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ABSTRACT

Improvements in energy storage are required to facilitate the transition to renew-
able energy and the electrification of transport. Lithium-ion batteries (LIBs) are a
promising solution, but the current leading chemistry, consisting of a layered oxide
cathode and a graphite anode separated by a liquid electrolyte, has been optimized to
near-theoretical limits. Replacing the graphitic carbon with Li metal would signifi-
cantly improve energy density but the instability of the Li metal–electrolyte interface
introduces performance and safety challenges. Using a solid-state electrolyte (SSE)
to construct an all-solid-state battery (ASSB) could mitigate these issues. However,
an ideal SSE material has yet to be identified.

Thousands of known Li-containing materials have not yet been evaluated as SSEs.
Data-driven methods could prioritize materials for experimental study but have his-
torically lacked sufficient data and optimal representations. Chapter 2 presents the
largest structure–ionic conductivity database to date and uses semi-supervised learn-
ing to determine the highest-performing descriptors. From ∼26,000 Li-containing
materials, 212 candidates are identified and screened using semi-empirical and first-
principles calculations. Li3BS3 exhibits ionic conductivity above 10−3 S cm−1 with
defect engineering through substitution and mechanical milling.

Chapter 3 explores Cl, Al, and Si substitution in Li3BS3 to reveal mechanisms
of ionic conductivity enhancement. At low substitution levels, conductivity im-
provements are driven by disordered environments from reduced crystallinity and
microstructural effects. For Cl and Al, higher substitution generates fully amor-
phous phases with ionic conductivity above 10−4 S cm−1. Sufficient Si substitution
produces novel crystalline phases with conductivities exceeding 10−3 S cm−1.

Previous approaches, such as that in Chapter 2, could not represent disordered
compounds, excluding much of the training data and candidate materials. This is
particularly significant given the importance of disorder highlighted in Chapters
2 and 3 and the prevalence of disorder in known superionic conductors. Chapter
4 implements a transfer-learned graph representation compatible with disordered
structures. A larger database is curated and used to train models for screening all
known Li-containing materials. Experimental validation of superionic conductivity
in an identified candidate demonstrates the utility of this graph-based approach for
discovering experimentally relevant, high-performance materials.
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C h a p t e r 1

INTRODUCTION

1.1 Motivation and Background
Urgent action is needed to reduce greenhouse gas emissions and mitigate the im-
pacts of global warming [1]. Meanwhile, global energy demand continues to rise.
Sustaining the prosperity historically enabled by fossil fuel consumption while de-
creasing emissions requires a transition to renewable sources, complemented by
other low-carbon sources such as nuclear power [2]. However, the inherent inter-
mittency of renewables like solar and wind energy demands a simultaneous increase
in energy storage capacity to maintain electricity security. Highlighting this, the
International Energy Agency estimates that global storage capacity must increase
sixfold by 2030 to permit the tripling of global renewable energy capacity pledged
at COP28 [2, 3]. Advanced portable energy storage is also required to electrify the
transport sector, which accounted for 19% of net global greenhouse gas emissions
in 2019. Batteries have emerged as a competitive solution for energy storage due to
their high round-trip efficiency, modularity, and rapidly declining cost [2, 4, 5].

Li-ion batteries (LIBs) have transformed human interaction with technology by
providing an unprecedented means of portable energy storage. Their commercial-
ization enabled the widespread adoption of mobile electronics and more recently,
has made the electrification of transportation possible. The prototypical LIB con-
sists of a layered oxide cathode and a graphitic carbon anode, separated by an
electrolyte composed of LiPF6 dissolved in carbonate solvents. When charged, Li
ions are intercalated between the layers of the graphite anode. The difference in
electrochemical potential between the anode and cathode in the charged state drives
spontaneous redox reactions. When the electrodes are connected through an ex-
ternal load, an oxidation reaction occurs at the anode and electrons move through
the external circuit from the anode to the cathode. Simultaneously, Li+ ions move
from the anode to the cathode through the electrolyte. At the cathode, a reduction
reaction occurs and the Li+ ions are incorporated into the host structure [6].

Despite the profound impact of LIBs, higher performance is needed. The use of Li
metal anodes, which have the highest possible theoretical capacity of 3860 mAh g−1,
in place of graphite anodes (372 mAh g−1) is desired. However, the substitution of
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Li metal for graphite presents significant challenges. Similarly to graphite, Li metal
reacts with conventional electrolytes to form a solid-electrolyte interphase (SEI).
Unlike the relatively stable SEI on graphite anodes, the Li metal SEI is susceptible
to cracking due to volume changes during plating and stripping of Li. This repeatedly
exposes the Li metal surface, leading to continuous side reactions which increase
impedance and consume active Li, decreasing performance. Furthermore, nonuni-
form Li plating and stripping during cycling can lead to dendrite growth, which may
contact the cathode and cause internal short circuits. The organic carbonate-based
electrolytes used in commercial LIBs are flammable and thermally unstable, requir-
ing operation within a relatively narrow temperature window. Localized heating
from short circuits caused by dendrites or mechanical abuse can initiate exothermic
reactions that lead to thermal runaway [7, 8].

All-solid-state batteries (ASSBs), wherein the liquid electrolyte is replaced with a
solid-state electrolyte (SSE), could alleviate some of the challenges associated with
the use of Li metal anodes. It was originally suggested that the higher shear moduli
of SSEs would suppress dendrite penetration [7, 9–11]. However, dendrite growth
through the grain boundaries or interfacial defects in SSEs has been observed [12–
14]. Despite this, SSEs are less flammable than liquid carbonates, mitigating some
of the safety risks in the event of an internal short. They also have greater thermal
stability, enabling operation over a wider temperature window [15]. Moreover,
SSEs exhibit high transference numbers for Li+ because the anion framework is
fixed. This reduces the formation of salt concentration gradients that limit current
in liquid electrolytes and allows higher current densities in ASSBs [16, 17].

The development of ASSBs has been hindered by the absence of a suitable SSE
material. An ideal SSE has high ionic conductivity, low electronic conductivity,
electrochemical stability at both electrodes, and suitable mechanical properties.
However, in the most commonly studied SSE families, trade-offs between these
properties are often observed. Figure 1.1 summarizes trends in ionic conductivity
and stability window for different SSEs, grouped by anion chemistry. Ionic conduc-
tivity decreases with increasing anion electronegativity within each group, whereas
the opposite trend is observed for the stability window. More electronegative an-
ions (O2−, F−) are less polarizable and harder to oxidize. This gives them wide
stability windows but also leads to stronger Li-anion interactions and a rigid lattice,
increasing the migration energy barrier for Li+ transport. By contrast, anions such
as S2− or Br− form more flexible lattices and have weaker Li-anion interactions,
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facilitating high ionic conductivity. However, compounds with these anions are
more easily oxidized, resulting in lower anodic stability limits. The discovery of
novel SSEs outside of traditionally studied families is required to achieve a more
favorable balance of these properties.

Figure 1.1: Stability and conductivity trade-offs for solid-state electrolytes (SSEs).
(a) Average calculated stability window for each anion family. Data sourced from
references [18] and [19]. (b) Ionic conductivity distributions for each anion family
shown as box plots, based on an in-house curated database. (c) The highest-
conductivity SSE from each anion family is represented by a circular marker, with
the marker area proportional to the order of magnitude of its ionic conductivity. An
ideal SSE is represented by the red circular marker, with ionic conductivity equal to
10−2 S cm−1, a reductive limit of 0 V vs. Li/Li+, and an oxidative limit greater than
5 V vs. Li/Li+.

Only a small fraction of known Li-containing materials have been experimentally
evaluated as potential SSEs. We have curated the largest dataset to date of crystal
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structures from the Inorganic Crystal Structure Database (ICSD) and their experi-
mentally measured ionic conductivities, as will be expanded upon in later chapters.
Of the 11,295 Li-containing materials in the ICSD, only 571 have experimentally
characterized ionic conductivities (Figure 1.2). A further 12,974 and 21,593 theoret-
ical Li-containing materials are predicted to be stable or metastable in the Materials
Project and GNoME computational databases, respectively. This vast chemical
space is intractable for experimental study alone, highlighting the need for in silico
approaches to guide the discovery of novel SSEs.

Figure 1.2: Number of known Li-containing materials in prominent databases. The
Inorganic Crystal Structure Database (ICSD) contains experimentally reported ma-
terials, with the subset of measured ionic conductivities shown in hatched shading.
The Materials Project and GNoME databases consist of computationally predicted
structures, with GNoME representing the largest to date.

Computational methods are an increasingly important tool in the search for new
high-conductivity SSEs. The conductivity of a material can be expressed as

𝜎 =
∑︁
𝑖

𝑛𝑖𝑞𝑖𝜇𝑖 (1.1)

where 𝜎 is the conductivity, 𝑛𝑖 is the concentration of charge carriers of type 𝑖, 𝑞𝑖 is
the charge of those carriers, and 𝜇𝑖 is their mobility. The Nernst-Einstein equation
relates the mobility of a charge carrier to its diffusivity by

𝜇 =
𝑞𝐷𝜎

𝑘B𝑇
(1.2)
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where 𝑇 is the temperature and 𝑘B the Boltzmann constant. 𝐷𝜎 is the long-
range macroscopic diffusion coefficient which can be related to the tracer diffusion
coefficient, 𝐷∗, through the Haven ratio

𝐻𝑅 =
𝐷∗

𝐷𝜎

(1.3)

where 𝐻𝑅 ≤ 1 accounts for ion-ion correlation effects and 𝐻𝑅 ≈ 1 indicates weak
or no correlations. 𝐷∗ is the proportionality constant in Fick’s First Law and refers
to the diffusivity in a chemically uniform host. Arrhenius behavior is typically
observed for the tracer diffusivity,

𝐷∗(𝑇) = 𝐷0 exp
(
− 𝐸A
𝑘B𝑇

)
(1.4)

where 𝐸A is the activation energy for diffusion. In the intrinsic regime, this is
equal to 𝐸m + 𝐸f/2 where 𝐸m and 𝐸f/2 are the migration energy barrier and defect
formation energy, respectively. When doping or substitution creates extrinsic defects
that significantly outnumber intrinsic defects, the 𝐸f term is no longer relevant
and instead a trapping energy term, 𝐸t/2, can be included if there are significant
interactions between the substituted ions and mobile carriers.

The tracer diffusivity can be determined from molecular dynamics calculations.
If the assumption 𝐻𝑅 = 1 is made, the ionic conductivity can then be calculated
through Equations 1.1–1.3. However, obtaining accurate 𝐷∗ values from molec-
ular dynamics requires the sampling of a sufficient number of diffusion events.
This requires large simulation cells and long durations, especially if the diffusiv-
ity of the mobile species is low. Ab initio molecular dynamics (AIMD), wherein
the most accurate description of the potential energy surface is obtained through
first-principles methods, is prohibitively expensive for high-throughput screening.
Molecular dynamics with machine-learned interatomic potentials trained on first-
principles data (ML-MD) is a promising emerging technique, providing accuracy
approaching AIMD at a significantly reduced cost. However, first-principles data
is still required for fitting or fine-tuning parameters and the transferability of these
potentials to non-equilibrium states remains uncertain. Density functional theory-
based nudged-elastic band (NEB) calculations can be used to calculate the 𝐸m but
require identification of all possible ion transport pathways and the 𝐸m itself can
be affected by complex diffusion mechanisms, including the cooperative motion of
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multiple ions. NEB is therefore typically reserved as a detailed evaluation method
for a limited number of structures, rather than as a screening tool.

1.2 Thesis Overview
This thesis focuses on accelerating the discovery of novel high-performance SSEs.
A strong emphasis is placed on addressing the entire discovery pipeline, from
computational modeling to experimental demonstration and the development of
mechanistic understanding.

Chapter 2 presents a semi-supervised learning approach for identifying fast Li-
ion conductors. A database pairing experimental ionic conductivities with crystal
structures is created, and semi-supervised learning is used to identify material
representations that best correlate to observed ionic conductivity. The optimal rep-
resentation is used to identify promising conductors. Subsequent semi-empirical
and first-principles calculations are used to prioritize experimental candidates. One
candidate, Li3BS3 is shown to have superionic conductivity through defect engi-
neering.

Chapter 3 develops a mechanistic understanding of the factors influencing ionic
conductivity in the Li3BS3 system. The effects of chemical substitution and pro-
cessing conditions on both local and long-range structure are investigated using
x-ray diffraction, Raman spectroscopy, solid-state nuclear magnetic resonance, and
electrochemical impedance spectroscopy. Cl, Al, and Si substitution reduces crys-
tallinity, and the microstructure is highly sensitive to grinding duration. Both means
of introducing disordered environments significantly enhance the ionic conductiv-
ity in Li3BS3, while high levels of Si substitution drive the formation of a novel
superionic phase.

The profound impact of disorder on ion transport is highlighted in Chapters 2 and
3. Computational studies of SSEs often inadequately address disorder due to the
lack of suitable representations for imperfect crystals. Chapter 4 introduces a graph-
based strategy for representing disorder that enables learning and prediction in
disordered materials. The largest database of crystal structures with corresponding
ionic conductivities assembled to date is used to train models capable of identifying
fast ion conductors, aided by this representation and transfer-learning techniques.
The value of this approach is demonstrated through experimental validation of
superionic conductivity in the highly disordered phase Li9B19S33.
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C h a p t e r 2

IDENTIFICATION OF POTENTIAL SOLID-STATE LI-ION
CONDUCTORS WITH SEMI-SUPERVISED LEARNING

Laskowski, F. A. L.; McHaffie, D. B.; See, K. A. Identification of Potential Solid-
State Li-Ion Conductors with Semi-Supervised Learning. Energy Environ.
Sci. 2023, 16 (3), 1264–1276. F.A.L.L. and D.B.M. contributed equally to
this work.

2.1 Abstract
Despite ongoing efforts to identify high-performance electrolytes for solid-state Li-
ion batteries, thousands of prospective Li-containing structures remain unexplored.
Here, we employ a semi-supervised learning approach to expedite identification of
superionic conductors. We screen 180 unique descriptor representations and use
agglomerative clustering to cluster ∼26,000 Li-containing structures. The clusters
are then labeled with experimental ionic conductivity data to assess the fitness of
the descriptors. By inspecting clusters containing the highest conductivity labels,
we identify 212 promising structures that are further screened using bond valence
site energy and nudged elastic band calculations. Li3BS3 is identified as a potential
high-conductivity material and selected for experimental characterization. With
sufficient defect engineering, we show that Li3BS3 is a superionic conductor with
room temperature ionic conductivity greater than 1 mS cm−1. While the semi-
supervised method shows promise for identification of superionic conductors, the
results illustrate a continued need for descriptors that explicitly encode for defects.

2.2 Introduction
Identifying new materials that could improve solid-state ion battery prospects is an
ongoing challenge. The search for an ideal solid-state Li electrolyte is a prime
example. Research has focused on eight classes of materials: LISICON-type
structures, argyrodites, garnets, NASICON-type structures, Li-nitrides, Li-hydrides,
perovskites, and Li-halides [1]. However, only three compounds with near-liquid-
electrolyte conductivity ( 10−2 S cm−1) have been discovered: Li10GeP2S12 (LGPS)
[2], Li6PS5Br argyrodite [3], and Li7P3S11 ceramic-glass [1, 4]. Although promis-
ing discoveries, all three high-conductivity structures are unstable against the Li
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anode [5–10]. While investigations to limit instability are ongoing [11, 12], identi-
fication of additional superionic structures is desirable. Discovery of new structures
that support superionic conductivity improves the odds of identifying or engineer-
ing a stable electrode|SSE interface. For example, engineering solutions that fail
to stabilize the Li|argyrodite interface may prove more successful when applied to
not-yet-discovered superionic conductors. Discovery of new superionic conductors
may also enable stable architectures via multi-electrolyte approaches which have
been proposed as more promising than single-electrolyte architectures for achieving
stability against Li metal and cathode materials [13]. High-performing structures
that enable new battery chemistries may exist outside of the eight classes. However,
exploration under the traditional Edisonian approach prioritizes small perturbations
to well-known variable spaces. Machine learning (ML) is a promising tool for
expediting the discovery of useful solid-state materials. By describing prospective
materials with physically meaningful descriptors, ML models can identify high-
dimensional patterns in large datasets that are not readily apparent [14–20]. On-
going descriptor engineering [21–26] has enabled discovery of battery components
[27, 28], electrocatalysts [15, 29], photovoltaic components [16, 30], piezoelectrics
[31], new metallic glasses [14] and new alloys [32]. However, application of ML
for discovery of SSEs and other emerging technologies can be challenging. Su-
pervised ML approaches require empirical data for use as “labels”. For example,
graph neural network (GNN) approaches have been successful in many domains but
generally require thousands to tens of thousands of labels to avoid overfitting [33].
By contrast, relatively few SSEs have been experimentally characterized compared
to the∼26,000 known Li-containing structures [19, 34–36]. Characterized materials
often exhibit ill-defined properties owing to the variety of synthetic approaches and
non-standardized testing methods [37]. Well-performing materials often contain
charge-carrying defects that are not explicitly characterized or reported [38]. Nega-
tive examples, i.e. materials with undesirable properties, are useful for ML models
but are seldom reported. Semi-supervised ML can guide synthetic prioritization
of SSEs by overcoming the issues associated with label scarcity. Supervised ML
requires labels because it infers correlation functions by mapping the input descrip-
tors to the labels [39]. Semi-supervised ML prioritizes comparison of descriptors
to identify relationships between the descriptors in a dataset [36, 39]. The input
compositions are clustered (or grouped) by comparison of descriptors using a simi-
larity metric. The clustering process does not consider labels, and thus circumvents
the need for abundant labels. The resultant clusters can be labeled ex post facto to
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examine correlation between the descriptor and a physical property of interest. For
semi-supervised ML, ideal descriptors result in a set of clusters where each cluster
has similar labels and thus the label variance is minimized. Promising synthetic
targets may then be identified by their membership in clusters that contain desirable
labels. A key insight of this work is that semi-supervised ML can be used to rank de-
scriptors in terms of their correlation to physical properties of interest. Descriptors
are representations of the input materials that encode the chemistry, composition,
structure, and/or other system properties. An ideal descriptor should be a unique
representation, a continuous function of the structure, exhibit rotational/translational
invariance, and be readily comparable across all structures in the dataset [24–26].
Recently, Zhang et al. demonstrated that a modified X-Ray diffraction (mXRD)
descriptor lead to favorable clustering for Li SSEs [34]. By labeling the resultant
clusters with experimental room-temperature Li-ion conductivities, they identified
16 prospective fast-ion conductors. However, an ideal descriptor is not known a pri-
ori, and no comprehensive descriptor screening has yet been pursued for correlation
with SSE properties. Descriptor screening is desirable for both experimentalists and
computationalists. For experimentalists, ranking of descriptors affords insight into
what aspects of materials are most correlated with target properties. For computa-
tionalists, descriptors rankings enable improved regression and supervised learning
models by guiding the selection of input representation(s). Descriptor transforma-
tions for inorganic structures have been curated in a variety of software packages,
including Matminer [24], Dscribe [25], SchNet [40], and Aenet [41].

Herein, we employ hierarchical agglomerative clustering to screen many descrip-
tors, without assuming correlation to ionic conductivity. The performance of 20
descriptors is assessed for semi-supervised identification of Li SSEs. Each descrip-
tor is paired with 9 structural simplification strategies, yielding a total of 180 unique
representations per input structure. The approach is applied to a dataset of ∼26,000
Li-containing phases, encompassing all Li-containing structures contained in the
Inorganic Crystal Structure Database (ICSD - v.4.4.0) and the Materials Project
(MP - v.2020.09.08) database (Figure 2.1). A set of 220 experimental room tem-
perature ionic conductivities (𝜎25°C) are aggregated from literature reports and used
as labels. Experimental labels are selected because they may bias models towards
identifying structures that are synthetically tractable and processable. Descriptors
that encode the spatial environment are found to be most correlated with the ionic
conductivity labels, whereas descriptors that encode the electronic, compositional,
or bonding environment have less predictive power. For the structural descriptors,
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simplifications that neglect the mobile ion perform best. The descriptor screening
results suggest that ionic conductivity is most sensitive to the spatial environment
of the framework lattice.

Using the descriptors, the semi-supervised approach can identify potential fast
solid-state Li-ion conductors. By selecting structures in clusters containing high
conductivity labels, the ∼26,000 input structures are down selected to just 212
promising structures. Practical considerations, a semi-empirical bond valence site
energy (BVSE) method [42], and the Nudged Elastic Band (NEB) method are
employed to rank the structures. From the ten highest ranking structures, Li3BS3

is selected for model validation. Synthesis of pure Li3BS3 yields a poor conductor.
However, by employing defect engineering strategies we demonstrate that Li3BS3
is a superionic conductor with an ionic conductivity greater than 10−3 S cm−1.

2.3 Results and Discussion
Screening simplification-descriptor combinations. A set of 20 descriptors is
selected for screening the semi-supervised learning approach (Table 2.1). The
descriptors generally encode four types of information: the spatial environment,
the chemical bonding environment, the electronic environment, and composition.
All descriptors are implemented in Python using the Matminer [24] or Dscribe [25]
libraries. The code is published to a GitHub repository and is available for download
(https://github.com/FALL-ML/materials-discovery). Zhang et al. illustrated that
structure simplification prior to learning can produce lower variance outcomes [34].
Their mXRD descriptor was found to work best with removal of all cations, all the
anions replaced by a single representative anion, and the structure volume scaled to
40 Å3 per anion. Inspired by the previous success in using structure simplification,
we screen eight structure simplifications in addition to the unperturbed structure. For
simplifications the following categories of atoms are replaced with a representative
specie: (1) Cations are represented as Al, (2) Anions are represented as S, (3) Mobile
ions are represented as Li, and (4) Neutral atoms are represented as Mg. Categories
of atom are removed as to yield the four simplifications: CAMN (all atoms retained),
CAN (mobile ions removed), AM (cations and neutral atoms removed), and A (only
anions retained). Four additional simplifications are formed by scaling each lattice
volume to 40 Å3 per anion: CAMN-40, CAN-40, AM-40, and A-40.

Agglomerative clustering is performed on all Li-containing structures from the
ICSD and MP repositories. Agglomerative clustering is a “bottom-up” approach

https://github.com/FALL-ML/materials-discovery
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Table 2.1: The descriptors used for agglomerative clustering. Descriptor vectors are
attained by simplifying the input structures and then applying the descriptor trans-
formation. In total, 180 unique descriptor vectors are screened for each structure.

Descriptor Descriptor description Ref.

Bond fraction “Bag of bonds” approach described in Hansen et al.
wherein pairwise nuclear charges and distances are
encoded.

[43]

Band center Estimation of band center from constituent atoms’
electronegativity values described by Butler et al.

[44]

Crystal structure analysis by
voronoi decomposition (CAVD)

Calculation of the largest sphere that can pass through the
lattice-sans-mobile-ion using Voronoi decomposition of
structures.

[45]

Chemical ordering Warren-Cowley-like ordering method to determine how
different the structure’s ordering is from random.

[46]

Density features Calculates density, volume per atom, and the packing
fraction.

[47]

Electronegativity difference Composition-weighted calculation of the electronegativity
difference between cations and anions.

[48]

Ewald energy Sum of coulomb interaction energies across all lattice sites
described by Ewald et al.

[49]

Global instability index Averaged square root of the sum of squared differences
over the bond valence sums.

Jarvis Diverse set of descriptors from the Jarvis-ML library. [50]
Maximum packing efficiency A measure of the void space within the unit cell. [46]
Meredig Composite descriptor from Meredig et al. [51]
Modified XRD (mXRD) Powder diffraction pattern calculated using Bragg’s law. [47]
Orbital field matrix Descriptor that encodes the distribution of valence shell

electrons for each input structure.
[52]

Oxidation states Concentration-weighted oxidation state statistics. [48]
Radial distribution function Radial distribution function for each structure. [47]
Sine coulomb matrix Coulomb matrix for periodic lattices, developed by Faber et

al.
[53, 54]

Smooth overlap of atomic positions
(SOAP)

Geometric encoder that is rotationally/transitionally
invariant through use of spherical harmonics and radial
basis functions. Atoms are represented by a smeared
Gaussian.

[25]

Structural complexity The Shannon information entropy for a given structure. [55]
Structure variance Bond length and atomic volume variance for each structure. [46]
Valence orbital Structure-averaged number of valence electrons in each

orbital.
[48, 56]

Control A control descriptor is not explicitly used. Instead,
clustering outcomes are randomly assigned. For composite
intracluster variance calculations, 100 control iterations are
averaged.
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Figure 2.1: Schematic of the semi-supervised machine learning approach. Li-
containing structures are aggregated from the ICSD and MP database. Each input
structure is simplified and transformed to yield a unique descriptor representation.
The descriptor representations are clustered with hierarchical agglomerative clus-
tering. Each cluster is then labeled with experimental 𝜎25°C data and the intracluster
conductivity variance is calculated. Comparison of the composite intracluster con-
ductivity variance (intracluster conductivity variance summed across all clusters)
enables identification of descriptors that are well correlated with ionic conductivity.

to clustering where each structure starts in its own cluster of one. Clusters are
merged according to Ward’s Minimum Variance criterion in Euclidean space, which
minimizes the global descriptor variance [57]:

𝑊 =

𝑛𝐶∑︁
𝑘=1

∑︁
𝑖∈𝐶𝑘

[
𝑑𝑖 − 𝑑𝑘

]2

where 𝑛𝐶 is the number of clusters in a set, 𝐶𝑘 is cluster 𝑘 , 𝑑𝑖 is a descriptor rep-
resentation for structure 𝑖, and 𝑑𝑘 is the average descriptor representation in cluster
𝑘 . Other common linkage criteria (average, complete, and single linkages) and
metrics (l1, l2, Manhattan, cosine) were screened but are found to result in cluster-
ing outcomes with larger 𝑊). For each simplification-descriptor combination, all
clustering sets from 2-300 are computed. Physically relevant labels are applied to
the resultant clustering sets to assess how well each simplification-descriptor combi-
nation performs. To compare between the 180 different simplification-descriptions
combinations, the data is labeled with 155 experimental room temperature conduc-
tivity (𝜎RT) values aggregated from the literature reports. A secondary label set is
also screened, comprising 6,845 activation energies (𝐸𝑎) computationally generated
using a bond valence energy approach (see Appendix A.2).
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An ideal simplification-descriptor combination results in clustering where each
cluster contains labels with similar 𝜎RT values. Ward’s minimum variance method
is applied to the conductivity labels as a measure of clustering efficacy [34]:

𝑊𝜎 =

𝑛𝐶∑︁
𝑘=1

∑︁
𝑖∈𝐶𝑘

[
log(𝜎RT)𝑖 − log(𝜎RT)𝑘

]2

where 𝑛𝐶 is the number of clusters in a set,𝐶𝑘 is cluster 𝑘 , and log(𝜎RT)𝑘 denotes the
mean for all labels in cluster 𝑘 . Since clusters containing only one label effectively
drop out of the 𝑊𝜎 calculation, a frozen-state strategy is employed when needed
(see Appendix A.1). Each descriptor’s 𝑊𝜎 results are shown in Figure 2.2 for the
first 50 clustering outcomes (i.e. the 𝑊𝜎 is shown for each set of 2, 3, . . . , 49,
and 50 clusters). For simplicity, only the best-performing simplification-descriptor
combination is shown for each descriptor.

Figure 2.2: The composite intracluster conductivity variance (𝑊𝜎) for the first 50
clusters generated using each descriptor. Half-violin plots show the raw𝑊𝜎 score for
each depth of clustering as symbols next to the violin distribution. Simplification-
descriptor combinations are sorted in order of ascending mean. The control is a
random assignment of clusters, with𝑊𝜎 values averaged over 100 randomly assigned
sets. The smooth overlap of atomic positions (SOAP) descriptor outperforms all
other descriptors. Although not shown here, SOAP continues to outperform for all
depths of clustering through 300 clusters.
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Using𝜎25°C labels, the best semi-supervised ML performance is attained when using
the SOAP descriptor. SOAP is a spatial descriptor that employs smeared Gaussians
to represent atomic positions for each crystal structure [25]. Predictions using the
SOAP descriptor have exhibited similar performance to state-of-the-art graph neural
networks (GNNs) on a variety of materials science datasets [58]. Optimization of
SOAP hyper-parameters (radial cutoff, number of radial basis functions, degree of
spherical harmonics) is explored in Appendix A.3. SOAP is found to perform best
when combined with the CAN structure simplification. That is, the simplification
where the mobile Li atoms are removed, and the remaining atoms are simplified into
three representative species: cations, anions, and neutral atoms. SOAP outperforms
all other descriptors for all depths of clustering. The SOAP descriptor can be
modestly improved (2-3% decrease in 𝑊𝜎) by mixing with other descriptors to
make a 2nd-order SOAP descriptor (see Appendix A.3).

Semi-supervised identification of prospective Li-ion conductors. Agglomerative
clustering with the 2nd-order SOAP descriptor is used to identify prospective ionic
conductors. 𝑊𝜎 minimization is prioritized over 𝑊𝐸a minimization because 𝐸a

alone is not necessarily a good predictor of conductivity; 𝜎25◦C may be affected by
properties including the ionic carrier concentration, hopping attempt frequency, and
the presence of concerted migration modes [59]. The agglomerative dendrogram
for the 2nd-order SOAP clustering is shown in Figure 2.3. The agglomerative
dendrogram is depicted to 241 clusters, after which the 𝑊𝜎 does not appreciably
decrease. To facilitate discussion, an arbitrary cutoff is placed to yield 9 large
clusters. The results show that although cluster #2 contains only 15% of the input
structures, it accounts for over half of the high-conductivity (𝜎25◦C > 10−5 S cm−1)
labels. By the 17th clustering step, the densest cluster accounts for 6.2% of the
structures while containing over half (52%) of the high-conductivity labels.

Candidates for next-generation SSEs can be identified by evaluating clusters that
either contain or are near high conductivity labels. Clusters #2, #4, and #7 are
promising because they account for 85% of the high𝜎25◦C labels. However, targeting
these clusters would necessitate screening thousands of structures. Instead, we
search from the 241st cluster depth, targeting all clusters that contain or are directly
adjacent (i.e., the nearest cluster in the Euclidean feature space) to high 𝜎25◦C labels.
The promising structures are further screened using calculated stability (𝐸 vs. 𝐸hull)
and band gap (𝐸g) properties from the Materials Project, and the BVSE 𝐸a values.
We select the structures that have (1) an 𝐸hull of 70 meV or lower [60], (2) an 𝐸g of
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at least 1 eV, and (3) a BVSE-calculated 𝐸a below a conservative 0.6 eV. We note
that while a true 𝐸g value of 1 eV would be problematic for an SSE, the bandgaps
reported on Materials Project are typically underestimated by about 40% [61]. The
approach identifies 212 structures as prospective ionic conductors. Climbing image
nudged elastic band (CI-NEB) is employed to calculate the 𝐸a for Li-ion hopping on
the ten materials with the lowest BVSE-calculated 𝐸a and an 𝐸hull of 0 eV. The CI-
NEB computational details can be found in Appendix A.4. The top 10 prospective
structures are tabulated in Table 2.2.

Figure 2.3: Agglomerative clustering dendrogram for the 2nd-order SOAP descrip-
tor. The hierarchical clustering representation is shown for the first 241 clusters. An
arbitrary variance cutoff is placed such that 9 large clusters are produced to facilitate
analysis. The violin plots show the 𝜎25◦C distribution for the labels within the 9
large clusters. Three outlier clusters are grouped into two additional clusters and
are hereafter ignored. The density (per 241 clusters) of low 𝐸a (< 0.6 eV) and high
conductivity (𝜎25◦C > 10−5 S cm−1) labels is shown underneath the agglomerative
dendrogram. The results illustrate that agglomerative clustering on the 2nd-order
SOAP descriptor results in favorable aggregation of most high-conductivity labels.

The CI-NEB calculations generally agree with the BVSE calculated 𝐸a values,
suggesting favorable activation energies (< 500 meV). Discrepancies between the
two values may arise because BVSE does not allow framework ions to relax during
Li+ migration and does not account for repulsive interactions between atoms of the
mobile ion species. BVSE also does not capture cooperative conduction mechanisms
or those involving the so-called paddlewheel effect. Despite these limitations, we
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Table 2.2: The top 10 prospective structures from the semi-supervised learning
model as ranked by BVSE-calculated 𝐸𝑎. Structures in or directly adjacent to high-
conductivity clusters were identified as promising. The list of promising structures
was then further simplified by removing structures with Materials Project reported
𝐸hull values greater than 0 V and 𝐸𝑔 values less than 1 eV. To rank the remaining
structures, the 𝐸𝑎 was calculated using BVSE and CI-NEB approaches.

Compound Space group MP_ID ICSD_ID 𝐸 vs. 𝐸hull
(eV per atom) 𝐸𝑔 (eV) 𝐸𝑎,calc (meV)

BVSE NEB

Li3VS4 𝑃43𝑚 (#215) mp-760375 NA 0 1.88 160 390
Na3Li3Al2F12 𝐼𝑎3𝑑 (#230) mp-6711 9923 0 7.85 230 340
Li2Te 𝐹𝑚3𝑚 (#225) mp-2530 60434 0 2.49 260 320
LiAlTe2 𝐼42𝑑 (#122) mp-4586 280226 0 2.46 260 310
LiInTe2 𝐼42𝑑 (#122) mp-20782 658016 0 1.49 270 450
Li6MnS4 𝑃42/𝑚𝑚𝑐 (#137) mp-756490 NA 0 1.55 270 470
LiGaTe2 𝐼42𝑑 (#122) mp-5048 162555 0 1.59 270 340
Li3BS3 𝑃𝑛𝑚𝑎 (#62) mp-5614 380104 0 2.89 280 260
KLi6TaO6 𝑅3𝑚 (#166) mp-9059 73159 0 4.27 300 400
Li3CuS2 𝐼𝑏𝑎𝑚 (#72) mp-1177695 NA 0 2.03 310 440

note that the model identifies numerous diverse structures beyond those routinely
explored. Table 2.2 includes four tellurides, a vanadium sulfide, and multiple
transition-metal-containing structures. Of the structures in Table 2.2, 70% avoid
the space groups for the best-performing SSEs discovered to date: LPS (62), LGPS
(137), the argyrodites (216), and LLZO (230).

Experimental validation of the semi-supervised learning model: Li3BS3. From
the ten most promising candidates, Li3BS3 was selected for synthesis and charac-
terization. Li3BS3 is noteworthy because it has been explored experimentally and
computationally before. Experimentally, Vinatier et al. previously determined that
Li3BS3 has a total DC conductivity of 2.5 × 10−7 S cm−1 with an activation energy
of 700 meV [62]. The DC measurement was not included in our label set because
DC measurements cannot differentiate between ionic and electronic conductivity,
so they were categorically discounted from the label set (see Appendx A for more
details on label selection). Although the conductivity and activation energy values
reported by Vinatier et al. are underwhelming, there are promising theoretical re-
ports. Density functional theory and molecular dynamics (DFT-MD) simulations
from Sendek et al. [63] suggest that Li3BS3 should have a room temperature con-
ductivity between 3.1×10−6 and 9.7×10−3 S cm−1. Our NEB-calculated activation
energy for Li3BS3 is 260 meV, corroborating a previous NEB result from Bian-
chini et al. [64]. Additionally, Li3BS3 is practically attractive because (1) Li3BS3
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contains no redox-active metals, (2) band edge calculations have suggested stability
against metallic Li [65], (3) DFT-MD calculations have suggested a kinetic barrier
for decomposition against metallic Li [63], and (4) the synthesis is reported [66].
It is simpler to avoid redox active metals in the SSE as they may be reduced and
oxidized at electrode interfaces. However, we note that Li0.5La0.5Ti3 is a widely
studied SSE that contains redox active Ti [67, 68] so the compounds we report here
that contain Mn, V, and Cu should not be categorically discounted. It is important
to note that while studying Li3BS3 as a candidate Li-ion conductor for model val-
idation, Kimura et al. reported that a so-called “Li3BS3 glass” exhibits an ionic
conductivity of 3.6 × 10−4 S cm−1 at 25°C [69].

Li3BS3 is prepared using solid-state synthesis from Li2S, B, and S precursors.
The diffraction and quantitative Rietveld refinement are shown in Figure 2.4 (a),
indicating a phase pure material. Electrochemical impedance spectroscopy (EIS) is
employed at various temperatures and the measured conductivity is plotted according
to the Arrhenius-like relationship (Figure 2.4 (b):

𝜎 =
𝜎0
𝑇
𝑒
− 𝐸a

𝑘B𝑇 (2.1)

where 𝑇 is the temperature, 𝑘B is Boltzmann’s constant, 𝜎0 is the conductivity
prefactor, and 𝐸a is the activation energy. The room temperature ionic conductivity
(𝜎25◦C) is 7.2(±3.0) × 10−7 S cm−1 and the activation energy is 400 ± 47 meV. The
low conductivity and high activation energy may be due to lack of charge-carrying
defects in the Li3BS3 lattice [70, 71]. Although a sufficient carrier concentration is
necessary for facile ionic conduction in most materials, the descriptors in the semi-
supervised model not explicitly encode for charge-carrying defects. In the label
set, conductivity is likely influenced by the presence of defects that are typically
not reported. Still, the semi-supervised model may infer a structure’s capacity
to support conductive defects via correlation with the descriptors. To test the
hypothesis, we use two strategies to engineer vacancies: aliovalent substitution and
amorphization via extended ball milling. Aliovalent substitution has been shown
to improve conductivity in Li-argyrodites, -sulfides, and -garnets by introducing
vacancies [70, 71]. Similarly, amorphization can introduce defects and vacancies
that enable Li+ hopping [69, 71–73].

Aliovalent substitution of Li3BS3 is achieved by substituting Si for B. The XRD pat-
terns and quantitative Rietveld refinements of Li2.975B0.975Si0.025S3 and Li2.95B0.95
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Si0.05S3 are shown in Figure 2.4 (a). The lattice parameters from the refinements are
plotted vs. stoichiometry with the Li3BS3 end-member in Figure 2.4 (e). The linear
trend shows that the materials obey Vegard’s law and confirms that Si incorporates
into the lattice as a solid-solution. Substitution to 7.5% Si continues the Vegard
trend until unidentified impurities are apparent in the XRD pattern. With 5% Si
substitution, the ionic conductivity is improved to 1.82(±0.21) × 10−5 S cm−1 and
the activation energy is decreased to 333 ± 47 meV (Figure 2.4 (d)). All error
bars reported for electrochemical measurements represent the standard deviation
of three replicate cells. Kimura et al. demonstrated that extended ball milling of
Li3BS3 causes amorphization and improves ionic conductivity, likely due to the in-
troduction of defects [69]. Extended ball milling is attempted on the 5%-substituted
Li3BS3 to assess whether both defect engineering strategies are compatible. Plan-
etary ball milling of the 5%-substituted Li3BS3 for 100 h achieves amorphization
(a-Li2.95B0.95Si0.05S3), as verified by the lack of distinct peaks in the XRD pattern
shown in Figure 2.4 (a).

We find that amorphization significantly improves Li-ion conductivity. EIS mea-
surements of a-Li2.95B0.95Si0.05S3 are shown in Figure 2.4e. A high-frequency
semicircle is partially resolved which may represent grain boundary or bulk ionic
transport. A Warburg tail is evident at lower frequencies, indicating that elec-
tronic charge transfer is blocked. Although multiple high-frequency semicircles
may exist (see Appendix A.5), a conservative estimate of the ionic conductivity is
determined by linear fit of the Warburg tail and extrapolation to the 𝑥-intercept.
The 𝜎25◦C of a-Li2.95B0.95Si0.05S3 is 1.07(±0.08) × 10−3 S cm−1 with an activation
energy of 345 ± 2 meV (Figure 2.4 (d)). The electronic conductivity as mea-
sured by DC polarization is less than 4 × 10−10 S cm−1. To determine if the local
structure in the crystalline material is maintained after amorphization, we turn to
7Li and 11B NMR. If the local structure is not altered by amorphization, then it
is likely that the ion diffusion pathways are similar. Comparing Li-ion diffusion
pathways is important because the machine learning points to the structure of the
crystalline Li3BS3 phase. The 7Li NMR spectra of Li3BS3, Li2.95B0.95Si0.05S3, and
a-Li2.95B0.95Si0.05S3 are shown in Figure 2.4 (d). All materials show a similar reso-
nance at the same chemical shift, suggesting that the Li local environment remains
unchanged. The resonance width is reduced in the amorphous material due to the
higher mobility. The 11B NMR measurements are shown in Figure 2.4 (e). 11B
NMR for Li3BS3 and Li2.95B0.95Si0.05S3 show a single, quadrupolar environment
that can be assigned to the [BS3]3− moieties [69, 74]. The signal for the amorphous
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phase a-Li2.95B0.95Si0.05S3 shows a similar signal to that of the crystalline phases
but the shape changes, similarly to the previous measurement for amorphous Li3BS3

[69]. Li3BS3, Li2.95B0.95Si0.05S3, and a-Li2.95B0.95Si0.05S3 all exhibit a major peak
at ∼ 60 ppm and a relatively minor peak ∼ 0 ppm. The major peak is assigned
to trigonal planar [BS3]3− while the minor peak likely indicates a minor impurity
with tetrahedrally coordinated B. [75–77] The change in the shape of the 11B spec-
trum upon amorphization is likely due to an averaging of the quadrupolar couplings
due to the fast Li dynamics. Thus, Li3BS3 and a-Li2.95B0.95Si0.05S3 have similar
local structures and we can attribute the faster Li dynamics to the introduction of
charge-carrying defects. Although investigation of interfacial stability is beyond the
scope of the model, we note that the Si-substituted Li3BS3 is a promising candidate
for future investigations into interfacial stability. Work by Park et al. suggests
that the (010) facet for Li3BS3 has a conduction band minimum 0.5 eV above the
Li/Li+ couple [65]. Since decomposition of Li3BS3 is likely to be mediated by
electron injection from Li, their results suggest that thermodynamic stability can be
engineered via orientation. From a kinetic perspective, high-temperature DFT-MD
simulations show no mobility for B and S, suggesting large kinetic diffusion barriers
[63]. Since decomposition of Li3BS3 would entail the diffusion of these species,
the reaction may be sluggish or wholly precluded. Interfacial stability has been pre-
viously demonstrated for a glassy electrode in the Li–B–S–Si–O phase space [78].
This result may indicate that stability can be engineered into Si-substituted Li3BS3

by partial isovalent substitution of O for S. Finally, recently-synthesized Li–B–S–X
(X = Cl, Br, I) quaternaries have exhibited promising conductivities [79]. With
similar elemental composition, the Si-substituted Li3BS3 may be a good candidate
for a multi-electrolyte architecture with the halide-containing quaternaries [13]. In
addition to our experimental model validation, another of the predicted materials,
KLi6TaO6, was recently synthesized with aliovalent Sn-substitution by Suzuki et
al. [80]. With a reported ionic conductivity near 10−5 S cm−1, KLi6TaO6 is better
than 70% of the SSEs in the semi-supervised labels. Further improvement may be
possible via extended amorphization to introduce structural defects, as is observed
for Li3BS3.

2.4 Conclusions
Identification of functional materials is critical for improving technologies. Here,
we show the utility of using semi-supervised learning as a method for guiding next-
generation materials discovery in emerging fields. The method’s focus on identifying
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Figure 2.4: Characterization of Li3BS3 with vacancy engineering. (a) XRD
patterns for Li3BS3, 2.5% Si substituted Li3BS3 (Li2.975B0.975Si0.025S3), 5%
Si substituted Li3BS3 (Li2.95B0.95Si0.05S3), and amorphized 5% Si substi-
tuted Li3BS3 (a-Li2.95B0.95Si0.05S3). No impurities are observed in any pat-
tern. (b) Arrhenius fits for Li3BS3. (c) Lattice parameter comparison for
Li3BS3, Li2.975B0.975Si0.025S3, and Li2.95B0.95B0.05S3. (d) Arrhenius fits for
Li2.95B0.95Si0.05S3, and a-Li2.95B0.95Si0.05S3. (e) Electrochemical impedance spec-
troscopy for a-Li2.95B0.95Si0.05S3 at various temperatures. (f) 7Li NMR and (g) 11B
NMR of Li3BS3, Li2.95B0.95Si0.05S3, and a-Li2.95B0.95Si0.05S3. Results show that
combined aliovalent substitution and amorphization can improve the ionic conduc-
tivity of Li3BS3 by approximately four orders of magnitude.
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the relationships between descriptors, prior to labeling, enables understanding of
compositional spaces where most inputs are unlabeled. We demonstrate how semi-
supervised learning can be used to identify descriptors correlated with superionic
conductivity in Li SSEs. By analyzing all Li-containing structures from the ICSD
and MP database, we identify 212 materials that show promise as SSEs. All 212
structures exhibit a BVSE-predicted 𝐸𝑎 below 0.6 eV.

The results illustrate why careful screening of descriptors is useful when identifying
new materials. While chemical intuition can be useful for descriptor selection,
chemical intuition is often biased to favor previously investigated compositional
spaces. For material discovery in emerging fields, the use of handpicked descriptors
may miss complex phenomena that more generally describe the dataset. Descriptor
screening reveals which material properties are correlated to a property of interest
to help enhance chemical intuition. In the case of Li SSEs, spatial descriptors excel
over compositional, bonding, and electronic descriptors: the Smooth Overlap of
Atomic Positions (SOAP), modified X-ray diffraction (mXRD), and general density
descriptors are within the top four models. For spatial descriptors, simplification
of the input structure tends to improve clustering outcomes. Removing the mobile
ions from the structure and simplifying the remaining atoms, i.e. the “CAN”
simplification, is most effective. Thus, the placement of framework atoms, but not
their precise identity, is most correlated with ionic conductivity. Specifying the
mobile ion positions hurts the model performance, suggesting a low correlation of
mobile ion positions with ionic conductivity.

Predictions from the semi-supervised method are promising starting points for the
experimental identification of new superionic conductors but defects must be con-
sidered. The proposed materials are diverse, with the top thirty including halides,
sulfides, tellurides, nitrides, oxides, and oxyhalides (see Appendix A.6). As a struc-
ture that falls outside of the eight routinely studied SSE classes, we demonstrate
experimental characterization of Li3BS3 to confirm the utility of the approach.
However, pure Li3BS3 exhibits poor ionic conductivity. Defects must be introduced
into the material to achieve a superionic conductivity above 10−3 S cm−1, a value
that surpasses most reported SSEs. We note that the defects are introduced while
maintaining the local structure of the crystalline material and thus the ionic con-
duction pathways are likely similar. The need to introduce defects highlights the
paramount importance that defects play when measuring real materials. Many of
the highest-performing SSEs contain charge-carrying defects that are not explicitly
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encoded in their structure files. It is likely that some of the descriptors indirectly
encode information about defects. By using experimental conductivity values as the
evaluation metric, we may be prioritizing descriptors that encode information about
a structure’s ability to support charge-carrying defects. Although Li3BS3 is a poor
conductor, it is clearly able to support charge-carrying defects. The large conduc-
tivity difference between pristine Li3BS3 and a-Li2.95B0.95Si0.05S3 highlights the
importance of these defects. To improve predictive models and enhance chemical
intuition, descriptors that explicitly encode defects are needed.

Now developed, the semi-supervised learning approach can serve as a template for
material discovery beyond Li SSEs. The code is thoroughly documented follow-
ing pythonic coding standards and made freely available on GitHub. Although
the present effort focuses on Li SSEs, the approach is applicable to any material
discovery space where labels are sparse. The discovery of new Li cathodes could
be accomplished by using Li diffusivity, cathode capacity, and metal redox cou-
ple voltages as labels. The discovery of divalent SSEs (e.g., Mg2+, Ca2+, Zn2+)
could foreseeably be accomplished in a similar manner. The semi-supervised learn-
ing strategy may accelerate identification of fast ionic conductors for ion exchange
membranes, solid oxide fuel cells, and various sensor applications.

2.5 Methods
Data processing and semi-supervised learning

The ∼26,000 input compositions are exported from the Inorganic Crystalline Struc-
ture Database (ICSD v.4.4.0) and Material’s Project (MP – v.2020.09.08) as crys-
tallographic information files (.cif). All structures containing Li are imported. Al-
though transition metals could produce undesirable redox activity, transition metal-
containing structures are not screened out. Some of the best-performing SSEs
contain transition metals (e.g., LLZO and LLTO). Entries that exist in both ICSD
and MP are merged. Data manipulations and structure simplifications are performed
using the Python libraries NumPy (v1.19.1), Pandas (v1.0.5), ASE (v3.19.1), and
Pymatgen (v2020.8.3). Descriptor transformations are performed using the Python
libraries Pymatgen (v2020.8.3), Matminer (v0.6.3), and Dscribe. Agglomerative
hierarchical clustering is performed using the Python library scipy (v1.5.0). All
code has been successfully executed on a custom-built CPU with an AMD Ryzen
Threadripper 3990x Processor and 256 GB of RAM, in Ubuntu 20.04 running
on Windows Subsystem for Linux 2. All code is made available on the GitHub
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(https://github.com/FALL-ML/materials-discovery).

CI-NEB

Migration barriers for Li-ion hopping are evaluated with the Climbing Image –
Nudged Elastic Band (CI-NEB) method as implemented in the QuantumESPRESSO
PWneb software package [81–84]. Density-functional theory (DFT) calculations are
performed using the Perdew–Burke–Ernzerhof (PBE) generalized gradient approxi-
mation functional and projector-augmented wave (PAW) sets [85, 86]. Convergence
testing for the kinetic-energy cutoff of the plane-wave basis and the 𝑘-point sam-
pling is performed for each structure to ensure an accuracy of 1 meV per atom. The
lattice parameters and atomic positions of the as-retrieved structure are optimized.
Supercells are created for each structure that are a minimum of 10 Å in each lattice
direction to minimize interactions between periodic images of the mobile ion. To
study the migration barrier in the dilute limit, a single Li vacancy is created in
the boundary endpoint structures of each studied pathway. A uniform background
charge is used to balance excess charge. Each boundary configuration is relaxed
until the force on each atom is less than 3 × 10−4 eV Å−1. Images are created
by linearly interpolating framework atomic positions between the initial and final
boundary configurations. The initial pathway for the mobile ion is generated from
the BVSE output minimum energy pathway to promote faster convergence of the
NEB calculation. An NEB force convergence threshold of 0.05 eV Å−1 is used. The
calculation is first converged using the default NEB algorithm and then restarted
with the CI scheme to allow for the maximum energy of the pathway to be deter-
mined.

Li3BS3 synthesis

Li3BS3 is synthesized by reaction of Li2S (Alfa Aesar, 99.9%), S8 (Acros Or-
ganics, >99.5%), and elemental B (SkySpring Nanomaterials, Inc. 99.99%). The
reactants are first mixed stoichiometrically (300 rpm for 1 h) using a planetary ball
mill (MSE PMV1-0.4L) in 50 mL ZrO2 jars with ZrO2 balls. Two grams of reactants
are always combined with 2 large balls (10 mm diameter), 34 medium balls (5 mm
diameter), and 8 grams of small balls (3 mm diameter). Loading of ball mill jars
occurs in an Ar-filled glovebox (Mbraun) and the jars are sealed before removal.
After the 1 h of milling, the precursor mixture is pumped back into the glovebox and

https://github.com/FAIL-ML/materials-discovery
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330–340 mg of the powder is loaded into carbon-coated vitreous silica ampoules
(10 mm ID × 12 mm OD). The ampoules are evacuated (<10 mtorr) prior to sealing.
Pure Li3BS3 is obtained via a four-step heating protocol in a Lindberg/Blue furnace:
(1) ramp to 500 ◦C at 5 ◦C min−1, (2) hold at 500 ◦C for 12 h, (3) ramp to 800 ◦C
at 5 ◦C min−1, and (4) hold at 800 ◦C for 6 h. The hot melt is then quenched from
800 ◦C into room-temperature water. Recovered ingots are typically covered in an
amorphous shell. The shell is either sanded off or the ingot is ground into smaller
pieces and the shell is manually removed.

Substituted Li3BS3

Aliovalent substitution is accomplished by adding elemental Si (Acros, 99+%)
into the precursor mixture prior to the 1 h mix. Si-substitution stoichiometry as-
sumed that each Si atom replaces one Li and B: Li3−𝑥B1−𝑥Si𝑥S3. Aside from the
addition of Si, all steps are the same as for the synthesis of Li3BS3. Amorphization
is accomplished via extended planetary ball milling in Ar of the 5% Si-substituted
Li3BS3 (Li2.95B0.95Si0.05S3). Approximately 1 g of Li2.95B0.95Si0.05S3 is combined
in a ZrO2 ball mill jar with 3 large balls (10 mm diameter), 51 medium balls (5 mm
diameter), and 12 g of small balls (3 mm diameter). The powder is ground in a
planetary ball mill (MSE PMV1-0.4L), under an Ar atmosphere, for 100 h.

Material characterization

Li3BS3 materials are characterized using powder X-ray diffraction (XRD) and elec-
trochemical impedance spectroscopy (EIS). XRD patterns are attained on a Rigaku
Smartlab by scanning from 10◦ to 70◦ 2𝜃 at 2 degrees per minute. The Smartlab
employs a Cu-K𝛼 source with a 20 kV accelerating voltage. For EIS measurements,
50–100 mg of powder is first hot-pressed (100 ◦C, 5 min) into a 1/4” diameter
pellet. The pellet faces are polished using diamond lapping powder (Allied High
Tech Products Inc.) in sequentially finer grits: 60, 30, 6, 0.5, and 0.1 microns.
Au contacts are sputtered (90 s at 40 mA) onto the polished surfaces using a 108
Auto Sputter Coater (Cressington). Pellets are then assembled into a Swagelok 1/4”
cell with stainless steel current collectors. After applying pressure with a hand
vise (∼100 MPa), EIS data is collected on a VSP-300 with a Biologic low-current
channel. All EIS data is collected to an upper frequency of 3 MHz. The lower
frequency is case dependent, with a frequency cutoff selected such that the Warburg
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polarization feature is visible. 7Li and 11B MAS MAS NMR spectra were acquired
using a Bruker DSX-500 spectrometer with a 4 mm ZrO2 rotor. The operating
frequencies for 7Li and 11B are 190.5 and 160.5 MHz, respectively. The 7Li and
11B spectra were referenced to a 1 M LiCl aq. solution and BF3-OEt2, respectively.
A spinning speed of 12 kHz was used, and the spectra were gathered after applying
a single 0.5 𝜇s to 15◦ pulse for both 7Li and 11B.
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CLASSIFICATION OF (DIS)ORDERED STRUCTURES AS
SUPERIONIC LITHIUM CONDUCTORS
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Classification of (Dis)Ordered Structures as Superionic Lithium Conductors
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2025, 4 (6), 1518–1533.

4.1 Abstract
Solid-state electrolytes (SSEs) are critical for the development of high-performance
all-solid-state batteries. Data-driven efforts to discover novel SSEs have been con-
strained by the absence of databases linking ionic conductivity with structure, as
well as by challenges in encoding structural information for the disorder that is often
found in superionic conductors. Here, we construct the largest database to date of
experimentally measured ionic conductivity values paired with corresponding crys-
tal structures, comprising 548 Li-containing compounds. Graph-based features,
derived using a transfer learning framework, enable learning directly from disor-
dered crystals, and AtomSets models leveraging these features outperform domain-
specific features in a classification task. These models are employed to screen the
Inorganic Crystal Structure Database (ICSD) and Materials Project for superionic
Li-containing compounds. We identify 241 compounds with predicted superionic
conductivity and band gaps greater than 1 eV. Experimental validation confirming
superionic conductivity in of one of these candidates, Li9B19S33, demonstrates the
utility of this approach for the discovery and development of advanced SSEs for
all-solid-state batteries.

4.2 Introduction
All-solid-state batteries represent a transformative frontier in energy storage tech-
nology, offering the potential for enhanced safety and performance compared to
conventional lithium-ion batteries [1–4]. However, the realization of their full poten-
tial hinges critically upon the discovery and development of solid-state electrolytes
(SSEs) exhibiting high ionic conductivity, low electronic conductivity, stability
against both Li metal anodes and highly oxidative cathodes, and suitable mechan-
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ical properties. The multi-objective search is further complicated by the observed
trade-off between the conductivity and stability in commonly studied SSE material
families [5–10]. Discovery of novel SSE materials is necessary to optimize these
desired properties [8, 11].

To expedite the exploration for suitable SSEs, researchers have increasingly explored
the integration of statistical and machine learning approaches [8, 12–31]. These
methodologies often rely on databases consisting of compounds labelled with their
experimental ionic conductivity (𝜎𝑒𝑥𝑝) or related quantities such as migration energy
(𝐸𝑚), serving as the foundation for training predictive models. Features derived from
these compounds serve as inputs to the models, encapsulating information about
the material’s composition and/or structure. Models trained solely on composition
information have successfully predicted various material properties in other domains
[32–36]. Such an approach has also been explored for predicting ionic conductivity,
as demonstrated by Hargreaves et al., who achieved high performance using a
composition-only model trained on 403 unique compositions [26]. However, since
compounds are featurized by composition only, the model is unable to distinguish
between polymorphs. Additionally, the ionic conductivity in solid-state materials
is inherently linked to their crystal structure, as the arrangement of atoms and
the pathways available for ion migration directly influence ion mobility. Structural
features can capture information about coordination environments, atomic positions,
and the potential for site disorder, all of which are critical in determining ion transport
properties.

Incorporating structure-based information to identify fast ion conductors with data-
driven methods has historically encountered two primary challenges: the lack of
comprehensive datasets that provide both ionic conductivity values and correspond-
ing crystal structures, and inadequate methods for representing the prevalent disorder
in many fast ion conductors. In this context, disorder refers to the occurrence of
atomic sites within a crystal structure that are not fully occupied by a single ele-
ment. Instead, the sites are populated by a set of possible chemical species, with
the partial occupancy describing the fraction of sites occupied by each species in
the long-range average structure. Sendek et al. trained a logistic regression model
capable of predicting if a material would exhibit superionic conductivity using in-
terpretable structural features [15]. However, their training set contained only 40
entries, preventing evaluation with a holdout test set. Moreover, their probabilistic
sampling method for feature construction for disordered compounds may become



39

computationally expensive when applied to large collections of known compounds
such as the Inorganic Crystal Structure Database (ICSD), in which 6,860 of 11,925
Li-containing materials exhibit disorder (v5.2.0). Our own previous study imple-
mented a semi-supervised learning strategy using a database of 219 ionic conduc-
tivity values and corresponding ICSD crystal structures. The structural descriptors
used in the previous work were unable to represent disordered compounds, limiting
the utilization to a subset that could be ordered through a costly supercell ordering
procedure [27]. Excluding highly disordered compounds from consideration is par-
ticularly undesirable when searching for novel fast ion conductors, as site disorder is
known to be a critical factor in realizing high conductivity in many systems [37–43].
The recently reported COSNet framework introduced by Wang et al., has shown
promise in combining structural and compositional information using multimodal
ensemble learning to predict material properties, including ionic conductivity [44].
However, the effectiveness of this approach for representing structural disorder was
not explicitly examined in the study.

In the current work, we alleviate the data scarcity challenge by constructing the
largest repository to date of 548 crystal structures and 𝜎𝑒𝑥𝑝 values. To address
the issue of disordered crystal structure representation, we use transfer-learned
graph-based features. Graph-neural networks (GNNs) have emerged as powerful
architectures for incorporating composition and crystal structure information to
make property predictions [45–47]. Additionally, by representing the node features
for disordered sites through combinations of elemental embeddings, GNNs have
been used for learning from disordered compounds [48]. However, the flexibility
of these models enabled by their vast number of trainable parameters necessitates
thousands of labelled data points to be trained correctly [49–51]. To circumvent the
issue, we represent our data with features derived from GNNs pre-trained on large
datasets (e.g., Materials Project formation energies) and pass these graph-based
features through comparatively simple multilayer perceptron (MLP) models using
the AtomSets framework developed by Chen and Ong [50]. Such an approach has
been demonstrated to achieve higher performance than GNNs for smaller datasets
of similar size to our own [50, 52]. To further overcome the challenges of a small
dataset, we implement transfer learning by pre-training AtomSets models on the
MatBench metal classifier dataset containing 106,113 samples and use the trained
weights to initialize the network weights for ionic conductivity prediction [53].
The AtomSets models are tasked with classifying input materials as superionic
(𝜎exp > 10−4 S cm−1) or not.
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We examine the efficacy of representing disordered compounds using a linear combi-
nation of elemental embeddings and graph-based features. For comparison, ordered
configurations are generated using a supercell approach. The performance of classi-
fication models trained using these two methods is found to be nearly equivalent. The
optimal feature representation and model configurations for this task are explored
through k-fold and leave-one-cluster-out (LOCO) cross-validation (CV). Transfer-
learned features derived from early graph-convolutional layers of the parent model,
which encode short-range structural information, achieve the highest performance
for out-of-cluster predictions. Reducing the chemical diversity by replacing atoms
with representative species improves extrapolation beyond the training set. A final
ensemble of 100 AtomSets models is shown to achieve high test performance and
is used to evaluate all Li-containing materials in the Inorganic Crystal Structure
Database (v5.2.0) and Materials Project (v2023.11.1). An additional criterion re-
quiring the electronic band gap (Eg) to be greater than 1 eV is used to prioritize
compounds more likely to be electronically insulating, a critical property for SSEs.
The screening identifies 241 compounds predicted to be superionic with Eg > 1
eV. To show the practical relevance of our approach, we experimentally validate
superionic conductivity in one of these candidate phases, Li9B19S33, achieving a
𝜎exp of 4.1 × 10−4 S cm−1.

4.3 Results and Discussion
Structure-conductivity database. The database created for this study is comprised
of experimental ionic conductivity values for 548 distinct Li-containing compounds
and their corresponding crystal structures sourced from the Inorganic Crystal Struc-
ture Database (ICSD). All ionic conductivity measurements recorded are obtained
from electrochemical impedance spectroscopy (EIS) data. The database includes
ionic conductivity values that are both directly extracted from text and digitized
from figures in reference sources. In solid-state ionics literature, particularly for low
conductivity materials, measurements are frequently performed at elevated temper-
atures and presented in the form of Arrhenius-type plots where ln(𝜎𝑇) or log10(𝜎𝑇)
is plotted against 𝑇−1. To capture these data, plots are digitized, and conductivity
values are extrapolated to room temperature using an Arrhenius relationship. The
resulting room-temperature conductivity values, along with the lowest measured
temperature, are recorded in the database. To facilitate the inclusion of both struc-
ture and composition information for model training, conductivity values are paired
with corresponding crystal structures. Wherever possible, crystallographic informa-
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tion files (CIFs) associated with conductivity measurements are obtained from the
ICSD using article DOIs. That is, reports are identified which included both conduc-
tivity measurements and sufficient structural characterization to generate an ICSD
entry. Since the same nominal compound (i.e. Li10GeP2S12) can have different lat-
tice parameters, atomic positions, or defect concentrations depending on preparation
conditions, direct matching of the CIF with the measured sample is prioritized. For
articles containing conductivity measurements but lacking ICSD entries, associated
crystal structures are identified by manual inspection. Only articles with sufficient
structural characterization to enable matching of stoichiometry, space group, and
lattice parameters to existing ICSD entries are included. Articles without structural
characterization or containing conductivity values for non-crystalline compounds
are excluded from the dataset. For a comprehensive list of ionic conductivity val-
ues corresponding to compounds without ICSD entries, readers are referred to the
database compiled by Laskowski et al. [27]. Structures deemed identical within
a specified tolerance are identified. In cases of multiple ionic conductivity values
for identical structures, the entry corresponding to the median ionic conductivity is
retained and duplicate entries are removed. Notably, this process preserves highly
related structures, necessitating diverse forms of CV to assess model performance,
as elaborated in subsequent sections. To ensure database accuracy, the database is
constructed by a single author and is verified by the other authors. Any discrepancies
found during the verification process are reviewed by a third author for validation.
A summary of the database created in this work is presented in Figure 4.1. The
compiled database contains a broad range of ionic conductivity values from crys-
tal structures with 72 different space groups. However, certain space groups are
more represented due to the bias in SSE material research which has primarily been
confined to garnets, LISICON-type structures, argyrodites, NASICON-type struc-
tures, Li–nitrides, Li–hydrides, perovskites, and Li–halides [6]. Importantly, from
the histogram in Figure 4.1 it is evident that most structures in the database, and
especially those corresponding to materials with high conductivity, are disordered,
further motivating the use of a compatible structural representation.

Experimental ionic conductivity measurements of the same compound with EIS
can vary significantly across different laboratories [54]. Such variability has been
attributed to inadequate control of sample temperature, sample geometry, the fre-
quency range measured, choice of metal contact materials, and aging effects [54].
Extrapolating conductivity measurements performed at high-temperature to room-
temperature is an additional source of error. The use of experimental conductivity
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Figure 4.1: (a) The space group and corresponding Li-ion conductivity (𝜎) values
plotted as log10(𝜎exp) for each database entry. The database contains entries from 72
different space groups, with𝜎exp values spanning over 10 orders of magnitude. (b) A
histogram of the data in (a) showing the distribution of log10(𝜎exp). Most superionic
compounds contain site disorder, necessitating an appropriate featurization method.
Note that seven compounds with 𝜎exp < 10−20 S cm−1 are excluded from this figure
for ease of visualization.

values from our database would thus introduce considerable noise into the training
of a regression model. Thus, herein we do not endeavor to predict ionic conduc-
tivity but rather determine if a material is likely to be a good conductor or not.
Framing a materials discovery problem as a classification task can enhance the
prediction accuracy for identifying extraordinary compounds [32]. Classification
models are designed to distinguish between distinct categories, allowing them to
more effectively handle the binary nature of identifying extraordinary versus ordi-
nary materials. In contrast, regression models predict continuous values, which can
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introduce greater uncertainty and error, particularly when extrapolating beyond the
training data.

The supervised learning performed in this study involves training a classifier neural
network to determine if an input crystalline compound will exhibit superionic Li
conductivity (𝜎exp > 10−4 S cm−1). Table 4.1 provides summary statistics for the
dataset used in this study. From the 548 labels, 10% are removed at the outset of this
work and set aside as a final test set. The remainder of the data is used to determine
optimal feature representations and hyperparameters using various CV techniques.

Table 4.1: A summary of the structure-conductivity database.

.

Description Number
𝜎exp values with crystal structure 571
Unique structures 548
Space groups 72
Ordered compounds 112
Disordered compounds 436
Positive class (𝜎exp ≥ 10−4 S cm−1) 211
Negative class (𝜎exp < 10−4 S cm−1) 337

Training with disordered representations using AtomSets framework. Input
compounds are transformed into a graphs following the MatErials Graph Network
(MEGNet) formalism outlined by Chen et al. [45]. A graph is defined as 𝐺 =

(u, 𝑉, 𝐸) where u, V, and E are the global state, atom (node), and bond (edge)
attributes, respectively. A comprehensive description of the MEGNet architecture
can be found in the original works [45, 48]. The graph representations are subjected
to a specified number of graph-convolution (GC) layers within the pre-trained parent
MEGNet model, after which atom features are extracted and provided as inputs for
the AtomSets models. Within GC layers of the parent model, information is passed
between atom, bond, and state vectors. Consequently, atom features following GC
layers implicitly encapsulate both compositional and structural information, with a
greater number of GC layers encoding longer-range interactions [50]. The AtomSets
models accept the atom feature matrix V with dimensions N𝑎 × N 𝑓 where N𝑎 is the
number of atoms in the structure and N 𝑓 is the number of features [50]. Consistent
with the methodology implemented by Chen et al., the node feature for a disordered
site is derived as a linear combination of elemental embeddings for the constituent
elements, weighted by their reported occupancy. That is, Wdisordered =

∑
𝑖 x𝑖 · W𝑍𝑖 ,

where x𝑖 is the reported site occupancy of element 𝑖 and W𝑍𝑖 denotes the learned
elemental embedding for the element with atomic number 𝑍𝑖 [48]. For the present
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study, W𝑍𝑖 are learned embedding vectors of length 16 from a MEGNet model
trained on 133,420 structures and their formation energies from the Materials Project
database, downloaded on April 1, 2019. Importantly, this strategy for representing
disorder does not consider possible occupancy correlations between disordered sites,
instead treating each site independently. While the following analysis demonstrates
that this approximation is sufficient for predicting superionic conductivity, we expect
that other applications (e.g. force predictions between atoms) may require additional
considerations to handle interactions between correlated sites.

The performance of models employing a linear combination of elemental embed-
dings is evaluated against those using ordered representations. To create the com-
parison set, ordered configurations without Li atoms are generated and ranked using
the OrderDisorderedStructureTransformation in the Python Materials Genomics
(Pymatgen) package, with the configuration exhibiting the lowest calculated Ewald
energy selected for each structure [55]. Only disorder of the non-Li atoms is consid-
ered for this comparison because the extensive disorder in the mobile ion sublattice
makes supercell generation computationally prohibitive for the entire dataset. An
illustration of the two strategies to create graph representations from disordered
crystals is shown in Figure 4.2 (a). AtomSets classification models, tasked with
discerning whether an input structure is superionic, are trained using both ordered
and linear combination of elemental embeddings representations. A comparative
analysis is presented in Figure 4.2 (b) and (c) where the average area under the
precision-recall curve (AUC-PR) and Matthew’s correlation coefficient (MCC) as-
sessed under k-fold CV for each model is shown over 500 training epochs. The
AUC-PR is chosen as it provides a comprehensive evaluation of the model’s preci-
sion and recall across different thresholds and is particularly well-suited for classi-
fication tasks with imbalanced datasets [56]. The AUC-PR score ranges from 0 to
1, with a perfect classifier obtaining a score of 1. MCC offers a balanced measure
of classification performance, accounting for both true positives and true negatives,
thereby providing a robust metric for our binary classification task [57–59]. The
MCC score ranges from -1 to 1, where 1 indicates perfect agreement between pre-
dicted and actual labels and -1 indicates total disagreement between predicted and
actual labels. As in the work by Hargreaves et al., these metrics are compared
against those obtained from shuffled and mean controls, where predicted values are
generated either by randomly shuffling the dataset labels or by using the training set
mean as the prediction label [26]. Models trained with both ordered and disordered
representations achieve AUC-PR and MCC scores significantly higher than those of
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the controls and comparable performance levels by 500 training epochs. The results
demonstrate that the linear combination of elemental embeddings representation
enables similar efficacy to the ordered representation without necessitating the com-
putationally intensive ordering transformation. Given the substantial computational
costs associated with creating ordering configurations, which can scale combinatori-
ally with the number of disordered sites and possible substitutions, the ability to use
a disordered representation while maintaining performance parity offers expedited
training [60]. Moreover, this capability facilitates efficient screening of experimen-
tal databases containing disordered compounds such as the ICSD, where over half
of Li-containing compounds exhibit site disorder.

Feature and model evaluation. The present study explores two distinct feature
engineering strategies: (1) the number of GC layers in the parent MEGNet model
through which the graph is passed before the atom features are extracted and (2) input
structure simplifications prior to graph generation. Models are trained using atom
feature matrices Vi (i = 0, 1, 2, 3) where V0 is the atom feature matrix comprised
solely of the learned elemental embeddings from the parent model and Vi (i = 1, 2,
3) denote the atom feature matrices after passing the graph through i GC layers. By
nature of the message passing in each GC layer, higher i atom features encode longer-
range interactions. The second feature engineering technique of pre-processing input
structures before feature generation has been demonstrated to enhance learning
outcomes for Li-ion conductor datasets [17, 27]. Laskowski et al. found that
simplifying compounds by replacing categories of atoms with representative species
and removing the position of the mobile ion improved clustering efficacy of known
Li-ion conductors [27]. To evaluate this strategy within the model architecture under
investigation, we explore structural modifications involving changes to the cations
(C), anions (A), mobile Li ions (M), and neutral atoms (N) within the structures.
Specifically, we investigate the following representations:

• CAMN: retaining all atom types

• CAN: removing the mobile Li ion

• CAMNS: retaining all atom types but simplifying the structure by substituting
cations with Al, anions with S, and neutral species with Mg

• CANS: removing the mobile Li ion and performing the same substitutions as
in CAMNS
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Figure 4.2: Different strategies to represent disordered structures. (a) On the left, the
atom attributes are equal to a linear combination of elemental embeddings learned
from a MEGNet model trained on a large database of Materials Project formation
energies. On the right, ordered supercell configurations are generated. Configura-
tions are compared using an Ewald summation and the lowest-energy configuration
is used for graph creation. (b) The average area under the precision-recall curve
(AUC-PR) and (c) Matthew’s correlation coefficient (MCC) for AtomSets models
trained with graph representations generated through the two approaches. Metrics
are averaged over 5-fold random CV with the shaded regions indicating the standard
deviation. Controls from randomly shuffling and using the mean of the training set
as the predicted values are plotted as horizontal lines. Both methods for representing
disordered structures offer comparable performance that exceeds the controls.

To compare the model performance for the different feature representations, we
use both k-fold validation and LOCO CV. Experimental training data can exhibit a
highly clustered distribution due to the inherent nature of scientific exploration —
parent materials are systematically perturbed through various means (e.g. elemental
substitution) to develop structure-property relationships, resulting in a large number
of training data points confined to a relatively small number of parent structure
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frameworks. The clustering of data can lead to the inclusion of highly related
compounds in both training and validation sets when data is randomly segregated.
Therefore, randomized k-fold validation provides insight into a model’s interpolation
ability but offers limited information regarding its capacity to predict in unseen
chemical spaces. Predictive models intended for materials discovery also require
an evaluation of their extrapolative capabilities. We assess this using LOCO CV,
a clustering-based validation method for assessing a model’s ability to predict on
chemically distinct compounds not present in the training set [26, 61]. The dataset is
clustered into n clusters using a chosen embedding presenting the chemical nature of
the compounds and a clustering algorithm. Training is conducted on the compounds
belonging to n-1 clusters and the model performance is evaluated on the compounds
from the remaining cluster. In this work, we adhere to the procedure described by
Hargreaves et al. [26]. The compounds in our labelled database are embedded using
ElMD, a metric which captures the chemical similarity between compounds based
on their chemical composition. Uniform Manifold Approximation and Projection
(UMAP) is applied to obtain a low-dimensional representation that retains essential
chemical relationships. Density-based spatial clustering of applications with noise
(DBSCAN) is used to automate separation of the data into clusters for LOCO CV
[26]. Detailed statistics for each cluster generated for this validation procedure are
provided in the Table C.3. The effectiveness of data segregation from this clustering
technique is examined by analyzing the compositional similarity between the entries
in the test and validation sets and those in the training set. The results of this analysis
displayed in Tables C.4, C.5, and C.6 show that except for one fold, the LOCO CV
validation sets exhibit significantly lower compositional similarity with the training
set compared to the k-fold validation or test sets. This motivates the use of LOCO-
CV as our primary evaluation technique when comparing feature representations
and performing hyperparameter optimization.

An additional benchmark for our AtomSets-based model is provided by comparing
its performance with that of a logistic regression model trained using the database
created in this work and a set of interpretable atomistic features defined by Sendek
et al. [15]. This serves to validate our approach against a method that has been
previously applied to the task of identifying SSE candidates using structure-based
representations. The atomistic features used in the previous work include the average
number of Li-Li bonds per Li atom in the crystal, the ionic character of bonds within
the sublattice, the anion coordination environment, the shortest distance between Li
ions and anions, and the shortest distance between Li ions [15]. These features were
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chosen to encode information directly impacting Li mobility, potential pathways
for ion conduction, and the ease of ion movement through the lattice. Detailed
definitions for each feature are provided in the original work. Figure 4.3 depicts
the AUC-PR and MCC for AtomSets models trained using Vi (i = 0, 1, 2, 3) atom
features with different structural simplifications in addition to the logistic regression
model trained using the atomistic feature set. All model variations are trained using
the same dataset and k folds. Both the AtomSets and logistic regression models
achieve higher AUC-PR and MCC than the controls, indicating significant predic-
tive power. However, all variations of the AtomSets model outperform the logistic
regression model that is based on atomistic features. For the CAN and CAMN
representations, using V0 features achieves the highest performance, suggesting that
composition-only information in the form of the learned elemental embeddings is
sufficient for classifying ionic conductors in this dataset when assessed under k-
fold CV. The CANS representation attains the lowest performance for all Vi, but
higher performance is enabled by i > 0 which incorporates longer-range structural
information through additional graph convolutions. These highlights suggest that
AtomSets models using transfer-learned features are able to better capture the com-
plex relationships influencing ionic conductivity, leading to higher classification
accuracy.

Figure 4.3: Classification performance of model-feature combinations assessed
with k-fold cross-validation. (a) AUC-PR and (b) MCC of AtomSets (AS) models
with graph-based atom features (V0 to V3) and a logistic regression model using
atomistic features. Four different structural simplifications are shown (CAMN,
CAN, CAMNS, and CANS) with mean and randomly shuffled controls. The symbol
locations indicate the mean from random 5-fold cross validation and error bars
represent the standard deviation.
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LOCO CV is used as a complimentary method for evaluating model and feature
representations in the context of materials discovery. Different from the case of
k-fold CV, controls are calculated separately for each cluster due to the significant
variation in the ratio of positive to negative labels across clusters (as shown in Table
C.3). We perform hyperparameter optimization separately for each Vi and each
validation cluster. For all subsequent results, figures, and discussion, we report and
compare the metrics from the highest-performing hyperparameter configurations for
each representation. This approach ensures that each representation and validation
cluster is evaluated based on its optimal hyperparameter settings, allowing for a
consistent comparison of performance. To capture the variance of the models, the
metric value averaged over ten repeated runs is presented at the average best epoch
across all folds. Reporting the variance in this way offers insight into the model
performance under conditions akin to those encountered in materials discovery sce-
narios, where a final model is trained for a specified number of epochs before being
used as a screening tool. For the logistic regression model, optimization of the
regularization penalty term is performed in a similar manner and the results from
the best value are shown for comparison to the AtomSets models. Figures 4.4 (a)
and (c) depict the validation AUC-PR and MCC for AtomSets models trained with
each Vi, the logistic regression model, and controls across all clusters. The logis-
tic regression model with atomistic features performs significantly worse than the
AtomSets models, showing comparable MCC to the randomized and mean controls.
No single Vi outperforms all others for every cluster, despite all surpassing the
random and shuffled controls. The averaged AUC-PR and MCC scores across all
clusters for each Vi are illustrated in Figures 4.4 (b) and (d). Descriptors capturing
short range interactions (V0, V1) provide slightly higher classification performance
than those derived from more GC layers. A similar finding was reported in the
original AtomSets work where models trained using features from early GC layers
exhibited higher accuracy across a variety of prediction tasks [50]. Additionally, it
is observed that contrary to k-fold validation results, the averaged metrics for V1 are
higher than those for V0, with the average AUC-PR and MCC being (0.86, 0.61) for
V1 and (0.85, 0.58) V0, respectively. These findings suggest that incorporating some
short-range structural information can enhance the model’s ability to classify ion
conductors with chemistry different from the training set beyond composition-only
information. We note that while LOCO CV is designed to evaluate model extrap-
olation by grouping compounds based on chemistry, automated clustering does not
always preserve chemically intuitive boundaries. For instance, clusters 6 and 7 both
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include argyrodites with comparable compositions, potentially contributing to the
higher observed performance.

Figure 4.4: Classification performance comparison of different features assessed
with leave-one-cluster-out cross validation. (a) AUC-PR and (c) MCC for each
validation cluster of pre-trained AtomSets (AS) models with graph-based atom
features (V0 to V4) and a logistic regression model using atomistic features. The
average from ten repeated training runs with the optimal hyperparameters for each
validation cluster are shown. Mean and shuffled controls are calculated for each
validation cluster. (b) AUC-PR and (d) MCC from the optimal hyperparameter set
for each model-feature combination averaged across all validation clusters. Error
bars indicate the standard deviation. Metrics are from the best epoch across all runs
and validation clusters.

Figure 4.5 illustrates the performance of AtomSets models trained using V1 atom
features constructed from the CAMN, CAN, CAMNS, and CAN structure represen-
tations. The CAMN and CAMNS representation enable learning that surpasses the
control tests for all validation clusters. Removing the mobile atom yields inferior
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performance, with the CAN representation exhibiting slightly worse MCC compared
to the controls for validation cluster 0, and the CANS representation showing lower
MCC than controls for validation clusters 0 and 1. This emphasizes the value of the
graph-based featurization in incorporating structural information while including
the disordered mobile atom sites. The mobile ion sublattice typically constitutes the
source of disorder in these compounds, and it is evident that neglecting these sites
due to inadequate representation would overlook crucial information for prediction.
Notably, the CAMNS representation, where the identity of the cation, anion, and
neutral species remains constant for all compounds, achieves nearly the same per-
formance as the model trained on the nominal structures (CAMN) while exhibiting
lower variation between clusters. Most representations exhibit lower predictive per-
formance on validation clusters 0 and 1, which primarily consist of garnets and other
oxides. This may be due to the unique structural characteristics and ionic conduc-
tion mechanisms in these materials, which are more challenging for the models to
capture compared to other clusters.

The best hyperparameter configuration is different between chosen validation clus-
ters as shown in Table C.8. To introduce diversity in the final model parameters and
reduce overfitting to one specific validation set, an ensemble comprised of AtomSets
models with CAMNS-V1 features is trained with the most effective hyperparameters
for each of the ten validation clusters. Variation for each model configuration is
captured by training ten models for each parameter set, resulting in a total of 100
AtomSets models within the ensemble. The performance of the final ensemble is
examined using the test partition, which is separate from the data used for the above
k-fold and LOCO CV. It is noted that the test partition, while separate from training
data, was partitioned randomly, similar to k-fold validation. This approach does not
fully assess extrapolation to distinct chemistries, a limitation examined by LOCO
CV in this study. Figure 4.6 shows the probability of a compound being superionic
(PSI) where superionic is defined as 𝜎𝑒𝑥𝑝 > 10−4 S cm−1 with the log10(𝜎exp) for the
test set. The final model ensemble achieves a AUC-PR of 0.86 and an MCC of 0.60.
By contrast, the logistic regression model only achieves an AUC-PR of 0.80 and
an MCC of 0.26, highlighting the superior performance of the AtomSets ensemble
approach. Test set compounds that are missclassified all have 𝜎exp values less than
two orders of magnitude from the decision boundary. Overall, the pre-trained Atom-
sets CAMNS-V1 models display significantly higher predictive power than control
metrics, as assessed through k-fold CV, LOCO CV, and a separate test set. The
strong performance on out-of-cluster inputs suggests that this model architecture is
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Figure 4.5: Classification performance of structural simplifications assessed with
leave-one-cluster-out cross validation. (a) AUC-PR and (c) MCC for each validation
cluster of pre-trained AtomSets (AS) models and V1 atom features for CAMN,
CAN, CAMNS, and CANS structural simplifications. The average from ten repeated
training runs with the optimal hyperparameters for each validation cluster are shown.
Mean and shuffled controls are calculated for each validation cluster. (b) AUC-
PR and (d) MCC from the optimal hyperparameter set for each model-feature
combination averaged across all validation clusters. Error bars indicate the standard
deviation. Metrics are from the best epoch across all runs and validation clusters.

well-suited for screening known Li-containing materials to discover novel fast ion
conductors.

Screening of known Li-containing materials. All Li-containing materials present
in the ICSD (v5.2.0) and Materials Project (v2023.11.1) are aggregated. Structures
are featurized using the CAMNS structural simplification and V1 atom feature
matrix. The PSI is predicted for all compounds. To facilitate consideration of
compounds as potential SSEs, the DFT-calculated Eg from the Materials Project
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Figure 4.6: Test set evaluation of the AtomSets-V1 CAMNS model ensemble. The
predicted likelihood of test set compounds exhibiting superionic conductivity (𝑃SI)
is plotted against their reported log10(𝜎exp). Dashed lines indicate boundaries for
classification. The model ensemble achieves an AUC-PR of 0.86 and a MCC of 0.6.
All incorrectly classified compounds have log10(𝜎exp) values less than two orders
of magnitude from the class boundary of 10−4 S cm−1.

is retrieved if a corresponding ICSD entry can be identified. In cases where no
matching entry exists in the Materials Project, the Eg is predicted using the MEGNet
model developed by Chi et al. [45]. Compounds with Eg of less than 1 eV are
excluded. The relatively low Eg for SSEs accounts for the systematic underestimation
of experimental band gap values by approximately 40 percent in the Materials Project
[62]. The MEGNet model is trained using Materials Project band gap data and so
a similar systematic underestimation of experimental band gap values is expected.
This value was chosen to balance the discovery of novel material families with
practical considerations for electronic insulation.

A histogram of the PSI for all 6,863 Li-containing materials with predicted Eg > 1 eV
is shown in Figure 4.7. Most compounds are not predicted to be fast ion conductors
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with 6,435 of 6,863 having PSI less than 0.5. Of the 428 predicted to be superionic,
396 exhibit site disorder as highlighted in the inset of Figure 4.7 (a). This underscores
the importance of choosing a compatible structural representation to ensure that
disordered materials are retained in the screening process. The prediction confidence
is quantified by the standard deviation of the ensemble PSI and a calculated distance
metric 𝑑𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔. Lower standard deviations indicate greater agreement between
ensemble models, increasing the confidence in the prediction. The distance metric
is defined as the distance between the unlabelled compound and the nearest training
sample in N 𝑓 -dimensional space where N 𝑓 is the number of features in the atom
feature matrix. Similar to previous work, we normalize the distances by the training
data variance using principal component analysis (PCA) [15]. Figure C.2 shows
the PCA embedding to two dimensions of the atom features for compounds in
the training set, ICSD, and Materials Project. A smaller 𝑑𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 indicates that
the prediction requires less extrapolation from the training data, increasing the
confidence. Figure 4.7 (b) shows the PSI, 𝑑𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 and PSI standard deviation for
each Li-containing compound in the ICSD with predicted Eg > 1 eV.

Figure 4.7: Results of screening Li-containing compounds in the ICSD using the
AtomSets-V1 CAMNS model ensemble. (a) Histogram of the likelihood of superi-
onic conductivity (𝑃SI) for ordered and disordered Li-containing compounds with
predicted Eg > 1 eV. Inset shows region of high 𝑃SI where most compounds are
disordered. (b) 𝑃SI vs. the distance from the nearest training sample 𝑑𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 for
Li-containing materials with Eg > 1 eV.

To identify novel materials that could be interesting in battery applications, we
filter out any compounds with chemical formula similar to those in our training
set. Specifically, compounds whose normalized compositions have all constituent
elements within five percent of any training sample composition are excluded. This
screening results in 241 materials from the ICSD and Materials Project predicted to
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be superionic with Eg > 1 eV. The ICSD compounds with the top 20 highest PSI values
are detailed in Table 4.2 for discussion. Intermetallic compounds with predicted Eg >
1 eV are also omitted. The standard deviation of the ensemble predictions is provided
in parentheses next to the PSI in addition to the 𝑑𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔. Among these candidates,
conductivity measurements for five compounds were reported recently and were not
captured during the database creation process. These values are included in Table
4.2. Although these compounds do not directly contribute to identifying new useful
materials, they serve as additional validation of the model’s effectiveness, as all were
correctly classified based on the experimental measurements. While a measurement
of Li1.251Cd1.671In0.471Cl6 could not be identified, its structure was described as
resembling that of the high-temperature polymorph of LiMnInCl6, which adopts a
layered CdCl2-type structure, with Li+, Cd2+, and In3+ ions randomly distributed
across the octahedral sites [63]. Li2Zr6MnCl15 is composed of abundant elements,
has a straightforward reported synthesis method, and a high PSI with low standard
deviation, making it a strong candidate for experimental investigation [64]. In a
recent computational study, LiP5 was found to have the highest ionic conductivity
of all known Li-P binaries, predicted to exceed 1 mS cm−1 at room temperature
through molecular dynamics simulations [65]. The same study did not observe
significant Li conduction in LiP7. Nevertheless, the predictions from this study
in addition to the work by Maltsev et al. suggests that these phases, particularly
LiP5, may warrant further investigation. The Li dynamics of B𝑥S𝑦 compounds
Li5B7S13 and Li9B19S33 studied via Li7 nuclear magnetic resonance (NMR) have
suggested high Li mobility and ab-initio molecular dynamics has also predicted high
conductivity in these materials [66–68]. However, experimental measurements
of the ionic conductivity are not reported in the literature. Another promising
candidate, LiBSi2, features an open tetrahedral framework with three-dimensional
channels that may facilitate fast ion conduction [69]. Additional considerations such
as the abundance or toxicity constituent elements could make candidates such as
Li6.55Ga0.05La2.91Zr2O12, Li7La1.8Eu1.2Zr2O12, Li6.43Ga0.52La2.67Zr2O12, LiCaAs,
and LiNdS2 less desirable. However these additional screening criteria are not
applied for all compounds in the present work.

Experimental demonstration of Li9B19S33. Li9B19S33 is chosen for experimental
characterization. Originally synthesized by Hiltmann et al., the crystal structure of
Li9B19S33 is composed of corner-sharing B19S36 units form large channels populated
by highly disordered Li+ cations, offering potential pathways for ion migration
[74]. NMR studies by Bertermann et al. indicate anisotropic Li+ diffusion within
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Table 4.2: The top 20 candidate materials from the ICSD as ranked by the average 𝑃SI
from the AtomSets-V1 CAMNS model. Composition stoichiometries are rounded
to two decimal places where appropriate.
Compound ICSD Code 𝑃SI (SD) 𝐸g (eV) 𝑑𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝜎exp (mS cm−1)
Li1.25Cd1.67In0.47Cl6 98583 0.94 (0.09) 3.15 0.38 NA
Li2Zr6MnCl15 71146 0.91 (0.13) 1.29 0.62 NA
Li9.9SnP2S11.9Cl0.1 48716 0.9 (0.13) 2.15 0.06 0.26[70]
LiP5 23620 0.89 (0.15) 1.26* 1.54 NA
Li5B7S13 143927 0.89 (0.16) 2.16 0.30 NA
Li6.75La2.75Ca0.25Zr1.5Nb0.5O12 63870 0.87 (0.12) 2.68 0.05 0.20[71]
Li6.55Ga0.05La2.91Zr2O12 430602 0.86 (0.13) 2.47 0.05 NA
LiP7 23621 0.84 (0.17) 1.65* 1.51 NA
LiCaAs 428102 0.84 (0.20) 1.1* 2.13 NA
LiSrAlSb2 412654 0.83 (0.17) 1.01 1.95 NA
LiBSi2 425643 0.83 (0.14) 1.17* 1.40 NA
Li7.03La2.87Sr0.08Zr1.39Ta0.58O12.22 45740 0.83 (0.20) 3.16 0.19 0.72[72]
Li9B19S33 73151 0.82 (0.29) 2.27 0.29 NA
Li6.41La2.90Sr0.10Zr1.6Mo0.4O12 42738 0.81 (0.21) 2.74 0.14 0.33[73]
Li0.5ZrS2 642338 0.79 (0.26) 1.33 0.38 NA
Li1.66W6I14 256678 0.79 (0.24) 1.13 2.52 NA
Li7La1.8Eu1.2Zr2O12 27177 0.79 (0.24) 2.94 0.29 NA
Li6.43Ga0.52La2.67Zr2O12 196425 0.79 (0.17) 2.27 0.09 NA
LiNdS2 642202 0.78 (0.22) 1.5 2.21 NA
Li7.10La2.83Sr0.16Zr1.38Ta0.61O11.76 45741 0.78 (0.20) 3.16 0.19 0.85[72]

* Value retrieved from corresponding entries in the Materials Project. All other 𝐸g values are predicted from
the pre-trained MEGNet model.

these channels, associated with a low activation energy [67]. Computational work
by Sendek et al. predicted that Li9B19S33 possesses the widest electrochemical
stability window and highest oxidative stability among the materials in the Li-B-S
ternary phase space, including Li5B7S13, Li3BS3, and Li2B2S5 [68]. Experimental
studies of materials in the Li-B-S ternary phase space are relatively rare in the
context of fast ion conductors, partly due to synthesis challenges posed by the
reactivity of their precursors with conventional reaction vessels and the difficulty
in obtaining phase-pure products. In previous work, we developed a solid-state
synthesis protocol for Li3BS3 using Li2S, B, and S [27] that we find is readily
adapted to the synthesis of Li9B19S33. The powder X-ray diffraction (XRD) pattern
and Rietveld refinement to the reported structure shown in Figure 4.8 (a) confirms
phase-purity. Variable-temperature EIS is used to characterize the ionic conductivity
of of Li9B19S33. Although challenges with densification yield a pellet that is only
78% of the theoretical density, the material demonstrates a conductivity of 4.1× 10−4

S cm−1. The slope of the Arrhenius plot of ln(𝜎𝑇) versus 𝑇−1 presented in Figure
4.8 (b) yields an activation energy Ea of 364 meV. Although improved pelletization is
expected to increase conductivity, these findings nevertheless affirm the superionic
conductivity of Li9B19S33, a candidate identified by the model ensemble. True
experimental validation of this approach’s predictive capabilities would require the
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synthesis and characterization of a significant number of the identified candidates.
However, this task is beyond the scope of a single group and is not pursued in the
present work.

Figure 4.8: Experimental characterization of Li9B19S33. (a) XRD pattern and Ri-
etveld refinement for as-prepared Li9B19S33. (b) Arrhenius-type fit for Li9B19S33
with ionic conductivity values obtained from electrochemical impedance spec-
troscopy.

4.4 Conclusions
We have constructed the largest known database of experimental ionic conductivity
and corresponding crystal structure information of 548 unique Li-containing com-
pounds. By comparing with ordered configurations generated through a supercell
sampling approach, we demonstrate that using linear combinations of elemental
embeddings is an effective means of representing the prevalent site disorder in our
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database with graph-based features, thereby enabling the training of structurally-
aware predictive models to identify potential superionic conductors.

Using this representation and a transfer-learning approach, we train AtomSets mod-
els that display classification performance surpassing our controls under both k-fold
and LOCO CV. As compared to a benchmark logistic regression model trained
using domain-specific features, the AtomSets models employing transfer learning
exhibit superior predictive power. We find that short-range interactions are most
critical for accurate predictions, emphasizing the need to capture local structural
environments. Properly including and representing Li atom positions significantly
enhances predictive accuracy. Interestingly, the specific identity of anions is found
to be less important, as models using simplified structural representations (e.g.,
CAMNS) showed high performance. This observation aligns with previous find-
ings, suggesting that capturing the overall structural framework may be sufficient
for effective identification of fast ion conductors within this database [17, 27, 75].

An ensemble of AtomSets models is used to screen all Li-containing materials in
the ICSD and Materials Project repositories. Through this screening, we find 241
materials predicted to be superionic with Eg > 1 eV and compositions significantly
different from those in our training database. The prediction confidence is quantified
by reporting the standard deviation of the ensemble predictions and the distance from
each screened compound to the nearest training sample. The predicted likelihood of
superionic conductivity 𝑃SI for all Li-containing materials in the ICSD and Materials
Project are provided for consideration. To validate the effectiveness of the model
ensemble for screening, we experimentally demonstrate superionic conductivity in
a candidate phase, Li9B19S33.

Importantly, while our approach facilitates screening of materials containing disor-
der in the Li framework, it does not account for changes in conductivity due to defect
introduction. It is possible that compounds with 𝑃SI < 0.5 could be modified to be
fast ion conductors through appropriate defect engineering strategies. Despite the
strengths of the AtomSets architecture, it does not enable the direct determination
of interpretable structural features to guide SSE design. While our results show
that the logistic regression model using domain-specific features was less effective
in this case, the identification of more refined or relevant features could poten-
tially improve its performance. By making the structure-conductivity database used
in this study public, we hope to enable future works to explore and develop bet-
ter structure-property relationships for ion conduction, facilitating design-focused
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methodologies.

4.5 Methods
Database processing. All 11,295 Li-containing compounds cataloged in the ICSD
(v5.2.0) are compiled. The constructed database for this study encompasses the ex-
perimentally measured ionic conductivities of 571 compounds alongside their corre-
sponding ICSD crystal structures. Consequently, there remain 10,724 Li-containing
compounds in the ICSD without reported ionic conductivity measurements in the
literature. To identify duplicate structures in the labelled database, the Structure-
Matcher tool within the Python Materials Genomics (Pymatgen) (v2023.11.12)
library is employed. Briefly, all pairs of structures are converted to primitive cells,
and checks are conducted to ensure that the number of sites, lattice parameters, unit
cell angles, and atomic positions do not match within a default tolerance. Duplicate
structures are consolidated by retaining the entry with the median ionic conductivity
value. The resulting database, devoid of duplicate structures, is comprised of 548
entries.

Data partitioning and clustering. From the database, 10% of entries are randomly
allocated to a test set, which is exclusively assessed with the final model ensemble
after determination of the final structure representation and the completion of hyper-
parameter optimization. The remaining data is divided into training and validation
sets using two distinct methods. Initially, the data undergoes random splitting for
k-fold CV, with folds of equal size (80:20 training and validation). When assess-
ing model performance using k-fold CV, the training and validation portion of the
database is randomly partitioned into k different folds. The model is trained on k-1
of the folds and the predictive power of the model is assessed using the remaining
fold. The process is repeated for all k folds to obtain the average and variation of the
model performance. In the present study, five folds are used for CV. Additionally,
the data is partitioned into non-random training and validation sets for LOCO-CV. In
this scenario, the data is initially represented using the ElMD description, followed
by the application of UMAP with a spread parameter of 5, which controls the scale
of local neighborhood preservation, to acquire a low-dimensional representation
that maintains essential chemical relationships. Subsequently, DBSCAN, using an
epsilon of 4, which defines the maximum distance between points to be considered
neighbors, is employed to automatically segregate the data into clusters for LOCO
CV. Ten clusters of compounds are obtained, with a statistical summary of each
cluster provided in the supplementary information. The ElMD description, the
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spread parameter for UMAP, and the epsilon parameter for DBSCAN were selected
to align with the leave-one-cluster-out procedure described in previous studies. In-
tuitive clustering of known families of ion conductors is observed, as detailed in
previous works [26].

Descriptor generation and ML models. Crystallographic information files (CIFs)
for each compound are parsed with Pymatgen (v2023.11.12). Simplified ver-
sions of each structure are generated by systematically removing or modifying
groups of atoms. For the CAN representation the Li atoms in each structure
are removed. The CAMNS representation is created by checking the oxida-
tion state from the CIF file for each non-Li atom in the structure. Atoms with
positive oxidation states are substituted with Al, negative oxidation states con-
verted to S, and oxidation states of 0 converted to Mg. For CANS, this sim-
plification is performed and the Li atoms are removed as well. Graph repre-
sentations are created using a modified version of the MatErials Graph Network
(MEGNet) library (https://github.com/materialsvirtuallab/megnet v1.3.2)[45] to ac-
commodate disordered crystals. The MAterials Machine Learning (maml) libary
(https://github.com/materialsvirtuallab/maml v2023.9.9) is then used to create the
atom matrix features which are used as the intputs for the AtomSets models [50]. The
AtomSets models pass the atoms features matrix through a series of fully connected
layers before a set2set symmetry function is used to generate a readout vectors of a
defined length with permutation invariance of the atom order [76]. The output of
the symmetry function is subsequently passed through additional dense layers and
a final sigmoid activation for classification. Atomistic features are generated using
the definitions provided by Sendek et al. [15]. The scikit-learn library is used for
training of logistic regression models with default parameters excluding the penalty
for regularization [77].

Hyperparameter optimization. The default AtomSets architecture does not in-
clude conventional regularization techniques to avoid overfitting. Therefore, dropout
layers and L2 kernel regularization is added. The optimal hyperparameters for each
validation cluster within the LOCO-CV framework are determined using the Ray
library (v2.9.3). Model weights are updated using the LAMB optimizer with look-
ahead mechanism and a triangular 2 cyclical learning rate schedule [78, 79]. A
comprehensive listing of the hyperparameter ranges explored is provided in Table
C.7. For each cluster, 250 configurations are tested. The top 10 performing con-
figurations for each are then repeated 10 times to account for run-to-run variability.
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Subsequently, the best performing configuration across these 10 runs is selected
as the optimal configuration for that particular validation cluster. Hyperparameter
trial runs are orchestrated using the Asynchronous Successive Halving Algorithm
(ASHA) [80]. ASHA is an advanced optimization algorithm that efficiently allocates
computational resources to hyperparameter configurations, enabling parallelization
and faster optimization by iteratively promoting promising configurations while dis-
carding under performing ones through successive halving. The search space is
explored employing HyperOpt, which employs Bayesian optimization to find the
optimal configuration [81].

Li9B19S33 synthesis. Li9B19S33 is prepared from lithium sulfide (Li2S, 99.9%,
Thermo Fisher Scientific), elemental boron (99.99%, SkySpring Nanomaterials,
Inc.) and sulfur (S8, > 99.5%, Acros Organics). In an Ar-filled glovebox (Mbraun),
a two gram stoichiometric mixture of the precursor materials is combined in a 50
ml YSZ milling jar along with milling media (two 10 mm diameter balls, 34 5
mm diameter balls, and eight grams of 3 mm diameter balls). The jar is sealed
before removing from the glovebox to minimize exposure to air. The precursors are
milled in a planetary ball mill (MSE PMV1-0.4L) for 45 minutes at 300 rpm. After
milling, the precursor mixture is extracted under Ar and 333 mg of the powder is
transferred to a glassy carbon crucible (SPI Supplies). Two repeated heating steps
are required to obtain pure Li9B19S33. The crucible containing the powder is placed
into a carbon-coated vitreous silica ampoule (inner diameter 14 mm, outer diameter
16 mm), which is evacuated to <10 mtorr and sealed. The sealed ampoule is heated
to 700 °C at a rate of 1 °C/min, held at 700 °C for 16 h, and then cooled to room
temperature at 1 °C/min. After the first annealing step, the material is removed
under Ar, ground with a mortar and pestle, and reloaded into the crucible. The
crucible is then sealed in a second carbon-coated vitreous silica ampoule, and the
heating procedure is repeated to yield the desired phase.

Experimental characterization of Li9B19S33. Powder X-ray diffraction is used to
assess the phase purity of the prepared Li9B19S33 material. The sample powder
is loaded into a Rigaku air-free sample holder under Ar to prevent exposure to air
during the measurement. Diffraction patterns are collected using a Rigaku Smartlab
diffractometer with a Cu K𝛼 X-ray source. The scan range is from 10° to 70°
2𝜃 at a rate of 3° min−1 with a step size of 0.04°. Rietveld refinement of the
diffraction patterns was performed using GSAS-II software [82]. To characterize
the ionic conductivity of Li9B19S33, 40 - 60 mg of the material is hot pressed



62

(Col-Int Tech Manual Hydraulic press) at 250°C under 2 tons of pressure for 5
minutes, forming pellets with 6 mm diameter. The pellet surfaces are polished with
1500-grit abrasive sheets before the pellet thickness is measured. Indium metal foil
is placed on stainless steel current collector rods and the pellet is assembled into
Swagelok cells under ∼100 MPa of pressure using a manual vise. Electrochemical
impedance spectroscopy (EIS) is performed with a Biologic VSP-300 potentiostat
over a frequency range of 3 MHz to 1 Hz and an amplitude of 25 mV, across a
temperature range of 25°C to 70°C.

4.6 Data and Code Availability
The database of 𝜎exp values and ICSD collection codes for corresponding crystal
structures is made available as a supplementary comma-separated values file. The
dataset is additionally available through CaltechDATA at https://doi.org/10.
22002/23mvv-6gk43. The version of the codebase used to train models, per-
form screening, and analyze results is archived at https://doi.org/10.22002/
cgx0v-wqq34.
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C h a p t e r 5

CONCLUSION

5.1 Summary
This thesis demonstrates the combined computational and experimental discovery
of next-generation SSEs. A strong emphasis is placed on leveraging existing ex-
perimental data to search for promising materials outside of traditionally studied
chemistries. Careful consideration of the complex nature of experimentally derived
data is a central theme throughout this work.

We construct the largest known database containing the structures and ionic con-
ductivities of experimentally characterized SSEs. In Chapter 2, we demonstrate a
semi-supervised learning approach to determine the best material representation for
the task of identifying fast ion conductors. A description of the host lattice’s local
environment performs best in agglomerative clustering, grouping compounds with
similar conductivities. This representation is used to screen Li-containing materials
in the ICSD and Materials Project. Candidates are prioritized with semi-empirical
and first principles calculations, allocating the most computational resources to the
most promising compounds. From this tiered workflow, Li3BS3 is selected for ex-
perimental demonstration and shown to exhibit ionic conductivity through defect
engineering via chemical substitution and mechanical milling.

Chapter 3 explores the primary factors controlling ionic conductivity in the Li3BS3

system. Previous work on this material attributed conductivity improvements from
chemical substitution to specific mechanisms without consideration of other possible
structural changes. A combination of Raman spectroscopy, solid-state nuclear mag-
netic resonance, and x-ray diffraction indicates that sample crystallinity decreases
upon substitution and is highly dependent on the substituting element. At high
levels of Cl and Al substitution, the product phase becomes completely amorphous.
By contrast, high Si substitution drives the formation of previously unidentified
crystalline phases distinct from the parent Li3BS3 framework. The amorphous Cl-
and Al-substituted phases exhibit ionic conductivities exceeding 10−4 S cm−1, pre-
senting a pathway to high conductivity through substitution rather than extended
milling. The novel crystalline phase formed through Si substitution shows an order-
of-magnitude higher ionic conductivity (> 10−3 S cm−1). Microstructure is also
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shown to be highly sensitive to processing conditions, with small changes in man-
ual grinding of powders causing significant variations in crystalline domain size
and microstrain. Importantly, the conductivity improvements from Cl, Al, and Si
substitution cannot be solely attributed to the creation of additional mobile carriers.
Instead, enhanced ion transport is facilitated by increased disorder, either through
reduced crystallinity or microstructural effects such as a greater volume fraction of
grain boundaries associated with smaller domain sizes or microstrain.

Many known fast ion conductors contain disorder, and Chapters 2 and 3 illustrate
the effects of defects and disorder on ion transport. However, digital representations
of disorder in solid-state materials are limited. As a result, only a subset of the
curated database could be used in Chapter 2 and screening was restricted to ordered
Li-containing materials. As a step towards addressing this limitation, a graph-based
representation of disorder is implemented in Chapter 4. This approach enables the
utilization of the full training set and allows prediction of ionic conductivity for all
known Li materials. We identify 241 compounds as potential fast ion conductors
with estimated band gaps greater than 1 eV. Experimental validation confirms supe-
rionic conductivity in Li9B19S33, a highly disordered compound that was excluded
from consideration in Chapter 2. This demonstrates the value of disorder-compatible
representations in the discovery of novel SSEs.

5.2 Outlook
Data-driven methods, like those presented in this thesis, can accelerate the dis-
covery of new materials with high ionic conductivity. However, methods for high-
throughput evaluation of other required properties are necessary to efficiently explore
available chemical space to realize an ideal SSE material. Prediction of electro-
chemical stability, another important requirement, has been demonstrated through
the use of thermodynamic calculations [1, 2]. This approach provides stability
windows for SSEs, but does not include kinetic considerations. Additionally, SSEs
that are thermodynamically unstable may still be suitable if their decomposition
forms an interphase that is self-passivating (electronically insulating) and allows ion
transport similar to the solid-electrolyte interphase formed in conventional Li-ion
batteries. Methods to address this are being developed and will likely benefit from
accelerated molecular dynamics using machine-learned interatomic potentials and
experimental feedback [3].

In the introduction of this thesis, a clear trade-off between stability window and ionic
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conductivity is illustrated. Within each group, anions with greater electronegativity
provide higher anodic stability at the cost of reduced conductivity. This suggests that
mixed-anion systems may provide a better compromise between these properties.
It has also been proposed that disordered mixed-anion systems could permit even
higher conductivities by flattening the energy for ion migration [4, 5]. The recently
reported oxyhalide SSEs demonstrate the potential of this class of materials, achiev-
ing ionic conductivities comparable to best-in-class sulfide SSEs while providing
significantly enhanced oxidative stability [6]. Development of multi-phase systems,
composed of multiple crystalline or amorphous phases, is another strategy that
shows promise for meeting the diverse property requirements of SSEs. Importantly,
both paths represent a dramatic expansion of the design space, further emphasizing
the need for computational approaches to guide experimentation.

The effectiveness of these data-driven approaches hinges on the availability of high-
quality data. Rapid progress in machine-learning-accelerated simulations could
provide a means for generating expansive datasets for training predictive models.
However, these models must be validated against experimental measurements. The
database of structures and experimental ionic conductivities presented in this thesis
represents a substantial increase in size over previous efforts but it remains a rela-
tively small and biased coverage of known Li-containing materials. Additionally,
it was sourced from 285 different scientific papers and measurement differences
across laboratories can introduce significant variability which lowers model per-
formance [7]. Advancements in high-throughput, automated experiments will be
critical to accelerating the discovery of high-performance SSEs. These approaches
will enable large amounts of experimental data to be produced under highly repeat-
able conditions and can provide insight into systems not captured in computational
screening, such as multi-phase mixtures, metastable phases, or novel crystalline
phases. The material with the highest ionic conductivity reported in this thesis
is a novel crystalline phase without a solved structure, underscoring the role of
serendipitous experimental discovery.

Finally, a key advancement required for closing the gap between model predictions
and experiment will be the development of representations better suited to capture
the complexities observed in real materials. As illustrated in this thesis, defects,
disorder, and microstructure can all have pronounced effects on the measured prop-
erties of SSEs. Chapter 4 describes a method that enables training models with input
structures containing site disorder, but the assumption was still made that all were
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crystalline with long-range order. Representations that can encode local atomic
arrangements without presuming periodicity may be better suited to amorphous
materials or systems where local ordering controls the properties [8]. Additionally,
future models and representations will need to be capable of combining multimodal
inputs to capture a more complete picture of the entire system, including structure,
composition, and microstructure, to accelerate the discovery of next-generation
SSEs.
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A p p e n d i x A

SUPPORTING INFORMATION FOR CHAPTER 2:
IDENTIFICATION OF POTENTIAL SOLID-STATE LI-ION
CONDUCTORS WITH SEMI-SUPERVISED LEARNING

A.1 𝑊𝜎 optimization
Ward’s minimum variance method applied to the conductivity labels (𝑊𝜎) is used to
assess the utility of each descriptor-simplification combination. The𝑊𝜎 is calculated
after agglomerative clustering, for each clustering set:

𝑊𝜎 =

𝑛𝑐∑︁
𝑘=1

∑︁
𝑖∈𝐶𝑘

[
log(𝜎𝑅𝑇 )𝑖 − log(𝜎𝑅𝑇 )𝑘

]2

where 𝑛𝑐 is the number of clusters in a set, 𝐶𝑘 is cluster 𝑘 , and where log(𝜎𝑅𝑇 )𝑘
denotes the mean for all labels in cluster 𝑘 . Lower 𝑊𝜎 values indicate that the
descriptor-simplification combination results in clustering where structures with
similar conductivity are grouped together, whereas a large 𝑊𝜎 indicates that the
clusters have little correlation to the conductivity labels.

A frozen-state strategy is employed to prevent any label from dropping out of the𝑊𝜎

calculation. The frozen-state strategy operates by calculating the partial variance
(PV) for each label at each clustering depth:

𝑃𝑉𝑥,𝐶𝑘
=

[
log(𝜎𝑅𝑇 )𝑥 − log(𝜎𝑅𝑇 )𝑘

]2

where 𝑃𝑉𝑥,𝐶𝑘
is the partial variance for label 𝑥, when label 𝑥 is assigned to cluster 𝑘 .

The PV for each label is saved before summing all the partial variances to yield the
𝑊𝜎. At each subsequent clustering depth, all new clusters are checked to determine
whether any cluster contains a single label. If a label is the only label in a cluster,
then that label’s partial variance is frozen: its 𝑃𝑉𝑥,𝐶𝑘

becomes equal to the saved
state from the previous cluster depth:

𝑃𝑉𝑥,𝐶 𝑗
= 𝑃𝑉𝑥,𝐶𝑘
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where𝐶 𝑗 denotes the cluster with only one label and𝐶𝑘 denotes the cluster that label
𝑥 previously resided in. Without the frozen state strategy, poor models will reach
desirable𝑊𝜎 values at sufficient depths of clustering. The artificial depression of the
𝑊𝜎 value occurs because clusters that contain a single label evaluate to 0 (the label
mean and cluster mean are the same). Whereas the frozen state strategy effectively
“remembers” how well (or poorly) the label was clustered before it drops out.

Hyperparameter tuning was employed for some of the descriptors. At least one
𝑊𝜎 representation exists for each unique combination of structure simplification
and descriptor. However, some of the descriptors can be altered by tuning associ-
ated hyperparameters, resulting in more 𝑊𝜎 representations. The descriptors with
hyperparameter tuning are the global instability index, radial distribution function,
smooth overlap of atomic positions (SOAP), and mXRD. A grid search was done
over the hyperparameters, for each descriptor, with parameters shown in Table A.1.

Table A.1: Hyperparameters used in grid search.

Descriptor Hyper-
parameter

Description Values attempted in grid
search

Global instability index 𝑟cut The distance, in angstroms, to
search for neighbors when calcu-
lating bond valences.

[1.0, 1.1, . . ., 5.9, 6.0]

Radial distribution
function

cutoff The distance, in angstroms, over
which the radial distribution func-
tion should be calculated.

[1, 2, . . ., 29, 30]

bin_size The radial distance, in angstroms,
for each bin.

[0.01, 0.02, . . ., 0.09, 0.1,
0.2, . . ., 0.9, 1.0]

Smooth overlap of
atomic positions
(SOAP)

𝑟cut The radial cutoff for the local re-
gion in angstroms.

[1, 2, . . ., 29, 30]

𝑛max The number of radial basis func-
tions used.

[2, 3, . . ., 8, 9]

𝑙max The maximum degree of spherical
harmonics used.

[1, 2, . . ., 8, 9]

average The averaging mode. [‘outer’, ‘inner’]

mXRD pattern_length The number of 2𝜃 values calcu-
lated between 0◦ and 90◦.

[101, 201, . . ., 901, 1001]

Ultimately, the SOAP-CAN descriptor-simplification outperforms all other descriptor-
simplifications when the averaging hyperparameter is set to ‘outer’. Setting the
‘outer’ hyperparameter results in averaging over the power spectrum of different
sites. Whereas the ‘inner’ setting averages over the sites first, before summing
up the magnetic quantum numbers. The other three hyperparameters (𝑟cut, 𝑛max,
and 𝑙max) are less consequential, with most combinations tested outperforming all
other non-SOAP descriptors. To illustrate the point, three different SOAP–CAN
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outcomes are depicted in Figure A.1, plotted against the best-performing outcomes
from density–CAN, mXRD–A40, orbital field matrix, and structure heterogeneity–
A40. The three SOAP-CAN outcomes are those with the lowest 𝑊𝜎 mean for the
depth of clustering ranges: 2–100, 101–200, and 201–300. The respective hyperpa-
rameters for the three SOAP-CAN descriptors are [rcut=2, nmax=4, lmax=2], [rcut=4,
nmax=2, lmax=2], and [rcut=3, nmax=5, lmax=3].

Figure A.1: 𝑊𝜎 vs. cluster number for three different SOAP–CAN models com-
pared with the best-performing models for density–CAN, mXRD–A40, orbital field
matrix, and structure heterogeneity–A40. The three SOAP–CAN models are those
with the lowest 𝑊𝜎 mean for the clustering ranges: 2–100, 101–200, and 201–300.
Almost all SOAP–CAN models outperformed the best non-SOAP models, irrespec-
tive of the specific combination of 𝑟cut, 𝑛max, and 𝑙max hyperparameters.
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A.2 𝑊𝐸𝑎
optimization

Each clustering outcome is also assessed by labeling with approximate activation
energies for ion hopping. The activation energies are calculated using a bond valence
site energy (BVSE) method developed by Adams and Rao [1, 2]. The strategy
approximates the 𝐸𝑎 as the sum of an attractive Morse-type potential term and a
repulsive Coulombic interaction term. The Morse-type potential term represents
mobile ion interactions with lattice anions. While the Coulombic interaction term
represents mobile ion interactions with lattice cations. Relative to DFT-based
methods, the BVSE method is a computationally lean approach that can be used
to rapidly assess thousands of structures. However, the BVSE method tends to
overestimate activation energies because it (1) does not allow for structural relaxation
as the mobile ion moves and (2) does not consider repulsive interactions between
mobile ions [1, 2]. The BVSE method has been implemented by He et al. and
is available for use through their python API [3]. Using the BVSE method, we
label 6,845 structures with activation energies (6,845 is the number of structures
successfully solved given a computing time cutoff of 20-minutes for each structure).
Ward’s minimum variance method applied to the activation energy labels (𝑊𝐸𝑎

) is
calculated in a similar manner to the 𝑊𝜎:

𝑊𝐸𝑎
=

𝑛𝑐∑︁
𝑘=1

∑︁
𝑖∈𝐶𝑘

[
(𝐸𝑎,𝐵𝑉𝑆𝐸 )𝑖 − (𝐸𝑎,𝐵𝑉𝑆𝐸 )𝑘

]2

where 𝑛𝑐 is the number of clusters in a set, 𝐶𝑘 is cluster 𝑘 , and where (𝐸𝑎,𝐵𝑉𝑆𝐸 )𝑘
denotes the mean for all labels in cluster 𝑘 . Each descriptor’s𝑊𝐸𝑎

results are shown
in Figure A.2 for the first 50 clustering sets. For simplicity, only the best-performing
simplification-descriptor combination is shown for each descriptor.

For 𝐸𝑎 labels, all descriptor-simplification pairings result in better semi-supervised
ML performance than randomized clustering. The SOAP descriptor performs well
relative to most, but five other descriptors outperform it: CAVD, orbital field matrix–
CAN, density, mXRD–CAMN, and the packing efficiency descriptors. The favor-
able performance of CAVD is anticipated because the BVSE calculation directly
uses the CAVD descriptor as a parameter. The favorable performance of the density
and packing efficiency descriptors may be explained by their similarity to CAVD: the
Voronoi decomposition to encode void space is dependent on the density and pack-
ing efficiency of the structure. Similarly, the orbital field matrix descriptor relies
on calculation of Voronoi polyhedra to understand the coordination environment for
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Figure A.2: The 𝑊𝐸𝑎
for the first 50 clusters generated using each descriptor.

Half-violin plots show the raw 𝑊𝐸𝑎
score for each cluster as symbols next to the

violin distribution. Simplification-descriptor combinations are sorted in order of
ascending mean. The control is a random assignment of clusters, with 𝑊𝐸𝑎

values
averaged over 100 randomly assigned sets.

each atom. A mXRD–CAMN descriptor-simplification performs well on the BVSE
label set; however, the mXRD representation used by Toyota (mXRD–A40) drops
from to 14th best on the 𝐸𝑎 label set. The result may suggest that the mXRD–A40
pairing does not generalize well. When comparing the top 10 descriptors for each
label set, 6 descriptors are common to both approaches: SOAP, density, mXRD,
structure heterogeneity, orbital field matrix, and bond fraction.
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A.3 Second-order SOAP descriptor
Semi-supervised ML models may be further improved by merging descriptors and
clustering on the union representation. Second order descriptor unions are examined
by combining the best-performing descriptors with all other descriptors. The two
input descriptor vectors (𝑑𝐴 and 𝑑𝐵) were combined with a mixing ratio (𝛼) to yield
the union representation (𝑑𝐴𝐵):

𝑑𝐴𝐵 = 𝑑𝐴 ∪ 𝛼𝑑𝐵

The ideal mixing ratio is unknown for each union and we find that incremental
changes to the mixing ratio do not result in continuous changes to the 𝑊𝜎. Thus,
outcomes are manually screened for mixing ratios from 10−6 to 106 (see supple-
mental information – section VI). Most descriptor unions result in no improvement
to the 𝑊𝜎 across all mixing ratios. However, the 𝑊𝜎 for SOAP when mixing with
the non-simplified sine Coulomb matrix descriptor (for 𝛼 = 2 · 10−6 − 4 · 10−6) is
lowered by 2–3%, with the exact percentage depending on the depth of clustering.

Almost no descriptor combinations are successful in reducing the 𝑊𝜎. Excluding
combinations that include the SOAP–CAN descriptor, no combinations outperform
the 1st–order SOAP–CAN representation. For combinations that include SOAP–
CAN, some mixing ratios with the sine Coulomb matrix and the Ewald energy
descriptors resulted in modest improvements in the 𝑊𝜎. The best improvement
is found when mixing SOAP–CAN with the sine Coulomb descriptor for 𝛼 =

2 · 10−6, 3 · 10−6, and 4 · 10−6. All three combinations result in the same improved
curve, plotted below in Figure A.3.

The agglomerative dendrogram in the main text shows that the 2nd–order SOAP–
CAN descriptor facilitates aggregation of high-conductivity labels. In the simplified
9-cluster representation, most of the high-conductivity (𝜎𝑅𝑇 > 10−5 S cm−1) labels
are contained within the 2nd “mega cluster”. The 2nd mega cluster accounts for only
15% of the input structure. By clustering further, increasingly dense representations
are found. For example, at the 241st clustering depth, the 21 high-conductivity
labels have been sorted into five subclusters (Figure A.4. Taken together, the five
subclusters account for 52.5% of the high conductivity labels while containing
only 2.2% of the input structures. We note that the control (random clustering)
exhibits a Ward Variance 214% greater than the 2nd–order SOAP–CAN model at
the 241st clustering depth. The difference in Ward Variance illustrates that the 2nd–
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Figure A.3: The best performing 2nd order descriptor: SOAP–CAN mixed with the
sine Coulomb descriptor. The clustering performance is shown for the full label set
of 219. Since the mXRD–A40 representation is also compatible with the full label
set, it is shown for reference. The 2nd order descriptor outperforms the 1st–order
SOAP–CAN descriptor at most depths of clustering.

order SOAP–CAN model is much better at identifying high-conductivity structures,
relative to random selection.
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Figure A.4: The partial agglomerative dendrogram generated for the 2nd–order
SOAP–CAN descriptor-simplification. The area shown is the 2nd mega cluster
taken from Figure 3 of the main text. At a clustering depth of 241, the 21 high-
conductivity labels are sorted into 5 clusters which account for 2.2% of the input
structures.
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A.4 Climbing Image – Nudged Elastic Band
Migration barriers for Li ion hopping are evaluated with the Climbing Image –
Nudged Elastic Band (CI–NEB) method as implemented in the QuantumESPRESSO
PWneb software package [4–7]. Density-functional theory (DFT) calculations are
performed using the Perdew–Burke–Ernzerhof (PBE) generalized gradient approx-
imation functional and projector-augmented wave (PAW) sets [8, 9]. Convergence
testing for the kinetic-energy cutoff of the plane-wave basis and the k-point sam-
pling is performed for each structure to ensure an accuracy of 1 meV per atom. The
lattice parameters and atomic positions of the as-retrieved structure are optimized.
Supercells are created for each structure that are a minimum of 10 Å in each lattice
direction to minimize interactions between periodic images of the mobile ion. To
study the migration barrier in the dilute limit, a single Li vacancy is created in
the boundary endpoint structures of each studied pathway. A uniform background
charge is used to balance excess charge. Each boundary configuration is relaxed
until the force on each atom is less than 3×10−4 eV/Å. Images are created by linearly
interpolating framework atomic positions between the initial and final boundary
configurations. The initial pathway for the mobile ion is generated from the BVSE
output minimum energy pathway to promote faster convergence of the NEB calcu-
lation. An NEB force convergence threshold of 0.05 eV/Å is used. The calculation
is first converged using the default NEB algorithm and then restarted with the CI
scheme to allow for the maximum energy of the pathway to be determined.

Figure A.5: The 2×2×2 supercell of Li3VS4 used for the CI–NEB calculation of Li
migration energy. Blue atoms represent the Li position from the CI–NEB output
images.
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Figure A.6: The primitive cell of Na3Li3Al2F12 used for the CI–NEB calculation of
Li migration energy. Blue atoms represent the Li position from the CI–NEB output
images.

Figure A.7: The 2×2×2 supercell of Li2Te used for the CI–NEB calculation of Li
migration energy. Blue atoms represent the Li position from the CI–NEB output
images.

Figure A.8: The 2×2×1 supercell of LiAlTe2 used for the CI–NEB calculation of
Li migration energy. Blue atoms represent the Li position from the CI–NEB output
images.
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Figure A.9: The 2×2×1 supercell of LiInTe2 used for the CI–NEB calculation of Li
migration energy. Blue atoms represent the Li position from the CI–NEB output
images.

Figure A.10: The 2×2×2 supercell of Li6MnS4 used for the CI–NEB calculation of
Li migration energy. Blue atoms represent the Li position from the CI–NEB output
images.

Figure A.11: The 2×2×1 supercell of LiGaTe2 used for the CI–NEB calculation of
Li migration energy. Blue atoms represent the Li position from the CI–NEB output
images.
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Figure A.12: The 2×1×2 supercell of Li3BS𝑆3 used for the CI–NEB calculation of
Li migration energy. Blue atoms represent the Li position from the CI–NEB output
images.

Figure A.13: The 2×2×2 supercell of KLi6TaO6 used for the CI–NEB calculation of
Li migration energy. Blue atoms represent the Li position from the CI–NEB output
images.

Figure A.14: The 2×1×2 supercell of Li3CuS2 used for the CI–NEB calculation of
Li migration energy. Blue atoms represent the Li position from the CI–NEB output
images.
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A.5 a-Li2.95B0.95Si0.05S3 impedance
Electrochemical impedance data for the amorphized Si-substituted LiBS3 (a-Li2.95B0.95Si0.05S3)
suggests the presence of two RC features. The VSP-300 potentiostat can supply a
maximum sinusoidal frequency of 3 MHz, sufficient to resolve a partial semicircle
in the Nyquist impedance plot (Figure A.15). Attempted fits to the partial semi-
circle reveal that it would not intersect the origin at higher frequencies, suggesting
the presence of an additional RC feature. It is plausible that two RC features ex-
ist, describing the bulk and grain-boundary transport of Li+. A more conservative
estimate of the conductivity (𝜎tot) can be derived by extrapolating a linear of the
Warburg tail to the x intercept. While the more conservative estimate is used in the
main manuscript, we note here that the actual bulk conductivity is likely higher.

Figure A.15: Nyquist data for a-Li2.95B0.95Si0.05S3 near room temperature. The
partially resolved semi-circular features suggests the presence of at least two RC
circuit elements.
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A.6 Full list of promising structures
Excluding the labeled dataset, there are 50 compounds that are predicted to be stable
and to exhibit a Li-hopping activation energy below 600 meV. Ten of the predicted
compounds have already been experimentally examined and are hereafter excluded:
Li2O, Li2S, LiCl, LiI, LiBr, Li6AsS5I, Li4Ti5O12, Li2InCl3, LiInI4, and Li6NiCl8.
Another nine are excluded because they are used in cathodes, anodes, or glassy elec-
trolyte formulations: LiFeCl4, Li2CO3, Li2PtO3, Li2NiGe3O8, Li2CrO4, Li2SeO4,
Li4AIS, Li2Mn3NiO8, and LiInSe2. The remaining 31 promising structures are
discussed below and plotted by ascending activation energy in Figure A.16.

a. Stable compounds

Figure A.16: The 31 promising structures that are predicted to be stable and to
exhibit Li-hopping activation energy below 600 meV.

b. Quasi-stable compounds (𝐸hull below 15 meV)
Excluding the labeled dataset, there are 34 compounds that are predicted to be within
15 meV of the convex hull (𝐸hull) and to exhibit a Li-hopping activation energy below
600 meV. Ten of the predicted compounds have already been experimentally exam-
ined and are hereafter excluded: Li3SbS4, Li6AsS5I, Li6PS5I, Li3ScCl6, Li2MnBr4,
Li3N, LiTi2P3O12, Li10SiP2S12, Li2ZnCl4, and Li3InO3. Another three are currently
being excluded because they are used in cathodes: Li3NbS4, Li3CuS2, Li6VCl8. The
remaining 21 promising structures are discussed below and plotted by ascending
activation energy in Figure A.17.
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Figure A.17: The 21 promising structures that are predicted to be within 15 meV of
𝐸hull and to exhibit Li-hopping activation energy below 600 meV.

c. Unknown-stability compounds (sans Materials Project entry)
There are 18 predictions that have no associated Material’s Project entry. These
structures lack stability data. Seven of the predicted compounds have already been
experimentally examined and are hereafter excluded: Li2O, Li2S, Li7Y2Zr9S32,
Li4SnSe4O13, Li2MnBr4, Li5AlS4, and Li3Fe2P3O12. Another five are currently
being excluded because they are used in cathodes: Li2Mn3NiO8, Li2Mn3CoO8,
Li5Mn16O32, Li2Mn15AlO32, and Li3V2P3O12. The remaining 6 promising struc-
tures are discussed below and plotted in order of ascending activation energy in
Figure S17.
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Figure A.18: The six promising structures that lack Materials Project data but are
predicted to exhibit Li-hopping activation energy below 600 meV.
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Figure A.19: Steady-state current of Au/a-Li2.95B0.95Si0.05S3/Au cell for different
voltage polarizations. Measurements were done at 25◦C with applied voltages of
0.125 V, 0.25 V, 0.375 V, 0.5 V, and 1.0 V.
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A p p e n d i x B

SUPPORTING INFORMATION FOR CHAPTER 3:
SUBSTITUTION OF Li3BS3: REVEALING NEW SUPERIONIC

CONDUCTOR PHASES AND THE SIGNIFICANCE OF
CRYSTALLINITY

[This chapter is temporarily embargoed.]
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A p p e n d i x C

SUPPORTING INFORMATION FOR CHAPTER 4:
CLASSIFICATION OF (DIS)ORDERED STRUCTURES AS

SUPERIONIC LITHIUM CONDUCTORS

Table C.1: Statistics of Test and Training/Validation splits. Ten percent of the initial
database of 548 ionic conductivity and structure pairs is designated as the test set.
The remaining training/validation set is used for model and feature evaluation
under k-fold and leave-one-cluster-out cross validation schemes.

Set No.
entries

Max
log10 (𝜎𝑒𝑥𝑝)

Min
log10 (𝜎𝑒𝑥𝑝)

Mean
log10 (𝜎𝑒𝑥𝑝)

No.
positive

class

No.
negative

class

Test 55 -2.03 -20.80 -5.46 25 30

Training
and

Validation
493 -1.55 -30.57 -6.31 186 307

Table C.2: Statistics of Training and Validation splits for k-fold cross validation
rounded to two decimal places.

Validation
Fold Set No.

entries
Max

log10 (𝜎𝑒𝑥𝑝)
Min

log10 (𝜎𝑒𝑥𝑝)
Mean

log10 (𝜎𝑒𝑥𝑝)
No.

positive
class

No.
negative

class

0 Training 394 -1.62 -30.57 -6.32 149 245
Validation 99 -1.55 -22.40 -6.27 37 62

1 Training 394 -1.55 -30.57 -6.33 149 245
Validation 99 -1.62 -25.78 -6.23 37 62

2 Training 394 -1.55 -25.78 -6.25 148 246
Validation 99 -1.84 -30.57 -6.55 38 61

3 Training 395 -1.55 -30.57 -6.29 149 246
Validation 98 -1.76 -24.40 -6.40 37 61

4 Training 395 -1.55 -30.57 -6.36 149 246
Validation 98 -1.92 -19.74 -6.12 37 61
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Table C.3: Statistics of Training and Validation splits for leave-one-cluster-out cross
validation rounded to two decimal places.

Validation
Fold Set No.

entries
Max

log10 (𝜎𝑒𝑥𝑝)
Min

log10 (𝜎𝑒𝑥𝑝)
Mean

log10 (𝜎𝑒𝑥𝑝)
No.

positive
class

No.
negative

class

0 Training 422 -1.55 -30.57 -6.54 152 270
Validation 71 -2.86 -17.36 -4.98 34 37

1 Training 410 -1.55 -25.83 -6.07 159 251
Validation 83 -2.25 -30.57 -7.49 27 56

2 Training 408 -1.55 -30.57 -5.86 171 237
Validation 85 -2.49 -25.78 -8.48 15 70

3 Training 419 -1.72 -30.57 -6.60 153 266
Validation 74 -1.55 -14.00 -4.70 33 41

4 Training 451 -1.55 -30.57 -6.17 172 279
Validation 42 -2.83 -20.81 -7.81 14 28

5 Training 475 -1.55 -30.57 -6.27 183 292
Validation 18 -2.74 -17.01 -7.46 3 15

6 Training 446 -1.55 -30.57 -6.44 166 280
Validation 47 -1.72 -13.54 -5.13 20 27

7 Training 457 -1.55 -30.57 -6.55 155 302
Validation 36 -2.38 -9.26 -3.26 31 5

8 Training 478 -1.55 -30.57 -6.34 182 296
Validation 15 -2.96 -12.64 -5.52 4 11

9 Training 471 -1.55 -30.57 -6.26 181 290
Validation 22 -3.02 -25.83 -7.49 5 17

Table C.4: Statistics of compositional similarity between training and validation
sets for k-fold validation. Compositional similarity is determined by identifying
validation set entries that have at least one training set entry where the atomic
fraction of each constituent element differs by no more than 5%. The difference is
computed as |𝑥1−𝑥2 |

(𝑥1+𝑥2)/2 , where 𝑥1 and 𝑥2 are the atomic fractions of a given element
in the validation and training entries, respectively. Rounded to two decimal places.

Validation
fold

No. validation
entries

No. similar compositions
in training set

Percentage similar
compositions in training set

0 99 15 15.15%
1 99 14 14.14%
2 99 11 11.11%
3 98 20 20.41%
4 98 21 21.43%
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Table C.5: Statistics of compositional similarity between training and test sets.
Compositional similarity is determined by identifying validation set entries that
have at least one training set entry where the atomic fraction of each constituent
element differs by no more than 5%. The difference is computed as |𝑥1−𝑥2 |

(𝑥1+𝑥2)/2 , where
𝑥1 and 𝑥2 are the atomic fractions of a given element in the validation and training
entries, respectively. Rounded to two decimal places.

Fold No. test entries No. similar compositions
in training set

Percentage similar
compositions in training set

Test 55 13 23.64%

Table C.6: Statistics of compositional similarity between training and validation sets
for leave-one-cluster-out cross validation. Compositional similarity is determined
by identifying validation set entries that have at least one training set entry where
the atomic fraction of each constituent element differs by no more than 5%. The
difference is computed as |𝑥1−𝑥2 |

(𝑥1+𝑥2)/2 , where 𝑥1 and 𝑥2 are the atomic fractions of a
given element in the validation and training entries, respectively. Rounded to two
decimal places.

Validation
fold

No. validation
entries

No. similar compositions
in training set

Percentage similar
compositions in training set

0 71 0 0.00%
1 83 0 0.00%
2 85 0 0.00%
3 74 1 1.35%
4 42 0 0.00%
5 18 0 0.00%
6 47 1 2.13%
7 36 12 33.33%
8 15 0 0.00%
9 22 0 0.00%

Table C.7: Hyperparameter values explored with HyperOpt under
leave-one-cluster-out cross validation.

Hyperparameter Values

Batch size 32, 64, 128
Dropout probability initial 0.1, 0.15, 0.2, 0.25, 0.3
Dropout probability final 0.1, 0.15, 0.2, 0.25, 0.3

L2 kernel regularization factor
initial

10−4, 10−3, 10−2, 10−1, 100

L2 kernel regularization factor
final

10−4, 10−3, 10−2, 10−1, 100

No. layers 2, 3, 4
No. neurons 32, 64, 128, 256

Initial learning rate 2 × 10−5, 4 × 10−5, 6 × 10−5, 8 × 10−5, 1 × 10−4

Maximum learning rate 1 × 10−4, 1 × 10−3, 3 × 10−3, 5 × 10−3, 7 × 10−3
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Table C.8: Optimal hyperparameter values for each choice of validation cluster.

Validation
Cluster

Batch
size

Dropout
proba-
bility
initial

Dropout
proba-
bility
final

L2 kernel
regulariza-
tion factor

initial

L2 kernel
regulariza-
tion factor

final

No.
lay-
ers

No.
neu-
rons

Initial
learning

rate

Maximum
learning

rate

0 32 0.2 0.1 10−3 10−1 2 32 6 × 10−5 5 × 10−3

1 128 0.15 0.3 100 10−2 3 128 4 × 10−5 1 × 10−3

2 32 0.1 0.15 10−2 10−4 4 64 2 × 10−5 7 × 10−3

3 32 0.2 0.2 10−4 10−1 2 128 6 × 10−5 3 × 10−3

4 128 0.15 0.25 10−2 10−2 3 128 2 × 10−5 1 × 10−3

5 128 0.1 0.15 10−2 10−4 3 64 4 × 10−5 5 × 10−3

6 32 0.1 0.2 100 10−4 3 32 6 × 10−5 1 × 10−3

7 32 0.1 0.1 100 10−2 2 32 8 × 10−5 5 × 10−3

8 128 0.15 0.25 100 10−2 2 256 6 × 10−5 5 × 10−3

9 64 0.15 0.1 10−3 10−4 2 256 6 × 10−5 1 × 10−3

Figure C.1: UMAP projection of database ElMD features
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Figure C.2: Principal Component Analysis (PCA) of Li-containing compounds. (a)
ICSD Li-containing compounds compared to database structures and candidate ma-
terials. (b) Materials Project (MP) Li-containing compounds compared to database
structures. Each point represents a compound projected onto the first two principal
components using the graph-based atom features.
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Figure C.3: Area under the precision-recall curve (AUC-PR) of the AtomSets
CAMN-V0 (AS-CAMN-V0) model-feature combination. Panels (a)-(j) show the
training curves of the model using clusters 0-9 as the validation set, respectively.
Ten repeated runs are displayed to demonstrate model variation. The best performing
hyperparameter configuration is shown for each choice of validation cluster.
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Figure C.4: Matthew’s correlation coefficient (MCC) of the AtomSets CAMN-V0
(AS-CAMN-V0) model-feature combination. Panels (a)-(j) show the training curves
of the model using clusters 0-9 as the validation set, respectively. Ten repeated runs
are displayed to demonstrate model variation. The best performing hyperparameter
configuration is shown for each choice of validation cluster.
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Figure C.5: Area under the precision-recall curve (AUC-PR) of the AtomSets
CAMN-V1 (AS-CAMN-V1) model-feature combination. Panels (a)-(j) show the
training curves of the model using clusters 0-9 as the validation set, respectively.
Ten repeated runs are displayed to demonstrate model variation. The best performing
hyperparameter configuration is shown for each choice of validation cluster.
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Figure C.6: Matthew’s correlation coefficient (MCC) of the AtomSets CAMN-V1
(AS-CAMN-V1) model-feature combination. Panels (a)-(j) show the training curves
of the model using clusters 0-9 as the validation set, respectively. Ten repeated runs
are displayed to demonstrate model variation. The best performing hyperparameter
configuration is shown for each choice of validation cluster.
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Figure C.7: Area under the precision-recall curve (AUC-PR) of the AtomSets
CAMN-V2 (AS-CAMN-V2) model-feature combination. Panels (a)-(j) show the
training curves of the model using clusters 0-9 as the validation set, respectively.
Ten repeated runs are displayed to demonstrate model variation. The best performing
hyperparameter configuration is shown for each choice of validation cluster.
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Figure C.8: Matthew’s correlation coefficient (MCC) of the AtomSets CAMN-V2
(AS-CAMN-V2) model-feature combination. Panels (a)-(j) show the training curves
of the model using clusters 0-9 as the validation set, respectively. Ten repeated runs
are displayed to demonstrate model variation. The best performing hyperparameter
configuration is shown for each choice of validation cluster.
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Figure C.9: Area under the precision-recall curve (AUC-PR) of the AtomSets
CAMN-V3 (AS-CAMN-V3) model-feature combination. Panels (a)-(j) show the
training curves of the model using clusters 0-9 as the validation set, respectively.
Ten repeated runs are displayed to demonstrate model variation. The best performing
hyperparameter configuration is shown for each choice of validation cluster.
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Figure C.10: Matthew’s correlation coefficient (MCC) of the AtomSets CAMN-V3
(AS-CAMN-V3) model-feature combination. Panels (a)-(j) show the training curves
of the model using clusters 0-9 as the validation set, respectively. Ten repeated runs
are displayed to demonstrate model variation. The best performing hyperparameter
configuration is shown for each choice of validation cluster.
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Figure C.11: Area under the precision-recall curve (AUC-PR) of the AtomSets
CAMNS-V1 (AS-CAMNS-V1) model-feature combination. Panels (a)-(j) show the
training curves of the model using clusters 0-9 as the validation set, respectively. Ten
repeated runs are displayed to demonstrate model variation. The best performing
hyperparameter configuration is shown for each choice of validation cluster.
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Figure C.12: Matthew’s correlation coefficient (MCC) of the AtomSets CAMNS-
V1 (AS-CAMNS-V1) model-feature combination. Panels (a)-(j) show the training
curves of the model using clusters 0-9 as the validation set, respectively. Ten
repeated runs are displayed to demonstrate model variation. The best performing
hyperparameter configuration is shown for each choice of validation cluster.
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Figure C.13: Area under the precision-recall curve (AUC-PR) of the AtomSets
CAN-V1 (AS-CAN-V1) model-feature combination. Panels (a)-(j) show the training
curves of the model using clusters 0-9 as the validation set, respectively. Ten
repeated runs are displayed to demonstrate model variation. The best performing
hyperparameter configuration is shown for each choice of validation cluster.
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Figure C.14: Matthew’s correlation coefficient (MCC) of the AtomSets CAN-V1
(AS-CAN-V1) model-feature combination. Panels (a)-(j) show the training curves
of the model using clusters 0-9 as the validation set, respectively. Ten repeated runs
are displayed to demonstrate model variation. The best performing hyperparameter
configuration is shown for each choice of validation cluster.
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Figure C.15: Area under the precision-recall curve (AUC-PR) of the AtomSets
CANS-V1 (AS-CANS-V1) model-feature combination. Panels (a)-(j) show the train-
ing curves of the model using clusters 0-9 as the validation set, respectively. Ten
repeated runs are displayed to demonstrate model variation. The best performing
hyperparameter configuration is shown for each choice of validation cluster.
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Figure C.16: Matthew’s correlation coefficient (MCC) of the AtomSets CANS-V1
(AS-CANS-V1) model-feature combination. Panels (a)-(j) show the training curves
of the model using clusters 0-9 as the validation set, respectively. Ten repeated runs
are displayed to demonstrate model variation. The best performing hyperparameter
configuration is shown for each choice of validation cluster.
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Figure C.17: Nyquist plots from temperature-dependent electrochemical impedance
spectroscopy of Li9B19S33. The impedance is multiplied by the ratio of the contact
area (0.28 cm2) and the pellet thickness (0.95 cm).
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