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C h a p t e r 6

SUPPLEMENTARY INFORMATION FOR MOTOR-DRIVEN
MICROTUBULE DIFFUSION IN A PHOTOBLEACHED

DYNAMICAL COORDINATE SYSTEM

In this collaborative project led by Soichi Hirokawa, I analyzed data and provided
reagents. Specifically, I developed an image processing pipeline allowing me to
analyze the speed of motor proteins based on microtubule gliding data. Additionally,
I purified proteins and prepared buffers used in these experiments. This study is
published and can be found with the following citation:

Soichi Hirokawa, Heun Jin Lee, Rachel A. Banks, Ana Isabel Duarte, Bibi Najma,
Matt Thomson, and Rob Phillips. “Motor-driven microtubule diffusion in a photo-
bleached dynamical coordinate system”. In: Proceedings of the National Academy
of Sciences 122.24 (2025), e2417020122. doi: 10.1073/pnas. 2417020122

6.1 Materials and Methods
Motor purification
Plasmids containing the gene encoding the motor-fluorescent protein-light-activated
dimerization-FLAG tag construct with the pBiex-1 vector are transfected in Sf9
suspension cells for 60-72 hours at 27�C on shakers rotating at 120 rpm. Cells
are then lightly centrifuged at 500 rpm for 12 minutes to remove the supernatant
before resuspending in lysis buffer (100 mM NaCl, 2 mM MgCl2, 0.25 mM EDTA,
0.5 mM EGTA, 0.25 % Igepal, 3.5% sucrose by weight, 10 mM imidazole pH 7.5,
10 µg/mL aprotinin, 10 µg/mL leupeptin, 1 mM ATP, 2.5 mM DTT, and 0.5 mM
PMSF) and leaving on ice for 20 minutes. Cells are then spun down for 30 minutes at
50k rpm after which the lysate is transferred to tubes containing mouse monoclonal
anti-FLAG resin (Sigma A2220) and slowly rotated at 4�C for 1.5ˆ3 hrs to allow
protein binding to the resin via the FLAG tag. Resin-bound protein are washed three
times by spinning down at 2000⇥ 6, clearing the supernatant, then resuspending by
tube inversion in wash buffer containing 15 mM KCl, 0.5 mM, 0.1 mM EGTA, 0.1
mM EDTA, 2 mM imidazole pH 7.5, 10 µg/mL aprotinin, 10 µg/mL leupeptin, 0.3
mM DTT, and ATP in 3 mM, 0.3 mM, and 0.03 mM concentrations for the first,
second, and third washes, respectively. After the third wash, the protein are spun
down again at 2000⇥ 6 and most of the supernatant is removed, leaving the resin
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bed and roughly an equivalent amount of supernatant by volume in the tube. The
resin bed is resuspended and FLAG peptide (Sigma F4799 or Thermo Scientific
A36805) is added at a final concentration of 0.5 mg/mL before rotating for 3 hrs
at 4�C. After incubating to allow the peptide to outcompete the protein for resin
binding, the protein are spun down again at 2000⇥ 6 with the supernatant extracted
and further spun down using centrifuge columns with ˆ30 µm pore sizes to further
separate proteins from any collected resin beads. Flow-through of clarified protein
are spin concentrated using a 50 kDa filter tube to a final concentration of 2-2.5
mg/mL before diluting in 100% glycerol of the same volume for storage.

Stabilized microtubule polymerization
Fluorescently labeled stabilized microtubules are prepared as in [1, 2]. After flash
thawing at 37�C and kept on ice, a combination of ⇡ 1.5 mg unlabeled and 100
µg labeled tubulin are diluted to 7.5 mg/mL and 0.5 mg/mL, respectively, in M2B
6.8 containing DTT and GMP-CPP at final concentrations of 1 mM and 6mM,
respectively. The tubulin mixture is then incubated on ice for 5 minutes in an
ultracentrifuge tube before ultracentrifugation at 90,000 rpm at 4�C for 8 minutes.
Avoiding the pellet at the the bottom, the supernatant containing tubulin monomers
are then placed in a new Eppendorf tube and incubated at 37�C for 1 hour, typically
in a water bath, during which the tubulin is polymerizing and stabilizing with
GMPCPP. The microtubule mixture is then aliquoted into individual PCR tubes
while constantly being suspended in the mixture by stirring with a pipette tip.
PCR tubes are then briefly spun down with a tabletop minicentrifuge before flash-
freezing with liquid nitrogen and placed in a -80�C freezer for long-term storage.
Microtubules are then prepared for experiments by immersing the PCR tube in 37�C
water immediately when taken out of the freezer to quickly thaw.

Glass slide treatment
Corning glass slides and No. 1.5 Deckgläser coverslips are coated with an acry-
lamide solution to prevent the adhesion of proteins from the light-dimerized ac-
tivation assay to the surface. The acrylamide coating is done similarly to that
demonstrated in [3]. Prior to application of the solution, slides and coverslips are
separated by placement in appropriately sized containers and rigorously cleaned
through a series of solutions and sonicating. First, slides are immersed in 1% Hell-
manex to remove dirt particulates, sonicated, repeatedly rinsed with deionized water
(DI H2O), then repeatedly rinsed with ethanol. Slides are then sonicated in 200 proof
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ethanol before rinsing again with DI H2O. After rinsing, slides are sonicated in 0.1
M KOH and subsequently rinsed in double-distilled water (ddH2O). Finally, trace
metals are removed by immersing in 5% HCl for 4 hours. After repeatedly rinsing
in ddH2O, slides are stored overnight with MilliQ ultrapure water.

Upon cleaning and before the acrylamide coating, a silane solution is made first by
mixing 98.5% 200 proof ethanol and 1% acetic acid before adding 0.5% trimethoxysi-
lyl methacrylate and immediately pouring into the containers holding the slides and
coverslips. After roughly 30 minutes, slides are rinsed twice in 200 proof ethanol
before drying with N2 air and baking at 110�C for 10-15 minutes to cure silane onto
surface with oxygen bonding.

The polyacrylamide solution is made by mixing 950 mL ddH2O with 50 mL 40%
acrylamide and degassing under vacuum for 30 minutes. The solution is then under
constant mixing on a stir plate with a stir bar during which time 350 µL TEMED
and 700 mg ammonium persulfate (APS) are added to the solution. The acrylamide
solution is immediately added to the slides and coverslips and incubated overnight.
Slides are placed in 4�C for long-term storage.

Flow cell chamber preparation
Flow cells for all light-dimerized activation assays are prepared by thoroughly rinsing
an acrylamide-coated glass slide and coverslip in ddH2O and air drying with N2 gas.
A piece of parafilm with three channels each cut 3 mm wide is placed on the glass
slide with the long axis of the channels running along the length of the slide. The
coverslip is placed on top of the parafilm with pressure applied to flatten out the film.
The flow cell is then briefly placed on a hot plate set at 65�C to warm the parafilm,
allowing extra pressure on the contact points between the film and the glass to better
seal the chambers.

Light-dimerized activation assay preparation
Photobleaching experiments require an energy mix to maintain stability and func-
tion of microtubules and motors while constantly supplying kinesin motors with
ATP to contract the microtubule network. This energy mix is slightly altered from
that used by Ross et al. [1] with the major changes being a change in acidity for
K-PIPES from pH 6.8 to pH 6.1 and the absence of gluocose oxidase to allow for
photobleaching. iLid- and micro-tagged motors with the same fluorescent protein
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are each added to the reaction mixture at final concentrations of 40-100 nM with
stabilized microtubules added at a final concentration of 1.5-2.5 µM tubulin. Con-
centrations of motors and tubulin are tuned to ensure that the microtubule network
1) contracts into an aster, which can fail to occur with too few motors or tubulin,
and 2) without an influx of microtubules from outside of the light-activation region,
which can occur from too much tubulin or too many motors dimerizing in the ab-
sense of light. Once the tubulin and motor concentrations are determined that meet
these criteria for a given motor species, all subsequent replicates are fixed at these
concentrations. All experiments are run within less than an hour of incubation time
beyond which the influx of microtubules from the unilluminated reservoir tends to
occur at higher frequency, as has recently been noted as a long-range connectivity
of the network [4].

Optical set-up
The sample is imaged and photobleached using a super planar fluorescence 20x
objective from Nikon (numerical aperture 0.45). Image acquisition is performed
using a FLiR Blackfly monochrome camera (BFLY-U3-23S6M-C) with three filters
in front of it: a Semrock Brightline dual-band pass filter centered at 577 nm (28.3
nm FWHM bandwidth) and 690 nm (55.1 nm FWHM bandwidth); and a Semrock
StopLine single-notch filter at 532 nm (17 nm notch bandwidth) to suppress trans-
mission of the YFP laser to the camera.
Activation of motor dimerization and imaging of the microtubules is performed
using a digital light projector DLP Lightcrafter Display 4710 EVM Gen2 from
Texas Instruments. The DLP projects white light while a motorized filter wheel
sets the transmissible range of wavelengths onto the sample (beam blocker for no
light, 460/50 nm filter for blue light for iLid-micro dimerization and 630/38 for
microtubule imaging). Photobleaching of microtubules is performed using a 645
nm laser. The laser path is set to pass through a cylindrical lens array that transforms
the collimated light pattern into a series of lines along one axis. The cylindrical lens
array is mounted onto a rotation mount to allow for photobleaching of vertical and
horizontal lines to generate the grid pattern. To ensure that the photobleached lines
persist for multiple frames of the image, the laser passes through a gimbal-mounted
mirror that deflects the beam over a small range of angles. By deflecting the laser
light off of the mirror through two lenses with the same focal length 5 and a second,
stationary mirror placed 4⇥ 5 away from the gimbal-mounted mirror before passing
the laser through the cylindrical lense array, the transformed laser lines can be swept
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out. We use this beam steering approach to photobleach thicker lines.

To perform the activation and imaging patterns, we supply µManager with TIFF
image stacks of matching pixel dimensions as the projector and use a Beanshell
script modified from Ross et al. [1] to use the correct TIFF image in the stack. The
TIFF stack contains a blank image (all pixel values 0) for when the laser is turned
on (which is also used in conjunction with the beam blocker to prevent light from
passing onto the sample outside of the activation and imaging cycles); a maximum
pixel intensity image for the microtubule imaging, and a circular pattern in a blank
background for the circular iLid-micro dimerization activation pattern of radius 125
µm. The primary modification to the Beanshell script is the incorporation of a
user-defined timer for when the photobleaching will be performed. The timer is set
so that the photobleaching occurs during the contraction phase of the microtubule
self-organization, varying from shortly after the microtubule network has formed
to shortly before the microtubule no longer visibly contracts in volume (a period of
roughly 5 minutes for Ncd236 at saturated ATP). Fig 6.8 provides three examples
of the photobleaching occuring at early, intermediate, and late contraction. We em-
phasize again that the initial iLid-micro dimerizing light pattern is fixed in all three
cases. To photobleach the network (when the timer is reached), the imaging pauses
while the Beanshell script turns on the laser and executes a series of custom written
executables that sweep out the laser lines to create thicker parallel photobleached
lines, turn off the laser, rotate the cylindrical lense array, then reactivate the laser
and sweep out the laser lines in the orthogonal direction to generate the grid pattern.
Upon finishing this command, the laser is shut off and imaging resumes. The entire
photobleaching is performed within a roughly 10-15 second window.

6.2 Microtubule Length Extraction
Stabilized microtubules imaged under total internal reflection fluorescence (TIRF)
microscopy such as the ones shown in Fig. 6.1(A) were analyzed similar to that
discussed in [1] in order to extract their lengths. Briefly, due to the uneven illumi-
nation that can occur in the image, images were first background corrected using
a local thresholding method known as Niblack thresholding [5] with window size
of 3 pixels and : value of 0.001, which determines how many standard deviations
below the mean pixel value that one sets the cut-off in the window. Although the
array is a series of pixel values to be weighed against the original image, we found
that this array already improved the image contrast. With this improved contrast but
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Figure 6.1: Processing steps of microtubule images. (A) Raw image. Scale bar
denotes 10 µm. (B) Images processed after computing a Niblack threshold and using
Otsu thresholding on the Niblack threshold array. (C) Putative MTs skeletonized
after removing objects too close to the image border or too small. (D) Removal of
any MTs that cross over each other to get the final MTs used for analysis.

considering that the result is still a nonbinary image, we used Otsu thresholding on
the Niblack theshold array to extract the microtubules from the background. The
result is shown in Fig. 6.1(B).

Using the binary image which contains extracted microtubules, we imposed a mor-
phological closing algorithm to reconnect any microtubules that were broken during
the Niblack thresholding from being picked up as signal. This closing was performed
using a 3 pixel x 3 pixel square array, suggesting that disconnected microtubules
needed to be within 3

p
2 pixels of each other at their ends to be connected again.

From here, we removed any microtubules that were too close to the edge of the
image as they may extend outside of the camera field of view and removed any
objects that were fewer than 10 pixels in area as we considered them too small to
know with enough certainty whether they were microtubules or small blemishes in
the image. Putative microtubules underwent a morphological thinning so that they
were converted to one-pixel wide lines along which we could compute their lengths.
The result of the edge and size exclusion and skeletonizing are shown in Fig. 6.1(C).

As a final step before measuring the lengths, we removed any microtubules that
seem to cross over. This was performed by removing objects where two line seg-
ments along the same microtubule strand formed angles of at least 75�, leaving
behind a processed image such as Fig. 6.1(D). From here, we used any remain-
ing microtubules and measured their lengths and compiled them. Fig. 6.2 shows
empirical cumulative distribution functions of these microtubules from the five MT
polymerization assays performed over the course of the work presented here. =
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denotes the number of microtubules that were extracted from the image processing
and used in the distributions for each replicate. Here, we see that for most of the
work performed the MTs had lengths between 1�3 µm with median lengths between
1.5 � 2.1 µm.

6.3 Image Processing: Global Drift Correction
For computational efficiency in later image processing steps, photobleached images
are cropped to contain only the region where the collective filament network is
present. We first find the center of the contracting network for the image immedi-
ately preceding photobleaching. To do so, the image is smoothed with a Gaussian
blur and thresholded with the Yen thresholding method [6]. After removing objects
that are at the image edge or small objects, the largest segmented object is taken.
The properties of this object are then taken, included a pixel-weighted centroid and
its major axis length.

Figure 6.2: Distributions of microtubule length from microtubules stabilized
from polymerization preparations for experiments used in this manuscript.
Microtubules were prepared five times over the course of the work presented here,
thus shown as five different datasets. Left plot shows the histogrammed length
distribution as a linear x-scale of length while the right plot shows the same data as
an empirical cumulative distribution function (ECDF) as a logarithmic x-scale. The
two polymerization preparations performed in April 2021 were performed separately
by two of the authors of this manuscript on the same day. = denotes the number of
microtubules whose lengths were obtained in the distributions.
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For cropping the first photobleached image, we start by cropping a window in
the image using the pixel-weighted centroid as the image center and 130% of the
major axis length as the length of the window. This buffer to the window cropping
typically ensures that contracting networks that are drifting can still be easily tracked
and cropped. To more efficiently crop the image, we then take this cropped window
and use a heavy Gaussian blur (f = 30 pixels) and subtract this from the cropped
photobleached image. We then normalize the image and use Otsu thresholding [7]
to identify putative fluorescent unit cells. We roughly identify the unit cells by
removing those that are close to the edge of the image as well as objects that are
smaller than 36 µm2, which would be far smaller than a unit cell. Unit cells are
further cleaned up by filling in any small holes in the unit cell with a morphological
closing before taking the pixel-weighted centroid using all of the unit cells together
to get a rough position of the network center. This process is then repeated on the
next photobleached frame using the new centroid for the image center and the orig-
inal window length over the desired number of photobleach frames. These cropped
images are then used for further, more careful processing of the unit cells.

6.4 Quantifying Microtubule Unit Cell Dynamics
In this work, we sought to characterize the bulk redistribution of microtubules
through local deformations and translations within the contracting network. To
develop a processing method that would allow us to quantify the advective and
diffusive components of the network, we first set out to determine whether the
microtubule number is conserved in the system. A part of this determination, which
relies heavily upon the fluorescence signal, depends upon whether the imaging
system also affects the signal over time through passive photobleaching. We seek to
assess these factors in SI Secs. 6.4 and 6.4 below.

Imaging system negligibly photobleaches microtubules
One concern in analyzing microtubule fluorescence over time is whether the optical
system decreases its signal due to secondary photobleaching effects from the projec-
tor, which is used to illuminate the field of view for imaging purposes and perform
the iLid-micro light stimulation. To investigate this, we imaged the microtubule
field without activating the iLid-micro dimerization using the same exposure times
(200 ms) and different imaging frequencies depending upon the speed at which
contraction takes place, between 3 seconds and 10 seconds per frame. We then
examined the mean image intensity and standard deviation of the pixel intensity as
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Figure 6.3: Image intensity of the microtubule field as a function of time.
(A) Mean intensity of the microtubule field normalized against that of the first
image. Blue shaded region represents one standard deviation in the mean intensity
(normalized by the same initial mean value). (B) Mean intensity of the same
fluorescence channel in the absence of microtubules.

a function of time.

Fig. 6.3(A) illustrates the effects of the projector on the microtubule field. The
mean intensity of the field of view, as normalized against the mean intensity at
C = 0 seconds, indicates that the fluorescence field fluctuates within a few percent
but does not appear to decrease over an hour. These fluctuations are likely due to
fluctuations from the image acquisition set-up itself, as Fig. 6.3(B) shows the nor-
malized mean intensity of the microtubule fluorescence channel but in the absence
of microtubules. Here, we see that that the integrated intensity fluctuates over the
short term but does not appear to exhibit a global decrease, further supporting that
the small fluctuations in fluorescence intensity in successive imaging stages comes
from the imaging system. Nevertheless, we conclude that the fluorescence intensity
is well preserved over the course of experiments and does not require corrections
during image processing.

Net flux of microtubules goes into the imaging plane
As the projector does not passively photobleach the microtubule channel (SI Sec.
6.4), we next ask whether there is a loss of microtubules during the contraction
process. Microtubules may disconnect from the contracting network and diffuse
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Figure 6.4: Integrated intensity of the photobleached contracting network over
image frames. White dots denote the median value across all experiments.

away. For example, as we use an epifluorescent imaging set-up, if microtubules are
lost from the network by moving out of the plane of imaging, they will project a
low, more diffuse signal onto the image. In contrast, microtubules that move into
the plane of focus will exhibit a higher signal. Similarly, microtubules lost at the
periphery in the image plane will lead to a reduced integrated intensity across the
entire network.

To determine the effects of flux across the focal plane, we measure the integrated
fluorescence signal of the contracting network after photobleaching. This is done
by integrating the fluorescence signal of the activated network as it contracts away
from the unilluminated reservoir. We then examine the normalized integrated signal
over time.

Fig. 6.4 shows that the integrated intensity of the contracting network increases in
time. Over 20 imaging frames, the fluorescence increases by about 5%, suggesting
a roughly 0.25% increase between frames. While some of the observed increase
in intensity can be accounted for by those datasets where the contracting network
is not fully disconnected from the unilluminated reservoir and thus introducing
more microtubules at the periphery, we suspect that the majority of this increase
comes from an increase of microtubules that are entering the imaging plane. This
observation makes sense as we expect a growing concentration of microtubules
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entering the imaging plane due to network contraction. Had we accounted for this
increase in intensity over successive frames, our results would at best have led to
a greater area of the unit cells than the ones we computed, which would produce
greater effective diffusion constants. Even so, we argue that the roughly quarter of
a percent increase between frames is relatively minor and conclude that the total
microtubule count remains roughly constant over the course of the experiment.

Number conservation of unit cells
Due to the negligible photobleaching effects of the projector on the network and
the small influx of microtubules in the imaging plane, we make the assumption that
the total number of microtubules for the entire network is conserved. We further
assume that at the local level, the number of fluorescent microtubules that compose
a unit cell is also conserved. As a result, we choose to identify and track unit cells
in time by conserving their integrated fluorescence intensity.

Fluorescent unit cells of a photobleached microtubule network are thus segmented
in the cropped image sets where the microtubules outside of the activation region are
neglected. For each image, we identify the unit cells by first enhancing the contrast
between the fluorescence signal of the unit cells and the background through the
subtraction of a heavily Gaussian blurred form of the image (f = 20 pixels) and
subtracting off this blur from the original image. Pixel values are then normalized
across the image to fall between 0 and 1.

In order to identify each fluorescent square, we tested a variety of thresholding
schemes using the Sci-kit Image package for Python. In summary, the following
thresholding schemes are:

• Isodata – identifies those threshold values where, when each pixel is grouped
according to whether it lies above or below the threshold value, the threshold
value is the average of the two binned groups.

• Li – iteratively computes the cross-entropy between the image and a binary
image with a different thresholding value. The returned threshold value is that
which reduces the cross entropy [8].

• Mean – computes the mean pixel value across the image [9].
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• Otsu – finds the threshold that minimizes the sum of the variances of the
background and foreground [7].

• Triangle – computes a line from the peak in the histogram to the last histogram
bin (if the peak is shifted to the left of the histogram). A second perpendicular
line is drawn from this line toward the first histogram bin it touches. The
corresponding x-value gives the threshold [10].

• Yen – computes the minimum cross-entropy between the image and thresh-
olded binary image while accounting for the bit depth of the image [6].

Furthermore, we seek the method that best identifies the unit cells not only in the
bulk that will appear as squares but also those that lie along the periphery that may
not appear as complete squares after the photobleaching is applied but are neverthe-
less part of the network.

Fig 6.5 shows these various thresholding schemes performed on the background-
subtracted image (top right) with comparisons to the original raw image (top left).
We see that while the isodata thresholding approach misses many of the fluorescent
squares, other thresholding schemes reasonably render the threshold of the squares.
We notice that the Li, Otsu, triangle and Yen thresholding schemes miss unit cells
on the periphery of the network, especially if they are not squares as in those found
toward the center of the microtubule network. To keep track of their dynamics, we
elect to use the mean thresholding algorithm, which from visually comparing the
threshold to the raw data better represents the unit cells, including those unit cells
on the network periphery. After the thresholding is applied, the segmented image
is cleaned up by removing segmented objects that are too small (less than a third
of the area of a unit cell immediately after photobleaching) and objects that are
larger than the area of a unit cell. A morphological closing is performed where any
holes smaller than 3 pixels ⇥ 3 pixels within a fluorescent unit cell is closed. These
small holes may arise from a local minimum in signal that falls in the background
regime during thresholding. With the segmented images from the first frame, the
centroid position, area, and total fluorescence of each unit cell are computed. For
total fluorescence, we compute the pixel intensity by taking the raw image signal
and subtracting the average background signal inherent to the camera. Fig 6.6(A)
provides a schematic of the resultant thresholding to initially identify unit cells.
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Figure 6.5: Various thresholding schemes of fluorescent squares. Top two
images correspond to the raw (left) and background-subtracted (right) images. The
thresholding schemes used, in order, were isodata, Li, mean, Otsu, triangle, and
Yen thresholding methods. Due to the under-representation of unit cell fluorescent
signal for all the other methods, we opt for the mean thresholding scheme to identify
unit cells.

As schematized in Fig 6.6(B) and (C), images of subsequent time points are pro-
cessed with the intention of preserving the integrated fluorescence of each unit cell,
which corresponds with our argument that fluorescent microtubules are conserved
for each unit cell. We first subtract the background signal and segment unit cells
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with the same threshold value as for the C = 0 timepoint. However, as unit cells
begin to deform due to their fluorescent microtubules dispersing, the integrated
fluorescence signal of the newly segmented unit cells will differ from that of the
first time point, which translates to a different number of fluorescent microtubules.
As a result, for images after the first frame immediately succeeding photobleach-
ing, we expand or reduce the segmentation of unit cells by adding or subtracting
pixels around their boundaries until we obtain the same total fluorescence as the
C = 0 timepoint. Fig. 6.6(C) elaborates on the scheme for correcting to obtain the
same integrated intensity as in the initial time frame to within a specified tolerance.
To do this, each unit cell is then paired with itself from the previous time step
by determining nearest centroids. Due to the minimal reduction in fluorescence
intensity from the projector during imaging as discussed in Sec 6.4, we compare
the total fluorescence intensity of the segmented unit cell in the frame of interest
to that of the same unit cell from the first frame. 1 layer of pixel beyond (within)
the boundary of the unit cell are histogrammed and Otsu thresholded to distinguish
microtubule regions to background regions. The pixels that make up the foreground
(background) according to the thresholding are then added (subtracted) until the inte-
grated fluorescence falls within 0.01 tolerance of the original fluorescence intensity.

To understand how the choice of relative tolerance in the integrated fluorescence
affects that computed effective diffusion constant ⇡eff , we performed the unit cell
segmentation and tracking under different tolerance levels. Fig 6.7 shows that while
a tolerance below 0.015 leads to a constant effective diffusion constant, increasing
the tolerance above this point leads to a monotonic decrease in the ⇡eff . This sug-
gests that the area trajectories of unit cells can be highly sensitive to the tolerance
given to the microtubule preservation count. This control also indicates that the
area trajectories of unit cells are not markedly different below the 0.015 tolerance
and yields robust measurements of the area trajectories and by extension fits of the
effective diffusion constants.

Unit cell centroids, areas, and fluorescence intensities are then computed in addition
to the pixel-weighted center of the entire contracting network after this intensity-
adjusted processing for all of the unit cells. Image processing of a unit cell terminates
when it is found to overlap with another unit cell during the fluorescence intensity
correction scheme as this indicates that the unit cells have begun to merge and by the
next time point thus microtubules from one unit cell can no longer be distinguished
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from those of the other.

6.5 Photobleaching Performed at Different Times During Contraction
While all experiments in the manuscript involve activating a circular region of the
motor-microtubule system with a radius of 125 µm, that is, all experiments are
assumed to have the same amount of total tubulin, replicates may differ by the time
during the contraction process when the network is photobleached. SI Fig. 6.8
shows three such cases of this photobleaching on three separate replicates: (A)
shortly after the microtubule network has formed and begun to contract, (B) roughly
halfway between the initial and final sizes of the network, and (C) towards the end
of contraction. In all three cases, we observe a diffusive-like effect in the bulk of
the network. Data for each individual replicate is available in SI Sec 6.7.

6.6 Data Analysis
Contraction rate computation
In the main text, we use the centroids of fluorescent unit cells obtained in SI Sec.
6.4 to demonstrate that contraction speed of the microtubule network scales linearly
with distance from the network center. We first obtain the speed that each unit cell
centroid is moving toward the center as a function of time. For each unit cell, we
observe a linear relation between the centroid distance from the network center and
time after photobleaching of the form

A = E2 C + A0, (6.1)

where A is the unit cell centroid distance from the network center, E2 is the speed
of the unit cell (which will take to be positive here but directed toward the origin),
C is the time since photobleaching, and A0 is the initial centroid distance from the
network center immediately after photobleaching.

Based on the extracted contraction speed and distances for all of the unit cells
for a given motor type, we noted a linear relation between radius A and centroid
speed E2 of the form

E2 = U A + E0, (6.2)

where U is the contraction rate in units of inverse time and E0 is the contraction
speed at the network center. To this end, we aim to compute U and E0. Although
we expect the speed at the network center to be 0, we relax this assumption for
our analysis. To more carefully compute the rate of contraction of the network and
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determine the range of credibility of the computed rate, we use a Bayesian approach.
Specifically, we compute the probability of U and E0 given the contraction speed and
distance of each unit cell from the network center (A0, E2)8, % (U, E0 | {(A0, E2)8}),
where 8 denotes each unit cell. Here, we use the centroid distance immediately after
photobleaching but found that another criterion such as the median of the centroid
distance over the course of the time window analyzed does not dramatically affect
the results due to the relatively small travel (�A

A0
< 10% for �A the distance traveled

over the entire time course) the unit cells undergo.

We note from Bayes’ Theorem that

% [U, E0 | {(A0, E2)8}] =
% [{(A0, E2)8} |U, E0] % (U, E0)

% [{(A0, E2)8}]
, (6.3)

=
Œ
8
% [(A0, E2)8 |U, E0]Œ
8
% [(A0, E2)8]

% (U, E0) , (6.4)

/
÷
8

% [(A0, E2)8 |U, E0] % (U, E0) , (6.5)

where we drop the denominator on the right-hand side as it does not involve the
parameters we want to find, thus making the two sides proportional to each other.
Here, % [(A0, E2)8 |U, E0] is the likelihood distribution of getting the (A0, E2)8 that we
did given U and E0 while % (U, E0) is the prior distribution of our two parameters.

We expect that our priors on U and E0 are independent of each other, so we can
break up the probability function into a product of two functions

% (U, E0) = ? (U) ? (E0) . (6.6)

Meanwhile, we can rearrange each likelihood function as a product of two probabil-
ities. The probability of getting (A0, E2)8 given our parameters is also the probability
of getting E2,8 given our parameters and A0,8 times the probability of getting A0,8, or

% ((A0, E2)8 |U, E0) = %
�
E2,8 |U, E0, A0,8

�
%

�
A0,8

�
, (6.7)

/ %
�
E2,8 |U, E0, A0,8

�
, (6.8)

where we change to a proportionality again as %
�
A0,8

�
is independent of our parame-

ters. Here, we expect that our contraction speed for a given unit cell E2,8 comes from
a Normal distribution where the mean value is U A0,8 + E0 and standard deviation f.
This means that we will also need a prior on f. This means that our distribution
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really takes the form of

% (U, E0,f | {(A0, E2)8}) / % (U) % (E0) % (f)
÷
8

%

�
E2,8 |U, E0,f, A0,8

�
. (6.9)

As a result, we say that our likelihood takes the form

E2,8 ˆ Normal
⇣
UA0,8 + E0,f

2
⌘
. (6.10)

We then defined our priors to be that U is drawn from the half-normal distribution
where U > 0 as we are working with speeds of contraction, f is also drawn from a
half-normal distribution and enforced to be positive, and E0 is drawn from a normal
distribution about E = 0. We make the offset a normal rather than a half-normal
distribution as there may be a value of A > 0 for which the contraction stops, which
for a positive slope would mean a negative speed at A = 0. Put together, we have the
following priors

U ˆ Half-Normal (0, 1) , (6.11)

f ˆ Half-Normal (0, 1) , (6.12)

E0 ˆ Normal (0, 1) . (6.13)

We sampled the joint distribution of (U, E0,f) by Hamiltonian Markov chain Monte
Carlo using the Stan probabilistic program [11]. From each (U, E0) that is sampled
we compute the mean value ` = U A +E0 for 0  A  ' where ' is the distance of the
farthest centroid from the network center and report the median and 95% credible
region in Fig. 2 and 4-6 of the main text.

Computing the best fit effective diffusion constant
In the main manuscript, we use an advection-diffusion model to compute an effective
diffusion constant to quantify the difference in area between the experimental nor-
malized area trajectories and the pure contraction bound (signifying no diffusion).
To do so, we used the finite element method (FEM) on individual unit cells of ini-
tially uniform concentration subject to the advection-diffusion equation as described
in Eq. 3 of the main manuscript. We then processed the simulated concentration
field data with a similar integrated particle count method as described in SI Sec.
6.4 in order to compute the area of the unit cells in time. This analysis gives rise
to a family of normalized area trajectories for a fixed contraction rate and variable
diffusion constant. In order to compute the effective diffusion constant from, say,
the median normalized area trajectories from a given set of experimental conditions,
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we take the simulated area trajectory for one of the diffusion constants and the area
trajectory of the experimentally-obtained contraction rate and compute the sum of
the square of the difference between the two trajectories across time. For each of
the quartiles, the effective diffusion constant is computed as the one whose area
trajectory minimizes the sum of the differences squared.

6.7 Experimental Variation of Contraction Speed and Normalized Area Tra-
jectories

Individual replicates of contraction speed and normalized area trajectories
In the main manuscript, we computed the contraction rate using all of the repli-
cates of a given set of experimental conditions. However, to exhibit experimental
variation between replicates, we present in Fig. 6.9 the contraction speed and nor-
malized area data for all of the replicates involving Ncd236 at 1400 µM ATP and 0.5
mg/mL pluronic. Note that the line in the contraction speed is the same as shown
in Fig. 2(D) of the main manuscript where the contraction rate U = 0.002 sec�1 for
comparison of how each replicate compares to the computed line. This contraction
rate is also used for the pure contraction bound shown on the normalized area data.
The time noted at the top of each contraction speed plot marks the time into the
experiment that the photobleaching was performed, with the plots organized in order
of ascending time into the experiment of photobleaching. We note that while the
variability in times depends in part on the time needed for the microtubule network
to form and begin contracting, it is more generally dependent on how far into the
contraction process the network has progressed. Thus, later times generally denote
replicates where the microtubule network is approaching the end of the contraction
phase. We note that the contraction speed and area trajectory data across replicates
suggest no clear trend in either of these metrics against the time into contraction.

We also take note of some of the early contraction photobleach datasets, notably
corresponding to time points 302 sec (first one), 322 sec, 342 sec, and most no-
tably 662 sec and 682 sec, where the contraction speed appears to be lower than
the line particularly at high radii. We again emphasize that these replicates were
photobleached early in the contraction process and possibly while the network is
still forming. One potential interpretation of the low velocities is that this early on
in the contraction rate, there is a delayed response between the contraction happen-
ing at the center and the contraction happening toward the extremities. Another
possibility is that there may be unexpected chemical effects that cause the network
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in these replicates to take more time to form and lead to odd contraction effects. As
these contraction speeds fall below the linear contraction profile shown in red, we
suspect that this means that removing these datasets would translate to a new linear
contraction profile with a higher slope, e.g., a higher contraction rate and would
further translate to a sharper decrease in the normalized area trajectory of a purely
contracting unit cell, thus having little bearing on the observation that the unit cells
exhibit a diffusive-like effect. However, for the sake of transparency, we elect to
keep these datasets in the reporting.
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Figure 6.6: Unit cell segmentation correction scheme. (A) Unit cells in the first
image after photobleaching are segmented using mean thresholding to obtain an
initial threshold value � (C=0)

thresh. Dashed blue circle denotes the extent of the projected
light within which motors dimerize, causing the network to couple and contract
(green circle). (B) Unit cells of later frames are initially segmented using � (C=0)

thresh.
(C) The integrated intensity of each unit cell after the initial segmentation � initial

C>0 is
compared against that for the C = 0 case, �0. In instances where �C>0 < 0.99�0, the
pixels in a single layer beyond the segmentation boundary are histogrammed and
thresholded to distinguish pixels containing microtubules with those regions that
make up the background. These pixels with signal are then added, the integrated
intensity is recomputed and compared again to �0. The process is repeated until the
integrated intensity falls within 1% of �0.
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Figure 6.7: Effective diffusion constant fits against various tolerances in the
relative unit cell fluorescence. The tolerance is the fractional difference in fluo-
rescence intensity between the unit cell in the first frame and the unit cell at a later
time point. Dataset used on Ncd236 at saturated ATP concentration (1.4 mM).
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Figure 6.8: Photobleaching a grid pattern onto the contracting microtubule
network. Here, three different time points during microtubule network contraction
are shown where photobleaching is applied: (A) early in contraction as the network
pulls away from the reservoir of uncoupled microtubules; (B) in the middle of
the contracting phase; and (C) toward the end of contraction before the network no
longer appears to shrink. From left to right, columns of images correspond to various
times relative to photobleaching: immediately before photobleaching, immediately
after photobleaching (0 seconds), then 60 seconds, 120 seconds, and 200 seconds
after photobleaching. Dashed line in the pre-bleached early contracting microtubule
network outlines the circular activation pattern used for iLid- and micro-tagged
motor dimerization. Scale bars in the C = 200 sec column apply to their respective
rows of images. All three examples correspond to experiments using Ncd236 and
1.4 mM ATP, which are the two parameters tuned later. All experiments in the
manuscript use the same circular activation pattern of radius 125 µm regardless of
time into contraction process when the photobleaching occurs.
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Figure 6.9: Contraction speed (odd rows) and normalized area trajectory (even
rows) of each experimental replicate using 0.5 mg/mL pluronic, 1400 µM ATP,
and Ncd236. The lines in the plots of contractions speed data and in the plots of
the area trajectory are the same as in Fig. 2(D) and 2(F), respectively, of the main
manuscript. The time at the top of each contraction speed plot marks the time into
the experiment that the photobleaching was performed.
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Figure 6.10: Median contraction rate of each replicate as a function of their
number of unit cells. Contraction rate measured for all replicates of Ncd236 at 1.4
mM ATP and 0.5 mg/mL of pluronic.

Contraction Rate per Replicate
Although we computed a contraction rate compiling all of the replicates, we examine
the spread in the median contraction rate for each case. Fig. 6.10 shows the median
contraction rate U of each replicate as a function of the number of unit cells that
make up the photobleached network for that replicate. This corresponds inversely
with how far into the contraction process that we wait before photobleaching the
network, that is, fewer unit cells corresponds to photobleaching network when it is
smaller from having contracted further. Here, we see that most of the contraction
rates are strongly concentrated between 0.0015 and 0.0025 s�1. Furthermore, we do
not identify a clear trend between the contraction rate and how far along the network
is in the contraction process. As a result, we do not find that the computing the
contraction rate from combining all of the replicates will result in a dramatically
different outcome from if we treat each replicate individually.

6.8 Deformation of a Square Due Solely to Contraction
In the main text, we observed that each fluorescent unit cell on average conserves
its area while its center of mass moves toward the network center with speed that is
linearly dependent on the distance from the center. We compute the expected area
of each unit cell had the network elastically contracted due solely to the observed
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global contraction. We define the contraction velocity field v(G, H) as

v(G, H) ⌘ �U (GĜ + HĤ) , (6.14)

where U is the contraction rate as computed in SI Sec. 6.6 and reported in the main
manuscript. This means that after a time interval �C a point (G, H) subject to this
advective flow will be displaced in the x- and y- directions according to

�- = EG�C = �UG�C, (6.15)

�. = EH�C = �UH�C, (6.16)

so the point at the later time (G0, H0) relates to its earlier time point by

G
0 = G + �- = G (1 � U�C) (6.17)

H
0 = H + �. = H (1 � U�C) . (6.18)

Suppose we looked at the four corners of a unit cell, labeled as A, B, C, D as depicted
in Fig. 6.11. If we assign their coordinates as

A ! (GA, HA) , (6.19)

B ! (GB, HB) , (6.20)

C ! (GC, HC) , (6.21)

D ! (GD, HD) . (6.22)

Under a rectangular geometry, we can choose two vertices diagonally across from
each other on the rectangle and write their x- and y- coordinates with the coordinates
of the other two diagonal vertices, so with a choice of using coordinates from A and
D, the coordinates for B and C become

A ! (GA, HA) , (6.23)

B ! (GD, HA) , (6.24)

C ! (GA, HD) , (6.25)

D ! (GD, HD) . (6.26)

Under the deformation mapping, their new coordinates, labeled as A0, B0, C0, and
D0 get mapped on as

A0 ! [GA (1 � U�C) , HA (1 � U�C)] , (6.27)

B0 ! [GD (1 � U�C) , HA (1 � U�C)] , (6.28)

C0 ! [GA (1 � U�C) , HD (1 � U�C)] , (6.29)

D0 ! [GD (1 � U�C) , HD (1 � U�C)] . (6.30)
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Figure 6.11: Schematic of unit cell contraction due purely to the advective
velocity field. An advective velocity field scales linearly with distance from the
origin while pointing radially inward and is shown in blue. The points at the corners
of the square (A, B, C, D) are mapped after some time �C to the points (A0, B0, C0,
D0).

Eqs. 6.30 tells us that under this particular velocity field, any two points that are
horizontally or vertically aligned will maintain the same horizontal or vertical align-
ment, respectively, even at later times. Thus, a square will preserve its shape in time.

We next examine what happens to the area of a unit cell had the only effect been the
global contraction. In this case, we can compare the area of the square before and
after the deformation. To compute the area swept out by (A,B,C,D), we multiply the
line segment between B and D, !BD with the line segment between C and D, !CD:

f(A,B,C,D) = !BD ⇥ !CD, (6.31)

=
q

(GB � GD)2 + (HB � HD)2
�
⇥

q
(GD � GC)2 + (HD � HC)2

�
, (6.32)

= (HA � HD) ⇥ (GD � GA) . (6.33)

As noted from Eq. 6.26, we used the fact that GB = GD, HB = HA, GC = GA, and
HC = HD to simplify the equation down in terms of two coordinates. In comparison,
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the area of the deformed unit cell swept out by (A0, B0, C0, D0) takes the form

f(A0
,B0

,C0
,D0) = !B0D ⇥ !C0D0 , (6.34)

=
q

(GB0 � GD0)2 + (HB0 � HD0)2
�
⇥

q
(GD0 � GC0)2 + (HD0 � HC0)2

�
,

(6.35)

= (HA0 � HD0) ⇥ (GD0 � GA0) , (6.36)

= [HA (1 � U�C) � HD (1 � U�C)] ⇥ [GD (1 � U�C) � GA (1 � U�C)] ,
(6.37)

= (HA � HD) (1 � U�C) ⇥ (GD � GA) (1 � U�C) , (6.38)

= (HA � HD) ⇥ (GD � GA) (1 � U�C)2
, (6.39)

= f(A,B,C,D) (1 � U�C)2
. (6.40)

Thus we find that the area of the unit cell subject solely to the contraction would
decrease by (1 � U�C)2 after a time period �C. This comes in contrast to the results
that we found experimentally where the area of the fluorescent unit squares remains
greater than the pure contraction bound during the contraction process suggesting a
mechanism that disperses microtubules against the global contraction.

6.9 2D Linear Advection-Diffusion Model
In the work presented in the main manuscript, we argue for an advection-diffusion
model to describe the redistribution of microtubules in the bulk of the contracting
network. In this section, we explore Eq 3 as shown in the manuscript to examine
whether the model could reasonably recapitulate the experimental observations as
a tool for computing an effective diffusion constant for the diffusive-like spread of
microtubules in the bulk. While the main manuscript uses the finite element method
(FEM) to simulate the area change of a concentration of particles localized to a
square, as is the case for microtubules of a unit cell, we first develop an intuition for
this equation for a series of initial conditions and at steady state. To validate the FEM
approach before applying it to the unit square case, we numerically and analytically
solve these initial conditions and directly compare them. This theoretical analysis
is meant to explore the filament concentration when subject to a linear contraction
velocity profile. We note here that we later invoke the Sturm-Liouville Theorem,
which we elaborate on in SI Sec 6.10.

In the 2D telescoping case, we assume that we are carrying out an aster assay
experiment where we dimerize motors (and thus couple microtubules) in a circular
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region of radius '. We assume that the distributions of motors and microtubules
are strictly radially dependent and thus have no angular dependence. Finally, we
model the velocity profile of the microtubule movement by assuming radially inward
advection of particles where those that lie further away from the origin move faster
than those toward the center as given by

v = �UAÂ . (6.41)

The advection-diffusion equation then takes the form

m2

mC

= ⇡r2
2 � r · (v2), (6.42)

=
⇡

A

m

mA

⇣
A

m2

mA

⌘
+ U1

A

m

mA

(A2
2), (6.43)

= ⇡
m

2
2

mA
2 + ⇡

A

m2

mA

+ UA m2
mA

+ 2U2, (6.44)

= ⇡
m

2
2

mA
2 +

⇣
⇡

A

+ UA
⌘
m2

mA

+ 2U2, (6.45)

1
⇡

m2

mC

=
m

2
2

mA
2 +

⇣1
A

+ UA
⇡

⌘
m2

mA

+ 2U2
⇡

. (6.46)

We first follow the procedure of separation of variables 2(A, C) = �(A)) (C) and
determine that the time-dependent component takes on the familiar form of 4�⇡:2

C .
This ansatz is then applied to Eq. 6.46 and we rewrite the spatial component of the
concentration as

�:2� =
d2�
dA2 +

⇣1
A

+ UA
⇡

⌘ d�
dA

+ 2U�
⇡

, (6.47)

0 = A
d2�
dA2 +

⇣
1 + UA

2

⇡

⌘ d�
dA

+
⇣2U
⇡

+ :2
⌘
A�. (6.48)

We will define a new length scale _2 ⌘ ⇡

U
as well as a change of variables d ⌘ A

_

and :̃ ⌘ _: . In this case, Eq. 6.48 takes the altered form

0 = d
d2�
dd2 + (1 + d2)d�

dd
+

⇣
2 + :̃2

⌘
d�. (6.49)

By following a prescription on which we elaborate further in SI Sec 6.10, we obtain
a weighting function that will help us compute the eigenfunctions using Eq. 6.69,
namely,

<(d) = 4
d2
2 . (6.50)
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When we multiply Eq. 6.49 by the multiplicative function, we get

0 = d 4
d2
2

d2�
dd2 + (1 + d2)4

d2
2

d�
dd

+
⇣
2 + :̃2

⌘
d 4

d2
2 �,

(6.51)
d

dd

h
d 4

d2
2

d�
dd

i
+ 2d 4

d2
2 � = �:̃2

d 4

d2
2 �. (6.52)

Through the Sturm-Liouville Theorem as described in SI Sec 6.10, specifically Eq.
6.52, we find that the weighting function differs from the multiplicative function
due to the inclusion of the prefactor d. In this case, the weighting function F(d) as
well as ?(d) and @(d) are given as

F(d) = ?(d) = @(d) = d 4
d2
2 . (6.53)

Furthermore, we observe that the eigenvalues take the form :̃
2. Solutions of � from

Eq. 6.52 are obtained from Wolfram Alpha and take the form

�ss(d) = 2ss 4
� d2

2 , (6.54)

�dyn(d) = 21 4
� d2

2 1�1

⇣
� :̃

2

2
; 1;

d
2

2

⌘
+ 22⌧

2,0
1,2
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2

2

�����
� :̃

2

2
0, 0

!
, (6.55)

where ⌧<,=

?,@

⇣
I

��� 01,...,0?
11,...,1@

⌘
is the Meijer G-function (we split up the eigenfunctions as

dynamic and steady-state terms for now). We note here that the arguments of the
Meijer G-function are such that the function diverges at the origin. As our system
is defined as 0  A  ', we can say that 22 = 0. Thus, our eigenfunctions are

�ss(d) = 2ss 4
� d2

2 , (6.56)

�dyn(d) = 21 4
� d2

2 1�1

⇣
� :̃

2

2
; 1;

d
2

2

⌘
, (6.57)

where we note that in the case of :̃ = 0, we go from the dynamic eigenfunction to
the static eigenfunction.

No-flux boundary condition
In the work presented here, there is no inflow or outflow of material at the boundary.
Thus, we impose the boundary condition J

���
A='

= 0. This means that

�A

���
A='

= ⇡
d�
dA

� E(')�(') = ⇡ d�
dA

���
A='

+ U'�(') = 0. (6.58)
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We then need to ensure that the boundary condition is satisfied for the dynamic
eigenfunction. We start by taking the derivative of the eigenfunction:

d�
dA

= �21 d

_

4
� d2

2

h
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2
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, (6.59)
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(6.60)

so when applied to the boundary condition, we get

⇡
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� 21 U' 4
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+ 21 U' 4
� U'2

2⇡ 1�1

⇣
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⌘
. (6.63)

We are then left with the simplified equation,

⇣
⇡:

2

2U

⌘
1�1

⇣
1 � ⇡:

2

2U
; 2;

U'
2

2⇡

⌘
= 0. (6.64)

Here, : = 0 is satisfied, which yields the steady-state solution. Fig. 6.12 shows the
zeros when we set '

_
= 3.16. The first few non-zero eigenvalues are then :̃ = 0.474,

Figure 6.12: Zeros of : for _
2
:

2

2 1�1

⇣
1� _

2
:

2

2 ; 2; '
2

2_2

⌘
= 0 where '

_
= 3.16. Red dots

are overlayed with the points where the Kummer confluent hypergeometric function
crosses the G-axis.
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0.759, 1.058, 1.354, and 1.672. Here, we observe a similar oscillator pattern to the
zeros of the system. Once again, we see that there are multiple values of : that satisfy
the boundary conditions. This means that the solution to the advection-diffusion
problem once both boundary and initial conditions are satisfied, is a superposition
of the different eigenfunctions:

2(A, C) = 2ss 4
� UA2

2⇡ + 4� UA2
2⇡

1’
8=1

284
�⇡:2

8 C 1�1

⇣
�
⇡:

2
8

2U
; 1;

UA
2

2⇡

⌘
. (6.65)

For simplicity, we will reintroduce the length scale _ ⌘
q
⇡

U
so that the equation is

simplified as

2(A, C) = 2ss 4
� A2

2_2 + 4�
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1’
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2_2

⌘
. (6.66)

We turn next to the Sturm-Liouville Theory in SI Sec 6.10 before applying these
equations to three simple initial conditions as validation of the theory and the finite
element methods (FEM) approach.

6.10 Sturm-Liouville Theory
The Sturm-Liouville theory says that all well-behaved second-order linear ordinary
differential equations that can be written in the form

d
dG

h
?(G)dH

dG

i
+ @(G) H(G) = �_ F(G) H(G), (6.67)

have real eigenvalues with an orthonormal basis of eigenfunctions. Curiously, these
equations also have a prescription for determining these eigenfunctions. Impor-
tantly, F(G) is the weighting function, which provides the means for satisfying the
orthogonality relations for finding coefficients of each term in the series solution to
the partial differential equation. Specifically, if we were to write the ODE in the
form

%(G) H00(G) +&(G) H0(G) + '(G) H(G) = 5 (G), (6.68)

for functions %(G),&(G), '(G), and 5 (G), then there is a multiplicative function that
can be determined by

<(G) = exp
⇣ π

&(G) � %0(G)
%(G) dG

⌘
. (6.69)
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This multiplicative function is then multiplied to Eq. 6.68 and recast into the form
shown in Eq.6.67. Thus, with %(G̃) = 1 and &(G̃) = G̃,

<(G̃) = exp
⇣ π

G̃ dG̃
⌘
, (6.70)

= exp
⇣
G̃

2

2

⌘
, (6.71)

and the ODE takes the form

0 =
d
dG̃

h
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2

d�
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i
+�
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⌘
4

G̃2
2 , (6.72)

or in the form of Eq. 6.67,
d
dG̃

h
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G̃2
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d�
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+ 4 G̃2

2 � = �:̃2
4

G̃2
2 �, (6.73)

so that ?(G) = @(G) = F(G) = 4 G̃2
2 and _ = :̃2.

Next, we show the orthogonality conditions of the eigenfunctions. Suppose that
solving Eq. 6.67 creates a series of eigenfunctions {H 9 (G)}. Suppose that a given
eigenfunction H8 (G) has the eigenvalue _8 so that

d
dG

h
?(G)dH8

dG

i
+ @(G) H8 (G) = �_8 F(G) H8 (G). (6.74)

Suppose that each eigenfunction of the system, bounded by 0  G  1, obeys the
boundary conditions

U1H8 (0) + U2H
0
8
(0) = 0, (6.75)

V1H8 (1) + V2H
0
8
(1) = 0. (6.76)

To test the orthogonality conditions, we multiply both sides by H 9 (G), a particular
eigenfunction of the differential equation, and integrate over the entire system,π
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(6.77)
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(6.78)

Had Eq. 6.74 involved H 9 (G) and we multiplied both sides of the equation by H8 (G),
then Eq. 6.78 would have the subscripts reversed:
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(6.79)
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Suppose we subtracted Eq. 6.79 from Eq. 6.78 and applied our boundary conditions:
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π 1
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F(G) H8 (G) H 9 (G)dG = 0. (6.83)

If 8 = 9 , then the left-hand side is already zero.
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We will return to the case where 8 = 9 to find the coefficients of eigenfunction. If
8 < 9 , then the eigenvalues are different here and the integral is zero:π

1

0

F(G) H8 (G) H 9 (G)dG = 0, for 8 < 9 . (6.85)

Eq. 6.84 serves as a convenient equation for analytically solving the coefficients for
each eigenfunction.

6.11 The Recovery of a Typical FRAP-like Disc is Time-Sensitive in the
Advection-Diffusion Model.

As we derive in the SI Sec. 6.9, the general solution to the PDE

m2

mC

= ⇡r2
2 + r ·

h
Ur2

i
, (6.86)

assuming no angular dependence, takes the form
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where 2ss is the coefficient for the steady-state concentration term, _ ⌘
q
⇡

U
, :8 are

the eigenvalues specific to the boundary condition, 28 are the coefficients based on
initial conditions, and 1�1(0; 1; I) is the Kummer confluent hypergeometric function

1�1(0; 1; I) =
1’
;=0

(0);
(1);

I
;

;!
, (6.88)
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where the Pochhammer symbol (0); = (0+;�1)!
(0�1)! . The most well-known example of

Eq. 6.88 is the case where 0 = 1, which yields 1�1(0; 0; I) = 4I. The eigenvalues
{:8} are found by satisfying the boundary conditions and are those terms that satisfy
the equation
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2
; 2;

'
2

2_2

⌘
= 0. (6.89)

Eq. 6.87 shows that the steady-state profile of the concentration is a Gaussian dis-
tribution with standard deviation _.

We now seek to identify the coefficients of the terms, which are specific to the
initial conditions. Here, we will analytically examine three cases for initial condi-
tions: 1) uniform concentration, 2) a uniform concentration except with molecules
removed in the region A  '0 as found in many FRAP assays, and 3) a FRAP-like
removal of molecules in the region A  '0 after the system initially reaches a steady-
state Gaussian concentration profile. As our goal is to validate our FEM simulations
through agreement with some initial conditions that can be analytically determined,
we directly compare analytical and FEM solutions.

Figure 6.13: Radial advection-diffusion for various initial conditions. (A) Uni-
form concentration throughout the system. (B) Uniform concentration for A > '0
and no molecules for A  '0. (C) A Gaussian distribution for A > '0 and no
molecules for A  '0. Analytical solutions are presented as solid lines while solu-
tions obtained by finite elements are shown as hollow points. The initial condition
for each situation is shown as a dashed black line. For all studies, ⇡ = 0.1 µm2

s ,
' = 10 µm, and Em = 0.1 µm

s . For (B), we set '0 = '

2 while for (C) we set '0 = '

4 .
For (C), the steady-state profile prior to removing molecules for A  '0 is shown as
a dashed red line. All analytical solutions use the first 12 eigenvalues that satisfy
Eq. 6.89.
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Uniform concentration
We start with the case where the concentration is uniform everywhere,

2(A, 0) = 20. (6.90)

The solution to the PDE with this initial condition takes the form of
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(6.91)

Fig. 6.13(A) shows the concentration profile as a function of radius and for various
time points given this initial condition. Here, we used ⇡ = 0.1 µm2

s , ' = 10 µm,
and Em = 0.1 µm

s . Solid lines indicate different time points for the specific analytical
solution given the uniform initial condition. These analytical solutions also show
strong agreement with simulations performed by FEM which are denoted by hollow
points. Here, we use the first 12 eigenvalues :8 for the analytical solution. Similar
to the decomposition of a square wave into a sum of sinusoidal functions yielding
imperfect agreement with the original function, we see here that the use of a limited
number of eigenvalues that satisfy Eq. 6.89 leads to fluctuations about the original
function for C = 0 (see SI Sec. 6.12 on Gibbs phenomenon). Nevertheless, we see that
these fluctuations in the analytical condition quickly smooth out for C > 0. For the
given parameters, the concentration at larger radii decreases quickly due to the higher
advection overcoming diffusion. As shown at C = 20 seconds and C = 40 seconds,
the concentration appears roughly uniform at lower concentrations but the length
scale of this uniformity appears to decrease. At C = 990 seconds, the concentration
profile reaches the Gaussian steady-state solution where the concentration gradient
allows diffusion to counter the advective flow.

Uniform concentration for A > '0.
We apply a similar initial condition as that used in Sec. 6.11, but remove any
molecules within a distance '0 from the origin as typically performed in FRAP
experiments. This initial condition is mathematically described by

2(A , 0) =
8>><
>>:

0 if A  '0,

20 if A > '0.
(6.92)

The solution for this initial condition is similar to Eq. 6.91 but with different limits
of integration (see SI Sec. 6.10 on Sturm-Liouville Theory and 6.9 for application
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of the theory in 2D),
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where

U8 =
'

2
1�1

⇣
� _

2
:

2
8

2 ; 2; '
2

2_2

⌘
� '2

0 1�1

⇣
� _

2
:

2
8

2 ; 2; '
2
0

2_2

⌘
Ø
'

0 A
0
4
� A02

2_2
h
1�1

⇣
� _

2
:

2
8

2 ; 1; A 022_2

⌘i2
dA0

. (6.94)

As '0 ! 0 in Eq. 6.93 we recover Eq. 6.91. Fig. 6.13(B) shows traces of the
concentration profile at the same times as in Fig. 6.13(A). Here, '0 = '

2 . Once
again, we see that the analytical solution for C = 0 fluctuates about the defined initial
condition but quickly smooth out and agree well with FEM results (hollow points)
for C > 0. By removing molecules at A  '0, a wave of molecules move toward
the origin from a combination of advection toward the origin and diffusion moving
molecules against the concentration gradient while the concentration at A ! '

recedes. Once again, we recover a Gaussian profile, but at a lower maximum than
that observed in Fig. 6.13(A) due to the lower initial number of molecules.

Gaussian profile for A > '0.
Finally, consider a situation where molecules in this advective-diffusive system are
allowed to reach steady-state before photobleaching all molecules within a certain
radius of the center A  '0. The initial conditions would appear as

2(A, 0) =
8>><
>>:

0 if A  '0,

20 4
� A2

2_2 if A > '0.
(6.95)

We show analytically that the concentration profile is
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Once again the analytical solution agrees with simulations of the same initial con-
dition shown in Fig. 6.13(C) for '0 = '

4 . We note here that as '0 ! 0 we recover
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the steady-state solution again as the time-dependent terms vanish and the ratio of
exponentials in the time-independent term goes to unity. Fig. 6.13(C) shows again
the imperfection of the analytical solution for C = 0 and the initial condition but
a strong agreement with FEM results. In this situation, the concentration toward
the outer edge of the system remains largely unchanged as diffusion and advection
are balanced toward the boundary. However, at smaller radii of the system, there
is a shift in concentration as molecules enter the A  '0 region and for the chosen
parameter values, the overall concentration profile returns to a Gaussian distribution
within 3 minutes.

Across all three initial conditions, we see that the concentration builds up toward
the contraction center and forms a Gaussian distribution as the steady-state profile.
The different time courses in the concentration profiles for these initial conditions
further reveals that in experimental systems exhibiting such an advective-diffusive
behavior the use of FRAP becomes sensitive to the time when photobleaching is
applied. If the concentration profile in the system has already begun to move away
from a uniform distribution, such as the initial contraction of a highly connected
filament network, then the molecule redistribution until steady state is achieved will
show different recovery profiles from that of an experiment where photobleaching
is applied at a time when the system is already close to reaching the steady-state
profile. Such results provide the two extremes of “fluorescence recovery” in poten-
tial in vitro assays that evolve from a uniform concentration to a Gaussian-shaped
distribution subject to this advection-diffusion system.

We show here three cases where analytical solutions to the linear advection-diffusion
equation can be determined for direct comparison to the FEM simulations. As the
square unit cell is more complex, we turn fully to FEM for our measurements and
comparisons to the analyzed experimental data.

6.12 Numerically solving Advection-Diffusion Equations with COMSOL
Our use of COMSOL MultiphysicsÚ simulations are constructed with consideration
of four particular details in mind: design of the geometry; set-up of the differential
equations, including boundary and initial conditions; choice of mesh size; and
sweeping through parameters. Elaboration of the mesh size dependence is discussed
in Sec. 6.12.
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Geometry
Because we analyzed fluorescent unit cells from our experimental data until they
were no longer distinguishable from neighboring unit cells, we opted to simplify
the FEM numerical simulation by examining the time course of a single unit cell
subject to advection and diffusion. Even though unit cells in the network may be
transported toward the center of contraction, as we have shown in SI Sec 6.8, the
unit cell deformation from advection is not position dependent. This is similarly the
case for diffusion, where its contribution to the flux of molecules is dependent on
the gradient of concentration. As indicated in Fig. 6.14, the geometry of the system
in the COMSOL simulations is a square of side length 20% longer than the side
length of unit cell, which we take to be 10 µm. We then place the smaller square that
represents the unit cell inside of the larger square such that it shares the same center.
We then take the union of these two squares before applying the split operation to
distinguish the unit cell from the surrounding region.

Setting up the differential equations
Although there are multiple forms of inputting partial differential equations in
COMSOL, for the advection-diffusion equation studied, that is

mD

mC

= ⇡r2
D + Ur · (rD) , (6.98)

we elect to use the coefficient form PDE and define our variable of interest as D with
units of mol/m3 and ensure that each term in the equation carries units of mol/(m3·s).
Although our past derivations use the variable 2, we use D in the differential equation
due to the occurrence of the coefficient 2 in the coefficient form PDE in COMSOL.

!

Fluorescent square Photobleached region

COMSOL Implementation

10 µm

12 µm

Figure 6.14: Schematic of COMSOL set-up. To simulate the time evolution of a
single unit cell in the advection-diffusion equation, we model a single unit cell as a
10 µm x 10 µm square within a larger 12 µm x 12 µm square.
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We note that the coefficient form PDE as shown in COMSOL is of the form

40

m
2
D

mC
2 + 30

mD

mC

+ r · (�2rD � [D + W) + V · rD + 0D = 5 , (6.99)

where 40, 30, 2, 0, and 5 are scalar coefficients while [, W, and V are vectors.
We note here that in COMSOL, the term involving [ is written as U, but to avoid
confusion with the U used throughout our work, we change the COMSOL notation
to [. Rewriting Eq. 6.98 to match the form of Eq. 6.99 gives

mD

mC

+ r · (�⇡rD � UrD) = 0. (6.100)

We can see here that to make Eq. 6.100 match Eq. 6.99, then 40, 0, all of the
elements of W, all of the elements of V, and 5 are all 0 while

30 = 1 s�1
, (6.101)

2 = ⇡, (6.102)

[ =

"
UG

UH

#
, (6.103)

where we note that we define ⇡ to take on dimensions of length2/time and U to have
units of time�1 in COMSOL.

In our experiments, we are careful to ensure that there is negligible to no de-
tectable amount of microtubules flowing from outside of the light-activated region
into network. We thus impose a no-flux boundary condition by using the Zero Flux
boundary condition option in COMSOL.

Applying the initial condition
We opt to make the initial condition of the unit cell of uniform concentration 20

while the concentration in the region outside of the unit cell is initially set to 0.
However, defining these two initial conditions piecewise with the geometry of the
system outlined above leads to a sharp change in the gradient, which can lead to
large errors and negative concentrations at high Péclet number, we instead define a
rectangle function where the edges of the rectangle function are smoothed over 200
nm and have well-defined continuous derivatives to second order.

Choice of mesh size
Because we use the total particle number as a conserved quantity for computing
the area of the unit cells in time, we wish to minimize the numerical error in the



226

FEM simulations. Of the various mesh designs, we opt to use the “Extremely fine”
mesh size with the boundary between the unit cell and the surrounding system,
obtained from the geometry design, to also undergo 6 iterations of refinement under
the “Control Entities” tab. This boundary is heavily refined in order to minimize
the occurrence and value of negative concentrations that may arise at high Péclet
number. A more elaborate discussion of mesh size choice is presented in SI Sec.
6.12 on the Gibbs phenomenon.

Parameter Sweep
To perform the parameter sweep, we include the Parametric Sweep option in the
Study section of the simulation and define the parameters of interest under Global
Definitions ! Parameters. Within the parameters, we specify the parameters ⇡ for
our diffusion constant and U for our contraction rate. Under the Parametric Sweep,
we can then chose ⇡ and U as our parameters to be swept. We select our range of
values of U to be the different experimentally-obtained contraction rates while ⇡
ranged from 0.0001 µm2/s to 0.01 µm2/s in various increments ranging from 0.0001
µm2/s to 0.0005 µm2/s. All possible combinations of ⇡ and U were permitted for
the simulations.

Gibbs phenomenon in analytical solutions and mesh granularity in FEM
As we noted in the SI Sec. 6.11, upon solving the analytical solutions for three cases,
there was notable discrepancy between the analytically solved concentration profile
at C = 0 and the defined initial condition. In this section, we address the sensitivity
of the analytical solutions to the number of terms in the infinite series that are kept
when showing the concentration profile over time. We then discuss a similar case of
sensitivities in the finite element method (FEM) which can also affect the accuracy
of numerical solutions.

As shown in Fig. 6.15, the analytical solution, which is composed of the first
100 non-zero eigenvalues for the two cases involving a uniform initial concentration
and the first 25 eigenvalues for the one involving the FRAPed Gaussian profile and
the steady-state function, creates oscillations about the intended initial condition.
This disagreement is a demonstration of the Gibbs phenomenon, as famously re-
vealed by the imperfect decomposition of a square wave into a sum of sinusoidal
functions. Fig. 6.15 demonstrates the evolution of each of the three analytical
solutions examined in the main manuscript when more eigenvalues are included
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Figure 6.15: Gibbs phenomenon for analytical solutions. Concentration pro-
files of the analytical solution for the initial conditions (A) 2(A, 0) = 20, (B)
2(A > '0, 0) = 20, and (C) 2(A > '0, 0) = 20exp(�A2/2_2) with the steady-
state solution and the first nonzero eigenvalue solution (purple line), the first five
nonzero eigenvalue solutions (blue), the first twenty-five terms (red), and for (A) and
(B) the first hundred terms (green). The intended initial conditions are represented
as dashed black lines.

in the solution. Specifically, for 2(A, 0) = 20 (Fig. 6.15(A)), 2(A > '0, 0) = 20

(Fig. 6.15(B)), and 2(A > '0, 0) = 20exp(�A2/2_2) (Fig. 6.15(C)), all of which
are represented by dashed black lines, more eigenvalues reduce the level of error
between the analytical solution and the initial condition. For the two initial condi-
tions involving a uniform concentration, the use of one eigenvalue in addition to the
steady-state solution (purple line) leads to a large negative concentration at A = 0 but
more closely recapitulate the initial conditions after using 100 non-zero eigenvalues.
Deviations from the initial condition decrease dramatically by that point. This is
similarly observed for the clipped Gaussian distribution: while the Gaussian tail is
quantitatively captured by the the addition of only a few eigenvalues, the analytical
solution begins to better recapitulate the concentration profile about A = '0 with
the addition of more terms in the solution. Curiously, after using more than 25
eigenvalues, the solution shows large oscillations rather than smaller ones that are
smoothed out rather quickly after a small amount of time.

Just as analytical solutions are sensitive to a form of resolution to properly cap-
ture the time evolution of a variable of interest, more concretely shown through the
number of eigenvalues computed and by extension the number of terms used in the
infinite series, so too are there sensitivities in the FEM solution. These sensitivities
must also be addressed during setup of the FEM solution to ensure that the model
equation is being accurately recapitulated. In this case, a key consideration is the
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choice of granularity in the mesh. As FEM involves solving the governing equa-
tion over a particular domain, having a very fine grained mesh allows for the FEM
solution to more accurately reflect the true solution to the problem at the cost of
computational time. On the other hand, a very coarse-grained mesh involves less
computing power to solve the original equations but may coarse grain away details
smaller than the element size, requiring a balance between accurately solving the
original PDE(s) and computational efficiency.

Fig. 6.16 shows how the granularity of the mesh affects the FEM solutions. We
compare the concentration profiles produced by FEM (solid blue lines) against the
true initial condition (dashed black lines) for six different element sizes as found
in the physics-controlled mesh feature in COMSOL Multiphysics: (A) extremely

Figure 6.16: Effects of mesh granularity on FEM solution. Concentration profiles
at C = 0 for six different element sizes as defined by the COMSOL Multiphysics
physics-controlled mesh: (A) extremely coarse, (B) coarse, (C) normal, (D) fine,
(E) extra fine, and (F) extremely fine. Finite elements output is represented by the
blues lines while the true initial conditions are given as the black dashed lines. For
visualization purposes, the appearance of the meshes used for the defined geometry
are shown as insets in the upper righthand corner of the respective subfigures.
Concentration profile is from a line trace along the horizontal axis from the origin
of the geometry to the boundary.
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coarse, (B) coarse, (C) normal, (D) fine, (E) extra fine, and (F) extremely fine. We
see that while using the most coarse-grained feature poorly matches the desired ini-
tial condition with more of a sine wave than a square wave, successively decreasing
element size (increase in mesh fineness) allows the FEM solution to more closely
reflect the initial condition. Fig. 6.16(B)-(E) show that increasing the mesh fineness
leaves fewer deviations from the true values, largely located near the discontinuities
in the profile. The insets in the upper right of each figure shows the mesh pattern for
the geometry for the study. As Fig. 6.16(F) shows, while the extremely fine mesh
does not overshoot above the 20 values or undershoot the 2(A, 0) = 0 regions, the
finite size of the elements in the mesh causes the discontinuous region to take on a
value between the two regions instead. As the FEM simulation is not computation-
ally demanding for the single unit cell case, we opt to use an Extremely Fine mesh
setting.

6.13 FEM Results of Advection-Diffusion Equation on a Simulated Unit Cell
Array

In the main manuscript, we measure the area of the fluorescent squares over time
and compare the results to numerical simulations of an advection-diffusion equation
through the FEM simulations as described in SI Sec 6.12 in order to compute ef-
fective diffusion constants. While alternative approaches to obtaining the effective
diffusion constant exist, we offer this as a direct comparison to numerical experi-
ments. For a qualitative comparison to the experimentally-observed change in the
photobleached microtubule network, we present in this section the time evolution
of the concentration distribution for an array of unit cells subject to linear advec-
tive and diffusive effects. For these simulations, we follow a similar procedure as
outlined in SI Sec. 6.12 but on a circle of radius 60 µm and squares of side length
15 µm with a periodicity of 30 µm. Fig. 6.17 shows different time points of the
concentration profile subject to the same rate of advection (0.002 sec�1) but different
diffusion constants, namely, those measured for the median (Fig. 6.17(A)) and 3rd
quartile area trajectories (Fig. 6.17(B)), an order of magnitude greater diffusion
constants (Fig. 6.17(C)-(D)), and roughly the diffusion coefficient of a free micro-
tubule (Fig. 6.17(E)). From examining the different concentration profiles in Fig.
6.17 in comparison to the experimental results shown in Fig. 2 of the manuscript,
we see that once again, introducing diffusion to the system is a necessary component
to recapitulate the experimentally obtained results. We further see that by eye the
simulated data and experiments look most similar when simulating with an effective
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t = 60 sec t = 120 sec t = 240 sec t = 600 sec

(A)

(B)

(C)

(D)

(E)

t = 0 sec

Figure 6.17: Concentration profiles of an array of unit cells at various time
points and diffusion constants. The FEM simulation is the same as that described
in SI Sec 6.12 but where each square (denoted by initial concentration 20 as drawn
with the top yellow box in the C = 0 sec schematic) has a side length of 15 µm and a
center-to-center distance of 30 µm, with a concentration of 0 in between. In all cases,
we use the same advection rate of 0.002 sec�1 and different diffusion coefficients:
(A) 0.001 µm2

sec , (B) 0.004 µm2

sec , (C) 0.01 µm2

sec , (D) 0.03 µm2

sec , and (E) 0.1 µm2

sec .

diffusion constant of 0.1 µm2

sec . However, we note that as discussed in the results
section "The effective diffusion constant is roughly two orders of magnitude lower
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than free diffusion of a microtubule" in the manuscript and as revealed through Fig.
3, we see that when we careful quantify the area trajectories using the same metric
for experiments, the diffusion constants above about 6.0 ⇥ 10�3 µm2

sec would lead to
increasing area trajectories instead.

6.14 Motor Constructs
Motor Construct Sequence Layout

micro variant pBiex-1:FLAG-GG-mVenus-(GSG)2-micro-(GSG)4-Ncd281
iLid variant pBiex-1:FLAG-GG-mVenus-(GSG)2-iLid-(GSG)4-Ncd281

Table 6.1: Ncd281 construct design. All constructs are designed in the pBiex-1
vector and produced by Twist Biosciences.

Motor Species Speed (pH 6.8) Speed (pH 6.1) Processivity
Ncd281 53 ± 9 nm/s 55 ± 1.1 nm/s Nonprocessive [12]
Ncd236 130 ± 30 nm/s 120 ± 10 nm/s Nonprocessive [13, 14]

bacterial-expressed K401 220 ± 40 nm/s 250 ± 70 nm/s unmeasured
insect-expressed K401 650 ± 70 nm/s 630 ± 100 nm/s ⇡ 100 steps [13]

Table 6.2: Motor variant parameters.

While several of the motors used here in the analysis are obtained from previous
work, including K401 expressed in bacteria [1], K401 expressed in insects and
Ncd236 expressed in insects [13], we also designed constructs for the study of
Ncd281 [12]. Specifically, the sequences are inserted into pBiex-1 vectors and
includes a FLAG tag for protein purification, mVenus for motor fluorescence visual-
ization, either a micro or iLid domain as described in [15] and Ncd281 as described
in [12]. Between these different domains are multiple repeats of a ‘GSG’ amino
acid sequence which offers flexible links between the regions. Table 6.1 illustrates
these sequences. Constructs were produced by Twist Biosciences.

In addition, Table 6.2 shows the different motors presented in the manuscript,
including their processivities and maximum speeds at two pHs: pH 6.8 used in
previous studies [1, 13] and pH 6.1 used for many conditions here. Changes to pH
have been previously shown to affect motor speeds for kinesin-1 [16, 17]. Briefly,
gliding assays are performed using the motors and the same reaction mix performed
at pH 6.8 as in the previous works [1, 13] and at pH 6.1 as performed in the
experiments presented here. Microtubules are tracked over time using the same
algorithm used for the microtubule length measurements performed in SI Sec 6.2
with the added feature of identifying nearest centroids in subsequent frames while
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weighting according to microtubule length and the orientation of the filaments.
Here, we find that in some instances, the motor speed at pH 6.1 is on average slower
than that at pH 6.8 while in the case of bacterial-expressed K401, the higher pH
is on average slower. In all cases, the speeds still fall within a standard deviation
of the pH 6.8 case. Citations of their processivities are added as necessary. We
note that we omit citing a processivity for the bacterial-expressed K401 as it is not
known for certain whether it has the same processivity as the Sf9-expressed K401
and thus is an open question as to whether a low processivity of bacterial-expressed
K401 causes a more fluctuating trend in the effective diffusion constant for the ATP
titration data.

6.15 Variability in Péclet Number
In the main manuscript, we argue that a Péclet number Pe emerges regardless of the
effective motor speed, tuned through ATP concentration or motor species. There, we
presented this using the effective diffusion constants fitted from simuations onto the
median area trajectories for these conditions. To get an idea for how sensitive Pe is to
the variability found within conditions, e.g. the spread in area trajectory distribution,
we compute Pe for the first and third quartiles. Fig. 6.18 shows best linear fits for
each of quartiles examined where the slopes denote the respective values of Pe.
Here, we find that in addition to the median Péclet number Pemed = 2.6 ± 0.2 as
noted in the main manuscript, Pe25 = 4.5 ± 0.5 and Pe75 = 2.4 ± 0.1. Here, we see
that despite the variability in the effective diffusion constant, Pe is less than a factor
of 2 different between the quartiles, suggesting low variability in this dimensionless
number.

6.16 An Expanded Investigation of the Advection-Diffusion Equation
As we showed at the end of the Results section, there is a thought-provoking
reinterpretation of the advection-diffusion equation (Eq 5 in the main manuscript)
that hypothesizes that the diffusion constant ⇡ is proportional to the contraction rate
U. We called this proportionality constant V to be interpreted as the coupling between
motor action and effective diffusion, permitting us to rewrite the advection-diffusion
equation in the form

m2

mC

= Ur · (r2 + Vr2) . (6.104)

In the main manuscript, we argued that a consequence of Eq 6.104 (Eq 11 in the
manuscript) is that the contraction rate, which is tied to the motor speed, is involved
in both the global contraction of the network and the local diffusive-effect through
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Figure 6.18: Fits of Péclet number for the first quartile (red), median (blue), and
third quartile (purple). We remind the reader that the blue datasets are identical
to what is presented in Fig. 6 of the main manuscript.

a coupling strength factor V. We now further explore the consequences of such a
finding on our dataset writ large.

Data collapse of the area trajectories
An intriguing question regarding Eq. 6.104 is whether there is a way of relating
all of the different area trajectories for the different biochemical conditions exam-
ined. Indeed, if we divided alpha from both sides of the equation and redefine a
dimensionless time C0 = UC, we see that Eq. 6.104 becomes

m2

mC
0 = r · (r2 + Vr2) . (6.105)

Eq. 6.105 tells us that if we were to multiply time for the different conditions, whether
in the FEM simulations or the experiments, by their corresponding contraction
rates U, we should see that only one quantity matters to generate the family of
normalized area curves: the coupling strength factor V. Fig. 6.19 shows all of the
simulated area trajectories by FEM and all of the median normalized areas from
the different experimental conditions where their times are non-dimensionalized
with their corresponding contraction rates. Furthermore, each of the lines are color
coded to represent a different coupling strength factor V, computed by dividing the
diffusion constant parameter of each curve by the corresponding contraction rate
used in a given simulation. The darker the shade of blue, the higher the strength
factor V. Here, we see that as expected, increasing the value of V corresponds
to a normalized area trajectory deviating farther from the pure contraction bound.
Furthermore, we see that by non-dimensionalizing time for all of the normalized
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area trajectories, we get the different datasets to roughly result in a data collapse
with one value of V. This further reinforces the idea of a close coupling between
the contraction rate and the local active diffusion in the network, which we thus far
quantify as this coupling term V.

Relating motor speed to contraction rate and strength factor
Next, we turn to the seeming relation between the contraction rate and motor speed.
In particular, we see an enticing linear relationship between the two quantities for
the different motor species in Fig 4 of the main manuscript. If we were to fit a line
through the median contraction rate against measured motor speeds as reported in
SI Sec 6.14, we obtain a line of slope 0.026 µm�1, as shown in Fig. 6.20. We note
that the y-intercept of this fit is close to 0 at �6.0 ⇥ 10�4 s�1.

In addition, the ATP titration data for Ncd236 and bacterial-expressed K401 suggest
that we can back-calculate the effective speeds of these motors. Specifically, we can
compute the effective motor speeds from using the Michaelis-Menten equation for

In
cr
ea
sin

g

Figure 6.19: Data collapse of the different normalized area trajectories from
FEM simulations and experiments as a function of the nondimensionalized
time C0 = UC. Solid blue lines correspond with a different FEM simulation where the
darker the blue the higher the value for V. Different colored points correspond to the
median normalized area of each experimental condition reported in the manuscript.
The dashed black line corresponds with a generic pure contraction bound (1 � C0)2.
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Figure 6.20: Linear fit of contraction rate against the motor speeds as presented
in Fig. 4 of the main manuscript. Here we use the mean motor speed and the
median contraction rate for each motor species. The slope of the line corresponds
to 0.026 µm�1 and a y-intercept of �6.0⇥10�4 s�1. We remind the reader that some
error bars corresponding to the 95% credible region are smaller than the size of the
points.

the measured Michaelis constant  ATP at each ATP concentration 2, or

Eeffective = Emax

2

 ATP

1 + 2

 ATP

. (6.106)

As we are simply exploring the data, here we use the best fit Michaelis constants
for the two motors,  ATP = 30 µM for Ncd236 and  ATP = 47 µM for bacterial-
expressed K401. We plug these in using the motor speeds measured from the gliding
assays in SI Sec 6.14 and plot their contraction rates with motor speeds. Fig. 6.21
shows the relation between contraction rate and motor speed. Here, we see that
the linear relation between the two quantities appears further reinforced as strongly
linear between the two plots, making a strong case for a linear relation between the
global contraction rate of the network and motor speed.

We close this discussion with an examination of the relation between the motor
speed and the diffusive coupling strength V. Fig. 6.22 shows such a relation be-
tween the two quantities. Here, we see that though there is some variation in the
strength factor, a large proportion of the data seems to fall between a strength factor
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Figure 6.21: Contraction rate against motor speeds across all conditions. The
Michaelis-Menten equation is used with the best fit Michaelis constants  " as
reported in Fig. 5 to compute the effective motor speeds at different ATP concen-
trations for bacterial-expressed K401 (green ‘x’) and Ncd236 (green ‘+’ sign).

Figure 6.22: Coupling strength as a function of motor speeds across all condi-
tions. Effective motor speeds for bacterial- expressed K401 (green ‘x’) and Ncd236
(green ‘+’ sign) are computed using the same Michaelis-Menten conversion above.
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Figure 6.23: Schematic of crowding action on two larger objects. The crowders
(red) have radius A while the two larger objects (green) have radius ' � A. An
additional zone around the large molecules as denoted with a dashed outline extends
A away from the edge of each molecule and denotes the region within which the
centers of the crowders cannot enter.

of 0.2 and 0.6. We note to the reader that for context, the different area trajectories in
Fig. 3 of the main manuscript correspond to V ranging from 0.25 for⇡ = 5⇥10�4 µm2

s
to 3 at ⇡ = 6⇥10�3 µm2

s . As a result, we can argue that this is a rather narrow range
of strength factors. This observation, meant as impetus for further thought as we
grapple with understanding the underlying mechanism, leaves open the question of
what biochemical or motor properties might influence V and thus this diffusive-like
effect.

6.17 Computing Depletion Forces
One of the most useful effects of crowding agents is their ability to induce entropic
forces upon larger objects when these crowded objects are within the size of the
crowding agent from each other. This may be relevant in in vitro active systems
where the use of crowding agents help to bundle microtubules and promote self-
organization. In the case of the work presented here, pluronic (ˆ 12.5 kDa) acts as
a crowding agent for microtubules (U and V tubulin have sizes of 50 kDa each and a
one-micron long microtubule consists of ˆ 1.6 ⇥ 103 tubulin). Here, to get a sense
of the size of these forces, we estimate the entropic forces induced by crowders such
as pluronic onto rigid polymers such as microtubules. To start, we compute the
free energy change of the space that crowding agents can occupy when there are
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two larger particles of radius '. We will start by solving in two dimensions where
we account only for the cross-sectional area of the microtubules. We will further
assume the system does not contain a high density of crowders, so we will say that
there are # crowders that can be distributed across ⌦ � # lattice sites of size 0.
Finally, each crowder will have radius A. In the absence of the microtubules, the
free energy of the crowders in a system of size �sys is

⌧open = �#:⌫) ln
✓
�sys

0

◆
, (6.107)

where :⌫) is the thermal energy. Later on we will attempt a derivation where the
number of crowders is dense enough where we need to account for their finite size.
With the addition of two microtubules, the free energy ⌧crowd becomes

⌧crowd = �#:⌫) ln
✓
�sys � �exc

0

◆
, (6.108)

where �exc is the excluded area unavailable to the crowders. This can be represented
as the cross-sectional areas of the microtubules with an additional radial buffer zone
of length A and depends upon the distance the two cross-sectional areas are from
each other. For now, we can compute the free energy change as

�⌧ ⌘ ⌧crowd � ⌧open = �#:⌫) ln
✓
�sys � �exc

�sys

◆
, (6.109)

⇡ #:⌫)
�exc
�sys

, (6.110)

where we assumed that �sys � �exc.

As noted, the distance between the two microtubules has an effect on the exclu-
sion area. If the microtubules are spaced such that a crowder can fit between them,
then �exc is at its maximum, where

�exc = 2 ⇥ c(' + A)2
. (6.111)

However, if the microtubules are spaced less than a crowder apart, then there is an
overlap region that is double-counted �overlap (Fig. 6.24(A)). We can compute the
area of overlap by recognizing that half of the overlap is the difference between the
area swept out by the portion of the circle whose arclength is marked by the inter-
sections of the two overlapping circles and the area of the triangle whose vertices
contain these two intersection points and the center of the circle as noted in Fig.
6.24(B). We will label the common angle between them as 2\.
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(A) (B)

-

Figure 6.24: Schematic of the overlap of two molecules. (A) When the large
molecules are separated by a distance 3 < 2(' + A), the exclusion area contains
an overlap region that is double-counted in the accounting if the areas of the two
molecules and their extended zones are added. (B) The overlap area can be computed
by subtracting by computing the difference between the slice of the circle whose
arclength begins and ends with the two intersection points of the overlapping circles
(as swept out by the angle 2\) and the triangle whose vertices are the center of the
circle and the two points where the overlapping circles intersect.

We can compute the area swept out by the circular slice as

�slice =
π 2\

0
d\0

π
'+A

0
A
0
3A

0
, (6.112)

= \ (' + A)2
, (6.113)

We note that the angle \ can be obtained with some trigonometry

cos\ =
3/2
' + A , (6.114)

=
3

2(' + A) , (6.115)

so the area of the slice as a function of the distance 3 is

�slice = (' + A)2cos�1
✓

3

2(' + A)

◆
(6.116)

while the area of the triangle is

�triangle =
3

2
⇥

s
(' + A)2 �

✓
3

2

◆2
. (6.117)
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Then the overlap region is

�overlap = 2 ⇥
�
�slice � �triangle

�
, (6.118)

= 2(' + A)2cos�1
✓

3

2(' + A)

◆
� 3 ⇥

s
(' + A)2 �

✓
3

2

◆2
. (6.119)

Suppose we made a change of variables to 3 = 2('+ A)� n where 0 < n < 2A. Then
we can modify �overlap to be

�overlap = 2(' + A)2 cos�1
✓
2(' + A) � n

2(' + A)

◆
� [2(' + A) � n] ⇥

s
(' + A)2 �

✓
2(' + A) � n

2

◆2
,

(6.120)

= 2(' + A)2 cos�1
✓
1 � n

2(' + A)

◆
� [2(' + A) � n] ⇥ (' + A)

s
1 �

✓
2(' + A) � n

2(' + A)

◆2
,

(6.121)

⇡ 2 (' + A)2
r

n

(' + A) � [2(' + A) � n] ⇥ (' + A)

s
1 �

✓
1 � n

2(' + A)

◆2
,

(6.122)

⇡ 2 (' + A)2
r

n

(' + A) � 2 (' + A)2
✓
1 � n

2(' + A)

◆ s
n

(' + A) �


n

2(' + A)

�2

(6.123)

= 2 (' + A)2
r

n

(' + A)

8>><
>>:

1 �
✓
1 � n

2(' + A)

◆ s
1 �


n

4(' + A)

�9>>=
>>;
, (6.124)

⇡ 2 (' + A)2
r

n

(' + A)


1 �

✓
1 � n

2(' + A)

◆ ✓
1 � n

8(' + A)

◆�
, (6.125)

⇡ 2 (' + A)2
r

n

(' + A)


5n

8(' + A)

�
, (6.126)

=
5 (' + A)2

4


n

(' + A)

�3/2
(6.127)

where we note that n ⌧ (' + A) and expand to enough orders to maintain a
dependence on n . We also note that for small G, cos�1(1 � G) ⇡

p
2G. As a result,
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the free energy is

�⌧ ⇡ #:⌫)
�exc
�sys

, (6.128)

= #:⌫)
2c(' + A)2 � �overlap

�sys
, (6.129)

=
#

�sys
:⌫)

(
2c(' + A)2 � 5 (' + A)2

4


n

(' + A)

�3/2)
, (6.130)

= 2:⌫)

(
2c(' + A)2 � 5 (' + A)2

4


n

(' + A)

�3/2)
, (6.131)

where we define the crowder concentration 2 = #

�sys
. As expected, we can see that

the free energy goes down as the spacing between the microtubules goes down,
suggesting an energetic preference for keeping the microtubules close together.

We can compute the entropic force as the negative derivative of the free energy
with respect to the distance 3. We can then impose the change of variables to see
that

�depletion = �m�⌧
m3

= � m�⌧
m (2(' + A) � n) , (6.132)

=
m�⌧
mn

, (6.133)

=
15
8
2:⌫) [(' + A)n]1/2

. (6.134)

We can then imagine that if we operated in three dimensions, then in the case where
two microtubules of length ! that are aligned would have a depletion force that goes
as

� =
15
8
2:⌫)! [(' + A)n]1/2

. (6.135)

Fig. 6.25 shows the relation between the depletion force and the overlap length
n . Here, we normalize both sides according to the axes labels. As expected, the
depletion force increases as the two microtubules become closer to each other.

If we estimate that a 1 µm-long microtubule has an outer radius of ˆ 10 nm
and pluronic, with a mass of 12.5 kDa and a final concentration of 0.5 mg/mL in
the experiments (making it 40 µM), has a radius of ˆ 1 nm, then the depletion force
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Figure 6.25: Depletion force as a function of overlap distance n .

due to pluronic is

�
pluronic
depletion ˆ

15
8

⇥ 40 ⇥ 103

`m3 ⇥ (4 pN · nm) ⇥ (10 nm ⇥ 1 nm)1/2 ⇥ 1`m, (6.136)

ˆ
40 ⇥ 104

`m2 ⇥ 4 pN · nm2
, (6.137)

ˆ 1 pN. (6.138)

Thus, we can see that microtubules under the standard conditions are subjected
to roughly pico-Newton forces, within the range of forces expected to be exerted
by motors. We note, however, that the size of pluronic is even larger, most likely
underestimating the computed entropic force.

6.18 Microtubule Bundling can Affect Both Contraction Speed and Filament
Redistribution

Depletion agents such as pluronic or polyethylene glycol (PEG) play central roles
in pushing active systems into contractile or extensile regimes [18, 19]. These
polymers help to induce entropic forces between filaments to form bundles, which
can help allow active or passive crosslinkers to induce filament coupling over larger
length scales. The motor-microtubule system examined thus far includes 0.5 mg/mL
pluronic, a concentration that can induce picoNewton-scale forces between micro-
tubules (see SI Sec S7). Here, we ask what happens to the contraction and bulk
filament redistribution when these entropic forces are tuned to an alteration to the
concentration of pluronic. We thus implement our photobleaching scheme and
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track the movement and areas of the fluorescent unit cells when the system is altered
over a range of pluronic concentrations, from a complete removal of the depletion
agent to a 10-fold increase in concentration, while keeping all else fixed, includ-
ing motor and microtubule concentrations. Fig. 6.26 shows the contraction rate
and effective diffusion constant for the bacterial-expressed K401 across a range of
pluronic concentrations, including its complete absence. We find that increasing
the pluronic concentration leads to a general increase in the contraction rate until
1.5 mg/mL, after which contraction does not appear to occur any faster. In the
absence of pluronic, the network contracts more slowly, with a rate roughly 2/3 the
rate of the 1.5 mg/mL pluronic concentration. We note the dramatic decrease at the
standard experimental conditions using 0.5 mg/mL pluronic, which lies below even
the complete absence of pluronic. We hypothesize that this inconsistency comes
from the storage of pluronic in the standard set of experiments being different than
the storage conditions used for the pluronic when performing the titration series.
Briefly, under standard conditions, the pluronic is stored in the base reaction buffer
used in the experimental assay involving K-PIPES, MgCl2, EGTA, and KOH. It is
possible that under long-term storage in this media, the pluronic behaves differently
and as a result exhibits a different effect for the standard reaction.

Figure 6.26: The effect of pluronic on the network contraction rate and effective
diffusion constant. (A) Contraction rate and (B) diffusion constant as a function of
pluronic concentration as presented here use bacteria-expressed K401 motors. The
effective diffusion constants shown here are obtained from best fits to the 1st quartile
(triangle), median (circle), and 3rd quartile (plus symbol) of the normalized area
trajectories. We note the outlier at 0.5 mg/mL in panel (A) likely corresponds with
different storage conditions of the pluronic than from the rest of the other pluronic
concentrations used in this study, which may have had a biochemical impact in the
assay.
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When we computed the effective diffusion constants for the different quartiles as
shown in Fig. 6.26(B), we found with the increase in pluronic a general increase in
effective diffusion constant for the 3rd quartile and median data, but a roughly con-
stant effective diffusion constant for the 1st quartile data. Interestingly, we note that
the general increase and decrease of the effective diffusion constants also appears to
follow the contraction rate at the corresponding pluronic concentration, suggesting
a close relation between the two.

While crowding is commonly implemented in inducing organization in in vitro
active matter systems and has become a focus of attention as a tunable parameter
[20, 21], only recently has crowding been systematically studied to understand its
effects on bulk reorganization of a cytoskeletal network [22]. Nevertheless, to our
knowledge, we show some of the first experimental studies systematically tuning
the effects of crowding on bulk reorganization and observe that entropic forces have
more of a binary effect on the contraction rate: in the absence of pluronic, the
network contracts more slowly and by adding even 0.1 mg/mL of crowding agent
the network contracts more quickly without much more increase in contraction dy-
namics at higher concentrations. This suggests that entropic forces on the order of
pico-Newton scales are sufficient to aid in the formation of a contracted filament
network. This is roughly in the same order of magnitude as stall forces for mo-
tors, further supporting the role of crowding as generating similar effects to passive
crosslinkers.
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