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ABSTRACT

Part I: Block copolymers can undergo microphase separation to form a range of
ordered nanostructures, including lamellae, lattice-ordered spheres and cylinders,
and even network phases. In selective solvents, they self-assemble into micelles,
similar to surfactant molecules. However, unlike surfactants, block copolymers
often contain hundreds or thousands of repeat units, which significantly slows their
dynamics and equilibration. As a result, solutions of diblock copolymer micelles are
frequently kinetically trapped far from equilibrium due to large free energy barriers
associated with equilibration mechanisms such as chain exchange, micelle fusion,
and micelle fission. For applications ranging from viscosity modification and drug
delivery to nanoreactors, understanding these kinetic processes is essential. More-
over, developing strategies to achieve consistent and stable micelle size distributions
remains a key challenge, particularly in systems far from equilibrium.

This work analyzes the single-chain exchange mechanism in highly segregated
copolymer micelles, with particular attention to its chain length dependence, a
topic that has been actively debated since the introduction of the Halperin and
Alexander theory in 1989. The kinetics of chain exchange are examined under two
representative regimes: one involving polymeric solvents, where the micelle core
gradually shrinks, and the other involving small-molecule solvents, where the core
fully collapses. A combination of simulation and sampling techniques is employed
to compare the thermodynamics of the underlying free energy landscape with the
actual kinetic pathways of chain escape.

This work also analyzes the kinetic pathways involved in a widely used copolymer
micelle preparation technique known as thin film dissolution, or direct dissolution.
Mesoscale molecular dynamics simulations are performed to provide a molecular-
level picture of micelle formation, starting from both ordered and disordered initial
states. In parallel, a mean-field theory is developed to assess how closely the
intermediate structures and the final micelles resemble equilibrium configurations.

Part II: Electrolytes are ubiquitous in our world and play essential roles in biology,
consumer products, and energy storage. Fundamentally, an electrolyte consists of
charged species and a solvent, both of which significantly influence its behavior in
the bulk and near interfaces. While it is relatively straightforward to predict charge
interactions in a vacuum, the presence of a liquid solvent mediates these interactions
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in complex and nontrivial ways. Moreover, the interaction of ions with surfaces is
highly nuanced and can be strongly affected by the specific chemistry of the ions,
solvent, and interface. This is especially relevant in the context of the electric double
layer, a subject of scientific inquiry since 1853. Gaining a deeper understanding of
these intricate effects and how they govern electrolyte behavior is critical not only for
explaining biologically relevant phenomena such as macromolecular complexation,
but also for designing batteries and supercapacitors with optimized energy storage
performance.

This work presents an analysis of three distinct systems in which the behavior of
charged and polar fluids were poorly understood. One area of focus is the effect of
introducing non-polar solvents on the charging behavior and energy storage perfor-
mance of room-temperature ionic liquid supercapacitors, with particular attention
to specific surface effects and complex tricritical surface phase behavior. Another
topic explored is the entropic origin of ionic interactions in polar solvents, high-
lighting how entropy is the dominant force driving ion association. Separately, we
also investigate the unique surface polarization that arises in asymmetric polar fluids
at liquid–vapor interfaces, revealing subtle interfacial phenomena driven solely by
molecular asymmetry.
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Copolymer Micelles
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C h a p t e r 1

INTRODUCTION

1.1 Copolymer Micelles
Block copolymers (BCPs) are amphiphilic molecules that can self-assemble into
nanostructured materials in both melts and solutions. In solution, BCPs can spon-
taneously self-assemble into micellar structures of various morphologies, such as
spheres, cylinders, and vesicles depending on the relative volume fraction of the two
blocks and their degrees of incompatibility with the solvent and with each other [1].

Sphere Cylinder Membrane/Vesicle

Core

Corona

Small Moderate Large

Diblock 

Copolymer

Figure 1.1: Schematic of common block copolymer micelle morphologies including
(a) spherical micelles, (b) cylindrical micelles, and (c) vesicles where 5core is the
volume fraction of the core-forming block.

The thermodynamic and kinetic properties of copolymer micelles including their
size and stability under environmental changes naturally inform their use in appli-
cations such as nanoreactors [2–5], drug delivery and encapsulation [6–10], and
nanolithography [11, 12]. Copolymer micelles are a versatile platform for applica-
tions requiring spontaneous self-assembly into nanoscale structures due to the wide
variety of monomer chemistries and polymer architectures that can be synthesized.
Figure 1.2 shows examples of different use cases of block copolymer micelles. In
the case of diblock copolymer membranes, copolymer micelles are casted into a
thin film, where they serve as a template for the formation of nanopores [13–18].
In drug delivery applications, hydrophobic therapeutics can be embedded in the
micelle core, while signaling ligands can be attached to the corona [6, 8–10, 19].
Copolymer micelles can also serve as nanoreactors where solvophobic reactants are
sequestered within the micelle core. Althernatively, the core monomers themeselves
can serve as reactants for the formation of nanoparticles [20, 21].
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Nanoreaction & Nanoparticle Templating

Membrane Fabrication Nanomedicince & Drug Delivery

Figure 1.2: Examples of different use cases of block copolymer micelles. Schematic
of membrane fabrication reproduced from [14]. Schematic of drug delivery repro-
duced from [19]. Schematic of nanoreaction reproduced from [20]. Schematic of
nanoparticle templating reproduced from [12].

At the most fundamental level, the formation of copolymer micelles is governed by a
comptentition between three factors: (1) the unfavorable surface interaction between
the core-forming block and the solvent, (2) the stretching of the core-forming block to
fill out the micelle core, and (3) the stretching of the corona-forming block similar to
a polymer brush [22]. The balance of these three factors determines themorphology,
micelle size, and aggregation number. Theories based on scaling arguments have
been developed to predict the equilibrium sizes of spherical copolymer micelles by
estimating the free energy from each contribution [23–25]. Later, Zhulina et al.
developed a comprehensive theory that accurately predicted the relative stability
and equilibrium sizes of spherical, cylindrical, and vesicular micelles [1].

While simple scaling theories can give accurate predictions of of the free energy
under certain limiting conditions and for simple geometries, self-consistent field
theory (SCFT) is a versatile tool that can be applied to a wide variety of copolymer
architectures, chemistries, and micelle morphologies [26–28]. Most importantly,
SCFT allows for the calculation of component density profiles, which sheds ad-
ditional insight into the structure of the micelle core and corona. In the last few
decades, SCFT has been employed to study many different micellar systems in-
cluding copolymer micelles dissolved in a homopolymer melt [29–33], copolymer
micelles in selective solvents [34–37], copolymers with complex architectures such
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as coil-comb copolymers [38], and even copolymers with charged blocks [39–46].

While SCFT provides the framework for computing the internal free energy of an
isolated micelle, it does not account for the translational entropy of micelles of
varying sizes and concentrations in a solution. To account for this, a common
approach is to obtain the internal free energy though SCFT or a scaling theory, and
then combine it with the translational entropy of an ideal gas of micelles subject to
conservation of mass. This approach has been successfully applied to predict the
critical micelle concentration (CMC) and equilibrium micelle size distribution for
a variety of copolymer micelle systems [32, 38, 39, 47–50].

1.2 Dynamics and Equilibration
At concentrations exceeding the critical micelle concentration (CMC),micelles form
through a multi-stage mechanism, starting with rapid formation of small aggregates,
and ending with slow equilibration of the micelle size distribution and micelle
concentration [51–55]. Aggregate formation is fast in concentrated solutions due
to a low aggregation free energy barrier, which has been thoroughly discussed
in many studies of BCP micelle kinetics [47, 50]. In contrast, equilibration is
slow due to the large free energy barriers associated with available mechanisms,
including single-chain (or unimer) exchange, and fission/fusion [56]. In single-
chain exchange, a chain escapes from one micelle, diffuses through solution, and
enters another. Fusion occurs when two aggregates or micelles (possibly of different
sizes) combine to form a larger micelle, while fission/fragmentation is its reverse.
A schematic of these mechanisms is shown in Figure 1.3.

Fusion

Fission

Figure 1.3: Schematic of different equilibration mechanisms in diblock copolymer
micelles including single-chain exchange, fusion, and fission.
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It was originally argued that single chain exchange would be the dominate mech-
anism for equilibration throughout the entire micellization process [57] due to in-
surmountable fusion barriers. However, it has been shown both experimentally and
theoretically that the fusion of aggregates of strongly asymmetric sizes can become
dominant in the intermediate stages of micelle formation [58, 59], while unimer,
dimer, and trimer exchange tend to dominate near equilibrium [47, 60]. Equilibra-
tion via these mechanisms is expected to occur in the case of relatively short chains
and low to moderate interfacial tensions, where the free energy barriers are not pro-
hibitively high. However, in many experimental systems, the equilibration timescale
is effectively infinite due to high degrees of polymerization and strong solvent se-
lectivity [56, 61, 62]. It is well know that for a huge variety of copolymer-solvent
systems that the hydrophobicity of the core is high enough to prevent exchange
on practical timescales, leading to an inherent nonergodicity in the micellization
process [56, 63, 64].

In this regime, the final micelles are often kinetically trapped metastable structures
with sizes that are linked to the specific experimental conditions and procedures
[56]. Johnson and coworkers demonstrated when the solvent quality is dropped
rapidly, the resulting micelles were kinetically trapped, whereas gradual solvent
quality changes allowed for exchange and fusion events to occur [65]. Similarly,
Mattice and coworkers conducted Monte Carlo simulations where they found that
increasing the segregation strength during micellization leads to the freezing of
micelles in metastable states [66]. Wang and coworkers found similar results in
their lattice Monte Carlo simulations, where the concentration of unimers rapidly
decreased to a constant level while the average aggregation number slowly continued
to increase until eventually plateauing [67]. They also found that high degrees of
incompatibility between the core and solvent could lead to frozen micelles.

It was further demonstrated by Meli and Lodge in two seminal studies that copoly-
mer micelles formed through decreasing the solvent quality (e.g., by evaporating a
cosolvent) lead to small, kinetically trapped micelles [68, 69]. They compared these
micelles to those formed through direct dissolution of a copolymer in a selective
solvent, and found that the direct dissolution method lead to significantly larger
micelles. Despite converging to two very different distributions, the micelles from
both methods were stable to extended thermal annealing, further demonstrating the
non-equilibrium nature of copolymer micelles under high segregation. The fact that
the micelle size distributions were insensitive to extended thermal annealing at high
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temperatures suggests that the equilibration barriers are exceedingly high, which
poses significant challenges for connecting theoretical predictions of equilibrium
micelles to experimental observations.

As it stands, work is still needed to fully understand the mechanisms of micelle
equilibration under experimentally relevant conditions where equilibrium is elusive.
This requires appealing to simulation techniques beyond conventional brute force
molecular dynamics due to the exceedingly long timescales involved. Seeger and
coworkers were the first to attempt to study chain exchange in copolymer micelles
under strong seggregation through the use of umbrella sampling simulation [70, 71].
Their work is a great first step to understading the dynamics of copolymer micelles
far away from equilibrium. This area is still ripe for further exploration, particularly
in understanding the non-equilibrium pathways of micelle formation and how they
connect to the final micelle structures.

1.3 Outline
In the following two chapters, we investigate two specific questions in the kinetics of
diblock copolymermicelles. First, we study themechanism of single-chain exchange
using enhanced sampling molecular dynamics simulations as well as forward flux
sampling coupled to single-chain Monte Carlo simulations. We outline the methods
in detail and provide results for the free energy barriers, minimum free energy
pathways, and kinetic pathways for chain exchange in different regimes. In the
subsequent chapter, we use DPD simulations and SCFT calculations to investigate
the pathway-dependent micelle formation discovered by Meli and Lodge [68]. We
outline the simulation methods and develop a novel field theory based on DPD
to connect observations from particle-based simulations to theoretical free energy
calculations without the need to map between two different models. We present
results on the morphological phase behavior and how it connects to the two different
pathways observed experimentally.

References

(1) Zhulina, E. B.; Adam, M.; LaRue, I.; Sheiko, S. S.; Rubinstein, M. Diblock
Copolymer Micelles in a Dilute Solution. Macromolecules 2005, 38, 5330–
5351, DOI: 10.1021/ma048102n.

(2) Cotanda, P.; Lu, A.; Patterson, J. P.; Petzetakis, N.; O’Reilly, R. K. Func-
tionalized Organocatalytic Nanoreactors: Hydrophobic Pockets for Acylation



7

Reactions in Water. Macromolecules 2012, 45, 2377–2384, DOI: 10.1021/
ma2027462.

(3) Khullar, P.; Singh, V.; Mahal, A., et al. Block Copolymer Micelles as Nanore-
actors for Self-Assembled Morphologies of Gold Nanoparticles. The Journal
of Physical Chemistry B 2013, 117, 3028–3039, DOI: 10.1021/jp310507m.

(4) Boontongkong, Y.; Cohen, R. E. Cavitated Block Copolymer Micellar Thin
Films: Lateral Arrays of Open Nanoreactors. Macromolecules 2002, 35,
3647–3652, DOI: 10.1021/ma0117357.

(5) Bakshi, M. S. Colloidal micelles of block copolymers as nanoreactors, tem-
plates for gold nanoparticles, and vehicles for biomedical applications. Ad-
vances in Colloid and Interface Science 2014, 213, 1–20, DOI: 10.1016/j.
cis.2014.08.001.

(6) Kazunori, K.; Glenn S., K.; Masayuki, Y.; Teruo, O.; Yasuhisa, S. Block
copolymer micelles as vehicles for drug delivery. Journal of Controlled Re-
lease 1993, 24, 119–132, DOI: 10.1016/0168-3659(93)90172-2.

(7) Luo, L.; Tam, J.; Maysinger, D.; Eisenberg, A. Cellular Internalization of
Poly(ethylene oxide)-b-poly(n-caprolactone) Diblock Copolymer Micelles.
Bioconjugate Chemistry 2002, 13, 1259–1265, DOI: 10.1021/bc025524y.

(8) Kataoka, K.; Harada, A.; Nagasaki, Y. Block copolymer micelles for drug de-
livery: Design, characterization and biological significance. Advanced Drug
Delivery Reviews 2012, 64, 37–48, DOI: 10.1016/j.addr.2012.09.013.

(9) Gaucher, G.; Dufresne, M.-H.; Sant, V. P., et al. Block copolymer micelles:
preparation, characterization and application in drug delivery. Journal of
Controlled Release 2005, 109, 169–188, DOI: 10.1016/j.jconrel.2005.
09.034.

(10) Chiappetta, D. A.; Sosnik, A. Poly(ethylene oxide)–poly(propylene oxide)
block copolymer micelles as drug delivery agents: Improved hydrosolubility,
stability and bioavailability of drugs. European Journal of Pharmaceutics
and Biopharmaceutics 2007, 66, 303–317, DOI: 10.1016/j.ejpb.2007.
03.022.

(11) Förster, S.; Antonietti, M. Amphiphilic Block Copolymers in Structure-
Controlled Nanomaterial Hybrids. Advanced Materials 1998, 10, 195–217,
DOI: 10.1002/(SICI)1521-4095(199802)10:3<195::AID-ADMA195>
3.0.CO;2-V.

(12) Lohmüller, T.; Aydin, D.; Schwieder, M., et al. Nanopatterning by block
copolymer micelle nanolithography and bioinspired applications. Biointer-
phases 2011, 6, MR1–MR12, DOI: 10.1116/1.3536839.

(13) Müller, M.; Abetz, V. Nonequilibrium Processes in Polymer Membrane For-
mation: Theory and Experiment.Chemical Reviews 2021, 121, 14189–14231,
DOI: 10.1021/acs.chemrev.1c00029.



8

(14) Blagojevic, N.; Das, S.; Xie, J., et al. Toward Predicting the Formation of
Integral-Asymmetric, Isoporous Diblock Copolymer Membranes. Advanced
Materials (Deerfield Beach, Fla.) 2024, 36, e2404560, DOI: 10.1002/
adma.202404560.

(15) Hub, L.; Koll, J.; Buhr, K.; Radjabian, M.; Abetz, V. pH-responsive size-
and charge-selective block copolymer membrane for the separation of small
proteins. Journal of Membrane Science 2024, 708, 123021, DOI: 10.1016/
j.memsci.2024.123021.

(16) Cooper, A. J.; Grzetic, D. J.; Delaney, K. T.; Fredrickson, G. H. Investigating
microstructure evolution in block copolymer membranes. The Journal of
Chemical Physics 2024, 160, 074903, DOI: 10.1063/5.0188196.

(17) Zhang, Z.; Rahman, M. M.; Bajer, B.; Scharnagl, N.; Abetz, V. Highly se-
lective isoporous block copolymer membranes with tunable polyelectrolyte
brushes in soft nanochannels. Journal of Membrane Science 2022, 646,
120266, DOI: 10.1016/j.memsci.2022.120266.

(18) Hamta, A.; Ashtiani, F. Z.; Karimi, M.; Moayedfard, S. Asymmetric block
copolymer membrane fabricationmechanism through self-assembly and non-
solvent induced phase separation (SNIPS) process. Scientific Reports 2022,
12, 771, DOI: 10.1038/s41598-021-04759-7.

(19) Cabral, H.; Miyata, K.; Osada, K.; Kataoka, K. Block Copolymer Micelles in
Nanomedicine Applications. Chemical Reviews 2018, 118, 6844–6892, DOI:
10.1021/acs.chemrev.8b00199.

(20) Boucher-Jacobs, C.; Rabnawaz, M.; Katz, J. S.; Even, R.; Guironnet, D.
Encapsulation of catalyst in block copolymer micelles for the polymerization
of ethylene in aqueous medium. Nature Communications 2018, 9, 841, DOI:
10.1038/s41467-018-03253-5.

(21) Piradashvili, K.; Alexandrino, E. M.; Wurm, F. R.; Landfester, K. Reactions
and Polymerizations at the Liquid–Liquid Interface. Chemical Reviews 2016,
116, 2141–2169, DOI: 10.1021/acs.chemrev.5b00567.

(22) Zhulina, E. B.; Borisov, O. V. Theory of Block Polymer Micelles: Recent
Advances and Current Challenges. Macromolecules 2012, 45, 4429–4440,
DOI: 10.1021/ma300195n.

(23) Halperin, A. Polymeric micelles: a star model. Macromolecules 1987, 20,
2943–2946, DOI: 10.1021/ma00177a051.

(24) Izzo, D.; Marques, C. M. Formation of micelles of diblock and triblock
copolymers in a selective solvent. Macromolecules 1993, 26, 7189–7194,
DOI: 10.1021/ma00078a012.

(25) Izzo, D.; Marques, C. M. Selectively Swollen Phases of Diblock Copolymers.
Macromolecules 1997, 30, 6544–6549, DOI: 10.1021/ma970264e.



9

(26) Fredrickson, G. H., The equilibrium theory of inhomogeneous polymers;
International series of monographs on physics 134; Clarendon Press ; Oxford
University Press: Oxford : New York, 2006; 437 pp.

(27) Matsen, M. W. Self-Consistent Field Theory for Melts of Low-Molecular-
Weight Diblock Copolymer. Macromolecules 2012, 45, 8502–8509, DOI:
10.1021/ma301788q.

(28) Matsen, M. W. The standard Gaussian model for block copolymer melts.
Journal of Physics: CondensedMatter 2001, 14, R21, DOI: 10.1088/0953-
8984/14/2/201.

(29) Greenall, M. J.; Buzza, D. M. A.; McLeish, T. C. B. Micelle Formation
in Block Copolymer/Homopolymer Blends: Comparison of Self-Consistent
Field Theory with Experiment and Scaling Theory. Macromolecules 2009,
42, 5873–5880, DOI: 10.1021/ma9000594.

(30) Zhou, J.; Shi, A.-C. Critical Micelle Concentration of Micelles with Differ-
ent Geometries in Diblock Copolymer/Homopolymer Blends. Macromolec-
ular Theory and Simulations 2011, 20, 690–699, DOI: 10.1002/mats.
201100042.

(31) Cavallo, A.; Müller, M.; Binder, K. Formation of Micelles in Homopolymer-
CopolymerMixtures: QuantitativeComparison between Simulations of Long
Chains and Self-Consistent Field Calculations. Macromolecules 2006, 39,
9539–9550, DOI: 10.1021/ma061493g.

(32) Wang, J.; Müller, M.; Wang, Z.-G. Nucleation in A/B/AB blends: Interplay
between microphase assembly and macrophase separation. The Journal of
Chemical Physics 2009, 130, 154902, DOI: 10.1063/1.3105340.

(33) Thiagarajan, R.; Morse, D. C. Micellization kinetics of diblock copolymers
in a homopolymer matrix: a self-consistent field study. Journal of Physics:
Condensed Matter 2011, 23, 284109, DOI: 10.1088/0953-8984/23/28/
284109.

(34) Yuan, X. F.; Masters, A. J.; Price, C. Self-consistent field theory of micelle
formation by block copolymers.Macromolecules 1992, 25, 6876–6884, DOI:
10.1021/ma00051a024.

(35) Leermakers, F. A. M.; Wĳmans, C. M.; Fleer, G. J. On the Structure of
Polymeric Micelles: Self-Consistent-Field Theory and Universal Properties
for Volume Fraction Profiles. Macromolecules 1995, 28, 3434–3443, DOI:
10.1021/ma00113a050.

(36) Leibler, L.; Orland, H.;Wheeler, J. C. Theory of critical micelle concentration
for solutions of block copolymers. The Journal of Chemical Physics 1983,
79, 3550–3557, DOI: 10.1063/1.446209.



10

(37) Noolandi, J.; Hong, K. M. Theory of block copolymer micelles in solu-
tion, ACS Publications https://pubs.acs.org/doi/abs/10.1021/
ma00243a007 (accessed 10/22/2025).

(38) Wang, J.; Guo, K.; An, L.; Müller, M.; Wang, Z.-G. Micelles of Coil-Comb
Block Copolymers in Selective Solvents: Competition of Length Scales.
Macromolecules 2010, 43, 2037–2041, DOI: 10.1021/ma901977h.

(39) Duan, C.; Wang, M.; Ghobadi, A.; Eike, D. M.; Wang, R. Quantifying the
Critical Micelle Concentration of Nonionic and Ionic Surfactants by Self-
Consistent Field Theory, 2024, DOI: 10.48550/arXiv.2412.03549.

(40) Ting, C. L.; Wang, Z.-G. Interactions of a Charged Nanoparticle with a Lipid
Membrane: Implications for Gene Delivery. Biophysical Journal 2011, 100,
1288–1297, DOI: 10.1016/j.bpj.2010.11.042.

(41) Ting, C. L.; Appelö, D.; Wang, Z.-G. Minimum Energy Path to Membrane
Pore Formation and Rupture. Physical Review Letters 2011, 106, 168101,
DOI: 10.1103/PhysRevLett.106.168101.

(42) Ting, C. L.; Wang, Z.-G. Nucleated Pathways Involving Nanoparticles and
Lipid Membranes. Biophysical Journal 2012, 102, 297a, DOI: 10.1016/j.
bpj.2011.11.1646.

(43) Kik, R. A. Molecular modeling of proteinlike inclusions in lipid bilayers:
Lipid-mediated interactions. Physical Review E 2010, 81, DOI: 10.1103/
PhysRevE.81.021915.

(44) Leermakers, F. A. M.; Scheutjens, J. M. H. M. Statistical thermodynamics
of association colloids. I. Lipid bilayer membranes. The Journal of Chemical
Physics 1988, 89, 3264–3274, DOI: 10.1063/1.454931.

(45) Lauw, Y.; Leermakers, F. A. M.; Stuart, M. A. C.; Borisov, O. V.; Zhulina,
E. B. Coexistence of Crew-Cut and Starlike Spherical Micelles Composed of
Copolymers with an Annealed Polyelectrolyte Block.Macromolecules 2006,
39, 3628–3641, DOI: 0.1021/ma060163t.

(46) Borisov, O. V.; Zhulina, E. B.; Leermakers, F. A. M.; Müller, A. H. E. In
Self Organized Nanostructures of Amphiphilic Block Copolymers I, Müller,
A. H. E., Borisov, O., Eds.; Springer: Berlin, Heidelberg, 2011, pp 57–129.

(47) Dormidontova, E. E. Micellization Kinetics in Block Copolymer Solutions:
Scaling Model. Macromolecules 1999, 32, 7630–7644, DOI: 10.1021/
ma9809029.

(48) Duan,C.;Wang,R.AUnifiedDescription of Salt Effects on theLiquid–Liquid
Phase Separation of Proteins. ACS Central Science 2024, 10, 460–468, DOI:
10.1021/acscentsci.3c01372.

(49) Duan, C.; Wang, R. Electrostatics-Induced Nucleated Conformational Tran-
sition of Protein Aggregation. Physical Review Letters 2023, 130, 158401,
DOI: 10.1103/PhysRevLett.130.158401.



11

(50) Nyrkova, I. A.; Semenov, A. N. On the Theory of Micellization Kinetics.
Macromolecular Theory and Simulations 2005, 14, 569–585, DOI: 10 .
1002/mats.200500010.

(51) Aniansson, E. A. G.; Wall, S. N. Kinetics of step-wise micelle association.
The Journal of Physical Chemistry 1974, 78, 1024–1030, DOI: 10.1021/
j100603a016.

(52) Aniansson, E. A. G.; Wall, S. N. Kinetics of step-wise micelle association.
Correction and improvement. The Journal of Physical Chemistry 1975, 79,
857–858, DOI: 10.1021/j100575a019.

(53) Aniansson, E. A. G.; Wall, S. N.; Almgren, M., et al. Theory of the kinetics
of micellar equilibria and quantitative interpretation of chemical relaxation
studies of micellar solutions of ionic surfactants. The Journal of Physical
Chemistry 1976, 80, 905–922, DOI: 10.1021/j100550a001.

(54) Dynamics of Surfactant Self-Assemblies: Micelles, Microemulsions, Vesicles
and Lyotropic Phases; Zana, R., Ed.; CRC Press: Boca Raton, 2005, 536 pp.

(55) Goldmints, I.; Holzwarth, J. F.; Smith, K.A.; Hatton, T. A.Micellar Dynamics
in Aqueous Solutions of PEO-PPO-PEO Block Copolymers. Langmuir 1997,
13, 6130–6134, DOI: 10.1021/la970534m.

(56) Lodge, T. P.; Seitzinger, C. L.; Seeger, S. C., et al. Dynamics and Equilibration
Mechanisms in Block Copolymer Particles. ACS Polymers Au 2022, 2, 397–
416, DOI: 10.1021/acspolymersau.2c00033.

(57) Halperin, A.; Alexander, S. Polymeric micelles: their relaxation kinetics.
Macromolecules 1989, 22, 2403–2412, DOI: 10.1021/ma00195a069.

(58) Rao, J.; Zhang, J.; Xu, J.; Liu, S. Cononsolvency-induced micellization ki-
netics of pyrene end-labeled diblock copolymer of N-isopropylacrylamide
and oligo(ethylene glycol) methyl ether methacrylate studied by stopped-flow
light-scattering and fluorescence. Journal of Colloid and Interface Science
2008, 328, 196–202, DOI: 10.1016/j.jcis.2008.09.001.

(59) Zhang, J.; Xu, J.; Liu, S. Chain-Length Dependence of Diblock Copolymer
Micellization Kinetics Studied by Stopped-Flow pH-Jump. The Journal of
Physical Chemistry B 2008, 112, 11284–11291, DOI: 10.1021/jp803700n.

(60) Li, Z.; Dormidontova, E. E. Kinetics of Diblock Copolymer Micellization by
Dissipative Particle Dynamics.Macromolecules 2010, 43, 3521–3531, DOI:
10.1021/ma902860j.

(61) Creutz, S.; van Stam, J.; Antoun, S.; De Schryver, F. C.; Jérôme, R. Exchange
of Polymer Molecules between Block Copolymer Micelles Studied by Emis-
sion Spectroscopy. A Method for the Quantification of Unimer Exchange
Rates. Macromolecules 1997, 30, 4078–4083, DOI: 10.1021/ma961922i.



12

(62) Creutz, S.; van Stam, J.; De Schryver, F. C.; Jérôme, R. Dynamics of
Poly((dimethylamino)alkylmethacrylate-block-sodiummethacrylate)Micelles.
Influence of Hydrophobicity and Molecular Architecture on the Exchange
Rate of Copolymer Molecules. Macromolecules 1998, 31, 681–689, DOI:
10.1021/ma970987y.

(63) Jain, S.; Bates, F. S. Consequences of Nonergodicity in Aqueous Binary
PEO-PB Micellar Dispersions.Macromolecules 2004, 37, 1511–1523, DOI:
10.1021/ma035467j.

(64) Patterson, J. P.; Robin,M. P.; Chassenieux, C.; Colombani, O.; O’Reilly, R. K.
The analysis of solution self-assembled polymeric nanomaterials. Chemical
Society Reviews 2014, 43, 2412–2425, DOI: 10.1039/C3CS60454C.

(65) Johnson, B. K. Mechanism for Rapid Self-Assembly of Block Copolymer
Nanoparticles.Physical ReviewLetters2003, 91, DOI:10.1103/PhysRevLett.
91.118302.

(66) Rodrigues, K.;Mattice,W. L. Simulation of the steric stabilization of polymer
colloids by diblock copolymers. The Journal of Chemical Physics 1991, 94,
761–766, DOI: 10.1063/1.460344.

(67) Wang, Y.; Mattice, W. L.; Napper, D. H. Simulation of the formation of
micelles by diblock copolymers under weak segregation, ACS Publications
https://pubs.acs.org/doi/abs/10.1021/la00025a017 (accessed
10/22/2025).

(68) Meli, L.; Santiago, J. M.; Lodge, T. P. Path-Dependent Morphology and
Relaxation Kinetics of Highly Amphiphilic Diblock Copolymer Micelles
in Ionic Liquids. Macromolecules 2010, 43, 2018–2027, DOI: 10.1021/
ma902366c.

(69) Meli, L.; Lodge, T. P. Equilibrium vs Metastability: High-Temperature An-
nealing of Spherical Block Copolymer Micelles in an Ionic Liquid. Macro-
molecules 2009, 42, 580–583, DOI: 10.1021/ma802020a.

(70) Seeger, S. C.; Dorfman, K. D.; Lodge, T. P. Free Energy Trajectory for Escape
of a Single Chain from a Diblock Copolymer Micelle. ACS Macro Letters
2021, 10, 1570–1575, DOI: 10.1021/acsmacrolett.1c00508.

(71) Seeger, S. C.; Lodge, T. P.; Dorfman, K. D. Mechanism of Escape of a Single
Chain from aDiblock CopolymerMicelle.Macromolecules 2022, 55, 10220–
10228, DOI: 10.1021/acs.macromol.2c01742.



13

C h a p t e r 2

MECHANISMS OF CHAIN EXCHANGE IN DIBLOCK
COPOLYMER MICELLES

In this chapter we investigate themechanism of chain exchange in diblock copolymer
micelles using two distinct yet complementary simulation techniques. First, the
spectral adaptive biasing force enhanced sampling method is combined with coarse-
grained molecular dynamics to compute a two-dimensional free energy surface
for the chain expulsion process in the strong segregation regime. To facilitate
chain expulsion, a distance-based collective variable is biased, and the end-to-end
distance of the core block is additionally biased to ensure sufficient sampling of chain
conformations. The resulting free energy surface reveals a bimodal distribution
of chain conformations along the effective reaction coordinate. The minimum
free energy pathway, computed via the string method, qualitatively aligns with the
Halperin–Alexander budding-like mechanism. The free energy barrier along this
pathway is calculated for core block lengths ranging from #core = 4–100, and the
barrier is shown to scale as VΔ�barr ∼ #2/3

core, consistent with the Halperin–Alexander
prediction for a globular transition state. Notably, the free energy surface also reveals
a nearly degenerate alternative pathway in which the chain escapes by extending out
“bead-by-bead,” in agreement with previous simulations. We also study the case of a
dense copolymer melt, where the core-block shrinks but does not collapse into a dry
compact globule in the opposite phase. To examine the kinetic pathway, a simplified
model is introduced in which a single chain escapes from a planar interface within a
mean-field background. Using Monte Carlo moves to drive forward flux sampling
simulations, the unbiased exchange rate and corresponding free energy barrier are
computed. These calculations yield a linear scaling of the barrier, VΔ�barr ∼ #core,
in agreement with experimental observations and prior simulations. Moreover,
analysis of successful escape trajectories highlights an extended chain conformation
at the transition state, providing further evidence that experimental conditions favor
the hyperstretching escape mechanism over the Halperin–Alexander mechanism.

This chapter includes content from our previously published article:

Varner, S.; Müller, M.; Gallegos, A., et al. Mechanisms of Chain Exchange in
Diblock Copolymer Micelles, 2025, DOI: 10.48550/arXiv.2509.06528
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I am very thankful for an immense number of discussions with Professor Marcus
Müller, who taught me forward flux sampling and provided me a base for single-
chain Monte Carlo simulations. I also would like to thank Professor Kevin Dorfman
and Professor Lodge for sharing their challenging and exciting problems with me
and mentoring me through them as well. Without these amazing collaborations, my
PhD experience would have been very different and I would not have been able to
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2.1 Introduction
The importance of exchange in micelle equilibration has motivated extensive the-
oretical and experimental studies of its mechanism and free energy barrier. The
earliest and most widely cited theory was derived by Halperin and Alexander in
1989, who proposed a free energy barrier for single-chain exchange [2, 3]. They
also considered fusion and fragmentation but concluded that these processes are
much slower near equilibrium [4]. Exchange is rate-limited by the barrier for a
chain to escape from the soluble micelle core into the less favorable solvent [5].
For BCPs with much longer hydrophobic blocks than conventional nonionic surfac-
tants, this barrier can reach hundreds of :�) , effectively prohibiting equilibration
on experimental timescales [6, 7]. Halperin and Alexander postulated that the
chain escapes from the micelle with the core block in a collapsed state to minimize
unfavorable contacts with the solvent and corona. Their mechanism applied with
Kramers’ rate theory led to an escape time of gesc ∼ exp(Wd−2/3#2/3

core/:�)), where
W is the interfacial tension, d is the segment density, and #core is the degree of poly-
merization of the core-forming block. The scaling of #2/3

core follows directly from
their assumption of a compact spherical globule. The prefactor to the exponential
includes the dependence on the corona-forming block, scaling as #9/5

corona for star-like
micelles and #7/3

corona for crew-cut.

In the limit of melts with a large invariant degree of polymerization, N̄ , how-
ever, a single core block embedded in a matrix does not collapse; its relative
size change only scales as Δ'/' ∼ j#/

√
N̄ [8]. For a fully solvated core

block, the associated free-energy barrier is given by Δ�melt/:�) ∼ j# 5core. In
contrast, the Halperin–Alexander scenario [2] predicts Δ�H� ∼ W(#core/d)2/3 ∼
:�)N̄1/6 5 2/3

core
√
j# , where d is the segment density, and we have used the strong-

segregation estimate for the interfacial tension W. [9] Consequently, for long-chain
melts, the ratio of the two barrier estimates is Δ�melt/Δ�HA ∼

√
j#/N̄1/6 < 1,

implying that the free-energy barrier scales linearly with #core [10].
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For decades, fluorescence and non-radiative energy transfer experiments were an-
alyzed according to the Halperin–Alexander theory [5–7, 11–16], until the devel-
opment of time-resolved small-angle neutron scattering (TR-SANS) enabled more
direct measurements of the exchange rate, and therefore the exchange free energy
barrier [17, 18]. TR-SANS elucidates the exchange rate by tracking the decay of
scattering intensity as chains hop between micelles in a solution containing two
distinct micelle populations (normal versus perdeuterated cores). By selecting a
solvent with a scattering length density intermediate between the two core types, the
exchange rate is directly related to the decay of the scattering intensity, '(C), as the
chains mix over time. Measurements at several temperatures can be combined into
a master curve using time–temperature superposition, extending the dynamic range
of TR-SANS over 12 decades [19]. Exchange has been shown to follow rate-limited
kinetics with an activation barrier, which should yield a single-exponential decay
of scattering intensity with time [2, 20, 21]. TR-SANS measurements, however,
consistently revealed a broad relaxation much closer to a logarithmic decay. The
explanation for this anomalous behavior is both simple and elegant: because the
exchange rate is essentially the escape rate, which depends exponentially on the
core-block length, a broad relaxation arises naturally from the polydispersity of the
core block. Lund and co-workers were the first to address the role of polydispersity
[22–24], and Choi and co-workers subsequently connected it directly to the loga-
rithmic decay [25]. Zinn et al. later confirmed this interpretation by demonstrating
that monodisperse polymers exhibit single-exponential relaxation [26]. Lu et al.
further showed that a logarithmic decay is recovered in solutions with a bimodal
chain length distribution [27].

Analyzing exchange kinetics from the decay of scattering intensity requires both
a functional form of the escape rate constant, :esc(#core), and the chain length
distribution, 5 (#core). The dynamic scattering intensity is then expressed as a
convolution,

'(C) =
∫ ∞

1
3#core 5 (#core) exp [−:esc(#core)C] (2.1)

The functional form of the rate constant proposed by Halperin and Alexander can
be generalized to include two free parameters, U and V:[23, 25, 28]

:esc ∼
1
g0

exp
(
−Uj# V

core

)
(2.2)

where U and V depend on the chain conformation and escape mechanism. The
exponent V ranges from 2/3 for the Halperin–Alexander collapsed mechanism to



16

1 for a core fully exposed to solvent. The prefactor g0 sets the timescale and is
taken to be the Rouse time, g0 = g' = b#

2
core;

2
�
/(6c2:�)) [25, 28]. The parameter

j is the monomer-level Flory–Huggins interaction parameter, replacing the macro-
scopic interfacial tension. The chain length distribution originally used by Lund
and coworkers was a Poisson distribution, characteristic of an ideal living anionic
polymerization [23]. Choi et al. later opted for the more flexible Schulz–Zimm dis-
tribution that describes imperfect polymerization and can match any experimentally
obtained chain length distribution [25]. With this framework, several TR-SANS
studies on different polymers and solvents have been used to extract the unimer
exchange rate and its dependence on polymer and solvent properties [25, 26, 28,
29]. In all cases, the free energy barrier scaled linearly with core block length, in
direct disagreement with the Halperin–Alexander prediction of #2/3

core but consistent
with theoretical predictions for self-diffusion of BCPs in melts [30–32].

This discrepancy between the Halperin–Alexander theory and experimental ob-
servations prompted extensive discussion and several simulation studies aimed at
verifying the linear scaling and elucidating the true escapemechanism. Some studies
attempted to replicate the experimental procedure in silico by constructing micellar
solutions, artificially labeling cores, and monitoring exchange over the course of
long unbiased simulations [33–37]. While these simulations supported linear scal-
ing with #core, they did not provide a detailed mechanism for chain escape under
experimentally relevant conditions. Namely, in silico exchange experiments are re-
quired to operate at low enough segregation strength (j) where a significant number
of exchange events can feasibly be observed within the simulation timescale. This is
in contrast to experiments where the segregation strength is generally high enough
to halt exchange at room temperature on timescales of seconds to hours. In addition,
these simulations were limited to core blocks containing only a very small number
of coarse-grained beads where the Halperin–Alexander theory would not apply due
to the lack of a coil–globule transition.

To resolve these issues, Seeger and coworkers used a different approach relying on
enhanced sampling molecular dynamics [38, 39]. Specifically, they utilized um-
brella sampling with the weighted histogram analysis method (WHAM) to compute
the free energy profile, or potential of mean force (PMF), of a single chain to escape
from an isolated micelle. A similar approach has been used to study the escape free
energy of short surfactant molecules [40, 41]. With BCPs, this approach allowed
them to resolve large free energy barriers for high j values and for larger #core
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within a feasible simulation time. They computed a linear scaling of the free energy
barrier with #core and explained its origin through a simple scaling theory where
they assumed the chain escapes "bead-by-bead". Their calculations shed light on
a hyperstretching (or "bead-by-bead") escape mechanism as an explanation for the
failure of the Halperin–Alexander mechanism to match experimental observations.
The term hyperstretching refers to the chain extending far beyond its ideal end-to-end
distance. However, these simulations were limited by the use of a single collective
variable and still relatively short chain lengths, with #core ranging from 4 to 12.
Due to the use of a single distance collective variable, they observe a discontinuous
jump in the polymer conformation along their effective reaction coordinate. This
indicates that there is an additional barrier in the polymer conformation that can
lead to incomplete sampling for each value of the chosen distance CV, especially
near the transition state [42].

In this work, we address some of the challenges encountered in previous simula-
tion studies by taking two different but complementary approaches. In doing so,
we provide a complete picture of the exchange mechanism in the high segregation
regime where exchange is rare, both in the case of core collapse and only partial
shrinking. First, we utilize coarse-grained molecular dynamics (CGMD) simula-
tions with force-bias enhanced sampling to compute the 2-dimensional free energy
surface (FES) of the chain exchange process, where one dimension corresponds to
the distance of the chain from the micelle, and the other to the degree of chain ex-
tension. Through the use of two collective variables, we can achieve more complete
sampling of the chain conformation during the escape process. In agreement with
the previous work by Seeger and coworkers, we identify distinct collapsed and ex-
tended conformations. As expected, we observe a barrier between the collapsed and
extended conformation at the transition state, which highlights the need for external
biasing in two collective variables over just one. With the 2d FES, we compute the
minimum free energy pathway (MFEP) using the string method and show that it cor-
responds to the Halperin–Alexander mechanism. We also identify a low free energy
region of the FES corresponding to a possible extended escape mechanism that may
be kinetically favored under some circumstances in the presence of fluctuations. It
is still unclear if there is a regime where the chain is collapsed in the solution and
follows a hyperstretching mechanism that would lead to a linear scaling as observed
in many experiments.

Additionally, we study the escape mechanism in the high density (polymer melt)
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limit where the core block does not fully collapse, leaving most or all of the core
beads exposed to the unfavorable surroundings. In this regime we employ forward
flux sampling (FFS) on a simplified single-chain model that mimics a polymer
immersed in a dense melt. In our case, specifically a phase separated copolymer
melt. FFS is a transition path sampling technique that introduces no external force
biases, and therefore preserves dynamics [43–45]. We compute both the rate of
chain escape and the free energy barrier as a function of core block length, and
show that the free energy scales linearly with #core. Additionally, we analyze
different ensembles of chain properties during the escape process by extracting full
escape trajectories. These ensembles reveal that the chains prefer to escape by first
extending ("bead-by-bead") into the solution, and then shrinking.

In the following sections, we start by describing theMD simulationmodel, enhanced
sampling methods, and analysis of the free energy surface for escape within the
Halperin–Alexander regime. We then discuss the single-chain model, forward flux
sampling, and the escape mechanism within the melt regime.

2.2 Enhanced Sampling Molecular Dynamics
Simulation Model
We model diblock copolymers in an explicit solvent using highly coarse-grained
molecular dynamics simulations. For simplicity, we assume that all particles have
the same effective diameter (f). In line with previous works, we borrow the
conservative force from the DPD potential to describe the non-bonded repulsion
between beads [33, 34, 38, 39, 46, 47],

V*=1 (A8 9 ) =
1
2
Vn8 9

(
1 −

A8 9

f

)2
, A8 9 < f (2.3)

where V = 1/:�) , and n8 9 is the repulsion strength between particles 8 and 9 . We
choose the base repulsion between all species to be n = 25 :�) . Incompatible pairs
of species such as the core-forming polymer block and monomeric solvent have
an n8 9 = 48 :�) . Polymeric beads are bonded together using a harmonic spring
potential given by,

V*1 (A8 9 ) =
1
2
^(A8 9 − f)2 (2.4)

where ^ is the spring constant, and we use f as the bond length. We use a value
of ^ = 100 :�)/f2 which is in line with previous studies of block-copolymer
micelles [38, 39]. In the system there are = polymers each having # monomers,
which are divided into two blocks of length #� and #� = # − #�. A is the
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core-forming block, and B is the corona-forming block. The system also contains
#( monomeric solvent molecules, for a total of =# + #( monomers in the system.
In line with previous studies, we utilize a reduced density of d = 3.0f−3. The
maximum chain-length that we study is # = 124, which has an ideal end-to-end
distance of 'e2e = f

√
# − 1 ≈ 11.1f. We utilize a box size of ! = 55f which

corresponds to ! ≈ 5'e2e to ensure that there are no finite size effects. For the
smallest polymer we study, #� = 4 yielding an invariant degree of polymerization
of
√
N̄ = df3√#� ≈ 6. The largest polymer we study has #� = 100, yielding√

N̄ ≈ 30.

In all simulations, we use = = 36 chains to form the isolated micelle such that our
results are directly comparable to previous works [38, 39]. Note that the equilibrium
micelle size distribution is very wide, and thus there are a large number of reasonable
choices for =. One has to ensure that = is not so far above the optimal aggregation
number such that the micelle undergoes spontaneous fission during the course of a
long simulation. The choice of a relatively small = results in a diffuse corona to avoid
any enhancement of the exchange rate due to corona crowding across all values of
#� used [48]. Also note that in the strongly segregated regime, the exchange rate
is exceedingly low, such that we do not observe any exchange events that are not a
direct result of our biasing methods described below.

We run our simulations in OpenMM[49] by making use of the open-source MD-
Craft[50] python package that contains helper functions and additional custom non-
bonded potentials. We use the middle Langevin integrator with a time-step of
ΔC = 0.01g and a friction coefficient of [ = 1/g, where g =

√
<f2/(:�)). See

Figure 2.1 below for a visual example of a stable micelle.

Enhanced Sampling
In order to compute the free energy barrier for chain expulsion, we employ enhanced
sampling to bias collective variables (CVs) between low and high free energy regions
of the phase space. To define our CVs, we separate the typeA atoms into two groups:
(1) #� (=−1) atoms forming the core of the micelle, which includes all chains minus
one, and (2) the #� atoms of a selected chain which will undergo expulsion. We
define the coordinates of the atoms in group 1 as R, and the atoms of group 2 as
r. We define Basin1 as the stable basin in which the selected chain is within the
micelle, and Basin2 as the metastable plateau region in which the selected chain
has escaped and no longer sees the micelle. We define two different distance-based
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Figure 2.1: Example of a stable micelle with = = 36, #� = 21, #� = 24, n = n88 =
n�( = 25 :�) , and Δn = n�( − n = n�� − n = 23 :�) . Solvent particles are omitted
for visual clarity.

CVs to track the progress of the system between Basin1 and Basin2. The first is the
distance between the center of mass of the micelle (excluding the selected chain)
and the junction point of the selected chain, where the junction refers to the point
of connection between the A and B blocks.

CV1 = 'cm-jp = | |Rcm − rjp | |2 (2.5)

The second is the distance between the center of mass of the micelle (excluding the
selected chain) and the center of mass of the core block of the selected chain.

CV1′ = 'cm-cm = | |Rcm − rcm | |2 (2.6)

Previous studies have utilized 'cm-jp to conduct umbrella sampling simulations
[38, 39], where free energy profiles are constructed using the weighted histogram
analysis method (WHAM). However, we expect that a single CV is not sufficient
to obtain an accurate free energy estimate due to the possible presence of barriers
in other collective variables. The presence of barriers in orthogonal CVs causes
insufficient sampling in configurational space [42]. Namely, in this case, the polymer
conformation can range from fully extended to fully collapsed, however, this full
spectrum cannot be readily explored at each value of 'cm-jp due to significant
barriers in changing the polymer conformation. To remedy this, we propose running
simulations with two collective variables simultaneously, which has become much
more feasible in recent years due to advancements in enhanced sampling methods
and accessibility of high performance graphical processing units (GPUs). We
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define a third collective variable, Ae2e to be used in conjunction with either of the
two distance based CVs defined above. Ae2e is the end-to-end distance of the core
block (A block) of the selected chain.

CV2 = Ae2e = | |r#� − r1 | |2 (2.7)

This collective variable allows us to bias the conformation of the escaping chain to
sample the full range from fully collapsed to fully extended. To clarify, we denote
the overall end-to-end distance of the chain as 'e2e and the end-to-end distance of
the core block only as Ae2e.

We compute the 2d FES for the combinations {'cm-jp, Ae2e} and {'cm-cm, Ae2e} for
various different values of #� and Δn to elucidate the preferred escape mechanism
and the scaling relationships of the free energy barrier (exchange rate). We study
both combinations of CVs to ensure that the results are independent of the choice
of CV. We utilize the recently developed Spectral Adaptive Biasing Force (SABF)
method available in the PySAGES enhanced sampling package [51, 52]. SABF is
an improved version of the ABF method, that has improved efficiency and stability.
ABF-type methods also have an advantage over metadynamics-type methods for
our particular system because our CVs all have hard boundaries at 0, which poses a
problem for metadynamics but not for ABF-type methods [53].

Results and Discussion

Figure 2.2: 2-dimensional FES for CV pairs 'cm-jp,Ae2e (a) and 'cm-cm,Ae2e (b) with
#� = 15, #� = 24, VΔn = 23. Each surface is shifted such that the minimum free
energy is 0. The red lines trace the MFEPs as computed by the string method, with
the yellow circles indicating the transition states.

First, we compute the 2-dimensional FES for both pairs of CVs, {'cm-jp,Ae2e} and
{'cm-cm,Ae2e} for the particular case of #� = 15, #� = 24 and VΔn = 23. Both
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surfaces are presented in Figure 2.2. In the following discussion, we refer to the
surfaces in Figures 2.2a and 2.2b as FES1 and FES2, respectively. Both FES1 and
FES2 have a significant free energy basin at lowvalues of all CVs, which corresponds
to the selected chain being located within the micelle. Note that when the chain is
within the micelle, Ae2e can take on a wide range of values at low free energy cost.
Large fluctuations in Ae2e are expected since the micelle core presents a theta solvent
environment. The average value of the core block end-to-end distance in the basin
is 〈Ae2e〉 = 3.3 which is reasonably close to the ideal value of

√
#� − 1 = 3.7 for a

freely-jointed chain. FES1 displays a near-vertical basin, indicating that the chain
may extend and collapse while the junction point is consistently localized to the
surface of the micelle. From FES1, we compute the average value of the relative
position of the junction point in the basin to be 〈'cm-jp〉 ≈ 3.4. This agrees with the
radius of the micelle, as shown in Figure S1 in the ESI†.

FES1 (FES2) is characterized by the presence of a large basin for low 'cm-jp ('cm-cm)
and a plateau for high values of 'cm-jp ('cm-cm). The plateau at high 'cm-jp ('cm-cm)
and low Ae2e corresponds to an escaped chain that is collapsed in solution. It is
clear from both FES1 and FES2 that there exists a pathway where the chain exits the
micelle in a collapsed state. This is indicated by the entrance to the plateau (tube)
being centered around Ae2e ≈ 1. This pathway is qualitatively consistent with the
collapsed Halperin–Alexander mechanism [2, 3].

While the basin and plateau are the two main features of FES2, FES1 has additional
interesting behavior at intermediate values of 'cm-jp and Ae2e. In this region the chain
has partially escaped, but is able to take on an extended conformation with some
monomers still located within the micelle core. For 'cm-jp in the range of (5,8),
the extended conformation has a lower free energy than the collapsed conformation.
This becomes more obvious when we plot the conditional probability distribution,
%(Ae2e |'cm-jp), which is calculated directly from the FES using Equations (2.8) and
(2.9).

%(Ae2e, 'cm-jp) = exp
[
−VΔ� ('cm-jp, Ae2e)

]
(2.8)

%(Ae2e |'cm-jp) =
%(Ae2e, 'cm-jp)∫

dAe2e%(Ae2e, 'cm-jp)
(2.9)

The resulting distribution shown in Figure 2.3 indicates that an extended confor-
mation is actually more probable prior to complete escape. At the saddle point
position of CV1 (red dot), we find that the extended conformation (large CV2) has
a lower free energy, indicated by the higher conditional probability density. This
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Figure 2.3: Conditional probability distribution for the core block end-to-end dis-
tance as a function of the location of the junction point for #� = 15, #� = 24,
VΔn = 23. The distribution is computed using FES1 from Figure 2.2a. The red-
dashed line traces the mean of Ae2e from the conditional distribution, and the yellow
line traces the MFEP from FES1. Visualizations are (a) the chain in the micelle, (b)
the chain extended into solution, (c) the chain collapsed at the micelle interface and
(d) the chain fully expelled.

suggests that the chain may escape first by extending into solution until the contact
with solvent is too unfavorable, at which point the chain collapses, expelling the re-
maining beads and forming a compact globule. This analysis assumes that the chain
has enough time to fully relax at each value of 'cm-jp during the expulsion process.
These results agree with and further support previous findings by Seeger et al. who
used umbrella sampling simulations to compute 1-dimensional potentials of mean
force (PMFs) for chain expulsion [38, 39]. They found that '6 gradually increased
with 'cm-jp up to a certain point, where the chain then collapsed. Similarly, we also
observe a bimodal distribution in %(Ae2e |'cm-jp) near the transition state.

In addition to the FES and conditional distribution, it is of interest to compute the
1-dimensional free energy profile along an effective reaction coordinate. For this
we consider both the minimum free energy path (MFEP) and free energy projection.
First, we compute the MFEP via the string method (see the ESI† for method details)
[54–56]. We conduct the string method optimization on the already computed 2d
FES; we do not employ the string method during the MD simulations themselves.
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Figure 2.4: The MFEP plotted along a single dimension, 'cm-xx. The MFEP are
extracted from the 2d FES in Figure 2.2.

In Figure 2.2, we plot the MFEP on top of both FES1 and FES2. We also plot
the MFEP in one dimension as a function of only the 'cm-xx collective variables in
Figure 2.4. Note that the two MFEP are nearly identical barring a horizontal shift.

The computed MFEP qualitatively follows the Halperin-Alexander (HA) picture of
micelle chain exchange. In the HA mechanism, the chain escapes the micelle in a
collapsed state, resulting in a free energy barrier that scales with #2/3

�
. In order to

confirm that theMFEP computed from our simulations yields the same scaling as the
HA theory, we computed the MFEP for a range of core block lengths and computed
the scaling relationship. The free energy curves and resulting regression analysis
are given in Figure 2.5. In Figure 2.5b we find that the scaling is very near 2/3,
providing further support that the MFEP follows the HA mechanism, and that a 2/3
scaling does exist under conditions where core collapse is expected. In the inset of
Figure 2.5b we plot the free energy barrier as a function of the core block length on
a linear–linear scale. Interestingly, we find that a linear fit is reasonable at small #�,
consistent with the results of previous simulations [34, 39], and with the expectation
that very short core blocks cannot collapse to effectively shield monomers from the
solvent.

In addition to the MFEP, we project the 2-dimensional free energy surface into 1
dimension corresponding to the 'cm-cm pseudo-reaction coordinate. This analysis
allows us to draw a more direct comparison with the simulations of Seeger et
al. where only a single collective variable was biased [38, 39]. In principle,
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Figure 2.5: (a) 1-dimensional free energy profile of theMFEP for various core block
lengths, #�. Note that all MFEP are computed on a 2d FES similar to FES2 from
Figure 2.2. (b) Free energy barriers from MFEP and free energy projection plotted
against core block length, #�, on a log-log scale. The solid line regression was
conducted for the expression, ln(VΔ�barr) = 0 ln(#�) +1, where 0 and 1 were fitting
parameters, and the MFEP was used. The inset is the same as (b) on a linear–linear
scale, and the dotted line is a linear regression, VΔ�barr = 0#� + 1, of the first five
points corresponding to the small #� region.

the projection should be more reliable than the direct single collective variable
calculation as the dual collective variable simulation enables much more complete
sampling of the polymer conformation (Ae2e). The projection is done using the
normalization constant in Equation (2.9) which accumulates the weight of the free
energy surface at each 'cm-cm.

V� ('cm-cm) = − ln
[∫

3Ae2e%('cm-cm, Ae2e)
]

(2.10)

We plot the barriers of the 1-dimensional free energy profiles as blue squares in
Figure 2.5b. We find that the free energy barriers computed from the projected free
energy are only slightly higher than those computed from the MFEP, and therefore
still yield the same #2/3

�
scaling of the free energy barrier, in contrast to the linear

scaling obtained in previous simulations [39]. We provide a direct comparison of
the barriers obtained from the two different methods in the ESI†.

We can foresee two potential reasons for the discrepancy, with the first being simple
and the latter being rather complicated. The simple explanation is that a linear
scaling should be observed at short chain lengths due to incomplete collapse of the
core block, as shown in the inset of Figure 2.5b. While this is true for very short
chain lengths, we still found a significant deviation from a linear scaling beyond
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#� = 8, while Seeger et al. studied chains up to #� = 12 and still found linear
scaling. The other, more probable reason, is the presence of the ridge between
the collapsed and extended conformations on FES1 of Figure 2.5a. This ridge is
consistent with the observations made by Seeger et al. that the '6 of the core block
becomes bimodal as 'cm-jp approaches the transition state. In simulations with a
single CV, one could encounter hysteresis that can affect the computed barrier. If
the chain starts in the micelle and is progressively pulled out, then the upper valley
on FES1 will be preferred since the free energy gradient there is initially lower. The
chain can remain in the extended conformation beyond the saddle point value of CV1
in FES1 (yellow dot) due to the significant barrier between the two conformations
which would lead to a delayed transition state and an enhanced free energy barrier.
The ridge between the two conformations increases in height for larger values of #�
which can impact the scaling of the barrier with #�. If the chain is instead pushed
into the micelle (reverse direction), then we expect that the MFEP will be followed
and the observed barrier will be lower. This serves as a reasonable explanation
for why the 1d umbrella sampling simulations yielded an apparent linear scaling,
whereas our simulations yielded the Halperin–Alexander 2/3 scaling that is expected
for large j and large #�.

With these results we have qualitatively and quantitatively identified the Halperin–
Alexander collapsed mechanism as the MFEP for chain escape under strong segre-
gation at sufficiently long core-block lengths, and have provided further context for
the linear scaling observed in DPD simulations of shorter chains [34, 39]. Addition-
ally, we have shown that the extended conformation observed by Seeger et al [38,
39]. is a valley on the free energy landscape that is actually slightly more favorable
than the collapsed chain prior to the transition state. Thus, the chain may attempt to
escape more frequently by fluctuating out of the micelle "bead-by-bead", at which
point it is met with an additional barrier to collapse and fully escape. Physically,
this additional free energy cost is associated with exposing the remaining monomers
to the solvent while keeping the junction point fixed. On the other hand, the chain
may attempt to escape less frequently by first collapsing within the micelle core,
but when it does, it is met by a lower free energy barrier due to having a minimal
number of contacts with the solvent.

The question still remains as to why the MFEP from these simulations is at odds
with experimental observations in terms of the scaling of the free energy barrier.
As mentioned previously, one can expect a crossover from linear scaling of the
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barrier for a chain fully exposed to the solvent, to the Halperin–Alexander 2/3
scaling for a collapsed chain. The free energy barrier for a solvated chain in DPD
is V�solv ∼ VΔn#�/(df3), while the barrier for a collapsed chain is approximately
V�HA ∼ VΔn#

2/3
�
(df3)−2/3, ignoring constant prefactors. Thus, the ratio of the

two barriers is expected to scale as �solv/�HA ∼ (#�/df3)1/3. In other words,
the scaling should be linear with #� when the effective coordination number of a
monomer with the solvent is much higher than #�. The scaling should go as #2/3

�

when the coordination number is much lower than #�, since a large portion of the
monomers can replace solvent contacts with other monomer contacts upon collapse.
Therefore, at low densities and long chain lengths, the chain should be collapsed and
follow the Halperin–Alexander mechanism. In our DPD simulations with df3 = 3
and #� up to 100, we are comfortably within the Halperin–Alexander regime. This
is further validated in the ESI† where we plot the average end-to-end distance of
the core block and find that it is fully collapsed within the solvent for most of the
studied chain lengths.

In experiments, it is unclear and highly situational whether the system corresponds
more to the polymer melt case with only a partially shrunken core block upon
escape, or the Halperin–Alexander case with a dry collapsed core block. For hairy
micelles with very dilute coronas (as in our simulations), it is expected that the
core block should escape in a collapsed state and produce #2/3

�
scaling. Indeed,

Lund et al. measured chain exchange in micelles formed from highly asymmetric
PEP1-PEO20 and found that the exchange barrier could be fit well with a 2/3 power
law [23]. For crew cut micelles that have a dense corona, the escape of the core
could be viewed as escaping into the corona domain, rather than directly into the
solvent. If the corona is sufficiently dense, Lund et al. argued that the increased
pressure could prevent the core from collapsing, and lead to a barrier scaling linearly
with #� [28]. This was corroborated by exchange measurements they conducted
on symmetric PEP1-PEO1 where they computed a linear exchange barrier. They
use a simple blob scaling argument to determine when the density of the corona
is high enough to prevent collapse of the core block upon escape and verified that
their prediction was consistent with their PEP1-PEO20 and PEP1-PEO1 systems as
well as the PS-PEP/squalene system of Choi, Lodge, and Bates [25]. In summary,
whether the free energy barrier will scale as #� or #2/3

�
depends directly on the

ability of the core block to collapse in the unfavorable domain. Our simulation
results clearly show that the DPD model and chain/micelle parameters used here
correspond to the Halperin–Alexander case.
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We can also call into question the underlying assumptions of the zero-temperature
string method and the nature of the MFEP. Namely, the computed MFEP only
considers the structure of the underlying FES, and ignores any effects of thermal
fluctuations or chain dynamics. As a result, the MFEP is most reliable when it
corresponds to a deep valley or saddle on the free energy landscape. In addition, the
kinetic pathway will only mimic the MFEP if the duration of an escape trajectory
is significantly longer than the chain relaxation time. Our computed 2d FES does
not feature a deep transition tube, but rather two possible competing free-energy
valleys connected by a continuous distribution of pathways with nearly degenerate
free energies.

In the following section, we study the other dominant regime corresponding to a
very dense polymer melt, where the core block shrinks upon escaping, rather than
collapsing into a compact globule. As discussed, this could be representative of a
micelle with a dense corona, as in the crew cut case. To study the chain escape at
high density, we employ a single-chain model that is appropriate for high N̄ systems
wherein the interaction of the tagged chain with other chains can be accurately
represented instead by interactions with a mean-field background [10]. To avoid the
assumptions of the MFEP, we turned to an alternative method that would allow us
to determine the kinetic pathway traversed by escaping chains. This is preferable to
the MFEP in our case since we expect that fluctuations could play a significant role
in how the chain explores the free energy landscape. We utilize a transition path
sampling method known as Forward Flux Sampling that can resolve the ensemble
of escape trajectories, including one or both of the mechanisms implied from the
FES obtained from our MD simulations.

2.3 Single-Chain Monte Carlo Forward Flux Sampling
In this section we investigate the expulsion mechanism of a copolymer from an
interface using a single-chain (implicit background)model. Herewe employ forward
flux sampling (FFS) to elucidate the transition pathway for chain escape from a
lamellar interface where the background is a dense polymer. Under this regime, the
polymer does not collapse when in the opposing domain. In addition, we use 2d
umbrella sampling to compute the free energy surface in order to better understand
the FFS results. We apply these same methods to the case of a monomeric solvent
where there is a coil-to-globule transition of the core block through the use of a
many-body framework similar to that of many-body DPD (M-DPD).
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Simulation Model for Polymer Melt
We utilize a soft particle simulation model that is similar to that used previously to
study dynamic single-chain processes in dense polymer systems [10, 57–59]. We
consider a single polymer chain with bead coordinates r8 for 8 ∈ 0, 1, · · · , # − 1.
The polymer beads are connected by harmonic springs with the following potential,

�1

:�)
=

#−1∑
8=1

3
2f2 |A8 − A8−1 |2 =

#−1∑
8=1

3(# − 1)
2'2

e2e
|A8 − A8−1 |2 (2.11)

where 'e2e denotes the ideal root-mean-square end-to-end distance, '2
e2e = (# −

1)f2, and f is the statistical segment length. We divide the chain into two blocks,
with the first #� beads belonging to block A and the final #� = # − #� beads
belonging to block B. The non-bonded interactions consist of two contributions,
�nb = �ext + �pair. The first term represents the interactions between the polymer
beads and the surrounding background fluid, which is a melt of diblock copolymers
of the same nature. The background is static and gives rise to effective fields, such
that the Hamiltonian can be written as

�ext
:�)

=

#�−1∑
8=0

F� (r8) +
#−1∑
8=#�

F� (r8) =
#−1∑
8=0

FC (8) (r8) (2.12)

where C (8) is the type of bead 8, either A or B. The fields, F� (r) and F� (r) are
parameters of the model and are not impacted by the presence of the tagged polymer.
Conceptually, these interactions represent the interactions of a given polymer bead
with the beads in the surrounding environment, where unfavorable AB contacts
increase the energy by n :�) , while AA and BB contacts decrease the energy by the
same amount. Let I2 denote the average number of contacts of a single polymer bead
(including inter- and intramolecular contacts). If the composition of the background
medium is denoted as q� and q� = 1−q�, then the interaction strength between the
chain and the background can be approximated as F� = −I2n (q� − q�). Similarly,
we have F� = −I2n (q� − q�). Note that in an A-rich domain, the energy of an
A segment is −I2n , while the energy of a B segment is I2n . This energy can be
mapped to the Flory-Huggins model with j ≈ 2nI2, since that is the difference in
energy for an A segment to go from an A-rich domain to a B-rich domain.

Some non-bonded interactions come from intramolecular contacts, and these can be
accounted for explicitly in the single-chain Hamiltonian,

�pair

:�)
=

∑
8< 9

E(r8 − r 9 )
{
−n [2X(C (8), C ( 9)) − 1] −

FC (8) (r8) + FC ( 9) (r 9 )
2I2

}
(2.13)
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Figure 2.6: A visual representation of the MC simulation setup. The two bead-
spring chains represent the same chain at different points in the expulsion process.
The left chain is localized to the interface, and the right chain has escaped and
collapsed. The dashed lines represent virtual interfaces used for FFS, and they are
placed at chosen values of the reaction coordinate (order parameter) _.

where pairwise contacts are defined by E(Δr) = 1 for |Δr| < 1 = '4/
√
# − 1, and

otherwise 0. For simplicity, we set the two microscopic length scales – statistical
segment length and interaction range – equal. X is the Kronecker delta function,
which is 1 when the segments are of the same type (i.e. C (8) = C ( 9)), and 0 otherwise.
The first term quantifies the energy of an intramolecular contact. The second term
corrects for double counting, since Equation (2.12) already includes interactions
with I2 contacts. We need to subtract any assumed contacts that can be replaced
with true intramolecular contacts from beads within the same chain. The number
of intramolecular contacts depends largely on the chain conformation, and therefore
also on the surrounding environment. A chain of A beads will be extended in
an A-rich domain, yielding a low number of intramolecular contacts. Conversely,
the chain will be more collapsed in a B-rich domain, yielding a high number of
intramolecular contacts. Thus, this model includes the essential physics underlying
the collapsed and extended conformations as the chain crosses the interface.

With a uniform density, the total number of contacts is given by I2 = 4c
3 1

3d − 1,
where d is the segment density in the multichain system. In the high-density
limit, we can obtain an approximate relation between I2 and the invariant degree of
polymerization, N̄ .

I2 ≈
4c
3

(
'4√
# − 1

)3
d − 1 ≈ 4c

3

√
N̄
#

(2.14)
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In the following, the polymer contains # = 32 segments, n = 0.02, and I2 = 50.
This corresponds to a system with j# ≈ 64, and

√
N̄ ≈ 67.5. See Figure 2.6 for a

schematic of the system setup.

Monte Carlo Simulation
We run Metropolis Monte Carlo simulations of O(106) independent chains. One
MC step consists of selecting a polymer bead, updating its position via rE′ =
rE+(f/

√
# − 1)N̂̂N̂N (0, 1), computing the newHamiltonian, and accepting or rejecting

the moved based on the Metropolis criterion. Here, N̂̂N̂N (0, 1) is the standard normal
distribution. The order of polymer beads is chosen randomly without replacement.
This updating scheme is intended to mimic the Rouse dynamics of a polymer
chain in a melt [10, 58, 59], which is appropriate for diffusion of a polymer chain
perpendicular to an interface [30, 31, 48]. A single MC step is conducted as follows:

1. The initial value of the Hamiltonian is computed, �E

2. A single bead is moved by drawing from an independent random Normal
distribution for each Cartesian coordinate. The Normal distributions have
mean 0 and standard deviation 1.

GE′ = GE + (f/
√
# − 1)N̂̂N̂N (0, 1) (2.15)

HE′ = HE + (f/
√
# − 1)N̂̂N̂N (0, 1) (2.16)

IE′ = IE + (f/
√
# − 1)N̂̂N̂N (0, 1) (2.17)

where N̂̂N̂N (0, 1) is the standard normal distribution from the PCG family of
generators [60]. We set f = 1 for simplicity. Note that these moves are used
to reproduce Rouse dynamics.

3. The new value of the Hamiltonian is computed, �E′.

4. The Metropolis-Hastings algorithm is used to accept or reject the move.
Namely, the move is accepted if V(�E′ − �E) = VΔ�E,E′ ≤ 0. Additionally,
if V(�E′ − �E) = VΔ�E,E′ > 0, then the move is accepted with probability
exp(−VΔ�E,E′). If neither condition is satisfied, then the move is rejected,
and microstate E is restored.

Forward-flux Sampling
We utilize forward flux sampling (FFS)[44, 45, 61] to compute the rate for chains
localized to an interface to fully escape into solution. FFS is a transition path
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sampling (TPS) technique that is used to compute the rate of rare events in a way
that introduces no external biasing potential or forces. In FFS, virtual interfaces in
collective variable (CV) space are placed at regular intervals between the starting and
ending basin of the transition path. Transition trajectories are built up by simulating
small transitions from one interface to the next, which are by themselves much more
probable than the full transition. A generating CV is used to define the location of
the virtual interfaces and track the progress of each chain from one interface to the
next. Ultimately, the trajectories and transition rates can be accumulated from all of
the interfaces to compute the overall rate and the ensemble of completed reaction
trajectories.

If we have a set of #8 configurations that were saved at interface 8, then the FFS
algorithm amounts to selecting " configurations out of #8 and continuing each
trajectory until they either reach the next interface, or fall back into the basin.
This is continued until a minimum threshold of configurations #8+1 reach the next
interface. If " is the number of required trajectories to reach #8+1 successes, then
the transition rate between interface 8 and 8 + 1 can be computed using

:8,8+1 =
#8+1
"

. (2.18)

Additionally, we need to estimate the flux from the starting Basin1 across the first
interface, Φ0, which can be computed by running a long simulation in Basin1, and
monitoring the rate at which the particle crosses over the interface in the forward
direction. The rate is computed as,

Φ0 =
#0
g

(2.19)

where #0 is the number of forward crossings, and g is the total simulation time.
Each of the #0 crossing configurations can be saved and used in the next step of
the FFS algorithm to propagate from interface 0 to interface 1. The transition rate
for the complete transition is computed by accumulating the transition probabilities
between each interface. The equation for the transition rate is,

: = Φ0
∏
8

:8,8+C (2.20)

whereΦ0 is the flux of trajectories across the first interface, and :8,8+1 is the transition
probability from interface 8 to 8 + 1. We define a free energy for the transition
according to

VΔ� = − ln
:

Φ0
(2.21)
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which is motivated by the Arrhenius relationship, : = � exp(−VΔ�) where � is
an unknown kinetic prefactor. It is important to note that the rate : is a physical
observable and should be insensitive to the definition of the basin. For example, if
the first interface is placed at a larger G, then Φ0 will necessarily decrease, but there
will also be some interfaces omitted which will cause

∏
8 :8,8+C to increase. The

overall effect is for : to remain constant. Our definition of VΔ� will shift with the
placement of the first interface, but not by enough to impact the scaling behavior.

We choose the inhomogeneous external fields, F� and F�, such that there is an
interface located at G� = 2.5 in units of 'e2e = f

√
# − 1. For G < G� , the external

field mimics an A-rich domain at the mean-field level, while G > G� mimics a B-rich
domain. We define Basin1 to be when the chain is localized to the interface, Gjp ≈ G� ,
where Gjp is the component of the junction point displacement that is normal to the
interface. We start with the A-block in the A-rich domain, and the B-block in the
B-rich domain, such that both blocks behave approximately as ideal Gaussian chains
with chain-lengths #� and #� respectively. When the chain has escaped into the
B-rich domain, the A block takes on a partially collapsed conformation.

Due to the planar geometry, we utilize the 1-dimensional analogs of the collective
variables from the MD portion of this work, CV1 (Gjp) and CV1′ (GcmA) to conduct
different FFS simulations. We place the first interface slightly outside of the A-rich
domain, G1 > G� . We place additional interfaces further and further out from the
interface, with the final interface located at a sufficient distance for the chain to be
fully detached from the interface.

Results and Discussion
First, we compute the transition rate for the chain to escape from the interface using
either the position of the junction point, Gjp, or the position of the center of mass of
the A block, GcmA, as the generating CV. We run FFS simulations for several core-
block lengths, #� ∈ {6, 8, 10, 12, 14, 16, 18}, to elucidate the scaling relationship
of the free energy barrier. Figure 2.7 shows the free energy profiles and scaling
behavior for the Gjp CV. In addition, we provide free energy profiles and barriers for
the GcmA CV in Figure 2.8.

The scaling of the free energy barrier with core-block length appears to be linear,
regardless of the choice of generating CV. The inset of Figure 2.7b also shows that
the rate computed from Equation (2.20) decays exponentially with #�. This is the
expected scaling for the case when the core block does not collapse into a dry globule
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Figure 2.7: FFS results for the Gjp generating CV with various core-block lengths,
#�. All lengths are scaled by 'e2e, with the interface placed at G = 2.5. In all cases,
the total chain length is # = 32. (a) The cumulative free energy change. (b) The total
free energy change from Equation (2.21) versus core-block length, with the dashed
line being the optimized linear fit. Error bars represent a 95% confidence interval
from averaging 5 independent FFS simulations. The inset is the rate constant from
Equation (2.20).

Figure 2.8: FFS results for the GcmA generating CV with various core-block lengths.
(left) The natural logarithm of the cumulative transition rate. (right) The total
free energy change versus core-block length, with optimized linear fit. Error bars
represent a 95% confidence interval from averaging 4 simulations.

upon entering the B domain. Since a linear scaling of the barrier is also observed
in experiments, this indicates that the experimental conditions could be such that
the core block of an isolated chain is not fully collapsed after escaping. This would
occur if the core block is too short to form a statistically probable globule. As
argued by Lund et al., it could also occur if the corona block is sufficiently dense
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such that the core block cannot collapse fully upon entering the corona domain [28].
As argued by Choi et al., it could also be due to solvent penetrating the collapsed
globule such that all or most of the monomers are contacting the solvent [62–64].
In our FFS simulations, the linear scaling is expected since the core block shrinks
only slightly upon entering the B domain due to the high value of N̄ .

Note that even after the chain has fully detached from the interface the free energy
continues to gradually increase. This behavior is perfectly explained using the
Markov chain for symmetric diffusion on a number line with an absorbing boundary
condition on the left. After the chain has escaped, the chain still has a probability
to diffuse backwards and fall into the starting basin. This probability decreases the
further the chain is from the transition state. If we consider the absorbing boundary
to be at the transition state, which we define as node 0, then we can compute the
probability of reaching node = + 1 starting from node 0 before falling back into the
starting basin; we define this probability as %(= + 1|0) = %0, and more generally we
define%(=+1|8) = %8 for 8 ≥ 0. Starting from%0 wecan recursively compute all%8 up
to %=. Lastly, we assume that the forward and backwards transition probabilities are
both 1/2 at all interfaces. By induction, we find that %= = %(=+1|=) = (=+1)/(=+2),
and therefore %0 ∼ 1/(= + 2) and − ln %= → 0 as = → ∞. We could subtract out
this contribution to obtain a flat plateau, however, we elect not to since the transition
state is not well-defined for the monotonic free energy curves in Figures 2.7. The
small contribution does not affect the scaling of the free energy with #�.

Forward-Flux Ensemble (FFE)
From this point, it is of interest to evaluate the distributions of different chain
properties along the trajectories to better understand the mechanism by which the
chain is able to escape. We analyze different ensembles of trajectories specifically
for the system with #� = #� = 16, and n = I−1

2 = 0.02. The forward flux ensemble
(FFE) is the ensemble containing properties on the FFS interfaces for chains that
were frozen immediately after reaching an interface.

The distribution for the end-to-end distance of the core-block and the minimum
monomer position computed using the Gjp CV is given in Figure 2.9. A comple-
mentary plot for the GcmA CV is given in Figure S3 in the ESI†. Each interface
is plotted as an independent normalized probability distribution. The distribution
in Gjp or GcmA at each interface is not considered in these particular figures. Thus,
the distribution is shown as uniform in the abscissa for the domains in between
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FFS interfaces for easier visualization. The purple dots prior to the first interface
represent initial configurations from equilibration runs in Basin1. The black line
traces the mean value of the property along the interfaces.

Figure 2.9: FFE of the (top) core-block end-to-end distance, Ae2e and (bottom)
core-block minimum bead position, GminA as a function of the junction position, Gjp.
Here, Gjp is used as the generating CV. Scatter points represent initial configurations
within Basin1.

Figure 2.10: FFE of the (left) core-block end-to-end distance and (right) core-block
minimum bead position, as a function of the core-block center-of-mass. Here, GcmA
is used as the generating CV.

It is clear fromFigure 2.9 that the chain prefers to extend before eventually collapsing
and fully escaping from the interface. If we consider the chain to be fully escaped
when the last bead leaves the micelle core, then this implies that the transition
state is when Gjp ≈ 4.25 − 4.50. Thus, the chain is significantly extended, with
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〈Ae2e〉)( ≈ 2.0, which is much greater than the Basin1 average of ≈ 0.68. Note that
Ae2e is the end-to-end distance of the core (A) block only. While still present, the
extension mechanism becomes less pronounced when referring to Figure 2.10, with
〈Ae2e〉)( ≈ 1.2. This discrepancy arises from the unique definition of the FFE, which
freezes chains the first time that they cross each interface. As a result, these chain
conformations have an implicit bias. In addition, most of the chains that are saved at
FFS interfaces will go on to fall back into Basin1, which means the ensemble may
not be representative of the pathway that chains must take to successfully escape.
In practice, it is more appropriate and meaningful to look at the chain properties
from the ensemble of chain trajectories that successfully completed the transition
between the starting and ending basin, with monomer coordinates written at regular
intervals, as opposed to only at first-crossing. We denote this ensemble of transition
paths as the reactive ensemble (RE), which we discuss in the following section.

Reactive Ensemble (RE)

While the FFE is simple to compute and analyze since polymer configurations on
the interfaces are saved during the FFS simulation, it is hard to extract meaning
from this ensemble due to the bias introduced through the first-crossing condition.
As a result, the amount of extension present in the FFE is exaggerated compared to
reality due to the uniqueness of the first-crossing condition. In practice, it is more
appropriate and meaningful to look at the chain properties from the ensemble of
chain trajectories that successfully completed the transition between the starting and
ending basin, with monomer coordinates written at regular intervals, as opposed to
only at first-crossing. We denote this ensemble of transition paths as the reactive
ensemble (RE), which we discuss in this section.

The reactive trajectories can be constructed by starting from chain conformations at
the final interface and tracing them back to the first interface. These trajectories may
cross each interface multiple times before reaching the final basin and may share
common ancestors at intermediate interfaces. The only constraint on the reactive
trajectories is that the chain must not fall back into the starting basin before reaching
the ending basin.

Since the coordinates are output at regular intervals, the properties along the trajec-
tories can be binned using any choice of collective variable (CV), which we denote
as the selecting CV. To track the progress of chain escape, we define a selecting CV
based on the fraction of core-block monomers that have crossed the interface. To
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make this CV continuous, we employ a hyperbolic tangent switching function,

5 =
1

2#�

#�∑
8=1

[
1 + tanh

(
−G8 − G�

2

)]
, (2.22)

where 2 = 0.1 modulates the width of the function, and G� is the interface position.
By definition, 5 ∈ [0, 1]. Example trajectories up to the point of detachment are
shown in Figure 2.11a, which indicate that the primary mechanism for a chain to
cross the interface is through extension.

The full ensemble of trajectories can generate any univariate or multivariate prob-
ability distribution. Here, we focus on %(Ae2e,G , 5 ) and, more specifically, the
conditional distribution %(Ae2e,G | 5 ), plotted in Figure 2.11b. This distribution quan-
tifies the degree of chain stretching (normal to the interface) as a function of chain
expulsion during successful escape attempts. Figures 2.11a and 2.11b show that the
main escape pathway requires chains first to extend into solution (increasing both 5
and Ae2e,G) and then fully collapse and detach from the interface (increasing 5 while
decreasing Ae2e,G).

Figure 2.11: Results from the reactive ensemble for #� = #� = 16, I−1
2 = n = 0.02.

(a) Example escape trajectories, (b) conditional probability distribution, %(Ae2e,G | 5 ),
where Ae2e,G is the G-component of the end-to-end distance of the core block and 5
is the fraction CV defined in Equation (2.22), and (c) the distributions of Ae2e,G in
Basin1 and just before detaching from the interface, denoted as the transition state
(TS). Vertical dashed lines mark the means of the two distributions.

To clarify this pathway and the stretched transition state, we compare the probability
distributions %(Ae2e,G | 50) and %(Ae2e,G | 5)() in Figure 2.11c. The term "transition
state" is not used formally here, but instead is simply used to indicate the point along
the trajectory where 5 becomes 1. In other words, we define the "transition state"
to be the step when the final bead crosses over the interface. The distributions in
Figure 2.11c indicate the degree of extension for chains localized at the interface or
actively detaching from it, respectively, confirming that the chains adopt an extended
conformation immediately prior to detachment.
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Our enhanced sampling MD simulations revealed that "bead-by-bead" extension
of the chain into the solvent is a relatively low free energy pathway, even in the
case where the core block collapsed into a dry globule. However, in that case the
MFEP was still the HA mechanism. In the high density limit, the FFS simulations
revealed that the chain escapes almost exclusively through an extension mechanism.
This hints at the possibility that the MFEP crosses over from the HA mechanism
(lower pathway on FES) to the stretching mechanism (upper pathway on FES) as
the propensity for core collapse decreases.

2.4 Single-Chain Monte Carlo Umbrella Sampling
In this section we employ the same single-chain Hamiltonian that we used in the
FFS simulations in order to better understand how the transition pathways fit into
the overall thermodynamic picture. We employ umbrella sampling to compute the
underlying free energy surfaces and compare them with the transition pathways
discovered in the previous section.

Umbrella Sampling
We compute the 2d free energy surface (FES) using umbrella sampling and the
weighted histogram analysismethod (WHAM).Here, we briefly describe themethod
for completeness and we direct the reader to more thorough discussions provided by
Hub et al. [65] andRoux [66]. The principal goal of umbrella sampling is to compute
the free energy change when going from one state to another in a system. For
transitions that are rare, and even for those that are frequent, accurately sampling the
transition and estimating the free energy change is challenging. Umbrella sampling
seeks to solve this issue by restraining the system at different points along a reaction
coordinate b, usually via a harmonic biasing potential. If you discretize the pathway
between the initial and final states into " windows in the collective variable b, then
you will apply " harmonic potentials denoted as

F8 (b) =
^8

2
(b − b8)2 (2.23)

where ^8 is the spring constant used at window 8, and b8 is the center of the window.
As simulations progress under the biasing potentials, histograms of the CV values,
ℎ8 (b), are collected in each window. The weighted histogram analysis method
(WHAM) is the most common way to construct the free energy or PMF from the
biased histograms. The WHAM equations are

%(b) =
∑"
8 ℎ8 (b)∑"

8 =8 exp [−VF8 (b) + V�8]
(2.24)
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and
4−V�8 =

∫
3b4−VF8 (b)%(b) (2.25)

where V = 1/:�) , =8 is count in window 8, and �8 are the free energy constants.
Since %(b) and all of the �8 are unknown, these equations must be solved iteratively.
In this work, we utilize the WHAM software created by Alan Grossfield which can
be used for 1- and 2-dimensional umbrella sampling analysis [67].

We start by computing 2d free energy surfaces similar to the ones we computed
using sABF in DPD simulations. To elucidate the chain conformation during
escape, we bias both an escape coordinate and a conformation coordinate. All
calculations use the distance between the junction point and the interface as an
escape collective variable. In addition we consider a few collective variables to bias
the chain conformation:

1. Ae2e = |rjp − r0 |

2. Ae2e,x = |Gjp − G0 |

3. ΔGjp = Gjp − G0

First we show an example of the sampling achieved in a representative umbrella
sampling simulation in Figure 2.12. Here we show the window centers as red dots
and the corresponding histograms in blue. In our simulations we use the same spring
constant, : = 10, for the harmonic bias in both collective variables.

Results for Polymer Melt Hamiltonian
Here we utilize the same simulation Hamiltonian as the FFS simulations which
mimics a single polymer chain immersed in a polymer melt that has phase separated
into a lamellar microphase. Below are the 2d free energy surfaces using the three
different collective variables computed for parameters #� = #� = 16 and j# = 64
(n = 0.02 and I−1

2 = 0.02).

These free energy surfaces contain many of the same features as those computed
from our DPD simulations. The main difference is that the end-to-end distance does
not significantly decrease upon expulsion because the background is a polymeric
solvent. Instead the core block shrinks very slightly. In Figure 2.15 we plot the a
dashed line corresponding to Ae2e,x = Gjp. This line also by definition corresponds to
G0 lying on the interface. As expected, the ridge in the FES corresponds well with
this line.
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Figure 2.12: Sampling from 2d umbrella sampling simulation.

Figure 2.13: 2d FES using the junction point and the core block end to end distance.

In Figure 2.16 we show the reactive trajectories from FFS on top of the FES from
umbrella sampling using the same simulation parameters (#� = #� = 16 and
j# = 64). These plots reveal that the polymers indeed escape by first extending
into the upper region of the FES. After achieving some maximum extension, the
chains slightly contract before fully detaching from the interface. Note that none of
the chains have a relaxed coil conformation at escape.
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Figure 2.14: 2d FES using the junction point and the x-component of the displace-
ment between the end and junction point.

Figure 2.15: 2d FES using the junction point and the x-component of the core block
end to end distance.

In addition, we plot an estimate of the most probable pathway computed using the
reactive trajectories from FFS in Figure 2.17. Once the chain has extended into the
unfavorable domain, it cannot escape simply by increasing Gjp due to the additional
free energy barrier. Instead, the chain can follow a constant free energy contour on
the FES by slightly decreasing Gjp while collapsing, and then eventually escaping
by increasing Gjp.
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Figure 2.16: (left) Free energy surface using x-component of end-to-end distance
in umbrella sampling simulations with #� = #� = 16 and j# = 64. (middle) Free
energy surface with important points from FFS reactive trajectories. Yellow circles
within the basin are starting configurations. Blue Squares are the point of maximum
Ae2e,x along the trajectory. Yellow circles on the ridge are the point when the final
bead detached from the interface. Yellow triangles are configurations shortly after
detaching. (right) Trajectories from reactive ensemble computed using FFS.

Figure 2.17: 2d FES with arrow showing most probably path computed using
reactive trajectories from FFS.

To further describe this pathway, we overlay a single reactive trajectory on top of
the FES plotted as a surface in 3d in Figure 2.18. From this plot, it is clear that
the chain drifts gradually up the gentle region of the free energy surface without
escaping due to the sharp edge along Ae2e,x = Gjp. Instead, once the chain meets
this edge, it slides up simultaneously increasing Gjp and Ae2e,x, which corresponds to
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Figure 2.18: Umbrella sampling FES plotted as a 3d surface plot with a single
reactive trajectory from FFS plotted on top.

the "bead-by-bead" escape mechanism. Eventually the free energy of this extended
conformation becomes almost degenerate to that of the escaped chain, and then it
will escape. This is exactly the picture proposed by Seeger et al. [39].

Namely, they used a simple scaling argument to predict the free energy of a chain
that is escaping the interface by stretching out into the solution. They write the free
energy of the stretched chain as:

V� = 5 #�Δ0 +
G2
jp

5 #�1
2 (2.26)

where the first term is the energy due to unfavorable contacts with the solvent,
and the second term is the stretching energy of the core block. Here, Δ0 is the
penalty for moving a single bead from the core into the solvent, #� is the length
of the core block, 5 is the fraction of extracted monomers, and 1 is the statistical
segment length. At a given position of the junction point Gjp, one can determine the
optimal fraction of expelled core block (assuming this stretched conformation) by
minimizing the free energy

mV�

m 5
= #�Δ0 −

G2
jp

5 2#�12 = 0 (2.27)

which results in the following expression for 5 ,

5 ∼
Gjp

#�1(Δ0)1/2
(2.28)
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which increases linearly with Gjp as expected, and decreases with Δ0. Plugging this
back into the free energy we get,

V�∗ ∼
Gjp

1
(Δ0)1/2 (2.29)

which indicates that the free energy linearly increases with Gjp under this stretching
assumption. It is interesting to note that the slope is independent of #� which is
expected if the chain is escaping bead-by-bead. They then argue that when the chain
is wetted by the solvent, the maximum free energy is achieved when all core beads
are expelled. This leads to a barrier

V�barr ∼ #�Δ0 (2.30)

which is exactly what is expected for a core block that does not collapse. The
assumption that the core block is wetted by solvent is key in achieving the linear
scaling of the free energy barrier with #�. On the other hand, if the core escapes
without changing its conformation or end-to-end distance at all, then the free energy
profile should increase more rapidly, since multiple beads are exposed to the solvent
at the same time, rather than one-by-one. If we assume the core block forms an
ideal coil and does not change its conformation whatsoever, then we can estimate
how 5 scales with Gjp. First we assume that the coil is roughly spherical, with
an ideal radius of gyration '6 = 1

√
#�/6. If the beads are uniformly distributed

throughout the sphere, then the actual sphere radius is ' = '6
√

5/3. The junction
point is located at the right edge of the sphere, so we can compute the fraction of A
monomers that have entered the B domain by integrating the volume between G = 0
and G = Gjp.

5 =
E

+
=

2c
4
3c'

3

∫ Gjp

0
3G

∫ √'2−(G−')2

0
3A A =

1
2
+ 3

4

[(Gjp
'
− 1

)
− 1

3

(Gjp
'
− 1

)3
]

(2.31)
Thus, the free energy to escape without changing conformation should obey

V� ∼ 5 #�Δ0 ∼ #�Δ0
{

1
2
+ 3

4

[(Gjp
'
− 1

)
− 1

3

(Gjp
'
− 1

)3
]}

(2.32)

up to Gjp = 2'. We use our 2d FES to extract the free energy along the hyperstretch-
ing and unperturbed pathways, and compare it to the free energy profile projected
onto the Gjp CV in Figure 2.19.

From the bottom panel of Figure 2.19, we can see that the free energy of the
hyperstretched mechanism is lower up until the transition state, where the free
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Figure 2.19: (top) Free energy surface for #� = #� = 16 and j# = 64. The red
line follows the hyperstretched pathway, and the yellow line follows the unperturbed
pathway. (bottom) The blue line is the projection of the 2d FES into 1d, and the
colored profiles correspond to the paths in the top panel. The dashed vertical line is
the point where the free energies of the two paths become equal. The dotted line is
Equation (2.32) with the magnitude scaled by the true barrier.

energy of the unperturbed and the stretched chains are equal. At that point, we can
predict that the chain will shrink back to its normal size to escape because further
stretching would increase the free energy significantly beyond the unperturbed state.
Initially, however, the chain will prefer to stretch into the B domain since the free
energy gradient is much gentler. This is exactly what we observed in Figure 2.18
where the chain extended into the solution first until the free energy of the stretched
and unperturbed states were roughly equal. We also find that our crude model in
Equation 2.32 does a good job at predicting the shape of the free energy profile for
the chain that escapes without stretching, as shown by the dotted line in the bottom
panel of Figure 2.19.
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To elucidate the scaling relationship of the free energy barrier, we compute the free
energy profile for several #� and plot the results in Figure 2.20. As expected, we
find that the free energy barrier scales linearly with the core block length since the
core is exposed to the solvent.

Figure 2.20: (left) 1d free energy profiles computed by projecting 2d surface onto
Gjp coordinate. (right) Free energy barrier as a function of core block length #�.

We note here that the analysis of the stretching mechanism presented by Seeger et
al. [39] was under the assumption that the core block would be wetted by the solvent
after escape. However, for core block lengths exceeding roughly #� ≈ 6, the core
block in their DPDmodel forms a globule with interior monomers that are not in fact
exposed to the solvent. This effect becomes more and more pronounced for larger
core block lengths, which causes the scaling relationship to crossover from linear
to 2/3. This is what we showed in the Enhanced Sampling Molecular Dynamics
section by going to much longer core block lengths (up to #� = 100).

In the case of a polymeric solvent with high N̄ , we have shown through both
2d umbrella sampling and forward flux sampling simulations that the stretching
mechanism is indeed correct, but does not lead to a higher or lower free energy
barrier than an unperturbed escape mechanism. It has yet to be verified whether
the stretching mechanism is still relevant in the case of a collapsed core block. In
the following section we will conduct the same simulations but with the many-body
dpd model which can model core collapse.

Many-Body Simulation for Polymer in Solution
So far we have shown that the linear scaling of the free energy barrier is achieved in
the case of a dense polymer background where the core block does not collapse. We
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were able to show that the chain escapes through a bead-by-bead mechanism at first,
until the exposure of more beads to the solvent becomes too unfavorable, at which
point the polymer collapses and escapes. This is in contrast to the minimum free
energy pathway (MFEP) computed from the string method, which predicts that the
chain escapes nearly unperturbed. Nevertheless, the free energy barrier remains the
same regardless of the mechanism, and the scaling remains linear and in agreement
with experiments.

It is now of interest to discover how the minimum free energy pathway and the
kinetic pathway for chain expulsion relate in the case of a monomeric solvent where
the core block does collapse in the solution as in the Halperin–Alexander theory.
We already computed free energy surfaces and minimum free energy pathways from
DPD simulations with the spectral ABF enhanced sampling method in a previous
section. However, FFS simulations are far too computationally expensive to run
with the DPD model due to the high density of particles, the explicit solvent, and
the large box sizes required for long polymer chains. To remedy this, we develop a
many-body simulation technique for a single chain immersed in an implicit solvent.
The model developed here can accurately capture the coil-to-globule transition of
a polymer in solution, and therefore will allow us to bridge the gap between the
linear scaling regime and the 2/3 scaling regime, and determine if the true kinetic
pathways is in line with the Halperin–Alexander mechanism.

Simulation Model

Here I describe a many-body simulation model that is similar to many-body DPD
which is a soft-particle model capable of describing liquid–vapor coexistence [68–
71]. In this case, we utilize a similarmethod to describe the coil-to-globule transition
in polymers.

The system contains a single copolymer with # total beads divided into two blocks
of size #� and #�. The A block represents the core species while the B block is the
corona and shares chemical identity with the solvent. The monomers interact when-
ever they have any volume overlapping and have their mass uniformly distribution
over a sphere of diameter f.

d8 (r) =


1/E , |r − r8 | < f/2

0 , |r − r8 | ≥ f/2
(2.33)
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where E = cf3/6 is the volume of a monomer. This choice ensures that d8 (r)
integrates to 1. I assume that the interaction of two particles is local and quadratic,

F2 ( |r8 − r 9 |) =
∫

3r
∫

3r′d8 (r)X(r − r′)d 9 (r′) (2.34)

which results in the following interaction kernel,

F2 (A) =


1
2E

(
2 + A

f

) (
1 − A

f

)2
, A ≤ f

0 , A > f
(2.35)

In the framework of manybody-DPD (MDPD), each particle has a self-energy that
is a function of two densities [68].

D8 = �d̄8 + � ¯̄d2
8 (2.36)

where d̄8 is the sum of the interactions with neighbors,

d̄8 =
∑
9≠8

F2 (A8 9 ) (2.37)

and the choice of � < 0 makes this an attractive term. This first term is simply just
the pairwise interactions with all neighbors within the cutoff radius A2 = f. If you
choose � > 0 and � = 0 then this is the typical DPD model. The density ¯̄d uses the
same kernel but with a smaller cutoff,

¯̄d8 =
6

2cA3
3

∑
9≠8

(
2 +

A8 9

A3

) (
1 −

A8 9

A3

)2
=

∑
9≠8

F3 (A8 9 ) (2.38)

where the potential is

F3 (A8 9 ) =
1

2E3

(
2 +

A8 9

A3

) (
1 −

A8 9

A3

)2
(2.39)

with E3 = cA3
3
/6, and A3 < f. Here we use A3 = 0.75f, which is a typical choice in

the literature. Thus, the second term in Equation 2.36 can be written as,

� ¯̄d2 = � ¯̄d
∑
9≠8

F3 (A8 9 ) (2.40)

where � > 0 makes this term repulsive. The combination of the two terms in
Equation 2.36 ensures the particles are attractive at "long" range and repulsive at
short range. In addition, the repulsion grows with the local density. It has been
shown that this is sufficient to enable a VDW loop, and can therefore model a
liquid-vapor interface.
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In addition to the two interaction terms, we include an additional one-body term that
accounts for the interaction of a particle with the background. This will account for
the change in energy as a particle crosses from the micelle core into the solution.
Thus, the self-energy of a particle including the one-body term is

D8 = j8 + �d̄8 + � ¯̄d2
8 (2.41)

where j8 is the interaction strength between the particle and the background, and is a
function of the particle position. When a particle is immersed within a background
of its own type (e.g., A in A, or B in B) then j8 = 0. When a particle is immersed
within a background of the opposing type (e.g., A in B or B in A), then j8 > 0. We
vary j smoothly across the interface using a tanh switching function.

The presence of the interface also complicates the 2-body interaction terms, since
the effective interaction between two particles should depend on the nature of the
background fluid. For example, when two A particles are within the A domain, then
their interactions should correspond to the theta condition. On the other hand, when
two A particles are in the B domain, then their interaction potential should result in
overall attraction. As a result, at each step, we assign each particle a value �8 based
on the particle type and position relative to the interface. If the particle is in its own
domain, then �8 = �0, otherwise �8 = �. Then we compute �8 9 = (�8 + � 9 )/2 if
8 and 9 are of the same type, otherwise �8 9 = 0. These choices ensure that a chain
will take a coil conformation in it’s own domain and take a collapsed conformation
in the opposite domain. We vary the parameters smoothly across the interface using
a tanh switching function. Note that all 3-body interaction have the same repulsive
constant, � > 0. For a given �, we determine the value �0 < 0 that corresponds to
the theta-solvent condition.

By summing the self-energies and correcting for overcounting, one can express the
total non-bonded potential energy in terms of pairwise interactions only.

V* =
∑
8

j8 +
∑
8

∑
9≠8

�8 9F2 (A8 9 ) +
∑
8

∑
9≠8

�( ¯̄d8 + ¯̄d 9 )F3 (A8 9 ) (2.42)

For two isolated particles, we plot the individual components of, and the total inter-
action potential in Figure 2.21. Obviously, this is only the interaction between two
isolated particles, and the repulsive part will grow stronger as particles accumulate
more than a single contact.
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Figure 2.21: Potential between two isolated particles with � = −6, � = 10, and
A3 = 0.75f.

Neighboring particles along the backbone also interact via a stiff harmonic bond
potential:

V*b(A) =
^

2
(A − 1)2 (2.43)

where ^ is the spring constant and 1 is the bond length, which we choose as 1 = f.

Calibration

For a given value of �, we need to determine �0 such that the polymer takes an ideal
conformation within its own domain. We can get an approximate value for �0 by
finding where the second virial coefficient vanishes for two interacting monomers.
Figure 2.22 indicates that the theta condition should be near �0 = −2.5. However,
we expect the true �0 to be lower than this value because the repulsion will become
stronger when multiple particles overlap.

Figure 2.22: 2nd virial coefficient for � = 10, A3 = 0.75, and f = 1.

To determine the actual value of �0, we compute the radius of gyration for various
values of # and �. As shown in Figure 2.23, we find that the actual theta condition
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is achieved for approximately �0 ≈ −4. Thus, two particles immersed within a
fluid of their own kind will interact with � = −4 and � = 10, while two particles
immersed in the poor solvent domain will interact with � < −4 and � = 10. We
choose � = −6 to force a collapse without freezing the micelle cores.

Figure 2.23: Radius of gyration as a function of � for various # with � = 10, f = 1,
and A3 = 0.75.

In Figure 2.24, we plot the radius of gyration of a homopolymer for both � = −4
and � = −6 to show the size-scaling behavior.

Figure 2.24: Radius of gyration of homopolymers for (red) � = −4 and (blue)
� = −6. The dashed lines correspond to (red) #1/2 and (blue) #1/3.
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Algorithm

To efficiently evaluate the many-body interactions we keep track of the neighbors
and local density of each particle. Each polymer has a neighborlist =[#] [Imax + 1]
where the first index is over the monomers, and the second is over the neighbors.
The first element is the current number of neighbors, and the remaining elements
are the indices of those neighbors. We choose Imax large enough to avoid exceeding
the neighborlist limit throughout the simulation, but small enough to avoid excessive
memory usage. We also store the particle densities in an array, d[#]. In addition to
these two arrays we create copies =′ and d′ that are used as temporary arrays while
making MC attempts.

During an MC move, we endeavor to conduct as few operations as possible using
the following set of steps:

1. Compute the interaction of particle 8 with the background, j8.

2. Compute the bonded energy between 8, 8 − 1 and 8, 8 + 1.

3. Compute the 2-body interactions between particle 8 and all other # − 1 parti-
cles. While looping over particles, also do the following:

a) Count and store the neighbors in =[8]

b) Accumulate the density d8 and store in d[8]

4. Compute the 3-body interactions that will by affected by particle 8 moving, by
doing the following:

a) Loop over neighbors 9 of particle 8 in neighborlist =[8] and compute the
3-body interactions for those particles by looping over their neighbors :
in =[ 9].

i. If particle : is also a neighbor of 8, then multiply 3-body energy
between particles 9 and : , � 9 : , by 1/2 to avoid overcounting (since
�: 9 will be addressed as well due to : being in =[8]).

ii. If particle : is not a neighbor of 8, then count the full 3-body energy,
� 9 : .

5. Generate a new position for particle 8.

6. Compute the new interaction of particle 8 with the background, j8.
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7. Compute the new bonded energy between 8, 8 − 1 and 8, 8 + 1.

8. Compute the new 2-body interactions between particle 8 and all other # − 1
particles. While looping over particles, also do the following:

a) Count and store the new neighbors in =′[8]

b) Accumulate the new density d8 and store in d′[8]

9. Set the particle coordinates back to their old values

10. Compute old 3-body interactions of particles that were not neighbors of 8 in
=[8], but are neighbors of 8 in =′[8], by doing the following:

a) Loop over neighbors 9 of particle 8 in neighborlist =′[8]

b) Determine if 9 is also a neighbor of 8 in neighborlist =[8]

i. If it is, then break since that old interaction was already counted

ii. If not, then loop over the old neighbors : of particle 9 in neigh-
borlist =[ 9] and add their 3-body interaction with 9 according to the
following criteria...

c) If particle : is an old neighbor of 8 in neighborlist =[8], then break since
that : 9 interaction was already counted in Step 4.

d) If particle : is not an old neighbor of 8, then evaluate the 3-body inter-
action between 9 and :

i. If particle : is also a new neighbor of 8, then only add 1/2 the energy
� 9 : to avoid overcounting (since �: 9 will also be counted)

ii. If particle : is not a new neighbor of 8, then add the full energy � 9 : .

11. Set coordinates of 8 back to the values that were generated in Step 5.

12. Compute the new density d8 by looping over only neighbors =′[8] and store it
in d′[8]

13. Update neighborlists of new neighbors of 8.

a) Loop over new neighbors 9 of particle 8 in list =′[8].

b) Check if 9 is an old neighbor of 8, if not, then add 8 to the new neighborlist
of 9 , =′[ 9].

c) Either way, compute the new density of particle 9 and store in d′[ 9].
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14. Update neighborlists of old neighbors of 8.

a) Loop over old neighbors 9 of particle 8 in list =[8].

b) Check if 9 is a new neighbor of 8, if not, then remove 8 from the new
neighorlist of 9 , =′[ 9].

c) Either way, compute the new density of particle 9 and store in d′[ 9].

15. Compute 3-body interactions of new neighbors 9 of 8 in neighborlist =′[8].

a) Loop over neighbors 9 of particle 8 in neighborlist =′[8] and compute the
3-body interactions for those particles by looping over their neighbors :
in =′[ 9].

i. If particle : is also a neighbor of 8, then multiply 3-body energy
between particles 9 and : , � 9 : , by 1/2 to avoid overcounting (since
�: 9 will be addressed as well due to : being in =′[8]).

ii. If particle : is not a neighbor of 8, then count the full 3-body energy,
� 9 : .

16. Compute new 3-body interactions of particles that were neighbors of 8 in =[8],
but are not neighbors of 8 in =′[8], by doing the following:

a) Loop over old neighbors 9 of particle 8 in neighborlist =[8]

b) Determine if 9 is also a neighbor of 8 in new neighborlist =′[8]

i. If it is, then break since that new interaction was already counted in
step 15.

ii. If not, then loop over the new neighbors : of particle 9 in neigh-
borlist =′[ 9] and add their 3-body interaction with 9 according to
the following criteria...

c) If particle : is a new neighbor of 8 in neighborlist =′[8], then break since
that : 9 interaction was already counted in Step 15.

d) If particle : is not a new neighbor of 8, then evaluate the 3-body interac-
tion between 9 and : .

i. If particle : is also an old neighbor of 8, then only add 1/2 the
energy � 9 : to avoid overcounting (since �: 9 will also be counted)

ii. If particle : is not an old neighbor of 8, then add the full energy � 9 : .
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17. Compute energy difference between the new and old configurations by accu-
mulating all the energy terms that have been computed.

18. Accept move according to Metropolis criterion

a) If the move is accepted then overwrite = with =′

b) If the move is rejected then overwrite =′ with =

Results and Discussion

Unfortunately, I was not able to collect and analyze enough results with this model
this prior to submitting my thesis. I decided to still include the model as inspiration
for future work in this area.

2.5 Conclusions
In this study, we utilized coarse-grained molecular dynamics with spectral ABF en-
hanced sampling to compute the 2d free energy surface for the escape of a copolymer
chain from a micelle at high segregation strength, and relatively low density. Our
use of two collective variables ensured that the chain conformation was properly
sampled during the escape process, and allowed us to observe a bimodal distribution
in the chain conformation. In particular, near the transition state, we found that the
chain can readily take either a collapsed or an extended conformation where some
of the polymer beads remain in the micelle core. While the two conformations have
commensurate free energies, they are separated by a large free energy barrier, further
indicating the need for explicit biasing of the chain conformation. We computed
the minimum free energy path using the string method on the free energy landscape
and found it to be in agreement with the originally proposed Halperin–Alexander
mechanism, both qualitatively and quantitatively. Namely, the MFEP featured a col-
lapsed core block at the transition state that ultimately yielded a free energy barrier
that scaled as #2/3

�
. Our 2d FES using the 'cm-jp CV featured a broad region where

the chain is still tethered to the micelle with a portion of the core block extended into
the solution, indicating a high propensity for the extended conformation to exist.
While these results are compelling in their validation of the Halperin–Alexander
mechanism, they do not agree with experimentally observed scaling relationships
of several TR-SANS experiments. This provides support for the idea that the core
block is not fully collapsed during escape, which prompted us to study the escape
mechanism for chains in a lamellae-forming diblock copolymer melt.
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To compute the transition pathway in the high-density limit we conducted single-
chain Monte Carlo simulations with forward flux sampling. We utilized a simplified
model with a single bead-spring copolymer chain immersed in a mean-field back-
ground containing a sharp interface. We computed the rate and free energy barrier
for escape using millions of independent forward flux sampling trajectories. The re-
sulting free energy barrier scaled linearly with #� for different choices of collective
variables. The linear scaling is in good agreement with experimental observa-
tions from TR-SANS measurements. We analyzed the properties of the polymer
chains along the escape trajectories using the forward flux ensemble and the reac-
tive ensemble and found that a large majority of the chains escape via an extended
conformation, rather than the collapsed conformation of the Halperin–Alexander
mechanism. We also employed umbrella sampling to compute the 2d FES of the
single-chain model and found that the reactive trajectories collected from FFS were
described well by the shape of the landscape. We found that the bead-by-bead
mechanism manifests as a gentle gradient pathway on the FES as compared to an
unperturbed escape mechanism. Overlaying the reactive trajectories on top of the
FES revealed that chains do in fact prefer to escape bead-by-bead initially, up until
the point where the stretched chain has a free energy nearly commensurate with the
escaped chain, at which point the chain will collapse and escape. We note that this
picture agrees very well with the mechanism proposed by Seeger et al. [38, 39].

In this work we provided a detailed analysis of the different possible mechanisms for
a diblock copolymer chain to escape from a micelle using two different simulation
techniques. While the simulations were restricted to a narrow range of parameters,
we were able to identify different pathways and their relative importance to chain
exchange. In a future work we plan to use forward flux sampling simulations to
do a more comprehensive study of the effect of the chain and matrix properties
on the escape rate and mechanism. In addition, we hope to conduct studies using
the many-body simulation in order to determine the kinetic pathway within the
Halperin–Alexander regime.
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C h a p t e r 3

KINETIC PATHWAY TO COPOLYMER MICELLES VIA THIN
FILM DISSOLUTION

Surfactant and polymer-based micelles are abundant in nature and widely utilized
across diverse applications, from drug delivery to viscosity modification in oils
and consumer products. Micelles equilibrate via two principal processes: chain
expulsion/insertion and micelle fission/fusion. For surfactants and lipids, these
processes occur on subsecond timescales, but in longer-chain diblock copolymers,
higher free energy barriers significantly slow equilibration. This presents challenges
for achieving equilibrium in micelle size and concentration, making it desirable to
develop reliable methods for producing micelle solutions with targeted, narrow size
distributions. In this chapter, we use coarse-grainedmolecular dynamics simulations
and a version of self-consistent field theory to explore a kinetic pathway for forming
large diblock copolymer micelles by dissolving a lamellar phase in a selective
solvent. This pathway circumvents kinetic traps due to large free energy barriers in
equilibration processes such as single-chain exchange and micelle fusion.

I am very thankful for many fruitful discussions with Prof. Tim Lodge. The
opportunity to work and collaborate with such an incredible experimentalist has
inspired me greatly and shaped the way that I think about problems immensely.

3.1 Introduction
Diblock copolymers in selective solvents can self-assemble into a variety of micellar
structures such as spheres, cylinders, and vesicles [1, 2], similar to surfactants and
other amphiphiles. Unlike small-molecule surfactants, however, diblock copolymers
typically have large molecular weights and strongly hydrophobic core blocks. As
a result, micelle equilibration processes such as single-chain exchange and micelle
fusion can be exceedingly slow, requiring hours, days, or even years to reach equilib-
rium [3]. Nyrkova and Semenov [4] proposed that quenching a copolymer solution
deeply into the micellar regime leads to the formation of small, kinetically trapped
micelles. Initially, small aggregates form rapidly, and their average size increases
slowly through fusion and exchange. However, as aggregates grow, the barriers to
these processes increase as well [4, 5]. Thus, micellization is better described by
a continuous spectrum of relaxation times that lengthen with aggregate size, rather
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than by a simple two-step process consisting of one fast and one slow step. If the
interfacial tension W is sufficiently large, the systemmay remain trapped at a smaller,
relatively polydisperse size distribution and never reach true equilibrium [3, 6]. This
kinetic trapping has been observed in experiments [7–13] and simulations [14–16].

A traditional method for preparing copolymer solutions involves the use of a co-
solvent. In the cosolvent-assisted dissolution (CS) method, the copolymer is first
dissolved in a good solvent for both blocks so that no micellization occurs. A selec-
tive solvent is then slowly added, triggering micellization once the effective solvent
quality for the core block becomes poor enough. Alternatively, the copolymer can
be dissolved in a good solvent mixture, followed by slow removal of one component
through evaporation. This approach often produces small, polydisperse micelles
due to kinetic trapping [9, 10, 17]. In contrast, the direct dissolution (DD) method
involves dissolving the copolymer directly in a selective solvent while heating at a
moderate temperature. A related approach, thin film dissolution (TF), entails casting
the copolymer into a thin film and subsequently dissolving it directly in a selective
solvent [18].

Meli and Lodge investigated the path dependence of micellization using PB-PEO
diblock copolymers dissolved in an ionic liquid selective solvent. In their original
study [9], they examined PB-PEO (8-7), which has a core block fraction of 5PB =
0.61. They found thatmicelles formed via theDD and TFmethodswere significantly
larger andmore polydisperse than those produced by theCSmethod. Upon annealing
at elevated temperature, the DD/TF micelles shrank by a factor of approximately
2, while the CS micelles remained essentially unchanged. The annealed DD/TF
micelles maintained stable size distributions upon further annealing, despite still
being larger than the CS micelles, strongly suggesting that equilibrium had been
reached. In a subsequent study [10], they extended their work to PB-PEO (8-
15), with a smaller core fraction of 5PB = 0.40. For these chains, the DD/TF
micelles were about twice as large as those produced by the CS method. Extended
thermal annealing caused only a slight size decrease in the DD/TF micelles and
no measurable change in the CS micelles. They also observed that the PB-PEO
(8-15) micelles were much less polydisperse than the PB-PEO (8-7) micelles, with
polydispersities comparable to or even lower than those of the CS micelles from
the same composition. Thus, two stable yet distinct and narrow size distributions
were obtained from the two different methods. They hypothesized that the small CS
micelles are trapped in a metastable state due to significantly slowed equilibration
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dynamics at large core-solvent incompatibility. They also hypothesized that the
narrow size distribution in the CS micelles originates from the slow evaporation
of the cosolvent, which allows the micelles to reach equilibrium at an intermediate
cosolvent concentration before the equilibration dynamics are frozen. As proposed
by Nyrkova and Semenov [4], the distribution should be broader if the quench occurs
more rapidly.

In this work, we investigate the kinetic pathway of the TF method in the star-like
regime using dissipative particle dynamics (DPD) simulations. We also examine
micellization kinetics when chains dissolved in a cosolvent are rapidly quenched
deep into the micellar region of the phase diagram by swapping the cosolvent for
a highly selective solvent. We compare the final size distributions from the two
methods and their dependence on the core block fraction. We then develop a self-
consistent field theory based on DPD (DPD-SCFT) to compute the free energy
of intermediate states along the kinetic pathway and determine whether the final
micelles from the TF method are close to their equilibrium size, as hypothesized by
Meli and Lodge [10].

3.2 Dissipative Particle Dynamics
We model diblock copolymers in an explicit solvent using highly coarse-grained
molecular dynamics simulations. We employ a variant of a dissipative particle
dynamics (DPD) [19] model that has been used previously to study microphase sep-
aration in polymer melts [20–22] and confined thin films [23–25], and micellization
in copolymer solutions [26–29].

Polymers are made up of # total beads that are divided into a core block with
#� beads and a corona block with #� beads, and the solvent is monomeric. For
simplicity, we set the effective bead size, 3?, to be same for all species (A, B, S).
Adjacent monomers within the same polymer chain are connected via a harmonic
potential that gives rise to the force

F18 9 = ^(A8 9 − 1)r̂8 9 (3.1)

where ^ is the spring constant, 1 is the equilibrium bond distance, and A8 9 and r̂8 9
are the distance and unit vector (respectively) between the two particles. We use a
spring constant of ^ = 100 :�)/32

? and 1 = 3?. Since we simulate relatively short
chains, the traditional Gaussian chain model with A0 = 0 and ^ ≈ 4 :�)/32

? is not
appropriate. It has been shown previously that those parameters can result in the
blocks collapsing to minimize their bond energy, even after phase separation occurs,
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and therefore should only be applied to very long chains. This collapse does not
occur with the freely-jointed chain model used here.

In addition to the bonded interactions, particles interact with a purely repulsive,
short-ranged, soft force that is commonly employed in DPD simulations [19],

F28 9 =

−08 9 (1 − A8 9/3?)r̂8 9 , A8 9 ≤ 3?
0 , A8 9 > 3?

(3.2)

where 08 9 is the repulsion strength. For DPD, Groot and Warren argued that the
density and base repulsion parameter should obey the relationship 088d = 75:�)/3?
where :� is the Boltzmann constant and ) is the temperature. Since we conduct
simulations at a reduced density of d03

3
? = d = 3, we set the base repulsion

accordingly to 088 = 25 :�)/3?. In addition to the conservative forces, there are
two additional forces employed in DPD that represent thermal fluctuations and drag
forces. The combination of these forces act to thermostat the system and also
preserve hydrodynamics. These are given by,

F'8 9 = fF(A8 9 )\8 9 (ΔC)−1/2r̂8 9 (3.3)

F�8 9 = −WF2(A8 9 ) (r̂8 9 · v8 9 )r̂8 9 (3.4)

where F(A) = (1 − A/3?) for A ≤ 3? and 0 otherwise, v8 9 is the difference in the
velocities of the two particles v8 9 = v8 − v 9 , f is the amplitude of the random
force, W = f2/(2:�)) is the friction coefficient of the drag force, \8 9 is a random
Gaussian variable with zero mean and unit variance, and ΔC is the timestep size. In
line with previous DPD simulations of diblock copolymer thin films [23], we set
f = 0.10 :�)g1/2/3?, and therefore W = 0.005 :�)g/32

?, where g = (<32
?/:�))1/2

is the unit of time. For simplicity, we set < = 1, 3? = 1, and :�) = 1. In most
cases, we use a timestep ofΔC = 0.015g, however, in some cases such as immediately
following a parameter quench, we use a much smaller timestep of ΔC = 0.001g to
stabilize the simulation. ALl simulations are conductedwith the LAMMPS software
(v. June 27, 2024) [30]. In the remainder of this work, we will omit units from
parameters for simplicity.

Lamellar Domain Spacing

The starting point for the TF method is a microphase separated copolymer melt,
usually in the lamellar phase. To determine the equilibrium domain spacing of the
lamellar phase for each set of parameters, we simulate a single lamellar period (one
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A domain and one B domain) in the NPT ensemble. We determined the correct
pressure at d = 3 and 088 = 25 to be % ≈ 21.4 :�)/33

? by running a long NVT
simulation and measuring the stress tensor. We use the Berendsen barostat to set
equal pressure in all dimensions and couple the size of two dimensions. The size
of the coupled dimensions remains proportional according to the initial state. The
choice of which dimensions to couple depends onwhether the initial domain spacing
�0 is greater than or less than the equilibrium spacing �. If the initial state is not
significantly far from equilibrium, the barostat and size coupling allows for the
lamellae to grow or shrink in the normal direction (and adjust the other dimensions
accordingly) until the stress vanishes in all dimensions. We found that if �0 < �,
then coupling the two dimension parallel to the interface is effective. On the other
hand, if �0 > �, then it is better to couple the normal dimension to one of the
parallel dimensions.

We note that one could instead run many simulations with different cubic box sizes,
+ = !3, and the stress tensor will become isotropic at ! = � [31]. However,
we prefer the method presented here since it only requires a single relatively short
simulation.

Figure 3.1: Lamellar domain spacing relaxation fromNPT simulations for #� = 12,
#� = 15, Δ0 = 20. Different curves correspond to different initial domain spacings.
Lower snapshots correspond to �0 = 5'0

6, where G and H were coupled. Upper
snapshows correspond to �0 = 9'0

6 where H and I were coupled. The surface
normal to the lamellar interface is in the G-direction.

Thin Film Dissolution

In the thin film (TF) dissolution method, a diblock copolymer thin film (usually
in the ordered state) is exposed directly to a selective solvent. In this section, we
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outline how we conduct in silico experiments of the TF method.

Using the domain spacing obtained from the melt simulations, we create a thin
film with 4 lamellar periods sandwiched in between two non-solvent bulks. In the
experiment, the thin film is usually formed against a substrate so that only one face is
exposed to the air/vacuum [9, 10]. This means that the selective solvent is also only
introduced to a single face. Since the DPD model used here is purely repulsive and
incompressible, this poses a challenge for attaching the thin film to a solid substrate,
and makes it impossible to model a true vapor phase. Instead, we start by making the
solvent a non-solvent to both polymer blocks. After the polymer and solvent undergo
macrophase separation, the polymer thin film undergoes microphase separation into
a lamellar morphology. We use a dragging force to orient the 4 lamellar domains
perpendicular to the solvent-polymer interface. Once the domains are oriented, we
release the dragging force and allow the system to equilibrate for 5 · 105 timesteps.
An example of the equilibrated thin film is given in Figure 3.2. For independent
productions runs, we start with an additional 5 · 105 timesteps of equilibration to
produce completely uncorrelated initial configurations.

To replicate the dissolution of a thin film in a selective solvent, we take an initial
lamellar structure in a nonsolvent, as in Figure 3.2, and instantaneously decrease
Δ0BS down to 0. In other words, the nonsolvent is swapped for solvent that is

Solvent omitted 

for visual clarity

Figure 3.2: Initial structure of thin film dissolution simulations meant to replicate
the experimental case of a thin film in contact with air/vacuum. Diblock copolymer
lamellae with 4 domains are created by setting 0�� = 0�( = 0BS = 45 = 088 + 20
and dragging the polymer to I = !I/2. This particular simulation has #� = 12,
#� = 15, =? = 12, 220 and =B = 669, 878, where =? is the number of polymers and
=B is the number of solvent molecules.
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selective for the B block. In this case we choose the selective solvent to have the
same chemical identity as themonomers of theB block in order to limit the number of
independent parameters in the simulations. Immediately after Δ0BS = 0, the solvent
rushes into the B block rapidly which can cause the simulation to become unstable
with ΔC = 0.015. To combat this, we use a smaller timestep of ΔC = 0.001 until the
solvent has fully penetrated the lamellar domain, at which point we increase it back
to ΔC = 0.015. After the solvent quench step, the simulation is run for an additional
3 · 106 steps, or until the lamellae are fully dissolved into spherical micelles.

To ensure that the process is independent of the specific initial state, and to collect
sufficient statistics on the final micelle sizes, we conduct simulations of 5 replicas for
each value of #�. All simulations are done in the NVT ensemble since we already
determined the optimal lamellar spacing from the small diblock melt simulations.

Cosolvent Assisted Dissolution

There are two common variants of the cosolvent (CS) assisted dissolution method.
In one approach, copolymer is dissolved in a mixture of the target selective solvent
and a volatile cosolvent. As the cosolvent evaporates the interfacial tension increases
and micelles form. Alternatively, a copolymer dissolved in a cosolvent is titrated
into the target selective solvent, where micelles form immediately upon mixing [9,
10]. In this section, we describe how we conduct in silico experiments of the CS
method.

Figure 3.3: (left) initial and (right) final structure of the cosolvent assisted dissolution
simulations. This particular visualization is for Δ0�( = 20, #� = 12, #� = 15,
=? = 1, 925 and =B = 347, 832, where =? is the number of polymers and =B is the
number of solvent molecules. This corresponds to a 13 %v/v solution.

We start with the copolymer dissolved in a cosolvent at a concentration of 13 %v/v.
The polymer is uniformly mixed by conducting NVT simulations with Δ0 = 0 for
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1.5·105 timesteps. We then swap the cosolvent instantaneously for a selective solvent
with Δ0BS = 0 and Δ0�( = 20, and conduct an NVT simulation with ΔC = 0.001
for 2.5 · 105 timesteps, followed by a production simulation with ΔC = 0.015 for
7.5 · 106 timesteps where the polymers form micelles. An example of the initial and
final configuration are given in Figure 3.3.

We note here that these simulations represent a rapid quench into the micellar
regime, rather than a gradual change. It was shown by Johnson and coworkers [7] as
well as Meli and Lodge [9, 10] that slow titration of the cosolvent into the selective
solvent can keep exchange dynamics active for long enough to reach equilibrium
at an intermediate solvent quality. While the final micelles at the target solvent
quality are still kinetically trapped below equilibrium, this slow titration procedure
produces more monodispersed micelles than rapid quenching. In this study we do
not consider a slow titration technique, but this would be an interesting avenue for
future work.

This micellization process simulated here differs from that of Li and Dormidontova
[5, 26] since they simulate short chains with lower core hydrophobicity. As a result,
exchange and fusion remain active throughout the entire micellization process, and
they are able to reach an equilibrium state where unimers are at equilibrium with
micelles. As discussed previously, equilibrium is often not attainable in copolymer
micelles with longer, more hydrophobic core blocks due to the freezing of unimer
exchange and fusion dynamics. In addition, it has been observed experimentally
that unimer concentrations at equilibrium are often vanishingly small [32], which
is in contrast to the conditions simulated previously by Li and Dormidontova [26].
In this work, we focus on the common experimental regime where micelles rapidly
form and then become kinetically trapped with negligible unimer concentration.

3.3 DPD Self-Consistent Field Theory
It is of interest to determine how close the micelles created from the TF and CS
methods are to the equilibrium size. It is very difficult to determine the equilibrium
size directly from simulation, so instead we utilize self-consistent field theory to
compute an approximation to the free energy for an isolated micelle [33, 34]. To
ensure the theoretical model is as close to the simulation as possible, we utilize
the same bonded potential and conservative non-bonded potential as DPD. As far
as we know, this has not been done before for the DPD model, and we call the
theory DPD-SCFT. We note that it is possible to determine the free energy from
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simulation using a grand canonical Monte Carlo approach as was shown by Mysona
and coworkers [27–29], however, this approach is only feasible when a polymeric
solvent is used with the same total number of monomers. This method cannot be
readily applied to the current case of a monomeric solvent.

The system contains = bead-spring polymers that each contain # total monomers
divided into two block of length #� and #�. In the canonical ensemble, there are <
total solvent molecules that are represented as single beads that are the same size as
the polymer beads. The system has a total segment density of d03

3
? = d = 3, where

3? is the effective particle size of all species. We define the shorthand C = {A,B, S}
for the vecor of species in the system. As in the MD simulations, particles interact
via a soft, purely repulsive potential given by,

V*
8 9

dpd(A8 9 ) =


1
208 9 (1 − A8 9/3?)

2 , A8 9 ≤ 3?

0 , A8 9 > 3?

(3.5)

where 08 9 is the repulsion strength, A8 9 is the distance between particles 8 and 9 , and
3? is the range of the interaction. In addition, adjacent particles along a polymer
backbone interact via a stiff spring bonded potential of the form,

V*1 (A8 9 ) =
^

232
?

(A8 9 − 1)2 (3.6)

where ^ is the spring constant, and 1 is the equilibrium bond length. Once again,
we choose ^ = 100 and 1 = 3? = 1 to match with the MD simulations.

The total interaction energy is thus,

V* (r=#+<) = ^

232
?

=∑
8=1

#−1∑
9=1
( |r8, 9+1 − r8, 9 | − 1)2

+ V
2

∑
U∈C

∑
W∈C

∫
3r

∫
3r′d̂U (r)*dpd( |r − r′|) d̂W (r′) (3.7)

where d̂U (r) =
∑#U
8=1 X(r − r8) is the microscopic density operator of species U. The

configurational partition function in the canonical ensemble is,

/ =
1

=!<!E=#+<

∫ ∏
3r 9 exp

[
−V* (r=#+<)

]
(3.8)

where E = 33
? is an arbitrary volume scale for normalization. To transform to a field-

based representation, we introduce coarse-grained density for each species using the
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Fourier representation of the delta functional,

X [dU (r) − d̂U (r)] =
∫

�FU exp
{
8

∫
3rFU (r) [dU (r) − d̂U (r)]

}
(3.9)

where dU is the coarse-grained density that is coupled to the fluctuating field FU.
The field-based canonical partition function can now be written as,

/ =

∫ ∏
U∈C

�dU�FU
&=
%
&<
(

=!<!

=#+<∏
9=1

exp
{∑
U∈C

∫
3r 8FUdU−

− V
2

∑
U∈C

∑
W∈C

∫
3r

∫
3r′dU (r)*UW

dpd( |r − r′|)dW (r′)
}

(3.10)

where &% [F�, F�] and &( [F(] are the single polymer and single particle partition
functions, respectively. These are the partitions functions for a single polymer chain
and a single solvent molecule subject to external fields F�, F�, and F(, and they
are defined below.

&% [F�, F�] =
1
E#

∫
3r# exp

{
− ^

232
?

#−1∑
9=1
( |r 9+1 − r 9 | − 1)2

−
#�∑
9=1
8F� (r 9 ) −

#∑
9=#�+1

8F� (r 9 )
}

(3.11)

&( [F(] =
1
E

∫
3r 4−8F( (r) (3.12)

In order to model an isolated micelle of aggregation number =, we transform to a
semigrand ensemble where a subvolume containing the micelle is connected to an
infinite reservoir of solvent molecules. To make this transformation, we perform the
discrete Laplace transform,

Ξ(=, `,+, )) =
∞∑
<=0

4V`</ (=, <,+, )) (3.13)

where ` is the solvent chemical potential. The full semigrand partition function can
then be written compactly,

Ξ =

∫
�F�

∫
�F�

∫
�F(

∫
�d�

∫
�d�

∫
�d( 4

−V� (3.14)

where � is the field-based Hamiltonian.

V� = ln(=!) − = ln&% − 4V`&( −
∑
U∈C

∫
3r 8FUdU

+ V
2

∑
U∈C

∑
W∈C

∫
3r

∫
3r′dU (r)*UW

dpd( |r − r′|)dW (r′) (3.15)
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The partition function in Equation (3.14) cannot be evaluated in closed form, so
we approximate its value using the saddle-point of the Hamiltonian, �∗. At the
saddle point, the fields F� are purely imaginary, and thus we define new fields,
bU = 8F�, that are purely real. We can then approximate the equilibrium free energy
VΩ = − lnΞ ≈ − lnΞ∗ = V�∗. The equilibrium density and field profiles can be
computed by extremizing the Hamiltonian with X�/XbU = 0 and X�/XdU = 0,
which gives rise to the following saddle-point (mean-field) equations.

d� (r) =
=4b�(r)

E&%

#�∑
8=1

@(r; 8)@†(r; # − 8) (3.16)

d� (r) =
=4b� (r)

E&%

#∑
8=#�+1

@(r; 8)@†(r; # − 8) (3.17)

d( (r) =
4V`

E

∫
3r 4−b( (r) (3.18)

bU (r) =
∑
W∈C

∫
3r′dW (r′)V*UW

dpd( |r − r′|) (3.19)

The forward and reverse chain propagators, @ and @†, are computed in a recursive
manner,

@(r; 1) = 4−b�(r) (3.20)

@(r; 8) = 4
−bC (8) (r)

�

∫
3r′4

− ^

232
?

( |r−r′ |−1)2
@(r′; 8 − 1) (3.21)

@†(r, 1) = 4−b� (r) (3.22)

@†(r; 8) = 4
−bC (#−8) (r)

�

∫
3r′4

− ^

232
?

( |r−r′ |−1)2
@†(r′; 8 − 1) (3.23)

where C (8) = � for 8 ≤ #� and C (8) = � otherwise. � is the normalization constant,

� = 4c
∫ ∞

0
3A A24

− ^

232
?

(A−1)2
, (3.24)

and the polymer partition function can be computed from

&% =
1
E

∫
3r @(r; #) . (3.25)

The solvent fugacity, 4V`, can be computed using the properties of the homogeneous
reservoir according to,

〈<〉E
+

= d =
E

+

m lnΞ
mV`

= 4V`4−
c
15088d → 4V` = d4

c
15088d (3.26)
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where the reservoir is a bulk fluid of solvent at a uniform density of d = 3. By
inserting the saddle-point equations into Equation (3.15), we obtain the simplified
mean-field free energy,

VΩ(=, `,+, )) = ln(=!) − = ln&%

−
∫

3rd( (r) −
1
2

∑
U∈C

∫
3r bU (r)dU (r). (3.27)

By solving Equations (3.16)-(3.23) and (3.25), we can obtain the equilibrium fields
and density profiles. In this work we consider 3 different geometries: (1) a lamellar
copolymermelt, (2) a sphericalmicelle, and (3) an infinitely long cylindricalmicelle.
The necessary mathematical reduction for each geometry is different, as well as the
relevant free energy. Details of the transformation of the saddle-point equations and
propagators for each geometry are provided in the ESI†. For a copolymer melt in
the lamellar microphase, we reduce the variation to the dimension normal to the
lamellar interface and compute the Helmholtz free energy per chain per unit area,
� lam
<̂
/<̂, where <̂ = =/�| | and �| | is the area of the lamellar interface. For a spherical

micelle, we reduce the variation to only the spherical radial dimension and compute
the internal free energy per chain, �sph

= /=. For an infinitely long cylindrical micelle,
we reduce the variation to only the cylindrical radial dimension and compute the
internal free energy per chain per unit length �cyl

< /<, where < = =/! and ! is the
length of the cylinder.

Lamellar CylindricalSpherical

Figure 3.4: Example density profiles fromDPD-SCFT for d = 3, #� = 12, #� = 15,
088 = 25, 0�( = 0�� = 45, ^ = 100, and 1 = 3? = 1. Density profiles are for (a)
lamellar, (b) spherical and (c) cylindrical morphologies all with 1-dimensional
variation.

Example density profiles for the lamellar, spherical, and cylindrical morphologies
are given in Figure 3.4. Note that there are significant density oscillations near
interfaces due to the large excess repulsion parameter (Δ0 = 20) between the core
block and the corona+solvent.
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Micelle Thermodynamics
The relevant quantity for determining the optimal micelle aggregation number is the
free energy difference for = isolated chains to aggregate into a micelle,

Δ�= = �= − =�1 (3.28)

where �= is the internal free energy of a micelle at aggregation number =, and
�1 is the internal free energy of an isolated chain [35]. Since the association
takes place within a constant total volume containing a constant number of solvent
molecules, the solvent term

∫
3rd( can be removed from the internal free energy.

However, since we vary the system volume for different aggregation numbers (to
ensure sufficient grid resolution), we have to ensure the internal free energies are
independent of the system volume. The free energy densities due to the polymer
interactions, 1

2b�d� and 1
2b�d�, both decay to zero sufficiently far from the system

boundary to avoid dependence on the system size. The remaining free energy
density due to the solvent, 1

2b(d(, does not vanish at the system boundary, but rather
goes to c

30088d
2. To remove the volume dependence of the internal free energy, we

subtract this contribution, resulting in the final expression,
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c

30
088d
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where the final term on the right accounts for contributions to the free energy that
only appear due to additional volume beyond the extent of the micelle. Note that
Equation (3.29) is completely independent of the system volume as long as the
system is larger than the furthest extent of the micelle.

Figure 3.5: Various properties computed from DPD-SCFT for spherical micelles
with d = 3, #� = 12, #� = 15, 088 = 25, 0�( = 0�� = 45, ^ = 100, and
1 = 3? = 1. (a) Free energy of aggregation per chain with inset being the free
energy of aggregation from Equation (3.28). (b) Free energy of =-mer at critical
micelle concentration, 21 = 2cmc. (c) Micelle radius of gyration.

In general, Δ�= decreases monotonically with =, but Δ�=/= features a minimum, as
shown in Figure 3.5a. In early treatments of micelle thermodynamics, this minimum
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is taken as the optimal micelle aggregation number. However, this is only accurate
if the minimum is deep and occurs at a sufficiently large = such that translational
entropy of the micelles can be neglected. In dilute solution thermodynamics, the
total free energy including the translational entropy is given by,

�

+
=

∞∑
==1

2= {�= + :�) [ln (2=E=) − 1]} (3.30)

where 2= is the number concentration of =-mers and E= is the volume of an =-mer
[4, 5, 35–39]. Thus, 2=E= is the volume fraction q= of =-mers. The concentration of
=-mers can be determined by minimizing the free energy in Equation (3.30) subject
to a given total unimer concentration 1 =

∑∞
==1 =q=, resulting in the distribution,

q= = q
=
1 exp

(
−Δ�=
:�)

)
(3.31)

which can be further rearanged into the form,

q= = q1 exp [−VF (=, q1)] (3.32)

whereF (=, q1) is the semi-grand free energy of an =-mer at a specified concentration
of unimer volume fraction, q1. This free energy is defined as

VF (=, q1) = �= − =�1 − :�) (= − 1) ln q1 (3.33)

Thus, the thermodynamics of micelle formation are completely governed by �= and
q1. If Δ�= displays a minimum, then the behavior of F (=, q1) can be predicted.
For very low unimer concentrations, F will monotonically increase and the only
minimum is at = = 1, indicating that no micelles will form. At some concentration
below the CMC, q1 < qcmc, a secondminimum appears at some aggregation number
=. At the critical micelle concentration, q1 = qcmc, the free energy of the unimer
and =∗-mer are equal, F (=∗, qcmc) = F (1, qcmc) = 0. At a concentration above the
CMC, q1 > qcmc, the =∗-mer minimum is much lower than 0, indicating that the
concentration of micelles is much greater than unimers. An example of F (=, qcmc)
is given in Figure 3.5b.

In diblock copolymer solutions, it is unclear what the equilibrium micelle size
should be, given that the critical micelle concentration is exceedingly low, and chain
exchange is practically frozen [3, 4]. We believe that the appropriate micelle size
should be determined by the optimization of the internal free energy per chain,
�=/= for spherical micelles, and �</< for cylindrical micelles. We note that the
difference in optimal aggregation number between the two is less than 10%.
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(a) (b) (c) (d) (e)

Figure 3.6: Kinetic pathway from lamellar thin film to copolymer micelles for
#� = 7 and #� = 15. The solvent and B block are omitted and A beads are colored
by cluster for visual clarity. (a) Initial thin film. (b) Partial penetration of solvent
into lamellar phase creates finger-like structures. (b) Lamellae fully transform into
cylinders that pack onto a hexagonal lattice. (d) Cylinders extend to relieve stress and
micelles pinch off from cylinder ends. (e) Final solution containing only spherical
micelles.

3.4 Results and Discussion
Thin Film Dissolution
First, we explore the kinetic mechanism for micelle formation via the TF method
by following the procedure outline in the methods section. We perform in silico
experiments for #� ∈ [4, 5, . . . , 12], #� = 15, 088 = 25, and 0�( = 0�� = 45. As
#� approached #�, the timescale for complete dissolution of the thin film became
prohibitively long for our simulations. Thus, #� = 12 was the largest core block
we could reasonably study for this set of parameters. We will explore the reason for
this behavior later in this work.

In Figure 3.6, we give a representative example of the kinetic pathway by showing
five different points along the trajectory for #� = 7. In these snapshots, we omit the
solvent and the B (corona) block, and we color the polymers using the clustering al-
gorithm available inOVITO.The colors aremeaningless beyond indicating polymers
belong to the same cluster. The initial state in Figure 3.6a is the lamellar thin film
sandwiched in between layers of nonsolvent (0�( = 0�( = 0�� = 45). Immediately
after the solvent is swapped for a selective solvent (0�( = 0�� = 45, 0�( = 25),
the solvent rushes into the B block causing it to swell. This swelling makes the
lamellar structure unstable, causing it to break up into cylinders behind the moving
solvent front (Figure 3.6b). We refer to this as a finger-like state. Once the solvent
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fronts meet in the middle of the thin film, the fingers become cylinders (Figure
3.6c). At this point, the cylinders are packed closely and therefore have heavily
overlapping corona blocks. At this point the cylinders extend to relieve stress felt
due to the coronal overlap, as well as the stress resulting from the cylinder radius
being larger than optimal. Simultaneously, spherical micelles begin to pinch off
from the cylinder ends (Figure 3.6d). It is well known that the ends of cylindrical
micelles are bulbous compared to the interior shaft, which allows for the ends to
pinch off more easily. Eventually, the cylinders stop extending, presumably because
they have reached their optimal radius and relieved as much stress as possible due
to the overlapping coronas. The cylinders also align and arrange onto a hexagonal
lattice during this time to further relieve stress. For a much thicker thin film that
is exposed to the solvent on a single face, we expect that cylinders may only align
with their ends pointing into the solvent near the polymer-solvent interface. Deeper
into the film the cylinders can curve and form a network like structure, or even align
perpendicular, similar to how integro-asymmetric diblock copolymer membranes
form. Although, we note that copolymer membranes are form through macrophase
separation between the polymer and a non-solvent, as opposed to micelle formation
in a selective solvent.

Figure 3.7: Kinetic pathway with different viewing angles for #� = 7 and #� = 15.
The eye symbols and arrows indicate the viewing angle and the red box indicates the
subregion being shown in the snapshots within the same row. The initial and final
snapshots are shown in a zoomed out view. The top row is viewed directly normal
to the lamellae to show the finger formation and how they break into cylinders.
The bottom row is viewed straight down the axis of the cylinders that form. In all
snapshots we omit the solvent and corona (B) block, and we color the polymers
according to the cluster they belong to.
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In Figure 3.7 we provide visuals of the TF process from two different angles. The top
panel shows a zoomed-in view normal to the lamellae to better show the formation
of the finger-like structures and how the fingers later disconnect to form cylinders. In
this case, the cylinders form on a slant because !G = !H, which is not commensurate
with the unit cell dimensions for hexagonal close packed cylinders. The bottom
panel shows a sliced portion of the system viewed from the angle directly down
the axis of the cylinders that form. It is clear from this angle that the cylinders
are aligned and arranged into a hexagonal close packed structure. Additionally, the
final micellar solution is ordered with micelles on a lattice due to the high volume
fraction of polymer (q% ≈ 0.3). We have checked that the micelles are not simply
stabilized by their presence in an ordered structure by running separate simulations
of individual micelles at the same average size where we observed that the micelles
remained stable indefinitely. We will discuss the size of the micelles produced from
the TF method after first discussing results for the CS method.

Cosolvent Assisted Dissolution
To simulate the CS method, we create a dispersed solution of copolymer in a
cosolvent (0�( = 0�( = 25) and allow the system to equilibrate for 2 · 105 timesteps.
We then instantaneously swapped the cosolvent for a selective solvent by setting
0�( = 45. During the quenching period we set the timestep to ΔC = 0.001 for
2.5 · 105 timesteps to ensure the simulation remained stable. After that, the timestep
was increased back to ΔC = 0.015 and the simulation was run for an additional 9 ·106

timesteps.

Figure 3.8: Micellization process extracted from simulations of CS method with
#� = 7 and #� = 15. The initial and final snapshot are shown with both the core
and corona, with the solvent omitted. The intermediate snapshots are shown with
the corona (B) block and solvent omitted, and polymers are colored according to the
cluster they belong to.

In Figure 3.8 we show snapshots throughout the micellization process using the CS
method. In our simulations, micellization progresses through two main steps. The
first step, which is also the fast step, is the initial aggregation of neighboring chains
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into small clusters/aggregates. After all of the free chains have been incorporated
into small micelles, then the micellization process slows precipitously. The second
step is the equilibration process wherein the distribution of micelle sizes slowly
converges towards the equilibrium distribution. Equilibration is known to proceed
via two main mechanisms: single chain exchange, and micelle fission/fusion. For
the strong degree of segregation and moderate chain lengths considered here, we
find that both initial micellization and equilibration are dominated by fusion events,
and single-chain exchange is essentially frozen. As the micelles grow, the rate of
fusion decreases due to the decreasing micelle concentration and the increasing
corona repulsion. It is possible that the free energy barrier for fusion could surpass
the single-chain exchange barrier once the micelles are sufficiently close to equi-
librium, as predicted with previous theories and simulations [5, 26]. However, in
our simulations the micelles here become kinetically frozen after a certain point
and neither exchange nor fusion occurs at an appreciable rate within a practical
simulation timescale.

In Figure 3.9 we plot various properties of the aggregates throughout the micelliza-
tion process in a similar manner to Li and Dormidontova [26]. The main difference
here is the use of a higher Δ0 and longer core and corona blocks with #� = 8 and
#� = 15. As discussed, the significantly higher barriers to fusion and exchange lead
to slowed dynamics and kinetic trapping of the micelles. Figure 3.9a shows how the
proportion of different aggregate numbers evolves over time. Initially, the system
is mainly comprised of free chains and small clusters with less than 3 chains. Note
that the solution is not 100% free chains at the initial state due to random mixing
and the moderate segment volume fraction of q? = 0.13. Figure 3.9b shows the
evolution of the number averaged and weight averaged aggregation numbers. Sim-
ilar to Li and Dormidontova, we find that the weight average aggregation number
equilibrates more rapidly. Unlike Li and Dormidontova, the average aggregation
number does not fluctuate around a steady state at long time, since chain exchange
and small aggregate exchange are essentially frozen. Instead, the average aggrega-
tion number slowly grows in a stepwise fashion through fusion events that become
progressively less probable as the aggregate concentration decreases and the fusion
barrier increases. Figure 3.9c shows the distribution of aggregation numbers over
time. Initially the distribution is peaked at = = 1 which corresponds to the randomly
mixed solution. The free chains are depleted rapidly (C < 102) as small aggregates
of size = = 2 − 10 form. Over time, the small aggregates find each other in solution
and combine to form aggregates of size 10 < = < 25 which last significantly longer
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Figure 3.9: Micellization dynamics from CS method for various #� = 8, #� = 15,
Δ0 = 20, and q? = 0.13. (a) Fraction of chainswithin different sized aggregates over
time. (b) Number averaged and weight averaged aggregation numbers over time.
The inset is on a linear-linear scale to show the significant slowing of dynamics. (c)
Aggregation number probability distribution at different simulation times.

(note the logarithmic scale of the time axis). This process continues until fusion of
the most frequent aggregate size becomes unprobable and all smaller aggregates are
exhausted. For example, all aggregates of size 10 < = < 25 are depleted by C = 104.
We also note that the depletion of the aggregates within a particular size grouping
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becomes significantly slower as = increases, as evidenced by the much longer tails
in the orange and red curves.

Figure 3.10: Micellization dynamics fromCSmethod for various #�, with #� = 15.
(a) The number of micelles with greater than 10 chains, "=≥10, over time. (b) The
average micelle aggregation number over time. The black solid lines are curves for
a homopolymer solution with #� = 8, #� = 0, and q? = 0.045 (i.e., 8/23 · 0.13 to
keep the same A fraction). The dashed black line is a linear power law characteristic
of spinodal decomposition where = ∼ '3 ∼ C for spherical droplets/micelles.

We explore the effect of core block length on the micellization dynamics in Figure
3.10. Figure 3.10a shows the number of micelles containing 10 or more chains as
a function of time. This curve shows a rapid growth as free chains form into small
aggregates, followed by a maximum due to the exhaustion of free chains. After
all of the free chains are exhausted, the number of micelles slowly drops (note the
logarithmic scale of the time axis) as small to moderate aggregates undergo fusion.
Figure 3.10b shows the coarsening dynamics of the micelle aggregation number
as a function of time. The micelles first grow according to a sublinear power-law
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dependence, but at C/C0 ≈ 102 the dynamics slow significantly as shown by the
plateauing of 〈=〉. As discussed, this is due to the diminishing concentration of
small aggregates and the rising fusion barrier. We contrast this with the coarsening
dynamics of a homopolymer solution, represented by the solid black curves in Figure
3.10. The homopolymer solution has the same number concentration of polymers as
the copolymer case, corresponding to an A-segment volume fraction of q? = 0.045.
Unlike the copolymer solution, the dynamics in the homopolymer solution follow
the expected behavior for spinodal decomposition, 〈'〉3 ∼ 〈=〉 ∼ C1. It is clear
that the progressive slowing of the micellization process in copolymer micelles is
a direct consequence of both the fusion barrier and the finite optimal aggregation
number.

Figure 3.11: Micellization dynamics from CS method for various #� with #� = 8
and Δ0 = 20. The black solid curve is for a homopolymer solution with #� = 8,
#� = 0. We keep the �monomer fraction constant at q� = 0.045. The dashed black
line is a linear power law characteristic of spinodal decomposition where = ∼ '3 ∼ C
for spherical droplets/micelles.

In addition to the core length effect, we also study the effect of the corona length
on the micellization kinetics in the CS method. In Figure 3.11 we plot the average
aggregation number over time for various corona block lengths for a constant core
block length and constant core monomer concentration. We find that the short time
dynamics are unaffected by the corona block length and alignwellwith homopolymer
aggregation (black line). This is because at short times the micellization process
is dominated by fusion events between aggregates containing small numbers of
chains. For these small aggregates, there is no well defined corona domain and
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therefore little to no repulsion between the aggregates. Thus, the rate of aggregation
is determined almost solely by the chain concentration at short times.

Once the free chains are exhausted and the average aggregation number reaches a
moderate value (= > 10), the corona domain becomes appreciable and aggregates
begin to repel, increasing the barrier to fusion. Since the micellization is driven
almost completely by fusion for the parameters studied here, an increase in the fusion
barrier necessarily slows the rate. In addition, the fusion barrier will continue to
increase with aggregation number since the corona will become denser and denser.
This means that whenever two micelles fuse together, fusion of the newmicelle with
another micelle is even less probable. As explained by Li and Dormidontova [26],
fusion events during early stages of micellization are largely between aggregates of
similar sizes, while fusion events during later stages are mostly between aggregates
of unequal sizes. The latter case is due tomore corona repulsion during fusion of two
large micelles versus one small and one large micelle. For the largest corona blocks
studied, #� = 12 − 21, the micelles essentially become frozen after C > 104g. This
is typically where single chain exchange would become important [5], however, the
exchange barriers are exceedingly high for the parameters studied here, Δ0 = 20 and
#� = 8. In our previous work, we computed an exchange barrier of VΔ�barr ≈ 20
[40].

We study the effect of polymer concentration on the micellization process in Figure
3.12. Here, polymer concentration refers to the volume fraction of polymer segments
including both A and B. Unsurprisingly, increasing the polymer concentrations
speeds up the micellization process. Not only is the initial aggregation more rapid,
but the steady state is also reached more quickly, as shown in Figure 3.12a. We
also find that the final micelle distribution shifts to larger aggregation numbers
as concentration increases, and the final average aggregation number is impacted
dramatically as shown in Figure 3.12b. At very high concentrations such as q? = 0.4,
the aggregation process follows a very different pathway compared to more dilute
solutions since the system is well above the overlap concentration. Figure 3.13 shows
the micellization pathway at high concentration. The initial state is essentially a
large cluster since the solution is above the overlap concentration. After the solvent
is swapped for a selective solvent, the system aggregates into a network like phase
which then further breaks into micelles. While these micelles are bigger than those
formed at lower concentrations, these micelles are still smaller than those formed
through the TF method as we will show later.
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Figure 3.12: Micellization dynamics from CS method for various polymer con-
centrations q? with #� = 8, #� = 15, and Δ0 = 25. (a) Average aggregation
number over time. (b) Final distribution of aggregation numbers with inset for mean
aggregation number as a function of polymer concentration.

Figure 3.13: Visualization of micellization in highly concentrated solution (q? =
0.4) with #� = 8, #� = 15, and Δ0 = 20. The left and right plots are colored by A
and B blocks. The middle plots only show A blocks and are colored according to
cluster.

Comparison Between TF and CS
We now shift our focus to comparing the final micelles produced from the CS and TF
methods. We note that the final size distribution achieved from the TFmethod in our
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simulations is stationary and essentially independent of the polymer concentration
since the size of the micelles is determined by the size of the intermediate cylinders.
As we showed in the previous section, the final size distribution from the CS method
depends on the polymer concentration. In addition, the size distribution is still
transient but has slowed down so significantly that observing further coarsening is
impractical in our simulations.

Figure 3.14: Comparison of final micelle distributions of CS and TF methods for
various #� with #� = 15, Δ0 = 20. The concentration used for the CS method
was q? = 0.13. In each panel, the average aggregation numbers and poly dispersive
indices are given for both methods.

In Figure 3.14 we compare the final size distributions of the two methods for
#� = 4 − 12. In all cases, the size distributions from the TF method are shifted
to higher aggregation numbers and have a lower polydispersity index (PDI). This
confirms that the route passing through the cylinder phase avoids the kinetic traps of
the CS method, since the cylinder pathway does not rely on single chain exchange or
micelle fusion. Instead, the micelles form through cylinder extension and pinching
which features much lower free energy barriers. The PDI from the TFmethod is also
lower because the size of the micelles that pinch off from the ends of the cylinders
are linked to the cylinder radius.
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Figure 3.15: Average micelle properties from the two preparation methods and
SCFT. (a) Average aggregation number of final micelles from MD simulation com-
pared to optimal aggregation number from SCFT. (b) Average radius of final sphere
and intermediate cylinders from the TF method compared to the optimal radii com-
puted from SCFT. The inset is the ratio of the sphere radius to the cylinder radius.

In Figure 3.15 we show the average sizes of the micelles produced from the CS
and TF methods. The mean aggregation number is of the final spherical micelles
and the error bars are the standard deviation of the distribution. For the larger
core block lengths, #� ≥ 10, some cylinders persist longer than our simulation
runtime, and we exclude these from the distributions and calculation of the mean
aggregation number, since we are focused only on the properties of the resulting
spherical micelles. It is clear from Figure 3.15a that the mean aggregation number
of micelles from the TF method are nearly double the size of those from the CS
method. Impressively, the prediction of the optimal size from DPD-SCFT agrees
very well with the size of the micelles produced by the TF method, indicating that
those micelles are near equilibrium. In Figure 3.15b we plot the average radii of
the final spheres and intermediate cylinders and compare them with the optimal
values from DPD-SCFT. The sphere radius is defined using the radius of gyration
by assuming that the desity is constant throughout the core,
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where '6 and rcom are the radius of gyration and the center of mass of the micelle
core, respectively. Computing the cylinder radius from MD is challenging since the
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cylinders are not always aligned with a cartesian axis, and can even turn and change
directions such that there is no principal axis describing the cylinder. To combat
this, we instead compute a local principal axis along the cylinder, and then compute
the radius of the section of cylinder described by that principal axis using the 2nd
and 3rd principal moments. We then average all of the local radii computed from
the local 2nd and 3rd principal moments. For a given frame and a given chain in
the cylinder, 2, we find all other chains within a certain radius that is larger than the
radius of the cylinder. We then compute the gyration tensor using only these chains
as,

G2 =
1

<#�

<#�∑
8

<#�∑
8

(r8 − rcom)
(
r 9 − rcom

)
(3.36)

where the subscript 2 denotes that the tensor is specific to chain 2, < is the number
of chains within the chosen range, and Acom is the center of mass of the chains (not
the entire cylinder). We then compute the principal moments, _2

1, _
2
2, and _

3
3 which

are Eigenvalues of G2 sorted from largest to smallest. For a cylinder, the 2nd and
3rd moments are related to the cylinder radius by, '2

cyl,MD = 2
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)
. Note

that a perfect cylinder has _2
2 = _

2
3, however, the moments computed from MD are

never exactly equal, so we do not make this simplifying assumption. In DPD-SCFT,
we can compute the density profile directly in cylindrical coordinates, which then
results in the following equation for the radius

'cyl,SCFT =
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where < is the number of chains per units length of the cylinder. From Figure
3.15b, we find striking agreement between the theory and simulation. Interestingly,
the radius of the intermediate cylinders during the TF dissolution process is very
close to the optimal cylinder radius computed from SCFT, even though the cylinder
morphology does not have the lowest free energy. This indicates that there is some
local minimum in the free energy of the cylinder where they prefer to sit until
something causes them to break apart further into spheres. The inset of Figure
3.15b shows that the ratio of the optimal sphere radius to the optimal cylinder radius
remains relatively constant around a value of ≈ 1.4. This indicates that the optimal
radii of the sphere and cylinder grow similarly with #� and that the two radii are
intimately linked through the pinching process.

While we did not study it in this work, we hypothesize that the cylinders break
up either due to a Plateau–Rayleigh-like instability [41], or via nucleation at the
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Figure 3.16: Free energy of formation for spheres and cylinders from DPD-SCFT
using d = 3, #� = 15, and Δ0 = 20. (a) Free energy of formation per chain for
spherical micelles. (b) Free energy of formation per unit length per chain per unit
length for infinitely long cylindrical micelles. (c) Formation free energy of sphere
of aggregation number = relative to the optimal cylinder free energy. (d) Free energy
difference between optimal sphere and optimal cylinder.

cylinder ends. It was discovered by Matsen [42] that there is a low free energy
pathway between hexagonal cylinders and BCC spheres in copolymer melts that
follows a nucleation and growth mechanism as long as the system is sufficiently far
from the cylinder-sphere spinodal. However, the pathway could deviate significantly
in copolymer solutionswith a free interface between polymer rich and polymer dilute
phases. In addition, the spheres that form from the cylinder ends are free to diffuse
away, indicating that the pathway need not terminate at the BCC phase. Away from
the interface, however, the system may still exhibit a nucleation and growth pathway
from cylinders into BCC spheres.

Next, we compare the free energy of an isolated sphere and an isolated cylinder
as functions of #� and aggregation number to determine the location of the phase
boundary between the two morphologies. In Figure 3.16a, we show the formation
free energy per chain for a spherical micelle as a function of aggregation number.
These curves exhibit a single minimum corresponding to the optimal aggregation



91

number for a spherical micelle. As expected, the optimal aggregation number shifts
to higher values as the core block length increases. In Figure 3.16b, we plot the
formation free energy for an infinitely long cylinder with < chains per unit length.
Similar to the spherical case, these curves display a single minimum corresponding
to the optimal number of chains per unit length for the cylinder. Notably, we can
compute the sphere (or cylinder) free energy and corresponding optimal aggregation
number even outside the respective stability regions because we assume variation
only along the radial dimension using spherical (or cylindrical) coordinates. This
approach allows direct comparison of formation free energies across morphologies
to determine where they intersect.

In Figure 3.16c, we plot the formation free energy per chain for a spherical micelle
relative to that of a cylinder at its optimal <. When sufficient chains are available,
the cylinder can extend or contract to reach its optimal chain density and radius.
From this plot, we observe that shorter core blocks favor spherical morphologies,
whereas at very high aggregation numbers, cylindrical morphologies always become
energetically preferred. At these large aggregation numbers, micelles tend to form
cylinders that extend to their optimal radius before pinching into spheres whose size
corresponds to the optimal spherical radius. In the intermediate regime, where the
number of chains exceeds the spherical optimum but remains insufficient to form a
stable cylinder, the micelle undergoes fission into two smaller micelles. Although
not explored in this work, it would be of interest to investigate potential differences
in the fission mechanisms of spheres and cylinders. In Figure 3.16d, we present the
free energy difference between the optimal sphere and optimal cylinder. Consistent
with expectations, spheres are stable for short core blocks, while cylinders dominate
for long core blocks. For the DPD model studied here, the morphological boundary
occurs at #� = 20, corresponding to 5 = #�/(#� + #�) = 0.57. The crossover
occurs at a relatively high value of 5 because the corona block is solvophilic in our
calculations (Δ0�( = 0), which extends the stability region of spherical micelles
due to coronal swelling. These results imply that all of our simulations lie within
the spherical micelle stability region, and that the cylinders are simply a low free
energy metastable intermediate. These results also indicate that the cylinders are
able to achieve their optimal radius during the pathway despite being metastable.

3.5 Conclusions
In this work, we provided an in-depth analysis of the kinetic pathway of thin film
(TF) dissolution and cosolvent-assisted (CS) dissolution in diblock copolymer mi-
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celles. We conducted dissipative particle dynamics (DPD) simulations starting
from a copolymer melt in the lamellar microphase, sandwiched between two lay-
ers of non-solvent. Upon switching to a selective solvent, the lamellae dissolved
into cylinders that aligned axially into a hexagonal close-packed lattice. These
cylinders then elongated to relieve transverse stress caused by overlapping coronas
from neighboring cylinders. Through elongation, the cylinders reached a local free
energy minimum, which was shown to be a metastable state via free energy calcu-
lations using DPD-based self-consistent field theory (DPD-SCFT). Over extended
simulation times, the cylinders broke up into spherical micelles, with most spheres
originating from pinching events at the cylinder ends.

We found that the size of the resulting spherical micelles in the TF method was
closely linked to the radius of the intermediate cylinders. To explore this, we varied
the core block length, #�, while keeping the corona block length constant, spanning
block fractions in the range 0.21 ≤ 5 ≤ 0.44. Increasing #� (and therefore 5 )
led to larger cylinders and spheres and also extended the lifespan of the cylindrical
intermediates. This is consistent with the expectation that cylindrical micelles
become more stable as 5 increases.

Many of these conclusions were supported by DPD-SCFT calculations of the free
energies and optimal sizes of both spherical and cylindrical micelles across a broad
parameter space. We found that the parameters used in this study liewithin the region
of the phase diagram where spheres are thermodynamically stable and cylinders are
metastable. There was excellent agreement between the cylinder radii observed
in simulations and the metastable values predicted by theory. We also found good
agreement between the TFmicelle sizes and the theoretical optima, with TFmicelles
being slightly smaller than optimal. Both simulation and theory revealed that the
ratio of sphere to cylinder radii is nearly constant at 'sphere ≈ 1.4'cylinder, providing
further evidence that the final sphere size is closely tied to the optimal cylinder
radius.

We also analyzed micellization via the cosolvent-assisted (CS) dissolution method
using the same simulation parameters. In this case, micelles became kinetically
trapped at sizes much smaller than those from the TF method or the optimal sizes
predicted by DPD-SCFT. Although increasing the concentration led to larger mi-
celles, their size remained significantly smaller than those from the TFmethod, even
at unrealistically high concentrations. For d = 3, Δ0 = 20, and #� = 4–12, we
found that single-chain exchangewas essentially halted, except in the case of #� = 4.
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This represents a different regime than that studied by Li and Dormidontova, who
used much shorter core blocks and achieved equilibrium through a combination of
fusion and exchange [26]. In our simulations, the combination of high j and longer
core blocks produced exchange barriers that are insurmountable on our simulation
timescale, consistent with our previous work [40] and the findings of Seeger et al.
[43, 44]. As a result, fusion becomes the dominant mechanism for micellization and
equilibration, with little to no free energy barrier for small aggregates with diffuse
coronas. However, as these aggregates fuse and grow larger, their coronas thicken,
and the fusion barrier increases. This leads to significantly slowed dynamics and
micelles that are kinetically trapped far below their equilibrium size.

Future work in this area should focus on elucidating the mechanism by which
intermediate cylinders break up into spheres. We hypothesize that this occurs either
through a Plateau–Rayleigh-like instability or a nucleation process at the cylinder
ends. In either case, further investigation into the cylinder-to-sphere transitionwould
be highly valuable. Another direction worth exploring is the TF dissolution pathway
starting from other copolymer microphases, such as BCC spheres, hexagonally
packed cylinders, or even gyroid phases. A natural extension is also to study TF
dissolution in triblock copolymers, where we expect the pathway to differ somewhat
due to the bridging that occurs in triblock lamellae. Lastly, more work is warranted
at higher core block fractions to explore the possibility of forming micelles that are
significantly larger than their equilibrium size, as has been observed by Meli and
Lodge [9, 10].

3.6 Appendix
Micelle Distribution Properties
DPD-SCFT
Asmentioned in the main text, we solve the profiles and free energy of three separate
morphologies: (1) lamellar, (2) spherical, and (3) cylindrical. In this section, we
outline the mathematical and computational details for how the general equations
are reduced to 1 dimensional problems and then solved numerically. As a reminder,
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Table 3.1: Final micelle distribution properties from CS and TF methods with
#� = 15 and Δ0 = 20.

#�
〈=〉 PDI

CS TF CS TF
4 38 78 1.04 1.05
5 48 103 1.07 1.03
6 56 121 1.07 1.02
7 62 140 1.09 1.01
8 63 159 1.06 1.01
9 72 179 1.08 1.01
10 80 201 1.08 1.01
11 89 233 1.09 1.01
12 99 246 1.12 1.01

the mean-field equations in 3 dimensions are given by

d� (r) =
=4b�(r)

E&%

#�∑
8=1

@(r; 8)@†(r; # − 8) (3.38)

d� (r) =
=4b� (r)

E&%

#∑
8=#�+1

@(r; 8)@†(r; # − 8) (3.39)

d( (r) =
4V`

E

∫
3r 4−b( (r) (3.40)

bU (r) =
∑
W∈C

∫
3r′dW (r′)V*UW

dpd( |r − r′|) (3.41)

with propagators

@(r; 1) = 4−b�(r) (3.42)

@(r; 8) = 4
−bC (8) (r)

�

∫
3r′4

− ^

232
?

( |r−r′ |−1)2
@(r′; 8 − 1) (3.43)

@†(r, 1) = 4−b� (r) (3.44)

@†(r; 8) = 4
−bC (#−8) (r)

�

∫
3r′4

− ^

232
?

( |r−r′ |−1)2
@†(r′; 8 − 1) (3.45)

where C (8) = � for 8 ≤ #� and C (8) = � otherwise. � is the normalization constant,

� = 4c
∫ ∞

0
3A A24

− ^

232
?

(A−1)2
, (3.46)

and the polymer partition function can be computed from

&% =
1
E

∫
3r @(r; #) . (3.47)
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The solvent fugacity, 4V`, can be computed using the properties of the homogeneous
reservoir according to,

〈<〉E
+

= d =
E

+

m lnΞ
mV`

= 4V`4−
c
15088d → 4V` = d4

c
15088d (3.48)

where the reservoir is a bulk fluid of solvent at a uniform density of d = 3. By
inserting the saddle-point equations into the Hamiltonian, we obtain the simplified
mean-field free energy,

VΩ(=, `,+, )) = ln(=!) − = ln&% −
∫

3rd( (r) −
1
2

∑
U∈C

∫
3r bU (r)dU (r). (3.49)

Lamellar Melt
In the lamellar phase, we take dimensions parallel to the interface to be infinite such
that the system can be reduced to variation in only the normal direction (I). Thus,
we must reduce all of the equations to only variation in I by integrating out the
dependence on G and H.

The propagator can be computed by integrating in cylindrical coordinates where A
and \ are used to integrate in the G, H plane.

� (r) = 1
�

∫
3r′4−

^
2 ( |r−r′ |−1)2@(r′) (3.50)

� (I) = 1
�

∫ ∞

−∞
3I′ @(I′)

∫ ∞

0
3A A exp

{
−^

2

[√
(I − I′)2 + A2 − 1

]2
} ∫ 2c

0
3\

(3.51)

=
2c
�

∫ ∞

−∞
3I′ @(I′)

∫ ∞

|I−I′ |
3D exp

{
−^

2
[D − 1]2

}
(3.52)

=
2c
�

∫ ∞

−∞
3I′ @(I′)

∫ ∞

(|I−I′ |−1)
√
^/2
3D

(
2
^
D + 1

√
2
^

)
4−D

2
(3.53)

=
2c
�

∫ ∞

−∞
3I′ @(I′)

{
1
^

exp
[
−^

2
( |I − I′| − 1)2

]
+ 1

√
c

2^
erfc

[√
^

2
( |I − I′| − 1)

]}
(3.54)

If we define the following function,

6( |I − I′|) = 1
^

exp
[
−^

2
( |I − I′| − 1)2

]
+ 1

√
c

2^
erfc

[√
^

2
( |I − I′| − 1)

]
(3.55)
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then the convolutional integral can be performed in Fourier space,

� (I) = 2c
�
F −1 [@̂(k) ∗ 6̂(k)] (3.56)

where @̂ and 6̂ are Fourier transforms, and F −1 is the inverse Fourier transform
operator.

Next, we evaluate the the integration for field variables involving the DPD potential.
Note that the DPD potential is only valid for A < 1.

, (r) =
∫

3r′
1
2
(1 − |r − r′|)2 d(r′) (3.57)

, (I) = 1
2

∫ I+1

I−1
3I′d(I′)

∫ √1−(I−I′)2

0
3A A

[
1 −

√
(I − I′)2 + A2

]2 ∫ 2c

0
3\ (3.58)

=
c

2

∫ I+1

I−1
3I′d(I′)

[
1
6
− 1

2
|I − I′|4 + 4

3
|I − I′|3 − |I − I′|2

]
(3.59)

Again, if we define the function D( |I − I′|),

D( |I − I′|) =


1
6 −

1
2 |I − I

′|4 + 4
3 |I − I

′|3 − |I − I′|2 , |I − I′| ≤ 1

0 , |I − I′| > 1
(3.60)

then the integration can be performed in Fourier space using

, (I) = c
2
F −1 [ d̂(k) ∗ D̂(k)] . (3.61)

If we set d = 1, then we find the full weight of the DPD kernel amounts to c/15.
The single polymer partition function results in

&% =
1
E

∫
3r @(r; #) =

�| |
E

∫
3I @(I; #) = �| |&I

%
. (3.62)

Given that the system is infinite in the G, H-plane, the total number of chains = is not
well defined. Instead, we can define the number of chains per unit area, <̂ = =/�| |.
Thus, the polymer densities can be written as,

d� (I) =
<̂4b�(I)

E&I
%

#�∑
8=1

@(I; 8)@†(I; # − 8) (3.63)

d� (I) =
<̂4b� (I)

E&I
%

#∑
8=#�+1

@(I; 8)@†(I; # − 8) . (3.64)
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The indistinguishability factor also needs to be rewritten in terms of the Sterling
approximation.

ln(=!) = ln[(<̂�| |)!] ≈ <̂�| | ln(<̂�| |) − <̂�| | +
1
2

ln(2c<̂�| |) (3.65)

Combining everything, the mean-field free energy per unit area becomes

VΩ

�
= <̂ ln <̂ − <̂ + 1

2�| |
ln(2c<̂�| |) − <̂ ln&I

%

−
∫ !

0
3Id( (I) −

1
2

∑
U∈C

∫ !

0
3I bU (I)dU (I) (3.66)

where the term ln(2c<̂�| |)/2�| | → 0 as �| | →∞.

Spherical Micelle
If we assume that the micelle is a perfect sphere, then there is no variation in the
i and \ angles. We can exploit this fact and integrate out the angular dependence
from all of the mean-field equations. We follow a similar path to that of the lamellar
melt section, starting with the propagator integral,

� (r) = 1
�

∫
3x 4−

^
2 ( |r−x|−1)2@(x) (3.67)

� (A) = 1
�

∫ ∞

0
3G G2@(G)

∫ 2c

0
3i

∫ c

0
3\ sin(\) exp

{
−^

2

[
(A2 + G2 − 2AG cos \)

− 21
√
A2 + G2 − 2AG cos \ + 12

]}
(3.68)

=
2c
�

∫ ∞

0
3G G2@(G)

∫ c

0
3\ sin(\) exp

{
−^

2

[
(A2 + G2 − 2AG cos \)

− 21
√
A2 + G2 − 2AG cos \ + 12

]}
(3.69)

=
2c
�

∫ ∞

0
3G G2@(G) 1

2AG

∫ (A+G)2

(A−G)2
3D exp

[
−^

2
(√
D − 1

)2
]

(3.70)

=
2c
�

∫ ∞

0
3G G2@(G) 1

AG

∫ A+G

|A−G |
3B B exp

[
−^

2
(B − 1)2

]
(3.71)

=
2c
�

∫ ∞

0
3G G2@(G) 1

AG

∫ A+G−1

|A−G |−1
3C (C + 1) exp

[
−^

2
C2

]
(3.72)

=
2c
�

∫ ∞

0
3G @(G) G

A

{√
c12

2^
erf

[√
^

2
C

]
− 1
^

exp
[
−^

2
C2

]}A+G−1
|A−G |−1

(3.73)
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This cannot be evaluated using Fourier transforms, so we must evaluate the integral
over G in real space for each point A. Fortunately, all propagators @(G; 8) go to 0 at
the boundary as long as the system radius is sufficiently large, and in addition, the
integrand decays rapidly for |A − G | > 1. This allows us to truncate the integral at
G = ' + 1.

Next, we evaluate the integration for the field variables involving the DPD potential.
Again, note that the DPD potential is only valid for distances less than 1, and so we
have to pay close attention to integration bounds.

, (r) =
∫

3r′
1
2
(1 − |r − r′|)2 d(r′) (3.74)

, (A) = c
∫ A+1

max(A−1,0)
3G G2d(G)

∫
3\ sin(\)

[
1 − 2

√
A2 + G2 − 2AG cos \

+ A2 + G2 − 2AG cos \
]

(3.75)

=
c

2

∫ A+1

max(A−1,0)
3G
G

A
d(G)

∫ min((A+G)2,1)

(A−G)2
3D

[
1 − 2

√
D + D

]
(3.76)

=
c

2

∫ A+1

max(A−1,0)
3G
G

A
d(G)

[
D2 − 4

3
|D |3 + 1

2
D4

]min(A+G,1)

A−G
(3.77)

The final integral over G can be evaluated numerically in real space for each value
of A. In the special case where A = 0, the integral reduces to,

, (0) = 2c
∫ 1

0
3G d(G)G2 [

1 − 2G + G2] (3.78)

In spherical coordinates, any simple integral is evaluated with the normal Jacobian
with the angular components integrated out,∫

+

3r 5 (r) = 4c
∫ '

0
3A A2 5 (A) (3.79)

where 5 (r) is any function that can be expressed in terms of only the radial coordinate
5 (A). Since the number of chains, =, is well-defined for an isolated micelle in
spherical coordinates, we do not have to modify the mean-field free energy.

VΩ = ln(=!) −= ln&% −4c
∫ '

0
3A A2d( (A) −2c

∑
U∈C

∫ '

0
3A A2 bU (A)dU (A). (3.80)
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Cylindrical
If we assume the micelle is an infinitely long cylinder, then there is no variation in I
and \. Thus, we can reduce the problem to variation in the radial dimension of the
cylinder by integrating out the I and \ dimensions. We follow a similar path to that
of the other two morphologies, starting with the propagator integral,

� (r) = 1
�

∫
3r′4−

^
2 ( |r−r′ |−1)2@(r′) (3.81)

� (A) = 1
�

∫ ∞

0
3G G@(G)

∫ 2c

0
3\

∫ ∞

−∞
3I exp

{
−^

2

[√
A2 + G2 − 2AG cos \ + I2 − 1

]2
}

(3.82)

None of the integrals can be evaluated in closed form, so we numerically evaluated
the double integral over \ and I for each combination of A and G to create a kernel
that could be interpolated,  (A, G).

Next, we evaluate the integration for the field variables involving the DPD potential.
Again, note that the DPD potential is only valid for distances less than 1, so we have
to pay close attention to the integration bounds.

, (r) =
∫

3r′
1
2
(1 − |r − r′|)2 d(r′) (3.83)

, (A) = 1
2

∫ A+1

max(r-1,0)
3G Gd(G)

∫ arccos
[
max

(
G2+A2−1

2A G ,−1
)]

−arccos
[
max

(
G2+A2−1

2A G ,−1
)] 3\ · · ·

· · ·
∫ √

1−A2−G2+2AG cos \

−
√

1−A2−G2+2AG cos \
3I

(
1 −

√
A2 + G2 − 2AG cos \ + I2

)2
(3.84)

This cannot be solved analytically, so we numerically evaluate the integrals in \
and I over a grid of A and G to make a kernel that can be interpolated for later use,
 (A, G). Then in the calculation we simply evaluate the integral,

, (A) =
∫ A+1

max(r-1,0)
3G Gd(G) (A, G) (3.85)

In cylindrical coordinates, any simple integral is evaluated with the normal Jacobian
with the angular and length coordinates integrated out,∫

+

3r 5 (r) = 2c!
∫

3A A 5 (A) (3.86)

where ! is the length of the cylinder and 5 (r) is any function that can be expressed
only in terms of the radial coordinate, 5 (A). Since the number of chains, =, is not
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well defined for an infinitely long cylinder, we define the number of chains per units
length, < = =/!. The single polymer partition function is,

&% =
1
E

∫
3r @(r; #) = 2c!

E

∫
3A A@(A; #) = !&A% . (3.87)

The polymer densities can then be written as,

d� (I) =
<4b�(I)

E&A
%

#�∑
8=1

@(I; 8)@†(I; # − 8) (3.88)

d� (I) =
<4b� (I)

E&A
%

#∑
8=#�+1

@(I; 8)@†(I; # − 8) . (3.89)

The indistinguishability factor also needs to be rewritten in terms of the Sterling
approximation.

ln(=!) = ln[(<!)!] ≈ <! ln(<!) − <! + 1
2

ln(2c<!) (3.90)

Combining everything, the mean-field free energy per unit length becomes

VΩ

!
= < ln< − < + 1

2!
ln(2c<!) − < ln&A%

− 2c
∫ '

0
3A Ad( (A) − c

∑
U∈C

∫ '

0
3A AbU (A)dU (A) (3.91)

where the term ln(2c<!)/2! → 0 as ! →∞.

Numerical Procedure
To solve the set of mean-field equations, we employ a simple fixed-point scheme
with a judicious choice of the initial profiles. We use a combination of simple
(Picard) mixing and Anderson Acceleration. The steps are as follows:

1. Initialize density profiles to d0
�
, d0

�
, d0

(
= d − d0

�
− d0

�
.

2. Compute the fields b�, b�, and b( using Equation (3.41)

3. Compute the propagators using Equations (3.42)-(3.45).

4. Compute the single polymer partition function with (3.47).

5. Compute new densities, d=+1/2, using the field and propagators with Equations
(3.38)-(3.40).
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6. Compute error between new and old densities with � = | |d=+1/2 − d= | |∞.

7. If � > 0.01, update via simple mixing, d=+1 = (1 − _)d= + _d=+1/2. If
� ≤ 0.01 then update using Anderson acceleration.

8. If the error is below some tolerance, � < n , then exit the self-consistent loop.
Otherwise, continue at step 2.
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C h a p t e r 4

INTRODUCTION

This introductory chapter covers the fundamentals of electrolye solutions, ionics
liquids, and polar fluids including basic theory and applications. Subsequent chap-
ters will address three specific research topics including the capacitance and phase
behavior of ionic liquid supercapacitors, the entropic origin of ionic interactions in
polar solvents, and the spontaneous surface polarization in asymmetric polar fluids.

This chapter includes content from our previously published articles:

Varner, S.; Wang, Z.-G. Effects of dilution in ionic liquid supercapacitors. Physical
Chemistry Chemical Physics 2022, 24, 27362–27374, DOI: 10.1039/D2CP03398D

Varner, S.; Balzer, C.; Wang, Z.-G. Entropic Origin of Ionic Interactions in Polar
Solvents. The Journal of Physical Chemistry B 2023, 127, 4328–4337, DOI: 10.
1021/acs.jpcb.3c00588

Varner, S.; Walker, P. J.; Venkatachalam, A.; Zhuang, B.; Wang, Z.-G. Stockmayer
Fluid with a Shifted Dipole: Interfacial Behavior, 2025, DOI: 10.48550/arXiv.
2509.05523

4.1 Electrolytes
Electrolytes are solutions made up of ions or charged species dissolved in a solvent.
The variety of electrolytes is vast, as is their importance in both natural and engi-
neered systems. The extent to which electrolytes play a role in the natural world
and society cannot be overstated. The most basic example of an electrolyte is salt
water, which contains dissolved sodium and chloride ions. Seawater is another
common electrolyte that contains several different ions including sodium, chloride,
magnesium, sulfate, calcium, and potassium [4], all of which contribute to the com-
plex ecosystem and geochemistry of the ocean [5, 6]. In our bodies, electrolytes
play a crucial role in almost every biological function including nerve conduction
[7], muscle contraction [8], and general cellular homeostasis through regulation of
osmotic pressure and pH [9, 10].

Polyelectrolytes are another class of electrolytes where polymers containing charged
groups are dissolved in a solvent. Polyelectrolyes display different behavior from
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both regular electrolytes and neutral polymer solutions due to the complex interplay
between electrostatic interactions, polymer conformations, and strong polymer-
solvent interactions [11, 12]. Many biomolecules including DNA, RNA, and pro-
teins are polyelectrolytes that control biological function. Most recently, charged
biopolymers have been shown to undergo liquid–liquid phase separation to form
membraneless organelles that play important roles in cellular organization and reg-
ulate cellular functions [13–18].

Electrolytes and polyelectrolytes are also widely used in engineering applications,
with energy storage being one of the most prominent use cases. In batteries,
electrolytes facilitate the transport of ions between the anode and cathode and even
participate in chemical reactions. The most common example is in lithium-ion
batteries where lithium ions shuttle between a graphite anode and an FePO4 cathode
[19] during discharge. Supercapacitors are another class of energy storage devices
where energy is stored by applying a potential difference between two electrodes
separated by an electrolyte [20, 21]. Unlike batteries, supercapacitors store energy
electrostatically in the electric double layer formed at the electrode–electrolyte
interface [22–24], rather than through chemical reactions.

Due to their importance across such a broad range of important applications, un-
derstanding the properties of electrolyte solutions in bulk environments and near
interfaces is of great scientific and technological interest. At the most basic level, the
properties of dilute electrolytes are governed by the Coulombic interactions between
ions immersed in a dielectric medium. If the concentration is sufficiently low, the
ions can be treated simply as point charges interacting through a screened Coulomb
potential [25, 26]. At higher concentrations, the dilute approximation breaks down
due to ion–ion correlations and the finite size of ions [24, 27, 28]. A common case
where ion–ion correlations and finite ion sizes play a crucial role in the structure and
thermodynamics of electrolytes is in ionic liquids where the electrolyte can consist
entirely of ions without any solvent [29, 30]. Additionally, for polar solvents such
as water, the solvent molecules themselves can play a significant role in mediating
ion–ion interactions beyond simple dielectric screening at long distances. In these
cases, the structure of the solvent around the ions and specific ion–solvent inter-
actions become important to describing effective interactions and thermodynamics
within electrolytes [11, 31].

In the following two sections, we describe ionic liquids and polar fluids in more
detail, highlighting their unique properties and challenges associated with modeling
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them.

4.2 Ionic Liquids
Ionic liquids (ILs) are a special class of electrolytes that consist entirely of ions with-
out any solvent. Room-temperature ionic liquids (RTILs) are a subclass of ionic
liquids that are liquid at or near room temperature [32–34]. RTILs typically consist of
bulky organic cations such as imidazolium cations (e.g., EMIM, BMIM) and weakly
coordinating anions such as tetrafluoroborate (BF−4 ) or bis(trifluoromethanesulfonyl)imide
(TFSI−) [35]. Some examples of common components of RTILs are shown in Figure
5.1c.

RTILs are of great interest for energy storage applications due to their high thermal
and electrochemical stability, and low volatility [36–40]. Despite their promise,
modeling of RTILs is challenging due to the strong electrostatic correlations, fi-
nite size effects, and non-electrostatic interactions that govern their behavior. The
combination of these factors poses theoretical challenges as well as computational
challenges for simulating RTILs at the atomistic level.

Over the past few decades, several theories have been developed to phenomenolog-
ically describe the behavior of ionic liquids near charged interfaces [41–45]. In the
following chapter, we describe several of these theories in depth, including their
strengths and weaknesses. We then propose a new theory that addresses several of
the shortcomings of previous theories, and we apply it to study the capacitance and
phase behavir of RTILs in electric double layer capacitors (EDLCs) [1].

4.3 Electrolytes and Polar Fluids
The presence of a polar solvent complicates the picture of ion–ion interactions and
electrolyte thermodynamics significantly. While the solvent can often be thought
of as a uniform dielectric medium for determining the bulk properties of a dilute
electrolyte [25], this picture is not satisfactory for more concentrated electrolytes
or electrolytes near interfaces. For sufficiently polar solvents, a uniform dielectric
treatment is also not appropriate for considering how ions interact and associate at
short distances on the order of the solvent size. In these cases, the discrete nature
of the solvent molecules and their specific interactions with ions must be taken into
account.

Despite the important role of the solvent in mediating and screening charged interac-
tions, it is common to treat solvents as a uniform dielectric background for simplicity
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in what are called implicit solvent models [46]. Implicit solvent models approx-
imate the effect of the solvent by integrating out the solvent degrees of freedom
and replacing the bare interaction energy between charged species with an effective
interaction energy known as the potential of potential of mean force [17, 46]. This
potential of mean force is actually a free energy, since the solvent degrees of freedom
have been averaged over. This is especially common in simulations including large
biomolecules where the computational cost of explicitely modeling every solvent
molecule is prohibitive [47–50]. Most implicit solvent models attempt to maintain
the pairwise nature of interactions between charged species for computational ef-
ficiency. However, in reality, the presence of the solvent between several charged
species in close proximity leads to many-body interactions that cannot be captured
by simple pairwise potentials. In very recent years, machine learning approaches
have been developed to capture these many-body effects more accurately without
suffering from the high computational cost of explicit solvent simulations [51–54].

In two of the following chapters, we explore the consequences on the thermody-
namics of electrolytes and surface-containing systems when the solvent is modeled
explicitly. We develop theoretical techniques capable of capturing the solvent de-
grees of freedom, at least at the mean-field level, and we employ explicit solvent
molecular simulations to verify our theoretical predictions [2, 3].
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C h a p t e r 5

EFFECTS OF DILUTION IN IONIC LIQUID
SUPERCAPACITORS

Electric double layer capacitors (EDLCs) bridge the gap between the high power
density of traditional capacitors and the high energy density of batteries by storing
energy in the electric double layer formed under an applied electric field. EDLCs
use a range of electrolytes, including aqueous, organic, and more recently, ionic
liquids. Aqueous and organic electrolytes are volatile and have limited stability
windows, which constrain performance. Ionic liquids, while non-volatile and stable
over wide voltage ranges, are highly viscous, leading to low ionic conductivity and
high resistance. To improve conductivity and power delivery, they are often diluted
with organic solvents.

Although many theories describe the electric double layer and capacitance of simple
electrolytes and pure ionic liquids, the effects of dilution on the thermodynamics and
energy storage performance of ionic liquid EDLCs remain largely unexplored. To
address this, we extend existing theories to include dilution and preferential surface
interactions. We analyze how dilution impacts double layer structure, surface phase
behavior, differential capacitance, and overall energy storage. We also relate tricrit-
ical surface phase behavior to the diluted Ising model, known as the Blume Capel
model, and introduce an algorithm for solving complex field-theoretic equations.

This chapter includes content from our previously published articles:

Varner, S.; Wang, Z.-G. Effects of dilution in ionic liquid supercapacitors. Physical
Chemistry Chemical Physics 2022, 24, 27362–27374, DOI: 10.1039/D2CP03398D

Varner, S.; Balzer, C.; Wang, Z.-G. A Jacobian-free pseudo-arclength continua-
tion method for phase transitions in inhomogeneous thermodynamic systems. The
Journal of Chemical Physics 2024, 161, 064107, DOI: 10.1063/5.0220849

I am grateful for the guidance and mentorship provided by Dr. Christopher Balzer
when first learning the fundamentals and numerical algorithms of self-consistent
field theory. I am also very grateful for the many discussions with Dr. Benjamin Ye
who worked on a companion project. Our many discussions were invaluable to the
progress and understanding of my work.
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5.1 Introduction
Electric double-layer capacitors (EDLCs), a subset of supercapacitors (SCs), are
devices that store charge in an electric double-layerwithin an electrolyte near charged
electrodes. A schematic of a basic EDLC is provided in Figure 5.1a. EDLCs are
extensively studied because they may have the capability to match the power density
(PD) of traditional capacitors with the energy density (ED) of batteries [3–5], as
shown in Figure 5.1b. When an electric field is applied between two electrodes, the
formation of the double-layer is very rapid due to high ion mobility, especially for
electrolytes with low bulk resistance (high ionic conductivity). This makes them
useful for applications that require high cyclability and power delivery, such as in
regenerative braking for electric vehicles [6].

Cathode AnodeSeparator

Electrolyte
- Aqueous

- Organic

- Ionic liquid

(a) (b)

(c)
Imidazolium cations Bulky anions

(d)

Energy Density

Power Delivery

Figure 5.1: (a) Schematic of an electric double layer capacitor. (b) Ragone plot
of common energy storage devices reproduced from Yan et al. [7]. (c) Common
cations and anions for room-temperature ionic liquids (RTILs) reproduced from
Mousavi et al. [8]. (d) Voltammogram of common RTILs reproduced from Sato et
al. [9].

Since the maximum energy that can be stored by an EDLC scales as �+2/2 (for
constant C), increasing the cell potential+ is a very effective way to improve EDLC
devices [10]. The cell potential is determined by the electrolyte material being
used, which can range from aqueous electrolytes and polyelectrolytes to organic
electrolytes and even ionic liquids (ILs) [11]. Both the PD and ED are greatly im-
proved if the cell potential of the EDLC can be increased, ceteris paribus. Aqueous
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electrolytes remain electrochemically stable up to ~1 V, whereas organic replace-
ments such as acetonitrile (AN) and propylene carbonate (PC) have wider potential
windows up to ~2.5 V [12]. More recently, ILs are being studied as electrolytes
for EDLCs due to their low volatility, high potential window and improved electro-
chemical stability [3, 10, 13].

Room temperature ionic liquids (RTILs) are a special class of ILs that differ from
traditional molten salts in many ways. A neat RTIL is typically made up of a bulky
organic cation (e.g. imidazolium, pyrrolidinium, phosphonium) and a weakly coor-
dinated organic/inorganic anion (e.g. tetrafluoroborate, trifluoromethanesulfonate,
trifluoromethanesulfonimide) [8, 10]. Examples of common RTIls are provided
in Figure 5.1c. Due to the organic and bulky nature of the ions, RTILs can exist
as liquids at room temperature despite strong Coulomb interactions. Additionally,
RTILs are non-volatile and can remain stable up to ~5 V, making them much more
stable than aqueous and organic electrolytes. Figure 5.1d shows the wide stability
window displayed by three common RTILs. Their desirable properties make them
prime candidates as electrolytes in EDLCs [9, 14, 15].

Kornyshev studied the finite size effects using a mean-field lattice-gas model with
only single-occupation sites [16]. The effect of ion crowding near the electrode with
increasing potential gave a bell-shaped capacitance–potential curve, rather than
the typical U-shaped curve that was predicted by Helmholtz. More interestingly,
Kornyshev also discovered that there is a transition from bell-shaped to camel-
shaped capacitance curves when the void space in the system was high enough,
specifically for an ion volume fraction of W < 1/3.

The Kornyshev model was then extended by Bazant–Storey–Kornyshev (BSK) to
allow for electrostatic correlation phenomenologically via the incorporation of a
non-local relative permittivity [17]. It was shown that short-ranged electrostatic
correlations in neat RTILs can lead to overscreening, where the surface charge is
overscreened in subsequent layers, leading to an oscillatory charge density profile
that decays to the bulk value away from the electrode. This oscillatory behavior has
been observed experimentally and in simulations of dense electrolytes such as RTILs
where short-ranged electrostatic correlations are expected to be important [18–20].
While the BSK model was successful at incorporating electrostatic correlations,
the model was restricted to a fixed correlation strength, and did not incorporate
dilution effects. The non-local relative permittivity introduced in the BSK model
maps to a composite Coulomb–Yukawa potential, * (A) = (1 − e−A/ℓ2 )/4c_2

�
A,



117

where the Yukawa potential incorporates the short-ranged electrostatic correlations
and non-electrostatic interactions [21, 22]. Here ℓ2 is the correlation length, _� is
the Debye length, and A is the interparticle distance. The BSK model was further
expanded upon by allowing for the correlation strength to vary with the parameter
U, * (A) = (1 − Ue−A/ℓ2 )/4c_2

�
A [23–25]. The correlation strength U incorporates

the strength of electrostatic correlations as well as short-ranged non-electrostatic
interactions between the bulky ions of RTILs. Caetano et al. first used this model to
describe hydration mediated interactions in aqueous electrolytes [26]. The observed
hysteresis in RTIL EDLCs [27, 28] was first explained by Limmer as a result of
a fluctuation induced first-order surface phase transition [29]. This spontaneous
surface charge separation (SSCS) was also predicted using the composite Coulomb–
Yukawa potential with a correlation strength above a critical value U > UB,2 [23, 24].
The symmetry breaking transition is made possible by the short-ranged attraction
of co-ions resulting from non-electrostatic (dispersion) interactions. Typically, in
an inorganic electrolyte with small ions, the Coulomb repulsion would prevent the
coions from coalescing at an electrode without a driving force. In the case of ILs,
short-ranged dispersion forces offset the Coulomb repulsion and allow coions to
gather at an electrode, inducing a surface charge. The result is a stable double layer
formed spontaneously through ion density fluctuations and surface polarization.
The image charge interactions are crucial for the surface transition. Recent coarse-
grained molecular dynamics simulations show that SSCS is possible only with
attractive image charges from a metal electrode [30]. The discussed mean-field
theories (MFTs) do not distinguish the electrode type.

While there have been many studies about neat RTILs near electrified interfaces,
there has been little work on diluted RTILs with account for finite size and elec-
trostatic correlation, and little discussion on their capacitance and energy storage
behavior. The high viscosity of RTILs at room temperature causes a low ionic
conductivity and thus low PD [12, 31]. High bulk resistance gives rise to slow
charging/discharging dynamics. This is one of the main issues faced when using
RTILs as the electrolyte for EDLCs. The most popular way to get around the
high viscosity is by using mixtures of ILs and organic solvents, such as AN [32–
34]. While the addition of organic solvents generally decreases the cell potential,
exploratory studies have discovered RTIL–solvent mixtures that maintain a cell po-
tential above 3V with high cyclability [15, 34]. In most commercial applications,
RTILs are diluted with AN or PC to achieve acceptable power delivery [31]. In-
corporating neutral solvent into existing theories of RTIL EDLCs is crucial to more
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accurately model real systems and predict trends in ED and PD.

In the following sections, we provide a historical perspective on previous theories
for electric double layer capacitors. While none of this is novel, we believe there is
significant value in providing a comprehensive accounting of these theories includ-
ing their similarities, differences, strengths, and weaknesses. We hope that this can
serve as a helpful review for future scientists aiming to learn the history mean-field
modeling of EDLCs.

In our own work, we extend the MFT used in recent works [24, 25] by incorporating
a neutral solvent. We investigate the effect of dilution on SSCS, capacitance, and
energy storage for a single plate system. We also investigate the effects of preferential
adsorption of solvent on the phase behavior, capacitance, and energy storage.

5.2 Electric Double Layer
For practical application of RTILs in EDLCs, it is crucial to understand the structure
and behavior of the electric double-layer (EDL). The capacitance and energy storage
are directly determined by the response of the EDL to applied potentials. The study
of EDL structure goes back to Helmholtz in 1853 [35]. At that time the EDL was
described as a single layer of ions adjacent to a charged electrode which yielded a
constant capacitance at all potentials. Now, more sophisticated theories incorporate
physics like electrostatic correlation, non-electrostatic interactions and finite ion
size [16, 17, 23, 26, 36–39]. The advent of more advanced theories was motivated
by the discovery that electrostatic correlation and finite size effects are essential to
the EDL behavior of RTILs [40–42]. In the following subsections, we step through
the history of inhomogeneous EDL modeling, starting with the Poisson–Boltzmann
theory.

Poisson-Botzmann / Gouy–Chapman Theory
In the original theory, Helmholtz assumed that only a single layer of oppositely
charged ions would adsorb to the electrode [35], when in fact there is actually a dis-
tribution of ions going away from the electrode. The meaning of the "double layer"
is then extended beyond the surface charge on the electrode and the immediate layer
of ions nears the surface, to now include the diffuse distribution of ions moving away
from the surface. The shape of the charge and the resulting electrostatic potential is
determined by the competition of electrostatic forces that draw counterions and repel
coions, and mixing entropy which favors even mixing as in the bulk condition. The
simplest model to capture these two affects is that of an ideal gas of point charges
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near a planar charged wall. To derive the ion distribution and electrostatic potential
in this system, we could start from the canonical partition function and proceed
via particle-to-field transformation [43–45], however, we instead proceed through
a simpler route by starting directly from the free energy functional. We direct the
reader to the appendix for the full derivation using particle-to-field transformations.
Here, we write the Helmholtz free energy functional as the sum of only two parts,
� = �id + �el, where �id is the free energy of an ideal gas, and �el is the free energy
due to electrostatic interactions between charged species. Thus, the form of the free
energy functional is:

V� =
∑
U=+,−

∫
3rdU (r) [ln dU (r) − 1] + V4

2

8cn

∫
3r

∫
3r′

d2 (r)d2 (r′)
|r − r′| (5.1)

where dU (r) is the inhomogeneous number density of species U, V = 1/:�) , 4 is
the elementary charge, and n is the permittivity. Note that we are treating the solvent
implicitly by assuming a uniform permittivity in the Coulomb interaction kernel.
d2 (r) = d+(r) − d−(r) + dex(r) is the charge density (reduced by 4), and dex(r)
is the fixed external charge distribution (e.g., electrode, charged nanoparticle, pore
wall, etc.). From here, we can define the electrostatic potential, k(r),

k(r) = − 4

4cn

∫
3r′

d2 (r′)
|r − r′| (5.2)

which allows the Helmholtz free energy to be simplified,

V� =
∑
U=+,−

∫
3rdU (r) [ln dU (r) − 1] + V4

2

∫
3rd2 (r)k(r) . (5.3)

For a given charge distribution, the electrostatic potential can be computed using the
convolution in Equation (5.2). Alternatively, one can recognize that the Coulomb
kernel is the Green’s function for Poisson’s equation,

∇2
rk(r) =

4

4cn

∫
3r′d2 (r′)∇2

r

(
1

|r − r′|

)
(5.4)

= −4
n

∫
3r′d2 (r′)X(r − r′) (5.5)

= −4
n
d2 (r) (5.6)

where ∇2( |r − r′|−1) = −4cX(r − r′). Note that the elementary charge, 4, appears
because we have reduced the charge density. We can arrive at a nondimensional
version of Poisson’s equation by reducing the potential by the thermal voltage,
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:�)/4, the length scale by the effective particle size 1 = E1/3, and converting the
number density to a volume fraction, q2 = d2E. The nondimensional equation is
given by,

−_2
0∇

2k = q2 (5.7)

where _2
0 = n1/V4

2 = 1/4c;� is the nominal screening length, and ;� = V42/4cn
is the Bjerrum length. Note that k is now in units of :�)/4. The Bjerrum length
is the length scale at which the interaction energy between two monovalent charges
is equal to the thermal energy, :�) . The nominal screening length is a measure of
the ratio between the Bjerrum length and the particle size. Now, the electrostatic
potential can be computed by solving the simple partial differential equation in
Equation (5.7), rather than the convolutional integral in Equation (5.2).

Since we are interested in computing the distribution of ions at an electrode that
is immersed in an electrolyte, we can assume that the system containing the EDL
is connected to an infinitely large reservoir at fixed concentrations of ions, d1±,
and therefore also fixed chemical potentials `±. This also implies that the ion
concentrations will approach their bulk values as the distance from the electrode
goes to infinity. To this end, we transform the Helmholtz free energy to the Grand
free energy using the Legendre transform

Ω = � −
∑
U=±

`U=U = � −
∑
U=±

`U

∫
3rdU (r) (5.8)

whereΩ is the Grand free energy (or Grand potential), and =U and `U are the number
of particles and the chemical potential of species U, respectively. Thus, the Grand
free energy functional is given by,

VΩ =
∑
U=±

∫
3rdU (r) [ln dU (r) − 1 − `U] +

∫
3rd2 (r)k(r) . (5.9)

The equilibrium density profiles can be determined by extremizing the free energy
with respect to d± using functional variation, XVΩ/Xd± = 0, which yields the
equations,

−`± + ln(q±) ± k = 0 (5.10)

for amonovalent salt solution. In the reservoir, the electrostatic potential is 0, and the
bulk volume fraction of ions is q1± which yields the chemical potentials, `± = ln q1±.
Finally, inserting the values of the chemical potentials yields the familiar Boltzmann
distribution,

q± = q
1
±4
∓k (5.11)
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which must be self-consistent with Poisson’s equation in Equation (5.7). Combining
these two equations yields the Poisson–Boltzmann (PB) equation/theory,

−_2
0∇

2k = q1+4
−k − q1−4k + qex (5.12)

= −2q1± sinhk + qex (5.13)

where the second equality is only true if q1+ = q1−. Recall that qex is the fixed external
charge distribution and will determine the boundary conditions. For an EDLC, we
are interested in a planar electrode carrying a surface charge f. If the electrode is
significantly larger in the transverse directions relative to the width of the EDL, then
we can approximate the 3d profiles as 1d profiles with variation only in the direction
normal to the electrode. In this case the external charge distribution is expressed as
qex(I) = fX(I), and the PB equation becomes,

−_2
0
m2k

mI2 = q+4
−k − q−4k + fX(I) (5.14)

where it is understood that all profiles vary in the I-dimension only. Integrating over
the domain, accounting for charge neutrality, and recognizing that mIk = 0 inside
the electrode results in the following boundary condition,

−_2
0
mk

mI

����
I=0

= f . (5.15)

Note that one can either solve the equation subject to a fixed surface charge, f, or
fixed surface potential, kB. In both cases the second boundary condition is k → 0 as
I → ∞ where a vanishing bulk potential is chosen for simplicity. If a fixed surface
potential is used, then the surface charge can be computed using Equation (5.15).

This equation can be solved analytically for a planar electrode at a fixed surface
charge qB using the integrating factor method. The key result of the Gouy–
Chapman theory is the differential capacitance computed from the solution of the
non-linearized PB equation,

�GC
diff =

mf

mkB
=
n

_�
cosh

(
kB

2

)
(5.16)

where _� =

√
n :�)/(

∑
U I

2
Uq

1
U) is the Debye length, and kB is still reduced by

the thermal voltage. At no applied potential, the differential capacitance is simply
�GC
diff (0) = n/_� , which is the same result one would get from the linearized PB

equation for small surface potentials. Notably, the differential capacitance has a "U"
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shape, with the differential capacitance increasing exponentially as kB →∞. While
the GC model applies well for dilute systems at low surface potential, it breaks
down at high potential because the ions are taken as point charges, meaning they
can accumulate infinitesimally close to the electrode up to an infinite density. This
gives the nonphysical exponential divergence in capacitance, as in reality, ions have
a finite size and cannot occupy the same space.

In 1923, Stern offered a solution for high surface potential called the Stern Layer
[46]. The Stern Layer is simply the original Helmholtz layer added in series to the
diffuse GC layer.

�GCS
diff =

1
��
+ 1
�GC
diff

(5.17)

At high potential, the Stern layer contribution dominates the GC contribution and the
capacitance approaches a constant value, rather than increasing exponentially. The
Gouy-Chapman-Stern (GCS) theory works well for sufficiently dilute electrolytes,
but for concentrated RTILs the dilute approximation breaks down and the GCS
theory no longer accurately predicts experimental capacitance curves.

The two main reasons that the GC and GCS theories give incorrect predictions
for concentrated electrolytes and moderate-to-high potentials are crowding and ion
correlations. The GC and GCS models are mean-field models, derived by consid-
ering the self-consistent relationship between the mean electrostatic potential and
the mean charge density in a system with only long-ranged Coulomb interactions.
In the mean-field approximation, local ion structure (correlation) is neglected since
the charge density is averaged out. For dilute systems this is often a good approx-
imation because the Debye length is much greater than the correlation length. In
dense electrolytes, however, there is some level of ordering around any given ion.
In ILs for example, the Debye length is smaller than the ions themselves, and the
relevant length scale for correlations is the ion size. Experiments have shown that
the local charge environment around an ion within an IL is oscillatory in sign (for
a cation it is -+-+-+-) moving away from the ion, and decays to zero in the bulk
[18, 20, 47]. Similarly, the charge density shows the same oscillatory profile at the
interface between an IL and an electrode. Theories developed since the GC theory
have aimed to address the areas where the GC fails to make predictions in ILs with
strong ion correlations and significant crowding.
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Kornyshev
In 2007, Kornyshev proposed a lattice based mean-field model to study the effect of
crowding [16]. The free energy in the Kornyshev model is given in Eq (5.18).

� = 4Ψ(#+ − #−) + �+#2
+ + �−#2

− + �#+#− − :�) ln,!� (5.18)

Neglecting the short ranged interactions yields �+ = �− = � = 0. The total number
of microstates is given by considering the number of ways the positive and negative
ions can be placed on a lattice of N sites. In this case, the total number of ions need
not equal the total number of sites, there may unfilled sites (holes).

,!� =

(
#

#+

) (
# − #+
#−

)
=

#!
#+!#−!(# − #+ − #−)!

(5.19)

Since there are a finite number of lattice sites in the system, the density at the
electrode cannot grow infinitely. This form of the conformational entropy leads
to a Fermi distribution for the ion concentrations, rather than the typically used
Boltzmann distribution.

2± = 20

exp
(
∓ 4Ψ
:�)

)
1 − W + W cosh

(
4Ψ
:�)

) (5.20)

W here is the amount of ions in the bulk divided by the total number of sites available
for them. When W → 0, the ion densities are Boltzmann distributed, as expected for
very dilute systems.

With the Fermi distribution for ions, Kornyshev goes on to solve for the ion density
and potential profiles in one dimension using the Poisson–Fermi Equation (rather
than Poisson–Boltzmann). The Poisson Equation can be obtained by taking the
saddle-point solutions of the functional integrals which are obtained from the par-
tition function, neglecting all fluctuations. This is the hallmark of the mean-field
approximation. Substituting the Fermi-distributed ion densities gives the simple
differential equation for the nondimensional electrostatic potential k = 4Ψ/:�) :

32k

3-2 =
sinh (k)

1 + 2W sinh2 (k/2)
(5.21)

Solving this differential equation gives the potential distribution. The surface charge
(density) f is related to the slope of the potential at the surface via Gauss’ law. The
differential capacitance is the derivative of the surface charge with respect to the
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potential drop between two electrodes. In the case of the Kornyshev model, there is
only one electrode and the potential decays to 0 as - →∞

�38 5 5 =
3f

3Δk
=
Y0YA
4c_�

3

3Δk

{
− 3k
3-

����
-=0

}
(5.22)

= �0
cosh (Δk/2)

1 + 2W sinh2 (Δk/2)

√
2W sinh2 (Δk/2)

ln
[
1 + 2W sinh2 (Δk/2)

] (5.23)

For a neat RTIL, Kornyshev predicted a bell shaped capacitance curve where in-
creasing the potential extends the double layer and decreases the capacitance. For
sufficiently dilute RTILs, W < 1/3, he predicted a camel-shaped capacitance curve.
These two regimes are shown in Figure 5.2.

Figure 5.2: Differential capacitance from the Kornyshev model. The transition
from bell to camel shaped capacitance occurs for W < 1/3. Figure reproduced from
Kornyshev [16].

At low potential, the voids in the first layer begin to fill with counterions, which
increases the capacitance in the same manner as in the GC theory. At high potential,
the first layer becomes full and the double layer extends into more layers, decreasing
the capacitance. The bell and camel shaped capacitance, and the transition between
them, are a direct result of crowding or lattice saturation effects. For high potentials,
in the lattice saturation regime, the capacitance decays as ~Δ+−1/2. This can be
obtained using simple scaling arguments and equating the cumulative charge in the
double layer with the surface charge.

The predictions of the theory were successfully compared to some results of both
experiments and simulations. This simple theory, while addressing ion crowding,
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completely neglects ion correlations which are expected to have a large role in
concentrated ionic systems like ILs as mentioned before. For this reason, the
Kornyshev model cannot correctly predict charge density profiles.

All-in-all, as the title of his seminal paper suggests, Kornyshev sparked a paradigm
change in the way that RTIL EDL theories would develop in subsequent years and
up to this day.

Bazant, Storey, and Kornyshev
In 2011, Bazant, Storey and Kornyshev addressed the issue of correlations through
introduction of non-locality in the dielectric permittivity [17]. Their Landau-
Ginzburg-like free energy functional incorporated an additional potential gradient
term, shown in Eq (5.24), where Ψ is the electrostatic potential, 6 is the enthalpy
density, q = 4 (2+ − 2−) is the mean charge density, ℓ2 is the correlation length, and
f is the surface charge.

� =

∫
+

3r
{
6 + qΨ − Y

2

[
|∇Ψ|2 + ℓ2

2

(
∇2Ψ

)2
]}
+

∮
(

3rfΨ (5.24)

In Fourier space, this appears as a non-local dielectric, while in real space it gives
rise to a fourth-order gradient term in the electrostatic potential that is not present in
the Kornyshev model (Eq (5.21)). The result upon extremization of the free energy
is a modified Poisson Equation which includes the fourth-order gradient term.

ℓ2
2 ∇̃4k − ∇̃2k = − sinh (k)

1 + 2W sinh2 (k/2)
(5.25)

Notice that the only difference between this model and the original Kornyshev
model is the fourth-order gradient termwhich accounts for short ranged electrostatic
correlations.

The BSKmodel predicted oscillatory charge density profiles at low potential, termed
overscreening and crowding at high potentials. See Figure 5.3 for a visual repre-
sentation. Overscreening occurs when the surface charge is overcompensated in
the layer(s) of counterions adjacent to the electrode, and the extra charge in the
counterion layer(s) is then overcompensated by an adjacent coion layer. The layers
alternate and decay until eventually zero charge density is reached in the bulk. This
is a direct result of the consideration of electrostatic correlations. Crowding occurs
at high potential when a single layer of counterions adsorbed onto the surface is
not enough to screen the surface charge. Since the particles have finite volume,
as more come towards the surface, the double layer extends further out into the
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solution occupying 2 or more layers. This is the same crowding/saturation effect as
the original Kornyshev model, and in both cases the capacitance decays as ~Δ+−1/2

for high potential.

Figure 5.3: Overscreening vs crowding visual representation for RTIL EDLs repro-
duced from Bazant, Storey, and Kornyshev [17].

Bazant and de Souza [48] later discovered that the non-local dielectric is mathemat-
ically equivalent to introducing a composite Coulomb-Yukawa pair potential of the
form * (A) = (1 − 4−A/ℓ2 )/A , where ℓ2 is an effective correlation length. Applying
the Hubbard-Stratonovich transformation to the operator in Fourier space and ex-
panding in powers of : results identically in the BSK formulation. In this respect,
the BSK model is fairly restrictive since the strength of the Yukawa interaction
relative to the Coulomb interaction is specified rather arbitrarily. We can rewrite the
composite potential without making this restriction as* (A) = (1 − U4−A/ℓ2 )/A with
U representing the combined strength of short-ranged non-electrostatic interactions
and electrostatic correlations. The BSK model corresponds to U = 1, but there is
no reason this should be the case for any real system.

In Appendix B I provide an alternative derivation to the BSK model valid for
0 ≤ U ≤ 1. In the derivation I similarly consider only a single field that combines
the effects of the Yukawa and Coulomb interactions. The result is an integro-
differential equation for a modified electrostatic potential which reduces to the
Kornyshev model for U = 0 and the BSK model for U = 1. The restriction on U
arises from the restriction on the Hubbard-Stratonivich transformation, where the
operator must be positive definite. I do not provide further analysis of this model
beyond the derivation since the next models described allow for a wider range on
U and easier numerical solutions simply by introducing different fields for the two
interaction potentials. One of which is the theory used by Chao and Wang in 2020
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which expanded the BSK model by allowing for variation of the strength U through
the introduction of an auxiliary Yukawa field [23].

Chao and Wang
In 2020, Chao and Wang proposed a mean-field theory [23] to explain the origin
of the observed hysteresis upon charging and discharging [27, 29]. I refrain from
providing derivations here because this is the theory that my own research is built
upon, and in-depth derivations will be provided in a later section.

In addition to the normal long ranged Coulomb interactions, they included a Yukawa
potential to model the short ranged non-electrostatic interactions and electrostatic
correlations. The origin of the non-electrostatic interactions in RTILs comes from
the organic composition of the molecular ions. Bossa and May also postulated
that the nonelectrostatic interactions are hydration mediated [26]. At short ranges,
there will be some amount of attraction between like-charged ions due to dispersion.
Chao and Wang modified the BSK model by adding a strength U to the Yukawa part
of the potential which encapsulates the combined strength of the non-electrostatic
interactions and the correlations. The particle pair-potential thus has the form
* (A) = (1 − U4−A/ℓ2 )/A as mentioned before.

To analyze the physics at the mean-field level they introduced two fluctuating fields:
the electrostatic potential k; and an auxiliary Yukawa field . , accounting for the
Coulomb and Yukawa components of the pair-potential respectively. Applying the
mean-field approximation, they discovered a spontaneous surface charge separation
which is second order at the mean-field level but weakly first order beyond the mean-
field level. At a critical correlation strength UB2 below the bulk transition critical
value U2, there is spontaneous surface charge separation at no applied potential.

They show that above this transition value, there can be metastability in the f −Δ+
equation of state, which could be responsible for experimentally observed hys-
teresis. They further supported this claim by showing through structure factor
calculation from molecular dynamics simulations that many common RTILs have
UB2 < U < U2. Lastly, they show that proximity to the transition can result in
enhanced energy storage, especially when applying different electrode materials for
preferential adsorption, which shifts the divergent capacitance to a nonzero cell
potential.

TheCWmodelwas later discovered to have an incorrect boundary condition, namely
they did not include the penetration of the Yukawa field into the electrode. Despite
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this, their results remain qualitatively valid and they still capture the essential physics.

Bossa and May
In 2020, Bossa andMay corrected the boundary condition error from the CWmodel.
They introduced a different field for each of the Yukawa interactions cation-cation,
anion-anion, and cation-anion [24]. In this way they allowed for a different strength
of interaction/correlation between the different types of ions. This model is more
realistic as it is unfair to assume that these interactions would have the same exact
strength. They ultimately assumed that the system has no solvent and thus is binary.
This assumption collapses the three fields into a single field that is identical to the
one proposed in the CW model. Their results with the correct boundary condition
proved qualitatively identical to the results of the CWmodel, but they found the CW
model slightly overestimated the effects of SSCS.

The Bossa and May model provided the framework for inclusion of solvent, but
results for dilute RTILs were not reported in their work.

Lian, Chao, and Wang
Lian, Chao, andWang (LCW) revisited the CW theory (nowwith the correct Yukawa
boundary condition) and used it to study the effects of confinement on the differential
capacitance [25]. Experiments have shown an anomalous capacitance increase as the
pore size of the electrode approaches the diameter of the ions [49]. LCWshowed that
as the pore size approaches the ion diameter, the UB,2 drops dramatically, enabling
spontaneous surface charge separation to occur for much weaker ion correlations.
During the transition, counterions migrate into the pore while coions migrate out,
leading to the experimentally observed anomalous capacitance increase for small
pore sizes. This study was for neat RTILs, but the presence of solvent can have a
drastic impact on how the EDL and capacitance respond to confinement.

With a grasp on the previous theories and the information they provided, I move
onto discussion of the theory used in our work.

5.3 Diluted Ionic Liquid Mean-Field Theory
The MFT used in our work is similar to that developed earlier [26] to describe
hydration mediated interactions in dilute electrolyte where a Yukawa potential was
used to account for correlations, and the Bikerman mixing entropy was used to
account for finite ion size [50]. The model was more recently used to study the
thermodynamic stability of neat ionic liquids and the spontaneous surface phase
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transition arising from ion–ion correlations [23–25]. These theories, however, have
not yet been used to study the thermodynamic stability of diluted ionic liquids and
the capacitance behavior in the charge separated regime. Briefly, a planar electrode
is immersed in a size-symmetric 1:1 diluted RTIL where each ion carries unit charge
±4 and has volume E and we define 1 = E1/3 as the length scale of the ion. For
simplicity, we assume the solvent also has molecular volume E. In the framework of
the lattice-gas-like model, E corresponds to the volume of a lattice site where each
lattice site can be occupied by a single particle. In principle, ion size asymmetry
could be accounted for either phenomenologically as was done by Kornyshev [16],
or in an asymmetric lattice gas model as done by Han et al which uses a Flory–
Huggins entropy [51]. We focus on the symmetric case in order to study the effects
of dilution and ion–ion correlations. The dielectric constant of the RTIL is n . The
bulk ion volume fractions are q�± = E2�± where 2�

8
is the bulk number density of

species 8. A neat RTIL corresponds to q�+ = q�− = 1/2. The solvent volume
fraction is given by the incompressibility condition q�B = 1 − q�+ − q�−. We use the
� superscript to denote bulk values, while the inhomogeneous system profiles are
denoted q+ = q+(r), q− = q−(r) and qB = qB (r) = 1 − q+ − q−. The electrode
carries surface charge f while the system remains charge neutral.

We start with the modified BSK equation [17, 25, 26, 48] with the addition of the
chemical potential in the grand canonical ensemble,

VΩ =

∫
3r [q+ ln q+ + q− ln q− + (1 − q+ − q−) ln (1 − q+ − q−)]

+ 1
8c_2

0

∫
3r

∫
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0
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|r−r′ |
ℓ2 q(r′)
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−
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3r| |
∫

3I [�+(I)q+(r) + �−(I)q−(r)]

−
∫

3r [`+q+(r) + `−q−(r)] (5.26)

where the integration dimensions are normalized by the ion size 1. The first
integral is the translational entropy of the mixture proposed by Bikerman [50] with
the incompressibility condition enforced. This is the most widely used model to
account for finite ion size in MFTs of ionic liquids [16, 17, 23–26]. We drop
the explicit notation for spatial dependence as it is understood that these profiles
can be inhomogeneous. The second term is the coulombic interactions where q =
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q+−q− is the local dimensionless charge density. The nondimensionalized nominal
screening length is given by _0 = [nAn01/V42]1/2 with V = 1/:�) , elementary
charge 4, temperature ) , Boltzmann constant :�, vacuum permittivity n0, and
relative permittivity nA . The third term is a Yukawa potential which accounts for the
ion–ion correlations and the non-electrostatic interactions between the bulky organic
ions, with U controlling the strength and the correlation length ℓ2 controlling the
range. In principle, as shown by de Souza and Bazant [48], U and ℓ2 will vary with
concentration; however, we assume they are independent and choose a particular
section of the parameter space to explore. One could expand the model to include
more chemical specificity by using a different U and ℓ2 for each pair of species [24].
Alternatively a Flory j could be included between each species pair which is a much
simpler local interaction that would still allow for chemical specificity [52]. The
fourth termmodels the preferential adsorption/desorption of ions with the electrode,
where r| | is the 2-dimensional position in the directions parallel to the electrode,
I is position normal to the electrode, and �± are the adsorption potentials for the
ions relative to the solvent. Note that the adsorption potentials �±(I) only depend
on position normal to the surface, I. The last term contains the contributions from
the chemical potentials `+ and `− where the solvent term is eliminated using the
incompressibility condition. The system is grand canonical as it is connected to a
bulk reservoir at fixed species chemical potentials.

For the single plate geometry, assuming the transverse directions are vast compared
to the normal direction, we can reduce the model to a one-dimensional system.
Instead of the vector position, r, dependence is reduced to the coordinate I normal
to the electrode face (normalized by 1). Since the single-plate system is semi-
infinite, we introduce a second plate at a sufficiently large distance ! from the first
plate to simplify numerical calculations. The two plates have the same magnitude
of surface charge f with opposite sign, and are located at I = ±!/2. They are far
enough that a significant region centered at I = 0 is at the bulk condition of q± = q�±.

The Coulomb term, the second term in Eq. (5.26) can be rewritten identically
using an identity transform for quadratic interactions [43, 44]. This introduces the
nondimensional electrostatic potential k = V4Ψ that is coupled to the mean charge
density, q. We also include preferential adsorption potentials to account for non-
electrostatic electrode–electrolyte interactions [23]. The nondimensional grand free
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energy per unit area for the single plate system is

VΩ

�
=

∫ !/2

−!/2
3I [q+ ln q+ + q− ln q− + (1 − q+ − q−) ln (1 − q+ − q−)]

+
∫ !/2

−!/2
3I

{[
q + fX

(
I + !

2

)
− fX

(
I − !

2

)]
k −

_2
0

2

����mkmI ����2
}

+ U
2_2

0

∫ !/2

−!/2
3I

∫ !/2

−!/2
3I′* (I − I′)q(I)q(I′)

−
∫ !/2

−!/2
3I [�+q+ + �−q−]

−
∫ !/2

−!/2
3I [`+q+ + `−q−] (5.27)

where the Yukawa potential is* (I − I′) = − ℓ22 e
−|I−I′ |/ℓ2 and � is the electrode area.

The fourth term accounts for the preferential adsorption/desorption of ions and
solvent. The solvent contribution is eliminated from this term using the incompress-
ibility condition. We use the same short-ranged preferential adsorption potential
that was used by Chao and Wang (CW) in their study of preferential adsorption of
ionic liquids [23]. This form was invoked for numerical stability and to maintain
consistency with the length scale of the RTIL, 1. In principle the potential could be
a delta function at each surface, rather than be position dependent. We choose to
use a smooth potential for numerical stability.

�±(I) =


(1 − I − !

2 )
2Δℎ± −!/2 ≤ I < −!/2 + 1

0 −!/2 + 1 ≤ I < !/2 − 1

(1 + I − !
2 )

2Δℎ± !/2 − 1 ≤ I ≤ !/2

(5.28)

where strength of the harmonic adsorption for each ion type relative to the solvent is
denotedΔℎ± = ℎ±−ℎB [23]. In general, the strength of the interaction can be different
for cations and anions. However, for simplicity, we assume that Δℎ = Δℎ+ = Δℎ−,
and therefore � = �+ = �−. Note, the negative sign in front of the adsorption term
of eqn (5.27) means that when Δℎ is negative, the electrode has a higher affinity for
the solvent than the ions.

Setting the variation of the free energyΩwith respect to k and q± to zero, we obtain
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the following set of self-consistent equations

− _2
0
m2k

mI2 = q + fX
(
I + !

2

)
− fX

(
I − !

2

)
(5.29)

ln
(

q+
1 − q+ − q+

)
+ k + . − �+ − `+ = 0 (5.30)

ln
(

q−
1 − q+ − q−

)
− k − . − �− − `− = 0 (5.31)

where we have introduced the Yukawa field . defined by the convolutional integral

. (I) = U

_2
0

∫ !/2

−!/2
3I′* (I − I′)q(I′) (5.32)

Since the system is symmetric, we have the condition mIk |I=0 = 0. Integrating
over the domain and noting that inside the electrodes mIk = 0 yield the boundary
conditions

− _2
0
mk

mI

����
I=±!/2

= f (5.33)

The Poisson equation, eqn (5.29), can be solved efficiently via finite difference, or
can be solved via direct integration

k(I) = k(0) − 1
_2

0

∫ I

0
3I′(I − I′)q(I′) (5.34)

where k(0) = 0 for the symmetric two-plate system. Although one can obtain . (I)
in terms of q(I) using the integral form of eqn (5.32), computationally it is more
convenient to solve for. (I) from a differential equation. To this end, differentiating
eqn (5.32) twice yields

m2.

mI2 −
.

ℓ2
2

=
U

_2
0
q(I) (5.35)

Differentiating eqn (5.32) once and setting I = 0 yields the boundary condition

m.

mI

����
I=±!/2

= ∓. (±!/2)
ℓ2

(5.36)

which agrees with previously obtained results [24, 25] for no Yukawa source at the
electrode. Assuming the bulk is a homogeneous 1:1 ionic liquid with ion volume
fractions q�± = q�, we may set k = . = � = q = 0. Using the bulk conditions in
addition to the equilibrium conditions `+ = `�+ and `− = `�−, we obtain an equation
for the chemical potential.

` = `+ = `− = ln
(

q�

1 − 2q�

)
(5.37)



133

Inserting eqn (5.37) into eqn (5.30) and eqn (5.31) gives equations for the ion density
profiles in terms of the potentials k, . , and �,

q+ =
e−(k+. )

(1/q� − 2)e−� + 2 cosh (k + . )
(5.38)

q− =
ek+.

(1/q� − 2)e−� + 2 cosh (k + . )
(5.39)

Equations (5.29), (5.35), (5.38) and (5.39), along with boundary conditions in eqn
(5.33) and eqn (5.36) constitute a set of self-consistent equations which can be solved
iteratively with an initial guess for q(I). For all calculations we set ) = 300K and
1 = 1 nm. BSK predicted that the correlation length is on the order of the molecular
size; therefore, we set ℓ2 = 1 = E1/3 [17]. We choose nA = 10 in accordance with
experimental measurements of imidazolium-based ionic liquids [53]. These values
result in a nominal screening length of _0 = 0.12.

Zero applied field
For the case of no applied potential, the electrostatic potential difference between
the two separated plates is zero, Δ+ = k−!/2 − k!/2 = 0. The mean-field equations
are solved self-consistently via the following algorithm. An initial guess is made for
q(I). k(I) is calculated from eqn (5.29) with the boundary conditions in eqn (5.33).
. (I) is calculated from eqn (5.35) with the boundary condition given in eqn (5.36),
and � (I) is calculated from eqn (5.28). k, . , and � are used in eqn (5.38) and
eqn (5.39) to calculate new profiles q+ and q−, and therefore q(I) = q+ − q−. This
process is repeated until the maximum difference in local charge density between
subsequent iterations is below a tolerance, set to 10−10 for our calculations.

Applied field
In the case of an applied field, k−!/2 = −k!/2 ≠ 0 and we specify the surface
charge on the left and right plate to be f and −f respectively. For each f, we
calculate the equilibrium profiles and extract the surface potential on each plate,
which effectively yields the relationship f(Δ+), where Δ+ is the difference in
surface potential between the two plates. The differential capacitance is calculated
as

�diff =
m |f |
mΔ+

(5.40)

and the energy storage per surface area is calculated as

Δ� =

∫ f(Δ+)

f(0)
D 3f =

∫ Δ+

0
�D 3D (5.41)
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where f, Δ+ , �diff and Δ� are in units of 4/12, :�)/4, 42/:�)12 and :�)/12

respectively.

5.4 Results and Discussion
Effect of dilution on spontaneous surface charge separation
We first study the effect of dilution on spontaneous surface charge separation when
there is no applied potential, Δ+ = 0. We vary the Yukawa interaction strength from
U = 0 to U = 1, and the bulk ion volume fraction from d� = q�+ + q�− = 0.05 to
d� = 1. It is expected that dilution should weaken the effect of correlations [25],
making the critical correlation strength for SSCS, UB,2, larger. Thus, a neat RTIL
that undergoes SSCS at a particular UB,2 may not undergo any SSCS after dilution.
We can observe SSCS by varying the bulk ion concentration d� at a fixed correlation
strength U.

We find that when U is moderately above the transition value for neat IL SSCS, the
transition density decreases, but the transition remains second-order. When U is
well above the transition value for neat IL SSCS, the transition can happen at a lower
density and the nature of the transition changes from second-order to first-order.
Figure 5.4 shows SSCS in systems with U moderately (a) and significantly (b) above
the neat ionic liquid transition value of UB,2 = (_0/ℓ2)2+2(_0/ℓ2) = 0.25 for _0/ℓ2 =
0.12 [25]. Figure 5.4a shows a second-order transition in the surface charge density
with increasing d� while Figure 5.4b shows a first-order transition. Additionally, as
conjectured in Ref. 31, stronger correlations lead to a lower transition density.

The first-order behavior is characterized by metastability. When starting from a
charge separated state and slowly decreasing the bulk concentration, the charge
separated state remains metastable until a lower d� value than when starting from a
homogeneous state and slowly increasing d�, as shown in Figure 5.4b. Furthermore,
note that the surface charge no longer increases continuously from 0 upon SSCS.
Instead, the surface charge jumps from 0 to a finite value at the disordered spinodal
and similarly jumps from a finite value down to 0 at the ordered spinodal. The
true equilibrium transition d� value is determined by the equality of the grand free
energy density between the two branches. See the Appendix for more information
on determining the transition point. The grand free energy is obtained by using the
converged profiles k, . , and q±.
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Figure 5.4: (a) second-order SSCS transition, for a specified U, the transition
occurs at a critical bulk ion concentration. Note, d� = q�+ + q�− = 2q� is the
total ion concentration in the bulk. There are two branches because the symmetry
can spontaneously break in either direction. (b) first-order SSCS transition, for a
specified U, the transition occurs at different bulk ion concentrations depending on
the initial state of the system, indicating metastability of the two phases. Solid
lines and dashed lines correspond to paths taken starting from homogeneous and
charge-separated states, respectively.

Charge overscreening and crowding
SSCS is accompanied by the presence of decaying oscillatory charge density profiles
away from a charged electrode. The overcompensation of surface charge and the
resulting oscillatory charge density and electrostatic potential profiles have been
described as overcharging, or overscreening [17, 20, 54]. This phenomenon has
been well documented for dense ionic systems near charged surfaces. In the case
of BSK, the surface is charged and the ionic liquid overcompensates the surface
charge, whereas in our case the surface charge is generated by the spontaneous
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Figure 5.5: (a) Charge density profiles near a positively charged electrode for a neat
RTIL, d� = 1. Profiles for various U are shown, all with Δ+ = 0. (b) Potential
profiles corresponding to the charge density profiles in (a) where the electrostatic
potential is given by solid lines and the Yukawa potential is given by dashed lines.
(c) Charge density profiles near a positively charged electrode for a diluted RTIL
with U = 1 and Δ+ = 0. (d) Potential profiles corresponding to the charge density
profiles in (c) where the electrostatic potential is given by solid lines and the Yukawa
potential is given by dashed lines.

charge separation of the ionic liquid. In either case, overscreening of the charge
occurs. An example of an oscillatory charge density profile for a neat RTIL is given
in Figure 5.5a. The oscillations becomemore pronounced as the correlation strength
U increases.

For very strong correlations (e.g. U = 1.1), the effects of lattice saturation, or
crowding, are observed. For the red and green curves in Figure 5.5a, the layer
adjacent to the electrode extends out into the solution. This is a result of the finite
size of the ions in the lattice-gas-like model. Since the charge density cannot exceed
unity, as the driving force for separation increases, the counterion layer adjacent to
the electrode grows.
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As the RTIL is diluted, the effect of correlations decreases and the driving force for
SSCS decreases with it. As a result, both overscreening and crowding should be
diminished as the RTIL concentration decreases. Indeed this is shown in Figure 5.5c.
As the RTIL is diluted, the extent of overscreening is diminished until eventually
SSCS no longer occurs.

Phase diagram for SSCS at zero potential
For neat RTILs, the CW model shows a second-order transition at a critical alpha
value, UB,2, at zero potential (Δ+ = 0) [23]. The spontaneous surface charge
separation is similar to the spontaneousmagnetization in themean-field Isingmodel,
where the surface charge is the analog of the magnetization.

It is of interest to determine the exact nature of the first-order and second-order
behavior in the relevant parameter space. Specifically, what is the location of the
tricritical point with respect to concentration (or `) and correlation strength? To
answer this question a phase diagram in U− ` space was generated numerically. For
a comprehensive description of the algorithm, see the Appendix.
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Figure 5.6: RTIL SSCS phase diagram in U − ` space. The dashed _-line is a line
of critical points where second-order transitions occur. The blue coexistence line
and the black and red spinodals are a region of first-order transitions. The transition
from second-order to first-order occurs at the tricritical point.

As shown, dilution decreases the effects of SSCS, meaning that a dilute system
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will have a higher UB,2 than a neat RTIL. This can be easily understood since the
neutral solvent increases the average distance between ions, reducing the effects of
short-ranged correlations. The CW model shows that for neat RTILs the transition
value is determined by UB2,=40C = 2_0/ℓ2 + _2

0/ℓ
2
2 [25]. For any dilute system, it

should hold that UB2,38;DC4 > UB2,=40C . Thus, For any U < UB2,=40C there will never be
SSCS at any bulk ion density. This sets a lower bound for the value of U in the U–`
phase diagram.

The phase diagram in U − ` space is given in Figure 5.6. At the lower right part
of the phase diagram, the SSCS transition is second-order as indicated by a line
of critical points (the _-line; the dashed green curve). For larger U and low bulk
density, the transition becomes first-order indicated by the solid blue binodal, which
is flanked by the spinodals of the disordered phase (solid black line) and the spinodal
of the SSCS state (solid red line). The _-line and the binodal meet at the tricritical
point, where the two spinodal lines also terminate with a common tangent. The
tricritical point occurs at ` = − ln 4 or d� = 1/3. We note that this volume fraction
is the same value that results in a transition from bell to camel-shaped capacitance
curves, as shown by Kornyshev [16]. The transition in the shape of the capacitance
curves occurs even without consideration of correlations and is a result of the finite
ion size as treated with the lattice model. We see in the case of the diluted RTIL
with correlations that the transition in the shape of the capacitance curve at critical
dilution coincides with a transition in the phase behavior.

Beyond the mean-field, fluctuations will change the nature of the transition. It has
been shown that the transition in concentrated ILs is weakly first-order rather than
second-order, putting it in the Brazovski universality class [29, 55]. Coarse-grained
molecular dynamics simulations of neat RTILs also indicate a weakly first-order
transition [30].

Connection to Blume–Capel Model
The SSCS is a transition involving spontaneous symmetry breaking in the presence
of a diluent. This is reminiscent of the spontaneous magnetization in the diluted
Ising model, the spin-1 Ising model or the Blume–Capel (BC) model (a subset of
the well known Blume–Emery–Griffiths model) [56–59].

The BC/BEG model accurately captures the tricritical behavior of He4 − He3 mix-
tures, where the fluid-superfluid transition goes from second-order to first-order
at a critical amount of He3 impurity. The diluted RTIL shows a transition from
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second-order to first-order phase behavior below a certain ion concentration, where
the neutral solvent plays the role of impurities. To show the comparison, we briefly
derive results of the BC model.

The Hamiltonian of the BC model in the constrained grand canonical ensemble is
given by,

� ({s}, #, ), `�, `�) = −
�

2

∑
8

=.=.∑
9

B8B 9 − Δ`
∑
8

B2
8 (5.42)

where B8 is the spin on particle 8 (±1 for interacting particles, A, and 0 for impurities,
B), � > 0 is the ferromagnetic interaction strength, and Δ` = `� − `� is the
chemical potential difference between particle types. The sum over 9 is over the
nearest neighbors of spin 8.

We define the relative magnetization order parameter < =
∑
8 B8/#� and the type

A spin concentration G = #�/# in order to write the mean-field Hamiltonian. The
Gibbs Entropy is used with the mean-field Hamiltonian to write a variational free
energy, � = 〈�〉 − )(. The non-dimensional variational free energy per spin is

6 =
�

#:�)
= −1

2
UG2<2 − `G + G1 + <

2
ln

(
G

1 + <
2

)
+

+G1 − <
2

ln
(
G

1 − <
2

)
+ (1 − G) ln (1 − G) (5.43)

where U ≡ I�/:�) , ` ≡ Δ`/:�) , and I is the coordination number of the lattice.
Minimizing the free energy gives the mean field equations

< = tanh (UG<) (5.44)

` = ln
G

1 − G − UG<
2 + 1 + <

2
ln

1 + <
2
+ 1 − <

2
ln

1 − <
2

(5.45)

which can be analyzed to obtain a phase diagram for the fluid-superfluid transition.
The U − ` phase diagram for the BC model has the same characteristic shape as
the phase diagram for the dilute RTIL model in this study. We observe tricritical
behavior at the same chemical potential, which corresponds to ` = − ln 4 or G = d� =
1/3. Note, this is the same concentration, W = 1/3, discovered by Kornyshev [16]
where the capacitance curve transitions from bell to camel-shaped. This analysis
confirms the strong analogy between the currently studied dilute RTIL model and
the dilute Ising model. The BC model and variants have also been used to study
confined ionic liquids, and similar tricritical phase behavior is reported [60, 61].
That the tricritical point for both the SSCS transition and the BC/BEGmodel occurs
at d = 1/3 is striking. However, the exact reason for this remains to be understood.
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Figure 5.7: U − ` phase diagram for the mean-field BC model.

Capacitance and energy storage of dilute RTIL
Modulation of the distance to the UB,2 can be beneficial in multiple ways, first by
preventing unwanted hysteresis in charging and discharging, but also by allowing for
a large zero-potential capacitance. We have shown that addition of neutral solvent
increases UB,2; here we discuss how this affects the capacitance and energy storage.

In order to see the effect of U in dilute systems, we first look at the U = 0 case that
was studied by Kornyshev [16]. He observed a transition from bell to camel-shaped
capacitance curves at significant dilution [16]. The framework developed in our
theory successfully reproduces the results of Kornyshev when U = 0, as shown in
Figure 5.15 in the Appendix. The transition from bell to camel-shaped curves occurs
at d� = 1/3, as expected. While the zero-potential capacitance is lower for the dilute
RTIL, at high potentials, the more dilute RTILs have higher capacitance. As pointed
out by May [62], the increase in capacitance with dilution at high potential comes
from a frustration relief of the EDL, where coions near the surface are replaced by
solvent molecules. Recent works have discovered a "bird-shaped" capacitance curve
that occurs near the RTIL–solvent demixing transition when ionophilic electrodes
are used [63]. While we did not observe this shape with the given model, we believe
this shape can be achieved by adding a local repulsion between ions and solvent
via a Flory j parameter. Ionophilic electrodes can be modeled by setting Δℎ to a
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positive value. We leave this exploration for a future study.
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Figure 5.8: (a) f vs Δ+ plotted for a RTILs with varying dilution and U = 0.35.
The dashed portion of d� = 1.0 (purple) curve is the region of instability. The inset
shows the d� = 1.0 curve with arrows indicating the trajectory the system would
follow when slowly charging or discharging. The arrow is located at the spinodal,
where the system must jump to the stable positive branch. (b) and (c) �diff vs Δ+
plotted for RTILs with varying dilution on semi-log and log-log scales respectively.
The capacitance curves are calculated using only the stable and metastable portions
of the f − Δ+ curves.

With correlations accounted for in the Yukawa potential, dilution effectively raises
UB,2. Figure 5.8a shows that hysteresis in charging/discharging can be minimized
or even prevented via dilution. The f − Δ+ curve for d� = 1.0 (purple) exhibits
metastability where f and Δ+ have opposite signs, while the stability condition
mf/mΔ+ > 0 is still satisfied. There is also a region of instability indicated by a
dashed line where mf/mΔ+ < 0. For a given U, instability and metastability can
be mitigated by diluting enough with a neutral solvent such that U ≤ UB,2. For
U = 0.35 we see that at the corresponding critical concentration of d� = 0.55 the
slope diverges at Δ+ = 0. See the red curve in Figure 5.8a. This means that for an
RTIL with U = 0.35, one can maximize the zero-potential capacitance by diluting
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the RTIL down to 55% v/v. We again acknowledge that U for a given RTIL could
generally depend on the ion concentration;[48] however, the extent and form of the
dependence is not the focus of this study. Here, we assume that U is independent of
the concentration and explore the parameter space.

Capacitance curves for U = 0.35 are shown in Figure 5.8b and c. The zero-potential
capacitance first increases upon dilution (purple to red). The maximum capacitance
is reach when the concentration is such that U = UB,2. Further dilution results in
a decrease in zero-potential capacitance (red to green to orange to blue) because it
brings the system further below UB,2. For d� < 1/3 the maximum in capacitance
characteristic of the camel shaped capacitance curves is still present. Similarly,
for high enough potentials, the capacitance increases with dilution due to EDL
frustration relief.

Figure 5.9 show the zero-voltage capacitance as a function of d� at different values
of U. The capacitance diverges for a critical d� value whose UB,2 becomes equivalent
to U for the given RTIL.

0.4 0.5 0.6 0.7 0.8 0.9 1.0

ρB

0

5

10

15

20

C
d
iff

,0

α =
0.27
0.30
0.35

Figure 5.9: �diff(Δ+ = 0) vs d� for different values of U. Note that U is below the
value at the tricritical point, and therefore the transition remains second-order.

Since dilution leads to a higher capacitance at high potentials, it is conceivable
that the energy storage could be higher in more dilute RTILs at the same charging
potential. The energy storage is calculated via eqn (5.41) and plotted in Figure 5.10
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for an RTIL with U = 0.35. If the capacitor is charged to higher potentials, it is
evident that more dilute RTILs can store more energy per unit area. This is because
of the higher capacitance in dilute RTILs at high potential, which is shown in Figure
5.8b and c. We see that even at the critical concentration of d� = 0.55 where the
zero-voltage capacitance diverges, the energy storage is relatively low. As explained
by Chao andWang[23], this is due to the peak in capacitance being counterbalanced
by the zero of potential in the integral in eqn (5.41). In order to combat this, Chao
and Wang proposed preferential adsorption where one ion is preferentially attracted
to a particular electrode. The result was a shifted diverging capacitance which
leads to a substantial increase in energy storage. We would expect similar results
with asymmetric ion adsorption in diluted RTILs, so we instead focus on solvent
adsorption which is specific to our work.

Preferential adsorption of solvent
We assume the same short-ranged preferential adsorption for the solvent that has
previously been used to describe preferential adsorption of ions in neat RTILs [23,
25]. The form of the potential is given in eqn (5.28). We assume that the two ions
have the same interaction with the electrodes while the solvent interaction differs.
Under the assumption of indifferent adsorption between the cation and anion, the
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Figure 5.10: Energy storage per unit area for an RTIL with U = 0.35 at various
levels of dilution.
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relevant interaction is the difference between the solvent and the ions with the
surface. A negative Δℎ implies that the solvent is preferentially attracted to the
electrode, or that the electrode is solvophilic. We expect that a solvophilic electrode
will diminish unfavorable hysteresis and SSCS by drawing solvent to the electrode
and pushing ions away. To study the SSCS behavior we set zero surface potential
and vary the bulk ion concentration. The U − ` phase diagram for a diluted RTIL
with Δℎ = −5 is given in Figure 5.11. The main effect on the zero-voltage behavior
is that for a given chemical potential, a higher U is required to induce SSCS.
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Figure 5.11: U − ` phase diagram for a dilute RTIL with a solvophilic electrode,
Δℎ = −5. The black superimposed phase diagram is the result for no preferential
adsorption.

Preferential adsorption of solvent repels ions away from the electrode. At low
potential, this leads to a lower differential capacitance as the driving force for ions to
replace the solventmolecules is low. As the potential increases, the systemundergoes
a surface transition where the solvent molecules are replaced with counterions. We
note that this finite potential transition can occur in systems with no preferential
adsorption, so long as the RTIL concentration is sufficiently low, and the correlation
strength is sufficiently high. Preferential adsorption of solvent enhances the effect
and shifts the transition to higher concentrations where RTILs are typically used.
Near the transition at finite potential, the capacitance becomes very large.

In Figure 5.12, the surface charge, differential capacitance, and energy storage are
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Figure 5.12: (a) f vs Δ+ plotted for a RTILs with varying dilution, U = 0.50, and a
solvophilic electrode (Δℎ = −5.0). The dashed portion of d� = 1.0 (purple) curve
is the region of instability. (b) �diff vs Δ+ plotted on semi-log scale and (c) energy
storage Δ� vs Δ+ .

plotted as a function of the applied potential for a solvophilic electrode. We see
that the spike in capacitance (Figure 5.12b) at a finite potential difference leads
to a sudden rapid increase in the energy storage (Figure 5.12c), which naturally
comes from the definition of energy storage given in eqn (5.41). Previous studies
that focused on ion adsorption into nanopores have shown a similar increase in
energy storage when using ionophobic electrodes [64–67]. Generally, wider peaks
in capacitance shifted to larger applied potentials lead to more energy storage. Also,
we still observe the trend that more dilute RTILs store more energy when charged
to relatively higher potentials. This is due to the higher differential capacitance at
higher potential. In the high potential limit we still observe the expected Δ+−1/2

behavior [16].
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5.5 Conclusions
The RTIL concentration is a powerful design handle for EDLCs. While some factors
such as the correlation strength and length, or the chemical nature of the electrode
can be difficult and expensive to vary, concentration is very simple, yet effective for
tuning capacitance and energy storage. For example, the hysteresis in RTILs due
to strong correlation effects [23, 27–29] can be mitigated by dilution. Addition of
a neutral solvent works to separate ions and decrease the effect of the short-ranged
correlations. By diluting, one can modulate the proximity to SSCS to fine tune and
bolster the capacitance.

When a neutral solvent is added, there is also a rich phase behavior similar to that
of the well known BC (or BEG) model. At high concentrations SSCS is a second-
order transition at the mean-field level, whereas at low concentrations SSCS is a
first-order transition. The transition from second-order to first-order occurs at the
tricritical point which exists at a bulk ion volume fraction of d� = 1/3, the same
volume fraction of the tricritical point in the BC model. This volume fraction also
corresponds to the transition between bell and camel-shaped capacitance curves as
discovered by Kornyshev [16].

If the electrode shows preference for the solvent, this further reduces the effect
of SSCS, pushing the transition to finite potentials where ions are attracted to the
charged electrodes. This preference for solvent can lead to a surface charge transition
at a finite potential where the surface charge rapidly increases (or even jumps),
and the electric double layer is flooded with ions to counteract the charge. The
rapid increase in surface charge is favorable when continuous due to the increased
capacitance and energy storage. However, a jump in surface charge could lead
to unfavorable hysteresis in charging and discharging similarly to neat RTILs [27,
28]. We achieved a significant increase in energy storage without considering
asymmetric adsorption of the ions as in Ref. 18. The presence of solvent allows for
the phase transition at finite potential, which could not occur in a neat RTIL without
introducing asymmetry.

Based on these results, the ideal charging behavior is achieved when the concen-
tration and correlation strength are such that the system is near but not above the
critical concentration for a finite potential surface phase transition. The solvent
choice and concentration serve as easy handles for modulating the phase behavior
and maximizing the capacitance.

While we only apply a mean-field treatment of RTILs with a phenomenological cor-
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rection for ion–ion correlations, similar models have been used to predict qualitative
behavior observed in experiments [16, 23–26]. The lattice-gas-like model used
here is not able to incorporate any ion packing effects. Future works should con-
sider more sophisticated theories that account for liquid structure such as classical
density functional theory (cDFT) and weighted density theories. Size asymmetry
can be incorporated into future studies where the solvent, cation, and anion can be
treated explicitly with different sizes. Size asymmetry has been previously consid-
ered using Monte Carlo, cDFT [68], MFT without ion–ion correlations [51], and
continuum theory [69], but there has not been work looking at the phase behavior
and energy storage performance in asymmetric systems. Size asymmetry will shift
the peak in the capacitance from zero potential in a similar manner to preferential
adsorption, enhancing the energy storage from charging. It is also of interest to
look at RTIL behavior in curved environments. Some studies are already looking
at the EDL structure for RTILs near curved surfaces [10, 70, 71], but there is still
work to be done specifically in confined systems with curvature. With the advent
of wearable technology, supercapacitors are being targeted for power delivery in
flexible electronics, where electrode curvature is of utmost importance [72]. Much
work can be done even at the mean-field level. Future works should incorporate
the effects explored in this work such as dilution, correlations, and non-electrostatic
interactions, while including additional effects such as size asymmetry, curvature,
and confinement.

5.6 Appendix
Locating the SSCS Transition
The second-order _-line in the phase diagram in Figure 5.6 was calculated by
stepping the bulk volume fraction from low to high, and identifying the volume
fraction where the surface charge becomes finite. This process is done for various U
below the tri-critical point. The continuous SSCS transition is shown in Fig. 5.13.

The binodal, disordered spinodal, and SSCS spinodal are found by analyzing the
Ω–` plot for various U above the tri-critical point. The free energy curve for the
disordered state at a given U is calculated by stepping the bulk volume fraction from
low to high starting from a homogeneous state. The free energy curve for the SSCS
state is calculated by stepping the bulk volume fraction from high to low starting
from a charge separated state. The spinodal of each state is the limit of stability,
where thermodynamic stability is defined as m2Ω/m`2 < 0. The coexistence point
is where the separate free energy curves cross. At this point `� = `� � and Ω� = Ω� �
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Figure 5.13: Surface charge vs. bulk concentration for 0.26 < U < 0.4, which
is below the tri-critical point. The curves are ordered by their U value which is
decreasing from left to right. Note that the second-order transition from disordered
to surface charge separated is continuous.

where � and � � represent the disordered and SSCS states, respectively. The Ω–`
plot for U = 0.8 is given in Fig. 5.14.
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Figure 5.14: Free energy vs. chemical potential for U = 0.8. Note that U = 0.8 is
above the tri-critical point. Metastable regions are regions that obey m2Ω/m`2 < 0
but are not the lowest free energy states. Once a spinodal is reached, the system
jumps to the stable branch.

The location of the two spinodals was also confirmed by observing the surface
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charge. Starting from a near homogeneous state and stepping the chemical potential
up while calculating the equilibrium charge and potential profiles at each step, the
spinodal of the disordered (homogeneous) phase is reached at the first instance
where a finite surface charge is observed. A finite surface charge indicates that the
system has charge separated and is no longer disordered. Similarly, starting from
a charge separated state and stepping the ion concentration (or chemical potential)
down while calculating the charge and potential profiles at each step, the ordered
spinodal is reached at the first instance where a zero surface charge is observed.

U = 0 Results
The results for U = 0 are presented to serve as a comparison to the finite U cases
highlighted in the main text. In the U = 0 case, the model without preferential
adsorption reduces to the model developed by Kornyshev [16].
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Figure 5.15: �diff vs Δ+ plotted for RTILs with varying dilution at U = 0. Note the
transition from bell to camel-shaped curves at d� = 1/3 (green).
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Generalized BSK Model with Combined Coulomb–Yukawa Potential
We start with the BSK formulation of the free energy in Fourier space, and specifi-
cally we start with the form where we have already extremized over k and replaced
k, thus giving a quadratic interaction term of the form:

V�2 =
+

(2c)3

∫
3k

[
2cℓ�

(
1
:2 −

ℓ2
2

1 + ℓ2
2 :

2

)]
d̂2 (−k) d̂2 (k) (5.46)

The first term gives the Coulomb interactions while the second term represents the
non-electrostatic Yukawa interactions with a correlation length of ℓ2. In order to
add a strength to the Yukawa interaction, we introduce U:

V�2 =
+

(2c)3

∫
3k

[
2cℓ�

(
1
:2 − U

ℓ2
2

1 + ℓ2
2 :

2

)]
d̂2 (−k) d̂2 (k) (5.47)

In order to invert this operator we recombine into a single term which gives the
following:

V�2 =
+

(2c)3

∫
3k

[
2cℓ�

1 + (1 − U)ℓ2
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2

:2(1 + ℓ2
2 :
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]
(5.48)

To decouple the pair-wise interactions at the expense of adding a fluctuating field,
we use the following identity for quadratic terms:

1
2
x · A · x = −min

y

(
1
2
y · A−1 · y − x · y

)
= max

y

(
−1

2
y · A−1 · y + x · y

)
(5.49)

It is important to note that this operator can only be inverted when U <= 1, otherwise
there will be singular points and the matrix will not be invertible. The result is a
variational Hamiltonian.
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Where the charge density is q = ad2. The second term here is unwieldy but can be
simplified down a lot via some algebra. First pull out a :2, leaving:

:2(1 + ℓ2
2 :

2)
1 + (1 − U)ℓ2

2 :
2
= :2 +

Uℓ2
2 :

4

1 + (1 − U)ℓ2
2 :

2
(5.51)

Next we introduce two lumped constants defined as:

� = Uℓ2
2 (5.52)

� = (1 − U)ℓ2
2 (5.53)
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Then the algebraic steps to simplify the 4th order term are as follows:
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Thus (5.50) can be written equivalently as,
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Performing a variation w.r.t k̂ we have:
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This gives the first order functional derivative of �E0A w.r.t k̂:
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Finally, setting the first functional derivative to 0, we have:
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Multiplying both sides by exp (8k · r) and integrating over k gives:∫
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The first term on the right hand side of (5.60) simply gives the Laplacian of k.(
1 + �

�

) ∫
3k:2k̂k4

8k·r = −
(
1 + �

�

) ∫
3kk̂k∇r · ∇r

[
48k·r

]
= −

(
1 + �

�

)
∇r · ∇r

[∫
3kk̂k4

8k·r
]

= −(2c)3
(
1 + �

�

)
∇2k(r) (5.62)

The second term is just the inverse inverse Fourier transform of k̂
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For the last term we need to invoke the definition of the Fourier transform in place
of k̂k and compute the k integral in 3-dimensions using spherical coordinates.
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Therefore, the complete integro-differential equation is:
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Cancelling multiplicative factors and combining some terms gives:
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Finally, replacing A and B with their definitions in (5.52) we get the final integro-
differential equation.
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C h a p t e r 6

ENTROPIC ORIGIN OF IONIC INTERACTIONS IN POLAR
SOLVENTS

Implicit solvent models that reduce solvent degrees of freedom into effective interac-
tion potentials are widely used in the study of soft materials and biophysical systems.
For electrolyte and polyelectrolyte solutions, coarse-graining the solvent degrees of
freedom into an effective dielectric constant embeds entropic contributions into the
temperature dependence of the dielectric constant. Properly accounting for this
electrostatic entropy is essential to discern whether a free energy change is en-
thalpically or entropically driven. We address the entropic origin of electrostatic
interactions in dipolar solvent and provide a clarified physical picture of the solvent
dielectric response. We calculate the potential of mean force (PMF) between two
oppositely charged ions in a dipolar solvent using molecular dynamics and dipolar
self-consistent field theory. We find with both techniques that the PMF is dominated
by the entropy gain from the dipole release, owing to the diminished orientational
polarization of the solvent. We also find that the relative contribution of the entropy
to the free energy change is nonmonotonic with temperature. We expect that our
conclusions are applicable to a broad range of problems involving ionic interactions
in polar solvents.

This chapter includes content from our previously published article:

Varner, S.; Balzer, C.; Wang, Z.-G. Entropic Origin of Ionic Interactions in Polar
Solvents. The Journal of Physical Chemistry B 2023, 127, 4328–4337, DOI: 10.
1021/acs.jpcb.3c00588

I am very thankful for helpful discussions with Prof. Bilin Zhuang on the use
of dipolar self-consistent field theory. These discussions were invaluable to the
progress of this work. I would also like to thank Prof. Shensheng Chen who
pioneered the initial work on the electrostatic entropy in polyelectrolyte complex
coacervation.

6.1 Introduction
A wide variety of simulation and theoretical approaches utilize implicit solvent
models, where the solvent degrees of freedom are lumped into effective interactions
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[2, 3]. Treating the solvent as a background medium can significantly reduce the
computational cost[4–6]. In doing so, however, the solvent degrees of freedom
become hidden in effective interaction potentials, which are often specified in an
approximate manner. Common methods in biological simulations include the ac-
cessible surface area (ASA) method and continuum electrostatic methods such as
the generalized Born model [7–14].

Dielectric materials with polar molecules respond to an electric field through reori-
entation of the dipoles[15]. Generally, the presence of an electric field will cause
the dipoles to align and increase the order in the system. The free energy change
during dipole reorganization is thus composed of both energetic and entropic con-
tributions [16]. The energy comes from the electrostatic interactions of the dipoles
with the electric field and with each other, while the entropy arises from the changes
in the orientation of the dipoles. For a uniform dielectric material, the electrostatic
entropy contribution is encapsulated in the temperature dependence of the dielectric
constant [17].

Δ(el = −
mΔ�

m)
= − m

m)

(
1
2
Y+�2

)
= −1

2
+�2 mY

m)
(6.1)

where ) is the temperature, Δ(el is the electrostatic entropy change due to the
application of an electric field, Δ� is the Helmholtz free energy change, Y is the
dielectric constant,+ is the system volume, and � is the electric field. Capturing the
entropic contribution relies on knowing the temperature dependence of the dielectric
constant.

In solutions containing ions and charged macromolecules, the presence of charged
species generates the electric field that polarizes the solvent[17]. Recently, this
phenomenon has been used to explain the apparent discrepancy between exper-
iments[18–21] and coarse-grained molecular dynamics simulations[22–25] in de-
scribing the driving force for polyelectrolyte complex coacervation. Chen andWang
showed that the Coulomb potential used in coarse-grained implicit solvent models
inherently includes an entropic contribution, which they term the electrostatic en-
tropy[26]. By correctly accounting for this electrostatic entropy contribution through
the temperature dependence of the dielectric constant, they were able to predict en-
tropy driven coacervation from implicit solvent molecular dynamics, in agreement
with experimental observations. Further, they rationalized this entropic driving
force as arising from the solvent reorganization using the example of two oppositely
charged ions forming an ion pair. The entropic contributions to the potential of mean



162

force have also been addressed in other studies which used molecular dynamics [27]
and the extended reference interaction site model (RISM) [28]. However, these
studies were restricted to water which has specific properties and interactions with
different types of ions.

The effective interaction potential, or potential of mean force (PMF), between ions
in solution is a result of the combined effects of direct ion–ion interactions and
interactions of ions with the solvent. At the most basic level, one can assume
the solvent has a uniform temperature-dependent dielectric constant. In the Debye
approximation [29], for the process of bringing two ions from infinity to a distance
A, we have

Δ� =
@8@ 9

4cY0(1 + b)A
(6.2)

)Δ( = −) mΔ�
m)

= −
@8@ 9

4cY0A

b

(1 + b)2
(6.3)

Δ* = Δ� + )Δ( =
@8@ 9

4cY0A

1
(1 + b)2

(6.4)

where @8 and @ 9 are the charges on the ions, * is the internal energy, b ≡ V ¯̀2

3EY0
is a

dimensionless measure of the dipole strength, ¯̀ is the dipole moment, V = 1/:�) ,
and E is the molecular volume of the solvent. Thus, the electrostatic entropy will
dominate the PMF when b > 1. A similar result can be obtained using a more
complete dielectric theory, such as Onsager’s theory [30, 31]. While this is a
satisfying result, it is phenomenological and does not provide a clear molecular
picture, since the solvent degrees of freedom are not explicitly included.

In this study, we address the concept of electrostatic entropy and demonstrate its
generality by studying two ions in a dipolar fluid. Using dipolar self-consistent
field theory (DSCFT) and molecular dynamics simulations, we analyze the PMF
between two oppositely-charged, monovalent ions immersed in a dipolar solvent,
explicitly accounting for the solvent degrees of freedom. We separate the PMF
into its entropic and energetic contributions to determine the conditions where the
electrostatic entropy dominates. Finally, we connect the entropic driving force to the
release of dipoles as the ions approach one another, quantified through the decrease
in the solvent polarization. While solvent reorganization has long been recognized
as a source of entropy in physical processes, especially in the context of binding
of small molecules to proteins and multivalent ions to charged macromolecules in
water[32–34], the phenomenon is often presented as solvent- or system-specific,
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where other effects such as hydrogen bonding may dominate. Our results highlight
the generality of the electrostatic entropy and the importance of properly accounting
for the solvent degrees of freedom in studying charge-containing systems.

6.2 Enhanced Sampling Molecular Dynamics
To model two ions in a dipolar fluid, we use a Stockmayer fluid model based on
work by Shock et al. [35]. The solvent particles possess permanent point dipoles `̀̀
at their center of mass while the ions are described as point charges with no dipole.
The nonelectrostatic nonbonded potential energy for all bead types is described by
a truncated and shifted Lennard-Jones (LJ) potential [36],

*!�
8 9 (A) =


4n8 9

[(
f8 9
A

)12
−

(
f8 9
A

)6
+ 1

4

]
A ≤ 21/6f8 9

0 A > 21/6f8 9

(6.5)

where n8 9 =
√
n8n 9 , f8 9 =

√
f8f9 for all pairs, and A is the distance between beads

8 and 9 . With a cutoff of 21/6f8 9 , the LJ potential is purely repulsive and n8 9 is
relatively unimportant. For all of our systems, we set n8 = n 9 = 1. An example of
the system setup is given in Figure 6.1.

Figure 6.1: Example simulation configuration of two ions (blue/red) in a Stockmayer
fluid (light blue). Solvent dipoles are depicted as pink arrows.

The electrostatic interactions are composed of charge–charge, charge–dipole, and
dipole–dipole interactions. The standard Coulomb potential describes the charge–
charge interactions between the two ions,

*
@@

8 9
(A) = 1

4cY0

@8@ 9

A
(6.6)
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where Y0 is vacuum permittivity and @ is the charge on each ion. The charge–dipole
and dipole–dipole interactions are, respectfully, given as

*@` (r) = 1
4cY0

@(r@` · `̀̀)
|r@` |3

(6.7)

where |r@` | is the center of mass distance between the charge and the solvent dipole,
and

*
``

8 9
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|r`` |3

− 3
4cY0

(`̀̀8 · r``) (`̀̀ 9 · r``)
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(6.8)

where |r`` | is the center of mass distance between point dipoles `̀̀8 and `̀̀ 9 . We
reiterate that only the ions carry charge. All long-range electrostatic interactions are
computed using a standard Ewald summation.

The solvent dipoles reorient due to the torque arising from charge–dipole or dipole–
dipole interactions. We use a Langevin thermostat that takes into account the angular
degrees of freedom of the solvent. The LJ size parameter fB is used to describe
the spherical diameter required to update the angular velocity via the solvent bead’s
moment of inertia.

Throughout the work, we consider a coarse-grained model solvent based on wa-
ter[35]. Namely, the number density is d = 0.03344/Å3 at ) = 300K with diameter
fB = 3.0Å and mass 18.015 g

mol . Water has a gas-phase dipole moment of 1.85 D;
however, we vary the magnitude of the dipole moment to highlight the role of the
dipoles, ranging from ¯̀ = 0D to 2 D. For simplicity, we treat the anion and cation
as monovalent ions ±14 with the same size parameter as the solvent, f+ = f− = fB.
For all simulations, we use reduced units with the length scale 1f = 3Å, energy
scale 1n = 2.49 kJ

mol , and mass scale 1< = 18.015 g
mol that give a corresponding

timescale g =
√

n

<f2 .

The PMF between two ions is calculated using the adaptive biasing force (ABF)
method [37, 38]. In the ABF method, the average force is computed as the system
evolves and explores the collective variable (CV) space. After some amount of
sampling in a particular region of the CV space, a biasing force is applied that
counteracts the mean force. This biasing force allows the system to efficiently
climb free energy barrier and explore high free energy configurations. The ion
separation distance is divided into 8 windows in the range of 0.75f to 8.5f. In
each window, the system was equilibrated for 5 × 106 timesteps (XC = 0.005g) and
production of 107 timesteps. Each simulation consists of 5000 solvent particles,
corresponding to a simulation box length of 17.69f. We use the GPU [39, 40]
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and Colvars [41] packages in lammps [42] for simulations and ovito [43] for
visualizations. Example lammps and Colvars scripts for calculating the PMF are
available at https://github.com/chrisbalzer/Stockmayer-Two-Ions.

6.3 Ion-Dipole Field Theory
In recent years, several groups have developed statistical field theories that explic-
itly account for solvent polarization and the dielectric response [44–48]. Here, we
adapt a dipolar self-consistent field theory that was previously developed and used
to study ion solvation energy and electron transfer reorganization energy [49–51].
Alternatively, we could have used the Ornstein–Zernike integral equation theory
with the hypernetted-chain (HNC) approximation, or the extended RISM equation
which have both been used to study the potential of mean force between ions at
infinite dilution [28, 52–55]. The purpose of the theoretical model is not to compare
or validate the simulation, but rather to provide an alternative approach for studying
the ionic interaction in dipolar fluids to emphasize the generality of the presented
behavior. We believe any theory which can capture the solvent orientational polar-
ization in the vicinity of ions can capture the presented results, which includes all
of the mentioned theories. We consider two ions at fixed separation immersed in
a dipolar solvent. The solvent dipole is composed of a permanent dipole `̀̀ and an
induced dipole ???. The induced dipole is related to the electronic degrees of freedom.
This contribution is not essential for this work, but we include it for completeness as
it does not add much complexity to the theory or calculations. The ions are modeled
as Gaussian smeared charges inside a spherical solute cavity, where the solvent is
excluded. The use of smeared charges is for convenience, to avoid the diverging
self-energy. The cavities are modeled using a spherically symmetric cavity function
[56–58]. The ions are treated as fixed external charges to the solvent in this field
theory. The microscopic charge density in the system is given by the contributions
from the two ions and the solvent dipoles.

d̂(r) = d̂2 (r) + d̂or(r) + d̂el(r) (6.9)

Here, d̂2 (r) = d̂1(r) + d̂2(r) is the total charge density of the ions, modeled as
Gaussian smeared charges,
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where I8 are the ion valencies, 18 are the radii of the charge spread, R8 are the ion
positions, and 4 is the elementary charge. d̂or(r) and d̂el(r) are the charge densities
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due to the permanent and induced dipoles of the solvent, respectively. The charge
density due to the orientational and electronic contributions of the solvent can be
expressed in terms of their dipole moments as

d̂or(r) = −
#∑
8=1

`̀̀8 · ∇X(r − r8) (6.11)

d̂el(r) = −
#∑
8=1

???8 · ∇X(r − r8) (6.12)

where # is the number of solvent molecules, `̀̀8 is the permanent dipole moment on
molecule 8, and ???8 is the induced dipole moment on molecule 8. In the energy, we
only consider the Coulomb interactions between all charges, and a harmonic penalty
associated with the induced dipoles
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where U is the polarizability. We work in the grand canonical ensemble with
volume V, temperature T, and solvent chemical potential `. We assume the system
is incompressible. The grand canonical partition function is given by

Ξ =

∞∑
#=0

4V`#

#!

(
#∏
8=1

1
[

∫
3r8

∫
3`̀̀8

∫
3???8

)
X[E=̂(r) + i0(r) − 1]4−V* (6.14)

where =̂ is the solvent density operator, i0 is the volume fraction occupied by
the ions, and [ is a factor similar to the cube of the thermal wavelength, which
has no thermodynamic consequence. The solvent density operator is given by
=̂(r) = ∑#

8=1 X(r − r8). The local volume fraction due to the two ions, is modeled by
the superposition of two cavity functions,

i0(r) = 1 + 1
2

tanh
−
|r − R1 | − <

f1
2

2

 +
1
2

tanh
−
|r − R2 | − <

f2
2

2

 (6.15)

where f8 are the diameters of the two ions, < is a positive parameter for shifting
the boundary of the cavity, and 2 is a positive parameter for tuning the width of the
interface between the ion and the solvent. In practice, any reasonable choice of <
and 2 will yield the same qualitative results. We choose 2 = 0.01 for a rapid but
continuous decay near the ion boundary, and we choose < = 0.95 such that the ion
volume fraction practically decays to zero by f8.
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We take advantage of the Fourier representation of a delta functional to introduce
the incompressibility field F

X[E=̂(r) + i0(r) − 1] =
∫
DF exp

{
8

∫
3rF [E=̂(r) + i0(r) − 1]

}
(6.16)

To turn the partition function into a field theory, we introduce coarse-grained density
fields dor and del through the identities

1 =
∫
DdorX[dor(r) − d̂or(r)]

=

∫
Ddor

∫
DFor exp

{
8

∫
3rFor [dor(r) − d̂or(r)]

}
(6.17)

1 =
∫
DdelX[del(r) − d̂el(r)]

=

∫
Ddel

∫
DFel exp

{
8

∫
3rFel [del(r) − d̂el(r)]

}
(6.18)

where For and Fel are auxiliary fields introduced through the Fourier representa-
tion of the delta functional. In eqs (6.16)-(6.18), the notation

∫
D[· · · ] denotes

functional integration. Applying these identities to the partition function results in

Ξ =

∫
DF

∫
DFor

∫
DFel

∫
Ddor

∫
Ddel

∞∑
#=0

4V`#

#!

×
#∏
8=1

1
[

∫
3r8

∫
3`̀̀8

∫
3???8 exp

[
− V

2

∫
3r

∫
3r′

d(r)d(r′)
4cY0 |r − r′|

−
#∑
8=1

V |???8 |2
2U

+ 8
∫

3rFor(r) [dor(r) − d̂or(r)]

+ 8
∫

3rFel(r) [del(r) − d̂el(r)]

+ 8
∫

3rF(r) [E=̂(r) + i0(r) − 1]
]

(6.19)

where d(r) = d̂2 (r) + dor(r) + del(r). Through these identity transformations, the
particle–particle interactions are turned into particles interacting with fluctuating
fields. The particle degrees of freedom can be easily integrated out to yield the
single-particle partition function, & [F, For, Fel], given by,

& =
4c ¯̀2

[

(
2cU
V

)3/2 ∫
3r

{
sin ( ¯̀ |∇For |)

¯̀ |∇For |
exp

[
8EF(r) − U

2V
|∇Fel(r) |2

]}
(6.20)
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The transformed grand canonical partition function is now written as

Ξ =

∫
DF

∫
DFor

∫
DFel

∫
Ddor

∫
Ddel 4−V� (6.21)

where the Hamiltonian, � = � [F, For, Fel, dor, del], is a functional of the field
variables only, and is given by

V� = 8

∫
3rF(r) [1 − i0(r)] − 8

∫
3rFor(r)dor(r) − 8

∫
3rFel(r)del(r)

+ V
2

∫
3r

∫
3r′

d(r)d(r′)
4cY0 |r − r′|

− 4V`& [F, For, Fel] (6.22)

The integrals in the partition function cannot be evaluated in closed form, so we
use the saddle-point configuration as an approximation to the full partition function.
The saddle point is found by extremizing the Hamiltonian with respect to all the
field variables [59]. The grand free energy is given by VΩ = − lnΞ ≈ − lnΞ∗,
where Ξ∗ is the saddle-point contribution to the partition function. Extremizing
the free energy results in a set of self-consistent equations that can be solved to
find the equilibrium field configurations, and therefore observables such as the free
energy and the electric field. Since the saddle-points for the F fields lie on the
imaginary axis, to avoid the use of imaginary numbers, we define real potentials
VD = −8F and Vq = 8For = 8Fel (For = Fel at equilibrium). The set of self-
consistent equations obtained from extremizing Ω with respect to F, dor (and del),
For, and Fel respectively, is given by

1 − i0(r) = 4−VED(r)+
VU

2 |∇q(r) |
2 sinh (V ¯̀ |∇q(r) |)

V ¯̀ |∇q(r) | (6.23)

−Y0∇ · [(1 + jor(r) + jel(r))∇q(r)] = d̂2 (r) (6.24)

jor(r) =
V ¯̀2

EY0
4−VED(r)+

VU

2 |∇q(r) |
2
� (V ¯̀ |∇q(r) |) (6.25)

jel(r) =
U

EY0
[1 − i0(r)] (6.26)

where � (G) = [1/tanh(G) − 1/G] sinh(G)/G2. Additionally, we have defined the
orientational electric susceptibility, jor, and the electronic electric susceptibility,
jel. For convenience, The Poisson equation, eq (6.24), is written in a way that
separates the ion charge density from the bound solvent charge density (reflected in
jor and jel). Equation (6.24) can be rewritten as

∇ · D = d̂2 (r) (6.27)
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whereD = −Y0 [1+jor(r)+jel(r)]∇q(r) is the electric displacement. Conveniently,
the electric displacement can be determined solely from the location of the free
charges. We simplify the solution to eq (6.27) by assuming that the total electric
displacement is the superposition of the electric displacement due to each of the
ions. (The superposition principle is used as an approximation to avoid solving the
full Poisson equation. In general it does not hold exactly for nonlinear dielectrics.
The approximation becomes less accurate for strong interactions, and in particular
when the ions are at close approach[50].) The displacement at a distance A8 from an
isolated Gaussian smeared charge 8 is

D8 (r) =
4I8

4cA2
8

[
erf

(√
c

2
A8

18

)
−
√

2
A8

18
exp

(
−
cA2
8

212
8

)]
r̂8 (6.28)

where r8 = r − R8, and r̂8 is the unit vector in the direction of r8. The equilibrium
electric field is found by iterating D(r) = −Y(r)∇q(r) using eqs (6.23), (6.25) and
(6.26) to calculate the dielectric function Y(r) = Y0 [1 + jor(r) + jel(r)]. For all
self-consistent calculations, we iterate until the maximum difference in the electric
field between two consecutive steps is less than 10−13.

The equilibrium free energy can be simplified by plugging the saddle-point equations
into the Hamiltonian,

Ω ( d̂2, i0, |∇q |, jor, jel) =
∫

3r

{
1
2
Y0(1 + 2jor(r) + jel(r)) |∇q(r) |2

− E=(r)
VE

ln

[
sinh (V ¯̀ |∇q(r) |)

V ¯̀ |∇q(r) |

]
− E=(r)

VE
[1 − ln (E=(r))]

}
(6.29)

where E=(r) = 1 − i0(r) is the coarse-grained solvent volume fraction. The system
is rotationally-symmetric about the axis connecting the ions, allowing the integral
in eq (6.29) to be calculated in cylindrical coordinates with variation restricted to
the A, I-plane. We use a large enough domain to avoid cutting off the long-range tail
of the electric field from the ions.

When calculating the PMF, the quantity of interest is the difference between the
free energy at separation A and that at infinite separation. We call this difference
ΔΩ = Ω(A) − Ω(∞). The entropic contribution to ΔΩ can be calculated with the
derivative

Δ( = −
(
mΔΩ

m)

)
`,+

(6.30)

Note that the change in grand free energy is equal to the change in Helmholtz free
energy for this process as the chemical potential and particle number do not change
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when bringing the ions together at a fixed ) and + due to the incompressibility
constraint. Mathematically, we can write the following

ΔΩ = * − )( − `# − [*∞ − )(∞ − (`#)∞]
= (* −*∞) − ) (( − (∞)
= Δ� (6.31)

where the subscript∞ denotes a quantity at infinite ion separation. We then decom-
pose ΔΩ into entropic and energetic contributions by calculating Δ( with eq (6.30)
and internal energy with Δ* = Δ� + )Δ( = ΔΩ + )Δ(. We give examples of the
profiles for the ion density, the charge density, and the dielectric displacement in
Figure 6.2.

Figure 6.2: Example plot of ion mass density (left), ion charge density (middle)
and electric displacement (right). The plots represent a slice in the x,z-plane. Note
that the simulated domain is cylindrical and rotationally symmetric around the axis
connecting the ions.

6.4 Results and Discussion
We start with a discussion of the behavior of the PMF for bringing two oppositely-
charged monovalent ions together in a dipolar solvent; this is shown in Figure 6.3.
Both panels show that increasing the dipole moment of the solvent decreases the
attraction between the two ions. This behavior can be easily understood as due
to the increase in the effective dielectric constant with the dipole moment. The
diverging behavior below A = 1f in Figure 6.3b is due to the diverging LJ potential
from simulation. Above A = 1f, we see close agreement between the DSCFT
and simulation results at low to moderate dipole moment; a direct comparison is
given in Figure 6.9 in the Appendix. At higher dipole moments (insets of Figure
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6.3), oscillations appear in the PMFs for simulations, indicating that there are
strong solvation shells of the dipolar solvent around the ions, with each maximum
corresponding to the energy barrier for breaking a solvation shell [60]. Interestingly,
for large dipole moments, even DSCFT captures (though to a lesser degree) this
nonmonotonic behavior, despite it only accounting for the solvent excluded volume
through the incompressibility constraint without explicitly considering the packing
of the solvent molecules.
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Figure 6.3: PMFs for various dipole moments calculated from (a) DSCFT and (b)
molecular dynamics simulation with f = 3Å, ) = 300K, @1 = −@2 = 4, E = 30Å3.
The insets of both panels show PMFs for larger dipole moments. For reference,
¯̀ = 1.85D corresponds to the gas-phase dipole moment of water.

For large ion separations, the PMF from both DSCFT and simulation reproduces the
expected Coulomb behavior, Δ� (A) = −42/4cYA, where Y is the effective dielectric
constant for the given dipole moment. Table S1 gives the effective dielectric con-
stants obtained by fitting the long-range part of the PMF to a Coulomb potential.
The dielectric constants so obtained from the simulation are consistent with litera-
ture values for small dipole moment [61–64]. The effective bulk dielectric constant
from DSCFT is equivalent to that of Debye [29, 48] (YA = 1 + V ¯̀2

3EY0
= 1 + b). The

effective bulk dielectric constant from MD simulations is higher than from DSCFT,
since the simulations inherently include the reaction field due to dipole–dipole cor-
relations[30, 63]. It is possible to include the reaction field effect in the field theory,
as was done by Zhuang and Wang [48, 65]; however, this would add significant
complexity and would not affect the qualitative behavior observed in this study.

We decompose the PMF into its energetic and entropic contributions in Figure 6.4.
From the MD simulation, the entropic contribution is calculated using −)Δ( =
Δ� − Δ*, where Δ* is the potential energy calculated from the pair potentials (the
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Figure 6.4: PMFs decomposed into their energetic and entropic contributions with
solvent dipoles of (a,b) ¯̀ = 0D and (c,d) ¯̀ = 1D. The PMFs are calculated from
DSCFT in (a,c) and MD simulation in (b,d). Other parameters are the same as in
Figure 6.3.

kinetic energy is constant at any given temperature and thus does not contribute
to the energy change). From DSCFT, the entropy is calculated via eq (6.30).
Since it is difficult to calculate these differences with respect to infinite separation in
simulation, we choose a reference point of A = 8f (the largest simulated separation).
The DSCFT is not limited by this constraint but we use the same reference point for
consistency.

In Figure 6.4a,b, we see that there is essentially no entropic contribution to the PMF
when there is no solvent dipole, indicating that the PMF is only made up of the
electrostatic interaction energy. When the solvent does have a permanent dipole, as
in Figure 6.4c,d, we see that the PMF is dominated by the entropic contribution. The
energetic contribution even becomes unfavorable, which was similarly observed by
Chen and Wang [26]. The shape and magnitude of the free energy, internal energy,
and entropy are similar to those observed in previous simulation and theoretical
studies that focused on ions in water [27, 28]. As we discuss later, this significant
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entropy increase comes from the diminished polarization of the solvent around the
ions. The unfavorable energetic contribution comes from the fact that ion–dipole
interactions are weakened when the ions are close. Physically, the two ions form an
effective dipole upon close-contact, and dipole–dipole interactions are weaker than
ion–dipole interactions. We provide similar plots for additional values for the dipole
moment in Figure 6.10 in the Appendix.
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Figure 6.5: Ratio of PMF due to entropy for f = 3Å, @1 = −@2 = 4 and various
b =

V ¯̀2

3EY0
calculated via (a) DSCFT and (b) molecular dynamics.

For clarity, we explicitly calculate the entropic contribution as a ratio to the total
free energy difference in Figure 6.5 for different values of the dimensionless dipole
parameter b. For b = 1, the entropic and energetic contributions are equal at
long range for DSCFT. This is exactly what is predicted when using the Debye
approximation for the dielectric constant in the Coulomb potential, as shown in eqs
(6.2)–(6.4). Similarly, the MD simulations predict a crossover from energetically
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to entropically dominated, but the crossover is actually below b = 1 because of
the stronger dipole–dipole correlations discussed earlier. However, determining the
exact crossover from simulation is computationally demanding owing to both the
required system size and sampling of the potential energy, particularly at large b,
so we mostly focus on the qualitative features. Importantly, Figure 6.5 shows that
the crossover from energy to entropy driven is obtained by increasing the dipole
moment or decreasing the temperature.
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Figure 6.6: Free energy, internal energy, and entropy change from infinite separation
to A = 5f versus b = V ¯̀2

3EY0
for f = 3Å and @1 = −@2 = 4. Calculations were done

using DSCFT.

In the Debye theory, b is a universal parameter that quantifies the importance of
polarization in the system. It is of interest to see how the electrostatic entropy
contribution changes with this parameter. To this end, we consider the various
components of the PMF in the DSCFT at a fixed distance A = 5f, where the symbol
Δ̄ denotes the difference from the infinite separation. The result is shown in Figure
6.6. We see that for low b (weak dipoles or high temperature) the entropy change
is small. Near b = 1 there is the crossover from energy to entropy dominance,
consistent with the Debye analysis and the results of Figure 6.5. In the high b
regime (strong dipoles or low temperature), the process is practically fully entropy
driven. The free energy and entropy change are small in the high b regime due
to the large effective dielectric constant. At the mean-field level, the same curves
are observed regardless of whether the temperature or solvent dipole is changed,
indicating that b is a universal parameter for determining the entropic contribution
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to the free energy. This holds true as long as the ions are not too close together.

Figure 6.7: Solvent polarization at the midplane of the ions for both theory (top
row) and simulation (bottom row). Spatial positions are in units of f. The ions are
at separations of A = 5f, 3f and 1f going from left to right. Both ions have size
f = 3Å and charges @1 = −@2 = 4.

To visualize the decrease in the orientational order when the two oppositely charged
ions approach each other, Figure 6.7 shows a heatmap of the local polarization
induced by oppositely-charged ions from both theory and simulation. One could
also plot the dielectric function, YA (r), as was done in previous work using lattice
Monte Carlo simulations [66]. We have provided an example of this type of plot
calculated using the DSCFT (See Figure 6.11 in the Appendix). The conclusions
drawn from both types of plots are the same; however, we believe the plot of local
polarization provides a clearer picture of solvent release. In DSCFT the measure of
local orientational polarization is taken to be the orientational susceptibility times
the electric field, or |% | = jor |∇q |. Note that far away from the ions, the orientational
polarization is zero due to the random orientation of the dipoles. In the simulation,
the measure is given by the magnitude of the local, time-averaged solvent dipole,
|〈`̀̀ (r)〉| (simulation details are in the Appendix). Both rows of Figure 6.7 are
normalized by each row’s maximum value to emphasize the qualitative features.
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The qualitative difference between the simulation and theory comes from the strong
ordering and solvation shells present in the simulation, of which the first two are
clearly visible in Figure 6.7b. This strong spatial ordering is not captured in the
DSCFT, and therefore the polarization is continuous and decreases with distances
away from the ions. The shrinking of the cloud surrounding the ions indicates that
the polarization around the ions weakens as the ions move closer together. The
total polarization due to two separated ions is greater than that of the paired ions,
meaning that a portion of the solvent is released to freely translate and rotate upon
bringing the ions together. This solvent release is responsible for the large entropy
increase, which dominates the ion interactions at a sufficiently large dipole moment
or low temperature.
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Figure 6.8: Normalized excess polarization versus the ion separation for various
dipole moments ¯̀, near the energy/entropy crossover, with f = 3Å and @1 =
−@2 = 4. Here, the excess polarization is normalized by the infinite separation
excess polarization for ¯̀ = 1.0D. Calculations were done using (a) DSCFT and (b)
simulation.

While the visual representation is helpful it does not provide a quantitative measure
of the change in polarization. Therefore, in Figure 6.8 we quantify the change in
excess polarization of the solvent when bringing the ions together. The excess polar-
ization calculated fromDSCFT is defined asΓDSCFT =

∫
3r jor(r) |∇q(r) |, which is

the local orientational polarization of the solvent integrated over the system volume.
From MD simulations, we measure the excess polarization by integrating the time-
averaged dipole moment with the local solvent density, ΓMD =

∫
3r|〈`̀̀ (r)〉|dB (r).

To highlight the dependence of the magnitude of the excess on the dipole moment,
we normalize each panel by the same value. We opt to use the excess polarization
at infinite separation from the largest dipole moment, ¯̀ = 1D.

From theory and simulation, the excess polarization decreases as the ion separation
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decreases. The magnitude of the decrease becomes more substantial with increasing
dipole strength. This supports the idea that the solvent dipoles are released as the ions
come together, which is responsible for the significant increase in the system entropy.
We see that the solvent reorganization is significant even at large separations, where
theDSCFT has not plateaued even at A = 25f. Interestingly, in DSCFT, the curves at
different dipolemoments collapse onto a single curve when each curve is normalized
by its excess polarization at infinite separation (see Figure 6.12 in the Appendix).
The collapse of the curves indicates that the magnitude of the decrease in solvent
polarization is what causes the crossover from energy- to entropy-driven, rather than
a new physical process.

6.5 Conclusions
For two monovalent ions in a dipolar fluid, the solvent plays a major role in the
interaction of the ions. At the mean-field level, the interaction is entropy dominated
when b = V ¯̀2

3EY0
> 1, as is the case of water at room temperature. The physical origin

of the entropy is the reorganization of solvent dipoles as the two ions approach one
another. This entropy is purely electrostatic in nature, arising from the polarization
due to the electric field generated by the ions. We emphasize that this entropy and the
solvent reorganization will occur in any polar solvent. In implicit solvent models, the
solvent contribution to the entropymay be buried in effective interaction parameters,
requiring careful treatment to calculate the entropy of the system. For weakly or
moderately charged systems, using the temperature dependence of the bulk dielectric
constant may be sufficient to extract the entropic contribution. Such an approachwill
likely become inadequate in systems with stronger correlations[67] (i.e. packing
effects, multivalent ions, polyelectrolytes, etc.) or nonaqueous solvents[68], where
explicitly considering the solvent becomes necessary. Even in the model systems
considered in thiswork, for large dipole strengths, the effective interaction (PMF) can
no longer be described as a simple Coulombic potential with an effective dielectric
constant at short distances.

The implications of these conclusions are important since assembly in charged
systems is ubiquitous[69–72]. For instance, in drug discovery, researchers of-
ten discuss enthalpy-entropy compensation, where a strong enthalpic interaction
between two species (i.e. protein–ligand) invariably comes with an equivalent en-
tropic compensation. As reemphasized by Dragan et al. [73], a significant part of
this entropy likely comes from the solvent release. Emphasizing solvation rather
than high-affinity ligands could lead to new design strategies in drug discovery.
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On the simulation side, implicit solvent models are growing increasingly complex,
including many machine-learned models [74]. These models are excellent in their
ability to reproduce thermodynamic quantities like the PMF.We hope that our study
motivates future efforts toward understanding the components of the PMF, such as
the entropic vs. energetic contributions, and the specific molecular mechanisms that
are responsible for these contributions.

6.6 Appendix
Dielectric Constants
Table 6.1: Dielectric constants extracted from fitting long-range PMFs to Coulomb
potential. From MD, extracting the dielectric constant from the PMF above 1D is
not reliable due to the small oscillations in the PMF arising from packing effects.
Other parameters are f = 3Å, ) = 300K, @1 = −@2 = 4, E = 30Å3.

Dipole Moment (D) YA (DSCFT) YA (MD)
0.00 1.00 1.00
0.25 1.21 1.32
0.40 1.54 2.25
0.50 1.84 2.54
0.75 2.89 4.55
1.00 4.37 9.62
1.50 8.57 –
1.85 12.52 –
2.00 14.46 –

Comparison of PMFs for DSCFT and MD Simulations
Here, we provide a direct comparison of the PMFs computed using ABF with the
Stockmayer fluid model and the modified DSCFT theory. For low and moderate
dipole moments, we find remarkable agreement between the curves, with deviations
becoming large at high dipole moments. Despite the disagreement, we do note that
the mean-field theory can still predict a maximum in the PMF just beyond A = 1f.
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Figure 6.9: PMFs for various dipole moments with f = 3Å, ) = 300K, @1 =

−@2 = 4 and E = 30Å3. The solid and dashed lines are results from MD and
DSCFT, respectively. The inset zooms in on higher dipole moments to highlight the
strong oscillations.

Additional Plots of Entropy versus Energy Contributions
Here, we give additional PMFs and their corresponding enthalpic and entropic
contributions. The PMFs computed fromMD simulation are smooth, but the energy
and entropy are noisy. This is a result of the large energy fluctuations combined
with the small magnitude of the PMF as the dipole increases. Note that for high
dipole moments (and therefore high dielectric constants), both MD simulation and
theory predict that the energy increases upon association. In other words, when
ion-dipole interactions are very strong, freeing dipoles increases the energy, but also
significantly increases the entropy. Thus, association can still be favorable even
though the internal energy increases.
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Figure 6.10: PMFs decomposed into their energetic and entropic contributions for
f = 3Å, ) = 300K, @1 = −@2 = 4, E = 30Å3 and various b = V ¯̀2

3EY0
. The PMFs on

the left are calculated via DSCFT and on the right via MD.

Simulation Details for Fixed Ion Separation
To analyze the solvent orientations around two ions at a given separation, we use a
slightly different simulation routine from that for calculating the PMFs. For a fixed
ion separation, the ion position does not update with each timestep. To accomplish
this, the thermostat is only applied to the solvent particles. Each simulation consists
of 4000 solvent particles and two ions of opposite charge with parameters described
in the main text. The simulation box size is 15f × 15f × 19.69f with the longest
dimension in the direction of the ion separation. Each system was equilibrated for
5 × 106 timesteps (XC = 0.005g) and production of 107 timesteps. To calculate
|〈`̀̀ (r)〉|, space is discretized into voxels in which x-,y-,and z-components of the
dipole moment are sampled and averaged every 500 timesteps during the production
run.
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Example Plots of Dielectric Function from DSCFT
Within the DSCFT theory, the spatially varying dielectric function is a natural
output. It is computed as nA (r) = 1 + jor(r) + jel. The orientational and electronic
susceptibility are both functions of the local electric field. As expected, we find
that the dielectric function is 1 inside the ions since no solvent (and therefore no
dipoles) can penetrate the ions. Near the ion radius, the dielectric function smoothly
increases up to the bulk value, which is identical to the Debye dielectric constant
(nA = 1 + b) since DSCFT is a mean-field theory.

Figure 6.11: Dielectric function, YA (r) at the midplane of the ions, calculated from
DSCFT. Spatial positions are in units of f. The solvent has the gas-phase dipole
moment of water, ¯̀ = 1.85D. The ions are at separations of A = 5f, 3f and 1f
going from left to right. Both ions have size f = 3Å and charges @1 = −@2 = 4.

Additional Plots of Normalized Excess Polarization
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Figure 6.12: Normalized excess polarization versus the ion separation for various
dipole moments ¯̀ with f = 3Å and @1 = −@2 = 4. Here, the excess polarization
is normalized by the infinite separation excess polarization for each dipole moment.
Calculations were done using (a) DSCFT and (b) simulation. We note that when
normalized in this way the curves collapse together for DSCFT.
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C h a p t e r 7

INTERFACIAL BEHAVIOR OF ASYMMETRIC POLAR FLUIDS

We investigate the properties of the liquid–vapor interface in the shifted Stockmayer
fluid using molecular dynamics simulations in the canonical ensemble. We study
the role of the dipole moment strength and the degree of asymmetry on equilibrium
interfacial characteristics, including density profiles, polar order, nematic order,
interfacial polarization, electric field, and electrostatic potential. In addition, we
compute angular distribution functions across the interface to gain insight into how
the dipole shift affects the molecular orientation. We find that the shift signifi-
cantly effects angular distribution functions by altering the polar order while leaving
the nematic order relatively unaffected, in comparison to the reference symmetric
Stockmayer fluid. We find that these results are consistently explained using an
image-dipole construction that has been previously applied to symmetric Stock-
mayer fluids but has never been extended to the shifted model. We find remarkable
agreement between the simple theory and the simulations in the qualitative shape
of the distribution functions for both the liquid and vapor phases in proximity to the
interface. Unexpectedly, the spontaneous polarization at the interface, and therefore
the generated electric field, changes sign as the dipole moment strength increases.
This also leads to an inversion of the sign of the potential difference across the
interface.

This chapter includes content from our previously published article:

Varner, S.; Walker, P. J.; Venkatachalam, A.; Zhuang, B.; Wang, Z.-G. Stockmayer
Fluid with a Shifted Dipole: Interfacial Behavior, 2025, DOI: 10.48550/arXiv.
2509.05523

I am very thankful for analysis code provided by Dr. Benjamin Ye that was crucial
for efficiently reading in LAMMPS trajectories containing dipole moments.

7.1 Introduction
It has been well documented that reaction rates can increase by several orders of
magnitude in systems with confined volumes and large interfacial area, such as
microemulsions [2–10]. Interfaces between water and other phases, including air
and oil, are known to promote certain reactions through a process often referred
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to as “on-water” catalysis [4]. This phenomenon is especially important in atmo-
spheric chemistry, where abundant microdroplets can catalyze many reactions of
atmospheric relevance [11–13]. Despite their significance, the molecular mech-
anisms responsible for this unique form of catalysis remain elusive and actively
debated [14]. Explanations for the enhanced reactivity at water interfaces include
evaporation-induced reactant enrichment [15], pH changes [16], partial solvation
environments [3, 17], spatially varying dielectric properties [18], and orientational
changes near the interface driven by entropic or enthalpic effects [19].

Perhaps the most compelling physical phenomenon that has been thought to drive
interfacial chemistry is the presence of a strong electric field. Namely, if water
(or another polar solvent) shows a preferential orientation at the interface, then an
electric field will be spontaneously generated that can potentially stretch reactive
bonds and lower the activation barrier [20–22]. In fact, enzymes catalyze reactions
in a similar manner, by orienting reactant molecules such that reactive bonds align
with strong directional electric fields inside the active site [20, 23–29]. In the case of
the air–water interface, vibrational sum frequency generation (vSFG) measurements
have revealed that water preferentially orients with a "dangling" O-H bond at the sur-
face [30–33], supported underneath by a 2-dimensional hydrogen bond network [34,
35]. These dangling O-H bonds can serve as probes for the local electric field. The
Stark shifts measured in Infrared Photodissociation (IRPD) spectroscopy have re-
vealed a significant electric field at the air–water interface [36]. Recently the electric
field at an air-oil interface was quantified via Stimulated Raman excited flourescence
(SREF) microscopy, where a magnitude of 10MV/cm was reported. This is also
in agreement with electric fields recently computed from ReaxFF/C-GeM molec-
ular dynamics (MD) simulations [37], while ab initio calculations predicted much
stronger fields on the order of hundreds of MV/cm [38]. Nevertheless, these results
all indicate the presence of electric fields strong enough to lower activation barriers
or drive bond breaking.

For good reason, most studies of interfacial electric fields have focused on air–water
and oil–water systems because of their atmospheric and biological relevance. Water
has many distinctive features, including high polarity, autoionization, and a strong
hydrogen bonding network [39–41]. The combination of these effects makes it
difficult to determine the true origin of the strong electric fields observed at the
water interface. In addition, results obtained specifically for water cannot be easily
applied to other liquids that do not share its special bulk properties. To better identify
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the general physical factors that can generate interfacial polarization, coarse-grained
models are especially useful.

The Stockmayer fluid[42, 43] (SF) is by far the most studied model for general
polar fluids. In this model, molecules are represented as Lennard-Jones spheres
with a point dipole located at the center. A large body of work has explored
the properties of the SF model and its connections to real fluids. Research has
examined ion solvation energy and dynamics [44–46], dielectric properties [47–
49], ferroelectric transitions [50–53], and phase equilibria [54–56]. The liquid–
vapor interface of the SF model has also been the subject of extensive theoretical
and simulation studies. These works show that spherical particles with permanent
dipoles adopt preferential orientations across the interface that are largely determined
by strong dipolar interactions. Classical density functional theory (cDFT) and
integral equation theory predict that dipoles align parallel to the interface on the
liquid side and perpendicular on the vapor side [57–59]. MD simulations of the
SF model support the parallel orientation within the liquid but generally do not
reproduce the perpendicular orientation in the vapor [56, 60–62]. However, because
of the spherical symmetry of the molecules, the SF model cannot produce a net
electric field at the interface (in the absence of a ferroelectric transition).

We hypothesize that introducing slight molecular asymmetry into the SF model is
sufficient to break the symmetry at the interface and generate an electric field. In
real molecules, the geometric structure does not always coincide with the charge
distribution, which can shift the effective dipole toward one side of the molecule.
The simplest way to capture this effect is with a spherical particle that carries a
point dipole displaced by a distance 3 from its geometric center. This extension
of the SF model is known as the shifted Stockmayer fluid (sSF) [63]. Although
still highly coarse-grained, the sSF model is more realistic than the SF model, since
nearly all real dipolar molecules have non-centered dipoles. The earliest use of
the sSF model we found in the literature is by Kusaka et al., who applied it to
study the sign effect in ion-induced water-droplet nucleation in the atmosphere [64].
Subsequently, the model received little attention until Langenbach introduced the
Co-Oriented Fluid Functional Equation for Electrostatic interactions (COFFEE) in
2017 [63]. This perturbative approach enables accurate predictions of the properties
of homogeneous liquids and vapors for both SF and sSF models at a fraction of the
cost of molecular dynamics simulations, though it is restricted to certain dipole
strengths and shifts. However, because it is formulated for homogeneous fluids,



191

COFFEE cannot be applied directly to interfacial properties such as density and
electric field profiles. To complement and validate this theory, Marx, Kohns,
and Langenbach have performed extensive MD and Monte Carlo simulations to
characterize the liquid–vapor equilibrium and dielectric behavior of the SF and sSF
models [54, 55, 65]. To the best of our knowledge, the properties of the liquid–vapor
interface for the sSF model have yet to be studied.

In this study, we investigate whether a small shift of the dipole from the molecular
center is sufficient to drive interfacial polarization and generate ameasurable electric
field. To address this question, we perform MD simulations of the liquid–vapor in-
terface using the sSF model. Our analysis uncovers the mechanisms of orientational
polarization at the interface and quantifies the spontaneously generated local electric
field across a wide range of dipole strengths and shifts. To interpret these results,
we employ a simple image dipole framework that clarifies the origin of the angular
distribution functions in the liquid and vapor regions adjacent to the interface. We
start by presenting the simulation setup and methodology for studying the interface
in the next section.

7.2 Shifted Stockmayer Simulation Model
In this section, we outline the simulation setup and methodology for analyzing the
properties of the liquid–vapor interface for the shifted Stockmayer fluid model.

Molecular Dynamics
To study the interfacial structure in asymmetric polar fluids, we utilize a modified
version of the Stockmayer fluid (SF) model sometimes referred to as the shifted
Stockmayer fluid (sSF) [63]. In this model, molecules are represented by hard
spherical particles that contain a point-dipole. In the SF, the point dipole is located
at the center of the hard sphere, whereas in the sSF the dipole can be shifted off the
center. A schematic of a particle in the sSF model is provided in Figure 7.1.

The hard-sphere and van derWaals interactions are captured using the 12-6 Lennard-
Jones (LJ) potential.

*LJ(A8 9 ) =


4n

[(
f
A8 9

)12
−

(
f
A8 9

)6
]
+ ( , if A8 9 ≤ A2

0 , if A8 9 > A2 .
(7.1)

Here, n is the interaction strength, f is the particle size, and A8 9 = | |r8 9 | | is the
distance between particles 8 and 9 . We utilize the truncated and shifted LJ potential
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Figure 7.1: Schematic of shifted Stockmayer particle where f is the particle di-
ameter, 3 is the distance between the particle center and point dipole, and ` is the
permanent dipole strength.

with a cutoff of A2 = 2.5f to decrease the computational cost while still allowing
for a liquid–vapor split. ( then provides the shift necessary such that *LJ(A2) = 0.
We note that this choice is inconsequential since we only require the van der Waals
interaction to naturally create the interface within our simulation and not to provide
any quantitative description or comparison to previous simulations or real fluids.
Also note that the original work by Langenbach and co-workers used the full LJ
potential. As such, quantitative differences are to be expected. The dipole–dipole
interaction potential is given by,

*dipole(`̀̀8, `̀̀ 9 , r8 9 ) =
`̀̀8 · `̀̀ 9
A3
8 9

−
(`̀̀8 · r8 9 ) (`̀̀ 9 · r8 9 )

A5
8 9

, (7.2)

where `̀̀8 is the dipole moment vector of particle 8, and r8 9 is the displacement vector
between dipoles 8 and 9 [66]. To represent the sSF model, we separate the LJ and
dipole potential between an LJ (real) and dipole (ghost) particle. The location of
the dipole particle is offset by a distance 3 from the center of the LJ particle. Thus,
the location of the dipole particle can be written with respect to the LJ particle
coordinate according to r′

8
= r8 + ˆ̀̀̀ 83. Note that this also requires that the dipole

moment will always be pointing away from the center of the LJ particle, parallel
to the bond vector between the two particles. As such, the LJ+dipole molecule
must be rigid, with no internal translation or rotation. To enforce this constraint
within our MD simulations, we utilize the rigid small-molecule NVT integrator that
is freely available in LAMMPS [67]. To compute the long-ranged dipole–dipole
interactions, we utilize the particle-particle particle-mesh (PPPM) solver [68, 69].
We adjust the real-space cutoff for each simulation independently to maximize the
efficiency. The cutoff is typically between 8 − 10f.

To generate a natural interface, we employ a strategy commonly used for studying
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Figure 7.2: Snapshot of liquid–vapor equilibrium simulation using the sSF model.
Blue spheres represent the Lennard–Jones particles and yellow arrows represent the
point dipoles which are interior to the Lennard-Jones particles. Visualizations are
made in OVITO [70].

liquid–vapor equilibrium. We simulate 3000 molecules total (i.e., 3000 LJ particles
and 3000 dipoles) in a box of dimensions !G , !H, !I = 10f, 10f, 100f. The
extended I-dimension allows for a liquid slab located in the center of the box that is
approximately 40 − 50f in length, with vapor on either side. This style of system
setup has been widely used for studying properties of liquid–vapor and liquid-liquid
interfaces with both classical and ab-initio MD simulations [32, 33, 38, 71–84], and
has also been used to study the liquid–vapor equilibrium of the regular Stockmayer
fluid [56, 60–62, 85, 86]. We provide an example snapshot from our slab simulations
in Figure 7.2. We assign a mass of < = 1 to the LJ particle and < = 0.001 to the
dipole particle. In addition, we turn off all LJ interactions involving the point dipole
particles. Unless otherwise stated, we set :� = 1, ) = 1, f = 1, and n = 1. Within
a given simulation, all dipole particles have the same dipole moment magnitude,
` = ‖-8‖. We use the rigid/nvt/small integrator in LAMMPS with a timestep
of 0.005g and a damping parameter of 0.5g, where g =

√
<f2/n [67].

We create a randomized initial configuration using Packmol [87]. Then, we create
the liquid slab in the center of the simulation box by running a short simulation with
a dragging force applied in the I-direction that is antisymmetric about I = !I/2.
Once the liquid slab is stabilized, we turn off the dragging force and allow the liquid–
vapor equilibrium to develop for 5× 104 timesteps. Following the equilibration run,
we perform a production run for 4 × 106 timesteps, where we output the particle
coordinates and dipole orientations every 100 timesteps for analysis.

Finally, during analysis we use the instantaneous interface [88] position to shift the
particle coordinates, as described in the following section. We believe this method
is more robust than zeroing the system center of mass, as the presence of more
vapor particles on one side of the liquid than the other can significantly affect the
interface location. All trajectory analysis was performed using custom analysis
modules implemented in the open-source MDCraft software [89].
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Instantaneous Interface
Our main focus of this work is to analyze the interfacial properties of the sSF. Thus,
it behooves us to utilize a rigorous definition of the interface, which can undulate
and drift throughout the course of our simulations. By computing the location of
the interface at each simulation frame, we can shift the coordinates during analysis
to maintain a consistent frame for computing spatially varying profiles. We define
the location of the interface according to the instantaneous interface, as defined
by Willard and Chandler [88, 90]. Specifically, we center Gaussians of form
5 (A) = (2c[2)−3/24−A

2/2[2 at the location of each LJ particle. We sum all of the
Gaussians, accounting for periodic boundary conditions, to generate a continuous
three-dimensional density field. We then define the left and right interfaces by
computing the two density iso-surfaces I; (G, H) and IA (G, H), respectively. The
target density is chosen to be exactly halfway between that of the liquid and the
vapor, as determined from the computed density field. To obtain a scalar definition
of the location of the two interfaces, we compute their averages via integration
using Ī; = (!G!H)−1

∫
3G

∫
3H I; (G, H) and ĪA = (!G!H)−1

∫
3G

∫
3H IA (G, H). We

provide example visualizations of the instantaneous interface for a single frame in
Figures 7.3 and 7.4.

Figure 7.3: Example of instantaneous interfaces computed using the method of
Willard and Chandler [88].
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7.3 Extension of Dipolar Field Theory
In addition to molecular dynamics simulations, we develop a mean-field theory for
a shifted dipolar fluid that is an extension of the dipolar self-consistent field theory
(DSCFT) presented in the previous chapter. Here we study the simplest possi-
ble system containing an inhomogeneous density of asymmetric polar molecules.
We represent the molecules as spheres with point dipoles that are offset from the
molecule center. The orientation of the dipole is rigid with respect to the molecule
frame, such that the dipole rotates with themolecule, but not independently. Also for
simplicity, we impose density profiles characteristic of VLE, rather than including
non-electrostatic interactions, since our main objective is to analyze the polarization
in response to a density gradient, regardless of how the density gradient is generated.

Canonical Partition Function
The molecules are represented as point dipoles that are shifted or offset from the
molecular center. Thus, the intstaneous polarization of a single molecule is given
by the following,

P̂8 (r) = `̀̀8X(r − (r8 + 3 ˆ̀̀̀ 8)) (7.3)

where `̀̀8 is the dipole moment of molecule 8, ˆ̀̀̀ 8 is the unit vector of the dipole
moment, r8 is the position of the center of molecule 8, and 3 is the dipole offset. The
total instantaneous polarization is the sum of all the molecular dipoles,

P̂(r) =
#∑
8=1

P̂8 (r) =
#∑
8=1

`̀̀8X(r − (r8 + 3 ˆ̀̀̀ 8)) (7.4)

and the microscopic number density is,

d̂(r) =
#∑
8=1

X(r − r8) . (7.5)

The dipoles interact via the typical dipolar interaction potential, which gives rise to
the following potential energy,

V* (r# , ˆ̀̀̀ # ) = 1
2

∫
3r

∫
3r′P̂(r)T(r − r′)P̂(r′) (7.6)

with the interaction kernel given by

T(r − r′) = −∇∇ V

4cn0 |r − r′|

= � ( |r − r′| − [) V

4cn0 |r − r′|3

[
I − 3(r − r′) (r − r′)

|r − r′|2

]
+ V

3n0
IX(r − r′)

(7.7)
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Rather than include non-electrostatic interactions, we instead impose an artificial
density profile d(r), that is characteristic of a vapor-liquid interface.

X[ d̂(r) − d(r)] =
∫
DF exp

{
8

∫
3rF(r) [ d̂(r) − d(r)]

}
(7.8)

The full canonical partition function is thus,

/ (#) = 1
#!

∫
DF

(
#∏
8=1

1
4cE

∫
3r8

∫
3 ˆ̀̀̀ 8

)
exp

{
−1

2

∫
3r

∫
3r′P̂(r)T(r−r′)P̂(r′)

+ 8
∫

3rF(r) [ d̂(r) − d(r)]
}

(7.9)

Normally at this stage, we would perform the Hubbard-Stratonovich transformation
to decouple the quadratic interactions via introduction of a fluctuating field. The
dipolar interaction kernel, T, however, does not have a functional inverse, and thus
the HS transformation cannot be performed. Instead, we introduce a coarse-grained
polarization density, P(r) that we couple to a fluctuating field, G(r), using a delta
functional identity transform.

1 =
∫
DPX

[
P̂ − P

]
=

∫
DP

∫
DG exp

{
8

∫
3rG(r) ·

[
P̂(r) − P(r)

]}
(7.10)

Thus, the canonical partition function can now be written as,

/ (#) =
∫
DF

∫
DP

∫
DG exp

{
−1

2

∫
3r

∫
3r′P(r)T(r − r′)P(r′)

− 8
∫

3rF(r)d(r) − 8
∫

3rG · P
}

1
#!

(
#∏
8=1

1
4cE

∫
3r8

∫
3 ˆ̀̀̀ 8

)
×

× exp
{
8

∫
3rF(r) d̂(r) + 8

∫
3rG · P̂

}
(7.11)

To simplify this expression, we can group all of the terms that depend on particle
coordinates and orientations into the single particle partition function, & [F,G],

& [F,G] = 1
4cE

∫
3r

∫
3 ˆ̀̀̀ exp

{
8F(r) + 8

∫
3r′G(r′) · ` ˆ̀̀̀ X(r′ − (r + 3 ˆ̀̀̀ ))

}
=

1
4cE

∫
3r

∫
3 ˆ̀̀̀ exp {8F(r) + 8G(r + 3 ˆ̀̀̀ ) · ˆ̀̀̀ `} (7.12)

To simplify this expression, we can assume that G is slowly varying, and the offset
3 is small, such the following Taylor expansion can be used.

G(r + 3 ˆ̀̀̀ ) ≈ G(r) + 3∇G(r) · ˆ̀̀̀ (7.13)
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The partition function is then,

& [F,G] = 1
4cE

∫
3r

∫
3 ˆ̀̀̀ exp {8F + 8G · ˆ̀̀̀ ` + 83` ˆ̀̀̀ · ∇G · ˆ̀̀̀ }

=
1

4cE

∫
3r48F(r)

∫
3 ˆ̀̀̀ exp {8G · ˆ̀̀̀ ` + 83` ˆ̀̀̀ · ∇G · ˆ̀̀̀ }

=
1

4cE

∫
3r48F(r)

∫
3 ˆ̀̀̀ exp {A · ˆ̀̀̀ + ˆ̀̀̀ · B · ˆ̀̀̀ } (7.14)

whereA = 8`G andB = 83`∇G. If we assume thatG only varies in the I dimension,
then we can greatly simplify the integral over the dipole orientation,

@ [G,∇G] = 2c
∫ c

0
sin \3\4�I cos \+�II cos2 \ = 2c

∫ 1

−1
3G40G+1G

2

=
c3/24−0

2/41

11/2

[
erfi

(
0 + 21
211/2

)
− erfi

(
0 − 21
211/2

)]
(7.15)

Thus, the single particle partition function is equal to

& [F,G] = 1
4cE

∫
3r48F(r)@ [G,∇G] (7.16)

The full partition function can then be simply written as

/ (#) =
∫
DF

∫
DP

∫
DG exp

{
−1

2

∫
3r

∫
3r′P(r)T(r − r′)P(r′)

− 8
∫

3rF(r)d(r) − 8
∫

3rG · P + # ln& [F,G] − ln #!
}

(7.17)

More simply put, we have

/ (#) =
∫
DF

∫
DP

∫
DG4−V� [F,G,P] (7.18)

where the Hamiltonian is given by,

V� [F,G,P] = 1
2

∫
3r

∫
3r′P(r)T(r − r′)P(r′) + 8

∫
3rF(r)d(r)

+ 8
∫

3rG · P − # ln& [F,G] + ln #! (7.19)

Saddle-Point Equations
We can determine the equilibrium configuration by finding the saddle-point of
the Hamiltonian, which yields the maximal contribution to the partition function.
The saddle-point approximation gives an approximate free energy, V� = − ln / ≈
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V�∗, where �∗ is the saddle-point Hamiltonian. We can find the saddle-point
by extremizing the Hamiltonian (free energy) with respect to all of the fluctuating
fields. Note that at the saddle-point, the Hamiltonian is real-valued, which means
that F and G are purely imaginary. Thus, for simplicity, we will make the following
replacements in all equations: 8F = l and 8G = U.

V� [l,U,P] = 1
2

∫
3r

∫
3r′P(r)T(r − r′)P(r′) +

∫
3rl(r)d(r)

+
∫

3rU · P − # ln& [l,U] + ln #! (7.20)

Extremizing the Hamiltonian with respect to P yields,

XV�

XP
= U +

∫
3r′T(r − r′)P(r′) = 0 (7.21)

Extremizing with respect to l yields,

XV�

Xl
= d(r) − #

&

X&

Xl
= d(r) − #

4cE&
4l(r)@ [U,∇U] = 0 (7.22)

and lastly, we can extremize with respect to U,

XV�

XU
= P − #

&

X&

XU
= 0 (7.23)
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where we have

X&

XU
=

1
4cE

∫
3r′′

∫
3 ˆ̀̀̀ ` ˆ̀̀̀ X(r − (r′′ + 3 ˆ̀̀̀ ))4

∫
3r′` ˆ̀̀̀ ·U(r′)X(r′−(r′′+3 ˆ̀̀̀ ))+l(r′′)

=
`

4cE

∫
3 ˆ̀̀̀ ˆ̀̀̀ 4` ˆ̀̀̀ ·U(r)+l(r−3 ˆ̀̀̀ )

≈ `

4cE

∫
3 ˆ̀̀̀ ˆ̀̀̀ 4` ˆ̀̀̀ ·U(r)+l(r)−∇l· ˆ̀̀̀ 3

=
`

4cE
4l(r)

∫
3 ˆ̀̀̀ ˆ̀̀̀ 4 [`U(r)−3∇l]· ˆ̀̀̀

=
`

4cE
4l(r)

∫ c

0
3\ sin \4 |`U(r)−3∇l| cos \

∫ 2c

0
3q


sin \ cos q
sin \ sin q

cos \


=
`

2E
4l(r)

∫ 1

−1
3G4 |J(r) |G


0
0
G


=
`

E
4l(r)


0
0

|J| cosh |J|−sinh |J|
|J|2


=
`

E
4l(r)

|J| cosh |J| − sinh |J|
|J|3

J (7.24)

where J(r) = `U(r) − 3∇l. In the above analysis, we rotated the coordinate axis
to be parallel with J, and then after the integration, we rotated it back. Later, we
will reduce the system to variation in a singular dimension, and so J will ultimately
only have a single component. Finally, we have

XV�

XU
= P − #`

E&
4l(r)

|J| cosh |J| − sinh |J|
|J|3

J = 0 (7.25)
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Thus, the final set of self-consistent saddle-point equations is:

U(r) = −
∫

3r′T(r − r′)P(r′)

d(r) = #

4cE&
4l(r)@ [U,∇U]

P =
#`

E&
4l(r)

|J| cosh |J| − sinh |J|
|J|3

J

J(r) = `U(r) − 3∇l

& [l,U] = 1
4cE

∫
3r4l(r)@ [U,∇U]

@ [U,∇U] = c
3/24−0

2/41

11/2

[
erfi

(
0 + 21
211/2

)
− erfi

(
0 − 21
211/2

)]
0 = `*I

1 = 3`
m*I

mI

(7.26)

(7.27)

(7.28)

(7.29)

(7.30)

(7.31)

(7.32)

(7.33)

Dipole Interaction Integral
Everything is mostly straightforward from this point, except for evaluation of the
first equation in the box above.

U(r) = −
∫

3r′T(r − r′)P(r′)

= −
∫

3r′
{
� ( |r − r′| − [) V

4cn0 |r − r′|3

[
I − 3(r − r′) (r − r′)

|r − r′|2

]
+ V

3n0
IX(r − r′)

}
P(r′) (7.34)

We will assume that P = (0, 0, %I (I)), and we will integrate each term separately in
cylindrical coordinates.

�1(I) =
∫

3r′� ( |r − r′| − [) V

4cn0 |r − r′|3
IP

=

∫
3r′� ( |r − r′| − [) V

4cn0 |r − r′|3


1 0 0
0 1 0
0 0 1




0
0

%I (I′)

 (7.35)
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�1,I (I) =
V

4cn0

∫
3r′� ( |r − r′| − [) 1

|r − r′|3
%I (I′)

=
V

4cn0

∫ 2c

0
3\

∫ !

−!
3I′%I (I′)

∫ ∞

0
3AA

�
[
(A2 + (I − I′)2)1/2 − [

]
(A2 + (I − I′)2)3/2

=
V

2n0

∫ !

−!
3I′%I (I′)

∫ ∞

|I−I′ |
3D
� [D − []

D2 (7.36)

This integral has to be evaluated piecewise, based on whether |I − I′| < [ or
|I − I′| > [. ∫ ∞

|I−I′ |
3D
� [D − []

D2 =


|I − I′|−1 if |I − I′| ≥ [,

[−1 if |I − I′| < [
(7.37)

Finishing the integral over I′ we get the following,

�1,I (I) =
V

2n0

∫
|I−I′ |<[

3I′
%I (I′)
[
+ V

2n0

∫
|I−I′ |≥[

3I′
%I (I′)
|I − I′|

=
V

n0
〈%I (I)〉 |I−I′ |<[ +

V

2n0

∫
|I−I′ |≥[

3I′
%I (I′)
|I − I′| (7.38)

Once we are done evaluating all of the components, then we can take the limit as
[ → 0. The second term in the integral can be evaluated in a similar manner,
however, we first have to enumerate (r − r′) (r − r′),

(r − r′) (r − r′) =

(G − G′)2 (G − G′) (H − H′) (G − G′) (I − I′)

(H − H′) (G − G′) (H − H′)2 (H − H′) (I − I′)
(I − I′) (G − G′) (I − I′) (H − H′) (I − I′)2

 (7.39)

With this we can compute the product, (r − r′) (r − r′)P(r′),

(r − r′) (r − r′)P(r′) =

(G − G′)2 (G − G′) (H − H′) (G − G′) (I − I′)

(H − H′) (G − G′) (H − H′)2 (H − H′) (I − I′)
(I − I′) (G − G′) (I − I′) (H − H′) (I − I′)2




0
0

%I (I′)


=


(G − G′) (I − I′)%I (I′)
(H − H′) (I − I′)%I (I′)
(I − I′)2%I (I′)

 (7.40)

Thus, the integral can be written as,

�2,I (I) =
3V

4cn0

∫ 2c

0
3\

∫ !

−!
3I′(I − I′)2%I (I′)

∫ ∞

0
3AA

� [(A2 + (I − I′)2)1/2 − []
(A2 + (I − I′)2)5/2

=
3V
2n0

3\

∫ !

−!
3I′(I − I′)2%I (I′)

∫ ∞

|I−I′ |
3D
� [D − []

D4 (7.41)



202

Once again, the integral over D must be evaluated piecewise,∫ ∞

|I−I′ |
3D
� [D − []

D4 =


|I − I′|−3/3 if |I − I′| ≥ [,

[−3/3 if |I − I′| < [
(7.42)

Finishing the integral over I′ we get the following,

�2,I (I) =
V

2n0

∫
|I−I′ |<[

3I′
(I − I′)2
[3 %I (I′) +

V

2n0

∫
|I−I′ |≥[

%I (I′)
|I − I′| (7.43)

Let’s see what we have so far,

�1,I − �2,I =
V

2n0

∫
|I−I′ |<[

3I′
%I (I′)
[
+ V

2n0

∫
|I−I′ |≥[

3I′
%I (I′)
|I − I′|

− V

2n0

∫
|I−I′ |<[

3I′
(I − I′)2
[3 %I (I′) −

V

2n0

∫
|I−I′ |≥[

%I (I′)
|I − I′|

=
V

2n0

∫
|I−I′ |<[

3I′
%I (I′)
[
− V

2n0

∫
|I−I′ |<[

3I′
(I − I′)2
[3 %I (I′) (7.44)

Note that this is well-defined for [→ 0. We can find this limit but Taylor expanding
%I (I′) around I, since |I − I′| < [ where [ is very small (going to 0).

lim
[→0
[�1,I (I) − �2,I (I)] =

V

2n0

[
2%I (I) −

2
3
%I (I)

]
=

2
3
V

n0
%I (I) (7.45)

The final integral in Equation (7.34) is simple to evaluate,

�3,I (I) =
V

3n0

∫
3r′X(r − r′)


1 0 0
0 1 0
0 0 1




0
0

%I (I′)

 =
1
3
V

n0
%I (I) (7.46)

Putting everything together, we finally obtain,

U(r) = *I (I) = −
V

n0
%I (I) (7.47)

Now we should address the G and H components that appeared in the evaluation of
�2,

�2,G =
3V

4cn0

∫ ∞

−∞
3H′

∫ !

−!
3I′(I − I′)%I (I′)

∫ ∞

−∞
3G′
(G − G′)� [|r − r′| − []

|r − r′|5

= 0 (7.48)

and similarly, �2,H = 0.
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Nondimensionalization
From this point, we only consider variation in the I coordinate, thus all vector
quantities will be replaced with scalars corresponding tot their I component. We
will find it convenient to define the following nondimensional quantities,

G ≡ I

f
, X =

3

f
, D ≡ `*, ? ≡ E

`
%, b ≡ V`

2

n0E
, q ≡ dE (7.49)

where we choose f3 = E with f being the particle size. The nondimensional set of
equations reduced to 1 dimension is thus,

D(G) = −b?(G)

q(G) = #

4c&
4l(G)@ [D, DG] =

#

�

4l(G)@ [D, DG]∫
3G4l(G)@ [D, DG]

?(G) = 4c#
�
4l(G)

|� | cosh |� | − sinh |� |
|� |3

∫
3G4l(G)@ [D, DG]

�

� (G) = D − XlG

& [l, D] = �

4c

∫
3G4l(G)@ [D, DG]

@ [D, DG] =
c3/24−D

2/4XDG
√
XDG

[
erfi

(
D + 2XDG
2
√
XDG

)
− erfi

(
D − 2XDG
2
√
XDG

)]

(7.50)

(7.51)

(7.52)

(7.53)

(7.54)

(7.55)

7.4 Results and Discussion
The following results are all collected from molecular dynamics simulations of the
sSF model. Results from shifted-DSCFT are presented in a later section. Here,
we provide a detailed analysis of the density and electrostatic profiles at the liquid–
vapor interface for a variety of conditions. In general, we span from weak to strong
dipole moments, ` ∈ 1.0− 2.0, and small to large offsets, 3 ∈ 0.0− 0.25, and study
the effects on the liquid density and interfacial polarization. For some additional
context, we mention briefly here how water maps onto the parameters of this model.
Namely, choosing f = 2.75Å, `0 = 1.8D, and ) = 300K yields a reduced dipole
moment of 1.94. Modeling the water very roughly as a spherical molecule, we can
compute the effective dipole shift as the distance between the center of geometry
and the center of charge as approximately 0.10Å(or 0.036f). Other molecules, such
as refrigerants, typically have much large dipole shifts, reaching up to 0.2f.

We rely on angular distribution functions to provide a detailed molecular picture
and explanation of the observed interfacial polarization.
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Density Profiles
Wefirst compute the density profiles across the liquid–vapor interface usingEquation
(7.56) given as,

d(I) = 1
!G!H

#∑
8=1

X(I − I8) , (7.56)

where X(G) is the Dirac delta function. In practice, the coordinates are binned into
narrow windows instead of using an exact delta function. Density profiles at various
dipole strengths are provided in Figure 7.5. As expected, Figures 7.5b and c show
that the density increases and the interface becomes sharper as ` increases. Note
that this effect is not unique to shifted dipoles and occurs for any value of 3.

The effects of ` and 3 on the coexistence liquid density are further summarized
in Figure 7.5c. Here, we see that the liquid density increases as 3 increases for a
given value of `. We attribute the increase in density to a strengthening of dipolar
interactions, as the introduction of a shift deepens the potential energy minimum in
the sSF potential, thus allowing the particles to pack more closely. When ` > 1.8,
increasing 3 first results in a decrease in density, followed by an increase in density
that follows the same trend asweaker dipolemoments. This non-monotonic behavior
is caused by the presence of a ferroelectric transition, which has been reported for
dipolar hard spheres at high density [50–53, 91]. When 3 = 0, the dipoles prefer
to align head to tail to minimize their energy. When ` is low, this preference
is not strong enough to overcome thermal fluctuations and cause any spontaneous
orientation in the liquid. However, when the dipolemoment becomes strong enough,
the dipoles spontaneously align, much like the spontaneous magnetization observed
in ferromagnetic materials. This ferroelectric transition also causes the liquid to
contract, resulting in an increased liquid density. As 3 increases, the perfect head-
to-tail configuration of dipoles becomes less favorable relative to a slightly rotated
configuration, and the ferroelectric transition is disrupted. A similar effect was also
observed by Johnson et al. in their study of dipolar spheroids, where the ferroelectric
transition was suppressed for both oblate and prolate spheroidal particles [91].

Since the shift places the dipoles closer to the particle surface, the optimal con-
figuration for two dipoles is different than the regular Stockmayer potential. The
dipole–dipole interaction energy is determined by both the distance and relative
angle of the two dipoles. At large dipole shifts, the energy can become lower than
the perfect head-to-tail configuration by rotating one of the particles slightly. This
puts the dipoles closer together while sacrificing a small amount of attraction due
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Figure 7.5: Interfacial density profiles for various ` and 3. The interface is located
between a bulk region of liquid on the left and a bulk region of vapor on the right.
(a) Simulation snapshot with the average of the instantaneous interface plotted as
a dashed line. (b) Density profiles with 3 = 0.25f and ) = 1 for various values
of `, with the dotted line representing the reference LJ fluid with no dipoles. (c)
Coexistence liquid densities at ) = 1 for various values of ` and 3.

to the non-optimal angle. The net effect is a lower overall energy due to the dipole
interaction. Thus, at small but finite 3, the ferroelectric transition is diminished
but not fully suppressed, resulting in a decreasing density. At some value of 3, the
ferroelectric transition is suppressed completely, and further increasing 3 results in
an increased density for the same reasons described in the low ` case. A more
detailed description of the liquid structure and angular distribution functions is pro-
vided in our companion study on the bulk equilibrium properties of the sSF model
(Venkatachalam et al. 2025).
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Figure 7.6: Nematic order profiles with interface surface normal as reference direc-
tor. Profiles are plotted for no shift (3 = 0) for various values of dipole moment `.
Note that %2(I) < 0 indicates alignment parallel to the interface (perpendicular to
the normal vector). The dashed lines are provided to guide the eye.

Nematic and Polar Order
A regular Stockmayer fluid with no dipole shift will necessarily have zero polar order
throughout the fluid due to symmetry (assuming no ferroelectric transition occurs).
The lack of polar order means that there can be no interfacial polarization and
therefore no electric field or potential difference between the two phases. Despite
the lack of polar order, we can still make an interesting observation about the nematic
order at the interface for the regular SF model. Specifically, we take the unit normal
of the interface to be a reference director, and we compute the relevant component
of the nematic order parameter via the 2nd Legendre polynomial of orientation as

%2(I) =
1
2

[
3
〈
cos2 \

〉
(I) − 1

]
, (7.57)

where \ is the angle between a given dipole and the normal vector of the interface.
The average 〈· · · 〉(I) is computedwithin a narrowwindow around I. Inwords, %2(I)
is a measure of how aligned the dipoles are with the surface normal as a function
of distance from the interface. There are 3 interesting cases: (1) %2 = −1/2 if all
dipoles are perpendicular to the surface normal, (2) %2 = 1 if all dipoles are parallel
or antiparallel to the surface normal, (3) %2 = 0 if the dipoles are randomly oriented
with respect to the surface normal. In subsequent discussion, we refer to %2 as the
nematic order for simplicity, but it should be understood that it is only a component
of the nematic order with an assumed nematic director parallel to the surface normal.
This quantity has been used in several previous theoretical and simulation studies
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of Stockmayer fluids at interfaces [56, 60, 62, 86, 92–94].

Figure 7.7: Image dipole construction at a liquid–vapor interface of the (a) Stock-
mayer fluid and (b) shifted Stockmayer fluid.

We plot the nematic order profile for the case of no dipole shift in Figure 7.6. It is
clear from %2(I) < 0 that there is a preference for the dipoles to lie in the interfacial
plane, even with perfectly symmetric spherical molecules. This can be understood
by considering image dipole interactions generated at the interface [14, 58, 94, 95].
Assuming that the interface can be approximated by a discontinuous jump between
two homogeneous phases with disparate dielectric constants, molecules near the
interface will experience interactions with an image dipole on the opposite side that
has the same polar angle but is rotated azimuthally by c. This scenario is depicted
in Figure 7.7a. The resulting interaction energy for a particle near the interface is

* (I, \) = `2

16
nU − nV

nU (nU + nV)
1 + cos2 \

I3 , (7.58)

where nU is the static dielectric constant of the host phase, nV is the dielectric constant
of the coexisting phase, \ is the polar angle relative to the surface normal, and I is
the distance from the interface. Note that the net sign of the interaction depends on
whether the dipole is within the high dielectric or low dielectric medium. We can
use Equation (7.58) to understand the orientational behavior of molecules on both
the liquid and vapor sides of the interface. As we will later show, this analysis can
also be used to predict the shape of the angular probability distributions, even in the
presence of a dipole shift.

For a molecule in the liquid (nU > nV), the energy in Equation (7.58) is minimized
when \ = c/2, indicating that the molecules will, on average, prefer to lie parallel
to the interface. Alternatively, for a molecule in the vapor (nU < nV), the energy is
minimized when \ = 0 and c, and the molecule will prefer to point perpendicular to
the interface. Several studies using classical density functional theory (cDFT) and
liquid state theory (LST) have predicted an S-shaped %2(I) profile across the liquid–
vapor interface, where molecules on the liquid side are parallel to the interface and
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molecules on the vapor side are perpendicular [57–59, 92]. On the other hand,
several molecular dynamics simulation studies predicted only a parallel orientation
(%2 < 0) on both sides of the Gibbs dividing surface (GDS) [56, 60–62]. To the
best of our knowledge, this disagreement between theory and simulation has still
not been resolved. The two main hypotheses for the disagreement are (1) that
the theoretical frameworks are unable to fully describe the essential physics of the
density and dipole correlations, and (2) that the profiles computed from simulation
carry too much statistical uncertainty, particularly in the dilute vapor phase.
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Figure 7.8: Nematic order profile (solid lines) from extended simulations for ` = 1.6
and 3 = 0, 0.25. The shaded areas represent 95% confidence intervals computed
from block averaging, and the dotted lines are the corresponding density profiles.

The simulation results in Figure 7.6 agree with previous MD simulations of Stock-
mayer fluids in that %2(I) is negative across the interface, with the minimum located
near the GDS. In contrast to previous works, our simulations seem to produce a pro-
nounced peak within the vapor region when the dipole moment is high (` ≥ 1.6).
However, significant noise once again makes the interpretation difficult. To verify
this behavior with statistical certainty, we conducted simulations with ` = 1.6 and
3 = 0, 0.25 for 107 timesteps. We saved every 100th frame for analysis, resulting
in a total of 105 frames. Treating the two interfaces as independent, we were able
to double the amount of data and obtained the profile of the nematic order using a
total of 2 × 105 frames. We broke the data into 10 blocks of 2 × 104 frames each
and used the standard error of the mean to estimate the uncertainty in the profiles.
The resulting nematic order parameter profiles with 95% confidence intervals are
plotted in Figure 7.8. These show a statistically significant peak within the vapor
phase, which agrees qualitatively with the predictions of cDFT and LST, as well as
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the image dipole result based on Equation (7.58). However, we note that cDFT and
LST predict that the transition from negative to positive %2(I) occurs at the GDS,
whereas our calculations show that %2(I) does not become positive until around 2f
outside the GDS.
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Figure 7.9: Spatially varying nematic ((a) and (b)) and polar ((c) and (d)) order
parameters with respect to surface normal vector. (a)+(c) Profiles for a shift of
3 = 0.25 for various values of dipole moment `. (b)+(d) Profiles for a dipole
moment of ` = 1.6 for various values of shift 3. We omit averages computed from
less than 100 data points due to significant statistical uncertainty. Note that<(I) < 0
and <(I) > 0 indicate dipoles pointing towards the liquid and vapor, respectively.
The dashed lines are provided to guide the eye.

Introducing a shift to the dipole has little effect on the spatially varying nematic
order parameter, which we plot in Figure 7.9b. We can modify Equation (7.58) to
include the dipole shift, which results in

* (I, \) = `2

16
nU − nV

nU (nU + nV)
1 + cos2 \

(I + 3 cos \)3
, (7.59)

where 3 is the dipole shift. The shift effectively couples the dipole angle with the
distance of the dipole from the interface. This scenario is depicted in Figure 7.7b.
Dipoles pointing towards the interface will have stronger interactions with their
images than those that are pointing away. Note that the effect of the shift diminishes
as I grows larger than 3 cos \ and the energy approaches that of Equation (7.58).
The asymmetry introduced by the shift leads to a preferential orientation of the
dipoles at the interface, which is most easily seen through the polar order profile
and the shape of the angular distribution functions in the interfacial region.
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Similar to %2(I), we define the spatially varying polar order parameter <(I) in
Equation (7.60). We use the coordinates of the LJ particles to determine the
positions and the dipole vectors for the orientations.

<(I) = 〈cos \〉(I) = 〈 ˆ̀I〉(I) . (7.60)

Again, \ is the angle between the dipole and the surface normal which is the unit
vector in the I-direction, and theaverage 〈. . . 〉(I) is computed within a narrow
window around I. In words, <(I) is a measure of the average orientation of
the molecules, specifically in the I-direction. A value of <(I) = 0 means that
the molecules have no net preference to point towards the liquid or vapor, while
<(I) < 0 and <(I) > 0 indicate preferences to orient towards the liquid and vapor
regions, respectively. Note that <(I) = 0 with %2(I) ≠ 0 is achieved by having a
non-uniform distribution on cos \ that is still symmetric about \ = c/2, which is
exactly the case for the regular Stockmayer fluid.

We plot the spatially varying polar order for a dipole shift of 3 = 0.25 in Figure
7.9c. A shift in the dipole induces an orientational order normal to the interface
across a wide range of dipole moments. The strength of the ordering increases
with dipole moment as the electrostatic interactions become stronger and a denser
solvation environment becomes more favorable. In Figure 7.9d, we show that the
orientational order also becomes more pronounced as the dipole shift increases for a
fixed dipole moment. These observations are also consistent with the image dipole
construction of Equation (7.59). Namely, a finite 3 skews the minimum of the
energy due to image dipole interactions for molecules in both the liquid and vapor
phases. In both cases, the molecules will show a preference to point towards the
liquid phase when 3 > 0, resulting in a purely negative <(I) across the interface.

Together, Figures 7.9a and 7.9c paint an almost complete picture of the molecular
orientations across the liquid–vapor interface for the sSF model. The liquid features
%2(I) < 0 and <(I) < 0, indicating that molecules are largely oriented in the
plane of the interface, with a slight preference to point towards the liquid. On the
other hand, the vapor features %2(I) > 0 and <(I) < 0, indicating that molecules
are largely oriented perpendicular to the interface, also with a preference to point
towards the liquid.

Providing further quantitative insights, we plot the probability distribution of cos \
within the interfacial region in Figure 7.10. We denote these as angular distribution
functions. The interfacial region is chosen as −0.5 < I < 2.0 based on the profiles
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Figure 7.10: Angular distribution functions in the interfacial region for various
dipole moments ` and dipole offsets 3. Distributions in (a) and (b) are extracted
from the entire interfacial region within −0.5 < I < 2.0. Distributions in (c) and (d)
are broken into separate regions for the liquid and vapor phases. Symbols represent
MD data and curves represent fits to Equations (7.58) and (7.59) for (c) and (d)
respectively. The distributions are normalized and then multiplied by a constant
factor of 2. Recall that cos \ < 0 and cos \ > 0 correspond to molecules pointing
towards the liquid and vapor, respectively.

in Figure 7.9. The distributions in Figure 7.10a show that, for the SF, the preference
to lie in the interfacial plane becomes stronger with increasing dipole moment,
indicated by the sharpening of the peak around cos \ = 0. The picture becomes
more complicated when the dipole is shifted off-center, as shown for 3 = 0.25 in
Figure 7.10b. For weak dipole moments, the distribution becomes skewed towards
−1. As the dipole moment increases, the skew increases, and a prominent peak
appears within −1 < cos \ < 0. The shape of this distribution explains how
molecules with high ` and high 3 have significantly negative %2(I) and <(I) near
the interface. The negative skew in the distributions supports the conclusion that
the molecules prefer to point towards the liquid. Due to the way we constructed our
molecules, this also implies that the molecules are positioning their point-dipoles
closer to the liquid phase than the vapor phase. This orientation allows for the
dipoles to interact more strongly with dipoles just below the surface layer, providing
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some additional solvation from liquid-phase particles.

As mentioned previously, Equations (7.58) and (7.59) can be used to make predic-
tions about the angular distributions on the liquid and vapor sides of the interface.
Figures 7.10c and 7.10d show remarkable qualitative agreement between the MD
simulations and the theoretical predictions. The lines were computed through a
fitting procedure where the parameters of the distribution (i.e., Y, `, 3, I, etc.) were
varied to minimize residuals. The open symbols were computed by splitting the
interfacial region into a liquid side and a vapor side, and accumulating dipole orien-
tations in the two separate regions. While the liquid–vapor interface itself is diffuse,
we choose to define the transition from liquid to vapor at I ≈ 2f based on the
location where %2(I) crosses from negative to positive in Figures 7.6, 7.8, and 7.9.
We do this to remain in line with the predictions of the image-dipole method which
predicts that %2 is negative in the liquid and positive in the vapor. We don’t expect
quantitative agreement as we have a diffuse interface and significant dipole correla-
tion effects that are completely ignored by treating dipoles as independent particles
immersed in a homogeneous medium with a dielectric discontinuity. Amazingly,
the qualitative behavior can still be captured for both the liquid and vapor, whether
or not there is a dipole offset.

Interfacial Electric Field and Potential
The primary objective of this work is to determine if molecular asymmetry in polar
fluids is sufficient to induce a significant interfacial electric field. To this end, we
discuss in the following section the electric properties of the interface including the
electric field and the electrostatic potential profile. To compute the spatially varying
electric field, we start from the differential form of Gauss’s Law,

Y0∇ · E = −∇ · P + d 5 , (7.61)

where Y0 is the vacuum permittivity, E is the electric field, P is the polarization
density, and d 5 is the free charge. In our case, no free ions are present such that
d 5 = 0. In addition, the system is infinitely vast in the dimensions parallel to the
interface, implying that E| |, P| |, and their derivatives are identically 0 in the absence
of a bulk ferroelectric transition. Thus, Equation (7.61) reduces to the simple
relation Y0�I (I) = −%I (I), where �I and %I are scalar fields for the I-component
of each quantity, which both vanish deep within the homogeneous vapor and liquid
phases. This relation implies that the electric field points in the opposite direction
of the polarization. Importantly, this provides a straightforward way to compute �I
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fromMD simulation, since %I is easily computed with Equation (7.62) given below,

%I (I) =
1

!I!H

#∑
8=1

X(I − I8)`8I , (7.62)

where `8I is the I-component of the dipole moment of molecule 8, and I8 refers to
the position of the dipole particle (not the LJ particle). In practice, dipoles are
binned within a small region around I and accumulated over the course of a long
simulation run. The electrostatic potential profile, k(I), is then computed from the
electric field or the polarization by recognizing that �I (I) = −mIk(I), which yields
the following integral equation

k(I) − k0 = −
∫ I

IE

�I (C)3C =
1
Y0

∫ I

IE

%I (C)3C , (7.63)

where k0 is the reference potential, taken to be deep within the vapor region.
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Figure 7.11: Spatially varying electric field ((a) and (b)) and electrostatic potential
((c) and (d)). (a)+(c) Profiles for a shift of 3 = 0.25 for various values of dipole
moment `. (b)+(d) Profiles for a dipole moment of ` = 1.6 for various values of
shift 3. The dashed lines are provided to guide the eye. The liquid phase is located
at I < 0 and the vapor phase at I > 0.

We plot the reduced electric field, �∗I , and the corresponding reduced electrostatic
potential, k∗, in Figure 7.11. As expected, the electric field vanishes in the bulk
phases and is finite at the interface. This interfacial field arises solely from the
asymmetry of the polar molecules and the resulting polar order. Unexpectedly,
the interfacial electric field �∗I can change sign. With increasing dipole moment
strength, the electric field switches from negative to positive. This trend is also
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reflected in the electrostatic potential shown in Figures 7.11c where, for weak
dipole moments, k∗ increases across the interface. For strong dipole moments, k∗

decreases. Figure Although we do not yet have a definitive physical explanation
for this sign inversion, its existence is plausible given the complex interplay among
liquid and vapor densities, interfacial width, dipole strength, and dipole shift. Here
we provide one possible logical interpretation of this anomalous behavior.

The distribution functions in Figure 7.10b show that increasing the dipole strength
at a fixed, large shift enhances the tendency of interfacial molecules to orient up the
density gradient toward the liquid phase (−0.5 < cos \ < 0). At sufficiently strong
dipole moments, this preference becomes strong enough to produce a negative
polarization and, correspondingly, a positive electric field (blue curves in Figure
7.11a and 7.11c). Thus, molecules with both a significant dipole shift and a strong
dipole moment tend to generate polarization aligned with the density gradient.

By contrast, molecules with weak dipole moments exhibit a relatively flat angu-
lar distribution near the interface, which has two consequences. First, the weak
preference for pointing toward the liquid is insufficient to generate appreciable neg-
ative polarization (positive electric field) at the weakest dipole moments studied.
Molecules oriented toward the liquid point up the density gradient, placing their
dipoles in a dense region where the polarization is averaged out by the random
orientations of surrounding molecules. Molecules oriented toward the vapor point
down the gradient, positioning their dipoles in a low-density region with few neigh-
boring molecules. The combined effect is a net polarization of opposite sign to the
density gradient (yellow/orange curves in Figures 7.11a and 7.11c).

The behavior of the electric field and electrostatic potential for various 3 at fixed
` = 1.6 are given in Figures 7.11b and Figure 7.11d, respectively. The curves for
3 = 0 confirm that the regular Stockmayer fluid produces no electric field at the
interface and therefore no potential difference between the two phases. In general,
the dipole strength sets the shape of the electric field at the the interface, while the
dipole shift sets the magnitude. For example, at fixed 3 = 0.25, the electric field
goes from purely negative, to S-shaped, to purely positive as ` increases from 1.0 to
2.0. On the other hand, at fixed ` = 1.6, the shape remains S-shaped as 3 increases
while the positive peak on the liquid side of the interface increases in height. We
provide further examples of this general observation for different regimes of 3 and
` in the Appendix.

To quantify the strength of the interfacial electric field, we can substitute the proper-
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ties of a real fluid. For water we have f = 2.75Å, `0 = 1.8D, and n = :�) , which
yields a reduced dipole moment of ` = 1.94. Thus, the simulations at ` = 2.0
can be reasonably interpreted within the context of the air–water interface. For
` = 2.0 and 3 = 0.25, the reduced electric field at the interface is �∗I ≈ 0.10 (Figure
7.11a), which corresponds to �I ≈ 16 MV/cm for the water properties listed above.
This electric field is a reasonable order of magnitude for an air–water interface and
agrees well with previous experiments [96], and molecular dynamics simulation us-
ing the ReaxFF/C-GeM forcefield [37]. Any specific quantitative agreement should
be interpreted cautiously since the sSF model is a simplified picture that ignores
effects from electronic polarization, mean inner potential, hydrogen bonding, and
steric effects of nonspherical molecules. We make this comparison simply to show
that the magnitude of the interfacial electric field can reach experimentally relevant
values.
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Figure 7.12: The potential difference between the bulk regions of vapor and liquid
for various ` and 3. 3 = 0 corresponds to the regular Stockmayer fluid, which has
no polarization and therefore no potential difference. Δk∗ = k∗

;
− k∗E .

The potential difference between the two phases across all combinations of ` and
3 is given in Figure 7.12. The sSF model exhibits highly nontrivial behavior in the
potential difference across the range of parameters studied here. For weak dipole
moments, the dipole shift leads to a potential drop across the interface when going
from the liquid to the vapor. However, strong dipole moments lead to a positive
potential difference. These two contrasting behaviors can be understood based on
the previous discussion. Of particular interest are the intermediate dipole moments
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and shifts where, due to the competing dipole orientations in the liquid and vapor
regions, for a given dipole moment (` = 1.6 for example), increasing the dipole shift
can cause an inversion in the sign of Δk∗. However, the point where Δk∗ ≈ 0 does
not necessitate that k∗(I) = 0. As shown in Figure 7.11d, k∗ exhibits a minimum
for ` = 1.6 and 3 = 0.15 despite having Δk∗ = 0. While we are not aware if any real
molecule corresponds to such parameters, this minimum in k∗ and corresponding
S-shaped electric field could provide preferential localization for chemical reactions
at liquid–vapor interfaces, even between atoms with similar partial charges. In
addition, the sign inversion of Δk implies that asymmetry alone could lead to the
adsorption of differently charged ions for differing ` and 3. We leave the exploration
of electrolyte systems for a future study.

These results confirm that molecular asymmetry is a crucial factor in controlling
interfacial electrostatic properties, and can even contribute a significant electric field
in the absence of any other effects.

7.5 Conclusions
In this study, we conducted molecular dynamics simulations of the shifted Stock-
mayer fluid model to study the interfacial properties of asymmetric polar fluids.
We systematically varied both the dipole shift, 3, and the dipole moment, `, to
observe the effect of the molecular properties on the equilibrium interfacial profiles.
Specifically, we reported profiles for the density, nematic order (2nd Legendre poly-
nomial of orientation), polar order, electric field, and electrostatic potential. The
density of the liquid phase was enhanced by the presence of a dipole shift, which
we attributed to the strengthened electrostatic interactions between dipoles that lie
closer to the surface of the spherical particles. For strong dipole moments, and
therefore high liquid densities, we encountered a ferroelectric transition known to
occur in the Stockmayer fluid model. Interestingly, a moderate shift in the dipole
completely destroyed the ordering in the ferroelectric transition as a result of themost
favorable conformation changing from the typical end-aligned (parallel). A more
detailed study of the bulk liquid equilibrium properties is currently in preparation
(Venkatachalam et al. 2025).

We found that the presence of even a small shift in the dipole could lead to sig-
nificant interfacial polarization. In line with previous MD simulations, we found
that the molecules at the Gibbs dividing surface prefer to lie parallel to the interface
(%2 < 0). In contrast to previous simulations, but in agreement with theoretical pre-
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dictions from classical density functional theory, our simulations revealed that vapor
molecules just outside the interface have a preference to point perpendicular to the
interface (%2 > 0) for sufficiently strong dipole moments. Tomake simple analytical
predictions for the angular distribution functions in proximity to the interface, we
utilized the energy due to image dipole interactions. We extended the traditional
image dipole interaction to include the effect of a dipole shift and found excellent
agreement between the theoretical predictions and the distributions collected from
MD simulations. We found that the regular Stockmayer fluid produces %2(I) < 0 in
the liquid, %2(I) > 0 in the vapor, and <(I) = 0 everywhere. On the other hand, the
angular distribution functions of a shifted Stockmayer fluid are skewed towards the
liquid (cos \ < 0). While %2(I) does not significantly change, <(I) is consistently
negative, indicating a preference for the molecules to point towards the liquid.

We computed the polarization density, electric field, and the electrostatic potential
difference between the two phases. The sign of the electric field displayed an
inversion as the strength of the dipole moment was increased with a constant dipole
shift. Namely, the electric field had the same sign as the density gradient for weak
dipole moments and the opposite sign for strong dipole moments. At parameters
consistent with those of water, we found that the interfacial electric field was roughly
16 MV/cm. We note that this agrees in both sign and magnitude with experimental
observations and quantum mechanical MD simulations of water. The quantitative
agreement is surprising and should not be read into since the shifted Stockmayer
fluid is a minimal model that ignores many unique aspects of real fluids such as the
mean inner potential, geometric asymmetry, polarization, and hydrogen bonding.

With this work, we have shown that slight molecular asymmetry in the Stockmayer
fluid leads to rich interfacial behavior, including significant interfacial polarization.
In the modern discussion of how interfacial electric fields catalyze reactions, this
work provides context for a potentially important effect that is likely to be present
to some extent in all polar fluids. In future studies we will explore the role of dipole
shift on the bulk and interfacial properties of electrolyte solutions.

7.6 Appendix
Electric Fields and Electrostatic Potentials

Here we provide additional plots of the electric field and electrostatic potential for
the full range of simulation parameters tested.
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Figure 7.13: Electric field and electrostatic potential for various combinations of `
and 3.
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