

ON THE INVARIANTS OF
SOME \mathbb{Z}_ℓ -EXTENSIONS

Thesis By

John Roll Bloom

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy

California Institute of Technology
Pasadena, California

1977

ACKNOWLEDGEMENTS

I would like to thank my wife Janet, and my parents for the love and support they have given me.

I became interested in this topic through my advisor, Dr. Kisilevsky. I appreciate the help he gave me, and the opportunity I had to work with him.

I received financial support from a Ford Foundation Fellowship, and through various fellowships and assistantships granted by the California Institute of Technology.

ABSTRACT

Let k be a number field, ℓ a prime, $k \subset k_1 \subset k_2 \subset \dots \subset K$, and $k \subset m_1 \subset m_2 \subset \dots \subset M$ two \mathbb{Z}_ℓ -extensions of k . The structure of the Galois group of a certain extension of MK is studied, and it is shown how, in some cases, the ℓ -parts of the class groups of the intermediate fields $m_i k_j$ can be obtained from this group.

This Galois group is a module over $\mathbb{Z}_\ell[[S, T]]$, the power series ring in two variables over the ℓ -adic integers, but the structure theory of such modules is not well developed. The main results come from studying the structure of this group as a $\mathbb{Z}_\ell[[S]]$ or $\mathbb{Z}_\ell[[T]]$ module. Necessary and sufficient conditions are given for this group to be a Noetherian module over $\mathbb{Z}_\ell[[T]]$, and thus it has a well known structure. Sufficient conditions are given for the module to be a torsion module.

The structure of this group is then used to obtain information on the Iwasawa invariants μ and λ of the \mathbb{Z}_ℓ -extensions Km_i/m_i and Mk_j/k_j . In suitable situations it is shown that $\mu(K/k)=0$ implies that $\mu(Km_i/m_i)=0$ for all i , and $\lambda(Km_i/m_i)=r\ell^i + \sum_{j=0}^i c_j \varphi(\ell^j)$, with $c_j=0$ for all $j > n_0$ and it is shown that $r=0$ iff the above module is torsion.

In certain situations, this group is also used to study the invariants of all \mathbb{Z}_ℓ -extensions of k contained in MK . With suitable hypotheses, it is shown that at most one \mathbb{Z}_ℓ -extension has $\mu \neq 0$.

Some examples are computed.

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	ii
ABSTRACT	iii
Chapter	
I. INTRODUCTION.	1
II. FURTHER DEFINITIONS AND NOTATION.	5
III. COMPOSITION WITH A FINITE EXTENSION	8
IV. COMPOSITION WITH A \mathbb{Z}_ℓ -EXTENSION	13
V. OTHER \mathbb{Z}_ℓ -EXTENSIONS CONTAINED IN THE COMPOSITE	26
VI. SOME EXAMPLES	36
REFERENCES	43

I. INTRODUCTION

Let k be an algebraic number field and ℓ a fixed rational prime. We shall be concerned with a certain type of extension of k , called a Γ -extension, or a \mathbb{Z}_ℓ -extension. Let \mathbb{Z}_ℓ denote the ring of ℓ -adic integers, and \mathbb{Z}_ℓ^+ the ℓ -adic integers considered as an additive group. Let K be a field containing k (not necessarily a finite extension of the rationals, \mathbb{Q}), then we say that K/k is a \mathbb{Z}_ℓ -extension if K/k is normal and $g(K/k) \cong \mathbb{Z}_\ell^+$, where $g(K/k)$ denotes the Galois group of the extension K/k .

Let $\Gamma = g(K/k)$. Γ has as subgroups of finite index $\Gamma_n = \ell^n \Gamma$, $n=0, 1, \dots$. Let k_n denote the fixed field of Γ_n . Then $k = k_0 \subset k_1 \subset \dots \subset k_n \subset \dots \subset K$. The k_n are the only subfields of K containing k , and $K = \bigcup_{n=1}^{\infty} k_n$. It can be shown that k_n/k is cyclic of order ℓ^n . The field k_n is called the n -th layer of the \mathbb{Z}_ℓ -extension K/k .

An example of a \mathbb{Z}_ℓ -extension is constructed in the following fashion. Let ζ_n denote a primitive (ℓ^{n+1}) -st root of unity. Let $k_n = \mathbb{Q}(\zeta_n)$, $K = \bigcup_{n=1}^{\infty} k_n$. Then $g(k_n/k_0) \cong \mathbb{Z}/\ell^n \mathbb{Z}$, and $g(K/k_0) \cong \varprojlim \mathbb{Z}/\ell^n \mathbb{Z} \cong \mathbb{Z}_\ell$. If $\ell = 2$ we take k_1 instead of k_0 as the base field. For ℓ odd, K/k_0 is a \mathbb{Z}_ℓ -extension, and furthermore K is normal over \mathbb{Q} . Then $g(K/\mathbb{Q})$ contains a unique element of order $\ell-1$, and $g(K/\mathbb{Q}) \cong \mathbb{Z}_\ell \oplus \Delta$, with $|\Delta| = \ell-1$. Let P be the subfield of K fixed by Δ . P/\mathbb{Q} is a \mathbb{Z}_ℓ -extension of \mathbb{Q} , in fact the only \mathbb{Z}_ℓ -extension of \mathbb{Q} . For $\ell = 2$, we take

\mathbb{P} to be the subfield of K fixed by complex conjugation. For any number field k , the extension $k\mathbb{P}/k$ is a \mathbb{Z}_ℓ -extension, called the basic, or cyclotomic, \mathbb{Z}_ℓ -extension of k .

An algebraic number field always has at least one \mathbb{Z}_ℓ -extension, the cyclotomic one. For a number field k , let M denote the composite of all \mathbb{Z}_ℓ -extensions of k . Then $g(M/k) \cong \mathbb{Z}_\ell^a$ for some integer a . If k has $2r_2$ distinct complex imbeddings into the complex numbers then $1+r_2 \leq a \leq [k:\mathbb{Q}]$ [7, p.253]. The conjecture that $a=1+r_2$ is equivalent to Leopoldt's conjecture on the nonvanishing of the ℓ -adic regulator.

For any algebraic extension of \mathbb{Q} , F , let \bar{F} denote the maximal abelian unramified ℓ -extension of F (i.e., \bar{F}/F is unramified and $g(\bar{F}/F)$ is a profinite ℓ -group. In general, a normal extension L/F is unramified, if for each valuation v of L , the inertial group,

$$T_v = \{\sigma \in g(L/F) \mid v(\sigma(\alpha) - \alpha) > 0 \forall \alpha \in L\}$$

is trivial). Let $A_F = g(\bar{F}/F)$. For F a number field, \bar{F} is a subfield of the Hilbert class field of F and $A_F \cong$ the Sylow ℓ -subgroup of C_F , the class group of F .

For the \mathbb{Z}_ℓ -extension K/k , $k \subset k_1 \subset \dots \subset k_n \subset \dots \subset K$, the groups A_{k_n} are related in an interesting way. Define e_n by $\ell^{e_n} = |A_{k_n}|$.

THEOREM (Iwasawa). There exist integers μ , λ , and ν such that $e_n = \mu \ell^n + \lambda n + \nu \quad \forall n \geq n_0$ for some integer $n_0 = n_0(K/k)$, with $\mu, \lambda \geq 0$.

The integers $\mu = \mu(K/k)$ and $\lambda = \lambda(K/k)$ are called the (Iwasawa) invariants for the \mathbb{Z}_ℓ -extension K/k .

A natural question would be, for a \mathbb{Z}_ℓ -extension K/k , how does one determine the invariants μ , λ and the integers ν and n_0 . The main interest has been in the invariants μ and λ , and although methods for the determining μ and λ are not known in general, there are results for certain special cases. For the cyclotomic \mathbb{Z}_ℓ -extension of the field of ℓ -th roots of unity, the invariants can be computed via the ℓ -adic L-series (modulo Vandiver's conjecture), with the connection based upon a theorem of Stickelberger. Greenberg [3] has some results on the basic extensions of totally real fields. A number field which is not totally real has infinitely many \mathbb{Z}_ℓ -extensions, and the question is still open for the non-cyclotomic extensions. In fact, the set of \mathbb{Z}_ℓ -extensions of a number field has not been canonically indexed, so it is difficult to work with a specific non-cyclotomic \mathbb{Z}_ℓ -extension. Carroll and Kisilevsky [2] have, in certain situations, characterized a set of \mathbb{Z}_ℓ -extensions of k , which are independent, and together with the cyclotomic \mathbb{Z}_ℓ -extension, generate the composite of all \mathbb{Z}_ℓ -extensions. These independent \mathbb{Z}_ℓ -extensions are the unique \mathbb{Z}_ℓ -extensions normal over \mathbb{Q} . For this case, certain congruence relations in the invariants were found, and a functional equation was given for a certain

characteristic polynomial. (The polynomial uniquely determines the invariants μ and λ .)

This thesis investigates the situation where a \mathbb{Z}_ℓ -extension is described in terms of one or more "known" \mathbb{Z}_ℓ -extensions. The first situation investigated is the composition of a \mathbb{Z}_ℓ -extension K/k with a field of F to obtain a \mathbb{Z}_ℓ -extension KF/F . (c.f., Iwasawa [6]). The same situation is considered where F runs through the various finite layers of a \mathbb{Z}_ℓ -extension M/k .

II. FURTHER DEFINITIONS AND NOTATIONS

Let K/k be a \mathbb{Z}_ℓ -extension. Let \bar{K} be the maximal abelian unramified ℓ -extension of K . Let

$$G = g(\bar{K}/k), \quad X = A_{\bar{K}} = g(\bar{K}/K).$$

Then X is a normal subgroup of G , and $G/X \cong \Gamma = g(K/k) \cong \mathbb{Z}_\ell$. Thus Γ acts on X by conjugation, and \mathbb{Z}_ℓ also acts naturally on X , with the action of $a \in \mathbb{Z}_\ell$ given by $x \mapsto x^a = \lim_{a_n \rightarrow a} x^{a_n}$. (This limit exists since X is a profinite ℓ -group.) Both these actions are continuous.

These actions allow us to consider X as a module over the group ring $\mathbb{Z}_\ell[\Gamma]$. X can also be considered as a module over the ring of (formal) power series in one variable, $\mathbb{Z}_\ell[[T]]$. This action is obtained by picking a topological generator γ_0 of Γ (i.e., $\langle \gamma_0 \rangle$ is dense in Γ), and defining the action of T on X by $\gamma_0 \cdot x = (1+T)x$ for all $x \in X$. Since $\mathbb{Z}_\ell[[1+T]]$ is dense in $\mathbb{Z}_\ell[[T]]$, this defines a unique action of $\mathbb{Z}_\ell[[T]]$ on X . c.f., [7]. From now on, we will let A_T denote $\mathbb{Z}_\ell[[T]]$.

In general any compact profinite ℓ -group on which Γ acts continuously admits a continuous action by A_T .
c.f. [7]

A few elements of A_T are defined for future use.

DEFINITION. $\omega_n(T) = (1+T)^{\ell^n} - 1$, $n \geq 0$.

$$\nu_{n,m}(T) = \omega_m(T)/\omega_n(T), \quad m \geq n \geq 0.$$

DEFINITION. Given two Λ_T modules X and Y , a homomorphism $f: X \rightarrow Y$ is a pseudo-isomorphism if the kernel and co-kernel are finite. We say X is pseudo-isomorphic to Y if there exists a pseudo-isomorphism $f: X \rightarrow Y$ and write

$$X \underset{p}{\cong} Y.$$

Pseudo-isomorphism is not, in general, an equivalence relation. That is, we can have $X \underset{p}{\cong} Y$ but $Y \not\underset{p}{\cong} X$. Pseudo-isomorphism is, however, transitive. Also, if X and Y are Noetherian torsion Λ_T modules, then $X \underset{p}{\cong} Y$ implies $Y \underset{p}{\cong} X$.

Let e_0, e_1, \dots, e_s be non-negative integers and p_1, \dots, p_s be prime ideals of height one in Λ_T . Each p_i is either (ℓ) , the ideal generated by ℓ , or $(f_i(T))$, the ideal generated by a distinguished irreducible polynomial in $\mathbb{Z}_\ell[T]$. (A polynomial $f(T)$ is distinguished if, $f(T) = T^d + \ell g(T)$, $d > 0$, $d > \deg g(T)$.) Define the module,

$$E(e_0; p_1^{e_1}, \dots, p_s^{e_s}) = \Lambda_T^{e_0} \oplus \Lambda_T/p_1^{e_1} \oplus \dots \oplus \Lambda_T/p_s^{e_s}.$$

Such a module is called an elementary Λ_T module. Every Noetherian Λ_T module is pseudo-isomorphic to a unique elementary module E_X . If $X \underset{p}{\cong} Y$, then $E_X = E_Y$. Also, X is a Noetherian torsion Λ_T module if and only if the associated elementary module $E(e_0; p_1^{e_1}, \dots, p_s^{e_s})$ has $e_0 = 0$.

For a \mathbb{Z}_ℓ -extension of a number field, K/k , the module $X = \Lambda_K$ is always a Noetherian torsion Λ_T module.

If we write,

$$x \underset{p}{\approx} E = \bigoplus_{i=1}^m \Lambda_T / (f_i(T))^{q_i} \bigoplus_{i=1}^n \Lambda_T / (\ell)^{\mu_i},$$

then the invariants $\mu(K/k)$, $\lambda(K/k)$ are as follows:

$$\mu = \sum_{i=1}^n \mu_i. \quad \lambda = \sum_{i=1}^m q_i \deg f_i.$$

The above description of μ and λ also allows us to characterize them in the following way. Let $V = x \otimes_{\mathbb{Z}_\ell} \mathbb{Q}_\ell$. V is a vector space over \mathbb{Q}_ℓ , and $\dim_{\mathbb{Q}_\ell} V = \lambda$. Let D denote the kernel of the map,

$$x \xrightarrow{\ell} x.$$

$$x \mapsto \ell x$$

Then $\mu = 0$ if and only if D is finite.

At this point we also wish to mention the following fact, a consequence of ramification theory. If F is an abelian extension of a number field k with $g(F/k) \cong \mathbb{Z}_\ell^a = \mathbb{Z}_\ell \oplus \dots \oplus \mathbb{Z}_\ell$, then F/k is unramified outside primes above ℓ . The case F/k a \mathbb{Z}_ℓ -extension is of particular interest.

III. COMPOSITION WITH A FINITE EXTENSION

Let k be a number field, K/k a \mathbb{Z}_ℓ -extension, and F/k a cyclic extension of degree ℓ^r , $k = F_0 \subset F_1 \subset \dots \subset F_r = F$, with $[F_i : k] = \ell^i$. Assume furthermore that $F \cap K = k$.

Since $g(KF_i/k) = g(KF_i/F_i) \oplus g(KF_i/K) \cong \mathbb{Z}_\ell \oplus \mathbb{Z}/\ell^i \mathbb{Z}$, KF_i/F_i is a \mathbb{Z}_ℓ -extension for $i = 0, \dots, r$. We will obtain certain relations among the λ -invariants of the various extensions KF_i/F_i . For the relationship of the μ -invariants, see [6].

Let $X_i = g(\overline{KF_i}/KF_i)$. Then $\lambda(KF_i/F_i) = \dim_{\mathbb{Z}_\ell}(X_i \otimes_{\mathbb{Z}_\ell} \mathbb{Q}_\ell)$.

Let $g(KF/K) = \langle \sigma \rangle$. $\sigma^{\ell^r} = 1$.

LEMMA 3.1.

$$\dim_{\mathbb{Z}_\ell}(X_i \otimes_{\mathbb{Z}_\ell} \mathbb{Q}_\ell) = \dim_{\mathbb{Z}_\ell}(X_r/(\sigma^{\ell^i} - 1)X_r \otimes_{\mathbb{Z}_\ell} \mathbb{Q}_\ell)$$

If each prime of k which ramifies in F/k is finitely decomposed in K/k , then $X_i \cong X_r/(\sigma^{\ell^i} - 1)X_r$.

To simplify the formulas, we will let $D(X) = \dim_{\mathbb{Z}_\ell}(X \otimes_{\mathbb{Z}_\ell} \mathbb{Q}_\ell)$ for any Λ_T module X . The first statement of the lemma now reads $D(X_i) = D(X_r/(\sigma^{\ell^i} - 1)X_r)$.

PROOF OF LEMMA. We construct the following fields.

Let $E_i = KF \overline{KF_i}$. Let $G_i = g(\overline{KF}/KF_i)$, and let G'_i be the commutator subgroup of G_i . Let M_i be the fixed field of G'_i . The field M_i is the maximal subextension of \overline{KF}/KF_i which is abelian over KF_i . The following relationship holds

among these fields:

$$KF \subseteq E_i \subseteq M_i \subseteq \overline{KF}.$$

This provides us with an exact sequence.

$$0 \rightarrow g(M_i/E_i) \rightarrow g(M_i/KF) \rightarrow g(E_i/KF) \rightarrow 0.$$

If we form the tensor product of each element of the sequence with Q_ℓ , and take the dimension of the resulting vector space, we get,

$$D(g(M_i/KF)) = D(g(M_i/E_i)) + D(g(E_i/KF)).$$

Since $D(X_r) = D(g(\overline{KF}/KF))$ is finite, each term in the above equation is finite. The first part of the lemma will be done if we show $D(X_i) = D(g(E_i/KF))$, $D(g(M_i/KF)) = D(X_r/(\sigma^{\ell^i} - 1)X_r)$, and $D(g(M_i/E_i)) = 0$.

First, $g(E_i/KF) \cong g(\overline{KF}_i/KF \cap \overline{KF}_i)$. We also have

$$0 \rightarrow g(\overline{KF}_i/KF \cap \overline{KF}_i) \rightarrow g(\overline{KF}_i/KF_i) \rightarrow g(KF \cap \overline{KF}_i/KF_i) \rightarrow 0.$$

Since the last term in this exact sequence is finite, we can actually conclude that $g(E_i/KF) \cong X_i$, so the relationship $D(X_i) = D(g(E_i/KF))$ is proven.

To prove the second relationship we argue as follows. By the definition of M_i , $g(M_i/KF_i) \cong G_i/G'_i$, and therefore $g(M_i/KF) \cong X_r/(G'_i \cap X_r)$. We can take σ^{ℓ^i} as a generator of $g(KF/KF_i)$. Let $a = \sigma^{\ell^i}$ denote a lifting of σ^{ℓ^i} to G_i . Since X_r and a generate G_i , and X_r is an

abelian group, one sees that $G'_i = \langle a \times a^{-1} \times^{-1} \mid x \in X_r \rangle = (\sigma^{\ell^i} - 1)X_r$.

Thus we have $g(M_i/KF) \cong X_r / (\sigma^{\ell^i} - 1)X_r$, and therefore $D(g(M_i/KF)) = D(X_r / (\sigma^{\ell^i} - 1)X_r)$.

Finally, we show that $D(g(M_i/E_i)) = 0$. Since $g(M_i/E_i) \subseteq g(M_i/\overline{KF_i})$, it suffices to show that $D(g(M_i/\overline{KF_i})) = 0$.

Let $\{w_j\}$ be the set of valuations of KF_i which ramify in M_i/KF_i . Let $\{T_j\}$ be the set of inertial group for the w_j in $M_i/\overline{KF_i}$. Since $KF_i \subseteq \overline{KF_i} \subseteq M_i$, and KF_i is the maximal unramified subextension of M_i/KF_i , $g(M_i/\overline{KF_i})$ is precisely the group generated by the T_j . $T_j|_{KF}$ is the inertial group for w_j in KF/KF_i . Let $t_j \in T_j$. Then $t_j^{\ell^{r-i}}|_{KF}$ is the identity so $t_j^{\ell^{r-i}} \in T_j \cap g(M_i/KF)$. Now M_i/KF is unramified, so $T_j \cap g(M_i/KF) = 1$. Thus $t_j^{\ell^{r-i}} = 1$, and therefore, $g(M_i/\overline{KF_i})^{\ell^{r-i}} = 1$, and $g(M_i/\overline{KF_i}) \otimes_{\mathbb{Z}_\ell} \mathbb{Q}_\ell = 0$.

This completes the proof of the first statement of the lemma.

The second statement now follows quickly. We have already shown that,

$$g(E_i/KF) \cong X_i, \text{ and } g(M_i/KF) \cong X_r / (\sigma^{\ell^i} - 1)X_r.$$

We also have the exact sequence,

$$0 \rightarrow g(M_i/E_i) \rightarrow g(M_i/KF) \rightarrow g(E_i/KF) \rightarrow 0.$$

We will be done if we show $g(M_i/E_i)$ is finite. We actually show that $g(M_i/\overline{KF_i})$ is finite.

It was shown above that $g(M_i/\overline{KF_i})$ is the group generated by the inertia groups $\{T_j\}$, and each T_j is finite. Let ν_j be the restriction of W_j to F_i . Since W_j ramifies in KF/KF_i , ν_j must ramify in F/F_i . Since F/F_i is a finite extension of an algebraic number field, there are only finitely many ramified primes. The hypothesis that each prime ramifying in F/k is finitely decomposed in K/k implies that there are only finitely many extensions of ν_j to KF_i . Thus $\{T_j\}$ is finite, and $g(M_i/\overline{KF_i})$ is finite. \square

This lemma can now be used to relate the λ -invariants for the various \mathbb{Z}_ℓ -extensions KF_i/F_i .

THEOREM 1. $\lambda(KF_i/F_i) \equiv \lambda(KF_{i-1}/F_{i-1}) \pmod{\varphi(\ell^i)}$,
hence for $j \leq i$ $\lambda(KF_i/F_i) \equiv \lambda(KF_j/F_j) \pmod{\varphi(\ell^{j+1})}$.

PROOF. The characterization of $\lambda(KF_i/F_i)$ in section II is that $\lambda(KF_i/F_i) = D(X_i)$. The above lemma shows that $D(X_i) = D(X_r / (\sigma^{\ell^i} - 1)X_r)$.

Let V be the \mathbb{Q}_ℓ vector space $X_r \otimes_{\mathbb{Z}_\ell} \mathbb{Q}_\ell$. The map $(\sigma^{\ell^j} - 1)$ is a linear map on V . Let V_j denote the null space of $(\sigma^{\ell^j} - 1)$. We have $V_0 \subseteq V_1 \subseteq \dots \subseteq V_r = V$.

Now,

$$\begin{aligned} \lambda(KF_i/F_i) &= D(X_r / (\sigma^{\ell^i} - 1)X_r) = \dim_{\mathbb{Q}_\ell} (X_r \otimes_{\mathbb{Z}_\ell} \mathbb{Q}_\ell) - \dim_{\mathbb{Q}_\ell} ((\sigma^{\ell^i} - 1)X_r) \\ &= \dim_{\mathbb{Q}_\ell} V - \dim_{\mathbb{Q}_\ell} ((\sigma^{\ell^i} - 1)V) = \dim_{\mathbb{Q}_\ell} V_i. \end{aligned}$$

Therefore, we have,

$$\lambda(KF_i/F_i) - \lambda(KF_{i-1}/F_{i-1}) = \dim_{Q_\ell} V_i - \dim_{Q_\ell} V_{i-1} = \dim_{Q_\ell} (\sigma^{\ell^{i-1}-1} V_i)$$

Let $W_i = (\sigma^{\ell^{i-1}-1} V_i)$. We are done if we show $\varphi(\ell^i) \mid \dim_{Q_\ell} W_i$. If $W_i = 0$, we are done. Assume $W_i \neq 0$.

Let $\Phi(t) = t^{\ell^i-1}/t^{\ell^{i-1}-1}$. $\Phi(t)$ is an irreducible polynomial in $Q_\ell[t]$. Since $W_i \neq 0$, but $\Phi(\sigma)W_i = 0$, $\Phi(t)$ is the minimal polynomial for σ on W_i . Therefore, $P(t)$, the characteristic polynomial for σ on W_i , is a power of $\Phi(t)$.

$P(t) = (\Phi(t))^s$. Thus $\dim_{Q_\ell} W_i = \deg P(t) = s \deg \Phi(t) = s \varphi(\ell^i)$. \square

IV. COMPOSITION WITH A \mathbb{Z}_ℓ -EXTENSION

Let $k = k_0 \subset k_1 \subset \dots \subset k$, and $k = m_0 \subset m_1 \subset \dots \subset M$ be two disjoint \mathbb{Z}_ℓ -extensions of k . The invariants of the \mathbb{Z}_ℓ -extension M_{k_i}/k_i can be related to the invariants of the \mathbb{Z}_ℓ -extension M/k by Theorem 1, but in this case, stronger results hold. We therefore study these extensions. Since not every number field has two disjoint \mathbb{Z}_ℓ -extensions, it is necessary to assume that k has at least one complex imbedding.

For the remainder of this thesis, let k be a number field with at least one complex imbedding.

Let $k_{\mathbb{Z}_\ell}$ be the composite of all \mathbb{Z}_ℓ -extensions of k . Then $G = g(k_{\mathbb{Z}_\ell}/k) \cong \mathbb{Z}_\ell^a$, with $a \geq 2$. It is possible to pick $H \subseteq G$ with $G/H \cong \mathbb{Z}_\ell \oplus \mathbb{Z}_\ell$, and if N is the fixed field of H , $g(N/k) \cong \mathbb{Z}_\ell \oplus \mathbb{Z}_\ell$. One can pick Γ_1 and Γ_2 contained in $g(N/k)$ such that $\Gamma_1 \cong \Gamma_2 \cong \mathbb{Z}_\ell$, and $g(N/k) = \Gamma_1 \oplus \Gamma_2$.

Let K be the fixed field of Γ_1 , and M the fixed field of Γ_2 . Then K/k and M/k are disjoint \mathbb{Z}_ℓ -extensions of k , and $N = MK$.

Let \bar{N} be the maximal abelian unramified ℓ -extension of N , and $X_N = g(\bar{N}/N)$. We will show that X_N is a module over $\mathbb{Z}_\ell[[S, T]]$ in a natural way.

Let σ be a topological generator of Γ_1 , and let τ be a topological generator of Γ_2 . Since $g(M/k) \cong \Gamma_1$, with the isomorphism given by restriction, $g(M/k)$ is topologically generated by the restriction of σ to M , which we

also call σ . Similarly, $g(K/k)$ is generated by τ .

Let N_n denote the subfield of N fixed by $\langle \sigma^{\ell^n}, \tau^{\ell^n} \rangle$, the closed subgroup generated by σ^{ℓ^n} and τ^{ℓ^n} . Then $N_0 = k$, and $N = \bigcup_{n=1}^{\infty} N_n$. Since $\bar{N} = \bigcup_{n=1}^{\infty} \bar{N}_n$ (c.f. [10]), $g(\bar{N}/N) = \varprojlim g(\bar{N}_n/N_n)$. Each $g(\bar{N}_n/N_n)$ is a finite ℓ -group, and therefore X_N is a profinite ℓ -group.

Let $G = g(\bar{N}/k)$. Since $G/X_N \cong \Gamma_1 \oplus \Gamma_2$, $\Gamma_1 \oplus \Gamma_2$ acts on X_N by conjugation, and thus one obtains a continuous action of $\mathbb{Z}_\ell[\Gamma_1 \oplus \Gamma_2]$ on X_N . It is not hard to show that the correspondence $1+T \leftrightarrow \tau$, $1+S \leftrightarrow \sigma$, provides a continuous action of $\mathbb{Z}_\ell[[S, T]]$ on X_N . (c.f. [4]).

THEOREM (Greenberg). X_N is a Noetherian torsion $\mathbb{Z}_\ell[[S, T]]$ module.

The structure of $\mathbb{Z}_\ell[[S, T]]$ modules is not as well classified as the structure of $\mathbb{Z}_\ell[[S]]$ modules. The ℓ -part of the class group of the intermediate fields $k_i m_j$ ($k_i \subset K$, $m_j \subset M$) is connected with the $\mathbb{Z}_\ell[[S, T]]$ structure of X_N . The following proposition describes the connection in the particular case where N/k has a unique totally ramified prime.

PROPOSITION. If N/k has a unique totally ramified prime, then,

$$g(\bar{k_i m_j}/k_i m_j) \cong X_N / \langle \omega_i(T) X_N, \omega_j(S) X_N \rangle.$$

PROOF. Let i and j be fixed. Let E denote the largest subfield of \bar{N} which is abelian over $k_{i^m j}$. Then $N \subseteq E \subseteq \bar{N}$. We will show that $g(\bar{k}_{i^m j}/k_{i^m j}) \cong g(E/N)$, and that $g(E/N) \cong X_N/\langle \omega_i(T)X_N, \omega_j(S)X_N \rangle$.

Let $G = g(\bar{N}/k_{i^m j})$. Then E is the fixed field of G' . We will show that $G' = \langle \omega_i(T)X_N, \omega_j(S)X_N \rangle$.

Let \mathfrak{p} denote the prime of $k_{i^m j}$ which is totally ramified in $N/k_{i^m j}$, and let T_v be the inertial group in $\bar{N}/k_{i^m j}$, for a valuation v of \bar{N} which extends the valuation induced by \mathfrak{p} .

Since \bar{N}/N is unramified, $T_v \cap X_N = 0$. Since $T_v X_N / X_N$ is the inertial group for \mathfrak{p} in N/M , $T_v X_N = G$. We have $G/X_N \cong T_v$, and T_v acts on X_N by conjugation, so G is a semidirect product of X_N by T_v .

$$\text{Thus } G' = \langle \text{txt}^{-1}x^{-1} \mid t \in T_v, x \in X_N \rangle = \langle X_N^{t-1} \mid t \in T_v \rangle.$$

We can also identify T_v with $g(N/k_{i^m j})$. If,

$$t = (\tau^{\ell^i})^a (\sigma^{\ell^j})^b,$$

then,

$$t^{-1} = (\tau^{\ell^i})^a ((\sigma^{\ell^j})^b)^{-1} + (\tau^{\ell^i})^{a-1},$$

so,

$$X_N^{t-1} \subseteq (\sigma^{\ell^j-1})X_N + (\tau^{\ell^i-1})X_N = \langle \omega_i(T)X_N, \omega_j(S)X_N \rangle.$$

Also $\omega_j(T)x_N = x_N^{\tau^{\ell^i-1}} \subseteq G'$, and $\omega_j(S)x_N = x_N^{\sigma^{\ell^j-1}} \subseteq G'$, so

$$G' = \langle \omega_i(T)x_N, \omega_j(S)x_N \rangle.$$

Thus, $N \subseteq E \subseteq \bar{N}$, with $G' = g(\bar{N}/E) \subseteq g(\bar{N}/N) = x_N$.

Therefore, $g(E/N) \cong x_N/G' = x_N/\langle \omega_i(T)x_N, \omega_j(S)x_N \rangle$.

Let ρ be the prime of $k_i^m j$ which ramifies in $N/k_i^m j$, and let T_ρ be the inertia group for ρ in $E/k_i^m j$. Since T_ρ projects onto $g(N/k_i^m j)$ and is disjoint from $g(E/N)$, we have $g(E/k_i^m j) \cong g(E/N) \oplus T_\rho$.

Since $\bar{k_i^m j} \subseteq E$ and the fixed field of T_ρ is contained in $\bar{k_i^m j}$, we have $E = N \bar{k_i^m j}$. Therefore, $g(E/N) \cong g(\bar{k_i^m j}/k_i^m j)$, and we are done. \square

We now return to the study of x_N .

Since the structure of $\mathbb{Z}_\ell[[S, T]]$ modules is not well known, we notice that the action of $\mathbb{Z}_\ell[[S, T]]$ on x_N provides an action of $\mathbb{Z}_\ell[[S]]$ and $\mathbb{Z}_\ell[[T]]$ on x_N , and study the structure of x_N as a module over these rings.

THEOREM 2. If ℓ is finitely decomposed in M , then x_N is a Noetherian $\mathbb{Z}_\ell[[T]]$ module if and only if $\mu(M/k) = 0$. Similarly, if ℓ is finitely decomposed in K , then x_N is a Noetherian $\mathbb{Z}_\ell[[S]]$ module if and only if $\mu(K/k) = 0$.

PROOF. We will prove the first statement. The second follows from a change in notation.

The module X_N is a Noetherian $\mathbb{Z}_\ell[[T]]$ module if and only if $X_N/(T, \ell)X_N$ is finite. The module $X_N/(T, \ell)X_N$ is finite if and only if X_N/TX_N has a finite rank.

Let $E \subseteq \bar{N}$ be the fixed field of TX_N . Then $H = g(E/N) \cong X_N/TX_N$. Since TX_N is the commutator subgroup of $g(\bar{N}/M)$, $G = g(E/M)$ is abelian. Therefore we can form the factor group G/H , and $G/H \cong g(N/M) \cong \mathbb{Z}_\ell$. Thus X_N is Noetherian if and only if G has finite rank.

Let I denote the subgroup of G generated by the inertia groups of all valuations of M . Since only valuations above ℓ can have non-trivial inertia groups, and we have assumed there are only finitely many valuations above ℓ , I has finite rank. Hence G has finite rank if and only if G/I has finite rank.

Let L be the fixed field of I . Then L is the maximal abelian unramified extension of M contained in \bar{N} . Since $\bar{M} \subseteq \bar{N}$, $L = \bar{M}$. Therefore $G/I \cong g(\bar{M}/M)$. Finally, X_N is Noetherian if and only if $g(\bar{M}/M)$ has a finite rank, which occurs if and only if $\mu(M/k) = 0$. \square

Recall that $k = k_0 \subset k_1 \subset \dots \subset k$, and $k = m_0 \subset m_1 \subset \dots \subset M$ are two disjoint \mathbb{Z}_ℓ -extensions of k , and $N = MK$. For each $i \geq 0$, let $F_i = k_i M$. Then F_i/k_i is a \mathbb{Z}_ℓ -extension and we now study these extensions.

Let $X_i = g(\bar{F_i}/F_i)$. The structure of the class group of $k_i m_n$, the n -th layer of F_i/k_i , is determined by the structure of X_i as a Λ_S module. That structure

is not easily determined in the general case. We will find information about the invariants of F_i/k_i from the Λ_T structure of X_i .

Recall that $X_N = g(\bar{N}/N)$.

THEOREM 3. If N/M is unramified, then,

$$X_i \cong X_N/\omega_i(T)X_N \oplus \mathbb{Z}_\ell.$$

PROOF. If N/M is unramified, then $N \subseteq \bar{F}_i \subseteq \bar{N}$, and \bar{F}_i is the maximal abelian extension of F_i contained in \bar{N} . Let $G_i = g(\bar{N}/F_i)$. Then $X_i = g(\bar{F}_i/F_i) \cong G_i/G_i'$. Since G_i is a semidirect product of X_N by $g(N/F_i) = \langle \tau^{\ell^i} \rangle \cong \mathbb{Z}_\ell$, we have $G_i' = (\tau^{\ell^i-1})X_N = \omega_i(T)X_N$. Therefore X_i is a semidirect product of $X_N/\omega_i(T)X_N$ with $g(N/F_i) \cong \mathbb{Z}_\ell$. But since X_i is abelian, the product must actually be a direct product. \square

COROLLARY. If $\mu(M/k) = 0$ and N/M is unramified, then $\mu(F_i/k_i) = 0$ and $\lambda(F_i/k_i) = r\ell + \sum_{n=0}^{\infty} c_n \varphi(\ell^n)$. The numbers r and c_n are non-negative integers, and $c_n = 0 \forall n \geq n_0$, for some integer n_0 . The integer r is zero if and only if X_N is a torsion Λ_T module.

PROOF. If $\mu(M/k) = 0$, then X_N is a Noetherian Λ_T module, by Theorem 2. Therefore X_N is pseudo-isomorphic to some elementary module E , and $X_N/\omega_i(T)X_N \xrightarrow{p} E/\omega_i(T)E$. Thus we have $X_i \xrightarrow{p} E/\omega_i(T)E \oplus \mathbb{Z}_\ell$.

If,

$$E = \Lambda_T^r \bigoplus_{j=1}^m \Lambda_T / (f_j(T))^{n_j} \bigoplus_{g=1}^h \Lambda_T / (\ell^{n_g}),$$

then,

$$x_i \underset{p}{\cong} (\Lambda_T / (\omega_i(T)))^r \bigoplus_{j=1}^m \Lambda_T / (\omega_i(T), (f_j(T))^{n_j})$$

$$\bigoplus_{g=1}^h \Lambda_T / (\omega_i(T), \ell^{n_g}) \oplus \mathbb{Z}_\ell.$$

The module $\Lambda_T / (\omega_i(T), \ell^{n_h})$ is a finite for each i, n_h . The module $\Lambda_T / (\omega_i(T), (f_j(T))^{n_j})$ is either finite, if $f_j(T) \nmid \omega_i(T)$, or is pseudo-isomorphic to $\Lambda_T / \nu_{n-1, n}(T)$ for some $n \leq i$, if $f_j(T) = \nu_{n-1, n}(T)$. Define $\nu_{-1, 0}(T) = T$.

Let c_n be the number of $f_j(T)$ equal to $\nu_{n-1, n}(T)$. Then $c_n = 0 \forall n \geq n_0$, and $x_i \underset{p}{\cong} (\Lambda_T / (\omega_i(T)))^r \bigoplus_{n=0}^i (\Lambda_T / \nu_{n-1, n}(T))^{c_n} \oplus \mathbb{Z}_\ell$. Since the module on the right has no elements annihilated by ℓ , x_i has only finitely many elements annihilated by ℓ , hence $\mu(F_i/k_i) = 0$. We also have,

$$\lambda(F_i/k_i) = \dim_{\mathbb{Z}_\ell} (x_i \otimes_{\mathbb{Z}_\ell} \mathbb{Q}) = r\ell^i + \sum_{n=0}^i c_n \varphi(\ell^n) + 1.$$

This can be made into appropriate form by change of c_0 . \square

Remark: If $\lambda(M/k) = 1$, then $r = 0$, thus $\lambda(F_i/k_i)$ is bounded.

THEOREM 4. If N/M is ramified at some valuation, and unramified at all but a finite number of valuations, then there are integers n_0 and n_1 , and Λ_T submodules $Y_i \subseteq X_N$

such that $\forall i \geq n_0, X_i \cong X_N/Y_i$, and $\forall i < n_0, X_i \cong X_N/Y_i$.

Furthermore, $\forall i \geq n_1, Y_i = \nu_{n_1, i}(T)Y_{n_1}$.

Remark: A more exact description of n_0, n_1 , and the Y_i is given in the proof.

Remark: Both the statement and proof of this theorem are essentially the same as in the case of a \mathbb{Z}_ℓ -extension of a number field, and closely follow Serre [10].

PROOF. Recall that $\overline{F_i}$ is the maximal abelian unramified ℓ -extension of F_i . The extension $\overline{NF_i}/N$ is unramified, so $\overline{NF_i} \subseteq \overline{N}$, and therefore $\overline{F_i} \subseteq \overline{N}$. Let $G_i = g(\overline{N}/\overline{F_i})$, and $H_i = g(\overline{N}/\overline{F_i})$. Then,

$$X_i = g(\overline{F_i}/F_i) \cong G_i/H_i.$$

The theorem will follow from a description of the H_i .

Since G_i/H_i is abelian, $G_i \subseteq H_i$. As above, $G_i = \omega_i(T)X_N$. Let L_i denote the fixed field of G_i . We have $F_i \subseteq \overline{F_i} \subseteq L_i \subseteq \overline{N}$. The extension L_i/F_i is abelian, and $\overline{F_i}$ is the maximal unramified subextension.

Let v_0, \dots, v_r denote the valuations of N which ramify in N/M , and I_0, \dots, I_r the corresponding inertia groups. Define b_j by $I_j = \ell^{b_j} \Gamma_2$, and let $n_0 = \min b_j$, $n_1 = \max b_j$. If necessary, relabel the v_i so that $b_0 = n_0$.

Pick valuations w_0, \dots, w_r of \overline{N} which extend v_0, \dots, v_r . Let I'_j denote the inertia group for w_j in \overline{N}/M .

Then $I'_j \cong \mathbb{Z}_\ell$. Pick $\sigma_0, \dots, \sigma_r$ topological generators for I'_0, \dots, I'_r such that $\sigma_j|_N = \tau_\ell^{b_j}$.

We have $F_i \subseteq N \subseteq L_i$, with L_i/N unramified, so each valuation which ramifies in L_i/F_i ramifies in N/F_i . We conclude that $\overline{F_i}$ is the subfield of L_i fixed by,

$$\langle I'_0, \dots, I'_r \rangle \cap G(L_i/F_i).$$

Thus we have,

$$H_i = \langle \omega_i(T) X_N, \bigcup_{j=0}^r I'_j \cap G_i \rangle.$$

Let $t_{ij} = \max(0, i-b_j)$. Then $I'_j \cap G_i = \langle \sigma_j^{\ell^{t_{ij}}} \rangle$.

Let $a_{ij} = \sigma_j^{t_{ij}} \sigma_0^{-\ell^{b_j-b_0+t_{ij}}}$. Since $a_{ij}|_N$ is the identity, $a_{ij} \in X_N$. We have $\langle I'_j \cap G_i, I'_0 \cap G_i \rangle = \langle I'_0 \cap G_i, a_{ij} \rangle$.

Therefore,

$$H_i = \langle \omega_i(T) X_N, a_{i1}, \dots, a_{ir}, I'_0 \cap G_i \rangle.$$

The groups X_N and $I'_0 \cap G_i$ are disjoint, and for $i \geq n_0$, $X_N(I'_0 \cap G_i) = G_i$. Since $G_i/X_N \cong I'_0 \cap G_i \cong I'_0 \cap G_i$, we have $I'_0 \cap G_i$ acting on X_N by conjugation. Therefore G_i is a semidirect product of X_N by $I'_0 \cap G_i$, and we have,

$$G_i/H_i = G_i/\langle \omega_i(T) X_N, a_{i1}, \dots, a_{ir}, I'_0 \cap G_i \rangle \cong X_N/\langle \omega_i(T) X_N, a_{i1}, \dots, a_{ir} \rangle.$$

Let $Y_i = \langle \omega_i(T)X_N, a_{i1}, \dots, a_{ir} \rangle$. We have shown that for $i \geq n_0$, $X_i \cong X_N/Y_i$.

For $i < n_0$, we have $F_i \subseteq F_{n_0} \subseteq \overline{F_i} \subseteq L_i$. In this case we have $g(\overline{F_i}/F_{n_0}) \cong G_{n_0}/\langle Y_i, I_0 \rangle \cong X_N/Y_i$. Since $g(F_{n_0}/F_i)$ is finite, $g(\overline{F_i}/F_{n_0}) \cong g(\overline{F_i}/F_i) = X_i$. Therefore, we have, for $i < n_0$, $X_i \cong X_N/Y_i$.

It remains to show that for $i \geq n_1$, $Y_i = \nu_{n_1, i}(T)Y_{n_1}$.

Since $Y_i = \langle \omega_i(T)X_N, a_{i1}, \dots, a_{ir} \rangle$, and $\omega_i(T) = \nu_{n_1, i}(T)\omega_{n_1}(T)$, it suffices to show that,

$$a_{ij} = \nu_{n_1, i}(T)a_{n_1 j}. \text{ For } j = 0, \dots, r, \text{ let } \gamma_j = \sigma_j^{\ell^{n_1-b_j}}.$$

Then by the definition of $a_{n_1 j}$,

$$\gamma_j = a_{n_1 j} \gamma_0$$

and therefore,

$$\begin{aligned} \gamma_j^{\ell^{i-n_1}} &= (a_{n_1 j} \gamma_0) \ell^{i-n_1} \\ &= a_{n_1 j} \gamma_0 a_{n_1 j} \gamma_0^{-1} \gamma_0^2 a_{n_1 j} \dots \gamma_0^{\ell^{i-n_1-1}} a_{n_1 j} \gamma_0^{-(\ell^{i-n_1-1})} \gamma_0^{\ell^{i-n_1}} \\ &= a_{n_1 j}^{1+\gamma_0+\gamma_0^2+\dots+\gamma_0^{\ell^{i-n_1-1}}} \gamma_0^{\ell^{i-n_1}}. \end{aligned}$$

$$\text{Now, } a_{ij} = \gamma_j^{\ell^{i-n_1}} \gamma_0^{-\ell^{i-n_1}}$$

$$\text{so, } a_{ij} = a_{n_1 j}^{1 + \gamma_0^2 + \dots + \gamma_0^{\ell^{i-n_1-1}}}$$

Since $\gamma_0|_N = \tau^{\ell^{n_1}}$, we have,

$$a_{ij} = a_{n_1 j}^{1 + \tau^{\ell^{n_1}} + \tau^{2\ell^{n_1}} + \dots + \tau^{(\ell^{i-n_1-1})\ell^{n_1}}} = \nu_{n_1, j} (T) a_{n_1 j}. \square$$

COROLLARY 1. If in addition to the hypotheses of Theorem 4, $\mu(F_{n_1}/k_{n_1}) = 0$, then for all $i \geq n_1 + 1$, $\mu(F_i/k_i) = 0$ and $\lambda(F_i/k_i) = r(\ell^i - \ell^{n_1}) + \sum_{n=n_1+1}^i c_n \varphi(\ell^n) + c$, for non-negative integers r , c , and c_n , with $c_n = 0 \forall n \geq n_2$ for some integer n_2 .

PROOF. Theorem 4 states that $X_i \cong X_N/Y_i$. From the isomorphism for $i \geq n_1 + 1$

$$\frac{X_N/Y_i}{Y_{n_1}/Y_i} \cong \frac{X_N/Y_i}{Y_{n_1}/Y_i}$$

we obtain the exact sequence,

$$1) \quad 0 \rightarrow Y_{n_1}/Y_i \rightarrow X_i \rightarrow X_{n_1} \rightarrow 0.$$

If $\ell^A = \{a \in A \mid \ell a = 0\}$, then $\mu(F_i/k_i) = 0$ if and only if ℓ^{X_i} is finite. Applying the snake lemma to the exact sequence 1), we obtain the exact sequence,

$$0 \rightarrow \ell^{(Y_{n_1}/Y_i)} \rightarrow \ell^{X_i} \rightarrow \ell^{X_{n_1}}.$$

Since $\ell^{X_{n_1}}$ is finite, we can show that $\mu(F_i/k_i) = 0$ by showing that $\ell^{(Y_{n_1}/Y_i)}$ is finite.

Since $\mu(F_{n_1}/k_{n_1}) = 0$, $\mu(M/k) = 0$, and by Theorem 2, X_N is a Noetherian Λ_T module. The submodule Y_{n_1} is also a Noetherian Λ_T module.

Proceeding as in the unramified case, we have,

$$Y_{n_1} \underset{p}{\cong} E = \Lambda_T^r \bigoplus_{j=1}^m \Lambda_T / (f_j(T))^{n_j} \bigoplus_{g=1}^h \Lambda_T / (\ell^g)$$

and therefore,

$$2) \quad Y_{n_1}/Y_i = Y_{n_1}/\nu_{n_1, i}(T) Y_{n_1} \underset{p}{\cong} \left(\Lambda_T / \nu_{n_1, i}(T) \right) \bigoplus_{n=n_1+1}^i (\Lambda_T / \nu_{n-1, n}(T))^{c_n},$$

where c_n is the number of $f_j(T) = \nu_{n-1, n}(T)$. Thus $\ell^{(Y_{n_1}/Y_i)}$ is finite.

Now $\lambda(F_i/k_i) = \dim_{Q_\ell} (X_i \otimes_{Z_\ell} Q_\ell)$. From 1), we have that for $i \geq n_1 + 1$

$$3) \quad \lambda(F_i/k_i) = \dim_{Q_\ell} (Y_{n_1}/Y_i \otimes_{Z_\ell} Q_\ell) + \dim_{Q_\ell} (X_{n_1} \otimes_{Z_\ell} Q_\ell).$$

We obtain from 2),

i

$$\dim_{\mathbb{Q}_\ell} (Y_{n_1}/Y_i \otimes_{\mathbb{Z}_\ell} \mathbb{Q}_\ell) = r(\ell^i - \ell^{n_1} + \sum_{n=n_1+1}^i c_n \varphi(\ell^n)), \text{ with}$$

$c_n = 0 \forall n \geq n_2$. Inserting this in 3), we are done. \square

COROLLARY 2. If N/M has only finitely many ramified primes, and each prime which ramifies is totally ramified, and $\mu(M/k) = 0$, then for all i ,

$$\lambda(F_i/k_i) = r\ell^i + \sum_{n=0}^i c_n \varphi(\ell^n)$$

with $c_n = 0$ for all $n \geq n_2$.

If, in addition, $\lambda(M/k) = 0$, then $r = 0$, so $\lambda(F_i/k_i)$ is bounded.

PROOF. The first part follows as in the previous corollary, since $n_0 = n_1 = 0$, and $X_i \cong X_N/\omega_n(T)X_N$.

If $\lambda(M/k) = 0$, then $0 = r\ell^0 + c_0$, so $r = c_0 = 0$.

Remark: If $r = 0$, then X_N is a torsion $\mathbb{Z}_\ell[[T]]$ module, and therefore $d = \dim_{\mathbb{Q}_\ell} (X_N \otimes_{\mathbb{Z}_\ell} \mathbb{Q}_\ell)$ is finite. It follows that for any \mathbb{Z}_ℓ -extension L/E , with $L \subseteq N$ and L having only finitely many valuations above ℓ , $\lambda(L/E) \leq d+1$ because X_L is essentially a factor module of $X_N \oplus \mathbb{Z}_\ell$.

V. OTHER \mathbb{Z}_ℓ -EXTENSIONS CONTAINED IN N

We study here an extension N/k , as above, with $g(N/k) \cong \mathbb{Z}_\ell \oplus \mathbb{Z}_\ell$. Since for any $a, b \in \mathbb{Z}_\ell$, such that ℓ does not divide both a and b , $\mathbb{Z}_\ell \oplus \mathbb{Z}_\ell / \langle (a, b) \rangle \cong \mathbb{Z}_\ell$, the extension N/k contains infinitely many \mathbb{Z}_ℓ -extensions.

For the next few results we look first at the situation where N/M has a unique ramified prime which is totally ramified, and later at the special case where N/k has a unique totally ramified prime. The examples in Section VI show that the second situation occurs infinitely often, and therefore the first does as well.

Recall that $N = MK$, with $k = k_0 \subset k_1 \subset \dots \subset K$, and $k = m_0 \subset m_1 \subset \dots \subset M$ two disjoint \mathbb{Z}_ℓ -extensions, and $F_i = k_i M$.

PROPOSITION 1. If N/M has a unique totally ramified prime, then $X_i = g(\overline{F_i}/F_i) \cong X_N / \omega_i(T) X_N$.

PROOF. This follows from the proof of Theorem 4, with $n_0 = n_1 = 0$ and $Y_i = \omega_i(T) X_N$.

We also use the following lemma [9 pg. 155], which is corollary of Nakayama's lemma.

We quote Nakayama's lemma for reference. [9].

Nakayama's Lemma. Let R be a ring, and E an R module. If I is an ideal of R contained in every maximal ideal, and $IE = E$, then $I = 0$.

LEMMA. Let \mathcal{O} be a local ring and m its maximal ideal. Let E be a finitely generated \mathcal{O} module, and F a submodule. If $E = F + mE$, then $E = F$.

PROOF. We have,

$$E = F + mE = F + m(F + mE) = F + m^2E.$$

By induction $E = \bigcup_{n=1}^{\infty} m^n E$ for all n , and hence $E = \bigcup_{n=1}^{\infty} m^n E$ for all n . Let $D = \bigcap_{n=1}^{\infty} m^n E$. $mD = D$, hence $D = 0$ by Nakayama's Lemma, so $E = F$. \square

We now combine these two results.

THEOREM 5. If N/M has a unique totally ramified prime and $g(\bar{M}/M)$ is a cyclic \mathbb{Z}_{ℓ} module (i.e., $\mathbb{Z}/\ell^n\mathbb{Z}$ or \mathbb{Z}_{ℓ}), then $x_N = \Lambda_T r$ for some $r \in g(\bar{N}/N)$. Thus $x_N \cong \Lambda_T / I$, where I is the ideal $\{h(T) \in \Lambda_T \mid h(T)r = 0\}$.

PROOF. Let $r' \in g(\bar{M}/M)$ generate $g(\bar{M}/M)$. By Proposition 1, $x_N / T x_N \cong g(\bar{M}/M)$, and the isomorphism is given by restriction. Let r be an element of $x_N = g(\bar{N}/N)$ such that $r|_{\bar{M}} = r'$. Then $x_N = \mathbb{Z}_{\ell} r + T x_N \subseteq \Lambda_T r + m x_N$, where $m = (T, \ell)$ is the maximal ideal of the local ring Λ_T . Applying the lemma we see that $x_N = \Lambda_T r$. \square

This characterization of x_N allows us to represent the action of Λ_S on x_N in terms of the Λ_T structure of x_N .

With the hypotheses of Theorem 5, we have

$X_N = \Lambda_T r$. Since $Sr \in X_N$, there is a power series $f(T) \in \Lambda_T$ such that $SR = f(T)r$. The power series $f(T)$ is unique mod \mathbb{I} . Thus $g(S)r = g(f(T))r$ and $g(S)X_N = g(f(T))X_N$.

In order for $g(f(T))$ to be well defined, and for future calculations, we show that $f(T)$ is in (T, ℓ) , the maximal ideal of Λ_T .

If $f(T) \notin (T, \ell)$, then $f(T)$ is a unit in Λ_T and $f(T)X_N = X_N$. Thus $SX_N = X_N$, and if $X_M = g(\bar{M}/M)$, we have $SX_M = X_M$, since X_M is a factor module of X_N . But X_M is a Noetherian Λ_S module, and S is contained in the maximal ideal of Λ_S , so we can apply Nakayama's lemma to conclude $X_M = 0$. We have $X_M = X_N/TX_{N_1}$ so $X_N = TX_N$, hence $X_N = 0$.

If $X_N = 0$, we may assume $f(T) \in (T, \ell)$.

Recall that $N = MK$, with τ generating $g(N/M)$ and σ generating $g(N/K)$. There is a 1-1 correspondence between \mathbb{Z}_ℓ -extensions of k contained in N and subgroups $H \subseteq g(N/k)$ such that $g(N/k)/H \cong \mathbb{Z}_\ell$. Such subgroups H are all of the form $\langle \tau^a \sigma^b \rangle$ where ℓ does not divide both a and b . Let $L_{a,b}$ denote the subfield of N fixed by $\langle \tau^a \sigma^b \rangle$. Then $\{L_{a,b} \mid a, b \in \mathbb{Z}_\ell, \ell \nmid a \Rightarrow \ell \nmid b\}$ is the set of all \mathbb{Z}_ℓ -extensions of k contained in N . If $\ell \nmid a$, then a is a unit in \mathbb{Z}_ℓ , so $\langle \tau^a \sigma^b \rangle = \langle (\tau^a \sigma^b)^{a^{-1}} \rangle = \langle \tau \sigma^{ba^{-1}} \rangle$. Thus we can actually describe the set of \mathbb{Z}_ℓ -extensions of k contained in N as $\{L_{1,b}, L_{a,1} \mid a, b \in \mathbb{Z}_\ell, \ell \nmid a\}$. Notice that $M = L_{1,0}$ and $K = L_{0,1}$.

Assume for the rest of this section that N/k has a unique totally ramified prime, and $g(\bar{M}/M)$ is a cyclic \mathbb{Z}_ℓ module. From Theorem 5, there is an $r \in X_N$ such that $X_N = \Lambda_T r \cong \Lambda_T / I$. Pick $f(T) \in \Lambda_T$ such that $sr = f(T)r$. For $g(T) \in \Lambda_T$, with $g(T) \equiv 1 \pmod{m}$, and $a \in \mathbb{Z}_\ell$, define $(g(T))^a = \lim_{n \rightarrow a} (g(T))^{a_n}$.

THEOREM 6. With the above hypotheses and notation,

$$g(\bar{L}_{a,b}/L_{a,b}) \cong \Lambda_T / (I, (1+T)^a (1+f(T))^b - 1).$$

PROOF. Since $N/L_{a,b}$ has a unique totally ramified prime, the field $\bar{N}/\bar{L}_{a,b}$ is the maximal subextension of \bar{N} abelian over $L_{a,b}$. Since $g(N/L_{a,b}) = \langle \tau^a \sigma^b \rangle$, the subfield of \bar{N} fixed by $(\tau^a \sigma^b - 1)X_N$ is precisely $\bar{N}/\bar{L}_{a,b}$.

Thus we have,

$$\begin{aligned} g(\bar{L}_{a,b}/L_{a,b}) &\cong g(\bar{N}/\bar{L}_{a,b}) \cong X_N / (\tau^a \sigma^b - 1)X_N \cong X_N / ((1+T)^a (1+f(T))^b - 1)X_N \\ &\cong \Lambda_T / I \\ &\cong ((1+T)^a (1+f(T))^b - 1) (\Lambda_T / I) \cong \Lambda_T / (I, (1+T)^a (1+f(T))^b - 1). \quad \square \end{aligned}$$

For $L_{a,b} \neq L_{1,0}$, $\tau|_{L_{a,b}}$ generates a subgroup of finite index in $g(L_{a,b}/k)$, so it is precisely this Λ_T structure in which we are interested. In fact, for $k \subseteq L_n \subseteq L_{a,1}$, with $[L_n : k] = \ell^n$, we have,

$$g(\bar{L}_n/L_n) \cong \Lambda'_T / (I, (1+T)(1+f(T))^b - 1, \omega_n(T)).$$

We cannot completely describe the invariants of $L_{a,b}/k$ without knowing I and $f(T)$, but we can determine that $\mu(L_{a,b}/k) \neq 0$ for at most one of the $L_{a,b}$.

Greenberg [4] has shown that $\mu(L_{a,b}/k)$ is bounded in this situation, by entirely different methods. The result of this thesis assumes a stronger hypothesis, and is more explicit in its result.

We first prove the following results.

LEMMA. With the above hypotheses and notation, if $\ell \nmid ((1+T)^a(1+f(T))^b - 1$, then $\mu(L_{a,b}/k) = 0$.

PROOF. Assume $\mu(L_{a,b}/k) \neq 0$. Then if $Y = g(\overline{L_{a,b}}/L_{a,b})$, $Y/\ell Y$ is infinite. By Theorem 6 we have $Y \cong \Lambda_T/J$, where $J = (I, (1+T)^a(1+f(T))^b - 1)$. We have the isomorphism,

$$Y/\ell Y \cong \frac{\Lambda_T/(\ell)}{(\ell, J)/(\ell)}.$$

Since $\Lambda_T/(\ell)$ has no infinite proper quotients, we must have $J \subseteq (\ell)$, and therefore $\ell \mid (1+T)^a(1+f(T))^b - 1$. \square

PROPOSITION 2. Assume that N/k has a unique totally ramified prime and $g(\overline{M}/M)$ is a cyclic \mathbb{Z}_ℓ -module. If $\mu(k/k) \neq 0$, then $\mu(L_{a,b}/k) = 0$ for all other $L_{a,b}$.

PROOF. Since $K = L_{0,1}$, and $\mu(K/k) \neq 0$, the lemma implies that $\ell \mid (1+T)^0 (1+f(T)) - 1 = f(T)$. For any $a, b \in \mathbb{Z}_\ell$, $(1+T)^a (1+f(T))^b - 1 \equiv (1+T)^a - 1 \pmod{(\ell)}$. If c is a unit in \mathbb{Z}_ℓ , then $L_{a,b} = L_{ac,bc}$. Thus we may assume that a is an integer. For $a \neq 0$, $\ell \nmid (1+T)^a - 1$, and therefore $\ell \nmid (1+T)^a (1+f(T))^b - 1$. By the lemma, again, we have

$$\mu(L_{a,b}/k) = 0 \text{ for } L_{a,b} \neq L_{0,1}. \quad \square$$

PROPOSITION 3. Assume that N/k has a unique totally ramified prime and $g(\bar{M}/M)$ is a cyclic \mathbb{Z}_ℓ -module. If $\mu(K/k) = 0$, and $L_{a,b} \cap M \neq k$, then $\mu(L_{a,b}/k) = 0$.

PROOF. Since $L_{a,b} \cap M \neq k$, we have $\ell \mid b$. Therefore $\ell \nmid a$, and we may assume $a = 1$. It suffices to show that $\ell \nmid (1+T) (1+f(T))^b - 1$.

We will show that,

$$(1+T) (1+f(T))^b - 1 \equiv T \pmod{(\ell, T^\ell)}.$$

It suffices to show that,

$$(1+f(T))^b \equiv 1 \pmod{(\ell, T^\ell)}.$$

We have,

$$(1+f(T))^b = (1+f(T))^{\ell c} = ((1+f(T))^c)^\ell = (1+g(T))^\ell$$

for some $g(T) \in (T, \ell)$.

Now, $(1+g(T))^\ell \equiv 1+g(T)^\ell \pmod{\ell}$

$$\equiv 1 \pmod{(\ell, T^\ell)}$$

and we are done. \square

Combining these results we have the following theorem.

THEOREM 7. If N/k has a unique totally ramified prime, and $g(\bar{M}/M)$ is a cyclic \mathbb{Z}_ℓ module then there is at most one \mathbb{Z}_ℓ -extension $L_{a,b}/k$, $L_{a,b} \subseteq N$, such that $\mu(L_{a,b}/k) \neq 0$.

PROOF. If $\mu(L_{a,b}/k) = 0$ for all $L_{a,b}$, then we are done. Assume $\mu(L_{a_0,b_0}/k) \neq 0$. If $\mu(K/k) \neq 0$, then Proposition

2 shows that $\mu(L_{a,b}/k) = 0$ for all other $L_{a,b}$.

Thus we may assume that $\mu(K/k) = 0$. By Proposition 3, L_{a_0,b_0} is disjoint from M . We may take $K_0 = L_{a_0,b_0}$, and since $M \cap K_0 = k$ and $N = MK_0$, we may apply Proposition 2 and conclude that $\mu(L_{a,b}/k) = 0$ for all other $L_{a,b}$.

Remark: (Suggested by Richard Foote.) If N and k were normal over \mathbb{Q} , and $\mu(L/k) \neq 0$ for some \mathbb{Z}_ℓ -extension of k contained in N , then any field L' conjugate to L would be a \mathbb{Z}_ℓ -extension of k contained in N , with $\mu(L'/k) \neq 0$. If the hypotheses of Theorem 7 hold, we must have $L = L'$, so L is normal over \mathbb{Q} . This places severe restrictions on L , and in most cases restricts it to a single extension.

If $\mu(L_{a,b}/k) = 0$ for all $L_{a,b}$, we will show that $\lambda(L_{a,b}/k)$ is bounded. This has been shown in a similar, more general setting by Greenberg [4].

PROPOSITION 4. If N/k has a unique totally ramified prime, $g(\bar{k}/k)$ is cyclic, and $\mu(L_{a,b}/k) = 0$ for all $L_{a,b}$, then $\lambda(L_{a,b}/k)$ is bounded.

PROOF. We will assume λ unbounded, and construct a \mathbb{Z}_ℓ -extension $L_{a,b}/k$ with nonzero μ invariant.

Given a field F , $k \subseteq F \subseteq N$, let $E(F) = \{L_{a,b} \mid F \subseteq L_{a,b}\}$. If F/k is not cyclic, $E(F) = \emptyset$. Notice that each field F , with F/k finite, $F \subseteq N$, has only $\ell+1$ extensions of degree ℓ , F_0, \dots, F_ℓ , with $F_i \subseteq N$. Also $E(F) = \bigsqcup_{i=0}^{\ell} E(F_i)$.

Let $F_0 = k$. We will pick F_n with $[F_1:k] = \ell^n$, in the following manner. Pick F_1 with $[F_1:k] = \ell^n$, and λ unbounded in $E(F_1)$. This can be done since λ is unbounded in $E(F_0)$ and $E(F)$ is the finite union of $E(F_{1,i})$ for the extensions $F_{1,i}$ of F of degree ℓ .

Pick F_n containing F_{n-1} with $[F_n:F_{n-1}] = \ell$, and λ unbounded in $E(F_n)$. We now show that there is a \mathbb{Z}_ℓ -extension $L_{a,b}$, with $F_n \subseteq L_{a,b}$ for all n , thus $L_{a,b} = \bigsqcup_{n=1}^{\infty} F_n$.

We may assume $F_1 \cap M = k$. Thus $F_1 \subseteq L_{a_1,1}$ for at least one a_1 . Pick such an a_1 . Pick a_n so that $F_n \subseteq L_{a_n,1}$. Since the n -th layer of $L_{a_1,1}$ is the subfield of N fixed by $\langle \tau^{a_1} \sigma, \tau^{\ell^n} \rangle$, we see that the n -th layer is uniquely determined by the congruence class of $a \pmod{\ell^n}$.

Thus we have for $i < j$, $a_i \equiv a_j \pmod{\ell^i}$. Let $a = \lim a_n$. Then $a \equiv a_n \pmod{\ell^n}$, and $F_n \subseteq L_{a,1}$.

One may see this in another way. The field F_n is the fixed field of $\langle \tau^{a_1} \sigma, \tau^{\ell^n} \rangle = \langle \tau^a \sigma, \tau^{\ell^n} \rangle$. Thus the union of the F_n is the fixed field of $\bigcap_{n=1}^{\infty} \langle \tau^a \sigma, \tau^{\ell^n} \rangle = \langle \tau^a \sigma \rangle$, so $\bigsqcup_{n=1}^{\infty} F_n = L_{a,1}$.

In order to show that $\mu(L_{a,1}) \neq 0$, we use the following lemma.

LEMMA. If $k = F_0 \subset F_1 \subset \dots \subset F_\infty$ is a \mathbb{Z}_ℓ -extension with a unique totally ramified prime, $\mu(F_\infty/k) = 0$, $\lambda(F_\infty/k) \neq 0$, and $g(\bar{k}/k)$ is cyclic, then $\text{rank } g(\bar{E_n}/E_n) = \min(\ell^n, \lambda(F_\infty/k))$.

PROOF. Let $X = g(\bar{F_\infty}/F_\infty)$. Let γ be a topological generator for $g(F_\infty/k)$, and make X into a Λ_T module by the action $1+T \longleftrightarrow \gamma$. Since F_∞/k has a unique totally ramified prime, $g(\bar{F_n}/F_n) \cong X/\omega_n(T)X$.

Since $g(\bar{k}/k) = X/TX$ is cyclic, $X \cong \Lambda_T/I$.

Since $\mu=0$, $\lambda \neq 0$, $I = (f(T))$, $\deg f(T) = \lambda$.

Thus if $G = g(\bar{F_n}/F_n)$, $G \cong \Lambda_T/(f(T), \omega_n(T))$, and $G/\ell G \cong \Lambda_T/(f(T), \omega_n(T), \ell) = \Lambda_T/(T^\lambda, T^{\ell^n}, \ell) \cong (\mathbb{Z}/\ell\mathbb{Z})^m$ with $m = \min(\lambda, \ell^n)$. \square

Returning to the proof of the proposition, each F_n is contained in a \mathbb{Z}_ℓ -extension L which satisfies the hypotheses of the lemma, and $\lambda(L/k) > \ell^n$.

Therefore, $\text{rank } g(\bar{F_n}/F_n) = \ell^n$, so $|g(\bar{F_n}/F_n)| \geq \ell^{\ell^n}$, so $\mu(L_{a,1}/k) \neq 0$. \square

If $\mu(K/k) \neq 0$, then there are certain restrictions on the possible values of $\lambda(L_{a,b}/k)$, given by the following proposition.

PROPOSITION 5. If N/k has a unique totally ramified prime, $g(\bar{M}/M)$ is a cyclic \mathbb{Z}_ℓ module, and $\mu(K/k) \neq 0$,

then $\lambda(L_{a,b}/k)$ is either 0 or $[L_{a,b} \cap K:k]$.

PROOF. We can take $L_{a,b} = L_{\ell^n, b}$, where $\ell^n = [L_{a,b} \cap K:k]$. We have $g(\overline{L_{a,b}}/L_{a,b}) \cong \Lambda_T / (I, (1+T)^{\ell^n} (1+f(T))^{b-1})$ by Theorem 6. Since $\mu(K/k) \neq 0$, $\ell \nmid f(T)$, so,

$$(1+T)^{\ell^n} (1+f(T))^{b-1} \equiv T^{\ell^n} \pmod{\ell}$$

We also have $(1+T)^{\ell^n} (1+f(T))^{b-1} = h(T) u(T)$ for some distinguished polynomial $h(T)$, and unit power series $u(T)$, by the Weierstrass preparation theorem. If $d = \deg h(T)$, then T^d is the smallest power of T with coefficient not divisible by ℓ in the power series,

$$\sum_{n=0}^{\infty} a_n T^n = (1+T)^{\ell^n} (1+f(T))^{b-1}.$$

Thus $d = \ell^n$.

Therefore $g(\overline{L_{a,b}}/L_{a,b})$ is a factor module of $\Lambda_T/h(T)$, with degree $h(T) = \ell^n$. Thus $\lambda(L_{a,b}/k) \leq \ell^n$. If $\ell^n = 1$, we are done.

If $\lambda(L_{a,b}/k) \neq 0$, then $\Lambda_T/(I, h(T))$ is not finite, and $\Lambda_T/(I, h(T)) = \Lambda_T/p(T)$, with $p(T) \mid h(T)$ and $p(T) \mid I$. If $1 \leq \deg p(T) < \ell^n$, then we argue as follows.

If, $K \subseteq L_n \subseteq L_{a,b}$, with $[L_n:k] = \ell^n$, then $L_n = k_n = L_{a,b} \cap K$, so $\text{rank } g(\overline{L_n}/L_n) = \ell^n$. But $\text{rank } g(\overline{L_n}/L_n) \leq \deg p(T) < \ell^n$, a contradiction. Therefore $p(T) = h(T)$, and $\lambda(L_{a,b}/k) = \ell^n$. \square

VI SOME EXAMPLES

Let ℓ be an odd prime, ζ a primitive ℓ -th root of unity, and $k = \mathbb{Q}(\zeta)$. Let M be the cyclotomic \mathbb{Z}_ℓ -extension of k . The extension M/k has a unique totally ramified prime.

If ℓ is a regular prime, i.e., $\ell \nmid h_k$, then any \mathbb{Z}_ℓ -extension K/k has a unique totally ramified prime, and $\mu = \lambda = \gamma = n_0 = 0$. (c.f. [5]). In fact, if N is the composite of two \mathbb{Z}_ℓ -extensions of such a field k , and $x_n = g(\bar{N}/N)$, then $x_n / (T, S)x_n \cong g(\bar{k}/k) = 0$, whence $x_n = 0$ by our corollary to Nakayama's lemma. Thus, every number field $k_{i,j}^m$ contained in N has class number prime to ℓ , and every \mathbb{Z}_ℓ -extension $L_{a,b}$ has zero invariants.

Let ℓ be such that $k = \mathbb{Q}(\zeta)$ has class number exactly divisible by ℓ . Assume furthermore that $g(\bar{M}/M) \cong \mathbb{Z}_\ell$, where M is the cyclotomic \mathbb{Z}_ℓ -extension of k . This occurs for $\ell = 37, 59, 67$, and for all primes $\ell < 30,000$ where $\ell \parallel h_k$. (See [8]).

LEMMA. (Suggested by David Dummit) If ℓ is such a prime, M/k the cyclotomic \mathbb{Z}_ℓ -extension, K/k a disjoint \mathbb{Z}_ℓ -extension, and $N = MK$, then N/k has a unique totally ramified prime iff \bar{k} is not contained in N .

PROOF. The field k has a unique prime ℓ over ℓ . Let v be a valuation of N extending the valuation of k

induced by μ . Let T denote the inertia group for v in N/k . Since N/k is abelian, T does not depend upon the choice of v . Let E denote the fixed field of T . The extension E/k is unramified at μ , and since only primes above ℓ can ramify in N/k , E/k is unramified.

If $\bar{k} \not\subset N$, then $E=k$, and μ is totally ramified in N/k . Thus N/k has a unique totally ramified prime.

If $\bar{k} \subset N$, then μ is not totally ramified in N/k . In fact, since μ is principal in k , splits in \bar{k}/k , so N does not even have a unique prime over μ . \square

Since k has $\ell+1/2$ independent \mathbb{Z}_ℓ -extensions, there are many \mathbb{Z}_ℓ -extensions K/k such that $\bar{k} \not\subset MK$. Let K be such a \mathbb{Z}_ℓ -extension.

Thus we have the situation of Theorems 5 - 7, and can conclude from the results of that section that:

1. The μ invariant is nonzero for at most one \mathbb{Z}_ℓ -extension of k contained in N . (Theorem 7)

2. If μ is nonzero for one such \mathbb{Z}_ℓ -extension, then $\ell+1$ extensions of k of degree ℓ and contained in N must have the following structure.

One extension has class group $(\mathbb{Z}/\ell\mathbb{Z})^\ell$, and the other ℓ have class group $\mathbb{Z}/\ell\mathbb{Z}$ or $\mathbb{Z}/\ell^2\mathbb{Z}$.

One can see this as follows.

Since ℓ is not regular, $g(\bar{M}/M)$ is not finite [5].

We have shown that $g(M/M) \cong X_N/TX_N \cong \Lambda_T/(I, T)$. Thus $T \mid I$.

Now $g(\bar{k}/k) \cong \Lambda_T/(I, T, f(T)) \cong \mathbb{Z}_\ell/(f(0))$, so $f(0) = \ell u$, with u a unit in \mathbb{Z}_ℓ . We may assume that $\mu(K/k) \neq 0$. Then,

$g(\bar{k}_1/k_1) \cong \Lambda_T/(I, f(T), (1+T)^\ell - 1)$. Since $\ell \mid f(T)$, we have $f(T) = \ell u(T)$, with $u(T)$ a unit power series, and since $\mu(K/k) = 0$, $\ell \mid I$. Thus $g(\bar{k}_1/k_1) \cong \Lambda_T/(\ell, T^\ell) \cong (\mathbb{Z}/\ell\mathbb{Z})^\ell$. We also have,

$$\begin{aligned} g(\bar{m}_1/m_1) &\cong \Lambda_T/(I, T, (1+f(T))^\ell - 1) \cong \mathbb{Z}_\ell/(1+f(0))^\ell - 1 \cong \mathbb{Z}_\ell/\ell^2 \\ &\cong \mathbb{Z}/\ell^2\mathbb{Z}. \end{aligned}$$

Each other extension of k of degree ℓ is contained in some $L_{a,1}$, with $g(L_{a,1}/L_{a,1}) \cong \Lambda_T/(I, (1+T)^a(1+f(T)-1))$. Since $f(T) = \ell u(T)$, $(1+T)^a(1+f(T)-1)$ evaluated at $T = 0$ is ℓ times a unit. We have already shown (Proposition 5) that, $(1+T)^a(1+f(T)-1) = (T-c)u_a(T)$, where $u_a(T)$ is a unit power series, and $\ell \nmid c$. We may now conclude that $\ell^2 \nmid c$. We now have $g(\bar{L}_{a,b}/L_{a,b}) \cong \Lambda_T/(I, T-c)$, and the ℓ -part of the class group of the first layer is a factor module of,

$$\Lambda_T/(T-c, (1+T)^\ell - 1) \cong \mathbb{Z}_\ell/(1+c)^\ell - 1 \cong \mathbb{Z}/\ell^2\mathbb{Z}.$$

If the structure mentioned in 2 of the class groups of the degree ℓ extensions of k did not exist, then one could conclude that μ would be zero for all \mathbb{Z}_ℓ -extensions of k contained in N .

We now present a few examples for which the invariants can be computed. The theory of \mathbb{Z}_ℓ -extensions of complex quadratic k is more developed than for arbitrary k , and portions of these examples have been computed.

by other authors. See, for example, Carroll and Kisilevsky [1].

In these examples k will be a complex quadratic number field, $k=\sqrt{-d}$. Let N be the composite of all \mathbb{Z}_ℓ -extensions of k . Then $g(N/k) \cong \mathbb{Z}_\ell \oplus \mathbb{Z}_\ell$. Let M/k be the cyclotomic \mathbb{Z}_ℓ -extension of k .

If ℓ is odd, or if $\ell=2$ and all quadratic extensions of k contained in N are normal over \mathbb{Q} (it suffices that d have a prime factor congruent to $\pm 3 \pmod{8}$), then there is a unique \mathbb{Z}_ℓ -extension K/k which is normal over \mathbb{Q} , and $MK=N$. See [1] for a proof of this fact.

If ℓ ramifies or remains prime in k/\mathbb{Q} , and the class number of k is prime to ℓ , then $g(\bar{N}/N)=0$, and $\mu=\lambda=v=n_0=0$ for every \mathbb{Z}_ℓ -extension of k .

Example 1. Let $\ell=2$ and $k=\mathbb{Q}\sqrt{-p}$, where p is a prime, $p \equiv 5 \pmod{8}$. Then $2|h_k$, $4 \nmid h_k$.

If F is a quadratic extension of k contained in N , then F/\mathbb{Q} is normal, since $p \equiv -3 \pmod{8}$. Since k is complex, we have $g(F/\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$, so $F=k\sqrt{d}$, $d \in \mathbb{Z}$. Because F/k is unramified outside 2, the only possible choices for F are $k(\sqrt{2})$, $k(\sqrt{-2})$, $k(\sqrt{-1})$, and each of these fields is contained in N .

Now $k(\sqrt{-1})/k$ is unramified and cyclic, and $4 \nmid h_k$. Therefore $k(\sqrt{-1})$ has class number prime to 2. Since μ_2 , the prime above 2 in k is not principal in k , μ_2 remains prime

in the extension $k(\sqrt{-1})/k$. Thus $N/k(\sqrt{-1})$ has a unique totally ramified prime over 2, and since the class number of $k(\sqrt{-1})$ is prime to 2, $g(\bar{N}/N)=0$.

Thus $\mu=\lambda=0$ for every \mathbb{Z}_2 -extension of k . For $k \subseteq F \subseteq N$, we have $g(\bar{F}/F)=0$ if $k(\sqrt{-1}) \subseteq F$, and $g(\bar{F}/F) \cong \mathbb{Z}/2\mathbb{Z}$ if $k(\sqrt{-1}) \not\subseteq F$.

Example 2. Let $\ell=2$, $p \equiv 5 \pmod{8}$ and $k = \mathbb{Q}\sqrt{-2p}$. Again $2|h_k$, $4 \nmid h_k$. The quadratic extensions of k contained in N are again $k(\sqrt{2})$, $k(\sqrt{-2})$, and $k(\sqrt{-1})$. Here $\bar{k} = k(\sqrt{-2})$, and the class number of \bar{k} is prime to 2. Thus $N/k(\sqrt{-2})$ has a unique totally ramified prime and $g(\bar{N}/N)=0$. We have $\mu=\lambda=0$ for every \mathbb{Z}_2 -extension of k . For $k \subseteq F \subseteq N$, $g(\bar{F}/F)=0$ if $\sqrt{-2} \in F$, and $g(\bar{F}/F) \cong \mathbb{Z}/2\mathbb{Z}$ if $\sqrt{-2} \notin F$.

Example 3. Let $\ell=2$, $p \equiv 3 \pmod{8}$, and $k = \sqrt{-2p}$. Then $2|h_k$, $4 \nmid h_k$, and $k(\sqrt{2})$, $k(\sqrt{-2})$, $k(\sqrt{-1})$ are the quadratic subextensions of k contained in N . We have $\bar{k} = k(\sqrt{2})$ and μ_2 remains prime in \bar{k}/k . Again, $g(\bar{N}/N)=0$, and $\mu=\lambda=0$ for every \mathbb{Z}_2 -extension of k . If $k \subseteq F \subseteq N$, we have $g(\bar{F}/F)=0$ if $\sqrt{2} \in F$, and $g(\bar{F}/F) \cong \mathbb{Z}/2\mathbb{Z}$ if $\sqrt{2} \notin F$.

Example 4. Let $\ell=2$, $p \equiv 7 \pmod{8}$, and $k = \mathbb{Q}\sqrt{-p}$. Assume furthermore that 8 does not divide the class number of $\mathbb{Q}\sqrt{-2p}$. These conditions occur for $p = 7, 23, 71$, and for infinitely many other p .

The class number of k is prime to 2, and 2 splits in k/\mathbb{Q} . Let μ_1 and μ_2 denote the primes above 2 in k .

Let M be the cyclotomic \mathbb{Z}_2 -extension of k . We have $k \subseteq k(\sqrt{2}) \subseteq M$, and μ_1, μ_2 ramify in $k(\sqrt{2})/k$, so μ_1 and μ_2 ramify totally in M .

For $k \subseteq m_n \subseteq M$ with $[m_n : k] = 2^n$, let $G = g(m_n/k)$. Genus theory implies that $|c_{m_n}^G|$ is either $2^n h_k$ or $2^{n-1} h_k$. Let F_n be the maximal unramified 2-extension of m_n which is abelian over k . Then $[F_n : m_n]$ is either 2^n or 2^{n-1} . Let $F = \bigcup_{n=1}^{\infty} F_n$. Then F/k is abelian, $k \subseteq M \subseteq F$, and F/M is not finite.

Let $G = g(F/k)$, $X = g(F/M)$ and let T_i be the inertia group for μ_i in F/k ($i = 1, 2$). Let K_i denote the fixed field of T_i .

Since F/M is unramified, $T_i \cap X = 0$ for $i = 1, 2$. The fixed field of $X T_i$ is contained in M and unramified at μ_i , and is therefore equal to k . Thus $X T_i = G$, and $G \cong X \oplus T_i$. Therefore,

$$T_i \cong G/X \cong g(M/k) \cong \mathbb{Z}_2.$$

The fixed field of $T_1 T_2$ is unramified over k , thus $T_1 T_2 = G$. We also have $X \cong G/T_i \cong T_2/T_1 \cap T_2$. Therefore X is isomorphic to a factor of \mathbb{Z}_2 . But X is an infinite pro-2 group, so $X \cong \mathbb{Z}_2$, and $T_1 \cap T_2 = 0$. Thus F is the composite of all \mathbb{Z}_2 -extensions of k . The fields K_1 and K_2 are disjoint \mathbb{Z}_2 -extensions of k and $F = K_1 K_2$.

Let k_i denote the first layer of K_i . Then k_1, k_2 , and $k(\sqrt{2})$ are the quadratic extensions of k contained in F .

We claim that the ramification index of μ_i in $k_1 k_2/k$ is 2. Since $k/(\sqrt{2}) \subset k_1 k_2$, and μ_i ramifies in $k(\sqrt{2})/k$, it is at least 2. Since μ_i does not ramify in k_i/k , it is at most 2.

Thus $k_1 k_2/k(\sqrt{2})$ is unramified at 2, therefore unramified. One can easily show that $k(\sqrt{2})/\mathbb{Q}(\sqrt{-2p})$ is unramified. Thus $k_1 k_2/\mathbb{Q}(\sqrt{-2p})$ is unramified.

The field $k_1 k_2$ is normal over \mathbb{Q} , hence normal over $\mathbb{Q}(\sqrt{-2p})$. Since $[k_1 k_2 : \mathbb{Q}(\sqrt{-2p})] = 4$, $k_1 k_2/\mathbb{Q}(\sqrt{-2p})$ is an abelian unramified extension. We have $k_1 k_2 \subset \overline{\mathbb{Q}(\sqrt{-2p})}$, whence $k_1 k_2 = \overline{\mathbb{Q}(\sqrt{-2p})}$. Using the fact that $g(\overline{\mathbb{Q}(\sqrt{-2p})}/\mathbb{Q}(\sqrt{-2p}))$ is cyclic, and that the prime above 2 in $\mathbb{Q}(\sqrt{-2p})$ is not principal, we conclude that primes above 2 do not split in $k_1 k_2/k(\sqrt{2})$. Therefore μ_1 does not split in k_1/k , and thus does not split in K_1/k . Similarly, μ_2 does not split in K_2/k .

Thus K_i/k has a unique totally ramified prime. Since $g(\overline{k}/k) = 0$, $g(\overline{K_i}/K_i) = 0$. The extension F/K_i also has a unique totally ramified prime, therefore $g(\overline{F}/F) = 0$. Since F does not have an abelian unramified 2-extension, $F = \overline{M}$.

We can now describe the invariants of any \mathbb{Z}_2 -extension, L , of k . If $L = K_1$ or $L = K_2$, then $\mu = \lambda = 0$. Otherwise $\mu = 0$, $\lambda = 1$, $g(\overline{L}/L) \cong \mathbb{Z}_2$.

For $k \subseteq F \subseteq N$, $[F : \mathbb{Q}] < \infty$, we have $g(\overline{F}/F) = 0$ if $F \subseteq K_1$, and if $F \not\subseteq K_1$, $g(\overline{F}/F) \cong \mathbb{Z}/2^n\mathbb{Z}$, where $2^n = [F : F \cap K_2]$.

REFERENCES

1. Carroll, J.E., and H. Kisilevsky, "Initial Layers of \mathbb{Z}_ℓ -extensions of Complex Quadratic Fields, " Compositio Mathematica 32 (1976), 157-168.
2. Carroll, J.E., and H. Kisilevsky, "On Iwasawa's λ -Invariant for Certain \mathbb{Z}_ℓ -extensions," to appear.
3. Greenberg, R., "On the Iwasawa Invariants of Totally Real Number Fields," American Journal of Mathematics 98 (1976), 263-284.
4. Greenberg, R., "The Iwasawa Invariants of Γ -extensions of a Fixed Number Field," American Journal of Mathematics 95 (1973), 204-214.
5. Iwasawa, K., "On the Theory of Cyclotomic Fields," Annals of Mathematics 70 (1959), 530-561.
6. Iwasawa, K., "On the μ -invariants of \mathbb{Z}_ℓ -extensions," Number Theory, Algebraic Geometry and Commutative Algebra, in honor of Y. Akizuki, Kinokuniya, Tokyo, 1973, 1-11.
7. Iwasawa, K., "On \mathbb{Z}_ℓ -extensions of Algebraic Number Fields," Annals of Mathematics 98 (1973) 246-326.
8. Johnson, W., "Irregular Primes and Cyclotomic Invariants," Mathematics of Computation 29 (1975), 113-120.
9. Lang, S., Algebra, Addison-Wesley, 1971.
10. Serre, J.-P., "Classes des Corps Cyclotomiques," Seminaire Bourbaki, Expose 174 (1958-59).