widths

and peak heights. Such a form is

-B (ao—bo—x)
e x<a -b
o o

g (x)v < E a ~b <x<a +b
0o o——o0 o

+
e—B (x—ao—bo)
a +b <x
o o

(5-16)

At the end of this section are presented typical values for the param-
eters a_, bo’ B, and 8+ for the cosb and ¢ variables.

The integration over the internal momentum Py is done by sampling

; : 3 <
evenly in each of the variables ¢ , cos®_ , and Py - Alternatively,
i i
for a large final momentum, we sometimes choose @p from a distribution
i
peaked near ¢k and cosep peaked for negative values. This increases
i i

the yield in the backward direction because of the increased number
of collisions able to provide large momentum transfers. Similarly,
the 19 integral may be weighted for more events close to the Fermi
momentum PF (we are, of course, using the.sharp Fermi momentum dis-
tribution of Eq. 3-8).

The calculation of the momenta proceeds as follows.

5
p,, cosd, , and ¢ are chosen as described above, with this
1 kl kl
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specifying kl' If two solutions of kl exist, we choose either

solution at random and multiply its weight by two (see Eqs, C-2 and

C-5 in Appendix C). We then choose ; , cosB, , and ¢ and so on
2 k2 k2

until we have specified all §1,+2,...,K _ At the final step we

n-1"°
choose cosGp and ¢n and add together the weights for each of the
solutions pnn(see Eqs.C-10 and C-11 in Appendix C). If P is greater
than the Fermi momentum PF’ then the event does not contribute, We
generate a set of histories in this manner., Of course, there are
many paths which do not contribute and may be thrown out immediately
at any step. This occurs if either of the states ki and ki.are
below the Fermi momentuh PF (a result of the Q factors in Eq. 5-11),
if no positive solution ki exists for a given cosek' and ?k.’ or if
the momentum ki is less than the final momentum»kn.1 This 1;st
condition follows from the restriction that a particle colliding
with a Fermi gas cannot have its energy raised, since this would
require a reduction in energy of the target particle, violating the

exclusion principle. At the last step the event is thrown out if

k; is below the Fermi momentum PF or if the solution Ba for cosb

n
and ¢ is greater than PF. Once we have arrived as far as the last
pn > > >
step, having generated kl,kz,...,kn, we sample the cosep and ¢p
n n

variables several times to make the procedure more efficient. Per-

haps only one percent of the total number of trials will result in

->

1’k2"°'Kn' This percentage may vary greatly

->

a complete history k
—)

depending on how restricted the paths are to the final momentum kn

and on how peaked the weighting factors are.
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Since only a fraction of the trials results in a complete history,
we calculate the weighting factors and spatial integrals only after
a complete history of momenta has been generated. For each collision

we weight with the angular distribution-% ng
k.
i

Since we make no

distinction between protons and neutrons, we choose either of the

pp or np angular distributions and total cross-sections at random,

. . . 1 do . : ;
In Appendix C we derive equations for-g~a— in terms of its dis-
iflab
tribution in the c.m. system, The c.m. angular distributions are cal-

culated using the fits in Appendix B.

> >

—).
For each complete trajectory kl,k 'kn’ we evaluate the spatial

g5
integral in Eq. 5-11 by sampling the integral for between 40 to 150
impact parameters., Consequently, thisfinal computation is accurate
enough that no appreciable uncertainties are added to the results.
The size of the nucleus plays a role only in the spatial integral,
and this allows us to calculate the results for various éystems
using_the same set of kinematic histories; Instead of sampling

evenly in the variables s ,s , we first absorb each of the

e ./)\? o¥P] prus _.Sn_l

factors e © * into the s integrals of Eq. 5-11 to obtain

1 1 1 -> > e
= (r ’k )/)\
N SO Ay dg dg. ... JdE g B 0
ol n-1 [¢] & ; N 5 g—l & <
—Q(b)/ko e—l(ro,kl)/kl e—JZ,(rn___z,Icn_l)_/>\n___1

e

(5-17)
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> >
where the Q(ri_l,ki) are, as before, the distance from the point

->
L to the boundary of the nucleus (with radius 1.2 Al/3 fm) in
> >
the direction of ki’ and r, is given by
>
->_—> }\ez E, ki
=T, - A A g |E | . (5-18)
i

We evaluate this using Monte Carlo integration by sampling evenly
in the variable Ei. The A: are calculated beforehand from Eq. 5-8
for discrete steps in the incident momentum, and a linear inter-
polation is used between points. The X: are presented in Table 1. A
check of the accuracy of this procedure was made by calculating X
midway between the momenta in Table 1 and comparing these values
with the interpolated values. They were always within 4% of each
other.

Having described the method for evaluating Eqs. 5-11 and 5-15,
the advantages of this approach over the traditional Monte Carlo
"simulation calculations are apparent. First, by isolating the con-
tributions from the various numbér of collisions, we may anticipate
the path required by a particle in its deflection into the backward
direction with large momentum. This allows us to weight the integral
to maximize this occurrence. 1In contrast to this, in Monte Carlo
simulation the scattering angles at each collision are chosen from the
forward-peaked NN angular distributions, and this maximizes the

yield in the forward direction. Another advantage in our approach
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is the separation of the kinematics from the geometry. The results
for many targets may be evaluated from only one set of kinemafic
histories, thus reducing the computational effort.

This approach is not without its disadvantages. We negléct some
processes which may be simulated simply. These include the inelasticity
due to pion production, and reflection and refraction of the particles
due to variations in a mean nuclear potential. Also, correlations
cannot be calculated in our approach. Finally, there are dangers
associated with the weighting of Eq. 5-11. 1If the integrals are
weighted with distributions that are too narrow, this may hinder a
- good sampling of important contributions from other paths. Of course,
for a large enough sample, the result remains unchanged, but for
several small samples most of the results would be below the true
value with an occasional result very much greater, This can
fortunately be checked to some degree by taking several samples to
determine their smoothness. Because of this danger, we generally
used the widest distributions consistent with good statistics. As
a typical example, for the case of six collisions, adequate results

are obtained in the lower momentum range using the following para-

meters for the weighting function of Eq. 5-16: a = .883, bo = ,117,
B_ = 3., and B+ = 1. for the cos@k variable, and ao = 3,14159,
i
o = ol B~ = 1.5, and 8+ = 1,5 for the ¢k, variable., One may also
i

check for consistency by varying these parameters. Because of the

statistical nature of this analysis, these are not foolproof checks,
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and a small danger still remains. By comparing results from dif-
ferent runs, we estimate that there may be up to half an order of
magnitude uncertainty in cases where it is difficult to get good
statistics.

We made several checks of our evaluation of Eq, 5-11. We
naturally checked numerically the equations governing the kinematics
which are presented in Appendix C. We also made tests of the
normalization conditions of Eq. 5-11 by integrating over d3kn

without the spatial part of the integral.

5.5 Comparison of the Results with Experiment

We used the methods described above to calculate the inclusive
proton spectra at 180° for 600 MeV protons incident on Li, C, Cu,
and Ta. The results are compared with experiment (Frankel 1976,
Brody 1977) in Figs., 16-19. We evaluated Egs. 5-11 and 5-15 for final
momenta 500., 570., 640., 710., and 780 MeV/C and plotted the con-
tribution for each value n of the number of collisions. Straight
lines are drawn betwéen the points to guide the eye. It is seen
that the absolute magnitude of the calculated cross—sections is below
the experimental values, and that they decay more rapidly than
experiment.

There are several reasons to believe that the calculated values
are actually an upper bound to a more complete calculation. First,
we neglect the energy losses due to pion production. We also assume

a uniform particle density in the nucleus. The inclusion of a
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diffuse surface should decrease the results presented here because
of the increase in the single-scatterings occurring in the surface
which is weighted more heavily (as the impact parameter) in the
evaluation of the cross-section. Furthermore, the effect of the
protons escaping from a mean nuclear potential should decrease
their final energies, shifting the calculated points to the left a
slight amount. Finally, the assumption of a constant density for
all times during a collision may not be valid for small systems,
After several scatterings there is a depletion of nucleons in the
nuclear matter. Taking into account these points, it appears that
the multiple-scattering model is unable to explain the large-momentum
data at 180° from proton-nucleus collisions.

There are some interesting systematics which are apparent in
Figs. 16-19. First, the contributions from the low-n results drop
off more quickly at large momentum than the large-n values., This
is expected because the kinematic boundaries occur at lower momenta
for the low-n results. Secondly, the large-n contribution is
relatively greater for the larger systems. This is a direct con-
sequence of the fact that after several steps in the cascade, fewer
of the nucleons have escaped from a large nucleus than from a small
one.

The calculated results do explain some of the qualitative
features of the data. They yield the correct ratio of normalization

for the various targets, and they reproduce the tendency for the
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cross-sections to decay slightly less rapidly for the larger systems.
This last point is a consequence of the greater large-n contribution
for the heavier systems.

In conclusion, it appears that the main features of the inclusive
broton spectra at 180° cannot be explained in an intranuclear cascade
model with a sharp Fermi momentum distribution. These calculations
do not tell us which reaction mechanism is dominant for the backward
production of energetic protons nor do they tell us that multiple
processes play no role (It may be a combination of multiple scat-
terings with other mechanisms). However, they do imply the existence
of other mechanisms (possibilities are, of course, high-momentum
components in the momentum distribution, scattering from clusters,
etc.), and these must be investigated thoroughly in future work;
These results also suggest that the multiple-scattering mechanism may
not be dominant in other kinematically forbidden regions, such as

the large PT regions from nuclear collisions.
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6. SUMMARY AND CONCLUSION

The main direction of this thesis is the study of the mechanism
in an energetic nuclear collision for producing protons in the region
kinematically forbidden for an interaction of a proton with a free
target nucleon. We first investigate the possibility that these
energetic protons are a direct result of the high-momentum tail in
the momentum distribution for nucleons in the nucleus, In Chapter
3 we show that agreement with the inclusive proton spectra is ob-
tained in the hard-collision model for such a distribution,
Reasonably good results are obtained with a form for the momentum
distribution (fé of Eq. 3-6 with Y_l = 90 MeV/e) with an exponential
decay at large momentum which was previously used to explain proton-—
nucleus backscattering data (Amado 1976). These results are improved
using a decreased decay rate for the distribution at large momentum

e 110 MeV/C), so that results consistent with the experimental

v
data are obtained over four orders of magnitude in a global plot in
rapidity space (Fig. 11). This raises some questions for future
investigations. Namely, is this form with Y_l = 110 MeV/C consistent
with the proton-nucleus data, and, if not (implying that the momentum
distribution of the target nucleus depends on the projectile), what
are the underlying reasons for the success of the model? Pos-

sibilities are that final state interactions destroy the simple

dependence of the calculations on the ground-state momentum distri-
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bution (Amado 1977 and Sec, 2.5), or that such a distribution is
generated through other processes in the collision itself,

The idea of high-momentum components in the momentum distri-
bution of the ground-state nucleus has strong theoretical support.
Zabolitzky and Ey (1978) usethe exp(S) form of many body theory to
calculate the ground-state momentum distribution fc. The decay at
large momentum is similar to the distribution fe described above

(see Sec, 3.5 and Fig. 12). Ve also use this form to calculate the

inclusive proton spectra from nucleus-nucleus collisions. The
spectra at high-momentum gre below the experimental data, but decay
with about the correct slope. However, there are uncertainties in
the calculation of the distribution fC at large momentum. Variations
of comparable magnitude to the discrepancy with experiment occur
with differing forms for the nucleon-nucleon potentials, and the
non-relativistic treatment may not be adequate in this regime. These
considerations leave unresolved the question of using the ground-state
momentum distribution directly in Eq. 2-7 without including the effects
of final state interactions.

The analysis in Sec. 3.5 with various forms for the momentum
distribution demonstrate the value of the hard-scattering model in
studying their properties; the calculation is sensitive to both the

relative normalization of the high-momentum tail and its decay rate.

However, as just pointed out, this may not be a direct measure of

the ground-state momentum distribution due to the effects of final
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state interactions.

All of the comparisons with the hard-scattering ﬁodel have
assumed that there are novlarge uncertainties in the evaluation of
Eq. 2-7. Nevertheless, a possible source of error is the use of
the on-shell experimental cross-sections to approximate the off-
shell scattering matrix. An off-shell treatment may be valuable in
making detailed comparisons and is worthy of further study.

In Chapter 4 we compare the results of the hard-scattering model

to two—-proton inclusive measurements. With simple assumptions, this
provides an estimate of the single scattering component. This
analysis is sensitive to the low-momentum behavior of the momentum
distribution and reveals a deficiency in the form of the effective
momentum distribution fe' This distribution is so broad at low
momenta that the quasi-elastic peak in the azimuthal correlations
does not appear. In contrast to this, the sharply peaked fC dis-
tribution reproduces the expected quasi-elastic peak and results in
an estimate for the single-scattering component of 367 for C+C at 800
MeV/A. A similar treatment by Tanihata et al (1979) provides an
estimate of 30-70%Z for each of the systems C+C, Ne + NaF, and Ar +KCl
at 800 MeV/A. Since these measurements are made at 90° in the c.m.
system where the NN angular distributions are smallest, these estimates
for the single-scattering component are expected to be low. Un-
fortunately, this analysis is not sensitive to the very high-

momentum regions of the spectra and provides no information on the
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single-scattering component there.

The fact that the equilibrium models do not include effects
from single-scatterings represents a serious deficiency in their
makeup, and the application of these models to many systems must be
questionable. However, the equilibrium approach may still have its
uses in describing systems for which its assumptions have stronger
justification. One possibility is the restriction to events
characterized by a large multiplicity, suggesting a low impact-
parameter collision involving many nucleons. Also, from the analysis
of the correlations, it is not clear which mechanism is responsible

for producing protons in the kinematically forbidden region. If it is

mainly a result of multiple collisions, then the equilibrium approach

may still be useful here.

In the last chapter we continue our investigation of the kinema-
tically forbidden region by calculating the multiple~scattering
component of the inclusive proton spectra at 180° from proton-
nucleus collisions. The cross section is written as a sum of the
contributions from protons emitted after the nth step in the cas-
cade. This allows us to anticipate the path that a nucleon follows
in scattering 180° and to weight the infegral to increase the Monte
Carlo sampling along this path. The nucleus is assumed to be a

Fermi gas confined to a sphere of uniform demsity. We neglect

effects due to the inelasticity of pion production and to the

reflection and refraction of the nucleon from variations in the
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nuclear potential. Including these effects and a diffuse density

at the surface of the nucleus is expected to decrease the calculated
cross-sections. However, the results are already below the experi-
mental values and also decay more rapidly than experiment. This
suggests that other reaction mechanisms are present.

In summary, the hard-scattering model is able to reproduce the
high-momentum behavior of the inclusive proton spectra from relativistic
nuclear collisions if one assumes high-momentum components in the
momentum distribution for nucleons in the nucleus., Support of this
picture is given by two-proton correlations which exhibit pronounced
features due to the kinematics of the single protoﬁ—proton inter-
actions and by theoretical calculations of the high momentum form
of the ground-state momentum distribution. Though these reactions
are certainly often very complex, the hard-scattering model appears
to be an important first step in their unde;standing, and must be
investigated thoroughly in future étudies of relativistic nuclear
collisions. This approach may also prove valuable in the study of
the momentum distribution for the nucleons in the nucleus. Finally,
the results of the calculation of proton-nucleus backscattering in a
multiple collision model with a sharp Fermi momentum distribution fall
short of the experimental cross-sections, implying the presence of

other reaction mechanisms in this region.
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Appendix A

MONTE CARLO METHODS

A.1 Integration

Monte Carlo methods (Hammersley 1964, Stroud 1971) can be used
to approximate multiple integrals when the number of dizsnsions involved
makes them intractable with ordinary numerical integration. A rough rule
of thumb is that Monte Carlo techniques are better than the trapezoidal
rule in three dimensions and better than second order.rules (e.g.,s
Simpson's rule) in five dimensions (Hammersley 196%a). However,
advanced techniques are available to make the Monte Carlo method even
more efficient. 1In this section we explain some of the basics of Monte
Carlo integration.

Suppose we are interested in evaluating the integral

=S

9(f) = J f(x) dxldxz-HdXn s (A-1)
R

where R is a region in the n-~dimensional space. This can be thought of

as the average of the function f(;) over R if ; is considered to be a

random variable distributed evenly in R. Therefore, an estimate of 6

is given by

fN =

| <

FE) (a-2)

| ~1=

i=1
>
where V is the n-dimensional volume of R and the ii are random numbers
chosen evenly in R. If we now think of fN as a function of N random

are

]

> e
variables Ei, then its mean fN and standard deviation ©

[=

N
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T = R L -
fN f fN VN d El d gN 8 (£f) (A-3)
and 02
2 21 np ..oy f
o - | g’ L E g - (a-4)
N Vv
where
o? = ve(fz) - ez(f) . (A~5)

Therefore, as expected, fN approximates 6(f) with a measure of error
given by the standard deviation cf//ﬁ.

That the error falls off so slowly with N is one of the major draw-
backs of Monte Carlo integration. To get a factor of 10 improvement in
accuracy, there must be an increase by a factor of 100 in computation
time. However, with a little insight one can often significantly im-
prove the accuracy by choosing the function f so as to reduce the stand-

ard deviation Op- To see what is necessary we rewrite Eq. (A-5) as

b

2 2 1

Ty = J [(b-a)f(x) - 6] oy & o (A-6)
a

where we are restricting ourselves to one dimension for clarity. We

6 (f)
(b-a)’

tion (A-1) can be written as

therefore want f(x) = or equivalently, f(x) = constant. Equa-

b G(b)
_ f(x) _ f (x) -
6 = J = g(x) dx = J §?§7 dG (%) . (A-7)
a 0
X

where G(x) = I g(y) dy.

a
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Therefore, if we can find a function g(x) such that £0x) is approxi-

g(x)
mately constant over the range (a,b) and which can be integrated analyti-
cally, then the error can be greatly reduced. This method is known as
"importance sampling" and detailed examples of its use are given in
Hammersley (1964). What we are in fact doing is concentrating the
sampling to regions that are most important and then compensating for
this by weighting with the factor f/g instead of f. There are also many

other methods available for reducing the error which will not be included

here but are discussed in the literature (Hammersley 1964, Stroud 1971).

A.2 Direct Simulation

Another Monte Carlo method is the direct simulation of a probabil-
istic problem. Many times a physical situation is so complex that it is
difficult to describe in a quantitative or analytical form, but can
still be mimicked simply. This may also have the advantage of intuitive
clarity without being obscured by mathematical formalism. In the main
text we use this technique for a calculation because of these advantages
and the ease with which the results can be compared to the ekperimental
results which it directly simulates.

" In direct simulation we must choose an event x at random according
b
to a probability distribution P(x), where 1 = J P(x) dx. The random

a
numbers” r that we generally have available are distributed evenly in

These are generally referred to as pseudo-random numbers because, al-
though they satisfy the statistical properties of random numbers, they
are usually generated by a deterministic method. Calculations employ-
ing sequences of pseudo-random numbers have the advantage of being

exactly repeatable.
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X
the interval (0,1). If x is chosen by x = G_l(r), where G(x)==[ P(E)dg

a
and r is chosen at random uniformly in the interval (0,1), then x has
the desired statistical properties. A problem arises when G(x) cannot
be determined analytically. In this case for bounded P(x) a technique
known as "von Neumann rejection' is often useful (Hammersley 1964a). One

chooses pairs of random numbers ri»T, independently in (0,1) until the

following relation is satisfied:

r., < P(a+ (b—a)rz)/ Pma

1 (A-8)

X ?

where Pmax is the maximum value of P(x) in the interval (a,b). We then
use X = a-+(b—a)r2, all previous pairs being rejected. ' Again, x chosen
in this way has the correct properties. It is easy to see that

von Neumann rejection can be an efficient process for flat distributions.
Of course, one can also use ordinary numerical methods to calculate

G(x) and its inverse G—l(r), and then store the discrete results in an
array for fine steps in r. Caution must, however, be exercised to
insure that this is done with sufficient accuracy to result in an un-

biased sampling of x.
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Appendix B

NUCLEON-NUCLEON CROSS SECTIONS

B.1 Angular Distributions for Proton-Proton Collisions

We present below the parametrizations for the elastic differential
cross sections for proton-proton collisions in the c¢. m. system. E
is the laboratory kinetic energy in units of 939 MeV. 6O is the c. m.

scattering angle.
do

1 el
Energy range (units of 939 MeV) el - de6s0
0 <E<0.135 0.5 (Isotropic)
0.135 < E < 0.6 (a+bcos%D/2(a+b/5)
where a = 1.949 - 0.327 E
b=9.1E
0.6 < E < 1.065 (atbcos*0) /2 (a+b/5)
where a=-20.97+90.52E~117.25E>+48.02E°
b=150.03-578. 3354734, 67E =299, 46E>
1.065 < E < 6.55 Alcos8|¥ 0 <6 < 30°,
15°< 6 < 180°
A cos"(30%) £(8) 30° < 8 < 150°

£(30°)

where N=~9.68+16.89E-4.348E2+0.4469E3

f(9)=p2 exp{-(2.85 p sine)z}

30.0

5 exp{-5.94 p sinB}

+

and p and s are the c. m. momentum and total c. m. energy squared in

units of 939 MeV. A is determined by the normalization.
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B.2 Angular Distributions for Proton-Neutron Collisions

The parametrizations for the elastic differential cross sections
for proton-neutron collisions in the c. m. system are presented here.
E is the kinetic energy in units of 939 MeV of a neutron striking a

stationary proton. 6 is the scattering angle in the c. m. system.

do
1 el
Energy range (units of 939 MeV) Oel,.dcosﬁ
0 < E <0.015 .5 (Isotropic)
0.015 < E < 0.2 A(d+ecos8)  0<6<90°

A(a+bcosze+ccoslae) 900<6<180O

where a=2.1-0.1624/E+0.04011/E2-0.0004E>

1.57+251. 7E-5021 . E4+41192E°-1. 162x10°E"

b= | 0.015<E<0.1879
0 0.1879<E<0.2
2 3 4
~41.0E+2978.E2~33953.E7+108909.E"0. 0168<E<0. 2
C=
0 0.015<E<0.0168
2 4, 3
d = -0.9+.377/E+0.0184/E°~1.77x10 */E
2 3
e = 182.9E-1408.8E +3066.2E
and
£ w54 f15. a5,
0.2 < E < 0.62 A(etfcos®0) | 0<6<90°

A(a+bc0346+c c05146+d coslooe)

90°<6< -180°
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where a = —0.5+18.26E-41.64E2425. 08E>

b = 37,42-227.38E+512 62E>~380.37E>

¢ = —4.42435.43E~78 . 62E>4+59 . 525>
&= 5.0
e = 1.32+3.95E-6.71E>
£ = 4.1943.34E-44. 86E2+62. 18E°
and At atb/5.+c/15.+d/101.+e+£/3.
0.62 < E < 1.065 (a+bcos ) /2 (atb/5)
where a = —-20.84+88.88E-114. 82E>+47. 08E>
b = 149.74-562.82E+704.13E2~285.13E°
1.065 < E < 6.55 Same as proton-proton

distribution

B.3 Total Interaction Cross Sections for Proton-Proton Collisions

The total interaction cross sections for proton-proton collisions

are presented here as a function of E, the lab kinetic energy in MeV.

Energy Range » - (mb)
0 < E < 40. MeV 5.3107+3088. 5/E-1174.8/E>
40. < E < 310. 22.429-11.148/E+93074. /B>
310. < E < 450. 3.5475+0.05331E+887.37/E
450. < E < 656. ~0.42718+0.066505E
656. < E < 754. 21.110+0.033673E

754. < E < 923. 42.038+0.0059172E
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923 < E < 1217 47.814-0,00034014E

1217 < E < 2200. 50.994-0.0029532E

B.4 Total Interaction Cross Sections for Neutron-Proton Collisions

The total interaction cross sections for neutron-proton collisions

are given below as a function of E, the lab kinetic energy in MeV.

Energy Range 0ot (mb)
0 < E < 40. MeV 6.9466+9069.2/E~5057 . 4/E>
40 < E < 400 27.147+1802.0/E+239380. /B>
400. < E < 656 24.506+0.021484E
656 < E < 754 33.245+0.0081633E
754 < E < 1074 36.573+0.00375E
1074 < E < 1343 35.410+0.0048327E
1343 < E < 1685 38.758+0.0023392E
1685 < E < 2200. 41.389+0.00077821E

B.5 Total Elastic Cross Sections for Nucleon-Nucleon Collisions

We give below the average of the total elastic proton-proton
and proton-neutron cross sections. E is the lab kinetic energy in

MeV.

Energy Range 0, (@b)

0 < E < 300, MeV The average of the proton-proton
- and proton-neutron total inter-
action cross sections. See Secs.
B.3 and B.4.



300 < E

630 < E

1040 < E

1380 < E

2040 < E

<

<

630.

1040

1380

2040

2800
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-34.5454-0.015152E

29.6098-0,00731707E
28.1177-0.0058824E
22,0909-0.00151515E

28.3947-0.00460526E
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Appendix C

KINEMATICS OF THE CASCADE CALCULATION

>
Given a nucleon with momentum Py (in the z direction) scattering
. .+ 3 . . +
from a nucleon with momentum P, (specified by polar coordinates Py
62, and ¢2) through an angle 6 from its initial direction and at an
azimuthal angle ¢, we derive an expression for the resulting momen-
..).
tum k.. The other final state is k,. We transform the final energy

1 2
E(kl) to the c.m. system (denoted by the primed variables), so that

El

YEE) - B k), (c-1)

-> " -
P ™ Py

(E(p)HE(p,))
We writff§° ii = Bkl cosy and solve Eq. C-1 for the momentum k

1
—-%

where § = and vy = (1 - 52)

1

Thus,

+ _ -E'Bcosyt{(E'B cosw)2 - (82 Coszw— l)(E'2~Y2m2)}2
y(8% cos® - 1)

(C-2)

=

where cosy = [pl cos® + pz(cose2 cosb + sin92 sind
> >
x cos(6,-00)] /13, + B,]

and m is the nucleon mass. There may be up to two solutions of kl’

for a given 6 and ¢. No solution exists when the quantity in the
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square roots is negative. Also, since kl is taken to be positive,

only positive solutions of Eq. C-2 are used.

y 1
We now show how to write —

do
o ko

in terms of the angular

1}1lab

distribution f(cosGC o ) in the c.m. system, where

f(cosec m.) dcosGC o 1 . (C-3)

It is convenient to rewrite this in terms of Lorentz invariants as

1 4K 9N
1 1 1 >
T k | E(kl) E(kz)

1 4, ' I | 3t 431
E f(cos@c.m.) § (pl + Py - k k2) d k! d7k

1= (C-4)

where, as before, the primed variables denote the c.m. system.

Transforming to the lab system and carrying out the d3k integral,

2

we obtain

5 -> -> s > -> > 3
l=‘[E f(cosec.m‘) S(E(pl) + E(pz) - E(kl) - E(pl + P, - kl)) d kl

T k' E(ﬁz) E(kl)
- | dcosts,  ag: 142 , (c-5)
kl kl o ko
1|1ab
2
i ffeosd  §
1 do g Tleosd, o
where EE = 3 s T ’
e !
k[ % 27K ylkl E(k)) Bcosy|

and the sum is over the positive solutions of Eq. C-2. B, Y,

and cosy are as previously defined, and k' is the c.m. momentum.
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In the final step of the cascade calculation, it is required

to solve for the momentum p2 given pl, k cosez, and ¢2. The

l’

notation is the same as that given above. We form the invariant

2

0
m

= (pl + pz)

]

2 p
2n” + 2Ekpl) E(PZ) + Zplp2 cose2

2 B B B B B
2m~ + 2E(p1) E(pz) + 2plp2 cos62 ;

where the superscript B denotes the Breit frame defined by 3? + K? = 0.

Therefore,

5B B B
Zpy Py =k

and _ c-7)

>B >B
lp,| = Ik,

by momentum and energy conservation. These vector relations yield

the result
B B B
P, = P, cose2 . (c 8)

E(pg) can be given by the Lorentz transformation to the Breit frame

as

E(pD) = Y(E(®,) - B+ By (c-9)
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.+ Kk
S ! 2.%
where8=m and Yy = (1 -B87)".

We plug Egqs. C-8 and C-9 into Eq. C-6 and solve for P, to obtain

2 4

1
pi =|b p? + a sign(b) (p? - (az—bz)mz)2 /aaz—bz), (C-10)
where
a= (Ek) - EG@ /2,
b=1/2 Py cose2 - 1/2 kl(cose c0362 + sin® sin62 cos(¢—¢é)) s
and

2 & N
p? =—[(E(Pl) - E(kl))2 - (py - kl)z] /4

p; is a solution to Eq. C-6 only if a2 - b2 > 0 and a < 0. There is
no solution if a2 = b2 and a > O, or if the term in the square root

is negative.

do
n g3
n

We also present here an equation for dp , which is

1lab

required in the final step of the cascade calculation. Referring to

Eq. C-5 we write

. -> -> > > > >
dp_E f(cosec'm.) 6(E(pl)+E(p2)—E(kl)—E(pl+p2-kl))

dp, ~=— =
2 .3 v i >
d7k . mk E(kz) E(kl)

E' f(coseC o )
= , + [ E(k,)\. : KG=11}
m k E(kl) 2b+p, (1= 271

2 +
E(pa)

I+ ™
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where, again, E' and k' are the c.m. energy and momentum, b is
defined in Eq. C-10, and the sum is over all positive solutions of

Eq. C—lo .
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TABLE 1
The mean-free-path A and the effective mean-free-path A&
taking into account Pauli blocking of final states for a nucleon with
momentum p (in MeV/c) traversing a Fermi gas with Fermi momentum
PF = 267 MeV/c and density p = 0.138 particles/fm3. These values are

calculated from Egqs. 5-7 and 5-8.

P A A°
390. MeV/c 1.04 fm 3.53 fm
430. 1.24 3.10
470 1.40 2.85
510. 1.62 3.01
550. 1.73 2.93
590. 1.91 3.10
630, 2.03 3.10
670. 2.09 3.05
710. 2.17 3.07
750. 2,21 3,02
790. 2.23 2.97
830. 2.20 2.86
870. 2.20 2.82
910. 3,15 2.74
950. 2.11 2,65
990. 2.05 2.55
1030. 2.01 - 2.48
1070. 1.97 2.43
1110. 1.91 2.33
1150. 1.89 2,91
1190. 1.85 2.26
1230. 1.78 9,93

1270. 1.78 2.18
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Fig. 1. Contours of constant invariant cross section in rapidity

space for the inclusive proton spectra from Ne+Pb at 800 MeV/nucleon
(reprinted with permission from (Nagamiya 1977)). Yp and Yq are the
projectile and target rapidities, respectively. An interesting

feature of this data is the tendency toward symmetry about half

the beam rapidity at large PT. A definition and discussion of rapidity

is found in Sec. 3.5. Refer also to Sec. 1.1.
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Fig. 2. A typical Feynman diagram in quantum electrodynamics. The

) (@)

contribution of the diagram to the wave functions VY 5 ¥

g(C)

, and
extends from the dashed lines to the ends of the arrows and
includes the Fermion propagator at the dashed line. Refer to Sec.

2.1,
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Fig. 3. Several of the lowest order irreducible diagrams in QED.

Refer to Sec. 2.1.
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Fig. 4. Diagrammatic representation of the hard-scattering mechanism

for a nucleus—-nucleus collision. Refer to Sec. 2.2.
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Fig. 5. The hard-scattering diagram for a proton-nucleus collision.

Refer to Sec. 2.2.
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Fig. 6. The electromagnetic form factor in the impulse approximation

showing the kinematics of the Breit frame. Refer to Sec, 2.3.
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Fig. 7. The diagrammatic representation of the scattering of two
pairs of nucleons from a nucleus-nucleus collision. The inclusion
of this diagram results essentially in a change in normalization of

the results of Fig. 4 and Eq. 2-7. Refer to Sec. 2.4 for a detailed

discussion.
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Fig. 8. A diagram which includes final state interactions, These
may play an important role in the scattering process. Refer to

Sec.* 2:5.
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Fig. 9. A flow chart of the computer code for the evaluation of
Eq. 2-7 with pion production using techniques of Monte Carlo simulation.

See Secs. 3.2 and 3.3 for a more complete description.
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Fig. 10. Comparison of the results of the hard-scattering model

using the effective momentum distribution fe of Eq. 3-6 with experiment
for the inclusive proton and pion spectra from collisions at 800 MeV/
nucleon. The data of Nagamiya et al (1977) are plotted as functions

of the laboratory momentum at various lab angles. Shaded portions

of the curves indicate statistical errors in the Monte Carlo evalua-
tion of Eq. 2-7 and arrows indicate the momenta resulting from elastic
nucleon-nucleon scattering at 800 MeV. Refer to Sec. 3.5 for a

detailed discussion.
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Fig. 11. A comparison with experiment (Nagamiya 1977) of the hard-
scattering model in a rapidity plot of the inclusive proton spectra
from Ne+NaF at 800 MeV/nucleon. The results are for the effective
momentum distribution fe (Eq. 3-6) with two values of the slope
parameter Y. Yp and Y are the projectile and target rapidities,
respectively. The values laBeling the curves are the invariant

cross sections in (mb/sr/GeV2 c3). Refer to Sec. 3.5.
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Fig. 12. A plot of the effective momentum distribution fe (Eq. 3-6),
the sharp Fermi distribution fF (Eq. 3-8), and the momentum distribu-
tion fc of many-body exp(S) theory (Zabolitzky 1978) for a normalization

of [f(p)p2 dp = 16. The dashed curve is the fit of Eq. 3-9 to fc.

Refer to Sec. 3.5.
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Fig. 13. A comparison of the inclusive proton and pion spectra for
the three momentum distributions of Fig. 12 in the hard scattering
model for C+C at 800 MeV/nucleon. The results for fe are also com-

pared with experiment in Fig. 10. Refer to Sec. 3.5.
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Fig. 14.. Proton-proton azimuthal correlations by Tanihata et al (1979)
for C+C and C+Pb at 800 MeV/nucleon in the c. m. system. The values
R(;) (Eq. 4-2) which label the curves are the ratios of the number of
protons detected in coincidence with the trigger at azimuthél angle
¢=180o to those at ¢=900. The shaded area represents the region of
momentum space accepted by the .trigger, P and T label the projectile
and target momenta, respectively, and the dashed circle through P

and T denotes the shell populated by free NN elasfic scatterings. A
strong quasi-elastic peak is seen for C+C but does not appear in the

heavier C+Pb system. See Sec. 4.2 for further discussion.
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Fig. 15. Comparison of the hard-scattering model to the experimental
results (Tanihata 1979) for the proton-proton azimuthal correlations of
C+C at 800 MEV/A.. For this plot the spectrometer is fixed at 40°
corresponding to a slice through the peak in the contour curves of

Fig. 14, and the momentum is in the lab. The theoretical curves

are calculated from Eq. 4-5 for the momentum distributions fe (Eq. 3-6)
and fc (Eq. 3-9). Normalization of these curves to the data allows

an estimate of the single-scattering component, Refer to Sec. 4.3 for

a discussion of the analysis.
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Fig. 16. Comparison with experiment of the results of the multiple
collision model for inclusive proton spectra at 180° from p + Li at
600 MeV. The various curves are the.contribution to the cross-section
from protons emitted after the nth step in the cascade. Straight

lines are drawn between the calculated points to guide the eye. The

key is: n=3 ....-;4 . ;5 ;6 or ;7_____;
and the total — . Refer to Sec. 5.5 for a discussion of the

results.
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Fig. 17. The same as Fig, 16 for p + C, Refer to Sec. 5.5,
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Fig. 18. The same as Fig. 16 for p + Cu. Here the experimental

points are taken from Frankel gE_g}_(1976). Refer to Sec. 5.5.
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Fig. 19. The same as Fig. 16 for p + Ta. The experimental values
are taken from Frankel et al (1976) and Brody (1977). Refer to

Sec. 5.5.
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