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ABSTRACT

This thesis explores the asymptotic behavior of Conformal Field Theory (CFT) data
at high energies using thermal effective action methods. Well-established results
from two dimensions like Cardy formula, OPE coefficient asymptotics, and spin-

refined partition function are extended to higher-dimensional theories.

In the first part (Chapter 2), we study the asymptotic density of states formula to
CFTs with continuous symmetries. Building on recent work that established the
formula for finite groups, we derive universal results for compact Lie groups G.
Together with checking on various theories, the formula is explained with thermal

effective action.

In the second part (Chapter 3), we develop the systematic exploration of thermal
effective action methods for Cardy formula for the general dimension. Additionally,
by introducing the "hot spot hypothesis," shrinking circles in complex geometries
act as local thermal circles, and we extends the applicability of thermal effective
action from simple fibrated manifolds to diverse geometries with extreme focusing

structures, opening new avenues for computing CFT observables.

In the third part (Chapter 4), we uncover a fractal-like structure in spin-refined
partition functions in higher dimension using a cutting and gluing technique, de-
composing the geometry into successive quotients and identifying Kaluza-Klein
vortex defects. This reveals how thermal effective action methods remain robust

even for discrete geometries and rational rotations.

Our methods are purely field-theoretic and apply to both holographic and non-
holographic theories. The results have implications for understanding black hole
microstates in AdS/CFT, the statistics of OPE coefficients, and potential extensions
of bootstrap axioms beyond traditional crossing symmetry. The thermal effective
action framework studied here provides a systematic approach to computing high-
energy asymptotics in CFTs, opening new avenues for exploring the structure of

conformal field theories in dimensions greater than two.
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Chapter 1

INTRODUCTION

Conformal Field Theory (CFT) is a special type of Quantum Field Theory that
possesses strong symmetry, conformal symmetry. Because of this symmetry, we
can write down all correlation functions once the "CFT data" are given: the scaling
dimensions and charges of primary operators, and the OPE coefficients. Further-
more, checking consistency conditions of the theory imposes strong constraints on
this data [[194]].

Crossing symmetry is a representative consistency condition concerning the as-
sociativity of the Operator Product Expansion (OPE). Although the concept is
simple, the constraints it provides are deep and their constraining power has not
been exhausted. As researchers overcome more technical difficulties in checking
this consistency condition, it yields increasingly powerful constraints on CFT data,
including that of the critical 3D Ising model [60} 87, 149].

Another famous consistency condition is modular invariance in 2D. The partition
function of a CFT on the torus remains unchanged regardless of how we set the time
direction. Modular invariance in 2D CFT fundamentally constrains local data. For
example, it determines the spectrum of minimal models and provides bounds on

physical quantities such as the Hellerman bound and HKS bound [[146].

The S-transformation of modular invariance is particularly useful for obtaining
high-energy asymptotic data like the Cardy formula and OPE coefficients in certain
limits. This is because it can translate high-temperature conditions from a Laplace-
transformed perspective to the domination of a single state or single Virasoro block.
How to perform similar analyses for higher-dimensional (d>3) CFTs has not been
clearly understood, and my collaboration during graduate study was a journey to

answer this question.

In Chapter[2] we further tested the high-energy asymptotic formula (2.1)) conjectured
in [102], which describes the density of states for given energy and charges under
symmetry. We extended the conjecture to continuous symmetry as shown in equation
(2.4), and we checked the formula on theories invariant under both U (1) symmetry
and non-abelian symmetry using free theory and holographic CFT. In this work, we

first used the thermal effective action to explore asymptotic CFT data.
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The concept of the thermal effective action was explained in [[14,/127]]. If a CFT does
not have any protected gapless modes, we generically do not expect compactification
of the CFT on a thermal circle to be gapless. The compactified theory typically has

a NONZero mass gap mg,p o< T and a finite correlation length & = 1/mgqp.

On the other hand, when we couple a gapped quantum field theory to a background
field, the partition function of the theory has an effective description using a local ef-
fective action of the background field. Through these two steps, we can approximate
the partition function of a metric-coupled CFT in d dimensions with a thermal circle
using a local effective action in d — 1 dimensions. We call this the thermal effective
action. See also [[192] and the introduction sections of Chapter [3]and Chapter ] for

details.

In Chapter 3] we calculate the partition function of CFTs on various manifolds using
the thermal effective action, which gave us universal formulas for the asymptotics.
We establish that the density of states follows the equation (3.74), with systematic
corrections from higher-derivative terms. For heavy-heavy-heavy OPE coefficients,
we construct a higher-dimensional analog of the genus-2 Riemann surface by gluing
two three-punctured spheres S¢ with cylinders. Through analysis of "hot spots"
where thermal circles shrink, we derive asymptotic formulas for squared OPE co-
efficients, finding the equation (3.243). We also determine universal formulas for

thermal one-point functions of heavy operators.

In Chapter ] we develop a cutting and gluing technique to compute spin-refined
partition functions, revealing an intricate fractal-like structure in the partition func-
tion Z(, 6) as a function of angular fugacity. Near every rational angle 8 = 27p/q,
the partition function exhibits universal asymptotic behavior with the free energy

scaling as f/q% !



Chapter 2

UNIVERSAL FORMULA FOR THE DENSITY OF STATES
WITH CONTINUOUS SYMMETRY

2.1 Introduction

In [102], a simple formula is derived for the density of black hole microstates in
theory with finite group gauge symmetry G. The formula states that, if we pick a
random state from a uniform distribution of all states of the black hole, the probability

of it being in a unitary irreducible representation R of G is

(dimR)?
Pr=——, (2.1)
G
where |G| is the number of elements in G so that
> Pr=1. (2.2)
R

It was also conjectured in the paper that the formula applies to any conformal field
theory (CFT) on a sphere with finite group global symmetry G. This generalizes
the result of [[174] from two dimensions to arbitrary dimensions. The conjecture is
verified in the context of free field theories and weakly coupled theories in [42]], and
a general derivation is presented in [160]] using the result of [54]]. See also [66] for

earlier results on black holes with discrete gauge charges in specific models.

In this paper, we generalize this result to the case where G is a compact Lie group.
Since |G| is infinite and G has infinitely many unitary irreducible representations,
equation (2.1)) needs modifications. We show that, at high temperature and on a com-
pact Cauchy surface, the probability P for a random state to be in a representation

R of G 1is given by

dimG/2
) exp [——CZ(R) +] , (2.3)

Pk = (dim R)? (de_l
where T is the temperature, d is the dimensions of the spacetime of the CFT,
c2(R) is the second Casimir of R, and - - - represents terms subleading in 1/7". An
important point is that b is a positive constant independent of R and 7. For small
representations, where ¢ (R) < T9!, the R-dependence of Py is captured by the
(dim R)? factor as in the finite group case . For large representations where

c2(R) > T4!, Py decays exponentially.



We derive equation (2.3) by calculating the twisted partition function,
2(T.8) = Tr|U(g) |, 24)

where the trace is taken over the CFT Hilbert space, U(g) is the action of g € G
on the Hilbert space, 8 = 1/T, and H is the Hamiltonian. When g = 1, it is the

standard partition function with the universal large 7' behavior,
Z(T, g =1) = exp (a Té 4. ) : (2.5)
for some constant a. In two dimensions, it is related to the Cardy formula with
a=n*(cL+cR)/6, (2.6)

where ¢, and cy are the central charges in the left and right movers.

We employ the spurion analysis for the theory obtained by dimensional reduction of
the CFT on the thermal circle and show that the g dependence of Z(T', g) is of the
form

Z(T,g =€) =exp|aT?! - ZTd_l(qﬁ, o)+, 2.7)

where the inner product (¢, ¢) is given by the Killing form. In this description,
the constant b is related to the tension of the domain wall which generates the g-
twisted sector and therefore is positive. We also verify this formula by calculating
b for free field theories and for holographic conformal field theories. Since the
twisted partition function Z(7, g) is a class function of g, i.e., invariant under the
conjugation g — hgh~! for any 4 € G, we can expand Z(T, g) in characters yz(g)
of unitary irreducible representations of G. We calculate the coefficients for the
expansion of equation and obtain

A )dim G/2

Z(T,9)/Z(T,1) = ( e (k) | ) |

St
(2.8)

D, dim R xr(g) exp (—
R

Our main result (2.3) then follows.

For d = 1, equation (2.3)) is derived for BF gauge theory coupled to Jackiw—
Teitelboim gravity [[129]]. For d = 2, the formula for G = U(1) is derived using
the modular invariance of 2D CFTs [174]. Our results generalize this to d > 3
and to non-abelian G. The exponential suppression factor in equation (2.7)) is also
mentioned for free field theories in a note added to [42]]. We note that the right-hand

side of equation (2.8) is in the same form as that of the partition function of the
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two-dimensional Yang—Mills theory with gauge group G and the coupling constant
proportional to 1/ T(d-1D/2 (30,190, 166, 184, 205]. There may also be a connection
between our results and the recent study of the entanglement entropy in the presence

of a global symmetry [S3].

In the holographic derivation of equation (2.8)), we use the Einstein gravity coupled
to the Yang—Mills theory with gauge group G and a finite number of matter fields in
anti-de Sitter space (AdS). When G is non-abelian, there are two types of relevant
bulk geometries besides the thermal AdS: black holes with and without non-abelian
hair. Both bulk geometries obey the same boundary condition at the infinity of AdS.
However, the former has genuinely non-abelian configurations of the gauge field,
while the gauge field in the latter is commutative. There is extensive literature on
such solutions (see [202} [204]] for some reviews). One of the outstanding questions
in this area has been whether solutions with non-abelian hair are thermodynamically
stable. As we will show in this paper, the two types of solutions, with and without
non-abelian hair, converge in the high temperature limit 7 — co. We compute the
1/T corrections to their thermodynamical quantities for purely electric solutions
and show that the black holes with non-abelian hair have lower free energies. This
determines that the black holes with non-abelian hair are thermodynamically more
stable.

The coeflicients a and b computed for free field theories and holographic CFTs
are summarized in Table 2.1] below. When we have N free scalars or N free
fermions, both a and b are proportional to N. In holographic CFTs, both a and b are
proportional to £47! /G assuming Gy ~ e?, where Gy is the Newton’s constant, e
is the gauge coupling constant, and ¢ is the curvature radius of AdS. Thus, in both
the free field theories and holographic CFTs, a and b are proportional to the number

of degrees of freedom of the system.



a b
A free scalar with G = U(1) 2¢(d) 47(d -2)
A free scalar in . dim p
a representation p of G 2¢(d) dim p 4(d=2) c2(p) dim G
d=2: ¢(2)=nr%/6 1
A free spinor with G = U(1)
d=3: 32(3) 161log?2
d-1 d—1 d-2 d—1
. 4 Wd_1€ 4r 4(d - 2)Wd_1€
Holographic CFT (7) W (7) 2

Table 2.1: The coefficients a and b in equation (2.5) for a variety of CFTs. For the
free scalar, the results are for d > 3. w,_ is the area of the unit (d — 1)-sphere.

The organization of this paper is as follows. In Section [2.2] we give a general
argument for the large 7 behavior in equation (2.7) using the spurion analysis for
the theory obtained by dimensional reduction of the CFT on the thermal circle. In
Section [2.4] we derive the large T behavior when G = U(1) for free field theories
and holographic CFTs. In Section [2.5] we generalize these results to a non-abelian
group G. The holographic dual in this case involves the Yang—Mills theory with
gauge group G, and we need to consider two types of black hole solutions: those
with and without non-abelian hair. We show that the two solutions converge at high
temperature and reproduce the behavior in equation (2.8)). In Section[2.6] we discuss
the theormodynamical stability of the black hole with non-abelian hair.

2.2 Spurion analysis

Consider a d-dimensional CFT on a (d — 1)-dimensional compact Cauchy surface
X4—1 times the thermal circle S é at temperature 7 = 1/5. We assume that the CFT is
invariant under a compact Lie group G. To calculate the twisted partition function
(2.4), we use the approach of [14, 75, [126] and couple the CFT to a background
gauge field A with gauge group Gﬂ Upon dimensional reduction on S',, dynamical
degrees of freedom acquire thermal masses. The low energy theory on X;_; is
then described by a gauge field a = Az, | coupled to a scalar field ¢ in the adjoint

representation of G, which is related to the holonomy of the gauge field around the

'We thank David Simmons-Duffin for discussion on this approach.



thermal circle as

g =exp =Y. (2.9)

iij
Sp

The low energy effective Lagrangian in (d — 1) dimensions has the derivative

expansion,
L=trag [T V() + T (D) + gy FP+-++ ], (2.10)

where the trace is taken over the adjoint representation, the scalar potential TrV (g)
is a class function of g as required by gauge invariance in d dimensions, D is the
covariant derivative, F = da+a?, and - - - are terms suppressed by 1/7. The twisted
partition function Z(T, g) is obtained by setting g = ¢’ to be constant and a = 0.
Therefore, its g-dependence is captured by the potential term TrV (g) in the effective

Lagrangian as

Z(T, )/ Z(T, 1) = exp (—trAdj [T V() vol(Zy_1)] +-- ) . @.11)

Now, we relate the potential TrV (g) to the tension of the domain wall which generates
the g-twisted sector in the CFT Hilbert space. To do so, we note that the Lagrangian
density (2.10) is of the same form for any smooth compact manifold X,_;, provided
we use the metric of X;_; to write £ in a diffeomorphism invariant way. In particular,
we can choose ;1 = S x X, 5, with S! having unit circumference and the thermal
boundary condition, and compute V(g) for this geometry. By exchanging the
thermal circle S}_} with S!, we can interpret the twisted partition function Z(T, g)
as the untwisted partition function in the g-twisted sector on § }), X 2g-o with the
twist along the S}3 direction [189]. Since we are computing the partition function
of the CFT, we can rescale the spacetime so that the thermal circle S}), has unit
circumference and the volume of §' x %, 5 is proportional to 747!, In the limit
of T — oo, the exponent Tr [T9"! V(g) vol(Z4_1)] + - - - of equation can be
interpreted as the ground state energy of the g-twisted sector on S/]‘g X X 4-7 times the

circumference T of the rescaled S!.

Since we expect that the ground state energy of the g-twisted sector with g # 1
is higher than that of the untwisted ground state, TrV(g) should have the global

minimum at g = 1. Therefore, in the high temperature limit,

Z(T,g)]Z(T,1) - C(T)d6(g,1), T — oo, (2.12)
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for some C(T), where 6(g, 1) is the delta-function on the group manifold G localized

at g = 1. Since the delta-function can be expanded in terms of characters as
5(8.1) = ) dimR - xr(g). (2.13)
R

where the sum is over unitary irreducible representations of G and we normalized
the volume of G to be 1, we conclude that the probability P for a random state to
be in the representation R is proportional to (dim R)?, for fixed R in the limit of
T — co. This explains the (dim R)? factor in equation (2.3).

To reproduce the exp [—cz(R) /(b Td_l)] factor in equation (2.3)), we expand the
potential TrV(g) around g = 1. Since it is a class function of g, the expansion
should take the form,

tragj [Td_1 V(g =e"?) Vol(Zd_])] = constant + gTd_l (P, ) +--- . (2.14)

The coefficient » must be non-negative since the minimum of TrV(g) is at g = 1.
This reproduces equation (2.7). As we will show in Section 4.4, this is equivalent
to equation (2.8)) and therefore to equation (2.3).

2.3 Expansion in characters
We have shown that the twisted partition function has the universal high temperature

behavior,

Z(T,g =€) /Z(T,1) = exp —ngH((p, Py +---|. (2.15)

Since it is a class function of g, we can expand it in characters yg(g). The purpose

of this section is to find the expansion coefficients and derive equation (2.8§).

To do so, we use the fact that the left-hand side of (2.15]) approximately solves the

heat equation for 7 > 1 as

ot o\ (o1t G2 7T, 9) 0 016
d—10T Ar Z(T, )| 7 '
and obeys the initial condition,
_1,dimG/2
4r Z(T,1) , T '

Here A is the Laplace operator on the group manifold G. Since each character is an

eigenstate of the Laplace operator,

Axr(g) = —c2(R)xr(g), (2.18)
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and since characters make an orthonormal basis of class functions, { yz (g)e >R/ (b7 IR

gives the complete set of solutions to the heat equation. Therefore, we can expand,

pTd-1\MMC2 7 (T g ¢>(R)
( ir ) Z(T.1) ; dr xr(8) exp (_szd—l)'

To determine the expansion coefficient dg, we use the initial condition (2.17)), which

(2.19)

can be written as

> drxr(s) = 6(g.1). (2.20)
3
Since §(g, 1) = X pdim R - yg(g), the expansion coeflicients are determined as
dgr =dimR, (2.21)
and we obtain
dimG/2
: c2(R)
Z(T,g)/Z(T,1) = (W) dimR - yg(g) exp (_de—l +-- ) )

R
(2.22)

2.4 Examples 1: U(1) symmetry

In the remainder of the paper, we will study free field theories and holographic CFTs
on S,llg x 8971 and calculate the coefficient b explicitly. The circumference of the
thermal circle S /13 is B, and the radius of the Cauchy surface §9-1 is normalized to
be 1.

We begin by studying CFTs with G = U(1). Each state in the Hilbert space can be

labeled by a charge Q, and the conjectured formula takes the form,

4nb 02 1 Q7
PQ: mexp [_de—l (1+O(T, TZd—4 . (223)

We verify this by calculating the grand canonical partition function with an imagi-

nary chemical potential u = iT9,
Z(T,u = iT) = Tr [e—ffﬁ”@@] . (2.24)

We assume that Q is quantized in such a way that the field with the smallest non-zero
U(1) charge has charge 1. In the limit of large T and small u, we show

Z(T, 1) = exp [aTd_l (1 +0 (%)) + ZTH,R (1 +0 (,ﬂ, %))] . (2.25)

for some constants a and b. The Fourier transformation of this formula with respect

to 6 = —iBu gives the canonical partition function, which leads to equation (2.23).
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Free field theory

Free scalar theories:

Consider a massless complex free scalar field ¢ in d spacetime dimensionsE] We
normalize the U(1) generator Q such that ¢ has charge 1. For such a theory on
Rx S9!, the grand canonical partition function with an imaginary chemical potential

is given by [165],

(2.26)

—n,Bd 2 (1 _ e—Znﬁ)
COS(n@)m] .

scalar(T M= ZTH) = CXp [Z

As we are interested in the high temperature limit, that is, when 6 = —iSu is small,

we first expand the exponent in powers of 6 as

Zscatar (T, pr) = exp Z CkQZk (2.27)
k=0
where the coefficient Cy is given by
(=D* 2k-1 (42 5 (1—e?P)
W= 2.28
=@ Z (= e ) 229

At high temperature, one might think that the sum over »n in equation (2.28)) can be

approximated by an integral over x = nf3 as

(=D*
(Zk)’

a2, (1—e™)

Cr ~
¢ (1—ev)d’

Tk / fx)dx, f(x)=x*"Te” (2.29)

However, we need to be careful when 2k < d — 1 as f(x) is singular at x = 0 and
the integral approximation will fail when x is small. To take this into account, we
introduce a cutoff at some small value xo and use the integral approximation only for
x > xo. The terms in the summation in equation are not converted to integral
form when 7 is such that nf8 < x¢. Taking this singular behavior into account, the

correct approximation is

xoT

(=D* ®
Cr ~ o 274~ IZ 2k=d T2k/x0 dxf(x)). (2.30)

2We generally assume that 4 > 3 due to certain subtleties with massless scalar fields in two and
three dimensions which we discuss later.
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It is straightforward to show that equation (2.30)) is independent of x(, for large values
of T. In this way, we find that the coefficients C; can be approximated as

(—l)k /DO 2k—1 —d=2 (1 - e—2x) ok
d T ———= T 2k > d, 231
ot \Jo T Umed (2.31a)
—_1)k
((Zk;' (210gT+2y+210gx0
' N (e 2de=d-1, (231b)
~ + dx x2! —a2xlTe ) 74-1
Ck~ /xo X X e (l—e’x)d
(-D¥ _
(Zk)‘Zg(d—Zk)Td !
k—d 0o _ 2k <d-1. (2.31¢)
3 (-D* gk +/ di 21— %52x (1-e)
(2k)! d-2k-1"J, (1-e—x)d

The constant y appearing in equation (2.31b)) is the Euler—Mascheroni constant. At
6 = 0, the partition function is Zsaar(7,0) = €0, Since equation gives
Co = 2£(d) T4"!, the coefficient a in equation (2.3) is given by a = 2£(d) for the

massless free scalar.

For d > 3, equation gives
Ci~(d-2)T% !, (2.32)

where we ignore the second term of equation (2.31¢)), since it is subleading in 1/7.

Thus we find that the grand canonical partition function is
Zseatar(T. 1) = exp [{(d = 2) T (14 O, 1/T)) | Zcarae(T,0) . (2.33)

In summary, the grand canonical partition function of the massless free complex
scalar field theory in d > 3 demonstrates the universal behavior at high temperature
as in equation (2.25)), with constants

a=2¢(d), b=4r(d-2). (2.34)

When d = 3, we use equation (2.3Tb)) to obtain

Zscatar (T, 1) ~ exp [(log T +2.96351..)p* (1 + O(u?, 1/T))| Zscatar (T, 0) .
(2.35)
However, the massless scalar field at d = 3 does not make sense at finite temperature
since it has the same infrared issue as that of the massless scalar field at d = 2. We
believe that the appearance of the log 7 singularity is a reflection of the infrared

pathology in this case.



12

Free spinor theories:

For the massless scalar field, we cannot consider theories in d = 2,3 due to the
infrared problem. As it is good to also have an example in these dimensions, we

consider the theory of a free spinor field.

In two dimensions, the grand canonical partition function of a free complex Weyl

spinor is given by

Zepinor(T- pt = T6) = [ [ (1 + e P02e®) (1 4+ P02 7). (2.36)

n=1

We can transform this into the plethystic form as

Zspinor (T, u = iT0) = exp Z (log(l + e‘ﬂ(”_%)eie) +log(1 + e_ﬁ(”_%)e_ie))]

n:l

=exp |- Z ( 1) ( —,Bm(n—%)eime+€—,Bm(n—%)e—im6)]

_exp ’ Z (-nHm cos(m@)] -

sinh -5

m=1

(2.37)

As in the free scalar case, we expand the exponent of the partition function in 6 as

Zupinor(T.ip) = exp| ) D6 (2.38)
k=0
for some coeflicients D;. We find that
1 1 < 2 2n—1
. Z (—1)" N [ L . (239
2 smh 2 o sinh(nf3) sinh (% ,3)

where we split the series into m = 2n and m = 2n — 1 terms and sum them
as pairs, which is valid as D converges due to the hyperbolic sine function in
the denominator. At high temperature, we can approximate the summation as an
integration over x = nf:

2

T2 o0 T « ’ T = l
- i dx(f(x+pB) - f(x)) = _Z/O dx f'(x)p ~ 4’ fx) = sinhx
(2.40)
Similarly,
po—- 3 V"
0= = (2.41)

=1 M sinh ==
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In this case, we need the cutoff x( to covert the sum into an integral as

Y -pm T o
Doy =~ -2T —_— - = dxg'(x) ~ £(2)T, = , 242
o= [ SO = e ee)

() £Q2)

mZ 2 "

where we used the zeta function identity — ;>

Let us turn to d = 3, where the grand canonical partition function of the free spinor

theory is
Zspinor(T7/l — lTQ) — n(l + e—ﬁ(l’l+1)ei9)2n+l(1 + e—ﬁ(n+1)e—i0)2n+1 (243)
n=0

1 _mp coth B
= exp Z( ) &3 cos(m0)| . (2.44)
sthﬁ

m=1

Expanding the exponent in powers of 8, we find the coefficients to be

& m « , _xcoth3
Z( 1) 3,32+_/x0 dx f'(x) = 3£(3), f(x)_)_ce 2s1nh’§“’
XOT ® , ) _xcoth3
Z( 1)m—+—/ dxg'(x) ~ 4T log2, g(x) =xe 2——,
X0 sinh 5
(2.45)
where we used zeta function identities >, % = log2 and }_ ( l)m =
~303).

Combining these results, we find

1
exp |-—u"(1+0 1/T T,0 d=2, (246a
Zspinor(T, p) = P 4T/J ( (,U / ))] Zspinor ) ( )

exp [41og2 g (1 + 04, 1/T))| Zopinor(T,0) d =3, (2.46b)
where the partition functions at Su = 0 for both dimensions are given by

LT g=2, (2.46¢)

Zspinor(T) = Zspinor (T, 0) »
spinor spinor 634(3)T2 d=13. (2.46d)

Equations and (2.46d) show that the free Weyl spinor theory also demon-
strates the universal behavior in equation (2.25) at high tempearture with the coef-

ficients )

a:{(2):%, b=1, (2.47)
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ford =2, and
a=3,03), b=16log2, (2.48)

for d = 3. For d = 2, the Cardy formula gives a = 7%(cz + cg)/6, and the above
value of a is consistent with (c¢z,cg) = (1,0) for the complex Weyl spinor. As
expected, the result at d = 3 is free from the log T singularity we saw for the free
scalar field in equation (2.33).

Holographic CFT

We now consider a holographic CFT, whose bulk theory is described at low energy
in terms of the Einstein gravity coupled to the Maxwell field and a finite number of
matter fields in AdS44;. The action of the theory is given by

I:/dd”x\/—_g[ml (R+d(d_1))— Ly

nGn £2 42

, (2.49)

where - - - represents matter field terms. The curvature radius ¢ is related to the
cosmological constant as A = —d(d — 1)/2¢%. To calculate the grand canonical
partition function, we impose the boundary condition that the boundary geometry

is Sllg x 971 and the gauge field A has the holonomy around the thermal circle S}g at

i$ A
Sp

where u is identified with the chemical potential of the boundary CFT. We solve

the boundary given by

exp = ePH (2.50)

the Einstein and Maxwell equations assuming the spherical symmetry on S¢~! and

setting all other matter fields to zero.

There are two classical solutions under these conditions; one is the thermal AdS and
the other is the AdS Reissner—Nordstrom (RN) black hole. At high temperature,
the RN solution is dominant [56, [57]. The RN solution can be written in static

coordinates as

dr? m vg? 2
MZ:VUﬁh2+VG5+ﬂinP Vi =1-—Z+—m+ 5 (251
| d-1 q q 4nGy
A:—,/ ~ dr, v= : 2.51b
: 2(d -2) (1’1‘31_2 el e? ( )

where m and ¢ are related to the ADM mass and the charge of the black hole [56,
155,|183]]. This solution has its ADM mass, charge, temperature, and entropy given
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by

(d=Dwa-1 4 vg? r%]

M=~ """ 1 -1, 2.52

167G N " ¥ rad=4 ¥ 12 (2520)

0=2d-1)(d-2) (Sv;”gjv) vg, (2.52b)
d-2 vg? rgd

T = - 2.52
Arry ( rlzf‘“) Tz (2.52¢)

S = %;r[‘fl_l, (2.52d)

where w,_1 is the surface area of the unit (d — 1)-sphere, and the horizon radius ry
is the largest real positive root of V() [1} |11, 57, |106]. The chemical potential of
the black hole system is related to the charge Q as

d-1 g e? 0
= = ) 2.53
“EN2@=D) 2 T - Dwa 2 (23

By the AdS/CFT correspondence, the grand canonical partition function of the CFT

can be calculated using the Euclidean action for this solution.

At high temperature, the horizon radius ry of the stable black hole grows linearly

in the temperature as

rad d—2vq*t?
T~ 1-X), X=—— , 2.54
4> ( ) d rlzid—2 2.54)

where we keep X as small which is equivalent to small || approximation in free field
calculation. The grand potential (7, u) is related to the grant canonical partition
function as

Zaas (T, p) = e PPTH, (2.55)

and is given by the Euclidean action of the RN solution,

ST, 1) = M ~TS — uQ ~ Warh (L d (2.56)
= He>enoyee " Ta-2")" '
Using
Anl> T d(d-2)> vu? 5
= - = +0(X"), 2.57
T X s -1 12 o) (2.57)
we find

d-2
wa1(4nt?/d)? _, |, wa1(d -2) (4nl? 2d—3

—BO(T, p) ~ T + T, (2.58)

BO(T, 1) 167G L2 22 d H
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Rescaling the temperature as {7 — T, the grand canonical partition function of the

dual CFT on the sphere with unit radius is given by

ar\ e L d(d =20,
Z T,u) =~ | — —T + ——————pu T, (2.59
crr(T, p) ~ exp [Wd 1 ( p ) (4dGN e M ) (2.59)
This determines the coefficients a and b of equation (2.23) in this case as
A\ 0! N T2 4(d - 2wy, 097! 200
a=|— _— =|— . .
d 4dGn d e2

2.5 Examples 2: non-abelian symmetry

When G is non-abelian, we utlize the fact that the twisted partition function Z(7, g)
is a class function invariant under the conjugation g — hgh~' for any 4. This allows
us to restrict g to the maximum torus of G and simplify our calculation. In both free
field theories and holographic CFTs, we find

Z(T,g =€) =exp —gTd_l(gb, Py +---|Z(T,g = 1), (2.61)

where g = e/ and the constant b depends on the theory but not on g or 7. In
particular, the partition function Z(7, g) is peaked at g = 1. In fact, it is related
to a solution to the heat equation on the group manifold G with the diffusion time
related to 1/7¢'. This will enable us to expand the partition function in characters
of G to obtain equation (2.8§).

Massless free scalar

Suppose a compact Lie group G has a faithful unitary representation p with dim p =
n. Consider n massless scalar fields in d dimensions. Though the theory has a
larger symmetry of O(n), we focus on its G subgroup. We would like to calculate

the finite temperature partition function of this theory with an insertion of g € G as

Z(T,g) = Tr [U(g)e-ﬁﬁ ] . (2.62)

Since Z(T, g) is a class function of g, without loss of generality, g can be restricted
to the maxim torus of G. In this case, U(g) acts as a multiplication of a phase factor
on each of the scalar fields. We can then apply equation for G = U(1) to each
scalar field and assemble the results to obtain

i e~ T8 xp(8") + x5 (") (1 — e~21B)

- 3 =) d] : (2.63)

Zscalar(T, g) = CXp [

n=1
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where y,, is the character of the representation p and y/ is that for its conjugate.
Writing g = ¢ and expanding in powers of ¢,

Xp(8") +Xp(g”)
2

(1—n¢ ;. )

dim
=dimp - Cz(p)<¢ pyn’ + - (2.64)

where tr,, is the trace over the representation p and (@, ¢) = trag; ¢>. We can repeat
the calculation of G = U(1) in Section [2.4]to obtain

(dim p

d—
—{d=-2) T

ZscalaI(T»g = 1),
(2.65)

Zscatar (T, ei¢) ~ €Xp CZ(p) <¢ ¢> +-

where we assumed d > 3.

Holographic CFT

Consider a holographic CFT in d dimensions, whose bulk theory is described in low
energy in terms of the Einstein gravity coupled to the Yang-Mills field with gauge
group G and a finite number of matter fields in AdS,4;. The action of the theory is
given by

1 d(d 1
I:‘/dd“x\/—_g[mﬂGN (R (12 )) ez(F,F)+--- , (2.66)

where F' is in the Lie algebra of gauge group G and - -- represents matter field

terms. To calculate the grand canonical partition function, we impose the boundary
condition that the boundary geometry is § [13 x S9! and the gauge field A, has the

holonomy around the thermal circle § /13 as

ij{A
Sp

We assume that the solution is spherically symmetric on S?~!, and all the other

P exp =Pt =g. (2.67)

matter fields are set to zero. We calculate the field strength and the stress-energy

tensor as

1
Fuy=0,A, - 0,A, —i[An Ay, Ty == (<FW,F“> gﬂV(Fa ,Fy | .
(2.68)

There are three classical solutions under these conditions. The first is the thermal

AdS,

2

A 2
dsZ:(l——r)dT2+

3 5+, A=-ipdr. (2.69)
1 = A2
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The second makes use of the U(1) RN solution (2Z.49), ds?

chemical potential u (1), by the substitution,

o ¢
(¢, py1/2 7 (¢, PV

Since H commutes with itself, the Yang-Mills equation for A, reduces to the
1/2 ;

U and a, with the

ds* = ds%](l), A, = M= ———5Hu()- (2.70)

Maxwell equations for a,,. The rescaling by (¢, ¢)” "/~ is needed to match the stress

energy tensors of both systems.

The third is a genuinely non-abelian solution. A dyonic black hole solution with
SU(N) hair is known in AdS4 [191]. Here, we construct a purely electric black hole
solution with SU(2) hair with the following ansatz [28]]

dr 2
ds® = —u(r)o(r)?dt> + — + r>do* + r’sin’0d¢* ,

u(r)
2m(r)  Ar?
d(r) =1 A2 2.71)
r 3
A, = h(r)%dt + w(r)T—zldH + (cot@% + w(r)%) $infde ,

where we use Pauli matrices 7 5 3 as generators of the Lie algebra of SU(2) and the
inner product is defined as twice the trace of two elements’ multiplication. The AdS
boundary condition requires o (r — oo) = 1. The functions, o (r), m(r), h(r), and
w(r), are determined by numerically solving the Einstein Yang-Mills equations,
which take the form [28]],

w2, (2.72a)
o r ,ur2
l 1 _
( ) - Wl - W) _ 0 (2.72b)
o2 ur
’ w? 1 242
m —v(20_2 + =y +,LtW + rz(l—w ), (2.72¢)
2 7”2 2 2h2
U':v( TIv_ 4 Wz ) (2.72d)
r o ucr

where the prime denotes differentiation with respect to r. The horizon radius rg is

defined as the largest solution to u(r) = 0 and v = 471G y /€.

Since we have the three possible solutions, we should determine which one gives
the dominant contribution to the partition function. Above the Hawking—Page
temperature, we should consider either the second or the third solution. It turns

out that the two solutions converge at high temperature. This is because, as the
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temperature rises, the horizon grows and approaches the AdS boundary, where the
interaction terms in the bulk equations of motion are suppressed. This expectation

will be confirmed by the numerical computation below.

In the asymptotically AdS case, there are stable hairy black hole solutions, and those
with SU(N) hair have been extensively studied [28, [191, 201-203]]. In particular,
Bjoraker and Hosotani in [28] discussed the existence of a purely electric SU(2)
charged black hole in AdS4, which is of our interest, but it has not been constructed

explicitly.

Letus construct the genuinely non-abelian solution with SU (2) purely electric hair in
AdS, at high temperature. We determine o (r), m(r), h(r), and w(r) by integrating
equations from the horizon to the infinity. Since a thermodynamically stable
black hole has a large horizon at high temperature, we can expand them in the inverse

powers of ry as

h(r) = ruho(F) + rg' i (F) + O (rif),  m(r) = rying(7) + ramy (7) + O(1),
o(r) = L+ra1(F) +0(ry), w(r) = wo(F) + rifwi(F) + O(ri),
u(r) = rifo + i1 + O(rg)),

(2.73)

where ¥ = r/ry. Once we substitute this expansion into Einstein Yang—Mills
equations (2.72), and solve the leading order equations, we get leading value of the

functions:
2 2
-A+3vh}; ~ vhi
6 2r

ho(F) = Iy, (1 - %) o (7) =

) , op(F) =1, (2.74)

and Wy is the solution of

N 3w F(F—2) - AF(1+27°) O fr? _
0=wo+— — wo + — wo.
r(r — 1)(—3vh}12 - AT +72+73)) (3vh’Hz+A(r +72+73))2
(2.75)
_dh(r) dh

~

Here, h}{ = = lr=ry ;}r@ |7=1. Then, the leading thermodynamic quantities of
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the black hole with non-abelian hair are given by [28],

4 , T rg— o A , T
0r = ()2 33 LS e_z,,;th;, (2.76a)
4 T ru—o  4m — T
Om=—(1- W(r)z)j‘ = —~ (1 - Wo(ﬂz) 2, (2.76b)
e 2 lr—co e 2
rreo =N+ 3VH.2
M= mG(;) oo - oGy 2769
1 , rg—o0 r ,
re Lo 2 A, 2760
2
nr
S = G_H (2.76¢e)
N

The AdS boundary condition implies wo(7 — o0) = 1. Since it is known that the
black hole is unstable if w(r) has a node (a nontrivial solution to w(r) = 0) [29,
200], we require wq(7) be positive everywhere. Under these conditions, we find a
unique solution for wo when A, v and /7, are given. This establishes the existence
of a stable (nodeless) solution in leading order for given values of ry, A, v, and h’H

provided /%2, vh}? < —A, which are always satisfied for large enough 7.

As expected, at high temperature, the thermodynamic quantities of the solution
converge to those of the embedded U(1) RN black hole as

Ar? 2Gnv0?
g H € NQ 3
M = - + s = A

2Gy 3 47rr12q Qr =0 2

) ) ) .77)
1 G r

T = _ Ar%] _ e Gno” . §S=_1

drry 4nr?, Gn

In Figure[2.1], we show the Helmholtz free energies of the two solutions as functions
of T, with O, v and A fixed as

V-AGyQ =100, v=1, A=-1I. (2.78)

We observe that Helmholtz free energies of the two solutions converge at high
temperature. We also note that, if we look at smaller temperature, the free energy
of the U(1) RN black hole (in the orange curve) becomes larger than that of the
genuinely non-abelian solution (in the dotted red curve). We will discuss more
about it in Section
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Log(V-A Gy AF)
8

V=A GNF
1000 6
"""""""""""" T 4
05 10 TG 20 25 VA )
N T
1000 [ s\s\ 0 ) . 5 s
AN 2
2000 N\
U(1) RN N\ -4
------ non-abelian \\\
-3000 ) . :
(b) The difference in Helmholtz free en-
(a) Helmholtz free energies with respect ergies of the two solutions with respect to
to the temperature. the temperature.

Figure 2.1: They are plotted at a fixed value of A = —1, v = 1 and V-A G yQ = 100.

Having our expectation confirmed, we can utilize the U(1) RN solution to estimate
the high temperature behavior of the holographic CFT with non-Abelian global

symmetry G in any dimensions. In particular,

) 1
Zg (T,# = WNU(I)) ~Zyoy (T poyy) s T > 7 (2.79)

where Z; denotes the grand canonical partition function for the Einstein Yang—Mills
system in AdS;41 with gauge group G and Zyy) is that for the Einstein Maxwell
system. By using equation (2.59)), we obtain

b
aT + =T ) + - -

ZG (T’ /J) = &Xp 4

b
=exp |a T - ZT‘H(¢, Py +--- |, (2.80)

where Bu = i¢.

2.6 Stability of black hole with non-abelian hair

In the holographic CFT with non-abelian gauge symmetry, there are two types of
black holes solutions, with and without non-abelian hair. In the previous section, we
showed that the two solutions converge at high temperature. Since the two solutions
differ at lower temperature, it is interesting to find out which solution is preferred
theormodynamically. In this section, we calculate 1/T corrections to the Helmholtz
free energies of the two solutions at the same temperature and charge. We find that
the black hole with non-abelian hair has a lower free energy and is more stable.
To be specific, we consider G = SU(2) though we believe the results apply to any

compact Lie group.
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Since we know the exact solution without non-abelian hair, we focus on evaluating

1/T corrections to the solution with hair. We start with the equations,

3 2 — ~ 2w
h]I—:h1+5h, (5},—

r Hor?

- ) - Wikl
m1 =y (r h0h1 -7 h00'1 +6 ) Om = +,uow0, (2.81)
Ho
2Wo 2;6%}%
0'1 =V + — |,
r ﬁgr

which are subleading order terms of equation (2.72)) with respect to the expansion
taken in equation (2.73)). These differential equations depend on the zeroth order
quantities; we note that oy, Zo and m are directly calculated to be equation (2.74)),
whereas W is solved numerically, when A and &}, are given, using the differential

equation in equation (2.75)). Hence, we know all zeroth-order quantities, and we can

decide hy, iy, w1, and o from equation (2.81)). We first find h as

() = ;l,z /1 47 725, (7). (2.82)

Since o (r) goes to one when 7 — oo, 0| goes to zero as ¥ — oo, and
oi(r) = -Ac + / dr’ o 1(7), AT = / dr o (7). (2.83)
1 1

Then, by taking the quantities Zl and o, given by equations (2.82)) and (2.83), we

can solve m in equation (2.81)) as

_ 7 ) 7 T

mlv(?) L / o H/ d7F 25, (7 )+/ d?’l;—’j'(Aﬁ—/ d7’51(7”))+/ A7 6, (7).
1 1 1

(2.84)

We are interested in m(r — o) because it corresponds to the mass of the black

hole. The subleading contribution to the mass of the non-abelian black hole is

expressed as
_~ —~ 1 o0 ’ —_—~ ,2 1 —~ -~
ml(r—>oo):§+ drv | hyron(r) + hi; 1—% o1(r)+6,(r)|. (2.85)
1

Now that we have computed Zl, my, and o, we can estimate the thermodynamic
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quantities of the black hole as

0~ o= [+ [ 5 3
1

~ GN
re gl e (- )
X _— - a .
47TGN Ho 7=1 47TGN7‘H H1=Ho 7=1
~A+3vh? i (F — o0)
M ~ H 34 , 2.86
6Gx 'y Gn rg ( )

where ¥ = r/ry and the mass M is evaluated in the infinite radius limit, provided
from the value of m(r) at r — co. Finally, the Helmholtz free energy of black hole

with non-abelian hair is given by,

F=M-TS
- 1 * _ 1 _ (2.87)
=ryFo+ TH v/ dr Aim(7) + — (=N + vi, AT |
Gy \d" ", 4
where vAm is the integrand of the equation (2.85]) and

~ 1 1 3
Fo=—|=A+>viy] . 2.88
0 GN(12 Ty H) (288)

Let us compare this with the free energy of the U (1) RN black hole. For the solution

to have the same temperature and charge, the radius of the horizon of the RN black

hole must be

. —(=A+VI2)AT + 20}, [7 dF 726,(7)
r= .

YFHRN =TH+—,
rH —A+3vh’H2

(2.89)

The free energy is then

~ 1 © - 1
Fry = ryFo + Z;_[j\] (Z + vh;,/ dr 726,(F) + Z(—A + vh’Hz)Aa—) . (2.90)
1

We remark again that the two free energies in equations (2.87) and (2.90) have same

leading behavior. By taking the difference of the two free energies, we obtain

vry

Fry — F = —
RN Gy

(h;, / dr 726, (F) — / d‘fm(?)) , (2.91)
1 1

which comes from the 1/7 correction. When we numerically calculate this differ-

ence, it has strictly positive value as shown in Figure Therefore, the black hole

with non-abelian hair has a smaller free energy and is thermodynamically preferred

over the U(1) RN black hole at finite temperature.
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Log(GnN(FRN=F)/rH)
4

— V=0.1

— V=1

-6t — v=10

Figure 2.2: log [Gn(Fry — F)/ry] as a function of h%,+/v/—A when A = —1.
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Chapter 3

UNIVERSAL ASYMPTOTICS FOR HIGH ENERGY CFT DATA

3.1 Introduction
What is the behavior of conformal field theory (CFT) data at high energies? This
question is well-studied in two dimensions. For instance, the density of states of any

2D CFT at high energies takes the following universal form, known as the Cardy

formula [46]]:
C C C
\/;n(\/A+J—E+\/A—J—E)], A= >c. (3.1

Here, p?=2(A, J) is the density of local operators (equivalently states on S') with

p=2 (A, J) ~ exp

scaling dimension A and spin J. The entropy at high energies is controlled by a
single theory-dependent number: the central charge c. The Cardy formula follows

from modular invariance of the genus one partition function.

Though (3.1)) is valid for all 2D CFTs, it has a particularly nice interpretation for
CFTs dual to quantum gravity in weakly-curved AdSs3. In such theories, the entropy
log p%=2(A, J) is interpreted as the area of a BTZ black hole with spin J and mass
M given by [197]]

1 c
w=L(a-2). 2
Cads 12 G:2)
in an AdS3 space with [38]
3lads
= . 3.3
c== Gu (3.3)

The Cardy formula then becomes a statement of universality of black hole entropy,

regardless of the microscopic details of the quantum gravity theory.

OPE coeflicients of heavy operators in 2D CFTs obey similar, though perhaps
less well-known, universal formulas. In [44], a formula for average squared OPE
coefficients of three heavy Virasoro primaries was derived using modular invariance
of the genus two partition function. For example, when all three operators have

roughly equal dimensions A; = A > c¢, it takes the form

_ 27\ _enfta , s
(%ﬁ@“(ﬁ) TIVFANST, A e (3.4
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Similar formulas were derived for OPE coefficients with one or two heavy operator(s)
(see e.g. [141]). These formulas were subsequently unified in [67], with interesting
connections to the DOZZ formula. In holographic theories, the formula for (C{z2.)?
matches the contribution of a two-sided wormhole connecting a pair of boundary

three-point functions [S8]].

In this paper, we explore whether similar universal formulas exist for higher di-
mensional CFTs. We will use purely field-theoretic methods, so our results will
be applicable to both holographic and non-holographic theories. An immediate
puzzle is that there is no simple analog of modular invariance in higher dimensional
geometries like St x §d-1 (d = 3). (See [[18, 21, 116} |156, 189, [190] for some
discussion and progress on modular invariance in higher dimensions.) However,
we can instead use a beautiful idea from [[14} 27, [127], which was used to count
the density of states in higher dimensional CFTs in [27, 188]]. (Similar ideas were
used for studying supersymmetric indices in [[75]].) The key point is that finding the
leading asymptotics of CFT data doesn’t require full modular invariance — we just
need a sufficiently powerful effective theory for a CFT dimensionally reduced on a

circle.

The dimensional reduction of a d-dimensional CFT is generically a gapped theory
in d—1 dimensions. Fortunately for our purposes, the exponential decay of correla-
tions in a gapped theory makes it very flexible: we can place it on many different

geometries, and in this way extract myriad predictions for the d-dimensional CFT.

A gapped theory can be described by a local action for background fields, obtained
by integrating out the gapped degrees of freedom. In the context of a dimensionally-
reduced CFT (with thermal boundary conditions), we call this local action the
"thermal effective action." It describes hydrodynamic observables of the CFT in
equilibrium. The derivative expansion of the thermal effective action is an expansion
in the inverse temperature S = 1/T. This construction was explained in [14} 127],
and has been explored extensively in the hydrodynamics literature; see e.g. [26),
71, 1123] (124, [126]. We review it in Section [3.2] along the way discussing some
subtleties related to the Weyl anomaly.

Placing the thermal effective theory on S! x S¢~! leads to simple universal predictions
for the density of CFT operators at large A. For example, in 3D CFTs, one obtains

_ 2
log p9=3(A, J) = 3x' B 13 (A% — J2)1/3 - 3 log(A? — J%) + O(AY). (3.5)
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Here, f is a theory-dependent positive real number, equal to minus the free energy
density of the CFT, as we review in Section [3.2] The leading term in the high
temperature partition function for the canonical ensemble of a CFT was first written
down using hydrodynamic techniques in [27]. It was subsequently transformed to
the microcanonical ensemble in [188]EI The thermal effective theory approach in
this work allows us to reproduce those results and systematically explore subleading

corrections.

The quantity f controls the leading density of states in both 2D (where f = mc/6)
and higher dimensions. However, unlike in 2D, where the Cardy formula is valid up
to nonperturbative corrections in A, the entropy in higher dimensional CFTs receives
perturbative corrections in 1/A, coming from higher-derivative terms in the thermal
effective action. The derivation of (3.5) using the thermal effective action is given
in Section [3.3] There, we also describe the leading higher-derivative corrections.
(Furthermore in Section[3.3] we clarify some subtleties related to the Casimir energy
on S%°! in higher-dimensional CFTs.) We also briefly discuss nonperturbative
corrections to the density of states in Section[3.3] Then, in Section[3.4] we compare
these general formulas to free theories and holographic theories, determining Wilson
coeflicients in those cases by matching their partition functions to the effective

theory.

In addition to the density of states, we will also find universal formulas for OPE
coeflicients of three heavy operators in higher-d CFTSEI Our strategy will be to put
the theory on a higher-dimensional version of a genus-2 Riemann surface, obtained
by gluing a pair of three-punctured S’s with three cylinders S~ x I (where I is an
interval). We describe this "genus-2" geometry in detail in Section

A glaring problem is that the "genus-2" geometry is not a circle fibration, so it is not
immediately obvious how to apply the thermal effective action. However, in a "high
temperature” limit where the cylinders get short, the geometry contains shrinking
circles. We claim that these shrinking circles can be treated like thermal circles in
local regions that we call "hot spots"; see Figure[3.1] We furthermore conjecture that
the effective action of the hot spots gives the singular part of the partition function

I'The density of states was also studied [|147}199].

2Formulas for heavy OPE coefficients weighted by light OPE coefficients, e.g. CHHHCSILL, were
derived in [9] using crossing symmetry of six-point functions of local operators. By contrast, our
focus will be on un-weighted heavy OPE coefficients Cypy, which are controlled by different physics.
For example, the leading behavior of Cyyy is determined by the free energy density f, which does
not (to our knowledge) appear in a simple way in a six-point function of light local operators.

3A special case of this geometry with no angular fugacities was studied recently in [20].
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Figure 3.1: The "genus-2" geometry and its "hot spots."” The top is a ball B¢ with two
balls removed. It is topologically equivalent to a three-punctured S¢. The bottom is
the same. The top and bottom are glued together with three cylinders. In the limit
that the cylinders get short, there are shrinking circles indicated in red that run down
one cylinder and up another. The neighborhoods of each of these circles are "hot
spots," where the thermal effective action receives a large contribution.

on our "genus-2" geometry. (The remaining parts of the geometry are not described
by thermal EFT, but contribute non-singular corrections to the partition function at
high temperature.) With the "hot spot" conjecture, we can determine the partition

function in the regime where it is dominated by heavy CFT data.

To extract heavy-heavy-heavy OPE coeflicients, we must furthermore understand
the decomposition of the partition function into a higher-dimensional version of
genus-2 (global) conformal blocks. These are interesting special functions that to
our knowledge have not previously appeared in the CFT literature. We explore them
in Section [3.6] determining their behavior at large A using the shadow formalism
and saddle-point analysis. We then decompose the partition function into "genus-
2" blocks using an appropriate inverse Laplace transform on the moduli space of
"genus-2" conformal structures in higher dimensions. In the end, we obtain a
universal formula for average squared heavy-heavy-heavy OPE coefficients in a d-
dimensional CFT. For example, for three scalar operators with similar dimensions
Ain d = 3, we find

6A
_ - 3 -
I (A, 00 (CER)* ~ (5) SN (3.6)
where ". .. " are subleading corrections in A. We give a formula for OPE coefficients

of three operators with arbitrary Lorentz representations (with spin held constant as
A — o0) in arbitrary d below in (3.242).

In Section [3.8] we apply similar (but simpler) methods to compute asymptotic
thermal 1-point functions of heavy operators. This can be viewed as a particularly

simple limit of heavy-heavy-heavy OPE coeflicients.
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In Section[3.9] we discuss (3.6), its generalizations, and some implications and future
directions. In holographic theories, we speculate that (3.6)) describes a three-point
function of three black holes surrounded by highly entangled matter. Three point
functions of three "pure" black holes are likely atypical from the point of view of
(3.6), but perhaps could be determined from an appropriate holographic calculation.
In Appendix A, we discuss a simple warmup example of the thermal effective action
for a two-point function of momentum generators. In Appendix C, we discuss some
aspects of free theories, including novel formulas for nonperturbative corrections to
density of states. Other appendices contain detailed calculations to supplement the

main text.

3.2 The thermal effective action
Consider a d-dimensional CFT at finite temperature 7. Generically, thermal fluctu-

ations cause equilibrium correlators to decay exponentially with distance:
(O(F)O0(F))p ~ e M=R2lIE, (3.7)

By dimensional analysis, the correlation length & must be inversely proportional to
the temperature, ¢ oc 1/T. Exponentially-decaying correlators can be expanded in a
series in J-functions and their derivatives. (Equivalently, in momentum space, they
can be expanded in a power series in momenta.) This expansion is summarized by a

local effective action for background fields that we call the thermal effective action.

It is useful to adopt the geometric perspective on the thermal effective action ex-
plained in [14]. Equilibrium thermal correlators are computed by compactifying
the Euclidean theory on a thermal circle of length 8 = 1/T. Generically, when a d-
dimensional CFT is compactified on a circle, the result is a gapped theory in (d—1)
dimensions. A rough argument is that compactification of a CFT does not involve
tuning any parameters, since all 8 are equivalent by d-dimensional scale invariance.
Thus, it would be non-generic for the resulting (d—1)-dimensional theory to be at
a critical point. Instead, it will typically have a nonzero mass gap mg,, o T, and
a finite correlation length & = 1/ mgapﬂ We can think of this gapped theory as the

modular transform of the d-dimensional CFT.

This argument fails when a symmetry protects gapless modes in the compactified

theory, such as in free theories or supersymmetric compactifications (where we twist

4By contrast, when a theory with an intrinsic scale is compactified, one generally obtains different
dynamics at different compactification radii. By tuning S it may be possible to reach a critical point.
An example is 4D SU(2) pure Yang-Mills theory, which is expected to possess a critical point in the
Ising universality class at a particular temperature, see e.g. [93] for a review.
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by (1) around the circle). It could also fail in theories that spontaneously break
a continuous symmetry at finite temperature, such as those recently constructed (in
fractional spacetime dimensions) in [55]]. It is currently unknown whether such
theories exist in integer spacetime dimensions. See [55,100] and references therein
for more discussion. In this work, we will focus on theories that are gapped at finite

temperature.

An efficient way to capture correlators of the CFT is to couple to classical background
fields. For example, stress tensor correlators are captured by coupling to a d-
dimensional background metric G . If the metric possesses a circle isometry, then

by a suitable choice of coordinates, we can put it in Kaluza-Klein form

G ydxtdx” = gij(R)dx'dx’ + 2D (dr + A;(%)%, 1€ [0,1), (3.8)

where the periodic direction is x°

= 7. The (d—1)-dimensional fields are a metric g; ;,
a gauge field A;, and a dilaton ¢. We choose conventions so that 7 has periodicity 1.
Thus, for the thermal compactification S[l), xR4~1 with the flat metric, we have ¢ = B.
However, it will be interesting in what follows to allow the (d—1)-dimensional fields

gij» Ai, ¢ to be spatially varying.

By our assumption above, the partition function of the d-dimensional CFT on the
Kaluza-Klein geometry (3.8)) becomes the partition function of a gapped (d—1)-
dimensional theory coupled to (d—1)-dimensional background fields:

Zcrr[G] = Zgapped (g, A, ¢]. (3.9

The partition function of a trivially gapped QFT at long distances can be expanded

in a sum of local counterterms in the background fields. In this case, we haveﬂ
Zcrr[G] = Zgppeal g, A, 9] ~ e>0le 401, (3.10)

The thermal effective action Sy, is a sum of local terms in g;;, A;, ¢ that captures
Euclidean correlators at length scales that are large compared to the correlation
length & = 1/mg,, (equivalently, at momenta small compared to mgap)ﬁ In |b

3 A theory that spontaneously breaks a discrete symmetry at finite temperature can display mild
violations of (3.10); see [55]]. In general, if the finite temperature theory is nontrivially gapped, then
the thermal effective action must include a nontrivial TQFT. We focus on the trivially gapped case
in this work, though most of our results are simple to adapt to a more general thermal TQFT.

®Note that the thermal effective action does not in general capture long-distance real time
observables, even at small nonzero frequencies 0 < w < mg,,, where dissipation is an important
effect.
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" "
~

means agreement up to exponential corrections of the form e~2/¢, where L is a

characteristic length scale.

In QFT, we usually have the freedom to add arbitrary local counterterms in back-
ground fields. This is called a change of "scheme." In the thermal effective action
(3.10), it is important that we are only allowed to add local d-dimensional countert-
erms to the CFT (which enter Sy, via dimensional reduction). We are not allowed to
add arbitrary local d—1-dimensional counterterms. Thus, Sy, can contain physical,

scheme-independent information.

The thermal effective action is highly constrained by symmetries. Firstly, coordinate-
invariance in d-dimensions implies that Sy, is invariant under (d—1)-dimensional
coordinate transformations, as well as gauge transformations of the KK gauge field
A;. For simplicity, in this work we focus on CFT,’s with vanishing gravitational
anomaly. When the gravitational anomaly is non-vanishing (for example in a 2D
CFT with c; # cg), the anomaly must be matched by gravitational Chern-Simons
terms in the thermal effective action; see [59, 75, 98, (125, [126] for more details.

Such terms could be easily incorporated into the analysis that follows

Secondly, Sy, is constrained by Weyl invariance of the d-dimensional theory. Under

a Weyl transformation, the CFT partition function changes by
Zerr[€*7 Gl = Zepr[Gle SO, (3.11)

where Sanom [ G, 07] is the contribution from the Weyl anomaly. Because ¢ transforms
with a shift ¢ — ¢+o0 under 7-independent Weyl transformations, we can use (3.11))

to completely determine the ¢-dependence of Zcpr[G] [85]]. Note that
Zcrr[G] = Zepr[Gle SwonlG01, (3.12)
where G = ¢ 2G. Plugging in |i this implies

Slg, A, 8] = S5, A, 0] + Sanom[G. ¢]
= S[g, A] + Sanom[G, ¢]. (3.13)

In equation li Sanom [5 , ¢] plays the role of matching the Weyl anomaly in the
thermal effective action. We discuss this contribution later in Section 3.2l The
remaining term S[g, A] is invariant under 7-independent Weyl transformations. It

depends only on A;, and the Weyl-invariant "effective metric"

gj=e g (3.14)

7We thank Yifan Wang for discussion on these points.
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Note that g transforms as a metric under coordinate-transformations. Thus, S[g, A]
can be organized in a derivative expansion in coordinate invariants built out of g
and A. Classifying the terms in S|g, A] is similar to classifying local interactions in
Einstein-Maxwell theory (without the freedom to perform field redefinitions). The

first few terms are
S[3, A] :/dd_lx\/?(—f+01§+czF2+...). (3.15)

Here, R is the Riemann curvature built from the metric g.and F;; = 0;A; — 0A; is
the field strength of the KK gauge boson. Indices are everywhere contracted using

g, for example
F?=g"g/'F;jFu. (3.16)

This ensures that the derivative expansion for Sy, becomes an expansion in p/T,
since g/ contains a factor of e??, where e~ is a local temperature. Again, in (3.15),

we have assumed gravitational anomalies are absent.

The construction of the thermal effective action (3.15]) closely mimics the construc-
tion of the dilaton effective action in theories where scale invariance is spontaneously
broken to d-dimensional Poincare invariance [137]]. The key difference is that here

we have an effective action in (d—1)-dimensions instead of d dimensions.

The cosmological constant term
The leading term in the thermal effective action is a cosmological constant — f ddx\/? f
for the effective metric g. The coefficient f has at least three important interpreta-

tions.

1. —f is (the scheme-independent part of) the free energy density of the CFT at
finite temperature in flat spaceﬁ To see why, we place the theory on R4~! x S[‘g,
where the thermal circle has length . In this geometry, the effective metric
is gij = B726; 7. Only the cosmological constant term in Sy, is nonzero, and it

contributes

F/T = —log Zcrr[R™" x Sp] = S = - / dx B = — T vol R,
(3.17)

F/T = —log Zcer[RY™! x Sp] = Sup = —/ dxfp D = — T ol R

80ur convention for f is opposite to the one in [119], fhere = — fihere-
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Thus, the free energy density is — fT.

2. f is proportional to the thermal one-point function of the stress tensor in flat

space R?"!. Lorentz and scale invariance dictate that
o 1
UWOJ»ﬁ=MTdG@S—;Wﬂ, (3.18)

for some dimensionless coeflicient by. Meanwhile, the energy density can be

computed from the derivative of the partition functiorﬂ

. 1 9 _
—(T%(0,%))p = ~VoTRFT 35 log Zepr[R! x Sp] = (d = 1) fT. (3.19)

Equating and (3.19), we find by = —df. In particular, positivity and
extensivity of the energy density on R¢~! implies that f is positive:

F>0. (3.20)

3. —f is the Casimir energy density of the CFT compactified on a circle. To

1

see why, we choose x' as a time direction. The Hamiltonian density for the

compactified theory is then

E_..
Vol(Sple (:ISR"_Z) ) _<T11>B =T G20
In particular, (3.20) gives a simple proof that the Casimir energy of a CFT
compactified on a circle is always negative. Ultimately, this is a consequence
of tracelessness of the stress tensor. The components 7% compute the energy
in the thermal ensemble (which is positive), while the components 7' com-
pute the energy in the compactified theory. The two have opposite signs by

tracelessness of T#”. This proof applies, for example, to electromagnetism.

Thus, the coeflicient f is a simple and important observable of the CFT. We will see
that it controls a huge amount of the physics at finite temperature. As a simple
warmup example, in Appendix A, we show how f determines a (regularized)
two-point function of momentum operators at finite temperature. This result can
be understood both from "bootstrap" arguments using properties of stress tensor

correlators, and from the thermal effective action.

Note that we are using the conventions of Euclidean field theory, where the generator of time
translations includes a minus sign H = — / dxT®. The minus sign can be understood via Wick
rotation from Lorentzian signature Tgo = (z')zT](jO.
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Weyl anomaly terms
The Weyl anomaly terms Sanom [6, ¢] in the thermal effective action were given in
[85]]. Let us write them down in detail. Such terms are of course absent when d is

odd, so we focus on even d in this subsection.

As a review, the infinitesimal form of the Weyl anomaly in d dimensions is
5o (=log Zcrr[G]) = / dxVNGoA[G], (3.22)

where §, is defined by rescaling the metric G — (1 + 20 )G with ¢ infinitesimal.
Here, A[G] is a local functional of G such that solves the Wess-Zumino
consistency condition [0y, 04, ] log Z = 0. The infinitesimal Weyl anomaly can be
integrated by considering a family of metrics ¢ G where ¢ € [0, 1], using
to write a differential equation in ¢, and solving the differential equation. The result

is the finite Weyl transformation rule (3.T1)), where Sanom is given by [187]
1
Sanom[G, o] = / dt / d?x \det(e2G) o A[e*7 G]. (3.23)
0

The general solution of the Wess-Zumino consistency condition in d-dimensions is
(33, 34]:

1
/ dNGorA[G] = v / NG o ((-1)"PagEa - Ticad ") + 8o Sa

(3.24)

Here, E; is the Euler density and VGI ,Ed) are local Weyl-invariants of G. For

example, in 4D there is one such Weyl-invariant, given by the square of the Weyl

tensor:
1Y = C* = CpypoCHP7  (d=4). (3.25)
In 6D there are three such Weyl invariants / ©® and in general the number grows

k=123
with d. The factor 1/(4m)%/? in (3.24) is a convention.

The remaining terms d,S¢; in (3.24)) are Weyl variations of local counterterms. For

instance, in 4D we can have

_ b d 2 _
Seu= -1 T / d?xVGR (d = 4), (3.26)

101 2D, we have a; = ¢/6, and in 4D we write a4 = a.
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which leads to a contribution §,R? ~ bR in the Weyl anomaly. We sometimes
refer to 0,8 as "b-type" terms. Such terms trivially obey the Wess-Zumino
consistency condition. They are scheme-dependent because they can be shifted by
adding local counterterms to the action of the CFT. We comment more on this below
in Section 3.3

Plugging these results into (3.23)), we find Sanom for example in d =2 and d = 4:
d>xVG (R + (80)?)

s G, o] =

24
s (G, o] = (41)2 / VG (O'E4 — 40,00, (R™ = LG R) - 4(00)?Tor — 2(00)4)
- / d*xVGoC? + S4[e*7 G] - Su[G]. (3.27)
(4r)2

Note that the scheme-dependent part of the Weyl anomaly 6, S integrates trivially
to give Se[>*G] — Set[G]. The Weyl-invariant terms are also simple to integrate

because the integrand (3.23)) is 7-independent for those terms.

Putting everything together, the Weyl-anomaly contribution to the thermal effective

action is
Sanom[G. ¢] = Skuler (3.28)
- W zk: Cak / d?"'x\g¢ DRI [G]] + DR[S«[G]] - DR[S[G]],
(3.29)
where

(=D aq 1)d/zad d-1. di¢ e
Skuler = dt d¥'x e¥"?\[g  DR[E [*¢G]]. (3.30)
(47T)d/2

Here, the dimensional reduction operation DR[: - -] means evaluating in the KK

metric (3.8)) and integrating over 7.

Note that the / ,Ed) terms in (3.28) are linear in ¢, and thus can lead to temperature

dependence of the form log(8/8p) in certain geometries. Here, we note that the
coeflicient of log is a genuine prediction of Sy, but the scale Sy is scheme-
dependent. The reason is that By can be shifted by adding local Weyl-invariant
counterterms to the action of the CFT:

! d (d)
Serr = Sert + o / d x«/EZk: ril\ . (3.31)

This ambiguity shifts the coefficients of DR[/ ,Ed)] in the thermal effective action:

—Cak® — Tk — Cak®, (3.32)
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and consequently shifts 8. This ambiguity will not play a further role in this work,
since we will always consider CFTs in conformally—ﬂa geometries where I,Ed)

vanishes.

Two dimensions

In two dimensions, a very nice thing happens. The cosmological constant term is
the only local gauge-invariant combination of g and A; that we can write down.
Furthermore, there are no nontrivial local Weyl invariants. Thus, the Weyl-invariant

part of the thermal effective action truncates to a single term!

S[g, A] = —/ d'x\gf (d=2). (3.33)

The action (3.33) describes equilibrium thermal physics in 2D to all perturbative
orders in 1/T. Using the connection between f and the Casimir energy (3.21)), we
find

2nc
=—, 3.34
f B (3.34)
where c is the central charge.

This result is not a surprise. A 2D CFT at high temperature can be described by
performing a modular transformation, reinterpreting the thermal circle as a spatial
circle. The states propagating in the modular-transformed theory have energies
E; = %(Ai — 13), where A; are scaling dimensions in the CFT. The effective

action ([3.33) simply captures the contribution of the ground state in the modular

transformed theory, with energy Eg = —%T% The energy gap to the next state is
the "mass gap" of the thermal theory
2r
Mgap = E1 - E() = FA] (d = 2) (335)

States with energies at or above the mass gap E; — Eg > mg,p contribute nonpertur-

—2rAi /B

bative corrections in S of the form e , which are not captured by S.

3.3 The density of high-dimension states
The spectrum of a d-dimensional CFT is captured by the partition function on

Sé x S%-1. In this section, we compute this partition function using the thermal

"'We call a manifold "conformally-flat" if in a neighborhood of each point, the metric is Weyl-
equivalent to a flat metric. This is sometimes called "locally conformally-flat." A 3-manifold
is conformally-flat if and only if the Cotton tensor vanishes, and a d-manifold with d > 4 is
conformally-flat if and only if the Weyl tensor vanishes.
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effective action, and decompose the result into conformal characters to extract the
density of high dimension states. We will recover the leading-order formulas from
[27, 188]], and also discuss subleading corrections. The precise expression for the
partition function involves the Casimir energy of the CFT on S¢~!. To start, we
review the Casimir energy and discuss some details of its relation to the thermal

effective action.

The Casimir energy on S¢-!

The partition function on Sé x $9-1 is a sum over states on S?~! weighted by
Boltzmann factors e #Fi. By the state-operator correspondence, states on S¢~! are
in one-to-one correspondence with local CFT operators O;. In even dimensions the
energy E; of the state |O;) is equal to the dimension A; plus a contribution from the

Casimir energy on the sphere:
E; = A; + Ey, (3.36)

where A; is the scaling dimension of O;. For example, in 2D, the Casimir energy is
E(p = —15 (in units where the S9! has radius 1). The Casimir energy Eq will play

an important role in higher dimensions as well, so let us recall how to derive it.

We follow the discussion of [13]]. Let W[G] = —log Zcpr[G], so that the Weyl
anomaly is W[e??G] = W[G] = Sanom|[G, o]. To compute the stress tensor on the
cylinder R x S%~!, we consider the Weyl rescaling from the plane to the cylinder

d 2
dr’ +r2dQ% | — T+ dQl | = e s, d (3.37)
r

which corresponds to o = —logr. Plugging this into Syom[G, 0], we obtain the
partition function on the cylinder as a function of the partition function on the plane.
Taking a derivative with respect to G, and using that the one-point function (T+”)
on the plane vanishes, we obtain (T#”) on the cylinder, from which we can read off

the Casimir energy.

There is a small shortcut that will be useful in what follows. We can simply compute
W|[G] on the infinite cylinder R x §9~! using the Weyl anomaly. This has an infinite
part of the form Egvol R, from which we can read off the Casimir energy Ep. As an

example, in 2D, we have

W[e_ZIOgrd] _ W[é] — _L rdrdd— = —i dr (d = 2), (338)
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where we defined 7 = logr. This gives the expected result Eg = —5. In 4D, we
find

~2logr _avol§’ 3 6 20
W[e 0g 5] —W[é] = W/r dr (r_4 +Sct[e 5]

3a  3b
(Z—g)/dn (3.39)

where we used the form of S in (3.26)), together with the fact that the curvature of
$3 is R = 6. Thus, the Casimir energy in 4D is

3a 3b
Eo=2_-22  (a=4) 3.40
0= "3 ( ) (3.40)

¢ Choice of scheme

As noted in [13]], the 4D Casimir energy (3.40) is scheme-dependent — it can be
shifted by redefining the local counterterm coefficient . Similar statements hold
in any even d > 4. However, CFT data is scheme-independent. To study it, we are

free to choose whatever scheme is most convenient.

In what follows, we will choose a scheme where S, = 0, so that b-type terms
are absent from both the Casimir energy and the Weyl anomaly. To define such a
scheme in practice, one must choose a regulator, compute the Weyl anomaly with

that regulator, and then add appropriate local counterterms to cancel the b-type

terms H

In this S = 0 scheme, the b-type terms DR[S.] are not present in the thermal

effective action, and the partition function on § /13 x 8§91 is given by
Tr [e—ﬁ(D+80)] ~ o Sth — e_S[g’\’A]_SEuler’ (3.41)

where g is the ay-type contribution to the Casimir energy alone. Here, "~" means
equality up to exponentially suppressed corrections in 1/8. Sgyler is given in (3.30).
We have used that S}; x §9=1 is conformally-flat to drop the Weyl-invariants I,gd). In

Appendix B, we describe how (3.41)) comes about in a general scheme.

2This requires a sufficiently "flexible" regulator that we can compute the Weyl anomaly. For
example it is not obvious how to do this with a lattice regulator. Furthermore, such a scheme choice
might clash with other symmetries, e.g. SUSY [13]]. We thank Zohar Komargodski for discussion
on these points
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The value of &y was computed in general d in [[113]:

g0 = ag-type contribution to Casimir energy on gd-1

d-1)!!
NG Wad, d even,
aqg =

r(54) 0 d odd,

(3.42)

where (d — 1)!! =(d —1)---3 -1 for even d. Note that in 2D, we have a, = ¢/6.

The partition function from the thermal effective action

Let us now study the density of CFT operators with various dimensions and spins.
We can obtain this from the partition function of the CFT on Sé x 8§91 with a spin
fugacity:

Z(B, é) = Tr [e—ﬁ(D+80)+iﬁ§'1\7f] ~ ¢ SI8-Al-Skuter (3.43)

Here, D is the dilatation operator, M are the n = I_%ZJ generators of the Cartan

subalgebra of the rotation group SO(d), and Q are spin fugacities.

Geometrically, (3.43) is computed by a path integral on Sé x §9=1, with a twist by

B€2 as we move around the thermal circle. The metric is

ds* = B2d7? + ds® (3.44)

cylinder sphere’

where 7 € [0, 1] is a coordinate on S! and ds? is the metric on S

sphere

To write down the metric on the sphere, let us choose coordinates that make Cartan
rotations manifest. The Cartan generators are rotations in n orthogonal 2-planes.
We use radius-angle coordinates {r,,0,} for each plane (¢ = 1,...,n), so the
Cartan generators are simply idy,. If d is odd, we have an extra axis and we use the
coordinate r,4; for it. The radii satisfy the constraint Z:ﬁ rg =1, where € = 0 for
even d and € = 1 for odd d. In these coordinates, the metric of the sphere is

n+e n
Ak pere = D Ar2+ ) r2d0, (3.45)
a=1 a=1
where we have the constraint "7{ r,dr, = 0.
In the twisted geometry that computes Z (S, ﬁ), we identify the points
(1,0,) ~(t+ 1,6, — Q). (3.46)

Because of this identification, shifts in 7 with fixed 6, are not periodic isometries,
and thus the metric (3.45)) is not in Kaluza-Klein (KK) form. To place it in KK
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form, we redefine 6, — 6, + B,7, which removes the twist (3.46)), and produces
the new metric

n+e

n
ds? = Bdv? + ) drl+ ) ra(df, + BQqdt)’
a=1 a=1

2
n 1 n ZQa
:,32(1+ng95 dr+- Y — g,
a=1 ’8 a=1 1+ Zb:] rb'Q'b
n+e n r2r2Q Q
+ > dri+ Y (rarbéab - B d0,d6. (3.47)
a=1 a,b=1 1+ c=1 chc

Comparing with (3.8), we identify a metric g;;, a KK gauge field A;, and a
dilaton ¢ given by

a=1
1 < 20
A=~ rZ - 2 zdg“’
B 1+ 217752
n+e n ’,2,.29 Qb
g= > dri+ Y |rarbap — — 2| d0udty.  (3.48)
a=1 a,b=1 (R DI el O

The effective metric g = e 2?g, together with A, then appears in the thermal effective
action S[g, A].

Explicitly, the cosmological constant term in the effective Lagrangian is

]_[ r, (3.49)

d
n 2

Vg =1%" (1 + > Q2

i=1

while the Maxwell and Einstein densities are

$ o Zha 70201+
o R T YO Yo

i=1"

F? =812

)

R=12[aw@+ 1= =1 7 202d-1) 1 Zn:szz
= y1)—==L it - - :
1+>7% r?Q?‘ = !

i=1"1

. (3.50)

As expected, at high temperature, the cosmological constant term gives the leading
contribution, while the Einstein and Maxwell terms are subleading by 1/72, since
they are two-derivative terms. Finally, the thermal effective action on our geometry



41

is given by integrating over S

S[3, A] = \/§‘(—f+c11?+czF2+...)
Sd—l

vol §¢-1

=}’l—2 Td_3+...
[T, (1+92)

_de—l +(d-2) ((d —Decy+ 2cy + %02) ZQ,Z
i=1

(3.51)

27Td/2

where vol §9-! = a2 is the volume of the d—l—sphere

Note that the cosmological constant predicts the entire leading term in (3.51) as a
detailed function of the spin fugacities €2;. This leading term was first written down
in [27]@ Using the thermal effective action, it is straightforward to incorporate
more terms in Sy, and characterize the form of subleading corrections. Overall, we
obtain a formula for the thermal partition function of a CFT with a spin fugacity in

a systematic expansion in 1/7.

The leading term in (3.51) has poles at €; = +i. These poles are related to
the unitarity bound because states close to the unitarity bound are not penalized by
Boltzmann factors e A(A=%%/) in this regime of angular fugacities. In our calculation,
the poles come from locations on the sphere where r; = 1 (and the remaining
rj vanish). Despite additional poles in the expressions (3.50), the higher-order
corrections R and F2 do nor lead to further enhanced poles in the partition function.
The reason is that R and F? are actually finite at r; = 1 when Q; = +i. We expect
that this remains true for all higher-order corrections in the thermal effective action,
so that the pole structure of holds to arbitrary (perturbative) order in 1/7.

3To evaluate (3.51), we use the following explicit coordinates on S¢~!. For even d = 2n, the
integral is

1 1 2n 2r
/ drl.../ drn/ d@l.../ d0n6(1/V%+---+r,21—1)\/?(—f+clR+czF2+...),
0 0 0 0

and for odd d = 2n + 1, the integral is

1 1 1 2r 2
‘/0 drl.../o drn/] drn+1‘/0 d91.../0 d@né( rf+-~~+rﬁ+l—1)\/?(—f+c1R+czF2+...).

To compute either case, we used the Feynman parametrization identity:

(1/1*1 (lk—l

1 r 1 1 S(ur+---+ur— Du U
S (@) + ””‘)/ dul---/ dug G e Dy k. (3.52)
Al ...Ak" I'(ay)...T'(ag) Jo 0 (1A + -+ upAp) 0+ -+

In order for (3.51) to be valid, we require that the convex hull of 1 + le not contain 0. Otherwise,
the integral diverges (as expected from the unitarity bound of the CFT).

140ur Q is related to the one in [27] by iQpere = Qehere.
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Specifically, we expect that the coefficient of T4-2k-1

the Q;, times an overall factor 1/, (1 + Ql.z).

Finally, let us compute Sgyjer by plugging (3.48)) into (3.30). In d = 2,4, 6, we find

is a degree-2k polynomial in

d=2
SEuler =0,
2 _ 02)2
gd=4 _ 4P (Q - )
Buler ™12 (1+Q)(1+Q2)
qd=6 _ 3aep 1

Baer =80 (1+Q)(1+Q2)(1+9Q)
x [Q0 + QS +Qf - 4(Q1(QF +Q3) + Q3(QF + Q) + Q3(QT + Q3))

+21Q3Q3Q7 + 5(Q1Q5 + Q3Q3 + Q3Q7) - 5(Q] + Q5 +Q3)[. (3.53)

In all these cases, Sgyler has the same functional form as expected from the o(T™)
terms in the Weyl-invariant part of the thermal effective action S[g, A] — namely a
polynomial of degree d in the Q;’s times 8/[]'_, (1 + Ql.z). Thus, the effects of Sgyjer
cannot be distinguished from S[g, A] in the CFT partition function on S' x §971.
It would be interesting to try to distinguish these terms in some example theories,

perhaps by studying stress-tensor correlators in thermal flat space.

Leading asymptotic formula

From (3.51)) we can extract the high energy density of states for any CFTE Let us
first consider the leading term of the high-temperature partition function:

vol §4-1 fd-1
[T, (1+9%)

where n = |d/2]. To extract the density of states, we perform an inverse Laplace

log Z(T, ) = +0(T97), (3.54)

transform on the partition function, which can be done by saddle point approxima-
tion. Before we do the general d case however, let us first dod =2 and d = 3

explicitly.

We pause to note that we can compute either the asymptotic density of all operators of
the CFT, including both primary and descendent operators, or the asymptotic density
of only the conformal primary operators. We compute the latter by decomposing

the partition function into the conformal characters. In d dimensions the characters

15 A previous version of this paper had minor typos in the density of states that we have corrected.
We thank Sasha Diatlyk and Yifan Wang for pointing them out to us.
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are given b

e P x 1 (BL)
N H?: (1—e=BU+Q) ) (1—¢-BU-2))>
xa.0; (B, Q) = : e Phy s (BQ)

(1=eP) [Tz, (1= PUT00) (1=¢ AU

d even,

(3.55)
d odd,

where x.(6;) is the character of the SO(d) representation A = (Jy,...,J,). The
partition function is a sum over characters, with an additional inclusion of the
Casimir energy &¢ defined in (3.42):

Z(T,Q) = e " xa 5, (B, ). (3.56)
ApJi

e d=2
From (3.54)), our high-temperature expression for the partition function in d = 2 is

2nfT
Z(T,Q)y= ~ exp (T];ZZ)

4r2cT
—exp |2 357
eX1:’(12(1+Q2)) (3.57)

where we used the relation between f and ¢ for 2D CFTs (3.34). We would like
to take the inverse Laplace transform to extract the high-energy density of states.
This calculation is precisely Cardy’s calculation for the high-energy density of states

[46]], but we include it for completeness. It is convenient to first change variables:

1 iQ 1 iQ
=+, =— -5 3.58
BL i Br 7T (3.58)
which gives
Br(BsL_cy g (A _c) 2”2“(L+L)
Z(BL,BR)a=2 =Tr (e PL(3" =) PRI~ 22 ) ~e 2 \BL"Br/, (3.59)

where we include the Casimir shift described in Sec[3.3] Taking the inverse Laplace
transform then gives the following integral:

1] 1 y+ico 27%¢ AT _c 1 yHico 272¢ AT _ c
states A, - _/ d 05 +/3'L( g _/ d 26 +ﬁR( 2 ~u)|
Py (A J) 2[27”. e Bre'rr 271 ), i Bre PR
(3.60)

16The characters are for long representations of the conformal group. For special values of
A, J; (e.g. states at the unitarity bound), the representation may be shortened and the expression for
the character will be modified. However, since we are interested in reading off the density of primary
operators at large dimension, short representations will not play a role.
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Although we can do this integral by saddle, it actually can be done exactly. The

tree level piece is

2c A+J ¢ A-J ¢
states - o - v _ =
5 (A J) ~ exp[ 3 ﬂ(\/ > 24+ 5 24)] . (3.61)

We see this is none other than the Cardy formula [46]. If we do the integrals in
(3.60) exactlyl'’| we get

PIESS(ALT)

S SN W o WY =2

_ \f exp /2_C,T A+f_i+\/u_i
VAZ(A +J - %)3/4(A—J— 1_62)3/4 3 2 24 2 24

x (1 +0(A‘1/2)), (3.63)

where I; is a modified Bessel function of the first kind. The expression (3.63)

indeed gives the known logarithmic corrections to Cardy’s formula [47].

So far, (3.63) is counting the density of all states rather than the density of global
or Virasoro primaries. A more natural object from the CFT perspective may be to
count the density of primary operators. In order to generalize more easily to higher
dimensions, we will now compute the asymptotic density of global (not Virasoro)
primary operators. The calculation is almost identical, except now instead of taking
the inverse Laplace transform of (3.59)), we include the characters (3.55)):

. . . . 7T26
/ ANAT RS (A, ) PLCF 0 B8 B R) (1o (1),

(3.64)
17Strictly speaking the integral in (3.60) diverges. The precise statement is
1 y+ioco
— AP ( - 1) J5 (\/zm fA) . (3.62)
2mi y—ico A

This leads to an additional factor of §(A) in the inverse Laplace transform. However, since we are
using this method to read off the large energy density of states, it does not affect our final expression

G3).
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Taking the inverse Laplace transform we then get

primaries( ) _ 03/27[2
d=2 ’ - c c
VA32(A+J - 5)54(A - T - 5)5/4
X ox 2c \/A +J ¢ .\ A-J ¢
_7z' — — — — —
P1V3 Y 2
x (1 + O(A‘l/z)) . (3.65)

e d=3

Now let us redo this analysis for d = 3. The logic is the same except now the form
of the partition function is different:

4n fT?
Z(T,Q)4=3 ~ ) 3.66
(T,Q)a=3 exp(1+92) (3.66)
Using the same change variables (3.58)) we get
- . 4
Z(BL,Br)a=3 =Tr (e‘ﬁL(ATJ)e‘ﬁR(ATJ)) ~ exp( f ) _ (3.67)
BLBr

To extract the density of states we again use an inverse Laplace transform:

1 1 2 y+ico 47 A+J
PR (A, ) ~ (%) /y_ioo dprdBr exp (,3 Bf +BL ( ) Br ( Al )) )
(3.68)

The integral in is more complicated so now we do it via saddle point analysis.
The saddles in ,BL, ,BR are located at

g (SrfA+D) '3 g - (3T(A=) 13 (3.69)
2V (a-0)2 PR A+ )2 ' '
This gives a remarkably simple expression for the tree-level density of states:
PSS (A, J) ~ exp [37r1/3f1/3 (A+0)"3 (A= 1)1/3] . (3.70)

Keeping the one-loop terms we get

‘ f1/3
P (A D) ~
V3r23(A+ J)23(A - )23

exp |37 313 (A+ DV (A=)
(3.71)

The expression (3.71]) again is counting the asymptotic density of states rather than
conformal primaries. We can read off the density of primaries from the character



formula (3.55). We get

. . 8 2/3 £5/3 27+ DA 1 1/3 1 1/3
p‘j;_”;““‘”(A,Jp\/_( il 1‘1)7/(3( +1) o7 O 3ﬂ1/3f1/3(A+J+§) (A—J——) .
B 3(A+J+5 A-J—-5
2 2

Note that in (3.72), 2J + 1 is the dimension of the spin J representation of SO(3).
This is reminiscent of the formulas found in [102, |128]], where the density of a
global symmetry representation p is proportional to its dimension dim p. This
comes about because the high temperature partition function can be approximated
by a delta-function on a group (the rotation group in this case) centered at the

identity, whose harmonic transform is the Plancherel measure dim p/vol G.

e QGeneral d

For general d > 3, there are several chemical potentials to turn on, so the final
leading formula for the density of states is a little more cumbersome. For simplicity,
we will simply compute the tree-level asymptotic density of states (i.e. the value
at the saddle-point, not including the Gaussian determinant). Note that because in
this section we are computing the tree-level contribution, the formula is identical

for states and for primaries.

First, let us consider the case where we only turn on information about one spin, for
simplicity. The saddles in temperature and chemical potential are located at
- ((A +e0—iJQ) (1 + Qg))“"
T (d — 1) fvol §-1 ’
V(A +e0)?+(d-3)(d - 1)J2 = (A + &)
: J(d-3) ’
which lead to a high energy density of states of

d a-1 [ vol S4=1 f(d - 1 d-3)(d-1)J? ’
log pa(A,J) ~ H(A+80)d<vo S 2f( )(1+\/1+( (A)-l(-so)z)] ))

Q - _ (3.73)

1-2

x(—d_z——l 1+(d_3)(d_w2) . (3.74)

d—-3 d-3 (A + 20)2
This leading order formula matches the result in Equation (49) of [188]].
The expression reproduces (3.61)) and (3.70) for d = 2 and d = 3 respectively.
Note that to reproduce we set the Casimir energy & = 0 and use the fact that

i (d=2DA-A2+(d-3)(d-1)J> A’ )
s d-3 TTA

(3.75)
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Now let us consider all the chemical potentials €2; turned on. The leading term for

the partition function is given in (3.54), which means

pa(A, ;) ~ / dTdQ; exp . (3.76)

A+ &g . vol 4~ fd-1 Z": iQ;J;
T m(+Qh) G T

where for even dimensions, & is the Casimir energy as defined in (3.42). The saddle
for the T integral is easy to compute, and is located at

1/d

T, =

—iy JONTT 2
((A + & lZ, Jz-Q'l) Hz(l + Ql) (3.77)

vol S4-1f(d - 1)

Plugging this back into (3.76), we get

pa(A,J;)

~ / dQ; exp

We now want to find the saddles in the chemical potentials. Taking a derivative

d-1

Q-

d(d —1)"T (vol $9-1 f)a (A + &0 —iZJ,-Q,-

[T(1+22)

1

(3.78)

with respect to each Q; gives us the following equations to solve for the saddle €2, ;:
i(d-1)J; Q. )
2 1+Q7

= (A+gp— iZ JiQ.)) (3.79)
If we solve |i for Q, ; for j = 1,2,..., L%J, and plug into (3.78]), we get the
tree-level density of states (or primaries) in d dimensions. To describe the solution
for (3.79), it is useful to define the quantity a as the following:
(A+e0) =12 il
a = :
d-1

a is a function of A + g9 and the spins J;, and it is a symmetric function of J;. Each

(3.80)

saddle point of € satisfies the following equations:

a2 —a+ Ja?+J?
_QZaQ*J. —a a JJ

Ji= , Qi i=——m—. 3.81
T 1eQ? . " J ( )

When we substitute this relation into (3.79), we get the density of states at leading

order to be
N a
- ++/1+ =5
logpd(A,Jl,...,Jn)~d(volsd‘1f)$a%l_[ I ,
i=1 2
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where a is the positive real solution of

A+eg=|%a+ ) \Ja>+ 2 (3.83)
i

Because the right-hand side of (3.83)) is a monotonically increasing function of a,
there is only one positive real a satisfying (3.83) for a given energy A + & and spins
Ji.

* Perturbative corrections to the density of states

Besides corrections coming from higher-loop terms in the saddle point analysis,
the first nontrivial correction for d > 2 comes from higher derivative terms in the
effective action of Sy, in 3.51] Note that in d = 2 these corrections are absent
(see [3.33). This is another way of understanding that the corrections to the first
line of [3.63] are non-perturbatively suppressed in A (and come from the modular §

transformation of the lightest non-vacuum operator).

For d > 2, the first correction comes from the Maxwell and Einstein terms in the

effective action. This will turn out to induce a correction to the entropy of the form
d-3 . . . .

A" . To see this, let us look at our expression for the thermal effective action 1'

In d = 3 we have

log Z43(T, Q) =

4 8
1+’; 3 [ T7 = e+ 21+ 362)Q7) +0(T—2)). (3.84)

From this we can extract a correction to the density of states from our saddle (3.69).
We get

2 1
log p25* (A, J) = 37 P £17 (A+.1)'P (A= )PP = S log(A% = %) + S log (3\/; 2)
7
32c20% 1

=22 R oA,
3(A2 - J2) (@™

- 871'6‘1 +

1/3 1/3
— 1 AT +1
1ogpgr=”;“‘““(A,J)=3n1/3f1/3(A+J+§) (A—]—E) +log (27+1) )

(87 = (7 + D)7P

+0(A713). (3.85)

823 313 32c2(J + 3)’n
3 a 1+ A2 1\2
3 3(A2 - (J+1)2)

Note that the size of the Maxwell term (c2) compared to higher-derivative terms

+log(

depends on the order of limits in A, J. If we take A > J > 1, then the Maxwell
term scales as A~ (instead of AY), can be neglected at this order in the derivative
expansion. However, if we instead take a limit where A/J is fixed and then take A

to infinity, then it is important.
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For d > 3, we have the following correction to the density of states:

1

J2\4
. %ﬁ L++/1+ 5

log pa(AJy, ..., Jp) ~d(vol S9! f)da 5
i=1

3

[1+.2 n [+

) 1+J7/a* -1 l_[ L+1+%
T 1+ a2+ 1] i=1 2

+0(a"7), (3.86)

- %(VolSd_lf)%a% (d=1)c; - (2c1 + gcz

where a is defined in (3.83)). In order to trust the high-temperature expansion, we

demand that the temperature at the saddle point be large. The saddle temperature
is proportional to aé, with the remaining factors being O(1). Therefore, we
can expand our formula in a. We will discuss the regime of validity of our formulas
in more detail in Sec[3.31

If we keep the information from only one spin J, then we get a correction of the
form

! a -3
logpd(A,J)~%(A+so—a/J)ddl((d—l)volSd_lf)d(l+M) (1 aJ )

A+ &g _A+£0
d —2)(vol §4-1 £)3/d 2 8¢y +2c1d
_ ¢ (;(Vol)mff) (A+eo—a1)"a’(1—a2)3/d((d—1)c1——62+d <l 0/2)
— d
+0((A+20)7), (3.87)
J d-1

where a = . Because A + g is larger than J, |a| is

A+20 14/14(d—1)(d=3)J% [ (A+o)?
always in between 0 and 1. The corrections from the Maxwell and Einstein terms

are in fact more important than the Gaussian fluctuations about the saddle point.

Again, if A + g9 > |J|, then || < 1, so the Einstein (c;) term dominates in [3.87]
and the Maxwell (¢,) term is subleading. However, if (A+¢g)/J is fixed as A — oo,

then @ ~ O(1), and the two terms are comparable.

* Regime of validity

Because we are doing a high-temperature expansion, in order for our formulas to be
valid, we need the saddle-point value of temperature, T, to be large. From (3.77),
we see that we need to take A > f. However, large A is not a sufficient condition
— it is possible that the saddles in Q are sufficiently close to i to make the saddle in
T no longer large. This puts a condition on the twist A — }’; |J;| of the operators. In

particular, if m of the L%J spins are large, meaning |J1|, ... |/Jn| > A =2, |/i|, then
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our universal entropy formula is only valid when

A—Z|J,-| > (fﬁ|],-|)m+l. (3.88)
i i=1

For example, in CFTs, this is equivalent to the entropy formula only being valid in

the regime
A= |J| >+ fA. (3.89)
(This can be seen easily by demanding the saddles in (3.69) are very small.) Oper-

ators outside of this window (for example operators along a Regge trajectory with
A large but A — |J| growing slower than VJ) will not obey our universal entropy

formula.

In d = 2, the regime of validity is larger. In order to trust the saddle point analysis,

it is only necessary to take A — oo with
A—-|J|>c (3.90)

(or equivalently take h, i > c).

* Non-perturbative corrections to the density of states

So far, we have discussed an infinite set of perturbative corrections in 1/7T to
log Z(T, ;), parametrized by an infinite set of terms in the thermal effective ac-
tion. In this section we briefly consider nonperturbative corrections to log Z(T', Q;),

namely corrections that scale as e~/ .

In general we expect the first nonperturbative correction to be proportional to
—2am
e , (3.91)

where m is the mass of the lightest massive state in the dimensionally reduced theory.

By dimensional analysis, m oc T, so (3.91) is indeed a nonperturbative correction.

The reason for (3.91) is the following. Consider the CFT on Sé x 8§91 as a gapped
theory on §9~!. Corrections of the form will be generated by world-line
instantons associated with a massive particle moving along a great circle of S~! of
length 2. Similar world line instantons were studied in [39, 79} 99, |109, 110] in

the context of the large-charge expansionm

18We thank Yifan Wang for pointing out this interpretation and associated references.
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We can also understand (3.91)) from a Hamiltonian perspective. We can compute
the partition function of the gapped theory on S?~! by slicing the path integral on
§9=2 spatial slices at various polar angles 6 € [0, 7]. These slices have varying
radius sin 6, and therefore varying Hamiltonian H(6). Overall, we time-evolve by
Euclidean time 7 as we move from the south pole to the north pole of the S?~!. This

gives an expression for the partition function of the form

Z = (Yo|T exp (_/o dQH(H)) ¥0), (3.92)

where |)) is the state in the S?~2 Hilbert space created by the path integral near
the south pole, and 7~ denotes Euclidean time ordering. In general, the spectrum of
H(7) could be quite complicated. However, when 3 is small, most spatial slices are
large compared to the mass gap, and we expect the low-lying spectrum of H(7) to be
close to the gapped spectrum in flat space R¢~2. In particular, there is a contribution
from a particle-antiparticle pair nucleated at the south pole, which propagate for
Euclidean time 7 before annihilating at the north pole. This leads to

In general, we expect similar corrections of the form e 2" for each massive state
in the gapped theory on R¢~2. There will also be Liischer corrections [159] that it

would be interesting to study in more detail.

We can check the prediction (3.91) explicitly in free theories. In Appendix C,
we write down the high-temperature expansions of the partition function for a d-
dimensional free boson and free Dirac fermion respectively. In even dimensions, we
write down the exact expression, including all non-perturbative corrections; in odd
dimensions, the perturbative expansion is asymptotic rather than convergent, but we
are still able to write down the first non-perturbative correction. In all cases, we
show that the first non-perturbative correction at high temperature to the partition
function take the form as predicted by (3.91).

3.4 Density of states: examples

In this section, we study partition functions of various CFTs to illustrate the general
results of the previous sections. The examples we consider are the free scalar,
the free scalar with a Z, twist, the free fermion, and holographic CFTs where the
entropy is well-approximated by that of a Kerr-AdS black hole. In these examples,
we check the partition function against our general formula (3.5T)) and determine
the unknown coefficients f, ¢y, and ¢, when the thermal effective action applies.

Furthermore, in Appendix [3.9] we compare the predictions of the thermal effective
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action to numerical bootstrap data for the 3D Ising model, obtaining an estimate for

f

Free scalar

Our first example is the free scalar in d dimensions. When compactified, this theory
contains a gapless sector corresponding to a free scalar in one lower dimension.
Therefore, it violates the central assumption of the thermal effective action, and the

predictions of the thermal EFT should be violated in some way.

The partition function of this theory can be computed exactly. For a review, see
Appendix C. Expanding the result at high temperature, we find for example

4] >

1 L, d-4-2327 Q7 ) )

= 20(d)T4 ! - > L 2 r(d-2)T4 3 +0(T47)].
1,2/ (1+9Q2)

log Z(T,Q;) =

(3.93)
Importantly, in even d, we find that the high temperature expansion contains a term
proportional to 7°, while in odd dimensions there is a term proportional to log T
(When d = 3, the logarithm is visible in (3.93)) via the pole in the {-function at 1.)
Such terms are inconsistent with the derivative expansion of the thermal effective
action (which contains powers of the form 7¢-*~! for integer k). They represent
contributions from the gapless sector. We discuss these terms more explicitly in

Appendix C.

Free scalar with a Z, twist

To remove the gapless sector in the compactified free scalar, we can insert a Z; twist
on the S', where we identify ¢(7 = 1) = —¢(7 = 0) as we go around the thermal
circle. Computing the partition function with this twist inserted (this can be treated
using methods in e.g. [80]]), we find

1

log Z(T, Q) = ———X
Mo+
4] o
d—4)-2Y"2" )
(—2(1—%)4(61)#—%(1—2;3)( ) 122‘=1 Le(d-2)T43 v+ 0(197%) |.

(3.94)

This result is now consistent with the thermal effective action (even though the
compactification is no longer "thermal"). For example, when d = 3, the extra factor
(1 — 1/2473) cancels the pole in £ (d — 2), so there is no log T term. Matching with
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(B3T). we get

__ @ (1
/= vol §d-1 (l 2d—1)’
_ (@d-4)d-2) .
€1 = 12(d = 1)(d - 2)vol §4-1 ( 24—3) ,
_ d(2d —5)¢(d -2) ~ 1
T 48(d — 1)(d — 2)vol §4-1 (1 2d—3) ’ (3.95)

for a free scalar with a Z, twist.

Note that f < 0 in (3.95). This is not a contradiction because the partition function
computed in is not a positive-definite sum of states (due to the insertion of
the Z, twist). In fact f < 0 implies a strong cancellation between Z,-even and odd
operators in the theory.

Free fermion

Next, let us consider a free Dirac fermion in d dimensions. We compactify the
theory with thermal boundary conditions, where we do not insert (—=1)%. This leads
to a massive (d — 1)-dimensional theory. (With the (—=1)F operator inserted, there

would be a gapless sector.)

We compute the partition function explicitly in Appendix C. The leading two terms
in the free energy are given by

ol 4 1+1
log Z(T,Q;)) = ——X

14] 2
[1;27(1+€Q)

151 o2
d—1)+Y:2' Q2
(1 2;‘_1)“ e (1 2;_3)( )24le1 ~L(d =T+ 0T

(3.96)

Unlike in the free scalar case, the expression (3.96) has no log 7' terms or 7° terms

in even d, consistent with the thermal compactification being gapped. Matching

with (3.51)), we find

2L41+1 (1 - zd—ll) £(d)
vol §d-1

DL+ (1 - 2%) £(d-2)

AT T 4d - 2ol ST

2L+ (1 - 2%) 2(d-2)

__ , 3.97
2 96(d — 2)vol §4-1 (3:97)

f=

2




54

for the free fermion.

Holographic theories

Finally, let us consider CFTs dual to semiclassical Einstein gravity via AdS/CFT. We
can estimate the partition functions of such theories by studying the thermodynamics
of Kerr-AdS black holes (see e.g. [95]]). By the holographic principle, a holographic
CFT has the same partition function as its dual in AdS space. We get the following
high-temperature partition function for a holographic CFTy, d > 3:

_ _ d-17d-1 2((d - Ld/2] .2)
g Z - vol §4-1(4myd-1 ¢4l o d ((a’ D+ Q; . 1
4d'Gy 1P (1402 167272 T4
(3.98)

where {agqs is the characteristic length of the dual asymptotic AdS4; spacetime and

Gy is the d + 1-dimensional Newton constant.

This is indeed consistent with the result (3.51)) from the thermal effective action.
Matching coeflicients, we ﬁndf]

d—1pd—1
_ (4rm) €Ads

4diG y

d-3 pd—1
(4m)4=¢ AdS

T 4(d-2)d"2Gy’
(4ﬂ)d—3€d—l

AdS
- , 3.99
32(d - 2)d4 3Gy (3:99)

b

C1

C) =
for the thermal Wilson coefficients of a holographic CFT.

» Extended regime of validity for holographic theories

For holographic theories, the entropy of local operators with certain dimensions and
spins can be approximated by the entropy of a black hole with the same quantum
numbers, as long as the black hole is stable and has large area (in Planck units). In
this section we examine where the entropy of Kerr black holes is trustworthy, and
compare it to the range of validity of the EFT expansion in Section [3.3] We will
find that for holographic theories, the universal formula for entropy has an extended

regime of validity, compared to general CFTs. This is reminiscent of what happens

9The coefficients in (3.99) were also independently computed by Edgar Shaghoulian. We thank
him for discussions related to these coefficients.
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in two-dimensional CFTs, where the Cardy formula has an extended regime of

validity for holographic theories [104].

When Kerr black holes in AdS spin too quickly, they suffer from a phenomenon
called superradiant instability [43]. In the case of the Kerr-AdS black hole, it has

an instability when any of the angular velocities Q; become larger than ¢;!.. In

AdS’
particular, a stable Kerr-AdS black hole has a bound on quantity E — }; |J,~|€[§(lis.
For instance, in AdS4, the condition for stability is (see e.g. [133]])

. E¢
E - J|6xks > ZGA]dVS, (3.100)

when the black hole has large mass and spin@ Translated to CFT data, the entropy

for holographic theories is trustworthy when the twist obeys

A— 7] 2 VA, (3.101)

where by 2 we allow for an O(1) constant on the RHS that we do not computeE-]

A similar calculation shows that, for a holographic theory where m of the spins are
d

taken to be large compared to the twist (i.e. A, |Ji|,...|Jn| > A — Zl.LzzIJ |/;]), then

the entropy is trustworthy when the twist obeys

A=z (fﬁ |Jl-|)m+] . (3.102)
i i=1

We see that the functional form of the stability bound for Kerr-AdS black holes
is very similar to the regime of validity (3.89) and (3.88)) for the general entropy

formula.

This is reminiscent of the extended regime of the Cardy formula for the case of
CFT,: for theories holographically dual to large-radius gravity in AdSs, it was
shown that there is a further extension of the validity of the Cardy formula in [[104].
For holographic CFTs, the Cardy formula matches the Bekenstein-Hawking entropy
of BTZ black holes, which only requires

A= >, (3.103)

2Meaning EG Ny s, JIGNEL T > 1.
2I'The reason we allow this freedom is the possibility of the black holes being stable, but not
yet dominating the canonical ensemble. This can occur for sufficiently light black holes, sometimes

called "enigmatic black holes" [32}[104].
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with ¢ — oo (rather than the usual A — |J| > c¢ condition). In particular, it was
shown that theories with a sufficiently sparse light spectrum (which is a necessary,
but not sufficient condition for the theory to have a semiclassical Einstein gravity
dual) have an extended Cardy regime of entropy. It would be interesting if one could

prove a similar statement for higher dimensional CFTSEZI

3.5 A ''genus-2'" partition function

While the density of states of a CFT is encoded in the partition function on S[]g x§4-1,
OPE coefficients are encoded in partition functions on other manifolds. In this
work, we will be interested in "heavy-heavy-heavy" OPE coeflicients c;;; between
operators with parametrically large scaling dimension. To study them, we can
consider the partition function of the CFT on a manifold constructed by gluing
a pair of three-punctured spheres along their punctures. In two dimensions, this
produces a genus-2 Riemann surface. However, a similar construction works in
higher dimensions. We will continue to refer to such a manifold as "genus-2" in

higher dimensions, by analogy with the 2D case.

We pause to note that our final expression for "heavy-heavy-heavy" OPE coefficients
is given at the end of Sec. in Eqn (3.242). Readers only interested in the final

result can skip to this part.

Conformal structures of a genus-2 manifold

In higher dimensions we can build a genus-2 manifold M by taking two copies of
the plane R? (more precisely its conformal compactification §¢), removing three
balls from each plane, and gluing the boundaries of the balls with cylinders. In this
construction, we can choose the positions and radii of the balls, as well as the lengths
of the cylinders. We can additionally add angular twists by elements of SO(d) as
we move along each cylinder. This is a large number of parameters, but many of

them are related by conformal symmetry.

In addition, if the CFT has a global symmetry I', we can introduce topological defects
on M5, or equivalently a flat I'-bundle over M;. Such flat bundles are parametrized
by homomorphisms of the fundamental group of M, to I'. For d > 2, R? with balls
removed is simply connected, and the only homotopically non-trivial cycles on M,

are those going through the cylinders between the two copies of R?. Therefore, the

22Some works studying sparseness in higher-d CFT include [21}|116}/164]. In particular it would
be interesting if the precise sparseness conditions in [[164] implied the extended entropy formulas
described in this section.
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fundamental group is a free group with two generators, and flat I'-bundles can be
parametrized by decorating the cylinders by inserting topological defects transverse
to these cycles. The situation is different for d = 2 since R? with balls removed is
already not simply connected, and there are additional generators of the fundamental
group which go around the boundaries of the balls. Inserting topological defects
transverse to these additional cycles on M, is equivalent to considering twisted

sectors along the cylinders.

To understand the implications of conformal symmetry, it is helpful to ignore the
Weyl anomaly and focus on the conformal structure of the manifold M, — i.e.
properties of M, that are independent of the Weyl class of the metric. First, we
can associate an (orientation-reversing) conformal group element to each cylinder
as follows. Let x, x” be flat coordinates on the two copies of R¢. A cylinder C that
connects the two planes is Weyl-equivalent to an annulus in each plane. Using this
Weyl-equivalence, each coordinate x and x” can be extended to cover C. Inside C,
the coordinates x and x” are identified by an orientation-reversing conformal group

element:
x=gx', geG” (inside C). (3.104)

Here, we denote the conformal group as G = SO(d + 1,1), and we write the
orientation-reversing component of O(d + 1, 1) as G~. For example, if a cylinder

of length 8 connects the unit spheres in each copy of the plane, then we have
g=ePPr, (3.105)

where I(x) = )% is an inversion. More generally, suppose the cylinder is centered

at x = a, has radius r and length Br, and includes an angular twist by & € SO(d).

Thedz_g—]

g = e“Pe (B2logn)Dppo=aP (3.106)

In the case of interest, we have three cylinders connecting two copies of the plane.
This gives three group elements (g1, g2,83) € (G7)3. However, the conformal
structure of the resulting manifold is unchanged if we perform a conformal trans-

formation x — gx on the first plane or x’ — g’x” on the second. These conformal

23The appearance of the quantity 8 — 2 log r reflects the fact that two planes glued by a cylinder
with radius r and length Br is Weyl-equivalent to two planes glued by a cylinder with radius 1
and length 8 — 2logr. The Weyl transformation breaks the cylinder into three pieces of lengths
rlogr,r(B —2logr), rlogr, and flattens out the first and third piece into annuli.
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transformations become gauge redundancies acting on the g;:

(81,82.83) ~ (818" ", 8828 . gg38 ). (3.107)

Modding out by this gauge-redundancy, we obtain the moduli space of conformal

structures as a double-quotient
M =G\(G™)*/G, (3.108)

where the left and right factors of G’s act on (G™)? via (3.107). The action of the
G x G gauge redundancies on (G~)? is almost free, so the dimension of M is

(d+1)(d+2)

dimM =3dimG™ -2dimG =dimG = >

(3.109)
For orientation, in 2D the parametrization of a genus-2 Riemann surface in terms
of (g1, &2, g3) is called a Whittaker parametrization. (The closely-related Schottky
parametrization can be obtained by forming the combinations y,; = gigJTI, which
satisfy y12y23y31 = 1.) In 2D, the true moduli space of genus-2 surfaces is a
quotient of M by the mapping class group. The action of the mapping class group is

unfortunately somewhat complicated in the Whittaker/Schottky parameterizations.

In higher dimensions, M is again a covering space of the moduli space of conformal

structures on M;. Topologically, M5 is equivalent to a connected sum of two copies
of §1 x §4-!

My = (S' xS # (8! x §971). (3.110)

This can be seen by decomposing M, in the "dumbbell" channel where we slice
Figure[3.3|down the middle into a left half and a right half. Each half is topologically
a copy of S x 97! with a ball removed, and the two halves are glued along an S¢~!.
The mapping class group of this space was computed for d = 3 in [37]. This mapping
class group will not play a further role in the present work. It will be interesting
to explore its implications and other global aspects of higher-dimensional "higher-

genus" surfaces in future work.

An important set of functions on M are eigenvalues of the group elements gl.‘1 gj €
SO(d +1,1):

(e*Pii | e*i0i) (even d),

~ (3.111)
(e*Pii, e*%i 1) (odd d).

eigenvalues<d+z)x(d+2) (& lg i) =

24We thank Yifan Wang for pointing this out and directing us to reference [37].
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Figure 3.2: The space ¥ = B3\(B; U By). The boundary of Y has three ¢!
components given by dB1, dB,, dB3 with radii 1, 1,2, respectively. Note that in
d > 3,Y has an SO(d — 1) rotational symmetry around the horizontal axis, and here
we are depicting only a 2-dimensional slice.

These are indeed invariant under gauge-redundancies (3.107). We refer to the §;;
and 6; ;7 as "relative" inverse temperatures and angles, for reasons that will become
clear shortly. Note that there are 3 L%J relative temperatures/angles, which is not

enough to parametrize the full moduli space when d > 3.

Choice of geometry

The partition function of a CFT on M, factors into a theory-independent part that
depends on the precise metric and is determined by the Weyl anomaly, times a
theory-dependent part that depends only on the conformal structure of M;. To get
nontrivial information about the theory, it suffices to study only a single representa-

tive geometry for each conformal structure.

We will choose our geometry as follows. Let By be the unit ball centered at
(=1,0,...,0), let B, be the unit ball centered at (1,0, ...,0), and let B3 be the ball
of radius 2 centered at the origin. All three balls are mutually tangent. From B3, we
remove B and B;. The resulting space Y = B3\ (B U B») has three S4-1 poundaries
given by 0B, 0B,, 0 B3, see Figure We now take a second copy of Y, which
we call Y’, containing boundaries 0B’ , 03'2, 88’3. Finally, we glue each dB; to dB;
with cylinders C; whose ratios of length/radius are ;, and we include angular twists
h; € SO(d) along each cylinder. See Figure 3.3|for an illustration.

This construction gives a particular choice of metric that is flat on Y, Y’ and is the
usual cylinder metric on the C;. Note that the metric has curvature localized at the
junctions between Y, Y’ and the cylinders. However, it is everywhere conformally-

flat because the plane, the cylinder, and a plane-cylinder junction are all conformally-
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Figure 3.3: The manifold M, is obtained by taking two copies of ¥ and gluing cor-
responding boundary components with cylinders Cy, C;, C3 of inverse temperatures
B1, B2, B3 and angular twists &y, hy, h3, colored red, blue, and green, respectively.
In the figure, we slightly bent the edges of the cylinders to help visualize them, but
in the actual geometry the cylinders have constant radii. The figure also naively
suggests that the lengths of the cylinders must be equal, but in reality they need not
be related to each other.

flat. In terms of conformal structures, our geometry corresponds to
_p _ I
g1=e PrePiDp1e",

1 _ _pl
gzzepe 'Bzthle P,

g3 = ePlog2tB) g (3.112)

which gives a point in M, parametrized by 51, B2, 83, h1, ha, h3.

A slight disadvantage of the parametrization (3.112) is that it is not permutation-
symmetric among the three cylinders — Cj is treated differently. However, an
advantage is that it makes manifest an important SO(d — 1) symmetry that rotates
all three balls around the x! axis, preserving their points of tangencyE] We can act
with an SO(d — 1) rotation on either Y or Y’, which means that the angular twists

(h1, hy, h3) are subject to a residual gauge redundancy
(hy, ho, h3) ~ (khik'™" khok'™' khak'™Y),  k, k" € SO(d - 1). (3.113)
Thus, overall, we can think of the parametrization (3.112)) as a map

SO(d — 1)\(SO(1,1) x SO(d))*/SO(d - 1) —» M, (3.114)

2By contrast, we could restore manifest permutation symmetry by taking the balls to all have the
same radius and be mutually tangent, but then the SO(d — 1) would act via a nontrivial conformal
transformation.
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where f3; parametrize the SO(1, 1)’s, the h; parametrize the SO(d)’s, and the SO(d —
1)’s act on the SO(d)’s via (3.113).

We claim that is injective and covers an open subset of M — in particular
an open subset that contains the physical loci that will be important in what follows.
These loci include the low temperature regime of large (;, and a high temperature
limit that will control the asymptotics of OPE coefficients. A first important check

is that the two spaces in (3.114) have the same dimension. Indeed, they do, since

d(d-1) (d-1)(d-2)
1+ 7 )—2 >

3(1 +dim SO(d)) — 2dim SO(d — 1) = 3 (

_ (d+1)(d+2)

> (3.115)

In Section [3.7, we will show that the natural measure on M is nonzero in the
coordinates (3.112) at both low and high temperatures. This establishes that
B, B2, B3, hi, hy, hz (modulo the gauge redundancy (3.113)) furnish good coor-

dinates on M for our purposes.

Consequently, it suffices to consider geometries of the form described above. These
geometries contain all possible theory-dependent information about OPE coeffi-
cients of the CFT. In Appendix G, we show that there is a matching between
quantum numbers specifying OPE coefficients and the dimension of the genus-2

moduli space dim M.

The partition function as a sum over states
The partition function on the above geometry is a weighted sum of squares of OPE
coefficients. In this section, we derive this fact in detail, taking care with some of

the subtleties of cutting and gluing in higher-dimensional CFTs.

Consider first the space Y = B3\(B; U B,). This space has boundaries given by
0Y = 0B3 U —0B) U —0B,. Thus, the partition function Z(Y) is an element of
Hr ® H ® H, or equivalently a map H; ® H; — Hp, where H, is the Hilbert
space on a sphere of radius r. A basis of states |O(x)), in ‘H, is given by the insertion
of an operator O(x) inside a ball of radius r. The defining property of Z(Y) is that

its pairing with three basis elements is a conformal three-point function.

Let us state this more precisely. The Hermitian conjugate state to |O(x)), € H, can

be obtained by inserting the following conjugate operator in a flat geometry outside
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the ball of radius 7:

2A _ 2
[0°(0)]" = P [ PO (0] = (IL) r'®. 0! (%) . (3.116)

X x
Note that [---]" = [---]" is the usual BPZ conjugation. The inversion tensor Iz*
is the solution to the conformal Ward identities for a two-point function of O“ and

1.
or:

I7%(%)

w2A

(05(x)0%(0)) =

(3.117)

normalized so that IIT = 1. With this notation, a projector onto the conformal

multiplet of O inside H, can be written
0], = |0%(0)), (0“(0)[0% (0)]T")~" ,(O% (0)| + descendants, (3.118)

where the inverse two-point function (O%(0)[O% (0)]7r)~! should be understood as
a matrix with indices a, a’. The indices a, a’ are implicitly summed over in (3.118].
The form of the sum over descendants is determined by the conformal algebra. A

resolution of the identity on H, is given by summing over projectors 1 = } |O|,.

By composing Z(Y) with resolutions of the identity on each of its three boundaries,

we find an expression in terms of three-point functions:

zZ)= Y 10ihz(V)(101] @ |0a]1)
01,0,,0;

= Z (01(—€)01(€)03(0€) (01 (0)[01(0)]T) (02(0) [0(0)] )
01,0,,0;

X (03(00) [03(c0)]) 7! [[03(20)]2)2 1(01(0)| ® 1(O2(0) .
(3.119)

For simplicity, we have omitted spin indices. This is a sum over states with
coefficients given by a three-point function, where e = (1,0, ..., 0) is a unit vector
along the x! direction. Note that we define a primary operator at infinity without an

inversion tensor:
05 (c0e) = lim L*05(Le). (3.120)

To help restore symmetry among the three operators, we have chosen to insert
the projector |O; |, as opposed to |O3| — this ensures that the three-point function

contains O3(o0) and not O; (00).
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s¢

Figure 3.4: The sphere S¢ is Weyl-equivalent to a "capped cylinder" C, p with radius
r and length 3. Each end cap is a ball (the interior of an S¢~!) of radius r. The
"closed junctions" where the cylinder meets the end caps are highlighted in red.

Figure 3.5: An "open junction," where a cylinder meets the complement of a ball in
a flat plane. The junction is highlighted in blue.

The partition function of each cylinder C; is simply e %(P*+0) h; where & is the
Casimir energy (3.42), and h; € SO(d) is the angular twist along the cylinder.
One subtle ingredient is that we must also associate nontrivial "gluing" factors to
junctions between cylinders and flat planes. To derive these gluing factors, let us
start with the partition function on S¢ (with unit radius). This is Weyl-equivalent to
a cylinder of radius r and length r3, capped off by flat balls; see Figure[3.4] Let the
capped cylinder be C, g, and denote the Weyl factor going from §  to C,p by e>wrs,
The Weyl anomaly implies

Z(Crp) = ¢ Swomlg.0rpl 7 (gdy (3.121)

At the same time, Z(C, ) can be computed by cutting and gluing. The end caps
are simply identity operators in radial quantization, |1),. The cylinder contributes
e~¢08 where g is the Casimir energy on §9-1_ Let us define Zg1ue () as the factor
associated to a junction between a cylinder and a flat end-cap, which we call a

"closed junction". We find

Z(Crp) = |Zaue(r)Pe ™ = |Zgue(r)] = e3P Hmmlsorsl 7(50)3,
(3.122)
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We calculate these gluing factors in various dimensions in Appendix F. For example,

we ﬁndQE]

1 d odd,

o ec/lZ(r/z)c/6 d=2,

| Zgtue (r)] = Z(89)% X (3.123)
e /5(r/2)72  d =4,

e37a6/10(’,/2)6a6 d=6.

Our geometry also contains four "open junctions" with the opposite curvature,
where a cylinder joins a flat region that locally looks like the complement of a
ball; see Figure The gluing factor associated to an open junction is the inverse
Zglue(r)“ of the one associated to a closed junction. The reason is that we can
perform an infinitesimal Weyl transformation on a plane to create a closed junction
infinitesimally-close to an open junction. The Weyl anomaly is infinitesimal, so the

gluing factors must multiply to 1.
Putting everything together, the partition function on our genus-2 manifold is

_ |Zglue(2)|2

- mTr(Z(Yﬁe_ﬁS(Dﬁwhng(Y)(e_ﬁl(D+‘90)h1 ® €_’82(D+‘90)h2)).
glue

Z(M>)
(3.124)
Each group element e 52 h; acts on the Hilbert space corresponding to the boundary

component 0B;. Inserting our expression (3.119) for Z(Y), we obtain the partition

function as a sum over a triplet of primary operators

_ |Zglue(2)|2 —e0(B1+pB2+B3)
2 = e (DR
% e B1A1=B282=[3A3
01%:,03 (
(0 (=€) 0% ()05 (00€))*(hy - Of (—e) hy - OF (e) hs - O5(ce))
x (01 (0)[Of (0)]") (0% (0)[0F (0)]T) (05 (00) [OF (c0)]72) ™"

+ descendants) . (3.125)
Here, i - O denotes the action of a rotation 2 € SO(d) on a local operator:
h-0%=hO"h" = A(h™1)*,0°, (3.126)

where A is the SO(d) representation of O.

261 d = 4, we write a4 as a.
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Let us choose the O; to be an orthonormal basis of primaries with respect to the
BPZ inner product. Using (3.116) and (3.120)), we find

(05(0)[ 05 (00)]72) = 235¢ ., (3.127)

while the other two-point functions in ((3.125)), which involve standard BPZ conju-

gates [--- |7, are identity matrices.

Let us furthermore expand the three-point functions in a basis of conformally-
invariant three-point structures:

1
2A1+A2—A3

1 A
- 2A1+A2—A3 C123

(O} (=€)03(¢) 05 (0e)) = (01 (0)03 (€)05 (0e))

vsabe (0, e, c0). (3.128)

Here, s is a structure label, which runs over a finite-dimensional space of solutions V*
to the 3-point conformal Ward identities. Meanwhile, a, b, ¢ are spin indices in the
SO(d) representations associated to the three operators. Each three-point structure
comes with an associated OPE coeflicient c§23,
will discuss the space of three-point structures in more detail in Section

and a sum over s is implicit. We

Plugging everything in, we find an expression for the "genus-2" partition function

as a sum over conformal blocks

_ |Zglue(2)|2 —&£0(B1+B2+53) S V¢S BS'S 3.129
Z(M>) = Zan(DEC Z (c123)"¢123B 1235 (3.129)
glue 010,05

where we have introduced the "genus-2" block B{zs?)

Bi,ZYS (Bi, i) = 2—2A1—2A26—B1A1—ﬁ2A2—ﬁ3A3(Vs’;abC(O, e, 00))* (hyhahs - VS)abC(O’ e, 00)
+ descendants. (3.130)

The first term in (3.130) comes from primary states, and dominates in the "low tem-
perature" limit 81, B>, B3 > 1. The descendent terms involve three-point functions
of descendant operators, contracted using the inverse of the Gram matrix. Such

terms are determined by the conformal algebra.

The block Bi 253

and doesn’t depend on the Weyl class of the metric. This fact is already hinted at
in (3.130). Note that the factor 272417242 geems to violate permutation symmetry

among the three operators. However, this is an artifact of our asymmetric conformal

is naturally a function on the moduli space M of conformal structures,

frame. We can restore manifest permutation symmetry by rewriting the block in
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Figure 3.6: The thermal circle near the hot spot at the origin, highlighted in red.
Starting from the top, we move along cylinder C, to the top, and then back along
cylinder Cj to the top.

terms of the "relative" temperatures f3;;, defined in (3.1TT), which are permutation-

symmetric functions on M. At low temperatures, we find

2—2A1—ZAze—ﬁ1A1—52A2—53A3 _ e_ﬁu*ﬁ%l—ﬁn Al—ﬁ12+5%3_ﬁ31 A2_531+ﬁ%3-ﬁ12A3 +

Y

(3.131)

which is manifestly symmetric under permuting 1,2, 3. This is a nontrivial check
on[3.130

In Appendix G, we point out that the number of unbounded quantum numbers
needed to specify the block Bi/zs3 matches the dimension of the moduli space M.
This is analogous to the fact that the number of unbounded quantum numbers
needed to specify a four-point conformal block (two: A and J) matches the number

of cross-ratios for a four-point function (two: z and 7).

Hot spots and the thermodynamic limit
Because the geometry described in Section [3.5]is not a circle fibration, it is not im-
mediately obvious how to compute the partition function using the thermal effective

action. To make progress, we adopt the following assumption

Assumption. The thermal effective action describes the contribution to the partition
function from any region where the geometry locally looks like a circle fibration

with a large local temperature.

We call such a region a "hot spot."

For example, consider the origin in one of the copies of R4, where the balls B; and
B, are tangent. Starting at the origin, there is a circular path of length 8 + 5, that
runs along one cylinder C,, and then back along the other Cy; see Figure[3.6] In the

limit where 1, 5> are both small, this circular path shrinks and we have a hot spot.
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)
<

Figure 3.7: An approximation to the thermal circle, at an angle 6 away from the
origin. Starting at the top left, we move horizontally from dB; to d B,. Then we
move down along C; to dB),. Then horizontally to the left to B}, then up along C,
to the starting point. The path has approximate length 81 + 3, + 26°.

To build some intuition, let us compute the leading contribution to the thermal
effective action near this hot spot. The local temperature is highest at the origin,
and decays away from it. To determine the local temperature precisely, we should
find a (locally defined) conformal Killing vector field that moves around the hot
spot’s thermal circle. At leading order near the origin, we can guess what it looks
like without too much calculation. Consider a path that starts at the point (—1 +
cos 6,sin 6,0, ...) on dB;. Move horizontally to the point (1 —-cos 8,sin 6,0, ..., 0)
on d By, through cylinder 2 to d B}, horizontally from B}, to B}, and back through
cylinder 1 to the initial point on d B, see Figure This path has length

Bi+Pr+4(1—cosh) ~Bi+pr+20° (< 1). (3.132)

When 6 is small, we expect this path to be close to the orbit of a local conformal

Killing vector. Thus, the local temperature is approximately

B(6) ~ Bi + B2 +26%. (3.133)

The leading contribution to the thermal effective action near this hot spot is thus

sin?~2 9
(B1 + B2 +20%)4-1"

~Swalpr.2) ~ Syl 52 [ o (3.134)
Here, vol §%72 sin?~2 § comes from an integral over azimuthal angles. When 3 + 3,
is small, the integral will be dominated by small 8 ~ /31 + 8>. To compute it, we
can approximate sin?~2 § ~ §¢=2 and extend the #-integral from 0 to co:

® de 642 fvol §4-1

_Su(B1. N | §4-2 = . (3.135
hot(B1, B2) ~ fvo o (B1+ B +26%)d-1 (8(B1 +132))% ( .
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Note that the integral is dominated near the hot spot, i.e. in the neighborhood
0 ~ +/B1 + B>. This justifies our use of the thermal effective action everywhere
inside the integrand. Furthermore, when g + 3, is small, we find a large negative
action from the hot spot, which translates into a large multiplicative contribution to
the partition function Z ~ ¢~5.

A more precise formula for the action of a hot spot

The fact that the integral (3.135)) is dominated near the hot spot suggests a more
precise and illuminating way to derive it. Let us assume that the action of a hot spot
doesn’t depend on the geometry far outside the neighborhood 6 ~ /81 + 8. Thus,
to compute it, it suffices to consider a "genus-1" version of the geometry discussed

in Section [3.5] where we have only two balls B and B».

We claim that this "genus-1" geometry is Weyl equivalent to § éu x 891 with a special
inverse temperature (1, that depends on ) and B;. The Weyl transformation that
implements this equivalence essentially spreads out the hot-spot over the entire S9!,

resulting in a uniform inverse temperature 51;. The result is

—Shot (B1, B2) ~ log Zgi,ga-1(B12) + Weyl terms, (3.136)

where "Weyl terms" are possible contributions from the Weyl anomaly, and "~"

indicates that both sides have the same singular parts as 51, 52 — 0.

Now, (17 is determined by the conformal structure of our "genus-1" manifold, so
we can read it off from the gluing group elements g; and g, associated to the
two cylinders, given in (3.112). Gluing two copies of the plane with g; and g is
equivalent to gluing a single copy of the plane to itself with gl_lgz. To read off S,
we must simply diagonalize ;' g2

grlgy = UePrDHlnliy=1 1 e S0(d +1,1). (3.137)

In other words, B, is precisely the "relative" inverse temperature defined in (3.1TT).

There is a particularly nice expression for 51, when the angular fugacities are turned
off. In this case, the group elements g, g» are built from conformal generators
P!, D,K!, that generate a PSL(2,R) subgroup of the conformal group. Thus, we
can obtain S, by computing gl‘1 g» inside SL(2, R) and comparing the trace of both
sides of (3.137) as 2 x 2 matrices. We should compare them up to a sign, since the
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1d conformal group PSL(2,R) is a quotient of SL(2,R) modulo +1. This gives

(6_512/2 0 ) (€B12B2 (1 _ 2eﬁ2) eﬁl;ﬁz + eﬁz;ﬁl _ 26,3142-132)
+Tr = .

B1tB2 Br—Bi

0 P2 —De 2 e~ 7 (1-2eP)
(3.138)
To find a solution, we must choose the — sign, which gives
Bi+B -
Blzzzzcosh—l(ze‘22-—cosh(£175§2)). (3.139)

This is the inverse temperature at which we should evaluate (3.136).

In the limit where g1, 8> become small, the relative inverse temperature 1, has the

expansion

o~ N - B gy gy, G0
12V2B1 + B2 ’ ’

Consequently, the leading contribution to the thermal effective action (3.54) is

d-1 s
fVOlS d—1 O(ﬁl__)9 (BhﬁZ < 1), (3141)
(8(B1+p2)) =

in perfect agreement with (3.135)! We have recovered our earlier result for the
leading action of a hot spot. However, an advantage of this more abstract derivation

—log Zgiysa-1(B12) ~

is that we expect (3.136) and (3.139) to encompass all singular terms in the small
B1, B> limit.

This derivation is also straightforward to generalize to the case with angular fugaci-
ties. Let us think of the S' x §9~! partition function as a class function Zgi,ga-1(g)
of a conformal group element g. The old notation Zgi,ga-1(f, 5) is obtained by
_ oBD+0-M

setting g . Then the above argument implies that the singular part of the

action of a hot spot associated to two group elements g1, g2 is

—Shot,12 ~ l0g Zgiy ga-1 (gl_lgz) + Weyl terms. (3.142)

Let us comment on the Weyl anomaly terms in (3.142)). In the genus-1 case, one
can check that contributions from the Weyl anomaly to (3.142) vanish in the limit
B1, 52 — 0. In particular, they do not contribute to the singular part of the partition
function in the high temperature limit. In what follows, we will assume that the
same is true at higher genus, so that analogous Weyl terms can be ignored for our
purposes. It would be nice to make these contributions more precise in an example

theory.
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The hot spot action for the genus-2 case

Let us finally apply this result to our "genus-2" partition function. We conjecture
that the singular part of the log of the partition function as 31, 82,53 — 0 is given
by a sum of hot spot actions for each pair of tangent balls. Combined with (3.142),

this implies

log Z(M3) ~ =Shot,12 = Shot,23 — Shot,31
~ log Zgiyga-1 (gl_lgz) +log Zgiyga-1 (gglgg) +log Zgi ga-1 (gglgl).

(3.143)
Another way to state the conjecture is as follows. Consider the ratio
Z(M>)
R(Bi) = —~ — - (3.144)
Zgiysa-1(8] 82) Zsixsa-1(8; 83) Zgixsa-1(85 81)
We conjecture that R(3;) has a finite limit as 8; — O:
R = [}imOR(,Bi) < o0, (3.145)

Intuitively, we imagine that dividing by the hot-spot partition function Zgi, ga-1(g; lg ;)
allows us to define a kind of renormalized "hot-spot operator” in the limit 5; — 0
— a CFT operator that lives at a location where a circle shrinks to zero size. The
quantity R is then a correlator of three such hot-spot operators. It would be very
interesting to make this statement more precise and compute R in some example

theories.

In this work, we will mostly be concerned with the leading singularity of the partition
function that follows from (3.143). Using (3.54), this is

fvol §4-1 fvol §4-1 fvol §4-1
d—1 2 t 2 t 2
1812 na(l + QlZ,a) 1323 Ha(l + 923,51) ﬁ31 Ha(l + QSl,a)
(3.146)

Z(M;) ~ exp

2

where the relative angular velocities are given by Q;; , = B;;6;; .. We define the
"high temperature" regime of the genus-2 partition function as §;; — 0, with 52,- j
held fixed. This is the physical regime where the thermal effective action can be

applied to each hot spot. Here, "~" means that the logs of both sides agree, up to

subleading terms as §;; — 0.

If the CFT has a global symmetry I', we can decorate each cylinder by a topological

defect associated to a group element y; (i = 1,2,3). If we do so, the coeflicient
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f in (3.146) for the (7, j) hot spot becomes a function of the conjugacy class of

yl-)/jTl € I'. Thus, in general, we can have a different f for each hot spot.

Note that the angular parameters 6; ; scale to zero at high temperature. In this work,
we will be particularly interested in a limit of low spin, where the fl,- 7 will scale to
zero as well at an appropriate saddle point (so that the 6; ; are parametrically smaller
than the §;;). Let us further expand the partition function in this regime. It will be
convenient to parametrize the rotations 4; as a product of a rotation away from the

x! axis, times an SO(d — 1) rotation:

d
h; = exp (Z icx,-,leb) exp (

b=2

> icbi,abMab), (3.147)
2<a<b<d

Here, @; = (a;2,...,a;q) transforms like a vector under SO(d — 1), while the
SO(d — 1) parameters E)i = (D;23,...

SO(d - 1).

,D; 4-1,4) transform like an adjoint under

Recall that the h; are subject to the gauge-redundancy (3.113). The right action
of SO(d — 1) simultaneously shifts the @, (to leading order). Thus, the partition
function must be translation-invariant in the &)i. Under the left action by SO(d — 1),
the @; and ®; transform linearly as SO(d — 1) vectors and adjoints, respectively.
So the partition function must also be invariant under SO(d — 1) rotations of these

variables.

Indeed, expanding (3.146)) in small angles, we find

1 1 (®) - ®)? (@1 +a2)?
T e S g | 8 )T,
Bl am (1+ Q5 ) By 12,0 12,0
1 1 (D, — D)2 (3a2 — 1a3)?
— 5 =—|1- 5 —8(d+1)—4 42 +...],
By s (1+Q35, ) B3y 23,0 23,0
1 1 (&’3 — (_131)2 (la’l - 1&3)2
— —=——1- - —8(d+ )A—2"+.. |
B3 s (1+Q35, ) B3 31,0 31,0

(3.148)

This formula is valid when @/8 < 1, and &)/,81/2 < I, and B < 1. Here, B0
denote the relative temperatures when the angles are set to zero. They are given by

Bro=V8B1+B2)+...,
B30 = \[8(}1,32 + %ﬁ3) +...,
B30 =~8(3B1+3B3) +....

(3.149)
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Figure 3.8: The partition function penalizes rotations @; in such a way that
the spheres behave like three interlocked gears. No matter what signs we choose
for the @;, there is no way to rotate the gears, since two of them will always be
counter-rotating at their points of contact.

Let us understand some physical implications of (3.148). Terms like (@) + @2)>
come from rotating the spheres so that they rub against each other (Figure[3.8). The
thermal effective action penalizes such rotations — the spheres behave like gears
that are interlocked. It follows that there is no zero mode associated with moving
the @;’s: three mutually interlocked circular gears cannot be rotated. Meanwhile,
terms like (Cf)i —d j)2 represent the effect of twisting the spheres by different amounts
around their point of tangency. Such twists are also penalized by the effective action,
but by a smaller power of ﬂl.zj’o. To summarize, the only zero mode in the angular

parameters is associated to the gauge symmetry of right multiplication by SO(d —1).

3.6 Genus-2 global conformal blocks
To determine the asymptotics of CFT OPE coefficients, we must invert the conformal
block expansion (3.129) of the genus-2 partition function Z(M;). In particular,

we will need the large-A limit of the genus-2 conformal blocks BS’%, in the high-

123
temperature regime discussed in Section [3.5]

Our strategy will be to write an integral representation for the block using the
"shadow formalism." In the large-A regime, the integral can be evaluated by saddle

point, yielding simple closed-form expressions in the regimes of interest.

Review: shadow integrals for four-point blocks
Let us first review this strategy in the more familiar case of conformal blocks for
four-point functions of local operators on R¥ [78, |89, |130, [193]]. We will follow the

notation and conventions of [[130]].
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The central objects in the shadow formalism are principal series representations and
their matrix elements. Let 7 = (A, 1) denote a conformal representation, where
A is a representation of SO(d). The principal series corresponds to (unphysical)
complex dimensions of the form A = ‘% +is, where s € R. States in a principal series
representation are given by functions f“(x) that transform like conformal primaries
with dimension A and rotation representation A. Here, a is an index for 4. Such

states admit a Hermitian inner product

(glf) = / (g% ()" £ (0). (3.150)

where the index a is summed over. Note that (g“(x))* has scaling dimension
% —is =d— (% + is), so the integrand (including the measure d%x) has scaling
dimension 0. Furthermore, it transforms in the dual rotation representation 1*, so
the integrand is rotation-invariant. It follows that the pairing (g|f) is conformally-

invariant.

The principal series representation = (%l +is, ) is isomorphic to the "shadow" rep-
resentation 77 = ( % —is, AR ), where AR denotes the reflection of A. This isomorphism

is implemented by the shadow transform:
SLA1W = [ 5000 0. (.15

where (5 (x)(P)dT (v)) denotes the unique (up to scale) conformal two-point structure

between operators in the representations 77 and 7' = (% —is, A%).

Conformal three-point functions can be thought of as Clebsch-Gordon coeflicients
for a tensor product of principal series representations. Such three-point functions
carry a structure label s that corresponds to different solutions of the conformal
Ward identities:

VS (x) xp, x3) = <Of(xl)03 (x2)0§(x3)>(S). (3.152)

Here, (- --)®) denotes a solution to the conformal Ward identities — not a physical
three-point function. (In particular, it does not include an OPE coeflicient.) The
space of three-point structures is given by (1] ® A, ® 13)3°~D where SO(d — 1)
indicates the SO(d — 1)-invariant subspace [142]. We sometimes write V* for a

three-point structure, and we sometimes use the notation on the right-hand side of

3.152

With these ingredients, we are ready to build conformal blocks. Four-point blocks

are eigenfunctions of the conformal Casimir acting simultaneously on points 1 and
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2, obeying certain boundary conditions. Using the inner product on principal series
representations, we can instead easily build an eigenfunction called a "conformal

partial wave" from two three-point structures:

WSS (xg, - xq) = / d?x(03(x3)04(x4) 0T (x)) 401 (x1) 02(x2) O (x)) .
(3.153)

Here, O' has representation 7' = (4 - is, 2*), so that it can be paired with O(x)

inside the integral. We omit spin indices for brevity.

The partial wave W5*" satisfies the same Casimir differential equations as a conformal
block, but obeys different boundary conditions. However, it gets us "most of the
way" to a block, and the block can be extracted from it with a small amount of
extra work. The key point is that the space of solutions of the Casimir equations is
two-dimensional. It is spanned by the conformal block, and a so-called "shadow"
block for the representation 7. It follows that the partial wave can be written as a

linear combination of the block and its shadow:
P = S(mymal 7)) v GLE + S(mima[x]) G (3.154)

Here, the "shadow" coefficients S(mj7;[7])°%; are obtained by applying shadow

transformations to a three-point structure. For example,
S3V¥(x1,x2,x3) = S(myma[7])* V! (x1, x2, X3), (3.155)

where S3 denotes the shadow transform (3.15T)) acting at x3. The reason these
coeflicients appear in (3.154) is explained in [130]. Starting from (3.154), we can
isolate the block Gf;s using a "monodromy projection” [[193]], as we explain in more

detail later.

To summarize, the shadow formalism gives a convenient integral representation of
a partial wave, satisfying the same differential equations as a conformal block, and
from which the block can be extracted. This approach will work for the genus-2
blocks Bi,253 as well. Integral representations are particularly useful for studying
large quantum number asymptotics, since we can use saddle point methods.

There exist alternative constructions of four-point conformal blocks via shadow-like
integrals in Lorentzian signature [179]. These have the advantage of giving the
block "on the nose," eschewing the need for a monodromy projection. Finding a
similar Lorentzian shadow representation for the genus-2 block is an interesting

problem for the future.
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Figure 3.9: A "tensor diagram" for the genus-2 partial wave (3.158). The three-
point structures V° and V*'* are invariant tensors for a tensor product of three
principal series representations, so they are represented as trivalent nodes. Each
group element acts as a linear operator on a representation, so is a bivalent node.
Lines connect together using the inner product (3.150). We act on each of the legs
of V¥ with group elements g1, g», g3 before contracting with V*'*.

A genus-2 partial wave

s's

123
Casimir operators acting on each of the group elements g1, g2, g3. In more detail,

let LA (A = 1,...,dimG) be the generators of the Lie algebra of G, realized as

The genus-2 conformal block B¢, is a simultaneous eigenfunction of the conformal

left-invariant vector fields on G. Then D = LALy, is a differential operator on G

such that for any irrep m, we have
Dr(g) = n(8)Ca(n), (3.156)

where C() is the Casimir eigenvalue for 7. Any matrix element of g in the
representation 7 is thus an eigenfunction of 9. Viewing the conformal block as a
matrix element of three group elements g1, g2, 3 in the representations 7, it follows

that it must be a simultaneous eigenfunction of 9, acting on each of the g;:
DBy = Ca(n)Blyy  i=1,2,3, (3.157)

where D; indicates the action of O on g;. The block also diagonalizes the higher
Casimirs of the conformal group, acting on each g;.

By analogy with the four-point case, we can define a genus-2 partial wave as a

principal series matrix element of g;’s between a pair of three-point structures:
W = (V7 lg1 @ g2 @ g3]V°)
= / dx1d?x2d" %3V (x1, %2, x3) 818283 - V¥ (X1, %2, X3). (3.158)

This is illustrated diagrammatically in Figure The action of a conformal group

element on an operator is

g-0%x) = Q)22 (R (x") 0P (x). (3.159)
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The notation g1g»g3 - V*(x1, x2, x3) indicates the simultaneous actions of g1, g2, g3
on the three-point structure V*, using the formula (3.159) at each point. The spin
indices of the operators are implicitly contracted in (3.158)). By construction, the

partial wave also solves the Casimir equations (3.157).

Though we have not proven it, we expect that the space of solutions of the Casimir
equations li is eight-dimensional, and is spanned by the block B123 and seven
"shadow" blocks obtained by replacing 7; — 7; in various combinations:

s's s's B3
{B123 Bl23 ’ 123}

The genus-2 partial wave is a linear combination of these 8 solutions. Applying
similar logic to the derivation of (3.154), we expect it to have the form

W13 = (178255 v B3; + (7 shadow blocks). (3.160)

Here (S3T 3 T)S denotes the product of three shadow coeflicients coming from

performing the shadow transform of V%" on each of its external legs:

S18283V" = (82,5,5)" WV
= S([m) 7)) v Sl [FN7AND WS al[FD VY. (3.161)

(other expressions are possible, coming from doing the shadow transforms in other
orders). Meanwhile, /=3 indicates the action of inverse inversion tensors (I(e)™"),*
on each operator. These are needed in order for the resulting three-point structure to
transform in the dual representations A7, /lz, /lg, so that it can be paired with V*. The
seven shadow blocks in (3.160) will have similar coefficients, though we have not
written them explicitly for brevity. We have not attempted to give a rigorous proof
of (3.160), but instead have motivated it by analogy with the four-point case. We
will verify (3.160) explicitly in the large-A limit where it is needed in Section [3.6]

Symmetries of the saddle point equations

We will be interested in the blocks and partial waves in the large-A limit. In this
limit, the shadow integral for the genus-2 partial wave can be evaluated by
saddle point. The structure of the saddle point equations is complicated, and we
will not attempt to solve them exactly for arbitrary g;. However, there are some
simple operations that permute the saddle points that will be helpful in exploring

their structure. We derive them in this section.
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Let us begin with the integral for a partial wave. For simplicity, we will work in
d = 1; the results of this section will generalize straightforwardly to any d. The

integral takes the form

Y, 80,45 Z/ledzde3Vghgz,g3(Z1,zz,Z3)g1g2g3-VAI,AZ,A3(Z1,ZQ,Z3), (3.162)

where

1
|212|A1¥A2745 793 | AatAs=Ar |75 [As+Ai= A2

Vaiaas (21, 22,23) = (3.163)

is a three-point structure for primaries with dimensions Ay, Az, A3 in 1d. Thinking

of each g; as an SL(2, R) element, the action of g; on each operator is given by

(3.164)

gi - O(z) = (cizi +dp) ™80 (ﬂ) ‘

cizi +d;

In the limit of large A;, the integral is dominated by saddle points. Let us split the
integrand into a rapidly-varying part that depends exponentially on A;, and a part that
is slowly-varying at large A;. We define the saddle point equations as stationarity

equations for the rapidly-varying part of the integrand. Concretely they are

azi log [V—Al,—Az,—A3(Z1’ 22, Z3)818283 ‘ VAl,Az,A3 (Zl, 22, Z3)] = 0 (l = 1’ 2” 3)
(3.165)

This is a system of three coupled polynomial equations in the z;, with coeflicients
that depend on the g;. Note that the saddle-point equations are homogeneous in the

A; in our conventions. We denote the coordinates of the three points collectively as

p = (21,22, 23)-

Suppose that we can find a saddle point p. = (Z1«, 22+, 23«), i.€. a solution of (3.165)),
as a function of the A;. A simple operation that relates different saddle points is

7= (87 '21.85 22,85 23) |y, LR, - (3.166)

where we can approximate A; ~ —A; at large A;. The fact that 7p. is a saddle point
of (3.162) follows from symmetry of the integrand under the change of variables
i = g;lZi and A; — Zi.

However there is another less-obvious operation that relates saddle points to each

other, coming from the Zg shadow symmetry of the partial wave. We start by
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rewriting (3.162)) by introducing a shadow transformation on z;:

Wa,80,4
[ dadetdnadin sV 5,5, G 281020 Ve b (21022 20)
= <1 Zl 22437354 ~ 7.(27,22,23)818283 * Va,.A.05(215, 22, 23
S([A1]A2A3 sz} A1.82.43 271 1:A2,A3
S([A1]A243)
= —— dz'dzdz3V, = «.(2',22,23)818283 - V= (7,22, 23).
S([A1]A243) ! ArAg. A5 201 AnAg.As 1

(3.167)

In the second line, we performed the integral over z; and used that the two-point

N
1

The resulting integral (3.167) has the same form as (3.162)), except that A; and A
have been swapped, and z; has been swapped with z|. Thus, a saddle point of

is given by

function z is G-invariant.

(2,22,23) = Pulp, 5, - (3.168)

So far, we have managed to find a saddle point for a different integral — not the

original integral we started with.

However, in the large A; limit, z} can be related to z; using the integral on the first
line of (3.167). The integral over z; takes the form of a shadow transform, and the
shadow transform is dominated by its own saddle point at large A;, as we explain
in Appendix [3.9] Let us denote the saddle point obtained by shadow-transforming
Va,.m0.05(21, 22, 23) at site z; by

2M 12223 — (A1 + Mg — A3)ziz3 — (A1 = Ay + A3) 2122

s p) = A > 1).
14112225 (P) 20171 = (A1 + Ay = Az)za — (A1 = Ao+ A3)z3 (&> 1)
(3.169)
Note that sa,]a,a, satisfies the identity
21 = SR, 100 STA11A04: (215 22, 23), 22, 23), (3.170)

which is related to the fact that the square of the shadow transform is proportional

to the identity.
In our case, we have

7y = S[A.]ZQ&(ZI’Z%@)- (3.171)
Using (3.170), we can solve this as

21 = SR, 15,8, (21 22 23)- (3.172)
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Putting everything together, we find a saddle point of the original integrand (3.162)

1P+ = (SR 85, (Prla, 07,)s 226la, 0%, > 2341, 05,)

= (510,18, (P+) 224, 236) |, L5, - (3.173)

Note that oj p. may or may not coincide with p,. We can similarly define operations
03 and 03 by cyclic permutations of (3.173)). Note that crl.z = 1 and the o; are mutually

commuting. One can also show that 7 = oj02073.

The o; operations give a homomorphism from Zg into the group of permutations
of the saddle solutions. The behavior of this homomorphism can jump when any
of the A; crosses 0, since the saddle point analysis of the shadow integral for z;, 7]
becomes invalid if A;’s is small. Indeed, we will see that such jumps happen in

practice.

Low temperature saddles

We are now ready to explore the saddle points of the partial wave integral in different
regimes. Let us begin by exploring low temperature 3; — oo, where it will be easy
to distinguish the block from shadow blocks. We study high-temperature saddles

(which will be our main interest) in the next section.

As areminder, we will use the parametrization of M given in (3.112). For simplicity,
let us first turn off the angular fugacities by setting 4; = 1. The shadow integral
then has an SO(d — 1) symmetry, so we can locate its saddle points by
specializing the points to the x! axis: x; = (z;,0,...,0).

The SO(d — 1)-symmetry also means that the local rotations R,,”(x’) associated to
each group element g; are trivial, since the centralizer of SO(d — 1) c SO(d) is

trivial. Thus, each group element acts in a simple way on the x-axis:
gi - 0(x) = Qi(x) 0" (g:). (3.174)

The tensor structures in the numerators of the three-point structures are identical
to what they would be in a standard configuration (x,x2,x3) = (0,e,00). The
remaining factors are the same as in the SL(2,R) transformation of conformal

three-point structures in 1D. Thus, the integrand restricted to the x!'-axis becomes

I(x;) = V"™ (x1, %2, %3) 818283 - V* (x1, %2, x3)

= V¥*(0,¢,00)V* (0, ,00)V5 3 7 (21,22, 23)818285 - Vayao (21, 22, 23),
(3.175)
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where Vi, a,.a;(21, 22, 23) are 1d conformal three-point functions, and the g; act via
In the small temperature limit 5; — oo, it is straightforward to find at least one

solution to the saddle point equations (3.165). We naively expand the equations in
the 8; — oo limit to obtain

A=A+ A A+A—A - 2A 2A
oo B8+ A3)z0+ (A + A~ Ay)zs — 2A1z; 24 +O(e ),
212231 z1+1
A +Az— A +(A1+Ar— A - 2A 2A
oo BotAs—A)zi+ (AL +4r —A3)z3 — 202y 2M 10,
212223 -1
A +Az— A + (A1 +A3 - A - 2A
oo BatAs— Az + (A +As — Ay)zp — 2323 +0(c ), (3.176)
231223
These have the solution
3A1 = A+ A3 At —3A—-A3 Ah—A
Pooo= [ ——2T 8 27T 7 A L (P, (3.177)

A1+A2—A3’A1+A2—A3’ A3

Then, using the operations defined in Section [3.6] we can generate seven additional
saddles:

P1,0,0 = 01P0,0,0
P0,1,0 = 02P0,0,05

03D0,0,0

P0,0,1

0102pP0,0,0 = TP0,0,1>

P1,1,0

P1,0,1 = 0103P0,0,0 = TP0,1,0

P1,0,1 = 0103P0,00 = TP1,0,0

P11 = 010203P0,0,0 = TP0,0,0- (3.178)
As an aside, these additional saddles are more subtle to see directly from the

saddle point equations because they involve points scaling towards singularities.

For example, in the solution

- _ 1+A1—A2+A3 —ﬁ1+ A1+3A2+A3+ A1+A2+
P1,00 = A, e A MM U T A cod]s
(3.179)
the point z; approaches the center of the ball By at z; = —1, which is a singularity of

the saddle point equations at low temperatures. To find the solution p ¢ directly,
we cannot use (3.176). Instead, we must re-expand the equations near the singularity
and re-solve them in a small-temperature expansion, resulting in (3.179).
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Let us denote the saddle point integral along a steepest descent contour through
Pab.c bY Iopc. Plugging in the different solutions, we find that the 1,5 . have the
following behavior in the small temperature regime (as a function of the S;):

—B1A1—B2Ar—B3A
Iooo ~ e B1A1—B2A2—P3 3

Lioo ~ e—,31K1—ﬁ2A2—ﬁ3A3

—B1A1=Botr—B3A
Io1o~e€ B1A1=B282—P3 3,

L~ e‘ﬁl£l‘ﬁ2£2‘ﬁ3£3. (3.180)

More formally, if we consider monodromies M; : B; — B; + 2xi, then each sad-
dle point integral is an eigenfunction of the monodromies M, 3 with different
eigenvalues. The block is the solution to the Casimir equations with monodromies
ps’s _ ,-2niA; ps’s
MiB)y; = e By
the other saddle point contours give shadow blocks.

It follows that Iy is the block at low temperatures, while

Let us finally turn back on the angular fugacities hy, h», h3. In the low-temperature
limit, they do not move the saddle point py . Performing the gaussian integral
around py 0, and multiplying by the inverse of the triple shadow coefficient com-
puted in (3.346)), we find a nontrivial cancellation of A-dependent factors, resulting
in

33 —I\S' t's COAI=2Ay A1 B1—AyBa—A
(([ STT§T§T) ) T'lP123 ; = D72A1=282 , =M1 B1=Dofr~A3 5
0,0,0

X VS*(0, e, 00) (h1hahs - V*)(0, e, )
x (1+0(A7Y, e™Piy), (3.181)

where the py o subscript means we evaluate the saddle point integral around p 0.
This result agrees precisely with the formula for the block from summing over states
@). This is a check on our assertion that /o o computes the block, and also on
our ansatz (3.160)) for the partial wave as a sum of blocks.

High temperature saddles

We define the high temperature regime as §;; — 0 with Q; ;= ,Bi‘jl 6; ; fixed. In terms
of the coordinates g;, h;, this means that #; — 1 at high temperatures. Our strategy
will be to start with the infinite temperature case 8; = 0 and h; = 1, and then work
in perturbation theory at small 8;. At infinite temperature, we restore SO(d — 1)

symmetry, so we can again look for solutions along the x! axis.
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It is not obvious a-priori that perturbation theory around infinite temperature makes
sense — what if the block had a singularity at infinite temperature? However, we
find in practice that the block is nonsingular at infinite temperature, and this strategy
works. Relatedly, we do not find any evidence of a nontrivial difference in the
order of limits 8; — 0 and A; — oo. This situation is somewhat different from the
"t-channel" z,7 — 1 limit of four-point conformal blocks, where the blocks have
nontrivial log or power-law singularities, and one must be careful about orders of

limits [[176}[185]]. It would be nice to understand these differences in more detail.

In the infinite temperature limit 3; = 0, one saddle point is relatively easy to find.

We naively expand the saddle point equations and solve them to give

q 2(Ar—A
o= (r — 2 2958 + 0(B). (3.182)

Interestingly, it turns out that o1go = 02¢o = 03G0 = Tqo, so the operations defined
in Section [3.6| generate only one additional high temperature saddle, namely 7g.

However, it turns out that there are three additional high temperature saddles where
the points x1, x3,x3 scale towards each other in the high temperature limit. For

example, we find a solution g, given by

S A+ (A +A Ao+ (Ar+As) B (AT-A3-AT)+B2(A]-AJ+AT 2
Gi2 = (_ﬁ2 1+,321A(3 1+ 3)’ﬂ1 2+B22A(3 2+ 3)’ 1(Af-A 331A§2( 1™ 3))_'_0(131)

(3.183)

Here, all three points scale toward x = O (the point where balls B; and B, are
tangent) as B; — 0. Similarly, we find a solution g3 where the x; scale toward
the point where balls B, and Bj are tangent, and a solution g3; where the x; scale
toward the point where balls B3 and B are tangent. The action of 0; and 7 on these

solutions is given by
o2q12 = 01412 = 412, o3q12 = TG 12, (3.184)

and cyclic permutations of these relations. The saddle points 7¢;; are new — they in-
volve two points scaling towards a singularity, while one remains at a finite position.
Thus, overall, we have eight high-temperature saddles given by Go, 12, §23, 431, and

their images under 7.

These saddle points yield eight solutions of the conformal Casimir equations in the
high temperature regime. But which one(s) corresponds to the block? To answer

this, let us start at low temperature, where we know that the block corresponds to
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Po.0,0- As we dial from low to high temperature, we find that each low temperature
saddle point transitions smoothly to a high temperature saddle. Although we have
not proved analytically which saddle becomes which, we can track them numerically;
see for example Figure [3.10]

Interestingly, the matching between low- and high-temperature saddles depends on
the signs of the A;. The saddle point equations depend projectively on the A;, so
more precisely only the signs of their ratios matter. We will be most interested in

the case where all A;/A; are positive, where we find

low temperature —  high temperature

P0,0,0 — do
ﬁl,l,O — 512 (A,’/Aj > 0). (3.185)
iillJ - §é3
j;LQl — 631

The remaining mappings from low to high temperature are obtained by acting with

7, for example 75000 — 7qo-

P0,0,0 % P10 q12
(o4 (S
\—2 12
1r 1k
0 ’/ 0
—1t 1t
-2 1-2
o (s8]
Po,1,1 423 P1,017431
o0 0
I 12
1t 1
0 0
-1t -1»\
1-2 1-2

0 ©

Figure 3.10: Evolution of saddle points from low to high temperature when A; /A; >
0 for some representative values of A;. The blue curve is x;, the orange curve is x3,
and the green curve is x3. Here, we set all three temperatures equal ; = . The
horizontal axis is t = e™#, with low temperatures near ¢ = 0 and high temperatures
near f = 1.

How is this compatible with the fact that the o; operations act differently on the

high temperature and low temperature saddle points? The key is that the map from
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low to high temperature depends on the signs of the A;’s, and the o; operations
can flip these signs. We can capture these rules as follows. Let us define maps
H, . . that take low temperature saddle points to high temperature saddle points by
continuation in S;, with the signs of (A, A, A3) corresponding to the signs in the
subscript of H, , .. For example, when all of the A; are positive, the map H,,. 1s
given by [3.185] We claim that the o; interchange the maps H... in the following

way:

Hs1s2s3 (ﬁ) = UlH(—Sl)S2S3(UIﬁ)9
HS152S3 (ﬁ) = 0_2Hs1(—s2)S3(0'2]3),
HS]S2S3 (ﬁ) = 0-3Hslsz(—s3)(0-3ﬁ)- (3186)

In other words, conjugating by o; flips the sign of the i-th subscript in H....
Intuitively, this is because oy flips the sign of A; in[3.173]

With the rules (3.185)) defining H.,., the relations (3.186)), and the action of o7,
on the low and high temperature saddles, we can predict how any low temperature
saddle continues to a high temperature saddle, for various signs of the A;. We have
verified these predictions numerically in examples. It would be nice to prove them

analytically.

To summarize, as we continue from low to high temperature, with A;/A; > 0, the
saddle point pg o continues to go. We will assume that no Stokes phenomena occur
during this continuation, so that the saddle point integral through po o continues
to the saddle point integral through go. Another way to think about this is that
the saddle point integral automatically solves the conformal Casimir equation, in
perturbation theory in 1/A. The assumption of no Stokes phenomena is the same
as the assumption that perturbation theory in 1/A can be used to solve the Casimir

equations at large A for all temperatures.

Thus, let us focus on the saddle point go. Away from infinite temperature, the
positions of the points in the g saddle get corrected, and we can compute these

corrections in a systematic expansion in 3; and the angles a@; and ®; defined in
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(3-147)) (still in the large-A limit). For example, x; shifts by

_ (A2 + (A2 — A3)H) (202 + Az) - Ay (4N — AD) (A2 + A5 - A))
475 (2A; — A3)As 4NTA3(2A5 — A3)?
(AT -ADAs (A - AT+ AY)
20275(24; — A3)?
2 = (A2 + (A2 — A3)H)(2A7 + A3)&1 N Ay (AAT — A3) (AT + A5 — AY) )
4ArA3(2A; — A3) 4ATA3(2A; — Az)?

A2 — A2 A3 (A% — AZ + A2 -
(A~ 4)A (A} ~ 4 3)&3+0(ﬁ&,q>&). (3.187)
20305245 — A3)?

1
0x,

2

B3 +O(B%, %),

Here, 6X indicates the components of x| perpendicular to the x} axis, and O ( ,82, &2)
and O (Ba, Cf)&) stand for quadratic corrections in the 8;, @;, &)i of the indicated form.

The @; appear at second order in (5x}, as required by SO(d — 1) invariance.

Plugging this corrected g into the saddle point integral, and taking into account
the 1-loop determinant, we finally find the high temperature behavior of the block
at large A:

o (200N (2A9)20 (25

S S

s s
123 — 23d/2(A1 +A2 +A3)2A1+2A2+2A3—3dv (Oa e,oo)hlhthV (Oa e,OO)

A1A MAs (B2 B3 AMAs (B1 B3 )
- - —+ = - — 4+ = AB~, A
X exp A (B1 +B2) A (4+2 A 113 + O (AB~, Aa”)
(Bi, @il 1B:] < 1,A; > 1). (3.188)

Recall that this formula only holds in the chamber A;/A; > 0. When the signs of
ratios A;/A; are different, the high temperature behavior of the block is in general
controlled by a different saddle. Our derivation so far has been for principal series
representations A; € % +iR>(. However, we can now analytically continue the result

to real A; by simultaneously rotating the A; clockwise in the complex plane.

In (3.188)), we only kept linear order terms in $3; in the exponent. Later, we will argue
that the higher order terms in S, @, @ do not contribute to the leading asymptotics
of OPE coeflicients, at large A and finite J. Such terms can potentially become
important at large-J, but we leave the analysis of this case to future work. Note also
that in (3.188)), we have h; = 1 + O(a;, ;). We study one consequence of the d)l.z
terms in A; later in Section

As was the case at low temperatures, the apparent breaking of 1-2-3 permutation

symmetry in (3.188) is due to using non-permutation symmetric coordinates on the
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moduli space M. Switching to the relative temperatures £;;, the exponent in 3.188

becomes the beautifully permutation-symmetric

A1Ay Ar A3 A3Ay

2 2 A=2
- T — O(AB~, A . 3.139

Gy
Let us make a few additional observations about the result (3.188). We define a
"scaling block" as the primary term in [3.130] Because the full block is a sum of

scaling blocks with nonnegative coefficients, we should have the inequality
By 2 272 emhili-hlafshs (= ), (3.190)

Let us check this at high temperatures. Our calculation of the block is valid in the
regime A > 1 and 8 < 1. Thus, we can ignore SA compared to A and just compare
the A-dependent terms out front:
(2802874 (209)282 71 (209)* 270 55 o,
23d/2(A1 +Ar+ A3)2A1+2A2+2A3—3d - '

Indeed, we find that numerically, the above inequality holds when A; > 0. It is

(3.191)

saturated when A; = Ay = A3/2, and in this case the high temperature block and
the scaling block are exactly the same (up to the order we’ve computed them)! One
speculative interpretation is that the full genus-2 block at large A may be a scaling
block in an appropriate Weyl frame that depends on the A;. Our choice of Weyl
frame in Section[3.5]happens to be the appropriate frame for A} = Ay = A3/2. Other
Weyl frames would be best suited to other A;. The large-A limit of Virasoro blocks
also simplifies in an appropriate Weyl frame [161, 206].

3.7 OPE coefficients of heavy operators

"Heavy-heavy-heavy" OPE coeflicients are encoded in the partition function of the
CFT on the genus-2 manifold M, via (3.129). In Section [3.5] using the thermal
effective action and the "hot spot" hypothesis, we calculated the leading expression
(3.140)) for the partition function in the high-temperature regime discussed in Sec-
tion[3.5] In Section[3.6] we obtained an expression (3.188)) for a conformal block in
the same regime. Finally, in this section, we will combine these ingredients to obtain
an asymptotic formula for "heavy-heavy-heavy" OPE coefficients by inverting the

conformal block decomposition of the partition function.

Review: inverting a genus-1 partition function
Before discussing how to invert a genus-2 partition function, let us revisit the genus-

1 case, phrasing it in language that will generalize to genus-2. Conformal blocks for
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the genus-1 partition function on S' x S~ are just conformal characters ya (8, ;).

For simplicity, let us work in d = 1, where the characters have the simple form

e™0B
xa(p) = T-oF (d=1), (3.192)
— e

and the partition function has the decomposition

Z(B) = / dA p(A)xs(B). (3.193)

which is essentially a Laplace transform of the density of states p(A). It is straight-
forward to decompose Z () into characters via an inverse Laplace transform, as we
did in Section However, let us pause to understand this transform in group-

theoretic language.

The conformal characters can be viewed as functions on the group SL(2, R) that are
invariant under conjugation, i.e. class functions. They are naturally eigenfunctions
of the Casimir differential operator O defined in Section [3.6] In terms of S, this

leads to the eigenvalue equation

1+e P
DX(B) = T XA (B) + XK(B) = MA = Dxa(B). (3.194)

(Here, we abuse notation and write D both for the differential operator LAL 4 on the
group SL(2,R), and for the differential operator (3.194)) acting on 3.) Because the
Casimir eigenvalue A(A — 1) is the same for A and A =1 — A, the shadow character

X7 (p) satisfies the same differential equation as ya (/).

Because of its group-theoretic origin, D is naturally self-adjoint in the Haar measure
on SL(2,R). When acting on class functions, this implies that 9 defined in (3.194)
is self-adjoint with respect to the quotient measure on the space of conjugacy classes
of SL(2,R). The quotient measure is given by the famous Weyl integration formula

(and can be computed using the Faddeev-Popov procedure):

du = dB(ePl? — e7B1%)? (3.195)

Self-adjointness of 9 immediately implies an orthogonality relation

/ duxa(B)xz(B) =0  unlessA=A"or A=A, (3.196)

where the integral can follow any contour such that the boundary terms from inte-

grating D by parts vanish. For our applications, we can integrate over an infinite
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contour parallel to the imaginary axis 8 = B + it, which gives

jf duxa(B)xx (B) = 51{ dp e P = 2mis(A - N). (3.197)
This allows us to invert the partition function by integrating against a shadow block:
1 1 AB 5
P(A) = 5= ¢ duxz(B)Z(B) = 5= ¢ dBe™”(1 - e ") Z(Pp), (3.198)
27i 2mi

which is the usual inverse Laplace transform.

Before proceeding, let us make a comment about the choice of contour. By analogy
with Euclidean inversion formulae for local correlation functions, we could have
instead tried to decompose Z() in characters for principal series representations,

which take the form
oiSB 4 p-isB

X;(B) = X%Hs(ﬁ) +X%_,-s(,3) = B o (3.199)
Principal series characters are naturally orthonormal with respect to du, when
integrated along a real contour § € R. However, this kind of orthogonality is
unsuitable for decomposing a physical partition function. The reason is that Z(3)
typically possesses a high-temperature singularity on the real axis of the form
Z(B) ~ e'/B for some positive power a. This high-temperature singularity cannot
be integrated against y; (/) along a real contour in a simple Way Using a complex

contour as in[3.198|bypasses this issue by avoiding the singularity.

An inverse Laplace transform for genus-2 blocks

Let us now assemble analogous ingredients in the genus-2 case. Let du be the
natural quotient measure on the moduli space M = G\(G~)?/G, descending from
the product of Haar measures on (G~)>. Consider a contour integral of a block
against a shadow block

f du By BY 5 5 (3.200)

(We do not specify the precise contour for now.) The block and shadow block are
both simultaneous eigenfunction of the Casimir operators 9); acting on each group

element g;. Because of their group-theoretic origin, these operators are naturally

?TInterestingly, there is usually no problem with decomposing correlators of local operators in
principal series representations. Doing so leads to Euclidean inversion formulas, which typically
involve integrable power-like singularities. It would be nice to better understand the distinction
between these cases.
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self-adjoint in the measure du. If the contour is such that there are no boundary
terms from integrating the 9; by parts, then the above integral must be proportional

to o-functions restricting ; and 7 to be the same

2 273

yf dp BYS; BY 5,50y o Sy oy Oy (3.201)
where

S = 0(A=A)S1p. (3.202)

To find the constant of proportionality in (3.201), we will assume that the contour
is a complex contour in §; that can be deformed to low temperature and evaluated
in that regime. This is analogous to the inverse Laplace transform (3.198)), where
we can choose any contour of the form g = Sy + it. Moving the contour to low
temperatures, we can evaluate the orthogonality relation (3.201)) using the low-
temperature expansion of the blocks (3.130). When inverting a partition function,
we can instead deform the contour into the high temperature regime and look for a
saddle point.

Computing the measure

The first step is to compute the quotient measure du via the Faddeev-Popov proce-
dure. There are a few wrinkles in doing so, so let us work through the computation
in full. Recall that the quotient space M can be redundantly parametrized by
(g1,82,83) € G X G~ X G~. We would like to fix a gauge by writing g; in terms
of B;, h; as in . For the moment, let us also imagine that we have chosen
a non-redundant parametrization of the A; in terms of angles, so that overall the g;
are specified in terms of n = dim G parameters which we call y. Our gauge-fixing

condition is g; = g;(y). An appropriate gauge-fixing function is

0(81,82,83) = / dy 5(g1,81)0(82,82)9(83,83), (3.203)

where dy is any measure on the coordinates y, and d(g, g’) is a unit-normalized

o-function (in the Haar measure) on the group supported at g = g’.

Consider now a gauge-invariant function f(gi, g2,g23). We formally define its

integral over the moduli space as

dg, dg> d
/dﬂf / L fé)2g3f(g1,gz,g3), (3.204)
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where dg; are Haar measures. Following the usual FP procedure, we insert 1 in the

form of an integral over gauge orbits of Q, divided by its average over gauge orbits

dgidgrdgs | Q8218 8828 " 883 ")
/ du f = / lC )2 dgdg = f(81,82,83)s
) 0(g1,82,83)
(3.205)
where
Q(gl,gz,gz)E/dgdg’Q(gglg"l,ggzg"l,gg3g/“)- (3.206)
Now we change variables g; — g 'g;¢’ and use gauge-invariance of f and Q to
obtain
(1’ 25 3) f(g’g’g)
/ du f = /dgldg dgy L8828 (0 o) o) = dy =222 23
0(81,82,83) 0(81-82-83)
(3.207)

This is our gauge-fixed integral and 1/ é is the FP determinant, which we now

compute.

We have
_ 3
0(81.82.83) = / dgdg'dy' | |8(s2: (g "5 (). (3.208)
i=1

The §-functions are supported for g, g’ near the identity and y’ near y. Thus, we can

write
g=1+¢ g =1+¢, (3.209)

where &, ¢’ are elements of the Lie algebra of G, and we can furthermore Taylor

expand the g; in y’ = y + dy. We have

6(g§i(y)g,_l’§i(y/)) = 5@1'()’)_18@()’)8/_1’gi()’)_lgi()’/))
=5(1+5,(0)7'€ég,(») - &, 1 +dy - 5,(») 7' 8,8,(»))
= 6(Adg &~ &' —dy ;' 0,8)), (3.210)
where in the last line, we have a ¢ function on the Lie algebra g, and Ad, denotes
the adjoint action of g. The gauge-fixed measure is thus
Adgr -1 -g{'0y8; -+ ~8 0vg)
= det Adgz—l -1 —g;laylgz e _gglayngz dy' - dy" (3.211)
Adgi -1 ~85'0,183 - —83 Oyg;

du:d—}
Q
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The object inside the determinant is a 3n X 3n matrix. Choosing an orthonormal
basis of g, Adgfl becomes an n X n block, and each 1 becomes an n X n identity

matrix. Finally, —g; 19

Vi 8 is an element of g, which we can think of as a column

vector of height n.

* Partial gauge fixing

In our parametrization of M in terms of temperatures S, 82,33 and rotations

hi, hy, hs € SO(d), we write the moduli space as
M=G\(G)}/G = SO(d - 1)\(SO(1,1) x SO(d))*/SO(d - 1),  (3.212)

where the two copies of SO(d — 1) act by left and right multiplication on the #;.
Above, we obtained the measure from fully gauge-fixing both the left and right
action of G. However, it will be more convenient to only partially fix the gauge,
leaving the SO(d — 1) X SO(d — 1) gauge redundancy un-fixed. Let us determine

how the above computation should be modified in this case.

Lety = (81, 82, B3, h1, ha, h3) now be coordinates on (SO(1, 1) x SO(d))?, and let
us write K = SO(d — 1), with Lie algebra . The y have an action of K X K given
by y — kyk’~! and an invariant measure dy. Once again, we should consider the

average over gauge orbits of the gauge-fixing function
0(g1,82,83) = / dgdg'dy l_[ (218", () (3.213)

We can factorize g into
g=kv, (3.214)

where k € K, and vy is a representative of the quotient K\G. The measure on G

similarly splits as
dg =dkdy, (3.215)

where dk is the measure on K, and dy is a right-G-invariant measure on K\G.
To be more precise, let 7% be an orthonormal basis of generators of g, and let the
generators of ¥ C g be the 7% with a = 1,...,dimK. Then we can take the y
to be the image under the exponential map of the remaining generators 7¢ with
a=dmK+1,...,dimG.
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Inserting this decomposition into (3.213)), we find
Ogr.ga.g0) = [ dkdydkay ay [ [otkrary™ K. 5,0))
i
- [ akayaw ay ay[ Jser ™ gy
= (volK)® / dydy dy | [s(very ™ 5
i
= (volK)? / dé dé' dy ]—[ S(Ad1€ - & —dy-3;'0,8), (3.216)

where we have written

y=exp(§), ¥ =exp(¢). (3.217)

The only differences from before are that now & and &’ are restricted to generators
ofy —ie. T witha =dimK + 1, ...,dim G, and furthermore we must divide by

(volK)?. The partially gauge-fixed measure is thus

Ad?le; _Hi _gflaylgl o =gy OmE,
du = oy et Adgp Ty T 851008y - B e |y -y
Ad T M1 —g3'0,8; -+ —85 0y

(3.218)

where IT, is an (n —dim K) X n matrix implementing the orthogonal projection onto
the generators of vy, and H; is its adjoint. Finally, m = n + 2dim K. Overall, this

again gives a 3n X 3n matrix.

Let us finally plug in (3.112)) to write the measure ((3.218)) in terms of the parameters
Bi, h;. We found it difficult to compute the measure exactly for generic parameters@

However, we can compute it in various limits. At low temperatures, we find

25d

~ (volSO(d - 1))2

3
du 1—[ e Pidp:dh;, (low temperature), (3.219)
i=1

where dh; denotes Haar measures on SO(d). At high temperature, we find

24d 3 o |
dp = (vol SO(d — 1))2 l;[ dp;da;d®;, (high temperature), (3.220)

28The reason is that (3.218) is the determinant of a large symbolic matrix, which is extremely
difficult for Mathematica to handle.
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where @; and &)i are the angles defined in 3.147

* Orthogonality relation for genus-2 blocks

With the measure in hand, let us determine the correct orthogonality relation for
genus-2 blocks. We will take the contour to be a real contour for the group elements
h; € SO(d), and a complex contour running parallel to the imaginary axis for the
Bi. The key idea will be to deform the S; contour into the low-temperature region,

where the blocks are given by the simple formula

By, = 2722 MBi-tafamtaBsys' (0, e, 00) hy o V¥ (0, e, 00)
x (1+0(e7P)). (3.222)

Consider a shadow block with complex-conjugated three-point structures

B,’Zf]fi/m _ 2-2d=0)=2(d-N}) ,~(d-A;)B1~(d-Ay) par—(d—A%)Bs
14213

x V' (0, e, 00)h hahs V1 (0, e, 0)* (1 + O(e75)). (3.223)

Integrating the block and the shadow block against each other using the low-

temperature measure (3.219), we find

S/S t’*t*
f B 123 By 3131
2> 4d ,~B1 (A ~8;)~Ba(Aa-A)~B3 (A —A))
= dB:dh: |2~ —P1{A1=A1)=p2(A2=R,)=p3(A3—A,
(vol SO(d — 1))2/ n Pidhi |27 e

X V¥(0, e, 00) Iy hahs V3 (0, e, 00) X V' (0, e, 00) i hahs VI (0, e, 00)*.
(3.224)

To perform the integral over the /;, we can use the Schur orthogonality formula,

which states that for any compact group G with unitary representations A, A’

1G
Vo o (3.225)

/ dg(alA(g)Ib)(c|V' (g7)|d) = (ald){c|b)

dim

2We can find an interpolating result between high and low temperatures by setting the angles to
zero, &; = 0,®; = 0. In this case, Mathematica is able to compute the determinant for general S3;,
giving
1 1 d
du = (_86131 — 8P + Eeﬁl ~B2=P3 Ee_ﬁ‘+ﬁ2_ﬁ3 —2eP1HB2=B3 o =B 4 3D P12

1

3
X — | | dp;da;d®; &; = 0,0, = 0). 3.221
(vol SO(d — 1)) E[ Pida (@ ) (3-221)

This indeed agrees with both[3.219(and [3.220)in the appropriate limits.
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The integral over j; gives ¢-functions of the form 6(A; — Al), as in the inverse

Laplace transform (3.198)). Overall, we find the orthogonality relation

_ V'(0,€,00)"V¥(0,,00) V*'(0, €,0) V"' (0, e, ) li[ 2n6(A — A;)Zdvgl SO(d)
24dvol SO(d - 1) 24v01 SO(d - 1) ] dim A;
3 d
» 2%vol SO(d

=T875! n 2n6(A; — A;)VO,—()(SAM{, (3.226)

i dim A; i
where we have introduced the three-point pairing matrix

t VA
s = V(0 €. V(0. €, 0) (3.227)

2dvol SO(d — 1)

Recall that the structure V* is a tensor with an index for each of the representations
A1, A2, A3, and V'* carries indices for the dual representations A%, /1*2‘, /1; The indices
of V* and V'* are implicitly contracted in the three point pairing (3.227)). The pairing
matrix 7’ shows up in other contexts related to harmonic analysis on the conformal

group, and is discussed more extensively in [[130, |151]].

To summarize, if the partition function has an expansion in conformal blocks

z= > [ dAidAdAsPi B, (3.228)
A1,4243

then the conformal block coefficients PSS

|53 are given by the inversion formula

3 .
’ ’ s 1 dim A; o
— —1\st —1\1's 1 s
P = ) | I(zdvolsO(d)) f duZBLY-.  (3.229)
i=1

Inboth (3.228)) and (3.229)), a sum over repeated three point structure indices s, t, 5", t’

is implicit.

Putting everything together
We are finally ready to put everything together and perform the genus-2 Laplace
transform at high temperature. Let us recall the important formulas. The shadow

block at high temperature is given by

3 d=2A; AA M)A AA >
BUL _ = L (l_l (L) ) e 31A32ﬁ%2_0+#13,3§3’0+ 8]A23ﬂ%1,0+0(Aﬁi2’Aa/2)
T T3 3d/2
2 i1 Al + Az + A3
3
X V' (0, e, 00) 1_[ el Miagi® Moyt () o co)*, (3.230)
i=1

A,

1
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where we use the shorthand notation
d
a M, = Z a; pMi 1p,
b=2

D - Mo = Z D; iy M, ap, (3.231)

2<a<b<d

where M; 4, denotes a rotation generator with indices ab acting on the i-th point in

the representation A;. The partition function at high temperature is given by

1541 D) — D)2 &1+ @2)2
Z-ex (f G/ PN IR L
12,0 12,0 12,0
ISd_l d _(i)) 2 -z 2
fz3V(;_1 ( 22 3) —8(d+1)(4 242 3)
ﬁ23,0 ’823,0 ﬁ23,0
1 5d-1 Dx — D)2 15— 152
yvols (- (&) 02 gy BN 2B - L)
ﬁ31,0 ’831,0 31,0

(3.232)

Here, we have allowed for different free energy densities f;; at each hot spot. This
would arise if we inserted topological defects into the partition function, for example
symmetry operators, as discussed in Section[3.5] Our main case of interest is where
Jfij = f (the thermal free energy density), but it is just as straightforward to do the

computation for general f;;. Finally, the measure at high temperature is
24d

~ (volSO(d — 1))2

3
du [1agiaa a5, (3.233)
i=1
We would now like to integrate (3.229) to extract the density of OPE coefficients.
We deform the contour so that it passes through the regime of high temperature. We

will organize the calculation as follows. We split the integrand into the form
(quickly varying) X (slowly varying). (3.234)

Here "quickly varying" includes terms that are exponential in large parameters like A
or 1/8*, while "slowly varying" includes everything else. We look for a saddle point
of the "quickly varying" terms, writing them as a gaussian centered at this saddle
point, times perturbative corrections. Meanwhile, we expand the (slowly varying)

part perturbatively around the saddle point.

One simplification of this way of organizing the calculation is that, because we are

working in the regime J < A, terms in the conformal block of the form V*h hyh3V
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will be included among the slowly-varying terms, and will not affect the location of

the saddle point. By symmetry, the saddle point will be located at a; = ®; = 0.

Let us analyze the size of fluctuations around the saddle point. In particular, we
would like to determine which terms must be kept in our approximation to the
conformal block and the partition function. The quickly-varying (i.e. exponential in

A) part of the block has the schematic form

B ~ e—Aﬁ—AﬁZ—A&2+...’ (3235)
where ". .. " are higher-order corrections in 3, @, ®. Meanwhile, the quickly-varying
part of the partition function has the form

1 &)2 =2
Z~exp|l—75 [1-— - 5] (3.236)
BT BB

Here, 5 schematically denotes the individual §;, not the relative §;; o.

The saddle point equation for 8 will set A ~ B~(@*1/2_ Plugging this in, we find

(3.237)

g5 B pE pE
There are two & terms: one coming from the block (3.235]) and one coming from
the partition function (3.236). We see that the @ term coming from the partition

function is more important — it is enhanced by an additional power of 1/8. Thus,

1 e G g
ZB ~ exp - - -

we can ignore the quadratic a@-dependence of the conformal block. In other words,
the terms written explicitly in (3.230) are sufficient for our purposes. Overall, the

characteristic size of fluctuations in the angular variables coming from (3.148) is
d+3 1 - d+1 1
4 9

&~ pE ~ A-I- @ O ~BF ~A2. (3.238)

The saddle point for the quickly-varying terms is located at @; = 0, @, = 0, and

1
4(d -1 1S9 1A5\ 7
I )JAC”AVO ), (3.239)
182

together with cyclic permutations of (3.239)). The Hessian matrix at the saddle point
splits into three separate blocks: a block for the ;, a block for the @;, and a block for

the &%. Thus, we can calculate the 1-loop determinant separately in each of these
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sets of variables. The determinant for the 8; and @; variables is straightforward:

1

(B12.0823.0831.0)4*> n 3\2
4 fi2f23 /31 2(d? - 1)vol §4-1 ’

d-1

(B12.0B23.08310)"* ( T )3) 2 . (3.240)

1-loop B; factor = (

1-loop @; factor =
pe ( 4 f12f23 /31 2(d + 1)vol §4-1

To compute the @, determinant, we must fix the SO(d — 1) gauge redundancy that
simultaneously shifts the ®,. For example, we can set ®; = 0 and compute the
1-loop determinant in ), D, multiplying the result by vol SO(d — 1) to account for
the volume of the SO(d — 1) orbit. This gives

1-loop @, factor

_(d-2)(d-1)

vol §4-1 )2 ( fi2fo3 fi2fs1 2331 !
(

+ +
T ,312,0,323,0)dJrl ([312,0,331,0)dJrl (ﬁz3,0ﬁ31,0)d+1
(3.241)

=volSO(d - 1) ((

Putting everything together, plugging in the saddle point values (3.239), we find the
asymptotic conformal block coefficients

(d+2)(d-2) d?_ 3
2

AT (4(d - 1) T
25(d+1)%
(Al +A2 +A3)2(A1+A2+A3)—3d

(d-2)(d-1)

_dd-1)
(A2 + A3+ AD) 3 TIL, (280)* @D
2 d-
volSA-N\@1 [ 2 (A, |\
(d + 1) 2 12 m + CYCI. , (3242)

where "+cycl." denotes a sum over cyclic permutations of 123. This result is valid

(8f12f23f31 (vol §9-1 )3) @

3 dimA
ss’ —1yss’ i
Pios ~(T7) (n vol SO(d)

i=1

X

X exp

for large A; with the spin-representations A; fixed, up to subleading corrections at
large A;. Our approximation for the asymptotic squared OPE coefficients is then

ss’

(¢hp) ey ~ —2—, (3.243)
12377123 b1 paps

where p; are the densities of states of the CFT computed in Section [3.3] for the
representations m; = (A;, 4;). (In the case, where we refine the partition function
with topological defects, the density p; should be the appropriate density of states
with that defect inserted.)
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As an example, let us study P{% for identical-dimension scalars in various dimen-
sions. In 2D, the rotation representations are one dimensional, there is a unique
conformal three-point structure, and the corresponding 7" matrix is simply 7 = 1/2.
Plugging this in, we find the high energy density of (global primary) OPE coeflicients
in 2D:
6A-9 2 9(x2f2A)1/3
2D . PAAA ~ (%) % (3244)

In 3D, the T matrix is diagonalized in the g-basis of [[142]. Specifically, it is given
by [[130]

1 (20 \7
Tlawalldadsl - ! S, 3.245
2327 D Ji+qi aid; ( )

Plugging this into (3.242)), we find the high energy density of OPE coefficients in
3D:

maaligae (30 2% 1 VA 2

laa2aslld|dha

3D.P(A,Jl)(AJ23(iJ3%) ~ (—) 79 Iy | |(21 +1)( J; l) qiq.- (3.240)
i=1

* A subleading correction

It is straightforward to take into account perturbative corrections around the saddle
point. For example, let us highlight the leading correction that is not proportional

to the 7*% three-point structure matrix. It comes from the ®2 term in the expansion
of

V' (0, e, o) 1—[ e/ PiMioyt (0 ¢, 00)* (3.247)

in the genus-2 block. Performing the Gaussian integral and using the fact that
M, o+ M e+ M3 e = 0 (because the three-point structures are SO(d — 1)-invariant),
we find a multiplicative correction of the form
-, NAIMS o+ MSASMT o + ASATMS
®;-correction = [1 — (d = 1) : RO
A1A A3 (AT + A5+ A3)

(3.248)

Here, qu) are the Casimirs of the SO(d — 1) subgroup of SO(d). As discussed
in [130], the three-point pairing matrix 7%'° can be simultaneously diagonalized
together with the MZ.Z@. For example, in three dimensions, we have qu) = q? in the
g-basis. It will be interesting in the future to compute the full spin-dependence of
the asymptotic OPE coeflicients by computing the genus-2 blocks in the regime of
finite J/A.
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Figure 3.11: A geometry that encodes a sum of squares of thermal one-point
functions. The top surface is a copy of thermal flat space S éozZ x R471, with a
unit ball removed. The ball is tangent to itself because it wraps completely around
the thermal circle of length Sy = 2. The bottom is the same as the top. The top
and bottom are connected by a cylinder of length 8 and angular twist 7 € SO(d).
The periodicity of each copy of thermal flat space is illustrated via arrow marks,
indicating loci that should be identified. The hot spot thermal circle (red) runs down
the cylinder in the front of the figure, and back up the cylinder in the back of the
figure.

3.8 Asymptotics of thermal 1-point functions

We can also use the techniques developed in this work to determine asymptotics of
thermal 1-point functions. (In fact, one can think of high-energy thermal 1-point
functions as a particular limit of heavy-heavy-heavy OPE coeflicients.) One nice
thing about this exercise is that, because the blocks are so simple, we can easily
invert the partition function for arbitrary J/A. For brevity, we will only determine
the leading exponential form of the thermal 1-point coefficients, leaving 1-loop

determinants and subleading corrections for later work.

Recall that the 1-point function of a primary operator O at inverse temperature S

is fixed by symmetries to be [[119]

b
(Orhry, = _(Z e .. e — traces), (3.249)
By
where e = (1,0,...,0) is a unit vector in the Euclidean time direction, and b is an

operator-dependent thermal 1-point coefficient. Only even-spin traceless symmetric

tensors have nonvanishing thermal 1-point functions.

We can build a geometry that measures squares of the 1-point coefficients b
as follows. We start with two copies of thermal flat space Sé x R4~1 at inverse
temperature By = 2. From each copy, we drill out unit balls, so that the balls wrap
around the thermal circle and are self-tangent. We then glue the boundaries of the
two balls together with a cylinder of length 8 (not equal to By!) and angular twist
h € SO(d); see Figure By the cutting and gluing arguments of Section
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this geometry computes

1
Z=—— O arlh - O)p e PDFe0)

1 by A
=—— ) _C4,P(cos§)e PA+e0), (3.250)
|Zglue(1)|2 ; 22A

Here, we used the fact that thermal 1-point functions are SO(d — 1)-invariant to
write & as a rotation away from the e-axis by an angle 6. The function $;(cos 6) is

a Gegenbauer polynomial, given by
Pr(x) = 2F1(=J,J +d -2, 51, 1), (3.251)

and gy is given by

~ N(GHr(J +d-2)
C2T(d -2)T(J + G2)

q; (3.252)

In the limit 8 — 0, this geometry develops a hot spot. The emergent thermal
circle goes down the cylinder starting at a point of tangency, and then back up the
diametrically opposite side of the cylinder to the starting point. To determine the
hot-spot partition function, we should find the conformal group element that glues
the plane to itself near this hot spot. On the each copy of the plane, we have a

thermal periodicity
X ~ ezplx, X'~ ezplx’, (3.253)

where P! generates translations in the Euclidean time direction. Meanwhile, the

cylinder induces an identification between the two coordinates
x=ePPhlx. (3.254)
The hot-spot thermal circle thus corresponds to the group element

ghot = ¢ 2P (PP h1) P (PP hi). (3.255)

We can define a relative temperature and angle from the eigenvalues of gpo:

(eiﬁrel’ ettt 1 1) = eigenvalues(ghot)- (3.256)
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Note that & can be brought to the form of a rotation between the 1 and 2 axes. Then
SO(d — 2) symmetry guarantees that the eigenvalues of gy take the above form.

The leading contribution to the partition function from the hot spot is

N 1541 6
Z~exp(dflvo—2 :exp(fVOT 1-32(d+1)——+...[],
’Brel (1 + Qrel ﬁrel,O Brel,O
(3.257)
where
Brelo = cosh™! (1 _ 8P+ Sezﬁ) 4B +... (3.258)

is the relative inverse temperature when @ = 0, and this formula is valid for 8?/8> <
1 and B < 1. Formula is the analog of (3.148) from the genus-2 calculation.

All that remains is to invert to determine the asymptotics of the coefficients

bo. In doing so, we can use the orthogonality relation for Gegenbauer polynomials
T
/ d0 sin?=2 6 P;(cos 6) Py (cos 0) = nyé;y, (3.259)
0
where

3 al'(J+1)
(2R + ST +d-2)

nj (3.260)
When we integrate $;(cos ) in 6 against the Gaussian in (3.257), the integral will
be dominated by small 8 with fixed /. In this regime, we can use an approximation
for the Gegenbauer function in terms of a Bessel function (which plays an important

role in dispersive bounds on scattering amplitudes [52]):

(&t di .z
lim P;(cos@)ng#(HJ): / AN uid (3.261)

J—00,6J fixed (9‘]/2)% vol §4-2°

Here, J, (x) is a Bessel function. In the right-hand formula, 7 is a point on the unit
S9-2 and we think of § as a vector in R~ with norm |§| = 6. The idea is that
P;(cos 0) satisfies a wave equation on S°~!. In the limit of large J with small 6,
we can zoom in near the locus 6 = 0, where the S?~! becomes flat space R, We
are left with a linear combination of solutions to the wave equation in flat space, i.e.
plane waves. In this limit, the measure 46 sin?~2 § becomes equivalent to the usual

measure d?-19 on R41,
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Thus, overall, the angular integral from inverting the partition function takes the

form

/ dii / dd_]éeim,gexp(_32(d+l)fvolSd_léz)

vol §4-2 ﬁfeﬁ)
=exp|-— ﬁzﬁ) J? | x 1-loop determinant (3.262)
128(d + 1) fvol §4-1 ' '

At the same time, we must perform an inverse Laplace transform in 5. This integral

can be done by saddle point, with the overall result

bpp(A,J)
2A

1
qjng ~ €Xp (— (

A

2
d+1A2_ d - 1J2 (d — 1) fvol §4-1\ @1
d-1 d+1 22d-1A ’

(3.263)

where p(A, J) is the density of states for traceless symmetric tensors.

3.9 Discussion

In this paper, we studied the asymptotic behavior of CFT data at large energy. Using
the thermal effective action, we looked at both the density of states and the three-
point-functions of heavy operators as a function of A, J. There are a number of

interesting future directions to study.

Density of states
The formula for the density of states is valid in a specific region of A, J. For

example, in CFTs, it is valid when

A—1|J| > fA. (3.264)

This notably has no overlap with the regime of large spin with fixed twist described
by the lightcone bootstrap [92, 138]]. Naively, the lightcone bootstrap suggests that
the spectrum of interacting CFT should look like Mean Field Theory in this regime
[6, 91, [195]. It would be interesting if one could prove this statement using some
kind of effective action, perhaps by compactifying the CFT on a null circle. It would
be also interesting to study how the spectrum of operators can behave between these
regions. For instance, for interacting 3D CFTs, is the density of states at large spin
with twist obeying

A <« A= 7] < fA (3.265)

universal or theory-dependent?
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One could also ask to further refine our general entropy formulas. In [128], a
universal formula for CFT; with global symmetry was found. It would be nice
to combine them and obtain universal formulas as a function of energy, spin, and

global charges.

In Section 3.4, we compared the predictions of the thermal effective action to exact
results in free theories and Einstein gravity, finding excellent agreement. In Ap-
pendix [3.9] we give a preliminary comparison between the thermal effective action
for the S' x 2 partition function and numerical bootstrap data for the 3D Ising CFT.
One could also consider other theories where a large number of operators are known
from numerics, e.g. the O(2) model [63, |152]. Obtaining accurate information
about large-twist operators is a challenge for the numerical bootstrap, which seems
to be most sensitive to the lowest-twist Regge trajectories [195]. (Computing a
large number of heavy-heavy-heavy OPE coefficients with the numerical bootstrap

is likely even more challenging.)

In 2D CFTs, it is possible to make very precise statements about the spectrum
of high energy states using more sophisticated tools than Laplace transforms and
saddle point approximations; see e.g. [24, (73, 94, 168, 170, (174, |175]. Such
techniques typically rely on nonperturbative input coming from modular invariance.
Is it possible to derive similarly precise statements in higher dimensions? What

additional information about the partition function is needed?

Effective actions

We parametrized our ignorance of the d—1-dimensional gapped theory upon com-
pactifying on a thermal circle via an effective action, with an infinite set of Wilson
coefficients. Can we place bounds on these Wilson coefficients? For instance, as
discussed in Section [3.2] we know that f > 0. Are there similar bounds (in either
direction) on cy, ¢», or other higher-derivative Wilson coefficients? One possible
approach is to consider Weinberg-like sum rules relating two-point functions in the
IR (described by the thermal effective action) and the UV (described by the CFT),
as was recently done in [70]. Another approach is to consider the compactified the-
ory in (d — 2, 1) (Lorentzian) signature and study dispersive bounds on scattering,
following e.g. [2, 50, 137].

It may also be interesting to study perturbative examples. For example, the value of
f in the 3D O(N) models at large N was computed long ago by Sachdev [186]. To

our knowledge, higher Wilson coefficients in the thermal effective action, like the
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coefficients of F2 and R, have not yet been computed for the O (N) models.

In this work, we obtained all of our results purely using equilibrium hydrodynamical
information. Recently, there has been a surge of progress in non-equilibrium hy-
drodynamics for CFTs; see [35,|150]] for reviews. What additional CFT data can be
predicted using this more sophisticated machinery? See [74, |131] for recent work

in this direction. Can one study non-equilibrium dynamics at higher genus?

There has also been tremendous recent progress applying other effective actions to
characterize asymptotic CFT data, for example the effective theory of large charge
[111} (121} |167]. One way of summarizing our "hot spot" analysis of the genus-2
partition function is the idea of using an EFT in the part of a geometry where it
is valid (the hot spots), and factoring out the part where the EFT is not valid (the
region away from the hot spots). Can this "hot spot" idea be useful in other contexts

like large charge?

Three-point functions and genus-2 blocks

So far, we calculated asymptotic OPE coefficients to leading order at large A, with
fixed spin. It would interesting to allow the spin to grow large with A, as we did for
the density of states. In particular, this would require a more general expression for

the genus-2 conformal block at large quantum numbers.

Genus-2 blocks are interesting objects in their own right, and it would be interesting
to study their properties more systematically, both at large and non-large quantum
numbers. For example, can we find recursion relations for genus-2 blocks similar
to those in [86, [139, 140, (177, 206]]? Can we explore genus-2 blocks from the
perspective of integrability [[120]? Is there a clearer understanding of the interesting
saddle-point dynamics uncovered in Section [3.6]? Do there exist Lorentzian shadow
representations [179] or holographic representations [/114] for higher-genus blocks,
and do they admit any interesting kinematic limits? The literature on global con-
formal blocks for correlation functions of local operators is vast, but global genus-2

blocks are essentially unexplored.

We would also like to understand how to systematically improve our three-point
function result. For the density of states, we understand how to systematically im-
prove the result by keeping further terms in the thermal effective action. However,
for the three-point function, corrections come in two types: higher derivative terms
in the effective action (which are easy to include), and corrections to the hot spot

assumption, as discussed in Sec. [3.5] In order to understand how to systematically
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improve the estimate for the HHH three-point functions, we need to understand
contributions to the partition function outside of the hot spot regions, namely un-
derstanding the quantity R defined in (3.145). Explicitly computing examples of
"genus-two" partition functions, either for free or holographic theories, could be

instructive.

It is also worthwhile to compare our result to known results CFT,. In [67], it
was shown that HHH, HHL, and HLL asymptotic density of states for Virasoro
primary operators are all related to analytic continuations of the DOZZ formula
— the structure constants of Liouville theory. In higher dimensions, asymptotic
formulas for HLL OPE coefficients have been studied using Tauberian techniques
and inversion formulae [|169, (176, [185]]. Furthermore, it is well-known that HHL
OPE coefficients are related to thermal one-point functions. These computations,
together with our genus-2 computation seem to involve different physics. It would
be extremely interesting if there were a unifying perspective or formula similarly to
2D.

Bootstrap axioms and crossing equations

To what extent are our results for the density of states and OPE coefficients encoded
in the usual bootstrap conditions — namely unitarity and crossing symmetry of
local correlation functions? In 2D, modular invariance is known to be independent
from crossing symmetry of local correlators. By analogy, this suggests that perhaps
the formulas we derived from the thermal effective action are independent from the
usual bootstrap axiomsF_GI If so, should we enlarge the axioms to include them?
What is the minimal set of extra axioms that we need? In 2D, modular invariance
can be interpreted as crossing symmetry of twist operators. Can our results in
higher dimensions be interpreted in terms of traditional bootstrap axioms applied to

appropriate twist operators?

As we mentioned briefly in Section [3.5] there exists another decomposition of the
genus-2 partition function Z(M>) into a sum over states: the "dummbell" channel,
which expresses Z(M,) as a sum of squares of 1-point functions on §' x §9~!. The
dumbell channel has its own conformal blocks, which as far as we know have not
been studied in detail. (The blocks discussed in Section [3.8| can be thought of as a
limiting case of these dumbbell blocks.) Furthermore, one can formulate a crossing

equation relating the dumbbell channel to the channel considered in this work. As

30We thank Dalimil Maz4¢& for pointing this out.
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pointed out in [[64] for d = 2, this crossing equation enjoys manifest positivity
properties needed for numerical bootstrap applications. It would be very interesting

to explore it in both two-dimensional and higher-dimensional theories.

Ensembles and holographic theories

There is an important difference between our higher-dimensional result for asymp-
totic OPE coefficients and the 2D results of [44,67]]. The results of [44, 67] were for
OPE coefficients of Virasoro primaries, while our results are for OPE coefficients of
global primaries. In the case of the density of states, there isn’t a huge difference be-
tween Virasoro and global primaries. But the story is different for OPE coefficients,
where descendant states play an important role. We can see this by comparing the

leading exponential behavior of Virasoro and global OPE coefficients in 2D:

3\ 064 . 27\34
Pian ~ (5) > PYRC ~ (g) . (3.266)
We see that typical global primaries have much larger OPE coefficients than typical

Virasoro primaries In other words, the statistics of CFT data in a theory with

Pglobal

Virasoro symmetry has more structure than is captured by P, " -

These statements are interesting to consider in a holographic CFT. In a holographic
2D CFT, a high energy Virasoro primary is interpreted as a black hole microstate,
while a Virasoro descendant is a black hole orbited by boundary gravitons. We
have found that states with boundary gravitons typically have much larger OPE
coefficients than pure black hole microstates. While we don’t have an analog of
Virasoro symmetry in higher dimensions, we can conjecture an analogous statement
for higher-dimensional CFTs: we expect that typical states of black holes with
orbiting matter have much larger OPE coeflicients than pure black hole microstates.
It would be very interesting to make this more precise, for example by performing a
holographic computation of OPE coefficients of pure black hole microstates via an

appropriate wormhole geometry.
The authors of [58] used PXiArZS‘)m to define an interesting "ensemble" of CFT data.
In their ensemble, OPE coefficients are (almost) gaussian random variables whose

variance is set by PXXZS"“’ /p(A)3. Remarkably, the predictions of this ensemble turn
out to agree with bulk 3D gravity. The result (3.260) indicates that an analogous

lobal . .
ensemble based on Piz Aa would not have refined-enough information to recover

31Similarly, by comparing scaling blocks and full genus-2 blocks in the high temperature regime,
we conclude that typical states have much larger OPE coefficients than typical global primaries.
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bulk gravity in 2D (presumably also in higher d). However, it is interesting to ask

global
AAA

In the spirit of [17, 20, 58, |122]], we can imagine starting with a completely general

whether any interesting physics would be captured by an ensemble built from P

ensemble of CFT data. We can refine this ensemble with knowledge of the partition
functions on Sé x S9! and the "genus-2" geometry M,. We could additionally
refine the ensemble with other information like local correlation functions and
thermal one-point functions. At what point does the refined ensemble begin to
make nontrivial predictions that can be tested in additional observables, and what

are those predictions?

Bulk locality for thermal observables

HPPS famously conjectured that any unitary CFT with large c7 and a large gap
Agyp in the spectrum of higher-spin single-trace operators should agree with a local
gravitational EFT in AdS [107]. Recently, there has been significant progress
proving this statement for correlators of local operators in the CFT vacuum [3,
19,51, 103, |135]]. However, holography implies analogous statements in nontrivial
backgrounds as well — in particular a thermal background. For example, the Wilson
coefficients f, c1, ¢2, etc. in the thermal effective action of a theory satisfying HPPS
conditions should agree with those of Einstein gravity, up to small corrections
suppressed by 1/Ag,,. How can we prove the emergence of black hole physics
using field-theoretic methods? Can we formulate dispersion relations in a black
hole background? For recent work in these direction, see [49].

Completing the square in the thermal bootstrap
An interesting feature of our formulas (3.250) and (3.257) is that they provide a kind

of sum rule for squares of thermal 1-point coefficients b%). Such a sum rule could

in principle be used to "complete the square" in the bootstrap equations studied in
[118,[119].

The works [118} [119] studied crossing symmetry of thermal two-point functions,
which have an expansion in products cg40b 0, Where c 440 are bulk OPE coefficients.
Unfortunately, we do not know the sign of c430b0, and this prevents one from
applying traditional numerical bootstrap techniques [181]]. (The same issue appears
in the study of boundary and defect two-point functions [148]].) Ideally, one would
like to complete the square by finding other crossing equations in which c440 and
bo appear quadratically. Then, one can treat c440bo as an off-diagonal element in

a positive-definite 2 X 2 matrix and apply numerical bootstrap techniques for mixed
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correlators [139].

A crossing equation where c440 appears quadratically is easy to find: it is just the
usual crossing equation for vacuum four-point functions! Tantalizingly, the formulas
(3-250) and have by appearing quadratically, but unfortunately they are not
as precise as the usual four-point crossing equation, due to our use of the hot-spot
ansatz. It would be interesting to go beyond the hot-spot ansatz and find a sum rule

precise enough to be used in the numerical bootstrap.

""Sphere packing'' and other hot-spot geometries

In addition to the "genus-2" manifold M, studied in this work, there are many
additional geometries that encode statistics of CFT data and can be studied using the
hot-spot idea. Partition functions on these geometries are examples of "generalized

spectral form factors" [20].

As a simple example, consider a higher-genus generalization of M>, where we take
two copies of R?, drill out n > 3 balls from each copy, and connect the boundaries
of the balls with cylinders. The partition function on this geometry encodes a sum

of squared n-point correlation functions of the CFT, schematically

D1 KO0 Pem Eib (3.267)
0O1,...,0,

If two balls are tangent in (both copies of) R¢, we obtain a hot spot when the

corresponding cylinders shrink to zero length.

The hot spot ansatz is most useful when there are a maximal number of hot spots, and
all other moduli of the geometry are frozen. Thus, we should consider configurations
where most of the balls are mutually tangent — i.e. sphere packings !@ For example,
the packing shown in Figure[3.12]encodes interesting asymptotics of CFT four-point

functions.

We can construct an even more general "higher genus" manifold as follows. We
take m copies of R and drill out various numbers of balls from each copy, such
that there are an even number of balls in total. We then connect pairs of balls with

cylinders. This computes a sum of products of m correlation functions

() eee (o) e~ ZiBili (3.268)

$See [76,|105]] for other connections between sphere packing and conformal field theory.
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Figure 3.12: A ball with three mutually-tangent balls removed. If we take two
copies of this space and glue the boundaries of the balls together with cylinders,
analogously to Figure [3.3] we obtain a geometry that computes a sum of squares
of CFT four-point functions. When the cylinders shrink, this "sphere packing"
geometry contains hot spots at each of the six points of tangency.

Again, hot spots can emerge when cylinders shrink to zero.

Of course, CFT n-point functions for n > 3 are determined in terms of 2- and 3-point
functions. In this work we have determined asymptotics of 2- and 3-point functions,
and it is interesting to ask whether our results can be used to predict partition
functions on higher genus geometries, and whether the results agree with the hot-
spot ansatz at higher genus. In two dimensions, it is known that crossing symmetry of
local four-point functions and torus one-point functions implies crossing symmetry
on arbitrary Riemann surfaces. However, we expect that in higher dimensions,
hot spot results for higher genus manifolds provide a nontrivial refinement of the

statistics computed in this work.

Appendix A Thermal two-point function of momentum generators

In Section we study the response of a CFT on S }), x §9=1 when we twist by a
rotation of S4~!. In this appendix, as a warmup, we study the leading term in the
twisting parameter in the high temperature limit. This computation reduces to a
two-point function of momenta in thermal flat space. We determine this two-point
function directly from Ward identities, and then show how the same result can be

understood using the thermal effective action.

At high temperature, the radius of curvature of the sphere becomes unimportant, and
we can approximate S [13 x §9=1 as thermal flat space S [1;, x R4~1. A rotation generator

on the sphere locally looks like a translation on R¢~!. Thus, it suffices to study the
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thermal expectation value of a translation group element
-3 1 .
(e Py = (1)g + Ea,aj(PPf R (3.269)

The momentum P’ is the integral of 7% on a spatial slice at fixed Euclidean time 7

(which can take any value, by conservation):
Pl=- / dxT%(1,%). (3.270)

The O(a) term in (3.269) vanishes by rotation-invariance. For simplicity, in this

section we set § = 1, restoring it when needed by dimensional analysis.

Using Ward identities
Let us focus on the quadratic term in (3.269), given by an integrated two-point

function of stress tensors:

@%ai@(ﬁﬂ Vg = %a,-a ; / d7 (T (0,%1)TY (x2))p. (3.271)
Here, we separated the momentum generators in Euclidean time, placing the first at
time 71 = 0 and the second at time 7,. We furthermore divided by vol R4-1 to obtain
a finite result, and used translation-invariance in R?~! to fix the second stress tensor

atxp, = (Tz,)?z).

We claim that the integrated two-point correlator (3.271]) is determined by the one-
point function of the stress tensor at finite temperature. To understand why, we
must express it in terms of operators in the dimensionally-reduced d—1-dimensional
theory. The first step is to average over Euclidean times 7; and 7. However, this
averaging is subtle because T%(x;) and 7% (x,) become coincident, and contact
terms can contribute. Such contact terms are actually crucial to the calculation, so

let us take a moment to define them carefully.

We define (un-normalized) one- and two-point functions of the stress tensor by

v s 0Z
VG ()T (x)) = 2—5GW &% (3.272)
y - _ 5%z
VG(X)VG ()T (x)T*7 (y)) = 4 G (5G00 (0)’ (3.273)

where Z[G] is the partition function. Our definition of the two-point function
applies at both coincident and non-coincident points, and thus suffices to
specify all contact terms. Diffeomorphism invariance of Z[G] implies that

60Z

0= [ d%L:G,, —, 3.274
/x.Eg w36 (3.274)
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where L denotes the Lie derivative with respect to a vector field £&#. Taking an
additional derivative with respect to G, (y), and evaluating in a locally flat metric
G,y = 0,y, we obtain the following Ward identity for conservation of the stress

tensor inside a two-point correlator
[ ¢t @ @ree o)
= (£-0)(TP7 () + (9 - TP (y)) = 0" (TH7 () = 0,87 (T (y)). (3.275)

We can use this identity to average the correlator (3.271]) over Euclidean time.

Consider the vector field
E(r,%)=-d't, £(r,%) =0, (3.276)

where 7 € [0, 1]. Since 7 is periodic, £ has the shape of a "sawtooth" function,

with a discontinuity at 7 = 0. In particular, we have
3.8 =d (6(1) - 1). (3.277)
Applying (3.275)), we find
/ d¥1a;a; (T (0,3)T% (y))p = / drid%ia;a; T (11, 3) T (y))g + a* (TP (),
(3.278)

where we used 0 - ¢ = 0 and translation invariance & - 9(T*?)g = 0. The right-
hand side of is the two-point correlator averaged over Euclidean time,
plus a nontrivial contact term a>(T%(y)) that is a consequence of diffeomorphism

invariance.

It is natural to define the d—1 dimensional stress tensor 7/ (X) and KK current j'(X)
via derivatives with respect to g;; and A; in the Kaluza-Klein parametrization (@)

For example, we have

Ve@ i @)y = 2,
08ij (%)

A

G'@ G = SAAG) (3.279)
i J

A key property of the KK parametrization (3.8) is that gauge transformations
A;(X) > A;(X) + 9;A(X) are diffeomorphisms of the d-dimensional metric. Con-
sequently, diff-invariance implies that (j(¥)j/(¥)) is exactly conserved, even at

coincident points. This will be important in a moment.
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At separated points 7/ (¥) and j'(¥) are equivalent to Euclidean time averages of
T (7,X) and TY (%), respectively. However, at coincident points, they differ from
naive averages by contact terms. In particular, the definitions (3.279) and (3.273))
imply (on a flat geometry)

GIED (E) = / drydes (T ()T (12)) + 5(71 — ) / dry (T (x1)).
(3.280)

The contact term on the right-hand side arises from the quadratic term in A; in the
KK metric: Gij =g8ij+ €2¢Al’Aj.

Integrating (3.280) over X, and combining it with the average of (3.278) over 1,
we find

/ dx1a;a; (T (0,31)T% (y))g = aia; / dx1(j'(%1) j/ (%2)) — aia (T )5 + @ (T)p.
(3.281)

Finally, we will argue that the integrated correlator / dx1{j (¥1)j’ (¥2)) vanishes.
We can think of it as the momentum-space two-point function {(j'(p)j/(-p)),
evaluated at zero momentum. Rotation-invariance and conservation imply that the

momentum-space two-point function takes the form
(P (=p)) = (F'p’ =" PG (). (3.282)

If the finite-temperature theory has a nonzero mass gap, then G (|p|) must be regular
near zero momentum (otherwise its Fourier transform would have support at long

distances.) Thus, at low momenta, we have
(P (=P))y = c(P'P =67 p%) +0(p"). (3.283)

In particular, (j*(p)j/(=p)) vanishes at p = 0. Note that conservation of j/(X) at
coincident points is crucial here. Without it, the momentum-space correlator could

have an O(p°) contact term of the form ¢*/.

It is instructive to understand this vanishing result in position space as well. In
the position-space integral f dxXya;a;(j (%) j/ (X2)), we can write a; = 8;(d - X1).
Integrating by parts and using conservation, we obtain a boundary term at infinity:

aia / dx\ (j (1) (2)) = lim a; /| L B@ WG @), 3280
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where dS; is the surface normal for the sphere |X| = R. This boundary term (3.284)

vanishes provided the two-point function decays sufficiently quickly at large |X|. In

other words,
a;a; / dXi(j' () (%)) =0 if Jim X171 (3)7(0)) = 0. (3.285)

This condition certainly holds when the finite-temperature theory has a mass gap
(since the correlator decays exponentially). However, it also holds more generally.
For example, if the finite-temperature theory possesses a massless sector, we expect
the current two-point function to decay no slower than a correlator of conserved
currents in a d—1 dimensional CFT: (j (%) (0)) ~ |¥|72(?~2)_ In that case,
will be satisfied as long as d > 3.

Finally, using (3.283) in (3.281])), we find

/ d¥1a;a;(TY(0,%)T% (y))p = —a;a; TV )5 + @ (T = —(fd)a*, (3.286)

where we used (3.18]) for the one-point functions (T#")g. We conclude

= d N 3
(e"Pyg=1- %Td”azvol R4, (3.287)

where we have restored factors of T by dimensional analysis. To apply this result to

Sé x §9=1 with a twist by a rotation of $?~!, we can make the replacement
a*volR4! > dQy_1v|?, (3.288)
Sd—l

where v is the Killing vector on §¢~! implementing the rotation.

Using the thermal effective action

The thermal effective action gives an efficient way to package the Ward identity
calculations above and extend them to arbitrary nonlinear order in d. Let us see
how it recovers the result 1' The correlator (e‘“3 ) is captured by the geometry

Sé x R4~! with a twist of @ around the thermal circle, i.e. an identification
(1.X) ~(t+1,x —a). (3.289)

To use the thermal effective action, we must put the metric into Kaluza Klein form.

‘We undo the twist with a coordinate transformation

X' =X-r7d. (3.290)
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This essentially implements averaging over Euclidean time (3.278]) by spreading out

the twist over the thermal circle. The metric changes to

dx* + d7? = (d¥ + ddrt)* + d7°

= . d->/ 2 > d—v 2
I CALE 0 TN (P (3.291)
1+ a? 1 + a?
The effective metric is thus
—~ 1 aa;
i =Ty (6’7 B 1+c72)’ (5.292)
and the thermal effective action is
S[2, A] = —fvol R g = — fvol R4V (1 + @) /2., (3.293)

Finally, the partition function is
e—S[§,A] — erOle_1(1+52)_d/2 — erOle_l (1 _ %&’ZVOI Rd_l + .. ) , (3294)

in agreement with (3.269).

These manipulations are clearly easier and more efficient than those in the previous
section. However, detailed manipulations of correlators are instructive as well. For
instance, they tell us that (3.269) holds even when the thermal theory is not gapped,
as long as d > 3. It would be interesting to determine which other results from the
thermal effective action continue to hold in non-gapped thermal theories. We leave

this problem for future work.

Appendix B Scheme independence

In Section [3.3] we derived (3.41)) by working in a scheme where b-type terms S
are absent from the Weyl anomaly. In this appendix, we describe how (3.41)) comes
about in a general scheme. The point is that the scheme dependence of the Casimir
energy and the thermal effective action cancel each other. For concreteness, let us

work in 4D. The partition function on S}J, x §3 is

Tr [e—ﬁ(D+3T”—% ] ~ o St — e_S[g,A]_SEuler_DR[Sct[G]]+DR[Sct[6]]’ (3.295)

where we have used that S}_g x S9! is conformally-flat to drop Weyl-invariants.

Meanwhile, we have

_ 1
DRISAlG1] = DRISulG1) = [ axv@ [ par (- assie) =3

(3.296)
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where we used that R = 6 on S3. Thus, we can cancel the b-dependence on the
left-hand side with DR[S.[G]] on the right-hand side, leaving

Tr [e—ﬁ(D+3T“)] - e_S[g’A]"'DR[SCt[G]]_SEuler. (3.297)

—~

The combination —S[g, A] + DR[S.[G]] is then scheme-independent, and equal to
S[g, A] in the scheme of Section[3.3]

Of course, this cancellation was not an accident. The b-term contribution to the

Casimir energy is

1
EOlb—type = m SCthde*I . (3.298)
Because S is local, it follows that
ﬁE0|b-type = DR[S] |S[13><Sd—‘ . (3.299)

Said another way, the b-term in the Casimir energy is precisely what matches the
b-term contribution to the Weyl anomaly on the cylinder. Since the b-term in the
thermal effective action was determined by Weyl anomaly matching, it must cancel

with the Casimir energy. This argument generalizes to arbitrary d.

Appendix C More on free theories
Partition function of free scalar theories
In this section we review the partition function of a free scalar theory on R X S,d{l.
This space is conformally equivalent to the Euclidean space R?. The energy E of
the state on R x $%~! is related to the scaling dimension A of the corresponding field
on R via:

E =A/R. (3.300)

The equation of motion of the free scalar field on R X S%‘l 18

82
—w + Vgg_] - é‘:R ¢ = 0, (3301)
where £ is the conformal coupling in d dimensions, & = %, and R is the Ricci
scalar of S%‘l, R = W. The spherical harmonics in d dimension, Yl(d), are
eigenfunctions of Vid_l, with eigenvalue —/(/ + d — 2), where [ is a non-negative
R

integer. We can then construct an orthonormal set of solutions as

d-2
[+

—iEty,(d)
YW, E= ,
¢l x e I R

(3.302)
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whose elements become each mode after quantization. Note that Yl(d) is the represen-
tation of Spin(d) with the highest weight (/, 0, ..., 0) in the standard Cartan-Weyl
labeling scheme.

We will write down the case of even dimension and odd dimension separately

because the group structure of SO (d) is slightly different in these two cases.
Even dimensions

The spherical harmonics Y, l(d) are also eigenfunctions of dg, in the coordinate system
(3.43). The eigenvalues m, (a = 1,...,n) of dy, are integers, and they obey the
following relation:

[ =2mg+ |my|+---+ |my, (3.303)

where mg is a non-negative integer. The multiplicity of this specific eigenvalue is

(n+;:lg—2)_ Therefore, in even d (d > 2), the partition function of a free scalar field is
RV 1 ()
mo=0 \mj=—co Mg [2==00 ¢
(3.304)

where the sums over i in (3.304) run fromi=1,---, %. From this we can read off
log Z. The first two terms in the high-temperature expansion are as in (3.93)).

The higher order terms in logZ come with a factor proportional to ~ (d —
2k)T?=2¥=1 for integer k. Because the zeta function vanishes at negative even
integers, this means the high-temperature perturbative expansion for log Z of a
free scalar field in even dimensions truncates after the O(1/T) term [147]]. The
further corrections after the perturbative expansion in 1/7 are non-perturbatively
suppressed in 7. In fact, using techniques similar to [45]], we can get an exact
expression for log Z for free scalar field theories in even d. For completeness, we

write these expressions in the following section.
0dd dimensions

In odd d, the relation between the eigenvalues / and m, is
l:m6+|m1|+~--+|m%|, (3.305)

where m, is a non-negative integer. The multiplicity of this specific eigenvalue state
is (%+m0—1

o ), where mg = L%J. Therefore, the partition function of a free scalar



117

field is
o = e 1 (5
Z(T, Q) = nlojo mll:_loo mdll:l_oo | = o= motS; Imil+d/2-14i 5 mi)
2
N . 1 e
X ”110_:[0 mll:_lm mdll—:[_m 1 — o~ 1 (2mo+Z; Imil+d/2+i 5 miQ;) ’
2 (3.306)
where the sums over i in (3.306) run fromi =1,---, %. When we take the log

and expand at high temperature, we arrive at the same result as in (3.93).

In even d, the expansion in inverse powers of T truncates after the O (7~!) term. In
odd d, however, the expansion never truncates. This is because the higher order terms
have a factor proportional to ~ ¢(d — 2k)T?2*~1. For odd d, this never vanishes.
Moreover, due to the factorial growth of the zeta function at large, negative, odd
values of the argument, the expansion in inverse powers of 7T is in fact asymptotic
rather than convergent. Finally (due to a pole of the zeta function at argument 1),
there is a log T term in the high-temperature expansion as well (see (4.13) of [[128]
for this log T term in the case of d = 3.) We write an explicit expression for all

perturbative terms in odd dimensions in the previous section.

Gapless sector in the free scalar

As noted in Sec [3.4] the free scalar in d dimensions is a somewhat pathological
example for our purposes, due to the presence of a gapless sector upon compactifi-
cation on S!, namely the d—1-dimensional free scalar CFT. As a result, the partition
function at high temperature contains terms proportional to O(7°%) and O(logT)
in even-d and odd-d respectively. These terms cannot be produced by the ther-
mal effective action, and must come from the gapless sector. In this appendix we

understand them explicitly (see also [61]] for earlier discussion of such terms).

An important subtlety is that the d—1 dimensional gapless sector is not conformally
coupled to curvature in d—1 dimensions. To see why, we start with a conformally-
coupled scalar in d-dimensions. This contains a term in the Lagrangian %fﬂ%qﬁz
with coeflicient

d-2

%= 3d-n

(conformal coupling in d-dimensions). (3.307)
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When we dimensionally reduce on S', we do not obtain a conformally-coupled
scalar in d—1 dimensions, because &; # &£,4-1. Instead, the d—1-dimensional scalar
has a particular mass deformation turned on. To be more precise, it satisfies the

equation of motion
D= (V3 +&R) 6 =0, (3.308)

where V?I—l is the d—1 dimensional Laplacian. By contrast, a conformally-coupled
scalar would satisfy
5¢ = (—Vfl_l + fd_ﬂ%) =0 (d—1-dimensional conformal coupling).
(3.309)

The partition function of the gapless sector in our case is (det ©)~!/2. By contrast,
reference [134]] computed the sphere partition function of a conformally-coupled
free scalar, i.e. (det 5)_1/ 2. For our purposes, we can follow the methods of [134],

but we will obtain different results because we have a different equation of motion
3:308) ]

Following [134], the contribution to —log Z¢i¢a-1 from the gapless sector is

F = imn
n=0

—log(uR) +log (n+ d;Z)], (3.310)

where
_ 2n+d-2)(n+d-3)!
Mn = (d-2)in!

is the dimension of the n-th traceless symmetric tensor representation of SO(d).

(3.311)

Here, R is the radius of the S?~!, and u is a mass scale coming from the regulator.

In our case, the temperature sets the regulator scale, so we have u =T.

The sum (3.310) diverges, but we can use {-function regularization to make it finite.
In even d, the R-dependence of (3.310) formally drops out. However, in odd d it

remains, giving a nontrivial log 7" term in log Z. The {-function regulated sum is

o0

Fo=y _ M (3.312)

N
=0 (n + %)

The log T term is given by Fy—o and the 79 term is given by d;F|s—0. These values
for the first few d are given in Table[3.1] They indeed agree with the corresponding
terms in the high-temperature expansion of the partition function of the free scalar

on S! x S9! as we explicitly write in Appendix C.

33We are grateful to Yifan Wang for discussions related to this point.
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d Fy—o astls:O
1 Tog 2
3] & -5 —(()’(—1)
73
41 0 el
5 | _ 17 MMlog2 | (=) _ 77(=3)
2830 2830 24 24
6 0 2L (3)+3£(5)
4874
7 367 _2[Tlog2  377(-1) + 777(=3) _ 31I'(=5)
483840 483840 640 192 1920
3 0 _ 8n7Z(3)+307% £ (5)+454(7)
28807

Table 3.1: Values for Fy—y and 0, F;|;—o for various dimensions, with F defined in
(3.312)). These provide the coefficients of the O (log T') and O (T°) terms respectively
in the free energy of a free scalar field in d dimensions.

The a-anomaly of the free scalar

As an aside, we can use similar techniques to compute the a-anomaly of a free scalar
theory in d dimensions. The value of the a anomaly is well-known in d = 2,4,6
[82]; see e.g. [[15] for a calculation in 6D. In general d it was computed in [96} 97,

which we review here.

Here we study the free scalar field in d dimensions conformally coupled to ¢, as
was precisely done in [[134]]. As discussed in Appendix F, the a-anomaly is related

to the sphere partition function by@

(-1 2a4d!

log Z(S7) =~

vol $9 log(ur), (3.313)

where u is a regulator scale. Thus, we can read off a; from the logr term in the

sphere free energy. We find the general answer

(_1)%’+1 1
a; =
T ar(E)rd+2) Jo

d
di(d + 4% (r -5+ 1) (d even,d > 2),
d-1

(3.314)

T'(x+n)
I'x) -

a polynomial in ¢ for positive integer d, so the integral is trivial in practice. This

where (x), is the Pochhammer symbol (x), := The integrand is of course

formula requires d > 2 because the sphere partition function of the (noncompact)

free boson in d = 2 is ill-defined. The first few values of a, are listed in Table|3.2

(-2 g% divol §9
(47)dl2

34References [96 (97] use a different convention for the a anomaly where

there
a d .
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d | 4 6 8 10 12

o | L[ 73 263 133787
d | 360 | 9072 | 3443200 | 1796256000 | 29422673280000

Table 3.2: Values for the conformal a-anomaly of a free scalar field in d dimensions,
with d even. For general d, see (3.314).

Non-perturbative corrections for free scalars

From the second section of this appendix, we have the perturbative corrections in
1/T for the free scalar field in d dimensions. For even d, they truncate after the
O(1/T) term (see e.g. [41,[81]). From the techniques in [45] we can in fact compute

the exact high-temperature partition function. It is given by the following.
Define the auxiliary function for even d:
fd.T) = (@1}
_ D ed-1)  (d-1)d) | et o (n) di (4n°Tn)’
i=0

(2m)d-2 2 42T nZ::‘ nd-1 ra@+1) |’
(3.315)

where o is the divisor sigma function: oy-1(n) = Xy, £9=1. Then the general even

d free scalar 1s

d/2-2
log Zy(T) = )" cai-(a-1)(d) f(d - 2i,T), (3.316)
i=0
where ¢5;(d) is the coefficient of the 8% term in the expansion of #}% about

B =00

For example at d = 4 and d = 6, (3.316) reduces to the following two equation@

o0

n* £(3) 1 403 (n)e_4”2T” T 1
1 s T:—Ts——+—— R 2T2+_+ ,
08 Za=+(1) = 31" =03 * 301 Z:; n (’T 2" 8122
(3.319)

33This function comes about from writing the logarithm of the free boson partition function as

)

j+d/2—l(j+d—3

log Z(T) = = d2—1 \ d-3

)log(l — e T, (3.317)
=0

doing the Taylor expansion of the logarithm, and finally resumming over j, giving (see e.g. [01]])
sinh ()

n2d-1 sinhd(%) )

log Z(T) = i

n=1

(3.318)

35These perturbative terms here reproduce, e.g. [[165].
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276 a* 73 25(3)+3§(5) 31

log Zy—¢(T) = T —
08 Za=6(T) = 52=T" = 515 487 ~ 604807
O a2y | dos(n) (44 AT 3T2 3T 3
2 gt
+nzz;e [ 3n (ﬂ YT T4 T e T 3t
o3(n) (0 T 1
s —+——|| 3.320
" 30 (ﬂ T T 3 ( )

For a free scalar field in odd dimensions, the perturbative expansion in 1/7 no longer

truncates. The perturbative expansion is

d-1
2

log Zy(T) ~ ) c-an(d){ (2n+ T

n=1
+ Fizolog T + ,Fls=0 + ) con(d)Z(=2n+ DT, (3.321)
n=1

where in (3.321)), Fy—o and d,F|s—¢ are defined in (3.312), and c¢»;(d) is defined

again as the coefficient of the 8% term in the expansion of %f;% about 8 = 0.

inh? (B8/2)
At large n, |c2,(d)| ~ (27)72". On the other hand, | (=2n + 1)| ~ ((227:1))2'” Thus the
expression (3.321) is an asymptotic series with divergent piece growing like
(2n)!
log Zy(T) ~ Z G (3.322)

From techniques in resurgence, this implies the first non-perturbative correction to

—472T

(3.321)) scales as e , just as in even dimensions.

These results are consistent with the worldline instanton corrections discussed in
Section[3.3](even though in this example there is also a gapless sector upon compact-
ification). When the free boson is compactified on a circle with thermal boundary
conditions, the mass of the lightest KK mode is mgg = 277T. Therefore, (3.91)

—47%T

predicts a correction to log Z of the form e , which is precisely consistent with

what we found in both even and odd d.

We can also study the free scalar with a Z, twist around the thermal circle. For
example, in d = 4, we find

4

log Z?i;‘_tWiSted(T) _ 3

22T
.32
360 24OT +0(e )- (3.323)

In this case, the lightest KK mode has mass mgx = 7T, and the nonperturbative

) ) _ o2
corrections are indeed of the form e 2""kk = ¢=27°T
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Partition function of free fermion theories
In this section, we review the partition function of a free massless Dirac fermion in
d dimensions on R X Sjé‘l . We can construct the partition function from the solution

of the Dirac equation:

(rog +T'V ) ¥ =0, (3.324)

where I'* (u=0,1,...,d—1) are gamma matrices,and V; (i = 1,...,d — 1) is the

covariant derivative on the sphere.

The spectrum of the Dirac operator on S¢~! has been considered in e.g. [40]. The

Dirac operator on S¢~!, ¥ = I''V;, has the following eigenvalues:

d-1

Npop = £i (p+ )lﬁ+p, p=0,1,2,.... (3.325)
Because T = —1 and {IY ¥} = 0, we find the solution of the Dirac equation as

d-1
2

g = e't! (wip + Fowip) ., E=p+ (3.326)

From [40] we see the solutions are representations of Spin(d) with highest weight
(p+%,%,...,2) for odd d and (,0+2 2,...,% %) for even d where p is the

eigenvalue of the Dirac operator in (3.323).

In odd dimensions, we have a complete set of solution of the Dirac equation with
eigenvalues as follows:
d-1
2
p=mo+my+---+m,,
2

1 d—1
a=x\m,+=], =1,...,—|, 3.327
m +(ma+2) (a > ) ( )

E=p+

where mg, m}, ..., m; are non-negative integers. Here E is the energy of the state
and m, is the eigenvalue of the rotation generator dg,. The multiplicity of states
with eigenvalues (E,my, ..., mad a-1) is ( 2;2’"0) Finally we get an additional tower
of states from quantizing the ﬁeld . Therefore, the partition function of a free

fermion in odd dimensions is

(7+m0

Z(T, Q) = ﬂ l_[ 1—[ (1+e *(mo+3; |m,|+—+zzlmm) ’

mo=0 m, eZ+% eZ+2

(3.328)
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where the sums over 7 run from 1, ..., %. Taking a log and expanding at high

temperature recovers ([3.96).
In even dimensions, we can do a very similar calculation. We have a complete set
of solutions to the Dirac equation with eigenvalues as follows:

E = +d
_p 2’

p=mo+my+---+my,
2

1 d
ma:i(m;+§), (a:L""E)’ (3.329)
where mg, m, ..., m; are nonnegative integers. The multiplicity of the states with
eigenvalues (E My, .. ) is (2 +Zf§ 2) Therefore, the partition function of a free

fermion in even dimensmns 1S

2+m0
Z(T,Q) = 1—[ [T 11 (1+e L (g3, I+ 452 +lzlm§2)) 2( )

mo=0 m, eZ+% mdeZ+2

(3.330)
where the sums over 7 in (3.330) run from 1, ..., %. This gives the same answer as

(3.96).

Non-perturbative corrections for free fermions

We can repeat the same analysis in previous section to find the non-perturbative
corrections for the free energy of a free Dirac fermion in d dimensions. When we
turn off the spin fugacities, we can rewrite (3.328)), (3.330), as

(d l)n

2|_ ]+1 1n+1 -
log Z/(T) _Z n(l(_z_f)d —. (3.331)

n=1
In even dimensions, this admits the following (exact) high-temperature expansion.

First, we define the auxiliary function for even d as

(=D2(d - 1)(2¢ - 2)¢(d)

g(d, T) =24 (1 - ﬁ) ()T +

2d- 7d3d/2T
1 dj2 —27r Tn 1)" odd n o) 2T i
-1 ( ) i )Z( nTn) (3.332)
25-2pd-2 & C@+1)
where
9% (n) = Z g1, (3.333)

Cln,
¢ odd
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_Bld-1)
We also define the function ¢&;(d) as the 8 term in the expansion of [zl;,—ﬁ)zd,l about

B = O Then the partition function of a free Dirac fermion in even d dimensions
at temperature 7' is
-1
log Z)(T) = Z2Téi(d)g(d+ 1-i,T). (3.334)
i=1
For instance, (3.334)) for d = 4, 6 reduces to

Tnt 73 n? 17

Fom
log Z34(T) = 355 AT

oo 2 odd 7 -0dd
n —2722Tn [ 477 _odd 2 4 odd o7(n)  207%(n)
+;(—1) e (—n U WT? + S T+~ 4 =5

(3.335)

and

6 4 2
f _3ln° 5 Int 5 omt . 367
logZ3.6T) = 13007 ~ 2167 *32! ~ 241027

00 24 A2 20-0dd (5, 572 g-0dd
+Z(_1)n+1e—2n2Tn[ T (ngd(n)T4+ 3”20'§dd(n)T3+( 5 ( )+ 3|2
n

P 3n n3 3n
.\ 2(7§dd (n) 50'§dd (n) - Ugdd (n) 50'%"10l (n) 30’{"1‘i (n)
m2nt 3n2 m4nd 612n3 8n '
(3.336)

In odd dimensions, the perturbation theory in 1/7 no longer truncates. Rather, it
looks like

log Z//(T) ~ Y 2% (1 - 2"—d) 2(d+1=n)é(d)Té, (3.337)
n=1

where the n = d term in (3.337) is Gd(d)Z% log2. The sum in (3.337) is an
asymptotic expansion. At large odd n, |¢,,(d)| ~ 2x)™ and |{(d + 1 — n)| ~ #

The sum then diverges, growing as
log Z)(T) ~ Z T (3.338)

From the techniques in resurgence, this implies the first non-perturbative correction

27 . . . .
of (3.337) scales as e 2" T, just as in even dimensions.

In a free fermion theory compactified on a circle with thermal boundary conditions,

we have mgx = nT, so that (3.91)) predicts a non-perturbative correction of the form

2 . . . . .
e~ 2T consistent with what we found in both even and odd dimensions.

3Like in the free scalar case, up to an overall constant, this comes from (3.331) upon setting
n=1.
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Appendix D Wilson coefficients for the 3D Ising model

In this appendix, we discuss estimates of the high-temperature partition function
of the 3D Ising model. In Appendix A of [119], the coefficient f for the 3D Ising
model was estimated by constructing the partition function with Q = 0 as a sum over
the spectrum of known operators, which has numerically been computed up to about
dimension 8 [[195]]. In this appendix, we perform a similar analysis, but including
spin-dependence. Note that there is a balance in choosing the temperature — if the
temperature is too low, then truncating the thermal effective action becomes a poor
approximation; if the temperature is too high, then truncating the partition function

to a finite sum of characters becomes inaccurate@

1.3

1.15

0.85

0.7

B B

Figure 3.13: Contour plots of the ratio of the estimated partition func-
tion to the leading term in the thermal effective action with f = 0.153, ie.

73D Ising (B Q) /exp (477 ﬁ22'11+5g322) ), as a function of 8, Q for real Q (left) and imagi-

nary Q (right). The ratio is very close to 1 for intermediate temperatures 1 < 8 <5
and small angles |Q| < 0.5.

From Monte-Carlo techniques, it has been estimated that f3p rsing ~ 0.153
[198]]. In Figure[3.13] we plot the ratio of the computed partiton function to the
estimate from the first term in the thermal effective action (3.54) with f = 0.153.
For the values of 8 and Q shown in the figure, the ratio is quite close to 1. We
can also independently fit f from the partition function. By studying temperatures
with 1.5 < 8 < 3 and chemical potentials |Q2| < 0.6, we estimate that f ~ 0.15,

consistent with [143] 145}, [198].

3Much like the porridge in Goldilocks and the Three Bears [196], it is important to pick a
temperature that is just right.
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We can also try to estimate higher-derivative Wilson coefficients in the effective
action of the 3D Ising model, such as cy, ¢c». Unfortunately, we do not have a clear
enough picture of the high-dimension spectrum to estimate these coefficients with
reliable precision. However, our best fits suggest that ¢, < 0 (we are not yet able to

reliably estimate the sign of ¢y).

In general, accessing large twist operators is challenging for the numerical bootstrap,
which seems most sensitive to low-twist operators—particularly "double twist"
operators [195]]. Furthermore, the numerical bootstrap studies done so far are blind
to certain parts of the operator spectrum of the 3D Ising model, such as odd-spin Z,-
even operators, or parity-odd operators Such sectors would need to be included
to reliably compute the partition function at higher temperatures. See [117,207] for

recent work accessing these sectors with other methods.

Appendix E The shadow transform of a three-point function at large A

The formula for OPE coeflicients depends on the triple shadow coeflicient S%Eﬁ*
given in (3.161). In this appendix, we compute this coefficient at large A;. First
consider a single shadow transform applied to a three-point function with large A’s.

The shadow transform is

(01 (x1)0% (x2)S[03]° (x3)) ) = / d”x(0% (x3)0 (x0)){O§ (x1) 0% (x2) 0% (x0)) ).
(3.339)

Here, a, b, ¢ are spin indices for the representations A1, 45, A13. The operator O' has
Lorentz representation A%, so we write its index as a lowered ¢ index. The operator
O has Lorentz representation /l§ (the reflected representation), and we indicate this

with a barred index.
The three-point function is
(0] (x1) 05 (x2) 05 (x3)) ) = V59 (x1, 33, x3). (3.340)

We will be interested in restricting this three-point function to a single axis x; = z;e
with unit vector e € S9! ¢ RY. We get two different answers, depending on the
cyclic ordering of the points

Vs;ub(: (076’00)
|Z12|A1+A2—A3 |Z23 |A2+A3 -Aq |Z31 |A3+A1 -Ay
VS;abC(e,O,OO)
|z12|A1FA2783 |293] A2 A3 7 A1 23 |A3+A1 A2

b (z1 < z2 < z3, orcycl),
VEe(zie, z0e, 23€) =

(z2 < 71 < z3, orcycl.).

(3.341)

¥ Though there are preliminary results for some of these sectors from the stress tensor bootstrap
[84].
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The tensors V47¢(0, e, 00) and V*:%%¢ (e, 0, co) are related to each other by a rotation

by x in the 1-2 direction applied simultaneously to all three indices. The operator
at co is defined by (3.120).

To compute the shadow transform, we can use conformal symmetry to choose a
simple configuration of the points. We pick (x1,x2,x3) = (0, e, o), where e is a
unit vector in the x! direction. The two-point function becomes a tensor depending
on the unit vector e that maps A3 — /lée:

(0% (c0e)0] (0)) = IF.(e). (3.342)

For example, in the case of a spinor representation in 4D, we have 1%, (e) o« (e-7)%,.

The shadow transform will be dominated by a saddle point on the x'-axis, by
SO(d - 1) invariance. Its location depends only on the zo-dependent factors in the

three-point function
VPe(0, e, zpe) oo [zo] A1 - gp] 2T, (3.343)

This has the saddle solution

Ay + Az — Ay

344
2 (3.344)

20 —

The tensor structure that multiplies the answer depends on the location of the saddle.

Taking into account the gaussian fluctuations around the saddle, we find

(0%(0)0% (€)S[03]% (o))

d d
Ay—Aq —A3+7 Ay —Az—A3+7

_ ld/z A1+A3—A22 ’ A2+A3—A1 2 ?
A3 2A3 2A3
Vsabe (0 e, 00) 0 < 704 < 1,

x I°.(e) X (3.345)
V‘Y;“bc(e, 0,0) otherwise.

If we perform the shadow transform three times, we find that zp. € (0, 1) twice,
and once it lies outside of this range. Thus, the cyclic ordering of the arguments to
V? get swapped twice, resulting in the same ordering after three transforms. The

overall effect is to multiply by A-dependent factors and act on each index with 7. (e).
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Overall, we find

(1) ™ (1(e) )2 (1(e) ™) (S[0]1(0)S[0315(e)S[O] Te(00)) )

in(d-2) [ 7l d/2 i a2 i a2
S* e
=vii0ee xS T (E (5

d _A,_d
(A1+8g—A3) (Ar+Ag+A3) \ATFA2AI7T [ (A1 —Ag) (Ar+As+A5) | A3 HATTA272
EYNY.Y) 4A3 A

A _d
((A2+A3 Al)(A1+A2+A3>)A2+A3 A1=3

A7, (3.346)

Here, V*'* indicates the complex conjugate of the three-point structure V*'. For the
purposes of this calculation, we should think of it simply as a three-point structure
for operators in the representations 77;'. We have written (3.346)) so that its phase is
manifest when A; is on the principal series A; € % + iR>( (with positive imaginary
part). Finally, we included inverse two-point structures I (e¢)~!, since they are needed

in (3-IBI).

Appendix F  Gluing factors

In this appendix, we determine the gluing factor | Zge ()| coming from a junction
between a d-dimensional cylinder of radius r and a flat end-cap given by a d-
dimensional ball. Our strategy is to start with the partition function on §¢ (with
radius 1) and perform a Weyl transformation to a cylinder C, g of radius r and length

Br with two flat end-caps. We will integrate the Weyl anomaly to compute Sanom
and deduce |Zgjue(r)]| via (3.122).

Recall that on a conformally-flat geometry, with the scheme S, = 0 discussed in
Section [3.3] the finite form of the Weyl anomaly is

logZ[eng] - lOgZ[g] Sanom 8, W
1 dj2
((4))d/621d/ dt/ddxw\/_ed’“’E 2tw
T
(3.347)

To compute the Weyl anomaly between the sphere and the capped cylinder, we first
need the Riemann tensor for a Weyl rescaling of S¢. Let us write the metric on S¢

as

ds?, = d¢? +sin® ¢ ds?, . (3.348)
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We will be interested in Weyl rescalings g = e*“gqa, where w is a function of ¢

alone. In this case, the Riemann tensor simplifies:
RP7 =] (12w cotp — w?)(5567 — 656%)
+ (' cot g+ W — w")(8,0067 — 6,6767 — 6,678 +6,675%) |,
(3.349)
where the index 1 represents the ¢ coordinate, and w’, w” denote derivatives of w
with respect to ¢. The Euler density is

— 1 — —~
\58% Va-1V
4= 2d/26'u1 #d€v1-~~vdR,u1,u2 "2 . R d-1Vd

Hd-1Hd
= dle™(1 = 20/ cotd — )T (1 — ' cotd — ). (3.350)

Plugging this result into (3.347)), we find

log Z[e**g] —log Z[g]
-1 d/2d! 1 bis _

= —()—fd‘/ dt/ d¢ w(sin p)?~ ' (1 - 2tw’ cot ¢ — tza)’z)% (1 -t cotg —tw”).
2d—1r‘(§) 0 0

(3.351)

Now let us examine the Weyl factor that relates the sphere to C, g. We will impose
a symmetry under ¢ — 7 — ¢, so that it suffices to consider the range 0 < ¢ < 7.
The Weyl factor is

eB2r tan(¢/2)
—mg —~ 0S¢ <o

w(¢) = (3.352)

where ¢o = 2tan™! (e #/2). As a check, consider first the range 0 < ¢ < ¢¢. There,
we have
tan’(¢/2
20 +sin? pds, ) = Fr? [P 42 a2 (6/2)ds2,

= dp® + p°dsy,. . (3.353)

where p = ¢#/2rtan(¢/2). This is the metric on the flat ball, i.e. the first end cap.
Similarly, for ¢9 < ¢ < /2, we have

rd¢
sin ¢

2
e*(dg” +sin” ¢ ds, ) = ( ) +rPdsy, =dt* +ridsy, (3.354)
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where 7 = rlogtan(¢/2), which is the metric on the cylinder. Thus, (3.352)
describes how the first hemisphere 0 < ¢ < /2 maps to half of the capped cylinder.
The remaining hemisphere should be treated symmetrically under ¢ — 7 — ¢. In
practice, this means integrating the anomaly over ¢ € [0, 7/2] and including a factor
of 2.

Plugging the Weyl factor (3.352) into (3.351) is subtle because «w” has a 6-function
singularity at ¢ = ¢o. In (3.351)), this §-function gets multiplied by a function of «’,
which is discontinuous at the support of the d-function! To get the correct result,
we must regularize w by smoothing out the discontinuities in its derivatives. For

example, we can model w’ near ¢ as
1 _
W(9) = 3 (@ + oL+ (@, — wD)erf(2)), (3.355)

where € is a small regulator, and «’, are the values of «’ to the left and the right of
the discontinuity. Plugging this into (3.351)), expanding to leading order in €, and
writing ¢ = ¢o + €x, we obtain integrals of the form

L+ (-D)" vr

2 n+1’

/ dx e erf(x)" = (3.356)

which give finite, calculable contributions. Applying this procedure, we can obtain
the contribution to (3.351) from an infinitesimal neighborhood of ¢:

5 log(r cosh 'g) d=2,

(contribution near ¢g) = % log(r cosh g)% d=4, (3.357)

The detailed expressions here will not matter for our purposes. The important
observation is that the contributions all vanish when r = 1 and 8 = 0. We
will take advantage of this fact shortly.

Before computing the full result from plugging (3.352) into (3.351)), let us use a
shortcut to determine its r-dependence. From cutting and gluing, we expect the

capped cylinder partition function to take the form
10g Z(Cy.p) =108 | Zgiue ()| — £0f5. (3.358)

where & is the Casimir energy on a unit S~ given in (3.42). We can determine
the r-dependence of the right-hand side by starting with a cylinder C; g of radius 1

and performing a Weyl rescaling g — r2g to get C . Because the integral of the
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d |2[476] 8 | 10 | 12 14
7 37 1066 3254 72428 949484
f@ 1315|3321 50 | 55 | T

Table 3.3: Values of f(d) for the first few even d.

Euler density is topological, a constant Weyl rescaling gives the same anomaly on

the capped cylinder as on the sphere. In other words, we have
log Z(C, p) —log Z(C1 g) = log Z(59) — log Z(57), (3.359)

where S¢ is the sphere with radius 7. On the sphere, we can easily integrate the

Weyl anomaly using E;[gga] = d! to give

dy _ d __(_1)d/zadd! d — A (_1\d/2(dY)
log Z(Sy) —log Z(S%) = —(4ﬂ)d/2 vol ¥ logr = =2(=1)"“(5)!aslogr.
(3.360)
Combining (3.358), (3.359), and (3.360), we conclude
10g | Zgtue (r)[* =10g | Zgue (D [* = 2(=1)*(£)!aq log r. (3.361)

Thus, we have completely fixed the 8 and r dependence of log Z(C; g), and the only
remaining unknown is log Z(C; ) = log |Zg1ue(1)|2. As noted above, when r = 1
and B = 0, the contribution to the Weyl anomaly near ¢ vanishes. Furthermore,
the contribution from the cylinder region vanishes as well since ¢o = 5. We are left

with an integral over the end cap ¢ € [0, 7/2] alone:

log |Zglue(1)|2 —log Z(Sd)
_ / : ! d-2
:%/0 dt/o de[(1-t)(1 =x)(1+t+x—x1)] 2 (1 —¢)log(x+1),

(3.362)
where we made the change of variables x = cos ¢. We have not found a simple
closed-form formula for log | Zgye (1) | in general d. However, it is straightforward

to plug different values of d into (3.362) and perform the resulting elementary
integrals. We find that

10g | Zgue () * = log Z(S¢ ) = (=) f (d)au, (3.363)

where Z (Sf /2) is the partition function on a sphere of radius r/2 (determined by
(3.360)), and f(d) takes rational values for even d; see table
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Appendix G Counting quantum numbers in the genus-2 block

A four point function of local operators depends on two independent cross ratios
z and 7. These cross ratios are roughly conjugate to the quantum numbers A
and J labeling the internal representation. By varying z,7 independently, we can
extract information about A and J independently (for example, using Caron-Huot’s

Lorentzian inversion formula [48)]]).

Note that the internal operator in a four-point function may transform in a compli-
cated SO(d) representation whose Young diagram has multiple rows with lengths
(my,my,...,my,), where n = L%J and m; = J. However, in a fixed four-point

function, only m = J is unbounded. The remaining m; are bounded.

In this appendix, we point out a similar match between unbounded quantum num-
bers in the genus-2 block B{’z% and the dimension of the moduli space of genus-2
conformal structures dim M = dim SO(d + 1, 1). Before explaining the general

case, let us describe the matching ind =2 and d = 3.

In d = 2, there is a unique three-point structure, so the labels s, s” take only one
value. The only unbounded quantum numbers in the block are the dimensions and
spins of the three exchanged operators. This gives six quantum numbers, which
matches dim M =6ind = 2.

In d = 3, we again have six unbounded quantum numbers from the dimensions and
spins of the exchanged operators. However, we must also take into account the 3-
point structure labels s, s’. One way to count them is to work in the embedding space.
(The counting is even easier in the g-basis, but our embedding-space discussion will
be useful later.) In the embedding space formalism, a spin-J operator becomes
a homogeneous function O(X, Z) of an embedding coordinate X € R%!! and a
polarization vector Z € C%*!| subject to orthogonality conditions X?> = Z2 =
X -Z =0, and a gauge redundancy Z ~ Z + AX. The operator O(X, Z) has
homogeneity —A in X and J in Z. A general three-point structure for such operators
is given by

VJ1—€2—€3VJ2—53—51 VJ3—51—€2H€1 Hfz H€3
(01(X1,Z1)02(Xa, Z2)O05(X3, Z3)) > — 2 > e

X1A21 +A2—A3 X2é32+A3—A2 X3A13+A| EAY)
(br+6 < Ji, 03+ 0 < Ty, 0+ < J3),
(3.364)

where H;; and V; are standard polynomials in the polarization vectors [69]. The

three point structure is labeled by integers ¢, {5, £3, which are constrained by the
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requirement that the correlator should be a polynomial in the Z;.

The ¢; are unbounded in the limit of large spin J;. However, there is a relation
between the H;; and V;:

(V1H23 + V2H13 + V3H12 + 2V1 V2V3)2 = 2H12H13H23. (3365)

Using this relation, we can always reduce one of the A; to zero, so the number of
unbounded quantum numbers labeling the three-point structures in 3D is 3 — 1 = 2.
The conformal block is labeled by two three-point structures, so this gives 2 X2 = 4
additional unbounded quantum numbers for the block. Overall, we have 6 + 4 =
10 = dim M in 3D.

We are now ready to tackle the d-dimensional case. In the d-dimensional embedding
formalism, an operator O becomes a homogeneous function of an embedding co-
ordinate X € R%!! and polarization vectors Wi, ..., W, € C*1 where n = I_‘Z—IJ.
(We conventionally write W; = Z.) More formally, O is a locally holomorphic
section of a line bundle over the flag variety V1 of SO(d + 1, 1), which has
(X,Wy,---,W,) as projective coordinates. The number of these coordinates, sub-

ject to orthogonality relations and modulo gauge redundancies, is the same as the

)

(3.366)

complex dimension of the flag variety, which is

1 d+1)(d+2 d+?2
dime Vs11 = 5 (dim SO +1,1) - dim7) = (d+1)(d+ )_{ +

2 2

| =

where T is the maximal torus of SO(d + 1, 1). See [68,|136]] for more discussion on

the embedding formalism for general tensors.

For example, in d = 3, this gives dimc V41 = 4, which is the correct number
of degrees of freedom in the vectors X,Z € R*!. We can see this explicitly by
restricting to the Poincare section X = (l,xz,x) and Z = (1,2x - z,z). Here x € R3
is unconstrained, and z is a null vector in 3D, modulo rescaling, which corresponds

to a single angle on the celestial circle.

A three-point function (O;0,03) is a section of a line bundle over three copies of
Vi+1.1, satisfying invariance under SO(d + 1, 1). In the large quantum number limit,

the number of quantum numbers labeling such sections is

#(Z-valued 3-pt structure labels) = 3dim¢ V41,1 —dimSO(d +1,1).  (3.367)
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Finally, a genus-2 block has two three-point structure labels s, s’, together with
dim7T = L%J quantum numbers for each of the three internal operators. Overall,

the number of unbounded quantum numbers is

2 (3dim V1) —dimSO(d + 1,1)) +3dim T = dim SO(d + 1, 1) = dim M.
(3.368)
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Chapter 4

ANGULAR FRACTALS IN THERMAL QFT

4.1 Introduction

Many aspects of conformal field theories (CFTs) are universal at high energies. A
famous example is Cardy’s formula, which states that the entropy of local operators
at sufficiently high energies takes a universal form in all unitary, compact 2D CFTs
[46] (see [168, 170, |175] for a precise formulation). Equivalently, the partition
function of a 2D CFT

Tr [ PHi07) (4.1)

is universal in the high temperature regime  — 0 with 6 ~ O ().

The derivation of Cardy’s formula uses invariance of the torus partition function
under the modular transformation S : 7 +— —1/7. By instead using the full modular
group PSL(2,Z), one finds similar universal behavior as 8 — 0, near any rational
angle 6 = 27er’ see e.g. [24]. This leads to universal "spin-refined" versions of
the density of states. For example, in the case s = %, the modular transformation

T > 57 gives the universal behavior of
Tr | e—B(H—iQJ)(_l)J] =Tr | e—,BH+i9J]9:n+ﬁQ’ (4.2)

in the regime 8 — 0 with Q ~ O(1). For any given 2D CFT, the logarithm of (4.2)
is 1/4 the logarithm of (4.1]) at high temperature, leading to a universal result for the

difference between densities of even- and odd-spin operators in 2D CFTSEI

While modular invariance is not available on S¢~! x S! in higher dimensions, higher
dimensional CFTs still display forms of universality at high energies, both in their
density of states [[7, 25, 27,147,188, 189, 199], and OPE coeflicients [25, [74]. A
central insight from [|14}27,|127] is that the high temperature behavior of a CFT can
be captured by a "thermal Effective Field Theory (EFT)" that efficiently encodes the
constraints of conformal symmetry and locality. In [7,[25,|188,|189], thermal EFT
plays the role of a surrogate for the modular S-transformation (as well as modular

transformations on genus-2 surfaces).

"Modular invariance on higher genus surfaces also leads to universal results for OPE coefficients
in 2D CFTs, as derived in [36, 44,72, 115} |141]], and unified in [67].
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Figure 4.1: A qualitative picture of log(log(Z)) in the 3D Ising CFT, where
Z = Tr(ePH*%7) is the S? x S' partition function. To construct this picture,
we took the leading terms in the EFT description around each rational angle (up
to denominator 15), and combined them with a root-mean-square. We give more

detail in Appendix .10}

In this work, we will be interested in "spin-refined" information about the CFT
density of states in general dimensions. In particular, we will study the partition
function 1} with high temperature (8 < 1) and finite angles 4. (In higher
dimensions we promote 6 and J to vectors with Ld/2] components coming from
the rank of SO(d).) The regime 6 = ,852 with fixed € is captured by thermal EFT

as discussed in . However, when 6 does not scale to zero as

B — 0, the naive EFT description breaks down.

A simple example of a partition function with finite gis li : the relative density of
even-spin and odd-spin operators with respect to some particular Cartan generator
J of the rotation group. This observable is naively outside the regime of validity of

the thermal EFT, since 6 remains finite as § — 0.

More generally, we can consider a partition function that includes a rotation by finite

rational angles in each of the Cartan directionsﬂ

Tr [e_ﬁ(H_ié'j)R] , where R= eZni(S—llJ1+~~+§—ZJn). 4.3)
Using a trick that was applied in [10] to study superconformal indices near roots of
unity, we will find a different EFT description for this partition function, in terms
of the thermal EFT on a background geometry with inverse temperature ¢S and

spatial manifold §¢~! /Z4, where g = lcm(q1, . .., g,). This determines the small-3

’In parity-invariant theories, we can also include reflections.
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expansion of (4.3) in terms of the usual Wilson coefficients of thermal EFT, up to
new subleading contributions from "Kaluza-Klein vortices" that we classify. For
example, the effective free energy density of (4.3), coming from the leading term in
the thermal effective action, is smaller than the usual free energy density by a factor
of 1/g?. In particular, the effective free energy density of even-spin minus odd-spin
operators described by is smaller by 1/2¢. (This generalizes the factor of 1/4
in 2D.

The EFT descriptions around each rational angle patch together to create fractal-like
behavior in the high-temperature partition function; see Figure [4.1] for an illustra-
tion in the 3D Ising CFT. It is remarkable that effective field theory constrains
the asymptotics of the partition function in such an intricate way, even in higher

dimensions.

Kaluza-Klein vortices appear whenever the rational rotation R does not act freely
on the sphere $9-1 Each vortex creates a defect in the thermal EFT, whose action
can be written systematically in a derivative expansion in background fields. By
contrast, when R generates a group that acts freely, no vortex defects are present,
and the complete perturbative expansion of (4.3) in j is determined in terms of

thermal EFT Wilson coefficients, with no new undetermined parameters.

While most of our discussion and examples are focused on CFTs, our formalism also
applies to general QFTs. In particular, using thermal effective field theory, we derive
a relation between the partition function at temperature 7' with a discrete isometry
of order ¢ inserted, to the partition function with no insertion at temperature 7'/q,

in the thermodynamic limitﬂ For example, we have

1
—log Tre(my) [e_'BHR] ~ ——log Tray m,) [e'qBH] + topological + KK defects
q

(as L — o0).
(4.4)

Here, M is a spatial manifold of characteristic size L, with associated Hilbert
space H (M), R is a discrete isometry of order ¢, and "~" denotes agreement to all
perturbative orders in 1/L. The relation (4.4)) holds whenever the theory is gapped at

inverse temperature ¢ 3. We write the most general relation in (4.32])), which we check

3Note that simply taking the density of states computed in [25] and inserting the phase R into
the trace will not give the correct answer to the partition function. For a demonstration of this in 2D,
see Appendix B of [24].

4We are extremely grateful to Luca Delacretaz for emphasizing the general QFT case to us.
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in both massive and massless examples. An interesting consequence of this simple
formula is that twists by discrete isometries can be sensitive to lower-temperature
phases of the theory. For example, the partition function of QCD at temperature
T > Aqcp, twisted by a discrete isometry with order g, becomes sensitive to physics

below the confinement scale when 7'/q < Aqcp.

This universality of partition functions with spacetime symmetry insertions is in
contrast to the case for global symmetry insertions. The insertion of a global
symmetry generator operator is equivalent to turning on a new background field in
the thermal EFT. The dependence of the effective action on this background field
introduces new Wilson coeflicients that are not necessarily related in a simple way
to the Wilson coeflicients without the global symmetry background; see e.g. [[102,
128} |174].

The paper is organized as follows. In Section .2 we present a derivation of our
main result: a systematic study of the high temperature expansion of the partition
function of any quantum field theory with the insertion of a discrete isometry. In
Section #.3] we look in more detail at the Kaluza-Klein vortices that appear on
S9=1 when the discrete isometry (which is a rational rotation in this case) has fixed
points. In Section 4.4] we discuss subtleties that appear for fermionic theories.
In Section 4.5 we give several examples in free theories that illustrate our general
results. In Section4.6] we consider thermal effective actions with topological terms.
In Section[4.7] we apply our results to holographic CFTs. In Section[4.8] we look at
irrational 6. In Section4.9] we discuss non-perturbative corrections in temperature.

Finally in Section4.10} we conclude and discuss future directions.

4.2 Folding and unfolding the partition function

Thermal effective action and finite velocities

Equilibrium correlators of generic interacting QFTs at finite temperature are ex-
pected to have a finite correlation length. Equivalently, the dimensional reduction
of a generic interacting QFT on a Euclidean circle is expected to be gapped. When
this is the case, long-distance finite-temperature observables of the QFT can be cap-
tured by a local "thermal effective action" of background fields [14, 27, |127]]. For
example, consider the partition function of a QFT; on My X § ! where the spatial



139

d—1-manifold M has size L. In the thermodynamic limit of large L, we have
Tramy) [e PE] = Zorr[Me x Sp]

= ZLgapped [ML]
~ ¢ SulgA0] | nonperturbative in 1/L (L > ), (4.5)

where H (M) is the Hilbert space of states on M, and Hy, is the Hamiltonian.
Here, the thermal effective action Sy, depends on a d—1-dimensional metric g;;, a
Kaluza-Klein gauge field A;, and a dilaton ¢, which can be obtained by placing the
d-dimensional metric in Kaluza-Klein (KK) form

G uydxtdx” = gij(F)dx'dx’ + 2D (dr + A;(%))?, (4.6)

where 7 ~ 7 + [ is a periodic coordinate along the thermal circle. The derivative

expansion for Sy becomes an expansion in inverse powers of the length L.

If the spatial manifold M; possesses a continuous isometry &, then we can addi-

tionally twist the partition function by the corresponding charge Q:
Tram,) [e PHET0QO] 4.7)

Geometrically, this twist corresponds to a deformation of the background fields
g, A, ¢ that depends on a&. In the thermodynamic limit, we can describe using
the thermal effective action, provided that the background fields g, A, ¢ remain finite
as L — oo. In particular, the combination @ must remain finite as L — oco. The
physical reason is that i« represents the velocity of the system in the direction of &
in the canonical ensemble. This velocity must remain finite in order to have a good

thermodynamic limit.

By contrast, suppose that M possesses a nontrivial discrete isometry R with finite

order RY = 1. If we twist the partition function by R,
Traomy) [e PR, (4.8)

then physically this corresponds to a system whose "velocity" is of order L. The
background fields g, A, ¢ naively do not have a good thermodynamic limit, and we

cannot apply the thermal effective action in an obvious way.

* Example: CFT partition function

An important example for us is the partition function of a CFT; on S9! x § /1;

Conformal invariance dictates that

Tr [e‘ﬁ(H_ié'f)] = Trw(si—l) [e_Lﬁ(HL_ié'jL) ) 4.9
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On the left-hand side, we have the usual partition function of the CFT on a sphere
of radius 1. On the right-hand side, H; denotes the Hamiltonian on a sphere S‘LJ_l
of radius L, and 7 1 are generators of isometries of the sphere, normalized so that
the corresponding Killing vectors are finite in the flat-space limit L — oo. (For

example, for a rotation of the sphere by an angle ¢, a Killing vector with a finite

flat-space limit is %a%-)

When g is small, we can set L = O(1/) on the right-hand side and try to apply the
thermal effective action (4.5). We find that in order to have a good thermodynamic
limit as § — 0, the angular potentials Q must remain finite. Phrased in terms of the
rotation angle 6 = ﬁﬁ, we find that 6 must scale to zero as B — 0. Provided this
is the case, the 1/L expansion of the thermal effective action gives an expansion in

small g for the CFT partition function.

We can also understand condition § — 0 more explicitly from a direct computa-
tion using the thermal effective action. In a CFT, the thermal effective action is
constrained by d-dimensional Weyl invariance. The most general coordinate- and
Weyl-invariant action takes the fornEHﬂ

dd_l_) — -
S, = / ﬁd_f\/g (—f +c1fR+ cofPF* + .. ) + Sanom- (4.10)
Here g = e g, R is the Ricci scalar built from g, F? is a Maxwell term, etc. The
term Sanom accounts for Weyl anomalies (which are not important for the present

discussion).

On the geometry §4-1 % Sé, we can easily determine g, A, ¢ and evaluate Sy, [25]:

vol §4-1

_ 7973 4.
[T, (1+9Q?)

th

_de—l +(d-2) ((d —Decr + (201 + %Cz) 2912
i=1

4.11)

We see that terms of order 7¢717F = gk=4*1 in the high-temperature expansion
of Sy are multiplied by a polynomial in the angular potentials Q; of degree k (see
e.g. examples in [31]]). Consequently, 6; — 0 as § — 0 is necessary for the

high-temperature expansion to be well-behaved.

SFor simplicity, here we assume that the theory is free of gravitational anomalies.

®Note that [25] worked in conventions where 7 has periodicity 1, and 3 is absorbed into the field
¢. In this paper, we instead use conventions where 7 has dimensionful periodicity 8 (later we will
also have other periodicities) so that explicit powers of 8 appear in the action (.10), as required by
dimensional analysis. To convert from the conventions of [25] to the conventions in this work, one
shifts the dilaton by ¢ — ¢ +log 8.
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To summarize, the thermal effective action can describe "small" angles 8 ~ BQ,
where the angular velocity remains finite in the thermodynamic limit. However,
results from the thermal effective action like (4.11]) break down outside this regime.

How can we access more general angles?

Spin-refined partition functions: warm-up in 2D CFT
As a warm-up, in 2D CFT, we can compute partition functions at more general
angles using modular invariance. Let us review how this works and derive some

example results. For convenience, we write the partition function as
Z(x,7) = Tr [ 2rie(bomg) 2mir(Lo-57) | 4.12)

where 7 = % + % and 7 = T* The high temperature behavior of Z(7,T) at

small angles can be obtained by performing the modular transformation 7 — —1/7
(similarly for 7) and approximating by the contribution of the vacuum state. The

result agrees with the thermal effective action:

vol S! f

~BH=IQN) _ ,~Sn _ J
Tr[e ] et =exp 1+ B

(CFTy),

_ [4_”2£]
“Plsar )12
4.13)

27c
12

cosmological constant term appears in the thermal effective action in 2D.

where f = Here, we assume ¢y = cg for simplicity. In this case, only the

Now let us instead assume that % is close to a nonzero rational angle %, so that

7,T are very close to %. Following [24], we can perform a different modular

transformation to map (7, T) close to +ico and approximate the partition function by
the vacuum state in the new channel. For example, let us study the partition function

with an insertion of (=1)” given in (4.2)). In this case, we have

1 BQ B

E R vy
1 BQ i

=1 B2 B s a0 (4.14)
2 2 2rx

Modular invariance is the statement

Z(yot,yoT)=Z(r,T), vy €PSL(2,7). (4.15)

7Note that in this section, T denotes the modular parameter of the torus, while in other sections
7 denotes Euclidean time. We hope this will not cause confusion.
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An appropriate transformation in this case is

-1 0
y ==+ € PSL(2,2), (4.16)

2 -1

which leads to
_ 2
Te [ PH-9D (L1)7] = Tr [e27ri?(L0—2€—4)—27ri?(Lo—2C—4)] ~ exp 1_4m ¢ ,
4B(1+Q2) 12
1 i ~

h ~:__+—’ _:"'*. 417
where 7T > ¥ 250 i) T=T7 (4.17)

On the right-hand side, we approximated the trace by the contribution of the vacuum
state in the 8 — 0 limit. We find that the partition function weighted by (—1)” grows
exponentially in 1/8, with an exponent that is 1/4 of the un-weighted case (4.13)).

For a general angle % close to %, we repeat the same logic above but with a more

complicated modular transformation, namely

(-]
y = i( (P b ) € PSL(2,2), (4.18)
q -

where (p‘l)q is the inverse of p modulo ¢, and b is chosen so the matrix has

determinant 1. We get

(4.19)

Tr [e—B(H—iQJ)ezmgj] - exp[ 1 4752 c ] |

PRI+ 12
In general, we find that the partition function of a 2D CFT weighted by P grows

exponentially in 1/, with an exponent that is 1/g> of the un-weighted case (4.13)).

Because modular invariance is not available in higher dimensions, it will be useful
to rederive (4.19) in a different way. We now describe two (related) approaches that

can generalize to higher dimensions.

Folding and unfolding

Thermal EFT naively breaks down in spin-refined partition functions like (4.2)
because the large spacetime symmetry (—1)’ moves us outside the thermodynamic
limit. One way to recover an EFT description is to perform a change of coordinates

that makes (—1)’ look more like a global symmetry.

For example, consider a spin-refined partition function of a 2D QFT (not necessarily

conformal) on Si X Sé,

Tr [e PP (-1)7], (4.20)
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where (1)’ denotes a rotation of the spatial circle S i by m. We can reinterpret
one copy of the QFT on SIL X Sé as two copies of the QFT on (S'L /Z) x St
with topological defects that glue the two copies to each other, see the middle of
Figure In this picture, the operator (—1)’ becomes a topological defect that
simply permutes the two copies of the QFT as we move along the time direction. If
we begin in one copy of the QFT and move by £ in Euclidean time, we pass once
through the (—1)’ defect and go to the other copy. Moving by 8 again, we pass
through the (—1)7 defect again and end up in the first copy. Thus, inserting (—1)’

into the partition function creates a new effective thermal circle of length 2.

+ »
,8 - A - Zﬂ >
+ k
L
~—
L2

Figure 4.2: Left: The torus partition function with spatial cycle of length L, inverse
temperature 3, and an insertion of (—1)”. The (1)’ insertion means we must glue
the top and bottom of the figure with a half shift around the spatial circle. We split
the figure into a left and right half using the trivial defect (vertical dashed line), and
for convenience we color the right half grey. Middle: Placing the black and grey
rectangles on top of each other, we can interpret this same observable as the partition
function of two copies of the QFT (black and grey) on an (L/2) X 8 rectangle, with
boundary conditions inherited from the left figure. Right: Finally, we can re-stack
the two copies of the QFT, resulting in a single copy of the QFT with a new spatial
circle of length L/2 and an effective thermal circle of length 28. Note that the
effective thermal circle is nontrivially fibered over the new spatial circle.

This reinterpretation of the path integral with a (—1) insertion is illustrated in
Figure One wrinkle (that is clear in the figure) is that the effective thermal S; 5
is nontrivially fibered over the spatial circle Si /Z,: when we go once around the
new spatial circle, the S% 5 shifts by S.

So far, we have considered a rotation angle of 7. However, it is straightforward
to study nearby rotation angles of the form 6 = 7 + SQ. On the left-hand side of
Figure [4.2] we simply insert an additional topological operator along the spatial

cycle that implements the small rotation ¢/#*/. Following the manipulations in the
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figure, we end up with a product of two such operators on the new spatial cycle

S i /Z,, which together implement a rotation of 25Q.

The advantage of this rewriting of the path integral is that we can now smoothly take
the thermodynamic limit L — oo and use the thermal effective action. The effective
inverse temperature is 23, the rotation angle is 25€2, and the effective spatial cycle
is S1/Z,.

In fact, the above construction is straightforward to generalize to twists by any

rational angle:

We interpret (4.21)) as the partition function of ¢ copies of the QFT on the space
S i /Z4, with appropriate topological defects that glue the copies together. The
operator ¢4 becomes a topological defect that permutes the copies of the QFT as
we move around the Euclidean time circle. This creates an effective thermal circle
S 45> Which is fibered over S} /Z,. We can now apply thermal EFT on S} /Z,.

e Example: 2D CFT

As an example application, we can recover our previous answer for the spin-refined
partition function of a 2D CFT. For a twist by (—1)”, we find

Tr [e AHRD (—1)7] ~ oSl /ZaxSi) _ 2re vol(81/Z) | _ 1 4% ¢ ‘
12 2B(1+Q?) 48(1+Q2) 12
(4.22)

In the action, we obtain one factor of % from the smaller spatial cycle § 1 /Z,, and
another factor of % from the larger thermal circle, resulting in an overalll factor of %
that agrees with the result from modular invariance (4.17) E]

2np

More generally, for a twist by = the thermal effective action gives

_ [LLL]
TPy 12|
4.23)

/ 1
Tp | e-BH=1QD) 2520 =SulS'/ZgxShe) _ o 27e vol(S'/Zg)
12 gp(1+Q?)

8The fact that the thermal circle is nontrivially fibered plays no role here because the thermal
effective action is the integral of a local coordinate-invariant quantity that does not detect global
features of the bundle. In a theory with a gravitational anomaly, the thermal effective action
would contain an additional 1-dimensional Chern-Simons for the Kaluza-Klein gauge field, which
can detect the nontrivial topological structure of the thermal circle bundle; see Section f.6] The
nontrivial topology also enters into nonperturbative corrections; see Section@}
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We find that the effective free energy at high temperature for the spin-refined
partition function (4.21]) is down by a factor of ¢?, in agreement with (4.19). Note

7
quJ

that the precise permutation of the copies of the CFT implemented by e depends

on p, but the length of the resulting thermal circle does not. Consequently the

partition function is independent of p, up to nonperturbative corrections as g — OEI

* Higher dimensions

The above construction works for d > 2 as well, and on more general geometries.
Consider a QFT,; on any (d—1)-dimensional spatial manifold M; with a discrete
isometry R of finite order RY = 1. Again, we can reinterpret one copy of the QFT
on My X Sﬁlg as g copies of the QFT on (M /Z,) X S L, with topological defects that
glue the copies to each other. In this picture, R is represented as a topological defect
that simply permutes the g copies of the QFT as we move along the time direction,

creating an effective inverse temperature gp.

The EFT bundle

Before exploring further consequences of this idea, it will be helpful to adopt a
more abstract, geometrical perspective on this construction. Consider again a d-
dimensional QFT with spatial manifold M. Given an isometry U € Iso(M}), the
partition function twisted by U@I

Traimy) [e PH U] (4.24)
is computed by the path integral of the CFT on the mapping torus
Mgy = (M xR)/Z, (4.25)
where Z = (h) is generated by

h: M xR — M; xR,
h: (1) > (UX,7+p), (4.26)

where X is a coordinate on M.

Now let us specialize to U = R, where R has order ¢. In this case, the g-th power of

h acts very simply: it leaves M, invariant, and shifts 7 by g/:

ht: (X, 1) — (X, 7 +gp). 4.27)

9There is p-dependence if the theory is fermionic (see Section or has a gravitational anomaly
(see Section @

10Here, we abuse notation and write U for both the isometry and the operator implementing its
action on the Hilbert space H (Mp).
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Consequently, it is useful to decompose Z = gZ x Z, = (h?) x ({(h)/{(h?)), and

obtain the mapping torus Mg g via two successive quotients. We first quotient by
qZ = (h?) (which turns R into S; ﬁ), and then quotient by Z, = (h)/(h?):

Mgr = (ML XR)/qZ)[Zy = (ML X Sy)[Zy. (4.28)

The quotient (M x S;ﬂ)
bundle in two different ways. Firstly, it is a My -bundle over S 61] 5 [Zg = Sé. This is

/Z4 on the right-hand side of (4.28) can be viewed as a

the usual point of view of the trace as a spatial manifold evolving over Euclidean
time 8. However, we can alternatively view (M X S;ﬁ) /Z, as an S;ﬁ bundle
over My /Z,. We call this latter description the "EFT bundle." In Section the
EFT bundle was a nontrivial S(ll 5 bundle over S i /Zq. As we saw, the virtue of
the EFT bundle is that the thermodynamic limit L — oo is straightforward: we
can dimensionally reduce along the effective thermal circle S; 5 without leaving the
thermodynamic limit. The theory is then described by thermal EFT with effective

inverse temperature g3 and spatial cycle My /Z,.

Suppose for the moment that the action of R on My is free, so that M;/Z, is
smooth. (This is the case, for example, for a rational rotation of the spatial circle
in 2D.) For any term in the thermal effective action that is the integral of a local
density, the effect of the quotient by Z, is simply to multiply its contribution by 1/4.

Thus, we conclude
1
—log Tr [e P R]| ~ ——log Tr [¢7%""| + topological ~  (if the R action is free).
q
(4.29)

Here, "~" denotes agreement to all perturbative orders in the 1/L expansion. The
term "topological" indicates potential contributions from a finite number of terms
capable of detecting the topology of the EFT bundle, which cannot be written as
the integral of a local gauge/coordinate-invariant density. We discuss such terms in
Section

Let us pause to note that the result (4.29) really only requires that the theory be
gapped at inverse temperature g (not necessarily at inverse temperature ), since

we only use locality of the thermal effective action on the right-hand side.

* Adding "small" isometries

Just as before, we can also consider inserting into the trace an additional "small"

isometry U = ¢'P(22¢) | where ¢ is a Killing vector on M, Q¢ is its corresponding



147

charge, and « is the corresponding thermodynamic potential. We will be mainly
interested in the case where U commutes with the discrete isometry R, so we assume
this henceforth. The insertion of U can be thought of as a topological defect that
wraps M. Consequently, the defect wraps g times around the base of the EFT

bundle M,/ Z4, resulting in an effective rotation U9. We conclude that
1
—logTr [gR] ~ ——log Tr [g“] + topological (if the R action is free), (4.30)
q

where g = e PHU.

In fact, this argument applies to any global symmetry element V as well, so (4.30)
holds when g is multiplied by a global symmetry group element: g = e PHUV. We
can think of V as implementing a nontrivial flat connection for a background gauge
field coupled to the global symmetry. In this case, the "topological” terms in (4.30)

could include contributions from nontrivial topology of this connection.

We can also understand the insertion of "small" isometries geometrically. Again,

the idea is to view the mapping torus Mgz as the result of two successive quotients

Mpyr = (ML xR)[(h®))[Zq = Mypya/Zy,
where h: (X,7) = (URX, T+ ), 4.31)

where Z, = (h)/(h?), and we have used (UR)? = U4. On the right-hand side, we
have the mapping torus Mgy« which is described by the thermal effective action
at inverse temperature ¢f3, with small isometries U7 turned on. The effect of the

Z4 quotient is to multiply the contribution of any integral of a local density by 1/4.

This again leads to

The work [10] uses similar ideas to characterize superconformal indices of 4D CFTs
near roots of unity. Our novel contribution is to apply these ideas in not-necessarily-
supersymmetric, not-necessarily-conformal theories, on general spatial geometries,
and also to describe the effects of Kaluza-Klein vortices (see below), which do not

appear in superconformal indices.

¢ Non-free actions and Kaluza-Klein vortex defects

What happens if the action of R is not free? For example, in a 3D QFT on 5% x § é,

the action of (—1)” (where J is the Cartan generator of the rotation group) has fixed

""'When U and R don’t commute, the same logic works but we have Myg (urya/Zg on the
right-hand side of (4.31). We can still use thermal EFT, since (UR)? is O(f3) close to the identity.
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points at the north and south poles of S2. In this case, the EFT bundle degenerates
at the fixed loci of nontrivial elements of Z,, namely R, ..., RI71 € Zgy. After
dimensional reduction, these degeneration loci becomes defects D; (with i labelling
the set of defects) in the d — 1 dimensional thermal effective theory. We call
them "Kaluza-Klein vortex defects" because the KK gauge field A has nontrivial

holonomy around them, as we explain in Section4.3]

Each defect D, contributes to the partition function a coordinate-invariant effective
action S, of the background fields g, A, ¢ in the infinitesimal neighborhood of ®;.

We then have the more general result

1
—logTr[gR] ~ ——log Tr [g?] + topological + Z So;- (4.32)
q >
We conjecture that for generic interacting QFTs, the KK vortex defects will be
gapped. (In fact, in this work, we will study several examples of free theories where
the appropriate defects are still gapped.) In this case, each Sp, will be a local
functional of g, A, ¢.

In CFTs, the defect actions S, are additionally constrained by Weyl-invariance, just
like the bulk terms in the thermal effective action. We will determine the explicit
formof Sp := X5, S, in CFTs later in Section For now, we simply note that the
leading term in the derivative expansion of Sp, in a CFT is a cosmological constant
localized on Dizm

d" — . .
S, = ayp, / Y - /2|, + higher derivatives. (4.33)
v (gB)"

Here, we assume that D; is n;-dimensional, y are coordinates on the defect, and g|,
denotes the pullback of g = ¢™2%g to D,. This term behaves like 7 as 8 — 0. In

the case n; = 0, i.e. when D is point-like (for example the north/south poles of S2),

the "cosmological constant" becomes simply a constant.

* Example: CFT in general d

As an example application, consider a d-dimensional CFT on S¢~! x Sllg. Although
our discussion so far has been somewhat abstract, and we have used only basic

geometry and principles of EFT, our conclusion (4.32)) makes powerful predictions

128, itself can also have topological terms; if the topological term has no derivatives (i.e. the
Wilson line of the KK photon), it will contribute at the same order in 8 as the defect cosmological
constant.
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about CFT spectra. For example, to leading order as f — 0, the defect term S¢ does

not contribute, so very generally we obtain a higher dimensional generalization of

1 volsd-! f
e 2 -1 +...,
q Hizl(l +Qj)18

log Tr[e AH-SD R ~ (4.34)
valid for any element R of the Cartan subgroup of SO(d) with order g. For
example, the relative density of even- and odd-spin operators (with respect to any
Cartan generator) grows exponentially at a rate precisely 1/2¢ times the rate for the

un-weighted density of states.

Unlike in d = 2, the thermal effective action in d > 2 can have more than just
a cosmological constant term. Consequently, the "..." in includes higher-
derivative corrections (in addition to possible vortex defect contributions). However,
these higher-derivative corrections can be predicted in the same way: they differ
from the un-spin-refined case by replacing 8 — ¢ and multiplying by 1/¢ to
account for the smaller spatial manifold.

The results (4.34) and (#.32) display an important difference between partition func-
tions weighted by spacetime symmetries and partition functions weighted by global
symmetries. If we replace R with a global symmetry element, this corresponds
to turning on new background gauge fields in the thermal effective action, whose
contributions are captured by Wilson coefficients that are not active when the global
symmetry generators are turned off. For example, the density of states weighted by
a global symmetry generator U is controlled by a U-dependent free energy density
Jfuv with no (obvious) relation to f when U # 1 (see e.g. [102, [128]). By contrast,
the density of states weighted by different discrete spacetime symmetries are all
controlled by the same f (and the same higher Wilson coefficients like ¢y, c2, . .. ),

in a predictable way.

Finally, let us describe the possible discrete rotations R for which (4.34)) applies.

Let us write R = ¢!/, 1In order for R to have finite order q, we must have
6 = 271(%, cees Z—"), where the p;/q; are rational numbers (which we assume are

in reduced form, so that p; and ¢g; are relatively prime). The order of R is g =
lem(q1, ..., qn).
When d is even, the action of Z, is free if all g; = g. In this case, the quotient

Sd‘l/Zq is a lens space L(q; p1,...,pn), and there are no vortex defects . If

instead there exists at least one g; # ¢, then the group element RY" will have a
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fixed locus S%¢-1

, where k is the number of ¢;’s such that ¢;|g;, and there will be
a corresponding defect D at this location (or rather its image after quotienting by
Zg4). Note that it is possible for fixed loci to intersect, creating higher codimension
, %, %), the element R? has a fixed S, the element
R has its own fixed 3, and the two S>’s intersect along an S!. Quotienting by Zg, we
obtain a defect localized on S3/Z3 c §°/Z¢, a defect localized on S3/Z, c S°/Zs,

and they intersect along an S! € §°/Zs. In this case, the thermal effective action will

defects. For example, if 6= 2r(1

include terms localized on the defects and their intersection. When d is odd, any
element of SO(d) necessarily has a nontrivial fixed locus, since there is a direction

left invariant by the Cartan generators.

If the theory has a reflection symmetry, then we can more generally consider R €
O(d). The above arguments continue to hold, essentially unmodified. When R
includes a reflection, the base of the EFT bundle $¢~!/ Z4 can be non-orientable. For
example, if we take R to be the parity operator R : 7i — —ii, then S¢!/Z, = RP?"!,
which is non-orientable in odd d. Note that the parity operator acts freely, so in this

case we can apply (.30).

4.3 Kaluza-Klein vortex defects
In this section, we explore the form of the defect action S that contributes whenever
the group generated by the discrete rotation R does not act freely. For simplicity,

we will restrict our attention to CFT’s in d-dimensions on a spatial sphere S~ !.

Background fields and EFT gauge

As before, we wish to compute the partition function of a CFT on the geometry
Mg va [Z4, where the mapping torus in the numerator is Mg ya = (S =1 R)/(h%),
the group in the denominator is Z, = (h)/(h?), and the action of 4 is given by

. 27pa a
b (7,7) > (URR, 7+ ) = (¢! Caa PG - 4 ). (4.35)

First, let us be more precise about the form of the background fields in this geometry.

Following [25]], we use radius-angle coordinates on the sphere S¢~!. These are given

by a pair of radius and angle {r,, 6,} for each orthogonal 2-plane (@ = 1,...,n =
L%J). If d is odd, we have an additional radial coordinate r,,;. Together, the radii
satisfy the constraint 3,”*{ 72 = 1, where € = O ineven d and € = 1 in odd d.

To write the metric on M g py¢ in Kaluza-Klein form, we switch to co-rotating
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coordinates
Ya =0, —QuT, (4.36)

where 7 is the coordinate on R. In co-rotating coordinates, the action of & simplifies

to

h:(rg,@a, ) (ra, pa + Zﬂp“ ,T+0). (4.37)

In particular 49, becomes simply a shift 47 : 7 +— 7+ ¢g/8. Thus, quotienting by (h%)

to obtain Mg 7« makes 7 periodic with period gp.

The metric of M g ¢« in co-rotating coordinates takes the Kaluza-Klein form
ds® = g+ e*(dr + A)?, (4.38)

where the fields g, A, ¢ are given by [235]]

e =1+ Z r2Q2, (4.39)
o 4.40
Z I+ zb r292 a (140
n+e n ,,.ZrZQaQb
g=) dri+ ;1 FalbOab — 1:‘1’—13% deadep. 4.41)
= a,b= c=

The metric of the EFT bundle M, 14 /Z, is locally the same as . Consequently,
we can choose a local trivialization of the EFT bundle such that the fields g, A, ¢
are identical to (@) in each patch. However, such a local trivialization will have
nontrivial transition functions between patches that contribute to holonomies of the

Kaluza-Klein connection along various cycles (including around the defect locus).

If we like, we can perform a gauge transformation that makes the transition functions
trivial, at the cost of introducing new contributions to A. We refer to such a gauge
as "EFT gauge" because it will be convenient for discussing the EFT limit of the
CFT on this geometry. In EFT gauge, the curvature F' = dA has J-function type
singularities at the fixed-loci of R whose coefficients reflect the topology of the EFT
bundle.
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* Example: 2D CFT

Let us illustrate these ideas with an example. Consider a 2D CFT, where the action
of his givenby & : (¢,7) — (¢ + 2”71’ 7+ B). The metric on Mg ya is

ds® = dt° + d6* = d7* + (dyp + Qd7)?

2
= (1 - 125)de” + (1 + Q) (d7 + Ly de)*. (4.42)
N——— —— N——
g e2? A

To choose a local trivialization of the EFT bundle, we first specify two intervals in

the ¢ coordinate:

Li={p:0<p<Z}), hL={p:-e<gp<e} (4.43)

I8

with 0 < € < o We denote their images in S I/Zq by U; and U,, respectively.
Together U, and U, cover the quotient space S’ [Zg4; see Figure

g I
¢ € St —— ﬁ
l l —-€0 € l 4
Ui
[¢] €S1/Z, ~ —
N A

Uyt

Figure 4.3: The open intervals I; and I, are subsets of S!. Their images under the
quotient map S! — §'/ Zg4 are Uy and Uy, respectively, which together cover S 1y Zy.
We can choose a gauge where the KK fields g, A, ¢ are given by (4.42) in each of
U, and U,. However, in this gauge, there will be a nontrivial transition function
between U and U,.

The bundle projection 7 : Myg ya/{h) — Sl/Zq actsby 7 : [(¢,7)] — [¢], where
[(¢,7)] denotes an equivalence class modulo the action of 4, and [¢] denotes
np

. 2
an equivalence class modulo e Over each open set U, U, we must define

trivialization maps
du; N U) — Ui x S};ﬁ' (4.44)

We choose them as follows. Given p € 7! (U;), thought of as an equivalence class
modulo (&), let (¢, T) be a representative of the equivalence class such that ¢ is

contained in /;. Then we define

$u.(p) = ([¢l, 7). (4.45)
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Note that 7 is well-defined modulo g3 because the only elements of (/) that map the
I; to themselves are powers of h?. With this local trivialization, the fields g, A, ¢ are

given by |b in each patch. In particular, we have A = 5 222 dy in both patches.

However, the data of the Kaluza-Klein connection includes both the value of A
in each patch, as well as the transition functions between patches. We must also

determine these transition functions.

There are two overlap regions to consider. The first is (0, €). In this region, the
transition function is trivial. The second overlap region is the image of (—¢,0) C I,
in S'/Z,, which coincides with the image of (27” — €, 27”) c I in S'/Z,. Note that
(¢, 1) for ¢ € (—¢,0) is equivalent modulo (k) to (¢ + 27”,7' + (p_l)q,B), where
Y+ 27” € (27” - €, 27”). Here, (p_l)q denotes the inverse of p mod g, i.e. it satisfies
p( p‘l)q = gn + 1 for some integer n. Thus, the transition function in this second

overlap region is

¢u, 0 ¢yt < ([e]. 1) > ([el. 7 = (p~H)gB). (4.46)

The holonomy of the connection gets a nontrivial contribution from the transition

functions "]

2
_ng_ T Trar Wb (4.47)

(The holonomy is an example of the "topological" terms discussed in Section [4.6|
which can contribute in the thermal effective action, but are not the integral of a

local gauge/coordinate invariant density.)

To go to EFT gauge, we perform a gauge transformation (i.e. a ¢-dependent redefi-

nition of 7) that trivializes the transition functions. One possible choice is
v == ("B |25 (4.48)

Note that the function {ﬁJ is multi-valued on the entire circle S', but there
is no problem defining it inside the intervals I, I where we perform the gauge
transformation. In terms of 7/, the transition functions are now trivial in both
overlap regions. (A quick way to see why is to note that 7’ is invariant under the
h-action (#.37).) The gauge field becomes

A =A+dr-dt = de+(p~",B6(¢)dp  (EFT gauge).  (4.49)

Q
1+Q2
The holonomy — yg A’ is still given by (4.47), but that is now manifest in the local
expression for the gauge field (4.49).

13The parallel transport equation is d7 + A = 0, so the holonomy of 7 is computed by — 55 A.



154
* Example: 3D CFT

Now consider the same setup in a 3D CFT. The metric on S is
dsg2 = dr% + dr% + rl2 de? (r]2 + r% =1). (4.50)

Essentially all of the above discussion goes through un-modified, with the radii ry, r;
coming along for the ride. We can again go to EFT gauge, and the gauge field (4.49)
now gets interpreted as a gauge field on S2. This time, A has §-function-localized

curvature at the north and south poles:
dA = TL(p_l)q,Bé(?z, #i.)d*7i + nonsingular, 4.51)

where 6(7i, ii’) represents a d-function on S2, and i1, are the north/south poles.

* EFT gauge in general

More generally, we go to EFT gauge as follows. First choose a fundamental domain

F for the quotient map S?~! — §9-1/7,. Define an integer valued function & (7) by

k(i) = 0ifii € F,
k(R7) = 1 + k(7). (4.52)

In words, k(71) counts the power of R needed to move from somewhere in F' to 7.
Again, k(7) is multi-valued if we try to define it on the entire sphere, but we only
need to define it inside a collection of open sets that cover S¢~! /Z,. For example,

in the 2D case considered above, we had k() = (p‘l)q Lﬁj.

Finally, we define
' =71 Bk((ra, ¢q))- (4.53)
In the coordinates (r,, ¢4, 7"), h acts simply by shifting angles ¢,:

h:(ra,a,7m) = (Fa,a + %, 7). (4.54)
Consequently, a local trivialization of the EFT bundle defined using the 7’ coordinate

has trivial transition functions. The gauge field is given by

n 2

’ ’ raQ -
A'=A+dr—dt = Z md% + Bdk (i1 (ra, ¢a)). (4.55)
a=1

The curvature dA’ has §-function contributions Bd*k (7i) at the fixed loci of powers
of R.
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Effective action
Following the logic of the thermal effective action, let us now equip the EFT bundle
with a more general metric G and try to write down a local action of G. We will

demand that G satisfy the following conditions:

* It possesses a circle isometry, so that it can be written in Kaluza-Klein form

* In EFT gauge, the curvature dA is a sum of d-function singularities of the
form Bd*k(7i), plus something smooth on Sd‘l/Zq. (This ensures that the
Kaluza-Klein bundle has the same topology as Mg v /Z,.)

« g and €% should be smooth on S4~1/Z,.

Here, a field is "smooth on S~/ Z4" if it lifts to a smooth Z,-invariant field on s,

In the limit 5 — 0, we can separate each of the background fields into a long-
wavelength part, with wavelengths much longer than £, and a short-wavelength
part, with wavelengths comparable to (or smaller than) 5. The long-wavelength parts
become background fields for the thermal EFT. Meanwhile, the short-wavelength

parts become operator insertions in that EFT.

In our case, the §-function curvature singularities dA ~ Bd>k (i) are short-wavelength.
They determine the insertion of an operator in the thermal EFT, which is described
by the defect action Sg. This action is a functional of the long-wavelength parts of
g, A, ¢. As mentioned in Section [4.2] we will assume that the defect is gapped, so
that the action functional is local and can be organized in a derivative expansion. To
construct it, we should compute curvatures and other invariants of g, A, ¢, and throw
away O-function singularities. Since g and ¢ are smooth, this effectively amounts

to the replacement
dA — dA = dA — Bd>k (7). (4.56)

Henceforth, we leave this replacement implicit. In other words, when we write dA
in the defect action, we mean its long-wavelength part dA, with §-functions thrown

away.

The defects live at singularities in the quotient space Sd_l/Zq. How should we
write an action for long wavelength fields near these singularities? Recall that the

long-wavelength parts of g, A, ¢ lift to smooth Z,-invariant fields on $9~1. We will
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write Sp as a functional of these Z,-invariant lifts, integrated over the preimage of
the defect locus modulo Z,, which we denote by D. We also conventionally divide
by g, which ensures that Wilson coefficients of defects living at singularities with

the same local structure (but possibly different global structure) are the same.

The action should be invariant under gauge/coordinate transformations that preserve
the defect locus. For now, we ignore the possibility of nontrivial Weyl anomalies
on the defect D, and we impose that Sp be Weyl-invariant as well. Consequently, it

will be a functional of A and the Weyl-invariant combination g = e~>?g.

Consider an n-dimensional defect © whose preimage D is the fixed locus of an
element R’ € (R) with order m. Given a point p on D, we can choose a vielbein
et at p satisfying 6abé\l.“é‘? = gij, Where a, b are indices for the local rotation group
SO(d - 1). The group (R!) = Z,, acts as a subgroup of the local rotation group
SO(d — 1), so the e¥ can be classified into representations of this Z,,. Singlets
under Z,, represent directions parallel to the defect. They are acted upon by an
SO(n) c SO(d — 1) that commutes with Z,,. Hence, altogether the e¥ can be

classified into representations of Z,, X SO(n).

To build the defect action, we enumerate curvature tensors built from g and A, in a
derivative expansion, and contract them with e to build Z,, X SO(n) invariants I;

with d; derivatives. The defect action is then

1 = A
Sp = 7 /5 d"y\/8l3 (Z ai(qﬁ)""”li) ; (4.57)

1

where g|z denotes the pullback of g to D, and y are coordinates on the defect. The

factors of gf are supplied using dimensional analysis.

Finally, to evaluate the defect action on Mg ya /Z,, we simply plug in the expressions
(]4.39[), (]4.40[), (]4.41[), which are precisely the Z-lifts to § 4-1 of the long-wavelength
parts of g, A, ¢.

In what follows, we will sometimes use the notation D to refer to both a defect on
§d-1 /Z, and the lift D of the defect locus to S971. We hope this will not cause

confusion.

Example: point-like vortex defects in 3D CFTs
As an example, consider a 3D CFT, where R acts by the discrete rotation ¢ — (,0+27TTP.

The action of R fixes the north and south poles of S?. Consequently, there are two
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point-like vortex defects: D/, located at the north pole, and its orientation reversal
P_, /4 located at the south pole. Let us focus on D, /,.

Classifying the vielbein at the north pole into representations of Z,, we have basis
elements &', ' with charges +p and —p, respectively. We normalize them so that
e. - (ex)* = 1. To build basic Z,-invariant curvatures, we begin with tensors
ﬁi e %I’?\ and ﬁi e ﬁijl, where F = dA, R is the curvature scalar built from
g, and V denotes a covariant derivative with respect to g. We then contract their
indices with €', in such a way that the total Zq charge vanishes. The action at each

order in a derivative expansion is a polynomial in these basic Z,-invariants.

Note that we cannot build valid terms in the action by multiplying two Z,-charged
objects to obtain a Z,-singlet. For example, (aﬁiﬁ) (?_6,-1/?\) is not admissible. The

reason is that Eﬂﬁiﬁ individually vanishes, due to Z,-invariance.
Proceeding in this way, the leading invariants in a derivative expansion are
Sv,, 2 1. *F, R, (*F)%, ..., (4.58)

where xF = ieXe' Fy; is the Hodge star of F in the metric g. Concretely, the action

:Dp/q)

(4.59)

is

| _ _ _
$2,1, = - a0y + (@B)arpyF + (4B)> (az,,,/qR + a3,p/q(*F)2) b

where (--+)|p,,, denotes evaluation at the preimage of the defect on S? — in this
case the north pole. We have written the Wilson coefficients as a; ;, to emphasize
that they depend on the rotation fraction p/q. In bosonic theories, the a;, are
periodic in x with period 1, while in fermionic theories, they are periodic in x with

period 2.

At higher orders in derivatives, we can also include laplacians 62, as well as g-th

powers of charged derivatives (e - V)4. However, note that the background fields on

Mg ya givenin (@), @ and @[} are invariant not only under Z,, but under
the full maximal torus SO(2). Consequently, terms involving charged derivatives

(ex - V)9 will actually vanish on Mg 4 /Z,, and in practice we only need to keep
polynomials in V2¥%XF and V*R.

Plugging in the fields on Mg 4, we find

R|. =2+ 10Q7%, (4.60)
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where (- - - )|+ denotes the north/south poles of S2. Thus, summing up the contribu-
tions from the north and south poles, the total defect contribution to Tr[e A7 UR]
is

a + ap —
So = O.r/q 7 0--p/a +2,8S2(a17p/q —al,_p/q)

(4B)*
q

+ T2 (241002) (a2,pjq + @2pyg) +4Q% (@310 + @3 pyg) ) + -

(4.61)

In general, the point-like defect action at each order 8* is a polynomial in Q that
is even if k is even and odd if k is odd. We will verify this structure in several

examples below.

There is an important distinction between the terms arising in the defect
action Sp and the "bulk" terms (4.11). Note that the bulk terms contain poles at
Q, = +i. Physically, such poles arise because a great circle r, = 1 of the spinning
§9=1 approaches the speed of light as Q, — +i. The measure \/? becomes singular
at the great circle, and the integral over r, cannot be deformed away from the
singularity because it is at an endpoint of the integration contour. By contrast, the
defects D, /4 are located at the north and south poles of § 2, where this phenomenon
does not occur, and thus their contributions do not have poles at 2 = +i. In general,
the action of a defect © on M, yva/Z, can have poles at , = +i if and only if the
support of D intersects the great circle r, = 1. We will see an example in the next

subsection.

Example: vortex defects in 4D CFTs

Consider now a 4D CFT, where R acts by discrete rotations on each of the angles
o1 — @1+ 2L and ¢y — ¢y + 222
defects DD and D@, The first defect D) is located at the fixed locus of R?!, which
is given by (ry,r2) = (1,0) with ¢; € [0, 27”), where ¢ :=lcm(q1, g2). The second
defect D? is located at the fixed locus of R?2, which is given by (r,72) = (0, 1)

with ¢ € [0, 27”).

. If g1 # g», we have two 1-dimensional vortex

Let us focus on DM for now. On DV, the leading term in the effective action is
a cosmological constant / d¢ 1\/% , as usual. At the first subleading order in a
derivative expansion, we have the term f do \/m [ Zﬂ‘_ el Fy;, which can be written
more simply as / *F.

The Wilson coefficients of a defect depend only on the geometry of the singularity
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where the defect lives. To describe this geometry, it is helpful to introduce the

co-prime integers

L= P192 - q1
" (q192)° " (q1,q92)°
P2q1 ¢ (4.62)

Py = , 2= ,
(q1,92) (91,92)

where (g1, q2) is the greatest common divisor of ¢, g;. The structure of the

singularity at D(!) is determined by the action of RY!, which is

2Py
(0))

Thus, the Wilson coefficients of D) should depend only on P,/Q»>. However, there

R gy > @p + (4.63)

is a subtlety in fermionic theories: Note that R?' implements a rotation by 27 p,
which is (=1)”'¥ in fermionic theories. Thus, the Wilson coefficients of D) can
additionally depend on (—1)”" in that case. Consequently, we will write the Wilson
coefficients of D) as a;i.p,/0,,(~1)m to emphasize the data they depend on. (We will
see subtleties of a similar flavor in Section 4.4])

Putting everything together, the action S takes the form

1 (ao,p,/0,,(~1)71 — ~
Spm = 5 (%/dg&n}gb +a1p,0,,(-1)P1 /*F+ . )

__ 2 (ao,Pz/Qz,(—l)m
g(1+Q7) qp

where in the second line, we evaluated the action in the background Mg 4 /Zq.

+2ay,p,/0,,(-1)r1 €20 + . .. ) ) (4.64)

Note that because D lives on the great circle r; = 1, its action has poles at Q; = =+i.

Adding similar terms for D, the total defect contribution to Tr[e PHUR] is

Sp = 2m (ao,Pz/Qz,(—l)pl + ao,p,/Q1,(-1)P2

@B\ 1+Q2 1+Q2

47
+ ; a1,P2/Q,.(-1)P1

(4.65)
Q) Q

+a _
e e Y

“e ey

where " represents higher-order terms in S coming from higher dimension

operators in the defect action.

4.4 Fermionic theories
In this section, we describe some subtleties associated with partition functions of

fermionic theories. Again, for simplicity we mostly restrict our discussion to CFT,
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on a spatial sphere S¢~!, though the final conclusion (4.84) holds in a general QFT.
In short, the results (4.30) and (4.32)) work in fermionic CFTs as well, but we must

take care to keep track of the spin structure of the manifold (in particular whether

we have periodic or antiperiodic boundary conditions for fermions around § }3 and

S le ﬁ), and we must consider the rotation R as an element of Spin(d).

Review of 2D
Let us first review fermionic CFTs in 2D. In 2D, we need to specify the boundary
conditions of the fermions around both the space and time circles. This defines four

different fermion partition functions:
Zro(7,7) = Trg (ezm(Lo-;j)e-znﬁ(Zo-;j))
ZR _(T, ?) = TrR ((—1)F327TiT(L0_;j)e_zﬂi?(zo_ﬁ )
Zns.+(7,7) = Trxs ( o2 (Lo=5) e—27ri?(zo—§))
Zns.—(7,7) = Trns ((—1)Fez”iT(LO_ﬁ)e_Z”ﬁ(ZO_26_4)) . (4.66)
The partition functions in (#.66) are not independent. The partition functions
ZR.+> ZNs.+, and Zys - are invariant under different subgroups of SL(2,7Z) and can
transform into each other. More precisely, Zg - is invariant under all of SL(2, Z);

and Zg 4+, Zns.+, and Zys - are invariant under the congruence subgroups I'g(2), Iy,

and I'Y(2) respectively, which are defined as

b
Ih(2) = { “ e SL(2,2), ¢ even}
cd
a b
Fg:{ J e SL(2,2), a+bodd,c+dodd}
c
0 ab
') = 4 € SL(2,Z), bevenyg. (4.67)
c

Finally they transformation into each other as

Zr+(=1/7,-1/7) = Zns.-(7,7),
ZNS,+(T +1, 7+ 1) = ZNS,_(T,?). (468)

The NS sector partition function (with or without a (—=1)¥ insertion) at low tem-
perature is well-approximated by the vacuum state (which is a bosonic state), with
Casimir energy —15:

Be
12
s

Trns (e PA"12)) ~ ¢ B> 1. (4.69)
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The Ramond sector ground state, in contrast, has a Casimir energy of Egs — 13
where E is the Ramond ground-state energy, a non-negative number that is theory-
dependentE] Finally, the Ramond ground-state may not necessarily be unique, so

we call the degeneracy N, € N.

Trg (e PA712)) ~ Nyje PEe—) g 1. (4.70)

To study the high temperature behavior of the NS-sector partition function with an

arbitrary phase e2™7/4/ inserted (with 0 < p/g < 2 and p, ¢ coprime)
Trns (e LA~ 2midplay g | 4.71)

we can use an SL(2,2Z) transform. In particular we would like to apply a modular

( )
(.2)
q p

to (4.71)). The result crucially depends on the parity of p,q. If p + g is odd, then

transformation of the form

we can choose (4.72)) to be in I'y and map the partition function to the NS sector at
low temperature. However, if p + ¢ is even, we map the partition function to the R
sector at low temperature instead. We therefore get, for § < 1 and 0 < p/q < 2:

2 C
TrNS(e_ Bl(a-5)-i0] 2’”J"’/q) ~ eq2ﬁ<1+92>_2 p+qodd, B<1,

TrNs(e_ﬁ[(A_% _igj]ez”ijp/q) N, eqzﬁ('mz)(‘z Ees) p+gqeven, B<1.

(4.73)
Equivalently we can always take 0 < £ < 1 with the insertion of a (=1)F":
7'(2 C
TrNs(e_ﬁ[(A'ﬁ)_iQJ]ez’r”p/q) ~ eqzb’t”ﬂz) 2 p+godd, B<1,

o . _4n® (e _
TrNs(e_ﬂ[(A_ﬁ)_’QJ]ez’”h’/q) ~ Ngseqzﬁ<l+92>(‘2 Fes) p+qeven <1,

2 <
2

TrNS((_l)Fe—ﬁ[(A—ﬁ)—iQJ] eZm'Jp/q) ~ 642[;4(7;_,,92)1 p Odd, ﬁ < 1,

. . __4n? (e _
TrNs((—l)Fe_ﬁ[(A_l%)_lQ‘l] ezﬂl‘lp/q) ~ Ngseqzﬁ(HQZ)(lZ Eg“) p even, ﬁ < 1.
(4.74)

We see that in (4.74), there are two real numbers that can determine the behavior

of fermionic partition functions: the central charge ¢ and the Ramond ground state

4For supersymmetric theories, E ¢s = 15, but for generic fermionic theories, Egs can be above
or below or equal to 5.
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energy Eg;. Moreover, which of the two high temperature behaviors we get (15 or
15 — E¢s multiplying temperature in the free energy) depends on the parity of p and
q. We will see this exact same behavior repeat itself for fermionic theories in higher

dimensions in Section 4.4l

In 2D, we can also analyze the behavior of the partition function in the Ramond
sector. This does not have a direct analog as far as we are aware in higher dimension,
but we include it for completeness. By using the same modular transformation

properties discussed earlier, we find

- —ey ; i
Trgr (e Bl(A-1 lQJ]eZ’”J”/") ~ ed?p1+0%) 12 g even, B < 1,

2 ¢
Trg (e Pl 5)-i9] 2midplg) Ngsem(ﬁ—Egs) godd, B < 1,
2 .
Trr((=1)F e LA~ 1)~ 2milp/qy < Ngsgq2/54(1+§22)(E_ng) B<1. (475)

Because the final spin structure (where the fermion is periodic in both space and
time directions) is invariant under the full modular group, it has the same universal
behavior at high temperature regardless of the phase. In general this spin struc-
ture cannot be directly derived from the other three (although there are potentially
powerful constraints coming from unitarity, and knowledge of Zg , [23]]). We write
< rather than ~ in the last line of due to possible cancellations between
fermionic and bosonic Ramond ground states, which would effectively reduce N,

(by an even number) for the final spin structure.

Higher d
Let us now consider fermionic CFTs in d > 2. For simplicity let us first consider

turning on only a single spin and consider:
Tr[e—ﬁ(H—iQJ)ezmgj]’ (4.76)

with 8 < 1, Q ~ O(1), 0 < p/q < 2. As discussed before, this can be computed
from a path integral of S9! x S!, where we insert a defect that rotates the sphere
by 27p/q. Moreover, due to the fermions in the theory, we need to specify a spin
structure on this geometry. In we compute the path integral with anti-periodic
boundary conditions for the fermion around the Sg. We now imagine the setup as
in Figure [4.2] to reduce the setup into a geometry we can obtain a thermal EFT. In
particular we need to stack g copies of the CFT, and perform a 27 p rotation in the
spatial direction. The final geometry we get — in addition to the spatial sphere being

modded by Z, and the thermal circle increasing by a factor of ¢ — has different
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periodicity for the fermions about the time circle depending on the parity of p + g.
If p + g is odd, the fermions remain antiperiodic, and we can use the original EFT
description for fermionic CFTs on a long, thin cylinder. If p + g is even, however,
we need a new EFT, for fermionic CFTs with periodic boundary conditions on a

long, thin cylinder.

We now see there are rwo different thermal EFTs we consider, depending on the
periodicity of the fermions around S}g. Each EFT comes with its own set of Wilson

coeflicients. We write them as

[Sd—l] ~ ¢ Sul8ij.Aid] ,

-1, ¢l
Zcrr[ST X Sg anticperiodic] = Zgapped

d-1, ¢l > d-1 ~Smlgij-Ai,

Zerr[SU7 X Sp periodic] = Zgappea[ST'] ~ e~ S0lsin Aol (4.77)
The two expressions et and ¢S respectively compute the partition function with
and without the insertion of (—1)%:

Tr [ e—,B(H—iQJ)] ~ =S,

Tr [(=1)F e PHAD] < S0, (4.78)
Let us write the two thermal actions as
dI% = 25 2 2
Sth = IBd—l \/g(—f+C],3 R+C2ﬁ F +...)+San0ma
- d'Y = 5= 2.0
S = F\/g(—f+c],8 R+ @B F 4. )+ Suom. (479)

The most general leading term behavior of (4.76) then goes as

P L Lol S + p +q odd
log [Tr(e—ﬁ(H—iQJ)ezni%J)] e , (4.50)
| 4=
#%‘F---, p +q even.
Note that if we specialize (4.80) to d = 2, this is precisely the behavior we get for

@.73), if we identify
2mc
I=T
~ c
f=2r (E - Egs) : (4.81)

We can think of the difference between the two sets of Wilson coeflicients in (4.79)

as the higher-dimensional analog of the "Ramond ground state energy".
We can generalize (4.76)) to turning on n spins and consider

. 2L on
Tr | e BH=I@QuI 4@ 0)) 2Ty 2l (4.82)
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forf < 1,Q; ~0(1),0 < % < 2. If we define

q =lem(qi,...,qn), (4.83)

then in our EFT, we will go around the time circle g times and go around the spatial
sphere }; ’% times. Thus depending on if ¢ + Y, 24 is odd or even, we get the

qi
thermal EFT described by Sy, or Sih-

Finally, all of these results are consistent with if we simply interpret e’/ R
as an element of Spin(d) and interpret Tr as imposing periodic boundary conditions
for both bosonic and fermionic variable. With this understanding, (#.32) is the
general recipe. If we instead interpret Tr as imposing periodic boundary conditions
for bosons and antiperiodic boundary conditions for fermions, (4.32) should be
modified to

1
—logTr[gR] ~ ——log Tr [(—1)(‘1_1)ng] + topological + Z So,- (4.84)
q =

1

We will see explicit examples of this in Section {.5]

4.5 Free theories

We now present several examples involving free fields to show explicitly that (4.30)
and hold (along with their appropriate generalizations to fermionic theories).
We begin in Section .5 by checking a massive quantum field theory, namely a
massive free boson in 2D. We then consider free CFTs in 3D and 4D. Our main tool
for computing partition functions in free CFTs is the plethystic exponential, which
we review in Appendix [4.10] (see e.g. [88] [112, [165]).

In Section .5] we consider various examples involving free scalar fields and free
fermions in 3 dimensions. In Section .5 we explore few more examples in 4
dimension. We present additional 4D and 6D examples in Appendix Lastly,
in Section #.6] we consider 2D CFTs with a local gravitational anomaly. Such
theories can include Chern-Simons term in their thermal effective action, which are

not integrals of local gauge/coordinate invariant densities. These furnish examples
of the "topological" terms in (4.30) and (4.32).

Massive free boson in 2D
As a first check on our formalism (and to illustrate that the basic ideas do not require

conformal symmetry), let us study the partition function of a free scalar with mass m
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in 2D. We begin by computing the partition function on a rectangular torus § i xS é:

1
logZ = —ETr log(m2 +A) — St
1 Z > [2mr > (27s)\?
= —= log (m + (—) +— | =St
2 (r,s)ez? L B
pym? + ()2

= - > log2sinh > — Set, (4.85)

where S is a cosmological constant counterterm, and in the third line we performed
the sum over r and threw away a constant using the fact that ».» 1 = 0 in {-function

regularization.

Because the summand is slowly-varying in r, we can take the thermodynamic limit

L — oo by replacing the sum over r with an integral over momentum k = %:
L © Vm?2 + k2
logZ ~ __/ dk (log (1 — e—,BVm2+k2) _ ﬁm—+) — Set (L — oo)
T Jo 2
(4.86)

The second term in the integrand is UV-divergent, but proportional to LS. Hence, it
takes the form of a cosmological constant and can be removed with an appropriate
choice of S¢;. We will choose S. to simply subtract this contribution, which is

equivalent to setting the free energy density to zero in flat R?. We find
L
logZ ~ Ef(ﬁm) (L — ), (4.87)
where minus the effective free energy density is

00 Z < 1,
f(y):—X/ dxlog(l—e_yv“xz)~ 6 Y (4.88)
T Jo

Yoy
- y> 1.

Note that the limit of f(y) as y — 0 is consistent with f = % with ¢ = 1 for the

massless free boson in 2D.

Before continuing to the twisted partition function, let us make two observations.
Firstly, the partition function Z obeys a form of modular invariance. To formulate
it, let us write T2 = R? /A, where the lattice A is spanned by basis vectors €1, 5.
We can arrange the basis vectors into a matrix £ € R**? whose columns are &

and é;, and consider the partition function as a function of E. (Above, we studied
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the case where ¢, = (L,0) and ¢, = (0,8), and thus E = (62).) Rotational
invariance implies that Z(E) is invariant under left-multiplication by an orthogonal
group element g € SO(2). Modular invariance is the statement that Z(E) is also
invariant under an integer change of basis of the lattice A, which is equivalent to

right-multiplication by y € SL(2,7Z):
Z(E)=Z(gEvy). (4.89)
In other words, Z is a function on the moduli space SO(2)\R>?/SL(2,Z).

The second key observation is that in the thermodynamic limit, Z is unchanged
under a small shift of the basis vector that grows as L — oco: €; — €| + aé,. To
see why, note that the corresponding dual basis shifts by e; — e, — ae; (with e}

unchanged). Thus, the sum (4.85) changes by shifting r — r — sa:

1 2r(r — sar) 2 (oxs)?
oaz((52) -3 3, eelos (M) (5 )
(r,5)€Z?

. % FBm) (L — o). (4.90)

2n(r—sa)
L

the sum as an integral over k. The shift » — r — sa becomes immaterial in this

In the continuum limit, we can identify the momentum k = and rewrite

approximation.

Now let us finally consider the partition function with the insertion of a discrete

rotation of the spatial circle S}J by an angle 2z p/q. This corresponds to the matrix

,_[L = ¢ 0}, , g P
E' = 1= _‘{ v, where vy = . € SL(2,2).
0 B (P™)gB aB —(p™)g —b

(4.91)

As before ( p‘l)q denotes the inverse of p modulo ¢, and b is chosen so that y” has
determinant 1. Applying modular invariance (4.89) and the result (4.90), we find

" = ¢ o). L — 0
e 2 =toez( 0 )~ optapm (Lo @

consistent with (4.32).

Using slightly fancier technology (see e.g. [79]]), we can be more precise about what

information is thrown away in the "~" in equation (4.92)). We rewrite the partition

function in terms of a spectral zeta function

1
log Z(E) = 3¢ £(0) = S, (4.93)
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Figure 4.4: Left: the lattice A for a rectangular torus S i xS /15, In the thermodynamic
limit L — oo, the sum (4.95) is dominated by A € Aoy (depicted in red), which
are spaced apart by 8. Right: the lattice after twisting by a spatial rotation by . In
the limit L — oo, the partition function is dominated by A € A’_ . which are now
spaced apart by 28.

short?

where

Le(s) =Tr [(m*+A)~] = F()/ —tsTr —r(m2+A)]

dt S —tm —tQ2nE"T
"l L

rez?

1 dt , _,2detE 2
=— —t'e™™ a, 4.94
I(s) /0 t ¢ 4t Z ¢ (4.94)

AeEA

In the last line, we performed Poisson resummation to obtain a sum over lattice
points A € A. (Recall that A is the lattice spanned by the columns of E.) We can
now perform the integral over ¢ and plug the result into (4.93)). The term A = (0, 0)

precisely cancels against S, and we find

logZ(E) =

m det E D Ki(ml)) (4.95)

1eA—(0,0) 2

where K (x) is a modified Bessel function.

Now we can see clearly that in the thermodynamic limit, the lattice vectors 4 € A
that become longer give an exponentially suppressed contribution to log Z (since

K, (r) ~ e7" for large r). Indeed, we have

mdet E Ki(m|a])

2m A
/IEAshort_(OsO) | |

log Z(E) = +0(e7Lm) (L — o), (4.96)

where Aghort are the lattice vectors that do not get longer in the thermodynamic limit
L — o0; see Figure Applying the result (4.96)) to the rectangular torus S lL X Sllg,
we find another expression for the effective free energy density:

> 1
f) =23 ZKi00. (4.97)
=1
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which agrees with (4.88)), as we can see by expanding log(1—e V1% = - ¥, %e“]y Vi+a?
and integrating term-by term. The result (4.96) also immediately implies (4.90).
Combining this with modular invariance, we find that (4.92)) holds up to exponential

corrections of the form e L. Note that this conclusion relies on finiteness of m in
the thermodynamic limit. If instead we take m — 0, then the thermal theory has a

gapless sector, and we do not expect (4.32) to hold.

We can also understand (#.92) more directly from (4.96) as follows. When the
partition function has a twist by a rational angle ZﬂTp, then a new A}, . emerges, as
depicted in Figure The emergent A}, . looks like Aghor in the un-twisted case,
but with the replacement 8 — ¢p.

It is also straightforward to generalize this analysis to a massive free scalar in d

dimensions. The torus partition function iﬁ

m\4/2 ~ Kgp2(m|a])
log Z(E) = det E (2—) > /ﬁ—d/z (4.98)
/o4

This is again consistent with (4.32) (with vanishing topological and defect contri-
butions) through the mechanism depicted in Figure 4.4]

3D CFTs

¢ Free scalar

We now turn our attention to partition functions of higher dimensional CFTs on a
spatial S9~!. Let us begin by studying the partition function of a free scalar in 3D,
with various discrete rotations inserted. The usual KK reduction of a free scalar on
a circle possesses a zero mode. However, in order to apply thermal EFT, the KK
reduced theory must be gapped. Thus, in order to avoid zero modes, we will study a
complex scalar charged under a Z; flavor symmetry. We will turn on the Z;, fugacity
as appropriate to eliminate zero modes, and study the thermal EFT description of
the resulting twisted partition functions. Note that in a generic interacting CFT (as
opposed to a free theory) we would not expect to have zero modes, and it would not

be necessary to consider flavor symmetry.

Let R(6) € SO(3) denote a rotation around the z-axis, and let ¥ denote a reflection
in the z direction. We will consider insertions of R(6, s) = R(6) o ¥* € O(3), where

0 = 2”7”. Note that the reflection potential s takes values in {0, 1}, since ¥2 = 1.

3This is an example of an Epstein ¢-function; see e.g. [83].
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The partition function is given by

log Tr [e‘ﬁ(H_’Q])erQR(H, S)]

1 2niln 2riln e—nﬂ/Z(l — e_znﬁ) (499)
= Z — (e K+ e_T) — — — —,
— n (1= (=1)rseB)(1 — e "Bx™)(1 — e "Px™")

where x = €2™P/9+B2 and ( is the charge of the scalar under U(1) (of which Zy is

a subgroup).

When we turn on a big rotation R(#, s) with order ¢ and include the global symmetry
operator V = e%, a zero mode will be present on the EFT bundle whenever
V4 =1, since V wraps ¢ times around the base of the EFT bundle — see the

discussion around (#.30).

Let us consider the case p/q = 1/2, corresponding to a rotation by an angle r,
which fixes the north and south poles of S2. If the flavor group were Z,, then we
would necessarily have a zero mode on the EFT bundle. Hence we instead consider

Z3 flavor symmetry.

The thermal partition function of a free scalar field with non-zero Z3 flavor and

small rotation-fugacity has the following high temperature expansion:

—B(H—-iQJ) e“’;"Q

log Tr |e

16(3)  (1+ 20%) log3 (21 +4Q% —24Q4 32

_ 4
S+ P 20+ T amo(aqy TOF)- @100

Now we would like to turn on the fugacity for the big rotation with or without a

reflection, leading to absence or presence of non trivial defect action, respectively.

Free action: without defect
Let us first consider an insertion of R(x, 1) = R(x) o W. This is a parity transfor-
mation 7i — —i on S2, and it does not have any fixed points. Thus, the thermal

effective action will be free of defects. Concretely, we find

log Tr [e‘ﬁ(H_’QJ)e%R(ﬂ, 1)]

27(3) (1+2Q%) log3 N (21 +4Q? — 24Q") 52 - 08 (4.101)
91+ QB2 24(1 + Q?) 2160(1 + Q2) '
Comparing (@.100) with (4.101) we find
. i 1 . i
log Tr [e_B(H_‘QJ)e¥R(ﬂ, 1)] ) log Tr [E_ZB(H_’QJ)64 < , (4.102)

so (4.30) holds.
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Non-free action: defect

Without the reflection fugacity, the action of R has fixed points and thermal EFT
predicts a non-trivial Sp as in (4.32). We find

log Tr |e AH-), 2R (7, 0)
2£(3) (7+8Q%)1og3 (—69 +94Q? + 156Q%) 52

- _ + +0 4 .
91+QHAE2 241+ Q?) 2160(1 + Q2) (5
(4.103)
Comparing with (.100), we obtain
1 xi
—log Tr e PH- iQJ) , 752 R(7r 0)| ~ —Elog Tr [ ~2p(H-Q) Q] +So,
(4.104)
where the total defect action S¢(3, Q) is given by
log3 2Q%-1
Sp(B.Q) = ——2= 4 B2+ 0(8Y. (4.105)
4 24
Note that Sp has precisely the form predicted in (4.61), with
log 3 1 7
_ _log3 L - 4.106
ao,1/2 1 a2 o @127 3g; ( )

Furthermore, the linear term in § vanishes because aj12 = aj_-1/2 in bosonic

theories.

More generally, we can consider a rotation R ( 2"7”, 0), where p and g are coprime and
q is not divisible by 3 (so that there is no zero mode upon dimensional reduction).

The leading defect Wilson coefficients in this case satisfy:

-1
g+ a0ggy = =% 3 — [eos (2429) (4 (£ + )~ (&)
0.p/q 0,-p/q 3 lsm(nkp)z 3 3 3

o (222) s 1) ()]

(4.107)
Al,plg — Al,—plqg = 6 [cos (M) + 2 cos (M)] ,  (4.108)

where ¥/ (z) is the digamma function.
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¢ Free fermion

We can perform a similar exercise with free Dirac fermions. The partition function

is given by

log Tr [e‘ﬁHe%R(H, O)(—I)FW]

e [((\/})” + ﬁ) e ((\/’_‘)n i (x/i'c)")]

(1= e ) (1= e B (VR (1 = e P (V9 21)
(4.109)

—1 n+l niln miln
= Sy DT (e o)
n

Fermions are antiperiodic in the time direction at finite temperature. Hence, when
no fugacities corresponding to a big rotation or fermion number are turned on,
there is no zero mode contribution to the thermal EFT description of the partition

function. In this case, we have the following high temperature behavior:

34(3) B 2+Q%)log2 (24 —4Q* -21Q% 2

log Tt [ e BH-QD] —
ogTr [e = Tor ™ sasm T 500 )

+0(BY.
(4.110)

However, when (—1)7 and big rotations are turned on, we must be careful about zero
modes. If the big rotation is given by ¢>™7/4, then we have various cases depending
on the parity of p, ¢ and presence or absence of (—1)F. We consider all possible
cases in the Tabledd. 1l

Let us consider the case when g is even. We take g = 2 for simplicity. According to

tablefd. T} we do not need a flavor twist to remove zero modes. We compute
log Tr [e'ﬁ(H_iQJ)R(iﬂ, O)]

_33) 2+Q%)1log2 QB (24 -4Q% -21Q43%
TRI+Q)F | 120+Q2) 4 T 2830(1+ Q)

+0(B).
4.111)
Note that log Tr [e‘ﬁ(H_iQ])(—l)FR(ﬂ, O)] =log Tr [e‘ﬁ(H_’Qj)R(—n, O)].

Comparing (4.110) and (4.111)), we verify the appropriate generalizations of (4.32)
to fermionic CFT. In particular, see (4.84) and note that as an element of spin group,

we have R?(+m,0) = (-1)F. We find
. 1 .
—log Tr [e PH IR (17,0)]| ~ —5 log Tr [e 2PHARD] 4 55, (4.112)

where S, is given by
Q
Sp, = ¢—f +0(B). (4.113)
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(-2 Rotation Boundary Condition Flavor? Equation
prlq (=)0 (=1)P

No (w=0) 1/2 (-D*(=D'=~1 No @IT1), @.112)
Yes (w=1) 1/2 (-D*-D'=-1 No @.1T1), @.112)
No (w=0) 1/3 (=1)’(=D'=+1 Zy (@.115), @.116)
Yes (w=1) 1/3 (=D°(-1)' = -1 No @.115), @.116)
No(w=0) 2/3 -1*(-1)*=-1  No  (&II8),
Yes (w=1) 2/3 (=D°(=1)* = +1 Zy (@.118), @.119)

Table 4.1: Turning on fugacities corresponding to flavor, rotation and fermionic
number. w = 0, 1 refers to turning off and on the fugacity corresponding to (—1)"
respectively. The fugacity corresponding to big rotation is ¢**P/4. The third
column lists the effective spin structure on the EFT bundle, +1 in this column refers
to periodic and antiperiodic boundary condition respectively. The fourth column
lists whether we need a flavor twist to make sure that there is no zero mode. Note
that antiperiodic boundary condition rules out the presence of zero modes. The final
column refers to relevant equations in the main text.

This has precisely the form predicted in (4.61)), with

1
aLy2=d1-12 =g, 4012+ do-12 =0. (4.114)
Next we consider the case when ¢ is odd. Now p can be either even or odd. For
example, let us consider ¢ = 3 and p = 1 or p = 2. We introduce a flavor twist
according to Table. Note that, operationally the insertion of (=1)¥ is same as
introducing a Z; flavor twist. The insertion of both amounts to inserting nothing.

In what follows, we choose to insert (—1)f to eliminate the zero mode.
For p/q = 1/3, we find that

log Tr [¢ PH- ) (—1)FR(27/3,0)]
{B3)  (10+9Q%)1og2 5QB (=568 +1028Q° +1617Q*) 4

~ 3
WI+@)F  18(1+Q)  3v3 5760(1 +92) +OB):

(4.115)

Comparing (4.110) and (@.T15]) we find that

. 1 .
log Tr [e PHD(—1)FR(21/3,0)] ~ 3 logTr [e 3 BHALD] 1 558, Q),
(4.116)
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where the total defect action S (3, 2) takes the form predicted in (4.61):
41log?2 s 5Q8 (8 -21Q2)82
9 33 72

The p/q = 2/3 case can be easily be done using the following identity

Sp(B,Q) ~ — +0(B). (4.117)

log Tr [e P R(47/3,0)] = log Tr [e PHH¥) (~1)FR(27/3,0)] ,
(4.118)
from which it follows that

log Tr [e P R(47/3,0)] ~ 3 logTr [e 3 FHARD] 1 50(8,-Q), (4.119)
where S (8, Q) is given by ([4.117).

More examples with a defect action: 4d CFTs

In 4D, the rotation group has two Cartan generators, which we call J; and J,. Let us
consider inserting R = exp(2xi Z—:Jl +2mi %Jz) into the trace. When ¢; = g5, the
action of R is free and there will be no vortex defects. However, when g # g2, we

will have two 1-dimensional vortex defects DV and D, whose combined action
is given by (4.65).
As a concrete example, consider the free Dirac fermion in 4D. Using plethystic

exponentials, we find

“log Tr [e—mﬂ—fﬁf)ez’f"g—f"””i%b] <L ogr [e—W—"é'f)] +Sp. (4.120)
q

Here we impose that ¢ (1 + % + %) is odd. This ensures absence of the (—1)%
insertion in the right hand side above. Thus the zero mode is absent and the thermal
EFT applies.

Furthermore, Sp has precisely the form predicted by (4.63) with the leading Wilson

coefficients given by the following function of (—1)” and coprime integers P, Q:
& DPreos(nkG) (1 k k
Q ’ ’
a _p = E —+—|- —1|, (4.121)
O-pIC=Dr = 8r sinz(ﬂkg) (l// (2 ZQ) v (ZQ))

where ¢’(z) is the derivative of the digamma function. This is a highly nontrivial

check of (4.63). Matching (4.65) requires not just reproducing the correct function
of B, Q1, Q, but also the fact that the Wilson coefficient of D)) depends only on
P,/Q, and (=1)?' (and analogously for D(?).

Note that when g1 = ¢», we have Q1 = Q> = 1, hence the sum is non-existent,
leading to ag p, /0, (-1)p2 = @0,P,/0,,(~1)»1 = 0, which is consistent with the fact that

the action of R becomes free and St should vanish.
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4.6 Topological terms: example in 2D CFT

So far, we have focused on cases where the thermal effective action can be written
as the integral of a local gauge- and coordinate-invariant density. As discussed in
Section [4.3] we can choose a gauge ("EFT gauge") where the background fields
g, A, ¢ on the EFT bundle look locally the same as on S¢°! x § /13 (possibly with
"small" angular twists turned on). Curvature invariants built out of these fields are
then also the same as on S¢~! x S}}, and their integral is not sensitive to global
properties of the EFT bundle.

By contrast, when d is even, the thermal effective action can also include Chern-
Simons-type terms that are not integrals of local curvature invariants, and hence
can be sensitive to global properties of the EFT bundle. The contributions of such
terms were called "topological” in (4.30) and (4.32)). The coefficients of such Chern-
Simons terms can be determined systematically from the anomaly polynomial of the
CFT [124-126, 153}, 154,|171]. The simplest case is when d = 2, where the thermal

effective action contains a 1d Chern Simons term whose coefficient is proportional

to the local gravitational anomaly ¢y — ck.

In more detail, consider such a 2D CFT with a local gravitational anomaly, c; # cg.
We assume that ¢; — cg = 24k with k € Z. From modular invariance we have a

high-temperature expansion of the partition function as

. o
log (Tr [e‘ﬁ<H‘iQJ>eZ”i§J ]) _4rP(cp +cg = 24ikQ)  2mik(pTh)

244%(1 + Q%) . (4122)

where (4.122) is accurate to all orders in perturbation theory in 3. This generalizes
(@.19) to theories with ¢y, # c.

In the thermal effective action, we can reproduce the terms in (#.122)) with a Chern-
Simons term from the KK gauge field in the action. In particular, we add a term of

the form
2rik

4B
to the thermal effective action. From (4.47)), we see that (4.123]) precisely reproduces
the additional terms in (4.122). Note that (4.123) is properly quantized precisely
when £k is an integer, since A is a connection on a circle bundle where the fiber has

A (4.123)

circumference gp.

2ritey —2miTCR

10To derive (4.122), we apply the modular transform li to the vacuum state e~ 2%
with 7 = % +5=+ g and expand in small 5.

BQ
2r
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4.7 Holographic theories
In this section we consider CFTs dual to semiclassical Einstein gravity in AdS.
The high temperature behavior of the thermal partition function, Tr[e #H+0-7]
around 6; = 0, of such holographic CFTs in d dimensions are captured by the
thermodynamics of black hole solutions in AdS;.;. We would like to understand
—BH+i0-J ]

the bulk solution that captures the high temperature behavior of Tr[e near

0; = 2np;/qi, where at least one of the p; # 0 and ¢; > 2.

First, let us consider a d = 2 dimensional CFT in the context of AdS3/CFT; duality.
The relevant bulk solution is given by the rotating BTZ black hole with the metric

2 2.2 2 .2
ds? = —f(nde + 2 1 2 (do - dt)2 L fr =Y r%r )

f(r)
(4.124)

where r. are radius of outer and inner horizon respectively. The BH temperature

rar_

72

B! and angular potential Q = 6/ are given by

r 2_,,2

—1 r+ —
Q=—, B =——. (4.125)
ry 2nry
Asymptotically, the metric is Weyl equivalent to —dt> +d¢?. In Euclidean signature,
tg =it and we have (¢,tg) ~ (¢ — BQ, tg + ). The Euclidean action evaluated on

this bulk saddle reproduces the high temperature behavior of Tr[e A(H~12))],

Now let us compute Tr[e #H-1))+27ip/a]] for a holographic 2D CFT. As explained
in Section this can be computed by doing a path integral over Mg o/ Zqﬂ where
the action of Z, = (h) is given by

h:(¢,tg) = (¢ +2rp/q - BQ1E + ), (4.126)
and M ¢ is obtained from S x R by quotienting by (h4).

Note that the action of Z, has a natural extension into the AdS bulk, where the radial

direction goes along for the ride

h:(r,p,tg) — (r,¢+2np/q — BQtg + ) . (4.127)

‘We can use this natural extension to build a bulk dual solution. We start with a BTZ
black hole X5 o with parameters 7. = r./q, such that the black hole is at inverse

temperature 3 = ¢3. The Euclidean metric is given by
dr o\ (r =72 (r> = 2)

P2 Tl F(r) -
f(r)+r (d¢+lr—2dt5) , f(r) = 2

ds* = f(r)dt% +
(4.128)

7In this section, we use the compressed notation Mg e — Mp q.
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Note that (¢, 1g) ~ (¢ — gBQ, tg + qf5). We can then quotient X,z o by the action
of Z, = (h), given by (#.127). The manifold X,5/Z, is smooth because the action

of 4 in the bulk is free.

Recall that on the boundary, the quotient M,gq/Z, is a nontrivial bundle over
S! /Z4. The discussion in applies here, with the radial direction of AdS going
along for the ride. In short, we consider open sets in the total space and consider
the bulk region that asymptotes to this set. Locally in this bulk region, the metric is
precisely given by (#.128)). However, there are non-trivial transition functions when

we go from one open patch to a different one.

By construction, the quotient X,5 o/Z, solves Einstein’s equations with the appro-
priate asymptotic geometry. Compared to a rotating BTZ black hole at temperature
qpB, the above quotient geometry has its angular variable restricted to 0 < ¢ < 27/q.
(Note that this almost covers the full manifold except the locus ¢ = 0. This locus is
covered by another open patch and we have nontrivial transition function between
these two patches.) Thus the evaluation of the bulk action amounts to an integral
over the angular variable in the range 0 < ¢ < 27/q producing a factor of 1/g,
and a replacement § — ¢ which produces another factor of 1/¢g compared to
the evaluation of Euclidean action on BTZ black hole at temperature 5. Thus, the

Euclidean action evaluated on the saddle X5 0 /7, reproduces

log Tr[e—ﬁ(H—in)+27rip/qJ] ~ 10g Zgrav [Zqﬁ,ﬂ/zq]

1 1 _ _
= alog Zgrav [Zq[g’g] ~ ElogTr[e ap(H ’Qj)],

(4.129)

where Zgray [2] is the gravitational path integral evaluated on the saddle X.

Overall, we have a quotient of a BTZ black hole whose boundary has a temporal
cycle of length 8; = gB(1 — iQ) and a spatial cycle of length L = %”. This naively
leads to the modular parameter

27
g*B(1 —iQ)

The above is almost correct, but we must amend it by recalling the presence of

T"="iL/BL = (4.130)

nontrivial transition functions. This leads to the following identification:

2mi ~ (p_l)q =__ 2mi ~ (p_l)q
¢2B(1 - iQ) g = Pp1+iQ) q

, (4.131)

7=
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which precisely matches the modular parameter 7 obtained after applying a modular
transformation, as explained around (4.17). Note that we have

! (~ ~) __ 2m (4.132)

+7 - :
T T T e
which is consistent with the holonomy of A derived in (4.47). We conclude that
%48.0/Z4 is simply a modular transformation of the BTZ black hole geometry.

In dimensions greater than two, we follow the same prescription. Let Zﬁﬁ be
a black hole solution that captures the high temperature behavior of the thermal
partition function with small angular fugacity, i.e. the AdS-Kerr black hole with
inverse temperature 5 and angular velocities iQ. We claim that the insertion of a big
angular fugacity R with R? =1 is captured by the bulk manifold Zq xS /Z4, where
Zg 1s the natural extension of the boundary Z, into the bulk. To be precise, the
AdS-Kerr solution possesses a time-translation isometry, which we parametrize by
tg. It furthermore possesses isometries under the Cartan subgroup of the rotation
group, which we parametrize by ¢,. Then the Z, = (h)/(h?) group is generated by

B (1, s $astE) = (s as $a + 222 1+ ), (4.133)

where r, and r are the remaining bulk coordinates.

When the bulk action of £ is free, Zq ﬁ,é/Zq is a smooth solution to Einstein’s
equations with the correct asymptotic geometry to describe the partition function
with an insertion of R. At very high temperatures, the gravitational path integral
on this geometry matches the field theory prediction (#.30) because the quotient
by Z, just divides the semiclassical gravitational action by g. Thus we expect
Zq xS /Z4 is the dominant solution at high temperatures. As we move away from
high temperatures, we conjecture that Zq xS /Z,4 remains the dominant solution down

to a finite temperature.

Unlike in 2d, in higher dimensions it is possible for the bulk Z, action (4.133) to
have a fixed locus. Such a fixed locus must occur at the horizon of the black hole
(where the Euclidean time circle degenerates), and at a location on the sphere S%~!
where the boundary action of 4 has a fixed point as well. For example, consider
a 3D CFT, with a four-dimensional bulk dual, and consider the case p;/q; = 1/2.
The bulk action of & rotates the ¢ circle by &, and also shifts 1 — ¢ + 8 (which is
equivalent to rotating the thermal circle by 7). Fixed points of & occur at the north

and south poles of the horizon S 2. For example, near the north pole, we can choose
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coordinates so that the metric locally takes the form
dri +ride* + dy* + y*dy?, (4.134)

where ¢ = %—EIE, and y oc 4\/r — rg (with rg the location of the horizon). In these
coordinates, the Z, action rotates both angles ¢, ¢ by w. Quotienting by this Z,, we
obtain an orbifold singularity of the form C?/Z,.

When Zq s /Z, contains an orbifold singularity, it no longer furnishes a smooth
solution to Einstein’s equations. To understand the correct bulk dual of the R-
twisted partition function, we must understand the fate of the orbifold singularity
in the bulk theory. The physics of the singularity (or its resolution) essentially
determines the defect action Sp in holographic CFTs. Note that in a spacetime
with vanishing cosmological constant, a C>/Z, singularity can be resolved by the
"gravitational instanton" described by the Eguchi-Hansen metric. Perhaps orbifold
singularities occurring in the Zq xS /Z4 can be resolved similarly. Or perhaps the
orbifold singularity is resolved by stringy effects. We leave these questions to future

work.

For fermionic theories dual to Einstein gravity (which all known examples are),
there is another set of Wilson coefficients f , C1, . .. that can be defined (see )
coming from periodic boundary conditions for the fermion. The behavior of the
partition function with (=1)% inserted was explored in [62], which found a black
hole solution that lead to an exponentially subleading (in temperature) contribution
in the large N limit. Since generically we expect f to be nonvanishing, this means
the black hole solution found in [62]] should not be the dominant contribution in the
T > N > 1 limit. It would be interesting to explore further if there are universal
results or constraints on the Wilson coefficients f ,C1, ... 1n (fermionic) holographic

CFTs (for instance by looking at the theories studied in [31]).

Finally, let us note that our construction works also in the case when the boundary
theory possesses areflection symmetry and the group element R includes a reflection.
In this case, the bulk dual solution Zq xS / Z4 1s non-orientable. This is allowed
because the boundary reflection symmetry must be gauged in the bulk, which means
we must include contributions from non-orientable geometries. It so happens that a

non-orientable geometry dominates in this case

18See [101] for a recent discussion of gauging spacetime symmetries in the bulk.
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4.8 Journey to 8 =0

So far we have described the structure of CFT partition functions Z (g, 5) at high
temperature near rational angles % € Q". In this section we will use these results
to sketch the behavior of the partition function at high temperature around any
(possibly irrational) angle. For simplicity let us consider turning on only one angle

6, and study the partition function
Z(B,0) = Tr [e PH*T0] (4.135)

at small B with 6 fixed. Suppose the angle has the following continued fraction

expansion:
0 N 1
2n a) +

> (4.136)

1
ax+ az+...

Pi

where a; € N. We also define the fractions o truncations of the continued

fraction, i.e. |
& =ap+
qi ap+...

: (4.137)
For a generic angle, the probability of a; = n scales as n% for large n, which means

that the distribution of a;’s for a generic angle has infinite meanm

Suppose we have an angle § where a; > 1 for some i. How does the partition
function behave at high temperature? Since we assume a; > 1, we have ¢; =~

aiqgi-1 > qi-1. So for

qi-1 <T < g, (4.138)
we expect
log Z(T) ~ vols9~! f14-1g-4. (4.139)
However, when
T ~qi (4.140)

the constant or proportionality in (4.139) suddenly shrinks.

In Figure [4.5] we illustrate this explicitly for two example CFTs. We plot both the
Klein invariant j function (which is the partition function of some 2D CFTs at central

charge 24) and the 3D free boson partition function as a function of temperature,

with chemical potential % = % This has the continued fraction expansion:
0 3-nm 1
— = =15+ ——. 4.141
2 In—22 202 4+ % ( )

One way to see this scaling is, for a random real number between 0 and 1, the probability that
ai = nisroughly & — Lo ~ 1.
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log(log(| Z°(T. 6)|)) 4

log(iog(| Z°“(T. 6)|)) 2n Tr-22

log(T) log(T)

(a) 24 free bosons in 2D. (b) A free boson in 3D.

Figure 4.5: In blue, the log of the free energy of two CFTs evaluated at chemical
potential % = 773:52 vs. logT. In red, a line with slope d — 1. (a): d = 2. (b):
d = 3. We see that at some temperature, there is a region where the slope matches
d — 1, meaning the effective field theory is a good description. If we continue this
plot to higher and higher temperatures, there will be infinitely many times the slope

matches d — 1.

1445

9,
2n 2

togllog(| 22T, 8)) 2.0 B / /

7.0 75 8.0 85 9.0 95 10.0 0 1 2 3 4 5 6 7
log(T) log(T)

(a) 24 free bosons in 2D. (b) A free boson in 3D.

Figure 4.6: In blue, the log of the free energy of two CFTs evaluated at chemical
potential % = Vs vs. logT. In red, a line with slope d — 1. (a): d = 2. (b):

2
d = 3. We see that at no temperature is there a region where the slope matches

d — 1, meaning the effective field theory is never a good description. Since we have
fine-tuned the chemical potential to be a real number whose continued fraction has
no large numbers in it, we do not guarantee any region in temperature where we
have a good EFT description of our theory.

(Although any generic real number would serve to illustrate the partition function’s
behavior, we choose (#.141) for convenience because of the large 292 showing up
immediately.) We see that there indeed is a region of 7 where the free energies
scale as we predict from the effective field theory; but when we increase T further,
the scaling breaks down. At large T for generic chemical potential, there will be an
infinite number of times the plot in Figure 4.5| has slope d — 1, which is when the
continued fraction approximation is well-approximated by a rational number (i.e.

whenever a; > a;_; in the continued fraction).
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Finally we note that if we fine-tune the angle 6 so that none of the a;’s ever become
large, we can make there be no regime where the partition function obviously grows
as T9~!. For example, choosing the angle to be the golden ratio

o 1+vV5 1

~ 1+ 4.142
2r 2 1+ 1 ( )

1+...

gives an angle where there’s never a large enough regime in 7T trust our effective
field theory. In Figure 4.6 we again plot the Klein invariant j function and the
free boson partition functions as a function of temperature, but this time with the
. . ) 1+v5 .
chemical potential set to 7~ = +T\/_ We see that the slope of loglog |Z| against
log T never matches d — 1 in a large region, so there is no good EFT description of

our system.

4.9 Nonperturbative corrections

In this section, we consider nonperturbative corrections to the thermodynamic limit
L — oo at finite 8. For concreteness, we focus on a CFT,; and its dimensional
reduction on Sé to a d—1-dimensional gapped theory. By conformal symmetry, the
thermodynamic limit is equivalent to § — 0 (with a fixed-size spatial manifold).
For simplicity, we will not turn on "small" angular twists ﬁﬁ, though it would be

straightforward to incorporate them.

The thermal effective action essentially captures the dynamics of the ground state of
the d—1 dimensional gapped theory, while nonperturbative corrections come from
particle excitations. On the geometry R%~! x § [1; the excitations can be classified
into irreps of the d—1-dimensional Poincaré group and the Kaluza-Klein U(1) that
rotates the S}g. Irreps of the Poincaré group are labeled by a mass and a little group
representation — for simplicity, we will focus on scalars. Thus, each excitation of
interest is labeled by a mass m; and a KK charge g; € Z. The lightest mass m for
each KK charge q is sometimes called the "g-th screening mass", while the lightest
nonzero mass overall is the "thermal mass" of the theory. Note that when d = 2,
the spectrum of masses (m;, g;) are simply (%Ai,é’i), where (A;, ¢;) are scaling
dimensions and spins of local operators. However, in higher dimensions, the masses

m; are not related in an obvious way to the local operator spectrum.

In the partition function Zcpr[Mg-1 X S }),], the leading nonperturbative effects at
small S are expected to come from "worldline instantons" associated with particles

of mass m; propagating along geodesics of M,_1, see e.g. [39, (79, 99, 109, 110].
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Such contributions can be computed from the worldline path integral

logZ = Z /DXN(T) exp (_mi/dTW+ 27;'(11' A).

ingle-particl
single-particle ()

(4.143)

Here, for each particle, we have included a length term —m; f ds proportional to the
mass, along with a coupling % 55 A to the background KK gauge field. (Note that
we include a factor of 2’7” because in our conventions, A is a connection on a circle

bundle where the fiber has circumference S, instead of the usual 27.)

In Appendix@4.10} we compute the wordline path integral (4.143)) on some geometries
of interest. For example, by computing (4.143) on S¢~!, we find that the leading
nonperturbative terms in the partition function Zcpr[S?~! x S}f] have the form

Nd=2_,d-2
log(TrWSd-l [e—ﬁH]) 5 Z e—2ﬂmi%—_n% (1 +0 (i)) . (4.144)

m;

Note that the effect of each particle is exponential in the mass e™>™, where 27
is the length of a great circle on S?~!. By dimensional analysis, the masses are
proportional to 1/3, and hence these are indeed nonperturbative corrections in £.
In addition to the exponential dependence, the worldline path integral makes an
unambiguous prediction for the leading coefficient of the exponential, coming from
a gaussian determinant. We immediately see that the interpretation of (4.144) is
subtle because the coefficient becomes imaginary when d is odd (even when the

partition function must be real). We discuss this phenomenon and its interpretation
in Appendix [@.10]

Specializing to 4D, we can similarly compute leading nonperturbative corrections
to a partition function on a lens space L(g; 1), coming from a "short" geodesic of

length 27 /q:

_ 2m;

Zm € 2sir’:1(i27”) (1+0(mli)) (4#2).

3y € ’"é(uo(ﬂ%)) (g=2).

log(Trg, ., [e#7]) o (4.145)

By our discussion of the EFT bundle, this result is closely related to the partition
function on S, with a twist by a rational angle of order g. To obtain the latter, we

must replace 8 — ¢, and account for the presence of a nontrivial holonomy for the



183

KK gauge field (since S ; 5 is nontrivially fibered over L(g; 1)). We find

2rm; | 2miqp
- e (10(2)
log(Tre [e_ﬁH‘%le—%fm]) 5 2ima) € 2gsin(%) 1+0 | (g #2),
’ m; . 2
S Zimpan € 2 % (1 +0 (m%)) (g =2).

(4.146)
In particular, nonperturbative corrections to the twisted partition function go like

/2 _ . .
e~ 2™ild” s opposed to e~ 2™ in the un-twisted case.

More generally, in any dimension d, when the quotient by Z, creates a short
geodesic of length fghort = 27/q, the leading nonperturbative corrections will
behave like e~ ("i/@lshort = p=27mi/ ‘12, where m;/q comes from the replacement
B — qfB. Note that this matches the result from modular invariance in 2D. In
2D, after applying a modular transformation, the twisted partition function be-
comes Tr [ez”"?(LO_ﬁ)_z”ﬁ(ZO_ﬁ)], where T = const + %. Thus, the leading
B-dependence of the contribution of excited states to the twisted partition function

is e 4T NI@B) = o=27mila® where m; = %.

Note that the action (4.143) is only the leading approximation to the effective action
of a worldline instanton in the small S limit. In particular, there can be power-law
corrections in S coming from higher curvature terms. Thus, while the tree-level
and 1-loop terms (4.144), (4.145), and @.146) in the worldline path integral are
universal, the subleading corrections in 1/m; are not necessarily universal, since

they get contributions both from (computable) loops and from higher curvature

terms )
In Appendix [4.10] we derive (#.144), (4.145), and (4.146) by performing the world-

line path integral explicitly. We also verify the universal leading terms in several

examples from free field theory.

4.10 Discussion and future directions

In this work, we found that the high-temperature partition function, twisted by a
finite-order discrete rotation R, is captured by the same thermal EFT as the un-
twisted partition function. One consequence is that "spin-refined" densities of states
(like the difference between the density of even-spin and odd-spin operators) are

determined by the same Wilson coefficients as the usual density of states, up to

20Furthermore, our choice of /-function regularization does not in general respect coordinate-
invariance of the worldline path integral. To restore coordinate invariance one must add non-
coordinate-invariant counterterms like g”VnggaﬁFﬁprgT with the appropriate coefficients. See
[16]] for discussion.
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subleading contributions from Kaluza-Klein vortices. Furthermore, the partition
function Z (g, 5) itself has an intricate fractal-like structure as a function of angle at
small S, with the same universal asymptotics controlling the neighborhood of every

rational angle.

These results follow entirely from effective field theory, together with the assumption
that generic CFTs develop a mass gap when dimensionally-reduced. It would be
interesting to revisit this assumption and understand how our results are modified in
the presence of potential gapless modes. It would also be interesting to investigate
whether Kaluza-Klein vortex defects can support gapless excitations, contribute to

Weyl anomalies, and/or have nontrivial topological terms in their effective actiorﬂ

Our central construction is simple: it is essentially the observation that it is useful to
construct a mapping torus Mg g = (M X R)/Z from two successive quotients: first
quotienting by gZ, and then by Z, = Z/qZ. This idea is applicable on other geome-
tries besides S9! xR, and it would be interesting to explore its implications for other
types of partition functions. For example, one could explore "spin-refined" statistics
of OPE coefficients by studying the behavior of discrete spacetime symmetries on
the "genus-2" geometry of [25], or spin-refined lens-space partition functions [[182],
or the interaction of discrete spacetime symmetries with other forms of higher-
dimensional "modular invariance" [7, 156, |189, [190]. Supersymmetric partition
functions have been studied on a wide variety of geometries; see e.g. [178]]. It is an
enduring challenge to understand observables of non-supersymmetric (potentially

nonperturbative) theories on these geometries.

One can also consider applying thermal EFT to BCFTs to study the asymptotic
spectra of boundary operators. In two dimensions, this boils down to studying the
partition function on a finite cylinder in the § — 0 limit and writing down an EFT
on a finite interval with two end points. The end points will become point-like
defects in the thermal effective action. In higher dimensions, by introducing defects
one may break the SO(d) invariance down to some subgroup H. We can imagine

turning on a rotation belonging to H and applying thermal EFT ideas in this context.

So far, our main tool for computing partition functions has been thermal EFT, which
is organized in an expansion in small 5. This expansion is likely asymptotic in
general. In fact we can see its asymptotic nature explicitly in odd-dimensional free

theories. It is an important question whether one can obtain more precise results

2ISee e.g. [22,/65] for a study of similar vortex defects in the context of supersymmetric quantum
field theories.
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about high temperature partition functions, potentially including convergent expan-
sions and/or numerical bounds (as is possible in 2D using the modular bootstrap
[1O8]]).

One possible approach is through a better understanding of resurgence in the small-
B expansion. In particular, it would be nice to better understand the structure of
nonperturbative terms beyond the worldline instantons discussed in Section (4.9
We expect that in an interacting theory, there should also be contributions from
an infinite sum of "instanton graphs," representing massive particles propagating
and interacting. An old example of instanton graphs are Liischer corrections in
field theories on torii [[157, |158]. However, to our knowledge, the rules for general
instanton graphs on general geometries in general massive QFTs have not been

spelled out.

Relatedly, modular invariance in 2D CFTs constrains some of the nonperturbative
behavior of the partition function. Given some input light spectra, modular in-
variance highly constrains the resulting spectra, which in effect forces the partition
functions with any phase inserted to behave in a certain way. Techniques such
as Poincare series and Rademacher series have been used to complete the light
spectrum of a 2D CFT (see e.g. [5, (77, 132, |162]), which roughly take the form
of a (convergent) sum over rational angles. It would be interesting if there were
related techniques in higher dimensions, resumming all rational angle insertions in

the partition function trace.

Another potential avenue to making the high-temperature expansion precise is using
Tauberian techniques, which have been applied successfully to correlation functions
[73L 1173, 176, |180] and torus partition functions in 2D [168] 174, [175]. An
essential ingredient in Tauberian methods is positivity which has not yet played

an important role in applications of thermal EFT.

228ee [163]] where, even if OPE coefficent can become negative, Tauberian theorems were used
along with some boundedness conditions from below, to predict asymptotics of OPE coefficent
averaged over a large microcanonical window. However, it is not clear how to extend the result
rigorously for an order one window. The same theorem is used in [[172] as well.
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Appendix A Qualitative picture of the 3D Ising partition function
In this appendix, we explain our procedure for producing Figure LetS,,, denote
the leading contribution to the thermal effective action around the angle 2"7‘” in 3D:

1 fvol §?
@2+ (0 - 22)2

=Sp/q = (4.147)
We expect =S/, to be a good estimate for the action when it is large. Thus, to patch
together different EFT descriptions, we roughly want to choose the action —S,/, that
is largest for each (3, 8). This would lead to the approximation —S ~ max, , =S, /4,
where p, g runs over co-prime pairs of integers. However, such an estimate would

not be smooth, so we instead combine the different actions with a root-mean-square:

1/2
—S =~ (Z(—Sp/q)z) . (4.148)
p.q

In Figure we plot loglog Z = log(-S), for S given in (4.148), with coprime
pairs of integers up to denominator 15. We use the value of minus the free energy
density f ~ 0.153 determined from Monte-Carlo simulations [144, 145} 198]].

Note that the approximation (4.148)) has some unrealistic features. Firstly, its ex-
pansion around each rational angle contains subleading corrections in S that do
not conform with the expectation from thermal EFT (4.32). Secondly, it does not
incorporate the nonperturbative effects discussed in Section[4.9] Our goal with this
approximation is simply to give a qualitative picture of the partition function. It is
interesting to ask whether there is a natural basis of functions for Z that naturally

incorporates these constraints.

In principle, the qualitative features of Figured.1I|can be checked. For instance, one
can explicitly build the partition function of the 3D Ising model with a phase (e.g.
(-1)7) inserted, by simply using the operator scaling dimensions that have been
estimated from the conformal bootstrap (or other methods). One can then plot it
as a function of g, Q, and check that, for instance, the leading Wilson coeflicient is
approximately 0’%853 (similar to what was done in Appendix A of [[119] and Appendix
D of [25]). An important technical obstacle we run into when attempting this is:
when computing the partition function with the phase (—1)”, the EFT is valid when
23 < 1 (rather than 8 < 1), so in effect, one needs to keep more operators in
the partition function to get a trustworthy estimate. It would be interesting if other
techniques to estimate the scaling dimensions of the 3D Ising model know about

enough high energy operators to see explicitly the qualitative features of Figure . 1]
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Appendix B Review of plethystic sums

In this appendix, we review some facts about the high temperature expansion of
plethystic sums. Plethysic sums can be written as derivatives of various spectral
zeta functions and to compute the high temperature expansion, one "resums" the
zeta functions following a procedure very similar to (4.94)). The same resummation
technique is also used to compute the high temperature expansion of massive free

field free energy, as we discussed in the Section .10

Plethystic sums and spectral zeta functions We start with some general
discussion. Let f(B8) = X, dx e P% be a generating function. We define a few
related quantities:

* Plethystic sum:

1
log(PE[£]) = ) ~f(nP). (4.149)
n=1
* Spectral zeta function:
L(s;f) = Zde (22”) +A§] . (4.150)
nez

¢ Heat trace:

H(t: f) =) d e M (4.151)
k

The plethystic sum is related to the spectral zeta function in a simple way:
log(PELf]) - 5 Z dide = 5| Z(s:). (4.152)

where the second term on the left hand side is the zeta function regularized Casimir

energij

To derive (@.152), we start by using the Schwinger parametrization to obtain:

A
§(s;f)=Zde (2”—”) 22 F(S)ZZ / s ot 5t

nez nez

=) M,
F(S)Z\/_ZZ / ‘

(4.153)

23Note that the Casimir energy computed using zeta function regularization is NOT the same as
the Casimir energy included in Appendix [#.10] See Section 3.1 in [25]] for a discussion of schemes
and [[113] for the difference with zeta function regularization.
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where in the last line we’ve Poisson resummed with respect to n. Now we split the
summation over m into an "excited part" with m # 0 and a "vacuum part" where

m=0:

gexcued(s f) F( )\/_ Z de/ wr ts_% e’"4tﬁ _Mz

Lvacuum (85 f) = F()\/_Z / —ts‘% e, (4.154)

Performing the integral over ¢, we get

= dt _m?g?
gex01 ed(s f) = —F= dk/ _1/2 4
(4.155)

- i % D" dye P = 210g(PE[f]).
k

For {yacuum (83 f), we invert the Schwinger parametrization:

_ Gacuum(s: ) = Fr( 1/2) Z did = —ﬁZ dedi.  (4.156)

Putting everything together we arrive at (4.152).

To compute partition functions with flavor twists and rational angular fugacities we

need to consider plethystic sums taking the following form:

ie

n=1

—inf

F(np, w’;), wy = exp (%) . (4.157)

Some formal manipulation shows that when the "twisted generating function"
F(B, wy) satisfies F (B, wy) = F(B, w;l), the following relation holds:

i —tn0

. . 1d ‘ B
; F(nB.wl) + Z ") = E%L:O{[qé),s,F(qﬁ, DR Zk: did
19 a ¢ ’
+ Z ; a 0 [L (6]9, g, S;F(Qﬁ, (x)é)) + L (—qe, 5, S;F(qﬁ, wg))] ,
(4.158)
where

* In the second sum on the right hand side, d; and Ay are supposed to be read
from F(gp, 1), thatis, F(gB,1) = 4o dxe P
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£(0,s; f) :Zde

(Zﬂn 0\>
nezZ k

v |+, with f(B)= ) dre P
B ﬁ) "] %

(4.159)

2nina

L.asif)=Y > di ¢ . with f(B) = ) de P,
k=0

7 k 2n o 0 2
ne [(ﬁ+ﬁ) + AL

(4.160)

Now that we’ve related different plethystic sums to various spectral zeta functions,the
high temperature expansion can be computed by "resumming" all these zeta func-

tions. For concreteness, we look at some examples:

Example: free scalar on S' x $> The relevant generating function i@

e Pl —e?P) _
9= = S o1
k=1
The spectral zeta function is
1 Cdt  _j2my
(8= 1 Z/O —r e P H( ) (4.162)
nez
with
. _ N 2 —tk* _ \/; -3/2 < —0272 )t 1 -3/2 2_2.-5/2
H(t,f)_Zke =1 +\/EZe 5! — 7t )
k=1 I=1

Here we performed a Poisson resummation with respect to k and separated the piece
with £ = 0 from £ # 0.

* The term with n = 0 in the sum (4.162)) is the contribution of zero mode:

' (s;f)|n_O = D A = Y KT = Lg(25 - 2). (4.163)
- k=1 k=1

24This is the spectral generating function of the operator A + 4((‘2__21)) R with A being the Laplacian

on S and d = 4.
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* Terms with n # 0 and ¢ = 0 generate the perturbative series:
V7T 3 /0<> dt o (22 3
; = — B t
£(s:f) n#0,0=0  4I°(s) 0 P

I'(s— )
oo |

3-2s
- V2 —) Zr(2s = 3). (4.164)

B

* Terms with n # 0 and ¢ # O generate the non-perturbative corrections:

. VT o 278 4n’tn 95 20 3o 4n’tn
§(s,f)|n¢0’£¢0 - _) nz ; [ ) ‘%“ ( B ) -2t (é’,B) K*%” ( B ) )
(4.165)

Following {#.152])), we find

B 4 2(3) ] S e 1 4nn?  8nirt
02 PELD = 506 = 35w T2 22 Gt ap i)

(4.166)

With the same dj and Ay, we can construct a slightly different zeta function:

{m(s) = i

(4.167)
k=0 (/12 +m )
this spectral zeta function satisfies
1d 3
2 d {WI(S) 1Og(zmassive [S ]), (4.168)

where Zmassive[S°]) is given in eqn(4.216). Applying the same resummation pro-
cedure, we get (4.217)). The lens space partition functions Zpassive [L(g; 1)] can be
computed in an almost identical way. One simply replace dj = k2 by [12]:

k[&], k—quzz,
dk = q q (q € ZZ+ 1),
k([k]n), k—qH €27 +1,
q q
0, k € 2Z,
dy = (¢ €22). (4.169)

k(2|E]+1). ke2z,
which are the degeneracy for A + 4((dd—_21)) R with A being the Laplacian in L(g; 1) and
d = 4. The same calculations will yield (4.221)) and (4.222]).
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Example: free scalar on S' x S°

The relevant generating function is

¢-¢") k-1 -
f(B) = e —;Teﬁk

and the heat trace is:

H( f) = 21—4 Z K22 = 1)e %

kezZ

1 o 22 | att o R 1 (7P 1
- \/_(321‘5/2 48t3/2) ¥ ﬁ; ¢ [12t9/2 RPN ( 2 E) 24532
(4.170)
Following the same procedure as in the example above, we obtain
270 4 5 3
log(PE[f] - B=—2 z (0 | £ (4.171)

— +
0453  5408°  167% © 4872
X = 47r e [4nn® 47r2n3 1 (n? n%n? 1 n n 1 1

—(m+=—|+=(——+—=]+ +
DI [ 3% T 32 B (53 MY ) "B (2n254 " 652) R0 | 247203

n=1 {=1
(4.172)

60480

If we replace £ (s; f) by £ (s), we reproduce (4.218)).

Example: free scalar on S' x S° with Z, flavor twist

The plethystic sum in interest is

o (=1)" eB(1 = 72 .
Z:; fnp),  f(B) = TV ke, (4.173)

Setting ¢ = 1 and 6 = 7 in (4.158)), we find that

o (1) 1d
; T 2 s lse 5(” 83 f)+—zdk/lk (4.174)

where {(n, s; f) is defined in (4.159). After resumming the zeta function, we find

(o)

>

n=1

Tt A @i (2 222—1 1
A Y (- T
240 36087 L L 72 g " e

4.175)

Finally, we discuss twisted partition function with rational angular fugacity. These

are the main objects of interest in this paper. Even though the techniques outlined
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in this appendix can be very easily generalized to higher dimensions and to more

complicated combinations of angles, we will focus on 4D scalar partition functions

. —2xi g, 27 gy,
twisted by e ¢ 4

for simplicity. As explained in Section 4.10| the subtle

difference between the lens space partition function and the twisted partition function

is related to the non-trivial topology of the EFT bundle.

Example: free scalar in S! x $3 with Z, rotation, ¢ odd
2 2ni
We focus on the twisted partition function log (Tr[e_ﬂ H_TJ‘2_7J34]) and restrict

to the case where ¢ is odd. The plethystic sum in interest is

o 1 e B(1 - e )
—F(nB,wy), F(B,w,) = ~ : (4.176)
; n 4 - wqgeP)2(1 - wyleF)?
It is easy to verify
Yo ke =0
F(gB, ) = 4.177)
ksln(z”kf)
—qpBk
Zk 1 Sln(27r[) e 1 ’ f ¢ 0
Setting 6 = 0 in {#.158)), we find
o 1 1 d
“F(np, ) = 5| 10,5 F(gp, 1)) di
;n (nf. ) = 37| 4105 F(ap D]+ Z o
B 1 (4.178)
1o d .
P - , 85 F(gp, .

where dj, = k2, Ax = gk for the second sum on the right hand side. After resumming

all the zeta functions, we find

i 1 e (1 - e7P) ™ BB
n(l-wle)2(1 - w "eF)2  4583¢% 240 4nlq

1 Y — 4n2€n 2n 472n?
- +
g Z Zl ‘ (2,@53 Bt*q ﬁzé’qz)

2nnl
X cos(=F) sl 4.179
N Z Z ( q )e st 2nn L4 ( )
= o sin(%) tqB " 20%n
(¢qZ

+
Z 47-‘-52 s1n( 27r€)

14 eZqZ
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Example: free scalar in S! x $° with Z, rotation and Z, flavor twist,
g=odd
The relevant plethystic sum is

e P(1 —e2B)
(1 —wzeP)?(1 - w;le‘ﬁ)z'

o) _1)"
Z ) F(n, o), F(B,w,) = (4.180)
n=1

n

Setting 6 = 7 in (#.158)) and resum all the zeta functions, we get

— (=1)" e™"B(1 — e721B) Tt B
Z n (1-wleP)2(1- ‘”‘"ﬁz:_36034+240
Z e PR (1 - wy'e P Bq

_2xen-nx? ((2n—1)27% 2n-1 1
_Z e v 32 T e toa, o
= lq°p pe>q*  20qn (4.181)

n=1

o X COS(M(Q—_1 —n)) _2ewn?
+ZZ g V2 . ((2n+1)7r+ q )
y sin(zqﬂ) tqp 201

1 n=0
¢qZ

S

Appendix C More examples for 4D and 6D CFTs

In this appendix, we compute a few more examples of the high temperature expansion
of CFTs with a large rotation inserted. We will focus on insertions R without fixed
points (so that Sy vanishes). Inodd d, SO (d) necessarily has a nontrivial fixed locus,
so we focus on even d. In even d, if we insert R = exp (Zm‘ (%Jl +oF ’;—”Jn))
(namely all the denominators are equal, with ged(p;, g) = 1), then R has no fixed
points and there is no defect action. Previously in Section 4.5 we described 4d
examples with a defect coming from g # ¢»; in this example we will consider the

(simpler) case with no defect action.

We note that the formulas in this section are accurate to all orders in perturbation
theory in S; this is because the free energy of free theories in even dimensions
truncates at O (). This is an accident of free theories in even dimensions and does

not generalize.

Finally, we note that in even dimensions, the Hamiltonian H = D + &g includes a
contribution from the Casimir energy, which is not accounted for in the sum over
characters using plethystic exponentials (see Section 3.1 of [25]] for details on this
scheme, [[113]] for a calculation of the Casimir energy, and e.g. [96] for values of the
a anomaly). We have included this contribution to the final expression (although

terms linear in S are invariant when acting on with (4.32)).
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Example: 4D Z,-twisted complex scalar
Here we consider a 4D free complex scalar. We insert a Z; twist (which we denote
as e™?) where we identify the field ¢ with —¢ as we go around the thermal circle,

in order to remove the gapless sector. Without any insertion of a rotation R, we get
the following free energy:

log Tr [e—ﬂ(H—iﬂl.ll —in]z)eﬂ'iQ]

1
L (1+9Q2)

~

_Txt mEL O] (46X, 07 - 100103465, @YB
180ﬁ3 368 720 .

(4.182)

Now let us consider a rotation by 27/3 in each Cartan direction. As expected, when
we insert the large rotation, we find

log Tr

e—ﬂ(H—iglJl —inJg)eﬂiQe%Ti(%"'JTz) N %log Tr [e—3ﬂ(H—i§21J1—in]z)e?m'iQ] )
(4.183)

Example: 4D Dirac fermion
As discussed in Section[4.4] for fermionic theories we need to compute the partition
function without and with a (—1)¥ insertion:

log Tr [e‘ﬁ(H—iQm—inJz)]

1

It mPG+YL, Q) (18+6%7, Q2 +10Q2Q2 -21%7  QHp
T, (1492 ¥

908 368 1440

(4.184)
IOg Tr [(_1)Fe—ﬁ(H—i§21J1—in]z)e47riQ/3]

1

sort 3+ 3L Q) U8+ 632, Q2 +10Q2Q2 - 2132, QHp
7, (1+9)

12158° 545 1440

(4.185)
Fermions carry U(1) charge. We use a convention where the particle carries charge

+1 and anti-particle carries charge —1. To make sure that the zero mode does
not contribute in the thermal effective field theory description, we turned on the
fugacity corresponding to U(1) and set it to e*"/3, along with a (—1) insertion.
This amounted to turning on Z3 C U(1) flavor symmetry for the partition function

with a (=1)¥ insertion. After turning on a large rotation e2*/171/4¢27)202/4 e get
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the following results (exactly as predicted in Section [4.4):

IOg Tr [e—B(H—iQIJl—iQZJZ)eZHi(é—l+J72)] N %log Tr [e—3ﬁ(H—iQ1J1—iﬂzJ2)] (4.186)
IOg Tr |:e—ﬁ(H—i91J1—in]z)eZﬂ'iQ/:SeZRi(JTI+JTZ):| - %log Tr [(_1)Fe—Zﬁ(H—iglJl—iQ2J2)647TiQ/3] )

(4.187)

Example: 6D twisted complex scalar
Here we consider a 6D free scalar with a Z, twist:

log Tr [e—meizi:] szkmem'Q]

1

320 Tnt(1-33,0Y) mP(8%L,Q2-5%,,.QXQ2-3%7 o
3 2
= (1+Q7)

- + +
75608 216083 21608
(B7+62%; Q2 - 1543, Q2 - 104 37 | QF +70Q202Q2 +42 57 Q2 ¥} Qf-22%7 Q6B
- 60480 '

(4.188)
With the insertion of a large rotation, we get

i b B

10g Tr [e_ﬁ(H—iziq Qk./k)em'QeZm'(T+?+?)] - llOg Tr [e—3ﬁ(H—iZi=l ijk)e37riQ]
3
(4.189)

Example: 6D Dirac fermion

Finally we consider a 6D free Dirac fermion. We get

log Tr [e—B(H—iZi:] szkm]

1
3 2
i:1(1+§2i)

31x® w5+ XL, Q) w(135+26 57, Q2+ 10Xy Q5 2131, )
189085 10803 13205
L(880+55 51, 02— 143, Q10 - T43 51, @f - 100{0303 + 147 51, Q2 51, ©f - 30251, 0B
120960

(4.190)
With an insertion of a rotation R, we get the following:

log Tr [e—ﬁ(H—iZi_l Q) i 1+ 343

- %log Tr | 22 2000 | (4.191)

Appendix D More on nonperturbative terms

In this appendix, we discuss more details on the nonperturbative parts of the partition

function outlined in Section 4.9 In Appendix .10} we derive equations (4.144),
(4.145)) and (@.146)) by performing the worldline path integral. In appendices §.10]
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Figure 4.7: Coordinates on S4~!. The classical pathis 8(7) = 277 and perpendicular
fluctuations y“(7) are integrated over.

M.10] and .10} we verify the universal leading terms in several examples from free
field theory.

Worldline path integral
*  Worldline path integral on the sphere

Let us begin by computing the worldline path integral on S?~!. Let 6 denote
a coordinate along a great circle and let y' (i = 1,...,d — 2) parametrize the

perpendicular directions, see Figure The metric on S9! takes the form:

ds* = dy* + cos® |y| d6>. (4.192)

In the absence of a background gauge field, a single worldline instanton contribution

is given by

1 2 2
/Dx”(T) e‘mi/d“:/Dyi(T) exp —ml-/o dT\/COSZ |y|(%) +(%)

| 1 2
~ 72T / Dy'(7) exp [—m;/ dt (y— - ﬂyz)] , (4.193)
0 4

where in the last line we Taylor-expanded the square root in fluctuations around

the great circleE] We also used reparameterization invariance of the Nambu-Goto
action to set §(7) = 2xr. In the path integral, we sum over periodic paths y'(7)
satisfying y'(0) = y’(1), with the following mode expansion:

00 i

. . > b
yi(1) = Z al, sin(2xnt) + Z b cos(2mnt) + —2. (4.194)
n=1 n=1 \/i

23 This approximation is allowed as long as the thermal wavelength +/27/m is much smaller than
the size of the sphere.
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In writing this mode expansion, we have defined the mode numbers and coefficients
a', bi so that the measure on the moduli space of geodesics is locally []; dai1 db"l.
We furthermore imposed that each mode should be unit-normalized under the inner
product (y,y) =2 f dt|y|*. The path integral can then be reduced to a product of

ordinary integrals over a!,, b’n:@

1 2
_m,-/ dt (i)—ﬂ - ﬂyz)]
-2 ( o " ) .
= 1_[ 1_[ / dd',db', exp [—mzlﬂ (n2 - 1) ((ai,)2 + (bil)z)] X / dbj, exp [mzlﬂ(bi))z]

i=1 n=1

[ byicres

(4.195)

Modes with n > 1 are massive and correspond to oscillations around the geodesic.
The modes with n = O are tachyonic. After adding these tachyonic fluctuations,
the trajectory of the particle will deviate from the great circle and shrink towards a
point, reducing its length (see e.g. Figure 4 and the surrounding discussions in [[79]]).
Consequently, the classical trajectory we are expanding around is an unstable saddle
point of the Nambu-Goto action. To define the integral over the tachyonic directions,
we need to make sense of integral of the form /_ 0:0 dx %" where Re(a?) > 0. We

do so by analytically continuing from the region where Re(@?) < 0 and defining:

/m dx e = (ii)g, Rea? > 0. (4.196)
Furthermore, we make the same choice of sign in (#.196) for integrals over all
such tachyonic modes. This prescription, however, does not remove all ambiguities.
Since there are d — 2 perpendicular directions and each of them contributes a single
tachyonic mode, the overall phase factor is (J_ri)(d‘z). When d is even, both choices
of sign give the same result. But when d is odd, the ambiguity remains. As we
will see in Appendix .10} this remaining two-fold ambiguity is related to a contour

ambiguity in performing a Borel resummation.

The zero modes with n = 1 represent rotations of the great circle. The corresponding

mode coefficients a"l, bi1 are local coordinates on the moduli space of geodesics.

26The path integral measure Dy(7) is induced from a choice of inner product. This inner product
must be local — i.e. an integral over 7 — in order for the path integral to satisfy proper cutting
and gluing rules. However, the overall coefficient of the inner product does not matter because
det(const) = [],,ez const = 1 in {-function regularization. As long as the modes are all normalized
the same way with respect to the inner product, the measure factorizes into an integral over each
mode coefficient Dy = [1; dbj [1,, ; da’,db},.
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Every geodesic on S97! is an intersection of S~! with a 2-plane in R? containing
the origin, so this moduli space is the same as the Grassmannian Gr(2, R4 ). Hence,

the zero mode integral is the volume of this Grassmannian:

d-2 _ _
. dn vol(0(d)) _ vol(8971) x vol(5972)
L_l[ / da' db', = vol(Gr(2,R?)) = IO x Vol 0@ =2)) = TSI .
(4.197)

We can finally explicitly calculate the path-integral over y'(7):

. 1 )
/Dy’(T) exp [—miA dr (i)—ﬂ —ﬂyz)

= vol(Gr(2,R%)) ﬁ ('”')\/Z X ﬁ,i ﬁ, 1
’ i=1 - i n=1 i n=1 n* -1
B rd-1) ° |

where [],,” means we skip the mode n = 1. We computed the infinite product above
using zeta function regularization [8]. In particular, the following formulas are

useful for such computations:
l_[n = V27, and ]_[ a=a'? (a>0). (4.199)
n=1 n=1

Putting everything together, we obtain (.144).

* Worldline path integral on lens space

Three dimensional homogeneous lens space L(g; 1) can be defined as the quo-
tient of the three sphere S* = {(z1,22) € C?||z1|* +|z2|> = 1} by the equivalence
relation (z1,22) ~ (e¥/49z;,e*/9z,). Geodesics in L(g; 1) comes in two types:
the contractable "long geodesics" with length 27, and the non-contractable "short
geodesics" with length 27/g. If g # 2, each short geodesic is an intersection of a
complex line az; +Bz> = 0 with S3, so the corresponding moduli space is Gr(1, C?).
When g = 2, every real two-plane az; +£z2+y7Z1 + 072 in R* intersects S° at a short

geodesic, so the corresponding moduli space is Gr(2, R?).

To compute worldline instanton contributions to the lens space partition function,
we choose the classical trajectory 6(7) to wind around a short geodesic and integrate

over perpendicular fluctuations obeying a slightly different boundary condition:
y'(1)| [eos(Z) —sin(Z)|[y'(0)

(1)) \sin(Z)  cos(3) [\y*(0)

(4.200)
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Introducing the complex variable z(7) = y!(7)+iy?(7), we have the following mode

expansion:
2(1) = Z ¢, 2t/ )T (4.201)
nez
Plugging in (1) = 2’;—’, we find the worldline path integral
1 2 2
do d
/ Dz(7) exp —m,-/ dT\/(l - 1z]?) (—) +E
0 dr dr
2m;
el / dedT, exp [—m,-ﬂ (nzq + 2n) |c,,|2] . (4.202)
nez

When g # 2, the only zero mode is co e?™/9)7_ In this case, following the treatment

of zero modes outlined above, we find

11 m;
dendc, exp |-min (n?q +2n) |cal*| = vol(Gr(1, C?)) — =—,
rlle—[z -/ [ ( ) ] ngo min(2+ng) 2 sm(%)
(4.203)
where we’ve used
vol(Gr(k, C)) = vol(U(d)) NG (k+ 1)G(d -~k + 1)
7T vol(U(k)) x vol(U(d - k) G(d+1) ’
(4.204)

where G (z) is the Barnes G-function.

When ¢ = 2, there are two zero modes coe”™* and c_je ™7, Thus,

1 1
1—[ / dc,dc, exp [—mﬂr (2}12 +2n) |cn|2] = / dcodcode_1dc_y l—[ P TR, T+n

nez }’LEZ;&(),_]

(4.205)

The integral over zero mode coeflicients ¢y and c_; is not exactly the same as
the volume of Gr(2, R*): the correct local coordinates on Gr(2, R*) should be the

coeflicient in front of cos(n7), i cos(n7) sin(srr) and i sin(z7), therefore
dVol(Gr(2,R*)) = 4 dcodcode_ide—; . (4.206)

Combing zero modes with massive modes, we get

2

nm:-.
[1 / dendT, exp [—m,-n (2n2+2n) |cn|2] = - (4.207)

nez

Notice that tachyonic modes never appeared in the computations above. This is
consistent with the fact that short geodesics are non-contractable!



200

*  World line contribution to spin-refined partition function in 4D

We would like to compute single-particle non-perturbative corrections for a spin-
refined sphere partition function in 4D. As explained in Section4.2] the correspond-
ing EFT bundle is non-trivial. By winding around the fundamental cycle in L(g; 1),
one also advances by S along the thermal circle whose total length is gS. Thus, after
Kaluza-Klein reduction, we have a flat connection on an S; 5 bundle over L(g; 1)
whose holonomy along a short geodesic is given by 55 A = B. The corresponding
phase in the worldline action is thus exp( 2ig; =LB) = exp(=+ zmq‘ ). Since the connection
is flat, the classical equations of motion w1ll not be affected, and we can compute
the "Nambu-Goto part" of the worldline path integral in exactly the same way as for

the lens space partition function. Putting everything together, we arrive at (#.146).

A closer look at free field theory

In this subsection, we discuss non-perturbative corrections in free field partition
functions. In particular, we will show that they indeed have the structure predicted
in Section 4.9] Actually, thanks to the Fock space structure of the Hilbert space,
we can easily predict the leading terms in all non-perturbative corrections to free
theory partition functions using worldline instantons. The "free-theory upgraded

predictions” in (4.21T1), (4.213)), and (#.214) can also be checked explicitly, as we
will do in Section

In the language of Section 4.10} there is a worldline instanton correction for each
Poincaré irrep in the d—1 dimensional massive theory on R¢"!. In a free theory,
the Hilbert space furthermore has the structure of a Fock space, so that for any

symmetry generator g, we have

—

TI?H [g] = Z Tl‘q{n [g] = Z TrSym”(?—(l) = exXp (Z ETI‘«]-{I ) , (4208)
n=1 n=1 =1

where H, is the single-particle Hilbert space.

We can apply this result to a free massive theory on S?~! as follows. Consider
the sphere S9~! in "angular" quantization, where we choose an angle ¢ € [0, 27)
and slice the path integral on slices of constant ¢. Each spatial slice is a d—2-
dimensional hemisphere, with some boundary conditions at the equator of the
hemisphere. (Our arguments will be heuristic because we will be vague about

the nature of these boundary conditions, see [4] for a recent discussion.) Let the
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corresponding Hamiltonian be H. The sphere partition function is then

|
Trer (e ) = exp (Z 7T [e—WH]) . (4.209)
=1

Each single-particle worldline instanton discussed in Section 4.10] computes the

leading contribution to Tryy, [e2*]. To instead compute Trey, [e >*H], we should
expand around a classical trajectory 6(7) = 2x{7 that winds ¢ times around the

great circle. Expanding the worldline path integral around this trajectory, we find:

~(d=2)(26-1),, d—2 1
Try [e727H] = )" e72mim () e l)m (1 +0 (E)) (4.210)

m

For a free scalar CFT on S9! x S[';, the single-particle states are KK modes, so that

we expect
|
10g(Ziree[S! x SL]) ~ —Trg e H, (4.211)
B L !

where each Trq{le_z”m is given by || and m runs over the spectrum of KK

masses. Here, "~" means that the right-hand side displays the nonperturbative terms
in the left-hand side.

We can derive similar results for a free massive theory on the lens space L(g;1). If

we consider an instanton on the locus |z;| = 1, wrapping ¢ times around the "short
_2mlp 2xli
geodesic," then the lens space worldline path integral evaluates Trqy, [e « == ]] ,

where J generates a rotation in the z, plane. Hence for the free scalar on L(g; 1)xSL,

when ¢ is odd:

= Z i éTI‘-}{] [e_ZMJH] + Z Z %Trq-{l [e_%H_%J].

m {¢ql
(4.212)

In the last line, we singled out terms where ¢ € gZ. Up to a 1/q factor, the first sum is
exactly the same as the nonperturbative terms in 10g( Zfyee [S?~! % Sé] ). Indeed, since
the short geodesic generates m1(L(g;1)) = Z,, after winding around ¢ times, the
loop becomes contractable. Notice that each contractable long geodesic in L(g; 1)

will be lifted to ¢ different geodesics in S3, so the moduli space of a long geodesic
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in L(g; 1) should have 1/g-th the volume of Gr(2, R*) and this is the origin of the
1/q factor.

Combining everything, the leading order terms are

1 s m2 > 2nlm m
log(Zgee[L(g; 1) x SL]) ~ —= Y e M4 N eTe ———— | (o0ddg),
lftree LA s ; q ; 20 ; 20 sin( L) !
leqz
(4.213)
where "~" means we show nonperturbative corrections. Similarly when ¢ is even,
we find

log(zfree[L(q; 1) X Sl])

IR —27r€m N —2zlm IR —r(20-1)m m?
~ —— D> e + —+— e ——| (evengq).
te(q/2)Z

(4.214)

Partition function from functional determinants
In this section, we use the methods of [12] to compute the partition function of
free scalar theories by explicitly summing over the Laplacian spectrum. We will

find agreement with (4.21T)), (4.213)), and (4.214). In particular, this will verify the
general predictions of Section .10] for free theories.

Consider a massive scalar field on S9! with the action

1 1(d=-2)

Sfree=§/d"‘1x\/§ lgﬂv8“¢8v¢+ m?¢* +4(d )R¢ (4.215)

with R = (d — 1)(d — 2). Here, we have chosen the curvature coupling %§R¢2
to have the form appropriate for a conformally-coupled scalar in d-dimensions,
dimensionally reduced to d—1 dimensions. However, this coupling will not affect
the leading form of nonperturbative corrections that are our main focus. The partition
function is the functional determinant

d—2 21-1/2
Zimassive[S7'] = det | A+ m? +( 1 ) , (4.216)

where A is the Laplace operator on S?~!, which has eigenvalues A; = k(k +d — 2)

with degneracies dy = W Let us focus on d = 4 and d = 6, i.e the

sphere partition function of a massive theory on S and S°.
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Using zeta function regularization, we find

3 sl —2ntm
m e m 1
1Og(Zmassive [S3]) = - Z (m2 + — 5 3) s 4.217)
6 n 2L nl 2n=f

X 2nlm 3
. 51y — T 5 T3 e 4 2m 2 3
log(Zmassive [S7]) = — m ——=m + E (m +—+m (1 + m)

13 3 1
+m|— + + + . 4.218
" (nf 7202 2pheh 271252) ) (*218)

We now need to sum over the KK masses to obtain Zgee [ .S =1 § }),] . Let us consider
Zy-twisted free scalar fields as an example, where the Z, twist is introduced to remove
a zero mode upon dimensional reduction. The KK mass spectrumism = |(2n—1) /8]

for n € Z. Thus, the free energy ind =4 and d = 6 1s

o0 2 2 2
3ol _22@-ne ] ((2n—1)"n" 2n-—1 1
log(zfree [S7 % Sﬁ]) ~ ; ; € r z ( ﬁz + ,352 + 27203 )

(4.219)

log(zfree [SS X Slé])

-~ i i e 27 (2n=1)t/B 7r4(2n _ 1)4 N 27r2(2n _ 1)3
12¢ B B3

+7r2(2n—1)2(1+ 3 )+ﬂ(2n—l)(i 3 3 1 ))

n=1 (=1

+ +
B2 n2(2 B nl " w22 27t T 2n2e2
(4.220)

" "
~

where means we only show non-perturbative corrections. These results are

in agreement with the general form (#.211) predicted from worldline instantons,

together with the Fock-space structure of the free theory.

The same approach can be generalized to compute a lens space partition function
in 4D. We display the result here for a more direct comparison with the twisted

partition function:

7rm3 1 e e—27r€m m 1
log(Zmassive[L(g; 1)]) = _q - ( ? % + 27.(2[2)

+ i % (2% + #) (g €2Z+1), (4.221)
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7rm3 1 e—27r€m m 1
108(Zmassive [ L(g; 1)]) = — — — 2y —+
0g(Zmassive [ L(g; 1)]) 6q g4 ¢ (m y 27.(252)
1 o ¢ 72l=1)m 2 2
+— Z S (m2 P )
g4 20-1 n(2€—-1) n2(2¢-1)2
00 _2ntm
e 4 m q )
+ —  ([—=+ = € 27). 4.222
Z; o (M) (25 me)  (e2m). (4222)
(237 1

In Appendix @.10] we computed the high temperature expansion of a free scalar
2ni 2nri
===

twisted by e 4 T, Restricting to odd g and inserting a Z; twist to remove

the zero mode, we find

log (Tr [e_ﬁH_%J”_%J” (—1)N])

_uen-n2 ((2n—-1)%72 2n-1 1
~ = E E e ap + +
tq3p? B2g%  203gn?

n=1 {=1
2rt q-1
© 2 cos(ZE(H5- —n)) _2eena? '+ 1
+ 2 e B (( ntDx 9 ) (4.223)
21 00 s1n(T) tqp 2t°m
2

" n
~

where means we only show non-perturbative corrections and N is the ¢-number

operator, so that (—1)" implements the Z, twist. Note that this is not quite identical to
[2n+1|m
gB
To obtain the twisted partition function (4.223)), we must additionally modify the
lens space result to account for the nontrivial background gauge field. To do so, we
2rilq; )
=)

the lens space partition function (4.221)) summed over the mass spectrumm =

multiply each term in the summation over short geodesics by a phase exp(
For a Z; twisted free scalar field, the KK charge spectrum is q = n + % + %. After
putting in all the phases, we recover (4.223)). Finally, note that this result is consistent
with the general prediction (4.146) from worldline instantons.

Free theories in odd dimension

The examples presented in Section .10 were all in even d. In odd d, we face the
puzzle that the contribution of a worldline instanton (4.144)) is imaginary (even when
the partition function should be real), and furthermore its phase depends on how
we choose the integration contours for tachyonic modes. The proper interpretation
of these kinds of contributions is explained for example in [[7/9]. They can be
understood as characterizing singularities in the Borel plane when computing the

partition function via Borel resummation.
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In this appendix, we provide a quick summary of the discussion from [79] in
the example of a massive free scalar on S2. (We can think of this theory as the
contribution of a single KK mode to the partition function of the 3D free scalar on
5% x Sé.) We can compute the partition function in terms of the heat trace, following
Appendix The heat trace on S is

Tr [e—f(AJf(dEZ)Z)] Z(2k+ e t(k+3)? _ Z lk + = |€—t(k+2)2

kez (4.224)
Z ( 27r€ (ﬂ[ ))
- t 132 ’
=AU Vi
where F(z) is Dawson’s function which admits the following asymptotic expansion
near z = oo -
(2n - 1! ”*
F(z) ~ Z T . (4.225)
The heat trace therefore has the following expansion near ¢ = 0:
As(d=2)? b . (_l)n+1 (1 _ 21—2n)
Tr [ @ 0| 3 au, a, = By, (4.226)
oy n!

where B;, are the Bernoulli numbers.

Let us now perform a Borel resummation of the series ® = 3} * ; a,t":

S[®](r) = % /O i d¢ el Bo(2), (4.227)

where the Borel transformed series 8D (() is

N G e 1L
B¢(§)—;F(H+%)§ - @ (4.228)

With this expression for B8, the integral in (4.227) is apparently ill-defined since

there are poles located at { = ¢x, £ € Z on the positive real axis. A contour

prescription is needed to define the integral.

One natural option is to deform the integration contour to pass over (we will refer
to the corresponding contour as C;) or under (we will refer to the corresponding
contour as C_) the poles. However, these two choices are not equivalent. Their

difference is the sum of residues at the poles:

2 32
il ¢ el Bd(2) = 2it (f) =D ege T, (4.229)
Vi Jec. Y m
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The ambiguity in integration contour leads to an ambiguity in the Borel-resummed

heat trace:

N2 2 -t 3/2 2.2
Tr I:e—l(A'f'(%) )] = 3/2 / dé« é/e‘ + 2l (z) Z O_Ki(_l)€+1|€|e_(’ =
\rt ) sin t —

(4.230)
where o7 are arbitrary coefficients which jump as we switch from C; to C_. If we
require the heat trace to be real when ¢t € R, then the O'E—" are fixed to be i%. This

is equivalent to a principal value prescription for the Borel integral:

_ d-2)2 2 ® é'e_évz/l
tA+(5)) | =
Tr[e (452 ]_ m3/2/0 d{P[ 7 ] 4.231)

To compute log Z, we must supply a factor of e~ and integrate f dt/t. If we
start with (4.231)), we get a valid integral representation for the partition function.
However, if we start with (4.230) and perform the z-integral term by term, we obtain

the series of nonperturbative corrections

' o0 (_l)fe—ZHm{f 1
=+ , 4232
* ; ; Mo (4.232)

whose leading terms in m agree precisely with the worldline instanton predictions

4.210) and (4.211) when d = 3.

To summarize, worldline instantons encode residues of certain singularities in the

log(Zyee [Sz])

non-perturbative

Borel plane. We conjecture that this remains true in interacting theories. In gen-
eral, the thermal effective action gives an asymptotic expansion in 8. When we
Borel-resum this expansion, we encounter singularities in the Borel plane coming

from worldline instantons (together with other nonperturbative effects like instanton

graphs).
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