
SUBSETS OF A FINITE SET THAT INTERSECT 

EACH OTHER IN AT MOST ONE ELEMENT 

Thesis by 

Donald Eugene Keenan 

In Partial Fulfillment of the Requirements 

for the Degree of 

Doctor of Philosophy 

California Institute of Technology 

Pasadena, California 

1977 

(Submitted May 18, 1977) 



ii 

Acknowledgements 

I wish to express my deepest appreciation to my advisor 

Dr. Herbert J. Ryser. His paper on this problem was the inspiration 

for much of the work in this thesis. Also, I am most grateful for 

his patience and encouragement throughout the last four years. 

My communications with Douglas Leonard were extremely helpful and 

his interest and ideas on the subject were very much appreciated. 

I am indebted to Caltech for its financial support in the form of 

teaching assistantships and for the outstanding research environment it 

provides. 

The excellent typing of this thesis was done by Ida Abe and I thank 

her for her efforts. 

Finally, I want to thank my wife, Trudy Bergen,for the many 

sacrifices she has made for my benefit. She also was most helpful as 

someone I could talk to about new ideas and help get them straight in 

my own mind. 



iii 

Abstract 

We study subsets of a finite set most of which intersect each other 

in one element. We first prove a Fisher type inequality of the form 

m < n. We then investigate those configurations with m = n. Our main 

theorem is the following generalization of a result due to Ryser . 

Theorem. Let s1 , ... ,Sn be n subsets£!. an n-set S. 

Suppose that 

and that 

s. 
1 

> 3 (i = l, ... ,n) 

I s. n s. I < 1 
1 J -

(if j; i,j = l, ... ,n). 

Suppose further that each Si has non-empty intersection with at least 

n - c of the other subsets. Then either 

n .::_ N(c) 

where N(c) depends only on c, or the incidence matrix A has constant line 

sums. 

We then study those configurations for which A has constant line 

sums and each subset has non-empty intersection with exactly n - 3 of 

the other subsets. The rows and columns of A may be partitioned into 

cycles in a natural way. With this we show that A has a cyclic sub­

structure and that the length of any row or column cycle divides the 

length of the longest cycle. Also, after the rows and columns have been 

suitably permuted we have AAT = ATA. We relate those configurations with 

constant cycle lengths to interdependent difference sets, and show that 

such configurations imply the existence of nonnegative integral matrices 

satisfying the matrix equation BBT = (k A)l+AJ. 

• 
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CHAPTER I 

Introduction 

Let s1 , . .. ,Sm be m subsets of an n-set S. In this paper we will 

deal only with subsets such that the cardinalities of the set inter­

sections satisfy 

s. n s. I .::_l (i-:/: j; i,j = 1, ... ,m) 
l. J 

and most of the S. n S. have cardinality one. 
l. J 

(1.1) 

We will prove a Fisher type inequality of the form m < n. We will 

be especially interested in the case of m = n. Ryser studied these 

configurations extensively under the condition that each S. have non-1. 

empty intersection with at least n - 2 of the other subsets, or alter-

natively, that each Si have an empty intersection with at most one other 

subset. He showed that except for two low order cases such configura­

tions are either finite projective planes or symmetric group divisible 

d . 1 es1.gns. 

In this investigation we will weaken the hypothesis by requiring 

that each S. have non-empty intersection with at least n - c of the 
l. 

other subsets for some fixed positive integer c. Under these conditions 

we are able to prove the following theorem. • 

Suppose that 

s. 
l. 

>3 (i=l, .. . ,n) (1.2) 

1 
H. J. Ryser, Subsets of a finite set that intersect each other in 

at most one element, Journal of Combinatorial Theory A, Vol. 17, No. 1, 
July 1974 , p. 60. 
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(ii- j; i,j = 1, ... ,n). (1.3) 

Suppose further that each Si has non-empty intersection with at 

least n - c of the other subsets for some fixed positive integer c. 

Then either 

(1) n < N(c), where N(c) is~ positive number depending only on c, 

d N() . l h 11 2 an c is ess t an 2 c 

or 

(2) The following conditions hold. 

(i) I S. I = I S. I = k, ~ c.onstant (i,j = 1, ... ,n). 
1 J 

(ii) Each element of Sis an element of exactly k 

of the subsets. 

(iii) All the subsets have non-empty intersections with the 

same number of other subsets. 

We remark that configurations (2) above include finite projective 

planes and symmetric group divisible designs with Al= 0 and A2 = 1 

but allow for still other configurations. 

Finally, we will concentrate on those configurations of (2) above 

for which all the subsets have non-empty intersection with exactly n - 3 

of the other subsets. In this case, the rows and columns of the inci­

dence matrix may each be partitioned into cycles in a natural way. We 

will show that the cycle sizes of the row partition are the same as the 

cycle sizes of the column partition. We will also prove a divisibility 

relationship on the sizes of the cycles. 
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CHAPTER II 

Fisher Type Inequality 

Let x
1

, ... ,xn denote the elements of an n-set Sand suppose 

s1 , ... ,Sm are m subsets of S. The incidence matrix A= [aij] of the 

subsets s
1

, ... ,Sm of Sis defined by 

a .. = 1 if x. E s. (2 .1) 
l.J J l. 

(i = 1, ... , m; j = 1, ... , n) 

a .. = 0 if x. ff. Si 
l.J J 

Again we let 

I Si I = k. (i = 1, ... , m) . (2.2) 
l. 

Thus the sum of row i of A is k .. We denote the sum of column j of A 
l. 

by£ .. We note that£. counts the number of occurrences of x. in the 
J J J 

sets s
1

, ... ,Sm A line of a matrix denotes either a row or a column of 

the matrix. 

Two (O,l) matrices are equivalent provided that one is transform-

able into the other by row and column permutations. These operations on 

the incidence matrix correspond to a renumbering of subsets and elements. 

Thus we frequently do not distinguish between equivalent matrices. 

We now define a matrix Y by the equation 

T A A = Y, (2. 3) 

where AT is the transpose of the matrix A. The matrix Y has the 

cardinality of S. n S. in the (i,j) position. 
l. J 

Suppose these subsets of S satisfy 
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I s -. n s. 1. < 1 
l. J -

(if: j; i,j = l, . . . ,m). (2 . 4) 

We let wi denote the number of subsets Sj such that 

I s. n s. I = 1 (j = l, . . . ,i - l,i + l, .. . ,m). 
l. J 

(2 . 5) 

The number w. is called the intersection count of set S. and is the sum 
l. l. 

of row i of Y with k. excluded . 
l. 

2 
We now state a theorem by Ryser which is essential for the proof 

of Theorem 2.2. 

Theorem 2. 1 . Let them subsets of an I1-Set S satisfy 

I s. I = k. 
l. l. 

(i=l , ... ,m) (2.6) 

and 

I s. n s. I < 1 - (if: j; i,j = l, ... ,m). 
l. J -

(2.7) 

Suppose that the intersection count wi of Si satisfies 

w > m - k . + 1 
i - l. 

(i = l, ... ,m). (2.8) 

Then 

m < n. (2 . 9) 

Now we consider the situation in which each subset has non-empty 

inter section with at least m - c of the other subsets for some fixed 

positive integer c. Thus the intersection count satisfies 

W. > m - C 
l. -

(i = l , .. . ,m) . 

Theorem 2.2. Let s1 , ... ,Sm be m subsets of an n-set S with 

(2 . 10) 

2 
H. J. Ryser , Subsets of a finite set that intersect each other in 

at most one element, Journal of Combinatorial Theory A, Vol . 17 , No . 1 , 
July 1974, p. 60. 
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> 3 (i=l, ... ,m) (2 .11) 

and 

I s ns. 1· <l 
i J -

(i -I j; i,j = l, ... ,m). (2.12) 

Suppose further that for some fixed positive integer c the intersection 

count wi of set Si satisfies 

(i = l, ... ,m). (2 .13) 

Then either 

m < n (2.14) 

or there exists a minimal positive integer M(c) depending only on c 

such that 

m .::_ M(c). (2.15) 

Proof. We may assume c _::. 3, since for c = 1 and c = 2 w. 
1 

satisfies equation (2.8) and, thus m < n. 

Suppose now m > n. Then by Theorem 2.1 we know wi .::_ m - ki for 

some i = 1, ... ,m. This means m - C < m - k. and so k. < c. We may 
1 1-

normalize A so that k
1 

.::_ c and the first row has a 1 in each of the 

first kl columns. Since w ·> m - c there must be at least m - c l's 
1 -

in the first k
1 

columns of rows 2 through m. None of these rows has two 

or more l's in the first k1 columns since then I Sin s.j > 1 for some 
.l 

j=2, ... ,m. 
m-c 

We note that one of , the first k1 columns must have -c-

or more l's in rows 2, ... ,m. We may assume this is the first column. 

Including the 1 in the , first row we get Q
1 

_::. ~. We may arrange the 

rows and columns of A so that A takes the form 
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-
1 1 ... 1 o ... 0 0 ... 0 0 ... 0 o ... 0 

1 o ... 0 1 ... 1 0 ... 0 0 ... 0 0 ... 0 

1 o ... 0 0 ... 0 . 0 ... 0 0 ... 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
(2 .16) 

1 0 ... 0 o ... 0 . o ... 0 0 ... 0 

.l o ... 0 0 ... 0 o ... 0 1. .. 1 o ... 0 

0 . 
* * . * * * . 

0 
-

m 
Notice that Q 1 < 7 because ki ~ 3 for each i implies n ~ 1 + 2Q 1 

m and thus Q
1 
~ 2 forces n > m. Notice that we may also suppose that 

Q
1 

- (c - 1) > 0 because Q1 - (c - 1) ~ 0 and Q1 ~~implies m < (c - l)c 

so that (2.15) is valid. 

Now, row Q
1 

+ 1 must have a 1 in at least Q1 - (c - 1) of the 

blocks of columns formed by the l's in the first Q1 rows of A since, 

otherwise, wQ + 1 < m - c. 
1 

Row Q
1 

+ 2 must also have at least 

Q - ( c - 1) l's in these blocks. 
1 

At most orte of these l's is in a 

column in which row Q1 + 1 has a 1 since, ptherwise, I sQ
1 

+l n sQ
1 

+2 

> 1. Continuing in this manner we see that row £1 '+ t, (1 2-_ t 2-_ £1 -

(~ - 1)), must have Q1 - (c - 1) l's in these blocks and at most t - 1 

of these l's are in columns which contain a 1 in rows 

Ql + l, ... ,Ql + (t - 1). Notice that we have 2~ 1 - (c - 1) < Ill because 

i\ m 
we already know that <z. 

Now using Q1 > c - 1, we estimate the number of columns in A by 
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summing the number of c-0lumns of row i\ + t which contain a 1 but do not 

contain a 1 in any of the preceding rows l\ + 1, ... ,Q 1 

are at least Q -
1 

(c - 1) - (t - 1) such l's in row Ql 

we have 

Thus we may conclude that 

Q1-(c-l) 
m > }: i = (Q l - C + 1) (Q l - C -t- 2) /2, 

i=l 

m 
and since 21 ~ c we have 

(m m 
m > c - c + 1) <c - c + 2)/2. 

We solve this inequality and find 

m < 4c
2 

- 3c + c /(4c - 3)
2 

- 4(c2 - 3c + 2) 
2 

Thus the theorem is proved. 

+ (t - 1). There 

+ t. Since m > n 

+ 1. (2.17) 

(2.18) 

(2.19) 

(2.20) 
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CHAPTER III 

The Case n = m 

Let s1 , ... ,Sm be m subsets of an n-set S satisfying the conditions 

of Theorem 2.2. We know by this theorem that except for a finite number of 

configurations the number of subsets is less than or equal to the number 

of elements in S. We would now like to study those configurations for 

which equality holds. 

Some combinatorial objects of great interest fall into this cate­

gory. The finite projective planes satisfy these conditions for any 

C > 1. 

A symmetric group divisible design is a set of n subsets 

s
1

, ... , Sn of an n-set S that · satisfy the following conditions. 

(1) Each subset S. of a k-subset of S (i = l, ... ,n). 
1 

(2) The subsets may be partitioned into b components, where each 

component contains exactly n/b subsets. 

(3) Two distinct subsets in the same component have exactly Al 

elements in common and two subsets in different components have exactly 

A
2 

elements in common. 

A symmetric group divisible design with A
1 

= 0 and A
2 

= 1 satisfies 

the conditions of Theorem 2.2 for any c > n/b. A finite projective 

plane of order t may be used to construct a symmetric group divisible 

design on the parameters 

2 
n = t , k = t, b = t, Al= 0, A2 = 1. (3 . 1) 

This is done by simply deleting the first t + 1 rows and the first t + 1 

columns of the normalized incidence matrix of the plane. 
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We now restate the theorem which will be the principal result of 

this section. 

Theorem 3.1 Let s1 , ... , Sn be n subsets of an n-set S. 

Suppose that 

I Si I > 3 (i = l, ... ,n) (3. 2) 

and that 

I s. n s. 1· < 1 (i I j: i,j = l, ... ,n). 
1 J -

(3. 3) 

Suppose further that each Si has non-empty intersection with at 

least n - c of the other subsets for sowe fixed positive integer c. 

Then either 

(1) n < N(c), where N(c) is a positive number depending only on c, 

and N (c) is less than 
1l c2

, 

or 

(2) The following conditions hold. 

(i) I s. I = I s. I = k,, ~ constant (i,j = l, ... ,n). (3.4) 
1 J 

(ii) Each element of S is an element of ---
exactly k of the subsets. 

(iii) All the subsets have non-empty intersection with the 

same number of other subsets. 

In terms of the incidence matrix A, the hypotheses of the theorem 

say that A is square, each row sum of A is greater than or equal to 3, 

and 

T A A = D + J - E (3.5) 

where Dis a diagonal matrix, J is the matrix of l's, and Eis a (O,l) 
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matrix with row sums less than or equal to c - 1. 

The conclusion is that if n is sufficiently large A has constant 

line sums and E has constant row sums. 

If Sin Sj = <P we will say Si and Sj are linked or that Si is 

a link of S. and vice versa. Under the conditions of Theorem 3.1 each 
-- J 

subset has at most c - 1 links associated with it. Two rows of the 

incidence matrix A will be linked if the subsets associated with each 

are linked. We note that if two rows of A are linked then their inner 

product is O. 

For the remainder of this chapter ··we will assume the set S and its 

subsets s1 , ... ,Sn satisfy the hypotheses of Theorem 3.1 and that A is 

the incidence matrix for these subsets. Recall that k. is the sum of 
l. 

row i of A and£. is the sum of column j. 
J 

Lemma 3.2. Suppose some column of A has column sum£. > n - s 
-- --- --J-r 

for constants rands, r > O. Then n 2_ N(r,s,c), where N(r,s,c) is a 

positive number , depending only on r, s, and c . 

Proof. By exactly the same method employed in Theorem 2.2 we count 

the number of columns of A and we find 

n > (Q. - C + 1) (£ . - C + 2) /2 . (3 . 6) 
- J J 

Then Q. 
n - s implies > 

J r 

n - s - c + l)(n - s 
- C + 2)/2 (3 . 7) n > ( 

r r 

and 

2 
- 2ns + 2 2 t s n - s + + 3c + 2)/2. (3.8) n > - (2c - 3) C 2 r 

r 
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As n gets large the n
2 

term on the right hand side dominates and the 

right hand side of (3.8) becomes larger than n. So for (3.8) to hold 

we must have n _:: N(r,s,c) where N(r,s,c) is a positive number depending 

only on r, s, and c. 

Lemma 3. 3. Let Si be ~ subset of S. Suppose in column j of A, that 

aij = 0 and atj = 0 for each subset st linked to s .. Then Q. < k .. ----- 1 -- J - 1 

Proof. We may permute the rows and columns of A so that a .. = 0 
1] 

is in the (1,1) position and A ass-umes the form 

~ 

0-0 1. .. 1 0 . . . 
1 

p * 

1 · 
(3. 9) 

0 

* * . 
0 - -

Each row of P must contain exactly one 1 since these rows of A cannot 

correspond to subsets linked to Si. However, P- may have at most one 1 in 

each column. Hence Q. < k .. 
J - 1 

We now define a matrix B = [bij] of order n as follows. If aij = 0 

and atj = 0 for each st linked to s.' then b .. = 1. Otherwise, b .. = o. 
1 1] 1] 

The term rank of a (0,1) matrix is the maximal number of l's no two 

on a line in the matrix. The Frobenius-Konig theorem says the term rank 

is equal to the minimal number of lines of the matrix necessary to cover 
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all the l's. 

Lemma 3.4. For sufficiently large n, Bis of term rank n. 

Proof. By Lemma 3.2 it is only necessary to prove that, if B does 

not have term rank n, it must contain a column with n - s or more l's 
r 

for fixed constants sand r with r > 0. 

First, suppose B has a row of O's. We may arrange the rows of A so 

that the row of O's in Bis the first row and so that the rows of A 

linked to this new first row of A are rows 2, ... ,p where p < c. Since 

the first row of Bis all O's, the column sum in the first prows of A 

is at least 1 for every column of A. So A takes the following form 

after permuting the columns. 

- -
1 ... 1 o ... 0 0 . . . 0 0 ... 0 

0 ... 0 1. .. 1 0 . . . 0 0 ... 0 

0 ... 0 . o ... o 
p . . . . . . . . . 

(3.10) . . . . 
o ... o . 0 ... o 

. 0 ... 0 * * 1. .. 1 

* * * * 
'- -

Thus the columns of A have been divided into c or less groups. If n > c 

there must be rows beyond the first prows. If one of these rows has 

more than c l's, one of the groups of columns must contain two or more 

of them. This would mean there are two sets which intersect in more 

than one element. So some row i of A has c or less l's. Except for the 
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rows linked to this row, each row of A must have a 1 in the c or less 

columns of row i which contain l's. So one of these columns must have 

n - C 

C 
+ 1 =nor more l's and we are done, when B has a row of O's. 

C 

Suppose B has a column of O's. Look at the corresponding column 

in A. Suppose it contains t l's. Associate with each 1 the row it is 

in and all rows linked to that row. Each row must be associated with a 

1, since otherwise there would be a 1 in that row of Bin this column. 

There are c or less rows associated with each 1, son< tc and, thus, 

n t > -. Hence we are done when B has a column of O's. 
C 

We may now assume B has neither a tow of O's nor a column of O's. 

If B does not have term rank n then B has a minimal cover of e rows and 

f columns where 

e + f < n, 0 < e,f < n. 

We let 

e' = n -e, f' = n - f. 

Then 

e' + f' > n,O < e',f' < n. 

Actually, e' > 1 and f' > 1 because e' = 1 implies f' 

implies e' = n. 

We normalize B so that 

(3 . 11) 

(3.12) 

(3.13) 

n and f' = 1 

B = ~ j (3 . 14) 

where O is the zero matrix of size e' by f'. The matrix A assumes the 

form 

A (3 . 15) 
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where Y is of size e' by f' and corresponds to the zero matrix of B. 

Now, suppose f' 
2 

< C • This implies e' 2 
> n - C • By associating 

rows with the l's in a column of Y we see that a column of Y and thus 
2 

column of A have n - C l's in it. some must 
C 

Finally, f' 2 
Look at row 1 of A and the rows linked suppose > C . 

to it. The submatrix formed by the intersection of these rows with the 

first f' columns of A must have column sum at least 1 for each column. 

Since there are c or less rows in this submatrix, some row, say row Q, 

of A contains c + 1 or more l's in these first f' columns because 

f' > c
2

. Suppose a row of A which is not linked to row Q passes through 

Y. Then it or one of its links must have two l's in the columns that 

row Q has l's. This contradicts (3.3). So only rows linked to row Q 

may also pass through Y and thus e' < c and f' > n - c. 

We arrange the rows and columns of A so that row 1 is still the 

initial row, the rows linked to it are rows 2, ... ,t where t 2 c, and A 

is of the form 

-- -
1. .. 1 0 ... 0 0 ... 0 o ... 0 0 ... 0 

o ... 0 1. .. 1 0 ... 0 0 ... 0 0 ... 0 

o ... o . 0 ... 0 o ... 0 
t 

. . 
* 

. . . . . . . . . . . (3 .16) . . . . . . 
o ... 0 0 ... 0 o .. . o 

o ... 0 * * 1 ... 1 o ... 0 

* * * * X 

- -
The matrix X has n - trows and less than c columns. If X has a row 
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of O's then that row of A may have at most c l's and this implies 

there is a column of A with.!!. or more l's. If X has no row of O's 
C 

then it must have a column with n - ~ l's. 
C -

Thus, considering all the possibilities, if Bis not of term rank n 
2 n - C 

there is a column with --- or more l's. Hence, for sufficiently 
C 

large n, Bis of term rank n. 

Lemma 3.5. There exists an ordering of the rows and columns of A 

such that \ = 21 , ... ,kn = Qn' provided n is sufficiently large. 

Proof. By -Lemma 3.4 we can arrange the rows and columns of B so 

that B has a 1 in every main diagonal p·osition. In terms of A this 

means aii = 0 and aiQ = 0 for each s2 which is linked to Si(i = l, ... ,n). 

Therefore, by Lemma 3. 3 Q. < k .. 
1 1 

so equality holds for each i. 

. .. + k 

Lemma 3.6. If n is sufficiently large, then A has constant line 

sums. 

Proof. We need only show that if n is large enough to force B to 

be of term rank n and if A does not have constant line sums then A 

n 

n - s 
contains r l's in some column. Applying Lemma 3.2 then proves this 

lemma. 

We permute the rows and columns of A so that 

k = Q • 
n n (3.17) 

Suppose thqt A does not have all its line sums equal. Then we define 

the integer e by 

k 
l 

= k 
e 

> k ' e+l 
(3 .18) 
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where e < n. We let 

(3.19) 

where Y is now a matrix of size e' = n - e bye. 

Suppose row i intersects Y and it and all its links have O's in 

one of the first e columns, say column j. Then by Lemma 3.3 £. < ki, 
J -

but j < e and i > e which implies£.= k. > k., contradicting k. < k .. 
- . J J 1 J- 1 

2 
Suppose e > c. By the above argument, if row i passes through Y 

then in each of the first e columns there must be a 1 in row i or in one 

of the rows linked to row i. So there must be at least c + 1 l's in the 

first e columns of one of these rows, say row j. Now if any row not 

linked to row j intersects Y then it or one of its links must have two 

or more l's in the c + 1 or more columns in which row j has 1. This 

contradicts (3.3). Thus e' < c and e > n - c. 

We now arrange A as in Lennna 3.4 with the first row being a row 

that passed through Y and rows 2, ... ,t its links, where t _..::: c. Then X 

is a matrix of n-t rows and c or less columns. As in Lennna 3.4, if X 

has a row of O's, there is a column of A with at least.!!. l's. If X 
C 

doesn't have a row of O's then one of its columns has n - c or more l's. 
C 

2 
Finally, suppose e < c. Associate with each 1 in the first column 

of A the row it is in and all rows .of A linked to that row. If there 
2 

are less than n - c l's in the first column of A there will be a row of 
C 

Y which is not associated with any 1. However, this implies kj > k
1 

for 

some j > e as shown previously and this is a contradiction. Thus column 1 
2-

has at least n - c 1' d h. 1 th f f h 1 s, an tis competes e proo o t e emma . 
C 

Lemma 3.7. If A has constant line sums, then each subset is linked 
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to the same number of other subsets. 

Proof. Suppose A has constant line sums k. Then each has non­

empty intersection with exactly k (k -1) of the other subsets. So each 

subset is linked ton - 1 - k(k - 1) of the other subsets. 

We notice from the proofs of Lemma 3.4 and Lemma 3.5 that if condi­

tion (i), (ii), or (iii) of Theorem 3.1 does not hold there must be a 
2 

column of A with n ~ c or more l's. Thus by applying Lemma 3.2 we 

have proved Theorem 3.1. 

Now we wish to estimate N(c) for a fixed c. To do this we need 

only substitute c2 
= s and c = r in equ_ation (3.8) of Lemma 3.2. Solv-

ing the resulting inequality gives us 

n < (6c2 - 3c + c /2oc
2 

- 36c + 1 )/2. (3.20) 

While this number is not real for c = 1, we see from (3.7) if 

r = s = c = 1 that if A does not have constant line sums 

n > ri(n - 1)/2. (3.21) 

The smallest configuration is of size 7 by 7 so equation (3.21) never 

holds and all configurations for c = 1 have constant line sums. Thus 

N(c) < (6c2 - 3c + c l2oc2 - 36c + 1)/2 (3. 22) 

for c > 2 and for c = 1 conditions (i), (ii), and (iii) of Theorem 3.1 

hold. Fina1ly we notice that 

(Sc) 2 
> 20c2 - 36c + 1 

and thus a simpler, though less accurate, estimate is 

11 2 
N(c) <~ • 

(3. 23) 

(3. 24) 
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CHAPTER IV 

Determination of N(3) 

We know that all configurations satisfying the hypotheses of 

Theorem 3.1 for c = 1 have constant line sums and are projective planes. 

For c = 2 Ryser showed that there are only two configurations without 

constant line sums. One is of order 9 and the other of order 10. 3 So 

N(2) = 10. In this section we will show N(3) = 18 by finding the unique 

largest configuration for c = 3 without constant line sums. 

Let us recall the situation for c = 3. s
1

, ... ,Sn are n subsets of 

an n-set S such that 

(i=l, ... ,n) (4.1) 

and that 

(i 'f j, i,j = 1, ... ,n). (4.2) 

We further suppose that each Si has non-empty intersection with at least 

n - 3 of the other subsets. The matrix A is the incidence matrix for 

this configuration. We wish to determine the largest n for which A does 

not have constant line sums. 

By letting c = 3 in equation (3.22) we find 

N(3) > , (45 + 3/73)/2 < 36. (4.3) 

Thus if A does not have constant lin sums n < 35. As in the proofs of 

Theorem 2.2 and Lemma 3.2, if a column of A has column sum Q then 

n > 

2-2 
i: i = (Q- 2) (Q- 1)/2. 

i=l 
(4 . 4) 

3H. J. Ryser, Subsets of a finite set that intersect e ach other 
in at most one element, Journal of Combinatorial Theory A, Vol . 17, 
July 1974, No. 1, p. 60. 

/ 
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This implies the maximal column sum of A is 9 or less since n < 35. 

We recall that k. represents the sum of row i of A and Q. represents 
1 J 

the sum of column j. We may assume that the maximal column sum occurs 

in the first column and that the Q
1 

l's of column 1 occur in rows 

1, ... ,Q
1

. We may also assume that the rows have been arranged so that 

(4.5) 

and that the rows and columns of A have been permuted so that A is of the 

form 

1 1 •··. 1 o ... 0 0 ... 0 o ... 0 -
-· 

1 0 ... 0 1. .. 1 o ... 0 o ... 0 

·• . o ... 0 . . . 
. . . . . . . D 

. . . . . . . . 
. . 0 ... 0 

1 0 ... 0 o ... 0 o ... 0 1. .. 1 

0 1 o ... 0 
. . . . 
. . . . c2 * * * (4. 6) 

. . . . 
0 1 o ... o . . . 

* * * . . 
0 ... 0 1 
. . . 

Ck . . . * * * . . . 1 
0 ... 0 1 

B * * * * 
-

where D and Bare matrices of O's if they exist at all. B has at most ~ 

two rows and the rows of B represen t the subsets which have empty inter­

section with s
1

. ct ( t=2, ... , k
1

) is a ma t r 1.x of k2 - 1 columns and Qt - 1 

rows. We will consider the possible values of Q1 , the ma ximal column 
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sum. 

Suppose £
1 

= 9. Then, since n..::.. 35, we must have k
1

..::.. 4. If 

k = 4 then also k2 
= 4 and c2, c

3 
and c4 have three columns. Thus 1 

c2, c3, and c4 each have at most three l's. Of all the rows of c2, C3, 

and c4 at most two are all O's since row 2 has inner propact 0 with at 

most two other rows. Thus A has at most 22 rows. But n < 22 implies 

k
1 

= 3, contradicting k
1 

= 4. 

If £
1 

= 9 and k
1 

= 3, then c2 and c
3 

have at most eight rows 

apiece and n < 27. This implies k2 < 4 and thus n _2 19 by reasoning as 

above. But if n < 19 then k2 = 3 and this implies n < 17 which in turn 

implies k
1 

< 3. This contradicts (4.1). Thus £
1

-; 9. 

Suppose £
1 

= 8. This implies k < 5. 
1 -

If k
1 

= 5 then k
2 

= 5 also, 

and c
2

, ... ,c
5 

each contain at most four l's. Therefore A can have at 

most 28 rows which implies k1 ~ 4, contradicting k
1 

= 5. If k
1 

= 4 

then n < 31 which implies k2 = 4. It follows that n < 21 implying k
1 

= 3 

and contradicting k
1 

= 4. If k
1 

= 3 then n < 24 and thus k
2

..::.. 4. How­

ever, k2 ..::_ 4 implies n < 18 which in turn implies k
2 

= 3. This forces 

n < 16 and then k1 < 3. Thus £1 -I 8. 

Next, suppose £
1 

= 7. By the same methods employed for £
1 

= 8 

and ~ 1 = 9 we can show k1 = 3 and n < 15. If n < 15 then k
1 

< 3. If 

n = 15 A may be put in the form 
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--
111 00 00 00 00 00 00 
100 11 00 00 00 00 00 
100 00 11 00 00 00 00 
100 00 00 11 00 00 00 
100 00 00 00 11 00 00 
100 00 00 00 00 11 00 
100 00 00 00 00 00 11 (4.7) 

010 
... 

c2 * * * * * ... 
. . . 
010 

001 ... 
... c3 * * * * * . . . 
001 

.. 

000 10 1 0 1 0 1 0 
* * 000 0l 0 1 0 1 0 1 - -

where c2 has two rows and c 3 has four rows or c2 and c
3 

each have three 

rows. Now in the rows of A which pass through c2 there must be a 1 in 

columns 4, 6, 8, and 10, since otherwise one of rows 2, ... ,5 would have 

inner product 0 with at least three other rows, contradicting c = 3. But 

then two of these l's must be in the same row of A and thus row 14 has 

inner product 2 or greater with this row which is impossible. Thus 

If 2
1 

= 6 there must be a row with row sum 5 or less since other-

wise 2, < 6 (j = 1, .. . , n) and ki > 6 (i=l, ... ,n). But since 
J -

n n 
I: £. = I: k. this implies £. = k. = 6 (i,j = 1, .. . , n) and A has 

j=l J i=l 
l. J l. 

constant line sums. So k. < 5 for some i and this forces n < 28. 
l. 

Continuing as before we can show no configurations exist for 21 = 6. 
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Now suppose £1 = 5. There must be a row with row sum 4 or less . 

This implies n < 19 and thus k1 < 4. If k1 = 3, then n < 15 and since 

we will show N(3) = 18 we need not consider this case further. If kl= 4 

then we have k2 = 4, k3 = 4 and k4 = 4 or 5. If k
4 

= 5 then A may be 

put in the form 

- -1111 000 000 0000 0000 
1000 111 000 0000 0000 
1000 000 111 0000 0000 
1000 000 000 1111 0000 
1000 000 000 0000 1111 

0000 100 100 1000 1000 
0000 010 010 0100 **00 

0100 100 
0100 010 (4.8) 
0100 001 * * * 
0100 000 

0010 100 
0010 010 
0010 001 * * * 
0010 000 

0001 100 
0001 010 * * * 
0001 001 - -

If there is a 1 in position (7,15), then filling in. the rest of matrix 

under the given conditions leads to a contradiction. If there is a O in 

position (7,15) we may assume there is a 1 in position (7,16) and a 1 

in position (18,8) or position (18,10). 

If position (18,8) has a 1, then we are again led to a contra­

diction. However , if there is a 1 in position (18,10) then A may be 

filled out and the only possibili ty for A up to row and column permutations is 
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- -
1111 000 000 0000 0000 
1000 111 000 0000 0000 
1000 000 111 0000 0000 
1000 000 000 llll 0000 
1000 000 000 0000 llll 

0000 100 100 1000 1000 
0000 010 010 0100 0100 

0100 100 000 0001 0100 
0100 010 001 0010 1000 (4.9) 
0100 001 100 0100 0010 
0100 000 010 1000 0001 

0010 100 001 0100 0001 
0010 010 000 1000 0010 
0010 001 010 0001 1000 
0010 000 100 0010 0100 

.. 

0001 100 010 0010 0010 
0001 010 100 0001 0001 
0001 001 001 1000 0100 - -

No configuration exists when k4 = q and if £
2 

2. 4 then n 2. 12. 

Thus, (4 .9 ) is the unique largest matrix . without constant line 

sums for c = 3 and thus N(3) = 18. 

A quick check of the inner products of the rows of this matrix 

reveals that it does indeed satisfy the hypotheses of Theorem 3.1. 

Each of the nine rows with row sum 5 has inner product 1 with every 

other row. The nine rows with row sum 4 may be put in three groups with 

three rows each where each row has inner product 0 with the other rows 

in its group and inner product 1 with all the remaining rows . The same 

is true for the inner products of the columns. We may rearrange the rows 

and columns so that the first nine rows have row sum 4 and the first nine 

columns have column sum 4. Also we may put the rows which have inner 

product 0 with each other into blocks of three and likewise the columns. 

When A is in this form we have 
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-400 
040 
004 

400 
040 
004 

400 

T T 
040 

AA =A A= 004 (4.10) 
5 

5 
5 

5 
5 

5 
5 

5 
5 -- -

where all the remaining entries are l's. We notice that this is a 

hybrid of the symmetric group divisible design with v = 15, k = 4, b = 5, 

Al= 0 and A2 = 1 and the projective plane of order 4 whose incidence 

matrix is of order 21. The order of A is exactly the average of the 

orders of these two designs and the rows with row sum 4 behave like rows 

of the symmetric group ,divisible design while the rows with row sum 5 

behave like rows of the plane. 

A may be obtained from the plane by permuting rows and columns until 

the first three rows and columns are of the form 
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110 111 000 000 000 000 000 
101 000 111 000 000 000 000 
011 000 000 111 000 000 000 

100 
100 
100 

010 
010 
010 

001 
001 
001 

000 
000 
000 

000 
000 
000 

000 
000 
000 

A (4.11) 

If the first three rows and the first three colu1nns are now deleted the 

resulting matrix A will now satisfy (4.10) and is thus equivalent to the 

matrix in (4.9). 

We notice that from any projective plane of order t we may delete 

three rows and columns as in (4 . 11) to obtain a configuration satisfying 

the hypotheses of Theorem 3.1 for c = t - 1 with c
2 + 3c rows and 

columns. No larger configuration without constant line sums is known 

2 4 
for any c so it has been conjectured that N(c) = c + 3c. 

A may also be obtained from the previously mentioned symmetric 

group divisible design whose incidence matrix is 

4 D. E. Keenan, D. A. Leonard , Qn a theorem of Ryser, Journal of 
Combinator ial Th eory A, to appear . 
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- -
000 100 100 100 100 
000 010 010 010 010 
000 001 001 001 001 

100 000 100 010 001 
010 000 010 001 100 
001 000 001 100 010 

100 100 000 001 010 
C = 010 010 000 100 001 (4.12) 

001 001 000 010 100 

100 001 010 000 100 
010 100 001 000 010 
001 010 100 000 001 

100 010 001 100 000 
010 001 100 010 000 
001 100 010 001 000 - -

We can border C with three new rows and three new columns to obtain 

A= 

100 000 000 111 000 000 
010 000 000 000 111 000 
001 000 000 000 000 111 

000 
000 
000 

000 
000 
000 

100 
100 
100 

010 
010 
010 

001 
001 
001 

C 

which satisfies (4 . 10) . 

(4 . 13) 
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One matrix of order 17 is known which satisfies the given condi­

tions. It may be obtained from (4.13) by simply deleting the first row 

and first column. We then have a matrix B of order 17 which satisfies 

,..... -
40 
04 

400 
040 
004 

400 
040 
004 

400 
040 
004 

5 
5 

5 
c; 
J 

5 
5 

._ -
where all other entries are l's. 

By deleting the first two rows of (4.13) we have a matrix D of 

order 16 again satisfying the hypotheses of Theorem 3.1. We see 

.... -
4 

400 
040 
004 

400 
040 
004 

T T D D=DD = 400 ,. (4 . 15) 
040 
004 

400 
040 
004 

5 
5 

5 - -
where all the remaining entries are l's. 
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We note that since the matrix C in (4.12) is symmetric, the 

matrices A, B, and D of (4.13), (4.14), and (4.15) respectively are also 

symmetric. Also, in these examples, if two rows have inner product 0 

then they have the same row sum. These properties do not necessarily 

hold for configurations of lower order. To see this we look at the 

matrix 

,- -
00 1111 0 1111 
00 0000 1 1111 

11 0000 1 0000 

10 1000 0 1000 
10 0100 0 0100 

E = (4.16) 10 0010 0 0010 
10 0001 0 0001 

01 1000 0 0100 
01 0100 0 0100 
01 0010 0 0001 
01 0001 0 0010 
~ -

E has a column with column sum 2 but no row with row sum 2. Thus no 

permutation of rows and columns could transform E into a normal matrix 

let alone symmetric . Also row 1 and row 2 have inner product 0 but 

row 1 has row sum 4 and row 2 has row sum 5. 
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CHAPTER V 

The Case c = 3 with Constant Line Sums 

We now turn our attention to those configurations which satisfy 

conclusion (2) of Theorem 3.1 with c = 3. Thus if A is the incidence 

matrix of such a configuration then A has constant line sums and each 

row of A has inner product 1 with exactly n - d of the other subsets, 

where J = 1, 2, or 3. If d = 1 then the configuration is a finite pro­

jective plane. If d = 2 the configuration is a symmetric group divisible 

design on the parameters 

n = k2 - k + 2, b = (k
2 

- k + ·2)/2, >..
1 

= 0, >..
2 

= 1, (5.1) 

where k is the cardinality of each of the subsets and bis the number of 

distinct components of the design. Thes~ configurations are known to 

exist for n = 8 and n = 14. 5 We will not concern ourselves further with 

these configurations. 

We now concern ourselves only with those configurations for which 

each row of A has inner product 1 with exactly n - 3 of the other rows. 

Equivalently, each subset S. of S has non-empty intersection with 
l. 

exactly n - 3 of the other subsets. For the remainder of this chapter 

the matrix A will be the incidence matrix of a configuration satisfying 

conclusion (2) of Theorem 3.1 in which each subset has non-empty inter­

section with exactly n - 3 other subsets . Thus A is any (0,1) matrix of 

order n which satisfies 

AAT = (k - 1) I+ J - E, (5.2) 

5R. C. Bose, S.S. Shrikhande, and K. N. Bhattacharya, On the 
construction of group divisible incomplete block designs, Ann. Math. 
Statist. , Vol . 24, 1953, p . 176. 
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where k > 3 and Eis a syrmnetric (0,1) matrix of order n with all line 

sums equal to 2 and with O's in each of then main diagonal positions. 

If we let k denote the sum of each line of A then, since no two rows 

have inner product greater than 1, each row of A has inner product 1 with 

exactly k(k - 1) of the other rows. Thus we may conclude that 

n = k
2 

- k + 3. (5. 3) 

No two columns of A have inner product greater than 1 since this would 

imply there are two rows with inner product greater than 1. So each 

column of A has inner product 1 with exactly k(k - 1) = n - 3 of the 

other columns. Thus AT is also the in~_idence matrix of a configuration 

satisfying these required conditions. One of the main conclusions of 

this chapter will be that the rows and columns of A may be permuted so 

that 

(5.4) 

A matrix satisfying equation (5.4) is said tc be normal. 

To study the structure of A we need to arrange the rows and columns 

of A in an appropriate order . We recall the definition that rows are 

linked if their inner product is O. We apply the same definition to the 

columns. Since each row is linked to two others, the rows may be grouped 

into cycles with each row linked to the rows immediately preceding and 

following itin the cycle . The first and .last rows of each cycle are 

also linked . Likewise, the columns may be grouped into cycles. If the 

rows and columns of A have been arranged in cycles in this manner then 

we say that A is cyclically normalized. If A is cyclically normalized 

the matrix E in equation (5.2) is of the form 
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E = (5. S) 

where each E. is a square matrix of order n. and 
l. 1. 

0 1 1 

1 
E. = = (C + c-1). (5.6) 

l. n. n. 
1 l. 1 

1 1 0 

Furthermore, all the remaining entries of each E. and 
1 

the circulant permutation matrix of order n. with a 1 
l. 

E are 0, C 
ni 

in the (1,2) 

tion, and n
1 

+ ... + nt = n. Each E. corresponds to a row cycle of 
l. 

size n., the number of rows in the cycle. 
l. 

is 

posi-

A cycle may contain as few as three rows or as many rows as there 

are in the entire matrix. Examples are known for these extreme cases. 

If each cycle contains exactly three rows then A is the incidence matrix 

of a symmetric group divisible design on the parameters 

n = t 2 2 I - t + 3 , k === t , b = (t - t + 3) 3, A
1
=0, A

2
=1. 

6 These _designs are known to exist fo r n = 9, 15 , and 45. 

For examples which have only one cycle encompassing all the rows of 

the matr ix we use the idea of planar near difference sets of type 2 as 

defined by Ryser. Suppose D
2 

= {d
1

, ... , dk} is a set of k residues 

modulo n (n ~ 4) with the property that for any residue a "1- 0,±1 (mod n) 

6
R. C. Bose, S. S. Shrikhande, and K. N. Bhattacharya, On the 

construction of group divisible i ncomplete block designs , Ann . Math . 
Statist ., Vol. 24 , 1953, p . 176 • 
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(5. 7) 

has exactly 1 solution pair (d.,d.) with d. and dJ. in D2 and no solution 
1 J l. 

pairs for the residues a = ± 1 (mod n). Then D2 is a planar near differ­

ence set of~ 2. Now the incidence matrix for D
2 

is 

(5.8) 

where C is the circulant permutation matrix of order n with a 1 in the 

(1,2) position. 

Hence we have 

(5.9) 

and 

T -1 
AA = (k - 1) I - J - (C + C ) . (5 .10) 

Planar near difference sets with k > 3 are known to exist for n = 9, 15, 

and 23. 
7 

The sizes and relationships of these row and column cycles are the 

objects of our investigation of these configurations. A submatrix of 

a cyclically normalized incidence matrix formed by the intersection of 

the rows of a row cycle and the columns of a column cycle is called a 

section. 

then 

We call an r bys matrix B = [b .. ] a right shift matrix if whenever 
l.J 

e = i + 1 (mod r) , f = j + 1 (mod s) (5 .11) 

(5.12) 

7 H. J. Ryser, Variants of cyclic difference sets, Proc. Amer. Math. 
Soc., Vol. 41, No. 1, Nov.1973, p . 49, 
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Bis called a left shift matrix if whenever 

e _ i + 1 (mod r) , f = j - 1 (mod s) 

then -

For example, 

are right shift matrices and 

and 

l O 1 0 0 
0 1 0 1 0 
0 0 1 0 1 
1 0 0 1 0 
0 1 0 0 1 

(5 .13) 

(5.14) 

(5.15) 

is a left shift matrix. We notice that reversing the ~yclic order of the 

rows (columns) of a right shift matrix transforms it into a left shift 

matrix and vice versa. 

Theorem S. 1. Suppose that B is an r bys section of ~ cyclically 

normalized incidence matrix A. Then Bis~ right or left shift matrix 

Proof. We may assume that Bis the intersection of the first r rows 

and the firsts columns . If B = 0 it is a shift matrix so we may assume 

B / O. By cyclically permuting the rows and columns we may move any 1 in 

B to the (2,2) position with A still cyclically normalized. This row 2 

is linked to row 1 and row 3 and column 2 is linked to column 1 and 

column 3. Suppose now that there are O's in positions (1,1) and (1,3). 

In that case we permute the rows and columns of A other than the first 
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three rows and the first three columns so that A is of the form 

0 0 0 1 
0 1 0 0 
* 0 * 
0 1 0 

0 1 0 

0 

0 

p 

* 

-
1 0 . . . . 0 
0 

* 

* 

(5.17) 

where Pis a submatrix of k - 1 rows and k columns. No column passing 

through Pis linked to column 2 so each column of P contains a 1. How­

ever, this means some row of P contains more than one 1. But this 

contradicts the hypothesis that the inner product of any two rows is at 

most 1. Hence there must be a 1 in position (1,1) or position (1,3) . 

Likewise, for any two entries in adjacent corners of the initial 3 by 3 

matrix at least one of them is a 1. Hence each 1 ln B must have l's 

immediately before it and after it in either the right shift direction 

or the left shift direction. We will now need a short lemma before 

finishing this proof. 

Lemma 5.2. Suppose that three consecutive rows of a row cycle and 

three consecutive columns of a column cycle intersect~ form~ submatrix 

of one Ei_ the following types: 

(5.18) 
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---------

~ ~ ~l 
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(5.19) 

Proof. We may assume this subrr~trix is made up of the first three 

rows and columns of A. Suppose the submatrix is of the first type shown 

in (5.18) and there is a O in the* position. We may permute the remain­

ing rows and columns of A so that A is of the form 

~ 

0 1 0 
1 0 0 
0 1 0 

0 1 0 

. • . . • 
0 1 0 

* 

-

0 
1 
0 

p 

* 

0 
1 
0 

* 

* (5.20) 

* 

-
where P has k - 2 rows and k - 1 columns. There must be at least one 1 in 

each column of P and no more than one 1 in each row of P. This is a 

contradiction so that there must be a 1 in the* position. The proof is 

the same for the other matrices in (5.18). 

Now we return to the proof of Theorem 5.7 . By reversing the cyclic 

order of the rows in this row cycle, if necessary, we may assume the main 

diagonal of this initial 3 by 3 matrix is all l's. We claim that now the 

right shift diagonal of B through these three l's is, in fact, all l's. 

If not, then continuing in the right shift direction we must encounter a 

first 0. Since each 1 in B must have l's immediately before and after it 

in either the right shift direction or the left shift direction we must 
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then have a submatrix of three consecutive rows and columns which looks 

like 

where the above mentioned O is in the lower right hand corner. Now two 

applications of Lemma 5.2 give us a submatrix 

UOl~ 0 1 0 
1 0 1 

(5.22) 

where the 1 in the lower right hand corner of (5 . 22) is the 1 in the 

center of (5.21). But now two rows of A must have inner product greater 

than 1. Thus for each 1 in B either the right shift diagonal through it 

or the left shift diagonal through it is all l's. If the right shift 

diagonal through some 1 in Bis all l's and the left shift diagonal 

through some 1 in Bis all l's, then these diagonals cross each other and 

there is a submatrix of the form 

[
lOU 0 1 0 
1 0 1 

or (5.23) 

which is a contradiction. Thus the shift diagonal of l's through each 1 

of B must go in the same direction and thus Bis a shift matrix. 

Finally, we show that if B # 0 then rls or sir. We may assumer< s 

since otherwise we may consider AT. We may a lso assume there is a 1 in 

position (1,1) and the right shift diagonal through (1 , 1) is all l's , 

Let 

s = ar + b, 0 < b < r. (5.24) 
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If b :/: 0 then there is a 1 in position (1, r + 1) and there is a 1 in 

position (b + 1, 1). There is also a 1 in position (b + 1, r + 1) 

since b + 1 - s + r + 1 (mod r)and r + 1 = s + r + 1 (mods). However, 

row 1 and row b + 1 now have inner product greater than 1 so that 

b = 0 and r Is. 
Corollary 5. 3. Suppose that B is an r bys section of A with B 'f 0 

and s = a: r, where a > 1. Then all column sums of B equal 1 and all row 

sums of B equal a. Likewise, if r = as, where a> 1, then all row sums 

of B equal 1 and all column sums of B equal a. 

Proof. Assume first that s = ar, . where a > 1. Then by 

Theorem 5.2 Bis a shift matrix so that B has equal row sums and equal 

column sums. We may assume Bis a right shift matrix and there is a 1 

in the (1,1) position of Band also in position (1, r + 1) since 

r + 1 = 1 (mod r). If there is another 1 in column 1, say in position 

(m,l), there is also a 1 in position (m, r + 1). But now row 1 and row 

m have inner product greater than 1. Hence B has column sums 1 and thus 

the total of the r equal row sums is s. Hence each row sum is a= s/r. 

If r = as, where a> 1, we simply consider AT and apply the above proof. 

Corollary 5.4. Suppose that A has two row (column) cycles of sizes 

a and b. Suppose also that a column (row) cycle of size c with 

c > max (a,b) forms a non-zero section with both of these row (column) 

cycles. Then c is the least common multiple of a and b. 

Proof, By Theorem 5.2 c is a multiple of both a and b. Let 

d = lcm(a,b) and suppose c > d. We may assume both sections are right 

shift matrices and each has a 1 in position (1,1). However, d + 1 = 1 
\ 

(mod a) and d + 1 = 1 (mod b) so each section also has a 1 in position 
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(1, d + 1) and the rows of A corresponding to the first row of each 

section have inner product greater than 1. Thus we have c = lcm(a,b). 

Corollary 5.5. Suppose that A has two row (column) cycles of sizes 

a and b with (a,b) = 1. Then only one column (row) cycle forms non­

zero sections with both of these row (column) cycles and this column 

(row) cycle is of size ab. 

Proof. At least one column cycle forms non-zero sections with both 

row cycles since otherwise each row of one cycle would have inner product 

0 with any row of the other cycle. Suppose a colu1111.7. cycle of size c 

forms non-zero sections with both row cycles. Then ale or cla and hie 

or clb by Theorem 5.1. However, since (a,b) = 1 we ~ust have ale and hie 

and thus by Corollary 5.4 c = lcm(a,b) = ab. By Corcllary 5.3 the sec-

tion with a rows has row sums band the section with brows has column 

sums 1. Since no two rows may both have l's in the same two columns, for 

any_ row in the section with a rows and any row in the section with brows 

there is exactly one column of this column cycle which has a one in both 

of these rows. If any other column cycle forms non-zero sections with 

both of these row cycles we must have rows with inner product greater 

than 1-. Thus this column cycle of size ab is the only one forming non­

zero sections with both of these row cycles. 

Theorem 5.6. The rows and columns of A may be permuted so that 

AAT = ATA. 

Proof. Cyclically normalize A and arrange the row cycles in order 

of increasing size from top to bottom and arrange the column cycles in 

order of increasing size from left to right. Then 

T 
AA = (k - 1)1 + J - E, (5.25) 
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where Eis of the form 

E = (5.26) 

In (5.26) each Ei corresponds to the i
th 

row cycle and its order ni is 

the number of rows in this row cycle. Each E. has the form 
1 

-1 
(5. 27) E. = C + C . 

1 n. ni 1. 

Also, we have 

where E' is of the same form as E except there may be a different number 

of blocks E~ and their sizes may be different from the blocks in E. Each 
1 

E~ now corresponds to a column cycle and its size is the number of 
1 

columns in the cycle. 

Thus if we show that there are the same number of row cycles of a 

given size as column cycles of that size, then AAT = ATA for A in this 

cyclically normalized form. 

It suffices to show that there are at least as many column cycles 

of a particular size as row cycles of that size, since applying this to 

AT gives us the reverse inequality. We need only show this for cycles of 

size greater than 3 since if there are the same number of row and column 

cycles for all sizes greater than 3 the remaining rows and columns must 

belong to ~ycles of size 3 and there must be the same number of each of 

these because the number of rows equals the number of columns·. 

Suppose there is a row cycle of sizer> 3. We may make this the 

first row cycle of a cyclically normalized A, no longer requiring that 
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the cycles be kept in order of increasing size. If Bis a non-zero 

section formed by this row cycle and a column cycle of sizes< r, then 

sir and Bis a shift matrix with a single 1 in each row. Thus the only 

rows of B which have a 1 in the same column as the 1 in row 1 are rows 

1 + s, 1 + 2s, ... , l + r - s. Since s > 3 row 3 does not have a 1 in this 

column. If Dis a non-zero section formed by this row cycle and a 

column cycle of sizes> r, then D has only one 1 in each column and no 

column of D has l's in both row 1 and row 3. However, since r > 3 row 1 

and row 3 of A must have inner product 1 so there must be a column cycle 

of sizer in which there is a column with l's in both row 1 and row 3. 

If there are fewer column cycles of sizer than row cycles of size 

r then there must be two row cycles such that their first and third rows 

both contain l's in a column of the same column cycle. However, by 

cyclically permuting the rows and possibly reversing their cyclic order 

both the sections can be made right shift matrices with l's in the first 

and third rows of the first column of each. Then the third row of each 

section has l's in the first and third columns. This is a contradiction, 

thus there are at least as many column cycles of sizer as row cycles of 

sizer and the theorem is proved. 

Theorem 5.7. Lets be the size of the largest row and column 

cycles of A. If r is the size of any other row or colum.'1 cycle of A then 

rls. 

Proof. Since the row cycle sizes and column cycle sizes are the 

same we need only show this is true for row cycles. Suppose there is a 

row cycle of sizer, where r does not divides. Given any row cycle of 

sizes there can be at most one column cycle which forms non-zero 
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sections with both of these row cycles. This is because the size of any 

such column cycle must divider ands since if it were of sized with 

r . < d < s then r Id and d Is so r Is. If there were two such column cycles 

of sizes a and b with a,b < r < s then by Corollary 5.4 r = s = lcm(a,b). 

If no column cycle forms non-zero sections with both row cycles then each 

row of one cycle has inner product O with each row of the other cycle. 

If only one column cycle of size a forms non-zero sections with both row 

cycles then each row of the r-cycle has inner product O with some of the 

rows of the s-cycle. In either case we have a contradiction so that rls. 

Theorem 5.8. Let a be the number.of row (column) cycles of A whose 

size is even and let b be the number of row (column) cycles of A whose 

size is odd. Then b ~ ~ odd integer and for k > 3 a is an even number. ----- -------
Proof. Since n = k

2 
- k + 3 is odd and n is the sum of the row 

cycle sizes there must be an odd number of odd cycles. The determinant 

of AAT must be a square since det (AAT) = [det (A)]
2

. To evaluate 

det (AAT) we first look at AAT - J = (k - l)I - E, where Eis of the 

form described in (5.26) and (5.27). Thus MT - J is a matrix which is 

all O's except for blocks down the diagonal of the form 

(k l)I - C . - C-l h h 1 f • d t - . were eac row eye e o sizer correspon s o 
r r r ' 

an r by r block. 

The eigenvalues of a block corresponding to a row cycle of sizer 

are -1 2 -2 ~r -r 
(k - 1) - o - o ,(k - 1) - o - o , ... , (k - 1) - u - o , where 

th i -i o is a primitive r root of unity. Since (k - 1) - o - o = 

1 ) r-i -(r-i) 
(k - - o ·- o • each eigenvalue has multiplicity two except for 

r r r/ -r/2 
(k - 1) - o - o- = k - 3 and, if r is even, for (k - 1) - o 2 - o 
= k + 1. Thus if r is odd the determinant of the block equals 
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r-1 
-r 

(k - 3)( IT (k - 1 - oi - o-i )) 2. 
i=l 

is a product of algebraic integers and their conjugates and is therefore 

the product of the norms of algebraic integers, which is an integer. 

Hence if r is odd there is an integer c such that 

det ((k - 1) I - C - c-1 ) 
r r r 

2 
= (k - 3) c . 

If r is even then 

det ((k - 1) I - C - c-1 ) = 
r r r 

where 

is an integer. Hence if r is even there is an integer d such that 

det ((k - 1) I - C - c-1 ) = 
r r r 

Thus we may conclude that 

det (AAT - J) = (k - 3)a+b (k + l)a h2 . 

T 
Now AA - J and J can be mutually diagonalized by a theorem of 
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T 8 
Hoffman , since AA has constant line sums. The matrix J has eigen-

values n =k
2
-k + 3 of multiplicity 1 and 0 of multiplicity n - 1. 

The column vector of all l ' s is associated with the eigenvalue n of J 

and the eigenvalue k - 3 of AAT - J. Hence we have 

for some integer m. Fork> 3 this integer is a square if and only if a 

is even, and the proof is complete. 

We remark that Theorem 5.8 does not hold fork= 3. 

The incidence matrix 

100 100100 
010 010010 
001 001001 

A = 100 010001 (5.28) 
010 101000 
001 010100 
100 001010 
010 000101 
001 100010 

satisfies the given conditions , but A has one row cycle of size 3 and 

one row cycle of size 6. 

The only other known configuration with any even cycle is 

8A. J. Hoffman, On the polynomial of a graph, Amer. Math. Monthly, 
Vol. 70 , 1963 , p . 31. 
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.... -
0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 
0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 
0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 

1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 
0 1 0 0 1 0 0 0 0 1 0 1 0 0 0 
0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 
1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 

A= 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 (5.29) 
0 0 1 0 0 0 0 0 1 

, 
0 0 0 1 0 .1. 

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 
0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 
0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 , 0 0 0 0 1 0 1 0 1 0 0 0 0 0 .1. 

0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 
0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 - -

which has one row cycle of size 3 and two row cycles of size 6. 

In fact these two configurations are the only ones we know which do 

not have all their cycles of the same size. 
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CHAPTER VI 

Configurations with Co£1stant Cycle Sizes 

We now look at those configurations satisfying conclusion (2) 

of Theorem 3.1 in which each subset has non-empty intersection with 

exactly n-3 other subsets and, in addition, all of the cycles of a given 

configuration must be of the same size. We will call such configurations 

monocyclic. For the remainder of this section A will be the incidence 

matrix of such a configuration. We will first relate these monocyclic 

configurations to another combinatorial object called a (v,k,A)-design. 

A (v,k,A)-design is a collection of v subsets s
1

, ... ,Sv of av-set 

S such that 

and 

s. 
1 

= k (i = l, ... ,v), 

s. n s. I = >, (i,lj; i,j=l, ... , v), 
1 J 

(6.1) 

(6.2) 

where O < A < k. If B is the incidence matrix of a(v,k,A)-design, then 

Bis av by v (0,1) matrix satisfying 

BBT = (k - A)l + AJ. (6.3) 

These designs and related matrix equations have been very heavily 

studied and we will use a non-existence theorem by Hall and Ryser to 

obtain a non-existence theorem on monocyclic configurations. 

Theorem 6.1. Suppose there exists~ monocyclic configuration with 

line sums k and cycle sizes r, r < n. Then there also exists av by v 

matrix B of non-negative integer entries and constant line sums k 

satisfying 

(6.4) 
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where 

2 
v = (k - k + 3)/r, k' = r - 3 + k, A= r. (6.5) 

Proof. Let A be the cyclically normalized incidence matrix for the 

monocyclic configuration. Let A .. denote the section of A formed by the 
l] 

• • f h i th 1 d h •th 1 1 intersection o t e row eye e an t e J co umn eye e. Since A .. 
i] 

is a square shift matrix of order r it has constant line sums, say b ... 
iJ 

Let v = n/r = (k
2 

- k + 3)/r be the number of row cycles. We form the 

v by v matrix B = [b .. ] . 
iJ 

Since A has constant line sums k we have 

V 

E bi.= k (i=l, ... ,v), 
j=l J 

V 
}; b .. = k (j = l, ... ,v). 

i=l iJ 
(6.6) 

Each row of A has inner product 1 with r - 3 of the rows in the same 

cycle. In a section with constant line sums b .. each row has inner 
i] 

product 1 with b .. (b .. - 1) of the other rows. 
iJ iJ 

Thus we have 

V 

E b .. (b. . - 1) = r - 3, 
j=l iJ iJ 

and by (6.6) 

V 
E 

j=l 

2 
b .. = 
iJ 

r - 3 + k. 

(6. 7) 

(6.8) 

Each row of A has inner product 1 with all r rows of any other 

1 id • h th 1 d h f h th 
eye e. Cons er a row int e p row eye e an t e rows o t e q 

1 Th • • f h • th 1 1 • h row eye e. e intersection o t e J co umn eye e int ese two row 

cycles accounts for b .b . of the v inner products which equal 1. Thus 
PJ qJ 

for p / q we have 

V 

E b .b . = r. 
j=l PJ qJ 

(6.9) 
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The arguments are the same for column cycles so by equation (6.8) and 

(6.9) we have 

BTB = BBT = (k - 3)r + rJ. 

We let r = A and k' = r - 3 + k and the theorem is proven. 

9 We will now use the following theorem byHalland Ryser. 

(6.10) 

Theorem 6.2 (Hall-Ryser) Let H be~ matrix of order v, where vis 

odd. Let H have the integer k' in the main diagonal positions, and the 

integer A in all other positions, where O < A < k'. If there exists a 

matrix B with rational elements such that 

then there must exist an integer T such that 

T
2 = (k' - A)+ VA, 

Moreover, the Diophantine equations 

and 

2 2 (v - 1) /'!. 2 
x2 = (k' - A) Yz + (-1) vz2 

must each possess solutions in integers not &11 zero. 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

If there exists a monocyclic configuration with line sums k > 3 and 

cycle sizes r, then there exists a matrix B with non-negative integer 

elements satifying equation (6.11) with v = (k
2 

- k + 3) /r, k' = r - 3 + k, 

and A= r. We notice that 

2 2 
(k' - A)+ VA= r - 3 + k - r +~(k - k + 3)/r)= k (6.15) 

so that equation (6.12) is always satisfied. By using these parameters 

9 Marshall Hall, H. J. Ryser, Cyclic incidence matrices, Can. Jour. 
of Math., Vol. III, No. 4, 1951, p. 495-496. 
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in equations (6.13) and (6.14) we obtain the following. 

Corollary 6.3. Suppose there exists~ monocyclic configuration 

with line sums k > 3 and cycle sizes r, where r . < n. Then the Diophan­

tine equations 

(6.16) 

and 

(6.17) 

must each possess~ solution of integers not all zero. 

We note that fork= 6 and r = 3 or 11 solutions exist to the 

Diophantine equations (6.16) and (6.17). Yet no monocyclic configura­

tions exist with these parameters. 

Fork= 9 and r = 15 equation (6.17) becomes 

2 2 2 
x2 = 6y2 + 5z2 , (6.18) 

which has no nontrivial solution. Fork= 9 and r = 25 equation (6.16) 

becomes 

2 2 2 x = 6y
1 

- 25z1 , (6.19) 

which has no nontrivial solution. So there are no monocyclic configura-

tions with line sums 9 and cycle sizes 15 or cycle sizes 25. For all 

other admissible parameters k and r with k < 14 equations (6.16) and 

(6.17) possess nontrivial solutions. 

The monocyclic configurations which have only one cycle of size 

n = k
2 

- k + 3 are equivalent to planar near difference set of type 2 

as described in section 5. This is because A may be taken to be a right 

shift matrix and thus 
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(6.20) 

and 

(6.21) 

Ryser proved that if a planar n£ar different set of type 2 of k integers 

(mod m) exists such that n is divisible by 3 then the Diophantine 

equation 

(6.22) 

must have a solution in integers x,y, and z not all zero. 

We now define a variation on these near difference sets. Let k be 

an integer with k ~ 3 and let r be an integer with r ~ 3, such that r 

divides n = k
2 

- k + 3. Let D .. (i,j = 1, ... ,n/r) be (n/r)
2 

subsets of 
1] 

distinct integers modulo r, possibly empty, such that 

r 
E lni

3
.I = k 

j=l 
(i = l, ... ,r). 

Suppose that for each i (i = l, ... ,r) and each a 1- 0, ±1 (mod r) 

(6.23) 

d (l)_ d(Z)= a (mod r) (6.24) 
ij ij 

h tl Solut1·on "th d(l) d(Z)E D f • S 1 as exac y one w1 ij' ij ij or some j. uppose a so 

that for each i and Q (if £;i,£ = l, ... ,r) and each residue a (mod r) 

the congruence 

has exactly one solution with dijEDij and dQj E DQj" We call these 

sets, Dij' a (k,r) near difference partition. 

For example, a (4,5) near difference partition is 
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Dll = {1,3}, n12 = · {l}, D
13 

= {l}, 

D21 = {l} n22 = {3,5}, n23 = {2}, (6.26) 

n
31 

= {l} , n32 = {2}, n
33 

= {3,5}. 

Theorem 6.4. If there exists~ (k,r) near difference partition 

then there also exists~ monocyclic configuration with line sums k and 

cycle sizes r. 

Proof. We form an n by n matrix A from the near difference parti-

tion as follows. Let 

All Al!!_ 
r 

A = (6.27) 

A A 
¥,1 nn 

'Tr 

where each Aij is an r by r matrix of the form 

dq) d~~) 
A .. = C 1J + ... + C 1J 

1J 
(6.28) 

(1) (t) 
where d . . , .•. ,d .. are the elements of D

1
.j and C is the r by r circulant 

1J 1J 

permutation matrix with a 1 in the (1,2) position. We note that 

Thus, if i I j then by (6.25) 

I + C + . . . + 

= J, 

r-1 • 
C 

(6.29) 

(6. 30) 
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where J is the r by r matrix of l's. If i = j then by (6.23) and (6.24) 

(6.31) 

But then we have 

AAT = (k - l)I + J - E, (6.32) 

where A, I, J and E are n by n matrices and E has all zero entries except 

for.!!. blocks of sizer by r down the diagonal of the form (C + c-1). r 

Thus A is the incidence matrix of a monocyclic configuration. 

We remark that all that is needed to prove the converse of Theorem 

6.4 is that A may be arranged so that all its sections are right shift 

• If h A h • f db h •th 1 d matrices. sot en .. , t e section orme y t e i row eye e an 
iJ 

j th column cycle, is of the form 

dq) d(t) 
= C iJ + ... + C ij (6.33) 

(1) (t) 
and if we let D .. = {d. , ... ,d. . } we have a (k,r) near difference 

iJ J ij 

partition. While we do not know if all monocyclic configurations can be 

so arranged, we may prove th~ following. 

Theorem 6.5. Let A be the incidence matrix .2.f i! monocyclic con-

figuration. Suppose some row cycle of A forms non-zero sections with all 

the column cycles£!:. A. Then the rows and columns of A may be arranged 

so that each section of A is a right shift matrix. 

Proof. We may assume the first row cycle forms non-zero sections 

with all the column cycles. By permuting only columns we may make all 

these sections right shift matrices with l's on the main diagonal of 

each section. For any other row cycle by permuting only the rows of 

that cycle we may make one of the non-zero sections it forms a right 
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shift matrix with l's on the diagonal. Any other section formed 

by this row cycle must also be a right shift matrix since any 

left shift matrix would have a 1 on the diagonal because the cycles 

must be of an odd size, and this would mean a row of the first 

cycle has inner product greater than 1 with a row of this cycle. 

The sections formed by the remaining row cycles may be similarly 

transformed in turn into right shift matrices without changing the 

shift direction of any previously transformed sections. Thus we 

can make every section a right shift matrix. 

The (4,5) near difference pa_rtition in (6.26) leads to a mono-

cyclicconfiguration with incidence matrix 

..... -
1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 
0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 
0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 
1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 
0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 

1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 
0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 

A= 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 (6.34) 
0 0 0 1 0 1 0 1 0 0 0 0 0 0 1 
0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 

1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 
0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 
0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 
0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 
0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 - -
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Chapter VII 

Sunnnary 

In this paper wE have studied various questions about subsets of 

a finite set S, each of which intersects most of the others in exactly 

one element and has empty intersection with the remaining few. We began 

by requiring only that each of these subsets contains three or more 

elements and has non-empty intersection with at most c-1 of the other 

subsets, for some fixed positive integer c. We added more restrictions 

on the subsets and their intersections along the way. Finally, by 

Chapter VI the number of subsets equals the number of elements of S, 

each subset has the same size, each element is contained in the same 

number of subsets, each subset has empty intersection with exactly two 

other subsets, and the cycles of subsets that arise are all the same 

size. 

Along the way we answered several questions most of which gave rise 

to new problems which remain to be solved. In the least restrictive 

case which allowed the number of subsets, m, to be different from n, 

the number elements of S, we showed in Theorem 2.2 that for any fixed c 

either m <norm is no larger than some positive integer M(c) which 

depends only on c. However, the exact value of M(c) is not calculated 

for specific values of c. 

Next we added the restriction that m = n since except for the low 

order configurations with m 2._ n this is the extremal case. We proved 

in Theorem 3.1 that either n 2.. N(c) where N(c) is a positive integer 

depending only on c, or the incidence matrix A of such a configuration 
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has constant line sums and each subset has non~-empty intersections with 

the same number of other subsets. These configurations are very nearly 

projective planes except that each line misses a few of the others. 

From any projective plan of order none can construct such a configura­

tion for c = n - 2 which does not have constant line sums. For c = 2 

and c = 3 these are the largest such configurations, leading to the 

2 conjecture that N(c) = c + 3c, at least when a projective plane of 

order c + 2 exists. 

We then restricted our attention further to those configurations 

for which A has constant line sums and each set has non-empty intersec­

tion with exactly n - 3 of the other subsets. We chosen - 3 since for 

n - 1 the configurations are the projective planes and for n - 2 they 

are special symmetric group divisible designs. With n - 3 there is a 

bit more freedom and configurations of different types can arise. The 

rows and columns of the incidence matrix can be partitioned into cycles 

in a natural way. We showed that the intersection of a row cycle and 

a column cycle, which we called a section, is a right or left shift 

matrix. We used this to show the number of row cycles of a given size 

is the same as the number of column cycles of that size. The corol­

laries that follow from the fact that the se~tions are shift matrices 

eliminate many conceivable cycle arrangements for configurations of a 

given order. However, there are still cycle arrangements, for instance 

cycles of sizes 3,5, and 15 in a configuration of order 23, which satis­

fy the corollaries but do not actually occur in any configuration. It 

is not known whether there are a finite or infinite number of these 

configurations either in the case where all the cycles are the same size 
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or where cycles of different sizes are allowed. 

Since the structure of each section is determined by the l's in its 

first row and whether it is a right or left shift matrix, a somewhat 

more complicated difference partition idea like that used in Chapter VI 

could be helpful in this area, especially when all the sections have the 

same shift direction. Besides the difference partition concept for 

configurations with equal cycle sizes, Chapter VI also showed that the 

existence of such a configuration implied the existence of a smaller 

matrix, B, with non-negative integral entries satisfying 

T BB = (k - A)+ AJ. This implied that solutions to certain Diophantine 

equations were necessary for the existence of a configuration with equal 

cycle sizes . 

There are also many broader problems open for investigation. For 

example, we could require each subset to intersect most of the other 

subsets in some fixed number of elements other than 1 and have empty 

intersection with the remaining subsets. We could also allow a bit more 

freedom in how a subset intersects the few other subsets it does not 

intersect in one element. For instance, it might be allowed to inter­

sect these sets in zero or two elements. 
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