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Chapter 4

FUNDAMENTAL POWER REQUIREMENTS TO BUILD OR
MAINTAIN BIOCHEMICAL GRADIENTS

4.1 Abstract

Organisms organize and respond to a plethora of different gradients. Perhaps the
most famous such gradient patterns the anterior-posterior axis of cells in the fly
embryo, but many further examples abound. Organelles and cell membranes sus-
tain electrochemical gradients; motile cells respond to chemoattractant gradients;
tumors and biofilms develop oxygen gradients; and gradients in biodiversity even
develop along evironmental axes such as elevation. In our own experimental work
with light-controlled microtubule-motor systems, we and others have found how
molecular assemblies spontaneously organize into star-shaped “asters” that feature
an approximately spherically-symmetric and exponentially-decaying arrangement
of motors; these aster structures and gradients evoke biologically-relevant structures
such as the mitotic spindle. Our experiments have also measured the distribution
of ATP in space and time as well as spatially-resolved measurements of the power
consumed. These measurements report that asters often consume power almost ten
times faster while they are forming and changing rapidly than at late stages. We
hypothesize this discrepancy between early and late dissipation is due to fundamen-
tal differences in the energetic costs to build and maintain such gradients. In this
paper, we explore these questions and their broad implications using simple ideas

from statistical physics.

4.2 The Power of Biological Processes

Living things build and depend on exquisite patterns of chemicals in space and time.
Precisely how much energy must these systems pay to incite these patterns, and then
to defy their decay towards equilibrium homogeneity? Does building or maintaining
structures demand greater biochemical energy and power expenditures? How do
these expenditures stack up against the broader cellular economy of metabolic

expenditures?

These big questions enjoy rich history. How cells invest energy over a wide set of
tasks is a mystery that has gained urgency in many guises, especially in the 1970s.

Early researchers asked how much energy growing microbial cells need to duplicate
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their contents, finding the surprise that cells spend significantly more energy than
apparently required to duplicate biomass [1,2]]. Recent, even more precise, work and
modeling validate these mismatches [3]] and highlight that microbes have significant
expenditures unexplained by material construction costs alone. Cells far beyond mi-
crobes, including eukaryotic and plant cells, also show levels of dissipation awaiting
full and complete accounting [4, |5]. Clearly, cells perform many energetically-
costly functions beyond copying biomass that can participate in such total metabolic
demands. These include kinetic proofreading (explaining how apparently futile cy-
cles of GTP hydrolysis accomplish greater accuracy in protein translation and other
biological transformations) [6]], and GTP hydrolysis regulating the polymerization
of microtubules [7, 8]. Hydrolyzing ATP may also facilitate more sensitive [9] or
flexible [[10]] signaling in gene regulation, or additionally reduce noise in signaling
networks [11], than permitted at equilibrium. Beyond these charismatic examples,
exactly what other capabilities that cells unlock as they spend energy is a frontier that
invites huge discoveries, particularly facilitated by new experimental technologies

that resolve cellular dissipation in unprecedented regimes of physiology.

One fundamental destiny for cellular energy expenditures surely must be to assem-
ble the extraordinary patterns of biomolecular components in space and time that
orchestrate living matter. Writing in 1970, Francis Crick, Mary Munro, and cowork-
ers pursued imaginative calculations complementing the work of Alan Turing that
asked how diffusion and cellular production can establish morphogenetic gradients
in embryonic development [[12,/13]]. These formative works assessed the plausibility
and constraints of such mechanisms to establish gradients by particularly focusing
on the time required to set up gradients on cellular and organismal length scales,
identifying feasible regimes where gradients can be established in acceptable devel-
opmental times [[13]]. The time to assemble structure is just one feature affecting how
biological gradients develop, however. More contemporary works often investigate
the accuracy attainable while forming discrete sets of combinatorial structures [14]
under different kinetic and dissipative protocols. Another blooming thread comes
from results of modern stochastic thermodynamics that link the work extractable
from a nonequilibrium system in a certain state (say matter arranged in space) from
the Kullback Leibler divergence between that initial state and a terminal equilibrium
distribution (say matter absent a gradient) [|15,/16]. How such advancements may be
generalized to understand the energetic costs of building and maintaining continu-
ous biological patterns of special interest, not just from static comparisons of initial

and final conditions but at local and temporal detail, is a challenge that gains both
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urgency and tractability from the development of new precision measurements.

In this paper, we aim to build on these early efforts (and many others) to carefully
characterize the power costs of forming gradients in new experimental measure-
ments. We illustrate calculations in the context of how molecular motors and
microtubules assemble asters in experiments we have done in which light is used to
transiently crosslink motors. In these experiments, a homogeneous mixture of mi-
crotubules and motors is induced to form these ordered structures by light-induced
crosslinking of the motors. Our measurements revealed that during the early stages
of aster formation, the power is nearly 10-fold higher than at the late stages of aster
formation. We suspect that this discrepancy is due to the substantial difference
in the energetic cost to build an aster vs to maintain it. In this paper, we explore
that hypothesis. While our discussion often transacts in the specific language and
details of gradients of molecular motors along microtubules, the ingredients of these
calculations are highly generic and may apply to make predictions and infer bounds
about the costs and strategies to build versus maintaining gradients in myriad guises

across biology, agnostic of particular mechanisms.

Conceptually, the structure of the estimates will all be the same, with the generic
functional form

power of process = Jprocess X Aflprocess- “4.1)

Here we have defined the quantity Agiprocess as the free energy cost of a unit process
such as a single step of a motor or the movement of a single molecule up a gradient.
Jprocess Tefers to the flux associated with the process of interest, meaning how many
unit processes occur per unit time. For example, in the context of constantly pumping
ions up a concentration gradient, Agprocess refers to the free energy cost of taking
a single ion from one side of the membrane to the other. Similarly, the flux in
that case would be given by a phenomenological linear transport law relating the
concentration jump across the membrane to the flux itself. Using this quantitative
structure, we carry out a series of estimates for various models of gradient formation

and maintenance.

Power to Maintain a Motor Gradient

As noted in our earlier work, the largest power estimate out of the suite of processes
that occur during aster formation is associated with the formation of the gradient of
motors. Because of the gradient in motor density across the aster, it is of interest to

estimate the free energy required to maintain that gradient. We begin by examining
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Figure 4.1: The change in free energy when a particle is transported in a
gradient. (A) The free energy change upon moving a particle from the left reservoir
to the right reservoir. (B) The total free energy dissipated as many particles move in
the presence of a gradient. Adapted from Hueschen and Phillips, The Restless Cell.

the free energy cost of a one-dimensional gradient to set notation and to explain
the concept and follow that discussion by the case of interest involving spherical
symmetry. The concept of the estimate is to compute the free energy change when
we take one particle from a region with one concentration and put that particle in a

nearby region with a slightly different concentration.

Figure [4.1(A) makes this explicit by illustrating the free energy change associated
with moving a single molecule from a reservoir at one concentration to a second
reservoir at a different concentration. We consider a scenario in which the entirety
of the free energy change is entropic (e.g., we do not consider situations involving

gravitational or electrostatic potentials), meaning that the free energy is defined as
F=-TS, 4.2)
where S is the entropy. We interest ourselves in the change in free energy
AF = Fiinal = Finitial = =T Sfinal + T Sinitial - (4.3)

To compute the entropy change, we need to compute the entropy of the solutions on
both sides of the partition, both before and after we have taken a molecule from the

left side and placed it on the right side. The total entropy is given by
Stot =81+ 82 (4.4)

where the subscripts refer to the two compartments. Using the Boltzmann definition

of entropy, we have

S = kg In W 4 kg In WD, 4.5)

tot
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with a similar expression for the entropy in the initial state. This can be simplified
to the form

final final) 1y (final
S = kg In (WD), (4.6)

tot

which makes sense given that the total number of microscopic states is equal to the
product of the number of states in the first box and the number of states in the second

box.

In a lattice model, we make the abstraction that space is subdivided into tiny lattice
sites with a characteristic dimension of 1 nm? (i.e., molecular sizes). To compute
the number of microstates W, we count the number of ways of arranging our L;

motors among the € lattice sites as

Q!

W= Te=Tor

4.7)

When Q > L; (i.e. the dilute limit), we can make the much simpler approximation

Qi

WiL) = 7
;!

(4.8)

which amounts to the idea that every motor can sit on any of the € lattice sites.
We can now write the change in free energy which is strictly entropic as

QL1+1 QLz—l QL] QLZ
i+ (L= "It

Au = —kpT | In (4.9)

where we revert to the notation Ay since this is the free energy change of the unit
process of moving one molecule from one side of the partition to the other. This

can be simplified to

Ly!

! Ly! L,
(L] + 1)' (Lz - 1)'

~ —kpT In —. 4.10
B IlL] (4.10)

Ap = —kgT In

We can rewrite this in a more familiar form using the language of concentrations.
If we multiply numerator and denominator within the logarithm by Qv, where v is
the volume of a single lattice site in our lattice model, then Qv = V;,,; and hence
c1 = L1/Vior and ¢ = Ly /V,4;, permitting us to write
c
Ap = kgT In =2, .11
C1
Now, as seen in the right panel of Figure 4.1|if we want to find the total rate of free

energy change, we need to multiply the free energy per particle by the total number
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of particles transported between the two adjacent reservoirs per unit time using the

flux resulting in

At

The factor JAyAz counts the number of molecules carried down the gradient per

(A_F) — _Au(JAYAZ). (4.12)

unit time and the minus sign guarantees that if the left reservoir has more molecules
than the left, then AF/At < 0. We now interest ourselves in the case where the

concentration is slowly varying, permitting us to write

AF Ax
AF) T in SEEAY)  avag). 4.13)
At c(x)

where we have introduced the notation ¢; = c¢(x) and ¢ = c(x + Ax). Note

now we switched the sign because we inverted the ratio in the logarithm with the
concentration on the right now appearing in the numerator. Note that this expression
is valid regardless of whether ¢; > ¢; or ¢ > ¢ since in those two cases the flux is
in opposite directions and our expression reflects that. By invoking Fick’s law we
now have

(AA—f) — ksTIn % x (—D%) AyAz. (4.14)
By carrying out the Taylor expansion c(x +Ax) = c(x) + (0c/0x)Ax, we can rewrite

the logarithmic term as

In c(x + Ax) Cn [c(x) + g_iAx]
c(x) c(x) (4.15)
=In|l+ 1@&6] .
c Ox

Finally, we invoke a second Taylor series in the form In (1 + €) = €, resulting in the

simple and powerful expression

AF\ 1 (dc(x)\
()--onardgF5 v

This result tells us the free energy loss for two adjacent planes if the gradient is

allowed to dissipate. We can now put this all together to explore the free energy
dissipated over a continuous concentration field. In this case, we take the expression
seen in eqn. and add up the contribution from each set of planes in our discrete
representation of the concentration field. We can work out the minimum power
to maintain such a gradient where we imagine every time a molecule goes down

its gradient, energy is consumed to push it back where it came from. Given this
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approach, we can now tackle the question of estimating the power associated with
maintaining the radial motor gradient in our asters. However, to do so, we first
need to reinterpret the one-dimensional analysis done here to the case of a three-

dimensional, but spherically symmetric concentration gradient.

The Power Required to Maintain a Three-Dimensional Gradient

Building on the analysis of the previous section which was performed in one-
dimension, we now turn our attention to a three-dimensional structure with a spher-
ically symmetric concentration gradient of motors of the form c(r), where r is the
radial distance from the aster center. Figure|4.2[(A) shows the amendment that needs
to be made to the one-dimensional analysis, where now in the three dimensional
case, the “boxes” are spherical shells. Interestingly, the expression we derived
earlier goes through essentially unchanged except that now we consider the radial
concentration, and instead of integrating over planes along the x-direction, we now
integrate over spherical shells in the r direction. Given these adjustments, the power

to sustain a gradient is now given as

2r T o] 2
p= kBTD/ / / 1 (ac(r)) r2sin 6 dr d6 dé, 4.17)
o Jo Jo c(r)\ or

where D is the diffusion constant and c(r) is the radial concentration profile.

To get a qualitative feeling for the power scales, we begin by considering a fixed,

radial distribution of motors described as a decaying exponential of the form
c(r) = coe™" ", (4.18)

where ¢ is the motor concentration at r = 0 and A is the decay length. Plugging
this profile into eqn. |4.17, we can immediately compute the power that must be

expended to prevent the diffusive relaxation of this gradient as

er//l

© 2
P :47rkBTD/ (—C—Oe_r/’l) r? dr
0 Co A

N (4.19)
_ 47TkBTDC()/ 1’2 e_r/’ldr
0

/12

Integrating by parts, we find that the integral evaluates to A% [~ r? e™"/*dr = 24°
yielding,
P =8rkgTDcopA. (4.20)

Without the prefactors, this result can also be inferred by dimensional analysis.



136

(A) spherically-symmetric concentration gradient
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Figure 4.2: Dissipation in a spherically symmetric concentration gradient. (A)
Maintaining a spherically symmetric concentration gradient results from a compe-
tition between the outward diffusive flux and the inward active flux provided by
motors moving on microtubules. (B) There is a peak in the distribution of motors
as a function of radial distance resulting from the competition between the mono-
tonically decreasing motor concentration and the geometric effect that the spherical
shells get larger with increasing r.
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Estimate of the magnitude of power to prevent diffusive spreading

To get a feeling for the numbers, we appeal to the measurements described in our
experimental paper for which the asters are approximately described by a radial

concentration field of the form ¢(r) = coe™"/*

, with parameters cp ~ 1 uM and
A = 30 um. Given these values, we first ask roughly how many motors there are in

this aster region, found as

# of motors in aster = / choe_r/’l = 87Tc0/l3. 4.21)

aster

This result can be seen by using integration by parts on the radial integral, though
intuitively, dimensional analysis recommends this functional form to within numer-
ical factors. Given that ¢ = 1uM ~ 10°/um? and A ~ 30um, we find that the
number of motors in the aster is

10°
# of motors in aster = 87cod> ~ 87 x — X (f x 10 um)® ~ 10 motors. (4.22)
um

If every one of those motors was consuming only one ATP per second, the resulting
power is precisely the scale we find in our measurements which is of the order of
10° ATP/s.

We can compare this simple order of magnitude guess with the cost to maintain the

gradient computed above. In particular, using eqn. we find

3 s ATP

)X(f)(l()/lm) ~ 5x10 —~

(4.23)

The numbers we took here for the size of the aster were for “ late times” and thus

2 (10
P = 87kgTDcod ~ (fx10)xkpTx(10 ﬂ)x(—3
s um

we need to make a more careful analysis for the change in aster size over time to
provide a full picture of the dynamics of the power in space and time. The present

calculation really serves as a first cut to get a feeling for the numbers.

The Spatial Distribution of Power

The three dimensional dissipation calculated above suggests interesting spatial ef-
fects in the measured power. As seen in Figure the radially decaying concen-
tration gradient implies that although the concentration may be higher at smaller
radii, the number of motors in a given radial shell is not maximum at the origin.
This means that there is the possibility of nonmonotonic power as a function of
radius. The key idea is illustrated in Figure 4.2 B), where we see that the number
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of motors as a function of distance from the origin is peaked. This is the result of
a competition between the volume of the shells with increasing » (which increases)
and the decrease in motor concentration as a function of distance as shown in the

lower right panel.

To get a feeling for this effect, we once again turn to our model of a static, spherically
symmetric gradient and show that there is a maximum in the power as a function of
radius. Our first task is to compute the power in a spherical shell at radius . One
way to think of the power associated with such a spherical shell at radius r is to

evaluate eqn. only between r and r + Ar, resulting in

2
P = dnr?kyTD—— (ac(”) Ar. (4.24)
c(r)\ or

If we now exploit the known concentration profile ¢(r) = coexp(—r /A1) and substi-
tute it into eqn. we find the power in the shell at radius r is given by

F
(Z—t(r) = —(const.) X r2e™"4, (4.25)

where we have suppressed all constants such as D, cg, 4, &, etc. This very simple
expression now permits us to show that for our simplified model of a static aster,

there is a maximum in the dissipation rate as a function of r given by

2
4 (aa—f(r)) = —(const.) X |2re”"/* - %e-f/ﬂ =0 (4.26)

dr

resulting in a maximum in the power dissipation at radius r = 24

To be thorough, we were also curious about the implications of asymmetries in the
aster since three-dimensional imaging demonstrates that our asters are not com-
pletely spherical, but have a preferred long axis in the illumination direction. Here
we consider the opposite extreme in which the aster is a cylinder instead. In this
case, the power as a function of radial distance from the cylinder axis is given by
%—I;(r) =2nrAz (—D%) %%ArkBT. (4.27)

This expression has units of power (i.e. J/s) and tells us the power dissipated in the
annulus at radius r. This expression raises the question of how the power dissipated
depends upon the radius, and specifically, is there a maximum. If we once again
exploit the fact that the concentration has cylindrical symmetry and is characterized

by c(r) = coexp(—r/A), then we see that we have

F
%—t(r) = —(const.) X re”"/4, (4.28)
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where we once again suppress the constants such as D, Ar, etc. This result implies

in turn that

d (0F r
| — - _ -r/da _ " -r/a —
o ( Fr (r)) (const.) X |e 7€ 0 (4.29)

which implies that the maximum dissipation occurs at r = A.

The calculations we have done thus far are both interesting and suggestive for
interpreting the measured ATP consumption in our aster experiments. However,
the discussion here was based upon a variety of simplifying assumptions, the most
important of which is that the aster is fixed in shape over time. However, we know
that asters evolve in time from the moment that light is used to cross link the motors
leading to a time-dependent aster size and motor concentration. In the next sections,
we consider the difference between the power to construct and maintain an aster
which explicitly acknowledges this time dependence. Of course, to construct an
aster and the motor concentration gradient requires more than diffusion. There are

active fluxes and we now examine the power of these fluxes.

The Power Required to Build a Three-Dimensional Gradient

Figure shows the power consumption over time during representative aster
formation experiments, which suggest that ATP is spent nearly an order of magnitude
faster at early times than at late times in the dynamics of aster formation after
light-induced motor dimerization occurs. This widens the gap between our largest
measured dissipations and our best quantitative estimates for the origins of the power.
As a result, in the current section, we graduate our earlier estimates to confront the

transient power in the earlier stages of aster formation.

What is the basis of the large discrepancy between power consumption at early
and late times in the aster formation process? One provocative possibility is that
the formative physics of asters at early times fundamentally demand separate, and
plausibly greater, nonequilibrium expenditures than those required to just maintain

an aster’s structure once it has formed at late times.

To bear on these questions and learn about what they say about the precise destinies
of ATP expenditure in pattern formation, here we calculate the free energy cost per
time required to both build a concentration gradient in time, and to maintain it at
a given state. Combining these calculations with representative phenomenology of
motor distributions, we find much support for the latter idea that the power required
to assemble a nonuniform profile can be hundreds of times larger than the power cost

merely to maintain it (during some stages of aster formation). However, remarkably,
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Figure 4.3: Experimental data motivating the question of how much power it
takes to build versus maintain an aster’s concentration gradients. The x-axis
is time and the y-axis is the power, making it evident that the power consumption
changes over time as the microtubule-motor system evolves towards its nonequilib-
rium aster steady state.

the relative importance of building power and maintenance power often switches
over the course of an aster’s trajectory, and more generally can vary over space,
time, and values of biophysical parameters. We introduce an amusing and natural
“dissipative Peclét number” definable locally or globally in spacetime that neatly

organizes and characterizes this competition between dissipative origins.

Building versus maintaining arbitrary (spherically-symmetric) gradients

As simple steps towards the enduring question of how much gradients cost energet-
ically, consider some active agent spending energy to maintain—or even grow—a
concentration gradient over space. This activity, administering some material flux
J 4, must defy the spontaneous diffusive flux Jp of the substance that tends to relax
the concentration gradient to uniformity. For a gradient to persist or build, these
diffusive and active fluxes operate in opposing directions, making the concentration

evolve according to a net flux AJ = J4 + Jp.

For concreteness, when the concentration profile is spherically-symmetric (varying
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only along the radial coordinate r), and without loss of generality under the con-
vention that more substance is found at small r than at large r (namely % < 0),
the agent’s flux J4 has a negative sign, J4 < 0, and the diffusive flux is positive,
Jp = —Dg—i > 0. Calling the net flux J, = AJ since it is in the radial direction, these
conventions cast the net flux as J, = Jp —|J4|. (If the gradient is merely maintained,
neither decaying nor steepening, then the net flux is zero and |J4| = |Jp|: the active
agent moves just enough material thus spending just enough energy to counteract
the spontaneous diffusive flux that would result if it were not acting. While building
a gradient, the agent’s total active flux is thus partitioned into a maintenance flux
matching diffusion, plus any attained nonzero net flux |AJ| > 0 steepening the

gradient,

[Ja(r,0)| = [Jp(r, )] + |- (r, 1)]. (4.30)

We can examine the mathematical underpinnings of this question as follows. Let
the total free energy density at position r and time 7 be f(r, ). Note that the free
energy density should depend on time and space only via the concentration field
c(r,1), thatis f = f(c(r,1)). Then the total free energy F'°'(z) of the system is its

integral over all space,

o = [ @rfetw, @31)
and the total power is the time derivative of this total free energy, giving,

dFtOt

PY(1) = 4.32

(n="— (4.32)

_ 90 3 _ [ 5. 0f(c(r,)
= 6t/d r f(c(r,t)) —/d r o (4.33)
df(c)dc(r,t)

3

= _— . 4.34

/ T 34

Note that the chemical potential is by definition the change in free energy with respect
to a change in particle number, or (dividing a local volume element by a volume)
equivalently the change in free energy density with respect to concentration, u(r, t) =
g—];. In addition, note that conservation of mass gives the standard continuity equation
in the concentration field: the local rate at which concentration changes is the

divergence of the net flux J(r, r) without any homogeneous local sources,

Jdc
E +V - Juet =0, (4.35)
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SO we can express the %€ in the integrand of Eq. 4.34|in terms of the net flux’s

ot
dlvergence, 55 ==V Jnets yielding,
0f(c)dc(r,t)
P(s) = / d’r 4.36
(?) Jdc ot ( )
_/ d3l’ ,u(r, t) V. Jnet- (437)

Eq. is a volume integral of a scalar field (the chemical potential y) times the
divergence of a vector field (the net flux Jye). This permits us to invoke a con-
sequence of the divergence theorem, which (see https://en.wikipedia.org/

wiki/Divergence_theorem#Corollaries) delivers the vector identity that,
/ dV[F-(Vg)+g(V-F)] = f doV (gF -n) (4.38)
—>/dVg(V~F) :j{dﬁv (gF~n)—/dVF-(Vg). (4.39)

Identifying g as p and F as J,¢ in this vector identity, we see that the power can be
written as a volume integral of a gradient in the chemical potential coupled with the

flux, minus a surface integral,

Imwszumwvm—fwwmwm. (4.40)

For a system with no explicit dissipative action at infinity, the surface integral should

vanish. This gives,
IM@=/fuw«vm. (4.41)

Given a chemical potential u(r) = uo + kT Inc(r,t)/co varying in space (for a
standard state concentration co and standard potential y), the local change in chem-
ical potential imposed by moving a particle of substance an infinitesimal distance

dr 1s,

0
du=Lar (4.42)
or
1 oc
=dr kgT —. 4.43
e c(r,t)or ( )

This free energy cost couples with the earlier fluxes to define the areal power densities

o of maintaining and building the gradient,

oa(r,t) = |Ja(r, t)|—dr = |Jp(r, t)| dr+ |/, (7, t)|—dr (4.44)
———
Wm2s-!

=pp,Wm3 5! =p,,Wm3 g1


https://en.wikipedia.org/wiki/Divergence_theorem#Corollaries
https://en.wikipedia.org/wiki/Divergence_theorem#Corollaries
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Here we also defined the volumetric power densities pp(r,t) and p,(r,t); their
values 47r2p(r,t)dr give the power attributable to a shell of radial thickness dr
around the radial position r, and when integrated radially over space give the total

power for these processes.

Integrating this density over all space attacks the question of whether the total power
to build a gradient, or that to maintain it against diffusion, dominates. We can
express the magnitude of the total power spent by a source as

0
P (1) = / (a—':dr) 4rr? ([Ipl+ /) - (4.45)

area through which flux passes

This allows us to explicitly quantify the partitioning of total power into the power

Pruilg attributable to building and power Ppaintin to maintain the gradient, namely,

0 0
P (1) = / dr 4nr? 0—’:1 |Jp(r, 1) +/ dr 4mr? 0—/: |- (7, 1)] . (4.46)

=Pmaintain (7) =Puia (?)
To compute the relative magnitudes of these terms, we must specify the governing

fluxes.

How does a specified time evolution of a concentration field c(r, ) set the fluxes
governing these dissipative expressions? Recall that by continuity, a flux has a
divergence that sets the rate of change of concentration; if the flux J = [J,, Jy, J4]

is spherically-symmetric (making all angular derivatives vanish, 9y, 95 — 0), then,

oc(r,t) >
=-V. 4.47
Y J (4.47)
10,
=3 [2J,] . (4.48)
This means that
dc 0
2 2
—r°—=—|r'J|, 4.49
o = ar 7] (449)
or integrating with respect to space fromr =0tor =r,
d dc
2 _ 2 2
_/0 ar S = 2| = . (4.50)

Since we expect the flux J,(r = 0, ¢) to vanish at the origin (since there is no point
source or sink there), the latter term vanishes, establishing that the radial flux is
given by the radially-integrated rate-of-change of concentration,

I ,0c
Jo(r,t) = _r_Z/,:odrr e (4.51)
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On the maintenance side, Fick’s first law tells us the flux required to compensate for

diffusion is given by,

oc
|Jp(r,1)| = )—DE (4.52)
oc

Taken together, Equations 4.43| 4.51], and |4.53| give precise answers to the question
asked by Eq. of how the powers to maintain or build any prescribed con-

centration profile c(r,7) compare. To gain further insight, we now examine the

consequences and lessons of these expressions by adopting specific concentration

profiles c(r, t).

Number-conserving, steepening, exponential concentration gradients

We now turn to the question of a spatially varying concentration gradient, c(r,t).
The key difference from the examples of section[4.2]is that now we consider the case
in which the spatial extent of the gradient is varying over time (i.e. A(¢)). This model
is physically-plausible and—it transpires—analytically-convenient. This model is
motivated by two stylized facts. First, motors do exhibit approximately exponential
distributions in space at some time points and over relevant spatial regions. See the
conceptual description of such distributions in Figures f.4(A) and (B) as well as

exemplary phenomenology of some empirical motor distributions in Figure 4.5

Second, physically, we believe there really should be conservation of total motors.

Consider a spherically-symmetric time varying concentration gradient given by,

) (4.54)

c(r,t) = co(t) exp [—ﬁ

where c¢((7) is the concentration at the radial origin of the gradient (» = 0), namely
the motor peak, and A(7) is a time-varying length scale of the gradient characterizing

the spatial evolution of the field. The total number of motors is given by
N(t) = / dr 4nr’e(r,t) = 87A(1)co(1). (4.55)
r=0

Now, to impose conservation of motors, we demand this integral amount to a constant

value N, setting the amplitude prefactor co(t) as,

N 1
8w A(t)3

colr) = (4.56)
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dissipative cost of building, versus maintaining, a gradient

(A) (B) . . .
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: total mass over all space
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(D) fluxes to build a gradient
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S e

Jbuild
_Jdiffusive

Figure 4.4: The dynamics of building a gradient. (A) The concentration profile
as a function of time. (B) The length scale of the exponential gradient over time.

(C) Schematic of the free energy cost of a steep and a shallow gradient. (D) The
fluxes associated with building a gradient.
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Figure 4.5: Example motor distributions over space, angularly averaged to show
variation of motor concentration over radial coordinate . Different lines (in
distinct colors) show progression in time. (A) Motors steepen their gradients in time,
as visible on linearly-scaled a y-axis. (B) Some regions of the aster are acceptably
described as approximately exponentially declining with radial position r away from
the center, as demonstrated by acceptably straight line on a semilog plot of the same
data in (A).

This sets the spacetime evolution as,

N

=

r

Given such a time-dependent concentration profile, we are poised to examine the

power associated with both building and maintaining the gradient.

Resulting (net and diffusive) fluxes of steepening, exponential concentration
gradients

Now, we substitute the conservative time evolution profile c(r, t) of Eq. into

the expression for the net flux derived earlier using the continuity equation. First,

we compute the relevant corresponding time derivative % as

oc N 1 r r | rod
o G Bl Rt v B
N [ 04 r r
- (1t 265 (=) 43

1 oA r
:c(r,t Tl’)% (m—3) (460)
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Substituting this time derivative into our flux expression Eq. gives,

__ Y[ o N (9 AN N A
w0 == | [ g itmee 1) (63| on
__Noa v\ s e
= 87r/1(t)4r2 [/l(t) rzodrr exp[ /l(t)] 3[=0drr exp[ /l(t)”'
(4.62)

We evaluate each remaining integral in turn. The first integral fr rzo dr r’ exp [— /ﬁ]
evaluates to 64(¢)*—exp [—ﬁ] A(t) (3 +3r22(1) + 6rA(1)? + 64(1)%). The second
integral fr:0 dr r? exp [—ﬁ] gives 21(1)3 —exp [—ﬁ] A(t) (r? +2rA(t) +24(1)?).

These give the remarkably-simple weighted-difference

1 4 3 r 4 ) r|l_ |3
m » dr r’ exp [—m] -3 /r:O dr r=exp [—m] = —exp [ /l(t)] ro.
(4.63)

In fact, this simplicity can be anticipated directly by an integration-by-parts result.

First, let’s start with an integral of the form f dr r"e™"/*. The derivative of the

—r/A

integrand r"'e is just,

irne—r//l

1
3 =pr" et r”/—le_r/’l. (4.64)
.

-r/a

Now, integrate each term: this gives r"e again on the left side, and two terms

involving similar integrals on different integrands on the right side, namely,

1
/dr [—; e :n/a’r r"_le_r/l—/—l/dr e (4.65)
r

1
— e = n/ dr r" e/ 7 / dr re”"1, (4.66)

This result directly gives the net flux cancellation above.

Accordingly, the net (building) material flux adopts the charmingly-concise final

form,
__NoA 1 e
Jo(r,t) = ST A)F 12 [ exp l /l(t)} r ] (4.67)
oA N 1 r
REGEZIO [‘M] (09
=r A c(r,1). (4.69)

A(1)
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This building flux expression exhibits some crucial properties.

First, we check this expression’s units: ‘93—’1 gives units of per time; r gives units
of length; and c(r, t) gives units of inverse cubic length. Together these quantities
give per length squared per time, as required of any flux. Second, consider the
sign of this net flux. A gradient that is steepening has a shrinking characteristic
length scale A(#) in time, making 9;4 < 0; this makes J,(r,t) < 0 correspondingly
negative (net inwards flux). This sign of the net flux is physically correct: for
an extant concentration gradient with greatest concentration in the center at small
r and smaller concentration at larger r, we have % < 0, so a source flux that
steepens this imbalance will be indeed pointed inwards, and the opposing diffusive
flux Jp = —D% > (0 will be positive (pointing outwards).

Third, note that the net flux is proportional to temporal rate of change of the length

scale A divided by its current value, which is equivalent to % = aln;/  for some

reference length Ag. That is, the magnitude of the net flux is larger when the
governing length scale changes its value faster relative to/in units of its current
value. If the governing length scale does not change at all in time, d;4 = 0, then the

net flux also vanishes.

Third, note that the flux scales with the radial position r. This can counteract the
tendency for concentrations to be smaller at larger . Specifically, at a fixed time
(e.g. setting the value of a’ﬂ—l to some fixed constant) the spatial position » where
the magnitude of this net building flux J, is largest is peaked (nonmonotonic) in r
at some optimum r.,, since there is a geometric competition between the ~ r term
and the exponentially declining gradient in r. The position r, of this maximum net

building flux satisfies

3, dA |  dc

= — 4,
0 P ) r o +c(r,t) (4.70)
——
<0
7, = #’”t) 4.71)
or
S = A1), (4.72)

Here, we have learned the following interesting, elegant, nonobvious fact: the
maximal material net flux occurs at the radial position which is exactly the current

governing exponential length scale. This spatially-maximized flux is J,(4,1) =
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O c(A,1) = 9 Sﬂnﬁ% Fourth, note that the flux scales with the absolute local
concentration c(r, t): scaling the concentration everywhere by some multiplicative
factor « increases the corresponding flux by the same amount. Many of these
properties are illustrated for the example of a linear ramp in time of the governing

length scale A()) in Figure |4.6|

For comparison to this net building flux, we also compute the corresponding mainte-

nance (diffusive) flux under this simple conservative model of concentration c(r, t)

of Eq. |4.57 finding,

Jp(r,f) = —D% (4.73)
1 N 1 r

et 0

= DLc(r, 1). (4.75)

A(1)
Comparing building (net) and maintenance (diffusive) material fluxes

Now, we compare the magnitudes of the building and maintenance fluxes given by
Egs. and by computing their ratio. Importantly, this local ratio of the
material transport flux to maintain the gradient, versus that to build the gradient,
is also exactly interpretable as the ratio of power densities accomplishing these

processes at each point in spacetime. This follows since the volumetric power

.. . 9 .
densities of both processes are each proportional to 6—‘; - as specified by Eq. 4.44]
namely,
ou
,t J(r,t)|=
pr(r, 1) _ A )|gr (4.76)
pp(rit)  |Jp(r, )| %
Jo(r,t
- M 4.77)
[Jp(r, 1)

Proceeding to compute this ratio of the net flux J,(r, t) to the maintenance diffusive

flux Jp(r,t) (and recalling |J,| = —J,, we see that

atA
Pe*(r. 1) = [y (r 0l _ —rygye(r,t) “478)
’ Ip(ri1)  Dyse(r.1)
7% (4.79)
o .
r?/D  diffusion time 4.80)

"~ r/(=8,1)  “advection” time

(4.81)
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dissipative consequences and regularity in linear ramp in governing gradient lengthscale A(t)
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Figure 4.6: Example of the dissipative behaviors of a steepening (number-
preserving) exponential gradient in time, where the characteristic length scale
A(t) decreases as a linear ramp in time, A(7) = Ao — yt. (A) The illustrative linear
ramp of the length scale in time, A(z) = 20—0.75¢, for arbitrary units of A, ¢. (B) The
corresponding concentration profile ¢(r, t) over space and time (the latter indicated
by distinct colors). (C) The resulting net material flux J,(r, t) required to build the
gradient in this prescribed manner. Squares emphasize that the maximum flux occurs
at the radial coordinate r, = A(¢). (D) The material flux Jp required to maintain
the gradient at its current state. (E) The corresponding power Pyyjq(?) required
to enact the steepening trajectory of the concentration gradient. This linear ramp
shows a particularly simple (boring) form as 01 is a constant for this example. (F)
The maintenance (diffusive) power Ppaintain increases with the gradient steepness,
so also increases in time. (In all these traces, we measured concentration in units of
the prefactor N /8x and took the diffusion constant to be D = 1.)
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Thus, under this model, we derive the profoundly surprising result that the relative
importance of the net flux J, needed to build the gradient, compared to the flux
needed to maintain the gradient, depends only on whether r% ; D. Interestingly,
this ratio can be interpreted as a sort of local material “Péclet number” for
each spatial coordinate r and (global) ‘“advective velocity” 0,1 that compete with
diffusion D. We denote this dimensionless value Pe°(r,7), where the superscript
recalls this is a material (and local) value. When this ratio is smaller than one, the

diffusive flux dominates; when the ratio exceeds one, the building flux dominates.

Accordingly, in our exponential concentration gradient setting, for any nonequilib-
rium control scheme accomplishing a time-varying characteristic length scale A(z)
(yielding some value of rate-of-change 9;4 # 0), there exists some radial position
r past which the magnitude of the flux J, needed to build the gradient will always

exceed the magnitude of the flux Jp needed to just maintain the gradient.

Generality of the local form of this ratio being interpreted as a Péclet number. How
special to the details of our chosen illustrative example c(r,t) is the fact that we
can precisely interpret the ratio of a net flux to a diffusive flux as some governing
effective Péclet number? In fact, not special at all; any concentration profile or flux
will admit such a description, as we now show. Dimensionally speaking, such a

ratio is recognizable as,

1 1
J area X Gme
|- e (48
D length
1 L
_ length> ~ time
=— 07— (4.83)
length Jength?
2 1
_ length” X —— 4.84)
S .
length
_ length X === 4.85)
B e— .
_ length X velocity (4.86)
- D 9 .

which is exactly the form of a Péclet number.

Building and maintenance power densities are maximized at distinct parts of

space

The radial dependence of the local Péclet number in Eq. hints that the relative

importance of building and maintenance can change over space. To understand this
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Figure 4.7: Contrasting the locations in space where distinct dissipative mecha-
nisms are expected to be maximal. (A) The power attributable to a shell of radius
r and unit thickness required just to maintain an exponential gradient, as specified
by Eq. This maintenance power has a spatial maximum at a radial position of
r = 24; this localization reproduces the localization of substance in space: about
half of all power over all space (from r = 0 to r = o) is found just within a shell
within a decay length +4 on either side of the dissipatively- maximal radius. (B)
The power attributable to a shell of radius r and unit thickness required to further
build a gradient, as specified by Eq. This building power shows both shifted
and more diffuse localization behavior than maintenance power; for instance, only
~ 42% of the total power is found within a shell at the distinct maximum of » = 31.

spatial dependence, we now explore further how the underlying power in a shell at
a radial coordinate r varies in space quite distinctly for these two mechanisms. We

preview these contrasting behaviors in Fig.

The power attributable to a shell of radius r and thickness dr presenting a volumetric
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power density p(r,t) is
power(r, 1) = p(r, 1) 4xr? dr. (4.87)

Therefore, the factor 4mp(r,t)r>—a power per radial length increment—controls
the spatial distribution of dissipation. Accordingly, we now consider the shape of
this radial power density for both maintenance and building power. Substituting the

fluxes captured by Egs. and and chemical-potential variation (Eq. 4.105))
appropriate for our exponential gradient gives the maintenance radial power density

as,
rpp(r,t) = r? (|JD(r, z)|‘;—‘;) (4.88)
=r? (Dﬁc(r, r)) (—kﬂﬁ) (4.89)
=rle(r,1) (—/1(1: 7 kBT) (4.90)
(e || ) e
Srew [‘AZ)] (_Sn]z?ns kBT) .
- Pexp [-ﬁ] . (4.93)

Similarly, the building radial power density is given as,

2o (r,0) =17 (ur(r, r>|‘3—’;‘) (494)
=72 (r/féf) c(r, r)) (—kBT%t)) (4.95)
= ric(r,1) (—ﬁ% B ) (4.96)
= (% ﬂ(1r>3 X [720]) (_Mlo 10 kBT) *97
ol )
- Pexp [-ﬁ] . (4.99)

Since the exponentially-decreasing concentration c(r, t) in space competes with the
geometric prefactors of 2 or 73, respectively, in Egs. and [4.99| both of these
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power densities have local maxima in space; these maxima occur when the power
laws just start losing to the exponentially decreasing concentration field. However,
notably, the spatial positions where these maxima occur are found at distinct radial
optima. Specifically, the maximum of the radial maintenance power density occurs
at r, = 24, whereas the maximum of the radial building power density occurs at
re =3A4.

The majority of either type of power occurs within a moderately close vicinity of the
respective maxima. To quantify just how much power is concentrated around these
positions in space, we compute the fraction of this power found within a tolerance
(radial distance) =6 of the maximum r,, namely what we call the localization

fraction,

7 +0
/ dr r’p(r, 1)
r*

-5
/ dr r2p(r, 1)
0

We find that the maintenance power density shows the localization fraction (about

) 5 r
-/r;—(i dr reexp [—m]
) ) r
‘/0 dr r=exp [—m]

52 ((6% +104%) sinh 4] — 651 cosh [£])
B YE : (4.102)

£(6) = (4.100)

its maximum r, = 24),

fp(0) = (4.101)

To get an intuitive sense of the scale at which this maintenance power is localized
in space, we numerically evaluate this localization fraction with 6 = A, which asks
for the fraction of power in a shell of total radial thickness 24 about its maximum
r. =24. We find fp(1) = 0.4965, namely about ~ 50% of all the maintenance
power over all space is localized to this radial region (of within a decay length on

either side of the dissipatively-maximal radial position).

Next, we contrast this localization behavior to that of the building power, about its
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distinct maximum r, = 31. We see that,

rst+o 3 r
dr r’ exp [——]
/r*—é A(1)

) r
/0 dr r=exp [—m]

£521 (64 (267 + 134%) sinh [§] — 6(6? + 514%) cosh [§])
= 3T . (4104

fr(6) = (4.103)

Again numerically evaluating the localization fraction with a tolerance given by the
characteristic length scale, § = A, we see that f,(1) = 0.4237: about ~ 42% of the
power to build the gradient is localized in this region within a decay length in either

direction around its distinct spatial maximum.

These power densities make clear a significant and interesting difference. The
maintenance power density inherits its localization behavior identically from con-
centration. That is, the fraction of all dissipation found within a shell centered at
the dissipatively-maximal radius is exactly the same as the fraction of all substance
found within the same shell. (This fact, reflected by Eq. follows since our
model of an exponential concentration gradient shows that diffusive flux Jp is sim-
ply proportional to the concentration field ¢(r, ) with no geometric prefactors and
the gradient of chemical potential g—f is constant in space.) That maintenance power
density is in literal thrall to concentration is in substantial contrast to the distinct
weighting of the building power, whose integrand enjoys an extra radial ~ r*! weight
factor (as reflected by Eq. and Eq.[4.69). Figure[d.7]summarizes and illustrates
these contrasts in dissipative localization. Last, Figure gives another high-level

schematic overview of these spatial relationships.

Comparing building (net) and maintenance (diffusive) powers

For our specific exponential gradient, we observe the unusual fact that ?)_/rl is inde-

pendent of space r, namely,

ou % 1
B kyT—-L = —kyT—. 4.105
ar "Bl 1) A1) (4.105)

Armed with all the ingredients we need, we now compute each power term in turn

as

0 1 r 0
Pouia(t) = —4r / ar 2 - (—— / drrza—j) (by Bq. BST),  (4.106)

6r r2 =0
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Figure 4.8: Visualization of the distinct spatial localizations of maintenance
power (blue, lower left); building power (red, top); and concentration (green,
lower right).

and

Pmaintain(t) = 471'/ dr 72 3_# _D% (b}’ Fle) (4107)
or or

Substituting this and the remaining ingredients in our particular exponential gradient
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scenario, we see,

ou /m 2 ( )
Pruig(t) = —4mr— drr r—c r,t 4.108
(9,u 6[/1 0 2
- dr 4 4.10
ar 1) Jo rdnrere(r,t) ( 9)
ou L[ 44N 1 r
=—4r— [ d —_— - 4.110
”ar/ nr (U(z) 87 A(1)3 eXp[ A(t)]) (4.110)
ou 4 o1 1 o «
= —a—/: éN/lEt) /1(2‘)3 ‘/0 dr r3 exp [—ﬁ] , (Mathematica gives/0 drrie /4 :6/14),
(4.111)
ouN
= __“_(ata)—&“ (4.112)
0
= 3N (=8,0). 4.113)
or
(=6,2)
= —3NkgT 4.114
T ( )
0lnA A
- 3NkBT%. (4.115)

(Here we could also just recall that for integer n, the value of fom dr re™" is
nlAml)

The maintenance power is

0
Pmaintain(t) = a—’;/di‘ 4n r (DmC(r t)) (4.116)
4 4.11
ar ﬂ(t)/dr mr?c(r,1) (4.117)
=N, by Eq. #.33]
ou 1
=—D—. 4.118
or " 1(0) (4.118)
= —NkgTD . 4.119
PEA)? (+-119)
Thus the ratios of these two powers is
op
Phuila ( 77 3N (=0,4
PC”(Z) = bulld( ) = ( t ) (4.120)
Praintain (1) ND/I N
(1)
= 31 (=04 ( (9,/1)’ (4.121)
D

where we have denoted this ratio as Pe"(t) to emphasize its nature as a dissipative
(and spatially-global) Péclet number. Is this unitless? The numerator is length

squared per second, consistent with the denominator, so yes.
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(Interestingly, we see that taking a spatial coordinate of » = 34 in the local flux
ratio of Pe®(r,t) in Eq. makes that local flux ratio there equal to this total
radially-integrated power ratio Pe"(t) of Eq. 4.1211)

How does the relative importance of building versus maintenance powers

change over time, as gradients steepen?

Our foregoing analysis was mathematically general, applying to any exponential
gradient regardless of the trajectory of the characteristic length scale A(7). To
proceed further, however, we must now specify some possible candidate time-
evolutions A(z). How will the relative importance of maintenance versus building
power be conserved or vary across diffrent A(z) profiles? Consider these three

examples, which hint at the diversity of attainable behaviors.

Figure 4.6]illustrates characteristic behaviors of a concentration gradient steepening

under a linearly-decreasing gradient length scale A(¢) in time.

1. For a simple linear gradient in time, A(t) = Ao — yt (for t < %), we see that
(0;)A(t) = —y(Ao — yt). This magnitude also decreases in time. In other
words, the relative importance of building power to maintenance power must
monotonically decrease over time. This is consistent with the fact that the

building power is a constant (while maintenance power increases) in this case:

see Eq. 4.114] See Figure 4.6]

2. For a power law shrinkage of the exponential gradient length scale in time,

A(t) = Bt~ (with @ > 0 to assure that the gradient steepens), observe that

OA=—-BaT %! = —QM.

Therefore, (9;4)A(t) = —a#’)z, whose magnitude decreases with time ¢ (since
A(t) declines monotonically). In other words, the relative importance of

building power to maintenance power must monotonically decrease over time.

3. For a more unusual (e.g. somewhat contrived) profile like A(z) = (1 — ¢)" for
n € [0,1/2], and ¢ < 1, we appear to find a profile where—in contrast to the
earlier examples—the magnitude of (9;1)A(t) increases in time, making the

building power increasingly important relative to the maintenance power.
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Comparing building (net) and maintenance (diffusive) energies

Under our model, during a time 7, the total energy spent on building is the time
integral of Eq. 4.114]

Ebuitd(7) =/ dt Ppyila (1) (4.122)
=0
:/ dt a—#3N(9,/7. (4.123)
0 or
= T— 4,124
3N/ dt ( kp 10 )) A ( )
T 9,1
= -3NkgT 4.12
3Nkg /0 dt 10 ( 5)
= —3NkBT/ dt M (4.126)
0 ot
A(1)
—3NkgT In 4.127
ks [MO)] (127

Remarkably, this energy to build is independent of the precise timecourse A(¢), only
depending on the starting and ending length scale of the gradient!

We note with amusement that this expression Eq. adopts precisely the same
form (including numerical prefactors!) as the calculation for the work needed to
contract a (microtubule) gas from an initial volume V; and a final volume V; in
Eq. M specifying W = —N kBTln , if we take these volumes to be of order
the characteristic length scale cubed, Vi ~ A(0)? and Vi~ A(7)3, where the cubic
relation delivers our factor of three in Eq.

In light of our discussion and estimates in this section: the fact that the order-of-

T
T = Jo At Pouina(2)
- T

time 7') is much smaller than instantaneous measured power values does NOT in

magnitude estimate {Ppyild) = Ebuild/ (for an observation/construction
fact say that building power is small compared to actual total power expenditures.
This discrepancy says much more about the fact that instantaneous power values
can differ a lot from the average of the same values, than that the instantaneous fun-
damental/theoretical building power is small compared to instantaneous measured

total power values!



160

In contrast the energy to maintain is the time integral of Eq. 4.118] giving

Emaintain(T) = /T dt Pmaintain(t) (4.128)
t=0
[Tty
_/ dt arD/l(t)N 4.129)
1
—DN/ dt( kgT m)m (4.130)
=—DNkBT/O dt 10 (4.131)

Notice, as expected, that such a maintenance energy accumulates even when the
length scale A is not changing in time (6;4 # 0)—and at any finite constant A,

E naintain Will grow with longer 7.

It is hard to bound this maintenance energy without stipulating a precise timecourse
for A(z). But, to reach for a rough feel, say that we only know that A(¢) decreases
monotonically in time on the time interval of interest, such that A(f = 7) < A(¢) <

A(t = 0). Then we can conclude the simple fact that,

’ 1 ’ 1 T 1
/0 dt 100)? S/O dt NTGE S./o dt 1) (4.132)

T T 1 T
— 102 SA dt 0 < 102 (4.133)

which means that

DNkpT

|Ema1nta1n(7)| < DNkBT

(4.134)

/1(0)2 - /1( )2

Accordingly, the ratio of these two energies is only constrained here to lie between,

(1) A7)
3NkBTln[ﬂ(0)] < | Ebuitd (7)| 3NkBT1n[ﬂ(0)]

DNkBT/l( )2 " | Emaintain(T)| — DNkpT =

(4.135)
2(0)2

A1) Alr)

3In [1(0)] | Evuila (7)| 3 In [/1(0)]

- =—F— < Sy T
02 | Emaintain (T) | D 2(0)2

(4.136)

Empirical estimates for an example aster’s motor gradients

We now consider how well the theoretical insights described above jibe with our
experimental measurements. It appears that the major obvious trends—e.g., that the
relative importance of building and maintenance powers can switch dramatically

in time across trajectories—will be widely preserved across aster phenomenology.
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Figure 4.9: Temporal changes in apparent length scale of motor gradients of
the data in Figure At left, highlighted by a solid black line as a guide to the
eye, an early-time steepening in the motors gives a steep approximate power law
A~ (3x10° um)(z/1s)~"°. The solid black square indicates a reference point
(t,A(t)) = (60 s,413 um) with an approximate rate-of-change of d,A ~ —11 um/s
taken from the slope of the line. At right, a slower but still appreciable steepening
resumes, marked by the dashed black line, with an approximate power law fit of
A~ (10* um)(t/1s)~%7*. The dashed black square indicates a reference point at
(t,A) ~ (460 s, 118 pm) with an approximate rate of change of —0.2 um/s taken
from the slope of the dashed line.

To get a very rough sense of scale for how motor gradients actually change their
characteristic length scales A(7) in time, we considered the same motor distributions
shown earlier in the data of Figure[4.5] At each time, we found the radial position r;
at which the motor distribution was steepest in space. Then, assuming (coarsely, but
not unreasonably) that these gradients were indeed locally exponentially decaying
at this steepest point, we computed the approximate effective exponential gradient

C(rSvl)

length scale as A(¢) = — =% Figure'ﬁ'depicts how this aster changes its apparent
length scale. ”

Next, we—just by eye, not rigorously—extracted an apparent power law fit to each
of two distinct dynamical regimes visible in the length scale’s trajectory. This allows
us to substitute empirically estimated values into the dissipative Péclet number of
Eq. The first regime, marked by the solid black square in Figure (4.9]
implies that the building power Ppyjiq(f) exceeds the maintenance power Ppaintain DY

approximately a multiplicative factor of order,
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Pruia(1) 34 (=6,:4)

_ (4.137)
P maintain(t) D
_ 3(413 pum) (= (=11 pm/s)) (4.138)
40 um?/s .
~ 340 x . (4.139)

The second, more slowly-steepening, regime appears to register a more equal balance

between building power and maintenance power, giving about
Ppuiia(t) 34 (=6,2)

_ (4.140)
Pmaintain(t) D
_ 3(118 pum)(=(=0.2 um /) (4.141)
40 um?/s .
~1.8x%. (4.142)

These estimates, however coarse, argue quantitatively that maintenance power
could be dwarfed by building power to the tune of order a few hundred in the
early times of an aster formation, but show that the maintenance cost grows much

more competitive at late times. O

References

[1] A. H. Stouthamer. “Theoretical study on amount of ATP required for syn-
thesis of microbial cell material.” In: Antonie Van Leeuwenhoek Journal of
Microbiology 39.3 (1973), pp. 545-565.

[2] TIan S. Farmer and Colin W. Jones. “The energetics of Escherichia coli during
aerobic growth in continuous culture.” In: European Journal of Biochemistry
67.1 (1976), pp. 115-122.

[3] Matteo Mori et al. “Functional decomposition of metabolism allows a system-
level quantification of fluxes and protein allocation towards specific metabolic
functions.” In: Nature Communications 14.1 (2023), p. 4161.

[4] Ana P. Alonso et al. “Carbon conversion efficiency and central metabolic
fluxes in developing sunflower (Helianthus annuus L.) embryos.” In: The
Plant Journal 52.2 (2007), pp. 296-308.

[5] Michael J. Buono and Fred W. Kolkhorst. Estimating ATP resynthesis during
a marathon run: A method to introduce metabolism. 2001.

[6] John J. Hopfield. “Kinetic proofreading: A new mechanism for reducing
errors in biosynthetic processes requiring high specificity.” In: Proceedings
of the National Academy of Sciences of the United States of America 71.10
(1974), pp. 4135-9.



[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

163

T. L. Hill and Marc W. Kirschner. “Bioenergetics and kinetics of microtubule
and actin filament assembly-disassembly.” In: Int Rev Cytol 78 (1982), pp. 1-
125.

Tim J. Mitchison and Marc W. Kirschner. “Properties of the Kinetochore
In vitro. II. Microtubule Capture and ATP-Dependent Translocation.” In:
Journal of Cell Biology 101.3 (1985), pp. 766-7717.

Javier Estrada et al. “Information integration and energy expenditure in gene
regulation.” In: Cell 166.1 (2016), pp. 234-244.

Sara D. Mahdavi et al. “Flexibility and sensitivity in gene regulation out of
equilibrium.” In: Proceedings of the National Academy of Sciences 121.46
(2024), e2411395121.

Christopher C. Govern and Pieter Rein ten Wolde. “Energy dissipation and
noise correlations in biochemical sensing.” In: Physical Review Letters 113.25
(2014), p. 258102.

Francis Crick. “Diffusion in embryogenesis.” In: Nature 225.5231 (1970),
pp. 420-422.

Mary Munro and Francis H. Crick. “The time needed to set up a gradient:

Detailed calculations.” In: Symposia of the Society for Experimental Biology.
Vol. 25. 1971, pp. 439-453.

Florian M. Gartner and Erwin Frey. “Design principles for fast and efficient
self-assembly processes.” In: Physical Review X 14.2 (2024), p. 021004.

Massimiliano Esposito and Christian Van den Broeck. “Second law and Lan-
dauer principle far from equilibrium.” In: Europhysics Letters 95.4 (2011),
p- 40004.

Hong Qian. “Relative entropy: Free energy associated with equilibrium fluc-
tuations and nonequilibrium deviations.” In: Physical Review E 63.4 (2001),
p- 042103.



