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ABSTRACT

Bipedal robots are uniquely positioned to operate in environments designed for
humans. From humanoids traversing unstructured terrain to robotic exoskeletons
assisting individuals with paralysis, these systems highlight the promise of legged
locomotion. Yet enabling walking that is both robust and aligned with user needs
remains a fundamental challenge, owing to hybrid dynamics, hardware limitations,
and the variability across individuals in assistive devices.

The first part of this dissertation addresses user-aligned locomotion. A gait that is
theoretically stable may still be rejected in practice if it feels unnatural, uncomfortable,
or strenuous. To bridge this gap, we integrate musculoskeletal modeling with
trajectory optimization to generate anthropomorphic, dynamically feasible walking
gaits, and extend preference-based learning with an active learning formulation that
efficiently elicits user feedback within a region of interest while maintaining comfort.
Together, these methods enable systematic design of gaits that not only achieve stable
walking but also capture the nuanced trade-offs users make between comfort, effort,
and naturalness of movement.

The second part of this dissertation focuses on robust locomotion in the face
of model mismatch, external disturbances, and environmental variability. We
develop robustness strategies spanning multiple layers of the control hierarchy:
offline trajectory design informed by robustness metrics grounded in hybrid forward
invariance, online adaptation through a data-driven predictive framework, and
feedback policies learned in massively parallel simulation using reinforcement
learning guided by control Lyapunov functions. While independent, these approaches
together provide complementary strategies for handling uncertainty, spanning from
offline design to real-time adaptation.

Although motivated by the challenges of exoskeleton locomotion, the methods are
validated on other bipedal platforms such as humanoids and lower-limb prostheses,
highlighting their broad applicability to diverse bipedal platforms. Overall, this
dissertation shows that principled integration of model-based and data-driven ap-
proaches enables locomotion strategies that are robust, adaptive, and aligned with
human needs, advancing the deployment of bipedal robots and assistive devices.
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C h a p t e r 1

INTRODUCTION

Background & Approaches

Bipedal locomotion has long stood as one of the central challenges in robotics. While
humans execute locomotion effortlessly, robots struggle with the same task due to the
underlying hybrid and nonlinear dynamics of legged movement. Each step involves
alternating phases of swing and impact, transitions between continuous and discrete
dynamics, and complex interactions with the environment. These features make
walking inherently unstable and sensitive to disturbances such as terrain variations
or external pushes. While advances in control, optimization, and mechanical design
have enabled increasingly dynamic locomotion [1, 2], sustaining robust performance
across diverse environments remains challenging.

Traditional approaches have leaned heavily on physics-based modeling, drawing on
tools such as the Euler–Lagrange equations, hybrid systems theory, and trajectory
optimization. These methods span a spectrum of model fidelities—from reduced-
order abstractions like the linear inverted pendulum or single rigid body, to full-order
rigid body dynamics—to generate stable walking gaits, either as periodic orbits or
through model predictive control [3, 4, 5, 6]. Such approaches provide valuable
structure and, in some cases, formal guarantees of stability. Yet they rely critically on
the accuracy of the underlying models, which are inevitably imperfect when applied
to real hardware and uncertain environments. As a result, controllers designed
with perfect model assumption often require substantial tuning or adaptation before
succeeding on physical systems.

With advances in computing and learning, the robotics community has increasingly
turned to data-driven methods, particularly reinforcement learning (RL). These
approaches leverage large-scale simulation to train controllers directly from experi-
ence, bypassing explicit system identification and enabling the discovery of agile
behaviors. RL has achieved impressive results in simulation and, more recently,
in hardware demonstrations for quadrupeds and humanoids [7, 8, 9, 10, 11, 12],
showing robustness through domain randomization and promising integration of
perception and high-level reasoning with larger foundation models. Beyond simu-
lation, learning based methods are increasingly leveraging human demonstrations,
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motion capture datasets, cross embodiment transfer, and internet scale video [13,
14], further enhancing generalizability and overall performance.

However, in practice, high-quality hardware data remain limited, and simulators still
struggle to capture the full complexity of real-world dynamics. While world models
may eventually help bridge this gap, structured, model-based approaches provide
valuable grounding in physical principles and interpretability. Even though strict
theoretical guarantees are rarely attainable on hardware, these analytical frameworks
remain useful, not for their idealized precision, but for the structure they reveal:
quantitative measures of stability, robustness, and feasibility that continue to guide
learning-based control toward physically meaningful and safe behavior.

Assistive Devices: Constraints and Objectives

These trade-offs between structure and flexibility become even more pronounced
in the context of assistive devices such as exoskeletons and prostheses. Unlike
autonomous legged robots, these systems must achieve stability while operating
in coordination with a human user. This coupling introduces unique constraints.
First, user variability: exoskeletons must accommodate a wide range of body
sizes, impairments, and walking preferences, adapting to individuals with diverse
biomechanical needs rather than fixed parameters. Second, hardware limitations:
to remain wearable, exoskeletons are constrained in weight, power, and range of
motion—often more restricted than the human body itself for safety—narrowing the
set of feasible control strategies. Third, experiential factors: beyond stability and
efficiency, users value comfort, safety, and intuitiveness, qualities that are difficult to
encode in traditional control formulations.

Despite extensive research on the biomechanics of non-disabled human locomotion
[15], it remains unclear how to translate the principles of natural and efficient
walking into robotic assistive devices. Prostheses, for instance, have long remained
passive—favored for their reliability and insurance coverage—while the broader
wearable robotics community has traditionally optimized for metabolic efficiency.
Yet such criteria are irrelevant for fully paraplegic patients who cannot contribute
biological effort [16], underscoring the difficulty of defining meaningful control
objectives beyond purely mechanical or energetic metrics.

In parallel, humanoid robotics has advanced rapidly, with platforms demonstrating
dynamic behaviors such as parkour, backflips, and running. Progress in lower-limb
exoskeletons, however, has lagged behind. Devices for individuals with complete
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motor paraplegia still struggle with autonomous balance, often relying on crutches
or overhead supports [17, 18, 19]. These limitations constrain operation to slow
walking speeds [20] and controlled environments, preventing natural upper-body
movement and impeding widespread use.

Only recently have crutchless exoskeletons emerged, with systems such as XoMotion,
REX, and Wandercraft’s Atalante and Eve marking notable progress toward hands-
free mobility. Yet their functionality remains modest, typically enabling only slow,
deliberate walking with limited behavioral versatility.

These limitations highlight the unique position of exoskeleton control at the inter-
section of robotic locomotion and human interaction. Like autonomous robots,
exoskeletons must maintain robustness under uncertainty; unlike them, they must
also adapt to individual users’ morphology, intent, and comfort. As such, assistive
devices form a compelling testbed for locomotion strategies that fuse model-based
structure with data-driven adaptability.

Specific Aims

Building on this perspective, two priorities emerge as central to advancing bipedal
and assistive locomotion: user alignment and robustness. A gait that is theoretically
stable may still fail in practice if it does not match the needs and preferences of the
user, or if it cannot sustain performance under the uncertainty and variability of
real-world environments.

In this thesis, the term user is interpreted in two complementary ways. For assistive
devices such as exoskeletons, the user is the human wearer, for whom alignment
requires comfort, safety, and biomechanical compatibility. For autonomous bipedal
robots, the user is the system designer or operator, for whom alignment means tailoring
locomotion to task-level objectives such as stability margins, energy efficiency, or
coordination with other agents.

For wearable systems, alignment has been pursued along two lines: (i) human-
inspired nominal gait generation that respects joint kinematics and ground-reaction
force patterns [21], and (ii) sample-efficient personalization frameworks that adapt
gait parameters to individual comfort and preference profiles [22, 23, 24]. Early per-
sonalization often relied on manual self-exploration—workable but time-consuming
and subjective—motivating principled, data-driven methods that scale.
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For task-driven autonomous systems, user alignment can involve tailoring locomotion
to mission-specific requirements—for example, maximizing stability margins for
hazardous terrain, conserving energy for long-duration missions, or producing
motion patterns that coordinate effectively with other agents. Such adaptation may
be achieved by tuning controller gains, adjusting constraint bounds, or modifying
gait generation objectives to emphasize desired behaviors [25, 26].

Yet, alignment alone is not sufficient: once a gait is designed for a particular user or
mission, it must remain effective under the uncertainty of real-world operation. This
brings robustness to the forefront, ensuring that the selected locomotion strategy
maintains stability and performance despite modeling errors, disturbances, and envi-
ronmental variability. Existing approaches span offline analysis of hybrid dynamics
and sensitivity to parameter variations [27], online replanning and adaptation to
reject perturbations in real time [6, 28], and learning-based control with domain
randomization to improve generalization to model mismatches and diverse operating
conditions [29, 30].

This thesis addresses the priorities of user alignment and robustness through distinct
but complementary contributions, validated on platforms ranging from powered
exoskeletons to humanoid robots.

The contributions are organized into the following two major arcs:

• User-aligned locomotion (Chapters 3 to 4):

1. Develop a nominal gait generation method that integrates musculoskeletal
models into the Hybrid Zero Dynamics (HZD) framework, producing
motions that are both dynamically stable and anthropomorphic.

2. Design interactive learning approaches for user preference modeling and
personalization. This includes characterizing the user’s gait preference
landscape via active learning within a region of interest (e.g., avoiding
regions identified as uncomfortable). Follow-up work explores safety-
aware preference-based optimization, multi-objective preference learning,
and deployment of these frameworks on real-world systems.

• Robust locomotion (Chapter 5):

1. Develop offline robustness metrics that evaluate existing controllers—validated
by tracking nominal offline-generated trajectories—using a hybrid for-
ward invariance framework to quantify disturbance tolerance.
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2. Design online adaptation methods for rapid replanning via Data-Driven
Predictive Control (DDPC) and its hybrid extension (HDDPC), which
incorporate both continuous swing dynamics and discrete step-to-step
transitions. These methods leverage hardware data to construct data-
driven reduced-order models that capture user variability, while enabling
real-time replanning to reject external perturbations.

3. Implement learning-based generalization through reinforcement learning
policies trained in simulation with domain randomization and Control
Lyapunov Function (CLF)-based reward shaping, enabling robust gener-
alization beyond training conditions and reliable transfer to hardware.

While each contribution was developed in isolation, they address complementary
components of the locomotion control stack and could in principle be integrated
into unified frameworks. For example, offline robustness metrics could be used to
shape the reference trajectories guiding reinforcement learning, or preference based
personalization could be combined with any of the robustness strategies.

Through the integration of biomechanics, user informed modeling, principled
robustness analysis, and learning based control, this thesis advances locomotion
controllers that are stable, robust, and user-aligned, demonstrating applicability
across both humanoid robots and assistive devices.



6

C h a p t e r 2

HYBRID DYNAMICS OF BIPEDAL LOCOMOTION

Bipedal walking presents unique challenges for robotic and assistive systems due
to its hybrid dynamics, underactuation, and sensitivity to variability in users and
environments. To address these challenges, this chapter reviews the theoretical and
algorithmic foundations that underpin the locomotion strategies developed in this
thesis. We begin with the hybrid dynamical models that describe legged locomotion,
covering both full-order representations and reduced-order templates. Building
on these models, we review model-based motion synthesis techniques—ranging
from periodic orbit design with Hybrid Zero Dynamics (HZD) to receding-horizon
optimization and Lyapunov/barrier function methods. We then discuss reinforcement
learning approaches that complement model-based control by enabling data-driven
adaptation. Finally, we provide context in assistive devices and describe the
robotic platforms used as experimental testbeds. Together, these sections establish
the modeling, control, and learning tools that will be referenced throughout the
dissertation.

Organization of this chapter. Section 2.1 introduces hybrid models of legged
locomotion, including continuous dynamics, impact dynamics, step-to-step maps,
and reduced-order templates. Section 2.2 then presents model-based motion syn-
thesis methods, covering periodic orbit design (HZD, H-LIP), receding-horizon
optimization, and stability and safety tools such as CLFs and CBFs. Section 2.3
reviews reinforcement learning approaches for locomotion, emphasizing their com-
plementarity with model-based techniques. Section 2.4 discusses locomotion in
assistive devices, highlighting challenges in stability, clinical use, and personalization.
Finally, Section 2.5 describes the robotic platforms used in this work.

2.1 Modeling of Legged Locomotion

System Setup

We begin by defining the generalized coordinates and state variables used to describe
the dynamics of a legged robot. Consider a system with generalized coordinates
q = [q⊤b , q

⊤
a ]

⊤ ∈ Q ⊂ Rn, where qb ∈ SE(3) represents the floating-base pose and
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qa ∈ Rm the actuated degrees of freedom (DoFs). The control input is u ∈ Rm, and
the full-order state is x = [q⊤, q̇⊤]⊤ ∈ TQ, with TQ denoting the tangent bundle of
the configuration manifold.

This formulation serves as the basis for modeling the hybrid dynamics of walking, in
which continuous evolution of the state is interleaved with discrete events such as
foot impacts and liftoff.

Hybrid Dynamics

This structure can be formalized as a hybrid control system, consisting of continuous
domains that describe the dynamics within a fixed contact mode and discrete
transitions (edges) that model contact events [4].

Let D ⊂ X denote the admissible domain in which the continuous-time dynamics
evolve, and let S ⊂ D denote the guard (or switching surface) that triggers discrete
transitions. For a continuously differentiable function1 h : X → R, these sets can be
defined as

D = {x ∈ X | h(x) ≥ 0}, (2.1)

S = {x ∈ X | h(x) = 0, ḣ(x) < 0}. (2.2)

The hybrid systemH is then

H :

{
ẋ = f(x) + g(x)u x ∈ D \ S, (2.3)

x+ = ∆(x−) x− ∈ S, (2.4)

where (2.3) describes the continuous full-order Lagrangian dynamics, ∆ : S → D is
the reset map applied at discrete events, and the superscripts “−” and “+” indicate
states immediately before and after the event, respectively. In practice, events such
as impact are often detected when the swing foot height equals the ground height,
while lift-off occurs when the normal ground reaction force becomes zero.

The following subsections examine these two components in more detail: the
continuous-time dynamics that govern motion within a single contact mode, and the
impact dynamics that capture discrete changes in velocity at contact events.

1h must be chosen so that it is not in the null space of the actuation matrix, i.e., Lgh(x) ̸= 0.
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Continuous-Phase Dynamics

Within each continuous domain of the hybrid system, the robot’s motion evolves
according to the Euler–Lagrange equations with holonomic contact constraints:

D(q)q̈ +H(q, q̇) = Bu+ Jh(q)
⊤F, (2.5)

Jh(q)q̈ + J̇h(q, q̇)q̇ = 0, (2.6)

where D(q) ∈ Rn×n is the mass–inertia matrix, H(q, q̇) ∈ Rn collects Coriolis and
gravitational terms, and B ∈ Rn×m is the actuation matrix. The holonomic contact
constraints are captured by the Jacobian Jh(q) ∈ Rh×n, with associated constraint
wrench F ∈ Rh. In single-support with a planar patched contact, there are typically
h = 6 independent constraints.

While the same dynamics can equivalently be written in Newton–Euler form using
momentum balances, the Euler–Lagrange representation offers a compact coordinate-
based formulation that is particularly convenient for virtual constraints, trajectory
optimization, and control design.

Impact Dynamics

At the end of a continuous phase, when the swing foot strikes the ground or a new
contact is established, the system undergoes an instantaneous change in velocity
due to the contact impulse. During this event, the configuration remains continuous
(q+ = q−), while the velocities experience a discontinuity. The impact can be
modeled using the impulse–momentum form of the Euler–Lagrange equations with
holonomic constraints:

Jc(q
−)q̇+ = 0, (2.7)[

D(q−) −Jc(q−)⊤

Jc(q
−) 0

][
q̇+

δF

]
=

[
D(q−)q̇−

0

]
, (2.8)

where Jc(q−) is the contact Jacobian at impact, and δF is the net contact impulse
over the infinitesimal impact interval.

Solving (2.8) for q̇+ yields the velocity reset map:

x+ = ∆(x−) ≜

[
Rq−

R
(
−D−1J⊤

c (JcD
−1J⊤

c )
−1Jc + I

)
q̇−

]
, (2.9)



9

where R is a relabeling matrix that accounts for changes in generalized coordinate
indexing between domains.

Together with the continuous dynamics, this reset law fully specifies the hybrid
model of walking. In the next subsection, we examine how these hybrid dynamics
give rise to discrete step-to-step evolution through the Poincaré return map.

Step-to-Step (S2S) Dynamics and Poincaré Analysis

While continuous and impact dynamics describe motion within and across individual
phases, it is often more insightful to analyze walking at the granularity of successive
steps. This motivates a discrete-time perspective in which locomotion is characterized
by the Poincaré return map, a classical tool in nonlinear dynamics for studying
the stability of periodic motions. The idea is to define a section of the state space
intersected once per cycle (e.g., the guard corresponding to foot impact in walking)
and to track how the state evolves from one intersection to the next. In this way, the
problem of analyzing the orbital stability of a continuous gait reduces to studying the
stability of a fixed point of a finite-dimensional discrete-time map.

Formally, using the guard S of the hybrid systemH, the Poincaré map P : S → S is
defined as

P (x−) ≜ φTI(x−)

(
∆(x−)

)
, (2.10)

where φt(·) denotes the flow of the continuous closed-loop dynamics, ∆ is the reset
map, and TI : S → R> 0 is the time-to-impact function measuring the duration
until the next guard crossing. The sequence xk generated by xk+1 = P (xk) thus
represents the hybrid system’s state evaluated at successive impacts.

A periodic orbit O corresponds to a fixed point x∗ ∈ S satisfying P (x∗) = x∗.
Equivalently, the flow satisfies A n φt(x0) for some period period T > 0 and the
orbit can be written as

O := {φt(∆(x∗)) ∈ D | 0 ≤ t ≤ TI}. (2.11)

As shown in Theorem 1 of [31], O is exponentially stable if and only if x∗ is an
exponentially stable fixed point of the discrete-time system. That is, there exist
constants M > 0 and α ∈ (0, 1) such that

∥P i(x)− x∗∥ ≤M αi ∥x− x∗∥, ∀x ∈ Bδ(x
∗), (2.12)
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with P i denoting applying P i times in succession. This equivalence makes orbital
stability of walking amenable to analysis using standard tools from discrete-time
nonlinear systems theory.

Extended Poincaré Map. The domain of P can be locally extended beyond S by
defining an extended time-to-impact function Te : Bρ(x

) ⊂ D → R via

h
(
φTe(x)(∆(x))

)
= 0, (2.13)

which is well-defined in a neighborhood Bρ(x
) of the fixed point under regularity

conditions on h. The extended Poincaré map is then

P0(x) ≜ φTe(x)(∆(x)), x ∈ Bρ(x
∗), (2.14)

enabling the analysis of robustness to perturbations for initial conditions not lying
exactly on S .

Robustness Considerations. The stability of a periodic orbit can be certified
through the Poincaré map, but this analysis is inherently local: it guarantees only
that sufficiently small perturbations decay in the vicinity of the orbit. Robustness,
by contrast, addresses whether desirable behavior is preserved under more realistic
sources of uncertainty, including modeling errors, parameter variations, timing
discrepancies, and external disturbances. A gait that converges rapidly in the
linearized sense may still fail under moderate perturbations if its basin of attraction
is narrow. Thus, while stability characterizes local convergence under nominal
dynamics, robustness quantifies a system’s ability to maintain performance and
safety in the presence of uncertainty. To formalize robustness, hybrid-systems
extensions of input-to-state stability (ISS) and input-to-state safety (ISSf) have been
proposed. Yet verifying such properties for high-dimensional legged robots remains
computationally prohibitive, motivating the development of reduced-order models
and tractable approximations, as discussed in the next subsection.

Reduced-Order Models

Reduced-order models (ROMs) approximate locomotion dynamics by restricting
attention to low-dimensional structures that capture the dominant behaviors of the
full system. Rather than simply neglecting higher-order effects, they abstract away
detailed joint-level dynamics in favor of templates—such as inverted pendulum
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or spring-mass models—that preserve the essential mechanics of balance, energy
exchange, and periodicity. These abstractions vary in fidelity and computational
cost, but provide tractable tools for analysis, controller design, and reasoning about
robustness.

A common starting point is the centroidal momentum dynamics:

m(acom + g) =
∑
i∈C

fi, (2.15)

L̇ =
∑
i∈C

(ri − pcom)× fi, (2.16)

where m is the total mass, pcom and Lcom denote the center of mass (CoM) position
and angular momentum, and fi, τi are the ground reaction forces and moments at
contact i.

Assuming L̇com = 0 yields a model where balance is governed solely by the interplay
between CoM motion and contact forces:

px,y
cop = px,y

com −
pz

com − pz
cop

azcom + g
ax,ycom, (2.17)

which expresses the center of pressure (CoP) as a function of CoM position and
acceleration. Feasibility is enforced by requiring the CoP to remain within the convex
hull of active contact points, ensuring that the corresponding ground reaction forces
are physically realizable.

A further simplification assumes constant CoM height pz
com = z0 and negligible

vertical acceleration azcom ≈ 0. In this case, the relation reduces to the Linear Inverted
Pendulum (LIP) dynamics:

axcom = ω2
0

(
px

com − px
cop
)
, (2.18)

aycom = ω2
0

(
py

com − py
cop
)
, (2.19)

with natural frequency ω0 =
√
g/z0. The LIP model has become a cornerstone in

locomotion research, as it admits closed-form solutions for capture points and step
adjustment strategies [32, 33], providing both practical tools for gait generation and
theoretical insights into balance recovery.

Hybrid-LIP (H-LIP). To better reflect the hybrid structure of walking, the Hybrid
Linear Inverted Pendulum (H-LIP) [34] partitions the motion into single-support
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(SSP) and double-support (DSP) phases, while retaining the constant CoM height
assumption:

ax,ycom =
g

pz
com

px,y
com, (SSP)

ax,ycom = 0, (DSP)

where the pz
com and domain duration (TSSP, TDSP) are constant. Assuming no velocity

jump, we can combine the two domains with step size uH-LIP equivalently as:

∆SSP−→SSP+ :

{
v+

com = v−
com

p+
com = p−

com + v−
comTDSP − uH-LIP.

Assuming smooth transitions between these domains, the dynamics can be compactly
expressed in the step-to-step (S2S) format:

xH-LIP
k+1 = AxH-LIP

k +BuH-LIP
k (2.20)

xH-LIP ≜

[
pcom

vcom

]
, (2.21)

which provides a linear approximation of the Poincaré return map of the full-order
system. Model discrepancies between the H-LIP predictions and the full-order
dynamics can be treated as bounded disturbances. With state-feedback stepping
controllers, these disturbances can be actively regulated, ensuring that the tracking
errors converge to disturbance-invariant sets.

These reduced-order templates are particularly appealing for real-time MPC due
to their computational efficiency and analytic tractability. At the same time, their
simplifying assumptions (e.g., constant CoM height, fixed timing) limit their fidelity.
This trade-off has motivated hybrid schemes that combine ROM-based planning for
efficiency with full-order feedback control for accuracy and robustness.

Summary: Modeling of Legged Locomotion

The modeling of legged locomotion spans a spectrum of fidelity and abstraction. At
the full-order level, hybrid models capture continuous evolution interleaved with
discrete impacts, with Poincaré analysis providing rigorous tools for orbital stability.
Reduced-order models, by contrast, distill locomotion into low-dimensional templates
that enable rapid analysis and planning. Collectively, these approaches range from
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exact but high-dimensional representations to simplified yet computationally efficient
ones.

Yet beyond this technical spectrum lies a deeper trade-off that roboticists must
navigate based on their specific applications. Explicit modeling of domain transitions
improves accuracy but increases computational burden; smoothing approximations
reduce complexity but risk losing critical hybrid effects. Reduced-order models are
appealing when their assumptions align with the hardware, offering fewer tuning
parameters, rapid replanning, and easier debugging. When those assumptions are
violated, however, their representations may be so poor that computational efficiency
no longer yields practical benefit.

Conversely, striving for full-order optimality often exposes fragility: exact optimal
solutions demand near-perfect models, and small mismatches can break the strategy
entirely. In practice, feasibility and robustness often matter more than strict optimality.
Thus, modeling is ultimately a design choice, shaped by the platform and the goals
of the application. While this thesis introduces methods with broad scope, each
emphasizes resolving the concrete challenges encountered on the evaluated systems.
These considerations motivate the next section, which turns from modeling to
model-based motion synthesis for generating feasible and stable gaits.

2.2 Model-based Motion Synthesis

Building on the preceding models, we now consider motion synthesis: approaches that
exploit representations of legged dynamics—ranging from reduced-order templates to
full hybrid formulations—to generate gaits that satisfy physical constraints, stability
criteria, and robustness demands.

Gait Generation via Periodic Orbit Design

As discussed in the modeling section, periodic orbits of the hybrid dynamics
characterize walking gaits and their stability can be assessed through Poincaré
analysis. Here, we shift from analysis to synthesis, focusing on how such orbits can
be designed to realize desired locomotion behaviors.

In this design perspective, the step-to-step (S2S) Poincaré map

P : S → S,
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provides a reduced representation of the hybrid dynamics by capturing the evolution
of the system across impacts. A periodic gait corresponds to a fixed point x∗ satisfying
P (x∗) = x∗. Orbital (exponential) stability is determined by the eigenstructure of
the linearization DP (x∗): the gait is stable if and only if the spectral radius satisfies
ρ(DP (x∗)) < 1, i.e., all eigenvalues lie strictly inside the unit disk [31, 35].2

The power of this formulation lies in its discreteness: it compresses the complexity of
hybrid locomotion into a step-level description, turning the problem of stable walking
into the problem of shaping the return map to admit a stable fixed point. From
an optimal control perspective, this design effectively reduces the infinite-horizon
stability problem to a finite-horizon one over a single step. The challenge, however,
is that fixed-point stability alone does not guarantee convergence from arbitrary
initial conditions or smooth transitions between distinct gaits. These limitations
motivate a spectrum of design methods, from full-order approaches such as Hybrid
Zero Dynamics (HZD), which enforce invariance conditions on the full model, to
reduced-order approaches like the H-LIP, which trade fidelity for tractability while
preserving the step-to-step structure.

Hybrid Zero Dynamics and Virtual Constraints

The Hybrid Zero Dynamics (HZD) framework is a model-based approach for
designing stable walking gaits in legged robots. Its key insight is that exponentially
stable periodic orbits of the zero dynamics—the lower-dimensional dynamics when
selected outputs are driven to zero—correspond to exponentially stabilizable orbits
of the full hybrid system [4]. In nonlinear control, the zero dynamics surface is
the invariant manifold on which these internal dynamics evolve [36]. Extending
this notion to systems with impacts yields the hybrid zero dynamics surface, which
provides a rigorous foundation for analyzing and synthesizing stable periodic gaits.

We define the zero dynamics surface as

Zα ≜ {x ∈ D | yα(x) = 0, ẏα(x) = 0},

where yα : X → Rm denotes the virtual constraints—outputs that, when driven
to zero, regulate the robot’s motion to a desired trajectory. Virtual constraints are
typically defined as

yα(x) = ya(x)− ydα(τ(x)), (2.22)

2In practice, neutral directions associated with invariances (e.g., absolute horizontal position) are
excluded when assessing stability.
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with ya : X → Rm being the actual outputs (e.g., joint angles or end-effector
positions) and ydα the desired outputs parameterized by a phase variable τ(x) that is
monotonically increasing along the gait cycle. A stabilizing controller u∗(x)—for
example via feedback linearization or a control Lyapunov function—drives yα → 0,
yielding the closed-loop dynamics ẋ = fcl(x) = f(x) + g(x)u∗(x).

A common choice for ydα is a set of Bézier polynomials solved via numerical
optimization:

Bez(τ, α) ≜
B∑

k=0

α[k]
B!

k!(B − k)!τ
k(1− τ)B−k, (2.23)

where αv ∈ RB+1 are control points for output v. Bézier polynomials offer
smoothness, boundedness by control points, and analytically tractable derivatives
[37, 38]. The phase variable is often normalized to τ ∈ [0, 1]:

τ(x) ≜
θ(x)− θ+
θ− − θ+ , (2.24)

where θ(x) is a monotonic quantity (e.g., horizontal hip position) and θ+, θ− are its
values at the start and end of the gait cycle.

Hybrid Invariance. For a periodic gait to be preserved under impacts, Zα must be
invariant under the reset map ∆:

∆(Zα ∩ S) ⊂ Zα, (2.25)

where S is the switching surface. When this impact invariance condition holds, the
intersection Zα ∩ S corresponds to a fixed point of the step-to-step (Poincaré) return
map, ensuring the gait is both periodic and stable by construction.

When this impact invariance condition holds, the intersection Zα ∩ S corresponds
to a fixed point of the step-to-step (Poincaré) return map, ensuring the gait is both
periodic and stable by construction. In practice, trajectory optimization is often
carried out on a reduced set of coordinates via the partial hybrid zero dynamics
(PHZD) formulation, which enables efficient numerical solution [39, 40]; we return
to these details in later chapters when applying HZD to concrete gait synthesis
problems.

Trajectory Optimization To obtain HZD trajectories, we solve an offline trajectory
optimization problem to determine the Bézier coefficients α that define the virtual
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constraints:

{α∗, X∗} = argmin
α,X

Φ(X) (2.26)

s.t. ẋ = f(x) + g(x)u (Dynamics)

∆(S ∩ Zα) ⊂ Zα (HZD Condition)

Xmin ⪯ X ⪯ Xmax (Decision Variables)

cmin ⪯ c(X) ⪯ cmax, (Physical Constraints)

where X = (x0, ..., xN , T ) ∈ Rnd denotes the collection of decision variables, with
nd ∈ N. Each xi ∈ X represents the state at node i, and T ∈ R>0 denotes the
duration of the limit cycle. The cost function is given Φ : Rnd → R≥0, while the
constraints are represented by c : Rnd → Rnp with np ∈ N. These constraints encode
the physical laws governing locomotion, such as friction cone conditions, workspace
limits, and actuator capacity [5]. Solving this optimization yields a stable periodic
solution to the walking dynamics, parameterized by a fixed set of Bézier coefficients
α∗ ∈ Rno×B+1.

Here, y(q) denotes the controlled outputs, and Bez(τ ;α) is the Bézier-parameterized
desired trajectory, with τ(t) = ϕ(x, t) serving as the phase variable that encodes
progression along the gait. In practice, this problem is typically formulated as a
nonlinear program. Toolboxes such as FROST [41] provide a convenient framework
for setting up the optimization, automatically generating the dynamics, constraints,
and Jacobians, and interfacing with solvers such as IPOPT through MATLAB.
More recently, pipelines leveraging CasADi and Pinocchio have become attractive
alternatives, providing automatic differentiation and symbolic modeling within
Python. These capabilities support scalable trajectory optimization and facilitate
integration with contemporary robotics software stacks [42].

Hybrid Linear Inverted Pendulum (H-LIP)

Building on the reduced-order model introduced in Section 2.1, the H-LIP provides a
analytical gait library that has close form solution. Given a desired walking velocity
vd, one solves the step-to-step (S2S) map

xH-LIP
k+1 = AxH-LIP

k +BuH-LIP
k (2.27)

for a fixed point x∗ with corresponding nominal step length u∗ = vdT . This defines a
periodic center-of-mass (CoM) orbit x∗ = [pcom, vcom]

⊤ from which the continuous
CoM trajectory of each step can be generated analytically.
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On top of this CoM motion, the swing foot is planned using a separate Bézier curve to
guarantee smooth lift-off, clearance, and touchdown. Additional degrees of freedom,
such as torso pitch, knee flexion, or arm swing, can be specified via simple periodic
functions synchronized with the gait phase. Together, these trajectories form a set of
reference signals that can be tracked by the full-order robot.

Because the linear S2S map allows closed-form solutions, the H-LIP readily sup-
ports simple stabilizing feedback laws. For example, a deadbeat foot-placement
controller—reminiscent of Riabert’s stepping strategy—can drive the system back
to its nominal orbit within a single step. Moreover, the same framework naturally
extends to multi-step regulation strategies, such as period-2 gaits, providing addi-
tional flexibility for achieving stability. These features make the H-LIP particularly
attractive for online planning and control, even though it necessarily sacrifices some
modeling fidelity compared to full-order methods like HZD.

Summary and Trade-offs. HZD and H-LIP both aim to synthesize stable periodic
walking gaits, but they operate at different modeling levels with distinct computational
consequences. HZD works directly with the full-order hybrid dynamics, enforcing
virtual constraints whose hybrid invariance guarantees the existence and stability of
a periodic orbit in the underlying step-to-step map, though the S2S perspective is
less explicit. This provides strong guarantees on stability and physical feasibility but
requires solving high-dimensional nonlinear programs, which are typically suited for
offline trajectory design.

In contrast, H-LIP starts from a reduced-order hybrid template that approximates
the Poincaré map with an affine linear step-to-step model. This structure admits
closed-form foot-placement and CoM controllers, supporting lightweight online
stabilization. By explicitly parameterizing the return map, H-LIP also captures
multi-step periodic orbits (e.g., period-2 gaits), offering a practical mechanism to
recover stability when immediate convergence is not possible.

Taken together, these methods illustrate a core trade-off between model fidelity and
computational tractability. HZD offers rigorous guarantees but at high computational
cost, while H-LIP sacrifices some physical realism for simplicity and real-time
viability. Modern hybrid control strategies—such as MPC and learning-based
approaches—often combine these perspectives, using reduced-order models for fast
planning and full-order models for accurate stabilization.



18

Gait Generation via Receding-Horizon Optimization

While effective for steady-state behaviors, purely periodic gaits lack flexibility in
dynamic or uncertain environments, where online adaptation and smooth transitions
between behaviors are required. Moreover, naively tracking a precomputed offline
trajectory cannot ensure satisfaction of essential constraints such as joint torque
limits, contact conditions, or foot placement feasibility, nor can it robustly handle
disturbances.

To overcome these limitations, gait generation can be posed within a receding-horizon
Model Predictive Control (MPC) framework, which enables online replanning and
provides stabilizing feedback. MPC formulates a finite-horizon optimal control
problem:

min
u(·)

ϕ(x(tH)) +

∫ tH

0

l(x(t), u(t), t) dt, (2.28a)

subject to: x(0) = x0, (2.28b)

ẋ = f(x) + g(x)u, (2.28c)

ceq(x, u, t) = 0, (2.28d)

cin(x, u, t) ≥ 0, (2.28e)

where tH is the horizon length, ϕ and l are the terminal and running costs, and ceq,
cin are equality and inequality constraints. The optimization is resolved online at
each control step using the measured state x0.

By solving (2.28) in real time with full-order dynamics, MPC can adapt footstep
placement, body motion, and contact forces online, while respecting physical
constraints. However, full-order nonlinear MPC for underactuated bipeds faces
the same challenges as directly running HZD online: the high dimensionality of
the dynamics and contact constraints makes real-time solution difficult. Common
strategies to alleviate this include replacing the full dynamics with a reduced-order
model (at the cost of model fidelity), or retaining the full-order model but linearizing
around a nominal trajectory and solving a sequence of quadratic programs (SQP)
with line search. These approaches trade optimality for computational tractability,
allowing higher replanning rates. A critical design choice lies in the terminal
constraints: they play a role analogous to the periodic orbit perspective in gait design,
since the quality of the generated trajectories depends heavily on whether the terminal
conditions provide a good proxy for long-term stability and performance.
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Summary: Model-Based Motion Synthesis

The approaches described above reflect a spectrum of strategies for generating
walking gaits from first principles. HZD provides a full-order framework grounded
in hybrid zero dynamics, ensuring stability through virtual constraints but requiring
offline optimization. At the opposite end, reduced-order templates such as the H-LIP
enable lightweight, closed-form regulation and online planning, though at the cost of
strong simplifying assumptions. Receding-horizon formulations such as MPC strike
a balance between these extremes, leveraging optimization to enforce feasibility and
adaptability in real time, while relying on reduced-order models or linearizations to
remain computationally tractable.

Other classical approaches have also played influential roles in shaping legged
locomotion control. Raibert’s foot-placement heuristics demonstrated that simple
step-to-step laws could stabilize hopping and running robots with remarkable
robustness. Zero-Moment Point (ZMP) methods provided an industry-standard
framework for humanoid robots, ensuring balance by constraining the CoP within the
support polygon, though typically assuming quasi-static motion. Passive dynamic
walking offered the counterpoint that carefully designed morphology alone can
generate stable gaits without active control, motivating reduced-order templates and
energetic perspectives on locomotion.

What unifies these approaches is not a single shared mechanism but rather a spectrum
of trade-offs. HZD emphasizes model fidelity through full-order dynamics, while
H-LIP prioritizes computational efficiency with a reduced-order approximation. HZD
trajectories are typically designed offline, whereas MPC enables online replan in real
time. Similarly, HZD and H-LIP focus on orbit stability and analytic guarantees, while
MPC highlights the flexible and generic structure. Viewed together, these strategies
illustrate the strengths and limitations of model-based synthesis and motivate hybrid
or learning-augmented methods that aim to combine principled guarantees with
greater adaptability.

Control Lyapunov Functions (CLFs)

Whereas the previous methods focused on generating feasible periodic or receding-
horizon trajectories, Control Lyapunov Functions (CLFs) provide a complementary
tool for analyzing and enforcing stability in nonlinear systems. A CLF offers a scalar
energy-like certificate whose decrease under suitable feedback control guarantees
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asymptotic convergence of the system to a desired set or trajectory. More concretely,
consider a control-affine system of the form

ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ Rm. (2.29)

A continuously differentiable, positive definite function V : Rn → R is called an
exponentially stabilizing control Lyapunov function (ES-CLF) if there exist constants
k1, k2, k3 > 0 such that

k1∥x∥2 ≤ V (x) ≤ k2∥x∥2, (2.30)

inf
u∈Rm

V̇ (x,u) ≤ −k3V (x). (2.31)

The inequality (2.31) ensures that there exists at least one admissible control input that
causes V to decrease exponentially along system trajectories, implying convergence
to the origin (or a desired manifold).

Quadratic CLFs from Linearization. For a linearized closed-loop system η̇ =

Aclη, the continuous-time Lyapunov equation

A⊤
clP + PAcl = −Q, Q ≻ 0 (2.32)

admits a unique positive definite solution P ≻ 0. The quadratic form

V (η) = η⊤Pη (2.33)

then satisfies (2.30) and

V̇ (η,v) = LFV (η) + LGV (η)v ≤ −λmin(Q)

λmax(P )
V (η), (2.34)

thus serving as an ES-CLF on the output coordinates.

Nonlinear Systems and Hybrid Dynamics. For a general nonlinear control-affine
system, the ES-CLF condition can equivalently be written as

inf
u∈Rm

∇xV (x) [f(x) + g(x)u] ≤ −λV (x), λ > 0, (2.35)

which guarantees exponential decay of V along trajectories. In hybrid systems
such as bipedal locomotion, CLFs can be applied within each continuous phase. If
the decay rate is sufficiently fast, it can offset the destabilizing effects of discrete
impacts [43], enabling stability guarantees across hybrid transitions.
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Flexibility in Control Design. The CLF condition (2.35) specifies a set of ad-
missible controls rather than a unique feedback law. This flexibility makes CLFs
particularly attractive for reinforcement learning: instead of enforcing a fixed stabiliz-
ing controller, one can embed the CLF inequality into the reward design, encouraging
learned policies to exhibit Lyapunov-stable behavior while retaining freedom in
control structure.

Control Barrier Functions

In parallel with the Lyapunov-based notion of stability, barrier functions provide a
formalism for certifying the safety of a dynamical system. For controlled systems,
this concept is extended through Control Barrier Functions (CBFs), which guarantee
that the state remains within a prescribed safe set.

Definition 1 (Control Barrier Function). Let C ⊂ Rn denote the safe set, defined as
the 0-superlevel set of a continuously differentiable function h : Rn → R:

C := {x ∈ Rn | h(x) ≥ 0}. (2.36)

The function h is a Control Barrier Function for the control-affine system

ẋ = f(x) + g(x)u, (2.37)

if there exists an extended class K∞ function α ∈ Ke
∞ such that, for all x ∈ Rn,

sup
u∈Rm

[Lfh(x) + Lgh(x)u] ≥ −α (h(x)) . (2.38)

Intuitively, the CBF condition (2.38) ensures that, at every state in the domain, there
exists at least one admissible control input capable of preventing the system from
leaving C, thereby guaranteeing forward invariance of the safe set.

Remark 1. While CBFs offer a powerful safety guarantee, verifying (2.38) globally
is generally difficult, and the synthesis of valid CBFs for complex systems remains
an open challenge. For a detailed treatment of CBF theory and applications, we refer
the reader to [44, 45].

2.3 Learning-Based Motion Synthesis

The periodic and receding-horizon approaches described above both rely on explicit
models of the robot’s dynamics and contact schedule. While these methods can yield
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strong performance when the model is accurate, they may struggle in the presence
of model mismatch, unmodeled compliance, or complex contact interactions. To
address these limitations, a broad class of data-driven approaches has emerged,
leveraging measured trajectories or direct interaction data to improve gait generation.
These methods reduce reliance on precise analytical models and instead exploit the
rich statistical structure present in data.

Imitation and Demonstration Learning

Another paradigm uses expert data to shape locomotion strategies. Imitation learning
leverages motion-capture datasets (human or animal locomotion) or demonstrations
from existing controllers (e.g., HZD gaits) to train neural networks or regression
models that map state to actions. These methods bypass the need for reward
engineering, instead learning to reproduce expert trajectories directly. Extensions
such as Generative Adversarial Imitation Learning (GAIL) or behavior cloning with
regularization allow controllers to generalize beyond training demonstrations while
retaining natural motion quality.

Residual and Hybrid Learning

Data-driven methods can also be used to enhance model-based controllers. For
example, a reduced-order gait generator (e.g., H-LIP or HZD) can be augmented with
a learned residual policy that compensates for unmodeled dynamics or hardware-
specific effects. This hybridization retains interpretability and structure while
exploiting the adaptability of learning. In practice, residual learning has been shown
to improve terrain robustness, energy economy, and comfort by fine-tuning foot
placement, compliance responses, or user-specific dynamics.

Reinforcement Learning

RL formulates locomotion control as a Markov Decision Process (MDP) M =

(S,A, p, r, γ), where S is the state space, A is the action space, p(s′|s, a) defines the
transition dynamics, r(s, a) is the reward function, and γ ∈ (0, 1] is the discount
factor. A stochastic policy πθ(a|s), parameterized by θ, is trained to maximize the
expected discounted return

J(θ) = Eπθ

[
∞∑
t=0

γt r(st, at)

]
.
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Depending on how dynamics are treated, RL methods can be model-free (learning
a policy directly from data) or model-based (learning an explicit dynamics model
to plan or improve sample efficiency). In bipedal locomotion, RL offers the ability
to handle strong nonlinearities and uncertainties without precise modeling, to
leverage high-dimensional observations (e.g., multi-axis force sensing, vision), and
to flexibly encode task-specific objectives such as energy economy, comfort, or
terrain agility. At the same time, RL faces challenges: training is often data-hungry,
direct hardware learning is impractical without careful safety measures, formal
stability guarantees are generally absent, and performance can be sensitive to reward
design and exploration strategy. These issues motivate simulation-to-real transfer
techniques and structure-guided rewards or constraints.

From an optimization perspective, RL adjusts policy parameters to maximize
long-horizon cumulative reward, rather than explicitly planning trajectories as in
MPC, enforcing virtual constraints to render a hybrid zero-dynamics manifold and
synthesize periodic orbits as in HZD, or using reduced-order templates with explicit
step-to-step maps (e.g., LIP/H-LIP) for foot-placement control. In this sense, RL is
complementary to model-based methods: it can be combined with reduced-order
references, hybrid-invariance designs, and control-theoretic ingredients (e.g., CLF-
inspired objectives or CBF safety filters) to guide learning toward policies that are
more stable, robust, and transferable to hardware.

2.4 Assistive Device

Robotic assistive devices, particularly powered lower-limb exoskeletons, hold signifi-
cant promise for restoring or augmenting mobility in individuals with impaired motor
function. While human locomotion has been extensively studied in biomechanics
research for non-disabled individuals [15], translating the principles of natural,
efficient walking to robotic platforms remains a challenge. This is especially true
for assistive devices, which must achieve not only mechanical stability but also
seamless physical cooperation with the user. Beyond mobility restoration, lower-body
exoskeletons offer numerous clinical benefits for individuals with complete motor
paraplegia, including pressure relief, improved circulation, enhanced bone density,
and general physiological health gains associated with upright posture and walking
[46, 47, 48].

Spinal cord injury (SCI) often leads to severe reductions in the ability to perform
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regular exercise, resulting in physical deconditioning and secondary complications
such as cardiovascular issues, osteoporosis, spasticity, and pressure ulcers [49, 50,
51]. Rehabilitation strategies have traditionally relied on clinician-led mobility
exercises [52] or electrical stimulation [53, 54], but these approaches are largely
clinic-bound. Lower-limb exoskeletons capable of full weight-bearing, dynamically
stable locomotion could extend rehabilitation benefits beyond the clinic, enabling
regular activity in daily environments.

Despite these benefits, most commercial exoskeletons for individuals with complete
paraplegia face stability limitations. Current devices are generally restricted to slow
walking speeds [20] and often require external stability aids such as forearm crutches
[17, 55] or overhead weight support [18]. These constraints reduce upper-limb
freedom, limit natural arm swing, and confine use to controlled settings. Intensive
training—sometimes 20+ sessions—is also required for users to achieve independent
walking, primarily to learn weight-shifting strategies for stability [56, 57]. More
recent efforts have adapted dynamic walking control methods from bipedal robotics
[21] to achieve crutch-less exoskeleton locomotion [58, 59], substantially reducing
training time and enabling more natural arm use.

Designing robust locomotion strategies for lower-body exoskeletons has increasingly
drawn on concepts from bipedal robotics, including the Hybrid Zero Dynamics
(HZD) framework [21] (see Section X.X). HZD provides a mathematically principled
approach to synthesizing dynamically stable walking gaits by enforcing impact-
invariant periodic orbits. This methodology has enabled demonstrations of crutch-less
exoskeleton walking that reduce the reliance on upper-body support and improve gait
naturalness [58, 59, 60], with clinical studies reporting that many users can achieve
independent locomotion after fewer training sessions compared to conventional
designs [61].

Beyond stability, there is growing interest in tailoring exoskeleton walking to
individual users. Personalization methods have included tuning gait parameters to
body measurements and desired speeds [62, 63], minimizing metabolic cost [24, 64],
and optimizing for subjective comfort [22, 23, 65]. Preference-based learning has
emerged as a promising approach, where user feedback—often collected through
pairwise comparisons—is used to guide gait optimization. Such feedback tends to be
more reliable than absolute ratings [66], and can reveal individualized gait patterns
that improve comfort and acceptance.

Challenges in preference-based personalization include the limited data available
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from time-intensive human subject trials, the need to maintain user safety and comfort
during exploration, and the difficulty of efficiently searching large gait parameter
spaces. Some approaches prioritize finding an optimal gait for a specific user, while
others aim to model the broader “preference landscape” to better understand how
different gait parameters influence user satisfaction. Active learning methods have
been proposed to improve sample efficiency by strategically selecting gait candidates
that maximize expected information gain, while also avoiding prolonged exposure to
highly undesirable walking patterns.

2.5 Robotic Platforms

This section describes the robotic platforms used in this work, covering their
mechanical design, actuation, sensing capabilities, and control architecture. Each
platform serves a distinct role in our experiments—from lower-limb assistive devices
to full-body humanoid robots—providing diverse testbeds for locomotion control,
learning algorithms, and biomechanical studies.

AMPRO3 Prosthesis

The AMPRO3 is a powered transfemoral prosthesis with actuated knee and ankle
joints, designed to support 3D, multidirectional walking. Each joint is driven
by electric actuators and instrumented with encoders for position and velocity
measurement. Integrated load cells capture ground reaction forces, while inertial
measurement units (IMUs) provide segment orientation feedback. The device was
developed for studying powered, compliant prosthetic walking in both straight-line
and multicontact locomotion. For further mechanical and design details, see [67,
68].

The Atalante Lower-Body Exoskeleton

The Atalante lower-body exoskeleton, developed by Wandercraft, features 12 actuated
joints (Figure 2.2). Each leg has three actuators for spherical hip motion, one
actuator for knee flexion/extension, and two actuators for ankle motion—covering
inversion/eversion and dorsiflexion/plantarflexion. Hip and knee joints are powered
by brushless DC motors, while the ankle uses a hybrid mechanism enabling sagittal-
plane rotation and rotation about the Henke axis. Joint positions and velocities are
measured with digital encoders.
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Figure 2.1: Overview of prosthesis, subject testing, and EMG electrode setup a)
AMPRO3 prosthesis, b) Non-disabled subject wearing the device during multicontact
locomotion, c) placement of the surface mount electrodes for electromyography
(EMG).

For sensing, six inertial measurement units (IMUs) are mounted on the torso, pelvis,
shanks, and feet to estimate body orientation. Ground contact is detected via
four single-axis force sensors under each foot. An embedded real-time computer
coordinates actuator control and sensor fusion.

Additional hardware includes overhead hoist loops, mode-selection buttons, a
computer connection port, side handles for operator assistance, adjustable thigh and
shank segments, and torso/thigh/shank harnesses to secure the user. These features
allow fitting to a range of body dimensions and ensure safety during operation.

Unitree G1 Humanoid Robot

The Unitree G1 EDU is a compact humanoid robot with 29 actuated degrees of
freedom, comprising 6 per leg, 5 per arm, 1 at the waist, and articulated hands
(Figure 2.3. Its aluminum alloy and carbon fiber structure results in a total mass
of approximately 35 kg. In this work, the EDU configuration is equipped with an
NVIDIA Jetson Orin onboard computer, depth camera, 3D LiDAR, joint encoders,
and inertial measurement units (IMUs). A custom front plate was added to mount an
external laptop for policy inference, increasing the total mass by 0.616 kg.
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Figure 2.2: The Atalante lower-body exoskeleton designed by Wandercraft: (a) A
breakdown of the Atalante exoskeleton components including patient-harnesses and
electronics; (b) A patient inside the exoskeleton; and (c) A depiction of the locations
of the 12 actuated joints.

(a) (b)

Figure 2.3: The Unitree G1 EDU humanoid robot used in this work: (a) component
overview highlighting the onboard sensing and motor locations; (b) Reference frame,
joint axis and zero position of the 29 actuated degrees of freedom.
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C h a p t e r 3

BIOMECHANICALLY-INSPIRED NOMINAL GAIT DESIGN

This chapter addresses the first stage of the thesis objective: synthesizing nominal gaits
that are both robustly stable and user-aligned. For robotic assistive devices, this means
not only guaranteeing stability on the robotic platform but also generating motions that
are natural and anthropomorphic, so that the device can coordinate seamlessly with
human users. Achieving this requires incorporating key biomechanical principles of
non-disabled human walking [15] into the design of periodic gaits, while ensuring
that these motions remain stabilizable under the robot’s hybrid dynamics. Yet,
translating the efficiency and naturalness of human locomotion into robotic systems
remains an open challenge, particularly for assistive devices where user comfort
and coordination are as critical as formal stability. In this chapter, we tackle this
challenge by embedding musculoskeletal models into a multi-domain gait generation
process, enabling assisted locomotion that is simultaneously stable, natural, and
user-oriented.

This work extends the Hybrid Zero Dynamics (HZD) framework introduced earlier by
integrating musculoskeletal models into the gait generation process. By embedding
biomechanical constraints directly into the optimization, we aim to produce walking
behaviors that retain HZD’s formal stability guarantees while more closely matching
human-like kinematics and dynamics—an essential step toward natural coordination
with human users in robotic assistive devices.

While HZD yields provably stable walking, obtaining satisfactory gaits often requires
extensive expert tuning of the cost and constraints. This challenge is amplified for
assistive devices, which must produce locomotion that is not only stable but also
natural to reduce user energy expenditure.

Other approaches toward natural walking include modifying HZD to match motion
capture data [21, 67] and optimizing joint-level trajectories for experimental metrics
such as electromyography (EMG) signals and metabolic expenditure [64, 69]. While
effective, these methods are data-driven and depend heavily on the availability and
quality of behavior-specific datasets. A separate approach is to control walking
directly from real-time EMG feedback [70, 71, 72, 73, 74], which can yield natural
locomotion but lacks formal stability guarantees and requires careful tuning of the
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musculoskeletal model.

In this chapter, we present a framework that, to our knowledge, is the first to combine
hybrid system models with musculoskeletal modeling. Since humans typically
self-select gaits that are physiologically and mechanically energy efficient [75],
we hypothesize that generating stable gaits subject to muscle model constraints
will naturally lead to more anthropomorphic and efficient behavior that respects
physiological limits. We evaluate this hypothesis by generating multicontact walking
gaits with HZD and musculoskeletal models, and implementing them experimentally
on a dual-actuated transfemoral prosthesis, AMPRO3. Performance is quantified via
motion capture and EMG analysis.

3.1 Muscle Model

In this section, we introduce how a single muscle-tendon unit (MTU) is modeled.
Later, in Sec. 3.3, we will provide details on how we extend these muscle models to
multiple muscles and incorporate them into the Hybrid Zero Dynamics (HZD) gait
generation framework.

Muscle-tendon Unit (MTU)

We model each muscle as a two-element Hill-type muscle-tendon unit [76] with a
contractile element (CE) and a series elastic element (SE) as shown in Fig. 3.1a. The
constant parameters of each muscle are defined in [77, 76].

MTU Length

The length of an individual MTU, denoted by lmtu ∈ R, is modeled as lmtu = lse+ lce,
where lce ∈ R is the length of the contractile element (CE), and lse ∈ R is the length
of the series elasticity element (SE). Since the relative change of lmtu depends on the
individual joint angle θ ∈ R, with the collection of d joint angles denoted q ∈ Rd, in
practice we model the MTU length as a function of q:

lmtu(q) = lopt + lslack −
jN∑
j=1

∆lmtu(θj), (3.1)

where lopt, lslack ∈ R are respectively the reference lengths of CE and SE at the
reference angle θref ∈ R. These reference parameters are constants taken from [77].
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We use
∑jN

j=1∆lmtu(θj) to denote the total change in length of the MTU based on
the joint angles of each joint spanned by the MTU, out of a total of jN ∈ {1, 2}
joints. The joints spanned by each MTU are illustrated in Fig.3.1b. The individual
change in length due to a single joint, ∆lmtu(θ) ∈ R, is given by:

∆lmtu(θ) =


ρr0(θ − θref ), for hip

ρr0
[
sin(θ − θmax)

− sin(θref − θmax)
]
, otherwise

(3.2)

The constant ρ ∈ R is a parameter that ensures the fiber length is within the
physiological limits and accounts for muscle pennation angles (the angle between
the longitudinal axis of the entire muscle and its fibers that increases as the tension
increases in the muscle), and r0 ∈ R is a parameter denoting the constant contribution
of the MTU lever-arm. For the MTUs that span two joints, ∆lmtu(θ) is calculated
separately with different reference angles θref for each joint.

MTU Force-Length and Force-Velocity Relationships

The velocity of the CE contraction is denoted by vce ∈ R and is constrained to satisfy
the relationship lce =

∫
vcedt. Depending on an MTU’s instantaneous value of lce

and vce, the amount of force the MTU is capable of exerting differs. This is described
by the following force-length (fl) and force-velocity (fv) relationships:

fl(lce) = exp

(
log(c)

∣∣∣∣ lce − loptloptw

∣∣∣∣3
)
, (3.3)

fv(vce) =

 vmax−vce
vmax+Kvce

, if vce < 0

N + (N−1)(vmax+vce)
7.56Kvce−vmax

, if vce ≥ 0
(3.4)

where the residual force factor c = 0.05 and N, vmax, w, K ∈ R are all muscle-
dependent constants. Specifically, N is the eccentric force enhancement (modeling
the increase in muscle force during active stretch), vmax is the maximum contractile
velocity, and w and K are parameters that shape the force-length and force-velocity
curves, respectively.

Similarly, the MTU force also depends on lse. This is modeled using an additional
force-length relationship:

fse(lse) =


(

lse−lslack
lslack(εref )

)2
, if lse ≥ lslack

0, otherwise
(3.5)
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Figure 3.1: Muscle–Tendon unit model and human–prosthesis system. a) A single
muscle tendon unit (MTU) consists of a contractile element (CE) and a series
elasticity element (SE). The length of CE and SE is denoted by lce and lse. At
the reference angle (θref ), these lengths are equal to lce = lopt and lse = lslack. b)
Human-prosthesis system with the following seven labeled muscles on the intact
leg: gluteus (GLU), hamstrings (HAM), gastrocnemius (GAS), soleus (SOL), hip
flexors (HFL), and vastus (VAS), and tibialis anterior (TA). Three muscles (GLU,
HAM, HFL) are also considered on the prosthetic leg side. c) Illustration of system
coordinates, including the base and world frames.
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Figure 3.2: A complete gait cycle from right heel strike to right heel strike. The
gait cycle is described using the directed cycle Γ = (V,E) with the vertices
V = {v1, . . . , v8} and edges E = {e1, . . . , e8} illustrated in the figure. The naming
convention is based on the stance leg of the step and the number of contact points. If
both legs are in contact, the domain is considered as a double support domain.

where the εref ∈ R is a constant parameter denoting the MTU strain when fse(lse) = 1.
Note that in the actual implementation, we used a continuous function, fitted via
least squares regression, to replace the piece-wise functions for fse and fv since
continuous functions are required for the implementation of a nonlinear optimization
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program.

MTU Force

Because the SE and CE are in series, we model their respective forces, Fse ∈ R
and Fce ∈ R, as equal to the total force exerted by the MTU, denoted by Fm ∈ R.
Explicitly, we enforce Fm = Fse = Fce. We independently model the individual
element forces as depending on the previously defined force-length and force-velocity
relationships:

Fce(lce, vce, s) = s Fmax fl(lce) fv(vce), (3.6)

Fse(lse) = Fmax fse(lse), (3.7)

where s ∈ [0, 1] is the activation level of the muscles, and Fmax ∈ R is a constant
parameter dictating the maximum allowable force of the MTU. Note that we assume
muscle activation to be instantaneous.

MTU Force-Torque Relationship

The torque provided by the MTU, denoted by um ∈ R, is calculated individually for
each joint it spans using the following equations:

um = r(θ)Fm, (3.8)

r(θ) =

 r0, for hip

r0 cos(θ − θmax) otherwise.
(3.9)

where r(θ) ∈ R is the length of the MTU lever-arm based on r0 (previously defined
in Eq. 3.2), and θmax ∈ R is the reference angle at maximum lever contribution.
For MTUs that span two joints, the muscle torque of each joint is calculated using
different muscle-specific maximum lever contribution reference angles θmax. For
details see [77].

3.2 Application of Hybrid Zero Dynamics to the AM-
PRO3 Prosthesis

Next, we present a high-level introduction of the HZD method (without the inclusion
of muscle models) applied to the AMPRO3 prosthesis. For more details, we refer the
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reader to [67]. Additionally, information on the mechanical design of AMPRO3 is
outlined in [68].

Human-Prosthesis Model for AMPRO3

The human-prosthesis system is modeled as a seven-link planar model, illustrated
in Fig. 3.1c, with anthropomorphic parameters for the human segments (shown in
blue), and parameters specific to the AMPRO3 prosthesis for the prosthetic segments
(shown in red). Since the human user considered in this paper is not amputated,
the model is asymmetric, with the knee of the prosthesis necessarily lower than the
human knee.

The configuration space of the AMPRO3 prosthesis, assuming a floating-base
convention [78], is defined as Q ⊂ Rn, where n = 9 is the planar unconstrained
degrees of freedom of AMPRO3. The base frame is defined as qB = (p, θtorso) ∈
SE(2) with p ∈ R2 and θtorso ∈ SO(2) being the position and rotation of the floating
base frame RB with respect to the world frame Rw.

We assume that the left leg is the intact leg and the right leg is the prosthetic
leg. Hence, the human coordinates qh = (θtorso, θ

L
hip, θ

L
knee, θ

L
ankle, θ

R
hip)

T consist of
the torso angle and the joint angles of the human leg segments (left leg segments
and right leg hip). The prosthetic coordinates qp = (θRknee, θ

R
ankle)

T include the joint
angles of the prosthetic segments. The generalized coordinate of the system is then
defined as q = (p, qTh , q

T
p )

T and the state space as X = TQ ⊂ R18 with coordinates
x = (qT , q̇T )T .

Multi-Domain Hybrid System

To capture the intrinsic nature of human walking, a multi-domain hybrid system
is constructed for the human-prosthesis system model, with the goal of matching
the temporal domain pattern observed in natural human walking [79]. Briefly,
hybrid is used to refer to the involvement of both time-driven and event-driven
events. Multicontact hybrid systems use multiple time-driven domains to describe
different contact configurations. While such systems have been demonstrated to
successfully yield multicontact locomotion [67, 68], the inclusion of multiple domains
significantly increases the complexity of the nonlinear optimization problem, making
it more challenging to constrain the search space to achieve desire behaviors. In
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our chapter, we leverage muscle models to guide the optimization problem towards
natural multicontact walking gaits.

As illustrated in Fig. 3.2, we construct a domain pattern with eight distinct domains
(four in each step), and eight transitions between domains. Note that since our model
is asymmetric, we need to consider an entire gait cycle from right heel strike to the
next right heel strike, consisting of two individual steps. The domains within each
step are named according to the contact points as: Double Support 2 (DS2{L,R}),
Double Support 3 (DS3{L,R}), Single Support 2 (SS2{L,R}), and Single Support 1
(SS1{L,R}), where the subscript {L,R} denotes either the left or right stance leg step.
These domains are similar to the breakdown in [5].

Equipped with the domain definitions, we construct a directed cycle Γ = (V,E) to
describe our multi-domain hybrid system, with the vertices V = {v1, . . . , v8} and
edges E = {e1, . . . , e8} illustrated in Fig. 3.2.

We denote the set of admissible domains by D = {Dv}v∈V . The transitions between
these domains are triggered by the set of guards, S = {Se}e∈E . The discrete
dynamics of these transition events are denoted by ∆ = {∆e}e∈E .

We can then formally define our full hybrid system as a tupleH C = (Γ,D,U ,S,∆, FG),
where U = {Uv}v∈V is the set of admissible inputs and FG = {(fv, gv)}v∈V is the
set of control systems with (fv, gv) defining the continuous dynamics ẋ = fv(x) +

gv(x)uv for each domain with inputs uv = [uLhip, u
L
knee, u

L
hip, u

R
ankle, u

R
knee, u

R
ankle]

T .
The continuous dynamics can be obtained using the Euler-Lagrangian equation as
explained in [67].

Virtual Constraints

The behavior of the hybrid system can be shaped using virtual constraints, defined
as the difference between the actual system outputs ya(q) and the desired outputs
yd(q, α). In our chapter, we describe the desired outputs using Bézier polynomials
with coefficients α. To allow for discontinuities in the outputs between domains
(necessitated by impact events), we describe the outputs using domain-specific Bézier
polynomials with coefficients αv.

For non-underactuated domains (DS2, DS3, SS2), a relative degree one output
is explicitly included in the virtual constraints in order to regulate the forward
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progression of the system:

yv(q, α) =

[
y1,v(q, q̇, α)

y2,v(q, α)

]
=

[
ya1,v(q, q̇)− vhip

ya2,v(q)− yd2,v(τ(q), α)

]
, (3.10)

Here y1,v ∈ R denotes the domain-specific relative degree one output, defined as the
difference between the actual hip velocity ya1,v(q, q̇) and the desired hip velocity vhip.
The virtual constraints, y2,v(q, α), denote the relative degree two output. Since the
forward hip velocity is approximately constant during the progress of each step cycle,
we define our phase variable τ(q) =

δphip (q)−δ+phip
vhip

, where δphip(q) is the linearized
forward hip position and δ+phip

is the hip position at the beginning of the step. We
select the virtual constraints for each domain within one step to be the following:

yDS2 = [vhip, θ
st
hip, θ

sw
hip, θ

sw
knee, θ

sw
ankle]

T

yDS3 = [vhip, θ
st
hip, θ

sw
hip, θ

sw
knee]

T

ySS2 = [vhip, θ
st
hip, θ

st
knee, θ

sw
hip, θ

sw
knee, θ

sw
ankle]

T

ySS1 = [θst
hip, θ

st
knee, θ

st
ankle, θ

sw
hip, θ

sw
knee, θ

sw
ankle]

T

where the superscripts (st, sw) denote either left (L) or right (R) for the stance and
swing leg of the corresponding step. Note that the number of virtual constraints in
each domain is dependent on the number of contact points.

Lastly, the virtual constraints yv(q, α) are driven to zero using a feedback linearizing
controller u∗(x), resulting in the closed loop dynamics ẋ = fcl,v(x) = fv(x) +

g(x)u∗(x).

Impact-Invariance Condition

While the closed-loop dynamics of the designed trajectory may be stable, the system
can destabilize at impact events. Thus, it remains to construct desired trajectories
that are impact-invariant. Since our hybrid system is a multi-domain system with
both fully-actuated and under-actuated domains, the entire system is impact invariant
if the following individual impact-invariance conditions are met for each transition:

∆e(Se ∩ Zαv) ⊆ PZαv , e = {3, 7},
∆e(Se ∩ PZαv) ⊆ Zαv , e = {4, 8},
∆e(Se ∩ Zαv) ⊆ Zαv , otherwise.

(3.11)
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Here we use PZαv and Zαv to denote the partial hybrid zero dynamics (PHZD)
surface and HZD surface, respectively:

Zαv = {(q, q̇) ∈ Dv : yv(q, αv) = 0, ẏv(q, q̇, αv) = 0},
PZαv = {(q, q̇) ∈ Dv : y2,v(q, αv) = 0, ẏ2,v(q, q̇, αv) = 0}.

The system evolves on these surfaces when the virtual constraints are driven to zero.

Note that PZαv is a restriction of Zαv for fully-actuated domains, in which the
relative degree one output is used to regulate the system. In practice, impact-invariant
periodic orbits are synthesized as solutions to a nonlinear optimization problem with
constraints on the closed-loop dynamics and impact-invariance conditions.

3.3 Gait Generation with the Integrated Framework

Next, we present an integrated framework that enforces the various muscle-tendon
unit properties introduced in Section 3.1 directly into the HZD gait generation
framework introduced in Section 3.2. First, we will present the details of the
integrated framework. Then, we demonstrate its effect on the gait generation process
by comparing gaits obtained with and without the inclusion of the musculoskeletal
model.

Integrated Framework

To generate stable impact-invariant periodic orbits, with the inclusion of the muscle
models presented in Sec. 3.1, we construct a nonlinear optimization problem of the
form:

{α∗, X∗} = argmin
α,X

ΦmCoT(X)

s.t. C1. (Closed-loop Dynamics)

C2. (Impact-Invariance Conditions)

C3. (Decision Variable Bounds)

C4. (Physical Constraints)

C5-C12. (Muscle Model Constraints)

where α = {αv | v = 1, . . . , 8} is our collection of Bézier coefficients for each
domain, and X is the collection of all decision variables X = [XNLP, XMUSC]

⊤



37

New 
Constraints

Gait 
RMSE

Preference-
Based 

Learning

MoCap

Integrated Framework

Optimization

Tuning

Naturalness Evaluation

Gait w/ Muscles

MoCap
Gait w/o Muscles

with Muscles without Muscles

S
u

b
je

ct
 1

b) Results of 50 iterationsa) Gait Generation and Tuning Procedure

S
u

b
je

ct
 2

Motion Capture

c) Final Gaits

S
u

b
je

ct
 1

S
u

b
je

ct
 2

Figure 3.3: Results of gait generated with and without the muscle models. a) Gait
generation and tuning procedure. Note that the MoCap data are taken from [80]
and matched to subjects by height and weight. b) Gait RMSE of the optimal action
identified by the algorithm at each iteration. c) The summed human joints angles of
final gaits obtained after tuning.

separated into the nominal variables, XNLP, and the additional muscle model
decision variables, XMUSC. The nominal decision variables are constructed as
XNLP = (x0, . . . , xN , T ) with xi being the system state at the ith discretization for the
duration T . The muscle model decision variables are similarly defined for the muscle
states xmusc as XMUSC = (xmusc

0 , . . . , xmusc
N , T ). Here, the muscle states include the

MTU variables for each muscle xmusc = {[l(i)ce , l
(i)
se , F

(i)
ce , v

(i)
ce , s(i)]⊤ | i = 1, . . . , 10}.

While the objective function can be arbitrarily defined, we intentionally select ours
to be the mechanical cost of transport (mCoT), ΦmCoT =

∫ P (t)
mgv

dt, since prior work
has found it to yield natural and efficient locomotion [81].

The first four constraints (C1-C4) of our framework are standard to the HZD
method: C1 enforces the closed-loop dynamics of the system; C2 enforces the
impact-invariance conditions described by Eq. 3.11; C3 constrains the decision
variables as Xmin ⪯ X ⪯ Xmax; and C4 enforces real world constraints such as
contact constraints, as well as joint and torque limits. The remaining constraints
(C5-C12) are muscle model constraints, explicitly defined as:

where i = 1, . . . , 10 denotes a specific muscle out of the ten muscles we consider,
illustrated in Fig. 3.1b. These muscles consist of seven muscles on the intact leg
(hamstring (HAM), glutes (GLU), hip flexor (HFL), gastrocnemius (GAS), vastus
(VAS), soleus (SOL), tibialis anterior (TA)), and three muscles on the prosthetic leg
(HAM, GLU, HFL).

The first four muscular constraints (C5-C8) can be interpreted as dynamic and
kinematics constraints acting on each MTU. The final four constraints (C9-C12)
ensure that the actual human joint torque is equal to the sum of individual muscle
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Muscle Model Constraints:

C5. {F (i)
m = F (i)

ce (l
(i)
ce , v

(i)
ce , l

(i)
se , s

(i)), ∀i = 1, . . . , 10}
C6. {F (i)

m = Fse(l
(i)
se ), ∀i = 1, . . . , 10}

C7. {l(i)ce + l(i)se = lmtu(q)
(i), ∀i = 1, . . . , 10}

C8. {l(i)ce =

∫
v(i)ce dt, ∀i = 1, . . . , 10}

C9. uLhip = u(1h)m + u(2)m + u(3)m

C10. uLknee = u(1k)m + u(4k)m − u(5)m

C11. uLankle = u(4a)m + u(6)m − u(7)m

C12. uRhip = u8m + u9m − u10m

torques. Depending on whether it is an extensor or flexor muscle, the torque is either
applied towards the positive or negative direction. Note that since the HAM muscle
span both the hip and knee joints, we use u(1h)m and u(1k)m to denote the torque HAM
has on the these two joints, respectively. Similarly, we use u(4k)m and u(4a)m to denote
the knee and ankle joint torques resulting by GAS muscle. The explicit calculation
can be found in Eq. 3.8 with different reference angles in Eq. 3.9.

3.4 Evaluation of the Integrated Framework

Optimization setup

To evaluate our hypothesis that enforcing muscle model constraints would naturally
lead to more anthropomorphic behavior, we synthesized two variants of the optimiza-
tion problem for comparison: 1) with muscles, which includes constraints C1-C12;
and 2) without muscles, which only includes constraints C1-C4. In both variants, the
optimization problem is constructed using FROST [41].

We evaluated the naturalness of the gaits generated by the two variants via a custom
metric defined as:

Gait RMSE =
5∑

i=1

√
avg
(
q̂
(i)
h − q

(i)
h

)
, (3.12)

where q(i)h denotes the angles of the ith joint of the human coordinates and q̂(i)h the
corresponding joint angles recorded by MoCap. Specifically, the MoCap data used
here are from [80] and matched to subjects by height and weight.
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Figure 3.4: Gait tiles of experimental demonstration on AMPRO3 for gaits generated
without or with muscle model for two subjects

Constraint Tuning via Preference-Based Learning

The bounds of C3 and C4 are commonly tuned in order to sufficiently constrain the
optimization problem for convergence and to achieve desired behavior. Thus, to fairly
compare gaits generated with and without the inclusion of the musculoskeletal model,
we leverage preference-based learning to systematically identify the constraints that
lead to the lowest Gait RMSE. The procedure of this framework is illustrated in Fig.
3.3a. We specifically use the LineCoSpar [82] algorithm since it can navigate high-
dimensional spaces and is robust to noisy feedback, but other Bayesian optimization
techniques could also be used.

In each iteration, we warm-start the optimization with the solution from the current

Table 3.1: PBL Constraint Search Space

Constraint Name Constraint Values lengthscales
|ẋ| < a1 a1:[15, 20] 5
|ẍ| < a2 a2:[70,80,90] 10
vhip > a3 a3:[0.3,0.4,0.5] (m/s) 0.1
vhip < a4 a4:[1.2,1.3,1.4] (m/s) 0.1
Min. Foot Clearance a5:[0, 0.013, 0.026, 0.039] (m) 0.013
|θtorso| < a6 a6:[0,0.1,0.2,0.3,0.4,0.5] (rad.) 0.1
|θhip| < a7 a7:[20,35,50] (deg.) 15
|θankle| < a8 a8:[20,30,40] (deg.) 10
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Figure 3.5: Limit cycles illustrating the periodic stability achieved during experi-
mental multicontact locomotion (10s of data plotted).

S
u

b
je

ct
 1

S
u

b
je

ct
 2

Normal Walking with Muscle Model without Muscle Model 

Figure 3.6: EMG activity normalized over a full gait cycle for normal walking,
prosthetic walking with gaits generated with or without the muscle model.

best action according to the learning algorithm. To streamline the process, two
types of feedback are automatically given to the algorithm. First, an ordinal label
corresponding to either ‘converged’ or ‘non-converged’ is given based on the
algorithm convergence status. Second, a pairwise preference is determined based on
the Gait RMSE, where a lower RMSE gait would be preferred. We construct the
search space of the algorithm with the following dimensions as in Table 3.1.

Comparison of generated gaits

This learning procedure was repeated for two subjects: subject 1 (Female, 172.7cm
65.7kg), subject 2 (Male, 180.3cm, 75kg). We plotted the Gait RMSE of gaits
generated by the current best constraint parameters according to the algorithm at each
iteration in Fig. 3.3b. The inclusion of muscle models led to a smaller Gait RMSE
compared with the ones generated by the non-muscle version throughout the tuning
process (Fig. 3.3b-c). This highlights the advantage of including muscle models in
the gait generation, as it guided the optimization to find more natural solutions.
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3.5 Experimental Demonstration on AMPRO3

We experimentally deployed the two gaits obtained in the automated tuning procedure
as having the lowest Gait RMSE (with and without the inclusion of muscle model
constraints) on the dual-actuated transfemoral prosthesis, AMPRO3. This experiment
was conducted for each of the two subjects, with the results highlighted in the
supplemental video [83].

Experiment Procedure

During the experiments, a non-disabled human user wore AMPRO3 using an adapter
on the right leg (Fig. 2.1b). The joint-level trajectories of the gaits were tracked on
the prosthesis with a PD controller. For an in-depth presentation of the hardware and
control, see [67].

First, the subject was asked to walk without the prosthesis over a self-selected speed,
followed by walking with the prosthesis for the two prosthetic gaits. At the end of
the testing, the subject was queried for a single pairwise preference. Note that the
order of the gaits was randomized and the subject was not informed of the order.
During all tests, electromyography (EMG) signals were recorded. Before recording,
the subject was given enough time to adjust to the walking. In total, the activity of
four muscles on the left leg, including rectus femoris (RF), tibialis anterior (TA),
bicep femoris (BF), and gastrocnemius (GAS), and two muscles on the left leg (RF
and BF) was recorded with the Trigno wireless biofeedback system (Delsys Inc.), as
illustrated in Fig. 2.1c.

Experiment Results

A visualization of the experimental behaviors is provided in Fig. 3.4 via gait tiles
spanning a complete gait cycle. Both subjects strongly preferred the gait generated
with the inclusion of the musculoskeletal model. The stability of the executed gaits
is portrayed in Fig. 3.5 by the periodicity of the limit cycles. It is important to note
that achieving this experimentally stable multicontact locomotion is a direct result of
leveraging the HZD method to formally generate impact-invariant output trajectories.

The average EMG data over one gait cycle for each muscle after preprocessing is
shown in Fig. 3.6. We also calculated the RMSE between the EMG activity of the
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generated gaits and normal walking, defined as:

EMG RMSE =
6∑

i=1

√
avg
(
ŝ
(i)
EMG − s

(i)
EMG

)
, (3.13)

where s(i)EMG denotes the muscle activation reflected by EMG signals for the ith muscle
during the prosthetic walking and ŝ(i)EMG denotes the corresponding muscle activation
during normal unassisted walking. The EMG RMSE are 1.58 and 1.84 for the gaits
generated with muscles, and 1.80 and 2.34 for the gaits generated without muscles,
for subject 1 and subject 2, respectively. The lower EMG RMSE suggests that the
inclusion of the muscle model led to more natural behavior. In addition, the inclusion
of muscle model also results in less muscle activation on average. Lastly, we observe
that all prosthetic gaits yielded higher muscle activity than normal walking, which
could be caused by factors such as the extra weight of the prosthesis or the misaligned
knee joints.

However, when designing gaits for an amputee user, the human-prosthesis system
would be more symmetric, which would likely to result in even more natural muscle
activation.

3.6 Summary: Biomechanically-Inspired Gait Gener-
ation

This chapter demonstrates the first formal synthesis of stable multicontact locomotion
using musculoskeletal models. Specifically, we directly enforce muscle model
constraints in the HZD framework to experimentally realize both stable and natural
robotic-assisted locomotion on the dual-actuated prosthesis AMPRO3 with two non-
disabled users. We find that incorporating the muscle model guides the optimization
problem towards uncovering periodic orbits that resemble natural bipedal locomotion.

Our proposed framework is advantageous since it results in more natural behavior
as compared to state-of-the-art. Additionally, it can be applied to a wide range of
behaviors and/or robotic platforms, without relying on the availability of experimental
data from human subjects or human-in-the-loop testing. Lastly, even though the
presented results are limited to planar locomotion, the framework can be extended to
3D locomotion by including muscles that act in the frontal plane (hip abductor and
adductor [84]).
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Since all physiological parameters (reference lengths, angle, etc.) were from [77],
which was intended for a non-disabled subject with different height and weight, it
might be beneficial to calibrate these parameters of the muscle model to account
for individual differences (especially for amputee users) and improve the prediction
accuracy of the embedded muscle models, using methods similar to those in [65].
Such prediction accuracy would further allow for targeted muscle behavior of the
user for rehabilitation applications.
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C h a p t e r 4

USER-ALIGNED GAIT PREFERENCE LEARNING

The previous chapter focused on generating nominal gaits that are stable and user-
aligned in an anthropomorphic sense by leveraging biomechanical models. However,
anthropomorphism alone does not fully capture what makes a gait suitable for
an individual user. Depending on the context, natural-looking motion may be
insufficient—or even misaligned with the user’s comfort or intent. A complementary
avenue is to incorporate direct feedback from users, such as verbal input or preference-
based comparisons, to shape gait generation in ways that reflect subjective comfort
and individual needs. For robotic assistive devices, this highlights a key point:
stability and naturalness are necessary foundations, but walking must ultimately be
tailored to each user’s physiology, intentions, and comfort thresholds. Personalization
is therefore essential not only for functional mobility but also for long-term usability
and adoption.

The partial hybrid zero dynamics (PHZD) method of gait generation has been
successfully demonstrated in achieving dynamically stable crutch-less locomotion
on the Atalante exoskeleton. While originally developed for bipedal robots [58,
59, 60], PHZD produces stable walking but does not address optimization for user
comfort—an aspect that should be a critical objective in exoskeleton gait design.
Although prior methods can generate human-like walking gaits for bipedal robots
[21], they are unlikely to match the individual preferences of users receiving robotic
assistance.

This gap is particularly important for lower-body exoskeletons, which aim to restore
mobility to people with paralysis, a group with nearly 5.4 million people in the US
alone [85]. Currently, the relationship between exoskeleton users’ preferences and
the exoskeleton’s walking parameters is poorly understood. Scientifically, such an
understanding could yield insight into the science of walking, for instance, why
exoskeleton users prefer certain gaits to others. On the direct clinical side, identifying
the gaits that users prefer is critical for rehabilitation and assistive device design.
Existing approaches for customizing exoskeleton walking include optimizing factors
such as body parameters and targeted walking speeds [62, 63], minimizing metabolic
cost [24, 64], and optimizing user comfort [22, 23, 65]. More specifically, the work
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in [22, 23, 65] demonstrated the notion of optimizing exoskeleton gaits based on
user preferences to find the optimal gait for each exoskeleton user. Learning from
preferences is beneficial because it has been shown that pairwise preferences (e.g.,
“Does the user prefer A or B?”) are often more reliable than numerical scores [66].

However, learning user preferences for exoskeleton walking presents several chal-
lenges: limited data from time-intensive human subject experiments, the need to
ensure comfort and safety, variability in feedback reliability, and the complexity of
the high-dimensional gait space. Broadly, preference-based learning methods can be
designed with two distinct goals:

1. Preference optimization — finding the optimal gait for a specific user,
providing immediate personalization but requiring dedicated trials for each
individual.

2. Preference characterization — mapping the broader relationship between
gait features and user comfort, enabling predictions of optimal gaits without
extensive per-user trials.

The choice between these goals directly shapes the data collection strategy. Prior work
[22, 23] emphasized direct function optimization, effectively addressing preference
optimization but without producing a complete model of the underlying preference
landscape. In this chapter, we extend the scope to also capture the broader landscape
through preference characterization, accepting that this comes at the cost of less
dense sampling near the optimum.

To achieve personalization while ensuring safety and practicality in exoskeleton
experiments, this chapter builds on three complementary preference-based learning
algorithms: CoSpar [22], LineCoSpar [82], and ROIAL [86]. My contributions are
as follows: 1) Development of ROIAL for preference characterization in a region of
interest that ensures safety and comfort. 2) Extension of ROIAL to a safety-aware
preference-based optimization framework for safety-critical control. 3) Evaluation
of a unified framework combining ROIAL with CoSpar and LineCoSpar on the
Atalante exoskeleton, demonstrating both preference optimization and preference
characterization with paraplegic participants and tuning turning controller. 4)
Development of a preferential multi-objective Bayesian optimization method.

The remainder of this chapter is organized as follows: Section 4.1 presents ROIAL;
Section 4.2 details the integrated framework combining ROIAL, CoSpar, and
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Figure 4.1: The Atalante exoskeleton, designed by Wandercraft, has 12 actuated
joints, 6 on each leg. The experiments explore four gait parameters: step length, step
duration, pelvis roll, and pelvis pitch.

LineCoSpar for clinical use; Section 4.3 describes its extension to safety-aware
preference-based optimization; and Section 4.4 introduces a preferential multi-
objective Bayesian optimization method for settings where user preferences span
multiple competing objectives.

4.1 Region of Interest Active Learning (ROIAL)

In human-in-the-loop exoskeleton gait optimization, exploring the full range of
gait parameters inevitably exposes users to walking patterns that feel unsafe or
uncomfortable. Repeated exposure to such undesirable gaits not only reduces user
comfort but can also lead to disengagement from the experiment. We refer to this
set of undesirable gaits as the Region of Avoidance (ROA) and the remaining set of
acceptable gaits as the Region of Interest (ROI).

Existing work on safe exploration [87, 88, 89, 90] treats unsafe actions as catas-
trophically bad, enforcing strict avoidance throughout learning. While appropriate in
high-risk domains, these methods can be overly conservative in our setting, where
occasional sampling from less-preferred regions is tolerable if it improves the overall
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preference model.

To address this, we proposes the Region of Interest Active Learning (ROIAL)
algorithm, a novel active learning framework which queries the user for qualitative
or preference feedback to: 1) locate the ROI, and 2) estimate the utility function as
accurately and quickly as possible over the ROI. The algorithm selects samples by
modeling a Bayesian posterior over the utility function using Gaussian processes
and maximizing the information gain (over the ROI) with respect to this posterior.
Information gain maximization for preference elicitation is a sample-efficient, state-
of-the-art approach that generates preference queries that are easy for users to answer
accurately [91, 92, 93]. To our knowledge, our approach is the first to tackle such a
region of interest active learning task.

The vast majority of prior work on preference learning obtains at most 1 bit of
information per preference query [91, 92, 93, 22, 23, 94, 95, 65, 96, 97, 98,
99]. ROIAL additionally learns from ordinal labels [100], which assign actions
to r discrete ordered categories such as “bad,” “neutral,” and “good.” Ordinal
feedback enables ROIAL to both: 1) locate the ROI by learning the boundary
between the least-preferred category (ROA) and remaining actions (ROI), and 2)
estimate the utility function more efficiently within the ROI. Compared to the 1 bit
of information obtained per preference, each ordinal query yields up to log2(r) bits
of information. Since ordinal feedback is identical for actions within each ordinal
category, preferences provide finer-grained information about the utility function’s
shape within the categories.

We validate ROIAL both in simulation and experimentally. We demonstrate in
simulation that ROIAL estimates both the ROI and the utility function within the
ROI with high accuracy. We experimentally demonstrate ROIAL on the lower-body
exoskeleton Atalante (Fig. 4.1) to learn the utility functions of three non-disabled
users over four gait parameters. The obtained landscapes highlight both agreement and
disagreement in preferences among the users. Previous algorithms for exoskeleton
gait optimization were incapable of drawing such conclusions; thus, this work
represents progress towards establishing a better understanding of the science of
walking with respect to exoskeleton gait design.
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Problem Statement

We consider an active learning problem over a finite (but potentially-large) action
space A ⊂ Rd with A = |A|. Each action a ∈ A is assumed to have an underlying
utility to the user, f(a). The algorithm aims to learn the unknown utility function
f : A → R. The actions’ utilities can be written in the vectorized form f :=

[f(a(1)), f(a(2)), ..., f(a(A))]⊤, where {a(k) | k = 1, . . . , A} are the actions in A.
Let ai ∈ A be the action selected in trial i, where i ∈ {1, . . . , N}. We receive
qualitative information about f after each trial i, consisting of an ordinal label yi
and (possibly) a preference between ai and ai−1 for i ≥ 2. We use ak1 ≻ ak2 to
denote a preference for action ak1 over ak2, and following each trial i, collect these
preferences into a dataset D(i)

p = {ak1 ≻ ak2 | k = 1, 2, ..., N
(i)
p }. Since preference

feedback is not necessarily given for every trial, N (i)
p ≤ i− 1. The ordinal labels are

similarly collected into D(i)
o = {(ak, yk) | k = 1, 2, ..., N

(i)
o }. The full user feedback

dataset after iteration i is defined as Di := D(i)
p ∪ D(i)

o .

Ordinal feedback assigns one of r ordered labels to each sampled action. These
(possibly-noisy) labels are assumed to reflect ground truth ordinal categories (e.g.,
“bad,” “neutral,” “good,” etc.), which partition A into r sets Oj , j ∈ {1, . . . , r}. We
define the ROA as O1; for instance, in the exoskeleton setting, it consists of gaits that
make the user feel unsafe or uncomfortable. Similarly, the ROA could be defined as⋃n

j=1Oj for n > 1, where the choice of n is task-specific given the ordinal category
definitions. We define the ROI as the complement of the ROA, A \O1.

Defining f̂i := [f̂i(a
(1)), . . . , f̂i(a

(A))]⊤ as the maximum a posteriori (MAP) estimate
of the utilities f givenDi, we aim to adaptively select theN actions a1, . . . ,aN ∈ A
that minimize the error in estimating f over the ROI. Defining u ∈ {0, 1}A as a
binary vector denoting which actions are within the ROI, we model the error as
Error(N) := u⊤|f − f̂N |, where the absolute value is taken element-wise.

Active Learning Algorithm

This subsection describes the ROIAL algorithm (Alg. 1), which leverages qualitative
human feedback to estimate the ROI and utility function (code available at [101]).
We first discuss Bayesian modeling of the utility function, and then explain the
procedure for rendering it tractable in high dimensions. We then detail the process
for estimating the ROI and approximating the information gain to select the most
informative actions.
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Algorithm 1 ROIAL Algorithm
Require: Utility prior parameters; ordinal thresholds b1, . . . , br−1; subset size M ; confi-

dence parameter λ
1: D0 = ∅, ▷ Di: user feedback dataset including iteration i
2: Select an action a1 at random
3: Add ordinal feedback to data to obtain D1

4: for i = 2,. . . , N do
5: Update the model posterior P (f | Di−1) ▷ Eq. (4.1)
6: Determine S(i) by randomly selecting M actions
7: Determine S(i)ROI ⊂ S(i)
8: ai ← argmax

a∈S(i)
ROI

I(f ; si, yi | Di−1,a)

9: Add preference and ordinal feedback to data to obtain Di

10: end for

Bayesian Posterior Inference. To simplify notation, this section omits the iteration
i from all quantities. Given the feedback dataset D = Dp ∪ Do, the utilities f have
posterior:

P (f | Dp,Do) ∝ P (Dp | f)P (Do | f)P (f), (4.1)

where P (f) is a Gaussian prior over the utilities f :

P (f) =
1

(2π)A/2|Σ|1/2 exp
(
−1

2
f⊤Σ−1f

)
,

in which Σ ∈ RA×A, Σij = K(ai,aj), and K is a kernel of choice. This work uses
the squared exponential kernel.

Preference feedback. We assume that the users’ preferences are corrupted by noise
as in [102], such that:

P (a1 ≻ a2 | f) = gp

(
f(a1)− f(a2)

cp

)
,

where gp : R → (0, 1) is a monotonically-increasing link function, and cp > 0

quantifies noisiness in the preferences.

Ordinal feedback. We define thresholds −∞ = b0 < b1 < b2 < . . . < br = ∞ to
partition the action space into r ordinal categories, O1, . . . ,Or. For any a ∈ A,
if f(a) < b1, then a ∈ O1, and a has an ordinal label of 1. Similarly, if
bj ≤ f(a) < bj+1, then a ∈ Oj+1, and a corresponds to a label of j+1. We assume
that the users’ ordinal labels are corrupted by noise as in [100], such that:

P (y | f ,a) = go

(
by − f(a)

co

)
− go

(
by−1 − f(a)

co

)
,
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where go : R → (0, 1) is a monotonically-increasing link function, and co > 0

quantifies the ordinal noise.

Assuming conditional independence of queries, the likelihoods P (Dp | f) and
P (Do | f) are:

P (Dp | f) =
Np∏
k=1

gp

(
f(ak1)− f(ak2)

cp

)
,

P (Do | f) =
No∏
k=1

[
go

(
byk−f(ak)

co

)
−go

(
byk−1−f(ak)

co

)]
.

Our simulations and experiments fix the hyperparameters cp, co, and {bj | j =

1, . . . , r − 1} in advance. One could also estimate them during learning using
strategies such as evidence maximization, but this can be very computationally
expensive, especially in high-dimensional action spaces.

Common choices of link function (gp and go) include the Gaussian cumulative
distribution function [102, 100] and the sigmoid function, g(x) = (1 + e−x)−1 [23].
We model feedback via the sigmoid link function because empirical results suggest
that a heavier-tailed noise distribution improves performance. We use the Laplace
approximation to approximate the posterior as Gaussian: P (f | Di) ≈ N (f̂i, Σ̂i)

[103].

High-Dimensional Tractability. Calculating the model posterior is the algorithm’s
most computationally-expensive step, and is intractable for large action spaces. Most
existing work in high-dimensional Gaussian process learning requires quantitative
feedback [104, 105]. Previous work in preference-based high-dimensional Gaussian
process learning [23] restricts posterior inference to one-dimensional subspaces.
However, the approach in [23] is more amenable to the regret minimization problem
because each one-dimensional subspace is biased toward regions of high posterior
utility. Instead, to increase ROIAL’s online computing speed over high-dimensional
spaces, in each iteration i we select a subset S(i) ⊂ A of M actions uniformly at
random, and evaluate the posterior only over S(i).

Estimating the Region of Interest. Since we lack prior knowledge about the ROI, it
must be estimated during the learning process. In each iteration i, we model the ROI as
the set of actions {ak} that satisfy the following criterion: f̂i−1(ak)+λσ̂i−1(ak) > b1,

where σ̂i−1(ak) is the posterior standard deviation associated with ak. The variable
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λ is a user-defined hyperparameter that determines the algorithm’s conservatism
in estimating the ROI; positive λ’s are optimistic, while negative λ’s are more
conservative in avoiding the ROA. We evaluate actions in the randomly-selected
subset S(i) and define S(i)

ROI = {a ∈ S(i) | f̂i−1(a) + λσ̂i−1(a) > b1} in each
iteration i. Note that this definition is optimistic, whereas safe exploration approaches
use pessimistic definitions [87, 88, 89, 90].

Action Selection via Information Gain Optimization. To learn the utility function
in as few trials as possible, we select actions to maximize the mutual information
between the utility function and the preference-based and ordinal human feedback.
While optimizing the entire sequence of N actions is NP-hard [106], previous work
has shown that a greedy approach which only optimizes the next immediate action
achieves state-of-the-art data-efficiency [92]. Hence, we adopt the same approach to
solve the following optimization in each iteration i:

max
ai∈S

(i)
ROI

I(f ; si, yi | Di−1,ai), (4.2)

where si denotes the outcome of a pairwise preference elicitation between ai and
ai−1. One can rewrite (4.2) in terms of information entropy:

max
ai

H(si, yi | Di−1,ai)−Ef |Di−1
[H(si, yi | Di−1,ai,f)] .

We can interpret the first term as the uncertainty about action ai’s ordinal label and
preference relative to ai−1. We aim to maximize this term, because queries with high
model uncertainty could potentially yield significant information. The second term
is conditioned on f , and so represents the user’s expected uncertainty. If the user is
very uncertain about their feedback, then the action ai gives only a small amount of
information. Hence, we aim to minimize this second term. In this way, information
gain optimization produces queries that are both informative and easy for users.

The second term is estimated via sampling from the Laplace-approximated Gaussian
posterior P (f | Di−1). Computing the first term requires the probability P (si, yi |
Di−1,ai). We derive it as:

P (si, yi | Di−1,ai)

=

∫
RA

P (f | Di−1,ai)P (si, yi | Di−1,ai,f)df

= Ef |Di−1
[P (si, yi | Di−1,ai,f)] ,

which we approximate with samples from P (f | Di−1).
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(a) Iteration 1 (b) Iteration 3 (c) Iteration 5 (d) Iteration 20

Figure 4.2: 1D posterior illustration. The true objective function is shown in orange,
and the algorithm’s posterior mean is blue. Blue shading indicates the confidence
region for λ = 0.5. The solid grey line indicates the true ordinal threshold b1: the
ROI is above this threshold, while the ROA is below it. The dotted grey line is the
algorithm’s b1 hyperparameter. The actions queried so far are indicated with “x"s.
Utilities are normalized in each plot so that the posterior mean spans the range from
0 to 1.

(a) Synthetic func-
tion posterior

(b) Hartmann3 function predic-
tion error

(c) Synthetic function prediction
error

Figure 4.3: Impact of random subset size on algorithm performance. a) Example 3D
synthetic objective function and posterior learned by ROIAL with subset size = 500
after 80 iterations. Values are averaged over the 3rd dimension and normalized to
range from 0 to 1. b-c) Algorithm’s error in predicting preferences and ordinal labels
(mean ± std). Each simulation evaluated performance at 1000 randomly selected
points; the model posterior was used to predict preferences between consecutive
pairs of points and ordinal labels at each point.

Results

Simulation Results. We evaluate ROIAL’s performance on the Hartmann3 (H3)
function—which is a standard benchmark for learning non-convex, smooth functions—
and on 3-dimensional synthetic functions, sampled from a Gaussian process prior
over a 20 × 20 × 20 grid. As evaluation metrics, we use the algorithm’s errors
in preference and ordinal label prediction; these allow us to quantify performance
when the true utility function is unknown. The average ordinal prediction error is
defined as Error(N) := 1

N

∑N
k=1 |ypredk − ytruek |, and all simulations use 5 ordinal
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categories.1

1D illustration of ROIAL. Fig. 4.2 illustrates the algorithm for a 1D objective
function. Initially, ROIAL samples widely across the action space (Fig. 4.2(a)-
4.2(c)). As seen by comparing iterations 5 and 20 (Fig. 4.2(c)-4.2(d)), the algorithm
stops querying points in the ROA (actions in O1) because the upper confidence
bound (top of the blue shaded region) there falls below the hyperparameter b1 (dotted
gray line).

Extending to higher dimensions. To characterize the impact of the random subset
size on algorithmic performance, we compare performance of different sizes in
simulation for both the H3 and synthetic functions. We calculate the posterior over
the entire action space only every 10 steps to reduce computation time, and then use
this posterior to evaluate the algorithm’s error in predicting preference and ordinal
labels. Fig 4.3(a) provides an example of a 3D posterior, Fig. 4.3(b) depicts the
average performance for H3 over 10 simulation repetitions, and Fig. 4.3(c) shows
the average performance over a set of 50 unique synthetic functions. We find that a
subset size of at least 5 yields performance close to using all points.

Estimating the region of interest. We demonstrate the effect of the confidence pa-
rameter λ on the number of actions sampled from the ROA and on prediction error
in the ROI. Fig. 4.4(a) demonstrates that across various values of λ, visits to the
ROA decrease as λ decreases. To confirm that restricting queries to the estimated
ROI does not harm performance, we also compare label prediction error in the
ROI across values of λ. When λ = −0.45, ROIAL achieves similar preference
prediction accuracy and slightly-improved ordinal label prediction within the ROI
compared to λ = ∞, which permits sampling over the entire action space (Fig.
4.4(a)). Additionally, the confusion matrix (Fig. 4.4(b)) shows that the algorithm
usually predicts either the correct ordinal label or an adjacent ordinal category. The
ROI prediction accuracy (green text in Fig. 4.4(b)) indicates that ROIAL predicts
whether points belong to the ROI with relatively-high accuracy.

Robustness to noisy feedback. Since user feedback is expected to be noisy, we evaluate
the algorithm’s robustness to noisy feedback generated from the distributions P (y |
f ,a) = go

(
b̃y−f(a)

c̃o

)
− go

(
b̃y−1−f(a)

c̃o

)
and P (a1 ≻ a2 | f) = gp

(
f(a1)−f(a2)

c̃p

)
for ordinal and preference feedback, respectively, with true ordinal thresholds
{b̃j|j = 1, . . . , r − 1} and simulated noise parameters c̃p and c̃o. We set c̃o > c̃p

1Unless otherwise stated, hyperparameters are held constant across simulations and experiments,
and their values can be found in [101].
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(a) Sample number in ROA & prediction error in ROI (b) Confusion matrices

Figure 4.4: Effect of the confidence interval. All simulations are run over 50 synthetic
functions with a random subset size of 500. a) Left: cumulative number of actions in
the ROA (O1) queried at each iteration (mean ± std). Note that as λ increases, more
samples are required for the confidence interval to fall below the ROA threshold, at
which point ROIAL starts avoiding the ROA. Middle and right: error in predicting
preference and ordinal labels for different values of λ; predictions are over 1,000
random actions (mean± std). b) Confusion matrices (column-normalized) of ordinal
label prediction over the entire action space at iterations 80 and 240 with λ = -0.45.
The 2 × 2 confusion matrices for ROI prediction accuracy are outlined in green.
Prediction accuracy increases with the number of iterations.

Figure 4.5: Effect of noisy feedback. The ordinal and preference noise parameters, c̃0
and c̃p, range from 0.1 to 0.3 and 0.02 to 0.06, respectively. All cases use a random
subset size of 500 and λ = −0.45, and each simulation uses 1,000 random actions to
evaluate label prediction. Plots show means ± standard deviation.

because we expect ordinal labels to be noisier than preferences, as they require users
to recall all past experience to give consistent feedback, whereas a preference only
involves the previous and current action. The algorithm learns more slowly with
noisier feedback (Fig. 4.5).

Exoskeleton Experiments. After demonstrating ROIAL’s performance in simulation,
we experimentally deployed it on the lower-body exoskeleton Atalante, developed by
Wandercraft (video: [107], ROIAL hyperparameters: [101]). Atalante, shown in Fig.
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Figure 4.6: Confusion matrix of the validation phase results for all three subjects. The
first column is grey because actions in the ROA (O1) were purposefully avoided to
prevent subject discomfort. Percentages are normalized across columns. Parentheses
show the numbers of gait trials in each case.

Figure 4.7: 4D posterior mean utility across exoskeleton gaits. Utilities are plotted
over each pair of gait space parameters, with the values averaged over the remaining
2 parameters in each plot. Each row corresponds to a subject: Subject 1 is the most
experienced exoskeleton user, Subject 2 is the second-most experienced user, and
Subject 3 never used the exoskeleton prior to the experiment.

4.1, is an 18 degree of freedom robot designed to restore assisted mobility to patients
with motor complete paraplegia through the control of 12 actuated joints: 3 joints at
each hip, 1 joint at each knee, and 2 degrees of actuation in each ankle. For more
details on Atalante, refer to [60, 58, 59].

Dynamically stable crutch-less exoskeleton walking gaits are generated through
nonconvex optimization techniques (see Section II of [22]), based on the theory of
hybrid zero dynamics (HZD) introduced by [21] and the HZD-based optimization
method presented in [108]. These periodic gaits are parameterized by various
features, and this studies focuses on four: step length (SL) in meters, step duration
(SD) in seconds, maximum pelvis roll (PR) in degrees, and maximum pelvis pitch
(PP) in degrees (Fig. 4.1). These parameters were selected because exoskeleton



56

users frequently suggested modifications to SL, SD, and PR in prior work [109], and
we wanted to further study the relationship between PR and PP. We discretized these
parameters into bins of sizes 10, 7, 5, and 5, respectively, resulting in 1,750 actions
within a 4D action space. ROIAL randomly selected 500 actions in each iteration
and used λ = 0.45 to estimate the ROI.

The experimental procedure was conducted for three non-disabled subjects and
consisted of 40 trials divided into a training phase (30 trials) and a validation phase
(10 trials). Subjects were not informed of when the validation phase began. Subjects
provided ordinal labels for all 40 gaits, and optional pairwise preferences between
the current and previous gaits for all but the first trial. Four ordinal categories were
considered and described to the users as:

1. Very Bad (O1): User feels unsafe or uncomfortable to the point that the user
never wants to repeat the gait.

2. Bad (O2): User dislikes the gait but does not feel unsafe or uncomfortable.

3. Neutral (O3): User neither dislikes nor likes the gait and would be willing to
try the gait again.

4. Good (O4): User likes the gait and would be willing to continue walking with
it for a long period of time.

While including additional ordinal categories could increase the potential information
gain from each query, it also increases the cognitive burden for the users and thus
makes the labels less reliable. Validation actions were selected so that at least
two samples were predicted to belong to O2,O3, and O4, with the remaining four
validation actions sampled at random. Actions predicted to belong in O1 were
excluded because they are likely to make the user feel uncomfortable or unsafe,
and actions sampled during the training phase were explicitly excluded from the
validation trials.

Experimental results. Figure 4.6 depicts the results of the validation phase for all three
subjects. These results show a reliable correlation between the predicted categories
and the users’ reported ordinal labels, in which the majority of the predicted ordinal
labels are within one category of the true ordinal labels.

Since less than 2% of the action space was explored during the experiment, we
expect that the prediction accuracy would increase with additional exoskeleton trials
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as observed in simulation (Fig 4.4(b)). Overall, these results suggest that ROIAL can
yield reliable preference landscapes within a moderate number of samples.

Figure 4.7 depicts the final posterior mean for each of the subjects. These utility
functions highlight both regions of agreement and disagreement among the subjects.
For example, all subjects strongly dislike gaits at the lower bound of PP and lower
bound of PR. However, all subjects disagree in their utility landscapes across SL and
SD. This type of insight could not be derived from direct gait optimization, which
mostly obtains information near the optimum.

We also evaluated the effect of each gait parameter on the posterior utility using the
permutation feature importance metric. The results of this test for each respective
subject across the four gait parameters (SL, SD, PR, PP) are: (0.20, 0.30, 0.33, 0.27),
(0.26, 0.36, 0.38, 0.29), and (0.23, 0.16, 0.21, 0.45). These values suggest that the
preferences of more experienced users (Subjects 1 and 2) may be most influenced
by SD and PR, while the least-experienced user’s feedback may be most weighted
by PP (Subject 3). The code for this test is available on GitHub [101]. These
results demonstrate that ROIAL is capable of obtaining preference landscapes within
relatively-few exoskeleton trials while avoiding gaits that make users feel unsafe or
uncomfortable.

Summary

We present the ROIAL framework for actively learning utility functions within a
region of interest from pairwise preferences and ordinal feedback. The ROIAL
algorithm is experimentally demonstrated on the lower-body exoskeleton Atalante for
three non-disabled subjects (video: [107]). In simulation, ROIAL predicts utilities
in the ROI while learning to stay away from the ROA. In experiments, ROIAL
typically predicts subjects’ ordinal labels correctly to within one ordinal category.
Furthermore, the results illustrate that gait preference landscapes vary across subjects.
In particular, a feature importance test suggests that the two more-experienced users
prioritized step duration and pelvis roll, while a new user prioritized pelvis pitch.

Making conclusive claims about gait preference landscapes requires conducting
these experiments on patients with motor complete paraplegia, as well as scaling
up the experiments. Another limitation of this work is the high noise in users’
ordinal labels, which may depend on factors such as prior experience and bias due to
the gait execution order. Thus, future work includes designing a study to directly
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quantify the noise in exoskeleton users’ ordinal labels. Future work also includes
continuing the experiments over more trials, as prediction accuracy is expected
to improve with additional data. To conclude, the ROIAL algorithm provides a
principled methodology for characterizing exoskeleton users’ preference landscapes
in high-dimensional action spaces. This work contributes to better understanding the
mechanisms behind user-preferred walking and optimizing future gait generation for
user comfort.
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Figure 4.8: Illustration of the preference-based learning framework applied to
exoskeleton gait optimization and characterization. The learning framework consists
of four main components: 1) collecting subjective user feedback from exoskeleton
users; 2) using the collected feedback to model the underlying preference landscape
as a Gaussian Process and selecting new actions to sample from this GP; 3) translating
the selected actions into a corresponding walking gait; and 4) allowing the user to
experience the walking gait on the Atalante exoskeleton.

4.2 Unified Preference-based Learning Framework

In this section, we present experimental results from a unified preference-based
learning framework that combines ROIAL with CoSpar [22] and LineCoSpar [82].
Together, these methods form a cohesive toolbox for preference-based optimiza-
tion and characterization [110], offering a practical framework for applying such
algorithms in clinical and experimental settings. The framework jointly supports
preference optimization and preference characterization, enabling both efficient
gait personalization and a richer understanding of the underlying preference land-
scape. We evaluate this approach on the Atalante exoskeleton with participants
with paraplegia, incorporating not only preference and ordinal feedback but also
coactive feedback that essentially are user suggestions on potential improvement of
gaits. Beyond optimizing forward walking parameters, we further demonstrate its
application to tuning a turning controller, thereby enhancing both maneuverability
and overall walking comfort.

Before detailing the unified framework, we first review several key concepts and
algorithms it builds upon that have not yet been introduced: coactive feedback,
sampling strategies for regret minimization, dimensionality reduction techniques for
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high-dimensional action spaces, and the LineCoSpar algorithm.

Background on Existing Methods

Coactive Feedback

User suggestions, also known as coactive feedback, can be incorporated into the
learning framework by treating user-proposed improvements as implicit preferences.
In this setting, a suggestion ā for improving a sampled action a is interpreted
as f(ā) > f(a). This approach follows the coactive learning framework [111,
112], in which the user identifies an improved action as feedback to each presented
action. Combining preference and coactive feedback is known as mixed-initiative
learning [113, 114]. While coactive feedback can be noisier than pairwise prefer-
ences—especially in exoskeleton walking, where an improvement suggested before
walking may feel worse in practice—it increases the information gained per trial and
can improve sample efficiency.

Sampling for Regret Minimization

We use Thompson sampling [115] as our primary sampling strategy for regret
minimization. Thompson sampling selects actions in proportion to their probability
of being optimal under the posterior utility model, balancing exploration and
exploitation. Compared to Relative Upper Confidence Bound (RUCB) [116],
Thompson sampling tends to favor exploitation slightly, which has been shown to be
advantageous in preference-based settings [22].

LineCoSpar and Dimensionality Reduction

In high-dimensional action spaces, updating the posterior over all possible actions
can be computationally prohibitive. LineCoSpar [82] addresses this challenge by
extending CoSpar [22] with a dimensionality reduction strategy inspired by [117].
Specifically, it restricts posterior updates to a subset S = L ∪ V, where L is a
one-dimensional subspace passing through the current estimated optimum, and V

is the set of previously visited actions. This approach reduces the complexity of
posterior updates from scaling with the full action space dimension to scaling with the
much smaller subset size, enabling efficient online learning without significant loss
in optimization performance. By focusing exploration along lines through promising
actions while retaining previously evaluated points, LineCoSpar, outlined in Alg.
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Algorithm 2 LineCoSpar
1: procedure LineCoSpar(Utility prior parameters; m = granularity of discretization)
2: D = ∅, V = ∅ ▷ D: preference data, V: visited actions
3: Set a∗

1, a0 to uniformly-random actions
4: for t = 1, 2,. . . , T do
5: Lt = random line through a∗

t , discretized via m
6: St = Lt ∪V ▷ Points over which to update posterior
7: Normal(µt,Σt) = posterior over points in St, given D
8: Sample utility function ft ∼ Normal(µt,Σt)
9: Execute action at = argmaxa∈St

ft(a)
10: Add pairwise preference between at and at−1 to D
11: Add coactive feedback a′

t to D
12: Set V = V ∪ {at} ∪ {a′

t} ▷ Update actions in V
13: Set a∗

t+1 = argmaxa∈Vt
µt(a)

14: end for
15: end procedure

2,maintains strong optimization performance in high-dimensional gait parameter
spaces with far fewer required user interactions.

Experimental Results

The components reviewed above—coactive feedback for richer interaction, Thomp-
son sampling for regret minimization, LineCoSpar for scalable high-dimensional
optimization, and ROIAL for preference characterization introduced in the previous
section—form the foundation of the unified preference-based learning framework.
We evaluate this framework on the Atalante exoskeleton across multiple action
spaces (Fig. 4.9), with the goal of assessing its ability to support both preference
optimization and preference characterization. We begin by presenting results from
experiments conducted with participants with paraplegia.

Patients with Paraplegia

We demonstrate the entire preference-based learning framework for two subjects
with complete motor paraplegia. These subjects will be referred to as Subject 9 and
10 since there was a total of eight non-disabled subjects. On the AISA impairment
scale[118], the subjects both classify as completely impaired (AISA A), but differ in
that Subjects 9 and 10 have T10 and T5 levels of injury, respectively. The subjects
also differed in their prior experience with the Atalante exoskeleton, with Subject 9
having over 300 hours of prior experience and Subject 10 having fewer than 30.
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Figure 4.9: The preference-based learning framework aims to modify exoskeleton
behavior through the selection of various gait parameters, such as those illustrated
in the figure. The presented experiments demonstrate the methodology across
three separate action spaces: a) the action space for experiments with non-disabled
subjects; b) the action space for experiments with subjects with paraplegia; and c)
the action space for exoskeleton turning experiments. Here, amin

i and amax
i are the

minimum and maximum bounds, respectively, for each action space parameter, with
di being the interval between neighboring actions.

As discussed earlier, these experiments explore a slightly different gait library than
that considered in the first set of experiments. It is parameterized by three gait
features: step length (cm), step cadence (steps/min), and center of mass offset (%
offset), which shifts the user’s center of mass either forward or backward during
walking. We explore this gait library because it has CE certification in Europe for
use in clinical settings. Figure 4.9 provides the action space definition associated
with this gait library.

Unlike the experiments with non-disabled subjects, five minute breaks were taken
every 20 minutes to prevent subjects from developing pressure sores. Due to the
longer total duration, these experiments were broken over two days of testing. During
the first session, the ROIAL algorithm was deployed for 15 learning iterations to
coarsely characterize user comfort across the action space. As before, the subjects
provided ordinal labels of “very bad,” “bad,” “neutral,” and “good,” with the “very
bad” label defining the ROA. The preference landscapes learned in these first sessions
are illustrated in the top row of Figure 4.10.

In the second session, we continued the learning process using the LineCoSpar
algorithm to learn the parameters optimizing user comfort, with the final preference
landscapes shown in the middle row of Figure 4.10 and the gaits identified as optimal
illustrated via gait tiles in the bottom row. These second experimental sessions were



63

Figure 4.10: Experimental results of unified framework during exoskeleton walking
for subjects with paraplegia. We illustrate the experimental results from applying the
learning framework towards preference characterization and preference optimization
for two subjects with complete motor paraplegia. Preference characterization
experiments were first conducted via two-hour experimental sessions with the
ROIAL algorithm. The landscapes obtained after these first sessions, shown in
the top row, indicate that the two subjects have similar relationships between gait
parameters and comfort. To identify the gait optimizing user comfort for each
subject, we continued learning in additional two-hour experimental sessions using
the LineCoSpar algorithm. The landscapes obtained after these second sessions
are shown in the middle row of the figure. These updated landscapes indicate that
while the subjects had similar gait characterization results, the gaits optimizing user
comfort differ between these users. The step length (SL), step cadence (SC), and
center of mass offset (CO) for the gaits identified as optimal, as depicted in the
gait tiles in the bottom row, were [0.11 cm, 74 steps/min, 0.5 cm] and [0.13 cm, 80
steps/min, 0cm]. Lastly, it can be seen that actions are sampled more uniformly
during preference characterization (sampled actions are marked with a black circle),
and actions with higher underlying utility values were sampled more frequently
during preference optimization.

conducted for 15 and 25 iterations for Subjects 9 and 10, respectively. Sessions
terminated when the operator felt that the algorithm had identified an exoskeleton
gait that sufficiently optimized user comfort. With additional iterations, it is likely
that the algorithm would continue to converge to optimal behavior, but at a slower
rate.

Since experiment time with the subjects was limited, we only conducted one
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evaluation trial at the conclusion of each second session. During this trial, the subject
was unknowingly given the gait that optimized the final posterior mean. The subjects
were queried for feedback as usual, and both labeled the optimal gait as “good” (the
highest ordinal category). This feedback indicates that after obtaining a general
preference landscape across the entire gait library, the framework could successfully
learn to identify gaits that optimized user comfort.

Exoskeleton Turning

To emphasize the application-agnostic nature of the preference-based learning
framework, it is further applied towards optimizing user-comfort during exoskeleton
turning. Similar to walking, turning is achieved by generating stable joint-level
trajectories via the PHZD method. In this work, turning behavior consists of rotating
the exoskeleton about its vertical axis through two distinct steps, with each step lifting
and rotating either the left or right foot. As in the walking experiments, we define
each unique turning behavior via several user-defined parameters. In our experiment,
we chose six parameters to explore: rotation angle (degrees), duration of the first
step (seconds), duration of the second step (seconds), center of mass offset (mm),
height of the first step (cm), and height of the second step (cm). This action space
definition is detailed in Figure 4.9, and illustrated in the top row of Figure 4.11.

First, we conducted a preference characterization phase using ROIAL, in which 50
learning iterations were performed over a coarse action space to obtain a general
preference landscape. This rough landscape is illustrated for four two-dimensional
cross-sections in the top row of Figure 4.11. Following these initial 50 iterations, an
additional 10 iterations of preference optimization were conducted over the coarse
action space, with the resulting posteriors illustrated in the middle row of Figure 4.11.
Finally, to fine-tune the action predicted to maximize user comfort, we conducted
an additional 40 iterations of preference optimization over a more finely discretized
action space. The final posterior over user utilities learned from all 100 iterations is
illustrated in the bottom row of Figure 4.11.

To evaluate the experimental results, we compared the parameters identified as
optimizing user comfort to hand-tuned parameters. The optimal action identified
by the learning framework after completion of the 100 iterations has the following
values: [20 deg, 0.9 s, 0.875 s, 15 mm, 5 cm, 5 cm]. In comparison, the optimal
action identified by the expert operator after approximately 2 months of manual
tuning was [22.5 deg, 0.92 s, 0.86 s,−80 mm, 0 cm, 0 cm]. Aside from center of
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mass offset (CO), these actions are very close, especially considering the wide
action space range outlined in Figure 4.9. This is striking, considering that the
action space (defined in Figure 4.9) contains a total of 275,400 discrete parameter
combinations. Notably, the CO values likely differ because the action space only
included CO values between -20 and 20 mm; since these values of CO are small, the
effect of CO was negligible on the final turning behavior. The expert operator also
noted that the algorithm-identified parameters and the manually-tuned parameters
resulted in comparable turning behaviors. This indicates that the learning framework
successfully identified user-preferred parameters. While this success demonstrates
the extensibility of our method, it is important to note that this extension relies on
the ability to parameterize the desired behavior. For locomotive behaviors, gait
libraries are a common method of parameterization. However, for other human-
robot interactive behaviors, our framework requires defining a parameterization that
describes the space of all desired behaviors.

Summary

To systematically explore the space of possible design choice for gait parameters, a
preference-based learning framework was developed to both directly optimize user
comfort (preference optimization) and characterize the underlying preference land-
scape (preference characterization). Importantly, this framework leverages subjective
feedback mechanisms (pairwise preferences, user suggestions, and ordinal labels),
which have been shown to be more reliable compared to numerical scores. This
framework was demonstrated towards preference optimization and characterization
for non-disabled subjects on the Atalante lower-body exoskeleton, as well as for two
subjects with complete motor paraplegia.
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Figure 4.11: Experimental results of unified framework during exoskeleton turning
for a non-disabled subject. To demonstrate the learning framework’s application-
agnostic nature, we applied it to sequentially characterize and optimize user comfort
during exoskeleton turning. First, we defined the action space over five parameters
of exoskeleton turning behavior: rotation angle (RA) in seconds, duration of the
first and second steps (DS1, DS2) in seconds, and height of the first and second
steps (HS1, HS2) in centimeters. The experiment was conducted in three separate
phases. The ROIAL algorithm was first deployed to characterize user preferences
for 50 iterations. Then, we used the LineCoSpar algorithm to find the optimal gait
within a coarse action space for an additional 10 iterations. Finally, we fine-tuned
the predicted optimal action by using LineCoSpar for another 40 iterations with a
more finely-discretized action space.
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4.3 Safety-Aware LineCoSpar

In the previous sections of this chapter, we reviewed existing preference-based
learning (PBL) methods, including LineCoSpar [82], as well as the ROIAL algorithm
for preference characterization within a region of interest (ROI). While LineCoSpar
provides an efficient framework for high-dimensional preference optimization, its
original formulation does not incorporate safety-awareness, limiting its suitability for
safety-critical control systems. To address this limitation, we introduce Safety-Aware
LineCoSpar, which augments LineCoSpar with the ROI-based safety-awareness of
ROIAL. This directs exploration toward regions unlikely to violate safety constraints
while still enabling efficient optimization of user-preferred behaviors.

This challenge reflects a broader issue in modern control design. As systems be-
come increasingly complex and modular—integrating perception, planning, and
low-level control—each subsystem must balance safety and performance. When
subsystems are designed under conservative worst-case assumptions, overall perfor-
mance at the system level is sacrificed [119, 120]. Conversely, manually tuning the
safety–performance trade-off of each component can improve outcomes [121], but
the process is qualitative, time-consuming, and heavily reliant on expert intuition.
Embedding safety-awareness directly into the optimization process provides a sys-
tematic alternative for balancing these competing demands in user-aligned behavior
personalization.

For safety-critical systems, Control Barrier Functions (CBFs) provide a principled
model-based framework for enforcing safety guarantees [122, 123, 124]. While
extensions exist to handle model uncertainty [125, 126, 127, 128], disturbances [129,
130, 131, 132, 120, 133], and measurement errors [134, 135, 136], combining such
robust components typically compounds conservatism. As a result, deployment
in practice typically requires loosening theoretical guarantees and labor-intensive
manual tuning of controller parameters—a process that underscores the need for
more systematic, data-driven approaches.

PBL offers a complementary alternative by leveraging user feedback to guide
controller tuning. Instead of manually adjusting parameters, PBL infers a user’s
latent utility function from qualitative feedback—such as pairwise preferences,
ordinal ratings, or coactive suggestions—and optimizes parameters accordingly. This
approach has been applied in domains such as exoskeleton gait optimization [22],
locomotion [25], and trajectory planning [137, 92], with safety-aware variants
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Figure 4.12: An overview of the Safety-Aware Preference-Based Learning design
paradigm. Safety-Aware LineCoSpar is used to generate actions which are rolled out
in experiments as parameters of the CBF-based safety filter to obtain user preferences
and safety ordinal labels which are then used to update the user’s estimated utility
and generate new actions.

ensuring that unsafe actions are avoided during learning [87, 90, 89]. However, these
algorithms often rely on worst-case approximations, again leading to conservative
solutions that exclude many feasible and high-performing behaviors.

Safety-Aware LineCoSpar extends preference-based learning to safety-critical do-
mains in a way that respects both safety constraints and user input. By avoiding
overly conservative worst-case assumptions, it preserves a broader set of candidate
actions for users to shape through feedback. This shifts the tuning process from
expert-driven trial-and-error toward user-driven adaptation, enabling systems to more
directly reflect user preferences while remaining safety-aware. Ultimately, it offers a
scalable paradigm for aligning complex control systems with user needs in real-world
settings.

Safety-Aware Sampling

It is important to avoid unsafe actions during sequential decision making in certain
applications, such as learning robotic controllers on hardware, where low-reward
actions might lead to physical damage of the platform. Safe exploration algorithms
[87, 90, 89] considered the setting where actions below a prespecified safety threshold
are catastrophic and must be avoided at all cost. In our work, since we construct
controllers that account for safety, we adopt a more optimistic learning approach
called safety-aware. In this case, actions labeled by a human as “unsafe” are not
catastrophic but undesirable. Thus, the algorithm avoids these actions; whereas the
safe exploration algorithms guarantee that no such actions are sampled which can be
sometimes exceedingly conservative in settings like ours.

To achieve this safety-awareness, we leverage the approach introduced in [86], which
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uses ordinal labels to identify a region of interest (ROI) in A. In this work, the ROI
is defined to be the actions labeled as “safe”. In each iteration i we estimate an ROI
within the set Si as:

SROI
i = {a ∈ Si | f̂Si

(a) + λσSi
(a) > β}, (4.3)

where f̂Si
(a) and σSi

(a) are the posterior mean and standard deviation, respectively,
evaluated at the action a ∈ Si. The variable λ ∈ R determines how conservative the
algorithm would be in estimating the safety region, as illustrated in Figure 4.13. We
see that lower values of λ result in fewer unsafe actions being sampled, with only a
slight effect on sample-efficiency. The restriction to SROI

i is added to LineCoSpar
by only considering actions in SROI

i during Thompson sampling. We refer to this as
Safety-Aware LineCoSpar (SA-LineCoSpar), with the full algorithm outlined in Alg.
3.

Algorithm 3 Safety-Aware LineCoSpar
Require: s uniformly random initial actions V1 ⊂ A and corresponding feedback

D1

1: for i = 2 to N do
2: Update posterior over Vi−1

3: â∗
i−1 ← argmaxa∈Vi−1

f̂Vi−1
(a)

4: Li ← new 1D subspace intersecting â∗
i−1

5: Si ← Li ∪Vi−1

6: Update posterior over Si

7: Determine region of interest SROI
i

8: for j = 1 to s do
9: f (j) ∼ N (f̂Si

,ΣSi
)

10: a
(j)
i ← argmaxa∈SROI

i
f (j)

11: end for
12: Deploy {a(1)

i , . . . ,a
(s)
i } on the system

13: Vi ← Vi−1 ∪ {a(1)
i , . . . ,a

(s)
i }

14: Di ← Di−1∪ new preferences ∪ new ordinal labels
15: end for
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Figure 4.13: Comparison of SA-LineCoSpar and standard LineCoSpar on a synthetic
utility function (drawn from the Gaussian prior), averaged over 50 runs. Shaded
regions indicate standard error. The safety-aware criteria significantly reduces the
number of sampled unsafe actions while maintaining similar prediction error, defined
as |â∗

i − a∗|, where â∗
i ≜ argmaxa f̂Si

and a∗ ≜ argmaxa f(a).

Integrating Safety-Aware Preference-Based Learning with Safety-
Critical Control

The nominal safety-critical controller used in this section is synthesized using
Control Barrier Functions (CBFs). Notably, the specific formulation of the CBF
yields parameters are able to be modified with SA-LineCoSpar to tune the overall
performance-robustness trade off. In this subsection, we will outline the utilized
controller before presenting the results of the overall learning framework towards
tuning its parameters.

Consider the following nonlinear control-affine system:

ẋ = f(x) + g(x)(v + d(t)), (4.4)

with state x ∈ Rn, input v ∈ Rm, functions f : Rn → Rn and g : Rn → Rn×m as-
sumed to be locally Lipschitz continuous on their domains, and piecewise continuous
disturbance signal d : R≥0 → Rm for which we define ∥d∥∞ ≜ supt≥0 ∥d(t)∥.
Specifying the input via a controller k : Rn → Rm that is locally Lipschitz continuous
on its domain yields the closed-loop system:

ẋ = f(x) + g(x)(k(x) + d(t)). (4.5)

We assume for any initial condition x(0) = x0 ∈ Rn and disturbance d, this system
has a unique solution x(t) for all t ∈ R≥0. We consider this system safe if its state
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x(t) remains in a safe set C ⊂ Rn, defined as the 0-superlevel set of a continuously
differentiable function h : Rn × Rp → R:

C = {x ∈ Rn : h(x,ρ) ≥ 0}, (4.6)

where ρ ∈ Rp are constant application-specific parameters. We say the set C ⊂ Rn

is forward invariant if for every x0 ∈ C the solution x(t) to (4.5) satisfies x(t) ∈ C
for all t ≥ 0. The system (4.5) is safe with respect to C if C is forward invariant.
Ensuring the safety of the set C in the absence of disturbances and measurement
error can be achieved through Control Barrier Functions (CBFs):

Definition 2 (Control Barrier Functions (CBF) [122]). The function h is a Control
Barrier Function (CBF) for (4.4) on C if there exists α ∈ Ke

∞
2 such that for all

x ∈ Rn:
sup
v∈Rm

∂h

∂x
(x,ρ)f(x)︸ ︷︷ ︸
Lfh(x,ρ)

+
∂h

∂x
(x,ρ)g(x)︸ ︷︷ ︸
Lgh(x,ρ)

v > −α(h(x,ρ)). (4.7)

While it may be possible to synthesize controllers that render a given set C safe in
the presence of disturbances [129], this may result in overly-conservative behavior.
Instead, we consider how safety properties degrade with disturbances via the following
definition.

Definition 3 (Input-to-State Safety [130]). The system (4.5) is Input-to-State Safe
(ISSf) with respect to C if there exists γ ∈ K∞ such that for all δ ∈ R≥0 and
disturbances d : R≥0 → Rm satisfying ∥d∥∞ ≤ δ, the set Cδ ⊂ Rn defined as:

Cδ = {x ∈ Rn : h(x,ρ) ≥ −γ(δ)}, (4.8)

is forward invariant. The function h is an Input-to-State Safe Control Barrier Function
(ISSf-CBF) for (4.4) on C with parameter φ ∈ R≥0 if there exists α ∈ Ke

∞ such that
for all x ∈ Rn:

sup
v∈Rm

Lfh(x,ρ) + Lgh(x,ρ)v − φ∥Lgh(x,ρ)∥2 > −α(h(x,ρ)). (4.9)

The parameter ρ ∈ Rp contains information about the system’s environment that
affects safety, such as the location and size of obstacles. In novel environments

2We say that a continuous function α : R≥0 → R≥0 is class K∞ (α ∈ K∞) if α(0) = 0, α is
strictly monotonically increasing, and limr→∞ α(r) =∞. We say that a continuous functionα : R→
R is class Ke

∞ (α ∈ Ke
∞) if α(0) = 0, α is strictly monotonically increasing, limr→∞ α(r) = ∞,

and limr→−∞ α(r) = −∞.
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the system may need to generate estimates of ρ denoted by ρ̂ ∈ Rp from complex
measurements, such as camera data. The process of converting complex measure-
ments to environmental parameters ρ̂ is often imperfect, leading to error between the
estimated and true values (i.e., ρ̂ ̸= ρ), which can cause safety violations. In this
setting, safety can be achieved via Measurement-Robust Control Barrier Functions
(MR-CBFs):

Definition 4 (Measurement-Robust Control Barrier Functions [135]). The function
h is a Measurement-Robust Control Barrier Function (MR-CBF) for (4.4) on C with
parameters a, b ∈ R≥0 if there exists α ∈ Ke

∞ such that for all ρ̂ ∈ Rp and x ∈ Rn:

sup
v∈Rm

Lfh(x, ρ̂) + Lgh(x, ρ̂)v − a− b∥v∥ > −α(h(x, ρ̂)). (4.10)

The following theorem summarizes the safety results achieved with these various
types of CBFs:

Theorem 1. Consider the set C defined in (4.6).

1. If h is a CBF for (4.4) on C, d(t) = 0 for t ∈ R≥0 and ρ̂ = ρ, then there exists
a controller k such that (4.5) is safe with respect to C.

2. If h is an ISSf-CBF for (4.4) on C with parameter φ and ρ̂ = ρ, then
there exists a controller k such that (4.5) is ISSf with respect to C with
γ(δ) = −α−1(−δ2/(4φ)) where α−1 ∈ Ke

∞.

3. Assume Lfh, Lgh, and α ◦ h are Lipschitz continuous on their domains, and
assume that ∥ρ̂−ρ∥ ≤ ϵ for some ϵ ∈ R≥0. Then there exists a, b ∈ R≥0 such
that if h is an MR-CBF for (4.4) on C with parameters a, b ∈ R≥0 satisfying
a ≥ a and b ≥ b, and d(t) = 0 for t ∈ R≥0, then there exists a controller k
such that (4.5) is safe with respect to C.

In particular, consider the following cascaded nonlinear control-affine system resulting
as a modification of (4.4):

ẋ = f(x) + g(x)κ(ξ), ξ̇ = fξ(x, ξ) + gξ(x, ξ)u, (4.11)

with additional states ξ ∈ Rnξ , control input u ∈ Rmξ and functions κ : Rnξ → Rm,
fξ : Rn×Rnξ → Rnξ , and gξ : Rn×Rnξ → Rnξ×mξ assumed to be locally Lipschitz
continuous on their domains. We note that the input v from (4.4) was replaced by
κ(ξ). These dynamics may represent Euler-Lagrange systems such as robots, where
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x reflects base position, ξ captures base velocities and joint positions and velocities,
and the input u reflects the torques applied to the joints.

Given this cascaded system, we utilize the low-dimensional subsystem to ensure
that C is ISSf by making two assumptions. First, we assume the safe set C can be
described as in (4.6), such that it only depends on the states x and parameters ρ, and
not the states ξ. For example, in the context of a robotic system, this assumption is
justified if safety is described as keeping the base position of the robot away from
obstacles. Second, we assume there exists a controller π : Rn × Rnξ × Rm → Rmξ

and µd ∈ R≥0 such that for any continuous, bounded signal s : R≥0 → Rm, the
closed-loop system:

ξ̇ = fξ(x, ξ) + gξ(x, ξ)π(x, ξ, s(t)), (4.12)

satisfies the following implication:

∥κ(ξ(0))− s(0)∥ ≤ µd =⇒ ∥κ(ξ(t))− s(t)∥ ≤ µd, t ∈ R≥0. (4.13)

This assumption reflects that a separate controller may be designed for the high-
dimensional dynamics to track well-behaved reference signals synthesized via the
low-dimensional model. In particular, if a continuous controller k : Rn → Rm is
designed for the low-dimensional system (4.4) and ∥κ(ξ(0))− k(x(0))∥ ≤ µd, then
we have that the controller π ensures ∥κ(ξ(t))− k(x(t))∥ ≤ µd for t ∈ R≥0. With
this assumption in mind, we may study the ISSf behavior of the closed-loop system:

ẋ = f(x)+g(x)(k(x)+d(t)), ξ̇ = fξ(x, ξ)+gξ(x, ξ)π(x, ξ,k(x)), (4.14)

with the disturbance defined as d(t) = κ(ξ(t))− k(x(t)) satisfying ∥d∥∞ ≤ µd.

Combined Robust CBFs for PBL

We now combine the robustness properties of MR-CBFs and ISSf-CBFs to account
for measurement uncertainty and the disturbance, d, allowing us to make robust
safety guarantees for the full system (4.14). This is formalized in the following
theorem:

Theorem 2. Given the set C defined in (4.6), suppose the functionsLfh,Lgh, ∥Lgh∥2,
and α ◦ h are Lipschitz continuous on their domains, and assume that ∥ρ̂− ρ∥ ≤ ϵ

for some ϵ ∈ R≥0. Then there exists a, b ∈ R≥0 such that if h satisfies:

sup
v∈Rm

Lfh(x, ρ̂)+Lgh(x, ρ̂)v−φ∥Lgh(x, ρ̂)∥2−a−b∥v∥ > −α(h(x, ρ̂)), (4.15)
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for all x ∈ Rn and some a, b ∈ R≥0 satisfying a ≥ a and b ≥ b, then there
exists a controller k : Rn → Rm such that (4.14) is ISSf with respect to C with
γ(δ) = −α−1(−δ2/(4φ)).

The proof of this theorem can be found in the extended version of the corresponding
publication3. As in [59], (4.15) can be incorporated as a constraint into a safety
filter on a locally Lipschitz continuous nominal controller knom : Rn → Rm. We
call this filter the Tunable Robustified Optimization Program (TR-OP) with tunable
parameters α, φ, a, and b.

k(x) = argmin
v∈Rm

∥v − knom(x)∥2 (TR-OP)

s.t. Lfh(x, ρ̂i) + Lgh(x, ρ̂i)v − φ∥Lgh(x, ρ̂i)∥2 − a− b∥v∥ ≥ −αh(x, ρ̂i),

∀i ∈ {1, . . . , No}.

Here we use a linear class Ke
∞ function with coefficient α ∈ R>0. If we wish

to enforce multiple safety constraints, such as in obstacle avoidance with several
obstacles, ρ̂i can be used to indicate the measured parameters of the ith obstacle, with
No ∈ N being the total number of obstacles. Enforcing this constraint for No > 1

can be viewed as Boolean composition of safe sets [138]. Additionally, this safety
filter is a Second-Order Cone Program (SOCP) [139] for which an array of solvers
exist including ECOS [140].

Integrating Learning to Tune the Control Barrier Function

The parameter selection process of TR-OP is particularly important, since the
parameters a and b guaranteed to exist by Theorem 2 are worst-case approximations
of the uncertainty generated using Lipschitz constants. Such approximations often
lead to undesired conservatism and may render the system incapable of performing
its goal (as seen in Figure 4.14). Thus, as illustrated in Figure 4.12, we propose
utilizing SA-LineCoSpar to identify user-preferred parameters of TR-OP. This
relaxes the worst-case over-approximation to experimentally realize performant and
safe behavior. This design paradigm relies on the tunable construction of TR-OP,
allowing us to define the actions for SA-LineCoSpar to a = (α, φ, a, b). We note the
construction of TR-OP assures that unsafe actions are not necessarily catastrophic,
as any α, φ, a, b > 0 endows the system with a non-zero degree of robustness to

3Extended Version: https://arxiv.org/abs/2112.08516.

https://arxiv.org/abs/2112.08516
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hyperparameter value
λ −0.5
β 0

name min. max. ∆
α 0.5 5 0.5
φ 0 1 0.1
a 0 1 0.1
b 0 0.05 0.005

Table 4.1: Preference-based learning setup. (Left) Hyperparameters dictating the
algorithmic conservativeness when estimating if actions are within the region of
interest. (Right) Control barrier function parameter bounds and discretizations (∆)
used to define the action space.

disturbances and measurement error. This assurance allows us to utilize a safety-
aware approach where unsafe actions are considered undesirable as opposed to more
conservative safety-critical approach to learning where unsafe actions are considered
catastrophic.

Experimental Results on Unitree A1

Ultimately, the application of SA-LineCoSpar applied towards tuning the parameters
of TR-OP was demonstrated for perception-based obstacle avoidance task with a
Unitree A1 quadrupedal robot (Figure 4.12) in simulation and on hardware for
both indoor and outdoor environments (see video: [141]). The action space A and
learning hyperparameters are defined in Table 4.1. A unicycle model was used as
the simplified model (4.4) with the nominal controller knom:ẋẏ
ϕ̇


︸︷︷︸
ẋ

=

00
0


︸︷︷︸
f(x)

+

cosϕ 0

sinϕ 0

0 1


︸ ︷︷ ︸

g(x)


[
v

ω

]
︸︷︷︸
v

+d(t)

 , knom(x) =

[
Kvdg + C

−Kω(sinϕ− (yg − y)/dg)

]
,

(4.16)

where (x, y) is the planar position of the robot, ϕ is the yaw angle, (xg, yg) is the goal
position of the robot, dg = ∥(xg−x, yg− y)∥ is the distance to the goal, andKv, Kω,
and C are positive constants. Obstacle avoidance is encoded via the 0-superlevel set
of the function:

h(x,ρi) = dobs,i − robs − ζ cos(ϕ− θi), (4.17)

whereρi = [xobs,i, yobs,i] is the location of the ith obstacle, dobs,i = ∥(xobs,i−x, yobs,i−
y)∥ and θi = arctan((yobs,i− y)/(xobs,i− x)) are the distance and angle from the ith

obstacle, robs is the sum of the radii of the obstacle and robot, and ζ > 0 determines
the effect of the heading angle on safety. The controller used to drive the system is
the TR-OP with the nominal controller knom from (4.16). In practice, infeasibilities
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Figure 4.14: Illustration of the robotic behavior throughout the learning process.
(Left) Actions sampled during simulation in 30 iterations with 3 new actions in
each iteration. The preferred action, â30 = (3, 0.6, 0.5, 0.015), is shown in black
and white. A conservative action, a = (2, 0.5, 0.0651, 0.485), is indicated by the
black circle, where a and b were determined by estimating the Lipschitz coefficients
present in the proof of Theorem 2. The conservative action fails to progress whereas
LineCoSpar provides an action which successfully navigates between obstacles.
(Center) The minimum value of h that occurred in each iteration. Triangles, diamonds,
and squares represent actions that are sampled randomly, by PBL in simulation and
on hardware in an indoor setting, respectively. Colors correlate to iteration number.
The lower bound −γ(δ) for the expanded set Cδ with δ = 1 is plotted. The preferred
actions for simulation and hardware experiments are circled. (Right) Seven additional
iterations of 3 actions executed indoors. The preferred action, â∗

37 = (4, 0.6, 0.4, 0),
successfully traverses between the obstacles.

of this safety filter were considered unsafe and the inputs were saturated such that
v ∈ [−0.2, 0.3]m/s and ω ∈ [−0.4, 0.4] rad/s. The velocity command v is computed
at 20 Hz and error introduced by this sampling scheme is captured by the tracking
error d(t). Tracking of v is performed by an inverse dynamics quadratic program
(ID-QP) walking controller designed using the concepts in [142], which realizes a
stable walking gait for (4.14) at 1 kHz.

Simulation results

We simulated the quadruped executing the proposed controller with parameters
provided by SA-LineCoSpar. The resulting trajectories and the position of the
obstacles are shown in Figure 4.14. We ran 30 iterations, with 3 new actions
sampled in each iteration (s = 3), and obtained user preferences and ordinal labels
in between each set of actions. To simulate perception error, the measurements of
the obstacles were shifted by −0.1 m in the y-direction. The parameters found with
SA-LineCoSpar allow the robot to navigate between obstacles. For comparison, a
conservative action is also shown, which is safe but fails to progress towards the goal.



77

Figure 4.15: The preferred action, â∗
40 = (5, 0.1, 0.4, 0.02), after simulation, indoor

experiments, and 3 additional iterations of 3 actions in an outdoor environment is
shown alongside views from the onboard camera.

SA-LineCoSpar eliminates this conservatism with only minor safety violations and
determines a parameter set which is both safe and performant.

Hardware results

After simulation, we continued learning on hardware experiments in a laboratory
setting for 7 additional iterations until the user was satisfied with the experimental
behavior. The robot and obstacle positions were estimated using Intel RealSense T265
and D415 cameras to perform SLAM and segmentation. Centroids of segmented
clusters in the occupancy map were used as the measured obstacle positions ρ̂i. The
true robot and obstacle positions were obtained for comparison using an OptiTrack
motion capture system. The results of these experiments can be seen in Figure 4.14.
Afterwards, three additional iterations were conducted outdoors on grass until again
the user was satisfied with the experimental behavior. The resulting best trajectory
can be seen in Figure 4.15. The preferred action was also tested on a variety of other
obstacle arrangements to confirm its generalizability. The performance of the final
preferred action for these obstacle configurations can be seen in the supplementary
video [141].
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4.4 Preferential Multi-Objective Bayesian Optimiza-
tion

In the preceding sections, we examined preference-based learning (PBL) methods
for single-objective settings, including ROIAL for preference characterization,
LineCoSpar for preference optimization, and their integration into a unified framework
for exoskeleton gait personalization. We also introduced a safety-aware extension of
ROIAL combined with LineCoSpar for safety-critical control, enabling preference
optimization while respecting operational constraints. While effective when user
preferences can be represented by a single latent utility function, these approaches are
limited in scenarios where multiple, often conflicting, objectives must be balanced.
This motivates extending PBL to multi-objective settings.

Bayesian optimization (BO) provides a principled framework for optimizing expensive-
to-evaluate objective functions and has been widely applied in domains where
evaluation cost is high. A key variant, preferential Bayesian optimization (PBO),
addresses cases where the objective is latent: rather than observing objective values
directly, the algorithm infers structure from ordinal preference feedback provided by
a decision-maker (DM).

While prior work in PBO has demonstrated success in various applications [143, 144,
22], existing methods operate under the assumption that preferences can be encoded
by a single objective function. In practice, however, problems are often characterized
by multiple conflicting objectives. This occurs, for instance, when multiple users
with conflicting preferences collaborate in a joint design task, as illustrated in Figure
4.16, or when a user wishes to explore the trade-offs between multiple conflicting
attributes before committing to a design.

To motivate the need for multi-objective PBO, we examine two illustrative applications.
The first application involves an exoskeleton customization task that aims to enhance
user comfort. In this situation, a user assisted by an exoskeleton experiences
different gait designs and indicates the most comfortable option [82, 22]. In this and
other robotic assistive personalization applications, users and clinical technicians
often collaborate on a design task to maximize user comfort (the user’s objective)
while optimizing energy consumption and other metrics related to the exoskeleton’s
long-term functionality (the technician’s objective) [61].

The second application is autonomous driving policy design, where a user is presented
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Figure 4.16: In this work, we extend preferential Bayesian optimization to the
multi-objective setting. In contrast with existing approaches, our approach allows
the decision-makers involved in the joint design task to efficiently explore optimal
trade-offs between the conflicting objectives.

with multiple simulations of an autonomous vehicle under different driving policies,
and the user indicates the one with better safety and performance attributes [93]. In
such settings, policy-makers often seek to understand the trade-offs between multiple
latent objectives, such as lane keeping and speed tracking, before committing to a
specific policy [145].

Motivated by the applications described above, we propose a framework for multi-
objective PBO. The specific contributions of this extension are:

• To the best of our knowledge, our work proposes the first framework for
preferential Bayesian optimization with multiple objectives.

• We present dueling scalarized Thompson sampling (DSTS), the first extension
of dueling Thompson sampling (DTS) algorithms [98, 146, 147] to the
multi-objective setting.

• We prove that DSTS is asymptotically consistent. Furthermore, we also provide
the first convergence guarantee for DTS in single-objective PBO.

• We demonstrate our framework across six test problems, including simulated
exoskeleton personalization and autonomous driving policy design tasks. Our
results show that DSTS can efficiently explore the objectives’ Pareto front
using preference feedback.

Related work

To better situate the proposed multi-objective PBO framework, we first review related
work in three areas: preference-based optimization, multi-objective optimization,
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and additional relevant directions.

Preference-based optimization

Preference-based optimization has been actively studied across various frameworks,
including multi-armed bandits [148, 99], reinforcement learning [149], and BO
[143, 150, 151]. It has been successful in a broad range of applications, such as
personalized medicine [144, 98, 82], robot control [93, 25, 152, 26] and, more
recently, the alignment of large language models [153].

Most work in this area focuses on the single-objective setting. Two notable exceptions
are the works of [145] and [154]. [145] considers one-shot preference-based
optimization across multiple criteria over a finite design space. This study adopts a
game-theoretic viewpoint and introduces the concept of a Blackwell winner, which
implicitly requires the user to specify an acceptable trade-off between criteria, in
contrast with our work. [154] considers multi-objective preference alignment of
large language models. Like our work, these two works are motivated by the idea
that preference-based optimization across multiple objectives is crucial for capturing
richer human feedback.

Our work extends the dueling Thompson sampling algorithm for dueling bandits
introduced by [98] (termed self-sparring), which has been adapted to preference-
based reinforcement learning (termed dueling posterior sampling) [146] and PBO
(termed batch Thompson sampling) [147]. To our knowledge, we provide the first
multi-objective generalization of this algorithm.

Multi-objective optimization

The field of multi-objective optimization has been extensively studied, encompassing
both theoretical advancements and applications across various engineering problems
[155, 156, 157]. Literature within the BO framework is most closely related to our
work [158, 159, 160, 161, 162].

Our algorithm draws inspiration from ParEGO [159], a multi-objective BO algorithm
that employs augmented Chebyshev scalarizations to convert a multi-objective
optimization problem into multiple single-objective problems. Unlike [159], our
objectives are not observable, preventing direct modeling of scalarized values.
Instead, we model each objective separately and scalarize samples drawn from these
models, similar to [162]’s version of ParEGO.
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Additionally, our work is related to research that incorporates user preferences into
multi-objective optimization—a topic that has been actively studied both within and
beyond the BO framework [163, 164, 165, 166]. In most of this prior work, all
objectives are assumed to be directly observable, and user preferences are captured
through a latent utility function that combines these objectives into a single score
to guide optimization. In contrast, we do not assume access to the objective values.
Instead, we receive binary preference feedback for each objective individually,
without ever observing their actual values or requiring a predefined utility function
to aggregate them.

Additional related work

Emerging from the operations research community, the field of multi-criteria decision
analysis (MCDA) focuses on decision-making under multiple conflicting criteria
[167, 168]. Although our work is related to this field, it diverges from the traditional
MCDA approaches, which often involve aggregating preferences across criteria into
a single performance measure [169, 170, 171, 145]. Such aggregation requires
additional assumptions about the DM’s desired trade-off. Additionally, methods in
this field have been explored outside the PBO framework, making them not directly
applicable in our setting.

Problem setting

Preferences Let X denote the space of designs. We assume there is a DM (which
may represent one or multiple users collaborating on a design task) aiming to
maximize their preferences over designs. We assume the DM’s preferences can be
encoded via m objective functions f1, . . . , fm : X → R so that, for any given pair
of designs x, x′ ∈ X , the DM prefers x over x′ with respect to objective j if and
only if fj(x) > fj(x

′). For simplicity, we assume all m objectives are latent, but our
approach can be easily adapted to settings where some objectives are observable, as
discussed in Section 4.4.

Goal Let f = [f1, . . . , fm] : X → Rm denote the concatenation of the m objective
functions. The DM seeks to find designs that maximize each objective. This concept
is formalized through the notion Pareto-dominance. For a pair of designs x, x′ ∈ X ,
x Pareto-dominates x′, denoted by x ≻f x

′, if fj(x) ≥ fj(x
′) for j = 1, . . . ,m with

strict inequality for at least one index j. The DM seeks to find the Pareto-optimal set of
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f , defined by X ∗
f := {x : ∄ x′ such that x′ ≻f x}. The set Y∗

f := {f(x) : x ∈ X ∗
f }

is termed the Pareto front of f . Figure 4.17 depicts the Pareto front for one of
our test problems; the light grey region is the set of feasible objective vectors, i.e.,
{f(x) : x ∈ X} and the dark grey curve indicates the Pareto front of f .

Feedback To assist the DM’s goal, our algorithm collects preference feedback
interactively (Algorithm 4). At each iteration, denoted by n = 1, . . . , N , the
algorithm selects a query constituted of q designs Xn = (xn,1, . . . , xn,q) ∈ X q.
The DM then indicates their most preferred design among these q designs for each
objective. Let rj,n ∈ {1, . . . , q} denote the DM’s preferred design with respect to
objective j. The collection of these responses is denoted by rn = [r1,n, . . . , rm,n].

Algorithm 4 Dueling Scalarized Thompson Sam-
pling
Input Initial dataset: D0, and prior on f : p0.

for n = 1, . . . , N do
Compute pn, the posterior on f given Dn−1

Sample θ̃n uniformly at random over Θ
Draw samples f̃n,1, . . . f̃n,q

iid∼ pn
Find xn,i ∈ argmaxx∈X s(f̃n,i(x); θ̃n), i =

1, . . . , q
Set Xn = (xn,1, . . . , xn,q), and observe rn
Update dataset Dn = Dn−1 ∪ {(Xn, rn)}

end for
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Figure 4.17: Feasible region
and Pareto front of the DTLZ2
test function.

Dueling scalarized Thompson sampling

We introduce a novel algorithm termed dueling scalarized Thompson sampling
(DSTS), summarized in Algorithm 4. DSTS is obtained by adeptly combining
ideas from preference-based and multi-objective optimization to derive a sound
algorithm with strong performance and convergence guarantees. As is common in
BO, our algorithm is comprised of a probabilistic model of the objective functions for
predictions and uncertainty reasoning, along with a sampling policy that, informed
by the probabilistic model, iteratively selects new queries, balancing exploration and
exploitation.
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Probabilistic model

The probabilistic model is encoded by a prior distribution over f , denoted by p0. We
assume p0 consists of a set of independent Gaussian processes, each corresponding
to an objective. However, our framework does not rely on this choice and can easily
accommodate other priors as long as samples from the posterior distribution can be
drawn.

As is standard in the PBO literature [150, 172, 151], we account for noise in the
DM’s responses by using a Logistic likelihood for each objective j = 1, . . . ,m of
the following form:

P (rj,n = i | fj(Xn)) =
exp(fj(xn,i)/λj)∑q

i′=1 exp(fj(xn,i′)/λj)
, i = 1, . . . , q, (4.18)

where λj > 0 is the noise-level parameter. We estimate λj along with the other
hyperparameters via maximum likelihood. We assume noise is independent across
objectives and interactions.

Let D0 denote the initial dataset and Dn−1 = D0 ∪ {(Xk, rk)}n−1
k=1 denote the data

available right before the n-th interaction with the DM. Let pn denote he posterior
over f given Dn−1. The posterior cannot be computed in closed form but can be
approximated using, e.g., a variational inducing point approach [172]. For observable
objectives, the above model can be replaced by a standard Gaussian process model
with a Gaussian likelihood (see Appendix in [173]).

Sampling policy

Our primary algorithmic contribution is our sampling policy, which extends the
dueling Thompson sampling (DTS) algorithmic family to the multi-objective setting.
This is achieved by leveraging augmented Chebyshev scalarizations, a technique
from multi-objective optimization used to decompose a multi-objective optimization
problem into multiple single-objective problems. We next explain augmented
Chebyshev scalarizations and describe how we integrate them with DTS.

Augmented Chebyshev scalarizations Augmented Chebyshev scalarizations are
widely used for multi-objective optimization [155]. In BO, in particular, they were
employed by [159] and [161]. We also leverage them to derive a sound sampling
policy in our setting.
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For a given vector of scalarization parameters, θ ∈ Θ := {θ ∈ Rm :
∑m

j=1 θj =

1 and θj ≥ 0, j = 1, . . . ,m}, the augmented Chebyshev scalarization function is
defined by

s(y; θ) = min
j=1,...,m

{θjyj}+ ρ

m∑
j=1

θjyj, (4.19)

where ρ is a small positive constant. It can be shown that any solution of
maxx∈X s (f(x); θ) lies in the Pareto-optimal set of f . Conversely, if ρ is small
enough, every point in the Pareto-optimal set of f is a solution of maxx∈X s (f(x); θ)

for some θ ∈ Θ (Theorem 3.4.6, [155]).

Dueling scalarized Thompson sampling At each iteration, n, we draw a sample
from the scalarization parameters uniformly at random over Θ, denoted by θ̃n. We
also draw q independent samples, denoted by f̃n,1, . . . , f̃n,q, from the posterior
distribution on f givenDn−1. The next query is then given byXn = (xn,1, . . . , xn,q),
where

xn,i ∈ argmax
x∈X

s
(
f̃n,i(x); θ̃n

)
, i = 1, . . . , q. (4.20)

Intuitively, our sampling policy operates by first determining a subset of the Pareto-
optimal set of f using θ̃n, denoted as X ∗

f ;θ̃n
= argmaxx∈X s(f(x); θ̃n). Then, each

xn,i is sampled according to the probability (induced by the posterior on f ) that
xn,i ∈ X ∗

f ;θ̃n
, analogous to single-objective dueling posterior sampling [98]. The

DM’s responses provide information of the highest value point among xn,1, . . . , xn,q
for each objective, which in turn allows us to learn about X ∗

f ;θ̃n
. Since θ̃n is drawn

independently at each iteration, we explore a diverse collection of subsets X ∗
f ;θ̃n

within X ∗
f .

We note that our sampling policy is agnostic to the choice of the probabilistic
model, provided that samples from the posterior can be drawn. In addition, our
sampling policy is suitable for problems with mixed latent and observable objectives
thanks to its dual interpretation as a policy for preference-based optimization [98]
and traditional optimization with observable objectives [161]. Specifically, when
all objectives are observable, our sampling policy can be interpreted as a batch
generalization [174] of the scalarized Thompson sampling algorithm proposed by
[161].
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Figure 4.18: Our framework was demonstrated on six test problems: DTLZ1 (a),
DTLZ2 (b), Vehicle Safety (c), Car Side Impact (d), Autonomous Driving (e), and
Exoskeleton (f). Overall, our proposed method (DSTS) delivers the best performance.
qMES and qParEGO exhibit a mixed performance, achieving good results in some test
problems and poor results in others. The remaining methods, Random, PBO-DTS-IF,
and qEHVI, consistently underperform DSTS.

Theoretical analysis

We now study the convergence properties of DSTS. We begin by analyzing the
single-objective setting and establish the asymptotic consistency of DTS. To our
knowledge, this is the first such result for DTS in PBO. The result is stated in
Theorem 3, with a proof—based on a martingale argument—provided in Appendix
of [173].

Theorem 3. Suppose that X is finite, m = 1, and the sequence of queries {Xn}∞n=1

is chosen according to the DTS policy. Then, for each x ∈ X , limn→∞Pn(x ∈
argmaxx′∈X f(x

′)) = 1{x ∈ argmaxx′∈X f(x
′)} almost surely for f drawn from

the prior.

Extending this result to the multi-objective setting requires a minor modification
to the DSTS algorithm. Specifically, our proof introduces a small probability of
comparing against a fixed reference design in each iteration. This modification is
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required by our proof due to the non-linear nature of Chebyshev scalarizations and
is not required in the single-objective case. The resulting convergence guarantee
is stated in Theorem 4. The proof—which can be found in Appendix of [173]
—again relies on a martingale argument and the fact that varying θ allows Chebyshev
scalarizations to recover all Pareto-optimal points.

Before stating the result, we describe the modified DSTS policy under consideration.
Assume q = 2, and fix any reference point xref ∈ X and δ ∈ (0, 1). At each iteration,
the first design xn,1 is selected as in Equation 4.20, while the second design xn,2 is
set to xref with probability δ, or otherwise selected via Equation 4.20.

Theorem 4. Suppose that X is finite, q = 2, and the sequence of queries {Xn}∞n=1

is chosen according to the modified DSTS policy described above. Then, for each
x ∈ X , limn→∞Pn(x ∈ X ∗

f ) = 1{x ∈ X ∗
f } almost surely for f drawn from the

prior.

We now place our results in context with prior theoretical work on DTS. [98] showed
that DTS achieves asymptotic consistency and sublinear regret in the dueling bandits
setting, assuming independent pairs of arms. However, their analysis does not extend
to our setting, where arms may be correlated. Notably, the analysis of [98] relies
on showing that all arms are chosen infinitely often, which may not be true in our
context. Similarly, [146] showed analogous convergence results in a reinforcement
learning setting under a Bayesian linear reward model. In contrast, our result holds
for non-linear objectives. Moreover, the result of [146] also relies on showing that
each arm is selected infinitely often. Finally, note that the results of [98] and [146] are
only applicable in the single-objective setting; as discussed above, the multi-objective
setting presents additional challenges.

Unlike prior work, we do not establish regret bounds for DSTS. Indeed, such bounds
remain an open question even for DTS in single-objective PBO. While we see this as
a valuable research direction, such analysis is beyond the scope of our work which
primarily aims to introduce multi-objective PBO. Finally, it is important to recognize
that the asymptotic consistency of data-driven algorithms like DSTS cannot be taken
for granted. For instance, [151] showed that the adaptation of qEI proposed by [147]
is not asymptotically consistent and can perform poorly in single-objective PBO,
despite being one of the most widely used algorithms. In Theorem 5, we show
that qEHVI [162], a multi-objective generalization of qEI, suffers from the same
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limitation in our setting. A proof is provided in Appendix of [173]. Our empirical
results support this finding, showing that qEHVI can perform very poorly.

Theorem 5. There exists a problem instance with finite X and q = 2 such that if
Xn ∈ argmaxX∈X q qEHVIn(X) for all n, then limn→∞Pn(x ∈ X ∗

f ) = t almost
surely for some fixed x ∈ X and t ∈ (0, 1).

Numerical experiments

We evaluate our algorithm across six test problems and compare it with five other
sampling policies. All algorithms are implemented using BoTorch [175]. Details
on the performance metric, the benchmark sampling policies, and the test problems
are provided below. The code for reproducing our experiments can be found at
https://github.com/RaulAstudillo06/PMBO.

Performance metric

We quantify performance using the hypervolume indicator, which has been shown to
result in good coverage of Pareto fronts when maximized [176]. Let Ŷ∗ = {yℓ}Lℓ=1

be a finite approximation of the Pareto front of f . Its hypervolume is given by
HV(Ŷ∗, r) = µ

(⋃L
ℓ=1 [r, yℓ]

)
, where r ∈ Rm is a reference vector, µ denotes the

Lebesgue measure over Rm, and [r, yℓ] denotes the hyper-rectangle bounded by the
vertices r and yℓ. We report performance by setting Ŷ∗ equal to the set of Pareto
optimal points across designs shown to the DM.

Benchmarks

We compare our algorithm (DSTS) against uniform random sampling (Random),
three adapted algorithms from standard multi-objective BO (qParEgo, qEHVI,
qMES), and a standard PBO algorithm with inconsistent overall preference feedback
(PBO-DTS-IF). Our experiments in this section use the regular version of DSTS. In
Appendix in [173] we show that the modified version of DSTS used in Theorem 4
achieves virtually the same performance for small values of δ. All algorithms use
the same priors, and the resulting posteriors are approximated via the variational
inducing point approach proposed by [172]. Approximate samples from the posterior
distribution used by DSTS and PBO-DTS-IF are obtained via 1000 random Fourier
features [177].

https://github.com/RaulAstudillo06/PMBO
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(a) Autonomous Driving (b) Exoskeleton Walking

Figure 4.19: Simulation environments used in our test problems.

Adapted standard multi-objective BO methods A common approach in the
PBO literature is to use a batch acquisition function designed for parallel BO with
observable objectives, ignoring the fact that preference feedback is observed rather
than objective values [147, 178]. Despite lacking the principled interpretations
they enjoy in their original setting, they often deliver strong empirical performance.
Following this principle, we adopt three batch acquisition functions from standard
multi-objective BO as benchmarks: qParEGO [159, 162], qEHVI [162], and qMES
[160]. Since these algorithms were not originally designed for latent objectives, they
require minor adaptations that we describe in Appendix in [173]. These algorithms
use the same probabilistic model as DSTS. Thus, any difference in performance is
solely due to the use of different sampling policies.

Single-objective PBO with inconsistent aggregated preference feedback Single-
objective PBO methods are often applied to problems characterized by multiple
conflicting objectives. In such cases, DMs are expected to aggregate their preferences
across objectives, which can be challenging for DMs and often results in inconsistent
feedback. For example, in the context of exoskeleton personalization, this would
require forcing the exoskeleton user and clinical technician to reach a unified response
at every iteration, which can be challenging if the user’s objective is to maximize
comfort while the technician’s objective is to ensure the exoskeleton’s long-term
energy efficiency. To understand the effect of using this approach, we include a
standard single-objective PBO approach using inconsistent feedback. Additional
details on this benchmark are provided in Appendix of [173].

Test problems

We report performance across four synthetic test problems (DTLZ1, DTLZ2, Vehicle
Safety, and Car Side Impact), a simulated autonomous driving policy design task
(Autonomous Driving), and a simulated exoskeleton gait design task (Exoskeleton)
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Figure 4.20: Illustration of sampled designs for the DTLZ2 test function. These
figures show that our proposed method (DSTS) provides a better exploration of the
Pareto front than its competitors.

using queries with q = 2 and q = 4 designs. Details of these test problems are
provided below. In all problems, an initial dataset is obtained using 2(d+ 1) queries
chosen uniformly at random over X q, where d is the input dimension of the problem.
After this initial stage, each algorithm was used to select 100 additional queries
sequentially. Results for q = 2 are shown in Figure 4.18. Each plot shows the mean
of the hypervolume of the designs included in queries thus far, plus and minus 1.96
times the standard error. Each experiment was replicated 30 times using different
initial datasets. In all problems, the DM’s responses are corrupted by moderate
levels of Gumbel noise, which is consistent with the use of a Logistic likelihood (see
Appendix in [173] for the details). Results for q = 4 can be found in Appendix as
well.

DTLZ1 and DTLZ2 The DTLZ1 and DTLZ2 functions are standard test problems
from the multi-objective optimization literature [179]. In our experiments, we
configure DTLZ1 with d = 6 design variables and m = 2 objectives, and DTLZ2
with d = 3 design variables and m = 2 objectives. Results for these problems are
shown in Figures 4.18(a) and 4.18(b), respectively. Our approach achieves the best
performance in both problems, tied with qParEGO on DTLZ2.
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Surprisingly, on the DTLZ2 problem, PBO-DTS-IF, qEHVI, and qMES underperform
significantly, even being surpassed by Random. To understand this, we plot a
representative set of objective vectors corresponding to the queried designs in
Figure 4.20. As illustrated, Random offers a reasonable exploration of the Pareto
front (likely due to the low dimensionality of DTLZ2). However, it exposes the user
to many low-quality designs, which can potentially frustrate DMs. PBO-DTS-IF
and qMES tend to favor designs where one of the objectives achieves its maximum
possible value, which may be problematic for DMs seeking more balanced solutions.
qEHVI fails to explore the Pareto front, concentrating its queries on a limited sub-
optimal region instead. Finally, DSTS and qParEGO provide a more comprehensive
exploration of the Pareto front.

Vehicle Safety and Car Side Impact The Vehicle Safety and Car Side Impact
test functions are designed to emulate various metrics of interest in the context of
crashworthiness vehicle design. Overall, these test problems emulate an expert’s
assessment based on expensive experiments where cars are intentionally crashed, and
safety metrics are evaluated. Vehicle Safety has d = 5 design variables and m = 3

objectives. Car Side Impact has d = 7 design variables and m = 4 objectives. For
further details, we refer the reader to [180]. Results for the Vehicle Safety and Car
Side Impact experiments can be found in Figures 4.18(c) and 4.18(d), respectively.
For the Vehicle Safety problem, qMES is the best-performing algorithm, followed by
DSTS. For the Car Side Impact, DSTS performs the best, followed closely by qMES.

Autonomous Driving Policy Design To supplement the synthetic test functions, we
further evaluate our algorithm on a simulated autonomous driving policy design task.
For this problem, we use a modification of the Driver environment presented in [93].
A similar environment was also used by [145], providing empirical evidence that
user preferences in this context are inherently governed by multiple latent objectives.
In our modified environment, illustrated in Figure 4.19(a), an autonomous control
policy is created to drive a trailing (red) vehicle forward to a goal location while
maintaining some minimum distance with a leading (white) vehicle. The control
policy switches between two modes, collision avoidance and goal-following, based
on a minimum distance threshold. The behavior of the leading car is fixed by setting
a pre-specified set of actions.

Using this simulation environment, we consider four objectives representing ap-
proximations of subjective notions of safety and performance: lane keeping, speed
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tracking, heading angle, and collision avoidance. The design space is parameterized
by four control variables: two parameters that account for how fast the vehicle
approaches the goal or the other vehicle, respectively, one position gain that accounts
for the adjustment on the desired heading, and the minimum distance threshold
used to switch between the two modes. The results of this experiment are shown in
Figure 4.18(e). As illustrated, our approach again delivers better performance than
its competitors.

Exoskeleton Gait Customization Lastly, we evaluate our algorithm on an ex-
oskeleton gait personalization task using a high-fidelity simulator of the lower-body
exoskeleton Atalante [61], illustrated in Figure 4.19(b). This problem emulates the
scenario discussed in the introduction, in which there are two conflicting objectives:
subjective user comfort and energy efficiency. For simulation purposes, we approx-
imate comfort as a linear combination of three attributes: average walking speed
(faster speed is preferred), maximum pelvis acceleration (lower peak acceleration
is preferred), and the center of mass tracking error (lower error is preferred). We
approximate total energy consumption as the l2-norm of joint-level torques, averaged
over the simulation duration. We note that this is an observable objective. Thus, our
approach is modified as discussed in Section 4.4 and further elaborated on Appendix
in [173] to leverage direct observations of this objective.

The design space is parameterized by five gait features: step length, minimum center
of mass position with respect to stance foot in sagittal and coronal plane, minimum
foot clearance, and the percentage of the gait cycle at which minimum foot clearance
is enforced. Each unique set of features corresponds to a unique gait. These gaits are
synthesized using the FROST toolbox [41] and are simulated in Mujoco to obtain the
corresponding objectives. Since simulations are time-consuming, we build surrogate
objectives by fitting a (regular) Gaussian process to the objectives obtained from
1000 simulations, with each set of gait features drawn uniformly over the design
space. As shown in Figure 4.18(f), DSTS achieves the best performance, followed
closely by qParEGO and qMES.

Discussion

Across the broad range of problems considered, DSTS delivers the best overall
performance. Specifically, DSTS yields the highest hypervolume in nearly all
problems (except for the Vehicle Safety problem, where it is second to qMES).
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Two of the standard multi-objective benchmarks, qParEGO and qMES, exhibit
mixed results, highlighting the importance of developing algorithms designed to
handle preference feedback as opposed to naively adapting algorithms intended for
observable objectives. Notably, qEHVI is the worst-performing algorithm, even
surpassed by Random. This is consistent with Theorem 5, which shows that qEHVI
is not consistent in general, thus highlighting the value of our asymptotic consistency
result for DSTS (Theorem 4). Lastly, PBO-DTS-IF consistently underperforms
DSTS, confirming that a single-objective PBO approach is insufficient to explore the
optimal trade-offs in problems with multiple conflicting objectives. The runtimes of
all methods are discussed in Appendix in [173].

In summary, we proposed a framework for PBO with multiple latent objectives,
where the goal is to help DMs efficiently explore the objectives’ Pareto front
guided by preference feedback. Within this framework, we introduced dueling
scalarized Thompson sampling (DSTS), which, to our knowledge, is the first
approach for PBO with multiple objectives. Our experiments demonstrate that
DSTS provides significantly better exploration of the Pareto front than several
benchmarks across six test problems, including simulated autonomous driving
policy design and exoskeleton gait customization tasks. Moreover, we showed that
DSTS is asymptotically consistent, providing the first convergence result for dueling
Thompson sampling in PBO.

While our work provides a sound approach to tackling important applications not
covered by existing methods, there are also a few limitations that suggest avenues for
future exploration. Future work could include a deeper theoretical analysis of DSTS,
such as investigating convergence rates and regret bounds, as well as the development
of alternative sampling policies. For example, [151] provided an efficient approach
to approximate a one-step lookahead Bayes optimal policy in single-objective
PBO, demonstrating superior performance against various established benchmarks.
Although their approach cannot be easily adapted to our context, exploring alternative
mechanisms for computing non-myopic sampling policies in our setting would be
valuable. Finally, it would be interesting to explore DSTS in other settings, such as
preference-based reinforcement learning.
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4.5 Summary

This chapter addressed the challenge of optimizing and understanding user preferences
in exoskeleton gait generation, with the ultimate goal of improving user comfort
and personalization. We first introduced ROIAL, a region of interest active learning
framework for efficient preference characterization while avoiding gaits that make
users feel unsafe or uncomfortable.

We then presented a unified preference-based learning framework that combines
ROIAL with the existing CoSpar and LineCoSpar algorithms to support both
preference optimization and characterization within a single pipeline. This unified
framework was evaluated on the Atalante exoskeleton with paraplegic participants,
incorporating both preference, ordinal and coactive feedback, and applied to tuning
forward walking parameters and a turning controller.

Building on ROIAL, we proposed a safety-aware preference-based optimization
extension designed for safety-critical control tasks, enabling regret-minimizing action
selection while respecting region-of-interest constraints. Finally, we introduced a
preferential multi-objective Bayesian optimization method to address settings where
user preferences span multiple, potentially competing, objectives.

Overall, the methods developed in this chapter demonstrate how preference-based
learning can be adapted and extended to safety- and comfort-critical human-in-the-
loop robotics applications, while maintaining sample efficiency and accommodating
various user feedback.
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C h a p t e r 5

ROBUST BIPEDAL LOCOMOTION

While preference alignment is essential for user adoption, robustness is equally
critical for safe and reliable deployment. The next chapter examines strategies to
achieve robust walking under uncertainty.

Achieving robust bipedal locomotion in real world environments remains a central
challenge for both assistive devices and humanoid robots. Even when nominal
walking gaits are dynamically stable in simulation, deployment introduces numerous
sources of uncertainty: modeling errors, unmodeled human–robot interaction effects,
terrain variability, and unexpected disturbances. Without mechanisms to handle
these uncertainties, performance can degrade significantly, potentially compromising
user safety and comfort in the case of wearable robots.

Robustness is not achieved through a single mechanism, but rather through strategies
that act at different stages of the locomotion control pipeline. At the design stage,
offline analysis can be used to evaluate and select gaits or controller parameters with
strong stability margins and tolerance to modeling errors before deployment. During
execution, online adaptation strategies can respond to disturbances or environmental
changes by modifying the gait in real time to preserve stability. Finally, learning
based generalization methods can produce control policies that inherently handle
a wide range of conditions by training with diverse scenarios and disturbances in
simulation.

This chapter presents three strategies that address robustness at these different stages.
Each can be applied independently, but they also lend themselves to integration in
specific contexts:

1. Offline robustness metrics — Evaluation of reference trajectory prior to
deployment using a hybrid forward invariance approach. This method analyzes
the full hybrid system by identifying forward invariant sets centered around
the fixed point of the Poincaré return map. Larger forward invariant sets
correspond to larger regions of attraction, providing a principled measure of
disturbance tolerance (Section 5.1).
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2. Online adaptation — Adjustment of gait execution in real time through data
driven predictive control (DDPC) and hybrid DDPC (HDDPC), which use
collected data to construct more accurate reduced order models and enable
fast replanning of full order motions (Section 5.2).

3. Domain randomization in reinforcement learning — Training of control
policies in simulation with randomized dynamics, terrain profiles, and dis-
turbances to promote generalization to unseen conditions. These policies
are guided by reference trajectories and reward shaping informed by Control
Lyapunov Functions, enabling transfer to hardware with improved stability
and robustness (Section 5.4).

These approaches span a spectrum from verification to adaptation to generalization,
with distinct trade offs in performance guarantees, adaptability, and computational
cost. Together, they form a toolkit for addressing robustness in general locomotion
tasks and can be combined with one another or with user alignment strategies
introduced in earlier chapters.

5.1 Robust Walking via Hybrid Forward Invariance

Bipedal locomotion has received increasing attention in recent years due to the
growing potential of humanoid robots. This interest has led to numerous demonstra-
tions of experimentally stable walking [181, 182, 183, 184, 1, 185, 186, 187, 188].
However, beyond achieving nominal stability in simulation or controlled laboratory
settings, it remains challenging to systematically verify that walking behaviors are
robust to the types of disturbances encountered in real environments, such as external
pushes, terrain variability, and model uncertainty.

In general, locomotive robustness can be improved in two complementary ways.
The first is through online planning, performed either on the full-order dynamics or
on reduced-order models [189, 190]. Such planners can reject large disturbances
by generating corrective motions in real time to drive the state toward a desired
terminal condition. Since these methods rely on prespecified terminal constraints,
the robustness of the chosen references is a critical factor in overall performance.

This motivates the second approach: improving the inherent robustness of the
nominal reference trajectories themselves. More robust references reduce the control
effort required for disturbance rejection, easing the demands on online planners.
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Prior work has addressed this problem by using nonsmooth analysis [191] to produce
limit cycles that are less sensitive to impact uncertainty [192, 193], and by optimizing
for reduced sensitivity to early or late foot impacts [194]. While these methods can
produce robust gaits in practice, they do not provide formal guarantees on the size of
allowable disturbances.

Several tools exist for quantifying robustness, including computing regions of
attraction [195] and verifying input-to-state stability [130, 196]. These techniques
provide certificates of robustness, but their high computational cost often limits their
practicality for gait synthesis.

In this section, we adopt a step-to-step perspective on locomotion dynamics [197,
34], representing the hybrid gait as a discrete-time Poincar’e return map. Robustness
is assessed by identifying forward invariant sets around the fixed point of this
map—larger invariant sets correspond directly to larger regions of attraction (Fig.
5.1. To approximate these sets, we employ discrete-time barrier functions combined
with a sampling-based search [198, 199, 200].

The resulting robustness metric is general-purpose: 1) It directly quantifies dis-
turbance tolerance for a nominal gait. 2) It remains computationally tractable for
high-dimensional systems via reduced-order representations. 3) It is agnostic to the
choice of control framework.

We further integrate this metric into a simulation-in-the-loop optimization process to
synthesize nominal trajectories with enhanced robustness. By isolating the effect of
the robustness metric, without conflating it with online replanning, we highlight the
central role of reference trajectory design in overall walking stability.

The method is validated on both flat-foot and multi-contact (foot-rolling) gaits
for the Atalante lower-body exoskeleton, a device aimed at restoring mobility to
individuals with motor-complete paraplegia. Compared to a baseline heuristic
stability optimization, our approach yields nominal gaits with substantially improved
disturbance tolerance, while preserving computational efficiency suitable for practical
deployment.

Preliminaries on Locomotion

In the background chapter, hybrid control systems were introduced using a single-
domain symmetric locomotion example. While some earlier contributions already
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Figure 5.1: The framework developed in this paper optimizes locomotive robustness
using forward invariance, certified via discrete-time barrier functions, as a metric for
robustness.

employed multi-domain models, here we further extend the structure by adding a
foot-rolling domain to capture multi-contact walking, as shown in Fig. 5.2.

For fully actuated systems, such as powered exoskeletons, HZD extends to Partial
HZD (PHZD) [201], in which only a subset of the degrees of freedom are directly
actuated and the remaining evolve on a reduced-order zero dynamics manifold. In
both cases, gait synthesis is formulated as a trajectory optimization problem enforcing
physical feasibility, impact invariance, and task-specific constraints (e.g., step length,
clearance), resulting in a nominal limit cycle O for the closed-loop hybrid system.

While stability of the periodic orbit guarantees convergence in the absence of distur-
bances, it does not directly characterize performance under real-world uncertainties,
such as impact timing variations or external perturbations. Robustness notions
such as input-to-state stability (ISS) and input-to-state safety (ISSf) provide a more
complete picture, but verifying these properties for high-dimensional locomotion
models remains computationally demanding.

Reduced System Representation

While the following approach could be conducted for the full system state x ∈ X ,
we propose the use of a lower-dimensional representation since certain coordinates
often have a disproportional influence on overall system stability. For example, for
bipedal robots, perturbations on actuated joints will influence the overall system
much less than perturbations on the global coordinates.

https://youtu.be/6aXsBKMxDH0
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(a) Flat-foot behavior (b) Multi-contact behavior

Figure 5.2: Directed graphs describing the hybrid system domain structure for the a)
flat-foot and b) multi-contact walking.

(a) Full system (b) Reduced system

Figure 5.3: Model representations. a) The full system model is denoted by the
generalized coordinates x = (q⊤e , q̇

⊤
e )

⊤ with qe := (p⊤b , ϕ
⊤
b , q

⊤)⊤ ∈ R3×SO(3)×Q.
Here pb ∈ R3 and ϕb respectively denote the euclidean position and orientation of
the global base frame Rb relative to the world frame Rw. b) Here, the reduced-order
representation of the model is illustrated, defined as the angular velocities of the
global frame relative to the world frame, i.e., x := (ϕ̇x, ϕ̇y, ϕ̇z)

⊤.
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Figure 5.4: Diagram of sim-in-the-loop approach towards optimizing robustness.

This viewpoint is similar to that of reduced-order models, whereby the essence of
the full-order dynamics can be captured by a few key states.

In general, the reduced state representation is denoted as x = Φ(x) ∈ X, where X is
a reduced-order manifold, i.e., dim(X) ≤ dim(D) consisting of the lower-dimension
representation of interest.

Assume that there exists a projection between our full system state and lower-
dimension representation x = Φ(x). For the Atalante lower-body exoskeleton, we
restrict our attention to three specific global coordinates, denoted as the reduced
system x := (ϕ̇x, ϕ̇y, ϕ̇z)

⊤ ∈ R3, representing the global angular velocity. This
mapping is simply the labeling matrix x =

[
03×21 I3×3 03×12

]
x. The motivation

for selecting these coordinates is the observation that exoskeleton users often add
perturbations to the system that can be captured by instantaneous angular velocity
changes. Note that in other applications, this reduced-order manifold could be the
position of the center of the pressure in ZMP walking [32], centroidal dynamics [202,
203], or zero dynamics [204]. We can represent the discrete-time system associated
with this reduced model as the Poincaré map restricted to X:

xk+1 = PX(xk) (5.1)

with PX := Φ(P (ι(xk))) defined as the Poincaré return map for the reduced system
for states on the “reduced order” guard X ∩ S. Here ι : X ∩ S → S is a specific
(non-unique) reconstruction of the full state, e.g., in the case when X are the zero
dynamics, ι(x) can be obtained from the outputs and their derivatives [31].
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Discrete-Time Barrier Functions

We will utilize barrier functions to guarantee forward-invariance of our reduced
hybrid system. Thus, we will first present a brief overview. For more details, refer to
[198, 123].

Consider a set I ⊂ X ∩ S defined as:

I := {xk ∈ X ∩ S | H(xk) ≥ 0} (5.2)

∂I := {xk ∈ X ∩ S | H(xk) = 0} (5.3)

for a smooth function H : Rn → R associated with a Barrier function [122].

Definition 5. (Forward Invariance [123]). The set I ⊂ X ∩ S is forward invariant
with respect to (5.1) if:

x0 ∈ I =⇒ xk ∈ I, ∀k ∈ N.

The discrete-time hybrid system is safe with respect to perturbed initial conditions
belonging to the set I if the set I is forward invariant with respect to (5.1).

While forward invariance is a desirable property for many systems, it can be a
challenging property to check in practice. This motivates the use of Barrier functions
as a tool for verifying forward invariance. Since we have a discrete-time system, we
leverage discrete-time barrier functions, originally introduced in [198]. Specifically,
we use the following definition.

Definition 6. (Discrete-time Barrier Function [199]). A function H : I ⊂ X∩S →
R is a discrete-time barrier function for the restricted Poincareé map xk+1 = PX(xk)

on the set I defined by (5.2) if there exists α ∈ (0, 1) such that for all x ∈ I:

H(PX(x))−H(x) ≥ −αH(x). (5.4)

Note that this condition mimics the form of discrete-time Lyapunov functions, with
important differences. Namely, we do not require H to be positive definite; this is a
consequence that we only require set invariance, and not stability. Yet, because H
takes values in the real line (rather than the positive reals), it does imply stability
of the set. This is encoded in the following theorem (which is a straightforward
application of the results from [199] to the setting of restricted Poincaré maps).
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Theorem 6. Let xk+1 = PX(xk) be the Poincaré map restricted to the set X ∩ S.
If there exists a discrete-time barrier function for the set I, then the set I is forward
invariant and exponentially stable. If dim(X∩S) = dim(S) and I = {x∗} then the
point x∗ is exponentially stable, i.e., the associated periodic orbit is exponentially
stable.

Practically, we choose to describe our set I as a ball of radius r ∈ R+, centered
around the fixed point of our nominal periodic orbit O as defined in (2.11), but
restricted to the reduced-order surface X, i.e.:

I := {x | x ∈ Br(x∗) ⊂ X ∩ S},

withx∗ := Φ(x∗). Thus, the statement of hybrid forward invariance of I is equivalent
to the set-based condition Px(Br(x∗)) ⊆ Br(x∗). Using this set definition, we can
also explicitly construct our discrete-time Barrier function as:

H(x) := r − ∥x− (x∗)∥2. (5.5)

Simulation-Based Sampling

To identify the largest set I that is forward invariant for a given generated nominal
limit cycle, we use a sampling-based approach to solve for the largest set I satisfying
the forward-invariance condition. This is framed as an optimization problem of the
form:

r∗ = max
r∈[0,rmax]

r (5.6)

s.t. H(PX(x))−H(x) ≥ −αH(x),

∀x ∈ Br(x∗).

While we were proposing the use of ropt as a metric of robustness since it characterizes
the set that is maximally forward-invariant, it is important to note that the parameter
α is also indicative of robustness. In essence, the parameter α indicates how fast the
step-to-step dynamics are allowed to approach the boundary of the forward-invariant
set. When designing a control barrier function, the value of α is used as a parameter
to control the rate at which the system is allowed to approach the boundary of the safe
set, with the system becoming more conservative as α→ 1. Since we are concerned
with estimating the forward invariant set rather than controlling for safety, we set α
close to 0.
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Simulation-in-the-loop Optimization

Solving the aforementioned optimization problem not only provides us with the set I
that is hybrid forward invariant, but it also provides us with a measure of robustness
for the associated gait. It is important to note that this application of discrete-time
barrier functions to measure locomotive robustness is independent of the choice of
controller. For example, this metric could be used in a RL setting as part of the
reward composition to optimize the learned policies for robustness.

Robust Walking Results

To show the benefits of the proposed metric, we specifically demonstrate its use
towards optimizing offline gaits using a simulation-in-the-loop based framework.
This procedure, as illustrated in Fig. 5.4, is repeated for both flat-foot and multi-
contact walking on the Atalante lower-body exoskeleton. To further elucidate the
efficacy of our approach, we also compare our results to gaits optimized only for
stability. A video of the experimental results can be found at [205].

Implementation Details

We choose to generate gaits using the open-source toolbox FROST [41]. These
gaits are parameterized using a set of essential constraints, as explained in [25].
Specifically, we define these essential constraints to enforce four gait features:
step length, step duration, step width, and step height. The output of the gait
generation problem is selected to be 7th-order Bézier polynomials, with the phasing
variable parameterized by time, for each of the 12 joints of the Atalante lower-body
exoskeleton, i.e., β∗ ∈ R12×8. These gaits are enforced on the robot by tracking the
generated output trajectories.

Once generated, the gait is then provided to a MuJoCo simulation environment
[206]. This simulation environment is first used to evaluate whether the simulated
locomotion is periodically stable. If the resulting locomotion is stable (empirically
evaluated as the total number of steps taken in simulation), this provides us with
a fixed point, i.e. x∗ = PX(x

∗), around which to conduct perturbation analysis.
Specifically, a collection of N = 200 samples are uniformly drawn from Brmax(x

∗),
with rmax = 2. This set is denoted:

C0 := {x(i)
0 ∼ U(Brmax(x

∗)) | i = [1, N ]}.
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Figure 5.5: Invariant sets identified in simulation compared to the values seen on
hardware during the experiments.
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Figure 5.6: Barrier function evaluation using experimental data.
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Figure 5.7: Experimental gait tiles.

To obtain the Poincaré return map of the samples (i.e., CP := {PX(x) | ∀x ∈ C0}
), we define our reconstruction map ι(x) by enforcing the systems outputs and
holonomic constraints. Each initial condition is then simulated forward for one gait
cycle to obtain the Poincaré return set CP . The maximum set that is forward invariant
can then be solved for using the optimization problem (5.6).

The robustness measure r∗, along with the parameters associated with the generated
gait, is then provided to a learning algorithm. Here, we choose to leverage preference-
based learning since it is able to balance feedback regarding both stability (evaluated
by number of steps taken) with robustness (evaluated by r∗) without explicit term
weighting. The preference feedback is automatically determined to prefer gaits with
higher values of r∗. For gaits that are not stable, the algorithm automatically prefers
gaits with higher number of steps taken. The POLAR toolbox was used to implement
the preference-based learning algorithm [110].

The entire simulation-in-the-loop procedure was conducted for 10 iterations, with 5
gaits being generated and ranked in each iteration. At the conclusion of the framework,
the gait identified as being maximally robust was then experimentally demonstrated
on the Atalante exoskeleton. The same c++ controller used in simulation is used
in the experiments, with additional code to interface with Wandercraft API. For
the flat-foot behavior a passivity-based controller [207] was implemented to track
the generated gaits. For the multi-contact behavior, due to the uncertain domain
transition resulted changing holonomic constraints, we switch the controller to a
joint-level PD controller. The controllers are run directly on the Atalante on-board
computer (i5-4300U CPU @1.90GHz with 8GB RAM at 1kHz).

Flat-Foot Walking

The framework was first conducted for flat-foot walking. This domain structure, as
illustrated in Fig. 5.2(a), only has a single domain and a single edge. The domain
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characterizes the continuous-time dynamics associated with single-support flat-foot
walking, with the associated edge characterized by the impact of the non-stance foot.
Specifically, the domain is described by the following holonomic constraints:

ηSS(qe) :=

[
pst(qe)

ϕst(qe)

]
, (5.7)

with pst(qe) ∈ R3 and ϕst(qe) ∈ SO(3) denoting the position and orientation of the
stance foot relative to the world frame. This holonomic constraint is imposed in the
gait generation framework via the condition ηSS(qe) = constant. We refer the reader
to [78] for more details.

The entire learning procedure detailed in the previous subsection, was conducted
to generate a total of 26 unique gaits. The invariant set associated with the gait
being identified as most robust (r∗ = 1.97 with rmax = 2) is illustrated in Fig. 5.5.
Additionally, the discrete-time barrier function, evaluated using experimental data, is
illustrated in Fig. 5.6.

Multi-Contact Walking

To further demonstrate the proposed framework, we repeated the similar process for
multi-contact walking. Multi-contact refers to behaviors that can be characterized by
changing contact modes throughout a single stride. In the HZD framework, each
domain is defined by a unique set of holonomic constraints and a corresponding
impact event. While multi-contact walking can include as many 8 unique domains
[208], we simplify our multi-contact domain structure to only have 2 domains, as
illustrated in Fig. 5.2(b). The domains include the single-support phase (as in
flat-foot walking) captured by the holonomic constraint (5.7), as well as an additional
domain for the foot-rolling phase captured by the following holonomic constraint:

ηDS(qe) := [pt(qe)
⊤, ϕx

t (qe), ϕ
z
t (qe), . . .

ph(qe)
⊤, ϕx

h(qe), ϕ
z
h(qe)], (5.8)

with pt(qe) ∈ R3 denoting the position of the back-foot toe frame with the frame’s roll
and yaw denoted by ϕy

t (qe), ϕ
z
t (qe) ∈ R. Similarly, ph(qe) ∈ R3, ϕy

h(qe), ϕ
z
h(qe) ∈ R

denote the position, roll, and yaw of the front-foot heel frame.

Again, the entire learning procedure was conducted for 10 iterations, resulting
in a total of 21 unique gaits. The invariant set associated with the most robust
gait (r∗ = 1.57 with rmax = 2) is illustrated in Fig. 5.5, with the experimental
discrete-time barrier function evaluation shown in Fig. 5.6.
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Comparison to Optimizing for Stability

To further test our proposed metric, we ran an additional set of experiments in
which the gaits were optimized for stability. This was done by replacing the metric
provided to the learning agent with the total number of steps taken in the simulation
environment, rather than r∗. These experiments were conducted for both the flat-
foot and multi-contact behaviors, with the resulting gaits ‘optimized for stability’
illustrated in Fig. 5.7. It is interesting to note that while these gaits were both
stable in simulation, they were not able to successfully yield stable locomotion when
translated to hardware. This indicates that our proposed approach is a successful
metric for capturing real-world robustness.

Summary

This work explored the use of discrete-time barrier functions to synthesize robust
walking gaits. The main idea was that locomotive robustness can be related to forward-
invariance of the discrete-time step-to-step dynamics. Specifically, the size of these
forward-invariant sets was proposed as a metric for locomotive robustness. Lastly, a
simulation-based framework was outlined and demonstrated towards experimentally
synthesizing robust nominal gaits for both flat-foot and multi-contact walking on
the Atalante lower-limb exoskeleton. A limitation of this work includes the fact that
robustness is not the only factor important for desirable robotic locomotion. As such,
future work includes the combination of robustness with other important metrics
such as user comfort and naturalness.
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Figure 5.8: Illustration of data-driven predictive control for bipedal locomotion on
lower-body exoskeleton Atalante with various payloads.

5.2 Online Planning for Dynamic Walking

The previous sections focused on designing robust nominal trajectories offline. While
such trajectories improve baseline stability, they offer only limited robustness: once
unexpected disturbances or user-induced variations push the system outside the
predefined attraction basin, the gait cannot recover. Real-world walking, however,
inevitably involves such variability—ranging from terrain changes to unmodeled
dynamics—which cannot be fully anticipated during offline synthesis.

To address this, robustness must extend beyond static plan design to online adaptation.
Online planning enables the gait to reconfigure in real time by adjusting footstep
locations, timing, and body motion in response to disturbances. To enable online
replan capability, the central trade-off is between accuracy and tractability: full-
order models provide physical fidelity but are computationally demanding, while
reduced-order models (e.g., LIP-based templates) enable fast replanning but require
simplifying assumptions. Building on the trade-off discussion in Chapter 2, we pursue
reduced-order approaches that remain computationally lightweight yet integrate with
full-order dynamics to preserve feasibility and stability by leveraging data-driven
approach.
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With the advancement in modern computational power, pure data-driven approaches,
such as reinforcement learning, have offered a model-free approach to train controllers
by exploiting large amounts of data from simulators [30]. While offering robustness,
these approaches often require extensive training data and are sensitive to reward
design. This motivates leveraging data-driven approaches to learn a more accurate
representation of the system dynamics, such as learning the residual dynamics either
using Gaussian process [209] or deep neural network [210], to use in conjunction
with classic control methods. In the context of locomotion, due to the high DoFs,
to allow for online planning capability, existing work focuses on achieving robust
locomotion [28, 211] via learning a reduced-order representation of the system to
mitigate model mismatches.

Data-driven approaches based on behavioral systems theory [212] offer a middle
ground between model-based methods and learning-based strategies. By representing
linear time-invariant (LTI) systems directly from data, these methods can be incor-
porated into predictive control frameworks, commonly referred to as data-enabled
predictive control (DeePC) or data-driven predictive control (DDPC) [213]. DDPC
has demonstrated both computational efficiency and practical effectiveness, with
applications ranging from underactuated quadrupeds to interconnected multi-robot
systems and assistive devices [214, 215, 216]. Its ability to design policies from
past feasible trajectories makes it well suited for real-time control in applications
with constrained kinematic spaces. Unlike many modern legged robots that assume
negligible leg mass [34, 183], the Atalante exoskeleton has a significant portion of
its mass concentrated in the legs (see Fig. 5.8). This motivates our development of a
data-driven dynamic model tailored for user–exoskeleton systems and its integration
into trajectory planning.

Data-driven approaches, grounded in behavioral systems theory [212], provide a
middle ground between model-based methods and learning-based approaches. These
methods effectively learn linear time-invariant (LTI) system models, and have been
successfully integrated into predictive control frameworks, such as data-enabled
predictive control (DeePC) or data-driven predictive control (DDPC) [213]. DDPC
is computationally efficient, and has been successfully applied to systems like
quadrupeds, interconnected systems, and assistive devices [214, 215, 216]. Its ability
to design policies based on past feasible trajectories makes it a more suitable choice
for real-time control in environments with constrained kinematic spaces, where rapid
and reliable control is critical.
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Figure 5.9: Overview of the proposed layered control framework composed of the
DDPC as a planner with constructed data-driven model and low-level controller.

In this section, we present two online planning approaches that leverage offline data.
Both Data-Driven Predictive Control (DDPC) and Hybrid Data-Driven Predictive
Control (HDDPC) use Hankel matrices to represent system behavior directly from
collected trajectories, but they differ in scope. DDPC only account for system
continuous dynamics, where the Hankel matrix encodes feasible trajectories that
evolve smoothly over time. This enables online trajectory generation and adaptation
without requiring explicit model identification. HDDPC, in contrast, extends the
framework to also consider contact schedule, where both continuous evolution and
discrete step-to-step (S2S) transitions must be captured. By incorporating both
continuous trajectory and S2S transition into the Hankel representation, HDDPC
provides a natural mechanism for adapting gaits across steps, making it well suited
for legged locomotion with impacts.

We begin with a brief introduction to behavioral systems theory and existing
theoretical results in data-driven predictive control, before turning to the construction
of data-driven models for the user–exoskeleton system.
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Behavioral Systems Theory

This subsection briefly reviews some of the fundamental results of the behavioral
systems theory. Let us consider a state representation of a discrete-time LTI system
as follows:

θ(t+ 1) = Aθ(t) +B µ(t)

η(t) = C θ(t) +Dµ(t),
(5.9)

where θ(t) ∈ Rβ, µ(t) ∈ Rκ, η(t) ∈ Rν represent the state vector, control inputs,
and outputs, respectively, at time t ∈ Z≥0 := {0, 1, . . . }, and A ∈ Rβ×β , B ∈ Rβ×κ,
C ∈ Rν×β, D ∈ Rν×κ denote the unknown state matrices. In behavioral systems
theory, a dynamical system is defined as a 3-tuple (Z≥0,W,B), where W is a signal
space and B ∈WZ≥0 is the behavior. In contrast with classical systems theory with a
particular parametric system representation such as that of (5.9), behavioral systems
theory focuses on the subspace of the signal space where system trajectories live. Let
µ := col(µ0, µ1, . . . , µT−1) be an input trajectory with length T ∈ N := {1, 2, · · · }
applied in B with the corresponding output trajectory η := col(η0, η1, . . . , ηT−1).
We can construct the Hankel matrix with µ by concatenating trajectory with length
L ∈ N and T > L as follows:

H(µ) :=


µ0 · · · µT−L

... . . . ...
µL−1 · · · µT−1

 ∈ RκL×(T−L+1).

Here we note that the Hankel matrix with ηT , H(ηT ), can be constructed analogously.

Considering input sequences µΛ := {µ(i) | ∀i = 1, . . . ,Λ}, where Λ indicates the
number of datasets, we can construct the Trajectory Hankel matrix as follows:

H(µΛ) :=


µ
(1)
0 µ

(2)
0 · · · µ

(Λ)
0

µ
(1)
1 µ

(2)
1 · · · µ

(Λ)
1

...
... . . . ...

µ
(1)
L−1 µ

(2)
L−1 · · · µ

(Λ)
L−1

 ∈ RκL×Λ,

whereµ(i)
j represents the j-th sample from the i-th trajectory or dataset. The Trajectory

Hankel matrix with ηΛ, denoted by H(ηΛ), can be constructed analogously.

The signal µ is said to be persistently exciting of order L if H(µ) (or its multi-dataset
extension H(µΛ)) is of full row rank [217]. If a dataset of input-output (I-O)
trajectories (µ,η) is persistently exciting of order L+ β, then by the Fundamental
Lemma and its multi-dataset extension [218, 213, 217], any trajectory of the LTI
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system can be expressed as a linear combination of the columns of the corresponding
Hankel matrices. Equivalently, any new trajectory pair (µL,ηL) of length L lies in
the range space of the Hankel matrices, i.e., it is a valid trajectory if and only if there
exists a coefficient vector γ such that[

H(µΛ)

H(ηΛ)

]
γ =

[
µL

ηL

]
. (5.10)

The signal µ is said to be persistently exciting of order L if HL(µ) or the multi
dataset version H(µΛ) is of full row rank [217]. If a given data input-output (I-O)
trajectory of the system, denoted by the pair (µT ,ηT ), is persistently exciting of order
L+ β, from Fundamental Lemma [217, 218], any trajectory of the LTI system can
be constructed using a linear combination of the columns of the Hankel matrices. In
particular, one can use the columns of the Hankel matrices to develop a data-driven
model to predict the system’s future behavior.

To make this notion more precise, let us take L as L = Tini + N , where Tini and
N denote the estimation horizon and control horizon, respectively. The estimation
horizon is used to estimate the system’s initial state from past I-O measurements.
The control horizon is used for the predictive controller. We can partition the Hankel
matrices into the past and future portions accordingly as follows:[

Up

Uf

]
:= H(µT )

[
Yp

Yf

]
:= H(ηT ), (5.11)

whereUp ∈ RκTini×(T−L+1),Uf ∈ RκN×(T−L+1),Yp ∈ RνTini×(T−L+1),Yf ∈ RνN×(T−L+1).
From the Fundamental Lemma [213, 217, 218], any new trajectory lies in the range
space of the Hankel matrices, or equivalently, there exists γ ∈ RT−L+1 such that

Up

Yp

Uf

Yf

 γ =


µTini

ηTini

µN

ηN

 , (5.12)

where µTini and ηTini denote the past portions of the I-O trajectories over the estimation
horizon of Tini. Similarly, µN and ηN represent the predicted (i.e., future) portions
of the I-O trajectories over the control horizon of N . Since the dimensionality of
the γ vector in formulating predictive controllers is huge, we aim to remove γ from
(5.12). One way is to have an offline approximation for γ using least squares similar
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Figure 5.10: System representation of Atalante exoskeleton for Hankel Matrix
construction. a) Generalized coordinates for the lower-body exoskeleton Atalante. b)
The input and output variables in the x-direction to be used for the Hankel matrix
construction.

to [214, 219] to obtain the data-driven model as

ηN = Yfγ = Yf

Up

Yp

Uf


†

︸ ︷︷ ︸
G

µTini

ηTini

µN

 , (5.13)

where (·)† represents the pseudo inverse and G denotes the data-driven state transition
matrix over N -steps.

Data-Driven Motion Planner

In this subsection, we presents a layered framework utilizing data-driven predictive
control (DDPC) for trajectory planning and control of the lower-body exoskeleton
Atalante as illustrated in Fig. 5.9. The primary contributions of this study are
threefold. First, we propose a data-driven dynamic model employing behavioral
systems theory with time-domain trajectories of the center of mass (CoM) and center
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of pressure (CoP), inspired by the LIP model for bipedal locomotion. Second, we
design a trajectory planner based on convex DDPC with the proposed data-driven
model at the higher level of the proposed layered framework. At the lower level of
the framework, the controller incorporates inverse kinematics and passivity-based
controllers to translate the planned trajectory from DDPC into the full-order model of
the lower-body exoskeleton (Fig. 5.10a). Third, we conduct experimental evaluations
of the proposed data-driven layered framework through numerical simulations and
hardware demonstrations. Comparative analysis in simulations demonstrates that the
proposed data-driven layered framework effectively stabilizes bipedal gaits at higher
speeds, in contrast to the traditional model predictive control (MPC)-based planner
for the LIP model. Furthermore, hardware experiments with different kinematics
and payloads showcase the ability of this framework to account for user variability as
well as the robustness under deviations from nominal data-driven model.

This subsection aims to present the proposed DDPC-based trajectory planner at the
high level of the control scheme for bipedal locomotion (see Fig. 5.9).

Construction of the Data-Driven Model

Assuming reasonable behavior for the actuated coordinates, the difficulty and
complexity of the bipedal locomotion usually lie in the control and planning for
the weakly actuated or underactuated Centroidal states. In this context, designing
the CoM trajectory encapsulated all the requisite DoFs’ information, although their
individual dynamics are not described explicitly. Hence instead of using the full-order
states x for trajectory planning, we are focusing on the Centroidal states to construct
the Hankel matrices. Specifically, we draw inspiration from the LIP model that
considers the CoM and CoP of the robot. We consider a local representation of these
states with respect to either the left or right foot frame as px,y

cop2ℓ/r := px,y
cop − px,y

ℓ/r and
px,y,z

com2ℓ/r := px,y,z
com − px,y,z

ℓ/r as shown in Fig. 5.10b.

An intuitive choice would be using the CoM and CoP trajectories in the stance-foot
frame. However, this choice would create discontinuity during domain switches,
posing challenges for planning through impact. To prevent the state space from
monotonically increasing during forward walking and to maintain continuity in the
trajectory planning, we adopt a redundant representation where the trajectory of
the CoM and CoP with respect to both stance and swing feet are being considered.
Hence, the input µ ∈ R4 and output η ∈ R6 of the date-driven model are chosen as
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Figure 5.11: One set of the planned CoM and CoP trajectories from the DDPC
planner and the tracked trajectory in simulation in right foot frame, the left foot
frame trajectories, and the Stance foot. The stance foot frame trajectory in black is
generated from DDPC. The corresponding phase variables are plotted in the dashed
line.

follows:

η := col(px,y,z
com2ℓ, px,y,z

com2r) µ := col(px,y
cop2ℓ, px,y

cop2r).

Notably, with this redundant formulation, we also provide trajectories in the following
domain throughout the prediction horizon for the low-level controller to track in
case of unexpected early or late impact. This is especially advantageous in scenarios
involving uncertain impact timings or unexpected communication delays, significantly
enhancing the framework’s practical applicability. We do not include velocity terms in
our representation as the velocity and acceleration information is implicitly captured
in the position trajectory in the Hankel matrix. We remark that the proposed data-
driven model, inspired by the LIP model, captures more comprehensive information
about the system with implicit consideration of swing foot trajectory and the effect
of the low-level whole-body controller on the system dynamics. A comparative
analysis of the performance between these two models and their corresponding
planner architectures will be presented in Section 5.2.

DDPC Algorithm for Trajectory Optimization

We are now positioned to present the DDPC-based trajectory planner for optimizing
the I-O (i.e., CoP and CoM) trajectories. The real-time DDPC planner is formulated
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Figure 5.12: Simulation comparison over nominal indicated by blue circles, DDPC
indicated by orange stars, and MPC indicated by green diamonds. a) DDPC planner
planning trajectories for increasing desired speed, capped at maximum step length
0.2 m at different step duration td. b) tracking performance over different desired step
length with the same step duration. The dashed line indicate the ideal performance.
Error bar indicates the standard deviation over 50 models. c) Simulation time
before robot falling for the tracking performance comparison. Error bar indicates
the standard deviation over 50 models. The maximum simulation time is 11 s,
indicated by the horizontal dash line. d) Comparison of Nominal and DDPC under
time-varying perturbation applied on the negative x direction.

as the following strictly convex quadratic program (QP)

min
(µN ,ηN )

N−1∑
k=0

(
∥ηk − rηk∥2Q + ∥µk − rµk∥2R

)

subject to ηN = G

µTini

ηTini

µN

 (Data-Driven Model) (5.14)

µk ∈ U , ηk ∈ P , k = 0, . . . , N − 1,

where rη := col(rη0 , · · · , rηN−1) represents a reference output (i.e., CoM) trajec-
tory, rµ := col(rµ0 , · · · , rµN−1) denotes a reference input (i.e., CoP) trajectory, and
(µTini ,ηTini) represents the pair of past actual I-O trajectories (i.e., feedback to the
DDPC). In addition, U ⊆ R4 and P ⊆ R6 denotes the input and output feasibility
sets, respectively. Finally, Q ∈ R6×6 and R ∈ R4×4 are chosen as positive definite
weighting matrices.

Layered Control Framework for Atalante

In this section, we introduce the remaining components and details for practically
implementing the entire layered control framework used to realize locomotion on
the lower-body exoskeleton Atalante (see Fig. 5.8). The device weighs 82 kg and
has adjustable thigh and shin length to account for the varying heights of users.
Depending on the physical parameters of the users, the largest kinematically feasible
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step length in x direction that the device is capable to achieve for flat-footed walking
is less than 0.2 m.

Trajectory Planner with DDPC

We generate a reference trajectory with the open-source toolbox FROST [41]
using the full-order system to account for kinematics and dynamics feasibility.
This trajectory is described by 7-th order Bézier polynomials with the coeffi-
cient matrix of α = [αcom, αϕ, αsw], where αcom describes the CoM trajectory, αϕ

described the pelvis orientation and αsw described the swing foot position and
orientation. The Bézier polynomials are evaluated based on a time-based phase
variable. Specifically, considering a desired step duration td and the initial time
at the beginning of the domain t0, we can calculate the phase variable τk = tk−t0

td

at time point tk. The reference for the CoM trajectory is then determined by
rηk = col(px,y,z

com (α, τk)− px,y,zℓ (α, τk), px,y,z
com (α, τk)− px,y,z

r (α, τk)). In addition, the
reference CoP trajectory is generated via rµk = col(−px,y

sw (α, τk), 0, 0) for the right
stance and ruk = col(0, 0,−px,y

sw (α, τk)) for the left stance.

Without explicit guidelines to construct the Hankel matrix for nonlinear systems, we
empirically determine the hyperparameters of the DDPC algorithm via a grid search
over the space of the discrete-time interval between nearby points δt ∈ [0.01, 0.03],
the trajectory length of T ∈ [50, 600], the initial trajectory length of Tini ∈ [5, 50], and
the control horizon of N ∈ [10, 300]. This search space is constructed considering
the computation speed, low-level controller frequency, noisy level of the data, and
the amount of data required. We choose T = 400, Tini = 10, N = 20, and δt = 0.02

with a selection criteria on the accuracy of the least-square approximation over some
unseen trajectory. In total, 8 s of data are used for the Hankel matrix construction,
and a trajectory for 0.4 s is planned. This means our DDPC-based trajectory planner
primarily acts as a short-term regulator to stabilize the system. We remark that even
though pz

com is planned, it is not being used by the low-level controller but only used
as part of the states to determine system dynamics. The trajectories are planned at
100 Hz, which is faster than the interval δt specified. However, since the reference
generation is based on the current domain and phase variable, the trajectory planner
still has the ability to regulate the system behavior during this interval till the next
time sample at which µTini and ηTini are updated.
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Output Synthesis

The desired walking behavior is encoded by the task space output y = yact − ydes,
where yact ∈ R12 and ydes ∈ R12 are the actual and desired outputs, respectively. In
particular, we choose the following outputs for the system:

yact =
[
px,y,z

com2st(q) ϕx,y,z
pelv (q) px,y,z

sw (q) ϕx,y,z
sw (q)

]
ydes =

[
px,y,z

com2st ϕx,y,z
pelv (α) px,y,z

sw (α, λx,y) ϕx,y,z
sw (α)

]
,

where the desired COM position px,y
com2st is generated by the high-level DDPC planner,

and the other desired components are taken as Bézier polynomials with the coefficient
matrix of α and the step length of λx,y. More specifically, the coefficients of pelvis
orientation ϕpelv and swing foot orientation ϕsw, and z-height of CoM and swing foot
trajectory are fixed and from the aforementioned reference trajectory. The swing
foot x, y trajectories are determined by Bézier polynomials connecting the swing
foot position at the beginning of the domain (i.e., post-impact state) and the desire
foot targets, i.e., px,y

sw (τ) = (1−β(τ)) psw(q
+)+β(τ)λx,y, where β is a phase-based

weighting function.

Low-Level Feedback Controller

Our low-level controller, implemented in C++, receives trajectories for the CoM
position target from the DDPC-based trajectory planner. Given that the controller
operates at 1 kHz, much faster than the planner’s replan frequency and the discrete-
time interval, CoM target positions and velocities for each control tick is obtained
via linear interpolation. Subsequently, we employ a Newton-Raphson numerical
inverse kinematics (IK) algorithm to calculate the desired joint targets, which are
then tracked using a passivity-based control method [207]. The kinematics and
dynamics evaluation is performed with Pinocchio [220]. To account for uncertainty
in state estimation and impact time, we switch to the next stance domain only when
the swing foot ground reaction force exceeds some pre-defined threshold instead of
time-based switching.

Experimental Validations of DDPC

In this subsection, we present the numerical simulation and hardware experiment
results for our proposed framework. The experiment video could be found in [221].
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Figure 5.13: Gait tiles for simulation. Simulations with a) LIP-based MPC and b)
DDPC controllers for walking at the speed of 0.16 (m/s), c) Nominal trajectory and
d) DDPC under time-varying perturbations.

Figure 5.14: Desired trajectories from the DDPC-based trajectory planner (black
solid line) and actual evolving CoM/CoP states from the hardware experiment.

Simulation Results

We validate the effectiveness of our framework with numerical simulations in MuJoCo
[206]. To account for uncertainty in mass distribution estimation for human users, we
generated 50 randomized models with identical user total mass by varying the CoM
offset and inertia properties, resulting in a pcom ranging from [−0.122,−0.106] m in
nominal standing configuration. The low level controller is using the information
from the same nominal model constructed with parameters from [15].

Tracking Performance: We compare tracking performance over these randomly
generated models. For each model, simulation data with different desired step lengths
ranging from 0.1 to 0.15 m were collected to construct the G matrix. An example
trajectory generated by the DDPC planner and the corresponding actual CoM and
CoP states are shown in Fig. 5.11. Moreover, DDPC is able to achieve stable
walking in various speed as described in Fig. 5.12a. Additionally, we implemented
an MPC planner based on the LIP dynamics for comparative analysis. This MPC
shares a similar problem structure to that described in (5.14), but it substitutes the
Hankel matrix trajectory constraints with those of the LIP dynamics. Considering
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Figure 5.15: The system evolution with the data-driven layered framework is shown
in orange, and the system evolution with nominal trajectory is shown in blue. a)
Experiment result for exoskeleton carrying 20 kg of payload. CoP position in the
foot frame for 5 left stance foot steps and 5 right stance foot steps. b) CoP position
for exoskeleton with user inside. c) Gait tiles with the DDPC planner for the 20 kg
payload experiment. d) Gait tiles with the DDPC planner for the experiment with
user.

the kinematic limits and feasibility concerns, we opted for a 0.8 m CoM z-position
in the LIP model (as opposed to 0.85 m) and set δt = 0.01 s to discretize the LIP
dynamics. The time horizon for the MPC is also chosen as NLIP = 300.

The DDPC planner’s tracking performance was evaluated against that of the MPC
and a nominal trajectory for desired walking speeds between 0.14 and 0.19 m/s, with
a constant step duration of 1 s. As shown in Fig. 5.12b, the DDPC planner reliably
achieves close tracking of the desired step length. As the desired speed increases by
increasing the desired step length, the validity of LIP dynamics starts to degrade.
In particular, the LIP MPC’s performance begins to decline at speeds above 0.16

m/s, and the nominal trajectory cannot be appropriately tracked beyond 0.17 m/s, as
described in Fig. 5.12b. Furthermore, the DDPC planner maintains the system’s
stability for a longer duration than the other controllers as demonstrated in Fig. 5.12c.
Here, we define a robot maintaining CoM above a certain threshold throughout the
maximum simulation time as a success. It is a failure if QP or IK becomes infeasible
or CoM falls below a specified threshold. An example of failure case is shown in Fig.
5.13a for MPC.

Since the DDPC-generated trajectory is based on the feasible trajectory used to
construct G, it tends to run into kinematics issues less frequently than physics-based
reduced-order model like LIP, where no full-order model system information is
exposed to the planner.

Adaptation to Perturbation: We further evaluate the DDPC’s robustness against
time-varying external disturbances (see Fig. 5.13c and 5.13d). Specifically, we
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Figure 5.16: Hardware experiment with additional weight. a) Phase portrait over
pelvis roll ϕx and ϕ̇x for hardware experiment with user wearing additional weight
for nominal, DDPC with G, DDPC with Gw b) Gait tiles for experiment with DDPC
controller with G with additional weight c) Gait tiles for experiment with DDPC
controller with Gw with additional weight

continuously apply an external perturbation force to the torso’s negative x direction.
This direction is chosen because the device is more sensitive towards perturbation
applied along this axis with its fairly negative nominal CoM position. The initial
perturbation force was set at 5 N with a discrete increase of 3 N every 3 s. To adapt
to this time-varying perturbation, the Hankel matrix is updated online. The choice
of the Hankel matrix size requires a balance between satisfying persistently exciting
requirements and using obsolete data. The simulation’s first 5 s were used for data
collection, which was a smaller trajectory length T = 250, and G is reconstructed
every 1.5 s. The least-square approximation step is completed within 70− 100 ms.
We ran the same setup for the aforementioned 50 randomly generated models and
compared it with the nominal trajectory at 0.13 m/s desired speed. The DDPC has a
higher success rate, defined by the percentage of the models being upright, compared
to the nominal trajectory (see Fig. 5.12d).

Hardware Results

The same C++ low-level controller used in simulation, with additional code to
interface with Wandercraft API, is run directly on the Atalante onboard computer
(i5-4300U CPU @1.90GHz with 8GB RAM at 1kHz). The DDPC planner is run
on an external PC (i7-8700K CPU @3.70GHz) communicating with the onboard
computer via a UDP network. To account for package delay, a segment of the desired
trajectory is sent, and the low-level controller finds the closest discrete target point
given the current phase variable. As a result, the low-level controller receives planned
trajectory with the upcoming time stamps and could handle the delay caused by
planning computation time and UDP communication. An example planned trajectory



121

of CoM and CoP under this setup is shown in Fig. 5.14.

Different User Settings: We conducted two sets of experiments to test the framework
with different payloads and kinematics as this platform is designed to be used by
different users. The data collection part for the hardware experiment is similar to that
of the simulation setup for tracking performance comparison with gaits at different
step lengths. The first set of experiments is conducted with the exoskeleton carrying
20 kg of payload with the link lengths of a subject of 1.74 m. DDPC planner is able
to regulate the CoP position to a more centered position as depicted in Fig. 5.15a
and 5.15b. A different set of hyperparameters with T = 800, Tini = 20, N = 100,
and δt = 0.015 is used. The second experiment is conducted with a user of height
1.63 m and 52 kg with the same hyperparameter to construct the Hankel Matrix as in
tracking performance case. The gait tiles for the experiment with different payloads
are shown in Fig. 5.15c and 5.15d.

Uncertain User Mass: To investigate the effect of the planner’s capability to handle
the uncertain mass of the user or in case of the user wanting to carry additional
payload, we also conducted a set of experiments with the user carrying an additional
14 kg of weight (see Fig. 5.16). We test both DDPCs with G constructed from data
without carrying the additional weight and with Gw which is constructed with trials
where the user is carrying additional weight. From the phase portrait described in
Fig. 5.16a, we could see that the DDPC with Gw resembles a desired limit cycle
compared to the DDPC with G and the nominal controller. The gait tiles for the
experiments with G and Gw are shown in Fig. 5.16b and 5.16c, respectively. We
also evaluate the cumulative tracking error over ttotal = 10 s for output other than the
CoM position and yaw related, denoted by ypart, as the CoM positions are different
across controllers and the yaw related output is not well approximated due to IMU
drifting via evaluating e =

∫ ttotal
0
∥yact

part(t)− ydes
part(t)∥2dt. This value for the DDPC

with G, Gw, and nominal is 0.4627, 0.4319, and 0.5181, respectively.

DDPC Summary

We successfully demonstrated the DDPC framework’s application on lower-body
exoskeleton, both in simulations and on hardware. Through detailed simulation
analyses, the DDPC framework proved its effectiveness in stabilizing the system,
surpassing traditional physics-based template models such as LIP, particularly at
increased desired speeds. The framework’s robustness was also validated on hardware,
showcasing its ability to accommodate model discrepancies beyond the initial model
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used for data collection. Furthermore, we introduced a time-varying perturbation
in the simulation while updating the transition matrix online. Although further
research is necessary to refine the online update process of the Hankel matrices
systematically, these results underscore the framework’s capacity to adapt to changing
environments. However, it is crucial to note that the DDPC planner’s performance is
intrinsically linked to the trajectory used to construct the Hankel matrices. It can
only enhance and build upon the capabilities of the nominal controller used for data
collection. Moreover, considering the inherent limitations in the actuation of the
CoM horizontal position, future studies will explore how to extend the proposed
framework to incorporate foot placement and step timing planning to enhance stability
and performance (as shown in section 5.3. Additionally, further investigation into
incorporating more information on user movement would be beneficial.

5.3 Hybrid Data-Driven Predictive Control

While DDPC offers a powerful framework for trajectory generation from data, its
formulation is restricted to continuous dynamics. Bipedal locomotion, however,
inherently couples continuous swing-phase motions with discrete step-to-step transi-
tions that govern stability and foot placement. For exoskeletons—where range of
motion is limited—robustness depends on carefully coordinating these two levels,
unlike robots with greater kinematic freedom. This motivates extending DDPC
beyond purely continuous trajectory generation to explicitly incorporate step-to-step
reasoning, which we term Hybrid Data-Driven Predictive Control (HDDPC).

Achieving robust exoskeleton walking requires generating stable periodic motions
while simultaneously replanning foot placement online to handle disturbances and
constrained environments. A common approach is to decouple footstep planning
(discrete dynamics) from motion synthesis (continuous swing-phase dynamics), often
relying on heuristics with simplified models [222]. Reduced-order models have been
effective for capturing step-to-step (S2S) dynamics, enabling agile and robust bipedal
locomotion [34]. However, their validity typically assumes lightweight legs and can
break down in more dynamic or constrained settings. This motivates approaches
that jointly optimize both contact schedules and continuous motion planning [223],
or learn step transitions in a data-driven way [224]. What remains missing is a
unified framework that integrates S2S footstep planning with continuous trajectory
generation in a fully data-driven manner.
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Figure 5.17: Overview of Hybrid DDPC.

In this section, we introduce HDDPC (Fig. 5.17), a framework that simultaneously
plans both contact schedules and continuous-domain trajectories. Our method
leverages a data-driven reduced-order model based on Hankel matrices, extending
DDPC to incorporate discrete S2S dynamics. This unified approach integrates both
discrete and continuous aspects of locomotion in a data-driven manner, enabling
adaptation that supports robust and dynamic gait generation (Fig. 5.18). We
demonstrate HDDPC on the lower-body exoskeleton Atalante, in both simulation
and hardware, showing that it produces stable walking across speeds and effectively
rejects disturbances. These results highlight how a hybrid data-driven formulation
can enable the synthesis of robust and reactive walking gaits.

Hybrid Data-driven Model

We introduce a hybrid data-driven model for full-order system dynamics (Fig. 5.19),
consisting of two components: a Hankel matrix H (·) for continuous dynamics and
a second one H S2S(·) for discrete step-to-step dynamics.

Data-driven Model with Step-to-step Dynamics

Inspired by the input-output structure of the H-LIP model in Section 2.1, we define
the input µS2S ∈ R3 and the output ηS2S ∈ R2 of the S2S date-driven model as
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Figure 5.18: Control Overview for Hybrid Data-Driven Predictive Control (HDDPC).
We utlilize a layered architecture with HDDPC planner and low-level controller.

Figure 5.19: An illustration of Trajectory Hankel matrix construction for different
domains.
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Figure 5.20: An illustration of the estimation and prediction horizon of HDDPC.

follows:

µS2S := col(λx,y, Tstep) ηS2S := (px,y
com)

−,

where λx,y is the foot placement for the next step and Tstep is the desired step duration,
and (px,y

com)
− are the pre-impact CoM states. By using this I-O structure, the data-

driven model captures the essential S2S dynamics that govern transitions in walking,
allowing us to approximate the full system’s behavior through a step-wise dynamics
evolution. We denote the S2S Trajectory Hankel matrix constructed using a dataset
µ
(i)
S2S that describe step-to-step transitions from domain Dd to Dd+1 as H S2S

d (µΛ
S2S),

where d ∈ Z≥0.

Data-driven Model with Continuous Dynamics

Drawing the inspiration from LIP model introduced in Section 2.1, the input µ ∈ R2

and the output η ∈ R2 are chosen as follows:

µ := px,y
cop η := px,y

com.

When considering multiple continuous domains, each domain is represented by
its own Trajectory Hankel matrix, capturing the system dynamics specific to that
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walking phase. Since we focus exclusively on position outputs, there are no discrete
jumps in the CoM trajectory across domains in the global coordinate frame. However,
each trajectory is expressed relative to the corresponding stance foot, resulting
in a periodic oscillations in the x-direction and a sign flip in the y-direction as
stance foot changes. To account for transitions between domains, we apply a frame
transformation Φ(·, ·) to express CoM trajectory relative to the stance foot frame
of the next domain. Specifically, when transitioning from domain Dd to Dd+1, the
transformation is given by µd|d+1 = Φ(µd, λ

x,y
d ), where λx,yd is the foot placement

during the transition, measured relative to the stance frame in domain Dd. Here µd

represents the CoM trajectory in domain Dd relative to its stance foot frame, while
µd|d+1 denotes the same trajectory but relative to the stance foot frame in Dd+1. For
a trajectory dataset µΛ containing multiple domains, we can construct the Trajectory
Hankel matrix Hd+1(µ) ∈ RκL×Λ that describe the dynamics for domain Dd+1 as
follows:

Hd+1(µ) =

[
S(κ(N − Tini), κTini,H(µΛ

d|d+1))

H(µΛ
d+1)

]
, (5.15)

whereµΛ
d denotes the trajectory data set captured in domaind andH(µΛ

d ),H(µΛ
d|d+1) ∈

RκN×Λ and to streamline the partitioning, we define a selection operator S(·, ·, ·)
as follows Up = S(0, κTini,H(µΛ)), Uf = S(κTini, κN,H(µΛ)). The first entry
indicates the starting point of the selection, the second entry indicates the size of
row block being selected. We can partition H(ηΛ) in a similar fashion with νTini

and νN . Since all trajectories are transformed with respect to the stance foot frame
in domain Dd+1, continuity in the transition between adjacent domains is thereby
guaranteed in Trajectory Hankel matrix construction. Similarly, Hd+1(η) can be
constructed as illustrated in (5.15).

Hybrid Data-Driven Predictive Control

Next, we present a planning problem over continuous trajectory for K + 1 domains
indexed by d, where d ∈ Z≥0 and J step-wise dynamics indexed by j, where j should
be the corresponding transition between d-th and d + 1-th domain. Each domain
has its own continuous Trajectory Hankel matrices and each step-wise transition is
associated with its corresponding S2S Trajectory Hankel matrices.

Prediction Horizon and Estimation Horizon The total planning horizon over the
K + 1 domains is defined to be Ntot =

∑φ+K
d=φ N{d}, where N{d} represents the

prediction horizon for d-th domain. When planning over K + 1 domains, for
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all the upcoming domains (i.e., d > φ), this prediction horizon is fixed (i.e.,
L{d} = T

{d}
ini +N{d}, ∀d > φ), which is the maximum possible prediction horizon

determined by the construction. But for current domain d = φ, we are shrinking the
prediction horizon as we move along the domain.

Data-driven Constraint To construct the data-driven constraints similar to (5.10), we
select the appropriate portion of the Trajectory Hankel matrices and compose it to
have the structure in (5.15). Analogous to (5.11), Tini is for determining the initial
condition estimation. However, since for current domain the prediction horizon is
changing, we have to partition the Trajectory Hankel matrix differently. Specifically,
we need to select the appropriate κ(Tini +N{φ}) rows from Hφ(µ), starting from
κ⌊max(N{φ}) · τ⌋-th row, where τ ∈ [0, 1] indicates a phasing variable evolve from
0 to 1 on each step. Additionally, max(N{φ}) denotes the maximum prediction
horizon for the current domain φ, which happens when τ = 0.

With a slight abuse of notation, we define Hφ(µ) to be

Hφ(µ) = S(κ⌊max(N{φ}) · τ⌋, κL{φ},Hd=φ(µ)),

where Hd=φ(µ) indicates the Trajectory Hankel matrix constructed analogous to
(5.15) when d = φ, while Hφ(µ) indicates the extracted portion from Hd=φ(µ)

when τ evolves during the gait in current domain φ.

Since we are dealing with nonlinear systems, we added slack variable σ{d} to account
for noise, unknown requirement for persistently exciting order and ensure numerical
feasibility:

[
Hd(µ)

Hd(η)

]
γ{d} + σ{d} =


µ

{d}
ini

µ{d}

η
{d}
ini

η{d}

 , (5.16)

where µ
{d}
ini and η

{d}
ini are the Tini data points from the past trajectory data. The past

trajectory data is either in the current domain only, or the portion of the previous
domain can be collected in the past trajectory data set as the estimation horizon
,Tini, is fixed. Notably, the portion of the past trajectory data is subject to the frame
transformation, Φ(·, ·), in the case that the data from previous domain is employed in
µ

{d}
ini and η

{d}
ini construction.

We further note that the trajectory planning is over both discrete points {µ{d},η{d}}
and Bezier coefficient α{d}

comx,y so that Bézier function, Bez(t{d}k ,α{d}, T {d}), and its
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derivative dBez(t{d}k ,α{d}, T {d}), where t{d}k = T {d}·τ {d}k and τ {d}k = {0, δ{d}τ , . . . , 1},
is used to obtain a smooth trajectory for low level controller. Note that δτ is a sampling
period that help us keep the same shape of Trajectory Hankel matrix across datasets
with different duration for the same phase.

Now we introduce our Hybrid Data-Driven Predictive Controller (HDDPC):

min
X

Ntot∑
k=0

(
∥ηk − rηk∥2Q + ∥µk − rµk∥2R

)
+ ψγ∥γ∥2 + ψσ∥σ∥2

s.t

[
Hd(µ)

Hd(η)

]
γ{d} + σ{d} =


µ

{d}
ini

µ{d}

η
{d}
ini

η{d}


∀d ∈ {φ, . . . φ+K}

[
H S2S

j (µ)

H S2S
j (η)

]
γ
{j}
S2S + σ

{j}
S2S =


µ

{j}
S2S,ini

µ
{j}
S2S

η
{j}
S2S,ini

η
{j}
S2S


∀j ∈ {φ, . . . , φ+K, . . . , φ+ J}, J ≥ K

µ
{d}
k ∈ Support Polygon (5.17)

η
{d}
k = Bez(t{d}k ,α

{d}
comx,y , T

{d}
step )

η
{j}
S2S = Bez(T {j}

step ,α
{j}
comx,y , T

{j}
step )

vcom(t
{d}
k ) = dBez(t{d}k ,α

{d}
comx,y , T

{d}
step ) ∈ [vmin

com, v
max
com]

pcom(t0) = Bez(t0,α
{φ}
comx,y , T

{φ}
step − t0)

vcom(t0) = dBez(t0,α
{φ}
comx,y , T

{φ}
step − t0),

where Q and R are positive definite matrices, ψγ and ψσ are positive weighting
factors, and the decision variables X{d}, X{j}

S2S , and X are defined as

X{d} = col(α{d}
comx,y ,µ{d},η{d},γ{d},σ{d})

X
{j}
S2S = col(µ{j}

S2S,η
{j}
S2S,γ

{j}
S2S,σ

{j}
S2S)

X = col(X{φ}, . . . , X{φ+K}, X
{φ}
S2S , . . . , X

{φ+J}
S2S ),

respectively, and the reference trajectory for µ and η are denoted by rµ and rη,
respectively.
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Figure 5.21: Trajectory and tracking results from HDDPC Planner a) Gait tiles
for the resulting trajectory b) Desired CoM trajectory from HDDPC planner and
actual evolving CoM trajectory in simulation in global coordinate c) actual CoP
in simulation d) planned foot placement location for three steps. e) the tracking
performance for the HDDPC planner under different desired speed vs. actual realized
average speed.

Figure 5.22: Recovery performance of HDDPC under random perturbations. a) Gait
tiles of simulated perturbation recovery b) CoM trajectory under random perturbation
force. The time, direction, and magnitude of the perturbation is represented by the
black arrows. The perturbation force is applied as a 10 ms impulse with magnitude
range between 1400-2000 N c) The corresponding step location planned by the
planner. The desired step size is indicated by the dashed line.

Layered Data-Driven Control Framework

In this subsection, we introduce the remaining components and details for practically
implementing the layered control framework (Fig. 5.18) used to realize locomotion
on the lower-body exoskeleton Atalante. We use a version of the model with the user
height of 1.65 m and a total weight of 136 kg, which includes both the user’s weight
and the device.

Trajectory Hankel Matrix and Planner Parameters: Trajectory Hankel matrices are
constructed from data collected over five gait cycles (10 steps), with step lengths
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varying between 0.11 m and 0.15 m and step durations ranging from 0.9 s to 1.1 s.
For the continuous dynamics Hankel matrix, data is sampled at 50 evenly spaced
points across the gait cycle (i.e., sampling period δτ is 0.02 for normalized step time).
We set the estimation horizon that is used to determine system evolution for the
trajectory Hankel matrix as Tini = 4. The same data sequence is used to construct
the S2S trajectory Hankel matrix. Specifically, we maintain one Hankel matrix for
left stance, one for right stance, and two S2S matrices representing transitions from
right-to-left (R2L) and left-to-right (L2R) dynamics. In total, we plan for trajectory
over three domains (e.g., a Left-Right-Left sequence). In order to ensure a faster
planning rate, we select a different δτ for the second and third domain (δτ = 0.08) to
reduce the number of decision variables required in (5.17).

The planning problem is solved using IPOPT [225] with its C++ interface and
HSL MA97 solver at 20-40 Hz depending on the planning horizon and application
scenario. We terminate the planner at a pre-specified maximum wall clock time and
employ the feasible trajectories only (i.e., with constraint satification under tolerance).
The planned trajectory, specifically {α{d}

com,η
{j}
S2S, t

{d}
0 } is sent to low-level controller.

When the planner is deployed, we do not update the step duration for the current
domain. When an impact occurs, the step duration planned for the next domain will
be used to evaluate the phasing variable.

Output Synthesis: The desired walking behavior is encoded by the task space output
y = yact − ydes, where yact ∈ R12 and ydes ∈ R12 and are chosen to be the following

yact =
[
px,y,z

com2st(q) ϕx,y,z
pelv (q) px,y,z

sw (q) ϕx,y,z
sw (q)

]
ydes =

[
px,y

com2st(αcomx,y) pz
com2st(α)

ϕx,y,z
pelv (α) px,y,z

sw (α, λx,y) ϕx,y,z
sw (α)

]
.

The desired CoM position, foot placement, and step duration that determine the
phasing variable is generated from the hybrid DDPC planner, and the other desired
components are taken as Bézier polynomials with the coefficient matrix of α. More
specifically, the coefficients of pelvis orientation ϕpelv, swing foot orientation ϕsw,
z-height of CoM, and swing foot trajectory are fixed. The swing foot x, y trajectories
are determined by Bézier polynomials connecting the swing foot position at the
beginning of the domain (i.e., post-impact state) and the desire foot targets, i.e.,
px,y

sw (τ) = (1 − β(τ)) psw(q
+) + β(τ)λx,y, where β is a phase-based weighting

function.

Whole-body Controller: We apply a task-space based QP controller solved via OSQP



131

Figure 5.23: Perturbation Recovery Comparison: a) Nominal: The controller follows
a fixed reference trajectory with a predetermined step size and step duration. b)
DDPC: Functionally equivalent to HDDPC but with a fixed contact schedule. The
upper and lower bounds of the step size and the step duration are constrained to
match those used in the nominal reference trajectory. c) HDDPC: The proposed
control framework.

[226] with a maximum iteration of 200 running at 1kHz, formulated as following

min
(q̈,u,F )∈Rn+m+h

∥ÿact − ÿfb∥2Q (5.18)

subject to (2.5), (2.6) (dynamics)

AGRFF ≤ bGRF (contact)

umin ≤ u ≤ umax (torque limit)

where ÿfb = −Kpy − Kdẏ, AGRF describes friction cone constraint and zmp
constraint for each contact frame.

Experimental Validations

In this section, we present the numerical simulation in MuJoCo [206] and hardware
experiment results to validate the effectiveness of our proposed framework. The
experiment video can be found in [227].

Tracking Performance (Simulation): We first evaluate the planner’s capability to
realize stable walking. An example gait tiles from the MuJoCo simulation is shown
in Fig. 5.21a. An example planned and realized CoM trajectory, actual CoP position
is shown in Figs. 5.21b and 5.21c, respectively. The planned step location are shown
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Figure 5.24: HDDPC hardware results. a) Gait tiles of walking on hardware together
with b) CoM trajectory, c) CoP trajectory d) Planned foot placement.

in Fig. 5.21d over three steps. Additionally, we assess the tracking performance of
the hybrid DDPC controller under different forward velocities, with the mean and
standard deviation of the realized speed over a 10-second window plotted in Fig.
5.21e. As the desired speed increases, tracking error also increases, but the realized
walking remains stable.

Perturbation Recovery (Simulation): We further evaluate the framework’s robustness
by introducing external perturbations (see Fig. 5.22a). Impulses were applied
to the torso at intervals of 0.5 s, lasting for 10 ms, with random perturbation
directions selected from 45-degree intervals in the horizontal plane (i.e., 0°, 45°, etc.)
and varying maximum magnitudes (1400 − 2000N ). Figure 5.22b illustrates the
continuous CoM trajectory, highlighting the moments when perturbations occurred.
The top-down view of the step pattern in Fig. 5.22c shows the controller’s adjustments
in response to each disturbance.

We compared our proposed framework with two baselines. The first is a nominal
approach that tracks a fixed reference trajectory with a predetermined step size and
step duration. While a desired step duration is set, transitions to the next domain
are enforced based on a combination of a minimum phasing variable threshold and
impact events detected by the force sensor, a mechanism shared across all three
comparison cases discussed here. Additionally, we include another baseline which we
referred to as DDPC. We argue that this is conceptually similar to our previous DDPC
results [228] but implemented differently. This is essentially an HDDPC variant with
a fixed contact schedule, where the lower and upper bounds are set to match those
of the nominal approach. This setup essentially allows for replanning only over the
CoM trajectory. Both DDPC and HDDPC use the same set of hyperparameters but
with the only difference being the restricted contact schedule bound.



133

We applied the same perturbation sequence by fixing the random seed number.
The desired step duration was 1 s, but the nominal controller impacted earlier and
failed to maintain the desired step size very well. As shown in Fig. 5.23a, the
robot began accumulating significant tracking errors around 3 s and failed shortly
thereafter. In contrast, DDPC (Fig. 5.23b) maintained system stability until 5 s
before eventually failing, while demonstrating better adherence to the desired step
duration and step size compared to the nominal approach. Meanwhile, HDDPC (Fig.
5.23c) successfully rejected all disturbances.

Hardware Results: In hardware experiments (see Fig. 5.24a), we first collected the
data set from the exo when subject is in it. During the data collection, we varied the
foot step length for each gait to enable the foot step adjustment capability in HDDPC.
Based on the collected data set, HDDPC planner was deployed to synthesize CoM
motion and foot placement in the x direction for the exoskeleton, running on an
external PC (Intel i9-14900K CPU), which communicated with exo through a UDP
network. The HDDPC planner performed trajectory replanning of the desired CoM
trajectory and foot placement at the beginning of each domain. While the model
parameters in the low-level controller did not incorporate detailed subject-specific
information, the HDDPC implementation with the collected data set successfully
demonstrated stable locomotion on exo with human subject without compromising
stability. The detailed tracking performance is illustrated in Fig. 5.24. The evolution
of CoM trajectories effectively tracked the desired CoM trajectories (see. Fig. 5.24b),
while the CoP was successfully regulated within each stance foot as described in
Fig. 5.24c. Figure 5.24d further illustrates that the HDDPC actively modulated foot
step length to track the desired trajectories while maintaining locomotion stability.
Within this capacity of HDDPC framework, the exo demonstrated the stable bipedal
locomotion.

HDDPC Summary

We presented a novel HDDPC framework that integrates contact scheduling with
continuous domain trajectory planning for lower-body exoskeletons. Through both
simulation and hardware experiments, the HDDPC framework demonstrated its
capability to achieve stable and adaptive walking. In simulations, the integration of
S2S dynamics and continuous domain trajectory enhanced the exoskeleton’s reactive
capabilities, enabling effective recovery from external disturbances. The hardware
results confirmed the effectiveness of the HDDPC controller. Future work will focus
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on running the planner faster online, enhancing the framework’s ability to adapt to
time-varying perturbations by updating the Hankel matrix online, and demonstrating
robustness across subject-to-subject variability. Additionally, we aim to extend
application to more complex scenarios, such as stair climbing and other challenging
setups in dynamic environments.
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Figure 5.25: Overview of our approach. A reference generator produces target
trajectories, which are used to construct a CLF-based reward. An RL policy is trained
in simulation with this reward and deployed on a real humanoid robot.

5.4 CLF-RL: Control Lyapunov Guided Reinforce-
ment Learning

So far, robustness has been pursued through offline analysis of trajectories and online
replanning via predictive control, both of which depend strongly on explicit system
models. A complementary strategy is to leverage reinforcement learning (RL), which
can generalize across disturbances and modeling errors by training policies in diverse
simulated environments.

With recent advances in computation and GPU-parallel physics simulators, RL has
emerged as a practical option for locomotion control: policies can be trained offline
in massively parallel simulations and then executed on hardware with lightweight
inference at runtime [7, 8, 9, 10, 11]. However, applying RL to bipedal locomotion
remains challenging due to its reliance on heuristic reward design, which is tedious
to construct, sensitive to tuning, and, if poorly shaped, can lead to unstable gaits,
prolonged training, and poor sim-to-real transfer. One way to mitigate these issues is
to embed model-based structure into the reward, using reference trajectories to guide
policy learning. This approach provides the policy with physically meaningful targets
while reducing reliance on ad hoc reward shaping. This idea has been explored
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using both reduced order models [229, 230] and full-order models within the HZD
framework [231]. [232] proposes a different way to incorporate a LIP controller into
RL by generating desired footstep locations during training and using it to provide
feedback control for rough terrain.

While prior model-guided approaches improve structure during training, they typically
reward only the instantaneous tracking error, treating two states with the same error
magnitude equally—even if one is actively converging toward the reference and the
other is diverging. This can cause policies to undervalue transient corrections. To
address these limitations, we propose a reward shaping framework built on control
Lyapunov functions (CLFs), a fundamental tool in nonlinear control theory for
generating certifiably stable controllers [233, 234, 235]. CLFs have previously been
used in bipedal locomotion, often in conjunction with HZD, to formally guarantee
the stability of periodic gaits [43] and have also been integrated into learning-based
methods in other domains [236, 237]. For instance, [238] introduces a reward-
reshaping method that incorporates a candidate CLF for fine-tuning policies using
minimal hardware data.

Our approach embeds both the CLF and its associated decrease condition directly into
the RL reward, where the decrease condition encodes a desired minimal convergence
rate, providing meaningful intermediate rewards whenever the error is being reduced,
similar to potential-based reward shaping, which has been shown to be more robust
to scaling and hence simplify tuning [239]. This yields a reward component that
is principled, easy to integrate, and less sensitive to manual reward balancing than
conventional tracking formulations.

Building on these properties, we propose a structured reward shaping approach
that combines model-based reference planning with CLF-inspired objectives to
guide policy learning toward stable and robust behaviors (Fig. 5.25). We use two
complementary planners for generating velocity-conditioned reference trajectories:
(1) a reduced-order linear inverted pendulum (LIP) model for online generation,
and (2) a precomputed hybrid zero dynamics (HZD) gait library from full-body
offline trajectory optimization. Both produce periodic orbits but differ in fidelity
and real-time suitability. From these trajectories, we construct a CLF V = η⊤Pη,
where η denotes the output tracking error. Once a reference trajectory is available,
implementing the CLF decrease condition requires minimal effort: the tuning process
is straightforward, involving far fewer reward terms than conventional rewards and
resembling gain tuning in a tracking controller. The CLF and its associated stability
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Figure 5.26: Overview of the proposed CLF-guided reinforcement learning frame-
work. A desired velocity vd is passed to a reference generator (e.g., H-LIP or HZD)
to produce targets ydα, ẏdα. These, along with the robot state and privileged variables
opriv
t , are used to compute a CLF-based reward. The actor-critic policy is trained with

this reward and outputs joint targets qtarget for the robot.

condition is embedded into the RL reward to shape the policy to promote stable
behaviors during training. We validate our approach through both simulation and
hardware experiments on the Unitree G1 humanoid robot. Results demonstrate
that CLF-based reward shaping improves tracking performance at high velocities,
reduces variance under randomized model perturbations, and enhances robustness
compared to standard RL baselines—offering a promising path toward more robust
and theoretically grounded locomotion learning.

5.5 Reference-Guided Reward Shaping

We consider the reinforcement learning (RL) problem of learning a locomotion policy
πθ(at|ot) that maps proprioceptive observations ot to actions at. The policy is trained
using Proximal Policy Optimization (PPO) [240], a widely used actor-critic method
that optimizes a clipped surrogate objective with entropy regularization. Instead
of relying solely on sparse or handcrafted rewards, we embed model-based prior
knowledge into the reward through a control Lyapunov function (CLF), promoting
stability with respect to a reference trajectory. The overall framework, including
reference generation and CLF-based reward shaping, is illustrated in Fig. 4.12.

Reference Trajectory Generation

Our approach assumes access to a nominal reference trajectory that encodes a
periodic or quasi-periodic walking motion given a desired velocity. In this work,
we focus on two sources of reference trajectories: the H-LIP model and full-order
HZD optimization. However, the framework is agnostic to the origin of the trajectory.
The details of the HlLIP generation has been introduced in Ch. 2. To obtain HZD
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trajectories, we use the generic form specified in earlier section (2.26). In our
implementation, τ is time-based, however, a common alternative is a state-based
phase variable, such as the horizontal hip displacement, which ensures monotonicity.
This setup guarantees that the Bézier curve is evaluated at the correct phase value
during optimization. The optimized trajectory specifies desired joint or end-effector
positions and velocities as functions of phase over a single step with one stance leg.
Once a single step is solved, the solution is symmetrically remapped to produce a
full gait cycle with alternating stance legs, yielding reference trajectories for the
complete walking motion.

CLF-Based Reward Terms

We denote the output error between the current state and reference trajectory as

η(t) =

(
yd(t)− y(q)
ẏd(t)− ẏ(q, q̇)

)

. Based on this tracking error, we construct a control Lyapunov function as:

V (η) = η⊤Pη,

. This formulation implicitly assumes a double integrator reference model for the
output dynamics, allowing us to define a Lyapunov function without explicitly
computing Lie derivatives LfV or LgV for the full-order system. The matrix P ≻ 0

is the unique solution to the Continuous-Time Algebraic Riccati Equation (CARE)
corresponding to this linearized model.

To avoid explicitly computing η̇ and V̇ , we approximate the Lyapunov derivative
using finite differences:

V̇t ≈
Vt+1 − Vt

∆t
, with Vt = V

(
η(t)

)
.

We define a CLF tracking reward:

rv = wv exp

(
−Vt
σv

)
(CLF Tracking)

where σv = µmax(P ) η
2
max, with µmax(P ) denoting the maximum eigenvalue of the

CLF matrix P , ηmax representing an empirical bound on the tracking error.
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We consider two versions of the CLF decay condition: a smooth formulation using
the hyperbolic tangent, and a clipped version:

rtanhv̇ = wv̇ tanh
(
−
(
V̇t + λVt

))
(CLF Decay: Tanh)

rclip
v̇ = wv̇ ·max

(
min

(
V̇t + λVt

σv̇
, 1

)
, 0

)
, (CLF Decay: Clipped)

where σv̇ = 2||P ||ηmaxη̇max + λµmaxη
2
max and λ > 0 specifying the desired CLF

decay rate. The tanh-based reward provides smooth gradients and naturally saturates
large violations, but can overly dominate the overall reward depending on the relative
weight between rv and rv̇. In contrast, the clipped version is less sensitive to
weighting but requires careful normalization to ensure meaningful reward shaping,
especially under significant domain randomization.

Other Reward Terms

In addition to the CLF terms, we incorporate several auxiliary rewards commonly
used in RL for legged system:

Stance Foot Holonomic Reward: To enforce stance-foot holonomic constraints, we
define a combined reward:

rhol = whpos exp

(
−∥pst − p

0
st∥

σp

)
+ whvel exp

(
−∥vst∥

σv

)
,

where pst and p0st are the current and the initial stance foot positions when it enter the
domain, vst is the stance foot velocity, and whpos, whvel are weighting terms.

Regularization Term: To discourage excessive control effort, abrupt actions, and
joint limit violations, we include a regularization reward:

rreg = − wu∥ut∥2 − w∆a∥at − at−1∥2

− wqlimit ∥max (0, qmin − qt) + max (0, qt − qmax)∥1 .

where each term is weighted by its corresponding coefficient to balance control effort,
motion smoothness, and adherence to joint limits.

Total Reward

The final reward used for policy training is the weighted sum of all components:

R = rv + rv̇ + rhol + rreg,
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This reward structure encodes both task performance and physical feasibility, al-
lowing the policy to balance tracking, stability, and regularization objectives. By
combining model-based references (e.g., from reduced-order planning or offline
trajectory optimization) with CLF-inspired reward shaping and constraint-aware reg-
ularization, our framework embeds control-theoretic structure into the reinforcement
learning process. This guides training toward stable, robust, and physically plausible
locomotion, while preserving the flexibility and adaptability of model-free RL.

5.6 CLF-RL Implementation

We demonstrate our framework on the 29-DoF Unitree G1 humanoid robot, using
21 actuated degrees of freedom for motion planning. The hand and wrist joints are
fixed during training and controlled with zero desired position and velocity during
deployment.

Reference Generation: We use the same set of end-effector and joint positions for
both HZD- and H-LIP-based trajectories. The full reference output ydα(t) ∈ Rny ,
with ny = 21 is structured as follows:

ydα =
(
pdcom ϕd

pelvis pdsw θdsw qdshoulder qdelbow

)⊤
,

where the terms represent the desired CoM position, pelvis orientation, swing foot
position and orientation, and arm joint angles. To account for turning motions during
training, we heuristically adjust the reference trajectory based on the commanded
angular velocity. Specifically, we modify the yaw orientation of all end-effector
frames to align with the integrated yaw derived from the commanded angular velocity
over time.

The HZD optimization is computed offline using IPOPT [241] and Casadi [242]. Hard
constraints are used to enforce dynamics, periodicity, virtual constraints, and step
length among others. The optimization problem is formulated as a multiple-shooting
problem over a single swing phase.

Policy Structure: The policy receives a combination of proprioceptive and task-
relevant inputs, including angular velocity, projected gravity, commanded linear
and angular velocities, relative joint positions and velocities, the previous action,
and a phase-based time encoding using sin (2πt/tperiod) and cos (2πt/tperiod). The
stepping period tperiod is set to 0.8 s, corresponding to a full gait cycle (i.e., two
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steps). The policy outputs joint position commands relative to a default symmetric
standing pose at 50 Hz. This default pose is fixed across all policies we trained.

Both the actor and critic networks use a fully connected feedforward architecture with
hidden layer dimensions of [512, 256, 128], using the ELU (Exponential Linear Unit)
activation function at each layer. To facilitate learning, the critic (value network)
receives additional privileged information oprivt not accessible to the actor, such as
stance and swing foot linear and angular velocities, reference trajectory positions
and velocities, and binary contact state indicators. These inputs help stabilize value
estimation and improve training efficiency.

Training Procedure: We use IsaacLab, a GPU-accelerated simulation framework
built on top of NVIDIA Isaac Sim, with its development initiated from the Orbit
framework [243]. For policy training, we use the PPO implementation from Robotics
System Lab RL library [29].

All training use the same set of terrain settings, robot models, and domain random-
ization parameters. To improve policy robustness and facilitate transfer to hardware,
we apply domain randomization to physical properties such as link masses, static and
dynamic friction coefficients, and the center of mass position. Additionally, external
perturbations are introduced by applying randomized velocity impulses in the x and
y directions to the base link at fixed time intervals.

Training is conducted over a range of commanded velocities, with linear velocity
vx ∈ [−0.75, 0.75] and yaw rate ωz ∈ [−0.5, 0.5]. Given a commanded velocity,
vd, the reference trajectory is either retrieved from the precomputed gait library by
selecting the closest matching forward velocity in the case of HZD, or generated
online using the analytic form of the H-LIP gait library, which provides closed-form
solutions across the velocity space.

The baseline policy is trained with a manually designed reward composed of several
heuristic terms. These include tracking of linear x, y and angular yaw velocity,
while penalizing vertical velocity, angular velocity about the x and y axes, joint
accelerations, joint velocities, joint torques, and abrupt changes in actions. The
reward also discourages deviations from an upright base orientation and enforces
joint limit compliance. Additional terms encourage behaviors such as staying upright
(“stay alive"), avoiding foot slip during contact, maintaining a nominal hip posture
and torso height, ensuring adequate foot clearance, and regulating contact scheduling.
Furthermore, the policy is penalized for deviations of the arm and torso joints from
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Figure 5.27: Tracking performance comparison between a policy trained using only
the reference tracking reward (rv) and one trained with both reference tracking and
CLF decrease condition rewards (rv and rv̇). Overall, the HZD-CLF policy achieves
better tracking performance.

predefined reference configurations.

Table 5.1: Reward weight coefficients used during training for both HZD-CLF and
LIP-CLF.

Reward Term Weight
Torque penalty wτ 1× 10−5

Action-rate penalty w∆a 1× 10−3

Joint limit penalty wqlimit
1.0

CLF tracking reward wv 10.0
CLF decay penalty wv̇ 2.0
Holonomic position reward whpos 4.0
Holonomic velocity reward whvel 2.0

5.7 Results

We evaluate three policy variants: a baseline trained with hand-tuned rewards, a
H-LIP-based CLF shaped policy (LIP-CLF), and an HZD-based CLF-shaped policy
(HZD-CLF). All policies are validated in both sim-to-sim transfer using MuJoCo
[206] and on hardware (Fig. 5.30). The experiment video can be found [244]. The
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Figure 5.28: Tracking performance with torso mass randomly displaced within
a box of size ±[0.05 (x), 0.05 (y), 0.01 (z)]m around the nominal location. Fifty
displacements are uniformly sampled, and the resulting mean and standard deviation
of performance are plotted. The CLF-RL policies demonstrate lower variability,
indicating improved consistency and robustness across different mass configurations.

policy runs onboard on an additional laptop mounted to the front of the torso during
deployment, which also added additional mass (0.616 kg) to the robot.

CLF Decay Condition (Sim): To evaluate whether reference tracking alone is suf-
ficient, or if enforcing the CLF decay condition provides additional benefit, we
conduct an ablation study. Fig. 5.27 compares two policies: one trained with only
the tracking reward (rv), and another with both the tracking and CLF decay rewards
(rv and rv̇). Both policies track the commanded velocity vdx reasonably well across
varying commands. However, the HZD-CLF policy shows improved steady-state
tracking, maintaining average velocity closer to the desired value in forward and
backward walking phases. While the overall transient behavior remains similar, the
inclusion of the CLF decay condition reduces residual tracking error and promotes
more consistent steady-state performance.

Mass Location Randomization (Sim): To assess robustness to modeling mismatches,
we introduce random perturbations to the torso mass location to simulate sim-to-real
discrepancies in inertial properties. Specifically, the torso center of mass is uniformly
displaced within a box of size ±[0.05 m (x), 0.05 m (y), 0.01 m (z)]. For each
policy, we sample 50 randomized configurations and evaluate the velocity tracking
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Figure 5.29: Robustness testing in simulation with different policies: HZD-CLF,
LIP-CLF and a baseline RL policy are compared with an additional 8kg mass added
to the torso. A two second ramp up to the maximum trained velocity is commanded.
The steady-state mean of the velocities is plotted in a dashed line. The CLF-shaped
policies show superior robustness to the baseline.

performance across episodes, reporting the mean and standard deviation. As shown
in Fig. 5.28, both CLF-RL policies exhibit significantly lower performance variance
compared to the baseline. This indicates improved robustness and consistency under
structural uncertainties.

Added Mass Perturbation (Sim): To further evaluate robustness, we introduce an
8 kg payload to the torso and compare tracking performance across the three policy
variants under a velocity ramp command. As shown in Fig. 5.29, the CLF-based RL
policies maintain more accurate velocity tracking, demonstrating improved resilience
to payload-induced dynamics changes.

Indoor Experiments (Hardware): We deploy all policies on the Unitree G1 robot
in a controlled indoor environment. Fig. 5.30 shows all three policies operating
successfully on hardware. To quantify velocity tracking performance and robustness,
we use a motion capture system to record global position and orientation data. This
data is used solely for evaluation and is not fed into the controller. To remain
consistent with simulation analysis, we track the pelvis frame and compute local-
frame velocity by finite-differencing the position data (recorded at 240 Hz) and
aligning it with the robot’s yaw orientation. Fig. 5.31 demonstrates the improved
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Figure 5.30: Snapshots of the three policies throughout a stride on the Unitree
G1 robot. These images depict the walking motion in steady state walking with a
commanded velocity of vdx = 0.75 m/s.

robustness of the HZD-CLF policy relative to the baseline. To test this robustness,
we attach a backpack to the robot and load it with either 1.765 kg or 3.55 kg of
additional mass. The HZD-CLF policy maintains consistent tracking performance
across all conditions, whereas the baseline policy exhibits significant degradation.
In the heavier case, the baseline policy drifts off the walking course and fails to
complete the test. These hardware results corroborate the simulation findings in
Fig. 5.28, which show that CLF-based policies exhibit lower performance variance
under structural perturbations.

Outdoor Experiments (Hardware): To evaluate the HZD-CLF policy under real-
world conditions, we deploy the robot outdoors across a variety of environments.
As shown in Fig. 5.32, the test route includes diverse flat-ground surfaces such as
concrete and tiled walkways, as well as mild slopes like ADA-compliant ramps.
The robot traverses all terrain types within a single continuous 0.25-mile walking
trial without any failures. The distance was determined by experimental design
considerations, rather than reflecting any limitation of the policy.

Summary

We presented CLF-RL, a structured reward shaping framework that integrates
reference trajectory tracking with control Lyapunov functions (CLFs). By embedding
CLF-based objectives directly into the reinforcement learning reward, our approach
replaces heuristic reward design with a theoretically grounded stability metric. We
showed that incorporating the CLF decay condition improves tracking performance
over baseline tracking-only rewards. CLF-based policies exhibit lower variance
across a range of perturbations in both simulation and hardware, demonstrating
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Figure 5.31: Quantitative hardware testing shows the difference in robustness of the
baseline and HZD-CLF policies. Additional mass is added to a backpack on the back
and the velocity tracking is compared. We can see that the HZD-CLF policy has
effectively no change in performance with the additional mass. For the heavier mass
on the baseline, the policy drifted so much as to exit the walking course and collide
with a table, as indicated in the plot.

Figure 5.32: Demonstration of extensive outdoor testing of the HZD-CLF policy
shows its ability to handle diverse flat-ground surfaces, including various tile and
concrete types, as well as mild uphill and downhill slopes.
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increased reliability.

Our framework is modular and extensible. We demonstrated its compatibility with
both reduced-order (H-LIP) and full-order (HZD) reference generators, though
other trajectory planners could be incorporated. While our training only used
steady-state reference motions, the learned policies generalize well to transient
motions—highlighting the framework’s flexibility. Finally, we validated the real-
world robustness of the approach through extended outdoor trials, showing consistent
and stable walking performance across varied flat-ground terrains.
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C h a p t e r 6

CONCLUSION

This dissertation has addressed the fundamental challenge of enabling robust, effective,
and personalized locomotion in robotic assistive devices and humanoid robots. The
central contributions were organized around two complementary objectives: user
alignment and robustness. Together, these objectives capture the dual requirements
of human-centered locomotion: controllers must adapt to the variability of individual
users while remaining reliable under the uncertainty of real-world environments.

To advance user alignment, the work developed preference-based learning formula-
tions that characterize subjective trade-offs while discouraging unsafe or undesirable
behaviors, and incorporated biomechanical principles into trajectory generation to
yield anthropomorphic, dynamically feasible gaits. To advance robustness, the work
proposed methods at multiple levels of the control hierarchy, from robustness metrics
for trajectory design, to data-driven predictive replanning, to reinforcement learning
policies shaped by control-inspired rewards.

Although presented separately, these two objectives are inseparable in practice:
controllers that align with human preferences must also be robust to variability,
and robustness is meaningful only when grounded in user needs. The unifying
thread across this dissertation is the integration of model-based structure with data-
driven adaptability, showing that neither alone is sufficient, but together they enable
locomotion strategies that are principled, flexible, and human-centered.

Several promising directions build naturally on this foundation. Extending be-
yond periodic walking to running, stair climbing, and terrain adaptation would
test the generality of these methods. More tightly coupling preference learning
with robustness—for example through preference–robust optimization—could yield
controllers that are simultaneously safe, adaptive, and customizable. Finally, scaling
to collaborative multi-user or multi-robot settings would open opportunities to study
locomotion under multi-objective and multi-agent conditions.

In summary, this dissertation shows that progress in bipedal robotics arises not from
model-based or data-driven methods alone, but from their principled integration into
controllers that are adaptable, reliable, and user-centered.
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