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Abstract
We study subsets of a finite set most of which intersect each other
in one element. We first prove a Fisher type inequality of the form
m < n. We then investigate‘those configurations with m = n. Our main
theorem is the following generalization of a result due to Ryser.
Theorem. Let Sl,...,Sn be n subsets of an n-set S.

Suppose that

| 28 HH= liexsstid
and that
| s, Ns, | <1 (d#3;1,5=1,...,n).

Suppose further that each Si has non-empty intersection with at least

n - c of the other subsets. Then either

n < N(c)

where N(c) depends only on c, or the incidence matrix A has constant line

sums.

We then study those configurations for which A has constant line
sums and each subset has non-empty intersection with exactly n - 3 of
the other subsets. The rows and columns of A may be partitioned into
cycles in a natural way. With this we show that A has a cyclic sub-
structure and that the length of any row or column cycle divides the
length of the longest éycle. Also, after the rows and columns have been
suitably permuted we have AAT = ATA. We relate those configurations with
constant cycle lengths to interdependent difference sets, and show that

such configurations imply the existence of nonnegative integral matrices

satisfying the matrix equation BBT = (k - NI + AJ.
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CHAPTER I

Introduction

Let Sl""’sm be m subsets of an n-set S. In this paper we will
deal only with subsets such that the cardinalities of the set inter-
sections satisfy

|'s; N s, | <1 (@ #3; 1,5 =1,...,m) (1.1)
and most of the Si N Sj have cardinality one.

We will prove a Fisher type inequality of the form m < n. We will
be especially interested in the case of m = n. Ryser studied these
configurations extensively under the céndition that each Si have non-
empty intersection with at least n - 2 of the other subsets, or alter-
natively, that each Si have an empty intersection with at most one other
subset. He showed that except for two low order cases such configura-
tions are either finite projective planes or symmetric group divisible
designs.l

In this investigation we will weéken the hypothesis by requiring
that each Si have non—-empty intersection with at least m - ¢ of the
other subsets for some fixed positive integer c. Under these conditions
we are able to prove the following theorem.

Theorem 1.1. Let S Sn be n subsets of an n-set S.

1000
Suppose that

| 23 @ = Lyneestt) (1.2)

1 ; '
H. J. Ryser, Subsets of a finite set that intersect each other in

at most one element, Journal of Combinatorial Theory A, Vol. 17, No. 1,
July 1974, p. 60.




and that

| siﬁsj | <1 @ #3; 14,3 =1,...,0). (1.3)

Suppose further that each Si has non-empty intersection with at

least n - ¢ of the other subsets for some fixed positive integer c.

Then either

(1) n < N(c), where N(c) is a positive number depending only on c,

and N(c) is less than L% c?
Qx
(2) The following conditions hold.
(i) | S; | = | Sj | = k, a constant (i,j = 1,...,n),
(ii) Each element of S is an element of exactly k
of the subsets.
(iii) All the subsets have nén—empty intersections with the
same number of other subsets.
We remark that configurations (2) above include finite projective

planes and symmetric group divisible designs with Al = 0 and XZ =1

but allow for still other configurations.

Finally, we will concentrate on those configurations of (2) above
for which all the subsets have non-empty intersection with exactly n -
of the other subsets. In this case, the rows and columns of the inci-~
dence matrix may each be partitioned into cycles in a natural way. We
will show that the cycle sizes of the row partition are the same as the
cycle sizes of the column partition. We will also prove a divisibility

relationship on the sizes of the cycles.
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CHAPTER II

Fisher Type Inequality

Let XiseoosX denote the elements of an n-set S and suppose

Sl""’Sm are m subsets of S. The incidence matrix A = [aij] of the
subsets Sl,...,Sm of S is defined by
a..=11if x, € S, (2.1)
ij i i
(L= 1yseesmy § = 1yeeesn)
a,, =0if x, €S
ij j i

Again we let
| s; | =k, (A=1,....m. (2.2)

Thus the sum of row i of A is ki. We denote the sum of column j of A
by Qj. We note that Qj counts the number,of occurrences of xj in the
sets Sl,...,Slil A line of a matrix denotes either a row orlalcolumn of
the matrix.

Two (0,1) matrices are equivalent provided that one is transform-
able into the other by row and column permutations. These operations on
the incidence matrix correspond to a rénumbering of subsets and elements.

Thus we frequently do not distinguish between equivalent matrices.

We now define a matrix Y by the equation

AA =Y, (2.3)

where AT is the transpose of the matrix A. The matrix Y has the
cardinality of Si N Sj in the (i,j) position.

Suppose these subsets of S satisfy
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[ s; N sj | <1 (143 1i,j =1,...,m). (2.4)
We let wi denote the number of subsets Sj such that
{ 5; N's, | =1 (3=1,...,i-1,i+1,...,m. (2.5)

The number wi is called the intersection count of set Si and is the sum

of row i of Y with ki excluded.

2
We now state a theorem by Ryser which is essential for the proof

of Theorem 2.2.

Theorem 2.1. Let the m subsets of an n-set S satisfy

| =k, {d=1,...,m) (2.6)
and

| 5; N's, ] <1 (d#3; 1,3 =1,...,m). (2.73

J

Suppose that the intersection count W, gﬁ_Si satisfies

W, >m - ki + 1 (i=1,...,m). (2.8)

Then

m < n. (2.9)
Now we consider the situation in which each subset has non-empty
intersection with at least m - c of the other subsets for some fixed

positive integer c. Thus the intersection count satisfies

W, Zm= ¢ (1= 1,5:0,m)s (2.10)

Theorem 2.2. Let Sl,...,Smlhg m subsets of an n-set S with

2 : . :
H. J. Ryser, Subsets of a finite set that intersect each other in

at most one element, Journal of Combinatorial Theory A, Vol. 17, No. 1,
July 1974, p. 60.




| 23 (1= lyeseym) (2.11)
and
| s; nsj | <1 (#3514, =1,...,m. (2.12)

Suppose further that for some fixed positive integer c the intersection

count w, of set Si satisfies

W, >m- ¢ i=1,...,m). (2.13)
Then either

m<n | (2.14)

or there exists a minimal positive integer M(c) depending only on c

such that

m < M(c). (2.15)

Proof. We may assume c > 3, since for ¢ =1 and ¢ = 2 W,
satisfies equation (2.8) and, thus m < n.

Suppose now m > n. Then by Theorem 2.1 we know w, im - k.i for

some i = 1,...,m. This means m - ¢ <m - ki and so ki < c. We may

normalize A so that kl.i c and the first row has a 1 in each of the

first kl columns. Since v, > m - ¢ there must be at least m - c 1's

in the first kl columns of rows 2 through m. None of these rows has two

or more 1's in the first k, columns since then | S

N's.| > 1 for some
1 3

i
j=2,...,m. We note that one of the first kl columns must have E%E

or more 1's in rows 2,...,m. We may assume this is the first column.

Including the 1 in the first row we get Ql >'% . We may arrange the

rows and columns of A so that A takes the form



fl1]1...1}40...0{0...0}10...0}0...0
1{0...011...1{0...0{0...0 0

110 0f0...01- 0...0%10 0
S T H E : 1t
(2.16)
110...010...0 ¢ 10:040 | 0.0

Notice that Ql< %’ because k.i > 3 for each i implies n > 1 + 221

and thus Ql 3_%- forces n > m. Notice that we may also suppose that

Ql - (¢ = 1) > 0 because Ql - (c-1) <0 and Ql Zﬁ% implies m < (¢ - L)c

so that (2.15) is valid.

Now, row Ql + 1 must have a 1 in at least 21 - (c - 1) of the
blocks of columns formed by the 1's in the first Ql rows of A since,
otherwise, w, <m~-c. Row ¥_ + 2 must also have at least

£l+ 1 1
Ql - (c=-1) 1's in these blocks. At most ore of these 1's is in a
column in which row Ql + 1 has a 1 since, ptherwise, | SQL+1 N S%_+2 I
> 1. Continuing in this manner we see that row Ql‘+ 6 - Ql -

(¢ - 1)), must have Ql - (c - 1) 1's in these blocks and at most t - 1

of these 1's are in columns which contain a 1 in rows

Ql + 1,...,Q + (t - l). Notice that we have 221 - (c - 1) <m because
m
we already know that Ql <7 .

Now using Ql > ¢ - 1, we estimate the number of columns in A by



-

summing the number of columns of row Ql + t which contain a 1 but do not
contain a 1 in any of the preceding rows Ql + l,...,Ql + (t - 1). There
are at least Ql - (c~-1) - (£t = 1) such 1's in row Ql + t. Sincem > n

we have
m > (Ql - (¢ - l))-+(Ql - (c-1)-1)+ ... + 1. (2.17)

Thus we may conclude that

Ql—(c"l)
m> i = (21—c+1) (Ql- c+ 2)/2, (2.18)
i=1
and since Ql 3_%-we have
m>@E-c+1)@-c+2)/2 (2.19)

We solve this inequality and find

ik boo — B¢ 4o ke - 3)° - 4le- - e+ T . (2.20)
2

Thus the theorem is proved.



~8~

CHAPTER III
The Case n = m

Let Sl,...,Sm be m subsets of an n-set S satisfying the conditions
of Theorem 2.2. We know by this theorem that except for a finite number of
configurations the number of subsets is less than or equal to fhe number
of elements in S. We would néw like to study those configurations for
which equality holds.

Some combinatorial objects of great interest fall into this cate-
gory. The finite projective planes satisfy these conditions for any
c > 1.

A symmetric group divisible design is a set of n subsets

Sl,...,Sn of ann-set S that satisfy the following conditions.

(1) Each subset Si of a k-subset of S (i = 1,...,n).

(2) The subsets may be partitioned into b components, where each
component contains exactly n/b subsets.

(3) Two diétinct subsets in the same component have exactly Xl
elements in common and two subsets in different components ha&e exactly
Az elements in common.

A symmetric group divisible design with Al = 0 and Az = 1 satisfies
the conditions of Theorem 2.2 for any c > n/b. A finite projective
plane of order t may be used to construct a symmetric group divisible

design on the parameters

n=t2,k=t,b=t,}\=0,)\=l. (3.1) -

This is done by simply deleting the first t + 1 rows and the first t + 1

columns of the normalized incidence matrix of the plane.
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We now restate the theorem which will be the principal result of

this section.

Theorem 3.1 Let S;,...,S be n subsets of an n-set S.
Suppose that
| 84 | >3 A =1,...,n) (3.2)
and that |
|%ﬂsj]il (4 # J8 447 Lsnnngtt)s (3.3)

Suppose further that each Si has non-empty intersection with at

least n - c of the other subsets for some fixed positive integer c.

Then either

(1) n < N(c), where N(c) is a positive number depending only on c,

and N(c) is less than %% c2,
or

(2) The following conditions hold.

(i) | Si [ = | Sj | = k, a constant (i,j = 1,...,n). (3.4)

(ii) Each element of S is an element of

exactly k of the subsets.

(iii) All the subsets have non-empty intersection with the

same number of other subsets.

In terms of the incidence matrix A, the hypotheses of the theorem

say that A is square, each row sum of A is greater than or equal to 3,

and

LATm B4 T~ B (3.5)

where D is a diagonal matrix, J is the matrix of 1's, and E is a (0,1)
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matrix with row sums less than or equal to c - 1.
The conclusion is that if n is sufficiently large A has constant
line sums and E has constant row sums.

If S r‘Sj = ¢ we will say S; and S

i are linked or that Si is

J
a link of Sj and vice versa. Under the conditions of Theorem 3.1 each
subset has at most ¢ - 1 links associated with it. Two rows of the
incidence matrix A will be linked if the subsets associated with each
are linked. We note that if two rows of A are linked then their inmer
product is 0.

For the remainder of this chapter we will assume the set S and its
subsets Sl,...,Sn satisfy the hypotheses of Theorem 3.1 and that A is

the incidence matrix for these subsets. Recall that ki is the sum of

row i of A and Qj is the sum of column j.

n-s
r

Lemma 3.2, Suppose some column of A has column sum Qj %

for constants r and s, r > 0. Then n < N(r,s,c), where N(r,s,c) is a

positive number depending only on r, S5 and c.

Proof. By exactly the same method employed in Theorem 2.2 we count

the number of columns of A and we find

n 2_(Qj -c+ l)(Qj -c+ 2)/2. (3.6)

Then Qj B implies

= c+ 1)

n—
n > (

= b 2)2 (3.7)

and

2 2
(n - 2ns + s - (¢ - 3) n-s

2 T
¥

n > +c% 4+ 3¢+ 2)/2- (3.8)
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As n gets large the n2 term on the right hand side dominates and the
right hand side of (3.8) becomes larger than n. So for (3.8) to hold

we must have n < N(r,s,c) where N(r,s,c) is a positive number depending

only on r, s, and c.

Lemma 3.3, Let S, be a subset of S. Suppose in column j of A, that

a,, = 0 and a

ij

= 0 for each subset S_ linked to S.. Then 2. < k..
tj & = %" == %5 =20

Proof. We may permute the rows and columns of A so that a,. = 0

is in the (1,1) position and A assumes the form

0]1...1]0. . . 0]
o *
=
° (309)
0
o« %
0 i

Each row of P must contain exactly one 1 since these rows of A cannot

correspond to subsets linked to S,. However, P‘may have at most one 1 in

4
each column. Hence Qj < k.
We now define a matrix B = [bij] of order n as follows. If aij =0
and a_., = 0 for each S_ linked to S,, then b,., = 1. Otherwise, b,, = 0.
tj t i ij ij

The term rank of a (0,1) matrix is the maximal number of 1's no two
on a line in the matrix. The Frobenius-Konig theorem says the term rank

is equal to the minimal number of lines of the matrix necessary to cover
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all the 1's.

Lemma 3.4. For sufficiently large n, B is of term rank n.

Proof. By Lemma 3.2 it is only necessary to prove that, if B does

not have term rank n, it must contain a column with 2—2 or more 1l's

for fixed constants s and r with r > 0.

First, suppose B has a row of 0's. We may arrange the rows of A so
that the row of O's in B is the first row and so that the rows of A
linked to this new first row of A are rows 2,...,p where p <c. Since
the first row of B is all O's, the column sum in the first p rows of A

is at least 1 for every column of A. So A takes the following form

after permuting the columns.

( [1...110...010 - . . 0]0...0]

0...0]1...1}0. . .0]0...0

0...0 . 0...0

p< ¢ ..
o ) S . (3.10)

Q%0 . 04:40

\ |o0...0| = * 1...1

* * * *
- ik

Thus the columns of A have been divided into c or less groups. If n > ¢
there must be rows beyond the first p rows. If one of these rows has
more than c :1's, one of the groups of columns must contain two or more
of them. This would mean there are two sets which intersect in more

than one element. So some row i of A has c or less 1's. Except for the

\
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rows linked to this row, each row of A must have a 1 in the c or less

columns of row i which contain 1's. So one of these columns must have

n — C

+1-= %>or more 1's and we are done, when B has a row of 0's.
Suppose B has a column of 0's. Look at the corresponding column
in A. Suppose it contains t 1's. Associate with each 1 the row it is
in and all rows linked to that row. Each row must be associated with a
1, since otherwise there would be a 1 in that row of B in this column.
There are ¢ or less rows associated with each 1, so n < tc and, thus,

n

t Z;E. Hence we are done when B has a column of 0's.
We may now assume B has neither a row of 0's nor a column of 0's.

If B does not have term rank n then B has a minimal cover of e rows and

f columns where

e+ f <n, 0 <e,f <n. (3.11)
We let

e' =n-e, f' = n -~ £. (3.12)
Then

e' + f' >n,0 <e',f' < n. (3.13)

Actuélly, e' > 1 and f' > 1 because e' = 1 implies f'= n and f' =1
implies e' = n.

We normalize B so that

B=Ejﬂ , (3.14)

where 0 is the zero matrix of size e' by f'. The matrix A assumes the

form

i = g ﬂ ’ (3.15)
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where Y is of size e' by f' and corresponds to the zero matrix of B.
Now, suppose f' f_cz. This implies e' > n - cz. By associating

rows with the 1's in a column of Y we see that a column of Y and thus

some column of A must have —— 1's in it.

Finally, suppbse f' >'c2. Look at row 1 of A and the rows linked
to it. The submatrix formed by the intersection of these rows with the
first f' columns of A must have column sum at least 1 for each column.
Since there are c or less rows in this submatrix, some row, say row %,
of A contains ¢ + 1 or more 1's in these first f' columns because
¢ 5 cz. Suppose a row of A which is not linked to row vaasses through
Y. Then it or one of its links must have two 1's in the columns that
row £ has 1's. This contradicts (3.3). So only rows linked to row £
may also pass through Y and thus e' < c and f' > n - c.

We arrange the rows and columns of A so that row 1 is still the

initial row, the rows linked to it are rows 2,...,t where t < ¢, and A

is of the form

= ham
/ 11...110...0]0...00...0(0...0
0...01...1]0...0/0...0/0...0
0...0 . 0...0/0...0
£ : B * . 1% 3l 1 i (3.16)
0...0 0...0]0...0
\ |0...0 * * 1...1{0...0
* * * * X
L' -

The matrix X has n - t rows and less than ¢ columns. If X has a row
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of 0's then that row of A may have at most ¢ 1's and this implies

there is a column of A with E—or more 1's. If X has no row of O's

n - c

-1

Thus, considering all the possibilities, if B is not of term rank n

1's.

then it must have a column with

n-—

there is a column with or more 1's. Hence, for sufficiently

large n, B is of term rank n.

Lemma 3.5. There exists an ordering of the rows and columns of A

n

such that k1 = Ql,...,k = Qn’ provided n is sufficiently large.

Proof. By Lemma 3.4 we can arrange the rows and columns of B so
that B has a 1 in every main diagonal position. In terms of A this
means a ., = 0 and ajg = 0 for each SQ which is linked to Si(i = 1,...,0).

Therefore, by Lemma 3.3 £, < k,. However, 2. + ... + 8 =k + ... + k
i— i 1 n n

1

so equality holds for each i.

Lemma 3.6. If n is sufficiently large, then A has constant line

sums.
Proof. We need only show that if n is large enough to force B to

be of term rank n and if A does not have constant line sums then A

- S
r

contains 1's in some column. Applying Lemma 3.2 then proves this
lemma.

We permute the rows and columns of A so that

kl Ql x %y QZ > .. K Qn' (3.17)

Suppose that A does not have all its line sums equal. Then we define
the 1nteger e by

k =.’.=k >k 9 (3-18)
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where e <n. We let

* %
A= [Y *] ’ (3.19)

where Y is now a matrix of size e' = n - e by e.

Suppose row i * intersects Y and it and all its links have O's in
one of the first e columns, say column j. Then by Lemma 3.3 Qj j_ki,
but j < e and i > e yhich implies Qj = kj > ki’ contradicting k._i ki'

Suppose e > cz. By the above argument, if row i passes through Y
then in each of the first e columns there must be a 1 in row i or in one
of the rows linked to row i. So there must be at least c + 1 1's in the
first e columns of one of these rows, say row j. Now if any row not
linked to row j intersects Y then it or one of its links must have two
or more 1's in the ¢ + 1 or more columns in which row j has 1. This
contradicts (3.3). Thus e¢' < c and e > n - c.

We now arrange A as in Lemma 3.4 with the first row being a row
that passed through Y and rows 2,...,t its links, where t <c. Then X

is a matrix of n-t rows and c or less columns. As in Lemma 3.4, if X

has a row of O's, there is a column of A with at least %-l's. If X

n-c '

doesn't have a row of 0's then one of its columns has or more 1's.
. 2 ; . .

Finally, suppose e < ¢ . Associate with each 1 in the first column

of A the row it is in and all rows of A linked to that row. If there

are less than —— 1's in the first column of A there will be a row of

Y which is not associated with any 1. However, this implies kj > kl for
some j > e as shown previously and this is a contradiction. Thus column 1
: 9

L 1's, and this completes the proof of the lemma.

has at least

Lemma 3.7. If A has constant line sums, then each subset is linked
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to the same number of other subsets.

Proof. Suppose A has constant line sums k. Then each has non-
empty intersection with exéctly k{(k -1) of the other subsets. So each
subset is linked ton - 1 - k(k - 1) of the other subsets.

We notice from the proofs of Lemma 3.4 and Lemma 3.5 that if condi-

tion (i), (ii), or (iii) of Theorem 3.1 does not hold there must be a

column of A with Z or more 1's. Thus by applying Lemma 3.2 we
have proved Theorem 3.1.
Now we wish to estimate N(c) for a fixed c. To do this we need

only substitute c2 = s and ¢ = r in equation (3.8) of Lemma 3.2. Solv-

ing the resulting inequality gives us

n < (6c2 - 3c +c /&OCZ - 36c +1)/2. (3.20)

While this number is not real for ¢ = 1, we see from (3.7) if
r = s =c¢ = 1 that if A does not have constant line sums

n > n(@ - 1)/2. (3.21)
The smallest configuration is of size 7 by 7 so equation (3.21) never

holds and all configurations for c¢c = 1 have constant line sums. Thus

N(c) =< (6c2 -3¢+ c /20c2 - 36c + 1)/2 (3.22)
for ¢ > 2 and for ¢ = 1 conditions (i), (ii), and (iii) of Theorem 3.1
hold. Finally we notice that
(5¢)% > 20c% - 36c + 1 (3.23)
and thus a simpler, though less accurate, estimate is
11 2

N(c) <5 (3.24)
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CHAPTER IV

Determination of N(3)

We know that all configurations satisfying the hypotheses of
Theorem 3.1 for ¢ = 1 have constant line sums and are projective planes.
For ¢ = 2 Ryser showed that there are only two configurations without
constant line sums. One is of order 9 and the other of order 10.3 So
N(2) = 10. In this section we will show N(3) = 18 by finding the unique
largest configuration for c¢ = 3 without constant line sums.

Let us recall the situation for ¢ = 3. Sl""’sn are n subsets of
an n-set S such that
>3 (i=1,...,n) (4.1)
and that

| siﬂsj | <1 (1 #3, i, =1,...,n). (4.2)
We further suppose that each Si has non-empty intersection with at least
n - 3 of the other subsets. The matrix A is the incidence matrix for
this configuration. We wish to determine the largest n for which A does
not have constant line sums.

By letting ¢ = 3 in equation (3.22) we find

N(3) > - (45 + 3/73)/2 < 36, (4.3)
Thus if A does not have constant lin sums n < 35. As in the proofs of
Theorem 2.2 and Lemma 3.2, if a column of A has column sum 2 then
2-2 |

n> Ii=(@@ 2)@®- 1)/2. (4.4)
i=1

3H. J. Ryser, Subsets of a finite set that intersect each other

in at most one element, Journal of Combinatorial Theory A, Vol. 17,
July 1974, No. 1, p. 60.
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This implies the maximal column sum of A is 9 or less since n < 35.
We recall that ki represents the sum of row i of A and Qj represents
the sum of column j. We may assume that the maximal column sum occurs
in the first column and that the Ql 1's of column 1 occur in rows

1,...,%.. We may also assume that the rows have been arranged so that

1
k., <k ..._<_k2 (4.5)

and that the rows and columns of A have been permuted so that A is of the

form

1371 ... 110...0 | 0...0 | 0...0 =
10...0101...1 | 0...0 | 0...0
i 0...0 )
2 : . . . D
.. 0...0
10...0l0...0 | 0...0 | 1...1
010...0
C e e = % * * . (4.6)
10...0
M " * * *
0...01
: 1zl My * * *
0...01
L. B % % * *

]

where D and B are matrices of 0's if they exist at all. B has at most “

two rows and the rows of B represent the subsets which have empty inter-—
section with Sl. Ct(b=2,...,kl) is a matrix of ky - 1 columns and Qt -1

rows. We will consider the possible values of Ql’ the maximal column
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sum.

Suppose Ql = 9. Then, since n < 35, we must have kl <4, If

kl = 4 then also k2 = 4 and C2, C3 and C4 have three columns. Thus

CZ’ C3, and C4 each have at most three 1's. Of all the rows of CZ’ C3,

and C4 at most two are all 0's since row 2 has inner propact 0 with at
most two other rows. Thus A has at most 22 rows. But n < 22 implies

kl = 3, contradicting k1 = 4,

If Ql = 9 and kl = 3, then C, and C, have at most eight rows

2 3
apieceand n < 27. This implies k2 < 4 and thus n < 19 by reasoning as
above. But if n < 19 then k2 = 3 and this implies n < 17 which in turn

implies k, < 3. This contradicts (4.1).Thus Ql # 9.

1
Suppose Ql = 8. This implies kl‘i S5.. If kl = 5 then k2 = 5 also,
and C2,...,C5 each contain at most four 1's. Therefore A can have at
most 28 rows which implies kl_j 4, contradicting kl = 5. 1If kl =4
then n < 31 which implies k2 = 4. It follows that n < 21 implying kl =3
and contradicting k1 =4, 1If kl = 3 then n < 24 and thus k2 < 4. How-
ever, k2 < 4 implies n < 18 which in turn implies k2 = 3. This forces

n < 16 and then k, < 3. Thus Ql + 8.
Next, suppose Ql = 7. By the same methods employed for Ql = 8
and £, = 9 we can show k; = 3 and n <15. If n<15 then k, < 3. If

n = 15 A may be put in the form
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"l

111 |00 | 00 | 00 | OO | 00 | OO
100 |11 | 00 | 00O | OO |00 | OO
100 {00 | 11 | 00 { 00 | 0O | OO
{ 100 {00} 00| 11|00 |00 ] 0O
100 |00 | 00 | 00 |11 |00 | OO
100 {00 | OO | OO | 00 |11 | 00

100 |00 | 00 {00 |00 |00 |11 | , 4.7)
010
* * * * *
C,
010
001
X * * * *
e
001
000 [10[1 0[1o[1 0o .| .
000 | 0L]lo1lo01lo1

where C2 has two rows and C3 has four rows or C2 and C3 each have three

rows. Now in the rows of A which pass through C, there must be a 1 in

2
columns 4, 6, 8, and 10, since otherwise one of rows 2,...,5 would have
inner product O with at least three other rows, contradicting ¢ = 3. But
then two of these 1's must be in the same row of A and thus row 14 has
inner product 2 or greater with this row which is impossible. Thus
1Y 7.
1 #
1f Ql = 6 there must be a row with row sum 5 or less since other-

wise Qj <6 (j=1,...,n) and k; > 6 (i=1,...,n). But since

n n
r 2., = % k., this implies £, =k, = 6 (i,j = 1,...,n) and A has
j=1 4 =1 4 B

constant line sums. So ki_j 5 for some i and this forces n < 28.

Continuing as before we can show no configurations exist for Ql = 6.
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Now suppose Ql = 5. There must be a row with row sum 4 or less.

This implies n < 19 and thus k, < 4. If k., = 3, then n < 15 and since

Cle— 1

we will show N(3) = 18 we need not consider this case further. If kl = 4
then we have k2 = 4, k3 = 4 and k4 =4 or 5. If k4 = 5 then A may be
put in the form

(1111 | 000 | 000 | 0000 | 0000 ]

1000 | 111 |{ 000 | 0000 | 0000

1900 | COO | 111 | 0000 | 0000

1000 | 000 | 000 | 1111 | 0000

1000 | 000 | 000 | 0000 | 1111

0000 | 100 | 100 | 1000 | 1000

0000 | C10 { C10 { 0100 { **00

0100 | 100

0100 | 010 s (4.8)

0100 | 001 * * *

0100 | 000

0010 | 100

0010 | 010

0010 | 001 * * *

0010 | 0OC

0001 | 100

0001 | 010 | * * *

[ 0002 | 001 B

If there is a 1 in position (7,15), then filling in the rest of matrix
under the given conditions leads to a contradiction. If there is a 0 in
position (7,15) we may assume there is a 1 in position (7,16) and a 1
in position (18,8) or position (18,10).

If position (18,8) has a 1, then we are again led to a contra-
diction. However, if there is a 1 in position (18,10) then A may be

filled out and the only possibility for A up to row and column permutations

is
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1111 | 000 | 000 ] 0000 | 0000
1000 | 111 | 000 | 0000 | 0000
1000 | 000 | 111 | 0000 | 0000
1000 | 000 | 000 | 1111 | 00O
1000 | 000 | 000 | 0000 |1112

0000 | 1C0 | 100 | 1000 | 1000
0000 | 010 | 010 | 0100 | 0100

0100 | 100 { OO0 | 0001 | 0100
0100 | 010 | OC1 | OC10 | 1000 . (4.9)
0100 | 001 | 100 | 0100 | 0010
0100 | 000 [ 010 | 1000 | 0001

0010 | 100 | 001 | 0100 | 0001
0010 | 010 | 000 | 1000 | 0010
001C | 001 | 010 | 0001 | 1000
0010 | 000 [ 100 | 0010 | 0100

0001 | 100 | 010 | 0010 | 0010
0001 | 010 | 100 | 0001 | 0001
0001 {001 {001 | 1000 | 0100,

No configuration exists when k4 = 4 and if QZ < 4 then n < 12.
Thus, (4.9) is the unique largest matrix without constant line
sums. for ¢ = 3 and thus N(3) = 18.

A quick check of the inner products of the rows of this matrix
reveals that it does indeed satisfy the hypotheses of Theorem 3.1.
Each of the nine rows with row sum 5 has inner product 1 with every
other row. The nine rows with row sum 4 may be put in three groups with
three rows each where each row has inner product O with the other rows
in its group and inner product 1 with all the remaining rows. The same
is true for the inner products of the columns. We may rearrange the rows
and columns so that the first nine rows have row sum 4 and the first nine
columns have column sum 4. Also we may put the rows which have inner
product O with each other into blocks of three and likewise the columns,

When A is in this form we have s
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400
040
004
%00
040
004
400
040
aaT=aTA= 004 , (4.10)
5
5
5
5
5
5
5
5
_ 3]

where all the remaining entries are 1l's. We notice that this is a
hybrid of the symmetric group divisible design with v = 15, k = 4, b = 5,
Al = 0 and Az = 1 and the projective plane of order 4 whose incidence
matrix is of order 21. The order of A is exactly the average of the
orders of these two designs and the rows with row sum 4 behave like rows
of the symmetric group .divisible design while the rows with row sum 5
behave like rows of the plane.

A may be obtained from the plane by permuting rows and columns until

the first three rows and columns are of the form
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110 [111 000 0CO 000 000 000
101 {000 111 000 000 000 000
011 {000 000 111 000 000 090

100
100
100

010
010
o1e

001
001
001

000
000
000

000
000
000

000 .
000
000

A ; (4.11)

If the first three rows and the first three columns are now deleted the
resulting matrix A will now satisfy (4.10) and is thus equivalent to the
matrix in (4.9).

We notice that from any projective plane of order t we may delete
three rows and columns as in (4.11) to obtain a configuration satisfying
the hypotheses of Theorem 3.1 for ¢ = t - 1 with c2 + 3c rows and
columns. No larger configuration without constant line sums is known
for any c so it has been conjectured that N(c) = c2 + 3c.4

A may also be obtained from the previously mentioned symmetric

group divisible design whose incidence matrix is

4D. E. Keenan, D. A. Leonard, On a theorem of Ryser, Journal of

Combinatorial Theory A, to appear.




(000
000
000

100
010
001

100
010
001

==

100
010
001

100
010
001

100
010
001

000
000
000

100
010

001

¢10
001

100

001
100
010

100
C = |010
001

100
010
001

000
000
000

co1
100
010

010
001
100

100
010
001

001
100
010

010
001
100

000
00
600

100
010
001

100
010
001

We can border C with three new rows and

100
010
001

010
001

100

000
000
c0o0

001
100
010

000
000
000

100
€10
o1

111
000
000

000
000

000|

000
111
000

(4.12)

three new columns to obtain

000]
000
111

000
000
000

000
000
(6]0]0)

100
100
100

010
010
010

001
001
1001

which satisfies (4.

10).

(4.13)



i T

One matrix of order 17 is known which satisfies the given condi-

tions. It may be obtained from (4.13) by simply deleting the first row

and first column.

BTB=BBT=

We then have a matrix B of order 17 which satisfies

40
04
400
040
004
400
040
004
L.

400
040
004

where all other entries are 1's.

(8,

(9]

. (4.14)

By deleting the first two rows of (4.13) we have a matrix D of

order 16 again satisfying the hypotheses of Theorem 3.1. We see

D D=DD =

o

4

_

400
040
004

400
040
004

400
040
004

400
040
004

=

5

5

3 |

where all the remaining entries are 1's.

) (4.15)
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We note that since the matrix C in (4.12) is symmetric, the
matrices A, B, and D of (4.13), (4.14), and (4.15) respectively are also
symmetric. Also, in these examples, if two rows have inner product 0
then they have the same row sum. These properties do not necessarily
hold for configurations of lower order. To see this we look at the

matrix

00 [1111 | O |1111]
00 |0000 |1 |1111
11 |oooo |1 | 0coo
10 | 1000 |0 | 1000
10 | 0100 | 0 | 6100
E = 10 | 0010 | 0 | 0010 , (4.16)
10 {0001 | ¢ | 0001
o1 | 1000 | 0 | 0100
01 | 0100 | 0 | 0100
o1 |oc1o | o | ooo1
o1 | 0001 | o | 0010

E has a column with column sum 2 but nc row with row sum 2. Thus no
permutation of rows and columns could transform E into a normal matrix
let alone symmetric. Alsc row 1 and row 2 have inner product 0 but

row 1 has row sum 4 and row 2 has row sum 5.
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CHAPTER V

The Case ¢ = 3 with Constant Line Sums

We now turn our attention to those configurations which satisfy
conclusion (2) of Theorem 3.1 with ¢ = 3. Thus if A is the incidence
matrix of such a configuration then A has constant line sums and each
row of A has inner product 1 with exactly n - d of the other subsets,
where d = 1, 2, or 3. If d = 1 then the configuration is a finite pro-
jective plane. If d = 2 the configuration is a symmetric group divisible
design on the parameters

2

a=kf k42, b=k’ -k+2)/23 A, =0, A, =1, (5.1)

1 2
where k is the cardinality of each of the subsets and b is the number of
distinct components of the design. These configurations are known to
exist for n = 8 and n = 14.5 We will not concern ourselves further with
these configurations.

We now concern ourselves only with those configurations for which
each row of A has inner product 1 with exactly n - 3 of the other rows.
Equivalently, each subset Si of S has non-empty intersection with
exactly n - 3 of the other subsets. For the remainder of this chapter
the matrix A will be the incidence matrix of a configuration satisfying
conclusion (2) of Theorem 3.1 in which each subset has non-empty inter-
section with exactly n - 3 other subsets. Thus A is any (0,1) matrix of
order n which satisfies

MY = (k-1) I +J - E, (5.2)

5R. C. Bose, S. S. Shrikhande, and K. N. Bhattacharya, On the

construction of group divisible incomplete block designs, Ann. Math.
Statist., Vol. 24, 1953 , p. 176.
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where k > 3 and E is a symmetric (0,1) matrix of order n with all line
sums equal to 2 and with 0's in each of the n main diagonal positions.

If we let k denote the sum of each line of A then, since no two rows
have inner product greater than 1, each row of A has inner product 1 with
exactly k(k - 1) of the other rows. Thus we may conclude that

n=k% - k+ 3. (5.3)
No two columns of A have inner product greater than 1 since this would
imply there are two rows with inner product greater than 1. So each
column of A has inner product 1 with exactly k(k - 1) = n - 3 of the
other columns. Thus AT is also the incidence matrix of a configuration
satisfying these required conditions. One of the main conclusions of
this chapter will be that the rows and columns of A may be permuted so
that

i T

AA" = A"A. (5.4)
A matrix satisfying equation (5.4) is said tc be normal.

To study the structure of A we need to arrange the rows and columns
of A in an appropriate order. We recall the definition that rows are
linked if their inner product is 0. We apply the same definition to the
columns. Since each row is linked to two others, the rows may be grouped
into cycles with each row linked to the rows immediately preceding and
following it in the cycle. The first and .last rows of each cycle are

also linked. Likewise, the columns may be grouped into cycles. If the

rows and columns of A have been arranged in cycles in this manner then

we say that A is cyclically normalized. If A is cyclically normalized

the matrix E in equation (5.2) is of the form



o= |

E = ' . ) (5.5)

[0 1 1
1. . o

Ei . .. .. X = (cni + cni). (5.6)
ERE Y

Furthermore, all the remaining entries of each Ei and E are O, Cn is
i
the circulant permutation matrix of order n, with a 1 in the (1,2) posi-

tion, and n, + sen F n_ = n. Each Ei corresponds to a row cycle of

size ni, the number of rows in the cycle.

A cycle may contain as few as three rows or as many rows as there
are in the entire matrix. Examples are known for these extreme cases.
If each cycle contains exactly three rows then A is the incidence matrix
of a symmetric group divisible design on the parameters

2

2
n=t -t+3, k=t¢t, b=(t"-t+ 3)/3, xl=0, A2=1.

These designs are knmown to exist for n = 9, 15, and 45.6

For examples which have only one cycle encompassing all the rows of
the matrix we use the idea of planar near difference sets of type 2 as
defined by Ryser. Suppose D2 = {dl,...,dk} is a set of k residues

modulo n (n > 4) with the property that for any residue a # 0,1 (mod n)

6R. C. Bose, S. S. Shrikhande, and K. N. Bhattacharya, On the
construction of group divisible incomplete block designs, Ann. Math.
Statist., Vol. 24, 1953, p. 176.
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the congruence

di - dj z a (mod n) (5.7)

has exactly 1 solution pair (di,dj) with di and dj in D2 and no solution

pairs for the residues @ = #1 (mod n). Then D2 is a planar near differ-

ence set of type 2. Now the incidence matrix for D2 is

A=cil 4 ... +cdk, (5.8)

where C is the circulant permutation matrix of order n with a 1 in the
(1,2) position.
Hence we have

A = ¢ 91 4 +c 9k . (5.9)

and
T -1
AA" = (k-1)1I-J-(CH+C 7). (5.10)

Planar near difference sets with k > 3 are known to exist for n = 9, 15,
and 23.7

The sizes and relationships of these row and column cycles are the
objects of our investigation of these configurations. A submatrix of
a cyclically normalized incidence matrix formed by the intersection of

the rows of a row cycle and the columns of a column cycle is called a

section.

We call an r bys matrix B = [bij] a right shift matrix if whenever
e=i+1(modrr),fzj +1 (mod s) (5.11)
then

b,. = bef' (5.12)

7H. J. Ryser, Variants of cyclic difference sets, Proc. Amer. Math.

Soc., Vol. 41, No. 1, Nov. 1973, p. 49.
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B is called a left shift matrix if whenever

e=z=i+1l(modr), fzj-1 (mod s), (5.13)
then
bij = bef' (5.14)
For example,
101010 10100
010101 01010
101010 and 00101 (5.15)
010101 1001090
01001

are right shift matrices and

100100
001001 (5.16)
0100109

is a left shift matrix. We notice that reversing the cyclic order of the

rows (columns) of a right shift matrix transforms it into a left shift

matrix and vice versa.

Theorem 5.1. Suppose that B is an rbys section of a cyclically

normalized incidence matrix A. Then B is a right or left shift matrix

and if B # O then r|s or s|r.

Proof. We may assume that B is the intersection of the first r rows
and the first s columns. If B = 0 it is a shift matrix so we may assume
B # 0. By cyclically permuting the rows and columns we may move any 1 in
B to the (2,2) position with A still cyclically normalized. This row 2
is linked to row 1 and row 3 and column 2 is linked to column 1 and
column 3. Suppose now that there are 0's in positions (1,1) and (1,3).

In that case we permute the rows and columns of A other than the first
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three rows and the first three columns so that A is of the form

000J1 ....1]0....0
0100 .... 0
x Q *
010
I P * > (B17)
010
0
2 * *
0
b —

where P is a submatrix of k — 1 rows and k columns. No column passing
through P is linked to column 2 so each column of P contains a 1. How-
ever, this means some row of P contains more than one 1. But this
contradicts the hypothesis that the inner product of any two rows is at
most 1. Hence there must be a 1 in position (1,1) or position (1,3).
Likewise, for any two entries in adjacent corners of the initial 3 by 3
matrix at least one of them is a 1. Hence each 1 in vaust have 1's
immediately before it and after it in either the right shift direction
or the left shift direction. We will now need a short lemma before
finishing this proof.

- Lemma 5.2. Suppose that three consecutive rows of a row cycle and

three consecutive columns of a column cycle intersect to form a submatrix
b

of one of the following types:

010 010 010 0*o0
1Oo*f , (*01f, |101] , (101 g (5.18)
010 010 0*Q 010
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Then this submatrix is

(5.19)

orO
= o
or O

Proof. We may assume this submatrix is made up of the first three
rows and columns of A. Suppose the submatrix is of the first type shown
in (5.18) and there is a 0 in the * position. We may permute the remain-

ing rows and columns of A so that A is of the form

(0100...0 ]
1001 ...1 %
010[0 --- 0
010
3 P * 5 (5.20)
010
% X *
e -

where P has k - 2 rows and k = 1 columns. There must be at least one 1 in
each column of P and no more than one 1 in each row of P. This is a
contradiction so that there must be a 1 in the * position. The proof is
the same for the other matrices in (5.18).

Now we return to the proof of Theorem 5.7. By reversing the cyclic
order of the rows in this row cycle, if necessary, we may assume the main
diagonal of this initial 3 by 3 matrix is all 1's. We claim that now the
right shift diagonal of B through these three 1's is, in fact, all 1's.

If not, then continuing in the right shift direction we must encounter a
first 0. Since each 1 in B must have 1's immediately before and after it

in either the right shift direction or the left shift direction we must
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then have a submatrix of three consecutive rows and columns which looks

like

(5.21)

O
OO
(o e Y
A

where the above mentioned O is in the lower right hand corner. Now two

applications of Lemma 5.2 give us a submatrix

(5.22)

= oM
oOrHO
O

where the 1 in the lower right hand corner of (5.22) is the 1 in the
center of (5.21). But now two rows of A must have inner product greater
than 1. Thus for each 1 in B either the right shift diagonal through it
or the left shift diagonal through it is all 1's. If the right shift
diagonal through some 1 in B is all 1's and the left shift diagonal
through some 1 in B is all 1's, then these diagonals cross each other and

there is a submatrix of the form

or [} i] . (5.23)

which is a contradiction. Thus the shift diagonal of 1's through each 1

o
orO
=

of B must go in the same direction and thus B is a shift matrix.

Finally, we show that if B # O then r|s or s|r. We may assume r <s
since otherwise we may consider AT. We may also assume there is a 1 in
position (1,1) and the right shift diagonal through (1,1) is all 1's:

Let

s =ar +b, 0 <b<r. (5.24)
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If b # 0 then there is a 1 in position (1, r + 1) and there is a 1 in

position (b + 1, 1). There is also a 1 in position (b -+ 1, r + 1)

m

since b + 1 s+r+ 1 (modr)and r +1 = s+ r + 1 (mod s). However,
row 1 and row b + 1 now have inner product greater than 1 so that
b=0and r|s.

Corollary 5.3. Suppose that B is an r bys section of A with B # 0

and s = ar, where a > 1. Then all column sums of B equal 1 and all row

sums of B equal a. Likewise, if r = as, where a > 1, then all row sums

of B equal 1 and all column sums of B equal a.

Proof. Assume first that s = ar, where a > 1. Then by

Theorem 5.2 B is a shift matrix so that B has equal row sums and equal
column sums. We may assume B is a right shift matrix and there is a l
in the (1,1) position of B and also in position (1, r + 1) since

r + 1 = 1 (mod r). If there is another 1 in column 1, say in position
(m,1), there is also a 1 in position (m, r + 1). But now row 1 and row
m have inner product greater than 1. Ilence B has column sums 1 and thus
the total of the r equal row sums is s. Hence each row sum is a = s/r.
If r = as, where a > 1, we simply consider AT and apply the above proof.

Corollary 5.4. Suppose that A has two row (cclumn) cycles of sizes

a and b. Suppose also that a column (row) cycle of size c with

c > max (a,b) forms a non-zero section with both of these row (column)

cycles. Then c is the least common multiple of a and b.

Proof. By Theorem 5.2 ¢ is a multiple of both a and b. Let
d = £Lem(a,b) and suppose ¢ > d. We may assume both sections are right
ghift matrices and each has a 1 in position (1,1). However, d + 1 =1

(mod a) and d + 1 = 1 (mod b) so each section also has a 1 in position
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(1, d + 1) and the rows of A corresponding to the first row of each
section have inner product greater than 1. Thus we have ¢ = £cm(a,b).

Corollary 5.5. Suppose that A has two row (column) cycles of sizes

a and b with (a,b) = 1. Then only one column (row) cycle forms non-

zero sections with both of these row (column) cycles and this column

(zow) cycle is of size ab.

Proof. At least one column cycle forms non-zero sections with both
row cycles since otherwise each row of one cycle would have inner product
0 with any row of the other cycle. Suppose a column cycle of size c
forms non-zero sections with both row cycles. Then alc or c[a and blc
or ch by Theorem 5.1. However, since (a,b) = 1 we must have alc and b|c
and thus by Corollary 5.4 ¢ = £cm(a,b) = ab. By Corcllary 5.3 the sec-
tion with a rows has row sums b and the section with b rows has cclumn
sums 1. Since no two rows may both have 1's in the -same two columns, for
any row in the section with a rows and any row in the section with b rows
there is exactly one column of this column cycle which has a one in both
of these rows. If any other column cycle forms non-zero sections with
both of these row cycles we must have rows with inner product greater
than 1. Thus this column cycle of size ab is the only one forming non-
zero sections with both of these row cycles.

Theorem 5.6. The rows and columns of A may be permuted so that

AxT = ATA.

Proof. Cyclically normalize A and arrange the row cycles in order
of increasing size from top to bottom and arrange the column cycles in
order of increasing size from left to right. Then

i = (k - 1)I +J - E, {5.25)



-39~

where E is of the form

2 - I ) (5.26)

In (5.26) each Ei corresponds to the ith row cycle and its order n, is
the number of rows in this row cycle. Each Ei has the form

E.=C +C . (5.27)

Also, we have

ATA= (k-1)T+J-E,
where E' is of the same form as E except there may be a different number
of blocks E; and their sizes may be different from the blocks in E. Each
Ei now corresponds to a column cycle and its size is the number of
columns in the cycle.

Thus if we show that there are the same number of row cycles of a
given size as column cycles of that size, then AAT = ATA for A in this
cyclically normaiized form.

It suffices to show that there are at least as many column cycles
of a particular size as row cycles of that size, since applying this to
AT gives us the reverse inequality. We need only show this for cycles of
size greater than 3 since if there are the same number of row and column
cycles for all sizes greater than 3 the remaining rows and columns must
belong to cycles of size 3 and there must be the same number of each of
these because the number of rows equals the number of columns.

Suppose there is a row cycle of size r > 3. We may make this the

first row cycle of a cyclically normalized A, no longer requiring that
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the cycles be kept in order of increasing size. If B is a non-zero
section formed by this row cycle and a column cycle of size s < r, then
s]r and B is a shift matrix with a single 1 in each row. Thus the only
rows of B which have a 1 in the same column as the 1 in row 1 are rows
l1+s, 1+ 2s,...,1 +r - s. Since s > 3 row 3 does not have a 1 in this
column. If D is a non-zero section formed by this row cycle and a
column cycle of size s > r, then D has only one 1 in each column and no
column of D has 1's in both row 1 and row 3. However, since r > 3 row 1
and row 3 of A must have inner product 1 so there must be a column cycle
of size r in which there is a column with 1's in both row 1 and row 3.

If there are fewer column cycles of size r than row cycles of size
r then there must be two row cycles such that their first and third rows
both contain 1's in a column of the same column cycle. However, by
cyclically permuting the rows and possibly reversing their cyclic order
both the sections can be made right shift matrices with 1's in the first
and third rows of the first column of each. Then the third row of each
section has 1's in the first and third columns. This is a contradiction,
thus there are at least as many column cycles of size r as row cycles of
size r and the theorem is proved.

Theorem 5.7. Let s be the size of the largest row and column

cycles of A. If r is the size of any other row or column cycle of A then

.

Proof. Since the row cycle sizes and column cycle sizes are the
same we need only show this is true for row cycles. Suppose there is a
row cycle of size r, where r dces not divide s. iven any row cycle of

size s there can be at most one column cycle which forms non-zero
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sections with both of these row cycles. This is because the size of any
such column cycle must divide r and s since if it were of size d with

r <d <s then r|d and dls so r|s. If there were two such column cycles
of sizes a and b with a,b < r <s then by Corollary 5.4 r = s = Lem(a,b).
If no column cycle forms non-zerc sections with both row cycles then each
row of one cycle has inner product O with each row of the other cycle.

If only one column cycle of size a forms non-zero sections with both row
cycles then each row of the r-cycle has inner product O with some of the
rows of the s-cycle. In either case we have a contradiction so that rls.

Theorem 5.8. Let a be the number of row (column) cycles of A whose

size is even and let b be the number of row (column) cycles of A whose

size is odd. Then b is an odd integer and for k > 3 a is an even number.

Proof. Since n = k2 - k+ 3 is odd and n is the sum of the row
cycle sizes there must be an odd number of odd cycles. The determinant
of AAT must be a square siﬁce det (AAT) = [det (A)]z. To evaluate |
det (AAT) we first look at AAT -J=(k -1)I - E, where E is of the
form described in (5.26) and (5.27). Thus AAT - J is a matrix which is
all 0's except for blocks down the diagonai of the form
(k - l.)Ir - Ct - C;l, where each row cycle of size r corresponds to
an r by r block.

The eigenvalues of a block corresponding to a row cycle of size r

~2

are (k- 1) -~ §- 8 L, (k-1) - 8% - §2,..., (k-1) - 6 = 6T, where

§ is a primitive rth root of unity. Since (k - 1) - 8t -8t =

(k - 1) - EE " o 6—(r_1). each eigenvalue has multiplicity two except for
= / = 3

fle =15 -8 - &% = k= 3 and, 1f © 35 even, Bor (k~ 1) = 872 - §7/2

= k + 1. Thus if r is odd the determinant of the block equals



i

r-1
e = 3L T k= 1~ & = £* 555,
i=1
However,
r-1
T (h=1=8" &)
i=1

is a product of algebraic integers and their conjugates and is therefore
the product of the norms of algebraic integers, which is an integer.

Hence if r is odd there is an integer c¢ such that

-1

: 2
det ((k - 1) Ir = Cr = Cr ) (k =~ 3) e

If r is even then

-1
det ((k - 1) I -¢ -¢C, )

&-1) "
(k - 3)(k + 1)i£l k-1-68 -687))

where
g 5
G-1)

I &
l=

i -
1 (k-1-6 -8 )
is an integer. Hence if r is even there isan integer d such that

=1

det ((k-1) I_-C_-CY = (k-3)(k+1) a2,

Thus we may conclude that

det (AKE = J) = O = TP (& + D® 1°,

i
Now AA" - J and J can be mutually diagonalized by a theorem of
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: T : 8
Hoffman, since AA™ has constant line sums. The matrix J has eigen-
values n =k?-k + 3 of multiplicity 1 and O of multiplicity n - 1.
The column vector of all 1's is associated with the eigenvalue n of J

and the eigenvalue k - 3 of AAT - J. Hence we have

det (AAT) = det (AAT - J+J) =

a+b~-1 2

e+ 1% 5= (k= B® v 1% o

(K2 -k +3) + (k- 3))(k - 3)

for some integer m. For k > 3 this integer is a square if and only if a
is even, and the proof is complete.
We remark that Theorem 5.8 does not hold for k = 3.

The incidence matrix

e -
100 | 100100
010 | 010010
001 | 001001
A= 100 | 010001 (5.28)
010 | 101000
001 | 010100
100 | 001010
010 | 000101
| 001 | 100020 |

satisfies the given conditions, but A has one row cycle of size 3 and
one row cycle of size 6.

The only other known configuration with any even cycle is

8A. J. Hoffman, On the polynomial of a graph, Amer. Math. Monthly,

Vol. 70, 1963, p. 31.
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POOO OO~ 0O0O 1001._00b

]

<

which has one row cycle of size 3 and two row cycles of size 6.

In fact these two configurations are the only ones we know which do

not have all their cycles of the same size.
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CHAPTER VI

Configurations with Constant Cycle Sizes

We now look at those configurations satisfying conclusion (2)
of Theorem 3.1 in which each subset has non—-empty intersection with
exactly n-3 other subsets and, in addition, all of the cycles of a given
configuration must be of the same size. We will call such configurations
monocyclic. For the remainder of this section A will be the incidence
matrix of such a configuration. We will first relate these monocyclic
configurations to another combinatorial object called a (v,k,A)-design.

A (v,k,\)-design is a collection df v subsets S Sv of a v-set

120
S5 such that

=k (1i=1,...,v), (6.1)
and

| s;n s | =2 (455 4,551, (6.2)
where 0 < A < k. If B isthe incidence matrix of a(v,k,A)-design, then
Bis avbyv (0,1) matrix satisfying

BB. = (k - )T + AJ. (6.3)
These designs and related matrix equations have been very heavily
studied and we will use a non-existence theorem by Hall and Ryser to

obtain a non-existence theorem on monocyclic configurations.

Theorem 6.1. Suppose there exists a monocyclic configuration with

line sums k and cycle sizes r, r < n. Then there also exists a v by v

matrix B of non-negative integer entries and constant line sums k

satisfying

BTB = BBT = (k' - \N)I + AJ, (6.4)
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where
ve(kZ-k+3)/r, K' =r-3+k, A=r. (6.5)
Proof. Let A be the cyclically normalized incidence matrix for the
monocyclic configuration. Let Aij denote the section of A formed by the

intersection of the ith row cycle and the jth column cycle. Since Aij

is a square shift matrix of order r it has constant line sums, say bij'

Let v = n/r = (k2 - k + 3)/r be the number of row cycles. We form the

v by v matrix B = [bij]' Since A has constant line sums k we have
v v
. bij = k (i=l’--tgv)9 X b L = k (j = l,..-,v>- (6-6)

j=1 i=1 1

Each row of A has inner product 1 with r - 3 of the rows in the same
cycle. In a section with constant line sums bij each row has inner
product 1 with bij(bij - 1) of the other rows.

Thus we have

v
j£1 bij(bij -1)=r1r - 3, (6.7)
and by (6.6)
v 2
I b.,.=1r-3+ k. (6.8)
=1 M

Each row of A has inner product 1 with all r rows of any other
: th th
cycle. Consider a row in the p row cycle and the rows of the q
row cycle. The intersection of the jth column cycle in these two row

cycles accounts for bpjbqj of the v inner products which equal 1. Thus

for p # q we have

=r. (6.9)
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The arguments are the same for column cycles so by equation (6.8) and

(6.9) we have

BTB = BBT

(k =~ 3} + rJ. (6.10)

We let r = A and k'

r — 3 + k and the theorem is proven.
We will now use the following theorem by Hall and Ryser.9

Theorem 6.2 (Hall-Ryser) Let H be a matrix of order v, where v is

odd. Let H have the integer k' in the main diagonal positions, and the

integer A in all other positions, where 0 <X < k'. If there exists a

matrix B with rational elements such that

BBT = H, . (6.11)

then there must exist an integer T such that

T2 w (I = A) o v (6.12)

Moreover, the Diophantine equations

X = (k' - A)yi + (-1)(V - /2 Azi, (6.13)
and
(v — 2
xg = (k' - %) y% o (-1)(v l)/7vz§ (6.14)

must each possess solutions in integers not all zero.

If there exists a monocyclic configuration with line sums k > 3 and
cycle sizes r, then there exists a matrix B with non-negative integer
elements satifying equation (6.11) with v = (k2 -k+3)/,k =r - 3+ Kk,
and A = r. We notice that
k' ~-NN)+vi=r-3+k-r +~&(k2 -k + 3)/r)= k2 (6.15)

so that equation (6.12) is always satisfied. By using these parameters

9Marshall Hall, H. J. Ryser, Cyclic incidence matrices, Can. Jour.

of Math., Vol. III, No. 4, 1951, p. 495-496.
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in equations (6.13) and (6.14) we obtain the following.

Corollary 6.3. Suppose there exists a monocyclic configuration

with line sums k > 3 and cycle sizes r, where r < n. Then the Diophan~

tine equations

2 4
xi = (k- 3)yi o 1g5Ne "k+3)/2rzi (6.16)
and
2
xg = (k - 3)y§ + (P BB, 02 o 3)/f)z§ (6.17)

must each possess a solution of integers not all zero.

We note that for k = 6 and r = 3 or 11 solutions exist to the
Diophantine equations (6.16) and (6.17). Yet no monocyclic configura-
tions exist with these parametefs.

For k = 9 and r = 15 equation (6.17) becomes

& + 522

2 2 (6.18)

xg = by

which has no nontrivial solution. For k = 9 and r = 25 equation (6.16)
becomes

2 2 2
X = 6y1 - 2521, (6.19)

which has no nontrivial solution. So there are no monocyclic configura-
tions with line sums 9 and cycle sizes 15 or cycle sizes 25. For all
other admissible parameters k and r with k < 14 equations (6.16) and
(6.17) possess nontrivial solutions.

The monocyclic configurations which have only one cycle of size
n= k2 -k +.3 are equivalent to planar near difference set of type 2

as described in section 5. This is because A may be taken to be a right

shift matrix and thus
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$ yun & K (6.20)
and
' = k-DI+I- @©+cH. (6.21)
Ryser proved that if a planar near different set of type 2 of k integers
(mod m) exists such that n is divisible by 3 then the Diophantine
equation
2 = ky? - @/3 - 1)2? (6.22)
must have a solution in integers x,y, and z not all zero.
We now define a variation on these near difference sets. Let k be
an integer with k > 3 and let r be an integer with r > 3, such that r

divides n = k2 - k + 3. Let Dij (i,j = 1,...,n/1r) be (n/r)2 subsets of

distinct integers modulo r, possibly empty, such that

[ e B o

'Dijl =k = lyecost)s (6.23)
1

h|
Suppose that for each i (i = 1,...,r) and each a 2 0, £1 (mod r)
(1) .(2)_
dij dij = a (mod r) (6.24)
(1) 4@
15° %43

that for each i and £ (i # 2;i,2 = 1,...,r) and each residue a (mod r)

has exactly one solution with d D_,j for some j. Suppose also

the congruence

d

1] - de a (mod r) (6.25)

has exactly one solution with d. . €D., and dy. €D,.. We call these
iy~ 4 3 7%

sets, D,., a (k,r) near difference partition.

ij

For example, a (4,5) near difference partition is
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Dy = 1.3} Dy, = {11, Dy = {1},
D,; = {1} , D22 = {3,5}, D23 = {2}, (6.26)
D31 = {1} , D32 = {2}, D33 = {3,5}.

Theorem 6.4. If there exists a (k,r) near difference partition

then there also exists a monocyclic configuration with line sums k and

cycle sizes r.

Proof. We form an n by n matrix A from the near difference parti-

tion as follows. Let

A11 s % @ Al%
A= . ‘ " (6.27)
A . A
n, nn
| [T _|

where each Aij is an r by r matrix of the form

ey a(®)
Ay = C Ho# e #CH (6.28)
where diiz...,diF)are the elements of Dij and C is the r by r circulant

permutation matrix with a 1 in the (1,2) position. We note that

_ (1) _.(t)
A gy & L. W ¢ 79413 . . (6.29)
Thus, if i # j then by (6.25)
T r-1
A o & A =T +C+ . + C
(agy o A ] [y, o]

]
()

6.30)
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where J is the r by r matrix of 1's. If i = j then by (6.23) and (6.24)

[Ail e Ai% ] [Ail o3 % Aig]T

= (-DI+J-(C+c ). (6.31)
But then we have

M= k-Dr+J- 8, (6.32)

where A, I, J and E are n by n matrices and E Has all zero entries except
for-% blocks of size r by r down the diagonal of the form (C + C_l).
Thus A is the incidence matrix of a monocyclic configuration.

We remark that all that is needed to prove the converse of Theorem
6.4 is that A may be arranged so that all its sections are right shift

matrices. If so then Aij’ the section formed by the ith row cycle and

jth column cycle, is of the form

d§1) aft)

A= C i3 4+ ... + ¢ | (6.33)

and if we let Dij = {d§l),...,di:(t)} we have a (k,r) near difference

J
partition. While we do not know if all monocyclic configurations can be
so arranged, we may prove the following.

Theorem 6.5. Let A be the incidence matrix of a monocyclic con-

figuration. Suppose some row cycle of A forms non-zero sections with all

the column cycles of A. Then the rows and columns of A may be arranged

so that each section of A is a right shift matrix.

Proof. We may assume the first row cycle forms non-zero sections
with all the column cycles. By permuting only columns we may make all
these sections right shift matrices with 1's on the main diagonal of
each section. For any other row cycle by permuting only the rows of

that cycle we may make one of the non-zero sections it forms a right
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shift matrix with 1's on the diagonal. Any other section formed
by this row cycle must also be a right shift matrix since any
left shift matrix would have a 1 on the diagonal because the cycles
must be of an odd size, and this would mean a row of the first
cycle has inner product greater than 1 with a row of this cycle.
The sections formed by the remaining row cycles may be similarly
transformed in turn into right shift matrices without changing the
shift direction of any previously transformed sections. Thus we
can make every section a right shift matrix.

The (4,5) near difference partition in (6.26) leads to a mono-

cyclicconfiguration with incidence matrix

1010010000 10000
010101 0100001000
0010100100} 00100
1001000010 f(00010
0100100001 |(00O0O01
1000000101 j01000
01000} 10010]00100
A = 00100901001 0001090] (6.34)
0001010100 00001
00001701010 ;10000
1000001000 00101
0100000100 10010
0010000010 01001
0001000001 ]10100
000011100001 01010
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Chapter VII
Summary

In this paper we have studied various questions about subsets of
a finite set S, each of which intersects most of the others in exactly
one element and has empty intersection with the remaining few. We began
by requiring only that each of these subsets contains three or more
elements and has non-empty intersection with at most c-1 of the other
subsets, for some fixed positive integer c. We added more restrictions
on the subsets and their intersections along the way. Finally, by
Chapter VI the number of subsets equalé the number of elements of S,
each subset has the same size, each element is contained in the same
number of subsets, each subset has empty intersection with exactly two
other subsets, and the cycles of subsets that arise are all the same
size.

Along the way we answered several questions'most of which gave rise
to new problems which remain to be solved. 1In the least restrictive
case which allowed the number of subsets, m, to be different from n,
the number elements of S, we showed in Theorem 2.2 that for any fixed c
either m <n or m is no larger than some positive integer M(c) which
depends only on c. However, the exact value of M(c) is not calculated
for specific values of c.

Next we added the restriction that m = n since except for the low
order configurations with m < n this is the extremal case. We proved
in Theorem 3.1 that either n < N(c) where N(c) is a positive integer

depending only on c, or the incidence matrix A of such a configuration
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has constant line sums and each subset has non-empty intersections with
the same number of other subsets. These configurations are very nearly
projective planes except that each line misses a few of the others.
From any projective plan of order n one can construct such a configura-
tion for ¢ = n - 2 which does not have constant line sums. For c = 2
and ¢ = 3 these are the largest such configurations, leading to the
conjecture that N(c) = c2 + 3c, at least when a projective plane of
order ¢ + 2 exists.

We then restricted our attention further to those configurations
for which &’has constant line sums andAeach set has non-empty intersec-
tion with exactly n - 3 of the other subsets. We chose n - 3 since for
n - 1 the configurations are the projective planes and for n - 2 they
are special symmetric group divisible designs. With n - 3 there is a
bit more freedom and configurations of different types can arise. The
rows and columns of the incidence matrix can be partitioned into cycles
in a natural way. We showed that the intersection of a row cycle and
a column cycle, which we called a section, is a right or left shift
matrix. We used this to show the number of row cycles of a given size
is the same as the number of column cycles of that size. The corol-
laries that follow from the fact that the sections are shift matrices
eliminate many conceivable cycle arrangements for configurations of a
given order. However, there are still cycle arrangements, for instance
cycles of sizes 3,5, and 15 in a configuration of order 23, which satis-
fy the corollaries but do not actually occur in any configuration. It
is not known whether there are a finite or infinite number of these

configurations either in the case where all the cycles are the same size
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or where cycles of different sizes are allowed.

Since the structure of each section is determined by the 1's in its
first row and whether it is a right or left shift matrix, a somewhat
more complicated difference partition idea like that used in Chapter VI
could be helpful in this area, especially when all the sections have the
same shift direction. Besides the difference partition concept for
configurations with equal cycle sizes, Chapter VI also showed that the
existence of such a configuration implied the existence of a smaller
matrix, B, with non-negative integral entries satisfying
BBT = (k - A) + AJ. This implied that solutions to certain Diophantine
equations were necessary for the existence of a configuration with equal
cycle sizes .

There are also many broader problems open for investigation. For
example, we could require each subset to intersect most of the other
subsets in some fixed number of elements other than 1 and have empty
intersection with the remaining subsets. We could also allow a bit more
freedom in how a subset intersects the few other subsets it does not
intersect in one element. For instance, it might be allowed to inter-

sect these sets in zero or two elements.
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