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ABSTRACT

This thesis explores the asymptotic behavior of Conformal Field Theory (CFT) data
at high energies using thermal effective action methods. Well-established results
from two dimensions like Cardy formula, OPE coefficient asymptotics, and spin-
refined partition function are extended to higher-dimensional theories.

In the first part (Chapter 2), we study the asymptotic density of states formula to
CFTs with continuous symmetries. Building on recent work that established the
formula for finite groups, we derive universal results for compact Lie groups 𝐺.
Together with checking on various theories, the formula is explained with thermal
effective action.

In the second part (Chapter 3), we develop the systematic exploration of thermal
effective action methods for Cardy formula for the general dimension. Additionally,
by introducing the "hot spot hypothesis," shrinking circles in complex geometries
act as local thermal circles, and we extends the applicability of thermal effective
action from simple fibrated manifolds to diverse geometries with extreme focusing
structures, opening new avenues for computing CFT observables.

In the third part (Chapter 4), we uncover a fractal-like structure in spin-refined
partition functions in higher dimension using a cutting and gluing technique, de-
composing the geometry into successive quotients and identifying Kaluza-Klein
vortex defects. This reveals how thermal effective action methods remain robust
even for discrete geometries and rational rotations.

Our methods are purely field-theoretic and apply to both holographic and non-
holographic theories. The results have implications for understanding black hole
microstates in AdS/CFT, the statistics of OPE coefficients, and potential extensions
of bootstrap axioms beyond traditional crossing symmetry. The thermal effective
action framework studied here provides a systematic approach to computing high-
energy asymptotics in CFTs, opening new avenues for exploring the structure of
conformal field theories in dimensions greater than two.
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C h a p t e r 1

INTRODUCTION

Conformal Field Theory (CFT) is a special type of Quantum Field Theory that
possesses strong symmetry, conformal symmetry. Because of this symmetry, we
can write down all correlation functions once the "CFT data" are given: the scaling
dimensions and charges of primary operators, and the OPE coefficients. Further-
more, checking consistency conditions of the theory imposes strong constraints on
this data [194].

Crossing symmetry is a representative consistency condition concerning the as-
sociativity of the Operator Product Expansion (OPE). Although the concept is
simple, the constraints it provides are deep and their constraining power has not
been exhausted. As researchers overcome more technical difficulties in checking
this consistency condition, it yields increasingly powerful constraints on CFT data,
including that of the critical 3D Ising model [60, 87, 149].

Another famous consistency condition is modular invariance in 2D. The partition
function of a CFT on the torus remains unchanged regardless of how we set the time
direction. Modular invariance in 2D CFT fundamentally constrains local data. For
example, it determines the spectrum of minimal models and provides bounds on
physical quantities such as the Hellerman bound and HKS bound [146].

The S-transformation of modular invariance is particularly useful for obtaining
high-energy asymptotic data like the Cardy formula and OPE coefficients in certain
limits. This is because it can translate high-temperature conditions from a Laplace-
transformed perspective to the domination of a single state or single Virasoro block.
How to perform similar analyses for higher-dimensional (d>3) CFTs has not been
clearly understood, and my collaboration during graduate study was a journey to
answer this question.

In Chapter 2, we further tested the high-energy asymptotic formula (2.1) conjectured
in [102], which describes the density of states for given energy and charges under
symmetry. We extended the conjecture to continuous symmetry as shown in equation
(2.4), and we checked the formula on theories invariant under both𝑈 (1) symmetry
and non-abelian symmetry using free theory and holographic CFT. In this work, we
first used the thermal effective action to explore asymptotic CFT data.
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The concept of the thermal effective action was explained in [14, 127]. If a CFT does
not have any protected gapless modes, we generically do not expect compactification
of the CFT on a thermal circle to be gapless. The compactified theory typically has
a nonzero mass gap 𝑚gap ∝ 𝑇 and a finite correlation length 𝜉 = 1/𝑚gap.

On the other hand, when we couple a gapped quantum field theory to a background
field, the partition function of the theory has an effective description using a local ef-
fective action of the background field. Through these two steps, we can approximate
the partition function of a metric-coupled CFT in 𝑑 dimensions with a thermal circle
using a local effective action in 𝑑 − 1 dimensions. We call this the thermal effective
action. See also [192] and the introduction sections of Chapter 3 and Chapter 4 for
details.

In Chapter 3, we calculate the partition function of CFTs on various manifolds using
the thermal effective action, which gave us universal formulas for the asymptotics.
We establish that the density of states follows the equation (3.74), with systematic
corrections from higher-derivative terms. For heavy-heavy-heavy OPE coefficients,
we construct a higher-dimensional analog of the genus-2 Riemann surface by gluing
two three-punctured spheres 𝑆𝑑 with cylinders. Through analysis of "hot spots"
where thermal circles shrink, we derive asymptotic formulas for squared OPE co-
efficients, finding the equation (3.243). We also determine universal formulas for
thermal one-point functions of heavy operators.

In Chapter 4, we develop a cutting and gluing technique to compute spin-refined
partition functions, revealing an intricate fractal-like structure in the partition func-
tion 𝑍 (𝛽, 𝜃) as a function of angular fugacity. Near every rational angle 𝜃 = 2𝜋𝑝/𝑞,
the partition function exhibits universal asymptotic behavior with the free energy
scaling as 𝑓 /𝑞𝑑−1.
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C h a p t e r 2

UNIVERSAL FORMULA FOR THE DENSITY OF STATES
WITH CONTINUOUS SYMMETRY

2.1 Introduction
In [102], a simple formula is derived for the density of black hole microstates in
theory with finite group gauge symmetry 𝐺. The formula states that, if we pick a
random state from a uniform distribution of all states of the black hole, the probability
of it being in a unitary irreducible representation 𝑅 of 𝐺 is

𝑃𝑅 =
(dim𝑅)2

|𝐺 | , (2.1)

where |𝐺 | is the number of elements in 𝐺 so that∑︁
𝑅

𝑃𝑅 = 1 . (2.2)

It was also conjectured in the paper that the formula applies to any conformal field
theory (CFT) on a sphere with finite group global symmetry 𝐺. This generalizes
the result of [174] from two dimensions to arbitrary dimensions. The conjecture is
verified in the context of free field theories and weakly coupled theories in [42], and
a general derivation is presented in [160] using the result of [54]. See also [66] for
earlier results on black holes with discrete gauge charges in specific models.

In this paper, we generalize this result to the case where 𝐺 is a compact Lie group.
Since |𝐺 | is infinite and 𝐺 has infinitely many unitary irreducible representations,
equation (2.1) needs modifications. We show that, at high temperature and on a com-
pact Cauchy surface, the probability 𝑃𝑅 for a random state to be in a representation
𝑅 of 𝐺 is given by

𝑃𝑅 = (dim 𝑅)2
(

4𝜋
𝑏𝑇 𝑑−1

)dim𝐺/2
exp

[
− 𝑐2(𝑅)
𝑏 𝑇 𝑑−1 + · · ·

]
, (2.3)

where 𝑇 is the temperature, 𝑑 is the dimensions of the spacetime of the CFT,
𝑐2(𝑅) is the second Casimir of 𝑅, and · · · represents terms subleading in 1/𝑇 . An
important point is that 𝑏 is a positive constant independent of 𝑅 and 𝑇 . For small
representations, where 𝑐2(𝑅) ≪ 𝑇 𝑑−1, the 𝑅-dependence of 𝑃𝑅 is captured by the
(dim 𝑅)2 factor as in the finite group case (2.1). For large representations where
𝑐2(𝑅) ≫ 𝑇 𝑑−1, 𝑃𝑅 decays exponentially.
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We derive equation (2.3) by calculating the twisted partition function,

𝑍 (𝑇, 𝑔) = Tr
[
𝑈 (𝑔) 𝑒−𝛽𝐻

]
, (2.4)

where the trace is taken over the CFT Hilbert space, 𝑈 (𝑔) is the action of 𝑔 ∈ 𝐺
on the Hilbert space, 𝛽 = 1/𝑇 , and 𝐻 is the Hamiltonian. When 𝑔 = 1, it is the
standard partition function with the universal large 𝑇 behavior,

𝑍 (𝑇, 𝑔 = 1) = exp
(
𝑎 𝑇 𝑑−1 + · · ·

)
, (2.5)

for some constant 𝑎. In two dimensions, it is related to the Cardy formula with

𝑎 = 𝜋2(𝑐𝐿 + 𝑐𝑅)/6 , (2.6)

where 𝑐𝐿 and 𝑐𝑅 are the central charges in the left and right movers.

We employ the spurion analysis for the theory obtained by dimensional reduction of
the CFT on the thermal circle and show that the 𝑔 dependence of 𝑍 (𝑇, 𝑔) is of the
form

𝑍 (𝑇, 𝑔 = 𝑒𝑖𝜙) = exp
(
𝑎 𝑇 𝑑−1 − 𝑏

4
𝑇 𝑑−1⟨𝜙, 𝜙⟩ + · · ·

)
, (2.7)

where the inner product ⟨𝜙, 𝜙⟩ is given by the Killing form. In this description,
the constant 𝑏 is related to the tension of the domain wall which generates the 𝑔-
twisted sector and therefore is positive. We also verify this formula by calculating
𝑏 for free field theories and for holographic conformal field theories. Since the
twisted partition function 𝑍 (𝑇, 𝑔) is a class function of 𝑔, i.e., invariant under the
conjugation 𝑔 → ℎ𝑔ℎ−1 for any ℎ ∈ 𝐺, we can expand 𝑍 (𝑇, 𝑔) in characters 𝜒𝑅 (𝑔)
of unitary irreducible representations of 𝐺. We calculate the coefficients for the
expansion of equation (2.7) and obtain

𝑍 (𝑇, 𝑔)/𝑍 (𝑇, 1) =
(

4𝜋
𝑏𝑇 𝑑−1

)dim𝐺/2 ∑︁
𝑅

dim 𝑅 · 𝜒𝑅 (𝑔) exp
(
− 𝑐2(𝑅)
𝑏 𝑇 𝑑−1 + · · ·

)
.

(2.8)
Our main result (2.3) then follows.

For 𝑑 = 1, equation (2.3) is derived for BF gauge theory coupled to Jackiw–
Teitelboim gravity [129]. For 𝑑 = 2, the formula for 𝐺 = 𝑈 (1) is derived using
the modular invariance of 2D CFTs [174]. Our results generalize this to 𝑑 ≥ 3
and to non-abelian 𝐺. The exponential suppression factor in equation (2.7) is also
mentioned for free field theories in a note added to [42]. We note that the right-hand
side of equation (2.8) is in the same form as that of the partition function of the
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two-dimensional Yang–Mills theory with gauge group 𝐺 and the coupling constant
proportional to 1/𝑇 (𝑑−1)/2 [30, 90, 166, 184, 205]. There may also be a connection
between our results and the recent study of the entanglement entropy in the presence
of a global symmetry [53].

In the holographic derivation of equation (2.8), we use the Einstein gravity coupled
to the Yang–Mills theory with gauge group 𝐺 and a finite number of matter fields in
anti-de Sitter space (AdS). When 𝐺 is non-abelian, there are two types of relevant
bulk geometries besides the thermal AdS: black holes with and without non-abelian
hair. Both bulk geometries obey the same boundary condition at the infinity of AdS.
However, the former has genuinely non-abelian configurations of the gauge field,
while the gauge field in the latter is commutative. There is extensive literature on
such solutions (see [202, 204] for some reviews). One of the outstanding questions
in this area has been whether solutions with non-abelian hair are thermodynamically
stable. As we will show in this paper, the two types of solutions, with and without
non-abelian hair, converge in the high temperature limit 𝑇 → ∞. We compute the
1/𝑇 corrections to their thermodynamical quantities for purely electric solutions
and show that the black holes with non-abelian hair have lower free energies. This
determines that the black holes with non-abelian hair are thermodynamically more
stable.

The coefficients 𝑎 and 𝑏 computed for free field theories and holographic CFTs
are summarized in Table 2.1 below. When we have 𝑁 free scalars or 𝑁 free
fermions, both 𝑎 and 𝑏 are proportional to 𝑁 . In holographic CFTs, both 𝑎 and 𝑏 are
proportional to ℓ𝑑−1/𝐺𝑁 assuming 𝐺𝑁 ∼ 𝑒2, where 𝐺𝑁 is the Newton’s constant, 𝑒
is the gauge coupling constant, and ℓ is the curvature radius of AdS. Thus, in both
the free field theories and holographic CFTs, 𝑎 and 𝑏 are proportional to the number
of degrees of freedom of the system.
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𝑎 𝑏

A free scalar with 𝐺 = 𝑈 (1) 2𝜁 (𝑑) 4𝜁 (𝑑 − 2)

A free scalar in
a representation 𝜌 of 𝐺 2𝜁 (𝑑) dim 𝜌 4𝜁 (𝑑 − 2) 𝑐2(𝜌)

dim 𝜌

dim𝐺

A free spinor with 𝐺 = 𝑈 (1)
𝑑 = 2 : 𝜁 (2) = 𝜋2/6

𝑑 = 3 : 3𝜁 (3)

1

16 log 2

Holographic CFT
(
4𝜋
𝑑

)𝑑−1
𝑤𝑑−1ℓ

𝑑−1

4𝑑𝐺𝑁

(
4𝜋
𝑑

)𝑑−2 4(𝑑 − 2)𝑤𝑑−1ℓ
𝑑−1

𝑒2

Table 2.1: The coefficients 𝑎 and 𝑏 in equation (2.5) for a variety of CFTs. For the
free scalar, the results are for 𝑑 > 3. 𝑤𝑑−1 is the area of the unit (𝑑 − 1)-sphere.

The organization of this paper is as follows. In Section 2.2, we give a general
argument for the large 𝑇 behavior in equation (2.7) using the spurion analysis for
the theory obtained by dimensional reduction of the CFT on the thermal circle. In
Section 2.4, we derive the large 𝑇 behavior when 𝐺 = 𝑈 (1) for free field theories
and holographic CFTs. In Section 2.5, we generalize these results to a non-abelian
group 𝐺. The holographic dual in this case involves the Yang–Mills theory with
gauge group 𝐺, and we need to consider two types of black hole solutions: those
with and without non-abelian hair. We show that the two solutions converge at high
temperature and reproduce the behavior in equation (2.8). In Section 2.6, we discuss
the theormodynamical stability of the black hole with non-abelian hair.

2.2 Spurion analysis
Consider a 𝑑-dimensional CFT on a (𝑑 − 1)-dimensional compact Cauchy surface
Σ𝑑−1 times the thermal circle 𝑆1

𝛽
at temperature𝑇 = 1/𝛽. We assume that the CFT is

invariant under a compact Lie group 𝐺. To calculate the twisted partition function
(2.4), we use the approach of [14, 75, 126] and couple the CFT to a background
gauge field 𝐴 with gauge group 𝐺.1 Upon dimensional reduction on 𝑆1

𝛽
, dynamical

degrees of freedom acquire thermal masses. The low energy theory on Σ𝑑−1 is
then described by a gauge field 𝑎 = 𝐴|Σ𝑑−1 coupled to a scalar field 𝜙 in the adjoint
representation of 𝐺, which is related to the holonomy of the gauge field around the

1We thank David Simmons-Duffin for discussion on this approach.
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thermal circle as

𝑔 = exp

(
𝑖

∮
𝑆1
𝛽

𝐴

)
≡ 𝑒𝑖𝜙 . (2.9)

The low energy effective Lagrangian in (𝑑 − 1) dimensions has the derivative
expansion,

L = trAdj
[
𝑇 𝑑−1𝑉 (𝑒𝑖𝜙) + 𝑐 𝑇 𝑑−3(D𝜙)2 + 𝑔−2

𝑌𝑀𝐹
2 + · · ·

]
, (2.10)

where the trace is taken over the adjoint representation, the scalar potential Tr𝑉 (𝑔)
is a class function of 𝑔 as required by gauge invariance in 𝑑 dimensions, D is the
covariant derivative, 𝐹 = 𝑑𝑎+𝑎2, and · · · are terms suppressed by 1/𝑇 . The twisted
partition function 𝑍 (𝑇, 𝑔) is obtained by setting 𝑔 = 𝑒𝑖𝜙 to be constant and 𝑎 = 0.
Therefore, its 𝑔-dependence is captured by the potential term Tr𝑉 (𝑔) in the effective
Lagrangian as

𝑍 (𝑇, 𝑔)/𝑍 (𝑇, 1) = exp
(
−trAdj

[
𝑇 𝑑−1𝑉 (𝑔) vol(Σ𝑑−1)

]
+ · · ·

)
. (2.11)

Now, we relate the potential Tr𝑉 (𝑔) to the tension of the domain wall which generates
the 𝑔-twisted sector in the CFT Hilbert space. To do so, we note that the Lagrangian
density (2.10) is of the same form for any smooth compact manifold Σ𝑑−1, provided
we use the metric ofΣ𝑑−1 to writeL in a diffeomorphism invariant way. In particular,
we can choose Σ𝑑−1 = 𝑆1×Σ𝑑−2, with 𝑆1 having unit circumference and the thermal
boundary condition, and compute 𝑉 (𝑔) for this geometry. By exchanging the
thermal circle 𝑆1

𝛽
with 𝑆1, we can interpret the twisted partition function 𝑍 (𝑇, 𝑔)

as the untwisted partition function in the 𝑔-twisted sector on 𝑆1
𝛽
× Σ𝑑−2 with the

twist along the 𝑆1
𝛽

direction [189]. Since we are computing the partition function
of the CFT, we can rescale the spacetime so that the thermal circle 𝑆1

𝛽
has unit

circumference and the volume of 𝑆1 × Σ𝑑−2 is proportional to 𝑇 𝑑−1. In the limit
of 𝑇 → ∞, the exponent Tr

[
𝑇 𝑑−1𝑉 (𝑔) vol(Σ𝑑−1)

]
+ · · · of equation (2.11) can be

interpreted as the ground state energy of the 𝑔-twisted sector on 𝑆1
𝛽
×Σ𝑑−2 times the

circumference 𝑇 of the rescaled 𝑆1.

Since we expect that the ground state energy of the 𝑔-twisted sector with 𝑔 ≠ 1
is higher than that of the untwisted ground state, Tr𝑉 (𝑔) should have the global
minimum at 𝑔 = 1. Therefore, in the high temperature limit,

𝑍 (𝑇, 𝑔)/𝑍 (𝑇, 1) → 𝐶 (𝑇) 𝛿(𝑔, 1), 𝑇 → ∞, (2.12)
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for some𝐶 (𝑇), where 𝛿(𝑔, 1) is the delta-function on the group manifold𝐺 localized
at 𝑔 = 1. Since the delta-function can be expanded in terms of characters as

𝛿(𝑔, 1) =
∑︁
𝑅

dim 𝑅 · 𝜒𝑅 (𝑔), (2.13)

where the sum is over unitary irreducible representations of 𝐺 and we normalized
the volume of 𝐺 to be 1, we conclude that the probability 𝑃𝑅 for a random state to
be in the representation 𝑅 is proportional to (dim 𝑅)2, for fixed 𝑅 in the limit of
𝑇 → ∞. This explains the (dim 𝑅)2 factor in equation (2.3).

To reproduce the exp
[
−𝑐2(𝑅)/(𝑏 𝑇 𝑑−1)

]
factor in equation (2.3), we expand the

potential Tr𝑉 (𝑔) around 𝑔 = 1. Since it is a class function of 𝑔, the expansion
should take the form,

trAdj
[
𝑇 𝑑−1𝑉 (𝑔 = 𝑒𝑖𝜙) vol(Σ𝑑−1)

]
= constant + 𝑏

4
𝑇 𝑑−1⟨𝜙, 𝜙⟩ + · · · . (2.14)

The coefficient 𝑏 must be non-negative since the minimum of Tr𝑉 (𝑔) is at 𝑔 = 1.
This reproduces equation (2.7). As we will show in Section 4.4, this is equivalent
to equation (2.8) and therefore to equation (2.3).

2.3 Expansion in characters
We have shown that the twisted partition function has the universal high temperature
behavior,

𝑍 (𝑇, 𝑔 = 𝑒𝑖𝜙)/𝑍 (𝑇, 1) = exp
[
−𝑏

4
𝑇 𝑑−1⟨𝜙, 𝜙⟩ + · · ·

]
. (2.15)

Since it is a class function of 𝑔, we can expand it in characters 𝜒𝑅 (𝑔). The purpose
of this section is to find the expansion coefficients and derive equation (2.8).

To do so, we use the fact that the left-hand side of (2.15) approximately solves the
heat equation for 𝑇 ≫ 1 as(

𝑏𝑇 𝑑

𝑑 − 1
𝜕

𝜕𝑇
+ Δ

) [(
𝑏𝑇 𝑑−1

4𝜋

)dim𝐺/2
𝑍 (𝑇, 𝑔)
𝑍 (𝑇, 1)

]
≃ 0, (2.16)

and obeys the initial condition,(
𝑏𝑇 𝑑−1

4𝜋

)dim𝐺/2
𝑍 (𝑇, 𝑔)
𝑍 (𝑇, 1)

�����
𝑇=∞

= 𝛿(𝑔, 1) . (2.17)

Here Δ is the Laplace operator on the group manifold 𝐺. Since each character is an
eigenstate of the Laplace operator,

Δ𝜒𝑅 (𝑔) = −𝑐2(𝑅)𝜒𝑅 (𝑔), (2.18)
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and since characters make an orthonormal basis of class functions, {𝜒𝑅 (𝑔)𝑒−𝑐2 (𝑅)/(𝑏𝑇𝑑−1)}𝑅
gives the complete set of solutions to the heat equation. Therefore, we can expand,(

𝑏𝑇 𝑑−1

4𝜋

)dim𝐺/2
𝑍 (𝑇, 𝑔)
𝑍 (𝑇, 1) ≃

∑︁
𝑅

𝑑𝑅 𝜒𝑅 (𝑔) exp
(
− 𝑐2(𝑅)
𝑏 𝑇 𝑑−1

)
. (2.19)

To determine the expansion coefficient 𝑑𝑅, we use the initial condition (2.17), which
can be written as ∑︁

𝑅

𝑑𝑅 𝜒𝑅 (𝑔) = 𝛿(𝑔, 1). (2.20)

Since 𝛿(𝑔, 1) = ∑
𝑅 dim 𝑅 · 𝜒𝑅 (𝑔), the expansion coefficients are determined as

𝑑𝑅 = dim 𝑅 , (2.21)

and we obtain

𝑍 (𝑇, 𝑔)/𝑍 (𝑇, 1) =
(

4𝜋
𝑏𝑇 𝑑−1

)dim𝐺/2 ∑︁
𝑅

dim 𝑅 · 𝜒𝑅 (𝑔) exp
(
− 𝑐2(𝑅)
𝑏 𝑇 𝑑−1 + · · ·

)
.

(2.22)

2.4 Examples 1: 𝑈 (1) symmetry
In the remainder of the paper, we will study free field theories and holographic CFTs
on 𝑆1

𝛽
× 𝑆𝑑−1 and calculate the coefficient 𝑏 explicitly. The circumference of the

thermal circle 𝑆1
𝛽

is 𝛽, and the radius of the Cauchy surface 𝑆𝑑−1 is normalized to
be 1.

We begin by studying CFTs with 𝐺 = 𝑈 (1). Each state in the Hilbert space can be
labeled by a charge 𝑄, and the conjectured formula takes the form,

𝑃𝑄 =

√︂
4𝜋𝑏
𝑇 𝑑−1 exp

[
− 𝑄2

𝑏 𝑇 𝑑−1

(
1 + O

(
1
𝑇
,
𝑄2

𝑇2𝑑−4

))]
. (2.23)

We verify this by calculating the grand canonical partition function with an imagi-
nary chemical potential 𝜇 = 𝑖𝑇𝜃,

𝑍 (𝑇, 𝜇 = 𝑖𝑇𝜃) = Tr
[
𝑒−𝛽𝐻+𝑖𝜃𝑄

]
. (2.24)

We assume that𝑄 is quantized in such a way that the field with the smallest non-zero
𝑈 (1) charge has charge 1. In the limit of large 𝑇 and small 𝜇, we show

𝑍 (𝑇, 𝜇) = exp
[
𝑎𝑇 𝑑−1

(
1 + O

(
1
𝑇

))
+ 𝑏

4
𝑇 𝑑−3𝜇2

(
1 + O

(
𝜇2,

1
𝑇

))]
, (2.25)

for some constants 𝑎 and 𝑏. The Fourier transformation of this formula with respect
to 𝜃 = −𝑖𝛽𝜇 gives the canonical partition function, which leads to equation (2.23).
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Free field theory
Free scalar theories:

Consider a massless complex free scalar field 𝜙 in 𝑑 spacetime dimensions.2 We
normalize the 𝑈 (1) generator 𝑄 such that 𝜙 has charge 1. For such a theory on
R×𝑆𝑑−1, the grand canonical partition function with an imaginary chemical potential
is given by [165],

𝑍scalar(𝑇, 𝜇 = 𝑖𝑇𝜃) = exp

[ ∞∑︁
𝑛=1

𝑒−𝑛𝛽
𝑑−2

2

𝑛
cos(𝑛𝜃) (1 − 𝑒−2𝑛𝛽)

(1 − 𝑒−𝑛𝛽)𝑑

]
. (2.26)

As we are interested in the high temperature limit, that is, when 𝜃 = −𝑖𝛽𝜇 is small,
we first expand the exponent in powers of 𝜃 as

𝑍scalar(𝑇, 𝜇) = exp

[ ∞∑︁
𝑘=0

𝐶𝑘𝜃
2𝑘

]
, (2.27)

where the coefficient 𝐶𝑘 is given by

𝐶𝑘 =
(−1)𝑘
(2𝑘)!

∞∑︁
𝑛=1

𝑛2𝑘−1𝑒−
(𝑑−2)

2 𝑛𝛽 (1 − 𝑒−2𝑛𝛽)
(1 − 𝑒−𝑛𝛽)𝑑

. (2.28)

At high temperature, one might think that the sum over 𝑛 in equation (2.28) can be
approximated by an integral over 𝑥 = 𝑛𝛽 as

𝐶𝑘 ≈
(−1)𝑘
(2𝑘)!𝑇

2𝑘
∫ ∞

0
𝑓 (𝑥)𝑑𝑥, 𝑓 (𝑥) = 𝑥2𝑘−1𝑒−

𝑑−2
2 𝑥 (1 − 𝑒−2𝑥)

(1 − 𝑒−𝑥)𝑑
. (2.29)

However, we need to be careful when 2𝑘 ≤ 𝑑 − 1 as 𝑓 (𝑥) is singular at 𝑥 = 0 and
the integral approximation will fail when 𝑥 is small. To take this into account, we
introduce a cutoff at some small value 𝑥0 and use the integral approximation only for
𝑥 > 𝑥0. The terms in the summation in equation (2.28) are not converted to integral
form when 𝑛 is such that 𝑛𝛽 < 𝑥0. Taking this singular behavior into account, the
correct approximation is

𝐶𝑘 ≈
(−1)𝑘
(2𝑘)!

(
2𝑇 𝑑−1

𝑥0𝑇∑︁
𝑛=1

𝑛2𝑘−𝑑 + 𝑇2𝑘
∫ ∞

𝑥0

𝑑𝑥 𝑓 (𝑥)
)
. (2.30)

2We generally assume that 𝑑 > 3 due to certain subtleties with massless scalar fields in two and
three dimensions which we discuss later.
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It is straightforward to show that equation (2.30) is independent of 𝑥0 for large values
of 𝑇 . In this way, we find that the coefficients 𝐶𝑘 can be approximated as

𝐶𝑘 ≈



(−1)𝑘
(2𝑘)!

(∫ ∞

0
𝑑𝑥 𝑥2𝑘−1𝑒−

𝑑−2
2 𝑥 (1 − 𝑒−2𝑥)

(1 − 𝑒−𝑥)𝑑

)
𝑇2𝑘 2𝑘 ≥ 𝑑, (2.31a)

(−1)𝑘
(2𝑘)!

(
2 log𝑇 + 2𝛾 + 2 log 𝑥0

+
∫ ∞

𝑥0

𝑑𝑥 𝑥2𝑘−1𝑒−
𝑑−2

2 𝑥 (1 − 𝑒−2𝑥)
(1 − 𝑒−𝑥)𝑑

)
𝑇𝑑−1

2𝑘 = 𝑑 − 1, (2.31b)

(−1)𝑘
(2𝑘)! 2𝜁 (𝑑 − 2𝑘)𝑇𝑑−1

− (−1)𝑘
(2𝑘)! 𝑇

2𝑘

(
2𝑥2𝑘−𝑑+1

0
𝑑 − 2𝑘 − 1

+
∫ ∞

𝑥0

𝑑𝑥 𝑥2𝑘−1𝑒−
𝑑−2

2 𝑥 (1 − 𝑒−2𝑥)
(1 − 𝑒−𝑥)𝑑

) 2𝑘 < 𝑑 − 1. (2.31c)

The constant 𝛾 appearing in equation (2.31b) is the Euler–Mascheroni constant. At
𝜃 = 0, the partition function is 𝑍scalar(𝑇, 0) = 𝑒𝐶0 . Since equation (2.31c) gives
𝐶0 = 2𝜁 (𝑑) 𝑇 𝑑−1, the coefficient 𝑎 in equation (2.5) is given by 𝑎 = 2𝜁 (𝑑) for the
massless free scalar.

For 𝑑 > 3, equation (2.31c) gives

𝐶1 ≈ 𝜁 (𝑑 − 2) 𝑇 𝑑−1 , (2.32)

where we ignore the second term of equation (2.31c), since it is subleading in 1/𝑇 .
Thus we find that the grand canonical partition function is

𝑍scalar(𝑇, 𝜇) ≈ exp
[
𝜁 (𝑑 − 2) 𝑇 𝑑−3𝜇2(1 + O(𝜇2, 1/𝑇))

]
𝑍scalar(𝑇, 0) . (2.33)

In summary, the grand canonical partition function of the massless free complex
scalar field theory in 𝑑 > 3 demonstrates the universal behavior at high temperature
as in equation (2.25), with constants

𝑎 = 2𝜁 (𝑑) , 𝑏 = 4𝜁 (𝑑 − 2) . (2.34)

When 𝑑 = 3, we use equation (2.31b) to obtain

𝑍scalar(𝑇, 𝜇) ≈ exp
[
(log𝑇 + 2.96351...)𝜇2(1 + O(𝜇2, 1/𝑇))

]
𝑍scalar(𝑇, 0) .

(2.35)
However, the massless scalar field at 𝑑 = 3 does not make sense at finite temperature
since it has the same infrared issue as that of the massless scalar field at 𝑑 = 2. We
believe that the appearance of the log𝑇 singularity is a reflection of the infrared
pathology in this case.
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Free spinor theories:

For the massless scalar field, we cannot consider theories in 𝑑 = 2, 3 due to the
infrared problem. As it is good to also have an example in these dimensions, we
consider the theory of a free spinor field.

In two dimensions, the grand canonical partition function of a free complex Weyl
spinor is given by

𝑍spinor(𝑇, 𝜇 = 𝑖𝑇𝜃) =
∞∏
𝑛=1

(1 + 𝑒−𝛽(𝑛− 1
2 )𝑒𝑖𝜃) (1 + 𝑒−𝛽(𝑛− 1

2 )𝑒−𝑖𝜃) . (2.36)

We can transform this into the plethystic form as

𝑍spinor(𝑇, 𝜇 = 𝑖𝑇𝜃) = exp

[ ∞∑︁
𝑛=1

(
log(1 + 𝑒−𝛽(𝑛− 1

2 )𝑒𝑖𝜃) + log(1 + 𝑒−𝛽(𝑛− 1
2 )𝑒−𝑖𝜃)

)]
= exp

[
−

∞∑︁
𝑛,𝑚=1

(−1)𝑚
𝑚

(
𝑒−𝛽𝑚(𝑛− 1

2 )𝑒𝑖𝑚𝜃 + 𝑒−𝛽𝑚(𝑛− 1
2 )𝑒−𝑖𝑚𝜃

)]
= exp

[
−

∞∑︁
𝑚=1

(−1)𝑚
𝑚

cos(𝑚𝜃)
sinh 𝑚𝛽

2

]
.

(2.37)

As in the free scalar case, we expand the exponent of the partition function in 𝜃 as

𝑍spinor(𝑇, 𝑖𝜇) = exp

[ ∞∑︁
𝑘=0

𝐷𝑘𝜃
2𝑘

]
, (2.38)

for some coefficients 𝐷𝑘 . We find that

𝐷1 = −1
2

∞∑︁
𝑚=1

(−1)𝑚 𝑚

sinh 𝑚𝛽

2

= −1
2

∞∑︁
𝑛=1

©­­«
2𝑛

sinh(𝑛𝛽) −
2𝑛 − 1

sinh
(

2𝑛−1
2 𝛽

) ª®®¬ , (2.39)

where we split the series into 𝑚 = 2𝑛 and 𝑚 = 2𝑛 − 1 terms and sum them
as pairs, which is valid as 𝐷1 converges due to the hyperbolic sine function in
the denominator. At high temperature, we can approximate the summation as an
integration over 𝑥 = 𝑛𝛽:

𝐷1 ≈ −T2

4

∫ ∞

0
𝑑𝑥( 𝑓 (𝑥 + 𝛽) − 𝑓 (𝑥)) ≈ −T2

4

∫ ∞

0
𝑑𝑥 𝑓 ′(𝑥)𝛽 ≈ 𝑇

4
, 𝑓 (𝑥) = 𝑥

sinh 𝑥
.

(2.40)
Similarly,

𝐷0 = −
∞∑︁
𝑚=1

(−1)𝑚

𝑚 sinh 𝑚𝛽

2

. (2.41)
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In this case, we need the cutoff 𝑥0 to covert the sum into an integral as

𝐷0 ≈ −2𝑇
𝑥0𝑇∑︁
𝑚=1

(−1)𝑚
𝑚2 − 𝑇

2

∫ ∞

𝑥0

𝑑𝑥𝑔′(𝑥) ≈ 𝜁 (2)𝑇, 𝑔(𝑥) = 1
𝑥 sinh 𝑥

2
, (2.42)

where we used the zeta function identity −∑∞
𝑚=1

(−1)𝑚
𝑚2 =

𝜁 (2)
2 .

Let us turn to 𝑑 = 3, where the grand canonical partition function of the free spinor
theory is

𝑍spinor(𝑇, 𝜇 = 𝑖𝑇𝜃) =
∞∏
𝑛=0

(1 + 𝑒−𝛽(𝑛+1)𝑒𝑖𝜃)2𝑛+1(1 + 𝑒−𝛽(𝑛+1)𝑒−𝑖𝜃)2𝑛+1 (2.43)

= exp

[
−

∞∑︁
𝑚=1

(−1)𝑚
𝑚

𝑒−
𝑚𝛽

2
coth 𝑚𝛽

2

sinh 𝑚𝛽

2

cos(𝑚𝜃)
]
. (2.44)

Expanding the exponent in powers of 𝜃, we find the coefficients to be

𝐷0 ≈ −
𝑥0𝑇∑︁
𝑚=1

(−1)𝑚 4
𝑚3𝛽2 + 𝑇

2

∫ ∞

𝑥0

𝑑𝑥 𝑓 ′(𝑥) ≈ 3𝜁 (3), 𝑓 (𝑥) = 1
𝑥
𝑒−

𝑥
2
coth 𝑥

2
sinh 𝑥

2
,

𝐷1 ≈ −
𝑥0𝑇∑︁
𝑚=1

(−1)𝑚 4
𝑚𝛽2 + 𝑇

2

∫ ∞

𝑥0

𝑑𝑥𝑔′(𝑥) ≈ 4𝑇2 log 2, 𝑔(𝑥) = 𝑥𝑒− 𝑥2
coth 𝑥

2
sinh 𝑥

2
,

(2.45)

where we used zeta function identities
∑∞
𝑚=1

(−1)𝑚
𝑚

= log 2 and
∑∞
𝑚=1

(−1)𝑚
𝑚3 =

−3
4 𝜁 (3).

Combining these results, we find

𝑍spinor(𝑇, 𝜇) ≈


exp
[

1
4𝑇
𝜇2(1 +𝑂 (𝜇2, 1/𝑇))

]
𝑍spinor(𝑇, 0) 𝑑 = 2 , (2.46a)

exp
[
4 log 2 𝜇2(1 +𝑂 (𝜇2, 1/𝑇))

]
𝑍spinor(𝑇, 0) 𝑑 = 3 , (2.46b)

where the partition functions at 𝛽𝜇 = 0 for both dimensions are given by

𝑍spinor(𝑇) = 𝑍spinor(𝑇, 0) ≈
{
𝑒𝜁 (2)𝑇 𝑑 = 2, (2.46c)

𝑒3𝜁 (3)𝑇2
𝑑 = 3 . (2.46d)

Equations (2.46c) and (2.46d) show that the free Weyl spinor theory also demon-
strates the universal behavior in equation (2.25) at high tempearture with the coef-
ficients

𝑎 = 𝜁 (2) = 𝜋2

6
, 𝑏 = 1 , (2.47)
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for 𝑑 = 2, and
𝑎 = 3𝜁 (3) , 𝑏 = 16 log 2 , (2.48)

for 𝑑 = 3. For 𝑑 = 2, the Cardy formula gives 𝑎 = 𝜋2(𝑐𝐿 + 𝑐𝑅)/6, and the above
value of 𝑎 is consistent with (𝑐𝐿 , 𝑐𝑅) = (1, 0) for the complex Weyl spinor. As
expected, the result at 𝑑 = 3 is free from the log𝑇 singularity we saw for the free
scalar field in equation (2.35).

Holographic CFT
We now consider a holographic CFT, whose bulk theory is described at low energy
in terms of the Einstein gravity coupled to the Maxwell field and a finite number of
matter fields in AdS𝑑+1. The action of the theory is given by

𝐼 =

∫
𝑑𝑑+1𝑥

√−𝑔
[

1
16𝜋𝐺𝑁

(
𝑅 + 𝑑 (𝑑 − 1)

ℓ2

)
− 1

4𝑒2𝐹
2 + · · ·

]
, (2.49)

where · · · represents matter field terms. The curvature radius ℓ is related to the
cosmological constant as Λ = −𝑑 (𝑑 − 1)/2ℓ2. To calculate the grand canonical
partition function, we impose the boundary condition that the boundary geometry
is 𝑆1

𝛽
× 𝑆𝑑−1 and the gauge field 𝐴 has the holonomy around the thermal circle 𝑆1

𝛽
at

the boundary given by

exp

(
𝑖

∮
𝑆1
𝛽

𝐴𝜏

)
= 𝑒𝛽𝜇 , (2.50)

where 𝜇 is identified with the chemical potential of the boundary CFT. We solve
the Einstein and Maxwell equations assuming the spherical symmetry on 𝑆𝑑−1 and
setting all other matter fields to zero.

There are two classical solutions under these conditions; one is the thermal AdS and
the other is the AdS Reissner–Nordstrom (RN) black hole. At high temperature,
the RN solution is dominant [56, 57]. The RN solution can be written in static
coordinates as

𝑑𝑠2 = 𝑉 (𝑟)𝑑𝜏2 + 𝑑𝑟2

𝑉 (𝑟) + 𝑟
2𝑑Ω2

𝑑−1, 𝑉 (𝑟) = 1 − 𝑚

𝑟𝑑−2 + 𝑣𝑞2

𝑟2𝑑−4 + 𝑟
2

ℓ2 , (2.51a)

𝐴 = −𝑖

√︄
𝑑 − 1

2(𝑑 − 2)

(
𝑞

𝑟𝑑−2
𝐻

− 𝑞

𝑟𝑑−2

)
𝑑𝜏, 𝑣 =

4𝜋𝐺𝑁

𝑒2 , (2.51b)

where 𝑚 and 𝑞 are related to the ADM mass and the charge of the black hole [56,
155, 183]. This solution has its ADM mass, charge, temperature, and entropy given
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by

𝑀 =
(𝑑 − 1)𝑤𝑑−1

16𝜋𝐺𝑁

𝑟𝑑−2
𝐻

(
1 + 𝑣𝑞2

𝑟2𝑑−4
𝐻

+
𝑟2
𝐻

𝑙2

)
, (2.52a)

𝑄 =
√︁

2(𝑑 − 1) (𝑑 − 2)
(
𝑤𝑑−1
8𝜋𝐺𝑁

)
𝑣𝑞, (2.52b)

𝑇 =
𝑑 − 2
4𝜋𝑟𝐻

(
1 − 𝑣𝑞2

𝑟2𝑑−4
𝐻

)
+ 𝑟𝐻𝑑

4𝜋𝑙2
, (2.52c)

𝑆 =
𝑤𝑑−1
4𝐺𝑁

𝑟𝑑−1
𝐻 , (2.52d)

where 𝑤𝑑−1 is the surface area of the unit (𝑑 − 1)-sphere, and the horizon radius 𝑟𝐻
is the largest real positive root of 𝑉 (𝑟) [1, 11, 57, 106]. The chemical potential of
the black hole system is related to the charge 𝑄 as

𝜇 =

√︄
𝑑 − 1

2(𝑑 − 2)
𝑞

𝑟𝑑−2
𝐻

=
𝑒2

(𝑑 − 2)𝑤𝑑−1

𝑄

𝑟𝑑−2
𝐻

. (2.53)

By the AdS/CFT correspondence, the grand canonical partition function of the CFT
can be calculated using the Euclidean action for this solution.

At high temperature, the horizon radius 𝑟𝐻 of the stable black hole grows linearly
in the temperature as

𝑇 ≈ 𝑟𝐻𝑑

4𝜋ℓ2 (1 − 𝑋) , 𝑋 =
𝑑 − 2
𝑑

𝑣𝑞2ℓ2

𝑟2𝑑−2
𝐻

, (2.54)

where we keep 𝑋 as small which is equivalent to small |𝜇 | approximation in free field
calculation. The grand potential Φ(𝑇, 𝜇) is related to the grant canonical partition
function as

𝑍𝐴𝑑𝑆 (𝑇, 𝜇) = 𝑒−𝛽Φ(𝑇,𝜇) , (2.55)

and is given by the Euclidean action of the RN solution,

Φ(𝑇, 𝜇) = 𝑀 − 𝑇𝑆 − 𝜇𝑄 ≈ −
𝑤𝑑−1𝑟

𝑑
𝐻

16𝜋𝐺𝑁ℓ
2

(
1 + 𝑑

𝑑 − 2
𝑋

)
. (2.56)

Using

𝑟𝐻 =
4𝜋ℓ2

𝑑

𝑇

1 − 𝑋 , 𝑋 =
𝑑 (𝑑 − 2)2

8𝜋2ℓ2(𝑑 − 1)
𝑣𝜇2

𝑇2 +𝑂 (𝑋2), (2.57)

we find

−𝛽Φ(𝑇, 𝜇) ≈ 𝑤𝑑−1(4𝜋ℓ2/𝑑)𝑑
16𝜋𝐺𝑁ℓ

2 𝑇 𝑑−1 + 𝑤𝑑−1(𝑑 − 2)
𝑒2

(
4𝜋ℓ2

𝑑

)𝑑−2

𝜇2𝑇 𝑑−3. (2.58)



16

Rescaling the temperature as ℓ𝑇 → 𝑇 , the grand canonical partition function of the
dual CFT on the sphere with unit radius is given by

𝑍𝐶𝐹𝑇 (𝑇, 𝜇) ≈ exp

[
𝑤𝑑−1

(
4𝜋
𝑑

)𝑑−1 (
ℓ𝑑−1

4𝑑𝐺𝑁

𝑇 𝑑−1 + 𝑑 (𝑑 − 2)ℓ𝑑−1

4𝜋𝑒2 𝜇2𝑇 𝑑−3
)]
. (2.59)

This determines the coefficients 𝑎 and 𝑏 of equation (2.25) in this case as

𝑎 =

(
4𝜋
𝑑

)𝑑−1
𝑤𝑑−1ℓ

𝑑−1

4𝑑𝐺𝑁

, 𝑏 =

(
4𝜋
𝑑

)𝑑−2 4(𝑑 − 2)𝑤𝑑−1ℓ
𝑑−1

𝑒2 . (2.60)

2.5 Examples 2: non-abelian symmetry
When 𝐺 is non-abelian, we utlize the fact that the twisted partition function 𝑍 (𝑇, 𝑔)
is a class function invariant under the conjugation 𝑔 → ℎ𝑔ℎ−1 for any ℎ. This allows
us to restrict 𝑔 to the maximum torus of𝐺 and simplify our calculation. In both free
field theories and holographic CFTs, we find

𝑍 (𝑇, 𝑔 = 𝑒𝑖𝜙) = exp
[
−𝑏

4
𝑇 𝑑−1⟨𝜙, 𝜙⟩ + · · ·

]
𝑍 (𝑇, 𝑔 = 1), (2.61)

where 𝑔 = 𝑒𝐻 and the constant 𝑏 depends on the theory but not on 𝑔 or 𝑇 . In
particular, the partition function 𝑍 (𝑇, 𝑔) is peaked at 𝑔 = 1. In fact, it is related
to a solution to the heat equation on the group manifold 𝐺 with the diffusion time
related to 1/𝑇 𝑑−1. This will enable us to expand the partition function in characters
of 𝐺 to obtain equation (2.8).

Massless free scalar
Suppose a compact Lie group𝐺 has a faithful unitary representation 𝜌 with dim 𝜌 =

𝑛. Consider 𝑛 massless scalar fields in 𝑑 dimensions. Though the theory has a
larger symmetry of 𝑂 (𝑛), we focus on its 𝐺 subgroup. We would like to calculate
the finite temperature partition function of this theory with an insertion of 𝑔 ∈ 𝐺 as

𝑍 (𝑇, 𝑔) = Tr
[
𝑈 (𝑔)𝑒−𝛽𝐻

]
. (2.62)

Since 𝑍 (𝑇, 𝑔) is a class function of 𝑔, without loss of generality, 𝑔 can be restricted
to the maxim torus of𝐺. In this case,𝑈 (𝑔) acts as a multiplication of a phase factor
on each of the scalar fields. We can then apply equation (2.26) for𝐺 = 𝑈 (1) to each
scalar field and assemble the results to obtain

𝑍scalar(𝑇, 𝑔) = exp

[ ∞∑︁
𝑛=1

𝑒−
𝑑−2

2 𝑛𝛽

𝑛

𝜒𝜌 (𝑔𝑛) + 𝜒∗𝜌 (𝑔𝑛)
2

(1 − 𝑒−2𝑛𝛽)
(1 − 𝑒−𝑛𝛽)𝑑

]
, (2.63)
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where 𝜒𝜌 is the character of the representation 𝜌 and 𝜒∗𝜌 is that for its conjugate.
Writing 𝑔 = 𝑒𝑖𝜙 and expanding in powers of 𝜙,

𝜒𝜌 (𝑔𝑛) + 𝜒∗𝜌 (𝑔𝑛)
2

= tr𝜌
(
1 − 𝑛2𝜙2 + · · ·

)
= dim 𝜌 − dim 𝜌

dim𝐺
𝑐2(𝜌)⟨𝜙, 𝜙⟩𝑛2 + · · · , (2.64)

where tr𝜌 is the trace over the representation 𝜌 and ⟨𝜙, 𝜙⟩ = trAdj 𝜙
2. We can repeat

the calculation of 𝐺 = 𝑈 (1) in Section 2.4 to obtain

𝑍scalar(𝑇, 𝑒𝑖𝜙) ≈ exp
[
−𝜁 (𝑑 − 2) 𝑇 𝑑−1 dim 𝜌

dim𝐺
𝑐2(𝜌)⟨𝜙, 𝜙⟩ + · · ·

]
𝑍scalar(𝑇, 𝑔 = 1),

(2.65)
where we assumed 𝑑 > 3.

Holographic CFT
Consider a holographic CFT in 𝑑 dimensions, whose bulk theory is described in low
energy in terms of the Einstein gravity coupled to the Yang–Mills field with gauge
group 𝐺 and a finite number of matter fields in AdS𝑑+1. The action of the theory is
given by

𝐼 =

∫
𝑑𝑑+1𝑥

√−𝑔
[

1
16𝜋𝐺𝑁

(
𝑅 + 𝑑 (𝑑 − 1)

𝑙2

)
− 1

4𝑒2 ⟨𝐹, 𝐹⟩ + · · ·
]
, (2.66)

where 𝐹 is in the Lie algebra of gauge group 𝐺 and · · · represents matter field
terms. To calculate the grand canonical partition function, we impose the boundary
condition that the boundary geometry is 𝑆1

𝛽
× 𝑆𝑑−1 and the gauge field 𝐴𝜇 has the

holonomy around the thermal circle 𝑆1
𝛽

as

P exp

(
𝑖

∮
𝑆1
𝛽

𝐴

)
= 𝑒𝛽𝜇 = 𝑔. (2.67)

We assume that the solution is spherically symmetric on 𝑆𝑑−1, and all the other
matter fields are set to zero. We calculate the field strength and the stress-energy
tensor as

𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 − 𝑖
[
𝐴𝜇, 𝐴𝜈

]
, 𝑇𝜇𝜈 =

1
𝑒2

(
⟨𝐹𝜇𝛼, 𝐹𝛼𝜈 ⟩ −

1
4
𝑔𝜇𝜈⟨𝐹𝛼𝛽, 𝐹𝛼𝛽⟩

)
.

(2.68)

There are three classical solutions under these conditions. The first is the thermal
AdS,

𝑑𝑠2 =

(
1 − Λ𝑟2

3

)
𝑑𝜏2 + 𝑑𝑟2

1 − Λ𝑟2

3

+ 𝑟2𝑑Ω2
𝑑−1 , 𝐴 = −𝑖𝜇 𝑑𝜏 . (2.69)
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The second makes use of the 𝑈 (1) RN solution (2.49), 𝑑𝑠2
𝑈 (1) and 𝑎𝜇 with the

chemical potential 𝜇𝑈 (1) , by the substitution,

𝑑𝑠2 = 𝑑𝑠2
𝑈 (1) , 𝐴𝜇 =

𝜙

⟨𝜙, 𝜙⟩1/2 𝑎𝜇 , 𝜇 =
𝜙

⟨𝜙, 𝜙⟩1/2 𝜇𝑈 (1) . (2.70)

Since 𝐻 commutes with itself, the Yang–Mills equation for 𝐴𝜇 reduces to the
Maxwell equations for 𝑎𝜇. The rescaling by ⟨𝜙, 𝜙⟩−1/2 is needed to match the stress
energy tensors of both systems.

The third is a genuinely non-abelian solution. A dyonic black hole solution with
𝑆𝑈 (𝑁) hair is known in 𝐴𝑑𝑆4 [191]. Here, we construct a purely electric black hole
solution with 𝑆𝑈 (2) hair with the following ansatz [28]

𝑑𝑠2 = −𝜇(𝑟)𝜎(𝑟)2𝑑𝑡2 + 𝑑𝑟2

𝜇(𝑟) + 𝑟
2𝑑𝜃2 + 𝑟2sin2𝜃𝑑𝜙2 ,

𝜇(𝑟) = 1 − 2𝑚(𝑟)
𝑟

− Λ𝑟2

3
,

𝐴𝜇 = ℎ(𝑟)
𝜏3
2
𝑑𝑡 + 𝑤(𝑟) 𝜏1

2
𝑑𝜃 +

(
cot𝜃

𝜏3
2
+ 𝑤(𝑟) 𝜏2

2

)
sin𝜃𝑑𝜙 ,

(2.71)

where we use Pauli matrices 𝜏1,2,3 as generators of the Lie algebra of 𝑆𝑈 (2) and the
inner product is defined as twice the trace of two elements’ multiplication. The 𝐴𝑑𝑆
boundary condition requires 𝜎(𝑟 → ∞) = 1. The functions, 𝜎(𝑟), 𝑚(𝑟), ℎ(𝑟), and
𝑤(𝑟), are determined by numerically solving the Einstein Yang–Mills equations,
which take the form [28],

ℎ′′ = ℎ′
(
𝜎′

𝜎
− 2
𝑟

)
+ 2𝑤2

𝜇𝑟2 ℎ, (2.72a)

𝑤′′ + 𝑤′
(
𝜎′

𝜎
+ 𝜇

′

𝜇

)
+ 𝑤ℎ2

𝜎2𝜇2 + 𝑤(1 − 𝑤2)
𝜇𝑟2 = 0 (2.72b)

𝑚′ = 𝑣

(
𝑟2ℎ′2

2𝜎2 + 𝑤
2ℎ2

𝜎2𝜇
+ 𝜇𝑤′2 + 1

2𝑟2 (1 − 𝑤2)2
)
, (2.72c)

𝜎′ = 𝑣

(
2𝜎𝑤′2

𝑟
+ 2𝑤2ℎ2

𝜎𝜇2𝑟

)
, (2.72d)

where the prime denotes differentiation with respect to 𝑟 . The horizon radius 𝑟𝐻 is
defined as the largest solution to 𝜇(𝑟) = 0 and 𝑣 = 4𝜋𝐺𝑁/𝑒2.

Since we have the three possible solutions, we should determine which one gives
the dominant contribution to the partition function. Above the Hawking–Page
temperature, we should consider either the second or the third solution. It turns
out that the two solutions converge at high temperature. This is because, as the
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temperature rises, the horizon grows and approaches the AdS boundary, where the
interaction terms in the bulk equations of motion are suppressed. This expectation
will be confirmed by the numerical computation below.

In the asymptotically 𝐴𝑑𝑆 case, there are stable hairy black hole solutions, and those
with 𝑆𝑈 (𝑁) hair have been extensively studied [28, 191, 201–203]. In particular,
Bjoraker and Hosotani in [28] discussed the existence of a purely electric 𝑆𝑈 (2)
charged black hole in 𝐴𝑑𝑆4, which is of our interest, but it has not been constructed
explicitly.

Let us construct the genuinely non-abelian solution with 𝑆𝑈 (2) purely electric hair in
𝐴𝑑𝑆4 at high temperature. We determine 𝜎(𝑟), 𝑚(𝑟), ℎ(𝑟), and 𝑤(𝑟) by integrating
equations (2.72) from the horizon to the infinity. Since a thermodynamically stable
black hole has a large horizon at high temperature, we can expand them in the inverse
powers of 𝑟𝐻 as

ℎ(𝑟) = 𝑟𝐻 ℎ̃0(𝑟̃) + 𝑟−1
𝐻 ℎ̃1(𝑟̃) +𝑂 (𝑟−2

𝐻 ), 𝑚(𝑟) = 𝑟3
𝐻𝑚0(𝑟̃) + 𝑟𝐻𝑚1(𝑟̃) +𝑂 (1),

𝜎(𝑟) = 1 + 𝑟−2
𝐻 𝜎̃1(𝑟̃) +𝑂 (𝑟−3

𝐻 ), 𝑤(𝑟) = 𝑤0(𝑟̃) + 𝑟−2
𝐻 𝑤1(𝑟̃) +𝑂 (𝑟−3

𝐻 ),
𝜇(𝑟) = 𝑟2

𝐻𝜇0 + 𝜇1 +𝑂 (𝑟−1
𝐻 ),

(2.73)

where 𝑟̃ = 𝑟/𝑟𝐻 . Once we substitute this expansion into Einstein Yang–Mills
equations (2.72), and solve the leading order equations, we get leading value of the
functions:

ℎ̃0(𝑟̃) = ℎ′𝐻
(
1 − 1

𝑟̃

)
, 𝑚0(𝑟̃) =

(
−Λ + 3𝑣ℎ′ 2

𝐻

6
−
𝑣ℎ′ 2

𝐻

2𝑟̃

)
, 𝜎̃0(𝑟) = 1, (2.74)

and 𝑤̃0 is the solution of

0 = ¥̃𝑤0 +
3𝑣ℎ′ 2

𝐻
(𝑟̃ − 2) − Λ𝑟̃ (1 + 2𝑟̃3)

𝑟̃ (𝑟̃ − 1) (−3𝑣ℎ′ 2
𝐻

− Λ(𝑟̃ + 𝑟̃2 + 𝑟̃3))
¤̃𝑤0 +

9ℎ′ 2
𝐻
𝑟̃2

(3𝑣ℎ′ 2
𝐻

+ Λ(𝑟̃ + 𝑟̃2 + 𝑟̃3))2
𝑤0.

(2.75)
Here, ℎ′

𝐻
=

𝑑ℎ(𝑟)
𝑑𝑟

|𝑟=𝑟𝐻 ∼ 𝑑ℎ̃0 (𝑟̃)
𝑑𝑟̃

|𝑟̃=1. Then, the leading thermodynamic quantities of



20

the black hole with non-abelian hair are given by [28],

𝑄𝐸 =
4𝜋
𝑒2 ℎ

′(𝑟)𝑟2 𝜏3
2

���
𝑟→∞

𝑟𝐻→∞−−−−−→ 4𝜋
𝑒2 𝑟

2
𝐻ℎ

′
𝐻

𝜏3
2
, (2.76a)

𝑄𝑀 =
4𝜋
𝑒2 (1 − 𝑤(𝑟)2) 𝜏3

2

���
𝑟→∞

𝑟𝐻→∞−−−−−→ 4𝜋
𝑒2

(
1 − 𝑤0(𝑟̃)2

) 𝜏3
2
, (2.76b)

𝑀 =
𝑚(𝑟)
𝐺𝑁

���
𝑟→∞

𝑟𝐻→∞−−−−−→
−Λ + 3𝑣ℎ′ 2

𝐻

6𝐺𝑁

𝑟3
𝐻 , (2.76c)

𝑇 =
1

4𝜋
𝜎(𝑟𝐻)𝜇′(𝑟𝐻)

𝑟𝐻→∞−−−−−→ 𝑟𝐻

4𝜋
(−Λ − 𝑣ℎ′ 2

𝐻 ), (2.76d)

𝑆 =
𝜋𝑟2

𝐻

𝐺𝑁

. (2.76e)

The AdS boundary condition implies 𝑤0(𝑟̃ → ∞) = 1. Since it is known that the
black hole is unstable if 𝑤(𝑟) has a node (a nontrivial solution to 𝑤(𝑟) = 0) [29,
200], we require 𝑤0(𝑟̃) be positive everywhere. Under these conditions, we find a
unique solution for 𝑤0 when Λ, 𝑣 and ℎ′

𝐻
are given. This establishes the existence

of a stable (nodeless) solution in leading order for given values of 𝑟𝐻 , Λ, 𝑣, and ℎ′
𝐻

,
provided ℎ′ 2

𝐻
, 𝑣ℎ′ 2

𝐻
< −Λ, which are always satisfied for large enough 𝑇 .

As expected, at high temperature, the thermodynamic quantities of the solution
converge to those of the embedded𝑈 (1) RN black hole as

𝑀 =
𝑟𝐻

2𝐺𝑁

(
−
Λ𝑟2

𝐻

3
+ 𝑒

2𝐺𝑁𝑄
2

4𝜋𝑟2
𝐻

)
, 𝑄𝐸 = 𝑄

𝜏3
2
,

𝑇 =
1

4𝜋𝑟𝐻

(
−Λ𝑟2

𝐻 − 𝑒2𝐺𝑁𝑄
2

4𝜋𝑟2
𝐻

)
, 𝑆 =

𝜋𝑟2
𝐻

𝐺𝑁

.

(2.77)

In Figure 2.1, we show the Helmholtz free energies of the two solutions as functions
of 𝑇 , with 𝑄, 𝑣 and Λ fixed as

√
−Λ𝐺𝑁𝑄 = 100, 𝑣 = 1, Λ = −1. (2.78)

We observe that Helmholtz free energies of the two solutions converge at high
temperature. We also note that, if we look at smaller temperature, the free energy
of the 𝑈 (1) RN black hole (in the orange curve) becomes larger than that of the
genuinely non-abelian solution (in the dotted red curve). We will discuss more
about it in Section 2.6.



21

(a) Helmholtz free energies with respect
to the temperature.

(b) The difference in Helmholtz free en-
ergies of the two solutions with respect to
the temperature.

Figure 2.1: They are plotted at a fixed value ofΛ = −1, 𝑣 = 1 and
√
−Λ𝐺𝑁𝑄 = 100.

Having our expectation confirmed, we can utilize the𝑈 (1) RN solution to estimate
the high temperature behavior of the holographic CFT with non-Abelian global
symmetry 𝐺 in any dimensions. In particular,

𝑍𝐺

(
𝑇, 𝜇 =

𝜙

⟨𝜙, 𝜙⟩1/2 𝜇𝑈 (1)

)
∼ 𝑍𝑈 (1)

(
𝑇, 𝜇𝑈 (1)

)
, 𝑇 ≫ 1

ℓ
, (2.79)

where 𝑍𝐺 denotes the grand canonical partition function for the Einstein Yang–Mills
system in 𝐴𝑑𝑆𝑑+1 with gauge group 𝐺 and 𝑍𝑈 (1) is that for the Einstein Maxwell
system. By using equation (2.59), we obtain

𝑍𝐺 (𝑇, 𝜇) = exp
[
𝑎 𝑇 𝑑−1 + 𝑏

4
𝑇 𝑑−3⟨𝜇, 𝜇⟩ + · · ·

]
= exp

[
𝑎 𝑇 𝑑−1 − 𝑏

4
𝑇 𝑑−1⟨𝜙, 𝜙⟩ + · · ·

]
, (2.80)

where 𝛽𝜇 = 𝑖𝜙.

2.6 Stability of black hole with non-abelian hair
In the holographic CFT with non-abelian gauge symmetry, there are two types of
black holes solutions, with and without non-abelian hair. In the previous section, we
showed that the two solutions converge at high temperature. Since the two solutions
differ at lower temperature, it is interesting to find out which solution is preferred
theormodynamically. In this section, we calculate 1/𝑇 corrections to the Helmholtz
free energies of the two solutions at the same temperature and charge. We find that
the black hole with non-abelian hair has a lower free energy and is more stable.
To be specific, we consider 𝐺 = 𝑆𝑈 (2) though we believe the results apply to any
compact Lie group.
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Since we know the exact solution without non-abelian hair, we focus on evaluating
1/𝑇 corrections to the solution with hair. We start with the equations,

¥̃
ℎ1 = −2

𝑟̃

¤̃
ℎ1 + 𝛿̃ℎ , 𝛿̃ℎ = ¤̃𝜎1

¤̃
ℎ0 +

2𝑤2
0

𝜇0𝑟̃2 ℎ̃0,

¤̃𝑚1 = 𝑣

(
𝑟̃2 ¤̃ℎ0

¤̃
ℎ1 − 𝑟̃2 ¤̃ℎ

2
0𝜎̃1 + 𝛿̃𝑚

)
, 𝛿̃𝑚 =

𝑤2
0 ℎ̃

2
0

𝜇0
+ 𝜇0 ¤̃𝑤

2
0, (2.81)

¤̃𝜎1 = 𝑣

(
2 ¤̃𝑤2

0
𝑟̃

+
2𝑤2

0 ℎ̃
2
0

𝜇2
0𝑟̃

)
,

which are subleading order terms of equation (2.72) with respect to the expansion
taken in equation (2.73). These differential equations depend on the zeroth order
quantities; we note that 𝜎̃0, ℎ̃0 and 𝑚0 are directly calculated to be equation (2.74),
whereas 𝑤̃0 is solved numerically, when Λ and ℎ′

𝐻
are given, using the differential

equation in equation (2.75). Hence, we know all zeroth-order quantities, and we can
decide ℎ̃1, 𝑚1, 𝑤1, and 𝜎̃1 from equation (2.81). We first find ¤̃

ℎ1 as

¤̃
ℎ1(𝑟̃) =

1
𝑟̃2

∫ 𝑟̃

1
𝑑𝑟̃ ′ 𝑟̃ ′2𝛿̃ℎ (𝑟̃ ′). (2.82)

Since 𝜎(𝑟) goes to one when 𝑟̃ → ∞, 𝜎̃1 goes to zero as 𝑟̃ → ∞, and

𝜎̃1(𝑟̃) = −Δ𝜎̃ +
∫ 𝑟̃

1
𝑑𝑟̃ ′ ¤̃𝜎1(𝑟̃ ′), Δ𝜎̃ :=

∫ ∞

1
𝑑𝑟̃ ¤̃𝜎1(𝑟̃). (2.83)

Then, by taking the quantities ¤̃
ℎ1 and 𝜎̃1, given by equations (2.82) and (2.83), we

can solve 𝑚1 in equation (2.81) as

𝑚1(𝑟̃)
𝑣

=
1
2𝑣

+
∫ 𝑟̃

1
𝑑𝑟̃ ′

ℎ′
𝐻

𝑟̃ ′

∫ 𝑟̃ ′

1
𝑑𝑟̃ ′′̃𝑟 ′′2𝛿̃ℎ (𝑟̃ ′′) +

∫ 𝑟̃

1
𝑑𝑟̃ ′

ℎ′2
𝐻

𝑟̃ ′

(
Δ𝜎̃ −

∫ 𝑟̃ ′

1
𝑑𝑟̃ ′′ ¤̃𝜎1(𝑟̃ ′′)

)
+

∫ 𝑟̃

1
𝑑𝑟̃ ′𝛿̃𝑚 (𝑟̃ ′).

(2.84)
We are interested in 𝑚1(𝑟̃ → ∞) because it corresponds to the mass of the black
hole. The subleading contribution to the mass of the non-abelian black hole is
expressed as

𝑚1(𝑟̃ → ∞) = 1
2
+

∫ ∞

1
𝑑𝑟̃ 𝑣

(
ℎ′𝐻 𝑟̃ 𝛿̃ℎ (𝑟̃) + ℎ′2𝐻

(
1 − 1

𝑟̃

)
¤̃𝜎1(𝑟̃) + 𝛿̃𝑚 (𝑟̃)

)
. (2.85)

Now that we have computed ℎ̃1, 𝑚1, and 𝜎̃1, we can estimate the thermodynamic
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quantities of the black hole as

𝑄 ≈ 𝑣

𝐺𝑁

(
𝑟2
𝐻ℎ

′
𝐻 +

∫ ∞

1
𝑑𝑟̃ 𝑟̃2𝛿̃ℎ (𝑟̃)

)
𝜏3
2
,

𝑇 ≈ 𝑟𝐻

4𝜋𝐺𝑁

¤̃𝜇0

����̃
𝑟=1

+ 1
4𝜋𝐺𝑁𝑟𝐻

(
¤̃𝜇1 − ¤̃𝜇0Δ𝜎̃

)����̃
𝑟=1

,

𝑀 ≈
−Λ + 3𝑣ℎ′ 2

𝐻

6𝐺𝑁

𝑟3
𝐻 + 𝑚1(𝑟̃ → ∞)

𝐺𝑁

𝑟𝐻 , (2.86)

where 𝑟̃ = 𝑟/𝑟𝐻 and the mass 𝑀 is evaluated in the infinite radius limit, provided
from the value of 𝑚(𝑟) at 𝑟 → ∞. Finally, the Helmholtz free energy of black hole
with non-abelian hair is given by,

𝐹 = 𝑀 − 𝑇𝑆

= 𝑟3
𝐻𝐹0 +

𝑟𝐻

𝐺𝑁

(
1
4
+ 𝑣

∫ ∞

1
𝑑𝑟̃ Δ𝑚(𝑟) + 1

4
(−Λ + 𝑣ℎ′ 2

𝐻 )Δ𝜎̃
)
,

(2.87)

where 𝑣Δ𝑚 is the integrand of the equation (2.85) and

𝐹0 =
1
𝐺𝑁

(
1
12

Λ + 3
4
𝑣ℎ′ 2

𝐻

)
. (2.88)

Let us compare this with the free energy of the𝑈 (1) RN black hole. For the solution
to have the same temperature and charge, the radius of the horizon of the RN black
hole must be

𝑟𝐻,𝑅𝑁 = 𝑟𝐻 + Δ𝑟̃

𝑟𝐻
, Δ𝑟̃ =

−(−Λ + 𝑣ℎ′ 2
𝐻
)Δ𝜎̃ + 2𝑣ℎ′

𝐻

∫ ∞
1 𝑑𝑟̃ 𝑟̃2𝛿̃ℎ (𝑟̃)

−Λ + 3𝑣ℎ′ 2
𝐻

. (2.89)

The free energy is then

𝐹𝑅𝑁 = 𝑟3
𝐻𝐹0 +

𝑟𝐻

𝐺𝑁

(
1
4
+ 𝑣ℎ′𝐻

∫ ∞

1
𝑑𝑟̃ 𝑟̃2𝛿̃ℎ (𝑟̃) +

1
4
(−Λ + 𝑣ℎ′ 2

𝐻 )Δ𝜎̃
)
. (2.90)

We remark again that the two free energies in equations (2.87) and (2.90) have same
leading behavior. By taking the difference of the two free energies, we obtain

𝐹𝑅𝑁 − 𝐹 =
𝑣 𝑟𝐻

𝐺𝑁

(
ℎ′𝐻

∫ ∞

1
𝑑𝑟̃ 𝑟̃2𝛿̃ℎ (𝑟̃) −

∫ ∞

1
𝑑𝑟̃ Δ𝑚(𝑟̃)

)
, (2.91)

which comes from the 1/𝑇 correction. When we numerically calculate this differ-
ence, it has strictly positive value as shown in Figure 2.2. Therefore, the black hole
with non-abelian hair has a smaller free energy and is thermodynamically preferred
over the𝑈 (1) RN black hole at finite temperature.
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Figure 2.2: log [𝐺𝑁 (𝐹𝑅𝑁 − 𝐹)/𝑟𝐻] as a function of ℎ′
𝐻

√︁
𝑣/−Λ when Λ = −1.
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C h a p t e r 3

UNIVERSAL ASYMPTOTICS FOR HIGH ENERGY CFT DATA

3.1 Introduction
What is the behavior of conformal field theory (CFT) data at high energies? This
question is well-studied in two dimensions. For instance, the density of states of any
2D CFT at high energies takes the following universal form, known as the Cardy
formula [46]:

𝜌𝑑=2(Δ, 𝐽) ∼ exp
[√︂

𝑐

3
𝜋

(√︂
Δ + 𝐽 − 𝑐

12
+

√︂
Δ − 𝐽 − 𝑐

12

)]
, Δ − |𝐽 | ≫ 𝑐. (3.1)

Here, 𝜌𝑑=2(Δ, 𝐽) is the density of local operators (equivalently states on 𝑆1) with
scaling dimension Δ and spin 𝐽. The entropy at high energies is controlled by a
single theory-dependent number: the central charge 𝑐. The Cardy formula follows
from modular invariance of the genus one partition function.

Though (3.1) is valid for all 2D CFTs, it has a particularly nice interpretation for
CFTs dual to quantum gravity in weakly-curved AdS3. In such theories, the entropy
log 𝜌𝑑=2(Δ, 𝐽) is interpreted as the area of a BTZ black hole with spin 𝐽 and mass
𝑀 given by [197]

𝑀 =
1
ℓAdS

(
Δ − 𝑐

12

)
, (3.2)

in an AdS3 space with [38]
𝑐 =

3ℓAdS
2𝐺𝑁

. (3.3)

The Cardy formula then becomes a statement of universality of black hole entropy,
regardless of the microscopic details of the quantum gravity theory.

OPE coefficients of heavy operators in 2D CFTs obey similar, though perhaps
less well-known, universal formulas. In [44], a formula for average squared OPE
coefficients of three heavy Virasoro primaries was derived using modular invariance
of the genus two partition function. For example, when all three operators have
roughly equal dimensions Δ𝑖 = Δ ≫ 𝑐, it takes the form

(𝐶𝑑=2
HHH)

2 ∼
(
27
16

)3Δ
𝑒
−6𝜋

√︃
𝑐−1
24 Δ

Δ
5𝑐−11

36 , Δ ≫ 𝑐. (3.4)
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Similar formulas were derived for OPE coefficients with one or two heavy operator(s)
(see e.g. [141]). These formulas were subsequently unified in [67], with interesting
connections to the DOZZ formula. In holographic theories, the formula for (𝐶𝑑=2

HHH)
2

matches the contribution of a two-sided wormhole connecting a pair of boundary
three-point functions [58].

In this paper, we explore whether similar universal formulas exist for higher di-
mensional CFTs. We will use purely field-theoretic methods, so our results will
be applicable to both holographic and non-holographic theories. An immediate
puzzle is that there is no simple analog of modular invariance in higher dimensional
geometries like 𝑆1 × 𝑆𝑑−1 (𝑑 ≥ 3). (See [18, 21, 116, 156, 189, 190] for some
discussion and progress on modular invariance in higher dimensions.) However,
we can instead use a beautiful idea from [14, 27, 127], which was used to count
the density of states in higher dimensional CFTs in [27, 188]. (Similar ideas were
used for studying supersymmetric indices in [75].) The key point is that finding the
leading asymptotics of CFT data doesn’t require full modular invariance — we just
need a sufficiently powerful effective theory for a CFT dimensionally reduced on a
circle.

The dimensional reduction of a 𝑑-dimensional CFT is generically a gapped theory
in 𝑑−1 dimensions. Fortunately for our purposes, the exponential decay of correla-
tions in a gapped theory makes it very flexible: we can place it on many different
geometries, and in this way extract myriad predictions for the 𝑑-dimensional CFT.

A gapped theory can be described by a local action for background fields, obtained
by integrating out the gapped degrees of freedom. In the context of a dimensionally-
reduced CFT (with thermal boundary conditions), we call this local action the
"thermal effective action." It describes hydrodynamic observables of the CFT in
equilibrium. The derivative expansion of the thermal effective action is an expansion
in the inverse temperature 𝛽 = 1/𝑇 . This construction was explained in [14, 127],
and has been explored extensively in the hydrodynamics literature; see e.g. [26,
71, 123, 124, 126]. We review it in Section 3.2, along the way discussing some
subtleties related to the Weyl anomaly.

Placing the thermal effective theory on 𝑆1×𝑆𝑑−1 leads to simple universal predictions
for the density of CFT operators at large Δ. For example, in 3D CFTs, one obtains

log 𝜌𝑑=3(Δ, 𝐽) = 3𝜋1/3 𝑓 1/3(Δ2 − 𝐽2)1/3 − 2
3

log(Δ2 − 𝐽2) + O(Δ0). (3.5)
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Here, 𝑓 is a theory-dependent positive real number, equal to minus the free energy
density of the CFT, as we review in Section 3.2. The leading term in the high
temperature partition function for the canonical ensemble of a CFT was first written
down using hydrodynamic techniques in [27]. It was subsequently transformed to
the microcanonical ensemble in [188].1 The thermal effective theory approach in
this work allows us to reproduce those results and systematically explore subleading
corrections.

The quantity 𝑓 controls the leading density of states in both 2D (where 𝑓 = 𝜋𝑐/6)
and higher dimensions. However, unlike in 2D, where the Cardy formula is valid up
to nonperturbative corrections inΔ, the entropy in higher dimensional CFTs receives
perturbative corrections in 1/Δ, coming from higher-derivative terms in the thermal
effective action. The derivation of (3.5) using the thermal effective action is given
in Section 3.3. There, we also describe the leading higher-derivative corrections.
(Furthermore in Section 3.3, we clarify some subtleties related to the Casimir energy
on 𝑆𝑑−1 in higher-dimensional CFTs.) We also briefly discuss nonperturbative
corrections to the density of states in Section 3.3. Then, in Section 3.4, we compare
these general formulas to free theories and holographic theories, determining Wilson
coefficients in those cases by matching their partition functions to the effective
theory.

In addition to the density of states, we will also find universal formulas for OPE
coefficients of three heavy operators in higher-𝑑 CFTs.2 Our strategy will be to put
the theory on a higher-dimensional version of a genus-2 Riemann surface, obtained
by gluing a pair of three-punctured 𝑆𝑑’s with three cylinders 𝑆𝑑−1 × 𝐼 (where 𝐼 is an
interval). We describe this "genus-2" geometry in detail in Section 3.5.3

A glaring problem is that the "genus-2" geometry is not a circle fibration, so it is not
immediately obvious how to apply the thermal effective action. However, in a "high
temperature" limit where the cylinders get short, the geometry contains shrinking
circles. We claim that these shrinking circles can be treated like thermal circles in
local regions that we call "hot spots"; see Figure 3.1. We furthermore conjecture that
the effective action of the hot spots gives the singular part of the partition function

1The density of states was also studied [147, 199].
2Formulas for heavy OPE coefficients weighted by light OPE coefficients, e.g. 𝐶HHH𝐶

3
HLL, were

derived in [9] using crossing symmetry of six-point functions of local operators. By contrast, our
focus will be on un-weighted heavy OPE coefficients𝐶HHH, which are controlled by different physics.
For example, the leading behavior of 𝐶HHH is determined by the free energy density 𝑓 , which does
not (to our knowledge) appear in a simple way in a six-point function of light local operators.

3A special case of this geometry with no angular fugacities was studied recently in [20].
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Figure 3.1: The "genus-2" geometry and its "hot spots." The top is a ball 𝐵𝑑 with two
balls removed. It is topologically equivalent to a three-punctured 𝑆𝑑 . The bottom is
the same. The top and bottom are glued together with three cylinders. In the limit
that the cylinders get short, there are shrinking circles indicated in red that run down
one cylinder and up another. The neighborhoods of each of these circles are "hot
spots," where the thermal effective action receives a large contribution.

on our "genus-2" geometry. (The remaining parts of the geometry are not described
by thermal EFT, but contribute non-singular corrections to the partition function at
high temperature.) With the "hot spot" conjecture, we can determine the partition
function in the regime where it is dominated by heavy CFT data.

To extract heavy-heavy-heavy OPE coefficients, we must furthermore understand
the decomposition of the partition function into a higher-dimensional version of
genus-2 (global) conformal blocks. These are interesting special functions that to
our knowledge have not previously appeared in the CFT literature. We explore them
in Section 3.6, determining their behavior at large Δ using the shadow formalism
and saddle-point analysis. We then decompose the partition function into "genus-
2" blocks using an appropriate inverse Laplace transform on the moduli space of
"genus-2" conformal structures in higher dimensions. In the end, we obtain a
universal formula for average squared heavy-heavy-heavy OPE coefficients in a 𝑑-
dimensional CFT. For example, for three scalar operators with similar dimensions
Δ in 𝑑 = 3, we find

𝜌𝑑=3(Δ, 0)3(𝐶𝑑=3
HHH)

2 ∼
(
3
2

)6Δ
𝑒3
√

2𝜋 𝑓Δ × . . . (3.6)

where ". . . " are subleading corrections in Δ. We give a formula for OPE coefficients
of three operators with arbitrary Lorentz representations (with spin held constant as
Δ → ∞) in arbitrary 𝑑 below in (3.242).

In Section 3.8, we apply similar (but simpler) methods to compute asymptotic
thermal 1-point functions of heavy operators. This can be viewed as a particularly
simple limit of heavy-heavy-heavy OPE coefficients.
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In Section 3.9, we discuss (3.6), its generalizations, and some implications and future
directions. In holographic theories, we speculate that (3.6) describes a three-point
function of three black holes surrounded by highly entangled matter. Three point
functions of three "pure" black holes are likely atypical from the point of view of
(3.6), but perhaps could be determined from an appropriate holographic calculation.
In Appendix A, we discuss a simple warmup example of the thermal effective action
for a two-point function of momentum generators. In Appendix C, we discuss some
aspects of free theories, including novel formulas for nonperturbative corrections to
density of states. Other appendices contain detailed calculations to supplement the
main text.

3.2 The thermal effective action
Consider a 𝑑-dimensional CFT at finite temperature 𝑇 . Generically, thermal fluctu-
ations cause equilibrium correlators to decay exponentially with distance:

⟨O(®𝑥1)O(®𝑥2)⟩𝛽 ∼ 𝑒−|®𝑥1−®𝑥2 |/𝜉 . (3.7)

By dimensional analysis, the correlation length 𝜉 must be inversely proportional to
the temperature, 𝜉 ∝ 1/𝑇 . Exponentially-decaying correlators can be expanded in a
series in 𝛿-functions and their derivatives. (Equivalently, in momentum space, they
can be expanded in a power series in momenta.) This expansion is summarized by a
local effective action for background fields that we call the thermal effective action.

It is useful to adopt the geometric perspective on the thermal effective action ex-
plained in [14]. Equilibrium thermal correlators are computed by compactifying
the Euclidean theory on a thermal circle of length 𝛽 = 1/𝑇 . Generically, when a 𝑑-
dimensional CFT is compactified on a circle, the result is a gapped theory in (𝑑−1)
dimensions. A rough argument is that compactification of a CFT does not involve
tuning any parameters, since all 𝛽 are equivalent by 𝑑-dimensional scale invariance.
Thus, it would be non-generic for the resulting (𝑑−1)-dimensional theory to be at
a critical point. Instead, it will typically have a nonzero mass gap 𝑚gap ∝ 𝑇 , and
a finite correlation length 𝜉 = 1/𝑚gap.4 We can think of this gapped theory as the
modular transform of the 𝑑-dimensional CFT.

This argument fails when a symmetry protects gapless modes in the compactified
theory, such as in free theories or supersymmetric compactifications (where we twist

4By contrast, when a theory with an intrinsic scale is compactified, one generally obtains different
dynamics at different compactification radii. By tuning 𝛽 it may be possible to reach a critical point.
An example is 4D SU(2) pure Yang-Mills theory, which is expected to possess a critical point in the
Ising universality class at a particular temperature, see e.g. [93] for a review.
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by (−1)𝐹 around the circle). It could also fail in theories that spontaneously break
a continuous symmetry at finite temperature, such as those recently constructed (in
fractional spacetime dimensions) in [55]. It is currently unknown whether such
theories exist in integer spacetime dimensions. See [55, 100] and references therein
for more discussion. In this work, we will focus on theories that are gapped at finite
temperature.

An efficient way to capture correlators of the CFT is to couple to classical background
fields. For example, stress tensor correlators are captured by coupling to a 𝑑-
dimensional background metric 𝐺𝜇𝜈. If the metric possesses a circle isometry, then
by a suitable choice of coordinates, we can put it in Kaluza-Klein form

𝐺𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 = 𝑔𝑖 𝑗 (®𝑥)𝑑𝑥𝑖𝑑𝑥 𝑗 + 𝑒2𝜙(®𝑥) (𝑑𝜏 + 𝐴𝑖 (®𝑥))2, 𝜏 ∈ [0, 1), (3.8)

where the periodic direction is 𝑥0 = 𝜏. The (𝑑−1)-dimensional fields are a metric 𝑔𝑖 𝑗 ,
a gauge field 𝐴𝑖, and a dilaton 𝜙. We choose conventions so that 𝜏 has periodicity 1.
Thus, for the thermal compactification 𝑆1

𝛽
×R𝑑−1 with the flat metric, we have 𝑒𝜙 = 𝛽.

However, it will be interesting in what follows to allow the (𝑑−1)-dimensional fields
𝑔𝑖 𝑗 , 𝐴𝑖, 𝜙 to be spatially varying.

By our assumption above, the partition function of the 𝑑-dimensional CFT on the
Kaluza-Klein geometry (3.8) becomes the partition function of a gapped (𝑑−1)-
dimensional theory coupled to (𝑑−1)-dimensional background fields:

𝑍CFT [𝐺] = 𝑍gapped [𝑔, 𝐴, 𝜙] . (3.9)

The partition function of a trivially gapped QFT at long distances can be expanded
in a sum of local counterterms in the background fields. In this case, we have5

𝑍CFT [𝐺] = 𝑍gapped [𝑔, 𝐴, 𝜙] ∼ 𝑒−𝑆th [𝑔,𝐴,𝜙] . (3.10)

The thermal effective action 𝑆th is a sum of local terms in 𝑔𝑖 𝑗 , 𝐴𝑖, 𝜙 that captures
Euclidean correlators at length scales that are large compared to the correlation
length 𝜉 = 1/𝑚gap (equivalently, at momenta small compared to 𝑚gap).6 In (3.10),

5A theory that spontaneously breaks a discrete symmetry at finite temperature can display mild
violations of (3.10); see [55]. In general, if the finite temperature theory is nontrivially gapped, then
the thermal effective action must include a nontrivial TQFT. We focus on the trivially gapped case
in this work, though most of our results are simple to adapt to a more general thermal TQFT.

6Note that the thermal effective action does not in general capture long-distance real time
observables, even at small nonzero frequencies 0 < 𝜔 ≪ 𝑚gap, where dissipation is an important
effect.
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"∼" means agreement up to exponential corrections of the form 𝑒−𝐿/𝜉 , where 𝐿 is a
characteristic length scale.

In QFT, we usually have the freedom to add arbitrary local counterterms in back-
ground fields. This is called a change of "scheme." In the thermal effective action
(3.10), it is important that we are only allowed to add local 𝑑-dimensional countert-
erms to the CFT (which enter 𝑆th via dimensional reduction). We are not allowed to
add arbitrary local 𝑑−1-dimensional counterterms. Thus, 𝑆th can contain physical,
scheme-independent information.

The thermal effective action is highly constrained by symmetries. Firstly, coordinate-
invariance in 𝑑-dimensions implies that 𝑆th is invariant under (𝑑−1)-dimensional
coordinate transformations, as well as gauge transformations of the KK gauge field
𝐴𝑖. For simplicity, in this work we focus on CFT𝑑’s with vanishing gravitational
anomaly. When the gravitational anomaly is non-vanishing (for example in a 2D
CFT with 𝑐𝐿 ≠ 𝑐𝑅), the anomaly must be matched by gravitational Chern-Simons
terms in the thermal effective action; see [59, 75, 98, 125, 126] for more details.
Such terms could be easily incorporated into the analysis that follows.7

Secondly, 𝑆th is constrained by Weyl invariance of the 𝑑-dimensional theory. Under
a Weyl transformation, the CFT partition function changes by

𝑍CFT [𝑒2𝜎𝐺] = 𝑍CFT [𝐺]𝑒−𝑆anom [𝐺,𝜎] , (3.11)

where 𝑆anom [𝐺, 𝜎] is the contribution from the Weyl anomaly. Because 𝜙 transforms
with a shift 𝜙 → 𝜙+𝜎 under 𝜏-independent Weyl transformations, we can use (3.11)
to completely determine the 𝜙-dependence of 𝑍CFT [𝐺] [85]. Note that

𝑍CFT [𝐺] = 𝑍CFT [𝐺]𝑒−𝑆anom [𝐺,𝜙] , (3.12)

where 𝐺 ≡ 𝑒−2𝜙𝐺. Plugging in (3.10), this implies

𝑆th [𝑔, 𝐴, 𝜙] = 𝑆th [𝑔̂, 𝐴, 0] + 𝑆anom [𝐺, 𝜙]
≡ 𝑆[𝑔̂, 𝐴] + 𝑆anom [𝐺, 𝜙] . (3.13)

In equation (3.13), 𝑆anom [𝐺, 𝜙] plays the role of matching the Weyl anomaly in the
thermal effective action. We discuss this contribution later in Section 3.2. The
remaining term 𝑆[𝑔̂, 𝐴] is invariant under 𝜏-independent Weyl transformations. It
depends only on 𝐴𝑖, and the Weyl-invariant "effective metric"

𝑔̂𝑖 𝑗 ≡ 𝑒−2𝜙𝑔𝑖 𝑗 . (3.14)
7We thank Yifan Wang for discussion on these points.
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Note that 𝑔̂ transforms as a metric under coordinate-transformations. Thus, 𝑆[𝑔̂, 𝐴]
can be organized in a derivative expansion in coordinate invariants built out of 𝑔̂
and 𝐴. Classifying the terms in 𝑆[𝑔̂, 𝐴] is similar to classifying local interactions in
Einstein-Maxwell theory (without the freedom to perform field redefinitions). The
first few terms are

𝑆[𝑔̂, 𝐴] =
∫

𝑑𝑑−1𝑥
√︁
𝑔̂

(
− 𝑓 + 𝑐1𝑅 + 𝑐2𝐹

2 + . . .
)
. (3.15)

Here, 𝑅 is the Riemann curvature built from the metric 𝑔̂, and 𝐹𝑖 𝑗 = 𝜕𝑖𝐴 𝑗 − 𝜕𝑗 𝐴𝑖 is
the field strength of the KK gauge boson. Indices are everywhere contracted using
𝑔̂, for example

𝐹2 = 𝑔̂𝑖𝑘 𝑔̂ 𝑗 𝑙𝐹𝑖 𝑗𝐹𝑘𝑙 . (3.16)

This ensures that the derivative expansion for 𝑆th becomes an expansion in ®𝑝/𝑇 ,
since 𝑔̂𝑖 𝑗 contains a factor of 𝑒2𝜙, where 𝑒−𝜙 is a local temperature. Again, in (3.15),
we have assumed gravitational anomalies are absent.

The construction of the thermal effective action (3.15) closely mimics the construc-
tion of the dilaton effective action in theories where scale invariance is spontaneously
broken to 𝑑-dimensional Poincare invariance [137]. The key difference is that here
we have an effective action in (𝑑−1)-dimensions instead of 𝑑 dimensions.

The cosmological constant term
The leading term in the thermal effective action is a cosmological constant−

∫
𝑑𝑑𝑥

√︁
𝑔̂ 𝑓

for the effective metric 𝑔̂. The coefficient 𝑓 has at least three important interpreta-
tions.

1. − 𝑓 is (the scheme-independent part of) the free energy density of the CFT at
finite temperature in flat space.8 To see why, we place the theory onR𝑑−1×𝑆1

𝛽
,

where the thermal circle has length 𝛽. In this geometry, the effective metric
is 𝑔̂𝑖 𝑗 = 𝛽−2𝛿𝑖 𝑗 . Only the cosmological constant term in 𝑆th is nonzero, and it
contributes

𝐹/𝑇 = − log 𝑍CFT [R𝑑−1 × 𝑆1
𝛽] = 𝑆th = −

∫
𝑑𝑑𝑥 𝑓 𝛽−(𝑑−1) = − 𝑓 𝑇 𝑑−1volR𝑑−1.

(3.17)

𝐹/𝑇 = − log 𝑍CFT [R𝑑−1 × 𝑆1
𝛽] = 𝑆th = −

∫
𝑑𝑑𝑥 𝑓 𝛽−(𝑑−1) = − 𝑓 𝑇 𝑑−1volR𝑑−1.

8Our convention for 𝑓 is opposite to the one in [119], 𝑓here = − 𝑓there.
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Thus, the free energy density is − 𝑓 𝑇 𝑑 .

2. 𝑓 is proportional to the thermal one-point function of the stress tensor in flat
space R𝑑−1. Lorentz and scale invariance dictate that

⟨𝑇 𝜇𝜈 (𝑡, ®𝑥)⟩𝛽 = 𝑏𝑇𝑇 𝑑
(
𝛿
𝜇

0 𝛿
𝜈
0 −

1
𝑑
𝛿𝜇𝜈

)
, (3.18)

for some dimensionless coefficient 𝑏𝑇 . Meanwhile, the energy density can be
computed from the derivative of the partition function9

−⟨𝑇00(0, ®𝑥)⟩𝛽 = − 1
volR𝑑−1

𝜕

𝜕𝛽
log 𝑍CFT [R𝑑−1 × 𝑆1

𝛽] = (𝑑 − 1) 𝑓 𝑇 𝑑 . (3.19)

Equating (3.18) and (3.19), we find 𝑏𝑇 = −𝑑𝑓 . In particular, positivity and
extensivity of the energy density on R𝑑−1 implies that 𝑓 is positive:

𝑓 > 0. (3.20)

3. − 𝑓 is the Casimir energy density of the CFT compactified on a circle. To
see why, we choose 𝑥1 as a time direction. The Hamiltonian density for the
compactified theory is then

𝐸cas

vol(𝑆1
𝛽
× R𝑑−2)

= −⟨𝑇11⟩𝛽 = − 𝑓 𝑇 𝑑 . (3.21)

In particular, (3.20) gives a simple proof that the Casimir energy of a CFT
compactified on a circle is always negative. Ultimately, this is a consequence
of tracelessness of the stress tensor. The components 𝑇00 compute the energy
in the thermal ensemble (which is positive), while the components 𝑇11 com-
pute the energy in the compactified theory. The two have opposite signs by
tracelessness of 𝑇 𝜇𝜈. This proof applies, for example, to electromagnetism.

Thus, the coefficient 𝑓 is a simple and important observable of the CFT. We will see
that it controls a huge amount of the physics at finite temperature. As a simple
warmup example, in Appendix A, we show how 𝑓 determines a (regularized)
two-point function of momentum operators at finite temperature. This result can
be understood both from "bootstrap" arguments using properties of stress tensor
correlators, and from the thermal effective action.

9Note that we are using the conventions of Euclidean field theory, where the generator of time
translations includes a minus sign 𝐻 = −

∫
𝑑®𝑥𝑇00. The minus sign can be understood via Wick

rotation from Lorentzian signature 𝑇00
𝐸

= (𝑖)2𝑇00
𝐿

.
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Weyl anomaly terms
The Weyl anomaly terms 𝑆anom [𝐺, 𝜙] in the thermal effective action were given in
[85]. Let us write them down in detail. Such terms are of course absent when 𝑑 is
odd, so we focus on even 𝑑 in this subsection.

As a review, the infinitesimal form of the Weyl anomaly in 𝑑 dimensions is

𝛿𝜎 (− log 𝑍CFT [𝐺]) =
∫

𝑑𝑑𝑥
√
𝐺𝜎A[𝐺], (3.22)

where 𝛿𝜎 is defined by rescaling the metric 𝐺 → (1 + 2𝜎)𝐺 with 𝜎 infinitesimal.
Here, A[𝐺] is a local functional of 𝐺 such that (3.22) solves the Wess-Zumino
consistency condition [𝛿𝜎1 , 𝛿𝜎2] log 𝑍 = 0. The infinitesimal Weyl anomaly can be
integrated by considering a family of metrics 𝑒2𝑡𝜎𝐺 where 𝑡 ∈ [0, 1], using (3.22)
to write a differential equation in 𝑡, and solving the differential equation. The result
is the finite Weyl transformation rule (3.11), where 𝑆anom is given by [187]

𝑆anom [𝐺, 𝜎] =
∫ 1

0
𝑑𝑡

∫
𝑑𝑑𝑥

√︁
det(𝑒2𝑡𝜎𝐺) 𝜎A[𝑒2𝑡𝜎𝐺] . (3.23)

The general solution of the Wess-Zumino consistency condition in 𝑑-dimensions is
[33, 34]:∫

𝑑𝑑𝑥
√
𝐺𝜎A[𝐺] = 1

(4𝜋)𝑑/2

∫
𝑑𝑑𝑥

√
𝐺 𝜎

(
(−1)𝑑/2𝑎𝑑𝐸𝑑 −

∑
𝑘𝑐𝑑𝑘 𝐼

(𝑑)
𝑘

)
+ 𝛿𝜎𝑆ct.

(3.24)

Here, 𝐸𝑑 is the Euler density,10 and
√
𝐺𝐼

(𝑑)
𝑘

are local Weyl-invariants of 𝐺. For
example, in 4D there is one such Weyl-invariant, given by the square of the Weyl
tensor:

𝐼
(4)
1 = 𝐶2 = 𝐶𝜇𝜈𝜌𝜎𝐶

𝜇𝜈𝜌𝜎 (𝑑 = 4). (3.25)

In 6D there are three such Weyl invariants 𝐼 (6)
𝑘=1,2,3, and in general the number grows

with 𝑑. The factor 1/(4𝜋)𝑑/2 in (3.24) is a convention.

The remaining terms 𝛿𝜎𝑆ct in (3.24) are Weyl variations of local counterterms. For
instance, in 4D we can have

𝑆ct = − 𝑏

12(4𝜋)2

∫
𝑑𝑑𝑥

√
𝐺𝑅2 (𝑑 = 4), (3.26)

10In 2D, we have 𝑎2 = 𝑐/6, and in 4D we write 𝑎4 = 𝑎.
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which leads to a contribution 𝛿𝜎𝑅2 ∼ 𝑏□𝑅 in the Weyl anomaly. We sometimes
refer to 𝛿𝜎𝑆ct as "𝑏-type" terms. Such terms trivially obey the Wess-Zumino
consistency condition. They are scheme-dependent because they can be shifted by
adding local counterterms to the action of the CFT. We comment more on this below
in Section 3.3.

Plugging these results into (3.23), we find 𝑆anom for example in 𝑑 = 2 and 𝑑 = 4:

𝑆2D
anom [𝐺, 𝜎] = − 𝑐

24𝜋

∫
𝑑2𝑥

√
𝐺 (𝜎𝑅 + (𝜕𝜎)2)

𝑆4D
anom [𝐺, 𝜎] =

𝑎

(4𝜋)2

∫
𝑑4𝑥

√
𝐺

(
𝜎𝐸4 − 4𝜕𝜇𝜎𝜕𝜈𝜎(𝑅𝜇𝜈 − 1

2𝐺
𝜇𝜈𝑅) − 4(𝜕𝜎)2□𝜎 − 2(𝜕𝜎)4

)
− 𝑐

(4𝜋)2

∫
𝑑4𝑥

√
𝐺𝜎𝐶2 + 𝑆ct [𝑒2𝜎𝐺] − 𝑆ct [𝐺] . (3.27)

Note that the scheme-dependent part of the Weyl anomaly 𝛿𝜎𝑆ct integrates trivially
to give 𝑆ct [𝑒2𝜎𝐺] − 𝑆ct [𝐺]. The Weyl-invariant terms are also simple to integrate
because the integrand (3.23) is 𝑡-independent for those terms.

Putting everything together, the Weyl-anomaly contribution to the thermal effective
action is

𝑆anom [𝐺, 𝜙] = 𝑆Euler (3.28)

− 1
(4𝜋)𝑑/2

∑︁
𝑘

𝑐𝑑𝑘

∫
𝑑𝑑−1𝑥

√︁
𝑔̂𝜙DR[𝐼 (𝑑)

𝑘
[𝐺]] + DR[𝑆ct [𝐺]] − DR[𝑆ct [𝐺]],

(3.29)

where

𝑆Euler =
(−1)𝑑/2𝑎𝑑
(4𝜋)𝑑/2

∫ 1

0
𝑑𝑡

∫
𝑑𝑑−1𝑥 𝑒𝑑𝑡𝜙

√︁
𝑔̂ 𝜙DR[𝐸𝑑 [𝑒2𝑡𝜙𝐺]] . (3.30)

Here, the dimensional reduction operation DR[· · · ] means evaluating in the KK
metric (3.8) and integrating over 𝜏.

Note that the 𝐼 (𝑑)
𝑘

terms in (3.28) are linear in 𝜙, and thus can lead to temperature
dependence of the form log(𝛽/𝛽0) in certain geometries. Here, we note that the
coefficient of log 𝛽 is a genuine prediction of 𝑆th, but the scale 𝛽0 is scheme-
dependent. The reason is that 𝛽0 can be shifted by adding local Weyl-invariant
counterterms to the action of the CFT:

𝑆CFT → 𝑆CFT + 1
(4𝜋)𝑑/2

∫
𝑑𝑑𝑥

√
𝐺

∑︁
𝑘

𝑟𝑘 𝐼
(𝑑)
𝑘
. (3.31)

This ambiguity shifts the coefficients of DR[𝐼 (𝑑)
𝑘

] in the thermal effective action:

−𝑐𝑑𝑘𝜙 → 𝑟𝑘 − 𝑐𝑑𝑘𝜙, (3.32)
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and consequently shifts 𝛽0. This ambiguity will not play a further role in this work,
since we will always consider CFTs in conformally-flat11 geometries where 𝐼 (𝑑)

𝑘

vanishes.

Two dimensions
In two dimensions, a very nice thing happens. The cosmological constant term is
the only local gauge-invariant combination of 𝑔̂ and 𝐴𝑖 that we can write down.
Furthermore, there are no nontrivial local Weyl invariants. Thus, the Weyl-invariant
part of the thermal effective action truncates to a single term!

𝑆[𝑔̂, 𝐴] = −
∫

𝑑1𝑥
√︁
𝑔̂ 𝑓 (𝑑 = 2). (3.33)

The action (3.33) describes equilibrium thermal physics in 2D to all perturbative
orders in 1/𝑇 . Using the connection between 𝑓 and the Casimir energy (3.21), we
find

𝑓 =
2𝜋𝑐
12

, (3.34)

where 𝑐 is the central charge.

This result is not a surprise. A 2D CFT at high temperature can be described by
performing a modular transformation, reinterpreting the thermal circle as a spatial
circle. The states propagating in the modular-transformed theory have energies
𝐸𝑖 = 2𝜋

𝛽
(Δ𝑖 − 𝑐

12 ), where Δ𝑖 are scaling dimensions in the CFT. The effective
action (3.33) simply captures the contribution of the ground state in the modular
transformed theory, with energy 𝐸0 = −2𝜋

𝛽
𝑐
12 . The energy gap to the next state is

the "mass gap" of the thermal theory

𝑚gap = 𝐸1 − 𝐸0 =
2𝜋
𝛽
Δ1 (𝑑 = 2). (3.35)

States with energies at or above the mass gap 𝐸𝑖 − 𝐸0 ≥ 𝑚gap contribute nonpertur-
bative corrections in 𝛽 of the form 𝑒−2𝜋Δ𝑖/𝛽, which are not captured by 𝑆th.

3.3 The density of high-dimension states
The spectrum of a 𝑑-dimensional CFT is captured by the partition function on
𝑆1
𝛽
× 𝑆𝑑−1. In this section, we compute this partition function using the thermal

11We call a manifold "conformally-flat" if in a neighborhood of each point, the metric is Weyl-
equivalent to a flat metric. This is sometimes called "locally conformally-flat." A 3-manifold
is conformally-flat if and only if the Cotton tensor vanishes, and a 𝑑-manifold with 𝑑 ≥ 4 is
conformally-flat if and only if the Weyl tensor vanishes.



37

effective action, and decompose the result into conformal characters to extract the
density of high dimension states. We will recover the leading-order formulas from
[27, 188], and also discuss subleading corrections. The precise expression for the
partition function involves the Casimir energy of the CFT on 𝑆𝑑−1. To start, we
review the Casimir energy and discuss some details of its relation to the thermal
effective action.

The Casimir energy on 𝑆𝑑−1

The partition function on 𝑆1
𝛽
× 𝑆𝑑−1 is a sum over states on 𝑆𝑑−1 weighted by

Boltzmann factors 𝑒−𝛽𝐸𝑖 . By the state-operator correspondence, states on 𝑆𝑑−1 are
in one-to-one correspondence with local CFT operators O𝑖. In even dimensions the
energy 𝐸𝑖 of the state |O𝑖⟩ is equal to the dimension Δ𝑖 plus a contribution from the
Casimir energy on the sphere:

𝐸𝑖 = Δ𝑖 + 𝐸0, (3.36)

where Δ𝑖 is the scaling dimension of O𝑖. For example, in 2D, the Casimir energy is
𝐸0 = − 𝑐

12 (in units where the 𝑆𝑑−1 has radius 1). The Casimir energy 𝐸0 will play
an important role in higher dimensions as well, so let us recall how to derive it.

We follow the discussion of [13]. Let 𝑊 [𝐺] ≡ − log 𝑍CFT [𝐺], so that the Weyl
anomaly is 𝑊 [𝑒2𝜎𝐺] −𝑊 [𝐺] = 𝑆anom [𝐺, 𝜎]. To compute the stress tensor on the
cylinder R × 𝑆𝑑−1, we consider the Weyl rescaling from the plane to the cylinder

𝑑𝑟2 + 𝑟2𝑑Ω2
𝑑−1 → 𝑑𝑟2

𝑟2 + 𝑑Ω2
𝑑−1 = 𝑒−2 log 𝑟𝛿𝜇𝜈𝑑𝑥

𝜇𝑑𝑥𝜈, (3.37)

which corresponds to 𝜎 = − log 𝑟. Plugging this into 𝑆anom [𝐺, 𝜎], we obtain the
partition function on the cylinder as a function of the partition function on the plane.
Taking a derivative with respect to 𝐺𝜇𝜈 and using that the one-point function ⟨𝑇 𝜇𝜈⟩
on the plane vanishes, we obtain ⟨𝑇 𝜇𝜈⟩ on the cylinder, from which we can read off
the Casimir energy.

There is a small shortcut that will be useful in what follows. We can simply compute
𝑊 [𝐺] on the infinite cylinder R× 𝑆𝑑−1 using the Weyl anomaly. This has an infinite
part of the form 𝐸0volR, from which we can read off the Casimir energy 𝐸0. As an
example, in 2D, we have

𝑊 [𝑒−2 log 𝑟𝛿] −𝑊 [𝛿] = − 𝑐

24𝜋

∫
𝑟 𝑑𝑟 𝑑𝜃

1
𝑟2 = − 𝑐

12

∫
𝑑𝜏 (𝑑 = 2), (3.38)
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where we defined 𝜏 = log 𝑟. This gives the expected result 𝐸0 = − 𝑐
12 . In 4D, we

find

𝑊 [𝑒−2 log 𝑟𝛿] −𝑊 [𝛿] = 𝑎 vol 𝑆3

(4𝜋)2

∫
𝑟3𝑑𝑟

(
6
𝑟4

)
+ 𝑆ct [𝑒2𝜎𝛿]

=

(
3𝑎
4

− 3𝑏
8

) ∫
𝑑𝜏, (3.39)

where we used the form of 𝑆ct in (3.26), together with the fact that the curvature of
𝑆3 is 𝑅 = 6. Thus, the Casimir energy in 4D is

𝐸0 =
3𝑎
4

− 3𝑏
8

(𝑑 = 4). (3.40)

• Choice of scheme

As noted in [13], the 4D Casimir energy (3.40) is scheme-dependent — it can be
shifted by redefining the local counterterm coefficient 𝑏. Similar statements hold
in any even 𝑑 ≥ 4. However, CFT data is scheme-independent. To study it, we are
free to choose whatever scheme is most convenient.

In what follows, we will choose a scheme where 𝑆ct = 0, so that 𝑏-type terms
are absent from both the Casimir energy and the Weyl anomaly. To define such a
scheme in practice, one must choose a regulator, compute the Weyl anomaly with
that regulator, and then add appropriate local counterterms to cancel the 𝑏-type
terms.12

In this 𝑆ct = 0 scheme, the 𝑏-type terms DR[𝑆ct] are not present in the thermal
effective action, and the partition function on 𝑆1

𝛽
× 𝑆𝑑−1 is given by

Tr
[
𝑒−𝛽(𝐷+𝜀0)] ∼ 𝑒−𝑆th = 𝑒−𝑆[𝑔̂,𝐴]−𝑆Euler , (3.41)

where 𝜀0 is the 𝑎𝑑-type contribution to the Casimir energy alone. Here, "∼" means
equality up to exponentially suppressed corrections in 1/𝛽. 𝑆Euler is given in (3.30).
We have used that 𝑆1

𝛽
× 𝑆𝑑−1 is conformally-flat to drop the Weyl-invariants 𝐼 (𝑑)

𝑘
. In

Appendix B, we describe how (3.41) comes about in a general scheme.
12This requires a sufficiently "flexible" regulator that we can compute the Weyl anomaly. For

example it is not obvious how to do this with a lattice regulator. Furthermore, such a scheme choice
might clash with other symmetries, e.g. SUSY [13]. We thank Zohar Komargodski for discussion
on these points
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The value of 𝜀0 was computed in general 𝑑 in [113]:

𝜀0 ≡ 𝑎𝑑-type contribution to Casimir energy on 𝑆𝑑−1

=

√
𝜋

Γ( 1−𝑑
2 )

𝑎𝑑 =


(𝑑−1)!!
(−2)𝑑/2 𝑎𝑑 , 𝑑 even,

0 𝑑 odd,
(3.42)

where (𝑑 − 1)!! = (𝑑 − 1) · · · 3 · 1 for even 𝑑. Note that in 2D, we have 𝑎2 = 𝑐/6.

The partition function from the thermal effective action
Let us now study the density of CFT operators with various dimensions and spins.
We can obtain this from the partition function of the CFT on 𝑆1

𝛽
× 𝑆𝑑−1 with a spin

fugacity:

𝑍 (𝛽, ®Ω) = Tr
[
𝑒−𝛽(𝐷+𝜀0)+𝑖𝛽 ®Ω· ®𝑀

]
∼ 𝑒−𝑆[𝑔̂,𝐴]−𝑆Euler . (3.43)

Here, 𝐷 is the dilatation operator, ®𝑀 are the 𝑛 := ⌊ 𝑑2 ⌋ generators of the Cartan
subalgebra of the rotation group SO(𝑑), and ®Ω are spin fugacities.

Geometrically, (3.43) is computed by a path integral on 𝑆1
𝛽
× 𝑆𝑑−1, with a twist by

𝛽 ®Ω as we move around the thermal circle. The metric is

𝑑𝑠2cylinder = 𝛽
2𝑑𝜏2 + 𝑑𝑠2sphere, (3.44)

where 𝜏 ∈ [0, 1] is a coordinate on 𝑆1 and 𝑑𝑠2sphere is the metric on 𝑆𝑑−1.

To write down the metric on the sphere, let us choose coordinates that make Cartan
rotations manifest. The Cartan generators are rotations in 𝑛 orthogonal 2-planes.
We use radius-angle coordinates {𝑟𝑎, 𝜃𝑎} for each plane (𝑎 = 1, . . . , 𝑛), so the
Cartan generators are simply 𝑖𝜕𝜃𝑎 . If 𝑑 is odd, we have an extra axis and we use the
coordinate 𝑟𝑛+1 for it. The radii satisfy the constraint

∑𝑛+𝜖
𝑎=1 𝑟

2
𝑎 = 1, where 𝜖 = 0 for

even 𝑑 and 𝜖 = 1 for odd 𝑑. In these coordinates, the metric of the sphere is

𝑑𝑠2sphere =

𝑛+𝜖∑︁
𝑎=1

𝑑𝑟2
𝑎 +

𝑛∑︁
𝑎=1

𝑟2
𝑎𝑑𝜃

2
𝑎, (3.45)

where we have the constraint
∑𝑛+𝜖
𝑎=1 𝑟𝑎𝑑𝑟𝑎 = 0.

In the twisted geometry that computes 𝑍 (𝛽, ®Ω), we identify the points

(𝜏, 𝜃𝑎) ∼ (𝜏 + 1, 𝜃𝑎 − 𝛽Ω𝑎). (3.46)

Because of this identification, shifts in 𝜏 with fixed 𝜃𝑎 are not periodic isometries,
and thus the metric (3.45) is not in Kaluza-Klein (KK) form. To place it in KK
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form, we redefine 𝜃𝑎 → 𝜃𝑎 + 𝛽Ω𝑎𝜏, which removes the twist (3.46), and produces
the new metric

𝑑𝑠2 = 𝛽2𝑑𝜏2 +
𝑛+𝜖∑︁
𝑎=1

𝑑𝑟2
𝑎 +

𝑛∑︁
𝑎=1

𝑟2
𝑎 (𝑑𝜃𝑎 + 𝛽Ω𝑎𝑑𝜏)2

= 𝛽2

(
1 +

𝑛∑︁
𝑎=1

𝑟2
𝑎Ω

2
𝑎

) (
𝑑𝜏 + 1

𝛽

𝑛∑︁
𝑎=1

𝑟2
𝑎Ω𝑎

1 + ∑𝑛
𝑏=1 𝑟

2
𝑏
Ω2
𝑏

𝑑𝜃𝑎

)2

+
𝑛+𝜖∑︁
𝑎=1

𝑑𝑟2
𝑎 +

𝑛∑︁
𝑎,𝑏=1

(
𝑟𝑎𝑟𝑏𝛿𝑎𝑏 −

𝑟2
𝑎𝑟

2
𝑏
Ω𝑎Ω𝑏

1 + ∑𝑛
𝑐=1 𝑟

2
𝑐Ω

2
𝑐

)
𝑑𝜃𝑎𝑑𝜃𝑏 . (3.47)

Comparing (3.47) with (3.8), we identify a metric 𝑔𝑖 𝑗 , a KK gauge field 𝐴𝑖, and a
dilaton 𝜙 given by

𝑒2𝜙 = 𝛽2

(
1 +

𝑛∑︁
𝑎=1

𝑟2
𝑎Ω

2
𝑎

)
,

𝐴 =
1
𝛽

𝑛∑︁
𝑎=1

𝑟2
𝑎Ω𝑎

1 + ∑𝑛
𝑏=1 𝑟

2
𝑏
Ω2
𝑏

𝑑𝜃𝑎,

𝑔 =

𝑛+𝜖∑︁
𝑎=1

𝑑𝑟2
𝑎 +

𝑛∑︁
𝑎,𝑏=1

(
𝑟𝑎𝑟𝑏𝛿𝑎𝑏 −

𝑟2
𝑎𝑟

2
𝑏
Ω𝑎Ω𝑏

1 + ∑𝑛
𝑐=1 𝑟

2
𝑐Ω

2
𝑐

)
𝑑𝜃𝑎𝑑𝜃𝑏 . (3.48)

The effective metric 𝑔̂ = 𝑒−2𝜙𝑔, together with 𝐴, then appears in the thermal effective
action 𝑆[𝑔̂, 𝐴].

Explicitly, the cosmological constant term in the effective Lagrangian is

√︁
𝑔̂ = 𝑇 𝑑−1

(
1 +

𝑛∑︁
𝑖=1

𝑟2
𝑖 Ω

2
𝑖

)− 𝑑2 𝑛∏
𝑖=1

𝑟𝑖, (3.49)

while the Maxwell and Einstein densities are

𝐹2 = 8𝑇−2

(
𝑛∑︁
𝑖=1

Ω2
𝑖 −

∑𝑛
𝑖=1 𝑟

2
𝑖
Ω2
𝑖
(1 +Ω2

𝑖
)

1 + ∑𝑛
𝑖=1 𝑟

2
𝑖
Ω2
𝑖

)
,

𝑅 = 𝑇−2

(
𝑑 (𝑑 + 1)

1 − ∑𝑛
𝑖=1 𝑟

2
𝑖
Ω4
𝑖

1 + ∑𝑛
𝑖=1 𝑟

2
𝑖
Ω2
𝑖

− 2(2𝑑 − 1)
(
1 −

𝑛∑︁
𝑖=1

Ω2
𝑖

))
. (3.50)

As expected, at high temperature, the cosmological constant term gives the leading
contribution, while the Einstein and Maxwell terms are subleading by 1/𝑇2, since
they are two-derivative terms. Finally, the thermal effective action on our geometry
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is given by integrating over 𝑆𝑑−1:

𝑆[𝑔̂, 𝐴] =
∫
𝑆𝑑−1

√︁
𝑔̂

(
− 𝑓 + 𝑐1𝑅 + 𝑐2𝐹

2 + . . .
)

=
vol 𝑆𝑑−1∏𝑛
𝑖=1(1 +Ω2

𝑖
)

[
− 𝑓 𝑇𝑑−1 + (𝑑 − 2)

(
(𝑑 − 1)𝑐1 + (2𝑐1 + 8

𝑑
𝑐2)

𝑛∑︁
𝑖=1

Ω2
𝑖

)
𝑇𝑑−3 + . . .

]
,

(3.51)

where vol 𝑆𝑑−1 = 2𝜋𝑑/2
Γ(𝑑/2) is the volume of the 𝑑−1-sphere.13

Note that the cosmological constant predicts the entire leading term in (3.51) as a
detailed function of the spin fugacities Ω𝑖. This leading term was first written down
in [27].14 Using the thermal effective action, it is straightforward to incorporate
more terms in 𝑆th and characterize the form of subleading corrections. Overall, we
obtain a formula for the thermal partition function of a CFT with a spin fugacity in
a systematic expansion in 1/𝑇 .

The leading term in (3.51) has poles at Ω𝑖 = ±𝑖. These poles are related to
the unitarity bound because states close to the unitarity bound are not penalized by
Boltzmann factors 𝑒−𝛽(Δ−𝑖Ω𝐽) in this regime of angular fugacities. In our calculation,
the poles come from locations on the sphere where 𝑟𝑖 = 1 (and the remaining
𝑟 𝑗 vanish). Despite additional poles in the expressions (3.50), the higher-order
corrections 𝑅 and 𝐹2 do not lead to further enhanced poles in the partition function.
The reason is that 𝑅 and 𝐹2 are actually finite at 𝑟𝑖 = 1 when Ω𝑖 = ±𝑖. We expect
that this remains true for all higher-order corrections in the thermal effective action,
so that the pole structure of (3.51) holds to arbitrary (perturbative) order in 1/𝑇 .

13To evaluate (3.51), we use the following explicit coordinates on 𝑆𝑑−1. For even 𝑑 = 2𝑛, the
integral is∫ 1

0
𝑑𝑟1 . . .

∫ 1

0
𝑑𝑟𝑛

∫ 2𝜋

0
𝑑𝜃1 . . .

∫ 2𝜋

0
𝑑𝜃𝑛𝛿

(√︃
𝑟2

1 + · · · + 𝑟2
𝑛 − 1

) √︁
𝑔̂

(
− 𝑓 + 𝑐1𝑅 + 𝑐2𝐹

2 + . . .
)
,

and for odd 𝑑 = 2𝑛 + 1, the integral is∫ 1

0
𝑑𝑟1 . . .

∫ 1

0
𝑑𝑟𝑛

∫ 1

−1
𝑑𝑟𝑛+1

∫ 2𝜋

0
𝑑𝜃1 . . .

∫ 2𝜋

0
𝑑𝜃𝑛𝛿

(√︃
𝑟2

1 + · · · + 𝑟2
𝑛+1 − 1

) √︁
𝑔̂

(
− 𝑓 + 𝑐1𝑅 + 𝑐2𝐹

2 + . . .
)
.

To compute either case, we used the Feynman parametrization identity:

1
𝐴
𝛼1
1 . . . 𝐴

𝛼𝑘

𝑘

=
Γ(𝛼1 + · · · + 𝛼𝑘)
Γ(𝛼1) . . . Γ(𝛼𝑘)

∫ 1

0
𝑑𝑢1· · ·

∫ 1

0
𝑑𝑢𝑘

𝛿(𝑢1 + · · · + 𝑢𝑘 − 1)𝑢𝛼1−1
1 . . . 𝑢

𝛼𝑘−1
𝑘

(𝑢1𝐴1 + · · · + 𝑢𝑘𝐴𝑘)𝛼1+···+𝛼𝑘
. (3.52)

In order for (3.51) to be valid, we require that the convex hull of 1 + Ω2
𝑖

not contain 0. Otherwise,
the integral diverges (as expected from the unitarity bound of the CFT).

14Our ®Ω is related to the one in [27] by 𝑖 ®Ωhere = ®Ωthere.
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Specifically, we expect that the coefficient of 𝑇 𝑑−2𝑘−1 is a degree-2𝑘 polynomial in
the Ω𝑖, times an overall factor 1/∏𝑛

𝑖=1(1 +Ω2
𝑖
).

Finally, let us compute 𝑆Euler by plugging (3.48) into (3.30). In 𝑑 = 2, 4, 6, we find

𝑆𝑑=2
Euler = 0,

𝑆𝑑=4
Euler = −𝑎4𝛽

12
(Ω2

1 −Ω2
2)

2

(1 +Ω2
1) (1 +Ω2

2)
,

𝑆𝑑=6
Euler = −3𝑎6𝛽

80
1

(1 +Ω2
1) (1 +Ω2

2) (1 +Ω2
3)

×
[
Ω6

1 +Ω6
2 +Ω6

3 − 4(Ω4
1(Ω

2
2 +Ω2

3) +Ω4
2(Ω

2
3 +Ω2

1) +Ω4
3(Ω

2
1 +Ω2

2))

+ 21Ω2
2Ω

2
3Ω

2
1 + 5(Ω2

1Ω
2
2 +Ω2

2Ω
2
3 +Ω2

3Ω
2
1) − 5(Ω4

1 +Ω4
2 +Ω4

3)
]
. (3.53)

In all these cases, 𝑆Euler has the same functional form as expected from the 𝑂 (𝑇−1)
terms in the Weyl-invariant part of the thermal effective action 𝑆[𝑔̂, 𝐴] — namely a
polynomial of degree 𝑑 in the Ω𝑖’s times 𝛽/∏𝑛

𝑖=1(1+Ω2
𝑖
). Thus, the effects of 𝑆Euler

cannot be distinguished from 𝑆[𝑔̂, 𝐴] in the CFT partition function on 𝑆1 × 𝑆𝑑−1.
It would be interesting to try to distinguish these terms in some example theories,
perhaps by studying stress-tensor correlators in thermal flat space.

Leading asymptotic formula
From (3.51) we can extract the high energy density of states for any CFT15. Let us
first consider the leading term of the high-temperature partition function:

log 𝑍 (𝑇,Ω𝑖) =
vol 𝑆𝑑−1 𝑓 𝑇 𝑑−1∏𝑛

𝑖=1(1 +Ω2
𝑖
)
+𝑂 (𝑇 𝑑−3), (3.54)

where 𝑛 = ⌊𝑑/2⌋. To extract the density of states, we perform an inverse Laplace
transform on the partition function, which can be done by saddle point approxima-
tion. Before we do the general 𝑑 case however, let us first do 𝑑 = 2 and 𝑑 = 3
explicitly.

We pause to note that we can compute either the asymptotic density of all operators of
the CFT, including both primary and descendent operators, or the asymptotic density
of only the conformal primary operators. We compute the latter by decomposing
the partition function into the conformal characters. In 𝑑 dimensions the characters

15A previous version of this paper had minor typos in the density of states that we have corrected.
We thank Sasha Diatlyk and Yifan Wang for pointing them out to us.
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are given by16

𝜒Δ,𝐽𝑖 (𝛽,Ω𝑖) =


𝑒−𝛽Δ𝜒𝐽𝑖 (𝛽Ω𝑖)∏𝑛
𝑖=1 (1−𝑒−𝛽 (1+𝑖Ω𝑖 ) ) (1−𝑒−𝛽 (1−𝑖Ω𝑖 ) )

, 𝑑 even,
𝑒−𝛽Δ𝜒𝐽𝑖 (𝛽Ω𝑖)

(1−𝑒−𝛽)∏𝑛
𝑖=1 (1−𝑒−𝛽 (1+𝑖Ω𝑖 ) ) (1−𝑒−𝛽 (1−𝑖Ω𝑖 ) )

, 𝑑 odd,
(3.55)

where 𝜒𝐽𝑖 (𝜃𝑖) is the character of the SO(𝑑) representation 𝜆 = (𝐽1, . . . , 𝐽𝑛). The
partition function is a sum over characters, with an additional inclusion of the
Casimir energy 𝜀0 defined in (3.42):

𝑍 (𝑇,Ω𝑖) = 𝑒−𝛽𝜀0
∑︁
Δ𝑖 ,𝐽𝑖

𝜒Δ𝑖 ,𝐽𝑖 (𝛽,Ω𝑖). (3.56)

• 𝑑 = 2

From (3.54), our high-temperature expression for the partition function in 𝑑 = 2 is

𝑍 (𝑇,Ω)𝑑=2 ≈ exp
(

2𝜋 𝑓𝑇
1 +Ω2

)
= exp

(
4𝜋2𝑐𝑇

12(1 +Ω2)

)
, (3.57)

where we used the relation between 𝑓 and 𝑐 for 2D CFTs (3.34). We would like
to take the inverse Laplace transform to extract the high-energy density of states.
This calculation is precisely Cardy’s calculation for the high-energy density of states
[46], but we include it for completeness. It is convenient to first change variables:

𝛽𝐿 :=
1
𝑇
+ 𝑖Ω
𝑇
, 𝛽𝑅 :=

1
𝑇
− 𝑖Ω
𝑇
, (3.58)

which gives

𝑍 (𝛽𝐿 , 𝛽𝑅)𝑑=2 := Tr
(
𝑒−𝛽𝐿 (

Δ−𝐽
2 − 𝑐

24 )𝑒−𝛽𝑅 (
Δ+𝐽

2 − 𝑐
24 )

)
≈ 𝑒

2𝜋2𝑐
12

(
1
𝛽𝐿

+ 1
𝛽𝑅

)
, (3.59)

where we include the Casimir shift described in Sec 3.3. Taking the inverse Laplace
transform then gives the following integral:

𝜌states
𝑑=2 (Δ, 𝐽) ∼ 1

2

[
1

2𝜋𝑖

∫ 𝛾+𝑖∞

𝛾−𝑖∞
𝑑𝛽𝐿𝑒

2𝜋2𝑐
12𝛽𝐿

+𝛽𝐿 ( Δ−𝐽
2 − 𝑐

24 )
] [

1
2𝜋𝑖

∫ 𝛾+𝑖∞

𝛾−𝑖∞
𝑑𝛽𝑅𝑒

2𝜋2𝑐
12𝛽𝑅

+𝛽𝑅 ( Δ+𝐽
2 − 𝑐

24 )
]
.

(3.60)
16The characters (3.55) are for long representations of the conformal group. For special values of

Δ, 𝐽𝑖 (e.g. states at the unitarity bound), the representation may be shortened and the expression for
the character will be modified. However, since we are interested in reading off the density of primary
operators at large dimension, short representations will not play a role.
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Although we can do this integral by saddle, it actually can be done exactly. The
tree level piece is

𝜌states
𝑑=2 (Δ, 𝐽) ∼ exp

[√︂
2𝑐
3
𝜋

(√︂
Δ + 𝐽

2
− 𝑐

24
+

√︂
Δ − 𝐽

2
− 𝑐

24

)]
. (3.61)

We see this is none other than the Cardy formula [46]. If we do the integrals in
(3.60) exactly17, we get

𝜌states
𝑑=2 (Δ, 𝐽)

∼ 𝜋2𝑐

6
√︁
(Δ + 𝐽 − 𝑐

12 ) (Δ − 𝐽 − 𝑐
12 )

𝐼1

(√︂
2𝑐
3
𝜋

√︂
Δ + 𝐽

2
− 𝑐

24

)
𝐼1

(√︂
2𝑐
3
𝜋

√︂
Δ − 𝐽

2
− 𝑐

24

)
=

√
𝑐

√
48(Δ + 𝐽 − 𝑐

12 )3/4(Δ − 𝐽 − 𝑐
12 )3/4

exp

[√︂
2𝑐
3
𝜋

(√︂
Δ + 𝐽

2
− 𝑐

24
+

√︂
Δ − 𝐽

2
− 𝑐

24

)]
×

(
1 +𝑂 (Δ−1/2)

)
, (3.63)

where 𝐼1 is a modified Bessel function of the first kind. The expression (3.63)
indeed gives the known logarithmic corrections to Cardy’s formula [47].

So far, (3.63) is counting the density of all states rather than the density of global
or Virasoro primaries. A more natural object from the CFT perspective may be to
count the density of primary operators. In order to generalize more easily to higher
dimensions, we will now compute the asymptotic density of global (not Virasoro)
primary operators. The calculation is almost identical, except now instead of taking
the inverse Laplace transform of (3.59), we include the characters (3.55):∫

𝑑Δ𝑑𝐽𝜌
primaries
𝑑=2 (Δ, 𝐽)𝑒−𝛽𝐿 ( Δ−𝐽2 − 𝑐

24 )𝑒−𝛽𝑅 (
Δ+𝐽

2 − 𝑐
24 ) ≈ 𝑒

2𝜋2𝑐
12

(
1
𝛽𝐿

+ 1
𝛽𝑅

)
(1−𝑒−𝛽𝐿 ) (1−𝑒−𝛽𝑅 ).

(3.64)
17Strictly speaking the integral in (3.60) diverges. The precise statement is

1
2𝜋𝑖

∫ 𝛾+𝑖∞

𝛾−𝑖∞
𝑑𝛽𝑒𝛽Δ

(
𝑒

𝜋 𝑓

𝛽 − 1
)
=

√︂
𝜋 𝑓

Δ
𝐼1

(√︁
4𝜋 𝑓Δ

)
. (3.62)

This leads to an additional factor of 𝛿(Δ) in the inverse Laplace transform. However, since we are
using this method to read off the large energy density of states, it does not affect our final expression
(3.63).
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Taking the inverse Laplace transform we then get

𝜌
primaries
𝑑=2 (Δ, 𝐽) = 𝑐3/2𝜋2

√
432(Δ + 𝐽 − 𝑐

12 )5/4(Δ − 𝐽 − 𝑐
12 )5/4

× exp

[√︂
2𝑐
3
𝜋

(√︂
Δ + 𝐽

2
− 𝑐

24
+

√︂
Δ − 𝐽

2
− 𝑐

24

)]
×

(
1 +𝑂 (Δ−1/2)

)
. (3.65)

• 𝑑 = 3

Now let us redo this analysis for 𝑑 = 3. The logic is the same except now the form
of the partition function is different:

𝑍 (𝑇,Ω)𝑑=3 ≈ exp
(
4𝜋 𝑓𝑇2

1 +Ω2

)
. (3.66)

Using the same change variables (3.58) we get

𝑍 (𝛽𝐿 , 𝛽𝑅)𝑑=3 := Tr
(
𝑒−𝛽𝐿 (

Δ−𝐽
2 )𝑒−𝛽𝑅 (

Δ+𝐽
2 )

)
≈ exp

(
4𝜋 𝑓
𝛽𝐿𝛽𝑅

)
. (3.67)

To extract the density of states we again use an inverse Laplace transform:

𝜌states
𝑑=3 (Δ, 𝐽) ≈ 1

2

(
1

2𝜋𝑖

)2 ∫ 𝛾+𝑖∞

𝛾−𝑖∞
𝑑𝛽𝐿𝑑𝛽𝑅 exp

(
4𝜋 𝑓
𝛽𝐿𝛽𝑅

+ 𝛽𝐿
(
Δ − 𝐽

2

)
+ 𝛽𝑅

(
Δ + 𝐽

2

))
.

(3.68)
The integral in (3.68) is more complicated so now we do it via saddle point analysis.
The saddles in 𝛽𝐿 , 𝛽𝑅 are located at

𝛽∗𝐿 =

(
8𝜋 𝑓 (Δ + 𝐽)
(Δ − 𝐽)2

)1/3
, 𝛽∗𝑅 =

(
8𝜋 𝑓 (Δ − 𝐽)
(Δ + 𝐽)2

)1/3
. (3.69)

This gives a remarkably simple expression for the tree-level density of states:

𝜌states
𝑑=3 (Δ, 𝐽) ∼ exp

[
3𝜋1/3 𝑓 1/3 (Δ + 𝐽)1/3 (Δ − 𝐽)1/3

]
. (3.70)

Keeping the one-loop terms we get

𝜌states
𝑑=3 (Δ, 𝐽) ∼ 𝑓 1/3

√
3𝜋2/3(Δ + 𝐽)2/3(Δ − 𝐽)2/3

exp
[
3𝜋1/3 𝑓 1/3 (Δ + 𝐽)1/3 (Δ − 𝐽)1/3

]
.

(3.71)

The expression (3.71) again is counting the asymptotic density of states rather than
conformal primaries. We can read off the density of primaries from the character
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formula (3.55). We get

𝜌
primaries
𝑑=3 (Δ, 𝐽) ∼ 8𝜋2/3 𝑓 5/3 (2𝐽 + 1)Δ

√
3(Δ + 𝐽 + 1

2 )7/3 (Δ − 𝐽 − 1
2 )7/3

exp

[
3𝜋1/3 𝑓 1/3

(
Δ + 𝐽 + 1

2

)1/3 (
Δ − 𝐽 − 1

2

)1/3
]
.

(3.72)

Note that in (3.72), 2𝐽 + 1 is the dimension of the spin 𝐽 representation of 𝑆𝑂 (3).
This is reminiscent of the formulas found in [102, 128], where the density of a
global symmetry representation 𝜌 is proportional to its dimension dim 𝜌. This
comes about because the high temperature partition function can be approximated
by a delta-function on a group (the rotation group in this case) centered at the
identity, whose harmonic transform is the Plancherel measure dim 𝜌/vol𝐺.

• General 𝑑

For general 𝑑 > 3, there are several chemical potentials to turn on, so the final
leading formula for the density of states is a little more cumbersome. For simplicity,
we will simply compute the tree-level asymptotic density of states (i.e. the value
at the saddle-point, not including the Gaussian determinant). Note that because in
this section we are computing the tree-level contribution, the formula is identical
for states and for primaries.

First, let us consider the case where we only turn on information about one spin, for
simplicity. The saddles in temperature and chemical potential are located at

𝑇∗ =

(
(Δ + 𝜀0 − 𝑖𝐽Ω∗) (1 +Ω2

∗)
(𝑑 − 1) 𝑓 vol 𝑆𝑑−1

)1/𝑑
,

Ω∗ = −𝑖
√︁
(Δ + 𝜀0)2 + (𝑑 − 3) (𝑑 − 1)𝐽2 − (Δ + 𝜀0)

𝐽 (𝑑 − 3) , (3.73)

which lead to a high energy density of states of

log 𝜌𝑑 (Δ, 𝐽) ∼
𝑑

𝑑 − 1
(Δ + 𝜀0)

𝑑−1
𝑑

©­«vol 𝑆𝑑−1 𝑓 (𝑑 − 1)
2

©­«1 +

√︄
1 + (𝑑 − 3) (𝑑 − 1)𝐽2

(Δ + 𝜀0)2
ª®¬ª®¬

1
𝑑

× ©­«𝑑 − 2
𝑑 − 3

− 1
𝑑 − 3

√︄
1 + (𝑑 − 3) (𝑑 − 1)𝐽2

(Δ + 𝜀0)2
ª®¬

1− 2
𝑑

. (3.74)

This leading order formula matches the result in Equation (49) of [188].

The expression (3.74) reproduces (3.61) and (3.70) for 𝑑 = 2 and 𝑑 = 3 respectively.
Note that to reproduce (3.70) we set the Casimir energy 𝜀0 = 0 and use the fact that

lim
𝑑→3

(𝑑 − 2)Δ −
√︁
Δ2 + (𝑑 − 3) (𝑑 − 1)𝐽2

𝑑 − 3
=
Δ2 − 𝐽2

Δ
. (3.75)
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Now let us consider all the chemical potentials Ω𝑖 turned on. The leading term for
the partition function is given in (3.54), which means

𝜌𝑑 (Δ, 𝐽𝑖) ∼
∫

𝑑𝑇𝑑Ω𝑖 exp

(
Δ + 𝜀0
𝑇

+ vol 𝑆𝑑−1 𝑓 𝑇 𝑑−1∏𝑛
𝑖=1(1 +Ω2

𝑖
)
−

𝑛∑︁
𝑖=1

𝑖Ω𝑖𝐽𝑖

𝑇

)
, (3.76)

where for even dimensions, 𝜀0 is the Casimir energy as defined in (3.42). The saddle
for the 𝑇 integral is easy to compute, and is located at

𝑇∗ =

(
(Δ + 𝜀0 − 𝑖

∑
𝑖 𝐽𝑖Ω𝑖)

∏
𝑖 (1 +Ω2

𝑖
)

vol 𝑆𝑑−1 𝑓 (𝑑 − 1)

)1/𝑑

. (3.77)

Plugging this back into (3.76), we get

𝜌𝑑 (Δ, 𝐽𝑖)

∼
∫

𝑑Ω𝑖 exp
𝑑 (𝑑 − 1)− 𝑑−1

𝑑 (vol 𝑆𝑑−1 𝑓 ) 1
𝑑

(
Δ + 𝜀0 − 𝑖

∑︁
𝑖

𝐽𝑖Ω𝑖

) 𝑑−1
𝑑 ∏

𝑖

(
1 +Ω2

𝑖

)− 1
𝑑

 .
(3.78)

We now want to find the saddles in the chemical potentials. Taking a derivative
with respect to each Ω 𝑗 gives us the following equations to solve for the saddle Ω∗, 𝑗 :

−
𝑖(𝑑 − 1)𝐽 𝑗

2
= (Δ + 𝜀0 − 𝑖

∑︁
𝑖

𝐽𝑖Ω∗,𝑖)
Ω∗, 𝑗

1 +Ω2
∗, 𝑗
. (3.79)

If we solve (3.79) for Ω∗, 𝑗 for 𝑗 = 1, 2, . . . , ⌊ 𝑑2 ⌋, and plug into (3.78), we get the
tree-level density of states (or primaries) in 𝑑 dimensions. To describe the solution
for (3.79), it is useful to define the quantity 𝑎 as the following:

𝑎 :=
(Δ + 𝜀0) − 𝑖

∑
𝑖 𝐽𝑖Ω∗,𝑖

𝑑 − 1
. (3.80)

𝑎 is a function of Δ + 𝜀0 and the spins 𝐽𝑖, and it is a symmetric function of 𝐽𝑖. Each
saddle point of Ω satisfies the following equations:

𝐽 𝑗 =
2𝑖𝑎Ω2

∗, 𝑗

1 +Ω2
∗, 𝑗
, Ω∗, 𝑗 = −𝑖

−𝑎 +
√︃
𝑎2 + 𝐽2

𝑗

𝐽 𝑗
. (3.81)

When we substitute this relation into (3.79), we get the density of states at leading
order to be

log 𝜌𝑑 (Δ, 𝐽1, . . . , 𝐽𝑛) ∼ 𝑑 (vol 𝑆𝑑−1 𝑓 ) 1
𝑑 𝑎

𝑑−1
𝑑

𝑛∏
𝑖=1

©­­«
1 +

√︃
1 + 𝐽2

𝑖

𝑎2

2
ª®®¬

1
𝑑

, (3.82)
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where 𝑎 is the positive real solution of

Δ + 𝜀0 = ⌊ 𝑑−1
2 ⌋𝑎 +

∑︁
𝑖

√︃
𝑎2 + 𝐽2

𝑖
. (3.83)

Because the right-hand side of (3.83) is a monotonically increasing function of 𝑎,
there is only one positive real 𝑎 satisfying (3.83) for a given energy Δ+ 𝜀0 and spins
𝐽𝑖.

• Perturbative corrections to the density of states

Besides corrections coming from higher-loop terms in the saddle point analysis,
the first nontrivial correction for 𝑑 > 2 comes from higher derivative terms in the
effective action of 𝑆th in 3.51. Note that in 𝑑 = 2 these corrections are absent
(see 3.33). This is another way of understanding that the corrections to the first
line of 3.63 are non-perturbatively suppressed in Δ (and come from the modular 𝑆
transformation of the lightest non-vacuum operator).

For 𝑑 > 2, the first correction comes from the Maxwell and Einstein terms in the
effective action. This will turn out to induce a correction to the entropy of the form
Δ
𝑑−3
𝑑 . To see this, let us look at our expression for the thermal effective action (3.51).

In 𝑑 = 3 we have

log 𝑍𝑑=3(𝑇,Ω) =
4𝜋

1 +Ω2

(
𝑓 𝑇2 − (2𝑐1 + (2𝑐1 +

8
3
𝑐2)Ω2) +𝑂 (𝑇−2)

)
. (3.84)

From this we can extract a correction to the density of states from our saddle (3.69).
We get

log 𝜌states
𝑑=3 (Δ, 𝐽) = 3𝜋1/3 𝑓 1/3 (Δ + 𝐽)1/3 (Δ − 𝐽)1/3 − 2

3
log(Δ2 − 𝐽2) + 1

3
log

(
𝑓

3
√

3𝜋2

)
− 8𝜋𝑐1 +

32𝑐2𝐽
2𝜋

3(Δ2 − 𝐽2)
+𝑂 (Δ−1/3),

log 𝜌primaries
𝑑=3 (Δ, 𝐽) = 3𝜋1/3 𝑓 1/3

(
Δ + 𝐽 + 1

2

)1/3 (
Δ − 𝐽 − 1

2

)1/3
+ log

(
Δ(2𝐽 + 1)

(Δ2 − (𝐽 + 1
2 )2)7/3

)
+ log

(
8𝜋2/3 𝑓 5/3

√
3

)
− 8𝜋𝑐1 +

32𝑐2(𝐽 + 1
2 )

2𝜋

3(Δ2 − (𝐽 + 1
2 )2)

+𝑂 (Δ−1/3). (3.85)

Note that the size of the Maxwell term (𝑐2) compared to higher-derivative terms
depends on the order of limits in Δ, 𝐽. If we take Δ ≫ 𝐽 ≫ 1, then the Maxwell
term scales as Δ−2 (instead of Δ0), can be neglected at this order in the derivative
expansion. However, if we instead take a limit where Δ/𝐽 is fixed and then take Δ

to infinity, then it is important.
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For 𝑑 > 3, we have the following correction to the density of states:

log 𝜌𝑑 (Δ, 𝐽1, . . . , 𝐽𝑛) ∼ 𝑑 (vol 𝑆𝑑−1 𝑓 ) 1
𝑑 𝑎

𝑑−1
𝑑

𝑛∏
𝑖=1

©­­«
1 +

√︃
1 + 𝐽2

𝑖

𝑎2

2
ª®®¬

1
𝑑

− 𝑑 − 2
𝑓

(vol 𝑆𝑑−1 𝑓 ) 3
𝑑 𝑎

𝑑−3
𝑑

©­­«(𝑑 − 1)𝑐1 −
(
2𝑐1 +

8
𝑑
𝑐2

) ∑︁
𝑖

√︃
1 + 𝐽2

𝑖
/𝑎2 − 1√︃

1 + 𝐽2
𝑖
/𝑎2 + 1

ª®®¬
𝑛∏
𝑖=1

©­­«
1 +

√︃
1 + 𝐽2

𝑖

𝑎2

2
ª®®¬

3
𝑑

+𝑂
(
𝑎

𝑑−5
𝑑

)
, (3.86)

where 𝑎 is defined in (3.83). In order to trust the high-temperature expansion, we
demand that the temperature at the saddle point be large. The saddle temperature
(3.77) is proportional to 𝑎 1

𝑑 , with the remaining factors being O(1). Therefore, we
can expand our formula in 𝑎. We will discuss the regime of validity of our formulas
in more detail in Sec 3.3.

If we keep the information from only one spin 𝐽, then we get a correction of the
form

log 𝜌𝑑 (Δ, 𝐽) ∼
𝑑

𝑑 − 1
(Δ + 𝜀0 − 𝛼𝐽)

𝑑−1
𝑑

(
(𝑑 − 1)vol 𝑆𝑑−1 𝑓

) 1
𝑑

(
1 + (𝑑 − 3)𝛼𝐽

Δ + 𝜀0

) 1
𝑑

(
1 − 𝛼𝐽

Δ + 𝜀0

)1− 2
𝑑

− (𝑑 − 2) (vol 𝑆𝑑−1 𝑓 )3/𝑑

(𝑑 − 1) 𝑑−3
𝑑 𝑓

(Δ + 𝜀0 − 𝛼𝐽)
𝑑−3
𝑑 (1 − 𝛼2)−3/𝑑

(
(𝑑 − 1)𝑐1 −

8𝑐2 + 2𝑐1𝑑

𝑑
𝛼2

)
+𝑂

(
(Δ + 𝜀0)

𝑑−5
𝑑

)
, (3.87)

where 𝛼 := 𝐽
Δ+𝜀0

𝑑−1
1+
√

1+(𝑑−1) (𝑑−3)𝐽2/(Δ+𝜀0)2
. Because Δ + 𝜀0 is larger than 𝐽, |𝛼 | is

always in between 0 and 1. The corrections from the Maxwell and Einstein terms
are in fact more important than the Gaussian fluctuations about the saddle point.

Again, if Δ + 𝜀0 ≫ |𝐽 |, then |𝛼 | ≪ 1, so the Einstein (𝑐1) term dominates in 3.87
and the Maxwell (𝑐2) term is subleading. However, if (Δ+ 𝜀0)/𝐽 is fixed as Δ → ∞,
then 𝛼 ∼ 𝑂 (1), and the two terms are comparable.

• Regime of validity

Because we are doing a high-temperature expansion, in order for our formulas to be
valid, we need the saddle-point value of temperature, 𝑇∗, to be large. From (3.77),
we see that we need to take Δ ≫ 𝑓 . However, large Δ is not a sufficient condition
— it is possible that the saddles in Ω are sufficiently close to 𝑖 to make the saddle in
𝑇 no longer large. This puts a condition on the twist Δ −∑

𝑖 |𝐽𝑖 | of the operators. In
particular, if 𝑚 of the ⌊ 𝑑2 ⌋ spins are large, meaning |𝐽1 |, . . . |𝐽𝑚 | ≫ Δ −∑

𝑖 |𝐽𝑖 |, then
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our universal entropy formula is only valid when

Δ −
∑︁
𝑖

|𝐽𝑖 | ≫
(
𝑓

𝑚∏
𝑖=1

|𝐽𝑖 |
) 1
𝑚+1

. (3.88)

For example, in CFT3, this is equivalent to the entropy formula only being valid in
the regime

Δ − |𝐽 | ≫
√︁
𝑓Δ. (3.89)

(This can be seen easily by demanding the saddles in (3.69) are very small.) Oper-
ators outside of this window (for example operators along a Regge trajectory with
Δ large but Δ − |𝐽 | growing slower than

√
𝐽) will not obey our universal entropy

formula.

In 𝑑 = 2, the regime of validity is larger. In order to trust the saddle point analysis,
it is only necessary to take Δ → ∞ with

Δ − |𝐽 | ≫ 𝑐 (3.90)

(or equivalently take ℎ, ℎ ≫ 𝑐).

• Non-perturbative corrections to the density of states

So far, we have discussed an infinite set of perturbative corrections in 1/𝑇 to
log 𝑍 (𝑇,Ω𝑖), parametrized by an infinite set of terms in the thermal effective ac-
tion. In this section we briefly consider nonperturbative corrections to log 𝑍 (𝑇,Ω𝑖),
namely corrections that scale as 𝑒−#𝑇 .

In general we expect the first nonperturbative correction to be proportional to

𝑒−2𝜋𝑚, (3.91)

where𝑚 is the mass of the lightest massive state in the dimensionally reduced theory.
By dimensional analysis, 𝑚 ∝ 𝑇 , so (3.91) is indeed a nonperturbative correction.
The reason for (3.91) is the following. Consider the CFT on 𝑆1

𝛽
× 𝑆𝑑−1 as a gapped

theory on 𝑆𝑑−1. Corrections of the form (3.91) will be generated by world-line
instantons associated with a massive particle moving along a great circle of 𝑆𝑑−1 of
length 2𝜋. Similar world line instantons were studied in [39, 79, 99, 109, 110] in
the context of the large-charge expansion.18

18We thank Yifan Wang for pointing out this interpretation and associated references.
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We can also understand (3.91) from a Hamiltonian perspective. We can compute
the partition function of the gapped theory on 𝑆𝑑−1 by slicing the path integral on
𝑆𝑑−2 spatial slices at various polar angles 𝜃 ∈ [0, 𝜋]. These slices have varying
radius sin 𝜃, and therefore varying Hamiltonian 𝐻 (𝜃). Overall, we time-evolve by
Euclidean time 𝜋 as we move from the south pole to the north pole of the 𝑆𝑑−1. This
gives an expression for the partition function of the form

𝑍 = ⟨𝜓0 |T exp
(
−

∫ 𝜋

0
𝑑𝜃 𝐻 (𝜃)

)
|𝜓0⟩, (3.92)

where |𝜓0⟩ is the state in the 𝑆𝑑−2 Hilbert space created by the path integral near
the south pole, and T denotes Euclidean time ordering. In general, the spectrum of
𝐻 (𝜏) could be quite complicated. However, when 𝛽 is small, most spatial slices are
large compared to the mass gap, and we expect the low-lying spectrum of 𝐻 (𝜏) to be
close to the gapped spectrum in flat space R𝑑−2. In particular, there is a contribution
from a particle-antiparticle pair nucleated at the south pole, which propagate for
Euclidean time 𝜋 before annihilating at the north pole. This leads to 3.91.

In general, we expect similar corrections of the form 𝑒−2𝜋𝑚𝑖 for each massive state
in the gapped theory on R𝑑−2. There will also be Lüscher corrections [159] that it
would be interesting to study in more detail.

We can check the prediction (3.91) explicitly in free theories. In Appendix C,
we write down the high-temperature expansions of the partition function for a 𝑑-
dimensional free boson and free Dirac fermion respectively. In even dimensions, we
write down the exact expression, including all non-perturbative corrections; in odd
dimensions, the perturbative expansion is asymptotic rather than convergent, but we
are still able to write down the first non-perturbative correction. In all cases, we
show that the first non-perturbative correction at high temperature to the partition
function take the form as predicted by (3.91).

3.4 Density of states: examples
In this section, we study partition functions of various CFTs to illustrate the general
results of the previous sections. The examples we consider are the free scalar,
the free scalar with a Z2 twist, the free fermion, and holographic CFTs where the
entropy is well-approximated by that of a Kerr-AdS black hole. In these examples,
we check the partition function against our general formula (3.51) and determine
the unknown coefficients 𝑓 , 𝑐1, and 𝑐2 when the thermal effective action applies.
Furthermore, in Appendix 3.9, we compare the predictions of the thermal effective
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action to numerical bootstrap data for the 3D Ising model, obtaining an estimate for
𝑓 .

Free scalar
Our first example is the free scalar in 𝑑 dimensions. When compactified, this theory
contains a gapless sector corresponding to a free scalar in one lower dimension.
Therefore, it violates the central assumption of the thermal effective action, and the
predictions of the thermal EFT should be violated in some way.

The partition function of this theory can be computed exactly. For a review, see
Appendix C. Expanding the result at high temperature, we find for example

log 𝑍 (𝑇,Ω𝑖) =
1∏⌊ 𝑑

2 ⌋
𝑖=1 (1 +Ω2

𝑖
)
©­«2𝜁 (𝑑)𝑇𝑑−1 −

𝑑 − 4 − 2
∑⌊ 𝑑

2 ⌋
𝑖=1 Ω2

𝑖

12
𝜁 (𝑑 − 2)𝑇𝑑−3 +𝑂 (𝑇𝑑−5)ª®¬ .

(3.93)
Importantly, in even 𝑑, we find that the high temperature expansion contains a term
proportional to 𝑇0, while in odd dimensions there is a term proportional to log𝑇 .
(When 𝑑 = 3, the logarithm is visible in (3.93) via the pole in the 𝜁-function at 1.)
Such terms are inconsistent with the derivative expansion of the thermal effective
action (which contains powers of the form 𝑇 𝑑−2𝑘−1 for integer 𝑘). They represent
contributions from the gapless sector. We discuss these terms more explicitly in
Appendix C.

Free scalar with a Z2 twist
To remove the gapless sector in the compactified free scalar, we can insert a Z2 twist
on the 𝑆1, where we identify 𝜙(𝜏 = 1) = −𝜙(𝜏 = 0) as we go around the thermal
circle. Computing the partition function with this twist inserted (this can be treated
using methods in e.g. [80]), we find

log 𝑍 (𝑇,Ω𝑖) =
1∏⌊ 𝑑

2 ⌋
𝑖=1 (1 +Ω2

𝑖
)
×

©­«−2
(
1 − 1

2𝑑−1

)
𝜁 (𝑑)𝑇𝑑−1 +

(
1 − 1

2𝑑−3

) (𝑑 − 4) − 2
∑⌊ 𝑑

2 ⌋
𝑖=1 Ω2

𝑖

12
𝜁 (𝑑 − 2)𝑇𝑑−3 +𝑂 (𝑇𝑑−5)ª®¬ .

(3.94)

This result is now consistent with the thermal effective action (even though the
compactification is no longer "thermal"). For example, when 𝑑 = 3, the extra factor
(1 − 1/2𝑑−3) cancels the pole in 𝜁 (𝑑 − 2), so there is no log𝑇 term. Matching with
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(3.51), we get

𝑓 = − 2𝜁 (𝑑)
vol 𝑆𝑑−1

(
1 − 1

2𝑑−1

)
,

𝑐1 = − (𝑑 − 4)𝜁 (𝑑 − 2)
12(𝑑 − 1) (𝑑 − 2)vol 𝑆𝑑−1

(
1 − 1

2𝑑−3

)
,

𝑐2 =
𝑑 (2𝑑 − 5)𝜁 (𝑑 − 2)

48(𝑑 − 1) (𝑑 − 2)vol 𝑆𝑑−1

(
1 − 1

2𝑑−3

)
, (3.95)

for a free scalar with a Z2 twist.

Note that 𝑓 < 0 in (3.95). This is not a contradiction because the partition function
computed in (3.94) is not a positive-definite sum of states (due to the insertion of
the Z2 twist). In fact 𝑓 < 0 implies a strong cancellation between Z2-even and odd
operators in the theory.

Free fermion
Next, let us consider a free Dirac fermion in 𝑑 dimensions. We compactify the
theory with thermal boundary conditions, where we do not insert (−1)𝐹 . This leads
to a massive (𝑑 − 1)-dimensional theory. (With the (−1)𝐹 operator inserted, there
would be a gapless sector.)

We compute the partition function explicitly in Appendix C. The leading two terms
in the free energy are given by

log 𝑍 (𝑇,Ω𝑖) =
2⌊ 𝑑

2 ⌋+1∏⌊ 𝑑
2 ⌋
𝑖=1 (1 +Ω2

𝑖
)
×


(
1 − 1

2𝑑−1

)
𝜁 (𝑑)𝑇𝑑−1 −

(
1 − 1

2𝑑−3

) (𝑑 − 1) + ∑⌊ 𝑑
2 ⌋
𝑖=1 Ω2

𝑖

24
𝜁 (𝑑 − 2)𝑇𝑑−3 +𝑂 (𝑇𝑑−5)

 .
(3.96)

Unlike in the free scalar case, the expression (3.96) has no log𝑇 terms or 𝑇0 terms
in even 𝑑, consistent with the thermal compactification being gapped. Matching
with (3.51), we find

𝑓 =

2⌊ 𝑑2 ⌋+1
(
1 − 1

2𝑑−1

)
𝜁 (𝑑)

vol 𝑆𝑑−1 ,

𝑐1 =

2⌊ 𝑑2 ⌋+1
(
1 − 1

2𝑑−3

)
𝜁 (𝑑 − 2)

24(𝑑 − 2)vol 𝑆𝑑−1 ,

𝑐2 = −
2⌊ 𝑑2 ⌋+1

(
1 − 1

2𝑑−3

)
𝜁 (𝑑 − 2)

96(𝑑 − 2)vol 𝑆𝑑−1 , (3.97)
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for the free fermion.

Holographic theories
Finally, let us consider CFTs dual to semiclassical Einstein gravity via AdS/CFT. We
can estimate the partition functions of such theories by studying the thermodynamics
of Kerr-AdS black holes (see e.g. [95]). By the holographic principle, a holographic
CFT has the same partition function as its dual in AdS space. We get the following
high-temperature partition function for a holographic CFT𝑑 , 𝑑 ≥ 3:

log 𝑍 =
vol 𝑆𝑑−1(4𝜋)𝑑−1

4𝑑𝑑𝐺𝑁

ℓ𝑑−1
AdS𝑇

𝑑−1∏⌊𝑑/2⌋
𝑖=1

(
1 +Ω2

𝑖

) ©­­«1 −
𝑑2

(
(𝑑 − 1) + ∑⌊𝑑/2⌋

𝑖=1 Ω2
𝑖

)
16𝜋2𝑇2 + O

(
1
𝑇4

)ª®®¬ ,
(3.98)

where ℓAdS is the characteristic length of the dual asymptotic AdS𝑑+1 spacetime and
𝐺𝑁 is the 𝑑 + 1-dimensional Newton constant.

This is indeed consistent with the result (3.51) from the thermal effective action.
Matching coefficients, we find19

𝑓 =
(4𝜋)𝑑−1ℓ𝑑−1

AdS
4𝑑𝑑𝐺𝑁

,

𝑐1 =
(4𝜋)𝑑−3ℓ𝑑−1

AdS
4(𝑑 − 2)𝑑𝑑−2𝐺𝑁

,

𝑐2 = −
(4𝜋)𝑑−3ℓ𝑑−1

AdS
32(𝑑 − 2)𝑑𝑑−3𝐺𝑁

, (3.99)

for the thermal Wilson coefficients of a holographic CFT.

• Extended regime of validity for holographic theories

For holographic theories, the entropy of local operators with certain dimensions and
spins can be approximated by the entropy of a black hole with the same quantum
numbers, as long as the black hole is stable and has large area (in Planck units). In
this section we examine where the entropy of Kerr black holes is trustworthy, and
compare it to the range of validity of the EFT expansion in Section 3.3. We will
find that for holographic theories, the universal formula for entropy has an extended
regime of validity, compared to general CFTs. This is reminiscent of what happens

19The coefficients in (3.99) were also independently computed by Edgar Shaghoulian. We thank
him for discussions related to these coefficients.
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in two-dimensional CFTs, where the Cardy formula has an extended regime of
validity for holographic theories [104].

When Kerr black holes in AdS spin too quickly, they suffer from a phenomenon
called superradiant instability [43]. In the case of the Kerr-AdS black hole, it has
an instability when any of the angular velocities Ω𝑖 become larger than ℓ−1

AdS. In
particular, a stable Kerr-AdS black hole has a bound on quantity 𝐸 − ∑

𝑖 |𝐽𝑖 |ℓ−1
AdS.

For instance, in AdS4, the condition for stability is (see e.g. [133])

𝐸 − |𝐽 |ℓ−1
AdS >

√︄
𝐸ℓAdS
2𝐺𝑁

, (3.100)

when the black hole has large mass and spin.20 Translated to CFT data, the entropy
for holographic theories is trustworthy when the twist obeys

Δ − |𝐽 | ≳
√︁
𝑓Δ, (3.101)

where by ≳ we allow for an 𝑂 (1) constant on the RHS that we do not compute.21

A similar calculation shows that, for a holographic theory where 𝑚 of the spins are
taken to be large compared to the twist (i.e. Δ, |𝐽1 |, . . . |𝐽𝑚 | ≫ Δ − ∑⌊ 𝑑2 ⌋

𝑖=1 |𝐽𝑖 |), then
the entropy is trustworthy when the twist obeys

Δ −
∑︁
𝑖

|𝐽𝑖 | ≳
(
𝑓

𝑚∏
𝑖=1

|𝐽𝑖 |
) 1
𝑚+1

. (3.102)

We see that the functional form of the stability bound for Kerr-AdS black holes
is very similar to the regime of validity (3.89) and (3.88) for the general entropy
formula.

This is reminiscent of the extended regime of the Cardy formula for the case of
CFT2: for theories holographically dual to large-radius gravity in AdS3, it was
shown that there is a further extension of the validity of the Cardy formula in [104].
For holographic CFTs, the Cardy formula matches the Bekenstein-Hawking entropy
of BTZ black holes, which only requires

Δ − |𝐽 | ≳ 𝑐, (3.103)
20Meaning 𝐸𝐺𝑁 ℓ−1

AdS, |𝐽 |𝐺𝑁 ℓ
−2
AdS ≫ 1.

21The reason we allow this freedom is the possibility of the black holes being stable, but not
yet dominating the canonical ensemble. This can occur for sufficiently light black holes, sometimes
called "enigmatic black holes" [32, 104].
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with 𝑐 → ∞ (rather than the usual Δ − |𝐽 | ≫ 𝑐 condition). In particular, it was
shown that theories with a sufficiently sparse light spectrum (which is a necessary,
but not sufficient condition for the theory to have a semiclassical Einstein gravity
dual) have an extended Cardy regime of entropy. It would be interesting if one could
prove a similar statement for higher dimensional CFTs.22

3.5 A "genus-2" partition function
While the density of states of a CFT is encoded in the partition function on 𝑆1

𝛽
×𝑆𝑑−1,

OPE coefficients are encoded in partition functions on other manifolds. In this
work, we will be interested in "heavy-heavy-heavy" OPE coefficients 𝑐𝑖 𝑗 𝑘 between
operators with parametrically large scaling dimension. To study them, we can
consider the partition function of the CFT on a manifold constructed by gluing
a pair of three-punctured spheres along their punctures. In two dimensions, this
produces a genus-2 Riemann surface. However, a similar construction works in
higher dimensions. We will continue to refer to such a manifold as "genus-2" in
higher dimensions, by analogy with the 2D case.

We pause to note that our final expression for "heavy-heavy-heavy" OPE coefficients
is given at the end of Sec. 3.7, in Eqn (3.242). Readers only interested in the final
result can skip to this part.

Conformal structures of a genus-2 manifold
In higher dimensions we can build a genus-2 manifold 𝑀2 by taking two copies of
the plane R𝑑 (more precisely its conformal compactification 𝑆𝑑), removing three
balls from each plane, and gluing the boundaries of the balls with cylinders. In this
construction, we can choose the positions and radii of the balls, as well as the lengths
of the cylinders. We can additionally add angular twists by elements of SO(𝑑) as
we move along each cylinder. This is a large number of parameters, but many of
them are related by conformal symmetry.

In addition, if the CFT has a global symmetry Γ, we can introduce topological defects
on 𝑀2, or equivalently a flat Γ-bundle over 𝑀2. Such flat bundles are parametrized
by homomorphisms of the fundamental group of 𝑀2 to Γ. For 𝑑 > 2, R𝑑 with balls
removed is simply connected, and the only homotopically non-trivial cycles on 𝑀2

are those going through the cylinders between the two copies of R𝑑 . Therefore, the
22Some works studying sparseness in higher-𝑑 CFT include [21, 116, 164]. In particular it would

be interesting if the precise sparseness conditions in [164] implied the extended entropy formulas
described in this section.
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fundamental group is a free group with two generators, and flat Γ-bundles can be
parametrized by decorating the cylinders by inserting topological defects transverse
to these cycles. The situation is different for 𝑑 = 2 since R2 with balls removed is
already not simply connected, and there are additional generators of the fundamental
group which go around the boundaries of the balls. Inserting topological defects
transverse to these additional cycles on 𝑀2 is equivalent to considering twisted
sectors along the cylinders.

To understand the implications of conformal symmetry, it is helpful to ignore the
Weyl anomaly and focus on the conformal structure of the manifold 𝑀2 — i.e.
properties of 𝑀2 that are independent of the Weyl class of the metric. First, we
can associate an (orientation-reversing) conformal group element to each cylinder
as follows. Let 𝑥, 𝑥′ be flat coordinates on the two copies of R𝑑 . A cylinder 𝐶 that
connects the two planes is Weyl-equivalent to an annulus in each plane. Using this
Weyl-equivalence, each coordinate 𝑥 and 𝑥′ can be extended to cover 𝐶. Inside 𝐶,
the coordinates 𝑥 and 𝑥′ are identified by an orientation-reversing conformal group
element:

𝑥 = 𝑔𝑥′, 𝑔 ∈ 𝐺− (inside 𝐶). (3.104)

Here, we denote the conformal group as 𝐺 = SO(𝑑 + 1, 1), and we write the
orientation-reversing component of 𝑂 (𝑑 + 1, 1) as 𝐺−. For example, if a cylinder
of length 𝛽 connects the unit spheres in each copy of the plane, then we have

𝑔 = 𝑒−𝛽𝐷 𝐼, (3.105)

where 𝐼 (𝑥) = 𝑥

𝑥2 is an inversion. More generally, suppose the cylinder is centered
at 𝑥 = 𝑎, has radius 𝑟 and length 𝛽𝑟, and includes an angular twist by ℎ ∈ SO(𝑑).
Then23

𝑔 = 𝑒𝑎·𝑃𝑒−(𝛽−2 log 𝑟)𝐷ℎ𝐼𝑒−𝑎·𝑃 . (3.106)

In the case of interest, we have three cylinders connecting two copies of the plane.
This gives three group elements (𝑔1, 𝑔2, 𝑔3) ∈ (𝐺−)3. However, the conformal
structure of the resulting manifold is unchanged if we perform a conformal trans-
formation 𝑥 ↦→ 𝑔𝑥 on the first plane or 𝑥′ ↦→ 𝑔′𝑥′ on the second. These conformal

23The appearance of the quantity 𝛽 − 2 log 𝑟 reflects the fact that two planes glued by a cylinder
with radius 𝑟 and length 𝛽𝑟 is Weyl-equivalent to two planes glued by a cylinder with radius 1
and length 𝛽 − 2 log 𝑟 . The Weyl transformation breaks the cylinder into three pieces of lengths
𝑟 log 𝑟, 𝑟 (𝛽 − 2 log 𝑟), 𝑟 log 𝑟, and flattens out the first and third piece into annuli.
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transformations become gauge redundancies acting on the 𝑔𝑖:

(𝑔1, 𝑔2, 𝑔3) ∼ (𝑔𝑔1𝑔
′−1, 𝑔𝑔2𝑔

′−1, 𝑔𝑔3𝑔
′−1). (3.107)

Modding out by this gauge-redundancy, we obtain the moduli space of conformal
structures as a double-quotient

M = 𝐺\(𝐺−)3/𝐺, (3.108)

where the left and right factors of 𝐺’s act on (𝐺−)3 via (3.107). The action of the
𝐺 × 𝐺 gauge redundancies on (𝐺−)3 is almost free, so the dimension of M is

dimM = 3 dim𝐺− − 2 dim𝐺 = dim𝐺 =
(𝑑 + 1) (𝑑 + 2)

2
. (3.109)

For orientation, in 2D the parametrization of a genus-2 Riemann surface in terms
of (𝑔1, 𝑔2, 𝑔3) is called a Whittaker parametrization. (The closely-related Schottky
parametrization can be obtained by forming the combinations 𝛾𝑖 𝑗 = 𝑔𝑖𝑔

−1
𝑗

, which
satisfy 𝛾12𝛾23𝛾31 = 1.) In 2D, the true moduli space of genus-2 surfaces is a
quotient of M by the mapping class group. The action of the mapping class group is
unfortunately somewhat complicated in the Whittaker/Schottky parameterizations.

In higher dimensions, M is again a covering space of the moduli space of conformal
structures on 𝑀2. Topologically, 𝑀2 is equivalent to a connected sum of two copies
of 𝑆1 × 𝑆𝑑−1:24

𝑀2 � (𝑆1 × 𝑆𝑑−1) # (𝑆1 × 𝑆𝑑−1). (3.110)

This can be seen by decomposing 𝑀2 in the "dumbbell" channel where we slice
Figure 3.3 down the middle into a left half and a right half. Each half is topologically
a copy of 𝑆1 × 𝑆𝑑−1 with a ball removed, and the two halves are glued along an 𝑆𝑑−1.
The mapping class group of this space was computed for 𝑑 = 3 in [37]. This mapping
class group will not play a further role in the present work. It will be interesting
to explore its implications and other global aspects of higher-dimensional "higher-
genus" surfaces in future work.

An important set of functions on M are eigenvalues of the group elements 𝑔−1
𝑖
𝑔 𝑗 ∈

SO(𝑑 + 1, 1):

eigenvalues(𝑑+2)×(𝑑+2) (𝑔−1
𝑖 𝑔 𝑗 ) =


(𝑒±𝛽𝑖 𝑗 , 𝑒±𝑖 ®𝜃𝑖 𝑗 ) (even 𝑑),

(𝑒±𝛽𝑖 𝑗 , 𝑒±𝑖 ®𝜃𝑖 𝑗 , 1) (odd 𝑑).
(3.111)

24We thank Yifan Wang for pointing this out and directing us to reference [37].
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𝜕𝐵3

𝜕𝐵1 𝜕𝐵2

𝑌

Figure 3.2: The space 𝑌 = 𝐵3\(𝐵1 ∪ 𝐵2). The boundary of 𝑌 has three 𝑆𝑑−1

components given by 𝜕𝐵1, 𝜕𝐵2, 𝜕𝐵3 with radii 1, 1, 2, respectively. Note that in
𝑑 ≥ 3, 𝑌 has an SO(𝑑 −1) rotational symmetry around the horizontal axis, and here
we are depicting only a 2-dimensional slice.

These are indeed invariant under gauge-redundancies (3.107). We refer to the 𝛽𝑖 𝑗
and ®𝜃𝑖 𝑗 as "relative" inverse temperatures and angles, for reasons that will become
clear shortly. Note that there are 3⌊ 𝑑+2

2 ⌋ relative temperatures/angles, which is not
enough to parametrize the full moduli space when 𝑑 ≥ 3.

Choice of geometry
The partition function of a CFT on 𝑀2 factors into a theory-independent part that
depends on the precise metric and is determined by the Weyl anomaly, times a
theory-dependent part that depends only on the conformal structure of 𝑀2. To get
nontrivial information about the theory, it suffices to study only a single representa-
tive geometry for each conformal structure.

We will choose our geometry as follows. Let 𝐵1 be the unit ball centered at
(−1, 0, . . . , 0), let 𝐵2 be the unit ball centered at (1, 0, . . . , 0), and let 𝐵3 be the ball
of radius 2 centered at the origin. All three balls are mutually tangent. From 𝐵3, we
remove 𝐵1 and 𝐵2. The resulting space𝑌 = 𝐵3\(𝐵1∪𝐵2) has three 𝑆𝑑−1 boundaries
given by 𝜕𝐵1, 𝜕𝐵2, 𝜕𝐵3, see Figure 3.2. We now take a second copy of 𝑌 , which
we call 𝑌 ′, containing boundaries 𝜕𝐵′1, 𝜕𝐵

′
2, 𝜕𝐵

′
3. Finally, we glue each 𝜕𝐵𝑖 to 𝜕𝐵′

𝑖

with cylinders 𝐶𝑖 whose ratios of length/radius are 𝛽𝑖, and we include angular twists
ℎ𝑖 ∈ SO(𝑑) along each cylinder. See Figure 3.3 for an illustration.

This construction gives a particular choice of metric that is flat on 𝑌,𝑌 ′ and is the
usual cylinder metric on the 𝐶𝑖. Note that the metric has curvature localized at the
junctions between 𝑌,𝑌 ′ and the cylinders. However, it is everywhere conformally-
flat because the plane, the cylinder, and a plane-cylinder junction are all conformally-
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𝐶3𝐶2𝐶1

𝑌 ′

𝑌

Figure 3.3: The manifold 𝑀2 is obtained by taking two copies of 𝑌 and gluing cor-
responding boundary components with cylinders 𝐶1, 𝐶2, 𝐶3 of inverse temperatures
𝛽1, 𝛽2, 𝛽3 and angular twists ℎ1, ℎ2, ℎ3, colored red, blue, and green, respectively.
In the figure, we slightly bent the edges of the cylinders to help visualize them, but
in the actual geometry the cylinders have constant radii. The figure also naively
suggests that the lengths of the cylinders must be equal, but in reality they need not
be related to each other.

flat. In terms of conformal structures, our geometry corresponds to

𝑔1 = 𝑒−𝑃
1
𝑒−𝛽1𝐷ℎ1𝐼𝑒

𝑃1
,

𝑔2 = 𝑒𝑃
1
𝑒−𝛽2𝐷ℎ2𝐼𝑒

−𝑃1
,

𝑔3 = 𝑒𝐷 (2 log 2+𝛽3)ℎ3𝐼, (3.112)

which gives a point in M, parametrized by 𝛽1, 𝛽2, 𝛽3, ℎ1, ℎ2, ℎ3.

A slight disadvantage of the parametrization (3.112) is that it is not permutation-
symmetric among the three cylinders — 𝐶3 is treated differently. However, an
advantage is that it makes manifest an important SO(𝑑 − 1) symmetry that rotates
all three balls around the 𝑥1 axis, preserving their points of tangency.25 We can act
with an SO(𝑑 − 1) rotation on either 𝑌 or 𝑌 ′, which means that the angular twists
(ℎ1, ℎ2, ℎ3) are subject to a residual gauge redundancy

(ℎ1, ℎ2, ℎ3) ∼ (𝑘ℎ1𝑘
′−1, 𝑘ℎ2𝑘

′−1, 𝑘ℎ3𝑘
′−1), 𝑘, 𝑘′ ∈ SO(𝑑 − 1). (3.113)

Thus, overall, we can think of the parametrization (3.112) as a map

SO(𝑑 − 1)\(SO(1, 1) × SO(𝑑))3/SO(𝑑 − 1) → M, (3.114)

25By contrast, we could restore manifest permutation symmetry by taking the balls to all have the
same radius and be mutually tangent, but then the SO(𝑑 − 1) would act via a nontrivial conformal
transformation.
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where 𝛽𝑖 parametrize the SO(1, 1)’s, the ℎ𝑖 parametrize the SO(𝑑)’s, and the SO(𝑑−
1)’s act on the SO(𝑑)’s via (3.113).

We claim that (3.112) is injective and covers an open subset of M — in particular
an open subset that contains the physical loci that will be important in what follows.
These loci include the low temperature regime of large 𝛽𝑖, and a high temperature
limit that will control the asymptotics of OPE coefficients. A first important check
is that the two spaces in (3.114) have the same dimension. Indeed, they do, since

3(1 + dim SO(𝑑)) − 2 dim SO(𝑑 − 1) = 3
(
1 + 𝑑 (𝑑 − 1)

2

)
− 2

(𝑑 − 1) (𝑑 − 2)
2

=
(𝑑 + 1) (𝑑 + 2)

2
. (3.115)

In Section 3.7, we will show that the natural measure on M is nonzero in the
coordinates (3.112) at both low and high temperatures. This establishes that
𝛽1, 𝛽2, 𝛽3, ℎ1, ℎ2, ℎ3 (modulo the gauge redundancy (3.113)) furnish good coor-
dinates on M for our purposes.

Consequently, it suffices to consider geometries of the form described above. These
geometries contain all possible theory-dependent information about OPE coeffi-
cients of the CFT. In Appendix G, we show that there is a matching between
quantum numbers specifying OPE coefficients and the dimension of the genus-2
moduli space dimM.

The partition function as a sum over states
The partition function on the above geometry is a weighted sum of squares of OPE
coefficients. In this section, we derive this fact in detail, taking care with some of
the subtleties of cutting and gluing in higher-dimensional CFTs.

Consider first the space 𝑌 = 𝐵3\(𝐵1 ∪ 𝐵2). This space has boundaries given by
𝜕𝑌 = 𝜕𝐵3 ⊔ −𝜕𝐵1 ⊔ −𝜕𝐵2. Thus, the partition function 𝑍 (𝑌 ) is an element of
H2 ⊗ H ∗

1 ⊗ H ∗
1 , or equivalently a map H1 ⊗ H1 → H2, where H𝑟 is the Hilbert

space on a sphere of radius 𝑟. A basis of states |O(𝑥)⟩𝑟 inH𝑟 is given by the insertion
of an operator O(𝑥) inside a ball of radius 𝑟. The defining property of 𝑍 (𝑌 ) is that
its pairing with three basis elements is a conformal three-point function.

Let us state this more precisely. The Hermitian conjugate state to |O(𝑥)⟩𝑟 ∈ H𝑟 can
be obtained by inserting the following conjugate operator in a flat geometry outside
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the ball of radius 𝑟:

[O𝑎 (𝑥)]†𝑟 ≡ 𝑟𝐷 [𝑟−𝐷O𝑎 (𝑥)]† =
(
𝑟

|𝑥 |

)2Δ
𝐼−1(𝑥̂)𝑎𝑎O†

𝑎

(
𝑟2𝑥

𝑥2

)
. (3.116)

Note that [· · · ]† = [· · · ]†1 is the usual BPZ conjugation. The inversion tensor 𝐼𝑎𝑎

is the solution to the conformal Ward identities for a two-point function of O𝑎 and
O†
𝑎
:

⟨O†
𝑎
(𝑥)O𝑎 (0)⟩ = 𝐼𝑎

𝑎 (𝑥̂)
𝑥2Δ , (3.117)

normalized so that 𝐼 𝐼† = 1. With this notation, a projector onto the conformal
multiplet of O inside H𝑟 can be written

|O|𝑟 = |O𝑎 (0)⟩𝑟 ⟨O𝑎 (0) [O𝑎′ (0)]†𝑟 ⟩−1
𝑟 ⟨O𝑎′ (0) | + descendants, (3.118)

where the inverse two-point function ⟨O𝑎 (0) [O𝑎′ (0)]†𝑟 ⟩−1 should be understood as
a matrix with indices 𝑎, 𝑎′. The indices 𝑎, 𝑎′ are implicitly summed over in (3.118).
The form of the sum over descendants is determined by the conformal algebra. A
resolution of the identity on H𝑟 is given by summing over projectors 1 =

∑
O |O|𝑟 .

By composing 𝑍 (𝑌 ) with resolutions of the identity on each of its three boundaries,
we find an expression in terms of three-point functions:

𝑍 (𝑌 ) =
∑︁

O1,O2,O3

|O†
3 |2𝑍 (𝑌 ) ( |O1 |1 ⊗ |O2 |1)

=
∑︁

O1,O2,O3

⟨O1(−𝑒)O2(𝑒)O3(∞𝑒)⟩⟨O1(0) [O1(0)]†⟩−1⟨O2(0) [O2(0)]†⟩−1

× ⟨O3(∞)[O3(∞)]†2⟩−1 | [O3(∞)]†2⟩2 1⟨O1(0) | ⊗ 1⟨O2(0) |.
(3.119)

For simplicity, we have omitted spin indices. This is a sum over states with
coefficients given by a three-point function, where 𝑒 = (1, 0, . . . , 0) is a unit vector
along the 𝑥1 direction. Note that we define a primary operator at infinity without an
inversion tensor:

O𝑐
3 (∞𝑒) ≡ lim

𝐿→∞
𝐿2Δ3O𝑐

3 (𝐿𝑒). (3.120)

To help restore symmetry among the three operators, we have chosen to insert
the projector |O†

3 |, as opposed to |O3 | — this ensures that the three-point function
contains O3(∞) and not O†

3 (∞).
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𝑟

𝑟𝛽

Weyl

C𝑟,𝛽
𝑆𝑑

Figure 3.4: The sphere 𝑆𝑑 is Weyl-equivalent to a "capped cylinder" C𝑟,𝛽 with radius
𝑟 and length 𝑟𝛽. Each end cap is a ball (the interior of an 𝑆𝑑−1) of radius 𝑟. The
"closed junctions" where the cylinder meets the end caps are highlighted in red.

Figure 3.5: An "open junction," where a cylinder meets the complement of a ball in
a flat plane. The junction is highlighted in blue.

The partition function of each cylinder 𝐶𝑖 is simply 𝑒−𝛽𝑖 (𝐷+𝜀0)ℎ𝑖, where 𝜀0 is the
Casimir energy (3.42), and ℎ𝑖 ∈ SO(𝑑) is the angular twist along the cylinder.
One subtle ingredient is that we must also associate nontrivial "gluing" factors to
junctions between cylinders and flat planes. To derive these gluing factors, let us
start with the partition function on 𝑆𝑑 (with unit radius). This is Weyl-equivalent to
a cylinder of radius 𝑟 and length 𝑟𝛽, capped off by flat balls; see Figure 3.4. Let the
capped cylinder be C𝑟,𝛽, and denote the Weyl factor going from 𝑆𝑑 to C𝑟,𝛽 by 𝑒2𝜔𝑟 ,𝛽 .
The Weyl anomaly implies

𝑍 (C𝑟,𝛽) = 𝑒−𝑆anom [𝑔,𝜔𝑟 ,𝛽]𝑍 (𝑆𝑑). (3.121)

At the same time, 𝑍 (C𝑟,𝛽) can be computed by cutting and gluing. The end caps
are simply identity operators in radial quantization, |1⟩𝑟 . The cylinder contributes
𝑒−𝜀0𝛽, where 𝜀0 is the Casimir energy on 𝑆𝑑−1. Let us define 𝑍glue(𝑟) as the factor
associated to a junction between a cylinder and a flat end-cap, which we call a
"closed junction". We find

𝑍 (C𝑟,𝛽) = |𝑍glue(𝑟) |2𝑒−𝜀0𝛽 =⇒ |𝑍glue(𝑟) | = 𝑒
1
2 𝜀0𝛽𝑒−

1
2 𝑆anom [𝑔,𝜔𝑟 ,𝛽]𝑍 (𝑆𝑑) 1

2 .

(3.122)
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We calculate these gluing factors in various dimensions in Appendix F. For example,
we find26

|𝑍glue(𝑟) | = 𝑍 (𝑆𝑑)
1
2 ×



1 𝑑 odd,

𝑒𝑐/12(𝑟/2)𝑐/6 𝑑 = 2,

𝑒−7𝑎/6(𝑟/2)−2𝑎 𝑑 = 4,

𝑒37𝑎6/10(𝑟/2)6𝑎6 𝑑 = 6.

(3.123)

Our geometry also contains four "open junctions" with the opposite curvature,
where a cylinder joins a flat region that locally looks like the complement of a
ball; see Figure 3.5. The gluing factor associated to an open junction is the inverse
𝑍glue(𝑟)−1 of the one associated to a closed junction. The reason is that we can
perform an infinitesimal Weyl transformation on a plane to create a closed junction
infinitesimally-close to an open junction. The Weyl anomaly is infinitesimal, so the
gluing factors must multiply to 1.

Putting everything together, the partition function on our genus-2 manifold is

𝑍 (𝑀2) =
|𝑍glue(2) |2

|𝑍glue(1) |4
Tr(𝑍 (𝑌 )†𝑒−𝛽3 (𝐷+𝜀0)ℎ−1

3 𝑍 (𝑌 ) (𝑒−𝛽1 (𝐷+𝜀0)ℎ1 ⊗ 𝑒−𝛽2 (𝐷+𝜀0)ℎ2)).

(3.124)

Each group element 𝑒−𝛽𝑖𝐷ℎ𝑖 acts on the Hilbert space corresponding to the boundary
component 𝜕𝐵𝑖. Inserting our expression (3.119) for 𝑍 (𝑌 ), we obtain the partition
function as a sum over a triplet of primary operators

𝑍 (𝑀2) =
|𝑍glue(2) |2

|𝑍glue(1) |4
𝑒−𝜀0 (𝛽1+𝛽2+𝛽3)

×
∑︁

O1,O2,O3

(
𝑒−𝛽1Δ1−𝛽2Δ2−𝛽3Δ3

⟨O𝑎′

1 (−𝑒)O𝑏′

2 (𝑒)O𝑐′

3 (∞𝑒)⟩∗⟨ℎ1 · O𝑎
1 (−𝑒) ℎ2 · O𝑏

2 (𝑒) ℎ3 · O𝑐
3 (∞𝑒)⟩

× ⟨O𝑎
1 (0) [O

𝑎′

1 (0)]†⟩−1⟨O𝑏
2 (0) [O

𝑏′

2 (0)]†⟩−1⟨O𝑐
3 (∞)[O𝑐′

3 (∞)]†2⟩−1

+ descendants
)
. (3.125)

Here, ℎ · O denotes the action of a rotation ℎ ∈ SO(𝑑) on a local operator:

ℎ · O𝑎 = ℎO𝑎ℎ−1 = 𝜆(ℎ−1)𝑎𝑏O𝑏, (3.126)

where 𝜆 is the SO(𝑑) representation of O.
26In 𝑑 = 4, we write 𝑎4 as 𝑎.
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Let us choose the O𝑖 to be an orthonormal basis of primaries with respect to the
BPZ inner product. Using (3.116) and (3.120), we find

⟨O𝑐
3 (∞)[O𝑐′

3 (∞)]†2⟩ = 22Δ3𝛿𝑐𝑐′ , (3.127)

while the other two-point functions in (3.125), which involve standard BPZ conju-
gates [· · · ]†, are identity matrices.

Let us furthermore expand the three-point functions in a basis of conformally-
invariant three-point structures:

⟨O𝑎
1 (−𝑒)O

𝑏
2 (𝑒)O

𝑐
3 (∞𝑒)⟩ =

1
2Δ1+Δ2−Δ3

⟨O𝑎
1 (0)O

𝑏
2 (𝑒)O

𝑐
3 (∞𝑒)⟩

=
1

2Δ1+Δ2−Δ3
𝑐𝑠123𝑉

𝑠;𝑎𝑏𝑐 (0, 𝑒,∞). (3.128)

Here, 𝑠 is a structure label, which runs over a finite-dimensional space of solutions𝑉 𝑠

to the 3-point conformal Ward identities. Meanwhile, 𝑎, 𝑏, 𝑐 are spin indices in the
SO(𝑑) representations associated to the three operators. Each three-point structure
comes with an associated OPE coefficient 𝑐𝑠123, and a sum over 𝑠 is implicit. We
will discuss the space of three-point structures in more detail in Section 3.6.

Plugging everything in, we find an expression for the "genus-2" partition function
as a sum over conformal blocks

𝑍 (𝑀2) =
|𝑍glue(2) |2

|𝑍glue(1) |4
𝑒−𝜀0 (𝛽1+𝛽2+𝛽3)

∑︁
O1O2O3

(𝑐𝑠′123)
∗𝑐𝑠123𝐵

𝑠′𝑠
123, (3.129)

where we have introduced the "genus-2" block 𝐵𝑠′𝑠123

𝐵𝑠
′𝑠

123(𝛽𝑖, ℎ𝑖) = 2−2Δ1−2Δ2𝑒−𝛽1Δ1−𝛽2Δ2−𝛽3Δ3 (𝑉 𝑠′;𝑎𝑏𝑐 (0, 𝑒,∞))∗(ℎ1ℎ2ℎ3 · 𝑉 𝑠)𝑎𝑏𝑐 (0, 𝑒,∞)
+ descendants. (3.130)

The first term in (3.130) comes from primary states, and dominates in the "low tem-
perature" limit 𝛽1, 𝛽2, 𝛽3 ≫ 1. The descendent terms involve three-point functions
of descendant operators, contracted using the inverse of the Gram matrix. Such
terms are determined by the conformal algebra.

The block 𝐵𝑠′𝑠123 is naturally a function on the moduli spaceM of conformal structures,
and doesn’t depend on the Weyl class of the metric. This fact is already hinted at
in (3.130). Note that the factor 2−2Δ1−2Δ2 seems to violate permutation symmetry
among the three operators. However, this is an artifact of our asymmetric conformal
frame. We can restore manifest permutation symmetry by rewriting the block in
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𝐶1 𝐶2

𝐶3

Figure 3.6: The thermal circle near the hot spot at the origin, highlighted in red.
Starting from the top, we move along cylinder 𝐶2 to the top, and then back along
cylinder 𝐶1 to the top.

terms of the "relative" temperatures 𝛽𝑖 𝑗 , defined in (3.111), which are permutation-
symmetric functions on M. At low temperatures, we find

2−2Δ1−2Δ2𝑒−𝛽1Δ1−𝛽2Δ2−𝛽3Δ3 = 𝑒−
𝛽12+𝛽31−𝛽23

2 Δ1−
𝛽12+𝛽23−𝛽31

2 Δ2−
𝛽31+𝛽23−𝛽12

2 Δ3 + . . . ,
(3.131)

which is manifestly symmetric under permuting 1, 2, 3. This is a nontrivial check
on 3.130.

In Appendix G, we point out that the number of unbounded quantum numbers
needed to specify the block 𝐵𝑠′𝑠123 matches the dimension of the moduli space M.
This is analogous to the fact that the number of unbounded quantum numbers
needed to specify a four-point conformal block (two: Δ and 𝐽) matches the number
of cross-ratios for a four-point function (two: 𝑧 and 𝑧).

Hot spots and the thermodynamic limit
Because the geometry described in Section 3.5 is not a circle fibration, it is not im-
mediately obvious how to compute the partition function using the thermal effective
action. To make progress, we adopt the following assumption

Assumption. The thermal effective action describes the contribution to the partition
function from any region where the geometry locally looks like a circle fibration
with a large local temperature.

We call such a region a "hot spot."

For example, consider the origin in one of the copies of R𝑑 , where the balls 𝐵1 and
𝐵2 are tangent. Starting at the origin, there is a circular path of length 𝛽1 + 𝛽2 that
runs along one cylinder 𝐶2, and then back along the other 𝐶1; see Figure 3.6. In the
limit where 𝛽1, 𝛽2 are both small, this circular path shrinks and we have a hot spot.
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𝜃
𝜕𝐵2𝜕𝐵1

𝜕𝐵′2𝜕𝐵′1

Figure 3.7: An approximation to the thermal circle, at an angle 𝜃 away from the
origin. Starting at the top left, we move horizontally from 𝜕𝐵1 to 𝜕𝐵2. Then we
move down along 𝐶2 to 𝜕𝐵′2. Then horizontally to the left to 𝜕𝐵′1, then up along 𝐶1
to the starting point. The path has approximate length 𝛽1 + 𝛽2 + 2𝜃2.

To build some intuition, let us compute the leading contribution to the thermal
effective action near this hot spot. The local temperature is highest at the origin,
and decays away from it. To determine the local temperature precisely, we should
find a (locally defined) conformal Killing vector field that moves around the hot
spot’s thermal circle. At leading order near the origin, we can guess what it looks
like without too much calculation. Consider a path that starts at the point (−1 +
cos 𝜃, sin 𝜃, 0, . . . ) on 𝜕𝐵1. Move horizontally to the point (1−cos 𝜃, sin 𝜃, 0, . . . , 0)
on 𝜕𝐵2, through cylinder 2 to 𝜕𝐵′2, horizontally from 𝜕𝐵′2 to 𝜕𝐵′1, and back through
cylinder 1 to the initial point on 𝜕𝐵1, see Figure 3.7. This path has length

𝛽1 + 𝛽2 + 4(1 − cos 𝜃) ≈ 𝛽1 + 𝛽2 + 2𝜃2 (𝜃 ≪ 1). (3.132)

When 𝜃 is small, we expect this path to be close to the orbit of a local conformal
Killing vector. Thus, the local temperature is approximately

𝛽(𝜃) ≈ 𝛽1 + 𝛽2 + 2𝜃2. (3.133)

The leading contribution to the thermal effective action near this hot spot is thus

−𝑆hot(𝛽1, 𝛽2) ∼ 𝑓 vol 𝑆𝑑−2
∫

𝑑𝜃
sin𝑑−2 𝜃

(𝛽1 + 𝛽2 + 2𝜃2)𝑑−1 . (3.134)

Here, vol 𝑆𝑑−2 sin𝑑−2 𝜃 comes from an integral over azimuthal angles. When 𝛽1 + 𝛽2

is small, the integral will be dominated by small 𝜃 ∼
√
𝛽1 + 𝛽2. To compute it, we

can approximate sin𝑑−2 𝜃 ≈ 𝜃𝑑−2 and extend the 𝜃-integral from 0 to ∞:

−𝑆hot(𝛽1, 𝛽2) ∼ 𝑓 vol 𝑆𝑑−2
∫ ∞

0

𝑑𝜃 𝜃𝑑−2

(𝛽1 + 𝛽2 + 2𝜃2)𝑑−1 =
𝑓 vol 𝑆𝑑−1

(8(𝛽1 + 𝛽2))
𝑑−1

2
. (3.135)
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Note that the integral is dominated near the hot spot, i.e. in the neighborhood
𝜃 ∼

√
𝛽1 + 𝛽2. This justifies our use of the thermal effective action everywhere

inside the integrand. Furthermore, when 𝛽1 + 𝛽2 is small, we find a large negative
action from the hot spot, which translates into a large multiplicative contribution to
the partition function 𝑍 ∼ 𝑒−𝑆.

A more precise formula for the action of a hot spot
The fact that the integral (3.135) is dominated near the hot spot suggests a more
precise and illuminating way to derive it. Let us assume that the action of a hot spot
doesn’t depend on the geometry far outside the neighborhood 𝜃 ∼

√
𝛽1 + 𝛽2. Thus,

to compute it, it suffices to consider a "genus-1" version of the geometry discussed
in Section 3.5, where we have only two balls 𝐵1 and 𝐵2.

We claim that this "genus-1" geometry is Weyl equivalent to 𝑆1
𝛽12

×𝑆𝑑−1 with a special
inverse temperature 𝛽12 that depends on 𝛽1 and 𝛽2. The Weyl transformation that
implements this equivalence essentially spreads out the hot-spot over the entire 𝑆𝑑−1,
resulting in a uniform inverse temperature 𝛽12. The result is

−𝑆hot(𝛽1, 𝛽2) ∼ log 𝑍𝑆1×𝑆𝑑−1 (𝛽12) + Weyl terms, (3.136)

where "Weyl terms" are possible contributions from the Weyl anomaly, and "∼"
indicates that both sides have the same singular parts as 𝛽1, 𝛽2 → 0.

Now, 𝛽12 is determined by the conformal structure of our "genus-1" manifold, so
we can read it off from the gluing group elements 𝑔1 and 𝑔2 associated to the
two cylinders, given in (3.112). Gluing two copies of the plane with 𝑔1 and 𝑔2 is
equivalent to gluing a single copy of the plane to itself with 𝑔−1

1 𝑔2. To read off 𝛽12,
we must simply diagonalize 𝑔−1

1 𝑔2:

𝑔−1
1 𝑔2 = 𝑈𝑒−𝛽12𝐷+𝑖 ®𝜃12· ®𝑀𝑈−1, 𝑈 ∈ SO(𝑑 + 1, 1). (3.137)

In other words, 𝛽12 is precisely the "relative" inverse temperature defined in (3.111).

There is a particularly nice expression for 𝛽12 when the angular fugacities are turned
off. In this case, the group elements 𝑔1, 𝑔2 are built from conformal generators
𝑃1, 𝐷, 𝐾1, that generate a PSL(2,R) subgroup of the conformal group. Thus, we
can obtain 𝛽12 by computing 𝑔−1

1 𝑔2 inside SL(2,R) and comparing the trace of both
sides of (3.137) as 2 × 2 matrices. We should compare them up to a sign, since the
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1d conformal group PSL(2,R) is a quotient of SL(2,R) modulo ±1. This gives

±Tr

(
𝑒−𝛽12/2 0

0 𝑒𝛽12/2

)
= Tr

(
𝑒
𝛽1−𝛽2

2 (1 − 2𝑒𝛽2) 𝑒
𝛽1−𝛽2

2 + 𝑒
𝛽2−𝛽1

2 − 2𝑒
𝛽1+𝛽2

2

−2𝑒
𝛽1+𝛽2

2 𝑒
𝛽2−𝛽1

2 (1 − 2𝑒𝛽1)

)
.

(3.138)

To find a solution, we must choose the − sign, which gives

𝛽12 = 2 cosh−1
(
2𝑒

𝛽1+𝛽2
2 − cosh

(
𝛽1 − 𝛽2

2

))
. (3.139)

This is the inverse temperature at which we should evaluate (3.136).

In the limit where 𝛽1, 𝛽2 become small, the relative inverse temperature 𝛽12 has the
expansion

𝛽12 ∼
√︁

8(𝛽1 + 𝛽2) −
𝛽2

1 − 10𝛽1𝛽2 + 𝛽2
2

12
√

2
√
𝛽1 + 𝛽2

+𝑂 (𝛽5/2
𝑖

) (𝛽1, 𝛽2 ≪ 1). (3.140)

Consequently, the leading contribution to the thermal effective action (3.54) is

− log 𝑍𝑆1×𝑆𝑑−1 (𝛽12) ∼
𝑓 vol 𝑆𝑑−1

(8(𝛽1 + 𝛽2))
𝑑−1

2
+𝑂 (𝛽−

𝑑−3
2

𝑖
), (𝛽1, 𝛽2 ≪ 1), (3.141)

in perfect agreement with (3.135)! We have recovered our earlier result for the
leading action of a hot spot. However, an advantage of this more abstract derivation
is that we expect (3.136) and (3.139) to encompass all singular terms in the small
𝛽1, 𝛽2 limit.

This derivation is also straightforward to generalize to the case with angular fugaci-
ties. Let us think of the 𝑆1 × 𝑆𝑑−1 partition function as a class function 𝑍𝑆1×𝑆𝑑−1 (𝑔)
of a conformal group element 𝑔. The old notation 𝑍𝑆1×𝑆𝑑−1 (𝛽, ®𝜃) is obtained by
setting 𝑔 = 𝑒−𝛽𝐷+

®𝜃· ®𝑀 . Then the above argument implies that the singular part of the
action of a hot spot associated to two group elements 𝑔1, 𝑔2 is

−𝑆hot,12 ∼ log 𝑍𝑆1×𝑆𝑑−1 (𝑔−1
1 𝑔2) + Weyl terms. (3.142)

Let us comment on the Weyl anomaly terms in (3.142). In the genus-1 case, one
can check that contributions from the Weyl anomaly to (3.142) vanish in the limit
𝛽1, 𝛽2 → 0. In particular, they do not contribute to the singular part of the partition
function in the high temperature limit. In what follows, we will assume that the
same is true at higher genus, so that analogous Weyl terms can be ignored for our
purposes. It would be nice to make these contributions more precise in an example
theory.
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The hot spot action for the genus-2 case
Let us finally apply this result to our "genus-2" partition function. We conjecture
that the singular part of the log of the partition function as 𝛽1, 𝛽2, 𝛽3 → 0 is given
by a sum of hot spot actions for each pair of tangent balls. Combined with (3.142),
this implies

log 𝑍 (𝑀2) ∼ −𝑆hot,12 − 𝑆hot,23 − 𝑆hot,31

∼ log 𝑍𝑆1×𝑆𝑑−1 (𝑔−1
1 𝑔2) + log 𝑍𝑆1×𝑆𝑑−1 (𝑔−1

2 𝑔3) + log 𝑍𝑆1×𝑆𝑑−1 (𝑔−1
3 𝑔1).
(3.143)

Another way to state the conjecture is as follows. Consider the ratio

𝑅(𝛽𝑖) =
𝑍 (𝑀2)

𝑍𝑆1×𝑆𝑑−1 (𝑔−1
1 𝑔2)𝑍𝑆1×𝑆𝑑−1 (𝑔−1

2 𝑔3)𝑍𝑆1×𝑆𝑑−1 (𝑔−1
3 𝑔1)

. (3.144)

We conjecture that 𝑅(𝛽𝑖) has a finite limit as 𝛽𝑖 → 0:

𝑅 = lim
𝛽𝑖→0

𝑅(𝛽𝑖) < ∞. (3.145)

Intuitively, we imagine that dividing by the hot-spot partition function 𝑍𝑆1×𝑆𝑑−1 (𝑔−1
𝑖
𝑔 𝑗 )

allows us to define a kind of renormalized "hot-spot operator" in the limit 𝛽𝑖 → 0
— a CFT operator that lives at a location where a circle shrinks to zero size. The
quantity 𝑅 is then a correlator of three such hot-spot operators. It would be very
interesting to make this statement more precise and compute 𝑅 in some example
theories.

In this work, we will mostly be concerned with the leading singularity of the partition
function that follows from (3.143). Using (3.54), this is

𝑍 (𝑀2) ∼ exp

(
𝑓 vol 𝑆𝑑−1

𝛽𝑑−1
12

∏
𝑎 (1 +Ω2

12,𝑎)
+ 𝑓 vol 𝑆𝑑−1

𝛽𝑑−1
23

∏
𝑎 (1 +Ω2

23,𝑎)
+ 𝑓 vol 𝑆𝑑−1

𝛽𝑑−1
31

∏
𝑎 (1 +Ω2

31,𝑎)

)
,

(3.146)

where the relative angular velocities are given by Ω𝑖 𝑗 ,𝑎 = 𝛽𝑖 𝑗𝜃𝑖 𝑗 ,𝑎. We define the
"high temperature" regime of the genus-2 partition function as 𝛽𝑖 𝑗 → 0, with ®Ω𝑖 𝑗
held fixed. This is the physical regime where the thermal effective action can be
applied to each hot spot. Here, "∼" means that the logs of both sides agree, up to
subleading terms as 𝛽𝑖 𝑗 → 0.

If the CFT has a global symmetry Γ, we can decorate each cylinder by a topological
defect associated to a group element 𝛾𝑖 (𝑖 = 1, 2, 3). If we do so, the coefficient
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𝑓 in (3.146) for the (𝑖, 𝑗) hot spot becomes a function of the conjugacy class of
𝛾𝑖𝛾

−1
𝑗

∈ Γ. Thus, in general, we can have a different 𝑓 for each hot spot.

Note that the angular parameters ®𝜃𝑖 𝑗 scale to zero at high temperature. In this work,
we will be particularly interested in a limit of low spin, where the ®Ω𝑖 𝑗 will scale to
zero as well at an appropriate saddle point (so that the ®𝜃𝑖 𝑗 are parametrically smaller
than the 𝛽𝑖 𝑗 ). Let us further expand the partition function in this regime. It will be
convenient to parametrize the rotations ℎ𝑖 as a product of a rotation away from the
𝑥1 axis, times an SO(𝑑 − 1) rotation:

ℎ𝑖 = exp

(
𝑑∑︁
𝑏=2

𝑖𝛼𝑖,𝑏𝑀1𝑏

)
exp

( ∑︁
2≤𝑎<𝑏≤𝑑

𝑖Φ𝑖,𝑎𝑏𝑀𝑎𝑏

)
, (3.147)

Here, ®𝛼𝑖 = (𝛼𝑖,2, . . . , 𝛼𝑖,𝑑) transforms like a vector under SO(𝑑 − 1), while the
SO(𝑑 − 1) parameters ®Φ𝑖 = (Φ𝑖,23, . . . ,Φ𝑖,𝑑−1,𝑑) transform like an adjoint under
SO(𝑑 − 1).

Recall that the ℎ𝑖 are subject to the gauge-redundancy (3.113). The right action
of SO(𝑑 − 1) simultaneously shifts the ®Φ𝑖 (to leading order). Thus, the partition
function must be translation-invariant in the ®Φ𝑖. Under the left action by SO(𝑑 − 1),
the ®𝛼𝑖 and ®Φ𝑖 transform linearly as SO(𝑑 − 1) vectors and adjoints, respectively.
So the partition function must also be invariant under SO(𝑑 − 1) rotations of these
variables.

Indeed, expanding (3.146) in small angles, we find

1
𝛽𝑑−1

12
∏𝑛
𝑎=1(1 +Ω2

12,𝑎)
=

1
𝛽𝑑−1

12,0

(
1 − ( ®Φ1 − ®Φ2)2

𝛽2
12,0

− 8(𝑑 + 1) ( ®𝛼1 + ®𝛼2)2

𝛽4
12,0

+ . . .
)
,

1
𝛽𝑑−1

23
∏𝑛
𝑎=1(1 +Ω2

23,𝑎)
=

1
𝛽𝑑−1

23,0

(
1 − ( ®Φ2 − ®Φ3)2

𝛽2
23,0

− 8(𝑑 + 1)
( 1

4 ®𝛼2 − 1
2 ®𝛼3)2

𝛽4
23,0

+ . . .
)
,

1
𝛽𝑑−1

31
∏𝑛
𝑎=1(1 +Ω2

31,𝑎)
=

1
𝛽𝑑−1

31,0

(
1 − ( ®Φ3 − ®Φ1)2

𝛽2
31,0

− 8(𝑑 + 1)
( 1

4 ®𝛼1 − 1
2 ®𝛼3)2

𝛽4
31,0

+ . . .
)
.

(3.148)

This formula is valid when ®𝛼/𝛽 ≪ 1, and ®Φ/𝛽1/2 ≪ 1, and 𝛽 ≪ 1. Here, 𝛽𝑖 𝑗 ,0
denote the relative temperatures when the angles are set to zero. They are given by

𝛽12,0 =
√︁

8(𝛽1 + 𝛽2) + . . . ,

𝛽23,0 =

√︃
8( 1

4 𝛽2 + 1
2 𝛽3) + . . . ,

𝛽31,0 =

√︃
8( 1

4 𝛽1 + 1
2 𝛽3) + . . . . (3.149)
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®𝛼1 ®𝛼2 ®𝛼3

Figure 3.8: The partition function (3.148) penalizes rotations ®𝛼𝑖 in such a way that
the spheres behave like three interlocked gears. No matter what signs we choose
for the ®𝛼𝑖, there is no way to rotate the gears, since two of them will always be
counter-rotating at their points of contact.

Let us understand some physical implications of (3.148). Terms like ( ®𝛼1 + ®𝛼2)2

come from rotating the spheres so that they rub against each other (Figure 3.8). The
thermal effective action penalizes such rotations — the spheres behave like gears
that are interlocked. It follows that there is no zero mode associated with moving
the ®𝛼𝑖’s: three mutually interlocked circular gears cannot be rotated. Meanwhile,
terms like ( ®Φ𝑖− ®Φ 𝑗 )2 represent the effect of twisting the spheres by different amounts
around their point of tangency. Such twists are also penalized by the effective action,
but by a smaller power of 𝛽2

𝑖 𝑗 ,0. To summarize, the only zero mode in the angular
parameters is associated to the gauge symmetry of right multiplication by SO(𝑑−1).

3.6 Genus-2 global conformal blocks
To determine the asymptotics of CFT OPE coefficients, we must invert the conformal
block expansion (3.129) of the genus-2 partition function 𝑍 (𝑀2). In particular,
we will need the large-Δ limit of the genus-2 conformal blocks 𝐵𝑠′𝑠123 in the high-
temperature regime discussed in Section 3.5.

Our strategy will be to write an integral representation for the block using the
"shadow formalism." In the large-Δ regime, the integral can be evaluated by saddle
point, yielding simple closed-form expressions in the regimes of interest.

Review: shadow integrals for four-point blocks
Let us first review this strategy in the more familiar case of conformal blocks for
four-point functions of local operators on R𝑑 [78, 89, 130, 193]. We will follow the
notation and conventions of [130].
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The central objects in the shadow formalism are principal series representations and
their matrix elements. Let 𝜋 = (Δ, 𝜆) denote a conformal representation, where
𝜆 is a representation of SO(𝑑). The principal series corresponds to (unphysical)
complex dimensions of the form Δ = 𝑑

2 + 𝑖𝑠, where 𝑠 ∈ R. States in a principal series
representation are given by functions 𝑓 𝑎 (𝑥) that transform like conformal primaries
with dimension Δ and rotation representation 𝜆. Here, 𝑎 is an index for 𝜆. Such
states admit a Hermitian inner product

(𝑔 | 𝑓 ) ≡
∫

𝑑𝑑𝑥(𝑔𝑎 (𝑥))∗ 𝑓 𝑎 (𝑥), (3.150)

where the index 𝑎 is summed over. Note that (𝑔𝑎 (𝑥))∗ has scaling dimension
𝑑
2 − 𝑖𝑠 = 𝑑 −

(
𝑑
2 + 𝑖𝑠

)
, so the integrand (including the measure 𝑑𝑑𝑥) has scaling

dimension 0. Furthermore, it transforms in the dual rotation representation 𝜆∗, so
the integrand is rotation-invariant. It follows that the pairing (𝑔 | 𝑓 ) is conformally-
invariant.

The principal series representation 𝜋 = ( 𝑑2 +𝑖𝑠, 𝜆) is isomorphic to the "shadow" rep-
resentation 𝜋̃ = ( 𝑑2 −𝑖𝑠, 𝜆

𝑅), where 𝜆𝑅 denotes the reflection of 𝜆. This isomorphism
is implemented by the shadow transform:

S[ 𝑓 ] (𝑥) =
∫

𝑑𝑑𝑦⟨Õ(𝑥)Õ†(𝑦)⟩ 𝑓 (𝑦), (3.151)

where ⟨Õ(𝑥)Õ†(𝑦)⟩ denotes the unique (up to scale) conformal two-point structure
between operators in the representations 𝜋̃ and 𝜋̃† ≡ ( 𝑑2 − 𝑖𝑠, 𝜆∗).

Conformal three-point functions can be thought of as Clebsch-Gordon coefficients
for a tensor product of principal series representations. Such three-point functions
carry a structure label 𝑠 that corresponds to different solutions of the conformal
Ward identities:

𝑉 𝑠;𝑎𝑏𝑐 (𝑥1, 𝑥2, 𝑥3) = ⟨O𝑎
1 (𝑥1)O𝑏

2 (𝑥2)O𝑐
3 (𝑥3)⟩ (𝑠) . (3.152)

Here, ⟨· · ·⟩ (𝑠) denotes a solution to the conformal Ward identities — not a physical
three-point function. (In particular, it does not include an OPE coefficient.) The
space of three-point structures is given by (𝜆1 ⊗ 𝜆2 ⊗ 𝜆3)SO(𝑑−1) , where SO(𝑑 − 1)
indicates the SO(𝑑 − 1)-invariant subspace [142]. We sometimes write 𝑉 𝑠 for a
three-point structure, and we sometimes use the notation on the right-hand side of
3.152.

With these ingredients, we are ready to build conformal blocks. Four-point blocks
are eigenfunctions of the conformal Casimir acting simultaneously on points 1 and
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2, obeying certain boundary conditions. Using the inner product on principal series
representations, we can instead easily build an eigenfunction called a "conformal
partial wave" from two three-point structures:

Ψ𝑠′𝑠
𝜋 (𝑥1, · · · , 𝑥4) =

∫
𝑑𝑑𝑥⟨O3(𝑥3)O4(𝑥4)Õ†(𝑥)⟩ (𝑠′) ⟨O1(𝑥1)O2(𝑥2)O(𝑥)⟩ (𝑠) .

(3.153)

Here, Õ† has representation 𝜋̃† = ( 𝑑2 − 𝑖𝑠, 𝜆∗), so that it can be paired with O(𝑥)
inside the integral. We omit spin indices for brevity.

The partial waveΨ𝑠𝑠′
𝜋 satisfies the same Casimir differential equations as a conformal

block, but obeys different boundary conditions. However, it gets us "most of the
way" to a block, and the block can be extracted from it with a small amount of
extra work. The key point is that the space of solutions of the Casimir equations is
two-dimensional. It is spanned by the conformal block, and a so-called "shadow"
block for the representation 𝜋̃. It follows that the partial wave can be written as a
linear combination of the block and its shadow:

Ψ𝑠′𝑠
𝜋 = 𝑆(𝜋3𝜋4 [𝜋̃†])𝑠

′
𝑡′𝐺

𝑡′𝑠
𝜋 + 𝑆(𝜋1𝜋2 [𝜋])𝑠𝑡𝐺𝑠′𝑡

𝜋̃
. (3.154)

Here, the "shadow" coefficients 𝑆(𝜋1𝜋2 [𝜋])𝑠𝑡 are obtained by applying shadow
transformations to a three-point structure. For example,

S3𝑉
𝑠 (𝑥1, 𝑥2, 𝑥3) = 𝑆(𝜋1𝜋2 [𝜋])𝑠𝑡𝑉 𝑡 (𝑥1, 𝑥2, 𝑥3), (3.155)

where S3 denotes the shadow transform (3.151) acting at 𝑥3. The reason these
coefficients appear in (3.154) is explained in [130]. Starting from (3.154), we can
isolate the block 𝐺𝑠′𝑠

𝜋 using a "monodromy projection" [193], as we explain in more
detail later.

To summarize, the shadow formalism gives a convenient integral representation of
a partial wave, satisfying the same differential equations as a conformal block, and
from which the block can be extracted. This approach will work for the genus-2
blocks 𝐵𝑠′𝑠123 as well. Integral representations are particularly useful for studying
large quantum number asymptotics, since we can use saddle point methods.

There exist alternative constructions of four-point conformal blocks via shadow-like
integrals in Lorentzian signature [179]. These have the advantage of giving the
block "on the nose," eschewing the need for a monodromy projection. Finding a
similar Lorentzian shadow representation for the genus-2 block is an interesting
problem for the future.
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𝑉 𝑠
′∗ 𝑉 𝑠

𝑔1

𝑔2

𝑔3

Figure 3.9: A "tensor diagram" for the genus-2 partial wave (3.158). The three-
point structures 𝑉 𝑠 and 𝑉 𝑠′∗ are invariant tensors for a tensor product of three
principal series representations, so they are represented as trivalent nodes. Each
group element acts as a linear operator on a representation, so is a bivalent node.
Lines connect together using the inner product (3.150). We act on each of the legs
of 𝑉 𝑠 with group elements 𝑔1, 𝑔2, 𝑔3 before contracting with 𝑉 𝑠′∗.

A genus-2 partial wave
The genus-2 conformal block 𝐵𝑠′𝑠123 is a simultaneous eigenfunction of the conformal
Casimir operators acting on each of the group elements 𝑔1, 𝑔2, 𝑔3. In more detail,
let 𝐿𝐴 (𝐴 = 1, . . . , dim𝐺) be the generators of the Lie algebra of 𝐺, realized as
left-invariant vector fields on 𝐺. Then D = 𝐿𝐴𝐿𝐴 is a differential operator on 𝐺
such that for any irrep 𝜋, we have

D𝜋(𝑔) = 𝜋(𝑔)𝐶2(𝜋), (3.156)

where 𝐶2(𝜋) is the Casimir eigenvalue for 𝜋. Any matrix element of 𝑔 in the
representation 𝜋 is thus an eigenfunction of D. Viewing the conformal block as a
matrix element of three group elements 𝑔1, 𝑔2, 𝑔3 in the representations 𝜋𝑖, it follows
that it must be a simultaneous eigenfunction of D, acting on each of the 𝑔𝑖:

D𝑖𝐵
𝑠′𝑠
123 = 𝐶2(𝜋𝑖)𝐵𝑠

′𝑠
123 𝑖 = 1, 2, 3, (3.157)

where D𝑖 indicates the action of D on 𝑔𝑖. The block also diagonalizes the higher
Casimirs of the conformal group, acting on each 𝑔𝑖.

By analogy with the four-point case, we can define a genus-2 partial wave as a
principal series matrix element of 𝑔𝑖’s between a pair of three-point structures:

Ψ𝑠′𝑠
123 ≡ (𝑉 𝑠′ |𝑔1 ⊗ 𝑔2 ⊗ 𝑔3 |𝑉 𝑠)

=

∫
𝑑𝑑𝑥1𝑑

𝑑𝑥2𝑑
𝑑𝑥3𝑉

𝑠′∗(𝑥1, 𝑥2, 𝑥3)𝑔1𝑔2𝑔3 · 𝑉 𝑠 (𝑥1, 𝑥2, 𝑥3). (3.158)

This is illustrated diagrammatically in Figure 3.9. The action of a conformal group
element on an operator is

𝑔 · O𝑎 (𝑥) = Ω(𝑥′)Δ𝜆𝑎𝑏 (𝑅−1(𝑥′))O𝑏 (𝑥′). (3.159)
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The notation 𝑔1𝑔2𝑔3 · 𝑉 𝑠 (𝑥1, 𝑥2, 𝑥3) indicates the simultaneous actions of 𝑔1, 𝑔2, 𝑔3

on the three-point structure 𝑉 𝑠, using the formula (3.159) at each point. The spin
indices of the operators are implicitly contracted in (3.158). By construction, the
partial wave also solves the Casimir equations (3.157).

Though we have not proven it, we expect that the space of solutions of the Casimir
equations (3.157) is eight-dimensional, and is spanned by the block 𝐵𝑠′𝑠123 and seven
"shadow" blocks obtained by replacing 𝜋𝑖 → 𝜋̃𝑖 in various combinations:

{𝐵𝑠′𝑠
1̃23
, 𝐵𝑠

′𝑠
1̃23
, · · · , 𝐵𝑠′𝑠

1̃̃2̃3
}.

The genus-2 partial wave is a linear combination of these 8 solutions. Applying
similar logic to the derivation of (3.154), we expect it to have the form

Ψ𝑠′𝑠
123 = (𝐼−3𝑆3

1̃†2̃†3̃†
)𝑠′ 𝑡′𝐵𝑡

′𝑠
123 + (7 shadow blocks). (3.160)

Here (𝑆3
1̃†2̃†3̃†

)𝑠𝑡 denotes the product of three shadow coefficients coming from
performing the shadow transform of 𝑉†𝑠′ on each of its external legs:

S1S2S3𝑉
†𝑠′ = (𝑆3

1̃†2̃†3̃†
)𝑠′𝑣′𝑉 𝑣

′

= 𝑆( [𝜋̃1]†𝜋̃†2 𝜋̃
†
3)
𝑠′
𝑡′𝑆(𝜋†1 [𝜋̃

†
2] 𝜋̃

†
3)
𝑡′
𝑢′𝑆(𝜋†1𝜋

†
2 [𝜋̃

†
3])

𝑢′
𝑣′𝑉

𝑣′ . (3.161)

(other expressions are possible, coming from doing the shadow transforms in other
orders). Meanwhile, 𝐼−3 indicates the action of inverse inversion tensors (𝐼 (𝑒)−1)𝑎𝑎

on each operator. These are needed in order for the resulting three-point structure to
transform in the dual representations 𝜆∗1, 𝜆

∗
2, 𝜆

∗
3, so that it can be paired with𝑉 𝑠. The

seven shadow blocks in (3.160) will have similar coefficients, though we have not
written them explicitly for brevity. We have not attempted to give a rigorous proof
of (3.160), but instead have motivated it by analogy with the four-point case. We
will verify (3.160) explicitly in the large-Δ limit where it is needed in Section 3.6.

Symmetries of the saddle point equations
We will be interested in the blocks and partial waves in the large-Δ limit. In this
limit, the shadow integral (3.158) for the genus-2 partial wave can be evaluated by
saddle point. The structure of the saddle point equations is complicated, and we
will not attempt to solve them exactly for arbitrary 𝑔𝑖. However, there are some
simple operations that permute the saddle points that will be helpful in exploring
their structure. We derive them in this section.
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Let us begin with the integral for a partial wave. For simplicity, we will work in
𝑑 = 1; the results of this section will generalize straightforwardly to any 𝑑. The
integral takes the form

ΨΔ1,Δ2,Δ3 =

∫
𝑑𝑧1𝑑𝑧2𝑑𝑧3𝑉Δ̃1,Δ̃2,Δ̃3

(𝑧1, 𝑧2, 𝑧3)𝑔1𝑔2𝑔3 · 𝑉Δ1,Δ2,Δ3 (𝑧1, 𝑧2, 𝑧3), (3.162)

where

𝑉Δ1,Δ2,Δ3 (𝑧1, 𝑧2, 𝑧3) =
1

|𝑧12 |Δ1+Δ2−Δ3 |𝑧23 |Δ2+Δ3−Δ1 |𝑧31 |Δ3+Δ1−Δ2
(3.163)

is a three-point structure for primaries with dimensions Δ1,Δ2,Δ3 in 1𝑑. Thinking
of each 𝑔𝑖 as an SL(2,R) element, the action of 𝑔𝑖 on each operator is given by

𝑔𝑖 · O(𝑧𝑖) = (𝑐𝑖𝑧𝑖 + 𝑑𝑖)−2Δ𝑖O
(
𝑎𝑖𝑧𝑖 + 𝑏𝑖
𝑐𝑖𝑧𝑖 + 𝑑𝑖

)
. (3.164)

In the limit of large Δ𝑖, the integral is dominated by saddle points. Let us split the
integrand into a rapidly-varying part that depends exponentially onΔ𝑖, and a part that
is slowly-varying at large Δ𝑖. We define the saddle point equations as stationarity
equations for the rapidly-varying part of the integrand. Concretely they are

𝜕𝑧𝑖 log
[
𝑉−Δ1,−Δ2,−Δ3 (𝑧1, 𝑧2, 𝑧3)𝑔1𝑔2𝑔3 · 𝑉Δ1,Δ2,Δ3 (𝑧1, 𝑧2, 𝑧3)

]
= 0 (𝑖 = 1, 2, 3).

(3.165)

This is a system of three coupled polynomial equations in the 𝑧𝑖, with coefficients
that depend on the 𝑔𝑖. Note that the saddle-point equations are homogeneous in the
Δ𝑖 in our conventions. We denote the coordinates of the three points collectively as
®𝑝 = (𝑧1, 𝑧2, 𝑧3).

Suppose that we can find a saddle point ®𝑝∗ = (𝑧1∗, 𝑧2∗, 𝑧3∗), i.e. a solution of (3.165),
as a function of the Δ𝑖. A simple operation that relates different saddle points is

𝜏 ®𝑝∗ ≡ (𝑔−1
1 𝑧1, 𝑔

−1
2 𝑧2, 𝑔

−1
3 𝑧3)

��
Δ𝑖→Δ̃𝑖

, (3.166)

where we can approximate Δ̃𝑖 ≈ −Δ𝑖 at large Δ𝑖. The fact that 𝜏 ®𝑝∗ is a saddle point
of (3.162) follows from symmetry of the integrand under the change of variables
𝑧𝑖 → 𝑔−1

𝑖
𝑧𝑖 and Δ𝑖 → Δ̃𝑖.

However there is another less-obvious operation that relates saddle points to each
other, coming from the Z3

2 shadow symmetry of the partial wave. We start by
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rewriting (3.162) by introducing a shadow transformation on 𝑧1:

ΨΔ1,Δ2,Δ3

=
1

𝑆( [Δ1]Δ̃2Δ̃3)

∫
𝑑𝑧1𝑑𝑧

′
1𝑑𝑧2𝑑𝑧3

1
𝑧

2Δ1
11′
𝑉
Δ1,Δ̃2,Δ̃3

(𝑧′1, 𝑧2, 𝑧3)𝑔1𝑔2𝑔3 · 𝑉Δ1,Δ2,Δ3 (𝑧1, 𝑧2, 𝑧3)

=
𝑆( [Δ1]Δ2Δ3)
𝑆( [Δ1]Δ̃2Δ̃3)

∫
𝑑𝑧′1𝑑𝑧2𝑑𝑧3𝑉Δ1,Δ̃2,Δ̃3

(𝑧′1, 𝑧2, 𝑧3)𝑔1𝑔2𝑔3 · 𝑉Δ̃1,Δ2,Δ3
(𝑧′1, 𝑧2, 𝑧3).

(3.167)

In the second line, we performed the integral over 𝑧1 and used that the two-point
function 𝑧−2Δ1

11′ is 𝐺-invariant.

The resulting integral (3.167) has the same form as (3.162), except that Δ1 and Δ̃1

have been swapped, and 𝑧1 has been swapped with 𝑧′1. Thus, a saddle point of
(3.167) is given by

(𝑧′1, 𝑧2, 𝑧3) = ®𝑝∗ |Δ1→Δ̃1
. (3.168)

So far, we have managed to find a saddle point for a different integral — not the
original integral we started with.

However, in the large Δ𝑖 limit, 𝑧′1 can be related to 𝑧1 using the integral on the first
line of (3.167). The integral over 𝑧1 takes the form of a shadow transform, and the
shadow transform is dominated by its own saddle point at large Δ𝑖, as we explain
in Appendix 3.9. Let us denote the saddle point obtained by shadow-transforming
𝑉Δ1,Δ2,Δ3 (𝑧1, 𝑧2, 𝑧3) at site 𝑧1 by

𝑠[Δ1]Δ2Δ3 ( ®𝑝) ≡ −2Δ1𝑧2𝑧3 − (Δ1 + Δ2 − Δ3)𝑧1𝑧3 − (Δ1 − Δ2 + Δ3)𝑧1𝑧2
2Δ1𝑧1 − (Δ1 + Δ2 − Δ3)𝑧2 − (Δ1 − Δ2 + Δ3)𝑧3

(Δ𝑖 ≫ 1).

(3.169)

Note that 𝑠[Δ1]Δ2Δ3 satisfies the identity

𝑧1 = 𝑠[Δ̃1]Δ2Δ3
(𝑠[Δ1]Δ2Δ3 (𝑧1, 𝑧2, 𝑧3), 𝑧2, 𝑧3), (3.170)

which is related to the fact that the square of the shadow transform is proportional
to the identity.

In our case, we have

𝑧′1 = 𝑠[Δ1]Δ̃2Δ̃3
(𝑧1, 𝑧2, 𝑧3). (3.171)

Using (3.170), we can solve this as

𝑧1 = 𝑠[Δ̃1]Δ̃2Δ̃3
(𝑧′1, 𝑧2, 𝑧3). (3.172)
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Putting everything together, we find a saddle point of the original integrand (3.162)

𝜎1 ®𝑝∗ ≡ (𝑠[Δ̃1]Δ̃2Δ̃3
( ®𝑝∗ |Δ1→Δ̃1

), 𝑧2∗ |Δ1→Δ̃1
, 𝑧3∗ |Δ1→Δ̃1

)

= (𝑠[Δ1]Δ̃2Δ̃3
( ®𝑝∗), 𝑧2∗, 𝑧3∗) |Δ1→Δ̃1

. (3.173)

Note that 𝜎1 ®𝑝∗ may or may not coincide with ®𝑝∗. We can similarly define operations
𝜎2 and𝜎3 by cyclic permutations of (3.173). Note that𝜎2

𝑖
= 1 and the𝜎𝑖 are mutually

commuting. One can also show that 𝜏 = 𝜎1𝜎2𝜎3.

The 𝜎𝑖 operations give a homomorphism from Z3
2 into the group of permutations

of the saddle solutions. The behavior of this homomorphism can jump when any
of the Δ𝑖 crosses 0, since the saddle point analysis of the shadow integral for 𝑧1, 𝑧′1
becomes invalid if Δ1’s is small. Indeed, we will see that such jumps happen in
practice.

Low temperature saddles
We are now ready to explore the saddle points of the partial wave integral in different
regimes. Let us begin by exploring low temperature 𝛽𝑖 → ∞, where it will be easy
to distinguish the block from shadow blocks. We study high-temperature saddles
(which will be our main interest) in the next section.

As a reminder, we will use the parametrization ofM given in (3.112). For simplicity,
let us first turn off the angular fugacities by setting ℎ𝑖 = 1. The shadow integral
(3.158) then has an SO(𝑑 − 1) symmetry, so we can locate its saddle points by
specializing the points to the 𝑥1 axis: 𝑥𝑖 = (𝑧𝑖, 0, . . . , 0).

The SO(𝑑 − 1)-symmetry also means that the local rotations 𝑅𝜇𝜈 (𝑥′) associated to
each group element 𝑔𝑖 are trivial, since the centralizer of SO(𝑑 − 1) ⊂ SO(𝑑) is
trivial. Thus, each group element acts in a simple way on the 𝑥-axis:

𝑔𝑖 · O𝑎 (𝑥) = Ω𝑖 (𝑥′)ΔO𝑎 (𝑔𝑖𝑥). (3.174)

The tensor structures in the numerators of the three-point structures are identical
to what they would be in a standard configuration (𝑥1, 𝑥2, 𝑥3) = (0, 𝑒,∞). The
remaining factors are the same as in the SL(2,R) transformation of conformal
three-point structures in 1D. Thus, the integrand restricted to the 𝑥1-axis becomes

𝐼 (𝑥𝑖) = 𝑉 𝑠
′∗(𝑥1, 𝑥2, 𝑥3)𝑔1𝑔2𝑔3 · 𝑉 𝑠 (𝑥1, 𝑥2, 𝑥3)

= 𝑉 𝑠
′∗(0, 𝑒,∞)𝑉 𝑠 (0, 𝑒,∞)𝑉

Δ̃1,Δ̃2,Δ̃3
(𝑧1, 𝑧2, 𝑧3)𝑔1𝑔2𝑔3 · 𝑉Δ1,Δ2,Δ3 (𝑧1, 𝑧2, 𝑧3),

(3.175)
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where 𝑉Δ1,Δ2,Δ3 (𝑧1, 𝑧2, 𝑧3) are 1d conformal three-point functions, and the 𝑔𝑖 act via
(3.164).

In the small temperature limit 𝛽𝑖 → ∞, it is straightforward to find at least one
solution to the saddle point equations (3.165). We naively expand the equations in
the 𝛽𝑖 → ∞ limit to obtain

0 =
(Δ1 − Δ2 + Δ3)𝑧2 + (Δ1 + Δ2 − Δ3)𝑧3 − 2Δ1𝑧1

𝑧12𝑧31
− 2Δ1
𝑧1 + 1

+𝑂 (𝑒−𝛽𝑖 ),

0 =
(Δ2 + Δ3 − Δ1)𝑧1 + (Δ1 + Δ2 − Δ3)𝑧3 − 2Δ2𝑧2

𝑧12𝑧23
− 2Δ2
𝑧2 − 1

+𝑂 (𝑒−𝛽𝑖 ),

0 =
(Δ2 + Δ3 − Δ1)𝑧1 + (Δ1 + Δ3 − Δ2)𝑧2 − 2Δ3𝑧3

𝑧31𝑧23
+𝑂 (𝑒−𝛽𝑖 ). (3.176)

These have the solution

®𝑝0,0,0 ≡
(
3Δ1 − Δ2 + Δ3
Δ1 + Δ2 − Δ3

,
Δ1 − 3Δ2 − Δ3
Δ1 + Δ2 − Δ3

,
Δ2 − Δ1

Δ3

)
+𝑂 (𝑒−𝛽𝑖 ). (3.177)

Then, using the operations defined in Section 3.6, we can generate seven additional
saddles:

®𝑝1,0,0 ≡ 𝜎1 ®𝑝0,0,0,

®𝑝0,1,0 ≡ 𝜎2 ®𝑝0,0,0,

®𝑝0,0,1 ≡ 𝜎3 ®𝑝0,0,0,

®𝑝1,1,0 ≡ 𝜎1𝜎2 ®𝑝0,0,0 = 𝜏 ®𝑝0,0,1,

®𝑝1,0,1 ≡ 𝜎1𝜎3 ®𝑝0,0,0 = 𝜏 ®𝑝0,1,0,

®𝑝1,0,1 ≡ 𝜎1𝜎3 ®𝑝0,0,0 = 𝜏 ®𝑝1,0,0,

®𝑝1,1,1 ≡ 𝜎1𝜎2𝜎3 ®𝑝0,0,0 = 𝜏 ®𝑝0,0,0. (3.178)

As an aside, these additional saddles are more subtle to see directly from the
saddle point equations because they involve points scaling towards singularities.
For example, in the solution

®𝑝1,0,0 =

(
−1 + Δ1 − Δ2 + Δ3

4Δ1
𝑒−𝛽1 + . . . , Δ1 + 3Δ2 + Δ3

Δ1 − Δ2 + Δ3
+ . . . , Δ1 + Δ2

Δ3
+ . . .

)
,

(3.179)

the point 𝑧1 approaches the center of the ball 𝐵1 at 𝑧1 = −1, which is a singularity of
the saddle point equations at low temperatures. To find the solution ®𝑝1,0,0 directly,
we cannot use (3.176). Instead, we must re-expand the equations near the singularity
and re-solve them in a small-temperature expansion, resulting in (3.179).
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Let us denote the saddle point integral along a steepest descent contour through
®𝑝𝑎,𝑏,𝑐 by 𝐼𝑎,𝑏,𝑐. Plugging in the different solutions, we find that the 𝐼𝑎,𝑏,𝑐 have the
following behavior in the small temperature regime (as a function of the 𝛽𝑖):

𝐼0,0,0 ∼ 𝑒−𝛽1Δ1−𝛽2Δ2−𝛽3Δ3 ,

𝐼1,0,0 ∼ 𝑒−𝛽1Δ̃1−𝛽2Δ2−𝛽3Δ3 ,

𝐼0,1,0 ∼ 𝑒−𝛽1Δ1−𝛽2Δ̃2−𝛽3Δ3 ,

. . .

𝐼1,1,1 ∼ 𝑒−𝛽1Δ̃1−𝛽2Δ̃2−𝛽3Δ̃3 . (3.180)

More formally, if we consider monodromies 𝑀𝑖 : 𝛽𝑖 → 𝛽𝑖 + 2𝜋𝑖, then each sad-
dle point integral is an eigenfunction of the monodromies 𝑀1,2,3 with different
eigenvalues. The block is the solution to the Casimir equations with monodromies
𝑀𝑖𝐵

𝑠′𝑠
123 = 𝑒−2𝜋𝑖Δ𝑖𝐵𝑠

′𝑠
123. It follows that 𝐼0,0,0 is the block at low temperatures, while

the other saddle point contours give shadow blocks.

Let us finally turn back on the angular fugacities ℎ1, ℎ2, ℎ3. In the low-temperature
limit, they do not move the saddle point ®𝑝0,0,0. Performing the gaussian integral
around ®𝑝0,0,0, and multiplying by the inverse of the triple shadow coefficient com-
puted in (3.346), we find a nontrivial cancellation of Δ-dependent factors, resulting
in

((𝐼−3𝑆3
1̃†2̃†3̃†

)−1)𝑠′ 𝑡′Ψ𝑡′𝑠
123

���
®𝑝0,0,0

= 2−2Δ1−2Δ2𝑒−Δ1𝛽1−Δ2𝛽2−Δ3𝛽3

×𝑉 𝑠′∗(0, 𝑒,∞)(ℎ1ℎ2ℎ3 · 𝑉 𝑠) (0, 𝑒,∞)
× (1 +𝑂 (Δ−1

𝑖 , 𝑒
−𝛽𝑖 )), (3.181)

where the ®𝑝0,0,0 subscript means we evaluate the saddle point integral around ®𝑝0,0,0.
This result agrees precisely with the formula for the block from summing over states
(3.130). This is a check on our assertion that 𝐼0,0,0 computes the block, and also on
our ansatz (3.160) for the partial wave as a sum of blocks.

High temperature saddles
We define the high temperature regime as 𝛽𝑖 𝑗 → 0 with ®Ω𝑖 𝑗 = 𝛽−1

𝑖 𝑗
®𝜃𝑖 𝑗 fixed. In terms

of the coordinates 𝛽𝑖, ℎ𝑖, this means that ℎ𝑖 → 1 at high temperatures. Our strategy
will be to start with the infinite temperature case 𝛽𝑖 = 0 and ℎ𝑖 = 1, and then work
in perturbation theory at small 𝛽𝑖. At infinite temperature, we restore SO(𝑑 − 1)
symmetry, so we can again look for solutions along the 𝑥1 axis.
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It is not obvious a-priori that perturbation theory around infinite temperature makes
sense — what if the block had a singularity at infinite temperature? However, we
find in practice that the block is nonsingular at infinite temperature, and this strategy
works. Relatedly, we do not find any evidence of a nontrivial difference in the
order of limits 𝛽𝑖 → 0 and Δ𝑖 → ∞. This situation is somewhat different from the
"𝑡-channel" 𝑧, 𝑧 → 1 limit of four-point conformal blocks, where the blocks have
nontrivial log or power-law singularities, and one must be careful about orders of
limits [176, 185]. It would be nice to understand these differences in more detail.

In the infinite temperature limit 𝛽𝑖 = 0, one saddle point is relatively easy to find.
We naively expand the saddle point equations and solve them to give

®𝑞0 ≡
(

2Δ3
2Δ2−Δ3

,− 2Δ3
2Δ1−Δ3

,
2(Δ2−Δ1)
Δ1+Δ2

)
+𝑂 (𝛽𝑖). (3.182)

Interestingly, it turns out that 𝜎1 ®𝑞0 = 𝜎2 ®𝑞0 = 𝜎3 ®𝑞0 = 𝜏 ®𝑞0, so the operations defined
in Section 3.6 generate only one additional high temperature saddle, namely 𝜏 ®𝑞0.

However, it turns out that there are three additional high temperature saddles where
the points 𝑥1, 𝑥2, 𝑥3 scale towards each other in the high temperature limit. For
example, we find a solution ®𝑞12 given by

®𝑞12 ≡
(
− 𝛽2Δ1+𝛽1 (Δ1+Δ3)

2Δ3
,
𝛽1Δ2+𝛽2 (Δ2+Δ3)

2Δ3
,
𝛽1(Δ2

1−Δ
2
2−Δ

2
3)+𝛽2(Δ2

1−Δ
2
2+Δ

2
3)

4Δ2
3

)
+𝑂 (𝛽2

𝑖 ).

(3.183)

Here, all three points scale toward 𝑥 = 0 (the point where balls 𝐵1 and 𝐵2 are
tangent) as 𝛽𝑖 → 0. Similarly, we find a solution ®𝑞23 where the 𝑥𝑖 scale toward
the point where balls 𝐵2 and 𝐵3 are tangent, and a solution ®𝑞31 where the 𝑥𝑖 scale
toward the point where balls 𝐵3 and 𝐵1 are tangent. The action of 𝜎𝑖 and 𝜏 on these
solutions is given by

𝜎2 ®𝑞12 = 𝜎1 ®𝑞12 = ®𝑞12, 𝜎3 ®𝑞12 = 𝜏 ®𝑞12, (3.184)

and cyclic permutations of these relations. The saddle points 𝜏 ®𝑞𝑖 𝑗 are new — they in-
volve two points scaling towards a singularity, while one remains at a finite position.
Thus, overall, we have eight high-temperature saddles given by ®𝑞0, ®𝑞12, ®𝑞23, ®𝑞31, and
their images under 𝜏.

These saddle points yield eight solutions of the conformal Casimir equations in the
high temperature regime. But which one(s) corresponds to the block? To answer
this, let us start at low temperature, where we know that the block corresponds to
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®𝑝0,0,0. As we dial from low to high temperature, we find that each low temperature
saddle point transitions smoothly to a high temperature saddle. Although we have
not proved analytically which saddle becomes which, we can track them numerically;
see for example Figure 3.10.

Interestingly, the matching between low- and high-temperature saddles depends on
the signs of the Δ𝑖. The saddle point equations depend projectively on the Δ𝑖, so
more precisely only the signs of their ratios matter. We will be most interested in
the case where all Δ𝑖/Δ 𝑗 are positive, where we find

low temperature −→ high temperature
®𝑝0,0,0 −→ ®𝑞0

®𝑝1,1,0 −→ ®𝑞12

®𝑝0,1,1 −→ ®𝑞23

®𝑝1,0,1 −→ ®𝑞31

(Δ𝑖/Δ 𝑗 > 0). (3.185)

The remaining mappings from low to high temperature are obtained by acting with
𝜏, for example 𝜏 ®𝑝0,0,0 → 𝜏 ®𝑞0.

∞

∞

1

-1

2

-2

0

p0,0,0q0

x1

x2

x3

∞

∞

1

-1

2

-2

0

p1,1,0q12

∞

∞

1

-1

2

-2

0

p0,1,1q23
∞

∞

1

-1

2

-2

0

p1,0,1q31

Figure 3.10: Evolution of saddle points from low to high temperature when Δ𝑖/Δ 𝑗 >

0 for some representative values of Δ𝑖. The blue curve is 𝑥1, the orange curve is 𝑥2,
and the green curve is 𝑥3. Here, we set all three temperatures equal 𝛽𝑖 = 𝛽. The
horizontal axis is 𝑡 = 𝑒−𝛽, with low temperatures near 𝑡 = 0 and high temperatures
near 𝑡 = 1.

How is this compatible with the fact that the 𝜎𝑖 operations act differently on the
high temperature and low temperature saddle points? The key is that the map from
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low to high temperature depends on the signs of the Δ𝑖’s, and the 𝜎𝑖 operations
can flip these signs. We can capture these rules as follows. Let us define maps
𝐻±,±,± that take low temperature saddle points to high temperature saddle points by
continuation in 𝛽𝑖, with the signs of (Δ1,Δ2,Δ3) corresponding to the signs in the
subscript of 𝐻±,±,±. For example, when all of the Δ𝑖 are positive, the map 𝐻+++ is
given by 3.185. We claim that the 𝜎𝑖 interchange the maps 𝐻±±± in the following
way:

𝐻𝑠1𝑠2𝑠3 ( ®𝑝) = 𝜎1𝐻(−𝑠1)𝑠2𝑠3 (𝜎1 ®𝑝),
𝐻𝑠1𝑠2𝑠3 ( ®𝑝) = 𝜎2𝐻𝑠1 (−𝑠2)𝑠3 (𝜎2 ®𝑝),
𝐻𝑠1𝑠2𝑠3 ( ®𝑝) = 𝜎3𝐻𝑠1𝑠2 (−𝑠3) (𝜎3 ®𝑝). (3.186)

In other words, conjugating by 𝜎𝑖 flips the sign of the 𝑖-th subscript in 𝐻±±±.
Intuitively, this is because 𝜎𝑖 flips the sign of Δ𝑖 in 3.173.

With the rules (3.185) defining 𝐻+++, the relations (3.186), and the action of 𝜎𝑖, 𝜏
on the low and high temperature saddles, we can predict how any low temperature
saddle continues to a high temperature saddle, for various signs of the Δ𝑖. We have
verified these predictions numerically in examples. It would be nice to prove them
analytically.

To summarize, as we continue from low to high temperature, with Δ𝑖/Δ 𝑗 > 0, the
saddle point ®𝑝0,0,0 continues to ®𝑞0. We will assume that no Stokes phenomena occur
during this continuation, so that the saddle point integral through ®𝑝0,0,0 continues
to the saddle point integral through ®𝑞0. Another way to think about this is that
the saddle point integral automatically solves the conformal Casimir equation, in
perturbation theory in 1/Δ. The assumption of no Stokes phenomena is the same
as the assumption that perturbation theory in 1/Δ can be used to solve the Casimir
equations at large Δ for all temperatures.

Thus, let us focus on the saddle point ®𝑞0. Away from infinite temperature, the
positions of the points in the ®𝑞0 saddle get corrected, and we can compute these
corrections in a systematic expansion in 𝛽𝑖 and the angles ®𝛼𝑖 and ®Φ𝑖 defined in
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(3.147) (still in the large-Δ limit). For example, 𝑥1 shifts by

𝛿𝑥1
1 =

(Δ2
1 + (Δ2 − Δ3)2) (2Δ2 + Δ3)

4Δ2(2Δ2 − Δ3)Δ3
𝛽1 +

Δ2(4Δ2
1 − Δ2

3) (Δ
2
1 + Δ2

2 − Δ2
3)

4Δ2
1Δ3(2Δ2 − Δ3)2

𝛽2

−
(Δ2

1 − Δ2
2)Δ3(Δ2

1 − Δ2
2 + Δ2

3)
2Δ2

1Δ2(2Δ2 − Δ3)2
𝛽3 +𝑂 (𝛽2, ®𝛼2),

𝛿®𝑥1 =
(Δ2

1 + (Δ2 − Δ3)2) (2Δ2 + Δ3)
4Δ2Δ3(2Δ2 − Δ3)

®𝛼1 +
Δ2(4Δ2

1 − Δ2
3) (Δ

2
1 + Δ2

2 − Δ2
3)

4Δ2
1Δ3(2Δ2 − Δ3)2

®𝛼2

+
(Δ2

1 − Δ2
2)Δ3(Δ2

1 − Δ2
2 + Δ2

3)
2Δ2

1Δ2(2Δ2 − Δ3)2
®𝛼3 +𝑂 (𝛽®𝛼, ®Φ®𝛼). (3.187)

Here, 𝛿®𝑥1 indicates the components of 𝑥1 perpendicular to the 𝑥1
1 axis, and𝑂 (𝛽2, ®𝛼2)

and𝑂 (𝛽®𝛼, ®Φ®𝛼) stand for quadratic corrections in the 𝛽𝑖, ®𝛼𝑖, ®Φ𝑖 of the indicated form.
The ®𝛼𝑖 appear at second order in 𝛿𝑥1

1, as required by SO(𝑑 − 1) invariance.

Plugging this corrected ®𝑞0 into the saddle point integral, and taking into account
the 1-loop determinant, we finally find the high temperature behavior of the block
at large Δ:

𝐵𝑠
′𝑠

123 =
(2Δ1)2Δ1−𝑑 (2Δ2)2Δ2−𝑑 (2Δ3)2Δ3−𝑑

23𝑑/2(Δ1 + Δ2 + Δ3)2Δ1+2Δ2+2Δ3−3𝑑𝑉
𝑠′∗(0, 𝑒,∞)ℎ1ℎ2ℎ3𝑉

𝑠 (0, 𝑒,∞)

× exp
(
−Δ1Δ2

Δ3
(𝛽1 + 𝛽2) −

Δ2Δ3
Δ1

(
𝛽2
4

+ 𝛽3
2

)
− Δ1Δ3

Δ2

(
𝛽1
4

+ 𝛽3
2

)
+𝑂 (Δ𝛽2,Δ®𝛼2)

)
(𝛽𝑖 , | ®𝛼𝑖 |, | ®Φ𝑖 | ≪ 1,Δ𝑖 ≫ 1). (3.188)

Recall that this formula only holds in the chamber Δ𝑖/Δ 𝑗 > 0. When the signs of
ratios Δ𝑖/Δ 𝑗 are different, the high temperature behavior of the block is in general
controlled by a different saddle. Our derivation so far has been for principal series
representations Δ𝑖 ∈ 𝑑

2 + 𝑖R≥0. However, we can now analytically continue the result
to real Δ𝑖 by simultaneously rotating the Δ𝑖 clockwise in the complex plane.

In (3.188), we only kept linear order terms in 𝛽𝑖 in the exponent. Later, we will argue
that the higher order terms in 𝛽, ®𝛼, ®Φ do not contribute to the leading asymptotics
of OPE coefficients, at large Δ and finite 𝐽. Such terms can potentially become
important at large-𝐽, but we leave the analysis of this case to future work. Note also
that in (3.188), we have ℎ𝑖 = 1 + 𝑂 (𝛼𝑖,Φ𝑖). We study one consequence of the Φ2

𝑖

terms in ℎ𝑖 later in Section 3.7.

As was the case at low temperatures, the apparent breaking of 1-2-3 permutation
symmetry in (3.188) is due to using non-permutation symmetric coordinates on the
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moduli space M. Switching to the relative temperatures 𝛽𝑖 𝑗 , the exponent in 3.188
becomes the beautifully permutation-symmetric

exp
(
−Δ1Δ2

8Δ3
𝛽2

12 −
Δ2Δ3
8Δ1

𝛽2
23 −

Δ3Δ1
8Δ2

𝛽2
31 +𝑂 (Δ𝛽2,Δ®𝛼2)

)
. (3.189)

Let us make a few additional observations about the result (3.188). We define a
"scaling block" as the primary term in 3.130. Because the full block is a sum of
scaling blocks with nonnegative coefficients, we should have the inequality

𝐵123 ≥ 2−2Δ1−2Δ2𝑒−𝛽1Δ1−𝛽2Δ2−𝛽3Δ3 (ℎ𝑖 = 1). (3.190)

Let us check this at high temperatures. Our calculation of the block is valid in the
regime Δ ≫ 1 and 𝛽 ≪ 1. Thus, we can ignore 𝛽Δ compared to Δ and just compare
the Δ-dependent terms out front:

(2Δ1)2Δ1−𝑑 (2Δ2)2Δ2−𝑑 (2Δ3)2Δ3−𝑑

23𝑑/2(Δ1 + Δ2 + Δ3)2Δ1+2Δ2+2Δ3−3𝑑 ≥ 2−2Δ1−2Δ2 . (3.191)

Indeed, we find that numerically, the above inequality holds when Δ𝑖 > 0. It is
saturated when Δ1 = Δ2 = Δ3/2, and in this case the high temperature block and
the scaling block are exactly the same (up to the order we’ve computed them)! One
speculative interpretation is that the full genus-2 block at large Δ may be a scaling
block in an appropriate Weyl frame that depends on the Δ𝑖. Our choice of Weyl
frame in Section 3.5 happens to be the appropriate frame for Δ1 = Δ2 = Δ3/2. Other
Weyl frames would be best suited to other Δ𝑖. The large-Δ limit of Virasoro blocks
also simplifies in an appropriate Weyl frame [161, 206].

3.7 OPE coefficients of heavy operators
"Heavy-heavy-heavy" OPE coefficients are encoded in the partition function of the
CFT on the genus-2 manifold 𝑀2 via (3.129). In Section 3.5, using the thermal
effective action and the "hot spot" hypothesis, we calculated the leading expression
(3.146) for the partition function in the high-temperature regime discussed in Sec-
tion 3.5. In Section 3.6, we obtained an expression (3.188) for a conformal block in
the same regime. Finally, in this section, we will combine these ingredients to obtain
an asymptotic formula for "heavy-heavy-heavy" OPE coefficients by inverting the
conformal block decomposition of the partition function.

Review: inverting a genus-1 partition function
Before discussing how to invert a genus-2 partition function, let us revisit the genus-
1 case, phrasing it in language that will generalize to genus-2. Conformal blocks for
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the genus-1 partition function on 𝑆1×𝑆𝑑−1 are just conformal characters 𝜒Δ,𝐽 (𝛽,Ω𝑖).
For simplicity, let us work in 𝑑 = 1, where the characters have the simple form

𝜒Δ(𝛽) =
𝑒−Δ𝛽

1 − 𝑒−𝛽
(𝑑 = 1), (3.192)

and the partition function has the decomposition

𝑍 (𝛽) =
∫

𝑑Δ 𝑝(Δ)𝜒Δ(𝛽), (3.193)

which is essentially a Laplace transform of the density of states 𝑝(Δ). It is straight-
forward to decompose 𝑍 (𝛽) into characters via an inverse Laplace transform, as we
did in Section 3.3. However, let us pause to understand this transform in group-
theoretic language.

The conformal characters can be viewed as functions on the group SL(2,R) that are
invariant under conjugation, i.e. class functions. They are naturally eigenfunctions
of the Casimir differential operator D defined in Section 3.6. In terms of 𝛽, this
leads to the eigenvalue equation

D𝜒Δ(𝛽) =
1 + 𝑒−𝛽
1 − 𝑒−𝛽

𝜒′Δ(𝛽) + 𝜒
′′
Δ (𝛽) = Δ(Δ − 1)𝜒Δ(𝛽). (3.194)

(Here, we abuse notation and write D both for the differential operator 𝐿𝐴𝐿𝐴 on the
group SL(2,R), and for the differential operator (3.194) acting on 𝛽.) Because the
Casimir eigenvalue Δ(Δ − 1) is the same for Δ and Δ̃ = 1 −Δ, the shadow character
𝜒
Δ̃
(𝛽) satisfies the same differential equation as 𝜒Δ(𝛽).

Because of its group-theoretic origin, D is naturally self-adjoint in the Haar measure
on SL(2,R). When acting on class functions, this implies that D defined in (3.194)
is self-adjoint with respect to the quotient measure on the space of conjugacy classes
of SL(2,R). The quotient measure is given by the famous Weyl integration formula
(and can be computed using the Faddeev-Popov procedure):

𝑑𝜇 = 𝑑𝛽(𝑒𝛽/2 − 𝑒−𝛽/2)2. (3.195)

Self-adjointness of D immediately implies an orthogonality relation∫
𝑑𝜇𝜒Δ(𝛽)𝜒Δ̃′ (𝛽) = 0 unless Δ = Δ′ or Δ = Δ̃′, (3.196)

where the integral can follow any contour such that the boundary terms from inte-
grating D by parts vanish. For our applications, we can integrate over an infinite
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contour parallel to the imaginary axis 𝛽 = 𝛽0 + 𝑖𝑡, which gives∮
𝑑𝜇𝜒Δ(𝛽)𝜒Δ̃′ (𝛽) =

∮
𝑑𝛽 𝑒(Δ

′−Δ)𝛽 = 2𝜋𝑖𝛿(Δ − Δ′). (3.197)

This allows us to invert the partition function by integrating against a shadow block:

𝑝(Δ) = 1
2𝜋𝑖

∮
𝑑𝜇𝜒

Δ̃
(𝛽)𝑍 (𝛽) = 1

2𝜋𝑖

∮
𝑑𝛽𝑒Δ𝛽 (1 − 𝑒−𝛽)𝑍 (𝛽), (3.198)

which is the usual inverse Laplace transform.

Before proceeding, let us make a comment about the choice of contour. By analogy
with Euclidean inversion formulae for local correlation functions, we could have
instead tried to decompose 𝑍 (𝛽) in characters for principal series representations,
which take the form

𝜒′𝑠 (𝛽) = 𝜒1
2+𝑖𝑠

(𝛽) + 𝜒1
2−𝑖𝑠

(𝛽) = 𝑒𝑖𝑠𝛽 + 𝑒−𝑖𝑠𝛽

𝑒𝛽/2 − 𝑒−𝛽/2
. (3.199)

Principal series characters are naturally orthonormal with respect to 𝑑𝜇, when
integrated along a real contour 𝛽 ∈ R. However, this kind of orthogonality is
unsuitable for decomposing a physical partition function. The reason is that 𝑍 (𝛽)
typically possesses a high-temperature singularity on the real axis of the form
𝑍 (𝛽) ∼ 𝑒1/𝛽𝑎 for some positive power 𝑎. This high-temperature singularity cannot
be integrated against 𝜒′𝑠 (𝛽) along a real contour in a simple way.27 Using a complex
contour as in 3.198 bypasses this issue by avoiding the singularity.

An inverse Laplace transform for genus-2 blocks
Let us now assemble analogous ingredients in the genus-2 case. Let 𝑑𝜇 be the
natural quotient measure on the moduli space M = 𝐺\(𝐺−)3/𝐺, descending from
the product of Haar measures on (𝐺−)3. Consider a contour integral of a block
against a shadow block ∮

𝑑𝜇 𝐵𝑠
′𝑠

123 𝐵
𝑡′𝑡
1̃′†2̃′†3̃′†

. (3.200)

(We do not specify the precise contour for now.) The block and shadow block are
both simultaneous eigenfunction of the Casimir operators D𝑖 acting on each group
element 𝑔𝑖. Because of their group-theoretic origin, these operators are naturally

27Interestingly, there is usually no problem with decomposing correlators of local operators in
principal series representations. Doing so leads to Euclidean inversion formulas, which typically
involve integrable power-like singularities. It would be nice to better understand the distinction
between these cases.
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self-adjoint in the measure 𝑑𝜇. If the contour is such that there are no boundary
terms from integrating the D𝑖 by parts, then the above integral must be proportional
to 𝛿-functions restricting 𝜋𝑖 and 𝜋′

𝑖
to be the same∮

𝑑𝜇 𝐵𝑠
′𝑠

123 𝐵
𝑡′𝑡
1̃′†2̃′†3̃′†

∝ 𝛿𝜋1𝜋
′
1
𝛿𝜋2𝜋

′
2
𝛿𝜋3𝜋

′
3
, (3.201)

where

𝛿𝜋𝜋′ = 𝛿(Δ − Δ′)𝛿𝜆𝜆′ . (3.202)

To find the constant of proportionality in (3.201), we will assume that the contour
is a complex contour in 𝛽𝑖 that can be deformed to low temperature and evaluated
in that regime. This is analogous to the inverse Laplace transform (3.198), where
we can choose any contour of the form 𝛽 = 𝛽0 + 𝑖𝑡. Moving the contour to low
temperatures, we can evaluate the orthogonality relation (3.201) using the low-
temperature expansion of the blocks (3.130). When inverting a partition function,
we can instead deform the contour into the high temperature regime and look for a
saddle point.

Computing the measure
The first step is to compute the quotient measure 𝑑𝜇 via the Faddeev-Popov proce-
dure. There are a few wrinkles in doing so, so let us work through the computation
in full. Recall that the quotient space M can be redundantly parametrized by
(𝑔1, 𝑔2, 𝑔3) ∈ 𝐺− × 𝐺− × 𝐺−. We would like to fix a gauge by writing 𝑔𝑖 in terms
of 𝛽𝑖, ℎ𝑖 as in (3.112). For the moment, let us also imagine that we have chosen
a non-redundant parametrization of the ℎ𝑖 in terms of angles, so that overall the 𝑔𝑖
are specified in terms of 𝑛 = dim𝐺 parameters which we call 𝑦. Our gauge-fixing
condition is 𝑔𝑖 = 𝑔𝑖 (𝑦). An appropriate gauge-fixing function is

𝑄(𝑔1, 𝑔2, 𝑔3) =
∫

𝑑𝑦 𝛿(𝑔1, 𝑔1)𝛿(𝑔2, 𝑔2)𝛿(𝑔3, 𝑔3), (3.203)

where 𝑑𝑦 is any measure on the coordinates 𝑦, and 𝛿(𝑔, 𝑔′) is a unit-normalized
𝛿-function (in the Haar measure) on the group supported at 𝑔 = 𝑔′.

Consider now a gauge-invariant function 𝑓 (𝑔1, 𝑔2, 𝑔3). We formally define its
integral over the moduli space as∫

M
𝑑𝜇 𝑓 =

∫
𝑑𝑔1 𝑑𝑔2 𝑑𝑔3

(vol𝐺)2 𝑓 (𝑔1, 𝑔2, 𝑔3), (3.204)
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where 𝑑𝑔𝑖 are Haar measures. Following the usual FP procedure, we insert 1 in the
form of an integral over gauge orbits of 𝑄, divided by its average over gauge orbits∫

M
𝑑𝜇 𝑓 =

∫
𝑑𝑔1 𝑑𝑔2 𝑑𝑔3

(vol𝐺)2 𝑑𝑔𝑑𝑔′
𝑄(𝑔𝑔1𝑔

′−1, 𝑔𝑔2𝑔
′−1, 𝑔𝑔3𝑔

′−1)
𝑄(𝑔1, 𝑔2, 𝑔3)

𝑓 (𝑔1, 𝑔2, 𝑔3),

(3.205)

where

𝑄(𝑔1, 𝑔2, 𝑔3) ≡
∫

𝑑𝑔 𝑑𝑔′𝑄(𝑔𝑔1𝑔
′−1, 𝑔𝑔2𝑔

′−1, 𝑔𝑔3𝑔
′−1). (3.206)

Now we change variables 𝑔𝑖 → 𝑔−1𝑔𝑖𝑔
′ and use gauge-invariance of 𝑓 and 𝑄 to

obtain∫
M
𝑑𝜇 𝑓 =

∫
𝑑𝑔1 𝑑𝑔2 𝑑𝑔3

𝑓 (𝑔1, 𝑔2, 𝑔3)
𝑄(𝑔1, 𝑔2, 𝑔3)

𝑄(𝑔1, 𝑔2, 𝑔3) =
∫

𝑑𝑦
𝑓 (𝑔1, 𝑔2, 𝑔3)
𝑄(𝑔1, 𝑔2, 𝑔3)

.

(3.207)

This is our gauge-fixed integral and 1/𝑄 is the FP determinant, which we now
compute.

We have

𝑄(𝑔1, 𝑔2, 𝑔3) =
∫

𝑑𝑔 𝑑𝑔′ 𝑑𝑦′
3∏
𝑖=1

𝛿(𝑔𝑔𝑖 (𝑦)𝑔′−1, 𝑔𝑖 (𝑦′)). (3.208)

The 𝛿-functions are supported for 𝑔, 𝑔′ near the identity and 𝑦′ near 𝑦. Thus, we can
write

𝑔 = 1 + 𝜉, 𝑔′ = 1 + 𝜉′, (3.209)

where 𝜉, 𝜉′ are elements of the Lie algebra of 𝐺, and we can furthermore Taylor
expand the 𝑔𝑖 in 𝑦′ = 𝑦 + 𝑑𝑦. We have

𝛿(𝑔𝑔𝑖 (𝑦)𝑔′−1, 𝑔𝑖 (𝑦′)) = 𝛿(𝑔𝑖 (𝑦)−1𝑔𝑔𝑖 (𝑦)𝑔′−1, 𝑔𝑖 (𝑦)−1𝑔𝑖 (𝑦′))
= 𝛿(1 + 𝑔𝑖 (𝑦)−1𝜉𝑔𝑖 (𝑦) − 𝜉′, 1 + 𝑑𝑦 · 𝑔𝑖 (𝑦)−1𝜕𝑦𝑔𝑖 (𝑦))
= 𝛿(Ad

𝑔−1
𝑖
𝜉 − 𝜉′ − 𝑑𝑦 · 𝑔−1

𝑖 𝜕𝑦𝑔𝑖), (3.210)

where in the last line, we have a 𝛿 function on the Lie algebra 𝔤, and Ad𝑔 denotes
the adjoint action of 𝑔. The gauge-fixed measure is thus

𝑑𝜇 =
𝑑𝑦

𝑄
= det

©­­­«
Ad

𝑔−1
1

−1 −𝑔−1
1 𝜕𝑦1𝑔1 · · · −𝑔−1

1 𝜕𝑦𝑛𝑔1

Ad
𝑔−1

2
−1 −𝑔−1

2 𝜕𝑦1𝑔2 · · · −𝑔−1
2 𝜕𝑦𝑛𝑔2

Ad
𝑔−1

3
−1 −𝑔−1

3 𝜕𝑦1𝑔3 · · · −𝑔−1
3 𝜕𝑦𝑛𝑔3

ª®®®¬ 𝑑𝑦
1 · · · 𝑑𝑦𝑛 (3.211)
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The object inside the determinant is a 3𝑛 × 3𝑛 matrix. Choosing an orthonormal
basis of 𝔤, Ad

𝑔−1
𝑖

becomes an 𝑛 × 𝑛 block, and each 1 becomes an 𝑛 × 𝑛 identity
matrix. Finally, −𝑔−1

𝑖 𝜕𝑦 𝑗𝑔𝑖 is an element of 𝔤, which we can think of as a column
vector of height 𝑛.

• Partial gauge fixing

In our parametrization of M in terms of temperatures 𝛽1, 𝛽2, 𝛽3 and rotations
ℎ1, ℎ2, ℎ3 ∈ SO(𝑑), we write the moduli space as

M = 𝐺\(𝐺−)3/𝐺 � SO(𝑑 − 1)\(SO(1, 1) × 𝑆𝑂 (𝑑))3/SO(𝑑 − 1), (3.212)

where the two copies of SO(𝑑 − 1) act by left and right multiplication on the ℎ𝑖.
Above, we obtained the measure from fully gauge-fixing both the left and right
action of 𝐺. However, it will be more convenient to only partially fix the gauge,
leaving the SO(𝑑 − 1) × SO(𝑑 − 1) gauge redundancy un-fixed. Let us determine
how the above computation should be modified in this case.

Let 𝑦 = (𝛽1, 𝛽2, 𝛽3, ℎ1, ℎ2, ℎ3) now be coordinates on (SO(1, 1) × 𝑆𝑂 (𝑑))3, and let
us write 𝐾 = SO(𝑑 − 1), with Lie algebra 𝔨. The 𝑦 have an action of 𝐾 × 𝐾 given
by 𝑦 ↦→ 𝑘𝑦𝑘′−1 and an invariant measure 𝑑𝑦. Once again, we should consider the
average over gauge orbits of the gauge-fixing function

𝑄(𝑔1, 𝑔2, 𝑔3) ≡
∫

𝑑𝑔𝑑𝑔′𝑑𝑦
∏
𝑖

𝛿(𝑔𝑔1𝑔
′−1, 𝑔𝑖 (𝑦)). (3.213)

We can factorize 𝑔 into

𝑔 = 𝑘 𝛾, (3.214)

where 𝑘 ∈ 𝐾 , and 𝛾 is a representative of the quotient 𝐾\𝐺. The measure on 𝐺
similarly splits as

𝑑𝑔 = 𝑑𝑘 𝑑𝛾, (3.215)

where 𝑑𝑘 is the measure on 𝐾 , and 𝑑𝛾 is a right-𝐺-invariant measure on 𝐾\𝐺.
To be more precise, let 𝑇𝑎 be an orthonormal basis of generators of 𝔤, and let the
generators of 𝔨 ⊂ 𝔤 be the 𝑇𝑎 with 𝑎 = 1, . . . , dim𝐾 . Then we can take the 𝛾
to be the image under the exponential map of the remaining generators 𝑇𝑎 with
𝑎 = dim𝐾 + 1, . . . , dim𝐺.
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Inserting this decomposition into (3.213), we find

𝑄(𝑔1, 𝑔2, 𝑔3) ≡
∫

𝑑𝑘 𝑑𝛾 𝑑𝑘′ 𝑑𝛾′ 𝑑𝑦
∏
𝑖

𝛿(𝑘𝛾𝑔1𝛾
′−1𝑘′−1, 𝑔𝑖 (𝑦))

=

∫
𝑑𝑘 𝑑𝛾 𝑑𝑘′ 𝑑𝛾′ 𝑑𝑦

∏
𝑖

𝛿(𝛾𝑔1𝛾
′−1, 𝑔𝑖 (𝑘−1𝑦𝑘′))

= (vol𝐾)2
∫

𝑑𝛾 𝑑𝛾′ 𝑑𝑦
∏
𝑖

𝛿(𝛾𝑔1𝛾
′−1, 𝑔𝑖 (𝑦))

= (vol𝐾)2
∫

𝑑𝜉 𝑑𝜉′ 𝑑𝑦
∏
𝑖

𝛿(Ad𝑔−1
𝑖
𝜉 − 𝜉′ − 𝑑𝑦 · 𝑔−1

𝑖 𝜕𝑦𝑔), (3.216)

where we have written

𝛾 = exp(𝜉), 𝛾′ = exp(𝜉′). (3.217)

The only differences from before are that now 𝜉 and 𝜉′ are restricted to generators
of 𝛾 — i.e. 𝑇𝑎 with 𝑎 = dim𝐾 + 1, . . . , dim𝐺, and furthermore we must divide by
(vol𝐾)2. The partially gauge-fixed measure is thus

𝑑𝜇 =
1

(vol𝐾)2 det
©­­­«
Ad

𝑔−1
1
Π

†
𝛾 −Π†

𝛾 −𝑔−1
1 𝜕𝑦1𝑔1 · · · −𝑔−1

1 𝜕𝑦𝑚𝑔1

Ad
𝑔−1

2
Π

†
𝛾 −Π†

𝛾 −𝑔−1
2 𝜕𝑦1𝑔2 · · · −𝑔−1

2 𝜕𝑦𝑚𝑔2

Ad
𝑔−1

3
Π

†
𝛾 −Π†

𝛾 −𝑔−1
3 𝜕𝑦1𝑔3 · · · −𝑔−1

3 𝜕𝑦𝑚𝑔3

ª®®®¬ 𝑑𝑦
1 · · · 𝑑𝑦𝑚,

(3.218)

where Π𝛾 is an (𝑛−dim𝐾) ×𝑛matrix implementing the orthogonal projection onto
the generators of 𝛾, and Π

†
𝛾 is its adjoint. Finally, 𝑚 = 𝑛 + 2 dim𝐾 . Overall, this

again gives a 3𝑛 × 3𝑛 matrix.

Let us finally plug in (3.112) to write the measure (3.218) in terms of the parameters
𝛽𝑖, ℎ𝑖. We found it difficult to compute the measure exactly for generic parameters.28

However, we can compute it in various limits. At low temperatures, we find

𝑑𝜇 =
25𝑑

(vol SO(𝑑 − 1))2

3∏
𝑖=1

𝑒𝑑 𝛽𝑖𝑑𝛽𝑖𝑑ℎ𝑖, (low temperature), (3.219)

where 𝑑ℎ𝑖 denotes Haar measures on SO(𝑑). At high temperature, we find

𝑑𝜇 =
24𝑑

(vol SO(𝑑 − 1))2

3∏
𝑖=1

𝑑𝛽𝑖𝑑 ®𝛼𝑖𝑑 ®Φ𝑖, (high temperature), (3.220)

28The reason is that (3.218) is the determinant of a large symbolic matrix, which is extremely
difficult for Mathematica to handle.
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where ®𝛼𝑖 and ®Φ𝑖 are the angles defined in (3.147).29

• Orthogonality relation for genus-2 blocks

With the measure in hand, let us determine the correct orthogonality relation for
genus-2 blocks. We will take the contour to be a real contour for the group elements
ℎ𝑖 ∈ SO(𝑑), and a complex contour running parallel to the imaginary axis for the
𝛽𝑖. The key idea will be to deform the 𝛽𝑖 contour into the low-temperature region,
where the blocks are given by the simple formula

𝐵𝑠
′𝑠

123 = 2−2Δ1−2Δ2𝑒−Δ1𝛽1−Δ2𝛽2−Δ3𝛽3𝑉 𝑠
′ (0, 𝑒,∞)∗ℎ1ℎ2ℎ3𝑉

𝑠 (0, 𝑒,∞)
× (1 +𝑂 (𝑒−𝛽𝑖 )). (3.222)

Consider a shadow block with complex-conjugated three-point structures

𝐵𝑡
′∗𝑡∗

1̃′†2̃′†3̃′†
= 2−2(𝑑−Δ′

1)−2(𝑑−Δ′
2)𝑒−(𝑑−Δ

′
1)𝛽1−(𝑑−Δ′

2)𝛽2−(𝑑−Δ′
3)𝛽3

×𝑉 𝑡′ (0, 𝑒,∞)ℎ1ℎ2ℎ3𝑉
𝑡 (0, 𝑒,∞)∗(1 +𝑂 (𝑒−𝛽𝑖 )). (3.223)

Integrating the block and the shadow block against each other using the low-
temperature measure (3.219), we find∮

𝑑𝜇𝐵𝑠
′𝑠

123𝐵
𝑡′∗𝑡∗

1̃′†2̃′†3̃′†

=
25𝑑

(vol SO(𝑑 − 1))2

∫ (∏
𝑖

𝑑𝛽𝑖𝑑ℎ𝑖

)
2−4𝑑𝑒−𝛽1 (Δ1−Δ′

1)−𝛽2 (Δ2−Δ′
2)−𝛽3 (Δ3−Δ′

3)

×𝑉 𝑠′ (0, 𝑒,∞)∗ℎ1ℎ2ℎ3𝑉
𝑠 (0, 𝑒,∞) ×𝑉 𝑡′ (0, 𝑒,∞)ℎ1ℎ2ℎ3𝑉

𝑡 (0, 𝑒,∞)∗.
(3.224)

To perform the integral over the ℎ𝑖, we can use the Schur orthogonality formula,
which states that for any compact group 𝐺 with unitary representations 𝜆, 𝜆′∫

𝑑𝑔⟨𝑎 |𝜆(𝑔) |𝑏⟩⟨𝑐 |𝜆′(𝑔−1) |𝑑⟩ = ⟨𝑎 |𝑑⟩⟨𝑐 |𝑏⟩ vol𝐺
dim𝜆

𝛿𝜆𝜆′ . (3.225)

29We can find an interpolating result between high and low temperatures by setting the angles to
zero, ®𝛼𝑖 = 0, ®Φ𝑖 = 0. In this case, Mathematica is able to compute the determinant for general 𝛽𝑖 ,
giving

𝑑𝜇 =

(
−8𝑒𝛽1 − 8𝑒𝛽2 + 1

2
𝑒𝛽1−𝛽2−𝛽3 + 1

2
𝑒−𝛽1+𝛽2−𝛽3 − 2𝑒𝛽1+𝛽2−𝛽3 + 𝑒−𝛽3 + 32𝑒𝛽1+𝛽2+𝛽3

)𝑑
× 1

(vol SO(𝑑 − 1))2

3∏
𝑖=1

𝑑𝛽𝑖𝑑 ®𝛼𝑖𝑑 ®Φ𝑖 ( ®𝛼𝑖 = 0, ®Φ𝑖 = 0). (3.221)

This indeed agrees with both 3.219 and 3.220 in the appropriate limits.
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The integral over 𝛽𝑖 gives 𝛿-functions of the form 𝛿(Δ𝑖 − Δ′
𝑖
), as in the inverse

Laplace transform (3.198). Overall, we find the orthogonality relation

=
𝑉 𝑡 (0, 𝑒,∞)∗𝑉 𝑠 (0, 𝑒,∞)

2𝑑vol SO(𝑑 − 1)
𝑉 𝑠

′ (0, 𝑒,∞)∗𝑉 𝑡′ (0, 𝑒,∞)
2𝑑vol SO(𝑑 − 1)

3∏
𝑖=1

2𝜋𝛿(Δ𝑖 − Δ′
𝑖)

2𝑑vol SO(𝑑)
dim𝜆𝑖

𝛿𝜆𝑖𝜆′𝑖

= 𝑇 𝑡𝑠𝑇 𝑠
′𝑡′

3∏
𝑖=1

2𝜋𝛿(Δ𝑖 − Δ′
𝑖)

2𝑑vol SO(𝑑)
dim𝜆𝑖

𝛿𝜆𝑖𝜆′𝑖 , (3.226)

where we have introduced the three-point pairing matrix

𝑇 𝑡𝑠 =
𝑉 𝑡 (0, 𝑒,∞)∗𝑉 𝑠 (0, 𝑒,∞)

2𝑑vol SO(𝑑 − 1)
. (3.227)

Recall that the structure 𝑉 𝑠 is a tensor with an index for each of the representations
𝜆1, 𝜆2, 𝜆3, and𝑉 𝑡∗ carries indices for the dual representations 𝜆∗1, 𝜆

∗
2, 𝜆

∗
3. The indices

of𝑉 𝑠 and𝑉 𝑡∗ are implicitly contracted in the three point pairing (3.227). The pairing
matrix 𝑇 𝑡𝑠 shows up in other contexts related to harmonic analysis on the conformal
group, and is discussed more extensively in [130, 151].

To summarize, if the partition function has an expansion in conformal blocks

𝑍 =
∑︁

𝜆1,𝜆2𝜆3

∫
𝑑Δ1𝑑Δ2𝑑Δ3𝑃

𝑠𝑠′

123𝐵
𝑠′𝑠
123, (3.228)

then the conformal block coefficients 𝑃𝑠′𝑠123 are given by the inversion formula

𝑃𝑠𝑠
′

123 = (𝑇−1)𝑠𝑡 (𝑇−1)𝑡′𝑠′ 1
(2𝜋)3

3∏
𝑖=1

(
dim𝜆𝑖

2𝑑vol SO(𝑑)

) ∮
𝑑𝜇 𝑍𝐵𝑡

′∗𝑡∗

1̃†2̃†3̃†
. (3.229)

In both (3.228) and (3.229), a sum over repeated three point structure indices 𝑠, 𝑡, 𝑠′, 𝑡′

is implicit.

Putting everything together
We are finally ready to put everything together and perform the genus-2 Laplace
transform at high temperature. Let us recall the important formulas. The shadow
block at high temperature is given by

𝐵𝑡
′∗𝑡∗

𝜋̃1 𝜋̃2 𝜋̃3
=

1
23𝑑/2

( 3∏
𝑖=1

(
2Δ𝑖

Δ1 + Δ2 + Δ3

)𝑑−2Δ𝑖
)
𝑒

Δ1Δ2
8Δ3

𝛽2
12,0+

Δ2Δ3
8Δ1

𝛽2
23,0+

Δ1Δ3
8Δ2

𝛽2
31,0+𝑂 (Δ𝛽2

𝑖
,Δ®𝛼2)

×𝑉 𝑡′ (0, 𝑒,∞)
3∏
𝑖=1

𝑒𝑖𝛼𝑖 ·𝑀𝑖,𝛼𝑒𝑖Φ𝑖 ·𝑀𝑖,Φ𝑉 𝑡 (0, 𝑒,∞)∗, (3.230)
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where we use the shorthand notation

𝛼𝑖 · 𝑀𝑖,𝛼 =

𝑑∑︁
𝑏=2

𝛼𝑖,𝑏𝑀𝑖,1𝑏,

Φ𝑖 · 𝑀𝑖,Φ =
∑︁

2≤𝑎<𝑏≤𝑑
Φ𝑖,𝑎𝑏𝑀𝑖,𝑎𝑏, (3.231)

where 𝑀𝑖,𝑎𝑏 denotes a rotation generator with indices 𝑎𝑏 acting on the 𝑖-th point in
the representation 𝜆𝑖. The partition function at high temperature is given by

𝑍 = exp

(
𝑓12vol 𝑆𝑑−1

𝛽𝑑−1
12,0

(
1 − ( ®Φ1 − ®Φ2)2

𝛽2
12,0

− 8(𝑑 + 1) ( ®𝛼1 + ®𝛼2)2

𝛽4
12,0

+ . . .
)

+ 𝑓23vol 𝑆𝑑−1

𝛽𝑑−1
23,0

(
1 − ( ®Φ2 − ®Φ3)2

𝛽2
23,0

− 8(𝑑 + 1)
( 1

4 ®𝛼2 − 1
2 ®𝛼3)2

𝛽4
23,0

+ . . .
)

+ 𝑓31vol 𝑆𝑑−1

𝛽𝑑−1
31,0

(
1 − ( ®Φ3 − ®Φ1)2

𝛽2
31,0

− 8(𝑑 + 1)
( 1

4 ®𝛼1 − 1
2 ®𝛼3)2

𝛽4
31,0

+ . . .
) )
.

(3.232)

Here, we have allowed for different free energy densities 𝑓𝑖 𝑗 at each hot spot. This
would arise if we inserted topological defects into the partition function, for example
symmetry operators, as discussed in Section 3.5. Our main case of interest is where
𝑓𝑖 𝑗 = 𝑓 (the thermal free energy density), but it is just as straightforward to do the
computation for general 𝑓𝑖 𝑗 . Finally, the measure at high temperature is

𝑑𝜇 =
24𝑑

(vol SO(𝑑 − 1))2

3∏
𝑖=1

𝑑𝛽𝑖 𝑑
𝑑−1 ®𝛼𝑖 𝑑

(𝑑−1) (𝑑−2)
2 ®Φ𝑖 . (3.233)

We would now like to integrate (3.229) to extract the density of OPE coefficients.
We deform the contour so that it passes through the regime of high temperature. We
will organize the calculation as follows. We split the integrand into the form

(quickly varying) × (slowly varying). (3.234)

Here "quickly varying" includes terms that are exponential in large parameters likeΔ
or 1/𝛽#, while "slowly varying" includes everything else. We look for a saddle point
of the "quickly varying" terms, writing them as a gaussian centered at this saddle
point, times perturbative corrections. Meanwhile, we expand the (slowly varying)
part perturbatively around the saddle point.

One simplification of this way of organizing the calculation is that, because we are
working in the regime 𝐽 ≪ Δ, terms in the conformal block of the form 𝑉∗ℎ1ℎ2ℎ3𝑉
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will be included among the slowly-varying terms, and will not affect the location of
the saddle point. By symmetry, the saddle point will be located at ®𝛼𝑖 = ®Φ𝑖 = 0.

Let us analyze the size of fluctuations around the saddle point. In particular, we
would like to determine which terms must be kept in our approximation to the
conformal block and the partition function. The quickly-varying (i.e. exponential in
Δ) part of the block has the schematic form

𝐵 ∼ 𝑒−Δ𝛽−Δ𝛽2−Δ®𝛼2+..., (3.235)

where ". . . " are higher-order corrections in 𝛽, 𝛼,Φ. Meanwhile, the quickly-varying
part of the partition function has the form

𝑍 ∼ exp

(
1
𝛽
𝑑−1

2

(
1 −

®Φ2

𝛽
− ®𝛼2

𝛽2

))
. (3.236)

Here, 𝛽 schematically denotes the individual 𝛽𝑖, not the relative 𝛽𝑖 𝑗 ,0.

The saddle point equation for 𝛽 will set Δ ∼ 𝛽−(𝑑+1)/2. Plugging this in, we find

𝑍𝐵 ∼ exp

(
1
𝛽
𝑑−1

2
−

®Φ2

𝛽
𝑑+1

2
− ®𝛼2

𝛽
𝑑+3

2
− ®𝛼2

𝛽
𝑑+1

2

)
. (3.237)

There are two ®𝛼2 terms: one coming from the block (3.235) and one coming from
the partition function (3.236). We see that the ®𝛼2 term coming from the partition
function is more important — it is enhanced by an additional power of 1/𝛽. Thus,
we can ignore the quadratic ®𝛼-dependence of the conformal block. In other words,
the terms written explicitly in (3.230) are sufficient for our purposes. Overall, the
characteristic size of fluctuations in the angular variables coming from (3.148) is

®𝛼 ∼ 𝛽
𝑑+3

4 ∼ Δ− 1
2−

1
𝑑+1 , ®Φ ∼ 𝛽

𝑑+1
4 ∼ Δ− 1

2 . (3.238)

The saddle point for the quickly-varying terms is located at ®𝛼𝑖 = 0, ®Φ𝑖 = 0, and

𝛽12,0 =

(
4(𝑑 − 1) 𝑓12vol 𝑆𝑑−1Δ3

Δ1Δ2

) 1
𝑑+1

, (3.239)

together with cyclic permutations of (3.239). The Hessian matrix at the saddle point
splits into three separate blocks: a block for the 𝛽𝑖, a block for the ®𝛼𝑖, and a block for
the ®Φ𝑖. Thus, we can calculate the 1-loop determinant separately in each of these
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sets of variables. The determinant for the 𝛽𝑖 and ®𝛼𝑖 variables is straightforward:

1-loop 𝛽𝑖 factor =

(
(𝛽12,0𝛽23,0𝛽31,0)𝑑+3

4 𝑓12 𝑓23 𝑓31

(
𝜋

2(𝑑2 − 1)vol 𝑆𝑑−1

)3
) 1

2

,

1-loop ®𝛼𝑖 factor =

(
(𝛽12,0𝛽23,0𝛽31,0)𝑑+3

4 𝑓12 𝑓23 𝑓31

(
𝜋

2(𝑑 + 1)vol 𝑆𝑑−1

)3
) 𝑑−1

2

. (3.240)

To compute the ®Φ𝑖 determinant, we must fix the SO(𝑑 − 1) gauge redundancy that
simultaneously shifts the ®Φ𝑖. For example, we can set ®Φ3 = 0 and compute the
1-loop determinant in ®Φ1, ®Φ2, multiplying the result by vol SO(𝑑 −1) to account for
the volume of the SO(𝑑 − 1) orbit. This gives

1-loop ®Φ𝑖 factor

= vol SO(𝑑 − 1)
((

vol 𝑆𝑑−1

𝜋

)2 (
𝑓12 𝑓23(

𝛽12,0𝛽23,0
)𝑑+1 + 𝑓12 𝑓31(

𝛽12,0𝛽31,0
)𝑑+1 + 𝑓23 𝑓31(

𝛽23,0𝛽31,0
)𝑑+1

))− (𝑑−2) (𝑑−1)
4

.

(3.241)

Putting everything together, plugging in the saddle point values (3.239), we find the
asymptotic conformal block coefficients

𝑃𝑠𝑠
′

123 ∼ (𝑇−1)𝑠𝑠′
( 3∏
𝑖=1

dim𝜆𝑖

vol SO(𝑑)

)
𝜋

(𝑑+2) (𝑑−2)
2 (4(𝑑 − 1)) 𝑑2

2 − 3
𝑑+1+

5
2

2 𝑑
2 (𝑑 + 1) 3𝑑

2

(
8 𝑓12 𝑓23 𝑓31(vol 𝑆𝑑−1)3

) 𝑑
𝑑+1

× (Δ1 + Δ2 + Δ3)2(Δ1+Δ2+Δ3 )−3𝑑

(Δ2
1 + Δ2

2 + Δ2
3)

(𝑑−2) (𝑑−1)
4

∏3
𝑖=1(2Δ𝑖)

2Δ𝑖− 𝑑 (𝑑−1)
2(𝑑+1)

× exp

[
(𝑑 + 1)

(
vol 𝑆𝑑−1

2

) 2
𝑑+1

(
𝑓

2
𝑑+1

12

(
Δ1Δ2

8(𝑑 − 1)Δ3

) 𝑑−1
𝑑+1

+ cycl.

)]
, (3.242)

where "+cycl." denotes a sum over cyclic permutations of 123. This result is valid
for large Δ𝑖 with the spin-representations 𝜆𝑖 fixed, up to subleading corrections at
large Δ𝑖. Our approximation for the asymptotic squared OPE coefficients is then

(𝑐𝑠′123)
∗𝑐𝑠123 ∼

𝑃𝑠𝑠
′

123
𝜌1𝜌2𝜌3

, (3.243)

where 𝜌𝑖 are the densities of states of the CFT computed in Section 3.3 for the
representations 𝜋𝑖 = (Δ𝑖, 𝜆𝑖). (In the case, where we refine the partition function
with topological defects, the density 𝜌𝑖 should be the appropriate density of states
with that defect inserted.)
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As an example, let us study 𝑃𝑠𝑠′123 for identical-dimension scalars in various dimen-
sions. In 2D, the rotation representations are one dimensional, there is a unique
conformal three-point structure, and the corresponding 𝑇 matrix is simply 𝑇 = 1/2.
Plugging this in, we find the high energy density of (global primary) OPE coefficients
in 2D:

2𝐷 : 𝑃ΔΔΔ ∼
(
3
2

)6Δ−9
𝑓 2𝑒

9
2 (𝜋

2 𝑓 2Δ)1/3

𝜋Δ5 . (3.244)

In 3D, the 𝑇 matrix is diagonalized in the 𝑞-basis of [142]. Specifically, it is given
by [130]

𝑇 [𝑞1𝑞2𝑞3],[𝑞′1𝑞
′
2𝑞

′
3] =

1
232𝜋

3∏
𝑖=1

(
2𝐽𝑖
𝐽𝑖 + 𝑞𝑖

)−1
𝛿𝑞𝑖𝑞′𝑖 . (3.245)

Plugging this into (3.242), we find the high energy density of OPE coefficients in
3D:

3𝐷 : 𝑃[𝑞1𝑞2𝑞3] [𝑞′1𝑞
′
2𝑞

′
3]

(Δ,𝐽1) (Δ,𝐽2) (Δ,𝐽3) ∼
(
3
2

)6Δ 2 49
4 𝑓

9
4 𝑒3

√
2𝜋 𝑓Δ

3 19
2 𝜋

1
4Δ

31
4

3∏
𝑖=1

(2𝐽𝑖 + 1)
(

2𝐽𝑖
𝐽𝑖 + 𝑞𝑖

)
𝛿𝑞𝑖𝑞′𝑖 . (3.246)

• A subleading correction

It is straightforward to take into account perturbative corrections around the saddle
point. For example, let us highlight the leading correction that is not proportional
to the 𝑇 𝑠𝑠′ three-point structure matrix. It comes from the Φ2 term in the expansion
of

𝑉 𝑡
′ (0, 𝑒,∞)

∏
𝑖

𝑒𝑖Φ𝑖 ·𝑀𝑖,Φ𝑉 𝑡 (0, 𝑒,∞)∗ (3.247)

in the genus-2 block. Performing the Gaussian integral and using the fact that
𝑀1,Φ+𝑀2,Φ+𝑀3,Φ = 0 (because the three-point structures are SO(𝑑−1)-invariant),
we find a multiplicative correction of the form

®Φ2
𝑖 -correction =

(
1 − (𝑑 − 1)

Δ2
1Δ

2
2𝑀

2
3,Φ + Δ2

2Δ
2
3𝑀

2
1,Φ + Δ2

3Δ
2
1𝑀

2
2,Φ

Δ1Δ2Δ3(Δ2
1 + Δ2

2 + Δ2
3)

)
. (3.248)

Here, 𝑀2
𝑖,Φ

are the Casimirs of the SO(𝑑 − 1) subgroup of SO(𝑑). As discussed
in [130], the three-point pairing matrix 𝑇 𝑠′𝑠 can be simultaneously diagonalized
together with the 𝑀2

𝑖,Φ
. For example, in three dimensions, we have 𝑀2

𝑖,Φ
= 𝑞2

𝑖
in the

𝑞-basis. It will be interesting in the future to compute the full spin-dependence of
the asymptotic OPE coefficients by computing the genus-2 blocks in the regime of
finite 𝐽/Δ.
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𝛽

𝛽0 = 2

𝛽0 = 2

Figure 3.11: A geometry that encodes a sum of squares of thermal one-point
functions. The top surface is a copy of thermal flat space 𝑆1

𝛽0=2 × R𝑑−1, with a
unit ball removed. The ball is tangent to itself because it wraps completely around
the thermal circle of length 𝛽0 = 2. The bottom is the same as the top. The top
and bottom are connected by a cylinder of length 𝛽 and angular twist ℎ ∈ SO(𝑑).
The periodicity of each copy of thermal flat space is illustrated via arrow marks,
indicating loci that should be identified. The hot spot thermal circle (red) runs down
the cylinder in the front of the figure, and back up the cylinder in the back of the
figure.

3.8 Asymptotics of thermal 1-point functions
We can also use the techniques developed in this work to determine asymptotics of
thermal 1-point functions. (In fact, one can think of high-energy thermal 1-point
functions as a particular limit of heavy-heavy-heavy OPE coefficients.) One nice
thing about this exercise is that, because the blocks are so simple, we can easily
invert the partition function for arbitrary 𝐽/Δ. For brevity, we will only determine
the leading exponential form of the thermal 1-point coefficients, leaving 1-loop
determinants and subleading corrections for later work.

Recall that the 1-point function of a primary operator O at inverse temperature 𝛽0

is fixed by symmetries to be [119]

⟨O𝜇1···𝜇𝐽 ⟩𝛽0 =
𝑏O

𝛽Δ0
(𝑒𝜇1 · · · 𝑒𝜇𝐽 − traces), (3.249)

where 𝑒 = (1, 0, . . . , 0) is a unit vector in the Euclidean time direction, and 𝑏O is an
operator-dependent thermal 1-point coefficient. Only even-spin traceless symmetric
tensors have nonvanishing thermal 1-point functions.

We can build a geometry that measures squares of the 1-point coefficients 𝑏O
as follows. We start with two copies of thermal flat space 𝑆1

2 × R𝑑−1 at inverse
temperature 𝛽0 = 2. From each copy, we drill out unit balls, so that the balls wrap
around the thermal circle and are self-tangent. We then glue the boundaries of the
two balls together with a cylinder of length 𝛽 (not equal to 𝛽0!) and angular twist
ℎ ∈ SO(𝑑); see Figure 3.11. By the cutting and gluing arguments of Section 3.5,
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this geometry computes

𝑍 =
1

|𝑍glue(1) |2
∑︁
O
⟨O⟩𝛽0=2⟨ℎ · O⟩𝛽0=2𝑒

−𝛽(Δ+𝜀0)

=
1

|𝑍glue(1) |2
∑︁
O

𝑏2
O

22Δ 𝑞𝐽P𝐽 (cos 𝜃)𝑒−𝛽(Δ+𝜀0) . (3.250)

Here, we used the fact that thermal 1-point functions are SO(𝑑 − 1)-invariant to
write ℎ as a rotation away from the 𝑒-axis by an angle 𝜃. The function P𝐽 (cos 𝜃) is
a Gegenbauer polynomial, given by

P𝐽 (𝑥) = 2𝐹1(−𝐽, 𝐽 + 𝑑 − 2, 𝑑−1
2 , 1−𝑥

2 ), (3.251)

and 𝑞𝐽 is given by

𝑞𝐽 =
Γ( 𝑑−2

2 )Γ(𝐽 + 𝑑 − 2)
2𝐽Γ(𝑑 − 2)Γ(𝐽 + 𝑑−2

2 )
. (3.252)

In the limit 𝛽 → 0, this geometry develops a hot spot. The emergent thermal
circle goes down the cylinder starting at a point of tangency, and then back up the
diametrically opposite side of the cylinder to the starting point. To determine the
hot-spot partition function, we should find the conformal group element that glues
the plane to itself near this hot spot. On the each copy of the plane, we have a
thermal periodicity

𝑥 ∼ 𝑒2𝑃1
𝑥, 𝑥′ ∼ 𝑒2𝑃1

𝑥′, (3.253)

where 𝑃1 generates translations in the Euclidean time direction. Meanwhile, the
cylinder induces an identification between the two coordinates

𝑥 = 𝑒−𝛽𝐷ℎ𝐼𝑥′. (3.254)

The hot-spot thermal circle thus corresponds to the group element

𝑔hot = 𝑒
−2𝑃1 (𝑒−𝛽𝐷ℎ𝐼)−1𝑒2𝑃1 (𝑒−𝛽𝐷ℎ𝐼). (3.255)

We can define a relative temperature and angle from the eigenvalues of 𝑔hot:

(𝑒±𝛽rel , 𝑒±𝑖𝜃rel , 1, . . . , 1) = eigenvalues(𝑔hot). (3.256)
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Note that ℎ can be brought to the form of a rotation between the 1 and 2 axes. Then
SO(𝑑 − 2) symmetry guarantees that the eigenvalues of 𝑔hot take the above form.
The leading contribution to the partition function from the hot spot is

𝑍 ∼ exp

(
𝑓 vol𝑆𝑑−1

𝛽𝑑−1
rel (1 +Ω2

rel)

)
= exp

(
𝑓 vol𝑆𝑑−1

𝛽𝑑−1
rel,0

(
1 − 32(𝑑 + 1) 𝜃2

𝛽4
rel,0

+ . . .
))
,

(3.257)

where

𝛽rel,0 = cosh−1
(
1 − 8𝑒𝛽 + 8𝑒2𝛽

)
= 4

√︁
𝛽 + . . . (3.258)

is the relative inverse temperature when 𝜃 = 0, and this formula is valid for 𝜃2/𝛽2 ≪
1 and 𝛽 ≪ 1. Formula (3.257) is the analog of (3.148) from the genus-2 calculation.

All that remains is to invert (3.257) to determine the asymptotics of the coefficients
𝑏O . In doing so, we can use the orthogonality relation for Gegenbauer polynomials∫ 𝜋

0
𝑑𝜃 sin𝑑−2 𝜃 P𝐽 (cos 𝜃)P𝐽′ (cos 𝜃) = 𝑛𝐽𝛿𝐽𝐽′ , (3.259)

where

𝑛𝐽 =
𝜋Γ(𝐽 + 1)

Γ( 𝑑−2
2 )2(𝐽 + 𝑑−2

2 )Γ(𝐽 + 𝑑 − 2)
. (3.260)

When we integrate P𝐽 (cos 𝜃) in 𝜃 against the Gaussian in (3.257), the integral will
be dominated by small 𝜃 with fixed 𝜃𝐽. In this regime, we can use an approximation
for the Gegenbauer function in terms of a Bessel function (which plays an important
role in dispersive bounds on scattering amplitudes [52]):

lim
𝐽→∞, 𝜃𝐽 fixed

P𝐽 (cos 𝜃) =
Γ( 𝑑−1

2 )
(𝜃𝐽/2) 𝑑−3

2
𝐽 𝑑−3

2
(𝜃𝐽) =

∫
𝑑®𝑛

vol 𝑆𝑑−2 𝑒
𝑖𝐽®𝑛· ®𝜃 . (3.261)

Here, 𝐽𝛼 (𝑥) is a Bessel function. In the right-hand formula, ®𝑛 is a point on the unit
𝑆𝑑−2, and we think of ®𝜃 as a vector in R𝑑−1 with norm | ®𝜃 | = 𝜃. The idea is that
P𝐽 (cos 𝜃) satisfies a wave equation on 𝑆𝑑−1. In the limit of large 𝐽 with small 𝜃,
we can zoom in near the locus 𝜃 = 0, where the 𝑆𝑑−1 becomes flat space R𝑑−1. We
are left with a linear combination of solutions to the wave equation in flat space, i.e.
plane waves. In this limit, the measure 𝑑𝜃 sin𝑑−2 𝜃 becomes equivalent to the usual
measure 𝑑𝑑−1 ®𝜃 on R𝑑−1.
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Thus, overall, the angular integral from inverting the partition function takes the
form ∫

𝑑®𝑛
vol 𝑆𝑑−2

∫
𝑑𝑑−1 ®𝜃 𝑒𝑖𝐽®𝑛· ®𝜃 exp

(
−32(𝑑 + 1) 𝑓 vol𝑆𝑑−1

𝛽𝑑+3
rel,0

®𝜃2

)
= exp

(
−

𝛽𝑑+3
rel,0

128(𝑑 + 1) 𝑓 vol 𝑆𝑑−1 𝐽
2

)
× 1-loop determinant. (3.262)

At the same time, we must perform an inverse Laplace transform in 𝛽. This integral
can be done by saddle point, with the overall result

𝑏2
O𝜌(Δ, 𝐽)

2Δ
𝑞𝐽𝑛𝐽 ∼ exp

(
1
Δ

(
𝑑 + 1
𝑑 − 1

Δ2 − 𝑑 − 1
𝑑 + 1

𝐽2
) (

(𝑑 − 1) 𝑓 vol 𝑆𝑑−1

22𝑑−1Δ

) 2
𝑑+1

)
,

(3.263)

where 𝜌(Δ, 𝐽) is the density of states for traceless symmetric tensors.

3.9 Discussion
In this paper, we studied the asymptotic behavior of CFT data at large energy. Using
the thermal effective action, we looked at both the density of states and the three-
point-functions of heavy operators as a function of Δ, 𝐽. There are a number of
interesting future directions to study.

Density of states
The formula (3.74) for the density of states is valid in a specific region of Δ, 𝐽. For
example, in CFT3, it is valid when

Δ − |𝐽 | ≫
√︁
𝑓Δ. (3.264)

This notably has no overlap with the regime of large spin with fixed twist described
by the lightcone bootstrap [92, 138]. Naively, the lightcone bootstrap suggests that
the spectrum of interacting CFT should look like Mean Field Theory in this regime
[6, 91, 195]. It would be interesting if one could prove this statement using some
kind of effective action, perhaps by compactifying the CFT on a null circle. It would
be also interesting to study how the spectrum of operators can behave between these
regions. For instance, for interacting 3D CFTs, is the density of states at large spin
with twist obeying

Δ0 ≪ Δ − |𝐽 | ≪
√︁
𝑓Δ (3.265)

universal or theory-dependent?
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One could also ask to further refine our general entropy formulas. In [128], a
universal formula for CFT𝑑 with global symmetry was found. It would be nice
to combine them and obtain universal formulas as a function of energy, spin, and
global charges.

In Section 3.4, we compared the predictions of the thermal effective action to exact
results in free theories and Einstein gravity, finding excellent agreement. In Ap-
pendix 3.9, we give a preliminary comparison between the thermal effective action
for the 𝑆1 × 𝑆2 partition function and numerical bootstrap data for the 3D Ising CFT.
One could also consider other theories where a large number of operators are known
from numerics, e.g. the 𝑂 (2) model [63, 152]. Obtaining accurate information
about large-twist operators is a challenge for the numerical bootstrap, which seems
to be most sensitive to the lowest-twist Regge trajectories [195]. (Computing a
large number of heavy-heavy-heavy OPE coefficients with the numerical bootstrap
is likely even more challenging.)

In 2D CFTs, it is possible to make very precise statements about the spectrum
of high energy states using more sophisticated tools than Laplace transforms and
saddle point approximations; see e.g. [24, 73, 94, 168, 170, 174, 175]. Such
techniques typically rely on nonperturbative input coming from modular invariance.
Is it possible to derive similarly precise statements in higher dimensions? What
additional information about the partition function is needed?

Effective actions
We parametrized our ignorance of the 𝑑−1-dimensional gapped theory upon com-
pactifying on a thermal circle via an effective action, with an infinite set of Wilson
coefficients. Can we place bounds on these Wilson coefficients? For instance, as
discussed in Section 3.2, we know that 𝑓 > 0. Are there similar bounds (in either
direction) on 𝑐1, 𝑐2, or other higher-derivative Wilson coefficients? One possible
approach is to consider Weinberg-like sum rules relating two-point functions in the
IR (described by the thermal effective action) and the UV (described by the CFT),
as was recently done in [70]. Another approach is to consider the compactified the-
ory in (𝑑 − 2, 1) (Lorentzian) signature and study dispersive bounds on scattering,
following e.g. [2, 50, 137].

It may also be interesting to study perturbative examples. For example, the value of
𝑓 in the 3D 𝑂 (𝑁) models at large 𝑁 was computed long ago by Sachdev [186]. To
our knowledge, higher Wilson coefficients in the thermal effective action, like the
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coefficients of 𝐹2 and 𝑅, have not yet been computed for the 𝑂 (𝑁) models.

In this work, we obtained all of our results purely using equilibrium hydrodynamical
information. Recently, there has been a surge of progress in non-equilibrium hy-
drodynamics for CFTs; see [35, 150] for reviews. What additional CFT data can be
predicted using this more sophisticated machinery? See [74, 131] for recent work
in this direction. Can one study non-equilibrium dynamics at higher genus?

There has also been tremendous recent progress applying other effective actions to
characterize asymptotic CFT data, for example the effective theory of large charge
[111, 121, 167]. One way of summarizing our "hot spot" analysis of the genus-2
partition function is the idea of using an EFT in the part of a geometry where it
is valid (the hot spots), and factoring out the part where the EFT is not valid (the
region away from the hot spots). Can this "hot spot" idea be useful in other contexts
like large charge?

Three-point functions and genus-2 blocks
So far, we calculated asymptotic OPE coefficients to leading order at large Δ, with
fixed spin. It would interesting to allow the spin to grow large with Δ, as we did for
the density of states. In particular, this would require a more general expression for
the genus-2 conformal block at large quantum numbers.

Genus-2 blocks are interesting objects in their own right, and it would be interesting
to study their properties more systematically, both at large and non-large quantum
numbers. For example, can we find recursion relations for genus-2 blocks similar
to those in [86, 139, 140, 177, 206]? Can we explore genus-2 blocks from the
perspective of integrability [120]? Is there a clearer understanding of the interesting
saddle-point dynamics uncovered in Section 3.6? Do there exist Lorentzian shadow
representations [179] or holographic representations [114] for higher-genus blocks,
and do they admit any interesting kinematic limits? The literature on global con-
formal blocks for correlation functions of local operators is vast, but global genus-2
blocks are essentially unexplored.

We would also like to understand how to systematically improve our three-point
function result. For the density of states, we understand how to systematically im-
prove the result by keeping further terms in the thermal effective action. However,
for the three-point function, corrections come in two types: higher derivative terms
in the effective action (which are easy to include), and corrections to the hot spot
assumption, as discussed in Sec. 3.5. In order to understand how to systematically
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improve the estimate for the HHH three-point functions, we need to understand
contributions to the partition function outside of the hot spot regions, namely un-
derstanding the quantity 𝑅 defined in (3.145). Explicitly computing examples of
"genus-two" partition functions, either for free or holographic theories, could be
instructive.

It is also worthwhile to compare our result to known results CFT2. In [67], it
was shown that HHH, HHL, and HLL asymptotic density of states for Virasoro
primary operators are all related to analytic continuations of the DOZZ formula
— the structure constants of Liouville theory. In higher dimensions, asymptotic
formulas for HLL OPE coefficients have been studied using Tauberian techniques
and inversion formulae [169, 176, 185]. Furthermore, it is well-known that HHL
OPE coefficients are related to thermal one-point functions. These computations,
together with our genus-2 computation seem to involve different physics. It would
be extremely interesting if there were a unifying perspective or formula similarly to
2D.

Bootstrap axioms and crossing equations
To what extent are our results for the density of states and OPE coefficients encoded
in the usual bootstrap conditions — namely unitarity and crossing symmetry of
local correlation functions? In 2D, modular invariance is known to be independent
from crossing symmetry of local correlators. By analogy, this suggests that perhaps
the formulas we derived from the thermal effective action are independent from the
usual bootstrap axioms.30 If so, should we enlarge the axioms to include them?
What is the minimal set of extra axioms that we need? In 2D, modular invariance
can be interpreted as crossing symmetry of twist operators. Can our results in
higher dimensions be interpreted in terms of traditional bootstrap axioms applied to
appropriate twist operators?

As we mentioned briefly in Section 3.5, there exists another decomposition of the
genus-2 partition function 𝑍 (𝑀2) into a sum over states: the "dummbell" channel,
which expresses 𝑍 (𝑀2) as a sum of squares of 1-point functions on 𝑆1 × 𝑆𝑑−1. The
dumbell channel has its own conformal blocks, which as far as we know have not
been studied in detail. (The blocks discussed in Section 3.8 can be thought of as a
limiting case of these dumbbell blocks.) Furthermore, one can formulate a crossing
equation relating the dumbbell channel to the channel considered in this work. As

30We thank Dalimil Mazáč for pointing this out.
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pointed out in [64] for 𝑑 = 2, this crossing equation enjoys manifest positivity
properties needed for numerical bootstrap applications. It would be very interesting
to explore it in both two-dimensional and higher-dimensional theories.

Ensembles and holographic theories
There is an important difference between our higher-dimensional result for asymp-
totic OPE coefficients and the 2D results of [44, 67]. The results of [44, 67] were for
OPE coefficients of Virasoro primaries, while our results are for OPE coefficients of
global primaries. In the case of the density of states, there isn’t a huge difference be-
tween Virasoro and global primaries. But the story is different for OPE coefficients,
where descendant states play an important role. We can see this by comparing the
leading exponential behavior of Virasoro and global OPE coefficients in 2D:

𝑃
global
ΔΔΔ

∼
(
3
2

)6Δ
≫ 𝑃Virasoro

ΔΔΔ ∼
(
27
16

)3Δ
. (3.266)

We see that typical global primaries have much larger OPE coefficients than typical
Virasoro primaries.31 In other words, the statistics of CFT data in a theory with
Virasoro symmetry has more structure than is captured by 𝑃global

ΔΔΔ
.

These statements are interesting to consider in a holographic CFT. In a holographic
2D CFT, a high energy Virasoro primary is interpreted as a black hole microstate,
while a Virasoro descendant is a black hole orbited by boundary gravitons. We
have found that states with boundary gravitons typically have much larger OPE
coefficients than pure black hole microstates. While we don’t have an analog of
Virasoro symmetry in higher dimensions, we can conjecture an analogous statement
for higher-dimensional CFTs: we expect that typical states of black holes with
orbiting matter have much larger OPE coefficients than pure black hole microstates.
It would be very interesting to make this more precise, for example by performing a
holographic computation of OPE coefficients of pure black hole microstates via an
appropriate wormhole geometry.

The authors of [58] used 𝑃Virasoro
ΔΔΔ

to define an interesting "ensemble" of CFT data.
In their ensemble, OPE coefficients are (almost) gaussian random variables whose
variance is set by 𝑃Virasoro

ΔΔΔ
/𝜌(Δ)3. Remarkably, the predictions of this ensemble turn

out to agree with bulk 3D gravity. The result (3.266) indicates that an analogous
ensemble based on 𝑃global

ΔΔΔ
would not have refined-enough information to recover

31Similarly, by comparing scaling blocks and full genus-2 blocks in the high temperature regime,
we conclude that typical states have much larger OPE coefficients than typical global primaries.
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bulk gravity in 2D (presumably also in higher 𝑑). However, it is interesting to ask
whether any interesting physics would be captured by an ensemble built from 𝑃

global
ΔΔΔ

.
In the spirit of [17, 20, 58, 122], we can imagine starting with a completely general
ensemble of CFT data. We can refine this ensemble with knowledge of the partition
functions on 𝑆1

𝛽
× 𝑆𝑑−1 and the "genus-2" geometry 𝑀2. We could additionally

refine the ensemble with other information like local correlation functions and
thermal one-point functions. At what point does the refined ensemble begin to
make nontrivial predictions that can be tested in additional observables, and what
are those predictions?

Bulk locality for thermal observables
HPPS famously conjectured that any unitary CFT with large 𝑐𝑇 and a large gap
Δgap in the spectrum of higher-spin single-trace operators should agree with a local
gravitational EFT in AdS [107]. Recently, there has been significant progress
proving this statement for correlators of local operators in the CFT vacuum [3,
19, 51, 103, 135]. However, holography implies analogous statements in nontrivial
backgrounds as well — in particular a thermal background. For example, the Wilson
coefficients 𝑓 , 𝑐1, 𝑐2, etc. in the thermal effective action of a theory satisfying HPPS
conditions should agree with those of Einstein gravity, up to small corrections
suppressed by 1/Δgap. How can we prove the emergence of black hole physics
using field-theoretic methods? Can we formulate dispersion relations in a black
hole background? For recent work in these direction, see [49].

Completing the square in the thermal bootstrap
An interesting feature of our formulas (3.250) and (3.257) is that they provide a kind
of sum rule for squares of thermal 1-point coefficients 𝑏2

O . Such a sum rule could
in principle be used to "complete the square" in the bootstrap equations studied in
[118, 119].

The works [118, 119] studied crossing symmetry of thermal two-point functions,
which have an expansion in products 𝑐𝜙𝜙O𝑏O , where 𝑐𝜙𝜙O are bulk OPE coefficients.
Unfortunately, we do not know the sign of 𝑐𝜙𝜙O𝑏O , and this prevents one from
applying traditional numerical bootstrap techniques [181]. (The same issue appears
in the study of boundary and defect two-point functions [148].) Ideally, one would
like to complete the square by finding other crossing equations in which 𝑐𝜙𝜙O and
𝑏O appear quadratically. Then, one can treat 𝑐𝜙𝜙O𝑏O as an off-diagonal element in
a positive-definite 2× 2 matrix and apply numerical bootstrap techniques for mixed
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correlators [139].

A crossing equation where 𝑐𝜙𝜙O appears quadratically is easy to find: it is just the
usual crossing equation for vacuum four-point functions! Tantalizingly, the formulas
(3.250) and (3.257) have 𝑏O appearing quadratically, but unfortunately they are not
as precise as the usual four-point crossing equation, due to our use of the hot-spot
ansatz. It would be interesting to go beyond the hot-spot ansatz and find a sum rule
precise enough to be used in the numerical bootstrap.

"Sphere packing" and other hot-spot geometries
In addition to the "genus-2" manifold 𝑀2 studied in this work, there are many
additional geometries that encode statistics of CFT data and can be studied using the
hot-spot idea. Partition functions on these geometries are examples of "generalized
spectral form factors" [20].

As a simple example, consider a higher-genus generalization of 𝑀2, where we take
two copies of R𝑑 , drill out 𝑛 > 3 balls from each copy, and connect the boundaries
of the balls with cylinders. The partition function on this geometry encodes a sum
of squared 𝑛-point correlation functions of the CFT, schematically∑︁

O1,...,O𝑛

|⟨O1 · · · O𝑛⟩|2𝑒−
∑
𝑖 𝛽𝑖Δ𝑖 . (3.267)

If two balls are tangent in (both copies of) R𝑑 , we obtain a hot spot when the
corresponding cylinders shrink to zero length.

The hot spot ansatz is most useful when there are a maximal number of hot spots, and
all other moduli of the geometry are frozen. Thus, we should consider configurations
where most of the balls are mutually tangent — i.e. sphere packings!32 For example,
the packing shown in Figure 3.12 encodes interesting asymptotics of CFT four-point
functions.

We can construct an even more general "higher genus" manifold as follows. We
take 𝑚 copies of R𝑑 and drill out various numbers of balls from each copy, such
that there are an even number of balls in total. We then connect pairs of balls with
cylinders. This computes a sum of products of 𝑚 correlation functions∑︁

O1,··· ,O𝑛

⟨· · ·⟩ · · · ⟨· · ·⟩︸          ︷︷          ︸
𝑚

𝑒−
∑
𝑖 𝛽𝑖Δ𝑖 . (3.268)

32See [76, 105] for other connections between sphere packing and conformal field theory.
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Figure 3.12: A ball with three mutually-tangent balls removed. If we take two
copies of this space and glue the boundaries of the balls together with cylinders,
analogously to Figure 3.3, we obtain a geometry that computes a sum of squares
of CFT four-point functions. When the cylinders shrink, this "sphere packing"
geometry contains hot spots at each of the six points of tangency.

Again, hot spots can emerge when cylinders shrink to zero.

Of course, CFT 𝑛-point functions for 𝑛 > 3 are determined in terms of 2- and 3-point
functions. In this work we have determined asymptotics of 2- and 3-point functions,
and it is interesting to ask whether our results can be used to predict partition
functions on higher genus geometries, and whether the results agree with the hot-
spot ansatz at higher genus. In two dimensions, it is known that crossing symmetry of
local four-point functions and torus one-point functions implies crossing symmetry
on arbitrary Riemann surfaces. However, we expect that in higher dimensions,
hot spot results for higher genus manifolds provide a nontrivial refinement of the
statistics computed in this work.

Appendix A Thermal two-point function of momentum generators
In Section 3.3, we study the response of a CFT on 𝑆1

𝛽
× 𝑆𝑑−1 when we twist by a

rotation of 𝑆𝑑−1. In this appendix, as a warmup, we study the leading term in the
twisting parameter in the high temperature limit. This computation reduces to a
two-point function of momenta in thermal flat space. We determine this two-point
function directly from Ward identities, and then show how the same result can be
understood using the thermal effective action.

At high temperature, the radius of curvature of the sphere becomes unimportant, and
we can approximate 𝑆1

𝛽
× 𝑆𝑑−1 as thermal flat space 𝑆1

𝛽
×R𝑑−1. A rotation generator

on the sphere locally looks like a translation on R𝑑−1. Thus, it suffices to study the



110

thermal expectation value of a translation group element

⟨𝑒 ®𝑎· ®𝑃⟩𝛽 = ⟨1⟩𝛽 +
1
2
𝑎𝑖𝑎 𝑗 ⟨𝑃𝑖𝑃 𝑗 ⟩𝛽 + . . . . (3.269)

The momentum 𝑃𝑖 is the integral of 𝑇0𝑖 on a spatial slice at fixed Euclidean time 𝜏
(which can take any value, by conservation):

𝑃𝑖 = −
∫

𝑑®𝑥 𝑇0𝑖 (𝜏, ®𝑥). (3.270)

The 𝑂 (𝑎) term in (3.269) vanishes by rotation-invariance. For simplicity, in this
section we set 𝛽 = 1, restoring it when needed by dimensional analysis.

Using Ward identities
Let us focus on the quadratic term in (3.269), given by an integrated two-point
function of stress tensors:

1
volR𝑑−1

1
2
𝑎𝑖𝑎 𝑗 ⟨𝑃𝑖𝑃 𝑗 ⟩𝛽 =

1
2
𝑎𝑖𝑎 𝑗

∫
𝑑®𝑥1⟨𝑇0𝑖 (0, ®𝑥1)𝑇0 𝑗 (𝑥2)⟩𝛽. (3.271)

Here, we separated the momentum generators in Euclidean time, placing the first at
time 𝜏1 = 0 and the second at time 𝜏2. We furthermore divided by volR𝑑−1 to obtain
a finite result, and used translation-invariance in R𝑑−1 to fix the second stress tensor
at 𝑥2 = (𝜏2, ®𝑥2).

We claim that the integrated two-point correlator (3.271) is determined by the one-
point function of the stress tensor at finite temperature. To understand why, we
must express it in terms of operators in the dimensionally-reduced 𝑑−1-dimensional
theory. The first step is to average over Euclidean times 𝜏1 and 𝜏2. However, this
averaging is subtle because 𝑇0𝑖 (𝑥1) and 𝑇0 𝑗 (𝑥2) become coincident, and contact
terms can contribute. Such contact terms are actually crucial to the calculation, so
let us take a moment to define them carefully.

We define (un-normalized) one- and two-point functions of the stress tensor by√︁
𝐺 (𝑥)⟨𝑇 𝜇𝜈 (𝑥)⟩ = 2

𝛿𝑍

𝛿𝐺𝜇𝜈 (𝑥)
, (3.272)√︁

𝐺 (𝑥)
√︁
𝐺 (𝑦)⟨𝑇 𝜇𝜈 (𝑥)𝑇 𝜌𝜎 (𝑦)⟩ = 4

𝛿2𝑍

𝛿𝐺𝜇𝜈 (𝑥)𝛿𝐺𝜌𝜎 (𝑦)
, (3.273)

where 𝑍 [𝐺] is the partition function. Our definition of the two-point function
(3.273) applies at both coincident and non-coincident points, and thus suffices to
specify all contact terms. Diffeomorphism invariance of 𝑍 [𝐺] implies that

0 =

∫
𝑑𝑑𝑥L𝜉𝐺𝜇𝜈

𝛿𝑍

𝛿𝐺𝜇𝜈

, (3.274)
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where L𝜉 denotes the Lie derivative with respect to a vector field 𝜉𝜇. Taking an
additional derivative with respect to 𝐺𝜌𝜎 (𝑦), and evaluating in a locally flat metric
𝐺𝜇𝜈 = 𝛿𝜇𝜈, we obtain the following Ward identity for conservation of the stress
tensor inside a two-point correlator∫

𝑑𝑑𝑥 (𝜕𝜇𝜉𝜈 (𝑥))⟨𝑇 𝜇𝜈 (𝑥)𝑇 𝜌𝜎 (𝑦)⟩

= (𝜉 · 𝜕)⟨𝑇 𝜌𝜎 (𝑦)⟩ + (𝜕 · 𝜉)⟨𝑇 𝜌𝜎 (𝑦)⟩ − 𝜕𝜇𝜉𝜌⟨𝑇 𝜇𝜎 (𝑦)⟩ − 𝜕𝜇𝜉𝜎⟨𝑇 𝜇𝜌 (𝑦)⟩. (3.275)

We can use this identity to average the correlator (3.271) over Euclidean time.
Consider the vector field

𝜉𝑖 (𝜏, ®𝑥) = −𝑎𝑖𝜏, 𝜉0(𝜏, ®𝑥) = 0, (3.276)

where 𝜏 ∈ [0, 1]. Since 𝜏 is periodic, 𝜉𝑖 has the shape of a "sawtooth" function,
with a discontinuity at 𝜏 = 0. In particular, we have

𝜕𝜏𝜉
𝑖 = 𝑎𝑖 (𝛿(𝜏) − 1). (3.277)

Applying (3.275), we find∫
𝑑®𝑥1𝑎𝑖𝑎 𝑗 ⟨𝑇0𝑖 (0, ®𝑥1)𝑇0 𝑗 (𝑦)⟩𝛽 =

∫
𝑑𝜏1𝑑®𝑥1𝑎𝑖𝑎 𝑗 ⟨𝑇0𝑖 (𝜏1, ®𝑥1)𝑇0 𝑗 (𝑦)⟩𝛽 + 𝑎2⟨𝑇00(𝑦)⟩𝛽,

(3.278)

where we used 𝜕 · 𝜉 = 0 and translation invariance 𝜉 · 𝜕⟨𝑇 𝜌𝜎⟩𝛽 = 0. The right-
hand side of (3.278) is the two-point correlator averaged over Euclidean time,
plus a nontrivial contact term 𝑎2⟨𝑇00(𝑦)⟩ that is a consequence of diffeomorphism
invariance.

It is natural to define the 𝑑−1 dimensional stress tensor 𝑡𝑖 𝑗 (®𝑥) and KK current 𝑗 𝑖 (®𝑥)
via derivatives with respect to 𝑔𝑖 𝑗 and 𝐴𝑖 in the Kaluza-Klein parametrization (3.8).
For example, we have √︁

𝑔(®𝑥)⟨𝑡𝑖 𝑗 (®𝑥)⟩ ≡ 𝛿𝑍

𝛿𝑔𝑖 𝑗 (®𝑥)
,

⟨ 𝑗 𝑖 (®𝑥) 𝑗 𝑗 (®𝑦)⟩ ≡ 𝛿2𝑍

𝛿𝐴𝑖 (®𝑥)𝛿𝐴 𝑗 (®𝑦)
. (3.279)

A key property of the KK parametrization (3.8) is that gauge transformations
𝐴𝑖 (®𝑥) → 𝐴𝑖 (®𝑥) + 𝜕𝑖𝜆(®𝑥) are diffeomorphisms of the 𝑑-dimensional metric. Con-
sequently, diff-invariance implies that ⟨ 𝑗 𝑖 (®𝑥) 𝑗 𝑗 (®𝑦)⟩ is exactly conserved, even at
coincident points. This will be important in a moment.
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At separated points 𝑡𝑖 𝑗 (®𝑥) and 𝑗 𝑖 (®𝑥) are equivalent to Euclidean time averages of
𝑇 𝑖 𝑗 (𝜏, ®𝑥) and 𝑇0𝑖 (®𝑥), respectively. However, at coincident points, they differ from
naïve averages by contact terms. In particular, the definitions (3.279) and (3.273)
imply (on a flat geometry)

⟨ 𝑗 𝑖 (®𝑥1) 𝑗 𝑗 (®𝑥2)⟩ =
∫

𝑑𝜏1𝑑𝜏2⟨𝑇0𝑖 (𝑥1)𝑇0 𝑗 (𝑥2)⟩ + 𝛿(®𝑥1 − ®𝑥2)
∫

𝑑𝜏1⟨𝑇 𝑖 𝑗 (𝑥1)⟩.

(3.280)

The contact term on the right-hand side arises from the quadratic term in 𝐴𝑖 in the
KK metric: 𝐺𝑖 𝑗 = 𝑔𝑖 𝑗 + 𝑒2𝜙𝐴𝑖𝐴 𝑗 .

Integrating (3.280) over ®𝑥1, and combining it with the average of (3.278) over 𝜏2,
we find∫

𝑑®𝑥1𝑎𝑖𝑎 𝑗 ⟨𝑇0𝑖 (0, ®𝑥1)𝑇0 𝑗 (𝑦)⟩𝛽 = 𝑎𝑖𝑎 𝑗
∫

𝑑®𝑥1⟨ 𝑗 𝑖 (®𝑥1) 𝑗 𝑗 (®𝑥2)⟩ − 𝑎𝑖𝑎 𝑗 ⟨𝑇 𝑖 𝑗 ⟩𝛽 + ®𝑎2⟨𝑇00⟩𝛽.

(3.281)

Finally, we will argue that the integrated correlator
∫
𝑑®𝑥1⟨ 𝑗 𝑖 (®𝑥1) 𝑗 𝑗 (®𝑥2)⟩ vanishes.

We can think of it as the momentum-space two-point function ⟨ 𝑗 𝑖 ( ®𝑝) 𝑗 𝑗 (− ®𝑝)⟩,
evaluated at zero momentum. Rotation-invariance and conservation imply that the
momentum-space two-point function takes the form

⟨ 𝑗 𝑖 ( ®𝑝) 𝑗 𝑗 (− ®𝑝)⟩ = ( ®𝑝𝑖 ®𝑝 𝑗 − 𝛿𝑖 𝑗 ®𝑝2)𝐺 ( | ®𝑝 |). (3.282)

If the finite-temperature theory has a nonzero mass gap, then𝐺 ( | ®𝑝 |) must be regular
near zero momentum (otherwise its Fourier transform would have support at long
distances.) Thus, at low momenta, we have

⟨ 𝑗 𝑖 ( ®𝑝) 𝑗 𝑗 (− ®𝑝)⟩ = 𝑐( ®𝑝𝑖 ®𝑝 𝑗 − 𝛿𝑖 𝑗 ®𝑝2) +𝑂 ( ®𝑝4). (3.283)

In particular, ⟨ 𝑗 𝑖 ( ®𝑝) 𝑗 𝑗 (− ®𝑝)⟩ vanishes at ®𝑝 = 0. Note that conservation of 𝑗 𝑖 (®𝑥) at
coincident points is crucial here. Without it, the momentum-space correlator could
have an 𝑂 ( ®𝑝0) contact term of the form 𝛿𝑖 𝑗 .

It is instructive to understand this vanishing result in position space as well. In
the position-space integral

∫
𝑑®𝑥1𝑎𝑖𝑎 𝑗 ⟨ 𝑗 𝑖 (®𝑥1) 𝑗 𝑗 (®𝑥2)⟩, we can write 𝑎𝑖 = 𝜕𝑖 ( ®𝑎 · ®𝑥1).

Integrating by parts and using conservation, we obtain a boundary term at infinity:

𝑎𝑖𝑎 𝑗

∫
𝑑®𝑥1⟨ 𝑗 𝑖 (®𝑥1) 𝑗 𝑗 (®𝑥2)⟩ = lim

𝑅→∞
𝑎 𝑗

∫
| ®𝑥 |=𝑅

𝑑𝑆𝑖 ( ®𝑎 · ®𝑥1)⟨ 𝑗 𝑖 (®𝑥1) 𝑗 𝑗 (®𝑥2)⟩, (3.284)
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where 𝑑𝑆𝑖 is the surface normal for the sphere | ®𝑥 | = 𝑅. This boundary term (3.284)
vanishes provided the two-point function decays sufficiently quickly at large | ®𝑥 |. In
other words,

𝑎𝑖𝑎 𝑗

∫
𝑑®𝑥1⟨ 𝑗 𝑖 (®𝑥1) 𝑗 𝑗 (®𝑥2)⟩ = 0 if lim

| ®𝑥 |→∞
| ®𝑥 |𝑑−1⟨ 𝑗 𝑖 (®𝑥) 𝑗 𝑗 (0)⟩ = 0. (3.285)

This condition certainly holds when the finite-temperature theory has a mass gap
(since the correlator decays exponentially). However, it also holds more generally.
For example, if the finite-temperature theory possesses a massless sector, we expect
the current two-point function to decay no slower than a correlator of conserved
currents in a 𝑑−1 dimensional CFT: ⟨ 𝑗 (®𝑥) 𝑗 (0)⟩ ∼ |®𝑥 |−2(𝑑−2) . In that case, (3.285)
will be satisfied as long as 𝑑 > 3.

Finally, using (3.285) in (3.281), we find∫
𝑑®𝑥1𝑎𝑖𝑎 𝑗 ⟨𝑇0𝑖 (0, ®𝑥1)𝑇0 𝑗 (𝑦)⟩𝛽 = −𝑎𝑖𝑎 𝑗 ⟨𝑇 𝑖 𝑗 ⟩𝛽 + ®𝑎2⟨𝑇00⟩𝛽 = −( 𝑓 𝑑) ®𝑎2, (3.286)

where we used (3.18) for the one-point functions ⟨𝑇 𝜇𝜈⟩𝛽. We conclude

⟨𝑒 ®𝑎· ®𝑃⟩𝛽 = 1 − 𝑓 𝑑

2
𝑇 𝑑+1 ®𝑎2volR𝑑−1 + . . . , (3.287)

where we have restored factors of 𝑇 by dimensional analysis. To apply this result to
𝑆1
𝛽
× 𝑆𝑑−1 with a twist by a rotation of 𝑆𝑑−1, we can make the replacement

®𝑎2volR𝑑−1 →
∫
𝑆𝑑−1

𝑑Ω𝑑−1 |𝑣 |2, (3.288)

where 𝑣 is the Killing vector on 𝑆𝑑−1 implementing the rotation.

Using the thermal effective action
The thermal effective action gives an efficient way to package the Ward identity
calculations above and extend them to arbitrary nonlinear order in ®𝑎. Let us see
how it recovers the result (3.269). The correlator ⟨𝑒 ®𝑎· ®𝑃⟩ is captured by the geometry
𝑆1
𝛽
× R𝑑−1 with a twist of ®𝑎 around the thermal circle, i.e. an identification

(𝜏, ®𝑥) ∼ (𝜏 + 1, 𝑥 − ®𝑎). (3.289)

To use the thermal effective action, we must put the metric into Kaluza Klein form.
We undo the twist with a coordinate transformation

®𝑥′ = ®𝑥 − 𝜏 ®𝑎. (3.290)
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This essentially implements averaging over Euclidean time (3.278) by spreading out
the twist over the thermal circle. The metric changes to

𝑑®𝑥2 + 𝑑𝜏2 = (𝑑®𝑥′ + ®𝑎𝑑𝜏)2 + 𝑑𝜏2

= 𝑑®𝑥′2 − ( ®𝑎 · 𝑑®𝑥′)2

1 + ®𝑎2 + (1 + ®𝑎2)
(
𝑑𝜏 + ®𝑎 · 𝑑®𝑥′

1 + ®𝑎2

)2
. (3.291)

The effective metric is thus

𝑔̂𝑖 𝑗 =
1

1 + ®𝑎2

(
𝛿𝑖 𝑗 −

𝑎𝑖𝑎 𝑗

1 + ®𝑎2

)
, (3.292)

and the thermal effective action is

𝑆[𝑔̂, 𝐴] = − 𝑓 volR𝑑−1
√︁
𝑔̂ = − 𝑓 volR𝑑−1(1 + ®𝑎2)−𝑑/2. (3.293)

Finally, the partition function is

𝑒−𝑆[𝑔̂,𝐴] = 𝑒 𝑓 volR𝑑−1 (1+®𝑎2)−𝑑/2 = 𝑒 𝑓 volR𝑑−1
(
1 − 𝑓 𝑑

2
®𝑎2volR𝑑−1 + . . .

)
, (3.294)

in agreement with (3.269).

These manipulations are clearly easier and more efficient than those in the previous
section. However, detailed manipulations of correlators are instructive as well. For
instance, they tell us that (3.269) holds even when the thermal theory is not gapped,
as long as 𝑑 > 3. It would be interesting to determine which other results from the
thermal effective action continue to hold in non-gapped thermal theories. We leave
this problem for future work.

Appendix B Scheme independence
In Section 3.3, we derived (3.41) by working in a scheme where 𝑏-type terms 𝑆ct

are absent from the Weyl anomaly. In this appendix, we describe how (3.41) comes
about in a general scheme. The point is that the scheme dependence of the Casimir
energy and the thermal effective action cancel each other. For concreteness, let us
work in 4D. The partition function on 𝑆1

𝛽
× 𝑆3 is

Tr
[
𝑒−𝛽(𝐷+

3𝑎
4 − 3𝑏

8 )
]
∼ 𝑒−𝑆th = 𝑒−𝑆[𝑔̂,𝐴]−𝑆Euler−DR[𝑆ct [𝐺]]+DR[𝑆ct [𝐺]] , (3.295)

where we have used that 𝑆1
𝛽
× 𝑆𝑑−1 is conformally-flat to drop Weyl-invariants.

Meanwhile, we have

DR[𝑆ct [𝐺]] = DR[𝑆ct [𝐺]] =
∫
𝑆3
𝑑3𝑥

√
𝑔

∫ 1

0
𝛽𝑑𝜏

(
− 𝑏

12(4𝜋)2 𝑅
2
)
= −3𝑏

8
𝛽,

(3.296)
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where we used that 𝑅 = 6 on 𝑆3. Thus, we can cancel the 𝑏-dependence on the
left-hand side with DR[𝑆ct [𝐺]] on the right-hand side, leaving

Tr
[
𝑒−𝛽(𝐷+

3𝑎
4 )

]
∼ 𝑒−𝑆[𝑔̂,𝐴]+DR[𝑆ct [𝐺]]−𝑆Euler . (3.297)

The combination −𝑆[𝑔̂, 𝐴] +DR[𝑆ct [𝐺]] is then scheme-independent, and equal to
𝑆[𝑔̂, 𝐴] in the scheme of Section 3.3.

Of course, this cancellation was not an accident. The 𝑏-term contribution to the
Casimir energy is

𝐸0 |𝑏-type =
1

volR
𝑆ct |R×𝑆𝑑−1 . (3.298)

Because 𝑆ct is local, it follows that

𝛽𝐸0 |𝑏-type = DR[𝑆ct] |𝑆1
𝛽
×𝑆𝑑−1 . (3.299)

Said another way, the 𝑏-term in the Casimir energy is precisely what matches the
𝑏-term contribution to the Weyl anomaly on the cylinder. Since the 𝑏-term in the
thermal effective action was determined by Weyl anomaly matching, it must cancel
with the Casimir energy. This argument generalizes to arbitrary 𝑑.

Appendix C More on free theories
Partition function of free scalar theories
In this section we review the partition function of a free scalar theory on R × 𝑆𝑑−1

𝑅
.

This space is conformally equivalent to the Euclidean space R𝑑 . The energy 𝐸 of
the state on R× 𝑆𝑑−1

𝑅
is related to the scaling dimension Δ of the corresponding field

on R𝑑 via:
𝐸 = Δ/𝑅. (3.300)

The equation of motion of the free scalar field on R × 𝑆𝑑−1
𝑅

is[
− 𝜕

2

𝜕𝑡2
+ ∇2

𝑆𝑑−1
𝑅

− 𝜉R
]
𝜙 = 0, (3.301)

where 𝜉 is the conformal coupling in 𝑑 dimensions, 𝜉 = 𝑑−2
4(𝑑−1) , and R is the Ricci

scalar of 𝑆𝑑−1
𝑅

, R =
(𝑑−1) (𝑑−2)

𝑅2 . The spherical harmonics in 𝑑 dimension, 𝑌 (𝑑)
𝑙

, are
eigenfunctions of ∇2

𝑆𝑑−1
𝑅

, with eigenvalue −𝑙 (𝑙 + 𝑑 − 2), where 𝑙 is a non-negative
integer. We can then construct an orthonormal set of solutions as

𝜙𝑙 ∝ 𝑒−𝑖𝐸𝑡𝑌 (𝑑)
𝑙
, 𝐸 =

𝑙 + 𝑑−2
2

𝑅
, (3.302)
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whose elements become each mode after quantization. Note that𝑌 (𝑑)
𝑙

is the represen-
tation of 𝑆𝑝𝑖𝑛(𝑑) with the highest weight (𝑙, 0, . . . , 0) in the standard Cartan-Weyl
labeling scheme.

We will write down the case of even dimension and odd dimension separately
because the group structure of 𝑆𝑂 (𝑑) is slightly different in these two cases.

Even dimensions

The spherical harmonics𝑌 (𝑑)
𝑙

are also eigenfunctions of 𝜕𝜃𝑎 in the coordinate system
(3.45). The eigenvalues 𝑚𝑎 (𝑎 = 1, . . . , 𝑛) of 𝜕𝜃𝑎 are integers, and they obey the
following relation:

𝑙 = 2𝑚0 + |𝑚1 | + · · · + |𝑚𝑛 |, (3.303)

where 𝑚0 is a non-negative integer. The multiplicity of this specific eigenvalue is(𝑛+𝑚0−2
𝑚0

)
. Therefore, in even 𝑑 (𝑑 > 2), the partition function of a free scalar field is

𝑍 (𝑇,Ω𝑖) =
∞∏

𝑚0=0

©­«
∞∏

𝑚1=−∞
· · ·

∞∏
𝑚𝑑/2=−∞

1
1 − 𝑒− 1

𝑇
(2𝑚0+

∑
𝑖 |𝑚𝑖 |+𝑑/2−1+𝑖∑𝑖 𝑚𝑖Ω𝑖)

ª®¬
(𝑑/2+𝑚0−2

𝑚0 )
,

(3.304)
where the sums over 𝑖 in (3.304) run from 𝑖 = 1, · · · , 𝑑2 . From this we can read off
log 𝑍 . The first two terms in the high-temperature expansion are as in (3.93).

The higher order terms in log 𝑍 come with a factor proportional to ∼ 𝜁 (𝑑 −
2𝑘)𝑇 𝑑−2𝑘−1 for integer 𝑘 . Because the zeta function vanishes at negative even
integers, this means the high-temperature perturbative expansion for log 𝑍 of a
free scalar field in even dimensions truncates after the 𝑂 (1/𝑇) term [147]. The
further corrections after the perturbative expansion in 1/𝑇 are non-perturbatively
suppressed in 𝑇 . In fact, using techniques similar to [45], we can get an exact
expression for log 𝑍 for free scalar field theories in even 𝑑. For completeness, we
write these expressions in the following section.

Odd dimensions

In odd 𝑑, the relation between the eigenvalues 𝑙 and 𝑚𝑎 is

𝑙 = 𝑚′
0 + |𝑚1 | + · · · + |𝑚 𝑑−1

2
|, (3.305)

where𝑚′
0 is a non-negative integer. The multiplicity of this specific eigenvalue state

is
( 𝑑−1

2 +𝑚0−1
𝑚0

)
, where 𝑚0 = ⌊𝑚

′
0

2 ⌋. Therefore, the partition function of a free scalar
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field is

𝑍 (𝑇,Ω𝑖) =
∞∏

𝑚0=0

©­­«
∞∏

𝑚1=−∞
· · ·

∞∏
𝑚 𝑑−1

2
=−∞

1
1 − 𝑒− 1

𝑇
(2𝑚0+

∑
𝑖 |𝑚𝑖 |+𝑑/2−1+𝑖∑𝑖 𝑚𝑖Ω𝑖)

ª®®¬
( 𝑑−3

2 +𝑚0
𝑚0

)

×
∞∏

𝑚0=0

©­­«
∞∏

𝑚1=−∞
· · ·

∞∏
𝑚 𝑑−1

2
=−∞

1
1 − 𝑒− 1

𝑇
(2𝑚0+

∑
𝑖 |𝑚𝑖 |+𝑑/2+𝑖

∑
𝑖 𝑚𝑖Ω𝑖)

ª®®¬
( 𝑑−3

2 +𝑚0
𝑚0

)

,

(3.306)

where the sums over 𝑖 in (3.306) run from 𝑖 = 1, · · · , 𝑑−1
2 . When we take the log

and expand at high temperature, we arrive at the same result as in (3.93).

In even 𝑑, the expansion in inverse powers of 𝑇 truncates after the 𝑂 (𝑇−1) term. In
odd 𝑑, however, the expansion never truncates. This is because the higher order terms
have a factor proportional to ∼ 𝜁 (𝑑 − 2𝑘)𝑇 𝑑−2𝑘−1. For odd 𝑑, this never vanishes.
Moreover, due to the factorial growth of the zeta function at large, negative, odd
values of the argument, the expansion in inverse powers of 𝑇 is in fact asymptotic
rather than convergent. Finally (due to a pole of the zeta function at argument 1),
there is a log𝑇 term in the high-temperature expansion as well (see (4.13) of [128]
for this log𝑇 term in the case of 𝑑 = 3.) We write an explicit expression for all
perturbative terms in odd dimensions in the previous section.

Gapless sector in the free scalar
As noted in Sec 3.4, the free scalar in 𝑑 dimensions is a somewhat pathological
example for our purposes, due to the presence of a gapless sector upon compactifi-
cation on 𝑆1, namely the 𝑑−1-dimensional free scalar CFT. As a result, the partition
function at high temperature contains terms proportional to 𝑂 (𝑇0) and 𝑂 (log𝑇)
in even-𝑑 and odd-𝑑 respectively. These terms cannot be produced by the ther-
mal effective action, and must come from the gapless sector. In this appendix we
understand them explicitly (see also [61] for earlier discussion of such terms).

An important subtlety is that the 𝑑−1 dimensional gapless sector is not conformally
coupled to curvature in 𝑑−1 dimensions. To see why, we start with a conformally-
coupled scalar in 𝑑-dimensions. This contains a term in the Lagrangian 1

2𝜉𝑑R𝜙
2

with coefficient

𝜉𝑑 =
𝑑 − 2

4(𝑑 − 1) (conformal coupling in 𝑑-dimensions). (3.307)
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When we dimensionally reduce on 𝑆1, we do not obtain a conformally-coupled
scalar in 𝑑−1 dimensions, because 𝜉𝑑 ≠ 𝜉𝑑−1. Instead, the 𝑑−1-dimensional scalar
has a particular mass deformation turned on. To be more precise, it satisfies the
equation of motion

D𝜙 =

(
−∇2

𝑑−1 + 𝜉𝑑R
)
𝜙 = 0, (3.308)

where ∇2
𝑑−1 is the 𝑑−1 dimensional Laplacian. By contrast, a conformally-coupled

scalar would satisfy

D̃𝜙 =

(
−∇2

𝑑−1 + 𝜉𝑑−1R
)
𝜙 = 0 (𝑑−1-dimensional conformal coupling).

(3.309)

The partition function of the gapless sector in our case is (detD)−1/2. By contrast,
reference [134] computed the sphere partition function of a conformally-coupled
free scalar, i.e. (det D̃)−1/2. For our purposes, we can follow the methods of [134],
but we will obtain different results because we have a different equation of motion
(3.308).33

Following [134], the contribution to − log 𝑍𝑆1×𝑆𝑑−1 from the gapless sector is

𝐹 =

∞∑︁
𝑛=0

𝑚𝑛

[
− log(𝜇𝑅) + log

(
𝑛 + 𝑑 − 2

2

)]
, (3.310)

where

𝑚𝑛 :=
(2𝑛 + 𝑑 − 2) (𝑛 + 𝑑 − 3)!

(𝑑 − 2)!𝑛! (3.311)

is the dimension of the 𝑛-th traceless symmetric tensor representation of SO(𝑑).
Here, 𝑅 is the radius of the 𝑆𝑑−1, and 𝜇 is a mass scale coming from the regulator.
In our case, the temperature sets the regulator scale, so we have 𝜇 = 𝑇 .

The sum (3.310) diverges, but we can use 𝜁-function regularization to make it finite.
In even 𝑑, the 𝑅-dependence of (3.310) formally drops out. However, in odd 𝑑 it
remains, giving a nontrivial log𝑇 term in log 𝑍 . The 𝜁-function regulated sum is

𝐹𝑠 :=
∞∑︁
𝑛=0

𝑚𝑛(
𝑛 + 𝑑−2

2

) 𝑠 . (3.312)

The log𝑇 term is given by 𝐹𝑠=0 and the 𝑇0 term is given by 𝜕𝑠𝐹𝑠 |𝑠=0. These values
for the first few 𝑑 are given in Table 3.1. They indeed agree with the corresponding
terms in the high-temperature expansion of the partition function of the free scalar
on 𝑆1 × 𝑆𝑑−1, as we explicitly write in Appendix C.

33We are grateful to Yifan Wang for discussions related to this point.
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𝑑 𝐹𝑠=0 𝜕𝑠𝐹𝑠 |𝑠=0

3 1
12 − log 2

12 − 𝜁 ′(−1)
4 0 − 𝜁 (3)

4𝜋2

5 − 17
2880

11 log 2
2880 + 𝜁 ′ (−1)

24 − 7𝜁 ′ (−3)
24

6 0 𝜋2𝜁 (3)+3𝜁 (5)
48𝜋4

7 367
483840 −211 log 2

483840 − 3𝜁 ′ (−1)
640 + 7𝜁 ′ (−3)

192 − 31𝜁 ′ (−5)
1920

8 0 −8𝜋4𝜁 (3)+30𝜋2𝜁 (5)+45𝜁 (7)
2880𝜋6

Table 3.1: Values for 𝐹𝑠=0 and 𝜕𝑠𝐹𝑠 |𝑠=0 for various dimensions, with 𝐹𝑠 defined in
(3.312). These provide the coefficients of the𝑂 (log𝑇) and𝑂 (𝑇0) terms respectively
in the free energy of a free scalar field in 𝑑 dimensions.

The 𝑎-anomaly of the free scalar
As an aside, we can use similar techniques to compute the 𝑎-anomaly of a free scalar
theory in 𝑑 dimensions. The value of the 𝑎 anomaly is well-known in 𝑑 = 2, 4, 6
[82]; see e.g. [15] for a calculation in 6D. In general 𝑑 it was computed in [96, 97],
which we review here.

Here we study the free scalar field in 𝑑 dimensions conformally coupled to 𝑆𝑑 , as
was precisely done in [134]. As discussed in Appendix F, the 𝑎-anomaly is related
to the sphere partition function by34

log 𝑍 (𝑆𝑑𝑟 ) = − (−1)𝑑/2𝑎𝑑𝑑!
(4𝜋)𝑑/2

vol 𝑆𝑑 log(𝜇𝑟), (3.313)

where 𝜇 is a regulator scale. Thus, we can read off 𝑎𝑑 from the log 𝑟 term in the
sphere free energy. We find the general answer

𝑎𝑑 =
(−1) 𝑑2 +1

2Γ( 𝑑+2
2 )Γ(𝑑 + 2)

∫ 1

0
𝑑𝑡 (𝑑 + 4𝑡2)

(
𝑡 − 𝑑

2
+ 1

)
𝑑−1

(𝑑 even, 𝑑 > 2),

(3.314)

where (𝑥)𝑛 is the Pochhammer symbol (𝑥)𝑛 := Γ(𝑥+𝑛)
Γ(𝑥) . The integrand is of course

a polynomial in 𝑡 for positive integer 𝑑, so the integral is trivial in practice. This
formula requires 𝑑 > 2 because the sphere partition function of the (noncompact)
free boson in 𝑑 = 2 is ill-defined. The first few values of 𝑎𝑑 are listed in Table 3.2.

34References [96, 97] use a different convention for the 𝑎 anomaly where (−1)𝑑/2𝑎here
𝑑
𝑑!vol 𝑆𝑑

(4𝜋 )𝑑/2 =

𝑎there
𝑑

.
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𝑑 4 6 8 10 12
𝑎𝑑

1
360

1
9072

23
5443200

263
1796256000

133787
29422673280000

Table 3.2: Values for the conformal 𝑎-anomaly of a free scalar field in 𝑑 dimensions,
with 𝑑 even. For general 𝑑, see (3.314).

Non-perturbative corrections for free scalars
From the second section of this appendix, we have the perturbative corrections in
1/𝑇 for the free scalar field in 𝑑 dimensions. For even 𝑑, they truncate after the
𝑂 (1/𝑇) term (see e.g. [41, 81]). From the techniques in [45] we can in fact compute
the exact high-temperature partition function. It is given by the following.

Define the auxiliary function for even 𝑑:

𝑓 (𝑑, 𝑇) := 𝜁 (𝑑)𝑇 𝑑−1

− (−1)𝑑/2
(2𝜋)𝑑−2

[
𝜁 (𝑑 − 1)

2
− (𝑑 − 1)𝜁 (𝑑)

4𝜋2𝑇
+

∞∑︁
𝑛=1

𝑒−4𝜋2𝑇𝑛𝜎𝑑−1(𝑛)
𝑛𝑑−1

𝑑−2∑︁
𝑖=0

(4𝜋2𝑇𝑛)𝑖
Γ(𝑖 + 1)

]
,

(3.315)

where 𝜎 is the divisor sigma function: 𝜎𝑑−1(𝑛) :=
∑
ℓ |𝑛 ℓ

𝑑−1. Then the general even
𝑑 free scalar is

log 𝑍𝑑 (𝑇) =
𝑑/2−2∑︁
𝑖=0

𝑐2𝑖−(𝑑−1) (𝑑) 𝑓 (𝑑 − 2𝑖, 𝑇), (3.316)

where 𝑐2𝑖 (𝑑) is the coefficient of the 𝛽2𝑖 term in the expansion of sinh(𝛽)
2𝑑−1 sinh𝑑 (𝛽/2) about

𝛽 = 0.35

For example at 𝑑 = 4 and 𝑑 = 6, (3.316) reduces to the following two equations36:

log 𝑍𝑑=4(𝑇) =
𝜋4

45
𝑇3 − 𝜁 (3)

4𝜋2 + 1
240𝑇

−
∞∑︁
𝑛=1

4𝜎3(𝑛)𝑒−4𝜋2𝑇𝑛

𝑛

(
𝜋2𝑇2 + 𝑇

2𝑛
+ 1

8𝜋2𝑛2

)
,

(3.319)

35This function comes about from writing the logarithm of the free boson partition function as

log 𝑍 (𝑇) = −
∞∑︁
𝑗=0

𝑗 + 𝑑/2 − 1
𝑑/2 − 1

(
𝑗 + 𝑑 − 3
𝑑 − 3

)
log(1 − 𝑒− 1

𝑇
( 𝑗+ 𝑑−2

2 ) ), (3.317)

doing the Taylor expansion of the logarithm, and finally resumming over 𝑗 , giving (see e.g. [61])

log 𝑍 (𝑇) =
∞∑︁
𝑛=1

sinh( 𝑛
𝑇
)

𝑛2𝑑−1 sinh𝑑 ( 𝑛2𝑇 )
. (3.318)

36These perturbative terms here reproduce, e.g. [165].
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log 𝑍𝑑=6(𝑇) =
2𝜋6

945
𝑇5 − 𝜋4

540
𝑇3 + 𝜋

2𝜁 (3) + 3𝜁 (5)
48𝜋4 − 31

60480𝑇

+
∞∑︁
𝑛=1

𝑒−4𝜋2𝑛𝑇

[
4𝜎5(𝑛)

3𝑛

(
𝜋4𝑇4 + 𝜋

2𝑇3

𝑛
+ 3𝑇2

4𝑛2 + 3𝑇
8𝑛3𝜋2 + 3

32𝑛4𝜋4

)
+ 𝜎3(𝑛)

3𝑛

(
𝜋2𝑇2 + 𝑇

2𝑛
+ 1

8𝑛2𝜋2

) ]
. (3.320)

For a free scalar field in odd dimensions, the perturbative expansion in 1/𝑇 no longer
truncates. The perturbative expansion is

log 𝑍𝑑 (𝑇) ∼
𝑑−1

2∑︁
𝑛=1

𝑐−2𝑛 (𝑑)𝜁 (2𝑛 + 1)𝑇2𝑛

+ 𝐹𝑠=0 log𝑇 + 𝜕𝑠𝐹𝑠 |𝑠=0 +
∞∑︁
𝑛=1

𝑐2𝑛 (𝑑)𝜁 (−2𝑛 + 1)𝑇−2𝑛, (3.321)

where in (3.321), 𝐹𝑠=0 and 𝜕𝑠𝐹𝑠 |𝑠=0 are defined in (3.312), and 𝑐2𝑖 (𝑑) is defined
again as the coefficient of the 𝛽2𝑖 term in the expansion of sinh(𝛽)

2𝑑−1 sinh𝑑 (𝛽/2) about 𝛽 = 0.

At large 𝑛, |𝑐2𝑛 (𝑑) | ∼ (2𝜋)−2𝑛. On the other hand, |𝜁 (−2𝑛 + 1) | ∼ (2𝑛)!
(2𝜋)2𝑛 . Thus the

expression (3.321) is an asymptotic series with divergent piece growing like

log 𝑍𝑑 (𝑇) ∼
∑︁
𝑛

(2𝑛)!
(4𝜋2𝑇)2𝑛 . (3.322)

From techniques in resurgence, this implies the first non-perturbative correction to
(3.321) scales as 𝑒−4𝜋2𝑇 , just as in even dimensions.

These results are consistent with the worldline instanton corrections discussed in
Section 3.3 (even though in this example there is also a gapless sector upon compact-
ification). When the free boson is compactified on a circle with thermal boundary
conditions, the mass of the lightest KK mode is 𝑚𝐾𝐾 = 2𝜋𝑇 . Therefore, (3.91)
predicts a correction to log 𝑍 of the form 𝑒−4𝜋2𝑇 , which is precisely consistent with
what we found in both even and odd 𝑑.

We can also study the free scalar with a Z2 twist around the thermal circle. For
example, in 𝑑 = 4, we find

log 𝑍Z2-twisted
𝑑=4 (𝑇) = −7𝜋4

360
𝑇3 + 1

240𝑇
+𝑂 (𝑒−2𝜋2𝑇 ). (3.323)

In this case, the lightest KK mode has mass 𝑚𝐾𝐾 = 𝜋𝑇 , and the nonperturbative
corrections are indeed of the form 𝑒−2𝜋𝑚𝐾𝐾 = 𝑒−2𝜋2𝑇 .
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Partition function of free fermion theories
In this section, we review the partition function of a free massless Dirac fermion in
𝑑 dimensions on R×𝑆𝑑−1

𝑅
. We can construct the partition function from the solution

of the Dirac equation: (
Γ0 𝜕

𝜕𝑡
+ Γ𝑖∇𝑖

)
𝜓 = 0, (3.324)

where Γ𝜇 (𝜇 = 0, 1, . . . , 𝑑 − 1) are gamma matrices, and ∇𝑖 (𝑖 = 1, . . . , 𝑑 − 1) is the
covariant derivative on the sphere.

The spectrum of the Dirac operator on 𝑆𝑑−1 has been considered in e.g. [40]. The
Dirac operator on 𝑆𝑑−1,��∇ ≡ Γ𝑖∇𝑖, has the following eigenvalues:

��∇𝜓±𝜌 = ±𝑖
(
𝜌 + 𝑑 − 1

2

)
𝜓±𝜌, 𝜌 = 0, 1, 2, . . . . (3.325)

Because Γ02
= −1 and {Γ0,��∇} = 0, we find the solution of the Dirac equation as

𝜓 = 𝑒𝑖𝐸𝑡
(
𝜓±𝜌 ± Γ0𝜓±𝜌

)
, 𝐸 = 𝜌 + 𝑑 − 1

2
. (3.326)

From [40] we see the solutions are representations of Spin(𝑑) with highest weight(
𝜌 + 1

2 ,
1
2 , . . . ,

1
2

)
for odd 𝑑 and

(
𝜌 + 1

2 ,
1
2 , . . . ,

1
2 ,±

1
2

)
for even 𝑑 where 𝜌 is the

eigenvalue of the Dirac operator in (3.325).

In odd dimensions, we have a complete set of solution of the Dirac equation with
eigenvalues as follows:

𝐸 = 𝜌 + 𝑑 − 1
2

,

𝜌 = 𝑚0 + 𝑚′
1 + · · · + 𝑚′

𝑑−1
2
,

𝑚𝑎 = ±
(
𝑚′
𝑎 +

1
2

)
,

(
𝑎 = 1, . . . ,

𝑑 − 1
2

)
, (3.327)

where 𝑚0, 𝑚
′
1, . . . , 𝑚

′
𝑛 are non-negative integers. Here 𝐸 is the energy of the state

and 𝑚𝑎 is the eigenvalue of the rotation generator 𝜕𝜃𝑎 . The multiplicity of states
with eigenvalues (𝐸, 𝑚1, . . . , 𝑚 𝑑−1

2
) is

( 𝑑−3
2 +𝑚0
𝑚0

)
. Finally we get an additional tower

of states from quantizing the field 𝜓. Therefore, the partition function of a free
fermion in odd dimensions is

𝑍 (𝑇,Ω𝑖) =
∞∏

𝑚0=0

∏
𝑚1∈Z+ 1

2

· · ·
∏

𝑚 𝑑−1
2

∈Z+ 1
2

(
1 + 𝑒− 1

𝑇
(𝑚0+

∑
𝑖 |𝑚𝑖 |+ 𝑑−1

4 +𝑖∑𝑖 𝑚𝑖Ω𝑖)
)2( 𝑑−3

2 +𝑚0
𝑚0

)
,

(3.328)
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where the sums over 𝑖 run from 1, . . . , 𝑑−1
2 . Taking a log and expanding at high

temperature recovers (3.96).

In even dimensions, we can do a very similar calculation. We have a complete set
of solutions to the Dirac equation with eigenvalues as follows:

𝐸 = 𝜌 + 𝑑
2
,

𝜌 = 𝑚0 + 𝑚′
1 + · · · + 𝑚′

𝑑
2
,

𝑚𝑎 = ±
(
𝑚′
𝑎 +

1
2

)
,

(
𝑎 = 1, . . . ,

𝑑

2

)
, (3.329)

where 𝑚0, 𝑚
′
1, . . . , 𝑚

′
𝑛 are nonnegative integers. The multiplicity of the states with

eigenvalues
(
𝐸, 𝑚1, . . . , 𝑚 𝑑

2

)
is

( 𝑑
2 +𝑚0−2
𝑚0

)
. Therefore, the partition function of a free

fermion in even dimensions is

𝑍 (𝑇, ®Ω) =
∞∏

𝑚0=0

∏
𝑚1∈Z+ 1

2

· · ·
∏

𝑚 𝑑
2
∈Z+ 1

2

(
1 + 𝑒− 1

𝑇
(𝑚0+

∑
𝑖 |𝑚𝑖 |+ 𝑑−2

4 +𝑖∑𝑖 𝑚𝑖Ω𝑖)
)2( 𝑑2 +𝑚0−2

𝑚0
)
,

(3.330)
where the sums over 𝑖 in (3.330) run from 1, . . . , 𝑑2 . This gives the same answer as
(3.96).

Non-perturbative corrections for free fermions
We can repeat the same analysis in previous section to find the non-perturbative
corrections for the free energy of a free Dirac fermion in 𝑑 dimensions. When we
turn off the spin fugacities, we can rewrite (3.328), (3.330), as

log 𝑍 𝑓
𝑑
(𝑇) =

∞∑︁
𝑛=1

2⌊ 𝑑2 ⌋+1(−1)𝑛+1𝑒−
(𝑑−1)𝑛

2𝑇

𝑛(1 − 𝑒− 𝑛𝑇 )𝑑−1
. (3.331)

In even dimensions, this admits the following (exact) high-temperature expansion.
First, we define the auxiliary function for even 𝑑 as

𝑔(𝑑, 𝑇) := 2𝑑/2
(
1 − 1

2𝑑−1

)
𝜁 (𝑑)𝑇 𝑑−1 + (−1)𝑑/2(𝑑 − 1) (2𝑑 − 2)𝜁 (𝑑)

𝜋𝑑23𝑑/2𝑇

+ (−1)𝑑/2

2 𝑑
2 −2𝜋𝑑−2

∞∑︁
𝑛=1

𝑒−2𝜋2𝑇𝑛 (−1)𝑛𝜎odd
𝑑−1(𝑛)

𝑛𝑑−1

𝑑−2∑︁
𝑖=0

(2𝜋2𝑇𝑛)𝑖
Γ(𝑖 + 1) , (3.332)

where

𝜎odd
𝑑−1(𝑛) :=

∑︁
ℓ |𝑛,
ℓ odd

ℓ𝑑−1. (3.333)
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We also define the function 𝑐𝑖 (𝑑) as the 𝛽𝑖 term in the expansion of 𝛽𝑑𝑒
− 𝛽 (𝑑−1)

2

(1−𝑒−𝛽)𝑑−1 about
𝛽 = 0.37 Then the partition function of a free Dirac fermion in even 𝑑 dimensions
at temperature 𝑇 is

log 𝑍 𝑓
𝑑
(𝑇) =

𝑑−1∑︁
𝑖=1

2
𝑖+1
2 𝑐𝑖 (𝑑)𝑔(𝑑 + 1 − 𝑖, 𝑇). (3.334)

For instance, (3.334) for 𝑑 = 4, 6 reduces to

log 𝑍 𝑓
𝑑=4(𝑇) =

7𝜋4

90
𝑇3 − 𝜋2

12
𝑇 + 17

480𝑇

+
∞∑︁
𝑛=1

(−1)𝑛𝑒−2𝜋2𝑇𝑛

(
4𝜋2

𝑛
𝜎odd

3 (𝑛)𝑇2 + 4
𝑛2𝜎

odd
3 (𝑛)𝑇 +

𝜎odd
1 (𝑛)
𝑛

+
2𝜎odd

3 (𝑛)
𝑛3𝜋2

)
,

(3.335)

and

log 𝑍 𝑓
𝑑=6(𝑇) =

31𝜋6

1890
𝑇5 − 7𝜋4

216
𝑇3 + 𝜋

2

32
𝑇 − 367

24192𝑇

+
∞∑︁
𝑛=1

(−1)𝑛+1𝑒−2𝜋2𝑇𝑛

[
2𝜋4

3𝑛
𝜎odd

5 (𝑛)𝑇4 + 4𝜋2

3𝑛2𝜎
odd
5 (𝑛)𝑇3 +

(
2𝜎odd

5 (𝑛)
𝑛3 +

5𝜋2𝜎odd
3

3𝑛

)
𝑇2

+
(
2𝜎odd

5 (𝑛)
𝜋2𝑛4 +

5𝜎odd
3 (𝑛)
3𝑛2

)
𝑇 +

(
𝜎odd

5 (𝑛)
𝜋4𝑛5 +

5𝜎odd
3 (𝑛)

6𝜋2𝑛3 +
3𝜎odd

1 (𝑛)
8𝑛

) ]
.

(3.336)

In odd dimensions, the perturbation theory in 1/𝑇 no longer truncates. Rather, it
looks like

log 𝑍 𝑓
𝑑
(𝑇) ∼

∞∑︁
𝑛=1

2
𝑑+1

2

(
1 − 2𝑛−𝑑

)
𝜁 (𝑑 + 1 − 𝑛)𝑐𝑛 (𝑑)𝑇 𝑑−𝑛, (3.337)

where the 𝑛 = 𝑑 term in (3.337) is 𝑐𝑑 (𝑑)2
𝑑+1

2 log 2. The sum in (3.337) is an
asymptotic expansion. At large odd 𝑛, |𝑐𝑛 (𝑑) | ∼ (2𝜋)−𝑛 and |𝜁 (𝑑 + 1 − 𝑛) | ∼ 𝑛!

(2𝜋)𝑛 .
The sum then diverges, growing as

log 𝑍 𝑓
𝑑
(𝑇) ∼

∑︁
𝑛

𝑛!
(2𝜋2𝑇)𝑛

. (3.338)

From the techniques in resurgence, this implies the first non-perturbative correction
of (3.337) scales as 𝑒−2𝜋2𝑇 , just as in even dimensions.

In a free fermion theory compactified on a circle with thermal boundary conditions,
we have𝑚𝐾𝐾 = 𝜋𝑇 , so that (3.91) predicts a non-perturbative correction of the form
𝑒−2𝜋2𝑇 , consistent with what we found in both even and odd dimensions.

37Like in the free scalar case, up to an overall constant, this comes from (3.331) upon setting
𝑛 = 1.
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Appendix D Wilson coefficients for the 3D Ising model
In this appendix, we discuss estimates of the high-temperature partition function
of the 3D Ising model. In Appendix A of [119], the coefficient 𝑓 for the 3D Ising
model was estimated by constructing the partition function with Ω = 0 as a sum over
the spectrum of known operators, which has numerically been computed up to about
dimension 8 [195]. In this appendix, we perform a similar analysis, but including
spin-dependence. Note that there is a balance in choosing the temperature — if the
temperature is too low, then truncating the thermal effective action becomes a poor
approximation; if the temperature is too high, then truncating the partition function
to a finite sum of characters becomes inaccurate.38
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Figure 3.13: Contour plots of the ratio of the estimated partition func-
tion to the leading term in the thermal effective action with 𝑓 = 0.153, i.e.
𝑍3D Ising(𝛽,Ω)/exp

(
4𝜋 0.153

𝛽2 (1+Ω2)

)
, as a function of 𝛽,Ω for real Ω (left) and imagi-

nary Ω (right). The ratio is very close to 1 for intermediate temperatures 1 ≲ 𝛽 ≲ 5
and small angles |Ω| ≲ 0.5.

From Monte-Carlo techniques, it has been estimated that 𝑓3D Ising ∼ 0.153 [143,
145, 198]. In Figure 3.13, we plot the ratio of the computed partiton function to the
estimate from the first term in the thermal effective action (3.54) with 𝑓 = 0.153.
For the values of 𝛽 and Ω shown in the figure, the ratio is quite close to 1. We
can also independently fit 𝑓 from the partition function. By studying temperatures
with 1.5 < 𝛽 < 3 and chemical potentials |Ω| < 0.6, we estimate that 𝑓 ∼ 0.15,
consistent with [143, 145, 198].

38Much like the porridge in Goldilocks and the Three Bears [196], it is important to pick a
temperature that is just right.
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We can also try to estimate higher-derivative Wilson coefficients in the effective
action of the 3D Ising model, such as 𝑐1, 𝑐2. Unfortunately, we do not have a clear
enough picture of the high-dimension spectrum to estimate these coefficients with
reliable precision. However, our best fits suggest that 𝑐2 < 0 (we are not yet able to
reliably estimate the sign of 𝑐1).

In general, accessing large twist operators is challenging for the numerical bootstrap,
which seems most sensitive to low-twist operators—particularly "double twist"
operators [195]. Furthermore, the numerical bootstrap studies done so far are blind
to certain parts of the operator spectrum of the 3D Ising model, such as odd-spin Z2-
even operators, or parity-odd operators.39 Such sectors would need to be included
to reliably compute the partition function at higher temperatures. See [117, 207] for
recent work accessing these sectors with other methods.

Appendix E The shadow transform of a three-point function at large Δ
The formula for OPE coefficients depends on the triple shadow coefficient 𝑆3

1̃†2̃†3̃†
given in (3.161). In this appendix, we compute this coefficient at large Δ𝑖. First
consider a single shadow transform applied to a three-point function with large Δ’s.
The shadow transform is

⟨O𝑎
1 (𝑥1)O𝑏

2 (𝑥2)S[O3]𝑐 (𝑥3)⟩ (𝑠) ≡
∫

𝑑𝑑𝑥0⟨Õ𝑐 (𝑥3)Õ†
𝑐 (𝑥0)⟩⟨O𝑎

1 (𝑥1)O𝑏
2 (𝑥2)O𝑐

3 (𝑥0)⟩ (𝑠) .

(3.339)

Here, 𝑎, 𝑏, 𝑐 are spin indices for the representations 𝜆1, 𝜆2, 𝜆3. The operator Õ† has
Lorentz representation 𝜆∗3, so we write its index as a lowered 𝑐 index. The operator
Õ has Lorentz representation 𝜆𝑅3 (the reflected representation), and we indicate this
with a barred index.

The three-point function is

⟨O𝑎
1 (𝑥1)O𝑏

2 (𝑥2)O𝑐
3 (𝑥3)⟩ (𝑠) = 𝑉 𝑠;𝑎𝑏𝑐 (𝑥1, 𝑥2, 𝑥3). (3.340)

We will be interested in restricting this three-point function to a single axis 𝑥𝑖 = 𝑧𝑖𝑒
with unit vector 𝑒 ∈ 𝑆𝑑−1 ⊂ R𝑑 . We get two different answers, depending on the
cyclic ordering of the points

𝑉 𝑠;𝑎𝑏𝑐 (𝑧1𝑒, 𝑧2𝑒, 𝑧3𝑒) =


𝑉 𝑠;𝑎𝑏𝑐 (0,𝑒,∞)
|𝑧12 |Δ1+Δ2−Δ3 |𝑧23 |Δ2+Δ3−Δ1 |𝑧31 |Δ3+Δ1−Δ2

(𝑧1 < 𝑧2 < 𝑧3, or cycl.),
𝑉 𝑠;𝑎𝑏𝑐 (𝑒,0,∞)

|𝑧12 |Δ1+Δ2−Δ3 |𝑧23 |Δ2+Δ3−Δ1 |𝑧31 |Δ3+Δ1−Δ2
(𝑧2 < 𝑧1 < 𝑧3, or cycl.).

(3.341)
39Though there are preliminary results for some of these sectors from the stress tensor bootstrap

[84].
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The tensors𝑉 𝑠;𝑎𝑏𝑐 (0, 𝑒,∞) and𝑉 𝑠;𝑎𝑏𝑐 (𝑒, 0,∞) are related to each other by a rotation
by 𝜋 in the 1-2 direction applied simultaneously to all three indices. The operator
at ∞ is defined by (3.120).

To compute the shadow transform, we can use conformal symmetry to choose a
simple configuration of the points. We pick (𝑥1, 𝑥2, 𝑥3) = (0, 𝑒,∞), where 𝑒 is a
unit vector in the 𝑥1 direction. The two-point function becomes a tensor depending
on the unit vector 𝑒 that maps 𝜆3 → 𝜆𝑅3 :

⟨Õ𝑐 (∞𝑒)Õ†
𝑐 (0)⟩ = 𝐼𝑐𝑐 (𝑒). (3.342)

For example, in the case of a spinor representation in 4D, we have 𝐼 ¤𝛼𝛼 (𝑒) ∝ (𝑒 ·𝜎) ¤𝛼𝛼.

The shadow transform will be dominated by a saddle point on the 𝑥1-axis, by
SO(𝑑 − 1) invariance. Its location depends only on the 𝑧0-dependent factors in the
three-point function

𝑉 𝑠;𝑎𝑏𝑐 (0, 𝑒, 𝑧0𝑒) ∝ |𝑧0 |Δ1−Δ2−Δ3 |1 − 𝑧0 |Δ2−Δ1−Δ3 . (3.343)

This has the saddle solution

𝑧0∗ =
Δ2 + Δ3 − Δ1

2Δ3
. (3.344)

The tensor structure that multiplies the answer depends on the location of the saddle.
Taking into account the gaussian fluctuations around the saddle, we find

⟨O𝑎
1 (0)O

𝑏
2 (𝑒)S[O3]𝑐 (∞)⟩ (𝑠)

= 𝑖

(
𝜋

Δ3

)𝑑/2 ((
Δ1 + Δ3 − Δ2

2Δ3

)2
) Δ2−Δ1−Δ3+

𝑑
2

2
((
Δ2 + Δ3 − Δ1

2Δ3

)2
) Δ1−Δ2−Δ3+

𝑑
2

2

× 𝐼𝑐𝑐 (𝑒) ×

𝑉 𝑠;𝑎𝑏𝑐 (0, 𝑒,∞) 0 < 𝑧0∗ < 1,

𝑉 𝑠;𝑎𝑏𝑐 (𝑒, 0,∞) otherwise.
(3.345)

If we perform the shadow transform three times, we find that 𝑧0∗ ∈ (0, 1) twice,
and once it lies outside of this range. Thus, the cyclic ordering of the arguments to
𝑉 𝑠 get swapped twice, resulting in the same ordering after three transforms. The
overall effect is to multiply byΔ-dependent factors and act on each index with 𝐼𝑐𝑐 (𝑒).
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Overall, we find

(𝐼 (𝑒)−1)𝑎𝑎 (𝐼 (𝑒)−1)𝑏𝑏 (𝐼 (𝑒)−1)𝑐𝑐⟨S[Õ†
1 ]𝑎 (0)S[Õ

†
2 ]𝑏 (𝑒)S[Õ

†
3 ]𝑐 (∞)⟩ (𝑠′∗)

= 𝑉 𝑠
′∗
𝑎𝑏𝑐 (0, 𝑒,∞) × 𝑒

𝑖 𝜋 (𝑑−2)
4

(
𝜋𝑖

Δ1

)𝑑/2 (
𝜋𝑖

Δ2

)𝑑/2 (
𝜋𝑖

Δ3

)𝑑/2
×

(
(Δ1+Δ2−Δ3) (Δ1+Δ2+Δ3)

4Δ1Δ2

)Δ1+Δ2−Δ3− 𝑑2 (
(Δ3+Δ1−Δ2) (Δ1+Δ2+Δ3)

4Δ3Δ1

)Δ3+Δ1−Δ2− 𝑑2

×
(
(Δ2+Δ3−Δ1) (Δ1+Δ2+Δ3)

4Δ2Δ3

)Δ2+Δ3−Δ1− 𝑑2
. (3.346)

Here, 𝑉 𝑠′∗ indicates the complex conjugate of the three-point structure 𝑉 𝑠′ . For the
purposes of this calculation, we should think of it simply as a three-point structure
for operators in the representations 𝜋̃†

𝑖
. We have written (3.346) so that its phase is

manifest when Δ𝑖 is on the principal series Δ𝑖 ∈ 𝑑
2 + 𝑖R≥0 (with positive imaginary

part). Finally, we included inverse two-point structures 𝐼 (𝑒)−1, since they are needed
in (3.181).

Appendix F Gluing factors
In this appendix, we determine the gluing factor |𝑍glue(𝑟) | coming from a junction
between a 𝑑-dimensional cylinder of radius 𝑟 and a flat end-cap given by a 𝑑-
dimensional ball. Our strategy is to start with the partition function on 𝑆𝑑 (with
radius 1) and perform a Weyl transformation to a cylinder C𝑟,𝛽 of radius 𝑟 and length
𝛽𝑟 with two flat end-caps. We will integrate the Weyl anomaly to compute 𝑆anom

and deduce |𝑍glue(𝑟) | via (3.122).

Recall that on a conformally-flat geometry, with the scheme 𝑆ct = 0 discussed in
Section 3.3, the finite form of the Weyl anomaly is

log 𝑍 [𝑒2𝜔𝑔] − log 𝑍 [𝑔] = −𝑆anom [𝑔, 𝜔]

= − (−1)𝑑/2𝑎𝑑
(4𝜋)𝑑/2

∫ 1

0
𝑑𝑡

∫
𝑑𝑑𝑥𝜔

√
𝑔𝑒𝑑𝑡𝜔 𝐸𝑑 [𝑒2𝑡𝜔𝑔] .

(3.347)

To compute the Weyl anomaly between the sphere and the capped cylinder, we first
need the Riemann tensor for a Weyl rescaling of 𝑆𝑑 . Let us write the metric on 𝑆𝑑

as

𝑑𝑠2
𝑆𝑑

= 𝑑𝜙2 + sin2 𝜙 𝑑𝑠2
𝑆𝑑−1 . (3.348)
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We will be interested in Weyl rescalings 𝑔̃ = 𝑒2𝜔𝑔𝑆𝑑 , where 𝜔 is a function of 𝜙
alone. In this case, the Riemann tensor simplifies:

𝑅𝜇𝜈
𝜌𝜎 = 𝑒−2𝜔

[
(1 − 2𝜔′ cot 𝜙 − 𝜔′2) (𝛿𝜌𝜇𝛿𝜎𝜈 − 𝛿𝜎𝜇 𝛿

𝜌
𝜈 )

+ (𝜔′ cot 𝜙 + 𝜔′2 − 𝜔′′) (𝛿1
𝜇𝛿

𝜌

1𝛿
𝜎
𝜈 − 𝛿1

𝜈𝛿
𝜌

1𝛿
𝜎
𝜇 − 𝛿1

𝜇𝛿
𝜎
1 𝛿

𝜌
𝜈 + 𝛿1

𝜈𝛿
𝜎
1 𝛿

𝜌
𝜇)

]
,

(3.349)

where the index 1 represents the 𝜙 coordinate, and 𝜔′, 𝜔′′ denote derivatives of 𝜔
with respect to 𝜙. The Euler density is

𝐸𝑑 =
1

2𝑑/2
𝜖 𝜇1···𝜇𝑑𝜖𝜈1···𝜈𝑑𝑅𝜇1𝜇2

𝜈1𝜈2 · · · 𝑅𝜇𝑑−1𝜇𝑑
𝜈𝑑−1𝜈𝑑

= 𝑑!𝑒−𝑑𝜔 (1 − 2𝜔′ cot 𝜙 − 𝜔′2) 𝑑−2
2 (1 − 𝜔′ cot 𝜙 − 𝜔′′). (3.350)

Plugging this result into (3.347), we find

log 𝑍 [𝑒2𝜔𝑔] − log 𝑍 [𝑔]

= − (−1)𝑑/2𝑑!𝑎𝑑
2𝑑−1Γ( 𝑑2 )

∫ 1

0
𝑑𝑡

∫ 𝜋

0
𝑑𝜙 𝜔(sin 𝜙)𝑑−1(1 − 2𝑡𝜔′ cot 𝜙 − 𝑡2𝜔′2) 𝑑−2

2 (1 − 𝑡𝜔′ cot 𝜙 − 𝑡𝜔′′) .

(3.351)

Now let us examine the Weyl factor that relates the sphere to C𝑟,𝛽. We will impose
a symmetry under 𝜙 → 𝜋 − 𝜙, so that it suffices to consider the range 0 ≤ 𝜙 ≤ 𝜋

2 .
The Weyl factor is

𝜔(𝜙) =


log 𝑒𝛽/2𝑟 tan(𝜙/2)
sin 𝜙 0 ≤ 𝜙 ≤ 𝜙0

log 𝑟
sin 𝜙 𝜙0 ≤ 𝜙 ≤ 𝜋/2,

(3.352)

where 𝜙0 = 2 tan−1(𝑒−𝛽/2). As a check, consider first the range 0 ≤ 𝜙 < 𝜙0. There,
we have

𝑒2𝜔 (𝑑𝜙2 + sin2 𝜙 𝑑𝑠2
𝑆𝑑−1) = 𝑒𝛽𝑟2

(
tan2(𝜙/2)

sin2 𝜙
𝑑𝜙2 + tan2(𝜙/2)𝑑𝑠2

𝑆𝑑−1

)
= 𝑑𝜌2 + 𝜌2𝑑𝑠2

𝑆𝑑−1 , (3.353)

where 𝜌 = 𝑒𝛽/2𝑟 tan(𝜙/2). This is the metric on the flat ball, i.e. the first end cap.
Similarly, for 𝜙0 ≤ 𝜙 ≤ 𝜋/2, we have

𝑒2𝜔 (𝑑𝜙2 + sin2 𝜙 𝑑𝑠2
𝑆𝑑−1) =

(
𝑟𝑑𝜙

sin 𝜙

)2
+ 𝑟2𝑑𝑠2

𝑆𝑑−1 = 𝑑𝜏
2 + 𝑟2𝑑𝑠2

𝑆𝑑−1 , (3.354)
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where 𝜏 = 𝑟 log tan(𝜙/2), which is the metric on the cylinder. Thus, (3.352)
describes how the first hemisphere 0 ≤ 𝜙 ≤ 𝜋/2 maps to half of the capped cylinder.
The remaining hemisphere should be treated symmetrically under 𝜙 → 𝜋 − 𝜙. In
practice, this means integrating the anomaly over 𝜙 ∈ [0, 𝜋/2] and including a factor
of 2.

Plugging the Weyl factor (3.352) into (3.351) is subtle because 𝜔′′ has a 𝛿-function
singularity at 𝜙 = 𝜙0. In (3.351), this 𝛿-function gets multiplied by a function of 𝜔′,
which is discontinuous at the support of the 𝛿-function! To get the correct result,
we must regularize 𝜔 by smoothing out the discontinuities in its derivatives. For
example, we can model 𝜔′ near 𝜙0 as

𝜔′(𝜙) = 1
2

(
𝜔′
+ + 𝜔′

− + (𝜔′
+ − 𝜔′

−)erf ( 𝜙−𝜙0
𝜖

)
)
, (3.355)

where 𝜖 is a small regulator, and 𝜔′
± are the values of 𝜔′ to the left and the right of

the discontinuity. Plugging this into (3.351), expanding to leading order in 𝜖 , and
writing 𝜙 = 𝜙0 + 𝜖𝑥, we obtain integrals of the form∫

𝑑𝑥 𝑒−𝑥
2
erf (𝑥)𝑛 = 1 + (−1)𝑛

2

√
𝜋

𝑛 + 1
, (3.356)

which give finite, calculable contributions. Applying this procedure, we can obtain
the contribution to (3.351) from an infinitesimal neighborhood of 𝜙0:

(contribution near 𝜙0) =


𝑎2
2 log(𝑟 cosh 𝛽

2 ) 𝑑 = 2,
𝑎4
4 log(𝑟 cosh 𝛽

2 )
sinh 𝛽−4 cosh 𝛽−6

4(cosh 𝛽+1) 𝑑 = 4,

· · ·

(3.357)

The detailed expressions here will not matter for our purposes. The important
observation is that the contributions (3.357) all vanish when 𝑟 = 1 and 𝛽 = 0. We
will take advantage of this fact shortly.

Before computing the full result from plugging (3.352) into (3.351), let us use a
shortcut to determine its 𝑟-dependence. From cutting and gluing, we expect the
capped cylinder partition function to take the form

log 𝑍 (C𝑟,𝛽) = log |𝑍glue(𝑟) |2 − 𝜀0𝛽, (3.358)

where 𝜀0 is the Casimir energy on a unit 𝑆𝑑−1, given in (3.42). We can determine
the 𝑟-dependence of the right-hand side by starting with a cylinder C1,𝛽 of radius 1
and performing a Weyl rescaling 𝑔 → 𝑟2𝑔 to get C𝑟,𝛽. Because the integral of the



131

𝑑 2 4 6 8 10 12 14
𝑓 (𝑑) 1 7

3
37
5

1066
35

3254
21

72428
77

949484
143

Table 3.3: Values of 𝑓 (𝑑) for the first few even 𝑑.

Euler density is topological, a constant Weyl rescaling gives the same anomaly on
the capped cylinder as on the sphere. In other words, we have

log 𝑍 (C𝑟,𝛽) − log 𝑍 (C1,𝛽) = log 𝑍 (𝑆𝑑𝑟 ) − log 𝑍 (𝑆𝑑), (3.359)

where 𝑆𝑑𝑟 is the sphere with radius 𝑟. On the sphere, we can easily integrate the
Weyl anomaly using 𝐸𝑑 [𝑔𝑆𝑑 ] = 𝑑! to give

log 𝑍 (𝑆𝑑𝑟 ) − log 𝑍 (𝑆𝑑) = − (−1)𝑑/2𝑎𝑑𝑑!
(4𝜋)𝑑/2

vol 𝑆𝑑 log 𝑟 = −2(−1)𝑑/2( 𝑑2 )!𝑎𝑑 log 𝑟.

(3.360)

Combining (3.358), (3.359), and (3.360), we conclude

log |𝑍glue(𝑟) |2 = log |𝑍glue(1) |2 − 2(−1)𝑑/2( 𝑑2 )!𝑎𝑑 log 𝑟. (3.361)

Thus, we have completely fixed the 𝛽 and 𝑟 dependence of log 𝑍 (C𝑟,𝛽), and the only
remaining unknown is log 𝑍 (C1,0) = log |𝑍glue(1) |2. As noted above, when 𝑟 = 1
and 𝛽 = 0, the contribution to the Weyl anomaly near 𝜙0 vanishes. Furthermore,
the contribution from the cylinder region vanishes as well since 𝜙0 = 𝜋

2 . We are left
with an integral over the end cap 𝜙 ∈ [0, 𝜋/2] alone:

log |𝑍glue(1) |2 − log 𝑍 (𝑆𝑑)

=
(−1)𝑑/2𝑎𝑑𝑑!
2𝑑−2Γ(𝑑/2)

∫ 1

0
𝑑𝑡

∫ 1

0
𝑑𝑥 [(1 − 𝑡) (1 − 𝑥) (1 + 𝑡 + 𝑥 − 𝑥𝑡)]

𝑑−2
2 (1 − 𝑡) log(𝑥 + 1),

(3.362)

where we made the change of variables 𝑥 = cos 𝜙. We have not found a simple
closed-form formula for log |𝑍glue(1) |2 in general 𝑑. However, it is straightforward
to plug different values of 𝑑 into (3.362) and perform the resulting elementary
integrals. We find that

log |𝑍glue(𝑟) |2 = log 𝑍 (𝑆𝑑
𝑟/2) − (−1)𝑑/2 𝑓 (𝑑)𝑎𝑑 , (3.363)

where 𝑍 (𝑆𝑑
𝑟/2) is the partition function on a sphere of radius 𝑟/2 (determined by

(3.360)), and 𝑓 (𝑑) takes rational values for even 𝑑; see table 3.3.
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Appendix G Counting quantum numbers in the genus-2 block
A four point function of local operators depends on two independent cross ratios
𝑧 and 𝑧. These cross ratios are roughly conjugate to the quantum numbers Δ

and 𝐽 labeling the internal representation. By varying 𝑧, 𝑧 independently, we can
extract information about Δ and 𝐽 independently (for example, using Caron-Huot’s
Lorentzian inversion formula [48]).

Note that the internal operator in a four-point function may transform in a compli-
cated SO(𝑑) representation whose Young diagram has multiple rows with lengths
(𝑚1, 𝑚2, . . . , 𝑚𝑛), where 𝑛 = ⌊ 𝑑2 ⌋ and 𝑚1 = 𝐽. However, in a fixed four-point
function, only 𝑚1 = 𝐽 is unbounded. The remaining 𝑚𝑖 are bounded.

In this appendix, we point out a similar match between unbounded quantum num-
bers in the genus-2 block 𝐵𝑠′𝑠123 and the dimension of the moduli space of genus-2
conformal structures dimM = dim SO(𝑑 + 1, 1). Before explaining the general
case, let us describe the matching in 𝑑 = 2 and 𝑑 = 3.

In 𝑑 = 2, there is a unique three-point structure, so the labels 𝑠, 𝑠′ take only one
value. The only unbounded quantum numbers in the block are the dimensions and
spins of the three exchanged operators. This gives six quantum numbers, which
matches dimM = 6 in 𝑑 = 2.

In 𝑑 = 3, we again have six unbounded quantum numbers from the dimensions and
spins of the exchanged operators. However, we must also take into account the 3-
point structure labels 𝑠, 𝑠′. One way to count them is to work in the embedding space.
(The counting is even easier in the 𝑞-basis, but our embedding-space discussion will
be useful later.) In the embedding space formalism, a spin-𝐽 operator becomes
a homogeneous function O(𝑋, 𝑍) of an embedding coordinate 𝑋 ∈ R𝑑+1,1 and a
polarization vector 𝑍 ∈ C𝑑+1,1, subject to orthogonality conditions 𝑋2 = 𝑍2 =

𝑋 · 𝑍 = 0, and a gauge redundancy 𝑍 ∼ 𝑍 + 𝜆𝑋 . The operator O(𝑋, 𝑍) has
homogeneity −Δ in 𝑋 and 𝐽 in 𝑍 . A general three-point structure for such operators
is given by

⟨O1(𝑋1, 𝑍1)O2(𝑋2, 𝑍2)O3(𝑋3, 𝑍3)⟩ ∋
𝑉
𝐽1−ℓ2−ℓ3
1 𝑉

𝐽2−ℓ3−ℓ1
2 𝑉

𝐽3−ℓ1−ℓ2
3 𝐻

ℓ1
23𝐻

ℓ2
31𝐻

ℓ3
12

𝑋
Δ1+Δ2−Δ3
12 𝑋

Δ2+Δ3−Δ2
23 𝑋

Δ3+Δ1−Δ2
31

(ℓ2 + ℓ3 ≤ 𝐽1, ℓ3 + ℓ1 ≤ 𝐽2, ℓ1 + ℓ2 ≤ 𝐽3),
(3.364)

where 𝐻𝑖 𝑗 and 𝑉𝑖 are standard polynomials in the polarization vectors [69]. The
three point structure is labeled by integers ℓ1, ℓ2, ℓ3, which are constrained by the
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requirement that the correlator should be a polynomial in the 𝑍𝑖.

The ℓ𝑖 are unbounded in the limit of large spin 𝐽𝑖. However, there is a relation
between the 𝐻𝑖 𝑗 and 𝑉𝑖:

(𝑉1𝐻23 +𝑉2𝐻13 +𝑉3𝐻12 + 2𝑉1𝑉2𝑉3)2 = 2𝐻12𝐻13𝐻23. (3.365)

Using this relation, we can always reduce one of the 𝜆𝑖 to zero, so the number of
unbounded quantum numbers labeling the three-point structures in 3D is 3 − 1 = 2.
The conformal block is labeled by two three-point structures, so this gives 2× 2 = 4
additional unbounded quantum numbers for the block. Overall, we have 6 + 4 =

10 = dimM in 3𝐷.

We are now ready to tackle the 𝑑-dimensional case. In the 𝑑-dimensional embedding
formalism, an operator O becomes a homogeneous function of an embedding co-
ordinate 𝑋 ∈ R𝑑+1,1 and polarization vectors 𝑊1, . . . ,𝑊𝑛 ∈ C𝑑+1,1, where 𝑛 = ⌊ 𝑑2 ⌋.
(We conventionally write 𝑊1 = 𝑍 .) More formally, O is a locally holomorphic
section of a line bundle over the flag variety V𝑑+1,1 of SO(𝑑 + 1, 1), which has
(𝑋,𝑊1, · · · ,𝑊𝑛) as projective coordinates. The number of these coordinates, sub-
ject to orthogonality relations and modulo gauge redundancies, is the same as the
complex dimension of the flag variety, which is

dimCV𝑑+1,1 =
1
2
(dim SO(𝑑 + 1, 1) − dim𝑇) = 1

2

(
(𝑑 + 1) (𝑑 + 2)

2
−

⌊
𝑑 + 2

2

⌋)
,

(3.366)

where 𝑇 is the maximal torus of SO(𝑑 + 1, 1). See [68, 136] for more discussion on
the embedding formalism for general tensors.

For example, in 𝑑 = 3, this gives dimCV4,1 = 4, which is the correct number
of degrees of freedom in the vectors 𝑋, 𝑍 ∈ R4,1. We can see this explicitly by
restricting to the Poincare section 𝑋 = (1, 𝑥2, 𝑥) and 𝑍 = (1, 2𝑥 · 𝑧, 𝑧). Here 𝑥 ∈ R3

is unconstrained, and 𝑧 is a null vector in 3D, modulo rescaling, which corresponds
to a single angle on the celestial circle.

A three-point function ⟨O1O2O3⟩ is a section of a line bundle over three copies of
V𝑑+1,1, satisfying invariance under SO(𝑑+1, 1). In the large quantum number limit,
the number of quantum numbers labeling such sections is

#(Z-valued 3-pt structure labels) = 3 dimCV𝑑+1,1 − dim SO(𝑑 + 1, 1). (3.367)
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Finally, a genus-2 block has two three-point structure labels 𝑠, 𝑠′, together with
dim𝑇 = ⌊ 𝑑+2

2 ⌋ quantum numbers for each of the three internal operators. Overall,
the number of unbounded quantum numbers is

2
(
3 dimV𝑑+1,1 − dim SO(𝑑 + 1, 1)

)
+ 3 dim𝑇 = dim SO(𝑑 + 1, 1) = dimM .

(3.368)
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C h a p t e r 4

ANGULAR FRACTALS IN THERMAL QFT

4.1 Introduction
Many aspects of conformal field theories (CFTs) are universal at high energies. A
famous example is Cardy’s formula, which states that the entropy of local operators
at sufficiently high energies takes a universal form in all unitary, compact 2D CFTs
[46] (see [168, 170, 175] for a precise formulation). Equivalently, the partition
function of a 2D CFT

Tr
[
𝑒−𝛽𝐻+𝑖𝜃𝐽

]
(4.1)

is universal in the high temperature regime 𝛽 → 0 with 𝜃 ∼ 𝑂 (𝛽).

The derivation of Cardy’s formula uses invariance of the torus partition function
under the modular transformation 𝑆 : 𝜏 ↦→ −1/𝜏. By instead using the full modular
group PSL(2,Z), one finds similar universal behavior as 𝛽 → 0, near any rational
angle 𝜃 =

2𝜋𝑝
𝑞

, see e.g. [24]. This leads to universal "spin-refined" versions of
the density of states. For example, in the case 𝑝

𝑞
= 1

2 , the modular transformation
𝜏 ↦→ −𝜏

2𝜏−1 gives the universal behavior of

Tr
[
𝑒−𝛽(𝐻−𝑖Ω𝐽) (−1)𝐽

]
= Tr

[
𝑒−𝛽𝐻+𝑖𝜃𝐽

]
𝜃=𝜋+𝛽Ω , (4.2)

in the regime 𝛽 → 0 with Ω ∼ 𝑂 (1). For any given 2D CFT, the logarithm of (4.2)
is 1/4 the logarithm of (4.1) at high temperature, leading to a universal result for the
difference between densities of even- and odd-spin operators in 2D CFTs.1

While modular invariance is not available on 𝑆𝑑−1× 𝑆1 in higher dimensions, higher
dimensional CFTs still display forms of universality at high energies, both in their
density of states [7, 25, 27, 147, 188, 189, 199], and OPE coefficients [25, 74]. A
central insight from [14, 27, 127] is that the high temperature behavior of a CFT can
be captured by a "thermal Effective Field Theory (EFT)" that efficiently encodes the
constraints of conformal symmetry and locality. In [7, 25, 188, 189], thermal EFT
plays the role of a surrogate for the modular 𝑆-transformation (as well as modular
transformations on genus-2 surfaces).

1Modular invariance on higher genus surfaces also leads to universal results for OPE coefficients
in 2D CFTs, as derived in [36, 44, 72, 115, 141], and unified in [67].
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Figure 4.1: A qualitative picture of log(log(𝑍)) in the 3D Ising CFT, where
𝑍 = Tr(𝑒−𝛽𝐻+𝑖𝜃𝐽) is the 𝑆2 × 𝑆1 partition function. To construct this picture,
we took the leading terms in the EFT description around each rational angle (up
to denominator 15), and combined them with a root-mean-square. We give more
detail in Appendix 4.10.

In this work, we will be interested in "spin-refined" information about the CFT
density of states in general dimensions. In particular, we will study the partition
function (4.1) with high temperature (𝛽 ≪ 1) and finite angles ®𝜃. (In higher
dimensions we promote ®𝜃 and ®𝐽 to vectors with ⌊𝑑/2⌋ components coming from
the rank of 𝑆𝑂 (𝑑).) The regime ®𝜃 = 𝛽 ®Ω with fixed ®Ω is captured by thermal EFT
as discussed in [14, 25, 27, 127, 188]. However, when ®𝜃 does not scale to zero as
𝛽 → 0, the naïve EFT description breaks down.

A simple example of a partition function with finite ®𝜃 is (4.2): the relative density of
even-spin and odd-spin operators with respect to some particular Cartan generator
𝐽 of the rotation group. This observable is naïvely outside the regime of validity of
the thermal EFT, since 𝜃 remains finite as 𝛽 → 0.

More generally, we can consider a partition function that includes a rotation by finite
rational angles in each of the Cartan directions:2

Tr
[
𝑒−𝛽(𝐻−𝑖

®Ω· ®𝐽)𝑅
]
, where 𝑅 = 𝑒

2𝜋𝑖
(
𝑝1
𝑞1
𝐽1+···+ 𝑝𝑛𝑞𝑛 𝐽𝑛

)
. (4.3)

Using a trick that was applied in [10] to study superconformal indices near roots of
unity, we will find a different EFT description for this partition function, in terms
of the thermal EFT on a background geometry with inverse temperature 𝑞𝛽 and
spatial manifold 𝑆𝑑−1/Z𝑞, where 𝑞 = lcm(𝑞1, . . . , 𝑞𝑛). This determines the small-𝛽

2In parity-invariant theories, we can also include reflections.
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expansion of (4.3) in terms of the usual Wilson coefficients of thermal EFT, up to
new subleading contributions from "Kaluza-Klein vortices" that we classify. For
example, the effective free energy density of (4.3), coming from the leading term in
the thermal effective action, is smaller than the usual free energy density by a factor
of 1/𝑞𝑑 . In particular, the effective free energy density of even-spin minus odd-spin
operators described by (4.2) is smaller by 1/2𝑑 . (This generalizes the factor of 1/4
in 2D.)3

The EFT descriptions around each rational angle patch together to create fractal-like
behavior in the high-temperature partition function; see Figure 4.1 for an illustra-
tion in the 3D Ising CFT. It is remarkable that effective field theory constrains
the asymptotics of the partition function in such an intricate way, even in higher
dimensions.

Kaluza-Klein vortices appear whenever the rational rotation 𝑅 does not act freely
on the sphere 𝑆𝑑−1. Each vortex creates a defect in the thermal EFT, whose action
can be written systematically in a derivative expansion in background fields. By
contrast, when 𝑅 generates a group that acts freely, no vortex defects are present,
and the complete perturbative expansion of (4.3) in 𝛽 is determined in terms of
thermal EFT Wilson coefficients, with no new undetermined parameters.

While most of our discussion and examples are focused on CFTs, our formalism also
applies to general QFTs. In particular, using thermal effective field theory, we derive
a relation between the partition function at temperature 𝑇 with a discrete isometry
of order 𝑞 inserted, to the partition function with no insertion at temperature 𝑇/𝑞,
in the thermodynamic limit.4 For example, we have

− log TrH(M𝐿)
[
𝑒−𝛽𝐻𝑅

]
∼ −1

𝑞
log TrH(M𝐿)

[
𝑒−𝑞𝛽𝐻

]
+ topological + KK defects

(as 𝐿 → ∞).
(4.4)

Here, M𝐿 is a spatial manifold of characteristic size 𝐿, with associated Hilbert
space H(M𝐿), 𝑅 is a discrete isometry of order 𝑞, and "∼" denotes agreement to all
perturbative orders in 1/𝐿. The relation (4.4) holds whenever the theory is gapped at
inverse temperature 𝑞𝛽. We write the most general relation in (4.32), which we check

3Note that simply taking the density of states computed in [25] and inserting the phase 𝑅 into
the trace will not give the correct answer to the partition function. For a demonstration of this in 2D,
see Appendix B of [24].

4We are extremely grateful to Luca Delacretaz for emphasizing the general QFT case to us.
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in both massive and massless examples. An interesting consequence of this simple
formula is that twists by discrete isometries can be sensitive to lower-temperature
phases of the theory. For example, the partition function of QCD at temperature
𝑇 > ΛQCD, twisted by a discrete isometry with order 𝑞, becomes sensitive to physics
below the confinement scale when 𝑇/𝑞 < ΛQCD.

This universality of partition functions with spacetime symmetry insertions is in
contrast to the case for global symmetry insertions. The insertion of a global
symmetry generator operator is equivalent to turning on a new background field in
the thermal EFT. The dependence of the effective action on this background field
introduces new Wilson coefficients that are not necessarily related in a simple way
to the Wilson coefficients without the global symmetry background; see e.g. [102,
128, 174].

The paper is organized as follows. In Section 4.2, we present a derivation of our
main result: a systematic study of the high temperature expansion of the partition
function of any quantum field theory with the insertion of a discrete isometry. In
Section 4.3, we look in more detail at the Kaluza-Klein vortices that appear on
𝑆𝑑−1 when the discrete isometry (which is a rational rotation in this case) has fixed
points. In Section 4.4, we discuss subtleties that appear for fermionic theories.
In Section 4.5, we give several examples in free theories that illustrate our general
results. In Section 4.6, we consider thermal effective actions with topological terms.
In Section 4.7, we apply our results to holographic CFTs. In Section 4.8, we look at
irrational 𝜃. In Section 4.9, we discuss non-perturbative corrections in temperature.
Finally in Section 4.10, we conclude and discuss future directions.

4.2 Folding and unfolding the partition function
Thermal effective action and finite velocities
Equilibrium correlators of generic interacting QFTs at finite temperature are ex-
pected to have a finite correlation length. Equivalently, the dimensional reduction
of a generic interacting QFT on a Euclidean circle is expected to be gapped. When
this is the case, long-distance finite-temperature observables of the QFT can be cap-
tured by a local "thermal effective action" of background fields [14, 27, 127]. For
example, consider the partition function of a QFT𝑑 on M𝐿 × 𝑆1

𝛽
, where the spatial
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𝑑−1-manifold M𝐿 has size 𝐿. In the thermodynamic limit of large 𝐿, we have

TrH(M𝐿) [𝑒−𝛽𝐻𝐿 ] = 𝑍QFT [M𝐿 × 𝑆1
𝛽]

= 𝑍gapped [M𝐿]
∼ 𝑒−𝑆th [𝑔,𝐴,𝜙] + nonperturbative in 1/𝐿 (𝐿 → ∞), (4.5)

where H(M𝐿) is the Hilbert space of states on M𝐿 , and 𝐻𝐿 is the Hamiltonian.
Here, the thermal effective action 𝑆th depends on a 𝑑−1-dimensional metric 𝑔𝑖 𝑗 , a
Kaluza-Klein gauge field 𝐴𝑖, and a dilaton 𝜙, which can be obtained by placing the
𝑑-dimensional metric in Kaluza-Klein (KK) form

𝐺𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 = 𝑔𝑖 𝑗 (®𝑥)𝑑𝑥𝑖𝑑𝑥 𝑗 + 𝑒2𝜙(®𝑥) (𝑑𝜏 + 𝐴𝑖 (®𝑥))2, (4.6)

where 𝜏 ∼ 𝜏 + 𝛽 is a periodic coordinate along the thermal circle. The derivative
expansion for 𝑆th becomes an expansion in inverse powers of the length 𝐿.

If the spatial manifold M𝐿 possesses a continuous isometry 𝜉, then we can addi-
tionally twist the partition function by the corresponding charge 𝑄𝜉 :

TrH(M𝐿)
[
𝑒−𝛽(𝐻𝐿−𝑖𝛼𝑄 𝜉 )

]
. (4.7)

Geometrically, this twist corresponds to a deformation of the background fields
𝑔, 𝐴, 𝜙 that depends on 𝛼𝜉. In the thermodynamic limit, we can describe (4.7) using
the thermal effective action, provided that the background fields 𝑔, 𝐴, 𝜙 remain finite
as 𝐿 → ∞. In particular, the combination 𝛼𝜉 must remain finite as 𝐿 → ∞. The
physical reason is that 𝑖𝛼 represents the velocity of the system in the direction of 𝜉
in the canonical ensemble. This velocity must remain finite in order to have a good
thermodynamic limit.

By contrast, suppose that M𝐿 possesses a nontrivial discrete isometry 𝑅 with finite
order 𝑅𝑞 = 1. If we twist the partition function by 𝑅,

TrH(M𝐿)
[
𝑒−𝛽𝐻𝑅

]
, (4.8)

then physically this corresponds to a system whose "velocity" is of order 𝐿. The
background fields 𝑔, 𝐴, 𝜙 naïvely do not have a good thermodynamic limit, and we
cannot apply the thermal effective action in an obvious way.

• Example: CFT partition function

An important example for us is the partition function of a CFT𝑑 on 𝑆𝑑−1 × 𝑆1
𝛽
.

Conformal invariance dictates that

Tr
[
𝑒−𝛽(𝐻−𝑖

®Ω· ®𝐽)
]
= TrH(𝑆𝑑−1

𝐿
)

[
𝑒−𝐿𝛽(𝐻𝐿−𝑖

®Ω· ®𝐽𝐿)
]
. (4.9)
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On the left-hand side, we have the usual partition function of the CFT on a sphere
of radius 1. On the right-hand side, 𝐻𝐿 denotes the Hamiltonian on a sphere 𝑆𝑑−1

𝐿

of radius 𝐿, and ®𝐽𝐿 are generators of isometries of the sphere, normalized so that
the corresponding Killing vectors are finite in the flat-space limit 𝐿 → ∞. (For
example, for a rotation of the sphere by an angle 𝜙, a Killing vector with a finite
flat-space limit is 1

𝐿
𝜕
𝜕𝜙

.)

When 𝛽 is small, we can set 𝐿 = 𝑂 (1/𝛽) on the right-hand side and try to apply the
thermal effective action (4.5). We find that in order to have a good thermodynamic
limit as 𝛽 → 0, the angular potentials ®Ω must remain finite. Phrased in terms of the
rotation angle ®𝜃 = 𝛽 ®Ω, we find that ®𝜃 must scale to zero as 𝛽 → 0. Provided this
is the case, the 1/𝐿 expansion of the thermal effective action gives an expansion in
small 𝛽 for the CFT partition function.

We can also understand condition ®𝜃 → 0 more explicitly from a direct computa-
tion using the thermal effective action. In a CFT, the thermal effective action is
constrained by 𝑑-dimensional Weyl invariance. The most general coordinate- and
Weyl-invariant action takes the form5,6

𝑆th =

∫
𝑑𝑑−1®𝑥
𝛽𝑑−1

√︁
𝑔̂

(
− 𝑓 + 𝑐1𝛽

2𝑅 + 𝑐2𝛽
2𝐹2 + . . .

)
+ 𝑆anom. (4.10)

Here 𝑔̂ = 𝑒−2𝜙𝑔, 𝑅 is the Ricci scalar built from 𝑔̂, 𝐹2 is a Maxwell term, etc. The
term 𝑆anom accounts for Weyl anomalies (which are not important for the present
discussion).

On the geometry 𝑆𝑑−1 × 𝑆1
𝛽
, we can easily determine 𝑔, 𝐴, 𝜙 and evaluate 𝑆th [25]:

𝑆th =
vol 𝑆𝑑−1∏𝑛
𝑖=1(1 +Ω2

𝑖
)

[
− 𝑓 𝑇𝑑−1 + (𝑑 − 2)

(
(𝑑 − 1)𝑐1 +

(
2𝑐1 +

8
𝑑
𝑐2

) 𝑛∑︁
𝑖=1

Ω2
𝑖

)
𝑇𝑑−3 + . . .

]
.

(4.11)

We see that terms of order 𝑇 𝑑−1−𝑘 = 𝛽𝑘−𝑑+1 in the high-temperature expansion
of 𝑆th are multiplied by a polynomial in the angular potentials Ω𝑖 of degree 𝑘 (see
e.g. examples in [31]). Consequently, 𝜃𝑖 → 0 as 𝛽 → 0 is necessary for the
high-temperature expansion to be well-behaved.

5For simplicity, here we assume that the theory is free of gravitational anomalies.
6Note that [25] worked in conventions where 𝜏 has periodicity 1, and 𝛽 is absorbed into the field

𝜙. In this paper, we instead use conventions where 𝜏 has dimensionful periodicity 𝛽 (later we will
also have other periodicities) so that explicit powers of 𝛽 appear in the action (4.10), as required by
dimensional analysis. To convert from the conventions of [25] to the conventions in this work, one
shifts the dilaton by 𝜙 → 𝜙 + log 𝛽.
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To summarize, the thermal effective action can describe "small" angles 𝜃 ∼ 𝛽Ω,
where the angular velocity remains finite in the thermodynamic limit. However,
results from the thermal effective action like (4.11) break down outside this regime.
How can we access more general angles?

Spin-refined partition functions: warm-up in 2D CFT
As a warm-up, in 2D CFT, we can compute partition functions at more general
angles using modular invariance. Let us review how this works and derive some
example results. For convenience, we write the partition function as

𝑍 (𝜏, 𝜏) = Tr
[
𝑒2𝜋𝑖𝜏(𝐿0− 𝑐

24 )−2𝜋𝑖𝜏(𝐿0− 𝑐
24 )

]
, (4.12)

where 𝜏 =
𝑖𝛽

2𝜋 + 𝜃
2𝜋 and 𝜏 = 𝜏∗.7 The high temperature behavior of 𝑍 (𝜏, 𝜏) at

small angles can be obtained by performing the modular transformation 𝜏 → −1/𝜏
(similarly for 𝜏) and approximating by the contribution of the vacuum state. The
result agrees with the thermal effective action:

Tr
[
𝑒−𝛽(𝐻−𝑖Ω𝐽)

]
∼ 𝑒−𝑆th = exp

[
vol 𝑆1

(1 +Ω2)
𝑓

𝛽

]
= exp

[
4𝜋2

𝛽(1 +Ω2)
𝑐

12

]
(CFT2),

(4.13)

where 𝑓 = 2𝜋𝑐
12 . Here, we assume 𝑐𝐿 = 𝑐𝑅 for simplicity. In this case, only the

cosmological constant term appears in the thermal effective action in 2D.

Now let us instead assume that 𝜃
2𝜋 is close to a nonzero rational angle 𝑝

𝑞
, so that

𝜏, 𝜏 are very close to 𝑝

𝑞
. Following [24], we can perform a different modular

transformation to map (𝜏, 𝜏) close to ±𝑖∞ and approximate the partition function by
the vacuum state in the new channel. For example, let us study the partition function
with an insertion of (−1)𝐽 given in (4.2). In this case, we have

𝜏 =
1
2
+ 𝛽Ω

2𝜋
+ 𝑖𝛽

2𝜋

𝜏 =
1
2
+ 𝛽Ω

2𝜋
− 𝑖𝛽

2𝜋
, 𝛽 ≪ 1, Ω ∼ 𝑂 (1). (4.14)

Modular invariance is the statement

𝑍 (𝛾 ◦ 𝜏, 𝛾 ◦ 𝜏) = 𝑍 (𝜏, 𝜏) , 𝛾 ∈ PSL(2,Z). (4.15)
7Note that in this section, 𝜏 denotes the modular parameter of the torus, while in other sections

𝜏 denotes Euclidean time. We hope this will not cause confusion.
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An appropriate transformation in this case is

𝛾 = ±
(
−1 0
2 −1

)
∈ PSL(2,Z), (4.16)

which leads to

Tr
[
𝑒−𝛽(𝐻−𝑖Ω𝐽) (−1)𝐽

]
= Tr

[
𝑒2𝜋𝑖𝜏̃(𝐿0− 𝑐

24 )−2𝜋𝑖𝜏̃(𝐿0− 𝑐
24 )

]
∼ exp

[
1
4

4𝜋2

𝛽(1 +Ω2)
𝑐

12

]
,

where 𝜏̃ = −1
2
+ 𝜋𝑖

2𝛽(1 − 𝑖Ω) , 𝜏̃ = 𝜏̃∗. (4.17)

On the right-hand side, we approximated the trace by the contribution of the vacuum
state in the 𝛽 → 0 limit. We find that the partition function weighted by (−1)𝐽 grows
exponentially in 1/𝛽, with an exponent that is 1/4 of the un-weighted case (4.13).

For a general angle 𝜃
2𝜋 close to 𝑝

𝑞
, we repeat the same logic above but with a more

complicated modular transformation, namely

𝛾 = ±
(
−(𝑝−1)𝑞 𝑏

𝑞 −𝑝

)
∈ PSL(2,Z), (4.18)

where (𝑝−1)𝑞 is the inverse of 𝑝 modulo 𝑞, and 𝑏 is chosen so the matrix has
determinant 1. We get

Tr
[
𝑒−𝛽(𝐻−𝑖Ω𝐽)𝑒2𝜋𝑖 𝑝

𝑞
𝐽
]
∼ exp

[
1
𝑞2

4𝜋2

𝛽(1 +Ω2)
𝑐

12

]
. (4.19)

In general, we find that the partition function of a 2D CFT weighted by 𝑒2𝜋𝑖 𝑝
𝑞
𝐽 grows

exponentially in 1/𝛽, with an exponent that is 1/𝑞2 of the un-weighted case (4.13).

Because modular invariance is not available in higher dimensions, it will be useful
to rederive (4.19) in a different way. We now describe two (related) approaches that
can generalize to higher dimensions.

Folding and unfolding
Thermal EFT naively breaks down in spin-refined partition functions like (4.2)
because the large spacetime symmetry (−1)𝐽 moves us outside the thermodynamic
limit. One way to recover an EFT description is to perform a change of coordinates
that makes (−1)𝐽 look more like a global symmetry.

For example, consider a spin-refined partition function of a 2D QFT (not necessarily
conformal) on 𝑆1

𝐿
× 𝑆1

𝛽
,

Tr
[
𝑒−𝛽𝐻 (−1)𝐽

]
, (4.20)
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where (−1)𝐽 denotes a rotation of the spatial circle 𝑆1
𝐿

by 𝜋. We can reinterpret
one copy of the QFT on 𝑆1

𝐿
× 𝑆1

𝛽
as two copies of the QFT on (𝑆1

𝐿
/Z2) × 𝑆1

𝛽
,

with topological defects that glue the two copies to each other, see the middle of
Figure 4.2. In this picture, the operator (−1)𝐽 becomes a topological defect that
simply permutes the two copies of the QFT as we move along the time direction. If
we begin in one copy of the QFT and move by 𝛽 in Euclidean time, we pass once
through the (−1)𝐽 defect and go to the other copy. Moving by 𝛽 again, we pass
through the (−1)𝐽 defect again and end up in the first copy. Thus, inserting (−1)𝐽

into the partition function creates a new effective thermal circle of length 2𝛽.

𝐿

𝛽 2𝛽

𝐿/2

=⇒ =⇒

Figure 4.2: Left: The torus partition function with spatial cycle of length 𝐿, inverse
temperature 𝛽, and an insertion of (−1)𝐽 . The (−1)𝐽 insertion means we must glue
the top and bottom of the figure with a half shift around the spatial circle. We split
the figure into a left and right half using the trivial defect (vertical dashed line), and
for convenience we color the right half grey. Middle: Placing the black and grey
rectangles on top of each other, we can interpret this same observable as the partition
function of two copies of the QFT (black and grey) on an (𝐿/2) × 𝛽 rectangle, with
boundary conditions inherited from the left figure. Right: Finally, we can re-stack
the two copies of the QFT, resulting in a single copy of the QFT with a new spatial
circle of length 𝐿/2 and an effective thermal circle of length 2𝛽. Note that the
effective thermal circle is nontrivially fibered over the new spatial circle.

This reinterpretation of the path integral with a (−1)𝐽 insertion is illustrated in
Figure 4.2. One wrinkle (that is clear in the figure) is that the effective thermal 𝑆1

2𝛽
is nontrivially fibered over the spatial circle 𝑆1

𝐿
/Z2: when we go once around the

new spatial circle, the 𝑆1
2𝛽 shifts by 𝛽.

So far, we have considered a rotation angle of 𝜋. However, it is straightforward
to study nearby rotation angles of the form 𝜃 = 𝜋 + 𝛽Ω. On the left-hand side of
Figure 4.2, we simply insert an additional topological operator along the spatial
cycle that implements the small rotation 𝑒𝑖𝛽Ω𝐽 . Following the manipulations in the
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figure, we end up with a product of two such operators on the new spatial cycle
𝑆1
𝐿
/Z2, which together implement a rotation of 2𝛽Ω.

The advantage of this rewriting of the path integral is that we can now smoothly take
the thermodynamic limit 𝐿 → ∞ and use the thermal effective action. The effective
inverse temperature is 2𝛽, the rotation angle is 2𝛽Ω, and the effective spatial cycle
is 𝑆1

𝐿
/Z2.

In fact, the above construction is straightforward to generalize to twists by any
rational angle:

Tr
[
𝑒
−𝛽(𝐻−𝑖Ω𝐽)+2𝜋𝑖 𝑝

𝑞
𝐽
]
. (4.21)

We interpret (4.21) as the partition function of 𝑞 copies of the QFT on the space
𝑆1
𝐿
/Z𝑞, with appropriate topological defects that glue the copies together. The

operator 𝑒2𝜋𝑖 𝑝
𝑞
𝐽 becomes a topological defect that permutes the copies of the QFT as

we move around the Euclidean time circle. This creates an effective thermal circle
𝑆1
𝑞𝛽

, which is fibered over 𝑆1
𝐿
/Z𝑞. We can now apply thermal EFT on 𝑆1

𝐿
/Z𝑞.

• Example: 2D CFT

As an example application, we can recover our previous answer for the spin-refined
partition function of a 2D CFT. For a twist by (−1)𝐽 , we find

Tr
[
𝑒−𝛽 (𝐻−𝑖Ω𝐽 ) (−1)𝐽

]
∼ 𝑒−𝑆th [𝑆1/Z2×𝑆1

2𝛽 ] = exp
[
2𝜋𝑐
12

vol(𝑆1/Z2)
2𝛽(1 +Ω2)

]
= exp

[
1
4

4𝜋2

𝛽(1 +Ω2)
𝑐

12

]
.

(4.22)

In the action, we obtain one factor of 1
2 from the smaller spatial cycle 𝑆1/Z2, and

another factor of 1
2 from the larger thermal circle, resulting in an overalll factor of 1

4
that agrees with the result from modular invariance (4.17).8

More generally, for a twist by 2𝜋𝑝
𝑞

, the thermal effective action gives

Tr
[
𝑒−𝛽 (𝐻−𝑖Ω𝐽 )𝑒

2𝜋𝑖𝑝
𝑞
𝐽
]
∼ 𝑒−𝑆th [𝑆1/Z𝑞×𝑆1

𝑞𝛽
]
= exp

[
2𝜋𝑐
12

vol(𝑆1/Z𝑞)
𝑞𝛽(1 +Ω2)

]
= exp

[
1
𝑞2

4𝜋2

𝛽(1 +Ω2)
𝑐

12

]
.

(4.23)
8The fact that the thermal circle is nontrivially fibered plays no role here because the thermal

effective action is the integral of a local coordinate-invariant quantity that does not detect global
features of the bundle. In a theory with a gravitational anomaly, the thermal effective action
would contain an additional 1-dimensional Chern-Simons for the Kaluza-Klein gauge field, which
can detect the nontrivial topological structure of the thermal circle bundle; see Section 4.6. The
nontrivial topology also enters into nonperturbative corrections; see Section 4.9.
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We find that the effective free energy at high temperature for the spin-refined
partition function (4.21) is down by a factor of 𝑞2, in agreement with (4.19). Note
that the precise permutation of the copies of the CFT implemented by 𝑒2𝜋𝑖 𝑝

𝑞
𝐽 depends

on 𝑝, but the length of the resulting thermal circle does not. Consequently the
partition function is independent of 𝑝, up to nonperturbative corrections as 𝛽 → 0.9

• Higher dimensions

The above construction works for 𝑑 > 2 as well, and on more general geometries.
Consider a QFT𝑑 on any (𝑑−1)-dimensional spatial manifold M𝐿 with a discrete
isometry 𝑅 of finite order 𝑅𝑞 = 1. Again, we can reinterpret one copy of the QFT
on M𝐿 × 𝑆1

𝛽
as 𝑞 copies of the QFT on (M𝐿/Z𝑞) × 𝑆1

𝛽
, with topological defects that

glue the copies to each other. In this picture, 𝑅 is represented as a topological defect
that simply permutes the 𝑞 copies of the QFT as we move along the time direction,
creating an effective inverse temperature 𝑞𝛽.

The EFT bundle
Before exploring further consequences of this idea, it will be helpful to adopt a
more abstract, geometrical perspective on this construction. Consider again a 𝑑-
dimensional QFT with spatial manifold M𝐿 . Given an isometry𝑈 ∈ Iso(M𝐿), the
partition function twisted by𝑈10

TrH(M𝐿)
[
𝑒−𝛽𝐻𝑈

]
(4.24)

is computed by the path integral of the CFT on the mapping torus

𝑀𝛽,𝑈 ≡ (M𝐿 × R)/Z, (4.25)

where Z = ⟨ℎ⟩ is generated by

ℎ : M𝐿 × R → M𝐿 × R,

ℎ : (®𝑥, 𝜏) ↦→ (𝑈®𝑥, 𝜏 + 𝛽), (4.26)

where ®𝑥 is a coordinate on M𝐿 .

Now let us specialize to𝑈 = 𝑅, where 𝑅 has order 𝑞. In this case, the 𝑞-th power of
ℎ acts very simply: it leaves M𝐿 invariant, and shifts 𝜏 by 𝑞𝛽:

ℎ𝑞 : (®𝑥, 𝜏) ↦→ (®𝑥, 𝜏 + 𝑞𝛽). (4.27)
9There is 𝑝-dependence if the theory is fermionic (see Section 4.4) or has a gravitational anomaly

(see Section 4.6).
10Here, we abuse notation and write 𝑈 for both the isometry and the operator implementing its

action on the Hilbert space H(M𝐿).
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Consequently, it is useful to decompose Z � 𝑞Z × Z𝑞 = ⟨ℎ𝑞⟩ × (⟨ℎ⟩/⟨ℎ𝑞⟩), and
obtain the mapping torus 𝑀𝛽,𝑅 via two successive quotients. We first quotient by
𝑞Z � ⟨ℎ𝑞⟩ (which turns R into 𝑆1

𝑞𝛽
), and then quotient by Z𝑞 = ⟨ℎ⟩/⟨ℎ𝑞⟩:

𝑀𝛽,𝑅 = ((M𝐿 × R)/𝑞Z)/Z𝑞 = (M𝐿 × 𝑆1
𝑞𝛽)/Z𝑞 . (4.28)

The quotient (M𝐿 × 𝑆1
𝑞𝛽
)/Z𝑞 on the right-hand side of (4.28) can be viewed as a

bundle in two different ways. Firstly, it is a M𝐿-bundle over 𝑆1
𝑞𝛽
/Z𝑞 � 𝑆1

𝛽
. This is

the usual point of view of the trace as a spatial manifold evolving over Euclidean
time 𝛽. However, we can alternatively view (M𝐿 × 𝑆1

𝑞𝛽
)/Z𝑞 as an 𝑆1

𝑞𝛽
bundle

over M𝐿/Z𝑞. We call this latter description the "EFT bundle." In Section 4.2, the
EFT bundle was a nontrivial 𝑆1

𝑞𝛽
bundle over 𝑆1

𝐿
/Z𝑞. As we saw, the virtue of

the EFT bundle is that the thermodynamic limit 𝐿 → ∞ is straightforward: we
can dimensionally reduce along the effective thermal circle 𝑆1

𝑞𝛽
without leaving the

thermodynamic limit. The theory is then described by thermal EFT with effective
inverse temperature 𝑞𝛽 and spatial cycle M𝐿/Z𝑞.

Suppose for the moment that the action of 𝑅 on M𝐿 is free, so that M𝐿/Z𝑞 is
smooth. (This is the case, for example, for a rational rotation of the spatial circle
in 2D.) For any term in the thermal effective action that is the integral of a local
density, the effect of the quotient by Z𝑞 is simply to multiply its contribution by 1/𝑞.
Thus, we conclude

− log Tr
[
𝑒−𝛽𝐻𝑅

]
∼ −1

𝑞
log Tr

[
𝑒−𝑞𝛽𝐻

]
+ topological (if the 𝑅 action is free).

(4.29)

Here, "∼" denotes agreement to all perturbative orders in the 1/𝐿 expansion. The
term "topological" indicates potential contributions from a finite number of terms
capable of detecting the topology of the EFT bundle, which cannot be written as
the integral of a local gauge/coordinate-invariant density. We discuss such terms in
Section 4.6.

Let us pause to note that the result (4.29) really only requires that the theory be
gapped at inverse temperature 𝑞𝛽 (not necessarily at inverse temperature 𝛽), since
we only use locality of the thermal effective action on the right-hand side.

• Adding "small" isometries

Just as before, we can also consider inserting into the trace an additional "small"
isometry 𝑈 = 𝑒𝑖𝛽(𝛼𝑄 𝜉 ) , where 𝜉 is a Killing vector on M𝐿 , 𝑄𝜉 is its corresponding
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charge, and 𝛼 is the corresponding thermodynamic potential. We will be mainly
interested in the case where𝑈 commutes with the discrete isometry 𝑅, so we assume
this henceforth. The insertion of 𝑈 can be thought of as a topological defect that
wraps M𝐿 . Consequently, the defect wraps 𝑞 times around the base of the EFT
bundle M𝐿/Z𝑞, resulting in an effective rotation𝑈𝑞. We conclude that

− log Tr [𝑔𝑅] ∼ −1
𝑞

log Tr [𝑔𝑞] + topological (if the 𝑅 action is free), (4.30)

where 𝑔 = 𝑒−𝛽𝐻𝑈.

In fact, this argument applies to any global symmetry element 𝑉 as well, so (4.30)
holds when 𝑔 is multiplied by a global symmetry group element: 𝑔 = 𝑒−𝛽𝐻𝑈𝑉 . We
can think of 𝑉 as implementing a nontrivial flat connection for a background gauge
field coupled to the global symmetry. In this case, the "topological" terms in (4.30)
could include contributions from nontrivial topology of this connection.

We can also understand the insertion of "small" isometries geometrically. Again,
the idea is to view the mapping torus 𝑀𝛽,𝑈𝑅 as the result of two successive quotients

𝑀𝛽,𝑈𝑅 = ((M𝐿 × R)/⟨ℎ𝑞⟩)/Z𝑞 = 𝑀𝑞𝛽,𝑈𝑞/Z𝑞,
where ℎ : (®𝑥, 𝜏) ↦→ (𝑈𝑅 ®𝑥, 𝜏 + 𝛽), (4.31)

where Z𝑞 = ⟨ℎ⟩/⟨ℎ𝑞⟩, and we have used (𝑈𝑅)𝑞 = 𝑈𝑞. On the right-hand side, we
have the mapping torus 𝑀𝑞𝛽,𝑈𝑞 which is described by the thermal effective action
at inverse temperature 𝑞𝛽, with small isometries 𝑈𝑞 turned on. The effect of the
Z𝑞 quotient is to multiply the contribution of any integral of a local density by 1/𝑞.
This again leads to (4.30).11

The work [10] uses similar ideas to characterize superconformal indices of 4D CFTs
near roots of unity. Our novel contribution is to apply these ideas in not-necessarily-
supersymmetric, not-necessarily-conformal theories, on general spatial geometries,
and also to describe the effects of Kaluza-Klein vortices (see below), which do not
appear in superconformal indices.

• Non-free actions and Kaluza-Klein vortex defects

What happens if the action of 𝑅 is not free? For example, in a 3D QFT on 𝑆2 × 𝑆1
𝛽
,

the action of (−1)𝐽 (where 𝐽 is the Cartan generator of the rotation group) has fixed
11When 𝑈 and 𝑅 don’t commute, the same logic works but we have 𝑀𝑞𝛽, (𝑈𝑅)𝑞/Z𝑞 on the

right-hand side of (4.31). We can still use thermal EFT, since (𝑈𝑅)𝑞 is 𝑂 (𝛽) close to the identity.
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points at the north and south poles of 𝑆2. In this case, the EFT bundle degenerates
at the fixed loci of nontrivial elements of Z𝑞, namely 𝑅, . . . , 𝑅𝑞−1 ∈ Z𝑞. After
dimensional reduction, these degeneration loci becomes defects 𝔇𝑖 (with 𝑖 labelling
the set of defects) in the 𝑑 − 1 dimensional thermal effective theory. We call
them "Kaluza-Klein vortex defects" because the KK gauge field 𝐴 has nontrivial
holonomy around them, as we explain in Section 4.3.

Each defect 𝔇𝑖 contributes to the partition function a coordinate-invariant effective
action 𝑆𝔇𝑖 of the background fields 𝑔, 𝐴, 𝜙 in the infinitesimal neighborhood of 𝔇𝑖.
We then have the more general result

− log Tr [𝑔𝑅] ∼ −1
𝑞

log Tr [𝑔𝑞] + topological +
∑︁
𝔇𝑖

𝑆𝔇𝑖 . (4.32)

We conjecture that for generic interacting QFTs, the KK vortex defects will be
gapped. (In fact, in this work, we will study several examples of free theories where
the appropriate defects are still gapped.) In this case, each 𝑆𝔇𝑖 will be a local
functional of 𝑔, 𝐴, 𝜙.

In CFTs, the defect actions 𝑆𝔇𝑖 are additionally constrained by Weyl-invariance, just
like the bulk terms in the thermal effective action. We will determine the explicit
form of 𝑆𝔇 :=

∑
𝔇𝑖
𝑆𝔇𝑖 in CFTs later in Section 4.3. For now, we simply note that the

leading term in the derivative expansion of 𝑆𝔇𝑖 in a CFT is a cosmological constant
localized on 𝔇𝑖:12

𝑆𝔇𝑖 = 𝑎𝔇𝑖

∫
𝔇𝑖

𝑑𝑛𝑖 𝑦

(𝑞𝛽)𝑛𝑖
√︃
𝑔̂ |𝔇𝑖 + higher derivatives. (4.33)

Here, we assume that 𝔇𝑖 is 𝑛𝑖-dimensional, 𝑦 are coordinates on the defect, and 𝑔̂ |𝔇𝑖
denotes the pullback of 𝑔̂ = 𝑒−2𝜙𝑔 to 𝔇𝑖. This term behaves like 𝛽−𝑛𝑖 as 𝛽 → 0. In
the case 𝑛𝑖 = 0, i.e. when 𝔇𝑖 is point-like (for example the north/south poles of 𝑆2),
the "cosmological constant" becomes simply a constant.

• Example: CFT in general 𝑑

As an example application, consider a 𝑑-dimensional CFT on 𝑆𝑑−1 × 𝑆1
𝛽
. Although

our discussion so far has been somewhat abstract, and we have used only basic
geometry and principles of EFT, our conclusion (4.32) makes powerful predictions

12𝑆𝔇𝑖
itself can also have topological terms; if the topological term has no derivatives (i.e. the

Wilson line of the KK photon), it will contribute at the same order in 𝛽 as the defect cosmological
constant.



149

about CFT spectra. For example, to leading order as 𝛽 → 0, the defect term 𝑆𝔇 does
not contribute, so very generally we obtain a higher dimensional generalization of
(4.23),

log Tr[𝑒−𝛽(𝐻−𝑖 ®Ω· ®𝐽)𝑅] ∼ 1
𝑞𝑑

vol𝑆𝑑−1∏𝑛
𝑖=1(1 +Ω2

𝑖
)

𝑓

𝛽𝑑−1 + . . . , (4.34)

valid for any element 𝑅 of the Cartan subgroup of SO(𝑑) with order 𝑞. For
example, the relative density of even- and odd-spin operators (with respect to any
Cartan generator) grows exponentially at a rate precisely 1/2𝑑 times the rate for the
un-weighted density of states.

Unlike in 𝑑 = 2, the thermal effective action in 𝑑 > 2 can have more than just
a cosmological constant term. Consequently, the ". . ." in (4.34) includes higher-
derivative corrections (in addition to possible vortex defect contributions). However,
these higher-derivative corrections can be predicted in the same way: they differ
from the un-spin-refined case by replacing 𝛽 → 𝑞𝛽 and multiplying by 1/𝑞 to
account for the smaller spatial manifold.

The results (4.34) and (4.32) display an important difference between partition func-
tions weighted by spacetime symmetries and partition functions weighted by global
symmetries. If we replace 𝑅 with a global symmetry element, this corresponds
to turning on new background gauge fields in the thermal effective action, whose
contributions are captured by Wilson coefficients that are not active when the global
symmetry generators are turned off. For example, the density of states weighted by
a global symmetry generator 𝑈 is controlled by a 𝑈-dependent free energy density
𝑓𝑈 with no (obvious) relation to 𝑓 when 𝑈 ≠ 1 (see e.g. [102, 128]). By contrast,
the density of states weighted by different discrete spacetime symmetries are all
controlled by the same 𝑓 (and the same higher Wilson coefficients like 𝑐1, 𝑐2, . . . ),
in a predictable way.

Finally, let us describe the possible discrete rotations 𝑅 for which (4.34) applies.
Let us write 𝑅 = 𝑒𝑖

®𝜃· ®𝐽 . In order for 𝑅 to have finite order 𝑞, we must have
®𝜃 = 2𝜋( 𝑝1

𝑞1
, . . . ,

𝑝𝑛
𝑞𝑛
), where the 𝑝𝑖/𝑞𝑖 are rational numbers (which we assume are

in reduced form, so that 𝑝𝑖 and 𝑞𝑖 are relatively prime). The order of 𝑅 is 𝑞 =

lcm(𝑞1, . . . , 𝑞𝑛).

When 𝑑 is even, the action of Z𝑞 is free if all 𝑞𝑖 = 𝑞. In this case, the quotient
𝑆𝑑−1/Z𝑞 is a lens space 𝐿 (𝑞; 𝑝1, . . . , 𝑝𝑛), and there are no vortex defects 𝔇. If
instead there exists at least one 𝑞𝑖 ≠ 𝑞, then the group element 𝑅𝑞𝑖 will have a
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fixed locus 𝑆2𝑘−1, where 𝑘 is the number of 𝑞 𝑗 ’s such that 𝑞 𝑗 |𝑞𝑖, and there will be
a corresponding defect 𝔇 at this location (or rather its image after quotienting by
Z𝑞). Note that it is possible for fixed loci to intersect, creating higher codimension
defects. For example, if ®𝜃 = 2𝜋(1, 1

2 ,
1
3 ), the element 𝑅2 has a fixed 𝑆3, the element

𝑅3 has its own fixed 𝑆3, and the two 𝑆3’s intersect along an 𝑆1. Quotienting byZ6, we
obtain a defect localized on 𝑆3/Z3 ⊂ 𝑆5/Z6, a defect localized on 𝑆3/Z2 ⊂ 𝑆5/Z6,
and they intersect along an 𝑆1 ∈ 𝑆5/Z6. In this case, the thermal effective action will
include terms localized on the defects and their intersection. When 𝑑 is odd, any
element of SO(𝑑) necessarily has a nontrivial fixed locus, since there is a direction
left invariant by the Cartan generators.

If the theory has a reflection symmetry, then we can more generally consider 𝑅 ∈
𝑂 (𝑑). The above arguments continue to hold, essentially unmodified. When 𝑅

includes a reflection, the base of the EFT bundle 𝑆𝑑−1/Z𝑞 can be non-orientable. For
example, if we take 𝑅 to be the parity operator 𝑅 : ®𝑛→ −®𝑛, then 𝑆𝑑−1/Z2 = RP𝑑−1,
which is non-orientable in odd 𝑑. Note that the parity operator acts freely, so in this
case we can apply (4.30).

4.3 Kaluza-Klein vortex defects
In this section, we explore the form of the defect action 𝑆𝔇 that contributes whenever
the group generated by the discrete rotation 𝑅 does not act freely. For simplicity,
we will restrict our attention to CFT’s in 𝑑-dimensions on a spatial sphere 𝑆𝑑−1.

Background fields and EFT gauge
As before, we wish to compute the partition function of a CFT on the geometry
𝑀𝑞𝛽,𝑈𝑞/Z𝑞, where the mapping torus in the numerator is 𝑀𝑞𝛽,𝑈𝑞 = (𝑆𝑑−1×R)/⟨ℎ𝑞⟩,
the group in the denominator is Z𝑞 = ⟨ℎ⟩/⟨ℎ𝑞⟩, and the action of ℎ is given by

ℎ : (®𝑛, 𝜏) ↦→ (𝑈𝑅®𝑛, 𝜏 + 𝛽) = (𝑒𝑖(
2𝜋𝑝𝑎
𝑞𝑎

+𝛽Ω𝑎)𝐽𝑎 ®𝑛, 𝜏 + 𝛽). (4.35)

First, let us be more precise about the form of the background fields in this geometry.
Following [25], we use radius-angle coordinates on the sphere 𝑆𝑑−1. These are given
by a pair of radius and angle {𝑟𝑎, 𝜃𝑎} for each orthogonal 2-plane (𝑎 = 1, . . . , 𝑛 =

⌊ 𝑑2 ⌋). If 𝑑 is odd, we have an additional radial coordinate 𝑟𝑛+1. Together, the radii
satisfy the constraint

∑𝑛+𝜖
𝑎=1 𝑟

2
𝑎 = 1, where 𝜖 = 0 in even 𝑑 and 𝜖 = 1 in odd 𝑑.

To write the metric on 𝑀𝑞𝛽,𝑈𝑞 in Kaluza-Klein form, we switch to co-rotating
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coordinates

𝜑𝑎 ≡ 𝜃𝑎 −Ω𝑎𝜏, (4.36)

where 𝜏 is the coordinate on R. In co-rotating coordinates, the action of ℎ simplifies
to

ℎ : (𝑟𝑎, 𝜑𝑎, 𝜏) ↦→ (𝑟𝑎, 𝜑𝑎 + 2𝜋𝑝𝑎
𝑞𝑎
, 𝜏 + 𝛽). (4.37)

In particular ℎ𝑞, becomes simply a shift ℎ𝑞 : 𝜏 ↦→ 𝜏 + 𝑞𝛽. Thus, quotienting by ⟨ℎ𝑞⟩
to obtain 𝑀𝑞𝛽,𝑈𝑞 makes 𝜏 periodic with period 𝑞𝛽.

The metric of 𝑀𝑞𝛽,𝑈𝑞 in co-rotating coordinates takes the Kaluza-Klein form

𝑑𝑠2 = 𝑔 + 𝑒2𝜙 (𝑑𝜏 + 𝐴)2, (4.38)

where the fields 𝑔, 𝐴, 𝜙 are given by [25]

𝑒2𝜙 = 1 +
𝑛∑︁
𝑎=1

𝑟2
𝑎Ω

2
𝑎, (4.39)

𝐴 =

𝑛∑︁
𝑎=1

𝑟2
𝑎Ω𝑎

1 + ∑
𝑏 𝑟

2
𝑏
Ω2
𝑏

𝑑𝜑𝑎, (4.40)

𝑔 =

𝑛+𝜖∑︁
𝑎=1

𝑑𝑟2
𝑎 +

𝑛∑︁
𝑎,𝑏=1

(
𝑟𝑎𝑟𝑏𝛿𝑎𝑏 −

𝑟2
𝑎𝑟

2
𝑏
Ω𝑎Ω𝑏

1 + ∑𝑛
𝑐=1 𝑟

2
𝑐Ω

2
𝑐

)
𝑑𝜑𝑎𝑑𝜑𝑏 . (4.41)

The metric of the EFT bundle𝑀𝑞𝛽,𝑈𝑞/Z𝑞 is locally the same as (4.38). Consequently,
we can choose a local trivialization of the EFT bundle such that the fields 𝑔, 𝐴, 𝜙
are identical to (4.39) in each patch. However, such a local trivialization will have
nontrivial transition functions between patches that contribute to holonomies of the
Kaluza-Klein connection along various cycles (including around the defect locus).

If we like, we can perform a gauge transformation that makes the transition functions
trivial, at the cost of introducing new contributions to 𝐴. We refer to such a gauge
as "EFT gauge" because it will be convenient for discussing the EFT limit of the
CFT on this geometry. In EFT gauge, the curvature 𝐹 = 𝑑𝐴 has 𝛿-function type
singularities at the fixed-loci of 𝑅 whose coefficients reflect the topology of the EFT
bundle.
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• Example: 2D CFT

Let us illustrate these ideas with an example. Consider a 2D CFT, where the action
of ℎ is given by ℎ : (𝜑, 𝜏) ↦→ (𝜑 + 2𝜋𝑝

𝑞
, 𝜏 + 𝛽). The metric on 𝑀𝑞𝛽,𝑈𝑞 is

𝑑𝑠2 = 𝑑𝜏2 + 𝑑𝜃2 = 𝑑𝜏2 + (𝑑𝜑 +Ω𝑑𝜏)2

= (1 − Ω2

1+Ω2 )𝑑𝜑2︸            ︷︷            ︸
𝑔

+ (1 +Ω2)︸    ︷︷    ︸
𝑒2𝜙

(𝑑𝜏 + Ω

1+Ω2 𝑑𝜑︸  ︷︷  ︸
𝐴

)2. (4.42)

To choose a local trivialization of the EFT bundle, we first specify two intervals in
the 𝜑 coordinate:

𝐼1 = {𝜑 : 0 < 𝜑 < 2𝜋
𝑞
}, 𝐼2 = {𝜑 : −𝜖 < 𝜑 < 𝜖}, (4.43)

with 0 < 𝜖 < 𝜋
𝑞
. We denote their images in 𝑆1/Z𝑞 by 𝑈1 and 𝑈2, respectively.

Together𝑈1 and𝑈2 cover the quotient space 𝑆1/Z𝑞; see Figure 4.3.

( )( )
𝐼1𝐼2

−𝜖 0 𝜖
2𝜋
𝑞

( )) (
𝑈1

𝑈2

𝑆1

𝑆1/Z𝑞

𝜑 ∈

[𝜑] ∈

Figure 4.3: The open intervals 𝐼1 and 𝐼2 are subsets of 𝑆1. Their images under the
quotient map 𝑆1 → 𝑆1/Z𝑞 are𝑈1 and𝑈2, respectively, which together cover 𝑆1/Z𝑞.
We can choose a gauge where the KK fields 𝑔, 𝐴, 𝜙 are given by (4.42) in each of
𝑈1 and 𝑈2. However, in this gauge, there will be a nontrivial transition function
between𝑈1 and𝑈2.

The bundle projection 𝜋 : 𝑀𝑞𝛽,𝑈𝑞/⟨ℎ⟩ → 𝑆1/Z𝑞 acts by 𝜋 : [(𝜑, 𝜏)] ↦→ [𝜑], where
[(𝜑, 𝜏)] denotes an equivalence class modulo the action of ℎ, and [𝜑] denotes
an equivalence class modulo 2𝜋𝑝

𝑞
. Over each open set 𝑈1,𝑈2, we must define

trivialization maps

𝜙𝑈𝑖 : 𝜋−1(𝑈𝑖) → 𝑈𝑖 × 𝑆1
𝑞𝛽. (4.44)

We choose them as follows. Given 𝑝 ∈ 𝜋−1(𝑈𝑖), thought of as an equivalence class
modulo ⟨ℎ⟩, let (𝜑, 𝜏) be a representative of the equivalence class such that 𝜑 is
contained in 𝐼𝑖. Then we define

𝜙𝑈𝑖 (𝑝) = ( [𝜑], 𝜏). (4.45)
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Note that 𝜏 is well-defined modulo 𝑞𝛽 because the only elements of ⟨ℎ⟩ that map the
𝐼𝑖 to themselves are powers of ℎ𝑞. With this local trivialization, the fields 𝑔, 𝐴, 𝜙 are
given by (4.42) in each patch. In particular, we have 𝐴 = Ω

1+Ω2 𝑑𝜑 in both patches.

However, the data of the Kaluza-Klein connection includes both the value of 𝐴
in each patch, as well as the transition functions between patches. We must also
determine these transition functions.

There are two overlap regions to consider. The first is (0, 𝜖). In this region, the
transition function is trivial. The second overlap region is the image of (−𝜖, 0) ⊂ 𝐼2

in 𝑆1/Z𝑞, which coincides with the image of ( 2𝜋
𝑞
− 𝜖, 2𝜋

𝑞
) ⊂ 𝐼1 in 𝑆1/Z𝑞. Note that

(𝜑, 𝜏) for 𝜑 ∈ (−𝜖, 0) is equivalent modulo ⟨ℎ⟩ to (𝜑 + 2𝜋
𝑞
, 𝜏 + (𝑝−1)𝑞𝛽), where

𝜑 + 2𝜋
𝑞

∈ ( 2𝜋
𝑞
− 𝜖, 2𝜋

𝑞
). Here, (𝑝−1)𝑞 denotes the inverse of 𝑝 mod 𝑞, i.e. it satisfies

𝑝(𝑝−1)𝑞 = 𝑞𝑛 + 1 for some integer 𝑛. Thus, the transition function in this second
overlap region is

𝜙𝑈2 ◦ 𝜙−1
𝑈1

: ( [𝜑], 𝜏) ↦→ ([𝜑], 𝜏 − (𝑝−1)𝑞𝛽). (4.46)

The holonomy of the connection gets a nontrivial contribution from the transition
functions:13

−
∮

𝐴 = −2𝜋
𝑞

Ω

1 +Ω2 − (𝑝−1)𝑞𝛽. (4.47)

(The holonomy is an example of the "topological" terms discussed in Section 4.6
which can contribute in the thermal effective action, but are not the integral of a
local gauge/coordinate invariant density.)

To go to EFT gauge, we perform a gauge transformation (i.e. a 𝜑-dependent redefi-
nition of 𝜏) that trivializes the transition functions. One possible choice is

𝜏′ = 𝜏 − (𝑝−1)𝑞 𝛽
⌊

𝜑

2𝜋/𝑞

⌋
. (4.48)

Note that the function
⌊

𝜑

2𝜋/𝑞

⌋
is multi-valued on the entire circle 𝑆1, but there

is no problem defining it inside the intervals 𝐼1, 𝐼2 where we perform the gauge
transformation. In terms of 𝜏′, the transition functions are now trivial in both
overlap regions. (A quick way to see why is to note that 𝜏′ is invariant under the
ℎ-action (4.37).) The gauge field becomes

𝐴′ = 𝐴 + 𝑑𝜏 − 𝑑𝜏′ = Ω

1 +Ω2 𝑑𝜑 + (𝑝−1)𝑞𝛽 𝛿(𝜑)𝑑𝜑 (EFT gauge). (4.49)

The holonomy −
∮
𝐴′ is still given by (4.47), but that is now manifest in the local

expression for the gauge field (4.49).
13The parallel transport equation is 𝑑𝜏 + 𝐴 = 0, so the holonomy of 𝜏 is computed by −

∮
𝐴.



154

• Example: 3D CFT

Now consider the same setup in a 3D CFT. The metric on 𝑆2 is

𝑑𝑠2
𝑆2 = 𝑑𝑟

2
1 + 𝑑𝑟

2
2 + 𝑟

2
1 𝑑𝜑

2 (𝑟2
1 + 𝑟

2
2 = 1). (4.50)

Essentially all of the above discussion goes through un-modified, with the radii 𝑟1, 𝑟2

coming along for the ride. We can again go to EFT gauge, and the gauge field (4.49)
now gets interpreted as a gauge field on 𝑆2. This time, 𝐴 has 𝛿-function-localized
curvature at the north and south poles:

𝑑𝐴 = ∓(𝑝−1)𝑞𝛽𝛿(®𝑛, ®𝑛±)𝑑2®𝑛 + nonsingular, (4.51)

where 𝛿(®𝑛, ®𝑛′) represents a 𝛿-function on 𝑆2, and ®𝑛± are the north/south poles.

• EFT gauge in general

More generally, we go to EFT gauge as follows. First choose a fundamental domain
𝐹 for the quotient map 𝑆𝑑−1 → 𝑆𝑑−1/Z𝑞. Define an integer valued function 𝑘 (®𝑛) by

𝑘 (®𝑛) = 0 if ®𝑛 ∈ 𝐹,
𝑘 (𝑅®𝑛) = 1 + 𝑘 (®𝑛). (4.52)

In words, 𝑘 (®𝑛) counts the power of 𝑅 needed to move from somewhere in 𝐹 to ®𝑛.
Again, 𝑘 (®𝑛) is multi-valued if we try to define it on the entire sphere, but we only
need to define it inside a collection of open sets that cover 𝑆𝑑−1/Z𝑞. For example,
in the 2D case considered above, we had 𝑘 (𝜑) = (𝑝−1)𝑞 ⌊ 𝜑

2𝜋/𝑞 ⌋.

Finally, we define

𝜏′ ≡ 𝜏 − 𝛽𝑘 (®𝑛(𝑟𝑎, 𝜑𝑎)). (4.53)

In the coordinates (𝑟𝑎, 𝜑𝑎, 𝜏′), ℎ acts simply by shifting angles 𝜑𝑎:

ℎ : (𝑟𝑎, 𝜑𝑎, 𝜏′) ↦→ (𝑟𝑎, 𝜑𝑎 + 2𝜋𝑝𝑎
𝑞𝑎
, 𝜏′). (4.54)

Consequently, a local trivialization of the EFT bundle defined using the 𝜏′ coordinate
has trivial transition functions. The gauge field is given by

𝐴′ = 𝐴 + 𝑑𝜏 − 𝑑𝜏′ =
𝑛∑︁
𝑎=1

𝑟2
𝑎Ω𝑎

1 + ∑
𝑏 𝑟

2
𝑏
Ω2
𝑏

𝑑𝜑𝑎 + 𝛽𝑑𝑘 (®𝑛(𝑟𝑎, 𝜑𝑎)). (4.55)

The curvature 𝑑𝐴′ has 𝛿-function contributions 𝛽𝑑2𝑘 (®𝑛) at the fixed loci of powers
of 𝑅.



155

Effective action
Following the logic of the thermal effective action, let us now equip the EFT bundle
with a more general metric 𝐺 and try to write down a local action of 𝐺. We will
demand that 𝐺 satisfy the following conditions:

• It possesses a circle isometry, so that it can be written in Kaluza-Klein form
(4.38).

• In EFT gauge, the curvature 𝑑𝐴 is a sum of 𝛿-function singularities of the
form 𝛽𝑑2𝑘 (®𝑛), plus something smooth on 𝑆𝑑−1/Z𝑞. (This ensures that the
Kaluza-Klein bundle has the same topology as 𝑀𝑞𝛽,𝑉𝑞/Z𝑞.)

• 𝑔 and 𝑒2𝜙 should be smooth on 𝑆𝑑−1/Z𝑞.

Here, a field is "smooth on 𝑆𝑑−1/Z𝑞" if it lifts to a smooth Z𝑞-invariant field on 𝑆𝑑−1.

In the limit 𝛽 → 0, we can separate each of the background fields into a long-
wavelength part, with wavelengths much longer than 𝛽, and a short-wavelength
part, with wavelengths comparable to (or smaller than) 𝛽. The long-wavelength parts
become background fields for the thermal EFT. Meanwhile, the short-wavelength
parts become operator insertions in that EFT.

In our case, the 𝛿-function curvature singularities 𝑑𝐴 ∼ 𝛽𝑑2𝑘 (®𝑛) are short-wavelength.
They determine the insertion of an operator in the thermal EFT, which is described
by the defect action 𝑆𝔇. This action is a functional of the long-wavelength parts of
𝑔, 𝐴, 𝜙. As mentioned in Section 4.2, we will assume that the defect is gapped, so
that the action functional is local and can be organized in a derivative expansion. To
construct it, we should compute curvatures and other invariants of 𝑔, 𝐴, 𝜙, and throw
away 𝛿-function singularities. Since 𝑔 and 𝜙 are smooth, this effectively amounts
to the replacement

𝑑𝐴→ 𝑑𝐴 ≡ 𝑑𝐴 − 𝛽𝑑2𝑘 (®𝑛). (4.56)

Henceforth, we leave this replacement implicit. In other words, when we write 𝑑𝐴
in the defect action, we mean its long-wavelength part 𝑑𝐴, with 𝛿-functions thrown
away.

The defects live at singularities in the quotient space 𝑆𝑑−1/Z𝑞. How should we
write an action for long wavelength fields near these singularities? Recall that the
long-wavelength parts of 𝑔, 𝐴, 𝜙 lift to smooth Z𝑞-invariant fields on 𝑆𝑑−1. We will
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write 𝑆𝔇 as a functional of these Z𝑞-invariant lifts, integrated over the preimage of
the defect locus modulo Z𝑞, which we denote by 𝔇̃. We also conventionally divide
by 𝑞, which ensures that Wilson coefficients of defects living at singularities with
the same local structure (but possibly different global structure) are the same.

The action should be invariant under gauge/coordinate transformations that preserve
the defect locus. For now, we ignore the possibility of nontrivial Weyl anomalies
on the defect 𝔇, and we impose that 𝑆𝔇 be Weyl-invariant as well. Consequently, it
will be a functional of 𝐴 and the Weyl-invariant combination 𝑔̂ = 𝑒−2𝜙𝑔.

Consider an 𝑛-dimensional defect 𝔇 whose preimage 𝔇̃ is the fixed locus of an
element 𝑅𝑙 ∈ ⟨𝑅⟩ with order 𝑚. Given a point 𝑝 on 𝔇̃, we can choose a vielbein
𝑒̂𝑎
𝑖

at 𝑝 satisfying 𝛿𝑎𝑏 𝑒̂𝑎𝑖 𝑒̂
𝑏
𝑗
= 𝑔̂𝑖 𝑗 , where 𝑎, 𝑏 are indices for the local rotation group

SO(𝑑 − 1). The group ⟨𝑅𝑙⟩ � Z𝑚 acts as a subgroup of the local rotation group
SO(𝑑 − 1), so the 𝑒̂𝑎

𝑖
can be classified into representations of this Z𝑚. Singlets

under Z𝑚 represent directions parallel to the defect. They are acted upon by an
SO(𝑛) ⊂ SO(𝑑 − 1) that commutes with Z𝑚. Hence, altogether the 𝑒̂𝑎

𝑖
can be

classified into representations of Z𝑚 × SO(𝑛).

To build the defect action, we enumerate curvature tensors built from 𝑔̂ and 𝐴, in a
derivative expansion, and contract them with 𝑒̂𝑎

𝑖
to build Z𝑚 × SO(𝑛) invariants 𝐼𝑖

with 𝑑𝑖 derivatives. The defect action is then

𝑆𝔇 =
1
𝑞

∫
𝔇̃

𝑑𝑛𝑦

√︃
𝑔̂ |

𝔇̃

(∑︁
𝑖

𝑎𝑖 (𝑞𝛽)𝑑𝑖−𝑛𝐼𝑖

)
, (4.57)

where 𝑔̂ |
𝔇̃

denotes the pullback of 𝑔̂ to 𝔇̃, and 𝑦 are coordinates on the defect. The
factors of 𝑞𝛽 are supplied using dimensional analysis.

Finally, to evaluate the defect action on𝑀𝑞𝛽,𝑉𝑞/Z𝑞, we simply plug in the expressions
(4.39), (4.40), (4.41), which are precisely the Z𝑞-lifts to 𝑆𝑑−1 of the long-wavelength
parts of 𝑔, 𝐴, 𝜙.

In what follows, we will sometimes use the notation 𝔇 to refer to both a defect on
𝑆𝑑−1/Z𝑞 and the lift 𝔇̃ of the defect locus to 𝑆𝑑−1. We hope this will not cause
confusion.

Example: point-like vortex defects in 3D CFTs
As an example, consider a 3D CFT, where 𝑅 acts by the discrete rotation 𝜑 → 𝜑+ 2𝜋𝑝

𝑞
.

The action of 𝑅 fixes the north and south poles of 𝑆2. Consequently, there are two



157

point-like vortex defects: 𝔇𝑝/𝑞 located at the north pole, and its orientation reversal
𝔇−𝑝/𝑞 located at the south pole. Let us focus on 𝔇𝑝/𝑞.

Classifying the vielbein at the north pole into representations of Z𝑞, we have basis
elements 𝑒̂𝑖+, 𝑒̂𝑖− with charges +𝑝 and −𝑝, respectively. We normalize them so that
𝑒̂± · (𝑒̂±)∗ = 1. To build basic Z𝑞-invariant curvatures, we begin with tensors
∇̂𝑖 · · · ∇̂ 𝑗𝑅 and ∇̂𝑖 · · · ∇̂ 𝑗𝐹𝑘𝑙 , where 𝐹 = 𝑑𝐴, 𝑅 is the curvature scalar built from
𝑔̂, and ∇̂ denotes a covariant derivative with respect to 𝑔̂. We then contract their
indices with 𝑒̂𝑖± in such a way that the total Z𝑞 charge vanishes. The action at each
order in a derivative expansion is a polynomial in these basic Z𝑞-invariants.

Note that we cannot build valid terms in the action by multiplying two Z𝑞-charged
objects to obtain a Z𝑞-singlet. For example, (𝑒̂𝑖+∇̂𝑖𝑅) (𝑒̂𝑖−∇̂𝑖𝑅) is not admissible. The
reason is that 𝑒̂𝑖+∇̂𝑖𝑅 individually vanishes, due to Z𝑞-invariance.

Proceeding in this way, the leading invariants in a derivative expansion are

𝑆𝔇𝑝/𝑞 ∋ 1, ★̂𝐹, 𝑅, (★̂𝐹)2, . . . , (4.58)

where ★̂𝐹 = 𝑖𝑒̂𝑘+𝑒̂
𝑙
−𝐹𝑘𝑙 is the Hodge star of 𝐹 in the metric 𝑔̂. Concretely, the action

is

𝑆𝔇𝑝/𝑞 =
1
𝑞

(
𝑎0,𝑝/𝑞 + (𝑞𝛽)𝑎1,𝑝/𝑞★̂𝐹 + (𝑞𝛽)2

(
𝑎2,𝑝/𝑞𝑅 + 𝑎3,𝑝/𝑞 (★̂𝐹)2

)
+ . . .

���
𝔇𝑝/𝑞

)
,

(4.59)

where (· · · ) |𝔇𝑝/𝑞 denotes evaluation at the preimage of the defect on 𝑆2 — in this
case the north pole. We have written the Wilson coefficients as 𝑎𝑖,𝑝/𝑞 to emphasize
that they depend on the rotation fraction 𝑝/𝑞. In bosonic theories, the 𝑎𝑖,𝑥 are
periodic in 𝑥 with period 1, while in fermionic theories, they are periodic in 𝑥 with
period 2.

At higher orders in derivatives, we can also include laplacians ∇̂2, as well as 𝑞-th
powers of charged derivatives (𝑒̂± ·∇)𝑞. However, note that the background fields on
𝑀𝑞𝛽,𝑈𝑞 given in (4.39), (4.40), and (4.41) are invariant not only under Z𝑞, but under
the full maximal torus SO(2). Consequently, terms involving charged derivatives
(𝑒̂± · ∇)𝑞 will actually vanish on 𝑀𝑞𝛽,𝑈𝑞/Z𝑞, and in practice we only need to keep
polynomials in ∇̂2𝑘★̂𝐹 and ∇̂2𝑘𝑅.

Plugging in the fields on 𝑀𝑞𝛽,𝑈𝑞 , we find

★̂𝐹 |± = ±2Ω,

𝑅 |± = 2 + 10Ω2, (4.60)



158

where (· · · ) |± denotes the north/south poles of 𝑆2. Thus, summing up the contribu-
tions from the north and south poles, the total defect contribution to Tr[𝑒−𝛽𝐻𝑈𝑅]
is

𝑆𝔇 =
𝑎0,𝑝/𝑞 + 𝑎0,−𝑝/𝑞

𝑞
+ 2𝛽Ω(𝑎1,𝑝/𝑞 − 𝑎1,−𝑝/𝑞)

+ (𝑞𝛽)2

𝑞
((2 + 10Ω2)

(
𝑎2,𝑝/𝑞 + 𝑎2,−𝑝/𝑞) + 4Ω2(𝑎3,𝑝/𝑞 + 𝑎3,−𝑝/𝑞)

)
+ . . . .

(4.61)

In general, the point-like defect action at each order 𝛽𝑘 is a polynomial in Ω that
is even if 𝑘 is even and odd if 𝑘 is odd. We will verify this structure in several
examples below.

There is an important distinction between the terms (4.61) arising in the defect
action 𝑆𝔇 and the "bulk" terms (4.11). Note that the bulk terms contain poles at
Ω𝑎 = ±𝑖. Physically, such poles arise because a great circle 𝑟𝑎 = 1 of the spinning
𝑆𝑑−1 approaches the speed of light as Ω𝑎 → ±𝑖. The measure

√︁
𝑔̂ becomes singular

at the great circle, and the integral over 𝑟𝑎 cannot be deformed away from the
singularity because it is at an endpoint of the integration contour. By contrast, the
defects 𝔇±𝑝/𝑞 are located at the north and south poles of 𝑆2, where this phenomenon
does not occur, and thus their contributions do not have poles at Ω = ±𝑖. In general,
the action of a defect 𝔇 on 𝑀𝑞𝛽,𝑉𝑞/Z𝑞 can have poles at Ω𝑎 = ±𝑖 if and only if the
support of 𝔇 intersects the great circle 𝑟𝑎 = 1. We will see an example in the next
subsection.

Example: vortex defects in 4D CFTs
Consider now a 4D CFT, where 𝑅 acts by discrete rotations on each of the angles
𝜑1 → 𝜑1 + 2𝜋𝑝1

𝑞1
and 𝜑2 → 𝜑2 + 2𝜋𝑝2

𝑞2
. If 𝑞1 ≠ 𝑞2, we have two 1-dimensional vortex

defects𝔇(1) and𝔇(2) . The first defect𝔇(1) is located at the fixed locus of 𝑅𝑞1 , which
is given by (𝑟1, 𝑟2) = (1, 0) with 𝜑1 ∈ [0, 2𝜋

𝑞
), where 𝑞 := lcm(𝑞1, 𝑞2). The second

defect 𝔇(2) is located at the fixed locus of 𝑅𝑞2 , which is given by (𝑟1, 𝑟2) = (0, 1)
with 𝜑2 ∈ [0, 2𝜋

𝑞
).

Let us focus on 𝔇(1) for now. On 𝔇(1) , the leading term in the effective action is
a cosmological constant

∫
𝑑𝜙1

√︁
𝑔̂ |𝔇(1) , as usual. At the first subleading order in a

derivative expansion, we have the term
∫
𝑑𝜑1

√︁
𝑔̂ |𝔇(1) 𝑖𝑒̂𝑘+𝑒̂

𝑙
−𝐹𝑘𝑙 , which can be written

more simply as
∫
★̂𝐹.

The Wilson coefficients of a defect depend only on the geometry of the singularity
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where the defect lives. To describe this geometry, it is helpful to introduce the
co-prime integers

𝑃1 :=
𝑝1𝑞2

(𝑞1, 𝑞2)
, 𝑄1 :=

𝑞1
(𝑞1, 𝑞2)

,

𝑃2 :=
𝑝2𝑞1

(𝑞1, 𝑞2)
, 𝑄2 :=

𝑞2
(𝑞1, 𝑞2)

,
(4.62)

where (𝑞1, 𝑞2) is the greatest common divisor of 𝑞1, 𝑞2. The structure of the
singularity at 𝔇(1) is determined by the action of 𝑅𝑞1 , which is

𝑅𝑞1 : 𝜑2 ↦→ 𝜑2 +
2𝜋𝑃2
𝑄2

. (4.63)

Thus, the Wilson coefficients of 𝔇(1) should depend only on 𝑃2/𝑄2. However, there
is a subtlety in fermionic theories: Note that 𝑅𝑞1 implements a rotation by 2𝜋𝑝1,
which is (−1)𝑝1𝐹 in fermionic theories. Thus, the Wilson coefficients of 𝔇(1) can
additionally depend on (−1)𝑝1 in that case. Consequently, we will write the Wilson
coefficients of 𝔇(1) as 𝑎𝑖,𝑃2/𝑄2,(−1)𝑝1 to emphasize the data they depend on. (We will
see subtleties of a similar flavor in Section 4.4.)

Putting everything together, the action 𝑆𝔇(1) takes the form

𝑆𝔇(1) =
1
𝑞

(
𝑎0,𝑃2/𝑄2,(−1)𝑝1

𝑞𝛽

∫
𝑑𝜑1

√︁
𝑔̂ |𝔇 + 𝑎1,𝑃2/𝑄2,(−1)𝑝1

∫
★̂𝐹 + . . .

)
=

2𝜋
𝑞(1 +Ω2

1)

(
𝑎0,𝑃2/𝑄2,(−1)𝑝1

𝑞𝛽
+ 2𝑎1,𝑃2/𝑄2,(−1)𝑝1Ω2 + . . .

)
, (4.64)

where in the second line, we evaluated the action in the background 𝑀𝑞𝛽,𝑈𝑞/Z𝑞.
Note that because𝔇(1) lives on the great circle 𝑟1 = 1, its action has poles atΩ1 = ±𝑖.

Adding similar terms for 𝔇(2) , the total defect contribution to Tr[𝑒−𝛽𝐻𝑈𝑅] is

𝑆𝔇 =
2𝜋
𝑞2𝛽

(
𝑎0,𝑃2/𝑄2,(−1)𝑝1

1 +Ω2
1

+
𝑎0,𝑃1/𝑄1,(−1)𝑝2

1 +Ω2
2

)
+ 4𝜋
𝑞

(
𝑎1,𝑃2/𝑄2,(−1)𝑝1

Ω2

1 +Ω2
1
+ 𝑎1,𝑃1/𝑄1,(−1)𝑝2

Ω1

1 +Ω2
2

)
+ . . . ,

(4.65)

where ". . . " represents higher-order terms in 𝛽 coming from higher dimension
operators in the defect action.

4.4 Fermionic theories
In this section, we describe some subtleties associated with partition functions of
fermionic theories. Again, for simplicity we mostly restrict our discussion to CFT𝑑
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on a spatial sphere 𝑆𝑑−1, though the final conclusion (4.84) holds in a general QFT.
In short, the results (4.30) and (4.32) work in fermionic CFTs as well, but we must
take care to keep track of the spin structure of the manifold (in particular whether
we have periodic or antiperiodic boundary conditions for fermions around 𝑆1

𝛽
and

𝑆1
𝑞𝛽

), and we must consider the rotation 𝑅 as an element of Spin(𝑑).

Review of 2D
Let us first review fermionic CFTs in 2D. In 2D, we need to specify the boundary
conditions of the fermions around both the space and time circles. This defines four
different fermion partition functions:

𝑍R,+(𝜏, 𝜏) := TrR

(
𝑒2𝜋𝑖𝜏(𝐿0− 𝑐

24 )𝑒−2𝜋𝑖𝜏(𝐿0− 𝑐
24 )

)
𝑍R,−(𝜏, 𝜏) := TrR

(
(−1)𝐹𝑒2𝜋𝑖𝜏(𝐿0− 𝑐

24 )𝑒−2𝜋𝑖𝜏(𝐿0− 𝑐
24 )

)
𝑍NS,+(𝜏, 𝜏) := TrNS

(
𝑒2𝜋𝑖𝜏(𝐿0− 𝑐

24 )𝑒−2𝜋𝑖𝜏(𝐿0− 𝑐
24 )

)
𝑍NS,−(𝜏, 𝜏) := TrNS

(
(−1)𝐹𝑒2𝜋𝑖𝜏(𝐿0− 𝑐

24 )𝑒−2𝜋𝑖𝜏(𝐿0− 𝑐
24 )

)
. (4.66)

The partition functions in (4.66) are not independent. The partition functions
𝑍R,+, 𝑍NS,+, and 𝑍NS,− are invariant under different subgroups of 𝑆𝐿 (2,Z) and can
transform into each other. More precisely, 𝑍R,− is invariant under all of 𝑆𝐿 (2,Z);
and 𝑍R,+, 𝑍NS,+, and 𝑍NS,− are invariant under the congruence subgroups Γ0(2), Γ𝜃 ,
and Γ0(2) respectively, which are defined as

Γ0(2) =
{(
𝑎 𝑏

𝑐 𝑑

)
∈ 𝑆𝐿 (2,Z), 𝑐 even

}
Γ𝜃 =

{(
𝑎 𝑏

𝑐 𝑑

)
∈ 𝑆𝐿 (2,Z), 𝑎 + 𝑏 odd , 𝑐 + 𝑑 odd

}
Γ0(2) =

{(
𝑎 𝑏

𝑐 𝑑

)
∈ 𝑆𝐿 (2,Z), 𝑏 even

}
. (4.67)

Finally they transformation into each other as

𝑍R,+(−1/𝜏,−1/𝜏) = 𝑍NS,−(𝜏, 𝜏),
𝑍NS,+(𝜏 + 1, 𝜏 + 1) = 𝑍NS,−(𝜏, 𝜏). (4.68)

The NS sector partition function (with or without a (−1)𝐹 insertion) at low tem-
perature is well-approximated by the vacuum state (which is a bosonic state), with
Casimir energy − 𝑐

12 :

TrNS(𝑒−𝛽(Δ−
𝑐
12 )) ∼ 𝑒

𝛽𝑐

12 , 𝛽 ≫ 1. (4.69)
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The Ramond sector ground state, in contrast, has a Casimir energy of 𝐸𝑔𝑠 − 𝑐
12

where 𝐸𝑔𝑠 is the Ramond ground-state energy, a non-negative number that is theory-
dependent.14 Finally, the Ramond ground-state may not necessarily be unique, so
we call the degeneracy 𝑁𝑔𝑠 ∈ N.

TrR(𝑒−𝛽(Δ−
𝑐
12 )) ∼ 𝑁𝑔𝑠𝑒−𝛽(𝐸𝑔𝑠−

𝑐
12 ) , 𝛽 ≫ 1. (4.70)

To study the high temperature behavior of the NS-sector partition function with an
arbitrary phase 𝑒2𝜋𝑖𝑝/𝑞𝐽 inserted (with 0 ≤ 𝑝/𝑞 < 2 and 𝑝, 𝑞 coprime)

TrNS(𝑒−𝛽[(Δ−
𝑐
12 )−𝑖Ω𝐽]𝑒2𝜋𝑖𝐽𝑝/𝑞), 𝛽 ≪ 1 (4.71)

we can use an 𝑆𝐿 (2,Z) transform. In particular we would like to apply a modular
transformation of the form (

𝑎 𝑏

𝑞 −𝑝

)
(4.72)

to (4.71). The result crucially depends on the parity of 𝑝, 𝑞. If 𝑝 + 𝑞 is odd, then
we can choose (4.72) to be in Γ𝜃 and map the partition function to the NS sector at
low temperature. However, if 𝑝 + 𝑞 is even, we map the partition function to the R
sector at low temperature instead. We therefore get, for 𝛽 ≪ 1 and 0 ≤ 𝑝/𝑞 < 2:

TrNS(𝑒−𝛽[(Δ−
𝑐
12 )−𝑖Ω𝐽]𝑒2𝜋𝑖𝐽𝑝/𝑞) ∼ 𝑒

4𝜋2
𝑞2𝛽 (1+Ω2 )

𝑐
12 𝑝 + 𝑞 odd, 𝛽 ≪ 1,

TrNS(𝑒−𝛽[(Δ−
𝑐
12 )−𝑖Ω𝐽]𝑒2𝜋𝑖𝐽𝑝/𝑞) ∼ 𝑁𝑔𝑠𝑒

4𝜋2
𝑞2𝛽 (1+Ω2 ) ( 𝑐12−𝐸𝑔𝑠) 𝑝 + 𝑞 even, 𝛽 ≪ 1.

(4.73)

Equivalently we can always take 0 ≤ 𝑝

𝑞
< 1 with the insertion of a (−1)𝐹 :

TrNS(𝑒−𝛽[(Δ−
𝑐
12 )−𝑖Ω𝐽]𝑒2𝜋𝑖𝐽𝑝/𝑞) ∼ 𝑒

4𝜋2
𝑞2𝛽 (1+Ω2 )

𝑐
12 𝑝 + 𝑞 odd, 𝛽 ≪ 1,

TrNS(𝑒−𝛽[(Δ−
𝑐
12 )−𝑖Ω𝐽]𝑒2𝜋𝑖𝐽𝑝/𝑞) ∼ 𝑁𝑔𝑠𝑒

4𝜋2
𝑞2𝛽 (1+Ω2 ) ( 𝑐12−𝐸𝑔𝑠) 𝑝 + 𝑞 even, 𝛽 ≪ 1,

TrNS((−1)𝐹𝑒−𝛽[(Δ− 𝑐
12 )−𝑖Ω𝐽]𝑒2𝜋𝑖𝐽𝑝/𝑞) ∼ 𝑒

4𝜋2
𝑞2𝛽 (1+Ω2 )

𝑐
12 𝑝 odd, 𝛽 ≪ 1,

TrNS((−1)𝐹𝑒−𝛽[(Δ− 𝑐
12 )−𝑖Ω𝐽]𝑒2𝜋𝑖𝐽𝑝/𝑞) ∼ 𝑁𝑔𝑠𝑒

4𝜋2
𝑞2𝛽 (1+Ω2 ) ( 𝑐12−𝐸𝑔𝑠) 𝑝 even, 𝛽 ≪ 1.

(4.74)

We see that in (4.74), there are two real numbers that can determine the behavior
of fermionic partition functions: the central charge 𝑐 and the Ramond ground state

14For supersymmetric theories, 𝐸𝑔𝑠 = 𝑐
12 , but for generic fermionic theories, 𝐸𝑔𝑠 can be above

or below or equal to 𝑐
12 .
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energy 𝐸𝑔𝑠. Moreover, which of the two high temperature behaviors we get ( 𝑐12 or
𝑐
12 − 𝐸𝑔𝑠 multiplying temperature in the free energy) depends on the parity of 𝑝 and
𝑞. We will see this exact same behavior repeat itself for fermionic theories in higher
dimensions in Section 4.4.

In 2D, we can also analyze the behavior of the partition function in the Ramond
sector. This does not have a direct analog as far as we are aware in higher dimension,
but we include it for completeness. By using the same modular transformation
properties discussed earlier, we find

TrR(𝑒−𝛽[(Δ−
𝑐
12 )−𝑖Ω𝐽]𝑒2𝜋𝑖𝐽𝑝/𝑞) ∼ 𝑒

4𝜋2
𝑞2𝛽 (1+Ω2 )

𝑐
12 𝑞 even, 𝛽 ≪ 1,

TrR(𝑒−𝛽[(Δ−
𝑐
12 )−𝑖Ω𝐽]𝑒2𝜋𝑖𝐽𝑝/𝑞) ∼ 𝑁𝑔𝑠𝑒

4𝜋2
𝑞2𝛽 (1+Ω2 ) ( 𝑐12−𝐸𝑔𝑠) 𝑞 odd, 𝛽 ≪ 1,

TrR((−1)𝐹𝑒−𝛽[(Δ− 𝑐
12 )−𝑖Ω𝐽]𝑒2𝜋𝑖𝐽𝑝/𝑞) ≲ 𝑁𝑔𝑠𝑒

4𝜋2
𝑞2𝛽 (1+Ω2 ) ( 𝑐12−𝐸𝑔𝑠) 𝛽 ≪ 1. (4.75)

Because the final spin structure (where the fermion is periodic in both space and
time directions) is invariant under the full modular group, it has the same universal
behavior at high temperature regardless of the phase. In general this spin struc-
ture cannot be directly derived from the other three (although there are potentially
powerful constraints coming from unitarity, and knowledge of 𝑍R,+ [23]). We write
≲ rather than ∼ in the last line of (4.75) due to possible cancellations between
fermionic and bosonic Ramond ground states, which would effectively reduce 𝑁𝑔𝑠
(by an even number) for the final spin structure.

Higher 𝑑
Let us now consider fermionic CFTs in 𝑑 > 2. For simplicity let us first consider
turning on only a single spin and consider:

Tr[𝑒−𝛽(𝐻−𝑖Ω𝐽)𝑒2𝜋𝑖 𝑝
𝑞
𝐽], (4.76)

with 𝛽 ≪ 1, Ω ∼ 𝑂 (1), 0 ≤ 𝑝/𝑞 < 2. As discussed before, this can be computed
from a path integral of 𝑆𝑑−1 × 𝑆1

𝛽
, where we insert a defect that rotates the sphere

by 2𝜋𝑝/𝑞. Moreover, due to the fermions in the theory, we need to specify a spin
structure on this geometry. In (4.76) we compute the path integral with anti-periodic
boundary conditions for the fermion around the 𝑆1

𝛽
. We now imagine the setup as

in Figure 4.2 to reduce the setup into a geometry we can obtain a thermal EFT. In
particular we need to stack 𝑞 copies of the CFT, and perform a 2𝜋𝑝 rotation in the
spatial direction. The final geometry we get — in addition to the spatial sphere being
modded by Z𝑞 and the thermal circle increasing by a factor of 𝑞 — has different
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periodicity for the fermions about the time circle depending on the parity of 𝑝 + 𝑞.
If 𝑝 + 𝑞 is odd, the fermions remain antiperiodic, and we can use the original EFT
description for fermionic CFTs on a long, thin cylinder. If 𝑝 + 𝑞 is even, however,
we need a new EFT, for fermionic CFTs with periodic boundary conditions on a
long, thin cylinder.

We now see there are two different thermal EFTs we consider, depending on the
periodicity of the fermions around 𝑆1

𝛽
. Each EFT comes with its own set of Wilson

coefficients. We write them as

𝑍CFT [𝑆𝑑−1 × 𝑆1
𝛽, anti-periodic] = 𝑍gapped [𝑆𝑑−1] ∼ 𝑒−𝑆th [𝑔𝑖 𝑗 ,𝐴𝑖 ,𝜙] ,

𝑍CFT [𝑆𝑑−1 × 𝑆1
𝛽, periodic] = 𝑍̃gapped [𝑆𝑑−1] ∼ 𝑒−𝑆th [𝑔𝑖 𝑗 ,𝐴𝑖 ,𝜙] . (4.77)

The two expressions 𝑒−𝑆th and 𝑒−𝑆th respectively compute the partition function with
and without the insertion of (−1)𝐹 :

Tr
[
𝑒−𝛽(𝐻−𝑖Ω𝐽)

]
∼ 𝑒−𝑆th ,

Tr
[
(−1)𝐹𝑒−𝛽(𝐻−𝑖Ω𝐽)

]
∼ 𝑒−𝑆th . (4.78)

Let us write the two thermal actions as

𝑆th =

∫
𝑑𝑑−1®𝑥
𝛽𝑑−1

√︁
𝑔̂

(
− 𝑓 + 𝑐1𝛽

2𝑅 + 𝑐2𝛽
2𝐹2 + . . .

)
+ 𝑆anom,

𝑆th =

∫
𝑑𝑑−1®𝑥
𝛽𝑑−1

√︁
𝑔̂

(
− 𝑓 + 𝑐1𝛽

2𝑅 + 𝑐2𝛽
2𝐹2 + . . .

)
+ 𝑆anom. (4.79)

The most general leading term behavior of (4.76) then goes as

log
[
Tr(𝑒−𝛽(𝐻−𝑖Ω𝐽)𝑒2𝜋𝑖 𝑝

𝑞
𝐽)

]
∼


1
𝑞𝑑

𝑓 vol 𝑆𝑑−1

𝛽𝑑−1 (1+Ω2) + . . . , 𝑝 + 𝑞 odd,
1
𝑞𝑑

𝑓 vol 𝑆𝑑−1

𝛽𝑑−1 (1+Ω2) + . . . , 𝑝 + 𝑞 even.
(4.80)

Note that if we specialize (4.80) to 𝑑 = 2, this is precisely the behavior we get for
(4.73), if we identify

𝑓 =
2𝜋𝑐
12

,

𝑓 = 2𝜋
( 𝑐
12

− 𝐸𝑔𝑠
)
. (4.81)

We can think of the difference between the two sets of Wilson coefficients in (4.79)
as the higher-dimensional analog of the "Ramond ground state energy".

We can generalize (4.76) to turning on 𝑛 spins and consider

Tr
[
𝑒−𝛽(𝐻−𝑖(Ω1𝐽1+···+Ω𝑛𝐽𝑛))𝑒

2𝜋𝑖 𝑝1
𝑞1
𝐽1 · · · 𝑒2𝜋𝑖 𝑝𝑛

𝑞𝑛
𝐽𝑛
]

(4.82)
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for 𝛽 ≪ 1, Ω𝑖 ∼ 𝑂 (1), 0 ≤ 𝑝𝑖
𝑞𝑖
< 2. If we define

𝑞 := lcm(𝑞1, . . . , 𝑞𝑛), (4.83)

then in our EFT, we will go around the time circle 𝑞 times and go around the spatial
sphere

∑
𝑖
𝑝𝑖𝑞

𝑞𝑖
times. Thus depending on if 𝑞 + ∑

𝑖
𝑝𝑖𝑞

𝑞𝑖
is odd or even, we get the

thermal EFT described by 𝑆th or 𝑆th.

Finally, all of these results are consistent with (4.32) if we simply interpret 𝑒𝑖𝛽Ω·𝐽𝑅

as an element of Spin(𝑑) and interpret Tr as imposing periodic boundary conditions
for both bosonic and fermionic variable. With this understanding, (4.32) is the
general recipe. If we instead interpret Tr as imposing periodic boundary conditions
for bosons and antiperiodic boundary conditions for fermions, (4.32) should be
modified to

− log Tr [𝑔𝑅] ∼ −1
𝑞

log Tr
[
(−1) (𝑞−1)𝐹𝑔𝑞

]
+ topological +

∑︁
𝔇𝑖

𝑆𝔇𝑖 . (4.84)

We will see explicit examples of this in Section 4.5.

4.5 Free theories
We now present several examples involving free fields to show explicitly that (4.30)
and (4.32) hold (along with their appropriate generalizations to fermionic theories).
We begin in Section 4.5 by checking a massive quantum field theory, namely a
massive free boson in 2D. We then consider free CFTs in 3D and 4D. Our main tool
for computing partition functions in free CFTs is the plethystic exponential, which
we review in Appendix 4.10 (see e.g. [88, 112, 165]).

In Section 4.5, we consider various examples involving free scalar fields and free
fermions in 3 dimensions. In Section 4.5, we explore few more examples in 4
dimension. We present additional 4D and 6D examples in Appendix 4.10. Lastly,
in Section 4.6, we consider 2D CFTs with a local gravitational anomaly. Such
theories can include Chern-Simons term in their thermal effective action, which are
not integrals of local gauge/coordinate invariant densities. These furnish examples
of the "topological" terms in (4.30) and (4.32).

Massive free boson in 2D
As a first check on our formalism (and to illustrate that the basic ideas do not require
conformal symmetry), let us study the partition function of a free scalar with mass𝑚
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in 2D. We begin by computing the partition function on a rectangular torus 𝑆1
𝐿
× 𝑆1

𝛽
:

log 𝑍 = −1
2

Tr log(𝑚2 + Δ) − 𝑆ct

= −1
2

∑︁
(𝑟,𝑠)∈Z2

log

(
𝑚2 +

(
2𝜋𝑟
𝐿

)2
+

(
2𝜋𝑠
𝛽

)2
)
− 𝑆ct

= −
∑︁
𝑟∈Z

log 2 sinh
©­­«
𝛽

√︃
𝑚2 + ( 2𝜋𝑟

𝐿
)2

2
ª®®¬ − 𝑆ct, (4.85)

where 𝑆ct is a cosmological constant counterterm, and in the third line we performed
the sum over 𝑟 and threw away a constant using the fact that

∑
𝑠∈Z 1 = 0 in 𝜁-function

regularization.

Because the summand is slowly-varying in 𝑟, we can take the thermodynamic limit
𝐿 → ∞ by replacing the sum over 𝑟 with an integral over momentum 𝑘 = 2𝜋𝑟

𝐿
:

log 𝑍 ∼ −𝐿
𝜋

∫ ∞

0
𝑑𝑘

(
log

(
1 − 𝑒−𝛽

√
𝑚2+𝑘2

)
− 𝛽

√
𝑚2 + 𝑘2

2

)
− 𝑆ct (𝐿 → ∞).

(4.86)

The second term in the integrand is UV-divergent, but proportional to 𝐿𝛽. Hence, it
takes the form of a cosmological constant and can be removed with an appropriate
choice of 𝑆ct. We will choose 𝑆ct to simply subtract this contribution, which is
equivalent to setting the free energy density to zero in flat R2. We find

log 𝑍 ∼ 𝐿

𝛽
𝑓 (𝛽𝑚) (𝐿 → ∞), (4.87)

where minus the effective free energy density is

𝑓 (𝑦) = − 𝑦
𝜋

∫ ∞

0
𝑑𝑥 log

(
1 − 𝑒−𝑦

√
1+𝑥2

)
∼


𝜋
6 𝑦 ≪ 1,√︃

𝑦

2𝜋 𝑒
−𝑦 𝑦 ≫ 1.

(4.88)

Note that the limit of 𝑓 (𝑦) as 𝑦 → 0 is consistent with 𝑓 = 2𝜋𝑐
12 with 𝑐 = 1 for the

massless free boson in 2D.

Before continuing to the twisted partition function, let us make two observations.
Firstly, the partition function 𝑍 obeys a form of modular invariance. To formulate
it, let us write T2 = R2/Λ, where the lattice Λ is spanned by basis vectors ®𝑒1, ®𝑒2.
We can arrange the basis vectors into a matrix 𝐸 ∈ R2×2 whose columns are ®𝑒1

and ®𝑒2, and consider the partition function as a function of 𝐸 . (Above, we studied
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the case where ®𝑒1 = (𝐿, 0) and ®𝑒2 = (0, 𝛽), and thus 𝐸 =

(
𝐿 0
0 𝛽

)
.) Rotational

invariance implies that 𝑍 (𝐸) is invariant under left-multiplication by an orthogonal
group element 𝑔 ∈ SO(2). Modular invariance is the statement that 𝑍 (𝐸) is also
invariant under an integer change of basis of the lattice Λ, which is equivalent to
right-multiplication by 𝛾 ∈ SL(2,Z):

𝑍 (𝐸) = 𝑍 (𝑔𝐸𝛾). (4.89)

In other words, 𝑍 is a function on the moduli space SO(2)\R2,2/SL(2,Z).

The second key observation is that in the thermodynamic limit, 𝑍 is unchanged
under a small shift of the basis vector that grows as 𝐿 → ∞: ®𝑒1 → ®𝑒1 + 𝛼 ®𝑒2. To
see why, note that the corresponding dual basis shifts by 𝑒̂2 → 𝑒̂2 − 𝛼𝑒̂1 (with 𝑒̂1

unchanged). Thus, the sum (4.85) changes by shifting 𝑟 → 𝑟 − 𝑠𝛼:

log 𝑍
((

𝐿 0
𝛼𝛽 𝛽

))
= −1

2

∑︁
(𝑟,𝑠)∈Z2

log

(
𝑚2 +

(
2𝜋(𝑟 − 𝑠𝛼)

𝐿

)2
+

(
2𝜋𝑠
𝛽

)2
)
− 𝑆ct

∼ 𝐿

𝛽
𝑓 (𝛽𝑚) (𝐿 → ∞). (4.90)

In the continuum limit, we can identify the momentum 𝑘 =
2𝜋(𝑟−𝑠𝛼)

𝐿
and rewrite

the sum as an integral over 𝑘 . The shift 𝑟 → 𝑟 − 𝑠𝛼 becomes immaterial in this
approximation.

Now let us finally consider the partition function with the insertion of a discrete
rotation of the spatial circle 𝑆1

𝐿
by an angle 2𝜋𝑝/𝑞. This corresponds to the matrix

𝐸′ =

(
𝐿

𝑝𝐿

𝑞

0 𝛽

)
=

(
𝐿
𝑞

0
(𝑝−1)𝑞𝛽 𝑞𝛽

)
𝛾′, where 𝛾′ =

(
𝑞 𝑝

−(𝑝−1)𝑞 −𝑏

)
∈ SL(2,Z).

(4.91)

As before (𝑝−1)𝑞 denotes the inverse of 𝑝 modulo 𝑞, and 𝑏 is chosen so that 𝛾′ has
determinant 1. Applying modular invariance (4.89) and the result (4.90), we find

log 𝑍 (𝐸′) = log 𝑍
(

𝐿
𝑞

0
(𝑝−1)𝑞𝛽 𝑞𝛽

)
∼ 𝐿

𝑞2𝛽
𝑓 (𝑞𝛽𝑚) (𝐿 → ∞), (4.92)

consistent with (4.32).

Using slightly fancier technology (see e.g. [79]), we can be more precise about what
information is thrown away in the "∼" in equation (4.92). We rewrite the partition
function in terms of a spectral zeta function

log 𝑍 (𝐸) = 1
2
𝜁 ′𝐸 (0) − 𝑆ct, (4.93)
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𝐿

𝛽

=⇒
2𝛽

Figure 4.4: Left: the latticeΛ for a rectangular torus 𝑆1
𝐿
×𝑆1

𝛽
. In the thermodynamic

limit 𝐿 → ∞, the sum (4.95) is dominated by 𝜆 ∈ Λshort (depicted in red), which
are spaced apart by 𝛽. Right: the lattice after twisting by a spatial rotation by 𝜋. In
the limit 𝐿 → ∞, the partition function is dominated by 𝜆 ∈ Λ′

short, which are now
spaced apart by 2𝛽.

where

𝜁𝐸 (𝑠) = Tr
[
(𝑚2 + Δ)−𝑠

]
=

1
Γ(𝑠)

∫ ∞

0

𝑑𝑡

𝑡
𝑡𝑠Tr

[
𝑒−𝑡 (𝑚

2+Δ)
]

=
1

Γ(𝑠)

∫ ∞

0

𝑑𝑡

𝑡
𝑡𝑠𝑒−𝑡𝑚

2 ∑︁
®𝑟∈Z2

𝑒−𝑡 (2𝜋𝐸
−𝑇 ®𝑟)2

=
1

Γ(𝑠)

∫ ∞

0

𝑑𝑡

𝑡
𝑡𝑠𝑒−𝑡𝑚

2 det 𝐸
4𝜋𝑡

∑︁
𝜆∈Λ

𝑒−
𝜆2
4𝑡 . (4.94)

In the last line, we performed Poisson resummation to obtain a sum over lattice
points 𝜆 ∈ Λ. (Recall that Λ is the lattice spanned by the columns of 𝐸 .) We can
now perform the integral over 𝑡 and plug the result into (4.93). The term 𝜆 = (0, 0)
precisely cancels against 𝑆ct, and we find

log 𝑍 (𝐸) = 𝑚 det 𝐸
2𝜋

∑︁
𝜆∈Λ−(0,0)

𝐾1(𝑚 |𝜆 |)
|𝜆 | , (4.95)

where 𝐾1(𝑥) is a modified Bessel function.

Now we can see clearly that in the thermodynamic limit, the lattice vectors 𝜆 ∈ Λ

that become longer give an exponentially suppressed contribution to log 𝑍 (since
𝐾1(𝑟) ∼ 𝑒−𝑟 for large 𝑟). Indeed, we have

log 𝑍 (𝐸) = 𝑚 det 𝐸
2𝜋

∑︁
𝜆∈Λshort−(0,0)

𝐾1(𝑚 |𝜆 |)
|𝜆 | +𝑂 (𝑒−𝐿𝑚) (𝐿 → ∞), (4.96)

where Λshort are the lattice vectors that do not get longer in the thermodynamic limit
𝐿 → ∞; see Figure 4.4. Applying the result (4.96) to the rectangular torus 𝑆1

𝐿
× 𝑆1

𝛽
,

we find another expression for the effective free energy density:

𝑓 (𝑦) = 𝑦

𝜋

∞∑︁
ℓ=1

1
ℓ
𝐾1(𝑦ℓ), (4.97)
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which agrees with (4.88), as we can see by expanding log(1−𝑒−𝑦
√

1+𝑥2) = −∑
ℓ

1
ℓ
𝑒−ℓ𝑦

√
1+𝑥2

and integrating term-by term. The result (4.96) also immediately implies (4.90).
Combining this with modular invariance, we find that (4.92) holds up to exponential
corrections of the form 𝑒−𝑚𝐿 . Note that this conclusion relies on finiteness of 𝑚 in
the thermodynamic limit. If instead we take 𝑚 → 0, then the thermal theory has a
gapless sector, and we do not expect (4.32) to hold.

We can also understand (4.92) more directly from (4.96) as follows. When the
partition function has a twist by a rational angle 2𝜋𝑝

𝑞
, then a new Λ′

short emerges, as
depicted in Figure 4.4. The emergent Λ′

short looks like Λshort in the un-twisted case,
but with the replacement 𝛽 → 𝑞𝛽.

It is also straightforward to generalize this analysis to a massive free scalar in 𝑑
dimensions. The torus partition function is15

log 𝑍 (𝐸) = det 𝐸
( 𝑚
2𝜋

)𝑑/2 ∑︁
𝜆∈Λ

𝐾𝑑/2(𝑚 |𝜆 |)
|𝜆 |𝑑/2

. (4.98)

This is again consistent with (4.32) (with vanishing topological and defect contri-
butions) through the mechanism depicted in Figure 4.4.

3D CFTs
• Free scalar

We now turn our attention to partition functions of higher dimensional CFTs on a
spatial 𝑆𝑑−1. Let us begin by studying the partition function of a free scalar in 3D,
with various discrete rotations inserted. The usual KK reduction of a free scalar on
a circle possesses a zero mode. However, in order to apply thermal EFT, the KK
reduced theory must be gapped. Thus, in order to avoid zero modes, we will study a
complex scalar charged under a Z𝑘 flavor symmetry. We will turn on the Z𝑘 fugacity
as appropriate to eliminate zero modes, and study the thermal EFT description of
the resulting twisted partition functions. Note that in a generic interacting CFT (as
opposed to a free theory) we would not expect to have zero modes, and it would not
be necessary to consider flavor symmetry.

Let 𝑅(𝜃) ∈ SO(3) denote a rotation around the 𝑧-axis, and let Ψ denote a reflection
in the 𝑧 direction. We will consider insertions of 𝑅(𝜃, 𝑠) = 𝑅(𝜃) ◦Ψ𝑠 ∈ 𝑂 (3), where
𝜃 =

2𝜋𝑝
𝑞

. Note that the reflection potential 𝑠 takes values in {0, 1}, since Ψ2 = 1.
15This is an example of an Epstein 𝜁-function; see e.g. [83].
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The partition function is given by

log Tr
[
𝑒−𝛽(𝐻−𝑖Ω𝐽)𝑒

2𝜋𝑖ℓ𝑄
𝑘 𝑅(𝜃, 𝑠)

]
=

∑︁
𝑛

1
𝑛

(
𝑒

2𝜋𝑖ℓ𝑛
𝑘 + 𝑒− 2𝜋𝑖ℓ𝑛

𝑘

) 𝑒−𝑛𝛽/2(1 − 𝑒−2𝑛𝛽)
(1 − (−1)𝑛𝑠𝑒−𝑛𝛽) (1 − 𝑒−𝑛𝛽𝑥𝑛) (1 − 𝑒−𝑛𝛽𝑥−𝑛)

,
(4.99)

where 𝑥 = 𝑒2𝜋𝑖𝑝/𝑞+𝑖𝛽Ω, and 𝑄 is the charge of the scalar under𝑈 (1) (of which Z𝑘 is
a subgroup).

When we turn on a big rotation 𝑅(𝜃, 𝑠) with order 𝑞 and include the global symmetry
operator 𝑉 = 𝑒

2𝜋𝑖ℓ𝑄
𝑘 , a zero mode will be present on the EFT bundle whenever

𝑉𝑞 = 1, since 𝑉 wraps 𝑞 times around the base of the EFT bundle — see the
discussion around (4.30).

Let us consider the case 𝑝/𝑞 = 1/2, corresponding to a rotation by an angle 𝜋,
which fixes the north and south poles of 𝑆2. If the flavor group were Z2, then we
would necessarily have a zero mode on the EFT bundle. Hence we instead consider
Z3 flavor symmetry.

The thermal partition function of a free scalar field with non-zero Z3 flavor and
small rotation-fugacity has the following high temperature expansion:

log Tr
[
𝑒−𝛽(𝐻−𝑖Ω𝐽)𝑒

4𝜋𝑖𝑄
3

]
= − 16𝜁 (3)

9(1 +Ω2)𝛽2 − (1 + 2Ω2) log 3
12(1 +Ω2)

+ (21 + 4Ω2 − 24Ω4)𝛽2

4320(1 +Ω2)
+𝑂 (𝛽4). (4.100)

Now we would like to turn on the fugacity for the big rotation with or without a
reflection, leading to absence or presence of non trivial defect action, respectively.

Free action: without defect
Let us first consider an insertion of 𝑅(𝜋, 1) = 𝑅(𝜋) ◦ Ψ. This is a parity transfor-
mation ®𝑛 ↦→ −®𝑛 on 𝑆2, and it does not have any fixed points. Thus, the thermal
effective action will be free of defects. Concretely, we find

log Tr
[
𝑒−𝛽(𝐻−𝑖Ω𝐽)𝑒

2𝜋𝑖𝑄
3 𝑅(𝜋, 1)

]
= − 2𝜁 (3)

9(1 +Ω2)𝛽2 − (1 + 2Ω2) log 3
24(1 +Ω2)

+ (21 + 4Ω2 − 24Ω4)𝛽2

2160(1 +Ω2)
+𝑂 (𝛽4).

(4.101)

Comparing (4.100) with (4.101) we find

log Tr
[
𝑒−𝛽(𝐻−𝑖Ω𝐽)𝑒

2𝜋𝑖𝑄
3 𝑅(𝜋, 1)

]
∼ 1

2
log Tr

[
𝑒−2𝛽(𝐻−𝑖Ω𝐽)𝑒

4𝜋𝑖𝑄
3

]
, (4.102)

so (4.30) holds.
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Non-free action: defect
Without the reflection fugacity, the action of 𝑅 has fixed points and thermal EFT
predicts a non-trivial 𝑆𝔇 as in (4.32). We find

log Tr
[
𝑒−𝛽(𝐻−𝑖Ω𝐽)𝑒

4𝜋𝑖𝑄
3 𝑅(𝜋, 0)

]
= − 2𝜁 (3)

9(1 +Ω2)𝛽2 − (7 + 8Ω2) log 3
24(1 +Ω2)

+ (−69 + 94Ω2 + 156Ω4)𝛽2

2160(1 +Ω2)
+𝑂 (𝛽4) .

(4.103)
Comparing with (4.100), we obtain

− log Tr
[
𝑒−𝛽(𝐻−𝑖Ω𝐽)𝑒

2𝜋𝑖𝑄
3 𝑅(𝜋, 0)

]
∼ −1

2
log Tr

[
𝑒−2𝛽(𝐻−𝑖Ω𝐽)𝑒

4𝜋𝑖𝑄
3

]
+ 𝑆𝔇 ,

(4.104)
where the total defect action 𝑆𝔇(𝛽,Ω) is given by

𝑆𝔇(𝛽,Ω) = − log 3
4

+ 2Ω2 − 1
24

𝛽2 +𝑂 (𝛽4) . (4.105)

Note that 𝑆𝔇 has precisely the form predicted in (4.61), with

𝑎0,1/2 = − log 3
4
, 𝑎2,1/2 = − 1

192
, 𝑎3,1/2 =

7
384

. (4.106)

Furthermore, the linear term in 𝛽 vanishes because 𝑎1,1/2 = 𝑎1,−1/2 in bosonic
theories.

More generally, we can consider a rotation 𝑅( 2𝜋𝑝
𝑞
, 0), where 𝑝 and 𝑞 are coprime and

𝑞 is not divisible by 3 (so that there is no zero mode upon dimensional reduction).
The leading defect Wilson coefficients in this case satisfy:

𝑎0,𝑝/𝑞 + 𝑎0,−𝑝/𝑞 = −1
3

𝑞−1∑︁
𝑘=1

1
sin( 𝜋𝑘 𝑝3 )2

[
cos

(
2𝜋(𝑘+𝑞)

3

) (
𝜓

(
𝑘

3𝑞 +
1
3

)
− 𝜓

(
𝑘

3𝑞

))
+ cos

(
2𝜋(𝑘+2𝑞)

3

) (
𝜓

(
𝑘

3𝑞 +
2
3

)
− 𝜓

(
𝑘

3𝑞

))]
,

(4.107)

𝑎1,𝑝/𝑞 − 𝑎1,−𝑝/𝑞 =
1
6

𝑞−1∑︁
𝑘=1

cos( 𝜋𝑘 𝑝3 )
sin( 𝜋𝑘 𝑝3 )3

[
cos

(
2𝜋(𝑘+𝑞)

3

)
+ 2 cos

(
2𝜋(𝑘+2𝑞)

3

)]
, (4.108)

where 𝜓(𝑧) is the digamma function.
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• Free fermion

We can perform a similar exercise with free Dirac fermions. The partition function
is given by

log Tr
[
𝑒−𝛽𝐻𝑒

2𝜋𝑖ℓ𝑄
𝑘 𝑅(𝜃, 0) (−1)𝐹𝑤

]
=

∑︁
𝑛

(−1)𝑛𝑤 (−1)𝑛+1

𝑛

(
𝑒

2𝜋𝑖ℓ𝑛
𝑘 + 𝑒− 2𝜋𝑖ℓ𝑛

𝑘

) 𝑒−𝑛𝛽 [(
(
√
𝑥)𝑛 + 1

(
√
𝑥)𝑛

)
− 𝑒−𝑛𝛽

(
(
√
𝑥)𝑛 + 1

(
√
𝑥)𝑛

)]
(1 − 𝑒−𝑛𝛽) (1 − 𝑒−𝑛𝛽 (

√
𝑥)2𝑛) (1 − 𝑒−𝑛𝛽 (

√
𝑥)−2𝑛)

.

(4.109)

Fermions are antiperiodic in the time direction at finite temperature. Hence, when
no fugacities corresponding to a big rotation or fermion number are turned on,
there is no zero mode contribution to the thermal EFT description of the partition
function. In this case, we have the following high temperature behavior:

log Tr
[
𝑒−𝛽(𝐻−𝑖Ω𝐽)

]
=

3𝜁 (3)
(1 +Ω2)𝛽2 − (2 +Ω2) log 2

6(1 +Ω2)
+ (24 − 4Ω2 − 21Ω4)𝛽2

5760(1 +Ω2)
+𝑂 (𝛽4).

(4.110)

However, when (−1)𝐹 and big rotations are turned on, we must be careful about zero
modes. If the big rotation is given by 𝑒2𝜋𝑖𝑝/𝑞, then we have various cases depending
on the parity of 𝑝, 𝑞 and presence or absence of (−1)𝐹 . We consider all possible
cases in the Table4.1.

Let us consider the case when 𝑞 is even. We take 𝑞 = 2 for simplicity. According to
table4.1, we do not need a flavor twist to remove zero modes. We compute

log Tr
[
𝑒−𝛽(𝐻−𝑖Ω𝐽)𝑅(±𝜋, 0)

]
=

3𝜁 (3)
8(1 +Ω2)𝛽2 − (2 +Ω2) log 2

12(1 +Ω2)
∓ Ω𝛽

4
+ (24 − 4Ω2 − 21Ω4)𝛽2

2880(1 +Ω2)
+𝑂 (𝛽3).

(4.111)
Note that log Tr

[
𝑒−𝛽(𝐻−𝑖Ω𝐽) (−1)𝐹𝑅(𝜋, 0)

]
= log Tr

[
𝑒−𝛽(𝐻−𝑖Ω𝐽)𝑅(−𝜋, 0)

]
.

Comparing (4.110) and (4.111), we verify the appropriate generalizations of (4.32)
to fermionic CFT. In particular, see (4.84) and note that as an element of spin group,
we have 𝑅2(±𝜋, 0) = (−1)𝐹 . We find

− log Tr
[
𝑒−𝛽(𝐻−𝑖Ω𝐽)𝑅(±𝜋, 0)

]
∼ −1

2
log Tr

[
𝑒−2𝛽(𝐻−𝑖Ω𝐽)] + 𝑆𝔇± , (4.112)

where 𝑆𝔇± is given by

𝑆𝔇± = ∓Ω𝛽
4

+𝑂 (𝛽3) . (4.113)
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(−1)𝐹? Rotation Boundary Condition Flavor? Equation

𝑝/𝑞 (−1)𝑞(𝑤+1) (−1)𝑝

No (𝑤 = 0) 1/2 (−1)2(−1)1 = −1 No (4.111), (4.112)

Yes (𝑤 = 1) 1/2 (−1)4(−1)1 = −1 No (4.111), (4.112)

No (𝑤 = 0) 1/3 (−1)3(−1)1 = +1 Z2 (4.115), (4.116)

Yes (𝑤 = 1) 1/3 (−1)6(−1)1 = −1 No (4.115), (4.116)

No (𝑤 = 0) 2/3 (−1)3(−1)2 = −1 No (4.118), (4.119)

Yes (𝑤 = 1) 2/3 (−1)6(−1)2 = +1 Z2 (4.118), (4.119)

Table 4.1: Turning on fugacities corresponding to flavor, rotation and fermionic
number. 𝑤 = 0, 1 refers to turning off and on the fugacity corresponding to (−1)𝐹
respectively. The fugacity corresponding to big rotation is 𝑒2𝜋𝑖𝑝/𝑞. The third
column lists the effective spin structure on the EFT bundle, ±1 in this column refers
to periodic and antiperiodic boundary condition respectively. The fourth column
lists whether we need a flavor twist to make sure that there is no zero mode. Note
that antiperiodic boundary condition rules out the presence of zero modes. The final
column refers to relevant equations in the main text.

This has precisely the form predicted in (4.61), with

𝑎1,1/2 − 𝑎1,−1/2 =
1
8
, 𝑎0,1/2 + 𝑎0,−1/2 = 0 . (4.114)

Next we consider the case when 𝑞 is odd. Now 𝑝 can be either even or odd. For
example, let us consider 𝑞 = 3 and 𝑝 = 1 or 𝑝 = 2. We introduce a flavor twist
according to Table. 4.1. Note that, operationally the insertion of (−1)𝐹 is same as
introducing a Z2 flavor twist. The insertion of both amounts to inserting nothing.
In what follows, we choose to insert (−1)𝐹 to eliminate the zero mode.

For 𝑝/𝑞 = 1/3, we find that

log Tr
[
𝑒−𝛽(𝐻−𝑖Ω𝐽) (−1)𝐹𝑅(2𝜋/3, 0)

]
∼ 𝜁 (3)

9(1 +Ω2)𝛽2 − (10 + 9Ω2) log 2
18(1 +Ω2)

+ 5Ω𝛽
3
√

3
+ (−568 + 1028Ω2 + 1617Ω4)𝛽2

5760(1 +Ω2)
+𝑂 (𝛽3).

(4.115)
Comparing (4.110) and (4.115) we find that

log Tr
[
𝑒−𝛽(𝐻−𝑖Ω𝐽) (−1)𝐹𝑅(2𝜋/3, 0)

]
∼ 1

3
log Tr

[
𝑒−3𝛽(𝐻−𝑖Ω𝐽)] + 𝑆𝔇(𝛽,Ω) ,

(4.116)
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where the total defect action 𝑆𝔇(𝛽,Ω) takes the form predicted in (4.61):

𝑆𝔇(𝛽,Ω) ∼ −4 log 2
9

+ 5Ω𝛽
3
√

3
− (8 − 21Ω2)𝛽2

72
+𝑂 (𝛽3) . (4.117)

The 𝑝/𝑞 = 2/3 case can be easily be done using the following identity

log Tr
[
𝑒−𝛽(𝐻−𝑖Ω𝐽)𝑅(4𝜋/3, 0)

]
= log Tr

[
𝑒−𝛽(𝐻+𝑖Ω𝐽) (−1)𝐹𝑅(2𝜋/3, 0)

]
,

(4.118)
from which it follows that

log Tr
[
𝑒−𝛽(𝐻−𝑖Ω𝐽)𝑅(4𝜋/3, 0)

]
∼ 1

3
log Tr

[
𝑒−3𝛽(𝐻−𝑖Ω𝐽)] + 𝑆𝔇(𝛽,−Ω) , (4.119)

where 𝑆𝔇(𝛽,Ω) is given by (4.117).

More examples with a defect action: 4d CFTs
In 4D, the rotation group has two Cartan generators, which we call 𝐽1 and 𝐽2. Let us
consider inserting 𝑅 = exp(2𝜋𝑖 𝑝1

𝑞1
𝐽1 + 2𝜋𝑖 𝑝2

𝑞2
𝐽2) into the trace. When 𝑞1 = 𝑞2, the

action of 𝑅 is free and there will be no vortex defects. However, when 𝑞1 ≠ 𝑞2, we
will have two 1-dimensional vortex defects 𝔇(1) and 𝔇(2) , whose combined action
is given by (4.65).

As a concrete example, consider the free Dirac fermion in 4D. Using plethystic
exponentials, we find

− log Tr
[
𝑒−𝛽(𝐻−𝑖

®Ω· ®𝐽)𝑒
2𝜋𝑖 𝑝1

𝑞1
𝐽1+2𝜋𝑖 𝑝2

𝑞2
𝐽2
]
∼ −1

𝑞
log Tr

[
𝑒−𝑞𝛽(𝐻−𝑖

®Ω· ®𝐽)
]
+ 𝑆𝔇 . (4.120)

Here we impose that 𝑞
(
1 + 𝑝1

𝑞1
+ 𝑝2
𝑞2

)
is odd. This ensures absence of the (−1)𝐹

insertion in the right hand side above. Thus the zero mode is absent and the thermal
EFT applies.

Furthermore, 𝑆𝔇 has precisely the form predicted by (4.65) with the leading Wilson
coefficients given by the following function of (−1)𝑝 and coprime integers 𝑃,𝑄:

𝑎0,𝑃/𝑄,(−1)𝑝 =
𝑄−1∑︁
𝑘=1

(−1)𝑝𝑘 cos(𝜋𝑘 𝑃
𝑄
)

8𝜋 sin2(𝜋𝑘 𝑃
𝑄
)

(
𝜓′

(
1
2
+ 𝑘

2𝑄

)
− 𝜓′

(
𝑘

2𝑄

))
, (4.121)

where 𝜓′(𝑧) is the derivative of the digamma function. This is a highly nontrivial
check of (4.65). Matching (4.65) requires not just reproducing the correct function
of 𝛽,Ω1,Ω2, but also the fact that the Wilson coefficient of 𝔇(1) depends only on
𝑃2/𝑄2 and (−1)𝑝1 (and analogously for 𝔇(2)).

Note that when 𝑞1 = 𝑞2, we have 𝑄1 = 𝑄2 = 1, hence the sum is non-existent,
leading to 𝑎0,𝑃1/𝑄1,(−1)𝑝2 = 𝑎0,𝑃2/𝑄2,(−1)𝑝1 = 0, which is consistent with the fact that
the action of 𝑅 becomes free and 𝑆𝔇 should vanish.
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4.6 Topological terms: example in 2D CFT
So far, we have focused on cases where the thermal effective action can be written
as the integral of a local gauge- and coordinate-invariant density. As discussed in
Section 4.3, we can choose a gauge ("EFT gauge") where the background fields
𝑔, 𝐴, 𝜙 on the EFT bundle look locally the same as on 𝑆𝑑−1 × 𝑆1

𝛽
(possibly with

"small" angular twists turned on). Curvature invariants built out of these fields are
then also the same as on 𝑆𝑑−1 × 𝑆1

𝛽
, and their integral is not sensitive to global

properties of the EFT bundle.

By contrast, when 𝑑 is even, the thermal effective action can also include Chern-
Simons-type terms that are not integrals of local curvature invariants, and hence
can be sensitive to global properties of the EFT bundle. The contributions of such
terms were called "topological" in (4.30) and (4.32). The coefficients of such Chern-
Simons terms can be determined systematically from the anomaly polynomial of the
CFT [124–126, 153, 154, 171]. The simplest case is when 𝑑 = 2, where the thermal
effective action contains a 1d Chern Simons term whose coefficient is proportional
to the local gravitational anomaly 𝑐𝐿 − 𝑐𝑅.

In more detail, consider such a 2D CFT with a local gravitational anomaly, 𝑐𝐿 ≠ 𝑐𝑅.
We assume that 𝑐𝐿 − 𝑐𝑅 = 24𝑘 with 𝑘 ∈ Z. From modular invariance we have a
high-temperature expansion of the partition function as 16

log
(
Tr

[
𝑒−𝛽(𝐻−𝑖Ω𝐽)𝑒2𝜋𝑖 𝑝

𝑞
𝐽
] )

∼ 4𝜋2(𝑐𝐿 + 𝑐𝑅 − 24𝑖𝑘Ω)
24𝑞2(1 +Ω2)𝛽

−
2𝜋𝑖𝑘 (𝑝−1)𝑞

𝑞
, (4.122)

where (4.122) is accurate to all orders in perturbation theory in 𝛽. This generalizes
(4.19) to theories with 𝑐𝐿 ≠ 𝑐𝑅.

In the thermal effective action, we can reproduce the terms in (4.122) with a Chern-
Simons term from the KK gauge field in the action. In particular, we add a term of
the form

−2𝜋𝑖𝑘
𝑞𝛽

∮
𝐴 (4.123)

to the thermal effective action. From (4.47), we see that (4.123) precisely reproduces
the additional terms in (4.122). Note that (4.123) is properly quantized precisely
when 𝑘 is an integer, since 𝐴 is a connection on a circle bundle where the fiber has
circumference 𝑞𝛽.

16To derive (4.122), we apply the modular transform (4.18) to the vacuum state 𝑒−
2𝜋𝑖𝜏𝑐𝐿−2𝜋𝑖𝜏𝑐𝑅

24

with 𝜏 = 𝑖𝛽

2𝜋 + 𝛽Ω

2𝜋 + 𝑝

𝑞
and expand in small 𝛽.
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4.7 Holographic theories
In this section we consider CFTs dual to semiclassical Einstein gravity in AdS.
The high temperature behavior of the thermal partition function, Tr[𝑒−𝛽𝐻+𝑖 ®𝜃· ®𝐽]
around 𝜃𝑖 = 0, of such holographic CFTs in 𝑑 dimensions are captured by the
thermodynamics of black hole solutions in AdS𝑑+1. We would like to understand
the bulk solution that captures the high temperature behavior of Tr[𝑒−𝛽𝐻+𝑖 ®𝜃· ®𝐽] near
𝜃𝑖 = 2𝜋𝑝𝑖/𝑞𝑖, where at least one of the 𝑝𝑖 ≠ 0 and 𝑞𝑖 ⩾ 2.

First, let us consider a 𝑑 = 2 dimensional CFT in the context of AdS3/CFT2 duality.
The relevant bulk solution is given by the rotating BTZ black hole with the metric

𝑑𝑠2 = − 𝑓 (𝑟)𝑑𝑡2 + 𝑑𝑟2

𝑓 (𝑟) + 𝑟
2
(
𝑑𝜙 − 𝑟+𝑟−

𝑟2 𝑑𝑡

)2
, 𝑓 (𝑟) :=

(𝑟2 − 𝑟2
+) (𝑟2 − 𝑟2

−)
𝑟2 ,

(4.124)
where 𝑟± are radius of outer and inner horizon respectively. The BH temperature
𝛽−1 and angular potential Ω = 𝜃/𝛽 are given by

Ω =
𝑟−
𝑟+
, 𝛽−1 =

𝑟2
+ − 𝑟2

−
2𝜋𝑟+

. (4.125)

Asymptotically, the metric is Weyl equivalent to −𝑑𝑡2+𝑑𝜙2. In Euclidean signature,
𝑡𝐸 = 𝑖𝑡 and we have (𝜙, 𝑡𝐸 ) ∼ (𝜙 − 𝛽Ω, 𝑡𝐸 + 𝛽). The Euclidean action evaluated on
this bulk saddle reproduces the high temperature behavior of Tr[𝑒−𝛽(𝐻−𝑖Ω𝐽)].

Now let us compute Tr[𝑒−𝛽(𝐻−𝑖Ω𝐽)+2𝜋𝑖𝑝/𝑞𝐽] for a holographic 2D CFT. As explained
in Section 4.2, this can be computed by doing a path integral over𝑀𝑞𝛽,Ω/Z𝑞,17 where
the action of Z𝑞 = ⟨ℎ⟩ is given by

ℎ : (𝜙, 𝑡𝐸 ) ↦→ (𝜙 + 2𝜋𝑝/𝑞 − 𝛽Ω, 𝑡𝐸 + 𝛽) , (4.126)

and 𝑀𝑞𝛽,Ω is obtained from 𝑆1 × R by quotienting by ⟨ℎ𝑞⟩.

Note that the action of Z𝑞 has a natural extension into the AdS bulk, where the radial
direction goes along for the ride

ℎ : (𝑟, 𝜙, 𝑡𝐸 ) ↦→ (𝑟, 𝜙 + 2𝜋𝑝/𝑞 − 𝛽Ω, 𝑡𝐸 + 𝛽) . (4.127)

We can use this natural extension to build a bulk dual solution. We start with a BTZ
black hole Σ𝑞𝛽,Ω with parameters 𝑟± = 𝑟±/𝑞, such that the black hole is at inverse
temperature 𝛽 = 𝑞𝛽. The Euclidean metric is given by

𝑑𝑠2 = 𝑓 (𝑟)𝑑𝑡2𝐸 + 𝑑𝑟2

𝑓 (𝑟)
+ 𝑟2

(
𝑑𝜙 + 𝑖 𝑟+𝑟−

𝑟2 𝑑𝑡𝐸

)2
, 𝑓 (𝑟) :=

(𝑟2 − 𝑟2
+) (𝑟2 − 𝑟2

−)
𝑟2 .

(4.128)
17In this section, we use the compressed notation 𝑀𝛽,𝑒𝑖𝐽Ω → 𝑀𝛽,Ω.
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Note that (𝜙, 𝑡𝐸 ) ∼ (𝜙 − 𝑞𝛽Ω, 𝑡𝐸 + 𝑞𝛽). We can then quotient Σ𝑞𝛽,Ω by the action
of Z𝑞 = ⟨ℎ⟩, given by (4.127). The manifold Σ𝑞𝛽,Ω/Z𝑞 is smooth because the action
of ℎ in the bulk (4.127) is free.

Recall that on the boundary, the quotient 𝑀𝑞𝛽,Ω/Z𝑞 is a nontrivial bundle over
𝑆1/Z𝑞. The discussion in 4.3 applies here, with the radial direction of AdS going
along for the ride. In short, we consider open sets in the total space and consider
the bulk region that asymptotes to this set. Locally in this bulk region, the metric is
precisely given by (4.128). However, there are non-trivial transition functions when
we go from one open patch to a different one.

By construction, the quotient Σ𝑞𝛽,Ω/Z𝑞 solves Einstein’s equations with the appro-
priate asymptotic geometry. Compared to a rotating BTZ black hole at temperature
𝑞𝛽, the above quotient geometry has its angular variable restricted to 0 < 𝜙 < 2𝜋/𝑞.
(Note that this almost covers the full manifold except the locus 𝜙 = 0. This locus is
covered by another open patch and we have nontrivial transition function between
these two patches.) Thus the evaluation of the bulk action amounts to an integral
over the angular variable in the range 0 < 𝜙 < 2𝜋/𝑞 producing a factor of 1/𝑞,
and a replacement 𝛽 → 𝑞𝛽 which produces another factor of 1/𝑞 compared to
the evaluation of Euclidean action on BTZ black hole at temperature 𝛽. Thus, the
Euclidean action evaluated on the saddle Σ𝑞𝛽,Ω/Z𝑞 reproduces

log Tr[𝑒−𝛽(𝐻−𝑖Ω𝐽)+2𝜋𝑖𝑝/𝑞𝐽] ∼ log 𝑍grav
[
Σ𝑞𝛽,Ω/Z𝑞

]
=

1
𝑞

log 𝑍grav
[
Σ𝑞𝛽,Ω

]
∼ 1
𝑞

log Tr[𝑒−𝑞𝛽(𝐻−𝑖Ω𝐽)],

(4.129)

where 𝑍grav [Σ] is the gravitational path integral evaluated on the saddle Σ.

Overall, we have a quotient of a BTZ black hole whose boundary has a temporal
cycle of length 𝛽𝐿 = 𝑞𝛽(1 − 𝑖Ω) and a spatial cycle of length 𝐿 = 2𝜋

𝑞
. This naively

leads to the modular parameter

𝜏̃ "=" 𝑖𝐿/𝛽𝐿 =
2𝜋𝑖

𝑞2𝛽(1 − 𝑖Ω)
. (4.130)

The above is almost correct, but we must amend it by recalling the presence of
nontrivial transition functions. This leads to the following identification:

𝜏̃ =
2𝜋𝑖

𝑞2𝛽(1 − 𝑖Ω)
−

(𝑝−1)𝑞
𝑞

, 𝜏̃ = − 2𝜋𝑖
𝑞2𝛽(1 + 𝑖Ω)

−
(𝑝−1)𝑞
𝑞

, (4.131)
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which precisely matches the modular parameter 𝜏̃ obtained after applying a modular
transformation, as explained around (4.17). Note that we have

1
2

(
𝜏̃ + 𝜏̃

)
= −

(𝑝−1)𝑞
𝑞

− 2𝜋Ω
𝑞2𝛽(1 +Ω2)

, (4.132)

which is consistent with the holonomy of 𝐴 derived in (4.47). We conclude that
Σ𝑞𝛽,Ω/Z𝑞 is simply a modular transformation of the BTZ black hole geometry.

In dimensions greater than two, we follow the same prescription. Let Σ
𝛽, ®Ω be

a black hole solution that captures the high temperature behavior of the thermal
partition function with small angular fugacity, i.e. the AdS-Kerr black hole with
inverse temperature 𝛽 and angular velocities 𝑖 ®Ω. We claim that the insertion of a big
angular fugacity 𝑅 with 𝑅𝑞 = 1 is captured by the bulk manifold Σ

𝑞𝛽, ®Ω/Z𝑞, where
Z𝑞 is the natural extension of the boundary Z𝑞 into the bulk. To be precise, the
AdS-Kerr solution possesses a time-translation isometry, which we parametrize by
𝑡𝐸 . It furthermore possesses isometries under the Cartan subgroup of the rotation
group, which we parametrize by 𝜙𝑎. Then the Z𝑞 = ⟨ℎ⟩/⟨ℎ𝑞⟩ group is generated by

ℎ : (𝑟, 𝑟𝑎, 𝜙𝑎, 𝑡𝐸 ) ↦→ (𝑟, 𝑟𝑎, 𝜙𝑎 + 2𝜋𝑝𝑎
𝑞𝑎
, 𝑡𝐸 + 𝛽), (4.133)

where 𝑟𝑎 and 𝑟 are the remaining bulk coordinates.

When the bulk action of ℎ is free, Σ
𝑞𝛽, ®Ω/Z𝑞 is a smooth solution to Einstein’s

equations with the correct asymptotic geometry to describe the partition function
with an insertion of 𝑅. At very high temperatures, the gravitational path integral
on this geometry matches the field theory prediction (4.30) because the quotient
by Z𝑞 just divides the semiclassical gravitational action by 𝑞. Thus we expect
Σ
𝑞𝛽, ®Ω/Z𝑞 is the dominant solution at high temperatures. As we move away from

high temperatures, we conjecture that Σ
𝑞𝛽, ®Ω/Z𝑞 remains the dominant solution down

to a finite temperature.

Unlike in 2d, in higher dimensions it is possible for the bulk Z𝑞 action (4.133) to
have a fixed locus. Such a fixed locus must occur at the horizon of the black hole
(where the Euclidean time circle degenerates), and at a location on the sphere 𝑆𝑑−1

where the boundary action of ℎ has a fixed point as well. For example, consider
a 3D CFT, with a four-dimensional bulk dual, and consider the case 𝑝1/𝑞1 = 1/2.
The bulk action of ℎ rotates the 𝜙 circle by 𝜋, and also shifts 𝑡𝐸 → 𝑡𝐸 + 𝛽 (which is
equivalent to rotating the thermal circle by 𝜋). Fixed points of ℎ occur at the north
and south poles of the horizon 𝑆2. For example, near the north pole, we can choose
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coordinates so that the metric locally takes the form

𝑑𝑟2
1 + 𝑟

2
1𝑑𝜙

2 + 𝑑𝑦2 + 𝑦2𝑑𝜓2, (4.134)

where 𝜓 = 2𝜋
2𝛽 𝑡𝐸 , and 𝑦 ∝ √

𝑟 − 𝑟𝐻 (with 𝑟𝐻 the location of the horizon). In these
coordinates, the Z2 action rotates both angles 𝜙, 𝜓 by 𝜋. Quotienting by this Z2, we
obtain an orbifold singularity of the form C2/Z2.

When Σ
𝑞𝛽, ®Ω/Z𝑞 contains an orbifold singularity, it no longer furnishes a smooth

solution to Einstein’s equations. To understand the correct bulk dual of the 𝑅-
twisted partition function, we must understand the fate of the orbifold singularity
in the bulk theory. The physics of the singularity (or its resolution) essentially
determines the defect action 𝑆𝔇 in holographic CFTs. Note that in a spacetime
with vanishing cosmological constant, a C2/Z2 singularity can be resolved by the
"gravitational instanton" described by the Eguchi-Hansen metric. Perhaps orbifold
singularities occurring in the Σ

𝑞𝛽, ®Ω/Z𝑞 can be resolved similarly. Or perhaps the
orbifold singularity is resolved by stringy effects. We leave these questions to future
work.

For fermionic theories dual to Einstein gravity (which all known examples are),
there is another set of Wilson coefficients 𝑓 , 𝑐1, . . . that can be defined (see (4.79))
coming from periodic boundary conditions for the fermion. The behavior of the
partition function with (−1)𝐹 inserted was explored in [62], which found a black
hole solution that lead to an exponentially subleading (in temperature) contribution
in the large 𝑁 limit. Since generically we expect 𝑓 to be nonvanishing, this means
the black hole solution found in [62] should not be the dominant contribution in the
𝑇 ≫ 𝑁 ≫ 1 limit. It would be interesting to explore further if there are universal
results or constraints on the Wilson coefficients 𝑓 , 𝑐1, . . . in (fermionic) holographic
CFTs (for instance by looking at the theories studied in [31]).

Finally, let us note that our construction works also in the case when the boundary
theory possesses a reflection symmetry and the group element 𝑅 includes a reflection.
In this case, the bulk dual solution Σ

𝑞𝛽, ®Ω/Z𝑞 is non-orientable. This is allowed
because the boundary reflection symmetry must be gauged in the bulk, which means
we must include contributions from non-orientable geometries. It so happens that a
non-orientable geometry dominates in this case.18

18See [101] for a recent discussion of gauging spacetime symmetries in the bulk.
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4.8 Journey to 𝛽 = 0
So far we have described the structure of CFT partition functions 𝑍 (𝛽, ®𝜃) at high
temperature near rational angles ®𝜃

2𝜋 ∈ Q𝑛. In this section we will use these results
to sketch the behavior of the partition function at high temperature around any
(possibly irrational) angle. For simplicity let us consider turning on only one angle
𝜃, and study the partition function

𝑍 (𝛽, 𝜃) = Tr
[
𝑒−𝛽𝐻+𝑖𝐽𝜃

]
(4.135)

at small 𝛽 with 𝜃 fixed. Suppose the angle has the following continued fraction
expansion:

𝜃

2𝜋
= 𝑎0 +

1
𝑎1 + 1

𝑎2+ 1
𝑎3+...

, (4.136)

where 𝑎𝑖 ∈ N. We also define the fractions 𝑝𝑖
𝑞𝑖

as truncations of the continued
fraction, i.e.

𝑝𝑖

𝑞𝑖
:= 𝑎0 +

1
𝑎1 + . . . 1

𝑎𝑖

. (4.137)

For a generic angle, the probability of 𝑎𝑖 = 𝑛 scales as 1
𝑛2 for large 𝑛, which means

that the distribution of 𝑎𝑖’s for a generic angle has infinite mean.19

Suppose we have an angle 𝜃 where 𝑎𝑖 ≫ 1 for some 𝑖. How does the partition
function behave at high temperature? Since we assume 𝑎𝑖 ≫ 1, we have 𝑞𝑖 ≈
𝑎𝑖𝑞𝑖−1 ≫ 𝑞𝑖−1. So for

𝑞𝑖−1 ≪ 𝑇 ≪ 𝑞𝑖, (4.138)

we expect
log 𝑍 (𝑇) ∼ vol𝑆𝑑−1 𝑓 𝑇 𝑑−1𝑞−𝑑𝑖−1. (4.139)

However, when
𝑇 ∼ 𝑞𝑖 (4.140)

the constant or proportionality in (4.139) suddenly shrinks.

In Figure 4.5, we illustrate this explicitly for two example CFTs. We plot both the
Klein invariant 𝑗 function (which is the partition function of some 2D CFTs at central
charge 24) and the 3D free boson partition function as a function of temperature,
with chemical potential 𝜃

2𝜋 = 3−𝜋
7𝜋−22 . This has the continued fraction expansion:

𝜃

2𝜋
=

3 − 𝜋
7𝜋 − 22

= 15 + 1
292 + 1

1+...
. (4.141)

19One way to see this scaling is, for a random real number between 0 and 1, the probability that
𝑎1 = 𝑛 is roughly 1

𝑛
− 1
𝑛+1 ∼ 1

𝑛2 .
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(a) 24 free bosons in 2D.
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(b) A free boson in 3D.

Figure 4.5: In blue, the log of the free energy of two CFTs evaluated at chemical
potential 𝜃

2𝜋 = 3−𝜋
7𝜋−22 vs. log𝑇 . In red, a line with slope 𝑑 − 1. (a): 𝑑 = 2. (b):

𝑑 = 3. We see that at some temperature, there is a region where the slope matches
𝑑 − 1, meaning the effective field theory is a good description. If we continue this
plot to higher and higher temperatures, there will be infinitely many times the slope
matches 𝑑 − 1.
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(a) 24 free bosons in 2D.
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(b) A free boson in 3D.

Figure 4.6: In blue, the log of the free energy of two CFTs evaluated at chemical
potential 𝜃

2𝜋 = 1+
√

5
2 vs. log𝑇 . In red, a line with slope 𝑑 − 1. (a): 𝑑 = 2. (b):

𝑑 = 3. We see that at no temperature is there a region where the slope matches
𝑑 − 1, meaning the effective field theory is never a good description. Since we have
fine-tuned the chemical potential to be a real number whose continued fraction has
no large numbers in it, we do not guarantee any region in temperature where we
have a good EFT description of our theory.

(Although any generic real number would serve to illustrate the partition function’s
behavior, we choose (4.141) for convenience because of the large 292 showing up
immediately.) We see that there indeed is a region of 𝑇 where the free energies
scale as we predict from the effective field theory; but when we increase 𝑇 further,
the scaling breaks down. At large 𝑇 for generic chemical potential, there will be an
infinite number of times the plot in Figure 4.5 has slope 𝑑 − 1, which is when the
continued fraction approximation is well-approximated by a rational number (i.e.
whenever 𝑎𝑖 ≫ 𝑎𝑖−1 in the continued fraction).
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Finally we note that if we fine-tune the angle 𝜃 so that none of the 𝑎𝑖’s ever become
large, we can make there be no regime where the partition function obviously grows
as 𝑇 𝑑−1. For example, choosing the angle to be the golden ratio

𝜃

2𝜋
=

1 +
√

5
2

= 1 + 1
1 + 1

1+...
(4.142)

gives an angle where there’s never a large enough regime in 𝑇 trust our effective
field theory. In Figure 4.6, we again plot the Klein invariant 𝑗 function and the
free boson partition functions as a function of temperature, but this time with the
chemical potential set to 𝜃

2𝜋 = 1+
√

5
2 . We see that the slope of log log |𝑍 | against

log𝑇 never matches 𝑑 − 1 in a large region, so there is no good EFT description of
our system.

4.9 Nonperturbative corrections
In this section, we consider nonperturbative corrections to the thermodynamic limit
𝐿 → ∞ at finite 𝛽. For concreteness, we focus on a CFT𝑑 and its dimensional
reduction on 𝑆1

𝛽
to a 𝑑−1-dimensional gapped theory. By conformal symmetry, the

thermodynamic limit is equivalent to 𝛽 → 0 (with a fixed-size spatial manifold).
For simplicity, we will not turn on "small" angular twists 𝛽 ®Ω, though it would be
straightforward to incorporate them.

The thermal effective action essentially captures the dynamics of the ground state of
the 𝑑−1 dimensional gapped theory, while nonperturbative corrections come from
particle excitations. On the geometry R𝑑−1 × 𝑆1

𝛽
, the excitations can be classified

into irreps of the 𝑑−1-dimensional Poincaré group and the Kaluza-Klein 𝑈 (1) that
rotates the 𝑆1

𝛽
. Irreps of the Poincaré group are labeled by a mass and a little group

representation — for simplicity, we will focus on scalars. Thus, each excitation of
interest is labeled by a mass 𝑚𝑖 and a KK charge 𝔮𝑖 ∈ Z. The lightest mass 𝑚𝔮 for
each KK charge 𝔮 is sometimes called the "𝔮-th screening mass", while the lightest
nonzero mass overall is the "thermal mass" of the theory. Note that when 𝑑 = 2,
the spectrum of masses (𝑚𝑖, 𝔮𝑖) are simply ( 2𝜋

𝛽
Δ𝑖, ℓ𝑖), where (Δ𝑖, ℓ𝑖) are scaling

dimensions and spins of local operators. However, in higher dimensions, the masses
𝑚𝑖 are not related in an obvious way to the local operator spectrum.

In the partition function 𝑍CFT [M𝑑−1 × 𝑆1
𝛽
], the leading nonperturbative effects at

small 𝛽 are expected to come from "worldline instantons" associated with particles
of mass 𝑚𝑖 propagating along geodesics of M𝑑−1, see e.g. [39, 79, 99, 109, 110].
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Such contributions can be computed from the worldline path integral

log 𝑍
���
single-particle

=
∑︁

(𝑚𝑖 ,𝔮𝑖)

∫
𝐷𝑥𝜇 (𝜏) exp

(
−𝑚𝑖

∫
𝑑𝜏

√︁
¤𝑥𝜇 ¤𝑥𝜇 +

2𝜋𝑖𝔮𝑖
𝛽

∮
𝐴

)
.

(4.143)

Here, for each particle, we have included a length term −𝑚𝑖
∫
𝑑𝑠 proportional to the

mass, along with a coupling 2𝜋𝑖𝔮𝑖
𝛽

∮
𝐴 to the background KK gauge field. (Note that

we include a factor of 2𝜋
𝛽

because in our conventions, 𝐴 is a connection on a circle
bundle where the fiber has circumference 𝛽, instead of the usual 2𝜋.)

In Appendix 4.10, we compute the wordline path integral (4.143) on some geometries
of interest. For example, by computing (4.143) on 𝑆𝑑−1, we find that the leading
nonperturbative terms in the partition function 𝑍CFT [𝑆𝑑−1 × 𝑆1

𝛽
] have the form

log(TrH
𝑆𝑑−1 [𝑒−𝛽𝐻]) ⊃

∑︁
𝑚𝑖

𝑒−2𝜋𝑚𝑖
(±𝑖)𝑑−2𝑚𝑑−2

𝑖

Γ(𝑑 − 1)

(
1 +𝑂

(
1
𝑚𝑖

))
. (4.144)

Note that the effect of each particle is exponential in the mass 𝑒−2𝜋𝑚𝑖 , where 2𝜋
is the length of a great circle on 𝑆𝑑−1. By dimensional analysis, the masses are
proportional to 1/𝛽, and hence these are indeed nonperturbative corrections in 𝛽.
In addition to the exponential dependence, the worldline path integral makes an
unambiguous prediction for the leading coefficient of the exponential, coming from
a gaussian determinant. We immediately see that the interpretation of (4.144) is
subtle because the coefficient becomes imaginary when 𝑑 is odd (even when the
partition function must be real). We discuss this phenomenon and its interpretation
in Appendix 4.10.

Specializing to 4D, we can similarly compute leading nonperturbative corrections
to a partition function on a lens space 𝐿 (𝑞; 1), coming from a "short" geodesic of
length 2𝜋/𝑞:

log(TrH𝐿 (𝑞;1) [𝑒
−𝛽𝐻]) ⊃


∑
𝑚𝑖
𝑒
− 2𝜋𝑚𝑖

𝑞 𝑚𝑖

2 sin( 2𝜋
𝑞
)

(
1 +𝑂

(
1
𝑚𝑖

))
(𝑞 ≠ 2),∑

𝑚𝑖
𝑒−𝜋𝑚𝑖

𝑚2
𝑖

2

(
1 +𝑂

(
1
𝑚𝑖

))
(𝑞 = 2).

(4.145)

By our discussion of the EFT bundle, this result is closely related to the partition
function on 𝑆3, with a twist by a rational angle of order 𝑞. To obtain the latter, we
must replace 𝛽 → 𝑞𝛽, and account for the presence of a nontrivial holonomy for the
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KK gauge field (since 𝑆1
𝑞𝛽

is nontrivially fibered over 𝐿 (𝑞; 1)). We find

log(TrH
𝑆3 [𝑒

−𝛽𝐻− 2𝜋𝑖
𝑞
𝐽12− 2𝜋𝑖

𝑞
𝐽34]) ⊃


∑

(𝑚𝑖 ,𝔮𝔦) 𝑒
− 2𝜋𝑚𝑖

𝑞2 + 2𝜋𝑖𝔮𝑖
𝑞 𝑚𝑖

2𝑞 sin( 2𝜋
𝑞
)

(
1 +𝑂

(
1
𝑚𝑖

))
(𝑞 ≠ 2),∑

(𝑚𝑖 ,𝔮𝑖) 𝑒
− 𝜋𝑚𝑖

2 +𝜋𝑖𝔮𝑖 𝑚
2
𝑖

8

(
1 +𝑂

(
1
𝑚𝑖

))
(𝑞 = 2).

(4.146)
In particular, nonperturbative corrections to the twisted partition function go like
𝑒−2𝜋𝑚𝑖/𝑞2 , as opposed to 𝑒−2𝜋𝑚𝑖 in the un-twisted case.

More generally, in any dimension 𝑑, when the quotient by Z𝑞 creates a short
geodesic of length ℓshort = 2𝜋/𝑞, the leading nonperturbative corrections will
behave like 𝑒−(𝑚𝑖/𝑞)ℓshort = 𝑒−2𝜋𝑚𝑖/𝑞2 , where 𝑚𝑖/𝑞 comes from the replacement
𝛽 → 𝑞𝛽. Note that this matches the result from modular invariance in 2D. In
2D, after applying a modular transformation, the twisted partition function be-
comes Tr

[
𝑒2𝜋𝑖𝜏̃(𝐿0− 𝑐

24 )−2𝜋𝑖𝜏̃(𝐿0− 𝑐
24 )

]
, where 𝜏̃ = const + 2𝜋𝑖

𝑞2𝛽
. Thus, the leading

𝛽-dependence of the contribution of excited states to the twisted partition function
is 𝑒−4𝜋2Δ𝑖/(𝑞2𝛽) = 𝑒−2𝜋𝑚𝑖/𝑞2 , where 𝑚𝑖 = 2𝜋Δ𝑖

𝛽
.

Note that the action (4.143) is only the leading approximation to the effective action
of a worldline instanton in the small 𝛽 limit. In particular, there can be power-law
corrections in 𝛽 coming from higher curvature terms. Thus, while the tree-level
and 1-loop terms (4.144), (4.145), and (4.146) in the worldline path integral are
universal, the subleading corrections in 1/𝑚𝑖 are not necessarily universal, since
they get contributions both from (computable) loops and from higher curvature
terms.20

In Appendix 4.10, we derive (4.144), (4.145), and (4.146) by performing the world-
line path integral explicitly. We also verify the universal leading terms in several
examples from free field theory.

4.10 Discussion and future directions
In this work, we found that the high-temperature partition function, twisted by a
finite-order discrete rotation 𝑅, is captured by the same thermal EFT as the un-
twisted partition function. One consequence is that "spin-refined" densities of states
(like the difference between the density of even-spin and odd-spin operators) are
determined by the same Wilson coefficients as the usual density of states, up to

20Furthermore, our choice of 𝜁-function regularization does not in general respect coordinate-
invariance of the worldline path integral. To restore coordinate invariance one must add non-
coordinate-invariant counterterms like 𝑔𝜇𝜈𝑔𝜌𝜏𝑔𝛼𝛽Γ𝛼𝜇𝜌Γ

𝛽
𝜈𝜏 with the appropriate coefficients. See

[16] for discussion.
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subleading contributions from Kaluza-Klein vortices. Furthermore, the partition
function 𝑍 (𝛽, ®𝜃) itself has an intricate fractal-like structure as a function of angle at
small 𝛽, with the same universal asymptotics controlling the neighborhood of every
rational angle.

These results follow entirely from effective field theory, together with the assumption
that generic CFTs develop a mass gap when dimensionally-reduced. It would be
interesting to revisit this assumption and understand how our results are modified in
the presence of potential gapless modes. It would also be interesting to investigate
whether Kaluza-Klein vortex defects can support gapless excitations, contribute to
Weyl anomalies, and/or have nontrivial topological terms in their effective action21.

Our central construction is simple: it is essentially the observation that it is useful to
construct a mapping torus 𝑀𝛽,𝑅 = (M𝐿 ×R)/Z from two successive quotients: first
quotienting by 𝑞Z, and then by Z𝑞 = Z/𝑞Z. This idea is applicable on other geome-
tries besides 𝑆𝑑−1×R, and it would be interesting to explore its implications for other
types of partition functions. For example, one could explore "spin-refined" statistics
of OPE coefficients by studying the behavior of discrete spacetime symmetries on
the "genus-2" geometry of [25], or spin-refined lens-space partition functions [182],
or the interaction of discrete spacetime symmetries with other forms of higher-
dimensional "modular invariance" [7, 156, 189, 190]. Supersymmetric partition
functions have been studied on a wide variety of geometries; see e.g. [178]. It is an
enduring challenge to understand observables of non-supersymmetric (potentially
nonperturbative) theories on these geometries.

One can also consider applying thermal EFT to BCFTs to study the asymptotic
spectra of boundary operators. In two dimensions, this boils down to studying the
partition function on a finite cylinder in the 𝛽 → 0 limit and writing down an EFT
on a finite interval with two end points. The end points will become point-like
defects in the thermal effective action. In higher dimensions, by introducing defects
one may break the 𝑆𝑂 (𝑑) invariance down to some subgroup 𝐻. We can imagine
turning on a rotation belonging to 𝐻 and applying thermal EFT ideas in this context.

So far, our main tool for computing partition functions has been thermal EFT, which
is organized in an expansion in small 𝛽. This expansion is likely asymptotic in
general. In fact we can see its asymptotic nature explicitly in odd-dimensional free
theories. It is an important question whether one can obtain more precise results

21See e.g. [22, 65] for a study of similar vortex defects in the context of supersymmetric quantum
field theories.
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about high temperature partition functions, potentially including convergent expan-
sions and/or numerical bounds (as is possible in 2D using the modular bootstrap
[108]).

One possible approach is through a better understanding of resurgence in the small-
𝛽 expansion. In particular, it would be nice to better understand the structure of
nonperturbative terms beyond the worldline instantons discussed in Section 4.9.
We expect that in an interacting theory, there should also be contributions from
an infinite sum of "instanton graphs," representing massive particles propagating
and interacting. An old example of instanton graphs are Lüscher corrections in
field theories on torii [157, 158]. However, to our knowledge, the rules for general
instanton graphs on general geometries in general massive QFTs have not been
spelled out.

Relatedly, modular invariance in 2D CFTs constrains some of the nonperturbative
behavior of the partition function. Given some input light spectra, modular in-
variance highly constrains the resulting spectra, which in effect forces the partition
functions with any phase inserted to behave in a certain way. Techniques such
as Poincare series and Rademacher series have been used to complete the light
spectrum of a 2D CFT (see e.g. [5, 77, 132, 162]), which roughly take the form
of a (convergent) sum over rational angles. It would be interesting if there were
related techniques in higher dimensions, resumming all rational angle insertions in
the partition function trace.

Another potential avenue to making the high-temperature expansion precise is using
Tauberian techniques, which have been applied successfully to correlation functions
[73, 173, 176, 180] and torus partition functions in 2D [168, 174, 175]. An
essential ingredient in Tauberian methods is positivity,22 which has not yet played
an important role in applications of thermal EFT.

22See [163] where, even if OPE coefficent can become negative, Tauberian theorems were used
along with some boundedness conditions from below, to predict asymptotics of OPE coefficent
averaged over a large microcanonical window. However, it is not clear how to extend the result
rigorously for an order one window. The same theorem is used in [172] as well.
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Appendix A Qualitative picture of the 3D Ising partition function
In this appendix, we explain our procedure for producing Figure 4.1. Let 𝑆𝑝/𝑞 denote
the leading contribution to the thermal effective action around the angle 2𝜋𝑝

𝑞
in 3D:

−𝑆𝑝/𝑞 =
1
𝑞3

𝑓 vol 𝑆2

𝛽2 + (𝜃 − 2𝜋𝑝
𝑞
)2
. (4.147)

We expect −𝑆𝑝/𝑞 to be a good estimate for the action when it is large. Thus, to patch
together different EFT descriptions, we roughly want to choose the action −𝑆𝑝/𝑞 that
is largest for each (𝛽, 𝜃). This would lead to the approximation −𝑆 ≈ max𝑝,𝑞 −𝑆𝑝/𝑞,
where 𝑝, 𝑞 runs over co-prime pairs of integers. However, such an estimate would
not be smooth, so we instead combine the different actions with a root-mean-square:

−𝑆 ≈
(∑︁
𝑝,𝑞

(−𝑆𝑝/𝑞)2

)1/2

. (4.148)

In Figure 4.1, we plot log log 𝑍 = log(−𝑆), for 𝑆 given in (4.148), with coprime
pairs of integers up to denominator 15. We use the value of minus the free energy
density 𝑓 ≈ 0.153 determined from Monte-Carlo simulations [144, 145, 198].

Note that the approximation (4.148) has some unrealistic features. Firstly, its ex-
pansion around each rational angle contains subleading corrections in 𝛽 that do
not conform with the expectation from thermal EFT (4.32). Secondly, it does not
incorporate the nonperturbative effects discussed in Section 4.9. Our goal with this
approximation is simply to give a qualitative picture of the partition function. It is
interesting to ask whether there is a natural basis of functions for 𝑍 that naturally
incorporates these constraints.

In principle, the qualitative features of Figure 4.1 can be checked. For instance, one
can explicitly build the partition function of the 3D Ising model with a phase (e.g.
(−1)𝐽) inserted, by simply using the operator scaling dimensions that have been
estimated from the conformal bootstrap (or other methods). One can then plot it
as a function of 𝛽,Ω, and check that, for instance, the leading Wilson coefficient is
approximately 0.153

8 (similar to what was done in Appendix A of [119] and Appendix
D of [25]). An important technical obstacle we run into when attempting this is:
when computing the partition function with the phase (−1)𝐽 , the EFT is valid when
2𝛽 ≪ 1 (rather than 𝛽 ≪ 1), so in effect, one needs to keep more operators in
the partition function to get a trustworthy estimate. It would be interesting if other
techniques to estimate the scaling dimensions of the 3D Ising model know about
enough high energy operators to see explicitly the qualitative features of Figure 4.1.
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Appendix B Review of plethystic sums
In this appendix, we review some facts about the high temperature expansion of
plethystic sums. Plethysic sums can be written as derivatives of various spectral
zeta functions and to compute the high temperature expansion, one "resums" the
zeta functions following a procedure very similar to (4.94). The same resummation
technique is also used to compute the high temperature expansion of massive free
field free energy, as we discussed in the Section 4.10.

Plethystic sums and spectral zeta functions We start with some general
discussion. Let 𝑓 (𝛽) =

∑
𝑘 𝑑𝑘 𝑒

−𝛽𝜆𝑘 be a generating function. We define a few
related quantities:

• Plethystic sum:

log(PE[ 𝑓 ]) :=
∑︁
𝑛=1

1
𝑛
𝑓 (𝑛𝛽). (4.149)

• Spectral zeta function:

𝜁 (𝑠; 𝑓 ) :=
∑︁
𝑛∈Z

∑︁
𝑘

𝑑𝑘

[(
2𝜋𝑛
𝛽

)2
+ 𝜆2

𝑘

]−𝑠
. (4.150)

• Heat trace:

𝐻 (𝑡; 𝑓 ) :=
∑︁
𝑘

𝑑𝑘 𝑒
−𝑡𝜆2

𝑘 . (4.151)

The plethystic sum is related to the spectral zeta function in a simple way:

log(PE[ 𝑓 ]) − 𝛽

2

∑︁
𝑘

𝑑𝑘𝜆𝑘 =
1
2
𝑑

𝑑𝑠

���
𝑠=0
𝜁 (𝑠; 𝑓 ), (4.152)

where the second term on the left hand side is the zeta function regularized Casimir
energy.23

To derive (4.152), we start by using the Schwinger parametrization to obtain:

𝜁 (𝑠; 𝑓 ) =
∑︁
𝑛∈Z

∑︁
𝑘

𝑑𝑘

[(
2𝜋𝑛
𝛽

)2
+ 𝜆2

𝑘

]−𝑠
=

1
Γ(𝑠)

∑︁
𝑛∈Z

∑︁
𝑘

𝑑𝑘

∫ ∞

0

𝑑𝑡

𝑡
𝑡𝑠𝑒

−𝑡 ( 2𝜋𝑛
𝛽

)2−𝑡𝜆2
𝑘

=
1

Γ(𝑠)
𝛽

2
√
𝜋

∑︁
𝑚∈Z

∑︁
𝑘

𝑑𝑘

∫ ∞

0

𝑑𝑡

𝑡
𝑡𝑠−

1
2 𝑒

𝑚2𝛽2
4𝑡 −𝑡𝜆2

𝑘 ,

(4.153)
23Note that the Casimir energy computed using zeta function regularization is NOT the same as

the Casimir energy included in Appendix 4.10. See Section 3.1 in [25] for a discussion of schemes
and [113] for the difference with zeta function regularization.
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where in the last line we’ve Poisson resummed with respect to 𝑛. Now we split the
summation over 𝑚 into an "excited part" with 𝑚 ≠ 0 and a "vacuum part" where
𝑚 = 0:

𝜁excited(𝑠; 𝑓 ) =
1

Γ(𝑠)
𝛽
√
𝜋

∞∑︁
𝑚=1

∑︁
𝑘

𝑑𝑘

∫ ∞

0

𝑑𝑡

𝑡
𝑡𝑠−

1
2 𝑒

𝑚2𝛽2
4𝑡 −𝑡𝜆2

𝑘 ,

𝜁vacuum(𝑠; 𝑓 ) =
1

Γ(𝑠)
𝛽
√
𝜋

∑︁
𝑘

𝑑𝑘

∫ ∞

0

𝑑𝑡

𝑡
𝑡𝑠−

1
2 𝑒−𝑡𝜆

2
𝑘 . (4.154)

Performing the integral over 𝑡, we get

𝑑

𝑑𝑠

���
𝑠=0
𝜁excited(𝑠; 𝑓 ) =

𝛽
√
𝜋

∞∑︁
𝑚=1

∑︁
𝑘

𝑑𝑘

∫ ∞

0

𝑑𝑡

𝑡
𝑡−1/2 𝑒−

𝑚2𝛽2
4𝑡 −𝑡𝜆2

𝑘

= 2
∞∑︁
𝑚=1

1
𝑚

∑︁
𝑘

𝑑𝑘𝑒
−𝛽𝑚𝜆𝑘 = 2 log(PE[ 𝑓 ]).

(4.155)

For 𝜁vacuum(𝑠; 𝑓 ), we invert the Schwinger parametrization:

𝑑

𝑑𝑠

���
𝑠=0
𝜁vacuum(𝑠; 𝑓 ) =

𝛽

2
√
𝜋
Γ(−1/2)

∑︁
𝑘

𝑑𝑘𝜆𝑘 = −𝛽
∑︁
𝑘

𝑑𝑘𝜆𝑘 . (4.156)

Putting everything together we arrive at (4.152).

To compute partition functions with flavor twists and rational angular fugacities we
need to consider plethystic sums taking the following form:

∞∑︁
𝑛=1

𝑒−𝑖𝑛𝜃

𝑛
𝐹 (𝑛𝛽, 𝜔𝑛𝑞), 𝜔𝑞 = exp

(
2𝜋𝑖
𝑞

)
. (4.157)

Some formal manipulation shows that when the "twisted generating function"
𝐹 (𝛽, 𝜔𝑞) satisfies 𝐹 (𝛽, 𝜔𝑞) = 𝐹 (𝛽, 𝜔−1

𝑞 ), the following relation holds:

∞∑︁
𝑛=1

𝑒−𝑖𝑛𝜃

𝑛
𝐹 (𝑛𝛽, 𝜔𝑛𝑞) +

∞∑︁
𝑛=1

𝑒𝑖𝑛𝜃

𝑛
𝐹 (𝑛𝛽, 𝜔𝑛𝑞) =

1
𝑞

𝑑

𝑑𝑠

���
𝑠=0
𝜁 [𝑞𝜃, 𝑠; 𝐹 (𝑞𝛽, 1)] + 𝛽

𝑞

∑︁
𝑘

𝑑𝑘𝜆𝑘

+ 1
2𝑞

𝑞−1∑︁
ℓ=1

𝑑

𝑑𝑠

���
𝑠=0

[
𝐿

(
𝑞𝜃,

ℓ

𝑞
, 𝑠; 𝐹 (𝑞𝛽, 𝜔ℓ𝑞)

)
+ 𝐿

(
−𝑞𝜃, ℓ

𝑞
, 𝑠; 𝐹 (𝑞𝛽, 𝜔ℓ𝑞)

)]
,

(4.158)

where

• In the second sum on the right hand side, 𝑑𝑘 and 𝜆𝑘 are supposed to be read
from 𝐹 (𝑞𝛽, 1), that is, 𝐹 (𝑞𝛽, 1) = ∑

𝑘=0 𝑑𝑘𝑒
−𝛽𝜆𝑘
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•

𝜁 (𝜃, 𝑠; 𝑓 ) =
∑︁
𝑛∈Z

∑︁
𝑘

𝑑𝑘

[(
2𝜋𝑛
𝛽

+ 𝜃
𝛽

)2
+ 𝜆2

𝑘

]−𝑠
, with 𝑓 (𝛽) =

∑︁
𝑘=0

𝑑𝑘𝑒
−𝛽𝜆𝑘 .

(4.159)

•

𝐿 (𝜃, 𝑎, 𝑠; 𝑓 ) =
∑︁
𝑛∈Z

∑︁
𝑘

𝑑𝑘
𝑒2𝜋𝑖𝑛𝑎[(

2𝜋𝑛
𝛽

+ 𝜃
𝛽

)2
+ 𝜆2

𝑘

] 𝑠 , with 𝑓 (𝛽) =
∑︁
𝑘=0

𝑑𝑘𝑒
−𝛽𝜆𝑘 .

(4.160)

Now that we’ve related different plethystic sums to various spectral zeta functions,the
high temperature expansion can be computed by "resumming" all these zeta func-
tions. For concreteness, we look at some examples:

Example: free scalar on 𝑆1 × 𝑆3 The relevant generating function is24

𝑓 (𝛽) = 𝑒−𝛽 (1 − 𝑒−2𝛽)
(1 − 𝑒−𝛽)4 =

∑︁
𝑘=1

𝑘2𝑒−𝛽𝑘 . (4.161)

The spectral zeta function is

𝜁 (𝑠; 𝑓 ) = 1
Γ(𝑠)

∑︁
𝑛∈Z

∫ ∞

0

𝑑𝑡

𝑡
𝑡𝑠𝑒

−𝑡 ( 2𝜋𝑛
𝛽

)2
𝐻 (𝑡; 𝑓 ) (4.162)

with

𝐻 (𝑡; 𝑓 ) =
∞∑︁
𝑘=1

𝑘2𝑒−𝑡𝑘
2
=

√
𝜋

4
𝑡−3/2 +

√
𝜋

∞∑︁
𝑙=1

𝑒−ℓ
2𝜋2/𝑡

(
1
2
𝑡−3/2 − ℓ2𝜋2𝑡−5/2

)
.

Here we performed a Poisson resummation with respect to 𝑘 and separated the piece
with ℓ = 0 from ℓ ≠ 0.

• The term with 𝑛 = 0 in the sum (4.162) is the contribution of zero mode:

𝜁 (𝑠; 𝑓 )
���
𝑛=0

=

∞∑︁
𝑘=1

𝑑𝑘𝜆
−𝑠
𝑘 =

∞∑︁
𝑘=1

𝑘2−2𝑠 = 𝜁𝑅 (2𝑠 − 2). (4.163)

24This is the spectral generating function of the operator Δ + (𝑑−2)
4(𝑑−1) 𝑅 with Δ being the Laplacian

on 𝑆3 and 𝑑 = 4.
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• Terms with 𝑛 ≠ 0 and ℓ = 0 generate the perturbative series:

𝜁 (𝑠; 𝑓 )
���
𝑛≠0,ℓ=0

=

√
𝜋

4Γ(𝑠)
∑︁

𝑛∈Z,𝑛≠0

∫ ∞

0

𝑑𝑡

𝑡
𝑡𝑠 𝑒

−𝑡 ( 2𝜋𝑛
𝛽

)2
𝑡−3/2

=
√
𝜋
Γ(𝑠 − 3

2 )
2Γ(𝑠)

(
2𝜋
𝛽

)3−2𝑠
𝜁𝑅 (2𝑠 − 3). (4.164)

• Terms with 𝑛 ≠ 0 and ℓ ≠ 0 generate the non-perturbative corrections:

𝜁 (𝑠; 𝑓 )
���
𝑛≠0,ℓ≠0

=

√
𝜋

Γ(𝑠)

∞∑︁
𝑛=1

∞∑︁
ℓ=1

[
2

5
2 −𝑠

(
𝑛

ℓ𝛽

) 3
2 −𝑠

𝐾− 3
2+𝑠

(
4𝜋2ℓ𝑛

𝛽

)
− 2

9
2 −𝑠𝜋2ℓ2

(
𝑛

ℓ𝛽

) 5
2 −𝑠

𝐾− 5
2+𝑠

(
4𝜋2ℓ𝑛

𝛽

)]
.

(4.165)

Following (4.152), we find

log(PE[ 𝑓 ]) − 𝛽

240
=

𝜋4

45𝛽3 − 𝜁 (3)
4𝜋2 − 1

2𝜋2

∞∑︁
𝑛=1

∞∑︁
ℓ=1

𝑒
− 4𝜋2𝑛ℓ

𝛽 ( 1
ℓ3 + 4𝑛𝜋2

ℓ2𝛽
+ 8𝑛2𝜋4

ℓ𝛽2 ).

(4.166)

With the same 𝑑𝑘 and 𝜆𝑘 , we can construct a slightly different zeta function:

𝜁𝑚 (𝑠) =
∞∑︁
𝑘=0

𝑑𝑘(
𝜆2
𝑘
+ 𝑚2

) 𝑠 (4.167)

this spectral zeta function satisfies

1
2
𝑑

𝑑𝑠

���
𝑠=0
𝜁𝑚 (𝑠) = log(𝑍massive [𝑆3]), (4.168)

where 𝑍massive [𝑆3]) is given in eqn(4.216). Applying the same resummation pro-
cedure, we get (4.217). The lens space partition functions 𝑍massive [𝐿 (𝑞; 1)] can be
computed in an almost identical way. One simply replace 𝑑𝑘 = 𝑘2 by [12]:

𝑑𝑘 =


𝑘

[
𝑘
𝑞

]
, 𝑘 − 𝑞

[
𝑘
𝑞

]
∈ 2Z,

𝑘

( [
𝑘
𝑞

]
+ 1

)
, 𝑘 − 𝑞

[
𝑘
𝑞

]
∈ 2Z + 1,

(𝑞 ∈ 2Z + 1),

𝑑𝑘 =


0, 𝑘 ∈ 2Z,

𝑘

(
2
[
𝑘
𝑞

]
+ 1

)
, 𝑘 ∈ 2Z + 1,

(𝑞 ∈ 2Z). (4.169)

which are the degeneracy for Δ + (𝑑−2)
4(𝑑−1)𝑅 with Δ being the Laplacian in 𝐿 (𝑞; 1) and

𝑑 = 4. The same calculations will yield (4.221) and (4.222).
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Example: free scalar on 𝑆1 × 𝑆5

The relevant generating function is

𝑓 (𝛽) = 𝑞2(1 − 𝑞2)
(1 − 𝑞)6 =

∞∑︁
𝑘=1

𝑘2(𝑘2 − 1)
12

𝑒−𝛽𝑘

and the heat trace is:

𝐻 (𝑡; 𝑓 ) = 1
24

∑︁
𝑘∈Z

𝑘2(𝑘2 − 1)𝑒−𝑡𝑘2

=
√
𝜋

(
1

32𝑡5/2
− 1

48𝑡3/2

)
+
√
𝜋

∞∑︁
𝑙=1

𝑒−
𝑙2 𝜋2
𝑡

[
𝜋4𝑙4

12𝑡9/2
− 𝜋2𝑙2

4𝑡7/2
+ 1
𝑡5/2

(
𝜋2𝑙2

12
+ 1

16

)
− 1

24𝑡3/2

]
.

(4.170)

Following the same procedure as in the example above, we obtain

log(PE[ 𝑓 ] − 31
60480

𝛽 =
2𝜋6

945𝛽5 − 𝜋4

540𝛽3 + 𝜁 (5)
16𝜋4 + 𝜁 (3)

48𝜋2 (4.171)

+
∞∑︁
𝑛=1

∞∑︁
ℓ=1

𝑒
− 4𝜋2𝑛ℓ

𝛽

[
4𝜋4𝑛4

3𝛽4ℓ
+ 4𝜋2𝑛3

3𝛽ℓ2 + 1
𝛽2

(
𝑛2

ℓ3 + 𝜋
2𝑛2

3ℓ

)
+ 1
𝛽

( 𝑛

2𝜋2ℓ4 + 𝑛

6ℓ2

)
+ 1

8𝜋4ℓ5 + 1
24𝜋2ℓ3

]
.

(4.172)

If we replace 𝜁 (𝑠; 𝑓 ) by 𝜁𝑚 (𝑠), we reproduce (4.218).

Example: free scalar on 𝑆1 × 𝑆3 with Z2 flavor twist
The plethystic sum in interest is

∞∑︁
𝑛=1

(−1)𝑛
𝑛

𝑓 (𝑛𝛽), 𝑓 (𝛽) = 𝑒−𝛽 (1 − 𝑒−2𝛽)
(1 − 𝑒−𝛽)4 =

∑︁
𝑘=1

𝑘2𝑒−𝛽𝑘 . (4.173)

Setting 𝑞 = 1 and 𝜃 = 𝜋 in (4.158), we find that
∞∑︁
𝑛=1

(−1)𝑛
𝑛

𝑓 (𝑛𝛽) = 1
2
𝑑

𝑑𝑠

���
𝑠=0
𝜁 (𝜋, 𝑠; 𝑓 ) + 𝛽

2

∑︁
𝑘

𝑑𝑘𝜆𝑘 . (4.174)

where 𝜁 (𝜋, 𝑠; 𝑓 ) is defined in (4.159). After resumming the zeta function, we find

∞∑︁
𝑛=1

(−1)𝑛
𝑛

𝑓 (𝑛𝛽)− 𝛽

240
= − 7𝜋4

360𝛽3−
∞∑︁
𝑛=1

∞∑︁
ℓ=1

𝑒
− (4𝑛−2)ℓ 𝜋2

𝛽

(
(2𝑛 − 1)2𝜋2

ℓ𝛽2 + 2𝑛 − 1
ℓ2𝛽

+ 1
ℓ3𝜋2

)
.

(4.175)
Finally, we discuss twisted partition function with rational angular fugacity. These
are the main objects of interest in this paper. Even though the techniques outlined
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in this appendix can be very easily generalized to higher dimensions and to more
complicated combinations of angles, we will focus on 4D scalar partition functions
twisted by 𝑒−

2𝜋𝑖
𝑞
𝐽12− 2𝜋𝑖

𝑞
𝐽34 for simplicity. As explained in Section 4.10, the subtle

difference between the lens space partition function and the twisted partition function
is related to the non-trivial topology of the EFT bundle.

Example: free scalar in 𝑆1 × 𝑆3 with Z𝑞 rotation, 𝑞 odd
We focus on the twisted partition function log

(
Tr[𝑒−𝛽𝐻−

2𝜋𝑖
𝑞
𝐽12− 2𝜋𝑖

𝑞
𝐽34]

)
and restrict

to the case where 𝑞 is odd. The plethystic sum in interest is

∞∑︁
𝑛=1

1
𝑛
𝐹 (𝑛𝛽, 𝜔𝑛𝑞), 𝐹 (𝛽, 𝜔𝑞) =

𝑒−𝛽 (1 − 𝑒−2𝛽)
(1 − 𝜔𝑞𝑒−𝛽)2(1 − 𝜔−1

𝑞 𝑒
−𝛽)2

. (4.176)

It is easy to verify

𝐹 (𝑞𝛽, 𝜔ℓ𝑞) =


∑∞
𝑘=1 𝑘

2𝑒−𝑞𝛽𝑘 , ℓ = 0

∑∞
𝑘=1

𝑘 sin( 2𝜋𝑘ℓ
𝑞

)
sin( 2𝜋ℓ

𝑞
) 𝑒

−𝑞𝛽𝑘 , ℓ ≠ 0

(4.177)

Setting 𝜃 = 0 in (4.158), we find

∞∑︁
𝑛=1

1
𝑛
𝐹 (𝑛𝛽, 𝜔𝑛𝑞) =

1
2𝑞

𝑑

𝑑𝑠

���
𝑠=0
𝜁 [0, 𝑠; 𝐹 (𝑞𝛽, 1)] + 𝛽

𝑞

∑︁
𝑘

𝑑𝑘𝜆𝑘

+ 1
2𝑞

𝑞−1∑︁
ℓ=1

𝑑

𝑑𝑠

���
𝑠=0
𝐿

(
𝑞𝜃,

ℓ

𝑞
, 𝑠; 𝐹 (𝑞𝛽, 𝜔ℓ𝑞)

)
.

(4.178)

where 𝑑𝑘 = 𝑘2, 𝜆𝑘 = 𝑞𝑘 for the second sum on the right hand side. After resumming
all the zeta functions, we find

∞∑︁
𝑛=1

1
𝑛

𝑒−𝑛𝛽 (1 − 𝑒−2𝑛𝛽)
(1 − 𝜔𝑛𝑞𝑒−𝑛𝛽)2(1 − 𝜔−𝑛

𝑞 𝑒
−𝑛𝛽)2 =

𝜋4

45𝛽3𝑞4 + 𝛽

240
− 𝜁 (3)

4𝜋2𝑞

− 1
𝑞

∞∑︁
𝑛=1

∞∑︁
ℓ=1

𝑒
− 4𝜋2ℓ𝑛

𝛽𝑞

(
1

2𝜋2ℓ3 + 2𝑛
𝛽ℓ2𝑞

+ 4𝜋2𝑛2

𝛽2ℓ𝑞2

)
+

∞∑︁
𝑛=1

∞∑︁
ℓ=1
ℓ∉𝑞Z

cos( 2𝜋𝑛ℓ
𝑞

)

sin( 2𝜋ℓ
𝑞
)
𝑒
− 4𝜋2𝑛ℓ

𝑞2𝛽

(
2𝜋𝑛
ℓ𝑞𝛽

+ 𝑞

2ℓ2𝜋

)
+

∞∑︁
ℓ=1
ℓ∉𝑞Z

1
4𝜋ℓ2

1
sin( 2𝜋ℓ

𝑞
)
.

(4.179)
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Example: free scalar in 𝑆1 × 𝑆3 with Z𝑞 rotation and Z2 flavor twist,
𝑞=odd
The relevant plethystic sum is

∞∑︁
𝑛=1

(−1)𝑛
𝑛

𝐹 (𝑛𝛽, 𝜔𝑛𝑞), 𝐹 (𝛽, 𝜔𝑞) =
𝑒−𝛽 (1 − 𝑒−2𝛽)

(1 − 𝜔𝑞𝑒−𝛽)2(1 − 𝜔−1
𝑞 𝑒

−𝛽)2
. (4.180)

Setting 𝜃 = 𝜋 in (4.158) and resum all the zeta functions, we get

∞∑︁
𝑛=1

(−1)𝑛
𝑛

𝑒−𝑛𝛽 (1 − 𝑒−2𝑛𝛽)
(1 − 𝜔𝑛𝑞𝑒−𝑛𝛽)2(1 − 𝜔−𝑛

𝑞 𝑒
−𝑛𝛽)2 = − 7𝜋4

360𝛽3𝑞4 + 𝛽

240

−
∑︁
𝑛=1

∑︁
ℓ=1

𝑒
− 2ℓ (2𝑛−1) 𝜋2

𝑞𝛽

(
(2𝑛 − 1)2𝜋2

ℓ𝑞3𝛽2 + 2𝑛 − 1
𝛽ℓ2𝑞2 + 1

2ℓ3𝑞𝜋2

)
+

∞∑︁
ℓ=1
ℓ∉𝑞Z

∞∑︁
𝑛=0

cos( 2𝜋ℓ
𝑞
( 𝑞−1

2 − 𝑛))

sin( 2𝜋ℓ
𝑞
)

𝑒
− 2ℓ (2𝑛+1) 𝜋2

𝑞2𝛽

(
(2𝑛 + 1)𝜋
ℓ𝑞𝛽

+ 𝑞

2ℓ2𝜋

)
.

(4.181)

Appendix C More examples for 4D and 6D CFTs
In this appendix, we compute a few more examples of the high temperature expansion
of CFTs with a large rotation inserted. We will focus on insertions 𝑅 without fixed
points (so that 𝑆D vanishes). In odd 𝑑, 𝑆𝑂 (𝑑) necessarily has a nontrivial fixed locus,
so we focus on even 𝑑. In even 𝑑, if we insert 𝑅 = exp

(
2𝜋𝑖

(
𝑝1
𝑞
𝐽1 + · · · + 𝑝𝑛

𝑞
𝐽𝑛

))
(namely all the denominators are equal, with gcd(𝑝𝑖, 𝑞) = 1), then 𝑅 has no fixed
points and there is no defect action. Previously in Section 4.5, we described 4d
examples with a defect coming from 𝑞1 ≠ 𝑞2; in this example we will consider the
(simpler) case with no defect action.

We note that the formulas in this section are accurate to all orders in perturbation
theory in 𝛽; this is because the free energy of free theories in even dimensions
truncates at 𝑂 (𝛽). This is an accident of free theories in even dimensions and does
not generalize.

Finally, we note that in even dimensions, the Hamiltonian 𝐻 = 𝐷 + 𝜀0 includes a
contribution from the Casimir energy, which is not accounted for in the sum over
characters using plethystic exponentials (see Section 3.1 of [25] for details on this
scheme, [113] for a calculation of the Casimir energy, and e.g. [96] for values of the
𝑎 anomaly). We have included this contribution to the final expression (although
terms linear in 𝛽 are invariant when acting on with (4.32)).
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Example: 4D Z2-twisted complex scalar
Here we consider a 4D free complex scalar. We insert a Z2 twist (which we denote
as 𝑒𝜋𝑖𝑄) where we identify the field 𝜙 with −𝜙 as we go around the thermal circle,
in order to remove the gapless sector. Without any insertion of a rotation 𝑅, we get
the following free energy:

log Tr
[
𝑒−𝛽(𝐻−𝑖Ω1𝐽1−𝑖Ω2𝐽2)𝑒𝜋𝑖𝑄

]
∼ 1∏2

𝑖=1(1 +Ω2
𝑖
)

(
− 7𝜋4

180𝛽3 −
𝜋2 ∑2

𝑖=1 Ω
2
𝑖

36𝛽
+
(3 + 6

∑2
𝑖=1 Ω

2
𝑖
− 10Ω2

1Ω
2
2 + 6

∑2
𝑖=1 Ω

4
𝑖
)𝛽

720

)
.

(4.182)

Now let us consider a rotation by 2𝜋/3 in each Cartan direction. As expected, when
we insert the large rotation, we find

log Tr
[
𝑒−𝛽(𝐻−𝑖Ω1𝐽1−𝑖Ω2𝐽2)𝑒𝜋𝑖𝑄𝑒

2𝜋𝑖
(
𝐽1
3 + 𝐽23

) ]
∼ 1

3
log Tr

[
𝑒−3𝛽(𝐻−𝑖Ω1𝐽1−𝑖Ω2𝐽2)𝑒3𝜋𝑖𝑄]

.

(4.183)

Example: 4D Dirac fermion
As discussed in Section 4.4, for fermionic theories we need to compute the partition
function without and with a (−1)𝐹 insertion:

log Tr
[
𝑒−𝛽 (𝐻−𝑖Ω1𝐽1−𝑖Ω2𝐽2 )

]
∼ 1∏2

𝑖=1(1 +Ω2
𝑖
)

(
7𝜋4

90𝛽3 −
𝜋2(3 + ∑2

𝑖=1 Ω
2
𝑖
)

36𝛽
+
(18 + 6

∑2
𝑖=1 Ω

2
𝑖
+ 10Ω2

1Ω
2
2 − 21

∑2
𝑖=1 Ω

4
𝑖
)𝛽

1440

)
(4.184)

log Tr
[
(−1)𝐹𝑒−𝛽 (𝐻−𝑖Ω1𝐽1−𝑖Ω2𝐽2 )𝑒4𝜋𝑖𝑄/3]

∼ 1∏2
𝑖=1(1 +Ω2

𝑖
)

(
52𝜋4

1215𝛽3 −
𝜋2(3 + ∑2

𝑖=1 Ω
2
𝑖
)

54𝛽
+
(18 + 6

∑2
𝑖=1 Ω

2
𝑖
+ 10Ω2

1Ω
2
2 − 21

∑2
𝑖=1 Ω

4
𝑖
)𝛽

1440

)
.

(4.185)
Fermions carry𝑈 (1) charge. We use a convention where the particle carries charge
+1 and anti-particle carries charge −1. To make sure that the zero mode does
not contribute in the thermal effective field theory description, we turned on the
fugacity corresponding to 𝑈 (1) and set it to 𝑒4𝜋𝑖/3, along with a (−1)𝐹 insertion.
This amounted to turning on Z3 ⊂ 𝑈 (1) flavor symmetry for the partition function
with a (−1)𝐹 insertion. After turning on a large rotation 𝑒2𝜋𝑖𝐽1𝑝1/𝑞𝑒2𝜋𝑖𝐽2𝑝2/𝑞, we get
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the following results (exactly as predicted in Section 4.4):

log Tr
[
𝑒−𝛽(𝐻−𝑖Ω1𝐽1−𝑖Ω2𝐽2)𝑒

2𝜋𝑖
(
𝐽1
3 + 𝐽23

) ]
∼ 1

3
log Tr

[
𝑒−3𝛽(𝐻−𝑖Ω1𝐽1−𝑖Ω2𝐽2)] (4.186)

log Tr
[
𝑒−𝛽(𝐻−𝑖Ω1𝐽1−𝑖Ω2𝐽2)𝑒2𝜋𝑖𝑄/3𝑒

2𝜋𝑖
(
𝐽1
2 + 𝐽22

) ]
∼ 1

2
log Tr

[
(−1)𝐹𝑒−2𝛽(𝐻−𝑖Ω1𝐽1−𝑖Ω2𝐽2)𝑒4𝜋𝑖𝑄/3] .

(4.187)

Example: 6D twisted complex scalar
Here we consider a 6D free scalar with a Z2 twist:

log Tr
[
𝑒−𝛽 (𝐻−𝑖∑3

𝑘=1 Ω𝑘 𝐽𝑘 )𝑒𝜋𝑖𝑄
]

∼ 1∏3
𝑖=1 (1 +Ω2

𝑖
)

(
− 31𝜋6

7560𝛽5 +
7𝜋4 (1 − ∑3

𝑖=1 Ω
2
𝑖
)

2160𝛽3 +
𝜋2 (8 ∑3

𝑖=1 Ω
2
𝑖
− 5

∑
𝑐𝑦𝑐 Ω

2
1Ω

2
2 − 3

∑3
𝑖=1 Ω

4
𝑖
)

2160𝛽

−
(37 + 62

∑3
𝑖=1 Ω

2
𝑖
− 154

∑
𝑐𝑦𝑐 Ω

2
1Ω

2
2 − 104

∑3
𝑖=1 Ω

4
𝑖
+ 70Ω2

1Ω
2
2Ω

2
3 + 42

∑3
𝑖=1 Ω

2
𝑖

∑3
𝑖=1 Ω

4
𝑖
− 22

∑3
𝑖=1 Ω

6
𝑖
)𝛽

60480

)
.

(4.188)

With the insertion of a large rotation, we get

log Tr
[
𝑒−𝛽(𝐻−𝑖

∑3
𝑘=1 Ω𝑘𝐽𝑘)𝑒𝜋𝑖𝑄𝑒

2𝜋𝑖
(
𝐽1
3 + 𝐽23 + 𝐽33

) ]
∼ 1

3
log Tr

[
𝑒−3𝛽(𝐻−𝑖∑3

𝑘=1 Ω𝑘𝐽𝑘)𝑒3𝜋𝑖𝑄
]

(4.189)

Example: 6D Dirac fermion
Finally we consider a 6D free Dirac fermion. We get

log Tr
[
𝑒−𝛽 (𝐻−𝑖∑3

𝑘=1 Ω𝑘 𝐽𝑘 )
]

∼ 1∏3
𝑖=1 (1 +Ω2

𝑖
)

(
31𝜋6

1890𝛽5 −
7𝜋4 (5 + ∑3

𝑖=1 Ω
2
𝑖
)

1080𝛽3 +
𝜋2 (135 + 26

∑3
𝑖=1 Ω

2
𝑖
+ 10

∑
𝑐𝑦𝑐 Ω

2
1Ω

2
2 − 21

∑3
𝑖=1 Ω

4
𝑖
)

4320𝛽

+
(−880 + 55

∑3
𝑖=1 Ω

2
𝑖
− 14

∑
𝑐𝑦𝑐 Ω

2
1Ω

2
2 − 743

∑3
𝑖=1 Ω

4
𝑖
− 70Ω2

1Ω
2
2Ω

2
3 + 147

∑3
𝑖=1 Ω

2
𝑖

∑3
𝑖=1 Ω

4
𝑖
− 302

∑3
𝑖=1 Ω

6
𝑖
)𝛽

120960

)
.

(4.190)

With an insertion of a rotation 𝑅, we get the following:

log Tr
[
𝑒−𝛽(𝐻−𝑖

∑3
𝑘=1 Ω𝑘𝐽𝑘)𝑒

2𝜋𝑖
(
𝐽1
2 + 𝐽22 + 𝐽32

) ]
∼ 1

2
log Tr

[
𝑒−2𝛽(𝐻−𝑖∑3

𝑘=1 Ω𝑘𝐽𝑘)
]

(4.191)

Appendix D More on nonperturbative terms
In this appendix, we discuss more details on the nonperturbative parts of the partition
function outlined in Section 4.9. In Appendix 4.10, we derive equations (4.144),
(4.145) and (4.146) by performing the worldline path integral. In appendices 4.10,
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𝜃 (𝜏)

𝑦𝑎 (𝜏)

Figure 4.7: Coordinates on 𝑆𝑑−1. The classical path is 𝜃 (𝜏) = 2𝜋𝜏 and perpendicular
fluctuations 𝑦𝑎 (𝜏) are integrated over.

4.10, and 4.10, we verify the universal leading terms in several examples from free
field theory.

Worldline path integral
• Worldline path integral on the sphere

Let us begin by computing the worldline path integral on 𝑆𝑑−1. Let 𝜃 denote
a coordinate along a great circle and let 𝑦𝑖 (𝑖 = 1, . . . , 𝑑 − 2) parametrize the
perpendicular directions, see Figure 4.7. The metric on 𝑆𝑑−1 takes the form:

𝑑𝑠2 = 𝑑𝑦2 + cos2 |𝑦 | 𝑑𝜃2. (4.192)

In the absence of a background gauge field, a single worldline instanton contribution
is given by∫

𝐷𝑥𝜇 (𝜏) 𝑒−𝑚𝑖
∫
𝑑𝑠 =

∫
𝐷𝑦𝑖 (𝜏) exp

−𝑚𝑖
∫ 1

0
𝑑𝜏

√︄
cos2 |𝑦 |

(
𝑑𝜃

𝑑𝜏

)2
+

(
𝑑𝑦

𝑑𝜏

)2
∼ 𝑒−2𝜋𝑚𝑖

∫
𝐷𝑦𝑖 (𝜏) exp

[
−𝑚𝑖

∫ 1

0
𝑑𝜏

(
¤𝑦2

4𝜋
− 𝜋𝑦2

)]
, (4.193)

where in the last line we Taylor-expanded the square root in fluctuations around
the great circle.25 We also used reparameterization invariance of the Nambu-Goto
action to set 𝜃 (𝜏) = 2𝜋𝜏. In the path integral, we sum over periodic paths 𝑦𝑖 (𝜏)
satisfying 𝑦𝑖 (0) = 𝑦𝑖 (1), with the following mode expansion:

𝑦𝑖 (𝜏) =
∞∑︁
𝑛=1

𝑎𝑖𝑛 sin(2𝜋𝑛𝜏) +
∞∑︁
𝑛=1

𝑏𝑖𝑛 cos(2𝜋𝑛𝜏) +
𝑏𝑖0√

2
. (4.194)

25This approximation is allowed as long as the thermal wavelength
√︁

2𝜋/𝑚 is much smaller than
the size of the sphere.
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In writing this mode expansion, we have defined the mode numbers and coefficients
𝑎𝑖𝑛, 𝑏

𝑖
𝑛 so that the measure on the moduli space of geodesics is locally

∏
𝑖 𝑑𝑎

𝑖
1𝑑𝑏

𝑖
1.

We furthermore imposed that each mode should be unit-normalized under the inner
product ⟨𝑦, 𝑦⟩ = 2

∫
𝑑𝜏 |𝑦 |2. The path integral can then be reduced to a product of

ordinary integrals over 𝑎𝑖𝑛, 𝑏𝑖𝑛:26∫
𝐷𝑦𝑖 (𝜏) exp

[
−𝑚𝑖

∫ 1

0
𝑑𝜏

(
¤𝑦2

4𝜋
− 𝜋𝑦2

)]
=

𝑑−2∏
𝑖=1

{ ∞∏
𝑛=1

∫
𝑑𝑎𝑖𝑛𝑑𝑏

𝑖
𝑛 exp

[
−𝑚𝑖𝜋

2

(
𝑛2 − 1

) (
(𝑎𝑖𝑛)2 + (𝑏𝑖𝑛)2

)]
×

∫
𝑑𝑏𝑖0 exp

[𝑚𝑖𝜋
2

(𝑏𝑖0)
2
]}
.

(4.195)

Modes with 𝑛 > 1 are massive and correspond to oscillations around the geodesic.
The modes with 𝑛 = 0 are tachyonic. After adding these tachyonic fluctuations,
the trajectory of the particle will deviate from the great circle and shrink towards a
point, reducing its length (see e.g. Figure 4 and the surrounding discussions in [79]).
Consequently, the classical trajectory we are expanding around is an unstable saddle
point of the Nambu-Goto action. To define the integral over the tachyonic directions,
we need to make sense of integral of the form

∫ ∞
−∞ 𝑑𝑥 𝑒

𝛼2𝑥2 where Re(𝛼2) > 0. We
do so by analytically continuing from the region where Re(𝛼2) < 0 and defining:∫ ∞

−∞
𝑑𝑥 𝑒𝛼

2𝑥2
:= (±𝑖)

√
𝜋

|𝛼 | , Re𝛼2 > 0. (4.196)

Furthermore, we make the same choice of sign in (4.196) for integrals over all
such tachyonic modes. This prescription, however, does not remove all ambiguities.
Since there are 𝑑 − 2 perpendicular directions and each of them contributes a single
tachyonic mode, the overall phase factor is (±𝑖) (𝑑−2) . When 𝑑 is even, both choices
of sign give the same result. But when 𝑑 is odd, the ambiguity remains. As we
will see in Appendix 4.10, this remaining two-fold ambiguity is related to a contour
ambiguity in performing a Borel resummation.

The zero modes with 𝑛 = 1 represent rotations of the great circle. The corresponding
mode coefficients 𝑎𝑖1, 𝑏

𝑖
1 are local coordinates on the moduli space of geodesics.

26The path integral measure 𝐷𝑦(𝜏) is induced from a choice of inner product. This inner product
must be local — i.e. an integral over 𝜏 — in order for the path integral to satisfy proper cutting
and gluing rules. However, the overall coefficient of the inner product does not matter because
det(const) = ∏

𝑛∈Z const = 1 in 𝜁-function regularization. As long as the modes are all normalized
the same way with respect to the inner product, the measure factorizes into an integral over each
mode coefficient 𝐷𝑦 =

∏
𝑖 𝑑𝑏

𝑖
0
∏
𝑛,𝑖 𝑑𝑎

𝑖
𝑛𝑑𝑏

𝑖
𝑛.
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Every geodesic on 𝑆𝑑−1 is an intersection of 𝑆𝑑−1 with a 2-plane in R𝑑 containing
the origin, so this moduli space is the same as the Grassmannian Gr(2,R𝑑). Hence,
the zero mode integral is the volume of this Grassmannian:
𝑑−2∏
𝑖=1

∫
𝑑𝑎𝑖1𝑑𝑏

𝑖
1 = vol(Gr(2,R𝑑)) = vol(𝑂 (𝑑))

vol(𝑂 (2)) × vol(𝑂 (𝑑 − 2)) =
vol(𝑆𝑑−1) × vol(𝑆𝑑−2)

2vol(𝑆1)
.

(4.197)
We can finally explicitly calculate the path-integral over 𝑦𝑖 (𝜏):∫

𝐷𝑦𝑖 (𝜏) exp
[
−𝑚𝑖

∫ 1

0
𝑑𝜏

(
¤𝑦2

4𝜋
− 𝜋𝑦2

)]
= vol(Gr(2,R𝑑))

𝑑−2∏
𝑖=1

[
(±𝑖)

√︂
2
𝑚𝑖

×
∞∏
𝑛=1

′
2
𝑚𝑖

∞∏
𝑛=1

′
1

𝑛2 − 1

]
=

(±𝑖)𝑑−2𝑚𝑑−2
𝑖

Γ(𝑑 − 1) , (4.198)

where
∏
𝑛
′ means we skip the mode 𝑛 = 1. We computed the infinite product above

using zeta function regularization [8]. In particular, the following formulas are
useful for such computations:

∞∏
𝑛=1

𝑛 =
√

2𝜋, and
∞∏
𝑛=1

𝑎 = 𝑎−1/2 (𝑎 > 0). (4.199)

Putting everything together, we obtain (4.144).

• Worldline path integral on lens space

Three dimensional homogeneous lens space 𝐿 (𝑞; 1) can be defined as the quo-
tient of the three sphere 𝑆3 =

{
(𝑧1, 𝑧2) ∈ C2

��|𝑧1 |2 + |𝑧2 |2 = 1
}

by the equivalence
relation (𝑧1, 𝑧2) ∼ (𝑒2𝜋𝑖/𝑞𝑧1, 𝑒2𝜋𝑖/𝑞𝑧2). Geodesics in 𝐿 (𝑞; 1) comes in two types:
the contractable "long geodesics" with length 2𝜋, and the non-contractable "short
geodesics" with length 2𝜋/𝑞. If 𝑞 ≠ 2, each short geodesic is an intersection of a
complex line 𝛼𝑧1+ 𝛽𝑧2 = 0 with 𝑆3, so the corresponding moduli space is Gr(1,C2).
When 𝑞 = 2, every real two-plane 𝛼𝑧1 + 𝛽𝑧2 + 𝛾𝑧1 + 𝛿𝑧2 in R4 intersects 𝑆3 at a short
geodesic, so the corresponding moduli space is Gr(2,R4).

To compute worldline instanton contributions to the lens space partition function,
we choose the classical trajectory 𝜃 (𝜏) to wind around a short geodesic and integrate
over perpendicular fluctuations obeying a slightly different boundary condition:

©­­«
𝑦1(1)

𝑦2(1)

ª®®¬ =
©­­«
cos( 2𝜋

𝑞
) − sin( 2𝜋

𝑞
)

sin( 2𝜋
𝑞
) cos( 2𝜋

𝑞
)

ª®®¬
©­­«
𝑦1(0)

𝑦2(0)

ª®®¬ . (4.200)
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Introducing the complex variable 𝑧(𝜏) = 𝑦1(𝜏)+𝑖𝑦2(𝜏), we have the following mode
expansion:

𝑧(𝜏) =
∑︁
𝑛∈Z

𝑐𝑛 𝑒
2𝜋𝑖(𝑛+1/𝑞)𝜏 . (4.201)

Plugging in 𝜃 (𝜏) = 2𝜋𝜏
𝑞

, we find the worldline path integral∫
𝐷𝑧(𝜏) exp

−𝑚𝑖
∫ 1

0
𝑑𝜏

√︄
(1 − |𝑧 |2)

(
𝑑𝜃

𝑑𝜏

)2
+

���� 𝑑𝑧𝑑𝜏 ����2
= 𝑒

− 2𝑚𝑖 𝜋
𝑞

∏
𝑛∈Z

∫
𝑑𝑐𝑛𝑑𝑐𝑛 exp

[
−𝑚𝑖𝜋

(
𝑛2𝑞 + 2𝑛

)
|𝑐𝑛 |2

]
. (4.202)

When 𝑞 ≠ 2, the only zero mode is 𝑐0 𝑒
(2𝜋𝑖/𝑞)𝜏. In this case, following the treatment

of zero modes outlined above, we find∏
𝑛∈Z

∫
𝑑𝑐𝑛𝑑𝑐𝑛 exp

[
−𝑚𝑖𝜋

(
𝑛2𝑞 + 2𝑛

)
|𝑐𝑛 |2

]
= vol(Gr(1,C2))

∏
𝑛∈Z≠0

1
𝑚𝑖

1
𝑛 (2 + 𝑛𝑞) =

𝑚𝑖

2 sin( 2𝜋
𝑞
)
,

(4.203)

where we’ve used

vol(Gr(𝑘,C𝑑)) = vol(𝑈 (𝑑))
vol(𝑈 (𝑘)) × vol(𝑈 (𝑑 − 𝑘)) =

𝜋𝑘 (𝑑−𝑘)𝐺 (𝑘 + 1)𝐺 (𝑑 − 𝑘 + 1)
𝐺 (𝑑 + 1) ,

(4.204)
where 𝐺 (𝑧) is the Barnes G-function.

When 𝑞 = 2, there are two zero modes 𝑐0𝑒
𝜋𝑖𝜏 and 𝑐−1𝑒

−𝜋𝑖𝜏. Thus,∏
𝑛∈Z

∫
𝑑𝑐𝑛𝑑𝑐𝑛 exp

[
−𝑚𝑖𝜋

(
2𝑛2 + 2𝑛

)
|𝑐𝑛 |2

]
=

∫
𝑑𝑐0𝑑𝑐0𝑑𝑐−1𝑑𝑐−1

∏
𝑛∈Z≠0,−1

1
2𝑚𝑖

1
𝑛 (1 + 𝑛) .

(4.205)

The integral over zero mode coefficients 𝑐0 and 𝑐−1 is not exactly the same as
the volume of Gr(2,R4): the correct local coordinates on Gr(2,R4) should be the
coefficient in front of cos(𝜋𝜏), 𝑖 cos(𝜋𝜏) sin(𝜋𝜏) and 𝑖 sin(𝜋𝜏), therefore

𝑑Vol(Gr(2,R4)) = 4 𝑑𝑐0𝑑𝑐0𝑑𝑐−1𝑑𝑐−1. (4.206)

Combing zero modes with massive modes, we get∏
𝑛∈Z

∫
𝑑𝑐𝑛𝑑𝑐𝑛 exp

[
−𝑚𝑖𝜋

(
2𝑛2 + 2𝑛

)
|𝑐𝑛 |2

]
=
𝑚2
𝑖

2
. (4.207)

Notice that tachyonic modes never appeared in the computations above. This is
consistent with the fact that short geodesics are non-contractable!
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• World line contribution to spin-refined partition function in 4D

We would like to compute single-particle non-perturbative corrections for a spin-
refined sphere partition function in 4D. As explained in Section 4.2, the correspond-
ing EFT bundle is non-trivial. By winding around the fundamental cycle in 𝐿 (𝑞; 1),
one also advances by 𝛽 along the thermal circle whose total length is 𝑞𝛽. Thus, after
Kaluza-Klein reduction, we have a flat connection on an 𝑆1

𝑞𝛽
bundle over 𝐿 (𝑞; 1)

whose holonomy along a short geodesic is given by
∮
𝐴 = 𝛽. The corresponding

phase in the worldline action is thus exp( 2𝜋𝑖𝔮𝑖
𝑞𝛽

𝛽) = exp( 2𝜋𝑖𝔮𝑖
𝑞

). Since the connection
is flat, the classical equations of motion will not be affected, and we can compute
the "Nambu-Goto part" of the worldline path integral in exactly the same way as for
the lens space partition function. Putting everything together, we arrive at (4.146).

A closer look at free field theory
In this subsection, we discuss non-perturbative corrections in free field partition
functions. In particular, we will show that they indeed have the structure predicted
in Section 4.9. Actually, thanks to the Fock space structure of the Hilbert space,
we can easily predict the leading terms in all non-perturbative corrections to free
theory partition functions using worldline instantons. The "free-theory upgraded
predictions" in (4.211), (4.213), and (4.214) can also be checked explicitly, as we
will do in Section 4.10.

In the language of Section 4.10, there is a worldline instanton correction for each
Poincaré irrep in the 𝑑−1 dimensional massive theory on R𝑑−1. In a free theory,
the Hilbert space furthermore has the structure of a Fock space, so that for any
symmetry generator 𝑔, we have

TrH [𝑔] =
∞∑︁
𝑛=1

TrH𝑛
[𝑔] =

∞∑︁
𝑛=1

TrSym𝑛 (H1) [𝑔] = exp

( ∞∑︁
ℓ=1

1
ℓ

TrH1 [𝑔ℓ]
)
, (4.208)

where H1 is the single-particle Hilbert space.

We can apply this result to a free massive theory on 𝑆𝑑−1 as follows. Consider
the sphere 𝑆𝑑−1 in "angular" quantization, where we choose an angle 𝜙 ∈ [0, 2𝜋)
and slice the path integral on slices of constant 𝜙. Each spatial slice is a 𝑑−2-
dimensional hemisphere, with some boundary conditions at the equator of the
hemisphere. (Our arguments will be heuristic because we will be vague about
the nature of these boundary conditions, see [4] for a recent discussion.) Let the
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corresponding Hamiltonian be 𝐻. The sphere partition function is then

TrH (𝑒−2𝜋𝐻) = exp

( ∞∑︁
ℓ=1

1
ℓ

TrH1 [𝑒−2𝜋ℓ𝐻]
)
. (4.209)

Each single-particle worldline instanton discussed in Section 4.10 computes the
leading contribution to TrH1 [𝑒−2𝜋𝐻]. To instead compute TrH1 [𝑒−2𝜋ℓ𝐻], we should
expand around a classical trajectory 𝜃 (𝜏) = 2𝜋ℓ𝜏 that winds ℓ times around the
great circle. Expanding the worldline path integral around this trajectory, we find:

TrH1 [𝑒−2𝜋ℓ𝐻] =
∑︁
𝑚

𝑒−2𝜋ℓ𝑚 (±𝑖) (𝑑−2) (2ℓ−1)𝑚𝑑−2

Γ(𝑑 − 1)

(
1 +𝑂

(
1
𝑚

))
. (4.210)

For a free scalar CFT on 𝑆𝑑−1 × 𝑆1
𝛽
, the single-particle states are KK modes, so that

we expect

log(𝑍free [𝑆𝑑−1 × 𝑆1
𝛽]) ∼

∑︁
𝑚

∞∑︁
ℓ=1

1
ℓ

TrH1𝑒
−2𝜋ℓ𝐻 , (4.211)

where each TrH1𝑒
−2𝜋ℓ𝐻 is given by (4.210), and 𝑚 runs over the spectrum of KK

masses. Here, "∼" means that the right-hand side displays the nonperturbative terms
in the left-hand side.

We can derive similar results for a free massive theory on the lens space 𝐿 (𝑞; 1). If
we consider an instanton on the locus |𝑧1 | = 1, wrapping ℓ times around the "short
geodesic," then the lens space worldline path integral evaluates TrH1 [𝑒

− 2𝜋ℓ
𝑞
𝐻− 2𝜋ℓ𝑖

𝑞
𝐽],

where 𝐽 generates a rotation in the 𝑧2 plane. Hence for the free scalar on 𝐿 (𝑞; 1)×𝑆1
𝛽
,

when 𝑞 is odd:

log(𝑍free [𝐿 (𝑞; 1) × 𝑆1
𝛽]) =

∑︁
𝑚

∞∑︁
ℓ=1

1
ℓ

TrH1 [𝑒
− 2𝜋ℓ

𝑞
𝐻− 2𝜋ℓ𝑖

𝑞
𝐽]

=
∑︁
𝑚

∞∑︁
ℓ=1

1
𝑞ℓ

TrH1 [𝑒−2𝜋ℓ𝐻] +
∑︁
𝑚

∑︁
ℓ∉𝑞Z

1
ℓ

TrH1 [𝑒
− 2𝜋ℓ

𝑞
𝐻− 2𝜋𝑖ℓ

𝑞
𝐽] .

(4.212)

In the last line, we singled out terms where ℓ ∈ 𝑞Z. Up to a 1/𝑞 factor, the first sum is
exactly the same as the nonperturbative terms in log(𝑍free [𝑆𝑑−1×𝑆1

𝛽
]). Indeed, since

the short geodesic generates 𝜋1(𝐿 (𝑞; 1)) ≃ Z𝑞, after winding around 𝑞 times, the
loop becomes contractable. Notice that each contractable long geodesic in 𝐿 (𝑞; 1)
will be lifted to 𝑞 different geodesics in 𝑆3, so the moduli space of a long geodesic
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in 𝐿 (𝑞; 1) should have 1/𝑞-th the volume of Gr(2,R4) and this is the origin of the
1/𝑞 factor.

Combining everything, the leading order terms are

log(𝑍free [𝐿 (𝑞; 1) × 𝑆1
𝛽]) ∼

∑︁
𝑚

(
− 1
𝑞

∞∑︁
ℓ=1

𝑒−2𝜋ℓ𝑚𝑚
2

2ℓ
+

∞∑︁
ℓ=1
ℓ∉𝑞Z

𝑒
− 2𝜋ℓ𝑚

𝑞
𝑚

2ℓ sin( 2𝜋ℓ
𝑞
)

)
(odd 𝑞),

(4.213)

where "∼" means we show nonperturbative corrections. Similarly when 𝑞 is even,
we find

log(𝑍free [𝐿 (𝑞; 1) × 𝑆1
𝛽])

∼
∑︁
𝑚

(
− 1
𝑞

∞∑︁
ℓ=1

𝑒−2𝜋ℓ𝑚𝑚
2

2ℓ
+

∞∑︁
ℓ=1

ℓ∉(𝑞/2)Z

𝑒
− 2𝜋ℓ𝑚

𝑞
𝑚

2ℓ sin( 2𝜋ℓ
𝑞
)
+ 1
𝑞

∞∑︁
ℓ=1

𝑒−𝜋(2ℓ−1)𝑚 𝑚2

2ℓ − 1

)
(even 𝑞).

(4.214)

Partition function from functional determinants
In this section, we use the methods of [12] to compute the partition function of
free scalar theories by explicitly summing over the Laplacian spectrum. We will
find agreement with (4.211), (4.213), and (4.214). In particular, this will verify the
general predictions of Section 4.10 for free theories.

Consider a massive scalar field on 𝑆𝑑−1 with the action

𝑆free =
1
2

∫
𝑑𝑑−1𝑥

√
𝑔

[
𝑔𝜇𝜈𝜕

𝜇𝜙𝜕𝜈𝜙 + 𝑚2𝜙2 + 1
4
(𝑑 − 2)
(𝑑 − 1) 𝑅𝜙

2
]
, (4.215)

with 𝑅 = (𝑑 − 1) (𝑑 − 2). Here, we have chosen the curvature coupling 1
2𝜉𝑅𝜙

2

to have the form appropriate for a conformally-coupled scalar in 𝑑-dimensions,
dimensionally reduced to 𝑑−1 dimensions. However, this coupling will not affect
the leading form of nonperturbative corrections that are our main focus. The partition
function is the functional determinant

𝑍massive [𝑆𝑑−1] = det
[
Δ + 𝑚2 + (𝑑 − 2)2

4

]−1/2
, (4.216)

where Δ is the Laplace operator on 𝑆𝑑−1, which has eigenvalues 𝜆𝑘 = 𝑘 (𝑘 + 𝑑 − 2)
with degneracies 𝑑𝑘 =

(𝑑−3+𝑘)!(𝑑−2+2𝑘)
𝑘!(𝑑−2)! . Let us focus on 𝑑 = 4 and 𝑑 = 6, i.e the

sphere partition function of a massive theory on 𝑆3 and 𝑆5.
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Using zeta function regularization, we find

log(𝑍massive [𝑆3]) = 𝜋𝑚3

6
−

∞∑︁
ℓ

𝑒−2𝜋ℓ𝑚

2ℓ

(
𝑚2 + 𝑚

𝜋ℓ2 + 1
2𝜋2ℓ3

)
, (4.217)

log(𝑍massive [𝑆5]) = − 𝜋

120
𝑚5 − 𝜋

72
𝑚3 +

∞∑︁
ℓ=1

𝑒−2𝜋ℓ𝑚

24ℓ

(
𝑚4 + 2𝑚3

𝜋ℓ
+ 𝑚2

(
1 + 3

𝜋2ℓ2

)
+ 𝑚

(
1
𝜋ℓ

+ 3
𝜋2ℓ2 + 3

2𝜋4ℓ4 + 1
2𝜋2ℓ2

) )
. (4.218)

We now need to sum over the KK masses to obtain 𝑍free [𝑆𝑑−1× 𝑆1
𝛽
]. Let us consider

Z2-twisted free scalar fields as an example, where theZ2 twist is introduced to remove
a zero mode upon dimensional reduction. The KK mass spectrum is𝑚 = | (2𝑛−1)/𝛽 |
for 𝑛 ∈ Z. Thus, the free energy in 𝑑 = 4 and 𝑑 = 6 is

log(𝑍free [𝑆3 × 𝑆1
𝛽]) ∼ −

∑︁
𝑛=1

∞∑︁
ℓ=1

𝑒
− 2𝜋2 (2𝑛−1)ℓ

𝛽
1
ℓ

(
(2𝑛 − 1)2𝜋2

𝛽2 + 2𝑛 − 1
𝛽ℓ2 + 1

2𝜋2ℓ3

)
,

(4.219)

log(𝑍free [𝑆5 × 𝑆1
𝛽])

∼
∞∑︁
𝑛=1

∞∑︁
ℓ=1

𝑒−2𝜋2 (2𝑛−1)ℓ/𝛽

12ℓ

(
𝜋4(2𝑛 − 1)4

𝛽4 + 2𝜋2(2𝑛 − 1)3

ℓ𝛽3

+ 𝜋
2(2𝑛 − 1)2

𝛽2

(
1 + 3

𝜋2ℓ2

)
+ 𝜋(2𝑛 − 1)

𝛽

(
1
𝜋ℓ

+ 3
𝜋2ℓ2 + 3

2𝜋4ℓ4 + 1
2𝜋2ℓ2

) )
,

(4.220)

where "∼" means we only show non-perturbative corrections. These results are
in agreement with the general form (4.211) predicted from worldline instantons,
together with the Fock-space structure of the free theory.

The same approach can be generalized to compute a lens space partition function
in 4D. We display the result here for a more direct comparison with the twisted
partition function:

log(𝑍massive [𝐿 (𝑞; 1)]) = 𝜋𝑚3

6𝑞
− 1
𝑞

∞∑︁
ℓ

𝑒−2𝜋ℓ𝑚

2ℓ

(
𝑚2 + 𝑚

𝜋ℓ
+ 1

2𝜋2ℓ2

)
+

∞∑︁
ℓ=1
ℓ∉𝑞Z

𝑒
− 2𝜋ℓ𝑚

𝑞

sin
(

2𝜋ℓ
𝑞

) (𝑚
2ℓ

+ 𝑞

4𝜋ℓ2

)
(𝑞 ∈ 2Z + 1), (4.221)
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log(𝑍massive [𝐿 (𝑞; 1)]) = 𝜋𝑚3

6𝑞
− 1
𝑞

∞∑︁
ℓ

𝑒−2𝜋ℓ𝑚

2ℓ

(
𝑚2 + 𝑚

𝜋ℓ
+ 1

2𝜋2ℓ2

)
+ 1
𝑞

∞∑︁
ℓ

𝑒−𝜋(2ℓ−1)𝑚

2ℓ − 1

(
𝑚2 + 2𝑚

𝜋(2ℓ − 1) +
2

𝜋2(2ℓ − 1)2

)
+

∞∑︁
ℓ=1
ℓ∉

𝑞

2 Z

𝑒
− 2𝜋ℓ𝑚

𝑞

sin
(

2𝜋ℓ
𝑞

) (𝑚
2ℓ

+ 𝑞

4𝜋ℓ2

)
(𝑞 ∈ 2Z). (4.222)

In Appendix 4.10, we computed the high temperature expansion of a free scalar
twisted by 𝑒−

2𝜋𝑖
𝑞
𝐽12− 2𝜋𝑖

𝑞
𝐽34 . Restricting to odd 𝑞 and inserting a Z2 twist to remove

the zero mode, we find

log
(
Tr

[
𝑒
−𝛽𝐻− 2𝜋𝑖

𝑞
𝐽12− 2𝜋𝑖

𝑞
𝐽34 (−1)𝑁

] )
∼ −

∑︁
𝑛=1

∑︁
ℓ=1

𝑒
− 2ℓ (2𝑛−1) 𝜋2

𝑞𝛽

(
(2𝑛 − 1)2𝜋2

ℓ𝑞3𝛽2 + 2𝑛 − 1
𝛽ℓ2𝑞2 + 1

2ℓ3𝑞𝜋2

)
+

∞∑︁
ℓ=1
ℓ∉𝑞Z

∞∑︁
𝑛=0

cos( 2𝜋ℓ
𝑞
( 𝑞−1

2 − 𝑛))

sin( 2𝜋ℓ
𝑞
)

𝑒
− 2ℓ (2𝑛+1) 𝜋2

𝑞2𝛽

(
(2𝑛 + 1)𝜋
ℓ𝑞𝛽

+ 𝑞

2ℓ2𝜋

)
, (4.223)

where "∼" means we only show non-perturbative corrections and 𝑁 is the 𝜙-number
operator, so that (−1)𝑁 implements theZ2 twist. Note that this is not quite identical to
the lens space partition function (4.221) summed over the mass spectrum𝑚 =

|2𝑛+1|𝜋
𝑞𝛽

.
To obtain the twisted partition function (4.223), we must additionally modify the
lens space result to account for the nontrivial background gauge field. To do so, we
multiply each term in the summation over short geodesics by a phase exp( 2𝜋𝑖ℓ𝔮𝑖

𝑞
).

For a Z2 twisted free scalar field, the KK charge spectrum is 𝔮 = 𝑛 + 1
2 + 𝑞

2 . After
putting in all the phases, we recover (4.223). Finally, note that this result is consistent
with the general prediction (4.146) from worldline instantons.

Free theories in odd dimension
The examples presented in Section 4.10 were all in even 𝑑. In odd 𝑑, we face the
puzzle that the contribution of a worldline instanton (4.144) is imaginary (even when
the partition function should be real), and furthermore its phase depends on how
we choose the integration contours for tachyonic modes. The proper interpretation
of these kinds of contributions is explained for example in [79]. They can be
understood as characterizing singularities in the Borel plane when computing the
partition function via Borel resummation.
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In this appendix, we provide a quick summary of the discussion from [79] in
the example of a massive free scalar on 𝑆2. (We can think of this theory as the
contribution of a single KK mode to the partition function of the 3D free scalar on
𝑆2×𝑆1

𝛽
.) We can compute the partition function in terms of the heat trace, following

Appendix 4.10. The heat trace on 𝑆2 is

Tr
[
𝑒−𝑡 (Δ+( 𝑑−2

2 )2)
]
=

∞∑︁
𝑘=0

(2𝑘 + 1)𝑒−𝑡 (𝑘+ 1
2 )

2
=

∑︁
𝑘∈Z

|𝑘 + 1
2
|𝑒−𝑡 (𝑘+ 1

2 )
2

=
∑︁
ℓ∈Z

(
1
𝑡
− 2𝜋ℓ
𝑡3/2

𝐹

(
𝜋ℓ
√
𝑡

))
,

(4.224)

where 𝐹 (𝑧) is Dawson’s function which admits the following asymptotic expansion
near 𝑧 = ∞:

𝐹 (𝑧) ∼
∞∑︁
𝑛=0

(2𝑛 − 1)!!
2𝑛+1

(
1
𝑧

)2𝑛+1
. (4.225)

The heat trace therefore has the following expansion near 𝑡 = 0:

Tr
[
𝑒−𝑡 (Δ+( 𝑑−2

2 )2)
]
∼

∞∑︁
𝑛=0

𝑎𝑛𝑡
𝑛−1, 𝑎𝑛 =

(−1)𝑛+1(1 − 21−2𝑛)
𝑛!

𝐵2𝑛, (4.226)

where 𝐵2𝑛 are the Bernoulli numbers.

Let us now perform a Borel resummation of the series Φ ≡ ∑∞
𝑛=0 𝑎𝑛𝑡

𝑛:

S[Φ] (𝑡) = 2
√
𝑡

∫ ∞

0
𝑑𝜁 𝑒−𝜁

2/𝑡BΦ(𝜁), (4.227)

where the Borel transformed series BΦ(𝜁) is

BΦ(𝜁) =
∞∑︁
𝑛=0

𝑎𝑛

Γ(𝑛 + 1
2 )
𝜁2𝑛 =

1
√
𝜋

𝜁

sin(𝜁) . (4.228)

With this expression for BΦ, the integral in (4.227) is apparently ill-defined since
there are poles located at 𝜁 = ℓ𝜋, ℓ ∈ Z on the positive real axis. A contour
prescription is needed to define the integral.

One natural option is to deform the integration contour to pass over (we will refer
to the corresponding contour as C+) or under (we will refer to the corresponding
contour as C−) the poles. However, these two choices are not equivalent. Their
difference is the sum of residues at the poles:

2
√
𝑡

∫
C+−C−

𝑑𝜁 𝑒−𝜁
2/𝑡BΦ(𝜁) = 2𝑖𝑡

(𝜋
𝑡

)3/2 ∑︁
ℓ≠0

(−1)ℓ+1 |ℓ |𝑒−ℓ2𝜋2/𝑡 . (4.229)
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The ambiguity in integration contour leads to an ambiguity in the Borel-resummed
heat trace:

Tr
[
𝑒−𝑡 (Δ+( 𝑑−2

2 )2)
]
=

2
√
𝜋𝑡3/2

∫
C±
𝑑𝜁

𝜁𝑒−𝜁
2/𝑡

sin 𝜁
+ 2𝑖

(𝜋
𝑡

)3/2 ∑︁
ℓ≠0

𝜎±
ℓ (−1)ℓ+1 |ℓ |𝑒− ℓ

2 𝜋2
𝑡 ,

(4.230)
where 𝜎±

ℓ
are arbitrary coefficients which jump as we switch from C+ to C−. If we

require the heat trace to be real when 𝑡 ∈ R+, then the 𝜎±
ℓ

are fixed to be ±1
2 . This

is equivalent to a principal value prescription for the Borel integral:

Tr
[
𝑒−𝑡 (Δ+( 𝑑−2

2 )2)
]
=

2
√
𝜋𝑡3/2

∫ ∞

0
𝑑𝜁 P

[
𝜁𝑒−𝜁

2/𝑡

sin 𝜁

]
. (4.231)

To compute log 𝑍 , we must supply a factor of 𝑒−𝑡𝑚2 and integrate
∫
𝑑𝑡/𝑡. If we

start with (4.231), we get a valid integral representation for the partition function.
However, if we start with (4.230) and perform the 𝑡-integral term by term, we obtain
the series of nonperturbative corrections

log(𝑍free [𝑆2])
�����
non-perturbative

= ±𝑖
∞∑︁
ℓ=1

(−1)ℓ𝑒−2𝜋𝑚ℓ

ℓ

(
𝑚 + 1

2𝜋ℓ

)
, (4.232)

whose leading terms in 𝑚 agree precisely with the worldline instanton predictions
(4.210) and (4.211) when 𝑑 = 3.

To summarize, worldline instantons encode residues of certain singularities in the
Borel plane. We conjecture that this remains true in interacting theories. In gen-
eral, the thermal effective action gives an asymptotic expansion in 𝛽. When we
Borel-resum this expansion, we encounter singularities in the Borel plane coming
from worldline instantons (together with other nonperturbative effects like instanton
graphs).
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