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C h a p t e r 3

SUPPLEMENTARY INFORMATION FOR ATP CONSUMPTION
IN SPACE AND TIME IN MICROTUBULE-MOTOR

STRUCTURES

3.1 Materials and Methods
Sample Chambers for Aster, ATP Calibration, and ATP Hydrolysis Experi-
ments
For both the aster and ATP hydrolysis experiments, a flow cell was created by
placing parafilm spacers between a microscope slide and a cover glass. A mild heat
treatment at 65 �C was applied to facilitate the adhesion of parafilm to the glass
surfaces, resulting in a flow cell that is approximately 70�100 `m in height and has
a volume of approximately 5 `L. To prevent nonspecific protein adsorption onto
the glass, the glass surfaces were coated with an acrylamide brush [1]. The reaction
mixture was loaded into each channel by capillarity and sealed with a fast-setting
silicone polymer (Picodent Twinsil Speed).

Sample Preparation and Reaction Mixture for Aster and ATP Hydrolysis Ex-
periments
For aster experiments involving Ncd motors, the reaction mixture consisted of Ncd-
mCherry-micro, Ncd-mCherry-iLID, 2.8 `M A81D, and microtubules (1.5 `M
tubulin). We systematically varied the final concentrations of each Ncd motor
type from 0.2 `M to 0.75 `M, supplemented with 500 `M of MgATP (Sigma
A9187). Additionally, aster experiments were conducted with K401-mCherry-
micro, K401-iLID, 2.8 `M A81D, and microtubules (1.6 `M tubulin), resulting in
a final concentration of 0.25 `M for each motor type with 1000 `M of MgATP.

For ATP hydrolysis experiments, we varied the concentration of MgATP (ranging
from 50 `M to 1420 `M), ADP (ranging from 0 `M to 1420 `M), and potassium
phosphate (pH 7.0, ranging from 0 mM to 40 mM) using 1 `M Ncd-mCherry-micro,
1.4 `M A81D, and microtubules (1.5 `M tubulin).

The concentrations are specifically associated with protein monomers in the cases
of Ncd-mCherry-micro and Ncd-mCherry-iLID, along with K401-mCherry-micro
and K401-iLID, whereas tubulin represents the protein dimer.
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For both aster and ATP hydrolysis experiments, the reaction mixture consisted of
66.7 mM PIPES at pH 6.8, 4.7 mM MgCl2, 0.83 mM EGTA, a crowding agent (20-
22% glycerol, Sigma, G5516), a surface passivating agent (0.50 mg/mL Pluronic
F-127, Sigma, P2443), and an oxygen-scavenging system to prevent photobleaching
(0.37 mg/mL pyranose oxidase, Sigma, P4234; 7.2 mg/mL glucose, Thermo Fisher
Scientific, USA; 9 `g/mL catalase, Sigma, C40; 5.4 mM DTT, Thermo Fisher
Scientific, USA; 2.0 mM Trolox, Sigma, 238813).

Sample preparation and handling were performed in a dark room with red light to
minimize early light activation of the optogenetic proteins. We prepared the reaction
mixture right before loading it into the flow cell and sealed it using Picodent Twinsil
Speed. The experiments were repeated at least three times at room temperature
(approximately 25°C).

Activation and Imaging Protocol for aster and ATP hydrolysis experiments
In experiments focusing on aster formation, we selected one position within the
flow channel, which is illuminated by an excitation region with a diameter of 400
`m. In the case of experiments related to ATP hydrolysis, the entire field of view is
illuminated. GTypically, one experiment is conducted per flow channel.

The fluorescent motors (mCherry labeled) and the A81D ATP probe were imaged
simultaneously every 20 seconds using a ⇥10 objective. The exposure time values
for 405nm and 480nm excitations were 33-150 ms and 50-160 ms, respectively, and
100-300 ms for 587 nm mCherry excitation.

ATP Calibration Assays

For our ATP hydrolysis experiments, we used a ratiometric fluorescent ATP probe,
QUEEN 7` mutant, A81D) [2], which allows the estimation of ATP levels in the
reaction mixture. In these assays, we quantified the fluorescence intensity of A81D,
which serves as a reporter system coupled with a fluorophore to monitor ATP
hydrolysis by Ncd-mCherry-micro or K401-mCherry-micro motor proteins in our
experiments.

For ATP calibration experiments, we examine the relationship between the QUEEN
405/480 ratio and MgATP concentration, ranging from 0 `M to 3000 `M. We used
1.4-2.8 `M A81D with GMP-CPP-stabilized microtubules (1.5 `M tubulin) in the
reaction mixture at various MgATP concentrations. The composition of the reaction
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mixture for ATP calibration is the same as outlined in section 3.1, excluding motor
proteins.

Epifluorescence imaging was performed every 20s using excitation filters (405 and
480 nm) and a ⇥10 objective. The exposure time values for 405nm and 480nm
excitation are 33-150ms and 50-160ms, respectively. Typically, five positions within
the same flow cell were chosen for averaging. The experiments are performed at
room temperature (approximately 25°C).

Flow Chamber, Sample Preparation, and Imaging Protocol for Microtubule
Gliding Assays
The flow chambers were constructed as previously described [3]. In brief, we built
a chamber by assembling an amino-silanized coverslip and an acrylamide-coated
microscope slide separated by melted parafilm spacers.

We treated the amino-silanized glass surface with glutaraldehyde to attach antibod-
ies. For this purpose, the chamber was incubated with 10% (v/v) glutaraldehyde
(Sigma, G7776) for 30 minutes. After removing unreacted glutaraldehyde by rinsing
the chamber with MilliQ water, it was then incubated with a 0.02 mg/ml solution of
anti-FLAG antibody (F3165, Sigma) to specifically bind motor proteins to the glass
surface. The remaining exposed surface was blocked with a 0.2% (w/v) Pluronic
F-127 (Sigma, P2443) and 2 mg/ml V-casein (Sigma, C6905) solution for 5 minutes.
Motors were bound to the surface by incubating Ncd-YFP-iLID FLAG-tag motor
proteins (at ⇡ 1 nM in 10 mg/ml bovine serum albumin (BSA, JT Bakers), 1 mM
DTT, and 500 `M mgATP in M2B buffer (80 mM PIPES, 1 mM EGTA, 2 mM
MgCl2)) for 5 minutes. Unbound motors were washed out with M2B, and then
AlexaFluor 647 labeled GMP-CPP stabilized microtubules in M2B with 1mM DTT
were flowed in. After 5 minutes of incubation at room temperature, the flow cell
was rinsed with M2B to remove unbound microtubules.

The imaging buffer consisted of M2B buffer with 0.5 mg/ml V-casein, 0.50 mg/mL
Pluronic F-127, 3 mM MgCl2, 2 mM Trolox, and an oxygen scavenging system (0.37
mg/ml pyranose oxidase, 7.2 mg/ml glucose, 9 `g/ml catalase, 5.4 mM DTT, 2.0
mM Trolox). In microtubule gliding experiments, we varied the concentrations of
mgATP (ranging from 20 `M to 5000 `M), ADP (ranging from 0 `M to 5000 `M),
and potassium phosphate (pH 7.0, ranging from 0 mM to 40 mM). Following the
addition of the reaction mixture, the flow cell was sealed using Picodent Speed. The
experiments were repeated at least three times at room temperature (approximately



27

25°C).

Image acquisition of AlexaFluor 647-labeled microtubules was performed in a sealed
chamber using Total Internal Reflection Fluorescence (TIRF) microscopy with an
HCX PL Apo 100◊/1.47 TIRF objective. Imaging was performed at one frame per
second for 100 seconds. We also imaged Ncd motor proteins (YFP labeled) bound
to the glass surface. Individual microtubules were tracked using custom-written
Python code to determine their speed.

3.2 Image Analysis
Here we detail our image processing method. We aim to be very careful in checking
how our operations modify the data. The predominant goal of the following text
is to identify where variation sources occur in our data and how to remove such
variation.

The analyzed dataset measures ATP concentration through a fluorescently labeled
ATP probe, Queen A81D [2]. The probe contains a superfolder GFP attached to the
epsilon subunit of an ATP synthase and capitalizes on the dual excitation peaks of
GFP. When ATP binds to the epsilon subunit, there are increased emissions from
the 405 nm excitation, and in the unbound state there are increased emissions from
the 480 nm excitation state. Taking the ratio of light intensities at 405 nm and
480 nm, an ATP calibration can be created by fitting a curve to the intensity ratio
versus ATP concentration, as is shown in Figure 3.10 below. Note that each image
should not contain any spatial dependence, as we are measuring the fluorescence
of homogeneous mixtures of ATP, the ATP probe, and motor proteins. Without
microtubules present, there cannot be any ATP hydrolysis or structure formation.

Background Subtraction
Cameras artificially add an offset to the intensity values of an image to ensure that
no pixels are recorded as having less than zero signal [4]. We identify this offset
by taking a "dark image," where we close the camera shutter, preventing light from
reaching the camera. We use the averaged image of multiple dark images, as shown
in Figure 3.1, as the background image subtracted from all fluorescent images.
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Figure 3.1: Camera offset is found by taking a "dark image." The average of
six images are taken with the camera shutter closed. The average offset value is
1913.8 intensity counts. This image is subtracted from all fluorescent images. The
horizontal lines present in the image roughly appear at the same place in all images.

Uneven Illumination Correction
Microscopy images of uniform samples can often have artificial gradients of intensity
across space. Commonly, this artifact arises from vignetting cast by magnification
tubes, non-uniform light sources, and off axis light [5]. Here, we work to distinguish
the fraction of an image’s variance that is due to a spatial gradient, implying uneven
illumination, rather than local fluctuations.

To search for the origin of variation, we will divide our image into a grid. As we
prove in Section 3.2, the total variance, f2

tot, of the image will equal the average
variance within a grid block,
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If the variance within grid blocks dominates the total variance term, then most of
the variation in an image arises from the noise of nearby pixel values, see the second
row of Figure 3.2. However, if the variance between grid blocks (the variance of
grid block average values) dominate, the image variance is attributable to intensity
differences across regions of the image. Since we explore homogeneous ATP
images here, we expect all the variance to be within grid blocks. If instead most of
the variance is between blocks, this is a sign of uneven illumination, which manifests
as a gradient of intensity from one side of the image to the other, see the first row of
Figure 3.2. Thus, we can use this grid block method as a metric for the amount of
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uneven illumination present in an image.
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Figure 3.2: Partitioning of variance for unevenly versus evenly illuminated
images. Here, we go through the exercise of finding the variance within and
between blocks for two synthetic images. We assign each pixel value in the first
column to have a value between one and three. By eye, we would consider the
image in the first row to be unevenly illuminated, since there is an intensity gradient
across the image. We would consider the image in the second row to be evenly
illuminated, since there is no apparent intensity pattern. Splitting the image into six
grid blocks of nine pixels each, we quantify our assumptions. The second column
reports the variance of pixels within each grid block. Taking the average of these
variances, we report f2

in, our metric for the variance within grid blocks (as defined
by Equation 3.9). In the third column, the mean value of each grid block is reported.
Taking the variance of these means gives f2

btwn, our metric for the variance between
grid blocks (as defined by Equation 3.10). While the total image mean and variance
for both images are the same, we find that more variance is between blocks in the
first row and all the variance is within blocks in the second row. Thus when an
image is unevenly illuminated, the variance between blocks dominates.

When dividing our image into into ⌫ blocks each containing #⌫ pixels, we must
take note of the variance partitioning in the limits #⌫ = 1 and #⌫ = # , where
# is the total number of pixels in the image. In the limiting case that each block
only contains one pixel, #⌫ = 1, the variance within a block will be zero and the
variance between blocks will equal the total variance of the image. In the opposite
limit, where there is one large block containing all pixels, #⌫ = # , the variance
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within the block is the total variance of the image and there is no variance between
blocks. Thus, we must pick and intermediate #⌫ block size. In Equation 3.2, we
graph the fraction of the variance within blocks versus the number of pixels per
block. We find, somewhat surprisingly, that the data fits well to a cubic function
of the logarithm of ATP concentration. Since we are looking for a middle ground
block size that does not favor variance partitioning in either limit, we look near the
inflection points of the curves. In Equation 3.3, we plot the fraction of variance
within grid blocks versus the number of pixels per block for all measured ATP
conditions. The light gray boxes contain the inflection points of all curves in both
bound and unbound ATP channels. In this region, the slopes of all curves are low,
implying that regardless of the choice of box size, the fraction of variance within
blocks is about the same. Thus, we arbitrarily select the midpoint of the gray box
(on a linear scale) as the block size we will use to compare the changes of variance
partitioning when correcting images.
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Figure 3.3: The variance within grid blocks varies with the size of the grid
block. We measure how the variation within a block changes with the number of
pixels per grid block (represented by circular markers). The trend fits well to a
cubic polynomial of the form f

2
in = 0G

3 + 1G2 + 2G + 3 , where G = ln (#⌫) and
#⌫ is the number of pixels in a grid block. Each solid line fits the data for a single
image and is color coded by the concentration of ATP in the sample. We plot the
inflection point for each fit (represented by star markers). The gray box is the region
containing all the inflection points from both the bound and unbound channel’s
images. The gray line plots the midpoint (on a linear scale) of the gray box region.
The value of the curves at the gray line as compared to the value at line’s inflection
point is nearly the same. So, we take this value as an arbitrary size by which we
can compare the variance partitioning within versus between blocks as we perform
uneven illumination corrections on our images.

From Figure 3.3, we see a very small amount of the variance is located within
grid blocks, meaning the vast majority of variance is between grid blocks, implying
uneven illumination. We now correct the uneven illumination by fitting a 2D
quadratic polynomial of the form,

2Dquad(G, H) = 0G2 + 1H2 + 2GH + 3G + 4H + 5 , (3.2)

as described by [6], to our image. Next, we create a normalization matrix from our
2D quadratic polynomial fit,

U =
h2Dquad(G, H)i
2Dquad(G, H) , (3.3)

where we divide the average polynomial fit value by the value of each filter pixel
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value. We then multiply the original image by this filter to find an evened image,

imev = U · im. (3.4)

Background 
Subtracted Evened ImageRaw Image

2D Polynomial 
Fit

Normalization 
MatrixDark Image

Subtract the dark image 
from the raw image

Multiply the background 
subtracted image by the 

normalizaiton matrix

Find a 2D 
polynomial fit 

from the 
background 
subtracted 

image Divide the 2D polynomial 
fit by its average value

Figure 3.4: Uneven illumination correction process. We detail the pipeline to
correct uneven illumination in images of homogeneous ATP samples. A camera
shutter closed, "dark," image is subtracted from the "Raw Image" to create the
"Background Subtracted" image. Then, a 2D polynomial is fit to the "Background
Subtracted" image using Equation 3.2. A normalization matrix is created from the
2D polynomial fit using Equation 3.3. Finally, the "Background Subtracted" image
is multiplied by the normalization matrix to create an "Evened Image."

By eye, the post-filter image, "Evened Image," in Figure 3.4, does not appear to retain
any of the light gradient present in the "Raw Image." We can confirm numerically
that after correction, nearly all the image variance is within blocks. In Figure 3.5,
the fraction of variance within blocks is plotted for all images, with most images
containing over 98% of their variance within grid blocks.
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Figure 3.5: Nearly all of the image variance is located within grid blocks after
correction. After applying a 2D polynomial filter to the images, over 85% of
variance is located within grid blocks, and over 98% for most images. There is no
apparent correlation between variance fraction and ATP concentration. Green dots
mark data from images taken in the bound ATP channel, while orange dot mark data
from the unbound ATP channel.

Most of the variance before correction occurred along the H = �G diagonal, as seen
in Figure 3.4. Visually, we see the result of the 2D polynomial filter in Figure 3.6,
which plots the intensity value of the image versus the distance along the H = �G
diagonal, represented by the multiplication of the x and y pixel coordinate. Indeed,
we see a negative slope before correction and an approximately zero slope after
correction.
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Figure 3.6: Intensity trend with pixel location. The intensity value of a pixel
versus the location of the pixel is plotted along the upper left to lower right diagonal
of the image, as assigned by the multiplication of the pixel coordinates, 8 · 9 . The
green dots represent data from the bound ATP channel (excitation 405 nm) and the
orange dots present data from the unbound channel (excitation 480 nm). In the top
row of plots, images taken before uneven illumination correction, regardless of ATP
concentration or imaging channel, show a negative slope. In the second row, images
after uneven illumination correction have approximately no slopes, indicating that
the filter correctly removed any illumination bias along the diagonal.

Regardless of the gradient direction, for an image of a homogeneous ATP sample to
be even, we would expect grid block averages should be the same across the image.
This would imply that there is not a correlation between the intensity of the block
and it’s location. In Figure 3.7A and Figure 3.7B, we mark the average value for
every grid block of every image. The average values are color coded by their grid
block’s location, which is mapped out in Figure 3.7C. For each ATP concentration,
there is no clear trend in the intensity based on block location (with the exception
of the corner blocks – the deepest purple and red dots – which are subject to edge
effects).
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Figure 3.7: After correction, grid block values of homogeneous ATP images
do not depend on block location. The average grid block intensity values for all
images are plotted with respect to the ATP concentration of the sample, where A)
reports data from the bound ATP channel and B) reports data from the unbound
ATP channel. The data points are color coded by the location of their grid block.
Black dots are the average value for each ATP concentration. A subset of data is
plotted in the white inset of both figure A) and B) for a zoomed in view of the data
spread. The data in the inset is denoted by the dotted black rectangle. A map of the
grid block location by color is shown in C) overlayed on an unevened ATP image.

We additionally fit intensity versus ATP concentration for each grid block using a
Michaelis-Menten curve of the form,

� = (� ( [ATP] = 1) � � ( [ATP] = 0)) [ATP]
 M + [ATP] + � ( [ATP] = 0), (3.5)

where � is the intensity of the block, and  M is the Menten constant. We plot the the
fit parameters versus the block position in Figure 3.8. Again, there is no significant
trend based on the region of the image and the fit parameters are roughly centered
about the mean fit parameter.
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Figure 3.8: Michaelis-Menten fit parameters of the evened image do not have a
trend. We fit the intensity versus ATP concentration to a Michaelis-Menten curve
of the form of Equation 3.5. Plotting the fit parameters versus grid block position,
as denoted by multiplying the 8, 9 coordinates of a grid block, we find no trend based
on position. The bound ATP channel is plotted in green, while the unbound channel
is orange. The fit to the averaged evened images are represented by a horizontal
line.

We now have confidence in our ability to correct any image of a homogeneous ATP
sample. Taking a 2D polynomial fit of the image, we find the gradient of light and
create a normalization matrix to remove it. However, if our image was not of a
uniform sample, gradients in light may be due to features of the experiment and
thus the image’s 2D polynomial fit may not only contain information on uneven
illumination. However, if the normalization matrices of homogeneous ATP samples
are the same across multiple images and across ATP concentrations, these matrices
could be applied to remove uneven illumination from experimental images with real
gradients. We compute the normalization matrices for homogeneous images across
a range of ATP concentrations. In Figure 3.9, we plot the mean value of 36 grid
blocks distributed through the image, where each ATP concentration value has four
repeats. The standard deviation is very low, a fraction of a percent, compared to
the mean value, indicating the same normalization matrix could be used to describe
images taken at a variety of ATP concentrations. However, we do note that each
light channel should have its own filter correction as the mean normalizaiton values
for images taken at 405 and 480 channel emissions differ.
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Figure 3.9: The normalization matrices across ATP concentrations report the
same value at a given grid block. Each subplot charts the average intensity value
for a given grid block where the inset shows the location of the grid block within the
image. The horizontal lines plot the evened image average and the standard deviation
is low, a fraction of a percent compared to the mean, indicating the average of filters
well represent each filter.

In this data set, we measure the intensity values reported by the ATP probe for a
range of known ATP concentrations. Thus, from these images, we can establish a
calibration of the intensity values for given ATP concentrations. Taking the ratio of
the bound to unbound image intensity values, we fit the data to a Michaelis-Menten
function,

' = ('max � 'min)
[ATP]
 M

1 + [ATP]
 M

+ 'min, (3.6)
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where ' is the intensity ratio of the bound and unbound channels, [ATP] is the
concentration of ATP, and  M is the Michaelis-Menten constant, as shown in Fig-
ure 3.10.

Figure 3.10: ATP Calibration Curve. Intensity versus ATP concentration values
are plotted where each ATP concentration has four replicates. The data is fit
to a Michaelis-Menten curve of the form of Equation 3.6. Here,  M = 70 `M,
'max = 3.7, and 'min = 1.

We are left to ask what are the error bars on our calibration? In answering this
question, we additionally ask how the standard deviation of intensity values scale
with increasing ATP concentration. We plot the histograms of intensity values for
the evened images in Figure 3.11. We find that as the ATP concentration increases,
so does the mean, while the standard deviation remains nearly constant. We plot the
Gaussian distribution given our histogram’s mean and standard deviation and find
the intensity is well predicted by a Gaussian of the form,

1p
2cf

exp
✓�(G � `)2

2f2

◆
. (3.7)
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Figure 3.11: Intensity histograms of evened images are Gaussian distributed.
Each row contains intensity distributions for four replicate images at a given ATP
concentration. Plugging the mean and standard deviations of the histograms into
Equation 3.7, a Gaussian curve describing the distribution is plotted by the solid line.
With increasing ATP concentration, there is little change in the standard deviation
relative to the mean. Green curves represent the bound excitation channel, while
orange curves represent the unbound excitation channel.
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While dividing two Gaussian functions does not result in a Gaussian, we find the ratio
of bound to unbound intensities can still be approximated by a Gaussian, as shown
in Figure 3.12. We now find there is a significant broadening in the histograms,
indicating that as the ATP concentration increases, so too does the ratio mean and
standard deviation.
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Figure 3.12: Intensity ratios are Gaussian distributed. Each row contains
intensity ratio distributions for four replicate images at a given ATP concentration.
Plugging the mean and standard deviations of the histograms into Equation 3.7,
a Gaussian curve describing the distribution is plotted by the solid line. As ATP
concentration increases, there is significant broadening of the ratios histogram, such
that the standard deviation increases.
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Understanding how the standard deviation scales with the mean of the intensity
ratio distribution can help inform us how to compute the error of our calibration
at various ATP concentrations. In Figure 3.13, the standard deviation is shown to
trend linearly with the mean of the histograms. For the intensity values measured
by the bound and unbound channels, there is a very small slope, 0.02, such that
the standard deviation is relatively unaffected by the mean. However, for the ratio
of these two channels, the slope is, 0.18, which results in notable changes in the
standard deviation for our range of ATP concentrations. Thus, our next step will be
to use these results to model the error on our ATP calibration fit.

Figure 3.13: The mean and standard deviation of intensity histograms are
linearly related. Here we plot the standard deviation versus the mean across
ATP concentrations and linearly fit the data (black line). For both the bound and
unbound intensity channels, there is a weak positive slope of 0.02 between the mean
and standard deviation of the intensity distributions. However, there is a larger
slope of 0.18 for the distribution of the ratio of intensities. Thus, the linear relation
describes the broadening of the histograms seen in Figure 3.12 .

Proof the Total Variance is the Sum of the Variances Within and Between
Grid Blocks

The total variance of the image, can be written as

f
2
tot =

1
#

#’
8

(�8 � h�i)2 (3.8)

where 8 sums over each pixel, �8 is the intensity value of a given pixel, and h�i is
the average intensity value of all pixels in the image. To understand if most of the
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variance in the images occur within given regions of the image or between regions
of the image, we divide the image into a grid with ⌫ blocks each containing #⌫
pixels. Inside of a given grid block, indexed 9 , the variance is

f
2
in = f2

j =
1
#⌫

#⌫’
8|{z}

in 9

⇣
�8 � h�i

9

⌘2
, (3.9)

which sums over all pixels, 8, that are within block 9 , and where h�i
9

is the average
of pixel intensity values within block 9 . Finally, we define the variance between
blocks as,
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Let us rewrite the form of the total variance to see how it relates to the variance
inside and between blocks,
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Expanding the square yields,
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We add and subtract �2�8 h�i 9 + h�i2
9

to simplify terms to the form of inside block
variance. Highlighting terms in red that become the inside block variance,
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Bringing all terms that do not depend on 8 out of the first sum,
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Note that 1
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, so we can write
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With some algebra, we can simplify our expression,
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Interestingly, the second term on the right hand side is exactly Equation 3.10, the
variance between blocks,

f
2
tot =

1
⌫

⌫’
9

f
2
9
+ f2

btwn. (3.17)

We can interpret the first term as the average of the variances within blocks,

f
2
tot =

⌦
f

2
in
↵
+ f2

btwn. (3.18)

Thus, the total variance in the image is average variance inside blocks plus the
variance between blocks. Now, we have a direct way to determine how much
variance is between blocks, implying uneven illumination.
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Figure 3.14: Graphical representation of variance between and within blocks.
The top panel is the equation for the total variance in terms of the variance within
a block and between blocks. The subsequent three panels graphically depict the
definition of each type of variance, where a single green block represents one pixel,
8, and a blue block represents one grid block, 9 , containing #B pixels.

3.3 Conceivable Geometric and Optical Distortions Arising from 2D Images
of 3D Distributions

Monitoring the rapidly changing, and optically labile, chemical reactions driving
aster formation with microscopy imposes fundamental technical constraints on our
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measurements. Specifically, while asters are formed by molecular motors, mi-
crotubules, and ATP arranged in rich three-dimensional structures, imaging these
distributions fully in three dimensions over our conditions of biochemical interest
would significantly constrain the fastest changes resolvable in these spatial fields.
In addition, acquiring 3D data (via many tightly-spaced 2D images in an axial
dimension) imposes a significantly larger burden of excitatory photons that can pho-
tobleach and further perturb fluorescently-labeled molecules like those we monitor.
Consequently, to capture fine changes in aster structure over space and time, the bulk
of our measurements are in the form of two-dimensionsal epifluorescence images of
developing asters. These images are collected while focused at a central axial plane
through the aster.

To interpret this slew of experimental results, in principle, we must account for the
difference between our 3D objects of interest and the 2D epifluorescence microscopy
images representations of these structures. Here, in the sections that follow, we as-
sess the possible consequences/distortions following from these two-dimensional
acquisitions, both conceptually in general, and empirically for our specific imaging
conditions. To augur what follows, our analyses largely show that the conceptually-
possible differences between two-dimensional data and three-dimensional distribu-
tions are in fact empirically negligible, largely due to the narrowness of the optical
point spread functions convolving these images compared to the shape of the raw
underlying structures we image.

Our discussion that follows proceeds in three parts. First, we consider the ideal case
where the optical weighting function along the axial dimension is zero everywhere
except the focal plane actually sampled, meaning the acquired 2D image precisely
matches the equivalent 3D slice (with no distortion). Second we consider the
opposing case where the weighting function is uniform along the axial dimension,
resulting in a uniform projection when integrating over each slice in the axial
dimension. Lastly, we consider the most realistic case falling between these two
limits, where a nonzero, nonuniform, weighting function accumulates fluorescence
signal from slices above and below the focal plane, giving a convolution with
the signal at the focal plane. In imaging practice, we numerically verify that the
narrowness of this weighting function (relative to the objects of interest) makes this
case closely approximate the first case of a bona fide slice through the underlying
three dimensional distribution.
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General form of a 2D image projection
In general, a two dimensional image �̂ (G, H) collected at spatial position (G, H) is
an integral of a true underlying source profile � (G0, H0, I0) from sources at posi-
tions (G0, H0, I0), where each source is weighted by some optical weighting function
5 (G0, H0, I0) throughout space,

�̂ (G, H) =
π 1

�1

π 1

�1

π 1

�1
� (G0, H0, I0) 5 (G0, H0, I0) dG0dH0dI0. (3.19)

Specific imaging cases

In a first ideal case, when the weighting function is simply a Dirac delta function
over the axial dimension centered at the focal plane at I, namely 5 (G0, H0, I0) =

X(G � G0)X(H � H0)X(I � I0), the image �̂ (1) (G, H) is exactly the corresponding focal
slice through the three dimensional profile,

�̂
(1) (G, H) =

π 1

�1

π 1

�1

π 1

�1
� (G0, H0, I0) X(G � G0)X(H � H0)X(I � I0) dG0dH0dI0

(3.20)

= � (G, H, I). (3.21)

In a second opposing case, the image accumulates signal uniformly over sources
along the axial dimension, namely 5 (G0, H0, I0) = X(G � G0)X(H � H0) ⇥ 1. This gives
an image � (2) (G, H) of the form,

�̂
(2) (G, H) =

π 1

�1

π 1

�1

π 1

�1
� (G0, H0, I0) X(G � G0)X(H � H0) dG0dH0dI0 (3.22)

=
π 1

�1
dI0 � (G, H, I). (3.23)

When the underlying distributions � (G, H, I) are axially- symmetric or spherically-
symmetric ( ⌘ � (d, \) or ⌘ � (A)), such images two dimensional images �̂ adopt the
forms of Abel transformations [7]. In principle, the underlying � (A) or � (d, \) can be
recovered by an inverse Abel transformation [7, 8] on the measured two-dimensional
image �̂, though in practice, the numerical success of these schemes is a delicate
and often fraught inverse problem.
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In a third, intermediate, and most realistic case, we acknowledge that the sources
from above and below the focal plane at I can contribute with nonzero weight to
the measured signal at I, and also further acknowledge the possible contributions
of sources at transverse positions (G0, H0) distinct from the query position (G, H).
Specifically, the optical weighting function of a source at (G0, H0, I0) is a point-
spread function (set by the microscope) well modeled as depending only on the
displacement (G � G0, H � H0, I � I0) to the query point (G, H). This gives an image
�̂
(3) (G, H) of the form,

�̂
(3) (G, H) =

π 1

�1

π 1

�1

π 1

�1
� (G0, H0, I0) 5 (G � G0, H � H0, I � I0) dG0dH0dI0. (3.24)

Models of the point spread function 5 (G�G0, H� H0, I� I0) corresponding to circular
apertures appropriate for microscope objectives are available [9, 10, 11] to varying
levels of analytical and numerical detail, including the popular Born and Wolf model
expressed in terms of Airy and Bessel functions. Often a very good approximation
to these empirical circumstances is a Gaussian decay factorizable in transverse and
axial dimensions with anisotropic widths, namely,

5 (G � G0, H � H0, I � I0) = psftr(G � G0, H � H0|f2
tr) ⇥ psfax(I � I0|f2

ax). (3.25)

Case Two: Abel Transformation
When the optical weighting function is not purely localized at the focal plane, but
instead is uniform throughout the axis of the imaging volume, the distortion of a
three-dimensional profile is conceivably appreciable. Image sources at axial posi-
tions far away from the focal plane are convolved with sources actually residing at
the focal plane, in principle posing an intractable ill-posed inverse problem: there
are many different underlying 3D distributions consistent with a given 2D mea-
sured image. However, intriguingly, when the underlying distribution � (G, H, I) is
spherically-symmetric or axially-symmetric, a measured two-dimensional profile
�̂ (d, \) uniquely specifies the original three-dimensional profile, a relationship ex-
pressed by the so called Abel transformation and its complement, the inverse Abel
transformation. Here, we explicitly describe how a radially-symmetric image (e.g.,
of spherically-symmetric aster) manifests a two dimensional projection forming an
Abel transformation, under this pessimistic scenario when the optical weighting
function does not decay away from the focal plane as rapidly as expected from
epifluorescence microscopy. We also remark on qualitative features that can be ana-
lytically shown to survive in such a two dimensional uniformly-weighted projection.
We provide this discussion to give maximally conservative statements about how
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two dimensional images still report on key features of three dimensional structures,
even in the counterfactual setting where distant image sources are weighted equally
to those appearing on the focal plane.

Imagining a 3D, spherical aster where we possess an omniscient knowledge of the
concentration profile, we ask what will be the concentration profile reported by
a microscope 2D image? To solve, we integrate the height, over z (in cylindrical
coordinates), of a skyscraper cutting through the aster sphere. For a given skyscraper
address with cylindrical coordinates (d, \), we calculate the concentration of the
image pixel value corresponding to the skyscraper,

�̂ (d, \) =
π

⌘

0
3I � (d, \, I). (3.26)

Since there is radial symmetry in \, we can remove the \ dependence in the integral
such that,

�̂ (d) =
π 2c

0
3\

π
⌘

0
3I � (d, I) = 2c

π
⌘

0
3I � (d, I). (3.27)

We now change to spherical coordinates, rather than cylindrical, since we consider
the aster to be a sphere. Thus, the concentration as a function of A , which depends
on d and I, can be written as,

�̂ (d) = 2c
π

⌘

0
3I � (A (d, I)). (3.28)

Since for a given skyscraper d is constant, we can change the integration variable
from I to A with the equation,

A
2 = d2 + I2. (3.29)

Differentiating with respect to A,

2A = 2I
3I

3A

) 3I =
A

I

3A . (3.30)

Using the substitution, I =
p
A

2 � d2,

3I =
Ap

A
2 � d2

3A . (3.31)

Thus, the concentration at a given 2D image radius, d of a 3D aster is,

�̂ (d) = 2c
π p

d
2+⌘2

d

3A � (A) Ap
A

2 � d2
. (3.32)
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As a sanity check, we can ensure that a uniform concentration in 3D, � (A, \, q) = �0
is still uniform in 2D. Plugging this constant into equation 3.34,

�̂ (d) = 2c�0
π p

d
2+⌘2

d

3A

Ap
A

2 � d2
, (3.33)

and performing a u-substitution where D =
p
A

2 � d2 and 3D = A/
p
A

2 � d2,

�̂ (d) = 2c�0
π

⌘

0
3D = 2c�0⌘. (3.34)

We can ensure that if we simply integrated over a constant sample from the perspec-
tive of the microscope, we would obtain the same constant,

�̂ (d, \) =
π

⌘

0
3I �0 = �0⌘, (3.35)

and assuming spherical symmetry,

�̂ (d) =
π 2c

0
3\ �0⌘ = 2c�0⌘. (3.36)

The transform defined in equation 3.34, is called an Abel Transform, and has an
analytical inverse function, under the condition that � (A) ! 0 faster than 1

A
[8].

3.4 Empirical Deconvolution on an Aster
Here we acknowledge the contributions of intensity signals from nearby pixels on
a queried pixel as directed by a finite width point spread function. The majority
of data in this study analyzes 2D images that pass through the aster center. Figure
3.15 depicts an image of this type. In analyzing the intensity "smearing" that occurs
from neighboring pixels, it is important to not only evaluate the contribution of
other pixels in the same plane but also pixels in planes above and below the pixel of
interest. In this section, we evaluate how the results of deconvolution on 3D image
stacks of an aster modify the intensity value of the resultant image. We acquire
images of an aster motor distribution every 0.5 `m in the axial direction. We then
perform a deconvolution procedure using an ImageJ plugin, Deconvolution Lab2
[9], employing the Richardson-Lucy deconvolution method. As inputs, we provide
an image or image stack and also a point spread function. For circular apertures,
the point spread function has been shown to be an Airy function [10]. However, for
ease of use, practitioners often approximate these functions with a Gaussian. We
demonstrate the results of deconvolving with both of these methods.
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Figure 3.15: Image of the center of an aster for deconvolution. As an example
image for deconvolution, the center plane of a z-stack of a fully formed aster is
shown. On the left, the full figure dimensions are shown, while on the right, a
cropped view of the center of the image is shown, corresponding to the white square
on the left. We note the aster is not perfectly centered within the image which is
typical for asters as they dynamically form. Our deconvolution method needs to
work regardles of the aster centering.

�����

���


�

�

�

�

�

	

Figure 3.16: Generated Airy point spread function. Using the PSF Generator in
ImageJ with the Born and Wolf 3D model, we have created a point spread function
based on our microscope’s optical parameters. The images here are the center slice
of the 3D PSF where the left shows the full size of the image and the right is cropped
to the center to show the bright center of the PSF.

We generate an Airy PSF using an ImageJ PSF Generator plugin [12]. The plugin
requests as inputs the refractive index, which we set to 1 for an air objective,
the wavelength of light, which we input as 480 nm, the numerical aperture of the
objective, which we set to 0.45, and the nanometer to pixel conversions in each
dimension, which for the G and H dimensions, we take to be 578 nm/px and for the z
dimension we use 500 nm/px. In Figure 3.16 we show an example of the Airy PSF
at the center plane.

Using Deconvolution Lab2, we perform 50 iterations of Richardson-Lucy deconvo-
lution, at first only in 2D, on the sample image shown in Figure 3.15 and deconvolve
with the Airy PSF shown in Figure 3.16. In Figure 3.17(A) we show the result of
this deconvolution when implemented this way. In Figure 3.17(B) we plot the trace
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Figure 3.17: Deconvolving using an Airy PSF in ImageJ reveals a similar output
to the raw image input. (A) The full deconvolution output and cropped decon-
volution output are depicted. (B) Taking a cut line through the center of the aster
for both the raw image (in black) and the deconvolved output (in blue), we find near
perfect agreement in intensity signal. This indicates that the convolution done by
the microscope had very little effect on the image.

of a cut line through the center of the aster for the initial raw image in black and the
Fiji deconvolved Airy PSF in blue. We find that this deconvolution returns a value
practically identical to the raw image trace.

Complementary to using the Airy function, we explore the results of using a Gaussian
as already described earlier in the context of synthetic data. In Figure 3.18 we fit the
length parameters for the Gaussian to the Airy PSF generated in ImageJ and find that
the transverse direction has a length scale of ftr = 0.33 `m and the axial dimension
has a length scale of fax = 2.32 `m. These characteristic widths, and the conceit
of Gaussian approximations, to the point spread function are highly consistent with
reported values and procedures in related literature; e.g., references [13, 14] report
similar widths of 0.3 s `m to the transverse character of experimental point spread
functions under related conditions.

Upon deconvolving with the Gaussian point spread function, as shown in Figure
3.19, the output again appears nearly identical to the raw image as shown in Figure
3.15.
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Figure 3.18: Gaussian length scales are determined by fitting the generated Airy
point spread function. Gaussian functions provide a very good fit to the decay of
the point spread function in space. The transverse plane has a small length scale,
only 0.33 `m, while the axial direction has a longer, but still small length scale of
2.32 `m.
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Figure 3.19: GaussPSF with length scales as determined by the Airy function
fits.

These tests of 2D deconvolutions give us a sense that any effect of convolution
by the microscope is minimal. However, it is important to check modifications
created by convolutions in the axial dimension, especially since this is the widest
dimension of the point spread function, as can be seen in Figure 3.18. To this end,
we perform 100 iterations of Richardson-Lucy deconvolution for both the generated
Airy PSF and the fit Gaussian PSF. Again, we plot the cut lines through the center of
the aster in Figure 3.21 and find little deviation from the raw image. The Gaussian
deconvolution again looks identical to the raw image, but for the Airy deconvolution,
there is a slight difference at the center of the aster. Here, the Airy deconvolved
output produces higher intensities in the aster core and becomes less smooth.

Rather than taking a cut line, we also plot the polar averages of the images centered
about the aster with respect to the aster radius shown in Figure 3.22. Once again,
we largely see agreement with the raw images. The 3D airy deconvolution is again
the only deconvolved output that show any difference with an increased intensity at
the aster center.
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Figure 3.20: Deconvolving using a Gaussian PSF reveals a similar looking
output to the raw image input. (A) The full deconvolution output and cropped
deconvolution output are depicted. (B) Taking a cut line through the center of the
aster for both the raw image (in black) and the deconvolved output (in blue), we find
near perfect agreement in intensity signal. This indicates that the convolution done
by the microscope had very little effect on the image.

Having learned that the quantitative impact of deconvolution in two or three di-
mensions in real aster images of interest is extremely numerically modest, we now
explicitly verify that the ambient background level of fluorescence signal does not
change the (small) impact of deconvolution. Figure 3.23 compares how performing
background subtraction before or after deconvolution affects the recovered fluores-
cence profiles. The raw, deconvolved, and background-subtracted then deconvolved
traces of Figure 3.23(A) agree up to the background offset, and very small numeri-
cal noise. This agreement, arguing that deconvolution and background subtraction
largely commute numerically, shows that the presence of an ambient signal back-
ground in real aster images leaves the result of deconvolution essentially unchanged
(up to exactly the background offset). We further visualize this agreement in Fig-
ure 3.23(B) by plotting the difference between the deconvolved image ⇡ [�] and
the background-subtracted then deconvolved image ⇡ [� � h�bgi], relative to the
background level h�bgi. Over the central line profile of the aster, this difference is
very close to unity throughout the image, namely ⇡ [�]�⇡ [��h�bgi]

h�bgi ⇡ 1.
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Figure 3.21: 3D deconvolution in ImageJ for Airy or Gaussian PSFs show little
deviation from the original image. For all plots, we include the raw image intensity
cutline in black and the deconvolved cutline in blue. The top row highlights the
ImageJ 2D deconvolutions while the bottom row highlights their 3D counterparts.

This finding that a background does not nontrivially modify the result of deconvolu-
tion (for relevant aster data of interest) complements generic numerical guarantees
applying to Richardson-Lucy deconvolution. Studying the deconvolution operation
in the context of astronomical images, Prato and coworkers [15] establish that per-
forming Richardson-Lucy deconvolution conserves intensity flux both locally and
globally in input images, when the background of the image is zero. Our numerical
analysis suggests that the latter proviso that background is zero may not be required
for these algorithms on our class of data.

In sum, we find deconvolving has little to no impact on the image. This is especially
clear in Figure 3.22 where only the 3D Airy deconvolution shows any discrepancy
between the raw and deconvolved images. And even here, there is a maximum
of approximately a 10% difference between the intensity values within 15 `m of
the aster center. Based on these results, we do not find it imperative to include a
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Figure 3.22: Polar averaging deconvolved outputs also largely agree with the
raw polar averages. We take the averaged intensity of volume normalized radial
shells and plot how the intensity changes with respect to the distance from the aster
center. In black, we show the traces of the raw image and in blue the traces of the
deconvolved output. Largely, the deconvolved images in both 2D, on the top row,
and in 3D, on the bottom row, match the raw image.

deconvolution procedure when analyzing aster data.

3.5 Effects of Convolution on Image Formation
We were curious to better understand why the deconvolution algorithms led to very
modest changes in our measurements. To investigate these questions more deeply,
in this section, we examine synthetic data that we subject to the deconvolution
procedure to dissect the physics of the deconvolution process.

As noted in the previous section, the formation of an image in a microscope includes
convolution with the microscope’s point spread function. The point spread function
provides a mathematical description of how light from a point source is affected by
diffraction and other optical limitations as it passes through the optical path of the
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Figure 3.23: Subtraction of ambient background fluorescence leaves deconvolu-
tion results unchanged. (A) Profiles (slices) of fluorescence along a a line through
an aster’s center before deconvolution (in black, denoted �); after deconvolution (in
blue, denoted D[�] where D is the deconvolution operation); and when deconvolu-
tion is performed after the ambient h�bgi average level of fluorescence in the regions
of space outside the aster is subtracted, D[� � h�bgi],shown in pink. These traces
affirm that the subtraction of ambient fluorescence before or after deconvolution
does not affect the shape of the intensity fluorescence profile. These deconvolutions
were performed in two dimensions using an Airy-function based point-spread func-
tion in DeconvolutionLab2 (via Imagej), as described above. (B) The difference
⇡ [�]�⇡ [��h�bgi]

h�bgi of the blue and black traces in panel (A) relative to the ambient h�bgi
level of fluorescence. The fact that this value is consistently very close to unity
affirms that ⇡ [�] � ⇡ [� � h�bgi] ⇡ h�bgi, namely that the background subtraction
operation is essentially commutative with respect to deconvolution.

microscope. This convolution causes the resultant image to appear smoother, or
blurred, compared to the object itself. As this work measures the number of ATPs
at a given location in time via fluorescence, it is important to determine how the
PSF spreads and attenuates fluorescence signal, affecting the apparent localization
and intensity of ATPs. To get a feeling for the impact of convolution, we mimic the
image acquisition procedure on synthetic data. In particular, we specify a symmetric
sphere of fluorescent motor proteins whose concentration decays radially. We model
the motor concentration field using an exponential decay corresponding to the object

obj = exp

 
�
p
G

2 + H2 + I2
_>

!
, (3.37)

where _> is the decay length, which we take to be ⇡ 30 `m for a fully formed aster.
For convenience, we do not normalize the object, ensuring that at the origin the
intensity value is one.

Our first objective is to explore how convolution modifies the “measured" intensities.
To perform a convolution mimicking the imaging process in the microscope, we
define a point spread function as a 3D Gaussian. We assume that the point spread
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function has different length scales in the transverse (G-H) plane compared to the
axial (I) direction. The form of our synthetic point spread function is

psf(G, H, I) = psftr(G, H)⇥psfax(I) =
1

2cf2
tr

exp
✓�(G2 + H2)

2f2
tr

◆
⇥ 1p

2cf2
ax

exp
✓ �I2
2f2

ax

◆
.

(3.38)
We estimate the length scale for the transverse point spread function based on the
minimum resolvable distance. For a self-luminous light source of incoherent light,
which encompasses fluorescent signals, the minimum distance is

ftr ⇡
0.61_
N.A.

, (3.39)

where _ is the wavelength of light and N.A. is the numerical aperture [10]. For our
setup, we use a wavelength of 513 nm and our objective has an N.A. of 0.45. These
parameters yield the transverse length scale,

ftr =
0.61 ⇥ 513 nm

0.45
= 695 nm ⇡ 0.7 `m. (3.40)

For the axial length scale, we compute the depth of focus as

fax ⇡ _ =

N.A.2
, (3.41)

as stated in [16], where = is the index of refraction, which we take as = = 1 for an
air objective. Plugging in values, we estimate

fax ⇡ 0.513 `< ⇥ 1
(0.452) ⇡ 2.5 `<. (3.42)

Now that we have the parameters describing the point spread function in hand, we
now turn to examining its effects. The convolution of the object with the point
spread function is characterized by the integral

im(G, H, I) =
π 1

�1

π 1

�1

π 1

�1
obj(G0, H0, I0)psf(G�G0, H� H0, I� I0) dG0dH0dI0 (3.43)

which amounts to weighting each point in the image with all points in the object,
each appropriately multiplied by the point spread function itself.

We use the scipy package, scipy.signal.convolve to perform this convolution. We
set the "mode" keyword argument to "same" which ensures the returned convolved
matrix has the same size as the inputted object. The microscope would acquire an
image that reflects the center slice of the convolution. We compare the center slice
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Figure 3.24: Exploring the effects of convolution with the point spread function
for synthetically generated data. (A) Images of the center plane for both the
raw object, a radially decaying exponential sphere of motors, and the convolved
image with a Gaussian point spread function. (B) More quantitatively, we plot the
intensity of both the object and convolved object along a cut line passing through
the object origin. (C) We find most of the relative change, as defined as obj�obj¢psf

obj ,
occurs in the center of the object. The peaks at the ends are due to edge effects in
the convolution.

of the synthetic specified object and the convolved object in figure 3.24(A). By eye
it is difficult to distinguish the two slices from one another. To be more precise, we
draw a cutline through the center of the object as depicted in figure 3.24(B). The
difference after convolution is still quite minimal, though we do see a difference near
the center such that the convolved image becomes smoothed and has a lower intensity
value. We demonstrate the relative change in figure 3.24(C) as the difference of the
convolved object from the raw object divided by the raw object,

�� =
obj � obj¢ psf

obj
. (3.44)

There is about a 10% change in the signal at the center of the object and very little
change beyond 10 `m outside the center. The spikes at the ends of the plot are due
to edge effects occurring from convolution.

The variation in the image intensity as a result of the convolution with the point
spread function appears to be minimal, and is only noticeable at the very center.
This begs the question: how necessary is incorporating the corrections due to the
point spread function in the analysis of our images, and specifically, how will this
procedure alter our measured concentrations? To that end, we perform a sweep of
sigma values to determine at what Gaussian length scales convolution significantly
alters the intensity reported in the image as contrasted with the intensity of the
object.
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Figure 3.25: Comparison of object and object convoluted with Gaussian point
spread function. (A) The profile of the synthetic object is plotted in black with
convolved "images" with varying PSF length scales overlayed. For small length
scales, f < 3 `m, the "image" does a good job of approximating the object. The
discrepancies are highlighted in (B) where we plot the relative change between the
image and object. Most of the variation occurs in the center. Increases at the edges
are thought to be boundary effects.

From the data reported in figure 3.25, we find that when convolving with small f
values (f  3 `m), the resultant traces are very similar to the original object. The
bottom plot gives the relative change of the intensity values after convolving as de-
scribed in equation 3.44. Except for the edges of the plot, where we believe boundary
effects create increases, convolutions with small f values reveal discrepancies of
under ten percent.
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3.6 Probe Blurring
It is important to take into account the on/off times of ATP to the ATP reporter to
understand how reported ATP gradients may be affected by the probe. We can do
an estimate to determine how far a probe can travel while bound to an ATP. We
estimate the diffusion constant of the ATP probe to be ⇡ = 45 `m2/s in section
3.11. We then need to take into account the binding rates for the ATP reporter.
We use the reporter Queen-7µ A81D which has a reported dissociation constant
of  d = 7.02 ⇥ 10�2 mM [17]. The on and off rates for this mutant is not listed,
however, the authors do list the rates for other mutants. Queen-2m has a reported
on rate of :on = 2.7 ⇥ 10�2 mM�1s�1 and an off rate of :off = 9.4 ⇥ 10�2 s�1 [18].
Queen-37C has a reported on rate of :on = 3.5 ⇥ 10�2 mM�1s�1 and an off rate of
:off = 1.7 ⇥ 10�1 s�1 [2]. Based on these reported off rates, the bound time of an
ATP to a probe is roughly,

Cb =
1
:off

=
1

0.1 s�1 ⇡ 10 s. (3.45)

Given that we image the aster every 20 s, the bound time is long. The distance the
probe can travel during the bound time of ATP is on the order of

;b =
p
⇡Cb =

p
45 `m2/s ⇥ 10 s ⇡ 20 `m. (3.46)

This length scale is also long since the gradients we measure are also on the order of
few⇥ 10 `m. Thus, diffusing probes bound to ATP could contribute to a significant
smoothing of gradients as bound probes diffuse.

To better understand this, we can write a model for the ATP bound probes over space
and time. In this model, we take into account the diffusion of bound probes, the
dissociation of the ATP to the probe, and the binding of an ATP to the probe,

m&b
mC

= ⇡r2
&b � :off&b + :on&b�. (3.47)

3.7 Finite Element Simulations of Continuum Models
Our work is predicated on an interplay between experimental measurements and a
theoretical description of our results. As seen in the main body of the paper, we have
considered an elementary reaction-diffusion model that describes the spatiotemporal
evolution of ATP as a result of the consumption of ATP by the motors as well as the
diffusion of ATP.

Although the equations are simply stated, for the case in which the motor distribution
is varying in space and time, the solution of these equations is prohibitive except in
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Figure 3.26: Setting up a finite element calculation in COMSOL. The use of
COMSOL is dependent upon a series of steps that in total make it possible to solve
some partial differential equation of interest. The five columns show how to create
a geometry, specify which partial differential equation we are solving, how to define
boundary conditions and initial conditions and how to set up the finite element mesh.

the most highly idealized circumstances. As a result, we were interested in having
a robust numerical approach to solving the continuum equations describing our
experiments, including the effects of photobleaching, in the context of the complex
geometry of our microscope coverslips and optically activated aster regions.

To that end, in several different contexts we used the finite element method to carry
out numerical solutions of our reaction-diffusion-photobleach equations. Part of
the power of the finite element method is that it allows us the flexibility to consider
arbitrary geometries and to quickly move between different effects by tuning the
relevant partial differential equations. In particular, we have used the commercial
finite element software known as COMSOL. As seen in Figure 3.26, to carry out a
simulation of interest, we need to set up the calculations by describing the geometry,
choosing which partial differential equations to solve, what the boundary and initial
conditions are and how to mesh our region of interest.

In the main body of the paper, we showed how the finite element method was
used to compute the depletion over time of ATP as a result of a gradient in the
distribution of motors. Later in the SI, we will discuss how we used the finite
element method to make careful simulations of how photobleaching might have
influenced our measurement of the ATP concentration.
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3.8 Photobleaching
From an experimental perspective, one of the main objectives of the present work
is to determine the concentration of ATP at different positions and times within our
microtubule-motor system. However, since our method of making that measurement
uses fluorescence, it is incumbent upon us to quantify the unwanted effects of
photobleaching, which leads to a reduction in fluorescent signal, as opposed to the
physical reduction we are really interested in due to ATP consumption.

To understand and account for the character and extent of photobleaching affecting
our measurements, we consider these dynamics from several angles. First, we
perform control experiments quantifying the intensity reduction in a uniform mixture
of fluorescent ATP probes absent any motor activity. We understand the quantitative
phenomenology reported by these experiments by building models accounting for
the role of a reservoir outside the excitation region, both via simple kinetic and finite
element modeling.

Phenomenology of Photobleaching from Control Experiments
We prepare an ATP calibration experiment, as described in section 3.1, such that
we pipette a fixed, known quantity of ATP into the same reaction mixture as an
aster experiment; however, we do not include motor proteins, thereby preventing
any ATP hydrolysis from occurring. We then image the sample using the same time
dynamics as aster experiments, namely matching laser intensity currents, 1000 mA,
exposure times, 150 � 160 ms, and the interval between image acquisition, 20 s.
Upon collecting image data, we process it using the pipeline described in section
3.2 to do background subtraction (section 3.2) and uneven illumination corrections
(section 3.2). We then average the intensity value of each image and plot the intensity
values over time. This produces scatter plots such as those shown in Figure 3.27.
We see empirically from the lines in Figure 3.27 that photobleaching in our system
is very well described by fitting a single exponential plus a constant of the form

5? (C) =
� (C)
�0

= (1 � �1)4�C/g + �1, (3.48)

where � (C) is the intensity at time C, �0 is the intensity at the start of the experiment,
�1 is the intensity as time approaches infinity, and g is the characteristic decay
constant in time.

To fit this decay due to photobleaching, we first divide all data points by the
initial value of the intensity, �0, which, for a strictly monotonic function, is the
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Figure 3.27: Examples of representative, appreciably-variable, raw photo-
bleaching trajectories across (putatively-identical) experiments, and accom-
panying fits. Fluorescence intensities � (C) of 405 nm (left column) and 480 nm
(right column) excitation channels were each fit adequately to an exponential decay,
Equation 3.48, with a single timescale g and a long-time offset �1 (once normalized
by maximum intensity values at time zero, �0). Lines show best-fit curves and dots
are raw data. Each color represents an experimental repeat for data taken at 500`"
ATP and at 20 s intervals.

maximum value of the data. Thus, we pin the time zero intensity to 1. Using
scipy.optimize.minimize, we find the parameter set, ? = (?0, ?1, . . . , ?=), for a
fitting function, 5? (C), that minimizes the sum of the square of the residuals,

SSR =
’
C

(� (C) � 5? (C))2
, (3.49)

where � (C) is the value of the intensity at a time t. From here on, we will define the
variables of the parameter set such that ?0 = g, ?1 = �1.

Why does photobleaching adopt this form of an initial exponential decay to a plateau
of about 80% of the initial intensity? Ordinarily, photobleaching in a uniformly-
illuminated, confined chamber could instead be modeled by a single exponential
decay,

5? (C) = 4�C/g, (3.50)

since the only thing that could change the state of the probe is bleaching according
to the dynamical equation,

3�

3C

= �1
g

� . (3.51)

However, our situation is more nuanced because the excitation region is small
compared to the size of the chamber, meaning non bleached probes can diffuse
in, slowing the time scale of intensity decay. We show that a single exponential
indeed fits poorly to our data in Figure 3.28(A). But, as we commented before in
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Eq. 3.48, a single exponential plus a constant seems to do the trick. One may be
concerned about whether this model is physically reasonable since at sufficiently
long timescales, the underlying physical picture would still expect that all the probes
to have been bleached. To reckon with this question, in section 3.8, we show that
when diffusive replenishment is invoked in a first order kinetic model where probes
adopt two (bleached or unbleached) states, the decay of visible (unbleached) probe
is modeled by a double exponential,

5? (C) = (1 � �1)4�C/g + �14�C/g2 , (3.52)

where g2 is a second emergent timescale in the physical problem. If this second
time constant g2 is very long, the behavior describing the photobleaching dynamics
is well approximated by a single exponential plus a constant. In Figure 3.28(C),
a double exponential fit seems to fit just as well as a single exponential plus a
constant as shown in Figure 3.28(B). However, we note that the the solver kept the
initial guess for g2, the long decay constant. In adjusting initial guesses and solver
tolerances, we conclude that experimental data do not offer sufficiently long time
courses for the solver to get a good fit for this parameter. However, we do know it
is much much longer than the timescale of our experiment. Indeed, in Figure 3.29,
we show that for g2 > 3⇥ 105, the squared sum of residuals for most replicates have
reached a plateau and there is no further refinement of this parameter to achieve. If
our experiment contained data at much longer times, we could more clearly witness
the effect of the second decay constant.

Sensitivity of photobleaching to experimental conditions
When correcting for photobleaching in aster data, one of the things we need to check
is if the photobleaching decay fits vary with ATP concentration. In Figure 3.30, we
plot the fit parameters as a function of ATP concentration. There is no clear trend
with ATP, indicating that the probe photobleaching process is not ATP-concentration
dependent. Thus, regardless of an aster’s ATP concentration, we can process images
using appropriate globally-inferred parameters to the photobleaching decay curves.

We also examine how the fit parameters scale with modulating the time interval
between light excitations. We expect that for shorter times between pulses, the
bleaching of probes will be more continuous leading to shorter decay constants,
while for longer intervals between light pulses the time constant should take much
longer to see reduction in light intensity, which we have simulated in section 3.8. In
Figure 3.31, we find the decay constant, g, scales about linearly with the interval be-
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Figure 3.28: Photobleaching data fit to several functional forms. (A) Single
exponential fits do not do an acceptable job of capturing the intensity depletion
due to photobleaching and lead to large values of the decay constant. (B) Fitting
to a single exponential plus a constant provides a satisfactory fit to the form of
measured intensity reduction. (C) A double exponential plus a constant also fits the
measured intensity decline, though the solver does not capture the second, longer
decay constant very well. All data in these plots are taken at 500 `M ATP and at
20 s intervals. Each color represents the data from the same experimental repeats
as depicted in Figure 3.27. Values for g and g2 have units of seconds and values for
�1 are unitless, since the intensities are normalized by the maximum intensity �0 at
time zero.
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Figure 3.29: Evaluation of fit for a second decay constant. Using the fit parameters
in Figure 3.27, we plot how the minimization of the sum of the square of the residuals
(SSR) to the data depends on the value of a second decay constant, g2. For values
larger than approximately 3 ⇥ 105 seconds, the SSR reaches a minimization limit
beyond which there is no further improvement to the fit . Each color represents the
data from the same experimental repeats as depicted in Figure 3.27.
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Figure 3.30: ATP dependence of the fit parameters for photobleaching. The
fit constants, g and �1, of the function, � (C)/�0 = (1 � �1)4�C/g + �1, are plotted
as a function of ATP concentration. None of the fit parameters seem to have a
clear trend as a function of ATP concentration. Circular points and diamond-shaped
points display data from experiments conducted on separate dates. All data points
are taken with the same imaging parameters. Each color represents the data from
the same experimental repeats as depicted in Figure 3.27.

tween light excitations. In contrast, there is only small variation in the �1 parameter
with respect to the pulsing interval.

Amid the variation in these parameters discussed above, key quantitative regularities
emerge. Across experiments, all the photobleaching decay time constants are shorter
than g Æ 35 s. In addition, all plateau intensity values �1 vary by less than 20%.
Together, these two facts have the consequence that the late time behaviors of
photobleaching trajectories agree within a few tens of percent of each other. This
result can be understood by referring to equation 3.48, � (C)/�0 = (1� �1)4�C/g + �1.
After waiting a few decay constants—reached early in the experiment even for the
slowest photobleaching trajectory—the first term (1 � �1)4�C/g vanishes. Since the
remaining plateau constant, �1, varies only mildly (by less than 20%), the overall
trajectories ultimately agree within a few tens of percent of each other after long
enough times.
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Figure 3.31: Intrinsic and systematic variability of photobleaching kinetic pa-
rameters across days and excitation pulse intervals �C. On average, the fit decay
time g and offset �1 vary linearly with the interval �C between excitation pulses
in the measurement, as reported by acceptable linear fits between these parameters
to the pulse interval �C (shown as black lines). Five distinctly colored examples,
the same experimental repeats as described by Figure 3.27, are taken at the pulse
interval of �C = 20 s, the interval typically used between frames in aster experi-
ments, are highlighted, evidencing wide and ultimately meaningful variability in
photobleaching kinetics across experiments. Circular points and diamond-shaped
points display data from experiments conducted on separate dates.

Photobleaching correction procedure
With the form of the time-dependent intensity reduction in hand, we can now
account for the amount of depletion due to photobleaching over time to recover the
“true" intensity. In particular, we interpret the measured intensity as the product
of a weighting function and the true intensity if fluorophores were not bleached.
Namely, when �̃ is the true intensity and � is the measured intensity,

�̃ (C) = � (C)
5? (C)

=
� (C)

(1 � �1)4�C/g + �1
. (3.53)

Since our probe calibrations are ratios of image intensities collected at two wave-
lengths, we can independently correct images from each wavelength and then take
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Figure 3.32: Variation in the ratiometric photobleaching correction implied by
variability in photobleaching experimental fits. Specifically, each fluorescence
channel offers a photobleaching fit function 5 (C) = � (C)/�max = (1��1) exp [�C/g]+
�1. The measured fluorescence intensity ratio A (C) = �405(C)/�480(C) would be cor-
rected by the ratiometric correction 5480(C)/ 5405(C)—and then is ultimately trans-
formed to ATP concentration by a separate nonlinear concentration calibration
function. Experimental variability in the raw kinetic parameters g and �1 of each
fluorescence channel thus propagate in rich ways to the shape of the ratiometric
correction function. Notice even the appearance of non-monotonicity in time in the
yellow and blue experimental fits’ correction curves, which is facilitated by mis-
matches in the timescales of bleaching in the 405 nm and 480 nm channels. Each
line is colored with the same scheme as the repeats described by Figure 3.27 and an
additional line, the dark gray, plots the correction function when g and �1 are set by
the value of the linear fit at 20 seconds in Figure 3.31.

the ratio. This means the effective correction to the overall ratio is 5480 (C)
5405 (C) , yielding,

�̃405(C)
�̃480(C)

=
�405(C) 5480(C)
�480(C) 5405(C)

. (3.54)

In Figure 3.32 we plot the correction values over time for five characteristic experi-
mental replicates. In addition, we plot the consensus of the fitted parameters, g and
�1, as determined by the linear fit evaluated at the acquisition interval, 20 seconds, in
Figure 3.31. The kinetic variability in fit parameters across experiments propagates
to implied corrections. The differences are most apparent at early times before the
fit functions plateau. We can see how these corrections modify the number of ATP
versus time for a sample aster experiment in Figure 3.33.

As expected, the corrected ATP readouts are greater than the uncorrected mea-



70

0 1000 2000 3000 4000
time (seconds)

0.2

0.4

0.6

0.8

1.0

Nu
m

be
r o

f A
TP

0 50 100 150 200 250
time (seconds)

0.95

1.00

1.05

1.10

1.15

1.20

Nu
m

be
r o

f A
TP

uncorrected

corrected by various
   photobleaching
       trajectories 

zoom at early times

notice,
ATP increases!×1012

×1012

fitted correction

Figure 3.33: Implications of variability across experimental photobleaching
trajectories for inferred ATP abundance over time. The black trajectory shows
the number of ATP molecules over time of a representative aster if photobleaching
were left uncorrected. The colored curves above are the same underlying aster data
subjected to exemplary but diverse ratiometric photobleaching corrections (ensuing
from those in Figure 3.32 and colored correspondingly). The dark gray curve, is
the result of correcting using the g and �1 values of the linear fit at 20 seconds
in Figure 3.31. Notice that all corrected trajectories show an apparent increase
in ATP over at least the first pair of data points, with, e.g., the blue and purple
trajectories sustaining this apparent increase in ATP over at least two time points.
Given that motors are continually consuming ATP, we expect the appearance of
such an increase in ATP is pathological/nonphysical, emphasizing how profoundly
photobleaching trajectories confound the resolution of ATP dynamics at early time
points.
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Figure 3.34: Implications of variability across experimental photobleaching tra-
jectories for inferred power consumption (ATP/second) over time. (a) The black
trajectory shows the consumption rate of ATP molecules over time of a representa-
tive aster if photobleaching were left uncorrected. The colored curves are the same
underlying aster data subjected to exemplary but diverse ratiometric photobleaching
corrections (ensuing from those in Figure 3.32 and colored correspondingly). The
dark gray curve, is the result of correcting using the g and �1 values of the linear
fit at 20 seconds in Figure 3.31. Notice the dramatic ambiguity in even the sign of
the ATP consumption rate, atop the quantitative disagreement across corrections,
at early times. However, after a few characteristic photobleaching time constants
(approximately C ¶ 250 B, indicated by the gray line), the diversely-corrected curves
closely agree. (b) In determining a cutoff time for where the varied photobleach
corrected ATP curves agree, we plot the percent variation at each time for each
power curve as compared to the curve with the minimum power. The variation is
computed as power8 (C)�min(C)

min(C) ⇥ 100, where 8 indexes over each corrected curve and
min(C) refers to the minimum value of power at a given time C. The variation curves
are laid upon three shaded regions depicting 5, 10, and 20 percent variation.
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surement, yet still deplete over time as the aster consumes ATP. However, control
photobleaching trajectories vary considerably across replicates and conditions at
early time points. In Figure 3.33, these discrepancies manifest in corrected ATP
trajectories until roughly 250 seconds (s 4 min). Further, some candidate cor-
rections could even spuriously show a mild increase in ATP over the earliest time
points. (We regard such an apparent increase as nonphysical, given the continual
consumption of ATP by motors.) This potential problem is even more apparent when
examining power (namely the derivative of ATP over time), as shown in Figure 3.34.
Crucially, however, after roughly 250 seconds (nearly ten times longer than the fit
decay constant g values), power trajectories across all candidate corrections align
nearly identically. This concordance of the inferred ATP and power trajectories only
after 250 seconds recommends that these trajectories are reliably resolvable after
this short initial period.

In Figure 3.35, we see that the initial period is early in the meaningful development
of the aster structures. Figure 3.35(C) depicts the the state of motor and ATP
gradients at the proposed cutoff time. The motor image does not yet show any
structure formation, reinforcing our recommendation to start analyzing data after
the initial C ¶ 250 s period. Taking a closer look at amount of gradients developed in
ATP, the grey lines in Figure 3.35(A) and (B) show the ATP profiles at all measured
time points before the cutoff. After correcting for photobleaching, we find that
although ATP does begin depleting, ATP throughout the system is still abundant.
Additionally nearly all the gradient formation in ATP occurs after the cutoff. Given
that nearly all development of spatial gradients, in both ATP and motors, occur after
the cutoff and ATP is still at meaningful abundances, we proceed with our analysis
examining data following this practical cutoff.

Theory of the Experiment: Analysis of Photobleach-Diffusion Equations
To develop intuition for the way in which photobleaching alters our fluorescence
signal and hence could contaminate our measurement, we worked to develop a
“theory of the experiment” to compute how the dynamics of the effect we are
trying to measure (i.e. ATP consumption) couple with the unwanted effects of
photobleaching. This effort is one of many such examples within our laboratory
where we have repeatedly found it very useful to do our best job of writing down
a quantitative theoretical description of the experiment and using that description
to calibrate our experiments themselves [19, 20]. This is not a substitute for the
actual experimental correction described in the previous section 3.8, but rather a
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Figure 3.35: ATP traces over space and time, with and without an exemplary
photobleaching correction, relative to a proposed cutoff time—before which we
propose deeming ATP dynamics quantiatively-unresolvable.(a) Spatiotemporal
profiles of ATP if no photobleaching correction were applied. (b) Spatiotemporal
profiles of ATP under an exemplary photobleaching correction (corresponding to the
green example photobleaching trajectory fit in the preceding figures in this section.
In panels (a) and (b), profiles before the proposed cutoff time of 250 s—the same
cutoff indicated by in Figure 3.34 by the vertical gray line—are colored in grey
(leaving the remaining profiles, which we propose retaining, colored by time). (c)
For these representative aster data, the spatial profiles of both ATP and motors have
developed only modest spatial gradients at the proposed cutoff time (250 seconds, 13
frames). This means the retained data contain the bulk of interesting spatiotemporal
gradient formation attending the aster formation.
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Figure 3.36: Anatomy of the experimental chamber. To create our experimental
chamber, we cut 3 mm ⇥ 18mm lanes out of parafilm wax. We sandwich the wax
sheet between a coverslip and a slide leaving the ends of the lanes exposed. This
allows us to flow a reaction mixture into each lane. We seal the reaction in the lanes
using picodent twinsill speed, a polymeric seal.

complementary approach for developing intuition for the scale and dynamics of the
photobleaching effect.

In this section, we show how to set up quantitative models of the photobleaching
and diffusion of our fluorescent probes and how the model equations can be solved
as the basis of proposed photobleaching corrections in our experiments. First, in the
ensuing sections 3.8 and 3.8, we write a model for the fluorescent probe independent
of space, where the probe adopts two states, bleached or unbleached. This model
can be used to account for the character of photobleaching in our experiments.
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Figure 3.36 shows the geometry of one of our experimental devices. As shown,
the experimental system is a giant reservoir encompassing a small region where
illumination destroys the visibility of some molecules through photobleaching. This
geometry sets up conditions for photobleaching to compete with bulk replenishment
from the reservoir, as we now explore.

Photobleaching in a reservoir takes the form of a double exponential

When exciting a region of our sample, there is some rate, :bleach, at which probes in
this region are photobleached. These probes are then lost from the pool of probes
we can account for through fluorescence. Within the excitation region, there is
some concentration of fluorescent probes, 2in, and outside of this region, there is
additional pool of fluorescent probes with concentration, 2out. Probes can diffuse
between these regions with rates : in and :out. We write a model for the kinetics of
probe movement. The time dependence of non-bleached probes in the illumination
region is

32in(C)
3C

= �:bleach2in(C) � :out2in(C) + : in2out(C), (3.55)

while the time dependence of non-bleached probes outside the illumination region
is,

32out(C)
3C

= :out2in(C) � : in2out(C). (3.56)

Writing the system of equations as in matrix form results in

3

3C

"
2in

2out

#
=

"
�:bleach � :out : in

:out �: in

# "
2in

2out

#
, (3.57)

and applying the ansatz,

2in(C) = 2(0)in 4
fC

2out(C) = 2(0)out4
fC

,

(3.58)

we can solve the system of equations as an eigenvalue problem. Plugging in the
ansatz into the matrix form,

f4
fC

"
2
(0)
in
2
(0)
out

#
= 4fC

"
�:bleach � :out : in

:out �: in

# "
2
(0)
in
2
(0)
out

#
, (3.59)

which we rearrange to find

0 =

"
�:bleach � :out � f : in

:out �: in � f

# "
2
(0)
in
2
(0)
out

#
. (3.60)
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Taking the determinant,

0 = (�:bleach � :out � f) (�: in � f) � : in:out

= f2 + (:bleach + : in + :out)f + : in(:bleach + :out) � : in:out

= f2 + (:bleach + : in + :out)f + : in:bleach.

(3.61)

Solving for the roots of f,

f = �1
2
(:bleach + : in + :out) ±

1
2
p
(:bleach + : in + :out)2 � 4: in:bleach. (3.62)

Plugging this partial differential equation into Mathematica and solving for 2in(C),
we find,

2in(C) =
20 exp

⇣
� (U+W)C

2

⌘
2W

(V � V exp(WC) + W + W exp(WC)) , (3.63)

where, for ease of reading, we define the constants

U ⌘ :bleach + : in + :out,

V ⌘ :bleach � 3: in + :out,

W ⌘
p
�4:bleach: in + (:bleach + : in + :out)2 =

p
�4:bleach: in + U2

.

(3.64)

We simplify the form of 2in(C) by distributing the exponential prefactor,

2in(C) =
20
2W

⇣
V4

�(U+W)C/2 � V4�(U�W)C/2 + W4�(U+W)C/2 + W4�(U�W)C/2
⌘
. (3.65)

Combining the terms in the parenthesis by exponentials,

2in(C) =
20
2W

⇣
(W + V)4�(U+W)C/2 + (W � V)4�(U�W)C/2

⌘
. (3.66)

This equation establishes that the visible abundance of probes in the monitored
region, 2in(C), can be described as a double exponential with two characteristic
timescales g1 and g2, given by,

g
�1
1 = (U + W)/2

=
1
2

⇣
:bleach + : in + :out +

p
�4:bleach: in + (:bleach + : in + :out)2

⌘ (3.67)

and

g
�1
2 = (U � W)/2

=
1
2

⇣
:bleach + : in + :out �

p
�4:bleach: in + (:bleach + : in + :out)2

⌘
.

(3.68)
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We remark that since W � 0, we see that g�1
1 � g�1

2 and so g1  g2. That is, the more
rapid decay process is captured by the first timescale g1.

In Section 3.8, we find that the predictions of this model do a reasonable job of
describing the photobleaching in our experiments. Specifically, our data is best fit to
a double exponential with a short and a long time constant, corresponding to g2 � g1

and yielding an effective plateau in fluorescence on experimental timescales.

To further grapple with other origins of photobleaching, we also explored what
modifications to the model are introduced by probes sticking to the glass coverslip
or slide. Next, we include our findings here for those practitioners interested.

Photobleaching with surface bound probes in a reservoir takes the form of a
triple exponential

As above, we write model for the bleaching dynamics inside and outside the excita-
tion region, but now also take into account an additional effect where probes can be
bound to the surface and do not diffuse. These probes can still bleach when inside
the excitation region. We denote the concentration of probes inside the excitation
region with variable 2s-in and outside the excitation region as, 2s-out. We include
two more rate constants, :on and :off, for the rates of binding and unbinding to the
surface. Thus, our system of equations is now,

32in(C)
3C

= �:bleach2in(C) � :out2in(C) + : in2out(C) � :on2in(C) + :off2s-in(C),
32out(C)
3C

= :out2in(C) � : in2out(C) � :on2out(C) + :off2s-out(C),
32s-in(C)
3C

= �:bleach2s-in(C) + :on2in(C) � :off2s-in(C),
32s(C)
3C

= :on2out(C) � :off2s-out(C).

(3.69)

Writing the system of equations as in matrix form, we have

3

3C

2666666664

2in

2out

2s-in

2s-out

3777777775
=

2666666664

�:bleach � :out � :on : in :off 0
:out �: in � :on 0 :off

:on 0 �:bleach � :off 0
0 :on 0 �:off

3777777775

2666666664

2in

2out

2s-in

2s-out

3777777775
.

(3.70)

As a first guess, we assume the binding kinetics to the surfaces are very slow,
slower than the duration of the experiment. So we simplify this system of equations
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such that where surface bound probes are only subject to bleaching and do not
communicate with the pool of other probes. Thus our system of equations is,

32in(C)
3C

= �:bleach2in(C) � :out2in(C) + : in2out(C),
32out(C)
3C

= :out2in(C) � : in2out(C),
32s-in(C)
3C

= �:bleach2s-in(C),
32s-out(C)

3C

= 0.

(3.71)

Thus, the concentration of surface bound probes outside the excitation region is
constant in time, and we can ignore the last equation. Now referring to the surface
bound probes in the excitation region as 2s, we write the system of equations in
matrix form,

3

3C

2666664

2in

2out

2s

3777775
=

2666664

�:bleach � :out : in 0
:out �: in 0
0 0 �:bleach

3777775

2666664

2in

2out

2s

3777775
. (3.72)

As above, we prescribe the ansatz that the concentrations of each species change
exponentially in time,

2in(C) = 2(0)in 4
fC

2out(C) = 2(0)out4
fC

2s(C) = 2(0)s 4
fC

(3.73)

we can solve the system of equations as an eigenvalue problem. Plugging in the
ansatz into the matrix form,

f4
fC

2666664

2
(0)
in
2
(0)
out
2
(0)
s

3777775
= 4fC

2666664

�:bleach � :out : in 0
:out �: in 0
0 0 �:bleach

3777775

2666664

2
(0)
in
2
(0)
out
2
(0)
s

3777775
, (3.74)

which we rearrange to find

0 =

2666664

�:bleach � :out � f : in 0
:out �: in � f 0
0 0 �:bleach � f

3777775

2666664

2
(0)
in
2
(0)
out
2
(0)
s

3777775
. (3.75)
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Taking the determinant,

0 =
⇣
(�:bleach � :out � f) (�: in � f) � : in:out

⌘ ⇣
� :bleach � f

⌘

=
⇣
f

2 + (:bleach + : in + :out)f + : in(:bleach + :out) � : in:out

⌘ ⇣
� :bleach � f

⌘

=
⇣
f

2 + (:bleach + : in + :out)f + : in:bleach

⌘ ⇣
� :bleach � f

⌘
.

(3.76)

Solving for the roots of f, the first set of big parenthesis is the same quadratic
equation as before, giving the two roots,

f = �1
2
(:bleach + : in + :out) ±

1
2
p
(:bleach + : in + :out)2 � 4: in:bleach. (3.77)

And the second big parenthesis yields a third root which is simply,

f = �:bleach. (3.78)

Accordingly, very interestingly, bleaching with a population of probes stuck to
a surface simply adds an exponential to the model, yielding a triple exponential
function. To ask whether our control experiment data showed conspicuous signals
of such surface sticking, we also subjected them to the triple exponential model,
but concluded the fits were no better than fitting to a double exponential. Given
that second time constant values already exceed the duration of the experiment, our
data alone do not garner further information about a third timescale, if one should
participate.

Time-dependent bleaching rates from periodic excitations
Our models in the preceding sections 3.8 and 3.8 investigated the case where the
rate of photobleaching :b is continuous and constant in time. In a real experiment
monitoring aster formation, however, the sample is illuminated only in pulses over
time, yielding frames of movies. Accordingly, the rate at which probes bleach is
time dependent, so that the decay of fluorescence intensity D(C) is given by the
ordinary differential equation,

dD(C)
dC

= �:b(C)D(C), (3.79)

where :b(C) is the rate of photobleaching. Our experiments acquire images every 20
seconds, where light only excites the sample when an image is being taken presenting
a fixed exposure time of 150 ms. To understand how such time-varying bleaching
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rates shape trajectories of photobleaching, we now explore properties of a simple
model evoking the periodic excitations of experiments. Crucially, this understanding
also delivers standard benchmark solutions that validate the numerical accuracy and
stability of our most realistic, precise, and spatially-explicit simulations from finite
element methods that follow next, in section 3.8.

First, to capture pulsatile excitations, we prescribe an example time-dependent
photobleaching rate function as,

: (C) ⌘ :b
1 + sin(2cC/g)

2
, (3.80)

where g is the period of light pulses. This function is visualized in Figure 3.37(C).
The rate of photobleaching is a periodic function between 0 and :b. In this simple
test, we do not account for diffusion of probes, only considering a degradation rate
due to bleaching. The ODE for the concentration of bright probes is thus,

dD(C)
dC

= �: (C)D(C) = � :bD(C)
2

✓
1 + sin

✓
2cC
g

◆◆
. (3.81)

We can solve for D(C) by using the separation of variables technique, resulting in the
expression π

D(C)

D(0)

dD(C0)
D(C0) =

π
C

0
� :

2
dC0 +

π
C

0
� :

2
sin

✓
2cC0

g

◆
dC0. (3.82)

Integrating both sides, we find

ln
✓
D(C)
D(0)

◆
= � :

2
C + :g

4c

✓
cos

✓
2cC0

g

◆
� 1

◆
. (3.83)

Finally, exponentiating both sides, we arrive at the time dependent concentration
given by

D(C) = D(0) exp
✓
� :

2
C + :g

4c

✓
cos

✓
2cC0

g

◆
� 1

◆◆
. (3.84)

We plot this result as the black lines in Figure 3.37.

We can compare the numerical solution to the ODE in Equation 3.81 using the
forward Euler method,

D(C + �C) = D(C) � :b
2
�C D(C)

✓
1 + sin

✓
2cC
g

◆◆
. (3.85)

Computing the numerical solution in python, we plot the result as the green circles
in Figure 3.37(A). Both the numerical and analytic solutions are indistinguishable.
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(B)

(C)

(A)

Figure 3.37: Numerically solving the intensity decay due to photobleaching when
pulsing light matches the analytic solution for both the forward Euler method
and FEM. (A) The numerical solution, via the forward Euler method, for Equation
3.81 is plotted by the green circles under the analytical solution represented with a
black line. (B) The numerical solution, via the finite element method, for Equation
3.81 is plotted by the orange circles under the analytical solution represented with
a black line. (C) The driving pulse of the form of Equation 3.80 is plotted with the
gray shading highlighting the half periods of greater bleaching contributions.

In general, we remark that this sinusoidally-varying bleaching rate is a special case
of an integrating factor behavior, namely, Eq. 3.79 has the solution,

D(C) = D0 exp

�

π
C
0

0
3C

0
: (C0)

�
(3.86)

⌘ D0 exp [�h: (C)iC] , (3.87)

where D0 is the value of the intensity at time zero, and in the second line we defined
h: (C)i as a time averaged bleaching rate, h: (C)i ⌘ 1

C

Ø
C

0 3C
0
: (C0) up to time C. This

behavior makes explicit that the observed intensity decay due to some time-varying
photobleaching rate up to a time C can be understood as effectively an exponential
decay with a time-averaged bleaching rate. Thus, the overall effect of illumination
by pulses is largely to trace out a softened decay curve set by an effective duty cycle
of the illumination over the experimental timescale.
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Finite element simulations of our photobleaching models
Having understood how a first-order kinetic description of bleaching balanced with
reservoir replenishment (sections 3.8 and 3.8) and time-varying bleaching rates
(section 3.8 ) manifest effectively plateauing intensity trajectories, we now graduate
our modeling to a full description that explicitly accounts for the depletion and
transport of fluorescent probes across space. We move from the ordinary differential
equations of sections 3.8 and 3.8 to a partial differential equation treatment of the
full reaction diffusion equations underlying our experimental conditions.

To develop both this full theory of our experiment and develop an understanding for
the continuum mechanics of our system, we harness the power of the finite element
method (FEM) already introduced in section 3.7. To validate our simulations, in
the next section 3.8, we perform benchmarking checks with analytic solutions to the
pulsatile dynamical context discussed in section 3.8. Afterwards, in section 3.8, we
thoroughly explore the effects of modulating the diffusion constant and bleach rate
on the time dynamics of intensity depletion.

Validating finite element numerical conditioning with pulsing model
benchmark

Before examining the full three-dimensional complexity of our problem, we first
do numerical “controls” by comparing analytic and FEM solutions to the same
simplified problem discussed in section 3.8. Importantly, this verifies that these
simulations are numerically well conditioned and behaved for experimentally rele-
vant conditions.

In COMSOL, we defined a cylindrical geometry in which we applied Equation 3.81.
We specify a uniform concentration initial condition and impose zero flux on the
boundaries. Using the time dependent solver, we specify the start time, stop time
and step size with the relative tolerance set to match the step size. We plot the
results of the simulation, averaged over the cylinder, in Figure 3.37(B) as the orange
circles. Again we find that the numerical solution using FEM is indistinguishable
from the analytical solution.

Adding a layer of complexity, we now include diffusion in our COMSOL model and
ensure that our simulations accurately describe the pulsing nature of our experiment.
We now add a larger cylinder to the geometry which contains the reservoir of ATP
probes but is never excited by light. Probes from this larger cylinder can diffuse
into the smaller cylinder where light excitation can bleach the probes. We simulate
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Figure 3.38: Examining the limits of interval times, we find simulations agree
with expectations. We simulate the depletion of bright probe concentration due
to photobleaching with a diffusion constant of 40 `m2/s and a bleaching rate of
0.02 s�1 with three different intervals of time between pulses. In the limit of having
an infinite time between pulses, or just a single pulse, we set the interval to be longer
than the simulation time. The resultant curve (the darkest purple) initially undergoes
decay with the other two curves, but after 20 seconds, recovers and plateaus back at
the starting concentration. The middle trace plots the depletion when the light pulses
every 20 seconds. The zoomed in inset of early times show a drop in concentration
during each pulse and recovery for the interval between pulses. The second limit,
having no time between light pulses (the lightest purple), shows monotonic depletion
of bright probe concentration where a steady photobleaching smoothly depletes the
bright probes regardless of their ability to diffuse.

two limits for which we already know the solutions, infinitely long and short times
between pulses. When the interval between pulses is infinitely large, we would
expect that as soon as the light turns off, we see recovery in the concentration of
bright probes that remains constant for the rest of time. This is a FRAP experiment.
The darkest line in Figure 3.38 shows just this. After one pulse which ends at
20 seconds, the concentration smoothly increases and then plateaus at about the
starting concentration. In the opposite limit, when there is no interval between
pulses, meaning the light is continuously on, the concentration of bright probes
decays monotonically with no recovery, as seen by the lightest curve in Figure 3.38.
Our experiment exists in an intermediate range, where light is pulsed every 20
seconds. The medium purple curve depicts this in Figure 3.38. We can see periodic
intensity depletion and then recovery in the time between depletion. This is apparent
in the zoomed-in inset.
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Finite element simulations of photobleaching and transport

We now use the finite element analysis to more precisely understand the dynamics
of photobleaching in our experiments, acknowledging all relevant experimental
effects. In particular, our experimental setup demands a “bleach-diffusion” equation
treatment since the cover slip forms a “reservoir” of fluorescent molecules that can
diffuse into the bleaching region. As a result, we have two competing time scales,
namely, that of the photobleaching itself and the time scale over which diffusion
of molecules from the reservoir can replenish the photobleached region. In the
simulations that follow, we examine the dynamics that results from tuning these two
time scales independently.

We set up a COMSOL simulation with the geometric constraints of our experiment.
We model the excitation region as a small cylinder, with the depth of the chamber
and diameter of the light pulse, inside a larger cylinder, with a diameter of the width
of the chamber, see Figure 3.39. The use of the cylindrical geometry is simply
a matter of convenience for the calculations since it makes it easier to set up and
visualize when the problem has this symmetry.

res
erv

oir: 
width of fl

owcel
l

excita
tio

n re
gion

Figure 3.39: Aerial view of cylindrical geometry in COMSOL for photobleach-
ing simulations. We model photobleaching experiments with two concentric cylin-
ders. The larger has a diameter of the width of the flow cell where the sample is
deposited. This larger cylinder acts as a reservoir of ATP probes. The much smaller
cylinder is the region where we pulse light excitations. It is inside this region where
bleachign occurs.

This simulation explores the change of concentration D(r, C) of bright probes through
space and time when there is no aster formation. We create a reaction containing
microtubules, ATP, the ATP probe, but no motor proteins to prevent ATP hydrolysis
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and any structure formation. In this scenario, probes should be allowed to freely
diffuse everywhere. Probes in the excitation region are subject to bleaching at a
constant rate. Hence, in our simulations of this problem, we define two coefficient
form partial differential equations, one to act in each region of the geometry. In the
central region, there is both bleaching and diffusion, while in the exterior region,
there is simply diffusion. The COMSOL form of "coefficient form partial differential
equations" is

40

m
2
D

mC
2 + 30

mD

mC

+ r · (�2rD � UD + W) + V · rD + 0D = 5 . (3.88)

Inside the excitation region, probes can diffuse and undergo bleaching. Thus, we
set 30 = 1, 2 = ⇡, 0 = �:bleach, and all other constants to zero such that

mD

mC

� ⇡r2
D + :bleach = 0. (3.89)

Outside the excitation region, probes cannot be bleached, so as a second coefficient
form PDE, we set 30 = 1 and 2 = ⇡, with all other constants set to zero, such that

mD

mC

� ⇡r2
D = 0. (3.90)

We set the boundary conditions of the outer cylinder to have zero flux. At time zero,
we fix the concentration across the geometry to a constant concentration, 20.

When setting up our simulation, there are further technical specifications needed to
fully describe the physical model. For those interested in precisely repeating our nu-
merical simulations, we report the specific details of our COMSOL implementation
of this problem in the following shaded box.

Specifics of Simulation Set-up:

• To capture the discrete on/off nature of pulsing the excitation light, we
utilize the Events Interface in COMSOL. Events trigger the solver to
reassess the step size at specified times.

– There are two event types, explicit and implicit, available in COM-
SOL. Here we use two explicit events, since we know the precise
timings of the light stage. Implicit events should be used when the
event of interest is a response to the simulation dynamics.

– We create a discrete states variable called ONOFF, which we ini-
tially set to a value of 1. This corresponds to the light being on.
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We then create an explicit event, which turns the light off such that
ONOFF = 0, which is set at time Cexcite = 150 ms and repeats with
an interval Cint = 20 s. A second explicit event is set to turn the light
back on at Cint = 20 s, by setting ONOFF = 1, and repeats with the
interval Cint = 20 s.

• We use the Coefficient Form PDE physics to describe our model. We
define two separate PDEs to simulate the bright probe concentrations in
each cylinder.

– Our first PDE is defined to act upon the smaller cylinder. In this
region, probes can diffuse and also be bleached by the light pulses
thus, our model is

m2

mC

= ⇡r2
2 � :bleach ⇥ ONOFF. (3.91)

– The second PDE acts upon the larger cylinder excluding the inner
smaller cylinder’s volume. Here probes can only diffuse, thus we
use the model

m2

mC

= ⇡r2
2. (3.92)

• We use a physics controlled mesh with a “Fine" element size.

• To solve the equation, we use the Time Dependent Solver with output
times from 0 � 4000 s at a step size of 0.05 s. We apply a user controlled
relative tolerance of 0.01. For the absolute tolerance, we use a "Scaled"
global method with the "Factor" tolerance method set to a tolerance factor
of 0.1. We leave the derivative tolerance method to be "Automatic."

One goal of this simulation is to understand how the parameter values for :bleach and
⇡ change the time dynamics of photobleaching. We run a variety of simulations
sweeping the parameter values of :bleach and ⇡ as shown in Figures 3.40 and 3.41.
We find that as we increase :bleach and as we increase ⇡, the steepness of the decay
decreases and there is a higher concentration of bright probes at the end of the
simulation. We fit the simulation curves to a single exponential plus a constant as
seen in Figure 3.40. The fits are described by the equations

D

D0
= (1 � �1) exp(�C/g1) + �1, (3.93)
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in Figure 3.40 and a double exponential in Figure 3.41 which is described by

D

D0
= (1 � �1) exp(�C/g1) + �1 exp(�C/g2), (3.94)

where D0 is the initial concentration of bright probes. We find a better agreement to
the double exponential fit. Regardless of the fit type, we find the fit parameters for
the fast decay constant, g1, and the infinite time value of the concentration, �1, reflect
the trends in the bleaching rate and diffusion constants. The increasing steepness
that results from increasing :bleach and ⇡ is reflected by a decreasing g1. Similarly
the higher ending concentration of bright probes that correlates with higher :bleach

and ⇡ values is reflected by an increasing �1 value.

Complementing our exploration of the form of the decay in probe brightness with
time, we can take a more granular look into the spatial depletion profile as shown
in Figures 3.42 and 3.43. Here, we draw a straight line the length of the larger
cylinder diameter which passes through the center point of the geometry. Plotting
the bright probe concentration as a function of position on the line, we can observe
the form of depletion throughout the simulation. We find that as the diffusion
constant increases, the well created by light pulsing in the inner circle becomes
shallower. This makes sense because a higher diffusion constant allows bright
probes to quickly replenish the darkened well. As the bleaching rate increases, the
well becomes deeper. With more probes bleached per shot of light, the deficit of
bright probes in the well is more significant. The simulations with zero diffusion,
⇡ = 0 show some noise due to numerical instability, especially at the discontinuous
edges of the region of light excitation. These plots may raise concern that when
treating images for photobleaching, there may need to be a spatial dependence on
the corrective function. However, we find in the regions of the images we use, the
spatial effects are minimal. Figure 3.43 zooms in on the light excitation region
and also shows the width of the approximate final aster size. At early times, when
the aster is first contracting and is about the size of the light excitation region, the
concentration profile is mostly flat with little spatial dependence. At later times
when there more curvature in the well, we highlight the percent change in bright
probe concentration in the aster size region is maximally one percent. Thus, we do
not believe applying a spatially-explicit correction to photobleaching is necessary
for these experiments.
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Figure 3.40: Fitting COMSOL simulations of the bright ATP probe intensity to
a single exponential plus a constant. We simulate the depletion of bright probes
due to photobleaching for a sweep of bleaching rates and diffusion constants. Fitting
the time traces, which report the concentration of bright probes averaged over the
light excitation region, we find a single exponential plus a constant, equation 3.93,
fits the traces moderately well. We witness trends in the fit parameters such that the
decay constant g increases with increasing :bleach and ⇡, while �1 increases with
increasing ⇡ but decreases with increasing :bleach. The insets for each plot show a
zoomed in blow up of the early times to visualize the initial depletion and recovery
cycles corresponding to the pulses. The single exponential plus constant fits don’t
capture the initial decay well for non-zero diffusion.

Estimates of Photobleaching Dynamics
We conclude this section with a series of estimates aimed to give intuition into the
dynamics of photobleaching in our system. Specifically, towards a sense of scale for
the extent of photobleaching under these conditions, we approximate the number of
fluorescent probes that might be subject to different scenarios of photophysically-
challenging illumination. These estimates are based on simplifying assumptions,
but we find they provide useful context by suggesting a feeling for the scales of the
problem. We have included these results here and urge the reader to attempt their
own version of these estimates.
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Figure 3.41: Fitting COMSOL simulations of the ATP probe intensity decay due
to photobleaching to a double exponential. We simulate the depletion of bright
probes due to photobleaching for a sweep of bleaching rates and diffusion constants.
Fitting the time traces, which report the concentration of bright probes averaged over
the light excitation region, we find a double exponential plus a constant, equation
3.94, fits the traces quite well, and better than the single exponential plus a constant.
We witness trends in the fit parameters such that the decay constant g1 increases
with increasing :bleach and ⇡, while �1 increases with increasing ⇡ but decreases
with increasing :bleach. The insets for each plot show a zoomed in blow up of the
early times to visualize the initial depletion and recovery cycles corresponding to
the pulses. The double exponential fits well capture the initial decay.

How many photons are emitted per excitation pulse?

As measured by a power meter, the power of our microscope’s light excitation is
⇡ 200 `W. The power meter’s collection area is larger than the size of the pulse, so
we take the area of illumination to be the area over which the power is distributed.
The area of illumination is

� = 1920 px ⇥ 1200 px ⇥
✓
0.59 `m

px

◆2
⇡ 106

`m2
. (3.95)

Thus, the incident power per area is
%

�

=
200 `W
106

`m2 = 2 ⇥ 10�10 W
`m2 . (3.96)
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Figure 3.42: Plotting the bright probe concentration across space shows how
simulation parameters impact the depletion well formed. We draw a cut line
that spans the diameter of the larger cylinder at the midpoint of the cylinder height.
Each line in the figure represents the concentration of bright probes in space for a
given timepoint. We find the depth of the well depleted correlates with increasing
bleaching rates and decreasing diffusion constants.

Each pulse is emitted for ⇡ 150 ms, thus the energy per area of each pulse is,

fpulse ⌘
%�C
�

= 2 ⇥ 10�10 W
`m2 ⇥ 0.15 s = 3 ⇥ 10�11 J

`m2 . (3.97)

The wavelength of the light pulse is _ ⇡ 400 nm, giving a single photon energy of

⇢photon =
⌘2

_

=
(7 ⇥ 10�34 J · s) (3 ⇥ 108 m/s)

4 ⇥ 10�7 m
⇡ 5 ⇥ 10�19 J

photon
. (3.98)

Thus, the number of photons per `m2 of a light pulse is,

fpulse

⇢photon
=

3 ⇥ 10�11 J/`m2

5 ⇥ 10�19 J/photon
= 6 ⇥ 107 photons

`m2 . (3.99)

For an illumination area of � s 106
`m2, this implies there are a total of about

6 ⇥ 1013 total emitted photons per pulse.
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Figure 3.43: Zooming in on the spatial depletion well created by photobleaching,
there is little variation within the region of interest. If there is high levels of
variation throughout space in concentration of bright probe, we would need to
correct for photobleaching with a spatial dependent function. Zooming in on the
light excitation region, where our analysis occurs, we find that the extent of spatial
variation is small. At early times (blacker lines), the aster is approximately the size
of light excitation region, but the concentration traces are mostly flat, implying little
variation. For later times (bluer lines), the traces are curvier. But during these times
the aster is smaller, around the width of the dark grey region. In the bottom right
plot, we show for a given time around 20 minutes (highlighted by the white trace),
the variation is still small, only one percent in the aster region.
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How many fluorescent probes are in the illumination area?

The concentration of ATP probes in our experiment is 2.8 `M. Given the illumina-
tion area of the excitation pulse in equation 3.95 and the depth of the experimental
chamber as 3 ⇡ 100 `m, the volume of illumination is

+ = �3 = 106
`m2 ⇥ 100 `m = 108

`m3
. (3.100)

Thus, the number of probes illuminated is

# of probes = 2.8 `M
✓
103

`m3

`M

◆ ⇣
108

`m3
⌘
⇡ 3 ⇥ 1011 probes. (3.101)

How many photons are absorbed by probes according to the concentration of
the sample?

The Beer-Lambert Law models the intensity reduction due to light passing through
a solution. For some incident light intensity, �0, the transmitted light intensity �, can
be computed by solving

log10

✓
�0
�

◆
= n;2, (3.102)

where n is the molar extinction coefficient of the solute, ; is the depth of the sample
chamber, and 2 is the concentration of solute. The extinction coefficient of QUEEN
ATP reporters is listed as n = 24, 870 M�1 cm�1 ⇡ 2 ⇥ 10�6

`M�1
`m�1 [2]. Our

flow cell chambers have a depth on the order of 100 `m and the concentration of
probes are about 3 `M. Inputting these values, we find the fraction of intensity that
is transmitted,

�0
�

⇡ 10(2⇥10�6
`M�1

`m�1) (3 `M) (100 `m) = 106⇥10�4
= 1.001. (3.103)

This means only 1 out of every 1000 incident photons are actually absorbed by
fluorescent probes.

If the probes were to queue, such that one probe receives all incoming photons
until it bleaches before the next probe receives any photons, how many probes
die in a single pulse?

On average, common fluorescent proteins exhibit photobleaching quantum yields of
order 10�5 (see references [21, 22]), meaning they can photobleach once they have
received of order 105 photons. Given that a single pulse emits 6 ⇥ 1013 photons,
which the adsorption fraction of the previous section implies gives 6⇥1010 adsorbed
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photons, the number of probes that can be bleached in a single pulse may be very
roughly estimated as,

# of bleached probes =
6 ⇥ 1013 incident photons 1 adsorbed photon

103 incident photons

105 photons per bleached probe
= 6⇥105 bleached probes.

(3.104)
From this, we find the fraction of bleached probes,

?1 =
6 ⇥ 105 bleached probes

3 ⇥ 1011 total probes
= 2 ⇥ 10�6

. (3.105)

This is an upper bound assuming the photons are not distributed evenly. However it
implies that a single pulse does little to deplete the probe intensity.

How does the intensity of the sample change as a function of the fraction of
bleached probes per excitation assuming instantaneous diffusion?

In reality, the transport of fresh unbleached probes from the reservoir into the illumi-
nated (bleached) region is neither instantaneous nor infinitely slow, but somewhere
in between. Since these limiting idealized cases bound the real behavior in ex-
periments, it is useful to get a sense of how they each behave. To wit, consider
the first case where diffusive replenishment is infinitely fast. What would be the
corresponding shape and quantitative rate of the resulting intensity decay?

Assuming diffusion is instantaneous, the intensity of the sample after a single pulse
is the weighted average of the illuminated and not illuminated areas, �illum and
�not illum, weighted by the fraction of bleached probes, ?1,

h� (= = 1)i = (1 � ?1)�0�illum + �0�not illum
�illum + �not illum

= �0

 
1 � ?1

1 + �not illum
�illum

!
. (3.106)

For multiple pulses, the average intensity of the sample will be

h� (=)i = �0
 
1 � ?1

1 + �not illum
�illum

!
=

. (3.107)

In our system, �illum = 106
`m2, as defined in equation 3.95 and the not illuminated

area (size of the chamber minus the illuminated area) is

�not illum = (3 ⇥ 103
`m) (18 ⇥ 103

`m) � 106
`m2 = 53 ⇥ 106

`m2
. (3.108)

So, the ratio of areas is ⇡ 1
50 = 0.02. Thus any changes to the sample’s average

intensity occur very slowly. We can see this more clearly by noting that 1 � G ⇡ 4�G
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for small G. This limit is true given that

?1

1 + �not illum
�illum

⇡ 2 ⇥ 10�6

1 + 0.02
⇡ 2 ⇥ 10�6

. (3.109)

Thus, we can rewrite Equation 3.110 as,

h� (=)i = �0 exp

 
� =?1

1 + �not illum
�illum

!
, (3.110)

where the decay constant as a function of the number of pulses is long,

1 + �not illum
�illum

?1

⇡ 5 ⇥ 105 pulses. (3.111)

If the short timescale of photobleaching we fit in the experiment is entirely due
to surface bound probes, what area of the surface would be covered in probes?

To inform the physical possibility that probes may stick to the surface of the experi-
mental chamber and be subject to photobleaching but not replenishment, as discussed
with the model in section 3.8, we ask about the number of probes associated with
a cross-sectional area of the surface. The rapid initial decay in photobleaching as
measured by our control experiments drops by 20 percent. Assuming this is all due
to probes stuck to the surface photobleaching, we estimate the number of probes
required to create this effect. The concentration of probe in the reaction mix is
2.8 `M. The illumination region is 1920x1200 pixels with a scaling of 0.59 um
per pixel. And, the height of the flow cell is 100 um. Thus, the per micron cubed
number of probe molecules is,

#per `m3 = 5 `M ⇥ 1000/`m3

`M
= 5 ⇥ 103/`m3

. (3.112)

The area of illumination is

� = 1920 px ⇥ 1200 px ⇥
✓
0.59 `m

px

◆2
⇡ 106

`m2 (3.113)

and the volume is
+ = 106

`m2 ⇥ 100 `m = 108
`m3 (3.114)

so the number of probes in the excitable region is

# = #per `m3 ⇥+ = 5 ⇥ 1011
. (3.115)
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For the rapid decay in the empirical photobleaching curves to be fully accounted
for by surface-mediated probe bleaching, how many probes must be stuck to the
surface? Since the total fluorescence decay observed is on the order of 20 percent,
there would need to be

#surf = 0.2 ⇥ # ⇡ 1011 (3.116)

probes stuck to the surfaces of the experimental chamber to fully account for the
observed decay. We estimate the radius of each probe to be 2 nm in equation 3.204,
so we approximate the area of each probe as 4⇥10�5

`m2. Thus the total area taken
up by surface bound probes is

�surf probes = 4 ⇥ 106
`m2

, (3.117)

implying the surface would be fully decorated in probes. We find this surface-
associated density physically highly implausible.

Center Tracking
To accurately determine how concentrations change with the aster radius, it is im-
portant to accurately identify the center of an aster. Images of fluorescently labeled
motor proteins in asters generally show a bright core region with fainter arms. Espe-
cially while developing, asters show diffuse, ovular boundaries. These boundaries
of asters are not always geometrically contiguous or universally high in contrast
with the background over the aster region. These features fundamental to real asters
deeply complicate the use of automated segmentation and tracking of asters using
even sophisticated image analysis pipelines and thresholding procedures. Specifi-
cally, for instance, we built and assessed a battery of semisupervised thresholding
and tracking pipelines, but all methods failed to achieve satisfactory identification of
asters and positions across the experimental conditions and replicates we measured.
Accordingly, to ensure that this segmentation and tracking is performed robustly for
every dataset, we performed manual segmentation and tracking of all asters as they
formed across all data. Specifically, to accomplish this, we drew elliptical bound-
aries of asters over a dense number of key frames in each aster movie (using an
instance of the open source Computer Vision Annotation Tool (CVAT)), and where
relevant performed simple temporal interpolation of these aster boundaries between
explicitly tracked key frames. This produced excellent and internally consistent
tracking results. Since every ellipse furnishes both a minor and major axis for the
aster, to summarize the overall radial size of the aster (e.g., as reported in the main
text figures), we report the geometric mean of these two axis lengths.
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3.9 Effects of Competitive Inhibition by ADP and Phosphate on ATP Hydrol-
ysis Rates

States and Weights Modeling of ATP Hydrolysis
To quantitatively dissect the relationship between motor proteins and ATP, we de-
velop a model describing the concentration of ATP throughout space and time. ATP
can diffuse and undergo hydrolysis due to motor proteins throughout our system;
however, ATP cannot regenerate. The diffusive term is straight forward and takes
the form of Fick’s Law, ⇡r2

�. The reaction term needs to take into account the rate
at which ATP can bind to a motor, along with the probability of binding. As a first
pass, we model this reaction term just taking into account the statistical mechanics
of ATP binding to a motor. However, this fails to acknowledge the dynamics of ATP
being converted to ADP and phosphate. We elaborate on the ATP only model to
include competitive inhibition resulting from ADP, as well as phosphate.

ATP Only Model – Assume No Products Present

We use a states and weights approach, as outlined in reference [23], to determine the
probability of an ATP molecule binding to a motor protein for ) ATP molecules in a
lattice with ⌦ sites, one of which is the motor protein binding site. In this case, there
are two states for the motor protein, as depicted in Figure 3.44. It can be unbound
with energy ⇢ = 0 and multiplicity ⌦!

)!(⌦�))! ⇡ ⌦)
)! for ⌦ >> ) . Alternatively the

motor protein can be bound, with an energy of ⇢ = n) and multiplicity ⇡ ⌦()�1)
()�1)! .

Putting this together, we find the probability of binding is

?bound =
⌦()�1)
()�1)!4

�Vn)

⌦)
)! + ⌦()�1)

()�1)!4
�Vn)

. (3.118)

We simplify the probability by multiplying the numerator and denominator by )!
⌦)

to get

?bound =
)

⌦4
�Vn)

1 + )

⌦4
�Vn)

. (3.119)

To convert ⌦, the number of "lattice sites", to a volume, we multiply the numerator
and denominator by �+

�+ , the small volume each lattice site represents. By specifying
20 = 1

�+ and [ATP] = )

⌦�+ , our probability now depends on concentrations and
becomes
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?bound =
[ATP]
20

4
�Vn)

1 + [ATP]
20

4
�Vn)

. (3.120)

Lastly, we define a constant  T = 204
VnT which gives the result

?bound =
[ATP]
 T

1 + [ATP]
 T

, (3.121)

in the form of a Michaelis-Menten (Langmuir) binding curve. Thus the constant  T

is interpreted as the concentration at which the chance of an ATP binding to a motor
is fifty percent.

State Energy Multiplicity Weight

0 ⌦T

T !

⌦T

T !

T
⌦(T-1)

(T � 1)!

⌦(T-1)

(T � 1)!
exp (� T)

Figure 3.44: States and weights of ATP binding to motors. Energy, multiplicity
and weights for the binding states of a single motor in a lattice with ⌦ sites and )
ATP molecules.

ADP Competitive Inhibition – Assume a Single Product

We now add in the effect of accumulating ADP into our model. If ADP binds to
the motor, ATP cannot bind which creates competitive inhibition. Similar to our
treatment of the ATP only system, we write down probability in terms of the weights
of each state. This system has three states: the motor protein is unbound, ATP is
bound, or ADP is bound, as shown in Figure 3.45. Once again, we denote the lattice
sites as ⌦, the number of ATP molecules as T, and the number of ADP molecules
as D. We write the probability of the ATP bound state as

?bound =
⌦)�1⌦⇡
()�1)!⇡! exp (�VnT)

⌦)⌦⇡
)!⇡! + ⌦)�1⌦⇡

()�1)!⇡! exp (�VnT) + ⌦)⌦(⇡�1)
)!(⇡�1)! exp (�VnD)

. (3.122)

Multiplying the numerator and denominator by )!⇡!
⌦)⌦⇡ simplifies the expression to

?bound =
)

⌦ exp (�VnT)
1 + )

⌦ exp (�VnT) + ⇡

⌦ exp (�VnD)
. (3.123)
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We can convert this into a concentration friendly equation through the substitutions
[ATP] = )

⌦�+ , [ADP] = ⇡

⌦�+ , and  ) ,⇡ = 1
�+ 4

Vn) ,⇡ , which results in

?bound =
[ATP]
 )

1 + [ATP]
 )

+ [ADP]
 ⇡

. (3.124)

Equation 3.124 is of a similar form to equation 3.121, but has an extra term in the
denominator corresponding to the likelihood of binding ADP. Thus as more ATP
turns to ADP, the probability of ATP binding to the motor decreases.

Note that if we consider a model of ATP and phosphate with no ADP present, the
form should be the same as in Equation 3.124 where [ADP] is replaced with [P8]
and  D is replaced with  P.

State Energy Multiplicity Weight

D
⌦T

T !

⌦(D-1)

(D � 1)!
exp (� D)

⌦T

T !

⌦(D-1)

(D � 1)!

0 ⌦T

T !

⌦D

D!

⌦T

T !

⌦D

D!

T
⌦(T-1)

(T � 1)!

⌦D

D!
exp (� T)

⌦(T-1)

(T � 1)!

⌦D

D!

Figure 3.45: States and weights for competitive inhibition of ADP on a motor.
Energy, multiplicity and weights for three binding states: unbound motor, bound
ATP, and bound ADP. Assume a lattice with ⌦ sites, one of which is the motor
protein, ) ATP molecules and D ADP molecules.

ADP and Phosphate Competitive Inhibition – Assume Both Products are
Present

We can go a step further with this model by considering both hydrolysis products,
ADP and phosphate, to be present in solution. This creates two new inhibition
states: phosphate is bound, or phosphate and ADP are bound. We follow a similar
procedure as in the ADP only model, though now we must take into account three
species, ATP ()), ADP (⇡), and phosphate (%). As depicted in Figure 3.46, let
us define the energies of the bound phosphate, and the ADP and phosphate bound
states, as nP and nD·P = nD + nP + f0, respectively. Here we guess the energy of both
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species binding is the sum of the individual binding energies, plus or minus some
interaction energy, f0. For, again, ⌦ binding sites, the probability of an ATP being
bound to the motor is:

?bound =
⌦)�1⌦⇡⌦%

() � 1)!⇡!%!
exp

�
� VnT

�
|                            {z                            }

ATP Bound

·

⌦)⌦⇡⌦%

)!⇡!%!|      {z      }
Unbound

+ ⌦)�1⌦⇡⌦%

() � 1)!⇡!%!
exp

�
� VnT

�
|                            {z                            }

ATP Bound

+ ⌦)⌦(⇡�1)⌦%

)!(⇡ � 1)!%!
exp

�
� VnD

�
|                             {z                             }

ADP Bound

+ ⌦)⌦⇡⌦(%�1)

)!⇡!(% � 1)! exp
�
� VnP

�
|                            {z                            }

P Bound

+ ⌦)⌦(⇡�1)⌦(%�1)

)!(⇡ � 1)!(% � 1)! exp
�
� V(nD + nP + f0)

�
|                                                     {z                                                     }

ADP and P Bound

��1
.

(3.125)

We can simplify this expression by multiplying the numerator and denominator by
)!⇡!%!

⌦)⌦⇡⌦% , which gives us

?bound =
)

⌦ exp (�VnT)
1 + )

⌦ exp (�VnT) + ⇡

⌦ exp (�VnD) + %

⌦ exp (�VnP) + ⇡%

⌦⌦ exp (�V(nD + nP + f0))
.

(3.126)

Once more converting to units of concentration, we take [ATP] = )

⌦�+ , [ADP] =
⇡

⌦�+ , [P] = %

⌦�+ ,  ) ,⇡,% = 1
�+ 4

Vn) ,⇡,% , and define f = 4Vf
0 which results in

?bound =
[ATP]
 )

1 + [ATP]
 )

+ [ADP]
 ⇡

+ [P]
 %

+ [ADP] [P]
f ⇡ %

. (3.127)

This model demonstrates how products of ATP hydrolysis compete with the motor
binding sites. As more possible states emerge, the probability of ATP will binding
to the motor protein reduces. We can directly see an impact on ATP hydrolysis
by defining the hydrolysis rate as the probability of binding ATP multiplied by the
maximum hydrolysis rate. This is written as
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� ( [ATP], [ADP], [P8]) = W ·
[ATP]
 T

1 + [ATP]
 T

+ [ADP]
 D

+ [P]
 P

+ [ADP] [P]
f D P

, (3.128)

where W is the ATP hydrolysis per motor per second for saturating ATP conditions
with zero product concentrations.
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Figure 3.46: States and weights for competitive inhibition of ADP and phosphate
on a motor. Energy, multiplicity and weights for five binding states: unbound motor,
bound ATP, bound ADP, bound phosphate, and bound ADP and phosphate. Once
more, assume a lattice with ⌦ sites, one of which is the motor protein, ) ATP
molecules, D ADP molecules, and P phosphate molecules.

Testing Our Model Against Published Data
Fitting Motor Speeds Versus ATP Concentrations

The paper Inhibition of kinesin motility by ADP and phosphate supports a hand-
over-hand mechanism by Schief et al. [24], examines how the speed of kinesin
motors vary with ADP and phosphate concentrations. This measurement is very
useful to us because speed is proportionally related to ATP hydrolysis rates through
the motor step size. The authors define the speed of motors as

( = 3 · :cat
[ATP] � [ADP] [Pi]

 eq

 M + [ATP] , (3.129)
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where 3 is the motor step size, :cat is the per second hydrolysis rate,  M is the
Menten constant,  eq is the equilibrium constant for hydrolysis, and all terms in
brackets are concentrations. Hydrolysis of ATP highly favors the forward direction
with  eq = 4.9 · 1011 µM [24], thus the second term in the numerator is negligible,
as no concentrations considered exceed 106 µM. We now write the speed as

( = 3 · :cat
[ATP]

 M + [ATP] . (3.130)

We scan the measured data from Schief et al. and test if our model fits to it. We
first examine Figure 2 from Schief et al., which depicts motor speeds versus ATP
concentrations for different levels of hydrolysis products. We fit the data to equation
3.130, where :cat and  M are the fitting parameters. We determine :cat for the no
product data (Figure 3.47 black curve) and then keep it fixed for all other data sets,
thus all other data only has one fitting parameter,  M.

Figure 3.47: Motor speeds for a given ATP concentration depends on the con-
centrations of ADP and phosphate. Here, we replicate Figure 2 from Schief et al.
The data points were determined by scanning the original figure with WebPlotDig-
itizer. The lines are fit to a Michaelis-Menten function. For the black curve (where
the product concentrations are zero), we fit both :cat and  T parameters. For all
other curves where products are present, we fit a single parameter,  M, and use :cat,
from the no product condition, as an input for this function.

We can express our hydrolysis expression from equation 3.128 in the form of equation
3.130 with the following substitutions:
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� =
(

3

,

:cat = W,

 M =  T


1 + [ADP]

 D
+ [P]
 P

+ [ADP] [P]
f D P

�
.

(3.131)

With these substitutions, we can determine the binding constants for each species.
We find  T from the no products experiment (Figure 3.47 black curve), which is
simple,

 M =  T. (3.132)

To determine  D,P, we use the equation

 D,P = [ADP, P]
✓
 M
 T

� 1
◆�1

, (3.133)

(Figure 3.47 blue, red, and yellow curves). Finally to determine sigma, we write

f =
[ADP] [P]
 D P

✓
 M
 T

� 1 � [ADP]
 D

� [P]
 P

◆�1
, (3.134)

(Figure 3.47 green curve). This means the equation to find  D·P is

 D·P = [ADP] [P]
✓
 M
 T

� 1 � [ADP]
 D

� [P]
 P

◆�1
. (3.135)

The tabulated parameters are listed in Table 3.1

Through this analysis, we find that the values of  T and  D are about equivalent,
perhaps this is due to similar chemical structure. It can thus be expected that the
presence of ADP in our assay will cause significant slowing in the motor hydrolysis
rate. On the other hand,  P is two orders of magnitude larger than  T, implying
a small chance of phosphate binding to the motor protein. While we can expect
some inhibition due to phosphate, it appears that competitive inhibition due to ADP
dominates.

Strangely, D·P, and thusf, is negative. It is also very large, four orders of magnitude
larger than  T. A negative binding constant would mean that the presence of both
ADP and phosphate reduces competitive inhibition for the motor protein, while only
having one of the species present creates increases the inhibition. This does not
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Figure 3.47 Parameter Fits
Parameter Value Description
W 114.5B�1 Fitted Parameter
 M (Black) 26.2µM Fit for 0 mM ADP, 0 mM P
 M (Yellow) 55.8µM Fit for 0 mM ADP, 10 mM P
 M (Blue) 1.2mM Fit for 1 mM ADP, 0 mM P
 M (Red) 4.9mM Fit for 5 mM ADP, 0 mM P
 M (Green) 930µM Fit for 1 mM ADP, 5 mM P
 T 26.2µM Equation 3.132
 D 24.5µM Equation 3.133
 P 8.9mM Equation 3.133
 D·P �714mM Equation 3.135
f �3.3µM Equation 3.134

Table 3.1: All the fitted parameters from Figure 3.47 are reported, along with the
resulting Menten constants for each species.

seem physical. At best we would expect that the ADP and phosphate always bind
together, so the total inhibition is equivalent to inhibition of ADP alone, as this is
the more dominant inhibitor. Mathematically, this value for  D·P does not jibe with
our model because it requires that f is a negative value. We defined f = 4

�Vf0 ,
where f0 is an interaction energy for the duel binding of ADP and phosphate. A
negative f implies an imaginary f0.

Regardless of the sign, the magnitude of  D·P indicates that the inhibition due to
ADP and P being bound is much smaller than the effect of either product alone and
could possibly be negligible. Schief et al. only present one data set (green) with
both products present in solution. These experiments seem worth replicating to
understand if there is some behavior that is incorrectly incorporated into our model.

Figure 3.48 examines how the fit changes for different values of  D·P. Setting
 D·P = 1, thereby neglecting the interaction term, is the next best fit to the data
after setting  D·P = f ·  D ·  P. Both taking the absolute value of f and setting
f = 1 produce worse fits.
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Figure 3.48: Exploration of  D·P values for the ADP and phosphate bound state.
We examine the fits from varying the f value in  D·P. Using f = �713 mM as
found from our model, we get the best fit to the data. However, because a negative
f does not seem physical, we explore how setting f to 713 mM, 1, and 1 change
the fits. We find that entirely neglecting the ADP/Phosphate bound state, setting
f = 1 is the next best fit to the data. This is followed by taking |f | = 713 mM,
as the magnitude reduces the amount of inhibition experienced. Lastly, ignoring
an interaction energy, setting f = 1 produces the worst fit, as it maximizes the
inhibition due to each product.

Additionally from Table 3.1, we learn about the hydrolysis rate of the motors in
question. Our model quotes a rate of 114.5 ATP hydrolyzed per second per motor,
for saturating ATP conditions with no products in solution. Previous work also
using full length Drosophila conventional kinesin measures consistent hydrolysis
rates with our fitted rate [25].

Fitting Motor Speeds Versus Product Concentrations

The authors took additional data investigating motor speeds versus various levels of
products at various ATP levels. Using our model, we fit the data to

( = 3 · W
[ATP]
 )

1 + [ATP]
 T

+ [ADP, P]
 D, P

, (3.136)

where we fit one parameter,  D, P. The first set of data, depicted in Figure 3.49,
illustrates the variation in motor speed for different phosphate concentrations. Motor



104

speeds drop with increasing phosphate, especially as ATP concentrations drop,
which implies inhibition is occurring.

Figure 3.49: Motor speeds are reduced with increasing phosphate concentra-
tions. Here, we replicate Figure 4A from Schief et al. The data points were
determined by scanning the original figure with WebPlotDigitizer. The lines are fit
to a Michaelis-Menten function. For each curve we fit a single parameter,  P , and
use :cat and  T, from Table 3.1, as inputs.

Our fits result in the  P values quoted in Table 3.2. This data set produces an
average  P of 11.3 mM, comparable to the 8.9 mM value found from the previous
data set in Table 3.1. There does not appear to be a trend in the  P value with ATP
concentration.

 P Fitted Values for Various ATP Concentrations
ATP Concentration
(`M)

 P (mM)

1000 12.2
300 27.9
100 12.5
30 6.8
10 10.1
5 7.4
Average 11.3

Table 3.2: Here we report upon the fits of  P from the data in Figure 3.49. We do
not find a correlation with ATP concentrations, as expected from our model.
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The authors also examined the variation in speed with ADP concentration, as de-
picted in Figure 3.50. Once again, we have plotted the digitized data from Schief
et al. and fit the points to our model in equation 3.136. Motor speeds drop signifi-
cantly with higher levels of ADP present. Again, this is more drastic for lower ATP
concentrations.

Figure 3.50: Motor speeds are significantly reduced with increasing ADP con-
centrations. Here, we replicate Figure 4B from Schief et al. The data points were
determined by scanning the original figure with WebPlotDigitizer. The lines are fit
to a Michaelis-Menten function. For each curve we fit a single parameter,  D, and
use :cat and  T, from Table 3.1, as inputs.

Table 3.3 reports the fitted  D values. On average,  D = 23.6 matching the
 D = 24.5 from table 3.1. Again,  D values do not appear correlated with ATP
concentration.

Comparison of Our Model to the Schief Model

We now compare our model with the model used in Schief et al. (2004) The authors
defined :cat and  M as

:cat =
:

00
cat

1 + [ADP]
 

ADP
ii

+ [Pi]
 

P
ii
+ [ADP] [Pi]

 
ADP·P
ii

, (3.137)

and
 M
:cat

=
 

00
M

:
00
cat

"
1 + [ADP]

 
ADP
i

+ [Pi]
 

P
i

+ [ADP] [Pi]
 

ADP·P
i

,

#
(3.138)
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 D Fitted Values for Various ATP Concentrations
ATP Concentration
(mM)

 D (`M)

20 14.7
10 23.8
3 23.0
1 26.7
0.3 25.4
Average 23.6

Table 3.3: Here we report upon the fits of  D from the data in Figure 3.50. We do
not find a correlation with ATP concentrations, as expected from our model.

respectively. The subscript 00 denotes the constants when the products are at zero
concentration. The subscript 8 describes competitive inhibition by the products on
the motor protein impacting the Menten term. The subscript 88 is described as
non-competitive inhibition which modifies the overall stepping rate and the Menten
constant. Inputting equations 3.137 and 3.138 into equation 3.130, we find

( = 3 ·
:

00
cat

1 + [ADP]
 

ADP
ii

+ [Pi]
 

P
ii
+ [ADP] [Pi]

 
ADP·P
ii

· [ATP]

 
00
M :

00
cat

:
00
cat

1+ [ADP]
 ADP

i
+ [Pi ]
 P

i
+ [ADP] [Pi ]
 ADP·P

i

1+ [ADP]
 ADP

ii
+ [Pi ]
 P

ii
+ [ADP] [Pi ]
 ADP·P

ii

+ [ATP]
. (3.139)

Simplifying the denominator and dividing the numerator and denominator by  M

yields

( =
3 · :00

cat ·
[ATP]
 

00
M

1 + [ATP]
 

00
M

+ [ADP]
 

ADP
i

+ [Pi]
 

P
i
+ [ADP] [Pi]

 
ADP·P
i

+ [ATP]
 

00
M

⇣
[ADP]
 

ADP
ii

+ [Pi]
 

P
ii
+ [ADP] [Pi]

 
ADP·P
ii

⌘ .
(3.140)

Comparing the Schief et al. model (equation 3.140) with our model of binding
(equation 3.127), we note many parallels. Dividing 3 · :00

cat, from the Schief model
gives the probability of ATP binding to the motor. Note that the hydrolysis rate :00

cat
is what we denote W. The numerators are of the same form with  ) =  

00
M . The

Schief model contains three additional terms in the denominator, as compared to
our model. These three terms imply three additional binding states, ATP and ADP
bound, ATP and phosphate bound, or all three species bound.
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Model Comparisons
Parameter Schief Model Our Model
:

00
cat 113.2B�1 114.5B�1

 
00
M 28.1µM 26.2µM

 
P
i 9mM 8.9mM

 
ADP
i 34.6µM 24.5µM

 
ADP·P
i 95mM �714mM

 
P
ii 200mM -

 
ADP
ii 23mM -

 
ADP·P
ii 30mM -

Table 3.4: We compare the fitted parameters from our model versus the fitted
parameters found by the Schief model. Overall the fits are in agreement with the
exception of the Menten constant for the ADP and phosphate bound state.

We report the fitted parameters found by the Schief model, as well as the comparable
values we determined in table 3.1, in table 3.4.

The values found by both models are very similar with the exception of the  D·P
value. The Schief model yields a positive value about an order of magnitude lower
than our model. The low Schief value results in a larger overall  M, which in
our model pushes the fit farther away from the measured data. This makes the
Schief  D·P the worst of all the fits for both species present according to figure
3.48. However, with this exception, we have excellent agreement with all of our
other parameters. Finally, the Schief model has three additional parameters, the  ii.
These are all very large, in the tens to hundreds of millimolar, and are multiplied
by  T = 23 µM, as seen in equation 3.140. This renders the cross terms effectively
negligible to the model and causes the Schief model to be equivalent to our model.

3.10 Power Estimates
For decades, the question of how energy is invested in cellular processes has been
of great interest. In the 1970s, several independent threads converged on these
same questions with one set of efforts focused on the cost of cytoplasm [26, 27],
others focused on the apparently futile cycles of GTP hydrolysis in protein transla-
tion [28] and yet others investigating the role of GTP hydrolysis in the context of
microtubules [29, 30]. Our aim in this section is to build on these early efforts (and
many others) to carefully characterize the power cost of a variety of processes that
attend the rearrangements of the motors and microtubules that occur during aster
formation in our experiments. Broadly speaking, the philosophy of the approach is
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to make a list of various processes that we know take place during aster formation
and to examine quantitative estimates of the power associated with these processes.
Conceptually, the structure of all of the estimates will be the same, with the generic
functional form

power of process = �?A>24BB ⇥ �`?A>24BB . (3.141)

Here we have defined the quantity �`?A>24BB as the free energy cost of a unit process
such as a single step of a motor or the movement of a single molecule up a gradient.
�?A>24BB refers to the flux associated with the process of interest, meaning how
many unit processes occur per unit time. For example, in the context of constantly
pumping ions up a concentration gradient, �`?A>24BB refers to the free energy cost
of taking a single ion from one side of the membrane to the other. Similarly, the flux
in that case would be given by a phenomenological linear transport law relating the
concentration jump across the membrane to the flux itself. Using this quantitative
structure, we carry out a series of estimates for each of the processes we think is
implicated in the structural rearrangements of our motor-microtubule systems.

Experimentally Measured Power
During aster formation, we measure ⇡ 5 ⇥ 108 ATPs are consumed per second, as
shown in the main text Figure 2.3. As noted above, we aim to put this measured
value into context through a series of estimates geared towards understanding the
power of various processes that attend the formation of an aster. In particular, we
are intrigued by the relative costs of processes such as the entropy of orientational
ordering, the reduction in volume (i.e., pV work), the maintenance of gradients and
so on. Each of the sections below examines one such process in detail.

Estimate of the Power of Stepping Motors
At the mechanistic level, we know what is happening to the ATP. It is being consumed
by motors. Hence, the simplest statement about the ATP consumption is that every
time a motor takes a step it hydrolyzes an ATP. As a proof of principle check,
we ask if the power expenditure based on the measured motor hydrolysis rate
matches the experimentally measured power. We measure a motor hydrolysis rate
of W ⇡ 0.5 ATP

s·motor . If all motor proteins consume ATP at this rate, we can multiply
the hydrolysis rate by the number of motors in the system to find the expected power.
Our experiments contain 1 µM motors, in an initial cylindrical volume of

+8 = c'2
3 = c ⇥ (125 `m)2 ⇥ (70 `m) ⇡ 3 ⇥ 106

`m3
, (3.142)
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which translates to

#mot = ⇠8+8 = 10�6 mol
L

⇥
✓
103 L

m3

◆
⇥
⇣
3 ⇥ 10�12 m3

⌘
⇥
✓
6 ⇥ 1023 MT

mol

◆
⇡ 2⇥109 motors.

(3.143)
Thus the power expected of the system is

% = #motW = 0.5
ATP

s · motor
⇥

⇣
2 ⇥ 109 motors

⌘
⇡ 109 ATP

s
. (3.144)

Compared to the 5 ⇥ 108 ATP
s measured in our experiment, this estimate is within a

factor of a few of the measured ATP consumption rate. In this sense, the experimental
measurements are coherent with what we know about the agents that are consuming
ATP. But our question is really a deeper one. We ask what is it that the motors are
doing with their capacity to do work through the application of forces?

Estimate of the Power of Aster Contraction via pV Work
During the process of aster formation, the volume occupied by the microtubules that
make up that aster decreases. Initially, microtubules of fixed length are uniformly
distributed in a cylinder with a height, ⌘, and radius, '. This cylinder corresponds
to the region where we project light to induce motor dimerization, which drives
aster formation. Some time after turning on the light, �T , the microtubules are
organized in a sphere with radius, A , where ' > A . This process is illustrated in
Figure 3.51. Here, we perform a simple estimate to determine the pressure-volume
work to contract an ideal gas of microtubules into a smaller aster volume. We are
cognizant that a collection of microtubules is not a gas, but we suspect this the
entropic cost will exceed the value we estimate here. We express the pressure of the
microtubule gas as a function of volume based on the ideal gas law as

%+ = #:B) ) % =
#:B)

+

, (3.145)

and input it into the equation for pressure-volume work

, = �
π

+ 5

+8

%3+ = �
π

+ 5

+8

#:B)

+

3+ = �#:B) ln
✓
+5

+8

◆
, (3.146)

where+5 is the aster sphere volume and+8 is the cylindrical microtubule gas volume.
Note that +5 is smaller than +8 which implies that +5 /+8 < 1, and hence the work
done is positive since the system is compressed. We now use numbers characteristic
of our experiments to calculate the amount of work performed in the process of
contracting the network into its final shape. First, we take the initial cylindrical
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volume to be

+8 = c'2
3 = c ⇥ (125 `m)2 ⇥ (70 `m) ⇡ 3 ⇥ 106

`m3
, (3.147)

and the final spherical aster volume to be

+5 =
4
3
cA

3 =
4
3
c ⇥ (30 `m)3 ⇡ 105

`m3
. (3.148)

Given the initial concentration of microtubules ⇠8 = 1 nM, we can find the number
of microtubules as

#MT = ⇠8+8 = 10�9 mol
L

⇥
✓
103 L

m3

◆
⇥
⇣
3 ⇥ 10�12 m3

⌘
⇥
✓
6 ⇥ 1023 MT

mol

◆
⇡ 2⇥106 MT.

(3.149)
We can now combine all of these results to find the pressure-volume work as

, = �2 ⇥ 106 ⇥ ln
✓

1
30

◆
:B) ⇡ 7 ⇥ 106

:B) . (3.150)

Under physiological conditions the energy derived from an ATP hydrolysis event is
⇡ 20 : B) [31]. Thus, in ATP units the work is equivalent to

, ⇡ 7 ⇥ 106
:B) ⇥ ATP

20 :B)
= 4 ⇥ 105 ATP. (3.151)

We can also compute the power of volume contraction by dividing the work by the
time it takes to form the aster. In our experiments, asters form in approximately 10
minutes, thus

% =
,

�T =
4 ⇥ 105ATP

600 s
⇡ 103 ATP

s
. (3.152)

From this estimate, we find that the pressure-volume contribution to the power of
aster contraction is negligible since the pV work effect is five orders of magnitude
smaller than measured powers. We will approach this same question differently
using ideas of nematohydrodynamics in a later section.

The Entropy Cost of Bundling
Here we investigate the power to reduce the entropy of the system by dimerizing
motor proteins. For this simple thought experiment suggested to us in conversations
with Erwin Frey, we compare the number of microstates of a pair of independent
microtubules, not bridged by motors, in comparison to linked microtubules by a
dimerized motor pair. Say that two independent microtubules of length ; are placed
on separate one dimensional tracks with lattice sites at a spacing 0, the step size
of the motor. If each track is twice the length of a microtubule, 2;, then there are



111

60 µm

70
 µ

m

250 µm

t = 0 minutes

NMT=106

t = 10 minutes

Figure 3.51: The work of aster compression. At the beginning of the experiment,
microtubules are uniformly mixed throughout a cylinder of projected light. After
some time, T , microtubules organize into a spherical aster with a volume smaller
than the initial cylinder volume.

;/0 lattice sites that the microtubule center can occupy, see Figure 3.52. For two
independently moving microtubules, this amounts to (;/0)2 microstates. Thus the
entropy of the independent microtubule case is

(indep = 2:B ln
✓
;

0

◆
. (3.153)

If we now imagine a motor protein aligning the two microtubules, we now consider
both microtubules to be on the same track. The microtubules now must move
together. For the sake of this estimate, lets say that the microtubules are perfectly
aligned with their ends at the same positions. The number of microstates of the
coupled system is now only ;/0, giving an entropy of

(coup = :B ln
✓
;

0

◆
. (3.154)

We can compute the free energy of the microtubule coupling as

�⌧ = �)�( = �) ((coup � (indep)

�⌧ = :B) ln
✓
;

0

◆
.

(3.155)

The length of stabilized microtubules in our experiment are 1 `m and the size of
a motor step is 8 nm. Plugging in numbers, we find the free energy to couple two
microtubules is

�⌧ = :B) ln
✓
1000 nm

8 nm

◆
⇡ 5 :B) ⇡ 0.25 ATP, (3.156)
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where ATP = 20 :B) [31]. Say we wanted all of the microtubules in our aster
system to fo rm one aligned bundle. Calculating the energy to couple all 2 ⇥ 106

microtubules together, the total energy is

�⌧ tot = �⌧ ⇥ #MT = 5 ⇥ 105 ATP. (3.157)

If the bundle is formed on the same timescale as the aster, about 10 minutes, the
power of bundling is

% =
�⌧
C

=
5 ⇥ 105 ATP

600 s
⇡ 103 ATP

s
. (3.158)

This estimate is five orders of magnitude smaller that the measured power, indicat-
ing that the entropic cost of microtubule coupling through motor dimerization is
negligible.

la

C)

B)A)

Figure 3.52: Microtubule coupling. A) Cross-linked microtubules form a bundle.
B) Two microtubules on separate 1D tracks moving independently. C) Two micro-
tubules aligned on the same track moving in unison.

Estimate of Power Associated with Dragging a Microtubule
One of the ways in which motors act is by producing motion. Like with most all
real world motions, these processes dissipate energy. That is, some of the energy is
transferred from the center of mass of the motor-cargo complex to the microscopic
motions of the molecules making up the surrounding medium. This is revealed as
dissipation. Here we ask what fraction of the ATP being consumed by each motor is
converted into heat energy. In particular, we compute the power of a motor protein
dragging a microtubule into an aster. This power can be expressed as

% = �DE, (3.159)

where �D is the drag force and E is the velocity of the motor.
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To estimate the magnitude of this dissipation, we use the Stokes law to compute
the drag force. Before making the calculation itself, we first examine the Reynolds
number which gives us a measure of the dissipative forces and tells us whether we
are in the regime of validity of the Stokes law. Since Stokes’ law requires the system
to be at low Reynolds number, we first make the following upper bound calculation
for the Reynolds number in our experiment, namely,

'4 =
dE;

`

=

⇣
103 kg

m3

⌘
⇥

�
10�7 m

s
�
⇥

�
3 ⇥ 10�5 m

�
10�3 N·s

m2

⇡ 10�6
, (3.160)

where d = 1000 kg/m3 is the fluid density, E = 10�7 m/s is the measured motor
speed of our NCD motors, ; = 3 ⇥ 10�5 m is the measured aster radius, and ` =

0.003 N · s/m2 is the viscosity [32]. We see that the Reynolds number satisfies
'4 << 1. Since our experiment meets the low Reynolds number criterion, we can
use the Stokes law (�⇡ = 6c`AE) for the drag force in equation 3.159, resulting in a
power of the form

%per MT = 6c`AE2
, (3.161)

where A is an effective radius as we will describe below.

We begin with the most extreme model of the drag force which is to imagine a
microtubule as a sphere. This approach gives us a first order-of-magnitude look
at the scale of the mechanical power associated with fluid drag. This calculation
provides an upper bound as it assumes the moving object to be a sphere, which we
will take to a have a radius of half the length of a microtubule, as depicted in Figure
3.53. Using our measurements for microtubule length, 1 `m, and motor speed,
100 nm/s, we find the power for a single motor to drag a microtubule is

%per MT = 6c ⇥
✓
3 ⇥ 10�3 N · s

m2

◆
⇥

⇣
5 ⇥ 10�7 m

⌘
⇥

⇣
10�7 m

s

⌘2
⇡ 0.3

pN · nm
s

.

(3.162)
Taking :B) = 4 pN · nm and the energy of ATP hydrolysis �`ATP = 20 :B) , we can
convert to units of ATP/s, resulting in

%per MT = 4 ⇥ 10�3 ATP
MT · s

. (3.163)

The concentration of motor proteins to microtubules is 1000-fold, so if every single
microtubule was being dragged into the aster at the same time, the maximum power
from dragging microtubules would be the power per microtubule, as found in equa-
tion3.162, multiplied by the number of microtubules, as estimated in equation 3.149,
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r = 0.5 µm

v = 100 nm/s
η = 0.003 N·s·m-2

dynamic viscosity

radius

velocity

Figure 3.53: Drag on a Microtubule. This figure illustrates the set up to calculate
the drag on a motor protein carrying a microtubule. On the left, many microtubules
are dragged into the center of mass to create an aster. The inset shows the force
of drag due to pulling a single microtubule. As an upper bound, the microtubule
is depicted as a sphere with a diameter of the microtubule length, allowing the
application of Stokes’ law.

resulting in

% = %per MT ⇥ #MT =
✓
4 ⇥ 10�3 ATP

s · MT

◆
⇥

⇣
2 ⇥ 106 MT

⌘
⇡ 104 ATP

s
. (3.164)

Again, we find that this estimate is far lower than our measured power by four orders
of magnitude. Note that we can go farther and more precisely treat the fluid drag
on a cylinder, taking care to distinguish motion parallel or perpendicular to the long
axis of the microtubule. But these estimates lead to an even smaller power and we
leave them as an exercise for the reader.

Though it will result in an even smaller estimate, we now refine our previous
estimates. We refine our sphere estimate, to more accurately represent the surface
area of a cylinder. Our previous estimate significantly overestimates the size of the
microtubule by taking the sphere diameter to be the length of the microtubule. Now
we will compute the spherical drag for a sphere with the same surface area as our
microtubule. For a cylindrical microtubule of length ; = 1 `m as measured, and a
radius Acyl = 25 nm

2 ⇡ 10 nm [31], the surface area is

(cyl = 2cAcyl; + 2cA2
cyl ⇡ 2c ⇥ 10�2

`m2
. (3.165)

We now find the spherical radius for a sphere with the same surface area as a cylinder,

(sph = 4cA2
sph = 2c(Acyl; + A2

cyl) = (cyl

) Asph =
✓
1
2
(Acyl; + A2

cyl)
◆�2

=
✓

1
4c
(cyl

◆�2
.

(3.166)
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Thus in our case,

Asph =
⇣
5 ⇥ 10�3

⌘�2
`m ⇡ 7 ⇥ 10�2

`m. (3.167)

Applying Stokes’ Law for the new radius, we find

%per MT = �6c
✓
3 ⇥ 10�3 N · s

m2

◆ ⇣
7 ⇥ 10�8 m

⌘ ⇣
10�7 m

s

⌘2
(3.168)

⇡ 5 ⇥ 10�2 pN · nm ⇡ 5 ⇥ 10�4 ATP
s · MT

, (3.169)

for each microtubule and

% = %per MT ⇥ #MT =
✓
5 ⇥ 10�4 ATP

s · MT

◆ ⇣
2 ⇥ 106 MT

⌘
⇡ 103 ATP

s
, (3.170)

for the process of dragging all microtubules. This is one order of magnitude lower
than our previous estimate.

Nematic Order Parameter
Here, we attempt to find the free energy of organizing a two dimensional aster using
the order parameter, Q. We denote the orientation of each microtubule as

u = (cos \, sin \) (3.171)

and the order tensor as

&8 9 = hD8D 9 i �
1
2
X8 9 =

* 
cos2

\ � 1
2 cos \ sin \

cos \ sin \ sin2
\ � 1

2

!+
. (3.172)

We assert that the aster is perfectly ordered, as locally all the microtubules point at
the same \. This eliminates the average surrounding the order parameter resulting
in,

&8 9 =

 
cos2

\ � 1
2 cos \ sin \

cos \ sin \ sin2
\ � 1

2

!
. (3.173)

In the form written, &8 9 is in Cartesian coordinates, however the matrix elements
are written in terms of \, a polar coordinate. We write the elements in terms of
Cartesian elements, where cos \ = Gp

G
2+H2

and sin \ = Hp
G

2+H2
,

&8 9 =

 
G

2

G
2+H2 � 1

2
GH

G
2+H2

GH

G
2+H2

H
2

G
2+H2 � 1

2

!
. (3.174)
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Note that this tensor is both traceless,

&11 +&22 =
G

2

G
2 + H2 � 1

2
+ H

2

G
2 + H2 � 1

2
= 0

) &11 = �&22,

(3.175)

and symmetric,

&8 9 =

 
&11 &12

&21 &22

!
=

 
&11 &21

&12 &22

!
= & 98 (3.176)

given that,
&12 =

GH

G
2 + H2 = &21. (3.177)

Free Energy Density

With the nematic order parameter in toe, we can now compute the free energy
density gradient using the Landau-Ginsberg theory. According to Julia Yeomans’
lecture notes [33], there are two components to the free energy density: the bulk
free energy density, which follows the Landau-de Gennes expression,

�bulk =
�

2
(&8 9& 98) +

⌫

3
(&8 9& 9:&:8) +

⇠

4
(&8 9& 98)2

, (3.178)

and the elastic free energy density, which in 2D is,

�el =
!1
2
(m:&8 9 )2

|        {z        }
splay

+ !3
2
&8 9 (m8&:;) (m9&:;)|                      {z                      }

bend

. (3.179)

All together, the free energy density in terms of &8 9 is,

� = �bulk + �el =
�

2
(&8 9& 98) +

⌫

3
(&8 9& 9:&:8) +

⇠

4
(&8 9& 98)2 + · · ·

+ !1
2
(m:&8 9 )2 + !3

2
&8 9 (m8&:;) (m9&:;) + · · · .

(3.180)

Here, we will evaluate each listed term. We begin with the power series and examine
up to fourth order. First expanding the summation notation of the quadratic term,
we find

&8 9& 98 =
’
9

’
8

&8 9& 98

=
’
9

(&1 9& 91 +&2 9& 92)

= &11&11 +&21&12 +&12&21 +&22&22.

(3.181)
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Due to the tracelessness of &8 9 , &2
11 = &2

22, and due to the matrix being symmetric,
&12 = &21, thus, we can simplify the result to

&8 9& 98 = 2&2
11 + 2&2

12. (3.182)

Plugging in the matrix elements of equation 3.190, the quadratic term evaluates to

&8 9& 98 = 2
✓

G
2

G
2 + H2 � 1

2

◆2

+ 2
✓

GH

G
2 + H2

◆2

= 2
✓

G
4

(G2 + H2)2 � G
2

G
2 + H2 + 1

4
+ G

2
H

2

(G2 + H2)2

◆

= 2
✓

G
4

(G2 + H2)2 � G
4 + G2

H
2

(G2 + H2)2 + 1
4
+ G

2
H

2

(G2 + H2)2

◆

=
1
2
.

(3.183)

Let us now compute the cubic term,

&8 9& 9:&:8 =
’
:

’
9

’
8

&8 9& 9:&:8

=
’
:

’
9

(&1 9& 9 :&:1 +&2 9& 9 :&:2)

=
’
:

(&11&1:&:1 +&21&1:&:2 +&12&2:&:1 +&22&2:&:2)

=&11&11&11 +&21&11&12 +&12&21&11 +&22&21&12

+&11&12&21 +&21&12&22 +&12&22&21&22&22&22

=&3
11 + 3&11&

2
12 + 3&22&

2
12 +&3

22. (3.184)

By the symmetry of &8 9 ,

&8 9& 9:&:8 = &3
11 + 3&11&

2
12 + 3&22&

2
12 +&3

22, (3.185)

and given that the matrix is traceless,

&8 9& 9:&:8 = &3
11 + 3&11&

2
12 � 3&11&

2
12 + (�&11)3 = 0, (3.186)

so the cubic term vanishes. We now compute the quartic term using the result from
equation 3.182

(&8 9& 98)2 =

 ’
9

’
8

&8 9& 98

!2

=
⇣
2&2

11 + 2&2
12

⌘2
.

(3.187)
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Thus, the quartic term is simply the square of the quadratic term, which evaluates to

(&8 9& 98)2 =
✓
1
2

◆2
=

1
4
. (3.188)

We now compute the derivative terms. We write the partial first derivatives of &8 9
as follows.

First Derivatives:

m

mG

&8 9 =

 
m1&11 m1&12

m1&21 m1&22

!
= ©≠

´
2GH2

(G2+H2)2
H(�G2+H2)
(G2+H2)2

H(�G2+H2)
(G2+H2)2 � 2GH2

(G2+H2)2

™Æ
¨

(3.189)

m

mH

&8 9 =

 
m2&11 m2&12

m2&21 m2&22

!
= ©≠

´
� 2G2

H

(G2+H2)2
G(G2�H2)
(G2+H2)2

G(G2�H2)
(G2+H2)2

2G2
H

(G2+H2)2

™Æ
¨
. (3.190)

Note that the matrices representing the first derivatives are also traceless and
symmetric, meaning m:&11 = �m:&22 and m:&12 = m:&21.

Computing the first term in the elastic free energy density, we find

(m:&8 9 )2 =
’
:

’
9

’
8

(m:&8 9 )2

=
’
:

’
9

(m:&1 9 )2 + (m:&2 9 )2

=
’
:

(m:&11)2 + (m:&12)2 + (m:&21)2 + (m:&22)2

= (m1&11)2 + (m2&11)2 + (m1&12)2 + (m2&12)2 + (m1&21)2 + (m2&21)2 + (m1&22)2 + (m2&22)2
.

(3.191)

By the properties &11 = �&22, and &12 = &21,

(m:&8 9 )2 = 2(m1&11)2 + 2(m2&11)2 + 2(m1&12)2 + 2(m2&12)2
. (3.192)

Plugging in the matrix elements,

(m:&8 9 )2 =
8G2

H
4

(G2 + H2)4 + 8G4
H

2

(G2 + H2)4 + 2H2(�G2 + H2)2

(G2 + H2)4 + 2G2(G2 � H)2

(G2 + H2)4

=
2

G
2 + H2 .

(3.193)
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We now compute the second term in the elastic free energy density and use the
simplifications that &8 9 is symmetric and traceless,

&8 9 (m8&:;) (m9&:;) =
’
;

’
:

’
9

’
8

&8 9 (m8&:;) (m9&:;)

=
’
;

’
:

&11(m1&:;)2 + 2&12(m1&:;) (m2&:;) +&22(m2&:;)2

=&11(m1&11)2 + 2&11(m1&12)2 +&11(m1&22)2

+ 2&12(m1&11) (m2&11) + 4&12(m1&12) (m2&12) + 2&12(m1&22) (m2&22)
+&22(m2&11)2 + 2&22(m2&12)2 +&22(m2&22)2

=2&11(m1&11)2 + 2&11(m1&12)2

+ 4&12(m1&11) (m2&11) + 4&12(m1&12) (m2&12)
� 2&11(m2&11)2 � 2&11(m2&12)2

=2&11

h
(m1&11)2 + (m1&12)2 � (m2&11)2 � (m2&12)2

i

+ 4&12

h
(m1&11) (m2&11) + (m1&12) (m2&12)

i
.

(3.194)

Plugging in matrix values and simplifying with Mathematica, this term reduces to

&8 9 (m8&:;) (m9&:;) = � 1
G

2 + H2 . (3.195)

Putting everything together, we reveal an equation for the free energy density
throughout an ordered aster

� =
�

2

✓
1
2

◆
+ ⇠

4

✓
1
4

◆
+ · · · + !1

2
2

G
2 + H2 � !3

2
1

G
2 + H2 + · · · . (3.196)

We can translate this back into polar coordinates using the transforms A =
p
G

2 + H2,
cos \ = Gp

G
2+H2

and sin \ = Hp
G

2+H2

� =
4� + ⇠

16
+ 2!1 � !3

2
1
A

2 + · · · . (3.197)

Now it is left to find the energy of the aster state by integrating the free energy
density over the area of the aster. We integrate over all angles from 0  \  2c and
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radius values from a core cutoff, '2 to the aster radius ',

⇢ =
π 2c

0

π
'

'2

� A dA d\

=
π 2c

0

π
'

'2

✓
4� + ⇠

16
A + 2!1 � !3

2A

◆
dA d\

=
4� + ⇠

8
c('2 � '2

2
) + (2!1 � !3)c ln

✓
'

'2

◆
.

(3.198)

Now that we have solved the equation for the energy of the ordered state, we can
input parameters to find the energy scale of perfect order.

Order of Magnitude Estimate

To get a sense of scale of the energy in equation 3.198, we explore literature values
for the constants in front of each term. Zhang et al. use modeling, simulations,
and experiments to find how the elasticity of a liquid crystal (LC) depends on
filament length, density, and rigidity. Their system, a thin film nematic of actin and
microtubules, follows the same free energy density form as equation 3.197. In their
study, they measure elastic constants,  , using elastic beam theory. They find that
!1 =  

2@2
0
, where !1 is the coefficient of the (m:&8 9 )2, same as us, and @0 is the scalar

order parameter. Thus, if we assume the !1 term is at least of the same order as the
other terms, we can get an order of magnitude estimate for the ordered energy of
the aster. Since our aster is assumed to be perfectly ordered, we take @0 = 1. Zhang
et al. find  ⇠ 5 ⇥ 10�1 pN [34]. Thus, !1 ⇡ 0.1 pN. Note that for the constant
!1 to have units of piconewtons, the free energy density must be integrated over a
volume rather than an area. Since their system was a very thin film of XI = 300 nm,
their system is still quasi 2D in comparison to their large film area 4 mm2. While
the thickness of the aster is non-trivial, we will simply proceed with this estimate
to find the energy scale of ordering. Thus, we will integrate over z, the thickness of
the aster, in our estimate,

⇢ =
4� + ⇠

8
cI('2 � '2

2
) + (2!1 � !3)cI ln

✓
'

'2

◆
. (3.199)

Taking the aster radius to be ' ⇡ 5 ⇥ 10 `m, the cutoff radius to be '2 ⇡ 1 `m, and
the thickness to be I ⇡ 100 `m, we find the value of the !1 term of the energy,

⇢ ⇠ 2c!1I ln
✓
'

'2

◆
= 2c ⇥ 10�1 pN ⇥ 105 nm ⇥ ln( 5 ⇥ 10) ⇡ 5 ⇥ 105 pN · nm.

(3.200)



121

With the conversion ATP = 20 :B)
⇣

4 pN·nm
:B)

⌘
= 80 pN · nm, the free energy of the

ordered aster is 5 ⇥ 103 ATP. If an aster takes around 10 minutes to form, then the
power of organization is

% =
5 ⇥ 103 ATP

600 s
= 5

ATP
s

. (3.201)

This is VERY low in comparison with our measured power of 108 ATP
s . While other

studies have found  constant values as large as 10 pN [35], this would only increase
our power by a factor of 100, still six orders of magnitude smaller than the measured
value. Thus, the power of ordering microtubules appears to be negligible.

3.11 Key Numbers
Size of a protein
The volume of a protein is thought to scale linearly with the number of amino acids
in the sequence [31]. When a sequence is unavailable, the average amino acid (a.a.)
weighs 100 Da, providing an easy conversion from molecular weight. Rubisco is a
well characterized protein with a molecular weight of 55 kDa, a sequence length of
500 a.a., and a diameter of 3 � 6 nm. Thus if we want to create a rule for scaling
protein radii, we can write

A ⇡ 2 nm ⇥
✓

# a.a.
500 a.a.

◆1/3
⇡ 2 nm ⇥

✓
MW

55 kDa

◆1/3
. (3.202)

Our experiments contain two proteins, motors and the ATP probe. Our motor
proteins weigh approximately 100 kDa, giving a radius of

Amotor ⇡ 2 nm ⇥
✓
100 kDa
55 kDa

◆1/3
⇡ 2.4 nm. (3.203)

The ATP probe has a sequence length of 1800 base pairs, which corresponds to
600 a.a. since each amino acid contains three base pairs. Thus, the radius of the
ATP probe is

Aprobe ⇡ 2 nm ⇥
✓
600 a.a.
500 a.a.

◆1/3
⇡ 2.1 nm. (3.204)

Reynold’s Number
We can show that our system is at low Reynold’s number, meaning viscous forces
dominate using the definition,

'4 =
dE;

`

, (3.205)
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where d is the density, E is the velocity, ; is the characteristic length scale, and `
is the viscosity. Our reaction mix contains 30% glycerol in water based reagents
at room temperature. We take the density of our mix to be d ⇠ 1000 kg

m3 and the
viscosity to be ` = 2.4 ⇥ 10�3 N · s/m2 based on a calculator developed at the
University of Reading [32]. For the velocity, we will take an upper bound for motor
speeds, E = 1 `m

s [36]. And for the characteristic length scale, we will take the motor
decay length as previously measured in our lab, ; = 15 `m [37]. This evaluates to a
Reynold’s number of

'4 ⇡ 6 ⇥ 10�6
<< 1. (3.206)

Diffusion Constants
Given that our system is at low Reynold’s number (Equation 3.206), we can compute
an expected diffusion constant for molecules in our system using the Stokes-Einstein
equation,

⇡ =
:B)

6c`A
, (3.207)

where ` is the viscosity of the media and A is the radius of the molecule. Using the
viscosity of our system (` = 2.4 ⇥ 10�3 N · s/m2 [32]), the diffusion constant of a
species only depends on its radius,

⇡ =
:B)

6c`A
=

4 pN · nm
6cA (2.4 ⇥ 10�3 pN · s/`m2) ⇡ 90 nm

A

`m2

s
, (3.208)

given that :B) ⇡ 4 pN · nm. We can now compute the relevant diffusion constants
for each molecule in the experiment: ATP has a radius of 0.7 nm, (BNID 106798),
which leads to a diffusion coefficient of

⇡ATP ⇡ 130 `m2/s. (3.209)

Our motor proteins have a radius of about 2.4 nm (equation 3.203), giving a diffusion
constant of

⇡motor ⇡ 40 `m2/s. (3.210)

Tubulin has a length of 4 nm [31], so we will take a radius of 2 nm, giving a diffusion
constant of

⇡tubulin ⇡ 45 `m2/s. (3.211)

Microtubules have an experimentally measured length of 1 `m, so we will take a
radius of 500 nm giving a diffusion constant of

⇡MT ⇡ 0.2 `m2/s. (3.212)
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The ATP probe (Queen A81D) has a radius of about 2 nm (equation 3.204), same
as tubulin, giving the diffusion constant of the probe

⇡Queen A81D ⇡ 45 `m2/s. (3.213)

Binding Rates and Bound Fractions
If we know the on/off rates or the equilibrium constant for two species and the
total initial concentrations of each species, we can determine the bound fraction of
a ligand to a receptor at equilibrium. Taking [!] and ['] for the concentrations
of free ligands and receptors respectively, and [!']as the bound concentration of
ligands and receptors, we write the chemical equation,

[!] + [']
:on
ä
:off

[!'], (3.214)

with an equilibrium constant defined as

 eq =
:off
:on

=
[L] [R]
[LR] . (3.215)

Assuming we know the total concentration of the ligand and receptor species,
regardless of their binding states, we specify the total concentration of ligands as,

; = [L] + [LR] (3.216)

and of receptors as,
A = [R] + [LR] . (3.217)

The probability of ligands being bound to receptors is,

?1 =
[!']
;

, (3.218)

which we can write in terms of the equilibrium constant using Equation 3.215,

?1 =
[!] [']
 eq;

. (3.219)

Substituting equations 3.216 and 3.217, we can solve for the bound probability in
terms of the total ligand and receptor concentrations and the equilibrium constant
as follows,

?1 =
(; � [!']) (A � [!'])

 eq;
. (3.220)

Expanding the numerator,

?1 =
;A � [!']A � ; [!'] + [!']2

 eq;
=

1
 eq

✓
A � [!']

;

(A + ;) + ; [!']
2

;
2

◆
, (3.221)
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and substituting [!']
;

= ?1,

?1 =
1
 eq

⇣
A � ?1 (A + ;) + ; ?2

1

⌘
. (3.222)

We are left with a quadratic equation in terms of ?1,

; ?
2
1
� ?1 ( eq + A + ;) + A = 0 (3.223)

solving for the fraction of bound species, we employ the quadratic formula,

?1 =
 eq + A + ; �

p
(� eq � A � ;)2 � 4;A

2;
, (3.224)

noting that we must chose the "minus," square root subtracted, form to ensure that
?1 > 0. Using this equation, the fraction of bound species at equilibrium can easily
be determined!

Motor to Microtubule

Reference [37] measured the equilibrium constant for NCD Kinesin motors to be
approximately 50 `M. In our experiment, we add approximately 1 `M of tubulin.
If each tubulin has 13 binding sites, we will take 13 `M of tubulin binding sites as
the total receptor concentration, A. For the ligand, we add approximately 1 `M of
motor proteins, which we take as the total ligand concentration, ;. Plugging these
values into equation 3.224, we find the bound fraction of motor proteins is,

?1 =
50 + 13 + 1 �

p
(�50 � 13 � 1)2 � 4 ⇥ 1 ⇥ 13

2 ⇥ 1

=
64 �

p
4044

2

=
64 � 63.6

2
= 0.2,

(3.225)

indicating that approximately 20% of motor proteins are bound at equilibrium.

ATP to Probe

The ATP probe we use, Queen A81D [2], is a mutant of the Queen-7µ probe,
developed in 2014 by the same group [2], using the epsilon subunit of Bacillus PS3.
The authors characterized the dissociation constant of ATP to the probe at room
temperature and found  d ⇠ 7 `M [18]. If we allowed the ATP probe to equilibrate
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with our initial concentration of ATP, before any motor hydrolysis, we can compute
an upper bound for the bound fraction of ATP. Initially, we pipette 500 `M of ATP
into the reaction with approximately 3 `M of the ATP probe. Using equation 3.224,
we solve for the bound fraction of ATP at equilibrium,

?1 =
7 + 3 + 500 �

p
(�7 � 3 � 500)2 � 4 ⇥ 500 ⇥ 3

2 ⇥ 500

=
510 �

p
254100

1000

=
510 � 504

1000
= 0.006,

(3.226)

so only 0.6% of ATP is bound to the probe at equilibrium at a given time. Thus, at
high ATP conditions, the effect of ATP binding to the probe should not impact the
binding dynamics of ATP to motor proteins. However, as the experiment runs, ATP
is hydrolyzed by the motor proteins. We can compute the binding fraction in the
limit that the concentration approaches zero. Plugging ; = 0 into equation 3.224,
we find ?1 = 0

0 , which invites us to envoke l’hôpital’s rule. The first derivative of
the numerator with respect to ; is

1 � 1
2
�2(� eq � A � ;) � 4Ap
(� eq � A � ;)2 � 4;A

= 1 �
 eq � Ap

(� eq � A � ;)2 � 4;A
(3.227)

and the first derivative of the denominator with respect to ; is simply 2. Thus,

lim
;!0

?b =
1
2
� 1

2
 eq � A
 eq + A

. (3.228)

Plugging in the dissociation constant and total concentration of ATP probe,

lim
;!0

?b =
1
2
� 7 � 3

2 ⇥ 10
= 0.5 � 0.2 = 0.3. (3.229)

Hence, as ATP becomes scarce in the system, we can expect the binding to the ATP
probe to slow the motor dynamics. Plotting equation 3.224 as a function of ATP
concentration when  eq + A = 10 `M, we find agreement in the limit of ; ! 0, as
shown in figure.
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