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ABSTRACT

Let k be a number field, £ a prime, ka1Ck2C"'CK’

and kcmlchC"'CM two Z,-extensions of k. The structure
"of the galois group of a certain extension of MK is studied,
and it is shown how, in some cases, the g-parts of the class
groups of the intermediate fields mikj can be obtained from
this group.

Th;s galois group is a module over ZglIS/T]]: the
power series ring in two variableés over the £-adic integers,
but the structure theory of such modules is not well de-
veloped. The main results come from studying the structure
of this group as a 2,[[S1] or Zﬁ[[T]] module. Necessary
and sufficient conditions are given for this group to be
a Noetherian module over Zz[[T]J, and thus it has a well
known structure. Sufficient conditions are given for the
module to be a torsion module. |

The structure of this group is then used to obtaiﬁ
information on the Iwasawa invariants ppand A of the
Z,-extensions Kmi/mi and Mkj/kj. In suitable situations
it is shown that u(K/k)=Q implies that M(Kmi/mi)=0 for all
i, and A(Kmi/mi)=r2i + jéo cj¢(3j), with cj=0 for all'j>nO

and it is shown that r=0 iff the above module is torsion.
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In certain situations, this group is also used to
study the invariants of all Zz—extensions of k contained in
MK. With suitéble hypotheses, it is shown that at most
one Zy;-extension has u#0.

Some examples are computed.
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Lo INTRODUCTION

Let k bé an algebraic number field and ¢ a fixed
raticonal prime. We shall be concerned with a certain type
of extension of k, called a I'-extension, or a Z)-extension.
+
) the

?-adic integers considered as an additive group. Let K be

Let %, denote the ring of £-adic integers, and 7

a field containing k hot necessarily a finite extension of

the rationals, Q), then we say that K/k is a 7, -extension

[/
if K/k is normal and g(K/k);Z;, where g(K/k) denotes the
galois group of the extension K/k.
Let I'=g(K/k) . I’ has as subgroups of finite index
r =21, n=0,1,... . Let k denote the fixed field of T .

Then k=k0ck c...cknc...cK. The kn are the only subfields
(o0

i
of K containing k, and K=$;£'kn. It can be shown that

kn/k is cyclic of order zn. The field kn is called the

n-th layer of the Z,-extension K/k.

£

An example of a Z£~extension is constructed in the

4=
following fashion. Let Cn denote a primitive (En 1)—st

[es]
A A - - s n
root of unity. Let kn Q(Cn), K gzékn. Then g(kn/kO)WZ/Q Z,

and g(K/kO)zlim Z/anzzz. If =2 we take k1 instead of

kO as the base field. For £ odd, K/k0 is a Zg—extension,

and furthermore K is normal over Q. Then g(K/Q) contains
a unique element of order (-1, and g(K/Q);ZfDA, with |AI:E—1.
Let P be the subfield of K fixed by A. P/Q is a %)-extension

of Q, in fact the only %,-extension of Q. For £=2, we take

£
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P to be the subfield of K fixed by complex conjugation. For
any number field k, the extension kP/k is a Z, -extension,
called the basic, or cyclotomic, Z,-extension of k.

An algebraic number field always has at least one
Zg—extension, the cyclotomic one. For a number field k, let
M denote the composite of all zz—extensions of k. Then
g(M/k);Z? for some integer a. If k has 2r2 distinct complex
imbeddings into the complex numbers then 1+r2§a§[k:Q] 7, p.253].
The conjecture that a=1+r2 is equivalent to Leopoldt's con;
jecture on the nonvanishing of- the £-adic regulator.

For any algebraic extension of Q, F, let F denote
the maximal abelian unramified ¢-extension of F (i.e., f/F
is unramified and g(E/F) is a profinite Z—group. In
general, a normal extension L/F is unramified, if for each
valuation v of L, the inertial group,

Tvz{oeg(L/F)I&(c(a)—a)>ovueL}
is trivial). Let AF=g(E/F). For F a number field, F is a
subfield of the Hilbert class field of F and AF:E the Sylow

£-subgroup of C the class group of F.

FI

For the 7,-extension K/k, kck c...cknc...cK, the

1

groups A are related in an interesting way. Define e,

kn
e
by ¢ n:|Ak | -
n
THEOREM (Iwasawa). There exist integers M, A, and

v such that enzuﬁn+hn+v Vh?no for some integer no:nO(K/k), with

s A 20.



The integers U=u (K/k) and A=A (K/k) are called the
(Iwasawa) inva;iants for the Zy - extension XK/k.

A natural gquestion would be, for a Zg—exténsion
K/k, how does one determine the invariants g, A and the

integers vV and n The main interest has been in the

0°
invariants 4 and A, and although methods for the deter-
mining U and A are not known in general, there are results
for certain special cases. For the cyclotomic Z@—extension
of the field of f/-th roots of unity, the invariants can

be computed via the f¢-adic L—seriés (modulo Vandiver's
conjecture), with the connection based upon a theorem of
Stickelberger. Greenberg [3] has some results on the basic
extensions of'totally real fields. A number field which

is not totally real has infinitely many Zg—extensions, aﬁd
the gquestion is still open for the non-cyclotomic extensions.
In fact, the set of Ze-extensions of a number field has not
been canonically indexed, so it is difficult to work with

a specific non-cyclotomic Zg—extension. Carroll and
Kisilevsky [2] have, in certain situations, characterized

a set of ZQ—extensions of k, which are independent, and
together with the cyclotomic %Q—extension, generate the
composite of all ZQ-extensions. These independent Ze—exten—
sions are the unique Zg—extensions normal over Q. For this
case, certain congruence relations in the invariants were

found, and a functional equation was given for a certain



characteristic polynomial. (The polynomial uniquely de-
termines the invariants [ and A.)

This thésis investigates the situation where a
Zﬁ—extension is described in terms of one or more "known"
Zg—extensions. The first situation investigated is the
composition of a Zﬁ—extension K/k with a field of F to
obtain a Zg—extension KF/F. (c.f., Iwasawa [6])g The
same situation is considered where F runs through the

various finite layers of a Zg—extension M/k.



II. FURTHER DEFINITIONS AND NOTATIONS

Let K/k be a Z,-extension. Let K be the maximal

abelian unramified / -extension of K. Let

¢ = g(k/k), X = A, = g(K/K).
Then X is-a normal subgroup of G, and G/XzF=g(K/k)ng. Thus
' acts on X by conjugation, and Zgalso acts naturally on X,
yith the action of ae Zy given by I =a%£§ xan (This
limit exists since X is a profinite f-group.) Both these
actions are continuous.

These actions allow us to consider X as a module over
the group ring ZgDﬂ- X can also be considered as a module
over the ring of (formal) power series in one variable,
Zﬂ[ET]]° This action is obtained by picking a topological
geﬂerator VO of I (i.e., < YO>>is dense in '), and defining
the action of T on X by 70 X = (1+T)x for all xeX. Since
.ZE[(1+T)]is dense in Zz[[T]J, this defines a unique action
of Zﬁﬁﬁj]on X. c.f.,[7]. From now on, we will let.AT
‘denote ZQ[[T]].

In general any compact profinite f-group on which
' acts continuously admits a continuous action by AT'

c.£.[7]

A few elements of AT are defined for future use.

ol
DEFINITION. «, (T) = (1+7)4" - 1, n>0.

Vn,m(T) = wm(T)Aun(T), m>n>0.



DEFINITION. Given two AT modules X and Y, a homo-
morphism £:X —Y is a pseudo-isomorphism if the kernel and
co-kernel are finite. We say X is pseudo-isomorphic to Y
if there exists a pseudo-isomorphism £: X-—Y and write

X=EY.

ol

Pseudo-isomorphism is not, in general, ah equivalence
relation. That is, we can have X§§Y but‘Y%)& Pseudo-
isomorphism is, however, transitive. Also, if X and Y
are Noetherian torsion _/_\T modules, then XgY implies Y%X.

Let €y ©qr -e-s g be ndn—negative integers and
Py/ -«-s Pg be prime ideals of height one in AT. Each =
is either (¢), the ideal generated by ¢, or (fi(T)), the
ideal generated by a distinguished irreducible polynomial
in ZQ[TJ. (A polynomial f£(T) is distinguished if,

Fla) = 9 4 £g(T), >0, d>deg g(T).) Define the module,

-1 | e€sy _ A0 A eq -
E(eg : Py~r «-s PS7) r ©AT/p{t® .- -OA/P_S.

Such a module is called an elementary AT module. Every
Noetherian AT module is pseudo-isomorphic to a unique

=~ = Also, X is a
elementary module EX. If X;>Y' then EX EY.
Noetherian torsion A.T module if and only if the associated
elementary module E(eO ¥ pil, e pzs) has ey = 0.

For a ZQ—extension of a number field, K/k, the

module X = AK is always a Noetherian torsion AT module.



If we write,

m . By
E = @ A/(E (m) N AR AC

X

ol

then the invariants p(K/k), ) (K/k) are as follows:
n m
_ _
W=yl Hye A= gy gy deg £

The above description of U and A also allows us to
characterize them in the following way. Let V= XC)Z QQ.
2

V: is a vector space over le and dimQ V =A. Let D denote
2

the kernel of the map,

X E—X.

X b X

Then L = 0 if and only if D is finite.

At this point we also wish to mention the following
fact, a consequence of ramification theory. If F is an
_abelian extension of a number field k with g(F/k) = %? =
Zk @ ..-® Zg' then F/k is unramified outside primes above

¢ . The case F/k a Z£~extension is of particular interest.



ETT. COMPOSITION WITH A FINITE EXTENSION

Let k be a number field, K/k a Zy-extension, and

F/k a cyclic extension of degree Zr, k = FO C Fl C wae C

F_=F, with [Fi:k] = ¢, Assume furthermore that FrK = k.

Since g(KFi/k) = g(KFi/Fi)(Dg(KFi/K); 2, ® 2z/¢ iz,
KFi/Fi is a Z,-extension for i = 0, ..., r. We will obtain
certain relations among the A-invariants of the variéus ex-
tensiQns KFi/Fi. For the relationship of the pu-variants,
see [ 6 7.

Let X, = g(KFi/KFi) . Then A(KFi/Fi)=d1mQ£ (xi ®Z£ Qg ) =
zr
Let g(KF/K) =<0>. 0O =T

LEMMA 3.1.
. 4 :
. I £ _
dim (X, ®Zz Q) dim X/ (o 1) X ®z£ Qz)

o} z Q,

If each prime of k which ramifies in F/k is finitely de-

i
; = £ _
composed in K/k, then X, S Xr/(o ,1)Xr‘

To simplify the formulas, we will let D(X)=

dim_. (X ®, Q,) for any A_ module X. The first statement
Qz Zg £ A

i
of the lemma now reads D(Xi) = D(Xr/(cz —1)Xr).

PROOF OF LEMMA. We construc£ the following fields.

Let E, = KF KF.. Let G, = g(KF/KF.), and let G. be the

i i i i i
commutator subgroup of Gi' Let Mi be the fixed field of
Gi. The field Mi is the maximal subextension of Ef/KFi

which is abelian over KFi' The following relationship holds



among these fields:

KFc E.c M, c KF.
=Ei= =

This provides us with an exact seguence.

O»Q(Mi/Ei) —»g(Mi/KF)—»g(Ei/KF)—» 0.

If we form the tensor product of each element of the se-
guence with QQ, and take the dimension of the resulting

vector space, we get,

D(g(Mi/KF)) = D(g(Mi/Ei)) + D(g(Ei/KF))‘

-

Since D(Xr) = D(g(Ef/KF))is finite, each term in the above
equation is finite. The first part of the lemma will be
/done if we show D(Xi) = D(g(Ei/KF)), D(g(Mi/KF)) =

i

. =
D(X /(0" -1)X ), and D(g(Mi/Ei)) 0.

First, g(Ei/KF) = g(Efi/KFerFi). We also have
0 — g(KFi/KFn KFi) e g(KFi/KFi) - g(KFnKFi/KFi)—» 0

Since the last term in this exact seguence is finité, we
can actually conclude that g(Ei/KF)iixi' so the relation-
ship D(Xi) = D(g(Ei/KF)) is proven.

To prove the second relationship we argue as

follows. By the definition of Mi' g(Mi/KFi)z Gi/Gi , and
i
therefore g(Mi/KF)z Xrﬂbifﬁxr} We can take 02 as a gen-

i
.

erator of g(KF/KFi). Let a = denote a lifting of

1
02 to Gi' Since Xr and a generate Gi, and Xr is an
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abelian group, one sees that G; =<axalxl| xeX > =

21
(0% -1)X_. : .
i .
Thus we have g(Mi/KF)g Xr/(O‘2 —1)Xr, and therefore

; _ gt
D(g(hi/KF)) = D(Xr/(a —1)Xr)-

Finally, we show that D(g(Mi/Ei)) = 0. Since

g(Mi/Ei)S.g(Mi/KFi)’ it suffices to show that D(g(Mi/KFi)) = P

Let'{wj} be the set of valuations of KFi which ramify
in Mi/KFi. Let {Tj} be the set of inertial group for the
W, in M./KF.. Since KF.c KF.E_M:, and KF. is the maximal
3 i i i i i &l
unramified subextension of Mi/KFi' g(Mi/KFi) is precisely

the group generated by the Tj' Tj| is the inertial group

KF

. pr-i . . .

for Wj %n KF/KFi. Let tjeTj. Then tj lKF is the identity

Qr—-l i T
so tj € Tjrwg(Mi/KF). Now Mi/KF is unramified, so

-

Tjrwg(Mi/KF) = 1. Thus t% s 1, and therefore,

Y A d g(M./KF.) ® =0
g (M, 7KE, = de BHEG BN AR Z’QQP,_ .

This completes the proof of the first statement
of the lemma..

The second statement now follows guickly. We
have already shown that,

" . g
g(Ei/KF)E}%J and g(Mi/KF)==Xr/(g l)Xr.

We also have the exact sequence,

O—*g(Mi/Ei)-» g(Mi/KF)-+ g(Ei/KF)-* 0.

We will be done if we show g(Mi/Ei) is finite. We actually

show that g(Mi/KFi) is finite.
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It was shown above that g(Mi/EEZ) is the group
generated by th¢ inertia groups {Tj}, and each Tj is finite.
Let Uj be the restriction of Wj to Fi. Since Wj ramifies
in KF/KFi, v, must ramify in F/Fi' Since F/Fi is a finite
exténsion of an algebraic number field, there are only
finitely many ramified primes. The hypothesis that each
prime ramifying in F/k is finitely decomposed in K/k implies
ghat there are only finitely many extensions of yj to KFi.
Thus {ij is finite, and g(Mi/ﬁf;) is findite.[ ]

This lemma can now be uséa to relate the A-invariants

for the various Zg—extensions KFi/Fi.

THEOREM 1. A(KF,/F.) = MKF, ,/F, ) (mod ¢ (21),

hence for j<i A(KFi/Fi) 22 K(KFJ/Fj)(mod¢(£j+l))_

PROOF. The characterization of A(KFi/Fi) in
section II is that A(KFi/Fi) = D(Xi). The above lemma shows

that D(Xi) = D(Xr/(Ugl—l)Xr).

Let V be the Q, vector space X_ &, Q- The map

. 2
J
(og -1) is a linear map on V. Let Vj denote the null

J ,
space of (02 -1). We have VOEZV1££... g_Vr = Vo

Now,

. p i J o
A(KFi/Fi) - D(Xr/(a —l)Xr) = dlmQE(Xr @&EQE) dler

Bi_ == 171 M e i 21_ V = i V .
((o 1)Xr ®ZQ QQ) dler dlng (o 1) dlng Y
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Therefore, we have,

/F. ) = dim V., - dim \Y

ARE /B ) = MRR, 4/Fy g 0, Vi g, 'i-1

ai ey
1mQQ (o -1) i

i-1
Let Wi = (g —1)Vi. We are done if we show

i
. . W. — . w .
oL )l dlmQB Wi If i 0, we are done Assume i¢ 0
Let @(t) = t* -1/t -1. &(t) is an irreducible poly-
nomial in Qﬂ[t]. Since W.20, but ®(0)W. = 0, &(t) is the
m;nimal polynomial for o on Wi. Therefore, P(t), the
characteristic polynomial for ¢ on W, . is a power of ®(t).

P(t) = (®(t))°. Thus dim, W, = deg P(t) = s deg &(t) =
. 0
se (05 .1
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LV COMPOSITION WITH A Z,-EXTENSION

Let k=k0cklc...ck, and k=m0cmlc...cM be two disjoint

Z,-extensions of k. The invariants of the Z,-extension
Mki/ki can be related to the invariants of the Z,-extension
M/k by Theorem 1, but in this case, stronger results hold.
We therefore study these extensions. Since not every
number field has two disjoint Zg—extensions, it is neces-—
sary to assume that k has at least one complex imbedding.

For the remainder of this thesis, let k be a
number field with at least one complex imbedding.

Let kzg be the composite of all Z,-extensions of
k. Then G=g(kZZ/k)g 723, with a>2. It is possible to pick
HcG with G/HEEZADZZ, and if N is the fixed field of H,

g(N/k)QngC)Z . One can pick I'. and T, contained in g(N/k)

£ 1 2

such that I =T,=2,, and g (N/k) 1C>T2.

Let K be the fixed field of Tl' and M the fixed

field of T2. Then K/k and M/k are disjoint Z,-extensions

of k, and N=MK.

Let N be the maximal abelian unramified £-extension
of N, and XN=g(§/N). We will show that XN is a module over
Ze[[S,T]] in a natural way.

Let ¢ be a topological generator of Fl’ and let
T be a topological generator of T2. Since g(M/k) = Tl,
with the isomorphism given by restriction,g(M/k) is topo-

logically generated by the restriction of 0 to M, which we
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also call ¢ . Similarly, g(K/k) is generated by T.
n n
Let N_ denote the subfield of N fixed by<c , 74 >,
n n
the closed subgroup genggated by 04 and 74 . Then N0=k,
o0
\EU . Si 5 =LiE £l10 ]y, gi/N)=1i N_ g

and N=—) N_. Since N =N (c £ D, gm/N) lim g (N /N )
Each g(ﬁn/Nn) is a finite £Z-group, and therefore XN is a
profinite £-group.

: = i : ~ T i) r P

Let & g(N/k) . Since G/XN 2 lC) e 1() , acts
on XN by conjugation, and thus one obtains a continuous

action of Zk[ll C)Jé]’on b4 It is not hard to show that

-
the correspondence 14+T-=>7 14+S==0, provides a continuous

action of Zz[[S,T]] on X (c.£.L 4 1.

.

THEOREM (Greenberg). XN is a Noetherian torsion
zz[[s,fr]] module.

The structure of Zg[[S,T]] modules is not as well
classified as the structure of ZZ[[S]] modules. The ¢-part
of the class group of the intermediate fields kimj
(ki<:K, mj cM) is connected with the Zz[[S,T]] structure of
XN. The following proposition describes the connection in
the particular case where N/k has a unique totally ramified
prime.

PROPOSITION. If N/k has a unique totally ramified

prime, then,

g(kimj/kimj) = XN/<wi(T)XN, wJ.(S)XN>.
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PROOF. Let i and j be fixed. Let E denote the
largest subfield of N which is abelian over kimj° Then
NEEEE. We will show that g(kimj/kimj);; g(E/N), and that

g(E/N) = XN/<wi(T)XN’ wj(S)XN>-

Let G = g(ﬁ/kimj). Then E is the fixed field of

! 7 " 1] =
G . We will show that G <wi(T)XN, uﬁ(S)XN>'

Let / denote the prime of kimj which is totally
ramified in N/kimj’ and let TV be the inertial group in
E/kimj, for a valuation v of N which extends the valuation
induced by /.

Since N/N is unramified, TVnXN=O. Since TVXN/XN
is the inertial group for 4 in N/M,'TVXN=G. We have
G/XN-= Tyt and T, acts on X
a semidirect product of X
1

N by conjugation, so G is

N by Tv'

x_l| teTV,xeXN>>=-<X§_1|

We can also identify T with g(N/kimj). TE;

Thus G’ = <txt teT >.

£ = (123 (ef)P,

then,

o1 = (3ot + ety

S0
t-1 o

j
2 . _
Xy < (o —1)XN + (7 1)xN <wi(T)XN. wj(s)xN>.
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Tﬁi—l ’ o'ﬁj_]_ ’
Also wJ.(T)XN = XN c G , and wj(S)XN = XN c G, so
G = <uw, (T)Xg, W (S)X>.
Thus, NgEgﬁ, with ¢’ = g(ﬁ/E)g;g(ﬁ/N) = XN'
- ~ ! —
Therefore, g(E/N) = XN/G = XN/<wi(T)XN, wj(S)XN>.

Let s be the prime of kimj which ramifies in
N/kimj' and let Ts be the inertia group for f£ in E/kimj.
Since ?ﬁ projects onto g(N/kimj) and is disjoint from
g(E/N), we have g(E/kimj) = g(E/N)(@ ?ﬁw

Since kimj cE and the fixed field of ?ﬁ is con-

tained in kimj’ we have E = N k = Therefore,

.,
i
g(E/N) = g(kimj/kimj)’ and we are done.[:

We now return to the study of XN'

Since the structure of ZZ[[S'T]] modules is not
well known, we notice that the action of Z}[IS,T]] on XN
provides an action of Z£USJ] and Zg[[T]] on X . and study

the structure of XN as a module over these rings.

THEOREM 2. If 2 is finitely decomposed in M,
then XN is a Noetherian Zz[[T]] module if and only if
pw(M/k) = 0. Similarly, if ¢ is finitely decomposed in K,

then Xy is a Noetherian Zg[[S]] module if and only if
L(K/k) = 0.
PROOF. We will prove the first statement. The

second follows from a change in notation.
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The module X,. is a Noetherian Ze[[TJ] module if

N
and only if XN/(T,z)XN is finite. The module XN/(TJZ)XN
is finite if and only if XN/TXN has a finite rank.

Let Ec N be the fixed field of TX Then

N*
H = g(E/N) =~ XN/TXN. Since TXN is the commutator‘subgroup
of g(E/M), G = g(E/M) is abelian. Therefore we can form
the/factor group G/H, and G/H= g(N/M)= Z,. Thus XN
is Noetherian if and only if G has finite rank.

Let I denote the subgroup of G generated by the
inertia groups of all valuations of M. Since only valu-
ations above £ can have non-trivial inertia groups, and
we have assumed there are only finitely many valuations
ébove £, I has finite rank. Hence G has finite rank if
and only if G/I has finite rank.

Let L be the fixed field of I. Then L is the
maximal abelian unramified extension of M contained in N.
Since M € N, L=M. Therefore G/I = g(ﬁ/M). Finally, XN
is Noetherian if and only if g(ﬁ/M) has a finite rank,
which occurs if and only if Q(M/k) = 0. L]

Recall that k = kock1C...ck, and k = mOcm1C'°’CM
are two disjoint Z,-extensions of k, and N = MK. For each
iz0, let F, = kiM' Then Fi/ki is a Z,-extension and we
now study these extensions.

Let Xi = g(f;/Fi). The structure of the class
group of kimn, the n-th layer of Fi/ki, is determined

by the structure of Xi as a AS module. That structure
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is not easily determined in the general case. We will
find information about the invariants of Fi/ki from the
A_ structure of X..
T 1
Recall that X = g (N/N) .

THEOREM 3. If N/M is unramified, then,
Xi ™ XN/wi(T)XN@ Zﬁ.

PROOF. If N/M is unramified, then Ngﬁlﬁﬁ, and

Fi is the maximal abelian extension of Fi contained in N.

= N — o ~ ? T
Let Gi g(h/Fi). Then Xi g(Fi/Fi) Gi/Gi' Since Gi

i
is a semidirect product of X_ by g(N/Fi) =<7€ >~7,, we

N
i
have G. = (74 -1)Xx = w. (T)X_.. Therefore X. is a semi-
. N 1 N i
direct product of XN/wi(T)XN with g(N/Fi):z Z,- But since
Xi is abelian, the product must actually be a direct

product.[]

COROLLARY. If u(M/k) 0 and N/M is unramified,
i i

) Z n

r + n=0cn¢(£ ). The

I

= A
then u(Fi/ki) 0 and (Fi/ki)
numbers r and c, are non-negative integers, and e, = 0

Vnzn,., for some integer n The integer r is zero if and

0
only if X

0"
N 1S @ torsion AT module.
PROOF. If u(M/k) = 0, then Xy is a Noetherian

AT module, by Theorem 2. Therefore XN is pseudo-isomorphic

to some elementary module E, and XN/wi(T)XN E/wi(T)E.

o2

Thus we have X.

i ——;— E/wi(T)E ® Z,-



1f, m h
= r @ £ n_j @ n
then, -
o r ® n.;
X S (/o (MNT O a/ (g (1 (£, (1))
h
® Ng
g=1 AT/(wi(T),z ) ® Zg,.
The module AT/(wi(T),znh) is a finite for each
i n, - The module AT/(wi(T),(fj(T)nj))is either finite, if
] 5 i .
fj(T)1'wi(T),.or is pseudo-isomorphic to AT/Vn—l,n(T)
i . =V 1 =
for some nci, if fj(T) n—l,n(T)' Define V—l,O(T) T,

Let c, be the number of fj(T) equal to V (T) .

n-1,n

i _
_ o hiy : c )
Then 8, = 0 thno, and Xi = (AT/(wi(T)) g;b (AT/vn—l,n(T)) n()zg.

Since the module on the right has no elements annihilated by

£, Xi has only finitely many elements annilated by £, hence

u(Fi/ki) = 0. We also have,
i

o _ a. 3, n
A(Fi/ki) = dlsz(Xi<:2£Q Y = it +n=0cn¢(£ y + 1.

This can be made into appropriate form by change of Cy- [j
Remark: If A(M/k) =1, then r = 0, thus K(Fi/ki) is bounded.

THEOREM 4. If N/M is ramified at some valuation,
and unramified at all but a finite number of wvaluations,

then there are integers n

N

and n_, and A_ submodules Y,c X
0 1 T i
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e X, XX LT, Vi , = .
such that VY ngy, X, N/Yl and 1<nO Xi > XN/Yi
Furthermore, Vizn,, Y, = V  EYE
1 i nqg,i ni.
Remark: A more exact description of Dy nl, and the Yi is

'~ given in the proof.

Remark: Both the statement and proof of this theorem are
essentially the same as in the case of a Z,-extension of a

number field, and closely follow Serre [ 10 ].

PROOF. Recall that E; is the maximal abelian
unramified gf2-extension of Fi. The extension Nf;/N 1.8
unramified, so NE;E;E/ and therefore E;f;ﬁ. Let

G, = g(N/Fi), and H, = g(N/Fi). Then,

i1

Gi/Hi'
The theorem will follow from a description of the Hi'
Since G,./H., is abelian, G, c H.. As above,
i7" i=7i
G, = w, (T)X_. Let Li denote the fixed field of Gi. We

have F.cF, cL, cN. The extension Li/Fi is abelian, and

Fi is the maximal unramified subextension.

Let Vgr seer Vo denote the valuations of N which
ramify in N/Mi and IO' S Ir the corresponding inertia‘
groups. Define bj by Ij =,2bj F2, and let Ny = min bj’
ny, = max b.. If necessary., relabel the v, so that bo = no.

Pick valuations W sees W of N which extend
Vo e vr. Let IS denote the inertia group for wj in N/M.
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Then Ij;; Z?' Pick ob, et or topological generators for
Ié, i an I; such that ale = Tﬂbj.
We have Fig_N cL;. with Li/N unramified, so each
valuation which ramifies in Li/Fi ramifies in N/Fi' We
conclude that E; is the subfield of Li fixed by,

!
<X

!
07 e Ir:>ng(Li/Fi)-

Thus we have,

1%
Hi = <wi(T)XN< i=0 Ijn Gi>.

: ’ ZtlJ
Let t.. = max (0, i-b.). Then I.nG., = <0, -
3] J ] i J
t b.-b.+t. .
2t} ~£73 70 "ij . : . :
Let aij o i GO . Since aij'N is the identity,
a,.€X. . We have<I)nG,, I.nG,>=<I'nG,, a,,h>.
ij N 4 i 0 1 0 i ij
Therefore,
Hi = <wi(T)XN, ail' cee @ Ion Gi>°

The groups XN and Ién Gi are disjoint, and for

. ’ _ . - ’
izn, XN(IOr1Gi) = Gi' Since Gi/XN=:IO 0
have Ién Gi acting on XN by conjugation. Therefore Gi is a

semidirect product of X

nNG.=I . nG., we
i i

’

by IO

n G,.,, and we have,
N i

!
Gi/Hi = Gi/<wi(T)XN,a.

e e o ¢ » s G :; . ’ . ’
i1 a; . Iom l> XN/<wl(T)XN a,q

ce.,Qa

ir

>.
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= <W I v D v
Let Yi i(T)XN, asqs g We have shown

that for 12nO,Xiz XN/Yi'

For i<n,., we have F . cF cfﬁ L.. In this case we
0 = Pe= no"“ i Fnm i 1

havg g(Fi/FnO) e~ Gno/<Yi’I

-

0

R

>z XN/Yi' Since g(FnO/Fi) is
finite, g(Fi/Fn )

. g(Fi/Fi) = Xi' Therefore, we have,
XN/

D

<

for 1<n0, Xi

i

ol

It remains to show that for izn., Y.=v_ . (T)Y .
1 1 Hysd ni

i =<0, (T)X._., @.., «e«,
Since Yl l( ) N i1

(T), it suffices to show that,

a. >, and
ir

wi(T) = ¥ ,i(T)u%

nl 1

- n,-b.
aij - Unl,i(T)anlj. For j = B, =4, T, et 7} 5= 0; 173
Then by the definition of a_ .,

nqj
Y. =a_ . ¥
J n1d 7o
and therefore,
Fi-n _
Y. L (a_ . v e nl
J nyJ 0)
i-n i-n i-n
=1 % g (7771 ) £ 1

= a . Y. a .Y v, a ..y a . —-l'y

n,J 0 n,J 0 0 n,J 0 ngJ 0 0

i-n
2 1 1 .
~ 1+7b+70+.. +7 A0
n.j YO
1
i-n i-n

Now, a = ¢ 1 y-e 1
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2 '&~n1
1+, +Y +...+Y -1
— 0 0 0
so, a.., = an i s
i3 1
=0
Since 7b N = T , we have,
n 2N i-nq
g Lo 2 1 (£ -1, ,n3
a.., = a %+T ¥ Fum T )£ = V . (T)a
ij nlj nl,J

COROLLARY 1.

Theorem 4, u(Fnl/knl) =

B i
and K(Fi/ki) = r(Z.

If in addition to the hypotheses of

0, then for all i2n1+l, u(Fi/ki) =
i

n > n
A
£ )+n:n1+1 c, ¢le7)+c,

for non-negative integers r, c, and c with cn=0 Vh=n, for

some integer n,-

2

PROOF. Theorem 4 states that XigJX /Yi. From

the isomorphism for izn

X /Yn

N

+1
1

we obtain the exact sequence,

1) O—*Yn /Yi_>xi_>?<n — 0.

1

1

0
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IE & = {aeA’ £3 2}0 . then LdFi/ki) =

only if gxi is finite.

0 if and

Applying the snake lemma to the

exact sequence 1), we obtain the exact sequence,

0t ¥, ) &y —

1

Since ﬁxnl

is finite, we can show that “(Fi/ki) =

X
n

4By

0 by

showing that g(Yn /Yi) is finite.

1

Since u(F_ /k_ ) =
|

N

Noetherian AT module.

Proceeding as in the unramified case,

m

E = A"

“n, b T j

and therefore,

Z} Yn /Yi = Yn /vn

. (T
1 1 i n

1’ 1
where e
is finite.

Now A(Fi/ki) =

that for izn1+1

3) dimQ (Yn

A(Fi/ki) =3 y .

0, M,(M/k) =

X _ is a Noetherian AT module.

® nj
D) Mg/ (£5(T))™]

is the number of fj(T) = V

dimQZ(Xi @% Qz).

/Yi @%2Qg) + dim

0, and by Theorem 2,

The submodule Yn is also a

1

we have,

h

n
2 A/

r 1

® c
4 n=n1+1(ATﬁﬁ—l,n(T)) n'

el
|
o}

Thus Z(Ynl/Yi)

From 1), we have

4

X &, 9,)-
Qg n1 ZZ £
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We obtain from 2), i

: - i ng > n ;
dlng(Ynl/Yi @%ggg) ol +n=nf&_ﬁl¢£e Y . With

c. =90 v%::n Inserting this in 3), we are done.[]

n 2°

COROLLARY 2. If N/M has only finitely many

ramified primes, and each prime which ramifies is totally

ramified, and HK(M/k) = 0, then for all i,
i
_ i > n
A(Fi/ki) = v~ % n=0 cnqﬂz )
with ¢ = 0 for all n=n..
n 2
If, in addition, A(M/k) = 0, then r = 0, so

A(Fi/ki) is bounded.

. PROOF. The first part follows as in the previous

corollary, since ny =mn; = 0, and Xig;XN/wn(T)XN.

If A(M/k) = 0, then 0 = r30+c0, so r = Cy = 0.

Remark: If r = 0, then X_ is a torsion Zz[[Tj] module,

N

and therefore d = dim_. (X_ &, Q,) is finite. It.follows
Q TN TZ, 74

that for any Z;-extension L/E, with LcN and L having only

finitely many valuations above £, A(L/E) £ d+l because X

is essentially a factor module of XNCDZZ°
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Vs OTHER ZQ—EXTENSIONS CONTAINED IN N

We study here an extension N/k, as above, with
g(N/k) = %2C>Z2‘ Since for any a,b,€Z;, such that 2 does not
divide both a and b, Z,®2z,/<(a,b)> = Z,, the extension
N/k contains infinitely many Z,-extensions.

For the next few results we look first at the
situation where N/M has a unique ramified prime which is
totally ramified, and later at the special case where N/k
has é unique totally ramified prime. The examples in
Sectiqn VI show that the second situation occurs infinitely
often, and therefore the first dces as well.
ck, c...cK, and

01

k=m Ccm, c ...cM two disjoint 7Z,-extensions, and F,=k M.
0 1 £ i ™

Recall that N = MK, with k=k

PROPOSITION 1. If N/M has a unique totally

~

ramified prime, then Xiig(Fi/Fi) = XN/wi(T)XN.

PROOF. This follows from the proof of Theorem 4,
with no=n1=0 and Yi:wi(T)XN.
We also use the following lemma [ 9 pg. 155],

which is corollary of Nakayama's lemma.

We guote Nakayama's lemma for reference. [ 9 ].
Nakayama's Lemma. Let R be a ring, and E an R
module. If I is an ideal of R contained in every maximal

ideal, and IE=E, then I=0.
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LEMMA. Let € be a local ring and = its maximal
ideal. Let E be a finitely generated € module, and F a

submodule. T4 E=F+anE,then E=F.

PROOF. We have,

E = F+mE = F+uF+HunE) = F+¢n2E.

By induction E = F+m E for all n, and hence E - Fc”fE for
P <

all n. Let D = i;lnPE. #»wD = D, hence D = 0 by Nakayama's

Lemma, so E = F.[j

We now combine these two results.

THEOREM 5. If N/M has a unique totally ramified

prime and g(ﬁ/M) is a cyclic Z, module (i.e., Z/enz or ZZ),
then XN = ATr for some reg(N/N). Thus XNz.AT/I, where I

is the ideal {h(T)’eAT| h(T)r = 0}.

PROOF. Let r’eg(M/M) generate g(M/M). By Pro-
position 1, XN/TXN =~ g(M/M), and the isomorphism is given

by restriction. Let r be an.element of XN = g(ﬁ/N) such

that r'ﬁ = r’. Then XN = Zer+TXNEQATranN, where »e = (T, %)

is the maximal ideal of the local ring AT' Applying the

lemma we see that XN = ATr. []

This characterization of XN allows us to represent

the action of AS on XN in terms of the AT structure of XN.
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With the hypotheses of Theorem 5, we have
XN = ATr. Since Sr€XN, there is a power series f(T)eAT
such that SR = f(T)r. The power series f(T) is unique
mod I. Thus g(S)r = g(£(T))r and g(S_)XN = g(f(T))XN.

In order for g(f£(T)) to be well defined, and for
future calculations, we show that £(T) is in (T,£), the
maximal ideal of AT'
If £(T) ¢ (T,£), then £(T) is a unit in A, and

and if X = g(ﬁ/M), we have

f(T)XN =i XN. Thus SXN = XN' M

SXM = XM’ since XM is a factor module of XN' But XM is a

Noetherian AS module, and S is contained in the maximal

ideal of AS’ so we can apply Nakayama's lemma to conclude
= =N m o =

X 0. We have XM z(N/.XNl so XN TXN, hence XN 0.

TE e 0, we may assume £(T) € (T,z2) -

Recall that N = MK, with T generating g(N/M) and
0 generating g(N/K). There is a 1-1 correspondence between
Z,-extensions of k contained in N and subgroups Hcg (N/k)
such that g(N/k)/szzz. Such subgroups H are all of the
form<<Tagb> where £ does not divide both a and b. Let
L denote the subfield of N fixed by <Taob>. Then

a,b
RS la,beZk, zla:#>£+b} is the set of all Zy;-extensions

7

of k contained in N. If z*a, then a is a unit in %z, SO
-1 o |
<7895 =<<(Ta0b)a ¥ = LTGOR >. Thus we can actually

describe the set of Zy-extensions of k contained in N as

{Ll,b' La,l |a,b€ZZ, z‘a}. Notice that M = Ll,O' and K = LO,l'
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Assume for the rest of this section that N/k has
a unique totally ramified prime, and g(ﬁ/M) is a cyclic

Zy module. From Theorem 5, there is an rGXN such that

= A = . j = %
XN Tr T/I Pick f(T)eAT such that Sr f(Mr For
g(T) e AT, with g(T) = 1 (mod ».), and acZ,, define
a ; By
(g(0)®= lim, (g(m)®n.

THEOREM 6. With the above hypotheses and notation,
g(L_ /L ) = A_/(T, (1+7) 3 (1+£ (1)) P-1)
a,b’7a,b’ ~ T ’ .

PROOF. Since N/La has a unique totally ramified

» D

prime, the field NLa b is the maximal subextension of N

’,

) ab

abelian over L Since g(N/La =<7 ¢ >, the subfield

a,b’ o

of N fixed by ('rao'b—l)xN is precisely NLa b

Thus we have,

g(Ly o /Ty ) = gD, /M) = X/ (T3P = X/ ((1+1) 2 (142 (1)) Po1y x

A
T/I

" ((1+T)a(l+f(T)b~l)(AT/I); Mo/ (1, (1+7) 2 (1+£ (1)) -1y . [

\

For La,biLl,O’ T,La . generates a subgroup of

finite index in g(La b/k), so it is precisely this AT

’

structure in which we are interested. In fact, for

kcL_cL with [L :k]=,gn, we have,
= n

g7

/

ones b
g(Ln/Ln); .AT/(I,,(1+T)(1+f(T)) ., wn(T)).
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We cannot completely describe the invariants of
La b/k without knowing I and £(T), but we can determine

that ;.L(La b/k);t'O for at most one of the La,b'

7’

Greenberg [ 4 | has shown that p(L_ b/k) is

’

bounded in this situation, by entirely different methods.
The result of this thesis assumes a stronger hypothesis,
and is more explicit in its result.

We first prove the following results.

LEMMA. With the above hypotheses and notation,

if 24 ((1+T) 2 (1+£(T))P-1), then u(i,a B = 4.

PROOF. Assume u(La b/k)#zO. Then if Y=g(La b/La,b)'

7 r

Y/LY is infinite. By Theorem 6 we have Y;fAT/J, where

J = (I, (1+T)a(1+f(T))b~1). We have the isomorphism,
Ao/ (2)
£ =
e (2,3)/ (&)

Since AT/(Z) has no infinite proper quotients, we

must have Jc(¢), and therefore zl(1+T)a(1+f(T))b—l.[j

PROPOSITION 2. Assume that N/k has a unique totally

ramified prime and g(M/M) is a cyclic Z,-module. If

L(K/k) # 0, then “(La b/k) = 0 for all other La,b.

’



31

PROOF. Since K = L and U(K/k) # 0, the lemma

0,1’
implies that £1(1+T)O(1+f(T))—l = f£(T). For any a,bez,,
(14T) 2(L+E(TH P21 = (147321 (mod (£)). If ¢ is a unit in
Zz, then La,b = Lac,bc' Thus we may assume that a is an

integer. For a=#0, z+(1+T)a—1, and therefore
£+(1+T)a(1+f(T))b—l. By the lemma, again, we have

Ly p/K) =0 for L p#Ly 4. []

PROPOSITION 3. Assume that N/k has a unique

totally ramified prime and g(ﬁ/M) is a cyclic Zg-module.

If u(k/k) = 0, and L_ ,nMzk, then u(L_ ,/k) = 0.

r B

PROOF. Since L nM#k, we have sz. Therefore

a.b
z*a, and we may assume a = 1. It suffices to show that
b
21 (1+T) (1+£(T)) °_1.
We will show that,
(1+T) (1+£(THP-1 = T  (mod (£,79)).

It suffices to show that,

(1+£(T)H° = 1 (mod (z,T%)) .
We have,
£ £
(1+£(T))° = (+£(1))%C = ((1+£(m)S) = (1+g(M))
for some g(T)e (T,2).
z 2
Now, (1+g(T)) = 1+g(T) (mod £ )
| =1 (mod (2,7%))

and we are done.[j
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Combining these results we have the following

theorem.

THEOREM 7. If N/k has a unique totally ramified

prime, and g(ﬁ/M) is a cyclic 4, module then there is at

most chne Z,-extension La,b/k' I c N, such that M(Lalb/k)i 0.

PROOF. If “(La,b/k) = 0 for all La,b' then we are
done. Assume u(La. b /k) #0. If p(K/X)+# 0, then Proposition
0’70
2 shows that “(La,b/k) = 0 for al; other La,b'

Thus we may assume that u(K/k) = 0. By Proposition

3y L is disjoint from M. We may take K, = L

aO'bO 0 ao,bo
and since MnKO = k and N = MKO, we may apply Proposition
2 and conclude that li(La b/k) = 0 for all other La b
Remark: (Suggested by Richard Foote.) If N and k were

normal over Q, and U(L/k)#0 for some #,-extension of k con-

tained in N, then any field Ty conjugate to L would be a

%Q—extension of k contained in N, with H(L'/k)¢0. If the

hypotheses of Theorem 7 hold, we must have L=L , so L is
normal over Q. This places severe restrictions on L, and
in most cases restricts it to a single extension.

If 1.L(La b/k)=O for all L we will show that

. 5 a,b’

A(La b/k) is bounded. This has been shown in a similar,

?

more general setting by Greenberg [ 4 ]-
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PROPOSITION 4. If N/k has a unique totally ramified

prime, g(i/k) is cyclic, and ﬂ(La b/k)=0 for all La then

"
K(La b/k) is bounded.

4

PROOF. We will assume A unbounded, and construct a

2y, -extension L /k with nonzero U invariant.

a,b

Given a field F, kcFcN, let E(F)={L_ . |FcL b, If

a,b a,b
F/k is not cyclic, E(F)=@. Notice that each field F, with F/k

= 5 gl

finite, FcN, has only £+1£extensions of degree £,FO, R
with F.cN. Also E(F) = L—JE(F.).
i i=0 i
Let Fy=k. We will pick F_ with [Fl:k]=£n, in the
following manner. Pick Fl with [Fl:k]zgn, and A unbounded in

E(Fl). This can be done since A is unbounded in E(FO) and E(F)

is the finite union of E(F1 i) for the extensions Fl i of F of
degree £.

Pick F_ containing F__, with [Fn:Fn_l]=£, and A un-
bounded in E(Fn). We now show that there is a Z,-extension

U

La,b' with anLa,b for all n, thus La,bznlen°

We may assume FlﬂM=k. Thus FlgLal 1 for at least one
a,. Pick such an a,. Pick a_ so that F cL . Since the

1 1 n n— an,1

]
n-th layer of La is the subfield of N fixed by’<Tao,T£ >, we

s 1

see that the n-th layer is uniquely determined by the congruence

class of a mod zn.

i

Thus we have for i<j, afEaj (mod £ ). Let a=lim a -

Then a=a_  (mod £n), and F_cL -
n : n-a,l
One may see this in another way. The field Fn is the
: . aq 72 a_ 21 :

fixed field of <7 -“o,T GO=<T O, T >, Thus the union of the Fn
. , : [ a__£2_ _ _a Ej _
is the fixed field of pped <T O0,T > =<T (0> SO n=1Fn La,l'
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In order to. show that u(La )#0, we use the

o |
following lemma.
LEMMA. Tf k=F,cF,C...cFo is a Z,-extension with
a unique totally ramified prime, p(Fw/k)=0, X (Fx/k)#0, and
g(k/k) is cyclic, then rank g(E;/En) = min (g7, AMFw/k)) .
PROOF. Let X = g(E;/Fw). Let ¥ be a topological

module by the

generator for g(Fe/k), and make X into a AT

action 1+4T-<—7Y. Since Fw/k has a unique totally ramified
prime, g(Fn/Fn) = X/wn(T)X.
Since g(E/k) = X/TX is cyclic, X:zAT/I.
sincel=0, A0, I=(Ff(T)), deg £(T)=A.

Thus if G=g(§;/Fn), GxA./(£(T), w,(T)), and

i

G/8G = /(£(T), w_(T),£) = A /(TY, 1€ ,2) = (2/2®)™ with
m = min (A,ﬁll).[]

Returning to the proof of the proposition, each
Fn is contained in a Zz—eXtension L which satisfies the
hypotheses of the lemma, and K(L/k)>zn.

Therefore, rank g(Eg/Fn) =¢", so lg(fg/Fnﬂgﬁén,

so u(La,l/k) * O.[]

If pu(k/k) # 0, then there are certain restrictions

on the possible values of A(La /X)), given by the following

. b

proposition.

PROPOSITION 5. If N/k has a unique totally rami-

fied prime, g(ﬁ/M) is a cyclic Zyz module, and p(K/k)#0,
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then A(L_ /k) is either 0 or [L_ .nK:k|.

M6 a,b

PROOF. We can take La,b = LG,b"

where

28 =
[La,b

by Theorem 6. Since M(K/k) # O, ﬁ!f(T), so,

Zn

n
(1+7)¢  (1+£(T))P_1 = T (mod £ )

N b
(1+£(T)) -1 = h(T) u(T) for some

We also have (1+T)£
distinguished polynomial h(T), and unit power series u(T),
by the Weierstrass preparation theorem. If d=deg h(T),
then Td is thelsmaUest power of T with coefficient not
divisiﬁle by £ in the power series,

n b

2 n _ £ £
Zoa, TOo= (14T)€ (1+£(T)) -1,

ﬂmsdzzn.

a,b/La,b) is a factor module of
n

AT/h(T), with degree h(T) =g . Thus A(La

Therefore g(

b/k)SZn. TF

n
£ = 1, we are done.

If 7\(La b/k) # 0, then AT/(I,HT))is not finite,

and A/ (T,h(T)) = Ay/p(T), with p(T) h(T) and p(m)!1. 1f

1< degree p(T)<gn, then we argue as follows.

o = n 3 L
If, KcL cL, o with [Ln.k] = ,, then Ln—kn—Lalber,
so rank g(EE/Ln) =¢". But rank g(E;/Ln)s degree p(T)< £ T,
a contradiction. Therefore p(T)=h(T), and A(L /k) = zn.[]

a,b

3 n
nKik]. We have g(La,b/La’b);-AT/(I,(1+Tye (l+f(T))b—1)
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VI SOME EXAMPLES

Let £ be an odd prime, $ a primitive £-th root of
unity, and k=Q({). Let M be the cyclotomic Z,-extension of
k. The extension M/k has a unique totally ramified prime.

If £ is a regular prime, i.e., z*hk, then any
Z,-extension K/k has a unique totally ramified prime, and
u=k=7=no=0. (c.£.l 5 1). 1In fact, if N is the composite
of two Z,-extensions of such a field k, and Xn=g(ﬁ/N),
then Xn/(T,S)Xn;;g(E/k)=O, whence Xn=0 by our cqrollary to
Nakayama's lemma. Thus, every number field kimj contained
in N has class number prime to £, and every Z -extension
La,b has zero invariants.

Let £ be such that k=Q({) has class number exactly
divisible by £. Assume furthermore that g(ﬁ/M)g Ze,
where M is the cyclotomic Z,-extension of k. This occurs

for £= 37, 59, 67, and for all primes £<30,000 where

g“hk.. (see| 8 |.

LEMMA. (Suggested by David Dummit) If £ is such
a prime, M/k the cyclotomic Zyextension, K/k a disjoint
Zy-extension, and N=MK, then N/k has a unique totally ram-

ified prime iff k is not contained in N.

PROOF. The field k has a unique prime g over £.

Let v be a valuation of N extending the valuation of k
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induced by f. Let T denote the inertia group for v in N/k.
Since N/k is abelian, T does not depend upon the choice of
v. Let E denoté the fixed field of T. The extension E/k
is unramified at s, and since only primes above £ can ramify
in N/k, E/k is unramified.

. ?éN, then E=k, and s is totally ramified in N/k.
Thus N/k has a unique totally ramified prime.

If kcN, then £ is not totaily ramified in N/k. 1In
fact, since f is principal in k, splits in E/k, so N does-
not even have a unique prime OoVer 4 - []

Since k has £+1/2 independent Z,-extensions, there
are many Zg-extensions K/k such that EﬁMK. Let K be such
a Z,-extension.

Thus we have the situation of Theorems 5 - 7, and
can conclude from the results of that section that:

1. The p invariant is nonzero for at most one

Zp—-extension of k contained in N. (Theorem 7)
2. If y is nonzero for one such Z,-extension,
then £+1 extensions of k of degree £ and con-
tained in N must have the following structure.
One extension has class group (Z/ZZ)Z, and
the other £ have class group Z/£7Z or z/zzz.
One can see this as follows.

Since £ is not regular, g(ﬁ/M)is not finite | 5 ]

We have shown that g(M/M)ZXN/TXstAT/(I,T). Thus TlI.
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Now g(i/k);.ATAI,T,f(T»;;zZ/(f(O)), so f(0)=£u, with u a
unit in %,. We may assume that y(K/k)#0. Then,
g(k,/k) = A /(T £(T), (1+T)%-1) . Since ¢|£(T), we have
£(T)=£u(T), with u(T) a unit power series, and since u(K/k-O0,
¢lT. Thus g(EI/kl)%-AT/(z,Tﬁ)E (2/£2)% . We also have,

g (i /m) = A/ (L, T, (L+E(T) 4 1) = 7,/ (1+£(0)) 2 -1 =7, /¢ °

2
=2/é Z-
Each other extension of k of degree £ is contained in some
L

, with g(L_ ;/L_ ;)= AT/(I,(1+T)a(l+f(T)—1). Since

a,l <P |
£f(T)=£u(T), (1+T)a(a+f(T))—1 evalﬁated ét T = 0 is £ times
a unit. We have already shown (Proposition 5) that,
(1+T) 2 (1+£(T)) -1 = (T—c)ua(T), where ua(T) is a unit power
series, and zlc. We may now conclude that ﬁzhx We now have

~ A . : Ly
g(La,b/La,b)" T/(I'T c), and the £-part of the class

group of the first layer is a factor module of,

o/ (T-c, (1412 -1)= 7,/ (1+c)f -1 = 2/2 7.

If the structure mentioned in 2 of the class groups of the
degree £ extensions of k did not exist, then one could con-
clude that g would be zero for all Z;-extensions of k
contained in N.

We now present a few examples for which the in-
variants can be computed. The theory of Zy-extensions of
complex quadratic k is more developed than for arbitrary

k, and portions of these examples have been computed.
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by other authors. See, for example, Carroll and Kisilevsky
| 4 ]

In theée examples k will be.a compléx quadratic
number field, k=vCa. Let N be the composite of all Zy-exten-
sions of k. Then g(N/k)= ZkC)Zé' Let M/k be the cyclotomic
Zy-extension of k.

If £ is odd, or if £4=2 and all guadratic extensions
of k contained in N are normal over Q (it suffices that 4
have a prime factor congruent to +3 mod 8.), then there is
a unique Zg-extension K/k which is normal over Q, and MK=N.
See [ 1 ] for a proof of this fact.

If £ ramifies or remains prime in k/Q, and the
class number of k is prime to £, then g(ﬁ/N)=O, and

p=A=v=n_=0 for every Zy,-extension of k.

0
Example 1. Let £=2 and k=Qv55,'where p is a

prime, p=5 (mod 8). Then 2lhk, 4+hk.

If F is a quadratic extension of k contained in
N, then F/Q is normal, since pEE;B (mod 8). Since k is
complex, we have g(F/Q) = 2/22®Z/2%, so F=kv6j deZ. Because
F/k is unramified outside 2, the only possible choices for
F are k(VE},_k(Vcﬁ), k(vci), and each of these fields is
contained in N.

Now k(vci)/k is unramified and cyclic, and 4+hk'
Therefore k(vci) has class number prime to 2. Since‘ﬁz, the

prime above z in k is not principal in Xk, ﬁ2 remains prime
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in the extension k(vci)/k. Thus N/k(vci) has a unique
totally ramified prime over 2, and since the class number
of k(vci) is prime to 2, g(N/N)=0.
Thus u=A=0 for every %,-extension of k. For

2

kCFcN, we have g(E/F)=O s k(vci)gF, and g(E/F); %/2% if
k(\/—_1)¢_F.

Example 2. Let £=2, p=5 (mod 8) and k=QV[§p.
Agaiﬁ 2|hk, 4+hk. The quadratic extensions of k contained
in N are again k(/2), k(V-2), and k(V~1). Here k = k(vV-2),
and the class number of E is prime to 2. Thus N/k(vcé)
has a unique totally ramified prime and g(ﬁ/N)=O. We
have U=A=0 for every Z2—extension of k. For kcFcN,
g(E/F)zo it vcéeF, and g(E/F)z 72/27 if VCE¢F.

Example 3. Let £=2, p=3 (mod 8), and k = vcép,
Then 2|hk' 4fhk, and k(VE}, k(vCE), k(vci) are the quadratic
subextensions of k contained in N. We have k = kh/g) and
ﬁ2 remains prime in k/k. Again, g(ﬁ/N)=O, andl J=A=0 for
every Zz—extension of k. If kcFcN, we have g(E/F)=O
if VE%F, and g(F/F); Z2/2% if VE-F.

Example 4. Let £4=2, p=7 (mod 8), and k = chb.
Aséume furthermore that 8 does not divide the class number
of chap. These conditions occur for p = 7,23,71, and for
infinitely many other p.

The class number of k is prime to 2, and 2 splits

in k/Q. Let ﬁl and ﬁz denote the primes above 2 in k.
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Let M be the cyclotomic Z2—extension of k. We
have kgk(VE}gM, and_ﬁl, ﬁz ramify in k(VES/k, so ﬁl and /iy
ramify totally in M.
For kcm cM with [mn:k]=2n, let G = g(mn/k).
n-1

Genus theory implies that ‘Cﬁl is either Znhk or 2 hk'
n

Let Fn be the maximal unramified 2-extension of mn which

i

is aéflian over k. Then [Fn:mn]'is either 2" or 2
T = &E{ Fn. Then F/k is abelian, kcMcF, and F/M is not
finite.

Let G = g(F/k), X = g(F/M) and let Ti be the
inertia group for /s in F/k (1 = 1,2). Let Ki denote the
fixed field of Ti'

Since F/M is unramified, TiﬂX=O for i = 1,2. The

fixed field of XTi is contained in M and unramified at ﬁi'

and is therefore equal to k. Thus XTi=G, and G;;X()Ti.

Therefore,
T, = G/X = g(M/k) = 7.
The fixed field of T1T2 is unramified over Xk,
thus T1T2 = G. We also have X= G/Tiz T2/T10T2. Therefore
X is isomorphic to a factor of ZZ. But X is an infinite

pro-2 group, soO X;;Z2, and TlnT2=O. Thus F is the composite

of all Zz—extensions of k. The fields Kl and K2 are dis-

joint Zz—extensions of k and F = Kle.

Let ki denote the first layér of Ki. Then kl' k2,

and k(VE} are the gquadratic extensions of k.contained in F.
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We claim that the ramification index of /iy in k1k2/k 35 2.
Since k/(v@} k1k2’ and /i ramifies in k(VS}/k, it is at
least 2. Since /i does not ramify in ki/k, it is at most 2.

| Thus klkz/k(vg3 is unramified at 2, therefore un-
ramified. One can easily show that k(V53/Q(vC5p) is
unramified. Thus klkz/Q(vcép) is unramified.

The field k.k, is normal over Q, hence normal

172
over Q(Vcép). Since [klkz:Q(VC}p)]

I

4, klkZ/Q(VCép) is .an
abelian unramified extension. We have klkch(vﬁb), whence

kik, = Q(y/~2p) . Using the fact that g(Q(vCép)/Q(vcép))

is cyclic, and that the prime above 2 in Q(vcép) is not
principal, we conclude that primes above 2 do not split
in klkz/k(va3. Therefore ﬁl does not split in kl/k' and
thus does not split in Kl/k. Similarly, ﬁQ does not split
in K2/k'

Thus Ki/k has a unique totally ramified prime.
Since g(E/k)=O, g(E;/Ki)=O. The extension F/Ki also has a

unique totally ramified prime, therefore g(f/F)=O. Since F

does not have an abelian unramified 2-extension, F = M.
We can now describe the invariants of any

—-extension, L, of k. If L =K, or L = K then U=A=0.

z 1 27

2
Otherwise U=0, A=1l, g(L/L) = ZZ'
For kcFcN, [F:0]<w, we have g(E/F)zo if FgKl,
and if F¢K,, g(F/F) =~ %/2" 2, where 2" = [F:Fnr,].
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