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ABSTRACT 

Let k be a number field, £ a prime, kck
1
ck2 c ... cK, 

and kc m
1
c m

2
c ... c M two Z £ -extensions of k. The structure 

of the galois group of a certain extension of MK is studied, 

and it is shown how, in some cases, the £ -parts of the class 

groups of the intermediate fields m. k. can be obtained from 
l J 

this group. 

This galois group is a module over z1 [[S,TJ], the 

power series ring in two variables over the £-adic integers, 

but the structure theory of such modules is not well de­

veloped. The main results come from studying the structure 

of this group as a ii [[SJ] or Zi[[T)] module. Necessary 

and sufficient conditions are given for this group to be 

a Noetherian module over 'll £ [ [ Tl j, and thus it has a well 

known structure. Sufficient conditions are given for the 

module to be a torsion module. 

The structure of this group is then used to obtain 

information on the Iwasawa invariants µ and A of the 

2 0 -extensions Km./m. and Mk./k .. In suitable situations 
;:, l l J J 

it is shown that {L(K/k)=O implies that µ(Km . /m. )=O for all 
l l 

i, and A(Krn . /rn.)=r!i + .t0 c . m(£j), with c.=O for all j >n 0 l l J= J Y J 

and it is shown that r=O iff the above module is torsion. 
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In certain situations, this group is also used to 

study the invariants of all ~£-extensions of k contained in 

MK. With suitable hypotheses, it is shown that at most 

one ~i -extension has µ*O. 

Some examples are computed. 
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I. INTRODUCTION 

Let k be an algebraic number field and£ a fixed 

rational prime. We shall be concerned with a certain type 

of extension of k, called a r-extension, or a ZR-extension. 

Let~£ denote the ring of £-adic integers, and ~; the 

£-adic integers considered as an additive group. Let K be 

a field containing k pot necessarily a finite extension of 

the rationals, Q), then we say that K/k is a ~-extension 

if K/k is normal and g(K/k) ~ ~;, where g(K/k) denotes the 

galois group of the extension K/k. 

Let r=g(K/k). r has as subgroups of finite index 

rn=£n I', n=0, 1,... . Let k denote the fixed field of r . n n 

Then k=k0 ck1 c ... cknc ... cK.co The k are the only subfields n 

of K containing k, and K=LJ 
n=l k . It can be shown that n 

k /k is cyclic of order £ n. The field k is called the n n 

n-th layer of the 2e-extension K/k. 

An example of a ~£-extension is constructed in the 

following fashion. Let ( denote a primitive (£n+l)-st 
n co 

root of unity. Let kn=Q((n), K=1)1kn. Then g(kn/k0 )~ ~/e n z , 

n 
and g(K/k0 ) ~1~ Z/£ ~~2£. If £=2 we take k 1 instead of 

k
0 

as the base field. For£ odd, K/k
0 

is a ~£-extension, 

and furthermore K is normal over Q. Then g(K/Q) contains 

a unique element of order £-1, and g(K/Qh~i!).6., with l.6./=£-1. 

Let P be the subfield of K fixed by .6.. P/Q is a ~e -extension 

of Q, in fact the only ~£-extension of Q. For £=2, we take 
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P to be the subfield of K fixed by complex conjugation. For 

any number field k, the extension kP/k is a i,e-extension, 

called the basic, or cyclotomic, 7/i,e-extension of k. 

An algebraic number field always has at least one 

Z,e-extension, the cyclotomic one. For a number field k, let 

M denote the composite of all Z,e-extensions of k. Then 

g (M/k)"'Z'1 for some integer a. If k has 2r 2 distinct complex 

imbeddings into the complex numbers then l+r2~a~[k:Q] [7, p.253]. 

The conjecture that a=l+r 2 is equivalent to Leopoldt's con­

jecture on the nonvanishing of the .t-adic regulator. 

For any algebraic extension of Q, F, let F denote 

the maximal abelian unramified .£-extension of F (i.e., F/F 

is unramified and g(F/F) is a profinite t-group. In 

general, a normal extension L/F is unramified, if for each 

valuation v of L, the inertial group, 

T ={aEg(L/F) I v(a(a)-a)>O'v'aEL} 
V 

is trivial). Let AF=g(F/F). For Fa number field, Fis a 

subfield of the Hilbert class field of F and AF~ the Sylow 

£-subgroup of CF, the class group of F. 

For the ?.£-extension K/k, kck
1
c ... cknc ... cK, the 

groups Akn are related in an interesting way. 

by ten= iAkn I. 

Define e n 

THEOREM (Iwasawa). There exist integersµ, A, and 

v such that en=µ.tn+:\n+V 'v'n?n 0 for some integer n 0=n0 (K/k), with 

µ, "tt:i:o. 
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The integers µ = µ (K/k) and A =A (K/k) are called the 

(Iwasawa) invariants for the ~p- extension K/k. 

A natural question would be, £or a Zp-extension 

K/k, how does bne determine the invariants u, A and the 

integers v and n
0

. The main interest has been in the 

invariantsµ and A, and although methods for the deter­

miningµ and A are not known in general, there are results 

for certain special cases. For the cyclotomic ~-extension 

of the field of R-th roots of unity, the invariants can 

be computed via the R-adic L-series (modulo Vandiver's 

conjecture), with the connection based upon a theorem of 

Stickelberger. Greenberg [3] has some results on the basic 

extensions of totally real fields. A number field which 

is not totally real has infinitely many ~p-extensions, and 

the question is still open for the non-cyclotomic extensions. 

In fact, the set of ~£-extensions of a number field has not 

been canonically indexed, so it is difficult to work with 

a specific non-cyclotomic ~£-extension. Carroll and 

Kisilevsky [2] have, in certain situations, characterized 

a set of ~£-extensions of k, which are independent, and 

together with the cyclotornic ~£-extension, generate the 

composite of all ~Q-extensions. These independent ~2-exten­

sions are the unique ~Q-extensions normal over Q. For this 

case, certain congruence relations in the invariants were 

found, and a functional equation was given for a certain 
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characteristic polynomial. (The polynomial uniquely de-

termines the invariantsµ and A.) 

This thesis investigates the situation where a 

:z-2-extension is described in terms of one or more "known" 

~2-extensions. The first situation investigated is the 

composition of a ~2 -extension K/k with a field of F to 

obtain a z2 -extension KF/F. (c.f., Iwasawa [6]). The 

same situation is considered where F runs through the 

various finite layers of a '.l2 -extension M/k. 
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II. FURTHER DEFINITIONS AND NOTATIONS 

Let K/k .be a ZR-extension. Let K be the maximal 

abelian unramified £-extension of K. Let 

G = g(K/k) I X =AK= g(K/K). 

Then Xis a normal subgroup of G, and G/X~f=g(K/k)~2£- Thus 

r acts on X by conjugation, and ~also acts naturally on X, 

with the action of a E ZR given by x,-<x::a = lim xan _ (This 
an-..a 

limit exists since Xis a profinite Q-group.) Both these 

actions are continuous. 

These actions allow us to consider X as a module over 

the group ring ZQ[r]. X can also be considered as a module 

over the ring of (formal) power series in one variable, 

ZR [[TJ]. This action is obtained by picking a topological 

' generator Y
0 

of r (i.e., < y
0 

> is dense in r), and defining 

the action of Ton X by Yo x = (l+T)x for all XEX. Since 

ZQ [(l+T)] is dense in z2 [[TJ], this defines a unique action 

c.f., [ 7 ]. From now on, we will let AT of z2[[TJ] on x. 

denote ZQ [[TJ]. 

In general any compact profinite £-group on which 

r acts continuously admits a continuous action by AT. 

c.f .[7] 

A few elements of AT are defined for future use . 
. n 

DEFINITION. wn(T) = (l+T)£ -- 1, n~O. 

v (T) = wm(T)/wn(T), mzn>O. n,m 
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DEFINITION. Given two AT modules X and Y, a homo­

morphism f:X -Y is a pseudo-isomorphism if the kernel and 

co-kernel are finite. We say Xis pseudo-isomorphic to Y 

if there exists a pseudo-isomorphism ;f;: X ---- Y and write 

Pseudo-isomorphism is not, in general, an equivalence 

relation. That is, we can have X = Y but Y ~ X. Pseudo-p p 

isomorphism is, however, transitive. Also, if X and Y 

are Noetherian torsion /\T modules, then X = Y implies Y = X. . p p 

... , e be non-negative integers and 
s 

p 1 , ... , ps be prime ideals of height one in AT. Each p. 
l 

is either (Q), the ideal generated by Q, or (f. (T)), the 
l 

ideal generated by a distinguished irreducible polynomial 

(A polynomial f(T) is distinguished if, 

f(T) = Td + fg(T); d>0, d>deg g(T) .) Define the module, 

Such a module is called an elementary AT module. Every 

Noetherian AT module is pseudo-isomorphic to a unique 

elementary module Ex· Also, Xis a 

Noetherian torsion AT module if and only if the associated 

elementary module E(e0 

For a ZR -extension of a number field, K/k, the 

module X = AK is always a Noetherian torsion AT module. 



If we write, 

X~E 
p 

7 

then the invariants µ(K/k), i\(K/k) are as follows: 
m 

i\ = i~l qi deg f i. 

The above description ofµ and i\ also allows us to 

characterize them in the following way. 

vis a vector space over QR, and dimQ 
Q 

the kernel of the map, 

R 
X - X. 

X f-+- Qx 

Thenµ= 0 if and only if Dis finite. 

Let V= x®
22

o
2

. 

V = i\. Let D denote 

At this point we also wish to mention the following 

fact, a consequence of ramification theory. If Fis an 

. abelian extension of a number field k with g (F/k) ;;:;; 2; = 

ZR @ ... 0 ZR, then F/k is unramified outside primes above 

R. The case F/k a z2 -extension is of particular interest. 
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III. COMPOSITION WITH A FINITE EXTENSION 

Let k be a number field, K/k a ~_e -extension, and 

r F /k a cyclic extension of degree ,£ , k = F 
O 

c F 
1 

c ... c 

Fr=F, with [Fi:k] = .ti. Assume furthermore that FnK = k. 

Since g(KF./k) = g(KF ./F.) 0 g(KF./K)"- Z0 0Z/.eiz, 
l l l l -"' 

KF./F. is a ~o-extension for i = 0, ... , r. We will obtain 
l l "" 

certain relation~ among the A-invariants of the various ex-

tensions KF./F .. For the relationship of the µ-variants, 
l l 

see [ 6 J. 
Let X. = g(KF./KF.). 

l l l 
Then A(KF./F . )=dimQ (X. ®'7 Q). 

l l ,£ l ~ £ 

Let g(KF/K) =<O" >. 
.tr 

a = 1. 

LEM.MA 3.1. 

Q) = dimQ 
-,e ,£ 

If each prime of k which ramifies in F/k is finitely de-
i 

composed in K/k, then X . .:: X /(a,e, -l)X. 
1 p r r 

To simplify the formulas, we will let D(X)= 

dimQ,£ (X ®:?:t Q.e) for any AT module X. Th: first statement 

of the lerruna now reads D(X.) = D(X /(a,e, -l)X). 
1 r r 

PROOF OF LEMMA. We construct the following fields. 

I 

Let E. = KF KF .. Let G. = g(KF/KF.), and let G. be the 
l l l l l 

commutator subgr9up of Gi. Let M. be the fixed field of 
l 

I 

G .. The field M. is the maximal subextension of KF/KF . 
l l l 

which is abelian over KF .. The following relationship holds 
l 
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among these fields: 

This provides us with an exact sequence. 

O-g(M./E.)-g(M./KF)-g(E./KF)- 0. 
l l l l 

If we form the tensor product of each element of these­

quence with Q£, and take the dimension of the resulting 

vector space, we get, 

D(g(M./KF)) = D(g(M./E . )) + D(g(E./KF)). 
l l l l 

Since D(X) = D(g(KF/KF))is finite, each term in the above r 

equation is finite. The first part of the lemma will be 

done if we show D(X.) = D(g(E . /KF)), D(g(M./KF)) = 
, l l l 

i 
D(X /(a£ -l)X ), and D(g(M./E.)) = 0. 

r r 1 1 

First, g (E. /KF) 2: g (KF. /KF n KF . ) . We also have 
l l l 

0 - g ( KF . /KF n KF . ) 
l l 

g(KF./KF.) - g(KFnKF./KF . )-0. 
l l l l 

Since the last term in this exact sequence is finite, we 

can actually conclude that g (E. /KF) = X. , so the relation-
l p l 

ship D(X.) = D(g(E./KF)) is proven. 
l l 

To prove the second relationship we argue as 
I 

follows. By the definition of M., g(M./KF.) = G. /G. , and 
l l l , l l 

I Ql 
therefore q (M . /KF) = X /(G. n X )· We can take a as a gen-

- 1 r 1 r __ 

erator of g(KF/KF.). Let a= a 2i denote a lifting of 
l 

Since X and a generate G., and X is an 
r 1 r 



10 

b l • h G'. a-l x-l I a e ian group, one sees t at = < a x XEX > = 
i 

l r 

(aQ -l)X . 
r i , 

Thu~ we have g(M./KF) 2= X /(aQ -l)X, and therefore 
1 r r 

i 
D(g( M. /KF)) = D(X /(aQ -l)X ). 

1 r r 

Finally, we show that D(g(M./E.)) = 0. Since 
l l 

g(M./E.) c g(M./KF.), it suffices to show that D(g(M./KF.)) = O. 
l l- l l l l 

Let 

in M./KF .. 

{ w. } be the set of valuations of KF . which ramify J • l 

l l 
Let {T.} be the set of inertial group for the 

J 

W . in M./KF . . Since KF.c KF. s_M., and KF. is the maximal 
J l l 1- l l 1 

unramified subextension of M./KF., g(M./KF.) 
l l l l 

the group generated by the T .. T.I KF is the 
J J . 

KF/KF .. 
l 

Qr-ii Let t .ET.. Then t. 
J J J KF 

is precisely 

inertial group 

is the identity for w. in 
J 

Qr-i 
SO t. E 

J 
T.ng{M./KF). 

J l 
Now M./KF is unramified, so 

l 

T . n g ( M . /KF) = 1 . Thus 
J l 

Qr-i _ t. - 1, and therefore, 
J 

__ Qr-i _ 
g {M. /KF.) - 1, and g(M./KF.) @rn Qn = 0. 

l l l l /LJQ x, 

This completes the proof of the first statement 

of the lemma., 

The second statement now follows quickly. We 

have already shown that, 

g(E./KF) 2= X.' and g(M./KF) 2= X /(a.ei _l)X 
l p l l r r 

We also have the exact sequence, 

0-g(M./E.) - g(M./KF) - g(E./KF) - 0. 
l l l l 

We will be done if we show g(M./E.) is finite. We actually 
l l 

show that g(M./KF.) is finite. 
l l 
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It was shown above that 

generated by the inertia groups 

g(M . /KF.) is the group 
l l 

{ T . } , and each T . is finite. 
J J 

Let v. be the restriction of W. to F .. Since w. ramifies 
J J l J 

in KF/KF., vJ. must ramify in F/F .. Since F/F. is a finite 
l l l 

extension of an algebraic number field, there are only 

finitely many ramified primes. The hypothesis that each 

prime ramifying in F/k is finitely decomposed in K/k implies 

that there are only finitely many extensions of v. to KF .. 
J l 

Thus {T.t is finite, and g(M./KF.) is finite. □ J f • l l 

This lemma can now be used to relate the A-invariants 

for the various Zn-extensions KF./F .. 
x. l l 

hence 

PROOF. The characterization of A(KF./F.) in 
l l 

section II is that A(KF./F.) = 
l l 

D(X.). The above lemma shows 
1· 

that D (X.) 
l 

= D(X /(a£i_l)X). 
r r 

Let V be the On vector space X ® QR. The map 
x. r Z £ 

is a linear map on V. 

Now, 

dim V -o 
R 

Let V. denote the null 
J 

dim0 (X ®z Q) - dim0 £ r '£ R R 

V 
i" 
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Therefore, we have, 

i-1 
(o-Q -l)V. 

l 

Let W. 
l 

ni-1 = (o-.t -1) V .. 
l 

V 
i dimQ V. l = Q l-

We are done if we show 

~(Qi) dim
0 

W .. If W. = O, we are done. Assume W.* 0. 
R l l l 

i i-1 
Let ~(t) = t~ -1/tg -1. ~(t) is an irreducible poly-

nomial in QQ[t]. Since W.*O, but ~(o-)W. = 0, ~(t) is the 
l l 

minimal polynomial for a on W .. Therefore, P(t), the 
, l 

characteristic polynomial for a on w., is a power of ~(t). 
l 

P(t) = (cp(t))s. 

s. ~<ei). □ 

Thus dimQ W. = deg P(t) = s deg ~(t) = 
Q l 
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IV. COMPOSITION WITH A ~.,e-EXTENSION 

Let k=k 0ck
1

c ... ck, and k=m
0
c m1c ... cM be two disjoint 

~.,e-ext e nsions of k. The invariants of the Z.,e-extension 

Mk./k. can be related to the invariants of the ~.-extension 
l l ,,:, 

M/k by Theorem 1, but in this case, stronger results hold. 

We therefore study these extensions. Since not every 

number field has two disjoint Z,e-extensions, it is neces­

sary to assume that k has at least one complex imbedding. 

For the remainder of this thesis, let k be a 

number field with at least one complex imbedding. 

Let k 2 be the cornposi te of all Z..e -extensions of 
"..e 

k. Then G=g(k~..e/k)~ ~;, with a ? 2. It is possible to pick 

HcG with G/H~z,e0 Z.,e, and if N is the fixed field of H, 

One can pick r and r2 contained in g(N/k) 
1 

such that r1 "" r2 "" ~.£' and g(N/k) = r1 0 f2" 

Let K be the fixed field of r1 , and M the fixed 

field of r2 . Then K/k and M/k are disjoint ~-extensions 

of k, and N=MK. 

Let N be the maximal abelian unrarnified .£-extension 

of N, and XN=g(N/N). We will show that XN is a module over 

~ [[s,TJ] in a natural way. 

Let a be a topological generator of r1 , and let 

T be a topological generator of r 2 . Since g (M/k) ~ r 1 , 

with the isomorphism given by restriction,g(M/k) is topo­

logically generated by the restriction of a to M, which we 
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also call a . Similarly, g (K/k) is generated by T . 

n n 
Let N . denote the subfield of N fixed by <O'.t' , 7.t' >, n . 

the closed subgroup 
00 

• and N= LJ N . Since 
n=l n 

n 
generated by a.t' 

00 

- _LJ - [ 
N -n=lNn (c.f. 10 

and T ,en_ Th N k en o= / 

]) , g(N/N)=lim g(N/N). 
- n n 

Each g (N /N) is a finite £-group, and therefore XN is a n n 

profinite £-group. 

' Let G = g(N/k). r 0 r acts 
1 2 

on XN by conjugation, and thus one obtains a continuous 

action of Zj, [ r1 0 r2J on XN. It is not hard to show that 

the correspondence l+T----T, l+s--a, provides a continuous 

(c.f.[ 4 ]). 

THEOREM (Greenberg). XN is a Noetherian torsion 

~,e[[s,T]J module. 

The structure of z,e[[s,TJ] modules is not as well 

classified as the structure of z,e[[sJ] modules. The ,e-part 

of the class group of the intermediate fields k.m. 
l J 

(ki cK, mj c M) is connected with the z,e[[s,T]J structure of 

XN. The following proposition describes the connection in 

the particular case where N/k has a unique totally ramified 

prime. 

PROPOSITION. If N/k has a unique totally ramified 

prime, then, 

g ( k . m . /k . m . ) 
l J l J 

XN/<w. (T)XN, w . (S)X >. 
l J N 
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PROOF. Let i and j be fixed. Let E denote the 

largest subfield of N which is abelian over k . m .. Then 
l J 

NcEcN. 

g (E/N) "' 

We will show that g(k.m./k.m.) 
l J l J 

x_ j < w . ( T) XN , w . { S ) XN > · • N l J L 

...__ g (E/N), and that 

Let G = g(N/k.m.). Then Eis the fixed field of 
l J 

I 
G . 

I 
We will show that G = <wi (T)XN, w . ( s) xl\J >. 

J L 

Let fi denote the prime of k.m. which is totally 
l J 

ramified in N/k.m., and let T be the inertial group in 
l J V 

N/k.m., for a valuation v of N which extends the valuation 
l J 

induced by fi . 

Since N/N is unramified, TvnXN=0. Since TvXN/XN 

is the inertial group for fi in N/M, T XN=G. We have 
V r 

G/XN"' Tv, and Tv acts on XN by conjugation, so G is 

a semidirect product of XN by 

, -1 -1 j Thus G = <txt x 

We can also identify T with 
V 

then, 

t-1 

so, 

T . 
V 

. t-1 I tETV, XEXN > = < XN tt:T >. 
V 

g ( N /k . m . ) . If , 
l J 
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I 

G 

Thus, Nf._Es;_N, with G
1 

= g(N/E) s;_ g(N/N) = XN. 

Therefore, g(E/N) ~ XN/G
1 

= XN/<Wi (T)XN, wj (S)XN>. 

Let ft be the prime of k.m. which ramifies in 
]. J 

so 

N/k .m., and let T4 be the inertia group for ft in E/k .m .. 
J. J r l J 

Since Tf- projects onto g (N/ki mj) and is disjoint from 

g (E/N), we have g (E/k .m.) ~ g (E/N) 0 T4 . 
l J -· r 

Since k .m. cE and the fixed field of T _✓, is con-
1 J - r 

tained in k.m., we have E = N k .m .. Therefore, 
l J • l J 

g ( E/N) "' g ( k . m . /k. m . ) , and we are done. D 
l J l J 

We now return to the study of XN. 

Since the structure of ~.e[[s,TJ] modules is not 

well known, we notice that the action of 'ltf,e [[s,TJJ on XN 

provides an action of z_e[[sJ] and Z,e [[T]] on XN, and study 

the structure of XN as a module over these rings. 

THEOREM 2. If t is finitely decomposed in M, 

then XN is a Noetherian z_e[[TJ] module if and only if 

µ(M/k) = 0. Similarly, if t is finitely decomposed in K, 

then XN is a Noetherian z.e[[sJ] module if and only if 

µ(K/k) = 0. 

PROOF. We will prove the first statement. The 

second follows from a change in notation. 
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The module XN is a Noetherian 'l,,e[[TJ] module if 

and only if XN/(T,£)XN is finite. The module XN/(T,.t)X 
N 

is finite if and only if XN/TXN has a finite rank. 

Let E c N be the fixed field of TXN. Then 

H = g(E/N) XN/TXN. Since TXN is the commutator subgroup 

of g(N/M), G = g(E/M) is abelian. Therefore we can form 

the factor group G/H, and G/H ~ g (N/M) ,.._ 'li,e. Thus XN 

is Noetherian if and only if G has finite rank. 

Let I denote the subgroup of G generated by the 

inertia groups of all valuations of M. Since only valu­

ations above ,e can have non-trivial inertia groups, and 

we have assumed there are only finitely many valuations 

above £, I has finite· rank. Hence G has finite rank if 

and only if G/I has finite rank. 

Let L be the fixed field of I. Then Lis the 

maximal abelian unramified extension of M contained in N. 

Since M ~ N, L=M. Therefore G/I ~ g(M/M). Finally, XN 

is Noetherian if and only if g(M/M) has a finite rank, 

which occurs if and only if µ(M/k) = 0. CJ 
I 

Recall that k = k
0

ck 1c ... ck, and k = m
0

cm
1

c .. ~cM 

are two disjoint ~,e-extensions of k, and N = MK. For each 

i~O, let F. = k.M. Then F./k. is a ~,,-extension and we 
i l l l V 

now study these extensions. 

Let X. = g(F . /f.). The structure of the class 
l l l 

group of k.m, then-th layer of F./k., is determined 
l n l l 

by the structure of X. as a~ module. That structure 
l S 
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is not easily determined in the general case. We will 

find information about the invariants of F./k . from the 
l l 

AT structure of· xi. 

Recall that XN = g(N/N). 

THEOREM 3. If N/M is unramified, then, 

PROOF. If N/M is unramified, then NcF.cN, and 
- 1-

F. is the maximal abelian extension of F. contained in N. 
l l 

Let G. = g(N/F.). Then X. = g(~/F.) ~ G . /G~. Since G. 
l l l l l l l l 

i 
is a semidirect product of XN by g(N/Fi) = <T,e >~~.£' we 

Therefore X. is a semi-
1 

direct product of XN/ wi (T)XN with g(N/Fi) ~ ~,e- But since 

X. is abelian, the product must actually be a direct 
l 

product. 0 

COROLLARY. If µ(M/k) = 0 and N/M is unramified, 
i i 

then µ(F./k.) = 0 and A(F . /k.) 
l l l l 

= r£ + n~Ocn~(,en). The 

numbers rand c are non-negative integers, and c = 0 n n 

Vn~n 0 , for some integer n
0

. The integer r is zero if and 

only if XN is a torsion AT module. 

PROOF. If µ(M/k) = 0, then XN is a Noetherian 

AT module, by Theorem 2. Therefore XN is pseudo-isomorphic 

to some elementary module E, and XN/wi(T)XN; E/wi(T)E. 

Thus we have X. ~ E/w. (T)E 0 Zb. 
• l p .1. ,c, 
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If, m h 

E = A ~ j (£ i AT/ ( f j ( T) ) n j gcp 1 

then, 

h 

gcpl AT/(wi (T) ,.tng) 0 'lf.e-

The module A /(w. (T) ,.enh) is a finite for each 
T l . 

i, nh. The module AT/(wi (T), (fj (T)nJ)) is either finite, if 

I 

f. (T) { w. (T) , or 
J l 

is pseudo-isomorphic to AT/v 
1 

(T) 
n- ,n 

for some n_s;_i, if f. (T) = V l .(T). Define V l O (T) = T. 
J n- , n - , . 

Let c be the number off . (T) equal to V 1 (T). 
n J i n- , n 

Then C n 
= 0 Vn:::::n

0
, and X.::: (AT/(w . (T))r 0

0 
· (AT/v 

1 
(T))cn0~

0
• 

1 p 1 n= n- ,n L 

Since the module on the right has no elements annihilated by 

.t, X. has only finitely many elements annilated by .e, hence 
l 

µ(F . /k.) = 0. We also have, 
l l 

A ( F. /k. ) = dimQ ( X. ®z Q ) 
l l ,e l '£ 

This can be made into appropriate form by change of c 0 . D 

Remark: If A(M/k) = 1, then r = 0, thus A(F./k.) is bounded. 
l l 

THEOREM 4. If N/M is ramified at some valuation, 

and unramified at all but a finite number of valuations, 

then there are integers n
0 

and n , 
1 

and A submodules Y. c XN T 1-
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such that "iji~n0 , Xi~ XN/Y i, and 'iii< n 0 , xi ; XN/Y i. 

Furthermore, 'v'i~n
1

, Y. = v . (T)Y 
1 n 1 ,1 n1-

Remark: A more exact description of n 0 , n
1

, and the Yi is 

given in the proof. 

Remark: Both the statement and proof of this theorem are 

essentially the same as in the case of a Z~-extension of a 

number field, and closely follow Serre 10 ] . 

PROOF. Recall that F. is the maximal abelian 
l 

unramified !-extension of F .. The extension NF./N is 
l l 

unramified, so NF . c N, and therefore F . c N. Let 
1 - 1 -

G . = g(N/F.), and H . = g(N/F . ). Then, 
l l l l 

X . - g ( ~ /F . ) ~ G . /H .. 
l l l l l 

The theorem will follow from a description of the H .. 
l 

Since G . /H . is abelian, G: c H.. As above, 
l l l - l 

Let L . denote the fixed field of G:. We 
l l 

have F . c F. c L . c N. The extension L. /F . is abelian, and 
1 - 1 - 1 - l l 

F . is the maximal unramified subextension. 
l 

ramify in 

groups. 

• • • I 

Let VO' ... , v denote the valuations of N which r -N/M, and IO' • • • I I the corresponding inertia r 

Define b. by I . = 1bj r 2, and let no = min b . I 

J J 

If necessary, relabel the v. 
l 

J 

so 

Pick valuations w
0

, ... , w of N which extend 
r 

V • r 
Let I~ denote the inertia group for w. 

J J 
in N/M. 
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, 

Then I j ...... '1£,e. Pick O"o I ••• I a topological generators for 
r 

I~, . .. , Ir such that aj IN = 
..eb· T J. 

We have F . c N c L., with L. /N unramified, so each 
1 - - l l 

valu2. tion which ramifies in L./F. ramifies in N/F . . We 
l l l 

conclude that F. is the subfield of L. fixed by, 
l l 

I 

... , I > n g ( L . /F . ) . 
r l l 

'I'hus we have, r 
LJ , 

H . = < w . ( T) XN , . O I . n G . >. 
l l J= J l 

Let t .. 
lJ 

= max ( 0, i-b.) . 
J 

Then I'. n G. 
J l 

t 1• J. ..,b. -b
0
+t . . = O",t . -,c, J l J Let a . . o-0 lJ J 

a .. E XN. lJ 
We have <I: n G . , I' 

J 1, 0 

Therefore, 

Since a . . IN is the 
lJ 

nGi>=<I~n Gi, aij > . 

identity, 

The groups XN 

XN ( I~ n G i ) = G i • 

I 
and I 0 n Gi are disjoint, and for 

have I~ n G i acting on XN by conjugation. Therefore G. is a 
l 

I 
semidirect product of XN by I 0 n Gi, and we have, 

G./H. 
l l 

I = G . / < w . ( T) X , a . l , ... , a . , IO n G . > ...._ XN/ < w . ( T) X , a . l , ••• , a . > . 
l l N l 1r l l N l 1r 
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Let Yi = <wi (T) XN, ail, 

that for i~n0, xi~ XN/Yi. 

• • • I a . >. 
ir 

We have shown 

For i-c:;n
0

, we have F .c F c F. c L . . In this case we 
1- no- 1- l 

have g(F./F ) == G /<Y. ,Io'>== XN/Y .. Since g(F /F . ) is 
l no no l l n0 l 

finite, g(F./F ) ~ g(F./F.) = l n 0 p l l X . . 
l 

Therefore, we have, 

for i<n0 , X. ~ XN/Y .. 
l p l 

w. (T) = 
l 

It remains to show that for i~n
1

, Y.=v . (T)Y . 
1 n1,1 n1 

Since Y . = <w. (T)XN, a .
1

, ... , a . >, and l l 1 l lr 

V . (T) w (T), it suffic~s to show that, n 1 ,i n 1 

For j = 0, ... , r, let 

Then by the definition of 

Y. = 
J 

a . y • n J 
1 0 

and therefore, 

Now, a .. 
lJ 

,.i-n 
y 1 -

j 

i-n i-n = yf 1 y-,£ 1 
J 0 



so, 

Since Y0 IN 

a .. 
lJ 
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we have, 

COROLLARY 1. If in addition to the hypotheses of 

Theorem 4, µ(F /k ) = 0, then for all i~n
1

+1, µ(F./k . ) = 0 
n 1 n 1 i i i 

and 

for non-negative integers r, c, and 

some integer n 2 . 

n 
en cp(,e ) +c, 

C I n 

PROOF. Theorem 4 states that X. ~ XN/Y . . From 
l l 

the isomorphism for i~n +l 
1 

we obtain the e xact sequence, 

1) 0 --- Y /Y . --- X • --- X --- 0 • n 1 i i . n 1 
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If ,eA = {acA / ta =}O, then µ(Fi/ki) = 0 if and 

only if ,eXi is finite. Applying the snake lemma to the 

exact sequence 1), we obtain the exact sequence, 

is finite, we can show that µ(F./k.) = 0 by 
l l 

showing that ,e(Y /Y.) is finite. n 1 l 

Since µ(F /k ) = 0, µ(M/k) = 0, and by Theorem 2, 
nl nl 

XN is a Noetherian AT module. 

Noetherian AT module. 

The submodule Y is also a 
nl 

Proceeding as in the unramified case, we have, 

m h 

y - E = Ar 0 AT/ ( f j ( T) ) n j 0 AT/(,eng) 
nl p T j=l g=l 

and therefore, 

2) 

i 

p ( AT/ Vni, i (Tr n~nl +l (AT/'h-1, n (T)) Cn, 

where c is the number of f.(T) = v 1 (T). Thus ,e(Y /Y.) 
n J n- , n n

1 
1 

is finite. 

Now A(F./k.) = dim
0

. (X. ®,,, Q.,). From 1), we have 
l l ,& l u,t, ,£, 

that for i:2:n
1

+1 

3) ,\ (F. /k.) 
l l 
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We obtain from 2), 
i 

en= 0 \in~ n 2 . Inserting this in 3), we are done. D 

COROLLARY 2. If N/M has only finitely many 

ramified primes, and each prime which ramifies is totally 

ramified, and µ(M/k) = 0, then for all i, 

with c = 0 for all n~n
2

. n 

i 

If, in addition, A(M/k) = 0, then r = 0, so 

A(F./k.) is bounded. 
l l 

PROOF. The first part follows as in the previous 

corollary, since n 0 = n 1 = 0, and X. ~ XN/w (T)X. 
l n N 

If A(M/k) = o, then O = rt 0+c
0

, so r = c
0 

= o. 

Remark: If r = 0, then XN is a torsion zt[[T]] module, 

and therefore d = dim
0 

(XN ®~ Qt) is finite. It.follows 
t /!Jt 

that for any 'll,e,-extension L/E, with L~N and L having only 

finitely many valuations above t, A(L/E) ~ d+l because XL 

is essentially a factor module of XN0~t· 
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V. OTHER Z£-EXTENSIONS CONTAINED INN 

We study here an extension N/k, as above, with 

g(N/k )~ ~£0Zi- Since for any a,b,E Zi , such that£ does not 

divide both a and b, Zi0Z£/<(a,b)> ~ 2£ , the extension 

N/k contains infinitely many Z£-extensions. 

For the next few results we look first at the 

situation where N/M has a unique ramified prime which is 

totally ramified, and later at the special case where N/k 

has a unique totally ramified prime. The examples in 

Section VI show that the second situation occurs infinitely 

often, and therefore the first does as well. 

Recall that N = MK, with k=k
0

c k 1 c ... c K, and 

k=m
0
cm

1 
c ... cM two disjoint Z£-extensions, and Fi=kiM. 

PROPOSITION 1. If N/M has a unique totally 

ramified prime, then Xi=g(Fi/Fi) ~ XN/wi (T)XN. 

PROOF. This follows from the proof of Theorem 4, 

and Y.=w . (T)XN. 
l · l 

We also use the following lemma [ 9 pg. 155], 

which is corollary of Nakayama's lemma. 

We quote Nakayama's lemma for reference. [ 9 ] . 

Nakayama's Lemma. Let R be a ring, and E an R 

module. If I is an ideal of R contained in eve ry maximal 

ideal, and IE=E, then I=O. 
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LEM.MA. Let (iJ be a local ring and m, its maximal 

ideal . Let Ebe a finitely generated (iJ module, and Fa 

submodule. If E=F+ ,mE, then E=F. 

PROOF. We have, 

E = F+mE = F+m(F+JJiE) 
2 

= F+ni E. 

n E = F+m E for all n, and hence 
00 

n .c 
E - F~1n E J...Or By induction 

all n. Let D = n,nnE. 
n=l mD = D, hence D = 0 by Nakayama's 

Lemma, so E = F.O 

We now combine these two results. 

THEOREM 5. If N/M has a unique totally ramified 

prime and g(M/M) is a cyclic~£ module (i.e., 

then XN = /\.Tr for some rEg (N/N) . Thus XN ~ AT/I, where I 

is the ideal {h(T}E/\.T I h(T)r = 0 }. 

PROOF. Let r ' Eg(M/M) generate g(M/M). By Pro­

position 1, XN/TXN ~ g(M/M), and the isomorphism is given 

by restriction. Let r be an _element of XN = g(N/N) such 

that r IM = r 1 
• Then XN = 2,e r+TXN .£ f1Tr+:1n-''<N, where m = (T, .e) 

is the maximal ideal of the local ring AT. Applying the 

lemma we see that XN = /\.Tr. D 

This characterization of XN allows us to repres ent 

the action of /\.8 on XN in terms of the AT structure of XN. 



28 

With the hypotheses of Theorem 5, we have 

XN = ATr. Since SrEXN, there is a power series f(T)EAT 

such that SR= i(T)r. The power series f(T) is unique 

mod I. Thus g (S)r = g(f(T))r and g(S)XN = g(f(T))XN. 

In order for g(f(T)) to be well defined, and for 

future calculations, we show that f(T) is in (T,.£.), the 

maximal ideal of AT. 

If f(T) ¢ (T,,t.), then f(T) is a unit in AT and 

f(T)X = X 
N N" Thus SXN = XN, and if XM = g(M/M), we have 

SXM = XM, since XM is a factor module of XN. But XM is a 

Noetherian AS module, and Sis contained in the maximal 

ideal of AS' so we can apply Nakayama's lemma to conclude 

XM = 0. We have XM = XN/TXNl so XN = TXN, hence XN = 0. 

If XN = 0, we may assume f (T) e (T, ,£.) . 

Recall that N = MK, with T generating g(N/M) and 

a generating g(N/K). There is a 1-1 correspondence between 

'Jf.£.-extensions of k contained in N and subgroups H.£.g(N/k) 

such that g(N/k)/H ~ 'Jf.£.. Such subgroups Hare all of the 

a b form < T • a > where .£ does not divide both a and b. Let 

a b L b denote the subfield of N fixed by <Ta>- Then a, 

{ L b I a, beZ..e, 1,/a=}.£ -fb} is the set of all Z,t.-extensions a, 

of k contained in N. If .£.fa, then a is a unit in '71.£. , so 

<Taab > -- < (Taab) a-1 > -- <,,..rT'ba-1 >. Th t 11 •v us we can ac ua y 

describe the set of ~,t.-extensions of k contained in N as 

{Ll,b' La,l I a,bEZ,e, ..e laf. Notice that M = Ll,O' and K = L011 • 
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Assume for the rest of this section that N/k has 

a unique totally ramified prime, and g(M/M) is a cyclic 

Z.t module. From Theorem 5, there is an rEXN such that 

X = l\ r ~ A /I. Pick f (T) d \T such that Sr = f (T) r. For N T T 

g (T) E .L\T, with g (T) = 1 (mod ,m) , and aE 'Zl,t, define 

(g(T))a_ lim (g(T))an_ 
- a --a 

n 

THEOREM 6. With the above hypotheses and notation, 

PROOF. Since N/L b has a unique totally ramified a, 

prime, the field NL bis the maximal subextension of N a, 

abelian over L b" a, Since g (N/L b) = < Taab >, the subfield a, 
a b 

of N fixed by (Ta -l)XN is precisely NLa,b· 

Thus we have, 

-- ab a _ b 
g (La, b /La, b) ~ g (NLa, b/N) ~ XN/ (T a -l)XN ~ XN/ ( ( l+T) (1 +f (T)) -1) XN 

.L\T/I 

For La,b* Ll,O' TIL generates a subgroup of 
a,b 

finite index in g(La,b/k), so it i s precisely this AT 

structure in which we are interested. In fact, for 

n 
kcL cL 1 , with [Ln: k]= .£ , we have, - n- a, 

I 

g(Ln/Ln) ~ AT/(I, (l+T)(l+f(T))b-1, wn(T)). 
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We cannot completely describe the invariants of 

L b/k without knowing I and f(T), but we can determine a, 

that µ(L b/k) -=I= 0 for at most one of the L b. a, a, 

Gree nberg [ 4 ] has shown that µ(La, b/k) is 

bounded in this situation, by entirely different methods. 

The result of this thesis assumes a stronger hypothesis, 

and is more explicit in its result. 

We first prove the following results. 

LEMMA. With the above hypotheses and notation, 

if ,t{((l+T)a(l+f(T))b-1), then µ(L b/k) = 0. a, 

PROOF. Assume µ (L b/k) =t:- 0. Then if Y=g (L b/L b), a, a, a, 

Y/ £Y is infinite. By Theorem 6 we have Y ~ AT/J, where 

J = (I, (l+T)a(l+f(T))b-1). We have the isomorphism, 

Y/.lY 
(£,J)/(,t) 

Since AT/(£) has no infinite proper quotients, we 

must have Jc (..e) , and therefore .t I ( 1 +T) a ( 1 +f (T) ) b -1. D 

PROPOSITION 2. Assume that N/k has a unique totally 

ramified prime and g(M/M) is a cyclic '.it°,e-module. If 

µ(K/k) -=I= 0, then µ(L b/k) = 0 for all other L a, a,b. 
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PROOF. Since K = LO,l' and µ(K/k) * 0, the lemma 

implies that .el(l+T)O(l+f(T))-1 = f(T). For any a,bE~,e, 

(l+T)a(l+f(T))b~l = (l+T)a-1 (mod (.£)). If c is a unit in 

Z,e, then L b = L b • a, ac, c Thus we may assume that a is an 

integer. For a * 0, ,e{(l+T)a-1, and therefore 

,e{(l+T)a(l+f(T))b-1. By the lemma, again, we have 

µ ( L b/k) = 0 for L b * L0 l • 0 a, a, , 

PROPOSITION 3. Assume that N/k has a unique 

totally ramified prime and g(M/M) is a cyclic ~,e-module. 

If µ(K/k) = 0, and L bnM*k, then µ(L b/k) = 0. a, a, 

PROOF. Since L b n M ::f:. k, we have £ I b. Therefore a, 

~fa, and we may assume a= 1. It suffices to show that 

,e{(l+T) (l+f(T))b_l. 

We will show that, 

(l+T) (l+f(T))b-1 T 

It suffices to show that, 

We have, 

b .£c 
(l+f(T)) = (l+f(T)) 

,e 
= · ( ( 1 +f ( T) ) c) 

for some g(T)E(T,£). 

Now, 
,e ,e 

(l+g (T)) = l+g (T) 

= 1 

and we are done. 0 

,e 
= (l+g(T)) 

(mod .£ ) 

.e (mod (.e,T )) 
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Combining these results we have the following 

theorem. 

THEOREM 7. If N/k has a unique totally ramified 

prime, and g(M/M) is a cyclic 2£ module then there is at 

most one '71£ -extension L b/k, L b c N, such that µ (L b/k) * 0. a, a, - a, 

PROOF. If µ(L b/k) = 0 for all L b' then we are a, a, 

done. Assume µ(L b /k) * 0. If µ(K/k) * 0, then Proposition 
ao, 0 

2 shows that µ(La,b/k) = 0 for al~ other La,b· 

Thus we may assume that µ(K/k) = 0. By Proposition 

3, L b is disjoint from M. 
ao, 0 

we may take K0 = L b, 
ao, 0 

and since MnK0 = k and N = MK
0

, we may apply Proposition 

2 and conclude that µ(L b/k) = 0 for all other L b. a, a, 

Remark: (Suggested by Richard Foote.) If N and k were 

normal over Q, and µ(L/k):f:-0 for some ~£-extension of k con-
I 

tained in N, then any field L conjugate to ·L would be a 

'71£-extension of k contained in N, with µ(L' /k):/:-0. If the 
I 

hypotheses of Theorem 7 hold, we must have L=L, so Lis 

normal over Q. This places severe restrictions on L, and 

in most cases restricts it to a single extension. 

If µ(L b/k)=0 for all L b' we will show that a, a, 

A(L b/k) is bounded. This has been shown in a similar, a, 

more general setting by Greenberg [ 4 ]. 
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PROPOSITION 4. If N/k has a unique totally ramified 

prime, g(k/k) is cyclic, and µ(L b/k)=O for all L b' then a, a, 

\(L b/k) is bounded. a, 

PROOF . We will assume A unbounded, and construct a 

~,e-extension L b/k with nonzeroµ invariant. 
a, 

Given a field F, k ~F~N, let E(F)={La,blF~ La,b }. If 

F/k is not cyclic, E(F)=¢. Notice that each field F, with F/k 

finite, F~N , has only 

with F. cN . Also E(F) 
1 -

.£+1 extensions 

LJ = . 
0

E(F . ). 
1= l 

of degree .e, F 
O

, ... , F,e , 

Let F
0
=k. We will pick Fn with [F

1
:k]=..en, in the 

following manner. Pick F1 with [F
1

:k]=,en, and\ unbounded in 

E(F
1
). This can be done since\ is unbounded in E(F

0
) and E(F) 

is the finite union of E(F1 . ) for the extensions F1 . of F of 
, l , l 

degree .e. 

Pick F containing F 
1 

with [F :F •
1

]=,e, and Aun-
n n- n n-

bounded in E(F). n 
We now show that there is a 

-□ 
~,e-extension 

L b' with F c L b a, n- a, for all n, thus L b- 1F · a, n= n 

We may assume F
1
nM=k. Thus F

1
~L 1 for at least one 

a1' 
Pick such an a

1
. Pick a so that F cL Since the 

n n - an,1 

layer of L 
1 

is the subfield of N fixed by < Taa,r.en >, 
a, 

we 

see that then-th layer is uniquely determined by the congruence 

class of a mod .en. 

Then a=a n 

Thus we have for i <j, 

n (mod £ ) , and F c L 1 . . n- a, 

a .=a. 
l J 

i 
(mod .£ ) . Let a=lim a. n 

One may see this in another way. The field F is the n 

fixed field of <Ta 1 a,T,en>==<Ta0',T,en >. Thus the union of the F 
oo C(' n 

is the fixed field of nl < TaO',T..en > = < TaO' >, so lJlF = L 1 . n= n= n a, 
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In order to . show that µ(L 1 )*0, we use the a, 

following lemma. 

LEMMA. If k=F0cF
1

c ... cFoo is a Z.e-extension with 

a unique totally ramified prime, µ(Foo/k)=0, A(Foo/k)*0, and 

- n 
g(k/k ) is cyclic, then rank g(E /E) = min (.£ ,A(Foo/k)). n n 

PROOF. Let X = g(Foo/Foo). Let Y be a topological 

generator for g(Foo/k), and make X into a AT module by the 

action l+T-Y. Since Foo/k has a unique totally ramified 

prime, g(F/F) ~ X/w (T)X. n n n 

Since g (k/k) = X/TX is cyclic, X ~l\.T/I. 

Sinceµ=0, A*0, I=(f(T)), deg f(T)=A. 

Thus if G=g (F n/F n), G ~ AT/ (f (T), wn (T)) , and 

G/.tG ~l\.T/(f(T), wn(T) ,.£) = AT/(T\ T.tn,.e) __ (:l/.£'.l)m with 

m = min ( A, £ n) . D 
Returning to the proof of the proposition, each 

Fn is contained in a ~,e-extension L which satisfies the 

n 
hypotheses of the lemma, and A(L/k)>.£ . 

n 
Therefore, rank g (F /F ) =.en, so I g (F /F )I >.e.e , n n n n -

If µ(K/k) * 0, then there are certain restrictions 

on the possible values of A(L b/k), given by the following a, 

proposition. 

PROPOSITION 5. If N/k has a unique totally rami­

fied prime, g(J\1/M) is a cyclic 'l:.e module, and µ(K/k)*0, 
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then A(La,b,/k) is either 0 or [L bnK:k]. a, 

PROOF. We can take La,b = L.en,b'' where 
n 

,en= [L bnK:k]~ We have g(r:,--b/L b) ~ /\..T/(I, (l+T).e (l+f(T) )b-1) a, a, a, 

by Theorem 6. Since µ( K/k) * 0, .e !f(T), so, 

(l+T).tn (l+f(T) )b-1 = T.en (mod e ) 

We also have 
.en b 

( l+T) ( l+f (T)) -1 = h (T) u (T) for some 

distinguished polynomial h(T). and unit power series u(T), 

by the Weierstrass preparation theorem. If d=deg h(T), 

then Td is the smallest power of T with coefficient not 

divisible by.£ in the power series, 

(l+f(T))b-1. 

Thus d =.en. 

Therefore g(La,b/La,b) is a factor module of 

/\..T/h (T), with degree h (T) =.en. 

.en= 1, we are done. 

If 

If A(La,b/k) * 0, then /\..T/(I,~T))is not finite, 

and /\..T/(I,h(T))= /\..T/p(T) I with p(T)ih(T) and p(T) !I. If 

n 
1 ~ degree p(T) <.e , then we argue as follows. 

If, KcL cL b' with [L :k] = nn, then - n - a, n .c-
L =k =L n K, 

n n a,b 

so rank o(L /L ) = .en. But rank g(L /L )< - n n n n-
n degree p (T)< .e , 

a contradiction. Therefore p(T)=h(T), and A(L b/k) = .en. 0 a, 
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VI SOME EXAMPLES 

Let .t be an odd prime, r a primitive .t-th root of 

unity , and k=Q(r). Let M be the cyclotomic ~£-extension of 

k. The extension M/k has a unique totally ramified prime. 

If .tis a regular prime, i.e., .tfhk, then any 

~.£-extension K/k has a unique totally ramified prime, and 

µ=A=Y=n
0
=0. (c.f.[ 5 ]) . In fact, if N is the composite 

of two Zi-extensions of such a field k, and X =g(N/N), 
n 

then X / (T, S) X ~ g (k/k) =O, whence X =0 by our corollary to n n n 

Nakayama's lemma. Thus, every number field k.m. contained 
l J 

in N has class number prime to£, and every ~.e-extension 

L has zero invariants. a,b 

Let .t be such that k=Q(r) has class number exactly 

divisible by£. Assume furthermore that g(M/M) ~ ~t' 

where Mis the cyclotomic Z.e-extension of k. This occurs 

for£= 37, 59, 67, and for all primes .£<30,000 where 

8 

LEM.MA. (Suggested by David Dummit) If.tis such 

a prime, M/k the cyclotomic ~£extension, K/k a disjoint 

~.e-extension, and N=MK, then N/k has a unique totally ram­

ified prime iff k is not contained in N. 

PROOF. The field k has a unique prime ft over£. 

Let v be a valuation of N extending the valuation of k 
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induced by;,. Let T denote the inertia group for v in N/k. 

Since N/k is abelian, T does not depend upon the choice of 

v. Let E denote the fixed field of T. The extension E/k 

is unramified at ft, and since only primes above t can ramify 

in N/k , E/k is unramified. 

If klN, then E=k, and ft is totally ramified in N/k. 

Thus N/k has a unique totally ramified prime. 

If k~N, then ft is not totally ramified in N/k. In 

fact, since ft is principal ink, splits in k/k, so N does 

not even have a unique prime over- ft· D 
Since k has .£+1/2 independent Z,e-extensions, there 

are many Zt-extensions K/k such that kiMK. Let K be such 

a Z,e-extension. 

Thus we have the situation of Theorems 5 - 7, and 

can conclude from the results of that section that: 

1. Theµ invariant is nonzero for at most one 

Z,e-extension of k contained in N. (Theorem 7) 

2. Ifµ is nonzero for one such Z,e-extension, 

then .£+1 extensions of k of degree.£ and con­

tained in N must have the following structure. 

One extension has class group (Z/.£Z).£, and 

2 
the other.£ have class group Z/£Z or Z/£ Z. 

One can see this as follows. 

Since £ is not regular, g (M/M) is not finite [ 

We have shown that g(M/M) ;? XN/TXN '.:.?' .i\T/(I,T). Thus Ti I. 

5 ] . 
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Now g(k/k)~ AT/(I,T,f(T)) 2= ~..e/(f(O)), so f(O)=.tu, with u a 

unit in "lf,e. We may assume that µ (K/k) :;t:0. Then, 

g (k1/k
1

) :::=:: AT/ (I, f (T), ( l+T)..e -1). Since .e If (T), we have 

f(T)=£u(T), with u(T) a unit power series, and since µ(K/*0, 

.elr. Thus g(k
1
/k

1
) :::=:: .L\.T/(.e,T..e) ~ ('Jf/£'1:).e. We also have, 

g(m1/m1 ) :::::: .L\.T/(I,T, (l+f(T)/-1) :::::: 2',e/(l+f(O)).e-l :::=:: 'lf,e/f
2 

2 
~ 'Z/.e ~. 

Each other extension of k of degree.tis contained in some 

L l' with g(L 1/L 1 ) ~ AT/(I, (l+T)a(l+f(T)-1). Since a, a, a, 

f(T)=.tu(T), 
a -

(l+T) (a+f(T))-1 evaluated at T = 0 is .e times 

a unit. We have already shown (Proposition 5) that, 

(l+T)a(1+f(T)) - 1 = (T-c)u (T), where u (T) is a unit power 
a a 

series, and ,e I c. 
2 

We may now conclude that £ {c. We now have 

g(L b/L , ) ~ .L\.T/(I,T-c), and the .e-part of the class a, a,o 

group of the first layer is a factor module of, 

If the structure mentioned in 2 of the class groups of the 

degree .e extensions of k did not exist, then one could con­

clude that µ would be zero for all ~.e -extensions of k 

contained in N. 

We now present a few examples for which the in­

variants can be computed. The theory of Zi-extensions of 

complex quadratic k is more developed than for arbitrary 

k, and portions of these examples have been computed. 
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by other authors. See, for example, Carroll and Kisilevsky 

1 ]. 

In these examples k will be a complex quadratic 

number field, k=vCa.. Let N be the composite of all Z',.e-exten­

sions of k. Then g (N/ k) ~ '.i¾,.e 0 '11..e . Let M/ k be the cyclotomic 

'11,1, -extension of k. 

If ..e is odd, or if .t=2 and all quadratic extensions 

of k contained in N are normal over Q (it suffices that d 

have a prime factor congruent to ±3 mod 8.), then there is 

a unique '71,e-extension K/k which is normal over Q, and MK=N. 

See [ 1 ] for a proof of this fact. 

If ..e ramifies or remains prime in k/Q, and the 

class number of k is prime to ..e, then g(N/N)=O, and 

µ=>-=v=n O=O for every 2',e-extension of k. 

Example 1. Let .t =2 . and k=Q0, • where p is a 

prime, p= 5 (mod 8). Then 2 ihk, 41hk. 

If Fis a quadratic extension of k contained in 

N, then F/Q is normal, since p =-3 (mod 8). Since k is 

complex, we have g(F/Q) ~ Z/22' 0 ::Z'/2::Z-, so F=kV<j, dE Z' . Because 

F/k is unramified outside 2, the only possible choices for 

Fare k(V2), k(vC"2), k(ve--1), and each of these fields is 

contained in N. 

Now k(v-J_)/k is unramifi e d and cyclic, and 4{hk. 

Therefore k cJ-i) has class number prime to 2. Since ft 2 , the 

prime above z ink is not principal ink, p 2 remains prime 
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in the extension k(✓-=-i. )/k. Thus N/k(✓--i) has a unique 

totally ramified prime over 2, and since the class number 

of k( ✓-=-i. ) is prime to 2, g(N/N)=O. 

Thus µ=A=O for every ~2-extension of k. For 

k ~Fs;_N, we have g(F/F)=O if k(V-l)f.F, and g(F/F) ~ ~/2~ if 

k (V-1) i F. 

Example 2. Let ,P,=2, p= 5 (mod 8) and k=Q0p. 

Again 2lhk, 4ihk. The quadratic extensions of k contained 

in N are again k (V2), k (V-2), and k (V-1) . Here k = k (V-2) , 

and the class number of k is prime to 2. Thus N/k(H) 

has a unique totally ramified prime and g(N/N)=O. We 

have µ=A=O for every ~2-extension of k. For k ~F~ N, 

g(F/F)=O if yC°2EF, and g(F/F) ~ ~/2 Z if \L2¢F. 

Example 3. Let ,P, =2, p = 3 (mod 8) , and k = V-2p. 

Then 2lhk, 4ihk, and k(V2), k(✓--°2), k(✓--i) are the quadratic 

subextensions of k contained in N. We have k = k (V2) and 

p
2 

remains prime in k/k. Again, g(N/N)=O, and µ=A=O for 

every 2
2
-extension of k. If k s;_F~ N, we have g(F/F)=O 

if V2EF, and g(F/F) ~ Z/2 2 if V2fF. 

Example 4. Let i,=2, p = 7 (mod 8), and k = o✓-"r:>. 

Assume furthermore that 8 does not divide the class number 

of o/-2p. These conditions occur for p = 7,23,71, and for 

infinitely many other p. 

The class number of k is prime to 2, and 2 splits 

in k/Q. Let ft1 and ft
2 

denote the primes above 2 ink. 
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Let M be the cyclotomic ~2-extenSion of k. We 

have ks_k (V2)~M, and .f- 1 , ;,, 2 ramify in k (\/2) /k, so ;,
1 

and ft 
2 

ramify totally in M. 

For kcm c M with [m :k)=2n, let G = g(m /k). - n- n n 

I G I n n-1 Genus theory implies that Cm is either 2 hk or 2 hk-
n 

Let F be the maximal unramified n 2-extension of m which n 

[ ] n n-1 is abelian over k. Then F :m is either 2 or 2 . n n 

F = 0 F . Then F/k is abelian, k_cM_cF, and F/M is not n=l n 

finite. 

Let G = g(F/k), X = g(F/M) and let T. be the 
l 

Let 

inertia group for fii in F/k (i = 1,2). 

fixed field of T .. 

Let K. denote the 
l 

l 

Since F/M is unramified, T . nX=O for i = 1,2. The 
l 

fixed field of XT. is contained in Mand unramified at fi., 
l l 

and is therefore equal to k. 

Therefore, 

Thus XT. =G, and G ~ X0 T. ~ 
l l 

The fixed field of T
1

T2 is unramified over k, 

thus T1 T 2 = G. We also have X ;::::: G/T i = T 2/T 1 n T 2 . Therefore 

Xis isomorphic to a factor of ~2 . But Xis an infinite 

pro-2 group, so X ~ z2 , and T 1n T 2=0. Thus F is the composite 

of all ~2-extensions of k. The fields K1 and K2 are dis­

join t ~
2
-extensions of k and F = K1K2 . 

Let ki denote the first layer of Ki. Then k 1 , k 2 , 

and k(V2) are the quadratic e x tensions of k . contained in F. 
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We claim that the ramification index of /ti in k 1k 2/k is 2. 

Since k/ (V2) k 1 k 2 , and Pi ramifies in k (V2) /k, it is at 

least 2. Since Pi does not ramify in ki/k, it is at most 2. 

Thus k 1k 2/k(V2) is unramified at 2, therefore un­

ramified. One can easily show that k(V2)/Q(V-2p) is 

unramified. Thus k 1k 2/0(V-2p) is unramified. 

The 

over 

field k
1

k 2 is normal over Q, hence normal 

Since [k
1

k 2 :o(vC°2p)] =4, k 1k 2/0(V-2p) is an 

abelian unramified extension. We have k 1k 2cQ(y2p), whence 

k 1k 2 = Q(V-2p). Using the fact that g(Q(yC°2p)/0(/-=2p)) 

is cyclic, and that the prime above 2 in Q(V-2p) is not 

principal, we conclude that primes above 2 do not split 

in k
1 

k 2/k (V2) . Therefore ft
1 

does not split in k
1
/k, and 

thus does not split in K
1
/k. Similarly, p

2 
does not split 

in K2/k. 

Thus K. /k has a unique totally ramified prime. 
l 

Since g(k/k)=0, g(K./K.)=0. The extension F/K. also has a 
l l l 

unique totally ramified prime, therefore g(F/F)=0. Since F 

does not have an abelian unramified 2-extension, F = M. 

We can now describe the invariants of any 

~2-extension, L, of k. If L = K
1 

or L = K2 , then µ=A=0. 

Otherwise µ=O, A=l, g (L/L) ~ !%
2 

· 

For ks_Fs N, [ F: Q ]<CXJ, we have g (F /F) =0 if F~_ K
1

, 

- n n ] and if Fst,K
1

, g(F/ F) ".':'. 'lf/2 ':£, where 2 = [F:FnK 2 . 
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